
Exzellenzcluster
Cognitive Interaction Technology

Kognitronik und Sensorik
Prof. Dr.-Ing. U. Rückert

Reconfigurable Vision Processing
for Player Tracking in Indoor

Sports

zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEUR (Dr.-Ing.)

der Technischen Fakultät
der Universität Bielefeld

genehmigte Dissertation

von

M.Sc. Omar Waleed Ibraheem
Referent: Prof. Dr.-Ing. Ulrich Rückert
Korreferent: Prof. Dr.-Ing. Madhura Purnaprajna

Tag der mündlichen Prüfung: 12.10.2018

Bielefeld / October 2018

Acknowledgments

I would like to express my gratitude to Prof. Dr.-Ing. Ulrich Rückert for giving me the
chance to do my PhD in his research group and for all his support during my study
time. Additionally, I would like to especially thank Dr.-Ing. Mario Porrmann for all his
great guidance, support, motivation, and help. Furthermore, a special thank to Jens
Hagemeyer for all the unlimited help, support, and time that he generously gave. I
also would like to especially thank my dear colleague Arif Irwansyah for all his help,
support, and for the brotherhood. Definitely, our work together was a great benefit
for me and had accelerated my PhD work. I have learned many invaluable things and
gained great experiences from these people during my study at Bielefeld University.

I also would like to thank Professor Dr.-Ing. Madhura Purnaprajna for reviewing my
thesis as well as for the time and effort she gave for coming to Germany, participating
in my PhD defense. Additionally, a special thank to Professor Dr.-Ing. Franz Kummert
for chairing the examination committee, and to Dr. Qiang Li for being an examiner in
this committee.

I am also very thankful to René Zorn and Meysam Peykanu for all their great help
and support as well as for their friendship and brotherhood. I extend my gratitude
to Cordula Heidbrede and Daniel Wolf for their help and support. I also would like
to thank all the colleagues in the Cognitronic and Sensor Systems research group at
Bielefeld University for giving me the required help and support during all the years of
my stay in the group.

My sincere and great gratitude to my family (Mr. Waleed, Mrs. Ghadah, Rana, and
Reem) for all their kind support, help, and love throughout my life. Without them, I
will not be able to reach this level. Special thanks also to all my friends and all the
people who helped and supported me during my PhD study. Finally, all praise to God
(Alhamdulillah) for his guidance and for giving me all these big blessings.

Omar W. Ibraheem
Bielefeld, Germany

iii

Abstract

Over the past decade, there has been an increasing growth of using vision-based systems
for tracking players in sports. The tracking results are used to evaluate and enhance
the performance of the players as well as to provide detailed information (e.g., on
the players and team performance) to viewers. Player tracking using vision systems
is a very challenging task due to the nature of sports games, which includes severe
and frequent interactions (e.g., occlusions) between the players. Additionally, these
vision systems have high computational demands since they require processing of a
huge amount of video data based on the utilization of multiple cameras with high
resolution and high frame rate. As a result, most of the existing systems based on
general-purpose computers are not able to perform online real-time player tracking, but
track the players offline using pre-recorded video files, limiting, e.g., direct feedback
on the player performance during the game.

In this thesis, a reconfigurable vision-based system for automatically tracking the
players in indoor sports is presented. The proposed system targets player tracking for
basketball and handball games. It processes the incoming video streams from GigE
Vision cameras, achieving online real-time player tracking. The teams are identified
and the players are detected based on the colors of their jerseys, using background sub-
traction, color thresholding, and graph clustering techniques. Moreover, the tracking-
by-detection approach is used to realize player tracking. FPGA technology is used
to handle the compute-intensive vision processing tasks by implementing the video
acquisition, video preprocessing, player segmentation, and team identification & player
detection in hardware, while the less compute-intensive player tracking is performed
on the CPU of a host-PC.

Player detection and tracking are evaluated using basketball and handball datasets.
The results of this work show that the maximum achieved frame rate for the FPGA
implementation is 96.7 fps using a Xilinx Virtex-4 FPGA and 136.4 fps using a Virtex-7
device. The player tracking requires an average processing time of 2.53 ms per frame
in a host-PC equipped with a 2.93 GHz Intel i7-870 CPU. As a result, the proposed
reconfigurable system supports a maximum frame rate of 77.6 fps using two GigE Vision
cameras with a resolution of 1392x1040 pixels each. Using the FPGA implementation,
a speedup by a factor of 15.5 is achieved compared to an OpenCV-based software
implementation in a host-PC. Additionally, the results show a high accuracy for player
tracking. In particular, the achieved average precision and recall for player detection
are up to 84.02% and 96.6%, respectively. For player tracking, the achieved average
precision and recall are up to 94.85% and 94.72%, respectively. Furthermore, the pro-
posed reconfigurable system achieves a 2.4 times higher performance per Watt than a
software-based implementation (without FPGA support) for player tracking in a host-PC.

v

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Thesis Organization . 3

2 Vision-based Player Tracking in Indoor Sports 5
2.1 Introduction . 5
2.2 Challenges in Vision-based Player Tracking 8
2.3 Architectures for Vision Processing . 10

2.3.1 Field Programmable Gate Arrays (FPGAs) 11
2.3.2 FPGAs for Vision Processing . 16

2.4 State of the Art High-Speed Camera Interface Standards 19
2.4.1 GigE Vision Standard . 21
2.4.2 Comparison of the High-Speed Camera Interface Standards . 24

2.5 Related Work of Vision-based Player Tracking Systems 26
2.5.1 Broadcast Video Systems . 26
2.5.2 Dedicated Cameras Systems . 28
2.5.3 Commercial Solutions . 31
2.5.4 FPGA Accelerated Object Tracking 34

2.6 Summary . 35

3 Methodologies and Fundamentals 37
3.1 Video Preprocessing Algorithms . 37

3.1.1 Bayer Pattern Demosaicing . 37
3.1.2 Automatic White Balance . 38
3.1.3 Color Space Conversions . 40

3.2 Morphological Operations . 42
3.3 Image Thresholding . 44
3.4 Object Segmentation using Background Subtraction 44
3.5 Graph Clustering . 46
3.6 Multiple Object Tracking (MOT) . 47

3.6.1 Tracking-by-Detection . 49
3.6.2 Kalman Filter . 50

3.7 RAPTOR-X64 Rapid Prototyping Platform 51
3.8 Design Flow . 52
3.9 Summary . 54

vii

4 The Proposed Reconfigurable Vision System 55
4.1 System Overview . 56
4.2 Video Acquisition Module . 61

4.2.1 Multi-Camera GigE Vision Core 61
4.2.2 GigE Vision Camera Configuration 66
4.2.3 Video File Controller . 68

4.3 Video Preprocessing Module . 72
4.3.1 Bayer Pattern Demosaicing . 72
4.3.2 Automatic White Balancing . 74
4.3.3 Video Cropping . 77
4.3.4 Video Frame Merger . 78

4.4 Player Segmentation Module . 78
4.4.1 RGB to Grayscale Converstion . 80
4.4.2 Background Estimation and Subtraction 80
4.4.3 AXI4-Stream to NPI Controller 82
4.4.4 Morphological Operations . 84
4.4.5 Masking . 84

4.5 Team Identification & Player Detection Module 87
4.5.1 RGB to HSV Conversion & Color Thresholding 87
4.5.2 BDC-based Graph Clustering . 93

4.6 Resource Utilization . 97
4.7 Player Tracking . 100

4.7.1 Single Camera Player Tracking 100
4.7.2 Detections Association to Tracks 107
4.7.3 Player Track Transfer Between the Two Cameras 112

4.8 Summary . 115

5 System Evaluation and Results 117
5.1 System Realization . 117
5.2 Datasets . 118
5.3 Player Detection . 119
5.4 Player Detection in Occlusion Scenarios 125
5.5 Verification of the Player Detection Implementation 127
5.6 Player Tracking . 132
5.7 FPGA Architecture . 137

5.7.1 Multiple GigE Vision Cameras . 137
5.7.2 Performance and Throughput . 141
5.7.3 Acceleration Factor and Overall System Performance 145
5.7.4 Overall Latency . 147
5.7.5 Power Consumption . 149

5.8 Comparison with Existing Systems . 153
5.9 Summary . 157

viii

6 Conclusions and Future Work 159
6.1 Conclusions . 159
6.2 Future Work . 160

List of Figures 163

List of Tables 167

Abbreviations 169

References 173

Publications 181

ix

1 Introduction

Vision-based player tracking systems are used to provide detailed information about the
players’ movements in sports games. This information is used to support coaches and
sports scientist to evaluate and enhance the performance of the players. Additionally, the
tracking results are used by TV companies to provide detailed information (e.g., on the
players and team performance) to viewers. These vision systems have the advantage to
be non-intrusive, i.e., they do not require extra devices for localization to be integrated
in the player’s outfit, which is not allowed in some sports regulations [107]. Figure 1.1
shows a handball game captured using two cameras (left and right) equipped with
fish-eye lenses, covering the whole playing court.

(a) Left camera (b) Right camera

Figure 1.1: A handball recorded game using two cameras with fisheye-lenses

The positions of the players carry significant information, which ranges from under-
standing the team dynamics to extracting statistics of individuals in team sports and
understanding the specific pose of athletes. These data can provide valuable insights
when it comes to optimizing the training and performance of individuals and teams [31].
Player tracking means finding the position of each player in a sufficient accuracy and
frequency so that the path information such as distance, speed, and acceleration can
be computed [66].

However, player tracking using vision systems is a very challenging task due to the na-
ture of sports games, which includes severe and frequent interactions (e.g., occlusions)

1

1 Introduction

between the players. Additionally, vision-based player tracking has high computational
demands since it requires processing of a huge amount of video data based on the
utilization of multiple cameras with high resolution and high frame rate [107].

As a result, most of the existing systems based on general-purpose computers are not
able to perform online real-time player tracking using live video streams from cameras
but track the players offline using pre-recorded video files, limiting, e.g., direct feedback
on the player performance during the game [107]. Therefore, hardware accelerators
are required for video processing to off-load the CPU and achieve real-time systems.
Several types of hardware accelerator architectures for vision processing are available,
based on DSPs, GPUs, FPGAs and multi-core CPUs. Every approach has its own strong
and weak points [106], and some studies have already been performed to compare
their performance [30].

This thesis aims to present a reconfigurable vision system for automatic and online
player tracking in indoor sports. The targeted indoor sports games are basketball and
handball. Here, reconfigurability refers to the combination of a CPU and a reconfig-
urable device, namely an FPGA. While the CPU offers the high flexibility of software
implementations, the FPGA allows for parallel, high-performance hardware implemen-
tations and is used for the various compute-intensive vision processing tasks in the
target application. Automatic player tracking means there is no need to initialize the
player tracker with the player position. Additionally, it includes the ability to re-track a
player if the tracker is lost without re-initializing the tracker with the current position
of the player and stopping the video stream. Online player tracking means the system
can process and track the player in real-time on a live video stream (e.g., from multiple
cameras with their maximum resolution and frame rate).

FPGA technology is used in this work as a hardware accelerator due to its various
architectural benefits including: high inherent parallelism [88], flexibility, the capability
of direct interfacing to cameras [106], low energy consumption, and suitability for
streaming applications as well as efficiency in handling the compute-intensive operations
in vision-based systems [87] [110]. In this thesis, FPGA is used to handle the compute-
intensive vision processing tasks for player detection, while the less compute-intensive
player tracking is performed on a CPU in a general purpose computer, achieving real-
time player tracking.

1.1 Contributions

In this thesis, a reconfigurable system is presented to track the players in indoor sports
automatically without user interaction. The teams are identified and the players’ posi-
tions are detected based on the colors of their jerseys. Two GigE Vision cameras are

2

1.2 Thesis Organization

used to provide a complete field of view of the playing court in the indoor sports hall,
targeting player tracking for handball and basketball games. An automatic transfer of
players between the two cameras is implemented, achieving player tracking for the
whole court. Furthermore, FPGA technology is used to handle the compute-intensive
vision processing tasks by implementing the video acquisition, video preprocessing,
player segmentation, and team identification & player detection modules in hardware,
realizing a real-time system. The player detection results are sent from the FPGA to
the host-PC where the less compute-intensive player tracking is performed.

The main contributions of this thesis are:

• A complete reconfigurable vision processing system is proposed to detect and track
the players in indoor sports automatically and without user interaction. Focusing
on a resource-efficient FPGA implementation, a combination of algorithms is
proposed that enables online tracking of players using live video streams acquired
directly from dedicated cameras as well as process offline video data.

• An FPGA architecture is presented to accelerate the proposed system using dedi-
cated video processing modules implemented in hardware, realizing a real-time
system. These modules are: video acquistion, preprocessing, player segmenta-
tion, and team identificaion & player detection. To the best of my knowledge,
this is the first work utilizing FPGAs to accelerate player tracking for handball
and basketball.

• A multi-camera interface is proposed in this thesis. Different number of cameras
is supported using the implemented scalable and resource-efficient multi-camera
GigE Vision IP core on the FPGA. This core is capable of extracting the raw video
data from multiple GigE Vision cameras in real-time with a reduced resources
approach.

• A performance evaluation for player detection and tracking is presented, as
well as a detailed analysis of the proposed system with respect to resource
requirements, maximum achieved frame rates and throughputs, overall latency,
power consumption and speedup of the FPGA-based hardware implementation.

1.2 Thesis Organization

Chapter 2 introduces player tracking systems in general, focusing on vision-based
player tracking systems. The challenges of these systems are presented. The different
existing architectures for vision processing are briefly shown with more focus on FPGA
technology and its utilization in vision processing. Additionally, the state of the art of
high-speed camera interfaces is depicted, focusing on the GigE Vision camera interface

3

1 Introduction

that is used in this work. Finally, the related work for vision-based player tracking
systems from both academia and industry is depicted.

In chapter 3, the methodologies and fundamentals that are required to realize the pro-
posed vision-based player tracking system are presented, including video preprocessing
algorithms, object segmentation using background subtraction, and graph clustering.
Furthermore, the concept of multiple object tracking is presented, focusing on the
tracking-by-detection approach. Finally, the hardware platform and the design flow for
the realization of the proposed system are presented.

The proposed reconfigurable system is shown in chapter 4. It includes the FPGA
architecture and the processing system in the host-PC. The design and the implementa-
tion of the IP cores and modules on the FPGA are presented. These modules performs
the compute-intensive vision processing tasks. Furthermore, the less compute-intensive
player tracking processing in the host-PC is explained in this chapter.

Chapter 5 shows the evaluations of the proposed system. Player detection and track-
ing are evaluated based on standard metrics. Additionally, the performance of the
implemented modules on the FPGA is reported. Furthermore, the acceleration factor
using the FPGA technology, the overall system performance, and power consumption
analysis are presented.

Finally, chapter 6 concludes the work presented in this thesis. Additionally, future
research directions are proposed in this chapter.

4

2 Vision-based Player Tracking in
Indoor Sports

This chapter presents a general overview of player tracking systems, focusing on vision-
based player tracking systems in indoor sports. The different challenges involved in
these systems are shown. Additionally, the various architectures for vision processing
are briefly depicted with focus on FPGAs and their utilization in vision processing.
Furthermore, the state of the art camera interfaces are presented, including the GigE
Vision camera interface and its features. Finally, the related work for vision-based player
tracking systems in indoor sports from both the academia and industry is depicted.

2.1 Introduction

In the last decade, there has been an increasing growth of using player tracking
systems in team sports to evaluate and enhance the players’ performance [106]. These
player tracking systems for indoor and outdoor sports can be divided into two main
categories [77]: intrusive systems and vision-based non-intrusive systems, as shown
in Figure 2.1. In intrusive systems, extra devices are required for localization (e.g.,
wireless devices based on RFID, GPS, UWB, etc.) to be integrated in the player’s outfit,
which is not allowed in some sports regulations [31][77].

Player Tracking Systems
(Indoor/Outdoor)

Non-Intrusive Systems
(Vision-based Systems)

Intrusive Systems

Dedicated Cameras Broadcast Sports Video

(e.g., GPS, RFID, UWB…)

Figure 2.1: Types of player tracking systems

5

2 Vision-based Player Tracking in Indoor Sports

On the other hand, vision-based systems have the advantage to be non-intrusive,
i.e., they do not require additional devices to be installed in the player’s outfit. These
systems usually localize the players using vision processing on video streams from
one or multiple cameras. Some of these existing vision systems use broadcast sports
video as the input source. This video source is usually acquired from one camera (e.g.,
pan-tilt-zoom camera [58]). However, using a single broadcast camera does not provide
an entire view of the playing area [78]. Other systems are using dedicated cameras
installed in different fixed positions in the sports hall, covering the whole sports court.

In this work, the targeted sports are handball and basketball games in indoor sports
halls, where the players are tracked using vision-based systems with a dedicated camera
setup. In Figure 2.2, the main characteristics of a vision-based player tracking system is
shown. Different number of cameras can be used in player tracking systems. Reducing
the number of cameras means there is less information that can be used to track the
players. Whereas, increasing the number of cameras can be beneficial to increase the
player tracking accuracy as shown in [4] as well as to support additional features (e.g.,
identifying the player from their jerseys’ number). However, more cameras result in a
higher computational cost in order to process the video data. Additionally, the overall
system cost is increased. Besides selecting the required number of cameras, the camera
interface should be defined. There are several interfaces available in the market, and
every camera interface has its advantages and limitations. The appropriate camera
interface must be selected during the system design setup according to the required
specifications.

Vision-based
Player Tracking

System

Camera
Interface

Number of
Cameras

Processing
Mode

Initialization
Mode

Offline
(Video Files)

Online
(Camera)

Manual

Processing
Architecture

Automatic
(e.g., Camera Link,

Camera HS, CoaXPress,
USB3 Vision, GigE Vision)

(e.g., CPU, GPU, DSP, FPGA)

Tracking
Algorithm

Tracking
Evaluation

Figure 2.2: Main characteristics of vision-based player tracking systems using dedicated
cameras

6

2.1 Introduction

Processing mode includes offline and online processing. In offline processing, players
are tracked using pre-recorded video files, where the video streams from these files
can be paused at any time during tracking. Additionally, real-time video processing is
not required. On the other hand, online processing mode requires real-time processing
on the video streams that are captured directly from the cameras. Several types of
processing architectures and hardware accelerators for vision processing are available,
based on Digital Signal Processors (DSPs), Central Processing Units (CPUs), Field
Programmable Gate Arrays (FPGAs) and multi-core CPUs. More information about
these architectures are presented in Section 2.3.

The initialization of the player tracker can be achieved manually or automatically. In
the former, the user needs to initialize the tracker manually, e.g., with a mouse click
on each player. In some existing systems, if a player tracker loses the player during
the game, the video stream must be stopped and the player tracker is reinitialized
and corrected using the current position of the player. Therefore, manual tracking
cannot be used with online video streams from the cameras, whereas it can be used
with offline data from recorded video files where pausing the video stream is possible.
In player tracking with automatic initialization, the initial positions of the players are
not required for the initialization of the tracker, given some features like the colors of
players’ jerseys. Additionally, the players are tracked without user intervention and
correction. If the tracker loses a player during tracking, this player should be tracked
again after some frames.

Tracking algorithm involve the required vision processing operations to realize the
player tracking system. For the evaluation of player tracking algorithm, different
metrics are proposed in the literature. In this work, precision and recall are used as
standard metrics for the evaluation as described in [37]. Precision is the ratio between
the number of correctly detected players (True Positives (TPs)) and all the detections
(TPs and False Positives (FPs)) as shown in Equation 2.1. Recall (also called detection
rate) is the number of the players that are correctly detected (TPs) among the total
number of players that should have been detected (TPs and False Negatives (FNs), i.e.,
the ground truth which represent the total number of players in a team).

Precision=
T P

T P + F P
, Recal l =

T P
T P + FN

(2.1)

In the next section, the different challenges in the vision-based player tracking are
presented.

7

2 Vision-based Player Tracking in Indoor Sports

2.2 Challenges in Vision-based Player Tracking

Player tracking using vision systems is a very challenging task, especially due to the
complicated motion patterns of the players [58]. Another challenge is the nature
of sports games, which includes severe and frequent interactions (e.g., occlusions)
between the players (as shown in Figure 2.3) as well as the frequently changing speed
and direction of the players. Additionally, the sports hall adds further challenges to
the player tracking. Typically, it contains spectators, benches for the substitute players
of both teams, advertisement/sponsor panels (both digital and fixed) as shown in
Figure 2.4. In general, player tracking systems need to be robust against false positives
(e.g., from the spectators and substitute players). Furthermore, the system should
handle any exchange between a player and a substitute player at any time. In handball
as an example, the number of the allowed player substitutions is infinite, and a player
exchange can happen at any time while the game is running, requiring the new player to
be included in the tracking. Additionally, these vision systems have high computational
demands since they require processing of a huge amount of video data based on the
utilization of multiple cameras with high resolution and high frame rate.

Figure 2.3: Examples of occlusion scenarios between players in basketball and handball

Therefore, the challenges involved in the vision-based player tracking can be classified
into two categories: the accuracy of the tracking and the processing speed. The accuracy
of tracking means how good and robust the system performs in detecting and tracking
the players during the whole game, whereas the processing speed refers to the frame rate
(frame per second (fps)), the system can process the incoming video streams. Online
player tracking requires real-time processing of the live video streams from one or
multiple cameras. In general, increasing the accuracy of tracking usually requires more
sophisticated video processing algorithms as well as higher resolutions and frame rates
from multiple cameras, significantly slowing down the overall system. As a conclusion,
the overall system processing speed is influenced by many factors, including:

8

2.2 Challenges in Vision-based Player Tracking

Spectators

Digital Advertisement Panel

Fixed
Advertisement/Sponsor

Panels

Spectators

Occlusion

Figure 2.4: A top view of a handball sports hall captured using two cameras demon-
strating the challenges in player tracking [107]

• The used algorithms in the video processing chain. More complex video process-
ing algorithms are used to improve the accuracy and decrease the error rate of
the tracking. As a result, these algorithms usually require more computational
power, slowing down the overall system.

• Camera resolution and frame rate. Player tracking systems using dedicated
cameras usually use cameras with high resolutions and frame rates to acquire
more video data and improve the accuracy of tracking. As a result, the overall
data is increased, and the speed of processing is decreased.

• The number of cameras used in the system. The player tracking systems usually
use multiple cameras to track the players, covering the whole sports hall. The
higher the number of cameras is, the more data needed to be processed by the
computing system, resulting in an increase of the overall processing time.

• The utilized processing architectures. The overall computational speed and frame
rate can be increased by using additional processing architecture as a hardware
accelerator to off-load the CPU in a host-PC from the compute-intensive vision
operations.

In the next section, a general overview on the available vision processing architectures
is depicted.

9

2 Vision-based Player Tracking in Indoor Sports

2.3 Architectures for Vision Processing

Different types of processor architectures are available for vision processing. The most
widely used are general purpose CPU, Graphics Processing Unit (GPU), and FPGA. Each
architecture has its advantages and limitations. Based on the type of the used vision pro-
cessing algorithms and the system requirements, the right architecture can be selected.
If required, multiple processor architectures can be combined into a heterogeneous
computing system [33]. In this case, one of the processors can be used as a hardware
accelerator to off-load the other processor by performing the compute-intensive tasks
of vision processing, while the other processor can be used for different operations
(e.g., control tasks) to meet the system requirements (e.g., achieving a real-time system).

A general-purpose CPU is best suited for heuristics, complex decision-making, net-
work access, user interface, storage management, and overall control [33]. The CPU
architecture processes a given data using a software implementation sequentially. The
performance of the CPU can be significantly enhanced using more CPU cores in a single
chip, resulting in a multi-core CPU [45]. However, a general purpose CPU may be used
with another architecture to process the compute-intensive vision processing tasks,
achieving a better performance [33]. While a CPU consists of few cores optimized
for sequential serial processing, a GPU has a massively parallel architecture consisting
of thousands of smaller, more efficient cores designed for handling multiple tasks
simultaneously [70]. Additionally, GPUs support floating point operations and they are
cost efficient [20]. FPGAs have a massively parallel architecture, including millions of
programmable gates, hundreds of I/O pins and compute performance in trillions of
multiply-accumulates per second (tera-MACs) [33]. FPGA technology has the advan-
tage to simultaneously accelerate multiple parts of a vision processing pipeline. FPGAs
have high-speed transceivers and interfaces (e.g., 10 Gigabit Ethernet MAC interface),
making them suitable for direct camera interfaces.

A comparison between these architectures for vision processing applications is shown
in Table 2.1. CPUs execute programs sequentially on their cores. Parallelism is achieved
using multiple cores within a single CPU chip. However, this parallelism is limited by
the number of cores (usually few cores are available inside one chip). On the other
hand, GPUs have a significantly larger number of cores, achieving parallel processing.
FPGAs have a massively parallel architecture by which programmable logic is used. CPU
and GPUs are easy to program through the use of different high-level languages. Vision
libraries (e.g., OpenCV) are supported on these architectures. Additionally, debugging
tools are available for software debugging. FPGAs are more difficult to program. They
are usually programmed using Hardware Description Language (HDL) (e.g., VHDL),
and therefore good knowledge in hardware and digital system design is required.
Furthermore, debugging the hardware design is not a trivial task, and sometimes it
requires a significant time during the development process. FPGAs consume low power

10

2.3 Architectures for Vision Processing

and achieve high performance per Watt as compared to CPUs and GPUs. Finally, the
development time using FPGAs is longer than using CPUs or GPUs. It involves design
entry (e.g., using VHDL), several iterations of simulations, debugging, and design mod-
ification, and verification until the design is fully functioning and realized in hardware
(using FPGA chips).

Table 2.1: Comparison between CPUs, GPUs, and FPGAs for vision processing [86] [45]

CPU GPU FPGA

Processing type &
parallelism

Sequential within
a core (limited
parallel cores)

High parallel
processing (large
number of cores)

Massive parallel
processing

architecture

Implementation
type

Software
development

Software
development

Hardware
development

Programming
difficulty

Easier to program
(e.g., C++, Vision

Libraries)

Easier to program
(e.g., CUDA,

Vision Libraries)

Harder to
program (e.g.,

VHDL)

Debugging Less difficult Less difficult More difficult

Power efficiency Low High Very high

Development time Short Medium Long

In this thesis, a reconfigurable system is proposed, consisting of an FPGA and a
general-purpose CPU in the host-PC to track the players in indoor sports. FPGA tech-
nology is used as a hardware accelerator to off-load the CPU from executing the
compute-intensive vision processing tasks. Therefore, more details about FPGAs and
their utilization for vision processing are presented in the next subsections.

2.3.1 Field Programmable Gate Arrays (FPGAs)

Field programmable gate arrays (FPGAs) are digital integrated circuits (ICs) that can be
reprogrammed to a desired application or a certain functionality after manufacturing.
This feature distinguishes FPGAs from Application Specific Integrated Circuits (ASICs),
which are custom manufactured for specific and fixed design tasks [104]. FPGAs con-
tain configurable (programmable) logic blocks along with configurable interconnects

11

2 Vision-based Player Tracking in Indoor Sports

between these blocks. FPGAs can be configured to perform a variety of different tasks
and custom hardware functionality [62] [69]. Although one-time programmable (OTP)
FPGAs are available, most of today’s FPGAs are Static Random Access Memory (SRAM)
based which can be reprogrammed over and over again [104]. That’s why the “field
programmable” part of the FPGA’s name refers to the fact that its programming takes
place “in the field” (as opposed to devices whose internal functionality is hard-wired
by the manufacturer) [62].

FPGAs have been introduced to the market by Xilinx in 1984. Currently, Xilinx and
Altera (now part of Intel) are the two biggest FPGA vendors. The basic structure of an
FPGA consists of three main elements: logic blocks, programmable interconnect, and
I/O blocks as shown in Figure 2.5a. The logic blocks (also called Configurable Logic
Blocks (CLBs) by Xilinx) consist of LookUp Tables (LUTs) and Flip-Flops (FFs). LUTs
perform the logic operations and FFs store the results of LUTs [96]. A LUT and a flip-flop
make a logic cell as shown in Figure 2.5b. This cell is the basic and the smallest unit of
logic within the FPGA. Usually, multiple logic cells are combined into a logic block [15].
The programmable interconnects and wires connect the different FPGA elements to one
another. Finally, the I/O blocks are used as ports to get data in and out of the FPGA [96].

1

I/O
Blocks

Logic
Blocks

Programmable
Interconnect

(a) Basic FPGA architecture (b) A logic cell [15]

Figure 2.5: A basic FPGA architecture, and a logic cell inside a logic block as the basic
building unit of an FPGA

Contemporary FPGAs incorporate the basic components with additional computa-
tional elements and data storage blocks to increase the performance, computational
density, and efficiency of the FPGA device. These additional elements are shown in
Figure 2.6, and they include: embedded memories for distributed data storage, Phase-
Locked Loops (PLLs) for driving the FPGA fabric at different clock rates, high-speed serial
transceivers, off-chip memory controllers, and DSP (multiply-accumulate) blocks [96].

12

2.3 Architectures for Vision Processing

Figure 2.6: A contemporary FPGA Architecture [96]

Since the work in this thesis targets the utilization of Xilinx FPGAs for the proposed
player tracking system, a comparison between Xilinx FPGA families is shown in Table 2.2.
The Zynq-7000 SoC devices are equipped with a single or dual-core ARM Cortex-A9
processors as a processing system (PS) with a 28 nm based programmable logic (PL)
unit, improving the performance-per-watt and increasing the design flexibility [104].
Recently, Xilinx introduced the UltraScale architecture comprises high-performance
FPGAs, Multiprocessor System on a Chip (MPSoC), and Radio Frequency SoC (RFSoC)
families, focusing on decreasing the total power consumption [101]. A comparison
between these UltraScale families is shown in Table 2.3. The Xilinx UltraSclae+ FPGAs
include UltraRAM, a large memory block that enables up to 500 Mb of total on-chip
storage, resulting in a 6 times increase in on-chip memory as compared with 28 nm
Xilinx FPGAs [100]. Additionally, the Zynq UltraScale+ MPSoC combines the ARM
v8-based Cortex-A53 processor with the ARM Cortex-R5 real-time processor and the
UltraScale architecture, providing lower power consumption, heterogeneous processing,
and programmable acceleration. The Zynq UltraScale+ RFSoC integrates multi-giga-
sample RF data converters and soft decision forward error correction (SD-FEC) into
its MPSoC architecture [104]. More information regarding these FPGA families can
be found in their respective datasheets [102] [93] [103] [101]. The next subsection
shows why FPGAs are suitable for vision processing.

13

2
Vision-based

Player
Tracking

in
Indoor

Sports

Table 2.2: Comparison of the Xilinx FPGAs [102] [93] [103]

Virtex FPGAs 7 Series FPGAs SoC

Virtex-4 Virtex-5 Virtex-6 Spartan-7 Artix-7 Kintex-7 Virtex-7 Zynq-7000

Process 90 nm 65 nm 40 nm 28 nm 28 nm 28 nm 28 nm 28 nm

LUT Size 4 6 or 5x2 6 or 5x2 6 6 6 6 6

Max. Logic Cells 200 K 415 K 474 K 102 K 215 K 478 K 1995 K 444 K

Max. Total RAM 9.7 Mb 18 Mb 37 Mb 4.2 Mb 13 Mb 34 Mb 68 Mb 26.5 Mb

Max. DSP Slices 512 1056 2016 160 740 1920 3600 2020

Max. Transceiver
Block

24 24 72 - 16 32 96 16

Max. Transceiver
Speed

6.5 Gb/s 6.5 Gb/s 11 Gb/s - 6.6 Gb/s 12.5 Gb/s 28 Gb/s 12.5 Gb/s

14

2.3
A

rchitectures
for

Vision
Processing

Table 2.3: Comparison of the Xilinx Ultrascale FPGAs [101]

Kintex
UltraScale

FPGA

Kintex
UltraScale+

FPGA

Virtex
UltraScale

FPGA

Virtex
UltraScale+

FPGA

Zynq
UltraScale+

MPSoC

Zynq
UltraScale+

RFSoC

MPSoC Proc. System - - - - Ø Ø

RF-ADC/DAC - - - - - Ø

SD-FEC - - - - - Ø

Process 20 nm 16 nm 20 nm 16 nm 16 nm 16 nm

Max. LUT Size 6 6 6 6 6 6

Max. Logic Cells 1451 K 1143 K 5541 K 3780 K 1143 K 930 K

Max. Block Memory 75.9 Mb 34.6 Mb 132.9 Mb 94.5 Mb 34.6 Mb 38 Mb

Max. UltraRAM - 36 Mb - 360 Mb 36 Mb 22.5 Mb

Max. DSP Slices 5520 3528 2880 12288 3528 4272

Max. Transceiver Block 64 76 120 128 72 16

Max. Transceiver Speed 16.3 Gb/s 32.75 Gb/s 30.5 Gb/s 32.75 Gb/s 32.75 Gb/s 32.75 Gb/s

15

2 Vision-based Player Tracking in Indoor Sports

2.3.2 FPGAs for Vision Processing

Generally, vision processing algorithms require powerful computing architecture to
realize a real-time vision processing system. An example of a vision-based system
implemented on a CPU in a host-PC is shown in Figure 2.7. In this example, there
are five vision processing operations (Op1 to Op5), where Op1, Op2, and Op4 are
pixel-based operations. Op3 is a window-based (e.g., 3x3) operation, while Op5 is
a frame-based operation, requiring a complete frame to be buffered in the external
memory. As shown in Figure 2.7, the video frame pixels from the camera are first
stored in the external memory of the host-PC. Later, these pixels are read from the
memory, and the first operation (Op1) is performed. The results of this pixel-based
operation are written back to the external memory. This scenario (reading pixels from
the memory, process them, and store the results in the memory) is repeated for the
other operations as shown in Figure 2.7. In this case, the overall system performance
depends on the number and speed of the memory read and write. Additionally, each
operation requires the full frame to be stored in the external memory. Furthermore,
every operation has to wait for the previous one to finish and to write its results back
to the memory, increasing in the overall execution time.

Camera

Ext.
Mem.

Op1 Op2 Op3 Op4 Op5

Ext.
Mem.

Ext.
Mem.

Ext.
Mem.

Ext.
Mem.

Camera

Op1 Op2 Op3 Op4 Op5

Ext.
Mem.

On-Chip
Mem.

Ext.
Mem.

CPU

Host-PC

FPGA

FPGA Board
Figure 2.7: CPU-based vision processing system

An FPGA implementation of the previous example is shown in Figure 2.8. Unlike
CPU, FPGA have direct connection to cameras. In this example, Op1 is performed
directly on the incoming pixels from the camera, achieving stream-based pixel pro-
cessing. Op2 processes the resulting pixels from Op1 on the fly, without buffering the
resulting pixels in an external memory as shown in Figure 2.8. Furthermore, Op2 is
started as soon as the first resulting pixel from Op1 is received, without waiting for
Op1 to finish processing the whole frame. Op3 consists of a window operation (e.g.,
3x3), and therefore it buffers the required data (e.g., two row-buffers) using the FPGA
fast on-chip memory. Since Op5 requires the complete frame for its processing, the
resulting pixels from Op4 are stored in the external memory and read back by Op5

16

2.3 Architectures for Vision Processing

as shown in Figure 2.8. Depending on the targeted application, the results from Op5
can be sent to a display device for visualization, used to control a device, or sent to a
host-PC for post-processing. In the latter case, a CPU can be used to further process
the resulting data and to store the results. Here, FPGA is used to off-load the CPU by
preprocessing the video data (Op1 to Op5) as shown in Figure 2.8.

Camera

Op1 Op2 Op3 Op4 Op5

Ext.
Mem.

On-Chip
Mem.

FPGA

FPGA Board

Ext.
Mem.

CPU

Host-PC

Figure 2.8: FPGA-based vision processing system

Another advantage FPGAs offer is the programmability feature which has many ben-
efits in the vision processing applications due to the continuous evolution of new vision
algorithms and standards [90]. As compared to ASICs where the designed functionality
is fixed and can not be changed, FPGAs can be reprogrammed if a change in the video
processing chain is needed (e.g., an additional video processing core is integrated in
the FPGA architecture).

Moreover, image data can take advantage of the parallel processing capabilities
offered by the FPGAs [88]. An example of how the parallel architecture of an FPGA can
be exploited for vision processing is shown in Figure 2.9. Here, white balancing is ap-
plied to the incoming video streams from four cameras. Utilizing the FPGA parallelism
feature, four instances of a white balance implementation (or Intellectual Property (IP)
core) are used to process the video streams from the cameras in parallel as shown in
Figure 2.9. Moreover, in the white balance IP core, the color components (R, G, and B)
of each pixel are multiplied by their predefined gain values (GRed , GGreen, and GBlue) in
parallel.

In addition to the FPGAs massively parallel architectures, FPGAs have efficient DSP
resources that can be used to implement different arithmetic operations in vision
algorithms. For the example shown in Figure 2.9, the three multiplications can be
efficiently mapped to DSPs of an FPGA. Another advantage of FPGAs is the low energy
consumption. FPGAs consume significantly lower energy than CPUs and GPUs and they
achieve high performance per Watt [45]. In addition to that, FPGAs have large amounts
of on-chip memory which can be used for the buffering of image pixels. Furthermore,

17

2 Vision-based Player Tracking in Indoor Sports

Camera 1

White
Balance

FPGA

…

Camera 2

White
Balance

…

Camera 3

White
Balance

…

Camera 4

White
Balance

…

×Red

GRed

×Green

GGreen

×Blue

GBlue

Figure 2.9: An example illustrating the utilization of an FPGA parallelism for vision
processing

FPGAs are equipped with very high-speed interfaces and general purpose input/output
pins, providing capabilities of direct interfacing to cameras [106] [89]. Moreover,
FPGAs are suitable in smart cameras, where image acquisition from the sensor, image
sampling, and application-specific preprocessing are performed before the frame data
transmission to a host [90].

For embedded vision systems, traditional DSP processors or microcontrollers do
not have the computational power in general to achieve real-time vision processing.
One solution is to use a System on a Chip (SoC) with programmable integrated logic
resources (e.g., Xilinx Zynq SoCs presented in the previous section). Using these SoCs,
the system performance can be optimized by implementing the vision processing algo-
rithms using the FPGAs fabrics and the software parts using the hardcore processor
(e.g., an ARM processor) of the SoC. This feature makes such SoCs very suitable for
embedded vision processing systems. However, Nvidia introduced SoCs, combining
an ARM processor and a Nvidia GPU on a single chip, targeting embedded vision
applications. One example is the Nvidia Jetson TX1 board, integrating a quad-core
64-bit ARM CPU and a 256-core GPU [71], making it suitable for embedded Artificial
Intelligence (AI) computing.

In addition to vision processing, FPGAs are used in various applications, including
communication, control, network, medical, robotics, etc. Romoth et al. [76] presented
a survey of FPGA applications based on the published research work in the period from
2000 to 2015. Based on this survey, image processing is the second largest application

18

2.4 State of the Art High-Speed Camera Interface Standards

where FPGAs are used, after their utilization in communication applications. It is stated
that the main reason for implementing vision algorithms on FPGAs is the parallelism
which allows real-time image processing. Additionally, the on-chip memory included
in modern FPGA architectures enables the buffering of relevant image information,
thus reducing the communication with external memories which can be a potential
bottleneck.

The next section depicts the state of the art high-speed camera interface standards.
Based on the interface specifications and the requirements of a vision-based player
tracking system, the appropriate camera interface must be selected.

2.4 State of the Art High-Speed Camera Interface
Standards

In general, high-speed cameras with long distance cable length are required for the
player tracking systems. Different cameras with various interfaces are available. A
camera interface standard is used to define the camera specifications and to provide a
standard output to a processing architecture that can be used for subsequent vision
processing, storage, or display. The standard specifications play an important role in
the selection of the appropriate camera for a specific application. These specifications
define many factors including the maximum throughput or bandwidth, maximum cable
length used for the video data transfer, power requirements and the ability to deliver
power over the data cable, etc.

