
The Moran model with recombination
and the long-term evolutionary

experiment with E. coli by R. E. Lenski
Modelling, parameter estimation, and simulation

Dissertation
zur Erlangung des akademischen Grades
Doktor der Mathematik (Dr. math.)

vorgelegt an der Fakultät für Mathematik
der Universität Bielefeld

eingereicht von

Dipl.-Math. Sebastian Probst

am 10. September 2018

Betreuerin: Prof. Dr. E. Baake, Universität Bielefeld
Zweitgutachter: Prof. Dr. A. Wakolbinger, Goethe-Universität Frankfurt
Tag der mündlichen Prüfung: 25. Oktober 2018

Acknowledgements

I want to thank my supervisor Ellen Baake for giving me the opportunity to explore the
field of mathematical biology and population genetics in particular, as well as for guiding
me during my work for this thesis. She has always been accessible, have had confidence in
me, and she was not becoming tired of encouraging me to stay persevering. Furthermore, I
want to thank my colleagues and collaborators that have accompanied me on this journey.
First of all, Anton Wakolbinger for asking me to join the very interesting research project
about Lenski’s long-term evolutionary experiment. Moreover, I am grateful to Marc
Steinbach for the opportunity to use Clean and a special thank goes to his former PhD
student Daniel Rose for many constructive discussions about the numerical approach
in Chapter 3 and his proofreading. In addition, I like to thank all current and former
members of the ‘Biomathematics and Theoretical Bioinformatics’ group for the pleasant
and cooperative working atmosphere. In particular, Mareike Esser for the close cooperation
that has led us to the main results of Chapter 2, as well as Sebastian Hummel and Fernando
Cordero for proofreading this thesis.
Not least, I want to thank Gesine for her support and backing in the final stage of my
doctorate.

i

Contents

Acknowledgements i

List of Figures v

List of Tables vii

List of Algorithms ix

1. Motivation and overview 1

2. The Moran model with recombination and the partitioning process 5
2.1. Introduction . 5
2.2. Partitions and Möbius functions . 8
2.3. The model and the genealogical approach 10
2.4. The partitioning process . 16
2.5. Recombinators and sampling functions . 25
2.6. Restrictions to subsystems . 28
2.7. Duality . 40
2.8. Applications and examples . 47
2.9. Conclusion . 50

3. Parameter estimation approach for the Moran model 51
3.1. Goal and outline . 51
3.2. Moran model parameter estimation problem 52
3.3. NLP evaluation and details of implementation 54
3.4. Matrix representation of the generator and evaluation of the ODE system . 60
3.5. From simulation to observation data . 67
3.6. Numerical experiments and results . 71
3.7. Conclusion and prospect . 81

4. Modelling and simulating Lenski’s long-term evolutionary experiment 83
4.1. Introduction . 83
4.2. A probabilistic model for the LTEE and its law of large numbers 88
4.3. Including clonal interference . 97
4.4. Simulation algorithms . 107
4.5. Discussion . 109

iii

iv Contents

Appendix 115

A. Constrained optimisation 115
A.1. Theory of constrained optimisation . 115
A.2. Numerical algorithm for constrained optimisation 119

B. Multiple shooting approach for parameter estimation problems 127
B.1. Parameter estimation problem . 127
B.2. Multiple shooting approach . 128

C. Supplemental figures for Numerical results in Section 3.6 131
C.1. Results of experiments regarding different test cases 131
C.2. Time courses of the averaged normalised sampling functions 140
C.3. Runtimes of experiments regarding different test cases 144

Bibliography 147

List of Figures

2.1. Moran model with single crossover . 6
2.2. Full ancestral recombination process . 14
2.3. Marginalised ancestral recombination process 14
2.4. Construction of one possible ancestry fo a collection of sites 15
2.5. Marginal recombination probabilities . 16
2.6. One step of the partitioning process . 18
2.7. Correspondance of transitions forward and backward in time 21
2.8. Decomposition applied in the induction step of the proof of Lemma 3 . . . 33
2.9. Illustration for the proof of Proposition 4 in the case of four sites 35

3.1. Structure of the Jacobian of the continuity constraints 56
3.2. Structure of the Hessian of the Lagrangian function 57
3.3. Local update of the Hessian of the Lagrangian function 58
3.4. Flowchart of NLP-related evaluations . 59
3.5. Sparse structure of the generator’s coefficient matrices for three sites 61
3.6. Concept of implementation for the generator 63
3.7. Comparison of memory requirement for different concepts of implementation 64
3.8. From simulations to observation data . 69
3.9. Illustration of the hierarchy and iteration process to compute marginals . . 71
3.10. Structure of the experimental environment 72
3.11. Schematic illustration of distribution shapes 73
3.12. Logarithmic observation grid and time courses of averaged sampling functions 75

4.1. Illustration of some day of Lenski’s LTEE and the subsequent sampling . . 84
4.2. Empirical relative fitness data with error bars and corresponding power law 85
4.3. The relative fitness process and the approximating jump process 94
4.4. Cannings simulations (deterministic effects), disregarding clonal interference 96
4.5. Cannings simulations (deterministic effects), regarding clonal interference . 99
4.6. Heuristics simulations (deterministic effects), regarding clonal interference . 100
4.7. Cannings simulations (effects following exponential distribution) 105
4.8. Heuristics simulations (effects following exponential distribution) 105
4.9. Cannings simulations (effects following shifted Pareto distribution) 106
4.10. Heuristics simulations (effects following shifted Pareto distribution) 107
4.11. Synchronous growth model with equally-sized clones at the end of the day . 110

v

vi List of Figures

A.1. Showcase for a constrained nonlinear optimisation problem 116
A.2. Filter concept in constrained optimisation 123
A.3. Second order correction remedying the Maratos effect 124

B.1. Multiple shooting approach . 129

C.1. Results of a subset of all experiments regarding [8000 : uniform : 6 ; 1.0 ; full] 131
C.2. Results of all experiments regarding [8000 : uniform : 6 ; 1.0 ; full] 132
C.3. Results of all experiments regarding [1600 : uniform : 6 ; 1.0 ; full] 133
C.4. Results of all experiments regarding [8000 : logarithmic : 6 ; 1.0 ; full] 134
C.5. Results of all experiments regarding [1600 : logarithmic : 6 ; 1.0 ; full] 135
C.6. Results of all experiments regarding [1600 : logarithmic : 16 ; 1.0 ; full] 136
C.7. Results of all experiments regarding [1600 : logarithmic : 16 ; 0.1 ; full] 137
C.8. Results of all experiments regarding [1600 : logarithmic : 16 ; 0.1 ; reduced] . 138
C.9. Change of exit status regarding [• : logarithmic : 6 ; 1.0 ; full] 139
C.10.Histograms of the exit statuses’ relative frequencies for all test cases 139
C.11.Time courses of normalised sampling functions for two sites 140
C.12.Time courses of normalised sampling functions for three sites 141
C.13.Time courses of normalised sampling functions for four sites 142
C.14.Time courses of normalised sampling functions for five sites 143
C.15.Average SQP/NLP CPU times regarding [1600 : logarithmic : • ; 1.0 ; full] . . 144
C.16.Average SQP/NLP CPU times regarding [1600 : logarithmic : 16 ; 0.1 ; •] . . . 145
C.17.Total SQP solution times for each experiment 146

List of Tables

2.1. Total number and ratio of non-zero transitions of the partitioning process . 20
2.2. Transitions of the partitioning process connected with the previous approach 22

3.1. Fixed settings for the numerical experiments 73
3.2. Summary of parameter values determining the numerical experiments . . . 76
3.3. Number of non-zero elements for crucial NLP components (up to six sites) . 79
3.4. Saving of arithmetic operations for reduced accuracy (five, six sites) 80

4.1. Summary of parameter estimates and corresponding simulation results . . . 114

A.1. Algorithmic constants of a filter line-search SQP algorithm 124

vii

List of Algorithms

1. NLP evaluation cascade . 60
2. Constructor of the generator’s structure . 65
3. Update the generator’s data . 66
4. Linear map defined by the generator . 67
5. Iterative calculation of all marginals . 70

6. Simulating Lenski’s experiment (Cannings model) 108
7. Simulating Lenski’s experiment (thinning heuristics) 109

8. Basic Newton method for equality constrained NLP 120
9. Filter line-search SQP algorithm . 125

ix

Chapter 1.

Motivation and overview

The field of population genetics comprises mathematical models of genetical variation
between and within populations and was established in the first half of the 20th century
by the works of its founding fathers Ronald Fisher, J.B.S. Haldane and Sewall Wright (in
alphabetical order of their surnames). These models deal with the change (or evolution)
of existing variants (alleles) of one or more genes, within one or between several idealised
(sub-) populations of constant or fluctuating size; see, for example, [31] for a historical and
theoretical introduction. Broadly summarised, there are five main processes that drive
these models: genetic drift, recombination, and mutation on the level of gametes, as well as
migration and natural selection on the level of individuals’ phenotypes.
Genetic drift means neutral (i.e. independent of the alleles) random change of allele
frequencies between generations, see [69] for a propaedeutic discussion. The most basic
(reference-) models for one gene with two alleles under genetic drift are the Wright-Fisher
and the Moran model. Both assume constant, finite populations and can be described as
Markov processes. However, they model reproduction schemes differently. The first one
(named after Sewall Wright and Ronald Fisher) uses synchronous and discrete generations
and represents drift by randomly sampling the alleles with replacement from the previous
generation. The second one (named after Patrick Moran) permits overlapping generation
in continuous time. In each moment of reproduction, one individual is chosen to reproduce
and its single offspring replaces one individual that has to die. A third model class called
Cannings models (named after Chris Cannings, 1974) generalises the reproduction scheme
of the Wright-Fisher approach by allowing each individual to give birth to a random
number of offspring. This random number has the same distribution among individuals,
and individuals reproduce independently of each other.
Recombination denotes the partial exchange of genetic sequences between two gametes (as
it happens during sexual reproduction). Mutations are random changes of alleles that may
be caused by errors during replication or several types of environmental influences. They
can be categorised as beneficial, neutral, and deleterious, depending on their influence
on the fitness of the individual, i.e. how likely it is to survive and how successful it is at
reproducing. The key mechanism described by selection is the differential survival and
reproductive success of individuals due to their different phenotypes.

1

2

In this thesis we deal with extensions of two of the above-mentioned models for genetic
drift, namely a multilocus version of the Moran model with recombination and a Cannings
model with mutation and selection. A model treating migration is beyond the scope of this
thesis. For both models, the first main goal is to develop previous works ([16], [17], [42],
[97], [47]) further both conceptually and mathematically. The second goal is to provide for
possibilities to estimate model parameters and the third goal is to validate the findings
numerically.
In addition to the dedicated and detailed introductions and outlines at the beginning of
each chapter, let us give a brief preview. In Chapter 2, first, the Moran population process
(forward in time) is recapitulated. Then, a partition-valued Markov process (backward
in time) is introduced, which experiences splitting and coalescence, and turns out to be
dual to the Moran population process with respect to a specific sampling function. This
sheds new light on the work in [16], [17]. Several properties of the sampling function and
the partition-valued Markov process (especially due to restriction to subsystems) as well
as limiting results are stated. One of these findings, an ordinary differential equation
for the expectations of the sampling function, allows to formulate a general approach
to estimate the inherent recombination distribution by using methods from nonlinear
programming in Chapter 3. We not only state the numerical model as a constrained
nonlinear optimisation problem and go into computational details, but also propose an
efficient way for its implementation. Finally, for this part of the thesis, a test environment
is created and evaluated to give empirical assessment on the influence of the quality of the
observation data on the model fit.
In Chapter 4, we turn to a famous, ongoing wet lab experiment known as Lenski’s long-term
evolutionary experiment. First, we describe the experiment with the help of a Cannings
model with mutation and selection, which provides insight into the growth dynamics within
every single day and reveals a runtime effect. After the review of the ‘dynamical law of
large numbers’ result in [47], we return to finite populations and develop approximations
and heuristics, among them a refinement and extension of the one in [42] for the case
of competing beneficial mutations. Those heuristics allow to estimate model parameters
directly from the available experimental data. We support the finding with simulations of
the Cannings model and our heuristics using those estimates. Concluding, we compare
and discuss our results with previous ones by Lenski and his collaborators in [97].

Wide parts of this thesis are results of collaborations and have already been published or
submitted to scientific journals. Most of Chapter 2 arose from a joint project with (at that
time PhD student) Dr. Mareike Esser together with our common supervisor Prof. Dr. Ellen
Baake. The questions to be tackled were separate initially, but grew together more and
more throughout the project, so that the contribution of Dr. Esser and the author of this
thesis can not be disentangled in detail. Consequently, both theses contain the results of
the common publication [29] and complement them with independent additional findings.

Chapter 1. Motivation and overview 3

Specifically, here, Section 2.4 is extended by Corollary 1 up to the paragraph about the
connection with previous work by Bobrowski et al.; the latter is itself an expansion of
Remark 3 in [29]. Furthermore, the larger part of Section 2.6, beginning after Remark 6,
expands the restriction to subsystems to the normalised sampling functions and the parti-
tioning process, which are necessary to prove the marginalisation consistency of the duality
result in Section 2.7. The verification of this property was still missing in [29].
Chapter 4 is the result of a common project with Prof. Dr. Ellen Baake, Prof. Dr. An-
ton Wakolbinger, and Dr. Adrián González Casanova, which has been submitted as [4] just
prior to the submisison of this thesis.

Chapter 2.

The Moran model with recombination
and the partitioning process

2.1. Introduction

Models that describe the evolution of finite populations under recombination are among
the major challenges in population genetics. This chapter is devoted to the Moran model
with recombination (in continuous time), which is briefly described as follows (see [26, 17]).

Preliminary description of the model and two main lines of research. A chro-
mosome is identified with a linear arrangement (or sequence) of n discrete positions called
sites, which are collected in the set S = {1, . . . , n}. A site may be understood as a
nucleotide site or a gene locus. We will throughout consider chromosomes as (haploid)
individuals, that is, we think at the level of gametes (rather than that of diploid individuals
that carry two copies of the genetic information). Site i is occupied by letter xi ∈ Xi,
where Xi is a finite set, 1 6 i 6 n. If sites are nucleotide sites, a natural choice for each Xi
is the nucleotide alphabet {A,G,C,T}; if sites are gene loci, Xi is the set of alleles that
can occur at locus i. The genetic type of each individual is thus described by the sequence
x = (x1, x2 . . . , xn) ∈ X1 × · · · × Xn =: X, where X is the type space. Recombination
means that a new individual is formed as a ‘mixture’ of an (ordered) pair of parents,
say x and y. We will restrict ourselves to single-crossover recombination, that is, the
offspring inherits the leading segment (up to site i, for some 1 6 i < n) from the first and
the trailing segment (after site i) from the second parent. The recombined type thus is
(x6i, y>i) := (x1, . . . , xi, yi+1, . . . , yn); we say that a crossover has happened between sites
i and i+ 1. The sites that come from the paternal and the maternal sequence, respectively,
define a partition A of S into two parts (we need not keep track of which part was ‘maternal’
and which was ‘paternal’). All partitions of S into two ordered (or contiguous) parts
(A = {{1, 2, . . . , i}, {i+ 1, . . . , n}}, i ∈ S \ {n}) can be realised, via a single crossover event.
Altogether, whenever an offspring is created, its sites are partitioned between parents
according to A with probability rA, where rA > 0,

∑
A∈O2(S) rA 6 1, and O2(S) is the

set of all ordered partitions of S into two parts. Let us note that, due to the one-to-one
correspondence between elements of S \ {n} and those of O2(S), the specification of the

5

6 2.1. Introduction

������
������
������

������
������
������

��
��
��

��
��
��

��
��
��

��
��
��

���������
���������
���������
��������� ����������������

��
��
��

��
��
��

������
������
������

������
������
������

��
��
��
��

t

T

1 2 3 4 5

Figure 2.1.: Snapshot of a Moran model realisation with N = 5 individuals. For example,
in the first event, individual 3 dies and is replaced by a recombined copy of
individuals 2 and 3. The last line shows the composition of the population at
the final timepoint, T .

rA simply means that a crossover probability is associated with each site in S \ {n}. The
sum

∑
A∈O2(S) rA is the probability that some recombination event takes place during

reproduction. With probability r{S} = 1−
∑
A∈O2(S) rA, there is no recombination, in which

case the offspring is the full copy of a single parent. We write O62(S) := O2(S) ∪ {S} for
the set of ordered partitions into at most two parts. The collection {rA}A∈O62(S) is known
as the recombination distribution (see [21, p. 55]).
Consider now a population of a constant number of N haploid individuals (that is, gametes),
which evolves as follows (see Figure 2.1). Each individual has an exponential lifespan with
parameter 1 (this choice of the parameter is without loss of generality; it simply sets the
time scale). When an individual dies, it is replaced by a new one as follows. First draw
a partition A according to the recombination distribution. Then draw |A| parents from
the population (the parents may include the individual that is about to die), uniformly
and with replacement, where |A| is the number of parts in A. If |A| = 2, the offspring
inherits the leading segment of A from the first and the trailing segment from the second
parent, as described above. If |A| = 1 (and thus A = {S}), the offspring is a full copy of a
single parent (again chosen uniformly from among all individuals); this is called a (pure)
resampling event. All events are independent of each other.
Note that it may seem biologically more realistic to draw two parents without replacement.
However, assuming sampling with replacement entails significant simplifications, and yields
the same process as sampling without replacement with a slight change in the recombina-
tion distribution. More precisely, since drawing the same individual twice means that the
offspring is a full copy of this single parent, our process agrees (in distribution) with the
analogous process without replacement if rA is replaced by rA(N − 1)/N for all A ∈ O2(S)
(and r{S} is set accordingly). The model will be described more formally later.
For now, let us summarise the two main lines of research in this context. On the one
hand, there has been considerable interest in how the composition of the population
evolves over time, and, in particular, how the correlations between sites (known as linkage
disequilibria) will develop; see the overviews in [56, Chap. 5.4], [26, Chap. 3.3 and 8.2], or

Chapter 2. The Moran model with recombination and the partitioning process 7

[94, Chap. 7.2.4]. Since there is no mutation, a single type will go to fixation in the long
run, that is, the entire population will ultimately consist of this single type. In the absence
of recombination, this will be one of the types initially present, and it is well known that the
fixation probability for a given type equals its initial frequency. If there is recombination,
the type that ultimately wins can also be a newly-composed type, but little is known about
the fixation probabilities of the many possible types. The explicit development over time
is even more challenging, due to an intricate interplay of resampling and recombination.
It is usually approached forward in time, e.g., [74], [79], [80], [86], [5], [26, Chap. 8.2], or
[17]. In the deterministic limit, which emerges when N →∞ without rescaling of the rA
or of time, the population is described by a system of ordinary differential equations, again
forward in time. This system has an explicit solution, both for the type distribution and for
correlation functions of all orders, for an arbitrary number of sites (see [9] and [8]). This
also provides a decent approximation for large but finite populations in [5], but dealing
appropriately with the stochasticity of finite populations remains a major challenge.
The second line of research is concerned with genealogical aspects and sampling formulae.
Here, one starts from a sample taken from the present population and traces back the
ancestry of the various segments the individuals are composed of. A major challenge lies
in the calculation of the probabilities for the type distribution of a random sample, that is,
one aims at so-called sampling formulae, see [26, Chap. 3.6]. These questions are naturally
approached backward in time. Usually, one employs the diffusion (or weak recombination)
limit, that is, time is sped up by a factor of N , followed by N →∞ such that NrA → %A,
%A a constant, A ∈ O2(S). Obtaining sampling formulae is tied to the situation in which
the population has reached a stationary state; even this case is very hard to treat, and
coping with time dependence seems to be hopeless.

Goal and outline. The goal of this chapter is to build a bridge between these two
lines of research. We will explore the type distribution and the correlations over time,
in the stochastic setting. A starting point will be a recent paper [17], whose authors
approach this question. Their setting is entirely forward in time, which effectively hides
some of the underlying structure. In contrast, we will proceed backward in time and
provide a genealogocial approach for the analysis of correlations. The crucial notion in
this context will be that of duality between the original Moran model forward in time
and a suitable ancestral process that follows back the ancestry of selected segments from
today’s population. This will also shed new light on the results of [17]. In order to keep
the approach as general as possible, we will throughout adhere to the original (finite N)
model, without taking any limit, but will discuss the various scalings and limits where
appropriate.
The chapter is organised as follows. In Section 2.2, we start by collecting some important
facts about partitions and Möbius functions. We then (Section 2.3) introduce the model
more formally and motivate our genealogical approach, which may be considered a marginal

8 2.2. Partitions and Möbius functions

version of the usual ancestral process with recombination. In Section 2.4, we describe our
ancestral process, which is a partitioning process that keeps track of how the ancestral
material is partitioned between individuals and connect it to the previous work in [17]. In
Section 2.5, we introduce a systematic description via recombinators, which describe the
action of recombination on a population and have proved very useful in the deterministic
setting. We complement them here by sampling functions, which are additionally required
for finite populations. In Section 2.6 we study the impact of restriction to subsystems on
the recombinators, correlations as well as sampling functions and show that the partitioning
process is lumpable. The collection of sampling functions will be crucial since it will also
serve as duality function in Section 2.7, where the duality between the Moran model
forward in time and the partitioning process backward in time is proved. This proof, at
the same time, yields a differential equation system for the expectations of the sampling
functions, which are the building blocks for the linkage disequilibria. In Section 2.8, we
apply our results to the cases of two and three sites. We will see that the expected
linkage disequilibria (of second and third order) decay exponentially even in the presence
of resampling, and identify further linear combinations of expected sampling functions
that decay exponentially. For two sites, we also obtain the explicit time course for the
expected composition of the population, and, at the same time, the fixation probabilities
of the various types.

2.2. Partitions and Möbius functions

Working with partitions will be essential to our approach, and we will rely throughout on
the powerful concept of Möbius functions and Möbius inversion. Let us briefly collect the
basic notions and standard results; more background material as well as the proofs may be
found in [83], [13, Chap. 3.2],[1, Chap. I,II,IV] and [87, Chap. 3].

Partitions. Let W be a finite, nonempty, totally ordered set, such as a finite subset of
N; later, W will be S or a subset thereof. Let P = P(W) be the set of partitions of W . We
write such a partition as A = {A1, . . . , Am}, where Aj 6= ∅ for all j and Aj ∩Ak = ∅ for
all j 6= k together with A1 ∪ · · · ∪Am = W . We call Aj a block (or part) of A and m = |A|
is the number of blocks in A.
We say that a partition A = {A1, . . . , Am} of W is ordered (or contiguous, or an interval
partition) if every Aj is ordered in W , that is, Aj = {x ∈W | minAj 6 x 6 maxAj}. For
example, if W = {1, 2, 5, 7, 9}, then {{1, 2, 5}, {7, 9}} is ordered, but {{1, 2, 7}, {5, 9}} is
not. The set of all ordered partitions of W is denoted by O(W), the set of all ordered
partitions of W into (exactly) two parts is O2(W), and the set of all ordered partitions of
W into at most two parts is O62(W).
For a given partition A = {A1, . . . , Am} of W , let M := {1, 2, . . . ,m} = M(A) and, for
J ⊆M , we define AJ := {Aj}j∈J and AJ := ∪j∈JAj . AJ is a partition of AJ . In particular,

Chapter 2. The Moran model with recombination and the partitioning process 9

AM = A, AM = W , A{j} = {Aj}, and AM\{j} = A \ {Aj}, for any j ∈M . Note that M
depends on A, but we suppress this dependence when there is no risk of confusion. We
will throughout abbreviate J \ j := J \ {j} and J ∪ k := J ∪ {k}.
The natural ordering relation on P(W) is denoted by 4, where A 4 B means that A is a
refinement of B, that is, every block of A is a subset of a block of B; equivalently, B is a
coarsening of A. A ≺ B means that A 4 B and A 6= B. Together with the resulting partial
order, P(W) is a poset and, in particular, a finite lattice. P(W) has a unique minimal
or finest partition, which is denoted as 0 = {{x} | x ∈ W}; likewise, there is a unique
maximal or coarsest one, namely 1 = {W}.
When U and V are disjoint (finite) sets, two partitions A ∈ P(U) and B ∈ P(V) can be
joined into A ∪ B to form an element of P(U ∪̇V). Furthermore, if U ⊆ W , a partition
A ∈ P(W), with A = {A1, . . . , Am} say, defines a unique partition of U by restriction. The
latter is denoted by A|U , and its parts are precisely all non-empty sets of the form Ai ∩ U
with 1 6 i 6 m. In particular, 1|U is the coarsest element in P(U). For two partitions A
and B, the least upper bound will be denoted by A ∨ B, namely the finest partition C for
which A 4 C and B 4 C. Analogously define the greatest lower bound of A and B by A∧B.

Example 1. Consider W = {1, . . . , 5} and the two partitions A = {{1, 3, 4}, {2, 5}}
and B = {{1, 4}, {2, 3}, {5}} thereof together with a subset U = {1, 2, 4} of W . Then
A ∧ B = {{1, 4}, {2}, {3}, {5}}, A ∨ B = {{1, . . . , 5}}, and A|U = {{1, 4}, {2}}.

Möbius functions on the poset of partitions and Möbius inversion. The Möbius
function of a poset is a general and powerful tool in discrete mathematics. It may be
considered as a systematic way of implementing the inclusion-exclusion principle. We rely
on it in two contexts here: First, we use it to turn sampling without replacement into
sampling with replacement, and vice versa. Second, we need it to turn type frequencies
into linkage disequilibra.
Refering to [1, Prop. 4.6], let us only summarise here that the Möbius function µ is defined
for all A 4 C ∈ P(W) via

∑
A4B.4C

µ(A,B) =

1, A = C,

0, otherwise,
(2.1)

where the underdot indicates the summation variable. Let A 4 B ∈ P(W), with m = |B|
the number of blocks in B, and nj the number of blocks of A within block Bj of B, that is,
nj is the number of blocks in A|Bj , 1 6 j 6 m. The Möbius function of the pair (A,B) is
then given by

µ(A,B) =
m∏
j=1

µ
(
A|Bj ,1|Bj

)
=

m∏
j=1

(−1)nj−1(nj − 1)! , (2.2)

10 2.3. The model and the genealogical approach

see [83, Sect. 7, Ex. 1] or [13, Chap. 3.2, Ex. 4]. We can now state the fundamental Möbius
inversion principle as in [1, Prop. 4.18]. Let f and g be mappings from P(W) to C which
are, for all A ∈ P(W), related via

g(A) =
∑
B.<A

f(B). (2.3)

Then, this can be solved for f via the inversion formula

f(A) =
∑
B.<A

µ(A,B) g(B). (2.4)

More precisely, this is inversion from above. An analogous formula applies for inversion
from below; this relies on refinements rather than coarsenings, with ‘<’ replaced by ‘4’
in (2.3) and (2.4). It is important to note that Möbius inversion is not restricted to
functions; it also applies to bounded operators.

2.3. The model and the genealogical approach

In this section, we define the model formally and motivate our genealogical approach.

The Moran model with single-crossover recombination. We identify the popula-
tion at time t by a (random) counting measure Zt on X. Namely, Zt({x}) denotes the
number of individuals of type x ∈ X at time t, and Zt(A) :=

∑
x∈A Zt({x}) for A ⊆ X; we

abbreviate Zt({x}) as Zt(x). If we define δx as the point measure on x (i.e., δx(y) = δx,y for
x, y ∈ X), we can also write Zt =

∑
x∈X Zt(x) δx. Since our Moran population has constant

size N , we have ‖Zt‖ = N for all times, where ‖Zt‖ :=
∑
x∈X Zt(x) = Zt(X) is the norm

(or total variation) of Zt.
So, {Zt}t>0 is a Markov process in continuous time with values in

E :=
{
z ∈ {0, . . . , N}|X| | ‖z‖ = N

}
, (2.5)

where |X| is the number of elements in X. We will describe the action of recombination on
(positive) measures with the help of so-called recombinators as introduced in [9]; see also
[5] for a pedestrian introduction. Let M+(X) be the set of all positive, finite measures
on X and we understand M+(X) to include the zero measure. Define the canonical
projection πI : X →

�
i∈I Xi =: XI , for I ⊆ S = {1, . . . , n}, by πI(x) = (xi)i∈I as usual.

For ω ∈ M+(X), the shorthand πI .ω := ω ◦ π−1
I indicates the marginal measure with

respect to the sites in I ⊆ S, where π−1
I is the preimage of πI . The operation . (where the

dot is on the line and should not be confused with a multiplication sign) is known as the

Chapter 2. The Moran model with recombination and the partitioning process 11

pushforward of ω w.r.t. πI . In terms of coordinates, the definition may be spelled out as

(
πI .ω

)(
xI
)

= ω ◦ π−1
I

(
xI
)

= ω
(
{x ∈ X | πI(x) = xI}

)
, xI ∈ XI .

Note that π∅.ω = ‖ω‖ and πS .ω = ω.
Consider now A = {{1, 2, . . . , i}, {i+ 1, . . . , n}} ∈ O2(S) and ω ∈M+(X) \ 0, and define
the projective recombinator as

R
p
A(ω) := 1

‖ω‖2
(
π{1,...,i}.ω

)
⊗
(
π{i+1,...,n}.ω

)
, (2.6)

where ⊗ indicates the tensor product (or product measure). Moreover, we set Rp
1(ω) :=

ω/‖ω‖. Rp
A(ω) is a probability measure for all ω ∈ M+(X) \ 0, where the zero measure

is excluded to make it well-defined. In words, Rp
A turns ω into the (normalised) product

measure of its marginals with respect to the blocks in A. Writing out (2.6) in terms of
coordinates gives

(
R
p
A(ω)

)
(x) = 1

‖ω‖2
(
π{1,...,i}.ω

)(
x{1,...,i}

) (
π{i+1,...,n}.ω

)(
x{i+1,...,n}

)
= 1
‖ω‖2

ω(x1, . . . , xi, ∗, . . . , ∗)ω(∗, . . . , ∗, xi+1, . . . , xn),

where ∗ means marginalisation. If ω = z is the current population, then R
p
A(z) is the

type distribution that results when a new individual is created by drawing a leading and
(possibly) a trailing segment (as encoded by A ∈ O62(S)) from the current population,
uniformly and with replacement.

Remark 1. Rp
A is a projective version of the recombinator defined in [9]; it differs from the

latter by a factor of 1/‖ω‖. Clearly, both versions agree on the set of probability measures.
As we shall see, the projective version is more suitable in the stochastic setting, while the
original recombinators are better adapted to the deterministic situation. Since recombinators
will only appear in the projective version in this chapter, we will drop the superscript and
the specification ‘projective’ and call RA := R

p
A a recombinator by slight abuse of language.

In Section 2.5, we will generalise the recombinators and learn more about their probabilistic
meaning and mathematical properties. For the moment, let us use them to reformulate
the Moran model with recombination in a compact way. Namely, since all individuals die
at rate 1, the population loses type-y individuals at rate Zt(y). Each loss is replaced by a
new individual, which is sampled uniformly from RA(Zt) with probability rA, A ∈ O62(S).
Therefore, when Zt = z, the transition to z + δx − δy occurs with rate

λ(z; y, x) :=
∑

A∈O62(S)
rA
(
RA(z)

)
(x) z(y). (2.7)

12 2.3. The model and the genealogical approach

The summand for A = 1 corresponds to pure resampling, whereas all other summands
include recombination. Note that λ includes ‘silent transitions’ (x = y).

Remark 2. We would like to mention that the model may alternatively be formulated in
terms of reproducing individuals rather than dying individuals, as follows. Each individual
reproduces at rate 1 and picks an A ∈ O62(S) according to the recombination distribution.
If A ∈ O2, the reproducing individual contributes the sites in one of the blocks in A and
picks a random partner that contributes the sites in the other block to the offspring. If
A = 1, the reproducing individual contributes all sites. The offspring pieced together in this
way replaces a uniformly chosen individual from the population. In this formulation, which
is closer in spirit to the deterministic single-crossover model, offspring of type x are created
at rate NrA(RA(Zt))(x) and replace an individual of type y with probability Zt(y)/N . This
explains the different normalisation of the original recombinator, whereas the additional
factor of N = ‖Zt‖ is absorbed in its definition in [9]. The resulting transition rates,
however, are again those in (2.7). Here, we stay with the formulation that led to (2.7) in
the first place, since it seems more natural for finite populations.

Let us summarise our model as follows:

Definition 1 (Moran model with single crossovers). The Moran model with single
crossovers is the Markov chain in continuous time {Zt}t>0 with state space E of (2.5) and
generator matrix Λ with nondiagonal elements

Λ(z, z + w) =
∑
x,y∈X:
δx−δy=w

λ(z; y, x), w 6= 0,

for z ∈ E, w ∈ E− z (where E− z := {v | z+ v ∈ E}) and Λ(z, z) = −
∑

v∈E−z:
v 6=0

Λ(z, z+ v).

Limits of the forward model. Consider now the family of processes {Z(N)
t }t>0, N =

1, 2, . . . , where we add the upper index to indicate dependence on population size. Also
consider the normalised version {Z(N)

t /N}t>0; Z
(N)
t /N is a random probability measure

on X. For N →∞ and without any rescaling of the rA or of time, the sequence {Z(N)
t }t>0

converges to the solution of the deterministic single-crossover equation

ω̇t =
∑

A∈O2(S)
rA
(
RA(ωt)− ωt

)
(2.8)

with initial value ω0, ω0 a probability measure, and we assume that limN→∞ Z
(N)
0 /N = ω0.

This is a dynamical law of large numbers and due to [30, Thm. 11.2.1]. The precise
statement as well as the proof are perfectly analogous to Proposition 1 in [5], which
assumes a slightly different sampling scheme for recombination. We therefore leave out
the details here. The deterministic single-crossover equation (2.8) was investigated in [9]

Chapter 2. The Moran model with recombination and the partitioning process 13

and [8]. For comparison, note that, in view of Remark 2, the probability rA in (2.8) is
multiplied by the unit rate at which each individual reproduces, and this way turns into a
recombination rate.
The Moran model with recombination also has a well-known diffusion limit, which emerges
when N → ∞ under NrA → %A, %A a constant, A ∈ O2(S), after a speedup of time by
a factor of N . In the case of two loci and two alleles, this goes back to [74]; see also [26,
Chap. 8.2] for a modern exposition. Two loci with an arbitrary (but finite) number of
alleles are treated in [60]. This should readily generalise to the case of a finite number of
loci with a finite number of alleles, but we do not spell it out here, since we will not draw
on the diffusion limit of the forward process later.

The ancestral recombination process (ARP) and its marginal version. In line
with standard population-genetic thinking, we employ a genealogical approach by tracing
back the ancestry of (parts of) the genetic material from a population at present that
evolved according to the Moran model with single-crossover recombination. The standard
genealogical approach for models with recombination is the ancestral recombination graph
(ARG) first formulated in [57]. Today, many different notions of ‘ARG’ are in use. We
stick to the usual convention here that the ARG assumes the diffusion limit. Hudson’s
original version was for two loci, but multilocus generalisations (see [54] and [14]) and
continuous sequence versions (n→∞, see, e.g., [26, Chap. 3.4]) are immediate. The ARG
starts from a sample of individuals from the present population and follows their ancestry
backward. When a sequence (or a part of a sequence) experiences a recombination event,
it branches into a leading and a trailing segment; when two (parts of) sequences go back
to a common ancestor, there is a coalescence event. For overviews see [56, Chap. 5], [26,
Chap. 3.4], or [94, Chap. 7.2]. Mutation can be independently superimposed on the ARG,
but will not be considered in this thesis. One is then interested in the full information on
the sample, namely, the probabilities for all possible type distributions of the sample. The
stationary state of the ARG may be characterised by a collection of so-called sampling
recursions; they may be solved analytically for tiny samples (leading to explicit sampling
formulae), or numerically for larger ones, see [46], or [26, Chap. 3.6]. But feasibility is
limited due to the enormous state space, even for small samples. Alternatively, one resorts
to computationally intensive Monte-Carlo or importance-sampling methods to simulate
the ARG [54, 95, 61]. Recently, Song and coworkers discovered structural properties of the
ARG that allow for an efficient combination of analytical and simulation techniques in the
regime of strong recombination (see [62]); more precisely, they work in terms of expansions
in 1/% as % → ∞, where all %A, with A ∈ O2(S), are assumed to scale linearly with the
common factor %.
In contrast, we will work in the setting of both finite n and finite N . The corresponding
ancestral recombination process (ARP), which is illustrated in Figure 2.2, is a finite-
population version of the multilocus ARG. We then simplify matters by only aiming at

14 2.3. The model and the genealogical approach

Figure 2.2: A realisation of the full ances-
tral recombination process, start-
ing from m = 3 individuals; an-
cestral material is shaded, non-
ancestral material is indicated by
thin horizontal lines. The mixed
recombination-coalescence event in-
dicated by dashed lines can only ap-
pear in the finite population recom-
bination process (ARP). In the dif-
fusion limit, and thus in the ARG,
recombination and coalescence act
in isolation. 1 2 3

reduced information. Namely, we consider a partition A = {A1, A2, . . . , Am} of S (with
m 6 min{n,N}). Now sample m individuals from the present population and follow back
the ancestry of the sites in A1 in the first individual, in A2 in the second individual, . . . ,
and in Am in the m’th individual, without considering any other sites and any other
individuals, as in Figure 2.3. That is, each locus is considered in one individual only. The

1 2 3 1 2 3

Figure 2.3.: The marginalised version corresponding to the ARP in Figure 2.2, in which
we only follow blocks of the partition (shaded), that is, block Ai is sampled
in individual number i, 1 6 i 6 m. Material that is ancestral to the sampled
individuals, but not to the blocks considered, is shown as open rectangles (left).
But since this is not traced back, it can be treated in the same way as material
non-ancestral to the sampled individuals (right). Consequently, the sample
will finally consist of the blocks of the partition only.

result may be viewed as a marginalised version of the ancestral recombination process,
and, in the diffusion limit, turns into a marginal version of the multilocus ARG starting
from a sample of size m. We will see that this information is sufficient to characterise the
time evolution of the expected linkage disequilibria of all orders. We will not employ any
scaling or limit, in order to allow for arbitrary strengths of recombination. It will turn out

Chapter 2. The Moran model with recombination and the partitioning process 15

that the approach in [17] actually corresponds to this marginal ancestral recombination
process, although this is not apparent from their formulation forward in time.
More precisely, the letters at the loci considered at present, together with their ancestry,
can be constructed by a three-step procedure (see Figure 2.4). First, we run a partitioning
process {Σt}t>0 on P(S), backward in time, starting at a given initial partition Σ0 with
|Σ0| = m. Σt describes the partitioning of sites into parental individuals at time t; sites in
the same block (in different blocks) belong to the same (to different) individuals. Clearly,
|Σt| is the number of ancestral individuals at time t. The process {Σt}t>0 is independent
of the types and will be described in detail in the next section. In the second step, a letter
is assigned to each site of S at time t (i.e. in the past) in the following way. For every part
of Σt, pick an individual from the initial population (without replacement) and copy its
letters to the sites in the block considered. For illustration, also assign a colour to each
block, thus indicating different parental individuals. In the last step, the letters and colours
are propagated downward (i.e. forward in time) according to the realisation of {Σt}t>0

laid down in the first step. A similar construction was used in the ancestral process in [7],
but restricted to a sample of size 1 (i.e. start with Σ0 = 1), and in discrete time in the
deterministic limit. Let us now describe the partitioning process in detail.

t

Σ0 = {{1}, {2, 4}, {3, 5}}

Σt = {{1, 2}, {3}, {4, 5}}

t

Σ0 = {{1}, {2, 4}, {3, 5}}

Σt = {{1, 2}, {3}, {4, 5}}
x1

x1

x2

x2

x2

x3

x3

x3

x4

x4

x4

x5

x5

x5

⋆ ⋆⋆⋆⋆⋆ ⋆

⋆⋆
⋆⋆⋆⋆

⋆⋆⋆

⋆⋆⋆⋆⋆ ⋆⋆ ⋆ ⋆⋆

Figure 2.4.: Construction of one possible ancestry of a collection of sites that correspond
to the initial partition Σ0 = {{1}, {2, 4}, {3, 5}}. The upper panel shows the
partitioning process (backward in time). In the lower panel, letters and colours
are assigned to each block of Σt and propagated downward (forward in time).

16 2.4. The partitioning process

2.4. The partitioning process

The partitioning process {Σt}t>0 is a Markov process on P(S), which describes how the
sites are partitioned into different individuals backward in time. Since there is a one-to-one
relationship between the individuals and the blocks of the partition, we may identify
individuals with the ancestral material they carry.
The process {Σt}t>0 consists of a mixture of splitting (S) and coalescence (C) events. It
can be constructed independently of the types. In this section, we describe the process by
arguing on the grounds of the underlying Moran model; in Section 2.7, we will formally
prove that this is indeed the correct dual process for it.
Since we trace back sites in subsets U ⊆ S (rather than complete sequences), we need the
corresponding marginal recombination probabilities

rUB :=
∑

A∈O62(S)
A|U=B

r SA (2.9)

for any B ∈ O62(U), where r SA = rA. Note that, for |U | = 1, the only recombination
parameter is rU1 = 1. If U is ordered in S (i.e. U = {x ∈ S : min(U) 6 x 6 max(U)}) and
B 6= 1|U , then rUB is simply the probability of crossover after the (unique) site that leads
to partition B. If U is not ordered in S, then rUB is the sum of the probabilities of all
crossovers that lead to partition B, as illustrated in Figure 2.5.
Assume now that U is an unordered block of Σt. This means there is so-called trapped
material, that is, non-ancestral sites enclosed between ancestral regions. All crossover
events within a given trapped segment contribute to the separation of the adjacent
ancestral segments – in contrast to crossovers in flanking non-ancestral regions to the left
or the right of U , which do not affect the genealogy. Note finally that the upper index in
rUB can, in principle, be omitted since U = ∪|B|i=1Bi, and we will do so when appropriate.

