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Chapter 1

General Introduction

In one way or another, most of the literature on mathematics of finance

pertains to making optimal decisions under uncertainty. The uncertainty in

finance, although inevitable, is inconvenient: it is intangible, hard to quan-

tify, and it significantly complicates decision making. It is worth noting that

usually the focus of research in mathematical finance is not on the uncer-

tainty itself, but rather on optimal decisions. However, what is optimal in

a given situation depends heavily on the way the uncertainty is modelled.

The framework one works in, or merely the way the question is posed, can

naturally lead to different models of uncertainty, which in turn influence

conclusions about what the optimal behavior in a certain scenario is.

This thesis is a result of different investigations1 into the relationship

between the way uncertainty is taken into account by mathematical models

in theoretical finance and the optimal behavior prescribed by the solutions of

those models. Our focus is on the dynamical setting in both continuous and

discrete time. We present three self contained essays that, although different

in topics, explore interconnected ideas related to optimization under multiple

priors, risk measures, optimal stopping and stochastic control in finance. We

1The seminal early paper in modern mathematical finance by Samuelson (1965) begins
modestly with: “This is a compact report on desultory researches stretching over more
than a decade”. Given the long and winding road of this thesis’ creation, it could have
easily begun in the exact same spirit.
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contribute to well known models of pricing financial derivatives, best choice

problems, coherent risk measures and optimal portfolios, among others.

Each of the chapters that follow contains one essay. Before we present

them, we briefly review the literature of relevant fields of research: we hope

to demonstrate the relationship between our contributions on the one hand

and the established ideas and contemporary research questions on the other.

1.1 Uncertainty as a Single Probability Mea-

sure

Traditionally, uncertainty in finance is modelled as a single probability mea-

sure, also called a prior. This classical worldview is mathematically very

convenient: one assumes that all the uncertainty relevant to the situation

being modeled is perfectly captured by the one probability measure.

There are several implicit assumptions that are made when using this ap-

proach and they depend on the interpretation of the situation being modelled,

the model itself, and even on the meaning and interpretation of probability.

From an objective point of view, it is implicitly assumed that the proba-

bility of each relevant event is measurable and known: the “true probability

measure” exists, and it completely describes all the randomness of the world.

A classical justification for this view is that the agents using the model have

sufficient data to make correct estimations of the probability measure. It

is further assumed that this probability measure is fixed even in dynamical

models: calculations regarding classical updating of probabilities due to the

passage of time and arrival of new information is performed using the one

probability measure.

From a subjective point of view, the probabilities are merely beliefs about

the likelihood of certain events. This is the approach of subjective expected

utility following Savage (1954) and Von Neumann and Morgenstern (1953).

After accepting what seem to be reasonable axioms, it follows that each

agent is capable of assigning a probability to each event in a manner that is

6



mathematically consistent. Furthermore, in this context it is assumed that

each agent also has a concave and increasing utility function that they are

perfectly aware of.

Using a single prior often implies further implicit assumptions. Notably,

if a model with a single prior is dynamical it involves stochastic processes, the

distribution of which is assumed to be known, and it is furthermore assumed

that the values of the parameters of the model (for example values of the

drift and diffusion coefficients in geometric Brownian motion) are somehow

known.

As can be seen, this approach is quite idealistic and not very robust.

Indeed, assuming that uncertainty is completely measurable and, in a certain

sense, completely known has been criticized throughout the literature. In the

influential work by Knight (1921) this kind of uncertainty is referred to as

risk and it is contrasted with ambiguity which is considered to be intangible

and unmeasurable2. Ambiguity is clearly not captured by considering only

one probability measure to describe uncertainty in a model. In fact, there are

serious reasons to question all of the above assumptions and maxmin expected

utility theory and the theory of risk measures address most of them from

different perspectives with a similar mathematical foundation. Before we

discuss both approaches in sections 1.3 and 1.4 we briefly review the classical

applications of stochastic control and optimal stopping in the mathematics

of finance.

1.2 Stochastic Control and Optimal Stopping

in Mathematical Finance

From its conception the theory of probability was used to analyze possible

financial gains in the face of uncertainty. For example, a very early problem

2Indeed, the terms ambiguity and Knightian uncertainty are often used interchange-
ably.
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in probability known as the problem of points3 from the seventeenth century

is, in the language of contemporary finance, a problem of pricing a binary

option on a binomial tree. The pricing of financial derivatives remains one of

the most important and actively researched topics in contemporary finance.

In particular, the pricing of options of the American type can be reduced to an

optimal stopping problem; solving the problems of that type also prescribes

if and when early exercise is optimal.

The theory of optimal stopping investigates problems of choosing the op-

timal time, called a stopping time, to take a certain action (selling an asset,

making an irreversible investment), while the theory of stochastic control

investigates problems where actions that influence the values in the model

are needed at each point in time (choosing the optimal portfolio, or of con-

sumption) in order to maximize some gain function. As such, the theory of

optimal stopping can be considered a special (constrained) case of the theory

of optimal stochastic control.

Optimal stopping theory was first developed in discrete time by Wald

(1945) and Snell (1952); in that sense early problems of optimal stopping

in discrete time can be counted among precursors to the modern theory

of option pricing. Among the best known optimal stopping problems in

discrete time are best choice problems. They date back to at least the 1950s4

and are still actively researched, often in explicitly financial contexts as in

Bruss, Ferguson, et al. (2002). The best known among them are the secretary

problem and the full information best choice problem5. Both of these models

deal with detecting the maximum of a certain random sequence; in the next

chapter of this thesis we will explore a robust version of the latter.

An important financial application of the theory of optimal stopping in

discrete time is pricing of American options on a binomial tree model of

a financial market (see Cox et al. (1979)). In this simple model prices are

3See, for example, Hald (2003).
4Early history of best choice problems is vague; an amusing and detailed review can

be found in Ferguson (1989).
5See, for example, Gilbert and Mosteller (1966).
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modelled as an asymmetric random walk. It allows for explicit calculations of

optimal exercises times and values of virtually any option. It is shown in Cox

et al. (1979) that the price process, under the appropriate limiting procedure,

converges to geometric Brownian motion, one of the standard models for the

asset value movement in continuous time.

Use of geometric Brownian motion in finance to model the movement of

the price of an asset in continuous time was first introduced in Samuelson

(1965). Applications to the theory of option pricing were first presented

in seminal papers by Black and Scholes (1973) (for European call and put

options) and Merton (1973) (for perpetual American options). In Black and

Scholes (1973) geometric Brownian motion was used to model the movement

of prices, and the authors proceeded to calculate the value of a European

option by a hedging argument. The pricing of American options in the same

setting required the theory of optimal stopping in continuous time. In Merton

(1973) the price of the perpetual American put is calculated using what is

essentially a free boundary approach to optimal stopping problems. This

approach can be used for pricing other perpetual American options6. In the

last chapter of this thesis we give a modest contribution to that theory by

improving on the well known results on the perpetual American Straddle.

One of the classical applications of stochastic control theory in finance

pertains to the choice of the optimal portfolio. A pioneering paper in this area

is Merton (1969) where it was described, under the assumption that asset

prices follow a geometric Brownian motion, how one should invest in order

to maximize the utility of terminal wealth; this problem and its extensions

is known as the Merton portfolio problem. The elegant solution led to a

simple, proportional optimal portfolio now known as the Merton portfolio.

The extensions and generalizations have since been numerous, an extensive

review can be found in Rogers (2013). In the second chapter of this thesis,

we will address what can be viewed as a formulation of Merton’s problem

6A detailed introduction to the theory with multiple examples can be found in Peskir
and Shiryaev (2006).
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in the context of coherent risk measures. This was already done in, among

others, Gambrah and Pirvu (2014); in addition to presenting our own results

we will improve on their work, too.

We note that the theory reviewed in this section is based on the classical

(single prior) theory of optimal stopping and stochastic control. In the next

two sections we discuss two different, but related approaches that involve

multiple priors.

1.3 Maxmin Expected Utility Theory

There are serious drawbacks to using a single probability measure in models

of financial mathematics. Indeed, one can never be certain that the measure

in use is the “correct one”, or even that it exists. Even if one assumes it

does – estimating the measure and its parameters is prone to errors and can

have significant effects in models that are not sufficiently robust. From a more

subjective point of view, it was demonstrated that even in simple experiments

economic agents do not act as if they would assign a subjective probability

measure to possible outcomes. That kind of behavior violates certain axioms

of subjective expected utility theory, but the observed behavior of the agents

in the experiment is far from irrational. An early and influential paper in

this field of research is Ellsberg (1961), but the literature on violations of the

subjective probability paradigm is vast.

The theory of maxmin expected utility is one of the approaches that ad-

dresses the drawbacks of using a single prior. It was axiomatically founded

in Gilboa and Schmeidler (1989), by extending the framework of subjective

expected utility of Savage (1954) to include ambiguity aversion. It can be

shown that in the setting of maxmin expected utility theory the agent opti-

mizes with respect to a set of priors: the optimal decisions can be interpreted

as a result of a certain maxmin procedure in which the agent does not choose

the optimal decisions by calculating the probabilities and expectations with

respect to a single measure, but rather with respect to a set of measures.
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Every measure in the set leads to a different optimal decision and the agent

acts cautiously – by choosing the least favorable optimal decision, i.e. as if

the measure that gives the worst payoff is the “correct one”.

The decision making framework of maxmin expected utility is fruitful

and goes well beyond finance7. It was originally formulated in a static, single

period setting, but has been extended dynamically in Epstein and Schneider

(2003). Extending the theory to multiple periods, and further to continuous

time, is not trivial. In particular, the set of priors used by the agent needs

to satisfy certain regularity conditions that avoid dynamical inconsistencies.

This regularity condition is known as time consistency8 and it, informally

speaking, ensures that at any point the agent can “change their mind” about

what they perceive to be the “worst measure from now on”, without changing

their mind about what they perceived the “worst measure” was up to that

point in time. In the next chapter of this thesis we give a contribution

in this direction by describing an explicit procedure for constructing a time

consistent set of priors for discrete time dynamical models by pasting together

single period sets of priors. Our approach can be considered a generalization

of similar procedures that appear in Riedel (2009), Chudjakow and Riedel

(2013) and references therein.

Optimal Stopping under Multiple Priors

The theory of optimal stopping in discrete time was extended to maxmin

expected utility setting in Riedel (2009). In this stetting instead of just

maximizing the payoff over stopping times the agent also minimizes over the

set of measures. Extending the ideas of the classical optimal stopping theory

required developing the multiple prior version of martingales and proving the

multiple prior versions of results on iterated conditional expectations, Doob

decomposition and optional sampling theorem. Existence of the solutions of

7For a recent review of ambiguity aversion literature and maxmin expected utility
theory’s place within it see Gilboa and Marinacci (2016).

8For different formal definitions of time consistency see lemma 8 in Riedel (2009).
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optimal stopping problems under multiple priors is proven, under suitable

conditions, in both finite and infinite time. The solutions are characterized

via a multiple priors version of the Snell envelope and the smallest multiple

prior supermartingale dominating the payoff process. With these results

established, it is possible to prove a maxmin duality result: maximizing over

the stopping times and then minimizing over the set of measures or the other

way around leads to the same solution.

The theory of optimal stopping under multiple priors is quite general

and allows for wide applications. In Riedel (2009) the problems of pricing

various options in a multiple priors version of a binomial pricing model are

considered. The author uses ideas from statistics to introduce a set of priors

called exponential neighborhood and all of the examples solved in that work

are part of it. The secretary problem, probably the best known optimal

stopping problem in discrete time, is solved in Chudjakow and Riedel (2013).

In the second chapter of this thesis we will perform a similar, but significantly

more involved analysis for the full information best choice problem.

1.4 Risk Measures

The theory of monetary risk measures explores ways of offsetting the risk of a

financial position with a cash reserve. The classical example is value-at-risk

(VaR), a quantile of possible loss of the position. This risk measure has been

and still is used in practice by financial institutions and regulatory agencies.

Theoretical and practical shortcomings of VaR are well documented and have

even been counted among the causes of the 2007-08 financial crisis9.

The theory of coherent risk measures begins with Artzner et al. (1999).

It is mathematically similar to maxmin expected utility: under elegant ax-

iomatic requirements (monotonicity, cash invariance, homogeneity and sub-

additivity) on the monetary risk measures it can be proven that the risk of a

financial position can be represented as the largest expected loss calculated

9See for example Sollis (2009).
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with respect to a set of probability measures10. This result allows the the-

ory of risk measures to be interpreted as an alternative way to address the

shortcomings of considering a single prior in financial analysis: by imposing

reasonable requirements on a financial position the risk is estimated robustly

in monetary terms. On a technical level, risk measures allow for models that

are, in a certain sense, between the single prior setting and maxmin utility

expectation approach. Examples include applications of stochastic control to

optimal investment problems with risk constraints as in Emmer et al. (2001)

(single period) and Gambrah and Pirvu (2014) (continuous time). In these

models, the dynamic and the probability of the model are assumed to be

known, just like in the traditional case, but risk measure requirements are

absorbed into the optimization criteria. One could argue that this use of risk

measures increases the robustness of the models around both the assumed

measure and the assumed values of the parameters of the model. We ex-

plore these ideas in the third chapter of this thesis by introducing a new risk

measure and examining optimal portfolios related to it.

1.5 Thesis Outline and Contributions

The contributions of this thesis range from purely technical (as in chapter

4), to solving a well known problem in a new framework (as in chapter 2), to

the introduction of what can be considered a new concept (as in chapter 3).

In chapter 2 we solve the classical full information best choice (FIBC)

problem (from Gilbert and Mosteller (1966)) under multiple priors. In or-

der to do so several contributions to the theory of optimal stopping under

multiple priors itself are presented. First, an explicit procedure for the con-

struction of the set of priors is introduced, allowing one to consider more

general sets of priors than have been previously considered in the literature.

10The results of coherent risk measures have been extended to convex risk measures
where convexity of the risk measure is required in addition to monotonicity and cash
invariance. For a detailed introduction to the theory of risk measures see Föllmer and
Schied (2011).

13



We also generalize results on monotone problems from Riedel (2009) in mul-

tiple ways: by considering monotonicity in a wider sense and by allowing for

a more general set of priors. Finally we show how any non-adapted optimal

stopping problem under multiple priors problem can be reduced to an equiv-

alent adapted problem; it is in fact a more general version of the procedure

that appears in Chudjakow and Riedel (2013).

The FIBC problem is about detecting the highest valued realization in

a sequence of finitely many independent and identically distributed random

variables. We offer a contemporary interpretation of the problem in the con-

text of a venture capitalist’s optimal investment. We formally formulate and

solve the problem under multiple priors: by a suitable recursive procedure we

fully characterize the (minimal) optimal stopping time and the minimizing

measure. We contrast the results to the similar investigation of the secretary

problem in Chudjakow and Riedel (2013); in that work, the agent could stop

earlier or later depending on the shape of the set of multiple priors while in

our investigations the agent always stops earlier.

The analysis we perform involves two sets of priors. The first is the al-

ready known exponential neighborhood defined in Riedel (2009). The second

is a set of priors that we introduce: locally constant uncertainty neighborhood.

It is a set of priors that is defined using ideas from risk measures by describing

the ambiguity about “small probabilities” of any set to be within a certain

suitably chosen interval. This is achieved by considering the set of Radon-

Nikodym derivatives of the measures “close to” the original measure. It is

worth noting that the set is essentially different from the other sets of priors

used in problems of optimal stopping under multiple priors in that it cannot

be parametrized by even countably many real parameters. Identifying the

minimizing measure under the locally constant uncertainty neighborhood is

not trivial and requires solving several problems that are essentially problems

of (deterministic) optimal control (see lemma 2.4.1).

In the third chapter we turn to exploring the locally constant uncertainty

neighborhood set of priors from the perspective of risk measure. Naturally,
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it defines a coherent measure that we call locally constant model uncertainty

(LCMU). The measure can, due to its relation to optimization under multiple

priors, be considered a measure of the uncertainty of the model (the assumed

probability measure) that is in a certain sense locally constant.

The chapter essentially consists of two parts. In the first part we explore

the technical properties of the LCMU risk measure and establish a connection

with the well known average value-at-risk: we prove that LCMU can be

represented as a convex combination of expected loss and average value-at-

risk which further establishes its relevance.

The second part of the chapter deals with optimal investment problems

with respect to LCMU. We consider a frictionless market with multiple secu-

rities, the dynamics of which are time dependent. We solve three problems of

optimal investment that include minimizing the risk (prescribed by LCMU)

and maximizing expected profits under the risk constraint. The results lead

to Merton portfolios (Merton (1969)); this rather surprising fact has already

been proven for value-at-risk and average value-at-risk in Gambrah and Pirvu

(2014). Even more surprising is that, although the risk measures LCMU and

AVaR both lead to Merton portfolios, the optimal portfolios can be radically

different under the two measures. This leads to an interesting discussion

about the nature of modelling optimal portfolio problems and use of risk

measures in such models; theorem 3.3.1 and the discussion that follows ad-

dresses this.

The final chapter on the perpetual American straddle gives a modest

contribution to the literature of perpetual American options in the Black-

Scholes-Merton model by presenting a compact way to characterize the price

of that particular portfolio. Technically, we solve an optimal stopping prob-

lem using the standard approach that involves the Hamilton-Jacobi-Bellman

equation combined with the smooth pasting conditions and a verification

theorem.

While the focus of the essays varies, each explores the way uncertainty

affects optimal behaviour from different angles. The second chapter exam-
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ines a well known problem under a more general version of uncertainty that

makes the problem more robust from both subjective and objective perspec-

tives. We compare our results with the classical version of the problem, thus

providing a deeper insight into the effects of uncertainty (and the way it is

modelled!) on the optimal behavior. In the third chapter we introduce a

risk measure that, although closely related to concepts already known and

well studied in the literature on risk measures and maxmin expected utility,

can be considered a new way to describe the uncertainty about the model.

Again, the effects of this way of modelling uncertainty on optimal behavior is

explicitly contrasted to similar relevant models with surprising conclusions.

Finally, the technical results of the last chapter show how even in well known

models there is still room for simplifying the characterizations of optimal

behavior under risk, i.e. a classical model of uncertainty. Hopefully, the

three essays convincingly show that the way the uncertainty is modelled has

profound effects on the optimal decisions in the context of finance.
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Chapter 2

Robust Maximum Detection:

Full Information Best Choice

Problem under Multiple Priors

Abstract

We consider a robust version of the full information best choice

problem (Gilbert and Mosteller (1966)): there is ambiguity (repre-

sented by a set of priors) about the measure driving the observed

process. We solve the problem under a very general class of multiple

priors in the setting of Riedel (2009). As in the classical case, it is

optimal to stop if the current observation is a running maximum that

exceeds certain thresholds. We characterize the decreasing sequence

of thresholds, as well as the (history dependent) minimizing measure.

