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INTRODUCTION: Polyploidy, arising from
whole-genome duplication or interspecific hy-
bridization, is ubiquitous across the plant and
fungal kingdoms. Thepresenceof highly related
genes in polyploids, referred to as homoeologs,
has beenproposed to confer adaptive plasticity—
for example, throughneofunctionalization of du-
plicated genes or tissue-specific expression. This
plasticity has facilitated the domestication and
adaptation ofmajor polyploid crops (e.g., wheat,
cotton, and coffee). However, despite its likely
importance, we have a limited understanding
of the effect of polyploidy on gene expression
and the extent to which homoeologs are simi-
lar or different in their expression patterns
across development and tissues.

RATIONALE: Bread wheat is a polyploid de-
rived from the hybridizations between three
distinct diploid species and is an informative
system for analyzing the effects of recent poly-
ploidy on gene expression. Understanding the
coordination of homoeologs and identifying the
mechanisms associated with these processes
should help define strategies to improve trait
biology in a crop that providesmore than 20%
of the protein and caloric intake of humans.

RESULTS:Here we leverage 850 wheat RNA-
sequencing samples, alongside the annotated
genome, to determine the similarities and dif-
ferences between homoeolog expression across
a range of tissues, developmental stages, and

cultivars. On average, ~30% of wheat homoeo-
log triads (composed of A, B, and D genome
copies) showed nonbalanced expression pat-
terns, with higher or lower expression from a
single homoeologwith respect to the other two.
These differences between homoeologs were
associated with epigenetic changes affecting
DNA methylation and histone modifications.
Although nonbalanced homoeolog expression
could be partially predicted by expression in
diploid ancestors, large changes in relative ho-
moeolog expression were observed owing to
polyploidization.
Our results suggest that the transposable

elements in promoters relate more closely to
the variation in the relative expression of ho-
moeologs across tissues than to a ubiquitous
effect across all tissues. We found that homoeo-
logs with the highest inter-tissue variation

had promoters with more
frequent transposable ele-
ment insertions andmore
varied cis-regulatory ele-
ments than homoeologs
that were stable across
tissues. We also identified

expression asymmetry along wheat chromo-
somes.Homoeologswith the largest inter-tissue,
inter-cultivar, and coding sequence variation
were most often located in the highly recom-
binogenic distal ends of chromosomes. These
transcriptionally dynamic homoeologs are under
more relaxed selection pressure, potentially rep-
resenting the first steps toward functional in-
novation through neo- or subfunctionalization.
We generated tissue- and stress-specific co-

expressionnetworks that reveal extensive coor-
dination of homoeolog expression throughout
development. These networks, alongside de-
tailed gene expression atlases (www.wheat-
expression.com and http://bar.utoronto.ca),
lay the groundwork to identify candidate genes
influencing agronomic traits in wheat.

CONCLUSION: This study provides detailed
insights into the transcriptional landscape of
bread wheat, an evolutionarily young poly-
ploid. Our work shows that homoeolog ex-
pression patterns in bread wheat have been
shaped by polyploidy and are associated with
both epigenetic modifications and variation
in transposable elements within promoters of
homoeologous genes. The extensive datasets
and analyses presented here provide a frame-
work that can help researchers and breeders
develop strategies to improve crops by mani-
pulating individual or multiple homoeologs to
modulate trait responses.▪
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Homoeolog expression patterns in polyploid wheat. Seventy percent of triads (A, B,
and D homoeologs) show balanced expression among homoeologs and are ubiquitously
expressed (left), whereas ~30% show nonbalanced expression and are more tissue-specific
(right; symbolized by three exemplar tissues). Variation in promoter elements and non-
synonymous substitution rates distinguish between individual triads with stable relative
expression across tissues and triads with more inter-tissue variation (tissue-dynamic triads).
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The coordinated expression of highly related homoeologous genes in polyploid species
underlies the phenotypes of many of the world’s major crops. Here we combine extensive
gene expression datasets to produce a comprehensive, genome-wide analysis of
homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression
varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression.
We found expression asymmetries along wheat chromosomes, with homoeologs showing
the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located
in high-recombination distal ends of chromosomes. These transcriptionally dynamic
genes potentially represent the first steps toward neo- or subfunctionalization of wheat
homoeologs. Coexpression networks reveal extensive coordination of homoeologs
throughout development and, alongside a detailed expression atlas, provide a framework
to target candidate genes underpinning agronomic traits in wheat.

P
olyploidy arises from whole-genome dup-
lication or interspecific hybridization and
is ubiquitous in eukaryotic plant and fun-
gal lineages. Polyploidy has beenproposed
to confer adaptive plasticity, thereby shap-

ing the evolution of plants, fungi, and, to a lesser
degree, animals (1, 2). This plasticity has facili-
tated the domestication and adaptation of sev-
eral major crop species (3), including hexaploid
bread wheat (Triticum aestivum; AABBDD sub-
genome), which is derived from relatively recent
interspecific hybridizations between three dif-
ferent diploid species. In such polyploids, gene
duplication alters the transcriptional landscape
(4) by providing additional flexibility to adapt
and evolve new patterns of gene expression for
homoeologous gene copies (5). This flexibility
has been suggested to be an important mecha-
nism for controlling adaptive traits (6, 7)—for
example, through neofunctionalization of dupli-

cated genes (8) or tissue-specific expression (9).
However, despite the likely importance of poly-
ploidy in affecting gene expression, we have a
limited understanding of the extent to which
homoeologs resemble or differ from each other
in their expression patterns, the spatiotemporal
dynamics of these relationships, and how epi-
static interactions between individual homoe-
ologs affect biological traits. The new genomic
resources available for wheat (10), along with
its meiotic stability (11) and syntenic gene order
(12), make it a particularly informative system
for gaining insight into the effects of recent
polyploidy on gene expression.
In this study, we leveraged available RNA

sequencing (RNA-seq) data (529 samples from
28 studies) and added 321 samples to explore
global gene expression in hexaploidwheat across
a diverse range of tissues, developmental stages,
cultivars, and environmental conditions (13).We

organized these sets of RNA-seq samples into
partially overlapping datasets from (i) a single
developmental time course experiment (n = 209
samples), (ii) the reference accession Chinese
Spring (CS) under nonstress conditions (n =
123 samples), (iii) four main tissue types under
nonstress conditions (n = 537 samples), and (iv)
seedling samples fromabiotic (n = 50) and biotic
(n = 163) stress experiments including controls
(table S1). These datasets, alongside a complete
and annotated genome and transcriptome (10),
provide an opportunity to conduct homoeolog-
specific transcriptome profiling and to generate
gene regulatory networks to better understand
the spatiotemporal coordination of individual ho-
moeologs underlying trait biology on a genome-
wide scale.

