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Abstract

Modern robotic applications pose complex requirements with respect to the adaptation of
actions regarding the variance in a given task. Reinforcement learning can optimize for
changing conditions, but relearning from scratch is hardly feasible due to the high number of
required rollouts. This work proposes a parameterized skill that generalizes to new actions
for changing task parameters. The actions are encoded by a meta-learner that provides
parameters for task-specific dynamic motion primitives. Experimental evaluation shows that
the utilization of parameterized skills for initialization of the optimization process leads to a
more effective incremental task learning. A proposed hybrid optimization method combines
a fast coarse optimization on a manifold of policy parameters with a fine-grained parameter
search in the unrestricted space of actions. It is shown that the developed algorithm reduces
the number of required rollouts for adaptation to new task conditions. Further, this work
presents a transfer learning approach for adaptation of learned skills to new situations.
Application in illustrative toy scenarios, for a 10-DOF planar arm, a humanoid robot point
reaching task and parameterized drumming on a pneumatic robot validate the approach.

But parameterized skills that are applied on complex robotic systems pose further
challenges: the dynamics of the robot and the interaction with the environment introduce
model inaccuracies. In particular, high-level skill acquisition on highly compliant robotic
systems such as pneumatically driven or soft actuators is hardly feasible. Since learning of
the complete dynamics model is not feasible due to the high complexity, this thesis examines
two alternative approaches: First, an improvement of the low-level control based on an
equilibrium model of the robot. Utilization of an equilibrium model reduces the learning
complexity and this thesis evaluates its applicability for control of pneumatic and industrial
light-weight robots. Second, an extension of parameterized skills to generalize for forward
signals of action primitives that result in an enhanced control quality of complex robotic
systems. This thesis argues for a shift in the complexity of learning the full dynamics of the
robot to a lower dimensional task-related learning problem. Due to the generalization in
relation to the task variability, online learning for complex robots as well as complex scenarios
becomes feasible. An experimental evaluation investigates the generalization capabilities of
the proposed online learning system for robot motion generation. Evaluation is performed
through simulation of a compliant 2-DOF arm and scalability to a complex robotic system
is demonstrated for a pneumatically driven humanoid robot with 8-DOF.
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Chapter 1

Introduction

1.1 Motivation

Despite the tremendous technological development in the field of robotics and move-
ment generation, dealing with unstructured environments, e.g. as faced for household
applications, is still extremely challenging for robotic systems. Most application ar-
eas of autonomous robotics are still limited to classical repetitive industrial tasks
like painting, welding, pick-and-place, and packaging. Typically, these tasks are char-
acterized by predefined environments and a limited variance of the task. However,
advances in material science and new actuator concepts improved the mobility and
resulted in systems with the potential to be applied to more general tasks. One of
the limiting factors of a more versatile application of robots is the lack of control
methods that allow to cope with complex environments and complex robot systems.
Robot task execution is often specialized for a certain task and lacks flexibility to
generalize to changing task configurations. As an example, consider the task of
opening a door. Despite being presumably easy, current research, e.g. [Jain et al.,
2010; Endres et al., 2013; Nemec et al., 2017], and robotic challenges [Guizzo and
Ackerman, 2015] show that this is still a challenging task for robotic systems. Master-
ing the skill of opening a door incorporates various factors that modulate the action
of the robot for successful task completion. In this thesis, it is assumed that the task
parameterization defines all factors that are relevant for successful task execution.
For this example, the task parameterization can include the relative position between
the robot and the door handle, the relative position of the handle and the joints
of the door, and the shape of the handle. Further, the task parameterization can
encode variable interaction forces, like the amount of force that is necessary to press
the door handle or the friction of the joints. Although the robot may have seen
previous situations during a training phase for a set of observed task parameters,
actions have to be generalized for each unseen task instance. Such real world-tasks
are performed in a complex environment that requires costly online executions of
actions for optimization. Thus, the generalization from a low number of successful
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Figure 1.1: Presentation of the scope of this thesis.

actions becomes important.

Dealing with the variability of tasks is just one of many challenges. Leaving the
structured environment makes high demands on the robot’s structural properties
as well. A new generation of light-weight actuators improves the weight-to-payload
ratio, which makes more flexible applications possible and enhances the mobility
of robot systems. Besides the lighter weight of the robot, introducing compliant
elements and improved sensor capabilities leads to an enhanced safety for human-
robot-interaction and allows sharing the workspace between humans and robots. Due
to the enhanced safety, robot programming by interactive teaching, collaborative
work and learning by exploration becomes feasible. But compliance and light-weight
robot structures reduce the stiffness of the actuator and introduce model uncertainties
that are difficult to handle. The Kuka-DLR light-weight arm [Hirzinger et al., 2002],
for example, requires an additional vibration compensation in the joint controller
due to structural deformations caused by a reduced stiffness [Albu-Schäffer et al.,
2007].

In consideration of the growing complexity of the control of robotic systems that
operate in application areas that introduce variability as well as interaction with
humans and the environment, major bottlenecks for sophisticated action generation
are generalization capabilities and robustness to perturbations. Classical control
concepts struggle with the high complexity of the robot and the environment as
well as a high variability regarding tasks because they rely on precise model-based
control.

Those problems motivated research on biologically inspired concepts of motor
control and actuator design. Skill learning of humans follows a fundamentally differ-
ent concept compared to classical methods of robot task execution. As an example,
the way humans learn to walk shows that skill learning does not rely on a simplifi-
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cation of the task. As shown in the “developmental motor milestones” of Adolph
and Robinson [2013], prior to be able to stand and walk alone, children undergo
a cruising phase in which they perform locomotion supported by grasping objects
for support. This behavior emphasizes the differences to classical robot control in
which, first, locomotion without the dynamics of additional contact points is learned
and, later, further complexity is introduced in a successive extension of the dynamics
model.

This poses the question of how the brain can handle the high complexity of
successful skill acquisition?

One important biologically motivated concept for a reduction of the complexity
of motion generation are motion primitives [Mussa-Ivaldi and Bizzi, 2000]. Motion
primitives help to break down the complexity of motor control to action or goal
directed motions that are considered as basic building blocks of longer actions.
Recent research, as an example, demonstrates that event sequences based on only 8
atomic action primitives are sufficient for a compact description and identification of
complex tasks such as preparing breakfast or cutting and stirring milk [Aksoy et al.,
2015, 2016].

Biologically motivated architectures that aim for morphological computation
are a further example of simplifying the control of a complex body. The term
morphological computation can be described as “Offloading the computation from
the brain to the body”, as stated by Müller and Hoffmann [2017]. Classical robotic
systems are built to support their representation by a dynamics model and this
lays the foundation for high-level skill learning in contrast to biological systems
that incorporate complex morphologies with over 600 skeletal muscles [Yin et al.,
2012]. Nevertheless, research on biologically inspired robotic architectures reveals
interesting concepts like the minimization of energy usage [Haq et al., 2011; Roozing
et al., 2016], passive walking without control [McGeer, 1990] as well as a high chance
for arm movements that result in opening a door by random exploration in the motor
space [Hosoda et al., 2012]. The aforementioned arguments promote the view that
musculoskeletal systems are optimized by evolutionary pressure for tasks solving,
rather than to be precisely modeled by the human brain, including their complete
dynamical properties. Consequently, the application of classical control schemes on
those biologically inspired robots results in a poor performance, since modeling of
the actuator dynamics and its interaction in a high-dimensional state space is not
feasible. High-level task learning relies on the exact execution of motions and is
therefore prone to inaccuracies on these architectures.

The discussed challenges of skill learning with respect to the variability of the
environment, complex morphological structures and dynamics of the robot includ-
ing interaction with the environment, yield motivation for the work presented in
this thesis. Under the assumption that complex motor skills are composed of basic
movement primitives, efficient learning of parameterized motion primitives that can
be executed on complex robot systems is investigated. The challenges addressed in
this thesis can be classified into two main scopes: First, online learning of a repre-
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sentation of the parameterized movements; Second, the execution of movements on
real robotic systems that face complex dynamics. The complex dynamics properties
can be caused by e.g. the robot’s structure as well as interactions with humans for
teaching or interactions with objects during manipulation. In the following, both
scopes, which are addressed in this work, will be introduced in detail.

Movement Generalization
Approaches of motion representation through dynamic motor primitives lack the
ability to flexibly integrate different levels of representation and modalities. Whereas
impressive progress has been made to optimize such movement generation [e.g. Stulp
and Sigaud, 2013; Kober and Peters, 2010], policy search has to be applied in a high
dimensional space of parameters of the motor primitives. Searching in this high-
dimensional parameter space requires a large number of samples and is therefore
not applicable for online robotic systems, since the generation of online training
samples is usually very costly. Explicit parameterization of higher-level goals in the
search space as in [Ude et al., 2010; Kober and Peters, 2010], e.g. to go through via-
points, is possible but inflexible and cannot easily be relearned. Again, optimization
requires a large number of samples and typically relies on reward-weighted averaging
of so called rollouts. These are executions of the movement policy under random
perturbations that require a very careful parameterization of the reward and costly
executions of the trial movements on the real robot. This scheme cannot easily be
extended to respect multi-modal or higher-order goals.

Recent work introduces parameterized skill representations inspired by general
motor schemas [Schmidt, 1975], which propose a motor program that is modulated
by a memory structure. The memory links high-dimensional motor primitives to a
low-dimensional embedding that represents high-level task descriptions. Ijspeert et al.
[2013] propose models for action generation based on dynamic motion primitives and
perceptual coupling. Further work extends this idea and introduces parameterized
skills to perform a generalization of action primitives based on a high-level task
description [Kober and Peters, 2010; Silva et al., 2012; Kober et al., 2012; Reinhart
and Steil, 2014; Baranes and Oudeyer, 2013; Mülling et al., 2013; Silva et al., 2014].
To tackle the problem of multi-modal representations in movement control, Reinhart
and Steil [2015] have introduced a parameterized skill memory through an associative
dynamical systems approach. It is based on earlier work on associative multi-modal
memories [Emmerich et al., 2013] and results in a significant reduction of reward
episodes.

Complex Dynamical Properties
Previous approaches for parameterized task representations focus on the representa-
tion of the kinematic properties of the task, e.g. trajectories in joint or end effector
space. It is assumed that a low-level controller exists that executes the estimated
motions of the robot. But the application of parameterized skills on real robotic
platforms has to face model uncertainties caused by a complex structure of the robot,
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compliance, and dynamic effects like friction, noise or delays. Classical approaches
assume the existence of a high-quality dynamics model of the robot. Such a model
allows an estimation of motor signals that are supposed to result in the desired
motions in combination with a feedback controller that compensates for model errors
and disturbances. Usually, a parameterized dynamics model is used that covers un-
known properties, such as friction or weight of the rigid parts of the robot. But with
an increasing complexity of robot systems, estimation of the model becomes more
difficult. In particular, highly compliant actuators with continuously deformable
parts, such as light-weight, pneumatic or soft robots, are difficult to model. To
enhance the quality of control, hybrid models have been proposed. They combine
analytical modeling techniques with data-driven approaches, e.g. machine learning.
As en example, a function approximator can be trained to estimate model errors
as proposed by Reinhart et al. [2017a]. In [Shareef et al., 2016], it is assumed that
learning the model errors is easier (less jerk/curvature, stronger regularization) than
learning the complete dynamics of the robot from scratch. But still, application of
learning approaches remains difficult due to the large state space.

Additionally, the interaction in a complex and changing environment has to
be considered for low-level control of the actuators as well. Interactions with the
environment, like multiple contact points, result in a significant increase of the model
complexity, as the dynamics of the environment has to be considered as well. This
becomes even more difficult in case manipulation of objects takes place that involves
complex dynamic properties caused by fluids, plasticity or even further completely
unmodeled dynamics.

1.2 Problem Statement

Motivated by the preceding discussion, the problem statement for this thesis will
be formulated. The central aspect of this thesis is the extension of previous work
on parameterized skills. The chosen task representations play a crucial role to
infer flexible generalizations of learned movements that can be adapted to new task
situations. To be applicable to real robot scenarios, a framework is required that
allows for online learning, i.e. application on online systems, as well as incremental
learning in-the-loop. This is necessary, because the variability of a given application
area cannot be covered in a simulation and must be explored online. Therefore, an
adaptation to the current task is required by gathering a primarily small number of
training samples. The success of the approach can be directly measured in terms
of required trials a robot has to execute for skill acquisition. Implementation shall
demonstrate the applicability for systems with many degrees-of-freedom as well as
real time and online constraints. Applications aim for complex robot systems that
pose further challenges for a successful skill execution, e.g. no model-based control
available, sensory noise, no rigid body structure, compliance or long delays (or poor
quality). Experimental evaluation includes the generalization capabilities for real
world scenarios and interaction with the environment. This requires the adaptation
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of movements to new task instances based on training instances shown by a human
tutor or gathered by reinforcement learning.

1.2.1 Research Questions & Contribution

In the following, the key aspects and the related research questions that will be
addressed throughout this work will be discussed. The presentation of the key
aspects is ordered by their occurrence in the title of this thesis:

Multi-Modality The generalization of actions for parameterized tasks is based
on high-level information that describes the variability of the task. This requires
the integration of different modalities including parameterizations that influence
the shape of the required trajectory like obstacle positions or the target position
and rotation. Further modalities that do not influence the shape but the dynamic
properties of the task could be defined. Those properties could include weight of
payload, execution speed, and physical properties during interaction, e.g. friction.

A further challenge arises from the question of how previous knowledge can
be reused (for adaptation to changes of the task configuration). Skill learning is
a time-consuming process that requires human demonstrations or optimization by
trial-and-error. Adaptation instead of relearning of an action repertoire for new task
conditions could be beneficial to speed up skill exploration. The following research
questions address the aforementioned challenges:

❼ RQ1: How to achieve a multi-modal representation for action generalization?

❼ RQ2: How to adapt previously learned skills to an altered perception or across
modalities?

Research question RQ1 is addressed in Chapter 2 by introducing a concep-
tual framework for parameterized skill learning that is used throughout this work.
Implementation and experimental evaluation for kinematic task representations is
presented in Chapter 3. Transfer learning of skills is investigated in Chapter 4
and demonstrates the transfer of the skill of drumming between different modalities
(RQ2). This thesis presents a novel transfer learning method for nonlinear regression
tasks based on previous work for transfer of classification tasks [Prahm et al., 2016;
Paaßen et al., 2018]. It is demonstrated that the transfer of the skill is significantly
more efficient than relearning from scratch.

Skill Memories The parameterized skill is a memory structure that is used to
generalize from observed task parameterizations to actions. Each training sample
is acquired by multiple executions of perturbated actions. Gathering training data
is costly, since complex scenarios impede simulation-based optimization and a high
number of executions is necessary. One option to reduce the number of executed
trials is the improvement of the generalization capabilities of the memory which
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results in a lowered number of required training samples. A further option is the
reduction of required trials per task instance by an improved optimization process.

The following related research questions are addressed in this thesis:

❼ RQ3: How to improve generalization capabilities of the skill representation?

❼ RQ4: How to achieve an efficient estimation of solutions for unsolved task
instances?

In Chapter 3, an improved representation of parameterized skills by an additional
optimization constraint is proposed which addresses RQ3. This thesis refers to
the constraint for optimization as regularization of reward. The regularization of
reward penalizes the distance of solutions of the optimization process to the current
estimation of the parameterized skill. Further, an incremental bootstrapping of
the parameterized skill is proposed in Chapter 3 for a reduction of the required
rollouts for skill learning. Experimental evaluation shows a significant reduction of
the number of required rollouts in simulation of a 2D planar arm and a point reaching
scenario of the upper body of a humanoid robot. Further evaluations demonstrate
the bootstrapping for a drumming task on a pneumatically driven robot platform.
To utilize previous knowledge for a reduction of the search space for optimization
(RQ4), an algorithmic extension of the CMA-ES algorithm to multiple spaces is
proposed in Chapter 4. The benefits of the proposed optimization in the space of
policies and the space of task parameterizations is evaluated on toy data and on
various robotic platforms.

Online Capabilities The proposed framework in Chapter 2 makes an effective
integration of existing supervised online learning methods possible. A further chal-
lenge that is addressed in this thesis is the integration of the presented methods into
an online system, including: 1) state-of-the-art optimization algorithms for efficient
policy optimization; 2) the previously discussed regularization of the reward; 2) the
bootstrapping process of the memory; 3)the optimization in hybrid spaces. These
challenges motivate the research question:

❼ RQ5: How to implement a complex skill learning framework on an online
system?

RQ5 is addressed by the following scenarios that demonstrate the applicability
of the proposed methods of this thesis for real robotic applications:

1. Learning to drum for variable target positions on a pneumatically driven
humanoid robot platform, Figure 1.1- 2❖.

2. Kinesthetic teaching on a soft continuum trunk-shaped robot, Figure 1.1- 1❖.

3. Complex interaction with a baby toy on a pneumatically driven humanoid
robot platform, Figure 1.1- 2❖.
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Interaction Besides the question of how robots can interact with humans for
learning or cooperative work, complex scenarios require the interaction with the
environment as they are supposed to manipulate objects. Therefore, this thesis
poses the following research questions:

❼ RQ6: How to achieve kinesthetic teaching on highly compliant robotic systems
with unknown dynamic properties for complex task learning?

❼ RQ7: How to employ action generation that interacts with or manipulates the
environment?

Research question RQ6 is addressed in Chapter 5. Instead of an approximation
of the complete dynamics of the robot, this thesis proposes to utilize a much simpler
equilibrium model of the robot. The equilibrium model represents the relation of
motor signals for static postures of the actuator with zero velocity and zero accel-
eration. Demonstration of the feasibility is performed on a pneumatically actuated
trunk-shaped robot, a pneumatically actuated humanoid robot, and in a simulation
of an industrial light-weight robot. To capture the interaction with the environment
(RQ7) a complex scenario was developed, as presented in Chapter 6. In this scenario,
a humanoid robot is intended to pull a toy that is attached via a rope to a spring
mechanism. The pneumatic actuation of the robot and the interaction with the toy
impede a precise control of the robot. Neither a model of the robot, nor a model of
the interaction is available and successful task execution is not possible. This thesis
shows that the integration of the dynamics representation into the parameterized
skill (Chapter 2) allows the system to successfully master the given task.

Robot Movement Generation Task parameterized action generation focuses
on the generalization of required joint angle trajectories or descriptions of end ef-
fector movements for successful task execution. Task execution on complex robots
becomes difficult, since an optimal low-level controller for execution of the estimated
trajectories is assumed to be available. This thesis addresses model-free control of
complex robotic systems by the following research question:

❼ RQ8: How to execute motions on robots that have complex dynamics proper-
ties without the availability of model-based control?

In comparison to model-based control, this thesis proposes a task based gener-
alization of forward signals. In the same way as for the kinematic representation
of tasks by a parameterized skill, forward signals are generalized and support the
feedback controller and to minimize the tracking error of the joints. This allows a
representation of the dynamic properties of the robot in relation to the complexity of
the given task instead of the complexity of the robot system and provides a solution
to RQ8, as presented in Chapter 6.
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1.5 Organization of the Dissertation

The remainder of this work is structured as follows.
Chapter 2 introduces related work on skill learning. This includes a chrono-

logically structured discussion on the fundamental theories related to motor skill
learning in Section 2.1. The presented work lays the foundation for current concepts
of robot skill learning and this thesis. Subsequently, an overview of robotic systems
and their control approaches is given. Unsolved challenges of robot control motivate
the discussion on biologically inspired concepts of motor control. Finally, an overview
of recent primitive-based methods for parameterized skills is given. The second part,
Section 2.2, refers to the previously discussed models of motor learning and their
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limitations to propose a novel framework for skill learning. It is followed by a discus-
sion on the implementations of specific modules of the proposed framework and an
overview of the robotic platforms and used data sets for evaluation, as presented in
Section 2.2.2. The following chapters will refer to this framework and present work
that implements, evaluates or extends specific parts of the framework.

Chapter 3 proposes a regularization of the reward function as well as a bootstrap-
ping mechanism for efficient skill learning based on the parameterized skills. The
bootstrapping as presented in Section 3.2 aims at a reduction of the required rollouts
that are necessary for optimization of unsolved task instances. An additional regu-
larization of the reward (Section 3.3) enhances the generalization capabilities and
reduces thereby the number of required optimized task instances. Experimental eval-
uation on toy data, simulated robotic actuators and real robot systems demonstrate
the feasibility of the proposed approach.

Chapter 4 proposes methods for a more efficient skill learning based on a reduction
of the search space for policy optimization. First, a hybrid optimization is proposed
in Section 4.2 that combines optimization in policy and task space. Second, transfer
learning for the adaptation of skills to a changing perception is investigated in
Section 4.3. Experimental evaluation is performed on toy data, simulations and on
real robotic experiments.

Chapter 5 presents methods for enhanced control of highly compliant robotic
systems (Section 5.2) without availability of analytical models. The combination of
learned equilibrium models, estimated by supervised learning, and classic control
is proposed to enhance joint level control. Additionally, a compliant control mode
is introduced that facilitates kinesthetic teaching. Evaluation is performed on a
pneumatically actuated trunk-shaped robot (Section 5.3.1), the upper torso of a
pneumatically actuated robot child (Section 5.3.2) and an industrial light-weight
robot (Section 5.3.3).

Chapter 6 argues for generalization of forward signals in relation to high-level
task parameterizations to overcome limitations of the equilibrium-based control of
Chapter 5. The generalization of forward signals is supposed to support the low-
level controller and allows learning of complex skills on complex robotic systems.
First, an evaluation of a parameterized trajectory tracking task is performed in
Section 6.2. Further, the method is applied to a complex interaction scenario as
demonstrated in Section 6.3.2. This final scenario includes kinesthetic teaching,
incremental optimization, generalization of joint-angle trajectories as well as forward
signals for new task instances and a complex interaction with the environment. The
experimental platform is the upper torso of a pneumatically driven humanoid robot
child.
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Chapter 2

Skil l Represenation &
Skil l Learning

Chapter Overview The first part of this chapter will introduce work related
to parameterized skill learning: First, an overview of the historical background of
theories of skill learning will be presented. Basic concepts that are related to motor
skill learning will be introduced. Second, an overview of control approaches for robotic
manipulators will be given. Problems caused by modern robotic configurations, which
include compliant elements attached to the robot, impedance modes during operation
and dynamic environments, will be discussed. Third, biologically motivated concepts
for motor control will be presented that support complex action generation. Humans
and animals developed a complex musculoskeletal morphology and are at the same
time able to perform complex actions. Fourth, an overview of current frameworks
for robot skill learning will be presented.

The second part of this chapter will introduce a novel skill learning framework.
This includes an overview, a formal definition and a comparison to related work.
Successively, the second part will discuss details of the proposed skill learning ar-
chitecture: the memory component responsible for generalization, signal encoding of
motor commands that are sent to the low-level controller, the refinement of actions
as well as robotic platforms and data sets that have been used for evaluation.

2.1 Background: From Theories of Motor Control
to High-Level Skill Learning

The underlying concepts of current methods for robot skill learning go back to early
theories of motor skill learning. Therefore, this section will give a chronological
overview of concepts related to this thesis. This includes multi-modal representa-
tions, variables that influence motor learning, development of motor control theory,
evaluation of skills, reinforcement learning, complexity of high-DOF, open- or closed-

13



14
Skill Represenation &

Skill Learning

loop control and parameterized motor programs. The discussion is followed by a
presentation of robotic systems that include classical, compliant and soft robots. As
argued in the following, highly compliant and soft robots are difficult to control,
which motivates the successive overview over biologically concepts of motor control.
The final section presents recent architectures for high-level skill learning.

Origins of Parameterized Skill Learning:
Theories of Motor Skill Learning Early works on the theory of motor control
have been conducted by the physiologist Sir. Charles Sherrington (1857-1952). He
investigated basic mechanisms for neural control and movement generation and
introduced the concept of common pathways for muscle activations [Sherrington,
1906; Burke, 2007]. Nerve impulses from different sources, like the brain, reflexes,
and sensory receptors, form single spinal columns and become a unified signal for
muscle groups. His work can be interpreted as an early description of the concept
of multi-modal signal integration for action execution.

The early phase of the development of theories of motor skill learning was driven
by the field of psychology. Wilhelm Wundt (1832-1920), the founder of the first
experimental laboratory, established psychology as a legitimate science, separate from
philosophy. He proposed studies for reaction time experiments [Wundt et al., 1907]
to investigate variables that influence motor learning that are still common today.
The experiments investigated variables like perception, sensation, and attention as
discussed by Edwards [2010].

One of the first descriptions of motor control was given by the response-chaining
hypothesis by William James. He introduced the idea of open-loop control for motor
learning as an adaptation of reflexes [James, 1890].

William L. Bryan and Noble Harter performed studies about learning motor
skills of patterns for generation of telegraph messages. Evaluation was performed
by estimation of learning rates of individuals [Bryan and Harter, 1897]. Further
analysis of motor control and learning was performed by Robert S. Woodworth by
investigating the accuracy of voluntary movements [Woodworth, 1899]. The Law-
of-Effect, attributed to Edward Thorndike (1874-1949), describes learning based
on stimuli and their responses in a similar vein as the concept of reinforcement
learning [Thorndike, 1898; Lattal, 1998]. Rewarded behaviors are more likely to be
repeated, compared to punished ones, which are preferred to be avoided. Additional,
he was involved in the introduction of the notion transfer of practice, later known as
Transfer of Learning, dealing with the question of how to transfer knowledge gained
by learning from one context to a similar one [Woodworth and Thorndike, 1901].

Nikolai Bernstein’s research investigated how the brain controls the movements
of the body and his research resulted in the formulation of the Degrees of Freedom
(DOF) problem, which refers to the number of ways that components of a system
are free to vary [Bernstein, 1967]. He argued that the redundancy of patterns on the
cellular level of motor control can reach up to millions and the brain is not able to
control them for complex skills. To address the problems of high-DOF, a reduction of
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the control complexity by a freezing of single DOFs and muscle synergies have been
discussed. Muscle synergies are given by co-activation of muscles commanded by a
single neural signal and they represent a simple mechanism for dimension reduction.
As noted by Edwards [2010], the work of Bernstein was first published much earlier
(1920-1930) in Russia, before it was translated in 1967.

The following World War II (1939-1945) influenced the research of psychologists
driven by the need to train military personnel. Due to research that supports military
institutions, e.g. selecting personnel for the air force, many tests for evaluation of
motor and perceptual abilities have been developed. During that time, Clark L.
Hull worked on a general theory of learning that promoted learning as a result of
several factors that determine the likelihood of a specific behavior to occur [Hull,
1952]. Those factors include a drive reduction as an implicit encoding of a goal, a
motivation by a reward, inhibition due to the absence of reward and prior experience.
But his theory was too general and not adequate to describe processes and variables
involved in motor learning in detail, as discussed in [Krahe, 1999].

In the following years, cognitive learning theories gained more attention. The
information-processing approach, motivated by computational metaphor, lead to
research aims different from task-based approaches, like the neural control of simple
movements. This motivated the concept of a closed-loop theory of motor learn-
ing [Adams, 1971]. This work was motivated by closed-loop control of the servotheory
of engineering, as outlined in [Adams, 1987].

An open loop controller promotes a central system that contains all or partial
information necessary for movement generation. Such a centralized control scheme
was the motivation for the concept of an activated program that is responsible
for the generation of movements and a reduction of the importance of feedback
information. But generalization would be poor if a system would have to learn a new
motor program for every movement needed and additionally, endless storage would
be required. To overcome the problems of motor programs, Richard A. Schmidt
proposed the general motor schema [Schmidt, 1975]. His work introduces the notion
of a generalized motor program (GMP), an abstract memory structure that generates
responses for a movement class based on a parameterization. As an example, a single
motor program would be responsible for various styles of movements that result in
jumping: fast or slow, high or long, one-legged or two-legged. Later works extended
this concept to focus on goal-oriented actions instead of movements as discussed
in [Mulder and Hulstyn, 1984; Krahe, 1999].

The aforementioned concepts lay the foundation for the work presented in this
thesis. In the following, task execution and skill learning on robotic platforms will
be discussed.

From Classical Robots to Soft Actuators:
Robotic Systems and their Control Approaches One of the most prominent
control modes for current robotic applications is position control. Position control
on joint level was already a component of the first robotic system that was used for
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automation in factories, the UNIMATE robot, described in the patent “Programmed
Article Transfer” [Devol Jr., 1954]. The robot had to repeat the execution of a given
target trajectory to fulfill a desired task, discrete joint positions, that define postures
of the robot have been read as a temporal sequence from a magnetic memory. Since
then, an astounding development in the field of robot control lead to a multitude of
advanced control concepts. Modern robotic systems are able to operate in different
coordinate spaces, like cartesian position of the end effector, by an estimation of
the required joint angles with regard to collisions based on inverse kinematics. The
commanded joint trajectories are processed by low-level controllers that unify model
based forward signals and feedback signals for compensation the current error.

As increasingly complex robotic systems find their way into new application
areas, the separation of human and robot work spaces is not feasible. Human-robot
interaction (HRI), that aims for e.g. collaborative work or therapeutic use, makes
high demands on control architectures and the robot structure. One requirement is
a safe operation, since the robot interacts with a human user, whereas classical stiff
actuators have a high potential of injury. As the risk analysis of head injuries on
collision with robotic actuators by Zinn et al. [2004] shows, one way to lower the risk
of injury is the reduction of the inertia of the moving parts of the robot. This led
to the development of light-weight robots, a class of robotic manipulators that aim
at mobility and safety in unknown environments. Light-weight robots reach a high
payload to weight ratio and often integrate advanced sensor capabilities, detection
of external collisions and gravity compensation for interaction with humans. A
typical example is the 7-DOF Kuka-DLR light-weight arm [Hirzinger et al., 2002]
with a weight of 14kg and 10kg of payload. But light-weight robot structures
cause higher elasticity and pose further challenges on high frequency and precise
control as well as vibration compensation [Albu-Schäffer et al., 2007]. A second
option to enhance the safety of manipulators is to decrease the stiffness of the
actuator. As compliance is the complementary concept of stiffness and terminology
in literature is diverse, variable stiffness, adjustable compliance, variable compliance,
adjustable stiffness or controllable stiffness are used to describe the flexibility of
a robot. Implementations on robots are subdivided into systems with passive and
active compliance. Active compliance refers to an actuator that mimics the compliant
behavior of a spring by sophisticated control [Albu-Schäffer et al., 2011], but no energy
storage or shock absorbance can be achieved as in the case of passive compliance,
which elastically decouples the actuator from the load. Common examples of passive
compliant actuators are pneumatically driven or incorporate Series Elastic Actuators
(SEA) [Pratt and Williamson, 1995], a mechanism of a spring in series with a classical
stiff actuator. Several compliant actuator concepts have been proposed that add
elastic elements to the joints for enhanced safety and the aim for a reduced power
consumption by temporarily storing energy in the joints [Ham et al., 2009]. Ranging
from bio-inspired robot designs like a hexapod [Schneider et al., 2014] with elastomer
coupled actuators [Paskarbeit et al., 2013], a quadruped robot with compliant legs
based on a spring mechanism [Rutishauser et al., 2008] or a humanoid robot like the
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COMAN that integrates spring-coupled actuators [Tsagarakis et al., 2011]. Further
work aims at adjustable compliance for passive compliant actuators, like antagonistic-
controlled stiffness by the use of pneumatic muscles [Tondu et al., 2005; Verrelst
et al., 2006; Ikemoto et al., 2015; Büchler et al., 2016] or variation of the spring
preload, material properties and transmission ratios as discussed by Wolf et al. [2016].
But control of compliant actuators is difficult and requires a model of the nonlinear
properties of the elastic elements, which often prevents analytical modeling, underlies
manufacturing tolerances and changes its physical properties dynamically or caused
by wear-and-tear.

In recent years, an increasing number of soft robots have surfaced in various forms
and fields. In their development, researchers have been driven by various motivations.
Bioroboticists, for instance, refer to the “understanding by building” approach which
is well established in order to complement experimental and theoretical work on
biological mechanisms. Prominent examples include artificial salamanders [Ijspeert
et al., 2005], hexapods [Schilling et al., 2013; Schneider et al., 2011], snakes [Transeth
et al., 2008], worms [Seok et al., 2013], octopus [Calisti et al., 2011], or smaller
quadrupeds [Spröwitz et al., 2013]. In a similar vein, researchers have build humanoid
robots like [Marques et al., 2010], [Shirai et al., 2011], or [Ott et al., 2013] with the
background motivation to understand the role of embodiment in cognition [Pfeifer
and Bongard, 2006] and human-like motor behavior [Tsagarakis et al., 2009]. All
the mentioned approaches share the explicit or implicit interest to investigate the
interplay of morphology and computation, most prominently phrased under the
notion of morphological computation [Hauser et al., 2011]. On the other hand,
there is an increasing interest from several application fields in soft robotics. From
the perspective of safe human-robot interaction, intrinsically safe and fully passive
compliant soft-robot platforms like the Bionic Handling Assistant (BHA, [Grzesiak
et al., 2011], see Table 2.1) or components like a soft skin [Duchaine et al., 2009]
are being developed. These platforms share experimental mechanics and actuation
designs, for which kinematic or dynamic models are hardly available and often have
to be approximated, e.g. for the BHA [Rolf and Steil, 2012]. Typically, standard
methods of model-based control cannot be applied easily. But also learning methods
are not easily applicable. The main reason is that soft-mechanisms often involve high-
dimensional actuation with heavy redundancy, have slow and complex mechanical
dynamics that often include hysteresis, and exhibit long control delays. Problems for
holistic learning approaches thus include that exploration suffers from the curse of
dimensionality and simulations are not available again due to the lack of models. The
generation of training examples from the robot itself is difficult and costly, because
the mechanism has to be executed for each sample, and the reproducibility of actions
and their results is limited. It was previously shown by Rolf and Steil [2014], that
the kinematic control of such robots can be effectively improved by novel, biological
inspired learning schemes that do not rely on exhaustive exploration. However, also
lower levels of control pose significant challenges on soft robots, yet being essential to
exploit the robots’ full potential for safe physical human-robot interaction. While the
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robot’s soft material and actuation permit close spatial proximity between human
and robot without posing a threat to the human, its material properties cannot
be productively harnessed of the shelf. It is desirable to be able to freely move
the robot to configure its posture [Lemme et al., 2013] or teach in movements to
be executed [Akgun et al., 2012]. Typical application scenarios are small scale
production lines in which expert programming of the robot is an essential cost factor.
In such scenarios, naive users should be able to “program” how a robot executes a
task by kinesthetically teaching it. The use of such active compliant control modes
have already been shown in industrial contexts [Wrede et al., 2013], but the very
control so far required fast and accurate force sensing as well as accurate models of
the robot itself, both of which are typically unavailable on soft robots.

Motivation From Biology:
Cerebral and Sub-Cortex Motor Control in Mammalians Concerning all
previously mentioned challenges in motor control, the question arises how complex
motion generation is realized in animals and humans. In particular, with reference to
the high dimensionality of actuation and correlation between muscle fibers as well as
further complex and compliant properties of the musculoskeletal system. Even with
the assumption that the body optimized its structure under evolutionary pressure
resulting in a simplification (i.e. linearization) of the control problem (known as
morphological computation [Pfeifer and Gómez, 2009]) high-dimensional nonlinear
relations between sensory input, abstract high-level goals and motor signals remain.

