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1. Introduction

This thesis concerns with the theoretical and numerical study of the distributed
optimal control of a flow of two incompressible, immiscible fluids.

From the mathematical point of view, the studied problems can be formulated as
an abstract optimal control problem with the following structure

Problem 1.1. Findy € Y,u € U such that

(y,u)eY xU

J(y,u) = { min J (y,u) subject to e(y,u)=0, c(y) e, ue Uad},

where J : Y x U — R is the objective function, e : Y xU — Z, c:Y — R
are operators, Y, U, Z, R are real Banach spaces,  C R is a closed convex cone
and U,y C U is a closed convex set. Furthermore, e (w) = 0 stands for a general
equality constraint and the condition ¢ (y) € K represents an abstract inequality
constraint. In these settings, the variables u € U,y € Y represent, respectively, the
control and the state of the system. For a general introduction about optimization
problems, we refer the reader to [68|.

In the problems considered in the present thesis, W, Z and R are function spaces
and the state equation e(y,u) = 0 represents a system of Partial Differential Equa-
tions (PDEs).

Optimal control problems where the solution is constrained by partial differential
equations, are very interesting from mathematical point of view and have impor-
tant and practical applications in many disciplines such as physics, engineering,
mechanics, chemistry, medicine, finance and industry in general. For a general
overview about PDEs-constrained optimal control problems, we refer the reader
to [58]. For examples and applications, we refer to [65], where are collected sev-
eral papers which describe the efficiency of the optimal control strategies to deal
with radio frequency ablation, electro-mechanical smart structures, freezing of li-
ving cells, nanoscale particles production, radiative heat transfer, shape of artificial
blood pumps.

The standard approach to solve problems like Problem 1.1 above, is to use the tools
of Mathematical Programming in Banach spaces, see |58], [70], [87]. If the map-
pings J, e, ¢ are continuously Fréchet differentiable and the constraints e (y,u) = 0,
¢ (y) € K satisfy a regularity condition called constraint qualification at the solution
(y,u), then the following first order optimality conditions or Karush-Kuhn-Tucker
(KKT) conditions hold true at (g, u):

There exists Lagrange multipliers p € Z*, X\ € R* such that

e(y,u) =0,
(1.2) c(y) €K,
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(13) u e Uad7

(14) 5‘ S ICO7 <5\7 c (g>>R*,R = 07

(1.5) Ly (g,u,p) + ¢ (4)" A =0,

(1.6) (Ly (5,0,D) ,u — )y > 0, Vu € U,

where the Lagrangian function L : Y x U x Z* — R is defined as

(17) L(y,u,p) = J(yau)+ <p,6(y,u)>z*7z,
L,, L, are its partial Fréchet derivative and

(18) ’CO:{)\ER*Z <>\,’I">R*7R§0, V’I"GIC}.

In the present work the set of PDEs which represents the constraints
e(y,u) =0, c(y) € K,

of the optimal control problems under investigation is the Cahn-Hilliard-Navier-
Stokes system which models the flow of two immiscible, incompressible fluids.
The incompressible Navier-Stokes and Stokes equations represent the central mo-
dels in fluid mechanics. They can be derived considering a Newtonian fluid with
constant viscosity coefficients and assuming mass conservation, proper evolution of
linear momentum and total energy and divergence-free velocity field (see [20], [67],
[81] and the references therein for further details). We refer to [20], [58] (Section
1.8), [80] for analytical results and to [37], [73], [80] for numerical approaches.
The Cahn-Hilliard equations [21], [22], [23], is a model which was originally derived
to describe phase transition in binary alloys. In this first approach, the model
consider a fluid where there is coexistence of two species A and B. If the tempe-
rature of the system is greater than a critical temperature 7, the fluid manifests a
state where the two species, called phases, are uniformly mixed. When one perform
a deep quenching (rapid reduction of the temperature), the system performs a
spinodal decomposition, i.e. it moves towards a state where the two species are
spatially separated and the interface, the surface which separates the two phases,
has a minimum area. In order to describe this behaviour, considering a fluid in
a spatial domain 2 and denoting by x and ¢ the space and time coordinates, the
Cahn-Hilliard model use a function y (x,t). This variable is called phase-field or
order parameter and it has the following structure

ca(z,t) —cp(x,t)
ca(z,t)+cp(x,t)’

(1.9) y(a,t) =

where ¢4 and cp are the concentrations of the two species. Then, if T > T,, the
order parameter is constant, uniform and such that —1 < y < 1; conversely, when
T < T, y(x,t) converges to a state where it assumes its extremal values —1,1 in
the major part of the domain

y(z,t) =1 = cg(z,t) =0 pure phase A,



y(x,t) = —1 = calz,t) =0 pure phase B,

with a thin interface where —1 < y(x,t) < 1 and the two species are mixed.
Subsequent to its original formulation, Cahn-Hilliard model was used to deal with
other physical systems showing analogous phase separation behaviour, including,
for example, problems in image processing [14|, [24] and in fluid mechanics [5].
Furthermore, Cahn-Hilliard model have provided an efficient option, from mathe-
matical point of view, to deal with interfaces dynamics (see [77] for a review and
also [8], [11]). The structure of the Cahn-Hilliard system is the following

(1.10a) Y — YAw = 0,

(1.10b) y(0) = vo,

(1.10c) w+ e*Ay € 99(y),
dy ow

(1.10d) el = 7l = O

It is a fourth order system of parabolic type with Neumann boundary conditions.
The function w is the chemical potential and % = Pe > 0 is the Péclet’s number
which is related to the mobility of the fluid. ¢ is a constant parameter which is
tipically small 0 < ¢ << 1: its value is connected with the thickness of the interface
which is of order O (¢). The function & = ® (y) is the homogeneous free energy
density and 0P stands for its generalized derivative [28] (see also Section 2.4.4 in
[58]). This generalized derivative is single-valued if @ is differentiable at y. For this
reason, in general, equation (1.10c¢) is a variational inclusion. The Cahn-Hilliard
system (1.10) above, comes from the minimization [17]| of a Ginzburg-Landau type
energy functional E. (y), which is such that

52
E. (y) = g/glvz/l2 dw+/ﬂ<1>(y) dz.

Then, the analytical form of the homogeneous free energy density ® (y) is crucial
in order to establish the proper behaviour of the system. Basically, the choice of ®
depends on the context of application of the model but, in general, the free energy
density ® is such that it penalizes the deviation from the physically meaningful
values [—1,1]. In literature, several types of ® has been considered. A widely
studied version for the homogeneous free energy density is the double-well potential

(111) a(y) =+ (1-)",

for example in [32], [34], [71]. Also the case where ® is an arbitrary polynomial
is analysed in [69], [76], [79], [82]. A logarithmic form of the homogeneous free
energy density is studied in the original paper of Cahn and Hilliard [22] and in [4].
We emphasize that the logarithmic potential bounds the phase-field in the interval
(—1,1), while the double-well does not. However, they are both differentiable and,
in these cases, equation (1.10c) is an equality. In order to deal with the case of
a deep quench of a binary alloy, in [72| it is proposed the following form of the
homogeneous free energy density

1

(1.12) ) =4z 7¥) i yelL,

+ 00, otherwise,
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that is the so-called double-obstacle potential. This form of ® allows a better descrip-
tion of the underlying physical phenomena, because it bounds the order parameter
in the meaningful interval [—1,1]. Concerning the Cahn-Hilliard equations with
® equal to the double-obstacle potential, we refer the reader to [17], [54], [61] for
analytical results and to [7], [8], [9], [10], [15], [18], [38], [39], [49] for numerical and
discrete approaches.

The flow of two immiscible, incompressible fluids can be described by coupling
the Cahn-Hilliard system with the Navier-Stokes system

(1.13a) vi —VAV+ (v-V)v+Vp+py - Vw =u,

(1.13b) vlio =0,

(1.13c) v(0) = vy,
(1.13d) V-v=0,

(1.14a) yr — YAw +v - Vy =0,

(1.14b) y(0) = wo,

(1.14c¢) w+ 2 Ay € 0B(y),

(1.14d) Oy _0w) _,

onla  onla

In the Navier-Stokes system (1.13), p represents the pressure, u is an external
volume force and Re = % is the Reynold’s number. The mean velocity field v, is

defined [62] to be

vV = 1+yVA—|— l_va

2 2 ’

where v;,7 = A, B, is the velocity field of the fluid component i. The constant
parameter p is the capillarity number. Equations (1.13), (1.14) represent a model
which is related to the so-called model ‘H’ in the nomenclature of Hohenberg and
Halperin [42], [45], [59], [64]. Concerning the analysis of this model, we refer the
reader to [1], [2], [3], [19], [25], [33], [35], [41], [43], [44], [48], [60], [62], [63] and the
references therein. In particular, among the references above, [35] and [62] contain a
comprehensive of analytic and numerical results, for the double-well potential in the
Cahn-Hilliard part. In [48|, the authors consider the Cahn-Hilliard-Navier—Stokes
system with a double-obstacle homogeneous free energy density. Then, they per-
form a Moreau—Yosida regularization of the double-obstacle potential and find a
solution of the regularized system. In this way, the phase-field is not confined to
the physical interval [—1, 1], but may overshoot the values £1 by a small amount
which depends on a regularization parameter.

In this thesis we study the following type of optimal control problem

Problem 1.2. Let Q C R? be an open and bounded domain and
Ya : Q= Q2 x (0, T) — R be given. Let o >0 and T > 0 be fized. Find a control
u: Qr — R? and a state y : Qr — R such that

s = [ 5 [w-wt @ [ g as] a



is minimized subject to the Cahn-Hilliard-Navier-Stokes system (1.13), (1.14).

Problem 1.2 can be classified as a distributed optimal control problem. Indeed, the
control u, i.e. the external volume force in the Navier-Stokes equations (1.13), is
distributed on the whole domain. The control acts on the system with the purpose
of driving the state y, that is the phase-field in Cahn-Hilliard equation (1.14), as
close as possible to a desired state y,;. The structure of the objective function J is
standard: the first term in J measure the distance between the state y and the de-
sired state y4; the second is a regularization term which guarantees well-posedness
of the problem. The constant parameter « is usually small (o € [107°,1073]).

In literature, optimal control problems involving multiphase fluids flow, are studied
in relatively few papers. In several works, the authors consider just the optimal
control of the Cahn-Hilliard system without any coupling with the Navies-Stokes
equations: in [29], [30] a boundary control problem with ® equal to the double-
obstacle potential (1.12) is studied; in [84], [86] a distributed optimal control prob-
lem, where the free energy density correspond, respectively, to a general polynomial
and to the double-well potential (1.11) is analysed; in [85], the control of a viscous
Cahn-Hilliard system is considered; in [54] a distributed optimal control problem
with ® equal to the double-obstacle potential is assessed; in [31], the authors study
a problem involving non-local interactions.

Concerning the contributions to the analysis of the optimal control of the com-
plete Cahn-Hilliard-Navier-Stokes system, in [50], [55], a mathematical analysis of
a semi-discrete (in time) problem is performed. In [57], the authors study a fully
discretized version of the model, where the free energy density corresponds to the
double-obstacle potential: they perform a Moreau-Yosida regularization of the re-
sulting state equations and then they obtain the solution of the problem applying
the instantaneous control [26], [56] strategy. In 78], a distributed optimal control
problem is considered, taking into account the effect of a disturbance which desta-
bilizes the control effects. In [36], the case of non-local interactions is considered.

In the mathematical analysis of Problem 1.2, the main issue is the structure of the
homogeneous free energy density ® in the Cahn-Hilliard equations. From physical
point of view, the most meaningful analytical form for the function ® corresponds
to the double-obstacle potential. Unfortunately, that makes the problem very chal-
lenging. Indeed, due to the non-smooth nature of the double-obstacle potential, in
this case equation (1.14c) in the Cahn-Hilliard system is a variational inequality.
Optimal control problems with variational inequalities are related to the mathe-
matical programs with equilibrium constraints (MPECs), which do not satisfy any
kind of constraints qualifications [51], [52|, [54]. Then, in Problem 1.2, if ® is the
double-obstacle potential, it is not possible to apply the standard tools of mathe-
matical programming in Banach spaces.

Below we give an overview of the structure of the thesis and briefly explain how to
overcome the difficulties that arise in the optimal control of considered problems.
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1.1. Structure of the Thesis

The thesis is organized in two main parts. In the first part, which includes Chap-
ters 2 and 3, we consider the distributed optimal control problem of the non-smooth
Cahn-Hilliard-Stokes system. We assume that the homogeneous free energy density
in the Cahn-Hilliard equations, corresponds to the double-obstacle potential (1.12).
The analysis is performed at continuous level in Chapter 2 and by a finite dimen-
sional approach in Chapter 3. In the second part, which encompasses Chapters
4 and 5, we study the distributed optimal control problem of the smooth Cahn-
Hilliard-Navier-Stokes system. In this case the homogeneous free energy density
is equal to the double-well potential (1.11). We assess this problem considering
infinite dimensional settings in Chapter 4 and a discrete approach in Chapter 5.

In Chapter 2, we perform a mathematical analysis of Problem 1.2 above, replacing
the Navier-Stokes equations (1.13) with the Stokes equations

(1.15a) vy — VAV 4+ Vp = u,
(1.15b) vig =0,
(1.15¢) v(0) = vo,
(1.15d) V-v=0,

Hence, we do not consider the effects of the inertia term and furthermore, we set
the capillarity number p = 0, neglecting the surface tension in equation (1.13a).
As a consequence, the two state equations of the problem are decoupled. The first
assumption does not compromise the results we establish in the thesis, i.e., they
remain valid for the Navier-Stokes system. The second assumption is crucial: con-
sidering p # 0 cause severe difficulties concerning the derivation of the optimality
conditions of the optimal control problem. For this reason, the case p # 0 with ®
equal to the double-obstacle potential remains an open problem.

The optimal control problem under investigation is challenging. Indeed, as we ex-
plained in the previous section, it has a lack of constraints qualification. Then, it
is not possible to solve it applying directly the tools of mathematical programming
in Banach space. In order to overcome this difficult, we adapt the idea from [54]:
we regularize the problem, so that it is possible to apply the tools of mathematical
programming in Banach spaces; we derive the optimality conditions of the regu-
larized problem; we obtain the optimality conditions of the original problem as
a limit with respect to the regularization parameter of the optimality conditions
of the regularized problem. This last result is an original contribution of this thesis.

In Chapter 3, at discrete level, we study the optimal control problem following
the same procedure applied in Chapter 2. In this way, we derive three new results:
a set of optimality conditions of the problem; the convergence of the discrete op-
timality conditions to the continuous optimality conditions, as the discretization
parameters go to zero; an efficient algorithm for the solution of the discrete opti-
mality conditions. Finally, in order to show the effectiveness of our approach, we
perform some computations.
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In Chapter 4, we assess the Cahn-Hilliard-Navier-Stokes optimal control Prob-
lem 1.2, where we assume the homogeneous free energy density ® equal to the
double-well potential (1.11).

Compared to problem analysed in Chapter 2, there are three main differences.
First, we consider in the Cahn-Hilliard equation a smooth free energy density. This
assumption simplifies the study of the problem, because, in this way, the constraints
qualification is satisfied and it is possible to apply the tools of mathematical pro-
gramming in Banach spaces. Secondly, we do not neglect the effect of the inertia
term in the Navier-Stokes equations. Finally, we take into account the surface
tension effects (p # 0). Consequently, the Navier-Stokes equations and the Cahn-
Hilliard equations (as well as the corresponding system of optimality conditions)
contain rather complicated nonlinear terms which complicate the analysis of the
problem.

In this chapter, we get original contributions of the thesis: the first order optimality
conditions of the problem and regularity properties for the adjoint variables.

In Chapter 5 we propose and analyse a fully discrete approximation of the Cahn-
Hilliard-Navier-Stokes optimal control problem. We establish new results: the di-
screte first order optimality conditions, the convergence of the discrete optimality
conditions to the continuous optimality conditions, as the discretization parame-
ters go to zero. Finally, we construct a practical algorithm for the solution of the
discrete optimality conditions and perform some numerical experiments.

In Appendix A, we present the notation and the basic results used in the thesis.
In Appendix B, we show some of the longer proofs of the results established in
the thesis.






2. Optimal Control of the
Non-Smooth
Cahn-Hilliard-Stokes System

2.1. Introduction

In this chapter, we study the optimal control problem which concerns the flow of
a mixture of two incompressible, immiscible fluids. The evolution of the system is
described by the Stokes equations (1.15) and the Cahn-Hilliard equations (1.14),
where the free energy density corresponds to the double-obstacle potential (1.12).
In order to state the problem under investigation properly, we make some preli-
minary assumptions. We denote by: Q € R? an open, bounded, convex polygonal
domain; 7" > 0 a fixed time horizon; Qr = Q x (0,7); a > 0 a positive small
constant. The setting and the notation used throughout this Chapter is presented
in Appendix A.2.1, A.2.2. In particular, we consider L2, the space of the L*-
functions with zero mean, Hy = L2 N H' and the associated Bochner’s space

Wo={yeL*(Ho):y €L*(H;)}.

In addition, we assume that D is the space of the vector-valued, divergence-free,
H}-functions and we consider the associated Bochner’s space

W, = {v e L*D):v, € L*(D")}.
We define the following space,
(2.1) X =Wqx Wy x L*(H"),

with element
x = (v,y,w).
The spaces X and X x L? (L?) are endowed with the following norms,

1

2
Illx = [IIvIv, + 91, + lwlam]

1

2
|66 0) lxeneqeey = [l + e

Moreover, we define the following set

(2.2) IC:{QEL2 (Hl) :—1<6<1, ae. on QT}.
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We consider the following objective function

(2.3) J: X x L*(L?) = R,

such that
Tnmn «

(2.4) J(x,u) := / [— /(y —ya)? dr + — / u’ d:c} dt,
0o L2Ja 2 Jg

where we assume y; € C([0,T];L%). Then, we consider the following optimal
control problem:

Problem 2.1. Given vo € DNH?, yo € L2 N H*NK, find (x,u) € X x L? (L?),
such that
min J(x,u) =J(x,1),

(x,u)eXx L2(L?)

subject to

@) [ () o (93 V) - ()] =0,

(2.5b) v(0) =vq, in €,

(2.6a) /0 [yt m) e+ (Vw, Vi) — (y, v - V)] dt =0,

(2.6b) yO0) =y, O,
(2.6¢) /0 [— (0,0 —y) +e*(Vy, VO —Vy) — (y,0 —y)] dt >0,

(2.6d) y ek,

for all € L* (D),ne L*(H'"),0 € K.

In Problem 2.1 above, (2.5) are the weak form of the non-stationary Stokes
equations for incompressible fluid (1.15) and (2.6) are the weak form of the Cahn-
Hilliard system (1.14), where (1.14c) is reformulated as a variational inequality.
Indeed, if ® corresponds to the double-obstacle potential (1.12), we can write

D(y) = (1 - y2) + I_1,

N | —

where [[_q j) is the indicator function of the interval [—1,1]. Then, if 0® (y) is the
generalized derivative of ® calculated in y, we have

O_1y(y) ={v:v@—y) <0,V0: -1<0< 1},

for all y such that —1 <y < 1. Hence, (1.14) can be reformulated in the following
equivalent form

(2.7a) Yy — YAw 4+ v - Vy =0, in Qrp,
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(2.7D) y(0) = wo, in €,

(2.7¢) —(w+eAy+y)(0—y) >0, VI:-1<60<1, in Qrp,

(2.7d) -1 <y<1, in Qrp,

(2.7e) Oy _ 0w _, in 90 x [0, 7],

onla  Onlo

Therefore, (2.6) is just a weak formulation of (1.14).
We stress a property of the Cahn-Hilliard system (2.7). Assuming y, w, v smooth
enough and integrating in Q in (2.7a), we get

/ytdxzv/Awd:p—/v-Vydx.
Q Q Q

Thus, using the boundary conditions (2.7e) and the divergence theorem, we derive

d
dt

Therefore, the Cahn-Hilliard system (2.7) is mass preserving

/Qy(x,t) d:p:/ﬂyo(x) dz = m

Hence, if given v, yo, the solution of (1.14) are y, w, then denoting with gy = yo— Qi
the functions y =y — \QI w are solution of

yd:c——fy —da+/yv~nda+/yV~vdx:0.
a0 0 Q

(2.8a) —YyAw +v-Vy =0, in Qr,

(2.8b) 4(0) = o, in €2,

(2.8¢) w4 e2Ag € dd (7)), in Qr,

(2.8d) 99 _ 0w _ 0, in 02 x [0, 77,

onla  oOnla

&(g):@(m%).

Thus, the difference between the systems (1.14) and (2.8) is just a translation in the
free energy density ®. So, in order to simplify the analysis of the problem, without
loss of generality, we assumed the following zero mass condition on the initial data

(2.9) /Qyo () dx =0.

The optimal control Problem 2.1 is very challenging. Indeed, it does not fulfils
any kind of constraint qualification and this fact prevents the application of the
standard theory of mathematical programming in Banach spaces [51], [52], [54].
It means that it is not possible to derive, directly, a set of first order optimality
condition to solve the problem. Therefore, to deal with Problem 2.1, we regularize
the double-obstacle potential in the constraint (2.6), by introducing a regularization
parameter 0. In this way we define a regularized version of Problem 2.1 which satisfy
the constraint qualification. Then, we derive the first order optimality conditions
of Problem 2.1 as a limit of the first order optimality conditions of the regularized
problem, for the regularization parameter § — 0.

where
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2.2. Regularized Optimal Control Problem

This section is devoted to the analysis of the regularized version of the non-smooth
optimal control Problem 2.1: we show that this problem is well-posed and then we
derive the first order optimality conditions.

The regularization of Problem 2.1 is defined as follows. We consider a parameter

§ € (0,1) and a function ®s(r) € C*(R) such that

1
(2.10) s(r) =5 (1= v°) + fs(y),
where
(1 AN
_ Z _ ] < _1—
25[r+(1+2)} +24 if r<-—-1-9,
1
—@(T‘Fl)s lf—1—5<7“<—].,
(2.11) fs(r):=<0 if —1<r<1,
1
?(7’—1)3 1f1<T<1+5,
2
%{r—(lJrg)] +% if r>1+46.
Direct calculation shows
%[7’4—(14—%)} it r <—-1-9,
1 9 .
. —2—52<7’+1) 1f—1—(5<7‘<—1,
(2.12) fi(r) == 565(7*) =10 if —1<r<1,
1
2—52<T—1)2 1f1<T<1+5,
H”"(“%ﬂ if r>1+49,
and
1
(5 ifr<—1-0,
1
1 —ﬁ(r—l—l) if —1—-0<r<—1,
(2.13) S(r) =5 S(r):=<0 if —1<r<1,
1
ﬁ(r—l) ifl<r<1+9,
1 .
% if r>1+404.

The function 5 defined in (2.10) is, for any fixed 6 € (0, 1) a regularization of the

double-obstacle potential (1.12) (see [17| for a picture of it). It is such that
Ps(r) — ®(r) asd— 0", VrekR,
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1
Os(r) = 400 asr — +oo, Vo€ (0, Z)

and furthermore there exists a positive constant Cj, such that

(2.14) Bs(r) > —Co 6, W6 € {o, i) |

By the definition of fs it follows that

(2.15) filr) > 2BV

and from its convexity

(2.16) () > f5(9) + 3550 = 5)

for all r, s € R. Moreover [35 is a Lipschitz continuous function
(2.17) 0< <1,

such that

(215) 185() = 54 ()] < 3l = sl

for all & € (0, i) and r, s € R.
In order to represent the regularized version of the non-smooth optimal control

Problem 2.1 in a more compact, general form, we consider the following map
(219)  es: X x L*(L?) - Z=[L* (D) x L* (Hy) x L> (H') x S x L§ |",

where the space S is defined in (A.3). The map e; is such that, for all p =
(¥.n,0,€.9) € Z7,

(220) <p7 €s (Xa u)>Z*7Z = <a’ (Va ll) a¢>L2(’D*),L2(’D) + <b (V7 Y, w) ) 7)>L2(H3)’L2(H0)

<C5 (y7 w) ) n)LQ(Hl*),LQ(Hl) + (67 v (0) - VO)

+
+ (0,9 (0) = v0),

where
T
(@ (v, 1), P)ian ey = / (V) + v (Vv, V) — (w,9p)] dt,

T
221) ) i) ) oy = | ) +7 (T, 90) = (v T .
0
and
(2.22) (es (y, ), m) 2y, L2y

- [ w0 -2 @0 vo -5 5.0 o



14 2. Optimal Control of the Non-Smooth Cahn-Hilliard-Stokes System

Moreover, with z = (21, 22, 23, 24, 25) € Z, we define the norm

1
2
2]z = [Hzllliz(p*) - 1=2llZa 1) + N2sllZ2ney + llzalls + ll2sll7g | -

So, the regularized version of the non-smooth optimal control Problem 2.1 is the
following:

Problem 2.2. Given vo € DNH?, yo € LN H*NK, find (x,0) € X x L? (L?),
such that
J(x,u) =J(x,1),

min
(x,u)eXx L2(L?)

subject to
(2.23) es (x,u) =0.

Using the definition (2.19), (2.20) of the map egs, we note that the regularization
process acts just on the Cahn-Hilliard equations, where the generalized derivative
of the non-smooth double-obstacle potential (1.12) is replaced by the standard
derivative of the potential ®; (2.10).

2.2.1. Properties of the Regularized State Equations

From the definition (2.19), (2.20) of the map es, we derive that the weak form of
the state equations (2.23) of the regularized optimal control Problem 2.2 read as
follows:

(2.240) / (Vi) + v (Vv, V) — (u, )] dt = 0,

(2.24Dh) v(0) = vy, in €,
T
(2.25a) / [y, ) e+ (Vw, Vip) = (y, v - V)] dt =0,
0
(2.25Db) y(0) = yo, in €,

T
1
@25 [ 6= 200+ 00 5 (G50 .0)] de=o
0
for all ¢ € L*(D),n,0 € L? (H'). In the next Lemma 2.3, we derive existence,
uniqueness and regularity properties of the solution of (2.24), (2.25).

Lemma 2.3 (existence, uniqueness, regularity). For any fired § € (O,i),

voe DNH?, yo € LANH?, —1<1yy <1 a.e inQ, ue L*(L?) the system (2.24),
(2.25) has a unique solution

(v,y,w) € (H (8)NL® (D)) x (WoNL®(Ho)NL*(H?)) x L* (H"),
which satisfies

(2.26) [[VellZas) + IV Zoe () + 1911, + 10l o0 ) + 19112222y + 1wl 20y < C (w),
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9y
(2.27) Ao 0, ae.on (0,7),

2

(2.28) |55 )

<C
2(r?) — (),

where the constant C' (u) depends continuously on ||u||r2wz) and data problem (ini-
tial conditions and constant parameters ), but it is independent of §.

The proof of the Lemma is given in Appendix B, Section B.1.
Remark 2.4. It is obvious that the solution y € Wy. In fact setting n = o4 in
(2.25a), where
(s) 1 if sel0,4,
s) =
Xlod 0 otherwise

and integrating by parts in time, we have
(y(),1)=(y(0),1)=0, Vite(0,T]

As a consequence of the results of Lemma 2.3, associated to the state equations
of the regularized optimal control Problem 2.2

es (x,u) =0,
we can define a bounded solution operator s;s : L? (L?) — X, which such that

(2.29) es (55 (u),u) =0, VuelL*(L?).

2.2.2. Well-Posedness of the Regularized Optimal Control
Problem

We note that the map J : X x L? (L?) — R, defined in (2.4), in the regularized
optimal control Problem 2.2 is continuous, convex and bounded from below. Thus,
it is weakly lower semicontinuous. We use the weakly lower semicontinuity of J to
get the following result, which ensures that Problem 2.2 is well posed.

Theorem 2.5 (existence of minimizers). For any fived § € (0,1), the regulari-
zed optimal control Problem 2.2 admits a solution.

Proof. For any u € L? (L?), Lemma 2.3 ensures the existence and the uniqueness
of the solution x = (v, y,w) € X. Therefore the feasible set

Foa={(x,u) € X x L* (L?) : €5 (x,u) = 0},

is not empty. Then there exists

inf J(x,u) =J > —oo.
(x,u)€F,q4
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and a sequence {(x;,,u,)}, .y C Faq, such that
(2.30) J (Xp, 1) = J.

By the definition (2.4) of the cost functional J, the sequence {u,},  is bounded
in L? (L?) and so, by Lemma 2.3, there exists a constant C' such that

1%nllx < C,

and furthermore
[Vl oo @y + [[Ynll oo () < C.

Then, we can extract a subsequence (labelled with index m), such that

(2.31) Vi — V, in Wy,
(2.32) Vi SV, in L> (D),
(2.33) Vi =V, in L?(8),
(2.34) Ym — Y, in Wy,
(2.3 yn Sy, in L (Hy),
(2.36) Ym — Y, in L* (L),
(2.37) Wy, — W, in L* (H'),
(2.38) u, — u, in L* (L?),

where (2.33) and (2.36) follow, respectively, from (2.31) and (2.34), using the Aubin-
Lions-Simon Theorem (see for example Theorem I1.5.16 in [20]). So, we have

(X, W) — (x,1), in X x L* (L?).

The subsequence {(X,,, W)}, C Fuq, therefore e5(x,,,u,,) = 0. We show in the
following that es (x,u) = 0. From (2.31), (2.34), (2.37) and (2.38), we get

(a(Vin,um) ﬂP)L?(D*),L?(D) — (a(v,u) 7¢>L2(D*),L2(D)7
T T
/0 (Yt 1) + 7 (Vi V)] dt — / ((g.) + 7 (Yo, V)] dt,
T T
| L+ 9s) = & (Y VO] @t [ [0+ 0.0) - (99, 90)] .
0 0

as m — +oo, for all (¢,n,0) € L*(D) x L?(Hy) x L?(H"). Concerning the
remaining term in the functional b (2.21), we have that

)/OT(ym,vmVn)—(y,vVn) dt)

T T
< / \(ym—y,vm~w>\dt+/ (9, [V —v] - Vi) | dt = Dy + D,
0 0

where using the inequalities (A.17), (A.18) and (2.33), (2.36), we derive

T
1 1 1 1
Dy < C/ 1y = ymll> Iy = ymll iy 1Vill> [Vl 0l dt
0



2.2. Regularized Optimal Control Problem 17

1 1 1 1
< C Hy—ymllioo(HO> va”zoo(p) ”y_ymsz(p) HVmHz2(s) 171l 22(r10) = O,
T
1 1 1 1
D, < C/ Y11 11yl 1vm = VIZ (Vi = Vg 9l df
0

1 1 1 1
< ClyllLee ey 1Vm = VliZe(py 1912222y 1V = VIIiEais) Il 20m) = 0,

as m — +o00. In order to manage the remaining term in ¢; (2.22), from (2.17), we
note that 5 is a Lipschitz function and therefore

T
/ | (Bs (ym) — Bs (v) . 0) | dt < |lym — yllz2ce2y 0] L2z2) — 0,
0
as m — +o00. So, we can claim that
<CL <V7 11) 7¢>L2('D*)7L2('D)+<b <V7 Y, w) 777>L2(H6<),L2(H0)+<C5 <y7 w) 777>L2(H1*),L2(H1) - 07

for all (¢,n,0) € L? (D) x L*(Hy) x L* (H'). With ¢ = £(1 —t/T),€ € S and
n=e¢(1—t/T),p € L% integrating by parts and using the previous results, it is
easy to realize that

(vin (0) = v (0),&) = —/0 (Vint — Vi, ) dt—/o (Vip — v, %,) dt — 0,

T T
(ym (O) -y (O) ) 90) = _/ <ymt — Y 77>I{(’)‘,I{0 dt — / (ym - Y, nt) dta — 07
0 0

as m — -+oo. Furthermore, for all m, we have v,, (0) = v and y,, (0) = .
Therefore
v(0) =vo, y(0)=yo
Thus, we have
es (x,u) =0,

that is (x,u) € F,q. Then, using that J is weakly lower semicontinuous, we can
write

A

J (x,u) < liminf J (X, uy,) = J.

m——+00

Hence, (x,u) is a solution of the optimal control Problem 2.2. O

2.2.3. Optimality Conditions of the Regularized Optimal
Control Problem

In this section, we show that Problem 2.2 satisfies the conditions needed to apply the
standard theory of mathematical programming in Banach spaces (see Assumptions
1.47 in [58]). Subsequently, we derive the first order optimality conditions of the
regularized optimal control Problem 2.2 (see Theorem 1.48, Corollary 1.3 in [58]).
We need to verify that the regularized optimal control problem satisfies the following
conditions:

e the continuous Fréchet differentiability of the cost functional J : Xx L? (L?) —
R defined in (2.4);
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e the continuous Fréchet differentiability of the constraint es : X x L? (L?) — Z
defined in (2.19), (2.20);

e the existence of the inverse of the mapping ey (ss5 (1), u), where ss is the
bounded solution operator defined in (2.29).

It is easy to realize that the mapping J : X x L? (L?) — R is continuously Fréchet
differentiable. Indeed, the Fréchet derivative

J/:XXL2(L2) —>£(X><L2(L2),R),
and J has partial Fréchet derivatives
(Jyv(x,u),dy )Wg,wo = 0,

T
< Jy <X7 U) 7dy >W6‘,Wo = / (y — Yd, dy) dt7
0

< Jw (X7 U) , A >L2(H1*),L2(H1) = 0,
T
(Ju (X7 ll) ’du)LQ(LQ) = /0 (OZ u, du) dt,
such that
T
( J' (x,u), (dx, dy) >(XxL2(L2))*,XxL2(L2) = / (Y — a, dy) +a(u,dy)] dt,
0
for all (dyx.d,) € X x L? (L?). Therefore

’J(x+dx,u+du)—J(x,u)—<J’(x,u),(dx,du —0

) >(XXL2(L2))*,XxL2(L2)

i.e., J is Fréchet differentiable. Moreover, J is continuously Fréchet differentiable,
since

(7 (x dyu - dy) = T (x,0), (B, ) )

(Xx L2(L2))*, X x L2(L2)

= ‘/OT [(dy, hy) + a(dy, hy)] dt‘

<yl 222yl Pyl 2222y + fldullz2@2) Dl 222
< | (dx, du) [Ixxz2@) [1Byllr2z2) + allhyll 2@z ] — 0,

as (dy,dy) — 0 in X x L*(L?), for all (hy, hy,) € X x L?(L?).

The differentiation properties of the map es are summarized in the following lemma.

Lemma 2.6. For any fized § € (O, i), the map es - X x L? (L?) — Z is continuously
Fréchet differentiable.

Proof. We have
e5: X x L (L?) = £ (X x L* (L?),Z) ,



2.2. Regularized Optimal Control Problem 19

with partial Fréchet derivatives
T
<p7 65v (X7 U) dV>Z*7Z = / [(th7 "»b) + 4 (VdV7 V¢) - (yv dV : Vn)] dt + (E? dV(O)) Y
0
T
(p, esy (x, 1) dy>z*,z = / [({dye, 1) 11 — (dy, v - V) — €2 (Vd,, V)
0
1
+ (dy7 9) - g (ﬁg <y> dy7 9) dt + (907 dy<0)) )
T
(om0 by = [ 1 (Vi V) 4 (0]
0
T
<p7 €su (X7 u) du>Z*,Z = = / (du? w) dt’
0
where p = (¢, n,0,1,¢) € Z*. We have Fréchet differentiability if

H es (x + dx,u+dy) — 65 (x,u) — €5 (x,u) (dy, dy) HZ =0 (H (dx,dy) ”XXLQ(L2)) ,

as || (dx, du) ||xxr2@2) = 0. It is easy to realize that
| (e (et dyutdu) — e (x,0) = ¢ (x,1) (dyda) )y |

< )/T(dy,dv.vn) dt’+) %/T(ﬁ(s(y+dy)—65(y)—ﬁé(y)dy’9)dt’
= E10+E2. ’

With p = (1,1, 0,1, ) € Z*, we have, using the embeddings (A.5), (A.6),

E,

IN

T ) ) )
C /0 ldyl12 ldyl 7, 1]z [[AvliD 1]l dt

IN

1 1 1 1
c ||dy||é([0’T];L3) ||dv||(2:([o7T};s) ||dy||z2(H0) ||dv||f,2(p) ||77||L2(Ho)

C [l 22y (Nyllw, + dvliwa) (ldyllzeg) + lldvllLzp))
C [l 2oy 11 (dx, du) [reqwe) -

IAINA

Next, we note that

1

Ity [

——— / (8, (v) dy. 0) d,

1yl

T
| sty = w).0) e~
0

as d, — 0 in W. Hence, for all (dy, d,) € X x L* (L?), we derive

£, 5o (Bs(y+dy) —Bs ()~ B5 )y 60) ]
(s du) Icnzeey [yl

IN

Y

as (dyx,dy) — 0in X x L? (L?). Thus, we have shown that es is Fréchet differen-
tiable.
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Next, we show that e is continuosly Fréchet differentiable, i.e. for all (x,u), (dx,dy) €
X x L2 (L?),

€5 (x 4+ dyx, u+dy) — €5 (x,u) ”L(XXLQ(L?),Z) — 0,

as (dyx,dy) — 0. We have,
(DL e (x4 dutdy) = ¢ (x,0) | (o ha) )y

T 1
= | [ |t T e T 5 G+ ) = 55 )
0
- Fl + F2 + F37
for all p = (¥, n,0,%,p) € Z*. As well as in the estimate for £}, we derive
1 1 1 1
I <C deHcQ([o,T};Lg) ”hv”é([o,T];s) ”dyHLQP(HO) ”thEQ(D) 171l 22 (220) = 0,
1 1 1 1
F,<C thHé([O,T];Lg) HdVHé([o,T];S) thHz%Ho) Hdv”;ﬁ(p) 17 2 (26) = O,

as (dx,dy) — 0. Moreover, using the property (2.18) of gj,

c [T C
b <o / Iyl 117y 1o WOl rre dt < =5 lldylle(omyez) Mhullzzcmy [16]]22cm) — O,
2 J, ) 0
as (dyx,dy) — 0. It follows that es is continuously Fréchet differentiable. O

Theorem 2.7. For any fized § € (0,1), u € L? (L?), we have that
E5x (85 (ll) s ll) eL (X, Z) R

has a bounded inverse.

The proof of the Theorem is given in Appendix B, Section B.1

Note that, by Theorem 2.7, we have that for all u € L? (L?),
(2.39) [ esx (s5 (u),u) | 7' € £L(Z,X).

The continuous Fréchet differentiability of the cost functional J : X x L? (L?) — R,
Lemma 2.6 and Theorem 2.7 guarantee that all the solutions (x.u) of the regularized
optimal control Problem 2.2 satisfy, together an adjoint variable q € Z*, a set of
first order optimality conditions (see Theorem 1.48 and Corollary 1.3 in [58]). To
derive the first order optimality conditions, it is convenient to define the Lagrange
functional Ls : X x L? (L?) x Z* — R,

(2.40) Ls (x,u,q) = J (x,u) + ( q,¢e5 (x,u) )z z,

where q = (Qv, ¢y, G, Avo, ¢y0) € Z*. Thus, the optimality conditions of Problem
2.2 can be formulated as follows: find (x,u,q) € X x L? (L?) x Z* such that

(2.41) Lsq (x,u,q) =0, in Z,
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(2.42) Lsx (x,u,q) =0, in X*,
(2.43) Lsu (x,u,q) =0, in L* (L?).

It is easy to realize that (2.41) are the state equations e; (x,u) = 0. Relation (2.42)
corresponds to the so-called adjoint equations and (2.43) is a further optimality
relation.

In the following lemma, we show that given a solution x = ss(u) of the state
equations (2.41), the adjoint equations (2.42) have a unique solution q € Z*.

Lemma 2.8. Let u € L? (L?) and x € X such that x = ss (u) be given. Then, the
adjoint equations (2.42) have a unique solution q € Z*, for any fized § € (O, i)

Proof. For all dy € X, we have
(Lsx (x,u,q) ’dX>X*,X = (Jx (x,u) 7dX>x*,X + {(q, esx (x, u) dX>z*,z7
thus the adjoint equations (2.42) are equivalent to
esx (X, u) q = —Jy (x,u), in X"
Then, if x = s5 (u), @ = q(u) is given by
q(u) = —[esx (s (w), w)] 7" Jx (56 (), ).

By Theorem 2.7, we know that [es, (s5 (u),u)]”" € L (X*,Z*). So, the proof is
complete. m

The first order optimality conditions (2.41)-(2.43) are written in terms of the
abstract variables (x,u, q) € X x L? (L?) x Z*. In the following Corollary 2.9, from
the definitions of the spaces X in (2.1) and Z in (2.19), we write these optimality
conditions explicitly, using the state variables

(v,y,w) € Wy x Wy x L? (Hl) ,
and the adjoint variables
(anCJy,CJw,qvo,qyo) € L2 (D) X L2 (Ho) X L2 (Hl) X S X Lg

Corollary 2.9 (optimality conditions). For any given 6 € (0, i), the first order
optimality conditions (2.41)-(2.43) of the regularized optimal control Problem 2.2
read as follows:

(2.410) | (w0 (v V) - ) di o
(2.44b) v(0) =vp, in £,
(2.44c) /0 [(ye, M + v (Vw, Vi) — (y, v - V)| dt =0,
(2.44d) y(0) =yo, in Q,

2ate) [0~ (90.90) + (10) - 5 (5 (0).0)] =0,
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for all € L? (D) ,n,0 € L? (H'),

T
(2.450) / (v )1 >+ (Va, Vab) — (4, Vg, - 3)] dt = 0,
(2.45b) Qv (T) =0, in Q,

T
/ [y @) 113,110 — €2 (V@ V) + (s 1) — (V- Vg, n) + (y — ya, )] dt
0
(245C) + Qy07 5/ 65 Qwa _07

(2.45d) /O [ (qr0) + 7 (Va,, V6) ] di =0,

for allp € L* (D) ,n e Wy, 0 € L*(H'),

T
(2.46) / (cu—qy, ) dt =0,
0

for all € L* (L?).

Proof. Direct calculation shows that equations (2.44) and (2.46) can be derived,
respectively, from (2.41) and (2.43). From (2.42), we get (2.45¢), (2.45d) and the
following equation

(2.47) /0 (1, av)p-p + (Vay, V) — (y, Vi - )] dt + (qvo, ¥ (0)) = 0.

In (2.47), we have q, € L? (D) and qvo € S. If we assume q, € Wy and integrate
by parts in time, from (2.47) we obtain

T
28) [ oo+ (Vo V) - (.90, 4)] d

+(av (T), 4 (T)) = (av (0),%(0)) + (avo, ¥ (0)) = 0.
Thus, setting qy (T') = 0 and qy (0) = qyo in (2.48), we get that q, satisfies

T
21) [ [ ¥)op + (Vaw Vi) - (0. Va, - )] di =0,
0
qv (') =0, in Q2
for all ¢p € Wy. In (2.49), g, € L? (Hy) and from (2.26), y € L™ (Hy). Therefore,

it is easy to prove that

T
250) | [ (.90, ) @] < C lylumim Wallzimy [Wleacor, V36 € 22 (D).

Thus, from (2.50), using a density argument, we obtain that (2.47) is equivalent to
(2.45a), (2.45b), with test functions 1» € L* (D). In fact, equations (2.45a), (2.45b)
have a unique solution q, € Wy which is, by Lemma 2.8, the unique solution of
(2.47). O
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We conclude this section with Lemma 2.10, that provides regularity results and
d0—independent stability estimates for the adjoint variables

Qv GLQ(D)ac.Iy ELz(HO)a(_Zw S L2 (H1)7Qy0 EL%

These results will be used in the next section, where we perform the limit of the
optimality conditions system (2.44)-(2.46) for the regularization parameter 6 — 0.

Lemma 2.10. For any fized 6 € (0, %), let us assume that
veWyyeWyweL?*(HY),
we I? (17,
Qv € L2 (D) 7Qy € L2 (H()) y Qu € L2 (HO) 7Qy0 S Lg7

are a solution of the optimality conditions (2.44)-(2.46). Then, the adjoint variables
have tmproved reqularity properties

(2.51) qv € H' (S)N L™ (D),
(2.52) gy € L (Ho) N L* (H?) ,
(253) dyo € H.

9y | _
(2.54) B loo = 0, a.e. on (0,7),

and

||th||%2($) + ||qV||%°°(D) + ||qy||%°°(Ho)

1 2
(2.55) +”(1y”%2(H2) + llayoll7, + HQwH%Q(HO) + Hgﬁé (y) ‘ C(u),

0

where the constant C' (u) depends continuously on ||u| 2wz and data problem (ini-
tial conditions and constant parameters), but it is independent of o.

The proof of the Lemma is shown in Appendix B, Section B.1.

2.3. Non-Smooth Optimal Control Problem

Using the results obtained in Section 2.2, we study the non-smooth optimal con-
trol Problem 2.1. In particular, we derive the first order optimality conditions of
Problem 2.1 as a limit of the first order optimality conditions (2.44)-(2.46) of the
regularized Problem 2.2, for the regularization parameter 6 — 07,

2.3.1. Properties of the State Equations of the Non-Smooth
Optimal Control Problem

In this section, we consider the state equations (2.5), (2.6) of the non-smooth
optimal control Problem 2.1. In Theorem 2.11 below, we get that these equations
can be derived as limit of the state equations (2.24), (2.25) of the regularized optimal
control Problem 2.2, for the regularization parameter 6 — 0. Next, in Lemma
2.12, we show existence, uniqueness and regularity properties of the solution of
(2.5), (2.6).
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Theorem 2.11. Consider a sequence {6,},.y C (0,%) such that 6, — 0T, a
bounded sequence {u,}, .y C L* (L*) and the corresponding sequence of solutions
{(Vis Yn, i) }rey © Wo x Wy x L? (H') of the state equations (2.24), (2.25) of the
reqularized optimal control Problem 2.2. Then, there erists a subsequence (labelled

by index m), such that

(2.56) u, —u, in L* (L?)
(2.57) Vi, — V, in H*(S),
(2.58) Vi >V, in L> (D)
(2.59) Vi =V, in L* (8S),
(2.60) Ym — Y, in W,
(2.61) Y — Y, in L (Hy)
(2.62) T in L? (H?),
(2.63) Ym — U, in L? (Hy),
(2.64) Wy — W, in L* (H').