A developmental gene expression atlas
in polyploid wheat

We first assessed expression patterns through a
developmental time course of the commercial
wheat cultivar Azhurnaya, including 209 RNA-
seq samples representing 22 tissue types from
grain, root, leaf, and spike samples across mul-
tiple time points (Fig. 1). We quantified expres-
sion using pseudoalignment of RNA-seq reads to
the RefSeqv1.0 transcriptome, as implemented
in kallisto (14), which accurately quantifies reads
in a homoeolog-specific manner in polyploid
wheat (13, 15) (figs. S1 and S2). We found evi-
dence of expression for 83,741 (75.6% of 110,790)
high-confidence genes, on the basis of expression
of >0.5 transcripts per million (TPM) in at least
one of the 22 tissue types, and we conducted
complexity (table S2) and differential expression
analyses (fig. S3). Tissue type distinguished sam-
ples across development (fig. S4) (13), consistent
with observations in other plant and animal spe-
cies (16, 17).Within similar tissue types, subgenome
of origin also influenced expression patterns,
consistent with previous results in wheat grain
samples (18). This gene expression atlas provides
a valuable resource for breeders and researchers
to query for and analyze their genes of interest
throughwww.wheat-expression.com (15) and the
Wheat eFP Browser at http://bar.utoronto.ca/
efp_wheat/cgi-bin/efpWeb.cgi (fig. S5) (19).

Homoeolog expression patterns

In polyploid wheat, quantitative variation for
many agronomic traits is modulated by genetic
interactions between multiple sets of homoeo-
logs in the A, B, and D subgenomes (20). These
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interactions range from buffering effects ob-
served when gene homoeologs are function-
ally redundant (21) to dominance effects where
variation in a single homoeolog can lead to dom-
inant phenotypes (22). Understanding how these
interactions influence gene expression will help
inform strategies to improve crops by target-
ing and manipulating individual or multiple
homoeologs to quantitatively modulate trait re-
sponses (20).
To determine patterns of homoeolog expres-

sion, we analyzed 123 RNA-seq samples repre-
senting 15 tissues under nonstress conditions
(table S1) from CS. This was the same accession
used to generate the reference genome (10);
thus, cultivar-specific polymorphisms were ex-
cluded from our analysis. We found evidence of
expression for 82,567 (74.5%) high-confidence
genes, consistent with the developmental time
course of the cultivar Azhurnaya. We focused
on 53,259 genes that had a 1:1:1 correspon-
dence across the threehomoeologous subgenomes,
referred to as triads, and a summed expression
of >0.5 TPMacross the triad (64.5% of expressed
genes, 96.1% of all triads; table S3). Themajority
of these expressed triads (94.3%) were in an-
cestral (i.e., syntenic) physical positions in at

least two of the three subgenomes [50,238 genes
corresponding to 16,746 syntenic triads (10)],
whereas 5.7% (1007 triads) had all genes in non-
syntenic positions and are thus referred to as
nonsyntenic triads. For each of the 17,753 ex-
pressed triads, we standardized the relative ex-
pression of theA, B, andDsubgenomehomoeologs
(fig. S6) so that the sum was 1.0 in each individ-
ual tissue. In this way, the relative abundance
of homoeolog expression is comparable within
triads, as well as across tissues, allowing the
study of homoeolog expression bias (23).
We performed a global analysis combining

data across all 15 tissues and focused on the
16,746 syntenic triads, but we discuss patterns
in nonsyntenic triads where relevant. We found
that theD subgenomehada subtly yet significantly
higher relative abundance (33.65%) than the B
(33.29%)andA(33.06%)subgenomes (Kruskal-Wallis
P < 0.001; tables S4 and S5). The homoeolog ex-
pression bias of the D subgenome is unlikely to
reflect technical issues (fig. S2) and was found
in 11 of the 15 tissues, was consistent across
multiple expression abundance cutoffs, and was
also significant in the developmental time course
(in all 22 tissues) of the cultivar Azhurnaya [figs.
S7 to S9 and table S5 (13)]. This effect, however,

is subtle when compared with the homoeolog
expression bias observed in evolutionarily older
polyploid crops such as cotton, inwhich genome
doubling occurred at an earlier time point (24).
The relative expression of each homoeolog de-

termined a triad’s position in the ternary plot for
the global analysis (Fig. 2A), as well as for analy-
ses of individual tissues (figs. S6 and S10). From
these plots, we defined seven homoeolog expres-
sion bias categories (13): a balanced category,
with similar relative abundance of transcripts
from the three homoeologs, and six homoeolog-
dominant or homoeolog-suppressed categories,
classified on the basis of the higher or lower
abundance of transcripts from a single homoeo-
log with respect to those from the other two
(Fig. 2A). Most syntenic triads (72.5%) were as-
signed to the balanced category within each tis-
sue, with balanced triads ranging from 62.6% in
the stigma and ovary to 78.9% in roots (Fig. 2B
and table S6). Triads with single-homoeolog
dominance were infrequent (7.1%; range among
tissues, 4.7 to 11.3%), whereas syntenic triads
classified as single-homoeolog–suppressed were
more common(20.5%; range, 16.3 to 27.1%; Fig. 2B).
These patterns shifted significantly in the 1007
nonsyntenic triads, which had fewer balanced
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Fig. 1. Developmental time course of bread wheat. Shown is a schematic overview of tissues sampled for the RNA-seq expression atlas across
multiple growth stages (labeled in blue). Details of all samples are provided in table S1.
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triads (58.9%) and a higher proportion of domi-
nant (14.5%) and suppressed (26.6%) triads across
tissues (c2 P < 0.001; tables S7 and S8). Across
tissues, no differences were observed in the fre-
quency of single-homoeolog dominance between

subgenomes (tables S6 and S7). However, across
all 15 tissues, D-homoeolog suppression was sig-
nificantly less frequent (5.7%) than either A- or
B-homoeolog suppression (7.5 and 7.2%, respec-
tively; Kruskal-Wallis P < 0.05), and this pat-

tern was also observed in nonsyntenic triads
and the developmental time course (tables S6
to S8). This pattern explains in part the subtle
homoeolog expression bias observed for the
D subgenome relative to those observed for the
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Fig. 2. Homoeolog expression bias in syntenic homoeolog triads.
(A) Ternary plot showing relative expression abundance of 16,746
syntenic triads (50,238 genes) in hexaploid wheat in the combined
analysis of 15 tissues from Chinese Spring. Each circle represents
a gene triad with an A, B, and D coordinate consisting of the relative
contribution of each homoeolog to the overall triad expression (an
example is shown on the top left). Triads in vertices correspond to
single-subgenome–dominant categories, whereas triads close to edges
and between vertices correspond to suppressed categories. Balanced
triads are shown in gray. Box plots indicate the relative contribution
of each subgenome based on triad assignment to the seven categories.