Although huge efforts have been made in understanding the motor system of the
brain, even the functional role of primary motor cortex (M1) area is still controver-
sially discussed. The Servo Hypothesis targets on understanding of low-level control
by combination of distributed feed-forward models as proposed by Schweighofer et al.
[1998]. Further, higher-level feed-forward estimates in combination with feedback
loops are assumed to reach higher-level goals [Wolpert and Ghahramani, 2000]. To
address the problem of the high dimensionality, the concept of synergies between
muscles [An et al., 2014] assumes that complex motions can be generated by mixing
basis functions of muscle activations. Further concepts include that complex motions
are composed of simpler motion primitives [Mussa-Ivaldi and Bizzi, 2000]. Beside
experiments that show a decerebrated cat performing several gait patterns [Whelan,
1996], recent research indicates that the motor cortex does even not play a crucial
role in motion execution [Kawai et al., 2015]. Lower sub-cortical areas seem to be
responsible for motion execution and the motor cortex performs modulation and
learning. This view is also supported by Schieber [2000] with the statement that
one of the tasks of the primary motor cortex includes the adaptation of motions
to internal or external conditions. The discussion by Graziano [2015b] points out
that besides the view of a homunculus-like map of muscles and a population cod-
ing of spatial muscle activations, a third view emerges in form of a represented
action-map. This view is supported by the activation of specific basic actions in
relation to stimulation of different M1 cortex regions, e.g. hand-to-mouth or reach-
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to-grasp movements [Graziano, 2015a]. Additionally, [Scott, 2008] argues that high
and low-level signals modulate activations in M1 and response patterns of single
neuron populations are dependent on trajectory shapes as well as load situations of
the actuated limbs. An action-map representation is addressed by Optimal Feedback
Control [Scott, 2004], a proposed conceptual framework that tries to keep motion
variability in cases where the task performance is not affected. As it can be seen from
the previous discussion, the role of the primary motor cortex is not yet revealed but
it can be assumed that the primary motor cortex consolidates multi-modal high-level
information as well as low-level signals. Moreover, it is crucial for learning and the
adaptation of movements to parameterizations of various abstraction levels, whether
motion execution seems to be located in sub-cortical regions and gets modulated by
the primary motor cortex.

Skill Learning for Robots:
Parameterized Skills Advanced robotic systems face non-static environmental
conditions which require context-dependent adaptation of motor skills. Approaches
that optimize motions for a given task by reinforcement learning, like object manip-
ulation [Günter, 2009] or walking gait exploration [Cai and Jiang, 2013], deal only
with a single instance of a potentially parameterized set of tasks. In many cases,
a low-dimensional parameterization that covers the variance of a task exists. For
example, consider reaching and grasping under various obstacle positions and object
postures [Ude et al., 2007; Stulp et al., 2013], throwing of objects at parameterized
target positions [Silva et al., 2014] or playing table tennis using motion primitives
that are parameterized with respect to the current ball trajectory [Kober et al.,
2012]. A full optimization for each new task parameterization from a reasonable
initialization, which was acquired by e.g. kinesthetic teaching, means that many
computations and trials need to be performed before the task can be executed. This
impedes immediate task execution and is highly inefficient for executing repetitive
tasks under some structured variance.

Recent work addresses this issue by introducing parameterized motor skills that
estimate a mapping between the parameterization of a task and corresponding
solutions in policy parameter space [Ude et al., 2007; Pastor et al., 2013; Stulp et al.,
2013; Silva et al., 2014; Mülling et al., 2010; Kober et al., 2012; Matsubara et al.,
2011; Reinhart and Steil, 2015; Baranes and Oudeyer, 2013]. Generation of training
data for the update of such parameterized skills requires the collection of optimized
policies for a number of task parameterizations. In previous work, each training
sample is based on a full optimization for a new task parameterization starting
from a fixed initialization [Silva et al., 2012, 2014], or gathered in demonstrations
e.g. by kinesthetic teaching [Ude et al., 2007; Stulp et al., 2013; Matsubara et al.,
2011; Reinhart and Steil, 2015]. On the one hand, requesting demonstrations from
a human teacher for many task parameterizations is not only time-consuming, but
also includes the risk of collecting very different solutions to similar tasks due to the
redundancy of the problem. Solutions on a smooth manifold are a prerequisite to
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allow for generalization for unknown tasks by machine learning algorithms. On the
other hand, full optimization from a single initial condition requires many rollouts
and ignores the already acquired knowledge about the motor skill. A further method
to encode the behavior of dynamical systems to generate trajectories in relation
to a task parameterization are Task-Parameterized Gaussian Mixture Models (TP-
GMM) [Calinon et al., 2013; Calinon, 2016]. Demonstrations are encoded as Gaussian
Mixture Models in relation to multiple reference frames like via-points or start/end
positions. Relative to each frame, Gaussian Mixture Model parameters that represent
the demonstrations are estimated by an EM algorithm. Generation is based on the
joint distribution of all Gaussian mixture models.

2.2 A Novel Conceptual Framework for
Parameterized Skill Learning
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Figure 2.1: System diagram of the proposed Skill Learning Architecture. Successful
task execution in real world scenarios is composed out of a kinematics (left) and
dynamics (right) representation of actions.
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This work will refer to the term skill learning in the context of robot action
generation. A skill is the ability of the robot to carry out a task with a determined
result. In comparison to classical robotic applications, it is assumed that the task is
not static and is affected by some structural perturbation. Task variability could e.g.
include variable positions of obstacles, goal position and orientations, variable weight
of manipulated objects or a variable duration of the action. For each execution,
the robot has to adapt its movements according to the parameterization of the
current task instance it has to face. It is assumed that a high-level parameterization
is available that describes the full variability for a given task. The remainder of
this work, will refer to a Parameterized Skill (PS) as a memory that performs the
generalization from a continuous task parameterization, that defines the current
task instance, to a parameterization that generates an appropriate movement of the
robot. The parameterized skill is trained with successful examples of movements
for the current task parameterization (task instance). Fulfillment of the task can be
measured in terms of a threshold on an objective function, like an estimation of a
reward for the quality of an executed movement. The representation of movements
is divided into a kinematics and dynamics representation of the skill. The kinematics
representation results in required joint angle trajectories that have to be executed to
fulfill a given task instance. Complex dynamics of the robot and interaction forces
that may occur for successful task completion can prevent the precise execution of
the required actions of the robot. The dynamics representation of the skill generalizes
forward signals that support the low-level controller to perform a precise execution
of the estimated joint angle trajectories by a representation of the dynamics of the
robot and its interaction in relation of the task parameterization. As an example,
consider the task of opening a door with a highly compliant robot. The system may
have learned that a handle has to be rotated in relation to its attachment point
on the door as joint angle representation (kinematics). But the rotation cannot
be executed accurately by the highly compliant robot, since the handle includes
a spring mechanism that works against the action performed by the robot. The
dynamic representation covers the unmodeled dynamic properties of the interaction
and generates a force that compensates for the spring mechanism of the door handle.
A structural overview of the conceptual framework is shown in Figure 2.1. For a
specific situation, one skill from a set of skills is selected. The current task instance is
defined by a parameterization of the selected skill. A memory structure maps the task
parameterization to an action representation. The action representation is encoded
into a kinematics and dynamics representation of the current task. The resulting
control signals are forwarded to a low-level controller that generates movements of
the robot system. The robot system interacts with the environment and each action
is assessed by a reward function. Based on the reward it is decided if the current
action fulfilled the requirements of the given task. As indicated by the arrow symbols,
multiple optimization loops are responsible for skill learning. For each task instance,
an optimization of the kinematics (blue, Chapter 3-4) and dynamics (red, Chapter 6)
representation is performed. Additionally, each primitive is executed by the low-level
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controller (black, Chapter 5). Further feedback occurs during primitive execution
due to the interaction with the environment. This process has to be repeated for
multiple task instances as well as multiple skills that form a task set. Note, this
work is restricted to one parameterized skill and will not elaborate skill sets.

To gather training data for the parameterized skill, the system has to optimize the
kinematics representation of a skill by maximization of the estimated reward of an
executed movement, given the current task instance. The dynamics representation is
optimized simultaneously in relation to the commanded joint angle trajectory, where
the goal is the reduction of the tracking error of the low-level controller.

Formalization Action generation is performed by policies πθ that are parameter-
ized by θ ∈ R

F . Further, it is assumed that tasks are parameterized by τ ∈ R
E with

E << F . Task instances defined by τ are distributed according to the probability
density function P (τ ). The task parameterization τ reflects the variability of the
task, e.g. position of obstacles, target positions or loads attached to the end effector.
With reference to [Silva et al., 2014], this thesis introduces the notion of a parameter-
ized skill, which is given by the function PS : RE → R

F , that maps task parameters
τ to a policy parameterization θ. The goal is to find a parameterized skill PS(τ ) that
maximizes

∫
P (τ )J(πPS(τ ), τ )dτ , with J(π, τ ) = E

{
R(πθ, τ )|π, τ

}
as the expected

reward for using policy πθ to solve a task τ . The reward function R(πθ, τ ) assesses
each action of the robot defined by the policy πθ with respect to the current task
parameterization τ . In case of a representation of the kinematics, the parameter-
ization θ = θK of policy Q = πθ ∈ RNπxT represents trajectories in joint angle
(Nπ = Ndof) or end effector (Nπ = 3) space. In case of an additional representation
of the dynamics of a task, the parametrization θ = [θK,θD] of the policy represents

further forward signals encoded as θD. The resulting policy
(
Q UFFWD

)
= πθ

provides a trajectory representation qt,j as well as forward signal that support the
feedback controller uFFWD

t,j for a primitive at time t = 1 . . . T and joint j = 1 . . . Ndof.

2.2.1 Key Aspects of the Contribution of this work in Relation to
Previous Work

As discussed in the previous section, skill learning on real robotic systems that
interact with humans and the environment is a challenging problem. Skill learning
that is based on motion primitives in relation to a high-level task parameterization
was demonstrated as a solution to overcome the challenges of high-dimensional state
spaces in previous work. Impressive tasks could be tackled with these approaches,
like dart throwing [Silva et al., 2012] or object transport [Stulp et al., 2013]. But
nevertheless, those works do not tackle learning of dynamic properties, perfect
execution of the motions on the robot system is assumed.

In this work, an architecture for skill learning is proposed as outlined in Fig-
ure 2.1. A parameterized memory is responsible for generalization of robotic actions
for a given task instance defined by the task parameterization. In comparison to
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previously proposed skill learning architectures, the memory generalization results
in two distinct modalities:

❼ Representation of the kinematics of the skill (Figure 2.1, left side)

❼ Representation of the dynamics of the skill (Figure 2.1, right side)

Complex dynamics of the robot or forces that occur during interaction with the
environment, e.g. obstacle manipulation, can impede the low-level controller and
prevent successful task execution. Therefore, an additional representation of the
dynamics is proposed. In comparison to classical robot control methods, a forward
signal to support the low-level controller is generalized based on a high-level task
parameterization.

In comparison to existing methods, the work presented in this thesis does not
rely on offline methods or slow gradient descent and is able to deal with incremental
consolidation of new samples. One of the most crucial competences of a system for
online learning is the ability to quickly adapt to new tasks or extend the current
skill representation. Learning parameterized skills from human demonstrations or
multiple executions of stochastic optimization is costly as it is time consuming. For
this reason, this work provides a framework that allows an integration of state-of-the-
art optimization algorithms for policy search, i.e. by CMA-ES, instead of optimizing
meta-parameters of policies [Kober et al., 2012] and does not rely on library based
approaches, as in [Mülling et al., 2010].

The first option to allow for an efficient skill learning is the reduction of the
number of required training samples. This work investigates an incremental algorithm
to establish parameterized skills, that reuses previous experience to successively
improve the optimization process [Queißer et al., 2016]. In contrast to [Silva et al.,
2012, 2014], the optimizer is initialized with the current estimate of the iteratively
trained skill. Further, a cost term is proposed and used as an additional objective for
optimization of the kinematics representation of the skill. An analysis on toy data
demonstrates improved generalization capabilities due to the selection of solutions
that lead to a beneficial skill representation of the parameterized skill.

A further option to speed up the optimization is the reduction of the dimen-
sionality of the search space. In comparison to previous work, it is proposed to
rely to the space of task parameterizations for a reduction of the dimensionality.
The parameterized skill performs a mapping from the low-dimensional space of task
parameterizations to the high-dimensional space of the action parameterization. The
proposed optimization in hybrid spaces allows for a fast coarse search in the low-
dimensional input space of the parameterized skill and a refinement of the actions
by a search in the full parameterization of the motions.

Relation to Inverse Model Learning In comparison to the exploration of map-
pings, for e.g. inverse kinematic models like by the Goal Babbling algorithm proposed
by Rolf et al. [2010] or its extension to skill representations by Reinhart [2017], the
exploration of a parameterized skills is not able to explore a task parameterization
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for arbitrary policy parameterizations. Therefore the mechanisms for learning such
a memory cannot be transferred and used in the same way for learning of parameter-
ized skills. Goal Babbling for example, relies on the ability to examine the current
quality of the mapping of a smoothly moving parameterization in task space. This
is not applicable for scenarios that are tackled in this thesis in which the task param-
eterization is typically given by environmental conditions and cannot be influenced
by the learning method.

Relation to Deep Reinforcement Learning Approaches Recently, approaches
that are based on Deep Learning 1 gained attention in the robot control commu-
nity. These architectures focus on the processing of raw sensory signals, since the
deep learning architectures are able to extract low-dimensional features from high-
dimensional input in an unsupervised manner. This work does not aim for the
extraction of features, as it is assumed that reasonable low-dimensional features are
already available. Furthermore, it is assumed that only a small amount of training
samples can be gathered for exploration of the parameterized skill. Nevertheless,
deep learning architectures could be used in synergy with the work of this the-
sis to perform an unsupervised extraction of low-dimensional features for the task
parameterization of the proposed skill learning methods.

2.2.2 Component of a Skill Learning Architecture

This section will give an overview of the components of the proposed system archi-
tecture, as shown in Figure 2.1. The functional building blocks: memory, encoding
and optimization will be discussed.

Memories

As introduced in Section 2.2, the memory component is given by the mapping func-
tion θ = PS(τ ) of the parameterized skill. For implementation of PS, nonlinear
regression or associative representations can be considered. In comparison to non-
linear regression methods, associative memories have the benefit of completion of
incomplete feature representations and bidirectional estimations, which is relevant
for the proposed hybrid optimization in Section 4.2. A comprehensive review of
current methods for nonlinear regression can be found in [Stulp and Sigaud, 2015]:
a classification of regression models into function representations based on a weighted
sum of basis functions or a mixture of linear models is presented. The authors argue
that the representations that are based on the weighted sum of basis functions are
a special case of the representations that are based on mixtures of linear models.

1It is referred to the term Deep Learning as stacked Restricted Boltzmann Machines
(RBM) [Salakhutdinov and Hinton, 2009], convolutional networks [Wersing and Körner, 2003],
Slow Feature Extraction (SFE) based architectures [Franzius et al., 2007] and further stacked net-
works, e.g. [Deng and Yu, 2014; LeCun et al., 2015], that transform signals from local to global and
optionally from a fast to a slow context in multiple layers n > 2.
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Therefore, a model is presented that unifies the representation of common learning
methods as, among others, Locally Weighted Regression (LWR), Gaussian Mixture
Regression (GMR), Radial Basis Function Networks (RBFNs), Gaussian Process
Regression (GPR), Support Vector Regression (SVR), Extreme Learning Machine
(ELM) or Backpropagation.

In the case of the parameterized skill, it can be assumed that only a low number of
training samples are available. Each training sample has to be gathered by kinesthetic
teaching or policy optimization which is costly since it requires interaction with the
robot or repetitive executions of actions of the robot.

ŷx
Input Output

Hidden
Nonlinear Linear

W inp W out

Figure 2.2: Structure of the ELM as function approximator. The input extension
to the hidden layer is based on randomly selected input weights Winp. The readout
weights Wout are estimated by means of linear regression.

This thesis refers to a single-layer feed-forward network with a random projection
into the hidden layer and a linear readout, as known in literature as Randomized
Neural Network (RNN) [Schmidt et al., 1992] in case of a linear regression on the
random projection including a bias, Random Vector Functional Link (RVFL) [Pao
et al., 1994] in case of a linear regression on the random projection and the un-
transformed input pattern, and as Extreme Learning Machine (ELM) that performs
linear regression only on the random projection of the input pattern. Literature
shows that these methods achieve a competitive performance in comparison to other
state-of-the-art nonlinear regression methods [Liu et al., 2012; Enache and Dogaru,
2015]. Further, estimation of the parameterization does not require a slow gradient
decent because the linear readout and hyper-parameters are easy to tune for real
world applications.

Since all three variants have huge similarities, the discussion of the methods will
be restricted to ELMs. The parameterized skill implemented as ELM is defined as

PSi(τ ) = ELM(τ ) =

NH∑

j=1

Wout
ij hj(τ ) ∀i = 1, ..., F, (2.1)

with NH hidden nodes and output dimensionality F . The hidden activation h is
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defined as

hj(τ ) = σ




E∑

k=1

Winp
j,k τk + bj


 ∀j = 1, ..., NH (2.2)

with input dimensionality E. The nonlinearity of hidden states is introduced by
sigmoid activation function σ(x) = (1 + e−αx)−1) with slope parameter α. In
comparison to methods based on vector quantization, the selection of a random
projection simplifies model selection and does not require an adaptation of prototypes.
For training, it is assumed that H is the collection of all NH hidden states for all
Ntr samples of a dataset,

H =



h(τ1)

...
h(τNtr)


 =




h1(τ1) h2(τ1) · · · hNH
(τ1)

h1(τ2) h2(τ2) · · · hNH
(τ2)

...
...

. . .
...

h1(τNtr) h2(τNtr) · · · hNH
(τNtr)



. (2.3)

This allows the definition of the parameterized skill in matrix notation as PS(τ ) =
HWout. Learning is performed by minimization of the error between the output and
desired targets Θ = [θ1 · · ·θNtr ]

⊤, given by

argmin
Ŵout

||HWout −Θ||. (2.4)

As the parameterization of the learner can be estimated by linear regression,
implementation of the learner can be realized by several well established methods as
discussed in the following:

a) Recursive Least Squares (RLS):
One prominent method solving linear least squares problems is Recursive Least
Squares (RLS). RLS is able to process sequentially available training data for

an update of Ŵout under consideration of an optional exponential forgetting
of old training samples. Those properties make RLS an interesting candidate
for the implementation of the parameterized skill. An ELM variant based on
sequential learning is presented in [Liang et al., 2006]. The incremental update
of the readout weights is given by

Ŵout(k + 1) = Ŵout(k)+
P(k) · h(τk+1)

λ+ h(τk+1)
⊤ ·P(k) · h(τk+1)︸ ︷︷ ︸

Kalman Filter Gain

·

(
θk+1 − h(τk+1)

⊤ · Ŵout(k)
)

︸ ︷︷ ︸
Innovations

,

(2.5)

with

P(k + 1) =
1

λ
·
(
P(k)− γ(k) · h(τk+1)

⊤ ·P(k)
)
. (2.6)
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Exponential forgetting is given by 0 < λ ≤ 1. For λ = 1 the update results in
RLS without exponential forgetting of old training samples.

b) Regularized Least Squares:
A further prominent method for solving linear regression problems is Regular-
ized Least Squares. It adds a further minimization constraint regarding the
readout weights, the resulting error is given by

||HWout −Θ||2 + γ||Wout||2. (2.7)

Usually, the L2-norm is used due to its closed form solution that is called
ridge regression or Tikhonov regularization [Tichonov and Arsenin, 1977]. The
solution of the optimization problem of ŵout in case of ridge regression is given
by

Ŵout = (H⊤H+ γI)−1H⊤Θ. (2.8)

A ELM variant that incorporates regularization is presented in [Deng et al.,
2009; Neumann and Steil, 2013]. Further work of [Huynh and Won, 2011]
introduces a combination of sequential and regularized learning. Resulting in
an incrementally updated estimation of the readout weights for sequential data
chunks,

Ŵout(k) = Ŵout(k − 1) + L−1(k)H⊤(k)(T(k)−H(k)Ŵout(k − 1)), (2.9)

with
L(k) = L(k − 1) +H(k)⊤H(k). (2.10)

The initialization is given by

Ŵout(0) = L−1(0)H⊤(0)T(0), with L(0) = H⊤(0)H(0) + λI. (2.11)

An additional weighting of the training set can be performed to modulate
the importance of each presented training sample or be applied as Iteratively
Reweighted Least Squares (IRLS) to approximate least square problems reg-
ularized by L1-norms or even non-convex fractional norms [Aggarwal et al.,
2001; Chartrand and Yin, 2008].

c) Bayesian Linear Regression:
In addition to the previously presented approaches, Bayes Linear Regres-
sion allows the estimation of a posterior distribution of the readout weights,
e.g. [Bishop, 2006; Soria-Olivas et al., 2011], defined for output i as

p(ŵout,i|Θ) = N(ŵout,i|mN,i,SN ). (2.12)

The prior S0 = α−1I, is assumed to be zero mean and isotropic. Posterior
distribution over ŵout,i is given by mN,i = βSNH⊤Θi,∗ and S−1

N = S−1
0 +

βH⊤H. Parameter β = 1/σ2tr is given by the inverse of the variance of the
training data.
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The final output of the parameterized skill is given by the predictive distribu-
tion, as

p(PSi|τ , α, β) = N (PSi|Ŵ⊤

out,ih(τ ), σ
2
N (τ )), (2.13)

with variance

σ2N (τ ) =
1

β
+ h(τ )⊤SNh(τ ). (2.14)
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Figure 2.3: Associative network structure. Feedback of the output results in a
dynamic behavior that is visualized as vector field (b).

Associative networks have been motivated as biologically inspired learning meth-
ods. One basic concept of networks based on feedback connections, is to employ
an auto-associative network that minimizes an energy function or follows a gradi-
ent to reach a local minimum that represents the distribution of the training data.
For association of different modalities, the state description of all M modalities are
concatenated into v = [v(1)⊤ · · ·v(M)⊤ ]⊤ and used as target for the auto-encoder.
This results, in case of the parameterized skill, in the association of v(1) = τ and
v(2) = θ in v = [v(1) v(2)]⊤. Network estimates v̂t and network dynamics is induced
by assignment vt+1 ← v̂t. By fixation of single modalities or even dimensions, it
is possible to query the memory for a given (incomplete) pattern. Variations of
the initial state of the network allow for selection of solutions in case of ambiguous
data (multiple attractors). In the following an overview over existing techniques
for associative memories will be given, further models, e.g. prototype based, can be
found in [Reinhart, 2011].

a) Hopfield Networks:
Hopfield networks are associative networks based on biologically motivated
Hebbian learning [Hopfield, 1982], for binary pattern vectors. Later extensions
to logistic functions allow the representation of graded responses [Hopfield,
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1984]. The iterative update of the activation of the network is given by

vi ←
{

+1 if
∑

j wijvj ≥ αi,

−1 otherwise.
(2.15)

with thresholds αi The respective energy function of the network is defined as

E = −1

2

∑

i,j

wijvivj +
∑

i

αivi (2.16)

and is minimized by every update step towards a local minimum. Training
can be performed by the Hebbian learning rule wij = 1

Ntr

∑Ntr
µ=1 ǫi

µǫµj , for all
training patterns ǫ. Training patterns are represented by a local minima of
the energy function, but following the update rule, Equation 2.15, can result
in local minima that do not present training data as well as spurious patterns.

b) Restricted Boltzmann Machines (RBM):
Restricted Boltzmann Machines (RBMs) [Smolensky, 1986; Freund and Haus-
sler, 1992] can be interpreted as an extension of Hopfield Networks. They
are extended by a probabilistic state description and a separation of a visible
and a hidden layer. RBMs gained attention for successful application in clas-
sification tasks in hierarchical configurations. For real valued visible layers a
Gaussian-Bernoulli-RBM can be considered [Hinton and Salakhutdinov, 2006;
Cho et al., 2013]. The application of logistic functions allow for representation
of the visible layer in continuous space. By iterative estimation of the hidden
layer based on the the visible layer and vise versa, a completion/association
can be carried out. As for the Hopfield network, iterative updates of the visible
layer minimize the energy of the network. In case of Gaussian visible nodes,
the energy is defined as

E(v, h) =
||v − bv||2

2σ2
− (bh)

⊤

h− v⊤Wh

2σ2
. (2.17)

The activation of the binary hidden nodes in relation to the visible nodes is
expressed as

P (hj = 1|v) = σ

(
bhj +

v⊤w∗,j

σ2

)
(2.18)

and for back-projection the activation of the visible nodes given the state of
the hidden nodes is given by

P (vi|h) = N(bvi +w
⊤

i,∗h, σ
2). (2.19)

The bias of the hidden layer is denoted as bh and for the visible layer as bv.
Binary hidden activation is notated as h and visible layer as v. Notation
w∗,j indicates the selection of one vector of the matrix W. Training of the
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weights of the network is discussed in [Hinton, 2002]. The Boltzman Machines
are not designed for a continuous data representation due to the binary state
descriptions. Additionally, training usually requires large amounts of training
data and is sensitive to parameter selection, in particular for Gaussian nodes.

c) AELM and ARBF as Parameterized Skill Memories (PSM):
The associative learning introduced as Parameterized Skill Memory (PSM), is
based on an auto-encoder that is implemented by programming of a multiple
stable attractor dynamics. It is assumed that an induced error of the estimate
of the auto-encoder generates a ∆v̂t = v̂t − vt that moves the next state of
the network vt+1 ← vt + ∆v̂t closer to the distribution of the training data,
as illustrated in Figure 2.3a. One implementation of the model is based on an
explicit encoding of a vector field, as shown in Figure 2.3b. It was introduced
as Associative Extreme Learning Machine (AELM) [Reinhart and Steil, 2011;
Reinhart, 2011] as it incorporates a random, non-recurrent, and nonlinear
projection into the hidden layer similar to the ELM. It is defined by

ht = σ(Winpvt). (2.20)

The estimation of the output v̂ is based on a linear readout

v̂t = Woutht. (2.21)

Further work investigated associative reservoir computing including recurrent
connections [Reinhart and Steil, 2011; Emmerich et al., 2013] . Training is
performed by linear regression of Wout, stable attractor points are imprinted
by generation of synthesized sequences that point towards the training data,
as shown in Figure 2.3b. But, convergence to the training distribution is not
guaranteed, e.g. over-fitting of the learner can lead to poor solutions and an
exponential number of generated training samples is required in relation to the
dimensionality of the input.

A further implementation of this class of associative memories is based on a
vector quantization approach. The Associative Radial Basis Function Network
ARBF [Reinhart and Steil, 2012, 2014] is an associative learner based on hidden
radial basis function nodes. Due to the radial basis functions, a stable attractor
dynamics emerges as demonstrated in [Reinhart and Steil, 2012]. For this case,
the hidden layer is estimated by

hi(v) =
exp(−∑M

m=1 β
(m)||v(m) − c

(m)
i ||2)∑NH

j=1 exp(−
∑M

m=1 β
(m)||v(m) − c

(m)
j ||2)

. (2.22)

Balancing of the modalities, e.g. to keep equal influence for modalities with
different a dimensionality, can be implemented by scaling factors β(m). Output
mapping and iterative update are performed in a same way as in Equation 2.20
and Equation 2.21.
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Trajectory Representation

The task parameterization, as well as the policy parameterization, are time invariant
representations of movements. The encoding aims at an efficient representation of
the temporal joint trajectories as well as control signals. This includes compression of
the parameter space, noise suppression and good generalization capabilities. Besides
simple encodings based on polynomial functions or splines, e.g. [Andersson, 1989;
Hwang et al., 2003], most prominent methods for robotic trajectory generations are
based on a nonlinear dynamical systems approach. Often, those dynamical systems
incorporate a linear dynamical system that predominates a nonlinear modulation. A
phase variable represents an internal clock and performs a smooth transition between
nonlinear and linear dynamics to ensure stability at the end of the motion.

a) Dynamic Motion Primitives (DMP):

(a)

(b)

Figure 2.4: Illustrative example of a DMP based trajectory representation.

Dynamical systems for trajectory planning and control have been proposed as
Dynamic Movement Primitives (DMP) in [Schaal, 2006], they have been widely
used in different applications for robot control. The basic idea of DMPs is to
modulate a movement produced by a stable second-order dynamical system that
is perturbed by a complex nonlinear force term. The force term itself consists of
a weighted sum of multiple predefined activation functions. However, Calinon
et al. [2012] extended the DMP framework to a probabilistic formulation in
which a simple attractor point is obtained for every single data point. It refers
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to a similar dynamical spring-damper system without considering the force
term. Instead of estimating a force term, the trajectory of virtual attractor
points are encoded with statistical tools such as Gaussian Mixture Models in
the form of a joint probability distribution. The resulting planning scheme
benefits from multiple advantages of dynamical systems e.g., robustness when
facing perturbations and control over the compliancy of the task execution by
tuning the tracking gains. It also takes advantage of automatic organization of
basis activation functions. In [Malekzadeh et al., 2014a], the idea of trajectory
attractors is extended to surface attractors using spatio-temporal dynamical
systems.

This thesis refers to Dynamic Motion Primitives (DMP, [Schaal, 2006; Ijspeert
et al., 2013]) for encoding of trajectories, because they are widely used in the
field of motion generation. DMPs for point-to-point motions are based on a
dynamical point attractor system

ÿ = kS(g − y)− kDẏ + fDMP(x,θ), (2.23)

that defines the output trajectory as well as velocity and acceleration profiles.
The canonical system is typically defined as ẋ = −αx or as a linear decay
ẋ = −α as in [Kulvicius et al., 2012] and limited to non-negative values. The
shape of the primitive is defined by

fDMP(x,θ) =

∑K
k=1 exp(−Vk(x−Ck))θk∑K
k=1 exp(−Vk(x−Ck))

, (2.24)

where a mixture of K Gaussians is used. Ck are the Gaussian centers and
Vk define the variance of the Gaussians. The DMP is parameterized by the
mixing coefficients θk. Efficient encoding of trajectories by weights θk can be
achieved by linear regression, as the output of the disturbance function fDMP

depends linearly on the weights. Fixed variances Vk and a fixed distribution
of centers Ck are assumed as in [Reinhart and Steil, 2015]. Figure 2.4 shows
an exemplary configuration of a DMP. Figure 2.4a shows the response of the
point attractor (θ = 0), the response of the disturbance term fDMP and the
resulting output of the DMP. Figure 2.4b visualizes the weighted Gaussian
disturbance terms exp(−Vk(x−Ck))θk.

b) Gaussian Mixture Models (GMM):
Gaussian Mixture Regression (GMR) [Günter et al., 2007] shares a joint rep-
resentation of the input and outputs in variable u = [t qt]

⊤, or in case of a
dynamical system as u = [t q̇t]

⊤. The relation of input, i.e. time, and output
is modeled as probability density function

p(u) =

K∑

k=1

πkN (µk,Σk), (2.25)
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with weighting factors πk of a mixture of K Gaussian distributions with means
µk and covariances Σk. The parameterization can be estimated by the Expec-
tation Maximization algorithm (EM), as demonstrated in [Ghahramani and
Jordan, 1994].

The recovering of the expected output from the conditional probability function
is performed by

q(t) =
K∑

k=1

πkN (µk,t,Σk,t)∑K
j=1 πjN (µj,t,Σj,t)

(
µk,q +Σk,qtΣ

−1
k,t (t− µk,t)

)
. (2.26)

Where µk,t, µk,q, Σk,t, Σk,q, Σk,tq and Σk,qt are estimated by the separation
of the covariance matrix and the means of the joint representation into the
respective input and output components as shown in [Günter et al., 2007]. Due
to the probabilistic representation, the variance of the conditional distribution
can be recovered as well.

c) Neurally Imprinted Vector Fields:
The idea of Neural Imprinted Vector Fields [Lemme et al., 2014] follows the
motivation of a vector field representation of a dynamical system, similar to
the associative memory AELM as discussed before on page 30. The temporal
dynamics of the trajectory is represented as

qt+1 = qt +∆t ·∆qt, (2.27)

with vector field represented as ELM, given by ∆q̂T = ELM(qt) according
to Equation 2.1. Convergence to fixed point attractors is realized by satis-
fying asymptotic stability constraints defined by Lyapunov and result in a
constrained optimization problem. Further information on the solution of the
quadratic program and an analysis for point-to-point movements can be found
in [Lemme et al., 2014].

Optimization

In this work, optimization of two different modalities is performed. First, the robot
has to optimize the executed trajectory in relation to a reward function. The reward
function encodes the goal of the current task and no a priori knowledge about the
reward function nor a gradient is available to adapt the executed motions with
respect to the returned reward. Therefore, optimization of the motions of the robot
is treated as a Black-Box-Optimization (BBO) problem. In [Stulp and Sigaud, 2013],
an overview and an extended discussion about prominent optimization methods for
BBO can be found. Further, a discussion about current methods and trends in
reinforcement learning is presented in [Sigaud and Stulp, 2018]. This work does not
aim at a comparison of different optimization methods and relies for optimization
on the prominent CMA-ES algorithm, as introduced in the following. The second
optimization problem aims at controlling the joints of highly compliant robots and
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compensating for dynamics effects caused by e.g. interaction with the environment.
Iterative Learning Control (ILC) can be used to generate a forward signal to support
the low-level controller of the joints. ILC is based on the idea, that the performance
of a system can be improved by learning from previous executions. It aims at an
efficient reduction of the tracking error of a commanded trajectory and the resulting
trajectory of the joints. Gradient information of the control signal w.r.t. the torque
and the resulting acceleration of the actuator is used to iteratively update a forward
signal to minimize the tracking error. A similar method for optimization of forward
signals and error minimization was proposed as Repetitive Control (RC) [Hillerström
and Walgama, 1996], which is applied to continuous processes with a periodic input
and operates in frequency space. Further details of CMA-ES & ILC are presented
in the following:

a) Black-Box Optimization (BBO):
Covariance Matrix Adaptation - Evolutional Strategy (CMA-ES)

(a) (b) (c)

Mean

Covariance

Rollouts

(d)

Figure 2.5: CMA-ES algorithm example on the Branin function. Optimization is
visualized for the first, third, sixth and seventh generation.

The original algorithm of CMA-ES relies on four main steps, detailed informa-
tion can be found in [Hansen, 2006]. Optimization is performed in generations,
which means that an action has to be performed under several perturbations.
The mean estimate is updated based on the observation of rewards of the
executed actions. CMA-ES has an internal representation of the current mean
and of the covariance matrix that allows for sampling of new actions normally
distributed around the current mean estimate. In addition, CMA-ES estimates
an evolution path for the mean and the covariance matrix update. Those
evolution paths allow for more stability to outliers and noise. The first step
performs the sampling from a multivariate normal distribution centered at the
current estimate m(g), given by

x
(g+1)
k = m(g) + σ(g)y

(g+1)
k , with

y
(g+1)
k ∼ Nk(0,C

(g)) for k = 1, ..., λ.
(2.28)
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Followed by the update of the estimated solution for the next generation, g+1,
with respect to the rewards of the sampled rollouts

m(g+1) = m(g) + σ(g)y
(g+1)
w , with y

(g+1)
w =

µ∑

i=1

wiy
(g+1)
i:λ . (2.29)

The vector x
(g+1)
i:λ denotes the i-th best individual and the index i : λ denotes

the index of the i-th ranked individual R(xg+1
1:λ ) ≤ R(xg+1

2:λ ) ≤ ... ≤ R(xg+1
λ:λ ).