We introduce locally constant ambiguity neighborhood (LCAn) which

has connections to coherent risk measures. Sensitivity analysis is per-

formed using LCAn and exponential neighborhood from Riedel (2009).
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2.1 Introduction

How is one to make the best choice among sequentially presented options

when no recall is possible? Many scenarios in economics can be reduced

to this question. In the well known secretary problem the employer is try-

ing to pick the highest ranked among sequentially presented candidates for

a position (Ferguson (1989)). In job search models, the unemployed agent

is choosing among job offers trying to maximize life wealth (Lippman and

McCall (1976)). In house selling problems the realtor is maximizing the

profit in a series of take-it-or-leave-it bids (Porteus (2002)). These admit-

tedly stylized problems are not trivial, and as such represent a useful first

step towards more complex models and applications of the theory of optimal

stopping (Ferguson (2006), Peskir and Shiryaev (2006)).

We consider the following best choice problem: a venture capitalist (the

agent) is looking to invest and her budget allows her to invest in only one

of the several sequentially presented start-up companies. She assumes the

start-ups are similar and evaluates them by calculating a certain score. Due

to the similarity of the start-ups and her familiarity with the matter, she

treats the scores as realizations of independent and identically distributed

random variables, the distribution of which is known to her. She believes

that, given the high competition and failure rate among start-ups, only the

company with the highest overall evaluation is the one that will be profitable.

There is no recall: the decision not to invest in a start-up cannot be reversed.

Hence, she is interested in maximizing the probability of choosing the start-

up company with the highest valuation1 .

This is one of the ways to formulate full information best choice (FIBC)

problem, one of the best known optimal stopping problems in discrete time

(Gilbert and Mosteller (1966), Bojdecki (1978), Samuels (1982), Ferguson

(1989)). Formally, the agent is interested in detecting the maximum of a

finite sequence of i.i.d. random variables (Xt), i.e. identifying the stopping

time τ that maximizes the probability P (Xτ = max(X1, X2, . . . , XT )). The

1This formulation is based on a related problem in Bruss, Ferguson, et al. (2002).
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solution is elegant: it is optimal to stop only if the current observation is also

the current maximum that exceeds some threshold value. The thresholds are

decreasing, can be calculated in advance and depend only on the number of

remaining observations (Gilbert and Mosteller (1966), Bojdecki (1978)).

The “full information” in the name of the FIBC problem refers to the

fact that the agent knows the distribution of start-ups’ scores. The reasons

to question this strong assumption are numerous. There is no objective

way to be certain that the distribution the agent uses is the correct one.

Considering a set of measures “around the assumed probability” would make

the solution more robust. Even if one adopts the subjective probability

approach, a single prior is not a reasonable assumption as shown by the

Ellsberg paradox (Ellsberg (1961)). Indeed, even rational agents allow for

Knightian uncertainty, or ambiguity, and behave in a way that is ambiguity-

averse. A well established model of ambiguity aversion is maxmin expected

utility theory, formulated by Gilboa and Schmeidler (1989). It assumes that

the agent considers a set of priors and behaves pessimistically in a certain

sense: when choosing the optimal action the agent first considers optimal

actions over all of the priors and then chooses the one which has the lowest

expected payoff2.

In this paper we formulate and solve the FIBC problem under multiple

priors in the setting of Riedel (2009). We show that the optimal stopping time

is of the same form as in the classical case: it is completely characterized by

a decreasing sequence of thresholds. We also characterize the measure under

which the single prior problem is equivalent to the multiple priors one; it is

highly history dependent.

The theory of optimal stopping under multiple priors in discrete time is

developed in Riedel (2009). It shows that each adapted optimal stopping

problem under multiple priors has a minimizing measure that reduces the

problem to a single prior optimal stopping problem. One of the conditions

that a set of priors has to fulfill in order to be used in an optimal stop-

2Extensions and applications are numerous; for a recent review of ambiguity aversion
theory see Gilboa and Marinacci (2016).
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ping problem under multiple priors is time consistency. It can be viewed

as a mechanism that ensures that backward induction procedure gives the

same optimal behavior as ex-ante optimization along all possible paths, thus

avoiding dynamic inconsistencies.

Among the few optimal stopping problems completely solved in the mul-

tiple priors setting is the secretary problem (Chudjakow and Riedel (2013)),

a better known, yet simpler predecessor to the FIBC problem. After identi-

fying the minimizing measure, the authors proceed to solve the single prior

optimal stopping problem. As will be seen, due to the complexity of the

FIBC problem, this approach is not viable in our case. Indeed, several ad-

vances/generalizations in the theory of optimal stopping under multiple pri-

ors were necessary for the problem to be solved in some generality: construc-

tion of the set of priors, identifying certain extremal measures and adaptation

of non-adapted problems among others.

Time-consistency is explicitly taken into account in the construction of the

set of priors that we propose. We start with a set of measures that contains

a uniform distribution. It can be thought of as “marginal ambiguity” due to

the fact that it describes uncertainty about uniform measure in each period.

Using certain predictable processes, we paste these single period measures

using a dynamic product of Radon-Nykodim derivatives to obtain a set of

priors for the whole process. Random variables Xt are not independent nor

identically distributed under each measure in the set of priors. However,

as marginal ambiguity remains constant, they can be considered as having

identical and independent ambiguity in each period.

Identifying the minimizing measure in optimal stopping problems under

multiple priors is not always easy. We use ideas from first order stochastic

dominance3 to identify certain extremal measures within the set of priors.

Extremal measures can facilitate solving the problem and characterizing the

minimizing measure, as will be the case in the solution of the FIBC problem.

We note that, to the best of our knowledge, all of the so far solved prob-

3See Levy (2015).
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lems of optimal stopping under multiple priors use sets of priors that can

be considered special cases of our construction (in particular the exponential

neighborhood in Riedel (2009) and the set of multiple priors in Chudjakow

and Riedel (2013)). Indeed, our construction is quite general and allows

for complex sets of priors that cannot be parametrized by a real parameter,

or even countably many of them. Furthermore, the extremal measures we

introduce play an important role in all of the already available solutions.

The probability of stopping at the maximum value in the FIBC problem

depends on future observations. This means that the problem is not adapted,

hence the theory of optimal stopping under multiple priors cannot be applied

directly. We formulate an equivalent and adapted version of the problem

by conditioning on currently available information and minimizing over all

priors. This was already done in Chudjakow and Riedel (2013) and we show

that the same approach works with our more general construction, while

offering additional details that allow the procedure to be potentially used in

other applications.

Even with a deep understanding of the classical FIBC problem it is not

immediately clear how multiple priors affect the solution. If one thinks in

terms of minimizing measures the “opposing effects of ambiguity” in FIBC

appear: if the agent stops, the worst that can happen are high outcomes, and

if she continues, low outcomes would be the worst. This makes identifying

the minimizing measure difficult. We initially avoid it altogether by finding

suitable representations for values of stopping and continuing. Somewhat

surprisingly, the representations are just monotone functions of a single vari-

able. Naturally, it is optimal for the agent to stop once the value of stopping

exceeds the value of continuing; this leads to the decreasing thresholds, as in

the classical case.

Once we have the solution, we are able to identify the minimizing measure.

It is history dependent: the agent’s observations and actions up to a certain

moment influence what she perceives to be the worst probability measure

from that moment on. In particular, under the minimizing measures variables
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Xt are not independent. This has a technical consequence that the FIBC

problem under the minimizing measure is not equivalent to a single prior

version of the FIBC problem4.

Our theoretical results are in accordance with experimental studies of the

FIBC problem which is, due to its simple formulation, suitable for behavioral

research. The oldest study on the subject (Kahan et al. (1967)) shows that

agents do not recognize the underlying probability distribution well; this may

be another reason to consider multiple priors in models of human behavior.

Corbin et al. (1975) shows that agents do not consider the observations as

independent, even when they are informed that they actually are. More

recently, Lee (2006) demonstrates that the observed behavior of participants

in the study is best described by threshold rules. Overall, this is a positive

indication that optimal stopping under multiple priors can be a viable model

for real human behavior in optimal stopping problems.

We also establish a connection with the theory of coherent measures of

risk, which at its core also has multiple priors (Artzner et al. (1999) , Föllmer

and Schied (2011)). One could interpret the behavior of the FIBC agent op-

erating in the multiple prior setting as follows: she considers her investment

opportunity as a financial position, and chooses behavior that is optimal with

respect to a certain risk measure. We introduce a locally constant ambiguity

neighborhood (LCAn) that we use as the set of marginal ambiguity. This

way we, effectively, describe marginal ambiguity by a risk measure wich turns

out to have connections with the well known Average Value at Risk 5.

We finally investigate the way ambiguity affects the optimal behavior by

considering two examples: exponential neighborhood introduced in Riedel

(2009) and LCAn. Both examples can be considered robust neighborhoods

around the initial measure. By deriving the explicit equations for the values

of the optimal thresholds we are able to peform numerical calculations in

both cases. Calculations offer two interesting conclusions. First, for “small

sets of priors” the threshold values converge to the classical FIBC solution,

4See discussion after the formulation of the theorem 2.3.1 below.
5See ch. 4 in Föllmer and Schied (2011).
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establishing its robustness. Second, in both settings, the ambiguity averse

agent stops earlier. This is different than the conclusions of the similar anal-

ysis on the secretary problem Chudjakow and Riedel (2013), where the agent

could stop both earlier and later, depending on parameters that describe the

set of priors.

We revisit the classical FIBC problem in section 2. In section 3 we first

present the generalized way of constructing the set of priors for problems

of optimal stopping and identify extremal measures within it. We then for-

mulate and solve the FIBC problem under multiple priors. Examples with

numerical calculations can be found in section 4, where we introduce the

LCAn neighborhood and identify its extremal measures. Proofs and valu-

able additional material are in the appendix.

2.2 The Original FIBC Problem

For the sake of completeness we formulate the classical FIBC problem and

briefly revisit its solution.

At each period t ∈ {1, 2, . . . , T} the agent observes the process Xt which

consists of random variables independently and, without loss of generality6,

uniformly distributed on the interval [0, 1]. Let (Ω, (Ft)0≤t≤T , P0) be a filtered

probability space with Ω = [0, 1]T being the product space, Ft being the

σ-algebra generated by random variables X1, X2,. . .,Xt, and P0 being the

product of the (given) uniform marginal measures. We denote the set of

all stopping times with T and the running maximum of the process with

Mt = max(X1, X2, . . . , Xt).

The agent is interested in detecting the maximum: finding the optimal

stopping time τ that maximizes the probability P0(Xτ = MT ) of stopping

at Xt with the highest valued realization. If we define the reward process

Yt = P (Xt = MT ) we can formulate the FIBC problem as the following

6Indeed, if the distribution F = FXt
was not uniform, a simple transformation would

suffice: X ′t = F−1(Xt).
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optimal stopping problem.

Problem 1 (FIBC problem – non-adapted version). Find τ ∗ ∈ T such that:

E[Yτ∗] = max
τ∈T

E[Yτ ] = max
τ∈T

P0(Xτ = Mn).

The process Yt is not adapted to the filtration Ft, so the theory of optimal

stopping cannot be applied. We define the adapted payoff process Ŷt = E[Yt |
Ft] and the problem can be equivalently formulated as:

Problem 2 (FIBC problem – adapted version). Find τ ∗ ∈ T such that

E[Ŷτ∗] = max
τ∈T

E[Ŷτ ].

The problems are equivalent in the sense that the same stopping time

solves both problems. Indeed, using the law of iterated expectation, one can

easily prove that E[Ŷτ ] = E[Yτ ] holds for any τ ∈ T 7.

In the classical FIBC problem it is optimal to stop if the current value

Xt is a candidate (i.e. Xt = Mt) that exceeds a certain threshold at that de-

creases with time: the less time remains the lower valued candidate the agent

is willing to accept. More precisely the optimal stopping time is given with

τ∗ = min{t |Xt = Mt ≥ aT−t} where the numbers an satisfy the equations:

a0 = 0;
n∑
j=1

1

jajn
= 1 +

n∑
j=1

1

j
, n ∈ N.

For details see equation 1.2 in Samuels (1982) and original papers Gilbert

and Mosteller (1966) and Bojdecki (1978).

7It is worth pointing out that, although this equivalence is straightforward in the
single prior case, the process of adaptation of payoff will be somewhat more complex in
the multiple prior setting, as will be seen in the lemma 2.C.2 below.
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2.3 FIBC Problem under Multiple Priors

In the classical formulation of the FIBC problem above (Problems 1 and 2)

the agent was maximizing the probability of stopping at the highest value of

the process. The probability measure used for calculating the expectation was

the one given prior P0. In a multiple prior setting the agent performs all her

calculations over a set of priors and then makes the most cautious/pessimistic

decision.

Before the FIBC problem under multiple priors can be formulated, some

technical preparation is needed when it comes to the set of priors. We do so

in the first subsection, while the problem’s formulation and solution are left

for the second subsection.

2.3.1 The Set of Multiple Priors

We present a relatively general construction of the set of priors for problems

of optimal stopping under multiple priors. The idea is to first introduce, for

each period, the “marginal set of priors”, and then to paste those in a time

consistent manner to form the set of priors for the whole proces (Xt).

Let (S,S, v0), S ⊂ R, be a given probability space. Without loss of

generality we assume that v0 is strictly positive; this is clearly the case when

v0 is uniform. We furthermore assume that v0 has a positive and bounded

density. We define a set Ω = ST , for T ∈ N, a sigma field F = ⊗Tt=0 S
(generated by projections Xt : Ω → S) and a probability measure P0 =

⊗Tt=1v0 (under which the projections Xt are i.i.d8).

Let

VA = {vα : F → (0, 1) |α ∈ A}

be a set of probability measures on S indexed by some fixed set A. Since

sets of multiple priors are used to model ambiguity one can, analogously,

8Although we use i.i.d. random variables the arguments that follow can readily be
adjusted to the case when random variables are not identically distributed (but are still
independent).
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think of the set VA as the set of marginal ambiguity. We note that marginal

ambiguity will remain constant, i.e. the set VA is fixed and does not change

with the flow of time9.

The set of priors on Ω is obtained by pasting together measures from VA.

In order to do the pasting in a time-consistent manner we define a set A of

all predictable processes with values in A:

A =

a = (at)t≤T

∣∣∣∣∣∣
at+1 = at+1(x1, x2, . . . , xt) ∈ A, xs ∈ S, s ≤ t < T ;
dva1
dv0

· dva2
dv0

· . . . · dvat
dv0

∈ L0(Ω,Ft, P0|Ft), t ≤ T

 ,

where L0 is the set of all measurable functions. As can be seen, A contains

all processes that are predictable in a sense that their value at time t + 1

depends on past realizations of random variables. The second requirement

in the definition is technical, but revealing: requiring a “dynamic product”

of Radon-Nykodim derivatives to be measurable with respect to Ft allows us

to assign a measure to each process in A; we do so below.

For each a ∈ A we can define a probability measure P a on (Ω, (Ft)) by

defining its density process:

dP a

dP0

∣∣∣∣
Ft

=
t∏

s=1

dvas
dv0

, (2.1)

and, finally, we set

P = P(VA) = {P a | a ∈ A}.

All measures in the set P are equivalent; this is due to the definition of the

set VA within which all the measures are equivalent. We note that random

variables Xt are not independent under every measure P ∈ P . In fact, the

only measures under which they are independent are those that correspond

to direct products, i.e. processes a ∈ A such that for each t the function at

is constant.

9Again, careful reading of the arguments that follow shows that one does not lose on
generality by fixing an identical set of beliefs at every step.

28



Although we use the set P as the set of priors to formulate and solve the

FIBC problem under multiple priors, the generality of its construction allows

for other applications: under mild assumptions on the set VA the theory of

optimal stopping under multiple priors from Riedel (2009) can be applied.

We prove this result in Appendix 2.A, where we also offer some further details

on optimal stopping under multiple priors that are relevant for our solution.

Extremal Measures In order to be able to solve and reduce a multiple

prior problem to a single prior one, we define “extremal measures” within

the set P . The ideas we use are those of the theory of (first order) stochastic

dominance ( Levy (2015)).

Let us denote by v ∈ VA the measure (if it exists) such that:

v(X1 ≤ x) ≥ va(X1 ≤ x), for any x ∈ R and any va ∈ VA. (2.2)

As can be seen the minimizing measure v ∈ VA is the one that puts the most

weight on the lowest valued outcomes.

This allows us to single out the measure P = ⊗nt=0v ∈ P (under which

the variables Xt are independent!). Measures v ∈ VA and P = ⊗nt=0v are

defined analogously. Characterizations of extremal measures and additional

useful results are offered in Appendix 2.B.

2.3.2 FIBC Problem under Multiple Priors

Let P be a set of multiple priors obtained by pasting together one-period

multiple priors sets VA indexed by some set A. We assume VA satisfies all

the conditions of lemma 2.A.1, with v0 being the uniform distribution. We

also assume that the set VA contains both a measure v that satisfies the

lower extremal property and a measure v that satisfies the upper extremal

property.

Let X, Y , F be as in section 2.2. Note that while Xt are independent

under the reference measure P0, they are not independent under every P ∈ P .
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The agent is solving the problem:

Problem 3 (FIBC problem under multiple priors – non-adapted version).

Find τ ∗ ∈ T such that

min
P∈P

EP [Yτ∗ ] = max
τ∈T

min
P∈P

EP [Yτ ].

Since the duality equality

max
τ∈T

min
P∈P

EP [Yτ ] = min
P∈P

max
τ∈T

EP [Yτ ] (2.3)

holds10, the following interpretation is plausible: the agent maximizes the

probability of stopping at the maximum of the given process under the “worst

possible” measure in the set P .

Similarly as in Problem 1, this problem needs to be reduced to an adapted

problem; this will allow us to solve it using the theory of optimal stopping

under multiple priors. For that purpose we define the adapted payoff process

under multiple priors:

Zt = ess inf
P∈P

EP [Yt|Ft].

Problem 4 (FIBC problem under multiple priors – adapted version). Find

τ ∗ ∈ T such that

inf
P∈P

EP [Zτ∗] = sup
τ∈T

inf
P∈P

EP [Zτ ].

Problems 3 and 4 are equivalent – the same stopping time solves both

problems. The equivalence in the multiple priors setting is less clear than it

was in the single prior setting; we prove it in Appendix 2.C. The proof does

not depend on the definition of the payoff process, hence it holds for any

non-adapted process under multiple priors.

The following theorem completely characterizes the solution of the FIBC

problem under multiple priors.

10See theorem 2 in Riedel (2009).
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Theorem 2.3.1. 1. There is a decreasing sequence of thresholds (bt)t=1,...T

such that the optimal stopping time τ ∗ that solves the BCIF problem

under multiple priors is:

τ ∗ = min{t |Xt = max(X1, X2, . . . , Xt) > bt}. (2.4)

2. Thresholds bt are the unique solutions of equations wt(x) = rt(x), t <

T , where functions rt and wt are defined recursively:

rT (m) ≡ 1, rt(m) = EP

[∏
s>t

1Xs≤m

]
; wT (m) ≡ 0,

wt(m) = ess inf
v∈VA

(∫ 1

m

max(rt+1(x), wt+1(x)) dv(x) + wt+1(m)

∫ m

0

dv(x)
)
.

