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Abstract

Purpose: Travel time predictions are of importance for individual trip planning as well as for logistics applications.
Since travel time and travel speed have a one-one correspondence, the modeller has the choice to model travel times
directly or model the corresponding travel speeds and infer the associated time from the speed predictions. A priori it
is not clear which of these is the superior approach. In this paper we investigate the implications of the choice of the
methodology for the accuracy of the travel time predictions.

Methods: For a selection of links, travel time prediction models, both in a direct way as well as indirectly via the
implied link travel speeds, are obtained. The respective predictions are compared on a validation data set with respect
to their accuracy as measured by mean error, root mean square error, mean percentage error as well as mean
absolute percentage error. Additionally, the accuracy of route travel time predictions is evaluated based on the raw
GPS data from the floating taxis.

Results: The empirical results overwhelmingly make the case for using direct modelling if the goal of prediction is to
obtain a RMSE-optimal prediction. If the MAPE is to be minimized, however, the indirect method provides the better
results.

Conclusion: Thus the goal of the prediction determines the better method of modelling: if one is interested in
minimizing the RMSE, then, for the data investigated in this paper, the direct method should be selected. However, if
one is interested in obtaining a small MAPE, the indirect method achieves better results.
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1 Introduction
Travel time predictions are increasingly important both,
for commercial traffic (in order to minimize costs due to
suboptimal planning) and individual traffic (in order to
reduce congestion levels and minimize the risk of incur-
ring penalties due to being unpunctual).
In order to obtain travel time predictions for every

trip in an urban network substantial data is required to
cover the whole network. This is typically represented as a
directed graph containing links (the street segments) and
nodes (mostly but not exclusively intersections). Route
travel time predictions are usually obtained as the sum of
link travel time predictions for all links in the considered
route. For an extensive survey of approaches to travel time
prediction see for example [14].
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Using this approach, link travel times for the whole net-
work are needed which are most often obtained from
floating vehicle measurements. Roadside sensors such
as radar measurements or loop counter-based measure-
ments only provide instantaneous speeds on a small num-
ber of links, and hence do not provide information for the
whole network (see for example [3] for a survey). Addi-
tionally, point speed measurements carry a number of
unwanted drawbacks including the assumption of homo-
geneity (are the speeds at the sensor representative for
the whole link?). A profound discussion of some problems
with point speed estimation can be found for example in
chapter 3, [10]. Bluetooth sensors [8] provide point-point
travel times but only for a very limited set of routes.
Movement within a city is too complex in order to scale

travel times for a small number of routes to provide esti-
mates for all possible routes. This leaves floating vehicles
as the main source of information for this approach. Early
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examples in this respect are taxi floating car measure-
ments established as early as 2004 in Vienna [9]. Hereby
taxis are equipped with GPS sensors that record the loca-
tion of the taxi typically with a small sampling rate of
approximately one minute due to technical restrictions1.
Modern systems based on floating devices (mainly smart-
phones) provide a much higher temporal frequency of
measurement.
Both data sources carry many different error sources:

for low frequent taxi floating car data, interpolation
between measured points reduces accuracy [5], for high
frequent observations of smartphone locations, the trans-
portation mode of the carrier of the smartphone needs to
be inferred [16].
Based on the location information over time, algorithms

for inferring link travel times have been discussed in the
literature (see for instance [12] for a discussion using the
same data base as in this paper). Typically link travel
time estimates are temporally aggregated into time-of-
day-intervals for every given link. This generates panel
data sets containing observations for many (link, day,
time-of-day-interval) combinations.
Based on such data, in the literature the object to be

modelled has been either the link travel time per se or
the corresponding local speed. Clearly there exists a one-
to-one relation between these two objects. However, as
models involve measurement andmodel errors, and as the
relation is non-linear, the corresponding results differ.
In the literature a preference for modelling local speeds

