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Abstract

Magnetic molecules promise progress in a wide variety of �elds ranging from high density
memory storage to quantum computing as well as magnetic cooling. In order to gain better
insight this work aims at the study of theoretical models and evaluation of thermodynamic
observables by implementing and testing a new numerical approximation method � the
Finite-Temperature Lánczos-Method (FTLM).

Magnetic centres of molecules are modelled as spins of �xed quantum number, position
and interactions. The model is speci�ed in a spin Hamiltonian consisting of three parts:
Heisenberg exchange, single ion anisotropy and Zeeman interaction. Although �nite, the
dimension of the Hilbert space grows exponentially with the number of spin sites, so full
diagonalisation of the Hamiltonian is rendered infeasible: Even for a small number of
spins the Hilbert space dimension exceeds several millions, which is beyond exact diagon-
alisation techniques. In order to calculate observables yet, it is necessary to implement
approximation methods.

Following previous work, where the Hilbert space could be partitioned into invariant
subspaces with respect to magnetic quantum numbers, now systems with anisotropy are
studied. These anisotropic terms generally do not commute with total spin operators,
therefore partitioning no longer helps reducing the problem size.

There are several techniques for approximate solutions to eigenvalue equations, among
these adaptations of the original Lánczos method. As a Krylov subspace method, its main
advantage is that the most complex operations required are matrix-vector multiplications.
When matrix elements are calculated on-the-�y, the most economical version requires stor-
age of only two vectors.

The second ingredient for FTLM is a typicality based Monte Carlo approach: Traces
are estimated as an average over a tiny set of initial vectors compared to the full Hilbert
space.

First tests revealed a major �aw due to numerical instability of traces that normally are
zero. By partitioning with respect to magnetic quantum numbers, especially exploiting
their inversion symmetry, this problem was unknowingly dodged in previous calculations.
It was solved while preserving the advantage of minimal computational e�ort: An arbitrary
set of initial vectors would regain this time-reversal symmetry only, if a substantial number
of initial vectors where used. Instead, a doubling of the initial vectors by inverting them
with respect to magnetic quantum numbers yields the desired e�ect. Time-consuming
evaluations of matrix elements were also avoided by calculating the magnetisation as a
di�erence quotient.

Finally FTLM is implemented and tested for several magnetic molecules. Analogues of
the hour glass molecules synthesised by Glaser et al. were �rst model systems, showing
good agreement of exact diagonalisation results and approximations.

The method can be applied to any Hamiltonian, given that matrix-vector products
in the underlying Hilbert space can be calculated. Here limiting factors are memory
usage and computing time. As a proof of principle observables in a Hilbert space con-
sisting of d = 100, 000, 000 states were calculated using the parameter set suggested by
Mazurenko et al. for the Mn12 � acetate molecule. Single crystal as well as powder aver-
aged results are compared to experimental data. So this previously impossible calculation
is now executed within hours by use of FTLM.
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Introduction

Magnetic molecules (MM) are �cool stu� with memory and use in electronics and
computing�. Well, molecules or particles with at least one of the aforementioned
properties is what scientists are looking for. There are already MMs to be used as
a coolant [1, 2]. In quantum computing [3] and spintronics � electronics with spin
currents � a wide range of possible applications is expected. Another promising idea
is the use of MMs as a means of memory storage [4, 5].

All these applications of MMs require di�erent, possibly opposing, properties. In
order to �nd an (e�ective) model Hamiltonian to describe MMs and predict the
(non-)existence of these properties, assumptions or simpli�cations are made. Here
molecules consisting of atoms and electrons in three-dimensional space coupled via
Coulomb interaction are simpli�ed to magnetic centres possibly in external electro-
magnetic �elds. These are attributed a certain spin quantum number and e�ective
intramolecular interactions such as Heisenberg or Dzyaloshinsky-Moriya as well as
single-ion anisotropy accounting for their local environment. Molecules are often
considered to be isolated i. e. intermolecular interactions are ignored and only an
external magnetic �eld is applied.

The �eld of molecular magnetism is situated at the crossroads of thermodynamics,
quantum statistics and chemical synthesis as well as computational physics. In order
to model magnetic particles or molecules synthesised by chemists and predict or �t
measured data it is often necessary to calculate an eigensystem of quite large, but
�nite-dimensional matrices. This is used to calculate the partition function and from
this magnetic thermodynamic observables.

There are many di�erent methods to calculate the partition function from a given
operator. There are special cases, where analytical calculation of the full eigensystem
is possible. Apart from that, numerical computations are necessary, so full or exact
diagonalisation is done within a given error bound, which is either a precision goal
or a machine-dependent value. For small dimensions d < 105 full diagonalisation
is possible, leading to numerically exact calculations of observables. Often existing
symmetries allow for separation of the underlying Hilbert space into subspaces cor-
responding to conserved quantities or quantum numbers, but this might reduce the
relevant dimension, that is the dimension of the largest subspace, only by a small
factor.

Beyond that approximations are needed, since numerical e�ort in terms of com-
puting time as well as memory consumption renders exact calculations infeasible or
even impossible. Even though computing power increased tremendously since the
�rst matrix calculations on PCs, the system size grows even faster � exponentially
with the number of spin centres in the magnetic quantum system.

In order to illustrate this fact consider the mythical story about the invention of
chess. When asked by the local sovereign, what his reward should be, the inventor
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Introduction

requested a seemingly humble one: �Place one rice corn on the �rst �eld, then double
the amount while traversing all sixty-four �elds of the board. The sum shall be my
reward.� This request was readily granted, but when the total was calculated, the
tremendous number was larger than the full harvest for generations. Some versions
state, that �nally the inventor was executed. Others state, that this debt is a promise
of alms to a certain order of monks and still collected.
To push the limit to larger systems several methods were proposed and used. The

basic density matrix renormalisation group (DMRG) technique [6, 7] allows calcula-
tions of the ground state of large quantum systems, thus zero-temperature properties
are accessible, extensions aim at time or temperature dependent calculations.
Other successful methods are Quantum Monte Carlo (QMC) calculations, but

these su�er from the so-called sign problem, which � most fundamentally speaking
� originates from the Pauli principle i. e. permutation of fermions. [7�9].
The �nite-temperature Lánczos method (FTLM) discussed here originates from

the Krylov subspace based Lánczos procedure for matrix (tri-)diagonalisation. The
partition function is usually calculated as a trace of an operator-valued exponential
function. A numerical estimate is calculated by creating Krylov subspaces using
the Lánczos procedure (LP) [10, 11]. Averaging over the traces in these �local�
eigensystems, which contain � in addition to the eigenvalues � weights corresponding
to the overlap of local eigenstates and the initial vectors, yields approximate results.
This seems to be closely related to a Riemann-Stieltjes integral formulation for the
calculation of traces and matrix elements of operator-valued functions presented by
Golub et al. [12�15].
FTLM calculations require a basis representation and a well de�ned action of

a hermitian or symmetric operator on these basis states. With this approximate
calculations of the partition function as well as observables for a given set of model
parameters and thermodynamic variables is possible.
In Part I basic thermodynamics and the method are reviewed. After that in

Part II magnetic molecules and possible terms of a spin Hamiltonian are discussed.
Finally in Part III tests and results are presented.

12



Formica vobis exemplo sit.

�

Eighty per cent of success is showing up.

� Woody Allen

Part I.

Finite Temperature Lánczos

Method

13





1. Lánczos Procedure

1.1. Origin and Scope

The Lánczos procedure (LP) was proposed by Cornelius Lánczos in [10, 11]. He
called his improvement compared to many previous iteration methods a scheme
of minimised iterations, which should reduce �the fatal accumulation of rounding
errors�. In principle the minimisation is achieved by a least-squares approach. By
now there are many alternatives for matrix diagonalisation, but for high-dimensional
problems it was rediscovered and many ideas for improved versions are proposed.
The main reason is that only matrix-vector multiplications are necessary for iter-
ations. Storage of sparse matrices can be applied or even calculation of matrix
elements on-the-�y is possible in order to reduce memory storage consumption.