Specially, bT = 0.

3. The minimizing measure P ∗ = P a∗ is given by the predictable process

a∗t (x1, . . . , xt) =

act(x1, . . . , xt), t < τ ∗

α, t ≥ τ ∗
, (2.5)

where vα = v and

act(x1, . . . , xt) = arg min
a∈A

(∫ 1

max(x1,...,xt)

max(rt+1(x), wt+1(x)) dva(x)+

wt+1(max(x1, . . . , xt))

∫ max(x1,...,xt)

0

dva(x)
)
.

(2.6)

The duality equation (2.3) holds for the process Zt, too. A reasonable

attempt at solving Problem 4 would be to identify the minimizing measure

and solve the classical, single prior optimal stopping problem under the min-

imizing measure. One could even hope that one of the measures P or P

would turn out to be the minimizing measure, thus allowing the problem to
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be reduced to the classical FIBC problems 1 and 2. The theorem shows that

the minimizing measure is significantly more complicated than that. This is

due to the fact that the multiple priors setting creates opposing effects about

what is “pessimistic”: when the agent stops the worst measures are those

that put the most weight on high outcomes, and when she continues the

worst measures are those that put the most weight on the lowest outcomes,

while accounting for future behavior.

As can be seen, the minimizing measure P ∗ is highly history dependent

and even depends on the act of stopping. This implies that random variables

Xt are not independent under P ∗. Hence, an agent operating in a multiple

prior setting views the FIBC problem in a way that is substantially different

from that of an agent making decisions under the single prior. This is true

on a technical level, too: the reduction to the classical FIBC problem via

the probability integral transform (as indicated on pp.51-52 in Gilbert and

Mosteller (1966)) is not possible.

The proof ultimately relies on several careful backward inductions and

can be considered a multiple priors version of the proof offered in Samuels

(1982). The details are available in the appendix. Although tedious, the

proof offers significant insight into the FIBC problem.

The proof reveals that, if at time t the agent observes value xt that is a

running maximum, then the expected value (under multiple priors) of con-

tinuing is wt(xt) while the expected value of stopping is r(xt). Hence, the

stopping rule prescribed by τ ∗ merely says that the agent stops if payoff

of stopping exceeds the payoff of continuing; this is in accordance with the

theory of optimal stopping (under multiple priors). Furthermore, the multi-

ple prior Snell envelope of the adapted version of the FIBC problem under

multiple priors can be expressed in terms of functions rt and wt:

Ut = max(rt(Xt)1Xt=Mt , wt(Mt)).

The (classical) FIBC problem is “end-invariant” in the following sense:

“optimum decision numbers depend only upon the number of remaining
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draws”, as noted in Gilbert and Mosteller (1966). The proof reveals that,

once the set P is fixed, the same is true for the FIBC problem under multi-

ple priors. Indeed, its solution was derived by backward induction and was

shown to depend only on the values of the current observation and the run-

ning maximum. Naturally, the cutoff points bt depend on the on the set of

priors P ; we explore this dependency numerically in the next section.

2.4 Examples

What is the effect of introducing multiple priors to the FIBC problem? How

does the optimal stopping time change once ambiguity is introduced? We

try to give some answers to these and related questions in this section.

The sequence of cutoff points that define the optimal stopping time in

the classical version of the problem has been well studied (already in Gilbert

and Mosteller (1966)) and their asymptotic behavior is well understood (

Samuels (1982)). However, due to the complexity of the minimizing measure

and recursive equations in 2.3.1, that kind of analysis is not trivial in our

setting. We focus our attention on the simple case when T = 3; it will be

seen below that even this case is computationally cumbersome and leads to

highly nonlinear equations. Given the comments about the end invariance

of the FIBC problem in the previous section, what follows is effectively an

analysis of the final three periods of any FIBC problem with the horizon

T ≥ 3; the notations we use reflect this fact.

2.4.1 Classical Case

For the sake of completeness we briefly review the numerical values of the

optimal stopping time in the classical FIBC problem. In our context, it

corresponds to the case when VA is a singleton with its only element being

the uniform measure. Omitting the straightforward calculations we present

the interesting parts of the result.
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Functions rt and wt take the following form:

rT−1(x) = x, rT−1(x1, . . . , xT−2) = x2

wT−1(m) = 1−m, wT−2(m) =

∫ 1

m

max(x, 1− x) dx+m(1−m).

The cutoff points that define the stopping time are

bT = 0, bT−1 =
1

2
, bT−2 =

2 +
√

24

10
≈ 0.6899.

Note that bT−1 and bT−2 are the solutions of the equations m = wT−1(m)

and m2 = wT−2(m) respectively.

2.4.2 Exponential Neighborhood

The exponential neighborhood is the set of priors Pα,β introduced in Riedel

(2009). It has important connections to Girsanov theory and arises naturally

in statistics where it is referred to as exponential family. It has been used to

model uncertainty in optimal stopping problems related to finance (option

pricing), as well as ambiguous versions of the house pricing problem and the

parking problem11.

In the context of this paper it can be introduced by setting A = [α, β]

and:

VAEXP =

{
va

∣∣∣∣∣ dvadv0

(x) =
eax∫ 1

0
eat dt

, a ∈ A

}
,

where v0 is the uniform measure on the interval [0, 1]. It is known12 that v =

vα and v = vβ. The exponential neighborhood is simply: Pα,β = P(VAEXP ).

We have already seen that rT (x) = 1 and wT (x) = 0 for any x ∈ [0, 1].

Direct calculations yield:

rT−1(x) =
eβx − 1

eβ − 1
, wT−1(x) =

eβ − eβx

eβ − 1
.

11See section 4 in Riedel (2009).
12For details see section 4 in Riedel (2009).
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α β bT−1 bT−2 α β bT−1 bT−2

0 0 0.5000 0.6899 -2 2 0.7169 0.8084
-0.01 0.01 0.5013 0.6905 -5 5 0.8627 0.9048
-0.1 0.1 0.5125 0.6958 -10 10 0.9307 0.9518
-0.25 0.25 0.5312 0.7047 -1 2 0.7169 0.8144
-0.5 0.5 0.5619 0.7200 -1 3 0.7851 0.8582
-1 1 0.6201 0.7512 -2 1 0.6201 0.7406

-1.5 1.5 0.6722 0.7811 -3 1 0.6201 0.7335

Table 2.1: Exponential neighborhood – Values of the cutoff points bT−1 and
bT−2 for different values of α and β.

Equating rT−1(x) = wT−1(x) we obtain

bT−1 =
1

β
ln
eβ + 1

2
.

The expression for wT−2 is more cumbersome:

wT−2(m) =
1

eβ − 1
min
a∈[α,β]

(
1∫ 1

0
eat dt

(
a

∫ 1

m

eax max(eβx − 1, eβ − eβx) dx

+(eβ − eβm)(eam − 1)

))
,

while rT−2 = (rT−1)2.

As can be seen, explicitly calculating the cutoff point bT−2 (i.e. solving

the equation wT−2(m) = rT−2(m)) is not computationally easy and to obtain

the approximations of its value one can resort to mathematical software13.

Table 1 provides approximations of values of cutoff points bT−1 and bT−2 for

different values of parameters α and β. If the difference β − α is interpreted

as the “amount of ambiguity” one can notice that the increase in ambiguity

causes later stopping. The last four rows seem to imply greater sensitivity of

cutoff point values to the change in β, than in α. This is somewhat expected

13All the graphs and data for the tables were made using Wolfram Matematica, Re-
search (2015).
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Figure 2.1: Exponential Neighborhood - Graphs of functions wt−2(x) (de-
creasing) and rT−2(x) (increasing) for α = −1 and β = 1. The point of
intersection is bT−2.

given the shape of the exponential function.

2.4.3 Local Constant Ambiguity Neighborhood

The locally constant ambiguity neighborhood (LCAn) is the set whose “marginal

ambiguity” is:

VACLA =

{
va

∣∣∣∣ 1

λ
≤ dva
dv0

≤ λ

}
.

The constant λ ≥ 1 describes the “amount of ambiguity” – greater values of

λ imply greater ambiguity about the “correct measure” that drives the pay-

off process. Case λ = 1 corresponds to the case where there is no ambiguity

and the set VACLA reduces to a singleton containing v0. The LCAn is simply:

QλCLA = P(VACLA). As can be seen the set VA cannot be parametrized by a

real parameter, nor even countably many real parameters. In that sense, it

differs substantially from the exponential neighborhood, or any other analo-

gously created neighborhood that depends on a fixed family of distributions.

One can interpret the marginal ambiguity of LCAn as follows: the agent

is certain about which events are possible/impossible (described by measure

v0), but she allows for the possibility that for any sufficiently “small event”

it’s probability is up to λ-times overestimated or underestimated by v0.

LCAn bears some resemblance to the well known ε-contamination from

Huber (1981), which was already used in the context of ambiguty in the well
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known paper Maccheroni et al. (2006). In our context, ε-contamination could

be described as the set of measures, the range of densities of which lies within

the interval [1− ε, 1 + ε]. Arguably, this is a less natural model of ambiguity

than LCAn when it comes to describing belief by a set of priors. Beyond

the obvious fact that ε cannot be greater than one (which discounts for the

possibility of any event being more than twice underestimated) there seem

to be indications that humans innately think logarithmically, rather than

linearly (Dehaene (2003)). In particular, to put it in more plastic terms,

this may mean that it is more natural to think of [1/2,2] as a neighborhood

around the point 1 than [0.5,1.5]; this corresponds to the way in which the

ambiguity around “small events” is modeled by LCAn.

We note that the set V λ
CLA is related to certain sets that appear in the

theory of risk measures. In particular, the well known risk measure known as

average value at risk can be characterized by a similarly defined set (chapter

4 in Föllmer and Schied (2011)). It is well known that there are mathematical

connections between risk measures and the theory of multiple priors. It is

also well known that ambiguity (in the sense of multiple priors) could be

viewed as a way to describe model uncertainty. The same is true for risk

measures and model uncertainty in finance.

Due to the similarities between the set that characterizes AVaR and

LCAn, one could argue that LCAn introduces robustness to the dynamic

of the FIBC problem in a way that is closer to robustness in finance. Indeed,

at each moment t the agent evaluates the values of all her possible present

and future actions, then chooses the least risky one with respect to the risk

measure induced by the set LCAn. Arguably, this makes the LCAn an at-

tractive option for future (dynamic) models in economics and finance where

uncertainty needs to be introduced.

With the set QλCLA defined, we can turn to the question of the existence

of extremal measures within it. We answer this question in our context, i.e.

with the reference measure v0 being the uniform measure on the interval

[0, 1], and we do so by focusing on the monotone function characterization
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of extremal measures (see equation (2.9)). It would seem plausible, that

measures v and v are the ones that put the most weight on the right and,

respectively, left end of the interval [0, 1]; we prove this result in lemma 2.4.1

below. We actually prove that the densities of extremal measures are given

with:

dv

dv0

=
1

λ
1[0, λ

λ+1 ] + λ1[ λ
λ+1

,1] =: ϕ,
dv

dv0

=
1

λ
1[0, 1

λ+1 ] + λ1[ 1
λ+1

,1] =: ϕ.

By similar logic as above, the worst measure for U-shaped payoffs should be

the one that puts the most weight on an interval that contains the minimum

of the payoff function; this result related to extremal measures is included in

the lemma. The formulation of the lemma requires us to define the following

set of densities of measures in VλCLA:

Dλ
CLA =

{
dv

dv0

∣∣∣∣ v ∈ VλCLA}
=

{
ϕ : [0, 1]→ R

∣∣∣∣∫ 1

0

ϕ(x) dx = 1, 1
λ
≤ ϕ(x) ≤ λ

}
.

Lemma 2.4.1. 1. For every increasing, bounded measurable function g :

[0, 1]→ R and every ϕ ∈ Dλ
CLA the following inequality holds:∫ 1

0

g(x)ϕ(x) dx ≥
∫ 1

0

g(x)ϕ(x) dx.

2. For every function h : [0, 1] → R which is decreasing on [0, k] and

increasing on [k, 1] for some k ∈ [0, 1] and for every function ϕ ∈ Dλ
CLA

there exists a function ψ ∈ Dλ
U such that:∫ 1

0

h(x)ϕ(x) dx ≥
∫ 1

0

h(x)ψ(x) dx,

where

Dλ
U =

{
λ1[c,c+ 1

λ+1 ] +
1

λ
1[0,c]∪[c+ 1

λ+1
,1]

∣∣∣∣c ∈ [0, λ

λ+ 1

]}
. (2.7)
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Figure 2.2: LCAn - Graphs of functions wt−2(x) (decreasing) and rT−2(x)
(increasing) for λ = 3/2. The point of interesection is bT−2.

It can be seen that the set Dλ
U ⊂ Dλ

CLA is the set of densities that put

the most weight on the interval
[
c, c+ 1

λ+1

]
, which is in accordance with the

considerations preceding the formulation of the lemma.

Analogous results can be formulated about decreasing functions and the

inverted-U-shaped functions.

Definition of the function wT−2 and the monotonicity of functions wT−1

and rT−1 imply that the function wT−2 is U-shaped. Lemma 2.4.1 allows us

to narrow down the search for the minimizing measure within the set Dλ
U ,

which in turn allows for mathematical software to be used to identify the

minimizing measure, plot the graph of the function wT−2 (see figure 2.2) and

calculate the value of the cutoff point bT−2. Similarly as before, we provide a

table with the approximate values of cutoff points bT−1 and bT−2 for different

values of λ.

λ bT−1 bT−2 λ bT−1 bT−2

1 0.5 0.6899 2 0.7500 0.8182
1.01 0.5050 0.6916 3 0.8333 0.8754
1.1 0.5455 0.7073 4 0.8750 0.9057
1.25 0.6000 0.7318 8 0.9375 0.9524
1.5 0.6667 0.7671

Table 2.2: LCAn – Values of the cutoff points bT−1 and bT−2 for different
values of λ.

It is worth noting that in both examples we presented the agent stops
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later than in the classical case. It is not hard to see that this is true for the

period T − 1 for any set of multiple priors, but is less obvious for periods

t < T − 1, hence it remains a conjecture. This is different from the results

of Chudjakow and Riedel (2013) where it was found the agent could stop

both earlier and later than the agent not facing ambiguity, depending on the

shape of the set of multiple priors.

2.5 Conclusion

We formulated and solved the multiple priors version of the classical full

information best choice problem under rather general conditions. We showed

that the solution can be fully characterized via a set of decreasing thresholds,

just as in the classical case. Instead of identifying the minimizing measure

and then solving the single prior problem, we solve the problem with a more

direct approach using the theory of optimal stopping under multiple priors.

More generally, we have demonstrated that the theory of optimal stopping

under multiple priors can accommodate complex problems, hopefully paving

the way for even harder problems to come. In this context, of interest is

our result about adapting any non-adapted optimal stopping problem under

multiple priors.

Our results fit into a wider setting of dynamic problems under multiple

priors: we described a construction of a set of priors for the whole process

using only a single-period set of priors. The construction ensures that the

resulting set of priors is time consistent, thus allowing for “variables with

independent and identical ambiguity” to be used practically and in some

generality to model uncertainty in multi-period models, even beyond the

theory of optimal stopping.

Although the theory of maxmin expected utility is a mature one, non-

trivial examples of the sets of multiple priors in dynamic settings are rare. We

introduced one such example using ideas from the theory of risk measures:

locally constant ambiguity neighborhood is a set of priors in which ambiguity
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of probability about th ’small’ events remains constant. The set itself has

promising interpretations in terms of model uncertainty and invites future

research in the context of risk measures. It also opens possiblities in the

other direction – to explicitly use sets of priors related to established risk

measures in the context of dynamic economic problems under ambiguity.

As it is becoming increasingly evident that economic models with a single

probability measure are not capturing the reality in a satisfactory way, it

becomes necessary to investigate robust models that manage to take into

account Knightian uncertainty of economic problems; we hope this paper

convincingly presents one such model.

Appendix 2.A Applicability of the Theory of

Optimal Stopping under Mul-

tiple Priors

For the theory of optimal stopping to be applied to processes with bounded

payoffs the set of priors P has to satisfy three assumptions. It should be L1

weakly closed and all the measures within the set P should be equivalent.

The set P should also be time consistent: for any two measures, the measure

that allows the agent to “switch” between them at some (possibly random)

time must also be in the set P ; see assumptions A2 − 4 in Riedel (2009).

The following lemma shows that the set P satisfies those assumptions once

we impose mild conditions on the set VA.

Lemma 2.A.1. Assume the set VA satisfies:

1. v0 ∈ VA

2. All the densities
dva
dv0

, a ∈ A, are strictly positive and bounded

3. The set VA is weakly closed in L1(S,S, v0)
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Then the set of measures P(VA) satisfies assumptions A2, A3 and A4 in

Riedel (2009).

Proof. The assumption A2 is satisfied because all the densities in VA are

strictly positive and bounded.

For the weak compactness it is sufficient to show that the set P is closed

and bounded by a uniformly integrable random variable. Since all the den-

sities are bounded, the latter is obvious. Closedness is a consequence of the

third assumption in the formulation of the lemma: weakly closed sets are also

strongly closed, thus the closedness is inherited from weak closedness in each

period by pasting. To see this, it suffices to recall that a sequence of positive

functions convergent in L1 has a subsequence that converges pointwise (al-

most everywhere). With this the closedness can be proven using the classical

argument (that a limit of a sequence of elements of the set also belongs to

the set) by exploiting the previous remarks.

It remains to prove the time consistency. Due to the predictability of each

of the functions ak this is straightforward: Let P a and P b be two measures

with densities dPa

dP0

∣∣∣
Ft

=
∏t

s=1
dvas
dv0

and dP b

dP0

∣∣∣
Ft

=
∏t

s=1
dvbs
dv0

respectably and

let τ be a stopping time. Define ct = at when t ≤ τ and ct = bt when t > τ .

The resulting measure from the property A4 coincides with the measure P c

with density dP c

dP0

∣∣∣
Ft

=
∏t

s=1
dvcs
dv0

which obviously belongs to P ; this is exactly

what was supposed to be proven14.

The theory of optimal stopping under multiple priors guarantees the ex-

istence of the stopping time τ ∗ ∈ T such that:

max
τ∈T

min
P∈P

EP [Eτ ] = min
P∈P

EP [Eτ∗ ],

where Et is a bounded payoff process adapted to the filtration Ft. The min-

14This lemma could alternatively be proven by showing that the set P coincides with
the time-consistent hull “around” the set of all direct product measures from VA; see pp.
868 in Riedel (2009), or Riedel (2004).
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imal optimal stopping time τ ∗ is given with

τ ∗ = min {t ≥ 0 | Ut = Et} ,

where U is the recurcively defined multiple priors value process :

UT = ET , Ut = max

(
Et, ess inf

P∈P
EP [Ut+1 | Ft]

)
.