has been motivated by the fact that speeds have been
found to be normally distributed while the corresponding
travel times show a substantial skewness [2, 7, 13, 15].
From a statistical point of view, normality of the mea-

surements is not a necessary prerequisite for least squares
estimation. For non-normal errors estimates will also be
consistent, unbiased and coefficient estimators will be
asymptotically normal (see for example chapter 4 and 5 of
[17]). For a large number of observations the inefficiency
of the least squares compared to the maximum likelihood
estimator is notmuch of a concern. In small samples, how-
ever, the higher estimation efficiency achieved by using
maximum likelihood estimation (which coincides with
least squares for normal errors) might be beneficial. It is
not clear how large a sample needs to be so that loss in
efficiency is negligible.
Secondly, it is easier to compare speeds across different

links since link travel times depend on the length of the
links while the local speeds do not. However, investigating
travel time per meter travelled in seconds per meter also
allows for easy comparisons across links.
Thus in the literature we do not find strong and con-

vincing arguments for direct modelling of travel times or
indirect modelling of travelling speeds when the prime
motivation for the modelling is the accuracy of the

corresponding predicted route travel times. For exam-
ple [7] state that travel times have been found to be
skewed but nevertheless modelling uses the normality
assumption.
In this paper the issue is investigated empirically for a

large floating taxi dataset in Vienna. We apply the mod-
elling methodology of [12] to local speeds and link travel
times. We demonstrate that it depends on the measure
of accuracy whether modelling speeds or travel times
directly leads to better performance. Therefore it is the
application, for which travel times are predicted, that
defines the preferred method.
The paper is organised as follows: in the next section the

data is presented. Section 3 describes the modelling while
Section 4 discusses the results. Finally Section 5 draws
conclusions.

2 Data set and descriptive analysis
In this paper an excerpt2 from the floating taxi data
set collected by AIT Austrian Institute of Technology
in Vienna since 2004 is used. The data has been col-
lected by fleets of approximately 3500 taxis which submit
their position roughly every minute. The locations are
map matched and interpolated linearly resulting in esti-
mated routes as well as link entry and exit times. The
raw measurements of link travel times are aggregated in
15-min time intervals providing for each link and each
15-min interval an average link travel time as well as a
count of taxis contributing to the travel time measure-
ment. More details on the data collection process can be
found in [12].
The data set used in this paper comprises a total of 761

days (1.7.2008 to 31.7.2010) of observed link travel times
for all links in the Vienna urban road network consisting
of more than 60 000 links according to the Teleatlas map
representation used in this paper. Although the data set
is somewhat dated at the time of writing our results will
essentially depend on the features of the distribution of
travel time measurements, in particular on the observed
skewness. These features have already been observed by
[2] and hence appear to be a stylized fact for travel time
data. Thus the age of the data set does not appear to be of
importance for our findings.
The floating taxi data for four somewhat arbitrarily

picked locations is used to evaluate the models (see Fig. 1
for details on the locations):

(a) Hietzing (H): 191 links around the main arterial in
the West of the city leading past the tourist attraction
Schönbrunn Palace, covering a total of 19.4 km.

(b) Westbahnhof (WBH): 122 links in the area of the
Westbahnhof railway station. This area marks the
limit between the inner city with the shopping street
Mariahilferstrasse and the outer city, covering 6.1km.
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Fig. 1 Location of the test sites. a Hietzing, bWestbahnhof, c Ring, d Südosttangente. The colour of the arrows indicates for a given link the
percentage of time intervals for which at least one observation is obtained (white=0%, orange = 50%, black = 100%). Background image: ©Google
maps

The train station lies on a very busy inner city
arterial, the Gürtel (the ‘belt’).

(c) Ring (R): 79 links in the innermost city with lots of
tourist attractions, covering 6.4km.

(d) Südosttangente (SOT): 58 links on the inner city
highway including a number of feeder links, covering
7.0km. Südosttangente literally means ‘south-east
tangent’.