1.1.1. Krylov Subspace Methods

The basic idea of Krylov methods is the construction of a small subspace

KL (∼H, |φ〉) = Span
({
∼H
k|φ〉

∣∣ 0 ≤ k < L
})

(1.1)

by applying the operator ∼H to the vector |φ〉 repeatedly. This power method cre-
ates new vectors ∼H

k|φ〉 which are not necessarily linear independent of the k − 1
predecessors. To �nd an orthonormal basis set a Gram-Schmidt procedure can be
applied to the generated vectors.
The Krylov subspace dimension is at most equal to the intended number of steps

L, since each step increases the subspace dimension at most by one and it stops, if a
linear dependence is found. The �nal subspace K (∼H, |φ〉) is called the Krylov space
of |φ〉 and the index is dropped. The Krylov space is ∼H−invariant, which means

∼H|ψ〉 ∈ K (∼H, |φ〉) ∀|ψ〉 ∈ K (∼H, |φ〉) . (1.2)

1.2. Recursion Relation

Construction of a basis of the Krylov subspace is a byproduct of the LP. Based on a
least-squares minimisation of the overlap of the currently iterated vector |ηk+1〉 and
its two predecessors |φk−1〉 and |φk〉, both an orthonormal basis as well as the matrix
representation of ∼H with respect to it are constructed, see also Ref. [10]. Given an
intermediate vector

|ηk+1〉 = (∼H − αk)|φk〉 − βk|φk−1〉 , (1.3)

the parameters αk and βk are determined by minimising the norm of |ηk+1〉. This
results in the well known three-term recursion relation

βk+1|φk+1〉 = (∼H − αk)|φk〉 − βk|φk−1〉 , (1.4)

15



1. Lánczos Procedure

where

βk =
〈
φk−1

∣∣∣∼H∣∣∣φk〉 =
〈
φk

∣∣∣∼H∣∣∣φk−1

〉
≥ 0 and αk =

〈
φk

∣∣∣∼H∣∣∣φk〉 (1.5)

are matrix elements of ∼H. The minimisation of iterations is achieved, since all
iterated vectors are constructed orthogonal by this recursion. Starting from the
induction hypothesis (IH)〈

φk

∣∣∣φl+1

〉
= 0 ∀ 0 ≤ k ≤ l and

〈
φl′
∣∣∣φl′〉 = 1 ∀ l′ ≤ l + 1 (1.6)

a proof by induction over l is done:

Base case l = 0:
The non-zero trial state |φ0〉 is orthogonal to |φ−1〉 = 0.

Non-trivial base case l = 1:

〈
φ0

∣∣∣φ1

〉
= 〈φ0|(∼H − α0)|φ0〉 = 0 (1.7)〈

φ−1

∣∣∣φ1

〉
= 0 . (1.8)

Inductive step l→ l + 1:
By construction:

βl+1

〈
φl

∣∣∣φl+1

〉
= 〈φl|(∼H − αl)|φl〉 − βl

〈
φl

∣∣∣φl−1

〉
= 0 (1.9)

βl+1

〈
φl−1

∣∣∣φl+1

〉
= 〈φl−1|(∼H − αl)|φl〉 − βl

〈
φl−1

∣∣∣φl−1

〉
= 0 (1.10)

Therefore consider k < l − 1:

βl+1

〈
φk

∣∣∣φl+1

〉
= (〈φk|∼H)|φl〉 − αl

〈
φk

∣∣∣φl〉− βl〈φk∣∣∣φl−1

〉
= (βk+1〈φk+1|+ αk〈φk|+ βk〈φk−1|)|φl〉

− αl
〈
φk

∣∣∣φl〉− βl〈φk∣∣∣φl−1

〉
= 0 ,

(1.11)

by (IH) since k < l − 1.

Theoretically this property ensures that iterating yields new trial vectors ortho-
gonal to all preceding ones. Thus iterations do not enter already explored directions
and the number of iterations is reduced.

1.3. Algorithmic Description of LP

1.3.1. Properties in Exact Arithmetics

First we consider the best of worlds, where computing power and storage are lim-
itless: Calculations are executed instantaneously with in�nite precision and all it-
erated vectors are stored. As a result no rounding errors or numerical instabilities
occur.
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1.3. Algorithmic Description of LP

Iteration by the recursion relation yields an orthonormal basis

{|φk〉}k=0,..,L−1 with |φ0〉 = |φ〉 of KL (∼H, |φ〉) . (1.12)

Furthermore, the matrix representation of ∼H with respect to this basis set is a
tridiagonal symmetric matrix TL where the α's appear on the main diagonal and
the β's, starting from k = 1, appear on the �rst upper and lower diagonals. Assume
that a �nite set {λk | k = 0, .., P − 1} of pairwise di�erent eigenvalues or � a little
more speci�c � linear combinations of corresponding eigenstates, participate in the
initial state. Then after exactly P − 1 steps the iteration stops with |φP 〉 = 0.
The approximate eigensystem of TP

{(El, |ψl〉) : TP |ψl〉 = El|ψl〉 , l = 0, .., P − 1} (1.13)

is in fact an exact eigensystem of ∼H, restricted to the unique Krylov subspace

K (∼H, |φ〉) = KP (∼H, |φ〉) , (1.14)

while the approximate eigenvalues coincide with the participating eigenvalues.

1.3.2. Standard Algorithm

Algorithm 1.3.1 (Standard Lánczos Algorithm)
Initialise: k = 1, |φ−1〉 = 0, random |φ0〉, tolerance ε = 10−8.

1. Compute |φ′k〉 = ∼H|φk−1〉.

2. Compute αk =
〈
φk−1

∣∣∣φ′k〉, βk =
〈
φk−2

∣∣∣φ′k〉
3. Compute |φ′′k〉 = |φ′k〉 − αk|φk−1〉 − βk|φk−2〉

4. Calculate η′k =

√〈
φ′′k

∣∣∣φ′′k〉
5. If η′k > ε set ηk = η′k

−1, else ηk = 0.

6. With this calculate next vector |φk〉 = ηk|φ′′k〉.

7. Check termination criteria:

• Non-zero norm of new vector: ηk > 0

• Convergence of ground state
∣∣∣E (k)

0 − E
(k−1)
0

∣∣∣ < ε

• Maximum number of iterations reached: NL = k

• Test of further conditions

8. If no termination, increase k and continue with step two.

This standard algorithm (1.3.1) usually requires storage of three vectors in order
to perform iterations. Opposed to exact arithmetics there are limitations to bear
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1. Lánczos Procedure

in mind: Each number stored and processed in �oating-point arithmetics is only a
representation of the true value within a machine-speci�c error bound f . Invest-
igation of error estimates and algorithmic error propagation are part of Numerical
Mathematics. Since �nding rigorous estimates is not within the scope of this thesis,
merely qualitative observations will be discussed.

So what happens qualitatively, when the assumptions of in�nite precision and
computing power are dropped? Rounding errors occur that subsequently accumu-
late. The iterated vectors lose the long distance orthogonality, when the �rst eigen-
value, usually the one with largest absolute value, converges. Due to accumulated
errors, there are still components of the corresponding eigenstate participating in
the next iterated vectors. These are in�ated in the normalisation step and more so
in the multiplication step, where each eigenstate in the linear combination repres-
enting the iterate is e�ectively multiplied by the corresponding eigenvalue. Thus
ghost copies of converged eigenvalues emerge and orthogonality is lost. Fortunately
these ghosts do not have a signi�cant weight, so there is a less disruptive in�uence
than might be expected.

However, one notable fact is that approximate eigenvalues repeated over successive
iterations correspond to true eigenvalues, whereas most of the approximate eigen-
values are more or less equidistant and move with each iteration. Their positions
correspond to the zeros of an orthogonal sequence of polynomials � the character-
istic polynomials of the tridiagonal matrices constructed throughout the Lánczos
iterations. As a result of this process zeros of one polynomial are separated by those
of the preceding one. Furthermore all zeros have a multiplicity of one and successive
polynomials do not share zeroes, at least in in�nite precision. So one could argue
that the emergence of higher multiplicity indicates a breakdown of orthogonality
and thus is a hard termination condition.

In the pantaeder test case (Chapter 5), where eigenvalues are well separated,
early termination � with respect to the numbers of iterations � often occurred. This
happened when all eigenvalues were found. This does not guarantee good agreement
with true eigenvalues. Those not present in earlier iterations, especially the last one,
exhibit errors in the per cent range.

Concerning termination criteria there are several further options. The most ob-
vious are termination by ground state convergence as well as reaching a signi�cant
error measure. Further equations, that hold in in�nite precision, could be used for
�ne-tuning conditions to abort if the deviation of iterates from these exceeds a given
tolerance.

1.3.3. Two-vector Algorithm

Step three in the two-vector algorithm (1.3.2) is not really an increase in complexity:
Since matrix elements are calculated on-the-�y, a custom routine for matrix-vector
multiplication is necessary. When calculating |ψ〉 component-by-component there is
only a small step to calculating α's simultaneously. This two-vector version might
not improve in terms of numerical errors, but it reduces the required memory by
nearly one third. This allows to perform LP for the Mn12 � acetate molecule syn-
thesised by Lis [16] with complex-valued vectors in a vector space of dimension
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1.4. Development and Analysis of LP

Algorithm 1.3.2 (Two-vector Algorithm)
Initialise |ψ〉 = 0 , random |φ〉 6= 0 , ε > 0.

1. βk =
〈
φ
∣∣∣φ〉 , γk = β

− 1
2

k . If βk < ε set ηk = 0.

2. |φ〉 = γk|φ〉 , |ψ〉 = −γ−1
k |ψ〉

3. Calculate simultaneously

|ψ〉 = |ψ〉+ ∼H|φ〉 and αk =
〈
φ
∣∣∣∼H∣∣∣φ〉 =

〈
φ
∣∣∣ψ〉

4. |ψ〉 = |ψ〉 − αk|φ〉

5. Exchange references |φ〉 ↔ |ψ〉

Increase k and repeat while:

• βk−1 > ε

• k <= NL = max iterations

• Test of further (�ne-tuning) conditions

d = 100, 000, 000 on a standard desktop PC 1. The possibility of a two-vector ver-
sion is mentioned by C. C. Paige [17].