In this section, the state of the art high-speed camera interfaces standards is presented.
It includes Camera Link, Camera Link High Speed (HS), CoaXPress, USB3 Vision, and
GigE Vision. Additionally, the advantages and limitations of every camera interface
standard as well as a comparison between these standards are depicted. More focus
is given to the GigE Vision standard, showing why it is relevant for the vision-based
player tracking in indoor sports application.

Camera Link standard was initially released in 2000. It defines a complete interface
which includes provisions for data transfer, camera timing, serial communications, and
real-time signaling to the camera [11] [3]. Camera Link is a non packet-based protocol.
It supports real-time high-speed video frame transfer (2 Gbps using one cable, and up
to 6.8 Gbps using two cables), easy product interoperability, lower cable prices, single
cable power (Power over Camera Link, PoCL®, allows the camera to be powered by
the frame grabber through the Camera Link cable, saving space and cost), and PoCL-
Lite (smaller connector supporting base configurations for low-cost solutions) [11].

19

2 Vision-based Player Tracking in Indoor Sports

However, the maximum cable length that the Camera Link interface supports is 10 me-
ters. Additionally, a special frame grabber is required for the acquisition of video frames.

Camera Link HS standard was released in May 2012 as an improvement on Cam-
era Link by using off-the-shelf cables to extend the reach and also offering increased
bandwidth [3]. It features low latency, low jitter, and real-time data transmission. The
interface takes the key strengths of Camera Link and adds new features and functions.
Although Camera Link HS is a very capable approach, but it is expensive to implement
and maintain when its full benefits are realized [2]. The standard provides [10] [3]:
scalable bandwidths from 2.4 to 134.4 Gbps, extremely reliable data delivery, copper
or fiber optic cables (up to 15 meters using copper, and up to 5000 meters using fiber
cables).

CoaXPress (CXP) standard was released in December 2010, originally hosted by
the Japan Industrial Imaging Association (JIIA). It uses a single coaxial cable (75 Ω
cable) to transmit video data from a camera to a frame grabber at up to 6.25 Gbps;
simultaneously transmit control data and triggers from the frame grabber to the camera
at 20.8 Mbps. Link aggregation is used when higher speeds are needed, with more than
one coaxial cable sharing the data [3]. The use of coaxial cable by CoaXPress enables
automatic equalization of cable losses, allowing it to operate over greater distances.
This standard also includes real-time trigger support, making it well suited for time
critical applications like fast area scan and line scan [2].

USB3 Vision is a standard interface for vision applications based on the USB 3.0
technology. It allows easy interfacing between USB3 Vision transmitter devices and
hosts using standard USB 3.0 hardware [14]. The USB3 Vision standard was initiated
in late 2011, with version 1.0 published in January 2013. It provides an easy plug and
play installation and high performance. This standard allows off-the-shelf Universal
Serial Bus (USB) host hardware and nearly any operating system to take advantage of
hardware Direct Memory Access (DMA) capabilities to directly transfer images from
the camera into user buffers. For the receiver devices, USB interfaces are built into
almost all PCs and embedded systems, i.e., no additional interface card (frame grabber)
is required in many situations. USB3 Vision uses a standard passive copper cable with
a maximum cable length ranging from 3 to 5 meters. This can be extended with the
use of an active copper cable to around 8 meters, and with a multi-mode fiber optic
cable to 100 meters [3].

GigE Vision standard is a widely adopted camera interface standard developed using
the Ethernet (IEEE 802.3) communication standard. Released in May 2006, the GigE
Vision standard was revised in 2010 (version 1.2) and 2011 (version 2.0). GigE Vision
allows for fast image transfer (usually 1 Gbps, and up to 10 Gbps) using low-cost
standard Ethernet cables over very long distances. It transfers large images quickly

20

2.4 State of the Art High-Speed Camera Interface Standards

in real-time. With GigE Vision, hardware and software from different vendors can
interoperate seamlessly over Ethernet connections at various data rates [3].

In the next subsections, the GigE Vision interface standard is described in more
details. Its various features are presented. Moreover, a comparison between the state
of the art camera interfaces is depicted, concluding the reasons behind the suitability
of the GigE Vision interface for the player tracking system proposed in this work.

2.4.1 GigE Vision Standard

The GigE Vision camera interface supports fast image transfer using the Gigabit Ethernet
communication protocol. GigE Vision offers many benefits including [12]:

• High bandwidth (1 Gbps, 2 Gbps using two cables, and 10 Gbps is supported by
the standard)

• Low cost cables (e.g., CAT5e or CAT6), and standard connectors

• Data transmission up to 100 meters in length using copper cables (can be extended
using switches), and 5000 meters using fiber optic

• High scalability due to the fast growth of Ethernet (e.g., GigE Vision over 10 Gi-
gabit Ethernet)

• Network capabilities

• Power over Ethernet (PoE) support

• Standard hardware and cables allow for an easy and low cost integration

GigE Vision systems cover different network topologies. The simplest one is a point-
to-point connection between a processing device (e.g., host-PC) and a GigE video
streaming source (e.g., camera) using a crossover cable, or over an Ethernet net-
work [13]. Since Gigabit Ethernet interfaces are built into almost all PCs and embedded
systems, an additional interface card (frame grabber) is not necessary for many receiver
devices. A GigE Vision camera is shown in Figure 2.10.

The GigE Vision standard is based on UDP/IP protocols. A GigE Vision packet is
composed of Ethernet, (Internet Protocol) IP, User Datagram Protocol (UDP), GigE
Vision headers, and the corresponding data payload as shown in Figure 2.11. The
Medium Access Control (MAC) address of the source device (i.e., the camera) and the
destination MAC address (Ethernet Physical Layer (PHY) of the receiver, e.g., FPGA)
are part of the Ethernet header. The GigE Vision header is either a GigE Vision Control

21

2 Vision-based Player Tracking in Indoor Sports

Figure 2.10: A GigE Vision camera [47]

Protocol (GVCP) or GigE Vision Streaming Protocol (GVSP) header. According to the
packet format value in the GVSP header, there are three main packets for the standard
transmission mode [106]: data leader, data payload, and data trailer packets as shown
in Figure 2.12. A data leader packet starts the transmitted data block and provides
information regarding the payload type of the block. This leader packet contains ad-
ditional information, e.g., the height and width of the transmitted frame. The data
leader is followed by the data payload packets which contain the actual video data to
be streamed. Finally, a data trailer packet indicates the end of the transmitted data
block. Within the data transmission of one video frame, data payload packets must be
set sequentially. The sequence of sending these packets in the standard transmission
mode is shown in Figure 2.12 [13].

Ethernet Header

IP Header

UDP Header

Payload

GigE Vision Header

14 Bytes

20 Bytes

8 Bytes

8 Bytes

Figure 2.11: A GigE Vision packet

The maximum length of a standard GigE Vision packet is 1514 Bytes including all
headers. This length can be extended by using Jumbo packets, significantly reducing

22

2.4 State of the Art High-Speed Camera Interface Standards

Data Packet Header
packet id = 0

Leader

Data
Leader

Data Packet Header
packet id = 1

Payload

Data
Payload

Data Packet Header
packet id = 2

Payload

Data Packet Header
packet id = N - 2

Payload

Data Packet Header
packet id = N - 1

Payload

Data Packet Header
packet id = N

Trailer

Data
Trailer

Ethernet, IP
and UDP

headers are
not shown

Figure 2.12: Standard transmission mode in GVSP protocol [13]

23

2 Vision-based Player Tracking in Indoor Sports

the transmission overhead [106]. Therefore, for the transmission of one video frame,
multiple data payload packets are required as shown in Figure 2.12.

GigE Vision standard consists of four parts [13] [106]:

• Device Discovery

• GVCP

• GVSP

• Bootstrap Registers

The Device Discovery is used for assigning a valid IP address to a new GigE Vision
device (e.g., a camera). GVCP allows applications to configure and control a GigE
Vision device where the application can get and set various attributes such as image
width, height, pixel format, frame rate, etc. Furthermore, GVCP is used to start and stop
the GigE Vision device. GVSP defines how images are packetized and the mechanisms
by which images can be transferred. Bootstrap registers are defined to enable the
configuration of a device by storing the configuration values of the different attributes.
These registers can be accessed through their unique addresses [106].

2.4.2 Comparison of the High-Speed Camera Interface Standards

A comparison between the state of art digital high-speed camera interface standards
is shown in Table 2.4. As can be seen, all the standards support a high-speed video
transfer. However, the allowed cable lengths significantly vary between these standards,
ranging from 5 m (e.g., USB3 Vision) to 100 m (e.g., GigE Vision) (excluding the use
of fiber cables). In general, the supported cable length is one of the primary factors in
selecting the camera interface for vision-based player tracking systems in indoor sports,
since long cables offer the flexibility of installing cameras in different positions inside
the sports hall. Therefore, the GigE Vision camera interface is chosen for the player
tracking system in this work. In addition to the video transmission over long-distance
cables, the GigE Vision interface uses the standard Ethernet cables, offering easy inter-
operability with other devices (e.g., a host-PC).

24

2.4
State

of
the

A
rt

H
igh-Speed

C
am

era
Interface

Standards
Table 2.4: State-of-the-art digital camera interface standards comparison [3]

Camera Link Camera Link HS CoaXPress USB3 Vision GigE Vision

Initial release October 2000 May 2012 December 2010 January 2013 May 2006

Current version 2.0 1.0 1.1 1.0 2.0

Latest release February 2012 May 2012 February 2013 January 2013 November 2011

Topology Point-to-point
Point-to-point,

data-splitting
Point-to-point

Point-to-point,

tiered-star

Point-to-point,

Network

Bandwidth

(c=cable)

2 Gbps,

6.8 Gbps (2xc)

2.4 Gbps,

134.4 Gbps (8xc)

1.25 Gbps,

28.8 Gbps

(6 coax in 1xc)

3.2 Gbps

1 Gbps,

2 Gbps (2xc),

10 Gbps

Cable types Camera Link CX4, Fiber Coaxial USB
CAT-5e, CAT-6a,

CAT-7, Fiber

Cable Length 7-15m
10-15m

5000m (fiber)
35-100m

3-5m

100m (fiber)

100m

5000m (fiber)

Power over cable Optional No Mandatory Mandatory Optional25

2 Vision-based Player Tracking in Indoor Sports

2.5 Related Work of Vision-based Player Tracking
Systems

Various vision-based player tracking systems have been proposed in the literature,
offering different methods to track the players and supporting different video frame
resolutions, and video input sources. Some of these existing systems use broadcast
sports video. Other systems utilize dedicated cameras installed at different fixed
positions in the sports hall. In this section, the related work for vision-based player
tracking systems for indoor sports is presented, including: broadcast video systems
and dedicated camera systems from academia as well as commercial products. Finally,
related work regarding the utilization of FPGAs for object tracking is depicted.

2.5.1 Broadcast Video Systems

Player tracking can be achieved using a broadcast sports video as the input source. This
video source is usually acquired from one camera (e.g., pan-tilt-zoom camera [58]).
However, using a single broadcast camera does not provide an entire view of the playing
area [78]. Additionally, this broadcast video stream usually focuses (e.g., zoomed-in)
on a certain area of the sports hall (e.g., where the ball and the nearby players are
located). The drawback of this approach is that the whole playing court is not covered
in every frame and not all players can be tracked. Figure 2.13 shows four screenshots
captured from a broadcast video of a basketball match using multiple cameras. In these
screenshots, many players are not visible, limiting complete player tracking during the
whole game.

Hu et al. [41] presented a player tracking system for broadcast basketball videos.
A CamShift based tracking method is used to extract the player trajectories from the
video. A total of 11705 frames of basketball matches were used for the evaluation.
Each broadcast video has a resolution of 720x480 pixels at 29.97 fps. The achieved
average precision and recall values are 91.38% and 91.34%, respectively. However, no
details on the implementation platform are provided.

Chen et al. [27] proposed a system to detect and classify screen patterns in broadcast
basketball video. This system automatically detects the court lines for camera cali-
bration, determines the court region and extracts the players using color information.
Furthermore, the extracted players are classified and discriminated into the offensive
and defensive teams. Players are distinguished from foreground objects using k-means
clustering, while player tracking is achieved using Kalman filter. The used videos were
recorded from live broadcast television programs with a resolution of 640x352 pix-
els and a frame rate of 29.97 fps. The achieved average precision and recall rates

26

2.5 Related Work of Vision-based Player Tracking Systems

(a) Screenshot #1 (b) Screenshot #2

(c) Screenshot #3 (d) Screenshot #4

Figure 2.13: Screenshots from Louisville vs Michigan 2013 NCAA basketball champi-
onship game using broadcast video (Source: YouTube)

are 89.71% and 89.20%, respectively.

Lu et al. [58] proposed a system for learning to track and identify players from broad-
cast sports videos for basketball using a single pan-tilt-zoom camera. Player detection
is achieved using Deformable Part Model (DPM). The detection results are improved
by training a logistic regression classifier to perform team classification. Finally, player
tracking is performed by associating detections to tracks using bi-partite matching. The
matching cost is the Euclidean distance between the detections and the prediction of
the tracks’ positions using a Kalman filter. The DPM detector has a precision of 73%
and a recall of 78%. After team classification, the achieved precision is increased to
97% while the recall retains at 74%. After tracking, the achieved precision is 98%,
and recall is 82% for the used basketball broadcast video dataset. The DPM detector
used in this work requires 3 to 5 seconds to process a single image with a resolution of
1280×720 pixels. For a cascade structure and a GPU implementation, they estimate a
performance of 1 frame per second. The data association and multi-target tracking run
in a speed of 5-10 fps [59].

Acuna [1] presents a system for real-time multi-player detection and tracking in
broadcast basketball videos using deep neural networks. Their framework is based on

27

2 Vision-based Player Tracking in Indoor Sports

YOLOv2 (a real-time object detection system), and SORT (an object tracking framework
based on the Hungarian algorithm for data association and a Kalman filter for state
estimation). They used the NCAA broadcast basketball dataset for training and testing.
Starting with the detector, they split the dataset into 8787 annotated frames for train-
ing, and 1000 annotated frames for testing. They reported an Average Precision (AP)
between 63% and 89%.

2.5.2 Dedicated Cameras Systems

In addition to broadcast video systems, player tracking can be achieved using video
streams from dedicated cameras. These cameras are installed in different fixed positions
in the sports hall, covering the whole sports court. Various systems are proposed us-
ing different number of cameras, resolutions, and frame rates as shown in the following.

Monier et al. [66] present a video tracking system to track the players in indoor
sports using template matching technique with Closed World Assumptions (CWA). In
their approach, the raw video streams are first recorded from two GigE vision cameras
(1392x1040 pixels at 30 fps) equipped with fish-eye lenses. Then, their system is
used to track the players based on a template (20x20 pixels as shown in Figure 2.14)
selected by a human operator, who also corrects tracking errors when needed. The
player template is updated to cope with the highly dynamic and changing nature of
the players’ movements. They reported an average correction rate between 1.9 and
6.7 corrections per player for every 1000 frames, where every frame is processed in
about 100 ms (10 fps) using a software implementation. Using CWA and a multicore
implementation, the achieved frame rate is 19.6 fps. In [65], Monier presents a single
player particle filter-based tracking algorithm. For each tracker (player), 30 particles
were used. An error rate of 5.08 errors/minute for a one-quarter basketball game is
reported. With particle filter, one frame requires 347 ms to be processed (including
pre-processing), which can be reduced to 103 ms (9.7 fps) using CWA and multicore
implementation. The block diagram of the proposed system (based on template match-
ing and particle filter) is shown in Figure 2.15. The used computer system is equipped
with an Intel Core i7-950 series, a NVIDIA GeForce 480 GTX graphics card, and an 8 GB
of DDR3-RAM operating with Windows 7 Enterprise 64-bit.

The system presented by Santiago et al. in [78] uses two overhead cameras with
a resolution of 1024x768 pixels at 30 fps with wide-angle lenses to track the players.
Players are detected by vest colors, and Fuzzy Logic is used to allow for a given color
to be shared by different teams. Player tracking is further enhanced using Kalman
filtering. Background subtraction is used in their system, where the background is
obtained by capturing an image with the empty court prior to each game. In order to
reduce the processing time, the background subtraction is not performed on the entire

28

2.5 Related Work of Vision-based Player Tracking Systems

Figure 2.14: Initial template selection for tracking a player in a basketball game [66]

GigE
Vision

Camera 1

Merging
into one

frame
Debayer White

balance
Background
Subtraction

Image
pre-processing

Tracking
algorithm

Image post-
processing

Defishing Warping Head to
Feet

Feet from
pixel to
meter

GigE
Vision

Camera 2

Visualization/
Storage

Template Matching
or

Particle Filter

Storage

Acquisition
Module

(Raw data)

Figure 2.15: Block diagram of the work presented in [66] and [65]

image but locally on predefined regions based on the Kalman filter prediction output.
The reported tracking rates range from 95.44 to 99.90%, corresponding to an average
of 98.79%. For the processing time, it takes on average about 160 ms to process one
frame (i.e., a performance of 6.25 fps) using an Intel i7-7630QM (2.00-2.90) GHz pro-
cessor. To accelerate the overall processing, they used a GPU with OpenMP and CUDA,
achieving a processing time of 62.5 ms and a performance of 16 fps for their system [79].

Both systems mentioned previously are based on the single target tracker approach
and they do not provide fully automatic tracking. The user needs to initialize tracking
with a mouse click on each player to initialize the tracker (initializing the template in
[66] and the color calibration in [79]). Besides that, both systems use offline processing
based on recorded video files.

Alahi et al. [4] presented a system to detect and track players with a mixed network of
cameras. The performance of their proposed system is evaluated on a basketball game
using the APIDIS dataset [7]. The authors reduced the computational requirements
by downscaling all video frames to a 320x240 resolution. Their approach for player
tracking is based on a sparse approximation of player location points on the ground
floor. All players are detected and tracked, given a set of foreground silhouettes. Using
one omnidirectional (a top view camera equipped with a fisheye lens) and one planar

29

2 Vision-based Player Tracking in Indoor Sports

camera (a side view camera), a precision of 72% and a recall of 76% are achieved. The
precision can be increased if additional planar cameras are used (e.g., a precision of
83% can be achieved using one omnidirectional and four planar cameras). No details
about the used implementation platform are provided.

H. C. de Padua et al. [32] [72] track futsal (indoor football) players using a single
stationary camera mounted in a sports hall. Their system detects the futsal players using
adaptive background subtraction and blob analysis. Furthermore, they use particle fil-
ters to predict the player positions and to track them. The frame rate of the used camera
is 30 fps, and the resolution is 752x480 pixels, which is cropped to 640x480 pixels in
order to reduce the amount of computations. They used an official futsal match dataset,
which contains 12870 frames. For player detection, they achieve a precision between
77.3% and 90.9%, and a recall between 64.9% and 76.4%. For player tracking, the
achieved precision is between 70.3% and 89.3%, while the recall is between 75.9% and
80%. Additionally, 115 ID switches during player tracking is reported. Furthermore,
they use a relatively small number of particles (350) to enable fast frame processing.
Their proposed system requires 25 ms on average to process a frame using a computer
equipped with an Intel Core i7 CPU running at 3.4 GHz, with 8 cores and 8 GB RAM [72].

Parisot et al. [73] introduced a scene specific classifier for players detection in indoor
sports from a single calibrated camera. They investigated visual classifier to identify
the true positives among the candidates detected by a foreground mask. Their system
was validated using the APIDIS and SPIROUDOME datasets. The used videos were
recorded from a one side-view still camera with a resolution of 1600x1200 pixels at
30 fps, covering the left half of the sports court for basketball games. The validations
proved that their proposed combination of visual and temporal cues supports accurate
and reliable player detection in team sport scenes observed from a single viewpoint.
For a true positive rate (recall) of around 90%, more than 80% of the false positives
from the foreground detector are rejected. In their system, the used processor is a
hyper-threaded quad-core Intel i7-4790 CPU at 3.4 GHz.

Morimitsu et al. [67] proposed a novel graph-based approach for exploiting struc-
tural relations to track multiple objects with long-term occlusion and abrupt motion.
Furthermore, a particle filter is used to track each object individually. The authors used
their proposed method on table tennis, badminton, and volleyball games (In these
sports, there are no occlusions between players of the opposing teams, while occlusion
between players of the same team is very frequent). For the evaluation, Youtube videos
recorded using one camera with a resolution of up to 854x480 pixels are used for the
table tennis. For badminton, the ACASVA dataset with a resolution of 1280x720 pixels
is utilized, while Youtube volleyball videos have a resolution of 854x480 pixels. All the
these videos have a frame rate of 30 fps. Their approach outperforms other existed
systems for the used datasets. For the table tennis and badminton videos, an average

30

2.5 Related Work of Vision-based Player Tracking Systems

true positive rate (recall) of 89.3% is achieved, and an average false positive rate (the
lower value, the better) of 9.6% is achieved. Furthermore, the number of ID switches
(ID SW) is 85 (the lower value, the better). For the volleyball video, the achieved
average recall is of 66.7%, and a false positive rate of 30.2% is reported with 624 ID
switches. The system is implemented using Python on a host-PC equipped with an Intel
i5 CPU. The achieved frame rate is 3 to 4 fps for the table tennis and badminton videos,
and 1.5 fps for the volleyball dataset.

Furthermore, there are many works in the literature proposing generic tracking
algorithms. One example is the work presented by Butt et al. [25], proposing a
framework that uses higher-order constraints and Lagrangian relaxation for global
multi-target tracking. The authors used two pedestrian datasets, namely the TUD-
Crossing (200 frames recorded using one camera with a resolution of 640x480 pixels
at 25 fps) and the ETHMS-Bahnhof (the first 350 frames, recorded using a camera
with a resolution of 640x480 at 14 fps). A pre-trained pedestrian tracker is used for
the detection phase. For the TUD dataset, 14 mismatches and a total number of 819
detections are reported. While for the ETHMS dataset, the number of mismatches
and the total number of detections are 23 and 1514, respectively. Their algorithm
is implemented in MATLAB, and it took 1.43 seconds to obtain the solution for the
TUD dataset (200 frames), while 59.04 seconds are required for the ETHMS dataset
(1000 frames).

2.5.3 Commercial Solutions

In this section, some examples of commercial solutions used for player tracking as
well as for enhancing the viewers’ experience in indoor sports games are presented.
However, since these systems are commercial products, no information is available
about the algorithms and the hardware used in these systems.

2.5.3.1 STATS SportVU

The STATS SportVU system [85] is used by the National Basketball Association (NBA)
starting from the 2013–14 season. STATS SportVU employs a six-camera system
installed in basketball arenas to track the real-time positions of players and the ball at
25 frames per second [85] as shown in Figure 2.16. Using this tracking data, STATS
can create statistics based on speed, distance, player separation, and ball possession,
etc. [85]. Additionally, the tracking results are used for team evaluation, broadcast
enhancement, web and mobile game cast.

31

2 Vision-based Player Tracking in Indoor Sports

Figure 2.16: STATS SportVU system using 6 cameras at 25 fps [85]

2.5.3.2 TRACAB from ChyronHego

The ChyronHego TRACAB player tracking system uses advanced image processing
technology to identify the position and speed of all moving objects inside arena-based
sports in real-time. In a typical deployment of TRACAB, an array of portable optical
cameras installed at the pitch. This array of cameras captures live and highly accurate
three-dimensional coordinates of objects, including a player, a referee, or even the ball
at up to 25 times each second. To date, TRACAB has been installed in over 300 arenas
and is used in more than 4500 matches per year. Some examples where TRACAB is used
are the Swedish Premier Football League, English Premier League, German Bundesliga,
Spanish La Liga, Japanese J.League, Danish NordicBet Ligaen, Dutch Eredivisie, and
many more sports federations around the world [29].

2.5.3.3 Replay Technologies (freeD)

This product is mentioned here as an example to show how technology is used to
enhance the viewers experience in sports games. Additionally, it shows how multiple
cameras and a powerful processing platform for the computer-intensive operations are
needed in such systems.

Replay technologies [75], founded in 2011, introduced their proprietary freeD™
technology which utilizes high-resolution cameras and compute-intensive graphics to
provide a 3-D replay video for offering viewers to experience sports events from any
angle. It uses 28 Ultra HD cameras positioned around the arena and connected to
Intel-based servers as shown in Figure 2.17. This system allowed broadcasters to give s
a 360-degree view of key plays from almost every conceivable angle [24].

32

2.5 Related Work of Vision-based Player Tracking Systems

(a) The freeD 28 cameras setup in a basketball
sports hall

(b) A freeD™ control room at a recent sporting
event. Photo courtesy of Intel

Figure 2.17: System setup of freeD technology

Figure 2.18 shows four screenshots of a replay video taken from different angles. Intel
has been collaborating with Replay since 2013 to optimize their interactive, immersive
video content on Intel platforms [24]. In 2016, Intel acquired Replay technologies,
offering this service to different sports leagues (including the NBA [44]).

(a) Screenshot #1 (b) Screenshot #2

(c) Screenshot #3 (d) Screenshot #4

Figure 2.18: Screenshots using freeD replay technologies

33

2 Vision-based Player Tracking in Indoor Sports

2.5.4 FPGA Accelerated Object Tracking

There is numerous research work utilizing FPGAs as hardware accelerators in object
tracking applications. For example, Jacobsen et al. [46] proposed an FPGA accelerated
design for an online boosting algorithm that uses multiple classifiers to track objects
in real-time. Their FPGA-accelerated design performs tracking at 60 fps, achieving
a 30x speedup over a CPU-based software implementation. In [5], an FPGA-based
accelerator is proposed for real-time template matching. The proposed architecture
achieves up to 30 fps on a 480x240 image, running ten parallel templates on a single
Stratix IV FPGA. The used template size is 72x144 pixels for pedestrian tracking.

In [82], a hardware architecture for selected object tracking on embedded systems
is presented. This architecture is based on the histogram of oriented gradient (HOG)
and local binary pattern (LBP) algorithms. The system is used in traffic surveillance to
track cars and pedestrians. It can track partially occluded cars correctly. The proposed
architecture is implemented on Xilinx Virtex-4 FPGA, achieving real-time tracking on
an input video with a resolution of 640x480 pixels and frame rate of 60 fps.

FPGA support is not yet available for vision-based player tracking in the sports do-
main, except a recent work by Li et al. [55] who introduced an FPGA-based volleyball
player tracker using background subtraction and advanced template matching. Their
approach identifies the positions in real-time of the six players of one volleyball team
(the team close to the camera view) as shown in Figure 2.19, where the complete system
setup is also presented. Here, the volleyball game is captured by a camera attached to
the rightmost corner of an indoor sports hall’s ceiling. The proposed system is realized
using an Atlys board equipped with a Xilinx Spartan-6 FPGA (LX45 FPGA) and an Atlys
VmodCAM stereo-camera board equipped with dual MT9D112 CMOS image sensors
with a resolution of 800x600 pixels and a maximum frame rate of 30 fps as shown in
Figure 2.19. The achieved performance is 100 fps for a resolution of 800x600 pixels
using a Xilinx Spartan-6 FPGA. The authors reported a recognition accuracy of 87.1%
before a match and 65.7% during a volleyball match for tracking six players of the one
team. This recognition accuracy can be increased to 72.2% when they adopt template
matching with a moving average filter. The used video dataset of the volleyball match
consists of 948 frames (6.6 seconds). In contrast to volleyball, the work in this thesis
targets games like handball and basketball, requiring to distinguish between interacting
players from opposing teams.

34

2.6 Summary

Figure 2.19: FPGA-based volleyball player tracker [55]

2.6 Summary

In this chapter, a general overview of vision-based player tracking systems is presented.
Additionally, the main characteristics of player tracking systems utilizing dedicated
cameras, and the challenges in these systems are depicted. These challenges concern
the tracking accuracy and the processing speed of player tracking systems. The archi-
tectures for vision processing are briefly shown with more details on FPGAs and their
utilization for vision processing. Moreover, the state of the art camera interfaces is
presented, focusing on the GigE Vision standard and its features. GigE Vision standard
supports high-speed image transfer over long distance and using low-cost cables. Fur-
thermore, the related work on vision-based player tracking systems from academia and
industry as well as FPGA-based systems for object tracking are depicted.

In the next chapter, the methodologies and the fundamentals that are required for
this work are presented. This includes the video preprocessing algorithms, object
segmentation using background subtraction, and graph clustering. Furthermore, the
concept of multiple object tracking is depicted, focusing on the tracking-by-detection
approach. Finally, the used hardware platform for realizing the proposed system is
shown.

35

3 Methodologies and Fundamentals

This chapter presents the methodologies and fundamentals that are required to realize
the proposed automatic and online vision-based player tracking system for indoor
sports. It presents an overview of the different vision processing algorithms that are
used in the system, including video preprocessing, background subtraction, and graph
clustering. Furthermore, an overview of Multiple Object Tracking (MOT) is presented.
Finally, the rapid prototyping platform that is used in this work to realize the proposed
FPGA architecture is shown, in addition to the design flow for the implementation of
the vision processing algorithms on the FPGA.

3.1 Video Preprocessing Algorithms

In this section, the vision preprocessing algorithms, which are used in this work, are
presented, including Bayer pattern demosaicing, automatic white balancing, and color
space conversion.

3.1.1 Bayer Pattern Demosaicing

Most modern color image sensors use a single chip with a Color Filter Array (CFA)
to capture the intensity value of a single primary color for each pixel [16]. The most
common filter is the Bayer pattern [17]. A Bayer pattern encoded image is shown in
Figure 3.1. As can be seen, 50% of the pixels are green, 25% are red, and 25% are
blue pixels. To form a full-color image out of a Bayer-encoded image, it is necessary to
interpolate the missing values in each of the component images to retrieve the Red Green
Blue (RGB) values for each pixel. This interpolation process is called demosaicing.
A comparison between different color demosaicing methods can be found in [57].
The simplest form of filtering is the nearest neighbor interpolation. An improvement
can be gained by using bilinear interpolation. The bilinear interpolation is an eight
neighborhood filter. It obtains the values of the missing colors by calculating the average
of the adjacent pixels. As an example, pixel number 6 has the green component (G6).
For this pixel, the missing color components are red (R6) and blue (B6) which are
calculated using Equation 3.1.

R6 =
(R2 + R10)

2
, and B6 =

(G5 + G7)
2

(3.1)

37

3 Methodologies and Fundamentals

G1 R2 G3 R4

B5 G6 B7 G8

G9 R10 G11 R12

B13 G14 B15 G16

Figure 3.1: Bayer pattern encoded image

For pixel number 7 where the blue component is available (B7), the missing red (R7)
and green (G7) color components are calculated using Equation 3.2.

R7 =
(R2 + R4 + R10 + R12)

4
, and G7 =

(G3 + G6 + G8 + G11)
4

(3.2)

For pixel number 10 which has the red component (R10), the missing green (G10) and
blue (B10) color components are calculated using Equation 3.3.

G10 =
(G6 + G9 + G11 + G14)

4
, and B10 =

(B5 + B7 + B13 + B15)
4

(3.3)

3.1.2 Automatic White Balance

Color constancy is one of the most amazing features of the human visual system. When
people look at objects under different illuminations, their colors stay relatively constant.
This helps humans to identify objects conveniently [51]. In a digital camera, the sensor
response at each pixel depends on the illumination when an image is captured. That is,
each pixel value recorded by the sensor is related to the color temperature of the light
source. For example, when a white object is illuminated with low color temperature
light, it will appear reddish in the image. Similarly, this white object will appear bluish
under a high color temperature. Therefore, white balance is required to process the
image so that visually it looks the same way, regardless of the source of light [105],
i.e., to adjust the coloration of images captured under different illuminations [51].

White balancing can be performed either manually or automatically. For manual
white balancing, the user presets a certain illumination condition, and the color cor-
rection is calculated based on the preset values [52]. In Automatic White Balancing

38

3.1 Video Preprocessing Algorithms

(AWB), the necessary color correction due to the illumination is determined from the
image content. Therefore, an AWB algorithm employed in a camera imaging pipeline
is critical to the color appearance of digital images [51]. In an AWB algorithm, the
gain values for each channel (e.g., R, G, and B channels) are calculated from the image
content. These gain values are multiplied by their equivalent color components of each
pixel in the image to adjust the pixel values and achieve white balancing. This process is
applied to all the images in a video stream. There are various AWB algorithms proposed
in the literature: Perfect Reflector Assumption (White Patch), Gray world, standard
deviation-weighted gray world, etc. [105]. However, Perfect Reflector Assumption
(PRA) [54] and Gray World Assumption (GWA) [43] are two common methods used to
realize automatic white balance algorithms which are explained in this subsection.

In the following, let an image I(x , y) have a size of M × N pixels, where x and y
denote the coordinates of the pixel position. Furthermore, let IR(x , y), IG(x , y), and
IB(x , y) denote the red, green, and blue channels of the image, respectively. The com-
puted gain values to perform automatic white balancing for the R, G, and B channels
are GainR, GainG , and GainB, respectively. Finally, QR, QG , and QB are the red, green,
and blue components of a pixel at (x,y) position after white balancing.

Perfect Reflector Assumption (White Patch)

The Perfect Reflector Assumption (PRA) (also called the White Patch algorithm) is
based on the Retinex theory [53] of visual color constancy, which argues that perceived
white is associated with the maximum cone signals [54]. To calculate the gain values,
first, the maximum values of the R, G, and B channels in an image is calculated using
Equation 3.4 [105].

Rmax = max{IR(x , y)}
Gmax = max{IG(x , y)}
Bmax = max{IB(x , y)}

(3.4)

Then, the gain values for both the red and blue channels are computed using equa-
tion 3.5. The green channel is left unchanged (i.e., its gain value is 1).

GainR =
Gmax

Rmax
, GainB =

Gmax

Bmax
(3.5)

Finally, the red and blue components of each pixel are multiplied by the respective gain
values as depicted in equation 3.6. QG is equal to IG(x , y) since its gain value is 1.

QR = GainR × IR(x , y), QG = IG(x , y), QB = GainB × IB(x , y) (3.6)

39

3 Methodologies and Fundamentals

Gray World Assumption (GWA)

GWA algorithm is one of the most frequently used automatic white balance algo-
rithms [26]. The GWA algorithm argues that for a typical scene, the average intensity
of the red, green, and blue channels should be equal [52]. For every frame, the average
red, green, and blue components are calculated as shown in Equation 3.7.

Ravg =
1

M × N

M
∑

x=1

N
∑

y=1

IR(x , y)

Gavg =
1

M × N

M
∑

x=1

N
∑

y=1

IG(x , y)

Bavg =
1

M × N

M
∑

x=1

N
∑

y=1

IB(x , y)

(3.7)

If these three values are equal, the image already satisfies the gray world assumption,
but in general, they may not be identical [52]. The gain values (which represent the
color correction factors) for the red and blue channels are computed using equation 3.8.
Similar to the white patch algorithm, the green channel is kept unchanged (i.e., the
gain value for the green channel is equal to one). After the gain values are computed,
the input image is adjusted by multiplying the computed gain values by the respective
color component of each pixel as shown in equation 3.9 (QG is equal to the IG(x , y)).

GainR =
Gavg

Ravg
, GainB =

Gavg

Bavg
(3.8)

QR = GainR × IR(x , y), QB = GainB × IB(x , y) (3.9)

3.1.3 Color Space Conversions

A color space provides a standard method of defining and representing colors. Dif-
ferent color spaces are available, and a color space is selected based on the specific
application [39]. In many application, conversion between color spaces is needed. In
this work, the conversion from RGB to grayscale and from RGB to HSV color spaces
are required, and therefore they are introduced in this section.

40

3.1 Video Preprocessing Algorithms

RGB to Grayscale Conversion

A grayscale image has one channel for intensity with the values ranging from 0 (for
black) to 255 (for white). The RGB color spaces is converted to its equivalent grayscale
by forming a weighted sum of the R, G, and B color components for every input pixel
as depicted in Equation 3.10 [38].

I = 0.299× R+ 0.587× G + 0.114× B (3.10)

where I is the pixel intensity of the resulted gray image.

RGB to HSV Conversion

Previous work [63] proves that the Hue Saturation Value (HSV) color space is more
robust than RGB color space with respect to illumination and lighting changes. The
HSV color space is represented as a cone as show in FIgure 3.2a and the Hue values
ranges from 0 to 360 as shown in Figure 3.2b. In this work, the RGB to HSV color
space conversion is used based on the algorithm proposed by Foley et al. [36]. Let
max(R, G, B) be the largest value of the R, G, and B for a pixel, and min(R, G, B) is the
smallest value. The difference between these values is ∆ (as shown in Equation 3.11).
The Hue (H), Saturation (S), and Value (V) are calculated using Equation 3.12, Equa-
tion 3.13, and Equation 3.14, respectively.

(a) HSV cone (b) H scale

Figure 3.2: HSV color space

∆=max(R, G, B)−min(R, G, B) (3.11)

41

3 Methodologies and Fundamentals

H =











































0, if R= G = B

60×(G−B)
∆ , if max(R, G, B) = R

120+ 60×(B−R)
∆ , if max(R, G, B) = G

240+ 60×(R−G)
∆ , if max(R, G, B) = B

(3.12)

S =

¨

∆
max(R,G,B) , if max 6= 0

0, otherwise
(3.13)

V =max(R, G, B) (3.14)

If the resulting value of H is a negative number, 360 is added. As a result, H is between
0 and 360, S is between 0 and 1, and V is between 0 and 255. These values are
normalized by dividing H by 2, and multiplying S by 255 while keeping the V without
change.

3.2 Morphological Operations

Morphological operations apply a structuring element to an input image for geomet-
rical structure processing. Binary morphology uses a binary input image, where the
background pixels are represented by a logic 0 (black) while a logic 1 (white) is used
for the foreground pixels. Each input pixel is compared with its neighbors based on
the selected structuring element. The two basic morphological operations are dilation
and erosion. In dilation, the output pixel is set to 1 if one of the neighboring pixels in
the structuring element has a logic 1. In erosion, if one of the neighboring pixels has a
logic 0, the output pixel is set to 0. Erosion and dilation are shown in Figure 3.3 and
Figure 3.4, respectively. In both figures, a 3x3 structuring element is used (as shown in
blue). Dilation adds pixels (with logic 1) to the boundaries of the foreground objects
in an image while erosion removes pixels from object boundaries by setting them to
logic 0. The number of the added or removed pixels depends on the size and shape of
the used structuring element.

42

3.2 Morphological Operations

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1 0

Figure 3.3: Morphological dilation of a binary image (Left: input image. Right: output
image)

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0

Figure 3.4: Morphological erosion of a binary image (Left: input image. Right: output
image)

43

3 Methodologies and Fundamentals

3.3 Image Thresholding

Image thresholding is a simple image segmentation technique used to partition fore-
ground objects in an image based on the pixels values. Each pixel of an input image
(I(x , y)) is compared to a threshold value (Thr) as shown in Figure 3.5. The output is
a binary image (zero for black and one for white) based on Equation 3.15. As a result,
all the objects that have pixels values greater than or equal to (Thr) are extracted from
the input image and assigned a logic one as foreground objects in the output image.

Threshold
(Thr)

>
Input Video

Stream
(I)

Binary Output
Video Stream

(Q)

Figure 3.5: Image thresholding

Q(x , y) =

¨

1, if I(x , y)≥ Thr
0, otherwise

(3.15)

Additionally, multiple threshold values can be used for specific ranges thresholding.
Equation 3.16 shows two threshold values (ThrLow and ThrHigh) used for thresholding
an input image (I(x , y)).

Q(x , y) =

¨

1, if ThrLow ≤ I(x , y)≤ ThrHigh

0, otherwise
(3.16)

3.4 Object Segmentation using Background
Subtraction

Background subtraction is a frequently used technique for object segmentation [35]. It
is used to detect moving objects in video streams captured by fixed cameras [22]. In
background subtraction, the moving foreground (FG) objects are extracted by subtract-
ing the current frame from the background image. Background subtraction consists of
two main steps: background initialization, and background update to adapt to possible
changes in the scene. There are many background subtraction algorithms proposed in
the literature. Some of these algorithms are used for a specific application (e.g., urban

44

3.4 Object Segmentation using Background Subtraction

traffic [28], video surveillance [48], maritime [22], etc.). A comprehensive review of
background subtraction algorithms can be found in [83].