The motivation for sub-sampling lies in the sheer size of
the data set. This fact does not allow for a full analysis with
the software used in this paper. From a statistical point
of view, the pared down data sets dealt with in this paper
are still to be considered large enough as the details on

the sample sizes for the various estimated models below
demonstrate.
The four locations contained in this paper have been

selected in order to include a number of different neigh-
bourhoods ranging from city highways, via main arterials
to inner city regions which hence are likely to contain
many different traffic scenarios.
Overall, the dataset used in this paper contains approx-

imately 32.9 million taxi observations. The average data
availability over links, days and time-of-day-intervals is
plotted in Fig. 2. Data availability is defined as the number
of 15-min intervals with at least one (valid) taxi obser-
vation divided by the total number of 15-min intervals;
therefore a data availability of 0.5 for one link means
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Fig. 2 Empirical cumulative distribution functions (ECDF) for data availability for a links, b days, c time-of-day-intervals given as relative frequency of
observations. d provides ECDFs for the number of taxi observations per link per day per interval. Hietzing (blue), Westbahnhof (black, dotted), Ring
(red, dashed), Südosttangente (green, dash-dotted)

that for this link on half of the observed 15-min inter-
vals observations occur; for days it implies that for half
of the possible (link, time-of-day-interval) combinations
observations exist; for time-of-day-intervals a relative fre-
quency of 0.75 means that in this interval for 75% of (link,
day) combinations data has been observed. In addition
to data availability, Fig. 2 also depicts the ECDFs (empir-
ical cumulative distribution function) of the number of
observations per time interval.
It can be seen in plot (b) (value at x = 0) that the four

datasets all show a value of approximately 8.5% of days
on which no observations exist. Data availability on links
varies from roughly 20% up to almost 90% (see plot (a)).
The SOT shows the lowest coverage. All intervals (except
for interval 96, which is not covered in the database
excerpt due to a coding error) are roughly identically cov-
ered (cf. plot (c)). Approximately 19% of measurements (in
all four datasets) are based on only 1 taxi observation, 12%
on two observations, only 15% are based on more than 4
taxis (with WBH and R showing higher numbers of close
to 24% and H and SOT only 9% and 3% respectively; see
plot (d)).
Figure 3 provides information on the typical speed mea-

surements: (a) provides the ECDF of the average speed
(averaged over all days and time-of-day-intervals with
observations for one link) for all links in m/s. It can

be seen that for a number of links on the city highway
Südosttangente higher average speeds are observed. In the
inner city slow average speeds are observed (R). Plot (b)
provides an exemplary plot of the data grouped across
time-of-day-intervals (with confidence intervals superim-
posed) for a randomly chosen link in Hietzing showing a
number of characteristic features: at 5:00 a sharp decrease
in average speed is observed which is most likely due to
changes in signal timing. Throughout the day congestion
reduces the speed. For this link the evening peak appears
more pronounced than the morning peak, indicating that
the link is leading out of the city. Furthermore the length
of the confidence intervals varies a lot over the course of
the day. During midday variation is a substantial fraction
of the average speed at roughly 14km/h. For a normal dis-
tribution this would correspond to a standard deviation of
roughly 10km/h.

3 Modelling
In this paper we follow the methodology of [12] to obtain
long-term (longer than one hour) predictions of expected
travel time by decomposing:

yl,d,i = μl,d,i + εl,d,i, μl,d,i = X′
d,iβl,c(d),i (1)

where Eεl,d,i = 0 and Xd,i ∈ RK contains day and time-of-
day-interval specific regressors. Here l = 1, . . . , L denotes
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Fig. 3 a ECDF of average speed for all links (in m/s). Hietzing (blue), Westbahnhof (black, dotted), Ring (red, dashed), Südosttangente (green,
dash-dotted). b Typical grouped (over intervals) plot of link speed measurements in km/h (including confidence intervals) for one link in Hietzing