(B) Proportion of triads in each category of homoeolog expression bias
across the 15 tissues (excl, excluding). (C) Box plot of absolute TPM
expression abundance for each subgenome from the seven categories.
(D) Number of tissues in which homoeolog-suppressed (brown),
homoeolog-dominant (teal), and balanced (gray) triads are expressed.
(E) Metagene profile for histone H3K27me3 marks from –2 kb upstream
of the ATG to +2 kb downstream of the stop codon (normalized for
gene length) for balanced triads (gray), dominant triads separated
into dominant (teal) and nondominant (pale blue) homoeologs, and
suppressed triads separated into suppressed (tan) and nonsuppressed
(brown) homoeologs.
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A- and B-subgenome homoeologs. This observa-
tion is consistent with the lower distribution
of repressive H3K27me3 (histone H3 lysine 27
trimethylation) histonemarks across the genebody
of D-subgenome homoeologs comparedwith those
of the A- and B-subgenome homoeologs (fig. S11).
Genes from syntenic triads in the balanced

category were expressed across a wider range
of tissues and had higher absolute transcript
abundance, onaper-subgenomebasis (12.2 tissues;
median, 4.03 TPM), than genes in the suppressed
(9.1 tissues; median, 1.51 TPM) or dominant
(6.9 tissues; median, 0.57 TPM) categories (two-
sample Kolmogorov–Smirnov test, P < 0.001;
Fig. 2, C and D, and tables S9 and S10). The ab-
solute transcript abundance data show that
dominant triads are not the result of an overall
increase in expression of a single homoeolog,
but rather result from the relatively lower ex-
pression of the two other homoeologs.
To determine if the differences amonghomoeo-

logs are a consequence of polyploidization, we
analyzed RNA-seq data from diploid and tet-
raploid progenitor species and newly created
synthetic hexaploid wheat (SHW) lines (25).
We found that 67.5% of nonbalanced triads in
modern-day wheat have a different homoeolog
expression bias category than that observed in
SHW, with all three subgenomes being equally
affected (table S11 and figs. S12 to S14). Likewise,
47.1% of nonbalanced triads in SHW are in a
different category thanwould be expected on the
basis of the progenitor species,withD-subgenome
homoeologs most strongly influenced (13) (table
S12 and fig. S15). These results suggest that the
polyploid context and the polyploidization pro-
cess itself affect the relative expression of ho-
moeologs comparedwith the baseline expression
in the progenitor species (13), which has also
been observed during the evolution of polyploid
cotton (26) and monkeyflower (27).
We hypothesized that epigeneticmechanisms

might be associated with differences in homoe-
olog expression patterns. To test this, we exam-
ined the associations of transposable elements
(TEs), DNAmethylation, and histone modifica-
tions with the relative expression of triads in
leaves of CS. We found no clear relationship be-
tween the presence of TEs in promoter regions
and altered expression patterns between ho-
moeologs in dominant and suppressed triads
(Tukey’s Honestly Significant Difference P >
0.6; fig. S16 and table S13) (13). However, we
identified significant differences in gene-body
DNA methylation and histone modifications
among homoeologs (13).
Gene-body CG methylation is widely con-

served in angiosperms, although its functional
significance is currently under debate (28, 29),
given that two angiosperm species lack this epi-
genetic mark altogether (30). We found higher
gene-body CGmethylation in constitutively ex-
pressed triads than inmore tissue-specific triads
(balanced > suppressed > dominant; fig. S17).
Within the nonbalanced triads, homoeologswith
higher expression had higher CG methylation
than their corresponding nondominant and sup-

pressed homoeologs (Mann-Whitney P < 0.001;
fig S17). These results are consistent with gene-
body CGmethylation associatedwith housekeep-
ing genes and its suggested role in homoeostatic
gene expression (29). Similarly, the more highly
expressed homoeologs within nonbalanced tri-
ads had higher active (H3K36me3 and H3K9ac;
ac, acetylation) histone marks and lower re-
pressive (H3K27me3) histone marks in the gene
body (Mann-Whitney P < 0.001; fig. S11). For
H3K27me3, these differences were not limited
strictly to the gene body but extended into the
upstream and downstream regions for both
dominant and suppressed triads (Fig. 2E), con-
sistent with the tight association of H3K27me3
with inactive gene promoters (31). These results
suggest that epigenetic status in gene bodies, as
well as upstream and downstream regions, is
associated with homoeolog expression bias in
polyploid wheat, consistent with results inmon-
keyflower showing changes inDNAmethylation
upon polyploidization (27).
Breeders rely on recombination to generate

new combinations of haplotypes for improving
cultivars. Inwheat, chromosomeposition strong-
ly influences recombination rates, with relatively
low recombination rates in the interstitial and
proximal regions (R2a, C, and R2b genomic com-
partments) but markedly higher rates toward
the distal ends of the chromosomes (R1 and R3
genomic compartments) (32). In our analyses,
syntenic triads in the balanced category were
overrepresented in the low-recombination re-
gions (R2 and C), which have higher levels of ac-
tive histonemarks (H3K36me3 andH3K9ac) (10),
consistentwith the higher expression of balanced
triads. Homoeolog-dominant and homoeolog-
suppressed triads were overrepresented toward
the high-recombination distal ends of chromo-
somes (R1 and R3; c2 P < 0.001; table S14), which
have higher levels of repressive (H3K27me3) his-
tonemarks (10), consistentwith the lower expres-
sion of dominant and suppressed triads. This
pattern was also observed in the developmental
time course of the cultivar Azhurnaya. However,
when comparing the CS and Azhurnaya cultivars
(nine tissues in common), we found that 84.5%
of genes in the R2 and C regions had the same
expression category between cultivars, whereas
only 72.2% of genes in the R1 and R3 regions did
so (c2 P < 0.001; table S15). These differences in
homoeolog expression bias across cultivars have
important implications for breeding because they
suggest that through genetic crosses, breeders
not only generate new combinations of haplo-
types with differential expression of alleles, but
also rearrange and select for homoeolog expres-
sion bias between cultivars.

Variation of triad expression patterns

Polyploidy may confer phenotypic plasticity by
allowing homoeologs to be expressed differently
across tissues and/or environmental conditions
(8). Our analyses above provide a static overview
of the relative homoeolog expression bias in in-
dividual tissues. Therefore, we explored whether
syntenic triads retain their homoeolog expres-

sion bias category across the 15 tissues (table
S16). We found that 83.6% of balanced triads
remained balanced in each of the 15 individ-
ual tissues, whereas dominant and suppressed
triads tended to be more variable across tissues,
with only 73.4 and 62.2%, respectively, staying
within their global dominance group across all
15 tissues (Fig. 3A). Dominant and suppressed
triads shifted most often to adjacent categories
(16 to 20%) in the ternary plots and in few cases
(<3.0%) changed to opposite categories (fig. S18).
These patterns were also observed in the devel-
opmental time course (table S16). These data
show that across tissues, triads most often re-
mained consistent in their homoeolog expres-
sion bias classification, a phenomenon also seen
across seven tissues in allotetraploid Tragopogon
mirus (33).
To complement this analysis, we determined