1.4. Development and Analysis of LP

Although theoretically the basic LP should work smoothly, one intrinsic problem was
encountered: At some point the method breaks down due to a �loss of orthogonal-
ity�. This happens either due to numerical instability, or convergence of extremal
eigenvalues and emergence of ghost copies. This is addressed in Refs. [18, 19] as
well as application of LP in matrix diagonalisation, numerical stability and error
estimates.
Much e�ort has been made to overcome this obstacle and di�erent improved meth-

ods were developed. Normally, also in my diploma thesis, full reorthogonalisation
(FRO) was used to improve results of LP. Thus, at least for small (d . 105) matrices,
the possible number of steps until breakdown is increased and better convergence
of eigenvalues is observed. According to Simon [20] FRO is ine�cient compared to
partial reorthogonalisation, since �the extra orthogonality gained does not produce
a more accurate� tridiagonal matrix.
The block LP [21, 22] takes a set of orthogonal starting vectors and iterates this

set. As a result, multiple eigenvalues are calculated and their algebraic multiplicities
can be resolved better.
A di�erent approach is a restarted LP [23, 24], where the accumulation of rounding

1Referring to the 32-bit memory barrier of about 3GB.
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1. Lánczos Procedure

errors and the resulting non-orthogonality is monitored. After reaching a given error
threshold LP is restarted with the last iterate as starting vector while keeping already
converged eigenvectors.

1.4.1. Rayleigh Quotient and Ritz Values

For a given (hermitian) operator ∼H operating in a d−dimensional Hilbert H space
and any non-zero vector |φ〉 ∈ H the Rayleigh quotient is de�ned as

R (φ) =

〈
φ
∣∣∣∼H∣∣∣φ〉〈
φ
∣∣∣φ〉 . (1.15)

Assuming that the eigenvalues {λk}k=1...d of ∼H are in ascending order, it is true that

λ1 ≤ R (φ) ≤ λd ∀|φ〉 ∈ H . (1.16)

If the Krylov subspace of a given vector |φ〉 is found, the (orthogonal) complement
is also an invariant subspace of H and the eigenvalue problem is reduced to two
smaller problems. For LP this means that the constructed tridiagonal matrix is the
representation of ∼H in the Krylov subspace and its eigenvalues are eigenvalues of ∼H.
Diagonalising tridiagonal matrices from intermediate steps of LP only yields ap-

proximate sets of eigenvalues and eigenvectors
{(
θ

(L)
k ,
∣∣∣ψ(L)

k

〉)}
k=0,...,L−1

, often re-

ferred to as Ritz values and Ritz vectors. For these the residual norm squared is
known [18, 19] to be〈

ψ
(L)
k

∣∣∣(∼H − θ(L)
k ∼1

)2∣∣∣ψ(L)
k

〉
= β2

L

∣∣∣〈φ(L)
L

∣∣∣ψ(L)
k

〉∣∣∣2 . (1.17)

According to Krylov and Bogoliubov 2 this leads to an eigenvalue inclusion principle.
As a result for each k there exists an eigenvalue λ of ∼H with∣∣∣λ− θ(L)

k

∣∣∣ ≤ βL

∣∣∣〈φ(L)
L

∣∣∣ψ(L)
k

〉∣∣∣ . (1.18)

The scalar product
〈
φ

(L)
L

∣∣∣ψ(L)
k

〉
is the last component of the k-th eigenvector of

the L-dimensional tridiagonal Lanczos matrix. So this could be used to measure
convergence of eigenvalues.

2Original reference unavailable. Maybe Russian or French, approximately 1930. Found in slides9
at http://people.inf.ethz.ch/arbenz/ewp/slides.html.
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2. Finite-temperature Part of

FTLM

2.1. Partition Function and Observables

Evaluation of thermodynamic observables is based on statistical mechanics found in
standard textbooks [25�27].
The models investigated here are �nite quantum systems, where mechanical prop-

erties, i. e. in�uence of the molecules structure, pressure or strain, are ignored. These
determine model parameters, but are otherwise taken to be constant, so observables
are only in�uenced by temperature T and external magnetic �eld ~B. A system is
modelled by a spin Hamiltonian operating on states in a �nite-dimensional Hilbert
space. The partition function and thermodynamic expectation values

〈〈
·
〉〉

of given
operators ∼O are evaluated as traces of these operators multiplied by the statistical
operator

∼
ρc of the canonical ensemble:

∼
ρc = exp (−β ∼H) , β−1 = kBT (2.1)

Z =
〈〈

∼1
〉〉

= Tr
[
∼
ρc∼1
]

= Tr[exp (−β ∼H)] (2.2)〈〈
∼O
〉〉

=
1

Z
Tr[∼O exp (−β ∼H)] . (2.3)

Considering T and ~B as external parameters leads to de�ning a thermodynamic
potential

G
(
T, ~B

)
= − 1

β
ln
(
Z
(
T, ~B

))
, (2.4)

which has just these as variables. With this relevant observables � such as mag-

netisation ~M
(
T, ~B

)
, magnetic susceptibility

↔
χ
(
T, ~B

)
or heat capacity C

(
T, ~B

)
�

are obtained as �rst or second derivatives of G
(
T, ~B

)
:

~M
(
T, ~B

)
= −

∂G
(
T, ~B

)
∂ ~B

(2.5)

C
(
T, ~B

)
=
∂G
(
T, ~B

)
∂T

(2.6)

↔
χ
(
T, ~B

)
=
∂ ~M

∂ ~B
=

(
∂Mk

∂Bl

)
k=x,y,z; l=x,y,z

(2.7)
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2. Finite-temperature Part of FTLM

From now on the external �eld's direction ~eB is �xed and taken as z-direction and
only scalar functions of B are considered:

M (T,B) = −∂G (T,B)

∂B
(2.8)

χ (T,B) =
∂M

∂B
. (2.9)

For large temperature a Curie law

χ (T,B) =
KJ

T
, KJ =

g2
Jµ

2
BJ(J + 1)

3kB
(2.10)

is expected, where J = L+S denotes the total of spin and orbital angular momentum
and

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
L=0
= 2 . (2.11)

Since only transition metal ions with quenched orbital angular momentum are rel-
evant here, we almost always have gJ ≈ 2.
So as an alternative to T χ or χ−1 in order to �t model parameters to experimental

data another interesting observable is the e�ective magnetic moment

µe�. (T,B) =
√

3kBT χ (T,B) . (2.12)

In experimental data χ is approximated as M divided by B:

µe�. (T,B) ≈
√

3kB
T

B
M (T,B) . (2.13)

In terms of dimensionless quantities, where M (T,B) and µe�. (T,B) are measured
in units of µB, T in kelvin and B in tesla, we have(

µe�. (T,B)

µB

)
≈ 2.57861×

√(
T

1 K

)(
1 T

B

)(
M (T,B)

µB

)
. (2.14)

At high temperatures interactions are less relevant and spins act like a paramag-
net. That is why the high temperature limit of µe�. is called paramagnetic limit.
Its value is

µ2
para. = µ2

B

∑
k

g2
sk
sk(sk + 1) . (2.15)

2.2. Use of Di�erence Quotients

In general, thermodynamic observables are evaluated as traces of operators weighted
by the statistical operator.
Computational e�ort for matrix transformations scales asymptotically as d3 where

d is the relevant dimension. FTLM scales linearly in d, which is less complex. So
if an approximate di�erential (two-sided di�erential quotient) is used, the actual
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2.3. FTLM Approximations

e�ort of FTLM is only doubled, so that evaluation of observables does not lead to
an intense increase in computational e�ort. For ∆B > 0 the magnetisation is equal
to the directional derivative along ~eB:

M (T,B) ≈ −1

2∆B
(G (T, (B + ∆B)~eB)−G (T, (B −∆B)~eB)) . (2.16)

For calculation of the e�ective magnetic moment the magnetic susceptibility is re-
placed by the quotient ofM and B, as it is often done with experimental data. Thus
second derivatives of G are avoided and it is possible to calculate all observables by
evaluating traces of functions f (∼H) only.