the link modelled, d = 1, . . . ,D the day and i = 1, . . . , 95
the time-of-day-interval of 15 min.
The regressor Xd,i contains a constant, a weekday

dummy (split into school days and school holiday periods)
and sine and cosine terms to account for seasonal pat-
terns (the smallest five non-zero Fourier frequencies are
chosen, such that the corresponding signals show yearly
cycles). Note that the regressor does not depend on the
link whereas the coefficients are specific to the modelled
link and the time-of-day-interval (so that a different daily
pattern for each link is modelled) and a day category
denoted as c(d). The day category is used in order to sep-
arate the model into a total of fourteen categories, one for
each weekday separately for school holidays and school
days. For details see [12].
The dependent variable yl,d,i here can equal the local

speed measurements spl,d,i (in m/s) or the correspond-
ing link travel times LTTl,d,i = Ll/spl,d,i (where Ll
denotes the length in meters of the l-th link). In order to
make the models comparable, link travel times are divided
by the length of the links to obtain LTTl,d,i = 1/spl,d,i in
seconds per meter.
This model is estimated using weighted least squares

where the weights equal the inverse of the estimated vari-
ance as a function of the number of observations nl,d,i
(in order to account for different measurement noise due
to differing number of observations for one time-of-day-
interval) and the mean travel time:

σ̂ 2
l,d,i = exp

(
α̂l,c(d),i + φ̂l,c(d),i/

√nl,d,i + δ̂l,c(d),iI(nl,d,i = 1)

+γ̂l,c(d),iμ̂l,d,i
)
.

(2)

Here the parameters φ̂l,c(d),l and δ̂l,c(d),i are restricted to
be non-negative. Different parametric forms of the depen-
dence on the number of observations nl,d,i have been
tested with the square root formulation leading to the
best fit.

The most relevant regressors are selected using exten-
sive model selection techniques based on information
criteria minimization. Again, details are contained in [12].
Once the estimates are obtained, predictions of link

travel times can be obtained. If link travel times are mod-
elled directly, then the prediction equals

ˆLTTdir
l,d,i = X′

d,iβ̂
dir
l,c(d),i.

It is straightforward to see that we obtain the same pre-
dictions if LTTl,d,i are used as the dependent variable. If
speeds are modelled, predictions can be obtained from:

ˆLTTindir
l,d,i = Ll/

(
X′
d,iβ̂

indir
l,c(d),i

)
,

which are different from ˆLTTdir
l,d,i in general.

Here an issue arises due to the non-linearity of the map-
ping x �→ 1/x: The predictor used above has been termed
‘plug-in’ predictor, as it simply transforms the expecta-
tion via the non-linear mapping. Alternatively it would be
possible to estimate the expectation of the non-linearly
transformed quantity. For a log-normal distribution with
expectation ν and variance η2 for the logarithm, for exam-
ple, the expectation of the original random variable equals
exp(ν + η2/2). However, as the distribution of the speed
estimates are contaminated by strongly heteroskedastic
measurement noise, it is not obvious how to incorporate
the distribution into the prediction. We will see below
that in some sense this seemingly omission is actually
beneficial.
Finally when route travel time predictions are needed,

these can be obtained from simply summing the link travel
time predictions:

ˆRTTx
R,d,i =

∑
l∈R

ˆLTTx
l,d,i

where ‘x’ stands for ‘dir’ or ‘indir’. Themodel above implies
that the variance of the dependent variable is modelled as
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a function of the number of observations within one time-
of-day-interval as well as the typical traffic condition.
Moreover it varies over links, day categories and time-
of-day-intervals. A companion paper deals with a more
detailed investigation of the components of this variability
as well as ways to assess the route travel time uncertainty
for which also the covariances of link travel time estimates
are of importance. For details see [1].