Moreover, there exists a constant C, such that

(2.65) [[Vill72(s) + VI Eee(y + 9l + 19T (rg) + U722y + w0l 2200y < C.

Furthermore (v, y,w,u) satisfies the state equations (2.5), (2.6) of the non-smooth
optimal control Problem 2.1 and

0
(2.66) 8—‘31 =0, acon (0.7),
Proof. The results (2.56)-(2.65) and (2.66) are direct consequence of the Lemma
2.3. Indeed, since the sequence {u,}, 5 is bounded in L? (L?), we can extract a
subsequence (labelled with an index {) {u;},, such that

w—u, in L? (LQ) .

Hence, considering the corresponding sequence of solutions {(v;,y;, w;)}, of the
regularized state equations (2.24), (2.25) and using the d—independent estimate
(2.26), we infer that there exists a further subsequence (labelled by an index m)
{(Vim, Ym, w,) },, which fulfils (2.57), (2.58), (2.60)-(2.62), (2.64) and (2.65). Then,
the strong convergence results (2.59) and (2.63) are given by the Aubin-Lions-Simon
Theorem (see for example Theorem I1.5.16 in [20]). Furthermore, from (2.27), it
holds

W

on laa
for all m. Thus (2.66) follows from (2.62). Next, we show that (v,y,w,u) satisfies
the state equations (2.5), (2.6) of the non-smooth optimal control Problem 2.1. We
have that (Vi, Ym, Wi, W) in (2.56)-(2.64) is such that

=0, ae.on (0,7).

(2.67a) /0 (Vs 00) + 1 (Vv Vab) — (, 40)] dt = O,
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(2.67b) viu(0) = vo, in €,

T
(2.67c) / [ Ymt, 0) e, 1t 47 (VWi V) = Yy Vi - V)] dt = 0,
0
(2.67d) Ym(0) = yo, inQ,

(2.67e) /0 [(wm + Ym, 0) — €2 (Vym, VO) — % (Bs,, (ym),0)| dt =0,

for all p € L*(D), n,0 € L*(H"). As m — +oo the convergence of (2.67a)
to (2.5a) is straightforward. The same holds concerning the convergence of the
linear terms in (2.67c) to the corresponding terms in (2.6a). The convergence of
the nonlinear term in (2.67c) to the corresponding term in (2.6a), is derived noting
that, as — +oo,

T T
< )/ (ym—y,Vm'Vﬁ) dt‘+)/ (y,[Vm—V]'VU) dt)
: 1 1 " 1 1

< C [Hym - yHioo(Hl)HVmHioo(D)Hym - y|!22(L2)HVmH22(s)

+ Ml Zoe () Vi = VI Ze ) 01| 22 g2 [V — V”;(s)} 1l 2y = 0,
where we used (2.58), (2.59), (2.61) and (2.62). Next, given # € K, by the definition
(2.12) of 5, we have 35 () = 0. Then, by the property (2.17), we get

T
/ [— (Wi + Y 0 — Ym) + € (Vym, VO — V)| dt
0

(2.68) - = /0 (35, (6) — Bs, (ym) 0 — )] dt > 0,

for all & € K. Hence, using the convergence properties of y,,, w,,, from (2.68), we
derive (2.6b). In order to show (2.6¢), we define a function f: R — R,

r+1, i r<-—1,
(2.69) f(r)=lim B (r) =4 0, it |r| <1,
6—0t
r—1, if r>1.

We note that f is a Lipschitz function such that

(2.70) [ (r) = Bs(r)| < ; [f ()= f ) <lr—sl, VrseR.

From (2.28) in Theorem (2.3) we have that

185, (Ym) ll22(z2) < C (W) 6 < Cy i,

and therefore

(2.71) im 185, (Ym) l2(22) = 0.
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Thus, using (2.70) and (2.71), it holds

)/OT(f(y),e) at|
/OT [I|f(y) — F W) 1+ 1 W) = Bse W) || + 1185, ) 1| 1611

S C |:||y_ym||L2(L2)+5mj| ||0||L2(L2),

IN

for all @ € L* (L?). Therefore, from the strong convergence result (2.62), we derive
(2.6d). Finally, as well as in the proof of Theorem 2.5, we can realize that

v (0) =vo, ¥y(0) =1y
So, the proof is concluded. O

In Lemma 2.12 below, we show the properties of the solution of the state equa-
tions (2.5)-(2.6) of the non-smooth optimal control Problem 2.1.

Lemma 2.12. For any given u € L? (L?), the state equations (2.5)-(2.6) of the
non-smooth optimal control Problem 2.1 have a unique solution (v,y,w), which is
such that

(2.72) ve H' (S)NL>® (D), yeWoNL>(Hy)NL* (H)NK, weL*(H"),
and satisfies the estimate

(2.73) Vel Z2we) + IV 2o oy + 1l 1Yo 110 + 10 2y + 021y < C (),

where C (u) is a constant that depends continuously on |[u||r 212y and data problem
(initial conditions and constant parameters).

Proof. Applying Theorem 2.11 in the case of a sequence {u,},  C L* (L?), such
that
u, (t)=uel? (L%, VneN, Vie(0,T),

we derive the existence of a solution (v, y, w) of (2.5)-(2.6) which satisfies (2.72) and
(2.73). Next, we show the uniqueness of this solution. From the same arguments
used in the proof of Lemma 2.3 (see Appendix B), we get that v € H! (§)NL> (D)
is unique. Then, we prove the uniqueness of y € Wy N L™ (Hy) N L?* (H?*) N K and
w € L? (H'). We assume that for a given v, there are two solutions (yi, w1), (y2, ws)
of (2.6). Therefore, d, = y» — y1 and d,, = wy — w; satisfy

(2.74) _"7/0 (Vdy, Vn) dt = /0 [<dyt>77>H1*,H1 — (dy,v - V)] dt,
dy (O) =0,

for all n € L? (H') and

T T
(2.75) / et [ (du,dy) + 22V, |7] dtg/ e|d, |12 dt,
0 0
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where (2.75) is obtained setting in (2.6b), respectively, 0 = e #'d, + y; € K when
the solution is (y1,w;) and § = —e #d, + yo € K when the solution is (y2, ws)
and then adding the equations obtained. Above p > 0 is a constant. From (2.74),
(2.75) we can prove the uniqueness of y as well as in the proof of Theorem 2.3. In
order to show the uniqueness of w, i.e. d,, = 0, we set n = d,, in (2.74). In this
way, we get

(2.76) |Vdy || r2(12) = 0.
Then, following [17], we can define a.e. in (0,7,
Qt)={reQ:|y(x,t)] <1}.

As (y,1) =0, Qo (t) is not empty. Given ¢ € C° (€ (t)) we consider 0L =y + 0o,
with o such that 4 € K. Substituting § = 64 in (2.6¢), we derive that

e e /O (Vy, Vo) di — /O (w+y,6), Vel (),

and (2.77) holds for w = w; and for w = wy. Hence,

(2.78) /T (dw, @) dt=0, ¥ el (Q(t)).

From (2.76), we know that d, is a constant. Then, using (2.78), we infer that
d, = 0. U

2.3.2. Minimizers of the Non-Smooth Optimal Control
Problem

In Theorem 2.13 below, we show an essential property of the solutions of the non-
smooth optimal control Problem 2.1: there exists a sequence of solutions of the
regularized optimal control Problem 2.2, which converges to a solution of the non-
smooth Problem 2.1, for the regularization parameter 6 — 0.

Theorem 2.13. Consider a sequence {5,}, .y C (0,%) such that 5, — 0% and the
corresponding sequence of solutions of the regularized optimal control Problem 2.2,

{0 W) }en = {56, () , W)} © Xx L2 (L)

Then, it is possible to extract a subsequence (labelled by index m), such that as
m — 400
(X, Um) — (x,0), in X x L*(L?%),

where (X,) is a solution of the non-smooth optimal control Problem 2.1.

Proof. Given the sequences {0, }, .y, {(s5, (@), 0,)}, oy and some u € L? (L?), by
the definition of the cost functional J and the results of Lemma 2.3

o _ _ QU
§Ilun||%z@z> < J (85, (@), 1,) < J (55, (), 0) < [Jyall 722y + C (w) + §||u||%z(L2),
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for all n € N. Therefore the sequence {u,},y is bounded in L? (L?) and using
Theorem 2.11, we can consider a subsequence (labelled by index m) such that

(S5, (W), W) = (R, W) — (X,1), in X x L? (L?),

where (X, 1) is a solution of the state equations (2.5)-(2.6) of the non-smooth opti-
mal control Problem 2.1. Tt remains to prove that (X, u) solves the optimal control
Problem 2.1. Let (x*,u*) be a solution of Problem 2.1. Considering the sequence
{(ss,, (u*),u*)}, , by theorem 2.11, there exists a further subsequence (labelled by
index [), such that

(ss, (W), u*) = (x*,u"), in XxL*(L%),

as | — +o00. Then, using that (x*,u*) is a solution of (2.1) and the weak lower
semicontinuity of J, we have

(2.79)
J(x*,u") < J(x,u) <liminf J (s;,, (Qn), Q) < limsup J (ss, (Qn) , W) -
m——+00 m—+oo
Obviously

limsup J (s, (Q), Q) = limsup J (s, (W), W) ,
m—+o00 l—+o00

and furthermore
J (ss, (W), ) < J (55 (u”),u’),

because {(s5 (1), w)}, is a sequence of minimizers for the regularized optimal
control Problem 2.2. So

(2.80) limsup J (ss,, (Qn), Q) < limsup J (s5, (0*),u”) = J (x*,u").

m—+00 l—+o00

Using together (2.79) and (2.80), we infer
J(x*,u*) < J(x,u) < J(x*,u"),

which means that J (x,u) is a solution of the non-smooth optimal control Problem
2.1. This concludes the proof. O

In the following, we state an equivalent formulation of the non-smooth optimal
control Problem 2.1. We introduce two Lagrange multipliers 3,, 3 € L? (L?) in the
state equations so that we obtain a problem which has the form of a mathematical
program with complementarity constraints. In the next sections we will observe
that the Lagrange multipliers 3., 5; will be linked to the adjoint variables which
satisfy the first order optimality conditions for the non-smooth Problem 2.1.

We define the space
R=XxL? (L2) x L? (L2),
with elements

r= (X7 Bru Bl) )

and
’C+:{QOEL2(L2)Z goZOa.e.onQT}.
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Furthermore, we consider the cost functional .J : R x L? (L?) — R, such that,

J(r,u)=J(x,u).
Thus, we consider the following problem:
Problem 2.14. Find (t,u) € R x L* (L?) such that

(r,u)e%liriQ(LQ) J(I‘, ll) = J (f’, fl) ,

subject to
T
esta) [ () + o (Tv.T9) — ()] di =0
0
(2.81Db) v(0) = vy, in Q,

(2.82a) / g s+ (Yoo, Vi) — (g, v - V)] dt =0,

(2.82b) y(0) = yo, in Q,
T
(2.82¢) / [ (w +9,0) + 2 (Vy,V0) + (5,0)] dt =0,
0
(2.82d) yeK,
(2.82¢) B=p—pf, with B, ek,
T
2.82f 1 —y) di =0,
(2.82f) | G- a
T
(2.82g) / (B, 1 +y) dt =0.
0

for allp € L? (D), n,0 € L? (H").
Lemma 2.15. Problem 2.1 and Problem 2.14 are equivalent.

Proof. We proceed in the following way: we show that (2.81)-(2.82) can be obtained
as limit of the state equations (2.24), (2.25) of the regularized optimal control
Problem 2.2, for the regularization parameter 6 — 0. Using Theorem 2.11, we
need just to prove that there exist y, w which together 3., §; satisfy (2.82c¢), (2.82e)-
(2.82g). We can write the regularized state equation (2.25¢) in the following way

(2.83) /0 l— (w+y,0)+¢*(Vy, Vo) + % (Brs (y) — Bis (y),0)| dt =0,

where,
07 1f8§17
1
1 e :
(2.84) SBrs (5) = 55z (5= 17, if1<s<1+9,
%[5—(1+g)], if s>1+04.
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_1[s+<1+§)], if s < —1-4,
1 0 ’
(2.85) 5515 (s) = i(3+1)2, if —1-d<s<—1,
262
07 1f—1§87

and

Bs (5) = Brs (5) — Bis (s),
Brs (s) Bis (s) = 0,
1
67“5 (S) Z 07 ﬁl(g (8) Z 07 Vs € Ra Vo S (07 Z) .
As in Theorem 2.11, given u € L? (L?), we consider a sequence {4,}, . C (0, 1)
such that §,, — 0" and the corresponding sequence of solution of the regularized

state equations {(Vy, Yn, wn) },en © Wo x Wy x L? (H'). By (2.28) in Lemma 2.3,
there exists a subsequence (labelled with index m), such that

1

(286) 5_67‘57” (ym) N BT‘? mn L2 (LZ) )
1

(2.87) Btz (4n) = B, in L* (L),

(288) 67“7 /Bl S IC+7

(2.89) Y — Y, in L* (Lj) .

(2.90) T in L* (H') ,

(2.91) yek,

and (y, w, 5) satisfies (2.82¢). In order to prove (2.82f), (2.82g), using (2.86), (2.87),
(2.89), we note that,

1 /T T
e9) o [ G - dt o [ a1y
m J0 0
1 /T T
29 5 [ G ) dt > [ Gy d
m J0 0
as m — +oo. Furthermore, from (2.88), (2.91), it follows that
T T
(2.99) [ G-y arzo. [ @y ao.
0 0
Conversely, from the definitions of (., , fis5,, in (2.85), (2.84),
I I
295) 5= [ Gro, ) L= ) a6 <0, = [ (s, (o) 14 ) e <0
m J0 m J0O

Thus, from (2.92)-(2.95), we obtain

T T
/(6“1—@/) at =0, /(mw) at = 0.
0 0

Hence, the proof is concluded. O
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2.3.3. Optimality Conditions of the Non-Smooth Optimal
Control Problem

In this section we show the main result in this Chapter: we derive the first order
optimality conditions of the Problem 2.14 (and hence for the equivalent non-smooth
optimal control Problem 2.1) as limit of the optimality conditions (2.44), (2.45),
(2.46) of the regularized Problem 2.2, for the regularization parameter § — 0.

Theorem 2.16. Let {5,}, . C (0,1) be a sequence such that 6, — 0 and

{xn, wo) boen = { (Vi Un, Wy an) } oy € XX L? (LQ) )

the corresponding sequence of solutions of the reqularized optimal control Problem
2.2. Further, let

{q"}nEN = {(qvna Qyn s Quns Qvn (0) 7Qy0n)}neN C Z*,

be the sequence of the adjoint variables such that triple x,,,u,,q, satisfies the op-
timality conditions (2.44), (2.45), (2.46) of the reqularized optimal control Problem
2.2 for all n € N. Then, there exists a subsequence (labelled by an index m)
{(Xm> W, i) },,,5 @ SOlution of the non-smooth optimal control Problem 2.1}

(I', 11) = <V7 Y, w7ﬁr7ﬁl7 11) € R x L? (LQ) ,
and a set of variables

(Av, 9y» Guw, Qv (0) , gyo, A) € Z" x W,

such that, as m — 400,

(2.96) Vi =V, in H*(S),
(2.97) Vi v, in L> (D)
(2.98) Vin =V, in L?(S),
(2.99) Ym — Y, in Wy,
(2.100) Y — 1, in L (Hy)
(2.101) Ym — Y, in L* (H?),
(2.102) Ym — Y, in L? (Hy),
(2.103) Wy — W, in L* (H")
(2.104) Qvim — Qv, in H' (S),
(2.105) Qum — Qy, in L (D)
(2.106) Qvm — Gy, in L*(S),
(2.107) Gym = @y, in L (H,)
(2.108) Qym — in L* (H?)
(2.109) Qyom — Qyo, in Hy,
(2.110) Gum — Gu in L* (H'),
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(2.111) u, — u, in H' (S),

(2.112) u,, —u, in L (D)

(2.113) u, — u, in L*(S),

1 .

(2.114) 5 P (ym) = B=5: = B, in L* (L?)
1 . R

(2115) 5_6(,57,1 (ym) Gum — )‘7 m WO .

Furthermore

(V7 Yy, w, /87’7 Bla U, qv, 9y, Guw, )\) )

satisfies the following system of optimality conditions

(2.116a) /0 (ve, ) + v (Vv, Vi) — (w, )] dt =
(2.116b) v(0) =vy,  inQ

T
(2.116¢) / (ye, m) e +v (Vw, V) — (y, v - V)] dt =0,

0
(2.116d) y(0) = vo, in Q

(2.116e) /OT [— (w+y,0)+*(Vy, Vo) + (B, — ,0)] dt =0,

(2.116f) y €K,
(2.116g) B Bre KT,
T
(2.116h) (Bry,1—y) dt =0,
0
T
(2.116i) (B, 1+y) dt =0,

0

for all+p € L? (D), n,0 € L (HY),

21172 [ @)+ (Va0 V)~ 0.V, ] =0,
(2.117b) qv (T) =0,
/OT [0, ay) 3100 — €2 (Vqw, V) + (qus )
(2.117¢) — (v Vay,n) + (Y —yan)] dt + (g,0,7(0)) — (A, mwgw, =0,
(2.1174) /OT[ (4 0) +7(Va,, V0) | dt =0,

for all+ € L? (D) ,n € Wy,0 € L* (H'), and

T
(2.118) / (cu—aqy, ) dt =0.
0
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for all p € L?(L?). Moreover, if iﬁgm (Ym) Gum 18 bounded in L* (H'™), then for
all Lipschitz functions g : R — R such that g (—1) = g (1) =0, we get

Tri
(2.119a) lim (—B{; (Ym) Qum, g (ym)) dt =0,
m—+oo Jq 5m m
71
(2.119b) lim (—ﬁgm (Ym) ,qwm) dt =0,
m—-+o0o 0 5m
Tri
(2.119c) lim inf/ (—5:5 (Ym) Qums qwm) dt > 0,
m—+oo [ 5m m

Proof. Given the sequence of solutions {(Vy, Yn, W, Up) },,c Of the regularized opti-
mal control Problem 2.2, we can consider the sequence of the adjoint variables
{(Avns Gyns Gun) }eny Such that v, yn, Wn, W, Ayns Gyns Gun solve, for all n € N, the
optimality conditions (2.44)-(2.46) of the regularized optimal control Problem 2.2.
From the results of Lemmas 2.3, 2.10, Theorem 2.11, Lemma 2.12, Theorem 2.13
and Lemma 2.15, we derive the existence of a convergent subsequence (labelled
by an index m) {(Vi, Ym: Wi, Wy Qvms Gyms Gwm) },,, and a set of limit variables

V,y,w, /87’7 Bla U, Qv, Gy, Guw, such that

e the functions vy, Ym, Wm, Wm, Qvm; Gym: Guwm are, for all m, solution of the op-
timality conditions (2.44)-(2.46) of the regularized optimal control Problem
2.2;

e the limits (2.96)-(2.114) above are satisfied;

e the state variables v, y, w, 5, 3, u, qy satisfy the optimality conditions (2.116),
(2.118) above.

Next, we show that there exists A € W as a result of the limit (2.114) and that
v, Y, Br, B, U, Ay, ¢y, ¢, A are solution of the optimality conditions (2.117). It hold,
for all m,

(2.120a) | @t )+ (Ve T6) = o Vi 6)) =0
(2.120D) Qv (T) =0,

T
/ [<77t7 Qym>H6‘,H0 - 52 (vama Vﬁ) + <me7 77) - (Vm : qum7 77)
0
Lo
(2.120c) + (Ym — Ya,n) — 5 (85,, (Um) Guwm. n)] dt + (qyom,n (0)) =0,

(2.120d) /O L (Goms8) £ 1 (Y, V6) | dt =0,

for all ¢ € L? (D) ,n € Wy, 0 € L* (H') ,p € L? (L?). From (2.96)-(2.110) we infer
that all linear terms in (2.120) converge to the corresponding limits in (2.117). For
the nonlinear terms, we derive that they converge observing that,

)/OT(ym,qum.¢) dt—/OT(y,vqy.¢) gt
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T T
S ) / (ym -, qum . ’lﬁ) dt} + ‘ / (ya [VQym - VQy] : ¢) dt‘
0 0
1
< C lym =yl Eoo ey Naymlloe o) |9m — yllzzzy 1]z o)

+‘/OT (¥, [Vaym — Vay| - 1) dt‘ — 0,

T T
’/ (Vin - Vym, 1) dt—/ (v-Vg,,n) dt)
0 0

T

S’/ ([Vin = V] - Vgym,n) dt)+)/ [Vaym — Vg, dt’
0
<C v —VIILoo(D) qyml oo (o) 1V — ViLzes) [10llLzcm)

+}/ (Vdym — Va,], dt} S0

as m — +oo. From the convergence of the terms in (2.120c), we infer that there
exists A € Wy, such that

1 *
aﬁém (ym) Qum — >\a

and that the optimality condition (2.117c) above holds. Furthermore, with ¢ =
t/T - € € €8, using integration by parts in time and (2.120b), we can write

T T
(av (T), &) = / (Gt — s ) dt+ / (dum — Gus by dt = 0,

as m — +o00. Then qy (7') = 0. Finally, we prove the complementarity conditions
(2.119a)-(2.119c). We define the following metric projection operator

1 s < -1,
(2.121) Ps=1s it —1<s<1,
1 it s> 1.

Then, with g Lipschitz and such that g (—1) = ¢g (1) = 0, we derive

/oT (éﬁgm (ym)qwmag(ym)) dt

Tr1 T
[ (5 )t ) = 9P )t [ (55 ) e (P ) =
0 m 0 m
- [1 -+ [2.
From the properties of 85 and g, it is easy to realize that I, = 0. Furthermore using

the boundedness of iﬁgm (Ym) Gum in L? (H'™) and the strong convergence of y,,
to y in L? (H') (stated in (2.102)),

1
1< || 55 W) [ 19 ) = 9 (P sy = 0,
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as m — +oo. This proves (2.119a). We have

B (s) =15 (s) B5 (s) ,

where

( 4}

34—1—1—5, if s <—-1-4,

1

§(s+1), if —1-0<s<—1,
(2.122) Is(s) := < 0, if —1<s<1,

1

5(5—1), if 1 <s<1+09,

) .

5 — 1+§ , if s>1+6.

Thus

T T
2129 [ () aun) = [ (G ) ot )

ls is a Lipschitz continuous function with constant 1. Furthermore I5, (y) = 0, for
all m. Then,

s, (Ym) [I2222) = W5 Ym) = U5, (W) | 22¢22) < ||Ym — Yll22(22) — O,

as m — +o0o0. Moreover (see Theorem 4.6 in [54]),

Vs, ) 22y = N5 Um) Vil 22y < 1F (Ym) Vil r2ezzy <
< VS W) 22y = IV Wm — Pym) l222) — 0,

as m — +oo, where f is the function defined in (2.69). So, Is, (ym) strongly
converges to zero in L? (H'). Then, using the boundedness of iﬁgm (Ym) Qum In
L* (H"™) in (2.123), we have (2.119b). Finally, by definition

Tr1
/ (—5 B5 (Ym) qwm,qwm> dt >0,
0 m

for all m. Consequently (2.119¢) holds. O

Remark 2.17. The complementarity conditions (2.119a)-(2.119¢) establish a con-
nection between the state variables (., 8, and the variable \. We will show that, at
discrete level, these complementarity conditions will be essential for the numerical
solution of the non-smooth optimal control problem.

Remark 2.18. Equations (2.116)-(2.119) in Theorem 2.16, are a set of first op-
timality conditions for the non-smooth optimal control Problem 2.1 and they re-
present a function space version of the so-called C-Stationarity conditions [75] (see
also [51], [54]).






3. Optimal Control of the Discrete
Non-Smooth
Cahn-Hilliard-Stokes System

3.1. Introduction

In this Chapter, we study the fully discretized version (in space and time) of the
non-smooth optimal control Problem 2.1. We adapt the analysis from Chapter 2 to
the discrete setting and show that the discrete problem converges to the continuous
one, as the discretization parameters go to zero.

Technical details of the discretization are collected in Appendix A.3. In particular,
we denote with h, k = T'/N, respectively, the space and time discretization param-
eters, which are defined in Appendix A.3.1. Also the definitions of the discrete
function spaces Sy, Vi, Dy, Pr, Y}, are given in Appendix A.3.1. Moreover, if Z,
is a discrete functions space, given Z" € Z;, for n = 1,..., N, we denote by the
corresponding calligraphic letter the associated vector variable

Z=(zMY, ezl

n=1
and with d;Z™ the discrete time derivative at time level n,

n _ anl

d, 7" =
! k

We use (-,-), to denote the mass-lumped scalar product defined in (A.29). We
define the following discrete spaces

(3.1) Xpe =Vt x PN x PN x vV,

with elements

(3.2) X =V,P,IYW),
and
(3.3) Kyn={ZeY,:-1<Z<1}.

Given h, k, we consider the following discretized version of the objective function
J stated in (2.4),
I+ Xpg x L? (L) = R,
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where

N Tk a [
4 X, U) = Y =yl + = 2 dt| .
B @ =S G g [l

where the functions vy, € P, and t, =n -k forn=1,...,N. Then, we study the
following discrete non-smooth optimal control problem:

Problem 3.1. Given h,k, vo € Dy, yon € PN Kp, yyp, € Py forn=1,..., N,
find (X, U) € Xy, x L? (L?) such that

min I (X U) = Tng (/‘?aa) )
(X,L{)Ethk ><L2(L2)
subject to
I
(3-5a)  (dV",9) + v (VV",Vip) — (P, V - 4p) — E/ U, ) dt =0,
tn—1

(3.5b) VO = v,
(3.5¢) (V-V"¢) =0,
(3.6a) (dY™ ), + 7 (VW Vi) — (Y" IV V) = 0,
(36b) YO = Yo,h»
(3.6¢) —(WryYrhe—Y"), +&2(VY", VO - VY") >0,
(3.6d) Y"e K,

forallp € Vi, o€ Py, neY, 6 K, n=1,...,N.

We emphasize that Problem 3.1 corresponds to a fully discretized version of the

continuous non-smooth Problem 2.1. Indeed, equations (3.5), (3.6) are discrete
versions, respectively, of the state equations (2.5), (2.6) of Problem 2.1.
Optimal control Problem 3.1, as well as Problem 2.1, does not satisfy any kind of
constraint qualification, So, even in the discrete settings, it is not possible to directly
derive a system of first order optimality condition to solve the problem. Hence, to
deal with it, we follow the same procedure applied in Chapter 2. We consider a
discretized version of the regularized optimal control Problem 2.2 studied in Section
2.2. Then, we derive the first order optimality conditions of the non-smooth discrete
Problem 3.1 as limit of the first order optimality conditions of the regularized
discrete problem, for the regularization parameter 6 — 0%. Then, we show that
these optimality conditions converge to the optimality conditions of the non-smooth
continuous Problem 2.1, for the discretization parameters h — 0,k — 0. Finally,
we formulate an algorithm for the numerical solution of the non-smooth discrete
problem and we perform some computation studies.
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3.2. Regularized Discrete Optimal Control Problem

This section is devoted to the analysis of the fully discretized version of the regula-
rized optimal control Problem 2.2. For this problem, we show that it is well-posed
and then we derive the first order optimality conditions.

In order to represent the problem under investigation in a more compact, general
form, we define the following map

(3.7) eanp t Xnp x L? (L2) = Xy,

where, for all Z = (¢, ¢,1,0) € X,

(3.8) (Z,esnns (X U))xp, x0 = (W a1n, (V,PU)) + (¢, a2 (V))
+ 000k (W, Y V)) + (0, csnp (VW)
+ (% VO —von) + (0", Y° —yon)

with

(Y, a1hx (V,PU)) = [k (d: V™, ") + kv (VV", V™)

] =

i
I

(P ) - / RS dt},

WE

(¢, a2nk (V) = k(V-V" "),

S
Il
—_

] =

(m,bre (V. Y, W)) = [k (Y™ ")), + by (VIV®, V")

n=1
—k (Ynfl’anl . vnn)] 7
N
1
O.cnx VW) = Sk KW eyt g, 9”) 2wy e
n=1 h

Thus, we consider the following regularized discrete optimal control problem:
Problem 3.2. Giwen h,k, voy € Dy, yon € Po N Kp, Yy, € Py forn=1,..., N,
find (X, U) € Xy, x L? (L?) such that

min i (X, U) = Ty g (X, U)
(X,M)eXh’k XLQ(LQ)

subject to
(3.9) esni (X, U) = 0.

We note, by the definition (3.8) of the map esx, that the state equation (3.9)
in Problem 3.2, represents just a discretized version of the state equations (2.24),
(2.25) of the continuous regularized optimal control Problem 2.2.

Remark 3.3. In the setting of the optimal control Problem 3.2, we choose U €
L? (L?) for the control variable. However, as a consequence of the first order opti-
mality conditions of the problem, that we will derive in Section 3.2.3, we will get
U € V). For this reason, we prefer denote the control variable as a fully discrete
function, using a calligraphic capital letter.
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3.2.1. Properties of the Regularized Discrete State
Equations

By the definition (3.8) of the map es5 4, the state equations for the regularized
discrete optimal control Problem 3.2 read as follows:

(3102)  (dV"0) + v (VV",V4) — (P".V-9) — / ") di =0,
(3.10b) n VO = v,
(3.10c) (V-V" ¢)=0,
(3.11a) (&Y™, n), +~v (VW", Vi) — (Y" 'V V) =0,
(3.11b) Y =yon,
(3.11c) (W™, 0), —e*(VY™,V0) + (Y"',0), — % (Bs(Y™),0),, =0,

foralle € Vy,, ¢ € Py, n,0 €Yy, n=1,..., N. We observe that equation (3.11a)
is mass preserving, that is

(3.12) Y™ 1), =...= "1, = (yon1), =0, ¥Yn=1,...,N.

In the following Lemma 3.4 we derive existence, uniqueness of the solution of state
equations (3.10), (3.11) of the regularized discrete optimal control Problem 3.2.

Lemma 3.4 (existence, uniqueness). For any fized h,k,6 € (0,1), U € L* (L?),
the system of the discrete, reqularized state equations (3.10), (3.11) has a unique
solution (V, P, Y, W) € VN1 x PN x PNt x YV

Proof. Using standard arguments, it is possible to prove that (3.10) has a unique
solution (V,P) € V) ' x PN,

We follow [62] to prove the existence and the uniqueness of the solution (Y, W™) €
P, x'Y, at a time level n: we demonstrate that, given n, the state equations
(3.11) are equivalent to a strictly convex optimization problem which has a unique
solution.

Let us suppose that Y™ W™ are solutions at the time step n of (3.11). Setting
W"h: W+ ‘51' (W™ 1), in (3.11a) and integrating by parts in the advection term,
we have

1

o n __ yn—1
o (Y Y ,n)h.

(3.13) (vW",vn) = —% (V- [y"'v* ] )

By the definitions of the discrete Green’s operators defined in (A.32), (A.33), from
(3.13), we derive

“ 1 1 -
3.14 Wr=_—=¢gh[v.(yrtvr 1] - =g [y" -y 1],
(.14 9V )] -39 }
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So, from (3.14), we can write (3.11c) in the following way

1 5 n n— 1 n— n— n
H(gh[Y -Y 1},6)h+;(gh[v(y Vi), 0), + e (VY™ V)

1

n—1 ]' n
(3.15) — (Y ,9)h+5(55(Y),0) ol

(W™ 1), (0,1), = 0.
If in (3.15) 6 € Py, it holds

1 Sh n n—17 p 1 h n—1yrn—1 2
= (6" -y },9)h+§ (¢"v- (v )],e>h
2 n ) n—1 g 1 ny o\ _

(3.16) + 2 (vyn, vé) - (v ,0)h+5<65(Y),9>_0.

From (3.16), we infer that Y™ is a solution of the following minimization problem
)2
(3.17) — (Y”1 — %gh (V- (Y 'V )] ,Z) ] :

h

2
n_ 1wz Llver (7 -y
Y —argzngpr;[zuvzu Fs(2), Dyt gy [V (2=

Thus, we have shown that, if Y™ W™ are solutions at a time step n of (3.11), then
Y™ is solution of (3.17).

Conversely, let us suppose that Y is solution of (3.17) above. Then, Y satisfies
(3.16). By definitions of operators G" G". we have

Zebh, = G"Z G"Zeh,
and furthermore for all 8 € Y},, we can define
0=0——(0,1) € P,
Therefore, if Y™ satisfies (3.16), it holds
L an -1 L on —1yn—1
— y"—-y" 0 — S(ynve 6
S ].6), + 2 @19 .0),
1
+e? (VY™ V0) — (Y™ 1.0), + 3 (Bs (Y™),0)
(3.18) <Y"—1 ! 0,1) ) 1 ! <5 (Y™ ! 0,1) )
. = s Ty s < 6 s Ty s 5
[ Y [ I

for all # € Y},. Then, we define

n Tn 1 n— 1 n
wh=w +@ [_ (Y 1>1)h+5(56(y )h,l)] ,
where W € Py, is such that
B19) W2 [T (V] - g v -y

ol ky
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and
n n— 1 n
(320) (W 71)h:_(Y 1a1)h+5(65 (Y )h?l)'
In this way, from (3.19), integrating by parts, we have
(Y" =Yt n), + ky (VW™ V) — k(Y 'V"1 V) =0,

for all n € Y},. Finally, using (3.19), we have that (3.18) reads as

= (W 0), (VY V) = (Y6, + 5 (5 ()0

= [— (Y”‘%l)ﬁ%(ﬁa(Y"),I)h ﬁ(&lh’

for all § € Y},. Then from (3.20), we get
1
= (W",0), +&* (YY", V0) = (Y"7,0), + < (B;(Y"),0),, =0,

which is (3.11c). Thus, we have shown that if Y™ is solution of (3.17), then Y™ and
W™ are solutions at the time step n of (3.11).

We conclude that the equations (3.11) and the minimization problem (3.17) are
equivalent. The latter is a strictly convex minimization problem and then it has a
unique solution. The same holds for the equations (3.11). O

As a consequence of Lemma 3.4 above, associated to the discrete state equations
of Problem 3.2,
€6,k (-)Cu) =0,

we can define a solution operator ssp. : L? (Lz) — Xk, Which is such that
(3.21) €5,h.k (Sé,h,k (U) ,U) =0, YU e L? (LQ) .

In the following Lemmas 3.5, 3.6, 3.7, 3.8 we derive stability estimates for the solu-
tion of the state equations (3.10), (3.11) of the regularized discrete optimal control
Problem 3.2. These estimates are independent of the discretization parameters h, k
and also of the regularization parameter 0.

Lemma 3.5. Let us assume that there exists a constant C independent of h, k, €
(O 1), such that

’ 4

IVvoul < C,

Then, for any fited U € L* (L?) the solution (V,P) € V) T x PN of (3.10) satisfies
(3.22) sup ||[VV"| < CU),

n=0,...,N

N

(3.23) d kv < o),

n=1

N

(3.24) S IVVE—vVrr < c),

n=1
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N
(3.25) S EIAVYF < W),
n=1
3.26 su kP < CMU)),
( ) n:l,f),NH; ( )

where the constant C'(U) depends just on ||[U|| 212y but it is independent of h, k,0 €

(0,%) and Ay, is the discrete Laplacian operator defined in (A.37).
The proof of the Lemma is shown in Appendix B, Section B.2.

Lemma 3.6. Let us assume that there ezists a constant C independent of h, k,d €
(O 1) such that

14

IVvoull < C,

Then, for any fized 6 € (0,1) and U € L* (L?), the solution (Y, W) € PN x YN
of (3.11) satisfies

2
1
(3.27)  Es(Y")+ %HVY” = VYT 4 Sl = Y 4 K %HVW"W
< B(Y"T)+k CMU) VYT,
foralln=1,..., N, where
2

€

(3.28) Es(Y") = S IVY" [ + (25(Y"), 1),,,

and the constant C (U) depends just on (U] 212y but it is independent of h, k,0 €

(0,4)-

Proof. At a time level n, setting n = W™ and § = Y™ — Y"1 in (3.11), we derive
Ey|[Wh)? =k (Y™, VL YIW) 422 (VY VY™ — VY™

(329) — (Y™ Ly"-Y"), + % (Bs(Y™), Y =y"h), = 0.

Expanding the third and the fourth term in (3.29) and using the convexity of f;s
(2.16), we have

2 2
R W2 = k (Y7 VI O 4 OV = oy
£’ n n-112 , Livn-12 Livnpz . Lion n—12
T A e ol U Nl TR P R IR el
+ (fs(Y™) = f5(Y" 1), 1), <0,
which can be rewritten as
52 ni|2 n 1 ni|2 ni|2 62 n n—1(12
(3.30) 5||VY |+ (fs(Y ),1)h—§||Y [ + Ey[[W"] +§||VY - VY™

1 n n— 52 n— n— 1 n—
£V =Y < SIVYT R 4 (5, ), - S IR
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+ k(YL Vel oy

Adding % (1,1),, to left and right hand sides of (3.30) and using the definition (2.10)
of &5, we can write

2
1
(3.31) Es (Y") + ky[[W"]|* + %HVY" = VYT Sl = Y
< B(Y"H) 4+ kYL VLYW = B (YY) 4+ 1L

From the generalized Holder’s inequality (A.14), (A.17), Poincaré’s inequality (A.15),
Young’s inequality (A.13) and the result (3.22) in the previous Lemma (3.5), we
derive that I; in (3.31) satisfies

L < kY Y[V VW <k C @) Y Hm [VIW?|
1 o
k —|IVY™ ]2 + k= ||V
C ) 5 [VY™ I+ & v

A\

Therefore, with o small enough
(3.32) L<k %vann? +ECU) VYR

Then, using together (3.31), (3.32), we obtain the final result (3.27). O

Lemma 3.7. Let us assume that there exists a constant C, independent of h,k,d €
(O, i), such that

(3.33) IVVorll® + Vol < C,

Then, for any fized § € (0,1) and U € L? (L?), the solution (Y, W) € PN x v}

14
of the state equations (3.11) satisfies

(3.34) sup |Y'w, < CMU),
n=0,...,N
N 2
(3.35) ZkHVGth” < oW,
= A
(3.36) S TEIAYE < CcW,
n=1
N
n n— 2
(3.37) My =y < c,
n=1
N
(3.38) D EIW i < C@).
n=1

where the constant C' (U) depends just on |[U|| 212y but it is independent of h, k,d €

(O, i), G is the Green’s operator defined in (A.20) and Ah is the discrete Laplacian
operator defined in (A.36).
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Proof. In the estimate (3.27) in Lemma 3.6 we sum on the index n. We derive

B(Y™) 4 G LIV VY g Y -y 3k O
n=1 n=1

(3.39) < Es(yon) + C (U Zk vy 2,

for all m = 1,..., N. By the definitions of the discrete energy Es (3.28) and the
function ®; (2.10), we have

g2 1
(3.40) Es (yon) = gf\vl/o,th + 5 (1= 1)h + (fs (yon) » 1), -

Since —1 < yo 5 < 1, the function f5 (2.11) is such that f5(yox) = 0. Hence, from
(3.40), we get

1 1
(3.41) Es (yon) = —HVyOhH2 5 (L)~ 2(y3,h,1)h

2
E
< SVl + IR < SVl +Clo.

Then, inserting (3.41) in (3.41) and using the assumption (3.33), we have
(342) E;(Y™) = E;HVYmH2 + (P (Y™"), 1), <C M) zm:k [L+ (VY™
n=1
Using the property (2.14) of the potential ®s, from (3.42), we can write
(3.43) %ZHVY’”HQ <CMU) Zm: E L+ [VY™ 7],
n=1

Applying the discrete Gronwall’s Lemma (see for example Lemma 1.4.2 in [73]) to
(3.43), we obtain
(3.44) vym| <o),

for all m = 0,..., N. Hence, from Poincaré-Wirtinger inequality (A.15), we have
that the result (3.34) holds. From (3.34) together (3.39), we derive the further
result (3.37) and moreover

(3.49 Sk IV < C @),

n=1

forallm=1,..., N. Setting § =1 in (3.11c), we have

n 1 n
(3.46) (W, 1), = 5 (B (Y"), 1),
Since |Bs (1) | < Bs (r)r, from (3.46), we derive

(3.47 (77, 1), < 5 (8 (V7)Y
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Substituting # = Y™ in (3.11c), we have

1 n n n n 2 n2 n—1 n
(3.43) B Y ), = (WY, = 2OV (YY),
Hence, using together (3.47) and (3.48), we can write
(3.49) (W, 1), ] < (WP, Y™, = 2 VY7)2 + (YL, ym),

From the definition (A.32) of the discrete Green operator Gn, Cauchy-Schwarz in-
equality and (A.35), we have

(v W), = (VYT W) < VG [V < O Y 9|
Hence, from (3.49), we get
(W™ Dl < C Y IV = VY2 + (Y7L YT,

which implies, using the equivalence between the L? norm and the h-norm, Cauchy-
Schwarz and Young’s inequality (A.13),

(3.50) (W), <O I P+ Y+ vwe ]

Summing on the index n in (3.50), taking into account of the result (3.34) and
using (3.45), we derive

m

(3.51) S kW), <CMU).

n=1

for all m = 1,..., N. Therefore, from (3.45), (3.51) and the discrete Poincaré’s
inequality (A.50), we infer that the result (3.38) holds.

By the definition of the Green’s operator G in (A.20), the first state equation in
(3.11) and the definition of the projection operator Q" in (A.41), we have

(VG Y™, Vi) = (dY",n) = (dY™,Q™),
(3.52) = —y (VW™ VQ"n) + (Y" ', V1. vQ"y),

for all n € H'. Using in (3.52) the generalized Holder’s inequality (A.14), (A.17)
and the property (A.42) of the projection operator Q", we derive

(VGd, Y™, Vi) IV + Y e[V 2] IV Q"]

<
< C [IVW I+ 1Y Ml IVVHT VA,

which implies, setting n = Gd,; Y™ and taking into account the results (3.22), (3.34),

(3.38), the desired estimate (3.35).

Setting = —A,Y™ in the second state equation in (3.10), we get

(3.53) (W" Lyl —AhY"> +e? (VY", vAhY"> +
h

5 (s, Ay
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A 1
= (VW IV = AN + (VYL VYY) = (9 [15(Y], VYY) =0,

where [, is the interpolation operator defined in (A.27). Using the following prop-
erty (see inequality (4.3) in [41]),

(3.54) 2 (VY", V1,3 (Y™) >0,
from (3.53), we can write
(3.55) E|AY™Z < (VW™ VY™) + (VY"1 VY™,

which implies, multiplying by k, using Young’s inequality (A.13) and summing on
the index n

m R 1 m
ezzk 1ALY ™2 < §Zk (VW2 + 2| VY| + VY™ 2],
n=1 n=1

for all m =1,..., N. Hence from the previous results (3.34) and (3.38), we obtain
the estimate (3.36). O

Lemma 3.8. Let us assume that there ezists a constant C, independent of h,k,d €
(O 1), such that

' 4 R
IV vorll® + Vyonl < C,
Then, for any fixed § € (0, i) and U € L* (L?), the solution Y € PN*! of the state
equations (3.11) satisfies the following estimate

(3.56) ﬁjk |58 0m) | < can.

where the constant C (U) depends just on ||U||%2(L2) but it is independent of h, k,d €
1

(0,3)-

Proof. Settingin (3.11c) 6 = I"35 (Y™) € Y}, where I" is the interpolation operator

(A.27), we derive

1
(3.57) e (VY™ VI"3; (Y™)) + 5|ylh@5(yn)uh =W+ Y"1 B (Y™),
< WY I Bs (V) e < LW+ 1Y 1) 1285 (V™) (]
n n— ]' n
O (W™ IE+ Y™ HIE] + 55 1185 (V™) I

IA

where we used the useful inequality
(a+b)e<p(a®+b?) +%¢32, Vi > 0.
Rearranging (3.57), we get
(VYT (V) + () < [+ [
which implies, using (3.54),
(3.58) ST B < 8 LW+ Y™ 2]

In (3.58), we divide by d, multiply by & and sum on the index n. In this way, using
the estimates (3.34), (3.38) in Lemma 3.7, we get the result (3.56). O
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3.2.2. Well-Posedness of the Regularized Discrete Optimal
Control Problem

The regularized discrete optimal control Problem 3.2 has the form of an abstract
optimal control problem and it is straightforward to prove, in the following Lemma
3.9, the existence of solutions.

Lemma 3.9 (existence of minimizers). For any fived h,k,0 € (0, %), the requ-
larized discrete optimal control Problem 3.2 admits a solution.

Proof. The map Jy, 1. : X5 x L? (L?) — R is continuous, convex and bounded from
below. Thus, it is weakly lower semicontinuous. Then, the proof of the Lemma is
analogous to the one of Theorem 2.5 in Chapter 2. O

3.2.3. Optimality Conditions for the Regularized Discrete
Optimal Control Problem

As in Chapter 2, we show that the regularized Problem 3.2, satisfies the conditions
needed to apply the standard theory of mathematical programming in Banach
spaces (see Assumptions 1.47 in [58]) and next, we derive the first order optimality
conditions (see Theorem 1.48 and Corollary 1.3 in [58]).

We need to verify that the discrete regularized optimal control Problem 3.2 satisfies
the following conditions:

e the continuous differentiability of the cost functional Jj,; : X5 x L? (L?) —
R;

e the continuous differentiability of the constraint es, x : Xpx X L* (L?) = Xj 1
defined in (3.7).

e the existence of the inverse of the map 8%‘5% (ssnie U) ,U).

It is straightforward to check that the first two conditions above are satisfied. Then,
we skip the proofs. In the following Theorem 3.10, we prove that also the last
condition is verified.

Theorem 3.10. For any fized h,k,0 € (0,1) and U € L* (L?), the operator
0es
o0xX

(ss.n0 (U),U) € L (Xp g, X i)

18 invertible.