2.3. FTLM Approximations

The main idea of FTLM is to replace traces of operators by random sampling of R
vectors |r〉 and averaging the expectation values with respect to these samples [28]:

Z = Tr[exp (−β ∼H)] ≈ Dim (H)

R

R∑
r=1

〈r|exp (−β ∼H) |r〉 (2.17)

〈〈
∼O
〉〉

=
1

Z
Tr[∼O exp (−β ∼H)] ≈ Dim (H)

R

R∑
r=1

〈r|∼O exp (−β ∼H) |r〉 (2.18)

Functions f of operators are usually calculated via a series expansion of f (x) and by
using a spectral representation of the operator. So the main missing ingredient is the
approximate spectral decomposition of ∼H. This is where LP is used: By applying
LP for ∼H and each sample state |r〉 the Krylov subspaces

KNL
(∼H, |r〉) , r = 1, 2, ..., R

are obtained as well as approximate spectral decompositions

∼H ≈
NL∑
l=1

∣∣∣ψ(r)
l

〉
El
〈
ψ

(r)
l

∣∣∣ , (2.19)

where the E (r)
l and

∣∣∣ψ(r)
l

〉
are eigenvalues and eigenvectors of the tridiagonal matrix

representation of ∼H in the respective subspaces. With this approximate spectral
decompositions of functions of ∼H and traces are calculated as

f (∼H) ≈
NL∑
l=1

∣∣∣ψ(r)
l

〉
f
(
E (r)
l

)〈
ψ

(r)
l

∣∣∣ (2.20)

Tr[f (∼H)] ≈ Dim (H)

R

R∑
r=1

NL∑
l=1

∣∣∣〈r∣∣∣ψ(r)
l

〉∣∣∣2 f (E (r)
l

)
. (2.21)

These approximate calculations are similar to the Riemann-Stieltjes integral ap-
proach in Refs. [13, 15].
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2. Finite-temperature Part of FTLM

2.4. Powder Averaging

Samples of magnetic molecules are in general crystals or a powder of these. In
order to model a powder sample, it is assumed that the magnetic molecules or small
crystals are oriented randomly in space. Thus measurement of magnetic properties
in powder samples averages over all possible orientations relative to the magnetic
�eld direction. This behaviour is mimicked by calculating observables for directions
given by Lebedev-Laikov grids [29] or similar sets of directions.

dir x y z
A 0.57735 0.57735 0.57735
B -0.57735 0.57735 0.57735
C 0.57735 -0.57735 0.57735
D 0.57735 0.57735 -0.57735
E 0. 0.35682 0.93417
F 0. -0.35682 0.93417
G 0.93417 0. 0.35682
H -0.93417 0. 0.35682
I 0.35682 0.93417 0.
J -0.35682 0.93417 0.

Table 2.1.: Directions used in powder averaging
These ten directions are the corners of a dodecahedron in one hemisphere and have

equal weight for powder averaging.

The idea is, that any integral over the unit sphere is approximated by a weighted
sum over the set P (as in Table 2.1) of these points:∫ 2π

0

∫ π

0

f (θ, ϕ) sin (θ) dθdϕ ≈ 4π
∑
~x∈P

f (~x) w (~x) . (2.22)

One question arose, concerning calculation of thermodynamic quantities as de-
rivatives of the partition function or a thermodynamic potential: Which order is
correct: First calculate the average, then di�erentiate � or in reverse order?
Considering the experimental setup one could argue, that the measurement taken

is a superposition of di�erent contributions originating from randomly oriented crys-
tals in a powder sample.
At least for magnetisation and µe�. it is easy to decide which way is correct.

Since we know that a superposition principle exists for magnetisation and �elds,
calculating µe�. from a magnetisation average is the natural way.

2.5. Implementation of Magnetisation

�Measurement�

Depending on standpoint, there are two di�erent ways to implement measurement
of the magnetisation component parallel to the �eld direction: Either do not change

24



2.5. Implementation of Magnetisation �Measurement�

the system, calculate ∼
~M and project onto ~eB, or rotate the system (parameters)

such that ~eB becomes the z-direction and calculate Mz. My choice was the second
version, since less multiplications of full-dimensional (though sparse) matrices and
vectors are required, especially for evaluation ofM . The parameter transformations
are done as product of �ve complex-valued three-dimensional matrices. This yields
an analytically precalculated matrix with only two rotation angles as transformation
parameters.
Often experiments involve time-dependent �elds and other external parameters.

This aspect of experimental setup is not taken into account, instead it is assumed
that systems are in thermodynamic equilibrium during measurement.
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Part II.

Molecular Magnetism
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3. Overview and Motivation

3.1. Motivation

Now let us leap forward to the relatively new �eld of molecular magnetism (MM).
As a rough �rst de�nition MM is an interdisciplinary area of research connected
to low temperature physics and several branches of chemistry such as synthesis
and theory. But �rst of all magnetism emerged as a subject in solid state physics
and materials science, since ordinary magnets are solids that exhibit a permanent
magnetic �eld at room temperature. So how can a molecule be a magnet? At least
below a certain temperature, a magnet has a non-zero magnetic moment. Or, more
carefully, magnetisation data of magnetic molecules exhibits a hysteresis loop under
periodic variation of the external magnetic �eld around zero [30].
There are several target areas of application with speci�c required properties. In

almost all cases it helps to have a well separated low lying multiplet such that the
e�ective Hamiltonian has a simple structure, good quantum numbers and without
mixing perturbation. For quantum computing or information storage this usually
means cooling with liquid helium to very low temperatures.

Magnetic cooling

Almost any magnetic material is a possible coolant due to the magnetocaloric e�ect
(MCE). This e�ect is enhanced near phase transition like magnetisation steps, where
small di�erences in magnetic �eld correspond to high entropy di�erences. For MCE-
based cooling an e�ciency above sixty per cent of the Carnot e�ciency is predicted,
which is better than the forty per cent reached by the prevalent vapour compression
technology. �Along with the prospect of higher e�ciency, magnetic cooling o�ers a
lower environmental impact, as no hazardous �uids and only a few movable parts
(low noise pollution) are used� [31].

Quantum computing

Prerequisites for quantum computing seem contradictory: On the one hand you need
an isolated system, ideally without external in�uence, in order to avoid decoherence.
On the other hand easy access is required in order to manipulate the system and
extract results. DiVincenzo's requirements for quantum computing [32] are discussed
in a tutorial review on Design of magnetic coordination complexes for quantum
computing [33]: In order to have well characterized qubits in magnetic molecules
one needs either a system with a S = 1

2
ground state or a bi-stable system with a

well separated ground state doublet. They say, that scalability is easily achieved by
chemical methods. The initialisation would be done by applying a magnetic �eld
and cooling down. �For spin-based qubits decoherence can mainly arise through
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3. Overview and Motivation

interaction with phonons and nuclear spins, as well as dipolar interactions with
neighbouring qubits. In this respect, the necessary coupling between qubits during
computation may be in itself a source of decoherence� [33]. A �universal� set of
quantum gates, where quantum gate means applying an unitary transformation to
two qubits. This corresponds to a time evolution with a simple Hamiltonian, which
ideally couples only the low-lying qubit-states. In order to carry out these two
operations it is necessary that the qubits of the QG have the possibility to exhibit
entangled states.

�The state of the target qubits within the quantum gates, i. e. the output, has
to be determined once the computation is �nished. This implies that any qubit,
including those within QGs, has to be addressed selectively, either spatially, spec-
trally, magnetically or by any other means. It is clear from above that implementing
QC using coordination chemistry is a very di�cult prospect, and a huge synthetic
challenge� [33].

Information storage

For information storage it is necessary to have long-lived states to represent bits or
qubits. One idea is to use a system with bi-stable ground state with high anisotropy
barrier in order to prevent magnetisation tunnelling. Usually magnetic systems with
zero-�eld splitting (D < 0) are considered. Without external �eld states with min-
imal energy are arbitrary linear combinations of the states with extremal magnetic
quantum number ±S.
Quite recently single-atom magnets were successfully used in an experimental

data storage device [34]. Isolated Holmium atoms adsorbed on magnesium oxide
were manipulated using a scanning tunnelling microscope (STM). The magnetic
state was switched by applying a pulsed tunnel current and read out through the
tunnel magnetoresistance.

�The catch with SMMs is their memory e�ect works only under the in�uence of a
magnetic �eld at very low temperatures, up to 14 K so far, using liquid helium as a
coolant. The new dysprosium molecule displays magnetic switchability up to 60 K�
[35, 36].

Mn12 � acetate

One famous molecule in this �eld is the Mn12 � acetate, which essentially, in terms of
magnetic ions or sites, consists of twelve manganese ions. A spin quantum number
of s = 3

2
is attributed to four of these, the remaining eight have a spin of s = 2.

Therefore the spin Hilbert space has dimension d = 100, 000, 000, which is at the
moment far beyond full diagonalisation techniques. In the ground state the spins
of equal quantum numbers are aligned parallel to each other and spins of di�erent
quantum numbers are aligned antiparallel, so that the resulting total (GS) spin is
S = 10.

Figure 3.1 shows high �eld magnetisation data calculated for di�erent Heisenberg
only parameter sets. One common feature is the high stability of the S = 10 ground
state. At least B = 90 T are necessary to reach higher values of S. Measurement
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3.1. Motivation

Figure 3.1.: High �eld magnetisation calculated for Mn12 � acetate
High �eld magnetisation calculated for Mn12 � acetate at T = 2 K [37]

at such extreme values of magnetic �eld are hard or even impossible today. 1 Nev-
ertheless measurement of the magnetisation (steps) would easily rule out several
proposed parameter sets.

1REMARK: (2015) Highest non-destructive magnetic �eld at about 100T for 15ms in a pulsed
magnet; https://nationalmaglab.org
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4. Spin Systems

Some basic facts concerning spin systems are presented here. Mainly the Hamilto-
nian is introduced and possible terms are discussed. The special case of spin triangles
or more generally pantaeders1 is discussed later as a test case in Chapter 5.