4 Results
Given that there are two different options to calculate the
predictions, the question arises as to which of these two
methods performs better in predicting the travel times for
any given route or link. To investigate this question the
data set is split into an estimation period (the first 701
days) and a validation period (the last 60 days). For all
four locations link travel time predictions for all links have
been obtained by estimating the model on the estimation
data set and evaluating it on the validation set. The direct
and the indirect method have been applied.
Figure 4a provides a kernel density estimate for the

residuals of the link travel times from the direct and the
indirect method for all links and all time-of-day-intervals
on the validation period for all settings. Superimposed
in the figure, the normal densities with corresponding
mean and standard deviation are plotted (dashed lines). It
is clearly visible that the direct method leads to skewed
residuals (with a negative mode) that definitely are not
normally distributed. The indirect method shows a pro-
nounced bias underestimating the link travel times on
average leading to positive average for the residuals. Plot
(b) shows the same for the local link speed. Here it is
clearly visible that the normality assumption is more plau-
sible. In this plot the direct method shows a positive bias
and mode related to the smaller estimated local speeds
that result in higher estimated travel times. In this respect
one might note that the expectation of the inverse is not
the inverse of the expectation such that the differences in
the mean values are to be expected.
It is of interest to note that this property does not

depend on the method of measuring as long as the skew-
ness of the travel time distribution is captured by the
measurements. The results below essentially root in this
skewness and hence are expected to also hold true for
other measurements of travel times or speeds.
In order to obtain a quantified comparison of the two

methods it is necessary to first set a criterion for measur-
ing accuracy. Four of the most often used criteria are the
mean error (ME), the root mean squared error (RMSE),
the mean percentage error (MPE) and the mean abso-
lute percentage error (MAPE). All four criteria are used
routinely in statistics as well as transportation, see also
[6]. All measure the extent of the deviations from the
expected value. For all criteria, less error is better. The

main difference between these measures lies in the fact
that the MPE andMAPE are relative error measures while
the RMSE and theME are absolutemeasuresmeaning that
a 10 s error on a 100 s route induces the same RMSE/ME
as a 10 s misprediction on a 1000 s long route while the
MAPE/MPE is 10% in the first case and only 1% in the
second.
Which of the criteria is more desirable depends on

the application: for commercial route planning one might
argue that RMSE/ME is the more relevant criterion as the
commercial vehicle will be used on a number of routes on
any given day. Hence, for planning the day schedule, the
deviation from the schedule is important independent of
the duration of every single trip. For individual route plan-
ning, however, the MAPE/MPE might be considered to
be more appropriate as individuals performing only one
trip will more readily accept ten minute deviation in travel
time estimation for a two hour long trip than for a trip of
just ten minutes.
Correspondingly in this section we report the results

of prediction accuracy for all measures with the direct
and the indirect estimation method. This will be done for
the prediction of link travel times first. Subsequently a
number of routes will be analysed.
As we are interested in finding statistically significant

differences in prediction accuracy, we test whether one
method is superior to the other method using a Diebold-
Mariano [4] test. This test is essentially a t-test for the
mean of the difference of the accuracy measures. In per-
forming the tests, correlation between different observa-
tions are accounted for by using HAC-scheme estimators
for the variance rather than the sample variance.

4.1 Prediction of link travel times
Limited preliminary results documented in [11] indicate
that the direct method shows – as expected from OLS
theory – better performance than the indirect method
when using the RMSE as a measure of accuracy. This is
also indicated by the fact seen in Fig. 4 that the residuals
from the direct method do not show a bias contrary to the
residuals of the indirect method. Therefore in the follow-
ing we are interested in testing the null hypothesisH0,RMSE
that the direct method has smaller or equal RMSE. For the
MAPE the opposite has been proposed. Therefore we use
the null hypothesis H0,MAPE that the MAPE of the indi-
rect method is smaller or equal to the MAPE of the direct
method.
These hypotheses can be investigated on different lev-