In general, object segmentation using background subtraction consists of five steps
as shown in Figure 3.6:

• Background estimation

• Background subtraction

• Morphological operations

• Masking

• Background update

Background Subtraction
Masking

-
Threshold

>
Background
Estimation
& Update

Input
Video

Stream

BG FG Mask
Foreground

ObjectsMorpho-
logical

Operations

Figure 3.6: Object segmentation using background subtraction

As shown in Figure 3.6, first, the background image is generated. This estimated
background is subtracted from the incoming video frames, and the results are com-
pared with a predefined threshold value. If the resulting pixel value is greater than
this threshold, the output is set to a logic 1, otherwise 0, resulting in a binary output
image that contains the foreground objects. Morphological operations are applied to
this binary image in order to fill the gap between pixels that belong to the foreground
objects. Afterward, this binary image is masked with the current RGB video frame
in the input stream to generate an image with the colored foreground (segmented)
objects. Finally, the estimated background is updated to adapt to different changes
(e.g., lighting, environmental conditions, etc.).

Background estimation techniques are classified into two broad categories [28];
non-recursive and recursive. A non-recursive technique stores a buffer of the previous
L video frames, and estimates the background image based on the temporal variation
of each pixel. The disadvantage of this approach is the storage requirement can be
significant if a large buffer is needed. Recursive techniques do not maintain a buffer for
background estimation. Instead, they recursively update a single background model

45

3 Methodologies and Fundamentals

based on each input frame. Compared with non-recursive techniques, recursive tech-
niques require less memory storage, but any error in the background model can linger
for a much longer period of time.

In this work, the players are segmented using background subtraction technique.
The approximated median algorithm is selected for background estimation and update,
which has been proposed by McFarlane and Schofield [64] as an efficient recursive
approximation of the median filter. In median filtering, the previous N frames are
buffered, and the median of these frames is used as the background. The median filter
approach has been shown to be very robust and to provide a performance comparable to
higher complexity methods. While storing and processing many video frames requires
a large amount of memory in median filtering, the approximated median does not need
to store the previous frames [18]. Furthermore, the algorithm is well suited for stream
processing, making it a good choice for FPGAs. The approximated median algorithm
for background estimation is shown in Equation 3.17.

Bt(x , y) =







Bt(x , y) + 1 if It(x , y)> Bt(x , y),
Bt(x , y)− 1 if It(x , y)< Bt(x , y),
Bt(x , y) if It(x , y) = Bt(x , y).

(3.17)

where:
It(x ,y) is the intensity of the input pixel.
Bt(x ,y) is the intensity of the background estimation pixel at spatial location (x,y) and
time t. For the initial value, zero can be used.

As shown in Equation 3.17, the running estimate of the median is incremented by
one if the input pixel (It(x , y)) is larger than the estimate (Bt(x , y)), and decreased by
one if smaller. This estimate eventually converges to the median value [28].

3.5 Graph Clustering

Clustering is the task of partitioning a set of unlabeled data into different groups in a
way that the data in one group are more similar than those in the other groups. Each
group is called a cluster. After applying a clustering algorithm, the data in each cluster
have a higher measure of similarity than the data in the other clusters. Graphs are
structures formed by a set of vertices (also called nodes) and a set of edges which are
connections between pairs of vertices. Graph clustering is grouping the vertices of the
graph into clusters considering the edge structure of that graph [80]. Figure 3.7 shows
clustering of a data set into three clusters (shown in red, green, and light blue).

46

3.6 Multiple Object Tracking (MOT)

Cluster 2

Cluster 1

Cluster 3

Figure 3.7: Graph Clustering of a data set. Left: before clustering. Right: after cluster-
ing

Clustering algorithms can be divided into two broad groups [61]: hard and soft
clustering. In hard clustering, each data or object belongs to only one cluster. While in
soft clustering, each data or object can belong to more than one cluster. Based on the
possible data grouping in the application, a hard or soft clustering algorithm can be
selected. There are many clustering algorithms proposed in the literature. Some of
these algorithms require that the number of clusters is predefined and fixed, while other
algorithms can be applied to data to obtain a variable number of clusters. Furthermore,
the centroid of each cluster can be obtained by computing the mean value of the nodes
within the same cluster. In this work, graph clustering is used to find the centroids of
the players in each team as shown in the next chapter.

3.6 Multiple Object Tracking (MOT)

Multiple Object Tracking (MOT) (also called multiple target tracking) has an impor-
tant role in computer vision. For an input video, the tasks of MOT include locating
multiple objects and maintaining their identities, resulting in the individual trajectories
of these objects [60]. MOT has wide applications, e.g., in surveillance, autonomous
driving, sports, etc. [92]. Most of the existing MOT algorithms can be categorized
into two groups: detection-free tracking and detection-based tracking (also called
tracking-by-detection) as depicted in Figure 3.8 [60]. In detection-free tracking, a
manual initialization of a fixed number of objects is required as shown in Figure 3.8
(bottom). Some algorithms require the re-initialization of the tracker with the current

47

3 Methodologies and Fundamentals

object’s position during tracking, if one of the tracked objects is lost by the tracker. In
detection-based tracking (tracking-by detection), the objects are first detected, and then
these detections are linked into trajectories. This approach is more popular because
new objects are detected and disappearing objects are terminated automatically. A
comparison between these two MOT approaches is shown in Table 3.1 [60].

Figure 3.8: Overview of two prominent tracking approaches [60]

Table 3.1: Comparison of the MOT approaches [60]

Detection-free tracking
Detection-based tracking
(Tracking-by-detection)

Initialization Manual, perfect Automatic, imperfect

Nr. of objects Fixed Varying

Applications Any type of objects
Specific type of objects (in

most cases)

Advantages No object detector
Ability to handle varying

number of objects

Drawbacks Manual initialization
Performance depends on

object detection

The tracking-by-detection approach is used in this work to track the players in sports.
As can be seen in Table 3.1, this approach is suitable to track the players automatically
and without user interaction. It tracks a different number of objects automatically.

48

3.6 Multiple Object Tracking (MOT)

This feature is required because of the frequent player substitutions in basketball and
handball, where the trajectories of players leaving the court are terminated, and new
players entering the court are tracked. Furthermore, this approach supports tracking
of a specific type of objects (i.e., players in this work). Therefore, more details about
the tracking-by-detection approach are presented in the next subsection.

3.6.1 Tracking-by-Detection

Most of the recent state of the art research has focused on the tracking-by-detection
approach [92] [40]. This approach supports the automatic tracking of new objects
enter a scene as well as the automatic termination of leaving objects [60]. Additionally,
it effectively prevents the object’s bounding box from being drifted away during object
tracking [40]. The problem of multiple object tracking using the tracking-by-detection
approach can be divided into two main parts: First, the objects of interest are detected
in every single frame. Then, object tracking is achieved by associating the detections to
the corresponding objects over time.

An illustration of the tracking-by-detection approach is shown in Figure 3.9 [84].
Each circle in Figure 3.9a represents a detection, and the numbers inside the circle
represent the time. In Figure 3.9b, these detections are associated to different objects
(t0, t1, and t2) with the time. One detection is assigned only to one object, and an
object has only a single detection at any time [59].

(a) Raw detections (b) Tracking-by-detection

Figure 3.9: The tracking-by-detection approach [84]

After getting all detections in a video frame, the tracking problem then becomes a
data association problem to combine detections of the same object into a corresponding
trajectory [40]. Many data association logarithms are available in the literature. The
munkres’ version of the Hungarian algorithm [68] is one of the widely used approaches
for data association [42]. It is an online algorithm that is used to find an optimal
single-frame assignment [23], i.e., assigning detections to tracks in every frame in an

49

3 Methodologies and Fundamentals

MOT system. Further information about these assignments is shown in the next chapter.
To achieve object tracking over time, a prediction algorithm can be used to predict the
object’s position in the next frame. This prediction can be used as the object position if
the object is not detected in a frame during tracking. One of the most used prediction
methods is Kalman filter which is discussed in the next subsection.

3.6.2 Kalman Filter

Kalman filter [50] consists of mathematical equations that provide an efficient compu-
tational (recursive) means for estimating the state of a process, in a way that minimizes
the mean of the squared error [91]. A broad overview of the high-level operation of
a discrete Kalman filter cycle is shown in Figure 3.10. The "time update" equations
projects (predicts) the current state estimate ahead in time. The "measurement update"
adjusts (corrects) the projected estimate by an actual measurement at that time [91].
The state and measurement equations are shown in Equation 3.18 and Equation 3.19,
respectively [91] [34].

Figure 3.10: Overview of a discrete Kalman filter cycle [91]

xk = Axk−1 + Buk−1 +wk−1 (3.18)

Here, xk is the state vector, containing the terms of interest for the system (e.g.,
position, velocity) at a time step k. A is the state transition matrix between time steps.
It is applied to the previous state xk−1 and relates it to the state at the current step k.
B is the control-input matrix which specifies the transition from control input to state.
It is applied to the control vector uk, and relates the optional control input u to the
state x . uk−1 is the vector containing any control inputs. wk−1 is the process noise vector.

50

3.7 RAPTOR-X64 Rapid Prototyping Platform

zk = H xk + vk (3.19)

In Equation 3.19, zk is the vector of measurements. H is the transformation matrix.
It specifies the transition from state to measurement. vk is the vector containing the
measurement noise for each observation in the measurement vector.

Additionally, in order to predict the next position of an object, an object motion model
is required (e.g., constant velocity, or constant acceleration). Since a selected motion
model does not describe the object motion perfectly, a noise is added to the model
(called a process noise). Furthermore, measurement noise represents the imperfect
detections or measurements. To start the tracking process, the initial state value is
required. Furthermore, the initial uncertainty is also needed which can be expressed
by a Gaussian covariance matrix [49].

3.7 RAPTOR-X64 Rapid Prototyping Platform

The RAPTOR-X64 [74] system is a rapid prototyping platform, which is developed
by the Cognitronics and Sensor Systems research group at Bielefeld University. The
RAPTOR-X64 is designed as a modular rapid-prototyping system: the base system
provides communication and management facilities, which are used by a variety of
extension modules, realizing application-specific functionality [74].

The architecture of the RAPTOR-X64 prototyping system is shown in Figure 3.11.
The RAPTOR-X64 platform supports up to six FPGA daughterboards (as extension
modules), equipped with Xilinx FPGAs and onboard dedicated memory units. Ad-
ditional extension modules are available offering different interfaces (e.g., Ethernet,
display, USB, etc.). Furthermore, the RAPTOR-X64 system has a Peripheral Component
Interconnect eXtended (PCI-X) interface used for communication with the host-PC
as shown in Figure 3.11. This PCI-X interface is directly connected to the local bus
for high-speed communication. Therefore, the RAPTOR-X64 can be used to realize a
reconfigurable vision system, by which the compute-intensive vision processing tasks
are performed on the FPGA. Additionally, the processed data on the FPGA can be sent
through the PCI-X interface to the host-PC for further processing, storage, and display.

51

3 Methodologies and Fundamentals

Figure 3.11: Architecture of the RAPTOR-X64 prototyping system [74]

3.8 Design Flow

In the proposed reconfigurable system, IP cores are designed and implemented on
the FPGA for various vision processing tasks. Figure 3.12 shows the design flow used
for the implementation of the vision processing algorithms on the FPGA. First, the
problem is defined, and a vision processing algorithm is selected accordingly. Then, this
algorithm is implemented using a high-level language (e.g., C/C++ with the OpenCV
library, MATLAB). In this step, the result of the selected algorithm is evaluated. If
the results do not fulfill the system requirements, a different algorithm is selected.
Otherwise, (if the results satisfy the requirements) the algorithm is chosen for the
hardware implementation. The selected algorithm is optimized for hardware imple-
mentation if applicable. This optimization involves partially modifying the algorithm
for an efficient FPGA implementation. An example of such modification is reduc-
ing the number of divisions in the algorithm or avoiding the divisions by converting
them to multiplications. This step is optional since it depends on the selected algorithm.

Subsequently, the algorithm is implemented in hardware by creating an IP core using
the Very High Speed Integrated Circuit Hardware Description Language (VHDL). This
implementation step is accompanied by several simulations using the ModelSim tool,
i.e., the VHDL code is modified and the IP core is simulated repeatedly until the desired
results are achieved. To verify the results of the IP core, a MATLAB code and a VHDL
testbench are written. The MATLAB code is used to convert a test image (e.g., an
image for a sports hall with players) into a binary image and store it in a text file. The

52

3.8 Design Flow

Vision processing algorithm

implementation (software)

Algorithm implemtation using

VHDL (hardware) &

IP core creation

C/C++ & OpenCV, or MATLAB

IP core integration in

the complete Xilinx EDK project

Design synthesis (EDK),

Verify & update IP core

implementation

Design synthesis (ISE)

Design implementation

(Map, Translate, Place & Route)

Bit file generation &

device programming

Behavioural

and functional

simulation

Behavioural

and functional

simulation

Algorithm optimization

to hardware design

C/C++ & OpenCV, or MATLAB

Select

different

algorithm

Problem specification,

and selection of a vision

processing algorithm

Figure 3.12: The design flow for the implementation of the vision processing algorithms
on the FPGA

53

3 Methodologies and Fundamentals

testbench (executed on ModelSim) reads this text file and converts the binary image
data into the utilized input interface (i.e., AXI4-Stream interface) of the IP core. Then,
the simulation results from the core are stored in a binary text file. Another MATLAB
code uses this binary file to reconstruct and visualize the resulting image. This image,
which is the output of the IP core, is compared with the results from the software
implementation to verify if it is correct and matches the expected results.

If the simulation results satisfy the requirements, the IP core is integrated into a Xilinx
Embedded Development Kit (EDK) project. This is achieved by creating an EDK IP core
with all the required ports and interfaces and connecting it to the video processing
pipeline in the EDK project. Subsequently, the modified EDK project is synthesized
and simulated. The simulation results are validated with the results obtained from the
previous step. Then, a Xilinx Integerated Synthesis Enviroment (ISE) (which contains
the EDK system, and other components like clock managers, etc.) is synthesized and
implemented. The implementation process includes mapping, translating as well as
placing and routing the design into the selected FPGA chip. Finally, the bitstream is
created and downloaded into the FPGA. If the final results using the real hardware does
not match the expected results from the simulation, another debug iteration would be
performed by modifying the IP core as needed to achieve the desired results. As an
example, an IP core is designed and implemented to perform the demosaicing operation
on an input video stream from a camera. The resulting output of this core is the colored
(RGB) images. If these results satisfy the requirements, the next vision processing
IP core (e.g., white balancing) in the processing chain is designed and implemented,
and its results are tested accordingly. This process applies to all the IP cores that are
required to realize the targeted system.

3.9 Summary

In this chapter, the methodologies and fundamentals that are required to realize the
proposed system are presented, including various video preprocessing algorithms,
morphological operations, image thresholding, object segmentation using background
subtraction, and graph clustering. Additionally, the concept of multiple object tracking
is shown, focusing on the tracking-by-detection approach. Finally, the RAPTOR-X64
system (where the proposed design is realized) and the design flow for the implemen-
tation of the vision processing algorithms as IP cores are depicted.

In the next chapter, the proposed reconfigurable vision system for tracking the players
is presented in details. This includes the implementation of the different compute-
intensive vision processing algorithms on the FPGA and the post-processing on the CPU
in the host-PC, realizing a real-time player tracking system.

54

4 The Proposed Reconfigurable Vision
System

In this chapter, the proposed reconfigurable vision system for player tracking in indoor
sports is presented. It consists of the FPGA architecture (hardware implementation) and
the CPU-based processing system (software implementation) in a host-PC as shown in
Figure 4.1. In this system, two stationary GigE Vision cameras attached to the ceiling of
the indoor sports hall are used. Each camera has a maximum resolution of 1392x1040
pixels and a frame rate of 30 fps. The cameras are equipped with a Fish-eye lens to
have a wider angle and larger coverage of the sports hall. In the proposed system, the
compute-intensive vision processing tasks are implemented on the FPGA, while the
control and sequential tasks are implemented on the CPU in a host-PC.

HW
(FPGA)

SW
(CPU in
host-PC)

Players
Tracking
Results

2x GigE Vision
Cameras

Gigabit
Ethernet
Switch

Compute-intensive
vision processing

tasks

Control and
sequential

tasks

Figure 4.1: A general overview of the proposed system

55

4 The Proposed Reconfigurable Vision System

4.1 System Overview

In this work, player tracking is realized based on the tracking-by-detection approach [60],
achieving Multi-Object Tracking (MOT). The task of player tracking can be divided into
two main parts:

• Detecting the players in each video frame

• Associating the detections corresponding to the same player over the video frames

In the proposed system, the various compute-intensive pixel-based vision processing
operations that are required to detect the players are implemented on the FPGA, while
the control-based, less compute-intensive tasks involved in the player tracking are
implemented on the CPU in the host-PC. The hardware software partitioning between
the FPGA and CPU is shown in Figure 4.2, where the block diagram of the proposed
reconfigurable system is presented [107].

Video Preprocessing

- Image Demosaicing
(Bilinear Interpolation)

- Automatic White Balance
(Gray World Assumption)

- Frame Cropping
- Video Merge

Player Segmentation
- RGB to Gray Conversion
- Background Estimation

and Subtraction
(Approximated Median)

- Morphological Operation
(Dilation)

- Masking

Video Acquisition

- Multi-Camera GigE
Vision

- Camera Configuration
- Video File Controller

CPU (Host-PC)

Player Tracking
(Tracking-by-detection)

- Data association
(Hungarian Algorithm)

- Tracks management
- Player position prediction

(Kalman filter)
- Player transfer between

cameras’ view
- Display

Positions (x,y) of detected
objects (players) for team 1&2

T1

T2

2x GigE Vision
Cameras

Video Files
(Host-PC)

Gigabit
Ethernet
Switch

Hardware Environment (RAPTOR Board)

Team Identification &
Player Detection

- RGB to HSV Conversion
- Color Thresholding
- BDC-based Graph

Clustering

(Compute-intensive vision processing tasks are implemenetd on the FPGA) (Control tasks are
implemenetd on the CPU)

Indoor Sports Court
(Basketball/Handball)

FPGA

Figure 4.2: Top-level block diagram of the proposed reconfigurable system [107]

As shown in Figure 4.2, the proposed system supports two video input sources: Live
video acquisition from multiple GigE Vision cameras and recorded games stored in video

56

4.1 System Overview

files. Additionally, the FPGA architecture comprises four modules: video acquisition,
video preprocessing, player segmentation, and team identification & player detection.
The main outputs of the FPGA are the team identification and the detected positions of
the players, which are sent to the host-PC for final player tracking [107].

An overview of the proposed FPGA architecture that is used in the reconfigurable
player tracking system is shown in Figure 4.3. The GigE Vision cameras are connected
to the FPGA through an Ethernet board equipped with Gigabit physical interfaces.
Control packets are sent by the FPGA to configure, start, and stop the cameras, while
images are transmitted from the cameras using video packets to the FPGA. The image
pixels in these packets are extracted by the video acquisition module. Subsequently,
vision processing operations are applied to the extracted pixels in order to detect the
players of each team in every video frame.

DDR2 – SDRAM
(FPGA Board)

P
C
I

Gigabit
Switch

LB-Slave to
NPI / AXI4-S
Controller Ethernet

Board

Control
Packets

Gigabit
PHY 1

Gigabit
PHY 2

Video
Packets

Video
PreprocessingA

X
I

A
X
I

DVI Display
Controller

Display

GigE
Vision

Camera 1
(Left)

GigE
Vision

Camera 2
(Right)

Multi-Port Memory Controller (MPMC)

SDMA NPI NPI VFBC

PowerPC 405

PLB NPI NPI

AXI4-S
to NPI

Controller
AXI

FPGA

RAPTOR Board

Player
Segmentation

A
X
I

A
X
I

AXI AXI

Display
Board

Video
Acquisition

Video Files
(Offline)

G
M
I
I

G
M
I
I

LL

NPI
AXI4-S
to NPI

Controller
AXI

NPI
AXI4-S
to NPI

Controller
AXI

NPI VFBC

CPU
(Host-PC)

RAPTOR Board

A
X
I

A
X
I

AXI
A
X
I A

X
I

AXI

NPI

Player
Tracking

A
X
I

AXI

Team
Identification &

Player Detection

A
X
I

NPI

AXI4-S
to NPI

Controller
AXI

NPI

AXI

To Video File
Controller

From
LB-Slave to NPI /
AXI4-S Controller

Det. Obj.
Team 1

Det. Obj.
Team 2

Figure 4.3: An overview of the proposed FPGA architecture

As shown in Figure 4.3, the processing modules (video acquisition, video preprocess-
ing, player segmentation, and team identification & player detection) are connected
using a predefined bus interface. Additionally, each one of these modules consists of
different IP cores (e.g., performing vision processing operations). In the design of IP
cores, it is essential to define and select a bus interface since it does not only define
how the different components and IP cores are connected in the system, but also allows
the use and re-use of the IP cores. In this work, the AXI4-Stream interface (part of
the Advanced Exensible Interface (AXI) protocol [8]) is used for the input and output
video streaming in the designed IP cores and the modules. AXI is part of the ARM Ad-
vanced Microcontroller Bus Architecture (AMBA) [9], a family of microcontroller buses.

57

4 The Proposed Reconfigurable Vision System

There are three types of AXI interfaces: AXI4 for high-performance memory-mapped
requirements, AXI4-Lite for simple and low-throughput memory-mapped communi-
cation (e.g., access to control and status registers), and finally the AXI4-Stream for
high-speed streaming data. Xilinx adopted the AXI protocol for their IP cores, and it is
used in their new FPGA families (e.g., the 7 Series, Zynq, and UltraScale FPGA families).

The AXI4-Stream protocol defines a single channel for streaming data transmission.
It can burst an unlimited amount of data [94]. Figure 4.4 shows the AXI4-Stream
interface, where two video processing IP cores are connected using this interface. The
pixel data are transmitted using the data bus. In this work, different bus width sizes
are used based on the function of the IP core, e.g., a data bus of a single bit width is
used for a binary frame, 8 bits are used for a grayscale frame, and 32 bits are used for a
4-channel frame with color information. The Start of Frame (SOF) signal is set to logic 1
when the first pixel in every frame is transmitted. End of Line (EOL) indicates the last
pixel in each row of a transmitted frame. The "master ready in" and "slave ready out"
signals are used for handshaking between two cores. When the slave is ready to receive
data, the "slave ready out" signal is set to 1, otherwise a logic 0 is used to halt the data
transmission from the master core. Finally, the "data valid" signal indicates that the
data on the SOF, EOL, and data bus are valid. These data are processed only when both
the "data valid" and the "slave ready out" signals are set to 1 as shown in Figure 4.5,
where an example for video data transfer using the AXI4-Stream is presented. In this
figure, P represents the pixel data of the transmitted video stream.

AXI4S_data_out

AXI4S_data_out_valid

AXI4S_master_ready_in

AXI4S_end_of_line_out

AXI4S_start_of_frame_out

AXI4S_data_in

AXI4S_data_in_valid

AXI4S_slave_ready_out

AXI4S_end_of_line_in

AXI4S_start_of_frame_in

Optional Processor
Bus Interface

(e.g., PLB Bus)

Video IP Core (B)

AXI4S_CLK

AXI4S_RESET

AXI4S_CLK

AXI4S_RESET

CLK
Reset

Video IP Core (A)

Optional Processor
Bus Interface

(e.g., PLB Bus)

Figure 4.4: Two video IP cores connected using the AXI4-Stream interface

58

4.1 System Overview

Figure 4.5: An example for pixel data transfer using the AXI4-Stream interface [95]

Figure 4.6 shows the FPGA architecture, where all video processing algorithms in
the four modules are realized as IP cores with an AXI4-Stream interface, providing a
standardized and easy integration with other cores. These IP cores are designed and
implemented using VHDL targeting Xilinx Virtex-4 to 7 Series FPGAs. An embedded
processor (either PowerPC (PPC) or MicroBlaze) is utilized to configure the internal
registers of the IP cores with the desired parameters [107]. The Xilinx Multi-Port
Memory Controller (MPMC) IP core [99] provides access to the external memory
(DDR2-SDRAM) through its eight ports. Different interfaces are provided for these
ports, including Native Port Interface (NPI), Processor Local Bus (PLB), Video Frame
Buffer Controller (VFBC) interface, and Local Link (LL). The Xilinx DVI display con-
troller is used to display video frames that are stored in the external memory. It supports
standard video resolutions and frame rates. The LB-Slave to NPI/AXI4-S controller is
used for data transfer between the FPGA and the host-PC through the local Bus (LB).
This core has an NPI interface for accessing the external memory through the MPMC.
Furthermore, it has an AXI4-Stream interface for a direct connection to the Video File
Controller IP core. In this case, the video data that are stored in the host-PC can be
directly processed by the implemented modules without the need to buffer them in the
external memory. Moreover, the LB-Slave to NPI/AXI4-S core is used to transfer the
FPGA results (the positions of detected players) to the host-PC for post-processing. The
AXI4-S to NPI controller is designed to connect an IP core to the MPMC if the IP core
needs to access the external memory (e.g., reading or writing a video frame).

For the evaluations in this work, a Virtex-4 FPGA with an embedded PPC for the
control software and a Virtex-7 FPGA are used [107]. In the following, the different
modules and the IP cores of the FPGA implementation are depicted, in addition to the
player tracking, which is performed in the host-PC.

59

4
The

Proposed
R

econfigurable
Vision

System

DDR2 – SDRAM
(FPGA Board)

P
C
I
/
H
O
S
T
-
P
C

Gigabit
Switch

AXI4-S to NPI
Controller

AXI

LB-Slave to
NPI / AXI4-S
Controller

Ethernet
Board

Control
Packets

Gigabit
PHY 1

Gigabit
PHY 2

Video
Packets

DVI Display
Controller

D
I
S
P
L
A
Y

GigE
Vision

Camera 1
(Left)

GigE
Vision

Camera 2
(Right)

Multi-Port Memory Controller (MPMC)

SDMA (LL) NPI NPI VFBC

PowerPC 405

PLB NPI NPI

AXI4-S to NPI
Controller

AXI

FPGA

RAPTOR Board

AXI4-S to NPI
Controller

AXI

Display
Board

Video Preprocessing Module Player Segmentation Module Team Identification &
Player Detection Module

RGB to HSV
& Color
Thresh.

BDC-based
Graph

Clustering

BDC-based
Graph

Clustering

A
X
I

Background
Estimation

& Subtraction
With Threshold

A
X
I

A
X
I

RGB to
Gray

A
X
I

A
X
I

Morph.
Operation

A
X
I

A
X
I

M
a
s
k
i
n
g

A
X
I

A
X
I

A
X
I

Bayer
Pattern
Demos.

A
X
I

A
X
I

AWB
A
X
I

A
X
I M

e
r
g
e

A
X
I

A
X
I

A
X
I

Bayer
Pattern
Demos.

A
X
I

A
X
I

AWB
A
X
I

A
X
I

Read
BG

Update
BG

AXI AXI

Video Acquisition
Module

T
E
M
A
C

LL Demux
(GigE Cam.

Config.)

L
L

G
M
I
I

Multi-
Camera

GigE
Vision
IP Core A

X
I

A
X
I

L
L

LL LL

LL

T
E
M
A
C

L
L

G
M
I
I

Video File
Controller

AXI AXI

M
U
X

A
X
I
A
X
I

A
X
I

M
U
X

A
X
I
A
X
I

A
X
I

A
X
I

NPI NPI NPI

NPI

VFBC

M
U
X

A
X
I
A
X
I

A
X
I

NPI

AXI4-S to NPI
Controller

AXI

NPI

Det. Obj.
Team 2

Det. Obj.
Team 1

Crop
A
X
I

A
X
I

Crop
A
X
I

A
X
I

AXI A
X
I

To Video File
Controller

From LB-Slave to NPI /
AXI4-S Controller

Video
Preprocessing

Player
Segmentation

Video
Acquisition

FPGA CPU (Host-PC)

Team Identification &
Player Detection Player Tracking

Video Files
(Host-PC)

2x GigE
Vision Cams

Gigabit
Switch

• • •

T1

T2

Figure 4.6: The FPGA architecture of the proposed system [108] [107]

60

4.2 Video Acquisition Module

4.2 Video Acquisition Module

As depicted in Figure 4.6, this module is used to acquire the live video frames from
multiple cameras as well as offline frames from recorded video files stored in the
host-PC. The video acquisition module with its various inputs and outputs is shown in
Figure 4.7. The Multi-Camera GigE Vision (MC_GigEV) IP core is used to realize the
live video frames acquisition from the cameras, while the GigE camera configuration
core is used to configure these cameras. The Video File Controller is used for frame
acquisition from the offline video files. These IP cores are explained in the following
sections.

Video
Acquisition Module

T
E
M
A
C

LL Demux
(GigE Cam.

Config.)

L
L

G
M
I
I

Multi-
Camera

GigE
Vision
IP Core A

X
I

A
X
I

L
L

LL LL

LL

T
E
M
A
C

L
L

G
M
I
I

Video File
Controller

AXI AXI

M
U
X

A
X
I
A
X
I

A
X
I

M
U
X

A
X
I
A
X
I

A
X
I

A
X
I

AXI

From
memory
controller

From offline video files using
LB-Slave to NPI / AXI4-S controller

Video files with
Bayer pattern

or

Preprocessed
frames

Camera
configuration
GigE Vision

packets
(GVCP)

GigE Vision
packets from
the left & right

cameras
with raw

video data
(GVSP) Reconstructed Bayer

pattern video frames

Left camera

Right camera

To player segmentation module

To pre-
processing

module

Ethernet Header
IP Header

UDP Header

Payload

GigE Vision Header

Figure 4.7: Video acquisition module

4.2.1 Multi-Camera GigE Vision Core

In this work, a Multi-Camera GigE Vision (MC_GigE Vision) IP core [106] has been
developed to realize an online video processing system using multiple cameras. The
MC_GigEV IP core is a scalable and resource-efficient core, and it is suitable for space
and energy constrained embedded vision systems. Figure 4.8 shows a comparison
of possible realizations for multi-camera GigE Vision systems. In Figure 4.8a, each
camera is connected to a single-camera GigE Vision IP core. In this case, the complete

61

4 The Proposed Reconfigurable Vision System

bandwidth is dedicated to each camera. However, resource requirements are very
high since each camera requires its own dedicated GigE Vision IP core and a Gigabit
Ethernet interface. The Gigabit Ethernet interface consists of the Ethernet media access
controller and the Ethernet PHY. However, in the proposed MC_GigEV IP core shown
in Figure 4.8b, only one IP core, and one Gigabit Ethernet interface are needed to
connect several cameras. These cameras are connected to the Gigabit Ethernet interface
via a Gigabit switch. Here, the one Gigabit Ethernet bandwidth will be shared between
all connected cameras, but the resource requirements on the FPGA are significantly
reduced compared to the single GigE IP core approach presented in Figure 4.8a [106].

AXI4-Stream
output

AXI4-Stream
output

AXI4-Stream
output

AXI4-Stream
output

FPGA

Gigabit
Eth. Interface

GigE Cam. 1

Gigabit
Eth. Interface

GigE Cam. 2

Gigabit
Eth. Interface

GigE Cam. 3

Gigabit
Eth. Interface

GigE Cam. N

GigE Vision
IP Core

GigE Vision
IP Core

GigE Vision
IP Core

GigE Vision
IP Core

…

(a) Single GigE Vision IP core approach

GigE Cam. 2

FPGA

Gigabit
Ethernet
Interface

Gigabit
Switch

GigE Cam. 1

GigE Cam. 3

GigE Cam. N

GigE
Vision

Packets

AXI4-Stream output (Cam. 1)
Multi-Camera
GigE Vision

IP Core
(MC_GigEV)

L
L

Raw Video
Data Stream

AXI4-Stream output (Cam. 2)

AXI4-Stream output (Cam. 3)

AXI4-Stream output (Cam. N)

PLB Bus

where: LL = Local Link, AXI = (AXI4-Stream) Advanced eXtensible Interface,
PLB = Processor Local Bus

…

(b) The proposed mulit-camera GigE Vision IP core

Figure 4.8: FPGA-based systems for multiple GigE Vision cameras [106]

62

4.2 Video Acquisition Module

Figure 4.9 shows the MC_GigEV IP core in a multiple GigE Vision camera system. It
consists of the Tri-Mode Ethernet Media Access Controller (TEMAC), the MC_GigEV,
and the camera configuration IP cores. In this system, two MC_GigEV IP cores are
used to connect a (N+M) number of GigE Vision cameras as shown in Figure 4.9. The
video stream from each camera consists of GigE Vision packets, encapsulating the raw
video data. These GigE Vision packets are received by the TEMAC IP core [98] through
its Gigabit Media Independent Interface (GMII). The TEMAC core is responsible for the
implementation of the link and of the physical layers, and it passes the packets from
different camera sources to the developed MC_GigEV IP core. The MC_GigEV IP core
processes the GigE Vision packets, extracts the raw video data and reconstructs the
video frames from each video stream. Finally, the core provides the extracted video data
as AXI4-Streams in separated channels for each video stream so that the video data can
be easily processed further or stored in the on-board memory. To configure the cameras
with the desired frame rates and resolutions, GigE Vision control packets are sent to the
desired camera through the camera configuration IP core (Cam_Config) [106]. More
details about this camera configuration core are shown in Section 4.2.2.

FPGA
GigE

Vision
Packets

AXI4-Stream output (Cam. 1) Multi-Camera
GigE Vision
(MC_GigEV)

IP Core 1

L
LTEMAC 1Gigabit

PHY
L
LG

M
II

Raw Video
Data Stream

Control Packets

Video Packets

AXI4-Stream output (Cam. 2)

AXI4-Stream output (Cam. N)

PLB Bus
where:
LL = Local Link
MPMC = Multi-Port Memory

Controller
TEMAC= Tri-Mode Ethernet

Media Access
Controller

PLB = Processor Local
Bus

GMII = Gigabit Media
Independent
Interface

AXI = Advanced eXtensible
Interface

AXI4-Stream output (Cam. 1) Multi-Camera
GigE Vision
(MC_GigEV)

IP Core 2

L
LTEMAC 2Gigabit

PHY
L
LG

M
II AXI4-Stream output (Cam. 2)

AXI4-Stream output (Cam. M)

PLB Bus

Camera
Config.
IP Core

L
L

L
L

Multi-Port Memory Controller
(MPMC)

GigE Cam.2

GigE Cam.N

GigE Cam.1
Gigabit

Ethernet
Switch

GigE Cam.2

GigE Cam.M

GigE Cam.1

Gigabit
Ethernet
Switch

1xGigabit
Ethernet Port

1xGigabit
Ethernet Port PLB Bus

L
L

Figure 4.9: A multi-camera GigE Vision system using the MC_GigEV IP core

The proposed MC_GigEV IP core is designed and implemented in hardware on a Xilinx
Virtex-4 FPGA to receive and extract the video data streams that are transmitted from
GigE cameras using the GVSP protocol. The core can be easily integrated into the Xilinx
tool-flow as an EDK IP core utilizing a PLB interface. The core registers are initialized
and configured with the desired parameters, e.g., the MAC addresses of the cameras
and the number of GVSP packets per frame. This is done by an embedded CPU like
Microblaze or PowerPC. For a resource-efficient realization, the core is designed with a

63

4 The Proposed Reconfigurable Vision System

generic parameter for the number of connected cameras so that the implementation is
generated accordingly [106]. A block diagram of the core is shown in Figure 4.10 for
four cameras. A flowchart that shows how the IP core reconstructs a video frame from
a GigE Vision camera is depicted in Figure 4.11

footer Slide 21

Input

FIFO

GigE

Vision

Packets

Packet

Verification &

Filtration*

Data &

Payload

Extraction*

Register File

PLB Bus

Video

Frame Out

Output

FIFO*

Input

FIFO

GigE

Vision

Packets

Packet

Verification &

Filtration

Data &

Payload

Extraction

Output

FIFO

Packet

Verification &

Filtration

Data &

Payload

Extraction

Output

FIFO
Packet

Verification &

Filtration

Data &

Payload

Extraction

Output

FIFO

Register File

Conversion

to

AXI4-Stream

Conversion

to

AXI4-Stream

Conversion

to

AXI4-Stream

Conversion

to

AXI4-Stream

Conversion to

AXI4-Stream*

Packet

Verification

& Filtering

Output

FIFO

Data &

Payload

Extraction

Video outputs

1, 2, 3 & 4

PLB Bus

Figure 4.10: The multi-camera GigE Vision core block diagram [106]

As shown in Figures 4.10 and 4.11, the incoming GigE Vision packets from different
cameras are buffered in a single First-In First-Out (FIFO) memory and subsequently
filtered based on the MAC address of the sending camera. Verification of the IP protocol
and UDP source port number are performed. As depicted in Section 2.4.1, there are
three types of packets for the standard transmission mode using the GVSP protocol:
data leader, data payload, and data trailer packets as shown in Figure 2.12. The core
distinguishes between these packets based on the packet_format field in the GVSP
header. The frame height and width are extracted from the data leader packet. The
raw video data are extracted from the sequential data payload packets based on their
packet_id field in the GVSP header. The extracted raw data are buffered in a separate
output FIFO for each camera. The core can detect packet losses that may happen
during video transmission. Input data width of the core is 32-bit and the output can
be 8-bit or 32-bit depending on the system requirements. The core output is designed
and implemented using the AXI4-Stream interface to provide a standard and easy
integration with other video processing cores. The MC_GigEV IP core works on wire
speed and extracts the incoming video data as soon as the video packets are received
by the FPGA. It is implemented to handle standard Ethernet packets as well as Jumbo
frames up to 9014 Bytes. Additionally, this IP core is validated in real hardware using
up to four GigE Vision cameras for one core instance [106].

For the proposed player tracking system in this work, two GigE Vision cameras are
used to provide a top-view with full coverage of the court in the sports hall as stated
earlier in this chapter. Although two GigE Vision cameras are used in the current system

64

4.2 Video Acquisition Module

Verify & filter packets
according to camera

MAC addresses

Identify GigE Vision
packet type

Extract frame
height & width

data Leader
packet

Data payload packet

Data trailer
packet

Yes (Verified)

Recieve new GigE Vision packet

Yes

Extract raw video data

End of packet?

Set End of Frame (EoF) flag

This packet is
the first packet?

Set AXI4-S
Start of Frame

(SoF)

Last packet in
the frame?

Yes

No

Yes

No

No

Yes

No (Not verified)

Check if
IP version = IPv4,
IP protocol = UDP,
UDP source port ≠

GVCP
?

No

Start

Figure 4.11: Flowchart for a video frame reconstruction from a GigE Vision camera
using the MC_GigEV IP core

65

4 The Proposed Reconfigurable Vision System

setup, the implemented MC_GigEV supports live video frame acquisition from multiple
GigE Vision cameras. This scalability is required if additional cameras are needed to
support more features in the system (e.g., player identification using the digits on the
players’ jerseys) [107]. The video stream from each camera consists of GigE Vision
packets, encapsulating the raw video data. For the used GigE Vision cameras in this
work, the total number of GigE Vision data payload packets that are used to transfer
one frame from one camera is calculated using Equation 4.1. These packets carry the
standard Ethernet payload, which is 1464 bytes for each packet.

Number of data payload packets=
Camera Resolution×Nr. of Bytes/pixel

packet payload
(4.1)

Number of data payload packets=
1392× 1040× 1

1464
= 989 packets/frame/camera

Furthermore, These packets are transferred using a Gigabit Ethernet switch which is
connected to the Gigabit Ethernet interface of the FPGA board as shown in Figure 4.6
and Figure 4.7. Hence, only one Gigabit Ethernet interface is needed to connect two
or more cameras sharing the bandwidth of the Gigabit connection, thus reducing the
required resources for interfacing the cameras. In the FPGA, the GigE Vision packets are
received by the TEMAC, which passes the packets from different camera sources to the
Multi-Camera GigE Vision (MC_GigEV) IP core. The MC_GigEV IP core extracts the raw
video data, reconstructs the video frames from the GigE Vision packets (989 packets for
one video frame from each camera), and passes these data to the video preprocessing
module for further processing [108]. The reconstructed frames, which are encoded
using Bayer pattern, are shown in Figure 4.12a and 4.12b.