Proof. We need to prove that for all Z € X} 5 there exists a unique dx € X
such that

esh i
oxX

Equation (3.59) is equivalent to demonstrate that given (Zv, Zp, Zy, Zw) € V5 T x
PN x PN x V)N, the following system of equations

(360) (dr\L/ - ng_lv ¢) + kv (vdnvv VW —k (d$7 V- ¢) - (vav ¢) )

(359) (85,]171? (Ll) ,U) dx = Z.
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(3.61) (V-dy,0) = (Zp,9),
(3.62) dy, = ZY,
(dy —dv™"n), + kv (Vdyy,, Vi)

(3.63) —k (dy VT YAy Vi) = (Z8m),,,

— mn 1 n mn n
(364) (dyVlV + dgl/ 17 e)h - 82 <VdY7 V@) o g (6(/5(Y )dY7 9)h = (ZW7 9)h )
(3.65) & = 7Y,
where n = 1,..., N, has a unique solution (dvy, dp, dy,dw) € Vi 1 x PN x PN*! x

YN, for all (1, ¢,n,0) € Vi, x P, xY}, xY,. By standard arguments, it is possible to
derive that (3.60), (3.61), (3.62) have a unique solution (dv,dp) € Vi ™' x PN. Tt
remains to show the existence and the uniqueness of the solution dy, dy of (3.63),
(3.64), (3.65). At each time level n, rearranging (3.63), (3.64), we have

n 1 /! n mn mn n n—
2 (Vdy, VO) + 5 (B(Y "), 0), — (diy 0), = = (Ziy,0), + (d571,6),.

(d5,m)y, + kv (Vdiy, Vi) = (Z3 +dy '), + K (dy Vet Yo idy ™t o)

We write last two equations in a matrix-vector form. In this way, they read

(3.66) E ﬁ — M, % = ﬁ,
(3.67) My, ﬁjL k~y A % = ﬁ,
where

ﬁi = dy (@), %Z = dyy (),
1 n
Ajj = (Vﬁgw Vi), M;; = (Ujﬂh‘)a Eij = 5 (53(5/ )ﬁj,nz)h +¢&? A j,
ﬁi = _(Zly/ll/’nl)h+ (dg_lﬂni)h7
f, = (Zy,m), + (dy ' om), + k(& VI V) + & (YL Ay Vi)

for i,j = 1,..., N, using the Lagrange basis {n,...,nn,} of Y,. The solution of
(3.66), (3.67) is given by the following Schur-complement based scheme

diy = M (Edy - 1),

&= (Mt kg AMTE) T (koADMY S f7)

which is well-posed if the matrix (Mh +k~v A Mh’1 E)_1 exists. In order to show
that, we note that M, is diagonal with positive elements and A is symmetric and
positive semi-definite. Moreover

1. Iy
E = 5 diag (..., B5(Y™)(x;),...) My + &% A,

with  S5(Y")(z;) >0, Vji=1,...,Np.
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Therefore E is symmetric and positive definite. Obviously M, 'AM, " is symmetric
and positive semidefinite and ]\4,:1 A Mh’1 E is positive semi-definite (see Prop.
6.1 in [?]). Noting that

My+ky AM? E=M, (I+k~yM," AM"'E),

and using the previous considerations, we infer that [ + &k ~ ]\4,:1 A ]\4,:1 E is
positive definite. Then, we conclude that M), (I + kv ]\4,:1 A ]\4,:1 E) is positive

definite too. Hence, the matrix (Mh +kvyAM? E)f1 exists and the proof is
completed. O

The continuous differentiability of the maps Jyx : Xpx x L? (L?) = R, espnr :
Xpx x L*(L?) — Xj,, and Theorem 3.10 guarantee that all the solutions of the
regularized optimal control Problem 3.2 can be derived solving a set of first order
optimality conditions (see Theorem 1.48 and Corollary 1.3 in [58]). As in Chapter
2, for any fixed h,k and 0 € (0 1), we define the discrete Lagrange functional

1

L(S,h,k : Xh,k X L2 (L2) X Xh,k: — R,

(3.68) Lsng (XU, Q) = Jp (X, U) + (L, esn, (X, U))X; | X1
where

Q = (QV7 QP7 Q% QW) S Xh,k'

Thus, the first order optimality conditions of the discrete regularized optimal control
Problem 3.2 correspond to find (X, U, Q) € Xy x L* (L?) x Xy 1 such that

OLs e
. Lk (x =
(3.69) 50 (xX,U,Q)=0,
OLs e B
(3.70) oE, (X, U,Q)=0,
OLs e
71 (X = 0.
(3.71) U (X,U,Q)=0

Equations (3.69) are just the discrete state equations esp 5 (X, U) = 0 of Problem
3.2, (3.70) corresponds to the discrete adjoint equations and (3.71) is another opti-
mality relation.

In the next Lemma 3.11, we prove that given a solution X = ss, (U) of the
discrete state equations (3.69), the discrete adjoint equations (3.70) have a unique
solution Q € Xj, 1.

Lemma 3.11. Let h, k,U € L* (L?) and X = s, (U) € Xj 1 be given. Then, the
discrete adjoint equations (3.70) have a unique solution Q € Xy, for any fized
5e(0,9).

Proof. As a result of Theorem 3.10, we have that the map

-1

Oe
SR (s U)U)| € L(Xpgs Xnk)

0X

exists. Thus, the proof of the Lemma is analogous to the one of Lemma 2.8 in
Chapter 2. O
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The first order optimality conditions (3.69)-(3.71) are written in terms of the
abstract variables (X, U, Q) € X,,x x L* (L?) x X}, . Using the definition of the
discrete space X, = Vp "1 x PN x PN x VN we write these optimality conditions
explicitly, using the state and the adjoint variables

V, P, Y, W) = X,
(QV7Q7379377QW) = Q

Corollary 3.12 (optimality conditions). The first order optimality conditions
(3.69)-(3.71) of the regularized optimal control Problem 3.2 read as follows. For all

n=1,...,N:

(3.72a) (d V", ) + v (VV™, Vap) — (P", V- 4p) — (U", ¢) = 0,
(3.72b) (V-V"¢) =0,
(3.72¢) VO = v,
(3.72d) (deY" )y, + (YW, V) — (YIV"1 Vi) =0,
(3.72¢) (W™, 0), —(VY™,VO) + (Y"1,0), — % (Bs(Y™),0), =0,
(3.72f) Y = yon,

forally € Vi, o € Py, 1,0 €Yy,
(3.732)  (—d: Q%) +v (VQY L, VY) + (Qp 1,V -4) — (Y"VQy, ) =0,

(3.73b) v =0,
(3.73¢c) (V-Qy ' ¢) =0,
(3.73d) (—dtQ’%, My — € (VO Vi) + Qi)
—(VQy - V") - (/5’5 Y™ Qwtn), + (Y™ = yinmn) =0,
(3.73e) QY =0,
(3.73f) (@ '.0), +~ (VQy 1, Vo) =0.
(3.73g) Qw =0,

forall vy € Vi, p,n € P, 0 €Yy,
(3.74) aU" - Qy ' =0.

Proof. By direct calculation, equations (3.72b)-(3.72f) and (3.73), can be derived,
respectively, from (3.69) and (3.70). From (3.71), we have that

Z/ (ah — Q") dt =0,

for all ¢ € L? (L?). Thus, we get U € VI,
U(t)=U"eVy, Ve (thi,tn),

and consequently (3.74) and (3.72a). O
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Remark 3.13. As a consequence of the optimality conditions (3.73f), we infer that
Qv € By, foralln=0,...,N —1.

In the following Lemma 3.14, we derive d-independent stability estimates for the
adjoint variables (Qy, Op, Qy, Q) € Vi x PN x PN x V)N, These estimates
are used in the next sections, where, to deal with the discrete formulation of the
non-smooth optimal control Problem 2.1, we perform the limit of the optimality
conditions system (3.72)-(3.74) for the regularization parameter 6 — 0%.

Lemma 3.14. Let us assume there ezists a constant C independent of h,k and
0 € (0 l), such that

74

N
(3.75) IVvoull + 1 Vyonll + >k llyail* < C.
n=1

Then, if (X, U, Q) € Xy x L* (L?) x Xy is a solution of the adjoint equations
(3.72)-(3.74) for fized h,k and § € (0,%),

(3.76) :Soup IVQy || < CU),
(3.77) anmnz < oW,
N n=1
(3.78) ZIIQ@”—Q%II% < Cu),
(3.79) ZkHAthH? < ),
(3.80) sup HZI{:Q’ < CcCWu,
(3.81) sup HQYHHO < CcW),
n=0,...,N
N
(3.82) Syt = QvE, < CcW),
n:lN
(3.83) D R IAQYIG, < CM),
nzON
(3.84) S kQwIE, < CcM),
n=0
and
N 1
(3.85) 0= Yk (sHomartart) scw.
n=1 h

where the constant C'(U) depends just on |U|| 122y but it is independent of 6, h, k
and Ay, Ay, are the discrete Laplacian defined, respectively, in (A.37), (A.36).
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Proof. For a given n = 1,..., N, we set n = kQ};' € P, 0 = k (Q@’l — Q’{,) in
(3.73d), (3.73f). In this way, we derive two relation that, used together, produce

SIVQEP = IVQEIP + SV (@8 —@y) 12+ keI V Q3 I
+_ (63()/”) 7VLV_17Qn_1)

— —k (V" VQE, Q%) + k (Q, Qy ) k(Y = i QW)
(3.86) L+ L+

Regarding Iy, I, I3 in (3.86), we derive:
[ ]

I < kY™ —yplllQw 'l < & C Y™ —ya, Ve

<
< ko [VQRI*+k Clo) V" = yaull®,

using Cauchy-Schwartz, Poincaré-Wirtinger inequality (A.15) and Young’s
inequality (A.13);

L = kv (VQy,VQy") < kv [Vey ' IVey|
< ko |IVQy P +Ey Clo) IVQY®,

setting 6 = kQp ! in (3.73f) evaluated at n, using the generalized Holder’s
inequality (A.14), (A.17) and Young’s inequality (A.13);

L <kCIVVIVOIIVEY I < ko [VQy P +k C(o) CL ) [VQY 1%,
from the generalized Holder’s inequality (A.14), (A.17), Young’s inequality

(A.13), Poincaré-Wirtinger inequality (A.15) and the estimate on ||[VV”||
(3.22) derived in Lemma 3.5.

Inserting the estimate of I, I3, I3 in (3.86), with o small enough, we get
B8N FIVRYI” = SIVQVIP + SIVQY = VQE I + & Culo) VO
k n\ yn— n— n n n

+5 (BOMQE QW) <k Calo,U) VT I” +k Cs(o) Y™ =yl

where Cs(0,U) is a constant which depends on o and |[U||;212). Summing over
the index n = N, ..., m in (3.87), we derive

Y e e
(388)  2IVQRP+

DO [ 2

D IVQE = VQy P+ Cilo) >k IIVQRIP
n=N n=N

| >

Z 5 (B5(Y")Qyt, Q') < C Z kIVOVIZ+ Y™ —vinl?]
n=N n=N
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forallm=1,...,N. In (3.88), by the definition (2.13), 0 < 5 < 1. Therefore
(B(Y™Qpt, QpY), =0, Yn=1,... N.

Moreover, from the assumption (3.75) and the estimate (3.34) in Lemma 3.7 of
|Y™|, the last term on the r.h.s. in (3.88) is such that

D kY —yilP<CcM).
n=N

Thus, we can apply to (3.88) the discrete Gronwall’s Lemma (see for example
Lemma 1.4.2 in [73]). In this way, we derive the results (3.81), (3.82), (3.84) and
(3.85). The optimality condition (3.73f) is equivalent to the following

’5[71 = vﬁhQﬁfl, Vn=1,...,N.

Hence, the result (3.83) is just a consequence of the result (3.84).
Setting ¥ = —kd;QY, in the optimality condition (3.73a), we derive

v _ v n v e n
(389)  Kl4QYIP+ SIVQY - ZIVQY I + LIvQyT - vay
= h (Y™, VQ} - dQY).

Using the generalized Holder’s inequality (A.14), (A.17), interpolation inequality
(A.51) and Young’s inequality (A.13), we can estimate the r.h.s. in (3.89). We
have

(3.90) k(Y™ VQY - diQy ) | <k [V 1] VQR 1] d: QY |
<ECOIY™|m [ IVQE] + 1AQ%] ] 1d: QY|
<ko|dQu P+ k C o) 1Y, [ IVQEI® + |1 ALQ%|1%].

Hence, using (3.90) with o small enough, from (3.89) we get
v — v n v n— n
(391) kG (o) [dQVI°+ VRV = SIVQYI® + SIIVQY T - VQy|®
<k Co (o) V"5, [IVQVI* + 1 2nQ% ]

Summing over the index n = N,...,m in (3.91), we derive
- v _ V — . "
(392)  Ci(0) Y KIdQUIP + SIVQY TP+ 5 Y VAV - VQU
n=N n=N

< Co(0) D kY IR, [ IVQRIP + 1 20Q% 1]
n=N

for all m =1,..., N. Then, from the estimate (3.34) in Lemma 3.7, (3.82), (3.83),
we realize that the results (3.76)-(3.78) hold.

We set 1 = kA"QY " in (3.73a), where A" is the discrete Stokes operator (A.40).
In this way, we have

(3.93) kv|[A"QV* = k (dQV,A"Qy ) +k (Y™, VQY - A"QY )
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- M1 +M2

From generalized Holder’s inequality (A.14), (A.17), interpolation inequality (A.51)
and Young’s inequality (A.13), we derive

M| < ko A"QyH* +C (o) & [|d:QV |,
Mo < kY|l VO34 | A" QY
<k C Y [l [ IVQYI+ 1 2nQ% [ 1A QY|
< kol|A"QY P+ E C (o) Y™ IE, [ IVQFIP + 12nQ% 1] -

Then, using the estimates for M, M, in (3.93), with o sufficiently small and sum-
ming on the index n =1,..., N, we get

N
(3.94) Cy (o) Yk [AMQY P
n=1

N N
< Cy(0) Y kN Qyl” + Cs (o) > kY15, [ IVQRI® + 1 2n@Q5 )17
n=1 n=1

The results (3.34) in Lemma 3.7, (3.82), (3.83), (3.77), guarantee that the r.h.s in
(3.94) is bounded. Hence, it hold

N
kAP <),
n=1

Then, following [46] as in the proof of Lemma 3.5, we derive the result (3.79).
The proof of the last estimate (3.80) is analogous to the one given in Lemma 3.5. [

3.3. Discrete Non-Smooth Optimal Control
Problem

In this section, we study the non-smooth discrete optimal control Problem 3.1,
which represents a discretized version of the non-smooth optimal control Problem
2.1. Using the results obtained in Section 3.2, we derive a system of first order
optimality conditions of this problem as limit of the first order optimality condi-
tions (3.72)-(3.74) of the regularized discrete optimal control Problem 3.2, for the
regularization parameter § — 0F.

3.3.1. Properties of the State Equations of the Discrete
Non-Smooth Optimal Control Problem

In the next Lemma 3.15, we show that the state equations (3.5),(3.6) of the the
non-smooth discrete optimal control Problem 3.1 can be derived as limit of the
state equations (3.10), (3.11) of the regularized discrete Problem 3.2, for the regu-
larization parameter 6 — 0". Next, in Lemma 3.16, we show that the equations
derived have a unique solution.
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Lemma 3.15. Let us assume that there exists a constant C independent of h, k
and 6 € (O, i) such that

Vol + [ Vyonrl < C.

For any fived h,k, consider a sequence {0;},cy C (O,i) such that 6, — 07, a

bounded sequence {U},.y C L? (L?) and the corresponding sequence of solution
{Vi, Vi, W) }en of the state equations (3.10) (3.11) of the regularized discrete op-
timal control Problem 3.2. Then, there exists a subsequence (labelled by index m),
such that

(3.95) U, —~U, in L2 (L?),
(3.96) VY, =V, in VIVt
(3.97) P — P, in PN,
(3.98) Vo =, in PNVt
(3.99) Wi — W, in Y,V
and the limit variables satisfy
(3.100) sup [[V'lp < CU),
n=0,...,N
N
(3.101) kA VP < Cc),
n=1
N
(3.102) dMIvri=vrl; < o),
n=1
N ~
(3.103) YoEIAVP < C),
n=1
3.104 su H kPl < cw
( ) S ; )
(3.105) sup ||Y"'g, < CU),
n=0,...,N
N
(3.106) Y kVGaY'|r < CcW),
i=1
N
(3.107) YoEIAYE < @),
i=1
al 2
(3.108) My =y, < cw,
i=1
N
(3.109) S EIWIE < CcM).
=1

where the constant C' (U) depends just on |[U|| 122y but it is independent of h, k, 6 €
(O, %). Furthermore, (V, P, Y, W,U) satisfies the state equations (3.5), (3.6) of the

discrete non-smooth optimal control Problem 3.1.
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Proof. The statements (3.95)-(3.109) are a direct consequence of the results ob-
tained in Lemma 3.5 and Lemma 3.7. We prove that the limit variables V, P, )V, W, U
satisfy the state equations (3.5), (3.6) of the discrete non-smooth optimal control
Problem 3.1. Considering the subsequences in (3.95)-(3.99), we have

(B1108) (A Vi) + 0 (T, Vo)~ (P V)~ 1 [ @hww) di=0,

(3.110Db) V), = th,
(3.110c) (V-V5,0) =
(3.110d) (Yo m)y + 5 (YW, V) — (Y 'Vt V) =
(3.110e) Y, = Yon,
(3.110f) — (Wh+Y00), + 2 (VY5 VO) + — (/35 (Y),0) =0,

As m — +oo, the convergence of the equations (3.110a), (3.110c¢) to equations
(3.5a), (3.5¢) is straightforward. This is true also about the convergence of the
nonlinear term in (3.110d), (3.110f) to the corresponding terms in (3.6a), (3.6¢).
We show the convergence of the nonlinear terms. Regarding the third term in
(3.110d), we note that

N

N
0, = ’ Sk (Yrvitv) =Sk (vl Vet
n=1

n=1

N
< Z L } (Ymnfl _ Ynflj V:Lnfl . vnn) + (Ynfl’ [V:Lnfl _ anl} . vnn) ’

N =1
<C> k
n=1

Then, using V,, — Y in V"™ and V,, = V in V' !, we infer that

3

1

Yo =Y Ve ey + 1V Ve — V"’IHH(J V][

(3.111) Oy — 0,

as m — +00. Therefore (3.110d) converges to (3.6a) as m — +oo. We set 0 € K},
n (3.110f). Then, as in the proof of Theorem 2.11, using the definition (2.12) and
the property (2.17) of the function S5, we can write

—(Wh+ Yt o=Yr), +2 (VY V0 — VY

= (85, (6) = B, (V) 6~ Y7) 2 0.

Last equation yields (3.6¢) as m — +oo. Finally we prove that (3.6d) holds, i.e.,
—1<y*<l1,foralln=1,...,N. From (3.56) in Theorem 3.8, we have

N
>k |8 (i)
n=1

2 2
<o
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and consequently

N 2
im Sk Hﬁg,n (Y™ ‘ ~0.
m—-+00 ]

Then, using the function f defined in (2.69), we can write
N ~
Sk(fam.en) |
n=1
N

<STR[IFO™) = F OGN+ 17 (5 = B, (V) |+ 185, () U] o)) <

1
2

N % N
<C (Zkuw_y,gHZ) + T3 45, (Zk|]9"ﬂ2> — 0,
n=1 n=1

as m — +oo, for all " € Y;,, n=1,..., N. Therefore
f(Y"y =0, Vn=1,...,N.
Hence, from the definition (2.69) of the function f, we infer that (3.6d) holds. [

In the next Lemma 3.16, we derive the properties of the solution of the state
equations (3.5), (3.6) of the discrete non-smooth optimal control Problem 3.1.

Lemma 3.16. For any fived h,k, U € L* (L?), the system of the state equations
(3.5), (8.6) has a unique solution (V,P,Y,W) € Vi x PNV x PN x V)N, Fur-
thermore, if there exists a constant C' independent of h, k, such that

(3.112) IV Vol + [IVyonll < C,

there exists a constant C'(U) which depends just on |[U|| 122y but it is independent
of h,k, such that (V,P,V, W) satisfies the estimates (3.100)-(3.109) in Lemma
3.15.

Proof. As a consequence of Lemma 3.15, the system of equations (3.5), (3.6) has a
solution (W, P, Y, W) € Vit x PN x PN x V}N. Moreover, if the assumption
(3.112) above holds, this solution satisfies the estimates (3.100)-(3.109) in Lemma
3.15. Tt remains to show the uniqueness of the solution. Given U € L? (L?), using
the linearity of the equations (3.5), it is straightforward to prove that (V,P) €
V't x PN is unique. To prove the uniqueness of (Y, W) € PN x V)N, we proceed
by induction. Let us suppose that, given a time level n, the solution (Y™~ WWn=1)
of (3.6) at the time level n — 1 is unique. Then, at the time level n, we consider
two possible solutions (Y7*, W), (Y3", WJ') € P, x Y}, of (3.6) and we define

Sy =Yy =Y, Sy = W3 — Wi
We subtract (3.6a) with Y™ = Y]" to (3.6a) with Y™ = YJ". In this way, we get

(3.113) (Sy,m), + kv (VSy, Vi) = 0.
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We add (3.6¢) with Y = Y*, W™ = W[, 0 = Y;" to (3.6¢) with Y" = Y*, W" =
W3, 0 =Y. Thus, we have

(3.114) — (S, Sy), + IV SEII” < (1S3
Substituting 7 = G, S in (3.113), we have
(539083 ) ==k 7 (VSi, VGuSy)
which is equivalent, by the definition (A.33) of the discrete Green’s operator Gn, to
(3.115) IVGRSEII? = —ky (S5, Siv )y,
Multiplying (3.114) by kv and using (3.115), we can write
(3.116) IVGLSHN? + kv Vds|I* < k|| Sy 17

By Young’s inequality and the definition (A.33) of the discrete Green’s operator
Gn, we infer that

. g2 1 A
(3.117) S22 = (vs;,vghsg) < SIVSHP + 11Vt
Hence, using (3.117) in (3.116), we have that, for all &
IVGS3I” < hgl5IVGuSi I

Therefore V,C’;hS{} = 0, which means S} = Y;' — Y]" = 0. Moreover, setting n = Sy},
in (3.113), we derive
VS =0,

i.e., Sjj; is equal to some constant. In order to show that this constant is indeed
zero, we consider £ € Y}, such that

Yz;) =1 = &(z;) =0,

for all z; vertices of 7;,. Then, we substitute . = Y"+p¢ in (3.6¢), with p constant
and small enough so that —1 < 0 < 1. In this way, we get

(VY™ VE) > (Y 4+ W¢),
— (VYY" V&) > — (Y 4+ Wn9),,
which imply
(3.118) (VY™ VE) = (Y"1 +W"¢), .
Subtracting (3.118) with W™ = W] to (3.118) with W™ = WJ', we have
(St &)y, = S (1,€), = 0.

Thus, we infer S%t, = WJ' — W = 0. We have shown that, if (Y"1, W"~!) is the
unique solution of (3.6) at a time level n — 1, then (3.6) have a unique solution
(Y™, W™) even at a time level n. Hence, using the initial condition Y = yg;, by
induction, we derive that the solution (Y, W) € PNt x Y} of (3.6) is unique. O
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3.3.2. Minimizers of the Discrete Non-Smooth Optimal
Control Problem

As in Chapter 2, in the next Lemma 3.17, we prove the existence of solutions of
the discrete non-smooth optimal control Problem Problem 3.1.

Lemma 3.17 (existence of minimizers). For any given h, k, the optimal control
Problem 3.1 admits a solution.

Proof. The proof is analogous to the one of Theorem 2.5 in Chapter 2. O

In the next Theorem 3.18 we show the relationship between the solutions of the
regularized discrete optimal control Problem 3.2 and the solutions of non-smooth
discrete optimal control Problem 3.1: there exists a sequence of solutions of the
regularized Problem 3.2, which converges to a solution of the non-smooth Problem
3.1, for the regularization parameter 6 — 0.

Theorem 3.18. Let us assume that there exists a constant C independent on
h k,oe (O, i), such that

N
(3.119) IVvoull + [ Vyonll + Yk llyaal® < C.

n=1

Furthermore, for any fived h,k, let us consider a sequence {0;},oy C (O, i), such
that 0; — 0% and the corresponding sequence of solutions of the reqularized discrete
optimal control problem 3.2,

{(‘)Elval) }leN C Xk X L? (Lz) :

Then, it is possible to extract a subsequence (labelled with an index m), such that,
as m — +00,

Xm — 2, in Xh,ka
U, ~Uu, in L (L?),
where (?E',L_l) s a solution of the discrete non-smooth optimal control Problem 3.1.

Proof. Given the sequences {d;},.y and {(zf},al)}leN = {(5617h,k (Z;ll) ,al)}leN,
where sspy : L*(L?) — X, is the solution operator (3.21) associated to the
state equations of the regularized Problem 3.2, we consider U € L? (L?) such that

U)=ucl?® Vte|0,T].

Then, by the definition (3.4) of the discrete cost functional Jjj, the results of
Lemma 3.7 and the assumption (3.119), there exists a constant C' (U), such that

_ — — (6%
21722y < Tnk (ssnk (Un) ,UL) < Tk (ss,.06 U) U) < C U) + 5”””%2@2)-

The constant C'(U) depends just on |[U| 22) and it is independent of h, k,d; €
(0,1). Therefore, the sequence {Ml}leN is bounded in L? (L?) and by the estimates
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established in Lemmas 3.5, 3.7, the sequence {(s&,h,k (Z:ll) ,I:ll) }IGN is bounded in
Xpx x L?(L?). Hence, by Theorem 3.15, there exists a subsequence (labelled by
index m), which is such that

(St (Unm) Up) = (X, Uy) — (X, U),  in Xy x L2 (L?)

and (X,U) is a solution of the state equations (3.5), (3.6) of the discrete non-
smooth optimal control Problem 3.1. Then, using the same procedure applied in

the proof of Theorem 2.13, it easy to prove that (?E',L_l) is also a minimizer of
Problem 3.1. ]

As we have done in Chapter 2, in the following we present an equivalent formu-
lation of the discrete non-smooth optimal control Problem 3.1. In this formulation,
we introduce two Lagrange multipliers in the state equations

BT’) Bl 6 YhN

In this way, the optimal control Problem 3.1 will assume the structure of a mathe-
matical program with complementarity constraints. In the optimality conditions for
this problem, the Lagrange multipliers B,, B; will be related to a variable A € Y,
Then, just the relationship between B,,B; and A will be one of the key issue for
the numerical solution of the optimality conditions of non-smooth optimal control
Problem 3.1. We define the spaces

Rh,k = XhJc X YhN X YhN,
with elements R = (X, B,, B;) and
Kif={ZeYy: Z>0}.

Furthermore we consider the cost functional Jj,; : Ry, x L? (L?) — R, which is
such that .
Jh,k (’R,Ll) = Jh,k (X,U) .

Then, we consider the following problem:

Problem 3.19. Find (R,U) € Ry, x L? (L?), such that

' Tk (R.U) = Jux (RU
(R,u)egb%knxL2(L2) Jh’k< ’u) h,k ( ,U) ,

subject to
I
B1200) (&N ) v (VI V) (P ) - [ W) di=0,
tn—1
(3.120b) VO = v,
(3.120c) (V-V" ¢) =0,

(3.121a) (d; Y™ n), +~(VW", Vn) — (Y 'V* 1 Vn) =0,
h
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(3.121b) YO = yon,
(3.121c) — (W Y"1 0), + & (VY", V) + (B",0), =0,
(3.121d) Y™ € Ky,
(3.121e) B"=B'- B, with B" B'€K,,
(3.121f) B (1= Y™)] (2;) =0,
(3.121g) Bl (1+Y™)] (2;) =0,

forallep € Vy, ¢ € Py, n,0 €Yy, j=1,.... N, n=1,...,N.
Lemma 3.20. Problems 3.1 and 3.19 are equivalent.

Proof. We need to show the equivalence between the state equations (3.5),(3.6) and
the state equations (3.120),(3.121).

First we prove that every solution of (3.5),(3.6) is also a solution of (3.120),(3.121).
Given U € L* (L?), we consider a sequence {d;},.y C (0,1), such that ; — 0" and
the corresponding sequence of solutions of the regularized discrete state equations
(3.10), (3.11),

{(Via Pi, Vi, Wi)}ieN = {Xi}ieN = {55i7h,k‘ <u>}iEN'

By Theorem 3.15, we know that there exists a subsequence (labelled with index m)
such that
Xm — X € Xh,lm

where X = (V,P,Y, W) is the unique solution of (3.5),(3.6). It easy to realize
that X, together some B,, B; € Y}V satisfy (3.120),(3.121). Indeed, using the result
(3.56) in Lemma 3.8, there exist B,, B, € Y}, such that

1
(3.122) 5 o (Vo) (25) = By (25) 20,
1
(3.123) 5—515m (Yn) (z;) — Bl (x;) =20,
as m — +oo, forall j = 1,...,N,, n = 1,..., N, where the functions S,s, S5

are defined in (2.84), (2.85). Furthermore (), W, B) satisfies (3.121c). In order to
prove that (3.121f) is satisfied, using Y™ € Kj,, we note that

(3.124) Brs (Vo) (1 =Y (25) = [B (1 = Y")] (z;) = 0,

1

Om
asm — +oo, forall j=1,...,N,,n=1,..., N. Noting
67"6(]-):()7

and that (3.5 is monotone increasing function, we get

(3.125)  [Brs,, (Vi) (1 = Y)] (25) = = [Brs, (1) = Bra,, (V)] (1 = Y0)] (25) < 0.

So, by comparison between (3.124) and (3.125), we infer that (3.121f) holds. In the
same way, it is possible to derive that (3.121g) is satisfied.
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We perform the second step of the proof demonstrating that every solution (V, P, Y, W, B)
of (3.120),(3.121) is also a solution of (3.5),(3.6). We need to prove just that (3, W)
solves (3.6¢). Setting in (3.121c) § = 0 — Y™, with 6 € K}, we have

(3.126) — (W"+y"10 - Y")h e (Vv v - vy) = — (B0 - Y")h ,

where, using a quadrature formula with weights w; > 0,
Np,
- Bn,é—Y") — N w, B (z; [é—yn} Y.
( N ]21 Wj () ()

From (3.121f), (3.121g), we get that for all z; vertices of Ty,

By (2;) [0 () + 1) 2 0, if Y7(25) = 1,
— B"(x;) [é - Y"} (2;) =4 0, it —1<Y"(1;) <1,
— B" () [é (z;) — 1] >0, if Y(z;) = 1.

Hence, in (3.126) — (B", 0 — Y")h > 0 and equation (3.6¢) holds. O

3.3.3. Optimality Conditions for the Discrete Non-Smooth
Optimal Control Problem

In this section we derive the first order optimality conditions of the discrete non-
smooth Problem 3.1 as limit of the optimality conditions (3.72)-(3.74) of the regu-
larized discrete Problem 3.2, for the regularization parameter § — 0.

Theorem 3.21. Let us assume that there is a constant C, independent of h,k,d €
(O 1), such that

4

N
(3.127) IVyorll + [[Vvonrl| + Zk lyinll* < C.

n=1

Let {6;},en C (0, i) be a sequence such that 6; — 0% and
{(quz)}zeN = {(vlu Pi7 yi7 Wi;“@')}igN - Xh7k X L2 (L2) ’

be the corresponding sequence of solution of the reqularized discrete optimal control
Problem 3.2. Let

{Qitien = 1(Qvi, Qpis Quis Qwi) Fiew € Xk

be the sequence of adjoint variables such that the triple X;,U;, Q; satisfies the op-
timality conditions (3.72)-(3.74) of the regqularized Problem 3.2, for all i € N.
Then, there exists a subsequence (labelled by the index m) {(X,Um, @m)},,, @
solution of the discrete non-smooth optimal control Problem 3.19,

(R.U) = (V, P,V W, B,, B, U) € Ry, x L* (L),



64 3. Optimal Control of the Discrete Non-Smooth Cahn-Hilliard-Stokes System

and a set of variables

(QV? Q'Pa an QW7 A) € Xh,k X YhNa

such that, as m — 400,

(3.128) Vo =V, in V",
(3.129) Pp — P, in P,
(3.130) Vi =V, in Y,
(3.131) Wi — W, in Y}V
(3.132) Qv — Ay, in Vit
(3.133) Qpm — Qp, in By,
(3.134) Oy — Qy, in P
(3.135) Qwm — Qw, in ¥,".
(3.136) U, - U, in V\,
(3.137) i Bs,. V)l () — B"(x5) = B () — B} (x;)
1 B .
(3139) 5 135, (Vo) Qi '] () — A" (),

forallj=1,...,N,, n=1,...,N. Furthermore

(V,P, y7 W7 B?") Blaua QV) QP) an QW? A) ;

satisfies the following system of optimality conditions

(3.139a) (d,V™, ) + v (VV", Vap) — (P",V - ) — (U",4h) = 0,
(3.139b) VO =g,
(3.139¢) (V-V",¢)=0,
(3.139d) (d,Y™,m), +~ (VW", Vi) — (Y"'V"L V) = 0,
(3.13¢) Y= yon,
(3.139f) — (W Y"1 0), +&°(VY",V0) + (B",0), =0,
(3.139¢) Y" e K,
(3.139h) B" =B} - B, with BB} € K},
(3.139i) (B} (1 =Y")](z;) =0,
(3.139)) (B (1+Y")] (z;) =0,

forallyp € Vy, ¢ Py, n,0eY,, j=1,...,N,, n=1,..., N,

(3.140a) — (. Q%) +v (VQY ', VYY) + (Qp 1. V- 9) — (Y"VQy, ) =0,
(3.140b) Qv =0,
(3.140c) (V-Qy',0) =0,
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(3.140d) — (diQ%,m), —* (VQ& V) + (QFy, ),
—(VQy - V") + (V" = yipm) — (A"im), =0,
(3.140¢) Qy =0,
(3.140f) Qw =0,
(3.140g) (@i 0), +v(VQy ', Vo) =0.

forally € Vy, ¢p,n e P,,0 €Y, n=1,...,N,
(3.141) aU" - Qy ' =0,

foralln =1,...,N. Moreover for all Lipschitz functions g : R — R, with constant
Ly, such that g(1) = g(—1) =0,

(3.142a) [g(Y") A" () =0,
(3.142Db) [B"Qy '] () =0,
(3.142¢) [A"'Qy ] (z5) > 0,

forallj=1,.... N, n=1,...,N. Finally there exists a constant C, independent
on h, k, such that the following estimates are satisfied

(3.143a) _sup V™| < C,
N
(3.143b) > kd VTP <,
n=1
N
(3.143¢) DIV =V <G,
n=1
N ~
(3.143d) S kAP <,
n=1
(3.143e) sup H Zk Pl < C,
n=1,....N _
(3.143f) sup 1Y |m, < C,
N 2
(3.143g) >k vath" <C,
n=1
N A
(3.143h) Sk IAYE <C,
n=1
N
: n n—1||2
(3.1431) o=y <c,
n=1

N
(3.143)) S kWi <G,
n=1
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N
(3.143k) Yok [IBIF+ B < C
n=1
(3.1431) U 22 < C,
and
(3.144a) sup [|QY|[my < C,
n=0,...,N
N
(3.144b) > lldQyl® < ¢,
n=1
N
(3.144c) 21y — Qv g < €
n=1
N ~
(3.144d) Dk IAQYIP <,
n=0
3.144e su H kQpl| <C,
( ) nzO,.I.?,N ; QP
(3.144f) sup || Q¥ [|m, < C,
n=0,...,N
N
(3.144g) >y -y, < ¢,
n=1
N
(3.144h) D kA%, < C,
n=0
(3.144i) Zk 1Q% 17, < C,
N
(3.144j) D (AL QR),
n=0

Proof. Given a sequence of solutions {(V;, P;, V;, Wi, U;) },oy of the regularized dis-
crete optimal control Problem 3.2, we consider the sequence {(Qy;, Qpi, Qyi, Qwi) }ien
of the adjoint variables, such that V;, P;, Vi, W;,U;, Qvi, Opi, Qvi, Qwi is, for all

i, a solution of the optimality conditions (3.72)-(3.74) of the regularized discrete
optimal control Problem 3.2. Then, from the results in Lemmas 3.5, 3.7, 3.8, 3.14,
Theorem 3.18 and Lemma 3.20, we realize that there exist a convergent subsequence
(labelled by an index m) {(Vin, P, Yins Wans Uns Qv Qpms Qym, Qwm )}, and a
set of limit variables {(V, P, Y, W, B,, B, U, Qy, Op, Qy, Qw)} such that:

e the variables V.., P, Vin, Wins U, Qvm, Qpms Qym, Qwm are, for all m, a
solution of the optimality conditions (3.72)-(3.74) of the regularized discrete
optimal control Problem 3.2;

e the limits (3.128)-(3.137) stated above hold;
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e the limit variables V, P, Y, W, B,., B;, Qv Op, Qy, Q) satisfy the estimates
(3.143a)-(3.144i);

e the state and control limit variables V, P, Y, W, B,., B;,U are a solution of
the non-smooth optimal control Problem 3.19 and the optimality conditions
(3.139), (3.141) hold.

In order to show that (3.140) are satisfied, we consider that for all m,

(3.145a) — (i QY. V) + v (VQY. V) + (QF,), V- 2p) — (YVQY,,, ) =0,
(3.145b) QY =0,
(3.145¢) (V-Qv,.. ¢) =0,
(3.145d) — (d:Q%,,,m), — € (VQHW?}N V?]) + Qs My,

~ (VQY Vi) = 5 (B, (V) Qo)+ (Vi = ylo) =0,
(3.145¢) oY —o,
(3.145f) Qivm =0,
(3.145g) (@ 0), +7 (VQY,, V) = 0.

As m — +o0, all the linear terms in (3.145) converge to the corresponding terms
in (3.140). Concerning the nonlinear term in (3.145), we need to show that, as
m — 400,

N N
(3.146) Sk (YaVQy, ") = Yk (Y'VQY, "),
]\7:1 n;l
(3.147) Sk (VQY,, Vi) = >k (VQY V).
n=1 n=1

We have that:

e using the generalized Holder’s inequality (A.14), (A.17), the convergence and
the boundedness of ), and Qy,, in PN,

N N
) Sk (YVEVQY,. ") =Dk (Y'VQy, ")
n=1 n=1

N
<O Y kY =Y i IV QY + 1Yl [V Q5 — VOV ITIIVY | — 0,

n=1
as m — +00;

e using the generalized Holder’s inequality (A.14), (A.17), the convergence and
the boundedness of Qy,,, and V,,, respectively in PN and V!

N N
)Zk (VQ¥ - Vi ™) = >k (VO - V' ") | <
n=1 n=1
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N
<C Yk IV, = VORIV + VORIV Ve, = YV} 4] = 0,

n=1

as m — +00.

Hence (3.146), (3.147) hold. From the convergence of the other terms in (3.145d),
we infer that there exists
Aeyl,

such that, as m — +o0,

(3.148) Zk ( Bs,, (V) Wm,n) =Yk (A,

where
A" (zy) = hn% —[55 (Yn) TVLVV}L} (),

forall j = 1,...,Np, n = 1,...,N. Therefore V,), Qy, Op, Oy, O, A solve
the optimality conditions (3.140) above. Furthermore from the estimate (3.85) in
Lemma 3.14, we infer that the result (3.144j) holds. Finally, we prove (3.142). We
observe that for all n € Y,

[ (9(Vm) =g (V™) )y | < llg (V) =g (V™) lnllnlle < Lg 1V = Y™ Inllnlln — 0,
as m — +o0o. So, in this limit, we have [g (Y,;?)] (z;) — [g (Y™)] (z;). Then, using
the projection operator P, defined in (2.121),

3149) A | =t | |5, 07 Qi a0 )]

Om—07F

and furthermore
58, Qi o) o)

=] [, o @t ) - sy + 0PV o)

1
<| |5, o Py )

][5 (V) Qi ) — 90020 ()
= My + M.

From the definition (2.13) of the function 5 and the properties of g, it easy to
check that the term M, is zero. Moreover,

1
Vo< | |28, 07 0k )

as m — +oo. Thus, from (3.149), we have that [g(Y™)A" '] (z;) = 0, for all
j=1,...,N,,n=1,...,N. Hence, (3.142a) hold. In order to prove (3.142b), we
observe that

(3.150) [BnQ%I] (z;) = lim+[ Bs,, (Y1) m} ().

Ly | Vi = PY] ()| = 0,

Om—>



3.4. Convergence of the Solutions of the Discrete Optimal Control Problem 69

Therefore, as well as in the proof of Theorem 2.16, we can write
1 n n—1 1 ! n n—1 n
5_65m (Ym) Wm (l‘]) - 5_6&” (Ym) QWm lém (Ym) (‘rj)?

where the function 5 is defined in (2.122): it is a Lipschitz function with constant
1 and such that 5 (Y™) (z;) =0, forall j =1,...,M,n=1,..., N. Hence,

’ [i B (Y QuL Iy, (Ym")} (2;)

’ [%ﬁfm (Y™ Qik (Is,, (Y2) = Is,, (Y"))} ()

1 n n— n n
<[ [, i) @ |- | - v | o
as m — +o00. Thus, from (3.150), we get that (3.142b) holds.
Finally, we show (3.142c). We have, as m — +o0,

0< %% (¥,0) %} (25) - Qion () = (A" Q] (25),

for all for all j =1,...,N},n=1,..., N. Then, (3.142c) is satisfied. O

3.4. Convergence of the Solutions of the Discrete
Optimal Control Problem

In this section we study, as h, k — 0, the convergence of the solution of the optimal-
ity conditions (3.139)-(3.142) of the discrete non-smooth optimal control Problem
3.19, to the solution of the optimality conditions (2.116)-(2.119) of non-smooth
Problem 2.14.
We introduce some notations. If 7, is a discrete functions space, given a discrete
vector function

Z = (Zn)nNzo € Zi]zVHv
we use Zp; to generically denote the following three different kinds of time inter-
polated variable

(3.151) Zp () = t_]z"‘lz" + t"k_tznl, t € [tn-1,tn],
(3.152) Z,Jlfk (t) == 2", t € (ty1,tn),
(3.153) Z ()= 2", t € [tno1,tn),
where
t,=nk, n=0,...,N.
Concerning the initial conditions vo n, Yo and the desired state y;,,n=1,..., N,

in the discrete non-smooth optimal control Problem 3.19, given

voe DNH? yoe HoNH*NK, y,€C([0,T];L3),
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we assume

(3.154) Vo,n = Q?Vo, Yo,n = tho, yg,h = Qg Ya (tn) .

In (3.154), the projection operator Q" Q" Qh, are defined, respectively, in (A.48),
(A.41), (A.43). Tt is easy to realize that there exists a constant C, independent of
h, k, such that

N
(3.155) IVvoull + 1Vyonll + Yk [lyg,lI* < C.

n=1
Hence, from Theorem 3.21, we have that the estimates (3.143), (3.144) hold.

Remark 3.22. In the following we consider sequences {h,}, ox , {Fm} ey Of the
discretization parameters such that

h, = 0", k, =0,

as n,m — +o00. In order to make the reading more fluent, we skip the indices n, m
and we simply write

(3.156) h,k — 0.

Even in the case of extracted subsequences, we use the notation (3.156), without
relabelling.

Theorem 3.23. Consider a sequence h,k — 0 and let

{ Vs Phtes Yites Whkes Brjes Bunges Un i) b, e

be a corresponding sequence of the time interpolation of the solutions of the discrete
optimal control Problem 3.19. Then, there exist functions

veH (L¥)nL>(HY), /tp(S) ds € L™ (Lg)

yeWoN L™ (Hy), welL?(H"), f,05¢elL”(L?

and a subsequence (not relabelled), such that,

(3.157) Vi =V, in H' (L?),
(3.158) Vi v, in L (H}),
(3.159) Vi =V, in L2 (H{) .
(3.160) /t Piy (s) ds = tp (s) ds, in L™ (L),
(3.161) 0 yl:,k - ?/? in Wy,
(3.162) AT in L™ (Hy),
(3.163)

e =y, in L* (Lg) ,
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(3.164) Wiy — w, in L? (H'),
(3.165) By — B, in L*(L?),
(3.166) By — B, in L*(L?),
(3.167) U, —u, in L (L?).

Proof. Using standard compactness arguments, by the estimates (3.143), we get the
results (3.157), (3.158), (3.160)-(3.162), (3.164)-(3.166) and (3.167). From (3.143a),
(3.143b), (3.143d), we have that

[Vnillar ey + Vil 2 () + 120 Vhillawey < C.

uniformly in h, k. So, using the results obtained in [13] (Lemma 2.4) or [83] (Lemma
4.9), we derive (3.159). The strong convergence result y,;;j toyin L? (L?) in (3.163),
follows by Aubin-Lions-Simon Theorem (see for example Theorem I1.5.16 in [20]).
Next, we prove that V,:,:: and y,;,{; converge, respectively, to the same limit. We
have,

tn 9

t—
dt =

b by =t e
oYV YV Ve

N
Vi - VZkH;(Hg) =D
n=1

tn—1

N tn t_t 2 L N
:ZHVV"—VVMH?/ < - ") dt = gz:yWV"—VV’HH?,
n=1 tn—1 n=1

and

|Vrs — vl;,ch;(Hé) B Z/t:

n=1
a 112 o t—th ? k a 1112
=> vV —vv| / ( - ) dtzgz:HVV”—VV"’ 2.
n=1 tn-1 n=1

Therefore, by the estimate (3.143c), we derive

t—t,_ t, —t _ _
A A AU A A

2d
t:
k k

th,k - V,j;kHLQ(Hé) —0, as h,k—0,
that is V,'Lki converge to the same limit. Moreover,
Vi = Vo ey = Vi = Vil ey + [V = V1] a1y

Hence, also V,fk, up to subsequences, converge strongly to v in L? (H}). Using the

same strategy, it easy to check that y,;;f converge to the same limit y and that this
convergence is strong in L? (L2). O

Theorem 3.24. Consider a sequence h,k — 0 and a constant C such that

h
(3.168) —<C
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Let

{(Vnes Pt Yites Whkes Brojes Binges Un, ey @ ontes QP ks Quites @k Anie) b g

be a corresponding sequence of the time interpolation of the solutions of the opti-
mality conditions (3.139)-(3.142) where in particular

{ Vs Phtes Yites Whkes Brjes Bunges Un i) b, e

s a sequence of solutions of of the discrete non-smooth optimal control Problem
3.19. Then, there exist functions

aven W)@, | " (s) ds e L (L2)

QyGLOO (H0)7 Qy06H07 QwGLQ (Hl)a )\GWO*,
and a subsequence (not relabelled) such that, as h,k — 0,

(3.169) Qv ik — v, in ' (L),
(3170) Qv h,k R Qv, in L™ (Hé) )
(3.171) Q% x — v, in L* (Hy) ,
(3.172) / Qf i (s) ds = / g (s) ds, in L (L3) ,
(3173) Qy h.k RN y in LOO (HO) )
(3174) Q:)} Rk ( ) Qy07 in H(),

(3.175) QWM Qw, in L* (H'),
(3.176) Ap = A, in Wy,

where Qh]ll:,k = A, and Q" is the projection operator defined in (A.41).