With current mean m(g) and covariance C(g) ∈ R
FxF scaled by σ(g) ∈ R+ for

generation g. The third step targets the update of the covariance matrix

C(g+1) = (1− c1 − cµ)c(g) + c1p
(g+1)
c p(g+1)

c

⊤

+ cµ

µ∑

i=1

wiy
(g+1)
i:λ y

(g+1)
i:λ

⊤ (2.30)

and its evolution path

p(g+1)
c = (1− cc)p(g)

c +
√
1− (1− cc)2√µeffyw. (2.31)

The final step performs an update of the exploration width sigma,

σ(g+1) = σ(g) × exp


 cσ
dσ


 ||p(g+1)

σ ||
E||N (0, I) || − 1





 (2.32)

and its assigned evolution path p
(g+1)
σ ,

p(g+1)
σ = (1− cσ)p(g)

σ +
√

1− (1− cσ)2√µeffC(g)−
1/2
y
(g+1)
w . (2.33)

The operation performed by C(g)−
1/2

results in a rescaling of the expected
distance of samples to the center, as described in [Hansen, 2006] (Eq. 23).

Figure 2.5 shows a typical behavior of CMA-ES. For illustration, optimization
of the Branin Function was performed. Starting at a random position in the
function space Figure 2.5a, the covariance of the estimated mean first shapes
into the direction of the gradient Figure 2.5b and starts shrinking as soon
the mean estimate approaches a maximum of the objective function, shown in
Figure 2.5c-2.5d.

b) Forward Signal Optimization:
Iterative Learning Control (ILC)

Iterative Learning Control (ILC, [Arimoto et al., 1984; Longman, 1998; Norrloff
and Gunnarsson, 2002; Wang et al., 2009]) can be applied for optimization
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Figure 2.6: Illustration of the Iterative Learning Control (ILC) algorithm. The
forward signal is updated according Q-Filter and learning function L, the error signal
is estimated by execution of a reference trajectory on plant P. Redrawn from [Bristow
et al., 2006].

of feed-forward signals to support the feedback controller and to compen-
sate for repetitive disturbances. A survey of multiple variants of ILC is pre-
sented in [Bristow et al., 2006]. Initially proposed as a solely feed-forward
approach, ILC was later applied in combination with feedback control as well,
like in [Roover and Bosgra, 2000; Bristow et al., 2006]. A successive observation
and update of the feed-forward signal leads to a reduction of the tracking error
and thereby to a lower feedback controller response. An illustration of the
iterative update of the forward signal is shown in Figure 2.6. The figure shows
the iterative update of the forward signal based on the forward signal of the
previous timestep and the current error of the execution on the plant (P). ILC
is widely used in industrial application areas, e.g. for enhancing positioning
precision of machines [Chen and Hwang, 2005; Kim and Kim, 1996].

The update of the forward signal is based on a Q-Filter and learning function
L. A low-pass filter Q suppresses high frequency learning and contributes to
the stability of ILC. An ILC learning algorithm for a delay free system, as
shown in [Wang et al., 2009], is given by

ui+1(t) = Q(ui(t)) + L(ei(t))︸ ︷︷ ︸
Update Law

. (2.34)

It includes the previous forward signal ui(t) filtered through a Q-filter Q and
an update law given by the L-Filter response L of the tracking error ei(t) for
iteration i at timestep t. Several schemes to design the Q- and L-filters have
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been proposed. The Q-filter improves the robustness of ILC by suppressing
high frequencies but adds a bias for the reduction of the tracking error. One
of the most prominent update laws is the PD-learning rule, which is used for
the experiments presented in Chapter 6. For the PD-Type learning, the feed-
forward signal is updated based on a proportional (P) and derivative (D) gain
of the current error. Implementation details will be discussed in Chapter 6.

2.2.3 Platforms and Datasets

Several robotic platforms, datasets and toy functions are used throughout this thesis
for evaluation of the proposed methods. The following list in Table 2.2, will give an
overview of the robotic platforms. Additionally, an overview of the datasets and the
location of their introduction as well as a list of references to experiments that refer
to the datasets is presented in Table 2.1.

Introduction Experiments
Picture Description Page

C
O
M
A
N

(S
im

u
la
ti
on

)

High DOF humanoid robot plat-
form. Experiments in this thesis are
restricted to point reaching tasks on
upper body including arms.

53

B
H
A

Pneumatically driven trunk like
robot. Main flexibility results from
3 sections, each consisting of 3 pneu-
matic chambers. No precise analyt-
ical model available due to contin-
uum kinematics.

96

A
ff
et
to

Pneumatically driven humanoid
robot child with parallel kinematic.
Dynamics model not available and
feedback control results in imprecise
control.

97

U
R
5

(S
im

u
la
ti
on

)

6-DOF industrial light-weight robot
manipulator. Dynamics simulation
based on Gazebo simulation envi-
ronment.

119

Tab. 2.1: Overview of robotic platforms.
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Introduction Experiments
Name Page Description Page

Toy
Data Barnin 34 CMA-ES Illustration 34

Sine 46 Reward Regularization 45
Hybrid Optimization:

Circle 74 Overshoot Scenario 76
Distortion Scenario 77
Failed Overshoot Scenario 79

Branch 74 Multiple Minima Scenario 78
Qubic 88 Transfer Learning 88

BHA Equilibrium 102 Controller Optimization 103
Interaction Mode 106

UR5
Simulation Equilibrium 122 Sensitivity Analysis 123

Affetto Equilibrium 122 Controller Optimization 108
Teaching Mode 59

Drumming 58 Skill Learning 59
Hybrid Optimization 82
Transfer Learning 59

Param.
Traj.

130 Skill Learning 135

Baby Toy 139 Skill Learning 144

COMAN Reaching 53 Skill Learning 56
Hybrid Optimization 81

Planar-
Arm
Simulation

Reaching 48 Reg. of Reward 48
Via-Point 51 Skill Learning 54

Hybrid Optimization 80
Param.
Traj.

130 Skill Learning 132

Tab. 2.2: Overview of designed datasets and scenarios for evaluation of the proposed
methods.



Chapter 3

Parameterized Skil ls for
Kinematic Representations

Chapter Overview This chapter presents an evaluation of the incremental skill
learning architecture for kinematic representations as proposed in Section 2.2. To
improve the generalization capabilities of the skill representation an additional opti-
mization constraint is added to the reward function. The constraint is called regu-
larization of the reward and its effect on the skill representation is evaluated on toy
data and on an inverse kinematics task of a simulated 10-DOF arm. Further, a boot-
strapping process is introduced which supports efficient skill learning. Optimization
of solutions for unsolved task instances is accelerated by considering the gradually
improving solutions that are proposed by the parameterized skill. Evaluation of the
bootstrapping process is performed in simulation and real robot experiments.

This Chapter is Partially Based on:

❼ Queißer, J. F., R. F. Reinhart, and J. J. Steil
2016. Incremental bootstrapping of parameterized motor skills. In IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), Pp. 223–229

❼ Schulz, A., J. F. Queißer, H. Ishihara, and M. Asada
2018. Transfer learning of complex motor skills on the humanoid robot affetto.
In Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob). IEEE

3.1 Task-Parameterized Skills

As discussed in Section 1.1, many motor skills have an intrinsic, low-dimensional
parameterization, e.g. reaching through a grid to different targets. Repeated policy
search for new parameterizations of such a skill is inefficient because the structure

39
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Figure 3.1: Bootstrapping framework, the optimizer is initialized (H3.2) by the
current estimate (gray) of the parameterized skill and performs an optimization in
the high-dimensional space of motion primitives (red). Each executed action (rollout)
is assessed by a pre-designed reward function.

of the skill variability is not exploited. This issue has been previously addressed by
parameterized skills that provide mappings from task parameters to policy parame-
ters, as discussed in Section 2.1. In this chapter, a bootstrapping technique for the
proposed skill learning framework (Section 2.2) is introduced which allows for an
efficient and incremental learning of parameterized skills. The approach combines
iterative learning with state-of-the-art black-box policy optimization. Further, it
is shown that the number of required rollouts can be reduced significantly in case
optimization of policies for novel tasks is necessary. Experimental evaluation is
based on the success rate of the actions that are generalized by the parameterized
skill for unseen task instances and the number of rollouts that are required for the
optimization of unsolved task instances.

The work presented in this chapter follows the idea to apply dedicated policy
optimization for unseen task parameterizations instead of collecting demonstrations
from a tutor as in [Silva et al., 2012; Baranes and Oudeyer, 2013; Silva et al., 2014].
In a similar way as [Baranes and Oudeyer, 2013], a generalization for unseen task
parameterizations results in a transfer of optimized results. An incremental algorithm
is investigated to establish parameterized skills that reuse previous experience to
successively improve the initialization of the optimization process, as previously
presented by the author in [Queißer et al., 2016]. Thereby, it is possible to incorporate
state-of-the-art optimization of the policy [Sigaud and Stulp, 2018], i.e. by CMA-ES,
in comparison to optimization of meta-parameters of policies [Kober et al., 2012]
and methods that rely on library-based approaches [Mülling et al., 2010].

In contrast to [Silva et al., 2012, 2014], the optimizer is initialized with the current
estimate of the iteratively trained skill which results on an efficient optimization of
policy parameters for unsolved task parameters, as outlined in Figure 3.1. Exper-
imental evaluation shows that this leads to a significant reduction of the number
of required rollouts during skill acquisition. This thesis refers to the process of
incremental skill acquisition as bootstrapping. It is systematically shown that the
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optimization process benefits from the initial condition proposed by the not yet fully
trained parameterized skill and how this benefit depends on the model complexity
of the learning algorithm. To cope with redundancy and to support the exploration
of manifolds with a reduced degree of nonlinearity, an additional cost term is intro-
duced for optimization. This cost term will be referred to as regularization of the
reward. In addition, ridge regression with regularization is applied for estimation of
the parameterized skill. The proposed algorithm for bootstrapping of parameterized
skills achieves a significant speed-up of the optimization processes for novel task
parameterizations.

The evaluation of the bootstrapping process of the proposed skill learning frame-
work is performed on a via-point task with a planar 10-DOF robot arm (see Fig-
ure 3.8). The scalability of the approach is demonstrated by bootstrapping a param-
eterized skill for a reaching task which is performed on the upper body kinematics of
the humanoid robot COMAN (see Figure 3.2) in end effector as well as in joint space
control and a drumming task on the humanoid robot platform Affetto. The work
introduced in this chapter implements the skill learning for kinematic representations
as presented in Section 2.2 and its contribution aims at the experimental verification
of the following hypotheses:

H3.1) The generalization capabilities of the parameterized skill benefit from an ad-
ditional optimization constraint that penalizes solutions that are far-off the
current (but faulty) estimate of the parameterized skill. (Section 3.3)

H3.2) Initialization of the optimizer with the current estimate of the parameter-
ized skill leads to a faster optimization and convergence of the skill learning.
(Section 3.4)

3.2 Bootstrapping of Parameterized Skills

The presented bootstrapping algorithm results in an efficient skill learning an of a
parameterized skill PS(τ ) by consolidation of optimized policy parameterizations θ
for given task parameterizations τ , according to the formalization in Section 2.2.
For this purpose, it is assumed that some sort of policy representation, e.g. a motion
primitive model, and policy search algorithm, e.g. REINFORCE [Williams, 1992]
or CMA-ES [Hansen, 2006], is available. The idea is to incrementally train the
parameterized skill PS(τ ) with task-policy parameter pairs (τ ,θ∗), where θ∗ are
optimized policy parameters obtained by executing the policy search algorithm for
task instance encoded as τ . The key step is that the current estimate PS(τ ) of policy
parameters is used as initial condition for policy optimization of new tasks τ . The
most important outcome of this procedure shows that policy search becomes very
efficient due to incrementally better initial conditions of the policy search, as stated
by hypothesis H3.2. Ultimately, PS(τ ) directly provides optimal policy parameters
and no further policy optimization needs to be conducted.
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Figure 3.2: Constrained reaching scenario with an upper body of a humanoid robot
and a grid-shaped obstacle. Generalized end effector trajectories for different reaching
targets that are retrieved from the iteratively trained parameterized skill are shown
by black lines.

The algorithm for the parameterized skill acquisition is outlined in Figure 3.3.
For each new task τ , the parameterized skill provides an initial policy parameter-
ization θPS = PS(τ) (line 8). After collecting a sufficient number of pairs (τ ,θ∗),
the proposed parameterization θPS can achieve satisfactory rewards such that no
further Policy Optimization (PO) by reinforcement learning is necessary. In case
the estimated policy parameters cannot yet solve the given task or further training
is desired, the optimization from initial condition PS(τ ) is initiated (line 10). To
ensure that only successful optimization results are used for training of the param-
eterized skill, an evaluation of the optimization process (e.g. reward ropt exceeds a
threshold rth) is performed (line 11). If the optimization was successful, the pair
(τ ,θ∗) with optimized policy parameters θ∗ is used for supervised learning of PS(τ )
(line 12). Finally, lines 14-18 serve evaluation purposes during incremental training.
The evaluation was performed on a predefined set of evaluation tasks in τev ∈ Tev
that are disjunct from the training samples.

3.2.1 Component Selection

The following presents a brief introduction of the chosen policy representation and
the algorithm for policy optimization and learning that are used throughout this
chapter:
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Parameterized
Skill (PS)

e.g. ELM 

Policy
e.g. DMP

Rollout Execution
on

Simulation or 
Real Robot

Optimizer
e.g. CMA-ES

Task

Dataflow Graph Algorithm

Reward

Function

Train/Test

Figure 3.3: Dataflow and pseudocode of the proposed bootstrapping algorithm.
The parameterized skill (PS) estimates a policy parameterization θPS. In case of
training, successive policy optimization (PO) by reinforcement learning results in an
update of the parameterized skill. The shading of the background highlights nested
processing loops of the system (from outer to inner): (1) Iteration over all tasks; (2)
Optimization of θ by the PO algorithm; (3) Execution and estimation of the reward
by iterating over all T timesteps of the trajectory p∗

t .

a) Selection of Policy Representation:
The proposed method does not rely on a specific type of policy representation.
Many methods for compact policy presentation have been proposed, e.g. based
on Gaussian Mixture Regression (GMR) [Günter et al., 2007] or Neural Im-
printed Vector Fields [Lemme et al., 2014], as discussed in Section 2.2.2. This
chapter refers to Dynamic Motion Primitives (DMP, [Ijspeert et al., 2013]),
because they are widely used in the field of motion generation. DMPs for
point-to-point motions are based on a dynamical point attractor system (Equa-
tion 2.23) that defines the output trajectory as well as velocity and acceleration
profiles. The canonical system is typically defined as ẋ = −αx or in this case
as a linear decay

ẋ←
{
−α if x ≥ α,
0 otherwise.

, (3.1)
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as in [Kulvicius et al., 2012]. The shape of the primitive is defined by a
disturbance fDMP, as defined in Equation 2.24, where a mixture of K equally
distributed Gaussians with fixed variances along the canonical system are used.

b) Selection of Policy Optimization Algorithm:
For optimization of DMP parameters θ∗ given a task τ , the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES, [Hansen, 2006]) is applied, as
introduced in Section 2.2.2. Stulp et al. [Stulp and Sigaud, 2013] have shown
that the black-box optimization by CMA-ES is very efficient and reliable
in combination with DMPs. In comparison to other reinforcement learning
methods like PI2 [Theodorou et al., 2010] or REINFORCE [Williams, 1992],
which evaluate the reward at each time step, CMA-ES operates solely on
the total reward of an action sequence. Stochastic optimization by CMA-ES
evaluates Nλ rollouts of policy parameters per generation, which are drawn
from a Gaussian distribution centered at the current policy parameter estimate.
For each generation the current estimate is updated by a weighted mean of all
Nλ rollouts. The final number of rollouts R required for optimization is given
by the number of generations times the number Nλ of rollouts per generation.
Detailed information regarding CMA-ES can be found in Section 2.2.2.

c) Selection of Learning Algorithm:
For learning of parameterized skills PS(τ ) an incremental variant of the Ex-
treme Learning Machine (ELM, [Huang et al., 2006]) was implemented. ELMs
are feed-forward neural networks with a single hidden layer, thus, the parame-
terized skill is defined as

PSi(τ ) =

NH∑

j=1

Wout
ij σ(

E∑

k=1

Winp
jk τk + bj) ∀i = 1, ..., F, (3.2)

with input dimensionality E, hidden layer size NH and output dimensionality
F . Hidden Layer size was set to NH = 50 for generalization in joint space and
NH = 20 in case of Cartesian end effector space. Regression is applied on a
random projection of the input Winp ∈ R

NH×E , a nonlinear transformation
σ(x) = (1 + e−x)−1 and a linear output transformation Wout ∈ R

F×NH that
can be updated by incremental least squares algorithms. The incremental
update scheme of the ELM was introduced as Online Sequential Extreme
Learning Machine (OSELM) [Liang et al., 2006] that incorporates the ability
to perform an additional regularization on the weights [Huynh and Won, 2009]
or exponential forgetting of previous samples [Zhao et al., 2012]. Since a small
number of training data can be expected for skill learning, regularization of the
network can help to prevent over-fitting and foster reasonable extrapolation. A
more detailed discussion about the learning method and parameter estimation
of the readout weights is presented in Section 2.2.2.
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3.3 Regularization of Reward
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Figure 3.4: Illustration of the expected effect of the regularization of the reward
for the sine-wave experiment. Regularized solutions (red) are expected to result
in a smoother memory representation compared to solutions of the non-regularized
reward (blue). Two successive learning steps after consolidation of three (a) and
four (b) training samples are shown. Range of valid solutions is indicated as gray
area. Note, regularization of Wout is assumed to be equal for both cases.

The design of the reward function for successful stochastic optimization of pa-
rameterized skills is one of the major challenges. The reward function has a direct
influence on the robot’s action in relation to the observable variables of the task.
In the case of robotic experiments in complex environments, expert knowledge and
careful design is a key element for classical reinforcement learning. To avoid explicit
modeling of reward functions, alternative approaches propose to learn reward func-
tions automatically or based on expert ratings, like [Daniel et al., 2015] for grasping
movements. Inverse reinforcement learning [Ng and Russell, 2000] and minimization
of surprise by temporal prediction [Kober and Peters, 2012] are further options to
model a target for optimization. The acquisition of parameterized skills relies on the
results of the optimized reward function. For the presented framework of this thesis,
the parameterized skill is trained with successful solutions gathered by optimization
and has to generalize to new task instances. For complex tasks, redundancy in the
motor space can be expected as many actions may result in valid task execution.
But a high variance of the optimized solutions used for training results in a degraded
generalization capability of the parameterized skill.

This section presents an argumentation and a method for a preference of solutions
that lie as close as possible to the current estimate of the parameterized skill, as
stated in hypothesis H3.1. A minimization of the distance of the current estimate
θ to the initialization of the policy search θPS = PS(τ ) restricts the variance and
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the space of successful solutions to be close to the initial estimate. Such solutions
result in less adaptation during training and therefore in a lower model complexity
of the fully trained parameterized skill. Related work that investigates the effects of
regularization in the context of CMA-ES can be found in [Dehio et al., 2016] and
shows benefits of an additional objective that minimizes torques for the optimization
of mixtures of torque controllers.

By selecting a model with a lower complexity, better generalization capabilities
for real world tasks can be expected in the spirit of William of Ockham, known as
Ockham’s Razor [Jefferys and Berger, 1992].

For the proposed skill learning in comparison to a classical learning problem,
the optimizer iteratively selects the training set by a maximization of the reward
function. The proposed additional optimization constraint ||θ−θPS|| prefers solutions
close to the current estimate, the following experiments show that this introduces a
heuristic to select incremental training samples in a way, such that the variance of
the estimated training set is reduced. In the following, this optimization constraint
will be referred to as regularization of reward. Note, that the term regularization
differs in this context from the common definition of regularization in the context
of machine learning as in [Girosi et al., 1995]. But by adding a further term to the
reward function, an additional bias is introduced. For the following experiments of
the proposed skill learning architecture, the weighting factor for the regularization
of the reward is selected in a way that the normalization is approximately one
magnitude smaller than the goal of the main objective. By doing so, the optimizer
minimizes the distance to the current estimate without a strong disturbance of the
original goal.

Experiments Targeting the Model Complexity To evaluate the effects of
the regularization of the reward function, an experiment with a simplified toy data
set was conducted. The goal for the memory is to learn a parameterized policy
represented as a 1D function given by PS∗(τ) = sin(40 ·τ)±ω. Due to the parameter
γ, multiple solutions for a given parameterization of PS∗ can be found. The memory
was randomly initialized, in case of the first experimental condition, one random
configuration τ and its solution were selected from PS∗ for each presented training
sample. For the second condition that simulates the regularization of the reward
function, the memory is trained with solutions of the optimization that are limited
to the point with the minimal distance to the current estimate of the memory.
Training was performed iteratively and for each training sample, the parameterized
skill provided the current estimate based on the previously consolidated training
samples. Figure 3.4 illustrates the expected effect of the regularization of the reward
function. Figure 3.4a and Figure 3.4b show two successive training states of the
memories. The black cross indicates the first two training samples presented to the
memories. The current task parameterization is highlighted by dashed vertical red
line, the selected training samples are indicated by a colored circle. Depending on
the optimization strategy, the non-regularized reward function can end up at any
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Figure 3.5: Evaluation of the regularization of the reward for the sine-wave exper-
iment. Evaluation is performed for a set of tube sizes and regularization γ of the
readout weights by ridge regression. The upper row shows ||Wout||, the norms of the
readout weights. The second row evaluates the mean absolute error of the estimated
function approximation with respect to the tube of valid solutions. The columns refer
to the experimental conditions, the first column (a+c) shows results of randomly
selected training samples in the tube and the second column (b+d) shows results in
case sampling in the tube with the lowest distance to the estimate of the learner is
performed.

parameterization of the output function (e.g. blue circle), that fulfills the task. The
tube given by ω represents (for this simplified 1D case) various solutions of the
optimization in a high-dimensional state space of the robot. In the condition of
the regularization of the reward, the optimizer prefers a solution (red circle) that
is as close as possible to the previous estimate (gray line), as shown in Figure 3.4a.
For evaluation, the regularization of the learner γ as well as the size ω of the range
of acceptable solutions was modified. Due to the additional regularization of the
readout weights, the degree of nonlinearity of the parameterized skill is reduced.
This can be seen for the fourth presented training sample in Figure 3.4b. In the
case of the regularization of the reward, the optimizer prefers solutions close to the
estimate of the parameterized skill and selects a training set with a lowered degree
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of nonlinearity. Whereas, the optimizer can estimate a random solution in the case
of no regularization of the reward function, which can lead to a higher nonlinearity
of the presented training samples to the memory. The results of the experiment can
be seen in Figure 3.5. The memory was trained with Ntrain = 100 randomly selected
samples. For memory implementation, an online sequential ELM with regularization,
as introduced in Section 2.2.2, with NH = 300 hidden nodes was utilized. In the first
case (Figure 3.5a+c), learning was performed without selecting the closest solution to
the current estimate. Whether the second case (Figure 3.5b+d) refers to the closest
solution to the current estimate of the learner for training. In case the learners
underfit the estimation due to a high regularization (γ = 0.1) of the output weights
Wout, both learning methods achieve similar performance. For regularizations of
10−5 to 10−7 the mean absolute error reaches a level below 10−3 and learning was
successful for both methods. In case of a low regularization of the readout weights,
the training without regularization of the reward suffers from overfitting for wide
tube sizes (ω ≥ 0.1), as error levels reach 1.99 and more. As illustrated in Figure 3.4,
selecting randomly solutions in an interval of valid solutions induces a higher variance
of the training data which supports overfitting. In case of the solutions obtained
by regularization of the reward, smoother function approximation can be observed
due to the selection of solutions close to the parameterized skill. The norms of Wout

support this observation, in particular in the case of overfitting: the resulting readout
weights for the regularized reward function are lower than those for the learner that
was trained with random solutions.

Evaluation for 10-DOF Planar Arm The second experiment that investigates
the relationship between the regularization of the reward for learning of parame-
terized skills was performed on a simulation of the kinematics of a 10-DOF planar
robot arm. This experiment investigates the effect of the regularization of the re-
ward on the variance of found solutions as well as as the effect on the generalization
capabilities the parameterized skill. For simplification, only static postures of the
robot are evaluated, i.e. πτ = τ . The task is to estimate a parameterized skill that
represents the inverse kinematics of the robot’s end effector. Due to the high redun-
dancy of the robot, multiple optimal solutions for one goal positions exist. The home
configuration (simulation of θPS) of the robot simulation is shown in Figure 3.6a.
Optimization for one of the goal positions (marked by red cross) is performed by
CMA-ES in joint space. The optimization is initialized by the home configuration
with an additional disturbance. The reward is given by:

R(θ,v) = − ‖pθ − v‖2︸ ︷︷ ︸
Target Point (a)

− α‖θPS − θ‖︸ ︷︷ ︸
Regularization of

Reward (b)

, (3.3)

with end effector position pθ for joint configuration θ. The weighting factor α ∈
{0, 0.001, 0.01, 0.1} varies the influence of the regularization of the reward during
optimization. As before, the online sequential ELM with regularization, as proposed
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Figure 3.6: Regularization of reward, 10-DOF planar arm experiment. Home config-
uration (a), solutions with a regularization of the reward of zero (b), 10−3 (c) and
10−2 (d).

in [Huynh and Won, 2011], was utilized with N = 30 and a fixed regularization for
ridge regression of γ = 10−5. The Euclidean distance to the initial configuration of
the robot (shown in Figure 3.6a) is minimized. Figure 3.6b-c shows ten solutions
for one selected goal position with different regularizations of the reward. It can bee
seen that the variance of the solutions gets lower, the higher the weighting factor α is
selected. In the case of a strong regularization of α = 10−2, only one selected solution
can be seen due to the high similarity of the overlapping solutions. Additionally, it
can be seen that an increasing α leads to a visually more similar appearance to the
initial posture due to the representation in joint space, Figure 3.6b-d.

A detailed evaluation can be found in Figure 3.7, it shows the evaluation of
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the generalization performance of a parameterized skill trained with the solutions
of the optimization process. The first part, Figure 3.7a, shows the evaluation of
the end effector accuracy for unseen target positions. The evaluation of the norms
||Wout|| of the learner after training are shown in Figure 3.7b. It can be seen that
a moderate regularization leads to an improved performance of the generalization
capabilities as well as reduced overall norms of the output weights. In case the
regularization of the reward function is too strong, the memory suffers from a bias
of the optimized solutions and cannot decrease below a mean error rate of 0.6 as in
the case for α = 0.1 and Ntr = 8. Table 3.1 shows a summary of the properties of
the learned models for Ntr = 8 training samples in relation to the strength of the
regularization of the reward function. The higher the regularization, the lower the
variance of the found solutions of the optimization process. At the same time, a bias
by the additional optimization constraint, Equation 3.3b, is introduced as it perturbs
the main objective of optimization. The generalization performance benefits from a
moderate regularization factor, i.e. α = 10−1, a compromise between a low bias for
optimization and an improved representation of the parameterized skill.
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Figure 3.7: Evaluation of the regularization of reward on the 10-DOF planar arm
scenario. Mean error (a) and norm of readout weights ||Wout|| (b) in relation to
regularization strength α and the number of presented training samples are shown.

3.4 Experimental Evaluation of Bootstrapping

In the following, an evaluation the applicability of the proposed bootstrapping al-
gorithm can be found. Therefore, two scenarios have been designed to assess the
bootstrapping of parameterized skills according to the algorithm from Section 3.2
and hypothesis H3.2.
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Reg. of
Reward

Training Data Generalization
Bias (Error) Variance Error Norm of Wout

0 0.0006 1.6569 0.0555 398.73
10−3 0.0004 0.7706 0.0569 276.13
10−2 0.0007 0.2068 0.0325 110.31
10−1 0.0005 0.0246 0.0268 23.86
10−0 0.1600 0.0000 0.0609 12.86

Tab. 3.1: Comparison of the effect of the regularization of the reward. With an
increasing regularization of the reward (α), the error on the training data increases
and the variance of the training data decreases. The error on the test set for unseen
postures reaches a minimum for an intermediate regularization of α = 10−2 and the
norm of the readout weights of the learner decrease with an increasing α.

3.4.1 10-DOF Planar Arm Via-Point Task

The goal is to optimize the parameters of a DMP policy to generate joint angle
trajectories such that the end effector of the actuator passes through a via-point
in task space at time step T

2 of the movement with duration T . The experimental
evaluation was performed on the kinematics of a 10-DOF planar arm. Motions start
at initial configuration qstart = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)⊺ and end at configuration
qend = (π2 , 0, 0, 0, 0, 0, 0, 0, 0, 0)

⊺. The task parameterization τ is given by the 2D

via-point position τ = (vx, vy)
⊤ of the end effector at timestep T

2 .

Since there exists no unique mapping between task and policy parameter space
in this example, infinite action parameterizations can be found that sufficiently solve
a given task (e.g. exceed a reward threshold). The reward function was extended
by a regularization of the reward to reduce ambiguities in the training data for
parameterized skill learning. This regularization of the reward punishes the deviation
of solutions of the optimizer from the initial parameters θPS = PS(τ), as discussed
in Section 3.3. Further, the reward function prefers a low jerk of the end effector
trajectory. The initial and final arm configurations are shown in Figure 3.8a. Initial
policy parameters θinit have been set to the minimum jerk trajectory [Flash and
Hogan, 1984] in joint angle space. The overall reward is given by:

R(θ,v) = −α1

T∑

t=2

(
∂3p1,t
∂t3

)2
+
(
∂3p2,t
∂t3

)2

︸ ︷︷ ︸
Jerk (a)

−α2‖pT/2 − vp‖2︸ ︷︷ ︸
Via Point (b)

− α3‖θPS − θ‖
︸ ︷︷ ︸
Regularization (c)

(3.4)

The reward depends on the DMP parameters θ that result in a 10 dimensional
joint trajectory transformed by the kinematics of the robot arm to the end effector
trajectory pt. The jerk is based on the third derivative of the end effector trajectory
pt as proposed in [Fligge et al., 2012] and is represented as one objective of the reward
function Equation 3.4a. In addition, the reward function punishes the distance to
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the desired via-point vp = (vx, vy) of the end effector trajectory (Equation 3.4b) and
the regularization term (Equation 3.4c).
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Figure 3.8: (a) Experimental setup including start/end configuration as well as an
optimized solution for one task. (b) Comparison of the generalization of PS(τ )
to unseen tasks by linear regression, KNN and ELM with regularization γ. The
evaluation shows the mean reward and confidence interval for all test samples τev.
(c) Forgetting factor evaluation: Mean reward on test samples for θPS after boot-
strapping depending on regularization γ and forgetting factor λ. At the bottom
(d)-(f), three exemplary test cases for τ are shown. They show the content of the
learned parameterized skill in relation to the number of training samples. The gray
scale indicates the number of consolidated training samples.

The coefficients αi are fixed for all experiments to α = (102, 15, 10−3)⊺. The
selection of α results in a magnitude of the regularization of ca. 10% of the overall
reward of an optimized task, as motivated in Section 3.3. For the training phase
Ntr = 15 random tasks τ have been selected, i.e. via-point positions, drawn from
the green target plane in Figure 3.8a. Evaluation was done on a fixed test set τev
including Nte = 16 via-points arranged in a grid on the target plane. For each of the
10 joints of the robot were driven by a DMP with K = 6 basis functions, resulting
in a F = 60 dimensional policy parameterization θ. Figure 3.8d-3.8f shows solutions
for three exemplary tasks τ from the test set. The gray scale of the end effector
trajectories refers to the number of consolidated training samples and shows that the
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Figure 3.9: (a)-(c) show three exemplary dimensions of the parameterized skill PS(τ )
output in relation to the task parameterization. Task parameterization is the 2D
position of the via-point, i.e. τ = (vx, vy)

⊺.

parameterized skill improves as more optimized samples have been used for training.
In addition an evaluation of the overall performance that can be achieved by the
ELM learner in comparison to KNN Regression and Linear Regression as well as the
effect of the regularization of the readout weights was performed. Those results are
shown in Figure 3.8b and reveal that the ELM, a nonlinear, global learner for PS(τ ),
is able to gain the highest rewards on the test set.

The effect of an exponential forgetting of training data can be seen in Figure 3.8c.
The forgetting factor is implemented by weighted linear regression of the readout
weights of the learner of PS(τ ). By forgetting earlier training samples (λ < 1), higher
rewards can be reached after bootstrapping. As the parameterized skill provides a
better initialization for the policy search, better solutions can be found since a better
initialization reduces the risk of getting stuck in a local minimum. Therefore it is
beneficial to forget earlier solutions in favor of new policy search results. In case not
all tasks can be solved by policy search due to local minima (as in Section 3.4.2), an
improved initial guess PS(τ ) can affect the rate of solvable tasks as well.

Figure 3.10a shows the mean initial reward for all tasks τev in the test set for
the estimated policy parameters PS(τ ) as a function of the number of consolidated
training samples. Figure 3.10b shows that policy optimization benefits from the
improved initial policy parameters PS(τ ) by reducing the number of required rollouts
to solve novel tasks (exceed a certain reward threshold). A significant reduction of
the required number of rollouts compared to the initialization with the first training
sample θinit, i.e. baseline, can be seen.