4.2.2 GigE Vision Camera Configuration

For camera configuration and control channel implementation, a light-weight imple-
mentation is chosen to reduce resource requirements and complexity of the system.
The light-weight implementation is especially suitable for embedded vision systems
with low power and logic resource budget. The implemented Cam_Config IP core sends
GVCP packets (which are stored in the external memory) to configure the attached GigE
cameras with the required parameters (such as IP address, image resolution, frame
rate, and data format). Additionally, it starts and stops the video acquisition from the
cameras. This control-dominated task is implemented in software and executed on the
embedded CPU in the FPGA [108].

66

4.2 Video Acquisition Module

(a) From the left camera (b) From the right camera

Figure 4.12: Reconstructed frames (Bayer pattern) from GigE Vision packets

As shown in Figures 4.7 and 4.9, this IP core is used as a LL interface multiplexer
controlled by the embedded CPU, connecting multiple TEMAC cores to the MPMC
controller if additional Ethernet interfaces are needed to connect more cameras. In this
case, only one port in the MPMC controller is used to configure multiple GigE Vision
cameras. The LL interface specification defines a high-performance, synchronous, point-
to-point connection [97]. After the desired TEMAC core is connected to the MPMC,
the GVCP packets (cf. Figure 2.11) are sent by the embedded CPU to the desired GigE
Vision camera based on the MAC address of the camera. This address is stored in the
Ethernet header of the GVCP packet.

An example of a GVCP packet that is used to configure a camera with a frame width
is shown in Figure 4.13. This packet is used to write the desired frame width value
in the frame width register of the camera, and it is based on the GigE Vision protocol
specifications defined in [13]. In this packet, the GVCP packet’s header and its payload
are shown in detail. The GVCP header is a command header (8 Bytes). The 0x42 is the
value used to identify the GVCP packets in the protocol. A flag value of 0x01 requires
the recipient of this packet to send an acknowledgment packet. The WRITEREG_CMD
(0x0082) is used for the command field, indicating this packet is for writing a value in
a register. The Length of the GVCP payload is set to 8 Bytes for the register address and
the written value. Req_id is a sequential number given to the packet. The GVCP payload
consists of a 4 Byte register_address (e.g., 0x0000D300 for the frame width register),
and a 4 Byte register_data (e.g., 1392 or 0x00000570 for the value of the desired frame
width). The total size of a GVCP packet for the WRITEREG_CMD command with one
register to be written is 58 Bytes as shown in Figure 4.13.

67

4 The Proposed Reconfigurable Vision System

Ethernet Header (14 Bytes)

IP Header (20 Bytes)

UDP Header (8 Bytes)

GVCP Header (8 Bytes)

0x42 Flag Command (e.g., WRITEREG_CMD)

length Req_id

GVCP Payload (e.g., 8 Bytes – Max. 540 Bytes)

Register_address

Register_data

0 15 16 31

0 31

Figure 4.13: GVCP packet with WRITEREG_CMD [13]

4.2.3 Video File Controller

For the offline video file processing, two video files are used, each storing the video
data from one camera. The offline video frames are read from the host-PC through the
Local Bus (LB)-Slave to Native Port Interface (NPI)/AXI4-Stream controller as shown
in Figure 4.6. Then, these frames are sent directly to the video file controller without
the need for buffering using an external memory. The video file controller is used to
decode the incoming video stream based on the selected video format, and to output the
resulted video streams for further processing. In this work, this controller is designed
to support two types of data (video formats) in video files: raw data with Bayer pattern
(8 bits are used for each pixel), and RGB data (each pixel is represented by 24 bits)
after preprocessing as shown in Figure 4.7.

The core receives a video stream through its AXI4-Stream input interface with a data
width of 32-bit. For a Bayer pattern video, these 32 bits represent four pixels (8 bits
for each). While for the RGB video input, the transferred data in every clock cycle
represent color components of two pixels (e.g., RGB values for one pixel (24 bits) and
an R value for the next pixel (8 bits)). The core’s registers are used to configure the
controller with the video format and the resolution of the two video files. The width of

68

4.2 Video Acquisition Module

these files (image width 1 and 2 for the first and second video file) could be of an equal
or different size. However, their height must be the same. The block diagram of the
video controller core is shown in Figure 4.14. As can be seen, the core stores the input
video stream in an input FIFO, where a Finite State Machine (FSM) is implemented to
read this FIFO and process the data based on the selected video format. The flowchart
of this FSM is shown in Figure 4.15. If the Bayer pattern video format is selected, the
received data is buffered in FIFO1 until the number of buffered pixels is equal to the
image width 1. Next, the received data is buffered in FIFO2 until the number of these
pixels is equal to the image width 2. The process of writing an incoming video frame
with Bayer pattern into these output FIFOs is shown in Figure 4.16. Afterward, the
outputs from the two FIFOs are converted to AXI4-Stream with an output width of
8-bit for each video as shown in Figure 4.14. This 8-bit output corresponds to the raw
video data (Bayer pattern) of one pixel, which is sent to the preprocessing module.
Regarding the clock domains of the core’s FIFOs, an independent clock domain is used
for the input FIFO since the write clock (Wr_Clk) for this FIFO is synchronized with
the clock of the LB-Slave to NPI/AXI4-Stream controller. On the other hand, the read
clock (Rd_Clk) of the input FIFO is synchronized with the clock of the output FIFOs,
by which a common clock domain is utilized for the writing and reading operations of
these output FIFOs as shown in Figure 4.14.

Data_in

AXI4-Stream
Video File 3

AXI4-Stream
Video File 2

AXI4-Stream
Video File 1Outout

FIFO 1

Output
FIFO 2

FIFO to
AXI4-S
Conv.
FSM

FIFO to
AXI4-S
Conv.
FSM

8-bit
Bayer Pattern

8-bit
Bayer Pattern

32-bit
Color (RGB)

32-bit

Registers

Processor Bus

Wr_Clk Rd_Clk

Input
FIFO

8-bit

8-bit

32-bit

32-bit

32-bit

Video
File

Controller
FSM

32-bit

Clk

Clk

Figure 4.14: Video file controller block diagram

If the RGB video format is selected for the incoming video stream, a color component
alignment in the controller’s FSM is applied to these data as shown in Figure 4.15.

69

4 The Proposed Reconfigurable Vision System

Check video
format register

-Read pixel data from input
FIFO

-Write pixel data in FIFO1

-Increment pixel counter

Pixel counter =
Image width1 ?

Bayer PatternRGB

Reset pixel counter

-Read pixel data from input
FIFO

-Write pixel data in FIFO2

-Increment pixel counter

Pixel counter =
Image width2 ?

Reset pixel counter

Set AXI4-S SOF output

-Read data from input FIFO
-Align & output RGB pixel
-Increment pixel counter

Pixel counter =
Image width ?

-Reset pixel counter
-Set AXI4-S EOL output
-Increment row counter

Reset row counter

Row counter =
Image height ?

No

Yes

No

Yes

-Align & output RGB pixel
-Increment pixel counter

Start

Yes

-Read data from input FIFO
-Align & output RGB pixel
-Increment pixel counter

-Read data from input FIFO
-Align & output RGB pixel
-Increment pixel counter

No

Yes

No

Figure 4.15: Video file controller flowchart

70

4.2 Video Acquisition Module

This alignment is needed since the received 32-bit data contain color components of
the current and the coming pixels as shown in Figure 4.17. Therefore, this process
produces RGB components that belong to the same pixel (24 bits) appended to an 8-bit
value (e.g., zero) for every clock cycle, resulting in a 32-bit output. In this case, the RGB
values of one pixel are aligned to one clock cycle. This alignment is required since, in
this work, one RGB pixel is processed in every clock cycle. In the next step, the output
frames from the video acquisition module are processed by the video preprocessing
module.

FIFO 1 FIFO 2

Recieved
Data

Output
Data from

FSM

Output
Data from

FSM

Image
Height

Image Width 1 Image Width 2

Figure 4.16: Video file controller operation for Bayer pattern input video

R1

G1

B1

R2

G2

B2

R3

G3

B3

R4

G4

B4

R1

G1

B1

0

R2

G2

B2

0

R3

G3

B3

0

R4

G4

B4

0

Clk1 Clk2 Clk3 Clk1 Clk2 Clk3 Clk4Clock

Input
Video
Data

(32-bit)

Figure 4.17: RGB color components alignment

71

4 The Proposed Reconfigurable Vision System

4.3 Video Preprocessing Module

The video preprocessing module includes Bayer pattern demosaicing, automatic white
balance (AWB), video cropping, and merging IP cores as shown in Figure 4.18.

Video Preprocessing Module

Bayer
Pattern
Demos.

A
X
I

A
X
I

AWB
A
X
I

A
X
I M

e
r
g
e

A
X
I

A
X
I

A
X
I

Bayer
Pattern
Demos.

A
X
I

A
X
I

AWB
A
X
I

A
X
I

M
U
X

A
X
I
A
X
I

A
X
I

Crop
A
X
I

A
X
I

Crop
A
X
I

A
X
I

Preprocessed
frame

Bayer pattern
frames

(cameras/video files)

Preprocessed frame (video files)

Figure 4.18: Video preprocessing module

4.3.1 Bayer Pattern Demosaicing

As depicted in Section 3.1.1, demosaicing is necessary to retrieve the missing RGB
values for each pixel and to form a full-color image. The implemented demosaicing
algorithm is using bilinear interpolation with an eight neighborhood filter. A block
diagram of the hardware implementation of Equations 3.1, 3.2, and 3.3 is shown in
Figure 4.19 [15]. Two row-buffers are used to form a 3x3 window, which is required for
the interpolation process. These row buffers are of a variable depth to adapt to different
resolutions. The division by two is free in hardware. The multiplexer outputs depend on
which pixel is currently processed. Additionally, the core is connected to the embedded
PowerPC through the PLB Bus to configure and initialize the core registers with the
desired frame resolution and to select one of the Bayer patterns (RGGB, BGGR, GRBG,
GBRG) [106]. For every raw input pixel encoded with Bayer pattern (8 bits/pixel),
the RGB color components are interpolated, resulting in 24 bits for every pixel. In
this implementation, the raw input pixel is not neglected after interpolation, but it is
propagated to the core’s output. Therefore, it is concatenated with its resulted RGB
components forming a 32 bits output as shown in Figure 4.19. This is useful if there is a
need to store the raw input video frames from the camera for future usage. The output
frames after demosaicing from the left and right cameras are shown in Figures 4.20a
and 4.20b, respectively.

72

4.3 Video Preprocessing Module

Row Buffer Output
FIFO

AXI4-S
Data

Output

(32 bits
RGB &
Raw)

Row Buffer

+ +

+

+

R

G

B

AXI4-S
Data
Input
(8 bits
Raw

Bayer
Pattern)

G1

R
B

G2

G

R
B

G1
G2

Registers

Processor Bus

÷2

÷2

÷2÷2
Control FSM

Raw
8 bits

32
bits

8 bits

Figure 4.19: Implementation of Bayer pattern using bilinear interpolation [15]

(a) Left camera (b) Right camera

Figure 4.20: Resulted colored images after Bayer pattern demosaicing using bilinear
interpolation [108] [107]

73

4 The Proposed Reconfigurable Vision System

4.3.2 Automatic White Balancing

White balance is used to correct the color bias in the images as stated earlier in
Section 3.1.2. In this work, two algorithms have been evaluated: the Gray World As-
sumption (GWA) [52] and the White Patch (WP) [54] algorithms. These two methods
have their respective strengths, and a closer investigation is made in [52]. It is observed
that for most images, the two methods produce different results [52]. The GWA and
the White Patch algorithms are implemented using C++ and OpenCV library, and their
performance is evaluated. Figure 4.21 shows images of indoor sports halls and the
evaluation results using the two AWB algorithms. As can be seen, the results from the
GWA algorithm (cf. Figure 4.21c and 4.21f) are better than the results from the White
Patch algorithm (cf. Figures 4.21b and 4.21e). The presence of white pixels (or bright
pixels) in the used images, results in the poor performance achieved by the White
Patch algorithm. A white pixel (i.e., R, G, and B values = 255), causes the calculated
gain values (using Equations 3.4, 3.5, and 3.6) to be equal to one. In this case, the
output pixels after white balance are equal to the input pixels values, i.e., these input
pixels are not corrected since they are multiplied by 1. To avoid the disturbances to
the calculation caused by a few white or bright pixels, clusters of pixels or lowpass the
image can be applied [43]. In the used image, white pixels exist due to illumination
(e.g., light reflections on the court) in the sports hall. Additionally, there are several
objects with white color in these images (e.g., white stripes on the court, and white
jerseys of players) as shown in Figure 4.21.

Based on the results of the performed simulations shown in Figure 4.21, the Gray
World Assumption (GWA) algorithm (presented in Section 3.1.2) is chosen for the
FPGA implementation in this work. As shown in Equations 3.7 and 3.8, five divisions
are required to calculate the gain values for the red and blue channels in the GWA algo-
rithm. These divisions require a huge amount of the FPGA logic resources. Therefore,
Equations 3.7 and 3.8 are modified for a resource-efficient IP core implementation.
This modification is shown in Equation 4.2, where the gain values for the red and blue
channels are calculated. In this case, only two divisions instead of five are used, without
affecting the algorithm performance. For the green channel, the gain value is equal to 1.

GainR =

∑M
x=1

∑N
y=1 IG(x , y)

∑M
x=1

∑N
y=1 IR(x , y)

, and GainB =

∑M
x=1

∑N
y=1 IG(x , y)

∑M
x=1

∑N
y=1 IB(x , y)

(4.2)

where: M and N are the width and height of the image, respectively.

The block diagram of the implemented AWB IP core using the GWA algorithm is
shown in Figure 4.22. This implementation is based on Equation 4.2. As depicted in Fig-
ure 4.22, the input video stream is buffered in an input FIFO. For each color component

74

4.3 Video Preprocessing Module

(a) Input image 1 (right cam.) (b) Result using White Patch (c) Result using GWA

(d) Input image 2 (right cam.) (e) Result using White Patch (f) Result using GWA

Figure 4.21: Evaluation results of the AWB algorithms

(i.e., R, G, and B), an adder is utilized to calculate the cumulative sum value of that
component for all the pixels in one frame. At the end of each frame, the two dividers
use these sum values to calculate the gain for the red and blue channels as shown in
Figure 4.22. These gain values are multiplied by their corresponding color components
in the next frame since there are usually no significant changes in the illumination
between two consecutive frames using a high frame rate video stream (e.g., 30 fps).
This process is applied to all frames to adapt to different lighting conditions [108].
The multipliers are implemented using dedicated DSP slices in the FPGA with three
pipeline stages for each multiplier, achieving the optimum performance. If there is an
overflow in the multiplication results (i.e., the result is larger than 255), it is adjusted
to 255 as depicted in Figure 4.22. Finally, the white balanced pixels are written to the
output FIFO, and a conversion to the AXI4-Stream interface is performed. Since the
core uses stream-based processing, both the input and output FIFOs are implemented
as small FIFOs with the depth of 32 Bytes for each FIFO using the FPGA’s distributed
RAM. To avoid data loss when the output FIFO is full, the programmable full control
signal of the output FIFO is used to process the three pixels in the multiplier pipeline.
In this case, the programmable full signal (which is driven high before the FIFO’s full

75

4 The Proposed Reconfigurable Vision System

signal is triggered) is used to halt the incoming video stream so that the intermediate
pixels in the pipeline are processed, and the results are stored in the output FIFO. For
the implemented AWB core, the total latency is 12 clock cycles. The resulted frames
after AWB from the left and right camera are shown in Figure 4.23. If it is desired
to store the resulting white balanced frames in the host-PC (e.g., for later evaluation
or visualization), the output of the AWB core can be connected to an AXI4-S to NPI
controller (cf. Figure 4.6) to buffer the resulting frames in the external memory. After
that, the LB-Slave to NPI/AXI4-S controller can be used to read the buffered frames
and send them to the host-PC for storage. Finally, video frame cropping is applied to
the resulting frames of the AWB core as depicted in the next subsection.

Adder
Cumulative sum of
the R component

Input
FIFO

R

G

B

Adder
Cumulative sum of
the G component

Adder
Cumulative sum of
the B component

AXI4-
Stream

32-bit

∑

∑

∑

Divider

Row
CounterEOL Last_pixel_in_image_flag

x

R

>

255

255

Output
FIFO

AXI4-
Stream

32-bit

Divider

Start
division

x

B

>

255

255

Q

Rem

Q

Rem

Gain_r

Gain_b Output FSM

(FIFO control &
conversion to
AXI4-Stream)

Rst

Figure 4.22: Block diagram of the implemented AWB using Gray World Assumption

(a) Left camera (b) Right camera

Figure 4.23: Resulted colored images after AWB using the GWA algorithm

76

4.3 Video Preprocessing Module

4.3.3 Video Cropping

Since the input video frames contain information that is not of interest (e.g., the
spectators), the frames are cropped so that only the region of interest (the court) is
preserved. Additionally, the overlapping region between the left and right half of
the court is reduced [108]. The block diagram of the implemented cropping core is
shown Figure 4.24. The image cropping dimensions are given to the core through its
programmable registers. This includes the x and y coordinates for both the starting
and ending of the image cropping. As shown in Figure 4.24, the cropping operation
is performed using two counters, a pixel and row counter, controlled by the cropping
FSM. Based on these counters values and the given cropping dimensions, the cropping
process is applied on the input RGB frame. The cropped images from the left and right
camera are shown in Figure 4.25.

Cropping
FSM

AXI4 Data in (RGB frame)

AXI4 Valid in

AXI4 EOL

AXI4 SOF in
AXI4 EOL in

Clk

Clk Clk

AXI4-Stream
(Cropped

RGB
frame)

Processor Bus

Registers

Row Counter

Pixel Counter

AXI4 Valid in

Figure 4.24: Block diagram of the implemented cropping IP core

(a) Left camera (b) Right camera

Figure 4.25: Resulted images after cropping

77

4 The Proposed Reconfigurable Vision System

4.3.4 Video Frame Merger

Finally, the two cropped video frames are merged using the Video Frame Merger IP
core, providing one big frame that covers the whole court as shown in Figure 4.26 [108].

Figure 4.26: Output frame after merging [108] [107]

The block diagram of the Video Frame Merger IP core is shown in Figure 4.27. The
core’s registers are used to store the frame resolution of the two input videos using
a processor bus (e.g., a PLB bus). In this implementation, a varying width size of
the two input videos is supported. However, their height must be the same. These
input video streams are buffered into two FIFOs as shown in Figure 4.27. An FSM is
implemented to read the buffered video data, merge them, and output the merged
video as an AXI4-Steam. This merging operation is based on the pixel counter in the
FSM, by which this counter is incremented with every pixel being read from the input
FIFOs. First, the pixel values are read from FIFO 1 until the pixel counter is equal to
the frame width of the first input video stream. Afterwards, the pixel counter is reset
to zero, and the FSM starts reading the pixel values from FIFO 2 until the pixel counter
is equal to the frame width of the second video stream. These steps are repeated until
the row counter is equal to the height of the input videos, indicating the end of the
video frame. The output from the video preprocessing module is the merged colored
(RGB) frame, which is used by the player segmentation module to extract the RGB
foreground (including the players) as explained in the next section.

4.4 Player Segmentation Module

In this work, the approach to segment the players is based on background subtraction.
The player segmentation module includes RGB to grayscale conversion, background
estimation and subtraction, morphological operation, and masking as shown in Fig-
ure 4.28 [107].

78

4.4 Player Segmentation Module

AXI4-Stream
Video_in_1

AXI4-Stream
(merged
video)

Input
FIFO

1

Input
FIFO

2
Frame Merger

FSM

32-bit

Registers

Processor Bus

AXI4-Stream
Video_in_2

32-bit

32-bit

Row Counter

Pixel Counter

RD_EN

RD_EN

Dout

Dout

Figure 4.27: Block diagram of the Video Merger IP core

Player Segmentation Module

Background
Estimation

& Subtraction
With Threshold

A
X
I

A
X
I

Morphological
Operation
(Dilation)

A
X
I

A
X
I

RGB to
Gray

A
X
I

A
X
I

M
a
s
k
i
n
g

A
X
I

A
X
I

A
X
I

AXI AXI Segmented
players

Update BG to
external memory

Read BG from
external memory

Merged colored
video stream

Figure 4.28: Player segmentation module

79

4 The Proposed Reconfigurable Vision System

4.4.1 RGB to Grayscale Converstion

The color space of the merged frame (Figure 4.26) is converted from RGB to grayscale
to be used for background estimation and subtraction [107]. The block diagram of
the implemented RGB to grayscale IP core is shown in Figure 4.29. It computes the
grayscale value for each pixel by forming a weighted sum of the R, G, and B components
according to Equation 3.10. The incoming video stream is buffered in an input FIFO.
Each color component is multiplied by the appropriate weight value, producing one
output pixel per input sample. Three multipliers are used in this implementation, and
each multiplier uses one dedicated DSP slice in the FPGA. To achieve the optimum
performance for these multipliers, three pipeline stages are used for each one, resulting
in three clock cycles of latency. The results of the multiplications are added to form
the weighted sum that represents the gray value of the corresponding incoming RGB
pixel. This gray pixel is stored in an output FIFO as an 8-bit value. The total processing
latency of the RGB to grayscale core is 9 clock cycles. Similar to the AWB IP core imple-
mentation, the RGB to grayscale core can process the three pixels inside the multipliers
pipeline and store them in the output FIFO. This is achieved through the utilization
of the "programmable full" signal in the output FIFO to control the processing flow if
one of the FIFOs is full or if the video stream is halted by the processing pipeline. The
input and output FIFOs have a small depth size of 16 Bytes, and they are implemented
using the FPGA’s distributed RAM. The grayscale converted image is shown Figure 4.34b.

Input
FIFO

AXI4-
Stream

32-bit

Output
FIFO

AXI4-
Stream

8-bit

x

0.2989

x

0.587

x

0.114

+ Gray

Red

Green

Blue

Figure 4.29: RGB to grayscale IP core block diagram

4.4.2 Background Estimation and Subtraction

Players are extracted as foreground using the background subtraction technique. It in-
volves background estimation, update, and subtraction. In this work, the approximated

80

4.4 Player Segmentation Module

median algorithm is selected for background estimation as depicted in Section 3.4.
The FPGA implementation [111] [108] of this algorithm is shown in Figure 4.30. The
estimated (and subsequently updated) background is computed using Equation 3.17,
and it is stored in the external memory using the MPMC. The core uses a predefined
number of input frames (BG_est_frame_nr) to estimate this background. In this appli-
cation, this number is set to 300 (corresponding to 10 seconds at 30 fps). In order to
correctly estimate the background during these 300 frames, either the players should
be outside the court, or the players are inside the court, but they are moving. If a
player stands motionless during these frames, he will be part of the background. To
compensate for moving non-player objects, or players standing for a long time without
movement, the background is continuously updated. Later, one frame is used to update
the background every (BG_update_freq) frames. In this application, 15 was used.
These two parameters are stored in the IP core’s registers and can be easily modified
by the user [108]. An example of the estimated background is shown in Figure 4.34c.

Input
FIFO
(BG)

< BG Est.
Frame Nr

1

+

Frame
Counter

-
1

>
Input
FIFO

Output
FIFO
Wr En

- |Abs|
Threshold

>

Output
FIFO
(BG

Subtr.) 1-bit
to Morph.

Op.

8-bit
for

Display
(Debug)

Updated Estimated
Background (To MPMC)

Est.
BG

(From
MPMC)

Input
Video

Stream

<

BG Update
Freq.

=Reset

FIFOs
Read &
Write
FSM

Core's
Regs.

Start
of

Frame

Processor
Bus

Figure 4.30: Background estimation and subtraction implementation [108] [107]

For every pixel in the input video stream, its value is subtracted from the correspond-
ing pixel in the background estimated frame (that is read from the MPMC) as shown
in Figure 4.30. Afterwards, the absolute value of the subtraction result is compared
to a user-defined threshold. If this value is greater than the threshold, a binary 1 is
written to the output FIFO. Otherwise, a binary 0 is used. Figure 4.34d shows the
results of the background subtraction. As can be seen, the result is a binary image,
by which the foreground objects (white) have a logic 1, and a logic 0 is used for the
background (black). The core outputs this resulted image using two bit-widths as
shown in Figure 4.30: The first one is 8 bits used for display (debugging). In this case,
255 (white) represents the foreground, and zero (black) is used for the background.

81

4 The Proposed Reconfigurable Vision System

The width size of the second output is 1 bit, and it is connected to the next processing
core (morphological operation IP core) as shown in Figure 4.28.

4.4.3 AXI4-Stream to NPI Controller

If an IP core needs to access the external memory through the MPMC, the AXI4-Stream
to NPI controller is designed to convert between the AXI4-Stream interface (which is
used by the video processing IP cores) and the NPI interface of the MPMC as shown
in Figure 4.6. In this work, this controller is used to read and write the background
estimated frames from and to the memory. Additionally, it is used to buffer the resulted
video streams from the video processing IP cores to the external memory for display.
This is used for debugging purpose, by which the intermediate results from the IP cores
can be visualized at any processing step in the video pipeline.

The block diagram of the implemented AXI4-S to NPI controller is shown in Fig-
ure 4.31. The AXI4-S to NPI controller is implemented to convert the AXI4-Stream to
NPI interface when writing video frames to the external memory (Double Data Rate
(DDR)-SDRAM is used in this work). Additionally, it is used to convert the NPI to AXI4-
Stream interface when reading video frames from the memory. The core is designed
with generic parameters to select between either the writing (AXI4-S to NPI) or reading
(NPI to AXI4-S) operation, and therefore the corresponding FSM (NPI write or NPI read
FSM) is generated accordingly. Furthermore, a generic parameter is used to choose
the desired data width size (8 or 32 bits) of the core’s input and output interfaces.
Based on that, the appropriate FIFO is generated. Using these generic parameters,
the core’s resources are generated according to the user-specific requirements for a
resource-efficient IP core implementation, hence saving the FPGA’s resources. The
NPI data width is 64 bits, and the controller uses the maximum burst transfer size of
256 bytes to read and write the data from and to the external memory.

As shown in Figure 4.31, the input and output FIFOs utilize independent clock do-
mains. The input FIFO uses the "FIFO CLK" (100 MHz is used in this implementation)
for writing the incoming video data, while the "NPI CLK" (200 MHz) is used for reading
the data from this FIFO, and writing them in the external memory using the NPI inter-
face. For reading the video frames from the memory and storing them in the output
FIFO, "NPI CLK" is used. Finally, the "FIFO CLK" is used by the output FIFO to read the
stored data, and an FSM is implemented to convert this data to an AXI4-Stream output.
The required handshaking is implemented in this core, ensuring the synchronization
and data integrity between the two interfaces (the AXI4-Stream and the NPI interface).

82

4.4 Player Segmentation Module

Conversion
to

AXI4-Stream
FSM

AXI4S_data_out_valid

AXI4S_start_of_frame

AXI4S_end_of_line_out

AXI4S_master_ready_in

Output FIFO
(32-bit)

AXI4S_data_out
32-bit

AXI4S_data_out
8-bit

Output FIFO
(8-bit)

NPI Read
FSM

Input FIFO
(32-bit)

AXI4S_data_out (32-bit)
NPI Write

FSM

AXI4S_data_out_valid

AXI4S_start_of_frame

AXI4S_end_of_line_out

AXI4S_slave_ready_out

Input FIFO
(8-bit)

AXI4S_data_out (8-bit)

AXI4S_data_out_valid

AXI4S_start_of_frame

AXI4S_end_of_line_out

AXI4S_slave_ready_out

FIFO CLK

(8 or 32-bit)

NPI CLK

(64-bit)

FIFO CLK

(8 or 32-bit)

NPI CLK

(64-bit)

NPI Interface
FIFO CLK

Registers

Processor Bus

CLK domain:

Data width:

To
MPMC

From
MPMC

Figure 4.31: AXI4-S to NPI controller block diagram

83

4 The Proposed Reconfigurable Vision System

4.4.4 Morphological Operations

Morphological dilation operation (as shown in Section 3.2) is applied after background
subtraction to fill the gaps in the binary mask resulting from background subtraction.
The IP core implementation is based on the design presented in [15] utilizing a 3x3
window as shown in Figure 4.32. The resulting frame after background subtraction
with thresholding and dilation is shown in Figure 4.34e [108].

Row Buffer Output
FIFO

Row Buffer

D/E
Input
video

stream
D/E

1-bit
to

Masking

8-bit
for

Display
(Debug)

Control FSM

Border
pixel

0 or 1
for border

pixels

Registers

Processor Bus

Figure 4.32: Block diagram of the implemented morphological dilation and erosion [15]

As shown in Figure 4.32, the design is used for the morphological dilation as well as
erosion operation. The control signal (D/E) selects between erosion and dilation [15].
The core’s input video stream (from the background subtraction) has a 1-bit data width.
Additionally, all the row buffers, registers, and combinational logic in Figure 4.32 have
a 1-bit width, reducing the required computations and resources for this IP core. For
pixels at the border of an input frame, the 3x3 window is not entirely within this frame,
resulting in some missing pixels in this window. In this case, a predefined value (0 for
black, or 1 for white) is used as the output result. The control FSM manages the row
buffers, the border pixels, and storing the results in the output FIFO. The binary output
of this core is sent to the masking IP core to obtain the colored foreground mask that
includes the players as depicted in the next section.

4.4.5 Masking

As shown in Figure 4.28, the RGB video stream from the video preprocessing mod-
ule output (Figure 4.34a) is masked with the binary foreground mask (Figure 4.34e)
from the morphological dilation output. This is achieved using the Masking IP core
to obtain the colored RGB foreground mask that includes the segmented players (Fig-
ure 4.34f) [108]. The implementation of the Masking IP core is shown in Figure 4.33.

84

4.4 Player Segmentation Module

Input FIFO 1 is used to buffer the incoming binary video stream from morphology,
while input FIFO 2 is used to store the RGB frames from the preprocessing module.
Additionally, the handshaking between the input AXI4-stream interfaces and these
FIFOs is shown in Figure 4.33. The AXI4-Stream valid in signal is connected to the
write enable (WR_EN) port, enabling the writing of the incoming data to the FIFO.
The negating of the FIFO full signal is connected to the AXI4-Stream "slave ready out".
When the FIFO is full, the "slave ready out" is driven low, indicating that the core is not
ready to receive additional data. The input video stream is connected to the data input
(Din) of the FIFO. Additionally, the AXI4-Stream start of frame (SOF) and end of line
(EOL) can be buffered in the input FIFO. The two FIFOs are read if they are not empty
and if the "master ready in" signal is active high. The masking operating is achieved
using AND gates, by which every color component of each pixel is masked with the
corresponding pixel in the foreground mask (from morphology). The resulted colored
foreground mask (as shown in Figure 4.34f) is used by the next processing module,
where the two teams are identified and the players are detected.

Input
FIFO 1

Din

WR_EN

Dout
(1 bit)

FIFO Full
Slave ready out

Valid in

Data in
FG mask from

morphology
(1 bit)

RD_EN

FIFO Empty

Input
FIFO 2

Din

WR_EN

Dout
(34 bits)

FIFO Full
Slave ready out

Valid in
RD_EN

FIFO Empty

8 bits

R

G

B

Colored
Foreground

mask
(32 bits)

Valid out

Data out
(32 bits)

To team
identification

& player
detection
module

SOF out

EOL out

Master ready in

AXI4-Stream (Slave) AXI4-Stream (Master)

SOF in

EOL in

Data in
RGB frame from
preprocessing

(32 bit)

Figure 4.33: Implementation of the masking IP core

85

4 The Proposed Reconfigurable Vision System

(a) Input RGB image (after preprocessing) (b) Grayscale converted image

(c) Estimated background (d) BG subtraction result

(e) BG subtraction after morphological dilation (f) Masking

Figure 4.34: Resulting images from the IP cores in the player segmentation mod-
ule [108] [107]

86

4.5 Team Identification & Player Detection Module

4.5 Team Identification & Player Detection Module

In this module, the colors of the players’ jerseys are used to identify the two teams and
to detect the positions of the players. This task is achieved using RGB to HSV color
space conversion, color thresholding, and Binary Distance Calculation (BDC)-based
graph clustering [108] as shown in Figure 4.35.

Team Identification &
Player Detection Module

Team 1
Player Detection

BDC-based
Graph Clustering

Team Identification &
Vertices Generation

RGB to HSV &
Color Thresholding

A
X
I

Team 2
Player Detection

BDC-based
Graph Clustering

Team 1
Object

Postions
Segmented

Players
(RGB) Team 2

Object
Postions

Team 1

Pl (X) (Y)
1 1447 80

2 1090 320

3 1515 505

4 1163 589

6 1568 605

Team 2

Pl (X) (Y)
1 1452 102

2 1233 328

3 1390 380

4 1374 500

6 1491 509

Figure 4.35: Team identification & player detection module

4.5.1 RGB to HSV Conversion & Color Thresholding

Previous work [6] [63] proves that the HSV color space is more robust than the RGB
color space with respect to illumination and lighting changes. Therefore, the input RGB
foreground mask video stream (which contains the segmented players) is converted to
the HSV color space [108]. This is achieved using the RGB to HSV IP core. The core
is based on the algorithm proposed by Foley et al. [36] as presented in Section 3.1.3.
A block diagram of the implemented RGB to HSV conversion & color thresholding IP
core [45] [15] is shown in Figure 4.36. In this implementation, a modification is applied
to this algorithm to avoid the divisions in this algorithm [45], since divisions require a
significant amount of FPGA resources and incur big latency. Therefore, Equation 3.12
is modified to avoid the division by ∆ for the calculation of the Hue, resulting in
Equation 4.3. Here, if the resulted value of (H

2 ×∆) from Equation 4.3 is a negative
number, then (180×∆) is added to the (H

2 ×∆) value. Furthermore, the division by
max(RGB) in Equation 3.13 is avoided for the Saturation, resulting in Equation 4.4 [45].

87

4
The

Proposed
R

econfigurable
Vision

System

-
Input
FIFO

R

G

B

AXI4-
Stream

RGB

32-bit

-

-

Gmin BminRmin

Min

Max

Sign
bits

R
G
B

R
G
B

R
G
B

Rmax Gmax Bmax

x

4

- x

2

+

R
G
B

x
30+

∆

x

256

S x Max

Hx∆

V

Team1
Color

Thresh.

Team2
Color

Thresh.

V

SxMax

Hx∆

V
SxMax

Core’s Registers

to
AXI-4S
FSM

T1_Vertex (x,y)

T1_vertex_valid_out

T1_Graph_cluster_ready_in

sof_out
eof_out

T2_Vertex (x,y)

T2_vertex_valid_out

T2_Graph_cluster_ready_in

Vertex Address
Generration FSM AXI4-S (8-bit)

For Display (Debug)

from
output
FIFORow Counter

Pixel Counter

To
BDC-
Graph

Clustering

Output
FIFO

Start Graph Clustering

Processer Interface

x
180

+
Sign bit
(Hx∆)∆

Hx∆

Figure 4.36: Block diagram of the implemented RGB to HSV conversion & color thresholding core based on the design
presented in [45] and [15]

88

4.5 Team Identification & Player Detection Module

H
2
×∆=











































0, if R= G = B

30× (G − B), if max(R, G, B) = R

30× ((2×∆) + (B − R)), if max(R, G, B) = G

30× ((4×∆) + (R− G)), if max(R, G, B) = B

(4.3)

S ×max(RGB) =

¨

∆, if max(R, G, B) 6= 0

0, otherwise
(4.4)

where: ∆ is equal to max(R, G, B) − min(R, G, B).

As shown in Figure 4.36, the min(R, G, B) and max(R, G, B) values are determined
using the sign bits of the difference between the input color channels. These differences
are required to be calculated anyway for the numerators in Equation 4.3. Therefore,
this information is efficiently obtained for free [15]. Furthermore, the resulted H
and S are normalized by dividing H by 2, and multiplying S by 255 as depicted in
Section 3.1.3. Therefore, after applying this normalization to Equation 4.3, the result
is H ×∆ (instead of H

2 ×∆), while Equation 4.4 is modified to Equation 4.5. In this
equation, 256 is used (instead of 255) since multiplication by 256 is free in hardware.

S ×max(RGB) =

¨

∆× 256, if max(R, G, B) 6= 0

0, otherwise
(4.5)

The colors of the players’ jerseys are used as the threshold values to mask this resulted
HSV video stream. The color masking uses up to two colors from the jersey of each
team [108]. The number of the used colors and the threshold values for both teams are
stored in the core’s registers. As an example, Equation 4.6 illustrates this thresholding
operation, by which one jersey’s color is used for team 1. In this example, QT1 is
the output binary mask for team1. It is equal to logic 1, if all the three conditions
shown in Equation 4.6 are fulfilled. Otherwise, it is zero. Another example is shown in
Equations 4.7, 4.8, and 4.9, by which two colors are used as threshold values for team 2.

89

4 The Proposed Reconfigurable Vision System

QT1 =



























1, HT1_Thr_low ≤ H ≤ HT1_Thr_high AND

ST1_Thr_low ≤ S ≤ ST1_Thr_high AND

VT1_Thr_low ≤ V ≤ VT1_Thr_high

0, otherwise

(4.6)

QT2_C1 =



























1, HT2_C1_Thr_low ≤ H ≤ HT2_C1_Thr_high AND

ST2_C1_Thr_low ≤ S ≤ ST2_C1_Thr_high AND

VT2_C1_Thr_low ≤ V ≤ VT2_C1_Thr_high

0, otherwise

(4.7)

QT2_C2 =



























1, HT2_C2_Thr_low ≤ H ≤ HT2_C2_Thr_high AND

ST2_C2_Thr_low ≤ S ≤ ST2_C2_Thr_high AND

VT2_C2_Thr_low ≤ V ≤ VT2_C2_Thr_high

0, otherwise

(4.8)

QT2 = (QT2_C1) OR (QT2_C2) (4.9)

However, since H ×∆ and S ×max(RGB) are calculated instead of H and S, the
comparison in Equations 4.6, 4.7, and 4.8 must be modified accordingly. Therefore,
Equation 4.6 is modified to Equation 4.10, by which the H threshold values are mul-
tiplied by ∆, and the S threshold values are multiplied by max(RGB) [45]. Similar
modification is applied to Equations 4.7 and 4.8. The V value (which is equal to
max(R, G, B)) is left without modification. The block diagram of color thresholding for
team 1 and 2 are shown in Figure 4.37 and Figure 4.38, respectively.