++

Figure 2.5.: Let S = {1, . . . , 5} and U = {1, 4, 5} ⊂ S. For the partition B =
{{1}, {4, 5}}, there are three recombination events that partition U into B, thus
rUB = r{{1},{2,3,4,5}} + r{{1,2},{3,4,5}} + r{{1,2,3},{4,5}}.

Now start with the initial partition Σ0. Suppose that the current state is
Σt = A = {A1, . . . , Am} and denote by ∆ the waiting time to the next event. ∆
is exponentially distributed with parameter m, since each block corresponds to an
individual, and each individual is independently affected at rate 1. When the event
happens, choose a block uniformly. If Aj is picked, then Σt+∆ is obtained as follows (see
Figure 2.6 for an example).

Chapter 2. The Moran model with recombination and the partitioning process 17

In the splitting step, block Aj turns into an intermediate state J with probability rAjJ ,
J ∈ O62(Aj). In detail:

(S1) With probability rAj1 , the block Aj remains unchanged. The resulting intermediate
state (of this block) is J = 1|Aj .

(S2) With probability rAjJ , J ∈ O2(Aj), block Aj splits into two parts, J = {Aj1 , Aj2},
which are ordered in Aj , but not necessarily in S. Recall that, via (2.9), rAjJ takes
into account all recombination probabilities that lead to J , including those within
trapped material.

Now, each block of J chooses out of N parents, uniformly and with replacement. Among
these, there are m− 1 parents that carry one block of AM\j = A \Aj each; the remaining
N − (m− 1) parents are empty, that is, they do not carry ancestral material available for
coalescence. Coalescence happens if the choosing block picks a parent that carries ancestral
material; otherwise, the choosing block becomes an ancestral block of its own, which is
available for coalescence from then onwards. The possible outcomes are certain coarsenings
of AM\j ∪ J , namely:

If J = {Aj} (case (S1)), then either

(C1,1) With probability (N − (m− 1))/N , block Aj does not coalesce with any block of
AM\j . As a result, Σt+∆ = Σt = A.

(C1,2) With probability 1/N , block Aj coalesces with block Ak, k ∈M \ j. This results
in Σt+∆ = AM\{j,k} ∪A{j,k}.

If J = {Aj1 , Aj2} (case (S2)), we get the following possibilities:

(C2,1) With probability (N − (m− 1))(N −m)/N2, no block of J coalesces with a block
of AM\j , so Σt+∆ = AM\j ∪ J .

(C2,2) With probability (N − (m − 1))/N2, one block of J coalesces with block Ak,
k ∈M \ j, while the other block of J chooses an empty individual. This ends up
in the state Σt+∆ = AM\{j,k} ∪{A{j1,k}, Aj2} or Σt+∆ = AM\{j,k} ∪{A{j2,k}, Aj1}.
That is, in going from Σt to Σt+∆, either block Aj1 or Aj2 is moved from Aj to
Ak.

(C2,3) With probability (N − (m− 1))/N2, the blocks Aj1 and Aj2 coalesce with each
other, but choose an empty individual, which gives Σt+∆ = A.

(C2,4) With probability 1/N2, the block Aj1 coalesces with Ak and Aj2 coalesces with
A`, k, ` ∈M \ j. This yields either Σt+∆ = AM\{j,k,`} ∪ {A{j1,k}, A{j2,`}} if k 6= `,
or Σt+∆ = AM\{j,k} ∪A{j,k} if k = `.

18 2.4. The partitioning process

replacemen

(S2)

(C2,2)

Σt

(Σt \A2) ∪ J

Σt+∆

Figure 2.6.: One step of the partitioning process with current state Σt = {A1, A2, A3} =
{{1}, {2, 4}, {3}}. In this example, A2 is chosen and splits into J = {{2}, {4}}.
In the following step (C2,2), the leading part coalesces with A1, whereas the
trailing part remains separate, so that we end up in Σt+∆ = {{1, 2}, {3}, {4}}.

Summarising, we see that a transition from A to B, via partitioning of block Aj into
J , j ∈ M , J ∈ O62(Aj), is possible whenever B < AM\j ∪ J and B|AM\j = AM\j , or,
equivalently, whenever

B|Aj < J and B|AM\j = AM\j .

Each block of J coalesces into every block currently available with probability 1/N , and
remains separate with probability (N − k)/N if there are currently k blocks available; in
the latter case, the block considered becomes number k + 1. We can therefore summarise
the rate of the said transition as

ϑj,J ;A,B =


r
Aj
J

1
N |J |

(N−(m−1))!
(N−|B|)! , if B|Aj < J , B|AM\j = AM\j ,

0, otherwise.
(2.10)

Note that this includes silent events where B = A. Thus, the partitioning process {Σt}t>0 is
a continuous-time Markov chain on P(S) characterised by the generator Θ := (ΘAB)A,B∈P(S)
with nondiagonal elements

ΘAB =
∑
j∈M

∑
J∈O62(Aj)

ϑj,J ;A,B

=



r
Aj
J

1
N2

(N−(m−1))!
(N−|B|)! ,

if B|Aj = J ,B|AM\j = AM\j ,
for some j ∈M, J ∈ O2(Aj),

2
N2 + N−1

N2
(
r
Aj
1 + rAk1

)
,

if B = AM\{j,k} ∪A{j,k}
for some j 6= k ∈M,

0, for all other B 6= A.

(2.11)

Note that, for J ∈ O2(Aj) we have distinguished between B|Aj = J and B|Aj = 1|Aj � J .
The latter corresponds to k = ` in (C2,4) and leads to the same transition as a pure
coalescence event in (C1,2). More precisely, the total coalescence rate of j and k is

1
N

(
r
Aj
1 + rAk1

)
+ 1
N2

(∑
J∈O2(Aj)

r
Aj
J +

∑
K∈O2(Ak)

rAkK

)
= 2
N2 + N − 1

N2
(
r
Aj
1 + rAk1

)
(2.12)

Chapter 2. The Moran model with recombination and the partitioning process 19

as stated, since ∑
J∈O2(U)

rUJ = 1− rU1 , (2.13)

U ⊆ S. Moreover, transitions to partitions B with |B| > N are impossible, as it must be.

Corollary 1. The diagonal elements of the generator defined in (2.11) are given by

−ΘAA = m(m− 1)
N

+ (N − 1)(N − (m− 1))
N2 rtot(A), (2.14a)

for m = |A| and

rtot(A) =
∑
j∈M

∑
J∈O2(Aj)

r
Aj
J = wTA r

S
B, where wA =

(∑
j∈M

δB|Aj∈O2(Aj)
)
B∈O2(S)

(2.14b)

Proof. Using (2.9) with B = A and the fact that it is the diagonal element of a Markov
generator, then separating the case J = 1 yields

ΘAA = −
∑

B∈P(S)\A
ΘAB =

∑
j∈M

[∑
J∈O62(Aj)

ϑj,J ;A,A − 1
]

=
∑
j∈M

[(1
N
r
Aj
1 + 1

N2

∑
J∈O2(Aj)

r
Aj
J

)
(N − (m− 1))− 1

]
,

and with (2.13), expanding the inner product, and rearranging the sum, we obtain

= −
[m(m− 1)

N
+ (N − 1)(N − (m− 1))

N2

∑
j∈M

∑
J∈O2(Aj)

r
Aj
J

]
.

Remark 3. The second representation of rtot(A) in (2.14b) is a simple linear combination
of the basic recombination probabilities rSB, B ∈ O2(S), where the elements of the (column)
vector wA specify how many blocks A ∈ A are affected by each simple split denoted by
B ∈ O2(S). This representation is mainly used in Algorithms 2 and 3 in Section 3.4. Note
that rtot(A) is not a probability anymore and vanishes for A = 0.

Now we have a closer look at the number of possible non-zero transitions. For a given
A ∈ P(S), the following types are possible with the corresponding numbers of occurence:

A → A : 1, (2.15a)

A → AM\j ∪A{j,k}, j 6= k :
(
m

2

)
, (2.15b)

A → AM\j ∪ J :
m∑
j=1

(|Aj | − 1), (2.15c)

A → AM\{j,k,l} ∪ {A{j1,k} ∪A{j2,l}}, j 6= k 6= l :
m∑
j=1

(|Aj | − 1)(m− 1)(m− 2), (2.15d)

20 2.4. The partitioning process

sites (n) # states (bn) # (ordered) state pairs # non-zero transitions ratio

2 2 4 4 1.000
3 5 25 22 0.880
4 15 225 133 0.591
5 52 2704 831 0.307
6 203 41209 5331 0.129
7 877 769129 35239 0.045
8 4140 17129600 240878 0.014
9 21147 447195609 1706252 0.004

Table 2.1.: Number of non-zero transitions and its ratio to the number of ordered state
pairs for n = 2, 3, . . . , 9.

A → AM\{j,k} ∪ {A{j1,k} ∪Aj2}, j 6= k :
m∑
j=1

(|Aj | − 1)(m− 1), (2.15e)

A → AM\{j,k} ∪ {Aj1 ∪A{j2,k}}, j 6= k :
m∑
j=1

(|Aj | − 1)(m− 1). (2.15f)

Note, that
∑m
j=1(|Aj | − 1) = n−m is independent on the size or structure of the particular

blocks. So, a partition A allows for

1+
(
m

2

)
+(n−m)

(
1+(m−1)(m−2)+2(m−1)

)
= 1+(n−m)+

(
m

2

)
(2(n−m)+1) (2.16)

non-zero transitions in total. Therefore, the overall amount of those transitions described
by Θ is

n∑
m=1

{
n

m

}((
m

2

)(
2(n−m) + 1

)
+ (n−m)

)
+ bn, (2.17)

where bn := |P(S)| denotes the n-th Bell number, i.e. the number of possible partitions
of the set S with n = |S| (cf. [13, Sec. 1.11] and [1, Ex. II.4.E]), and thus the number of
rows (columns) of Θ. Furthermore,

{n
m

}
denotes the (unsigned) Stirling number of second

kind, which is the number of ways to partition S into m non-empty blocks. Hence, the
latter is related to the n-th Bell number through bn =

∑n
m=0

{n
m

}
. In Table 2.1 we state

the number of non-zero transitions and its ratio to the number of ordered state pairs for
n = 2, 3, . . . , 9.

Connection with previous work by Bobrowski et al. In fact, the generator Θ
coincides with the generator worked out by Bobrowski et al. in [16] and [17] with a
very different approach, forward in time. For n 6 3, they state the generator matrix
explicitly, and identity (2.11) is easily checked by elementwise comparison. For n > 3, they
provide an algorithm, which runs through all individuals and all sites and builds up the
matrix Θ incrementally, in the following manner. For every given individual, leading and

Chapter 2. The Moran model with recombination and the partitioning process 21

ij k

i

forward backward

Figure 2.7.: Correspondance of the transitions of the partitioning process (backward in
time) and the ones in [17] (forward in time). A replacement of individual
i forward in time with leading part (up to some site s ∈ S \ n) from j and
trailing part (beginning with site s+ 1) from k means a split of individual i
between site s and s+ 1 followed by a coalescence of its leading part i1 with
individual j and its trailing part i2 with individual k.

trailing segments (for the split between site s and s+ 1, for all s ∈ S \ n) are taken into
account, irrespective of whether or not the segments contain ancestral material. This way,
their algorithm does not distinguish between transitions induced by recombination events
within ancestral (or trapped) material and recombination events that are invisible in the
genealogical perspective, that is, those that are effectively pure coalescence events. Instead,
a case distinction is made that is based on whether (or not) one (or both) segment(s)
coalesce with individuals that do (or do not) carry ancestral material. We investigate this
approach and show the connection to ours by translating corresponding model parameters,
expanding their 5 cases (without the self transitions) into 11 subcases, and a following
rearrangement according to the emerging partitions of the complete ancestral material.
This leads precisely to our cases (C2,1) to (C2,4) (here, both emerging segments contain
ancestral material) as well as (C1,1) and (C1,2) (here one segment is empty).
Frst, their population is of size 2N and they model the individuals’ lifespan as exponentially
distributed with parameter λ/2. To translate the model in our scaling, we have to multiply
every transition probability by 2N and set λ = 1. Then, we can also set N as the model
population size in their setting. Furthermore, they decompose

Θ =
∑

A∈O62(S)
rAΘA, (2.18)

so they separate the transition rates into parts with respect to the position between
two consecutive sites, and construct each (hence accruing) ΘA seperately in the following
manner: For a transition from fixed ι̃ (which corresponds to A in our notation, so we can
also identify |A| = m with their µ), they go through all possible recombination events,
identify the correct ι (a possible B), and add the corresponding probability of occurence to
the generator entry. By a recombination event foward in time they mean the event that an
individual i deceases and is replaced partly by j and k. This corresponds to a splitting
and coalescence transition backward in time where Ai splits between site s ∈ S \ n and
s+ 1. Then, the leading and trailing parts coalesce with j and k, cf. Figure 2.7.

22 2.4. The partitioning process

case transition in [17] probability i1 & i2 ancestral only i2 ancestral

2.1 i = j = k

N−2

AM\i ∪A{i1,i2} = A A
2.2 i = k, j 6= k AM\{i,j} ∪Ai2 ∪A{j,i1} A
2.3 i = k, i 6= j AM\{i,k} ∪Ai1 ∪A{k,i2} AM\{i,k} ∪A{k,i}
2.4 i 6= j, i 6= k, j 6= k AM\{i,j,k} ∪A{j,i1} ∪A{k,i2} AM\{i,k} ∪A{k,i}
2.5 i 6= j, i 6= k, j = k AM\{i,j} ∪A{j,i} AM\{i,j} ∪A{j,i}
3.1 i = j, k > µ N−m

N2
AM\i ∪Ai1 ∪Ai2 A

3.2 i 6= j, k > µ AM\{i,j} ∪A{i1,j} ∪Ai2 A

4.1 i = k, j > µ N−m
N2

AM\i ∪Ai2 ∪Ai1 A
4.2 i 6= k, j > µ AM\{i,k} ∪A{k,i2} ∪Ai1 AM\{i,k} ∪A{k,i}
5 j = k > µ N−m

N2 AM\i ∪A{i1,i2} = A A

6 µ < j 6= k > µ (N−m)(N−(m+1))
N2 AM\i ∪Ai1 ∪Ai2 A

Table 2.2.: Transitions of the partitioning process connected with the approach in [17]. The
leading part i1 always corresponds to j and the trailing part i2 corresponds to k.
In column 1 and 2 we use the notation of [17] and in column 3 to 5 we use ours.
In the cases 3 to 6 the condition j > µ (k > µ) means, in our interpretation,
that individual j (k) does not carry any ancestral material.

Note again that it is not distinguished in the first step whether or not the parts contain
ancestral material. This is done in [17] by a sixfold case distinction (where the first one
only deals with the self transitions, so we omit this here), whose cases 2 to 6 are split up
even further in Table 2.2. As we can see, if both parts i1 and i2 contain ancestral material,
then our transitions based on (S2) are exactly composed of in the following manner:

(C2,1) of 6, 3.1, 4.1, (C2,2) of 3.2, 2.2 (2.3), (C2,3) of 5, 2.1, and (C2,4) of 2.4, 2.5;

and if only one part contains ancestral material, then the compositions are:

(C1,1) of 2.1, 2.2, 3.1, 3.2, 4.1, 5, 6, and (C1,2) of 2.3, 2.4, 2.5, 4.2.

Summarising, the approach of Bobrowski et al. disguises or mixes the various partitions
of ancestral material that may arise due to a transition, and therefore does not lead to a
closed expression for Θ. In contrast, our approach yields the matrix elements explicitly for
arbitrary n, and gives them a natural and plausible meaning in terms of the partitioning
process in backward time.

Limits of the partitioning process. We now examine how the partitioning process
behaves in the two limiting cases mentioned in Section 2.3, namely, the deterministic
limit and the diffusion limit. Recall that, in the deterministic limit, we let N → ∞
without rescaling the recombination probabilities or time. Consider, therefore, the family
of processes {Σ(N)

t }t>0, N = 1, 2, . . . , generated by Θ(N), where we again make the

Chapter 2. The Moran model with recombination and the partitioning process 23

dependence on population size explicit through the upper index. In the limit, only the
pure splitting events (C2,1) survive, more precisely:

Proposition 1 (Deterministic limit). In the deterministic limit, the sequence of partitioning
processes {Σ(N)

t }t>0 with initial states Σ(N)
0 ≡ σ converges in distribution to the process

{Σ′t}t>0 with initial state Σ′0 = σ and generator Θ′ defined by its nondiagonal elements

Θ′AB =


r
Aj
J , if B = AM\j ∪ J for some j ∈M and J ∈ O2(Aj),

0, for all other B 6= A.

Hence, {Σ′t}t>0 is a process of progressive refinements, that is, Σ′τ 4 Σ′t for all τ > t. In
particular, if Σ′0 ∈ O(S), then Σ′t ∈ O(S) for all times.

Proof. Inspecting the N -dependence of the elements of Θ = Θ(N) in (2.11) gives the
following order of magnitude for the nondiagonal elements:

Θ
(N)
AB =



1
Nm+1−|B| r

Aj
J
(
1 +O

(1
N

))
,

if B|Aj = J , B|AM\j = AM\j
for some j ∈M ,J ∈ O2(Aj),

1
N

(
r
Aj
1 + rAk1

)
+O

(1
N2
)
,

if B = AM\{j,k} ∪A{j,k}
for some j 6= k ∈M,

0, for all other B 6= A.

(2.19)

Obviously, Θ(N) = Θ′ +O(1/N), which proves convergence of the sequence of generators
of {Σ(N)

t }t>0 to that of {Σ′t}t>0. This entails convergence of the corresponding sequence
of semigroups. With the help of Theorems 4.2.11 and 4.9.10 in [30], this guarantees
convergence of {Σ(N)

t }t>0 to {Σ′t}t>0 in distribution.
The remainder of the statement is obvious since, under Θ′, the only transitions are those
that involve the refinement of a single block, say Aj , into two blocks ordered in Aj . If Σ′0
is ordered in S, then all its blocks are ordered in S, and all blocks of Σ′t will be ordered in
S for all times.

Remark 4. Obviously, in the limit, ancestral material that has been separate will never
come together again in one individual, such that there are no coalescence events. When
starting with Σ′0 = {S}, the genealogy may be represented by a binary tree, which successively
branches into smaller segments; for other initial conditions, one gets a corresponding
collection (i.e. a forest) of binary trees. We call these trees ancestral recombination trees
or ARTs; a discrete-time analogue was studied in [7].

We now turn to the diffusion limit and use the factor N rather than (the more common) 2N
since our N is the haploid population size. Here, one considers a sequence of processes in
which time is sped up by a factor of N and the recombination probabilities rA are rescaled
such that limN→∞NrA → %A, %A a constant, for A ∈ O2(S); consequently, r1 → 1 as

24 2.4. The partitioning process

N →∞. Note that the %A are rates rather than probabilities. The corresponding ARG is
the obvious generalisation of Hudson’s original ARG to n loci, which we formulate here in
our framework for the sake of completeness, as follows. Every ordered pair of lines coalesces
at rate 1; every line splits into two at rate %A for every A ∈ O2(S), and the ancestral
material is distributed between the new lines according to A.
In this formulation, however, certain silent events are included, namely those events that
happen in non-ancestral material flanking the ancestral parts. These events do not affect
the partitioning of ancestral material and may be removed by working with the marginalised
recombination rates instead. That is, if a sequence currently carries a set U of ancestral
sites, then the relevant recombination rates (in the diffusion limit) are %UB , with B ∈ O2(U),
which are defined as in (2.9) but with r replaced by %. Analogous modifications where the
recombination rates depend on the (continuous) region spanned by ancestral material have
been investigated in [98] as well as [70].
If we now restrict attention to the ancestry of n loci partitioned between m individuals, we
obtain the marginal version of the ARG, which may be formulated as follows.

Definition 2 (Marginalised n-locus ARG). Start with the set of n sites distributed across
m 6 n individuals (or lines) according to a partition Σ′′0 with m parts. Throughout the
process, every line is identified with the ancestral material it carries. If it currently carries
ancestral sites U ⊆ S, it splits into J ∈ O2(U) at rate %UJ . Every ordered pair of lines
coalesces at rate 1, and so do the ancestral sites they carry. That is, the marginalised ARG
is the partitioning process {Σ′′t }t>0 defined by the generator Θ′′ with nondiagonal elements

Θ′′AB =


%
Aj
J , if B = AM\j ∪ J for some j ∈M,J ∈ O2(Aj),

2, if B � A and |B| = |A| − 1,

0, for all other B 6= A.

Proposition 2 (Diffusion limit of the partitioning process). In the diffusion limit, the
sequence of partitioning processes {Σ(N)

Nt }t>0 with initial states Σ(N)
0 ≡ σ converges in

distribution to the process {Σ′′t }t>0 with initial state Σ′′0 = σ and generator Θ′′.

Proof. Due to the rescaling of time, the generator of {Σ(N)
Nt }t>0 has nondiagonal elements

NΘ
(N)
AB . Referring back to (2.19), they converge to limN→∞NΘ

(N)
AB = Θ′′AB, since we have

rU1 → 1 and NrUJ → %UJ for J ∈ O2(U). With the same argument as in the proof of
Proposition 1, one obtains convergence in distribution as claimed.

Remark 5. As was to be expected, only pure splitting events and pure coalescence events
survive in the diffusion limit. The ‘mixed transitions’, which involve both splitting and
coalescence (i.e. the dashed lines in Figure 2.2) vanish under the rescaling; see also [56,
Fig. 5.11]. Let us note that several other variants of the recombination process lead to the
same diffusion limit. For example, this is true of the simpler (but biologically less realistic)

Chapter 2. The Moran model with recombination and the partitioning process 25

versions of the continous-time Moran model with recombination where recombination
is a parallel process that happens independently of reproduction (rather than coupled to
reproduction as assumed here), see [5]. Even the discrete-time Wright-Fisher model with
recombination lies in the domain of attraction of the diffusion limit.

2.5. Recombinators and sampling functions

In this section, we will have a closer look at two operators associated with recombination
and how they are related to each other. We start by generalising our recombinators and
then we introduce closely related sampling functions. In Section 2.6 this analysis will
be continued and the group of new operators will be enhanced by multilocus correlation
functions.

Recombinators. We have already met RA for A ∈ O62(S); we now need the general-
isation to arbitrary A ∈ P(S). For ω ∈ M+(X) \ 0, we first define the non-normalised
recombinator via

RA(ω) =
(
πA1.ω

)
⊗ · · · ⊗

(
πAm.ω

)
, (2.20)

where it is implied that the product measure refers to the ordering of the sites as specified
by the set S. In words, RA turns ω into the product of its marginals with respect to the
blocks in A. We will throughout denote non-normalised mappings by an overbar. Clearly,
R∅(ω) = ‖ω‖, R1(ω) = ω and ‖RA(ω)‖ = ‖ω‖|A|. The corresponding normalised version is

RA(ω) := RA(ω)∥∥RA(ω)
∥∥ , (2.21)

which is well-defined since ω 6= 0. Obviously, RA(ω) = RA(ω/‖ω‖) and RA(ω) is a
probability measure on X, which coincides with (2.6) for A ∈ O62(S).
Let us now give a probabilistic interpretation for the case that a recombinator RA acts
on a certain population described by a counting measure z ∈ E. For the moment, attach
labels from the collection L := {1, 2, . . . , N} to the N individuals in the population in a
one-to-one manner, and let these individuals have (random) types X1

t , X
2
t , . . . , X

N
t ∈ X

at time t. The type distribution then is Zt =
∑N
k=1 δXk

t
. For U ⊆ S and k ∈ L, let

Xk
t,U := πU (Xk

t), and consider the following procedure. Let a partition A = {A1, . . . , Am}
of S together with a collection of labels ` = (`1, . . . , `m) ∈ Lm associated with the blocks
be given, i.e. (A, `) := {(A1, `1), . . . , (Am, `m)}. Then, piece together a sequence by taking
the sites in A1 from individual `1, the sites in A2 from individual `2, . . . , and the sites in
Am from individual `m. The resulting sequence is X`

t,A := (X`1
t,A1

, . . . , X`m
t,Am

).
Now, let L ∈ Lm be an m-fold random drawing with replacement from L, i.e. L1, . . . ,Lm
are independent and identically distributed uniform random variables with support L. We

26 2.5. Recombinators and sampling functions

are now interested in the (random) sequence

Xt,A := XL
t,A

and the corresponding counting measure

|{Xt,A = x}| = |{` ∈ Lm | X`
t,A = x}|.

This counts how often one obtains sequence x when performing the above procedure on a
population Zt and all combinations of individuals are included. Since we draw the labels Lj
with replacement (and therefore independently), we can decompose the counting measure

∣∣{Xt,A = x
}∣∣ =

∏
j∈M

∣∣{`j ∈ L | X`j
t,Aj

= xAj
}∣∣ =

∏
j∈M

(
πAj .Zt

)
(xAj) =

(
RA(Zt)

)
(x). (2.22)

Clearly, RA(Zt), the corresponding normalised version, is the type distribution that results
when a sequence is created by taking the letters for the blocks in A from individuals drawn
uniformly and with replacement from the population Zt. So

(
RA(z)

)
(x) = P

[
Xt,A = x | Zt = z

]
,

where P denotes probability. Note that the left-hand side depends on time only through
the value z of Zt.

Sampling function. For A ∈ P(S) and ω ∈ M+(X) \ 0, we now define our sampling
function

HA(ω) :=
∑
B.<A

µ(A,B) RB(ω), (2.23)

where µ is the Möbius function in (2.2). HA(ω) is not a positive measure in general;
but it will turn out as positive for the important case where ω ∈ E with ‖ω‖ > |A|, see
Lemma 1. We will therefore postpone the normalisation step. In any case, Möbius inversion
(compare (2.3) and (2.4)) immediately yields the inverse of (2.23):

Fact 1. For every A ∈ P(S),
RA(ω) =

∑
B.<A

HB(ω).

We can now give HA a meaning by reconsidering the procedure that led to (2.22) but, this
time, individuals are not replaced. Therefore, let |A| = m 6 N and L̃ ∈ Lm be an m-fold
random drawing without replacement from L, i.e. L̃1, . . . , L̃m are now dependent. Then we
look at

X̃t,A := X L̃
t,A (2.24)

with the corresponding counting measure |{X̃t,A = x}|. Since individuals are not replaced,

Chapter 2. The Moran model with recombination and the partitioning process 27

an expression for |{X̃t,A = x}| analogous to (2.22) is not immediate. Instead, we resort to
an inclusion-exclusion argument and prove

Proposition 3. For A ∈ P(S) with |A| = m 6 N and Zt ∈ E, we have

∣∣{X̃t,A = x
}∣∣ =

∣∣{` ∈ Lm | X`
t,A = x and `i 6= `j ∀ i 6= j

}∣∣ =
(
HA(Zt)

)
(x).

Proof. Fix a given partition A ∈ P(S) with |A| = m 6 N . For every ` ∈ {1, 2, . . . , N}m, the
pair (A, `) uniquely defines a pair (B, ˜̀), where ˜̀∈ {` ∈ {1, 2, . . . , N}|B| | `i 6= `j ∀ i 6= j}
and B < A, as follows. Join all blocks of A that have the same label, and attach that label
to the new block. The result is (B, ˜̀). The other way round, every (B, ˜̀) with B < A and
˜̀∈ {` ∈ {1, 2, . . . , N}|B| | `i 6= `j ∀ i 6= j} uniquely defines the labelling ` of the blocks of
A (keep in mind that A is fixed): block Ak ∈ A receives the label of that block Bj ∈ B in
which it is contained. We can therefore identify the set {(A, `) | ` ∈ {1, 2, . . . , N}m} with
the set

⋃
B.<A{(B,

˜̀) | ˜̀∈ {` ∈ {1, 2, . . . , N}|B| | `i 6= `j ∀ i 6= j}} and decompose the event

{Xt,A = x} =
⋃̇
B.<A{X̃t,B = x}, which entails

∣∣{Xt,A = x
}∣∣ =

∑
B.<A

∣∣{X̃t,B = x
}∣∣.

By (2.22), the left-hand side equals (RA(Zt))(x). Due to the Möbius inversion principle
(applied backward), |{X̃t,B = x}| on the right-hand side must equal (HB(Zt))(x), as
claimed.

Lemma 1. For A ∈ P(S) with |A| = m 6 N and z ∈ E, HA(z) is a positive measure with

∥∥HA(z)
∥∥ = N (N − 1) · · · (N −m+ 1) > 0.

Proof. Since, under the given assumptions, (HA(z))(x) = |{X̃t,A = x | Zt = z}| > 0 for all
x by Proposition 3, it is a positive measure, and its norm can be evaluated via

∥∥HA(z)
∥∥ =

∑
x∈X

∣∣{X̃t,A = x | Zt = z
}∣∣.

By means of (2.24), this equals the number of possibilities of how to choose m labelled
individuals out of N ones without replacement, where the order is respected; this is
N (N − 1) · · · (N −m+ 1), which is positive since m 6 N .

Under the assumptions of Proposition 3, we can therefore define the normalised version of
HA(z) as

HA(z) := HA(z)∥∥HA(z)
∥∥ = (N −m)!

N ! HA(z). (2.25)

HA(z) is the type distribution that results when a sequence is created by taking the letters

28 2.6. Restrictions to subsystems

for the blocks as encoded by A from individuals drawn uniformly and without replacement
from the population z, hence

(
HA(z)

)
(x) = P

[
X̃t,A = x | Zt = z

]
.

HA will later serve as duality function. The situation described here is exactly what
happens when a sample is taken in our marginal ancestral recombination process: either
the initial sample (according to Σ0, from the present population Zt) or the ancestral one
(according to Σt, from the initial population Z0) – hence our name sampling function.
In this light, Fact 1 expresses counting with replacement in terms of counting without
replacement, provided ω is a counting measure.
It is also instructive to express the normalised sampling functions in terms of the normalised
recombinators. For z ∈ E and |A| 6 N , this gives, via (2.21),

HA(z) =
∑
B.<A

(N − |A|)!N |B|

N ! µ(A,B)RB(z). (2.26)

Note that (N − |A|)!N |B|/N ! = O(N |B|−|A|). This illustrates how the inclusion of coarser
partitions yields higher-order correction terms. The other way round, using (2.21), Fact 1,
and (2.25), one gets

RA(z) =
∑
B.<A

N !
N |A|(N − |B|)! HB(z). (2.27)

2.6. Restrictions to subsystems

Recall that we write the restriction of a measure ω ∈M+(X) to a subspace XU :=×i∈UXi
of X as πU .ω := ω ◦ π−1

U , which corresponds to marginalisation. Clearly, we can also define
recombinators for any non-empty subset U ⊆ S and any partitionA = {A1, . . . , Am} ∈ P(U)
as RU

A (πU .ω), in perfect analogy with RS
A (ω) for A ∈ P(S), which is RA(ω); and likewise

for RU
A , H

U
A , and H

U
A (if ω 6= 0). For clarity, we sometimes denote the subsystem by a

superscript. However, as in the case of the marginal recombination probabilities, it can be
dispensed with since U = ∪|A|j=1Aj if A ∈ P(U). The interpretation in terms of sampling,
as well as Fact 1, carry over.

Restriction of recombinators. Let us collect some basic properties of recombinators:

Fact 2. For A,B ∈ P(S) and U, V ⊆ S with S = U ∪̇V one has

(A) RARB = RA∧B.

(B) πU .R
S
A(ω) = R

U
A|U

(πU .ω).

(C) If in addition A 4 {U, V }, then R
S
A = R

U
A|U
⊗ R

V
A|V

. Explicitly, this reads

Chapter 2. The Moran model with recombination and the partitioning process 29

R
S
A (ω) =

(
R
U
A|U
⊗ R

V
A|V

)
(ω) =

(
R
U
A|U

(πU .ω)
)
⊗
(
R
V
A|V

(πV .ω)
)
.

Here and in what follows, we may omit the argument when the meaning is clear.

Proof of Fact 2. Property (A) is Proposition 2 and property (B) is Lemma 1 of [3] (they
both remain true in our normalisation). Property (C) is an obvious generalisation of
Proposition 2 of [90]. It is easily seen by using first property (A), then (2.20), then (B)
and finally (2.20) once more to give

R
S
A (ω) = R

S
{U,V }

(
R
S
A (ω)

)
=
((
πU .R

S
A
)
⊗
(
πV .R

S
A
))

(ω)

=
(
R
U
A|U

(πU .ω)
)
⊗
(
R
V
A|V

(πV .ω)
)

=
(
R
U
A|U
⊗ R

V
A|V

)
(ω).

Correlations (or linkage disequilibria). Linkage disequilibria (LDE) are used in
population genetics to quantify the deviation from independence of allele frequencies at
the various sites in a sequence. From three sites onwards, many different notions of linkage
disequilibria are available in the literature, see [21, Chap. V.4.2] for an overview.
We will use as LDEs the general correlation functions, which are widely used in statistical
physics, see [28] or [71, Chap. 5.1.1]. This results in an explicit formula for multilocus
LDEs for an arbitrary number of sites in terms of sums of products of marginal frequencies,
see also [9, Appendix] or [50]. As we will see, common definitions for two and three sites
coincide with ours.
For any given subset U ⊆ S and A ∈ P(U), we first define correlation operators as

L
U
A =

∑
B.4A

µ(B,A)RU
B . (2.28)

Note that the summation is now over all refinements of A, in contrast to our sampling
functions, which involve all coarsenings of A. The restriction to subsystems stems from
the fact that one usually considers deviation from independence on small subsets of S.
The LUA have a product structure, LUA =

∏|A|
j=1 L

Aj
1 , which is obvious from (2.28) together

with the product structure of the recombinators (Fact 2 (C)) and that of the Möbius
function (2.2). Eq. (2.28) has the inverse

R
U
A =

∑
B.4A

L
U
B =

∑
B.4A

|B|∏
j=1

L
Bj
1

due to inversion from below (see Section 2.2). The latter can be reformulated as

L
U
A = R

U
A −

∑
B.≺A

|B|∏
j=1

L
Bj
1 . (2.29)

The case A = 1|U , U ⊆ S, now is of special interest. In line with population-genetics

30 2.6. Restrictions to subsystems

understanding, we define the multilocus linkage disequilibrium with respect to the sites in
U by letting LU1 act on the marginal measure πU .ω, ω ∈M+(X) \ 0:

L
U
1 (πU .ω) =

∑
A∈P(U)

µ(A,1|U)RU
A (πU .ω),

cf. (2.28). Note that LU1 (πU .ω) is again a measure on πU (X), but no longer positive in
general. With the help of (2.29), it can be reformulated as

L
U
1 (πU .ω) = R

U
1 (πU .ω)−

∑
B.≺1|U

|B|∏
j=1

L
Bj
1 (πBj .ω),

which is Eq. (1) in [50]. Likewise, this alternative formulation of multilocus LDEs agrees
with previous ones from [39], [12], and [55] up to |U | 6 3.

Example 2. For S = {1, 2, 3, 4} the LDE with respect to the sites in U = {2, 4} reads

L
U
1 (π{2,4}.ω)(x) = R

U
1 (π{2,4}.ω)(x)− RU

{{2},{4}}(π{2,4}.ω)(x)

= 1
‖ω‖

ω(∗, x2, ∗, x4)− 1
‖ω‖2

ω(∗, x2, ∗, ∗)ω(∗, ∗, ∗, x4).

Similarly for U = {1, 3, 4} we get

L
U
1 (π{1,3,4}.ω)(x) = 1

‖ω‖
ω(x1, ∗, x3, x4)− 1

‖ω‖2
ω(x1, ∗, ∗, ∗)ω(∗, ∗, x3, x4)

− 1
‖ω‖2

ω(x1, ∗, x3, ∗)ω(∗, ∗, ∗, x4)− 1
‖ω‖2

ω(x1, ∗, ∗, x4)ω(∗, ∗, x3, ∗)

+ 2 1
‖ω‖3

ω(x1, ∗, ∗, ∗)ω(∗, ∗, x3, ∗)ω(∗, ∗, ∗, x4).

The correlation operators can also be expressed in terms of our sampling operators.
Eqns. (2.28) and (2.27), together with a change of the summation order, lead to

L
U
A =

∑
B.4A

µ(B,A)
∑
C.<B

N !
(N − |C|)!N |B| H

U
C

=
∑
C∈P(U)

H
U
C

∑
B.4A∧C

N !
(N − |C|)!N |B| µ(B,A).

(2.30)

For a counting measure z ∈ E and U ⊆ S with |U | = k 6 3 6 N , Eq. (2.30) yields a
particularly nice explicit expression for the LDEs:

L
U
1 (πU .z) = N !

Nk(N − k)!
∑
A∈P(U)

µ(A,1|U)H U
A (πU .z), (2.31)

Chapter 2. The Moran model with recombination and the partitioning process 31

as is easily verified. For larger k, the explicit formula gets more involved.
Let us now consider LUA for A ∈ P(U) \1|U . Due to its product structure, the collection of
all LV1 (πV .ω), V ⊆ U , determines all LUA(πU .ω), A ∈ P(U). This is why, for a deterministic
ω, the LUA(πU .ω), A 6= 1|U , are of no particular interest of their own. This changes, however,
when ω is random (like Zt). For we typically do not know the law of Zt completely; rather,
we have access to the expectation of certain functions of Zt. More precisely, let ϕ be
the law of Zt and Eϕ denote the expectation with respect to ϕ (that is, for a function
f of Zt, Eϕ[f] =

∫
f(z) dϕ(z)). It is important to note that the product structure of

the recombined measure does not carry over to the expectation. That is, for A ∈ P(U),
Eϕ[RU

A (πU .Zt)] 6= R
U
A (Eϕ[πU .Zt]) in general, see the discussion in [5]; this is indeed a

subtle point that sometimes goes wrong, as in [80, Eq. (12)] or [17, pp. 471/472]. As
a consequence, one also has Eϕ[LUA(πU .Zt)] 6=

∏|A|
i=1 L

Ai
1 (Eϕ[πAi .Zt]) in general. In the

stochastic case, therefore, it is interesting to consider the LUA for A 6= 1|U as well. The
expectations Eϕ[LUA(πU .Zt)] contain information on how the mean LDEs in one part of the
sequence depend on the mean LDEs in other parts of the sequence. In Section 2.7 we will
obtain an ODE system for the Eϕ[H S

A (Zt)], A ∈ P(S), and these translate into Eϕ[RS
A(Zt)]

and thus into Eϕ[LSA(Zt)] via (2.30). Marginalisation can then be used to calculate the
corresponding quantities on U ⊂ S, such as Eϕ[LUA(πU .Zt)] for A ∈ P(U).

Restriction of the sampling function. First, let us note a connection between recom-
bination and sampling that will be important in what follows in Section 2.7.

Lemma 2. Let S = U ∪̇V for two nonempty subsets U, V ⊆ S. For two partitions
A ∈ P(U), B ∈ P(V), the recombinator and the sampling operator satisfy

R
U
A ⊗ H

V
B =

∑
C.<A∪B
C|V =B

H
S
C .

Proof. Using (2.23) followed by Fact 2 (C) and Fact 1 we get

R
U
A ⊗H

V
B = R

U
A ⊗

(∑
D.<B

µ(B,D)RV
D

)
=
∑
D.<B

µ(B,D)RS
D∪A =

∑
D.<B

µ(B,D)
∑
E.<D∪A

H
S
E .

Changing the summation order and applying (2.1) finally leads to

R
U
A ⊗H

V
B =

∑
C.<A∪B

H
S
C

∑
B4D.4C|V

µ(B,D) =
∑
C.<A∪B
C|V =B

H
S
C .

Remark 6. In a perfectly analogous way, one can show

H
U
A ⊗ H

V
B =

∑
C.<A∪B

C|U=A, C|V =B

H
S
C .

32 2.6. Restrictions to subsystems

This illustrates once more that, unlike the RA, the HA do not have a product structure;
this reflects the dependence inherent to drawing without replacement.

Now, we state two combinatorial facts that will be important for the proof of the following
Proposition 4. Therefore, we make use of further combinatorial quantities - in particular
signed s(n, k) and unsigned Stirling numbers of first kind

[n
k

]
= |s(n, k)|. Moreover, the

notation of falling factorials [x]n will become handy. Let us recall here only the common
property

[x]n = x(x− 1) · · · (x− (n− 1)) =
n∑
k=0

s(n, k)xk.

See [52] for a summary of the combinatorial properties and recurrence relations for these
quantities.

Lemma 3. Let N > n > ñ > 0. Then

(A) [N − ñ]n−ñ =
n−ñ∑
k=0

(−1)n−ñ−kNk
n−ñ∑
l=k

[n−ñ
l

](l
k

)
ñl−k.

(B) In addition let U be a set of sites with ñ = |U | and C′ ∈ P(U). Then it holds ∀ S ⊇ U :

ς(C′)
n−ñ∑
l=k

[
n− ñ
l

](
l

k

)
ñl−k =

∑
C∈P(S), C|U=C′
|C|=|C′|+k

ς(C) ∀ k ∈ {0, 1, . . . , n− ñ} (2.32)

with |S| = n and ς(C) := |µ(0, C)| =
∏|C|
i=1(|Ci| − 1)! for C ∈ P(S).

Proof. Statement (A) follows via direct calculations. Use the definition of signed stirling
numbers of first kind and the binomial formula, interchange the obtaining summations and
use the definition of unsigned stirling numbers of first kind to obtain:

[N − ñ]n−ñ =
n−ñ∑
l=0

s(n− ñ, l)(N − ñ)l =
n−ñ∑
l=0

s(n− ñ, l)
l∑

k=0

(
l

k

)
Nk(−1)l−kñl−k

=
n−ñ∑
k=0

Nk
n−ñ∑
l=k

(
l

k

)
s(n− ñ, l)(−1)l−kñl−k

=
n−ñ∑
k=0

Nk(−1)n−ñ−k
n−ñ∑
l=k

(
l

k

)
s(n− ñ, l)(−1)n−ñ−lñl−k

=
n−ñ∑
k=0

Nk(−1)n−ñ−k
n−ñ∑
l=k

(
l

k

)[
n− ñ
l

]
ñl−k.