3.4.2 Reaching Through a Grid

The scenario shows the scalability of the proposed approach to more complex tasks.
The goal is to reach for variable positions behind a grid-shaped obstacle while avoiding
collisions of the arm with the grid as well as self-collisions. The experiments are
performed in simulation of the humanoid robot COMAN [Colasanto et al., 2012] as
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Figure 3.10: Mean reward of the initial guess θPS = PS(τ ) of the parameterized skill
in relation to the number of presented training samples (a) and the mean number of
rollouts that are necessary to solve (reward exceeds a threshold) the test tasks (b).
Results and confidence interval are based on ten repeated experiments.

shown in Figure 3.2. 7-DOF of the upper body are controlled including waist, chest
and right arm joints. For the first part of the experiment, motions are represented
in Cartesian space utilizing 3 DMPs with K = 5 basis functions (as introduced
in Section 3.2.1), resulting in a F = 15 dimensional optimization problem. The
respective DMPs are executed yielding Cartesian end effector trajectories p∗

t . The
subset of valid and executable end effector trajectories pr,t in Cartesian space is
given by the kinematics as well as the reachability (e.g. joint limits) of the robot
joints. For each time step t of the desired end effector trajectory p∗

t , an inverse
Jacobian controller tries to find a configuration of the robot that complies with p∗

t

and maximizes the distance to all obstacles in the null-space of the manipulator
Jacobian [Liegeois, 1977]:

q̇ = J†
(
p∗
t − pr,t

)
+ α

(
I− J†J

)
Z, with (3.5)
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Z =

L∑

l=1

−J⊺

p,l · dmin,l. (3.6)

The distance p∗
t − pr,t represents the distance between the desired end effector

trajectory p∗
t and the trajectory pr,t reached by the robot. The term Z maximizes

the distances ||dmin,l|| of all L links to the grid obstacle in the null-space I − J†J .
The maximization of the distance to the closest point can be achieved by following
the direction −dmin,l in joint space by the point Jacobian J

⊺

p,l of the closest point
to the obstacle. For policy optimization, the reward function is given by

R(θ,vp) = −α1

T∑

t=2

‖p∗
t − p∗

t−1‖
︸ ︷︷ ︸
Length of Trajecory (a)

−

α2

T∑

t=1

‖p∗
t − pr,t‖

︸ ︷︷ ︸
Reproducibility (b)

+ α3

T∑

t=1

rd,t

︸ ︷︷ ︸
Dist. to Obstacles (c)

− α4‖θPS − θ‖
︸ ︷︷ ︸
Regularization (d)

, (3.7)

with the length T of the trajectory. The reward in Equation 3.7 is a weighted
sum of four terms with weighting factors αi: (1) The length of the desired end
effector trajectory pd,t that is defined by policy parameter θ; (2) In addition to the
punishment of long trajectories (Equation 3.7a), the reward takes the reproducibility
of the trajectories into account. Therefore, Equation 3.7b punishes deviations of
the reached end effector position pr,t from the desired end effector position p∗

t ; (3)
The distance maximization of all links to the grid obstacle rd,t is considered in
Equation 3.7c. The optimization criterion representing the maximization of the
distance to the grid-obstacle rd,t is given by

rd,t = −
L∑

l=1

min
(
0, ‖dmin,l‖ − dB

)2
. (3.8)

It represents a quadratic relationship to the minimum distances dmin,l over all L
links to all obstacles in the scene in case the distance falls below a given threshold
dB. This criterion refers to the the work presented by Toussaint et al. [Toussaint
and Goerick, 2007] where it was used in the context of null-space constraints for
humanoid robot movement generation; (4) An additional normalization for small
policy parameterizations as given by Equation 3.7d.

The second part of the experiment uses DMPs in joint space to represent the
complete motion of the robot. Therefore, the policy parameterization has to repre-
sent the maximization of the distance to the grid shaped obstacle implicitly since
no additional inverse Jacobian controller is used. This experiment employs seven
DMPs with K = 15 basis functions (as in Equation 2.24) that generate joint space
trajectories, resulting in a F = 105 dimensional optimization problem. For policy
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Figure 3.11: Results of the experiments in Cartesian space. Mean reward of the
initial guess θPS = PS(τ ) of the parameterized skill in relation to the number of
presented training samples (a) and the mean number of rollouts that are necessary
to solve selected test tasks (reward exceeds a threshold) (b). The dashed line in (b)
shows the mean rate of solvable task in the test set. Results and confidence intervals
are based on ten repeated experiments.

optimization, the reward function is similar to the one used for the end effector tra-
jectories Equation 3.7. The policy parameters are decoded by DMPs to desired joint
space trajectories p∗

t . As previously introduced, Equation 3.7(b) reflects physical
constraints of the robot like joint limits. Initial configuration θinit is set to joint
angle trajectories that allow the end effector to follow a straight line from start to
goal position.

Results

An evaluation of the bootstrapping of the parameterized skill was performed, as
outlined in Figure 3.3. For training, Ntrain = 20 random target positions on the
target plane in front of the robot have been selected. For evaluation, a fixed reg-
ular grid for point sampling of Ntest = 39 positions on the target plane had been
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Figure 3.12: Results of the experiments in joint space. Mean reward of the initial
guess θPS = PS(τ ) of the parameterized skill in relation to the number of presented
training samples (a) and the mean number of rollouts that are necessary to solve
selected test tasks (reward exceeds a threshold) (b). The dashed line in (b) shows
the mean rate of solvable task in the test set. Results and confidence intervals are
based on ten repeated experiments.

created. Figure 3.11 reveals that the reward of the initial guess θPS = PS(τ ) of
the parameterized skill increases with the number of presented training samples. In
comparison to the previous experiment in Section 3.4.1, the optimization algorithm
does not always succeed to find a solution for all tasks of the test set. Figure 3.11(b)
shows an increasing success rate in relation to the number of consolidated samples
and thereby the reward of the initial parameters θPS of the policy search. This
indicates that increasingly better initial conditions PS(τ ) for policy optimization
reduce the risk to get stuck in local minima during optimization. In terms of number
of rollouts that are required to fulfill a new task, similar results as in the 10-DOF
arm experiment can be observed: the number of required rollouts necessary for task
fulfillment decreases the more successfully solved task instances have been presented
to the parameterized skill as training data. This results in a bootstrapping and
acceleration of the parameterized skill learning, as stated by H3.2. Although the
experiments in cartesian space utilize a joint controller that maximizes the distances
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automatically, similar performance can be reached in joint space, except of a slightly
lower success rate.

3.4.3 Affetto Drumming Scenario
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Figure 3.13: Top-down view of the experimental setup of the drumming scenario.
Extraction of the low-dimensional task parameterization and the relation to drum
position can be seen. Bottom right: training and test set distribution of task
parameterization τ .

The following experiment aims at the evaluation of the bootstrapping process
for complex robot skills on a real robot system. The upper body of the humanoid
robot Affetto has to play a drum placed on a table in front of the robot, as shown
in Figure 3.13. For training, the robot is able to observe the drum position directly
which results in the task parameterization. Training samples for the parameterized
skill are gathered by kinesthetic teaching. Starting from a fixed home position, a
human demonstrator moves the arm of the robot in such a way that the hand of
the robot hits the drum and a drumming sound is generated. Evaluation of the
performance of the parameterized skill is performed by the estimation of the success
rate for generalized drumming actions at previously unseen positions of the drum.

The camera attached to the upper body of the robot performs a simple visual
search and blob detection of the marker attached to the drum, giving the horizontal
ximg ∈ [0, 1] and vertical yimg ∈ [0, 1] position of the center, normalized for drum
positions in the workspace. To estimate the task parameterization, the robot moves
to a fixed starting configuration qstart (shown in Figure 3.14) and centers the marker
of the drum in the image of the camera by only rotating the upper body orientation
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by joint q3. The joint configuration (see Figure 5.3) of the robot and hardware details
are discussed in Section 5.2. The task parameterization τ = (yimg, q

∗
3)

⊤ includes
the final rotation of the upper body q∗3 as well as the height of the marker in the
visual image of the camera, resulting in a 2D coordinate that represents the position
of the drum relative to the robot. The estimation of the task parameterization is
illustrated in Figure 3.13.

Robot Platform The experiments are carried out on the humanoid robot platform
Affetto, a pneumatically-actuated highly compliant robot with a 22-DOF upper
body structure. The experiments were performed on 8-DOF, including 3-DOF of the
abdomen and the right arm and an unactuated soft rubber hand. Policies define joint
angle trajectories that are forwarded to the low-level joint controller. To enhance
the quality of the tracking performance, the implementation refers to the PIDF
controller [Todorov et al., 2010] for the pneumatically driven joints of the robot and
optimize the controller parameter by automatic optimization and hand tuning on a
test trajectory that includes sine waves and step responses. According to [Todorov
et al., 2010], the valve opening is controlled by

v+j = kF (u
PID
j − pPDj ) (3.9)

and vise versa v−j = −v+j for the antagonistic chamber. Further information regarding
the robot platform, the low-level control and parameter estimation can be found in
Section 5.3.2.

Kinesthetic Teaching Mode To initiate the teaching mode, the joint PIDF
controller are commanded to move the joints of the robot to a predefined initial
posture qstart. After convergence of the robot to the initial posture, the control
signals uPIDj of the equilibrium states of the joints j are collected as ueqj and used as
an offset for the feedback controller, defined as

v+j = kF (u
PID
j + ueqj − pPDj ). (3.10)

An equilibrium state of the robot is defined as the state of the robot in which
velocity and acceleration are zero, see Section 5.3 for further details. Additionally,
the integration of errors is deactivated by setting the integral component I of the
controller to zero. It can be expected that ueqj reflects the integral part of the
controller as the proportional and derivative components are zero in equilibrium
states. A deflection of the robot joint configuration qstart during the demonstration
phase results in a counter force given by the feedback controller’s proportional gains
that aim to move the robot back to its initial configuration. Each trajectory recording
is run for 3 seconds and the resulting trajectory is encoded into θ by the DMPs.

Learning to Drum

The parameterized skill was trained with a collection of successful human demon-
strations for Ntr = 25 drum positions randomly distributed in the workspace of the
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(a) (b) (c)

Figure 3.14: Snapshots of generalized drumming action. Starting configuration qstart

is shown in the leftmost picture (a).

robot. Exemplary snapshots for different drum positions from the ego perspective
of the robot are shown in Section A.4. In comparison to the previously presented
experimental evaluations, no further policy optimization is performed. A demonstra-
tion can be considered successful in case the execution of the recorded trajectory
by the robot results in a drumming sound. Kinesthetic teaching results in the
training set D = {(τ k,θk)|k = 1, . . . , Ntr}, which is presented in a random order
for an incremental update of the parameterized skill, according to the algorithm
presented in Section 3.2. All demonstrations are encoded as a K = 15 dimen-
sional DMP for each of the NDOF = 8-DOF of the robot, resulting in a F = 120
dimensional parameterization of θ. The reward function is defined based on a dis-
tance measure of the recorded audio spectrum to the prototypes, which have been
gathered by the execution of training demonstrations. This allows an objective
evaluation of the success rate of generalization to unseen drum positions. The sim-

Prototype Recording

Similarity Measure

Figure 3.15: Visualization of the similarity measure of spectrograms f̄ ⊛ f̄∗i .

ilarity measure of a recorded spectrum to one prototype is given by the operator
⊛ : Rm×ts × R

m×tp → R, (S, P ) 7→ d = S ⊛ P for input spectrum S, prototype P ,
m extracted frequency bands and time-steps tp ≥ tt, defined as

S⊛P
def
= min

0≤o≤ts−tp




m∑

i=1

tp∑

j=1

(
s(i, j + o)− p(i, j)

)2



1/2

, (3.11)
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as visualized in Figure 3.15. The reward function for a recorded spectrum f̄(ω, t) is
given by

R(f̄) = max
1≤i≤Ntr

‖f̄∗i ‖ − f̄ ⊛ f̄∗i
‖f̄∗i ‖

, (3.12)

with ‖f̄∗i ‖ acting as normalization of different prototype activation strengths to a
maximum reachable reward of one.

Hidden layer size of the ELM was set to NH = 50 with a regularization γ = 10−4

for online learning, see Section 2.2.2 for details. Generalization performance was
estimated in terms of success rate on a fixed set of Nte = 10 positions of the drum
that are not part of the training set, as shown in Figure 3.13.

The success rate is estimated by a simple threshold operation on the reward func-
tion and counted as successful if R(f̄) > 0.15, defined by hand tuning. Figure 3.16
shows the results of the evaluation, it can be seen that the Affetto robot acquires
the skill of drumming for all evaluation positions after presentation of all 25 human
demonstrations.
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Figure 3.16: Results of the Affetto drumming experiment. Success rate in relation
to the number of presented training samples for unseen task instances. Confidence
estimate is based on Clopper-Pearson interval.

3.5 Discussion

This chapter introduced a bootstrapping algorithm to incrementally train parame-
terized skills. Since the optimization of actions has to be performed in real-world
scenarios, generation of unseen skills from a small number of training samples is
necessary. For that reason, smoothness of the mappings between task and policy
parameter spaces can be assumed. The results indicate that the DMP space is well
suited for parameterized robot trajectory generation and a smooth mapping between
task parameterization and DMP space is a valid assumption. The experimental
results verified that the incremental learning of parameterized skills is possible and
that the incremental update can significantly speed up policy search for novel task
parameterizations, as stated by hypothesis H3.2. Moreover, it was shown that ini-
tialization of the optimization process with successively improved solutions (i.e. with
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higher rewards) extends also the number of successfully solved tasks (i.e. exceed a
reward threshold).

Additional cost terms for the optimization have been proposed to support con-
sistent training samples without ambiguities caused by the redundancy of the task
solutions, which were introduced as regularization of the reward. The experimental
evaluation supports the claims of hypothesis H3.1 as the regularization of the reward
resulted in an improved generalization capability, a lower degree of nonlinearity, and
decreased output weights of the parameterized skill.



Chapter 4

Eff ic ient Exploration of
Parameterized Skil ls

Chapter Overview The first part of this chapter presents a novel hybrid opti-
mization method that combines a fast coarse optimization on a manifold of policy
parameters with a fine grained parameter search in the unrestricted space of actions.
The proposed algorithm reduces the number of required rollouts for adaptation to new
task conditions. The application in illustrative toy scenarios, for a 10-DOF planar
arm and a humanoid robot point reaching task, validate the approach.

The second part of this chapter presents a method to reuse knowledge obtained in
one situation, in a new related one. This process is known in literature as transfer
learning. In order to address such domain adaptation problems, a novel transfer
learning algorithm is proposed that maps data from the new domain in such a way
that the original model is applicable again. The method is demonstrated on an
artificial data set as well as in the robot setting. As a case study, a drumming
scenario with the humanoid robot child Affetto is presented in which the environment
changes such that the scenario can only be observed through a mirror.

This Chapter is Partially Based on:

❼ Queißer, J. F., R. F. Reinhart, and J. J. Steil
2016. Incremental bootstrapping of parameterized motor skills. In IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), Pp. 223–229

❼ Queißer, J. F. and J. J. Steil
2018. Bootstrapping of parameterized skills through hybrid optimization in
task and policy spaces. Frontiers in Robotics and AI, 5(49)

❼ Schulz, A., J. F. Queißer, H. Ishihara, and M. Asada
2018. Transfer learning of complex motor skills on the humanoid robot affetto.
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Epigenetic Robotics (ICDL-EpiRob). IEEE

4.1 Optimization in Task Related Manifolds

As discussed in Chapter 1, modern robotic applications make high demands on
adaptation of actions with respect to variance in a given task. Although autonomous
robots can perform particularly well at highly specific tasks, learning each task
in isolation is a very costly process, not only in terms of time but also in terms of
hardware wearout and energy usage. Hence, robotic systems need to be able to adapt
quickly to new situations in order to be useful in everyday tasks. In this chapter,
a skill learning architecture as proposed in Chapter 3 is assumed: generalization of
adapted actions for changing task parameterizations is performed by a parameterized
skill, which is encoded as a meta-learner that provides parameters for task-specific
dynamic motion primitives. In comparison to the method of the previous chapter
that deals with the initialization of the optimization process by the estimate of the
parameterized skill, a more efficient optimization process for unsolved task instances
is investigated.

The contribution of this chapter is twofold. The first contribution that is pre-
sented aims at the introduction of a hybrid optimization method that combines a fast
coarse optimization on a manifold of policy parameters with a fine grained parameter
search in the unrestricted space of actions. The second contribution investigates the
reuse of previous knowledge in case of a changed sensory perception. One way to
address this issue is transfer learning, which aims at reusing knowledge obtained in
one situation, in a new related one. Evaluation is performed on a drumming scenario
for the child robot Affetto. After an initial learning of the skill, the robot is not able
to directly observe the drum as before and the robot has to deal with the reflection
of the drum in a mirror. In order to address such domain adaptation problems, this
chapter introduces a novel transfer learning algorithm that aims at mapping data
from the new domain in such a way that the original model is applicable again. The
evaluation metric for the proposed algorithm is the number of required rollouts for
adaptation to new task conditions. A demonstration of skill transfer is performed
on an artificial data set as well as in the robot setting.

The work introduced in this chapter extends the previous method [Queißer et al.,
2016] as presented in Chapter 3 and its contribution aims at the experimental
verification of the following hypotheses:

H4.1) Optimization in the manifold of previous solutions leads to a reduction of the
search space and thereby to a more efficient acquisition of the parameterized
skill. (Section 4.2)

H4.2) Skill transfer of an already learned skill allows a more efficient adaptation
to changing task condition in comparison of relearning the skill from scratch.
(Section 4.3)
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4.2 Hybrid Optimization

Based on previous experiments, the presented work deliberates the utilization of the
parameterized skill as a mapping from the low-dimensional manifold of task-space
to the high-dimensional search space of policy parameters and vice versa, as stated
by hypothesis H4.1. It is assumed that by performing a policy optimization on this
low-dimensional manifold, a further speed-up, in terms of number of rollouts, during
the optimization process can be observed. But to cope with the very likely case
that no sufficient solution for the required task can be found in the manifold of the
parameterized skill, the proposed algorithm performs a hybrid search in both spaces.

Therefore, a novel hybrid optimization algorithm is proposed that samples rollouts
in both spaces and performs an estimation of a combined parameter update, as
outlined in Figure 4.1.
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Skill Learning:

Hybrid Space
Opimizer

Reward
Function

Current Task 

Instance Enconding

Feedback

High Dim.

Searchspace

Motion
Primitive

PS

Generalization

ExecutionOptimization

Low Dim.

Searchspace

Figure 4.1: Hybrid optimization framework. The optimizer is initialized (H3.2) by
the current estimate (gray) of the parameterized skill PS and performs a hybrid
optimization (H4.1) in the low-dimensional manifold of previous solutions (blue)
and the high-dimensional space of motion primitives (red).

The evaluation of the hybrid search of the proposed algorithm is performed on the
previously introduced via-point task on a planar 10-DOF robot arm (see Figure 3.9).

The scalability of the approach is demonstrated by optimization of a parame-
terized skill for a reaching task that incorporates the upper body kinematics of the
humanoid robot COMAN (see Figure 3.2) in end effector as well as joint space control.
The drumming scenario introduced in Section 3.4.3 demonstrates aplicability of the
hybrid optimization for complex real robotic scenarios. Additionally, the properties
of the proposed optimization in hybrid spaces are elaborated on toy examples.

Related Work Previous work of Koutnik et al. [2010]; Fabisch et al. [2013] has
already demonstrated that a compression of the parameter space by use of multi
layer perceptrons (MLPs) leads to an acceleration of optimization for reinforcement
tasks. Reduction of the search spaces by manifolds for value function approxima-
tion [Glaubius and D.Smart, 2005] and abstraction of the whole state-space into
sub areas for terrain navigation [Glaubius et al., 2005] can be beneficial in case of
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reinforcement learning. Constrained optimization problems have been tackled by the
reduction of state-space evaluations and a focus on the feasible space of parameters
[Ullah et al., 2008]. It was demonstrated that the reduction of the number of avail-
able bio-mechanical DOF helps to stabilize the interplay between environmental and
neural dynamics for robotic tasks [Lungarella and Berthouze, 2002]. Dimensionality
reduction by freezing or synchronization of joints allows for faster skill acquisition,
as shown by Kawai et al. [2012]. Further related work has elaborated the intrinsic
dimensionality of human movements and demonstrated that dimension reduction is
beneficial for reinforcement learning on humanoid robot platforms [Colome et al.,
2014].

Hybrid Optimization It is assumed that previously optimized solutions (τ ,θ∗)
represent the variability in the task domain and are consolidated in the parameterized
skill. Therefore, the proposed method reconsiders the parameterized skill as an
embedding femb of a nonlinear manifold of task relevant actions within the full
policy space fPS : R

E → R
F , θemb 7→ fPS = PS(θemb). Further, it is expected that

solutions for unseen tasks are located close to the manifold of the parameterized
skill, since the relation between a higher number of consolidated samples and a
higher initial reward can be observed, as shown in Figure 3.9 and Figure 3.11. Due
to the lower dimensionality of the task parameterization compared to the policy
parameterization, policy optimization is performed in the input space of fPS.

It can be expected that for points on fPS and their local neighborhood a invert-
ible map, i.e. a chart of the manifold in the policy space, exists. But on a global
scale, it can be expected that the mapping between the task space and the policy
space is not invertible. Different task parameterizations τ may require the same
policy parameterization θ and the mapping could not be differentiable due to e.g.
joint limits. Previous work related to the proposed method for dimensionality re-
duction for policy optimization includes primitive based motion generation by PCA
compression [Park and Jo, 2004], lower dimensional primitives that encode differ-
ences between trajectories [Stulp et al., 2009] and further library based approaches
like [Moro et al., 2012].

But clearly, a search in the task space depends heavily on the number and
quality of previously seen samples. Finding sufficient solutions for all unseen tasks
configurations on a low-dimensional manifold cannot be expected. More specifically,
an exploration on the approximated manifold allows for a coarse search that quickly
moves the estimation for θ∗ into the direction of higher rewards. If the optimizer
is not able to fulfill the given task or is less efficient to find a better solution in the
task space, the system is forced to switch to a slower refinement search in the policy
space. But also a temporary switch back from a search in the policy space to the
task space cannot be excluded.

As optimization in policy space is not bound to the manifold of fPS, the joint
update between of both spaces requires an inverse estimate of the parameterized
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skill. The local inverse of fPS is defined as

f̂−1
PS = P̂S

−1
(θ) = min

τ

∥∥PS(τ )− θ
∥∥ , (4.1)

which allows to estimate a point on fPS that gives the closest response for a desired
output θ for samples in a local neighborhood of PS(τ ).

The approach allows the combination of rollouts performed in both spaces for
an update of the optimization algorithm. The estimation of the importance of each
space during optimization is based on the success rate of the policies sampled in
their respective spaces, as defined in Section 4.2.2. In general, the combination of
optimizers is not limited to a specific optimization algorithm, this work refers to a
hybrid CMA-ES approach as introduced in Section 4.2.2.

From a policy optimization that considers both spaces, the following advantages
can be expected: First, the algorithm is expected to perform a fast optimization on
a low-dimensional manifold followed by an optional successive fine tuning. Second,
by exploration of the manifold of the parameterized skill, it can be assumed that
solutions that fit to the current estimate of fPS will be found. Therefore, an enhance-
ment of the consistency of the training data of the parameterized skill is expected,
in particular for complex reward functions that allow for multiple solutions in policy
space. Section 4.2.4-4.2.5 will validate these assumptions. The proposed method will
be visualized and discussed on toy data sets and will be compared to to CMA-ES in
the full space of the policy parameterization.
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Figure 4.2: It is expected that multiple manifolds exist that are suitable to describe
a given task. Therefore the estimation of policy parameterizations that lie close to
only one of the manifold candidates allows to estimate a smooth mapping between
task and policy parameterization. Policy parameterizations that originate from
different manifold candidates can result in ambiguous training data and decrease
generalization capabilities of the parameterized skill. Coloring indicates mapping
from input space to position on manifold.

Figure 4.2 shows the visualization of the relation between task space and the
policy parameterization. For this work, it is assumed that multiple manifolds for
a given task parameterization exist. Therefore, one of the candidated manifold



68
Efficient Exploration of

Parameterized Skills

for approximation by the parameterized skill has to be selected. The incremental
exploration of a continuous mapping between task parameterization τ and policy
parameterization θ is supported by imposing a respective preference for solutions
that are close to the current estimate of the parameterized skill, as discussed in
Section 3.3.

4.2.1 Component Selection

The following presents a brief introduction of the chosen policy representation and
the algorithm for policy optimization and learning that are used throughout this
chapter. The component selection is closely related to the previously presented
bootstrapping experiments in Section 3.2.1.

a) Selection of Policy Representation:
The proposed method does not rely on a specific type of policy representation.
Many methods for compact policy presentation have been proposed, e.g. based
on Gaussian Mixture Regression (GMR) [Günter et al., 2007] or Neural Im-
printed Vector Fields [Lemme et al., 2014], as discussed in Section 2.2.2. This
chapter refers to Dynamic Motion Primitives (DMP, [Ijspeert et al., 2013]), in
the same configuration as motivated in Section 3.2.1.

b) Selection of Policy Optimization Algorithm:
For optimization of DMP parameters θ∗ given a task τ , the Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES, [Hansen, 2006]) is applied, as
introduced in Section 2.2.2. Stulp and Sigaud [2013] have shown that the
black-box optimization by CMA-ES is very efficient and reliable in combination
with DMPs. Besides an optimization in one parameter space, this chapter will
propose an extension of CMA-ES to perform an optimization in multiple spaces.
Detailed information regarding CMA-ES is presented in Section 2.2.2.

c) Selection of Learning Algorithm:
To allow the comparison of the methods proposed in this chapter to the boot-
strapping of parameterized skills as presented in Chapter 3, the learner con-
figuration was kept unchanged. For learning of parameterized skills PS(τ ) an
incremental variant of the Extreme Learning Machine (ELM, [Huang et al.,
2006]) was implemented as discussed in Section 3.2.1. As before, hidden Layer
size was set to NH = 50 for generalization in joint space and NH = 20 in case of
a cartesian end effector space. Linear regression is applied on a random projec-
tion of the inputWinp ∈ R

NH×E , a nonlinear transformation σ(x) = (1+e−x)−1

and a linear output transformation Wout ∈ R
F×NH that can be updated by

incremental least squares algorithms. A more detailed discussion on the learn-
ing method and parameter estimation of the readout weights is presented in
Section 2.2.2.
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4.2.2 CMA-ES in Hybrid Spaces

The implementation of the proposed hybrid optimization method is based on CMA-
ES [Hansen, 2006]. The original algorithm of CMA-ES relies on four main steps,
detailed information can be found in Section 2.2.2. Optimization is performed in
generations, which means that an update of the mean estimate is performed based
on observation of rewards from actions that have to be performed under several
perturbations. CMA-ES has an internal representation of the current mean and of
the covariance matrix that allows for sampling of normally distributed actions around
the current mean. In addition, CMA-ES estimates an evolution path for the mean
and the covariance matrix update. Those evolution paths allow for more stability to
outliers and noise. The first step performs the sampling from a multivariate normal
distribution centered at the current estimate by Equation 2.28. Followed by the
update of the estimated solution for the next generation with respect to the rewards
of the sampled rollouts by Equation 2.29. The third step targets the update of the
covariance matrix and its evolution path, given by Equation 2.31 and Equation 2.30.
And the final step performs an update of the exploration width and its assigned
evolution path as in Equation 2.33 and in Equation 2.32.

To be able to perform CMA-ES in hybrid spaces, the CMA-ES algorithm is
applied on two parameter spaces simultaneously. Added indices F and E indicate
the affiliation of variables for optimization to policy space (F ) and task space (E).

Two distinct means m
(g+1)
E and m

(g+1)
F represent the current optimum to minimize

the objective function, i.e. negative reward. Covariance matrices C
(g+1)
E and C

(g+1)
F

as well as their evolution paths p
(g+1)
c,E and p

(g+1)
c,F allow for random normal distributed

perturbation of the respective mean. The variances σ
(g+1)
E and σ

(g+1)
F in addition to

their evolution paths p
(g+1)
σ,E and p

(g+1)
σ,F define the exploration size in each space. In

comparison to two independent CMA-ES optimizations in each space, probabilities

p
(g+1)
E respectively p

(g+1)
F = 1 − p(g+1)

E are introduced that indicate in which space

sampling of the rollouts is performed. p
(g+1)
E and p

(g+1)
F can be interpreted as mixing

coefficients that allow for interpolation between a CMA-ES optimization in the task

space (p
(g+1)
E = 1) and a CMA-ES optimization in policy space (p

(g+1)
E = 0). For

each update step of generation (g + 1), a combined update based on k = 1, .., λ
(g+1)
H

samples is performed. Each sample is annotated by s
(g+1)
k = 0 if the rollout k was

sampled in the task space or by s
(g+1)
k = 1 if it was sampled in the policy space. The

initialization (Figure 4.3(b)) for a new task instance i of the parameterization in the

embedded space is m
(g=0)
E = τ and the initialization in full space is given by the

generalization of the parameterized skill m
(g+1)
F = θPS = PS(m

(g=0)
E ). The sampling

of rollouts is given by

x
(g+1)
k,E = m

(g)
E + σ

(g)
E y

(g+1)
k,E for k = 1, .., .λH ∧ s

(g+1)
k = 0 and

x
(g+1)
k,F = m

(g)
F + σ

(g)
F y

(g+1)
k,F for k = 1, .., .λH ∧ s

(g+1)
k = 1.

(4.2)
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For each rollout the selection of the target space for sampling is based on probabilities

p
(g+1)
E and p

(g+1)
F . Rollouts are draw from a normal distribution defined as

y
(g+1)
k,E =∼ Nk(0,C

(g+1)
E ) and y

(g+1)
k,F =∼ Nk(0,C

(g+1)
F ). (4.3)

The number of evaluated rollouts per generation is defined as a mixture of λE and
λF, given by

λ
(g+1)
H = p

(g+1)
E λE + p

(g+1)
F λF = 4 + p

(g+1)
E ⌊3 lnE⌋+ p

(g+1)
F ⌊3 lnF ⌋ . (4.4)

The update of λH is motivated by the number of rollouts per generation λ = ⌊3 lnD⌋
in relation to the dimensionality D of the optimization problem as introduced for
CMA-ES ([Hansen, 2006]). In a next step, the parameterized skill performs a
mapping of samples originated in task space to policy space and vise versa (see
Figure 4.3(c), line 6 and 10). Therefore, a parameterized skill is required that allows

for inverse evaluation notated as P̂S
−1

. This mapping process is defined as

x
(g+1)
k,E = P̂S

(g)−1

(x
(g+1)
k,F ) for k = 1, .., .λH ∧ s

(g+1)
k = 1 and

x
(g+1)
k,F = P̂S

(g)−1

(x
(g+1)
k,F ) for k = 1, .., .λH ∧ s

(g+1)
k = 0.

(4.5)

A representation of all rollouts in x
(g+1)
k,F allows for execution of the policy and

evaluation of the reward function. The rollouts are ordered based on the magnitude
of the respective reward as proposed by the original CMA-ES approach [Hansen,

2006], as shown in Figure 4.3d. At this point an update of the means m
(g+1)
E and

m
(g+1)
F with respect to x

(g+1)
k,E and x

(g+1)
k,F by applying Equation 2.29 is possible. This

allows for an update of the estimated means in both spaces based on all rollouts that

have been evaluated in the current generation. Note, that the means x
(g+1)
k do not

develop independently. Rather they are linked by the mapping of the parameterized
skill. The success rate of both spaces results in an adaptation of the mixture of
rollouts that are performed in the policy and task space (pF and pE). The success
rate is defined by the ratio of successful rollouts (rollouts that exceed the current

reward maximum), encoded by the weights w
(g+1)
k as well as space that was used for

sampling s
(g+1)
k of the performed rollouts. The update of pE as well as pF is given

by

δp
(g+1)
E =

∑µ
k=1,

s
(g+1)
k

=0

w
(g+1)
k

∑µ
k=1w

(g+1)
k

− δp(g)E , δp
(g+1)
F = −δp(g+1)

E . (4.6)

For experimental evaluation, two approaches for an update of the covariance
and exploration width are exploited: The first version utilizes only samples that
originate in the same space for an update of the covariance C and exploration width

σ; The second version utilizes the mapping of PS and P̂S
−1

to estimate an additional
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update of the covariance and the exploration width with respect to all samples.
This work will refer to the first version as Hybrid Covariance Matrix Adaptation -
Evolutionary Strategy - Version 1 (HCMA-ES-v1 ) and to the second version as
HCMA-ES-v2.

HCMA-ES-v1 The update of the covariance, exploration radius and their evo-
lution paths is performed as in the original CMA-ES algorithm, depicted in Equa-

tion 2.31 to Equation 2.32. The update step for each space, encoded in s
(g+1)
k , consid-

ers only rollouts sampled in the same space. The normalization of
∑

w
(g+1)
k = 1 for

all s
(g+a)
k = 0 in case of the task space as well as s

(g+a)
k = 1 in case of the policy space

is necessary since not all samples are used in each space. Additionally, the estimation
of µeff,E and µeff,F with respect to s has to be performed as well. The neglection of
projected samples for the update of the covariance and its exploration width allows
for simplification of the combination process. But this simplification prevents that
e.g. the covariance in the high-dimensional policy space can shape into the direction
of samples along the low-dimensional manifold of the task parameterization.

HCMA-ES-v2 The parameterized skill can be regarded as a mapping between the
high-dimensional policy parameterization and a low-dimensional embedding. The
mapping process of parameterizations sampled from multivariate normal distribu-
tions to other spaces results in distorted distributions in the target space due to the
nonlinear transformation of the parameterized skill. For the integration of projected
samples in the update of the covariance, a rescaling of projected samples is necessary
to cancel out the effect of the exploration width σ. The update of the exploration
width σ requires the estimation of the distribution of projected samples, but the
estimation of a covariance of projected rollouts requires a large number of samples
which is not feasible for the presented scenarios (≈ 10 rollouts per generation). An

update of exploration width σ
(g+1)
E and σ

(g+1)
F with respect to each other is performed

by the estimation of a scaling factor between the evaluated rollouts of the current
generation, which allows the application for low sample numbers.

To consider samples from other spaces for an update of the covariance and its
evolution path, samples from other spaces have to be rescaled to keep the covariance

C at a constant size, i.e. det
(
CTC

)
=
∏
λi = const., the product of eigenvalues

of C is constant. From the update of the exploration width of CME-ES as given in

Equation 2.32 and Equation 2.33, the condition
√
µeffC

(g)−
1/2
yw = E ||N (0, I) || for

constant covariance size can be inferred. Therefore, an appropriate scaling factor to
the calculation of the weighted sum is added, resulting in a modified estimation of
ỹw,E with an additional scaling of samples that originate in the full space. As given
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by

ỹw,E =

µ∑

i=1
s
(g+1)
i:λ =0

wiy
(g+1)
i:λ,E +

χE

βE

µ∑

i=1
s
(g+1)
i:λ =1

wiy
(g+1)
i:λ,E , with

βE =
√
µeff

∥∥∥∥∥∥∥∥∥∥

C
−1/2
E

µ∑

i=1
s
(g+1)
i:λ =1

wiy
(g+1)
i:λ,E

αF

∥∥∥∥∥∥∥∥∥∥

, αF =

µ∑

j=1

s
(g+1)
j:λ =1

wj .

(4.7)

χN
def
=
√
E(χ2

N ) = E ||N (0, IN )|| refers to the chi-squared distribution χ2
N with N

degrees of freedom. The estimation of ỹw,F is performed likewise, as

ỹw,F =

µ∑

i=1
s
(g+1)
i:λ =1

wiy
(g+1)
i:λ,F +

χN

βF

µ∑

i=1
s
(g+1)
i:λ =0

wiy
(g+1)
i:λ,F , with

βF =
√
µeff

∥∥∥∥∥∥∥∥∥∥

C
−1/2
F

µ∑

i=1
s
(g+1)
i:λ =0

wiy
(g+1)
i:λ,F

αE

∥∥∥∥∥∥∥∥∥∥

, αE =

µ∑

j=1

s
(g+1)
j:λ =0

wj .