els of aggregation. Table 1 shows the results on the most
disaggregate level of using data from one link in one
time-of-day-interval over all days in the sample. For the
estimation sample we obtain on average (over all time-of-
day-interval and link combinations) between 354 and 461
observations on which to base the tests. For the RMSE, the
average Diebold-Mariano test for accuracy of the indirect
minus accuracy of the direct method ( ¯DMR) here attains
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Fig. 4 Kernel density estimate for residuals of link travel times (a, c, e, g) and link speeds (b, d, f, h) for all links, all time-of-day-intervals on the
validation set for Hietzing (a, b), Westbahnhof (c, d), Ring (e, f) and Südosttangente (g, h). Indirect method in blue, direct method in red. Estimated
means are indicated as dash dotted lines, normal densities as broken lines

roughly a value of 3 indicating that the direct method
is more accurate. Almost in all cases the null hypothesis
H0,RMSE is not rejected. For the MAPE the average DM
statistic ( ¯DMM) equals roughly -9, while in no case is the
null hypothesis H0,MAPE rejected.
On the validation sample, the sample size is much

smaller at approximately 59 observations and hence one
might argue that the power of the tests here is not large.
DM test values for RMSE now average roughly 1.4 and -2.5

for the MAPE (except for Hietzing). Also here the null is
only rejected in less than 4% of the cases at confidence
level 5%.
An interesting result is the average value of 4.27 for the

MAPE in the Hietzing data set. This value is due to one
single (link,time-of-day-interval) observation where only
two raw observations (two days) are contained providing a
DM test statistic of 11764. Omitting this value, the average
DM statistic drops to -2.22.
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Table 1 Results for the Diebold-Mariano tests

Estimation part Validation part

RMSE MAPE RMSE MAPE

n̄ D̄M P(H1) D̄M P(H1) n̄ D̄M P(H1) D̄M P(H1)

H 396.95 3.06 0.00 -10.11 0.00 58.72 1.77 0.04 4.27 0.01

R 415.55 3.25 0.00 -8.70 0.00 58.84 1.29 0.04 -2.54 0.01

SOT 354.19 3.09 0.01 -8.51 0.00 58.51 1.35 0.04 -2.52 0.01

WBH 461.22 3.30 0.00 -9.38 0.00 59.12 1.34 0.03 -3.09 0.00

Figure 5 provides plots of the ECDFs for the RMSE (a)
and the MAPE (b) based DM test statistics for all links
and all time-of-day-intervals on the validation sample.
The four settings show a remarkably stable picture. The
Diebold-Mariano tests asymptotically are standard nor-
mally distributed. Therefore the null hypothesis that the
RMSE of the direct method is better than the one of the
indirect method is rejected for values smaller than − 1.64.
The figure shows that the bulk of the (link, time-of-
day-intervals) show positive values, only rarely do values
below − 1.64 occur. For the MAPE with the opposite
ordering as the null hypothesis, values above 1.64 are
extremely rare. Consequently the evidence from the link
travel time investigation overwhelmingly underpins the
hypotheses that for minimizing the RMSE the direct
method is the preferred choice while with respect to the
MAPE the indirect method is clearly superior.
Figure 6 provides an explanation for this behaviour: in

plot (a) it is visible that for all time-intervals the direct
method shows much less pronounced bias, while the indi-
rect method underestimates the travel time. The down-
ward bias in estimating the travel times for the indirect
method obviously helps in terms of the MPE, as seen
in plot (b): here the indirect method does not show a
bias while the direct method on average shows a negative
percentage error.

4.2 Prediction of route travel times
Beside the comparison of link travel time predictions,
route travel time predictions are also of interest. In this
respect a set of eight routes in the four datasets is investi-
gated. The location of the routes can be seen in Fig. 7. The
route characteristics are collected in Table 2.
For every given route R = (l1, .., lr) consisting of links

l1, . . . , lr the predicted route travel time is given as

ˆRTTx
R,d,i =

∑
l∈R

ˆLTTx
l,d,i.