Now, we show that (2.32) holds via induction on the values of k ‘from above’. Obviously,
the statement holds for S = U , so we assume S ⊃ U from now on.
Base case: Let k = n− ñ. So any additional element ε ∈ S \U has to establish a singleton

Chapter 2. The Moran model with recombination and the partitioning process 33

P(S) 3 C = {C1, . . . , C|C′|, {. . .}|C′|+1, . . . , {. . .}|C′|+k−1, {. . .}|C′|+k}

ε

P(S) 3 C = {C1, . . . , C|C′|, {. . .}|C′|+1, . . . , {. . .}|C′|+k−1, {∅}}

Figure 2.8.: Illustration of the decomposition used in (2.35): a partition C ∈ P(S) with
C′ = C|U for a given C′ ∈ P(U), that contains exactly k additional blocks
compared to C′ after the addition of a new element ε /∈ S. Cj indicate blocks
that contain elements of U whereas {. . .}k indicate those blocks that contain
only elements of S \ U and thus vanish under the restriction to U .

ε in the partition C ∈ P(S), which yields

ς(C′) =
|C′|∏
i=1

(|Ci| − 1)!
n−ñ∏
i=1

0! = ς(C′ ∪
⋃

ε∈S\U
{{ε}}) =

∑
C∈P(S), C|U=C′
|C|=|C′|+n−ñ

ς(C).

Now, let (2.32) hold for S, S ∪ {ε}, for some ε /∈ S, and some k, then

ς(C′)
n−ñ∑
l=k

[
n− ñ
l

](
l

k

)
ñl−k =

∑
C∈P(S), C|U=C′
|C|=|C′|+k

ς(C), and (2.33)

ς(C′)
(n+1)−ñ∑
l=k

[
(n+ 1)− ñ

l

](
l

k

)
ñl−k =

∑
C∈P(S∪{ε}), C|U=C′

|C|=|C′|+k

ς(C). (2.34)

Inductive step k → k− 1: First, consider (2.34) and decompose the sum on the right in the
possibilities of adding the element ε to a partitions C ∈ P(S) under the given conditions.
Either the new element ε can be filled in one of the blocks of C, and thus |C| = |C′|+ k, or
it establishes a new block, which then has to be a singleton, and thus |C| = |C′|+ k − 1
(see also Figure 2.8). Hence,

∑
C∈P(S∪{ε}), C|U=C′

|C|=|C′|+k

ς(C) =
∑

C∈P(S), C|U=C′
|C|=|C′|+k

|C|∑
i=1
|Ci|!

∏
j 6=i

(|Cj | − 1)! +
∑

C∈P(S), C|U=C′
|C|=|C′|+k−1

0! ς(C) (2.35)

=
∑

C∈P(S), C|U=C′
|C|=|C′|+k

n ς(C) +
∑

C∈P(S), C|U=C′
|C|=|C′|+k−1

ς(C).

By using recurrence relations on (2.32) (first for the binomial coefficients, then for the
unsigned Stirling number of first kind) followed by some adjustments of the summation

34 2.6. Restrictions to subsystems

indices, we get

ς(C′)
n−ñ∑
l=k−1

[
n− ñ
l

](
l

k − 1

)
ñl−(k−1)

=ς(C′)
{ n−ñ∑
l=k−1

[
n− ñ
l

](
l + 1
k

)
ñl+1−k − ñ

n−ñ∑
l=k−1

[
n− ñ
l

](
l

k

)
ñl−k

}

=ς(C′)
{ n−ñ∑
l=k−1

[
n− ñ+ 1
l + 1

](
l + 1
k

)
ñ(l+1)−k

− (n− ñ)
n−ñ−1∑
l=k−1

[
n− ñ
l + 1

](
l + 1
k

)
ñ(l+1)−k − ñ

n−ñ∑
l=k

[
n− ñ
l

](
l

k

)
ñl−k

}

=ς(C′)
{ (n+1)−ñ∑

l=k

[
(n+ 1)− ñ

l

](
l

k

)
ñl−k − n

n−ñ∑
l=k

[
n− ñ
l

](
l

k

)
ñl−k

}
,

and, finally, using (2.34) followed by (2.35) together with (2.33), gives

=
∑

C∈P(S), C|U=C′
|C|=|C′|+(k−1)

ς(C)

Now we want to obtain a result analogous to Fact 2 (B) for H instead of R.

Proposition 4. For A,B ∈ P(S), a counting measure z ∈ E, and U ⊆ S, one has

πUH
S
A (z) = H

U
A|U (πU .z)

Proof. For a counting measure z ∈ E, we get

H
U
A|U (πU .z) = 1

[N]|A|U |

∑
B<A|U

N |B|µ(A|U ,B)RU
B (πU .z)

and

πUHA(z) = 1
[N]|A|

∑
B<A

N |B|µ(A,B)πUR
S
B (z) = 1

[N]|A|

∑
B<A

N |B|µ(A,B)RU
B|U (πU .z)

= 1
[N]|A|

∑
B<A|U

(∑
C∈P(S)
C|U=B

µ(A, C)N |C|
)
R
U
B (πU .z).

By comparing the coefficients, the desired equality holds if and only if

∀ B < A|U : [N − |A|U |]|A|−|A|U | =
∑
C∈P(S)
C|U=B

µ(A, C)
µ(A|U , C|U)N

|C|−|C|U |, (2.36)

see Figure 2.9 for an illustrating example.

Chapter 2. The Moran model with recombination and the partitioning process 35

µ(A,B)N |B| : 1N4 −1N3 2N2 or 1N2 −6N

1 | 2 | 3 | 4

1 2 | 3 | 4

1 | 2 | 3 4

1 4 | 2 | 3

1 | 2 3 | 4

1 3 | 2 | 4

1 | 2 4 | 3

1 2 3 | 4

1 2 | 3 4

1 2 4 | 3

1 4 | 2 3

1 3 4 | 2

1 3 | 2 4

1 | 2 3 4

1 2 3 4

1 | 3 | 4

1 3 | 4

1 4 | 3

1 | 3 4

1 3 4 1 | 3 1 3

U1 = {1, 3, 4} U2 = {1, 3}

µ(A|Ui ,B)N |B| : 1N3 −1N2 2N 1N2 −1N

Figure 2.9.: Illustration of the Hasse diagrams of {B | B < A} for A = 0 ∈ P(S), S =
{1, 2, 3, 4} and the corresponding restrictions to the subsets U1 = {1, 3, 4} and
U2 = {1, 3} together with the values µ(A,B)N |B|, µ(A|Ui ,B)N |B|. For the sake
of clarity, we omit the brackets and comma in the partition’s representation
and separate only the blocks by |. The different linestyles and shadings in the
lower diagram shall help to differ between the two different classes (depending
on µ(A,B)) of those B. The association of the partitions C ∈ P(S) to those
B < A|Ui to be done in (2.36) is indicated either by different colors (i = 1) or
boxes (i = 2), respectively. We see that, for a given U ∈ {U1, U2} and B < A|U ,
the sum of µ(A, C)NC over all C ∈ P(S) with C|U = B < A|U is exactly
µ(A|U ,B)N |B|[N − |A|U |]|A|−|A|U |, as claimed in the proof of Proposition 4.
For example with U2 and B = {{1, 3}}, this is (−1)N(N − 2)(N − 3).

36 2.6. Restrictions to subsystems

Furthermore, µ(A, C) implies C < A. Insofar, each of the blocks in A and A|U , respectively,
can be regarded as singletons (in the corresponding system) such that an equivalent
reformulation is: if U ⊆ S, |S| = n, |U | = ñ, then for all C′ ∈ P(U), it holds that

[N − ñ]n−ñ =
∑
C∈P(S)
C|U=C′

µ(0, C)
µ(0, C′)N

|C|−|C′| =
∑
C∈P(S)
C|U=C′

N |C|−|C
′|(−1)n−ñ−(|C|−|C′|) ς(C)

ς(C′)

⇔ ς(C ′)[N − ñ]n−ñ =
n−ñ∑
k=0

(−1)n−ñ−kNk
∑

C∈P(S),C|U=C′
|C|=|C′|+k

ς(C).

The application of Lemma 3 (A) leads to the comparison of coefficients for (−1)n−ñ−kNk

⇔ ς(C ′)
n−ñ∑
l=k

[
n− ñ
l

](
l

k

)
ñl−k =

∑
C∈P(S),C|U=C′
|C|=|C′|+k

ς(C)

and (2.32) finishes the proof.

Restriction of the partitioning process. In this paragraph we are going to discover
that the partitioning process, given by (2.11), can also be restricted to a subsystem U ⊂ S
- or, that it is a lumpable process; see [63, §6.3] for the notion of lumpability. This property
is auxiliary to show the marginal consistency of the dynamic of the duality results in
Section 2.7.
For the sake of identifiability, we use the notation

¯
Σt, ¯
A,

¯
A,

¯
m here to emphasise that a

process, partition, set, and size belongs to the subsystem U , respectively (its counterparts
in the finer system S will be denoted without underscore, as before). The statement is:

Proposition 5. The partitioning process Σt with state space P(S) and generator ΘAB,
given by (2.11) and (2.14), is lumpable, i.e. for any given subset of sites U ⊂ S the
corresponding partitioning process

¯
Σt with generator Θ

¯
A

¯
B and state space P(U) can be

constructed from Σt by marginalisation of its transition rates. Namely, for any given
A ∈ P(S) with A|U =

¯
A ∈ P(U), it holds

Θ
¯
A

¯
B =

∑
B∈P(S)
B|U=

¯
B

ΘAB ∀
¯
B ∈ P(U). (2.37)

Proof. We proceed in two main steps: first, we show that every non-zero/non-self transition
in S yields a valid non-zero (self-)transition in U ⊂ S by restriction. Then, we change the
perspective and elaborate that for any given pair

¯
A,

¯
B ∈ P(U) the relation (2.37) holds

for all A ∈ P(S) with A|U =
¯
A, cf. [63, Thm. 6.3.2], and thus the transition rates in U

given by (2.11) and (2.14) are consistently obtained by restricting the generator of S to U
via marginalisation of the transition probabilities. It is sufficient to show this by separate

Chapter 2. The Moran model with recombination and the partitioning process 37

explorations of the two possible nondiagonal transition types and the self-transition for the
case S = U ∪ {ε}. The case U ′ ⊂ S with |U ′| < |S| − 1 follows inductively.
Further, we assume that the relevant indices j, k participated in an examined transition
shall be chosen appropriately, such that

¯
Aj ⊆ Aj (¯

Ak ⊆ Ak). Example 3 after the end of
this proof gives some concrete transitions that illustrate the following discussion.
For the first step, we distinct the cases:

Pure coalescence in P(S), i.e. A → B = AM\{j,k} ∪A{j,k} for some j, k ∈M :
If {ε} is a singleton in A, then

B|U =

A|U =
¯
A, if {ε} ∈ {Aj , Ak},

AM\{j,k}|U ∪A{j,k} =
¯
A

¯
M\{j,k} ∪ ¯

A{j,k}, otherwise.

Else, i.e. {ε} (Ai, i ∈M , every pure coalescence transition in P(S) is associated with a
valid pure coalescence transition in P(U), since ε behaves like a free-rider in this case.

Split & coalescence in P(S), i.e. B|Aj = J ,B|AM\j = AM\j , for some j ∈M, J ∈ O2(Aj):
If {ε} ⊆ A`, ` 6= j the transition A → B ∈ P(S) is obviously associated with the same type
of transition in P(U) by A|U =

¯
A →

¯
B = B|U since ε acts like a free-rider again.

Else, i.e. {ε} (Aj ({ε} = Aj belongs to the pure coalescence discussion before), we have
to be aware of two subcases:

• Let ε ∈ {minAj ,maxAj} and then w.l.o.g. {ε} = Aj1 w.r.t. J = {Aj1 , Aj2}, so the
restriction to U yields either a valid coalescence event

¯
A →

¯
B =

¯
A

¯
M\{j,k} ∪ ¯

A{j,k}, if
Aj2 merges, or a self transition

¯
A →

¯
A, otherwise.

• If minAj < ε < maxAj , ε acts like a free-rider of either Aj1 or Aj2 and thus, again,
the restriction to U yields a valid non-zero / non-diagonal transition in P(U).

Since we have seen that every transition in P(S) has its counterpart in P(U), we have to show
that the marginalised transition probabilites are consistent. Therefore, let

¯
A →

¯
B ∈ P(U)

be a given non-zero / non-self transition together with a partition A ∈ P(S) s.t. A|U =
¯
A.

We have to identify all B ∈ P(S) with ΘAB 6= 0 s.t. B|U =
¯
B and check that (2.37) holds.

Pure coalescence in P(U), i.e. let
¯
A →

¯
B =

¯
A

¯
M\{j,k} ∪ ¯

A{j,k} for some j, k ∈
¯
M :

1. If ε ∈ A` for some ` ∈ M \ {j, k} this site does not participate in a relevant
coalescence transition in P(S) and thus

¯
A →

¯
B is represented by a unique B ∈ P(S)

with Aj , Ak → A{j,k} ∈ B and
¯
Aj = Aj as well as ¯

Ak = Ak, so Θ
¯
A

¯
B = ΘAB.

2. Else, i.e. ε ∈ A{j,k} and then w.l.o.g. ε ∈ Aj , we consider all possible transitions
A → B in P(S) that are pure coalescence events or yield such in P(U). Recall that
{ε} (Aj is the only case of interest, since otherwise a coalescence transition A → B
in P(S) is a self-transitions in P(U) (cf. discussion of (pure) coarsement in P(S)
before).

38 2.6. Restrictions to subsystems

a) If minAj < ε < maxAj , then r
Aj
1 = r ¯

Aj
1 holds and again we have only one

B ∈ P(S) that yields a suitable transition, so Θ
¯
A

¯
B = ΘAB.

b) If ε ∈ {minAj ,maxAj}, |Aj | > 1 exactly m− 1 split & coalescence transitions
in P(S) (either ε joins A`, j 6= ` 6= k or becomes a singleton) together with the
pure coalescence transition A → B = AM\{j,k} ∪A{j,k} yield the same transition
in P(U) by restriction with

Θ
¯
A

¯
B = (m− 2) (N − (m− 1))!

N2(N − (m− 1))!r
¯
Aj∪{ε}
{

¯
Aj ,{ε}} + (N − (m− 1))!

N2(N −m)! r ¯
Aj∪{ε}
{

¯
Aj ,{ε}}

+ 2
N2 + N − 1

N2

(
r ¯
Aj∪{ε}

1 + rAk1

)
= 2
N2 + N − 1

N2

(
r ¯
Aj

1 + r ¯
Ak

1

)
.

Here we have used r ¯
Aj
1 = r ¯

Aj∪{ε}
1 + r ¯

Aj∪{ε}
{

¯
Aj ,{ε}} and r ¯

Ak
1 = rAk1 .

Split & coalescence in P(U), i.e.
¯
B|

¯
Aj

=
¯
J ,

¯
B|

¯
A

¯
M\j

=
¯
A

¯
M\j , f.s. j ∈

¯
M,

¯
J ∈ O2(

¯
Aj):

1. Let ε /∈ Aj ⇒ r ¯
Aj

¯
J = r

Aj
J for

¯
J = J = {Aj1 , Aj2} (w.l.o.g. maxAj1 < minAj2).

Then:

a) Let ` ∈ M with {ε} (A`, ` 6= j, then |
¯
B| = |B| and

¯
m = m for a unique

B ∈ P(S) with B|U =
¯
B ∈ P(U) and thus Θ

¯
A

¯
B = ΘAB.

b) Else, i.e. A` = {ε}, ` 6= j, and thus |
¯
A| = m− 1 as well as r ¯

Aj
1 = r

Aj
1 , then:

i. Let A′ ∈ {{A{j1,`}, Aj2}, {Aj1 , A{j2,`}},J ∪ {A`}}, then transitions of the
form A → B = AM\{j,`} ∪A′ yield the same B|U =

¯
B ∈ P(U) with |

¯
B| = m

⇒ Θ
¯
A

¯
B =

r
Aj
J
N2

[
2(N − (m− 1))!

(N −m)! + (N − (m− 1))!
(N − (m+ 1))!

]
=
r ¯
Aj

¯
J

N2
(N − (

¯
m− 1))!

(N − |
¯
B|)! .

ii. Let A′ ∈ {{A{j1,k,`}, Aj2}, {A{j1,k}, A{j2,`}}, {A{j1,k}, Aj2 , A`}} for another
k ∈M, ` 6= k 6= j, then transitions of the form A → B = AM\{j,k,`} ∪ A′

yield the same B|U =
¯
B ∈ P(U) with |

¯
B| = m− 1

⇒ Θ
¯
A

¯
B =

r
Aj
J
N2

[
2(N − (m− 1))!

(N − (m− 1))! + (N − (m− 1))!
(N −m)!

]
=
r ¯
Aj

¯
J

N2
(N − (

¯
m− 1))!

(N − |
¯
B|)! .

2. Let {ε} (Aj1 ({ε} (Aj2)⇒ |
¯
B| = |B| and

¯
m = m. (Note here, again, that the case

{ε} = Aj1 ({ε} = Aj2) does not lead to a split & coalescence transitions in P(U), as
already discussed in the first step of this proof).

a) With minAj1 6 ε < maxAj1 (minAj2 < ε 6 maxAj2), then r ¯
Aj

¯
J = r

Aj
J holds

and a unique B ∈ P(S) exists with B|U =
¯
B ∈ P(U), which yields Θ

¯
A

¯
B = ΘAB.

b) Now, let either ε = maxAj1 , such that Aj1 =
¯
Aj1 ∪ {ε}, Aj2 =

¯
Aj2 , or ε =

minAj2 , such that Aj1 =
¯
Aj1 , Aj2 = {ε} ∪

¯
Aj2 . Both cases yield the same

Chapter 2. The Moran model with recombination and the partitioning process 39

B|U =
¯
B ∈ P(U) with

¯
B|

¯
Aj

=
¯
J = {

¯
Aj1 , ¯

Aj2} (split either before or after ε)

⇒ Θ
¯
A

¯
B = (N − (m− 1))!

N2(N − |B|)!
[
r
Aj
{

¯
Aj1∪{ε},¯

Aj2}
+r

Aj
{

¯
Aj1 ,{ε}∪¯

Aj2}

]
= (N − (

¯
m− 1))!

N2(N − |
¯
B|)! r

¯
Aj

¯
J

Self-transition in P(U), i.e. A|U =
¯
A =

¯
B:

We have to distinct three subcases here, depending on the location of ε in A:

1. If minAj < ε < maxAj for some j ∈M ⇒ no non-self-transition in P(S) can make
{ε} act as a free-rider, so rAj1 = r ¯

Aj
1 and thus Θ

¯
A

¯
B = ΘAB.

2. If ∃ j ∈M s.t. ε ∈ {minAj ,maxAj}, |Aj | > 1, then in total m−1 split & coalescence
transitions with

¯
m = m yield a B 6= A ∈ P(S) with B|U =

¯
A, (2.37) holds for

¯
B =

¯
A = A|U due to rtot(A) = rtot(¯

A) + r
Aj
{{ε},

¯
Aj}, and

(N − (
¯
m− 1))!

N2(N − (
¯
m+ 1))! + (m− 1)(N − (

¯
m− 1))!

N2(N −
¯
m)! = (N − 1)(N − (

¯
m− 1))

N2 .

3. Otherwise, i.e. ∃ j ∈M with {ε} = Aj , we have Ak =
¯
Ak ∀ k ∈M \j and ¯

m = m−1.
Thus rtot(¯

A) = rtot(A) =
∑
k∈M\j

∑
J∈O2(Ak) r

Ak
J and m− 1 coalescence transitions

A → B exist in P(S) with B|U =
¯
A

⇒ Θ
¯
A

¯
A =−

((
¯
m+ 1)((

¯
m− 1) + 1)
N

+ (N − 1)(N − (
¯
m− 1)− 1)

N2 rtot(A)
)

+
∑

k∈M\j

(2
N2 + N − 1

N2 (1 + rAk1)
)

=−
(

¯
m(

¯
m− 1)
N

+ (N − 1)(N − (
¯
m− 1))

N2 rtot(¯
A)
)
.

Example 3. Let us give some short examples that shall help to trace the proof of Proposi-
tion 5 with ε = 3 ∈ S = {1, 2, 3, 4, 5, 6}. The first arrow indicates the transition in P(S)
and the second arrow indicates the restriction to U = S \ ε.
(Pure) coalescence in P(U), i.e.

¯
A →

¯
B =

¯
A

¯
M\{j,k} ∪ ¯

A{j,k} for some j, k ∈
¯
M :

1. {{1, 2}, {3, 4}, {5, 6}} → {{1, 2, 5, 6}, {3, 4}} {{1, 2, 5, 6}, {4}}

2. (Otherwise) {{1, 2}, {3}, {4}, {5, 6}} → {{1, 2, 3}, {4}, {5, 6}} {{1, 2}, {4}, {5, 6}}

a) {{1, 3, 6}, {2, 4}, {5}} → {{1, 2, 3, 4, 6}, {5}} {{1, 2, 4, 6}, {5}}

b) {{1 3}, {2, 5}, {4}, {6}} →

∣∣∣∣∣∣∣∣∣
{{1, 2, 5}, {3, 4}, {6}}
{{1, 2, 5}, {4}, {3, 6}}
{{1, 2, 5}, {3}, {4}, {6}}
{{1, 2, 3, 5}, {4}, {6}}

∣∣∣∣∣∣∣∣∣ {{1, 2, 5}, {4}, {6}}
Split & coalescence in P(U), i.e.

¯
B|

¯
Aj

=
¯
J ,

¯
B|

¯
A

¯
M\j

=
¯
A

¯
M\j , for some j ∈

¯
M,

¯
J ∈ O2(

¯
Aj):

1. a) {{1 4}, {2, 5}, {3, 6}} → {{1, 3, 6}, {2, 4, 5}} {{1, 6}, {2, 4, 5}}

40 2.7. Duality

b) i. {{1 4}, {2, 5}, {3}, {6}} →

∣∣∣∣∣∣∣
{{1}, {4}, {2, 5}, {3}, {6}}
{{1}, {3, 4}, {2, 5}, {6}}
{{1, 3}, {4}, {2, 5}, {6}}

∣∣∣∣∣∣∣ {{1}, {4}, {2, 5}, {6}}
ii. {{1 4}, {2, 5}, {3}, {6}} →

∣∣∣∣∣{{1, 2, 5}, {4}, {3, 6}}{{1, 2, 5}, {4, 3}, {6}}

∣∣∣∣∣ {{1, 2, 5}, {4}, {6}}
2. a) {{1, 3, 4 6}, {2, 5}} → {{1, 3, 4}, {2, 5, 6}} {{1, 4}, {2, 5, 6}}

b) {{1, 3 4}, {2, 5}, {6}} →

∣∣∣∣∣{{1, 2, 5}, {3, 4, 6}}{{1, 2, 3, 5}, {4, 6}}

∣∣∣∣∣ {{1, 2, 5}, {4, 6}}
Self-transition in P(U), i.e. A|U =

¯
A =

¯
B:

1. {{1, 3, 4}, {2}, {5, 6}} → {{1, 3, 4}, {2}, {5, 6}} {{1, 4}, {2}, {5, 6}}

2. {{12}, {3}, {4, 5}, {6}} →

∣∣∣∣∣∣∣∣∣
{{1, 2, 3}, {4, 5}, {6}}
{{1, 2}, {3, 4, 5}, {6}}
{{1, 2}, {4, 5}, {3, 6}}
{{1, 2}, {3}, {4, 5}, {6}}

∣∣∣∣∣∣∣∣∣ {{1, 2}, {4, 5}, {6}}

3. {{1, 3}, {2, 4}, {5}, {6}} →

∣∣∣∣∣∣∣∣∣∣∣∣

{{1}, {2, 3, 4}, {5}, {6}}
{{1}, {2, 4}, {3, 5}, {6}}
{{1}, {2, 4}, {5}, {3, 6}}
{{1}, {3}, {2, 4}, {5, 6}}
{{1, 3}, {2, 4}, {5}, {6}}

∣∣∣∣∣∣∣∣∣∣∣∣
 {{1}, {2, 4}, {5}, {6}}

2.7. Duality

Duality is a powerful tool to obtain information about one process by studying another,
the dual process. The latter may, in an optimal case, have a much smaller state space than
the original one. Duality results are essential in interacting particle systems in physics
and in population genetics. They are often related to time reversal. The most famous
example in population genetics is arguably the moment duality between the Wright-Fisher
diffusion forward in time and the block counting process of Kingman’s coalescent backward
in time (see [25], [72]). In [68] this result is extended by incorporating recombination into
the two-locus, two-allele case. Those results are based on the original version of the ARG
and thus on the diffusion limit.
We will briefly explain the general duality concept and then prove that our processes
{Zt}t>0 and {Σt}t>0 are duals of each other. For the general principle, let X = {Xt}t>0

and Y = {Yt}t>0 be two Markov processes with state spaces E and F . Define byM(E×F)b
the set of all bounded, measurable functions on E × F . The following definition of duality
with respect to a function goes back to [67]; see also the recent review in [59].

Definition 3 (Duality). The Markov processes X and Y , with laws ϕ and ψ, respectively,
are said to be dual with respect to a function H ∈M(E × F)b if, for all x ∈ E, y ∈ F , and
t > 0,

Eϕ [H(Xt, y) | X0 = x] = Eψ [H(x, Yt) | Y0 = y] . (2.38)

Chapter 2. The Moran model with recombination and the partitioning process 41

If E and F are finite, every function H ∈ M(E × F)b may be represented by a matrix
with bounded entries H(v, w), v ∈ E, w ∈ F . If, further, X and Y are time-homogeneous
with generator matrices Λ and Θ respectively, the expectations in (2.38) may be written
in terms of the corresponding semigroups, i.e.,

Eϕ [H(Xt, y) | X0 = x] =
∑
v∈E

(etΛ)xvH(v, y),

Eψ [H(x, Yt) | Y0 = y] =
∑
w∈F

(etΘ)ywH(x,w).
(2.39)

Since the duality equation (2.38) is automatically satisfied at t = 0, it is sufficient to check
the identity of the derivatives at t = 0. That is, Eq. (2.38) holds for all times if and only if

d
dt Eϕ [H(Xt, y) | X0 = x]

∣∣
t=0 =

∑
v∈E

ΛxvH(v, y)

=
∑
w∈F

H(x,w)Θyw

= d
dt Eψ [H(x, Yt) | Y0 = y]

∣∣
t=0

(2.40)

for all x ∈ E, y ∈ F . As a short-hand of (2.40), one can write ΛH = HΘT , where T
denotes transpose.
We will now present a duality result that justifies our construction of a marginalised
sample at present via the partitioning process and sampling from the initial population (cf.
Figure 2.4). Indeed, it is not coincidence that we have denoted our sampling functions by
HA and our generators by Λ and Θ.

Theorem 1. The population process {Zt}t>0 and the partitioning process {Σt}t>0 with the
generators Λ and Θ and resulting laws ϕ and ψ, respectively, are dual with respect to the
sampling function H defined in (2.25). Explicitly,

Eϕ
[
HA(Zt) | Z0 = z

]
= Eψ

[
HΣt(z) | Σ0 = A

]
(2.41)

for all A ∈ P(S) and z ∈ E.

Before we embark on the proof, let us briefly comment on the meaning of this result.

Remark 7. Eq. (2.41) is the formal equivalent of the construction in Figure 2.4. To
see this, recall the random variables X̃t,A from (2.24). With their help, the left-hand side
of (2.41) may be reformulated as a probability distribution,

Eϕ
[
HA(Zt) | Z0 = z

]
= Eϕ

[
P
[
X̃t,A = ·

]
| Zt, Z0 = z

]
= Pϕ

[
X̃t,A = · | Z0 = z

]
,

since the expectation is over all realisations of Zt. The right-hand side is the probability

42 2.7. Duality

distribution considered in [17]. Likewise, the right-hand side of (2.41) is equal to

Eψ

[
HΣt(z) | Σ0 = A

]
= Eψ

[
P
[
X̃0,Σt = ·

]
| Σt, Σ0 = A

]
= Pψ

[
X̃0,Σt = · | Σ0 = A

]
,

since the expectation is over all realisations of Σt. The right-hand side is the distribution
of types when sampling from the initial population according to the partition Σt, where it is
understood that the initial population consists of the types X1

0 , . . . , X
N
0 with

∑N
k=1 δXk

0
= z.

Recall that time runs forward in Zt, Xk
t , and X̃t,A, but backward in Σt.

In order to avoid case distinctions in the calculations in the remainder of this section, let
us agree on the following conventions concerning (partitions of) empty sets. Namely, we set
A∅ := ∅, H∅(π∅.z) = R∅(π∅.z) := π∅.z = ‖z‖ = N , and µ(∅,∅) := 1. We now collect
some auxiliary results in the following Lemma.

Lemma 4. Consider a counting measure z ∈ E, a partition A ∈ P(S) with |A| = m 6 N

and corresponding index set M = {1, . . . ,m}, and a partition B ∈ P(S). Then, the following
statements hold:

(A)
∑
x∈X

(
RB(z)

)
(x)

[
HA(z + δx)− HA(z)

]
=
∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z).

(B)
∑
x∈X

z(x)
[
HA(z − δx)− HA(z)

]
= −mHA(z).

Before we prove the lemma, let us give some explanations.

Remark 8. Note first that, with the above conventions, the right-hand side of identity (A)
evaluates to ∑

j∈M

(
HAM\j ⊗ RB|Aj

)
(z) = NRB(z)

if A = 1.
Let us now provide an interpretation for the statements of the lemma. Evaluating state-
ment (A) for a given type y ∈ X yields the equivalent formulation(∑

x∈X

(
RB(z)

)
(x)HA(z + δx)

)
(y) =

(
HA(z)

)
(y) +

∑
j∈M

((
HAM\j ⊗ RB|Aj

)
(z)
)
(y).

Let us read the left-hand side as the expected number of y individuals when drawing the
parts of A without replacement from the population z to which one individual with type
distribution RB(z) has beed added. The statement then says that this can be achieved either
by drawing all parts of A from z without replacement, or by drawing all but one of them
from z without replacement and the parts of B induced by the remaining block independently
of each other and of all other blocks.
Likewise, evaluating statement (B) for some type y ∈ X gives

(∑
x∈X

z(x)
N

HA(z − δx)
)
(y) = N −m

N

(
HA(z)

)
(y).

Chapter 2. The Moran model with recombination and the partitioning process 43

Let us note in passing that the left-hand side is always well-defined, since z − δx < 0 can
only occur with z(x) = 0, in which case the term vanishes. This left-hand side yields the
expected number of y individuals when drawing the parts of A from the population z after
removal of one randomly sampled individual. The statement then tells us that this is the
same as first drawing the parts of A from all of z and then deciding whether none of the
m affected individuals has been removed, which is the case with probability (N −m)/N .

Proof of Lemma 4. We first observe that

∑
x∈X

(
RB(z)

)
(x)(πU .δx) = πU .

∑
x∈X

(
RB(z)

)
(x) δx = πU .

(
RB(z)

)
= RB|U

(πU .z) (2.42)

by Fact 2. We next evaluate
∑
x∈X

(
RB(z)

)
(x)

[
RA(z + δx)− RA(z)

]
by expanding RA to

separate the action on z from that on δx, summing against RB(z) (using (2.42)), applying
Fact 1 and changing summation:

∑
x∈X

(
RB(z)

)
(x)

[
RA(z + δx)− RA(z)

]
=
∑
x∈X

(
RB(z)

)
(x)

∑
∅6=J.⊆M

(
RAM\J (πAM\J .z)

)
⊗
(
πAJ .δx)

=
∑

∅6=J.⊆M

(
RAM\J ⊗ RB|AJ

)
(z) =

∑
∅6=J.⊆M

∑
C.<AM\J

(
HC ⊗ RB|AJ

)
(z)

=
∑
D.<A

|D|∑
j=1

(
HD\Dj ⊗ RB|Dj

)
(z),

where, in the last step, every AJ reappears as one Dj . Using this together with (2.23)
and (2.1), we obtain

∑
x∈X

(
RB(z)

)
(x)

[
HA(z + δx)−HA(z)

]
=
∑
C.<A

µ(A, C)
∑
x∈X

(
RB(z)

)
(x)

[
RC(z + δx)− RC(z)

]

=
∑
C.<A

µ(A, C)
∑
D.<C

|D|∑
j=1

(
HD\Dj ⊗ RB|Dj

)
(z)

=
∑
D.<A

|D|∑
j=1

(
HD\Dj ⊗ RB|Dj

)
(z)

∑
A4C.4D

µ(A, C) =
∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z),

which is statement (A). In an analoguous way, we can prove statement (B):

∑
x∈X

z(x)
[
RA(z − δx)− RA(z)

]
=

∑
∅6=J.⊆M

(−1)|J |
∑
x∈X

z(x)
(
RAM\J (πAM\J .z)

)
⊗
(
R
AJ
1 (πAJ .δx)

)

44 2.7. Duality

=
∑

∅6=J.⊆M
(−1)|J |

(
RAM\J ⊗ R

AJ
1

)
(z) =

∑
∅6=J.⊆M

(−1)|J |
(
RAM\J∪AJ

)
(z)

=
∑

∅6=J.⊆M
(−1)|J |

∑
B.<AM\J∪AJ

HB(z) =
∑
C.<A

HC(z)
|C|∑
j=1

∑
∅6=K. ⊆Cj

(−1)|K|

=
∑
C.<A

HC(z)
|C|∑
j=1

[
(1− 1)|Cj | − 1

]
= −

∑
C.<A
|C|HC(z),

where, in the second-last step, every AJ reappears as a Cj . We therefore get

∑
x∈X

z(x)
[
HA(z − δx)−HA(z)

]
=
∑
B.<A

µ(A,B)
∑
x∈X

z(x)
[
RB(z − δx)− RB(z)

]
= −

∑
B.<A

µ(A,B)
∑
C.<B
|C|HC(z) = −

∑
C.<A
|C|HC(z)

∑
A4B.4C

µ(A,B)

= −|A|HA(z),

as claimed.

We can now proceed as follows.

Proof of Theorem 1. We start with the partitioning process. We first note that

∑
B.<AM\j∪J
B|AM\j=AM\j

(
N − (m− 1)

)
!

(N − |B|)! = N |J | (2.43)

for j ∈M and |J | 6 2. This is easily verified by direct calculation; namely, for |J | = 1,
the sum on the left-hand side equals (N − (m− 1)) + (m− 1) = N ; for |J | = 2, it evaluates
to

(N − (m− 1)) (N −m) + (N − (m− 1)) (2m− 1) + (m− 1)2 = N2.

We now use the formulation of the process via (2.10) and (2.11) in the first step, normali-
sation and (2.43) in the second, Lemma 2 in the third, and finally another normalisation
step to calculate

∑
B∈P(S)

ΘAB HB(z) =
∑
j∈M

∑
J∈O62(Aj)

rJ
N |J |

∑
B.<AM\j∪J
B|AM\j=AM\j

(
N − (m− 1)

)
!

(N − |B|)!
(
HB −HA

)
(z)

=
∑
j∈M

∑
J∈O62(Aj)

rJ
N |J |

((∑
B.<AM\j∪J
B|AM\j=AM\j

(
N − (m− 1)

)
!

N ! HB

)
−N |J |HA

)
(z)

Chapter 2. The Moran model with recombination and the partitioning process 45

=
∑
j∈M

∑
J∈O62(Aj)

rJ
N |J |

((
N − (m− 1)

)
!

N !
(
HAM\j ⊗ RJ

)
−N |J |HA

)
(z)

=
∑
j∈M

∑
J∈O62(Aj)

rJ

(
HAM\j ⊗ RJ −HA

)
(z). (2.44)

We now turn to the type distribution process. Here we first evaluate, with Lemma 4 (B):

∑
y∈X

z(y)
[
HA
(
z + δx − δy

)
−HA(z)

]
=
∑
y∈X

(z + δx)(y)HA
(
(z + δx)− δy

)
−
∑
y∈X

(z + δx)(y)HA(z)

=
∑
y∈X

(z + δx)(y)
[
HA
(
(z + δx)− δy

)
−HA(z + δx) + HA(z + δx)−HA(z)

]
= (N + 1−m)

[
HA(z + δx)−HA(z)

]
−mHA(z).

From this, we obtain via summation against RB(z) and use of Lemma 4 (A) that

∑
x∈X

∑
y∈X

(
RB(z)

)
(x) z(y)

[
HA(z + δx − δy)−HA(z)

]
= (N + 1−m)

∑
j∈M

(
HAM\j ⊗ RB|Aj

)
(z)−mHA(z).

(2.45)

We now have to examine
∑
z′∈E Λzz′HA(z′) for an arbitrary partition A of S. To this end,

we use (2.7) and normalisation, followed by (2.45) and a change of summation involving (2.9)
to calculate

∑
z′∈E

Λzz′ HA(z′) =
∑
x,y∈X

λ(z; y, x) [HA(z + δx − δy)−HA(z)]

= (N −m)!
N !

∑
B∈O62(S)

rB
∑
x,y∈X

(
RB(z)

)
(x) z(y)

[
HA(z + δx − δy)−HA(z)

]
=

∑
B∈O62(S)

rB

[((N − (m− 1))!
N !

∑
j∈M

HAM\j ⊗ RB|Aj

)
− (N −m)!

N ! mHA

]
(z)

=
∑

B∈O62(S)
rB

∑
j∈M

(
HAM\j ⊗ RB|Aj

−HA
)
(z)

=
∑
j∈M

∑
J∈O62(Aj)

∑
B∈O62(S)
B|Aj=J

rB

(
HAM\j ⊗ RJ −HA

)
(z)

=
∑
j∈M

∑
J∈O62(Aj)

rJ

(
HAM\j ⊗ RJ −HA

)
(z),

which agrees with (2.44) and proves the claim.

46 2.7. Duality

We can now harvest some interesting consequences. First, Eq. (2.44) contains a meaningful
expression for the derivative:

Corollary 2. For A ∈ P(S), z ∈ E, and the population process {Zt}t>0, we have

d
dt Eϕ [HA(Zt) | Z0 = z]

∣∣
t=0 =

∑
j∈M

∑
J∈O62(Aj)

r
Aj
J

(
R
Aj
J ⊗ H

AM\j
AM\j − H

S
A

)
(z).

The right-hand side has a plausible explanation. Namely, when block Aj splits into J ,
the other blocks in A retain their current type distribution (namely, HAM\j (πAM\j .z)).
Independently of this, the parts of J pick their types from all individuals (with replacement),
including those individuals that already carry other parts of AM\j , which is expressed by
the tensor product with RJ (πAj .z).
Next, via (2.39) together with the fact that HA(z) = Eϕ [HA(Zt) | Zt = z], Eqns. (2.40)
and (2.41) give rise to a system of differential equations for the expectations, namely:

Corollary 3. For A ∈ P(S) and the population process {Zt}t>0, one has

d
dt Eϕ [HA(Zt)] =

∑
B∈P(S)

ΘAB Eϕ [HB(Zt)] . (2.46)

This will be the basis for our concrete calculations in Section 2.8 and the numerical approach
to estimate the recombination distribution in Chapter 3. However, first, we close this
section with the conclusion that our model described by the dynamics (2.46) is marginal
consistent.

Marginalisation consistency. This property was observed early in population genetics
in [32] (see also the review [21]), but is not fulfilled in general for this kind of models, because
of the influence of selection. However, in pure recombination models, the consistency usually
holds and the marginalised dynamics is stated by the marginalised recombination rates
as it was also shown recently in [3, Proposition 6] for the general recombination equation
(in the infinite population size or deterministic limit) in continuous time. Our situation is
tightly related to the latter and similar ideas are used to prove:

Proposition 6. Let S be a finite set, ∅ 6= U ⊂ S and Eϕ

[
H

S
A (Zt)

]
be the solution of

(2.46) for A ∈ P(S) with initial condition H
S
A (Z0), Z0 ∈ E. Then, for some

¯
A ∈ P(U)

with
¯
A = A|U , the marginalised expected type distribution Eϕ

[
H

U

¯
A (πU .Zt)

]
solves (2.46)

for the subsystem given by U with operator as in (2.37).

Proof. The verification is mainly based on two results stated in Section 2.6. First, we use
the fact that the normalised sampling function (2.25) fulfils Proposition 4. Then, after
using the linearity of πU and the identity (2.46), we use the fact that the partitioning

Chapter 2. The Moran model with recombination and the partitioning process 47

process Σt with generator Θ is lumpable, see Proposition 5, to verify that

d
dt Eϕ

[
H

U

¯
A (πU .Zt)

]
= πU .

(d
dt Eϕ

[
H

S
A (Zt)

])
= πU .

 ∑
B∈P(S)

ΘAB Eϕ

[
H

S
B (Zt)

]
=

∑
B∈P(S)

ΘAB Eϕ

[
πU .H

S
B (Zt)

]
=

∑
B∈P(S)

ΘAB Eϕ

[
H

U
B|U

(πU .Zt)
]

=
∑

¯
B∈P(U)

∑
B∈P(S)
B|U=

¯
B

ΘAB Eϕ

[
H

U

¯
B (πU .Zt)

]

=
∑

¯
B∈P(U)

Θ
¯
A

¯
B Eϕ

[
H

U

¯
B (πU .Zt)

]
.

Remark 9. This is the key property that makes it even plausible to infer model parameters
from some observation data as suggested in Chapter 3. Every used data (or sample) is
always only a cutout of the entire system, since the data size from the entire genome would
exceed any range and is usually even not available.