(4.8)

The factor β−1
E results in a rescaling of samples from policy parameter space to task

space and β−1
F scales from task parameter space to policy space. The update of pc

and C can be achieved by Equation 2.31 and Equation 2.30 with respect to ỹw,E

and ỹw,F. The final step updates the exploration width σ
(g+1)
E and σ

(g+1)
F . It is

achieved by performing a mixing of the updated sigma of the own space and the
rescaled sigma of the second space based on the success rate of the spaces, as

σ
(g+1)
E = pEσ̃

(g+1)
E + pF

σ̃
(g+1)
F βE
χE

and

σ
(g+1)
F = pFσ̃

(g+1)
F + pE

σ̃
(g+1)
E βF
χF

.

(4.9)

The evaluation of the properties of both algorithm versions and a comparison to
classical CMA-ES will be presented in the successive experiments, Section 4.2.4 and
Section 4.2.5.

4.2.3 Implementation of the Parameterized Skill

The proposed optimization method does not rely on a specific learning method.
But in comparison to the bootstrapping of the parameterized skill as proposed in
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Section 3.2, the policy search in hybrid spaces requires an inverse estimate of the
parameterized skill. Therefore, the learner must be continuous and locally differ-
entiable. Further candidates for this task are associative memories due to their
bidirectional representation of inputs and outputs. A more in-depth discussion on
associative memories can be found in Section 2.2.2. For the implementation that is
presented in the following a different approach is used, the Jacobian of the param-
eterized skill is used to iteratively estimate a proper input τ for a required output
θ. Since the implementation of the parameterized skill (used for the bootstrapping
experiments in Chapter 3) is kept unchanged, a comparison of both methods under
equal conditions is possible. The local inverse estimate of the parameterized skill is
motivated by the Inverse Function Theorem by [Spivak, 1971], that states that it is
possible to estimate a local inverse of a function if the determinant of the Jacobian is
not zero. The estimation of the change in the policy parameter space that is caused
by a change in the task space is given by

∆θ∗ ≈ JPS(τ ∗)∆τ ∗. (4.10)

Since the parameterized skill is not a bijective mapping, multiple solutions can
exist. Optimization is assumed to sample in a local neighbourhood of the current
estimate, therefore, the gradient descent is initialized with PS(τ ). Gradient descent
is implemented by the Levenberg-Marquardt method [Liu and Han, 2003], also
referred to as Damped Least-Squares method as depicted e.g. in [Buss, 2004], due to
numerical stability in comparison to pseudoinverse and Jacobian transposed based
methods. The incremental update of the estimated task space τ ∗ is based on the
Jaocbian JPS(τ

∗) of PS with respect to the input τ ∗

∆τ ∗ = JPS(τ
∗)⊤
(
JPS(τ

∗)JPS(τ
∗)⊤ + λ2I

)−1
e,

with e =
(
θ∗−PS(τ ∗)

)
.

(4.11)

4.2.4 Evaluation on Toy Data

To gain insight into the proposed hybrid search method, experimental investigation
on four test cases is performed. For simplicity and visualization purposes, the policy
is defined as the identity πθ = θ and the reward function operates directly on θ ∈ R

2,
the 2D space of the policy parameterization. The reward function is parameterized
by τ ∈ R

1 defining the position of maximum reward in the 2D space. This allows
to visualize the reward function in relation to a fixed value of τ . A visualization of
both reward functions for several fixed parameterizations τ are shown in Figure 4.4.
The color intensity encodes the reward for a given task parameterization θ. The first
scenario describes a circular manifold with a maximum at mτ , where the reward is
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Figure 4.4: Visualization of the designed reward functions. Circular reward function
Rcircular (top) and branch reward Rbranch (bottom) for three different task parame-
terizations are shown. Crossing points of horizontal and vertical black lines indicate
maxima of reward functions. For τ > 1 multiple maxima of the reward function
exist (bottom-right). Color intensity indicates the magnitude of the reward for a
depicted parameterization θ

given by

Ra(θ, τ) =
1√
2πσ2a

exp−
∣∣atan2 (mτ × θ,mτ · θ)

∣∣
2σ2a

and

Rr(θ) =
1√
2πσ2r

exp−(1−‖θ‖)2
2σ2r

, with mτ =

[
sin(τ)
cos(τ)

]
.

(4.12)

The reward function includes the angular deviation Ra(θ) as well as the deviation
in the radius Rr(θ), which are weighted by Gaussian functions. The overall reward
is given by Rcircular(θ, τ) = Ra(θ, τ ) ·Rr(θ).

The second reward function is based on a branch manifold. For parameterizations
τ ≤ 1 the maximum reward is located at [τ ; 0]. For τ > 1 two maxima can be found at
[τ ; 0] and [τ ; 1+τ ]. It is based on a combination of the distances to the parameterized
maxima of the function Rm(θ, τ) and the distance to the branch manifold Rb that
is defined as

Rm(θ, τ) =
1√
2πσ2d

exp−dmin

2σ2d
, with

dmin =

{
||θ − [τ ; 0] ||, if τ ≤ 1

min(||θ − [τ ; 0] ||, ||θ − [τ ; τ − 1] ||), else

and Rb(θ) =
1√
2πσ2r

exp−Distbranch(θ)
2σ2r

.

(4.13)

With Distbranch(θ), the minimum distance of θ to the line segments [0; 0] − [2; 0]
and [1; 0]− [2; 1]. The combination of both reward terms results in the final reward
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function Rbranch(θ, τ) = Rm(θ, τ )·Rb(θ). The scenario is designed in such a way that
it reflects expected real world problems: The space of all possible actions includes a
subset of appropriate actions on a manifold that have higher rewards. Within this
subset, a maximum of the reward function is expected at parameterizations that
solve the task in an appropriate way. The four evaluated test cases are shown in
Figure 4.5 to Figure 4.8. Each plot shows the comparison between a search in the
policy space by CMA-ES as well as the behavior of the proposed hybrid algorithms.
The green color intensity encodes the reward for a depicted policy parameterization
θ. Previous training data (obtained by estimation of one maximum of the reward
function) of the parameterized skill is indicated by a black dot ( ). Based on the
training data, the mapping fPS on the manifold in the policy space, i.e. PS(τ), is
constructed and shown as a gray line. The symbols , and represent the current
estimates of the means mg

F in the policy space, whereas the size - , - and -

indicates the history of previous mean estimates mg−n
F , ∀n ∈ {1, . . . , g}, up to the

first generation, with a decreasing size of the symbol. The real maximum of the
reward function is marked by black crossing lines and the location of the initial
estimate θPS = PS(τi) on fPS is highlighted by a black arrow ( ).

In the following all four scenarios (a-d) and the optimization process will be
presented in detail:
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Figure 4.5: Comparison of optimization algorithms on 2D reward function: Overshoot
of PS, hybrid optimization is able to utilize manifold of the parameterized skill (gray
line) to perform optimization in 1D space. (a) Estimated means during optimization,
marker size indicates the generation. Black arrow points to initial guess on manifold
(gray line) of parameterized skill. (b) The comparison of reward and mixing factor
during optimization is shown.

Overshoot Scenario The scenario in Figure 4.5a shows a situation in which an
overshoot of the estimation of the parameterized skill occurs. This scenario utilizes
the circular reward Rcircular and performs an exponential distortion fdist(τ) = exp(τ)∗
π/ exp(π) of the parameterization to enforce a faulty generalization of the memory
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resulting in R(θ, τ) = Rcircular(θ, fdist(τ)). For training of the parameterized skill,
the optimal parameterizations θi for three different task instances τi are estimated.

It can be seen that for the depicted task parameterization, the parameterized
skill proposes a solution that is located in a region with a little gradient information.
By following the low-dimensional embedding of the parameterized skill, the hybrid
approach is able to guide the optimizer into a region with a stronger gradient and
that is closer to a desired maximum of the reward function. For the original CMA-ES
approach it takes longer to reach a region with more informative gradient information
and requires therefore more rollouts in comparison to the hybrid optimization in both
spaces. Algorithm HCMA-ES-v1 and HCMA-ES-v2 show a comparable performance
and a similar behavior during optimization. Investigations of the shape of covariance
reveal the extended update policy of HCMA-ES-v2. Since the shape and size of the
covariance of the policy space integrates rollouts sampled in the task space as well,
the covariance grows and shapes aggressively into the direction of the real maximum
and the shape of the manifold of the parameterized skill. In a region close to the
maximum, i.e. the covariance shrinks but keeps the shape influenced by the previous
fast approaching phase in the low-dimensional manifold. Figure 4.5b shows the
probability of performing a rollout in the policy parameter space, starting at equal
probabilities for both spaces, the algorithm first shifts its focus to the task space
and switches to a fine-tuning at the end of the optimization phase.
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Figure 4.6: Comparison of optimization algorithms on 2D reward function: Distorted
estimates of the parameterized skill. (a) Estimated means during optimization,
marker size indicates the generation. Black arrow points to initial guess on manifold
(gray line) of parameterized skill. (b) The comparison of reward and mixing factor
during optimization is shown.

Distortion Scenario In case of a distortion of the parameterized skill, it is as-
sumed that a sufficient solution can be found in the manifold fPS, e.g. θ

∗ = PS(τ+ǫ).
An exemplary evaluation of this situation can be seen in Figure 4.6.

The experiment is performed for the circular reward Rcircular as in the previous
example but a sigmoidal distortion of the parameterization fdist(τ) = π/(1+exp(−4∗
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(τ − π/2))) is applied to enforce a distorted estimate of the parameterized skill,
resulting in R(θ, τ) = Rcircular(θ, fdist(τ)). Again, three optimal parameterizations
θi for three different task instances τi are presented to the memory as training
samples.

During optimization, the hybrid search incorporates a lower dimensional search
space and is able to follow the gradient of the reward function in the task space. Due
to the shape of the designed reward function, the standard CMA-ES approach (that
operates in policy space) has to adapt its covariance along the circular structure
of the reward function and approaches slower to the position of the maximum, as
shown in Figure 4.6a. The optimization in hybrid spaces benefits from the projection
onto a manifold fPS that compensates for the circular structure and allows for a fast
convergence. Figure 4.6b shows the comparison of the reached reward in relation to
performed rollouts. As discussed for the overshoot scenario, in case of HCMA-ES-v2
a shaping of the covariance of the policy space can be observed, that is influenced
by the rollouts along the manifold of the parameterized skill.
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Figure 4.7: Comparison of optimization algorithms on 2D reward function: Multiple
maxima of reward function. (a) Estimated means during optimization, marker size
indicates the generation. Black arrow points to initial guess on manifold (gray line)
of the parameterized skill. (b) The comparison of reward and mixing factor during
optimization is shown.

Multiple Minima Scenario This scenario explores tasks with multiple solutions
for a certain range of task parameterizations. Evaluation is performed on the branch
reward Rbranch in combination with the exponential distortion fdist(τ) = exp(τ) ∗
π/ exp(π) used in the overshoot scenario. Therefore, the reward function is given by
R(θ, τ) = Rbranch(θ, fdist(τ)). The presented training samples for the parameterized
skill as well as the experimental setup can be seen in Figure 4.7a. As discussed
in Section 4.2, multiple maxima of the reward function bear the risk of generating
inconsistent training data for the parameterized skill and impede generalization
capabilities. It is beneficial to prefer solutions for tasks that are close to the manifold
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of the parameterized skill, as in this scenario, solutions on the upper branch of the
reward function, as shown in Figure 4.7a. A hybrid optimization that performs a
search along the manifold of the parameterized skill enhances the probability to find
an optimum close to the manifold of the already established parameterized skill. As
shown in Figure 4.7a, starting from the initial guess, the standard CMA-ES approach
follows the gradient towards the manifold of the reward function. The covariance,
responsible for perturbation of sampling, starts to shape into that direction and
causes the optimizer to follow the gradient towards the lower branch of the reward
function. The estimated solution is far off the manifold of the parameterized skill and
results in inconsistent training data since previous training data was selected from
the upper branch. The standard CMA-ES optimization is able to find a solution for
the given task without requiring a significantly different number of rollouts than the
hybrid optimization methods.

Although the hybrid search cannot speed up the optimization process, the opti-
mizer relies on the manifold of the parameterized skill to move towards the gradient
of the reward function, as shown in Figure 4.7b. For the final phase, the optimizer
switches the preference to the policy parameter space for optimization. It is able
to find a maximum of the reward function that is consistent with previous training
data since it is located in the upper branch of the manifold of the reward function.
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Figure 4.8: Comparison of optimization algorithms on 2D reward function: Over-
shoot of parameterized skill, standard CMA-ES is able to perform a more efficient
optimization than hybrid methods. (a) Estimated means during optimization, marker
size indicates the generation. Black arrow points to initial guess on manifold (gray
line) of parameterized skill. (b) The comparison of reward and mixing factor during
optimization is shown.

Failed Overshoot Scenario In case the estimate of the parameterized skill is of
very low quality, optimization in the low-dimensional space of fPS can lead to a fast
convergence to a region with higher rewards (as in Figure 4.5). But the algorithm
could end up at a parameterization that is far away from the desired solution, so that
an optimization by CMA-ES can reach a high reward with less number of executed
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rollouts. This situation is shown in Figure 4.8, it uses the same experimental setup
as for the overshoot scenario. Due to the strong overshoot of the parameterized
skill, the initial guess for the selected task parameterization results in a bad start
condition. Although the hybrid search is able to approach faster to higher rewards in
the first half of the optimization process, the optimization by the standard CMA-ES
is able to approach faster to the maximum of the reward function. As shown in
Figure 4.8b, the optimization on the manifold of the parameterized skill results in a
fast rising reward at the beginning of the optimization process followed by a period
with slowly rising reward when it moves along the manifold to the defined optimum
of the reward function.

Results

As shown in Figure 4.5-4.7, three situations can be identified in which the proposed
hybrid CMA-ES algorithm is able to speed up optimization significantly. The mean
rewards obtained for a given number of rollouts indicate a slightly faster convergence
of HCMA-ES-v2, but the evaluation could not reveal a significant difference between
HCMA-ES-v1 and HCMA-ES-v2 for those simple optimization tasks. Further, it
was shown that in case of a faulty estimate of the parameterized skill in a region
with low gradient information as well as a distortion of the manifold, the hybrid
optimization scheme allows a faster convergence. Additionally, one situation in which
the consistency of the parameterized skill can be enhanced by preference of solutions
close to the previously established manifold was identified.

4.2.5 Evaluation on Robotic Scenarios
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Figure 4.9: Results of the comparison of HCMA-ES to optimization in the parameter
space of the policies for the point reaching scenario. It can be seen that the number
of required rollouts for task fulfillment is not reduced significantly by one of the
optimization methods.

Planar Arm Scenario The evaluation of the hybrid optimization scheme as pro-
posed in Section 4.2.2 refers to the previously performed experiments as introduced
in Chapter 3. The parameterized skill has to learn a skill for a point reaching task
for a 10-DOF planar arm. The original CMA-ES optimization in policy space is
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compared to the hybrid optimization algorithms HCMA-ES-v1 and HCMA-ES-v2.
To be able to compare the algorithms without the influence of different states of the
memory, the stored memory states of the performed experiments in Section 3.4 have
been used for evaluation. The following experiments replicate the same experimental
conditions and replace the optimization algorithm by the proposed optimization in
hybrid spaces. Figure 4.9 shows the results of the 10-DOF planar arm scenario.
HCMA-ES-v2 requires slightly more rollouts for task completion than HCMA-ES-v2
and plain CMA-ES in case the memory has been trained with less than 4 samples. It
can be assumed that it is caused by the overhead of updating the covariance matrix
of the policy space based on rollouts in task space. To reduce the overhead of the
hybrid search algorithms, the initialization of pE and pF plays a crucial role. It can
be expected that a search in the policy space is more beneficial as long as the number
of training samples for the parameterized skill is low. No substantial difference be-
tween the CMA-ES and the hybrid search can be seen in the case the parameterized
skill consolidated more than 4 samples, The update policies of HCMA-ES-v1 and
HCMA-ES-v2 do not lead to significantly different results.

Figure 4.10: COMAN robot during execution of an estimated end effector trajectory
(blue) of the parameterized skill PS(τi) for one fixed reaching target τi. Black
trajectories visualize the variability in low-dimensional search space ±50% of the
input range PS(τi + δ±50%). From left to right: different states of the memory are
shown (3,5 and 10 training samples).

Point Reaching Scenario The results for the second scenario, Section 3.4.2, show
that the proposed hybrid search is able to reduce the number of required rollouts for
solving unseen tasks as expected. As before, memory states of the optimization in
policy space are collected and reused for the comparison to the hybrid optimization
approach to guarantee equal test conditions. The parameterized skill of the joint
space experiments requires more training samples due to the lack of the inverse Ja-
cobian controller that copes with distance maximization to the grid-shaped obstacle.
The results are shown in Figure 4.12, (a-e) show results for experiments in end effector
space in the same way as (f-j) show results for joint space. Both hybrid optimization
methods show a tendency to exceed the rate of solvable tasks of the standard CMA-
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ES method for the experiments in the end effector space Figure 4.12(b). The results
of the joint space experiments the are not that clear Figure 4.12(g). The different
update policies of HCMA-ES-v1 and HCMA-ES-v2 can be seen by a comparison
of the development of the mixing factors pF in Figure 4.12(c-e;h-j) for 1, 5 and 20
consolidated samples by the parameterized skill. In case the parameterized skill
has been trained with all 20 samples , HCMA-ES-v1 switches to an optimization
in the policy space at a later stage Figure 4.12(e+j), whereas HCMA-ES-v2 clearly
prefers the policy space for optimization. Both algorithms are switching to a search
in the policy space in case of a low number of training samples and in case the
memory has seen a certain amount of training samples, HCMA-ES-v2 supports a
faster switching from task to policy space search. The visualization of the variability
in the low-dimensional parameter space is illustrated in Figure 4.10. The comparison
of three different states of the parameterized skill is shown by plotting of estimated
solutions for variations of the input centered at a fixed task parameterization. Those
plots reveal different strategies of the robot like approaching the target point from
top or from bottom, e.g. Figure 4.10(center).

Drumming Scenario The third scenario refers to the drumming task as presented
in Section 3.4.3. In comparison to the previous experiments that evaluate the
proposed hybrid optimization, evaluation was performed on a real robot scenario.
Evaluation is limited to one exemplary state of the parameterized skill in which
benefits of the hybrid optimization can be expected. The parameterized skill was
trained with five samples that are gathered by kinesthetic teaching as before in
Section 3.4.3. Therefore, the parameterized skill is in an intermediate state that
allows to cover the structure of the task but does not result in a high success
rate of about ⑦55% as shown in Figure 3.16. As in the previous experiment, the
comparison of CMA-ES to both hybrid optimization methods HCMA-ES-v1 and
HCMA-ES-v2 is performed for NDOF = 8-DOF. The reward function is based, as
before, on the distance to the prototypes of the collected demonstrations and an
additional punishment for trajectories that exceed the joint limits of the robot. The
reward function R is defined by

R(f̄) = log

(
1 + max

1≤i≤Ntr

‖f̄∗i ‖ − f̄ ⊛ f̄∗i
‖f̄∗i ‖

)

︸ ︷︷ ︸
(a) Drumming Sound

−

∑
0<t≤T

0<d≤NDOF

{
0 if qmin < qdt < qmax,

1 otherwise.

T ·NDOF︸ ︷︷ ︸
(b) Joint Limits

.

(4.14)
Maximization of the reward results in a minimization of the distance of generated
drumming sounds to prototypes of the training set (details in Equation 3.11) as well as
a minimization of joint angle trajectories that exceed the actuator limits [qmin, qmax].
The experiment is repeated ten times and for each experiment six unseen drum
positions are selected for which the robot cannot play the drum successfully. For
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evaluation, the initial policy is estimated as θPS = PS(θ) and the number of required
rollouts that are performed until the robot is able to generate a sound on the drum
is collected. The results based on all 60 evaluation runs are shown in Figure 4.11.
It can be seen that the hybrid optimization methods are able to solve unseen task
instances with a significantly lower number of required rollouts for optimization.
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Figure 4.11: Evaluation of hybrid optimization methods on the Affetto drumming
scenario. Results show the required number of rollouts for unsolved task instances.

4.2.6 Discussion

The experimental evaluation revealed three situations in which the proposed hybrid
optimization was able to exceed the performance of an optimization in policy space,
as discussed in Section 4.2.4. The benefits of the proposed algorithm as well as one
case in which the proposed algorithm underlays a plain policy space search were
shown for three designed test scenarios. A clear advantage of the proposed hybrid
optimization could be identified, although the reduction ratio of the task space to the
policy parameterization is only 2:1 for the idealized test cases. The scalability of the
proposed method was evaluated in complex robot scenarios. It was not possible to
show significant performance improvements of the hybrid search for the optimization
of a 10-DOF robot scenario, while an optimization of a point reaching task of a
humanoid robot showed the expected advantages of the approach. A possible cause
for the low performance could be that the design of the 10-DOF reaching task, e.g.
no obstacles, results in a simple reward function in the high-dimensional policy space.
The optimizer in the full policy space is able to follow the gradient efficiently after an
initial estimation of the covariance, e.g. direction, and a reduction of the search space
is not beneficial. In such a situation, the algorithm is not able to exploit the benefits
of the low-dimensional embedding of the parameterized skill and has to cope with
overhead caused by the combination of both spaces. In case of the humanoid robot
reaching task, the skill learning faces an optimization problem with a much higher
complexity as it includes joint limits and obstacle constraints. Additionally, not all
task instances are solvable due to kinematic constraints of the robot and CMA-ES
cannot solve all tasks as it gets stuck in local minima. The demonstration of the
benefits of the proposed combined optimization scheme for this complex scenario
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was successful. The approach was applied in different domains by an evaluation
of control in joint and cartesian space and supports hypothesis H4.1. Besides the
evaluation of reaching tasks, the scalability to real-world and online systems was
demonstrated on a complex drumming task.

The proposed method is not limited to a trajectory encoding as DMP, an exten-
sion to rhythmic movements, for example, can be achieved by modification of the
underlying DMP representation [Ijspeert et al., 2002]. Due to the modular design of
the framework other policy representations, black-box-optimizer and learning algo-
rithms can be integrated. One crucial benefit of the point attractor representation
of the DMP is the linearity of its parameterization in relation to the task parame-
terization (e.g. target position). In comparison to e.g. vector field representations,
instabilities can be avoided and the dimensionality of the policy parameterization is
reduced. The system is designed to rely on the results of the optimization process,
therefore it has no implicit capabilities of dealing with multiple objectives, like in
e.g. [Pirotta et al., 2015; Parisi et al., 2017]. The pre-designed reward function
has to reflect appropriate goals to fulfill the range of parameterized task instances.
Policy estimation for multiple objectives can only be achieved by an encoding of the
relevance of the objectives as task parameterization.
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Figure 4.12: Results of the comparison of HCMA-ES to optimization in the policy
parameter space for the point reaching scenario. Experiments (a-e) show results in
end effector space and (f-j) in joint space. The number of required rollouts for task
fulfillment is significantly reduced by the proposed hybrid optimization method (a+f).
The success rate of the optimization process (i.e. exceed a threshold on reward) stays
the same compared to the optimization on the policy parameter space (b+g). In
(c-e; h-j) the behavior of the mixing factor between the search spaces is shown for
1(c+h), 5(d+i) and 20(e+j) training samples.
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4.3 Transfer Learning

Besides learning a completely new task, real-world situations often require the abil-
ity to adapt an already learned task to changing conditions without learning the
acquired motion repertoire from scratch, as covered by H4.2. To investigate this
issue, the humanoid robot Affetto (Section 5.2) learns to solve a drumming scenario
(Figure 3.13) with varying positions of the drum as evaluated in Section 3.4.3. Then,
the environment changes in a way such that the drum cannot be observed directly
and the robot has to perceive the drum position through a mirror, located beside
the workspace (Figure 4.15). Further potential changes in the scenario include the
replacement of the original (possibly faulty) sensor by a newer/intact one, a changed
position of the robot which would be otherwise static, or another modified point of
view on the scenery. Relearning the complete task in the high-dimensional space of
actions would be highly ineffective if instead the already acquired knowledge could
be adapted and reused.

The field investigating such principles is called transfer learning [Pan and Yang,
2010; Salaken et al., 2017], in which the main goal is to reuse as much as possible of
the previous knowledge for the new situation. Recently, a promising transfer learning
approach has been proposed for classification in myoelectric prosthesis control under
electrode shift [Paaßen et al., 2018]. This approach allows to transfer the classification
model between two settings, without assuming a continuous drift, by optimizing a
mapping of the input features directly for the target task.
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Figure 4.13: Illustration of the Transfer Learning approach. Based on human demon-
strations, a transfer mapping ψ is updated according to the gradient of the parame-
terized skill.

In this section, the generalization of the transfer learning approach for a regression
model is presented and applied for adaptation of a previously learned skill of a
humanoid robot towards changing task conditions.

The remaining of this chapter is structured as follows. First, relevant related
work on transfer learning, Section 4.3.1, and the proposed transfer learning algorithm
are introduced. Section 4.3.2 illustrates the method for an artificial example while
Section 4.3.3 describes the main experiment where the proposed transfer learning
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algorithm is employed to adapt towards a change in the environment for a drumming
task.

Related Work The literature differentiates between different types of changing
conditions [Pan and Yang, 2010]: Changes in the task and changes in the data
domain. In this work, the latter case is considered where the task to be performed
stays the same, while the data domain changes. In particular, the general assumption
is that enough data are available in an old scenario, the so called source domain,
but the goal is to solve the task in the new target domain, where only very few
data are available. These types of problems are also referred to as transductive
transfer learning [Pan and Yang, 2010] or as domain adaptation [Ben-David et al.,
2006]. More formally, data instances from the source domain will be referred to as

τ ∈ T = R
E and to instances from the target domain as τ̂ ∈ T̂ = R

Ê .
A popular set of methods in this area are related to the concept of importance

sampling, one example being the kernel mean matching algorithm [Huang et al.,
2007]. Those methods introduce weights for the data points in the source space and
utilize them for learning a new supervised model to improve the performance in
the target space. A central assumption is that the conditional distributions in both
data spaces are the same: p

T̂
(θ|τ ) = pT (θ|τ ) [Pan and Yang, 2010]. This strong

assumption, however, does not hold in this scenario where the input space is changed
strongly and thus the conditional distribution changes as well.

Another set of transfer learning methods aims to solve the transfer problem by
finding a common latent space for the source and target domain [Pan and Yang,
2010; Blöbaum et al., 2015]. However, these methods assume the availability of only
unlabeled data in the target space and, thus, do not make use of any supervised
information if existing. Other work, such as Procrustes Analysis [Wang and Mahade-
van, 2008], requires correspondence information between some samples from both
domains which is unavailable for the drumming task.

Transfer learning has been applied in robotic settings, like reinforcement learn-
ing [Taylor and Stone, 2009]. For the purpose of multi-robot transfer learning [Helwa
and Schoellig, 2017; Malekzadeh et al., 2014b], i.e. for learning a skill for a robot from
another robot. A further application is inter-task learning, e.g. transfer knowledge
of multiple acquired tasks to solve more complex new tasks [Fachantidis et al., 2012].
Those settings are, however, different from the presented ones because they consider
only changes in the input but not in the output as learning is based on kinesthetic
teaching to adapt for changing task configurations.

4.3.1 Transfer learning for nonlinear regression with the ELM

For formalizing transfer learning, this work follows the main idea from [Paaßen et al.,
2018, 2016], which is to learn a mapping that transforms the novel target data in
such a way, that the original model is applicable again. In contrast to [Paaßen et al.,
2018, 2016], implementation aims at a regression model and is evaluated in a robotic
scenario.
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While in principle this technique is applicable to any supervised machine learning
model with a differentiable cost function, demonstration is performed in this case on
the regression model ELM. Given a training data set D = {(τ j ,θj)|j = 1, . . . , Ntr}
in the source domain, the ELM optimizes the cost

Ntr∑

j=1

F∑

i=1

(
θ
j
i − PSi(τ

j)
)2

(4.15)

with respect to the parameters Wout, where PSi(.) is defined in Equation 3.2. This
results in a learned function PS(τ ), applicable to instances from the source domain
τ . A further discussion on ELMs and its learning methods is given in Section 2.2.2.

For the proposed transfer learning approach, the same cost function is utilized,
but this time instances from the target domain are taken as input D̂ = {(τ̂ j ,θj)|j =
1, . . . , N̂tr}, with N̂tr ≪ Ntr. Furthermore, the transfer mapping is defined as ψ(τ̂ )
which is applied to the input τ̂ . Thereby, ψ(.) realizes a mapping from the target
to the source domain and learning its parameters comprises the main part of the
transfer learning step. In many application, it is reasonable to assume a linear

transformation of the form ψ(τ̂ ) = Ψτ̂ + b, where Ψ ∈ R
E×Ê and b ∈ R

E . The
transfer learning problem finally is

min
Ψ,b

N̂tr∑

j=1

F∑

i=1

(
θ
j
i − PSi(ψ(τ̂

j))
)2

+ γ‖Ψ̃‖2. (4.16)

Thereby, Ψ̃ constitutes the matrix Ψ augmented by an additional column containing
the values of b while λ is a weighting for the l2 regularization.

Then, finding a minimum of this problem with respect to the parameters of ψ(.)
constitutes the transfer learning step and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm is employed for optimization.

4.3.2 Experiments I:
A Toy Data Example

The Proposed transfer learning scheme is demonstrated for a toy data set first, before
it is applied to a robotic setting in the next section. For evaluation, 20 data points
are sampled from the function

R
2 7→ R : x 7→ (x1 + 1)3 + (2(x2 + 1)3)/10, (4.17)

where 14 randomly selected points are utilized for training an ELM. The means
squared error (MSE) is 0.00 on the training and 0.007 on the remaining testing data.
The trained model together with the data is shown in Figure 4.14a. In order to
simulate a systematic disturbance on the data, 20 new data points are sampled with
an applied rotation of 180◦. The resulting target data together with the original ELM
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Figure 4.14: Illustration of the proposed transfer learning approach on toy data:
the figures always show data (green circles) and the predictive function of the ELM
(trained on the source data). (a) Source data; (b) Target data; (c) Target data after
transfer learning.

is shown in Figure 4.14b. The prediction MSE is 585.772, due to the transformation
of the new data.

For adaptation to the transformation of the data, five target data points are
selected randomly and are used for training a transfer mapping with the proposed
transfer learning algorithm. Using these transferred target data the algorithm can
employ the original ELM to evaluate the quality of the transfer by calculating the
MSE. Repeating this transfer step 100 times with different random training points
yields the averaged MSE 0.001(±0.001) for the points used to train the transfer and
0.129(±0.381) for the other points (standard deviations in brackets). An example
run is shown in Figure 4.14c. The median error of 0.035(±0.381) reveals outliers
caused by local minima that disturb the gradient descent, therefore, the solution of
Ninit = 10 repetitions (random initializations) giving the lowest MSE is selected in
the robotic setup.

4.3.3 Experiments II:
Drumming Through Mirror on Humanoid Robot

This chapter aims at the evaluation of transfer learning for complex robot skills. The
upper body of the humanoid robot Affetto has to play a drum positioned on a table
in front of the robot, as shown in Figure 3.13. For the Transfer Learning condition
of the experiments, the Affetto robot is not allowed to observe the drum directly
and has to learn a new parameterized skill P̂S. As shown in Figure 4.15a, the robot
is commanded to rotate its upper body into the direction of a mirror. As before, the
marker position of the drum is extracted by blob detection. The rotation angle of
the upper body is fixed, the task parameterization τ̂ = (ximg, yimg)

⊤ 6= τ is given
by the perceived location of the reflection of the marker in the mirror. Accordingly,
there is a considerable difference in the mapping P̂S(τ̂ ) 6= PS(τ̂ ), so that relearning

of P̂S(τ̂ ) becomes necessary.
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(a) (b)

Figure 4.15: Task parameterization of the modified perception in the drumming
scenario.

Transfer Learning with Mirror

To solve this modified task, four learning schemes have been evaluated: i) the modi-
fication of the parameter space is ignored and the previously acquired parameterized
skill PS is evaluated, as in Section 3.4.3; ii) relearning the task from scratch is
performed in the same way as in Section 3.4.3; iii) the parameterized skill obtained
in Section 3.4.3 is reused and training is continued with new human demonstration
samples by incremental learning. Thereby ignoring the modification of the parameter
space; iv) application of Transfer Learning as proposed in Section 4.3.1. Human
demonstrations are utilized to estimate Ψ̃ by application of Equation 4.16.

Let D̂ = {(τ̂ k,θk)|k = 1, . . . , N̂tr} be the new data set for transfer learning.
Training is performed on N̂tr = 6 human demonstrations for drum positions dis-
tributed in the workspace of the robot. Each learner is incrementally trained with
3-5 randomly selected samples of D̂ and generalization performance is evaluated for
6 randomly selected unseen drum positions. The experiment is repeated ten times
and the results of the evaluation can be seen in Figure 4.16.

Thereby, a baseline is given by the evaluation of the previously learned skill PS(τ̂ )
(i) resulting in a low performance due to the modifications of the task. Continued
training of PS(τ̂ ) (iii) with new samples is also not able to adapt to the new task
situation. A significantly better performance can be reached by transfer learning (iv)
in comparison to relearning from scratch (ii).

4.3.4 Discussion

In this section, a novel transfer learning algorithm was presented, that aims at
domain adaptation problems with a few labeled instances from the target domain
and without correspondence information between the source and target space.

Evaluation of the method was performed on a toy data set for illustration and
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on a real world robot scenario in order to transfer complex motor skills. The ap-
proach significantly outperformed two baselines and a retrained model and supported
hypothesis H4.3
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Figure 4.16: (a) Evaluation of the Transfer Learning approach against three test
conditions: No update of the ELM for new situations, learning of a new ELM and
continued training of the previous ELM. (b) Significance analysis of results for 3,4
and 5 presented training samples. Confidence interval is based on evaluation of 10
repetitions with 6 random unseen drum positions.
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Chapter 5

Parameterized Skil ls for
Compliant & Soft Robots

Chapter Overview This chapter tackles the improvement of low-level control of
highly compliant robotic systems by a combination of machine learning and classical
control methods: First, an improved low-level control of pneumatic robots is presented
that integrates an equilibrium model of the actuator. The inverse equilibrium model
represents simplified properties of the dynamics of the robot, i.e. in case velocity
and acceleration are zero. Second, an active compliant control mode that allows for
kinesthetic teaching of highly compliant robots is proposed. Experimental evaluation
was performed on a highly compliant, continuum soft robot and the humanoid robot
platform Affetto. Further, the applicability of the proposed control mode for industrial
light-weight robots is elaborated.

This Chapter is Partially Based on:

❼ Queißer, J. F., K. Neumann, M. Rolf, R. F. Reinhart, and J. J. Steil
2014. An active compliant control mode for interaction with a pneumatic soft
robot. In 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Pp. 573–579

❼ Rolf, M., K. Neumann, J. F. Queißer, F. Reinhart, A. Nordmann, and J. J.
Steil
2015. A multi-level control architecture for the bionic handling assistant. Ad-
vanced Robotics, 29(13: SI):847–859

❼ Balayn, A., J. F. Queißer, M. Wojtynek, and S. Wrede
2016. Adaptive handling assistance for industrial lightweight robots in sim-
ulation. In IEEE International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), Pp. 1–8
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❼ Malekzadeh, M. S., J. F. Queißer, and J. J. Steil
2017b. Imitation learning for a continuum trunk robot. In Proceedings of
the 25. European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning. ESANN 2017, M. Verleysen, ed., Pp. 335–
340. Ciaco

5.1 Compliant & Soft Robots

Bionic soft robots offer exciting perspectives for more flexible and safe physical
interaction with the world and with humans. Unfortunately, their hardware design
often prevents analytical modeling, which in turn is a prerequisite to apply classical
control approaches. Further, also modeling by means of learning is hardly feasible
due to many degrees of freedom, a high-dimensional state spaces and the softness
properties, like e.g. mechanical elasticity, which causes limited repeatability and
complex dynamics. Nevertheless, the realization of basic control modes is important
to leverage the potential of soft robots for applications.