Furthermore, the theory guarantees the existence of the measure Q∗ ∈ P such

that the value process under multiple priors of the optimal stopping problem

under multiple priors coincides with the value process of the (single-prior)

optimal stopping problem of the process Et under the measure Q∗; this allows

the possibility of reducing the multiple priors problems to the classical ones.

For further details see Theorems 1 and 2 in Riedel (2009).

Appendix 2.B Details on Extremal measures

It is easy to prove that the inequality:

P (Xt+1 ≤ x|Ft) ≥ P (Xt+1 ≤ x|Ft)) (2.8)

holds for any t > 0, x ∈ R and P ∈ P , and a characterization in terms of

monotone functions is straightforward along the lines of the classical proofs

of theorems on first order stochastic dominance (Levy (2015)). Specifically,

the measure P ∈ P satisfies the inequality

EP [h(Xt+1) | Ft] ≤ EP [h(Xt+1) | Ft] (2.9)

for each t > 0, each P ∈ P and each bounded, increasing real function h.

We note an immediate consequence of the monotone characterization of

the extremal measures (2.9):

Lemma 2.B.1. For any function gt : St → R that is bounded, measurable
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and increasing in its last argument the following equality holds:

ess inf
P∈P

EP [g(X1, ..., Xt, Xt+1) | Ft] = EP [g(X1, ..., Xt, Xt+1) | Ft]

Proof. Since the filtration F is generated by X1, . . . , Xt it suffices to show

that, for an arbtirary history X1 = x1, X2 = x2, . . ., Xt = xt, the following

inequality holds:

EP [g(X1, ..., Xt+1) | X1 = x1, . . . , Xt = xt]

≥ EP [g(X1, ..., Xt+1) | X1 = x1, . . . , Xt = xt].

This, however, is true because of the monotone characterization of the ex-

tremal measures (2.9). Indeed, once we fixed the values of random variables

X1, X2, . . . , Xt, the function gt can be interpreted as a function of a single

variable Xt+1 and the inequality follows directly from the inequality (2.9).

An analogous result holds for the decreasing functions.

We can now prove a general result on optimal stopping under multiple

priors that allows one to explicitly reduce certain multiple prior problems to

classical ones.

Lemma 2.B.2. Suppose the set of priors P, obtained by pasting as above,

satisfies the conditions of lemma 2.A.1 and contains the measure P . Then,

for a sequence of functions ft(ε1, . . . , εt), t = 1, . . . , T , each of which is

bounded, measurable, and increasing in every argument on S, the following

equality holds:

max
τ∈T

min
P∈P

EP [fτ (ε1, . . . , ετ )] = max
τ∈T

EP [fτ (ε1, . . . , ετ )]. (2.10)

This result identifies the measure P as the minimizing measure in the

optimal stopping problem (under multiple priors) with payoff at time t given

by Et = ft(ε1, . . . , εt). It can be considered a twofold15 generalization of

15Twofold in the sense that it considers both a more general set of priors and a more
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the Theorem 5 in Riedel (2009). Analogous result can be formulated for

decreasing functions and the measure P .

Lemma 2.B.2 is a result on optimal stopping under multiple priors in-

teresting in its own right, but it won’t be directly used in the solution of

the FIBC problem under multiple priors, However, the structure of the proof

is conceptually similar to the significantly more involved proof of the main

result on the optimal stopping in the FIBC problem under multiple priors.

Hence, the lemma above can be considered a preparatory/introductory re-

sult.

Proof of lemma 2.B.2 : The value process of the optimal stopping problem

under multiple priors is defined recursively with

UT = fT (ε1, ε2, . . . , εT ), Ut = max

(
ft(ε1, ε2, . . . , εt), ess inf

P∈P
EP [Ut+1 | Ft]

)
.

As was already mentioned in the section 3 the optimal stopping time is given

with τ ∗ = min {t ≥ 0 | Ut = ft(ε1, ε2, . . . , εt)}. Thus, it is sufficient to prove

that the value proces U coincides with the value process U of the classical

(single prior) optimal stopping process under the measure P ∈ P . Indeed,

since the latter is defined with

UT = fT (ε1, ε2, . . . , εT ); U t = max
(
ft(ε1, ε2, . . . , εt), E

P [U t+1 | Ft]
)
, t < T,

and it’s optimal stopping time is given with16: τ ∗ = min{t | U t = ft(ε1, . . . , εt)}
it is clear that the optimal stopping times will coincide if the value processes

do, too.

general class of monotone functions.
16The cornerstone result of the optimal stopping theory is that it is optimal to stop the

first time the value process and payoff are equal; see Peskir and Shiryaev 2006 or Ferguson
2006.
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We can define, for t < T , the sequence of functions ut:

ut(e1, . . . , et) = max

(
ft(e1, . . . , et), ess inf

P∈P
EP [Ut+1 | ε1 = e1, . . . , εt = et]

)
,

(2.11)

with uT (e1, . . . , eT ) = fT (e1, . . . , eT ). Similarly, we can define

uT (e1, . . . , eT ) = fT (e1, . . . , eT )

and

ut(e1, . . . , et) = max
(
ft(e1, . . . , et), E

P [U t+1] | ε1 = e1, . . . , εt = et]
)

= max
(
ft(e1, . . . , et), E

P [U t+1]
)
, (2.12)

where the second equality holds due to independence of variables εt under

the measure P .

As in lemma 2.B.1 we note that the filtration Ft is generated by ε1, . . . , εt,

hence Ut = ut(ε1, . . . , εt) and U t = ut(ε1, . . . , εt). Thus, processes U and U

coincide if and only if the functions ut and ut concide. We prove the latter

assertion by backward induction.

The assertion is satisfied at time T by the definition of the functions ut

and ut.

For t < T , the equality ut+1(ε1, ε2, . . . , εt+1) = ut+1(ε1, ε2, . . . , εt+1) holds

by assumption. This allows us to write the function ut as:

ut(e1, . . . , et) =

= max

(
ft(e1, . . . , et), ess inf

P∈P
EP [ut+1(ε1, . . . , εt+1) | ε1 = e1, . . . , εt = et]

)
= max

(
ft(e1, . . . , et), ess inf

P∈P
EP [ut+1(ε1, . . . , εt+1) | ε1 = e1, . . . , εt = et]

)
Given the definition of ut in the equation (2.12) it suffices to show that

the infimum in the second term in the maximum above is attained for P . For
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that purpose we define a sequence of functions

wt(e1, . . . , et) = ess inf
P∈P

EP [ut+1(ε1, . . . , εt+1) | ε1 = e1, . . . , εt = et], (2.13)

for t = 0, . . . , T −1. To complete the proof of the lemma we will demonstrate

that the following claim holds:

Claim: For each t ∈ {0, . . . , T − 1}

i) the function wt is increasing in every argument,

ii) the equality wt(e1, . . . , et) = EP [ut+1(e1, . . . , , et, εt+1)] holds.

Indeed, the definition of functions ut implies that the functions wt satisfy the

recursion:

wt(e1, . . . , et) =

ess inf
P∈P

EP [max (ft+1(e1, . . . , et+1), wt+1(e1, . . . , et+1)) | ε1 = e1, . . . , εt = et]

(2.14)

for t = 0, . . . , T−2 which allows us to prove the claim by backward induction.

For the induction base, note that

wT−1(e1, . . . , eT−1) = ess inf
P∈P

EP [fT (ε1, . . . , εT ) | ε1 = e1, . . . , εT−1 = eT−1].

The function fT is increasing in every argument by assumption. Hence, using

lemma 2.B.1 we conclude that

wT−1(e1, . . . , eT−1) = EP [fT (ε1, . . . , εT ) | ε1 = e1, . . . , εT−1 = eT−1]

= EP [fT (ε1, . . . , εT )]

where the last equality holds due to the fact that ε1, . . . , εt are random vari-

ables that are independent under the measure P . Hence, part ii) of the claim

holds and part i) follows from basic properties of integration17.

17See also Lemma 2.D.2 bellow.
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Assume now that t < T − 1. Since the function max (ft+1, wt+1) is in-

creasing by assumptions on ft+1 and wt+1 we can apply lemma 2.B.1 to wt

(as written in (2.14)) to obtain:

wt(e1, . . . , et) = EP [max (ft+1(e1, . . . , et, εt+1), wt+1(e1, . . . , et, εt+1))] ,

where, similarly as before, we used the independence under P . Again, basic

integration properties imply that part i) of the claim holds. Using the part

ii) of the inductive assumption we can rewrite the last equation as:

wt(e1, . . . , et) = EP
[
max

(
ft+1(e1, . . . , et, εt+1), EP [ut+2(e1, . . . , et, εt+1, εt+2)]

)]
= EP [ut+1(e1, . . . , et, εt+1)].

Thus, the part ii) of the claim holds, too. This completes the proof of the

claim and, hence, the proof of the lemma.

Appendix 2.C Equivalence of Problems 3 and

4

A version of this result appears in Chudjakow and Riedel (2013); the analysis

we offer contains additional details and, due the generality of the construction

of the set of priors P , applies to a broader class of problems.

We begin by proving an auxiliary result based on Lemma 8 in Riedel

(2009).

Lemma 2.C.1 (Iterated version of Lemma 8 in Riedel 2009 and corol-

laries). Let P1, P2, . . . , Pn be measures in P, τ ∈ T a stopping time, and

A1, A2, . . . , An sets in Fτ that form a partition of Ω.

1. There exists a measure P ∈ P such that for any r.v. Z:

EP [Z | Fτ ] =
n∑
k=1

EPk [Z1Ak | Fτ ]. (2.15)
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2. For any r.v. Z and any k ∈ {1, . . . , n} the equality EP [Z1Ak ] =

EPk [Z1Ak ] holds.

3. The equality EP [Z] =
∑n

k=1 E
Pk [Z1Ak ] holds for any r.v. Z and any

k ∈ {1, . . . , n}.

Proof. 1. This claim is just an iterated version of Lemma 8 in Riedel (2009).

2. First, we note that for any set Ak and any r.v. Z, by plugging Z1Ak

in (2.15) we have:

EP [Z1Ak | Fτ ] =
n∑
i=1

EPi [Z1Ak1Ai | Fτ ] = EPk [Z1Ak | Fτ ] (2.16)

In particular for an arbitrary set B ∈ Fτ we have:

EPk [1AkB] = EPk [1AkB | Fτ ] = EP [1AkB | Fτ ] = EP [1AkB], (2.17)

Since measures P and Pk are both in P the Radon-Nykodim derivative dPk
dP

is well defined. Thus, using (2.16), for an arbitrary set B ∈ Fτ , the following

holds:

EP

[
EP

[
dPk
dP

1Ak | Fτ
]
1B

]
= EP

[
dPk
dP

1Ak1B

]
= EPk [1AkB]. (2.18)

Combining (2.17) and (2.18) we obtain18:

EP

[
dPk
dP

1Ak | Fτ
]

= 1Ak . (2.19)

Now, multiplying the well known identity

EP

[
dPk
dP
| Fτ

]
EPk [Z | Fτ ] = EP

[
dPk
dP

Z | Fτ
]

18If M is F measurable then E[Z | F ] = M iff for any B ∈ F the equality E[M1B ] =
E[Z1B ] holds.
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with 1Ak (which is Fτ -measurable) we obtain:

EP

[
dPk
dP

1Ak | Fτ
]
EPk [Z1Ak | Fτ ] = EP

[
dPk
dP

Z1Ak | Fτ
]
.

Using the equations (2.16) and (2.19) the last equality can be rewritten as:

EP [Z1Ak | Fτ ] = EP [Z1Ak | Fτ ] = EP

[
dPk
dP

Z1Ak | Fτ
]
.

Finally, taking expectation over P in the last equality, we obtain the desired:

EP [Z1Ak ] = EP
[
EP [Z1Ak | Fτ ]

]
= EP

[
EP

[
dPk
dP

Z1Ak | Fτ
]]

= EP

[
dPk
dP

Z1Ak

]
= EPk [Z1Ak ]

3. Direct consequence of 2. .

With this we are prepared for the following lemma:

Lemma 2.C.2. For Yt, Zt and P as defined above the following equality

holds:

min
P∈P

EP [Zτ ] = min
P∈P

EP [Yτ ] (2.20)

Proof of Lemma 2.C.2. Let us, for each t, denote by Qt and Rt measures that

minimize the adapted and non-adapted payoffs at time τ = t, i.e. Zt1{τ=t}

and Yt1{τ=t}, respectfully (the existence of these measures is guaranteed by

Riedel (2009); see Lemma 10 therein). Using the law of iterated expectation

for multiple priors (Lemma 4 in Riedel (2009)) we obtain:

EQt
[
Zt1{τ=t}

]
= min

P∈P
E
[
Zt1{τ=t}

]
= min

P∈P

[
ess inf
P ′∈P

EP ′ [Yt | Ft]1{τ=t}

]
= min

P∈P

[
ess inf
P ′∈P

EP ′ [Yt1{τ=t} | Ft]
]

= min
P∈P

[
Yt1{τ=t}

]
= ERt

[
Yt1{τ=t}

]
. (2.21)
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By the third claim of lemma 2.C.1 above there exist the measures Q,R ∈ P
such that

∑T
t=1 E

Qt [Zt1{τ=t}] = EQ[Zτ ] and
∑T

t=1 E
Rt [Zt1{τ=t}] = ER[Zτ ].

Combining the second claim of the same lemma with the equation (2.21)

above we have, for each t:

EQ[Zt1{τ=t}] = EQt [Zt1{τ=t}] = ERt [Zt1{τ=t}] = ER[Zt1{τ=t}] (2.22)

Furthermore, arg minP∈P E
P [Zt1{τ=t}] = Q for each t, which allows us to

write:

min
P∈P

EP [Zτ ] = min
P∈P

T∑
t=1

EP
[
Zt1{τ=t}

]
=

T∑
t=1

EQ
[
Zt1{τ=t}

]
= EQ [Zτ ] .

(2.23)

Similarly, we conclude that:

min
P∈P

EP [Yτ ] = min
P∈P

T∑
t=1

EP
[
Yt1{τ=t}

]
=

T∑
t=1

ER
[
Yt1{τ=t}

]
= ER [Yτ ] .

(2.24)

Finally, the left hand side of equation (2.23) and (2.24) are equal because

of (2.22), hence the right hand sides are also equal, which completes the

proof.

Appendix 2.D Proof of Theorem 2.3.1

For the sake of convenience, we begin by defining a sequence of functions

it+1(x1, . . . , xt, xt+1) = 1xt+1≤max(x1,...,xt)

for t < T . Note that this allows the random variable 1Xt+1≤Mt to be written

in terms of the function it+1 as follows:

1Xt+1≤Mt = it+1(X1, . . . , Xt, Xt+1).
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As a preparation for the proof of theorem 2.3.1 we prove a result on the

representation of the payoff process Zt.

Since X1, . . . , Xt are independent under P we can derive the following

representation for functions rt:

rt(m) =
∏
s>t

EP [1Xs≤m] = (v(X1 ≤ m))T−t,

where the second equality is due to the definition of the measure v. It is now

obvious that rt is an increasing function.

The next lemma describes the expected (ambiguous) Zt in terms of the

function rt:

Lemma 2.D.1. For each t ∈ {1, . . . , T} the following representation holds:

Zt = 1{Xt=Mt}rt(Xt) (2.25)

Proof. Note that:

Zt = ess inf
P∈P

EP
[
1{Xt=Mt=MT } | Ft

]
= 1{Xt=Mt} ess inf

P∈P
EP
[
1{Mt=MT } | Ft

]
.

(2.26)

Define the process:

Rt = ess inf
P∈P

EP
[
1{Mt=MT } | Ft

]
,

and the function:

rt(x1, . . . , xt) = ess inf
P∈P

EP
[
1{Mt=MT } | X1 = x1, . . . , Xt = xt

]
.

Clearly, the following equalities hold:

Zt = Rt1{Xt=Mt} = rt(X1, . . . , Xt)1{Xt=Mt}. (2.27)

52



Thus it suffices to show the following:

Claim: For each t the equality Rt = rt(Mt) holds almost surely.

The claim is proven by backward induction.

Since RT = rT (MT ) = 1 the claim trivially holds in the last period so we

turn to the case t < T .

We begin by deriving a recursive expression for Rt (using the law of

iterated expectations for multiple priors19) as follows:

Rt = ess inf
P∈P

EP
[
1Mt=Mt+1=MT

| Ft
]

= ess inf
P∈P

EP

[
ess inf
Q∈P

EQ
[
1Mt+1=MT

| Ft+1

]
1Mt=Mt+1 | Ft

]
= ess inf

P∈P
EP
[
Rt+11Mt≥Xt+1 | Ft

]
.

If we denote the realization of Mt with mt (i.e. mt = max(x1, . . . , xt)) we

can rewrite the last equality in terms of the functions rt and rt using (2.27)

and the induction hypothesis as follows:

rt(x1, . . . , xt) = ess inf
P∈P

EP
[
rt+1(Mt+1)1Xt+1≤mt | X1 = x1, . . . , Xt = xt

]
= rt+1(mt+1) ess inf

P∈P
EP
[
1Xt+1≤mt | X1 = x1, . . . , Xt = xt

]
.

In the last equality above we used the fact that on the set {Xt+1 ≤ mt} the

equality Mt+1 = Mt holds.

Since 1Xt+1≤Mt = it+1(X1, . . . , Xt, Xt+1) and the function it+1 is decreas-

ing in its last variable we can use lemma 2.B.1 to identify P as the minimizing

measure in the last expression:

rt(x1, . . . , xt) = rt+1(mt)E
P
[
1Xt+1≤mt | X1 = x1, . . . , Xt = xt

]
=

( ∏
s>t+1

EP [1Xs≤mt ]

)
EP
[
1Xt+1≤mt

]
= rt(mt);

the last equality is due to the definition of rt.

19Lemma 4 in Riedel (2009).
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We note that Lemma 2.D.1 proves that infimum in the definition of the

adapted payoff Zt is attained for v.

For the sake of convenience we also state a simple result about mono-

tonicity of integral functions in the setting of our problem.

Lemma 2.D.2. Let g(x1, . . . , xt, xt+1), t < T , be a function increasing (de-

creasing) in each of the first t arguments. For any P ∈ P the function

hP (x1, . . . , xt) = EP [g(X1, . . . , Xt, Xt+1) | X1 = x1, . . . Xt = xt]

is increasing (decreasing) in every argument, as is the function

h(x1, . . . , xt) = ess inf
P∈P

EP [g(X1, . . . , Xt, Xt+1) | X1 = x1, . . . Xt = xt].