Proof. As in the previous Theorem 3.23, from the estimates (3.144) and using
standard compactness argument, we can prove (3.169)-(3.175). Moreover, it is easy
to derive that Qv ns, and Qs,ik converge, respectively, to the same limit. In order

to show that Qw,h,k converge to the same limit ¢, as in (3.175), using the optimality
condition (3.140g), we note that for all § € L? (H'),

T T
‘/O (i — Qv 0) dt‘ = ‘/0 (s = Dy @"0), dt)

T
= ’ / (VO3 1k — VO3 s VQ"0) dt)
0
<7 ||VQSJ,h,k - vQ;,h,kHLQ(LQ) ||VQh9||L2(L2)-

Hence, from the estimate (3.144g) and using the property (A.42) of the operator
Q", we derive that, as h, k — 0,

T
) / (Qwonk — Dy 0) dt‘ —0, VOelL*(H").
0



3.4. Convergence of the Solutions of the Discrete Optimal Control Problem 73

Therefore, Q;/vi,h,k converge to the same limit ¢,. It remains to show (3.176). From
the optimality condition (3.140d), we have

T T
/o (A/;,kv”) dt:/o (Aﬁ,kahn)h dt

T
N /0 [((Qy’h’k>t ’ th)h —& (VQ;V,h,kv VQhW) + ( 1J/rv,h,ka th)h

- (vi:rk : vQ;,h,IN Qh”) + (y/jk - y;fh,kv Qh”)} dt
:Ol—|—02+03+04+05,

for all n € Wy. Using Qy i (T) = 0, the embedding Wy — C([0,T], L3), the
estimate (A.42) on the projection operator Q", the generalized Holder’s inequality
(A.14) and (A.17), we get

O, = /OT ((Qy,h,k)t ,’f]) dt
< ’ /OT(Tk, Qyhk) et At 4+ (Qyni (0),1(0)) ’

< ell 2y | Qo nnll 2y + 119y g (0) [[1l1 (0) | < C [lnlwe-

T T
0, < & / IV Qo IV QP dt < C & / IV IVl dt < C il
0 0
T
O3 :/0 (Dhvnin) dt <15 il 02y < C linllw,

T
Os S/O Vil zalllV Q3 il Q| st

T
SC/O Vil 1V Q3 Q0 o it

< C Q" Ml r2ay < C |nllrzry < C nllwe,

Os < |V = Vi ileza 1Q 0l 22y < CIQ 0l L2y < C Inllws-

Hence, for all n € Wy,

T
(3.177) \/0 (A5 m) dt\ < Clnllwg-

It is easy to realize that the projection operator Q" restricted on the discrete space
Y}, is an isomorphism. Then, given /A, there exists flg,k, such that A, , = Qh]l,:7k.
In order to show the result (3.176), we need to prove that (3.177) holds with A, ,
replaced by /_1;,19- Using the estimate (A.42) of the projection operator Q" and
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(3.177), we can write

(3.178) )/OT (Ao )t
- ’/OT (A3 m) dt—/OT (A ) dt+/0T (A ) dt

T T
3/0 )(A,:k—Q"A,:k,n)M/O (Apsm) dt
<C [h [ 4llzewsy + 1] Inliw.

We note that
(A" ), = (@ A" ' n), = (A""'n), VneP,

Then, with n = A"~1 in (3.140d), we have

n—1 _ "n . . B o
kAP =k (YTY,A" 1>h + ke? (Athl,A 1>h +k(Qy, A 1)h
(3179)  —k (V" VR A" k(Y i, AT,

Using Young’s inequality, the uniform estimate ||V"|g < C and multiplying by
h?, from (3.179), we derive

A n— h? n— n A n—
R EIAE < o |TIRE - Qb+ kAR +
(3.150) Ok B [I Qi + V@RI + Q3+ 1V — ).

Thus, if the assumption (3.168) holds, using the well known inverse inequality
A C
[ALZ]|n < n IVZ|, ¥V Z €Y,

the estimates (3.143), (3.144) and the definition (3.154) of yj,,n =1,..., N, from
(3.180), we can write

(3.181) ho | Al 22y < C.
Taking into account of (3.181) in (3.178), we derive the result (3.176). O
In the next Theorem 3.25, we provides regularity properties for the functions

Vv, Yy, w, /87’7 Bla u, Qv, Gy, qu, )‘a

considered in the previous Theorems 3.23, 3.24. Furthermore, we show that these
functions satisfy the optimality conditions (2.116)-(2.118) of the continuous non-
smooth optimal control Problem 2.14.
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Theorem 3.25. The functions

v, Yy, w, 67"7 /817 U, Qv, 49y, Qu, )‘7

in Theorems 3.23, 3.24 are such that

(3.182) veH (S)NL>™ (D),
(3.183) y € WoN L™ (Hy) N L* (H?),
(3.184) weL*(HY),

(3.185) By, B € L* (L?),

(3.186) uc H (S)Nn L™ (D),
(3.187) qv € H' (8) N L™ (D),
(3.188) qy € L™ (Ho),

(3.189) q,0 € Hy,

(3.190) qw € L* (H'),

(3.191) A e Wg.

Furthermore, they satisfy the optimality conditions (2.116)-(2.118) of the continu-
ous non-smooth optimal control Problem 2.14.

Proof. We divide the proof in several steps.
i) Results (3.182), (2.116a), (2.116b).
From the discrete optimality conditions (3.139a), (3.139b), we can write that
T
(3.192) /0 [((v;;k)t ’ lbh) +v (VV;J{J@ th) - (u}:flw "ph)] =0,
(3.198) Vi, (0) = Q've.
for all ¢, € C°((0,7);Dy). Given ¥ € C((0,7);D), we set in (3.192) v, =

Q"1p. Using the property (A.49) of the Stokes projection operator Q?, we note
that

T T
(3.194) by — Pl = / b, — I3 dt < C 2 / [4[12 dt = o,

as h — 0. Hence, from the convergence results of Theorem 3.23 and (3.194), it easy
to realize that, as h, k — 0, equation (3.192) converges to

/O (V) + 1 (Vv, Vo) — (w, )] dt = 0,

with ¢ € C ((0,7); D). Moreover

(3.195) Vi (0) = Qlvo — vy, in D.
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as h — 0. With p = € (1 —t/T), where & € L?, using integration by parts in time,
we derive

(3.196)
(Vi (0) = v (0),¢) z—/o ((Vﬁvk—v)t,@b) dt —/0 (Vi —v.4,) dt —0.

as h,k — 0. So, V1 (0) = v (0) in L2 Hence, using (3.195), (3.196) and the
uniqueness of the weak limit, we can claim that v (0) = vo. Therefore, we have
that

A (Vi) + v (Vv, V) — (w, )] dt = 0,
v(0) = vo,

for all ¢p € C° ((0,7); D). Thus, from the density result (A.8), we infer that v, u
satisfy the optimality conditions (2.116a), (2.116b) of the continuous non-smooth
optimal control Problem 2.14, for all ¥ € L?(D). Finally, using the results of
Lemma 2.12, we realize that (3.182) holds.

ii) Results (3.183), (2.116¢)-(2.116i).

From the discrete optimality conditions (3.139d)-(3.139f), we have that

T
(3.197) /0 [(O5), ), +7 (YW Vi) = (Vi Vi V)| dt = 0,
(3.198) iy (0) = Q"y,
T
(3.199) / = OV D 00),, + 22 (VL V0) + (B 60), ] de =0,
0
for all n,, 6, € C°((0,7T);Y,). Given n, § € C=((0,T);C (2)), we set in the

system (3.197)-(3.199) n, = Qin, 6, = Q"0. Using the property (A.47) of the
projection operator Q”, it holds

T T
o = 1y = [ =l e < C 12 [l
0 0
Hence,
(3.200) mh—m, 0,—0, inL®(HY.

as h — 0. Let v,y,w, B, 5; be the limiting functions in Theorem 3.23. We have

T T
(3.201) [ e, de= [ e mt] < 41+ 22

)

A= ‘/OT (Vnk)ymm), dt — /OT (Vnr),mm) dt
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T T
Ay = ‘/ ((thc)t >77h) dt —/ (Ve m) e g dt |
0 0

Using (A.31) and integration by parts in time, we can write
(3.202)
T
Ay = ‘ —/ Vhkes Mut)y, At + (Vg (T) ;00 (1)), = (Vnk (0) ;10 (0)),,
0

+/0 (Vs ne) dt — (Vhge (T) snn (1) + (Vhie (0) 10 (0))

T T
< ‘/ (Vhke> Mht)p, dt—/ (Vhter M) dt
0 0

| e (7)1 (1)), = D (T) 0 (T))
| G (070 (0)),, = G (0) 1 (0)

. i
<Ch UO VY wllllmell dt + 1V Vo (T) [[lln (T) 1] + 1V Vi (0) [lIn (0) |

. :
< Ch | Vn el ooy [/ 170l dt =+ {ln (T') [ + [} (0) ]
0 i

T -
< Ch+h%) | Vnillpen {/ el 222 dt + | (T) |22 + [ (0) [[ = | — O,
0 1
as h,k — 0. Moreover, using (3.161) and (3.200), we derive
(3.203) Ay =0,

as h, k — 0. Taking into account of (3.202), (3.203) in (3.201), we infer that

(3.204) ’/ (Vhk) tﬂ?h dt — / (Ye, M) F1e Hldt’ — 0,
as h,k — 0. From the results of Theorem 3.23 and (3.200), it easy to realize that
T T
(3.205) / (YW Vi) dt — / (Vw, V) dt,
0 0
T T
(3.206) / (VY VO,) dt — / (Vy, Vo) dt.
0 0

as h,k — 0. We have
T T

(3.207) ’/ Wik + Yok — Bitys 0n),, dt—/ (w+y—B,0) dt ) < D; + D,
0 0

where 5 = 3, — [5; and

T T
Dlz)/ (WZk+y;;k—B;k,0h)h dt—/ (Wftk+y};k_ hkv dt)
0 0
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T T
Dzz)/o Wi+ Vi — Bir o 0n) dt—/o (w+y—3,0) dt|.

Using the results of Theorem 3.23 and (A.31), we have

T
:208) Di<Ch [ (Wil + 135l + 185 1993

< Ch (Wil + 1 Vnllee @y + 185 k2w ] 10wl 22y — 0,
(3.209) Dy — 0,

as h,k — 0. Inserting (3.208), (3.209) in (3.207) produces, as h,k — 0,

T T
(3.210) ‘/ Wik + Yok = By ), dt —/ (w+y—pB,0) dt ‘ — 0.
0 0
We have
T T
0 0
where

T
P < / (yh_,kv [vh_,k _V} 'Vnh) dt ’v
0

)

T
Py < / (Vips v V[ = m]) dt
0

T
Py < / (y;;k—y,V'Vﬁ) dt’-
0

From the generalized Holder’s inequality (A.14) and (A.17), we infer

(3.212) Pr < ||V il Vi = vl ey 1l 220y = 0,
(3.213) Py < ||Vl IVl 2oy llmn — nllzzqany — 0,
B210)  Ps (V000 logay ) Vi = vl Vs - 0

as h, k — 0. Taking into account of (3.212)-(3.214) in (3.211), we derive
T T

(3.215) ) / (yhjk’ Vi Vi) dt — / (y,v-Vn) dt| — 0,
0 0

From the property (A.42) of the projection operator Q", we have
(3.216) Vi (0) = Q" yo — wo, in L2.

as h — 0. Furthermore, with = £ (1 —¢/T), where £ € L?, using integration by
parts in time, we get
(3.217)

T T
(Vi (0) =y (0),¢) = _/o (Ve —Y)y»m) g dt —/0 (Vnp —y,m) dt — 0,
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as h,k — 0. Therefore Yy x (0) — y (0) in L?. Hence, considering (3.216), (3.217)
and the uniqueness of the weak limit, we can claim that

(3.218) Vi (0) = y(0) = yo,
as h,k — 0. From the discrete optimality conditions (3.139g), (3.139h), we have
Vi €K,
Bitk = Bf,h,k - BlJ,rh,kv B:h,lw Bf,h,k SO

Then, from the results of Theorem 3.23, it is easy to realize that (y,;f;, B Bl—t—h,k)
converge to (y, 3., B;), which is such that

(3219) y e ’Ca /Braﬁl € IC+'

From the discrete optimality conditions (3.139i) and (3.139j), they hold

T
(3.220) / (Bl =) . dt =0,
0
T
(3.221) / (Bl L+ Vi), dt =0.
0
We have
T T
(3.222) ’ /O (Bfg 1= Vi), dt — /0 (B, 1—y) dt’ < Fi + F,
where

T T
EIL/U%WLﬂ@hﬁ—/(mMJ_HQﬁL
0 0
T T
FQZ)/ (Bl 1= Yi) dt—/ (Bry1—y) dt)_
0 0
Using (A.31) and the results of Theorem 3.23, we get

T
3229 F<Ch [ 1B IV e < C Bl |Vl 0.
(3.224) F» — 0,
as h,k — 0. Inserting (3.223), (3.224) in (3.222), we derive that

T T
(3.225) )/0 (B;fhk,l—y}jk)hdt—/o (5,1 —y) dt‘ 0,

as h, k — 0. By similar arguments, we infer

T T
(3.226) ‘/0 (Bl 1+ Vi), dt —/0 (B 1+ ) dt) 0,
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as h,k — 0. From (3.204), (3.205), (3.206), (3.210), (3.215), (3.218), (3.219),
(3.225) and (3.230), we can claim that the functions v, y, w, 5., 5, in Theorem 3.23,
satisfy

/0 (e, M) e+ (Vw, V) — (y,v - V)] dt =0,
y(0) = o,
[0+ 9090+ (6 - 0] =0

y ek,
/87’7 Bl S IC+7

T
/ (57"71—9) dt:oa
0
T
/ (ﬁl,1+y) dt:0,
0
for all n, 6 € C° ((0, T);Cx (Q)) Hence, by the density result (A.7), we can say
that v,y,w, 8., f; solve the optimality conditions (2.116¢)-(2.116i) of the continu-
ous non-smooth optimal control Problem 2.14, for all ), # € L? (H"). Finally, using
the results of Lemma 2.12, we realize that (3.183) above hold.

i17) Results (3.187), (2.117a), (2.117b).

From the discrete optimality conditions (3.140a), (3.140b), we can write

(3.227)
T
/0 [_ ((Q{),h,k)t ) wh) + (VQ{;JLk, V’l,bh) — (y/j,k’ VQ$JLJ€ . ¢h)] dt = 0,
(3.228) Q;}E,k (T) =0,

for all ¥, € C° ((0,7T);Dy,). For any given ¥ € C* ((0,T); D), we set in (3.227)
¥, = Q). Then, from property (A.49) of the Stokes projection operator, we
derive

(3.229) W, — 1, in L” (D),

as h — 0. From the results of Theorem 3.24, we have

(3.230) /OT ((Q;ﬂ,h,k)t7¢h> dt — /OT (ave, ¥) dt,

T T
(3.231) / (VQy s Vi) dt — / (Vay, Vi) dt,
0 0

as h,k — 0. We note that

T T
(3.232) )/0 (y,j’k,VQih’k-q’bh) dt—/o (y, Vg, - ) dt| < Q1+ Q2 + Qs,
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where

)

T
Q1= /0 (y;:fk,VQ;mk fapy, — o)) dt

Y

T
Qs — / (Vi —v] V- ) dt

T
%=| [ 05—l -¥) d]

Using the results of Theorems 3.23, 3.24 and (3.229) above, we get

T

(3-233) Q1 < C/o ||yf—:—k||H1||VQ$thH¢h - 7#HH(l)dt < C||¢h - 7#HLz(H})) — 0,
T

(3.234) Q< C / 19 = w21V Q9 loedt < CIVS = yll sz = O,

as h,k — 0. Moreover

T T
[ 0905 ) ] < [ 1V lliblhomde < 1G5l

Therefore, using the weak convergence of Q;hw we can claim that
(3.235) Qs — 0,

as h,k — 0. Inserting (3.233), (3.234), (3.235) in (3.232), we realize that

T T
(3.236) )/0 (Vi VO ) dt—/o (y,Vay - 9) dt’ — 0.

as h,k — 0. With p = £ - ¢/T, where £ € L?, using integration by parts in time,
we infer

(QVnx (1) —av (T),€) =
= /OT ((Qi»,h,k —qv)t,zb) dt+/0T (10, Q% — ) dt 0,
as h, k — 0. Therefore,
(3.237) av (T) = 0.

Using (3.230), (3.231), (3.236) and (3.237), we derive that y, qy,q, in Theorems
3.23, 3.24 satisfy

/0 (i) + (V. V4p) — (4, Vg - )] dt =0,

Qv (T) =0,
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for all ¢ € C>*((0,7);D). Thus, from the density result (A.8), we infer that
Y, Qv, gy satisfy the optimality conditions (2.117a), (2.117b) of the continuous non-
smooth optimal control Problem 2.14, for all ¢ € L? (D). Finally, using the results
of Theorem 2.16, we conclude that also (3.187) above hold.

iv) Results (2.117¢), (2.117d)

From the discrete optimality conditions (3.140d)-(3.140g), we have

T
(3.238) /O [_ <(Qai,h,k)t a ﬁh)h — & (VQunger Vi) + (Qhy s ),

- (v]—:k ’ vQ;,h,kv nh) - (Al:,lmnh)h + (y;—:k - yjh ko nh):| dt = O,

T
(3.240) / [(Q;V7h,k,9h)h+7(VQ§,h7k,V0h)} dt = 0.
0

for all n, € coo ([ T]; Pr) .0y € C°((0,T);Yy). Forany givenn € C* ([0,7];C*() N L§),
9 €C((0,T);C=()), we set m, = Qfn, 0, = Q46 in (3.238), (3.240). Then, from

the property (A 47) of the projection operator Q", we get

(3.241) N — 1, in L* (Hy),

(3.242) 0, — 0, in L* (H'),

as h — 0. Moreover, using the definition (3.154) of Y, , and the property (A.44)
of the projection operator Q&, we get

(3.243) Vine = Ui, in L* (L§)

From the results of Theorems 3.23, 3.24, (3.241), (3.242) and (3.243), we realize
that

T T
0 . OT
(3.245) / (VQ3 s Vi) dt—)/ (Vg,, V) dt,
T0 0T
(3.246) | 0= Yiem) dt [ = yan)
0 0

as h,k — 0. We have
(3.247)

[ (- @), at= [ [ tnain+ @ono)] | <61+ 6

T

=] [ (@0, m), s [ (@) m)ar|
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9

Gy = ‘/ (Q5nn), h> dt — |:/OT<nthy>H3‘,Hodt+(QyOan(O))]

Using the property (A.47) for the projection operator Q7, the relation (A.31), the
results of Theorem 3.24 and integration by parts in time, we derive

Gy = ’/0 (QShpr ), dt = (D3 (T) 00 (T)), + (2555 (0), 1m0 (0)),
+/O —(QS e ne) At + (Q5 e (T) 1 (T)) — (QSe (0) 11 (0))’

T T
< ‘/0 (QS;,tha??ht)h dt—/o (Q&h,kanht) dt‘
(D54 (0) .70 (0)), = (3 (0) 71 (0)) |

T
<Ch [/0 IVOS helllmell dt + 1V Q3 5, 1. (0) [[[7 (0) |

. -
< O h 195 hkllos (o) {/O el dt + [mn (0) |

p :
(3.248) < Ch(1+0%) 195kl U 1)l 222 dt + || (0) [| 2 | =0,
0 i

and

(3.249)
Gy = ’ /0 [ (e QY nk) — <77t>Qy>H(’;,H0} dt + (QS;,Mg (0) 71, (0)) = (gy0,m (0)) ’ — 0,

as h, k — 0. Inserting (3.248), (3.249) in (3.247), we get

T
(3.250) )/ (Q%r), nh)h dt — UO <nt,qy>H;;,H0dt+(qyo,n(()))} ’—> 0,

as h,k — 0. We have

T T
(3.251) ’/ (vak,nh)hdt—/ (Gus ) dt’ <1+,
0 0

where
T T
I = ’/0 (Q%,h,k,nh)hdt—/o (Q%,h,k,nh) dt’v
T T
I, = ’ /() (Q+W,h,lcv nh) dt — A (Qwﬂ?) dt’

From (A.31), the results of Theorem 3.24 and (3.241), we can claim that

(3.252) L < C o (L+ ) [l 2o | Qy gl 2y — 0,
(3.253) I, =0,
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as h,k — 0. Thus, inserting (3.252), (3.253) in (3.251), we realize
T T
(3.254) [ (@)t = [ @] 0,
0 0
We have
T T
3259) | [ Vi VQGm) di— [ (v Vo) | < R+ o R
0 0

where

T
Ry = / (Vi =v]-VQ3 o) di )
0

)

T
Ry = / (V : VQ;;L/@ Mh — 77) dt
0

)

T
Ro=| [ (v V94— Va] ) d
0

From the results of Theorems 3.23, 3.24, we infer

(3.256) Ry <C [V — Ve (my) 193 hkllzoe oy ll7mll 20y — 0,
(3.257) Ry < C |Vlleeo) 19 pillzee o)y l1mm — nllzecmy) — 0,

as h,k — 0. Furthermore, we note that

T

[ 990 ) dt | <€ Wy 1 Qnsllzzany Inllzzam
0

therefore, using the weak convergence of Q3 , . we derive

(3.258) Rs — 0,

as h, k — 0. Hence, using (3.256), (3.257) and (3.258) in (3.255), we get

T T
(3.259) ‘/ (V,fk . VQ;;,h,kﬂlh) dt—/ (v-Vgq,,n) dt | =0,
0 0

as h,k — 0. From the results of Theorem 3.24, we have

T T
(3.260) /0 (A,;’k,nh)h dt:/o (/1,;k,?7h) dt — (N, mwe wo-

as h,k — 0. Using (3.244)-(3.246), (3.250), (3.254), (3.259) and (3.260), we derive
that v, vy, qy, qu, A satisfies

T
/ [y ay) 1.0 — €% (Vaw, V) + (qu, 1)
0

— (v Vay,n) + (Y —ya,m)] dt + (g0,7(0)) = A\, mwgw, =0,
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/0 [ (qu,0) +v(Vq,, VO) ] dt =0,

forallp € C> ([0,T];C(Q) N LE), 0 € C° ((0,T);C()). Finally, by the density
arguments (A.7), (A.12), we get that v,y, gy, qu, A satisfies (2.117c), (2.117d) for
allnp € Wy, 0 € L? (H').

v) Results (2.118), (3.186)

From the discrete optimality condition (3.141), we have
a Uy = Qy

Then, up to a multiplicative constant, we can identify U,", with Q5 , ,. Hence,
using the results of Theorem 3.24, we derive

Un —u, in L (Hy),
L{;k — u, in L2 (Hé) ,

as h,k — 0. Furthermore, (u, qy) satisfies (2.118) and, from (3.187), we get that
(3.186) holds. 0

In the next Lemma we prove additional optimality conditions which represent
the discrete counterpart of the relations (2.119) in Theorem 2.16.

Lemma 3.26. Given a sequence h,k — 0, let us consider a subsequence (not
relabelled) such that the results of the Theorems 3.23, 3.24 and 3.25 hold. Then

(3.261) hm/ (Vi) s Ape) dt =0,
(3.262) lim 0 (Bh,k, Quyns) dt =0,
and
T —_
(3.263) 0< hlﬁllinf/ (A,;k, Q;\Ah,k) dt < C,
' 0

for all g : R — R Lipschitz such that g(—1) = g(1) = 0, where C is a constant
independent of h, k.

Proof. From (3.142a), we have

N

Sk (o0 A, = [ (0 A di=o

n=1

for all h, k. Then, (3.261) hold. Using (3.142b) we derive

(B", Q% "), =0, Vn=1,...,N.
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Hence, from (A.31), we get

JRCAEEI R W]

<Zk) B Q) - (BYQLY), | < € nY Sk 187 9@y
n=1

< C h 1By illzwey 19 psllzzcay = 0,

as h,k — 0. So, (3.262) is satisfied. Using (3.142c) and the stability estimate
(3.144j), we can write

T
0< / (A Q) dt < C,
0

which implies (3.263). O

3.5. Numerical Solution of the Discrete Optimal
Control Problem

In this section we show the strategy we use for the numerical solution of the non-

smooth discrete optimal control Problem 3.1.

In order to justify our approach, we need to perform some preliminary considera-

tions. Let {d,}, be a sequence of the regularization parameter such that §, — 0"

and Theorem 3.18 holds and let {P,}, the corresponding sequence of the discrete

regularized optimal control Problems 3.2. For any fixed n there exists a sequence
{ (X, ()00 Un e ) 1) )}Z, such that

(th(n (@), Unk,(n), @) — (Xh,k,(n)auh,k,(n))a

as 1 — +00, where (th Uk (n ) is a solution of the regularized Problem 3.2.
For instance, the sequences {(th ),(0)> Un i (n (i))}i can be obtained by the fol-
lowing steepest descent algorithm (see for example [58], Section 2.2.1):

Algorithm 3.27 (Steepest Descent). Perform the following steps:
1. choose an initial guess Uy, i (n),0) and set 1 = 0;
2. solve the discrete state equations (3.72) to get Xk (n),(i);
3. solve the discrete adjoint equations (3.73) to get Qv hk.(n),);
4. given j&,h,k (Unk) = Jni (Sspk Uni) Uni), calculate
Vet T ie Une, (i) = & Un o)) — Q). )
choose an admissible step size oy and set

U ,(n),(i+1) = Un ke, (n),(i) — 0 vuth6hk(uhk @)
1=1+1,

and go to step 2.
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Once we get the sequence {(Xh,kv(n),uh,kv(n)) }n of the solution of the regularized
problems P,,, Theorem 3.18 guarantees

(X, ) Un o)) — (X, Un i)

as n — +00, where (X}, Uy, 1) is a solution of the non-smooth Problem 3.1.

The approach above described is not, in practice, numerically realizable. So, to over-
come this difficult, we use the continuity of j(;,h’k (Unk) = Ik (s, Unik),Uni)
with respect to the control U}, ;, and the regularization parameter J: first, we per-
form the limit with respect to the regularization parameter 6 — 0 and then we apply
the steepest descent algorithm above directly to the non-smooth Problem 3.19. In
order to do that, we briefly introduce the following notation: given a discrete con-
trol Uy, i, we denote by YV, = Vii Unk) the corresponding discrete phase-field
solution of the discrete state equations (3.139) and by Qv nr = Qynxr (Uny) the
corresponding variable given by the discrete optimality conditions (3.140) and the
complementarity relations (3.142). Furthermore, we define

gh,k = uh,k - Qv,h,k-
We use the following algorithm to solve the optimality conditions (3.139)-(3.142).
Algorithm 3.28. We perform the following steps:

1. we choose an initial guess for the control Uy . o), a constant TOL > 0, an
integer Nyae and set i =0;

2. gwen Uy i), we solve the discrete state equations (3.139) to get Vi, (i)s
Yok (iyy Whok,(i)s

3. given Vi i), Yhki)» Whi), we solve the optimality conditions (8.140) and
the complementarity conditions (8.142) to derive Qv p i i);

4. we calculate

=

N 2
1Ghe,6)ll 222y = ZkHOﬁUZ’) - Q/_(@'l)HQ ;
n=1

IF \|Ghk,i)|| < TOL or i > Nypaq, then STOP;
ELSE we choose a stepsize o, set

Ui i+1) = Un k(i) — 06 Ghk (i)
i=it1,

and go to step 2;

We perform the second and the third steps of the Algorithm 1 by the so called
Primal Dual Active Set Strategy (PDAS), (see [16] for details). In order to do that
we make the following assumption.
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Assumption 3.29 (Strict Complementarity).
(3.264) Y"(z;) =+£1, = B"(z;)#0,
forallj=1,..., Ny, n=1,...,N.

The above strict complementarity assumption is commonly used in the solution
of problems which involve complementarity conditions like (3.139i), (3.139j) and
(3.142). We refer the reader to [47], [53], [75] and the references therein for further
details.

In the next sections we explain in details of second and third steps of Algorithm
3.28.

Algorithm 3.28: Step 2

We solve the discrete Stokes equations (3.139a)-(3.139c) to get V). Then, we
apply the PDAS to solve the discrete Cahn-Hilliard equations (3.139d)-(3.139j) to
obtain V. In order to do that, given the set of the indices of the vertices of the
triangulation of the domain €2,

Jn=1{je{l,...,Ny} : x; is a vertex of T},
we define, at each time level n=1,..., N,
AL = {5 € T e(Y(2)) = 1) + B(x;) > 0},

AL ={j € Tn: c(Y"(z;) +1) + B"(x;) <0},
"=\ (AL uA"),
where ¢ > 0 is a constant. A’} are called the active sets; Z" are the inactive sets.

It is easy to realize that, under the strict complementarity assumption (3.264), the
following equivalence holds

—1<Y"(x;) <1,

{Y"@j):ﬂ, ifjeAL ) Bl =0, B”( z;) > 0,
B'x;)=0, ifjeI", B (x) (1= Y™ () =0,
By (x;) (14 Y"(x;)) = 0.

Then, to solve the discrete Cahn-Hilliard equations (3.139d)-(3.139j) and derive
Vi), we use the following algorithm.

Algorithm 3.30 (PDAS). Foralln=1,... N:
1. we initialize A’} ), A" ) by
AZ:(O) - {j € jh . Ynil (.I’J) = :|:1} s
calculate I(’g) and set m = 0;

2. we set Y, (z;) = £1,Vj € AL,y and Bf, \(z;) =0,Vj € I7, \;
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3. we solve the following linear system
(3.265) Mitny Vi) +EvA Wiy = fi (Vi Y"1, V"),
(3.266)
—e? AR, Yitm + Mn Wiy — M Bl = fa (Vi Y™,

to obtain Yy, (x;) for j e Ly by the vector Yl(m) B, (x;) for j e A"

A by the vector B’} Biwm cmd W by the vector Wm

4. we set
AK(erl) = {j S jh : C(Yn<.l’]) — 1) -+ Bn(ﬂj‘]> > O},
Aﬁ(erl) = {j SV C(Yn(ZL‘j) + 1) + Bn(l‘]) < O},
Elm+1) =Tn\ (Ai(mﬂ) U AT—L(m+1)) :
5. IF Ai(mﬂ) = Ai(m), we set Y" =Y. then STOP;

ELSE we set
m=m-+1

and go to step 2.

In the linear system (3.265), (3.266) above, we use the following matrices

Mhij = (nianj>h7 A - (vnuvn])u Z;j S jh,
Mh(m)zg = (nianj)hv A(m)zj - (ana vnj>7 (&S jhu .] € Izlm)a

Mh(m)z (M 15)), » A(m)ij = (Vni, V), i€ Tn, j € Al UAZ 0,

and the following vectors

Yitm), = Yoy (25 J € Ly,
Y, = Yom (#3), J € Albim) U AL ),
Wiy = Wi (2)). j €T
Bl , = Bomy (75 J € ALy YA,

Sr, (Vi Y1, V) = = Mid Yiim + (Y™ tm), — k(Y Vet v
éi (YX( Yn 1) o 82A(m) YA(m) - (Ynilfni)hu

where {n;,...,ny, } is a Lagrange basis for Y},.

Algorithm 3.28: Step 3

We solve, for all n = 1,..., N, the discrete backward equations (3.140d)-(3.140g)
to derive Qy(;. In order to do that, we note from step 2 that we know V), V)
and the sets A%, Z", for all n = 1,...,N. For any given n, in (3.140d)—(3.140g),
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we have three unknowns Qp ,Qu LA™ 1 and just two equations. So, we consider
the complementarity conditions (3. 142a) (3.142c), which are such that

(3.267) A" Hxy) =0, if —1<Y"(z;) <1,
(3.268) [B"Qy '] (z;) =0,
AQy ] (25) > 0,

forall j € 7, n=1,...,N. Above, (3.267) is just a reformulation of (3.142a) and
it easy to realize that it is equivalent to

A" Hay) =0, VjeIm

Moreover from (3.268), using the strict complementarity assumption (3.264), we
derive

nl(g) =0, VjeALUA".

So, given n.=1,..., N, we use (3.140d)-(3.140f) to get just:

371 (x]) ) vj S jha
W (), VjeIm !,
A" (), Vje Aty AT

We get them solving the following linear system

My QY — ke?A™ —k MpA AT =1 (QF, QW VYl
’VA LM Q. =0,
where
in _ nl(xj)’ jejf“
nWIlj: TVLV1<‘T.7)7 .]E:Zn7
AR = AP (g, jEATUA,

J

r; (Q?) QTVL[hVna Ynay:ll,h) - (Q? - k:QTVL[/7772)h+k (VQ$ ’ Vn7772) —k (Yn - yg,hani) >

where {n,...,nn,} is a Lagrange basis for Y},. Once we get Qy j, . (;), we solve the
discrete backward equations (3.140a)-(3.140c), to derive Qv p, . (;)-

3.6. Numerical Experiments

In order to show the effectiveness of our method, we consider two numerical expe-
riments.
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3.6.1. Circle to Square 1

The domain is the unit square Q = (0,1)” in the two dimensional plane (z1, z5) = .
The initial condition yg; for the phase-field y is given by the linear interpolation
of the following function

(4 if r—R<-"°
2
“R
(3.269) Yo (r) = sin(T ) if \T—R|<%€,
1 if r-R>1
\ 2

where r = r(x),29) = \/(xl —2a1)’ + (22 — )%, R = 0.2 and (Tey, 22) =
(0.5,0.5). We emphasize that the function yy corresponds to a stationary solu-
tion of the Cahn-Hilliard equation with double obstacle potential, see fig. 3.1.
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Figure 3.1.: Initial phase-field yo(x)

The values of the constants parameter in the model are o« = 1075, v = 0.1,y =
0.005,e = 0.02. Furthermore, the time step £ = 0.01 and the time horizon is
T = 100k. The desired state y, is represented in fig. 3.2. It is independent on time
and the two phases fluid are separated by a vanishing interface which has the shape
of a square. We emphasize that, in order to make the desired state reachable, we
have chosen 79 and y4 such that

(3.270) /Q yo (z) da = /Q ya (z) da.

In the Algorithm 3.28, we assume as initial step for the control Uy, 1 ) = 0, the
tolerance TOL = 107? and the maximum number of iterations N, = 103. More-
over, the step size o(;) in is derived according to the Barzilai-Borwein method, see
[12] for details . In particular, with oj = 4 - 103, oy = 2+ 103, 0pax = 4 - 10 and
denoting by i the iteration index, we assume:
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Figure 3.2.: Desired state distribution yg(x)
o if j = 0, O(i) = Oinit;
o fori>1

T
Jo U sy — Un -1y, Groksi) — Geyi-1y) di
1Gh.k.) — Ghei-1) |72 12y

(3.271) O'(i) =

I

o if o) <0 or o) > Omax, then o) = onin.

Figures 3.3, 3.4 show the efficiency of the Algorithm 3.28. In about 400 iterations
the system seems approaching to a minimum of the cost functional. Moreover,
|Gh k)|l 22(L2y decreases apparently with a logarithmic rate, with respect to the
number of iterations.

+

0,025 ,
0,02 — ,
0,015— ,

00114

N
AAAAAAAQAA
.
0 100

200
Number of iterations

Figure 3.3.: behaviour of Jj, j, (yh7k7(i),uh7k7(i)), with ¢ index of iterations

In figures 3.5, it is depicted the evolution in time of the optimal phase-field Y}, x, (x, t)
and velocity V. (x, ), derived by the application of the Algorithm 3.28. The shape
of the state changes in the first few time steps. Then, the velocity field keeps the
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Figure 3.5.: Time evolution of state YV}, x(z,t) and velocity Wy x(z,t)
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distribution of the phase-field close as much as possible to the desired state.
Finally in figures 3.6, it is possible to see the evolution in time of the optimal
function Qy p,x (z,t) and the control Uy, (x,t): in the last time steps, the control
acts on the velocity field in a such a way that the phase-field keeps the desired
shape.

0.102 EO.l

<o

E-O.l

-0.159

(a) t=5 k (b) t=15 k

0.0528 gr0.05

(c) t=29 k (d) t=49 k

() t=73 k (f) =89 k

Figure 3.6.: Time evolution of the optimal Qy 1, 1 (x,t) and the control Uy, , (x,t)

3.6.2. Circle to Square 2

As in the previous case, the domain is the unit square 2 = (0, 1)2 in the two dimen-
sional plane (z1,22) = . The initial condition has the form depicted in (3.269),
but it is "shifted" toward the right side of the domain and centred around the point
(€e1, 2e2) = (0.7,0.5), as shown in figure 3.7. Even in this case the desired state
is time-independent and it has a shape analogous to the previous case, but it is
centred on the left of the domain, around the point (Z.1, Z.) = (0.3,0.5), as shown
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Figure 3.8.: Desired state distribution yq(z)
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in figure 3.8.

The values of the constant parameters in the model are o« = 1075, v = 0.1,7 =
0.005,e = 0.02. The timestep & = 0.005 and the time horizon is T" = 400k. Also in
this case, condition (3.270) is fulfilled and then the desired state is reachable. In
Algorithm 3.28, we assume TOL = 107, Ny.x = 1000 and the initial guess for the
control Uy 1. o) = 0. The step size is chosen, as well as the previous experiment,
using the Barzilai-Borwein method [12], with the following settings: oy = 105,
Omin = 103, opmay = 10°, see (3.271). In figures 3.9 and 3.10 are depicted the values
of the cost functional with respect to the number of iterations: apart the first iter-
ations, the decreasing is slower than the previous numerical experiment.
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Figure 3.9.: behaviour of Jj, j, (yh7k,(,~),uh7k,(i)), with 0 < ¢ <400 index of iterations
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Figure 3.10.: behaviour of Jy, x (Vp k(i) Un k(1)) , With 400 < i < 1000 index of iterations

The behaviour of the system is also displayed in figure 3.11: |Gk )|l r2(w2) de-
creases with less regularity with respect to the previous case and in 1000 steepest
descent iterations it does not reaches the proposed tolerance TOL = 1077.

In figures 3.12, it is shown the evolution in time of the optimal phase-field Y}, & (x, )
and velocity Vy,x (x,t) derived by the application of the Algorithm 3.28. The be-
haviour of the system is the one expected: starting from the initial distribution,
the fluid is driven toward a final state which is close to the desired state.
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(a) t=24 k (b) t=64 k

(e) t—296 k (f) t—360 k

Figure 3.12.: Time evolution of the optimal state )}, i, (z,t) and velocity Vy, i, (x, 1)
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In figures 3.13, it is displayed the evolution in time of the optimal Lagrange multi-
plier Ay x(x,t) and control Uy, x(z,t): it is possible to see the lack of regularity of
Ap (2, t) which is, in our opinion, the reason of the non optimal behaviour of the
steepest descent approach.

8.07 E
-0
E-lo

-18.4

(a) t=23 k (b) t=63 k

(c) t=119 k (d) t=199 k

(e) t—295 k (f) =359 k

Figure 3.13.: Time evolution of the optimal lagrange multiplier Ayp, j(z,t) and control
Llh,k(a:,t)

The non regularity of the lagrange multiplier Ay, ; is also displayed in figures 3.14
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Figure 3.14.: Time evolution in 3d of the optimal lagrange multiplier Ay, j(x,t)






4. Optimal Control of the
Cahn-Hilliard-Navier-Stokes

System

4.1. Introduction

In this Chapter, we analyse the optimal control problem of the flow of two incom-
pressible, immiscible fluids with surface tension effects. In contrast to the previous
two Chapters we consider the full Cahn-Hilliard-Navier-Stokes system, i.e., we in-
clude the nonlinarity (inertia effects) in the Navier-Stokes equations and take the
surface tension coefficient p # 0. More precisely, the considered Cahn-Hilliard-
Navier-Stokes system consists of the system (1.13), (1.14), where the potential in
the free energy density associated with the Cahn-Hilliard equation (1.14) is given
by the double-well potential (1.11).

Below we introduce the mathematical setting for the considered problem. We de-
note by: 2 € R? an open, bounded, convex polygonal domain; 7" > 0 a fixed time
horizon; Qp = Q x (0,7); a > 0 a positive small constant. We assume all the set-
tings and the notation stated in Appendix A.2.1, A.2.2. In particular, we consider
L3, the space of the L2-functions with zero mean, Hy = L3N H' and the associated

Bochner’s space
Wo={yeL*(Ho):y: €L*(H;)}.

In addition, we assume that D is the space of the vector-valued, divergence-free,
H}-functions and we consider the associated Bochner’s space

W, = {veL*D): v, € L*(D")}.
We define
(4.1) Hy={zeH?:Aze H'},

and the associated Bochner’s space L?*(Ha). The spaces Ha and L? (Ha) are
endowed with the following norms

1
l2lls = [l2llE + 122117

2

Il 22 = [l 03are) + 80132 |

It easy to realize that Ha and L? (Ha) are Banach spaces. Furthermore, we consider
the space

(4.2) X =Wy x Wya, where Wya=WyNL>®(Hy)NL*(Ha),
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with elements x = (v,y). The spaces X and X x L? (L?) are endowed with the
following norms

1

2
Il = [, + 95 + 113wy + 1932 ]

1
|66 w) ey = Il + e |

Moreover, we define the following set

(4.3) /C:{QEL2 (Hl) :—1<60<1, ae. on QT}.

We consider the following objective function

(4.4) J: X x L*(L*) > R,

such that

(4.5) J(x,u) = /OT B /Q(y — y2)? do + %/ﬂu2 d:c} dt,

where we assume y; € C ([0,7]; L3). In order to represent the optimal control prob-
lem under investigation in a more compact, general form, we define the following
map

(4.6) e: X x L*(L?) = Z = [ L* (D) x L* (Ho) x 8|" x H.
The map e in (4.6) is such that, for all p = (¢, n, €, @) € Z*,

(47) <p7 € (V7 Y, u))Z*,Z - <CL <V7 Y, u) ) ¢>L2(D*),L2(D) + <C <V7 y) 777>L2(H5)7L2(H0)
+ (Ea v (0) - VO) + <§07 Yy (O) - yO)Ha‘,Hoa

where
(a(v,y,u), ¢>L2(D*),L2(D)

= /0 [(Vta ¢>’D*,’D +v (VV, V¢) + b (V7 v, ¢) + P (y, Vw - ¢) - (ll, ¢)] dt,

and

T
<C (V7 y) 7n>L2(H6),L2(HO) = / [<yt7 n>H§7H0 + 7 (Vw, v'f?) - <y7 v Vﬁ)] dtu
0
with
(4.8) wi= —*Ay —y + o>

Furthermore, given z = (21, 29,23, 24) € Z, we assume

-

2
2]z = [Hzllliz(p*) ll2la ) + Izslls + 2l |-

Then, we study the following smooth optimal control problem:
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Problem 4.1. Given vo € DNH?, yo € L2N H?>NK, find (x,u) € X x L* (L?),

such that
. J(x,u) = J(x,1),
(x,u)er;glxnm([‘z) (x, u) (x,1)
subject to
(49) € (Xa ll) — O

From the definition (4.6), (4.7) of the map e and by the definition (4.8) of the
chemical potential w, we can write the state equations (4.9) in the following way

(4.10a)

/0 (v, ) + v (VV, V) + b (v,v,9) + p(y, Vw - 4) — (u,4)] dt =0,

(4.10Db) v(0) = vo, in €,
(4.11a) /0 [(ye,m) +~ (Vw, V) = (y, v - Vn)] dt =0,

(4.11Db) y(0) =yp, inQ
(4.11¢) /O [(w,0) — €% (Vy, V0) + (3,8) — (4°,6)] dt =0,

for all ¢ € L* (D) ,n,0 € L* (H').
In (4.10a) above, b (-, -, ) is the canonical trilinear form associated to the nonlinea-
rity in the Navier-Stokes equations

(4.12) b: Hy x Hy x Hy — R,
b(u,v,w) = / (u-V)v-wdzr,
Q
which is such that
(4.13) b(u,v,w)+b(u,w,v) =0,

forallu e D, v,w € H].

Optimal control Problem 4.1 concerns the flow of a mixture of two immiscible,
incompressible fluids. Compared to Problem 2.1, the phase dynamics in the Cahn-
Hilliard equations (4.11) is determined by the double-well potential ® (y) (1.11),
which is such that

¥ (y) = -y +y°,

see last two terms in (4.11c). This assumption makes Problem 4.1 smooth and
allows a direct application of the tools of mathematical programming in Banach
spaces. Conversely, two issues make make the mathematical analysis of Problem 4.1
more challenging than Problem 2.1: the equations in (4.10),(4.11) are coupled by the
last term in (4.10a), where the capillarity number p > 0; the fluids hydrodynamics
is governed by the Navier-Stokes equation (4.10a), without neglecting the advection
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effects described by the trilinear form b (4.12).

In the next sections, we study the properties of the state equations (4.10), (4.11),
then we show that Problem 4.1 has solutions, that it satisfies the conditions needed
to apply the standard theory of mathematical programming in Banach spaces (see
Assumptions 1.47 in [58|) and we get the first order optimality conditions (see
Theorem 1.48 and Corollary 1.3 in [58]).