QT1 =



























1, HT1_Thr_low ×∆≤ H ×∆≤ HT1_Thr_high ×∆ AND

ST1_Thr_low ×max(RGB)≤ S ×max(RGB)≤ ST1_Thr_high ×max(RGB) AND

VT1_Thr_low ≤ V ≤ VT1_Thr_high

0, otherwise
(4.10)

90

4.5 Team Identification & Player Detection Module

V

≥
≤

S T1_C1_Thr_high

xMax

xMax

S T1_C1_Thr_low

≥
≤

V T1_C1_Thr_high

V T1_C1_Thr_low

≥

H T1_C1_Thr_low

≤

H T1_C1_Thr_high

x∆

x∆

H x ∆

S x Max

V

≥
≤

S T1_C2_Thr_high

xMax

xMax

S T1_C2_Thr_low

≥
≤

V T1_C2_Thr_high

V T1_C2_Thr_low

≥

H T1_C2_Thr_low

≤

H T1_C2_Thr_high

x∆

x∆

H x ∆

S x Max

Team1_C1 Mask

Team1
Mask

Team1_C2 Mask

0

T1_C2_En

V

≥
≤

S T2_C1_Thr_high

xMax

xMax

S T2_C1_Thr_low

≥
≤

V T2_C1_Thr_high

V T2_C1_Thr_low

≥

H T2_C1_Thr_low

≤

H T2_C1_Thr_high

x∆

x∆

H x ∆

S x Max

V

≥
≤

S T2_C2_Thr_high

xMax

xMax

S T2_C2_Thr_low

≥
≤

V T2_C2_Thr_high

V T2_C2_Thr_low

≥

H T2_C2_Thr_low

≤

H T2_C2_Thr_high

x∆

x∆

H x ∆

S x Max

Team2_C1 Mask

Team2_C2 Mask
0

T2_C2_En

Team2
Mask

Figure 4.37: Team1 color thresholding 91

4 The Proposed Reconfigurable Vision System

V

≥
≤

S T1_C1_Thr_high

xMax

xMax

S T1_C1_Thr_low

≥
≤

V T1_C1_Thr_high

V T1_C1_Thr_low

≥

H T1_C1_Thr_low

≤

H T1_C1_Thr_high

x∆

x∆

H x ∆

S x Max

V

≥
≤

S T1_C2_Thr_high

xMax

xMax

S T1_C2_Thr_low

≥
≤

V T1_C2_Thr_high

V T1_C2_Thr_low

≥

H T1_C2_Thr_low

≤

H T1_C2_Thr_high

x∆

x∆

H x ∆

S x Max

Team1_C1 Mask

Team1
Mask

Team1_C2 Mask

0

T1_C2_En

V

≥
≤

S T2_C1_Thr_high

xMax

xMax

S T2_C1_Thr_low

≥
≤

V T2_C1_Thr_high

V T2_C1_Thr_low

≥

H T2_C1_Thr_low

≤

H T2_C1_Thr_high

x∆

x∆

H x ∆

S x Max

V

≥
≤

S T2_C2_Thr_high

xMax

xMax

S T2_C2_Thr_low

≥
≤

V T2_C2_Thr_high

V T2_C2_Thr_low

≥

H T2_C2_Thr_low

≤

H T2_C2_Thr_high

x∆

x∆

H x ∆

S x Max

Team2_C1 Mask

Team2_C2 Mask
0

T2_C2_En

Team2
Mask

Figure 4.38: Team 2 color thresholding
92

4.5 Team Identification & Player Detection Module

As can be seen, the outputs of this core are two binary video streams, one for each
team. These binary streams contain the vertices (pixels with a binary value of 1). These
vertices belong to all the objects (including the players) that share the same color
used in the mask [108]. Figure 4.39a shows an example using a basketball dataset,
by which red is used for the color masking in team 1, while white is used in team 2.
Figure 4.39b shows the results of color masking for the two teams, and a zoomed-in
binary image showing the vertices (pixels with logic 1) is shown in Figure 4.39c. An-
other example from a handball game is shown in Figure 4.40a. Figure 4.40b shows
the resulted vertices for team 1 after color masking, while the results for team 2 is
shown in Figure 4.40c. Finally, these vertices are used by graph clustering to detect the
positions of the players as shown in the next section. The advantage of this approach is
that the players from different teams are separated, i.e., each of the two output binary
video streams contains only the vertices of the players that belong to the same team.
This enhances the detection rate in scenarios where two players from opposing teams
are very close to each other (e.g., occluded) [108].

(a) A zoomed-in foreground
mask from Figure 4.34f

(b) Color thresh-
olding (team
1&2)

Vertices

(c) A zoomed-in binary image
from Figure 4.39b (top)
showing the vertices

(d) BDC-graph
clustering
(team 1&2)

Figure 4.39: Results from the RGB to HSV conversion & color thresholding and BDC-
based graph clustering IP cores using a basketball dataset [108] [107]

4.5.2 BDC-based Graph Clustering

As stated in Section 3.5, graph clustering is grouping the vertices of the graph into
clusters considering the edge structure of that graph [80]. In this work, vertices are
the pixels with a binary value of 1 that result after color thresholding for each team as
shown in Figures 4.39 and 4.40. The edges are the binary distances that are calculated
using Equation 4.11 [108].

93

4 The Proposed Reconfigurable Vision System

Vertices
(Team1)

Vertices
(Team2)

(Player 1-
Team 1)

Player 1-Team 2

Player 2-
Team 2

(a) A foreground
mask (hand-
ball game)

Vertices
(Team1)

Vertices
(Team2)

(Player 1-
Team 1)

Player 1-Team 2

Player 2-
Team 2

(b) Color thresh.
(using yellow
color, team 1)

Vertices
(Team1)

Vertices
(Team2)

(Player 1-
Team 1)

Player 1-Team 2

Player 2-
Team 2

(c) Color thresh.
(using white
color, team 2)

Vertices
(Team1)

Vertices
(Team2)

(Player 1-
Team 1)

Player 1-Team 2

Player 2-
Team 2

(d) Visualized clus-
tering results
(team 1)

Vertices
(Team1)

Vertices
(Team2)

(Player 1-
Team 1)

Player 1-Team 2

Player 2-
Team 2

(e) Visualized clus-
tering results
(team 2)

Figure 4.40: Results from the RGB to HSV conversion & color thresholding and BDC-
based graph clustering IP cores using a handball dataset

BDC=

¨

1 if |X2 − X1|< dth and |Y2 − Y1|< dth

0 otherwise
(4.11)

where: dth is the threshold value for maximum distance.

Due to its low resource requirements and adequate performance, the Chebyshev
method is used to implement the BDC calculation. It does not involve multiplication and
requires only subtraction and logical AND operations as shown in Equation 4.11 [107].
The BDC-based graph clustering IP core has been developed for FPGA-based multi-
robot tracking by the Cognitronics and Sensor Systems research group at Bielefeld
university [109] [110]. It is modified in order to be used for clustering the vertices in
the player tracking application [108]. Two instances of the BDC-based graph cluster
IP core are used in the proposed system, one for each team as shown in Figure 4.35.
The block diagram of the implemented BDC-based graph cluster IP core is shown in
Figure 4.41, while the flowchart illustrating the core’s operation is shown in Figure 4.42.

As can be seen in Figure 4.41 and 4.42, the coordinates of the incoming vertices are
buffered in an input FIFO. When the first vertex is received, a new cluster is created.
For the next vertex, the binary distance is calculated between the coordinates of that
vertex and the created cluster. If the BDC equals to 1, this vertex is considered to
belong to this cluster, and the centroid of that cluster is updated accordingly. Otherwise,
if the BDC value is 0, a new cluster is created. The process is repeated for all the
subsequent vertices [108]. This means, when a new vertex is read from the input FIFO,
the distance between the centroid of this vertex and the center of the first existing
cluster is calculated using the BDC unit. If this distance is 0, the binary distance is

94

4.5 Team Identification & Player Detection Module

Binary
Distance
Calc. Unit

Cluster &
Centroid
Updater

New Cluster
Creation

Input
FIFO
Buffer

Output
FIFO
Buffer

X1

X2

Y1

Y2

d

d

<

<

-

-

Objects positions
(players)

Clusters
Centroids
Registers

>

Minimum
Vertices Thr.

Vertices

1

2

3

Cluster 1
(e.g. Player 1)

BDC = 0
Edge

BDC = 1

Team 1

Vertices
(Logic 1)

5

Cluster 2

4 Edge
BDC = 1

Figure 4.41: BDC-based graph clustering and IP core block diagram [110] [108] [107]

calculated again between this vertex and the next existing cluster. This process is
repeated until the end of the last existing cluster if the resulting calculated distance
values are 0. In this case, a new cluster is created using the coordinates of that vertex.
On the other hand, if a distance value of 1 is found between the vertex centroid and
one of the existing clusters, the centroid of this cluster is updated using this vertex
coordinates. Subsequently, a new vertex is read from the input FIFO, and the clustering
process is repeated until all vertices are processed and the end of the frame is reached
as shown in Figure 4.42 [107]. The vertices that belong to the same clusters are shown
in Figure 4.41 after clustering is performed. For the basketball example shown in
Figure 4.39, the clustering results are shown in Figure 4.39d. While for the handball
example (shown in Figure 4.40), the clustering results are shown in Figures 4.40d
and 4.40e for team 1 and team 2, respectively. In these examples, different colors
are used for visualization, showing the resulted clusters. Finally, the centroid of each
cluster is the average of the coordinates of all the vertices that belong to the same
cluster as calculated using Equation 4.12 [107]. An example of the calculated centroids
of the players for both teams is shown in Figure 4.35.

x i =
1
K

K
∑

j=1

x j , and y i =
1
K

K
∑

j=1

y j (4.12)

where:
x i and y i are the centroid’s coordinates of cluster i.
K is the number of vertices in a cluster.
x j and y j are the coordinates of vertex j.

95

4 The Proposed Reconfigurable Vision System

Create new
cluster

Read new vertex from the
input FIFO

First
vertex?

Find connection between the vertex
and the cluster using the BDC unit

BDC = 1?

Yes

No

Last
existing cluster?

Update cluster
(centroid and

number of vertices)

Last vertex
& end of frame?

Yes

No

Store the clusters centroids
in the output FIFO

Yes

No

No Yes

Start

End

Read cluster
(centroid and number of vertices)

Nr. of vertices
> Thr?

Last cluster?

Yes

No

Yes

No

Read an exisitng cluster

Figure 4.42: BDC-based graph clustering flowchart [110] [107]

96

4.6 Resource Utilization

In order to reduce the false positives (non-player detections), only the centroids of
the clusters with a number of vertices higher than a threshold value are considered and
written to the output FIFO buffer as depicted in Figures 4.41 and 4.42. These centroids
represent the positions of the detected objects including the players. Therefore, the
output of the first and second BDC-graph cluster IP cores include the players’ positions
of team 1 and team 2, respectively, and are shown in green and yellow squares in
Figure 4.43. Here, fixed height and width values are used for the squares (30x30) since
the player size does not change significantly in different frame locations. The centers
of these squares are the centroids from the two BDC-graph cluster IP cores. Finally,
these centroids are transferred to the host-PC for further processing, including player
tracking as shown in Section 4.7 [107].

Figure 4.43: Detection results for both teams (green & yellow squares) [108] [107]

4.6 Resource Utilization

In this section, the FPGA resources that are required by the different IP cores for the
processing modules are presented. These resources include the amount of Flip Flops
(FFs), Look-Up-Tables (LUTs), Block RAMs (BRAMs), and Digital Signal Processors
(DSPs). The FPGA architecture is implemented using a Xilinx Virtex-4 (XC4VFX100)
FPGA. The resources used by the MC_GigEV IP core are shown in Table 4.1 for one to
four camera configurations. As can be seen, the required resources are not doubled
if an additional camera is supported. As an example, the percentage of the required
FFs, LUTs, and BRAMs using the Virtex-4 FPGA for one camera configuration are 1.6%,
1.9%, and 3.5%, respectively. If the two camera configuration of the MC_GigEV core is
used, only 1.8% of the FFs, 2.6% of the LUTs, and 4.5% of the BRAMs are required.

97

4 The Proposed Reconfigurable Vision System

Table 4.1: Device utilization (Virtex-4 FX100-11) for the MC_GigEV IP core with con-
figurations for 1, 2, 3 and 4 cameras [106]

MC_GigEV IP Core FFs LUTs BRAM16s DSP48s

Virtex-4 (FX100-11) 84,352 84,352 376 160

1 Camera
1317 1618 13 0
1.6% 1.9% 3.5% 0%

2 Cameras
1553 2215 17 0
1.8% 2.6% 4.5% 0%

3 Cameras
1786 2547 21 0
2.1% 3% 5.6% 0%

4 Cameras
2031 3049 25 0
2.4% 3.7% 6.6% 0%

The resources and the maximum clock frequencies (Fmax) of the IP cores in the
processing modules of the FPGA architecture are shown in Table 4.2. Here, an operating
clock frequency of 100 MHz for the vision processing IP cores is used. As can be seen,
the video acquisition module requires less than 10% of the available FFs and LUTs of
the Virtex-4 FPGA, while 13.6% of BRAMs is used. These BRAMs are required for the
FIFO buffers in the MC_GigEV, Video File Controller (used as row buffers), and Xilinx
TEMAC IP cores. For the video preprocessing module, most resources are utilized by
the AWB core, since it involves two divisions (cf. Figure 4.22) which require a big
amount of FPGA resources. The player segmentation module requires less than 5%
of the total resources, while the team identification & player detection module uses a
relatively large amount of resources as shown in Table 4.2.

In the team identification & player detection module, there are two instances of
the BDC-based Graph Clustering IP core, each uses two divisions (cf. Equation 4.12),
requiring a large amount of the FPGA resources. Additionally, logic resources are used
by the clustering operation (cf. Figure 4.42) and the registers for clusters’ centroids (cf.
Figure 4.41). These registers are used to store intermediate values during the clustering
process. The number of these registers depends on the maximum supported clusters
(objects) that can be detected in one frame. In this implementation, this number is set
to 128 to include the players, false positives, and objects correspond to noise detections
(i.e., clusters that have vertices less than or equal to the predefined "minimum vertices
threshold" value as shown in Figure 4.41). The base system consists of the MPMC,
(LB-Slave to NPI/AXI4-S, display, AXI4-S to NPI (4x)) controllers, PPC system and clock
management [108]. The complete FPGA architecture requires around 60% of the Xilinx
Virtex-4 FPGA. The achieved maximum clock frequencies (Fmax) of the IP cores in

98

4.6 Resource Utilization

Table 4.2: Device Utilization (Virtex-4 FX100-11)

FFs LUTs BRAMs DSP Fmax
(MHz)

Virtex-4 (FX100-11) 84352 84352 376 (18Kb) 160

MC_GigEV (2xCameras) 1553 2215 17 0 150

GigE Camera Config 289 292 0 0 400

Video File Controller 889 703 12 0 240

TEMAC 3188 4161 22 0 140

AXI4-S Mux (x2) 278 152 0 0 N/A

Video Acquisition Module 6197 7523 51 0
140

7.3% 8.9% 13.6% 0%

Demosaicing (x2) 1212 3922 2 0 140

AWB (x2) 5132 5544 4 52 190

Cropping (x2) 704 824 0 0 250

Video Merge 474 458 8 0 210

AXI4-S Mux 139 76 0 0 N/A

Video Preprocessing Module 7661 10824 14 52
140

9.1% 12.8% 3.7% 32.5%

RGB to Gray 161 156 0 3 200

Background Subtraction 639 684 4 0 170

Morphological Operation 211 334 3 0 220

Masking 178 187 9 0 220

Player Segmentation Module 1189 1361 16 3
170

1.4% 1.6% 4.3% 1.9%

RGB to HSV Conv. & Color Thr. 2012 2088 5 18 260

BDC-based Graph Cluster (x2) 16842 12402 26 28 190

Team Identification & Player
Detection Module

18854 14490 31 46
190

22.4% 17.2% 8.2% 28.8%

Base System 15096 15639 98 0
N/A

17.9% 18.5% 26.1% 0%

Total 48997 49837 210 101
N/A

58.1% 59.1% 55.9% 63.1%

99

4 The Proposed Reconfigurable Vision System

each module are reported as shown in Table 4.2. Among these values, the lowest Fmax
is used as the maximum clock frequency of the module.

In addition to the implementation on the Xilinx Virtex-4 FPGA, the system has been
realized on a Xilinx Virtex-7 (VX690T-2), showing the impact of utilizing a more recent
architecture and proving the portability of the developed IP cores. In this case, the PLB
bus interface (that is used in various implemented IP cores to configure their’s registers)
is replaced with the AXI4-Lite interface that is supported by the Virtex-7 FPGA [107].
The required resources and the maximum frequencies are reported in Table 4.3. In
general, the number of used FFs in the IP cores slightly differs as compared with the
required FFs using the Virtex-4 FPGA. However, the utilized LUTs using the Virtex-7
FPGA are reduced compared with the Virtex-4 FPGA implementation since the LUT
size in Virtex-7 is 6, while Virtex-4 architecture has a LUT size of 4 (cf. Table 2.2).
In Virtex-7 FPGA, the BRAMs size is 36 Kb, and each block can also be used as two
independent 18 Kb BRAMs [93]. The used DSPs in the IP cores are equal in both FPGAs.
As compared with the Virtex-4 FPGA implementation, the achieved Fmax values of the
IP cores are higher using the more recent Virtex-7 FPGA.

4.7 Player Tracking

As shown in Figure 4.2, the compute-intensive operations for the pixel processing
to detect the player positions in every frame are handled by the FPGA while the less
compute-intensive tracking is done on the host-PC. The host-PC receives the positions of
the detected objects from the FPGA for further processing. These detections include true
positives (players) and false positives (non-players) for both teams. In the following
section, player tracking on the host-PC is explained in detail. Player transfer between
the two cameras is explained in Section 4.7.3 [107].

4.7.1 Single Camera Player Tracking

In this work, player tracking is achieved on the host-PC using the tracking-by-detection
approach as shown Figure 4.44. Here, the received detections from the FPGA are
represented by blue and red circles, corresponding to the positions of players from
team 1 and 2, respectively. In Figure 4.44, three players from team 1 and two players
from team 2 are moving from the left to the right direction in five frames. To achieve
player tracking, association of the detections with the players in these frames is re-
quired. In the first frame, the received detections are used to create tracks. Player
tracking is achieved by associating the subsequent detections to these tracks as shown
in Figure 4.44. The Munkres’ version of the Hungarian algorithm [68] is used to solve
this data association problem, assigning one detection to one track. First, the Euclidean

100

4.7 Player Tracking

Table 4.3: Device Utilization (Virtex-7 VX690T-2)

FFs LUTs BRAMs DSP
Fmax
(MHz)

Virtex-7 (VX690T-2) 866400 433200
1470/2940

3600
36Kb/Kb18

MC_GigEV (2xCameras) 1444 1525 8/1 0 200

GigE Camera Config 234 183 0/0 0 600

Video File Controller 845 666 6/0 0 280

TEMAC 1700 1400 0/0 0 280

AXI4-S Mux (x2) 182 202 0/0 0 N/A

Video Acquisition Module 4405 3976 14/1 0 200

Demosaicing (x2) 1024 2126 0/2 0 360

AWB (x2) 5236 3554 0/4 52 370

Cropping (x2) 566 416 0/0 0 400

Video Merge 405 376 4/0 0 330

AXI4-S Mux 91 101 0/0 0 N/A

Video Preprocessing Module 7322 6573 4/6 52 330

RGB to Gray 154 104 0/0 3 330

Background Subtraction 584 669 0/4 0 220

Morphological Operation 195 211 0/3 0 240

Masking 169 142 4/1 0 230

Player Segmentation Mod-
ule 1102 1126 4/8 3 220

RGB to HSV & Color Thr. 1881 1483 2/1 18 360

Graph Clustering (x2) 16426 8590 10/6 28 230

Team Identification & Player
Detection Module 18307 10073 12/7 46 230

Total 31136 21748 34/22 101 N/A

101

4 The Proposed Reconfigurable Vision System

distance is calculated between every detection (D) and the current position of each
track (T). These distance values are considered as the cost of matching a detection to
track, and they are used to build the cost matrix. After that, the Hungarian algorithm is
applied to this cost matrix, assigning a detection to each track using minimum cost. If
the number of tracks is larger than the detections, the prediction values from Kalman
filters are assigned to the tracks that did not have detections assigned to them as shown
in Figure 4.44 (frame 3, team 1). If the number of detections is larger than the tracks,
the unassigned detections are used to create new tracks as depicted in Figure 4.44
(frame 3, team 2). This process of data association is applied to all the subsequent
frames [107]. More details about these data assignments are shown in the next section.

Track1

Fr.# 1 2 3 4 5

Detection – Team1
Detection – Team2

Track2

Track1

Track2

Track3

Prediction

Fr.# 1 2 3 4 5

Track – Team2

Tracks
Creation

Data
Association

Track – Team1

Detections

D1

T2

T1

T3

D2

d(T3,D2)

d(T2,D2)

d(T1,D2)

Fr.# 3 (Team 1)

d(T1,D1)

d(T2,D1)

Euclidean distance
between a track i
and a detection j

d(Ti,Dj)
D1

T2

T1
D2

d(T1,D3)

d(T2,D2)

d(T1,D2)

d(T2,D1)

D3

Track3

Fr.# 3 (Team 2)

d(T1,D1)

LegendTeam
1&2

Ti Track i
Dj Detection j

Figure 4.44: Overview of player tracking and data association [107]

Each track consists of several parameters (e.g., ID, Position, next position (estimated
by Kalman filter), covered distance,...) as shown in Figure 4.45. These parameters
contain different information to manage and monitor the track’s status. After the tracks
are created, and data association is applied, the parameters of the tracks are updated
accordingly. As shown in Figure 4.45, the track’s ID is assigned to each track sequentially
according to the created order of the tracks. Position stores the current position of the
object in a frame. The age of the track is the number of frames since it was first created.
Detection_count is the total number of frames where an object is detected, and this
detection is assigned to the track. Visibility is the ratio between the Detection_Count of
the track and its age. A visibility of 1 means that the object that belongs to the track is
detected in all the frames since the track was created. A lower visibility value implies
that the object was not detected in some frames. Consecutive_no_detection_count stores
the number of frames where the object is not detected in consecutive frames. When the
object is detected, the consecutive_no_detection_count is reset to zero. The total covered
distance (in pixels) that the object had crossed is stored in the distance parameter [107].

False positives can be introduced, e.g., through the substitute players (cf. Figure 2.4)
who wear the same jerseys as the active players and are located close to the court. If
these players move slightly, they will not be considered as part of the background after
background subtraction, but they will belong to the foreground objects. In this case,

102

4.7 Player Tracking

Track N

Track 2

Track 1 (e.g. Player 1)

ID The identity of the track

Position Object position coordinate in the current frame

Age Number of frames since the track was created

Detection_Count The total number of frames by which a detection is assigned to the track

Visibility Equal to (Detection_Count) divided by (Age). (1 means the object is always detected)

Consecutive
No_Detction_Count

The number of consecutive frames by which no detection is assigned to the track. It is reset to 0
after a detection is assigned.

Distance Total distance (in pixels) the object had crossed

P_Score Position Score is an accumulative value based on the object’s position. (higher score if the
object is inside the court)

Kalman Filter To predict object’s location in the next frame

Trace The last N positions of the track

Consecutive
Visible_Score_Count

The number of consecutive frames by which a detection is assigned to a track in the region of
non-interest

Player Selector
Confidence = A x P_Score + B x Detection_Count + C x Distance, where A, B, and C are predefined weights

Figure 4.45: Parameters of a track [107]

103

4 The Proposed Reconfigurable Vision System

they can be detected as players (i.e., false positives). Additional false positives may
arise, e.g., from the digital advertising panels when new content appears, making it
part of the foreground. If these contents have the same color as the player’s jerseys,
these panels can lead to false detection of one or more players. To reduce the effects of
these false positives, a predefined Region of Non-Interest (RONI) is used which includes
most of the substitute players area and the advertisement panels outside the sports
court. This region is user-defined, and it consists of two sub-regions; the hard and
soft decision RONI as shown in Figure 4.46. In the hard decision region, there is no
overlap between the active players and this region during the game. Therefore, all
the detections (which are FPs) in this region are discarded. The soft decision region is
slightly larger than the hard region as shown in Figure 4.46, and an active player could
be detected in this region. Therefore, a player track should be distinguished from a
false track. This is achieved using the P_score (position score) parameter. This score is
an accumulative value based on the positions of the detected objects in the court. It is
incremented by an "P" value if the detected object’s position is outside the soft decision
RONI region. Otherwise, the P_score stays the same. In the proposed system, "P" is set
to 1 (a higher value could also be used). As a result, the tracks that correspond to false
alarms (non-players) will have a low P_score value, whereas the players’ tracks will
have a high value [107].

An active player
(Team1)

A substitue player
outside the court

(Team2)RONI
(Soft decision)

RONI
(Hard decision)

Figure 4.46: Soft and hard decision region of non-interest (RONI) [107]

A Kalman filter is used to predict the next position for each track. This prediction is
used if no detection is assigned to an existed track as explained earlier. If an associated
detection is found, the Kalman filter is updated with that detection. The last N positions
of a player are stored in the trace. These positions are used for display, visualizing
player tracking. In this system, N is set to 20 (a different number could be used to
display a less or higher number of player last positions). Consecutive_visible_score_count
is the number of consecutive frames when the track has detections in the soft decision

104

4.7 Player Tracking

RONI region. Otherwise, this parameter is reset to zero. The tracks that correspond to
false alarms or the tracks that did not have assigned detections for a long time could
be deleted based on their parameters as shown in Algorithm 4.1 [107].

Algorithm 4.1 Track deletion [107]

1: for (all the tracks in each team) do
2: if ((track’s age < age_thr) AND (visibility < visibility_thr)) OR

(consecutive_no_detection_count>consecutive_no_detection_count_max_thr) OR
(consecutive_visible_score_count>consecutive_visible_score_count_max_thr) then

3: Delete this track

For a particular sport, the number of players per team (P) is fixed (five players per
team for basketball, and six players per team for handball excluding the goalkeeper).
Since the number of tracks can be bigger than the number of players, a player selector
confidence is used to select P tracks (i.e., five tracks for basketball and six tracks for
handball) from the existing tracks. These selected tracks have the highest confidence
values, and they are considered as the players of one team. The player selector confidence
is equal to a weighted sum of the P_score, detection_count, and the distance as shown in
Figure 4.45. In this system, the used weights of the player selector confidence A, B, and
C (based on empirical tests) are 0.5, 0.25, and 0.25, respectively. This player selector
confidence is also used to handle the player substitutions, where they are unlimited in
basketball and handball games [107]. As a player leaves the court, he usually enters
the soft decision RONI, where his P_score value does not increase further. After that, he
enters the hard decision RONI, where his detections in that area is discarded, causing
the conesecutive_no_dectection_count and conesecutive_visible_score_count to increase.
As a result, the track that corresponds to this player is deleted using Algorithm 4.1.
On the other hand, when a substitute player enters the court, a new track is created,
and his player selector confidence value starts to increase during the subsequent frames.
As a result, the track corresponding to this player is selected among the P tracks that
represent the team.

The flowchart of the overall player tracking steps is shown in Figure 4.47. These
steps are applied for the detections and tracks in every frame. The number of tracks
in each frame is equal to the players’ tracks and false positives tracks. New tracks are
created as required for the unassigned detections in each frame. Figure 4.48 shows
the final player tracking results. In this figure, the color used for the trajectories and
the corresponding bounding boxes indicate the players that belong to the same team.
Additionally, the tracks’ ID and the current position are shown for each player [107].

105

4 The Proposed Reconfigurable Vision System

Detected objects
(players and non-players)

from FPGA

Create tracks for
the detected objects

Assign detections to tracks
using Hungarian algorithm

Search for all unassigned
detections

Create new tracks for the
unassigned detections

If number of
tracks = 0?

Sort the tracks based on their
confidence values

Select P tracks from the
existing tracks with the highes

confidence values
(P = Nr. of players/team)

Yes

No

Calculate the cost matrix
based on Euclidean distances
between detections and tracks

Unassigned
detection is outside

RONI
(hard dec.)?

Delete false tracks
(non-players)

Yes

No

Predict next positions of the
objects in the tracks

Update
assigned track’s

parameters

Track
has a detection

assigned
to it?

Use prediction

Update
unassigned track’s

parameters

Yes

No

Update tracks‘ parameters

End

Start

Figure 4.47: Player tracking flowchart

106

4.7 Player Tracking

Figure 4.48: Visualization of player tracking results [107]

4.7.2 Detections Association to Tracks

In every frame, detections are assigned to tracks using the Munkres version of the Hun-
garian algorithm [68] as stated in the previous section. The cost matrix is calculated
for every frame based on the Euclidean distance between the current position of each
existing track (T) and each detection (D). Equation 4.13 shows the Euclidean distance
d(Ti, D j) between the current position of a track i and a detection j. The cost matrix is
shown in Figure 4.49. After the cost matrix is built, the Hungarian algorithm is applied
to it, resulting in assigning one detection to each track using minimum cost.

d(Ti, D j) =
q

(Tix − D jx)2 − (Tiy − D jy)2 (4.13)

where:
d is the Euclidean distance between a track Ti and a detection D j.
D jx ,y is the position of detection j.
Tix ,y is the current position of track i.

Figure 4.50a shows an example, by which there are three detections (D1, D2, and
D3) and three tracks (T1, T2, and T3). T1 corresponds to an object who is moving
from the right to the left direction, while T2 and T3 are objects moving from the left to
the right. The cost matrix is calculated as depicted in Figure 4.50b. The Hungarian
algorithm is applied to this cost matrix to find the minimum cost of assigning each
detection to each track. The minimum cost is the lowest total distance of assigning all
the detections to the tracks. After applying the Hungarian algorithm to this example,
detection D1 is assigned to track T3, D2 is assigned to T1, and D3 is assigned to T2 as
shown in Figure 4.50c. In this case, the total minimum cost of all assignments (shown

107

4 The Proposed Reconfigurable Vision System

D1 D2 D3 ••• Dj

T1 d(T1,D1) d(T1,D2) d(T1,D3) ••• d(T1,Dj)

T2 d(T2,D1) d(T2,D2) d(T2,D3) ••• d(T2,Dj)

T3 d(T3,D1) d(T3,D2) d(T3,D3) ••• d(T3,Dj)

•••

•••

•••

•••

•••

•••

Ti d(Ti,D1) d(Ti,D2) d(Ti,D3) ••• d(Ti,Dj)

T
ra

ck
s

Cost
Matrix

Detections

Figure 4.49: Cost matrix

using red rectangles in Figure 4.50b) is 2.0+ 2.3+ 1.0= 5.3.

However, if there is a detection which is relatively far from the existed tracks, ap-
plying the Hungarian algorithm to the cost matrix (shown in Figure 4.49) may give
wrong assignment results. This is illustrated in example (2) as shown in Figure 4.51a.
Here, the cost matrix is calculated as depicted in Figure 4.51b. Based on this matrix,
the results of the assignment is shown in Figure 4.51c. In this case, the total minimum
cost is 25+ 50 = 75, and D1 is assigned to T1 while D2 is assigned to T2. However,
for the correct assignment, D2 should be assigned to T1 instead of T2. Additionally,
D1 should not be assigned to any of the existing tracks, and a new track (T3) must be
created and associated with this detection.

To solve this problem, the cost matrix (shown in Figure 4.49) is padded with extra
detection columns using a predefined distance threshold d_thr as shown in Figure 4.52.
In this case, if the calculated distance values between the current position of a track
and all the detections are greater than this d_thr value, this track is assigned this
padded detection (d_thr). The empty rectangles in the padded cost matrix (shown
in Figure 4.52) are filled with a very large number (10000 is used in this system) to
ensure they are not assigned to any track, and only the padded detection with the
d_thr value can be used for the assignment. The selected d_thr value in this work is
based on empirical tests. The number of the padded detection columns is equal to the
number of the existing tracks.

For the previous case (example (2) shown in Figure 4.51a), the padded cost matrix
with a threshold value (d_thr = 5) is used as shown in Figure 4.53a. In this case, two
additional detection columns are padded (since there are two tracks). After applying
the Hungarian algorithm to this matrix, D2 is assigned to T1 and D4 is assigned to
T2 with the total minimum cost of 2+ 5= 7 as shown in Figure 4.53b. Since D4 is a
padded detection and not a real detection, Track T2 is considered as an unassigned track.

108

4.7 Player Tracking

D3T2

T3

T1

D1

D2
d(T3,D3)

d(T3,D1)

D3T2

T3

T1

D1

D2

(a) Assigning three detections to three tracks

D1 D2 D3

T1 d(T1,D1) d(T1,D2) d(T1,D3)

T2 d(T2,D1) d(T2,D2) d(T2,D3)

T3 d(T3,D1) d(T3,D2) d(T3,D3)

D1 D2 D3

T1 52.3 2.0 70.6

T2 68 73 2.3

T3 1.0 56.9 58

Cost
Matrix

Detections

T
ra

ck
s

Cost
Matrix

Detections

T
ra

ck
s

(b) Cost matrix filled with Euclidean distance
values

D3T2

T3

T1

D1

D2
d(T3,D3)

d(T3,D1)

D3T2

T3

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

D3T2

T3

T1

D1

D2

(c) Assiged detections to tracks results

Figure 4.50: Example (1) - Detections assignment to tracks

T2

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

T2

T1

D1

D2

T2

T1

D1 (T3)

D2

T2

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

d_thr

d_thr

D3

D4

D3

T2

T1

D1 / T3

D2

Prediction
(KF)

(a) Two detections and two tracks

D1 D2

T1 25 2

T2 78 50

D1 D2 D3 D4

T1 25 2 5

T2 78 50 5

Padded
Detections

Cost Matrix
Detections

T
ra

ck
s

Cost Matrix
Detections

T
ra

ck
s

(b) Cost matrix

T2

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

T2

T1

D1

D2

T2

T1

D1

D2

T2

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

d_thr

d_thr

D3

D4

D3

(c) Detections are incorrectly assigned to tracks

Figure 4.51: Example (2) - Detections are incorrectly assigned to tracks

109

4 The Proposed Reconfigurable Vision System

D1 D2 ••• Dj Dj+1 Dj+2 ••• Dj+i
T1 d(T1,D1) d(T1,D2) ••• d(T1,Dj) d_thr •••

T2 d(T2,D1) d(T2,D2) ••• d(T2,Dj) d_thr •••

T3 d(T3,D1) d(T3,D2) ••• d(T3,Dj) •••

••• •••

•••

•••

•••

•••

Ti d(Ti,D1) d(Ti,D2) ••• d(Ti,Dj) ••• d_thr

Padded DetectionsCost Matrix Detections
Tr

ac
ks

Figure 4.52: Cost matrix with padded columns (detections)

Therefore, the prediction value from Kalman filter is used for T2 in this frame. Further-
more, D1 is not assigned to any track as can be seen in Figure 4.53a. Since D1 is a real
and not padded detection, it is used to create a new track (T3) as shown in Figure 4.53b.D1 D2

T1 25 2

T2 78 50

D1 D2 D3 D4

T1 25 2 5

T2 78 50 5

Padded
Detections

Cost Matrix
Detections

T
ra

ck
s

Cost Matrix
Detections

T
ra

ck
s

(a) Padded cost matrix with d_thr = 5

T2

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

T2

T1

D1

D2

T2

T1

D1 (T3)

D2

T2

T1

D1

D2

d(T3,D1)

d(T1,D1)

d(T1,D2)

d_thr

d_thr

D3

D4

D3

T2

T1

D1 / T3

D2

Prediction
(KF)

(b) Correct result after the assignment

Figure 4.53: Solving assignment problem for example (2)

Example (3) shows another assignment scenario, by which the number of detections
is higher than the number of tracks as depicted in Figure 4.54. In this example, there
are three detections (D1, D2, and D3) and two tracks (T1 and T2), resulting in one
unassigned detection as shown in Figure 4.54a. Figure 4.54b show the padded cost
matrix and the results after applying the Hungarian algorithms. As can be seen, there is
one unassigned detection (D1) which is used to create and initialize a new track (T3).
On the other hand, if the number of detections is less than the number of tracks, the
prediction value from Kalman filter is used for the track that has no detection assigned
to it. This case is shown in example (4), depicted in Figure 4.55a. In this example,
there are two detections (D1 and D2) and three tracks (T1, T2, and T3). The padded
cost matrix is shown in Figure 4.55b. In this case, the two existed real detections
are assigned to two tracks, while track (T3) gets the padded detection (D5) for the
assignment with a total minimum cost of 2.0+ 2.3+ 5= 9.3. Since T3 is assigned a
padded detection, the value of the predicted position from Kalman filter is used as the
track’s position for this frame.

110

4.7 Player Tracking

D3T2

T1

D1

D2

Unassigned Detection

D2T2

T3

T1D1

Unassigned Track

(a) Three detections and two tracks

D1 D2 D3 D4 D5

T1 52.3 2.0 70.6 5 1000

T2 68 73 2.3 1000 5

Padded
DetectionsCost

Matrix

Detections

T
ra

ck
s

(b) Cost matrix and the assignment results

Figure 4.54: Example (3) - An unassigned detection

D3T2

T1

D1

D2

Unassigned Detection

D2T2

T3

T1D1

Unassigned Track

(a) Two detections and three tracks

D1 D2 D3 D4 D5

T1 2.0 70.6 5 1000 1000

T2 73 2.3 1000 5 1000

T3 56.9 58 1000 1000 5

Detections Padded DetectionsCost
Matrix

T
ra

ck
s

(b) Cost matrix and the assignment results

Figure 4.55: Example (4) - An unassigned track

111

4 The Proposed Reconfigurable Vision System

4.7.3 Player Track Transfer Between the Two Cameras

Since two cameras (left and right) with an overlapping region are used in this work to
cover the whole court as depicted in Figure 4.1, player tracking must be maintained
when the players are moving from one camera view to the other. The proposed
automatic player transfer method is shown in Figure 4.56. Here, an overlapping region
is used where the players are visible in the two frames from the right and left camera as
shown in Figure 4.56a. In this figure, the players are moving from the right to the left
direction. Furthermore, two regions are defined where each player position is checked:
player transfer left (Pl_Tran_L) and right (Pl_Tran_R) as shown in Figure 4.56b with
the yellow and blue rectangles, respectively. These regions are defined by the court
middle line which is visible in both camera views (Mid_L and Mid_R) and the merge
line (the borderline where the two frames are merged). If a player is detected inside
one of these regions, the player transfer algorithm is applied to transfer the tracker from
one camera to the other depending on the movement direction of that player [107].

(a) Players are visible in the two cameras

ΔX_R

Mid_R(x,y)

Merge_Line(x,y)

Mid_L(x,y)

ΔX_L

ΔY_RΔY_L

PlPl

Pl_Tran_R
Region

Pl_Tran_L
Region

Mid_L Mid_R

Middle
Circle

ΔX_R

Mid_R(x,y)

Merge_Line(x,y)

Mid_L(x,y)

ΔX_L

ΔY_RΔY_L

PlPl

Pl_Tran_R
Region

Pl_Tran_L
Region

Mid_L Mid_R

Middle
Circle

(b) Main parameters used for player
transfer [107]

Figure 4.56: Player transfer between the two cameras

112

4.7 Player Tracking

The realized algorithms to transfer the player’s track from the left to the right camera
and from the right to the left camera are shown in Algorithm 4.2 and Algorithm 4.3,
respectively. These algorithms are based on the fact that the distance between Mid_L
and Merge_line is equal to the distance between Mid_R and Merge_line [66]. As an
example, if a player (Pl) reaches the white middle line (Mid_L), and he is moving from
the left to the right camera, his distance to the middle line (∆ X_L and ∆ Y_L) in the
left image is equal to his distance to the middle line in the right image (∆ X_R and
∆ Y_R) as shown in Figure 4.56b. However, the two merged frames from the cameras
are usually not perfectly aligned. Therefore, a predefined threshold is used when
the player’s position in one camera is compared to his position in the other camera.
Additionally, the direction of player movement is extracted from the difference (using
the x coordinate) of the player’s position between the current frame and the previous
n frame (e.g., 20). A positive difference value means that the player is moving from
the left to the right direction, while a negative value means the player is moving from
the right to the left direction.