Proof. The elementary proof of the first part of the lemma is omitted. Once

one notices that h = ess infP∈P h
P the second part follows immediately from

the first part and the properties of the essential infimum.

We turn to proving the core of the theorem and for that purpose we define

the value process U of the FIBC optimal stopping problem under multiple

priors:

UT = ZT ; Ut = max(Zt, ess inf
P∈P

EP [Ut+1 | Ft]), t < T.

The analysis will focus on the properties of the second argument in the

maximum above so we define:

Wt = ess inf
P∈P

EP [Ut+1 | Ft], 0 ≤ t < T.

As can be seen from the value process, the random variable Wt describes the

expected value (under multiple priors) of the payoff the agent will receive if

she does not stop at time t given the available information. The definition

above implies:

WT−1 = ess inf
P∈P

EP [ZT | FT−1], Wt = ess inf
P∈P

EP [max(Zt+1,Wt+1) | Ft].
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If we introduce the sequence of functions:

w∗t (x1, . . . , xt) = ess inf
P∈P

EP [Ut+1 | X1 = x1, . . . , Xt = xt], 0 ≤ t < T.

the equality Wt = w∗t (X1, . . . , Xt) clearly holds. Furthermore:

Lemma 2.D.3. For each t ∈ {0, 1, . . . , T − 1} the function w∗t is decreasing

in every variable.

Proof. The proof is by backward induction.

We first consider w∗T−1. Notice that:

w∗T−1(x1, . . . , xT−1) = ess inf
P∈P

EP [ZT | FT−1]

= ess inf
P∈P

EP [1XT=MT
| X1 = x1, . . . , XT−1 = xT−1]

= ess inf
P∈P

EP [iT (x1, . . . , xT−1, XT ) | X1 = x1, . . . , XT−1 = xT−1]

Since iT is obviously decreasing in first T −1 variables, we can use the above

lemma 2.D.2 to conclude that w∗T−1 is decreasing in every variable.

For t < T − 1 we have:

w∗t (x1, . . . , xt) = ess inf
P∈P

EP
[

max
(
1Xt+1=Mt+1rt+1(Xt + 1),

w∗t+1(x1, . . . , xt, Xt+1)
)
| X1 = x1, . . . , Xt = xt

]
= ess inf

P∈P
EP
[

max
(
it+1(x1, . . . , xt, Xt+1)rt+1(Xt + 1),

w∗t+1(x1, . . . , xt, Xt+1)
)
| X1 = x1, . . . , Xt = xt

]
.

The function it+1 is decreasing in its first t arguments and the function rt+1

is decreasing in every argument. The function w∗t+1 is decreasing in every

argument by assumption. Thus, the result now follows from the fact that

the maximum of decreasing function is a decreasing function and the lemma

2.D.2.
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The last result allows us to formulate a simple representation of the pro-

cess Wt:

Lemma 2.D.4. For each t ∈ {0, 1, . . . , T − 1} there exists a decreasing

function wt(m) such that Wt = wt(Mt).

Proof. We begin the proof by backward induction by noting that, since ZT =

1XT=MT
and

WT−1 = ess inf
P∈P

EP [ZT | FT−1] = ess inf
P∈P

EP [1XT=MT
| FT−1],

we have, due to the definition of w∗T−1,

w∗(x1, . . . , xT−1) = ess inf
P∈P

EP [iT (x1, . . . , xT−1, XT ) | X1 = x1, . . . , XT−1 = xT−1]

= EP [iT (x1, . . . , xT−1, XT ) | X1 = x1, . . . , XT−1 = xT−1]

= P (XT ≥MT−1),

where the second equality is due to lemma 2.B.1. It thus suffices to define

wT−1(m) = P (XT ≥ m). Indeed, the function wT−1 is clearly decreasing and

the equality wT−1(Mt) = WT holds because of the previous considerations.

Suppose that for t < T there exists a decreasing function wt+1 such that

wt+1(Mt+1) = Wt+1. This allows us to rewrite Wt in terms of wt+1 and rt+1:

Wt = ess inf
P∈P

EP [max(Zt+1,Wt+1) | Ft] =

= ess inf
P∈P

EP
[
max

(
rt+1(Mt+1) · 1Xt+1=Mt+1 , wt+1(Mt+1)

)
| Ft
]

= ess inf
P∈P

(
EP
[
max (rt+1(Xt+1), wt+1(Xt+1)) · 1Xt+1≥Mt | Ft

]
+ wt+1(Mt+1) · EP [1Xt+1<Mt | Ft]

)
,

where the last equality is due to:

max
(
rt+1(Mt+1) · 1Xt+1=Mt+1 , wt+1(Mt+1)

)
=

max (rt+1(Xt+1), wt+1(Xt+1)) · 1Xt+1≥Mt + wt+1(Mt+1) · 1Xt+1<Mt .
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Since Wt = w∗t (X1, . . . , Xt), and Mt = Mt+1 on the set Xt+1, we can write:

w∗t (x1, . . . , xt) =

ess inf
P∈P

(
EP
[
max(rt+1(Xt+1), wt+1(Xt+1)) · 1Xt+1≥Mt | X1 = x1, . . . , Xt = xt

]
+ wt+1(Mt) · EP [1Xt+1<Mt | X1 = x1, . . . , Xt = xt]

)
= ess inf

v∈VA

(∫ 1

mt

max(rt+1(x), wt+1(x)) dv + wt+1(mt)

∫ mt

0

dv
)
,

where mt = max(x1, . . . , xt) and the last equality is due to the definition of

the set P in section 3. Thus, by setting

wt(m) = ess inf
v∈VA

(∫ 1

m

max(rt+1(x), wt+1(x)) dv + wt+1(m)

∫ m

0

dv
)
, (2.28)

for t < T , we get wt(mt) = w∗t (x1, . . . , xt) which, due to the definition of w∗t ,

implies wt(Mt) = Wt.

Finally, since wt(max(x1, . . . , xt)) = w∗t (x1, . . . , xt), the function w∗t is

symmetric; thus, the monotonicity of the function wt is a consequence of the

monotonicity of the function w∗t as described by the lemma 2.D.3.

We now turn to proving that the stopping time is of the threshold type.

The proof of the last lemma reveals that the functions wt are defined

by the recursion wT−1(m) = P (XT ≥ m) and, for t < T − 1, the equation

(2.28). Equivalently, we can expand the definition to include the final period

by setting wT (m) = 0 and wt as defined by the expression in the equation

(2.28) for t < T .

It is clear that, for each t < T , the equalities wt(1) = rt(0) = 0 hold

and that the functions rt are strictly increasing, while the functions wt are

(weakly) decreasing. Thus, for t < T , there exists a unique bt ∈ [0, 1) such

that wt(bt) = rt(bt). Additionally, we define bT = 0. We record the previous

considerations, along with the proof of the monotonicity of the sequence (bt),

in the following lemma.
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Lemma 2.D.5. For each t < T there exists a unique bt ∈ [0, 1] such that

the equality wt(bt) = rt(bt) holds. Furthermore, for each t < T the inequality

bt > bt+1 holds.

Proof. Suppose t < T . Note that, due to the definition of the sequence

(bt) and the fact that the function rt+1 is strictly increasing, the following

(in)equalities hold

max(rt+1(x), wt+1(x)) = rt+1(x) > rt+1(bt+1) = wt+1(bt),

for each x ∈ (bt+1, 1]. Hence:

wt(bt+1) = ess inf
v∈VA

(∫ 1

bt+1

max(rt+1(x), wt+1(x)) dv + wt+1(bt+1)

∫ bt+1

0

dv

)
> ess inf

v∈VA

(∫ 1

bt+1

wt+1(bt+1) dv + wt+1(bt+1)

∫ bt+1

0

dv

)
= wt+1(bt+1).

(2.29)

Note, also, that the definition of rt implies rt(x) < rt+1(x) for any x ∈ (0, 1).

Thus, given the previously obtained inequality (2.29), we get:

wt(bt+1) > wt+1(bt+1) = rt+1(bt+1) > rt(bt+1). (2.30)

With the inequality (2.30) proven we can turn to proving the inequality

stated in the formulation of the lemma.

Suppose the opposite: bt ≤ bt+1. The definition of bt and the mono-

tonicity of rt imply: wt(bt) = rt(bt) ≤ rt(bt+1) < wt(bt+1), where the last

inequality is due to the previously proven inequality (2.30). This, however,

is in contradiction with the monotonicity of wt.

To complete the proof of the first two parts of the theorem it remains to

prove the equality (2.4); we do so in the following lemma:
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Lemma 2.D.6.

τ ∗ = min{t |Xt = Mt > bt}

Proof. In the context of FIBC the optimal stopping time is given with:

τ ∗ = min{t | Zt = Ut} = min{t | Zt ≥ Wt}.

Using the representations for Zt and Wt obtained in lemmas 2.D.1 and 2.D.4

respectfully, the inequality Zt ≥ Wt = wt(Mt) can only be satisfied when

Xt = Mt (in which case Zt = rt(Mt)), hence:

τ ∗ = min{t | Xt = Mt, rt(Mt) ≥ wt(Mt)}.

Finally, due to the monotonicity of rt and wt and lemma 2.D.5, the inequality

rt(Xt) ≥ wt(Xt) is satisfied only when bt ≤Mt = Xt.

It remains to note that the essential infimum in (2.28) is attained (see

Lemma 10 in Riedel (2009)). This, with the definitions of Wt and Ut, and

Lemma 2.D.1 proves the third part of the theorem. Indeed, before stopping

the minimizing measure is the one attained in (2.28), and once the agent

stops the her payoff is Zt, and lemma 2.D.1 implies that the minimizing

measure is v.

Appendix 2.E Proof of Lemma 2.4.1

Proof of claim 1 of Lemma 2.4.1. We define an operator G : L1([0, 1]) → R

with

Gϕ =

∫ 1

0

g(x)ϕ(x) dx,
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and note that it is (Lipschitz) L1-continous. Indeed, using the fact that g is

increasing and bounded:

|Gϕ1 −Gϕ2| =
∣∣∣∣∫ 1

0

g(x)(ϕ1(x)− ϕ2(x)) dx

∣∣∣∣ ≤ C

∣∣∣∣∫ 1

0

ϕ1(x)− ϕ2(x) dx

∣∣∣∣ ,
where C is a positive constant that bounds |g(x)|.

Let Dλ
S be the set of all the step functions within the set Dλ

CLA. We will

prove that Dλ
S is dense20 in Dλ

CLA. For an arbitrary ϕ ∈ Dλ
S and an arbitrary

ε > 0 one can choose a step function ϕ1 such that 1
λ
≤ ϕ1(x) ≤ ϕ(x) ≤ λ

and: ∣∣∣∣∫ 1

0

ϕ1(x)− ϕ(x) dx

∣∣∣∣ < ε

2
. (2.31)

If one defines I =
∫ 1

0
ϕ1(x) dx ≤ 1 and:

γ =
1−

∫
B
ϕ1(x) dx∫

A
ϕ1(x) dx

for A = {ϕ1(x) ≤ I} and B = [0, 1]\A it is easy to check that, for sufficiently

small ε, the function ϕS = γϕ11A+ϕ11B is a function that belongs to Dλ
CLA.

Furthermore, direct calculations show that the inequality∣∣∣∣∫ 1

0

ϕ1(x)− ϕS(x) dx

∣∣∣∣ < ε

2
(2.32)

holds21. Combining the inequalities (2.31) and (2.32) gives:∣∣∣∣∫ 1

0

ϕS(x)− ϕ(x) dx

∣∣∣∣ < ε,

which proves the density.

As the operator G is continuous and the set Dλ
S (which contains ϕ) is

dense in Dλ
CLA, for the claim to hold it suffices to show that for any ϕ ∈ Dλ

S

20With respect to L1 metric.
21The inequality (2.32) is in fact equivalent to (2.31).
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the inequality Gϕ ≥ Gϕ holds. We do so in the remainder of the proof.

Let us fix ϕ ∈ Dλ
S:

ϕ =
n∑
i=1

di1[ci−1,ci], ∈ Dλ
CLA. (2.33)

Without loss of generality we can assume that there is an indexm ∈ {1, . . . , n}
such that cm = 1/(1 + λ).

Set ϕ0 = ϕ. The idea is to create a finite sequence of functions (ϕi) in

which the last element is ϕ with the inequality Gϕi ≤ Gϕi−1 being satisfied

for any i > 0.

If ϕ0 = ϕ the proof is done. If not, we choose the step function ϕ1 such

that it differs from ϕ0 by the value it takes on two appropriately chosen

intervals. For that purpose we define:

j = min{i | di < λ}, j′ = max{i | di > 1/λ}.

Note that since ϕ0 6= ϕ we have j < m < j′. We now focus on the intervals

[cj−1, cj] and [cj′−1, cj′ ] and set the value of ϕ1 to be λ on the former interval

or 1/λ on the latter by “repositioning the weight” of ϕ0.

If (λ − dj)(cj − cj−1) ≤ (dj′ − 1
λ
)(cj′−1 − cj′) we “reposition the excess

weight” from the interval [cj′−1, cj′ ] to the interval [cj−1, cj], that is we define:

ϕ1 =ϕ01[0,1]\([cj−1,cj ]∪[cj′−1,cj′ ])
+(

dj + (dj′ − 1
λ
)
cj′−1 − cj′
cj − cj−1

)
1[cj−1,cj ] +

1

λ
1[cj′−1,cj′ ]

.

The inequality Gϕo ≤ Gϕ1 is satisfied. Indeed, direct calculation yields

Gϕo −Gϕ1 =

∫ cj

cj−1

g(x)(ϕ0(x)− ϕ1(x)) dx+

∫ cj′

cj′−1

g(x)(ϕ0(x)− ϕ1(x)) dx

= −(dj′ − 1
λ
)
cj′−1 − cj′
cj − cj−1

∫ cj

cj−1

g(x) dx+ (dj′ − 1
λ
)

∫ cj′

cj′−1

g(x) dx,

and one can use the monotonicity of the function g and the inequalities
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j < m < j′ to make the following estimation:

Gϕo −Gϕ1 ≥ (dj′ − 1
λ
)

(
g(cj′−1)(cj′−1 − cj′)−

cj′−1 − cj′
cj − cj−1

g(cj)(cj−1 − cj)
)

= (dj′ − 1
λ
)(cj′−1 − cj′)(g(cj′−1)− g(cj) ≥ 0.

When the inequality (λ− dj)(cj − cj−1) > (dj′ − 1
λ
)(cj′−1 − cj′) holds one

can construct the function ϕ1 using an analogous ”weight repositioning”.

If ϕ1 = ϕ the proof is done. If not, one can create ϕ2 from ϕ1 as above. As

the step function ϕ has finitely many steps the procedure ends after finitely

many iterations.

Proof of claim 2 of Lemma 2.4.1. We begin by fixing ϕ ∈ Dλ
CLA and defin-

ing:

µ1 =

∫ k

0

ϕ(x) dx, µ2 =

∫ 1

k

ϕ(x) dx.

We will identify two functions ψ1 and ψ2, defined on [0, k] and [k, 1]

respectively, such that the function ψ := ψ11[0,k] + ψ21(k,1] is the one that

satisfies the claim. These will be the functions that “reposition the weight”

µ1 and µ2 within the intervals [0, k] and [k, 1], such that most weight is on

the upper part of the former and the lower part of the latter.

First we focus on the interval [0, k]. The first claim showed how to identify

the step function ϕ that, for a fixed, decreasing and bounded function g,

minimizes the integral on the right hand side of (2.E) among all the functions

ϕ whose range is within the interval [1/λ, λ] and whose total weight is equal

to 1. Note that ϕ was simply the function that put the most weight possible

on the upper part of the interval [0, 1]. Focusing on the interval [0,k], where

the function h is decreasing, we are in a similar situation: among all the

functions with a range within [1/λ, λ] and whose integral is equal to µ1 we

are looking for a function ψ1 that minimizes the integral
∫ k

0
h(x)ψ1(x) dx.

Analogous reasoning to the one in the proof of the first claim22 will lead us

22Note that the first claim could have been formulated for functions on any interval
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to the conclusion that ψ1 has to be the function that puts the most weight

as possible on the upper part of the interval [0, k]:

ψ1 =
1

λ
1[0,c1] + λ1(c1,k], .

for an appropriately chosen c1. Identifying the precise value of c1 is not

difficult: since the inequalities clearly k
λ
≤ µ1 ≤ kλ hold, there exists c1 ∈

[0, k] such that:
c1

λ
+ λ(k − c1) = µ1.

This proves the inequality:∫ k

0

h(x)ϕ(x) dx ≥
∫ k

0

h(x)ψ1(x) dx. (2.34)

Similarly, by focusing on the interval [k, 1] one can identify the function ψ2

(and the corresponding c2) which puts the most weight on the lower part of

the interval, such that:∫ 1

k

h(x)ϕ(x) dx ≥
∫ 1

k

h(x)ψ2(x) dx =

∫ 1

k

h(x)

(
λ1[k,c2] +

1

λ
1(c2,1]

)
dx.

(2.35)

Direct calculations show that Dλ
U 3 ψ := ψ11[0,k] + ψ21(k,1] and the claim

follows by combining (2.34) and (2.35).

[a, b], and with total weight of densities being equal to any number (as opposed to 1); we
chose not to do so for the sake of readability.
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Chapter 3

Locally Constant Model

Uncertainty Risk Measure

Abstract

This paper introduces a (coherent) risk measure that describes the

uncertainty of the model (represented by a probability measure P0) by

a set Pλ of probability measures each of which has a Radon-Nikodym’s

derivative (with respect to P0) that lies within the interval [λ, 1
λ ] for

some constant λ ∈ (0, 1]. Economic considerations are discussed and

an explicit representation is obtained that gives a connection to both

the expected loss of the financial position and its average value-at-

risk. Optimal portfolio analysis is performed – different optimization

criteria lead to Merton portfolio. Comparison with related problems

reveals examples of extreme sensitivity of optimal portfolios to model

parameters and the choice of risk measure.
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3.1 Introduction

The theory of (coherent) risk measures1 allows one to describe the risk of a

financial position in monetary terms: the value of a risk measure of a certain

position is the amount of numeraire that needs to be added to the position to

make it safe. As the future value of a financial position is not deterministic

it is classically modelled by a random variable on a probability space that

is assumed to be given, the implicit assumption being that one is somehow

able to deduce the “correct” probability measure that drives the prices of

the underlying assets. In practice, there is always going to be some model

uncertainty – one can never be sure that the measure in use is the one that

really drives the world.

Ideally, a risk measure should “take into account” both the model uncer-

tainty and the “genuine” uncertainty (due to the randomness of the world).