2.8. Applications and examples

Let us now apply some of our results to the cases of n = 2 and n = 3 sites. Expectations
will always be with respect to ϕ, so we will abbreviate Eϕ by E throughout. We will
assume that Z0 = z, i.e., that the initial population is deterministic.

Two sites. For U = S = {1, 2}, with the abbreviation r := r{{1},{2}}, the ODE system
of Corollary 3 reads

d
dt E

[
H{{1,2}}(Zt)

]
= r

N − 1
N

E
[(
H{{1},{2}} −H{{1,2}}

)
(Zt)

]
(2.47)

d
dt E

[
H{{1},{2}}(Zt)

]
= 2
N

E
[(
H{{1,2}} −H{{1},{2}}

)
(Zt)

]
,

where we have dropped the upper index, which is always U . It follows that

d
dt E

[(
H{{1,2}} −H{{1},{2}}

)
(Zt)

]
=

−
(2
N

+ r
N − 1
N

)
E
[(
H{{1,2}} −H{{1},{2}}

)
(Zt)

]
.

(2.48)

Since L{{1,2}} = N−1
N (H{{1,2}} − H{{1},{2}}), it follows that the expected two-point LDE

also decays at rate 2/N + r(N − 1)/N . In the case of two alleles per site, an equivalent
formula has appeared in [16, Ex. 1]. The corresponding result in the diffusion limit goes
back to [74], see also [26, Chap. 8.2]. As noted there, it may seem surprising that the
correlations also decay via resampling (even if r = 0); but recall that our Moran model
with recombination is an absorbing Markov chain where a single type goes to fixation in

48 2.8. Applications and examples

the long run, that is, Zt will ultimately end up in a point measure.
The expected type distribution is now easily obtained from (2.47) and (2.48) via

E
[
H{{1,2}}(Zt)

]
= E

[
H{{1,2}}(Z0)

]
− r N − 1

N

∫ t

0
E
[(
H{{1,2}} −H{{1},{2}}

)
(Zτ)

]
dτ

= Z0
N
− r(N − 1)
r(N − 1) + 2

(
1− exp

(
− r(N − 1) + 2

N
t
))

E
[(
H{{1,2}} −H{{1},{2}}

)
(Z0)

]
,

where we have used that E
[
H{{1,2}}(Z0)

]
= Z0/N . The asymptotic behaviour is given by

lim
t→∞

E
[
Zt
N

]
= 2

2 + r(N − 1)
Z0
N

+ r(N − 1)
2 + r(N − 1) H{{1}{2}}(Z0). (2.49)

Since Zt will ultimately absorb in a point measure, we also know that

lim
t→∞

E
[
Zt
N

]
=
∑
x∈X

P[Zt absorbs in x] δx,

and thus P[Zt absorbs in x] = limt→∞E[Zt/N](x) for all x ∈ X. We can therefore read
off the fixation probabilities from (2.49). With probability 2

2+r(N−1) (the relative intensity
of resampling), the type that wins is drawn from the initial distribution. With probability
r(N−1)

2+r(N−1) (the relative intensity of recombination), it is drawn from the distribution that
results when the leading and the trailing segments are sampled from the initial population
without replacement.

Three sites. Now, we consider U = S = {1, 2, 3}, together with the abbreviations
r1 := r{{1}{2,3}}, r2 := r{{1,2}{3}} and rtot := rtot(1) = r1 + r2. Let us order the partitions
of P(U) as follows:

{{1, 2, 3}} {{1}, {2, 3}} {{1, 2}, {3}} {{1, 3}, {2}} {{1}, {2}, {3}}.

The generator of the partitioning process then reads

Θ =



−N−1
N

rtot
N−1
N

r1
N−1
N

r2 0 0

2
N
−N−1

N2 r2 − 2
N
− (N−1)2

N2 r2
N−1
N2 r2

N−1
N2 r2

(N−1)(N−2)
N2 r2

2
N
−N−1

N2 r1
N−1
N2 r1 − 2

N
− (N−1)2

N2 r1
N−1
N2 r1

(N−1)(N−2)
N2 r1

2
N
−N−1

N2 rtot
N−1
N2 rtot

N−1
N2 rtot − 2

N
− (N−1)2

N2 rtot
(N−1)(N−2)

N2 rtot

0 2
N

2
N

2
N

− 6
N


. (2.50)

Recall that, by Corollary 3 the expectation of H(Zt) := (H U
A (Zt))A∈P(U) fulfills

d
dt E[H(Zt)] = ΘE[H(Zt)].
We now transform this system into a system in terms of correlation functions. Therefore,
let L(Zt) = (LUA(Zt))A∈P(U). From (2.30), we know that L(Zt) = TH(Zt), where the

Chapter 2. The Moran model with recombination and the partitioning process 49

transformation matrix is given by

T = (N−1)(N−2)
N2


1 −1 −1 −1 2
1

N−2 1+ 1
N−2

−1
N−2

−1
N−2 −1

1
N−2 − 1

N−2 1+ 1
N−2 −

1
N−2 −1

1
N−2 − 1

N−2 − 1
N−2 1+ 1

N−2 −1
1

(N−1)(N−2)
1

N−2
1

N−2
1

N−2 1

 .

Consequently, d
dt E[L(Zt)] = TΘT−1 E[L(Zt)], where

TΘT−1 =


− 6
N
− (N−1)(N−2)

N2 rtot 0 0 0 0
2
N
− (N−1)

N2 rtot − 2
N
−N−1

N
r2 0 0 0

2
N
− (N−1)

N2 rtot 0 − 2
N
−N−1

N
r1 0 0

2
N
− (N−1)

N2 rtot 0 0 − 2
N
−N−1

N
rtot 0

− 1
N2 rtot

2
N
− 1
N
r2

2
N
− 1
N
r1

2
N
− 1
N
rtot 0

 . (2.51)

In contrast to (2.50), the matrix TΘT−1 has a nice subtriangular structure, from which we
can already read off that the expected three-point LDE E[L{{1,2,3}}(Zt)] (cf. (2.31)) decays
exponentially according to

d
dt E

[
L{{1,2,3}}(Zt)

]
= −

(
6N + (N − 1)(N − 2) rtot

N2

)
E
[
L{{1,2,3}}(Zt)

]
.

As in the case of two sites, the decay rate contains contributions from resampling as well
as from recombination. To extract more information, we recast TΘT−1 into the diagonal
form V −1TΘT−1V = D, where the entries of the diagonal matrix D are those on the
diagonal of TΘT−1, i.e., its eigenvalues. Consequently, d

dt V
−1 E[L(Zt)] = DV −1 E[L(Zt)].

With the help of the subtriangular structure of TΘT−1, the matrix V −1 can be calculated
explicitly. It is again subtriangular, but somewhat unwieldy. To streamline the results,
we now turn to the diffusion limit, with generator Θ′′ of Definition 2. Then T and T−1

converge to matrices T ′′ and (T ′′)−1, respectively, with elements T ′′AB = µ(B,A) δB4A and
(T ′′)−1

AB = δB4A, A,B ∈ P(U) (the latter is due to inverison from below). This yields

T ′′Θ′′(T ′′)−1 =


−(6+%tot) 0 0 0 0

2 −(2+%2) 0 0 0
2 0 −(2+%1) 0 0
2 0 0 −(2+%tot) 0
0 2 2 2 0

 ,
where %i = limN→∞N ri, i ∈ {1, 2, tot}. Note that the rescaling of time has already been
absorbed in Θ′′. In place of V −1, we now get

(V ′′)−1 =


1 0 0 0 0
2

(2+%2)(4+%1)
1

2+%2
0 0 0

2
(2+%1)(4+%2) 0 1

2+%1
0 0

1
2(2+%tot) 0 0 1

2+%tot
0

4(%1%2+(2+%tot)(6+%tot))
(2+%1)(2+%2)(2+%tot)(6+%tot)

2
2+%2

2
2+%1

2
2+%tot

1

 ,

50 2.9. Conclusion

which diagonalises T ′′Θ′′(T ′′)−1. This shows that, in contrast to |U | = 2, the lin-
ear combinations of E[LA(Zt)]’s, that decay exponentially, have coefficients depend-
ing on the recombination rates (with exception of E[L{{1,2,3}}(Zt)]). As an example,
(4 + %1) E[L{{1}{2,3}}(Zt)] + 2 E[L{{1,2,3}}(Zt)] is one such combination and decays at rate
2 + %2. Solution of the complete system is still possible due to the triangular structure;
however, it is somewhat tedious since it involves the linear combination given in the last
line of (V ′′)−1. Further progress may be possible if alternative scalings are employed, such
as the loose linkage approach suggested in [60].

2.9. Conclusion

Let us summarise our findings. We have described a marginal ancestral recombination
process (ARP) and proved a duality result that relates the ARP with the Moran model
forward in time, via so-called sampling functions. This was achieved by extending the
recombinator formalism, which had previously proved useful in the context of deterministic
recombination equations, to the stochastic setting. The ARP, together with the duality
result, reveals the genealogical structure hidden in the work of [17], who approached the
matter by functional-analytic means and forward in time. It also leads to an explicit
and closed system of ordinary differential equations for the expected sampling functions,
from which the expected linkage disequilibria of all orders can be calculated. It is quite
remarkable that such a closed ODE system exists: after all, the sampling functions are
nonlinear, and the attempt to write down the differential equation for the expectation of a
nonlinear quantity usually results in a hierarchy of equations that does not close; see [6]
for more on the moment closure problem in the case of recombination. We would like to
emphasise that the favourable structure is due to the marginalisation, which gives efficient
access to correlation functions, but not to variances, for example.
Unlike [17], we have not included mutation so far. However, since mutation acts indepen-
dently of recombination, it should be straightforward to superimpose it on the population
process as well as the partitioning process. It will be rewarding to study the interplay of
mutation (which increases LDE) with recombination and resampling (which decrease LDE)
within the framework established here.

Chapter 3.

Parameter estimation approach for the
Moran model

3.1. Goal and outline

The purpose of this chapter is to propose and test a method to estimate the recombination
probabilities as parameters of the Moran model with single crossover with respect to a
given dataset. The tool of choice shall be a multiple shooting approach (see Appendix B)
together with the duality result (Section 2.7) and its derived ODE (2.46).
In Section 3.2, first, a concrete constrained discretised parameter least squares boundary
value problem is formulated in a nonlinear programming (NLP) framework. Then, it is
restated for a special grid choice together with a rescaling of the recombination parameters.
In Section 3.3, we consider the evaluation tasks of the NLP that may be requested by
a solution algorithm (SQP)1. We shed light on the structure of occuring matrices and
propose an efficient storage and computing cascade on the NLP level. In Section 3.4, we
give a detailed suggestion on how to implement the generator Θ (2.11) and the evaluation
of the right hand side of (2.46), because this is the (by far) most frequently called program
module during the numerical solution process. In Section 3.5, we see how (artificial)
observation data for the least squares problem are generated for the numerical experiments
in Section 3.6. The latter shall evidence the general applicability of the proposed approach in
Section 3.2 for the purpose of estimating the (non-stationary) time course data determining
recombination distribution.
For the programming we make use of a C++ library called Clean. Clean is an acronym for
A C++ Library for Efficient Algorithms in Numerics, currently under development2 in the
Algorithmic Optimization group of Prof. M. C. Steinbach at Gottfried Wilhelm Leibniz
Universität Hannover, and provides very efficient implementations of generic solvers for
nonlinear optimisation problems.

1A theoretical description of the sequential quadratic programming (SQP) approach and algorithm is
given in Appendix A.2.

2It “[...] is not yet sufficiently mature but it is intended to become public domain as soon as it is considered”
[82].

51

52 3.2. Moran model parameter estimation problem

3.2. Moran model parameter estimation problem

Let W ⊆ X be a subset of genetic types of cardinality |W|. Then, for the ease of notation,
we denote by

dA,ξ : R>0 → [0, 1], dA,ξ(t) := E[HA(Zt) | Z0 = z](ξ) ∈ [0, 1], and (3.1a)

d : R>0 → [0, 1]nd , d(t) :=
(
(dA,ξ1(t))TA∈P(S), . . . , (dA,ξ|W|(t))

T
A∈P(S)

)T
, (3.1b)

the states of (2.46) with nd = bn|W|. With this notations, (2.46) implies the linear system
of ODEs ḋ(t) =

(
I|W| ⊗Θ(r)

)
d(t). Since recombination acts independent of the genetic

types (recall the construction of the partitioning process in Section 2.4) this is a simple
association of decoupled subsystems for each ξ ∈W according to (3.1a).3 The data η of the
(immediately formulated) least squares problem are assumed to be direct measurements of
d. Further, let

hj ∈ Rnd (3.2a)

be the initial values in the discretisation nodes τj , j = 1, . . . , nτ (cf. (B.5) and Figure B.1),

r = (rA)A∈O62(S) ∈ {p ∈ [0, 1]n |
n−1∑
i=0

pi = 1} (3.2b)

be the (only and global) vector of parameters, and

x := (hT , rT)T := (hT1 , . . . , hTnτ , r
T)T ∈ Rnτnd+n, (3.2c)

the composition of the initial values and model parameters. So, besides the mandatory
continuity constraints, the problem formulation only has to ensure that the probability
distribution r stays feasible. This is incorporated as one (global) linear equation constraint
(3.3c) together with (global) lower bounds for the parameters (3.3d) and completes the
NLP

min
x

f(x) = 1
2

o∑
i=1
‖d(ti;hj(i), r)− ηi‖2Σ−1

i
, (3.3a)

s.t. cEco(x) =
(
d(τj+1;hj , r)− hj+1

)
j=1,...,nτ−1

= 0, (3.3b)

cEpd(x) =
∑

A∈O62(S)
rA − 1 = 0, (3.3c)

cI (x) = r > 0, (3.3d)

3The application of a second generator modelling mutation (and thus transitions between the ξ ∈ W)
would couple the subsystems and have a huge impact on the sparsity structures discussed in Section 3.3.
But this is beyond the scope of this thesis.

Chapter 3. Parameter estimation approach for the Moran model 53

where every (in-)equality has to be understood componentwise and d(s;hj , r) is the
evaluation of the solution of the (local) initial value problem (IVP)

ḋ(t) =
(
I|W| ⊗Θ(r)

)
d(t) with d(τj) = hj for j 6 s < j + 1, (3.4)

for every j = 1, . . . , nτ − 1, each parametrised by (the same global) r. For the sake of
structure and readability the indexset of equality constraints E = Eco ∪̇Epd is separated in
a subset Eco containing all nonlinear continuity constraints (due to the multiple shooting
approach) and a singleton Epd containing the sole linear constraint (due to the fact that r
is a probability distribution).4

The NLP (3.3) is of the form (A.1) and not convex, since the equality constraints (3.3b)
are not affine. Therefore local solutions are not necessarily global solutions (cf. [73] or [20]).
The vector of inequality constraints cI is not only linear in our model but even consists
of simple lower bounds of the probabilities rA only.5 When arranging the vector of dual
multipliers accordingly as λ = (λco, λpd, λI) ∈ R(nτ−1)nd+1+n, the Lagrangian function
(A.5) for this problem reads

Λ(x, λ) = f(x)− λco
T cEco(x)− λpd cEpd(x)− λI

T cI (x). (3.5)

Discretisation grid and scalable NLP. The NLP (3.3) makes no further assumptions
on the covering discretisation grid {τ1, . . . , τnτ } than [τ1, τnτ] ⊇ [t1, to]. Taking nτ < o

discretisation nodes reduces the dimension of the NLP, but the evaluation of the objective
f and its derivatives are more complicated, since we have to evaluate these terms for all
initial values h. For the upcoming numerical experiments in Section 3.6, we choose the
covering grid such that it coincides with the timepoints of observations, i.e. nτ = o with
τ1 = t1, . . . , τnτ = to. As a consequence, the objective is a linear least squares function and
reads

f(x) = 1
2

o∑
i=1
‖hi − ηi‖2Σ−1

i
.

For computational reasons the NLP variables (3.2) should be of the same order of
magnitude and not to close to 0 to prevent numerical difficulties (cf. [73, Chap.
2.2, 4.5]). In the current model formulation (3.3), especially the parameter vector
r = (r1, r{{1},{2,...,n}}, . . . , r{{1,...,n−1},{n}}) may be poorly scaled. If we assume that

4By a slight abuse of notation the letter E has two canonical meanings. First, it is used for the state
space of the Moran model with single crossover in Definition 1, and second, as the index set of equality
constraints in the context of constrained optimisation, see the introduction of Section A.1. We do not
use different symbols, since the context is always clear without ambiguity.

5We stick to the treatment as general inequality constraints here. The fact that they are of such a simple
form is mainly of interest for the treatment of these constraints by a solution algorithm. We discuss this
also later in the paragraph about the algorithmical evaluation process in Section 3.3.

54 3.3. NLP evaluation and details of implementation

rA 6 10−p for all A ∈ O2(S) and some p > log10(n− 1), then

r1 = 1−
∑

A∈O2(S)
rA > 1− (n− 1)10−p � rA ∀ A ∈ O2(S).

To find a remedy, we use the abbreviation (recall the three sites example in Section 2.8,
(2.14b), and (2.9))

rtot := rtot(1) =
∑

A∈O2(S)
rSA = 1− rS1 = r

{1,n}
0 ,

apply the linear transformation

φ : r 7→ r̃ = (r̃tot, r̃{{1},{2,...,n}}, . . . , r̃{{1,...,n−1},{n}})T ,

φ(r) := α(1− r1, r{{1},{2,...,n}}, . . . , r{{1,...,n−1},{n}})T ,

with α > 0, and introduce the scaled NLP variable

x̃ := (hT , r̃T)T . (3.6)

To obtain an equivalent reformulation of (3.3) with respect to (3.6) we make the following
adjustment. Whenever (3.4) has to be evaluated, the transformation φ has to be inverted
before updating the entries of the generator, because the latter depends on the original
recombination distribution r. In addition, the last equality constraint (3.3c) now has
to read cEco(x̃) = r̃tot −

∑
A∈O2(S) r̃A = 0; in order to preserve the condition that r is a

probability distribution, we have to add an additional bound constraint r̃tot ∈ [0, α]. Then,
for any α > 0, the scaled formulation of the NLP with adjusted discretisation grid is6

min
x̃

f(x̃) = 1
2

o∑
i=1
‖hi − ηi‖2Σ−1

i
, (3.7a)

s.t. cEco(x̃) =
(
d(τj+1;hj , φ−1(r̃))− hj+1

)
j=1,...,nτ−1

= 0, (3.7b)

cEpd(x̃) = r̃tot −
∑

A∈O2(S)
r̃A = 0, (3.7c)

cI (x̃) =
(

r̃

α− r̃tot

)
> 0. (3.7d)

3.3. NLP evaluation and details of implementation

Now, we employ with the evaluation tasks a model implementation of the NLP (3.7) needs
to perform at the request of a solution algorithm (we use a SQP algorithm), how this
can be implemented, and discuss some numerical details. Therefore, we make use of the

6Note, that cI now contains n+ 1 constraints and thus λI is of this increased dimension as well. But we
refrain from highlighting this circumstance by altering the corresponding symbols.

Chapter 3. Parameter estimation approach for the Moran model 55

notations introduced in Appendix A.1. And to distinguish the implementation from the
mathematical formulation (NLP) we denote the first by NLP.

Evaluation tasks requested by a SQP algorithm. A generic solution algorithm
for NLPs of the form (A.1) requests a model implementation to evaluate several parts
of itself and, depending on the underlying concepts, derivatives of order 1 or higher.
We omit a comprehensive discussion here. A short recapitulation of generel nonlinear
optimisation theory and a SQP algorithm is given in Appendix A. But we concretise our
suggestion of NLP used for the numerical experiments in Section 3.6, which provides all
necessary evaluations that may be requested by a SQP algorithm for a KKT point iterate
(x̃(k), λ(k)) = (x̃(k), λ

(k)
co , λ

(k)
pd , λI

(k)) as it is described in Section A.2. Those evaluations are:

f (k) = f(x̃(k)), c
(k)
Eco

= cEco(x̃(k)), c
(k)
Epd

= cEpd(x̃(k)), c
(k)
I = cI (x̃(k)), (3.8a)

∇f (k) = ∇f(x̃(k)), C(k)
Eco

= ∇cEco(x̃(k)), C(k)
Epd

= ∇cEpd(x̃(k)), C(k)
I = ∇cI (x̃(k)), (3.8b)

and
∇2
x̃x̃Λ

(k) = ∇2
x̃x̃Λ(x̃(k), λ(k)). (3.8c)

Obviously, (3.8a) covers the plain (partial) evaluations of (3.7); and (3.8b) are the Jacobians
of the first. Since f is a quadratic form of the initial values h and, both, cEpd

and cI
are linear constraints of the parameters, their Jacobians pose no special computational
challenge. For the evaluation of c(k)

Eco
a numerical IVP solver has to be applied to evaluate

d
(
τj+1;h(k)

j , r(k)) first. How to do this in detail we discuss in the next paragraph, because
this task is linked tightly to the evaluation of C(k)

Eco
and ∇2

x̃x̃Λ
(k). In the following, the

iteration index k is suppressed for the sake of readability. This is of no disadvantage, since
all NLP evaluations only depend on the current iteration data.

Jacobian of continuity constraints. The Jacobian of the continuity constraint in a
multiple shooting approach has a special structure independent of the underlying model. It
is sparse, contains only two block diagonals (partial derivatives with respect to the initial
values, two blocks for every subinterval j), and one block column (partial derivatives with
respect to the parameters); see [19, Sec. 6.1] for a general discussion. An implementation
should make use of the sparsity of the Jacobian to avoid the (constant) zero elements.
Since we want to exploit this fact, we consider the internal structure of the blocks in more
detail.
Figure 3.1 is an illustration of the Jacobian CEco in our case. Every large block (belonging
to a subinterval [τj , τj+1]) on the left diagonal is only a blockdiagonal submatrix itself, since
the dynamic of the (local) IVP (3.4) is decoupled, because we do not model transitions

56 3.3. NLP evaluation and details of implementation

between the types ξ.7 Furthermore, d(τj+1;hj , r) only depends on the data hj , so it is
possible to compute the blockrows (CEco)j independent of each other. This enables to
compute the parts sequentially (save memory) or parallel (save runtime). The proposed
(overall) processing overview in Figure 3.4 provides for this fact.

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

-1
-1

(
CEco

)
j

= ∇(h,r̃)(d(τj+1;hj , φ−1(r̃))− hj+1)

Figure 3.1.: Structure of the Jacobian of the continuity constraints: partial derivatives
with respect to h (red) and with respect to r̃ (blue). White areas contain zero
elements.

The necessity of evaluating the Jacobian CEco suggests to choose a code for numerical
solutions of inital value problems (which has to be applied to evaluate cEco anyways), that
provides the possibility of computing the sensitivity matrix for the subinterval [τj , τj+1],

Gj := ∇(hj ,r̃)d(τj+1;hj , φ−1(r̃)) =


Gh
j,ξ1

G r̃
j,ξ1

.
Gh
j,ξ|W|

G r̃
j,ξ|W|

 , (3.9a)

with non-zero blocks

Gh
j,ξ := ∇hj,ξ

(
d
(
τj+1;hj , φ−1(r̃)

))
ξ

and (3.9b)

G r̃
j,ξ := ∇r̃

(
d
(
τj+1;hj , φ−1(r̃)

))
ξ

(3.9c)

for all ξ, if requested. The code METAN ([10]), that has been implemented for PARFIT
([18]) satisfies this requirement and, therefore, it is used in Section 3.6. It applies automatic
differentiation for the computation of the sensitivity matrix and is based on a Richardson
extrapolation approach applying a modified semi-implicit midpoint-rule.8

7If a generator modelling mutation would be applied to the dynamics additionally, this block would be
filled with non-zero values as well as the subsystems in (3.4) would not be decoupled anymore.

8An alternative from the same class, and also part of PARFIT, is DIFSYS, which relies on a modified explicit
midpoint-rule. It is also called Bulirsch-Stoer algorithm or Gragg-Bulirsch-Stoer algorithm, because it

Chapter 3. Parameter estimation approach for the Moran model 57

Hessian of the Lagrangian function. Obviously, the direct evaluation of the Hessian
of the Lagrangian function is not possible, since we do not have access to an analytical
formulation of the latter; we are already dependent on numerical evaluations of (3.7b)
and its Jacobian. That’s why we need to use a practical approximation of ∇2

x̃x̃Λ (positiv
semidefinit if possible). For the purpose of the experiments in this thesis we use the
approach9

∇2
x̃x̃Λ = ∇2

x̃x̃f(x̃)−∇2
x̃x̃λco

T cEco(x̃)−∇2
x̃x̃λpdcEpd(x̃)−∇2

x̃x̃λI
T cI (x̃)

=
[
Σ−1 0

0 0

]
−

∑
(j,ξ,A)

λco;(j,ξ,A)
[
∇2
x̃x̃cEco(x̃)

]
(j,ξ,A)

≈
[
Σ−1 0

0 0

]
−

∑
(j,ξ,A)

λco;(j,ξ,A)
[
CEco(x̃)TCEco(x̃)

]
(j,ξ,A)

. (3.10)

The symmetric and sparse structure of this approximation is illustrated in Figure 3.2. The
blocks are coloured with respect to the different type of summands in (3.10); the distinction
is based on the (products) of partial derivatives that make non-zero contributions to a
corresponding block.

Figure 3.2: Structure of the
∇2
x̃x̃Λ approximation.

Blocks are coloured by
their dependence on:
partial derivatives of cEco

with respect to h (light
red) and with respect to
r̃ (light blue);
rank-1 (red, blue) and
mixed (shaded purple)
products of the previous;
∇2
hhf = Σ−1 (yellow);

additional diagonal part
dependent on λco only
(solid black).
The remaining elements
are constant zero (white).

Remark 10 (Approximation approach for Hessian of the Lagrangian function). The
approach in (3.10) is used in unconstrained least squares approaches (Gauß-Newton), cf.
[73, Chapter 10]. Of course, cEco is not a least squares function, but only componentwise

first makes use of a result by William B. Gragg [51] to avoid asymptotical oscillation of the discretisation
error function. METAN, as a later development, makes us of this result as well.

9Note, that the multiindex (j, ξ,A) at the Hessian of the continuity constraints (and its approximation)
identifies a summand (and hence a matrix) and is not meant as the selection of a matrix element.

58 3.3. NLP evaluation and details of implementation

almost zero in a KKT point (x̃∗, λ∗), so this approach may be somewhat naive and other
(more sophisticated) approximations or updates (like SR1, cf. [73, Chapter 6]) should be
tested. But, it turns out to be a somewhat useful choice here, see the results in Section 3.6.

Datastructure of the derivatives and the algorithmical evaluation process. As
it was already emphasised in the preceding paragraphs, the Jacobians of the constraints and
the Hessian of the Lagrangian function are sparse. The latter is symmetric as well, which
allows to reduce the amount of necessary memory by almost 50% additionally. Therefore,
it is worthwhile to use an appropriate datastructure for these objects and we choose a
(symmetric) triplet sparse format in our implementation of CEco (∇2

x̃x̃Λ).

Remark 11. Note that this efficient memory usage makes sense, because the dimension
nτ bn |W|+n of the NLP variable and the number of constraints (nτ −1) bn |W|+n+2 grow
superexponentially with the number of considered sites n = |S| (due to the Bell number bn,
cf. Table 2.1).

Now, let us briefly discuss how to aggregate the evaluations (3.8) in an algorithm. Our NLP
has to evaluate the requested parts of (3.8) according to a list of tasks and a current KKT
iterate (x̃, λ), that are provided by a SQP algorithm. Therefore, by (3.10), we note that
∇2
x̃x̃Λ only depends on the constant part Σ−1 and the current evaluation of CEco . The latter

can be computed independently for every subinterval. Thus, after having calculated Gj ,
the update of ∇2

x̃x̃Λ (with respect to subinterval j) takes place as illustrated in Figure 3.3.

− =
∑
A λco;(j,ξ,A)

(
Gh
j,ξ

)T
A

(
Gh
j,ξ

)
A

+ =
(
Gh
j,ξ

)T diag(λco;(j,ξ))

− =
∑
A λco;(j,ξ,A)

(
Gh
j,ξ

)T
A

(
G r̃
j,ξ

)
A

+ = diag(λco;(j,ξ))G r̃
j,ξ

− = diag(λco;(j,ξ))

− =
∑
A λco;(j,ξ,A)

(
G r̃
j,ξ

)T
A

(
G r̃
j,ξ

)
A

Figure 3.3.: Increment of (the approximation (3.10) of) ∇2
x̃x̃Λ by evaluations depending

on the subinterval [τj , τj+1]: diag(λco;(j,ξ)) means the diagonal matrix of size
bn × bn with elements (λco;(j,ξ,A))A; (G •j,ξ)A is a row vector, so (G •j,ξ)TA(G •j,ξ)A
is a rank-1 matrix; the constant part Σ−1 (cf. Figure 3.2) can be added in a
preprocessing already.

Summarised, NLP has to run through the cascade in Algorithm 1 (a slightly more detailed
illustration thereof is given in Figure 3.4). Recall that (3.7d) are simple bound constraints,

Chapter 3. Parameter estimation approach for the Moran model 59

tasks & KKT
iterate (x̃, λ)

SQP
algorithm

task
f? eval f task

∇f? eval ∇f

task
∇2
x̃x̃Λ?

task
C?

task
c?

for all j:
– dj,j+1 & Gj

– eval (∇2
x̃x̃Λ)j

– eval (CEco)j
– eval (cEco)j

eval cEpd

for all j:
– dj,j+1 & Gj

– eval (∇2
x̃x̃Λ)j

– eval (CEco)j
eval CEpd

task
c?

for all j:
– dj,j+1 & Gj

– eval (∇2
x̃x̃Λ)j

– eval (cEco)j

eval cEpd

for all j:
– dj,j+1 & Gj

– eval (∇2
x̃x̃Λ)j

task
C?

task
c?

for all j:
– dj,j+1 & Gj

– eval (CEco)j
– eval (cEco)j

eval cEpd

for all j:
– dj,j+1 & Gj

– eval (CEco)j
eval CEpd

task
c?

for all j:
– dj,j+1
– eval (cEco)j

eval cEpd

yes

no

yes

no

yes yes yes

no

no

yes

no

no

yes yes

no
no

yes

no

Figure 3.4.: Flowchart of NLP related evaluations (3.8) (grey) depending on a list of
SQP tasks and current KKT iterates (green); required IVP solution evaluation
dj,j+1 := d(τj+1;hj , φ−1(r̃)) (3.4) and corresponding sensitivity matrix (3.9)
(yellow).

60 3.4. Matrix representation of the generator and evaluation of the ODE system

Algorithm 1: NLP evaluation cascade
Input :Current KKT iterate (x̃, λ) and SQP tasks.

1 Evaluate f or ∇f , if requested.
2 Check whether ∇2

xxΛ or CEco is requested.
3 If yes, evaluate d(τj+1;hj , φ−1(r̃)) together with Gj ∀ j = 1, . . . , nτ − 1 and update
∇2
x̃x̃Λ, CEco or cEco , if requested.

4 If not, check whether cEco is requested.
5 If yes, evaluate d(τj+1;hj , φ−1(r̃)) without Gj ∀ j = 1, . . . , nτ − 1 and update cEco .
6 Evaluate cEpd , if requested.
7 return results to SQP algorithm.

which are handled by Clean::SQP automatically (via a specific interface). Since they also
do not occur in (3.10), we do not have to treat their evaluation in NLP.
As it should be clear now, for an implementation of the NLP (3.3) (or (3.7)) the evaluation
of (3.4) is one of the crucial and the by far most frequent task. Everytime a NLP solver
(SQP) requests to evaluate its solution (or their sensitivity matrix) for any s ∈ [τj , τj+1],
j = 1, . . . , nτ − 1, the corresponding numerical integration method has to evaluate the
ODE several times for some fixed iterate r, which thus belongs to the core building blocks
of NLP. Therefore, it is worth to put effort into an implementation, which makes this task
as efficient as possible on the one hand, and pays regard on the numerics on the other
hand. The proposed datastructure and algorithms to attain these goals are described in
the following Section 3.4 and, since they are based on the results of Section 2.4, especially
the datastructure deviates substantially from the dense representation referred to in [17]
and is not only a simple transfer of the latter into an ordinary sparse version.

3.4. Matrix representation of the generator and evaluation
of the ODE system

As already emphasised in Section 2.4, the ratio of non-zero transitions of the partitioning
process is decreasing exponentially with the increase of the number of sites n, see Table 2.1.
Therefore, in principle, a sparse matrix format omitting the zero valued elements is
recommended. The special one proposed here is derived from a triplet sparse format, which
only holds a list of triplets (row index, column index, non-zero value).
Apart from that, the non-zero entries of Θ share some additional structure that is slightly
hidden in the form of (2.11) and (2.14), and therefore we elaborate on this first. Then, we
formulate the specialised datastructure and associated algorithms that take advantage of
this elaborated rearrangement.

Rearrangement of the generator. First, interpret Θ as a linear combination in the
order of magnitudes 0,−1,−2 of the constant population size N and split the entries

Chapter 3. Parameter estimation approach for the Moran model 61












Figure 3.5.: From left to right: heatmap of the coefficient matrices Θ[0](r), Θ[1](r), Θ[2](r)

for r = (0.997500, 0.000833, 0.000833, 0.000833) bringing out their sparsity
structures. White areas represent constant zero elemens.

correspondingly. It is

Θ(r;N) = Θ[0](r) +N−1Θ[1](r) +N−2Θ[2](r) (3.11)

and an example of the sparsity structures of the coefficient matrices for n = 3 is given in
Figure 3.5. The notation shall emphasise the inherent dependance of the generator Θ(r;N)
on the population size compared to the coefficient matrices Θ[i](r), i = 0, 1, 2. For each
A ∈ P(S), |A| = m, the occurance of transitions in (2.11) (and their corresponding rate)
are subdivided with respect to |B| into

B|Aj = J ,B|AM\j = AM\j

for some j ∈M, J ∈ O2(Aj)

⇒

r
Aj
J

1
N2 , |B| = m− 1,

r
Aj
J

(
1
N −

m−1
N2

)
, |B| = m,

r
Aj
J

(
1− 2m−1

N + m(m−1)
N2

)
, |B| = m+ 1.

(3.12)

In doing so, each subcase occurs (n−m)(m− 1)(m− 2), (n−m)(2m− 2) + 1, and n−m
times, respectively. The coalescence case (2.12) splits into

B = AM\{j,k} ∪A{j,k}
for some j 6= k ∈M

⇒


2
N , |A{j,k}| = 2,
1
N

(
r
Aj
1 + rAk1

)
− 1

N2
(
− 2 + r

Aj
1 + rAk1

)
, otherwise.

(3.13)

With σ(A) := |{A ∈ A | |A| = 1}| counting the number of singletons of a partition A, the
two subcases in (3.13) occur

(σ(A)
2
)
and

(m
2
)
−
(σ(A)

2
)
times each. Finally, and for the sake

of completeness, (2.14a) is rearranged as

ΘAA(r;N) = −
[
rtot(A) + m(m− 1)−mrtot(A)

N
+ m− 1

N2 rtot(A)
]
. (3.14)

Remark 12 (Numerical aspect). The form (3.11) provides already a numerical advantage.
For every k, the coefficient matrix Θ[k](r) has non-zero elements that are a product (sum)

62 3.4. Matrix representation of the generator and evaluation of the ODE system

of an integer < n2 with (and) a real value in [0, 2]. Therefore, they are of similar magnitude
and thus the magnitude of each summand in (3.11) is determined by N−k. Now, when
applying Θ(r;N) as a linear map, it is possible to add the components in ascending order
of magnitude to minimise rounding errors.

Datastructure and associated algorithms. The subdivided cases in the previous
paragraph provide a possible saving in updating the matrix entries after an update
of r, since the coefficient matrices Θ[0](r), Θ[1](r), and Θ[2](r) share common marginal
recombination probabilities rAjJ and rtot(A), respectively. They are weighted sums of the
current values of r. Hence, it appears reasonable to represent the structure of each Θ[k](r)
by an array of nk quadrupels

Θ
[k]
ik

= (A,B, c, iW), (3.15)

which contains the two states of the transition (row and column index), an integer c
capturing the constant part of each particular numerator, and an index iW linking to
an array containing the corresponding (shared) weighted sums of r. Consequently, this
structure is independent of the values of r and does not contain any transition rates yet.
Those are made persistent in an additional (data-) array θ[k] ∈ Rnk of the same size, such
that, by a slight abuse of notation, the separation Θ[k](r)=̂(Θ[k], θ[k]) in structural and
data elements is possible for k = 0, 1, 2. Taking the numbers of each subcase in (3.12) to
(3.14) into account, the sizes of these arrays are

n0 =
n∑

m=1

{
n

m

}
(n−m) + (bn − 1), (3.16a)

n1 =
n∑

m=1

{
n

m

}[
(n−m)(2m− 1) +

(
m

2

)]
+ bn, and (3.16b)

n2 =
n∑

m=3

{
n

m

}[(
m

2

)(
2(n−m) + 1

)
+ (n−m)

]

+ (bn − 2) +
{
n

2

}
(3n− 5)−

∑
A∈P(S)

(
σ(A)

2

)
.

(3.16c)

The approach of separating the structure from values is also applied to the weighted sums
of r, which are necessary to compute θ[k]. The weights are constant and depend only on
the transition A → B, so they are captured in nW weight arrays wiW ∈ Zn with

nW =
n∑

m=1

{
n

m

}[
(n−m)

(
2
(
m

2

)
+ 1

)
+
(
m

2

)]
+ bn −

∑
A∈P(S)

(
σ(A)

2

)
, (3.16d)

which are combined to the structure matrix

W = (wTiW) ∈ ZnW×n. (3.17)

Chapter 3. Parameter estimation approach for the Moran model 63

Θ

Θ[2]

θ[2]

Θ[1]

θ[1]

Θ[0]

θ[0]

W

〈r〉

Θ[2](r)

Θ[1](r)

Θ[0](r)

Figure 3.6.: Illustration of the concept of implementation for Θ. Structural elements are
indicated in blue, data elements in red and coefficient matrices in purple. When
Θ has to be updated, first, 〈r〉 is calculated with respect to W , followed by
θ[k] with respect to Θ[k]. Afterwards, Θ[k](r) can be used in the linear map
provided by (3.11).

Concluding, the corresponding data array containing the current evaluation of all necessary
cases is denoted by 〈r〉 = Wr ∈ RnW ; and Wr is meant in the sense of an ordinary
matrix-vector-product. In Figure 3.6, we give an overview of the proposed datastructure.
Structural elements are coloured blue, data elements are coloured red and functional
elements (as applications of the coefficient matrices Θ[i](r)) are coloured purple.
Summarising, a model implementation using this representation of the generator has the
possibility to use the following features:

• Updating the weighted sums of recombination parameters 〈r〉 and the values of
θ[0], θ[1], and θ[2] separately, but not in every evaluation of the ODE . This is only
necessary when a new interate r is produced and during the process of calculating
the sensitivity matrices Gj (3.9) for every j.

• Application of (3.11) as a linear map sequentially in ascending order of the magnitude
of N with the possibility to truncate terms of some order if desired, see Algorithm 4.
Every truncation of magnitude k = 1, 2 increases the sparsity of Θ(r;N) and directly
reduces the amount of arithmetic operations by

∑2
l=k nl.10

Furthermore, let us quantify the improvement of the proposed datastructure based on
the necessary amount of memory compared to the dense approach of [17], which relies on
the decomposition (2.18) of Θ with respect to all splitpositions between two consecutive

10The case k = 0 would correspond to Θ(r;N) ≡ 0.

64 3.4. Matrix representation of the generator and evaluation of the ODE system

sites. Their version needs to hold n dense (constant, if N is constant) matrices with double
entries, so the amount of memory sums up to 8nb2n bytes. Our sparse approach needs
4 (4 (n0 + n1 + n2) + nnW) bytes for the structural information (Θ[k] for k = 0, 1, 2 and
W) plus 8 (n0 + n1 + n2 + nW) bytes for the double values (θ[k] for k = 0, 1, 2 and 〈r〉).
Figure 3.7 illustrates the increasing gap between these two alternatives for n > 4; up to
n = 4 the total amount of memory is negligible in any case.

100B

1 kB

10 kB

100 kB

1MB

10MB

100MB

1GB

10GB

2 3 4 5 6 7 8 9
n

Figure 3.7.: Necessary amount of memory for the dense [17] (black crosses) and our sparse
(red bullets) datastructure to persist Θ.

Last, we give the algorithmic construction (Algorithm 2) and update (Algorithm 3) of Θ as
well as its induced linear map (Algorithm 4) based on the proposed structure. We provide
the formulated features together with some closing remarks.

Remark 13. One of the benefits of using a sorted list of partitions, when constructing Θ in
Algorithm 2, is that the inner loop in line 7 of Algorithm 2 only runs through the (smaller)
subsets P`(S), |P`(S)| =

{`
2
}
for ` = |A| − 1, |A|, |A| + 1, instead of the entire set P(S).

This is because the possible states B, that can be reached from A, are more aggregated.
Moreover, note that the constant part of the coefficients can not always be stored directly in
the structure Θ[k] (for example in line 12 of Algorithm 2), but the correct form is recovered
with the update process in line 16 of Algorithm 3.

Remark 14. Furthermore, note that we really have to rely on the automatic differentiation
when computing the sensitivity matrices in (3.9), although the right hand side of (3.4)
is linear in r, and one could be tempted to make use of this rearrangement there. But
the semigroup exp(Θ(r;N) t) does not commute with the (constant) partial derivatives

d
drA Θ(r;N).

Chapter 3. Parameter estimation approach for the Moran model 65

Algorithm 2: Constructor of the generator’s structure (3.15) and (3.17)
Input :The number of sites n = |S| and P(S) as a list in ascending order of m = |A|.