To tackle the challenges of control, this chapter presents a hybrid approach that
combines classical and learning elements for an improved control and the implemen-
tation of an interactive control mode. The presented work evaluates control methods
that superimpose a low-gain feedback control with a feed-forward control that is
based on a learned simplified model of the inverse dynamics. To reduce the high-
dimensional state space of the full inverse model of the robot, only equilibrium states
of the robot are considered. It is demonstrated on the Bionic Handling Assistant
(BHA), the humanoid robot child Affetto and an industrial light-weight arm, how
a respective inverse equilibrium model can be learned and effectively exploited for
quick and agile control. In a second step, the control scheme is extended to an active
compliant control mode. It implements a kind of gravitation compensation to allow
for kinesthetic teaching of the robot based on the implicit knowledge of gravitational
and mechanical forces that are encoded in the learned model.

Compliant Robots for Human-Robot-Interaction As robotic systems with
increasing complexity find their way into new application areas, the separation
of human and robot work space is not feasible. Human-Robot Interaction (HRI)
that aims for collaborative work or therapeutic use makes high demands on control
architectures and the robot structure. One requirement is a safe operation, since
the robot interacts with a human user, whereas classical stiff actuators have a high
potential of injury. As Figure 5.1 shows, one way to lower the risk of injury is the
reduction of the inertia of the moving parts of the robot. A second option to enhance
safety of mobile manipulators is to lower the stiffness of the actuator.

In recent years, interactive robots that incorporate pneumatic and hydraulic actu-
ators got more attention because of the inherent compliance of pneumatic actuation
and the advantage to build light-weight actuators. This can be achieved by moving
heavy parts into the torso of the robot in comparison to electrical actuators, which
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Figure 5.1: Relation of inertia and stiffness of a robot arm to the risk of head injuries
on collision, data extracted from Zinn et al. [2004].

demand heavy and voluminous brushless motors as well as gears, close to the joint.
One recent example is the actuator presented by Whitney et al. [2014]. They propose
a light-weight antagonistic actuator based on diaphragm cylinders that is actuated
by electronic motors located in the body.

Unfortunately the control quality of pneumatically actuated robots suffers from
control delays, friction and complex dynamic properties. Modeling all these proper-
ties is difficult or sometimes even not possible at all and does not permit a reliable
control. Moreover, additional environmental constraints, like the configuration of the
robot or external forces affect model properties. So even by neglecting different load
configurations of the actuator or contact forces during obstacle manipulation, the
systems are faced with a high complexity of the control problem. Dealing with those
challenges requires a dynamics model, parameterized by external configurations that
may evolve over time by cause of e.g. changing material properties or task demands.

The work presented in this chapter aims at the experimental verification of the
following hypotheses:

H5.1) The utilization of a learned inverse equilibrium model allows to improve the low-
level control of highly compliant pneumatic actuators. (Section 5.3.1 & 5.3.2)

H5.2) A detection of a mismatch between the learned inverse equilibrium model and
the real actuator signals supports the implementation of interaction modes on
highly compliant and continuous robots. (Section 5.3.1 & 5.3.3)

In the following, the robot platforms will be introduced.

5.2 Robotic Platforms

The robotic experiments for evaluation of the inverse equilibrium model based control
methods and the parameterized skills have been mainly performed on two platforms.
In comparison to common robotic manipulators, both platforms are driven by pneu-
matic actuation and thus have complex nonlinear dynamical properties. This includes
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noise, control delays, changing material properties, parallel kinematics and high fric-
tion. Therefore, joint level control suffers from the lack of proper inverse models and
results in a high tracking error. Those challenges makes the platforms an excellent
study object for the proposed methods in this thesis. Successful task execution is
not only based on a proper representation of joint trajectories, rather an additional
representation of the properties of the dynamics is required to enhance the tracking
performance and to allow for execution of precise movements.

Bionic Handling Assistant (BHA)

Cables for Length 

Measurement

End-Effector 

Segment

Base

Segment 1

Base

Segment 2

Base

Segment 3

(a) (b)

Figure 5.2: The Bionic Handling Assistant (BHA) robot. (a) Structural properties of
the robot including length sensors. (b) Example posture with a deformation caused
by a variation of the lengths of the pneumatic chambers.

The Bionic Handling Assistant (BHA) [Korane, 2010; Grzesiak et al., 2011] is a
prominent, award-winning1 robot platform designed by Festo as a robotic pendant to
an elephant trunk. It displays typical challenges in soft robotics. The most significant
challenge is induced by its novel actuation principle of co-activaion of three low-
pressure pneumatic actuators in each segment that cause continuous deformations in
shape. It has gathered strong interest because it belongs to a new class of continuum
soft and light-weight robots based on low-priced and rapid 3D manufacturing with
polyamide. It is pneumatically actuated and comprises several continuous parallel
components operated at low pressures, which makes the BHA inherently safe for
physical interaction with humans and provides a natural basis for future collaborative
robotics tasks. This very properties distinguish it as a very mature representative
from the field of continuum soft robots. The BHA robot is shown in Figure 5.2.
Control of the BHA requires advanced algorithms that cope with the resulting
redundancy, with non-stationarity due to the semi-fluid properties of the material,

1BHA won the prestigious German “Zukunftspreis” (future award) in 2010.
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and the slow dynamics of the pneumatic actuation. The actuators operate with low-
pressure pneumatics, which is not sufficient for a reliable control of the robot: air
pressure only describes a force which results in a deformation of the structure of the
robot. The structure of the BHA is separated into three segments (see Figure 5.2a).
Each segment consists of three triangular arranged air chambers. Therefore the
main flexibility of the BHA is based on nine air chambers that extend their length
in relation to the pressures in those chambers. A fourth end effector segment is
also available but was neglected for this work. An active depression of the pressure
of the chambers is not possible, solely the tension of the extended body reforms
the structure back to the home position. The robot has no fixed joint angles, each
robot segment starts to bend in the case that the three chambers reach different
lengths. Besides pressure sensors that are included in the air valves, the BHA is
equipped with cable potentiometers that allow to measure the outer length of the
air chambers that provide geometric information about the robot’s shape. The
segments of the BHA together with the attached cable length sensors are depicted in
Figure 5.2a. In the following, the pneumatic actuators of each segment are considered
separately and ignore the influence from the other segments. This approximation is
reasonable because the inter-segment interaction is neglectable in comparison to the
intra-segment interaction due to robot’s morphology and its light weight.

Affetto Robot

The Affetto is a humanoid robot child driven by pneumatic actuators, as introduced
by Ishihara et al. [2011]; Ishihara and Asada [2015]. It is developed in the frame of
the JST ERATO Asada Project2. Affetto is modeled after a one- to two-year-old
child for the purpose to study the early stages of human social development. But be-
sides the child-like appearance, the Affetto robot unifies a wide range of motion, high
compliance of the actuators and robustness. That makes the platform particularly
interesting for experiments that target explorative learning, human-robot-interaction
as well as the learning of low-level control signals. In particular, the robustness of
the directly driven pneumatically actuated joints allows for unintended collisions
with its own body structure or the environment during exploration without breaking
the robot’s structure. This is a crucial benefit in comparison to many of the high
degrees-of-freedom humanoid robots used in research. Besides the upper body, recent
work [Ishihara, 2016] introduces the full body joint mechanism that incorporates
26 pneumatic degrees-of-freedom. One particular challenge of the construction of a
child-sized robot are space constraints. Pneumatic actuation allows for direct driven
joints and the separation from the power source, i.e. compressor as well as valve
unit, and the actuator itself. But as for the BHA robot, pneumatic actuation is
challenging and results in complex dynamic properties. In particular for high-DOF
robots, the lack of proper control hinders the applicability for pneumatic robots
for complex applications. As an example, the 7-DOF pneumatic arm evaluated on

2Erato was the Greek Goddess of romantic poetry [https://www.jst.go.jp/erato/en/about/
index.html]. ERATO is also a near-acronym for “Exploratory Research for Advanced Technology”.

https://www.jst.go.jp/erato/en/about/index.html
https://www.jst.go.jp/erato/en/about/index.html
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calligraphy writing introduced in [Hoshino, 2008], suffers from overshoots up to 10%
of the joint range during the execution of dynamic motions. Further, robot systems
that lack proper low-level control are for example a pneumatic robot based on artifi-
cial muscular-skeleton system as presented in [Ogawa et al., 2011] or a pneumatically
actuated baby robot as proposed by Narioka et al. [2011].

(a)

1 2

34

5

6

7

8

Not Used

(b)

Figure 5.3: (a) Pneumatically actuated humanoid child robot Affetto, as presented
in [Ishihara et al., 2011; Ishihara and Asada, 2015]. (b) Joint configuration used for
experimental evaluations of this thesis.

5.3 Inverse EQ-Models for Low-Level Control

The evaluation of hybrid control methods that incorporate an inverse equilibrium
model of the plant will be presented in this section. Experiments have been performed
on the continuous soft robot BHA, the pneumatically driven humanoid robot platform
Affetto and a simulation of an industrial light-weight robot arm (UR5).

5.3.1 Bionic Handling Assistant (BHA)

Preliminary work of learning the equilibrium model of the BHA has been performed
by Neumann et al. [2013]; Neumann [2014]. It introduced the integration of the
equilibrium model into the low-level controller and presents an evaluation for step-
responses. For this thesis, the learning of the equilibrium model was reproduced
(H5.1) and a more exhaustive evaluation was performed. Additionally, a novel
control mode that is based on the equilibrium model of the BHA will be proposed
that provides a kinesthetic teaching mode and supports hypothesis H5.2.
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Inverse Equilibrium Model
for Length Control

A reliable and fast controller of the air chamber lengths is an indispensable prereq-
uisite for the application of the BHA. The control can, in principle, be done with
standard schemes like proportional integral derivative control (PID). The funda-
mental problem is that these approaches rely on quick and reliable feedback from
the robot, while the BHA only provides very delayed and noisy feedback due to its
pneumatic actuation and the visco-elastic mechanics. Consequently, the PID control
can only be applied with low gains, which corresponds to slow movements.

An inverse dynamics model f−1
dyn of the robot operating as feed-forward controller

in addition to the low-gain feedback control could significantly decrease control
delays. For the BHA, such an inverse model would map actuator lengths l and their
derivatives l̇ and l̈ to pressures p in the actuators.

p(t) = f−1
dyn(l(t), l̇(t), l̈(t)) (5.1)

However, the downside of the biologically inspired design of the BHA is that hardly
any analytic models are available. Traditional approaches such as inverse dynamics
based control becomes intractable. This fact qualifies learning as an essential tool
for modeling, but collecting a data set that fully represents the inverse dynamics of
the BHA is difficult.

Therefore, a simplified model is considered in this thesis, which is restricted to
the mechanical equilibrium points l∗ of the robot’s dynamics. Equilibrium points
are achieved by applying a constant pressure p∗ until convergence of the lengths for
a single segment. In such a state, neither lengths nor pressures of the pneumatic
actuators change over time: ṗ = l̇ = l̈ = 0. The formulation of the inverse dynamics
in Equation 5.1 thus simplifies to the following:

p∗ = f−1
dyn(l

∗, 0, 0)⇔ p̂(l∗) = p∗, (5.2)

where p̂ denotes the inverse equilibrium model that represents the direct relation
between length l∗ and pressures p∗. The inverse equilibrium model provides a direct
estimation of a reasonable control signal and can therefore serve as a feed-forward
control signal that is applied immediately without waiting for delayed feedback.

A schematic illustration of this approach is shown in Figure 5.4. The image
visualizes the BHA plant with its noisy and delayed feedback, the PID feedback
controller, and the inverse equilibrium model. The BHA receives pressure commands,
which are computed by a superposition of the low-gain PID controller and the
feed-forward control signal from the inverse equilibrium model. The feed-forward
controller computes pressures from desired length values by means of the inverse
equilibrium model. PID control is based on the difference of the desired length values
and the sensed length values. The PID controller thereby corrects the errors of the
feed-forward controller in the feedback loop.

Learning the inverse equilibrium model from scratch is nevertheless difficult for
several reasons: First, the underlying dynamics of the BHA result in a nonlinear
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Figure 5.4: The control loop: combination of a learned inverse equilibrium model
and a feedback controller. Leads to a fast estimation of the pressure configuration
pdes for the chamber lengths Ldes.

behavior which requires a model with appropriate complexity in order to capture
the structure of the data to a sufficient degree. Second, data sampling is limited
because the time until the physical deformations of the robot have reached a me-
chanical equilibrium can take up to 20 seconds for a single data point. Third, the
resulting samples are very noisy due to physical hysteresis effects induced by the
visco-elasticity of the robot’s soft material. Finally, the material changes its proper-
ties due to the history of the manipulation. A predefined working area can change
over time. Well-behaved extrapolation is thus a strong requirement on a learned
inverse equilibrium model. Machine learning approaches which are trained on such
data without additional efforts are prone to overfitting. To cope with these issues
thus becomes an important requirement for the learner. The proposed approach of
this thesis uses prior knowledge about the physical behavior of the BHA in order
to derive a reasonable model of the length-to-pressures relation in a mechanical
equilibrium in a data-driven manner [Neumann et al., 2013]. Note, that any other
algorithm that can handle these requirements is potentially applicable.

Learning the BHA’s Inverse Equilibrium Model with Prior Knowledge

For learning of an inverse equilibrium model, a machine learning approach is applied
that is able to incorporate prior knowledge about physical constraints of the BHA
in order to reduce over-fitting from few and noisy data and achieve well-behaved
extrapolation. The following prior knowledge about the BHA is considered: (i)
maximum and minimum pressure of the actuators are known in advance, and (ii)
the ground-truth behavior per axis is strictly monotonous, because higher pressure
in one actuator physically leads to an extension of this actuator.

Further, the observation that the entire mapping from length sensor values to
chamber pressures can be separated into three, independent problems is used. This
means that one inverse equilibrium model per segment (see Figure 5.2) is learned,



Inverse EQ-Models for Low-Level Control 101

which significantly reduces the demand for training data. This assumption neglects
the gravity effects caused by a deflection of the remaining segments. However, these
effects are rather small due to the robot’s light weight and are corrected by the
feedback controller.

The applied learning scheme is called Constrained Extreme Learning Machine
(CELM) and was first introduced in [Neumann et al., 2013]. It is a feed-forward
neural structure that comprises three layers of neurons. For the inverse equilibrium
model of a single segment of the BHA, the CELM comprises l ∈ R

I=3 input, h ∈ R
NH

hidden, and p̂ ∈ R
O=3 output neurons. The input is connected to the hidden layer by

the input matrix W inp ∈ R
NH×I . The read-out matrix is given by W out ∈ R

O×NH .
For input l, the output of neuron i is computed by

p̂i(x) =

NH∑

j=1

W out
ij f(

I∑

k=1

W inp
jk xk + bj), (5.3)

where bj is the bias for neuron j, and σ(x) = (1 + e−x)−1 the logistic activation
function. The components of the input matrix W inp and the biases bj are drawn
from a random distribution and remain fixed after initialization.

Let D = (L,P ) = (lk,pk) with k = 1 . . . Ntr be the data set for training, where
Ntr is the number of training samples. L ∈ R

I×Ntr is the collection of lengths, and
P ∈ R

O×Ntr is the matrix of target pressures for all Ntr samples. Supervised learning
is restricted to the read-out weights W out and accomplished by solving a quadratic
program which is subject to condition (i) and (ii) rephrased as linear constraints:

‖W out ·H(L)− P‖2 + α · ‖W out‖2 → min (5.4)

subject to:

(i)
∂

∂li
p̂i(l) > 0 :∀l ∈ Ω

(ii) psmin < p̂i(l) < psmax :∀l ∈ Ω,

where H(L) ∈ R
R×Ntr is the matrix collecting the hidden-layer states. The growth

of the read-out weights is controlled by the regularization parameter α. Ω is a
predefined region in the model’s input space, and s, i = 1, 2, 3 denote the segment
and the output and input dimension.

The prior knowledge given by (i), (ii) defines inequalities on the learning param-
eters W out at specific points l′ ∈ Ω, which are sampled according to the approach
in [Neumann et al., 2013]. Note that these inequalities are linear in W out. It was
shown in [Neumann et al., 2013] that a well-chosen sampling of the points l′ is
sufficient for generalization of the point-wise constraints to the continuous region Ω.

Experimental Evaluation of Length Control

This section contains the results of a cross-validation test and the experimental
evaluation of a linear model and the CELM model when applied in parallel to the
PID feedback controller.
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BHA Data Set For training of inverse equilibrium models, a data set is recorded.
It captures the relation between the geometric length of the air chambers for each
segment and the corresponding pressures in a mechanical equilibrium. Pressures are
measured in milli-bar and the segment lengths in meters. For each segment, the
pressure space is explored by applying pressures between minimum and maximum
value in five equidistant steps. This results in a pressure grid comprising 5 × 5 ×
5 = 125 samples. For each pressure, the resulting combination of three lengths
was recorded after a waiting phase of 20 seconds in order to reach the mechanical
equilibrium. In order to deal with the inherent variation due to the visco-elastic
material, this process is repeated five times with different traversal orderings, such
that 625 samples per segment are available for learning. The minimum and maximum
pressures, and the resulting length ranges are collected in Table 5.1.

Seg. pmax pmin lmax lmin N #Trials

1 800 mbar 0 mbar 0.32 m 0.17 m 625 5
2 1000 mbar 0 mbar 0.33 m 0.16 m 625 5
3 1200 mbar 0 mbar 0.32 m 0.16 m 625 5

Tab. 5.1: Properties of the BHA data set. Including pressure and length ranges of
the segments of the actuator.

The grid for the applied pressures of segment 1 is illustrated in Figure 5.5a. The
corresponding length values recorded on the robot are shown in Figure 5.5b. The
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Figure 5.5: Data set for chambers 1-3 of segment 1, each dimension represents one
chamber. Pressure grid with five samples per dimension (a) and the corresponding
length values (b). The nonlinear relation between lengths and pressures leads to
gaps in the input space of the data.

data are nonlinear, with huge gaps in the middle part of the target data, for which
generalization is critical.
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Cross-Validation and Generalization The generalization performance of the
learned models is evaluated on the BHA data set by cross-validation. Linear models
(LM)

p̂(l) =W T l+ b (5.5)

trained by linear regression and the constrained ELM model (CELM) with additional
use of prior knowledge are compared. An appropriate error measure for the learned
inverse equilibrium models is the per-axis average-deviation from the measured
ground truth value:

E =
1

Nte

Nte∑

k=1

1

D

D∑

d=1

‖pkd − p̂d(lk)‖, (5.6)

where Nte is the number of samples and D = 3 is the input and output dimensionality.

The results shown in Table 5.2 are obtained by cross-validation over the five
trials measured by the error function in Equation 5.6. For each fold, four trials are
used for training and one trial is used for testing the generalization ability of the
models. Additionally, the errors are averaged over the five folds. The mean and
standard deviation over the different cross-validation folds are presented in Table 5.2.
The mapping ability of the LM is too poor to capture the structure encoded in the

Segment LM (tr / te) [mbar] CELM

1 48.9±0.8 / 52.7±4.8 27.8±1.7 / 36.5±7.6
2 74.9±3.1 / 83.0±13.9 46.0±2.9 / 61.7±11.0
3 74.7±0.6 / 78.4±5.2 41.4+-1.6 / 54.6+-5.3

Tab. 5.2: Cross-validation errors of the BHA data set. Comparison between linear
model (LM) and constrained ELM (CELM).

BHA data, the training (tr) and test (te) errors are large and indicate under-fitting.
The CELM, in contrast, performs significantly better and is able to capture the
nonlinearity of the mapping underlying the data.

Experiment-In-The-Loop Experiments on the robot show the benefits of the
learned inverse equilibrium model on the length control, as proposed by hypothesis
H5.1. For a quantitative comparison, measure the time until convergence of the
lengths to different target values is measured. Convergence is achieved after the
desired lengths are reached with a certain accuracy ε as illustrated in Figure 5.6:

Given the target lengths l̂ and the measured lengths l, convergence is reached at

time t̃ if the error
∥∥∥l̂i(t)− li(t)

∥∥∥ for all actuators i is below the threshold ε for all

time steps after t̃ until tend is reached. For the experiments in this section tend = 10
seconds was selected.

The convergence time was measured for each tested model on five random pos-
tures and repeated for ten times. Figure 5.7 shows the mean convergence time for
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Figure 5.6: Illustration of the convergence time measure. Convergence time is
defined as the timespan t̃ whereupon the deviation of the measured lengths li(t) of
the chambers and the target lengths l̂i(t) stays below the threshold ε until tend is
reached.

all trials. It is demonstrated that the length control without a feed-forward control
signal, i.e. p̂ = 0, requires a much longer convergence time than a feed-forward
control with the linear model or the CELM. Furthermore, the figure shows that the
CELM model benefits from its capabilities to model nonlinear data distributions in
comparison to the linear model. It allows a more accurate prediction and thus a
faster convergence in 68.25% of all sample postures for all tube sizes and in 82.22%
for a tube size of ǫ = 0.35cm.

Figure 5.7: Convergence time of the length controller using different inverse equi-
librium models: ELM with constraints (CELM), linear model (LM) and without
inverse equilibrium model (none). Results are shown in relation to the tube size ǫ.

Equilibrium Model for an Active
Compliant Control Mode

In comparison to the implementation of a kinesthetic teaching mode on stiff robots
[Wang et al., 1998], a flexible robot structure allows the deformation of the actuator
to a certain extent due to its softness. The detection of a deformation, e.g. caused
by a human tutor, can be utilized to initiate a modification of the control variables
such that the robot complies with the deformed configuration. The learned inverse
equilibrium model of the robot can be used to detect deflections from the equilibrium
by comparing the measured pressures of the chambers with the expected chamber
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pressures for the current lengths computed by the inverse equilibrium model. The
control target lengths are then adopted such that the current configuration becomes
the new equilibrium point of the robot. The resulting control mode allows for
kinesthetic teaching of the robot as posed by hypothesis H5.2. This morphology-
driven external force detection principle reduces the required computational effort
and control complexity in comparison to classical approaches based on a full inverse
dynamics model and accurate force sensing.

Figure 5.8 shows the interconnection of the different control modules to enable
an active compliant control mode for the BHA. Essentially, the comparison between
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Figure 5.8: Active compliant control mode of the BHA achieved by application of a
learned inverse equilibrium model of the pressure-to-length relation in a mechanical
equilibrium.

measured pressure in the pneumatic chambers p and the predicted pressures ac-
cording to the learned inverse equilibrium model p̂ is added to the previous control
scheme shown in Figure 5.4. Whenever the error ||p − p̂|| is above a predefined
threshold Tth, the set-point ldes of the length control system is defined as the mea-
sured length sensor values lreal. This leads to a redefinition of the set-point if the
BHA is deflected from a mechanical equilibrium state. Such a deflection can be
induced by a human interacting with the BHA and allows to deform the robot easily
in an intuitive manner.

A critical parameter for the functionality and the sensitivity of the external force
detection is the threshold Tth. While smaller thresholds can result in drifts of the
actuator due to inaccuracies of the inverse equilibrium model, larger thresholds limit
the interaction quality due to an improper detection of external forces of the system.

Estimation of Threshold Tth In order to obtain a reasonable threshold Tth,
a data set of 25 postures and the respective prediction error values was recorded.
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Four postures of the data set and the corresponding errors are exemplarily shown
in Figure 5.9. The average error of the learned inverse equilibrium model is 44.4

(a) (b) (c) (d)

Figure 5.9: Stable postures of the BHA after manual reconfiguration in active
compliance mode. Manual reconfiguration of the BHA by a human tutor (A). Three
exemplary postures from the test data set (B, C and D). Model Errors in the
mechanical equilibrium: 50.6 mbar (B), 36.6 mbar (C), and 55.9 mbar (D).

mbar, while the standard deviation is 8.9 mbar. The maximum and minimum error
amounts to 58.7 mbar and 29.1 mbar, respectively. This motivates a threshold of
Tth = 60 mbar.

Active Posture Control in Human-Robot Interaction Figure 5.10 shows a
sequence of two manual reconfigurations of the BHA by a human tutor. The start

Threshold Tth

Final

Figure 5.10: Active posture control in human-robot interaction. The graph on the
lower part of the figure shows the prediction error ‖p − p̂‖ during human-robot
interaction. The dashed line marks the selected threshold Tth. It is demonstrated
that the prediction error exceeds Tth during the manipulation phase (adaptation)
and falls below Tth during the resting phase (hold posture).

configuration of the robot trunk is relaxed, the pneumatic actuators are deflated.
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After roughly eleven seconds, the human operator starts to push the robot to the
right side which deflects the robot’s length and pressure state from the mechanical
equilibrium point. This instantly induces an increasing prediction error ‖p− p̂‖ of
the learned model p̂. When the error exceeds the threshold Tth, the set point of the
desired length is reset to the current length sensor values. The length controller then
adopts the pressures accordingly such that the current robot configuration becomes
the new equilibrium point of the system. This tracking of the robot posture enables
the user to easily change the posture of the robot trunk.

After a short time span, the robot again reached a mechanical equilibrium such
that the error falls below the threshold (after approx. 16 seconds). During this time,
the arm stays fixed until a second manipulation phase is started by the user (after
45 seconds). The manipulations lasts for five seconds and ends after the desired
end posture is reached. The BHA stays stably in this position. This shows that
the proposed control scheme is able to provide an useful interactive control mode
without the need of complex internal models of the actuator. This human-robot
interaction mode offers new fields of application for soft robots in research and
practical applications.

Application Example The proposed active compliant control mode for the BHA
robot was successfully applied on a parameterized pick-and-place scenario. The
kinesthetic teaching mode allow the demonstration of movements with different target
positions and rotations for an apple picking task. The complete action was divided
into two primitives: 1) approaching an apple from a home position with respect to
the position and orientation of the apple; 2) approaching to a basket for releasing
the apple. The setup of the scenario is shown in Figure 5.12a. Generalization for
new targets was implemented by Task Parameterized Gaussian Mixture Models (TP-
GMM). The TP-GMM generalizes for unseen task instances by the combination
of the represented demonstrations from the transformation of a set of frames. An
illustration of a simplified setup is shown in Figure 5.11. For the representation of
recorded demonstrations, Figure 5.11a, two reference frames are defined. For this
example, the start position is defined as static reference frame and the goal position
as a variable reference frame. For each reference frame’s point-of-view, a GMM is
estimated that encodes the demonstrations, as illustrated in Figure 5.11b. Temporal
information that is required for trajectory generation can be encoded as an additional
feature dimension of the GMM. An alternative is the representation as a decay term
which yields a probabilistic representation of a DMP. Further details on GMM based
representations are discussed in Section 2.2.2. For the selected example, it can be
seen that the Gaussians of Frame 1 have a higher precision (inverse of variance) close
to the start point of the movement, whether the Gaussians of Frame 2 have a high
precision in front of the goal. Therefore, the model generalizes for movements from
a start position to a goal, independently of the goal position as Frame 2 encodes the
trajectories from the coordinate frame that is assigned to the moving goal.

As introduced in [Malekzadeh et al.], the experiments for apple picking perform
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Figure 5.11: Illustration of the Task Parameterized Gaussian Mixture Model (TP-
GMM). For training (a), multiple trajectories from demonstrations (1-3) are collected.
Demonstrations cover the variability of the task parameterization, i.e. positions of
the goal. Generalization is performed based on frames (b). For each frame one GMM
is estimated that encodes the all demonstrations.

generalization based on three frames. In addition to the end effector position, the
rotation is encoded as quaternions that allow an alignment of the gripper for the pick-
ing movement. More information on the implementation and the quaternion-based
representation for TP-GMMs is presented in [Malekzadeh et al., 2017a; Malekzadeh
et al.]. The results for generalized apple picking movements are shown in Figure 5.12.
Generalized postures during the approaching of the apple for different rotations and
positions are shown in Figure 5.12b-5.12d. The final posture for placing the apple
into the basket can be seen in Figure 5.12e-5.12g.

5.3.2 Affetto

In comparison to the BHA, the Affetto robot incorporates classical air cylinders
with an antagonistic actuation principle. The pressure difference in those chambers
correlates to a force that is applied to the link. The basic working principles of all
three pneumatic chamber types are shown in Figure 5.13. Each actuator of the BHA
robot is based on one air chamber that extends by increasing the pressure Pa. The
relation between the tension of the material that moves the actuator back to its initial
shape and the force generated by the air chamber that elongates the actuator results
in the output force of the actuator. Whereas the linear (Figure 5.13b) and rotary
(Figure 5.13c) pneumatic actuators of the Affetto robot are driven by two antagonistic
air chambers. The resulting force at the actuator is related to the difference of the
pressures in the antagonistic chambers. The experiment was performed on the inner
mechanics of the robot without assembled silicon skin parts that apply an additional
force during bending of the joints. Therefore, the equilibrium model of the Affetto
robot mainly represents the compensation for gravitational forces to remain at stable
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(a)
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(e) (f) (g)

Figure 5.12: (b-d) Different poses in apple reaching: the learned model was used
successfully to reach apples with different positions and orientations. (e-g) Different
positions of basket in apple picking: the model for the second part of the experiment
was examined in different situations.

postures. Note, it is expected that the proposed approach scales to changes of the
configuration of the robot, e.g. in case of an attached skin, learning of the robot’s
inverse equilibrium model can be done in the same way as described in this chapter.
The control of the robot is achieved by proportional valves, a commanded voltage
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Figure 5.13: Illustration of pneumatic actuator concepts.

controls the piston position in the valve which results in a variable the opening
diameter. Depending on the pressure difference, the opening of the valve leads to
an air-flow and thus a variation of the pressure in the chamber. Each chamber is
connected to a two-way valve that allows to open a channel for each chamber to
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the compressor to increase the pressure or open to the environment to decrease
the pressure in that specific chamber. The response characteristic of the pneumatic
valves is shown in Figure 5.14. The feedback controller for the presented experiments
is based on the PIDF controller as introduced in [Todorov et al., 2010]. The controller
extends the classical PID controller scheme for the antagonistic actuation principle
of the pneumatic actuators. The controller signals that are sent to the valve are
estimated by

u+i = kF




(
kP
(
q∗i (t)− qi(t)

)
+ kD

(
q̇∗i (t)− q̇i

)
+ ki

∫ t

0

(
q∗i (s)− qi(s)

)
ds

)

︸ ︷︷ ︸
PID Controller pPID

i

−
(
A−→

ab
pa(t)− pb(t)

)

︸ ︷︷ ︸
Pressure Difference,
Represnets Force pPD

i



. (5.7)

The factor A−→
ab

= Aa/Ab compensates for the relation of the active areas Aa and Ab

of the antagonistic chambers. It ensures a pPDi = 0, in case both chambers generate
an equal force. In case of a piston, Figure 5.13b, the rod reduces the active area of
one chamber resulting in A−→

ab
6= 1. The rotary actuator, Figure 5.13c, incorporates

equally sized active areas and thus results in A−→
ab

= 1. A PID controller pPIDi operates
in the domain of target pressure differences of the antagonistic chambers based on the
joint error qi. The commanded pPIDi is compared to the measured pressure difference
pPDi and results in the control signal u+i that adjusts the opening of the valves. The
relation between valve opening and control signal is shown in Figure 5.14a.

The controller can be interpreted as a nested PID controller that is wrapped by
an outer proportional controller with gain kF that controls the pressure difference
of the antagonistic chambers. This allows the inner PID controller to operate in
the force domain as the pressure difference correlates with the force of the actuator.
[Todorov et al., 2010] show that this control method results in a lower tracking error
as well as a lower time delay for trajectory tracking tasks compared to classical PID
control. They evaluate the PIDF controller on 2-DOF of a high-DOF pneumatically
actuated humanoid robot that has a comparable actuation principle as the Affetto
robot.

The evaluation of the PIDF controller on the hardware of the Affetto robot
reveals static control offsets. The effect is exemplary shown for joint #4 in Fig-
ure 5.15. For each joint, different static offsets can be observed. It can be assumed
that manufacturing tolerances of the valves are the main cause, since the offset is
not affected by the commanded trajectory nor the joint position. In particular, the
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Figure 5.14: Characteristics of the proportional valve (a) used for the control of
the Affetto robot. The voltage at the valve is given by UA = 5.0 + u+i respectively
UB = 5.0+u−i for each antagonistic actuator. Evaluation of the effects of friction on
the control of the pneumatic actuators (b). Color indicates the direction (q̇i=6 ≥ 0)
for approaching the target position for controller signals pPDi=6.

transition from fully closed to a slightly open valve has a highly nonlinear relation-
ship and is not symmetric, as highlighted by the red dashed circle in Figure 5.14.
To compensate for these disturbances, the implemented controller for the Affetto
platform introduces a dynamic offset compensation with a slow adaptation rate α:
poffseti (t + 1) = αpoffseti (t) + (1 − α)(pPIDi − pPDi ), with α = 10−3. The resulting
control signal, used for the control of the valves, is given by

u+i = kF (p
PID
i + poffseti − pPDi ) (5.8)

and vise versa u−i = −u+i , for the control of the valve of the antagonistic chamber.

Inverse Equilibrium Model
for improved Low-Level Control

As for the BHA, PID control can only be applied with low gains due to the pneumatic
actuation. Long tubes connecting the control unit with the actuators have to be
assembled inside the body of the child-sized robot. Additional sensory noise requires
low pass filtering and causes further control delays. Due to the similarities in
actuation principle, the experimental section will compare the performance of the
basic controller against an extended controller that incorporates a learned feed-
forward signal based on the inverse equilibrium model of the robot, as successfully
applied for the BHA. Instead of the representation of the chamber pressures in
relation to the posture of the robot, the inverse equilibrium model of the Affetto
robot represents the relation of the chamber pressures, represented in pPDi , due to
the antagonistic actuation principle. Therefore, the data set for training is given by



112
Parameterized Skills for

Compliant & Soft Robots

0 10 20 30 40 50 60 70 80

Time [s]

0.25

0.3

0.35

0.4

0.45

0.5

P
re

s
s
u
re

 R
e

la
ti
o
n

 ~
 F

o
rc

e

#4 Controller Signals

pPD

Target
Static Offset

Figure 5.15: Visualization of the evaluation of the joint controller for joint #4. A
static offset between the desired and reached pressure difference signal can be seen.
Each joint controller has a different offset. Each joint shows an independent offset.