4.2. Properties of the State Equations

In the following theorem, we derive existence, uniqueness and regularity properties
of the solution (v,y,w) of the state equations (4.10), (4.11).

Theorem 4.2 (existence, uniqueness, regularity). For any fired vo € DNH?,
Yo € L3N H?*NK and u € L? (L?), the system of the state equations (4.10), (4.11)
has a unique solution

(v,y,w)e (H' (L) NL> (DNH?))x(H" (L) NL>® (H?))x (L™ (L*) N L* (H?)),
which is such that

(4.14) VIl @) + 1Vl @) + [1V]zoe 2
+HyHH1(Lg) + [yl ooy + lwll ooy + w2y < C(u),

where the constant C' (u) depends continuously on ||u| 2wz and data problem (ini-
tial conditions and constant parameters).

Proof. Concerning the existence and uniqueness of the solution v € H'(L?*) N
L*(DNH?),ye H (L*)NL>® (LN H?), w € L>* (L*)NL* (H?), see Remark 2.2
in [62] and also [27|, [74]. Then, the estimate (4.14) can be obtained by standard
procedures. O

Remark 4.3. Obviously, the solution y(t) € L2, for all ¢t € (0,7]. In fact, with
N = X[o,q in (4.11a), where

1 if se€]0,t],
X[0,t] (5) =

0 otherwise,

using integration by parts in time, we have

(y(t),1) = (y(0),1) =0, Vie(0T]

From Theorem 4.2, we derive that associated to the state equations of the optimal
control Problem 4.1
e(x,u) =0,

there exists a bounded solution operator s : L? (L?) — X, which such that

(4.15) e(s(u),u)=0, VuelL*(L?.
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4.3. Well-Posedness of the Optimal Control
Problem

The map J : X x L? (L?) — R defined in (4.5), is continuous, convex and bounded
from below. Hence, it is weakly lower semicontinuous. Hence, we can prove the
following results.

Theorem 4.4 (existence of minimizers). The regularized optimal control prob-
lem (4.1) admits solutions.

Proof. The proof is analogous to the one of Theorem 2.5. U

4.4. Optimality Conditions of the Optimal Control
Problem

In this section, we show that the cost functional J and the map e defined, respec-
tively, in (4.5) and (4.6), (4.7), satisfy the conditions needed to apply the standard
theory of mathematical programming in Banach spaces (see Assumptions 1.47 in
[58]). Next, we derive the first order optimality conditions of the optimal control
Problem 4.1 (see Theorem 1.48 and Corollary 1.3 in [58]).

We need to check that the following conditions hold:

e the cost functional J : X x L? (L?) — R is continuously Fréchet differentiable;
e the map e: X x L? (L?) — Z is continuously Fréchet differentiable;

e there exists the inverse of the map ey (s(u),u), where s is the bounded
solution operator defined in (4.15).

The Fréchet derivative of the mapping J is such that
J X x L*(L*) - £(X x L* (L?),R),
with partial derivatives

< JV (Xa u) 7dv >WS,W0 - 07
T
< Jy (Xa ll) >dy >W&A7WO,A = /0 (y — Ya, dy) dtv
T
(Ju (x,1), du) o) = a/ (u,d,) dt,
0
Therefore,
T
(J'(x,u), (dy, du) )xxr22) xx1212) = / [(y = ya, dy) + a (u,dy)] dt,
0
for all (dy.dy,) € X x L? (L?). Hence J is Fréchet differentiable. Moreover, we have

J/ dx du _J/ ) ) hx7hu >
‘< <X+ ,u—+ ) (X 11) ( ) (XxL2(L2))* X x L2(L2)
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- /OT (dyshy) + @ (du, b))

<yl 222yl Ayl 2222y + fldullz2@2) Dl 222
< ” (an du) ||X><L2(L2) [thHL?(L?) + a||hu||L2(L2)] — 0,

as (dx,dy) — 0in X x L? (L?), for all (hy, h,) € X x L? (L?). Then, J is continuou-
sly Fréchet differentiable. Concerning the properties of the map e : X x L? (L?) —
Z, we have the following result.

Lemma 4.5. The map e : X x L* (L?) — Z is continuously Fréchet differentiable.

Proof. We have
e’:XxL2(L2) —>£(X><L2(L2),Z),

with partial Fréchet derivatives

<p> Cv (Xa ll) dv>z*7z = (Ea dv(o))

T
+ / (dve, o + v (Vdy, Vi) + b (dys v, 9b) + b (v, dvs ) — (5, dy - V)] dt,
0

T
(prey (x,0)dy),. , = /0 [(dyes m) 1z o + v (V [-€7Ady, — dy + 3y*d, | , V)

- (dy7v ' v'f?) + /7<dya Vw - ‘P)
+ p(y,V [=’Ad, — d, + 3y*d,] - ¥)] dt + (¢, dy (0)) s, m,

and
T
<p7 €u (X7 U) du>Z*,Z = - / (du, 'l,b) dt
0

for all p = (¢¥,n,&,¢) € Z*, (x,u) = (v,y,u),(dx,dy) = (dy,dy,dy) € X X
L? (L?). The map e is Fréchet differentiable if

(4.16) | (x4 deu+du) = e (x,1) = € (x,1) (dy, du) |,
=0 (|| (dx, du) [Ixx2212)) ,

as (dy,dy) — 0in X x L?(L?). For all p = (¢,n,€,p) € Z*, (x,u), (dy,dy) €
X x L? (L?), we realize that

}<p,e(x—l—dx,u—l—du)—e(x,u)—e'( ) (dx, du) >z*
T
S’/o b(dy,dy, ) dt’+’/0 (dy. dy - Vi) dt

T T
+\/O p (5 Y [ + 3yd?] - ) dtM/ 0 (4, [d+ 3y] -<p) dt

T
+‘/ p(dy, V [~e2Ad, — d,, + 3y*d,] dt‘+‘/ V [d8 + 3yd2] V) dt
0

=51+ 52+ 554+ Ss+ S5 + Se.
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Using the property (4.13) of the trilinear form b (-, -, -), the interpolation inequality
(A.18) and the embeddings (A.5), (A.6), we derive

T

T
S1 S/O [dvl[Ls [[Vepl fldy]les dt < C/O ldv]l ldv]ip [l4llo dt

< C[dvlleqorysy lAvlzzy 1Yll2p) < C lldvlw, [|dvlzz) 19] 2D
< O |[(dy, du) X2y 1%0]l2),

T
S S/O ldyllze ldvlles [[Vall dt < C lldy[[L= o) ldvllz2) 191l 22,

< C [ (ds, du) [[xer2wy 10122010

T
S, < p/ lyllzs IV [ +3 g d2] || llplls dt <
0

T
< Oyl / 18 2 Vd, +3 & Vy+ 6y dy Vd,|| 1]l de
0
< C |y Lo (o)
T
x / 1y 12 15, oo + 1y o 159ls + 9]0 l1dy e [V, lz6] 148l dt
< C |yl
T
x / Ty 2 Nyl + ol Tl + % Uyl Ndyllz] bl dt

< C |yl ooy ldyll ooy 1% 22(p)
X [yl oo o) 1yl 22y + lldyll ooy NWllz2cez) + 9l nooro) [1dyllz2caz))
= o (|| (dx, dw) [|xxr2w2) ¥ r2D),

T
i< p / e IV [d 43y 2] | 4l dt
0

< C ldyllZoe 110 % 90 22(D)
X [ldyllzoo o) Ndyllzzcazy + Ndyllzo o) Nyllzzc) + Nyl Ndyllzgr) ] %
=0 (|l (dx, du) lxxz2w2) 1% llL2cp),

T
S5 < p / s IV [~€2Ady — dy +3 42 d] | [0 dt
0
T
< C |ldy ity / | = VAd, —Vd, + 6y dy Vy+ 34 Vd, | [l dt
0
< C [ldy ey
T
x / VA + [V, + lyllzs Idyllzs 1990z + lolZs 19, l2e] 98l de
< C |\dyl oo (o)
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T
></ [ Ady 1, + 1yl + 1yl dy o 1912 + Y l1E, ldyllm2] lllo dt
0

< C |ldyllzee o) 190l 22 (D)
< Ayl 20y + 1yl 2y + Nl oo o) Nyl ooy Nllzocey + 19l 7o ) dyllz2 2]
=0 (Il (ds, du) llxxL2w)) 1¥lL2D),

T
8 < 7/ IV [ +3y ]| V]l dt
0
T
<c / 1y 12 119, 2o + 1dy 12 I9l1zs + lyllzs 1dylzs 11V, llce] Nnlla, dt

T

< C/ [y 17 Ndyllezz + Nyl 19l + Yl Ndylla Ndyllmz] nlla, dt

0

< C ldyll oo (a1)

X [yl ooy lldyllmrz + Nl dyll oo aoy Nyllmz + [yl oo o) N1dyllmz] 19ll2ca) <

=0 (|l (dx, du) lxxr2w2)) [Inllz2(a0)-
So, using the above estimates of Sy,..., S in (4.16), we infer that the mapping
e: X x L? (L?) — Z is Fréchet differentiable.
The map e : X x L?(L?) — Z is continuously Fréchet differentiable if, for all
(x,u), (dy,d,) € X x L* (L?),

e (x +dx,u+dy) — € (x,u) || gxxr212),2) = 0,

as (dy,dy) — 0in X x L? (L?). For all (hy, hy,) € XxL? (L?), p = (¥, n,&, ) € Z7,
we get

(4.17) ] (p.[¢ (x+deutdy) —¢ (x0) ] (hehy) )y

T
| [ ) 4 b (et ) = (b V) = (- V)
0
+3y (V[ hy+2ydy hy| V) +3p(y,V [d hy +2y dy by - ¥)
+p (hy, V [-*Ady, — dy + d; + 3y* dy + 3y )] - 1)
+ p (dy, V [=€*Ahy — hy +3y* hy| -4p) +3p (dy, V [d, hy +2 y dy hy) -2p)] dt ‘

Working in (4.17) as well as in the derivation of the estimates of S, ..., Ss above,
we have

‘<p, (x +dy,u+dy) — € (x,u) | (hy, hy) >z* ‘—>0

as (dx,dy) — 0in X x L?(L?), for all p € Z*, (x,u), (hy, h,) € X x L? (L?). Then
e : X x L* (L?) — Z is continuously Fréchet differentiable. O

Theorem 4.6. For any fivred u € L* (L?),
x (s (u) 0) € £(X,2),

has a bounded inverse.
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The proof of the Theorem is given in Appendix B, Section B.3.

Remark 4.7. As a consequence of Theorem 4.6, we can say that
[ex (S (u) ) u)]il S ‘C (Z7 X) )
for all u € L? (L?).

The continuous Fréchet differentiability of the cost functional J : X x L? (L?) —
R, Lemma 4.5 and Theorem 4.6 ensure that all the solutions (x,u) of the optimal
control Problem 4.1 satisfy, together an adjoint variable q € Z*, a set of first order
optimality conditions (see Theorem 1.48 and Corollary 1.3 in [58]). In order to get
the first order optimality conditions, we define the following Lagrange functional
L:Xx L? (L% x Z* - R,

(4.18) L(x,u,q)=J(x,u)+(q,e(x,u) )z z,

where q = (Qv, ¢y, Avo, ¢yo) € Z*. Then, the optimality conditions of Problem 4.1
correspond to: find (x,u,q) € X x L? (L?) x Z*, such that

(4.19) Ly (x,u,q) =0, in Z,
(4.20) Ly (x,u,q) =0, in X*,
(4.21) Ly (x,u,q) =0, in L* (L?) .

It is straightforward to check that (4.19) are the state equations e (x,u) = 0.
The second equation (4.20) represents the adjoint equations and (4.21) is a further
optimality relation.

In the next Lemma 4.8, we show that given a solution x = s(u) of the state
equations (4.19), the adjoint equations (4.20) have a unique solution q € Z*.

Lemma 4.8. Let u € L? (L?) and x € X such that x = s (u) be given. Then, the
adjoint equations (4.20) have a unique solution q € Z*.

Proof. The proof of the Lemma is analogous to the one of Lemma 2.8. O

The first order optimality conditions (4.19)-(4.21) are written in terms of the va-
riables (x,u,q) € X x L? (L?) x Z*. In the next Theorem 4.9, using the definitions
(4.2), (4.6) of the spaces X and Z, we write these optimality conditions explicitly,
in terms of the state variables

(v,y) E Wy x Wya and w=—c*Ay—y+y°
and the adjoint variables
(Av, @y> Avo, Gyo) € L? (D) x L? (Hp) x 8 x Hy and ¢ = yAq, + pVy - qy.

Note that w is the chemical potential defined in (4.8) and ¢, is a further adjoint
variable. Moreover, still in Theorem 4.9, we derive regularity properties for the
adjoint variables.
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Theorem 4.9 (optimality conditions, regularity of the adjoint variables).
The first order optimality conditions (4.19)-(4.21) of the optimal control Problem
4.1 read as follows:

(4.222)
[ 500 40 (V9,59 45 v, 4 0,V ) — (9] =

(4.22D) v(0) = vo,
(4.22¢) /OT [(ye,;m) + v (Vw, V) = (y,v- V)] dt =0,
(4.22d) y(0) = yo,
(4.22) /0 " [(w,0) — 2 (T, V0) + (5.0) — (4. 6)] dt =0,
for all+ € L* (D), n,0 € L*> (H'Y),
420 [ ) v (Van V) £ v (v )

— (y, Vg, - )] dt =0,
(4.23) o (T) 0,

(4.23¢) /0 [(=qye,m) — €° (V. V) + p (Vw - av,n) — (V- Vg, 1)

+ (qw,n) — (39w, ) + (y — ya,m)] dt =0,
(4.23d) q,(T) =0,

T
(4.23¢) | @)+ (Va, 90)+ p (v - V) e =0,
for all+ € L? (D), n € L*(Hy), 0 € L* (H'),
T
4.24 —Qv, ) dt =0,
(4.24) / (0 u—av @) di

for all p € L* (L?). Furthermore, any solution (V,y,w, Ay, qy, quw) of (4-22)-(4.24)
s such that

(4.25) veH (8°)nL>(DNH?),
(4.26) ye H' (L) NnL> (H?),
(4.27) weL®(L*)NL’ (HQ)

(4.28) qv € H' (8°) N L™ (D

(4.29) g, € H" (Lg) N L HO

(4.30) qw € L* (Hy),

(4.31) ue H' (L*) N L™ (D

and

(4.32) dvo = qv (0), in D,
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(4.33) qyo = qy (0), in Hy.
Finally,
(4.34) llavell 2wy + llavllzoe=) + layell 2 gy + Ny o) + 1wl 2 () < C (W)

where the constant C (u) depends continuously on ||u| 2wz and data (initial con-
ditions and constant parameters) in Problem 4.1.

Proof. Equations (4.22) are the state equations e (x,u) = 0 in terms of (v,y, w),
that we derived in (4.10), (4.11). The last optimality condition (4.24) is given
by direct calculation from (4.21). Moreover, the results (4.25)-(4.27) follow from
Theorem 4.2. In Theorem 5.26, we will prove that given

veH (12)NL>® (DNH),

ye H' (L) NL> (H?),

we L*(L*)NL* (H?).
which solve the state equations (4.22), there exist qy € H' (L?) N L™ (D),q, €
H' (L) N L™ (Hy),q, € L* (Hy) that satisfy the optimality conditions (4.23) and
the estimate (4.34). Hence, from the optimality relation (4.24), we get that (4.31)

hold. By direct calculation, we derive that the adjoint equations (4.20), in terms
of the variables (qv, g, Qvo, ¢,0) have the following form

T
(4.35%) | [t#eas oo+ v (Van ) + b v.a)
0
5 (v, av) = (5, Vay - ) | dt+ (ave, % (0) = 0,
T
(4.35b) / [( ey Gy Vg o + 7 (Vay, V [=2An —n+3 % 1))
0
—(v- Vg, +p(y,av-V [-*An—n+3 y* n])
+p (V [-*Ay =y +y°] - av,n) + (v — v, n)] dt +  4y0,7(0) ) brg,m1, = 0,
for all v € Wy, n € Woa = Wy N L™ (Hy) N L*(Ha). In the following we prove
the equivalence between the adjoint equations (4.35) and the system (4.23).

Setting 1 € W in (4.23a), taking into account (4.23b) and using integration by
parts in time, we have

T
13 [ (bt ot (Van V) b v.a
0
15 (v, av) = (5, Vay - ) | dt+ (ay (0),9(0)) =0,
which is, assuming qvo = qy (0), the first adjoint equation (4.35a). Furthermore,

with
W EWy, neW,NL®(Hy)NL*(Hyp),
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in (4.23c) and using integration by parts in space and time, we derive

(4.37) /0 [(7715, Qy) 1z 1o + (Qwa e*An+n— 319277)
—(v-Vagy,n) +p(Vw-qy,n) + (y—yd,n)] dt + (g, (0),1(0)) = 0.

Assuming 0 = e2An +n — 3y*n in (4.23e), we get
T
(4.38) / (qu>eAn+n = 3y*n) dt
0

T
=/ (v (Vay, V [-An —n+3y°n]) + p (v - av, V [-€*An — n+ 3y°n] )] dt
0

Then, using (4.38) in (4.37), setting w = —e?Ay — y+y* and assuming g,0 = ¢, (0),
we have just the second adjoint equation (4.35b). So, we can claim that:

e given a solution (qy, ¢y, ¢w) of (4.23), then (qy,¢q,) and qyo = gy (0), ¢ =
¢y (0) is a solution of the adjoint equations (4.35);

e the spaces H' (L?) N L™ (D) and H' (L) N L> (Hy) are, respectively, com-
pactly embedded in C ([0, T ; D) and C ([0, T]; Hy) (see for example Theorem
I1.5.16 by Aubin-Lions-Simon in [20]); then, gy (0) € D and ¢, (0) € Ho;

e given the state variables (v,y,w), the solution (qy,qvo, gy, qy0) of the ad-
joint equations (4.35) is unique, then also the solution (qv, ¢y, ¢.,) of (4.23) is
unique;

e given the state variables (v, y, w), the adjoint equations (4.35) are equivalent
to (4.23).

We prove last statement above by contradiction. We suppose that there is (qy, qvo, ¢y, ¢y0)
which is the unique solution of the adjoint equations (4.35) and does not satisfy
(4.23). However, (4.23) has a solution, we say (qv, ¢,) and we know that (qv,qy),
together qyo = qy (0) and g, = g, (0) is also a solution of (4.35). Then we have
a contradiction, because we obtain, given (v,y,w), two different solution of the
adjoint equations (4.35). Hence, the system (4.22)-(4.24) is equivalent to the first
order optimality conditions (4.19)-(4.21). O



5. Optimal Control of the Discrete

Cahn-Hilliard-Navier-Stokes
System

5.1. Introduction

In this Chapter, we study the fully discrete version (in space and time) of the op-
timal control Problem 4.1. We adapt the analysis from Chapter 4 to the discrete
setting and show that the discrete problem converges to the continuous one, as the
discretization parameters go to zero.

Technical details of the discretization are collected in Appendix A.3. In particular,
we denote with h, k = T'/N, respectively, the space and time discretization parame-
ters, which are defined in A.3.1. Also the definitions of the discrete function spaces
Sh, Vi, Dy, Py, Y, are given in A.3.1. Moreover, if 7}, is a discrete functions space,
given Z" € Z, forn=1,..., N, we denote by the corresponding calligraphic letter
the associated vector variable

Z=(z"Y ezl

n=1
and with d;Z™ the discrete time derivative at time level n,

n _ anl

d, 7" =
! k

We use (-,-), to denote the mass-lumped scalar product defined in (A.29). We
define the following discrete spaces

(5.1) Xpe =Vt x PN x PN x vV,

with elements

(5.2) X =V,P,IYW),
and
(5.3) Kyn={ZeY,:-1<Z<1}.

Given h, k, we consider the following discretized version of the objective function
J stated in (4.5),

I+ Xpg x L? (L) = R,
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where

N Tk a [
5.4 Jng (X, U) = Y =yl + = Ul* dt| .
(5.0 ()= 32 Sl 5 [ e
where the functions y;, € P, and ¢, =n-kforn=1,...,N.

In order to represent the problem under investigation in a more compact, general
form, we define the following map:

(5.5) ens: Xnp x L2 (L2) = Xy,
where, for all Z = (¢, ¢,1,0) € X} 1,
(5.6) (Z,enk (X U))xz , x0, = (W, a1 (V,P.U)) + (), a2 (V))
+ 0, e (V. Y, W)) + (0, dn i (Y, W)
+ (°, VO —vor) + (0", Y —yon)
with
N

(W, a1 V,P,U)) = Z [k (d, V™, 4"™) + kv (VV", V") + kB (V' V" 1)

n=1

—k (P, V") + kp (Y™, VW™ - 4h) —/n (u,w)dt],

N
(@, azpr (V Zk (V-V™ "),
n=1

N

<777 Chk v y W Z 1 + kfy (vwn Vn ) k (Yn717 anl : Vnn)] )

n=1
N

(0, dnie VW) =D k[(Wm+ Y™t = (y")? 0m), — 2 (VY", V")) .
n=1

In (5.6), the trilinear form B (-, -,-) corresponds to a discretization of the trilinear
form b (-, -, -) defined in (4.12). It reads

(5.7) B(V,U,W):%/(V-V)U-Wdaz—%/(U-V)V-Wd:c,

for all V, U, W € V,,. Then, we consider the following fully discretized version of
the continuous optimal control Problem 4.1:

Problem 5.1. Given h,k, von € Dy, yon € PN Kp, yyp, € Py forn=1,..., N,
find (X, U) € Xy, x L? (L?) such that

min Ihe (X U) = Tng (/‘?aa) )
(X,U)Ethk XLQ(LQ)

subject to
(58) €h.k (X,U) = 0.

We emphasize that the constraint (5.8) in Problem 5.1 is a discretized version
of the state equations (4.9) of the continuous optimal control Problem 4.1. In the
following section, we derive existence, uniqueness and regularity properties of the
solution of (5.8).
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5.2. Properties of the Discrete State Equations

Using the definition (5.5), (5.6) of the map e, x, we can write the state equations
(5.8) of the discrete optimal control Problem 5.1 in the following way:

(5.9a) (d V", ) + v (VV™, Vap) + B (V'L V" 4p) — (P",V - 1)

tn
(L Iwng) - ¢ [ W) de=o
tn—1

2
(5.9b) V= o,
(5.9¢) (V-V", ) =0,
(5.10a) (dY™ ), + (VW", Vi) — (Y"'VL V) =0,
(5.10b) Y = yon,
(5.10¢) (W™, 0), —e* (VY™ VO) + (Y™ 1,0), — (Y")*,0), =0,

forally € Vy,, ¢ € Py, n,0 € Y,, n=1,...,N. We note that equation (5.10a)
above is mass preserving:

(5.11) Y™ 1), =...= %1, = (yon 1), =0, ¥Yn=1,...,N.

In the following Lemma 5.2 we show existence and uniqueness of the solution of
state equations (5.9), (5.10) of the discrete optimal control Problem 5.1.

Lemma 5.2 (existence, uniqueness). For any fized h,k and U € L* (L?), the
system of the state equations (5.9), (5.10) has a unique solution (V,P,V, W) €
VY x PN x PN x v,

Proof. See Lemma 4.1 in [62]. O

As a consequence of Lemma (5.2) above, associated to the discrete state equations
of the optimal control Problem 5.1,

enk (X, U) =0,
we can define a solution operator sy, L? (L2) — Xk, Which is such that
(5.12) eny (snr (U),U) =0, YUeL*(L?).
Given the system (5.9), (5.10), we consider, at each time level n = 1,..., N the

following, associated discrete energy

n n 1 n pEQ n T n
(5.13) BV Y") = SV 2+ B0y |+ p (9(v™). 1)

where @ (-) is the double well potential defined in (1.11), which is such that

(5.14) O (y) =Py (y) + P (y),
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where

1 .

Or(y)=1v' ()= (-2

| =

In the following Lemma 5.3, we derive a property of the discrete energy (5.13)
associated to the state equations (5.9), (5.10). We use this property later in the
document, to get stability estimates for the solution (V,P, ), W) of the state equa-
tions (5.9), (5.10).

Lemma 5.3. For any fized h,k and U € L*(L?), the solution (V,P,Y,W) €
VYT PN x PN x YN of the state equations (5.9), (5.10) is such that, for all
n=1,...,N,

1
(.15)  E(VRY") =B (VLY 4 V- v
2
k
S A R G e e
2 - (j* tn
<12 P yr-1)* 1 \VIIE vioL2 _/ 24
<k G 0 ((0r)" ), 9V 9V g [
where C = C (Q) and C* = C*(Q).

Proof. Setting ¥» = V™ in (5.9a) and using (5.9¢), we have

1 1 1
SIVPIE = SV SV = VR B[OV 4 R (VL T V)

tn
(5.16) _ / ©, v dt.
tn—1
Substituting n = W™ in (5.10a) and §# = Y™ — Y"1 in (5.10b) we derive
(5.17) (Y =YL W), + ky [V =k (Y VL VW) =0,
and

52 62 52
(W ¥ =), = SOy = Sy ey vy
(519 - Y-y, (0 -y,

Using (5.18) in (5.17), we can write

52 n 52 n— 62 n n— n
5.10)  IVYIE = IOV VY - VYR ke W
+ ((Yn)3 ’ yn Yn—l)h . (Yn—1’ yn — Yn—l)h —k (Yn—lvn—1’ vwn) =0,

In (5.19), using the convexity of the functions ®, (-) and —®_ (), we note that

(0P, (7 1), ()8 0 1)
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— YLy -y, = (é’_ (y"1), v — Y"—l) > (cb_ (Y™ —d_ (v, 1)

h h
Then, multiplying (5.19) by p, we get
2 2 2
pE n pPE n— pE n n— n
(5.20) —-[IVY I” - - VY *+ - IIVY" =VY P+ kv VT2
o (D) =& (V) 1) —kp (VIVIL VW) <0,
h
Therefore, using together (5.16) and (5.20), we derive
1 n||2 1 n—1/|2 1 n n—1/|2 n||2
(5.21) SV [V IV - VR kY7
2 2 2
oy = ey 4+ Sy — vy
ko [T+ p (& () =@ (Y1) 1)
tn
+kp (YL VW [V = V) g/ (U, V") dt.
tn—1
Rearranging (5.21), we have
1
(5.22) E(V,Y") —E (V"L Y™ + SV = V2
w2, PE n n—1)2 n2
+kv||VV"| +7||VY — VYY" * + kpy | VW]
tn
< kp’ (YL vwr. [vr—vri]) ) + ] / U, V") dt | = AT + A3,
tn—1
The two quantities A7, A% in (5.22) can be estimated using interpolation of L* in

L2, Poincaré’s inequality, Poincaré-Wirtinger’s inequality and Young’s inequality.
In this way, we derive

(5.23) AT < kY™ VWV = Vs
2
< koYW 2+ k Y v = Ve
2C
< koo i+ & 2 e v v ove vy
n p*C .. " . . .
< koljowpe i L8 TV — VI 4 v - v
< kol Vw2 4+ k2 LC8E ynmns oV 4 o) + v — verle
0_ LA M )
1
c* n
(5.24) Al < kHVVn”2+—/ ||| dt.
tn—1
Substituting (5.23), (5.24) in (5.22) we can write

1
(525) E (Vn’ Y") - F (Vn—1’ Yn—l) + 5||\/n . Vn—1||2
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2
[TV 2+ VY = VY 4y [V
< k’ an 2 k,Z P C3< ) Yn 1 vvn 2 an—l 2 Vn_vn—l 2
ol 1"+ 2 I 174 (1 [l 1) + wl I

cr [
v O [ e
tn—1

foralln=1,...,N. In (5.25), setting 0 = 22, ;s = 1 and rearranging we derive
1
(5:26)  E(VIY") =B (VLY 4 [V - v
o k
RS IVVIIP + VY = VY SR
2Cy (Q)
2

P n— n n— C* n
<k Yz (IV V2 + [V VE2) +5/ 24| dt.
tn—1

Finally, using (A.56), from (5.26) we derive the result (5.15). O

In the following, using the property (5.15) above, we derive stability estimates
for the solution (V,P, Y, W) € VI x PN x PNt x V)N of the state equations
(5.9), (5.10).

Lemma 5.4. Let us assume that there exists a constant Cg independent of h,k,
such that

(5.27) E (Von, yon) + [[Vvos| < Cs.

Then, for any fized U € L? (L?), there erists a constant

v v
C} = min 5= 1 -
85C (o)1), 85C 2 (B (von yo) + £IVVoull? + S IUlZarz, ) +2|9
such that, if
(5.28) k< Cy,

the solution (V, P, Y, W) € V1 x PN x PNTLx V)N of (5.9), (5.10) satisfies:

(5.29) sup [V <C M),
n=0,..., N
(5.30) D KV <C @),
n=1
N
(5.31) SIVr =V < o),
n=1

(5.52) sup (Y7, < € (W)

-----
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N
(5.33) MY =Yg, <CMU)),
n=1
N
(5.34) S EIVIWTP < C W),
n=1

where the constant C'(U) depends just on |[U|12q2), data problem and constant
parameters, but it is independent of h, k.

Proof. First we prove that (5.27) implies that there exists a constant C'4 indepen-
dent of h, k such that

(5.35) ((yon)".1), < Ca.

Using the definition of the discrete energy (5.13), from (5.27) we infer

(1+ (o) = 2(won)*, 1), < %,
which implies
(5.36) ((yor)* 1), < % +2 ((yon)*, 1), — 9.
Using Young’s inequality (A.13), we derive
(537) (a1 1), < 7 (o) 1), + 19,

and inserting (5.37) in (5.36) and rearranging, we have

8C'
((on)' 1), < =2 +2[0] =
p
Next, we perform the proof of the Lemma by induction. We assume that for all
1 =1,...,n, the time step k is such that

2
2= i—1\4 v

5.38 k—C( Y ,1) <z

( ) ,72 ( ) 8

Setting in (5.15) n =i and the summing on i = 1,...,n, we have

(5.39) E(V™",Y") ZHV’ ViTl|)?

n 2 n
v i pE i i P i
+5 > EIVVEE+ R S OIVY - vy P4 53 ZkHVW 12
i=1 i=1 i=1

n 2 *
P~ i—1\4 i i ¢
< B (o) + 3o RLC (0 1) (VR4 I9VTE) + 5 s
i=1
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Using in (5.39) the assumption (5.38), & < 1 and rearranging, we derive
(5.40) E(V",Y") ZHV’ ViTl)?

v i pe? i i Ak i
+qz}wvw+3§]wy—mfw+7z}www

=1 1=1 =1

v c*
< E (Vo Yo,n) + gHVVo,hH2 + 5”””%2@2)-

From (5.40), using the procedure applied above to derive (5.35), we get

8 v c*
(5.41) ((Yn)4 ) 1)h < P (E (Vo,h, Yo,n) + gHVVo,th + 5”“”%2(142)) + 2}9‘

Hence, setting

v

84C |5 (B (von,voa) + EIVVonl? + G101 3aes) ) + 2102

(5.42) k<

we have, at time level n,

kp—Qé((Y")‘* 1), <
72 > h —

O IAN

Therefore the condition (5.28), ensures that (5.40) holds for alln = 1,..., N. Then,
using the hypothesis (5.27), Poincaré’s inequality (A.16), Poincaré’-Wirtinger’s in-
equality (A.15) and the definition of the discrete energy (5.13), we derive the results
(5.29)-(5.34). O

Later in the chapter, we show that the solutions of the discrete Problem 5.1
converge to the solution of the continuous Problem 4.1. In order to do that, we
need stronger estimates for the discrete variables (V, P,V W) € V,iV“ x PN x
PN x VN, We establish these estimates in the following lemmas.

Lemma 5.5. Under the same hypothesis of lemma 5.4, the solution ) € P,ﬁvﬂ of
(5.9), (5.10) is such that

N
(5.43) D EIAYCE < C ),
n=1
N
(5.44) > _EIVY'lE < C @), ¥ p € [L,+00),
=1

where the constant C (U) depends just on HUHL2(L2 data problem and constant

parameters, but it is independent of h,k and Ay, is the discrete Laplacian defined
n (A.36).



5.2. Properties of the Discrete State Equations 121

Proof. With # = A, Y™ in the discrete state equation (5.10c), we can write
(5.45)

(W", Ahyn)h 2 (VY", VAhY") + (Y"—l, AhY")h - ((Y")3 , Ahyn)h —0.

From (5.45), using the definition of the discrete Laplacian (A.36), we get
(5.46)  2[AY"|2 + (VIM[(Y™)?],VY™) = (VW™ VY™) + (VY™ 1, VY™,

where [}, is the interpolation operator defined in (A.27). In (5.46) (see [41], inequal-
ity (4.3)), we have

(5.47) (VI" [(Y")’],VY™) > 0.
Hence, applying Young’s inequality (A.13) with 0 = 1/2 in (5.46), we infer
21 A n||2 1 n||2 n||2 1 n—1(2
e AnY [ = SIVIVIE VY™ + S I
Then, from the results of lemma 5.4, we realize that (5.43) is satisfied. Finally,
from the inequality (A.39), we conclude that (5.44) holds O

In the following, we use the same notations of Section 3.4. If 7, is a discrete
functions space, given a discrete vector function

zZ = (Zn)nNzo € Zi]zVHv

we use Zp; to generically denote the following three different kinds of time inter-
polated variable

t—t,1 b, —t

(5.48) Zp () = p ARS 2 VA t € [tn-1,tn],
(5.49) Zh(t) = 2", t € (tpo,tn],
(5.50) Z ()= 2", t € [tn1,tn),

where
t,=nk, n=0,...,N.

Lemma 5.6. Under the same hypothesis of lemma 5.4, the solution ) € P,ﬁvﬂ of
(5.9), (5.10) is such that

(5.51) ZkHY”HZ(Q) <CcU), ¥ p e[l +oo).

Proof. From (5.32) and (5.44), we can write

(5.52) HV;))h,kHLoo(Lg) <C (Ll) ,
(5.53) IV YVllzzn < C @), ¥pell oo).
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Then, from (5.52), (5.53), using an interpolation argument (see [20], Theorem
I1.5.5), we get

(5.54) Vpel[l,4o0) 3¢ >2, suchthat |[VVpillrre) <CU).
Therefore, applying Poincaré-Wirtinger inequality (A.15) in (5.54), we derive
||yh,k||LP(W1vq) S C(u) ) v pE [17 +OO)7 q> 2.

So, from the embedding W14 «— C (Q), which holds in d = 2 if ¢ > 2, we observe
that

1Pnell o (e (ayy = CU), Vpell,+00).

So, the result (5.51) holds. O

Lemma 5.7. Let us assume that there ezists a constant C independent of h,k,
such that

(5.55) E (Vo yon) + [Ivonllmy + | Awyoulln < C.
Then, for any fized U € L* (L?) and k such that
k S 017

the solution Y € PN*! of (5.9), (5.10) satisfies:

(5.56) swp (1A < O ).
N
(5.57) D Kyl < C ),
n=1
N A ~
(5.58) STIAYT = Ay < C W),
n=1
(5.59) sup ||Yn||c(§2) <CcWuu,
n=0,...,N
(5.60) sup  ||Y"|lwra < C(U),
n=0,...,N

where the constant C' (U) depends just on ||U| 12wz, data problem and constant
parameters, but it is independent of h, k.

Proof. Setting n = d,Y™ in (5.10a), @ = A,d,Y™ in (5.10c) and using the definition
(A.36) of the discrete Laplacian , we can write

(5.61) —y (W", Ahth")h + Y™ )2 = (YL Ve Vd YT,

(5.62) (W", Ahth")h S (AhY", Ahth">h - (Y’H — (Y™, Ahth")h.
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Substituting (5.62) in (5.61) and rearranging we derive

(5.63) e2y (Ahyn, Ahth">h +||d,Y™|2 = R" + R,

where, using integration by parts (in space),

(5.64) Ry = (Y™, V".VqY")=— (Y. V"4 Yy [V. V7 4, Y"),
and

(5.65) R} = —y (Y"*l —(Y™?, Ahth”)h,

for alln =1,..., N. For any fixed n, such that 1 <n < N, we have
(5:60) Y kR ==y > (MY = Ay TLY T = (V') = Ry + R + i,
i=1 i=1

where

1l oy (Yi)3 _ |:Yi -~ (Yi+1)3}
R21 = - Z k Ahyla L 5
i—1

Ry = 7 (Ahyo, Yo _ (Yl)?’)h,

R23 = <Ahy*n7 Ynfl o (Yn)?))h’

Using the definition (A.36) of the discrete Laplacian and the Young’s inequality
(A.13), we get

_ A n yn—1 A n n\3
(5.67) Roy = — (AhY Y )h+7 (AhY (Y™ )
=7 (VY™ VY"1 —~ (VY™ VI" (Y")?)
< SIVYHP + VY =y (VYL VI (V)

h

h
W

From the definition (A.36) of the discrete Laplacian, Young’s inequality (A.13),
the definition (A.27) of the interpolation operator I", the equivalence between the
h-norm and the L?-norm (A.30), the generalized Holder’s inequality (A.14) and the
inequality (A.17), we can write

(5.68) Roy =~ (Ahyo, Y°>h P (Ahyo, (Y1)3>h
= =1 V5042 + 21 Awyonll + 2" (¥1)" 17

< A0l + T Augonl + T ()

< 11930l + L Asnall + VI

Vi A Cy
< =y Vyonl* + §||Ahyo,h||i + 7||Y1||?10-
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Furthermore,
n—1 i3 ; 3
_ Aoy, (V)= (T
(5.69) Ry =7 ; k (AhY LAY+ 3 h

n—1
<Y EIAY,
=1

1Yl + H (Yz‘)3 _k(Yz‘+1)3 Hh] |

Noting that for all a,b € R,
3
la® —b*| < 5|a — bl|a* + b?|.

we derive

H (Yi>3 _ (Yi+1)3
k
Therefore, using (5.70) and Young’s inequality (A.13) in (5.69), we get

3 , A .
(5.70) Hh < SHAY I (Y) 4 (V) llegay.

n—1

A v i 3 i i i
Ruy <y Y RIAY o 10+ 3105 L (17 gy + 1V )

i=1

n n—1
(671 <207 Y KIdY I+ C (0) Y RIAYE (14 1Y 20y + 1Y () )-

i=1 i=1
Thus, inserting (5.67), (5.68) and (5.71) in (5.66), we realize
(5.72) >k Ry < —AllVyoul® — v (YY", VI" (V")),

i=1
Yioyanz o Y oyn- VA Cy
+2IVY 12+ ZIVY 2 + 2l Aol + 1Y,

n n—1
207 DRI I+ C (@) D RIAYR (14 1Y 8 ) + 1Y E(q))-
i=1 1=1

Concerning R} in (5.64), using the generalized Holder’s inequality (A.14), inequality
(A.17), Poincaré’s inequality (A.16) and Young’s inequality (A.13), we infer

Sk B Sk IV VT el 1Y ooy IV VY
i=1 i=1 B

<Ok (1Y IV e e 1Y oy IV g1

i=1

(5.73) <Dk [20]d I+ C @) IV (1 M + 1Y 712 y) ]
i=1 B

By the embedding W'* < C (), the Poincaré-Wirtinger inequality (A.15) and
the discrete interpolation inequality (A.51), we realize

(5.74) 1Y ey < CIIY ™ lpna < IV s + IVY s
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< Y, + o [IVY TR+ JAYTR] < O [V, + 1A R).
So, using (5.74) in (5.73), we have

(5. 75)
Z’f R < Zk 20y I+ C (@) IV (1Y, + 1A ) |

Setting n = ¢ in (5.63), summing over the index i = 1,...,n, with 1 <n < N and
taking into account of (5.72) and (5.73), we get

2

ey . €2y 4 g2y A i A e
SRR = SHIAY IR + 5Dk [IAY* = ApY I+ iy
=1

A Vyorl? =~ (YY", VI"[(Y")]),

Cyy

y n gl n— YA
219y 4 ey + 2 Aol + YIS,

n—1

+207 3 kY I+ O (0) S RIAY IR (L 1Y Togey + 1V
i=1

(:76) Dk [200ldY I+ C (o) IV (I, + 1A )]

i=1

Rearranging and using (VY™, VI" [(Y")B})h > 0 (see [41], equality (4.3)), we can
write

€7 14 2 %y - A vi A vie12 2
(5.77) A+ Z BIARY" = A + a7 3]

017

7 n n— A
< 2pwy e+ 20wy i+ S, + 2 2+ 1) [ Bugnal

n—1

+20 (7 +1) Z eI+ Co <a>Zk||AhY"||i(1+||Y"||§<Q>+||Y"+1||§<Q>)

+Cs (o) 3 RIVT R (1Y, + 1A ),
i=1

for all 1 <n < N. Hence, with ¢ such that

2
20(v+1) < 677,
from (5.77) we derive
(5.78) ARy ™IE + 37k 1A = Ay 2 + dy 2]
=1

<G [IVY7 12+ I9Y 2 4 Y + Ao nlE]
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n—1

+Co Y RIARY I (14 1Y gy + 1Y 1))
i=1
+Cs DRIV (1Y, + 1A ),
i=1

forall1 <n < N. Then, using the assumption (5.55), the statements (5.30), (5.32),
(5.51) established in the previous lemmas and applying the discrete Gronwall’s
inequality (see for example [73], Lemma 1.4.2), we get the results (5.56)-(5.58).
Finally, as in (5.74), we derive

1Y "llegay < CIY lwis < C 1Yl + 181

for all 1 <n < N. So, (5.59) and (5.60) hold. The proof is complete. O

Lemma 5.8. Under the same hypothesis of Lemma 5.7, the solution W € Y} of
(5.9), (5.10) is such that

N
(5.79) > _EIAWE <o,
n=1
N
(5.80) DRIV, < C @), Vp e[l +00).
n=1

where the constant C' (U) depends just on ||U| 2wz, data problem and constant
parameters, but it is independent of h, k.

Proof. Setting n = —A, W™ in (5.10a), using the definition (A.36) of the discrete
Laplacian and integrating by parts in space, we get

(5.81) YA I3
- (th", Ahwn)h + (vw*l vl Ahwn) n (Y’H V-V ,Ahwn).

From (5.81), applying the generalized Holder’s inequality (A.14) and the equiva-
lence between the h-norm and the L2-norm, we can write

AW
= [lay "l + € (IFY " a1V s + 1Yoy I7 - V1) | HAW

which implies, using Young’s inequality (A.13), inequality (A.17), Poincaré’s in-
equality and discrete interpolation inequality (A.51),

(5:82) AW} < 301l AW}
+C (0) Y™+ (A" + 1Y 4+ Y12 g ) 1V iy
Assuming

30 <7,
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in (5.82), rearranging the terms, multiplying by &£ and summing up over the index
n, we derive

N
> kAW
n=1

N
<Okl I+ (130 + 192 4 1Y) IV )

n=1

So, from the results (5.30), (5.32), (5.56), (5.57), (5.59) of the previous lemmas, we
realize that (5.79) holds. Finally, applying the inequality (A.39) to (5.79), we have
(5.80). O

Lemma 5.9. Under the same hypothesis of Lemma 5.7, the solution W € YN of
(5.9), (5.10) is such that, for all ¢ € [1,4+00),p € [1,3),

(5.83) sup [|[W"|, <CU),
n=1,....N
N
(5.84) DB IV 5e) < C@),
n=1
N
(5.85) Sk [IVWOEH VW 4 (IVWE] < CWU),
n=1

where the constant C'(U) depends just on |[U|12q2), data problem and constant
parameters, but it is independent of h, k.

Proof. With & = W™ in (5.10c), using the definition (A.36) of the discrete Lapla-
cian, we can write

(5.86) W2 = —&? (Ahw, W”) — (YW, (YR W,

h

By the generalized Holder’s inequality (A.14), the equivalence between the h-norm
and the L%mnorm, the definition (A.27) of the interpolation operator I", the in-
equality (A.17) and the Young’s inequality (A.13), from (5.86), we derive

"I < 30lW ™+ C o) [IARY 2+ Y™, + 1Y%,
which implies, with 30 < 1,
(5.87) W™ < € [HAYIE + 1", + 1Y%, ]

Using in (5.87) the results (5.32) and (5.56) established in the previous lemmas, we
infer that (5.83) holds. From (5.34) and (5.83), we get

Wil oo 2y + IWhll L2y < € (U)
and subsequently, by an interpolation argument (see [41]|, pag. 3051),
(5.88) Whkllzaan < CWU).
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So, taking into account of (5.80) with p = 4 and (5.88) above, we have
IWhill2viay < C(U),

which implies, using the embedding W'* < C (Q), the result (5.84). From the

definition (A.36) of the discrete Laplacian, we infer

T T
A / IV WasllLs dt = / (YW VW) P dt =
0 0

T T
(5.89) =— / | (Ahwh,kawh,k>h | dt < / 1AWk ll2 [ Whll7 dt.
0 0

Using (5.79), (5.83) in (5.89) above, we realize

(5.90) INWhkllzaz2y < CU).

Thus, from (5.80) and (5.90), we can write

(5.91) IV Whillzacezy + IVWhl 2e) < C (U)

for all g € [1,00). Then, applying interpolation (see [20], Theorem II.5.5) to (5.91),
we derive

(592) ||VWh,k||LP(L3) S C (U) 5
for all p € [1,3). Using together (5.90) and (5.92), we get the result (5.85). O

Lemma 5.10. Under the same hypothesis of Lemma 5.7, the solution W € Y,V of
(5.9), (5.10) is such that

N—-1
(5.93) Wt —wrt P <o),

n=1

where the constant C' (U) depends just on ||U| 2wz, data problem and constant
parameters, but it is independent of h, k.