Arguably, coherent risk measures achieve just that: the well known result on

robust representations of coherent risk measures proves that each coherent

risk measure ρ can be completely characterized by a set P of probability

measures2. The characterization allows the (monetary) risk of any financial

position X to be calculated as the maximal expected loss of the said position

with respect to measures that belong to P :

ρ(X) = max
P∈P

EP [−X]. (3.1)

Unsurprisingly, sets of measures that represent many of the well known

coherent risk measures have been characterized explicitly. It is however worth

noting that coherent risk measures are usually not defined via the set of prob-

ability measures that represents them, but rather via an explicit expression

1The literature begins with Artzner et al. (1999). A serious introduction to coherent
and convex risk measures can be found in Föllmer and Schied (2011). Although we will
point out some important results, for further details we refer the reader to that text and
the references offered therein.

2Generally, the probability measures in the set P are finitely additive, but under
reasonable technical assumptions they are sigma-additive. For details see chapters 4.2 and
4.3 in Föllmer and Schied (2011).
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that is somehow economically motivated.

In this paper we take the opposite approach: we introduce a coherent risk

measure, the Locally Constant Model Uncertainty (LCMUλ), via the set of

measures that represents it. We will impose conditions on the set of priors

so that the risk measure LCMUλ describes the uncertainty of the model

(described by a given probability measure P0) in a way that is, in a sense

that will soon become clear, locally constant and quantified by the constant

λ ∈ (0, 1]3.

In order to formalize the idea of locally constant model uncertainty we

will use ideas that are closely related to ambiguity theory, and, in particular,

maxmin expected utility theory4. We assume that we are given a probability

measure P0 on the event space that, for now, we assume is a subset of the

real line. One might assume that the measure describes the randomness of

the world well, but not ideally. More precisely, we assume that for each

“small” interval/event [a, b] its probability p prescribed by the measure P0

could be wrong, but still a good approximation – the “true probability” of

the event lies within an interval that contains p. The first approach would

be to consider the interval (p− ε, p+ ε); this resembles the ε-contamination

model of Maccheroni et al. (2006) in ambiguity theory. Possible reservations

when it comes to this approach would be that we are immediately limited

to situations where ε < 1. Arguably even more important than that, when

one considers an event’s probability one does not necessarily think in terms

of whether something is more or less likely for a certain amount of percents;

it may be more natural to think in terms of how many more (or less) times

something is more (or less) likely to happen. For example, for a quite bad

model, one may decide that the prescribed probability p could be wrong

in either direction: it could be up to twice as likely, or up to two times

3This approach somewhat resembles the definition of a risk measure known as the
superhedging price, but the choice of the set of measures that appear in its robust charac-
terization is completely different, both formally and in motivation.

4The theory was introduced in the seminal paper Gilboa and Schmeidler (1989). For a
recent review of ambiguity theory and the place of maxmin expected utility theory within
it see Gilboa and Marinacci (2016).
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overestimated.

We choose to describe the model uncertainty by the interval [pλ, p/λ] for

some constant λ ∈ (0, 1]. One can think of λ as the model uncertainty level :

the greater the value, the lower the model uncertainty. In order to be able

to use this idea more generally, we would have to consider “infinitesimaly

small events”. This is the reason why we introduce the set Pλ, that defines

the risk measure LCMUλ, via Radon-Nikodym derivatives: it will contain

all the measures P such that λ ≤ dP/dP0 ≤ 1/λ.

One of the main results of this paper is a representation theorem: the

LCMUλ of a financial position can be represented as a convex combination

of its expected future loss (with respect to the given measure P0) and its

average value-at-risk calculated at an appropriately chosen level.

Value-at-risk at level λ (V aRλ) of a financial position is simply a negative

value of its λ-quantile; it is a risk measure that is not coherent and has

several undesirable properties. Average value-at-risk at level λ (AV aRλ) is

an average of all the values of value-at-risk at levels between zero and λ. It

is a coherent risk measure with technical and economic properties superior

to V aR. Given the difference in motivations for introducing LCMU and

AV aR it is quite curious that there is a deeper connection between the two

measures. The connection is due to the resemblance of the set Pλ to the set

that appears in the the representation of (AV aRλ)
5. An agent estimating

their risk using LCMU ends up with an estimation that is, in a very precise

sense, a mixture of estimations of a risk-neutral agent and an agent utilizing

AV aR.

Once the LCMUλ risk measure is introduced, optimal portfolio analysis

is performed. We consider a continuous-time frictionless financial market

with a numeraire the value of which evolves deterministically, and several

risky assets. Risky assets are assumed to be a “time dependent version” of

geometrical Brownian motion: the drift coefficient and the diffusion matrix

are not constants, but rather deterministic functions. This admittedly simple

5See, for example, chapter 4.4 in Föllmer and Schied (2011) and equation (3.9) in the
appendix.
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model has already been studied in the context of risk measures6.

Problems of choosing the optimal portfolio that minimizes risk (possibly

under constraints) or maximizes expected reward under a risk constraint

have been solved for AV aR. In Gambrah and Pirvu (2014) it was proven

that it is optimal to distribute ones wealth between a numeraire and what

is essentially a Merton portfolio (Merton (1969)). We prove the same result

for LCMU , and give an example where the optimal portfolios for AVaR and

LCMU coincide.

We also analyze a surprising example where optimizing with respect to the

two risk measures leads to completely different optimal portfolios: optimizing

with respect to AVaR leads to a portfolio without risky assets, and optimizing

with respect to LCMU gives a portfolio with only risky assets! We offer both

technical and theoretical explanation as to why this happens7.

In the next section we formally introduce the risk measure LCMUλ and

provide its representation that connects it to AV aRλ. We also identify the

minimizing measure for each financial position. We conclude the section with

some numerical examples and simple comparisons between the two measures.

In the third section we introduce the model of the financial market, formu-

late the results on optimal portfolios and perform the sensitivity analysis.

A review of relevant facts about coherent risk measures, a corollary of a

generalized version of the Neyman-Pearson lemma, proofs of theorems and

additional relevant details are in the appendices.

6See Gambrah and Pirvu (2014) and references offered therein.
7See the discussion after theorem 3.3.1.
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3.2 Representation of the LCAN Risk Mea-

sure

3.2.1 Definition

Let (Ω,F , P0) be a given probability space, where P0 is a probability mea-

sure support of which is the whole set Ω. We denote the set of probability

measures defined on (Ω,F) with M. For any P ∈ M and a random vari-

able X ∈ L∞(Ω,F , P0) we denote the expectation of the random variable

X with respect to probability measure P with EP [X], and, particularly, we

write E[X] for EP0 [X]. We define a set of probability measures using Radon-

Nikodym derivatives:

Pλ =

{
P ∈M

∣∣∣∣ 0 < λ ≤ dP

dP0

≤ 1

λ

}
, (3.2)

where λ ∈ (0, 1] is a given constant. As was mentioned earlier, one can think

of λ as the level of model uncertainty: the closer the value of λ is to one there

is less model uncertainty, i.e. we have greater confidence that the model is

“good”. Note that, due to the definition of the set Pλ, all the measures in

Pλ are equivalent to P0.

We can now define the locally constant model uncertainty risk measure:

LCMUλ(X) = sup
P∈Pλ

EP [−X]. (3.3)

Clearly8, this is a coherent risk measure.

8Due to representation theorems for coherent risk measures; see (3.1).
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3.2.2 Connection with Avarege Value-at-Risk

In this subsection we will relate the coherent measure LCMU to the well

known average value-at-risk (AVaR), also known as expected shortfall :

AV aRλ(X) =
1

λ

∫ λ

0

V aRt(X) dt = −1

λ

∫ λ

0

q+
X(t) dt

where q+
X(t) = inf{x | P0(X ≤ x) > t} = −V aRt(X) is the upper quantile

function of the random variable X with respect to the measure P0 that

appears in the definition of value-at-risk.

Relevant additional details on coherent measures of risk, and AVaR in

particular, are available in appendix 3.A. We are now ready to formulate one

of the main results of this paper.

Theorem 3.2.1. The coherent risk measure LCMUλ allows the following

representation:

LCMUλ(X) = λE[−X] + (1− λ)AV aR λ
1+λ

(X). (3.4)

The proof of the theorem is along the lines of the proof of robust repre-

sentation for AV aR9. It relies on using the generalized version of the well

known Neyman-Pearson lemma which we reformulate to fit our context in

appendix 3.B. The proof of the theorem can be found in appendix 3.C.

We note that if the distribution of the random variable X has density

then LCMUλ(X) can be written as follows:

LCMUλ(X) = −E
[
λE[X] + (1− λ)X

∣∣∣X < V aR λ
1+λ

(X)

]
;

this is due to the representation of AV aRλ for random variables with density

(see equation (3.9) in appendix 3.A). Hence, an agent estimating the risk of

a financial position using LCMU calculates an expectation of a mixture of

the position and its expected value, conditioned on the fact that there will

9See also theorem 4.47 in Föllmer and Schied (2011).
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be losses. The value obtained is the amount of numeraire that makes the

position safe.

3.2.3 Maximizing Measure

Careful reading of the proof of the theorem 3.2.1 shows that the supremum in

the definition (3.3) of LCMUλ is attained. In particular, if q is a λ
1+λ

-quantile

of X with respect to P0 and

ψX = 1{X<q} + k1{X=q},

one can write:

LCMUλ(X) =

∫
−X

(
λ+ (1− λ)

1 + λ

λ
ψX

)
dP0.

The measure QX defined via its Radon-Nikodym’s derivative:

dQX

dP0

= λ+ (1− λ)
1 + λ

λ
ψX (3.5)

belongs to the set Pλ and is the maximizing measure in (3.3); we record this

fact in the following theorem:

Theorem 3.2.2. For any random variable X ∈ L∞(Ω,F , P0), the measure

QX ∈ Pλ as defined in (3.5) is the maximizing measure in the defintion (3.3)

of the risk measure LCMUλ, i.e.:

LCMUλ(X) = EQX [−X].

The proof follows from the preceding theorem and we comment on it

briefly in appendix 3.C.
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Figure 3.1: Case X ∼ U([0, 1]). The full line represents the function
AV aRλ(X), while the dashed line represents LCMUλ(X) (as functions of
λ)

.

3.2.4 Comparison with Average Value at Risk

Once the connection between AVaR and LCMU have been established it is

worthwhile to explore (numerical) similarities and differences between the

two measures. First, one easily notes that both measures satisfy:

LCMU1[X] = AV aR1[X] = E[−X],

lim
λ→0+

LCMUλ(X) = lim
λ→0+

AV aRλ(X) = ess sup−X.

Furthermore, due to the fact that the set Pλ that represents LCMUλ is

clearly a subset of the set that gives the robust representation of AV aRλ

(see equation (3.9)) the inequality AV aRλ(X) ≥ LCMUλ(X) holds for any

financial position X. This means that, from a regulatory point of view,

LCMU is the less conservative of the two measures.

To get a clearer insight into the way that the different risk measures

value risk differently we will focus on two simple examples with positions

distributed uniformly and log-normally.
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Uniform distribution

Suppose a random variable X is uniformly distributed on the interval [a, b].

Straightforward computations yield:

V aRλ(X) = AV aRλ(X) = −a− λ

2
(b− a)

LCMUλ(X) = −a− λ

1 + λ
(b− a).

Figure 3.1 contains the graphs of AV aRλ(X) and LCMUλ(X) as func-

tions of λ. The figure confirms that, indeed, LCMU prescribes substantially

lower values of numeraire than AVaR.

Log-normal distribution

Suppose now that the random variable X ∼ lnN (µ, σ2) is log-normally dis-

tributed. After some computations one can see that:

V aRλ(X) = − exp(µ+ σΦ−1(λ)),

AV aRλ(X) = −1

λ

∫ λ

0

exp(µ+ σΦ−1(t)) dt = − exp

(
µ+

σ2

2

)
Φ(Φ−1(λ)− σ)

λ

LCMUλ(X) = −λ exp

(
µ+

σ2

2

)
− (1− λ)

(λ+ 1)

λ

∫ λ
λ+1

0

exp(µ+ σΦ−1(t)) dt

= − exp

(
µ+

σ2

2

)(
λ+

1− λ2

λ
Φ
(
Φ−1

(
λ+1
λ

)
− σ

))
.

The second equality for AV aR is the only one that is slightly more involved;

we prove it in appendix 3.D.

Figure 3.2 contains the graphs of AV aRλ(X) and LCMUλ(X) as func-

tions of λ. As can be seen, the less conservative LCMU can prescribe sub-

stantially lower values.
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Figure 3.2: Case X ∼ lnN (0, 1). The full line represents the function
AV aRλ(X), while the dashed line represents LCMUλ(X) (as functions of
λ)

.

3.3 Optimal Portfolio Analysis

3.3.1 Model

Let (Ω, {Ft}0≤t≤T ,F , P ) be a filtered probability space which accommodates

a standard m-dimensional Brownian motion W (t) = (W j(t))j=1,...,m. We con-

sider a financial market with a numeraire S0 and m risky assets Si which are

traded continuously over a finite time horizon [0, T ] in a frictionless market.

The dynamics of the assets are:

dS0(t) = r(t) dt,

dSi(t) = Si(t)

(
bi(t) dt+

m∑
j=1

σij(t) dW
j(t)

)
, i = 1, . . . ,m,

where r(t) is the deterministic interest rate, the functions bi(t) are deter-

ministic and denote the drift of the stock, and the volatility matrix σ(t) =

(σij(t))i,j=1,...,m is deterministic and invertible. We assume that functions r,

bi and σij are square integrable and that the inequalities 0 < r(t) < b(t) are

satisfied for each t.

Self financing strategies are described by a deterministic vector π(t) =
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(π1(t), . . . , πm(t)) ∈ Rm such that

m∑
i=1

πi(t) ≤ 1, and πi(t) ≥ 0, i = 1, . . . ,m. (3.6)

An agent following the strategy π invests a fraction πi of their wealth in the

risky stock Si, while the remainder is invested in the bond (represented by

the numeraire S0). As can be seen, no borrowing or short selling is allowed.

Hence, if we denote the wealth at time t by Xπ(t) and the number of shares

of the asset i held in portfolio by Ni(t), we have

πi(t) = Ni(t)Si(t)/X
π(t), i ≥ 1, and Xπ(t) =

m∑
i=0

Ni(t)Si(t).

Dynamics of Si imply that the agent’s wealth satisfies:

dXπ(t) = Xπ(t) ((r(t) +B(t)′π(t)) dt+ σ(t)′π(t) dW (t)) ,

where B(t) = (b1(t)−r(t), . . . , bm(t)−r(t)) and ′ is the transposition operator.

Using Ito’s lemma, direct calculations yield:

Xπ(T ) = Xπ(0) exp

(∫ T

0

r(s) +B(s)′π(s)− 1

2
||σ(s)′π(s)||2 ds

+

∫ T

0

||σ(s)′π(s)|| dW (s)

)
.

If we introduce the following notation:

R = exp

(∫ T

0

r(s) ds

)
, xπ = Xπ(0),

µ(π) =

∫ T

0

B(s)′π(s) ds, ψ(π) =

∫ T

0

||σ(s)′π(s)||2 ds

then

E[Xπ(T )] = xπR exp (µ(π)) . (3.7)
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3.3.2 Loss and Risk Measures

We define loss as L(π) = Xπ(T ) − Xπ(0); it is simply a difference between

the wealth at the end and at the beginning of the time period. This is

the quantity that will be involved in different optimization problems that

we solve. In particular, we will consider the quantity LCMUλ(L(π)) and,

for comparison purposes, AV aRλ(L(π)). Considering a risk measure of a

random variable that depends only on the final and, possibly, initial value of

the stochastic process is standard in literature (see Schied and Wu (2005)).

It is also in the spirit of the classical stochastic control problem in financial

mathematics – Merton’s portfolio problem (Merton (1969)) where the utility

of the terminal wealth is considered.

We note that, although the dynamics of the process in question are ac-

knowledged, this approach can be considered static, as we only consider two

points in time and do not impose constraints on the financial positions in

between the two time endpoints. An alternative would be to consider dy-

namic versions of risk measures; this is, on a technical level, significantly

more involved. Reasons for the complications include having to do with the

time consistency of dynamic risk measures and the non-time consistency of

AVaR (Cheridito and Stadje (2009)). Considering only deterministic (instead

of predictable) trading strategies, as we do here, somewhat offsets the need

for dynamic measures as the agent effectively makes a decision about trad-

ing throughout the whole period. In any case, when analyzing the results

of models that only involve the final time point, one should be aware of the

limitations of models of this kind and therefore careful in the interpretations.

It can be shown10 that:

AV aRλ(L(π)) = xπ

(
1− R

λ
Φ
(

Φ−1(λ)−
√
ψ(π)

)
exp(µ(π))

)
.

Combining the expressions for E[Xπ(T )] and AV aRλ(L(π)), and using the

10The derivation is quite similar to the derivation in appendix 3.D for AV aRλ(X) for a
log-normally distributed position X. For more details see the proof of proposition 3.1.2.1
in Gambrah and Pirvu (2014).
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representation of LCMU from theorem 3.2.1, we obtain:

LCMUλ(L(π)) =

xπ

(
1−R

(
λ+ 1−λ2

λ
Φ
(

Φ−1
(

λ
1+λ

)
−
√
ψ(π)

)))
exp(µ(π)).

3.3.3 Optimization Problems and Merton portfolio

Let Q be the set of all the trading strategies π which are Borel measurable,

deterministic and satisfy the conditions of equation (3.6). We will consider

three problems that lead to different optimal portfolios in Q.

First we consider the unconstrained problem of choosing the portfolio for

which the risk measure LCMU prescribes the lowest risk:

(P1) min
π∈Q

LCMUλ(L(π)).

The second problem we consider is finding the lowest risk portfolio among

all the portfolios with fixed expected return:

(P2) min
π∈Q

LCMUλ(L(π)) such that E[Xπ(T )] = M.

Finally, we consider the problem of maximizing the expected returns while

requiring the risk to be above some positive boundary C:

(P3) max
π∈Q

E[Xπ(T )] such that LCMUλ(L(π)) ≥ C.

All three problems have been explicitly solved for risk measures V aR

and AV aR in Gambrah and Pirvu (2014). Optimal portfolios for both risk

measures and for all three problems are closely related to the trading strategy:

πM(t) = (σ(t)σ(t)′)−1B(t); (3.8)

in each case the optimal portfolio is just a multiple of πM , the well known
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Merton portfolio from Merton (1969) and numerous related problems11. Fur-

thermore, due to the strength of the constraint in the problem (P2), the

optimal portfolios for both risk measures coincide for that problem. This

leads to an interpretation similar to the well known mutual fund theorem: if

there is a hedge fund with portfolio πM it is optimal for the agent to dis-

tribute their wealth between the hedge fund and the bonds no matter what

the optimization criterion is. However, different optimization criteria can

lead to different proportions of investments between the hedge fund and the

bond.

It turns out that the solutions for problems (P1-P3) are also multiples of

πM .

Theorem 3.3.1. For each of the problems (P1), (P2) and (P3) there are

constants c1, c2, c3 such that the solutions to the problems are:

π∗1 = c1πM , π∗2 = c2πM , π∗3 = c3πM .