Algorithm 4.2 Player transfer from the left to the right camera [107]

1: for i = 1 to number of players do
2: if player(i).position is inside the Pl_Tran_L region then
3: Calculate ∆X_L & ∆Y_L between player(i).position and Merge line
4: for j=1 to number of players do
5: if player(j).position is inside Pl_Tran_R region then
6: Calculate ∆X_R & ∆Y_R between player(j).position and Merge line
7: if |∆X_L − ∆X_R|< ∆X_Thr AND

|∆Y_L − ∆Y_R|< ∆Y_Thr then
8: if (Player(i).age > player(j).age) AND

(Player(i).trace(last) − Player(i).trace(first) > 0) then
9: Copy player(j) to player(i)

10: Delete player(j)
11: break

Therefore, a player’s track is transferred from the left to the right camera (according
to Algorithm 4.2) if three conditions are met. The first one is to verify that the player
in left camera view (Pl_Tran_L region) is the same player in the right camera view
(Pl_Tran_R region). The next step is to verify that the track that corresponds to the
player in the (Pl_Tran_R) region is a newly created track (since the player has recently
appeared in the right camera view). Finally, the direction of player’s movement from the
left to the right camera view is verified. If all these conditions are met, the parameters
of the corresponding track in the (Pl_Tran_L) region are copied to the track in the
(Pl_Tran_R) region. After that, the track in the (Pl_Tran_L) region is deleted [107].

113

4 The Proposed Reconfigurable Vision System

The player transfer from the right to the left camera view is performed vice versa, and
it is shown in Algorithm 4.3.

Algorithm 4.3 Player transfer from the right to the left camera

1: for i = 1 to number of players do
2: if player(i).position is inside the Pl_Tran_R region then
3: Calculate ∆X_R & ∆Y_R between player(i).position and Merge line
4: for j=1 to number of players do
5: if player(j).position is inside Pl_Tran_L region then
6: Calculate ∆X_L & ∆Y_L between player(j).position and Merge line
7: if |∆X_R − ∆X_L| < ∆X_Thr AND

|∆Y_R − ∆Y_L| < ∆Y_Thr then
8: if (Player(i).age > player(j).age) AND

(Player(i).trace(last) − Player(i).trace(first) < 0) then
9: Copy player(j) to player(i)

10: delete player(j)
11: break

Figure 4.57 shows an example of players transfer from the right to the left camera. In
figure 4.57a, the player with ID 3 approaches the middle line in the right camera frame.
At the same time, he is detected in the frame from the left camera. Using algorithm 4.3,
the player’s track is transferred from the right to the left camera view in the next frame
as shown in Figure 4.57b [107].

114

4.8 Summary

(a) Frame n (b) Frame n+1

Figure 4.57: Player transfer from the right to the left camera [107]

4.8 Summary

In this chapter, the proposed reconfigurable system for player tracking in indoor sports
has been presented. It consists of the FPGA architecture and the CPU-based pro-
cessing system. The FPGA architecture includes various modules, performing the
compute-intensive vision processing tasks. These modules are video acquisition, video
preprocessing, player segmentation, and team identification & player detection modules.
Each module consists of different IP cores, by which the design and implementation
of these cores on the FPGA are presented. Additionally, the resource utilization of
these cores and the overall FPGA architecture is depicted. The complete FPGA system
requires around 60% from the available resources of the Virtex-4 FPGA. The output of
the FPGA is the detected objects, including the players that are sent to the host-PC for
further processing.

On the host-PC, player tracking is achieved using the tracking-by-detection approach.
The received detections from the FPGA are used to create tracks, consisting of different
parameters. Player tracking is achieved by associating subsequent detections to these

115

4 The Proposed Reconfigurable Vision System

tracks. Finally, player tracks transfer between the two cameras is performed, achieving
player tracking over the whole sports court.

In the next chapter, the proposed system is evaluated using benchmark datasets. The
evaluation includes player detection and tracking as well as performance analysis of
the FPGA architecture. Additionally, a comparison of the proposed system with the
existing work shown earlier in Section 2.5 is depicted.

116

5 System Evaluation and Results

In this chapter, the proposed reconfigurable system is analyzed and evaluated. First, the
system realization and the used datasets for the evaluation are shown, followed by the
player detection and tracking evaluation. Subsequently, the performance evaluation of
the FPGA architecture is presented. Finally, a comparison of the proposed system with
the other systems that are presented in the related work section is depicted.

5.1 System Realization

The proposed reconfigurable system is evaluated in real hardware using the FPGA-based
modular rapid prototyping RAPTOR platform [74]. This platform is connected to a
host-PC which is equipped with an Intel i7-870 CPU (quad-core at 2.93 GHz). As
depicted in Section 3.7, the RAPTOR platform supports up to six FPGA daughterboards.
In this work, one daughterboard is used which consists of a Xilinx Virtex-4 (XC4VFX100)
FPGA. Additionally, a display daughterboard and a Gigabit Ethernet extension board
are used. This Ethernet board provides two Gigabit Ethernet interfaces as shown in
Figure 5.1. The proposed design is targeted to use one FPGA for handling two cameras,
and it is scalable to support more cameras if needed [107].

+

Virtex-4 (FX100-11)
FPGA

DB-Display
RAPTOR-X64

Board

PCI-X
Interface

(to host-PC)

Gigabit
Ethernet

board

DB-V4

Gigabit
Ethernet
Interface

DVI Interface

Figure 5.1: Realization of the proposed system using the RAPTOR-X64 platform

117

5 System Evaluation and Results

A multithreaded C++ program using the OpenCV library is implemented on the
host-PC. In case of offline video processing, this program consists of the main thread
which calls three other threads: the video files reader, processing, and video display
threads as shown in Figure 5.2. The video files reader thread reads the two video files
that correspond to the video streams from the left and right camera. The processing
thread sends the video file data to the FPGA, waits until the data is processed, and
then reads the output results (the detected objects for both teams) from the FPGA.
Next, the processing thread creates, updates, and manages the tracks based on the
detection results and performs the player’s track transfer between the two cameras
if required. Finally, the video display thread displays the detection and the tracking
results on the host-PC [107]. Additional parameters for debugging and evaluation can
be also displayed (e.g., number of detections and tracks of each team in every frame,
current frame number, frame rate (fps), etc.) [108]1.

Thread #1
Video Files Reader

 Read video files
(recorded from the
left & right camera)

 Perform Cropping
and Merging
operations

Thread #2
Processing

 Send raw video data to the FPGA

 Read detection results from the FPGA

 Create/update/manage tracks

 Select tracks of the players

 Perofrm player‘s track transfer
between the two camera view

Thread #3
Video Display

 Display detection/
tracking results on
the RGB video
frames

 Optional display for
debugging and
evaluation

Main Thread

Figure 5.2: C++/OpenCV multithread implementation on the host-PC, realizing the
proposed system for player tracking using recorded video files

5.2 Datasets

For the evaluation of our system, three datasets (each consisting of two video files) are
used. These datasets are captured using two GigE Vision cameras with a resolution
of 1392x1040 pixels and a frame rate of 30 fps for each camera. The first dataset is a

1A live demo of the proposed system along with the paper [108] is presented at the DASIP 2017 conference
in Dresden, Germany.

118

5.3 Player Detection

basketball game (as shown in Figure 5.3a) stored in a raw format where each pixel is
represented by an 8 bit Bayer pattern. The second and third dataset are handball games
(named as handball (1) and (2)), where the video data is stored in two formats. The first
one is a raw data with Bayer pattern (8-bit for each pixel). The second format is a com-
pressed RGB with 24 bits for each pixel after white balancing [107]. The handball (1)
and (2) datasets are shown in Figures 5.3b and 5.3c, respectively. In addition to these
three datasets, the APIDIS dataset [7] is used to compare the performance of the pro-
posed system with another work presented in the literature as shown in the next section.

The annotated ground truth for these datasets was generated using the VitBAT
tool [21] under human supervision. Since this annotation process requires a signifi-
cant amount of interaction in order to achieve correct data for each player, we used
5000 frames for each dataset to evaluate the proposed system. During these frames,
players are moving several times between the two camera views. Additionally, there
are player substitutions. For the handball (1) dataset as an example, all the players
moved three times between the two camera views and there are two substitutions for
team 1 and three substitutions for team 2 during these 5000 frames [107].

To detect the players in the handball (1) dataset, the yellow color is used for the
color mask of team 1, whereas, white and blue are used for team 2. Player detection in
the handball (2) dataset is achieved based on the orange color for team 1 and blue for
team 2. For the basketball dataset, red is used for team 1 and white is used for team
2. Player detection using the color of players’ jerseys is challenging in these datasets
since the colors that are used in the masks are shared by other objects in the sports
hall. Some examples of such scenarios are: similar color in the advertisement panels as
well as in the jersey of the opposing team as it is the case in the used basketball dataset
where the jersey of team 1 is mostly in red with some white color and the opposite for
team 2 (mostly in white with some red color) [107]. The evaluation of player detection
for these datasets are shown in the next section.

5.3 Player Detection

In this work, precision and recall [37] are used as standard metrics to evaluate players
detection as presented in Section 2.1. Precision is the ratio between the number of
correctly detected players (TPs) and all the detections (TPs and FPs). Recall (also called
detection rate) is the number of the players that are correctly detected (TPs) among the
total number of players that should have been detected (TPs and FNs, i.e., the ground
truth which represent the total number of players in a team). Based on Equation 2.1,
the average precision and recall are calculated for the previously mentioned datasets
using Equations 5.1 and 5.2., where NF rame is equal to 5000. For illustration, Figure 5.4
shows a handball scene with a detection result using the proposed system. In this scene,

119

5 System Evaluation and Results

(a) Basketball

(b) Handball (1)

(c) Handball (2)

Figure 5.3: Example scenes from the three datasets used in the evaluation [107]

120

5.3 Player Detection

there are true positives (TPs) which are correctly detected players, false positives (FPs)
which represent the incorrect detections (non-players), and players who should be
detected but they are not, are the false negatives (FNs).

Precision=
1

NF rame

NF rame
∑

i=1

T Pi

T Pi + F Pi
× 100% (5.1)

Recal l =
1

NF rame

NF rame
∑

i=1

T Pi

T Pi + FNi
× 100% (5.2)

Recal l =
1

NF rame

NF rame
∑

i=1

T Pi

NPla yers
× 100%

where:
T Pi is the number of true positives at frame i.
F Pi is the number of false positives at frame i.
FNi is the number of false negatives at frame i.
NF rame is the total number of frames.

TP

FP

FN

Figure 5.4: A handball scene with detection results showing TPs, FPs, and FNs

In this evaluation, a detection result is considered as a true positive if this detection
is inside the bounding box of a player using the generated ground truth data. Further-
more, the Hungarian algorithm is used to match the detection results with the ground
truth data. The matching cost is the Euclidean distance between the detection and
the bounding box center of the ground truth. This will prevent assigning two detec-
tions to the same ground truth data (i.e., same player) in a frame. The precision and
recall based on the detection output results from the FPGA are shown in Table 5.1 [107].

121

5 System Evaluation and Results

Table 5.1: Results of player detection for the used datasets [107]

Dataset Team Precision Recall Avg. Prec. Avg. Rec.

Handball (1)
T1 80.9% 94.58%

84.02% 91.94%
T2 87.14% 89.29%

Handball (2)
T1 72.59% 98.93%

71.42% 96.6%
T2 70.25% 94.27%

Basketball
T1 71.73% 98.57%

67.49% 96.14%
T2 63.24% 93.7%

As shown in Table 5.1, the achieved average detection rate (recall) for the basketball
dataset is 96.14%. For the handball (1) and (2) datasets, the achieved average recall
values are 91.94% and 96.6%, respectively. However, the achieved average precision is
67.49% for the basketball as well as 84.02% and 71.42% for the handball (1) and (2)
datasets, respectively. Since our approach to detect the players is based on the color,
the recall and precision values may differ between the two teams. If an object (e.g., an
advertising or sponsor panel) shares the same color with the jersey of one team, false
positives are introduced which reduce the precision. One example of such a scenario
is team 2 in the basketball dataset. In this case, the white color is used to detect the
players of that team. However, this color is used by the players of team 1 as well as in
the sponsor and advertisement panels as shown in Figure 5.3a. Additionally, the light
reflections on the court’s ground are also in white and could introduce additional false
positives when a player crosses over them. Nevertheless and as discussed earlier in the
tracking section in the previous chapter, the effect of these FPs is significantly reduced
by the post-processing (tracking) in the host-PC as shown in the next section, where
the player tracking evaluation is presented [107].

Figure 5.5 shows the precision and recall for both teams over the used 5000 frames
for the handball (1) dataset (cf. Figure 5.3b). As can be seen in the upper diagram, the
precision of both team 1 and 2 drops in three periods (shown using the black dashed
lines): from around frame number 1280 to 1400, 2810 to 2990, and 3820 to 3920. In
these periods, the players moved from one camera view to the another. In this case, the
players are in the overlapping region where they appeared in both the left and right
camera view, and hence they are detected twice (cf. Figure 4.57). Here, one of the two
detections that belong to the same player is considered as a FP, reducing the precision
value. Another period where the precision of team 1 decreases ranges from frame 2700
to 3800 as shown using the green dotted lines in Figure 5.5. Beside the player transfer
effect, additional false positives are introduced from the moving substitute players of
that team and from the digital advertisement panel which changed its content in that

122

5.3 Player Detection

period. The effects of these false positives are reduced using two approaches. The
first one is by the frequent update of the background. In this case, these substitute
players and advertising panels are considered as parts of the background, and hence
not detected after a certain time (e.g., after frame 3800). The second approach is
through the tracking processing, where these false positives are used to create tracks
with usually low player selector confidence value [107].

Figure 5.5: Precision and recall using the detection results for teams 1&2 (handball (1)
dataset) [107]

For the recall values shown in Figure 5.5, team 1 achieved high recall while team
2 has lower values. A low recall means there are players who are not detected (FN).
However, the recall is improved by using the prediction values from Kalman filter for
the not detected player in the tracking step on the host-PC [107].

123

5 System Evaluation and Results

Table 5.2 shows comparison results of the proposed system with the work presented
by Alahi et al. [4] based on the APIDIS basketball dataset (shown in Figure 5.6) [7]. As
stated in the related work section, the authors downscaled all the images to a resolution
of 320x240 pixels to reduce the computation cost. The results reported in [4] are for
player detection over the left-half of the basketball court. To perform the detection
measurements for the proposed system, the dataset from the fisheye camera (shown in
Figure 5.6a) with the manually annotated player positions that are provided in [7] for
one minute are used. Compared to the results reported in [4], the proposed system
achieves better precision and recall. For team 1, a precision of 87.3% and a recall of
91.6% are achieved, whereas a 57.3% precision and a 94.4% recall are obtained for
team 2. The average achieved precision is 72.3% and recall is 93%, compared to 72%
and is 76% as reported in [4].

Table 5.2: Comparison with the work presented in [4] [108] [107]

System Cameras Resolution Precision Recall

Alahi et al. [4] 1xFisheye downscaled
55% 47%

(Figure 5.6a) to 320x240

Alahi et al. [4] 1xFisheye + downscaled
72% 76%

1xLinear to 320x240
(Figures 5.6a & 5.6b)

The proposed 1xFisheye Original
72.3% 93%

system (Figure 5.6a) (1600x1200)

(a) Fisheye camera (left) (b) Linear camera (left)

Figure 5.6: APIDIS dataset [7] that are used for the comparison

124

5.4 Player Detection in Occlusion Scenarios

If the overall movement is quite high (e.g., including movement from spectators),
these movements will not have a significant impact on the detection results due to
the following reasons. Firstly, since the dimensions of the sports court are fixed, any
detections from frequently moving objects outside the court can be discarded without
affecting the detections of the players inside the court. Secondly, the background is
continuously updated, reducing the effect of moving non-player objects. Apart from
the overall movement, shadows also do not have a significant influence on the system
in general. One reason is the nature of an indoor sports hall, where the lighting condi-
tions are usually very good and constant due to multiple well-distributed light sources.
Furthermore, the player detection is based on the HSV color space, which is more
robust to illumination change than the RGB color space. Additionally, if there are false
positives caused by shadows, these FPs are significantly reduced by the post-processing
in the host-PC [107].

5.4 Player Detection in Occlusion Scenarios

In handball and basketball games, player occlusions can generally be divided into two
types: Occlusion between players of opposing teams and occlusions between players of
the same team. The first type of occlusion is the most frequent in these indoor games,
while occlusions between the same team’s players are less common. In the used datasets
(cf. Subsection 5.1) as an example, there were 41 occlusions between players of the
opposing teams for the handball (1) dataset and 18 occlusions between players of the
same team (10 occlusions for Team 1, and 8 for Team 2). For the basketball dataset,
there were 67 occlusions between players of the opposing teams and 30 occlusions
between players of the same team (17 and 13 occlusions for Team 1 and Team 2,
respectively) [107].

Figure 5.7 shows the player detection using our system for the two types of occlusions
between players. Our system shows promising results and robustness against occlusion
between two players from opposing teams. As shown in the occlusion scenario (A)
in Figure 5.7, the players from different teams are separated into two video frames
(one for each team) using the color masking (thresholding). On each video frame,
clustering is applied independently, and therefore the players are detected as shown in
Figure 5.7 (scenario (A)). Successful player detections for various occlusions between
players of opposing teams in handball and basketball are shown in Figures 5.8 and 5.9,
respectively [107].

Player detection using the proposed system for occluded players of the same team
is shown in Figure 5.7 (scenario (B)). As can be seen, two players of the same team
can be detected as one player, resulting in one FN. This is because the vertices that are

125

5 System Evaluation and Results

Vertices
(T1)

Vertices
(T2)

T1-P1

T2-P2

T1-P1
,

T2-P1
,

Two outputs of the
“RGB to HSV &

Color Thr.” IP core

Clustering
results

(Visualized)

Two outputs of the
“BDC-based Graph

Clustering” core

Input to the team
identification & player

detection module

Input to the player
segmentation

module

Vertices
(T1)

Vertices
(T2)

T1-P1

T1-P2

T2-P1

T1-
P1&P2

,
,

T2-P1
,

Player
detection
results

Occlusion scenario (A)
(Two players from
opposing teams -

handball (1) dataset)

Occlusion scenario (B)
(Two players from
the same team -

handball (1) dataset)

Figure 5.7: Player detection for occluded players (scenario A and B) [107]

Figure 5.8: Successful detections for different occlusion scenarios between players of
opposing teams in a handball game [107]

126

5.5 Verification of the Player Detection Implementation

Figure 5.9: Successful detections for different occlusion scenarios between players of
opposing teams in a basketball game [107]

generated from these two players are clustered as one player (T1-P1 in scenario (B))
since the binary distance between these vertices are smaller than the used threshold for
maximum distance in the clustering. Additional examples of unsuccessful detections
for such occlusions in handball and basketball games are shown in Figure 5.10 [107].

Unsuccessful – Opposing teams

Unsuccessful – Same teamFigure 5.10: Unsuccessful detections for occlusion scenarios between players of the
same team [107]

However, these unsuccessful detections due to occlusions between players of the
same team have a low impact on the overall performance of player tracking, since when
the two occluded players are detected as one (resulting in one not detected player),
the prediction value from Kalman filter will be used for this not detected player as
discussed in Subsection 4.7.1 [107].

5.5 Verification of the Player Detection Implementation

The hardware implementation of the team identification & player detection module
is verified by comparing its output with the results obtained from a software imple-
mentation using C++ and OpenCV of the same module. The output of this software
implementation is considered as the reference for the comparison. This verification
process is illustrated in Figure 5.11, where the input are images with segmented

127

5 System Evaluation and Results

players from the handball (1) dataset. First, player detection using the software im-
plementation is applied to these images. The output consists of the detected clusters,
including the number of vertices and the centroid of each cluster as shown in Fig-
ure 5.11. Later, the same input images are used for the hardware implementation
of the player detection, and the results are recorded. Finally, the outputs of both
implementations are compared to verify if the hardware implementation of the player
detection module achieves the expected results (in comparison with the software im-
plementation). The results of this comparison for one of the used images are shown
in Tables 5.3 and 5.4 for team 1 and 2, respectively. In these comparisons, the same
color threshold values (cf. Equations 4.6, 4.7, and 4.8) are used for both hardware and
software implementations. Additionally, the same threshold values of the maximum
distance (cf. Equation 4.11) and the minimum number of vertices (cf. Figure 4.41)
are used for both implementations. These values are required for the clustering process.

Results of the SW & HW
Implementations for

Comparison

Team 1
Player Detection

BDC-based
Graph Clustering

Team Identification &
Vertices Generation

RGB to HSV &
Color Thresholding

Team 2
Player Detection

BDC-based
Graph Clustering

Images with
Segmented

Players (RGB)
(Handball (1))

Team 2

Cluster Vertices Centroid

… … …

Team 1

Cluster Vertices Centroid

… … …

Team Identification
& Player Detection

Module

Figure 5.11: Validation of the player detection implementation

As can be seen in Table 5.3, the total number of detected clusters in both imple-
mentations are equal (12 clusters are detected). These clusters represent TPs and
FPs. However, the goal here is not to evaluate the detection results (e.g., precision
and recall), but to compare the hardware results with their corresponding ones in
software. Therefore, the first observation is that all twelve clusters are detected using
the hardware implementation. Additionally, there are detected centroids (in hardware)
which do not match the centroids from the software implementation. In this case, a
maximum difference of 3 can be observed between the resulted centroids from the
software and hardware implementations.

Cluster 2 is an example where the detected centroid from the hardware implementa-
tion does not exactly match the resulted detection using the software implementation.

128

5.5 Verification of the Player Detection Implementation

Table 5.3: Comparison between the software and hardware implementations’ results of
the player detection module for team 1 using one image from the handball (1)
dataset

Team1

SW Implementation (C++) HW Implementation (VHDL)

Cluster Vertices Nr Centroid (x,y) Cluster Vertices Nr Centroid (x,y)

1 7 (1193,28) 1 7 (1193,28)

2 23 (1586,185) 2 19 (1585,185)

3 28 (1032,233) 3 27 (1032,233)

4 80 (1361,278) 4 43 (1361,275)

5 133 (385,354) 5 64 (388,355)

6 5 (867,674) 6 5 (867,674)

7 12 (1039,696) 7 12 (1039,695)

8 12 (1581,736) 8 10 (1581,736)

9 22 (628,755) 9 22 (625,758)

10 11 (574,772) 10 11 (574,772)

11 8 (607,767) 11 6 (606,767)

12 4 (531,776) 12 4 (531,776)

12 323 - 12 230 -

(Total) (Total) (Total) (Total)

129

5 System Evaluation and Results

As shown in Table 5.3, this cluster is detected in software with a centroid of (1586,185)
using 23 vertices. As shown in Section 4.5.1, these vertices resulted from the color
thresholding after HSV conversion. Using the hardware implementation, cluster 2 is
detected with a centroid of (1585,185) using 19 vertices instead of 23. As can be seen,
there is a difference of one in the X coordinates of the two centroids. This is because
there are four vertices (and therefore four pixels) that are not included in the calcula-
tion of the centroid in hardware, which eventually effect the resulted centroid. The
reason behind these four missing pixels is the modification that is applied to the RGB to
HSV conversion for the hardware implementation as depicted in Section 4.5.1. As an
example, one of these four pixels is located at (1598,190), and it has the RGB values of
(198,164,99). Using Equations 3.12, 3.13, and 3.14 for the software implementation,
the equivalent HSV values are (20,127,198). To detect the players in team 1, yellow is
used for this dataset. The used HSV color thresholding range is shown in Equation 5.3.
Therefore, QT1 is equal to 1 (i.e., a vertex is generated) for this pixel using the software
implementation.

QT1 =



























1, 20≤ H ≤ 30 AND

100≤ S ≤ 150 AND

160≤ V ≤ 255

0, otherwise

(5.3)

For the hardware implementation, Equations 4.3 and 4.5 are used to calculate the
normalized H×∆ and S×max(RGB), respectively. Consequently, the pixel is considered
as a vertex if the conditions in Equation 4.10 are fulfilled. For this pixel with the RGB
values of (198,164,99), ∆ is equal to 198-99=99, H ×∆= 30× (G − B) = 1950, and
S ×max(RGB) =∆× 256= 25344. After applying these values to Equation 4.10, the
resulted threshold conditions are shown in Equation 5.4. As can be seen, the condition
regarding the H component is not met (since 1950 is less than 1980), resulting in a QT1
of 0 (i.e., no vertex is generated) using this hardware implementation. As a result, the
pixel at position (1598,190) is included in the centroid calculation of cluster 2 using
the software implementation, while it is not the case in the hardware implementation.

QT1 =



























1, 1980≤ H ×∆≤ 2970 AND

19800× ≤ S ×max(RGB)≤ 29700 AND

160≤ V ≤ 255

0, otherwise

(5.4)

130

5.5 Verification of the Player Detection Implementation

Another pixel, which is not considered as a vertex in cluster 2, has RGB values of
(185,166,76) and hence HSV values of (25,150,185). In this case, the condition, based
on the S ×max(RGB) value, to generate a vertex is not fulfilled for the hardware im-
plementation (using the modified HSV algorithm). Based on these results, a pixel may
not be considered as a vertex if its H or S value is equal to the minimum or maximum
value that are used in the color thresholding (e.g., H=20 and S=150 for the previously
mentioned examples).

In cluster 7, the resulted centroid in software is (1039,696). However, the detected
centroid has a coordinate of (1039,695) using the hardware implementation. In this
case, the mismatch is due to a rounding issue in the used divider IP core. This rounding
issue results in a maximum difference of one, compared to a rounded result based on a
floating point division.

For these twelve detected clusters that are shown in Table 5.3, the maximum differ-
ence between the centroids of the two implementations is three. This is the case in
the fourth cluster, by which the centroid (1361,275) is detected in hardware, while
(1361,278) is the resulted centroid using the software implementation. Both centroids
represent the player’s position correctly as depicted in Figure 5.12. Here, a 30x30
bounding box is used for both Figure 5.12a and 5.12b. Therefore, the applied mod-
ifications to the RGB to HSV conversion (cf. Equations 4.3 and 4.5) do not have a
significant influence on the detection results as shown in Table 5.3 and Figure 5.12,
while realizing a resource-efficient and low latency hardware implementation of the
player detection module.

(a) Using hardware implementaiton (b) Using software implementation

Figure 5.12: The resulted centroid of cluster 4 in team 1

Table 5.4 shows a comparison between the resulted centroids of the software and
hardware implementation for team 2. Here, white and blue are used to detect the

131

5 System Evaluation and Results

players of team 2. In both implementations, there are seven detected clusters, and most
of the centroids of these clusters are the same as shown in Table 5.4. The maximum
difference value between the calculated centroids is two as the case with the fifth
detected cluster shown in this table.

Table 5.4: Comparison between the software and hardware implementations’ results of
the player detection module for team 2 using one image from the handball (1)
dataset

Team2

SW Implementation (C++) HW Implementation (VHDL)

Cluster Vertices Nr Centroid (x,y) Cluster Vertices Nr Centroid (x,y)

1 79 (1358,122) 1 78 (1357,122)

2 290 (1350,298) 2 286 (1350,298)

3 21 (1067,255) 3 21 (1067,255)

4 57 (1280,549) 4 55 (1280,549)

5 56 (1028,746) 5 51 (1026,745)

6 22 (1066,757) 6 25 (1065,757)

7 32 (1295,789) 7 31 (1295,789)

7 557 - 7 547 -

(Total) (Total) (Total) (Total)

5.6 Player Tracking

While the precision and recall values presented previously are just based on the detec-
tion results, in this section the effect of tracking on these metrics is reported. When
tracking is applied, true positives are increased since the prediction values from the
Kalman filter are used when there are no detections. Additionally, false positives are
reduced since these false detections are used to create tracks with low confidence
values which are discarded in the final tracking results. However, both the precision
and recall are decreased if a false track is selected instead of a player track based on
the confidence value. The precision and the recall after player tracking are shown in
Table 5.5. As can be seen, the average precision is almost equal to the average recall
values for the individual teams. This is because the number of tracks for each team is
fixed (equal to the number of players in that team) unless there are fewer tracks than

132

5.6 Player Tracking

the number of players (e.g., at the beginning of tracking when there could be fewer
detections (and hence fewer tracks) than the players). For example, if there are seven
tracks for a five players basketball team in a particular frame. Among these tracks,
five tracks are selected (based on the tracks’ confidence value) to represent the five
players. If four tracks matched four players (4 TPs), one player would be left without
being tracked (1 FN). Therefore, one of the five tracks corresponds to a non-player
object (1 FP) in that frame. In this case, both the precision and recall are equal to
4/5*100% = 80%. Figure 5.13 shows the precision and recall using the tracking results
for the handball (1) dataset. In this figure, the number of FPs and FNs (and hence
precision and recall) are always equal starting from frame number 76 for team 1 and
frame 84 for team 2 (after tracking has stabilized) [107].

Table 5.5: Results of player tracking for our datasets (detection results are presented
in table 5.1) [107]

Dataset Team Precision Recall Avg. Prec. Avg. Rec.

Handball (1)
T1 93.44% 93.25%

94.85% 94.72%
T2 96.25% 96.19%

Handball (2)
T1 94.65% 94.65%

93.93% 93.93%
T2 93.2% 93.2%

Basketball
T1 89.3% 89.3%

84.77% 84.68%
T2 80.24% 80.06%

The tracking performance is also evaluatd by using the metrics proposed in [56]
and [19] for the evaluation of the Multiple Object Tracking (MOT) algorithms. The
evaluation results are shown in Table 5.6 for the handball (1) dataset. The ground
truth (GT) is the total number of players including the number of substitutions for
a team. For team 1, GT is 9 which consists of 6 players, the goalkeeper (who wears
a jersey with a similar color to his team), and 2 substitutions. For team 2, GT is 9
which consists of 6 players, and 3 substitutions (here, the goalkeeper is not tracked
since his jersey differs in color as compared with his team). Mostly Tracked (MT)
is the number of GT (players) trajectories which are covered by the output of the
tracking system for more than 80% throughout the whole frames (5000), while Mostly
Lost (ML) are GT trajectories which are covered by less than 20%. Partially Tracked
(PT) equals to GT-MT-ML. The total number of times that a tracked player changes it’s
matched GT identity is the Identity Switch (ID Sw). Finally, Fragment (Frag) is the to-
tal number of times that a GT trajectory is interrupted in the tracking results [56] [107].

133

5 System Evaluation and Results

Figure 5.13: Precision and recall using the tracking results for teams 1&2 (handball
(1) dataset) [107]

Table 5.6: Player tracking evaluation for the handball (1) dataset using the metrics
presented in [19], [56] (The up arrow means the higher, the better; the
down arrow indicates that the smaller, the better for the used metric) [107]

Team GT MT↑ ML↓ PT↓ ID Sw↓ Frag↓

T1 9 8 0 1 5 22
T2 9 9 0 0 9 30

134

5.6 Player Tracking

As shown in Table 5.6, there are 8 players in team 1 and 9 players in team 2 (from
a total of 9 players for each team) that are tracked for more than 80% (MT) by the
proposed system. Whereas there is only one player which is partially tracked. Detailed
information about the percentage of the covered tracked trajectory for each player is
shown in Table 5.7 [107]. Additionally, a total of 5 ID switches between the players
of team 1 is reported, while team 2 has 9. Moreover, there are 22 and 30 fragments
(interruptions) during tracking the players of team 1 and team 2, respectively. These
fragments include the ID switches as proposed by Li et al. as a more strict definition in
comparison with the traditional metric, resulting in a higher number of fragments [56].
Once a tracked player is interrupted, he will be tracked again after some frames with
a new ID. The number of these frames varies in each case. Despite these fragments,
14 players (out of 18) in both teams are tracked for more than 90% by the proposed
system as shown in Table 5.7.

Table 5.7: Player tracking coverage for the handball (1) dataset [107]

Team P1 P2 P3 P4 P5 P6 P7 P8 P9

T1 99.8% 83% 89.9% 97.4% 93.5% 96.3% 97.2% 90.4% 78.3%
T2 96.9% 98.2% 96.7% 83.1% 95.2% 99.2% 92.5% 99.5% 92.1%

The evaluation metrics that are used in this work are summarized as depicted in
Table 5.8. Moreover, the player transfer algorithm between the two cameras is eval-
uated. For the handball (1) dataset, the total number of players who moved from
one camera’s view to the other while being tracked is counted, and it is equal to 37.
The successful player transfer (using algorithms 4.2 and 4.3) are equal to 31. Some
unsuccessful player transfer scenarios occurred when two players of the same team
are close to each other (e.g., occluded) during the transfer between the two cameras,
resulting in an ID switch or a fragmented track (i.e., a player who is not tracked for a
certain number of frames). However, if player tracking is lost (i.e., fragmented) during
the transfer between the two cameras, the player will be detected and hence tracked
again (cf. Tables 5.6 and 5.7) with a new ID after some frames, based on his player
selector confidence value.

An example scene for the player transfer using the handball (1) dataset is shown in
Figure 5.14. In this scene, the players of both teams are moving from the right to the
left direction. The tracks of all the players in team 1 are successfully transferred as
depicted in Figure 5.14. Additionally, the player with the ID 5 in team 1 is going for a
substitution (after a successful transfer of his track) with another player from his team.
For team 2, players with ID 1 and ID 2 are occluded, and their IDs are switched. For the
player with an ID 3, his track is successfully transferred as can be seen in Figure 5.14.

135

5 System Evaluation and Results

Table 5.8: Summery of the evaluation metrics [56] that are used in this work (The
up arrow means the higher, the better; the down arrow indicates that the
smaller, the better for the used metric)

Metric Definition

GT Number of groundtruth trajectories, i.e., number of players for one
team plus the number of substitutions

TP ↑ True Positives: Number of objects that are detected or tracked by the
system which have a matching ground truth (i.e., a player)

FP ↓
False Positives: Number of objects that are detected or tracked by
the system which do not have a matching ground truth (i.e., a non
player)

FN ↓ False Negatives: Number of objects (missed players) that are not
detected or tracked by the system

Precision↑ (Frame-based) correctly matched players (TP)/total output objects
(TP +FP)

Recall ↑ (Frame-based) correctly matched player (TP)/total groundtruth play-
ers (TP +FN)

MT ↑ Mostly tracked: Percentage of GT trajectories which are covered by
tracker output for more than 80% in length.

ML ↓ Mostly lost: Percentage of GT trajectories which are covered by tracker
output for less than 20% in length

PT ↓ Partially tracked: 1.0-MT-ML

ID Sw. ↓ ID switches: The total number of times that a tracked player changes
its matched GT identity

Frag ↓ Fragments: The total of No. of times that a groundtruth trajectory is
interrupted in tracking result

136

5.7 FPGA Architecture

Finally, Figure 5.15 shows screenshots with tracking results using the three datasets. In
the next section, the evaluation of the FPGA architecture is presented.

Figure 5.14: Example scene for the player tracks transfer (Handball (1) dataset)

5.7 FPGA Architecture

The FPGA architecture is evaluated in this section. This evaluation includes the multiple
GigE Vision cameras support, maximum performance of the individual IP cores in the
system, overall latency of the FPGA architecture, and power consumption analysis of
the reconfigurable vision system. Additionally, the acceleration factor and the overall
system performance are presented in this section.

5.7.1 Multiple GigE Vision Cameras

Interfacing to multiple cameras is realized using the developed MC_GigEV IP core.
Additional cameras can be used if needed to support more features in the system (e.g.,
player identification using the digits on the players’ jerseys) [107]. The MC_GigEV IP
core reconstructs the video frames from multiple GigE Vision cameras as discussed in
Section 4.2.1. Using one Gigabit Ethernet interface and one MC_GigEV core, differ-
ent frame rates can be realized with a single or multiple cameras at different image
resolutions. Figure 5.16 shows the performance of the MC_GigEV core for different
resolutions and frame rates using 1, 2, 3 and 4 GigE Vision cameras with Bayer pattern

137

5 System Evaluation and Results

(a) Basketball

(b) Handball (1)

(c) Handball (2)

Figure 5.15: Example scenes from the three datasets showing the tracking results

138

5.7 FPGA Architecture

output and one Byte/pixel [106].

1

0

20

40

60

80

100

120

140

0

100

200

300

400

500

600

700

800

800x600 1280x720 1024x1024 1920x1080 1920x1200 2048x2048

Fr
am

e
Ra

te
 o

f t
he

 IP
 C

or
e

(fp
s)

Frame Resolution

1xCamera 2xCameras 3xCameras 4xCameras

MC_GigEV IP Core Performance

146/25

584/101

1300 240

Fr
am

e
R

at
e

lim
ite

d
by

 th
e

in
te

rf
ac

e
(fp

s)

Figure 5.16: MC_GigEV Core performance for different resolutions and frame rates
using configurations with 1, 2, 3 and 4 cameras [106]

The limitation for the number of cameras in the proposed system is the theoretically
available bandwidth of 1 Gbps. All cameras that are connected to the same Ethernet
port will share this bandwidth; hence, this will limit the number of cameras and the total
amount of data received from them [106]. As shown in Figure 5.16, the MC_GigEV core
can achieve a frame rate up to 584 fps for one camera with a resolution of 1024x1024
pixels. This frame rate is reduced to 101 fps due to the limitation imposed by the
Gigabit interface. On the other hand, if four cameras are used, the achieved frame rate
by the MC_GigEV core is 146 fps, and it is limited to 25 fps using the 1 Gbps bandwidth.

Table 5.9 shows a comparison of the MC_GigEV IP core to a commercial single camera
GigE Vision IP core, the GigEV core [81], developed by a Xilinx partner company. The
comparison is based on the used resources and maximum clock frequency. The GigEV
core resources are given (based on logic synthesis) for the Xilinx Artix-7 FPGA. For
better comparison, the MC_GigEV core logic resources are generated for this Artix-7
FPGA. In this comparison, both cores can handle only one camera per core instance.
As shown in Table 5.9, the proposed MC_GigEV core requires significantly less FPGA
resources than the GigEV core, while achieving almost the same maximum clock fre-
quency. In the GigEV core, the complete control part of the GigE Vision protocol is
handled by an embedded CPU and the stream channel is implemented in hardware to

139

5 System Evaluation and Results

achieve maximum throughput. Additionally, the core supports bidirectional streaming,
i.e., it can be used for receiving GigE Vision packets from a transmitting device as well
as for sending video data via the GigE Vision protocol [106].

Table 5.9: Comparison with other GigE Vision IP core [106]

GigEVCore1.2 MC_GigEV IP Core

FPGA Artix-7 Virtex-4 Artix-7

REGs 3441 1317 1191

LUT 3800 1618 1237

BRAM 9 13 7

FMAX 172 MHz 155 MHz 170 MHz

Using the developed MC_GigEV core, memory storage space is saved by extracting
the raw video data directly from the GVSP packets when they are received, as com-
pared to storing the complete packets in memory first and then extracting the video
data. Furthermore, the MC_GigEV core supports the video data extraction from the
standard Ethernet as well as Jumbo packets. The efficiency of the GVSP protocol can be
calculated for the standard Ethernet and Jumbo packets using Equation 5.5. A standard
Ethernet packet has a maximum packet size of 1500 bytes. Therefore, the maximum
size of the GVSP packet is 1514 bytes including the Ethernet header. For the jumbo
packets, the GVSP maximum packet size is 9014 bytes. Since the total overhead is
50 bytes resulted from the packet’s headers (cf. Figure 2.11), the payload size is 1464
and 8964 bytes for the standard and jumbo packets, respectively. Therefore, the GVSP
protocol efficiency for jumbo packets is higher than standard Ethernet packets as shown
in Equations 5.6 and 5.7.

Protocol efficiency=
Payload size
Packet size

(5.5)

Protocol efficiency (standard packet)=
1464
1514

= 96.7% (5.6)

Protocol efficiency (jumbo packet)=
8964
9014

= 99.45% (5.7)

As stated in Chapter 4, two GigE Vision cameras are used for the player tracking
system. Each camera is operating with a maximum resolution of 1392x1040 pixels at

140

5.7 FPGA Architecture

30 fps with 8 bits/pixel. As a result, the total Ethernet bandwidth (BW) that is needed
for streaming the GigE Vision stream packets from the two cameras can be calculated
using Equation 5.8 [107].

BW= Camera Resolution× Frame Rate×Nr. of bits/pixel×Nr. of Cameras

+ Packets Overhead (5.8)

BW= 1392× 1040× 30× 8× 2+ 23.74 Mbps

BW= 718.62 Mbps

The packet overhead is the total number of bytes of the packet’s headers for the GigE
Vision streaming protocol. As can be seen from Equation 5.8, the needed bandwidth
is 718.62 Mbps, which is less than the maximum 1 Gbps bandwidth of the Gigabit
Ethernet [107]. Therefore, these two GigE Vision cameras can be operated with their
maximum resolution and frame rate, sharing the same one Gigabit Ethernet bandwidth.