1 Set number of entries n0, n1, n2, nW according to (3.16).
2 Initialise indices i0, i1, i2, iW and set m = 1.
3 forall A ∈ P(S) do
4 if |A| > m then
5 m← |A|.
6 else
7 forall B ∈

⋃m+1
`=m−1 P`(S) do

8 if A = B then
// Diagonal element (3.14)

9 WiW ← wT with wT according to (2.14b).
10 Θ

[2]
i2
, Θ

[0]
i0

w.r.t. (3.14) and with index iW .
11 ik ← ik + 1 if Θ[k]

ik
was set in line 10.

12 Θ
[1]
i1
← (A,A,m, iW), i1 ← i1 + 1.

13 iW ← iW + 1.
14 else
15 δcoal ← false.
16 forall j = 1, . . . ,m do
17 if B|S\Aj = AM\j then
18 if !δcoal & B � A then

// Coalescence element (3.13)
19 Identify B = A{j,k}.
20 if |B| = 2 then
21 Θ

[1]
i1
← (A,B, 2, ∅), i1 ← i1 + 1.

22 else
23 Set Ak = B \Aj .
24 WiW ← (δs -Aj + δs -Ak)s=0,...,n−1.
25 Θ

[1]
i1
← (A,B,+1, iW), i1 ← i1 + 1.

26 Θ
[2]
i2
← (A,B,−1, iW), i2 ← i2 + 1.

27 iW ← iW + 1.
28 δcoal ← true.
29 if |Aj | > 1 then
30 forall J ∈ O2(Aj) do
31 if B|Aj = J then

// Split (or mixed) element (3.12)
32 WiW ← (δmaxJ1≤s<minJ2)s=0,...,n−1.
33 Θ

[2]
i2
, Θ

[1]
i1
, Θ

[0]
i0

w.r.t. (3.12) and with pointer iW .
34 ik ← ik + 1, if Θ[k]

ik
was set in line 33.

35 iW ← iW + 1.

66 3.4. Matrix representation of the generator and evaluation of the ODE system

Algorithm 3: Update the generator’s data
Input :Current value of r, and k ∈ {0, 1, 2}.

1 Calculate 〈r〉 = Wr.
2 if k = 2 then

// Structure lists are abbreviated by

// A = Θ
[2]
A ,B = Θ

[2]
B , c = Θ

[2]
c , i = Θ

[2]
iW

.
3 forall j = 1, . . . , n2 do
4 if Wij ,1 > 0 then
5 θ

[2]
j ← −(−Wij ,1 + 〈r〉ij).

6 else if Aj = Bj then
7 θ

[2]
j ← −cj 〈r〉ij .

8 else
9 θ

[2]
j ← cj 〈r〉ij .

10 if k ≥ 1 then
// Structure lists are abbreviated by

// A = Θ
[1]
A ,B = Θ

[1]
B , c = Θ

[1]
c , i = Θ

[1]
iW

.
11 forall j = 1, . . . , n1 do
12 if ij 6= ∅ then
13 if Wij ,1 > 0 then
14 θ

[1]
j ← 2−Wij ,1 + 〈r〉ij .

15 else if Aj = Bj then
16 θ

[1]
j ← −cj(cj − 1) + cj〈r〉ij .

17 else
18 θ

[1]
j ← cj〈r〉ij .

19 else
20 θ

[1]
j ← cj .

21 else
// Structure lists are abbreviated by

// A = Θ
[0]
A ,B = Θ

[0]
B , c = Θ

[0]
c , i = Θ

[0]
iW

.
22 forall j = 1, . . . , n0 do
23 if Aj = Bj then
24 θ

[0]
j ← −〈r〉ij .

25 else
26 θ

[0]
j ← 〈r〉ij .

Chapter 3. Parameter estimation approach for the Moran model 67

Algorithm 4: Linear map defined by the generator
Input :User provided vector x, population size N , and k ∈ {0, 1, 2}.

1 Initialise y = 0 ∈ Rbn .
2 if k = 2 then
3 forall i = 1, . . . , n2 do
4 y

Θ
[2]
i,A
← y

Θ
[2]
i,A

+ θ
[2]
i xΘ[2]

i,B
.

5 y ← y/N .
6 if k ≥ 1 then
7 forall i = 1, . . . , n1 do
8 y

Θ
[1]
i,A
← y

Θ
[1]
i,A

+ θ
[1]
i xΘ[1]

i,B
.

9 y ← y/N .
10 else
11 forall i = 1, . . . , n0 do
12 y

Θ
[0]
i,A
← y

Θ
[0]
i,A

+ θ
[0]
i xΘ[0]

i,B
.

13 return y

3.5. From simulation to observation data

As already betokened in the preface of this chapter, in this section we will shortly describe
how observation data η for the NLP (3.3)/(3.7) can be generated by using stochastic
simulation. We restrict the study in this thesis to this data for three reasons: first, we have
full knowledge about the inherent recombination distribution r that we want to estimate
and thus can assess the results afterwards. Second, we can determine the time grid of the
data as desired (and make intensively use of in the experiments in Section 3.6). And third,
by now, we have no conforming real world data at hand, but discuss this issue in some
more detail in the Prospect paragraph of Section 3.7.

Principle of generating observation data from simulations. Let us describe the
principle idea of how to generate (artificial) observation data ηi, i = 1, . . . , o of (3.3) for a
given set of timepoints {t1, . . . , to} using the simulation routine of an appropriate stochastic
process. Here, besides the obvious simulation of the partitioning process generated by
(2.10), in principle, every tool that simulates the coalescent-with-recombination and returns
the entire phylogenetic network, can be applied.

Remark 15. Most of the standard tools (like ms [58]) do simulate recombination evolu-
tionary histories, but only return the forest of embedded trees in Newick format for every
site in S. It would be possible to reconstruct a directed graph from that forest by using
tools (like CombineTrees [22]) which use parsimonious tree approaches; see also [99] and
[2] for an overview of simulation programs of DNA sequence data with recombination. But
this is not sufficient for our purpose, since this combination of tools imports an unclear

68 3.5. From simulation to observation data

uncertainty to our inference framework - not least because the parsimony of trees cannot
correctly reproduce the bifurcations (i.e. the recombination events) of the graph.
Recently, ARGweaver with its subroutine arg-sim has been published (see [81]). The latter
allows to simulate and return an entire ARG in a specific (new) fileformat *.arg. Although
the ancestral recombination graph assumes the diffusion limit and therefore only a limit case
of the partitioning process, in principle, it seems to be a promising alternative candidate
for further studies of our approach (see also Figure 3.8 (upper part) for an illustration of
the principle of producing corresponding observation data by using arg-sim).

The production of the ‘observation data’ η in the nonlinear least squares parameter
estimation problem (3.3) from simulations is a generic two step procedure. Generic in the
sense that it is applicable to any process that allows to return a partition state A ∈ P(S)
for a given timepoint ti:

1. Based on the inital population’s type distribution Z0 = z ∈ E of (2.5) the initial
(expected) normalised sampling functions

E[HΣt(z) | Σ0 = A]|t=0 = HA(z) =
∑
B.<A

(N − |A|)!N |B|

N ! µ(A,B)RB(z)

have to be evaluated ∀A ∈ P(S). The assembled data matrix (HA(z)T)A∈P(S) is of
size bn × |W|.

2. The stochastic process has to be started with all possible initial values Σ0 = A ∈ P(S)
and stopped at a time T > to. This is repeated nΣ times. The averages of normalised
sampling functions (as approximations of the expectations) indexed by A at time ti
are given by

ηi =
(
ηTi,A

)
A∈P(S), (3.18a)

ηi,A = 1
nΣ

nΣ∑
k=1

H(Σ(k)
ti
|Σ0=A

)(z) ≈ E[HΣti
(z) | Σ0 = A], (3.18b)

where
(
Σ(k)
ti | Σ0 = A

)
denotes the k-th realisation (i.e. partition) of a stochastic

simulation at time ti started in Σ0 = A. Figure 3.8 provides a schematic illustration
of one repetition within this procedure.

Obviously, (3.18b) is of no implementational difficulty at all, if one has the possibility to
identify

(
Σ(k)
ti | Σ0 = A

)
and access to HA(z). Therefore, the following paragraph gives a

brief description of the algorithmic implementation of the moduls necessary to produce
the inital distributions in the first step of the previous procedure. The simulation of the
partitioning process is easy once the generator is available as in the previous Section 3.4.

Chapter 3. Parameter estimation approach for the Moran model 69

t0 t1 t2 t3 t4 to−1 to

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3.8.: Scheme illustrating the production of (artificial) observation data η for n = 3.
The upper part illustrates the use of an ARG-simulation tool like arg-sim [81].
In this case a single realisation of the coalescent-with-recombination can be
passed through for every A ∈ P(S).
The lower part illustrates the case of using the partitioning process characterised
by (2.11). Here, for every summand in (3.18b), and in contrast to the upper
case, bn simulations (a unique one for every Σ0 = A) have to be evaluated.

70 3.5. From simulation to observation data

Calculate inital distributions. Before we focus on some details of the algorithmical
computation of the initial distributions, let us comment on the chosen representation this
is based on. Apparently, we have taken (2.26), but not the equivalent (2.25) – and with
good numerical cause. The latter contains products of (N − |A|)!/N ! = O(N−|A|) with
RB(z) = O(N |B|), which can cause enormous rounding errors, since the floating point
numbers are of very different magnitude. On the contrary, recall that (2.26) multiplies
normalisation-coefficients in O(N |B|−|A|) with relative frequencies RB(z).
All possible and different Möbius- and normalisation-coefficients in HA can be created in
advance and independent of z, of course. Therefore, it is worthwile to compute and store
them in separate arrays

(
µ(A,B)

)
A,B and

((N − |A|)!N |B|

N !
)
|A|,|B|

of lengths

n∑
`=1

{
n

`

}
and

(
n+ 1

2

)
,

respectively, in a first step. Then, (2.26) can be applied iteratively for all A ∈ P(S), as
soon as all marginals πA·(z) are available. The latter is the only slightly intricate part,
for which the proposed Algorithm 5 is an iterative approach to efficiently compute the
marginals πA.z for all elements A of the powerset P(S) and a given z ∈ E.11

Algorithm 5: Iterative calculation of all marginals
Input : z ∈ E

1 Initialise πS .z ← z, J (0) ← {∅}
2 for k = 0, 1, . . . , n− 1 do
3 while J (k) 6= ∅ do
4 Choose U = arg min

M∈J(k)

∑
i∈M

2i.

5 for j = maxU + 1, . . . , n do
6 Set V = U ∪ {j} and expand J (k+1) ← J (k+1) ∪ V .

// Marginalised type frequency
7

(
πS\V . z

)
(xS\V)←

∑
α∈Xj

(
πS\U . z

)
(π{i∈S\U | i<j}ξS\U , α, π{i∈S\U | j<i}ξS\U)

8 j ← j + 1
9 J (k) ← J (k) \ U ;

10 k ← k + 1

Let us give a brief description of the idea Algorithm 5 is based on. The additional
assumption here (and thus also in the experiments in Section 3.6) is, that the possible types
ξ ∈ X allow exactly two different alleles per site (a wildtype and a mutant f.e., so |X| = 2n).

11Recall the notations πS .z = z as well as π∅.z = ‖z‖, as introduced in paragraph of Section 2.3 with the
title ‘The Moran model with single-crossover recombination’, and define max ∅ := 0.

Chapter 3. Parameter estimation approach for the Moran model 71

0

1

3

7

15

11 13

5 9 6

14

2

10 12

4 8

Figure 3.9.: Illustration of the hierarchy and iteration process of Algorithm 5 for n = 4.

Hence, note that the sum in line 7 of Algorithm 5 contains only two summands and the
references to the corresponding frequencies with respect to S \ U can be implemented by
simple integer arithmetics. Furthermore, this allows to add a two-stage hierarchy to all
the marginals: first, the number k of removed sites from S, and second, the canonical
order of integers that have a binary representation with exactly k ones. Then, the main
algorithmical idea is to do a bottom-to-top iteration with respect to the level k, i.e. going
from A = S (k = 0) to A = ∅ (k = n) by removing sites: for every subset A of level k, we
compute all marginals of the next level by removing one of the possible remaining sites
that are bigger than all removed sites of the current subset. An illustration of the hierarchy
and iteration process of Algorithm 5 for n = 4 is given in Figure 3.9.

3.6. Numerical experiments and results

Since this paragraph shall be a feasiblity study to show that the approach we have formulated
up to now is capable to estimate the recombination distribution r, that determines the time
course data of a population not being in stationarity, we now describe the test environment
that is used for this purpose.
To give an overview right at the beginning, the entire experimental environment structure
is illustrated in Figure 3.10 already and we describe the different components gradually in
the following paragraphs.

Simulation scenarios (of the partitioning process) and ODE. Let us briefly de-
scribe the simulation scenarios that are considered to estimate their inherent recombination
distribution with the help of our numerical approach. Such a scenario is represented by
SIM and some chosen recombination distribution r in Figure 3.10.
For n ∈ {2, 3, 4, 5, 6}, we simulate the partitioning process (Σt) n̄Σt = 100 times with an
evolutionary time horizon of T = 3 ·104. To obtain some variety in the scenarios, we choose
every combination of the population size N ∈ {103, 104, 105}, the (total) probability of
recombination rtot ∈ {1.0, 0.5, 0.2, 0.1, 0.01} and the shape of the recombination distribution

72 3.6. Numerical experiments and results

n

ODE

NLP

α

NI

meth. ε

hmaxacc

zrSIM

η

x̃(0)

SQP

x∗

f∗

logs
para.

r(0)

nΣt

W

|W|

Σ−1

o

shape

to

Σt

n̄Σt

T

distr.
rtot

N

Figure 3.10.: Structure of the experimental environment. Parameters that are fixed (violet),
see Table 3.1; parameters that are varied (orange), see Table 3.2; dependent
components (blue); results (green). SIM means simulation scenario and
NI means numerical integration module. •∗ means the final iterate (not
necessarily at a stationary point); ‘para.’ captures Clean::SQP and Clean::ASM
parameters, see Table 3.1b; ‘logs’ captures all statistics and the exit codes of
SQP.

Chapter 3. Parameter estimation approach for the Moran model 73

comp. parameter value/choice

SIM
Σt part. proc.
T 3 · 104

n̄Σt 100

η
Σ−1
i Idnd
|W| 1
nΣt 40

NI
method METAN

ε 10−10

hmax,i |ti+1 − ti|
(a) Simulation scenario, observation data and

numerical integration

comp. parameter value/choice

SQP

f mult. 1.0
overall tol. 10−6

primal tol. 10−6

dual tol. 10−6

iteration limit 39

min penalty 106

overall tol. 10−6

step tol. 10−6

x̃(0) r(0) center
(b) SQP parameters (subdivided in Clean::SQP

(top five rows) and Clean::ASM (subsequent
three rows)) and initial NLP iterate

Table 3.1.: Component settings that are fixed in our experimental environment.

on the set of sites to be either

uniform: r{{1,...,i}{i+1,...n}} = 1
n− 1 rtot, 1 6 i < n, (3.19a)

triangular: r{{1,...,i}{i+1,...n}} =


i

bn2 c
(
bn2 c+n mod 2

) rtot, 1 6 i 6 n
2 ,

n−i
bn2 c
(
bn2 c+n mod 2

) rtot,
n
2 < i < n,

(3.19b)

or, with p = n
2(n+1) ,

left geometric: r{{1,...,i}{i+1,...n}} = 1− p
1− pn−1 p

i−1 rtot, 1 6 i < n, or (3.19c)

right geometric: r{{1,...,i}{i+1,...n}} = 1− p
1− pn−1 p

n−i−1 rtot, 1 6 i < n. (3.19d)

By using all of these combinations, we obtain a scenario set of cardinality 60 for every
number of sites n, albeit obviously, for n = 2, all the shape cases coincide, and for n = 3
the cases ‘uniform’ and ‘triangular’ still coincide (and thus should yield similar results in
the experiments). But for n > 3 the scenarios are distinct, cf. Figure 3.11.

uniform triangle left geometric right geometric

Figure 3.11.: Schematic illustration (for n = 6) of the different distribution shapes that are
used for the simulation scenarios.

74 3.6. Numerical experiments and results

Besides, since we assume N to be known, its value, together with the number of sites,
already completely determines the ODE component of our model in Figure 3.10.

Initial population (distribution) and observed type(s). As we have already an-
nounced in Section 3.5, we assume only a distinction between two alleles per site (say a
wildtype and mutant, for example). This yields |X| = 2n. Now, in a first step, we construct
a type distribution z with every z(ξ) being drawn from a uniform distribution on the
integers 1, . . . , 2n. Second, we draw |W| indices without replacement from the indexset
1, . . . , 2n to pick the considered types ξ ∈W.
Note that the choice of the uniform distribution to construct z is arbitrary. Furthermore,
we only consider |W| = 1 fixed type in our experimental environment. The so computed
population distribution z and the considered type ξ only depend on n. Thus z and ξ are
always the same among all simulation scenarios with the same number of sites.

Observation grid and time course data. To determine an observation grid
{t1, . . . , to}, we set t1 = 0, vary to ∈ {1600, 8000}, and vary o ∈ {6, 16}. The distri-
bution (or shape) of the observation times t1 < . . . < to shall be either

uniform: ti = (i− 1) · to/(o− 1), i = 1, . . . , o, or (3.20a)

logarithmic: ti =

0, i = 1,

t
(i−1)/(o−1)
o , i = 2, . . . , o.

(3.20b)

The former mimics a plain way to choose the observation times. The latter is highly
adapted to the exponential solution of (2.46) with Eϕ[HA(Z0)] = HA(z). To complete
the observation data component η in Figure 3.10, we choose the number of simulation
runs to be averaged as nΣt = 40 and assume Σ−1

i = Idnd ∀ i. Hence, we neglect (possible)
information about measurement errors in this study. Figure 3.12 shows a realisation of the
time course of all the (averaged) normalised sampling functions evaluated for one fixed ξ,
stopped in T = 3 · 104, and read on a logarithmic grid with t6 = 1600.

Numerical integration and NLP/ODE adjustments. The results presented in this
chapter rely on the usage of METAN as the solver for the occuring IVPs. We use default
controls throughout, i.e. we make no use of passing some suitable starting step size for the
next integration and control the maximal stepsize with the length of the local subinterval
hmax,i = |ti+1 − ti|. The local relative error bound for the integration is set to ε = 10−10.
However, we want to observe the numerical extent of the rescaling of the model parameters
in (3.7) and the truncation of the generator Θ(r;N) as mentioned at the end of Section 3.4.
Therefore we vary α ∈ {1.0, 0.1} and let the accuracy of Θ(r;N) be either full (application
of all terms) or reduced (neglect all terms of the form N−2Θ[2](r) in (3.11)).

Chapter 3. Parameter estimation approach for the Moran model 75

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 200 400 600 800 1000 1200 1400 1600

η

t

Figure 3.12.: Averaged normalised sampling functions’ time courses (3.18b) for nΣ = 40
realisations of the partitioning process and evaluated for one fixed type
ξ. All simulations with parameters n = 4, N = 104, T = 3 · 104, and
r = (0.990000, 0.006410, 0.002564, 0.001026) (left geometric). Observations ηi
are read at ti ∈ {0, 4, 19, 84, 366, 1600} (logarithmic) for i = 1, . . . , 6. Plot is
truncated after t6 = 1600.

Set up SQP and initial NLP iterate. We use Clean::SQP together with the active set
method Clean::ASM in [82] (with a regularised l2 penalisation) as subsolver for the iterate
QPs; both in version 1.0. Its sparse symmetric KKT systems are directly solved by MA57
from the HSL-library (which applies a LDLT factorisation). This combination is denoted
by SQP in the following (and in Figure 3.10 already).
Our setting of SQP relies mainly on its default parameters. We have only changed the
parameters mentioned in Table 3.1b. The reasoning for the choice is rather simple: it has
shown good results in an early test phase on a small sample of test problems. Therefore, it
has been applied unmodified to all tests that are discussed in this paragraph. Hence, the
experiments are also comparable from that point of view.12

The composition of the initial NLP iterate is also the same throughout the experiments:

x̃(0) = ((h(0))T , (r̃(0))T)T = (ηT , α (1− n−1), α n−1, . . . , α n−1)T . (3.21)

We choose the observed data as the start iterate for the initial values in the discretisation
nodes h and the center of the feasible (n−1)-simplex as a start iterate for the recombination
distribution r. These are also very plain choices that don’t employ any further information
from the origin of the data.
12A more sophisticated approach to arrange the SQP setting, best combined with the control of the

numerical integration method, should come along with a future investigation. This, of course, depends
on the accuracy of the data and the desired fitting accuracy of the model.

76 3.6. Numerical experiments and results

component parameter values

n {2, 3, 4, 5, 6}
simulation r−1

tot {1, 2, 5, 10, 100}
scenario distr. {uniform, triangular, right geometric, left geometric}

N {103, 104, 105}

grid
to {1600, 8000}

shape {uniform, logarithmic}
o {6, 16}

NLP adjustment α {1.0, 0.1}

ODE adjustment accuracy {full, reduced}

Table 3.2.: Summary of parameter values determining the numerical experiments. The
first four rows fix the simulation scenarios for the partitioning process. All
combinations together lead to a test set of size 300. This is tested against
different test cases, which are determined by a grid, that itself is specified by
the rows number five to seven, together with a NLP/ODE adjustment, which is
determined by the last two rows. Hereby, the parameter accuracy determines,
whether all (full) or only the terms of order up to N−1 (reduced) of Θ are taken
into account, cf. (3.11).

Numerical results. We now want to discuss the results of our numerical approach
applied to simulation scenarios of the partitioning process. For the sake of this paragraph’s
readability we have collected all corresponding figures to the supplemental Appendix C.
For every number of site n ∈ {2, 3, 4, 5, 6}, we have constructed 60 scenarios and thus have
a test set of total cardinality 300. This is tested against the different grids and NLP/ODE
adjustments as specified in Table 3.2, which will be encoded together by

[to : shape : o ;α ; acc]

and refered to as a test case in the following.
By an experiment we denote a test case applied to an element of the test set. Then,
the (numerical) result of an experiment consists of the number of SQP iterations, that
are needed to either terminate or reach an upper runtime limit (39 iterations or 8 hours),
the final value of the objective function 1

2‖h
∗ − η‖2, and the distance of the final iterate

r∗ to the recombination distribution r (that was used in the simulations), measured
by ‖r∗ − r‖2/rtot.13 The results are illustrated in the combined Figures C.2–C.8 as tip
up triangles, diamonds, and bullets, respectively. Each column, which is labelled with
r−1

tot ∈ {1, 2, 5, 10, 100} and separated from each other by solid a line, contains the results
of the 12 experiments in which all parameters, except from N and the shape of r, are fixed.
See Figure C.1 for a zoom in on the column with n = 2, r−1

tot = 10 of Figure C.2.14

13All experiments have been executed on a desktop computer with Intel R© Xeon R© CPU E3-1245 v5
(3.5GHz) and 16GB RAM.

14The same ordering of the simulation scenarios is used in all similar figures in Appendix C.

Chapter 3. Parameter estimation approach for the Moran model 77

The different colouring of the triangles, diamonds and bullets, in turn, is due to the exit
status of SQP:

• Green means that either a (local) optimal solution is found or the last iterate is
feasible but the line search fails.

• Purple means that we have a feasible iterate, but either the iteration number (or
time limit) is reached.

• Orange means that we (still) have an infeasible iterate, and either the line search
fails or the iteration number (or time limit) is reached.

• Red means that either the solution of the local QP was impossible or another error
evaluating the NLP occured.

And to classify the colours somewhat coarser for the purpose of this analysis: green and
purple are successful experiments, orange experiments have infeasible final iterates and
red experiments have been unsuccessful (mostly right from the start of the SQP solution
process). Based on this coarse distinction of an experiment’s result quality, we provide
histograms of the exit statuses’ relative frequencies with respect to the number of sites
for each of the considered test cases in Figure C.10. This summary helps us to assess the
degree of improvement a change of the test case parameters has on the results.
We start with the test case

[8000 : uniform : 6 ; 1.0 ; full],

and study empirically the effect of changing some of the settings on the quality of the
results. From this reference case in Figure C.2 we see that for n = 2 at least around 60%
of the experiments are successful. For n = 4 (n > 4) this ratio drops to 1.6% (0%), cf.
Figure C.10. Moreover, a lot of those successful experiments yield final iterates r∗ that are
rather far away from the given r. At least, SQP stops after very little numbers of iteration,
which, on the one hand, indicates that the data seems to be of too bad quality for a
reasonable model fit (fast stopping with unsuccessful exits), and, on the other hand, makes
it not possible to infer the deployed recombination distribution r (but, even sometimes, to
identify a different local optimum). Besides, note that the very little iteration numbers also
explain the echelon form of the results (bullets, for each n) regardless of the exit status.
This is due to the choice of x̃(0) (3.21).
The first step to improve the quality of the data is to shorten the observation horizon to
from 8000 to 1600. Hereby, the local subintervals [ti, ti+1] become shorter, therefore, the
extrapolation error should become smaller, and, subsequently, the evaluation of the SQP
tasks (3.8) more accurate. This assumption is supported by Figure C.3 and Figure C.10,
since the number of successful experiments as well as those that exit with an error (red)
increases perceptibly. But, nevertheless, the overall impact of this adjustment is not very
big for our test set.

78 3.6. Numerical experiments and results

A second approach is to adapt the uniform shape of the observation times grid to the
exponential course of the type distribution trajectories, i.e. use logarithmic increments
(3.20b), see also Figure 3.12. The massive improvement of the results is obvious in Figure C.4
even for a longer time horizon to compared to the previous test case. The number of
successful tests increases to around 60% (average over all scenarios n ∈ {2, 3, 4, 5, 6}).
Also the final iterates r∗ are much closer to the deployed ones. It is remarkable, that
now only those scenarios yield results with ‖r∗ − r‖2/rtot > 1, which have been classified
as unsuccessful (red) or infeasible with failing line search (orange) by the solver. So the
data does not seem to drive the solver to local optima very different from r anymore.
Furthermore, now, the experiments with error exit comprises only scenarios with small
rtot and independently of the shape of r. To get an idea of the change of the time course
data η depending on r−1

tot and N , we give illustrations thereof restricted to the scenarios
n ∈ {2, 3, 4, 5} and the triangular shape of r in Figures C.11–C.14.15 We conjecture, that
the reason for the cumulation of unsuccessful experiments for rather big values of r−1

tot may
be, that in these scenarios, albeit the grid covers the exponential course quite well, the
(nonstationary) dynamic is still present above rather long subintervals (t3 ≈ 36, t4 ≈ 219,
t5 ≈ 1326), compared to smaller values of r−1

tot. This may cause problematic extrapolation
errors. In addition, we observe from Figures C.11–C.14 that the nonstationary phase
is monotonically extending with respect to n, which may be one of the reasons for the
observation that the quality of the results also drops by increasing n.
As we have seen so far, both, the reduction of the time horizon to and the change of the
grid shape increases the quality of the results, albeit to different degrees. Now we apply
both adjustments at once, which yields the test case [1600 : logarithmic : 6 ; 1.0 ; full] with
the results in Figure C.5. Obviously, the shortening of the observation horizon from 8000
to 1600 improves the satisfying results of Figure C.4 even further. Apart from five (in
total) infeasible experiments, all other experiments with ‖r∗ − r‖2/rtot > 1 are classified
as unsuccesful and detected as those already in the first iteration; in the previous test
case seventeen infeasible and even six optimal experiments have such a large distance to r.
Now, the exit statistic in Figure C.10 reads 97% to 47% of the experiments have optimal
solutions (decreasing with n) and only 2% to 25% are unsuccessful (increasing with n).
In the reverse conclusion, now the data drives the solver in direction to r in 98% of the
not unsuccessful experiments. But also the number of unsuccessful tests increases slightly,
which is compensated by a relatively bigger decrease of the number of tests in which
the last iterate is still infeasible (but the line search fails or one of the runtime limits is
reached). The scenario-by-scenario exit code changes from [8000 : logarithmic : 6 ; 1.0 ; full]
to [1600 : logarithmic : 6 ; 1.0 ; full] are brought out additionally in Figure C.9. The selection
of scenarios is with respect to (real) improvements or worsening (i.e. red to green / orange
or orange to green, and green to orange / red or orange to red, respectively). Then, besides

15We refrain form giving the corresponding figures for n = 6 as well, because the bn = 52 trajectories of η
can not be distinguished appropriately anymore.

Chapter 3. Parameter estimation approach for the Moran model 79

n 2 3 4 5 6
o 6 16 6 16 6 16 6 16 6 16

x̃ 14 34 33 83 94 244 317 837 1224 3254
CE 52 152 228 678 1504 4504 15085 45245 213156 639459
∇2
x̃x̃Λ 64 174 301 851 2110 6160 22037 65457 317107 948437

Table 3.3.: Number of non-zero elements for the crucial NLP components x̃, CE and ∇2
x̃x̃Λ.

the overall improvement regarding the number of optimal or at least feasibe results, it
becomes conspicuous that the change of exit statuses occurs mainly for the scenarios
with r−1

tot 6= 1, 2. We again conjecture that this might be founded in the long subintervals
(t3 ≈ 19, t4 ≈ 84, t5 ≈ 336, t6 ≈ 1600).
A third approach is to increase the number of time grid subtintervals o, which may also
be a remedy for the unsatisfying results of the experiments with r−1

tot 6= 1, 2 so far. Let us
note that changing this parameter affects the NLP size (and therefore the computational
costs) immediately, see Remark 11. We increase the number from o = 6 to o = 16
and get the test case [1600 : logarithmic : 16 ; 1.0 ; full]. This changes the dimension of
the primal variable x̃ as well as the number of non-zero elements of the Jacobian of the
equality constraints CE and the Hessian of the Lagrangian ∇2

x̃x̃Λ, as stated in Table 3.3.
Especially, the resulting factor of around 3 in the number of non-zero entries for n = 5, 6
makes the total SQP solutions CPU time perceptibly longer, since the superexponential
growth of bn has a huge impact for this number of sites already (see Figure C.15). On
average, the SQP computations (NLP evaluations) CPU time per iteration increases from
1.3 s (0.8 s) to 1:34.3min (23.8 s), if we use n = 6 instead of n = 5 sites in the test case
[1600 : logarithmic : 6 ; 1.0 ; full] already. These times extend to 2.5 s (1.2 s) and 4:33.9min
(39.1 s), if we use o = 16 instead of o = 6 grid timepoints, respectively. This has to be
assessed in the light of the achieved improvements illustrated in Figure C.6 in relation to
Figure C.5. Concerning those, we note of the following facts:

• For n = 2, 3, 4 almost all experiments are solved with an optimal solution very close
to r in at most 11 SQP iterations.

• The only exceptions are one experiment with n = 2, which has optimal result but
‖r∗ − r‖2/rtot = 1.008, two experiments with n = 4, which are feasible and reach the
upper iteration limit (39) with a last iterate very close to r, and four experiments
that are unsuccessful (all again with r−1

tot = 100).

• Also for n = 5 the statistic is almost as good. 92% of the experiments have optimal
solutions, five experiments are unsuccessful (whereof one even makes good progress
in the first iteration but breaks off then), and only one experiment is (detected)
infeasible after 13 iterations (albeit its final iterate r∗ is close to r and the objective
is in the range of the other successful experiments).

80 3.6. Numerical experiments and results

• For n = 6 around 66% of the experiments are still successful. This is indeed
significantly worse than in the experiments with fewer sites, but it is also still the
best value compared to all previous test cases.

Hence, for the maximum of n = 6, we can conclude: the extended computational costs are
conspicuous but justifiable due to the big raise of the relative frequency of optimal results
in comparison to the previous test case.16

The fourth adjustment, that we want to investigate, is the impact of changing the additional
parameter α, which rescales the parameter r in our modelling (3.7). We have chosen the
alternative value 0.1 to produce the test case [1600 : logarithmic : 16 ; 0.1 ; full] with the
results in Figure C.7. Compared to the previous test case the amount of unsuccessful
experiments could be reduced further from seventeen to four. At the same time, for
n = 5 the amount of successful experiments unfortunately drops from 54 to 46, and the
number of feasible (infeasible) experiments increases from 0 to 9 (1 to 4). Nevertheless, the
final iterates r∗ do not differ perceptibly from the previous test case. So this adjustment
improves the quality of the results for our test set with respect to the final iterates, but
somehow makes it more difficult for the solver to assess it as a local optimum in some
cases.
Last, we want to examine the influence of an accuracy reduction in evaluating the ODE
as suggested in Section 3.4. Therefore, the test case [1600 : logarithmic : 16 ; 0.1 ; reduced]
with its results in Figure C.8 is compared with the previous test case
[1600 : logarithmic : 16 ; 0.1 ; full]. As expected, the overall quality of the results is
not worsened, since the summands omitted in (3.11) are < 10−6. But since they make
around 50% of the arithmetical operations in evaluating the system of ordinary differential
equations for the tests with n = 5, 6 (see Table 3.4), the positive consequences on the
computational CPU times as illustrated in Figure C.16 for n = 6 are worthwile. We could
not expect savings in the SQP computational times (upper part) per iteration, but the NLP
evaluation times per iteration have been reduced in all but one experiment. Its mean value
could be reduced from 32.84 s to 27.29 s, which is a relative improvement of around 17%.

n n0 n1 n2 saving n n0 n1 n2 saving

5 : 160 671 775 48%; 6 : 746 3831 5099 53%

Table 3.4.: Number of structural elements of Θ[k], k = 0, 1, 2 and arising saving of arithmetic
operations by using reduced accuracy (neglect elements of Θ[2]) in the cases of
n = 5, 6.

16The situation for n > 6 is commented in the Prospect paragraph of Section 3.7.

Chapter 3. Parameter estimation approach for the Moran model 81

3.7. Conclusion and prospect

Let us conclude the findings of this chapter. After having stated a closed system of ordinary
differential equations for the expected normalised sampling functions in Chapter 2, we
have formulated a NLP framework to estimate the underlying recombination distribution
using a multiple shooting approach. We have shed light on an efficient algorithmical
implemention of different program modules necessary to evaluate if a SQP solver is applied
to find a local minimum of that NLP. In doing so, we have not only taken numerical aspects
into account but also explicitly proposed appropriate datastructures and ready to use
algorithms. To demonstrate the basic applicability of this approach, we have implemented
all these model specific objects in C++, generated artificial observation data by simulating
the partitioning process for specified recombination distributions, applied a generic SQP
solver, and surveyed the quality of the results in an custom-built experimental environment
for several test cases. In doing so, we have noticed that the quality of the results does
not depend on the shape of the deployed recombination distribution but very crucially
on the quality of the observation data; both as to be expected. Especially for a low total
recombination probability rtot, a time grid with not too long subintervals, which covers
the exponential course of the expected normalised sampling functions, is most suitable. A
proper scaling of the parameter vector can enhance the results. Moreover, a reduction of the
accuracy in evaluating the system of ordinary differential equations may save computational
costs without interfering the results. However, the number of nonlinear constraints grows
proportionally with the number of timepoints and superexponentially with the number of
sites. This antagonises a passable computational time; especially for more than a handful
of sites.

Prospect. In this first survey of the numerical approach (3.3), we have reached some
(computational) limits, and made use of approximations and restrictions that may be
investigated even further.
We already put a lot of effort in an efficient programming of the numerical model, see
Sections 3.3–3.4. Nevertheless, already for n > 6 the computational costs become huge
through the size of the NLP. This is due to the fast growth of the Bell number bn.
Extending Table 3.3 to the case n = 7 with o = 16 yields dim(x̃) = 14039, number of
non-zero elements in CE = 11642182, and number of non-zero entries of ∇2

x̃x̃Λ = 17411109.
This is an intractable task on the reference desktop computer that we have used for the
results of Section 3.6.17 Hence, to apply this approach to more than a half-dozen sites
remains challenging already. Besides, the augmentation of the differential equation with a
second linear operator modelling mutations (as already done in [17]) is mathematically
reasonable, but it would increase the size of the NLP and its evaluation time even further.

17Recall Footnote 13 for the reference computer’s specifications. Around 44GB RAM are necessary now,
but also no relevant SQP progress is detectable after 8 hours on a compute cluster with Intel R© Xeon R©
CPU E5-2620 v2 (2.10GHz) (and sufficiently much RAM).

82 3.7. Conclusion and prospect

We have used a SQP algorithm to solve the NLP with an active set method as subsolver
for the occuring sequence of QPs. This combination of algorithms can be applied to
wide range of NLPs, since it does not make use of any special structural information
about the objective function or the constraints. For a first proof of concept, this choice
was sufficient. Moreover, this study served as a test problem for Clean (and especially
for the work in [82]). Now, one adjustment in this framework could be to use another
approximation or update approach for the Hessian of the Lagrangian function (as we have
already noted in Remark 11). Beyond that, actually, a convential solver for least square
parameter estimation problems is a Gauß-Newton method ([73, Chap. 10], [19, Sec. 5]).
Unfortunately, there was no such implementation available in Clean until the completion of
this thesis. But the application of an appropriate Gauß-Newton method (that can handle
constraints like ours) should be part of a future numerical investigation.
What is more, we only used METAN to solve the local IVPs. Albeit an implementation
of the related DIFSYS was available, we refrained from reiterating all experiments with
the latter. The code METAN applies an implicit midpoint rule and is therefore rather
suited for stiff ODEs, but of higher computational costs, whereas DIFSYS uses an explicit
approach (recall also Footnote 8). A proper eigenvalue analysis of Θ could be expedient in
this context to make an assessment of the IVPs’ stiffness and, therefore, to account for the
reasoning of the choice for a particular numerical integration approach (whichsoever) in
the end.
For a practical application of this approach on real world data, it has to be worked out
how the sequenced genetic data must be processed to make it applicable to our approach,
which relies on the normalised sampling functions H (2.25). And even when this task is
solved, from the just mentioned computational complexity in solving the occuring NLPs,
it only seems reasonable to apply this approach for a handfull of sites. But, at least for a
single-cell organism with a corresponding short generation time, it may still be expedient.

Chapter 4.

Modelling and simulating Lenski’s
long-term evolutionary experiment

4.1. Introduction

One of the most famous instances in experimental evolution is Lenski’s long-term evolution
experiment or LTEE (see [65], [97], [89], [49]). Over a period of 30 years, populations of
Escherichia coli maintained by daily serial transfer have accumulated mutations, resulting
in a steady increase in fitness. The mean fitness is observed to be a concave function
of time, that is, fitness increases more slowly as time goes by. In [97] a first theoretical
model is formulated that builds on the underlying processes, namely mutation, selection,
and genetic drift, and obtained a good agreement with the data. However, the model
describes the underlying population processes in a heuristic way. As a consequence, one
works with effective parameters that are hard to interpret, and it is difficult to disentangle
the contributions of the various model components to the resulting fitness curve. Recently,
in [47], a microscopic model is formulated for a special case (namely, for the case of
deterministic fitness increments) and made explicit that the specific design of the LTEE
lends itself ideally to a description via a Cannings model (see [31, Ch. 3.3]). In a neutral
setting, this classical model of population genetics works by assigning in each time step
to each of N (potential) mothers indexed j = 1, . . . , N a random number νj of daughters
such that the νj add up to N and are exchangeable, that is, they have a joint distribution
that is invariant under permutations of the mother’s indices. In [47], this was extended to
include mutation and selection. While, in [97], they work close to the data and perform
an approximate analysis in the spirit of theoretical biology, in [47] they focus on a precise
definition of the model and on mathematical rigour (including, in particular, the proof of
a law of large numbers in the infinite population size limit and for a suitable parameter
regime).
The goal of this chapter is to build a bridge between the two approaches, to generalise
the model in [47] to random fitness increments, and to also consider it in the finite-
population regime. A thorough mathematical analysis will reveal the many connections
between this model and the one in [97]; in particular, this will make the meaning of
its parameters transparent and will allow to separate the effects of the various model

83

84 4.1. Introduction

Figure 4.1.: Illustration of some day i− 1 (and the beginning of day i) of Lenski’s LTEE
with 4 founder individuals (bullets), their offspring trees within day i− 1, and
the sampling from day i− 1 to i (dotted), for an average clone size of 5. The
second founder from the left at day i − 1 (and its offspring) is lost due to
the sampling, and the second founder from the right at day i carries a new
beneficial mutation (indicated by the square).

ingredients. Parameter identification and stochastic simulations of a suitable extension of
the model will make the connection to the experimental data. Let us briefly describe the
LTEE and the outline of this chapter.

Lenski’s LTEE. Every morning, Lenski’s LTEE starts with a sample of ≈ 5 · 106

Escherichia coli bacteria in a defined amount of fresh minimal glucose medium. During
the day (possibly after a lag phase), the bacteria divide until the nutrients are used up;
this is the case when the population has reached ≈ 100 times its original size. The cells
then stop dividing and enter a starvation phase. At the end of the growth period, there
are therefore ≈ 5 · 108 bacteria, namely, ≈ 5 · 106 clones each of average size ≈ 100, see
Figure 4.1. The next morning, one takes a random sample of ≈ 5 · 106 out of the ≈ 5 · 108

cells, puts them into fresh medium, and the process is repeated; the sampled individuals
are the roots of the new offspring trees. Note that the number of offspring a founder
individual contributes to the next day is random; it is 1 on average, but can also be 0
or greater than one. Lenski started 12 replicates of the experiment in 1988, and since
then it has been running without interruption. The goal of the experiment is to observe
evolution in real time. Indeed, the bacteria evolve via beneficial mutations, which allow
them to adapt to the environment and thus to reproduce faster. Of course neutral and
deleterious mutations are more frequent than beneficial ones (see [33]), but neutral and
slightly deleterious mutations will, by definition, contribute nothing or little to the adaptive
process, even if they go to fixation; and strongly deleterious ones get lost quickly.
One special feature of the LTEE is that samples are frozen at regular intervals. They can
be brought back to life at any time for the purpose of comparison and thus form a living

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 85

fossil record. In particular, one can, at any day i, compare the current population with the
initial (day 0) population via the following competition experiment (see [66] and [97]). A
sample from the day-0 population and one from the day-i population, each of the same
size, are grown together until the nutrients are used up (say this is the case at time Ti).
One then defines

empirical relative fitness at day i =
log

(
Yi(Ti)/Yi(0)

)
log

(
Y0(Ti)/Y0(0)

) , (4.1)

where, for T = 0 and T = Ti, Yi(T) and Y0(T) are the sizes at time T of the populations
grown from the day-i sample and the day-0 sample, respectively. Note that the empirical
relative fitness is a random quantity, whose outcome will vary from replicate to replicate.
Figure 4.2 shows the time course over 21 years of the empirical relative fitness averaged
over the replicate populations, as reported in [97].