Furthermore, the same portfolio solves the, appropriately reformulated,

optimization problem (P2) for the risk measures LCMU, AVaR, and VaR;

see theorem 3.E.1 in appendix 3.E.

The fact that optimal portfolios when one optimizes with respect to risk

measures (as the theorems 3.3.1 and 3.E.1 show) and with respect to utility

functions (as the classical literature Merton (1969) shows) is in some ways

surprising. We offer some comments that explain why this is the case in this

model, but we also comment on the modelling approach to optimal portfolios

in general.

On a technical level this result is driven by strong assumptions: log-

normally distributed returns or risky assets, deterministic trading strategies,

a frictionless market, and constraints on borrowing and short selling. In a

sense, if the market conditions are close to ideal then the conclusions of the

classical theory remain valid.

11See, for example, Rogers (2013).
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However, the theory of risk measures was developed because, among other

things, the markets are not ideal: the returns of investments are not dis-

tributed log-normally and tails of the “actual distributions” driving the world

are heavy. Thus, while the analysis offered in Gambrah and Pirvu (2014) and

in our work sheds valuable insight into the optimal portfolio choice with re-

spect to risk measures, it could be considered a mere first step in optimization

problems of this kind and further investigation into more robust and realistic

models is needed.

The derivations in the proof of theorem 3.3.1 are closely related to the

ones offered in Gambrah and Pirvu (2014); details are in Appendix 3.E.

3.3.4 Sensitivity of Optimal Portfolios to the Choice

of Risk Measures

Let us consider problems (P1-3) for the risk measures AV aRλ and LCMUλ.

We have already seen that the solutions of the optimization problems for

both risk measures belong to the same class. In this subsection we further

explore how does the choice of risk measure influence the optimal allocation

between the numeraire and Merton porfolio πM .

We begin by analyzing optimal portfolios for problem (P1). Due to the

close connection between the risk measures AV aR and LCMU (as estab-

lished by theorem 3.2.1) and similarity of results in theorems 3.3.1 and 3.E.1

it would be expected that the optimal portfolios when optimizing with re-

spect to the two measures behave similarly. Somewhat surprisingly, this is

not the case, as we demonstrate below.

If we solve the problem (P1) for AV aRλ and LCMUλ the optimal port-

folios are:

AV aRλ : πA = cAπM , LCMUλ : πL = cLπM ,

for some constants cA and cL; see theorem 3.E.1. The analysis in subsection

3.2.4 shows that LCMUλ(L(π) ≥ AV aRλ(L(π)). This implies that cA ≤ cB:

constants cA and cL determine the amount of numeraire to be kept in the

81



optimal portfolio, hence AV aR, being the less risky of the two risk measures,

prescribes less risky assets in the optimal portfolio and more numeraire.

The proof reveals how the constants cA and cL are calculated. Let us

introduce functions:

gλ(ε) := GA
λ (Θε, ε2) = Θε+ ln(ϕλ(ε

2)),

fλ(ε) := GL
λ(Θε, ε2) = Θε+ ln(λ+ (1− λ)ϕ λ

1+λ
(ε2)),

where

ϕλ(y) =
1

λ
Φ(Φ−1(λ)−√y) and Θ =

√∫ T

0

||σ(s)−1B(s)||2 ds.

Let εA and εL be the solutions of optimization problems

(εP ) max
ε∈I

gλ(ε) and max
ε∈I

fλ(ε),

where

I =

[
0,

∫ T

0

||σ(s)||2 ds
]
.

Then cA = εA/Θ and cL = εL/Θ.

For different values of the parameters the solutions cA and cL can be

on the boundaries of the interval I. In general, the equality cA = cL does

not hold. Furthermore, there are examples where cA = 0 and cL = I. This

means that for certain reasonable values of the parameters of the model it can

happen that optimal portfolios with respect to closely related risk measures

AV aR and LCMU are completely different: it is optimal with respect to

AV aR to not invest in the risky assets, while with respect to LCMU it is

optimal to invest only in risky assets!

To illustrate that this can indeed be the case we will consider a simple

special case of the model we introduced: a market with one risky asset in

which the risk rate, the drift coefficient and the diffusion coefficient are all

constant. For simplicity we also assume that the time horizon satisfies T = 1.
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Even in this simplified setting, solving optimization problems (εP ) is techni-

cally cumbersome. We will avoid the complications by making appropriate

approximations.

Direct calculations show that under the simplified assumptions the inter-

val I becomes [0, σ2]. Thus for σ < 1 the interval I becomes “small”. Once

one notices that fλ(0) = gλ(0) = 0, we can approximate the functions fλ and

gλ with their tangents at 0:

fλ(ε) ≈ εf ′λ(0), gλ(ε) ≈ εg′λ(0).

As we are demonstrating that the solutions of problems (εP ) are on the

boundary of the interval I these approximations will suffice. Indeed, it is

sufficient to establish “opposite” monotonicities of the functions fλ and gλ

on the interval I.

Direct calculations show:

ϕ′λ(ε) = −1

λ
Φ′(Φ(λ)− ε),

g′λ(ε) = Θ +
ϕ′λ(ε)

ϕλ(ε)
,

f ′λ(ε) = Θ +
(1− λ)ϕ′λ/(1+λ)(ε)

λ+ (1− λ)ϕλ/(1+λ)(ε)
.

It follows that:

g′λ(0) = Θ + ϕ′λ(0) and f ′λ(0) = Θ + (1− λ)ϕ′λ/(1+λ)(0).

For example, if we choose λ = 0.2, µ−r = 0.4 and σ = 0.32 then θ = 1.25,

I = [0, 1.5625] and g′λ(0) < 0 and f ′λ(0) > 0. The approximations we intro-

duced are good enough; see figure 3.3. Indeed, fλ(ε) achieves its maximum

on the right hand side of the interval, and gλ(ε) achieves its maximum on

the left hand side of the interval I; this implies cA = 0 and cL = 1.5625.

Furthermore, figure 3.4 shows that the difference f ′λ(0) − g′λ(0) (as a

function of λ) is always positive. Thus, for any value of λ we can always

83



0.02 0.04 0.06 0.08 0.10

-0.020

-0.015

-0.010

-0.005

0.005

Figure 3.3: Graphs of functions f0.2(ε) (dashed) and g0.2(ε) (full) for ε ∈ I
and µ− r = 0.4, σ = 0.32. The vertical line denotes the end of interval I.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

0.25

Figure 3.4: Graph of the function f ′λ(0)− g′λ(0) (as a function of λ).

choose a value of Θ such that g′λ(0) < 0 and f ′λ(0) > 0. This can be achieved

by choosing the appropriate values of µ, r, and σ such that Θ ∈ [g′λ(0), f ′λ(0)],

and that interval I is “small enough”.

We conclude this section by briefly turning to the problems (P2) and

(P3).

We note that optimal portfolios with respect to both measures coincide

for the problem (P2) (see the solution of (ρP2) in the proof of theorem 3.E.1

in appendix 3.E).

As for the problem (P3), the situation is quite similar to sensitivity anal-

ysis performed for the problem (P1): there are situations in which optimizing

with respect to different measures prescribes radically different optimal be-
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havior. This is due to the similarities of problems (εP ) and the optimization

problem that the problems (P3) and (ρP3) are reduced to; see the part of

the proof of theorem 3.E.1 related to the problems (P3) and (ρP3).

3.4 Conclusion

Motivated by ideas from ambiguity theory we have introduced a new coherent

risk measure: locally constant model uncertainty (LCMU). It is explicitly

defined via its set of probability measures in a way that makes uncertainty

about the probabilities of “small” events constant – the Radon-Nikodym

derivative lies within a fixed interval.

We have derived a representation of LCMU as a convex combination of

the expected loss of the position and its average value-at-risk (AVaR) cal-

culated at an appropriately chosen interval. We have thus demonstrated a

viable connection between ambiguity theory and well established risk mea-

sures.

We have considered and solved optimal investment problems in continu-

ous time related to LCMU in a frictionless market with m-assets that evolve

following a time dependent version of the multi-dimensional geometric Brow-

nian motion with no-borrowing and no-short-selling constraints. We have

proven a version of a mutual fund theorem: choosing portfolios that min-

imize risk or maximize profit with a risk constraint both lead to Merton

portfolios; this result was already known for value-at-risk and AVaR in this

setting.

We have demonstrated that optimal portfolios can be radically different

when optimizing with respect to LCMU and AVaR. This surprising conclu-

sion raises questions about dynamic models of optimal investment in contin-

uous time that deal with risk measures. Our results also demonstrated the

fragility of the solutions of optimization problems involving risk measures in

dynamic settings, even in mathematically simple contexts.
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Appendix 3.A Risk Measures

For convenience we collect the relevant definitions and results from the theory

of risk measures that were used above; for details see chapter 4 and the

appendix in Föllmer and Schied (2011).

A coherent risk measure is a functional ρ : L∞(Ω,F , P0)→ R satisfying:

1. Monotonicity: X ≤ Y → ρ(X) ≥ ρ(Y ),

2. Cash invariance: ρ(X + c) = ρ(X)− c, c ∈ R

3. Subaditivity ρ(X + Y ) ≤ ρ(X) + ρ(Y )

4. Positive homogeniety: ρ(αX) = αρ(X), α > 0.

We denote byM the set of all probability measures on (Ω,F). A robust

representation theorem of coherent risk measures states that for every coher-

ent risk measure ρ there exists a set of (possibly finitely additive) probability

measures P ⊂M equivalent to P0 such that

ρ(X) = inf
P∈P

E[−X].

Under suitable technical conditions that can be formulated in terms of cer-

tain continuity properties of the functional ρ the set P can be concentrated

on probability measures12. Similar results can be obtained for convex risk

measures.

One of the best known examples of coherent measures of risk is average

value-at-risk :

AV aRλ(X) = −1

λ

∫ λ

0

q+
X(t) dt

where q+
X(t) = inf{x | P (X ≤ x) > t} is the upper quantile function. It is

closely related to the better known value-at-risk, but has superior theoret-

ical properties: AVaR takes into account losses of all sizes and encourages

12For further details see chapters 4.2 and 4.3 in Föllmer and Schied (2011).
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diversification, among others. It allows the following representations:

AV aRλ(X) =
1

λ

∫ λ

0

V aRt(X) dt = max

{
EP [−X]

∣∣∣∣Q ∼ P0,
dQ

dP0

≤ 1

λ

}
Furthermore, if the distribution of X is atomless then one can write:

AV aRλ(X) = E[−X|X < V aRλ(X)]. (3.9)

Appendix 3.B Corollary of

the Generalized Version of

Neyman-Pearson Lemma

Lemma that follows is a direct corollary of the generalized Neyman-Pearson

Lemma as formulated in theorem A.30 in Föllmer and Schied (2011).

Lemma 3.B.1. If P and Q are given equivalent measures and α ∈ [0, 1] is

a given constant then:

max

{∫
ψ dQ

∣∣∣∣ 0 ≤ ψ ≤ 1,

∫
ψ dP = α

}
= α =

∫
ψX dQ (3.10)

for

ψX = 1{ dQ
dP
>c} + k1{ dQ

dP
=c} (3.11)

where c is a 1− α-quantile of dQ
dP

with respect to P and

k =


0, P

(
dQ
dP

= c
)

= 0

α− P
(
dQ
dP

> c
)

P
(
dQ
dP

= c
) , P

(
dQ
dP

= c
)
> 0.

(3.12)
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Appendix 3.C Proofs of theorems 3.2.1 and

3.2.2

Proof. We begin by rewriting the left hand side of the equation (3.3) for a

fixed random variable X < 0:

sup
P∈Pλ

EP [−X] = sup

{
EP [−X]

∣∣∣∣P ∈M, λ ≤ dP

dP0

≤ 1/λ

}
= sup

{
−X dP

dP0

dP0

∣∣∣∣P ∈M, λ ≤ dP

dP0

≤ 1/λ

}
= sup

{
−
∫
XϕdP0

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
= sup

{
−E[X]

∫
X

E[X]
ϕdP0

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
.

So far we have only used the definitions of the set Pλ and basic properties

of the expectation operator and Radon-Nikodym derivatives. We notice that∫
X

E[X]
dP0 = 1, so the random variable

X

E[X]
> 0 is a Radon-Nikodym

derivative for some measure Q that is equivalent to P0. Hence, using the last

expression above and the inequality E[−X] > 0, we have:

sup
P∈Pλ

EP [−X] = sup

{
−E[X]

∫
ϕ
dQ

dP0

dP0

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
=E[−X] sup

{
−E[X]

∫
ϕdQ

∣∣∣∣ ∫ ϕdP0 = 1, λ ≤ ϕ ≤ 1/λ

}
.

(3.13)

The following equivalence of inequalities:

λ ≤ ϕ ≤ 1/λ⇔ 0 ≤ λ

1− λ2
(ϕ− λ) ≤ 1. (3.14)

allows one to rewrite the right hand side of the equation (3.13) in terms of a

new variable ψ := λ
1−λ2 (ϕ− λ):
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sup
P∈Pλ

EP [−X] =

= E[−X] sup

{∫ (
ψ 1−λ2

λ
+ λ
)
dQ

∣∣∣∣ ∫ (ψ 1−λ2
λ

+ λ
)
dP0 = 1, 0 ≤ ψ ≤ 1

}
= E[−X]

(
λ+ 1−λ2

λ
· sup

{∫
ψ dQ

∣∣∣∣ ∫ ψ dP0 = λ
1+λ

, 0 ≤ ψ ≤ 1

})
.

(3.15)

Applying lemma 3.B.1 one obtains:

sup

{∫
ψ dQ

∣∣∣∣ ∫ ψ dP0 = λ
1+λ

, 0 ≤ ψ ≤ 1

}
=

∫
ψX dQ, (3.16)

where

ψX = 1{ dQ
dP0

>c} + k1{ dQ
dP0

=c},

for

k =


0, P

(
dQ
dP0

= c
)

= 0

α− P
(
dQ
dP0

> c
)

P
(
dQ
dP0

= c
) , P

(
dQ
dP0

= c
)
> 0,

and c a 1− λ
1+λ

-quantile of
dQ

dP0

=
X

E[X]
with respect to P0. Keeping in mind

that X < 0, the inequality
dQ

dP0

> c can be written as:

X < E[X] · c =E[X] · inf

{
t

∣∣∣∣P0

(
dQ

dP0

< t

)
> 1− λ

1 + λ

}
= sup

{
tE[X] | P0 (X > tE[X])− 1 > − λ

1 + λ

}
= sup

{
t | 1− P0 (X > t) <

λ

1 + λ

}
= sup

{
t | P0 (X ≤ t) <

λ

1 + λ

}
=: q.
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We can see that q is a λ
1+λ

-quantile of X with respect to P0 and that inequal-

ities dQ
dP0

> c and X < q are equivalent. Similarly, the equality dQ
dP0

= c holds

if and olny if X = q holds. Hence:

ψX = 1{X<q} + k1{X=q}. (3.17)

Combining (3.15) and (3.16) one obtains:

sup
P∈Pλ

EP [−X] = E[−X]

(
λ+

1− λ2

λ

∫
ψX dQ

)
= E[−X]

(
λ+

1− λ2

λ

∫
ψX

dQ

dP0

dP0

)
= E[−X]

(
λ+

1− λ2

λ

∫
ψX

X

E[X]
dP0

)
= λE[−X]− 1− λ2

λ

∫
XψX dP0. (3.18)

The integral that appears in the last expression can be rewritten (using 3.17)

as follows:∫
XψX dP0 =

∫
{X<q}

X dP0 + k

∫
{X=q}

X dP0

= −
∫
{X<q}

(q −X) dP0 + q

∫
{X<q}

dP0 + k

∫
{X=q}

q dP0

= −
∫

(q −X)+ dP0 + q (P0(X < q) + kP0(X = q)) . (3.19)

If P
(
dQ
dP0

= c
)

= P0(X = q) = 0 then clearly

P0(X < q) + kP0(X = q) = P0(X < q) =
λ

1 + λ
; (3.20)

we used the definition of q in the last equality. If P0(X = q) > 0 then, using
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the definition of k, we have

P0(X < q) + kP0(X = q) = P0(X < q) +

(
λ

1 + λ
− P0(X < q)

)
=

λ

1 + λ
.

(3.21)

Thus, in any case, combining (3.20) and (3.21) with (3.19), we obtain:∫
XψX dP0 = −

∫
(q −X)+ dP0 + q

λ

1 + λ
.

Plugging this into (3.18), after some simplification, we obtain:

sup
P∈Pλ

EP [−X] = λE[−X] +
1− λ2

λ

∫
(q −X)+ dP0 − q(1− λ)

= λE[−X] + (1− λ)

(
1 + λ

λ
E[(q −X)+]− q

)
(3.22)

Finally, given the representation of AVaR from (3.9), the last expression is

equal to the one from the formulation of the theorem.

It remains to note that the case when the inequality X < 0 is not satisfied

follows directly from the boundedness of X, and cash invariance of AV aR,

risk measure defined in the theorem, and E[−X].

The proof of theorem 3.2.2 is a consequence of the preceding proof. In-

deed, the assertion is clear for random variables X < 0. If, however, the

inequality is not satisfied one only has to note that the equality ψX = ψY

holds for all random variables X and Y such that X − Y = c ∈ R a.e.

(see equation (3.17)); and the claim now follows from the cash invariance of

LCMUλ.
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Appendix 3.D Calculations for AVaR and

LCMU for a Log-Normally

Distributed Position

We first introduce a new variable y = Φ−1(t). We note that:

dt =
1√
2π

exp

(
−y

2

2

)
dy,

which implies

AV aRλ(X) = −e
µ

λ

∫ λ

0

exp(σΦ−1(t)) dt

= −e
µ

λ

∫ Φ−1(λ)

−∞

1√
2π

exp(σy) exp

(
−y

2

2

)
dy

Now, completing the squares and introducing a new variable z = y − σ we

get:

AV aRλ(X) = −
exp

(
µ+ σ2

2

)
λ

∫ Φ−1(λ)

−∞

1√
2π

exp

(
−(y − σ)2

2

)
dy

= −
exp

(
µ+ σ2

2

)
λ

∫ Φ−1(λ)−σ

−∞

1√
2π

exp

(
−z

2

2

)
dz

= −
exp

(
µ+ σ2

2

)
λ

Φ(Φ−1(λ)− σ).

Appendix 3.E Details on Optimal Portfolios

Problems (P1-3) have been solved for risk measures VaR and AVaR in the-

orems 3.2.1, 3.3.1 and 3.4.1 in Gambrah and Pirvu (2014). Careful reading

of the proofs reveals technical conditions under which their techniques can

be used for other risk measures. We offer slightly more general formulations

of the aforementioned theorems from Gambrah and Pirvu (2014) that will
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allow us to solve problems (P1-3) for LCMU .