the variation in behavior of each triad within the
ternary plot across the 15 tissues by calculating
the mean distance between the triad’s position
in each tissue and its global average position (13)
(fig. S19). This generated a distribution of mean
distances (Fig. 3B); we focused on the 10% most
stable triads (defined as those having the short-
est mean distances across tissues) and the 10%
most dynamic triads (largest mean distances)
(Fig. 3, B toD). Stable triadswere expressedmore
highly than dynamic triads (median, 8.2 versus
3.2 TPM; P < 0.001) and had a higher expression
breadth, being expressed across almost all sam-
ples, whereas dynamic triads were more tissue-
specific (P < 0.001) (Fig. 3E and table S17). Stable
triads were enriched for high-level gene ontology
(GO-slim) terms associated with housekeeping
processes (e.g. translation and cell cycle), whereas
dynamic triads were enriched for defense and
external stimuli responses and secondary meta-
bolic processes, functions that more frequently
determine differences in individual fitness (table
S18) (6). In the global analysis, stable triads were
significantly enriched for the balanced category
(94.2%), whereas dynamic triads were almost
equally spread between suppressed (37.9%), dom-
inant (30.5%), and balanced (31.6%) categories
(c2 P < 0.001; Fig. 3F and table S19). This pat-
tern is consistent with stable triads being most
frequently located inproximal regions (C),whereas
dynamic triads tend to locate in distal ends of
chromosomes (R1 andR3) (c2P<0.001; table S20).
These results demonstrate expression asymmetry
across wheat chromosomes, whereby the high-
recombination distal ends of chromosomes have
triads that exhibit higher homoeolog expression
bias, aremore dynamic across tissues, and have
higher expression variation between cultivars
than triads in the low-recombination proximal
regions (Fig. 3G). This asymmetry is also re-
flected in the contrasting distributions of histone
marks andDNAmethylation along chromosomes
(10). The difference in epigenetic marks identi-
fied in leaves makes it tempting to speculate that
epigenetic marks may also be associated with
triad expression variation acrossmultiple tissues.
We next investigated if divergence in spatial

expression patterns (as measured by the mean
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distance statistic described above) was coupled
with 5′ promoter and protein sequence diver-
gence in syntenic triads (13). The 1.5–kilobase
(kb) promoters of dynamic triadsmore frequently
contained TEs (88.3 versus 79.2%), which were
closer to the translation start site (1113 versus
1234 bp away) but shorter (median, 220 versus
259 bp), than those in stable triads, leading to
equivalent TE densities (all comparisons, Kruskal-
Wallis P < 0.001; fig. S20 and table S13). These

closer, more frequent, and shorter TEs could
potentially act as novel cis-regulatory elements
(34) or influence epigenetic marks (35). These
results indicate that the promoter TE landscape
relates more closely to the variation in the rela-
tive expression of homoeologs across tissues than
to a ubiquitous effect across all tissues (table S13).
Althoughonly subtle differences in sequence iden-
tity were found between stable and dynamic
triads (85.5 versus 85.0%; P = 0.045) (Fig. 3H

and table S21), dynamic triads had fewer con-
served transcription factor (TF) binding site
motifs across the three homoeologs (37% fewer;
P < 0.001; fig. S21). Across coding sequences,
we showed a stepwise decrease in conservation
of both the nucleotide and protein identities from
stable (average, 97.2% coding sequence and 97.3%
protein) to dynamic (95.0 and 93.4%) triads (both
P < 0.001; table S21). We compared nonsynony-
mous (Ka) with synonymous (Ks) substitution
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Fig. 3. Variation of triad expression patterns. (A) Variation of
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global analysis) across 15 tissues. (B) Distribution of mean distance
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Color-coding is as in (A). (E) Number of tissues in which stable (blue) and
dynamic (red) genes are expressed (table S36). (F) Homoeolog expression
bias classification of stable and dynamic triads in global analysis.
(G) Schematic representation of a wheat chromosome based on genomic
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rates between homoeologs and observed that
dynamic triads had significantly higher Ka/Ks

than stable triads (0.33 versus 0.21;MannWhitney
P < 0.001; Fig. 3H and table S22). This higher
ratio suggests that triads with greater divergence
in spatial expression patterns are under more
relaxed selection pressure, as seen for duplicated
genes in humans (9), but not in soybean (36) and
carp (37). This conclusion is supported by the ob-
servation thatnonsyntenic triads,whichhadgreater
expression divergence (10.5% larger mean dis-
tance; Mann-Whitney P < 0.001), also had sig-
nificantly higher Ka/Ks (0.42; Mann-Whitney
P < 0.001) compared with syntenic triads (table
S22). The above relationships were consistent
when using different percentage cutoffs to define
stable and dynamic triads (5 and 25%), as well as
in the developmental time course of the cultivar
Azhurnaya (tables S21 and S22). These results
show positive coupling of divergence in spatial
expression patterns with divergence in TE and
cis-regulatory elements in promoters and se-
quence divergence in coding sequence among
wheat homoeologs. It is possible that diver-
gence in spatial expression patterns, alongside
relaxation of selection pressure, can lead to func-
tional innovation through homoeolog neo- or
subfunctionalization.

Coordinated expression of
homoeolog triads

Our analyses provide a framework to describe
the relative expression of individual homoeologs
between discrete triads in space and time. To
understand how this coordination of homoeo-
log spatiotemporal expression may influence
biological processes, we developed a series of
coexpression networks to provide insight into
tissue-specific developmental and stress-related
processes.
We constructed four separate tissue-specific

coexpression networks from nonstress RNA-seq
samples from grain (n = 119 samples), leaf (n =
245), root (n = 45), and spike (n = 128), using all
genes expressed at more than 0.5 TPM in the
given tissue (13). These networks were com-
posed of 51 to 78 modules and contained 42.3
to 88.0% of all expressed genes in each tissue
(fig. S22, table S23, and data S1). We found that
across all tissue networks, homoeologs from
37.4% of the syntenic triads were in the same
coexpression module, suggesting a highly coor-
dinated expression pattern for these triads (c2 P<
0.0001 with respect to random triads; table S24).
However, the majority of triads (62.6%) had at
least one homoeolog outside the same module.
To quantify whether homoeologs outside the

module had similar or divergent expression pat-
terns, we calculated a threshold based on the
pairwise distance between homoeologs (13). We
found that 29.6% of syntenic triads had a diver-
gent pattern, wherein the expression of at least
one homoeolog exceeded the distance threshold
in the tissue network (Fig. 4A and fig. S23).
Conversely, 33% of triads had a similar pattern,
wherein all pairwise distances betweenhomoeo-
logs were lower than the threshold, suggesting a

subtler variation in a single homoeolog. These
values showed significant variation between tis-
sue networks, ranging from 7% divergent triads
in the leaf network to more than 38% divergent
triads in the root and grain networks (Fig. 4A).
Nonsyntenic triads had a higher proportion of
divergent triads in all tissue networks compared
with syntenic triads (mean, 35.1 versus 29.6%;
c2 P < 0.001; table S24). Using the same crite-
rion as before (triad mean distance between tis-
sues and global average position), we identified
the 10%most stable and dynamic syntenic triads
for each tissue-specific network. We found that
dynamic triads were more frequently in diver-
gent modules than stable triads for all four tis-
sue networks (P < 0.001; Fig. 4B and fig. S24).
These results are consistent with the homoeo-
log expression bias analyses and support the
idea that although many triads are expressed
in a coordinated spatiotemporal pattern (with
the same or similar profile), almost 30% of
syntenic and 35% of nonsyntenic triads have
a divergent expression profile. Transcriptional
divergence occurs both immediately upon poly-
ploidization and after polyploidization (figs.
S12 to S14) and may represent initial steps
toward neo- or subfunctionalization of wheat
homoeologs.