These predicted travel times are in the following com-
pared to estimated travel times on the basis of single taxis.
For each taxi the inferred route as well as estimated link
entry and exit times are contained in the raw data set.
In that matter we only have limited information at our

disposal. For nine randomly selected days in 2012 the AIT
Austrian Institute of Technology provided detailed infor-
mation on taxis on the routes. Note that this is a tough
validation of the models as it not only refers to out-of-
sample predictions but also the data does not correspond
to sum of link travel times but to directly measured route
travel times.
Table 3 collects results corresponding to the predic-

tion of route travel times. It can be seen that, in all cases
but for the SOT data set, for both methods the aver-
age route travel time is overestimated on average. To put
the numbers into perspective note that 50 km/h corre-
sponds to a travel time of 0.072 s per meter. It can be seen
that in particular in the inner city settings (WBH and R)
the ME and the standard deviation is strong, while
on the city highway SOT both are less pronounced. Due
to the smaller ME, the RMSE for the indirect method is
slightly better than the one from the direct method, con-
trary to the results of the last subsection. Here the DM test
statistics indicate the superiority of the indirect method
in all cases but the SOT setting. Remarkably, in this case,
except for the SOT data set, in all other data sets the

Fig. 5 ECDF for the DM test statistics for the validation sample and all (link,time-of-day-interval) combinations. a RMSE based, bMAPE based.
Hietzing (blue), Westbahnhof (black, dotted), Ring (red, dashed), Südosttangente (green, dash-dotted)
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Fig. 6 Average mean error (ME) and mean percentage error (MPE) for the validation sample averaged over links. aME, bMPE. Hietzing (blue),
Westbahnhof (black, dotted), Ring (red, dashed), Südosttangente (green, dash-dotted). Results for the indirect method in bold, results for the direct
method in normal line width

indirect method achieved better ME and better standard
deviations.
In terms of the MPE and MAPE values, the indirect

method achieves substantially smaller values again except
in the SOT routes. This is also mirrored in the DM test
statistics. In particular for the WBH data set, the MAPEs
of the direct method are huge while arterial travel times
are predicted better.
The results for one day are visible in Fig. 8. Here for

each setting for one route all route travel times mea-
sured on Wednesday 1 February 2012 are compared
to the predicted route travel times for Wednesday 26

January 2010, the most comparable day in the sam-
ple. It can be seen that on all but the SOT setting
route travel times are overestimated somewhat. The indi-
rect method results in less ME due to general smaller
predicted travel times. For the SOT case this effect is
reversed. But note that the average travel time on the
SOT due to the shorter route is smaller than for the
other cases.

5 Conclusion & outlook
In this paper we investigated the effects of modelling
travel times directly or indirectly via implied speed for

Fig. 7 Routes considered in the four settings. First route in red, second route in green. a Hietzing bWBH c Ring d SOT
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Table 2 Characteristics of the selected routes (numbers rounded)

Data set links length [km] av. time [s] av. speed [km/h] meas.

H1 20 2.5 245 34 839

H2 17 2.5 221 40 703

WBH1 20 1.3 194 23 3412

WBH2 18 1.3 182 25 2770

R1 7 0.8 130 22 2223

R2 10 0.8 118 26 3119

SOT1 4 0.8 34 80 901

SOT2 2 0.8 37 77 688

the prediction of travel times. The indirect approach
has been slightly favoured by us a priori due to the
more plausible assumption of local speeds to be nor-
mally distributed while travel times clearly possess skewed
distributions.
The results on the level of link travel times unambigu-

ously show that the direct modelling leads to smaller
mean error and root mean square errors. The indirect
approach of modelling local speeds leads to better pre-
dictions in terms of mean percentage error and mean
absolute percentage error. It is argued that this result is a
property of the distribution of travel times and hence is
robust with respect to measurement technology (unless
the measurement noise is so strong that it distorts the
distribution). In particular it is expected that the results
also hold true for current times and are not limited to
our somewhat dated sample. Therefore the purpose of the
prediction determines which modelling method is to be
preferred.