D = (L,P ) = (qk,pPD,k) for k = 1 . . . Ntr training samples. In the same way as
before, weights W out and bias b of an ELM

p̂PDi (p) =

NH∑

j=1

W out
ij f(

I∑

k=1

W inp
jk qk + bj) , (5.9)

are estimated with respect to the minimization of the error of a recorded training
set. In the same way as for Equation 5.6, ridge regression was applied. As in the
previous experiment, input dimensionality is I = 3 and number of output neurons
p̂PD
i ∈ R

O=3 are are defined. The number of hidden neurons h ∈ R
NH and the

regularization γ of the readout weights are estimated by a grid search. No additional
constraints for the optimization are used, because a monotonic relationship of pPDi
and qi cannot be guaranteed. The resulting controller that incorporates the inverse
equilibrium model is defined as

u+i = kF (p
PID
i + poffseti + p̂PDi (q)− pPDi ). (5.10)

In case of the BHA, the force to overcome the friction of the actuator is much
lower than the forces occurring in equilibrium points. The Affetto robot suffers
from the friction in the actuators as it has a high relevance in relation to the
gravity and disturbs the training of the inverse equilibrium model. As an example,
a recorded evaluation data set reveals the huge influence of the actuator’s friction,
as shown in Figure 5.14b for the measured control signal pPDi for equilibrium states
qi. Depending on the actuator’s movement direction to approach target joint states,
distinct levels of pPDi can be observed. Positive movement directions, i.e. q̇i ≥ 0, are
marked red, otherwise blue color is used. In Figure 5.16, a more detailed evaluation
of the relation between joint positions of stable states and recorded control signals
pPDi is shown. In the lower part of the figure, the commanded joint positions and the
real positions are shown. In the upper half, the temporal aligned control signals that
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represent the force, pPDi and pPIDi , are plotted. The joint is commanded to follow a
square wave from 40% to 60% of the actuator’s range. The blue coloring highlights
stable states at 40% and the red coloring highlights stable joint states at 60% of the
joint range. It can be seen that the range of pPDi values in the stable states of the
two joint positions overlap. Additionally, it can be seen how the pressure relation of
the pneumatic chambers changes (e.g. at time 30sec.) to compensate for the friction
of the actuator until a overshoot of the controller can be compensated by the integral
part of the PID controller of pPIDi .
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Figure 5.16: Controller signals for an executed square wave trajectory. Red and
blue areas highlight the min and max values of the joint position. An overlap of the
controller signals for both states is highlighted by a red square.

To improve the response time of the slow integral error compensation, a further
extension of the low-level controller is proposed. It is assumed that in equilibrium
states, i.e. tracking error is zero as well as q̇(t) = 0 and q̈(t) = 0, the inverse
equilibrium model p̂PD(q) compensates for the integral component of the controller
pPIDi . This assumption allows to perform a reset of the error integration of the PID
controller to zero on direction changes of the actuator. This thesis will refer to the
controller without the reset of the integral component of the PID controller and no
additional equilibrium model as PIDF, to the controller that embeds the inverse
equilibrium model as PIDF EQ, and to the controller that embeds the equilibrium
model and the reset of the integral component as PIDF EQ I RESET.

Affetto Data Set For evaluation of inverse equilibrium model, a data set of the
right shoulder (joint #4-6, see Figure 5.3b) is recorded. It captures the relation
between posture qi of the robot and the corresponding values of pPD

i in a mechanical
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equilibrium, similar to the experiments of Section 5.3.1. The training data set
consists of Ntr = 500 samples of random joint angle configurations in the range
5-95% of the joint range. To ensure the recording of equilibrium states of the robot,
recording takes place after a duration of 2 seconds with no movement, i.e. ||q̇|| < 1.
The recording process estimates the mean value of ten successive recordings.

Cross-Validation and Generalization The evaluation of the generalization ca-
pabilities of the of the learned models of the Affetto data set is performed by
cross-validation. Optimal parameters for

❼ regularization γ ∈ {1e2, 1e1, 1e0, 1e−1, 1e−2, 1e−3, 1e−5,

1e−6, 1e−10, 1e−12, 1e−14, 1e−16}

❼ hidden layer size NH ∈ {10, 25, 75, 100, 125, 150, 175, 200}
are estimated by grid search, as shown in Appendix A.1. The result of the cross
validation of the inverse equilibrium model on the training set (tr) and test set (te),
for NH = 125 hidden neurons and a regularization of γ = 1, can be seen in Table 5.3.
As for the BHA experiment, the results are compared to a linear model. The results
indicate that the data set size is sufficient for the learning problem, as the difference
between training and test error is below 10−2. Moreover, the model benefits from a
nonlinear approximation since the ELM is able to achieve a slightly lower error rate.

Joint # LM (tr / te) [bar] ELM

1 13.52±0.25 / 13.52±0.94 10.54±0.48 / 10.54±1.9
2 5.49±0.10 / 5.49±0.38 3.67±0.1 / 3.67±0.52
3 16.51±0.16 / 16.51±0.64 11.57±0.34 / 11.57±1.34

Tab. 5.3: Cross-validation errors of the Affetto data set. Comparison between linear
model (LM) and ELM (ELM).

Trajectory Tracking Experiments The following experiments aim at an exper-
imental verification of hypothesis H5.1. For each evaluation of the three controller
variants, an optimization of the controller gains is performed. The optimization is
performed in a semi-automatic way by initial hand tuning and a successive automatic
optimization procedure as in [Todorov et al., 2010]. For the automatic optimization
of the parameters kP , kI , kD and kF of the feedback controller, a simultaneous in-
dependent optimization for each joint is performed. The reward for optimization of
the controller parameterization is given by

Ri(q
∗
i ,qi) = min

0≤tshift≤tspan−1


 1

T − tshift

T∑

t=tshift

(
q∗
i (tshift)− qi(t− tshift)

)2

 .

(5.11)
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The reward estimates the minimum tracking error shifted within a time-span of 200
milliseconds, tspan = 60Hz · 0.2sec. For each rollout of the optimization by CMA-ES,
the joint controller executes a predefined joint trajectory q∗ that is composed out of
sine-wave and step responses. To protect the robot in case of an unstable controller
configuration, the joint trajectory is limited to 5-95% of the joint range. In case the
robot’s joints exceed this limit and reach a joint configuration of 0-2% or 98-100%,
the joint controller is deactivated for the current rollout and a low reward is given.
For safety reasons, the optimization procedure was under human observation and in
case of unstable controller configurations human intervention was possible. Although
no human intervention was necessary during the optimization process. The result of
the automatic optimization process can be seen in Figure 5.17. Starting with the
initial hand tuned parameters as initialization, the automatic optimization process is
successful in finding significantly better controller parameters for trajectory tracking.
In all cases of the test set, the controller that utilizes the equilibrium model with
an additional reset of the integral part (PIDF EQ I RESET) resulted in the lowest
tracking error. The PIDF controllers with and without utilization of the equilibrium
model (PIDF & PIDF EQ) reach a similar performance, except for the fourth joint.
For the final evaluation of the tracking error of the actuator, a trajectory tracking
task was evaluated, as shown in Figure 5.18. The figure shows the target and reached
trajectories for each joint. The sample rate is fsample = 60Hz with a duration of
T = 85 seconds for the execution of the evaluation trajectory. For better visibility,
parts of the recorded data are shown with 4x magnification in the black rounded
rectangles. A similar performance of the PIDF controller with and without utilizing
the inverse equilibrium model can be seen. For the PIDF controller that utilizes the
inverse equilibrium model and performs an additional reset of the integral part of the
controller (PIDF EQ I RESET) less overshoots in case of the step responses as well
as a faster response following the sine wave can be observed. A detailed qualitative
evaluation of the three controllers is presented in Figure 5.19. The tracking error
Etracking(q

∗,qreal, tshift) for each joint in relation to the delay of the comparison
tshift is shown. The evaluation was performed with

Etracking(q
∗,q, tshift) =

1

T − tshift

T∑

t=tshift

(
q∗(t)− q(t− tshift)

)2
. (5.12)

The results reveal that the PIDF EQ I RESET controller (extended by the equilib-
rium model and an additional reset of the integral component) is able to reach the
lowest tracking error for all joints. Additionally, the proposed controller is able to
improve the time delay for the point of the lowest tracking error for two joints #5
and joint #6. The PIDF controller with the additional inverse equilibrium model
(PIDF I RESET) seems to suffer from high sensory noise (caused by mechanical con-
struction) of joint #4, for the remaining joints, the controller is not able to improve
tracking performance and reaches a comparable performance as the PIDF controller.
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Figure 5.17: Results of the semi-automatic optimization process of the PID con-
troller gains. For each joint one independent optimization was performed in parallel.
Optimization starts with a hand tuned parameterization and reaches a significantly
higher reward by automatic optimization.

Scalability to high-DOF Configurations The experiments that are presented
in the following utilize up to 8-DOF of the Affetto robot platform. They implement
the PIDF I RESET controller as introduced in the preceding section as it reaches the
lowest tracking errors. For each configuration of the robot that was used throughout
this thesis, an equilibrium model was recorded and parameter optimization of the
controller was performed. The results for the most complex configuration of 8-DOF
with an attached rubber hand (see Section 3.4.3) is shown in the following Table 5.4.
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Figure 5.18: Evaluation of three proposed controllers based on extensions of the the
PIDF controller as introduced by Todorov et al. [2010]. Experiment evaluates three
joint of the right arm (a-c). Trajectories are limited to 5-95% of the joint range.
Rounded squares highlight details with 4x magnification.
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Figure 5.19: Evaluation of the tracking error in relation to the time delay of the
proposed controller. Results show the evaluation of three joints of the right arm of
the Affetto robot (a-c). In (d), the comparison of lowest reachable tracking error for
each controller is shown. Units are mean errors in [%] of the joint ranges.

Controller: #1 #2 #3 #4 #5 #6 #7 #8

PIDF 2.14
±.05

3.54
±.06

3.38
±.08

2.71
±.05

1.84
±.04

4.38
±.08

4.51
±.10

5.24
±.10

PIDF + EQ 1.62
±.04

1.91
±.04

4.00
±.09

3.29
±.07

1.68
±.04

3.93
±.08

4.56
±.10

4.81
±0.10

PIDF + EQ + I 1.44
±.04

1.27
±.03

2.73
±.06

2.95
±.06

1.51
±.04

2.93
±.06

3.23
±.08

3.55
±.07

Tab. 5.4: Comparison of tracking performance with the PIDF controller, and the
PIDF controller extended by inverse equilibrium model (PIDF EQ) and additional
reset of the integral component (PIDF EQ I RESET). Units are mean errors in [%]
of the joint ranges.
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5.3.3 Compliant and Lightweight Industrial Robots

Figure 5.20: UR5 light-weight
robot in industrial context. Con-
strained working environment and
additional sensors are shown.

This section investigates the applicability of the
previously proposed interactive control mode,
for industrial light-weight robots. Typically,
industrial robots are equipped with high qual-
ity dynamics models which makes learning ap-
proaches or hybrid methods for low-level con-
trol obsolete. But in case of compliant robots
in an industrial context, quick adaptations to
new working environments are necessary. Due
to the light weight and the high compliance of
the robot, equipment that is attached to the
actuators, like stiff tubes, cables or protective
skins, have a huge impact on the dynamics of
the robot system and yield motivation to trans-
fer the methods developed for soft robots to
industrial platforms. In the following, the ap-
plication requirements for robots in industrial
contexts will be discussed in detail, prior to the
introduction of a system that incorporates an
equilibrium based control mode.

Light-weight Robots in Industrial Contexts

A flexible production that targets small lot sizes requires flexible usage of industrial
light-weight robots. Light-weight robots [Popić and Miloradović, 2015] are used
in production systems to close automation gaps where a full automation is not
profitable, reasonable or possible. Further, they are supposed to support humans
in manufacturing tasks. Therefore, robots and their control systems offer modes to
enable intuitive interaction with the human worker. Common modes for interaction
are, for example, gravity compensation and joint impedance modes. These modes
are able to react to external forces and compensate the effect of gravity on the robot.
For instance, the human worker operates in gravity compensation to perform pick-
and-place tasks of heavy objects with assistance of the robot. In that case, gravity
compensation balances the weight of the robot and the load with a counter force
to make it moveable with less effort. However, gravity compensation requires exact
knowledge about the weight of the robot and the work loads. Otherwise, motions
of the robot become unpredictable and dangerous for the human worker and the
payload. To deal with this problem, the weight of the tool as well as the manipulated
object have to be declared to the robot system in advance. This additional effort
is a drawback for flexible robot systems that have to adapt quickly to frequently
changing tasks in modern manufacturing environments. Although methods for model
estimation and parameter search for models of rigid body dynamics exist, e.g. [Vuong
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and Jr., 2009; Goto et al., 2003; Ding et al., 2015], they cannot be applied in all
cases. For example, a high flexibility in the workplace design of the robot leads to an
individual configuration setup like stiff cables, soft grippers or protective shields that
are attached to the actuators. Without an appropriate model of those structures,
uncertainties in the dynamics of the robot can occur. A proper application of
light-weight robots is not feasible in this situation.

Control Architecture

The control architecture for the implemented compliant control mode is depicted in
Figure 5.21, it is designed according to the previous setup of the BHA, presented in
Section 5.3.1. The equilibrium model (1) estimates the expected torque τ̂ for the
current configuration q∗ of the robot. The interaction module (3) estimates a desired
posture update q based on the error (2) of the predicted τ̂ and real torques τ ∗ of
the robot. In case an error threshold is exceeded (4) the current target joint angles
(5) are updated or kept unchanged. This ensures that no drifts of the robot actuator
occur that are caused by noise or inaccuracies of the learned the equilibrium model.
The integrated PID position controller (6) updates the real torques q that are sent
to the simulator (7) and the robot model.
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Figure 5.21: Proposed control architecture for an inverse equilibrium model based
adaptive control mode on light-weight robots. Inverse equilibrium model (1), estima-
tion of prediction error (2), posture update based on prediction error (3), threshold
based activation of posture update (4), desired joint angles (5), position controller
(6) and robot simulator (7).
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Software Architecture

This section describes the software architecture that visualizes, simulates and con-
trols the UR5 robot. For the experiments with the adaptive control mode, the
robot simulator Gazebo3 is used to simulate the real robot behavior. In general,
the software architecture is implemented within the robotic framework OROCOS
(Open Robot Control Software Project)4 and its Real-Time capable Toolkit (RTT)5.
RTT allows an inter-component communication with output and input ports that
exchange data between the components. In this case the components mostly provide
and receive a six dimensional joint vector corresponding to the six rotational joints
of the UR5 robot.
Moreover, the software architecture for the compliant control mode of the UR5 repre-
sents a component structure that distributes functionalities of the framework to each
component. Components which are taken into account for handling an unknown
weight are a PID controller, Data Collector and an Interaction component. In our
setup the PID Controller substitutes the behavior of the hardware controller and
controls the robot by joint torques. Therefore, the input of the PID controller com-
ponent takes the desired target joint configuration and moves the robot by applying
torques on the robot joints.
The Data Collector component is switched on while collecting sample data from the
simulated UR5 robot in Gazebo. During this sampling, the mapping between joint
torques and the corresponding joint configuration is recorded.
Further, the interaction component provides the system with the trained equilibrium
model via its port. A steady comparison of joint torques in each joint configuration
with the provided torques from the Interaction component allows the compliant
control mode to follow external forces.
The presented framework architecture allows to integrate models and machine learn-
ing algorithms for physical simulation. Sampling the data is possible with less effort
than on a real robot and could be done on several machines simultaneously. The
sampled data, e.g. the joint torques, are compared and checked towards plausibility
to UR5 joint torques on the real robot. Further, sampling data in simulation avoids
safety issues like collisions.

Experimental Setup

For the evaluation of the proposed system, a training data set was recorded for
the estimation of the inverse equilibrium model. A distinct test data set is used for
evaluation of the quality of the inverse equilibrium model. As argued in Section 5.3.1,
the quality of the inverse equilibrium model influences the threshold for the posture
update and therefore interaction quality. The better the model approximation of the
equilibrium states of the UR5 robot, the lower the threshold Tth and consequently

3Gazebo Robot Simulation Tool - http://gazebosim.org
4Orocos - Open Robot Control Software - http://www.orocos.org/
5Orocos RTT - Real-Time Toolkit - http://www.orocos.org/rtt

http://gazebosim.org
http://www.orocos.org/
http://www.orocos.org/rtt
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(a) (b) (c) (d)

Figure 5.22: Visualization of the sensitivity of posture updates to external forces.
The sensitivity to loads at the end effector is shown for postures with positive (a)
and negative (b) angles of q3. The sensitivity is shown for posture changes of q2 and
q3 inside the workspace. Depending on the posture various sensitivities are achieved.
The sensitivity to directed forces for two sample configurations are shown in (c)
and (d), due to the redundancy of the robot, different sensitivities for the same end
effector position can be achieved.

the higher is the sensitivity of the robot to external forces. In case Tth is chosen to
low, system noise triggers a position update which results in undesired drifts of the
robot. The following experiments aim at the interaction quality by analyzing the
sensitivity of the robot in the real application, i.e. simulation. The evaluation of the
generalization capabilities for fixed load configurations is presented in Section 5.3.4.
Further work that aims at variable load configuration is presented in [Balayn et al.,
2016].

Acquisition of the Data Set To ensure data recording in an equilibrium state,
the robot’s positions and joint torques are measured 3.5 seconds after the joint
command is sent in order to reach torque stabilization. The recording constitutes
random positions that are chosen in specific intervals inside the robot’s workspace.
Overall Ntr = 15625 random positions are collected, as a grid with 5 random postures
per joint are recorded and the robot has 6-DOF (56 = 15625). Joint positions are
joint angles measured in radians and joint torques are measured in Newton meters.
The acquired data set is split randomized into equally sized training and test sets.
As shown in Section 5.3.3 the real robot has to operate in a constrained workspace,
therefore the environment was modeled in simulation and only postures that do not
collide with the environment are added to the data set.

5.3.4 Model Learning

Mapping of Joint Angles and Joint Torques To find a sufficient parameteri-
zation for model learning, a grid search with five-fold cross validation was conducted.
The results of the grid search are shown in Appendix A.2. For the implementation
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of the inverse equilibrium model, the Extreme Learning Machine (ELM, discussed in
Section 2.2.2) comprises q ∈ R

I=6 input, h ∈ R
NH hidden, and τ̂ ∈ R

O=6 output neu-
rons. The input is connected to the hidden layer by the input matrix Winp ∈ R

NH×I .
The read-out matrix is given byW out ∈ R

O×NH . For input q, the output of neuron o
is computed by

τ̂o(q) =

NH∑

j=1

wout
oj σ(

I∑

k=1

winp
jk qk + bj) , (5.13)

where bj is the bias for neuron j, and σ(x) = (1 + e−x)−1 the logistic activation
function. The components of the input matrix W inp and the biases bj are drawn
from a random distribution and remain fixed after initialization. The inputs are the
current joint angle configurations of the robot and target outputs are the observed
torques for each joint.

The data set for training is given by D = (A, T ) = (αk, τk) with k = 1 . . . Ntr,
where Ntr is the number of training samples. A ∈ R

I×Ntr is the collection of angles,
and T ∈ R

O×Ntr is the matrix of target torques for all Ntr samples. Supervised
learning is restricted to the read-out weights W out and accomplished by solving
ridge regression. The grid search resulted in the parameterization NH = 500 hidden
neurons and a regularization of γ = 10−5.

Threshold Estimation Threshold Tth (Equation 5.2) allows an update of the
robot posture during simulation. For identification of the threshold, the robot is
brought to an equilibrium state at random configurations. The torque differences
between the model prediction and the real measurement for each joint are estimated.
For extreme configurations in which the robot arm is approximately horizontal or
vertical, these prediction errors increase significantly. As the robot should keep a
stable position in its whole workspace, the maximum error of each joint is chosen as
a joint specific threshold.

Evaluation by Visualization of Sensitivity To evaluate the quality of the in-
teraction, the robot approaches several fixed positions. For evaluation, the additional
payload of the robot is measured from which the robot starts updating its posture,
as shown in Figure 5.22a & 5.22b. Since this evaluation covers only forces in the
direction of the gravity, an additional evaluation with directional forces at the end
effector is performed, see Figure 5.22c & 5.22d. The results support hypothesis
H5.1 and show the applicability of an equilibrium based interactive control mode
for compliant light-weight robots.

5.4 Discussion

This chapter demonstrated the applicability of learned inverse equilibrium models
to improve the low-level control of highly compliant actuators. The proposed hybrid
control methods apply classical control concepts in combination with an inverse
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equilibrium model of the robot. Experimental evaluation shows improved control in
terms of tracking error and response time and supports hypothesis H5.1. Based on
the introduced inverse equilibrium model a compliant interaction mode was proposed.
A mismatch of the predicted control signals and the measured control signals of the
low-level control is used to trigger an adaptation to external forces as addressed
by hypothesis H5.2. It allows to perform human-robot-interaction like kinesthetic
teaching as demonstrated by the example of an apple picking task.



Chapter 6

Parameterized Skil ls for
Control of Complex Robots

Chapter Overview This chapter presents an argumentation for task specific gen-
eralization of forward signals that support the execution of parameterized policies
by the feedback controller. The first part of this chapter evaluates the task specific
generalization of forward signals under the assumption that the required kinematic
representation, i.e. joint angle trajectories, is available. Experimental evaluation is
performed in simulation of a compliant 2-DOF arm and a trajectory tracking task on
a 6-DOF pneumatically driven humanoid robot child. The second part of this chapter
presents the combination of the learning of forward signals and the generalization
of joint angle trajectories for high-level skill learning. Evaluation is performed on
a complex scenario that involves kinesthetic teaching, control of a pneumatically
actuated robot and dynamic interaction with the environment.

This Chapter is Partially Based on:

❼ Queißer, J. F., H. Ishihara, B. Hammer, J. J. Steil, and M. Asada
2018. Skill memories for parameterized dynamic action primitives on the
pneumatically driven humanoid robot child affetto. In Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL-
EpiRob), Tokyo, Japan. IEEE

6.1 Primitive Based Dynamics Representation

As motivated in Chapter 1, modern robot applications often require skill learning
that covers task variability. Ijspeert et al. [2013] propose models for action generation
based on dynamic motion primitives and perceptual coupling. Further work extends
this idea and introduces parameterized skills to perform a generalization of action
primitives based on a high-level task description [Kober and Peters, 2010; Silva et al.,
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(a) (b)

Figure 6.1: Affetto robot, (a) upper body and internal structure as presented in [Ishi-
hara et al., 2011; Ishihara and Asada, 2015]. (b) Experimental setup. Further
information on the robotic system is presented in Section 5.2.

2012; Kober et al., 2012; Baranes and Oudeyer, 2013; Mülling et al., 2013; Reinhart
and Steil, 2014; Silva et al., 2014; Queißer et al., 2016].

As previously discussed in Section 2.1 & 5.1, interactive robots that incorporate
robust pneumatic actuators have received more attention for real-world applications.
In addition to their inherent compliance, a lower susceptibility to overheat and an
easy combination with light-weight backdrivable transmission systems, such like
proposed by Whitney et al. [2014], is possible. This is important, because the risk
analysis of head injuries on collision with robotic actuators by Zinn et al. [2004]
shows that one way to lower the risk of injury is the reduction of the inertia of the
moving parts of the robot. A further option to enhance safety is a decrease of the
stiffness of the actuator.

Unfortunately, the control of pneumatically actuated robots is impeded by delays,
friction and complex dynamics. The application of pneumatic robots in interactive
scenarios is confronted with additional challenges, like variable configurations of the
robot or unmodeled interaction forces. To deal with the aforementioned challenges,
the complete dynamics of the robot and the interaction is required for classical model
based control approaches. In addition to a parameterization by external factors, the
dynamics may evolve over time due to e.g. changing material properties caused by
wear-and-tear or task demands. Modeling these properties is difficult or sometimes
not possible at all and does not permit a reliable control of the robot system.

This chapter presents an extension of the concept of parameterized skills to gen-
eralize for additional feed-forward signals that represent complex dynamic properties
and reduce the tracking error of the low-level controller. In comparison to classical
approaches that estimate the complete inverse dynamics model of the robot [Kawato
et al., 1988; Nguyen-Tuong and Peters, 2011] or hybrid approaches [Nguyen-Tuong
and Peters, 2010; Romeres et al., 2016; Reinhart et al., 2017b] that incorporate learn-
ing, the proposed approach focuses on representations based on action primitives.
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Therefore, it combines kinematic representations with the concept of feed-forward
signal generation of the servo theory of the motor cortex [Schweighofer et al., 1998;
Kawato et al., 1987; Graziano, 2015b]. For a given parameterization of the task, the
parameterized skill (PS) is supposed to estimate a solution in terms of joint angle
trajectories that fulfill the task (as demonstrated previously, e.g. Chapter 3) and an
associated feed-forward signal that minimizes the tracking error of the joint controller.
This allows to shift the complexity from learning the complex dynamics of the robot
to task related primitives. In comparison of this work to the torque primitives for
impedance control, proposed in [Petrič et al., 2015], a continuous generalization of
forward signals based on a high-level task parameterization is performed.

The experimental platform is the Affetto robot [Ishihara et al., 2011], introduced
in Chapter 5, which is a pneumatically actuated humanoid with a large number
of antagonistically controlled joints. The robot Affetto does not support direct
torque control and does not provide dynamics models for reliable joint control. The
previously presented model for an inverse equilibrium based controller (Section 5.3.2)
improved the tracking performance, but due to the high compliance of the system,
interaction and tasks that require a high precision are hardly feasible. Thus, high-
level skill learning suffers from the high task complexity as well as delays and dynamic
effects caused by the pneumatic actuation. Note, the proposed method to encode
task-related feed-forward signals is not limited to pneumatically actuated robots.
It is particularly interesting for all robots that are difficult to control by classical
control schemes due to their complexity, like e.g. tendon driven actuators or soft
robots. The contribution presented in this chapter is an extension of online learning
of a parameterized skills for trajectory representations [Silva et al., 2012; Baranes
and Oudeyer, 2013; Reinhart and Steil, 2014; Silva et al., 2014; Queißer et al., 2016]
to incorporate an additional dynamics representation of highly compliant pneumatic
robot systems.

An experimental evaluation of the proposed approach shows an enhanced quality
of the control of a simulated compliant 2-DOF planar arm and demonstrates the
scalability to a complex real 6-DOF robot system. As in the previously presented
work for kinematic representations Chapter 3, a bootstrapping process is investigated
that results in an acceleration of the optimization process as more training samples
have been consolidated by the memory.

The work introduced in this chapter extends the parameterized skill [Queißer
et al., 2016] as presented in Chapter 3 and its contribution aims at the experimental
verification of the following hypotheses:

H6.1) Motion primitive based generalization of forward signals by the parameterized
skill support low-level control of complex robots without the need of an explicit
dynamics model. (Section 6.2)

H6.2) The task related generalization of forward signals in combination with a pa-
rameterized representation of movements allows to acquire complex skills on a
highly compliant robot. (Section 6.4)
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Figure 6.2: System overview of the proposed skill learning framework. The param-
eterized skill PS(τ ) is the core component and mediates between high-level task
parameters and feed-forward signals that represent the dynamic properties of the
robot system. Background color indicates functional grouping and the nested loop
structure of task parameterization, feed-forward signal optimization and primitive
execution.

6.2 Parameterized Skills for Dynamic Action Primitives

Previous work of Chapter 3, introduced parameterized skills as a mapping from task
parameterizations to motion primitives. This allows for generalization of actions,
i.e. joint angle trajectories encoded by DMPs, for new task configurations and
goals [Queißer et al., 2016]. Actions are optimized with respect to a reward function
by black-box optimization and used for incremental training of the parameterized
skill. For a given task such as 10-DOF arm point reaching, a parameterized skill
is able to generalize to adequate actions for new parameterizations (i.e. via-point
positions). If the parameterized skill generalizes, but is not successful, the optimizer
is used to solve the task. Successfully optimized tasks are used as training data
for the parameterized skill and successive optimizations benefit from an improved
initialization.

This results in a process that is called bootstrapping : the more solutions have
been solved, the less rollouts are required for a new optimization. Chapter 3 showed
that this leads to a significant speed up of the exploration of the parameterized skill.

For the extended work of this section, it is expected that the generalization of
joint trajectories for task parameterizations is already available. To extend the skill
learning framework for kinematic representations, the following experiments train
parameterized skills to generalize for forward signals that represent the dynamics
of the robot and its environment. An overview of the skill learning framework and
a differentiation between the kinematic and dynamic representation is presented in
Section 2.2. Thus, the parameterized skill generalizes for policy parameterizations
that are encoded into forward signals to support the feedback controller in execution
of the parameterized target trajectory. This work also constitutes a first step towards
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the generation of complex dynamic motions, since action primitives can be mixed or
sequenced. Training samples are gathered by iterative optimization of the initial guess
of the parameterized skill. The experiments evaluate the generalization capabilities
of the parameterized skill for forward signals that reduce the tracking error of the
feedback controller as well as the iterative optimization of forward signals and online
learning.

Figure 6.2 shows the structure of the proposed learning framework: Target
trajectories in relation to the task parameterization (Figure 6.2- 1❖) are assumed to
be given, as highlighted in red in Figure 6.2- 2❖. The generalization for feed-forward
signals pFFWD

i=1 (t) for the first iteration i = 1 is performed by the parameterized skill
PS(τ ) (Figure 6.2- 3❖) and its encoding (Figure 6.2- 4❖). Iterative optimization of
the generalized feed-forward signal pFFWD

i+1 (t) for one task instance (defined by τ ) is
given by Fig. 6.2- 5❖. Optimization is performed until convergence of the tracking
error has been achieved. The feed-forward signal giving the lowest tracking error
pFFWD∗

(t) is used as training target for an incremental update of PS(τ ). For
action execution, a feedback controller (Figure 6.2- 6❖) estimates a control signal
pPIDi (t) based on the current tracking error ei(t). The utilized low-level controller is
the PIDF EQ I RESET controller, as it shows the best performance on the robot
platform. Details on the low-level controller are presented in Section 5.3.2. The
additional equilibrium model based forward signal is represented by p̂PDi as shown in
Figure 6.2- 7❖. The resulting signal that is processed by the outer loop of the PIDF
controller is given by pi(t) = pPIDi (t) + pFFWD

i (t) + p̂PDi .

The parameterized skill does not estimate the complete inverse dynamics of the
robot system and its environment, as performed in case of classical robot control
applications for estimation of pFFWD

i (t). The generalization of optimized pFFWD
i

is based on the high-level task parameterization and is supposed to support the
feedback controller.

In the case of the Affetto robot, it is not possible to directly command joint
torques or accelerations. To abstract the antagonistic control signals that represent
the opening of the valves of the pneumatic chambers, the PIDF controller [Todorov
et al., 2010] is utilized as shown in Figure 6.2- 8❖. Further, the low-level controller in-
corporates an additional equilibrium model, as discussed in Section 5.3.2, to enhance
the precision of the system. This allows to operate with u(t) in the domain of desired
pressure differences that correlate to torques at the end effector (Figure 6.2- 9❖). The
overall system incorporates three nested loops: 1) Generalization of forward signals
and the respective joint angle trajectories for each new task instance; 2) Iterative
optimization of generalized forward signals; 3) Execution of the joint trajectory by
the low-level controller. A more detailed view on the loop structure of the skill
learning framework is presented in Section 2.2.

A crucial requirement for the estimation of optimized feed-forward signals is the
repeatability of the generated movements of the robot. As investigated in [Todorov
et al., 2010] for a humanoid robot with comparable air valves and actuation principle,
resulting end effector trajectories showed proper repeatability under multiple execu-
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tions of identical controller signals. Further, the system is faced with a multi-modal
representation: The parameterization of the task will affect the desired trajectory
as well as the optimal feed-forward signal, e.g. caused by different loads at the end
effector, variable stiffness of the actuator or changing trajectory durations. The
evaluation metric is the generalization performance of the parameterized skill for
feed-forward signals of unseen task parameterizations. It is expected that the more
training samples have been presented to the parameterized skill, the better is the
generalized feed-forward signal. Consequently, a gradually increasing tracking per-
formance as well as a reduced number of required optimization steps to achieve
convergence of minimizing the tracking error of the system is expected as well.

6.2.1 Component & Task Selection

In the following, the chosen signal representation, the algorithm for feed-forward
signal optimization, the selected learning method and the task variability are in-
troduced. The component selection is closely related to the previously presented
bootstrapping experiments in Section 3.2.1.

a) Feed-Forward Signal Representation:
The proposed method does not rely on a specific type of policy representation,
i.e. compact representation and encoding of forward signals to support the
execution of motion primitives. Many methods for compact temporal signal
representation have been proposed, e.g. based on Gaussian Mixture Models
(GMM) [Günter et al., 2007] or Neural Imprinted Vector Fields [Lemme et al.,
2014], as discussed in Section 2.2.2. The presented work relies on a dynamical
system representation based on Dynamic Motion Primitives (DMP) [Ijspeert
et al., 2013], because they are widely used in the field of motion generation and
show good task related generalization capabilities. DMPs for point-to-point
motions are based on a dynamical point attractor system. For encoding of
feed-forward signals as in Fig. 6.2- 4❖, a variant without scaling invariance
is implemented. Feed-forward signal uFFWD

j=1 (t) as well as its velocity and
acceleration profiles are defined as

p̈FFWD
j=1 = kS(g − u)− kDṗFFWD

j=1 + fFFWD(x,θ) (6.1)

The canonical system is typically as a linear decay and the disturbance fFFWD

is defined as motivated in Section 3.2.1. For the experiments in this chapter,
the number of Gaussians set to K = 20 per DOF for the feed-forward signal
representation. The DMP is parameterized by the mixing coefficients θk, gen-
eralized by the parameterized skill. Fixed variances Vk and a fixed distribution
of centers Ck as in [Ijspeert et al., 2013; Reinhart and Steil, 2015] are assumed.
The representation of the joint angle trajectories is performed in the same way
as discussed in Section 3.2.1.

b) Selection of Feed-Forward Signal Optimization Algorithm:
For optimization of feed-forward signals encoded by policy parameters θ given
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a task parameterization τ , Iterative Learning Control (ILC, [Arimoto et al.,
1984; Longman, 1998; Norrloff and Gunnarsson, 2002]) is applied. Integration
into the framework is shown in Figure 6.2- 5❖. ILC is a method for optimizing
control signals and was initially proposed as a solely feed-forward approach.
Application in combination with feedback control was demonstrated as well
in [Roover and Bosgra, 2000; Bristow et al., 2006]. A successive observation
and update of the feed-forward signal leads to a reduction of the tracking error
and thereby to a lower feedback controller response. An illustration of the
working principle is shown in Section 2.2.2. ILC is widely used in industrial
application areas, e.g. for enhancing positioning precision of machines [Chen
and Hwang, 2005; Kim and Kim, 1996]. A PD-Type learning function was
used for the presented experiments [Bristow et al., 2006]: the feed-forward
signal is updated based on a proportional (P) and derivative (D) gain of the
current error. ILC is based on a Q-Filter and learning function L. A low-pass
filter Q suppresses high frequency learning and contributes to the stability of
ILC. Further details can be found in the discussion in Section 2.2.2b and in
Figure 2.6. In this case, the Q-filter is given by the representation of the feed-
forward signal as the parameterization of a dynamical systems representation
(inherent smoothing), additionally a Gaussian filter is applied on the error
signal of the joint controller. Iterative adaptation including the update law L
of the forward signal is defined as

uFFWD
i+1 (t) = uFFWD

i (t) + kP ei(t+ d) + kD
[
ei(t+ d+ 1)− ei(t+ d)

]
︸ ︷︷ ︸

Update Law L(ei(t))

, (6.2)

for iteration i, proportional factor kP , derivative factor kD and system delay d.
The error ei(t) over time t is defined by the difference between target joint angles
q̃i(t) and real joint angles of the current iteration qi(t): ei(t) = q̃i(t) − qi(t).
For each joint an independent ILC is executed. Due to the high compliance
of the application and the pneumatic actuation principle, long and varying
temporal delays between the control signal and a response of the actuator can
be expected. Therefore, the current temporal delay d of the system depends
on the estimation of the time shift with the minimum error between the target
and the actuator response: min

d

1
T

∑T
t ||q̃(t)− qj(t+ d)||.

c) Selection of Learning Algorithm:
To allow the comparison of the methods that are proposed in this chapter to
the bootstrapping of parameterized skills as presented in Chapter 3, the learner
configuration was kept unchanged. For learning of parameterized skills PS(τ )
an incremental variant of the Extreme Learning Machine (ELM, [Huang et al.,
2006]) was implemented as discussed in Section 3.2.1. As before, hidden Layer
size was set to NH = 50 for generalization in joint space. Linear regression
is applied on a random projection of the input Winp ∈ R

NH×E , a nonlinear
transformation σ(x) = (1+ e−x)−1 and a linear output transformation Wout ∈
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#1 - #100

Figure 6.3: Shape variation at end effector that is used for evaluation.