Exploiting development and stress
networks for biological discovery

To explore the potential for biological discovery,
we first comparedmodules between networks to
identify tissue-specific gene networks. Across the

four networks, 73.2% of modules had significant
overlap (Fisher’s exact test, P < 0.05) with mod-
ules in all four networks, with the root having the
fewest conserved modules (61.1%) and the spike
having the most (86.2%) (data S2). In the root,
there were three modules that were not found
in any other tissue, with the largest of these (root
module 61; 82 genes) enriched for root-related
plant ontology (PO) terms (e.g., root procambium,
P = 3.3 × 10–5, and central root cap of primary
root, P = 4.5 × 10–5; table S25). We hypothesized
that genes encoding TFs controlling processes re-
lated to these PO termswould also be coexpressed
within module 61. We found that four of the 10
genes encoding TFs in this root-specific module
had known functions related to root development
in Arabidopsis or rice (38, 39) (table S26). Three
of these TFs belonged to one homoeolog triad in
theMADS_II family, and one of theirArabidopsis
orthologs (AGL21) has been shown to regulate
lateral root development through auxin accu-
mulation (39). To understand the target genes
of these TFs in wheat, we conducted a comple-
mentary network analysis using genie3, which
predicted target genes of TFs across all 850 sam-
ples (13). Target genes of the three TFs were
enriched for cell wall processes and lignifica-
tion, consistent with their putative role in the
differentiation zone where lateral roots emerge
(tables S27 and S28). Closely related paralogs on
chromosome group 6 in wheat were not located
in root module 61; rather, they were inmodules 1
and 13 (Fig. 4C). These modules were conserved
in all other tissue networks, implying a more
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general function for genes within them. Sup-
porting this hypothesis, the rice ortholog of the
chromosome 6 paralogs (OsMADS57) has been
shown to play a role in tillering (40).
A key challenge for wheat breeding is the

selection of cultivars with tolerance to multiple
stresses. Therefore, we focused on stress re-
sponses in seedlings and young vegetative plants,
for which 10 independent studies with 12 dis-
tinct abiotic and disease stresses were available
(table S1). We constructed gene coexpression
networks for abiotic and disease stresses sepa-
rately, including control samples from the same
studies to allow for links between disease status
and gene expression (13). We integrated the two
networks to identifymodules that might be com-
mon to both abiotic and disease responses. We
found 84 pairs of modules between the two net-
works that had significantly overlapping gene
content and were significantly correlated with
both an abiotic and a disease stress (tables S29
to S31). The most significant overlap was be-
tween disease module 12 and abiotic module 2
(P =1.3 × 10–94), which shared 355 genes (Fig. 5A).
These two modules had similar enrichment for
GO-slim terms relating to signal transduction
and response to stimulus (table S32), suggest-
ing that they might perform similar biological
functions.
Among the 355 shared genes, there were 16

encoding TFs, six of which have orthologs in rice
or Arabidopsis with proven roles in abiotic or
disease stress, and a further three have orthologs
differentially expressed during stress in these
species (table S33). Furthermore, on the basis of
the genie3 analysis, 11 of the 16 TFs have targets
that are enriched in stress responses, and seven
have targets that are enriched simultaneously
in biotic and abiotic stress responses (Fig. 5B).
Of the genes encoding these TFs, two homoeo-

logs stood out as potential common regulatory
components of abiotic and disease response:
TraesCS5A01G237900 and TraesCS5B01G236400,
which encode heat shock factor (HSF) TFs. These
two HSF TF–encoding genes were in the top 10
most central genes within disease module 12
(table S34), as measured by intramodule con-
nectivity, a value strongly correlated with the
influence of a gene on a phenotype (41). The
387 predicted targets of the TFs encodedby these
two genes were frequently allocated to module
12 of the disease network (39.5%) and module
2 of the abiotic stress network (28.0%) (table S35).
The Arabidopsis ortholog of these genes, TBF1,
was originally identified for its role in pathogen
defense response (42) and has been shown to
play a key role in the transition from growth to
defense (43), while also positively regulating ac-
quired thermotolerance (44). Recently, a “TBF1
cassette” including the promoter and 5′ leader
region of TBF1 was used to engineer broad-
spectrumdisease resistance in bothArabidopsis
and rice without a fitness cost (45). The fact that
Arabidopsis TBF1 is functional in rice suggests
that this regulatorymechanismmaybe conserved
across species, making the wheat orthologs iden-
tified here promising targets for further studies.
These and other highly connected genes (table
S34) are strong candidates for controlling stress
responses, and the functions of their orthologs
support this hypothesis. These results demon-
strate the power of the datasets and show that
integrating gene networks fromwheat, alongside
phylogenetic relationships and knowledge of bio-
logical function inmodel species, canhelp identify
candidate genes for further study in wheat.

Concluding statement

This study provides detailed insight into the
spatiotemporal transcriptional landscape of

polyploid wheat. We find evidence that the dif-
ferences in relative expression among homoeo-
logs observed in modern-day wheat may have
been established both upon the polyploidiza-
tion of wheat itself and during the subsequent
10,000 years of polyploidy; these differences may
have beendetermined through epigenetic changes
affecting both DNA methylation and histone
modifications. We identified asymmetries along
wheat chromosomes for a series of features
relating to homoeolog expression bias with impor-
tant implications for breeding. Our work provides
a framework for the generation of hypotheses
about biological function in polyploid wheat,
which can now be experimentally tested using
recent developments in sequenced mutant pop-
ulations (46) and genome editing approaches (47).
Ultimately, this knowledge will help researchers
and breeders modulate allelic variation across
homoeologs to improve quantitative traits in poly-
ploid wheat. This is an urgent task for achieving
global food security, given that wheat provides
more than 20% of the protein and caloric intake
(48) of humans.

Materials and methods
RNA-seq samples

We included 246 samples previously described
(15) and complemented this with 283 RNA-seq
samples which were deposited in the Short
Reads Archive (SRA) between August 2015 and
January 2017. An additional 321RNA-seq samples
from six studies were used for this analysis and
are detailed in the supplementary materials (13).