Let us consider versions of problems (P1-3) where the risk measure LCMU

is replaced with a risk measure ρ: we will refer to those problems as (ρP1),

(ρP1) and (ρP3). We will give sufficient conditions under which the solutions

of the more general problems are multiples of πM defined in (3.8). The key

assumption is the following:

Assumption (A): There are measurable functions functions G :

R2 → R and h : R2 → R such that:

1. G(·, y) is increasing and G(x, ·) is decreasing

2. h(x) is decreasing.

3. ρ(L(π)) = h (G (µ(π), ψ(π))) .

Measures AV aRλ and LCMUλ satisfy the assumption. Indeed, if we

introduce a function

ϕλ(y) =
1

λ
Φ(Φ−1(λ)−√y)

it can easily be confirmed that:

AV ARλ(L(π)) = xπ − xπR exp(GA
λ (µ(π), ψ(π)),

where GA
λ (x, y) = x+ ln(ϕλ(y));

LCMUλ(L(π)) = xπ − xπR exp(GL
λ(µ(π), ψ(π)),

where GL
λ(x, y) = x+ ln(λ+ (1− λ)ϕ λ

1+λ
(y)).

Theorem 3.E.1. If the risk measure ρ satisfies the assumption (A) above,

there are constants c1, c2 and c3 such that strategies π∗1 = c1πM , π
∗
2 =

c2πM , π
∗
3 = c3πM solve problems (ρP1), (ρP2) and (ρP3).

For the sake of completeness we offer the proof of the theorem; it is

essentially the proof offered in Gambrah and Pirvu (2014) with several small

imprecisions and errors rectified.
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We begin with proving two auxiliary results:

Lemma 3.E.1. For a fixed κ < 0 the strategy

πλ(t) = − 1

2κ
(σ(t)σ(t)′)−1B(t) = − 1

2κ
πM(t)

solves the maximization problem:

max
π∈Q

µ(π) + κψ(π).

Proof. Note that for any vectors π,B ∈ Rm\{(0, . . . , 0)} and any invertible

matrix σ ∈ Rm×m we have:

||σ′π||2 +
1

κ
B′π = ||σ′π +

1

2κ
σ−1B||2 − 1

4κ2
||σ−1B||2.

Indeed, by completing the squares:

||σ′π||2 +
1

κ
B′π = π′σσ′π +

2

2κ
(σ−1B)′σ′π

= π′σσ′π +
1

2κ
π′σσ−1B +

1

2κ
(σ−1B)′σ′π +

1

4κ2
(σ−1B)′σ−1B

− 1

4κ2
(σ−1B)′σ−1B

= π′σ(σ′π +
1

2κ
σ−1B) +

1

2κ
(σ−1B)′(σ′π +

1

2κ
σ−1B)

− 1

4κ2
(σ−1B)′σ−1B

= (σ′π +
1

2κ
σ−1B)′(σ′π +

1

2κ
σ−1B)− 1

4κ2
(σ−1B)′σ−1B.

Hence:

µ(π) + κψ(π) = κ

(∫ T

0

1

κ
B(s)′π(s) + ||σ(s)′π(s)||2 ds

)
= κ

(∫ T

0

||σ(s)′π(s) +
1

2κ
σ−1(s)B(s)||2 ds

)
− 1

4κ2

∫ T

0

||σ−1(s)B(s)||2 ds.
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Note that only the first term in the last expression contains π. Thus, since

κ < 0, the maximization problem from the formulation of the lemma reduces

to:

min
π∈Q

∫ T

0

||σ(s)′π(s) +
1

2κ
σ−1(s)B(s)||2 ds.

The last integral is non-negative. Furthermore, direct calculations show that

it is equal to zero for πκ, which proves the claim.

Lemma 3.E.2. Maximization problem:

max
π∈Q

µ(π) subject to ψ(π) = ε2

is solved by

πε =
ε

Θ
(σ(t)σ(t)′)−1B(t) =

ε

Θ
πM(t),

where

Θ =

√∫ T

0

||σ(s)−1B(s)||2 ds.

Proof. Direct calculations show that indeed ψ(πε) = ε2.

Previous lemma established a mapping κ → πκ. Note that, by choosing

κε = −Θ(2ε)−1 < 0 we have πε = πκε . The claim now follows directly by

considering the Lagrangian: L(π, κ) = µ(π) + κ(ψ(π)− ε2). Indeed, for any

strategy π satisfying the constraint ψ(π) = ε2 we have:

µ(π) = L(π, κε) ≤ L(πε, κε) = µ(πε),

where the inequality is the consequence of the previous lemma and the fact

that, for a fixed κ < 0, the strategy πκ maximizes L(π, κ).

Before we turn to proving the theorem we introduce some notation. For

nonnegative ε we denote by Qε the set of all the strategies π ∈ Q such that

ψ(π) = ε2. Note that, due to the definition of ψ and the assumptions on σ
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we have ε ∈ I where:

I =

[
0,

∫ T

0

||σ(s)||2 ds
]
,

and for every ε within that interval Qε 6= ∅.
Clearly: ⋃

ε∈I

Qε = Q.

Proof of 3.E.1 - (ρP1) . Due to monotonicity of h we can reduce the problem

to:

min
π∈Q

G(µ(π, ψ(π)).

We first solve the problem for a fixed ε ∈ I:

min
π∈Qε

G(µ(π), ε2).

Due to monotonicity of G(·, x) this reduces to:

min
π∈Qε

µ(π).

By lemma 3.E.2 the solution is: πε = ε
Θ

(σ(t)σ(t)′)−1B(t). Clearly, the prob-

lem (ρP1) is now equivalent to:

min
ε∈I

G(µ(πε), ε
2).

Direct calculations show that µ(πM(t)) = Θ2, hence the continuous func-

tion:

g(ε) = G(µ(πε), ε
2) = G(

ε

Θ
µ(πM(t)), ε2) = G(Θε, ε2)

is defined on a closed interval and thus attains its maximum. This implies

that there is a ε1 ∈ I such that π1 = πε1 = solves the prolem (ρP1). In that

case c1 = ε1/Θ.

Proof of 3.E.1 - (ρP2) . Similarly as in the proof regarding the problem (ρP1)

the minimization problem immediately reduces to:
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max
π∈Q

G(µ(π, ψ(π)) such that E[Xπ(T )] = M

The condition E[Xπ(T )] = M is, due to (3.7), equivalent to:

µ(π) = ln

(
M

xπR

)
=: ζ. (3.23)

Hence, the optimization problem can be rewritten as:

max
π∈Q

G(ζ, ψ(π)) such that µ(π) = ζ,

which, due to monotonicity of G, further reduces to:

min
π∈Q

ψ(π) such that µ(π) = ζ.

We can now use lemma 3.E.1 to solve this problem. Indeed, for a fixed

κ < 0, the maximization problem in the formulation of 3.E.1 is equivalent

to the problem of minimizing ψ(π) + 1
κ
µ(π): the strategy πκ solves both

problems. Hence, for a fixed κ < 0, π1/κ solves the problem of minimizing

ψ(π) + κµ(π), and thus also the equivalent problem:

(Pζ) min
π∈Q

ψ(π) + κ(µ(π)− ζ).

Thus, the solution of the initial optimization problem is:

π∗2 =
Θ2

ζ
(σ(t)σ(t)′)−1B(t) = π1/κ∗2

for κ∗2 = −Θ2(2ζ)−1

Indeed, direct calculations show that µ(π∗2) = ζ and, for any π that satisfies

µ(π) = ζ, we have

ψ(π) = ψ(π) + κ∗2(µ(π)− ζ) ≥ ψ(π∗2) + κ∗2(µ(π∗2)− ζ) = ψ(π∗2),

where the inequality is due to the fact that π∗2 solves the problem (Pζ) for
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κ = κ∗2.

In this case c2 = Θ2/ζ.

Proof of 3.E.1 - (ρP3) . We introduce the set Q′ ⊂ Q of all the strategies

π satisfying the condition ρ(L(π)) > C, where C is the constant related to

problems (P3) and (ρP3). We define Q′ε = Qε ∩Q′ and note that:

Q′ε =
{
π ∈ Q | ψ(π) = ε2, ρ(L(π)) ≤ C

}
and

⋃
ε∈I

Q′ε = Q′.

Due to (3.7) the problem (ρP3) reduces to

max
π∈Q′

µ(π).

Let us consider a simpler problem:

(P ′ε) max
π∈Q′ε

µ(π).

For a strategy π ∈ Q′ε the constraint ρ(L(π)) > C can be rewritten as:

ln
xπ − C
xπR

≤ G(µ(π), ε2).

The function G(·, ε2) is increasing, hence it has an inverse that we denote

with G−1
ε . Thus the constraint can be rewritten as:

µ(π) ≥ G−1
ε

(
xπ − C
xπR

)
=: h(ε). (3.24)

Let us consider the strategy πε from 3.E.2 that maximizes µ(π) over Qε.
Solving the problem P ′ε relies on noticing that the set Q′ε is non-empty if and

only if πε belongs to it. Indeed, if π ∈ Q′ε then:

µ(πε) ≥ µ(π) ≥ h(ε);

the first inequality is due to Q′ε ⊂ Qε and the second one is due to 3.E.2.
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This allows us to rewrite the problem (ρP3) as follows:

max
ε∈I

µ(πε) such that µ(πε) ≥ h(ε).

Due to the definition of µ, the value µ(πε) is increasing in ε and the problem

reduces further to:

max
ε∈I

ε such that µ(πε) ≥ h(ε).

Continuity of µ(πε) as a function of ε and monotonicity of g(ε) ensure that

the problem has a solution that we denote by ε3.

This proves that π∗3 = πε3 solves the optimization problem, in which case

c3 = ε3/Θ
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Chapter 4

A Note on the Perpetual

American Straddle

Abstract

The value and the optimal exercise time of the perpetual American

straddle is characterized by the unique solution of a single non-linear

equation with one unknown variable.
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4.1 Introduction

Perpetual American options can frequently be priced explicitly in the stan-

dard model of Black and Scholes (1973). This is the case with the American

straddle: a portfolio consisting of a put and a call option on the same under-

lying asset with the same strike price. The pricing of the perpetual American

straddle has been studied using different approaches and tools: in Alobaidi

and Mallier (2002) by applying the theory of Laplace transforms, in Beibel

and Lerche (1997) by transforming the problem to a ”generalized parking

problem”, in Moraux (2009) by exploiting ”an analogy with asymmetric re-

bates of double knock-out barrier options”, in Gerber and Shiu (1994) ”by

means of the Esscher transform and the optional sampling theorem”, and,

more recently, by using a combination of several optimization techniques

Lempa (2010) and Lamberton, Zervos, et al. (2013). In all of these papers

the value function and the optimal exercise time are characterized by a solu-

tion of a non-linear system of equations consisting of (at least) two equations.

In this note, we show that the value function and the optimal exercise

time of the perpetual American straddle can be characterized via a unique so-

lution of a single one-variable equation; the solution lies in the interval (0, 1).

We do so by using one of the classical optimal stopping theory approaches:

the Hamilton-Jacobi-Bellman equation and the smooth-fit principle in com-

bination with a verification theorem. This leads to a system of non-linear

equations that can, by appropriate transformations, be reduced to a single

equation. To the best of our knowledge this is the first time that such one-

equation characterization of the value and the optimal exercise time of the

perpetual American straddle is obtained.

4.2 Result

Let the price process St be a a geometric Brownian motion,

dSt = αStdt+ σStdBt,
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where α ∈ R and σ ∈ R are known constants. The American straddle yields

a payoff

f(t, St) = e−rt|St − I|

when exercised at time t, where I > 0 is the strike price and r ≤ α is a given

discount rate. (Inequality r ≤ α is a standard assumption; see for example

Shiryaev (1999).)

The value of the perpetual American straddle at time t is given by

Vt = ess sup
τ∈Tt

E[e−rτ |Sτ − I|], (4.1)

where Tt is a set of all stopping times τ ≥ t. Our goal is to find a value

function v(t, x) such that v(t, St) = Vt and an optimal stopping time τ ∗

such that Vτ∗ = E[e−rτ
∗ |Sτ∗ − I|]. Hamilton-Jacobi-Bellman (HJB) equation

related to this problem (see e.g. Øksendal (2003, ch.11)) is:

max
(t,x)∈[0,+∞]×R

{f(t, x)− v(t, x), vt(t, x) + Lv(t, x)} = 0, (4.2)

where L := α∂x + 1
2
σ2∂xx is a differential operator related to Ito’s lemma.

A well known approach when dealing with time-discounted optimal stop-

ping problems is to assume that the value function is of the form

v(t, x) = e−rtϕ(x);

this will later be confirmed using a verification theorem. The equality

vt(t, x) + Lv(t, x) = 0

holds on the continuation region (due to the HJB equation). After canceling

out e−rt this gives:

rϕ(x)− αxϕ′(x)− 1

2
σ2x2ϕ′′(x) = 0.
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The last equation is a well known Cauchy-Euler ordinary differential equation

and its solution is

ϕ(x) = Axλ +Bxµ,

where A and B are two unknown constants and λ and µ are the solutions of

the characteristic equation

r − αm− 1

2
σ2m(m− 1) = 0.

It can be easily verified that inequalities λ > 1 and µ < 0 hold.

It is known that the optimal stopping time will be the first exit time from

the interval (x1, x2) 3 I: it is optimal to exercise the put (call) option when

the value of St goes beneath x1 (above x2). Furthermore, on the stopping

region, the HJB equation implies that f = v. Thus, we assume that the

function v should be of the form:

v(t, x) =


e−rt(I − x), 0 < x < x1

e−rt(Axλ +Bxµ), x1 ≤ x ≤ x2

e−rt(x− I), x > x2

(4.3)

where A, B, x1, x2 are constants chosen in a way that makes the function

v differentiable (smooth pasting conditions). In particular, we require conti-

nuity and differentiability in x1 and x2.

It is already clear that, should we find such constants, the above function

v(t, x) will be a value function. Indeed, conditions of any of the well known

verification theorems for the optimal stopping of diffusions (e.g. ch. 3 in

Krylov (2008) or ch. 10 in Øksendal (2003)) are easily satisfied for functions

that coincide, piecewise, with (discounted) linear combinations of power func-

tions. Furthermore, since the functions v and f coincide outside the interval

(x1, x2), if v is indeed the value function, then the optimal stopping time is:

τ ∗ = inf{t ≥ 0|St /∈ (x1, x2)}.
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Smooth pasting conditions lead to a highly non-linear system of equations.

We show that it can be reduced to a single equation:

Theorem 4.2.1. The value process of the perpetual American Straddle Vt

defined in (4.1) satisfies the equality Vt = v(t, St) for the function v as defined

in (4.3) where

A =
1

µ− λ
((1− µ)x1−λ

1 + µx−λ1 ); x2 =
µI

µ− 1

1 + γ−λ

1 + γ1−λ

B =
1

λ− µ
((1− λ)x1−µ

1 + λx−µ1 ); x1 = γx2

and γ ∈ (0, 1) is the unique number satisfying:

µ

µ− 1

1 + γ−λ

1 + γ1−λ −
λ

λ− 1

1 + γ−µ

1 + γ1−µ = 0. (4.4)

Proof. Smooth pasting conditions, after cancelling out e−rt, can be written

as:

I − x1 =Axλ1 +Bxµ1 , −x1 =Aλxλ1 +Bµxµ1 ,

x2 − I =Axλ2 +Bxµ2 , x2 =Aλxλ2 +Bµxµ2 . (4.5)

In order to prove the theorem it is, by construction of the value function

v, sufficient to prove that unique solution of the system (4.5) is the one given

in the formulation of the theorem. The proof consists of reducing the system

to equation (4.4), and proving that the solution of the latter is unique on the

interval (0, 1).

First we comment on the uniqueness of the solution of the system of

equations (4.5). Due to the uniqueness of the value function of the optimal

stopping problems the solution of the system above must be unique. Indeed,

two different solutions of the system (4.5) would lead to two functions v1

and v2 both of which would satisfy the verification theorem and the equation

v1(t, St) = v2(t, St) would holds almost surely, which is clearly impossible.

We now turn to proving the existence. We can eliminate variables A and
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B in the two equations containing x1 by treating them as a two dimensional

linear system. Since determinant of that system is D = xλ+µ
1 (µ − λ) 6=

0, A and B are uniquely determined by it. We can do the same for the

two equations containing x2. If we introduce, for notational purposes, the

function Q(x;µ, λ) = (µ−λ)−1(1−µ)x1−λ+µx−λ, we can write the solutions

of those two systems as:

A = Q(x1;µ, λ); B = Q(x1;λ, µ); A = −Q(x2;µ, λ); B = −Q(x2;λ, µ).

Equating the expressions for A and B we obtain the following nonlinear

system with two equations and two variables, x1 and x2:

Q(x1;µ, λ) +Q(x2;µ, λ) = 0 Q(x1;λ, µ) +Q(x2;λ, µ) = 0 (4.6)

Due to the nice form of the above system, we immediately see that if (x1, x2)

is its solution so is (x2, x1). This means that there is a unique solution pair

satisfying x1 < x2, and it will be the unique solution that we are looking for.

We introduce a variable γ such that x1 = x2γ; since inequality 0 < x1 < x2

holds, we have γ ∈ (0, 1). The right hand side of the first equation of the

system (4.6) can now, after some simple calculations, be written as:

Q(x2γ;µ, λ) +Q(x2;µ, λ) = (1− µ)x1−λ
2 (1 + γ1−λ) + µx−λ2 (1 + γ−λ).

from which we obtain:

x2 =
µI

µ− 1

1 + γ−λ

1 + γ1−λ

Similarly, by changing x1 = x2γ in Q(x1;λ, µ) + Q(x2;λ, µ) = 0 after multi-

plication with x−µ1 we obtain:

x2 =
λI

λ− 1

1 + γ−µ

1 + γ1−µ .

Equating the two obtained expressions for x2, after rearanging and cancelling

out parameter I, we obtain the one-dimensional equation (4.4), stated in the
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formulation of the theorem.

It remains to prove that there exists a unique solution of equation (4.4)

in the interval (0, 1). Indeed, if we denote the left hand side of the equation

with h(γ) it is obvious that function h is continuous on (0, 1), and it is easy1

to check that h(1) < 0, and limγ→0+ h(γ) = +∞. We can thus conclude that

a solution exists on the interval (0, 1), and its uniqueness is a consequence of

the argument from the beginning of the proof.

4.3 Conclusion

We have demonstrated that the perpetual American straddle, a classical and

well studied portfolio of options, can be priced and fully characterized using

a unique solution of a single non-linear equation on the unit interval. The

solution itself gives a direct relation between two exercise boundaries of the

American straddle. Beyond the theoretical relevance, this potentially has

practical implications: estimating the value of this well known portfolio can

be reduced to the estimation of the single parameter.

1Because λ > 1 and µ < 0.
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