4.1. Basics

Here The eigenvalue equations of spin operators are

∼S
z|s,m〉 = ~m|s,m〉 (4.1)

∼
~S 2 |s,m〉 = ~2s(s+ 1)|s,m〉, (4.2)

where smay take integer or half-integer values, whilem takes values with integer dis-
tance: m = −s,−s+ 1, · · · , s− 1, s. The coordinate system is in general arbitrary,
but often the projection axis, called z-direction, is chosen parallel to an external
magnetic �eld or any other globally distinctive direction.
Ladder operators are linear combinations of the spin components orthogonal to

the z-direction. They alter the magnetic quantum number m by ±1, where norm-
alisation factors N± occur:

∼S
± = ∼S

x ± i∼S
y (4.3)

∼S
±|s,m〉 = N± (s,m) |s,m± 1〉 (4.4)

N± (s,m) = ~
√
s(s+ 1)−m(m± 1) (4.5)

Spin systems often involve more than one spin. Usually product states

|m1;m2〉 = |s1,m1; s2,m2〉 = |s1,m1〉 ⊗ |s2,m2〉 (4.6)

are an obvious choice as a basis of the full Hilbert space. If all spins have identical
s, the leftmost notation is used, otherwise the middle is preferred as a shorthand
notation for the right hand side.
Spin operators obey the commutation relation[

∼S
α
k , ∼S

β
l

]
= i ~ δkl εα β γ ∼S

γ
k , (4.7)

where the repeated index γ indicates a sum over the three spatial components of
the spin vector. It can be rewritten as a cross product with itself:

∼
~S × ∼~S = i~∼~S . (4.8)

This is a reminder of the stark fact, that quantum operators are not to be confused
with numerical values.
1This means systems consisting of an arbitrary number of identical spins interacting with each
other via Heisenberg coupling of equal strength.
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4. Spin Systems

4.2. Spin Hamiltonian

In order to describe interactions of the spin system, it is modelled by a graph where
nodes represent spins and edges between spin pairs represent interactions. De�ne
J to be the set of edges (k, l) with non-zero interaction the full Hamiltonian of
investigated systems can be written as

∼H =
∑

(k,l)∈J
∼
~Sk · Ĵk,l · ∼~Sl , (4.9)

where J contains all interacting pairs including k = l and Ĵkl are 3-by-3 matrices
containing interaction parameters. This is the most general form, if only terms con-
sisting of products of at most two single-spin operators are allowed. The Hamiltonian
should be hermitian, so we require ∼H = ∼H

†. By comparison of coe�cients we �nd

that Ĵkl = Ĵ∗kl for k 6= l and Ĵkk = Ĵ†kk are required.
So for k 6= l interaction matrices need to be real-valued. These can be uniquely

decomposed into a symmetric and an antisymmetric part. The antisymmetric part
represents Dzyaloshinsky-Moriya interaction, whereas the symmetric part can be
further decomposed into a diagonal matrix proportional to the identity matrix, which
gives isotropic Heisenberg exchange. The remaining symmetric part is an anisotropic
extension of the Heisenberg exchange. For k = l the interaction matrix itself has
to be hermitian. As real part of these we �nd single ion anisotropy terms, whereas
the imaginary part can be identi�ed as interaction with an external magnetic �eld
using Equation 4.8.

4.2.1. Heisenberg Exchange

For isotropic Heisenberg Exchange the Hamiltonian can be written as

∼HHeisenberg = −2
∑

(k,l)∈J

Jk,l ∼
~Sk · ∼~Sl , (4.10)

where Jk,l is the interaction strength for spins k and l. Positive J-values correspond
to ferromagnetic coupling, negative to antiferromagnetic coupling. With symmetric
anisotropic exchange this can be extended to

∼HAni.Exch. =
∑

(k,l)∈J
∼
~Sk · Ĵk,l · ∼~Sl . (4.11)

4.2.2. Single Ion Anisotropy

Single ion anisotropy (SIA) is the in�uence of the spin's neighbourhood, e.g. sym-
metry of molecular coordination, bond type. As a second order term it can be
written as

∼HSIA =
N∑
k=1

∼
~Sk · D̂k · ∼~Sk =

N∑
k=1

∑
α=x,y,z

Dα

(
∼
~Sk · ~eαk

)2

. (4.12)
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4.2. Spin Hamiltonian

The real valued, symmetric interaction matrices D̂k can be diagonalised locally. The
second equality uses their spectral decompositions to rewrite the SIA term. Usually
a special form is found, which is for one ion in its local coordinate system

∼HSIA = D(∼S
z)2 + E

[
(∼S

x)2 − (∼S
y)2] , D =

3

2
Dz , E =

1

2
(Dx −Dy) . (4.13)

HereD and E are the (local) axial and rhombic zero �eld splitting (ZFS) parameters.
The axial anisotropy term is interesting for technical applications in data storage:

A single metal ion with a large spin s, E = 0 and large D < 0 is a bi-stable system
with energy barrier Ds2 between the magnetic eigenstates with m = ±s. Unfor-
tunately real systems include terms that do not commute with ∼S

z, thus allowing
tunnelling processes between states |s,±m〉 which destroy the bi-stability of such
systems.

4.2.3. Dzyaloshinsky-Moriya Interaction

This kind of antisymmetric exchange was �rst described by Dzyaloshinsky 1958, its
relativistic origin � spin-orbit coupling � was found by Moriya 1960 [43, 44].
This contribution is strongest in systems with low symmetry, while high symmetry

suppresses it. For a set J of ordered pairs of spins, the Dzyaloshinsky-Moriya
interaction (DMI) can be written as

∼HDM =
∑

(k,l)∈J

~ak,l ·
(
∼
~Sk × ∼~Sl

)
, (4.14)

where the vectors ~ak,l denote interaction strength by their length while the directions
are derived from spatial coordination by a given set of rules, often referred to as
Moriya rules.

4.2.4. Zeeman

The Zeeman term describes interaction of spins with an external magnetic �eld ~B:

∼HZeeman = µB ~B ·
N∑
k=1

ĝk∼
~Sk , (4.15)

where ĝk is the Landé g-tensor of spin k and µB the Bohr magneton. Using Equa-
tion 4.8 the Zeeman term can be rewritten as in Equation 4.9.
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tempore quaeque suo qui facit, ille sapit.

� Ovid

Part III.

Results and Discussion
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5. Tests and Calibrations

In order to verify that the new algorithm works correctly, I revisit an example of
a spin system where all observables can be calculated analytically. This allows for
calibrating approximations via direct comparison of approximate and exact results.

5.1. Analytical Results: Spin Triangle

The spin triangle is an example of a system where identical spins in a Heisenberg
model interact with each other with equal strength J � these systems are called
pantaeder.
So the Hamiltonian is easily rewritten in terms of the total spin ∼

~St :

∼HH = −2J
∑
k<l

∼
~Sk · ∼~Sl = −J∼~S

2
t + 3Js(s+ 1) . (5.1)

∼HZ = µB ~B ·
3∑

k=1

gk∼
~Sk = gµB ~B · ∼~St . (5.2)

De�ning the direction of the magnetic �eld as the z-direction, the total Hamilto-
nian of the triangle is

∼H = 3Js(s+ 1)− J∼~S
2
t + gµBB∼S

z
t . (5.3)

The eigenvalues

E (s, St,Mt) = E (s, St, 0) + gµBMt = 3Js(s+ 1)− JSt(St + 1) + gµBMt (5.4)

only depend on total spin quantum numbers St ∈ {s− bsc, · · · , 3s− 1, 3s}, where
each value St occurs η (St) times, and Mt = −St, · · · , St. The algebraic multiplicity
of total spin eigenvalues in a triangle is

η (S) =

{
2S + 1 , S ≤ s
3s+ 1− S , S ≥ s

. (5.5)

This evaluation of total spin quantum numbers and multiplicities is easily exten-
ded to an arbitrary number N of identical spins, where

St ∈
{ {

1
2
, · · · , Ns− 1, Ns

}
, odd N and half-integer s

{0, · · · , Ns− 1, Ns} , otherwise
. (5.6)

So any pantaeder is a perfect model system for �rst tests, since all observables
can be calculated analytically for any number N of identical spins with arbitrary
quantum number s:
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Z (T,B) =
∑
St

η (St)
St∑

M=−St

exp (−βE (s, St,M)) (5.7)

M (T,B) =
gµB

Z (T,B)

∑
St

η (St)
St∑

M=−St

Mexp (−βE (s, St,M)) (5.8)

〈〈
∼H
〉〉

(T,B) =
1

Z (T,B)

∑
St

η (St)
St∑

M=−St

E (s, St,M) exp (−βE (s, St,M)) . (5.9)

In order to evaluate analytical results for the magnetisation, partial sums over
magnetic quantum numbers in the partition function can be rewritten using Equa-
tion 5.4. With the Brillouin function

BrS (x) =
2S + 1

2S
coth ((2S + 1)x)− 1

2S
coth (x) , x =

gµBB

2kBT
(5.10)

the magnetisation is

M (T,B) =
gµB

Z (T,B)

∑
St

η (St) exp (−βE (s, St, 0))S BrSt (x) . (5.11)

These were used in �rst tests of the implemented routines:

• Rotations of the system, in order to have the external �eld direction as global
z-direction and projection axis.