R
F×NH that can be updated by incremental least squares algorithms. A more

detailed discussion on the learning method and parameter estimation of the
readout weights is presented in Section 2.2.2.

d) Selection of Parameterized Task:
For the experiments an evaluation of parameterized 2D end effector tracking
tasks is performed, as shown in Figure 6.3. Additionally, the end effector loads
are varied in simulation as well as the overall duration for the real robot of the
action primitives. As mentioned before the learning of the feed-forward signals
assumes that the joint angle trajectories are predefined.

6.3 Evaluation of the Dynamics Representation

In the following, the applicability of the proposed bootstrapping algorithm is pre-
sented. Therefore, two scenarios have been designed to test the bootstrapping of
parameterized skill according to the method presented in Section 6.2 for the repre-
sentation of forward signals.

6.3.1 2-DOF Planar Arm Task

The first experiment was performed in simulation of a 2-DOF planar arm. The simu-
lated compliant planar arm was modeled in the simulation environment VREP [Rohmer
et al., 2013]. To simulate a highly compliant actuator, two simulated joints are added
for each DOF of the robot. One joint is supposed to simulate a spring-damper system
and the other joint is controlled in torque mode. The simulation of the dynamics
was performed by the Newton Dynamics engine with a temporal resolution of 20ms.
Each DOF is driven by a feedback controller that considers the error between the
target joint angle and the measured joint angle. The measured joint angle is given by
the combination of the actuated and the compliant joints, as shown in Figure 6.7b.
Based on this error, the feedback controller scheme results in a control signal for the
actuated joint. In addition, the parameterized skill provides a forward signal so that
the final control of the actuated joint is based on the sum of the feedback controller
and the forward signal. As presented in Section 6.2, the task is parameterized by
the shape of the end effector trajectory and appropriate joint angle trajectories are
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estimated by the inverse kinematic solver of VREP. As a second dimension of the
parameterization of the task, the weight of a load that is attached to the end effector
of the robot is varied. The evaluation of the generalization properties of optimized
forward signals for single instances is shown in Figure 6.3. The tracking performance
of the PID controller with a zero forward signal (baseline) is compared to three
conditions in which the low-level controller is supported by forward signals gathered
by optimization of ILC for a specific shape parameterization (#1,#50 and #100, see
Figure 6.3). The parameters for the iterative ILC update have been estimated as
K = [kP , kD] = [0.005, 0.04] by manual tuning with a Gaussian window filter size of
100 timesteps. As it can be seen in Figure 6.4, the tracking error is much lower for
the shape parameterizations if the forward signal is optimized for this specific shape
(colored vertical bars). The more the shape deviates from the shape for which the for-
ward signal was optimized the higher the tracking error, since the used feed-forward
signal was not optimized for the selected shape. If the forward signal was optimized
for a shape that strongly deviates from the shape used for optimization, the tracking
error of the controller that utilizes the forward signal can be higher compared to the
case in which no forward signal is used. In this case, the forward signal perturbs the
trajectory tracking and is not beneficial for the feedback controller. This experiment
shows that the optimized forward signals are beneficial in a local neighborhood of
the task parameterization and generalization for task parameterizations is feasible.

Figure 6.4: Evaluation of generalization capabilities of forward signals with respect
to the task parameterization. Resulting tracking error of the 2-DOF arm with zero
forward signal (black) is compared to conditions in which the optimized forward
signal (FFWD) for a specific shape parameterization is used (#1, #50 and #100).

Based on the aforementioned observations, the evaluation of the generalization
capabilities of the parameterized skill is performed in the second experiment. To
evaluate the system performance during the presentation of random training tasks, a
fixed test set of parameterizations over shapes and load (0-2kg) has been generated.
For each iteratively presented training task instance, the generalization of feed-
forward signals of the parameterized skill is evaluated. Given this initial feed-forward
signal an iterative update of the forward signal by ILC is performed for optimization.
Iterations are performed until a convergence criterion of the joint tracking error
is fulfilled. Subsequently, the optimized forward signal for the given task instance
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Figure 6.5: Results of 2-DOF arm experiment. (a) The mean number of rollouts that
are necessary for optimization by ILC until convergence and (b) the tracking error
for parameterized tasks for forward signals decoded from θPS = PS(τ ) in relation
to the number of presented training samples. Results and confidence intervals are
based on ten repeated experiments.

is used as a training sample for the iterative update of the parameterized skill.
The evaluation of the generalization capabilities is performed by the estimation
of the tracking error on the test set. The results of this procedure are shown in
Figure 6.5, the MSE of the trajectory tracking task decreases with an increasing
number of presented training task instances. Additionally, it can be observed that
the number of iterations that are required to achieve convergence of the ILC for new
training tasks decreases as more solutions for tasks have been consolidated by the
parameterized skill. This allows for a bootstrapping of the learning process: the more
experience the system has in solving task instances the faster it can find solutions
for unseen instances. Figure 6.7c-6.7k shows the tracking performance of the end
effector for three shape parameterizations as more samples have been presented to
the parameterized skill. The results reveal that learning is successful, as the system
gradually enhances the precision of the task execution. After the presentation of
only two samples a higher variance in the generated samples can be observed, which
is caused by the high shape variability of the randomly selected training tasks.



Evaluation of the Dynamics Representation 135

6.3.2 Upper Body Control of the Affetto Robot

The second part of the evaluation is performed on the Affetto robot platform, as
shown in Figure 6.1. Further information on the robot platform is presented in
Section 5.2. The Affetto is a humanoid robot child that is driven by pneumatic
actuators, as introduced in [Ishihara et al., 2011; Ishihara and Asada, 2015]. For the
following experiments 6-DOF of 8-DOF (# 1❖-# 6❖, see Figure 5.3) of one side of the
upper body of the Affetto robot are utilized. The generated joint angle trajectories
are parameterized by the shape of the resulting end effector trajectory of the right
arm. The remaining 2-DOF are assumed to be optional joints and neglected in
the following evaluation. As before, experiments are based on parameterized end
effector trajectories as described in Section 6.2, but instead of a load, the duration
of the actions is varied (1.6-26.6 seconds) by a second task parameter. As for the
2-DOF experiment a kinematic model and the inverse kinematic solver of the VREP
simulator are utilized. It is ensured that the generated joint angle trajectories do not
contain multiple solutions of the redundancy resolution and can be represented as
parameterized functions. The simulation of the kinematics is shown in Figure 6.8a.
The PIDF controller [Todorov et al., 2010] is used as a basis for control of the
pneumatically driven joints of the robot and extended according to Section 5.3.2
by an equilibrium model and a reset of the integral component. The controller
parameters are optimized by automatic optimization and hand tuning on a test
trajectory that includes sine waves and step responses. Further details regarding
the low-level control can be found in Section 5.3. A grid search was performed to
estimate appropriate parameters for the iterative PD update step of ILC as well as
the filter width, as introduced in Section 6.2. The result of the grid search is shown
in Figure 6.8b, tracking performance was evaluated for shape parameterization #50.
Based on this evaluation the Gaussian window filter with was set to a width of 20
time steps and the update rate factor to 0.75K. As presented in Figure 6.8b, smaller
filter widths or larger step sizes do not result in lower tracking errors but enhance
the risk for instabilities during ILC optimization.

For evaluation of the system performance, the same scenario as for the 2-DOF
experiment of Section 6.3.1 was selected. The low-level controller for the antagonistic
actuators is defined as

u+i = kF (p
PID
i + poffseti + p̂PDi (q) + p̂FFWD

i − pPDi ). (6.3)

It is based on the PIDF EQ I RESET controller as introduced in Section 5.3.2 and ex-
tended by the forward signal p̂FFWD

i . As Figure 6.6 shows, the real robot experiments
reproduced similar results as the simulation of the 2-DOF arm. The parameterized
skill is able to enhance the generalization incrementally for unseen task parameteriza-
tions. The more samples have been used for training of the parameterized skill, the
lower the tracking error for the test set. Additionally, it can be seen that the same
bootstrapping effect as in the previous experiment occurs, a significant reduction of
the required ILC iterations with the gradually enhanced parameterized skill can be
observed. As in the previous experiment, the kinematics model was used to visualize
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the tracking performance of the end effector for three shape parameterizations during
presentation of training samples to the parameterized skill, Figure 6.8c-6.8k.
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Figure 6.6: Results of Affetto experiment. (a) The mean number of rollouts that
are necessary for optimization by ILC until convergence and (b) the tracking error
for parameterized tasks for forward signals decoded from θPS = PS(τ ) in relation
to the number of presented training samples. Results and confidence intervals are
based on ten repeated experiments.
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(a) Scenario overview (b) Kinematic chain of actuator
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Figure 6.7: (a) Experimental setup of the compliant 2-DOF arm experiment. Due
to the high compliance of the robot, tracking tasks on the 2D target plane (black
line) result in perturbed trajectories (red line). (b) Kinematic chain of the simulated
actuator. (c-k) Examples of the generalization of PS(τ ) to unseen tasks. For three
shape parameterizations and a fixed load, resulting target trajectories for zero forward
signal (c-e), with a parameterized skill trained with two samples (f-h) and with 10
presented training samples (i-k) are shown.
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Figure 6.8: (a) Experimental setup of the Affetto experiment. Tracking tasks on
the 2D target plane (black line) results in perturbed trajectories (red line). (b)
Results of parameter grid search of ILC filter width and step size. Mean minimum
reached MSE of three trials and range that includes all trials. (c-k) Examples of
the generalization of PS(τ ) to unseen tasks. For three shape parameterizations
and a fixed load, resulting target trajectories for zero forward signal (c-e), with a
parameterized skill trained with two samples (f-h) and with 20 presented training
samples (i-k) are shown.



Interaction in Dynamic Environments by
Integration of Kinematics and Dynamics 139

6.4 Interaction in Dynamic Environments by
Integration of Kinematics and Dynamics

This section aims at the demonstration of the full potential of the proposed parame-
terized skill framework for a primitive based kinematics and dynamics representation,
as proposed in Section 2.2. Therefore, the final scenario requires the complete 8-DOF
of the Affetto robot from the wrist to the hand of the right arm, as presented in
Figure 5.3. For a precise control of the robot’s actuators, the previously proposed
PIDF EQ I RESET controller is implemented as introduced in Section 5.3.2. An
overview of the scenario arrangement is presented in Figure 6.9. Besides the task
parameter that describe the position of the toy in front of the robot, the system is
faced with the challenge of a precise control of 8 pneumatic DOF of the robot. Due
to the given task in which the robot has to pull down the toy to generate a reward
value, the robot has to interact with the environment in a closed loop setup. In the
following list summarizes the challenges of the depicted scenario:

❼ Complex robot: sensory noise, 8-DOF, parallel kinematics, linear and rotary
actuators

❼ High compliance: pneumatic actuation

❼ Precise and powerful movements: triggering of a spring mechanism is required
to fulfill the task

❼ Parameterized scenario: robot has to generalize for different target positions
that induce strong variations of the robot’s movements

❼ Interaction with the environment: object manipulation (elongation of spring
mechanism)

❼ Difficult task: feed-forward signal is required for successful task execution

Scenario Setup The experimental setup simulates a typical scenario in which a
child is supposed to play with a toy. The upper body of the Affetto robot is located
in front of a baby gym as shown in Figure 6.9a. In the center of the baby gym, a
squishy toy is attached to a cable that is connected to a spring mechanism which is
mounted on top of the baby gym. The goal in this scenario is to pull down the toy.
A closer view on the toy, the attached cable, and the robot is shown in Figure 6.9b.
The spring mechanism is equipped with a cable length sensor. By pulling down the
squishy toy, the spring mechanism gets triggered. The spring deflects with a ratio
of 1/2 in relation to the length of the cable. Thus, the length sensor measures the
deflection of the spring and thereby the distance the toy was pulled down from its
initial position. A solid hand is attached as end effector to allow a manipulation
of the toy by the robot. The solid hand is equipped with spread-out fingers, thus,
the robot can hook the cable of the squishy toy between the fingers to pull it down.
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(a) (b)

Figure 6.9: Scenario overview of the interaction scenario

Nevertheless, to successfully hook the squishy toy between the fingers a high precision,
synchronization, and coordination of the 8 pneumatic DOF of the robot are required.
Besides the difficulty of interaction with an object, the robot has to overcome the
strong counterforce of the spring mechanism. The required precision and strength
of the movement cannot be handled by the feedback controller as it suffers from
compliance and long control delays. This ensures that an additional feed-forward
signal for the low-level controller is necessary to be able to fulfill the task. The
reward function for evaluation of the success of a performed action is given by

R(θ) =
1

e−10(utoy−0.5)
. (6.4)

A sigmoid function limits the measured sensor values utoy of the cable length to
stay in the interval [0, 1]. The distance the toy was pulled down from its initial
position is estimated by ∆ltoy = 101.6 · utoy/3.3 in centimeters. The baby gym can be
freely moved on a table in front the robot. The parameterization for a current task
instance is estimated by locating the red colored squishy toy in the center of the
camera image. As for the drumming scenario described in Section 3.4.3, the camera
is attached to the upper body of the robot.

Experimental Evaluation of Generalization Capabilities The main aim of
the experiment is to evaluate the generalization capabilities of the robot to adapt
its actions for unseen positions of the target object.

The task of the robot is to trigger the spring mechanism by pulling down the
plushy toy that is located in the center of the baby gym. Compared to the previous
experiments, successful trajectories for specific positions of the toy are gathered
by human demonstrations instead of policy optimization. Kinesthetic teaching is
selected for two reasons: on the one hand, it allows to reduce the experimental time
significantly as no optimization of the policy has to be executed. On the other hand,
optimization by policy search is difficult. Successful optimization of actions would
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require a further extraction of features of the visual stream during execution. As
an example, the reward function (Equation 6.4) does not provide information about
the distance of the hand to the toy, therefore an optimization of the movements of
the robot is hardly feasible by CMA-ES.

Only successful human demonstrations (reward of the action exceeds a threshold
R(θ) ≥ 0.85) are used for further processing and training data acquisition. For each
human demonstration, the robot performs an iterative optimization of the required
forward signals to minimize the tracking error and to reproduce the successful hu-
man demonstration. It is assumed that the minimization of the tracking error is
intrinsically tied to the maximization of the reward function. It is neglected that
the assumption is not met all the time, as discussed in the results section of the
performed experiments. For all training targets that consist of a successful human
demonstration and the optimized feed-forward signals, the parameterized skill is
trained with pairs of (τ i,θi) for i = 1 . . . Ntr. Up to 12 randomly selected training
samples for positions of the toy in the reachable workspace of the robot are presented
to the memory. During the incremental training an evaluation for the generalization
to a test set of unseen task instances is performed. The test data set consists of six
fixed random positions distributed in the reachable task space of the robot for eval-
uation. All experiments are repeated ten times with random learner initializations.
Evaluation is performed based on the reached reward for the unseen task instances.
The following paragraphs will introduce the details of each step.

Demonstrations

Evaluation

Encoding of

Toy Position

Camera Image

Size (Pixels)

of Toy
Joint

Rotation

Workspace
0 0.5 1

Parameter 1 (Rotation)

0

0.2

0.4

0.6

0.8

1

P
a
ra

m
e
te

r 
2
 (

O
b
j.
 S

iz
e
)

Figure 6.10: Top-down view of the Interaction Scenario setup. The robot is mounted
in front of a table. The baby gym with the attached target object can be freely
moved on the table.
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Acquisition of Training Data set For each of the Ntr = 12 training configura-
tion of the target toy, a human tutor presented a successful trajectory (i.e. exceed
threshold on reward) by kinesthetic teaching.

The following experiments use the PIDF EQ I RESET controller that incorpo-
rates the equilibrium model as well as reset of the integral part, as it showed the
best tacking performance. Further details on the low-level controller are discussed
in Section 5.3.2.

As previously introduced for the recording of trajectories for the drumming sce-
nario in Section 3.4.3, a predefined initial posture qstart is commanded as a target
for the joint controller to initiate the teaching mode. After convergence of the
robot to the initial posture, the compensation of disturbances by the feedback con-
troller is temporarily deactivated by setting the integral component of the controller
to zero kI = 0. It can be expected that the activated equilibrium model of the
PIDF EQ I RESET controller compensates for the integral component of the con-
troller for equilibrium states, as the proportional and derivative components have
a zero contribution in such cases. A deflection of the robot joint’s configuration
from qstart during the demonstration phase results in a counter force caused by the
feedback controller’s proportional gain. Thus, the robot tends to move its position
back to the initial configuration, as in the case of the drumming scenario in Sec-
tion 3.4.3. This control scheme results in an impedance control like behavior and
supports the demonstrator during kinesthetic teaching. Each trajectory recording is
run for trec = 3 seconds. For each of the 8-DOF of the robot, a DMP with K = 15
basis functions represents the joint angle trajectories encoded in θK . The kinesthetic
teaching of the robot for different positions of the toy is shown in Figure 6.12. During
a duration of trec, the human demonstrator has to: 1) move the robot hand towards
the squishy toy; 2) hook up the cable between middle and ring finger; 3) pull the
squishy toy down to exceed a reward/length threshold; 4) move the hand upwards to
release the toy; 5) return to the initial configuration qstart. Returning to the initial
configuration during demonstration was supported by the controller of the Affetto
robot. At the initial position, the demonstrator cannot feel any counter force of
the robot, due to the activated equilibrium model of the controller. For the repre-
sentation of the forward signals θD, a dynamical systems representation similar to
DMPs was implemented, as introduced in Section 6.2.1. PD-type ILC was executed
for 20 iterations to optimize the forward signals that reduce the tracking error. The
collected data is added to the training data set, in case the optimized action was
classified as successful by the reward function (reward exceeds a certain threshold).
The introduction of the ILC update and further discussions are presented in Sec-
tion 2.2.2 & 6.2.1. The final policy parameterization is defined as θ = [θK θD] ∈ R

35,
as introduced in Section 2.2.

The results of the minimization of the tracking error by ILC for the demonstrated
trajectories is shown in Figure 6.11a. Since demonstrations represent successful ac-
tions, i.e. return a high reward, the resulting reward for the demonstrated actions rises
as as more iterations of ILC have been performed, Figure 6.11b. In Appendix A.3,
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Figure 6.11: Evaluation of the optimization of all Ntr = 14 human demonstrations.
(a) Tracking error of the reproduction of the training samples during optimization
of forward signals. (b) The returned rewards correlate with the cable length.

the single evaluations for each demonstration are presented. Note, that due to the
execution of ILC for each joint independently and the complex interaction, a con-
tinuously decreasing tracking performance is not guaranteed. As an example, the
increasing precision of the joint controller allows to hook the toy, but due to the
successful hooking of the toy the robot cannot move its arm downwards due to the
counterforce of the spring mechanism. Therefore, the tracking error can temporar-
ily increase until further iterations of ILC compensate for the load of the spring
mechanism, as observed in case of Appendix A.3a.

The camera that is attached to the upper body of the robot performs a basic visual
search and blob detection of the squishy toy that is attached to the baby gym. The
object detection return the horizontal ximg ∈ [0, 1] and vertical yimg ∈ [0, 1] position
of the center and object size in pixels Aimg, normalized for reachable positions in
the workspace. To estimate the task parameterization, the robot moves to a fixed
starting configuration qstart (shown in Figure 6.9a) and centers the toy in the image
of the camera by only rotating the upper body orientation by joint q3.

As soon as the robot has aligned its upper body to the direction of the squishy
toy, the size of the pixel area of the toy is calculated. The calculation of the number
of pixels that correspond to the red colored toy Aimg is performed by a simple blob
detection on the visual image of the camera. The result is a 2D-vector that represents
the location of the squishy toy in relation to the robot τ = (Aimg, q

∗
3)

⊤. As for the
drumming scenario, the task parameterization encodes the final rotation of the upper
body 3q∗3. The estimation of the task parameterization is illustrated in Figure 6.10.
The final outcome is a 2D parameterization that represents the position of the drum
in relation to the robot.

Finally, the kinesthetic teaching and the optimization of the robot results in the
training set D = {(τ k,θk)|k = 1, . . . , Ntr}, that is presented in a random order for
an incremental training of the parameterized skill.

Further, a per-joint analysis of the dataset for parameterized trajectories and
forward signals reveals the high complexity of the task, as shown in Section A.7.
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It can be seen that the trajectories as well as control signals vary significantly for
generalizations in the workspace. Not only the joint angles vary in relation to
the task parameterization, also the controller signals (in particular #2, #4 & #5)
indicate that the load of the robot changes between the joints in relation to the task
parameterization (i.e. toy position).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.12: Exemplary human demonstrations. The range of motion patterns for
close, medium, and far distances to the robot includes different strategies.

Evaluation of Generalization Capabilities Based on the previously recorded
training set, a parameterized skill is trained. The configuration of the learner was
depicted in the same way as described in Section 6.2.1. Evaluation of the performance
of the parameterized skill is performed by the reward function (Equation 6.4) that
assesses how well the robot is able to pull down the squishy toy. The distribution
of training and test data in the space of the task parameterization is shown in
Figure 6.9a. For evaluation ten unseen random positions have been selected and
evaluation has been repeated ten times (Ntr = 10 · 10) under random initialization
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of the training sequence and weights of the parameterized skill. For a comparison to
a baseline, the experiment was repeated without the estimation of the feed-forward
signals, i.e. θD = 0 and thus pFFWD = 0. Without an additional feed-forward signal,
the parameterized skill restricts its representation to joint trajectories and does not
support the low-level controller. The result of the experiments are presented in
Figure 6.13. Figure 6.13a shows the tracking performance of the low-level controller
for the generalized joint trajectories of the parameterized skill. It reveals that the
generalization of additional feed-forward signals allows to reach a lower tracking error
only if more than five training demonstrations have been presented to the memory.
In fact the spring mechanism got triggered for all evaluated positions in the test
set, exemplary snapshots during solving the test tasks are shown in Section A.8.
In the case that no forward signals are represented by the parameterized skill, the
precision of the executed actions of the robot is low and the robot fails to hook
the toy. Therefore, the robot’s actuators do not have to work against the force
of the spring mechanism and lower tracking errors can be reached, although the
performed action is not successful and the reward is low, as shown in Figure 6.13b.
In case the parameterized skill generalizes additional forward signals to improve the
tracking error, the robot is able to position the toy between the fingers and pull it
down. But pulling down the toy against the spring mechanism can only be handled
successfully after the presentation of further demonstrations. It can be seen that
as more demonstrations have been consolidated by the system, the success rate of
the robot to pull the squishy toy increases. A further evaluation investigated the
resulting controller signals during execution of the actions. The resulting magnitudes
of the control signals are shown in Figure 6.14. Figure 6.14a shows the feedback
and feed-forward components for execution of the training trajectories. The results
show that the forward signal (red) pFFWD becomes stronger as more ILC iterations
are performed. Consequently, the feedback signal pPID becomes lower as less model
uncertainties have to be compensated. The contribution of the inverse equilibrium
model p̂PD(q) stays constant as the same actions are performed for all evaluations.
Due to the applied PID-controller and the strong proportional gains, similarities
between the feedback signal and the tracking error can be identified. As expected, the
generalized forward signals, that originate from the optimization by ILC, are able to
significantly reduce the magnitude of the feedback for the demonstrations as well as
for the generalization for unseen task instances. In case no forward signals are used,
a reduction of the controller signals for low numbers of presented demonstrations
can be observed as well. This effect occurs due to self-collisions or collisions with
the baby gym for low numbers of consolidated demonstrations by the parameterized
skill. After the presentation of four demonstrations, no further noticeable reduction
of the controller signals can be observed for the system that does not generalize for
additional forward signals. Figure 6.14b presents the magnitude of the controller
signals for the controller that has no access to generalized forward signals (blue) and
the proposed controller of this chapter that combines feedback control pPID (red,
line) with generalized forward signals pFFWD (red, dashed). The signal magnitude
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is estimated by the mean of the absolute value of the respective control signals.
The results show that the generalization of forward signals is successful and reduces
the feedback controller response in comparison to the controller that is limited to
feedback.
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Figure 6.13: Evaluation of the generalization performance of the parameterized skill
after presentation of 1-12 of the Ntr = 14 human demonstrations. (a) Tracking error
and (b) reward values for 10 different task parameterizations and 10 repetitions
(Nte = 100).
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Figure 6.14: Feedback controller signal strength in relation to the number of iterations
of iterative learning control (ILC). (a) Mean values of |pPID| (blue), |pFFWD| (red)
and |p̂PD(q)| during iterative optimization of all Ntr = 14 human demonstrations.
(b) Mean values for |pPID| (red, line) and |pFFWD| (red, dashed) in comparison to
|pPID| (blue) of a controller without integration of forward signals. Results based on
10 different task parameterizations and 10 repetitions (Nte = 100).
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6.5 Discussion

In this chapter examines the applicability of parameterized skills for generalization
of feed-forward signals that support the feedback controller on control of highly
compliant robots. The presented experiments verify that incremental learning of
parameterized skills for representation of forward signals is possible as stated by
hypothesis H6.1. Incremental learning can significantly reduce the tracking error of
the humanoid robot Affetto as well as the number of required optimization iterations
for unseen task instances. One of the most fundamental argument throughout this
work is that learning is not bound to the complexity of the robot and its environment
since the system performs an action/task related generalization. The experiments
demonstrated the working principle on a chain of six highly compliant pneumatically
actuators without to refer to complex (model based) control strategies that deal e.g.
with friction nor time delays. Even under this extreme conditions, it was possible to
optimize for a complex task with a low number of rollouts.

Further, the proposed skill learning architecture was evaluated on a complex
scenario. The designed task requires interaction with the environment to solve a
parameterized task and addresses hypothesis H6.2.
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Chapter 7

Discussion & Conclusion

The main aim of this thesis is to investigate efficient skill learning that can be
applied on highly compliant robotic systems. Therefore, this thesis proposes a
novel skill learning framework that was applied on (even though it is not limited
to) pneumatically driven robotic systems. The proposed framework is based on
earlier research on parameterized skills, a memory structure that generalizes from a
high-level task parameterization to robot actions that fulfill given task constraints.
The high-level task parameterization defines the current task instance as it describes
all varying factors that are important for successful task solving. In addition to
a kinematic representation of a task, i.e. trajectories in joint angles or cartesian
space, this thesis introduces primitive based generalization of forward signals that
support the low-level controller in precise execution of motions. Those forward
signals represent unmodeled dynamics and compensate for repetitive disturbances
during task execution. This allows to perform high-level skill learning on complex
robotic systems with unmodeled dynamic properties. The representation of dynamics
in relation to a high-level task parameterization is not limited to the properties of
the robot, dynamics of complex interactions can be represented as well. As a study
case for complex robotic systems, this thesis refers to highly a compliant continuum
trunk-shaped soft robot and a pneumatically driven humanoid child robot. For
the acquisition of a skill, the parameterized skill consolidates parameterizations of
successful actions for specific task instances. The required successful task instances
can be gathered by kinesthetic teaching or by optimization with state-of-the-art
reinforcement learning methods.

Further contributions of this thesis can be classified into two scopes, as discussed
in the following:

Efficient Exploration of Parameterized Skills In case the parameterized skill
is trained with solutions of an optimizer, the designed reward function is a crucial
aspect for a good generalization performance of the parameterized skill. This thesis
shows that additional cost terms can support consistent training samples without
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ambiguities caused by the redundancy of the task solutions, which are introduced as
a regularization of the reward. To reduce the number of trials the optimizer has to
perform to acquire a skill, this thesis proposes a bootstrapping mechanism. Previous
experience is used to enhance the initial conditions for optimization of unsolved task
instances. Evaluation of the aforementioned methods shows a significant reduction
of the required trials as well as an improved generalization of the parameterized
skill. Further, task related manifolds are investigated to achieve an enhancement
of the efficiency of the skill learning. This thesis proposes a novel optimization
scheme that performs a hybrid optimization in the task and the policy space. This
allows a combination of a fast coarse optimization and slow fine tuning of actions.
Evaluation shows the applicability of the hybrid optimization for robotic scenarios in
simulation and on a real robotic setup. Additionally, a transfer learning approach for
the parameterized skill is presented that allows a quick (in terms of trials) adaptation
to altered perceptions.

Skill Learning on Highly Compliant Robotic Systems Real robotic systems
with complex dynamic properties suffer from the lack of proper feed-forward control.
Therefore, the execution of precise movements is limited and complex task learning is
hardly feasible. Learning approaches that estimate an inverse model of the complete
robotic system suffer from the huge state space. For this reason, this thesis explores
low-level control of highly compliant actuators that is improved by learned inverse
equilibrium models. The inverse equilibrium models capture simplified dynamic
properties, i.e. only stable postures of the robot. This thesis demonstrates that
classical feedback control in combination with learned inverse equilibrium models
leads to an improved control on two pneumatically driven robotic platforms. Addi-
tionally, an interactive control mode is evaluated that provides kinesthetic teaching
and human-robot-interaction on complex robotic platforms.

Finally, this thesis examines the feasibility of parameterized skills for generaliza-
tion of the aforementioned feed-forward signals that support the feedback controller
for control of highly compliant robots. Subsequently to an evaluation of the gen-
eralization capabilities of parameterized skills for forward signals, an integration of
kinematic representations and the representation of dynamic properties is pursued.
Demonstration is performed on a complex task that involves kinesthetic teaching,
interaction with the environment, control of a 8-DOF pneumatically actuated robot,
and parameterized task conditions.

7.1 Outlook

The promising results of this thesis motivate further research regarding high-level
skill learning. In the following, some aspects will be elaborated:

Applicability to Further Robotic Systems The proposed framework for skill
learning is not limited to pneumatically actuated robots and as demonstrated in
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simulation, not limited to an antagonistic actuation principle. As argued in this
thesis, the generalization of task related forward signals is able to compensate for
repetitive disturbances. As long as the repeatability of the robot is present, i.e.
similar control signals result in similar movements, it can be assumed that the
proposed control scheme is applicable. As an example, the control of tendon driven
robots or robots driven by pneumatic muscles could benefit from the proposed skill
learning framework.

Scalability to a Higher Complexity The experiments in this thesis demon-
strated skill learning for robotic systems with up to 10-DOF. One of the humanoid
robot systems with the highest complexity in terms of DOF is presented by Asano
et al. [2017]. It incorporates over 100 tendon driven actuators. From the point of
view of the generalization of the parameterized skill, learning is independent of the
output dimensionality as the parameterized skill performs a task related generaliza-
tion. Further, state-of-the-art optimization is able to handle high-dimensionalities
of the optimization problem. However, further advanced concepts that aim at skill
learning and learning of inverse models could be integrated in the skill learning
framework, like goal babbling Rolf et al. [2010] or skill babbling Reinhart [2017],
that efficiently deal with high dimensional learning problems.

The proposed skill learning methods assume a simplification of optimization of
forward signals: optimization of forward signals is performed independently per joint.
The applied method ILC, is very efficient as it follows a gradient information. But
independent optimization is may not sufficient to find good solutions for robotic
systems with an enhanced complexity. Therefore, a less efficient optimization based
on a global reward (e.g. based on combined tracking error) could be beneficial. Due
to the availability of a fast and not precise optimization method and an additional
precise optimization that is costly, the application of the hybrid optimization (HCMA-
ES), that is presented in this thesis, could be considered to combine the benefits of
both methods.

An Enriched Representation of Skills A further interesting issue is the ex-
tension of the proposed skill learning architecture for mixtures of primitives and
sequencing of primitives. Mixtures of primitives, for example, is a common tech-
nique to generate new motion patterns from a previously learned task set. As
demonstrated in this thesis, the parameterized skill is able to successfully generalize
forward signals for a changing task parameterization, this raises the question of how
inter-primitive generalization performs. In particular with consideration of primitives
that incorporate generalized forward signals of multiple parameterized skills.
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Appendix A

Appendix

A.1 Parameter Grid Seach for Inverse
Equilibrium Model of the Affetto Robot
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Figure 1.1: Cross-validation error for learning of the inverse equilibrium model.
R = 125 and λ = 1 have been selected for a compromise between a low error and a
low deviation of the solutions.
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Figure 1.2: Standard deviation for learning of the inverse equilibrium model. R = 125
and λ = 1 have been selected for a compromise between a low error and a low
deviation of the solutions.
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A.2 Parameter Grid Seach for Inverse
Equilibrium Model of the UR5 Robot

Figure 1.3: Cross-validation error for learning the inverse equilibrium model. Param-
eterization R = 500 hidden neurons and a regularization of γ = 10−5 were selected
for learning of the inverse equilibrium model.
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A.3 Optimization of Human Demonstrations
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Figure 1.4: Tracking error during optimization of forward signals by ILC for demon-
strated movements. All movements solve the task after optimization (R ≥ 0.85).
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A.4 Example Task Instances of the Drumming Scenario

Figure 1.5: Examples of randomly selected positions in the workspace of the Affetto
drum Scenario.
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A.5 Prototype Spectra of Human Demonstrations

Figure 1.6: Spectrograms of positive prototypes of drumming actions. Actions are
recorded by kinesthetic teaching and executed on the robot.
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A.6 Interactive Scenario: Joint Angle Trajectories
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Figure 1.7: Generalized joint angle trajectories of the interaction scenario. Results
for all ten task parameterizations of the evaluation, mean of 10 repetitions.
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A.7 Interactive Scenario: Optimized Forward Signals
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Figure 1.8: Generalized forward signals of the interaction scenario. Results for all
ten task parameterizations of the evaluation, mean of 10 repetitions.
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A.8 Interactive Scenario: Sucessful Generalizations
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Figure 1.9: Snapshots of successful actions that are generalized by the parameterized
skill. Joint angle trajectories and forward signals are used for motion execution.
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