Proof. The discrete state equation (5.10c) implies
(5.94) (Wr—wrttg), —e* (VY™ = VY™™ Vo)
(Y =y e), - (- (e’ e)h = 0.
With 6 = W™ — W"*+! in (5.94) above, using the definition (A.36) of the discrete
Laplacian Ay, we have
(5.95) W™ — Wt = B} + E3 + EY,
where

Bp = = (Y™ = Ayt e — wet )
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By =— (Y™l =y", wr—wn) |
En = ((Y")3 — (vt e — W"“)h
From the generalized Holder’s inequality (A.14) and Young’s inequality (A.13), we
can write
By < S AY" = DY [ — W
< o|[W" = WP 4 C (o) [|ARY™ — Ay ™2,

By <[yt =YW — W,
< oW = WrHE 4+ C (o) Y = Y5

En < H Y"+1) H ”Wn WnJrth
= H Yn+1 [(Yn) + yryntl + (Yn+1 2] ’ HWn - Wn+1||h
<C ||Y" _ Yn+1||hH (Yn)2 +ynryntl 4 (Yn—i—l H HWn Wn+1||h

< oW — w2

FO@ Iy -y o ey e |

< oW — w2

£ ) [2Y ogay + 1Y eV legay + 2™ ey ¥ =¥,
Then, inserting the above estimates for £, ..., E} in (5.95), we derive

(5.96) W™ — W2 < 3o ||[W™ — W24
+C4 (0) [ARY™ = AY™ 2+ Co (o) Y™ = Y73

2
+Cs (o) [21Y ™ llegay + IV " llogay 1Y ™ llegay + 21V ™ loay] 1Y = Y™+,
which implies, with ¢ small enough,
(5.97) W = W < GlAY™ = Ay ™2+ Gyl Y — Y

2
0 20V llogay + 11V legay 1Y legay + 21V legay] 1" = Y.

Summing up over n =1,..., N — 1 in (5.97), we infer
N-1 N-1 N-1
Z Hwn o Wn+1”2 < Z HAhYn o AhynJrl”Q + O, Z Hynfl . YnH%L
n=1 n=1 n=1
N-1 )
+Cs 3 (207 gy + 1Y "oy 1Y legay + 21"l | 1Y = Y2
n=1

Hence, using the results (5.33), (5.58), (5.59) established in the previous lemmas,
we realize that (5.93) holds. O
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Lemma 5.11. Let us assume that there exists a constant C independent of h, k,
such that

(5.98) E (Vo you) + IVonlle + 1 Ayonlln + | Anvonll < C.
Then, for any fized U € L? (L?) and k such that
k S 017

the solution YV € V) ' of (5.9), (5.10) satisfies:

(5.99) sup [|[V*[|mp < C(U),
n=0,...,N
N
(5.100) dDVi=vii < c),
n=1
N
(5.101) D kA VTP < ),
n=1
N ~
(5.102) Sk NAVP < CW),
n=1

where the constant C' (U) depends just on ||U| 2wz, data problem and constant
parameters, but it is independent of h, k.

Proof. With ¢ = kd, V" in (5.9a), (5.9¢), we have
(5.103) k|| d:V™|? + kv (VV™,Vd, V") = AT + Ay + A%,
where

AP = —kB (V"L V" d, V"),
A;L _ —kp (Yn—l’ vwnr. dtvn) 7
Ay =k (U™, dV").

From the definition (5.7) of the trilinear form B (-, -,-) and performing integration
by parts in space, we get
(5.104) AT =

(V"' V]V & V") — = ([V*-V]d V", V") =

k
2
=k([V"" V] V" d V") +

NNl NN =l

([V-V"d V", V).

Using in (5.104) generalized Holder’s inequality (A.14), Young’s inequality (A.13),
Poincaré’s inequality (A.16), inequality (A.18) and the discrete interpolation in-
equality (A.54), we can write
- n— n k n— n n
A< KV VYV s [V ]+ SV VI flallde VIV s
< 2ko||d V™ + & C (o) [IVVIL VTR + IVV VL]
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< 2kold V2 4k O (o) [V VY IV IAV |+ [V 1AV
which implies, still applying Young’s inequality (A.13), with u = o,
(5.105) A < 2o VP 4 ke [ [ AaV P 4+ A V72
i C (o) [IVPLE + VR [V VYR T VR,
In the same way, we derive
(5.106) Ag < EplY" ey IV [Hld V7|
< KoV I+ KC (o) [ g IV TV
and
(5.107) AL < ko||d,V"||? + kC (o) ||U"||*.
Using (5.105)-(5.107) in (5.103)-, we infer
(5.108) k|| d,V™|? + kv (VV™, Vd, V")
< ko |ld V"2 + b [| A0V 4 AV ]
+k Cy (o, p) [V + VPP IV VP o Ve
+ Co (o) IV gy VWP + & Cs (o) U™

Setting n = ¢ in (5.108), summing up over the index : = 1,...,n, with 1 <n < N
and rearranging, we realize

v ny2 - iz Y i i—1(2
(5.109) IV +;[k“dtV 2+ IV Vi - vV
v
< LITVO o 3 kIAVIE + Sk AV + 1A V]
1=1 1=1

+C (o) YR [IVTE VAPV P V2

1=1

+Ca (o Zk Y12 IVW U7
Noting that there exists a constant C' such that

(5.110) S TEIANVTE < CIANVOP+ KAV,

i=1 i=1

from (5.109) we have

v ny2 - in2 Y i i—1(2
(5.111) CIVVRE 4 Y [kl V2+ SV = vV

i=1
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IVvoull® + uCl|Avonl® +do ) KldV'|* + 20 ) KAV

i=1 i=1

<

(LI

+C (o, 1) Yk [V + VAP IV VPV Ve

i=1
+Ca (0) Yk IV 2 o IV W12+ U7
i=1
forallm = 1,...,N. With » = kA"V" in (5.9a), (5.9¢), where A" is the discrete
Stokes operator defined in (A.40), we get
(5.112) kv (VV",VA"V") = D} + D} + Dy + Dy,
where

D} = —k (d,V",A"V")

Dy = —kB (V"' V", A"V") |
Dy = —kp (Y"1, VW™ - A"V")
D =k (U™, A"V").

Using the definition (A.40) of the discrete Stokes operator, we note that the left
hand side of (5.112) reads

kv (VV™, VAW = k (VV", v [—ThAhV"D — kv (Ahvn, ThAhV")
(5.113) = kv (ThAhV", ThAhV") = [ T"AL V|2 = AV
Furthermore (see [6]), there exists a constant C' such that
(5.114) ClALV"|| < A"V < AV
Hence, taking into account of (5.113) and (5.114) in (5.112), we can write
(5.115) kv C|AV"|* < Dy + Dy + Dy + Dy

Using Young’s inequality (A.13), (5.114) above, integration by parts in space, gen-
eralized Holder’s inequality (A.14), Poincaré’s inequality (A.16), inequality (A.18)
and discrete interpolation inequality (A.54), we derive

D7 < ko| AV 4+ k C (o) ||d V"%,

Dy = —k([V"1- V] V", A"V") — g ([V-vri]ve Alve)

- n A n kC n— n A n
<RIV e [TV el AV + TV s [V | BV
< 2o AV + k C (o) [IV RNV VIR + IVART V)
< 2kl AaV*I2 + & C (o) [V IV VIV VAV
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+kC(o) [IIV"IIIIVV"IIIIVV’HIIIIAhV’HII
< 3ko||ALV"|)? + ko|| A V|
+ & C (o) [V + VPP IV VPV VT2,

D3 < kYoo VW1 A0V
< ko AV + KC (0) Y"1 2 g [ TW

Dy < ka||AyV"|* + kC (o) |[U"|*.
Hence, inserting the estimates for D7, ..., D} in (5.115), we infer
(5.116) kv C|A, V"
< 6ko|| A V™|]” + ko | A V" + k Cy (o) [|d: V"]
+k Co (o) [[IV*HP + (VPP VTPV Ve
+k Cs () IV oy VWP + & Ca (o) [IU™.

Setting n = ¢ in (5.116), summing up over the index : = 1,...,n, with 1 <n < N
and rearranging, we realize

(5.117) v CY K|AV? <

i=1
< oC1l|Apvonr® + 702 EIIALV*+
i=1
FC2(0) Yk IV IOWP U]+
i=1

n

+C3 (0) Yk [ VP + (VP + [VIR) IV VPV Ve,

i=1

which implies, with ¢ small enough,
(5.118) SRRV <
i=1

< CillAuvonl? +Co Y k [V 200 VW + U] +

i=1

+Cs )k (I VP + (VT + [VIR) IV VPRIV V],

i=1

for alln =1,..., N. Inserting (5.118) in (5.111) and rearranging, we have

v ny2 - in2 Y i i—112
(5.119) IV Bl VIR + 2V - vV <

i=1



134 5. Optimal Control of the Discrete Cahn-Hilliard-Navier-Stokes System

14

< SIVvorll? + uCillApvonl? + (o + 1) CaZ/fHdtVZHQ

i=1

\)

+ (L4 p) Cs (o, 0) Yk [IVETHE+ VAP IV VPV VY2

=1
+ (14 1) Ci (o Zk Y2 IVW12 U7

Hence, assuming in (5.119) o, 1 small enough, we get

1 " X v . .
(5.120) SIVVHR 7 [kl VI + SV V= TV

1=1

<

< [IVvoull? + Cill Apvorll* + Cs Z k [HYZ 1||2( )||VWZ||2 + ||UZ||2}

=1

\)

+Cs Yk [V + VAP IV VPV V2.
1=1

So, using the assumption (5.98), the results (5.29), (5.30), (5.34) (5.59) established
in the previous lemmas and the discrete Gronwall’s inequality (see for example
[73], Lemma 1.4.2), we conclude that (5.99)-(5.101) hold. Finally, from (5.118), we
derive that (5.102) holds. O

Corollary 5.12. Under the same hypothesis of Lemma 5.11, the solution V €
VN of (5.9), (5.10) is such that

(5.121) ZkHViHi(Q) <CcW),

where the constant C' (U) depends just on ||U| 122, data problem and constant
parameters, but it is independent of h, k.

Proof. Using Young’s inequality (A.13), Poincaré’s inequality (A.16), inequalities
(A.17), (A.54) and the embedding W' < C (Q) we have,

DRIV < X R[IVIE+IVVIR] <
=0 =0
< O R[IViIE + IVVIIAV] <

=0

< Ok [Vl + 12V

=0

Hence, by the results (5.30), (5.102) established the previous lemmas, we get
(5.121). O
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5.3. Well-Posedness of the Discrete Optimal
Control Problem

Problem 5.1 has the form of an abstract optimal control problem where the cost
functional Jy . @ Xpp X (LQ)N — R defined in (5.4) is continuous, convex and
bounded from below, i.e. weakly lower semicontinuous. Then, it is easy to get the
following result.

Theorem 5.13 (existence of minimizers). The discrete optimal control problem
(5.1) admits a solution.

Proof. The proof is analogous to the one of Theorem 2.5 in Chapter 2. O

5.4. Optimality Conditions for the Discrete
Optimal Control Problem

In the following, we show that the regularized Problem 5.1 satisfies the conditions
needed to apply the standard theory of mathematical programming in Banach
spaces (see Assumptions 1.47 in [58]). Then, we derive the first order optimality
conditions (see Theorem 1.48 and Corollary 1.3 in [58]).

We need to verify that the discrete optimal control Problem 5.1 is such that

e the cost functional J, 5 : X, X L? (L?) — R is continuously differentiable;

e the map e : X X L2 (L?) — X, defined in (5.6) is continuously differen-
tiable;

e the map 8?;”“ (snk (U) ,U) has an inverse, where sp, 1, : L? (L?) — X,  is the

solution operator defined in (5.12).

It is straightforward to realize that two conditions above are verified. So, we skip
the corresponding proofs. In the following Theorem 5.14, we prove that also the
last condition holds.

Theorem 5.14. For any fized h,k and U € L? (L?), the operator

86h7k
ox

(shs (U),U) € L (X1, X k)

18 tnvertible.
Proof. We need to prove that for all Z € X} there exists a unique dx € X
such that

86h k

Equation (5.122) is equivalent to demonstrate that, given (Zv,Zp, Zy,Zy) €
VYT x PN x P x YN and (W, P, Y, W) € Vi x PN x PMTE x VY solu-
tion of the state equations (5.9)-(5.10), the following system of equations

(5.123) (dy —dy ) + kv (VAY, V) — k (dp, V - 1)
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FEB (A%, VP ap) + kB (VL d, )
o kp (LYW ) + kp (YL VA, ) = (ZY,9h),

(5.124) dy = Zy;,
(5.125) (V-dy,0) = (Z5,9),
(5.126) (d5- —dv=",n), + kv (Vdy,, V)
—k (dy 'V YAy, V) = (Z8m),
(5.127) dy = Zy,
(5.128) (dy +dy',0), —e*(Vdy, Vo) — (3(Y™")?dy.,0), = (Zy,0),,
with n = 1,..., N, has a unique solution (dv, dp,dy,dw) € Vi "' x PN x PN*1 x

YN, At each time level n, we can show the existence and the uniqueness of the
solution for (5.126), (5.127), (5.128) using exactly the procedure performed in the
proof of Theorem 3.10. The only difference is that, in this case, the elements of the
matrix F are the following

E;; = (3 (Yn)g ﬁjam)h +&° Aij,

Finally, given djj, € Y}, using standard arguments, we can claim that (5.123),
(5.124), (5.125) have a unique solution (dy, d%) € Vj, X Pj. O

The continuous differentiability of the maps Jy, 1 : X x L? (L?) — R, epy :
Xpr x L* (L?) — X, and Theorem 5.14 guarantee that all the solutions of the
optimal control Problem 5.1 can be derived solving a set of first order optimality
conditions (see Theorem 1.48 and Corollary 1.3 in [58]). In order to get these
equations, for any fixed h,k, we define the discrete Lagrange functional Ly :
Xh,k: x L? (LQ) X Xh,k: — R,

(5.129) Ly (XU, Q) = Jny (X, U) + (L, e (X, U))x; , X5

where

Q = (QV7 QP7 Q% QW) S Xh,k'

The first order optimality conditions of the discrete optimal control Problem 5.1
correspond to find (X, U, Q) € Xy, x L? (L?) x Xy, such that

(5.130) Tk (xu.Q) =0,
(5.131) Ut (xu.0) =0,
(5.132) ag&k (X, U, Q) =0.

Equation (5.130) corresponds to the discrete state equations e, (X, U) = 0 of
Problem 5.1, (5.131) are the discrete adjoint equations and (5.132) is another opti-
mality relation.

In the next Lemma 5.15, we prove that given a solution X = s; (U) of the dis-
crete state equations (5.130), the discrete adjoint equations (5.131) have a unique
solution Q € Xj, ;.
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Lemma 5.15. Let h,k,U € L? (L?) and X = s (U) € X1 be given. Then, the
discrete adjoint equations (5.131) have a unique solution Q € Xy .

Proof. As a consequence of Theorem 5.14 above, we have

-1

Oe
a;(’k (sne (U) ,U) € L(Xpp, Xng)-
So, the proof is analogous to the one of Lemma 2.8 in Chapter 2. 0

In the following Corollary 5.16, we derive the explicit form of the optimality
conditions (5.130)-(5.132) in terms of the state and the adjoint variables

YV, P, Y W) = X,
(QV7Q7379377QW) = Q

Corollary 5.16 (optimality conditions). The first order optimality conditions
(5.180)-(5.182) of the discrete optimal control Problem 5.1 read as follows. For all
n=1,...,N:

(5.133a) (V" %) +v(VV", V) + B (V"1 V" 4p) — (P",V - )
+p (YL VW) — (U 4) = 0,

(5.133b) VO = v,
(5.133c) (V-V" $)=0,
(5.133d) (dY", ), + 7 (VW", V) = (Y"'V"1 V) =0,
(5.133e) Y = yon,
(5.133f) (W",0), — 2 (VY™ V0) + (Y"71,0), — (¥™)*.6), =0,

forally € Vi, o € Py, 1,0 €Yy,

(5.134a) — (d QY %) + v (VQY ', V) + (Qp 1, V- 1)

+B (%, V'L QY) + B (V' Ly, Qy ) — (Y, VQy - 9) =0,
(5.134b) QY =0,
(5.134c) (V-Qy',0) =0,
(5.134d)  —(dQ¥.,n), — > (VQy " V) + (Qw.m), — (VQy- - V", n)

+o (VW Qy,n) = (B(Y™) Qi n), + (Y = yinn) =0,
(5.134e) QY =0,
(5.134f) QY =0,
(5.134g) (@' 0), +7(VQy ', Vo) +p (Y"1, Qy ' - Vo) =0.

forallvy e Vi, o€ Py, n€ P, 0 €Y},

(5.135) aU" - Qy !t =0.
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Proof. Equations (5.133b)-(5.133e) and (5.134) can be derived by direct calculation
from, respectively, (5.130) and (5.131). The optimality relation (3.71) implies

Z/ (alh — QY ' ) dt =0,

for all ¢ € L?(L?). Then, we have U € VI,

U)=U"eV,, Vte (th1,tn),
and also (5.135) and (5.133a). O
Remark 5.17. From (5.134g), we realize that Q}, € P, foralln=0,..., N — 1.

Later in the document, we prove that the solutions of the discrete optimality con-
ditions (5.133)-(5.135) above, converge to the solution of the continuous optimality
conditions (4.22)-(4.24) of Problem 4.1 as the discretization parameter go to zero.
In order to do that, in the following lemmas, we derive (h, k)-independent stability
estimates for the adjoint variables (Qy, Op, Qy, Quw) € Vi T x PN x PNt x V)N,

Theorem 5.18. Let us assume there exists a constant C' independent of h, k, such
that
N
E (Vo o) + [Voulls + 1 Amgonlln + |1 Anvonll + > Ellyz,l* < C.
n=1
Then, there exist a time step kya. such that for all k < kpas, if (X, U, Q) €
Xk X L? (L?) X & is a solution of the optimality conditions (5.133)-(5.135),

(5.136) sup [|Qy ey < CWU),
(5.137) ZkudtQW <CW),
N n=1
(5.138) Z 1Qv" - Qv < C M),
n=1
N
(5.139) H S koptl<cw,
n=1
(5.140) sup 1QY N, < C M),
N
(5.141) SOy = Q43 < C M),
n—lN A
(5.142) Zk IALQYH? < C (),
:N
(5.143) S kO, <CM).
n=1

where the constant C' (U) depends just on ||U| 122, data problem and constant
parameters, but it is independent of h, k.
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Proof. We divide the proof in several steps.

i) With ¢ = k Q¥ ! in (5.134a), (5.134c), we have
(5.144) —k (4QY, QV") + k| VQYy )P = F T+ B
where

= —kB(Qy ', V"™, QY),

F =k (Y'VQL. Qv ).

Using integration by parts in space, the generalized Holder’s inequality (A.14),
Poincaré’s inequality (A.16) and the inequalities (A.17), (A.18), we get

k
Fr=—k([Qy"- V] VrhQy) - o ([V-Qu']Qy. v

n— n n k n— n n
< HIQY s IVVT QYT + I VQY QY s [ Vs

< CEIVQY IV V™ QY ||s

< ko|[VQY P +E C (o) [VVPQV s

< ko[ VQy P+ & C (o) [VVTIPIQV VAV

< ko[ VQY T + ko[ VQY 1+ k C (o) [VV™ QY 1%,

Py < MY oy | V@3 I1Q% | < FCIY ™oy IVRS 11905
< ko[ VQY I + KC (o) Y72 ) I T QY I

Inserting the above estimates of Fi'*, Fy~!in (5.144), we can write

(5.145) —k (d,Qv, Qv ") + kv VQY | < 2ko]|VQY
+ho[VQYI* + & C1 () [VVHPIQVI + kG () 1Y o) I VOT I

Setting n =4 in (5.145), summing up over the index i = N,... ,n, with 1 <n < N
and rearranging, we derive

N
1 n— 1 i* i Z’*
(5.146) Qi + 3 (5195 - Qi+ wivay' ] <

N
<Dk [30IVQE I + € @) IV VY + Ca (0) 1Y 0 IV Q41

which implies, with ¢ small enough,
N
(5.147) 1QV 1P+ D [I1Qv " = QI + KIVQy ']

i=n

N
<Ok [IVVEIIQUI + 1Y 120 IV Q1)

i=n
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forallm=1,..., N.

i) With 0 = A,Q7 " in (5.134g), using the definition (A.36) of the discrete Lapla-
cian, we infer

(5.148) IALQY I =Gt + Gy,
where

1
Gy = - (Ve vey),

Gt = s (Y’H, Qyl- vAthfl) .

From the generalized Holder’s inequality (A.14), Young’s inequality (A.13), inte-
gration by parts in space, Poincaré’s inequality (A.16) and inequality (A.17), we
realize

G < ollVQy P + Ci (o) VY%,

G =2 (VT Ay ) - 2 (Ve A

< SNV Q4 el @3 o+ 1V - QU Y e 1845
< 20 An @+ Cu (o) [IVY " s + Y712 | IV QG
Hence, inserting the above estimates of G"~' G5~ " in (5.148), we have
(5.149) 1AnQ5 72 < 20| A0Q5 I + ol VO3 I
+C () [ (VY™ + 1Y 20 ) IV QY2+ IV Q5 2]
which implies, with ¢ small enough,
(5.150) 1AWy
< C[IVQ 1+ (IVY " e + 1Y 1200 ) IV QY2+ 195712,

Setting in (5.149) n = ¢, multiplying by k and summing up over i = n, ..., N, with
1<n< N, we get

N
(5.151) > EIALQV

N
Ok [(I9Y 3+ 1Y 712 ) IVQG I+ IVQF 2 + 1V Q3 12,
forallm=1,..., .

i11) Setting n = Qy, 0 = —kd, Q% in (5.134d), (5.134g), we can write
(5.152)
—k (dQY, Qw)y, — k[ VO I* + & (Qiy, Qi) — K (VQY - V™, Qi)
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o (VI QR Qi) — k(8002 (@4)), k(Y — i Q4 = 0.

(5.153)
i (Q diQY),, = By (VO VAiQy) + ko (Y"1, Q- VALQY).

Substituting (5.153) in (5.152) and rearranging, we derive
(5154) kv (VT VAQy) + ke [V P+ (30 Qi Qi ),
=HP ' HEY
where
Hi ™=~k (VQy - V", Q)
Hy = kp (VW Q4 Q)
Hy =k (Y™ =y, Q')
H™ = k(@3 Q).
ng—l — kp (Y-n—17 n—1 thQn)
In addition, from (5.134g), we note that
Y™ =k Qi Q) = —hy (V@3 Vi) — ko (Y™, Q% - V).

Using the generalized Holder’s inequality (A.14), the Poincaré’s-Wirtinger inequal-
ity (A.15), the Poincaré’s inequality (A.16), the inequalities (A.17) and (A.18),
Young’s inequality (A.13), we derive

Hy ™! < BV IV e | Qi Hlze < kCIVQTIIVVHIVEE
< ko | VO I* + kC (o) IV VTP VQY I,

™" < kp|| VW™ 14| QY || 24| Q5|

< kpClIVW ™| | QY |2 [V QY112 [V Q|
< ko[ VQy 1P + kC (o) VW HLIQV I VY|
< ko | VO + kol VQY|I* + kC (o) [V L1 QY 17,

Hy = < kY™ —ygulllQu Il < BCIIY™ =y, IIVQy |
< ko[ VQ 1 + kC (0) 1Y = ya,l”,

HY ™ < | QY NIV QA+ bollY ™ o(ay 1Q% 11V Q5|
< 200 VQU ! + KCi (0) VRS P +KCs (o) V"2 QY I

Furthermore, applying discrete integration by parts in time, we infer

N N
(5.155) SCHT =D ko (YTLQYVAQY) =1 4 L+ s,
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where

I =—p (" LQy ' Vi),

N—-1
Li=—=p> k(Y'dQy VQy),

N-1

Is=—p) k(&Y' Qy-VQY).

Using the generalized Holder’s inequality (A.14), Young’s inequality (A.13), (5.147),
discrete interpolation inequality (A.51) and (5.150), we realize

B < oY oy 1QY 19 Q5
< VR + C (o) 1Y 2 QY

N
< VO I+ C (@) Y™ oy Dok [IVVINQUIP + Y20 IV QY1)

N-1

I < p ) KV el QUINIVQY |

i=n

N-1
< Dk ol QI+ C (@) 1Y o) IV QY P

i=n

N—-1
I < p 3 Y Q4 eV Qi
_N—l

< pC > kldY VAL (14051 + IV Q3 )

=

<> k[0 (IA@yIE + IVQYIE) + € (@) 1Y IV QY ]

(2

N-1
<01 Y ko [ IVl + (IVY I+ 1Y) IVQYI? + IV Q3 1]

n

N-1
+Cy (0) Y kY PIVQY |

Hence, inserting the estimates of 7, I, I5 in (5.155) and rearranging, we conclude

N N
SOHT < @) YR ) Dok [IVVEIIQU I + Y2 ) 193]

N
ollVQE 2+ Yk [odQy I + Ca (o) Y12 IV QY 1P

i=n
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N
+C0 Y ko [IVQR 2+ (IVY I+ 1Y 12 ) ) IVQUIP + IV Q4 1P

i=n

N
(5.156) +Co (0) Y KIdY P VQy I,

So, setting in (5.154) n = i, using the estimates of H]'" ' ...  H'"" and summing
upover i =n, ..., N, with 1 <n < N, we have

N
9@y 1P+ 30 [219Q8 T - VORI + =V QP+ k (3 () Qi @) |

N
<Dk [olIVQYIP +olldiQy[1* + 50 VQy |IP + C1 (o) IV VIV Q3 |I°]

N
£ R [Co (o) IVWHLQY 2 + G (o) 1Y = ]
- N -
£k [C(0) IVQYIE + Cs (o) IV Q% ]

N _
+Cs () V"M Ig ) D F | IVVHIIQU I + Y13 ) I VOV I
(2) (@) _

i=n

N -
+olIVQE 2+ Y k [ Cr (o) 1Y 12 IV QY]

i=n

N -
0 3 ko [IVQIP + (IVY 1+ 1Y 1)) IVQUIP +19Q3 1]

i=n

N
(5.157) +Co (0) Y _ Kl d Y P VQy [,

foralln=1,..., N.

iv) With ¢ = —d,; Q% in (5.134a), (5.134c), we get
(5.158) —kv (VQY ', Vd,QY) + k|| d,Qy|* = Ly + Ly ' + Ly,
where
Ly = kB (V" diQy, Qv ),
Ly = kB (d:Qy, V"™, Qy)
Ly = —k(Y", VQy - diQy) .
Applying integration by parts in space, generalized Holder’s inequality (A.14),

Young’s inequality (A.13), Poincaré’s inequality (A.16), inequalities (A.17), (A.18),
interpolation inequality (A.54) and the embedding W* — C (), we can write

k
(V-V"LdQy-Qy ) =k ([V* - V] Qy ', d.Qy)

Ln—l _ _
! 2
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< SHV V[ QY NIQY s + RV o) IV QY 114:Q¥ |

< 2o | dQY[* + kC (0) [TV Q% [+ V"2 0 IV QP
< 2o |4 QY P +kC: (o) [TV 1AV Q3 I1V Qs

£ kC (0) [V + 9V AV IV QP

S QkO'HdthVHQ + ZkMHAhVn_l”QHVQ%_lHQ
-+ k’Cl (0'7 :u) ||vvn_1||2||inV_1||2 + ]CCQ (0_’ M) ||vvn_1||2||QnV_1||2,

k k
L;Lil = 5 ([dtQQ/' ’ V] VnJrl’ QQ/) - 5 ([dtQQ/' ’ v] QQﬁVnJrl)

= D1 Qy IV Qs + & QNI QYY" ey

< 20 QY| +KC (0) [TV R Q s + V12 ) IV QY I1?]
< 2k [ dQY |12 + KCi (o) [V V| AV QY | VQY |

+ kCy (0) [V + [V VAV IV Qy |

< 2ka||di QY |* + 2kp|| AV VQy |
+kCy (0, ) [[VVTHPIVQY* + kC (o, 1) [VVPIQY I,

L5 < Y oo IVQE 14,4 )
< KolldQY I + 5O (o) V2 o | 7R3 I
Inserting the above estimates of L}™!, Ly~ L2~ in (5.158), we derive
(5.150)  ZIVQY P - SIVQYIP + ZIVQY !~ VQYIP + Ky P
< 5kald Q2 + 20 [| AV VR 4+ 1AV IV Q]
+ECy (o, 1) [IVVT P [IVQY 1 + Q1]

HRCy (,0) [ WV (1905 + Q%]
R (0) [V ) IV QR

From (5.159), noting that

N
1AV T2 < Y RIARVI,

j=n
we infer

v _ 1% n 1% n— n n
Gac)  LIVQEE - LIVl LIVQy T - VQR IR + k4

N
< 5ko|[dQy|1* + 2k | Y KAV IVQY P+ 1A VTPV QY

Jj=n
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HRC (,0) VY2 IV QY12 + Q% ]
HRCy (o, 0) VY2 19052 + Q%)
Ry (0) Y72y IV QR P

So, setting in (5.160) n = ¢, summing up over ¢ = n,..., N and rearranging, we
realize

v N
(5.161) SIVQE 2+ Y [SIVQE - VAP + KldQy 1]

N N
<50 ) k|ldiQy|® +2u <Z kIIAhVHH2> IVay |I”
+kCy (o, ) [VVIHP QY P+ IVQy 7]

N
v2u 3k [IAVIE + 1AV 1V Qy |

N
+C2 (0,1) Yk [IVVIP + IVVF] [IQYIE + IV QY]

N
s (o) 3KV ) IV QY
foralln=1,..., N.

v) We sum (5.146), (5.157) and (5.161). Then, we conclude

N

| - v n— 1 . z - i

§”Qv HI? + §HVQV 12 4+ 5 Z [qul QLI+ y”val - VQVHﬂ
- gl

£k [l4Qul + vIVQE ) + 3 Ivey P

N N
LIS v AT (0 0 05)

(5.162) <

N
kC o) IV 20y kIIAhVi_1||2] IVay |I”

i=n

N
+k Co (0, 1) [VV " HPIQY P +30 Y kIVQY ! |P + ol VORI

N
03 () 3k [ (1 1Y 20 ) IV VI 1Y )+ 19 ] Q1P

i=n

N
+Cs(o,1) Yk [IVVIP +IVVFPT IQVIP + 1VQY (%]

i=n
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+Zk:[ 1+ Cs) + [V ) + IVY I + Co (o) 1] 19Q 2

N
Pk AV + 1AV ] 9QY 12 + 60 > klldQy |
N

+Cr ) Yk [L+ IVVIP + (L 1Y) ) 1Y 120y + 1Y 12 | IR0 1P

i=n

N N N
+0C5 Y KIVQY | +0 (54 Co) Y KIVQi' I+ Cro (0) Y KIIY* =yl

Using the results of Lemmas 5.4, 5.5, 5.6, 5.7 5.8, 5.9 and 5.11, there exist 7, fi, knaz
such that, in (5.162),

N
o Cr (& W) [TV 42003 b |4V 4+ 8600 < 5,

i=n

1

kma:v02 (57 ﬂ) vanile < 57
~ "
< —

o 5
60 < 1,

o
for all n = 1,..., N. Then, assuming 0 = &, = i,k < kyaz, from (5.162), we
have

N
(5.163) QY IP+ 1IVQY P+ Y IRy — QI + 1VQy ' — VQy ]

i=n

N
+ )k [IdQVIP + IVQy P + IVQy 1

i=n

+il!v% v@"l!2+zk[llw AP (0 o Q')

N
<CL@) Yk | (14 I 200 IV V4 1Y) + VW1 | Qu P

N
+C2 @) 3k [TV + 9V (VI + Vv ]
FC W)Yk (L IV )+ VY3 + 1Y) [VQ4 P
O @)Yk AV + 1AV [V QY

i=n

+Cs @) Yk [1+ [V 4 (14 1Y 20 ) 1Y 1y + 1Y | 19042

i=n
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N N
+Cs (U) Y KIVQUIP + Cr @) > kIIY' — i),

for all n = 1,..., N. Note that the constants C; (U),i = 1,...,7, depend just on
on ||{U||2(12), data problem and constant parameters, but they are independent of
h,k. So, taking into account of the results of 5.4, 5.5, 5.6, 5.7 5.8, 5.9, 5.11 and
applying discrete Gronwall’s inequality (see for example [73], Lemma 1.4.2) we get
(5.136), (5.137), (5.138). Then, from the Poincaré’s-Wirtinger inequality (A.15),
we derive (5.140), (5.141) and (5.143). Next, by (5.151), we infer that (5.142)
holds. Finally, we have the estimate (5.139) for the discrete adjoint pressure using
the same procedure performed in the proof of lemma 3.5. 0

Lemma 5.19. Under the same hypothesis of lemma 5.18 and with k < k4, the
solution Qy of (5.133)-(5.135) is such that

(5.164) anvczynip <CW),
(5.165) ZkHVQyHqu <C),
(5.166) Zkumyug@ <CwW),

forall 1 < p < 00,q > 2, where the constant C (U) depends just on |[U|| 212y, data
problem and constant parameters, but it is independent of h, k.

Proof. Applying (A.39) to (5.142), we have (5.164). Then using (5.140) and an
interpolation argument (see [20], Theorem II.5.5), from

(5.167) IVQyhill2(ey + IV QynkllLoe(r2y < C(U),
we get (5.165). Finally, (5.166) is a consequence of Sobolev embedding theorem. [

Lemma 5.20. Under the same hypothesis of lemma 5.18 and with k < k4, the
solution (Qy, Qw) of (5.133)-(5.135) is such that

N
(5.168) ZkHdtQ?Hi <C),
(5.169) sup @ e o),
(5.170) Z low" - Qwli < C M),
(5.171) anAhQ <o),

(5.172) anw <o),
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for all 1 < p < oo, where the constant C (U) depends just on |[U| 2wz, data
problem and constant parameters, but it is independent of h, k.

Proof. We divide the proof in several steps.
i) With n = —d,Q% in the adjoint equation (5.134d), we have

(5.173) k|l diQy (i + ke® (VQi, VdiQY) — k (Qiy, diQY),
+k(VQY - V", d,QY) — kp (VM/”*1 - Qy, dtQ?,)
e (3(Y")? QT diQy), — k(Y™ =yl diQy) = 0.
Using the adjoint equation (5.134g), we get
2 n—1 n 82 n—1 n gzp neyn n—1
ke (VQW 7thQy) = —k; (Qw 7dtQW)h - k7 (dt Y"Qyl, VQy )
62 n— 62 n 52 n— n—
= %HQW Hn = ZIIQth + %HQW F—Qw
_ ‘L:Q_p n—1 n n—1Y) 52_p n n n—1
(5.174) k » (Y"1 d QY - VO — k N (dY™, Q% - VQi).

So, substituting (5.174) in (5.173), we can write

82 82 52
5.175 kI QR 2 + =—[|Qu ln — — |7 ot — ont
(5.175) 1@+ 5195 = @l + 5 1Q5 = Qi
=M+ M

where

Mn—l_k,gzp Yn—l d n v n—1
1 - 7( ) tQV' QW )a

n—1 €2p n n n—1
M2 = T(thaQVvQW)a
My = Ep (VW QYL dQY)
MP~t =~k (VQY - V", diQY),
My~ = +k (Qfy, diQY),,
Mg~ = =k (3" Qi i@y,
M7= =k (Y™ = yip &:QY) -
Using the generalized Holder’s inequality (A.14), Young’s inequality (A.13), in-

equality (A.17), the Poicaré’s-Wirtinger inequality (A.15) and the discrete interpo-
lation inequality (A.52), we derive

n— €2p n— n n—-
Myt SKTHY l”c(s’z)HdtQV””valH

< ko[ QY | + KC (o) 1Y 2| Q3 5,
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My~ < kTIIth QY Il Vs

< ko[ VQ s + & C (o) 1dY ™| Q¥ IILs
< koG VORIV + HAhQ"W“H] +k Co (o) |QV Il 1Y ™ [1*
< ko Crl|Qyy 1%, + koColl AnQi 1P + k Cs (o) 1QW I3 1Y (1%,

M3~ < kpl VW | QY [la 1 Q5 |
< kalld: Q3 I; + & C (o) |Qu I3 VW™ H[Ls,

M~ < KIIVQY Il V"l [l d:Q3 |
< kalld: Q¥ [l; + & C (o) V"l VOV IILs,

ME™Y < kol|d QL2 + K C (0) | Qi | 2

MGt < SCHNY 2 123 M Q3 s
< kol QY2 + k € (o) 1Y "3 Q3 s

My < ko[ diQy |7 + k C () 1Y =yl
Inserting the estimates of M{™* + ...+ MZ ! in (5.175), we infer
g2 g2 g2
(5.176) QY + 5 Q3R = 5 QIR + 5125 — Qi
<k Cu(0) [V =yl + QY12 + QY Iy (1dey ™I + VW™ )]
 Ca (0) [V g IV Qs + (1 1" 20y + 1Y 1y ) 1957 s,
+k 3 (0) | QvllT, + ko Call AnQiy 1 + 5ka | d Q3 I3

i1) With n = A, Q%! in the adjoint equation (5.134d), by the definition (A.36) of
the discrete Laplacian, we realize

(5.177) ke | ARQu 2 = NPt Nt NP7 NP NP N
where

N = =k (dQF AQi)

Ny =k Qi Ay )

N =k (VQy -V AQT).

Ny = =k (VW QY AnQi )
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NI = k(30 Qi A )

N~ = =k (Y7 = g A )

Using generalized Holder’s inequality (A.14), Young’s inequality (A.13), the equi-
valence (A.30) between the h—norm and the L?*—norm and the inequality (A.17),

we conclude

NP7 < K| Q3 Il An @i I < kol An@3 17 + K C (o) [|d:@5 17,
Ny~ < Kl|Q 1l AnQi  lln < ko | AnQi 17 + & C (o) 1| Q3 17,

Nyt <k Cl VOl V" el A @i
< ko | An@Qiy I + & C (o) IV [ IV Q3 1L,

NG H < kpl VW | Qe | An Q3
< ko | An@y I + E C (o) |QV I VW™ ILs,

NET <3 ORIV o 1R 1A
< kol|An@i I+ € () 1Y Q8

Ng™ <k CIY™ = yinll 1AnQ5 ln
< ko | An@Qy I + & C (o) Y™ =yl

Inserting the estimates of NJ""* + ...+ N ' in (5.177), we have
(5.178) ke? | AnQyy |17 < 6ka|| AnQi 7
+k C1 () [l Q3 IR + 1 3, + V7 1 IV Q3 2
+ Ca (0) [1QU g IV ™ s + 1Y "1 ) Q3 N, + 1Y = wal?].
Thus, with ¢ small enough, from (5.178), we get
(5.179) KN IE <k Cr Q31 + 1Q3 13, + IV 1 IV Q31

e Co [1QU g IV s 1Y Q8 i, + 1Y = w3l

Setting in (5.179) n = 4, summing up over i = n,..., N, with 1 <n < N, we can

write

N N
(5.180) D KIAWQ IE < Yk I3 I + Qi I, + IV I I VQY 3 |

i=n
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N

+Co 3 [IQUI VW s+ 1Y ) Q3 s, + 1Y = 7]

i=n

i7i) Substituting the estimate (5.179) in (5.176) we derive
n 82 n— 82 n 82 n— n—
k||dtQY||i + %HQW 1”% - ZHQWHi + %HQW = w 1”%
<k (o) [IV" = il + QY1 + QY Iy (1™ + VW™ )]

e Ca (@) IV g I V@3 I + (1 1Y 20y + 1Y Iy ) 195 1
+ Ca (0) Qi i, + k Ci Q37

which implies, with ¢ small enough,
(5.181)  KldQ I3+ Q312 — 1@ IE + 195 - @17 < k CallQivl,
kG (V" = yiall? + QY1 +1Q% g (142 + VW1 12.) ]

e Ca [V B IV QIR+ (1 1Y 0 + 1Y) 1@ |

Setting in (5.181) n = 4, summing up over i =n,..., N, with 1 <n < N, we infer

N N
(5.182) Q' Ik + Yk [IQ3IE + Q%" — Qi 17 < Ci ) KIIQiv I,

N
£ Y[V = gl + N QY 7 + QY g (1Y 2 + VW2, ]

i=n

N
0 Yk IV IV QYR + (L 4+ 1Y 12 ) + 1Y Ny ) 1951,
foralln=1,...,N. From lemma assumption and the results established in Lem-
mas 5.4, 5.5, 5.6, 5.7 5.8, 5.9, 5.11, 5.19 and Theorem 5.18, we observe that all term
at r.h.s. in (5.182) are bounded by a constant where the constant C' () depends
just on [[U|| 2(r2). Hence, (5.168), (5.169) and (5.170) hold. Then, by (5.180), we
note that also the result (5.171) is satisfied. Finally, using Theorem 6.4 in [41], we
have the result (5.172). O

Lemma 5.21. Under the same hypothesis of lemma 5.18 and with k < k4., the
solution Qy of (5.133)-(5.135) is such that

(5.183) S 1ALQY n < C(U),
(5.184) S IVQy | < C (U),
(5.185) e QY lwa <C(U).
(5.186) N 1R Moy < C @),

for all 1 < p < oo, where the constant C (U) depends just on |U||2w2, data
problem and constant parameters, but it is independent of h, k.
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Proof. With § = —A,Q%! in the discrete adjoint equation (5.134g), using the
definition (A.36) of the discrete Laplacian and integrating by parts in space, we
have

(5.187) YAWQY ME =07t + 05t + 057,
where
01 = (@ Ay
057 = —p (VY™ QL Ay )
ot = (Y’H V-Qy ] ,AhQ;;—l) .

By the generalized Holder’s inequality (A.14), Young’s inequality (A.13), inequality
(A.17)

07 < Qi Il 3@ I < o185 I+ C (o) Q5 .

037 < p CIVY" Hea QY e [ ArQ5 I
< o AnQ I + C (o) VY™ Ll QY Iy

057 < pllY "Mooy IV - Q% I1A4Q3
< o AnQ 4 C (o) 1Y 12 0 Q% sy
Hence, inserting the estimates of O}~ OF~* OF ! in (5.187), we get
AR < 30l AQ5 I
+C () (1@ 1+ (IFY "+ 1Y " 20 ) 1Q% 1.
which implies, with ¢ small enough,
(5188)  80Q57 I < € [1Q5 1 + (IVY "R+ 1Y 20 ) 11QV g )

for all n = 1,...,N. From (5.188), applying the results (5.59), (5.60), (5.136),
(5.169) established in the previous lemmas and theorems, we derive that (5.183)
holds. Then, inequality (A.39) implies (5.184). Finally, using the embedding
Wt — C () and the interpolation inequality (A.51), we can write

Q571 ) < CHQF s = € [1QF s + V@51
< O [1Q5 M, + 130057 1]

Hence, using (5.140) established in Theorem 5.18 and (5.183) above, we infer that
(5.185), (5.186) are satisfied. O
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Lemma 5.22. Under the same hypothesis of lemma 5.18 and with k < k4., the
solution Qy of (5.133)-(5.135) is such that

N
(5.189) S EIAQYIP<C M),
n=1

where the constant C'(U) depends just on |[U| 12q2), data problem and constant
parameters, but it is independent of h, k.

Proof. With ¢ = A"QY" in (5.134a), we have

(5.190) kv (VQy L, VA"QY ) =k (4.QY, A"Qy ™)
—kB (A"Qy L, VML QY) — kB (VML AMQY L QYY) + k (Y'VQYE, AMQY T,

where the discrete Stokes operator A" is defined in (A.40).
In (5.190), using the properties of A", it holds

(5.191) kv (VQE, VA'QL ™) = kv (VQ’{,‘l, —VThAhQ’{fl)
kv (AhQQ;l, ThAhQQ,*)

— kv (ThA QY ThAhQ@*)
= kv||A"Qy .

Substituting (5.191) in (5.190), we get
(5.192) RU|AMQY P = PP+ PR PR P
where
PPt =k (dQy, AMQY ),
Pyt = —kB (A"Qy L, V'L QY)
Pyt =—kB (V"L AMQY T, QYY)
Py =k (Y'VQY, AMQYT) .

Using the generalized Holder’s inequality (A.14), Young’s inequality(A.13), the
embedding W' — € (Q), discrete embedding inequality (A.54) and inequality
(A.17), we can write

PPt < K Qy I A"QY
< ko||A"QY P + kC (o) 1 QY 1%,

k k
_5 ([AhQnV_l . V} Vn-i—l’QnV) + 5 ([Ah 7\1]—1 . v} an’vn—kl)

k n— n n k n— n n
< SIA'QY VYV s QY s + SIA"QY M VRV IV le(q)
_ A n 1 n 1 n
< kG AMQY ALV [V VI |QY [l

n—1 __
P2 —
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n—1
f%

n—1
}2

+ kG| A" QY QY gy [V I+ [TV ]

< hol|AMQY P + KCy (o) QY I | AV [V V]

+ k| AMQY 2 + Ky (o) QY Iy [Vl + 9V L]

< 2kol| QY + KCy (0) QY Iy [I1ARV™ 12 + V72

+ kC () QY 1y [V + [TV 2]

< 2kol|AQY I + KCy (o) QU Iy [I1ARV™ 12 + IV 3y

+ kG (o) QU Iy [ Ba V[V V™+

< 2k AMQY P + KC (o) 1Q% Iy [1ARV I + V3

< (VYA QYY)+ (VY] Qp ARy
B[V V] QYL AN ) 5 (V- VL ANy
<RIV ooy I VQE ARG+ 5119 - Vo | A Q% 13 s

< 2ko | AMQY P+ KC () QY iz [1AnV 1 + IV ]

< KIY (e IVQEI1A"Q |
< kol|APQY I+ kC (@) 1Y g Q¥ s,

Inserting the estimates of P"~' ... PP~ in (5.192), we derive

(5.193)

kU AMQY P < 6ko||AMQY P + k Ci (o) [1di Q|
Tk Co (o) QU Iy 1AV 2 + IV,
+k Gy () QY g [V + [V
+ 1 o (0) Y712 )| Q%

which implies, with ¢ small enough,

(5.194)

FIAQY I < & CuldQY I+ b CollQY Iy [IANV™ I + V"),

e CollQY By (1A 4 [V ] b CallY 2 10 3,

Summing up over n = 1,..., N in (5.194), we infer

(5.195)

N N N
S RIAQY < O RIQYI? + Co S kIQY Iy (120 V T + vz
n=1 n=1

n=1
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N N
+Ca Y KIQY sy IRV + VP g | + Ca DRIV ) Q¥

n=1

Then, from the results established in the previous lemmas, theorems and corollaries,
we realize that

N
Y kAP < C ).
n=1
So, see [6], from the following inequality
ClIALV < A"V < [IA V],

which is valid for all V € V},, we conclude that the result (5.189) holds. O

5.5. Convergence of the Solutions of the Discrete
Optimal Control Problem

In this section we study, as h,k — 0, the convergence of the solution of the op-

timality conditions (5.133)-(5.135) of the discrete optimal control problem 5.1, to

the solution of the optimality conditions (4.22)-(4.24) of the continuous optimal

control Problem 4.1.