Mapping of RNA-seq reads to reference

For all 850 samples, metadata was assigned as
described in (15), with high and low-level factors
for tissue, age, variety, and stress. Due to the rel-
atively large number of low-level tissues (59), we
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further defined an intermediate level of tissues
comprising 32 factors (average 26.5; median 12
replicates per factor) which was used for this
study. We also assigned an intermediate level
of stress comprising 15 factors (average 14.5;
median 6 replicates per factor). We used kallisto
v0.42.3 (14) to map the 850 RNA-seq samples
to the Chinese Spring RefSeqv1.0+UTR tran-
scriptome reference. We used default param-
eters previously shown to result in accurate
homoeolog-specific read mapping in polyploid
wheat (15) (fig. S1). We summarized expression
levels from the transcript level to the gene level
using tximport v1.2.0. We established the crite-
ria that at least 1% of samples for a given gene all
required to have expression values over 0.5 TPM
for that gene to be considered expressed (initial
850 filter).
To confirm that kallisto enables homoeolog

specific mapping (15) we analyzed expression of
HC genes expressed >0.5 TPM innulli-tetrasomic
wheat lines from the publicly available study
SRP028357 (49). The nulli-tetrasomic lines were
missing an entire chromosome (1A, 1B, or 1D)
which was replaced by a duplication of another
homoeologous chromosome, e.g. Nulli1ATetra1B
has 0 copies of 1A, 2 copies of 1B and 1 copy of 1D.
We determined stringent homoeolog-specific
mapping using a series of criteria detailed in
the supplementary materials (13).

Analyses of expressed genes

Starting from the subset of genes considered
expressed using the initial 850 filter criterion,
we determined genes which were expressed in
at least one tissue within the Azhurnaya devel-
opmental time course (209 samples; 22 inter-
mediate tissues) and Chinese Spring no stress
(123 samples; 15 intermediate tissues) datasets.
For this analysis, we first calculated the average
TPM expression of each gene in each of the in-
termediate tissue types (average expression per
tissue). The number of samples that went into
generating this average expression per tissue
value varied for each intermediate tissue and
are available in table S1. We considered a gene
expressedwhen itsaverage expression per tissue
was > 0.5 TPM in at least one intermediate
tissue. For both datasets we focused onHC gene
models (10). Whilst expression data was also
assessed for LC genes, we excluded these from
the main analysis to avoid confounding effects
from pseudogenes and low-quality gene models.
Through this analysis we found evidence of ex-
pression for 83,741 (75.6%)HCgenes inAzhurnaya
and 82,567 (74.5%) HC genes in Chinese Spring.
Using the average expression per tissue values,

we also determined the global expression of each
gene across all tissues in which it was expressed
(based on the >0.5 TPM criteria in the tissue).
This generated an average value across tissues,
rather than a geometric mean across all sam-
ples, to account for the variation in the number
of samples per tissue. It also excludes tissues
in which a gene is not expressed. This average
across expressed tissues is referred to as either
the “global analysis” or the “combined analysis

(all tissues)” across the main text and in the
supplementary materials and tables.

Relative expression levels of the A, B, and
D subgenome homoeologs across triads

The analysis focused exclusively on the gene
triads which had a 1:1:1 correspondence across
the three homoeologous subgenomes, including
17,400 syntenic and 1074 nonsyntenic triads
(total of 18,474 triads or 55,422 genes). Start-
ing from the subset of genes considered ex-
pressed using the initial 850 filter criterion, we
defined a triad as expressed when the sum of the
A,B, andDsubgenomehomoeologswas>0.5TPM.
This allowed us to include triads in which, for
example, only a single homoeolog was expressed,
andwhich could later be classified as a dominant
triad. Using this criterion, we defined a total of
53,259 genes (17,753 triads) which were con-
sidered expressed (table S3). To standardize the
relative expression of each homoeolog across the
triad, we normalized the absolute TPM for each
gene within the triad as follows

expressionA ¼ TPMðAÞ
TPMðAÞ þ TPMðBÞ þ TPMðDÞ

expressionB ¼ TPMðBÞ
TPMðAÞ þ TPMðBÞ þ TPMðDÞ

expressionD ¼ TPMðDÞ
TPMðAÞ þ TPMðBÞ þ TPMðDÞ

where A, B, and D represent the gene corre-
sponding to the A, B, and D homoeologs in the
triad. The normalized expression was calcu-
lated for each one of the intermediate tissues
and for the average across all expressed tissues
(“combined analysis” as described previously).
Fig. S6 shows an example of these calculations
for the roots and the combined analysis across
three triads. The values of the relative contri-
butions of each subgenome per triad were used
to plot the ternary diagrams using the R package
ggtern (50).

Definition of homoeolog expression
bias categories

The ideal normalized expression bias for the sev-
en categories was defined as shown in table S37.
We calculated the Euclidean distance (rdist

function from R 3.3.2) from the observed nor-
malized expression of each triad to each of the
seven ideal categories listed above. We assigned
the homoeolog expression bias category for each
triad by selecting the shortest distance. This was
done for each of the intermediate tissue as well
as for the average across all expressed tissues
(combined analysis).

Analysis of the effects of polyploidy on
homoeolog expression bias

We used RNA-seq data (25) which consisted of
two datasets based on RNA-seq samples from
the youngest leaf at fifth leaf stage. Dataset 1

(SHW1) included samples from tetraploid (BBAA)
Triticum turgidum ssp. turgidum wheat acces-
sion AS2255, diploid Ae. tauschii (DD) accession
AS60, and the synthetic hexaploid wheat (SHW1;
BBAADD) resulting from the cross between the
tetraploid and Ae. tauschii accessions. Dataset 2
(SHW2) consisted of tetraploid T. turgidum ssp.
durum cv Langdon (BBAA), the same diploid Ae.
tauschii (DD) accession AS60, and an indepen-
dent synthetic hexaploid wheat (SHW2) derived
from Langdon x AS60 (BBAADD). Note that
AS2255 and Langdon are both T. turgidum ssp.,
but are defined as different subspecies based
primarily on morphological features. These ex-
periments recreate the polyploidization events
that gave rise to modern bread wheat and the
resulting SHW has the same genome compo-
sition as the CS and Azhurnaya datasets exam-
ined in this study.
We analyzed the RNA-seq from both data-

sets by mapping reads to the CS RefSeqv1.0
transcriptome using the same bioinformatics
pipeline as before (see “Mapping of RNA-seq
reads to reference” section). However, for the
tetraploid datasets we used only the A and B
subgenome transcripts as a reference, for the dip-
loidDgenomedatasetsweusedonlyD subgenome
transcripts, and for the SHW datasets we used
the complete RefSeqv1.0 transcriptome as the
reference, as in CS and Azhurnaya. To generate
the expected hexaploid wheat transcriptome
based on progenitor species we weighted the
TPM values from the tetraploid by 2/3 and the
AS60 TPM values by 1/3 to maintain a total TPM
of 106 in the combined dataset. The in-silico
hexaploid wheat generated from the weighted
tetraploid and diploid TPM values (referred to
hereafter as the “expected” in-silico dataset)
allows the direct comparison with the observed
TPM values in SHW. We defined the seven ho-
moeolog expression bias categories for both the
expected in-silico and the observed SHW tran-
scriptomes using the same methods as for CS
and Azhurnaya and compared the classification
of triads between the observed and expected data-
sets (table S12).We next compared classifications
tomodern-day bread wheat CS and Azhurnaya.
To enable a meaningful comparison across sim-
ilar tissues from the Hao et al study (25) we used
nine samples from the PAMP Triggered Immune
Response dataset from CS and six samples from
the Azhurnaya dataset (table S1). As before, we
defined the seven homoeolog expression cat-
egories for the defined CS and Azhurnaya data-
sets and compared themwith the SHW and the
in-silico classifications (table S11).