• General test of the Hamiltonian i. e. on-the-�y calculation of matrix elements
in the matrix-vector multiplication routine, separately for each occurring term
including SIA, DMI and Zeeman interaction.

• Test of di�erence quotients, see next section.

5.2. Di�erence Quotients

In order to �nd appropriate values of ∆B for calculation of di�erence quotients,
here several values are tested. A spin triangle with s = 5

2
is considered, where ana-

lytical results are compared to approximations. The Magnetisation plot shown in
Figure 5.1 exhibits deviations not only for large values of ∆B, but also for small val-
ues, especially close to steps in the magnetisation. At the �rst plateau (M = 11µB)
in the �gure approximations with ∆B = 10−4 T and ∆B = 10−5 T overshoot before
reaching the true value. At the second plateau (M = 11µB) at least ∆B = 10−5 T
yields a slightly too low value.
In Figure 5.2 the plot of speci�c heat data deviations are enhanced: Too large

values of ∆B could even shift maxima and minima to positions of opposite extrema.
Between ∆B = 0.50 T and ∆B = 0.10 T these shifts disappear and extrema are at
correct positions. For smaller values of ∆B there is no obvious tendency, only the
height of extrema varies.
Considering this, there is a window 0.10 T ≥ ∆B ≥ 10−4 T where acceptable ap-

proximations are to be expected. Larger values lead to obviously wrong results,
lower values are inadvisable for numerical reasons.
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Figure 5.1.: Di�erence Quotient: Magnetisation
FTLM results implementing di�erential quotients with ∆B = 1.00 T, 0.50 T,
0.10 T, 10−2 T, 10−3 T, 10−4 T and 10−5 T at 0.01 K using R = 10 , NL = 40

compared to results of exact calculations.
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Figure 5.2.: Di�erence Quotient: Speci�c Heat
FTLM results implementing di�erential quotients with ∆B = 1.00 T, 0.50 T,
0.10 T, 10−2 T, 10−3 T, 10−4 T and 10−5 T at 0.41 K using R = 10 , NL = 40

compared to results of exact calculations.
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5.3. Drawbacks

One severe drawback emerged in FTLM calculations of the e�ective magnetic mo-
ment µe�. At high temperatures interactions are suppressed, so the system acts like
a paramagnet. Therefore µe�. should approach a constant value, the paramagnetic
limit. Consider the approximation to the thermodynamic expectation value of the
magnetisation for in�nite temperature, which is proportional to the trace of the total
spin operator ∼S

z
t :

M∞ = lim
T→∞

gµB
Z

Tr[∼S
z
t exp (−β ∼H)] =

gµB
Dim (H)

Tr[∼S
z
t ] = 0 . (5.12)

In FTLM approximations this is unfortunately not zero, due to numerical in-
stability. As a result the e�ective magnetic moment, which should reach a constant
value for T →∞, tends to a line with slope M∞ for positive values, whereas µe�. is
singular for negative values.
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Figure 5.3.: Deviating asymptotics
Naive version results for µe�. : Non-zero approximation of M∞ results in deviating

asymptotic behaviour; linear for positive, singular for negative values

To counteract this e�ect I had to improve the trace estimate. This was done by
restoring a symmetry that helped before [45]:

M
(
T,− ~B

)
= −M

(
T, ~B

)
. (5.13)

This was used to reduce the computational e�ort by a factor of two in case of pre-
served ~Szt quantum numbers. The contribution of Zeeman interaction could be eval-
uated after calculating approximate eigenvalues in a subspace with �xed quantum
numberM for bothM and −M . In order to retain this e�ect I rebalanced full-space
FTLM calculations by using symmetry partners of the starting vectors. Since for
all calculations the ~m-basis is used and the direction of the external magnetic �eld
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is taken as global projection axis, it is easily achieved by reversing all magnetical
quantum numbers. So for each starting vector |φr〉 I created another vector:

Given |φr〉 =
∑
~m

c~m|~m〉 , then take |φ′r〉 =
∑
~m

c∗~m|−~m〉 . (5.14)

Applying LP to the union of both sets improved results tremendously, while increas-
ing computational e�ort only by a factor of two [46].
As stated before in my diploma thesis [45], one starting vector is su�cient to

obtain good approximations. A larger number of starting vectors reduces statistical
error estimates and averages out �uctuations. So one merely has to be careful
about the number of steps to perform. If too few Lánczos steps are performed,
magnetisation steps get suppressed, comparable to the e�ect of a higher temperature.
Too many steps may result in tiny weight factors assigned to ground state energies
and thus strong divergence of results close to zero temperature as well as magnetic
�eld. Derived quantities calculated from expectation values such as T χ or µe�.
su�er from in�ation of these numerical errors close to zero true values.
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6. Main Results

The results reviewed here have been published in [46] and [37]. In Section 6.1 two
prototypes of Glaser's hourglass molecules are discussed, the �rst without central
ion. The Mn12�ring in Section 6.2 is the �rst case, where only FTLM results are
present. After these Section 6.3 evaluates these �rst test cases of full Hilbert space
calculations. Finally results for the famous Mn12 � acetate molecule are reviewed in
Section 6.4.

6.1. Hourglass Molecules

!

Figure 6.1.: Model and Structure of Hourglass Molecules
Left: Chemical structure of talen�caps [47].

Middle: Sketch of full structure [48, 49]. Triangle metal ions M t (magenta)
correspond to orange balls on the right. The central metal M c (green) corresponds

to the violet ball.
Right: Ball and stick model representing interactions and magnetic centres.

Figure 6.1 shows on the left a ball and stick model which is a schematic repres-
entation of the hourglass molecules investigated here. The symmetry of the model
Hamiltonian rather than the molecular structure is shown.
Orange spheres represent manganese ions, the purple sphere represents the loca-

tion of an additional central chromium ion. Lines (blue and grey) represent Heisen-
berg interactions. Red bars represent directions of easy axes, which are parallel to
edges connecting manganese ions to the centre.
In the middle and on the right the chemical structure is represented: On the right

a sketch of the full structure is shown, while the middle part of the �gure shows the
�xed structure of the top and bottom caps on the right. Metal ions and centre part
remain unspeci�ed, since there are several possible building blocks.
To �nd interesting molecules is quite easy. One class of molecule synthesised in

Bielefeld are the hourglass-shaped molecules by Glaser's group [48, 49]. An example
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6. Main Results

is the Mn6Cr molecule which consists of two C3-symmetric triple-salen caps, each
containing three Mn(III) ions (s = 2). The triangular caps are parallel to each
other, but with a relative angle of 60◦. The central building block is a Cr(IV) ion in
octahedral coordination of cyanide ligands bridged via the nitrogen to Mn(III) ions
of the caps. For all seven ions g = 1.98 is assumed.
This structure supposedly has a S6-symmetry [48, 49] which suppresses E-term

contributions of SIA. Thus less tunnelling processes are observed and the bi-stable
ground states are expected to have a higher lifetime. Therefore this class of molecules
is interesting for memory storage devices and e�ort is being made to coat surfaces
of substrates with it [50].
Here I examine a model of the Mn6Cr molecule and another version without the

central Cr ion. On average the angle ϑ between global and local z-axes ~e zk (blue
lines/red bars in Figure 6.1) typically has values near 40◦[51], so we use ϑ = 40◦.
For the central ion local and global coordinates coincide. It is assumed that the
centre ion does not have SIA.
With this the Hamiltonian of the system is

∼H = J∆(∼∆123 + ∼∆456) + J◦∼
~S7 ·

(
∼
~St − ∼~S7

)
+D

6∑
1

(∼
~Sk · ~e zk )2 + gµB ~B · ∼~St , (6.1)

where ∼
~St is the total spin operator and ∼∆abc = ∼

~Sa · ∼~Sb + ∼
~Sb · ∼~Sc + ∼

~Sc · ∼~Sa. The sym-
bols J∆ and J◦ denote Heisenberg coupling constants, the �rst couples ions in tri-
angles, the second triangle-ions to the centre.

6.1.1. Fictive Mn6 Molecule � Two Independent Triangles

As a �rst model system the hourglass molecule without central ion is examined.
Without central ion the caps are isolated. In order to have C3-symmetry in these
triangles the coupling constants are set to a value of J∆ = J = 0.314 cm−1. Easy
axis anisotropy terms of equal strength of D = 5.00 cm−1 are assumed along local
z-directions which point outwards along the connections between the centre and each
ion. One missing ingredient is the angle ϑ between the global and local z-axes, which
we set to ϑ = 40◦. Without central ion surely J◦ = 0.00 cm−1 is a sound choice.
In the following in�uence of method parameters (number of steps and starting

vectors) are examined. Figure 6.2 shows approximations of µe�. for di�erent values
of R and NL. Here the temperature dependence of µe�. is simple: A steep ascent
from zero to a maximum, after that a descent down to the paramagnetic limit. At
very low values of NL there is a wide temperature range where the approximation
is far o�. But increasing from NL = 4 to NL = 8 the approximation is much better.
In Figure 6.3 the e�ective magnetic moment versus temperature at B = 1 T is

shown. Blue lines correspond to ferromagnetic coupling while red lines corresponds
to antiferromagnetic coupling. Full lines represent reference calculations from exact
diagonalisation, which are compared to FTLM results represented by thick dashed
lines.
The right part shows data for magnetic �eld in z-direction, which is an easy axis.