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000

0 10000 20000 30000 40000

i

Fi

i log2 100

re
la
tiv

e
fit
ne

ss

time in days

time in generations

Figure 4.2.: Empirical relative fitness averaged over all 12 populations (red bullets) with
error bars (95% confidence limits based on the 12 populations) from [96]; and
corresponding power law (4.2) with ĝ = 5.2 and β̂ = 5.1 · 10−3 (red solid line).
Data and parameters according to Fig. 2A and Table S4 of [97].

Obviously, the mean relative fitness has a tendency to increase, but the increase levels off,
which leads to a conspicuous concave shape. As noted in [97], the mean relative fitness
may be described by the power law

f̃
(
k
)

=
(
1 + βk

) 1
2g , (4.2)

with parameters β > 0 and g > 0. Here β is a time-scaling constant, and the exponent g
determines the shape of the curve. Furthermore, k is time with one generation (which here

86 4.1. Introduction

is the mean doubling time) as unit, so

i =
⌊ k

log2 100
⌋
≈ k

6.6 . (4.3)

The red solid line in Figure 4.2 shows the best fit of this curve to the data of all 12 replicate
populations, as obtained in [97], with parameter estimates ĝ = 5.2 and β̂ = 5.1 · 10−3.
(Here and in what follows, parameter values estimated from the data are indicated by a
hat, and numbers are rounded to 2 digits. Our parameters obtained via NonlinearModelFit
of Wolfram Mathematica 11 only differ in the third digits.) In line with (4.1) and (4.3),
we take days as our discrete time units, rather than doubling times (this will pay off in
Section 4.2 and Section 4.3); so log2 100 ≈ 6.6 generations in Figure 4.2 correspond to one
day, and the total of 50000 generations correspond to around 7525 days.
The two models mentioned above aim to explain the power law (4.2). The one in [97],
which we will refer to as the WRL model, uses an approach of diminishing returns epistasis,
which, in turn, means that the beneficial effect of mutations decreases with increasing
fitness (see, e.g., [21, p. 74] or [78]). They derive, by partly heuristic methods, a differential
equation for the mean relative fitness whose solution is given by (4.2). The time-scaling
parameter β is determined by the interplay of the rate and the effect of beneficial mutations,
with the heuristics in [42] for the description of clonal interference18 playing an important
role. The second approach is the individual-based model in [47] and makes full use of ideas,
concepts, and techniques from mathematical population genetics, which seem to be ideally
tailored for the LTEE setup. We will address this as the GKWY model; since it has been
published in a mathematical journal, we will review it in more detail in Section 4.2 with
an emphasis on the biological content. For a certain parameter regime that excludes clonal
interference, and using a similar approach to diminishing returns as in the WRL model, in
[47] a law of large numbers (as N →∞) is proved, thereby rigoroulsy deriving a version of
the power law (4.2).

Goal and outline. A major goal of this chapter is to provide a thorough mathematical
model of the LTEE, and to relate it to the observed fitness curve via parameter estimation
and stochastic simulations. This approach will provide additional connections between the
ideas contained in the WRL and the GKWY model addressed in the previous paragraph.
The design of the LTEE, with the daily growth cycles and the sampling scheme, results in
an (approximately) constant population size at the beginning of each day. As made explicit
in [47], this lends itself in a prominent way to a description through a Cannings model
(including mutation and selection), where the mothers are identified with the founders in a
given day and the daughters with the founders in the next day. The crucial parameter of

18Clonal interference (see [42], [41], [76]) refers to the situation of two (or more) beneficial mutations
present in the population at the same time. They then compete with each other and, in the end, only
one of them will be established in the population; an effect that slows down adaption (when measured
against the stream of incoming mutations), and biases the distribution of beneficial effects.

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 87

the Cannings model, namely, the variance of the number of offspring of a founder individual
that make it into the next day, is obtained in the context of the LTEE from an explicit
stochastic model of population growth during each day. This offspring variance enters
Haldane’s formula for the fixation probability, see (4.17) below.
As a matter of fact, also in [97] a formula for the fixation probability is used (see Eq. (S1) in
their Supplementary Text). In this context they refer to [42], which assumes a deterministic
population growth (and clones of equal size) resulting from synchronous divisions. Indeed,
the Cannings model which thus is implicitly hidden in the WRL model, turns out to work
with a different offspring variance; we will come back to this in Section 4.5.
In addition to the specification of the offspring variance, our model for the daily population
growth in continuous time allows us to quantify selection (including diminishing returns
epistasis) at the level of the individual reproduction rates within a day. The effect of
diminishing returns seems to be obvious from Figure 4.2; however, epistasis is not the
only contribution to the fitness curve. Rather, the design of the experiment also has its
share in it via what we call the runtime effect, namely, the shortening of the daily growth
phase with increasing fitness. The analysis of our model will allow a clear separation of
these contributions. Likewise, the population-genetic notions that also appear in the WRL
model (namely, the mutation rate, the selective advantage, the effective population size,
the fixation probability, and the strength of epistasis) will be made precise in terms of the
underlying microscopic model. Throughout, we aim at a rigorous mathematical treatment
where possible.
The chapter is organised as follows. In Section 4.2, we will recapitulate the GKWY model
and explain its law of large numbers (that is a deterministic limit in a suitable parameter
regime as population size goes to infinity) for a more biological readership. At the end of
Section 4.2, we will consider the resulting stochastic effects in a system whose parameters
are obtained from a fit to the data observed in the LTEE (and which thus naturally
differs from its infinite population limit). In Section 4.3, this will lead us to consider
clonal interference, which is present if the population size is finite in our model. We
will investigate clonal interference both for the case of deterministic and random fitness
increments. Here we do not prove a law of large numbers, but derive approximations with
the help of moment closure and a refined version of the Gerrish-Lenski heuristics. For each
case of fitness effects we estimate relevant parameters and enhance the plausibility of our
modelling with stochastic simulation studies by applying suitable algorithms as stated in
Section 4.4. Then, in Section 4.5, we will thoroughly discuss various modelling aspects in
the context of both the WRL and the GKWY models, in particular the notions of fitness
increment, selective advantage, and epistasis, as well as the equivalent concepts of offspring
variance, pair coalescence probability, and effective population size.

88 4.2. A probabilistic model for the LTEE and its law of large numbers

4.2. A probabilistic model for the LTEE and its law of large
numbers

The GKWY model takes into account two different dynamics, namely, the dynamics within
each individual day, and the dynamics from day to day, together with a suitable scaling
regime. The resulting relative fitness process is proved to converge, in the N →∞ limit, to
a power law equivalent to (4.2); that is, the power law arises as a law of large numbers. We
explain this here with the help of an appropriate heuristics. In what follows, we present
these building blocks and perform a first reality check.

Intraday dynamics. Let T be (continuous) physical time within a day, with T = 0
corresponding to the beginning of the growth phase (that is, we discount the lag phase).
Day i starts with N founder individuals (N ≈ 5 · 106 in the experiment). The reproduction
rate (or Malthusian fitness) of founder individual j at day i is Rij , 0 6 i, 1 6 j 6 N . It is
assumed that at day 0 all individuals have identical rates, R0j ≡ R0, so the population is
homogeneous. Offspring inherit the reproduction rates from their parents.
We use dimensionless variables right away. Therefore we denote by

t = R0T and (4.4)

rij = Rij
R0

(4.5)

dimensionless time and rates, so that on the time scale t there is, on average, one split per
time unit at the beginning of the experiment (this unit is 55 minutes, cf. [11]) and r0j ≡ 1.
In this paragraph, we consider the rij as given (non-random) numbers.
We thus have N independent Yule processes at day i: all descendants of founder individual
j (the members of the j-clone) branch at rate rij , independently of each other. They do so
until t = σi, where σi is the duration of the growth phase on day i. We define σi as the
value of t that satisfies

E[population size at time t] =
N∑
j=1

erijt = γN, (4.6)

where γ is, equivalently, the multiplication factor of the population within a day, the
average clone size, and the dilution factor from day to day in the experiment (γ ≈ 100 in
the LTEE). Note that the Yule processes are stochastic, so the population size at time t is,
in fact, random; in the definition of σi, we have idealised by replacing this random quantity
by its expectation. Since N is very large, this is well justified, because the fluctuations of
the random time needed to grow to a factor 100 in size are small relative to its expectation.

Interday dynamics. At the beginning of day i > 0, one samples N new founder
individuals out of the γN cells from the population at the end of day i− 1. We assume

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 89

that one of these new founders carries a beneficial mutation with probability µN ; otherwise
(with probability 1−µN), there is no beneficial mutation. We think of µN as the probability
that a beneficial mutation occurs in the course of day i− 1 and is sampled for day i.
Assume that the new beneficial mutation at day i appears in individual m, and that the
reproduction rate of the corresponding founder individual k in the morning of day i− 1
has been ri−1,k. The new mutant’s reproduction rate is then assumed to be

rim = ri−1,k + δ(ri−1,k) with δ(r) := ϕN
rq
. (4.7)

Here, ϕN is the beneficial effect due to the first mutation (that is δ(1), which applies while
r = 1), and q determines the strength of epistasis. In particular, q = 0 implies constant
increments (that is, additive fitness), whereas q > 0 means that the increment decreases
with r, that is, we have diminishing returns epistasis. Note that, at this stage, the fitness
increment is a deterministic function of the mother’s reproduction rate. This is in line
with the staircase model of population genetics (see [36], [24]). We will turn to stochastic
increments in Section 4.3.
Let MN

i be the number of new mutants at the beginning of the day. So far we have
assumed that MN

i can only take the values 1 or 0. More generally, for describing the
random number of individuals that are offspring of new mutants from day i− 1 and make
it into the N -sample at the beginning of day i, we might consider integer-valued random
variables MN

i with small expectation µN . We assume that the distribution of MN
i does not

depend on the current fitness value, and, as in (4.7), that any mutation adds δ(r) = ϕN/r
q

to the pre-mutant reproduction rate. As long as µN is not very small, precision may be
added by using Poisson random variables, which is what we do in the simulations, see
Section 4.4. One might also think of a finer intraday modelling of the mutation mechanism,
cf. [93] or [64]. However, although the limit theorem in [47] is proved only for binary
random variables MN

i , we conjecture that its assertion also holds for non-binary random
variables MN

i in the scaling regime (4.10) discussed below, at least as long as the variances
of the MN

i remain bounded as N → ∞. We will adhere to the binary assumption in
our analysis, and it will turn out as an excellent approximation. Note also that we have
idealised by not taking into account the change in fitness due to mutation during the day;
this is because a mutant appearing during the day will not rise to appreciable frequency in
the course of this first day of its existence, and thus will not change the overall growth
rate of the population in any meaningful way.

Mean relative fitness. With a view towards (4.1) we define the mean relative fitness,
depending on the configuration of reproduction rates rij of the N individuals in the sample
at the beginning of day i, as

FNi := 1
σi

log
(1
N

N∑
j=1

erijσi
)
. (4.8)

90 4.2. A probabilistic model for the LTEE and its law of large numbers

Here, σi is as defined in (4.6). Comparing (4.1) and (4.8), we see that the former contains
additional sources of randomness: on the one hand, the numerator of (4.1) may be viewed
as stemming from a sample that was drawn from the population at the end of day i− 1
(and which consists of individuals different from those present at the beginning of day i),
on the other hand the duration of the growth phase leading to (4.1) is not a predicted time
as in (4.8) but an empirical time coming out of the competition experiment between the
samples from day i and day 0. However, since the samples consist of a large number of
individuals, the random variables occurring in (4.1) will, with high probability, come out
close to their expectations, thus making already a single copy of the random variable (4.1)
a reasonably good approximation of (4.8), at least if the population at day i is sufficiently
homogeneous.19 Note that (4.8) implies that

eFNi σi = 1
N

N∑
j=1

erijσi . (4.9)

Thus, FNi may be understood as the effective reproduction rate of the population at day
i, which is different from the mean Malthusian fitness 1

N

∑
j rij unless the population is

homogeneous, that is, rij ≡ ri.

Scaling regime. We have indexed µN and ϕN with population size because the law of
large numbers requires to consider a sequence of processes indexed with N and to take the
limit N →∞. More precisely, we will take a weak mutation — moderate selection limit,
which requires that µN and ϕN become small in some controlled way as N goes to infinity.
Specifically, in [47] it is assumed, that

µN ∼
1
Na

, ϕN ∼
1
N b

as N →∞, with 0 < b <
1
2 , 3b < a. (4.10)

This entails that ϕN is of order greater than 1/
√
N but of order less than 1. Due to the

assumption a > 3b, µN is of much lower order than ϕN . This is used in [47] to prove that,
as N → ∞, with high probability no more than two fitness classes are simultaneously
present in the population over a long time span. Note that µN is the per-day mutation
probability per population (but see the discussion at the end of the paragraph on interday
dynamics).
Furthermore, the scaling of ϕN implies that selection is stronger than genetic drift as
soon as the mutant has reached an appreciable frequency. The method of proof applied
in [47] requires the assumptions (4.10) in order to guarantee a coupling between the new

19Indeed, due to the enhanced reproduction rates at day i compared to day 0, the nutrient consumption
time Ti in the experiment leading to (4.1) will generically be longer than σi, the predicted nutrient
consumption time in (4.8). This is because Ti refers to a mixture of day-i and day-0 populations (of
equal size), whereas σi relates to a ‘pure’ day-i population. If the day-i population is homogeneous, this
effect will cancel out; but if it is inhomogeneous, (4.1) will be systematically larger than (4.8), because
then the individuals with a larger reproduction rate will get more weight in (4.1) than in (4.8).

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 91

mutant’s offspring and two nearly critical Galton-Watson processes between which the
mutant offspring’s size is ‘sandwiched’ for sufficiently many days. Specifically, under the
assumption 0 < b < 1

2 , the coupling applied in [47] works until the mutant offspring in our
Cannings model has reached a small (but strictly positive) proportion of the population,
or has disappeared. A careful inspection of the arguments shows that, under the weaker
condition 0 < b < 2

3 , this coupling works at least until the mutant offspring has (either
disappeared or) reached size N b, from which it then goes to fixation by a law of large
numbers argument. This makes the limit result in [47] valid for 0 < b < 2

3 ; we conjecture
that it even holds for 0 < b < 1.
In the case where selection is much stronger than mutation, the classical models of
population genetics, such as the Wright-Fisher or Moran model, display a well-known
dynamics. Two distinct scenarios can happen, see, e.g., [53, Chap. 2 and Fig. 2.7]: either a
fast loss of a new beneficial mutation, or its fixation. We will see that qualitatively our
Cannings model displays a quite similar behaviour. Furthermore, as already indicated,
with the chosen scaling the population turns out to be homogeneous on generic days i
as N →∞. This has the following practical consequences for the relative fitness process
(FNi)i>0 defined by (4.8). First, on a time scale with a unit of 1/(µN ϕN) days, (FNi)i>0
turns into a jump process as N →∞, cf. Figure 4.3. Second, on the (generic) days i at
which the populations are nearly homogeneous, the subtle systematic difference between
(4.1) and (4.8), as described in Footnote 19, will disappear.

Heuristics leading to the limit law. Assume a new mutation arrives in a homogeneous
population of relative fitness F . It conveys to the mutant individual a relative fitness
increment

δN (F) = ϕN
F q

, (4.11)

that is, the mutant has relative Malthusian fitness F + δN (F). The length of the growth
period then is

σ(F) = log γ
F

(4.12)

(since this solves eFt = γ, cf. (4.6)). We now define the selective advantage of the mutant
as

sN (F) = δN (F)σ(F). (4.13)

Obviously, the length σ of the growth period decreases with increasing F and, since sN
in (4.13) decreases with decreasing σ, sN would decrease with increasing F even if δN (F)
were constant. This is what we call the runtime effect: adding a constant to an interest
rate F of a savings account becomes less efficient when the runtime decreases.

92 4.2. A probabilistic model for the LTEE and its law of large numbers

Let us explain the reasoning behind (4.13). In population genetics, the selective advantage
(of a mutant over a wildtype) per generation is

s = a1 − a0
a0

, (4.14)

where a0 (a1) is the expected number of descendants of a wildtype (mutant) individual in
one generation; Eq. (4.14) has the form of a return (of a savings account, say). If growth
is in continuous time with Malthusian parameters r0 and r1 = r0 + δ, respectively, and a
generation takes time σ, then a0 = er0σ and a1 = er1σ ≈ a0(1 + δσ) if δ is small, which
turns (4.14) into (4.13). Often, the appropriate notion of a generation is the time until the
population has doubled in size, see e.g. Eq. (3.2) in [23], which provides an analogue to
(4.13). In our setting, the corresponding quantity is the time required for the population to
grow to γ times its original size, which is the length σ(F) of the growth period in (4.12).20

Together with the above expression for s, this explains (4.13). Notably, a formula that is
perfectly analogous to (4.13) also appears in [85, p. 1977, last line]; there, the concept of
a viral generation is associated with the cell infection cycle, and the number K (which
corresponds to our γ) is the burst size or viral yield per cell.
Furthermore, it is precisely this notion of selection advantage conveyed by (4.13) and (4.14)
that governs the fixation probability. Namely, the fixation probability of the mutant turns
out to be

πN (F) ∼ C sN (F). (4.15)

Here, ∼ means asymptotic equality21, and C := γ/(γ − 1) is asymptotically twice the
reciprocal offspring variance in one Cannings generation of the GKWY model22; that
is, with the notation introduced in the first paragraph of the Introduction, the offspring
variance v in one Cannings generation satisfies

v = E
[
(ν1 −E[ν1])2

]
∼ 2 γ − 1

γ
= 2
C
. (4.16)

Hence (4.15) is in line with Haldane’s formula

π ∼ s

v/2 , (4.17)

which says that the fixation probability π is (asymptotically) the selective advantage s
divided by half the offspring variance v in one generation. Haldane’s formula relies on a
branching process approximation of the initial phase of the mutant growth; see [77] for an
account of this method, including a historic overview.
For the sake of completeness, let us give the following intutive explanation for (4.16). In

20In line with this, we choose days as our discrete time units, as already mentioned in Section 4.1.
21That is, πN (F)/(CsN (F))→ 1 as N →∞, see [47].
22Let us emphasise once again that one generation of this Cannings model corresponds to one day in the

LTEE.

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 93

every Cannings model, one has the relation

v = (N − 1) pcoal (4.18)

between v and the pair coalescence probability pcoal, that is, the probability that two
randomly sampled daughters have the same mother, cf. [26, Ch. 4.1]. Eq. (4.18) then
follows readily from the elementary relation

pcoal = E
[1
N(N − 1)

∑
j

νj(νj − 1)
]

= 1
N − 1

(
E
[
ν2

1
]
− 1

)
= 1
N − 1v,

because the νj are exchangeable and sum to N by assumption. In our specific Cannings
model, the family size of a randomly sampled daughter individual at the end of the day
is, on average, asymptotically twice as large as a typical family size.23 Since we have N
clones of average size γ, and the sampling is without replacement, we have

pcoal ∼
2
N

γ − 1
γ

. (4.19)

Together with (4.18) this implies (4.16). Note that (4.19) at the same time defines the
(coalescence) effective population size via Ne = 1/pcoal, cf. [31, Ch. 3.7] or [26, Ch. 4.4].
Another crucial ingredient of the heuristics is the time window of length

uN (F) = logN
sN (F) (4.20)

after the appearance of a beneficial mutation that will survive drift (a so-called contending
mutation) in the fitness background F ; this approximates the expected time it takes for
the mutation to become dominant in the population. Indeed, (4.20) is asymptotically
equivalent to the solution of

(1 + sN)i = εN

for any positive constant ε; here, the left-hand side is the expected offspring size of a
mutant after i days in the branching process approximation, and the right-hand side is a
sizeable proportion of the population.
All this now leads us to the dynamics of the relative fitness process. As illustrated in

23The size of the clone to which a sampled individual belongs has a size-biased distribution; this is in line
with the classical waiting time paradox (cf. [40, Example 4.16]). In our model, the size distribution of a
typical clone at the end of the day is approximately geometric with parameter 1/γ, and the size-biasing
of this distribution is (approximately) negative binomial with parameters 2 and 1/γ. Consequently, the
expected size of the clone to which a sampled individual belongs is approximately 2γ, that is twice the
expected size of a typical clone. This proportion carries over from the clones to the families of sampled
individuals. Let us emphasise once again that a family consists of the founders at the beginning of the
next day that go back to the same founder in the current day; whereas a clone consists of all descendants
of a founder at the end of a day, regardless of whether they are sampled for the next day or not.

94 4.2. A probabilistic model for the LTEE and its law of large numbers

F

F + δN (F)

i/ uN (F) ≈ uN (F)

Figure 4.3.: The relative fitness process (black) and the approximating jump process (grey).

Figure 4.3, most mutants only grow to small frequencies and are then lost again (due to the
sampling step). But if it does happen that a mutation survives the initial fluctuations and
gains appreciable frequency, then the dynamics turns into an asymptotically deterministic
one and takes the mutation to fixation quickly, cf. [26, Ch. 6.1.3]. Indeed, within time
uN (F), the mutation has either disappeared or gone close to fixation; by (4.10), this
time is much shorter than the mean interarrival time 1/µN between successive beneficial
mutations. As a consequence, there are, with high probablity, at most two types present
in the population at any given time (namely, the resident and the mutant), and clonal
interference is absent. Therefore, in the scenario considered, survival of drift is equivalent
to fixation. Next, we consider the expected per-day increase in relative fitness, given the
current value F . This is

E[∆NF | F] ≈ µN πN (F) δN (F) ∼ ΓN
F 2q+1 . (4.21)

Here, the asymptotic equality is due to (4.11)–(4.13) and (4.15), and the compound
parameter

ΓN := CµNϕ
2
N log γ (4.22)

is the rate of fitness increase per day at day 0 (where F0 ≡ r0 = 1). Note that ϕN/F q

appears squared in the asymptotic equality in (4.21) since it enters both πN and δN . Note
also that the additional +1 in the exponent of F comes from the factor of 1/F in the
length of the growth period (4.12), and thus reflects the runtime effect.
This now leads us to define a new time variable τ related to i of (4.3) via

i =
⌊ τ

ΓN

⌋
(4.23)

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 95

with ΓN of (4.22), which means that one unit of time τ corresponds to ΓN days. With
this rescaling, we have

FNbτ/ΓN c → f(τ) as N →∞,

where f satisfies the initial value problem

d
dτ f(τ) = 1

f2q+1(τ) , f(0) = 1, (4.24)

with solution
f(τ) =

(
1 + 2(1 + q)τ

) 1
2(1+q) . (4.25)

Note that (4.24) is just a rescaling limit of (4.21), where the expectation was omitted due
to the scaling regime applied, as will be explained next.

Law of large numbers. The precise formulation of the limit law in [47] reads

Theorem 2. For N → ∞ and under the scaling (4.10), the sequence of processes(
FNbτ/ΓN c

)
τ>0 converges in distribution and locally uniformly, to the deterministic function(

f(τ)
)
τ>0 in (4.25).

The theorem was proved along the heuristics outlined above24 with the help of advanced
tools from probability theory. It is a law of large numbers reasoning, which allows to
go from (4.21) to (4.24) (and thus to ‘sweep the expectation under the carpet’), in the
sense that, for large N and under the scaling assumption (4.10), fitness is the sum of
a large number of small per-day increments accumulated over many days, and may be
approximated by its expectation.
Since time has been rescaled via (4.23), Eq. (4.25) has q as its single parameter. Note
that 1/(2(1 + q)) < 1 (leading to a concave f) whenever q > 0; in particular, the fitness
curve is concave even for q = 0, that is, in the absence of epistasis. This is due to the
runtime effect: if the population as a whole already reproduces rather fast, then the end
of the growth phase is reached sooner and thus leaves less time for a mutant to play out
its advantage; see also the discussion in Section 4.5. The second parameter, namely ΓN ,
reappears when τ is translated back into days; that is, FNi ≈ f(ΓN i). Note that R0, as
used in the first nondimensionalisation step (4.4), is not an additional parameter because
it is already absorbed in ϕ2

N .

A first reality check. The limit law (4.25) is identical with the power law (4.2) in [97]
up to a transformation of the parameters that relies on relevant details in the modelling (see
also the discussion in Section 4.5). We have q = g − 1, so ĝ = 5.2 of Section 4.1 translates
into q̂ = 4.2.25 Furthermore, Γ = β log2(γ)/(2(1 + q)) due to (4.2) and (4.25) together
24Note that in [47] they partly work with dimensioned variables, which is why the notation and the result

look somewhat different.
25Recall that we denote parameter estimates by a hat to distinguish them from the corresponding theoretical

quantities. Figures are rounded to two digits.

96 4.2. A probabilistic model for the LTEE and its law of large numbers

with the fact that k = τ log2(γ)/Γ by (4.3) and (4.23); given β̂ = 5.1 · 10−3, this results
in Γ̂ = 3.2 · 10−3 (here and in what follows, we suppress the index N , since we will work
with fixed, finite N from now on). The resulting fit is reproduced in Figure 4.4 (red solid

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi

re
la
tiv

e
fit
ne

ss

time in days

Figure 4.4.: Least-squares fit of the curve (4.25) to the data in [96], and stochastic simula-
tions of finite populations with deterministic beneficial effects. Red bullets:
mean empirical relative fitness (averaged over all 12 populations) with error
bars as in Figure 4.2; solid red line: Fi ≈ f(Γ̂i) with parameter values q̂ = 4.2
and Γ̂ = 3.2 · 10−3; green lines: 12 individual trajectories Fi obtained via
Cannings simulations with N = 5 · 106, γ = 100, ϕ̂ = 0.14, and µ̂ = 0.035; light
blue line: average over the 12 simulations.

line). In line with [97, Fig. 2], we average over all 12 populations, at this point neglecting
a certain variability of the parameters between the populations, see their Table S4.
In the light of (4.22), of the given value Γ̂, and of the fact that C log γ ≈ 4.7, the values of
µ̂ and ϕ̂ cannot both be very small. We therefore now check the limit law against realistic
parameter values. We start by decomposing the compound parameter Γ. Recall from (4.7)
that the fitness increment due to the first beneficial mutation is

ϕ = δ(F0) = δ(1). (4.26)

This was estimated as 0.1 in [65] (see also [42], and [97]). For reasons to be explained in
Section 4.3, however, we work with the somewhat larger value ϕ̂ = 0.14. The mutation
probability may then be obtained from (4.22) as

µ̂ = Γ̂
C ϕ̂ 2 log γ = 0.035. (4.27)

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 97

Stochastic simulations of the GKWY model, performed with Algorithm 6 described in
Section 4.4 and using the above parameters together with N = 5 · 106, are also shown in
Figure 4.4. Their mean (over 12 runs) recovers the basic shape of the fitness curve, but
systematically underestimates both the limit law and the data. A natural explanation for
this is clonal interference, which is absent in the limit under the scaling (4.10), but leads
to loss of mutations for finite N . This will be taken into account in Section 4.3. But let us
note here that the fluctuations in the data are rather larger than those of the simulations;
this may well go along with a variability of the parameters between the 12 replicates of the
LTEE, which is present in the data, but not in our simulations.

4.3. Including clonal interference

As discussed in Section 4.2, the scaling regime in the GKWY model was such that, with
high probability, no new beneficial mutation arrived while the previous one was on its way
either to extinction or fixation. As indicated by the simulation results in Figure 4.4, also
clonal interference should be taken into account. Briefly stated, clonal interference refers
to the situation where a second contending mutation appears while the previous one is still
on its way to fixation (recall also Footnote 18). It is crucial to keep in mind that, unlike
the case without clonal interference considered in Section 4.2, survival of drift may then no
longer be identified with fixation; rather, there may be an additional loss of contending
mutations due to clonal interference. In particular, the quantity π of (4.15) must now be
addressed as the probability to survive drift rather than the fixation probability.
A full analytic treatment of clonal interference is beyond the scope of this section; in
particular, we will not prove a law of large numbers here. Rather, we refine and adapt the
heuristics of [42], see also [97]. The heuristics was originally formulated for fitness effects
that follow an exponential distribution. We will, however, first consider the deterministic
effects as assumed in the GKWY model and then proceed to random effects from a very
general probability distribution.

Deterministic beneficial effects. For the case of derministic beneficial effects, we will
sketch and apply a thinning heuristics, as a counterpart of the heuristics in [42]. Consider
the situation that a second mutation surviving drift appears within the time window
u(F) := uN (F) of (4.20) after the appearance of a first mutation (this is more or less while
the first mutation has not become dominant yet). Then, with high probability, the second
mutation occurs in an individual of relative fitness F (rather than in an individual of
relative fitness F + δ(F)), and therefore belongs to the same fitness class as the first mutant
and its offspring. Thus, as far as fitness is concerned, the two mutants (and their offspring)
can be considered equivalent. In our heuristics, the occurrence of a second (and also a third,
fourth, . . .) mutation within the given time window neither speeds up nor decelerates the
(order of magnitude of) the time until the new fitness class is established in the population.

98 4.3. Including clonal interference

So u(F) plays the role of a refractory period, in the sense that the fitness increments
carried by contending mutations arriving within this period are lost. The probability that
a given increment is not lost is determined via the expected waiting time for a (first)
contending mutation to appear given the current value F , which is v1 := 1/(µπ(F)), and
the expected duration v2 := u(F) of the refractory period. Specifically, by (4.15) and
(4.20), the probability in question is

v1
v1 + v2

∼ 1
1 + Cµ logN . (4.28)

Under this approximation, the expected per-day increase of the relative fitness, given its
current value F , turns into

E[∆F | F] ≈ µπ(F) δ(F)
1 + Cµ logN ∼ Γ

F 2q+1 , (4.29)

where now
Γ = Cµϕ2 log γ

1 + Cµ logN , (4.30)

that is, the factor µ in (4.22) is replaced by µ/(1 +Cµ logN). Now, taking the expectation
over F in (4.29) yields

E[∆F] ≈ Γ E
[1
F 2q+1

]
'

Γ(
E[F]

)2q+1 .

Here, the second step is due to Jensen’s inequality.26 Assuming a suitable concentration
of the random variables in question around their expectations (which in theory would be
justified by a dynamical law of large numbers result such as the one discussed in Section 4.2,
and in practice is a crude way of moment closure) we arrive at the approximation

Fbτ/Γc ≈ E
[
Fbτ/Γc

]
≈ f(τ) for large N

with f as in (4.25). We may, therefore, approximate (as in Figure 4.4) the data by the
function f , with the same values q̂ and Γ̂ as before. The compound parameter Γ, however,
has an internal structure different from the previous one (compare (4.30) with (4.22)).
Solving (4.30) for µ gives

µ = Γ
C(ϕ2 log γ − Γ logN) ; (4.31)

for our current Γ̂ and ϕ̂, this yields µ̂ = 0.079 and thus a better agreement between
the simulated mean fitness and the approximating power law (and hence with the data),
see Figure 4.5. Notably, µ̂ is of the same order of magnitude as 1/ logN = 0.15; for an
asymptotic analysis as N →∞, this would imply that the ratio (4.28) is bounded away
from 0. For substantially higher mutation probabilities, the heuristics would break down
26Note that 1/xp is a convex function of x for any p > 1.

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 99

(cf. [38]) and a different asymptotic regime would apply (cf. [27]).

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi
re
la
tiv

e
fit
ne
ss

time in days

Figure 4.5.: Cannings simulation as in Figure 4.4, but with mutation probability µ̂ = 0.079.

Let us now investigate the remaining discrepancy between the mean of the Cannings
simulations and the approximating power law. Since the power law has been obtained via
two approximations, namely the thinning heuristics and moment closure, it is interesting
to quantify the contributions of these two sources of error. To this end, we simulate the
evolution according to the heuristics rather than the Cannings model (see Algorithm 7).
The result is shown in Figure 4.6. The simulation mean is very close to that of the
Cannings simulation. We may conclude that the heuristics approximates the Cannings
model very well, at least at the level of the mean values; the discrepancy between the
Cannings simulation and the power law should therefore mainly be ascribed to moment
closure. Note that the simulation of the heuristics yields smaller fluctuations than that of
the Cannings model; this goes along with the fact that the model based on the heuristics
contains fewer random elements than the Cannings model.
Let us finally comment on our choice ϕ̂ = 0.14. The denominator of (4.31) is strictly
positive, and hence µ̂ is finite (and positive), as long as

ϕ̂ >

√
Γ̂ logN

log γ = 0.10.

The existence of such a lower bound on ϕ̂ is plausible since the refractory period poses
an upper bound to the rate of fixation events. Here we work with the value of ϕ̂ = 0.14
in order to stay reasonably far away from an undesirable ‘explosion’ of µ̂. With this
choice, the mean number of fixed beneficial mutations in the simulations in Figure 4.6,
averaged over the 12 runs, is 21; this is to be compared with the estimate of 60–110 fixed

100 4.3. Including clonal interference

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi

re
la
tiv

e
fit
ne
ss

time in days

Figure 4.6.: Simulation using heuristics for deterministic increments. Parameters as in-
Figure 4.5. Mean number of clonal interference events: 24; mean number of
established beneficial mutations: 21.

mutations observed in 50000 generations in [89], and of 100 fixed mutations observed in
60000 generations in [49], which both include neutral mutations.

Random beneficial effects. Let us now turn to random beneficial effects. To this
end, we scale the fitness increments with a positive random variable X with density h
and expectation E[X] = 1. We assume throughout that E

[
X2] < ∞ to ensure that all

quantities required in what follows are well-defined. Taking into account the dependence
on X, the quantities in (4.11)–(4.13), (4.15) and (4.20) turn into

δ(F,X) = X
ϕ

F q
, (4.32a)

σ(F) = log γ
F

(as before), (4.32b)

s(F,X) = δ(F,X)σ(F), (4.32c)

π(F,X) ≈ C s(F,X), (4.32d)

u(F,X) = logN
s(F,X) . (4.32e)

Note first that large X implies large s and hence small u and vice versa; and second
that (4.32d) is an approximation, whereas in (4.15) we have asymptotic equivalence.
The following Poisson picture will be central to our heuristics: the process of beneficial
mutations with scaled effect x that arrives at time τ has intensity µ dτ h(x) dx with points
(τ, x) ∈ R+ × R+. And in fitness background ≈ F , we denote by Π the Poisson process of

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 101

contending mutations, i.e. those beneficial mutations that survive drift (but not necessarily
go to fixation), which has intensity µ dτ h(x)π(F, x) dx on R+ × R+.
We now develop a refined version of the Gerrish-Lenski heuristics for clonal interference
and adapt it to the context of our model. If, in the fitness background ≈ F , two contending
mutations (τ, x) and (τ ′, x′) appear at τ < τ ′ < τ + u(F, x), then the first one outcompetes
(‘kills’) the second one if x′ 6 x, and the second one kills the first one if x′ > x. Thus,
neglecting interactions of higher order, given that a contending mutation arrives at (τ, x)
in the fitness background ≈ F , the probability that it does not encounter a killer in its
past is

←−χ (F, x) := exp
(
−
∫ ∞
x
µπ(F, y)u(F, y)h(y) dy

)
, (4.33)

whereas the probability that it does not encounter a killer in its future is

−→χ (F, x) := exp
(
− u(F, x)

∫ ∞
x
µπ(F, x′)h(x′) dx′

)
. (4.34)

Using (4.32), ←−χ (F, x) is approximated by

←−
ψ (x) := exp

(
− µC logN

∫ ∞
x

h(y) dy
)
,

whereas −→χ (F, x) is approximated by

−→
ψ (x) := exp

(
− µ C logN

x

∫ ∞
x

x′ h(x′) dx′
)
. (4.35)

Notably, neither
←−
ψ nor

−→
ψ depend on F . Thus, setting ←→χ := ←−χ−→χ and analogously

←→
ψ :=

←−
ψ
−→
ψ , we obtain, as an analogue of (4.29), the expected (per-day) increase of F ,

given the current value of F , as

E[∆F | F] ≈ µ

∫ ∞
0
δ(F, x)π(F, x)←→χ (F, x)h(x) dx

≈ C µϕ2 log γ
F 2q+1

∫ ∞
0

x2←→ψ (x)h(x) dx = Γ
F 2q+1 , (4.36)

where
Γ := Cµϕ2 log(γ) I(µ) (4.37)

and I(µ) := E
[←→
ψ (X)X2

]
is the integral in (4.36) whose parameter µ still has to be

determined. Similarly as in the previous paragraph on deterministic beneficial effects, the
assumption of a suitable concentration of the random variable ∆F around its conditional
expectation allows us to take (4.36) into

Fbτ/Γc ≈ E
[
Fbτ/Γc

]
≈ f(τ)

102 4.3. Including clonal interference

with f as in (4.25) and we will refer to this approximation step as ‘moment closure’. The
composite parameter Γ can be estimated from the empirical data in the same way as
described at the end of Section 4.2.
In order to estimate µ and ϕ with the help of the observed mean fitness increment of the
first fixed beneficial mutation (in analogy with (4.27)), we derive, in our Poisson model,
the expectation of the scaled effect of the first among the contending mutations (in fitness
background F = 1) that is not killed. To this end, we consider a sequence of points
(Tj , Xj)j>1 in Π (the Poisson process of contending mutations) that is strictly monotonic
increasing in both coordinates and inductively defined as follows. (T1, X1) is the point in
Π with the smallest τ -coordinate, and given (Tj , Xj), (Tj+1, Xj+1) is the point in Π with

Tj+1 = min{τ : (τ, x) ∈ Π, τ > Tj , x > Xj}.

Again we say that (Tj+1, Xj+1) kills (Tj , Xj), if Tj+1 < Tj + u(Xj).27 Let

Z := min{j > 1 : Tj+1 > Tj + u(Xj)},

i.e. (TZ , XZ) is the earliest among the points (Tj , Xj), j = 1, 2, . . ., that is not killed. The
point (TZ , XZ) is thus called the (first) winner ; at time TZ , the relative fitness of the
population jumps from 1 to 1 + ϕXZ .
Our aim is to find the distribution of the x-coordinate of the winner,

P[XZ ∈ dx], x > 0. (4.38)

From elementary properties of Poisson processes we infer that, given (Tj , Xj), the waiting

time Wj+1 := Tj+1 − Tj is exponentially distributed with parameter µ
∞∫
Xj

π(y)h(y) dy .

Hence
P[Wj+1 > u(x) | Xj = x] = χ(x),

with χ(x) := −→χ (1, x) from (4.34). Moreover, given (Tj , Xj), the random variables Wj+1

and Xj+1 are independent, and Xj+1 has the conditional density

P[Xj+1 ∈ dx | Xj = y] = π(x)h(x) dx∫∞
y π(y′)h(y′) dy′ =: ρ(x | y) dx (4.39)

for x > y > 0. Consequently, the conditional probability that the j-th of the increasing
points is the winner, given that all the previous ones have been killed, is

P[Z = j | Z > j, Xj = y] = χ(y),

27As long as we assume F = 1, we suppress the first argument in the functions defined in (4.32) for
notational convenience.

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 103

whereas the conditional probability to proceed and see the next killer at dx is

P[Z > j + 1, Xj+1 ∈ dx | Z > j, Xj = y] = (1− χ(y)) ρ(x | y) dx .

With x0 := 0, this gives the formula for the joint distibution of X1, . . . , XZ and Z:

P[X1 ∈ dx1, . . . , X`−1 ∈ dx`−1, X` ∈ dx, Z = `]

=
`−1∏
j=1

ρ(xj | xj−1) (1− χ(xj)) dxj ρ(x | x`−1)χ(x) dx .
(4.40)

The density P[XZ ∈ dx, Z = `] arises by integrating (4.40) over x1, . . . , x`−1, under the
constraints 0 6 x1 6 · · · 6 x`−1 6 x. Using (4.39), we see from (4.40) that

P[XZ ∈ dx, Z 6 `] =
∑̀
k=1

P[XZ ∈ dx, Z = k] = π(x)χ`(x)h(x) dx . (4.41)

Here χ` may be read off the product formula (4.40), plays the role of an additional
reweighting factor, and coincides with (4.34) in the case ` = 1. Then, for the density of
XZ conditional on Z 6 `, we obtain

P[XZ ∈ dx | Z 6 `] = π(x)χ`(x)h(x) dx∫∞
0 π(x)χ`(x)h(x) dx, (4.42)

which should be very close to (4.38) for ` not too small.
Consequently, with the approximations (4.32) as well as (4.35), and ψ` taking the place of
χ` in the approximate analogue of (4.41),

E
[
δ(XZ) | Z 6 `

]
= ϕE

[
XZ | Z 6 `

]
≈ ϕ

E
[
ψ`(X)X2]

E
[
ψ`(X)X

] =: ϕ ζ`(µ). (4.43)

Note that, under the assumptions on X, ζ`(µ) (as an approximation of the expectation of
the first scaled beneficial effect that goes to fixation) is parametrised by µ (via ψ`) and
well defined for any µ, since 0 < ψ` 6 1.
Then, again for ` not too small, the left-hand side of (4.43) may be a good approximation for
the observed value of the mean fitness increment due to the first fixed beneficial mutation,
which we denote by d1. Indeed, (4.37) together with (4.43) renders the system of equations

µ I(µ)
(ζ`(µ))2 = Γ

C d2
1 log γ

, (4.44a)

ϕ = d1
ζ`(µ) (4.44b)

104 4.3. Including clonal interference

where µ, as the solution of (4.44a), determines ϕ via (4.44b). We will carry out this
program with ` = 3 for two special choices of h in the remainder of this section. Let us
anticipate that numerical evaluations show that the left-hand side of (4.44a) is monotone
increasing in µ on [0, 1] for both choices. For (4.44a) to have a solution, it is therefore
required that

d1 >

√
Γ

C log(γ) I(1) ζ3(1), (4.44c)

which will serve as a lower bound for the estimate d̂1.
The analysis so far allows to conclude that, as long as the above described approximation
may be relied on, the mean fitness curve observed in [97] can be described by any distribution
of fitness effects, provided the mutation probability is chosen according to (4.44a) (and
provided that (4.44a) has a solution). In particular, the epistasis parameter q is not affected
by the distribution of X.