DNA methylation plant material and
library preparation

Plants were grown as described in the Chinese
Spring tissues study. The frozen leaves from
the five samples at 3-leaf stage (Zadok stage 13)
were ground and divided as input for the prep-
aration of both RNA-seq libraries (detailed in
Chinese Spring tissues study) andwhole genome
bisulfite sequencing (WGBS) libraries. These
samples enabled direct comparisons between
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the DNA methylation profile and homoeolog
expression patterns in the same samples. WGBS
libraries were constructed from purified nuclei
prepared using the publishedmethods (51). Input
DNA was quantified using the Qubit high sensi-
tivity DNA kit. A total of 500 ng of nuclear DNA
was spiked with 270 pg of Lambda DNA to as-
sess the conversion efficiency obtained using
the EZ DNA Methylation-GoldTM Kit (Zymo
research corp, Irvine, Ca, USA). WGBS libra-
ries were prepared using the TruSeq DNA kit,
(Illumina, Madison, WI) and 2 × 125 bp paired-
end sequence reads was generated using the
Illumina HiSeq 2500 v4 platform (Genome
Quebec, Montreal, QC, Canada). The data was
deposited as SRP133674.

DNA methylation data analysis

Sequence quality and adaptor removal was per-
formed using Trim_galore_v0.4.1 (52). High qual-
ity paired-end sequence reads were aligned to
the RefSeqv1.0 Chinese Spring genome using
Bismark version 0.16.1 (53) ensuring the remov-
al of duplicate reads and only retaining unique
unambiguous alignments. The data were pro-
cessed to exclude regionswith low coverage using
a binomial test. The methylation data was anno-
tated using the gene feature coordinates provided
by the RefSeqv1.0 Chinese Spring gene defini-
tions. 5 kb flanking regions around the gene
features were also extracted. The two flanking
regions and the gene feature were each divided
into 50 tiles (150 tiles in total) to summarize the
observedmethylation ratios. Data manipulation,
statistical analysis and image generation were
performed using the R language (54) utilizing
the data.table (55), MethylKit v1.5.2 (56), genoma-
tion (57), and ggplot2 packages (58).

Comparison of RNA-seq sample
classification with DNA methylation

For the five RNA-seq samples (from the same
plants used for analyzing DNA methylation) we
classified triads into the seven balanced, dom-
inant, and suppressed categories using the same
methodas for previous analyses.We then classified
homoeologs within dominant and suppressed
triads into the “dominant” and “nondominant”
homoeologs, and “suppressed” and “nonsup-
pressed” homoeologs. For example, in an A
dominant triad the A subgenome is classified as
“dominant”andBandDsubgenomes are classified
as “nondominant” homoeologs. The DNAmeth-
ylation patterns of genes in each of these cate-
gories were plotted using the methods described
above (DNA methylation data analysis). Dif-
ferences in DNA methylation levels between
categories were tested pairwise using the non-
parametric Mann-Whitney t test using the
wilcox.test() in R (fig. S17).

Histone modification analysis

To study the role of histone modifications we
carried out ChIP-seq for three active marks
(H3K36me3, H3K9ac, and H3K4me3) and one
repressive mark (H3K27me3) (deposited under
SRA accession number SRP126222). We used

Chinese Spring at 3-leaf stage, however RNA-
seq data were not collected from these exact
plants. To calculate the homoeolog expression
bias we used Chinese Spring samples from a
separate experiment (PAMP-triggered immune
response study) in which the same tissue was
collected at a similar stage (3-leaf stage). Whilst
combining data from two separate experiments
may introduce some noise into the analysis, the
ChIP-seq and RNA-seq data are from similar
tissues, at a similar growth stage, in the same
wheat variety, and are thus highly comparable.
Nevertheless, this confounding factor should
be considered when interpreting these results.
ChIP assays, DNA library preparation, and se-
quencing were performed as in (10).

Histone data analysis

Raw FASTQ files were preprocessed with
Trimmomatic v0.36 (59) to remove Illumina
sequencing adapters, trim 5′ and 3′ ends with
quality score below 5 (Phred+33) and discard
reads shorter than 20 bp after trimming. Paired-
ends reads were aligned against IWGSCRefSeq
v1.0 assembly using bowtie2 v2.3.3 with –very-
sensitive settings (60). Alignments with MAPQ <
10 were discarded and duplicate reads removed
with PicardMarkDuplicates (http://broadinstitute.
github.io/picard/). Triad expression category was
calculated using Chinese Spring samples from a
separate experiment (PAMP-triggered immune
response study) using the same method as in
previous analyses. As in the DNA methylation
analysis we classified homoeologs within dom-
inant and suppressed triads into the “dominant”
and “nondominant”homoeologs, and “suppressed”
and “nonsuppressed” homoeologs.
We calculatedmeta-gene profiles for each cat-

egory by computing the read density of each
histone mark over different triads categories
usingDeeptools (61) computeMatrix scale-regions
and plotted it with plotProfile. To make a sta-
tistical comparison, for each histone mark we
scored the number of reads overlapping with
gene bodies using bedtools coverage –counts
(62). Only reads fully mapping within gene
bodies were considered. To account for differ-
ent gene size we divided the read counts over
each gene by its length. The distributions of
reads density over different triads categories
were compared with a nonparametric t test
(Mann-WhitneyU-test) using the functionwilcox.
test in R (fig. S11).

Variation in homoeolog expression
bias across tissues (stable and
dynamic triads)

To define the variation in homoeolog expression
bias of each triad across the intermediate tissues
we calculated the Euclidean distance between
the triad’s global position (combined analysis)
and each individual tissue in which the triad was
considered expressed. We included only triads
which were considered expressed in at least six
tissues based on the combined analysis criteria
outlined above. The average of these distances
was defined as the “triad mean distance”. We

ranked triads by their triad mean distance and
the percentile was calculated by

percentilei ¼ truncate
rankðcmdiÞ
lengthðCMDÞ

� �

where CMD is the vector containing all the triad
mean distance. The first and last deciles were
classified as stable 10% and dynamic 10% triads,
respectively. A similar approach was used to de-
fine the corresponding 5% and 25% extremes of
the distribution. This analysiswas conducted inde-
pendently for the Chinese Spring no stress sam-
ples, the Azhurnaya developmental time course,
and for each of the four tissue-specific networks.
A visual representation is provided in fig. S19.

TE presence in gene promoters

We extracted all TEs that were annotated to fall
at least partly within 1.5 kb and 5 kb upstream
of the canonical ATG start-codon for all genes.
We then split the TEs into the relevant gene lists
covering homoeolog expression bias variation
(stable 10%,middle 80%, and dynamic 10%) and
homoeolog expression bias (balanced, dominant,
nondominant, suppressed, and nonsuppressed)
based on the “combined analysis (all tissues)” for
CS.We used these lists to identify the proportion
of genes and triads in each category which con-
tained at least one TE in the promoter region.