Antiferromagnetic curves grow monotonously towards the paramagnetic limit. In

46



6.1. Hourglass Molecules

Figure 6.2.: In�uence of R and NL

FTLM results compared to ED. Left: The number of random vectors is �xed

at R = 100 while the number of steps is varied. Right: The number of steps

is �xed at NL = 50 while the number of random vectors is varied [46].

Figure 6.3.: Mn6: µe�. vs. T
Full diagonalisation results as reference (full lines); FTLM results (thick dashed
lines); Left: powder average; Right: z-direction; B = 1 T. Red: antiferromagnetic;

blue: ferromagnetic [46].

47



6. Main Results

contrast to that, ferromagnetic curves exhibit a pronounced maximum far above the
paramagnetic limit, then fall monotonously towards the limit.
On the left powder averaged data is shown. Antiferromagnetic curves take signi-

�cantly longer to reach the limit, otherwise they look quite similar to single crystal
data. However, for ferromagnetic data the maximum is changed signi�cantly.

6.1.2. Fictive Molecule � Plus Central Ion

Now we add a central ion interacting at equal strength J◦ = J2 = −6.00 cm−1 with
each of the other ions. The absolute value of J∆ remains and both signs are con-
sidered, so |J∆| = |J1| = 0.314 cm−1. Easy axis anisotropy terms are not changed.
These results show similar quality of approximation (for R = 100, NL = 50) as be-
fore.

Figure 6.4.: Mn6Cr: µe�. vs. T
Full diagonalisation results as reference (full lines); FTLM results (thick dashed

lines); Left: powder average; Right: z-direction; B = 1 T [46]
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6.2. Mn�Ring

6.2. Mn12�Ring

6.2.1. General Remarks

In order to study the feasibility of full Hilbert space FTLM calculations for spin
systems with high-dimensional Hilbert space, we chose an anisotropic spin ring con-
sisting of twelve MnIII ions [46]. Given that ∼S

z is a conserved quantity i. e. only
uni-axial D-tensor anisotropy is present and the magnetic �eld is applied parallel
to the anisotropy axis, a symmetry-based partition of the Hilbert space allows for
subspace calculations. Previously [52] we presented the symmetry-based FTLM and
found good agreement of our approximations with exact calculations. These results
are taken as reference for studying the quality of full-space FTLM.
The Hamiltonian of the system is

∼H =
12∑
k=1

J∼
~Sk · ∼~S(k mod 12)+1 +Dk∼S

z 2
k + gkµB ~B · ∼~Sk , (6.2)

where

Dk = D = −1.80 cm−1, |J | = 3.00 cm−1, gk = g = 1.98.

For s = 2 the Hilbert space dimension d = (2s+ 1)12 = 244 140 625 is well beyond
reach of ED. FTLM is necessary and no reference results are obtainable for magnetic
�eld applied orthogonal to the anisotropy axis. So FTLM calculations performed
leave previous limits far behind. Nevertheless, these calculations are quite time
consuming, e. g. one data point calculated with NL = 50 , R = 5 took about eight
hours on our local SMP machine.

6.2.2. Actual Results

The left part of Figure 6.5 shows calculated magnetisation data for both signs of
the coupling constant J at T = 2.00 K. For positive sign the magnetisation reaches
its saturation value already for quite small applied magnetic �eld in z-direction, so
only one point is shown. The situation is di�erent for the opposite sign: First the
magnetisation remains (close to) zero, then near B = 15.00 T it almost jumps to
about 12µB. Then it grows linearly until it reaches its saturation value above 50 T.
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Figure 6.5.: Plot of Magnetisation data of a �ctive Mn12�ring at T = 2.00 K
Left: z-direction; Right: x-direction; Inset: Comparison of FTLM results using
R = 5 ('+') and R = 50 ('X'). Continuous lines display results of reference

calculations [46].

The inset in Figure 6.5 shows the resulting data points at B = 19 T for R = 5
and R = 50 (times two for symmetry correction) starting vectors. For larger R
the approximation approaches the reference value (solid line), thus con�rming the
expected behaviour of a Monte Carlo based process.
The right part presents �brand new� magnetisation data in the case of a magnetic

�eld applied orthogonal to the anisotropy axis. The saturation is reached at �eld
values that are about 10 T higher. For both signs of J it approaches the saturation
value almost linearly, whereas features (plateau and jump) are obliterated.
For magnetic �eld in z-direction exact calculations were possible via decomposing

the Hilbert space with respect to total ∼S
z quantum numbers. For magnetic �eld

in x-direction this was no longer possible, because of the Zeeman term breaking
conservation of the ∼S

Z quantum number. Full-space FTLM does not rely on the
presence of (special) symmetries, calculations are still possible, without additional
e�ort.
In Figure 6.6 approximate results for µe�. vs. T in z-direction are shown. New

approximations gained from full-space FTLM (thick, dashed lines) are compared to
established reference results from the old, subspace based, FTLM (thin, continuous
lines) both for ferromagnetic (red) and antiferromagnetic (blue) Heisenberg coupling.
Calculations were done with R = NL = 50 and agree almost perfectly.
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Figure 6.6.: Mn12�ring: µe�. vs. T
Plot of e�ective magnetic moment versus temperature at B = 1 T in z-direction

with R = NL = 50 [46]

6.3. Evaluation

After these �rst tests of FTLM for full Hilbert space calculations in this framework
let us summarise what we expected of any calculated approximations and what was
found.

Increasing the number of starting vectors R should have a stabilising e�ect i. e.
Monte Carlo statistics apply. This means, that approximate values converge to-
wards true values such that the error diminishes proportional to

√
R−1. Looking at

Figure 6.5 this seems con�rmed.

Per construction FTLM should be correct for high temperatures and close to zero.
The number of Lánczos steps NL corresponds to a truncation of Taylor expansions
of functions: After NL steps a polynomial of degree less than NL is evaluated nu-
merically exact. Qualitatively one observes, that for lower temperatures or better
resolution more steps are necessary, as seen in Figure 6.2.

Since FTLM relies heavily on weights generated in a Lánczos process, there might
be systematic errors. As already seen in my diploma thesis [45], heat capacity
or magnetic susceptibility at low temperatures as functions of magnetic �eld are
most susceptible. Absolute values of peaks correspond to degeneracies of relevant
eigenstates, so the weights could be observed here. As a result extrema and other
features of these functions at ��nite� temperature might show heavy �uctuation.

Powder averages involve more starting vectors so results should be more reliable.
FTLM and ED results almost coincide for R = 100, NL = 50 in Figures 6.3 and 6.4
as well as Figure 6.6 for R = NL = 50. No di�erence of approximation quality is
visible for z-direction and powder averaged results.
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6.4. The Mn12 �acetate Molecule

Figure 6.7.: The Mn12 � acetate molecule
Schematic representation of the Mn12 � acetate molecule [53].

red: Eight Mn(III) with s = 2,
magenta: Four Mn(IV) with s = 3

2
;

sum formula: [Mn12(CH3COO)16(H2O)4O12] · 2CH3COOH · 4H2O

6.4.1. General Remarks

The Mn12 � acetate SMM was synthesised almost forty years ago [16]. Several at-
tempts were made to �nd a suitable description of the physical properties.
The magnetic centres of the Mn12 � acetate SMM are twelve manganese ions of

two di�erent valencies: Eight Mn(III) with s = 2 and four Mn(IV) with s = 3
2
, as

illustrated in Figure 6.7. These compose a Hilbert space of dimension d = 108, which
was too large for numerically exact calculations based on all eigenvalues of the full
spin Hamiltonian. Instead large spin approximations were used i. e. the (total)
ground state spin as well as e�ective anisotropy parameters were estimated to �t
measured data.
Ab initio (DFT) calculations performed by Liechtenstein et al. [54] yielded a

parameter set for a full spin Hamiltonian, which we used here.
In Figure 6.7 the chemical structure of Mn12 � acetate is shown. The magnetic

centres i. e. manganese ions, are represented by red or magenta spheres while the
rest determines and transfers interactions as well as anisotropy. A sketch of the
model Hamiltonians structure as well as values of Heisenberg coupling constants are
given in Figure 6.8.
Almost forty years after synthesis of Mn12 � acetate it is now possible to evaluate

thermodynamic observables in a full spin Hilbert space framework. Thus parameter
sets resulting from DFT or other calculations can now be put to the test by FTLM.
This is done here, results for µe�. vs. T and M vs. B are presented in the following
pages.
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Mn10
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Mn 7 Mn 9
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Jb

Jb
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JcJc

Jc Jc

Jd

JdJd

Jd

Je Je

Je

Je

JfJf

Jf Jf

JgJg

Table 6.1.: Coupling constants [meV]
Ref. Ja (1, 6) Jb (1, 11) Jc (1, 9) Jd (6, 9) Je (7, 9) Jf (1, 4) Jg (1, 3)
[53] 4.60 1.00 1.70 −0.50 −0.40 −1.60 −0.50
[54] 4.80 1.40 1.40 −0.50 −0.50 −1.60 −0.70
[55] 5.80 5.30 5.30 0.50 0.50 0.70 0.70
[56] 7.40 1.70 1.70 �� �� −2.00 ��
[57] 10.30 10.20 10.20 2.00 2.00 −0.70 −0.70

Figure 6.8.: Coupling scheme of Mn12 � acetate
In this coupling scheme a C4-symmetry is assumed (as in [53]), therefore coupling
constants and SIA contributions are not arbitrary. The twelve magnetic centres are
subdivided into three groups of four ions each. Members of each subgroup are related
by symmetry transformations. The table lists a choice of di�erent parameter sets
proposed for this molecule.
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Figure 6.9.: E�ective magnetic moment: Experiments vs. FTLM
On the left experimental data and approximate curves of the e�ective magnetic
moment over temperature at B = 0.13 T are shown. The directions are listed in

Table 2.1. On the right measured data is compared to approximations for
Heisenberg (full line) and full Hamiltonian (dashed line) [37].