Exponentially distributed beneficial effects. For definiteness, we now turn to ran-
dom beneficial effects whereX follows Exp(1), the exponential distribution with parameter 1.
This is the canonical choice since strongly-beneficial mutations appear to be exponentially
distributed; the experimental evidence is reviewed in [33], and it confirms theoretical
predictions (see [45], [75]). The distribution of slightly-beneficial mutations is less well
known, but these mutations contribute little to the adaptive process. Thus, by (4.44), we
have µ̂ = 0.11 and hence ϕ̂ = 0.069 for d̂1 = 0.20 ' 0.16 for this choice of the distribution
of X. Figure 4.7 shows the corresponding Cannings simulations, and Figure 4.8 displays
the simulations according to the heuristics. The agreement of the simulation mean with
the approximating power law is now nearly perfect. The fluctuations, however, are smaller
in the simulations than in the experiment. As argued in Section 4.2 in the context of
the first reality check, this may be explained by the constant parameters assumed by the
model, whereas parameters do vary across replicate populations in the experiment.
Let us also mention the degree of polymorphism observed in the Cannings simulations
of Figure 4.7. Counting a type as ‘present’ if its frequency is at least 20%, it turns out
that, on average, the population is monomorphic on 89.1% of the days; it contains two
types on 10.6% of the days, and three types on 0.3% of the days. Thus, in the finite
system, some polymorphism is present, but it is not abundant. Recall that our model
does not consider neutral mutations, and thus the low level of (fitness) polymorphism
observed in the simulations does not contradict the high level of genetic diversity observed
in experiments (see [89]).

Beneficial effects with a Pareto distribution. As argued already, the exponential
distribution seems to be the most realistic choice for beneficial mutation effects. The theory
developed above, however, holds for arbitrary probability distributions on the positive

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 105

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi

re
la
tiv

e
fit
ne
ss

time in days

Figure 4.7.: Simulations of the Cannings model with X following Exp(1) and parameters
ϕ̂ = 0.069, and mutation probability µ̂ = 0.11.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi

re
la
tiv

e
fit
ne
ss

time in days

Figure 4.8.: Simulations using Gerrish-Lenski heuristics with X following Exp(1) and
parameters as in Figure 4.7. Mean number of clonal interference events with
x′ 6 x: 7.9; mean number of clonal interference events with x′ > x: 7.8; mean
number of established beneficial mutations: 23.

half axis that have expectation 1 and a finite second moment. Furthermore, the analysis
of the heuristics indicates that the results are, in fact, independent of the distribution,
provided the compound parameter Γ is interpreted in the appropriate way. It is therefore

106 4.3. Including clonal interference

interesting to explore whether this conclusion may be verified by simulations. In order to
push our conjecture to the limits, we choose X distributed according to a (shifted) Pareto
distribution (see [35, Ch. II.4] or [88, Ex. 2.19]) with shape parameter λ as given by the
density

h(x) =


0, x < 0
λ
λ−1

(
λ−1

x+(λ−1)

)λ+1
, x > 0.

(4.45)

The parameter λ > 0 controls which of the moments of X exist. For 0 < λ 6 1, the
expectation is infinite; for 1 < λ < 2, the expectation is 1 but the second moment is
infinite; for 2 < λ 6 3, E[X] = 1 and E

[
X2] = 2(λ− 1)/(λ− 2) but the third moment is

infinite; and similarly for larger λ. We work with λ = 2.5 here; this implies that there is no
restriction in applying our analysis. Proceeding in analogy with the case of exponentially
distributed beneficial effects, we simulate both the Cannings model and the heuristics and
compare them with the approximating power law. The result is shown in Figure 4.9 and
Figure 4.10.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi

re
la
tiv

e
fit
ne
ss

time in days

Figure 4.9.: Simulations of the Cannings model with X following the (shifted) Pareto
distribution with density h of (4.45). Parameters: λ = 2.5, ϕ̂ = 0.020, and
µ̂ = 0.37.

As was to be expected, the mean is still well described by the approximating power law,
but the fluctuations are enhanced relative to the case of the exponential distribution (note
that now E

[
X2] = 6 in contrast to E

[
X2] = 2 in the case of Exp(1), and thus, by (4.44),

we have µ̂ = 0.37 and hence ϕ̂ = 0.020 for d̂1 = 0.12 ' 0.10). Compared to the experiment,
the fluctuations are unrealistically large; an effect distribution with high variance therefore
does not appear to be close to the truth.

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 107

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 1000 2000 3000 4000 5000 6000 7000 i

Fi

re
la
tiv

e
fit
ne
ss

time in days

Figure 4.10.: Simulations using Gerrish-Lenski heuristics with X following the (shifted)
Pareto distribution and parameters as in Figure 4.9. Mean number of clonal
interference events with x′ 6 x: 13; mean number of clonal interference events
with x′ > x: 9.1; mean number of established beneficial mutations: 21.

4.4. Simulation algorithms

Let us briefly describe the two algorithms we have used to simulate our model. Before
we come to the details, let us say a few words about notation and strategy. We will
throughout use the framework (4.32), which reduces to (4.11)–(4.13), (4.15) and (4.20) in
the case of deterministic beneficial effects, where X ≡ 1, that is, the distribution of X
is a point measure on 1. (But note that, in paragraph about Random beneficial effects,
we assume that X has a density; this implies that any two realisations of X are different
with probability 1, so that there is a clear ‘winner’ in the Gerrish-Lenski heuristics. The
analysis thereof therefore does not carry over to the deterministic case.) Curly symbols
indicate sets of values, whereas bold symbols indicate lists and •(k) their k-th element. By
slight abuse of notation, we denote by δ

(←−
δ
)
the increment of relative fitness (4.32a) for

the current (previous) mutation.

The Cannings model. Algorithm 6 performs an individual-based simulation of the
Cannings model with selection, as formulated in Section 4.2. Its iterations are based on real-
world days i. The algorithm keeps track of the sizes Nj of the classes (or subpopulations)
of individuals that have reproduction rate Rj , j > 1. As long as ntyp, the number of
different reproduction rates in the population, equals 1, the population is homogeneous,
so that the intraday growth and subsequent sampling do not change the current state. If
ntyp > 1, we use the fact that the clone size at time σ in a Yule process with branching

108 4.4. Simulation algorithms

rate Rj started by a single individual is 1 plus a random variable that follows Geo(e−Rjσ),
the geometric distribution28 with parameter e−Rjσ (cf. [34, Ch. XVII.3] or [26, Ch. 1.3.3]).
The size of the corresponding subpopulation at time σ is then Nj plus the sum of Nj
independent copies of the geometric random variable. This sum follows NB(Nj , e−Rjσ),
the negative binomial distribution with parameters Nj and e−Rjσ, cf. [34, Ch. VI.8] or
[88, pp. 168/169]. The only point where each individual must be treated separately is the
sampling step, where N = 5 · 106 new founder individuals are drawn without replacement
from the ≈ 5 ·108 descendants. After the sampling, the number of mutation events is drawn
from Poi(µ̂), the Poisson distribution with parameter µ̂ (line 13). The affected individuals
are then chosen uniformly without replacement from among the N new founders.

Algorithm 6: Simulating Lenski’s experiment (Cannings model)
Input :User chosen density law of X and parameters ιmax, q̂, µ̂, ϕ̂.

1 Initialise k = 0, σ = 1, ntyp = 1, nmut = 0, R = {1}, N = {N}.
2 while k < ιmax do

// Length of intraday growth time

3 Solve (4.6), i.e.
ntyp∑
j=1
NjeRjσ = γN , to obtain σ.

4 Set F (k) according to (4.8).
5 if ntyp > 1 then

// Intraday population growth
6 ndes ← 0.
7 for j = 1, . . . , ntyp do
8 Draw D ∼ NB(Nj , e−Rjσ) and set ndes ← ndes +Nj +D.

// Interday sampling
9 Draw sample {j1, . . . , jN} without replacement from {1, . . . , ndes} and set

N = {N1, . . . ,Nntyp} accordingly.
10 for j = 1, . . . , ntyp do
11 if Nj = 0 then
12 Remove type j and set ntyp ← ntyp − 1.

// Mutation
13 Draw nmut ∼ Poi(µ̂) and set ntyp ← ntyp + nmut.
14 if nmut > 0 then
15 Draw sample {i1, . . . , inmut} without replacement from {1, . . . , N}.
16 for j = 1, . . . , nmut do
17 Nij ← Nij − 1 and N ← N ∪ {1}.
18 Draw X and set R ← R∪ {Rij + δ(Rij , X)} acc. to (4.32a).
19 if Nij = 0 then
20 Remove type ij and set ntyp ← ntyp − 1.

21 k ← k + 1.
22 return F .

28Geo(p) is the distribution of the number of failed coin tosses before the first success (success prob. p).

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 109

The thinning heuristics. Algorithm 7 unifies the two versions of the thinning heuristics
of Section 4.3. We now only keep track of substitutions that effectively lead to an increase
of the relative fitness, and thus have a homogeneous population in every iteration k. The
number k counts the fixation events, and the vector ι holds the times at which they occur.
More precisely, mutations appear after waiting times ∆ι following Exp(µ̂) (approximating
the discrete Geo(µ̂)-distribution). For every such mutation, it is decided whether or not it
survives drift by drawing a Bernoulli random variable with success probability π according
to (4.32d) (line 13). If the mutation survives, it is queried whether it survives clonal
interference. We simulate this by first adding the increment

←−
δ due to a ‘first’ mutation

to the mean fitness, and then adding the additional increment δ −
←−
δ due to the ‘second’

mutation if it outcompetes the former. For the choice X ≡ 1, this means that the first out
of two competing mutations wins; the case of A fitter mutation appeared in line 7 can
never occur for deterministic increments.

Algorithm 7: Simulating Lenski’s experiment (thinning heuristics)
Input :User chosen law of X and parameters ιmax, q̂, µ̂, ϕ̂.

1 Initialise k = 0, ι = 0, δ =
←−
δ = 0, ι(0) = 0, F (0) = 1.

2 while not terminated, i.e. ι(k) + ι ≤ ιmax ∧ k ≤ kmax do
// Not within refractory period according to (4.32e), (4.32c), (4.32b)

3 if ι > log(N)/(
←−
δ σ(F (k))) then

// Beneficial mutant becomes fixed unrivalled
4 (ι(k+1),F (k+1))← (ι(k) + ι,F (k) + δ).
5 (ι, k,

←−
δ)← (0, k + 1, δ).

6 else
// A fitter mutation appeared

7 if δ >
←−
δ then

8 (ι(k+1),F (k+1))← (ι(k) + ι,F (k) + δ −
←−
δ).

9 (ι, k,
←−
δ)← (0, k + 1, δ).

// Occurence of a next mutant to become dominant
10 do
11 Draw X and set δ ← ϕ̂X (F (k))−q̂ according to (4.32a).
12 Draw ∆ι following Exp(µ̂) and set ι← ι+ ∆ι.
13 while S following Ber(C δ σ(F (k))) is unsuccessful according to (4.32d)
14 return (ι,F).

4.5. Discussion

We have, so far, postponed a detailed comparison with the model and the results in [97].
We now have everything at hand to do so.

Modelling aspects. Both the WRL model and ours lead to power laws, (4.2) and (4.25),
which are of the same form. But the modelling assumptions differ in relevant details, with

110 4.5. Discussion

Figure 4.11: Synchronous growth
model as used in [42],
with equally-sized
clones at the end of
the day (here, γ = 8);
compare Figure 4.1.

consequences for the interpretation of the parameters. Here and below we use a tilde to
distinguish the quantities belonging to the WRL model from our corresponding quantities.
The main difference is that in [97] the experiment is described with a discrete generation
scheme given by log2 γ (≈ 6.6) doublings during one daily growth phase, see Figure 4.11.
This neglects the variability that comes from a continuous-time intraday reproduction
mechanism, and affects the WRL analogue to our formula (4.15) for the probability to
survive drift. The latter is stated in (S1) of their Supplementary Text, reads

π̃ = π̃(s̃) = 4s̃, (4.46)

and relies on [42], Appendix 1. In line with the generation scheme of Figure 4.11, s̃ is the
selective advantage in each of the log2 γ generations per day. At the end of the day, the
population has increased from size N to size γN and consists of N clones, each of size γ. A
sampling of N individuals without replacement thus leads to a pair coalescence probability
of (γ − 1)/(γN), and hence to an offspring variance per day of

ṽ ∼ γ − 1
γ

; (4.47)

note the factor of 2 between ṽ and our v in (4.16), which comes from a size-biasing effect due
to the sampling from clones of random size. Since s̃ is related to one ‘doubling generation’,
the selective advantage per day is

s̃d ≈ s̃ log2 γ. (4.48)

Now, Haldane’s formula (4.17) related to the daily rhythm gives

π̃ ≈ s̃d
ṽd/2

,

and, with (4.46), this yields a per-day offspring variance ṽd ≈ log2 γ, which is significantly
different from ṽ in (4.47) for γ = 100. Thus, we see that the ansatz in [97] combined with
[42] leads to an ambiguously defined offspring variance per day.

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 111

Moreover, at the end of the Materials and Methods section in the Supplement of [97] the
difference between the new and the old relative fitness to the (per generation) selective
advantage of a mutant is related as follows:

wnew = w(1 + s̃) (4.49)

with s̃ from (4.46). Here
w = wi = log ã

log b̃
, (4.50)

with the growth factors ã = Yi(Ti)/Yi(0) and b̃ = Y0(Ti)/Y0(0) as in (4.1). They are
not explicit about an intraday growth model, so one should think of Yi(0), Y0(0), Yi(Ti)
and Y0(Ti) as the number of individuals at the beginning and the end of the competition
experiment. For a consistent definition of the selective advantage per day, it is inevitable
to use the growth factors anew and a related to one day; then, according to (4.14), one has

sd = anew − a
a

∼ log anew
a

. (4.51)

In principle, a may (and will) differ from the ã in the definition of w. At least in a
model with intraday exponential growth, however, the definition of w in (4.50) becomes
independent of Ti; we may (and will) therefore use the growth factors a = Yi(σi)/Yi(0) and
b = Y0(σi)/Y0(0) instead of ã and b̃ in (4.50). Then (4.50) implies

wnew
w

= 1
log a

(
log

(anew
a

)
+ log a

)
, (4.52)

which by (4.51) yields
wnew = w

(
1 + sd

log a
)
, (4.53)

or equivalently, using (4.50) again,

wnew − w = sd
log b . (4.54)

Under the assumption of an intraday exponential growth we have (as long as the populations
are nearly homogeneous):

a ≈ erσ, b ≈ eσ, w ≈ r, rσ ≈ log γ. (4.55)

Thus (4.54) translates into
sd ≈

1
r

(rnew − r) log γ, (4.56)

which also results from combining (4.12) and (4.13) and equating F and r. This shows
that the runtime effect discussed in Section 4.2 is already implicit in the definition (4.50)
of w as the ratio of logarithms of growth factors, as soon as one uses a model with intraday

112 4.5. Discussion

exponential growth. Let us emphasise again that this runtime effect is a consequence of
the design of Lenski’s experiment; it would be absent in a variant of the experiment in
which sampling occurs at a given fixed time before the onset of the starvation phase.
Furthermore, comparing (4.53) with (4.49) and using (4.55) gives

sd = s̃ log a ≈ s̃ log γ.

Comparing with (4.48), this shows that

sd = log γ
log2 γ

s̃d,

which points to a certain inconsistency inherent in s̃d.
Another issue worth to compare is the interpretation of diminishing returns epistasis, and
the corresponding translation between the exponent g in the WRL model and the exponent
q in ours. Formula (S1) in [97] says that the multiplicative effect on r has expected size
1/α; this corresponds to an additive effect on r of expected size δ := r/α. Thus, the ansatz
(4.11) translates into

1
α

= ϕ

rq+1 .

On the other hand, formula (S9) in [97] says that

α = c eg log r,

which implies that g = q + 1. The choice g = 1 in the WRL model (or equivalently, q = 0
in ours, cf. (4.2) and (4.25)) corresponds to additive increments on the Malthusian fitness
that do not depend on the current value of the latter, see (4.11). It is this case of constant
additive increments which may be appropriately addressed as the absence of epistasis.
More precisely, in continuous time (as considered here for the intraday dynamics), additive
fitness increments correspond to independent action of mutations and hence to absence
of epistasis (cf. [36], [21, pp. 48 and 74]); in discrete time, the same would be true of
multiplicative increments. Consequently, q = g − 1 can be seen as an exponent describing
the effect of epistasis. With this interpretation, a (slight) concavity of the mean fitness
curve is caused by the runtime effect (and hence by the design of the experiment) even
in the absence of epistasis. This fact, which is due to the runtime effect, is sometimes
overlooked when interpreting the mean fitness curve; see, for example, [48].
A substantial part of the derivations in [97] deals with incorporating the Gerrish-Lenski
heuristics for clonal interference into their model. The fact that they work with multiplica-
tive fitness increments and various approximations complicates the translation between
the time-scaling constant in their power law (S16) (that we subsume as β in (4.2)) and
our time-scaling constant Γ (see (4.25) and (4.37)). We refrain from pursuing the details
here; but let us emphasise that (4.32) together with the calibrations discussed in the

Chapter 4. Modelling and simulating Lenski’s long-term evolutionary experiment 113

surrounding paragraph applies to arbitrary random (additive) fitness effects with finite
second moments.

Analytic and simulation results. We have presented three lines of results. First,
rigorous results for the relative mean fitness in terms of a law of large numbers in the limit
N →∞ for deterministic beneficial effects in a regime of weak mutation and moderately
strong selection. Second, we have derived transparent analytic expressions for the expected
mean fitness in a finite-N system by means of heuristics of Gerrish-Lenski type and a
moment closure approximation (which is also used in [97]). The beneficial effects may be
either deterministic (and then require a specific thinning heuristics), or random with an
arbitrary density. In the latter case we have developed a refinement of the original Gerrish-
Lenski heuristics. Briefly stated, this refinement does not only consider the thinning factor
(4.34) coming from future interfering mutations, but also the thinning factor (4.33) coming
from past ones. This makes the heuristics consistent with its verbal description, which says
that ‘if two contending mutations appear within the time required to become dominant in
the population, then the fitter one wins’. A refinement that also includes thinning due to
past competitors was suggested in [41], but contains less detail; in particular, it does not
allow conclusions about the distribution of the effects of the ‘winning’ mutations.
For reasons of calibration, we have indeed established an approximate analytic expression
(4.43) for the expected scaled effect of the first beneficial mutation that goes to fixation.
This introduces a size bias into the distribution of beneficial effects (see (4.42)), similar to
the descriptions in [84] and [97] in the case of the exponential distribution.
As it turned out, the analytic expressions are robust. In particular, the estimate of q is
neither affected by clonal interference nor by the choice of the distribution. What changes
is the internal structure of the compound parameter Γ, but for any given estimate Γ̂,
the mutation probability and scaling of beneficial effects may be arranged appropriately
(provided X has second moments). The deviations from q = 0 are a signal of diminishing
returns epistasis; at this point, let us emphasise again that the approximating curve of the
mean relative fitness is (slightly) concave even for q = 0 (due to the runtime effect). By
any means, the pronounced concavity in the curve approximating the LTEE data (with
its estimated q̂ = 4.2) gives strong evidence for diminishing returns epistasis, in line with
the conclusions of previous investigations ([97], [48], [100]). We would like to emphasise,
however, that our goal here was not to find the ‘best’ (or even the ‘true’) increment function;
rather, the choice (4.11) was made for the sake of comparison with [97], while the GKWY
model in fact allows for arbitrary increment functions.
Our third line of investigations is a simulation study both of the Cannings model and the
approximating heuristics (the parameter combinations of the studys are summarised in
Table 4.1). Here it turned out that the heuristics approximates the Cannings model very
well (it might be improved even further by taking into account the refined heuristics in
[41] and [84]). This suggests that the discrepancy between the (mean of the) Cannings

114 4.5. Discussion

Law of X ιmax q̂
(
d̂1
)

µ̂ ϕ̂ Algorithm 6 Algorithm 7

≡ 1 7600 4.2 (0.14) 0.035 0.140 Figure 4.4
≡ 1 7600 4.2 (0.14) 0.079 0.140 Figure 4.5 Figure 4.6

Exp(1) 7600 4.2 (0.20) 0.106 0.069 Figure 4.7 Figure 4.8
shifted Pareto, 7600 4.2 (0.12) 0.373 0.020 Figure 4.9 Figure 4.10

λ = 2.5, cf. (4.45)

Table 4.1.: Summary of parameter estimates and corresponding simulation results. The
population size and the dilution factor have been fixed as N = 5 · 106 and
γ = 100 throughout.

simulations and the approximating power law is mainly due to moment closure. The
simulations show that this deviation is moderate for deterministic increments, minute
for exponential increments, and hard to quantify for Pareto increments due to the large
fluctuations.

Appendix A.

Constrained optimisation

This chapter gives a short recapulation about nonlinear constrained optimisation and a
very general solution algorithm for this kind of problems. It is to be considered as a basis
to embed the central optimisation problem of Section 3.2 and its numerical evaluation of
Section 3.6 in the context of constrained optimisation and to give the reader unfamiliar
with this theory a brief access to it.
In Section A.1 the basic theory about this problem class including its necessary and sufficient
conditions for identifying local optima for a given problem are summarised. Section A.2
describes the basic ideas of one of the very common general solution algorithms for nonlinear
constrained optimisation problems, which is used to estimate the recombination parameters
of the Moran model with recombination as discussed in Chapter 3.

A.1. Theory of constrained optimisation

In the unconstrained case of minimising a sufficient smooth function f : Rnx → R the
requirements x∗ has to fulfil to be a stationary point are zero slope on the one hand and
non-negative curvature in any direction at x∗ on the other hand. In the constrained case x∗

first of all has to be feasible with respect to some constraints which makes the requirements
a little more elaborate. This section provides the necessary nomenclature and theory in a
nutshell. More detailed instructions are available f.e. in [37], [43] and [73]. Concerning the
duality relation in nonlinear optimisation the reader is referred to [20].
From now on v ∈ Rd is considered as a column vector with i-th component vi. The gradient
and Hession of f : Rd → R shall be denoted by ∇f ∈ Rd and ∇2f ∈ Rd×d; consequently
the Jacobian of c : Rd → Rm by ∇c ∈ Rm×d with i-th row containing (∇ci)T .
A (constrained) nonlinear optimisation problem (NLP) is generally formulated as

min
x∈Rnx

f(x) (A.1a)

s.t. ci(x) = 0, i ∈ E , (A.1b)

ci(x) > 0, i ∈ I , (A.1c)

115

116 A.1. Theory of constrained optimisation

where the objective f : Rnx → R and constraints ci : Rnx → R are sufficiently smooth.29

Let E and I be the finite and disjoint indexsets for equality and inequality constraints,
respectively, and thus the vectors of equalities and inequalities can be denoted as

cE : Rnx → RnE , with cE(x) = 0, nE = |E |, and (A.2a)

cI : Rnx → RnR , with cI (x) > 0, nI = |I |. (A.2b)

Any point x satisfying (A.2) is called feasible,

F = {x ∈ Rnx | cE(x) = 0, cI (x) > 0} (A.3)

is referred to as the feasible region or feasible set of (A.1), and a (local) solution thereof is
denoted by x∗.
Another indexset relevant and associated to a NLP, that depends on a feasible point, is
the active set

A(x) = E ∪ {i ∈ I | ci(x) = 0}. (A.4)

Beyond playing a central role in characterising and identifying local solutions, the active set
poses as the eponym of one of the chosen subsolvers at the end of Section A.2. Figure A.1
illustrates a NLP and the corresponding, recently introduced (index) sets.

Figure A.1: Showcase for a con-
strained nonlinear opti-
misation problem with
interior F◦ (blue), ∂F
(black), constraints c1,
c2, c3 (dotted lines) and
level curves of f (grey
lines). I = {1, 2, 3},
E = ∅, A(x′) = {2} and
A(x∗) = {3}. ∇c2(x′)
is normal to the contour
c2 = 0 with direction on
the feasible side, since
x′ ∈ c−1

2 (0) and 2 ∈ I .

c 1
(x

)

c2(x)

c3(x)

F x′

∇c
2(
x
′)

∇f(x ′)

x∗

Lagrangian duality in mathematical optimisation. Informally, the basic concept of
constrained optimisation is to subsume the NLP in standard form (A.1) into one function

29This problem class is sometimes denoted additionally as continuous to be more specific and to distinguish
it from discrete optimisation, where x is drawn from a finite set and from the mixed type class called
(mixed) integer programming, which allows some components of x to take only integer values. The
continuous class is considered here because the rest is beyond the scope of application for this thesis.

Appendix A. Constrained optimisation 117

that augments the objective with a weighted sum of the constraints and seek a stationary
point of this auxiliary function.

Definition 4 (Lagrangian function). Let λE = (λi)i∈E ∈ RnE and λI = (λi)i∈I ∈ RnI be
the vectors of so-called Lagrange multipliers (or dual variables or dual multipliers) for
equality and inequality constraints. The function Λ : Rnx × RnE × RnI → R given by

Λ(x, λE , λI) = f(x)−
∑
i∈E

λici(x)−
∑
i∈I

λici(x) (A.5)

is then called the Lagrangian Function of (A.1) with domain F× RnE × RnI .

The terminology of dual variables or multipliers in Definition 4 comes from the duality
principle in mathematical optimisation that allows to view the optimisation problem from
two perspectives via the Lagrangian function. Namely, defining the Lagrange dual function
q(λE , λI) = infx Λ(x, λE , λI) it obviously yields a lower bound of f(x∗) for all λI > 0,
albeit very meaningless when q(λE , λI) = −∞. Nevertheless q provides a parametrisation
of lower bounds of the original problem that may be asked to be optimised by

max
λE ,λI

q(λE , λI) s.t. λI > 0. (A.6)

This is called the dual problem in dual variables to the primal problem in (A.1) with primal
variables x.30 The difference f(x∗)− q(λ∗E , λ∗I) is called the duality gap and strong (weak)
duality holds if the duality gap is (not) equal to zero. For a detailed study about duality
in optimisation, and especially its application in the convex case, the interested reader is
referred to [20].

Optimality conditions. We give a summary of optimality conditions for a solution of
(A.1). These conditions rely essentially on first- and second-order Taylor expansions of f
and the constraints about some feasible point x ∈ F, and answer the question if a feasible
descent direction exists in x with respect to this approximation.

Definition 5 (Linearised feasible directions). Given a feasible point x ∈ F and its associated
active set A(x) of (A.1). Then D(x) = {d ∈ Rnx | dT∇ci(x) = 0 ∀ i ∈ E , dT∇ci(x) >
0 ∀ i ∈ I ∩A(x)} is called the set of linearised feasible directions.

Definition 6 (Linear independence constraint qualification (LICQ)). Given a feasible
point x ∈ F and its associated active set A(x) of (A.1) the linear independence constraint
qualification (LICQ) holds if the set of active constraint gradients {∇ci(x), i ∈ A(x)} is
linear independent.

The feasible set is a geometric object represented by (A.1b) and (A.1c). It can be shown
that the tangent cone in x ∈ F, which is a geometric object as well, is a subset of D(x), where
30Using the Lagrangian function is not the only way of establishing a dual problem in mathematical

optimisation, but the only one considered in this thesis.

118 A.1. Theory of constrained optimisation

the two objects coincide if the LICQ is fulfilled. So the LICQ add additional regularity to
the constraints for the local characterisation of F in x. Trivially but worth to be mentioned
is the fact that under the LICQ no active constraint gradient is zero.31

Theorem 3 (Karush-Kuhn-Tucker conditions). Let x∗ ∈ Rnx be a local solution of (A.1)
and let f and ci be continuously differentiable for all i ∈ E ∪ I . In addition, assume that
the LICQ holds at x∗. Then, there exist vectors λ∗E ∈ RnE and λ∗I ∈ RnI such that the
following conditions

cE(x∗) = 0, (A.7a)

cI (x∗) > 0, (A.7b)

∇f(x∗)−
∑
i∈E

λ∗i∇ci(x∗)−
∑

i∈I∩A(x∗)
λ∗i∇ci(x∗) = 0, (A.7c)

λ∗I > 0, (A.7d)

λ∗i ci(x∗) = 0, i ∈ E ∪ I , (A.7e)

are satisfied. (x∗, λ∗E , λ∗I) is called a stationary point (or KKT point) of problem (A.1).

As a short survey of possibilities to interpret the conditions: (A.7a) together with (A.7b)
ensure the primal feasibility, i.e. x∗ is a feasible point of the primal problem. Traditionally,
(A.7c) is also called stationarity condition, since it claims ∇xΛ(x∗, λ∗E , λ∗I) = 0. Together
with (A.7d) these two conditions ask the dual feasibility, i.e. (λ∗E , λ∗I) to be a feasible point
of the dual problem. Moreover, due to (A.7e) by itself, f(x∗) = Λ(x∗, λ∗E , λ∗I) holds.
So far Theorem 3 yields necessary conditions for a KKT point that take into account first
derivative informations and describe the relation between them. Yet they are not sufficient
to decide whether a direction w ∈ D(x∗) will increase or decrease the objective function.
This can be improved by taking informations of second-order terms of the Taylor series
expansions of f and ci into account together with a relevant subcone of D, that is given by

∇ci(x∗)Tw = 0, i ∈ E , (A.8a)

∇ci(x∗)Tw = 0, i ∈ I ∩A(x∗) with λ∗i > 0, (A.8b)

∇ci(x∗)Tw > 0, i ∈ I ∩A(x∗) with λ∗i = 0, (A.8c)

and often referred to as the critical cone at a KKT point.

Theorem 4 (Second-order necessary conditions). Let the assumptions of Theorem 3 hold
and (x∗, λ∗E , λ∗I) be the resulting KKT point, then

wT∇2
xxΛ(x∗, λ∗E , λ∗I)w > 0 (A.9)

holds for all w in the critical cone.
31The LICQ is not the only constraint qualification proposed in the literature. They all have in common

to maintain the similarity of the tangent cone and the set of linearised feasible directions.

Appendix A. Constrained optimisation 119

The corresponding sufficient second-order conditions ensuring that a x∗ is local solution of
the primal problem, then, look very similiar to Theorem 4 and can even neglect the LICQ.
Fulfilling (A.9) strictly identifies even a strict local solution.

Theorem 5 (Second-order sufficient conditions). Let (x∗, λ∗E , λ∗I) be a KKT point by the
means of Theorem 3 with

wT∇2
xxΛ(x∗, λ∗E , λ∗I)w > 0 (A.10)

for all w 6= 0 in the corresponding critical cone, then x∗ is a strict local solution of (A.1).

A.2. Numerical algorithm for constrained optimisation

Global solutions are usually very hard to identify, except from some special cases where
local solution are global, like f.e. convex problems. Therefore, most solution algorithm are
designed to find a local minimum of a NLP. This section introduces some of the concepts
to construct algorithms that are able find a local solution of (A.1) iteratively, i.e. by
generating a sequence {x(k)} of estimates of x∗ converging to it. It follows the way of [15],
supplemented by [73], to establish a foundation to understand the basic concepts, obstacles,
and functionality of a sequential quadratic programming algorithm (SQP) that is stated at
the end of this section and used in Chapter 3. For a more detailed insight on the interplay
of the building blocks see also [82]. A more elaborated explanation and description of
the broad class of SQP algorithms is surveyed in [44] and for even alternative algorithmic
approaches like Interior Point Methods the reader is again referred to [73].

Newton method for equality constrained optimisation. At first, consider the case
when only equality constraints are involved, i.e. I = ∅. Then, the NLP and its necessary
and sufficient KKT conditions at a local solution read

min
x∈Rnx

f(x) s.t. cE(x) = 0, (A.11a)

∇xΛ(x∗, λ∗E) = ∇f(x∗)− (∇cE(x∗))Tλ∗E = 0, cE(x∗) = 0, (A.11b)

pT∇2
xxΛ(x∗, λ∗E)p > 0 ∀ p 6= 0, (∇cE(x∗))T p = 0. (A.11c)

The principle strategy to calculate a solution of (A.11a) consists of solving the nonlinear
system (A.11b) under the assumption (A.11c) and LICQ, at which the latter means∇cE(x∗)
having full row rank. Therefore a strategy based on Newton’s method is pursued that
takes generations of Newton steps from the linear system∇2

xxΛ
(k) (C(k)

E)T

C
(k)
E 0

(px

−pλE

)
= −

∇f (k) − (C(k)
E)Tλ(k)

E
c

(k)
E

 (A.12)

120 A.2. Numerical algorithm for constrained optimisation

with ∇2
xxΛ

(k) = ∇2
xxΛ(x(k), λ

(k)
E), C(k)

E = ∇cE(x(k)), ∇f (k) = ∇f(x(k)) and c(k)
E = cE(x(k)).

By using λ(k+1)
E = λ

(k)
E + pλE = λQP this linear system is equivalent to∇2

xxΛ
(k) (C(k)

E)T

C
(k)
E 0

(px

−λQP

)
= −

(
∇f (k)

c
(k)
E

)
, (A.13)

which, in turn, constitutes the necessary KKT conditions of a quadratic programming
problem (QP)

min
p∈Rnx

1
2 pT∇2

xxΛ
(k)p+ pT∇f (k) s.t. C

(k)
E p+ c

(k)
E = 0. (A.14)

The matrix in (A.13) is called Karush-Kuhn-Tucker matrix (KKT matrix), consequently.

Algorithm 8: Basic Newton method for equality constrained NLP
Input :User provided starting point (x(0), λ

(0)
E) for problem (A.11a).

1 Set iteration counter k = 0.
2 Evaluate ∇2

xxΛ
(0), C(0)

E , ∇f(0), and c(0)
E at (x(0), λ

(0)
E).

3 while ‖p(k)
x ‖, ‖p(k)

λE
‖ < ε1, ‖∇xΛ(x(k), λ

(k)
E)‖ < ε2 does not hold do

4 if KKT matrix is singular then
5 Stop.
6 Solve (A.13) to obtain px and λQP.
7 Set x(k+1) = x(k) + px and λ(k+1)

E = λQP.
8 Evaluate ∇2

xxΛ
(k+1), C(k+1)

E , ∇f (k+1), and c(k+1)
E at (x(k+1), λ

(k+1)
E).

9 Increase iteration counter k ← k + 1.

10 return optimal solution (x(k), λ
(k)
E).

Theorem 6. Algorithm 8 converges quadratically in a neighbourhood of (x∗, λ∗E) satisfying
(A.11c) and the LICQ, if ∇2f(x) and ∇2cE(x) are Lipschitz continuous therein.

The proof of Theorem 6 follows the proof of Newton’s method for unconstrained optimisation
but relies additionally on the nonsingularity of the KKT matrix. Thus this property has to
be guaranteed in line 4 for the algorithm to succeed. The following theorem for general QPs
with Hessian matrix G and constraint matrix C provides direct conditions under which a
unique solution (x∗, λ∗E) of its KKT system exists with x∗ being the global optimum.

Theorem 7. Let C ∈ Rm×n have full row rank and let Z denote the n × (n −m) null
space matrix of C, i.e. CZ = 0. Assume that the reduced-Hessian matrix ZTGZ is positive
definit. Then the following statements hold.

1. The corresponding KKT matrix is nonsingular.

2. There exists a unique vector that satisfies the KKT system and is global solution of
the corresponding QP.

Appendix A. Constrained optimisation 121

The nonsingular KKT system may be solved by any direct (factoring, Schur complement,
null-space) or iterative (CG and its derivatives) method from numerical linear algebra. For
a discussion of theirs (dis-)advantages as well as a proof of Theorem 7 see [73].

Globalisation through step acceptance by the use of a filter concept. Algorithms
solving NLPs generate steps from one iterate x(k) to the next x(k+1) usually either through
a line search or trust region approach. In either globalisation strategy first a direction
is computed with the help of a model problem and the subsequent determination of a
trial step x(+) = x(k) + αpx is provided with another degree of freedom by the step size
α ∈ (0, 1]. Thus trial points may be infeasible but nevertheless shall make significant
algorithmic progress and, by that, be a good intermediate step on the way to the solution
x∗, especially in the case when the current iterate is not sufficiently close to the solution.
So being in a current primal point x(k) a globalisation strategy has to consider the two
(often competing) goals of

• reducing of the objective function and

• satisfying the constraints

of the original NLP. The two central approaches are merit functions on the one hand
and filter methods on the other hand. Both will accept a step size α only if the balance
between these goals is preserved. Merit functions φ(x, µ) take the objective of (A.11a) or
its Lagrangian function, add a weighted (by µ) penalisation of the constraints violation,
and determine the step length in direction p such that a sufficient decrease of the merit
function is reached.
Since in this thesis a SQP filter line search approach is used, now a more elaborate
description of the latter is given. In contrast to merit functions a filter keeps the two
above-mentioned goals separate. If we define a measure of constraints violation like

c̃(x) = ‖cE(x)‖, (A.15)

the filter concept is described by Definition 7 and illustrated in Figure A.2, cf. [73].

Definition 7 (Acceptance and domination of filter pairs).

1. A pair (f (k), c̃(k)) is said to dominate another pair (f (j), c̃(j)) if both f (k) 6 f (j) and
c̃(k) 6 c̃(j).

2. A filter is a list of pairs (f (j), c̃(j)) such that no pair dominates any other.

3. An iterate x(k) is said to be acceptable by the filter if (f (k), c̃(k)) is not dominated by
any pair in the filter.

122 A.2. Numerical algorithm for constrained optimisation

A backtracking filter line search algorithm accepts a trial step

x(+) = x(k) + α(k,l)px (A.16)

as a new iterate x(k+1) := x(+) if the pair (f (+), c̃(+)) := (f(x(+)), c̃(x(+))) is not dominated
by a pair (f (j), c̃(j)) that is already an element of the filter because of a previous iterate
x(j). Consequently, the pair (f (+), c̃(+)) is added to the filter and all dominated pairs
are removed. Otherwise a subsequent backtracking line search is executed to reduce the
stepsize α(k,l), l = 0, 1, . . ., with liml α

(k,l) = 0 until an acceptable trial point is found.
This approach is enhanced by several techniques to ensure global convergence and good
performance. They are traced in the following leading to Algorithm 9. See [91] and [92]
for an exhaustive consideration and especially [82] for the description of an initialisation
strategy (cf. line 1 in Algorithm 9), which is omitted here.

Sufficient reduction. First, the criterion of acceptance in Definition 7 is tightened,
whereby it is avoided to accept points x(+) whose associated pair (f (+), c̃(+)) is too close
to the dominated region of the current filter with emphasis on the constraints violation.
So based on the current iterate x(k) and its pair (f (k), c̃(k)) a derived trial point x(+) is
accepted if its pair is outside the dominated region and a sufficient improvement based on
a small fraction of the current infeasibility c̃(k) is achieved, i.e.

f (+) 6 f (k) − γf c̃(k) or c̃(+) 6 (1− γc̃)c̃(k) (A.17)

for γf , γc̃ ∈ (0, 1) and typically small. In particular for almost feasible points x(k) sufficient
reduction of the objective is required. This is enforced by a f -type switching condition

pTx

(
∇xf (k)

)
< 0 and α(k,l)

[
− pTx

(
∇xf (k)

)]κf
> κδ

[
c̃(k)

]κc̃
(A.18)

with constants κδ > 0, κc̃ > 1, κf > 2κc̃ . Eq. (A.18) holds for a descent direction px with
respect to f that provides sufficient progress for the objective function compared to the
constraints violation for a step size α(k,l) fulfilling the Armijo condition

f (+) 6 f (k) + καα
(k,l)pTx (∇xf (k)) (A.19)

for a κα ∈ (0, 0.5).

Feasibility restoration phase. Unfortunately, it is not always guaranteed, to find a
step size desired by the above criteria. Then a feature called feasiblity restoration phase is
applied whose purpose is to find a new iterate x(k+1) = x(+,frp) that is acceptable for the
current filter and satisfies (A.18). Any iterative algorithm that tries to find a less infeasible
point can be used, f.e. by minimising c̃ without considering the objective at all. Rose [82]
suggests an approach that determines (x(+,frp), λ(+,frp)) with the additional property of

Appendix A. Constrained optimisation 123

c̃(x)

f(x)

(f (l1), c̃(l1))

(f (l2), c̃(l2))

(f (l3), c̃(l3))

(f (l4), c̃(l4))

Figure A.2.: An illustration of the filter concept. The filter contains the pairs (f (li), c̃(li)),
i = 1, 2, 3, 4 and the dominated area with respect to Definition 7 is highlighted
in grey, i.e. right and above the (including) border determined by the filter
pairs. When using the tighter criterion (A.18) the arising border is indicated
by the dotted line.

being not to far away from (x(k), λ
(k)
E). To detect this situation the linear approximations

f (+) ≈ f (k) + αpTx (∇xf (k)) and c̃(+) ≈ c̃(k) − αc̃(k)

applied to (A.17) together with (A.18) yield a lower bound

α
(k)
min = γα


min

{
κc̃ ,

γf c̃
(k)

−pTx (∇xf (k)) ,
κδ[c̃(k)]κc̃

[−pTx (∇xf (k))]κf

}
, pTx (∇xf (k)) < 0

κc̃ , otherwise
(A.20)

for α(k,l) with γα ∈ (0, 1].