Enrichment of TE families in
gene promoters

Using the GFF file of TE coordinates, we ex-
tracted TEs present in the promoter regions of
HC genes. We retrieved all TE copies that are
entirely or partially present in the 5 kb upstream
of the ATG start-codon of the canonical tran-
script for each gene. We then calculated the
number of genes in each of the stable 10%, mid-
dle 80%, and dynamic 10% categories which
contained specific TE families. We required the
TE family to be present in at least 2% of the
categorized genes for further analysis. We then
found the deviation of this distribution from the
expected 10-80-10 ratio using the c2 test, P values
adjusted with Benjamini-Hochberg. We calcu-
lated the median length of each TE family based
on all instances of that TE across the genome.
We found fifteen TE families deviated signif-
icantly from the expected 10-80-10 distribu-
tion (Benjamini-Hochberg P < 0.01). However,
the majority of these TE families were present
in less than 5% of the genes considered, and
showed very small variation in the number of
promoters containing the TE, suggesting that
the statistical significance may not be biologi-
cally relevant.

TE density in gene promoters

We calculated the density of TEs within 5 kb
upstream of genes by calculating the propor-
tion of TE bases in sliding windows of 100 bp
with a step size of 10 bp. The mean of each
window was then calculated for both the stable
10%, middle 80%, and dynamic 10% triads and
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the subgenome dominance categories (balanced,
dominant, nondominant, suppressed, and non-
suppressed).MannWhitney testswith Benjamini-
Hochberg adjusted P values were used to test
for differences in TE density between catego-
ries across each window.

Transcription factor binding
site identification

The 1.5 kb of sequence upstream of the canonical
ATG start-codon was used to identify transcrip-
tion factor binding sites (TFBS) present in pro-
moters of HC triads. The FIMO tool from the
MEME suite [v 4.11.4 (63)] was used with a
position weight matrix (PWM) obtained from
plantPAN 2.0 (64) to predict TFBS based on
previously identified sites across multiple plant
species. FIMO was run with a P value threshold
of <1E-04 (default), –motif-pseudo set to 1E-08 as
recommended for use with PWMs and a –max-
stored-scores of 1,000,000 to account for the
large size of the dataset. The backgroundmodel
was generated from all extracted promoter se-
quences using the MEME fasta-get-markov com-
mand. Details of the TFBS comparisons between
homoeologs is presented in the supplementary
materials (13).

WGCNA network construction

Coexpression networks were built for six sepa-
rate sample sets: grain, leaf, spike, root, abiotic
and disease (table S1) using theWGCNAR pack-
age (65). For each network, we selectedHC genes
which were expressed > 0.5 TPM in three ormore
samples. The count expression level of each gene
was normalized using variance stabilizing trans-
formation from DESeq2 (66) to eliminate differ-
ences in sequencing depth between studies. The
soft power threshold was calculated as the first
power to exceed a scale-free topology fit index of
0.9 for each network separately. The soft powers
usedwere: leaf = 12, spike = 12, roots = 7, disease =
7. For the abiotic and grain network the 0.9
threshold was not crossed until 15 and 20 re-
spectively, which may be due to strong differ-
ences between samples within these datasets,
therefore the soft power threshold was selected
according to the number of samples, resulting
in abiotic = 7 and grain = 6. Signed hybrid net-
works were constructed blockwise using the
function blockwiseModules() with a maximum
block size of 46,000 genes. The correlation type
used was biweight mid-correlation “bicor” and
the maxPOutliers was set to 0.05 to eliminate
effects of outlier samples. The topographical
overlap matrices (TOM) were calculated by the
blockwiseModules function using TOMType =
“unsigned” and the minimum module size was
set to 30. The parameter mergeCutHeight = 0.15
was used to merge similar modules.

Defining same, similar, and divergent
expression patterns of triads

For triads which had homoeologs within dif-
ferent modules in the WGCNA networks we
developed a threshold to determine whether
the different modules had a “similar” or “di-

vergent” expression pattern. We calculated the
Euclidean distance between module eigengenes
using the R package dist() and with these values
we calculate the distances between the homoeo-
logs in each triad. Triads where the pairwise
distances were zero were in the same module.
Triads where the pairwise distances were over
zero were in different modules. For these triads
in different modules when the pairwise distance
between any two homoeologs was > 50% of the
median maximum distance between eigengenes,
the triad was classified as having a “divergent”
expression pattern. In cases where the pairwise
distance was over zero between at least one
pair of homoeologs and the distance between
all three pairs of homoeologs were =< 50% of
the median maximum distance, the triad was
classified as having a “similar” expression pat-
tern. The median maximum distance between
eigengenes was averaged across all four tissue
networks to give a final threshold (50% of me-
dian maximum distance) of 0.937431. This anal-
ysis was carried out for 1:1:1 syntenic and 1:1:1
nonsyntenic triads expressed in each of the tis-
sue networks (total triads = 9599 grain, 5378 leaf,
11,038 root, and 6173 spike). This excluded triads
which had a putative transposable element (67
triads). Fig. S23 shows a graphic representation
of this classification and the effect of altering the
threshold in each of the four networks.

Module overlaps

Module overlap between networks was calcu-
lated using the R package GeneOverlap which
calculates significant overlaps between modules
using a Fisher’s exact test. Modules were con-
sidered to have significant overlaps when the
FDR adjusted P value < 0.05.

Correlation to stress status

Modules within the abiotic and disease networks
were tested for correlations to intermediate level
stresses using the cor(function). The significant
of correlations were calculated using the func-
tion corPvalueStudent() and corrected for multi-
ple testing using p.adjust() using the Benjamini
& Yekutieli method (67).

Genie3

HC genes expressed >5 TPM in at least one of
the 850 sample were selected. Out of these
78,085 genes there were 3386 transcription
factors (methods described above). Random
forest regression was estimated for each gene
based on the transcription factors as inputs using
the genie3 package (68) in R (version 3.3.2) with
default parameters (K=sqrt, nb.trees=1000,
input.idx=list of transcription factors, importance.
measure=IncNodePurity, seed=NULL). For each
transcription factor, all predicted target genes
(connectivity > 0.005) were extracted and func-
tional enrichment within the target genes was
determined using topGO (69) in R (version 3.3.2)
with the following parameters (ontology = “BP”,
nodeSize = 10, classic Fisher test P < 10–10). To
summarize the results, the top three GO terms
for each transcription factor, the P values for the

strongest enrichment, and the direct blastxmatch
in the Arabidopsis proteome (tair10) and well as
the e-value and description were tabulated (table
S28). The complete list of GO term enrichments
of the biological process ontology for each tran-
scription factor and the list of transcription
factors associated with each GO term in the on-
tology of biological process are published in e!
DAL (https://doi.ipk-gatersleben.de/DOI/53148abd-
26a1-4ede-802b-c2635af6a725/0dd8224a-34fc-4e3b-
8ab8-883d07e52bd2/2/1847940088).

Identifying highly connected hub genes

Hub geneswithin eachmodule for the abiotic and
disease stress networks were calculated using the
WGCNA R package function signedKME(). This
calculates the correlation between the expression
patterns of each gene and themodule eigengene.
Genes which were more highly correlated to the
eigengene were considered hub genes.
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