5.7.2 Performance and Throughput

The maximum performance (frame rate) of each IP core of the video processing modules
is calculated using Equation 5.9. As can be seen, the frame rate depends on the
maximum frequency (Fmax) of the IP cores and the input frame resolution to the
respective core. Using a Xilinx Virtex-4 FPGA, the maximum frame rates of the individual
IP cores in the proposed system are shown in Figure 5.17 for the handball and basketball
datasets, while Figure 5.18 shows the performance for a Xilinx Virtex-7 FPGA.

Maximum Frame Rate=
Fmax

Frame Resolution
(5.9)

The input frame resolution is 1392x1040 pixels from each of the two cameras. However,
the two frames from the two cameras are cropped and merged, forming a larger frame
as depicted in Figures 4.2 and 4.6. The frame resolution after cropping and merging is
1664x800 pixels for the handball dataset. While for the basketball dataset, the frame
size is 1792x900 pixels. Since the merged frame resolution of the basketball dataset
is larger than the handball frame, the respective frame rates are lower as shown in
Figure 5.17. The maximum achieved frame rate of the proposed architecture using
a Xilinx Virtex-4 FPGA is 96.7 fps and it can be increased to 136.4 fps using Virtex-7
FPGA. However, this frame rate is limited by the Gigabit Ethernet bandwidth. If one
Gigabit Ethernet interface is shared for the two cameras, the maximum frame rate is
41.7 fps (42.9 fps using jumbo packets). This frame rate can be increased to 83.4 fps

141

5 System Evaluation and Results

(86.3 fps using jumbo packets) if two Gigabit Ethernet interfaces are used, one interface
for each GigE Vision camera allowing for a total bandwidth of 2 Gbps [107].

791200

85.36762
83.49308

96.7
131.2
172.7
130.2

124
105.4
136.4
136.4

161.2

117.8

96.7

131.2

172.7

157.8
150.2

127.7

165.3 165.3

195.3

142.7

130.2
124

105.4

136.4 136.4

161.2

117.8

0

20

40

60

80

100

120

140

160

180

200

220

240

Fr
am

e
R

at
e

(fp
s)

Video Preprocessing Player Segmentation Team Ident. &
Player Detect.

83.4

41.7

Handball dataset

Basketball Dataset

Limited by 1 Gigabit Ethernet

Limited by 2 Gigabit Ethernet

Figure 5.17: Performance of the FPGA architecture with a Virtex-4 FPGA using two
cameras, each has a frame resolution of 1392x1040 pixels [107]

Throughput can be defined as the number of pixels at a certain frame resolution
that can be processed per second. The minimum required throughput can be calcu-
lated using Equation 5.10. Here, the required frame rate for calculation is 30 fps,
corresponding to the maximum frame rate of the utilized cameras, and it is consid-
ered as a sufficient frame rate for this player tracking application using the camera
setup shown in Figure 4.1 [66] [65]. Therefore, the required throughput by the IP
cores (e.g., demosaicing) for processing the video data from one GigE Vision camera
is 43.43 MPixels/second as shown in Table 5.10. After cropping and merging the
video streams from both cameras, the required throughput values by the IP cores (e.g.,
background subtraction) are 39.94 and 48.38 MPixels/second for the handball and
basketball datasets, respectively. If a standard width resolution (e.g., 1920) is used
(this is required by the DVI display controller for intermediate results display (useful for

142

5.7 FPGA Architecture

debugging)), the throughput values are increased to 46.08 and 51.84 MPixels/second
for the handball and basketball datasets, respectively.

248.7
255.6

276.3

247.9 247.9

165.3
180.3

172.8

270.4

172.8

204.6 204.6

136.4
148.8 142.6

223.2

142.6

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

Fr
am

e
R

at
e

(fp
s)

Video Preprocessing Player Segmentation Team Ident. &
Player Detect.

83.4

41.7

Handball dataset

Basketball Dataset

Limited by 1 Gigabit Ethernet

Limited by 2 Gigabit Ethernet

Figure 5.18: Performance of the FPGA architecture with a Virtex-7 FPGA using two
cameras, each has a frame resolution of 1392x1040 pixels

Throughput= Frame Resolution×Required Frame Rate (5.10)

Table 5.10: Throughput requirements (MPixels/second)

GigE Vision
Camera (x1)
(1392x1040)

Handball
dataset

(1664x800)

Basketball
dataset

(1792x900)

Handball
dataset (Disp.)
(1920x800)

Basketball
dataset (Disp.)
(1920x800)

43.43 39.94 48.38 46.08 51.84

143

5 System Evaluation and Results

In the FPGA architecture, the video processing IP cores produce one pixel every
clock cycle. Therefore and based on the achieved maximum frequency of these cores,
the maximum throughput for each IP core using a Xilinx Virtex-4 FPGA is shown
in Figure 5.19. As can be seen, all the processing cores achieve significantly higher
throughput than the required values (cf. Table 5.10). In particular, the demosaicing,
AWB, and cropping cores achieve more than 43.43 MPixels/seconds (the required
throughput from one camera), while the other cores have a throughput higher than
51.84 MPixels/second (for the merged video stream). The BDC-graph cluster IP core is
not shown in Figure 5.19, since it does not output a processed pixel in every clock but
it produces centroids of the detected objects after a frame is received.

1Gpbs BW
Packets

Overhead
1000000000 22640000 791200

Fmax fps 42.195098 85.36762
41.746542 83.49308

MC_GigE Vision 155 1392 1040 53.5
Video File Cnt. 240 1664 800 180.3

Demosaicing 140 4 560
AWB 190 4 760

Cropping 250 4 1000
Merging 210 4 840

RGB to Gray 200 1 200
 Background Subtra 170 1 170

Morphological 220 1 220
Masking 220 4 880

RGB to HSV & Color Thr. 260 4 1040

BDC-Graph Clustering 190

Other

Video File Cnt. 240 1392 1040 82.9

Input Resolution

140

190

250

210
200

170

220 220

260

0

50

100

150

200

250

300

Th
ro

ug
hp

ut
 (M

P
ix

el
s/

se
co

nd
)

Video Preprocessing Player Segmentation Team Ident. &
Player Detect.

Figure 5.19: Maximum throughput (MPixels/second) of the IP cores for a Virtex-4 FPGA

Figure 5.20 shows the maximum throughput of the IP cores in MByte/second for a
Xilinx Virtex-4 FPGA. As can be seen, several cores (e.g., demosaicing, AWB, etc.) have
a high number of MBytes/second, since their outputs consist of 4 Bytes for each pixel.

144

5.7 FPGA Architecture

While for other IP cores (e.g., RGB to Gray, etc.), the resulted pixel consists of one Byte.

560

760

1000

840

200 170
220

880

1040

0

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (M

B
yt

e/
se

co
nd

)

Video Preprocessing Player Segmentation Team Ident. &
Player Detect.

Figure 5.20: Maximum Throughput (MByte/second) of the IP cores for a Virtex-4 FPGA

5.7.3 Acceleration Factor and Overall System Performance

For comparing the performance (in terms of processing time and frame rate) of the
proposed FPGA architecture with a pure software-based system, a software imple-
mented in C++ using the OpenCV library has been realized. The execution time for
each module is measured as shown in Table 5.11. These measurements are based on
the handball (1) dataset using the software implementation, executed on a host-PC
equipped with an Intel i7 CPU (870 at 2.93 GHz). 5000 frames are used to calculate
the average time for these measurements. For comparison, the performance of the
hardware implementation using a Xilinx Virtex-4 FPGA is also included in the table. As
can be seen, the FPGA implementation achieves a speedup of 15.5 times in comparison

145

5 System Evaluation and Results

to the software implementation on the PC (96.7 fps vs. 6.23 fps) [107].

Table 5.11: Performance comparison with a software implementation [107]

SW - Intel i7 CPU (2.93 GHz) Average Time Frame Rate Throughput

Video Preprocessing 69.35 ms 14.42 fps 41.75 MPixel/s
Player Segmentation 17.3 ms 57.8 fps 76.94 MPixel/s

Team Ident. & Player Detect. 73.99 ms 13.52 fps 18 MPixel/s

Total SW Implementation 160.64 ms 6.23 fps 18.04 MPixel/s

HW - Virtex-4 FPGA 10.34 ms 96.7 fps 279.98 MPixel/s

Furthermore, the performance of the proposed reconfigurable system is detailed in
Table 5.12. It consists of: the processing time for the FPGA modules, the time required
for reading the FPGA output results by the host-PC, and the required processing time
for player tracking on the CPU. In the host-PC, the average time was measured using
5000 frames of the handball (1) dataset. As can be seen in Table 5.12, the total average
processing time on the host-PC is 0.103+2.43 =2.533 ms. As a result, the overall
performance of the reconfigurable system is 77.6 fps for an input frame resolution of
1392x1040 pixels from each of the two GigE Vision cameras [107].

Table 5.12: The overall system performance [107]

Operation Technology Average Time Frame Rate

Video Acquisition, Video
Preprocessing, Player Seg-
mentation, Team Identifi-
cation & Player Detection

Virtex-4 FPGA 10.34 ms 96.7 fps

Reading detection results
from the FPGA

Intel i7-870 CPU
(4 at 2.93 GHz) 0.103 ms N/A

Player Tracking
Intel i7-870 CPU
(4 at 2.93 GHz) 2.43 ms N/A

Overall Performance FPGA & CPU 12.873 ms 77.6 fps

146

5.7 FPGA Architecture

5.7.4 Overall Latency

The latency of an operation is the time between when data is first input to this oper-
ation, and the corresponding output is available [15]. The total latency of the FPGA
architecture (using video files as the input source) is measured as shown in Figure 5.21.
First, the time of sending one video frame (with a resolution of 1920x800 pixels, corre-
sponding to 1.536 MB) from the host-PC to the FPGA through the PCI-X interface is
measured, and it is equal to 17.67 ms. However, the FPGA IP cores start processing the
input data as soon as the first pixel of a frame is received. Therefore, this video frame
transmission and the FPGA processing are pipelined as depicted in Figure 5.21.

Sending one video frame
from the host-PC to FPGA

FPGA processing

Reading detection results
from the FPGA by host-PC

Total Latency

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇4

Figure 5.21: Total latency of the FPGA architecture (Video file input)

The required time to read the detection results from the FPGA by the host-PC (i.e.,
T3 to T4 as shown in Figure 5.21) is measured, and it is equal to 0.107 ms. This time
corresponds to reading the detected player positions (including FPs) for both teams.
Furthermore, the total latency is measured, starting from sending the video frame to
the FPGA (T1) until all the detection results are received (T4). As shown in Figure 5.21,
this total latency is equal to 17.83 ms. Therefore, the period between T2 and T3, which
corresponds to a part of the FPGA processing latency as depicted in Figure 5.21, can
be calculated and it is equal to 17.83 - 17.67 - 0.107 = 0.048 ms. This small latency
is expected since for the morphological operation (dilation) IP core as an example, a
latency of one row (corresponding to 19.2 µs for a 100 MHz clock and a row width of
1920 pixels) is required. Additionally, the BDC-based graph clustering core requires
additional clock cycles to transfer the computed centroids from the intermediate reg-
isters to the output FIFO of the core after the frame is processed. For the example

147

5 System Evaluation and Results

mentioned in Section 5.5, a latency of 45 clock cycles (corresponding to 0.45 µs for
a 100 MHz clock input) is required for the centroids to be ready before the transfer
to the host-PC can be started. The measured time values (shown in Figure 5.21) are
obtained by averaging the corresponding time measurements for 5000 frames using
the handball (1) dataset.

The total latency of the FPGA architecture is shown in Figure 5.22 using the GigE
Vision cameras as the input video source. As depicted in Subsection 4.2.1, the transmit-
ted video data from the cameras are captured by the FPGA using the MC_GigE Vision
IP core. The time for streaming out the pixels of one video frame using this core can be
calculated using Equation 5.11. For the used cameras in this work, the image width
and height are 1392 and 1040, respectively, while the operating clock frequency for the
MC_GigE Vision IP core is 100 MHz. Therefore, the time to stream out a video frame
from one camera is 14.48 ms. This amount of time remains the same for streaming out
video frames from two cameras since the MC_GigE Vision core uses two AXI4-Stream
outputs to stream video frames simultaneously from the two cameras.

Pixel streaming from the
cameras

FPGA processing

Reading detection results
from the FPGA by host-PC

Total Latency

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇4

Figure 5.22: Total latency of the FPGA architecture (Camera input)

Video frame time= Image Width× Image Height× Tclk (5.11)

148

5.7 FPGA Architecture

5.7.5 Power Consumption

For the proposed player tracking system, power consumption measurements are per-
formed on three levels as shown in Figure 5.23. The first level targets the power
consumed by the Daughter Board (DB), including the Virtex-4 FPGA (DB-V4), while
the second one is to measure the total power used by the RAPTOR board including
the DB-V4, DB-display, and Gigabit Ethernet boards. The third level is the complete
reconfigurable vision system implementation on a host-PC (here, an open frame PC
equipped with an Intel Xeon CPU E3-1226 with 4 cores at 3.30 GHz is used), including
the RAPTOR board and its components.

Figure 5.23: Power consumption measurements

Table 5.13 shows the power consumption of the DB-V4 board. This daughter board
includes the Virtex-4 FPGA, fan, external memory (DDR2-Synchronous Dynamic RAM
(SDRAM)), and DC to DC converters. In this DB-V4, the used voltages are 5, 3.3, 2.5,
and 1.8 V. Here, the power measurements are performed when the FPGA is in the idle
state (i.e., without bitstream), and when the FPGA is programmed. In both cases, the
measurements are performed for two configurations. The first one is excluding the
DDR2-SDRAM and fan (configuration (A)). While in configuration (B), the measure-
ments are performed with the fan and the external memory installed on the DB-V4
board. Finally, the consumed power is measured when the FPGA is in the active state,
i.e., during the processing of the incoming input video stream using the Handball (1)
dataset. As can be seen in Table 5.13, the total amount of the consumed power by the

149

5 System Evaluation and Results

DB-V4 board is 8.41 Watt with the FPGA being programmed and all the used clocks are
activated. This amount of power is required to have a functioning FPGA-based board
including the required components (e.g., external memory). This value is increased to
8.94 Watt during processing, since the signals in the design toggle based on the input
data as well as there are memory access (reading and writing from/to the external
memory) which consume additional power. Furthermore, the amount of the power
consumed by the FPGA implementation after the bitstream is downloaded to the FPGA
can be extracted from this table, and it is equal to 8.41 - 2.14 = 6.27 Watt which is
used by the various components in the system including logic, IOs, BRAMS, PowerPC,
DSPs, etc.

Table 5.13: Power consumption of the DB-V4 board (including the Virtex-4 FPGA)

Idle FPGA Programmed FPGA
Active

(w/o Bitstream) (with Bitstream)

Conf. (A) Conf. (B) Conf. (A) Conf. (B) (Processing)

Power
1.84 2.14 7.32 8.41 8.94

(Watt)

Since the clock frequencies of the individual IP cores influence the consumed power
by the FPGA design, the used clock frequencies in these cores (while measuring the
power consumption) are reported in Table 5.14. As can be seen, the video processing
IP cores are operated with a 100 MHz clock, resulting in a throughput of 100 MPixel-
s/second. This clock frequency is adequate to process the video streams from the used
cameras in this work with their maximum frame rate (i.e., 30 fps).

Table 5.14: Operating clock frequencies used by the IP cores in the FPGA architecture

Clock

Frequency

Video Proc.

IP Cores
PPC405 TEMAC MPMC

AXI4-S

to NPI

LB-Slave to

AXI4-S/NPI

25 MHz X

100 MHz X X X

125 MHz X

200 MHz X X

300 MHz X

150

5.7 FPGA Architecture

The power consumption of the RAPTOR-X64 board is shown in Table 5.15. The
measured input voltage to this board is 12.31 V. Firstly, the consumed power by the
main board is measured without any additional boards. Secondly, the consumed power
by the RAPTOR-X64 board including the DB-V4, Gigabit Ethernet, and display boards
are reported in this table without and with the bitstream being downloaded to the
FPGA. Finally, the used power is measured when the complete RAPTOR-X64 is running
and processing the video stream from the handball (1) dataset. As shown in Table 5.15,
the total power consumed by the RAPTOR system including its additional boards is
12.53 Watt (without the bitstream). This power is increased to 19.94 Watt when
processing the input data for the player tracking system.

Table 5.15: Power consumption of the RAPTOR-X64 board

Main With Daughter With Daughter Active
Board Only Boards Boards & Bitstream (Processing)

Power
9.84 12.53 19.06 19.94

(Watt)

The last level of the performed power measurement is for the complete host-PC. The
results of these measurements are shown in Table 5.16. The used power by the host-PC
(excluding and including the RAPTOR board) is reported in this table. Additionally, the
consumed power is measured when the FPGA is programmed, and when the complete
reconfigurable player tracking system is running (active). As can be seen in Table 5.16,
the total consumed power by the host-PC increases from 46.5 Watt to 89 Watt while pro-
cessing the video data, realizing the player tracking system as shown in Figure 5.2. This
power increase is due to the additional power that is required when the host-PC sends
the video frames to the RAPTOR board and reads its output. Furthermore, the CPU
consumes additional power for post-processing, and displaying the final tracking results.

Table 5.16: Power consumption of the host-PC

Idle - Without Idle - With With RAPTOR Active
RAPTOR Board RAPTOR Board Board & Bitstream (Processing)

Power
27 41 46.5 89

(Watt)

Figure 5.24 summarizes the power consumption of the DB-V4, RAPTOR system, and
host-PC for the proposed player tracking system based on the previously mentioned

151

5 System Evaluation and Results

measurements. The values in the idle state are measured when the bitstream is not
downloaded to the FPGA. The measurements in the active state represent the consumed
power when the system is running and processing the input data to track the handball
players. Based on these results, the performance per Watt (fps/Watt) is calculated for
the DB-V4, RAPTOR, and host-PC while they are in the active state and processing
the handball video with 30 fps. These performance per Watt values are shown in
Figure 5.25 (the higher, the better). Additionally, the proposed player tracking system
is implemented in software (i.e., without the FPGA support) on the host-PC, and the
performance per Watt is reported as shown using the yellow line in Figure 5.25 (here,
the RAPTOR board is removed during the power measurement). As can be seen, the pro-
posed reconfigurable system achieves a better performance per Watt (0.337 fps/Watt)
as compared with the software implementation (0.139 fps/Watt) (i.e., 2.4 times higher
performance per Watt is realized using the reconfigurable system), since the achieved
frame rate of the software-based system is low without the FPGA acceleration. For the
reconfigurable vision system, the power measurements are performed while the system
processes the recorded video data (handball (1) dataset) at 30 fps. For higher frame
rates (e.g., up to 77.6 fps in this system), an increase in the performance per Watt can
be achieved using the proposed reconfigurable system.

2.14
12.53

41

8.94
19.94

89

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

DB-V4 RAPTOR
(incl. DB-V4)

Host-PC
(incl. RAPTOR)

P
ow

er
 (W

at
t)

Power Consumption

Idle Active

Figure 5.24: Power consumption of the proposed reconfigurable system for player
tracking using the handball (1) dataset

152

5.8 Comparison with Existing Systems

3.356

1.504

0.337
0.139

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

DB-V4 RAPTOR
(incl. DB-V4)

Host-PC
(incl. RAPTOR)

Host-PC (SW)

fp
s/

W
at

t
Performance per Watt (The higher, the better)

Figure 5.25: Performance per Watt of the proposed reconfigurable system and a com-
parison with a software implementation of the player tracking system

5.8 Comparison with Existing Systems

For evaluation of the results, the proposed system is compared with existing work
discussed in the related work section. The chosen parameters for comparison in Ta-
ble 5.17 include the targeted sports type, the utilized method for detecting and tracking
the players, and the source type of the input video. This source can be a broadcast
video stream or a dedicated camera. Furthermore, the resolution and the frame rate of
the input video source, as well as the processing architectures on which the systems
have been implemented, the achieved frame rate and the required processing time
are depicted in this table together with the reported detection and tracking results [107].

As can be seen in Table 5.17, there are several means to categorize these systems. One
approach for categorization is using the type of the input video source. For broadcast
video-based systems, the amount of pixel data that needs to be processed to track the
players is usually less than those in the dedicated camera-based systems. However,
the sports courts are not completely covered in every frame of the broadcast video
streams. Additionally, the dimensions of the courts need to be extracted in each frame,
since these systems usually use moving cameras with a zoom-in and out feature. This
extraction process imposes additional processing. On the other hand, systems based on
dedicated cameras cover the whole court. As shown in Table 5.17, one to six stationary
cameras are used in different systems. Furthermore, multiple cameras are usually

153

5 System Evaluation and Results

required to achieve better tracking results [66] [78] [4] [85]. Consequently, the total
number of pixel data from these cameras that needs to be processed is increased,
slowing down the overall system. Therefore, some systems use GPUs to accelerate the
tracking process as in [78], while FPGA technology is used in this work [107].

Using the camera setup shown in this work, players have different shapes (structures)
based on their positions on the sports court as can be seen in Figure 2.4. Compared
to more generic object detection techniques based on structure information (e.g., De-
formable Part Model used to detect the basketball players by Lu et al. [58]) with high
computational requirements, the proposed approach for player detection based on
the color of the players’ jerseys is simple, yet effective. Additionally, the presented
approach in this thesis takes advantage of the specific environment of an indoor sports
hall combined with stationary cameras, by which the court has fixed dimensions in the
captured video frames. Furthermore, this approach does not require training using
annotated datasets, and only the colors of the jerseys should be given in advance, in
contrast to many existing systems that require such training datasets (e.g., Lu et al. [58]
and Acuna [1]) [107].

As can be seen in Table 5.17, some existing systems do not support full coverage of
the sports halls (e.g., broadcast video systems [41], [27], [58], and [1]), while other
systems do not track all the players in the sport games (e.g., player detection only on
the left half of a sports court in Parisot et at. [73], and player tracking for one volleyball
team only in Li et al. [55]). For player tracking, the achieved precision and recall in
some systems are around 90% (e.g., Hu et al. [41], Chen et al. [41], Acuna et al. [1],
and Morimitsu et al. [67]). However, a precision of 98% is achieved using the system
presented by Lu et al. [58], while the achieved recall is only 82%. Furthermore, some
systems use many cameras (e.g., up to 5 cameras in Alahi et al. [4], and 6 cameras
in the STATS SportVU system [85]). Other systems do not achieve high frame rate
which is required for realizing real-time player tracking (e.g., 1 fps in Lu et al. [58],
19.6 fps in Monier et al. [65], 16.02 fps in Santiago et al. [78], and 4 fps in Morimitsu
et al. [67]). As compared with the state-of-the-art work, the proposed system uses
dedicated cameras, covering the whole sports court using only two cameras. It tracks
all the players of both teams. For player tracking, the presented system in this work
achieves high precision and recall of 94.85% and 94.72%, respectively. Additionally,
the system supports a high frame rate up to 77.6 fps using FPGA technology, realizing
an online and real-time player tracking system.

154

5.8 Comparison with Existing Systems

Table 5.17: Comparison with existing systems (Pr.= Precision, Re.= Recall, D= Detec-
tion, T= Tracking, Fr.= Frame, Res.= Resolution, P.= Processing, - = Not
mentioned) [107]

System
Sports/ Video Src./ Processing Achieved Results
Method Res.(pixels)/ Archit- Fr. Rate (Best Reported

Type Fr. Rate ecture P. Time Values)

Hu Basketball Broadcast - - Pr.(T): 91.38%
et al. CamShift 720x480 Re.(T): 91.34%
[41] 29.97 fps

Chen Basketball Broadcast - - Pr.(T): 89.71%
et al. k-means 640x352 Re.(T): 89.20%
[27] clustering+ 29.97 fps

Kalman F.

Lu Basketball Broadcast CPU 0.5-1 fps Pr.(D): 97%
et al. Deformable 1280x720 2.8 GHz 1-2 sec Re.(D): 74%
[58] [59] Part Model - + GPU Pr.(T): 98%

(DPM) Re.(T): 82%

Acuna Basketball Broadcast - - Avg. Pr.:
[1] Deep NCAA 89%

Neural Net Dataset

Monier Handball 2 Cameras CPU i7-950 19.6 fps1 Avg. Correction
et al. Basketball 1392x1040 4 cores 51 ms1 Rate: 0.00677
[66] [65] Template 30 fps Multicore 9.7 fps2 Cor./Fr./Pl.1

Matching1 Implement. 103 ms2 Error Rate:
Particle F.2 5.08 error/min.2

Santiago Handball 2 Cameras CPU i7-640M 16.02 fps Average
et al. Basketball 1024x768 4@2.8 GHz + 62.5 ms Tracking
[78] [79] BG Sub. 30 fps GPU NVidia Rate: 98.79%

+Fuzzy NVS2100M Offline T.
Logic 16@0.5 GHz

Alahi Basketball 5 Cameras - - 2 Cameras
et al. [4] BG Subt. APIDIS Pr.(D): 72%

+ Sparsity 1600x1200 Re.(D): 76%
constrained downscaled 5 Cameras
occupancy to 320x240 Pr.(D): 83%

map 22 fps Re.(D): 74%

155

5 System Evaluation and Results

Table 5.17: Comparison with existing systems (Pr.= Precision, Re.= Recall, D= Detec-
tion, T= Tracking, Fr.= Frame, Res.= Resolution, P.= Processing, - = Not
mentioned) [107] - (Continued)

System
Sports/ Video Src./ Processing Achieved Results
Method Res.(pixels)/ Archit- Fr. Rate (Best Reported

Type Fr. Rate ecture P. Time Values)

H. C. de Futsal 1 Camera CPU 40 fps Pr.(D): 90.9%
Padua BG Sub.+ 752x480 Intel i7 25 ms Re.(D): 76.4%
et al. Blob A.+ 30 fps 8 cores Pr.(T): 89.3%
[72] Particle F. 3.4 GHz Re.(T): 80%

Parisot Basketball 1 Camera i7-4790 CPU 30 fps Re(D): 90%
et al. FG D.+ 1600x1200 4@3.60 GHz FPs rejection
[73] Bayesian 30 fps Hyper- rate: 80%

Classifier threaded Left court’s half

Morimitsu TableTennis 1 Camera CPU 1.5-4 fps Re.(T): 89.3%
et al. Badminton up to Intel i5 250 ms - FPs rate(T):
[67] Volleyball 1280x720 666 ms 9.6%(↓)

Online Graph 30 fps ID Sw: 85
+Particle F.

Butt Generic 1 Camera CPU 1.43 sec- Mismatches Nr:
et al. (Pedestrian) 640x480 (MATLAB) 200 Fr. 14 - 23
[25] Lagrangian 14 - 25 fps 59 sec- Detections Nr:

Relaxation 1000 Fr. 819 - 1514

STATS Basketball 6 Cameras Commercial Real- -
SportVU - 25 fps Product Time
(NBA) [85] - Tracking

TRACAB Indoor/ 2 Cam units Commercial Real- -
[29] Outdoor Super-HD Product Time

Sports 25 fps - Tracking

Li Volleyball 1 Camera FPGA 100 fps Recognition
et al. BG Subt. 800x600 (Spartan-6) 10 ms Accuracy:
[55] +Template 30 fps LUTs: 14571 72.2%

Matching (53.4%) Only 1 Team T.

The Handball 2 Cameras FPGA 77.6 fps Pr.(D): 84.02%
Proposed Basketball 1392x1040 (Virtex-4) 12.87 ms Re.(D): 96.6%
System BG Sub. 30 fps LUTs: 51875 Pr.(T): 94.85%

+ Graph +CPU i7-870 Re.(T): 94.72%
Clustering 4@2.93 GHz

156

5.9 Summary

5.9 Summary

The proposed vision-based reconfigurable system for player tracking has been eval-
uated in this chapter. First, the used hardware environment and the implemented
multithreaded program to realize the proposed system is presented. Then, the datasets
that are used for evaluation are shown. After that, player detection is analyzed and
evaluated using standard metrics, followed by further analysis for different player oc-
clusion scenarios. For player detection, the experimental results show that the achieved
average precision and recall are up to 84.02% and 96.6%, respectively. Additionally,
the hardware implementation of the player detection module is verified in this chapter.
After player detection performance analysis is presented, the evaluation of the player
tracking is depicted. The achieved average precision and recall for player tracking are
up to 94.85% and 94.72% respectively.

The evaluation of the FPGA architecture is presented in this chapter, including the
multiple camera support, performance and throughput of the individual IP cores, and
overall latency of the architecture. Furthermore, the acceleration factor that is gained us-
ing the FPGA implementation, and the overall system performance are presented. Using
the proposed FPGA architecture, an acceleration factor of 15.5 is achieved compared to
an OpenCV-based software implementation on a host-PC. The proposed reconfigurable
system achieves a maximum frame rate of 77.6 fps using two GigE Vision cameras with
a resolution of 1392x1040 pixels each. Moreover, power consumption measurements
and analysis as well as performance per Watt are presented on different levels of the
proposed system. The results show that the proposed reconfigurable system achieves
0.337 fps/Watt, while an equivalent software implementation (without FPGA support)
achieves 0.139 fps/Watt (i.e., 2.4 times higher performance per Watt is realized using
the reconfigurable system). Finally, this chapter ends with a comprehensive comparison
of the proposed system in this thesis with the other systems that are presented in the
related work section in Chapter 2.

157

6 Conclusions and Future Work

This chapter concludes the work presented in this thesis, and proposes some suggestions
for the future development.

6.1 Conclusions

In this thesis, a complete reconfigurable vision processing system for automatic and
online player tracking in indoor sports is presented. The proposed system can process
live video data streams from multiple cameras as well as offline video data, targeting
player tracking for basketball and handball games. Two GigE Vision cameras are used
with a resolution of 1392x1040 pixels and a frame rate of 30 fps, covering the complete
sports court. Player tracking systems have high computational demands resulting from
the video processing algorithms as well as from the huge amount of video data to be
processed from multiple cameras. Therefore, FPGA technology is used to handle the
compute-intensive vision processing tasks, achieving real-time player tracking, while
the less compute-intensive operations are performed on a CPU. Dedicated hardware
modules have been implemented for video acquisition, video preprocessing, player
segmentation, and team identification & player detection, targeting Xilinx Virtex-4 to 7
Series FPGAs [107].

In the proposed system, the two teams are identified and the positions of the players
are detected based on the colors of the players’ jerseys. More precisely, player detection
is achieved using background subtraction, color thresholding, and graph clustering
techniques. Furthermore, the tracking-by-detection approach is used to achieve player
tracking. Moreover, player transfer between the two camera views is implemented,
realizing player tracking on the complete sports court.

Player detection and tracking are evaluated using basketball and handball datasets.
High precision and recall for player tracking are achieved compared with existing
systems. For the proposed system, the achieved average precision and recall for player
detection are up to 84.02% and 96.6%, respectively. For player tracking, the maximum
achieved average precision and recall are 94.85% and 94.72%, respectively.

159

6 Conclusions and Future Work

In the proposed system, the compute-intensive vision processing tasks are imple-
mented on the FPGA, achieving a maximum frame rate of 96.7 fps using a Xilinx
Virtex-4 FPGA and 136.4 fps using a Virtex-7 FPGA. The less compute-intensive tracking
processing operations are implemented on an Intel i7-870 CPU (4 cores at 2.93 GHz)
of the host-PC, requiring an average processing time of only 2.5 ms. As a result, the
proposed system can achieve real-time player tracking with a maximum frame rate
of 77.6 fps for an input frame resolution of 1392x1040 pixels from each of the two
GigE Vision cameras. The results presented in this thesis show that FPGA technology
significantly enhances the performance of the player tracking system, and off-loads the
CPU from the compute-intensive vision processing tasks. The proposed reconfigurable
system achieves a significantly higher computing performance than a software-based
implementation. Utilizing a Xilinx Virtex-4 FPGA, a speedup by a factor of 15.5 is
achieved in comparison to an OpenCV-based software implementation on a PC equipped
with a 2.93 GHz i7-870 Intel CPU [107].

Logic resources and performance evaluations are measured for each implemented
module, the overall FPGA utilization of the Virtex-4 FPGA is around 60%. Power
consumption measurements are performed on the proposed system, including the
consumed power by the FPGA-based daughterboard (DB-V4), RAPTOR board, and
the host-PC. Moreover, the performance per Watt are calculated based on these power
measurements. The results show that the proposed reconfigurable system achieves a
2.4 times higher performance per Watt than a software-based implementation (without
FPGA support) on the host-PC. As compared with the existing systems in literature,
the realized system in this work performs online and real-time player tracking using
two dedicated cameras. Players of the two teams in handball and basketball games are
tracked automatically with high precision and recall values. Additionally, the system
supports a high frame rate up to 77.6 fps using FPGA technology.

6.2 Future Work

For the proposed system in this work, possible improvements to can be achieved in two
levels: algorithmic and hardware. In the algorithmic level, the player detection can be
improved in scenarios where two players of the same team are occluded for a long time.
In this case, a possible ID switch could result between these players. Additionally, these
players could be detected as one player. To solve these issues, the use of additional
features (e.g., based on shapes) for player detection (in addition to the color of the
jersey) can be investigated. In this case, the detection results from the proposed system
(based on the color information) can be fused with a detector that uses these additional
features, enhancing the player detection results.

160

6.2 Future Work

In the hardware level, the currently used physical interface in the Gigabit Ethernet
board supports up to 1 Gbps. This interface limits the number of the used GigE Vision
cameras operating with their maximum resolution and frame rate, sharing this one
Gigabit bandwidth. Therefore, an improvement can be achieved by using a 10 Gigabit
Ethernet interface. In this case, more cameras can be supported, sharing the same
10 Gbps bandwidth. Another improvement can be made in the communication between
the FPGA in the RAPTOR board and the CPU in the host-PC, which is currently achieved
through the PCI-X interface. Therefore, an upgrade to the PCI Express (PCIe) as a
high-speed interface for data transfer is recommended.

Additionally, the mapping of the less compute-intensive player tracking processing
from the CPU on a host-PC to an embedded processor (e.g., an ARM processor) can
be investigated, using a System on Chip (SoC) like the Xilinx Zynq SoC. In this case,
the FPGA implementation presented in this work can be mapped to the programmable
logic (PL) of the Zynq SoC, and the complete reconfigurable player tracking system
can be implemented on a single chip, targeting a vision-based embedded system for
player tracking. Figure 6.1 shows this concept, by which a player tracking vision box
acquires the video data directly from the cameras through its 1 or 10 Gigabit Ethernet
interfaces. Additionally, it performs the player tracking processing on its embedded
SoC chip (e.g., Zynq SoC). Finally, it transfers the tracking results through a wireless
interface to a trainer’s tablet for a live real-time interaction. Moreover, the tracking
results can be stored in the host-PC (e.g., for later evaluation) as shown in Figure 6.1.