Regarding the initial conditions vq 5,90, and the desired state yz,,n =1,..., N,
in the discrete non-smooth optimal control Problem 5.1, given

voe DNH?, yo€ HoNH*NK, ya€C([0,T];L5),
we assume

(5.196) Voo = Q'vo, Yo =Q"yo, yin=Qb va(ta),

where the projection operator Q" Q" Q! are defined, respectively, in (A.48),

(A.41), (A.43). In this way, we can suppose that there exists a constant C', such
that

N
(5.197)  E (Vo yon) + [Vonlle + 1Anvoull + | Awyonlls + > kllyz,l* < C,

n=1

independently of h, k. With this assumptions, from the results established in the
previous sections, any solution of the discrete optimality conditions (5.133)-(5.135)

(v7 Pv ya W7u7 QV7 Q'Pa an QW) )
is such that

(5.198) sup IV ey + 1Y ™ 0 + 1A + W] | < O @U).,
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5.199 su H kP < cw,
(5.199) Sl @
N 1 B -
(5.200) >k {HdtV"H? + EHV” = VPR + [ ARV |+
n=1 -
al 1 ) 1 ]
+> k {Hdtwn2 - EHY” =Y I+ - W2 <o),
n=1 J
(5.201) sup [I|Q%‘1||Hg) H QY o + 12,5 1P + I3 1| < C @),
n,m,.,j=1,..., i
(5.202) sw gk Qg;lH <Ccu),
N 1 R -
(5.203) >k {Hoth”vII2 + EHQ"\F1 — Qu Iz + [122QY [P+
n=1 -

- n 1 n— n ]
#3k 1Qy 17+ 110 - Q3|+
n=1 d

N -
— 1 n— n n—
+Zk[u@cvluzo+gu@wl— WP+ 1AQ5 P < c @),

n=1 d

for all h,k < kpaqs, where the constant C' (U) depends just on |[U| 22, data
problem and constant parameters, but it is independent of h, k.

Remark 5.23. In the following theorems consider sequences of the discretization
parameters

{hn}neN and {km}meN C (0, kimaz) »

such that
hy, — 0", k, =0,

as n,m — +oo. In this way, the estimates (5.198)-(5.203) are satisfied for all
By, k. In order to make the reading more fluent, we skip the indices n, m and we
simply write

(5.204) h,k — 0.

Even in the case of extracted subsequences, we use the notation (5.204), without
relabelling.

Theorem 5.24. Consider a sequence h,k — 0 and let

{ (Vs Phstes Yhtes Whkes Un i) e
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be a corresponding sequence of the time interpolation of the solutions of the discrete
optimal control Problem 5.1. Then, there exist functions

veH' (L*)n L™ (Hy), /tp(s) ds € L (L)

ye H' (L*)NL>(Hy), welL*(H")NL®(L*), uel®(L?

and a subsequence (not relabeled), such that,

(5.205) Vi =V, in H' (L?),
(5.206) Vi v, in L (H}),
(5.207) Vi = v, in L* (H}),
(5.208) /t Py (s) ds = /tp (s) ds, in L (L3) ,
(5.209) 0 Vi — yo in H' (L?),
(5.210) AT in L™ (Hy),
(5.211) s =y, in L* (H,),

(5.212) W;;L,k — w, in L* (H"),
(5.213) Wi, = w, in L> (L?),
(5.214) Ul — u, in L* (L?) .

Proof. We consider a function & € L? (L?). Then, by the definition (5.4) of the
cost functional Jy 5 @ Xpp x L?(L?) — R, the assumption (5.197), the estimate
(5.198), we have, for all h, k,

(5.215)

« — - _ o, —
EHuh,kH%ﬁ(Iﬂ) < Tk (Sne Unge) Ung) < T (s (U) ,U) < C (U) + 5”””%2@2)7

where the map sy, ;. : L? (L?) — X, 1 is the state equations solution operator defined
in (5.12) and

(shie Ungk) , Uni) = (Xni, Un i) = Vhies Protes Yk, Wk, Un i)

is a solution of the optimal control Problem 5.1. Using (5.215) above, we realize
that the sequence {U}, 1.}, , is bounded by a constant which is independent of h, k.
So, using the estimates (5.198)-(5.200), there exists a convergent subsequence such
that the limits (5.214), (5.205), (5.206), (5.208)-(5.210), (5.212) and (5.213) hold.
Furthermore, by the estimates (5.198), (5.200), we have

Vil ey + IVikl Lo ) + 1AVl 22e2)
H|Vh el ey + 18kl oo i) + 1AV kll 22 (22) < C,

uniformly in h, k. So, using the results established in [13] (Lemma 2.4) or [83]
(Lemma 4.9), we derive the strong convergence statements (5.207) and (5.211).

It remains to prove that V,'Lki and y,;f; converge, respectively, to the same limit. It
can be done as in the proof of Theorem 3.23 and we skip this part of the proof. [
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Theorem 5.25. Consider a sequence h,k — 0 and let

{ (Vs Phtes Yites Whtes Un ey @ tes QP tes Qutes Qi) by g o

be a corresponding sequence of the time interpolation of the solutions of the opti-
mality conditions (5.133)-(5.135), where in particular

{(Vnes Phstes Yhtes Whkes Un i) e

is a sequence of solutions of the discrete optimal control Problem 5.1. Then, there
exist functions

t
a € H' (L?) N [~ (HY) . /0 0 (s) ds € L (L2)

gy € H' (L) N L™ (Hy), qu € L* (Ho)NL> (L?),

and a subsequence (not relabeled) such that,

(5.216) Q% i — v, in H' (L),
(5.217) thk = qy, in L* (D),
(5.218) OV — v, in L* (D),

(5.219) / Qf i (s) ds = / q (s) ds, in L= (Lg),
(5.220) Q% ke — s in 7' (L?),
(5.221) Ok — s in L (Hy),
(5.222) Qi — - in L? (Hy),
(5.223) Qth RN in L> (L?),
(5.224) ik — Gus in L? (Hy).

Proof. From (5.214) established in Theorem 5.24 and by the estimates (5.201) and
(5.203), we have the results (5.216),(5.217), (5.219)-(5.221), (5.223) and (5.224).
Moreover, from (5.201), (5.203), we get

195 hkll @2y + ”Q;ﬂ,h,kHLOO(H})) + | A QY 1 ol L2 w2y
QS rllmrzey + 119 nrlloe o) + 1ARGDS pallL2z2) < C.

Then, by the results in [13] (Lemma 2.4) or [83] (Lemma 4.9), we derive the strong
convergence statements (5.218) and (5.222). Fmally, as in the proof of Theorem
3.23, by (5.201), (5.203), we can show that Qv hk> thk7 Ql./’vi,h,k converge, respec-
tively, to the same limit. O

In the next Theorem 5.26, we derive regularity properties for the functions

V7 y7 w7 u7 qV7 qy7 q'UJ7

considered in the previous Theorems 3.23, 3.24. Moreover, we show that these
functions are solution of the optimality conditions (4.22)-(4.24) of the continuous
optimal control Problem 4.1.
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Theorem 5.26. The functions

V7 y7 w7 u7 qV7 Qy7 qw?

considered in Theorems 5.24, 5.25 are such that

(5.225) veH (S)NL™ (D),
(5.226) y € H' (Lg) N L™ (Hy),
(5.227) we L* (HY)NL>(L?),
(5.228) uc H (S)NL>® (D),
(5.229) qv € H' (S)N L™ (D),
(5.230) gy € H' (L§) N L (Hy),
(5.231) qw € L* (Ho) N L™ (L?),

and they satisfy the optimality conditions (4.22)-(4.24) of the continuous optimal
control Problem 4.1. Furthermore, it holds

(5:232) lavellzzs) + lavlizee @) + 19yl 12 2) + 1yl z (o) + 19wl 220y < C (0)

where the constant C (u) depends just on ||[ul| 2wz, data problem and constant
parameters.

Proof. We divide the proof in several steps.
i) Results (5.225), (4.22a), (4.22b).
From the discrete state equations (5.133a)-(5.133c), we have that

T
(5.233) /0 [((Vh,k)t , lbh) +v (vvl-:kv V¢h) + B (vh_,kv vl—:lw ‘ph)

(5.234) Vir(0) = Qlvo,
T
(5.235) / (V- Vi o) dt =0,
0
for all ¢, € C((0,T);Dy), ¢, € C((0,T);P,) Given ¢ € C((0,T);D),
¢ €Cx((0,T); L3), we set in (5.233) ¥ = Qb and ¢, = QFé. From the property

(A.49) of the Stokes projection operator Q" and the relation (A.44) valid for the
projection operator Qg, we note that

T T
520)  [n =Vl = [ lou =l < C 0 [l at =0,

T
(5.287) 16 = bnllagogy = | 6= onllugt 0.

as h — 0. Using the results of Theorem 5.24 and (5.236) above, we get

(5.238) /O (Va), tbn) dt — /O (v, ) dt,
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T T
(5.239) / (VY V) dt — / (Vv, Vp) dt
’ T 0T
(5.240) / U ) dt — / (u,p) dt,
0 0
as h — 0. From the definition of the discrete trilinear form B (-, -,-), we can write
T
0
where
1 T
&= [ (Vi VIV i
1 /T
=5 [ (Vi V] Vi) i
which are such that
I I
0= [ (V=) Vi des 5 [ (v 91V ) ) e

T T
o3 | Vv - s [Cbva
:Qu +Q12+Q13+Q147

Q=3 [ (V=) Tl Vi) e 5 [ (v V15— ). W)

. T
+%/0 ([V-V]Tﬁ,v}tk—")dt*%/o b(v,,v)dt
= Q21 + Q22 + Q23 + Qog.

where b (-, -, -, ) is the trilinear form defined in (4.12). Using the generalized Holder’s
inequality (A.14), Young’s inequality (A.13), inequality (A.17), the results of The-
orem 5.24 and (5.236) above, we derive

1 /T
@ul <5 [ Vi VIOVl s d
0
T
<c / Wik = VIoI Vil lwoaly dt
0

T
< IVl [ Vi = Vo
0

< OVl geag) Vo = Ve ey 19m 2 aag) = O,

1 T
Q12| < 5/0 Vsl VY V3 = Vil s dt
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T
<c / I Y B N
0

T
< IVl agy [ 1V =Vl
0

< 0||v||Lw(Hé)||v,;k =Vl (e 1%l 2 ) = 0

1 T
Qul < 5 / Il [Vl — il dt
T
<c / 19 g 1l e, — ey

T
ey R P
< CHVHLoo(H(l))HVHL?(Hé) ), — ¢||L2(H(1)) — 0,

Lo
Qul <5 [ Vi Il 99V de
0

T
<c / 1Vire = Vil a1 Vil de
0

T
< IVl [ Vi = Vo9
0

< ClIVwl oo (e Ve = Vo g (90l () = O

1 T

Qul < / Vs Ve — Vol Vg lle
T

<c / ¥ s 146 — ey [ Vi ey

T
< CIVllimeny [ Il =l

< CHvlj,kHLOO(Hé)HV|’L2(H6)”¢h N w"LQ(Hé) -0

1 T
Qul < / T
0
T
<c / 9 g 0 ey 1 Vi — Vil e
0

T
< Il [ 1oy IV — vl
0

< CI9 I oo ) 1 oy Vi = Y2y = O
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as h,k — 0. Hence from (5.241), we infer

T T T
622 [ BV VL) do s [ bvvdes s [,
0 0 0

as h, k — 0. Using the strong convergence statement (5.237), the results of Theorem
5.24 and the equation (5.235) above, we realize

T T
(5.243) /0 (V- Vi 1) dt—>/0 (V-v,¢) dt =0,

for all ¢ € C2° ((0,T); L3). By a density argument, we note that (5.243) is satisfied
for all ¢ € L? (L2). Then, v € L? (D). Therefore, using the property (4.13) of the
trilinear form b (-, -, ), we can replace (5.242) above by

T T
(5.244) / B (Vh_,k, V,”;k, T,bh) dt — / b(v,v,1)dt.
0 0
We note that
T
(5.245) / (Vs VWi - 4,) dt = Ry + Ry + Ry + Ry,
0
where
T
Ri= [ (D VWil — )
0
T
Ry = / (Vi — 0 YW ) dt,
OT
Ro= [ 0.V W] -w) dr
OT
Ry — / (y, Vw - ) dt.
0

Using the generalized Holder’s inequality (A.14), Young’s inequality (A.13), in-
equality (A.17), the results of Theorem 5.24 and the strong convergence statement
(5.236) above, we have

T
R)| < / WVl e — 2l
T
<c / Vel W el 4 — ey

T

< OVl / Wl 6 — gy
0
< Vil Il b, — 4 gy = 0.

T
Ral < [ 13 = ol Pl <
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T
< / Vi — vl Wil ol dt <
0
T

< Ol lleorim) / 1V — vl Wil
0
< Cllleqo.o) 1V — ll 2o Wi il L2y — 0,

as h, k — 0. Furthermore for all n € L? (H"),

T
[ w09 dt] < llleqon ol lnllzan
0

Hence by the weak convergence of W,fk to w, as stated in (5.212), we get
|R3‘ — 0,

as h,k — 0. Inserting the results for Ry, Ry, R3 in (5.245), we can write

T T
(5.246) / (Vies VWi - aby,) dit — / (y, Vw - ) dt,
0 0

as h, k — 0. From equation (5.234) and the property (A.49) of the Stokes projection
operator Q" we derive

(5.247) Vi (0) = Q'vg — vo in Hy.

Furthermore, with @ = &€ (1 —¢/T), where £ € L?, using integration by parts in
time, we infer

(Vhi (0) = v (0),§) = —/ (Whe —v),. %) dt —/ (Vi — v, ¢,) dt — 0,
0 0
which implies
(5.248) Vi (0) = v (0),

as h,k — 0. So, from the results of Theorem 5.24 and (5.238)-(5.240), (5.244),
(5.246), (5.247) and (5.248), we realize that

veH (S)NL>® (D),
y € H' (Lg) NL>®(Hy),
we L*(HY)NL> (L%,
ue L* (L),

satisfy

/(; [(Vta 1/)> +v (VV, V'lp) +b <V7 v, w) +p <y7 Vuw - ¢) - (ll, ¢>] dt = 07
v(0) = vo,
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for all ¢ € C°((0,7);D). Thus, from the density result (A.8), we can say that
(4.22a), (4.22b) are satisfied for all ¢ € L? (D).

i1) Equations (4.22¢), (4.22d), (4.22e).

From the discrete state equations (5.10a)-(5.10b), we have

T
(5.249) /0 [(Vne), o), +7 (YW, V) = (Ve Vi - Vi) | dt =0,
(5.250) Y (0) = Q"yo,

T
(5.251) / (Wi b0), = (V9 V0) + (V= )" 0n) | de=o,
0
for all n,, 6, € C°((0,T);Yy). Given 0,6 € C° ((0,T);C (Q2)), we set in (5.249)

and (5.251)
= Qn, O, = QL.

Then, using the property (A.47) of the projection operator QF, it is easy to get
that

(5.252) mh—mn, 6,—0, in L*(H').

From the results of Theorem 5.24 and (5.252) above, we derive

T T
(5.253) / (VW,’;k,Vnh) dt—>/ (Vw, Vn)dt,
’ T 0T
(5.254) / (VY VO,) dt — / (Vy, Vo) dt,
0 0
as h,k — 0. Furthermore, we realize that
T T
(5.255) Sy = ]/ ((Vn)y s mm), dt—/ (ye,m) dt | =0,
0 0
T T
(5.256) Sy = ’/ Wik 0n), dt—/ (w,0)dt | — 0,
’ T 0T
(5.257) 5= / Viwth), dt— [ (.0)dt | =0,
0 0
T 3 T
(5.258) 54:)/ ((y,jk) ,eh) dt—/ (y*,0)dt | — 0.
0 ’ h 0

as h,k — 0. In fact, noting that

S, < ‘/OT (Vur)y»mm),, dt — /OT (Vn)ymm) dt )

T T
+ ‘ / ((yh,k)t ; TIh) dt — / (ye,m) dt ) = 511 + S12,
0 0
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T T
S, < )/ (Wiss0n), dt—/ (Wi O0) dt |
0 0

T T
+‘/ Wiiy: 1) dt—/ (w, ) dt ) = So1 + o9,
0 0

T T
Si<| [ G, dt— [ Gt ar]
0 0

T T
| [ Oremde— [ @0y | = s+ 50,
0 0

Si < )/OT((y;k)?’,eh)h dt—/OT((y,;k)g,eh) a
+‘AT<oqg3ﬁodp—AT@{®dt}:&y+&%

and using the results of Theorem 5.24, the relation (A.31), the generalized Holder’s
inequality (A.14), the inequality (A.17) and the relation (5.252) above, we note
that

T
Sy < Ch/ | hie)y MVl dt < CRI| (Vhr), |22y lmnll L2y — 0,
0
T
Sy < Ch/ IWEINIVORI dt < ChIWE 22 l10n L2y — 0,
0
T
Sz1 < Ch/ 1Vl VORI dt < Chl| Yy il 22 |0l L2¢ry — O,
0

T T
Su < [ @) IS0l de < Ch [ 197l
0 0

T
< Ch [ Il dt < ChIV 00l 2y — 0.

and
512 — O, SQQ — O, 532 — 0, 542 — 0,

as h,k — 0. We have,
T

(5.259) /(%WWWWMﬁ:m+@+@+@,
0

where

T
0
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T
o= [ (. Vi v] V) dr
0T
Az = / (y, vV [ —nl)dt,
0

T
Ay = / (y,v-Vn)dt.
0

Then, using the results of Theorem 5.24, generalized Holder’s inequality (A.14) and
inequality (A.17), we get

T
Ay < / 1V — ol Vi sl V)t
’ T
<c / 1V = vl Vil dt
’ T
< ClIVillmuny [ 1% =l

< OVl o (1) 1V = Yll 2oy 1mll 2y = 0,

|As

T
< / Wl Vie = Vil | V]l dt

T
<c / Wl Vi = vilsss el dt
T
< Cllylliqam / Vi — Vil Il e

< Ollyllzee o) 1Va e = VI 2 gy l1mll 2ty = 0,

| A3

T
< / Il vl [V — nl dt
0

T
< [ lolllvliy o = e
0
T
< Clyllmny [ ¥yl =l

< oot 191 o aay) I = 7l 2y = 0,

as h,k — 0. Hence, from (5.259), we can write

T T
(5.260) / (Viser Vi - Vi) dt — / (y,v-Vn)dt,
0 0

as h,k — 0. Concerning the initial condition, using the property (A.42) of the
L2-projection operator Q", we derive

(5.261) Vi (0) = Q"yo — yo, in L2
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Furthermore, with n = £ (1 —t/T), where £ € L?, integrating by parts in time, we
infer

(Wt (0) =y (0),8) = —/0 (Vhe —y),,m) dt _/o (Vne —y,m) dt — 0,

as h,k — 0. Therefore ), ; (0) = y (0) in L?. Thus, using (5.261) and the unique-
ness of the weak limit, we realize that

(5.262) ¥ (0) = yo.
Therefore, from (5.253)-(5.258), (5.260) and (5.262), we observe that
ve H (S)N L™ (D),
y € H' (L§) N L*> (Ho),
we L?(HY)nL>(L?),
ue L?(L?),
satisfy
T
/ [(yes )+ (Vw, Vi) = (y, v- V)] dt =0,
0
y(0) = wo,
T
| L) =2 (V.90 + (0.6) - (4%,6)] dt =0,
0

for all n,0 € C° ((0,T);C (2)). So, using the density result (A.7), we can claim
that (4.22c¢), (4.22d), (4.22e) hold for all n,0 € L? (H").

i11) Results (5.229), (4.23a), (4.23a).

From the discrete adjoint equations (5.134a)-(5.134b) we have

T
(5.263) /o (= (Qun)y»¥n) +v (VQy s Vaby,) +
+ B (% Vi Qus) + B Vi ¥is Qunge) = Vi VY - %1) ] dt =0,
(5.264) Qv (1) =0,
T
(5.265) / (V- @y ) dt =0,
0

for all 4, € C° ((0,7); D), ¢n € C>((0,T); Py). In (5.263) the function V, 7, is
defined as follows

n+1 : o
v++.:{v i te (thrytn], n=1,...,N—1,
hok

5.266
( ) VY, if te (tyoi,ta],

and we note that

N—1 tn
1YV, = YV [ = 3 / vV -Vt
n=1 v tn—1
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N—-1
<Y EIVVT =V R
n=1

k|| vVl — V| 2dt.

WE

(5.267) <

S
Il
—_

Hence, from (5.267) above, the estimate (5.200) and the result (5.207) established
in Theorem 5.24, we get

(5.268) Vii—v in L*(Hp).

as h,k — 0. We consider ¥ € C>* ((0,7);D), ¢ € C((0,T); L) and we set
¥, = QM) in (5.263) and ¢, = Ql¢. Then, using the results of Theorem 5.25 and
the strong convergence of ¥, to 1 (see (5.236) in Step 1), we can write

T T
(5'269) / (_ (gv,h,k)t ) wh) dt — / <_CIvt7 ¢> dt,
0 0
T T
(5.270) | (Vv Vo) dt s [ (Vayve)ar
0 0
as h,k — 0. Regarding the third term in (5.263), we derive
T
(5271) / B (’l,bh, V,;L,,j, Q{r;7h7k) dt = Dl + D27
0
where
1 T
INES 5/0 (W’h - V] vi:r,lj7 J\;hk) dt,
1 /T
Dy= =5 [ (0 V1@ Vi) .
It is easy to realize that
1 /T
D=5 [ (=) VIV ef,) @
1 /T
w3 | @IV v ep,)
1 /T
+ 9 / ([‘P Vv, QJ\;,h,k - qv) dt
0
1 T
(5.272) + 5 / ([lb : V] Vv, qv) dt = Dn + D12 + D13 + D14,
0
1 T
Do= g [ (I —6)- V1@, Vi)

T
w5 [ (V1@ —a] Vb d
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1 T
+§/ (WV]QV,VZ:_")dt
1 T
(5.273) +3 / ([¢ - V]Qy, V) dt = Doy + Doy + Dag + Doy.
0

Using the generalized Holder’s inequality (A.14), Young’s inequality (A.13), in-
equality (A.17), the results of Theorem 5.25, the strong convergence statement
(5.236) in Step 1 and (5.268) above, we infer

T
Dul <5 [ It =l OV @il
T
<C [ = Bl Vi | 25l
’ T
< OV gy [ 1900 | @il

S CHv};":;HLOO(Hé) ||1ﬂbh - ¢||L2(ng)||Q¢vhvk||L2(Hé) ~ O’

1 T
Dal <5 [ I8l lOVi = DI @l

T
<c / 1l 1V = Vi | il dt
0
T
< 1@y [ Wl IV — Vo
0

< CNQY gl sy Il o ey VA = Vo aay) = O,

1 T
| Dis| < 5/ [l VYT Ry s — avlla dt
0

T
<c / 198l [ 2 125 e — vl
0
T
< IVl oy | g2 i
0

< OVl o (rag) 19 2 (112 1 @k = Wl 211y = O

1 T
Dl <5 [ b = Wlaa V@ NIV s
0

T
<c / 14 — Dl | @l [ Vi T s
0

T
< CIViTmamy [ 1960 = | @il
0

S CHv};":;HLOO(Hé) ||1ﬂbh - ¢||L2(ng)||Q¢vhvk||L2(Hé) ~ O’



170 5. Optimal Control of the Discrete Cahn-Hilliard-Navier-Stokes System

1
Dyl < L / 1l VDS s — Vel Vi s dt
c / 191195k — ol Vi N
0

T
< CIVE oy [ 181y125 00— o i <
0

< C||vh+,;j||Loo(H3)||¢||L2(Hé)||g¢vh’k - Qv||L2(H(1J) — 0,

1
Dyl < L / [l Ve[V — v dt
T
c / 1l e Vi = Ve dt
0

T
< Cllavlmy [ 191y IV = v o
< CHCIVHLoo(H(l))”t/)Hm(Hé)Hvi:t/;L - V”L2(H(1)) — 0,

as h,k — 0. Inserting the previous relations in (5.272) and (5.273), from (5.271)
we observe

T

T
(5.274)/0 (wh, hk,Qth dt—> / quv)dtJrl/ b (1, qy, V) dt,

as h, k — 0. Using the strong convergence statement (5.237), the results of Theorem
5.25 and the equation (5.265) above, we have

T T
(5.275) /0 (V- Qs &) dt—>/0 (V-qy,¢) dt =0,

for all ¢ € C°((0,T); L%).Moreover, by a density argument, we note that (5.275)
hold for all ¢ € L? (L3). Then, q, € L* (D). Therefore, using the property (4.13)
of the trilinear form b (-, -, ), we can replace (5.274) above by

T T
(5.276) / B (¢, Vil Q) dt — / b(,v,qy)dt
0 0
Considering the fourth term in (5.263), we can write
T
(5277) / B (V,;k, 'I,bh, Q\;,h,k) dt = Ey — E27
0

where

1 T

5 vh k lph’ QV h k)

0

’ﬂ

vhk Q\;hkﬂ’bh)

[\D|>—t
()
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and
1 [T - _
by = 5/0 ([(Vir = V) - V], Q) dt
1 T
+ B /0 ([V ) V] Wh - ¢] ) Q\_),h,k) dt
1 T
(5.278) +3 / (V- V], Qy — Qv) dt = By + Eip + Eiz + Euy,
0
1 [T - _
EBr = 5/0 ([(Vh,k - V) : V} Qv bk "%) dt
1 T
+ 5/0 ([v-V] {Q{;,h,k —qy] ;) dt
1 T
(5279) + 5 / ([V : V] qv, ’l,bh — ’l,b) dt = By + Ea + Egg + Foy.
0

From the generalized Holder’s inequality (A.14), Young’s inequality (A.13), in-
equality (A.17), the results of Theorem 5.25 and the strong convergence statement
(5.236) in Step 1, we get

FEi — 0, FEio — 0, Fis — 0,

FEy — 0, Foyy — 0, Fos — 0,

as h,k — 0. Hence, using the above relations in (5.278), (5.279), from (5.277), we
derive

T T
(5.280) / B (Vi ¥, Qi) dt — / b(v,v,ay)dt.
0 0
It remains to show the convergence of the last term in (5.263). It reads
T
(5.281) / (y;tkavgih,k"ﬁbh) dt = Fy + 5 + F5 + Fy,
0
where

T

Fy = /0 (yf—:kav [Q$,h,k - qv} ’ Qph) dt,
T

FZZA (yf—:k_yav(lvrgbh)dta
T

= [0 Vay - - v

T
F4:A (yvquw)dt

Using the generalized Holder’s inequality (A.14), inequality (A.17), the results of
Theorems 5.25, 5.24 and the strong convergence statement (5.236), we can write

T
| £ S/ VRl 2V Ry i — Vav eyl e dt
0



172 5. Optimal Control of the Discrete Cahn-Hilliard-Navier-Stokes System

T
<c / 1950125 e — el 900y
0
T

< OVl / 19505 — avllent 140l
0

< OVl 10195k — vl 2 (a) 1900l 2 (2y) = O

|y

T
< / 197 =yl Va4l s dt
0
T
<c / 19 — ol g e gy
0

T
< Cllavllmemy [ 197~ vl 9l
0

< CHqV”LOO(Hé) ||y;:r7k - y”Lz(HO)H"»bhHLz(Hé) — 0,

T
By < / 1l Vallllebn — 9 lloe dt

T
<c / Nl ol s 46, — w1y
0

T
<l [ 19l — ¥l

< Cllavll oo ey 19l 220 W0 = W L2 () — O

as h, k — 0. Therefore, from (5.281), we derive

T T
0 0

as h,k — 0. Finally, we prove that q, (T) = 0. With ¥ = £ ¢/T, where ¢ € L?,
integrating by parts in time, we realize that

(Quank(T) —ay (T),§) =

T

T
= /0 (Qvpk —aQv),, ) dt + (Y, Qvnr —qv) dt =0,

0

as h,k — 0. Therefore
(5.283) av (T) = 0.
Hence, from (5.269), (5.270), (5.276), (5.280), (5.282) and (5.283), we claim that

ve H' (S)N L™ (D),
y € H' (Lg) NL> (Hy),
qv € H' (8)N L™ (D),
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gy € H" (L3) N L™ (Hy),
qw € L* (H") N L*> (L) ,

satisfy

T
/0 [(—ave; %) + v (Vay, Vi) + b (Y, v, qy) + b (v, ¥, qy) — (y, Vg, - 2p)] dt =0,
qv (T) =0,

for all ¢ € C° ((0,T) ;D). Then, from the density result (A.8), we conclude that
(4.23a), (4.23b) hold for all ¢ € L? (D).

iv) Results (4.23¢)-(4.23e)

From the discrete adjoint equations (5.134d)-(5.134f), we have

(5.284) /OT [ (= (Qvnk)y )y, = € (Vs Vi) + (s 1),
— (VQhe Vi) + 2 (VW - Q5 g )

-3 ((y;k)Q Q;\/,h,kanh>h + (V- yc—li:h7k777h):| dt = 0,

(5.285) Ops (T) =0,

T
(5.286) /0 (D 00+ (VD V) + 9 Vi Q- V) | dt = 0.

for all n, € C((0,T);Py),0h € C((0,7);Ys). In (5.284) YV, , is the time
interpolation of the values y7 = QRyy(t,),n = 1,...,N. By the property (A.44)
of the projection operator Q! and using y4 € C ([0, T]; L?), we get

(5.287) IV = vilsae) = Z [ 10t~ 0 e
< 22 D08 )~ s )+ ) = s 0 )
tn—1

— 23 Kl t) — H2+2Z [ It =0 e

n=1 tn—1

N N

<2 KIQbya (t) — v (t2) [P+ 23"k ey (t) = a0

= n=1 n—Lstn

N
< h B )
< 2;::1 k1Q6va (tn) — ya (ta) |* + 2T max te[trill?ftn] lya (tn) — ya (t) ]| — 0,
as bk = 0. Given 51 € C* ((0,7):€° () N 1) 0 € €2 ((0.T)5€2* () we set
n (5.284), (5.286)
Nh = Qlfnv eh - Qlfe
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From the results of Theorem 5.25, the strong convergence statement (5.252) and
(5.287) above, we derive

T T
(5.288) / (VO Vign) dt — / (Vaw, Vi) dt,
0 . OT
(5.289) / (VO3 s V) — / (Vay, VO)dt,
T ’ 0T
(5.290) /0 (Ve = Vi) dt—>/0 (y — yasm) dt,
as h,k — 0. Moreover, it is easy to show that
T T
(5.291) Glzj/ ((Qy,h,k)tanh)hdt_/ (qyem) dt | — 0,
0 . OT
(5.292) Gy = )/ (Q%M,nh)hdt—/ (quw,m)dt | — 0,
T " T0
(5.293) G3:’/ ((y,j,k)zQW,h,mnh)hdt—/ (*qu,m) dt | =0,
0 . 0 .
(5.294) Gy = )/0 (Qwﬁ,k’eh)hdt_/o (qu, 0) dt | =0,

as h,k — 0. Indeed, we can write

G, < ) /OT ((Qy@k)t , nh) dt — /OT ((Qy,h,k)t ) nh) dt ‘

T T
+ ) / ((Qy,h,k)t ,nh) dt — / (qye.m) dt ‘ = G11 + G,
0 0

T T
Gy < ’/0 (Q+W7h,k>77h)hdt _/0 (Q+W7h,k>77h) dt ’

T T
+ ’ / (Q;/r\/,h,k’ nh) dt — / (qwa n) dt ’ = G21 + GQQ,
0 0

G < )/OT ((y;:rk)Q Q;\/,mk?nh)hdt - /OT <(yh+k)2 Q;Vﬁvk’nh) dt ‘

T T
| [ (000 @) it = [ (Paunn) e | = G+ G

T T
G4 < ) /(; (Q;\;Jl,ka eh)h dt — /0 (Q;\},th eh) dt )

T T
+ )/0 (Q;V,h,lmeh) dt _/0 (Qwae) dt ) = Gy1 + Gy,

and using the results of Theorems 5.24, 5.25, relation (A.31), generalized Holder’s
inequality (A.14), inequality (A.17), relation (5.252) above and the estimate (5.198),
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we infer

T
G < Ch/ | (Qynk), NVnall dt < Chl| (Qy k), Iz Il 22,y — 0,
0
T
Gor < Ch/ 1Oy nsllIV Il dt < (195 sl 2oyl L2 ) — O,
0

T
2 _
Gar < Ch / | )% Oyl V]|t

T
< O [ 105l | Qe
< Ch max 125 (2) Hi(ﬁ)HQljv,h,k”LQ(LQ)”nh”LQ(Ho) — 0,

T
G < Ch/O 19w i lIVORIT < CRIQyy il 22y Il iy = 0,

and
G12 — 0, G22 — O, ng — O, G42 — 0,

as h,k — 0. In the fifth term in (5.284) the function W ;" is defined as follows

Wit te (e, tn], n=1,...,N —1,
(5.295) W ;:{ (bums,

Wi te (v, ty],
and using the results of Lemmas 5.10 and Theorem 5.24, we realize that
(5.296) Wik —w, in L* (H').

Integrating by parts in space, it is easy to show

T
(5.297) / (YWEE- Q% i mn) dt = Hy + Hy,
0
where
T
H= [ W[V Qud om) dt.
0
T
o= [ OV Qb V) e
0
and
T
(5.298) H, = / Wik [V - Quni) i —m) dt
0

T
[ OV [9 @G- Ve a] )t
0
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T T
[ Vi eV adn i [ Vg
0 0
= Hy + His + Hi3 + Hyy,
T
(5.299) H2:/ (thv th [Vnh—Vn])d
0
T
+/0 Wi Q% he —av] - Vi) dt

T T
[ ot v vayaes [ wag- Vi
0

0
= Hoy + Hoo + Hoz + Hoy.

Using the results of Theorems 5.24, 5.25, generalized Holder’s inequality (A.14),
inequality (A.17), relation (5.252) above and the estimates (5.198), (5.200), we can
show

T
Hyl < / WV - @l — 1l zadt <
T
<cC / W e VD5l — ot

T
< 1@l | Wi Nl = il

< O el aay) IV oy o = iyt = 0,

T
Hal £ [ IV - @b~ T - aulllade
’ T
< [ W11V s~ Vaulllluds
’ T
<0 (s 100l ) [ 197 i 125,10
€[0,77 0

<€ (s 190 ) WL il 25, 1= vl =0

tel0,T

T
o < / IV 1112 sV — e
T
<c / I i 195 el 1 — 7l ol

T
< CI@bnulmquyy | Wik Il = il

< CNQY pilluoe ) IV L2y lmm — nll L2 (o) — 0,
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177

T
| < / W ol @k — vl [V
0
T
<c / W L 1Dk — e 17l mo
0

T
sc(max Int >||H0) | I 125, — vl
0

t€[0,T)

<€ (s 190 ) WL il 25,1~ vl =0

t€[0,T]

as h,k — 0. Furthermore, for all w € L? (H")
[ ¥ ] < vl ol

[ e wma] < lalimm il lvlm,
hence
(5.300) |Hyz| — 0, [Has| — 0,

as h,k — 0.
Therefore, using the previous relations in (5.298), (5.299), we have

T
/ (W/:rk [V va} M dt—>/ w[V - qy],n)dt,
0
T
/ ( hkaVhlc Vi dt—>/ w,qy - Vn)dt,
0

and then, using (5.297) and integrating by parts in space, we get
T T
(5.301) / (YW Q% i) dt — / (Vw - qy,n)dt,
0 0
as h,k — 0. Concerning the fifth term in (5.284), we derive

T 9 T
(5.302) [ = ’/ ((y,jk) Q;V,M,nh)hdt_/ (4240 1) dt) 0,
0 0

as h,k — 0. Indeed, we note

T
]<’/ yhk Qthvnh /0 yhk‘ Qth’nh)dt’
T

(5.303) +)/ (Vi) Qth,nh>d /O(qu, dt)_11+12,

where

T 2
I, < ‘ / ((y/jk) Q;\;ﬁ,kﬂ?h B 7)) dt‘
0
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* ) /OT <(y;k)2 [ Qi — Gw) ,n> dt)

T
+ ) / <(yf;k)2 - 92>Qw 77) dt‘ = Iy + Iyy + Ios.
0

Using the relation (A.31), generalized Holder’s inequality (A.14), estimate (5.198)
and the results of Theorems 5.24, 5.25, we can write

T
2 _
L<Ch / | (0)” Qo Il
T
< O [ 137y 195l ot

T
< CMIYilim(e(e)) [ 1@l

< Ch||371f,k||po(c(@)) 19wl 222y [17n] 2 (r1oy At — O,

T
2 —
I < [ 1070 ey 195 alllm =l

T
< 2oy [ 19wl =l

< 2||37Zk||Loo(c(Q)) 19wl llmn — nllz2z2y) — 0,

T
= [ (0] D 9] )
0T
< / 19 = wllaall¥its + s lgule oyt
T
< C/O Vs = Yl Vi + yll ol ol 22 1l ) di

T
<0 (s 190 oy ) Dl [ 198 = Vi + ol
0

t€[0,T]
<C (t% In () Hc@) ltll o) 1935 = ll 2o |9 + ll i) = 0,

as h, k — 0. Moreover for all q,, € L* (H,y),

T
2
[ (007 ) dt] < 2198y Wl Dl

Therefore,
Iy — 0,

as h,k — 0. Hence, using the previous relations in (5.303) (5.303), we infer that
(5.302) holds. It is easy to realize

T T
(5.304) ‘ /0 (Vi @y - Vbi) dt — /0 (y.qv - V8) dt| — 0,
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as h,k — 0. Indeed
T T
(5.305) ’ / (y};k, Oy hk Vﬁh) dt — / (y,qy - VO) dt’ < Li+ Lo+ Lg,
0 0
where

I

T
Ly = / (y/;m Q\?,h,k - [VO, — V@]) dt
0

T
Ly = /0 (Viwr [Qvpp — av] - V) dt’v

T
0

and using the generalized Holder’s inequality (A.14), inequality (A.17), the strong
convergence statement (5.252) and the results of Theorems 5.24, 5.25, we observe

T
Lo [ I9hlasl @5 alus 198~ Vol
T
<c / 19l | @l 165 — 01l

T

< OVl / 195 allis 161 — O]zt
0

< OVl oo ) 1L el 2 () 100 = Ol 2y dt = 0,

T
Ly < / 1Vl — avllua | VOl dt
T
<c / 1901 Qo — g 161l
0

T
< OVl / 1951 — ullag 0]l
0

< OVl oo o) 1L e — vl 2 () 101 22021y = 0,

T
Ly < / Vi — wllzsllaw sl V6] de
0
T
<c / 1V — vl g 61 e
0

T
< Cllaulimquy | W= vl Bl

< Cllavl oo () 1Vige = yllz2 (o) 101 22 ey = 0,

as h,k — 0. Thus, using the previous relations in (5.305), we have that (5.304)
is satisfied. Next, we prove that g, (T) = 0. With n = £ t/T, where & € L?,
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integrating by parts in time, we get
(Qunk (T) —ay (T),€)
T T
= / ((Qy,h,k —dy),; s 77) dt +/ (e, Qynk — qy) dt — 0,
0 0

as h,k — 0, for all ¢ € L2. Therefore,

(5.306) g, (T) = 0.
Hence, from (5.288)-(5.294), (5.301), (5.302), (5.304) and (5.306), we derive that
ve H' (S)N L™ (D),
y € H' (L§) N L™ (Hy),
av € H' (8)N L™ (D),
1

satisfy

/0 [(—aye;n) — €% (Vaw, V) + p (Vw - v, ) — (v - Vg, 1)

+ (quw:n) — (3%%qw.n) + (y — ya,m)] dt =0,
Qy<T) =0,

/O (Gu:8) + 7 (V. VO) + p (v @y - V)] dt =0,

forallp € C° ((0,7);C (Q) N LY) 0 € C((0,T);C (). So, from the density
result (A.7), we infer that (4.23c)-(4.23e) hold for all n € L? (Hy),0 € L? (H'). Fi-
nally, the estimate (5.232), is a direct consequence of the estimates (5.201), (5.203)
and the results of Theorem 5.25.

v) Results (5.228), (4.24)

From the discrete variational equality (5.135), we can write
+ o —
aly), = Qy

Then, up to a multiplicative constant, we can identify the control U,", with the
adjoint variable Q,,, ;. So, as h,k — 0,

U —u, in L (Hy),
Ui, —u, in L* (H}) .

Furthermore, equation (4.24) hold and u € H' (8) N L*™ (D). O
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5.6. Numerical Solution of the Discrete Optimal
Control Problem

In order to solve the discrete optimality conditions (5.133)-(5.135) of the optimal
control Problem 5.1, we apply the same procedure performed in Section 3.5, i.e.,
we use the steepest descent approach described in Algorithm 3.28. We emphasize
that in this case, where we are dealing with a smooth problem, Algorithm 3.28
represents a true steepest descent method, where given

jh,k (uh,k> = Jh,k <5h,k (Uh,k) 7uh,k) )

we have

Gnp:=alp, — Qvnr=Vu,, I Unp) -

Furthermore, concerning the steps 2 and 3 of Algorithm 3.28 there are several
differences between the case here discussed and the one presented in Section 3.5.
We show them in the following.

Algorithm 3.28: Step 2

Let us assume that ¢ is the steepest descent iteration index. The state equations
in system (5.133) are coupled but there are not any kind of complementarity con-
ditions which complicate matters. So, in order to get Vi i (i); Vi), Whk, ), We
need to solve, at each time level n = 1,..., N a unique linear system resulting from
the discrete Navier-Stokes equations (5.133a)-(5.133c) and Cahn-Hilliard equations
(5.133d)-(5.133f).

Algorithm 3.28: Step 3

Given Vi k. (i), Vhk, i)y Whi,i) We calculate Qy p,x ;). To do that, we take into ac-
count that also the discrete adjoint equations in system (5.134) are coupled but the
complementarity conditions are missing. Then, we need just to solve a unique linear
system built from the backward adjoint equations (5.134a)-(5.134c) and (5.134d)-
(5.134f).

5.7. Numerical Experiments

In the following, in order to show the efficiency of our approach, we show two
numerical experiment.

5.7.1. Circle to Square 1

We propose a numerical experiment which is similar to the one presented in Section
3.6. So, the domain is still the unit square Q2 = (0, 1)* in the two dimensional plane
(x1,x9) and the initial condition yo for the phase-field has the form (3.269) and
it is shown in figure 3.1. The values of the constants parameter in the model are
a=10"%v=0.1,7=0.005,p = 0.1, = 0.02, the timestep k£ = 0.01 and the time
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horizon is T' = 100k. Even the desired state y,; is the same represented in figure
3.2. Concerning the settings of the steepest descent Algorithm 3.28, we consider as
initial guess for the control Uy, ;. oy = 0, the tolerance TOL = 107 and the maxi-
mum number of s.d. descent iterations Ny« = 10%. Furthermore, also in this case
the steepest descent step size o(;) is established according to the Barzilai-Borwein
method [12], with the following settings (see section 3.5, in particular (3.271) for
details): oy = 102, opin = 300, omax = 800.

0,025 T T
A Xy
0,02}~ B
A
0015 A -
LN
ANAAAADAAADAAAAADNAAANANAAANAA
001 . | . | . |
0 100 200 300

Number of s.d. iterations

Figure 5.1.: behaviour of Jp, 1, (yh7k,(i),uh7k,(i)), with ¢ index of s.d. iterations

0,001 ¢ : T T T

F — llgradJ|l

0,0001
1le-05
1e-06

1e-07

1e-08

1le-09E

00
Number of s.d. iterations

Figure 5.2.: behaviour of |Gy, 1. 3)ll£2(1.2), With i index of s.d. iterations

Figures 5.1, 5.2 show the good behaviour of the steepest descent algorithm: in about
330 iterations the system seems approaching to a minimum of the cost functional,
see fig. 5.1. Moreover ||Gy, i |lL2(2) decreases apparently with a logarithmic rate,
with respect to the number of steepest descent iterations, see figure 5.2.

In figures 5.3, it is depicted the evolution in time of the optimal phase-field Yy, x (x,t)
and velocity Wy (z,t) (i.e. at the end of steepest descent algorithm). The be-
haviour is the one desired: the velocity is such that the phase-field distribution
changes in the first time steps and then it keeps its shape close to the desired state.
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As expected there are overshoots, however relatively small, of the phase-field out-
side the interval [—1,1].
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Figure 5.3.: Time evolution of optimal state Yy, x(x,t) and velocity Vj, x(x,t)

In figures 5.4, it is shown the evolution in time of the optimal adjoint state Qy 5, . (z, t)
and the control Uy, (z,t): in the last time steps, they become time by time less
intense when the phase-field distribution is closer to the desired state.
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5.7.2. Circle to Square 2

Even in this case, the domain is the unit square 2 = (0, 1)2 in the two dimen-
sional plane (z1,x2). The initial condition corresponds to the linear interpola-
tion of (3.269) but it is shifted on the right of the domain, around the point
(€e1, Tea) = (0.7,0.5), as shown in figure 3.7. The values of the constant parameters
in the model are o = 107*,v = 0.1,y = 0.005,p = 0.1, = 0.02. The timestep
k = 0.005 and the time horizon is 7" = 400k. In this numerical experiment we
consider a time-dependent desired state. In particular, y, (z1, x2,t) is a state where
the two phases are separated by a vanishing interface which has exactly the shape
of the square considered in the first numerical experiment, such that:

e at t = 0 it is centred around (x.,x.2) = (0.7,0.5);

e for ¢t € [0,300k] it performs a horizontal uniform motion toward the left hand
side of the domain;

e for t € [300k, 400k] it is centered around the point (Z.1, Z.) = (0.3,0.5), see
figure 3.8 in Section 3.6.