Second order correction. The filter approach can suffer from the Maratos effect, i.e. a
full Newton step α(k) = 1 increases both f and c̃, which is even unfavourable close to a local
solution of (A.11a) and leading to much poorer convergence performance than expectable
by a Newton method; cf. Figure A.3 for an illustration. The second order correction (soc)
approach tries to overcome this behaviour by determining another Newton search direction
psoc
x for the constraints evaluated at the point x(k) + px and check the conditions (A.17) or

(A.18), respectively, for the soc-trial point x(+,soc) = x+ px + psoc
x whenever the full step

px is not accepted. Its algorithmic filter acceptance criteria are similar to those of x(+)

in (A.17), (A.18) and (A.19). The details are expounded in [91] but omitted here and in
Algorithm 9.

124 A.2. Numerical algorithm for constrained optimisation

x(k)

x∗

c(x)

f -levels

x(k)

x∗

p
x

psoc
x

Figure A.3.: Idea of second order correction. In this situation, the current QP approximat-
ing the NLP at the (already) feasible point x(k) determines the direction px.
A step of size α(k,0) = 1 along px would lead to a point, which violates the
constraints again and even increases the objective. However, a subsequent
step along psoc

x remedies the problem.

Description Symbol Range Default
Filter margin f γf (0, 1) 10−5

Filter margin c̃ γc̃ (0, 1) 10−5

Switching condition factor κδ > 0 1
Switching condition factor κc̃ > 1 1.1
Switching condition factor κf > κc̃ 2.3

Armijo factor κα (0, 0.5) 10−4

Safty guard for αmin γα (0, 1] 1

Backtracking factor κb (0, 1) 0.5

Table A.1.: Algorithmic constants of a filter line-search SQP algorithm; defaults from [82].

Appendix A. Constrained optimisation 125

Algorithm 9: Filter line-search SQP algorithm
Input : Initial point x̄(0), vector of algorithmic constants κ (see Table A.1).

1 Use an initialisation strategy for the filter and to obtain (x(0), λ
(0)
E) from x̄(0).

2 Set outer iteration counter k = 0.
3 Evaluate NLP data ∇2

xxΛ
(0), C(0)

E , and ∇f (0), c(0)
E at (x(0), λ

(0)
E).

4 while NLP termination criterion (A.11b) does not hold do
// Determination of step direction.

5 Solve QP(k) (A.13) to obtain px and λQP.
6 if QP(k) is ill-conditioned or singular then
7 Go to feasibility restoration phase, line 29.

// Backtracking line search.
8 Set α(k,0) = 1 and l← 0.
9 if α(k,l) < α

(k)
min w.r.t. (A.20) holds then

10 Go to feasibility restoration phase, line 29.
11 Set x(+) = x(k) + α(k,l)px.
12 if (f (+), c̃(+)) is dominated by the current filter then
13 Reject α(k,l) and go to line 21.
14 if f -type switching condition (A.18) and Armijo condition (A.19) holds then
15 Accept α(k) ← α(k,l), the filter remains unaffected and go to line 24.
16 else if (A.18) fails but sufficient reduction w.r.t. (A.17) is achieved then
17 Accept α(k) ← α(k,l) and augment the filter with (f (k)− γf c̃(k), (1− γc̃)c̃(k)).
18 Go to line 24.
19 else
20 Go to line 21.

// Second order correction.
21 if l = 0 and a subsequent second order correction is successful then
22 Accept px ← px + psoc

x , α(k) = α(k,0) and go to line 24.
// Update stepsize.

23 Update α(k,l) ← κbα
(k,l), l← l + 1 and go to line 9.

// Update KKT point iterate and NLP data.

24 Make step x(k+1) ← x(k) + α(k)px and λ(k+1)
E ← (1− α(k))λ(k)

E + α(k)λQP.
25 Evaluate ∇2

xxΛ
(k+1), C(k+1)

E , and ∇f (k+1), c(k+1)
E at (x(k+1), λ

(k+1)
E).

26 Evaluate the KKT error at (x(k+1), λ
(k+1)
E) by the means of (A.11b).

27 Increase iteration counter k ← k + 1.

28 return optimal solution (x(k), λ
(k)
E).

// Feasibility restoration phase
29 Obtain a new iterate x(+,frp) that is acceptable by the current filter.
30 Augment the filter with (f (k) − γf c̃(k), (1− γc̃)c̃(k)).
31 Set x(k+1) ← x(+,frp), λ(k+1)

E ← λ(+,frp) and go to line 26.

126 A.2. Numerical algorithm for constrained optimisation

Sequential quadratic programming for general NLP. Closing this overview, Al-
gorithm 9 is extended to solve nonlinear optimisation problems that may also include
inequality constraints and thus are of the form (A.1). Considering the QP (A.14) as a
(local) quadratic model with first order approximation of the (equality) constraints, in the
general case the inequality constraints are linearised the same way leading to the more
general QP

min
p∈Rnx

1
2 pT∇2

xxΛ
(k)p + pT∇f (k) (A.21a)

s.t. C
(k)
E p + c

(k)
E = 0, (A.21b)

C
(k)
I p + c

(k)
I > 0, (A.21c)

corresponding to (A.1) and (A.5) in x(k) with C
(k)
I = ∇cI (x(k)) and c

(k)
I = cI (x(k)).

∇2
xxΛ

(k) is even allowed to be replaced by a symmetric matrix approximation. Then, in
Algorithm 9, the following slight adjustments have to be implemented.

• The calculation of a search direction in line 5 is replaced by solving (A.21) requiring all
associated NLP data evaluations beforehand at the KKT point iterate (x(k), λ

(k)
E , λ

(k)
I).

Since in a neighborhood of the NLP solution x∗ the active sets A(x(k)) of consecutive
iterates are almost the same an elastic active-set method with the possibility to be
warm started appear to be highly applicable as it is suggested in [82].

• The feasiblity restauration phase has to capture the inequality constraints as well.

• The constraints violation c̃(x) = ‖(cE(x)T , (min{c(k)
i , 0})Ti∈I)‖∞ is augmented.

• The termination criterion has to be replaced by (A.7a) (A.7b) (A.7c), verified by

c̃(k) < εprim and ‖∇xΛ(x(k), λ
(k)
E , λ

(k)
I)‖∞ < εdual (A.22)

for some so-called primal and dual feasibility tolerances εprim and εdual. The conditions
(A.7d) and (A.7e) are provided by the active set method by returning px = 0 and
suitable λ∗ = λQP at a stationary point x∗ of (A.1).

The corresponding theorems ensuring local and global convergence properties of line search
filter methods for nonlinear programming outlined in this chapter are stated in the likewise
entitled publications [91] and [92].

Appendix B.

Multiple shooting approach for
parameter estimation problems

Section B.1 and Section B.2 follow the general description of parameter estimation problems
and multiple shooting by H. G. Bock, who proposed a boundary value problem approach
for parameter estimation problems based on multiple shooting (see [18] and [19]).

B.1. Parameter estimation problem

For the purpose of this thesis a parameter estimation problem is characterised by a system
of ODEs for a state variable u(t) that addtionally depends on a parameter vector p

u̇ = f(t, u, p). (B.1)

At timepoints t0 6 t1 < . . . < to 6 tf within a finite interval I = [t0, tf] measurements or
observations for functions of the states u shall be denoted by

ηij = gij(u(tj), p) + εij , (B.2)

where εij capture commonly unavoidable measurement/observation errors. Given a (to be)
specified optimality criterion, the inverse problem consists of the task to determine the
unknown parameter p, such that the model, that is related to this vector, captures the
observed data η best. One of the most common quality criterion is the weighted l2-norm:
assuming the errors to be component-wise and independent of time N(0, σij) distributed,
the objective function of the inverse problem is given by

l2(u, p) =
o∑
i=1

∑
j

(
gij(u(ti), p)− ηij

σij

)2
=

o∑
i=1
‖εij‖2Σ−1

i
(B.3)

with Σ−1
i = diag((σ−2

ij)j).32 For the purpose of simplifying the readability consider the
summands in (B.3) as components of a residual vector r̃ ∈ Rnr , where nr is the number of
all measurements, the parameter estimation problem may be formalised in the following
32See also [73, Chap. 10] for a short discussion of l2 and other norms in this context.

127

128 B.2. Multiple shooting approach

canonical manner

min
u,p

l2(u, p) = min
u,p
‖r̃(u(t1), . . . , u(to), p)‖2 (B.4a)

s.t. u̇− f(t, u, p) = 0, (B.4b)

c̃E(u(t1), . . . , u(to), p) = 0, (B.4c)

c̃I (u(t1), . . . , u(to), p) > 0. (B.4d)

Problems of the form (B.4) can be interpreted as a (constraint) multipoint boundary value
problems (MPBVP) and appear in a large domain of mathematical modelling (see e.g. the
reference list given in [19, Sec. 7]).

B.2. Multiple shooting approach

Problem (B.4) is an infinite dimensional nonlinear optimisation problem. One possibility
to reformulate it as a finite dimensional problem is the so-called direct multiple shooting
approach. This section recapitulates its idea of how to discretise and parametrise the states
u(t) and thus convert (B.4) into a finite-dimensional NLP of the form (A.1).
Consider a covering grid [τ1, τnτ] = [t0, tf] such that

τ1 < . . . < τnτ , ∆j = τj+1 − τj , j = 1, . . . , nτ − 1, (B.5)

and use j(i) = arg min
j:τj6tj

ti − τj in the following for the ease of notation. Then, introduce a

vector v = (vT1 , . . . , vTnτ)T of nτ additional local vector-valued variables for every subinterval
Ij = [τj , τj+1]. Now, the extended vector of variables x = (vT , pT)T ∈ Rnτnd+np makes it
possible to compute the solutions of independent, local initial value problems

u̇ = f(t, u, p), t ∈ Ij ,
u(τj) = vj

(B.6)

for 1 6 j < nτ and ‘connect’ them to a (discontinuous) parametrisation of u(t), t ∈ I.
Then, the local solution evaluated at the observation timepoints ti ∈ [τj(i), τj(i)+1)

u(ti; vj(i), p), (B.7)

are formally inserted in (B.4a), (B.4c), and (B.4d), which leads to

r(x) := r(u(t1; vj(1), p), . . . , u(to; vj(o), p)), (B.8a)

cE(x) :=

 (
u(τj+1; vj , p)− vj+1

)
j=1,...,nτ−1

c̃E(u(t1; vj(1), p), . . . , u(to; vj(o), p))

 , (B.8b)

cI (x) := c̃I (u(t1; vj(1), p), . . . , u(to; vj(o), p)). (B.8c)

Appendix B. Multiple shooting approach for parameter estimation problems 129

τ1 τj τj+1 τj+2 τnτ· · · · · ·

vj

u(τj+1; vj , p)

vj+1

t0 t1 ti−1 ti ti+1 ti+2 ti+3 to tf· · · · · ·

gi(u(τj+1; vj , p), p)

ηi

Figure B.1.: Schematic illustration of the multiple shooting approach. The red distance
indicates the continuity gap (B.8b), that has to be closed (up to some tol-
erance); the blue line indicates the residual component of the objective at
corresponding measurement times ti ∈ {t1, . . . , to} that has to be minimized.

Thereby the ODE constraint (B.4b) is exchanged for the additional equality constraints
in (B.8b) in every interval end to maintain continuity of the trajectory; and thereby
equivalence to (B.4). Figure B.1 illustrates the presented approach.
At the end, a constrained finite-dimensional parameter estimation problem is derived

min
x
‖r(x)‖2 s.t. cE(x) = 0, cI (x) > 0, (B.9)

that is of the form (A.1). Due to the special objective function it may be denoted as a
constrained discretised parameter least squares boundary value problem. This approach may
be extended to a more complex class of so called optimal control problems, which has a
wide field of application nowadays in controlling machines, robots or networks. In this case
the objective as well as the constraints in (B.4) may additionally depend on independent
control variables from an infinite-dimensional function space. In the multiple-shooting
approach they are replaced on a covering grid of [t0, tf], which itself should be a superset
of {τ1, . . . , τnτ }, by basis functions (f.e. piecewise polynomial). Then, the finite set of basis
function parameters become NLP variables as well.
Finally, it is worth mentioning, that an infeasible-step solution algorithm (like SQP in
Appendix A) is a reasonable choice for computing a solution of (B.8), since especially
the continuity constraint is only fulfilled close to a local solution (up to some tolerances)

130 B.2. Multiple shooting approach

and there is a conflict of aims to handle between reducing the objective and reducing the
infeasibility, see Figure B.1. On the one hand the residual components ηi−gi(u(τj+1; vj , p), p)
(blue) have to minimised and, on the other hand, the gaps between the endpoints of the
local trajectories u(τj + 1; vj , p) and the inital values vj+1 of the next interval have to be
closed.

Appendix C.

Supplemental figures for Numerical
results in Section 3.6

C.1. Results of experiments regarding different test cases

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101
102

0
20
40

10
|u
ni
f|1

03

10
|u
ni
f|1

04

10
|u
ni
f|1

05

10
|tr

ia
n|

10
3

10
|tr

ia
n|

10
4

10
|tr

ia
n|

10
5

10
|rg

eo
|1

03

10
|rg

eo
|1

04

10
|rg

eo
|1

05

10
|lg

eo
|1

03

10
|lg

eo
|1

04

10
|lg

eo
|1

05

1 2‖
h
∗
−
η
‖ 2
,‖
r∗
−
r‖

2/
r t

ot

nu
m
be

r
of

ite
r.

Figure C.1.: Zoom in on the column of Figure C.2 with bottom label n = 2 and
top label r−1

tot = 10 showing the results of the experiments regarding
[8000 : uniform : 6 ; 1.0 ; full] applied to the test subset with those fixed values
of n and r−1

tot. Top labels: r−1
tot|shape of r|N . The order of the simulation

scenarios used here is the same in all similar figures.

131

132 C.1. Results of experiments regarding different test cases

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−

r‖
2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.2.: Results of all experiments regarding [8000 : uniform : 6 ; 1.0 ; full]. Each of the
results is represented by the triple of the number of SQP iterations (tip up
triangle) (plotted on the right axis), the final value of the objective (diamond)
and the distance of the final iterate to the deployed recombination distribution
(bullet) (both plotted on the left axis); the first is separated from the second
and third by a solid horizontal line; the bold dotted horizontal line emphasises
the value 100. Colouring as described on page 77. An experiment’s bullet or
diamond is missing if its corresponding value lies outside the fixed plot range
[10−8, 102]. Bottom axis: number of sites (separated by solid vertical lines);
top axis: (total) recombination probability used in the simulation scenario
(separated by dashed vertical lines). Finer resolution of the order of simulation
scenarios as in Figure C.1.

Appendix C. Supplemental figures for Numerical results in Section 3.6 133

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−
r‖

2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.3.: Results of all experiments regarding [1600 : uniform : 6 ; 1.0 ; full]. Labels and
design as in Figure C.2.

134 C.1. Results of experiments regarding different test cases

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−
r‖

2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.4.: Results of all experiments regarding [8000 : logarithmic : 6 ; 1.0 ; full]. Labels
and design as in Figure C.2.

Appendix C. Supplemental figures for Numerical results in Section 3.6 135

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−
r‖

2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.5.: Results of all experiments regarding [1600 : logarithmic : 6 ; 1.0 ; full]. Labels
and design as in Figure C.2.

136 C.1. Results of experiments regarding different test cases

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−
r‖

2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.6.: Results of all experiments regarding [1600 : logarithmic : 16 ; 1.0 ; full]. Labels
and design as in Figure C.2.

Appendix C. Supplemental figures for Numerical results in Section 3.6 137

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−
r‖

2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.7.: Results of all experiments regarding [1600 : logarithmic : 16 ; 0.1 ; full]. Labels
and design as in Figure C.2.

138 C.1. Results of experiments regarding different test cases

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

2 3 4 5 6
0

10

20

30

40

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2‖
h
∗
−
η
‖ 2

�

‖r
∗
−
r‖

2/
r t

ot
•

nu
m
be

r
of

ite
ra
tio

ns
N

Figure C.8.: Results of all experiments regarding [1600 : logarithmic : 16 ; 0.1 ; reduced].
Labels and design as in Figure C.2.

Appendix C. Supplemental figures for Numerical results in Section 3.6 139

1600
↓

8000

8000
↑

1600

2 3 4 5 6

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

Figure C.9.: Change of exit status by comparing [8000 : logarithmic : 6 ; 1.0 ; full] with
[1600 : logarithmic : 6 ; 1.0 ; full]. Scenarios columnwise as in Figure C.5. Upper
part: improvements red → orange or green, and orange → green; lower part:
worsenings green → orange or red, and orange → red.

0%

20%

40%

60%

80%

100%

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

Fig. C.2 Fig. C.3 Fig. C.4 Fig. C.5 Fig. C.6 Fig. C.7 Fig. C.8

Figure C.10.: Histograms of the experiment’s exit status relative frequencies with respect
to the number of sites (bottom axis) for each of the considered test cases
(refered to by the figure showing its results) (top axis). An increase of the
quality from left to right is obvious by this statistics. How close the final
iterates r∗ are to the deployed r has to be read from the corresponding results
figure.

140 C.2. Time courses of the averaged normalised sampling functions

C.2. Time courses of the averaged normalised sampling
functions

0.158

0.159

0.16

0.161

0.16

0.161

0.16

0.161

0.158

0.16

0.162

0.16

0.162

0.16

0.162

0.157

0.16

0.154

0.157

0.16

0.157

0.16

0.146
0.15

0.154
0.158
0.162

0.15

0.154

0.158

0.162

0.15

0.154

0.158

0.162

0.131
0.136
0.141
0.146
0.151
0.156
0.161

100 101 102 103 104
0.126
0.131
0.136
0.141
0.146
0.151
0.156
0.161

100 101 102 103 104
0.131
0.136
0.141
0.146
0.151
0.156
0.161

100 101 102 103 104

N = 103 N = 104

r −
1

tot =
1

N = 105

r −
1

tot =
2

r −
1

tot =
5

r −
1

tot =
10

r −
1

tot =
100

Figure C.11.: Time courses of η for one type ξ, n = 2 sites and triangular shape of the
recombination distribution. Logarithmic grid with o = 6 nodes and time
horizon to = 8000. Plotted on vertical axis against bottom axis. Different
colours for the components ηA,A ∈ P(S).

Appendix C. Supplemental figures for Numerical results in Section 3.6 141

0.0882

0.0899

0.0916

0.0882

0.0899

0.0882

0.0899

0.0865

0.0899

0.0933

0.0967

0.0865

0.0899

0.0933

0.0865

0.0899

0.0933

0.0848
0.0899
0.095

0.1001
0.1052
0.1103

0.0848
0.0899
0.095

0.1001
0.1052

0.0848

0.0899

0.095

0.1001

0.1052

0.0831

0.0899

0.0967

0.1035

0.0831
0.0899
0.0967
0.1035
0.1103

0.0763
0.0831
0.0899
0.0967
0.1035
0.1103
0.1171

0.078
0.0865
0.095

0.1035
0.112

0.1205

100 101 102 103 104

0.078
0.0865
0.095

0.1035
0.112

0.1205

100 101 102 103 104

0.078
0.0865
0.095

0.1035
0.112

0.1205

100 101 102 103 104

N = 103 N = 104

r −
1

tot =
1

N = 105

r −
1

tot =
2

r −
1

tot =
5

r −
1

tot =
10

r −
1

tot =
100

Figure C.12.: Time courses of η for one type ξ and n = 3 sites. Further settings and design
as in Figure C.11.

142 C.2. Time courses of the averaged normalised sampling functions

0.0795

0.082

0.0795

0.082

0.0745

0.077

0.0795

0.082

0.0845

0.072

0.077

0.082

0.077

0.082

0.072

0.077

0.082

0.0695

0.077

0.0845

0.062

0.0695

0.077

0.0845

0.062

0.0695

0.077

0.0845

0.062

0.072

0.082

0.062

0.072

0.082

0.052

0.062

0.072

0.082

0.0445

0.057

0.0695

0.082

0.0945

100 101 102 103 104

0.0445

0.057

0.0695

0.082

0.0945

100 101 102 103 104

0.0445

0.057

0.0695

0.082

0.0945

100 101 102 103 104

N = 103 N = 104

r −
1

tot =
1

N = 105

r −
1

tot =
2

r −
1

tot =
5

r −
1

tot =
10

r −
1

tot =
100

Figure C.13.: Time courses of η for one type ξ and n = 4 sites. Further settings and design
as in Figure C.11.

Appendix C. Supplemental figures for Numerical results in Section 3.6 143

0.04

0.0415

0.043

0.0415

0.043

0.04

0.0415

0.043

0.037

0.04

0.043

0.04

0.043

0.037

0.04

0.043

0.037

0.0415

0.046

0.037

0.0415

0.046

0.037

0.0415

0.046

0.034

0.04

0.046

0.052

0.034

0.04

0.046

0.052

0.034

0.04

0.046

0.052

0.0325

0.04

0.0475

0.055

100 101 102 103 104

0.0325

0.04

0.0475

0.055

100 101 102 103 104

0.0325

0.04

0.0475

0.055

100 101 102 103 104

N = 103 N = 104

r −
1

tot =
1

N = 105

r −
1

tot =
2

r −
1

tot =
5

r −
1

tot =
10

r −
1

tot =
100

Figure C.14.: Time courses of η for one type ξ and n = 5 sites. Further settings and design
as in Figure C.11.

144 C.3. Runtimes of experiments regarding different test cases

C.3. Runtimes of experiments regarding different test cases

00:00

00:00

00:01

00:01

00:02

00:02

00:03

00:03

00:04

00:04

00:05

5 6
00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

1 2 5 10 10
0

1 2 5 10 10
0

Figure C.15.: Average (per iteration) SQP computation (with tip down triangles) and
NLP evaluation (without tip down triangles) CPU times in min regarding
[1600 : logarithmic : • ; 1.0 ; full] with either o = 16 (solid) or o = 6 (dashed)
grid timepoints, restricted to n = 5, 6. The connecting lines only serve as
visual support to tie corresponding time results of the same test case. Mean
values (grey): n = 5, o = 16: 00:02.5min (SQP) and 00:01.2min (NLP);
n = 6, o = 16: 04:33.9min (SQP) and 00:39.1min (NLP); n = 5, o = 6:
00:01.3min (SQP) and 00:00.8min (NLP); n = 6, o = 6: 01:34.3min (SQP)
and 00:23.8min (NLP).

Appendix C. Supplemental figures for Numerical results in Section 3.6 145

00:00
00:30
01:00
01:30
02:00
02:30
03:00
03:30
04:00
04:30
05:00
05:30
06:00
06:30

6

1|
un

if
1|
tr
ia
n

1|
rg
eo

1|
lg
eo

2|
un

if
2|
tr
ia
n

2|
rg
eo

2|
lg
eo

5|
un

if
5|
tr
ia
n

5|
rg
eo

5|
lg
eo

10
|u
ni
f

10
|tr

ia
n

10
|rg

eo
10
|lg

eo
10

0|
un

if
10

0|
tr
ia
n

10
0|
rg
eo

10
0|
lg
eo

Figure C.16.: Average (per iteration) SQP computation (with tip down triangles) and
NLP evaluation (without tip down triangles) CPU times in min regarding
[1600 : logarithmic : 16 ; 0.1 ; •] with either full (solid) or reduced (dashed)
accuracy, restricted to n = 6. The connecting lines only serve as visual
support to tie corresponding time results of the same test case. Mean
values (grey): full: 03:40.15min (SQP) and 00:32.84min (NLP); reduced:
03:40.08min (SQP) and 00:27.29min (NLP).

146 C.3. Runtimes of experiments regarding different test cases

00:00:00

00:00:10

00:00:20

00:00:30

00:00:40

00:00:50

00:01:00

00:01:10

00:01:20

2 3 4 5 6
00:00:00
00:10:00
00:20:00
00:30:00
00:40:00
00:50:00
01:00:00
01:10:00
01:20:00
01:30:00
01:40:00
01:50:00
02:00:00

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

1 2 5 10 10
0

Figure C.17.: Total SQP computation times in h for each experiment (for all test cases).
The experiments with n < 6 are plotted against the left vertical axes, the
ones with n = 6 against the right vertical axes. Colouring and ordering of
the scnearios as in Figure C.2. Considerable difference between the test cases
with o = 16 (filled tip down triangle) and o = 6 (unfilled tip down triangle).

Bibliography

[1] M. Aigner. Combinatorial Theory. Classics in Mathematics. Springer, Berlin, 1979.
Reprint 1997.

[2] M. Arenas. Computer programs and methodologies for the simulation of DNA
sequence data with recombination. Front. Genet., 4:9, 2013.

[3] E. Baake, M. Baake, and M. Salamat. The general recombination equation in
continuous time and its solution. Discrete Contin. Dyn. Syst., 36(1):63–95, 2016.

[4] E. Baake, A. González Casanova, S. Probst, and A. Wakolbinger. Modelling and
simulating Lenski’s long-term evolution experiment. Submitted, ArXiv:1803.09995v2,
2018.

[5] E. Baake and I. Herms. Single-crossover dynamics: Finite versus infinite populations.
Bull. Math. Biol., 70(2):603–624, 2008.

[6] E. Baake and T. Hustedt. Moment closure in a Moran Model with Recombination.
Markov Process. Relat. Fields, 17(3):429–446, 2011.

[7] E. Baake and U. von Wangenheim. Single-crossover recombination and ancestral
recombination trees. J. Math. Biol., 68(6):1371–1402, 2014.

[8] M. Baake. Recombination semigroups on measure spaces. Monatsh. Math., 146(4):267–
278, 2005.

[9] M. Baake and E. Baake. An exactly solved model for mutation, recombination and
selection. Canad. J. Math., 55(1):3–41, 2003.

[10] G. Bader and P. Deuflhard. A semi-implicit mid-point rule for stiff systems of
ordinary differential equations. Numer. Math., 41(3):373–398, 1983.

[11] J. E. Barrick, D. S. Yu, S. H. Yoon, H. Jeong, T. K. Oh, D. Schneider, R. E. Lenksi,
and J. F. Kim. Genome evolution and adaptation in a long-term experiment with
Escherichia coli. Nature, 461:1243–1247, 2009.

[12] J. Bennett. On the theory of random mating. Ann. Eugen., 18(4):311–317, 1954.

[13] C. Berge. Principles of Combinatorics, volume 72 of Mathematics in Science and
Engineering. Academic Press, New York, 1971.

147

148 Bibliography

[14] A. Bhaskar and Y. S. Song. Closed-form asymptotic sampling distributions under
the coalescent with recombination for an arbitrary number of loci. Adv. Appl. Prob.,
44(2):391–407, 2012.

[15] L. Biegler. Nonlinear Programming: Concepts, Algorithms and Applications to
Chemical Processes. MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2010.

[16] A. Bobrowski and M. Kimmel. A random evolution related to a Fisher-Wright-
Moran model with mutation, recombination and drift. Math. Methods Appl. Sci.,
26(18):1587–1599, 2003.

[17] A. Bobrowski, T. Wojdyła, and M. Kimmel. Asymptotic behavior of a Moran
model with mutations, drift and recombination among multiple loci. J. Math. Biol.,
61(3):455–473, 2010.

[18] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen
nichtlinearer Differentialgleichungen. Ph. D. dissertation, Bonner Mathematische
Schriften 183, Universität Bonn, 1987.

[19] H. G. Bock, E. Kostina, and J. P. Schlöder. Direct multiple shooting and generalized
Gauss-Newton method for parameter estimation problems in ODE models. In
T. Carraro, M. Geiger, S. Körkel, and R. Rannacher, editors, Multiple Shooting and
Time Domain Decomposition Methods, volume 9 of Contributions in Mathematical
and Computational Sciences, pages 1–34. Springer, Cham, 2015.

[20] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

[21] R. Bürger. The mathematical Theory of Selection, Recombination, and Mutation.
Wiley Series in Mathematical and Computational Biology. John Wiley & Sons,
Chichester, 2000.

[22] I. Cassens, P. Mardulyn, and M. M. C. Evaluating intraspecific “network” construction
methods using simulated sequence data: Do existing algorithms outperform the global
maximum parsimony approach? Syst. Biol., 54(3):363–372, 2005.

[23] L.-M. Chevin. On measuring selection in experimental evolution. Biol. Lett., 7:210–
213, 2011.

[24] M. M. Desai and D. S. Fisher. Beneficial mutation–selection balance and the effect
of linkage on positive selection. Genetics, 176(3):1759–1798, 2007.

[25] P. Donnelly. Dual processes in population genetics. In P. Tautu, editor, Stochastic
Spatial Processes, Lecture Notes in Mathematics, pages 94–105. Springer, Berlin,
1986.

Bibliography 149

[26] R. Durrett. Probability models for DNA Sequence Evolution. Probability and Its
Applications. Springer, New York, 2nd edition, 2008.

[27] R. Durrett and J. Mayberry. Traveling waves of selective sweeps. Ann. Appl. Probab.,
21(2):699–744, 2011.

[28] F. J. Dyson. Statistical theory of the energy levels of complex systems. III. J. Math.
Phys., 3:166–175, 1962.

[29] M. Esser, S. Probst, and E. Baake. Partitioning, duality, and linkage disequilibria in
the moran model with recombination. J. Math. Biol., 73(1):161–197, 2016.

[30] S. N. Ethier and T. G. Kurtz. Markov Processes: Characterization and Conver-
gence. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons,
Chichester, 1986. Reprint 2005.

[31] W. J. Ewens. Mathematical Population Genetics. Interdisciplinary Applied Mathe-
matics. Springer, New York, 2nd edition, 2004.

[32] W. J. Ewens and G. Thomson. Properties of equilibria in multi-locus genetic systems.
Genetics, 87(4):807–819, 1977.

[33] A. Eyre-Walker and P. D. Keightley. The distribution of fitness effects of new
mutations. Nat. Rev. Genet., 8:610–618, 2007.

[34] W. Feller. An Introduction to Probability Theory and Its Applications, volume I.
John Wiley & Sons, New York, 3rd edition, 1968.

[35] W. Feller. An Introduction to Probability Theory and Its Applications, volume II.
John Wiley & Sons, New York, 2nd edition, 1971.

[36] R. Fisher. The correlation between relatives on the supposition of mendelian inheri-
tance. Philos. Trans. R. Soc. Edinburgh, 52:399–433, 1918.

[37] R. Fletcher. Practical Methods of Optimization. A Wiley-Interscience Publication.
John Wiley & Sons, Chichester, 2nd edition, 1987.

[38] C. A. Fogle, J. L. Nagle, and M. M. Desai. Clonal interference, multiple mutations
and adaptation in large asexual populations. Genetics, 180(4):2163–2173, 2008.

[39] H. Geiringer. On the probability theory of linkage in Mendelian heredity. Ann. Math.
Statist., 15(1):25–57, 1944.

[40] H. O. Gerogii. Stochastics. De Gruyter Textbook. De Gruyter, Berlin, 2nd edition,
2013.

[41] P. J. Gerrish. The rhythm of microbial adaptation. Nature, 413:299–302, 2001.

150 Bibliography

[42] P. J. Gerrish and R. E. Lenski. The fate of competing beneficial mutations in an
asexual population. Genetica, 102/103:127–144, 1998.

[43] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Addison Wesley,
1981.

[44] P. E. Gill and E. Wong. Sequential quadratic programming methods. In J. Lee and
S. Leyffer, editors, Mixed Integer Nonlinear Programming, volume 154 of The IMA
Volumes in Mathematics and its Applications, pages 147–224. Springer, New York,
2012.

[45] J. H. Gillespie. Molecular evolution over the mutational landscape. Evolution,
38(5):1116–1129, 1984.

[46] G. B. Golding. The sampling distribution of linkage disequilibrium. Genetics,
108(1):257–274, 1984.

[47] A. González Casanova, N. Kurt, A. Wakolbinger, and L. Yuan. An individual-based
model for the Lenski experiment, and the deceleration of the relative fitness. Stoch.
Proc. Appl., 126(8):2211–2252, 2016.

[48] B. H. Good and M. M. Desai. The impact of macroscopic epistasis on long-term
evolutionary dynamics. Genetics, 199(1):177–190, 2015.

[49] B. H. Good, M. J. McDonald, J. E. Barrick, R. E. Lenski, and M. M. Desai. The
dynamics of molecular evolution over 60,000 generations. Nature, 551:45–50, 2017.

[50] R. Gorelick and M. D. Laubichler. Decomposing multilocus linkage disequilibrium.
Genetics, 166(3):1581–1583, 2004.

[51] W. B. Gragg. On extrapolation algorithms for ordinary initial value problems. J.
SIAM Numer. Anal. Ser.B, 2(3):384–403, 1965.

[52] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics: A Foundation
for Computer Science. Addison-Wesley, Upper Saddle River, NJ, 2 edition, 1994.

[53] D. Graur and W.-H. Li. Fundamentals of Molecular Evolution. Sinauer, Sunderland,
MA, 2nd edition, 2000.

[54] R. C. Griffiths and P. Marjoram. Ancestral inference from samples of DNA sequences
with recombination. J. Comp. Biol., 3(4):479–502, 1996.

[55] A. Hastings. Linkage disequilibrium, selection and recombination at three loci.
Genetics, 106(1):153–164, 1984.

[56] J. Hein, M. H. Schierup, and C. Wiuf. Gene genealogies, variation and evolution: A
Primer in Coalescent Theory. Oxford University Press, Oxford, 2005.

Bibliography 151

[57] R. R. Hudson. Properties of a neutral allele model with intragenetic recombination.
Theor. Popul. Biol., 23(2):183–201, 1983.

[58] R. R. Hudson. Generating samples under a Wright-Fisher neutral model of genetic
variation. Bioinformatics, 18(2):337–338, 2002.

[59] S. Jansen and N. Kurt. On the notion(s) of duality for Markov processes. Prob.
Surveys, 11:59–120, 2014.

[60] P. A. Jenkins, P. Fearnhead, and Y. S. Song. Tractable diffusion and coalescent
processes for weakly correlated loci. Electron. J. Probab., 20(58):1–26, 2015.

[61] P. A. Jenkins and R. C. Griffiths. Inference from samples of DNA sequences using a
two-locus model. J. Comp. Biol., 18(1):109–127, 2011.

[62] P. A. Jenkins and Y. S. Song. An asymptotic sampling formula for the coalescent
with recombination. Ann. Appl. Probab., 20(3):1005–1028, 2010.

[63] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Undergraduate Texts in
Mathematics. Springer, New York, 1960. Reprint 1981.

[64] J. S. LeClair and L. M. Wahl. The impact of population bottlenecks on microbial
adaptation. J. Stat. Phys., 172(1):114–125, 2018.

[65] R. E. Lenski, M. R. Rose, S. C. Simpson, and S. C. Tadler. Long-term experimental
evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations.
Am. Nat., 138(6):1315–1341, 1991.

[66] R. E. Lenski and M. Travisano. Dynamics of adaptation and diversification: a
10,000-generation experiment with bacterial populations. Proc. Natl. Acad. Sci.
U.S.A., 91(15):6808–6814, 1994.

[67] T. M. Liggett. Interacting Particle Systems. Classics in Mathematics. Springer,
Berlin, 1981. Reprint 2005.

[68] S. Mano. Duality between the two-locus Wright-Fisher diffusion model and the
ancestral process with recombination. J. Appl. Prob., 50(1):256–271, 2013.

[69] J. Masel. Genetic drift. Curr. Biol., 21(20):R837–R838, 2011.

[70] G. A. T. McVean and N. J. Cardin. Approximating the coalescent with recombination.
Philos. Trans. R. Soc. Lond. B. Biol. Sci., 360(1459):1387–1393, 2005.

[71] M. L. Mehta. Random Matrices. Academic Press, San Diego, 1991.

[72] M. Möhle. Forward and backward diffusion approximations for haploid exchangeable
population models. Stoch. Proc. Appl., 95(1):133–149, 2001.

152 Bibliography

[73] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, Berlin, 2nd edition,
2006.

[74] T. Ohta and M. Kimura. Linkage disequilibrium due to random genetic drift. Genet.
Res., 13(1):47–55, 1969.

[75] H. A. Orr. The distribution of fitness effects among beneficial mutations. Genetics,
163(4):1519–1526, 2003.

[76] S.-C. Park and J. Krug. Clonal interference in large populations. Proc. Natl. Acad.
Sci. U.S.A., 104(46):18135–18140, 2007.

[77] Z. Patwa and L. M. Wahl. The fixation probability of beneficial mutations. J. Royal
Soc. Interface, 5(28):1279–1289, 2008.

[78] P. Phillips, S. Otto, and M. C. Whitlock. Beyond the average: the evolutionary
importance of gene interactions and variability of epistatic effects. In J. B. Wolf,
E. D. Brodie, and M. J. Wade, editors, Epistasis and the Evolutionary Process, pages
20–38. Oxford University Press, Oxford, 2000.

[79] J. Polańska and M. Kimmel. A model of dynamics of mutation, genetic drift and
recombination in DNA-repeat genetic loci. Arch. Control. Sci., 9(1-2):143–157, 1999.

[80] J. Polańska and M. Kimmel. A simple model of linkage disequilibrium and genetic
drift in human genomic SNPs: Importance of demography and SNP age. Hum.
Hered., 60(4):181–195, 2005.

[81] M. D. Rasmussen, M. J. Hubisz, I. Gronau, and A. Siepel. Genome-wide inference of
ancestral recombination graphs. PLoS Genet, 10(5):e1004342, 2014.

[82] D. Rose. Warm Started Active Set Solver for Tree-structured QPs. Ph. D. dissertation,
Leibniz Universität Hannover, 2017.

[83] G.-C. Rota. On the foundations of combinatorial theory I. Theory of Möbius functions.
Z. Wahrscheinlichkeitstheorie verw. Gebiete, 2(4):340–368, 1964.

[84] D. E. Rozen, J. A. G. M. de Visser, and P. J. Gerrish. Fitness effects of fixed
beneficial mutations in microbial populations. Curr. Biol., 12(12):1040–1045, 2002.

[85] R. Sanjuán. Mutational fitness effects in RNA and single-stranded DNA viruses:
common patterns revealed by site-directed mutagenesis studies. Philos. Trans. R.
Soc. Lond. B. Biol. Sci., 365(1548):1975–1982, 2010.

[86] Y. S. Song and J. S. Song. Analytic computation of the expectation of the linkage
disequilibrium coefficient r2. Theor. Popul. Biol., 71(1):49–60, 2007.

Bibliography 153

[87] R. P. Stanley. Enumerative Combinatorics, volume 1 of The Wadsworth & Brooks/Cole
Mathematics Series. Wadsworth & Brooks/Cole, Monterey, CA, 1986.

[88] A. Stuart and K. Ord. Distribution Theory, volume 1 of Kendall’s Advanced Theory
of Statistics. John Wiley & Sons, Chichester, 5. edition, 1994.

[89] O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta,
G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski.
Tempo and mode of genome evolution in a 50,000-generation experiment. Nature,
536(7615):165–170, 2016.

[90] U. von Wangenheim, E. Baake, and M. Baake. Single-crossover recombination in
discrete time. J. Math. Biol., 60(5):727–760, 2010.

[91] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming:
Local convergence. SIAM J. Optim., 16(1):32–48, 2005.

[92] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear programming:
Motivation and global convergence. SIAM J. Optim., 16(1):1–31, 2005.

[93] L. M. Wahl and A. D. Zhu. Survival probability of beneficial mutations in bacterial
batch culture. Genetics, 200(1):309–320, 2015.

[94] J. Wakeley. Coalescent Theory: An Introduction. Roberts and Co., Greenwood
Village, CO, 2009.

[95] Y. Wang and B. Rannala. Bayesian inference of fine-scale recombination rates using
population genomic data. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 363(1512):3921–
3930, 2008.

[96] M. J. Wiser, N. Ribeck, and R. E. Lenski. Data from: Long-term dynamics of
adaptation in asexual populations. Science, 2013.

[97] M. J. Wiser, N. Ribeck, and R. E. Lenski. Long-term dynamics of adaptation in
asexual populations. Science, 342(6164):1364–1367, 2013.

[98] C. Wiuf and J. Hein. On the number of ancestors to a DNA sequence. Genetics,
147(3):1459–1468, 1997.

[99] S. M. Woolley, D. Posada, and K. A. Crandall. A comparison of phylogenetic network
methods using computer simulation. PLoS ONE, 3(4):e1913, 2008.

[100] A. Wünsche, D. M. Dinh, R. S. Satterwhite, C. D. Arenas, D. M. Stoebel, and T. F.
Cooper. Diminishing-returns epistasis decreases adaptability along an evolutionary
trajectory. Nat. Ecol. Evol., 1(4):0061, 2017.

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Motivation and overview
	The Moran model with recombination and the partitioning process
	Introduction
	Partitions and Möbius functions
	The model and the genealogical approach
	The partitioning process
	Recombinators and sampling functions
	Restrictions to subsystems
	Duality
	Applications and examples
	Conclusion

	Parameter estimation approach for the Moran model
	Goal and outline
	Moran model parameter estimation problem
	NLP evaluation and details of implementation
	Matrix representation of the generator and evaluation of the ODE system
	From simulation to observation data
	Numerical experiments and results
	Conclusion and prospect

	Modelling and simulating Lenski's long-term evolutionary experiment
	Introduction
	A probabilistic model for the LTEE and its law of large numbers
	Including clonal interference
	Simulation algorithms
	Discussion

	Appendix
	Constrained optimisation
	Theory of constrained optimisation
	Numerical algorithm for constrained optimisation

	Multiple shooting approach for parameter estimation problems
	Parameter estimation problem
	Multiple shooting approach

	Supplemental figures for Numerical results in Section 2.5
	Results of experiments regarding different test cases
	Time courses of the averaged normalised sampling functions
	Runtimes of experiments regarding different test cases

	Bibliography