2x GigE Vision
Cameras

Gigabit
Ethernet
Switch

Indoor Sports Court
(Basketball/Handball)

1 Gigabit
Ethernet Ports

Player Tracking
Vision Box

(Online real-time
player tracking) Trainer Tablet

(Player tracking results)

Host-PC
(Storage)

10 Gigabit
Ethernet Ports

Figure 6.1: Player tracking vision box

161

List of Figures

1.1 A handball recorded game using two cameras with fisheye-lenses . . 1

2.1 Types of player tracking systems . 5
2.2 Main characteristics of vision-based player tracking systems using dedi-

cated cameras . 6
2.3 Examples of occlusion scenarios between players in basketball and hand-

ball . 8
2.4 A top view of a handball sports hall captured using two cameras demon-

strating the challenges in player tracking [107] 9
2.5 A basic FPGA architecture, and a logic cell inside a logic block as the

basic building block of an FPGA . 12
2.6 A contemporary FPGA Architecture [96] 13
2.7 CPU-based vision processing system . 16
2.8 FPGA-based vision processing system . 17
2.9 An example illustrating the utilization of an FPGA parallelism for vision

processing . 18
2.10 A GigE Vision camera [47] . 22
2.11 A GigE Vision packet . 22
2.12 Standard transmission mode in GVSP protocol [13] 23
2.13 Screenshots from Louisville vs Michigan 2013 NCAA basketball champi-

onship game using broadcast video (Source: YouTube) 27
2.14 Initial template selection for tracking a player in a basketball game [66] 29
2.15 Block diagram of the work presented in [66] and [65] 29
2.16 STATS SportVU system using 6 cameras at 25 fps [85] 32
2.17 System setup of freeD technology . 33
2.18 Screenshots using freeD replay technologies 33
2.19 FPGA-based volleyball player tracker [55] 35

3.1 Bayer pattern encoded image . 38
3.2 HSV color space . 41
3.3 Morphological dilation of a binary image (Left: input image. Right:

output image) . 43
3.4 Morphological erosion of a binary image (Left: input image. Right:

output image) . 43
3.5 Image thresholding . 44

163

List of Figures

3.6 Object segmentation using background subtraction 45
3.7 Graph Clustering of a data set. Left: before clustering. Right: after

clustering . 47
3.8 Overview of two prominent tracking approaches [60] 48
3.9 The tracking-by-detection approach [84] 49
3.10 Overview of a discrete Kalman filter cycle [91] 50
3.11 Architecture of the RAPTOR-X64 prototyping system [74] 52
3.12 The design flow for the implementation of the vision processing algo-

rithms on the FPGA . 53

4.1 A general overview of the proposed system 55
4.2 Top-level block diagram of the proposed reconfigurable system [107] 56
4.3 An overview of the proposed FPGA architecture 57
4.4 Two video IP cores connected using the AXI4-Stream interface 58
4.5 An example for pixel data transfer using the AXI4-Stream interface [95] 59
4.6 The FPGA architecture of the proposed system [108] [107] 60
4.7 Video acquisition module . 61
4.8 FPGA-based systems for Multiple GigE Vision cameras [106] 62
4.9 A multi-camera GigE Vision system using the MC_GigEV IP core . . . 63
4.10 The multi-camera GigE Vision core block diagram [106] 64
4.11 Flowchart for a video frame reconstruction from a GigE Vision camera

using the MC_GigEV IP core . 65
4.12 Reconstructed frames (Bayer pattern) from GigE Vision packets . . . 67
4.13 GVCP packet with WRITEREG_CMD [13] 68
4.14 Video file controller block diagram . 69
4.15 Video file controller flowchart . 70
4.16 Video file controller operation for Bayer pattern input video 71
4.17 RGB color components alignment . 71
4.18 Video preprocessing module . 72
4.19 Implementation of Bayer pattern using bilinear interpolation [15] . . 73
4.20 Resulted colored images after Bayer pattern demosaicing using bilinear

interpolation [108] [107] . 73
4.21 Evaluation results of the AWB algorithms 75
4.22 Block diagram of the implemented AWB using Gray World Assumption 76
4.23 Resulted colored images after AWB using the GWA algorithm 76
4.24 Block diagram of the implemented cropping IP core 77
4.25 Resulted images after cropping . 77
4.26 Output frame after merging [108] [107] 78
4.27 Block diagram of the Video Merger IP core 79
4.28 Player segmentation module . 79
4.29 RGB to grayscale IP core block diagram 80
4.30 Background estimation and subtraction implementation [108] [107] 81

164

List of Figures

4.31 AXI4-S to NPI controller block diagram 83
4.32 Block diagram of the implemented morphological dilation and ero-

sion [15] . 84
4.33 Implementation of the masking IP core 85
4.34 Resulting images from the IP cores in the player segmentation mod-

ule [108] [107] . 86
4.35 Team identification & player detection module 87
4.36 Block diagram of the implemented RGB to HSV conversion & color

thresholding core based on the design presented in [45] and [15] . . 88
4.37 Team1 color thresholding . 91
4.38 Team 2 color thresholding . 92
4.39 Results from the RGB to HSV conversion & color thresholding and BDC-

based graph clustering IP cores using a basketball dataset [108] [107] 93
4.40 Results from the RGB to HSV conversion & color thresholding and BDC-

based graph clustering IP cores using a handball dataset 94
4.41 BDC-based graph clustering and IP core block diagram [110] [108] [107] 95
4.42 BDC-based graph clustering flowchart [110] [107] 96
4.43 Detection results for both teams (green & yellow squares) [108] [107] 97
4.44 Overview of player tracking and data association [107] 102
4.45 Parameters of a track [107] . 103
4.46 Soft and hard decision region of non-interest (RONI) [107] 104
4.47 Player tracking flowchart . 106
4.48 Visualization of player tracking results [107] 107
4.49 Cost matrix . 108
4.50 Example (1) - Detections assignment to tracks 109
4.51 Example (2) - Detections are incorrectly assigned to tracks 109
4.52 Cost matrix with padded columns (detections) 110
4.53 Solving assignment problem for example (2) 110
4.54 Example (3) - An unassigned detection 111
4.55 Example (4) - An unassigned track . 111
4.56 Player transfer between the two cameras 112
4.57 Player transfer from the right to the left camera [107] 115

5.1 Realization of the proposed system using the RAPTOR-X64 platform . 117
5.2 C++/OpenCV multithread implementation on the host-PC, realizing the

proposed system for player tracking using recorded video files 118
5.3 Example scenes from the three datasets used in the evaluation [107] 120
5.4 A handball scene with detection results showing TPs, FPs, and FNs . 121
5.5 Precision and recall using the detection results for teams 1&2 (hand-

ball (1) dataset) [107] . 123
5.6 APIDIS dataset [7] that are used for the comparison 124
5.7 Player detection for occluded players (scenario A and B) [107] 126

165

List of Figures

5.8 Successful detections for different occlusion scenarios between players
of opposing teams in a handball game [107] 126

5.9 Successful detections for different occlusion scenarios between players
of opposing teams in a basketball game [107] 127

5.10 Unsuccessful detections for occlusion scenarios between players of the
same team [107] . 127

5.11 Validation of the player detection implementation 128
5.12 The resulted centroid of cluster 4 in team 1 131
5.13 Precision and recall using the tracking results for teams 1&2 (handball

(1) dataset) [107] . 134
5.14 Example scene for the player tracks transfer (Handball (1) dataset) . 137
5.15 Example scenes from the three datasets showing the tracking results 138
5.16 MC_GigEV Core performance for different resolutions and frame rates

using configurations with 1, 2, 3 and 4 cameras [106] 139
5.17 Performance of the FPGA architecture with a Virtex-4 FPGA using two

cameras, each has a frame resolution of 1392x1040 pixels [107] . . . 142
5.18 Performance of the FPGA architecture with a Virtex-7 FPGA using two

cameras, each has a frame resolution of 1392x1040 pixels 143
5.19 Maximum throughput (MPixels/second) of the IP cores for a Virtex-

4 FPGA . 144
5.20 Maximum Throughput (MByte/second) of the IP cores for a Virtex-4

FPGA . 145
5.21 Total latency of the FPGA architecture (Video file input) 147
5.22 Total latency of the FPGA architecture (Camera input) 148
5.23 Power consumption measurements . 149
5.24 Power consumption of the proposed reconfigurable system for player

tracking using the handball (1) dataset 152
5.25 Performance per Watt of the proposed reconfigurable system and a com-

parison with a software implementation of the player tracking system 153

6.1 Player tracking vision box . 161

166

List of Tables

2.1 Comparison between CPUs, GPUs, and FPGAs for vision processing [86] [45] 11
2.2 Comparison of the Xilinx FPGAs [102] [93] [103] 14
2.3 Comparison of the Xilinx Ultrascale FPGAs [101] 15
2.4 State-of-the-art digital camera interface standards comparison [3] . . 25

3.1 Comparison of the MOT approaches [60] 48

4.1 Device utilization (Virtex-4 FX100-11) for the MC_GigEV IP core with
configurations for 1, 2, 3 and 4 cameras [106] 98

4.2 Device Utilization (Virtex-4 FX100-11) 99
4.3 Device Utilization (Virtex-7 VX690T-2) 101

5.1 Results of player detection for the used datasets [107] 122
5.2 Comparison with the work presented in [4] [108] [107] 124
5.3 Comparison between the software and hardware implementations’ re-

sults of the player detection module for team 1 using one image from
the handball (1) dataset . 129

5.4 Comparison between the software and hardware implementations’ re-
sults of the player detection module for team 2 using one image from
the handball (1) dataset . 132

5.5 Results of player tracking for our datasets (detection results are presented
in table 5.1) [107] . 133

5.6 Player tracking evaluation for the handball (1) dataset using the metrics
presented in [19], [56] (The up arrow means the higher, the better;
the down arrow indicates that the smaller, the better for the used met-
ric) [107] . 134

5.7 Player tracking coverage for the handball (1) dataset [107] 135
5.8 Summery of the evaluation metrics [56] that are used in this work (The

up arrow means the higher, the better; the down arrow indicates that
the smaller, the better for the used metric) 136

5.9 Comparison with other GigE Vision IP core [106] 140
5.10 Throughput requirements (MPixels/second) 143
5.11 Performance comparison with a software implementation [107] . . . 146
5.12 The overall system performance [107] 146
5.13 Power consumption of the DB-V4 board (including the Virtex-4 FPGA) 150

167

List of Tables

5.14 Operating clock frequencies used by the IP cores in the FPGA architec-
ture . 150

5.15 Power consumption of the RAPTOR-X64 board 151
5.16 Power consumption of the host-PC . 151
5.17 Comparison with existing systems (Pr.= Precision, Re.= Recall, D=

Detection, T= Tracking, Fr.= Frame, Res.= Resolution, P.= Processing, -
= Not mentioned) [107] . 155

168

Abbreviations

AI Artificial Intelligence
AMBA Advanced Microcontroller Bus Architecture
ASIC Application Specific Integrated Circuit
AWB Automatic White Balancing
AXI Advanced Exensible Interface

BDC Binary Distance Calculation
BRAM Block RAM

CFA Color Filter Array
CLB Configurable Logic Block
CPU Central Processing Unit

DB Daughter Board
DDR Double Data Rate
DMA Direct Memory Access
DSP Digital Signal Processor

EDK Embedded Development Kit
EOL End of Line

FF Flip-Flop
FIFO First-In First-Out
FN False Negative
FP False Positive
FPGA Field Programmable Gate Array
fps frame per second
Frag Fragment
FSM Finite State Machine

GMII Gigabit Media Independent Interface
GPU Graphics Processing Unit
GVCP GigE Vision Control Protocol
GVSP GigE Vision Streaming Protocol

169

Abbreviations

GWA Gray World Assumption

HDL Hardware Description Language
HSV Hue Saturation Value

ID Sw Identity Switch
IP Intellectual Property
ISE Integerated Synthesis Enviroment

LL Local Link
LUT LookUp Table

MAC Medium Access Control
MC_GigEV Multi-Camera GigE Vision
ML Mostly Lost
MOT Multiple Object Tracking
MPMC Multi-Port Memory Controller
MPSoC Multiprocessor System on a Chip
MT Mostly Tracked

NBA National Basketball Association
NPI Native Port Interface

PCI-X Peripheral Component Interconnect eXtended
PCIe PCI Express
PHY Physical Layer
PLB Processor Local Bus
PRA Perfect Reflector Assumption
PT Partially Tracked

RFSoC Radio Frequency SoC
RGB Red Green Blue
RONI Region of Non-Interest

SDRAM Synchronous Dynamic RAM
SoC System on a Chip
SOF Start of Frame
SRAM Static Random Access Memory

TEMAC Tri-Mode Ethernet Media Access Controller
TP True Positive

170

Abbreviations

UDP User Datagram Protocol
USB Universal Serial Bus

VFBC Video Frame Buffer Controller
VHDL Very High Speed Integrated Circuit Hardware Description Language

171

References
[1] D. Acuna. “Towards Real-Time Detection and Tracking of Basketball Players

using Deep Neural Networks”. In: 31st Conference on Neural Information
Processing Systems (NIPS 2017), Long Beach, CA, USA. 2017.

[2] Adimek. Vision connectivity interfaces, Choosing between Camera Link, CoaXPress,
GigE Vision, Camera Link HS, 10 GigE Vision, and USB3 Vision. Tech. rep. 2012.
URL: http://info.adimec.com.

[3] AIA, EMVA, and JIIA. Global machine vision interface standards: understanding
today’s digital camera interface options. 2014.

[4] A. Alahi, Y. Boursier, L. Jacques, and P. Vandergheynst. “Sport players detection
and tracking with a mixed network of planar and omnidirectional cameras”. In:
3rd ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC
2009. 2009, pp. 1–8. DOI: 10.1109/ICDSC.2009.52893406.

[5] E. S. Albuquerque, A. P. A. Ferreira, G. M. Silva, R. L. M. Carlos, D. S. Albu-
querque, and E. N. S. Barros. “An FPGA-based accelerator for multiple real-time
template matching”. In: 29th Symposium on Integrated Circuits and Systems
Design (SBCCI). 2016, pp. 1–6. DOI: 10.1109/SBCCI.2016.7724071.

[6] K. Amma, Y. Yaguchi, Y. Niitsuma, T. Matsuzaki, and R. Oka. “A comparative
study of gesture recognition between RGB and HSV colors using time-space
continuous dynamic programming”. In: 2013 International Joint Conference
on Awareness Science and Technology & Ubi-Media Computing (iCAST 2013 &
UMEDIA 2013). 2013, pp. 185–191. DOI: 10.1109/ICAwST.2013.6765431.

[7] APIDIS Basketball dataset. URL: http://sites.uclouvain.be/ispgroup/
index.php/Softwares/APIDIS.

[8] ARM. AMBA 4 AXI4-Stream Protocol Specification v1.0. Tech. rep. 2010.

[9] ARM. AMBA AXI Protocol Specification, v2.0. Tech. rep. 2010.

[10] Automated Imaging Association (AIA). Camera Link HS - The Machine Vision
Protocol Moving Forward. 2016. URL: http://www.visiononline.org/.

[11] Automated Imaging Association (AIA). Camera Link – The Only Real-Time
Machine Vision Protocol. URL: http://www.visiononline.org/.

[12] Automated Imaging Association (AIA). GigE Vision - True Plug and Play Connec-
tivity. 2016. URL: http://www.visiononline.org.

173

http://info.adimec.com
http://dx.doi.org/10.1109/ICDSC.2009.52893406
http://dx.doi.org/10.1109/SBCCI.2016.7724071
http://dx.doi.org/10.1109/ICAwST.2013.6765431
http://sites.uclouvain.be/ispgroup/index.php/Softwares/APIDIS
http://sites.uclouvain.be/ispgroup/index.php/Softwares/APIDIS
http://www.visiononline.org/
http://www.visiononline.org/
http://www.visiononline.org

References

[13] Automated Imaging Association (AIA). GigE Vision, Video Streaming and Device
Control over Ethernet Standard v2.0. 2012.

[14] Automated Imaging Association (AIA). USB3 Vision v1.0. 2013.

[15] D. G. Bailey. Design for embedded image processing on FPGAs. John Wiley &
Sons, 2011, p. 496. ISBN: 9780470828496.

[16] D. Bailey, S. Randhawa, and J. S. J. Li. “Advanced Bayer demosaicing on
FPGAs”. In: 2015 International Conference on Field Programmable Technology,
FPT 2015. 2016, pp. 216–220. DOI: 10.1109/FPT.2015.7393154.

[17] B. E. Bayer. Color imaging array. 1975. URL: https://www.google.com/
patents/US3971065.

[18] S. Benton. “Background subtraction, MATLAB models”. In: EETimes (2008).

[19] K. Bernardin and R. Stiefelhagen. “Evaluating multiple object tracking per-
formance: The CLEAR MOT metrics”. In: Eurasip Journal on Image and Video
Processing (2008). DOI: 10.1155/2008/246309.

[20] BERTEN DSP. GPU vs FPGA Performance Comparison (White Paper). 2016. URL:
http://www.bertendsp.com.

[21] T. A. Biresaw, T. Nawaz, J. Ferryman, and A. I. Dell. “ViTBAT: Video tracking
and behavior annotation tool”. In: 2016 13th IEEE International Conference on
Advanced Video and Signal Based Surveillance, AVSS 2016. Vol. 1. August. 2016,
pp. 295–301. DOI: 10.1109/AVSS.2016.7738055.

[22] D. D. Bloisi, A. Pennisi, and L. Iocchi. “Background modeling in the maritime
domain”. In: Machine Vision and Applications 25.5 (Dec. 2013), pp. 1257–1269.
ISSN: 0932-8092.

[23] M. Bredereck, Xiaoyan Jiang, M. Korner, and J. Denzler. “Data association
for multi-object Tracking-by-Detection in multi-camera networks”. In: Sixth
International Conference on Distributed Smart Cameras (ICDSC), Hong Kong.
2012, pp. 1–6. ISBN: 978-1-4503-1772-6.

[24] W. Brooks. Intel Acquires Replay Technologies for Immersive Sports. URL: https:
//newsroom.intel.com/editorials/intel-acquires-replay-tec
hnologies/.

[25] A. A. Butt and R. T. Collins. “Multi-target tracking by lagrangian relaxation to
min-cost network flow”. In: Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. 2013, pp. 1846–1853. DOI: 10.
1109/CVPR.2013.241.

[26] C.-H. Chen, S.-Y. Tan, and W.-T. Huang. “A novel hardware-software co-design
for automatic white balance”. In: Proceedings of the 7th WSEAS International
Conference on Multimedia, Internet & Video Technologies, Beijing. 2007, pp. 203–
212.

174

http://dx.doi.org/10.1109/FPT.2015.7393154
https://www.google.com/patents/US3971065
https://www.google.com/patents/US3971065
http://dx.doi.org/10.1155/2008/246309
http://www.bertendsp.com
http://dx.doi.org/10.1109/AVSS.2016.7738055
https://newsroom.intel.com/editorials/intel-acquires-replay-technologies/
https://newsroom.intel.com/editorials/intel-acquires-replay-technologies/
https://newsroom.intel.com/editorials/intel-acquires-replay-technologies/
http://dx.doi.org/10.1109/CVPR.2013.241
http://dx.doi.org/10.1109/CVPR.2013.241

References

[27] H. T. Chen, C. L. Chou, T. S. Fu, S. Y. Lee, and B. S. P. Lin. “Recognizing tactic
patterns in broadcast basketball video using player trajectory”. In: Journal of
Visual Communication and Image Representation 23.6 (2012), pp. 932–947.
DOI: 10.1016/j.jvcir.2012.06.003.

[28] S.-C. Cheung and C. Kamath. “Robust techniques for background subtraction
in urban traffic video”. In: Proceedings of Video Communications and Image
Processing, SPIE Electronic Imaging (2004), pp. 881–892. DOI: 10.1117/12.
526886.

[29] ChyronHego. TRACAB Optical TRacking, Optical Sports Performance Tracking.
URL: https://chyronhego.com/products/sports-tracking/traca
b-optical-tracking/.

[30] B. Cope, P. Cheung, W. Luk, and L. Howes. “Performance Comparison of Graphics
Processors to Reconfigurable Logic: A Case Study”. In: IEEE Transactions on
Computers 59.4 (2010), pp. 433–448. DOI: 10.1109/TC.2009.179.

[31] A. Criminisi and J. Shotton. Advances in Computer Vision and Pattern Recognition.
2013, p. 368. DOI: 10.1007/978-1-4471-4929-3.

[32] P. H. De Padua, F. L. Padua, M. T. Sousa, and M. D. A. Pereira. “Particle Filter-
Based Predictive Tracking of Futsal Players from a Single Stationary Camera”.
In: Brazilian Symposium of Computer Graphic and Image Processing. Vol. 2015-
Octob. 2015, pp. 134–141. DOI: 10.1109/SIBGRAPI.2015.10.

[33] Embedded Vision Alliance. Processors for Embedded Vision. URL: https://www.
embedded-vision.com/technology/programmable-devices (visited
on 01/02/2017).

[34] R. Faragher. “Understanding the basis of the kalman filter via a simple and
intuitive derivation [Lecture Notes]”. In: IEEE Signal Processing Magazine 29.5
(2012), pp. 128–132. DOI: 10.1109/MSP.2012.2203621.

[35] D. Farin, P. H. N. de With, and W. Effelsberg. “Video-object segmentation using
multi-sprite background subtraction”. In: 2004 IEEE International Conference on
Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763), Taipei. 2004, pp. 343–
346. DOI: 10.1109/ICME.2004.1394199.

[36] J. D. Foley, A. van Dam, F. Steven K, and J. F. Hughes. Computer graphics:
principles and practice. Addison-Wesley, Boston, MA, USA, 1996. ISBN: 0-201-
12110-7.

[37] A. Godil, R. Bostelman, M. Shneier, and W. Shackleford. “Performance Metrics
for Evaluating Object and Human Detection and Tracking Systems”. In: 2014,
pp. 1–13. DOI: 10.6028/NIST.IR.7972.

[38] A. Güneş, H. Kalkan, and E. Durmuş. “Optimizing the color-to-grayscale con-
version for image classification”. In: Signal, Image and Video Processing 10.5
(2016), pp. 853–860. DOI: 10.1007/s11760-015-0828-7.

175

http://dx.doi.org/10.1016/j.jvcir.2012.06.003
http://dx.doi.org/10.1117/12.526886
http://dx.doi.org/10.1117/12.526886
https://chyronhego.com/products/sports-tracking/tracab-optical-tracking/
https://chyronhego.com/products/sports-tracking/tracab-optical-tracking/
http://dx.doi.org/10.1109/TC.2009.179
http://dx.doi.org/10.1007/978-1-4471-4929-3
http://dx.doi.org/10.1109/SIBGRAPI.2015.10
https://www.embedded-vision.com/technology/programmable-devices
https://www.embedded-vision.com/technology/programmable-devices
http://dx.doi.org/10.1109/MSP.2012.2203621
http://dx.doi.org/10.1109/ICME.2004.1394199
http://dx.doi.org/10.6028/NIST.IR.7972
http://dx.doi.org/10.1007/s11760-015-0828-7

References

[39] M. C. Hanumantharaju, G. R. Vishalakshi, S. Halvi, and S. B. Satish. “Global
Trends in Information Systems and Software Applications”. In: vol. 270. July.
2012. DOI: 10.1007/978-3-642-29216-3.

[40] Q. He, J. Wu, G. Yu, and C. Zhang. “SOT for MOT”. In: arXiv:1712.01059v1
(2017). arXiv: 1712.01059. URL: http://arxiv.org/abs/1712.01059.

[41] M. C. Hu, M. H. Chang, J. L. Wu, and L. Chi. “Robust camera calibration
and player tracking in broadcast basketball video”. In: IEEE Transactions on
Multimedia 13.2 (2011), pp. 266–279. DOI: 10.1109/TMM.2010.2100373.

[42] C. Huang, B. Wu, and R. Nevatia. “Robust Object Tracking by Hierarchical
Association of Detection Responses”. In: Forsyth D., Torr P., Zisserman A. (eds)
Computer Vision – ECCV 2008. Lecture Notes in Computer Science, vol 5303.
Springer, Berlin, Heidelberg (2008), pp. 788–801. DOI: 10.1007/978-3-540-
88688-4_58.

[43] R. Hunt. The Reproduction of Colour. Wiley, 2004, p. 724. ISBN: 978-0-470-
02425-6.

[44] Intel. Intel redefines the fan experience for NBA All-Star weekend 2016. 2016. URL:
https://newsroom.intel.com/news-releases/intel-redefines-
the-fan-experience-for-nba-all-star-weekend-2016/.

[45] A. Irwansyah. “Heterogeneous Computing Systems for Vision-based Multi-Robot
Tracking”. PhD thesis. Bielefeld University, Germany, 2017.

[46] M. Jacobsen, S. Sampangi, Y. Freund, and R. Kastner. “Improving FPGA accel-
erated tracking with multiple online trained classifiers”. In: 24th International
Conference on Field Programmable Logic and Applications, FPL 2014. 2014. DOI:
10.1109/FPL.2014.6927505.

[47] JAI. BM-141GE GigE Vision Camera (Datasheet). URL: http://www.jai.com/
en/products/bb-141ge.

[48] S. Jeeva and M. Sivabalakrishnan. “Survey on background modeling and fore-
ground detection for real time video surveillance”. In: Procedia Computer Science
50 (2015), pp. 566–571. DOI: 10.1016/j.procs.2015.04.085.

[49] D. Jurić. Object Tracking: Kalman Filter with Ease. 2015. URL: https://www.
codeproject.com.

[50] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”. In:
Journal of Basic Engineering 82.1 (1960), p. 35. DOI: 10.1115/1.3662552.

[51] E. Y. Lam and G. S. K. Fung. “Automatic White Balancing in Digital Photogra-
phy”. In: Single-Sensor Imaging: Methods and Applications for Digital Cameras.
Ed. by R. Lukac. CRC Press, 2009. Chap. 10, pp. 267–294. DOI: 10.1201/
9781420054538.ch10.

176

http://dx.doi.org/10.1007/978-3-642-29216-3
http://arxiv.org/abs/1712.01059
http://arxiv.org/abs/1712.01059
http://dx.doi.org/10.1109/TMM.2010.2100373
http://dx.doi.org/10.1007/978-3-540-88688-4_58
http://dx.doi.org/10.1007/978-3-540-88688-4_58
https://newsroom.intel.com/news-releases/intel-redefines-the-fan-experience-for-nba-all-star-weekend-2016/
https://newsroom.intel.com/news-releases/intel-redefines-the-fan-experience-for-nba-all-star-weekend-2016/
http://dx.doi.org/10.1109/FPL.2014.6927505
http://www.jai.com/en/products/bb-141ge
http://www.jai.com/en/products/bb-141ge
http://dx.doi.org/10.1016/j.procs.2015.04.085
https://www.codeproject.com
https://www.codeproject.com
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1201/9781420054538.ch10
http://dx.doi.org/10.1201/9781420054538.ch10

References

[52] E. Lam. “Combining Gray World and Retinex Theory for Automatic White
Balance in Digital Photography”. In: Proceedings of the Ninth International Sym-
posium on Consumer Electronics, (ISCE 2005). 2005, pp. 1–6. ISBN: 0780389204.

[53] E. Land. “The Retinex”. In: American Scientist 52 (1964), pp. 247–264.

[54] E. H. Land and J. J. McCann. “Lightness and Retinex theory”. In: Journal of the
Optical Society of America 61.1 (1971), pp. 1–11.

[55] C. Li, L. Y. Yee, H. Maruyama, and Y. Yamaguchi. “FPGA-based Volleyball Player
Tracker”. In: ACM SIGARCH Computer Architecture News. Vol. 44. 4. 2017,
pp. 80–86. DOI: 10.1145/3039902.3039917.

[56] Y. Li, C. Huang, and R. Nevatia. “Learning to associate: Hybridboosted multi-
target tracker for crowded scene”. In: 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2009
(2009), pp. 2953–2960. DOI: 10.1109/CVPRW.2009.5206735.

[57] O. Losson, L. Macaire, and Y. Yang. “Comparison of color demosaicing methods”.
In: Advances in Imaging and Electron Physics. Vol. 162. C. 2010, pp. 173–265.
DOI: 10.1016/S1076-5670(10)62005-8.

[58] W. L. Lu, J. A. Ting, J. J. Little, and K. P. Murphy. “Learning to track and identify
players from broadcast sports videos”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 35.7 (2013), pp. 1704–1716. DOI: 10.1109/TPAMI.
2012.242.

[59] W.-l. Lu. “Learning to Track and Identify Players from Broadcast Sports Videos”.
PhD thesis. The University Of British Columbia, 2011.

[60] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim. “Multiple
Object Tracking: A Literature Review”. In: arXiv:1409.7618v4 (2017), pp. 1–18.
arXiv: 1409.7618.

[61] MathWorks. Machine Learning with MATLAB (ebook). 2016, p. 12.

[62] C. Maxfield. The Design Warrior’s Guide to FPGAs. Newnes, 2004, p. 560. ISBN:
0750676043.

[63] P. L. Mazzeo, L. Giove, G. M. Moramarco, P. Spagnolo, and M. Leo. “HSV and
RGB color histograms comparing for objects tracking among non overlapping
FOVs, using CBTF”. In: 8th IEEE International Conference on Advanced Video
and Signal Based Surveillance, AVSS. 2011, pp. 498–503. DOI: 10.1109/AVSS.
2011.6027383.

[64] N. J. B. McFarlane and C. P. Schofield. “Segmentation and tracking of piglets in
images”. In: In Machine Vision and Applications 8.3 (1995), pp. 187–193. DOI:
10.1007/BF01215814.

[65] E. Monier. “Vision Based Tracking in Team Sports”. PhD thesis. Paderborn
University, Germany, 2011.

177

http://dx.doi.org/10.1145/3039902.3039917
http://dx.doi.org/10.1109/CVPRW.2009.5206735
http://dx.doi.org/10.1016/S1076-5670(10)62005-8
http://dx.doi.org/10.1109/TPAMI.2012.242
http://dx.doi.org/10.1109/TPAMI.2012.242
http://arxiv.org/abs/1409.7618
http://dx.doi.org/10.1109/AVSS.2011.6027383
http://dx.doi.org/10.1109/AVSS.2011.6027383
http://dx.doi.org/10.1007/BF01215814

References

[66] E. Monier, P. Wilhelm, and U. Ruckert. “Template matching based tracking of
players in indoor team sports”. In: In Third ACM/IEEE International Conference
on Distributed Smart Cameras, ICDSC 2009. 2009, pp. 1–6. DOI: 10.1109/
ICDSC.2009.5289408.

[67] H. Morimitsu, I. Bloch, and R. M. Cesar-Jr. “Exploring structure for long-term
tracking of multiple objects in sports videos”. In: Computer Vision and Image
Understanding 159 (2017), pp. 89–104. DOI: 10.1016/j.cviu.2016.12.
003. arXiv: 1612.06454.

[68] J. Munkres. “Algorithms for the Assignment and Transportation Problems”.
In: Journal of the Society for Industrial and Applied Mathematics 5.1 (1957),
pp. 32–38. DOI: 10.1137/0105003.

[69] National Instruments. Introduction to FPGA Technology: Top 5 Benefits. 2012.
URL: http://www.ni.com/white-paper/6984/en/.

[70] NVidia. GPU vs CPU? What is GPU Computing? 2016. URL: http://www.
nvidia.com/object/what-is-gpu-computing.html.

[71] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. Berg,
and S. Wang. “An evaluation of the NVIDIA TX1 for supporting real-time
computer-vision workloads”. In: Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS. 2017, pp. 353–363. DOI: 10.
1109/RTAS.2017.3.

[72] P. H. de Pádua, F. L. Pádua, M. de A. Pereira, M. T. Sousa, M. B. de Oliveira, and
E. F. Wanner. “A vision-based system to support tactical and physical analyses
in futsal”. In: Machine Vision and Applications 28.5-6 (2017), pp. 475–496. DOI:
10.1007/s00138-017-0849-z.

[73] P. Parisot and C. De Vleeschouwer. “Scene-specific classifier for effective and
efficient team sport players detection from a single calibrated camera”. In:
Computer Vision and Image Understanding 159 (2017), pp. 74–88. DOI: 10.
1016/j.cviu.2017.01.001.

[74] M. Porrmann, J. Hagemeyer, J. Romoth, M. Strugholtz, and C. Pohl. “RAPTOR-A
scalable platform for rapid prototyping and FPGA-based cluster computing”. In:
Advances in Parallel Computing 19 (2010), pp. 592–599. DOI: 10.3233/978-
1-60750-530-3-592.

[75] Replay Technologies. URL: http://replay-technologies.com/.

[76] J. Romoth, J. Romoth, M. Porrmann, and R. Ulrich. Survey of FPGA applications
in the period 2000 – Survey of FPGA applications in the period 2000 – 2015.
Tech. rep. March. Bielefeld University, Germany, 2017. DOI: 10.13140/RG.2.
2.16364.56960.

178

http://dx.doi.org/10.1109/ICDSC.2009.5289408
http://dx.doi.org/10.1109/ICDSC.2009.5289408
http://dx.doi.org/10.1016/j.cviu.2016.12.003
http://dx.doi.org/10.1016/j.cviu.2016.12.003
http://arxiv.org/abs/1612.06454
http://dx.doi.org/10.1137/0105003
http://www.ni.com/white-paper/6984/en/
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://dx.doi.org/10.1109/RTAS.2017.3
http://dx.doi.org/10.1109/RTAS.2017.3
http://dx.doi.org/10.1007/s00138-017-0849-z
http://dx.doi.org/10.1016/j.cviu.2017.01.001
http://dx.doi.org/10.1016/j.cviu.2017.01.001
http://dx.doi.org/10.3233/978-1-60750-530-3-592
http://dx.doi.org/10.3233/978-1-60750-530-3-592
http://replay-technologies.com/
http://dx.doi.org/10.13140/RG.2.2.16364.56960
http://dx.doi.org/10.13140/RG.2.2.16364.56960

References

[77] C. B. Santiago, A. Sousa, M. L. Estriga, L. P. Reis, and M. Lames. “Survey on team
tracking techniques applied to sports”. In: IEEE 2010 International Conference
on Autonomous and Intelligent Systems, AIS 2010 (2010). DOI: 10.1109/AIS.
2010.5547021.

[78] C. B. Santiago, A. Sousa, and L. P. Reis. “Vision system for tracking handball
players using fuzzy color processing”. In: Machine Vision and Applications 24
(2013), pp. 1055–1074. DOI: 10.1007/s00138-012-0471-z.

[79] C. Santiago, L. Gomes, A. Sousa, L. Reis, and M. Estriga. “Tracking Players in
Indoor Sports Using a Vision System Inspired in Fuzzy and Parallel Processing”.
In: Cutting Edge Research in New Technologies. Ed. by P. C. Volosencu. 2012. DOI:
10.5772/2431.

[80] S. E. Schaeffer. “Graph clustering”. In: Computer Science Review 1 (2007),
pp. 27–64. DOI: 10.1016/j.cosrev.2007.05.001.

[81] Sensor to Image GmbH. GigE Vision IP Specification (Document Revision X-1.5.2).
Tech. rep. 2013.

[82] T. Sledevi. FPGA-based Selected Object Tracking Using LBP, HOG and Motion
Detection. 2016. DOI: 10.13140/RG.2.1.4157.8967.

[83] A. Sobral and A. Vacavant. “A comprehensive review of background subtraction
algorithms evaluated with synthetic and real videos”. In: Computer Vision and
Image Understanding 122 (2014), pp. 4–21. DOI: 10.1016/j.cviu.2013.
12.005.

[84] Songhwai Oh, S. Russell, and S. Sastry. “Markov chain Monte Carlo data
association for general multiple-target tracking problems”. In: 2004 43rd IEEE
Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). 2004,
735–742 Vol.1. DOI: 10.1109/CDC.2004.1428740.

[85] STATS Website. URL: www.stats.com.

[86] Stemmer Imaging. Introduction to FPGA acceleration. URL: https://www.
stemmer-imaging.co.uk/en/technical-tips/introduction-to-
fpga-acceleration/.

[87] Tom Catalino and Asheesh Bhardwaj. An architecture for compute-intensive,
custom machine vision (white paper). Tech. rep. Texas Instruments, 2013, p. 10.

[88] F. Torres. “A survey on FPGA-based sensor systems: towards intelligent and
reconfigurable low-power sensors for computer vision, control and signal pro-
cessing”. In: Sensors (Basel, Switzerland) 14.4 (2014), pp. 6247–6278. DOI:
10.3390/s140406247.

[89] B. Treece. CPU or FPGA for image processing: Which is best? 2017. URL: http:
//www.vision-systems.com/.

179

http://dx.doi.org/10.1109/AIS.2010.5547021
http://dx.doi.org/10.1109/AIS.2010.5547021
http://dx.doi.org/10.1007/s00138-012-0471-z
http://dx.doi.org/10.5772/2431
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.13140/RG.2.1.4157.8967
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://dx.doi.org/10.1016/j.cviu.2013.12.005
http://dx.doi.org/10.1109/CDC.2004.1428740
www.stats.com
https://www.stemmer-imaging.co.uk/en/technical-tips/introduction-to-fpga-acceleration/
https://www.stemmer-imaging.co.uk/en/technical-tips/introduction-to-fpga-acceleration/
https://www.stemmer-imaging.co.uk/en/technical-tips/introduction-to-fpga-acceleration/
http://dx.doi.org/10.3390/s140406247
http://www.vision-systems.com/
http://www.vision-systems.com/

References

[90] A. Trost and A. Žemva. “Rapid Prototyping of Embedded Video Processing
Systems in FPGA Devices”. In: Cutting Edge Research in Technologies. Ed. by
C. Volosencu. InTech, 2015. Chap. 3. DOI: 10.5772/61136.

[91] G. Welch and G. Bishop. An Introduction to the Kalman Filter (TR 95-041).
Tech. rep. Department of Computer Science, University of North Carolina at
Chapel Hill, July 2006.

[92] Y. Xiang, A. Alahi, and S. Savarese. “Learning to Track: Online Multi- Object
Tracking by Decision Making Multi-Object Tracking”. In: 2015 IEEE International
Conference on Computer Vision (ICCV). 2015, pp. 4705–4713. DOI: 10.1109/
ICCV.2015.534.

[93] Xilinx. 7 Series FPGAs Data Sheet (Product Specification, DS180-v2.4). 2017.

[94] Xilinx. AXI Reference Guide (User Guide UG761-v13.2). 2011.

[95] Xilinx. Color Filter Array Interpolation v7.0 (LogiCORE IP Product Guide-PG002).
2015.

[96] Xilinx. Introduction to FPGA Design with Vivado High-Level Synthesis (UG998-
v1.0). Tech. rep. 2013, pp. 1–89.

[97] Xilinx. LocalLink Interface Specification (SP006-v2.0). 2005.

[98] Xilinx. LogiCORE IP XPS LL TEMAC (Product Specification, DS537-v2.03a). 2010.

[99] Xilinx. Multi-Port Memory Controller (DS643-v6.05.a). 2011.

[100] Xilinx. UltraRAM : Breakthrough Embedded Memory Integration on UltraScale+
Devices (White Paper, WP477 (v1.0)). Tech. rep. 2016, p. 11.

[101] Xilinx. UltraScale Architecture and Product Data Sheet (DS890-v3.2). 2018.

[102] Xilinx. Virtex-4 Family Overview (Product Specification, DS112-v3.1). 2010.

[103] Xilinx. Zynq-7000 All Programmable SoC Data Sheet (DS190-v1.11). 2017.

[104] Xilinx All Programmable. URL: https://www.xilinx.com.

[105] G. Zapryanov, D. Ivanova, and I. Nikolova. “Automatic White Balance Algo-
rithms for Digital Still Cameras – a Comparative Study”. In: Journal of Informa-
tion Technologies and Control 1 (2012), pp. 16–22.

180

http://dx.doi.org/10.5772/61136
http://dx.doi.org/10.1109/ICCV.2015.534
http://dx.doi.org/10.1109/ICCV.2015.534
https://www.xilinx.com

Publications
[106] O. W. Ibraheem, A. Irwansyah, J. Hagemeyer, M. Porrmann, and U. Rueckert.

“A Resource-Efficient Multi-Camera GigE Vision IP Core for Embedded Vision
Processing Platforms”. In: 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2015, pp. 1–6. DOI: 10.1109/ReCon
Fig.2015.7393282.

[107] O. W. Ibraheem, A. Irwansyah, J. Hagemeyer, M. Porrmann, and U. Rueckert.
“FPGA-Based Vision Processing System for Automatic Online Player Tracking
in Indoor Sports”. In: Journal of Signal Processing Systems (2018), pp. 1–27.
DOI: 10.1007/s11265-018-1381-8.

[108] O. W. Ibraheem, A. Irwansyah, J. Hagemeyer, M. Porrmann, and U. Rueckert.
“Reconfigurable Vision Processing System for Player Tracking in Indoor Sports”.
In: 2017 Conference on Design and Architectures for Signal and Image Processing
(DASIP). IEEE, 2017, pp. 1–6. DOI: 10.1109/DASIP.2017.8122114.

[109] A. Irwansyah, O. W. Ibraheem, J. Hagemeyer, M. Porrmann, and U. Rueckert.
“FPGA-based Circular Hough Transform with Graph Clustering for Vision-based
Multi-Robot Tracking”. In: 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2015, pp. 1–8. DOI: 10.1109/ReCon
Fig.2015.7393313.

[110] A. Irwansyah, O. W. Ibraheem, J. Hagemeyer, M. Porrmann, and U. Rueck-
ert. “FPGA-based multi-robot tracking”. In: Journal of Parallel and Distributed
Computing 107 (2017), pp. 146–161. DOI: 10.1016/j.jpdc.2017.03.008.

[111] A. Irwansyah, O. W. Ibraheem, D. Klimeck, M. Porrmann, and U. Rueckert.
“FPGA-based Generic Architecture for Rapid Prototyping of Video Hardware
Accelerators using NoC AXI4-Stream Interconnect and GigE Vision Camera
Interfaces”. In: Bildverarbeitung in der Automation (BVAu). 2014, pp. 1–12.

181

http://dx.doi.org/10.1109/ReConFig.2015.7393282
http://dx.doi.org/10.1109/ReConFig.2015.7393282
http://dx.doi.org/10.1007/s11265-018-1381-8
http://dx.doi.org/10.1109/DASIP.2017.8122114
http://dx.doi.org/10.1109/ReConFig.2015.7393313
http://dx.doi.org/10.1109/ReConFig.2015.7393313
http://dx.doi.org/10.1016/j.jpdc.2017.03.008

	Introduction
	Contributions
	Thesis Organization

	Vision-based Player Tracking in Indoor Sports
	Introduction
	Challenges in Vision-based Player Tracking
	Architectures for Vision Processing
	Field Programmable Gate Arrays (FPGAs)
	FPGAs for Vision Processing

	State of the Art High-Speed Camera Interface Standards
	GigE Vision Standard
	Comparison of the High-Speed Camera Interface Standards

	Related Work of Vision-based Player Tracking Systems
	Broadcast Video Systems
	Dedicated Cameras Systems
	Commercial Solutions
	FPGA Accelerated Object Tracking

	Summary

	Methodologies and Fundamentals
	Video Preprocessing Algorithms
	Bayer Pattern Demosaicing
	Automatic White Balance
	Color Space Conversions

	Morphological Operations
	Image Thresholding
	Object Segmentation using Background Subtraction
	Graph Clustering
	Multiple Object Tracking (MOT)
	Tracking-by-Detection
	Kalman Filter

	RAPTOR-X64 Rapid Prototyping Platform
	Design Flow
	Summary

	The Proposed Reconfigurable Vision System
	System Overview
	Video Acquisition Module
	Multi-Camera GigE Vision Core
	GigE Vision Camera Configuration
	Video File Controller

	Video Preprocessing Module
	Bayer Pattern Demosaicing
	Automatic White Balancing
	Video Cropping
	Video Frame Merger

	Player Segmentation Module
	RGB to Grayscale Converstion
	Background Estimation and Subtraction
	AXI4-Stream to NPI Controller
	Morphological Operations
	Masking

	Team Identification & Player Detection Module
	RGB to HSV Conversion & Color Thresholding
	BDC-based Graph Clustering

	Resource Utilization
	Player Tracking
	Single Camera Player Tracking
	Detections Association to Tracks
	Player Track Transfer Between the Two Cameras

	Summary

	System Evaluation and Results
	System Realization
	Datasets
	Player Detection
	Player Detection in Occlusion Scenarios
	Verification of the Player Detection Implementation
	Player Tracking
	FPGA Architecture
	Multiple GigE Vision Cameras
	Performance and Throughput
	Acceleration Factor and Overall System Performance
	Overall Latency
	Power Consumption

	Comparison with Existing Systems
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	List of Figures
	List of Tables
	Abbreviations
	References
	Publications