Figure 6.10.: Mn12 � acetate: µe�. ; Heisenberg only
Measured data compared to theoretical results for di�erent Heisenberg

Hamiltonians. Right: Zoom [37]

6.4.2. Actual Results � µe�. vs. T

In a recent publication [58] Tabrizi, Arbuznikov and Kaupp state correctly, that
the coupling constants in our calculations are not the ones we intended to take,
instead they di�er by a factor of two from [53]. There are two reasons for this error
to persist: A change of input encoding generated the undetected error, whilst the
result was closer to the expected i. e. experimental data.
Analysis of data focuses on (e�ective) magnetization data. First consider the e�ect

of anisotropy on the e�ective magnetic moment. In the left part of Figure 6.9 ap-
proximate curves for three directions of magnetic �eld are compared to experimental
data. The paramagnetic limit is shown as a reference. Close to zero temperature
all curves start below this value, cross at low temperatures and cross again. All
data are below the paramagnetic limit at 80 K. Calculated curves almost coincide
at 120 K and reach the paramagnetic limit from below at much larger temperature.
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Figure 6.11.: Low �eld magnetisation data of Mn12 � acetate
Low �eld magnetisation data of Mn12 � acetate; Comparison of parametrisations to
experiment; Left: Di�erent parameter sets. Right: Chosen parameter set, di�erent

direction [37]

With increasing temperature anisotropy e�ects are suppressed �rst. Later every
interaction is overcome by temperature, hence the paramagnetic limit is reached.

Experimental data measured by Glaser's group exhibit a behaviour similar to the
curve corresponding to direction F (given in Table 2.1), which is close to the sym-
metry axis (z-direction) of the chosen parametrisation. This leads to the conclusion,
that this data is taken from a single crystal or a loose powder that rearranged it-
self during measurement. The other two data sets coincide at low temperatures and
seem to be taken from powder samples. In addition to this curves of the Hamiltonian
without anisotropy as well as a powder average are shown.

The right part of Figure 6.9 shows these at low temperatures: The Heisenberg
only curve reaches its maximum �rst, but its position is too low in temperature (the
missing factor of two would move it even lower). For the powder average of the
anisotropic model the maximum is shifted to higher temperatures. Its position is in
good agreement with measured data, but its value is too high.

6.4.3. Actual Results � M vs. B

Next consider magnetisation as a function of the external �eld B.

In Figure 6.11 low �eld magnetisation data is shown. In the left part Glaser's ex-
perimental data as well as measurements along the symmetry axis done in Sessoli's
group are compared to FTLM approximations using the Heisenberg only parameter
sets listed in Table 6.1, see Figure 6.8. In the right part experimental data from
Sessoli's group is compared to FTLM approximations. Experimental data is taken
along the symmetry axis and one direction perpendicular to that. Approximations
are taken perpendicular (direction p) and almost parallel (direction t) to the sym-
metry axis.1 Powder averaged data is shown as well in both parts.

In the left part two experimental data sets are shown. Sessoli's measurements

1The directions used for powder averaging are listed in Table 2.1. Directions t and p are equal
to directions F and J in that table.
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exhibit a step-like feature at B ≈ 2.50 T, which might be due to a reorientation
of/within the sample or some other change in experimental setup. Up to this point
it is in quite good agreement with Glaser's measurements, where magnetisation in-
creases further with a very small slope. Heisenberg only calculations are almost
on top of each other. They are quite featureless curves saturating at a value of
M = 20µB as expected for the S = 10 ground state. The powder averaged approx-
imation increases much slower, catching up at B ≈ 3.00 T.
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7. Conclusions

Thirty to forty years after the synthesis of Mn12 � acetate calculating magnetic prop-
erties and thermodynamics based on a full spin Hamiltonian is possible now. Earlier
tests as well as the results reviewed and presented here verify that FTLM is a re-
liable, though approximate, method for obtaining information on large magnetic
molecules.

Foundations for this work were already laid in my diploma thesis. Systems were
modelled by a Heisenberg Hamiltonian with Zeeman interaction, therefore a projec-
tion of the total spin onto the z-direction, which was chosen along the direction of the
external magnetic �eld, was a conserved quantity and gave rise to a �good quantum
number�, allowing for decomposition of the Hilbert space into smaller subspaces.
Thus computational e�ort was reduced by decreasing the relevant dimension for di-
agonalisation of the Hamiltonian. Subspaces corresponding to quantum numbers of
equal absolute value but opposite sign were incorporated just by taking two copies
of one and adding the Zeeman energies accordingly. As a hidden bene�t, weights
of states with opposite quantum number were evenly balanced with respect to the
weight factors in the FTLM approximation. With this evaluation of approximate
traces of spin operators was numerically stable. Only magnetic susceptibility and
heat capacity were strongly in�uenced by relative weights near crossing �elds due
to the intrinsic problem of LP to reveal correct multiplicities of eigenvalues.

Promising results and performance of FTLM found in my diploma thesis gave rise
to further investigate this method, aiming at anisotropic systems. These usually
involve terms in the Hamiltonian, that do not commute with projections of the total
spin. Thus the helpful symmetry is destroyed and full Hilbert space calculation
is unavoidable. So the aim of this work is to implement and test FTLM for the
use in the high performance computing environment at the Leibniz Supercomputing
Centre (LRZ).

For ED memory consumption and computational complexity scale as d2 and d3

respectively. For LP and FTLM only one dimensional factor remains. Assum-
ing large values of d, memory consumption for the two-vector algorithm is roughly
. 3d, mainly two vectors plus collected data scaling as N2

L. Computational e�ort
scales as 4RN2

Ld for each di�erent value and direction of the external magnetic �eld.
For powder averages this involves ten or more directions, so for R = NL = 50 the
pre-factor is almost 504 = 62 500. Assuming equal proportionality, computational
complexity and memory storage both are reduced by a factor of d. Taking R = 100
and NL = 120 as ultima ratio one could argue, that FTLM beats ED at d ∼ 104.
With linear complexity and memory consumption FTLM extends the limits by sev-
eral orders of magnitude.

Still FTLM works for large anisotropic systems, since computational e�ort and
time consumption increase only linearly with the dimension. For the hour glass
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molecules with a Hilbert space dimension of d = 62 500 computations were still
possible on a laptop PC, even for the Mn12 � acetate molecule with d = 100 000 000
two vectors �t into memory and calculations were possible, but time-consuming.
Since full dimensional matrix transformations and the required storage for keeping

intermediate vectors would render FTLM ine�ective, a di�erent solution is used: In
order to calculate approximations of observables a �natural� thermodynamic poten-
tial proportional to the logarithm of the partition function is de�ned and two-sided
di�erence quotients approximate derivatives. This requires repeating LP for two
values of external �eld, which only doubles computational e�ort.
First tests revealed a systematic numerical instability for calculation of µe�. So at

�rst glance full dimensional matrix transformations would seem necessary. Fortu-
nately, this is remedied by using for each starting vector also an inverted copy, thus
rebalancing weights for calculation of approximate traces. With this computational
e�ort is doubled to overcome the drawback whilst preserving the main advantage of
LP and FTLM. Already con�rmed results of ED and symmetry-based FTLM calcu-
lations are in good agreement with new full-space FTLM approximations, seemingly
getting better with increasing Hilbert space dimension.
So by replacing exact diagonalisation by this approximate method, formerly im-

possible tasks in the �eld of molecular magnetism are �nally within reach. As a proof
of principle, calculations for the Mn12 � acetate obtained from a full spin Hamiltonian
are done for the �rst time.

7.1. Future Work

• Here mainly qualitative observations on errors were done. It would be nice to
have quantitative estimates as error bars. This requires a rigorous analysis of
numerical errors and their propagation to �nal results.

• To increase the upper limit of reachable Hilbert space dimension, implement-
ations of FTLM � with special consideration of the very sparse structure of
model Hamiltonians � for MPI or on GPUs can help a lot.

• Since FTLM yields reliable results, investigation of further magnetic molecules
and materials are to be expected.

• An extension to approximate nonequilibrium properties and correlation func-
tions is already proposed and used, so it is only a small step to do so for spin
systems, too.
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