On the level of route travel times the results in this
paper indicate that, with respect to MPE or MAPE as
an accuracy measure, again the indirect method pro-
vides better performance while the superiority of the
direct method with respect to ME and RMSE could
not be verified based on the validation data available to
us. This difference in validation results might be due
to small samples in terms of validation days such that
abnormal conditions on these days (for example, icy
or snow conditions on the road) could influence the
results.
In combination, our results indicate that, for the pre-

diction of route travel times, local link speeds are a viable
basis for modelling. The implied travel times have bet-
ter prediction accuracy in terms of MPE and MAPE and
show slightly less accurate estimates in terms of ME and
RMSE. This is mainly due to a slight downward bias which
helps in terms of percentage error for the skew travel time
distribution.
This result is of importance for routing devices as

they typically optimize routes by minimizing the sum of
the expected link travel times. More accurate predicted
link travel times will lead to better routes and hence
save time and costs. Our results indicate that the user
should provide information on the preferred accuracy
measure in order to choose the optimal method for pre-
dicting link travel times as the input to the routing: If
one is interested in minimizing the mean squared error
(as is relevant for logistics applications), then the direct
method should be selected. However, if one is interested
in obtaining a small mean absolute percentage error (as
is arguably of more interest for individual travel time
predictions), then the indirect method achieves better
results.

Table 3 Results for the prediction of route travel times

H1 H2 WBH1 WBH2 R1 R2 SOT1 SOT2

ME d -0.0117 -0.0120 -0.0474 -0.0317 -0.0174 -0.0170 0.0039 0.0091

ME i -0.0044 -0.0067 -0.0324 -0.0218 -0.0076 -0.0108 0.0053 0.0118

STD d 0.0166 0.0137 0.0279 0.0287 0.0391 0.0363 0.0090 0.0114

STD i 0.0141 0.0126 0.0254 0.0244 0.0374 0.0350 0.0086 0.0075

RMSE d 0.0203 0.0182 0.0550 0.0427 0.0428 0.0401 0.0098 0.0146

RMSE i 0.0148 0.0143 0.0412 0.0327 0.0381 0.0366 0.0101 0.0140

DM RMSE -7.8648 -8.0923 -23.8307 -14.9289 -11.2277 -12.5764 2.1170 -1.7351

MPE d -15.1853 -17.6386 -52.6772 -34.6950 -19.0042 -21.2994 6.0415 15.2624

MPE i -6.9565 -10.8569 -37.4062 -25.4849 -11.7500 -16.0288 8.9623 20.0743

MAPE d 19.0390 20.7938 53.5500 36.5048 27.8622 30.8618 11.6800 20.5318

MAPE i 13.8354 15.9044 39.2771 28.4912 23.6677 27.5891 11.6225 20.2972

DM MAPE -15.2561 -17.4724 -57.0763 -29.5725 -23.2978 -25.6001 -0.4263 -2.3580

’d’ indicates the results for the direct method, ’i’ for the indirect. Bias (ME), standard deviation(STD) and RMSE values are divided by the total length of the routes in meters to
make the numbers comparable (unit [s/m]) across routes



Bauer and Tulic European Transport Research Review  (2018) 10:46 Page 11 of 12

Fig. 8 Comparison of measured route travel times (in seconds) versus predicted (blue: direct, red: indirect method) for four routes. a Hietzing bWBH
c Ring d SOT

Endnotes
1 Locations of taxis are used for dispatching, which is

operated via radio channels showing a restricted band-
width.

2The excerpt has been provided by the AIT Austrian
Institute of Technology for the dissertation project ofMir-
sad Tulic. The same excerpt is also used in the companion
paper [1] focusing on the modelling of route travel time
uncertainty.
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