Jutedo= [ @),

is, for all ¢ € [0, T, satisfied and then the desired state is reachable. The settings
for the steepest descent Algorithm 3.28 are TOL = 107, Np.e = 1000 and the
initial guess for the control is U}, ;) = 0. Furthermore, even in this case, the s.d.
step size is chosen according to the Barzilai-Borwein method [12], with: oy, = 300,
Omin = 300, Omax = 800.

Figures 5.5 and 5.6 show the efficiency of our method: in about 420 iterations the
cost functional approaches to the minimum and the decreasing of |Gy )| 212
looks at a logarithmic rate. In figures 5.7, it is depicted the evolution in time of

Also in this case, condition

0,38 T T T T T T
A Jy.u)
06— -

04} 7

02 A —

200
Number of s.d. iterations

Figure 5.5.: behaviour of Jj, j, (yh7k,(i),uh7k,(i)), with ¢ index of s.d. iterations
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the optimal phase-field Y, ;. (z, t) and velocity V. (x,t) (i.e. at the end of steepest
descent algorithm).

We get the expected overshoot for the phase-field distribution values, but the overall
behaviour is good: the state of the system follows the movements of the desired
state and at the end of the evolution it assumes the shape of a square.

Finally, in figures 5.8, it is possible to observe the evolution in time of the optimal
adjoint state Qy ,x (z,t) and the control Uy, (z,t): it is possible to see that the
control in the last time steps drives the velocity and then the phase-field so that it
assumes the shape of a square in the exact position.
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Figure 5.7.: Time evolution of state Vi, (x,t) and velocity Vy, i, (x,1)
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Appendix A.

Notations and Basic Results

A.1. Main Notations

We use C' to indicate a generic nonnegative constant, which can change its value in
the different steps of a same calculation or proof. In the case of dependencies we
write C'(-). Given a function or map or operator f = f (t,x,y,z,...), we denote
its partial derivative in the following ways

of B
op = e = Ia:

Given a spatial bounded domain €2, we use n to denote the outer normal boundary
vector. Then, given a function g : 2 — R,

of
onlq’

is used to denote its outer normal boundary derivative.

A.2. Banach Spaces

A.2.1. General Notation

Given a Banach space B, we denote by B* the corresponding dual space. We use
|- |lB, |- |5 and (-, -) g+ p to denote, respectively, the norm, the seminorm and the
dual pairing in B. In the case of a Hilbert space, (-, -)p denotes the scalar product.
Where no confusion arises, we use (-, -) and || - || to denote, respectively, the scalar
product and the norm in L?; in the other case we add the corresponding index. If
X,Y are two Banach spaces, we use

L(X,Y),

to denote the Banach space of the bounded, linear map from X to Y.

A.2.2. Sobolev and Bochner spaces

Let © an open and bounded domain in R%. We use W™ := W™P(Q)) and H™ :=
Wm™2 to denote the standard Sobolev spaces and by W™ (Wk’q) = Wmp (0, T; Wk’q)
we refer to standard Bochner spaces. In the case of vector valued functions and
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spaces containing such functions we write them in bold-face notation.
We frequently use the following spaces of zero mean functions

(A1) Lg = {zELZ(Q):/QZ dx=0}7 - llzz =1 llees
(A.2) Hy = H' ()N L§ (), 1 Mo = I~ e,
and the following Hilbert space

Wo = {y € L* (Ho) : y € L* (Hy)} ,

endowed with the following norm

2
llwe = [I032i) + MoalZaann |5 ¥ € Wo.
Regarding vector valued functions in Stokes and Navier-Stokes equations, given
M ={veClCr Q) :V -v=0},

we consider the following Hilbert spaces (see for example [20], Section 3.3, for a
characterization of these spaces)

(A.3) & := {closure of M in L*}, - lls=1" Il
(Ad4) D:= {Closure of M in Hé} = {V cEH} V. -v= O} e = e,
and

Wy :={ve L*(D):v; € LQ(D*)} ’

with norm
1

2
I¥llw, = [IVIZ0) + IV IBaon] T v € W

A.2.3. Useful Embeddings

We have the following continuous embedding (see for example Theorem 1.32 in [58]
or Theorem I1.5.13 in [20]):

(A5) Wo = € (10,7]: L3).
(A.6) Wo < € ((0.7]: ),

Furthermore we use the following results:
Lemma A.1. The following embeddings are dense

(A7) C((0,T);C(Q)) = L* (H"),
(A.8) C((0,T);D) — L* (D).
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Proof. Tn order to show (A.7), we need to prove that given n € L*(H"), for all
n € N there exists 1, € C2° ((0,7);C (Q)) such that

S|

(A.9) 7 = 1l L2y <

The space C° ((0,T); H') is dense in L? (H') (see for example [58], Lemma 1.9),
therefore given n € L* (H?), for all n € N there exists 6, € C ((0,T); H') such

that

1
A.10 0, — 2y < —.
(A.10) 160 = szt < 5

For all t € [0,T], 0, (t) € H'. Then, for all m € N, we can consider a mollifying
operator S,, and the function

O (1) = S [0 (1)] € C (),
so that .
|0 (1) — 60, (1) || — 0, as m — +oo,

for all t € [0, T]. The mollifier S,, acts just on the spatial variables (see also Section
2.2 in [20]), therefore R B
Omn € C2 ((0,7);C ()

and

telo, T

T
10 = OnllZ2erry = /0 102 (£) — 00 () 7 dt < T max 10 () = 0 (8) [I7 — O,

asm — +oo. Hence, given 6, € C° ((0,T) ; H'), there exists ,, € C=° ((0,T);C° (2))
such that
1

Using together (A.10) and (A.11), we get (A.9).
The second embedding (A.8) is a direct consequence of Lemma 1.9 in [58]. O

Lemma A.2. The following embedding is dense
(A.12) C> ([0, T];C (Q) N Lg) — W,
Proof. Given the Gelfand triple

Hy = Ly~ (L3)" — Hg,

where both embeddings are continuous and dense, by Lemma II1.5.10 in [20], we
have that
C>* ([0, T7]; Hy) = Wo,

is a dense embedding. Thus, working as in the proof of Lemma A.1 above, using a
mollifying operator, it is possible to show (A.12). O



192 Appendix A. Notations and Basic Results

A.2.4. Useful Inequalities

Very often, we use the following:

e Young’s inequality

2
(A.13) ab < oa* + i— =o0a’® + C(o)b?,
o
Vab>0, 0>0;

e generalized Holder’s inequality (see for example Lemma 1.13 in [58])
(A14) lur - unllze < fluaflze - - < Jlugll oo,
Vu; € LP*) with 1/py +...1/pr = 1/p,
pi,p € [L, +00];

Poincaré-Wirtinger inequality (see for example Proposition I11.2.39 in [20])

1
(A15) il < C I Vnller + @\ (D[, YneW", pel, +o0);

e Poincaré’s inequality
(A.16) Izl < C V=], V=€ Hy;

e special inequalities
(A.17) ullr < C |ull g, Vuec H', pcl2, +o0),
(A18) s <C Jullt Julf,  Vue

A.2.5. Green’s Operator

Given the space
(A.19) F={feH": (f,1)gm =0},

we can define the Green’s operator G : F — H' in the following way: given f € F
then Gf € H! is the unique solution of

(A.20) (VGF,Vn) = (fymae ms Ve H,
(Gf1,1)=0.
The existence and uniqueness of Gf is given by the Lax-Milgram theorem and the

Poincaré’s-Wirtinger inequality (A.15). It is possible to show that if f € F, we can
set

(A.21) [f [ = VG S
Furthermore, if f € F N L% by (A.15) and (A.20), we have
(A22) Hf”Hl* = (gf7 f)5 )

(A.23) [ [z < CI -
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A.3. Discrete Settings

Given an open, bounded, Lipschitz domain Q C R? and a time interval [0, T], with
T > 0, we assume in the document the following discrete settings. Let:

e {{o,t1,...,tn} be a partition of [0, 7] in N sub-intervals of length k =T /N,

e 75, be a quasi-uniform triangulation of €) in disjoint rectangular triangles 7,

such that B
Q= UTETh 7_—7
with mesh size
(A.24) h :=max diam(7), h € (0,1).

TETH

o z,,j€J,=A{L,..., N} be, respectively, the vertices of the triangulation 7y,
and set of their indices.

e P.(7) be the space of polynomials of degree less than or equal to r on 7 and
P,(7) the corresponding 2-dimensional space.

A.3.1. Discrete Spaces

We associate to the triangulation 7, the following finite dimensional spaces:

S, :=1{SeC(Q):S|, € Psr)},

Vh = Sh ﬂH(l)a
Y, = {Y €C):Y|, € 731(7')}7
Ph = Yh N Lg

Furthermore we consider the space of the divergence-free functions
(A.25) D, ={VeV,:(V-V,P)=0,V P e Pb,}.

We emphasize (see for example page 310 in [73]) that the P, — P, mixed finite
element space (V},, P,) for the Stokes equation is stable, in the sense that it satisfies
the following inf-sup condition

(V-V,P)
A .26 sup ———~
(4.26) S

where the constant C' does not depend on h.

> C||P|, VP € P

A.3.2. Interpolation Operator
The interpolation operator I" : C(Q)) — Y}, is such that
(A.27) [1"00)] () = x(=;),

for all z; vertex of the triangulation 7. It holds (see for example Section 3.4.1 in
[73]),

(A.28) I = Il + ||V (x = ") || < € B2Ixlae.
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A.3.3. Mass Lumping and h-Norm

The mass-lumped scalar product and associated h-norm are defined as follows

(A.20) <%m=4ﬁumm,mm=w%mngmc@.

There exist two constant C, Cy, which depend just on the domain €2, such that the
h-norm and the L?-norm satisfy the following equivalence relation

(A.30) CillZlln < 1Z]| < Col|Z||n, ¥ Z €Y.
Moreover,
(A.31) [(Y,2), - (V.2)| <CRIY| |VZ], VY,Z€Y,

A.3.4. Discrete Green’s Operators

As well as in [62], we introduce the following discrete Green’s operators

gh T F = Ph;

Qh : Ph — Ph;
such that for all Z €Y}, we have
(A.32) (VG",VZ) = (0, Z) g i,
(A.33) (V6"y.vz) =(v.2),

The operator G", G" satisfy the following inequalities (see for example [18]):

(A.34) IVG" nll < Clnll, ¥neFnL?
(A.35) IVG"Z|| < C|| Z]a, VZeP,

A.3.5. Discrete Laplacian and Stokes Operators

We define the followings discrete Laplacian operators

Ah : Yh — Yh;
Ah : Yh — Yh;
Ah 'V, — V.
They are such that
(A.36) (—ALY, Z) = (VY,VZ) = (-Ahy, Z)h, VZ €Y,

and

(A.37) (—Ahv, z) — (VV,VZ), YZeV,.
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Moreover, there exist a constant C' = C'(2), so that
(A.38) IAWY I < 1ARY 12 < CIALY I
The following inequality (see [41], Theorem 6.4) holds
(A.39) IVZ||e < C(p) | ArZ]],

forall Z € P, and 1 < p < 2d/(d — 2), where d is the space dimension. Finally,
use the discrete Stokes operator A" defined as follows

(A.40) A= —T"A,,

where T” : L? — D}, denotes the L? projection.

A.3.6. Projection Operators
In the document we use the following four projection operator.
e The L?-projection operator Q" : L? =Y,
(A.41) (@', 2), =(n.Z2), VZeY,

which is such that (see for example [62])

(A.42) H (I-Q" nH + th (I-Q" ”H < Ch|vn|, vneH

e The L*-projection operator Q! : L? — Y},
(A.43) (Qin.2) =(n,Z), V ZEYs.
It is possible to prove (see for example [41], condition (S6), p. 3041),
(A.44) lim [l — Qgnll =0, Vne L

e The H'-projection operator Q! : H! — Y},

(A.45) @, 2) ;s =0, 2) i, VZEYh,

which is such that (see for example Section 3.5 in [73])

(A.46) In—Qnll < C R g, ¥pe HTL 0<1<1,
(A.47) In = Qinllar < C b lnlue, Ve H”.

e The Stokes projection Q" : D — Dy,
(A.48) (VQ!v,VZ) = (Vv,VZ), VZeD,
which is such that (see [41]),
(A.49) Qv = VIl + BV (@v = v) | < C 1v
forallve HND,l=1,2.
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A.3.7. Useful Discrete Inequalities

We often use the discrete Poincaré inequality

(A-50) 12]ln < CUIVZI[+ (2, Dn]), VZ € Vi,

and the following discrete embedding and interpolation inequalities (see [46]):
(A51) 1920 < C (18021 + 9 2])

(A.52) IVZl|zs < C V2|2 (18nZ] + [V Z])?

(A.53) IVZ|ls < C |AZ]],

(A-54) IVZlles < C [VZ]]7]1 5027

Furthermore, given a triangulation of a domain {2 with mesh size h, it hold (see for
example [62]) the following inverse inequality

(A5) Vil < SV
for all V € Sy, where C' is a constant which is independent on h.
Lemma A.3. For allY €Y}, :={Y € C(Q) : Y|, € Pi(7)}, it holds
(A.56) Yl <570,
Proof. Let Y € Y},,. On each mesh triangle 7 € 7, we have

Y| =Y, o1r+Yar 0o+ Yar @31,

where ¢; - € Y}, 1 = 1,2, 3 are the basis functions associated with the three vertices
of the mesh triangle 7 € 7. Calculations produce

'
s vl = S I v v vz vz v,
TET
+Y1%TY2,T + }/'1377'}/?377— _'_ 1/71,’7'}/72377' _'_ YQ%T%,’T + 1/71,’7' }/3377' + }6,7 }/3377'

1Y, Yo, Y, + Vi, Y2 Yo, + Vi, Yo, Y2,

s (0, =3 Bl e o)
€T

Using the Young’s inequality
1 1
ab < §a2 + 562, for all a,b € R,

it is easy to realize that

(A.59) Vil + Yo, + Y3, + Y2 Y2 + Y2 Y + Y V5,
+}/1?:7—3/2,T =+ Y13,T}/T37’T + 1/'1,7'}/2%7— + }/2?:7}/:3,7 + Yl,T }/:3%7— =+ Y2,T }/:3?:7—
+}/1277— Y2,T }/:3,7' + Yl,T }/2277— }/3,T + 1/'1,7' Y2,T }/:3277—]
S 5 [YT%T + }/2%7 + }/3%7] )

for all 7 € T;,. Hence, from (A.57), (A.58) and (A.59) we get that the result (A.56)
holds. O
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Proofs

B.1. Proofs of Chapter 2

Proof of Lemma 2.3

Proof. First, we prove that the Stokes state equations (2.24) have a unique solution
v € H' (8) N L> (D), which satisfies

(B.1) 1Vell72(s) + IV 2 () < C |lIvolln + ||u||%2(L2)] -

In order to show that, we use a Galerkin’s approximation (see for example page 44
in [80], page 45 in [58], [66]). The space D is separable, then we can consider an
orthogonal dense subset {€ ; }jeN C D, normalized such that

(éiuéj) = 5@7’-
For all ¢ € D, we have

(B2) | Ekj (.6)€ - v|_—o

as k — +o0o. A suitable dense subset {ﬁj }jeN of D can be derived considering the

eigenfunctions of the Stokes operator, as in Paragraph 5.2 and Theorem IV.5.5 in
[20]. Let Wy, denote the finite dimensional subspace of D spanned by {éj }j=1

We define a projection operator P* : D — W,

..... k'

k
(B.3) Pk = Z (¥.€,) &5,

which is such that

(P*,€) = (¢,§), (VP™"),VE) = (Vy,VE), VyeDEeW,

In this way, for any fixed & € N, the Galerkin’s approximation of the time dependent
Stokes equations (2.24a)-(2.24b), consists in finding v*, such that

(B.4) (vi, ") + v (VVF, V') — (u,9") =0, a.e. on (0,7
(B.5) vF(0) = PFvy, in €,
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for all 1p* € W Setting
(B.6) vE=> "0 ()€

it is possible to prove that the linear system associated to (B.4), (B.5) has a unique
solution

b* (1) = (b1 (1), b ()",

such that b;, € H' (0,T) for all i = 1,... k.
So, we can claim that for any fixed & € N, v¥ € H! (W}) solves (B.4), (B.5), for
all 4% € C ([0, T]; W},). Substituting 1" = vF in (B.4), we get

(B.7) eI+ 2 HVV’““HQ—(u,Vf)-

2dt

Hence, setting s = ¢ in (B.7) above and integrating in time from 0 to ¢, with
€ (0,77, we can write

t t
B8) [ IviPds+ S IV @I = [ (wvh)ds+ FIvE O
0 0

From (B.8), applying Young’s inequality (A.13) with with ¢ = 1/2 in the integral
at the r.h.s, we derive

1/ v
Bo) 3 [ W+ S0 = 5 [ i+ S ),
0
which implies, using Poincaré’s inequality (A.16),
(B.10) IVE I s + V¥ ey < C V5 (0) 12 + llEeqes) |

where C' is a constant which depends just on the constant parameter v. By the
definition (B.3) of the projection operator P*, we realize that

IV* (0) I = [[P*voll < [Ivall,

and therefore, from (B.10) above, we infer
(B.11) IVillZ2s) + IV 1) < € [||V0||§>+ halZ2)

Hence, given the sequence {v*}cy, it is possible to extract a subsequence, labelled
with index m, such that

(B.12) vt — v, in H(S),

(B.13) vt Sy, in L* (D),

(B.14) v = v, in L?(8S),
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where (B.14) follows from (B.12),(B.13) using a compactness theorem, see [17] and
[66]. As a consequence of (B.4), (B.5), we have that

(B.15) / (V™) 4 v (T3, Vap™) — (w,9p™)] dt = 0,
(B.16) v™(0) = P™vy, in Q,

for all ™ € C*((0,7);W,,). For any @ € C°((0,T);D), we set in (B.15)
™ = P™p, which is such that

(B.17) [9™ —|lL2p) — 0,

as m — oo. Then, from (B.12)-(B.14) and (B.17), we get

(B.18) ‘/ (v, 4 dt—/OT (v ) dt| — 0,
(B.19) ‘/O (Vv™, V™) dt—/T (Vv, V) dt]| — 0,
(B.20) ‘/ dt—/OT (%) dt| — o0,

as m — +oo. Furthermore, considering ¥ = £ (1 —t¢/T), with & € D, using
integration by parts in time, we can write

T
W0 = v (0.9 = [ [P i)+ (v )] de 0,
as m — o0, for all £ € D. Therefore
v™(0) = v (0), in D.

Moreover, from (B.2) and the definition (B.3) of the projection operator P, we
note

P"vy =v™(0) — vy, in D.
Hence, we conclude that
(B.21) v (0) = vp.

So, from (B.18)-(B.21), we can say that v € H' (S) N L™ (D) satisfy

/0 (Vi ) + v (Vv, Vo) — (w, )] dt = 0,
v(0) = vy, in €,

for all ¥» € C*((0,7);D). So, from the embedding (A.8), we infer that v €
H' (8)NL>® (D) solves the state equations (2.24), for all ¢ € L? (D). Furthermore,
using the linearity of the equations, it is easy to realize that this solution is unique.
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Next, we demonstrate that given v € H!(8) N L* (D), the Cahn-Hilliard state
equations (2.25), have a unique solution (y,w) € WoNL> (Ho)NL* (H?*)x L? (H').
As in the previous part of the proof, following the authors of [17], we apply a
Galerkin’s method. Let {¢;},_ be an orthogonal dense subset of H', normalized
in the following way

(¢, 05) = dij,

and consisting in the eigenfunctions for

(B.22) ~Noto=po O

For all ¢ € H', we have

sz:<<ﬁa¢j)¢j—<pHHl—>D, as  k — +o0.
=1

Let Vj, denote the finite dimensional subspace of H' spanned by {05},
define the following projection P* : H' — Vj,

k
(B.23) Z v, $5) b5,

which is such that

(Pfo,¢) = (¢,0), (VP",V() = (Ve,V(), Vo H' (V.

For any fixed k € N, the Galerkin’s approximations of (2.25) consists in finding
y*. w*, such that

(B.24) (yf, nk) + (Vwk, V'r]k) — (yk, V- V'r]k) =0 a.e.on (0,7),
(B.25) y"(0) = Pry, in Q
(B.26) (wk +yF — %65 (v*) ,«9’“) 2 (VyF, ver) =0, a.e.on (0,7),

for all n*, 6% € V,. In order to solve to solve (B.24)-(B.26), we set
k
Z C] ¢j7 wh = Z lj (t)¢j
j=1 J=1

and we look for solutions c*(t) = (c1(t), ..., cx(t)" 15 (t) = (LL(1), ..., 1k(t))" of the
following linear system

90+ 1A (D) = DUt oMt =

0,
(B.28) Ck@) (o, 1) 5 (Yo, @k))T
(B.29)  1F(t) — 24 (1) + cH(t) — %r (h(1)) =0,

(B.27)
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where the matrices A, D(t) and the vector r(t) read

k
Aij = (V9;, Vi), Dij(t) = (¢, v(t) - Vi), 1i(c(t)) = (56 (Z Cj(t)¢j> 7¢i> )

j=1
fori,j=1,... k. From (B.29), we get
1
F(t) = [PA—T | c*(t) + 5T (c*(t)),
which, substituted in (B.27), produce
dc* 2 42 k v k
E(t)—l— [ve? A—vA-D(t) ] c (t)+gAr(c (t)) =0.

By definitions, A € L* (0,T;R**) and using v € L* (D), we also have D €
L> (0, T;R¥**). Furthermore, denoting with || - ||» the euclidean norm and using
that f5 is Lipschitz function, we note that

k
e (ea) =) I3 < D Noill® 6507 llez — eall3 = Li [lea — eilf3.

i,j=1

which implies that r : R¥ — R* is a Lipschitz continuous function. So, by standard
theory for ODEs with measurable coefficients, for any fixed k, there is a unique
solution (c*(t),1%(t)) of (B.27)-(B.29), which is such that ¢;(t),1;(t) € H* (0, T) for

all i = 1,..., k. Therefore, we can say that y*, w* are solutions of
(B.30) (yf,nk) + (Vwk, Vnk) - (yk,v : Vnk) =0, a.e. on (0,7,
(B.31) y*(0) = P*yp,
(B.32)
1
(wk + yk,Hk) —¢? (Vyk,VQk) ~3 (65 (yk) ,9’“) =0, a.e. on (0,7,

for all n*, 6% € C ([0, T]; Vi). We note that setting n* =1 in (B.30), we have
W) =0 = "1),1)="0).1)=(y.1) =0, Ve (0T
Considering the Ginzburg-Landau energy functional of the Cahn-Hilliard system

82
B =5 [ 1VoP dot [ 0:) de

from (B.32), we get

dEs (y* 1
(B.33) % = (V' V) = (0" 00) + 5 (Bs () o) = (' 0)
Using together (B.30) with n* = w"* and (B.33), we can write

dEj (yk)

- +IVet|? = (. v - Vut).
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which implies, integrating in time,

t t
(B34) B (v (s))—i—fy/ HVwksz:s:/ (', v - V) ds + Bs (Pryo)
0 0

Using the convexity of the function fs stated in (2.16) and fs5 (yo) = 0, we can set
in (B.34),

2 1
Es (Pyo) = SIVP w0l + 5 (1= (Pryo)* 1) + (s (Pyo) 1)
2 1 1
(B-35) < %vak%HZ + 9 <1 - (Pkyo)2 ) 1) + 5 (55 (Pkyo) 7Pkyo - yo) .

So, from (B.35), taking into account that P¥y, — yo in H', we derive

g2 1
(B.36) Es (Pkyo) < EHVyon + 3 (1—yg. 1) =E(yo)

Furthermore, applying the generalized Holder’s inequality (A.14) and Poincaré’s
inequality (A.15), we infer

B0 | [ ) ds| < [ e vl 9 ds

< C [Vllve) VY ll20i22) Vw222,
for all ¢ € (0,7). From the property (2.14), it holds
(B.38) (@5 (y").1) > —Co Q] 6.

Thus, using together (B.34) (B.36), (B.37), (B.38) and applying Young’s inequality
(A.13), we realize that

g t
FIVE O 1? +7/0 IVwh([? ds < C1 (o) [IVIFeipy IVYF1320002)
+ o-vaH%?(O,t;L?) + Collyol| 71 + Cs.

which implies, with o small enough and using (B.1),

t t
V5 ()12 [ 19087 ds < Cr [+ Fullagn] [ 199 @t +Ca 1+ anlf].

where the constants C, Cs depends on initial conditions and on fixed parameters.
So, applying Gronwall’s Lemma (see for example Lemma 1.4.1 [73]), we have

(B.39) IVy" )1 < C (w), vie(0,7),
(B.40) IVw*|[Z22) < C (w).

From (B.39), using Poincare’s-Wirtinger inequality (A.15), we get

(B.41) ly* () I, < C (u), vie(0,7).
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Setting = P*GyF in (B.30) and using the definitions and the properties of the
Green’s G and projection operator P*, we can write

IVGyel® = (vi. Gur)
= — (Vu", V [P*Gyf]) + (", v -V [P"Gy;])
= —y (Vu*, V [Gyf]) + (v*,v - V [P*Gyf])
(B.42) — A + Ay,

Taking into account that, for all &,
2
|vPee|| < Ivel?, Vo el

using Young’s inequality (A.13) and Holder’s inequality (A.14), we derive

A1 <70 | VGyE P+ C (o) [Vt
Ay < alIVGy P+ C () v ly* -

Inserting the estimates of Ay, Ay in (B.42), with ¢ small enough and integrating in
time, we infer

(B.43) IVGy 1722y < O [ IVWF[[Z2(2) + IVIEoe ) 15" 2 | -
Therefore, from (A.21), (B.40), (B.41) and (B.43), we realize that
(B.44) Iyt | 2y < C (w).
With 0¥ = 1 in (B.32) and using |35 (1) | < Bs (r) r, we observe
1
(B.45) (@) <5 (5 ()0

Then, substituting 0¥ = ¢* in (B.32), using the definition (A.20) of the Green’s
operator G and inequality (A.23), from (B.45) we have

(B46) | (1,1) | < IH P2V IR+ (0¥, ) < IH 2=V P+t ).

So, using (B.39), (B.40), (B.46) and the Poincare’s-Wirtinger inequality (A.15), it
holds

(B.47) w1321y < C (u).
With 0% = —yAy* in (B.32), we derive
v
AN = AVYIP + 5 (VB () V) = 7 (', =A%) =5 (Vut, Vi)

and with n* = y* (B.30), we can write

1d
v (V' Vy*) = = (v, u) + (y", v - VyF) = _§E”yk”2 + (Y5 v vyt
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Using together last two relations, we observe

v 1d
(B.48) | AYMP + 5 (V55 (4°) . V') + 5y I = VIV + (%, v - Vo)

Noting that
(V85 (v*) . V") = (85 (V") . Vy" - Vy*) > 0,
integrating in time in (0,¢), in (B.48) and using (B.1), (B.41), we infer

(B.49) 1AY ey < C (). vie (0,7].
Since the domain € is convex polygonal (see [17] and [40]), (B.49) implies
(B.50) Iy 2y < C ().

From (B.41), (B.44), (B.47) and (B.50), given the sequences {yk}keN : {wk}keN, it
is possible to extract a subsequence (labelled by an index m), such that

(B.51) y" =y, in W,

(B.52) Y™ Sy, in L™ (Hy),
(B.53) y" =y, in L* (H?),
(B.54) T in L* (L5)
(B.55) w™ — w, in L* (H'),

where (y,w) together the velocity field v satisfy the estimate (2.26). Note that
(B.54) is a consequence of a compactness theorem (see [17] and [66]). Using

a m
8y—n — 0, a.e.on (0,7), Vm

and (B.53), we have the result (2.27). As a consequence of the Galerkin’s approxi-
mation (B.30),(B.32), we can claim that

(B.56) /0 [y ™) + v (Vw™, V™) — (y™,v - Vn™)] dt =0,

(B (y™),0™) | dt = 0.

B0 [ @ - @y e+ ) -

for all n™, 0™ € C> ((0,T); V;)- So, given n,0 € C= ((0,T); H'), we set in (B.56),
(B.57) n™ = P™n, 0™ = P™0, which are such that

1P =2y — 0, [|[P™6 = 0] 21y — O,

as m — +oo. In this way, performing the limit on m in (B.56), (B.57), we get
T
(B.58) | e+ (V.90 (v v0)) @t =0
0

(B.50) / [<w, )~ 2 (V9.V6) + (0.0) ~ (35 ). 0)| at=0.
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for all n,0 € C° ((0,T); H'). Indeed, the convergence of the linear terms in (B.56),
(B.57) to the corresponding terms in (B.58), (B.59) is straightforward. Concerning
the nonlinear terms, we derive

T T
)/ (y™",v-Vn") dt—/ (y,v-Vn) dt)
0 0
T T
S’/ W™ =y, v V") dt’ +’/ (y,v-[Vn™ = Vn]) dt| = By + By,
0 0
where
1 1
By < C g™ =yl IV iy 5™ = llzcsy IVl2s) 190lz20e2) = O,
1 1
By < C |yl zooimny VI ooy 1Wllz2cezy [1Vlzaes) V0™ = V| 22y — 0,

as m — +o00. Moreover, using 0 < 5 < 1 and (B.54),

[ o a= [ 0.0 ai

<[ =)o 4| [ 6w -0 a

(B.60) < Nly™ = yllzzwey 19llzaezy + 185 (1) 2222y 1107 = Oll 2z — 0,

as m — +oo. Therefore equations (B.58), (B.59) are satisfied by (y,w). Noting
that C2° ((0,T); H') — L* (H") is a dense embedding (see for example Lemma 1.9
in [58]), we can claim also that (y,w) satisfies (2.25a), (2.25¢). We prove the initial
condition y(0) = yo. With n=¢ (1 —1t/T),( € H', integrating by parts in time,
we note that

(v (0) — 4 (0).0) = / = )+ s ) e — (™) + (™)) dE 0,

as m — +oo. hence, Py, = y™ (0) — y(0) in H'. So, using P™yy — yo in H*,
we infer yo = y(0). In order to prove the estimate (2.28), we set 6 = ;5 (y) € H' in
(2.25¢). Using (Vy, Vs (v)) = (Vy - Vy, 55 (y)) > 0 and Young’s inequality (A.13)
with o = §/2, we derive

1 T

5085 0 o < [ w5 )
5
<3

1
leolagze) + 19llEaen)| + 551185 ) 200
which implies, from (B.41), (B.47)

2

< .
L2(L2) ¢ (u)

Hgﬁé Y

It remains to show the uniqueness of the solution (y,w) of (2.25). We assume that
given v, there are two solutions (yi,wy), (y2, ws) of (2.25). Hence, d, = y» —y; and
d, = wy — wy satisfy

(B.61) . / (Vd,, Vi) di = / (dyes )i — (dyov - V)],
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for allp € L? (H'). Furthermore, setting in (2.25¢), § = d, e " when the solution is
(y1,wy) and 6§ = —d,e " when the solution is (ya, ws) and summing the equations
obtained, we have

T
362 [ e [ b dyd) 4 LIV (55 (0m) = B () )| e =

where 1 is a positive real constant. We note that (s (-) is monotone increasing, so
from (B.62) we get

T T
B63) [ e () + 2|V < [ et
0 0

Inserting in (B.61) n = e * Gd, and using the definition (A.20) of the Green’s
operator G, we can write

T T
- ’Y/ e (dwvdy) dt = / e ! [ <dytvgdy>H1*,H1 - (dy,v : ngy) ] dt,
0 0

that substituted in (B.63) produces
T
(B.64) / et [ldye, Gdy) e g + 72|V, 2] dt
0
T
< [ e [y 1P + (v VG, ] e
0

In (B.64), using Young’s, Holder’s, Poincare’s and (A.17) inequalities, the definition
of G and v € L> (D), we derive

T T 1 d
/ (. Gd,) oo gt dt = / 14 Sga, )2 d,
0 0 th

T T
3 [ de=v [ (vd, vad,) d
0 7(3 §
< 2, T 2
< [ [aelva P+ Lived ] a,

T

T
| v de<c [ d vl 1964, d
0 0

T
</
0

where the constant C' depends on data problem and V|| zeo(p)- Then, from the

C
UHde”2 T @vadyHQ ] dt,

previous result, we can assume C' = C' (u). So, from (B.64), with ¢ such that

(B.65) o(1+7) <ve?
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we infer

T
d
/6"” {$||ngy||2+2[762—0(1+7)} IVey[*| dt
0

<7+C
- 20

T
/ e VG, |2 dt.
0

Hence, from (B.64), assuming pu = % and integrating by parts in the first term

2
on the r.h.s., we realize
T
eIV Gd, (T)|* + 2/ e [y — o (L+ )] IVd,[* dt < [[VGd, (0)]* =0,
0

which implies ||[Vd,| 222y = 0. Then, applying Poincaré’s-Wirtinger inequality
(A.15), we conclude d, = 0, that is y; = yo. With this result, looking at the state
equation (2.25c), we can say that d,, satisfies

T
/ (dyp, 1) dt =0,
0

and setting n = d,, in (B.61), we have ||Vd,||r2(z2) = 0. Therefore, from the
Poincaré’s-Wirtinger inequality (A.15), we get the uniqueness of w. O

Proof of Lemma 2.7

Proof. In order to show that esx (ss (1), u) has a bounded inverse, we need to prove
that for all z € Z, there exists a unique dy € X such that

(B.66) esx (ss(u),u)dx =z
and furthermore
(B.67) |dx|[x < C||z]|z.

Equation (B.66) is equivalent to find (dy, d,, d,,) € Wox Wy x L?* (H') which satisfy

T T
(B.68) | oo v (van T de = [ )op i
0 0
(B.69) dy(0) =2z, €8
T
/ [{dyes ) rrg 110 + 7 (Vo V)
’ T
(B?O) - (dyV +vy dv, VTI)] dt = / <2’2, ’I7>H37H0dt,
0
(B.71) dy(0) = 25 € L§,

/T [(dw + dy,0) — % (Vd,, Vb)

(B.72) %(@g () dy,ﬁ)] dt = /0 (23,0) e g1 dt.
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for all ¢ € L*(D),n € L?(Hy),0 € L? (H'). Note that we assume that (v,y,w)
n (B.68)-(B.72) are solutions of the regularized state equations (2.24), (2.25), for
a given u € L? (L?).

By standard arguments (see for example Theorem 1.37 in [58]), it is easy to realize
that (B.68)-(B.69) has a unique solution d, € Wy, which is such that

(B.73) ldv Iy, < C [lzall3 + 1213 p-)| -
In order to show the existence of the solutions d,, d,, of (B.70)-(B.72), first we note

that y dy, € L? (L?) and therefore, in (B.70), we can absorb the last term at Lh.s.
in the linear functional at r.h.s. Second, we can replace (B.70) with the following

T T

(B.74) / (s ) 1o 11+ 7 (Vi Vi) — (dyy v - V)] dt = / e
0 0

where Z, € L? (H') is such that

T T 1
/ (Zo, M) prie 1 2/ (z0,m— Tl (17, 1) ) a1 dt,
0 0 12|

and HngLQ(Hg) = ||Z]|z2(mr+)- In the following, we show the existence and the

uniqueness of the solution of (B.70)-(B.72) applying the same Galerkin’s approxi-
mation used in the proof of Theorem 2.3. In this way, we derive that there exist
fivg; € H'(0,T),5=1,...,k, such that

k k
= Z fitt)e;, di, = Zgj(t)%

are, for all £ € N, solution of

(B.75) (d’;t, n) +v (Vdﬁ},Vn) ( V- V) = (Za,0) e,
(B.76) di(0) = PPz,
(B.77) (db,0) —* (Vd:, Vo) + (di,0) — ( b 0) = (23,0) g,

for all n, 0 € C ([0, T]; V4). From (B.75), with § = —d,, in (B.77) and using 0 < 35 <
1, we infer

(B78) - (Vdfm vn) (d]gjh ) (d];, v Vn) - <527 77>H1*,H17

(B.79) — (i, dy) + ||V di|1> < [|dE])” = (25, db) o .

Substituting = P*Gd; in (B.78), using the definitions (A.20), (B.23) of the
Green’s operator G and projection operator P*, we have

- (didy) =

thuvgd’ﬂy? (dy, v -V [P*GdE]) — (%2, P*Gd}) e g,

which produces, substituted in (B.79) and integrating in time,

‘14
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t
< / VIdyl[* = v (23, db) e g + (df, v -V [PFGAE]) + (22, P*GAS) e ] dt
0
=F+ F+ F5+ F)

Using Young’s inequality (A.13), Poincare’s inequality (A.15), Holder’s inequality
(A.14) and the definition of the operator G, we get

F = 7/: (VGd;, vdy) dt < y/ot [o]|Vdi|]? + C (o) |[VGdy|*] dt,
Py <100 [ VI dt 500l

Fo < Cillvllmcoy [ [V +C () [VGAS17)

F <G /Ot IVGAEIP dt -+ Cyllzll

Inserting the estimates of Fi,..., F; above in (B.80), assuming o small enough,
applying Gronwall’s lemma (see for example Lemma 1.4.1 in [73]) and the following

IVGol < Cligll, V¢ € L,

we derive,

(B8L)  IVGdy (8) I + 15 0. < C |12 ) + sl Focaney + 5]
for all t € (0,T]. With n = P*Gd}, in (B.78), we can write
(B.82)  [IVGdyII* + 7 (dw, Gdly) — (db, v -V [P*GdY,]) = (2, P*GdL,) o i,
and with § = P*Gd}, in (B.77), we derive

v (duy Gdye) = v (Vdy, VGdy) — v (dy, Gy,)
(B.83) + 5 (5 (v) b, P*GdS,) + (25, P*GdSy) e .

Substituting (B.83) in (B.82) produces
T
g
||nglgjt||%2(L2) = /0 [_752 (Vd];7 nglgjt) +7 (dlgja gdlgjt) - g (6:5 (?/) dl;a Pkgd];t)] dt

T
+ / [—7(z3, P*GdL) e + (dy, v - V [P*GdL,]) + (%2, PEGdL) e | dt
0
(B.84) =G+ Gy + G35+ Gy + Gs + G,
Using 0 < g5 < 1, we infer
G <92 [0 VG| 32ia) + C (0) IV S| s)|

G2 <1C1 [0lIVGAS 321y + C (0) [Vl Za(sa) |
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Gs < %Cl [U||ng];t||i2(L2) +C (o) ||Vd]y€||%2(L2)} ’

Gy <~ [OHngZtH%%m) +C (o) ||Z3||%2(H1*)] )

Gs < C1”‘"HL°°(7D) [U"ngl;t"%%p) +C (o) HVdg”%%m)] )
Go < Ci [0V ey +C (0) Izl |-

Inserting the estimates of Gy,...,Gg in (B.84), with o small enough, we realize
that uniformly in %k, but not in 9,

(B85) VGl oz < O ) IV Bacun) + 20l ey + sl |-

Therefore, using (B.81) and (B.85), we can say that

(B6)  ldfullane) < CG) [l2ala(pye) + el Faaney + 1]
Substituting n = d,, in (B.75) and using (B.81), (B.86), we have
(B87) Vb liae) < CO) [l + Il + 1zl

Furthermore, with § = 1 in (B.77), we get

(B.55) (U 1) = 5 (55 () 8) + {2, Ve,

which implies that (d%,1) is bounded uniformly in k. So, by (B.87), (B.88) and
Poincaré-Wirtinger’s inequality (A.15), we can write

(B89) bz < C ) [zl + Il + 15117

Given the sequences {dy}, . {dy},_y, using (B.81), (B.86) and (B.89), there exist

y w
a subsequence (labelled by an index m), such that

At — dy, in L* (H™),
Ay — d,, in L? (Hy),
d™ — d,, in L* (H').

where (d,, d,,) satisfies
T
/ [<dyt’ n)Hl*,Hl +7 (de, Vﬁ) - (dy>V ’ VTI) - <22777>H1*7H1] dt =0,
0

T 1
A %@+%ﬁyf%mhvm—gwgw%ﬁywaﬁm%m}ﬁ:@
for all n,0 € L?(H'). Moreover, as in the proof of Theorem 2.3, using integra-

tion by parts in time, we derive that the initial condition d, (0) = 25 is satisfied.
Summarizing, we can say that (B.70)-(B.72) have solution (d,, d,,), such that

Iy, + idullZagarsy < C (6) 1220120 ) + Izl Eacaney + sl
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It remains to show uniqueness. Let us assume that, given zp € L? (H), 24 €
L*(H}), z5 € L} and dy € Wy, we have two solutions (dy,dy1), (dy2, dw2) €
Wo x L? (H') of (B.70)-(B.72). Then, h, = dys — dy; and hy, = dys — dy satisfy

BY) /O (Vhe, Vi) dt = /0 [(yes st 10 — (v - V)] .
(B.91) hy(0) =0,

T 1
B9 [ 0)+ 2 (0 T0) - () + 5 (5 ) 1ye0)| a0
0
With § = h, e " in (B.92) and using 5 > 0, we infer
T T
(B.93) / e [ (hw, hy) + €% Vhy|?] dt < / e || hy|* dt.
0 0

So, from (B.90), (B.93), applying the same procedure performed in the proof of
Theorem 2.3, we have uniqueness of (d,, d,). O

Proof of Lemma 2.10

Proof. In order to demonstrate the Lemma, we formulate a Galerkin’s approxi-
mation of the adjoint equations (2.45c), (2.45d). Given the spatial domain 2, let
{¢;};cn be the orthogonal dense subset of H'! defined in (B.22). We have that

{9} =6\ o).
where ¢, = 1/|€|, is an orthogonal dense subset of Hy, normalized such that
((52‘7 é]) = 0ij.
Even in this case, we can define the following projection P* : Hy — Vj,
~ k ~ ~
(B.94) Pro =" (% @-) ;5
j=1

which is such that

Hﬁ’%p—(p’ —0, as k— +oo.
Hy

Let V. denote the finite dimensional subspace of Hy spanned by {gz;]} . Con-
=1,k

sidering the associated Galerkin’s approximations of the adjoint equations (2.45c¢),
(2.45d), it is possible to show that exist

k k
= aj(t)d;. d=> bit)e;
j=1

J=1



212 Appendix B. Proofs

with a;,b; € H' (0,T), i = 1,...,k, such that

(B.95) — (. 1") = 2 (V. V") — (¢ — v - qu +y—ya,n")

S ( qw’ k) =0
(B.96) gy (T) =0,
(B.97) (¢5.0") +v (V. V@k) =0

for all n*, 0% ¢ C ([O,T];Vk>. Substituting 7* = —g,, in (B.95) and 6* = ¢f, in
(B.97), we get two relations that used together produce

1
(B.98) L Tg 2+ 2T + (5 0 e ah)
HQwHQ (V VQy7Qw)+(y ydvqw)

From (B.97), we derive
lanI* = = (Vay. Vay,)

and moreover, it holds

(85 (W) @ @) = 0.
Thus, (B.98) implies

_EEHV%HQ +EIVasl® < =y (Vay, Vi) — (v- Vay. i) + (v = ya, i)

(B.99) = + Hs + Hs,
where

Hy < o[V |* + 7 Cilo) V1%,
Hy < o||[Vah||” + Colo) [IVIBIVE?,
Hy < o|Vah|? + Cs(o) |ly — yall*-

Inserting the estimates of Hy, Hy, H3 in (B.99), integrating in (¢,7) ,with0 <t < T
and using o small enough, we infer

T T T
|Wq5<t>u2+/ Va5 12 ds < Co [1+ V]2 / V]2 dsC / ly—vall? ds.
t t t

which implies, applying Gronwall’s lemma and the estimate (2.26) established in
Theorem (2.3),

(B.100) IVay (1) < C(w),
(B.101) g |72y < C (u).

With 0¥ = —Ag} in (B.97), we realize

18y 2(12)leaC (),
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and then, see [17] and [40],
(B.102) gl 22y < C (u).

From (B.100)-(B.102), given the sequences {q’y‘“}keN,{qfv}keN, we can extract a
subsequence (labelled by an index m), such that

(B.103) q = qy, in L (Hy)
(B.104) 4G = Gy, in L* (H?)
(B.105) q," (0) = gyo, in Hy

(B.106) " = Gu, in L? (Hy) ,

where ¢, ¢y0, ¢ satisfy the estimate (2.55) established in Lemma 2.10. Further-
more,
dq;
On
So, using (B.104) above, we can claim that also (2.54) is satisfied. Given 0™ €

=0, VkeN.
o9

C> <[0, T); Vm), applying integration by parts in time, it holds

T T
(B.107) [ ety = [ Gbdf) e (6 0) o ),
0 0
So, from the results established above, we can say that (qg’;“, ql"ub) satisfies, for all m,

T
(B.108) / (", q)) = (Vg V™) + (g = v -V +y —ya,n™)] dt
0

O ) = 5 [ @Gz

(B.109) /OT [ (g, 0™) + v (Vgy, V™) | dt =0,

for all n™, 0™ € C> ([O,T] ; f/m> Given n,0 € C° ([0, T); Hp), we assume in (B.108),

(B.109), ™ = P™p,0™ = P™, where P™, is the projection operator defined in
(B.94). Thus, as m — 400, we have

/0 [0 4y) — €% (Vaw, V) + (quw,n) — (V- Vay,n) + (y — ya,n)] dt

(B.110) Hann ) =5 [ G

(B.111) /OT[ (qw,0) +7v(Vgy, VO) | dt =0,
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for all n,0 € C>* ([0, T]; Hy). Indeed, the convergence of the linear terms in (B.107),
(B.108) to the corresponding terms in (B.110), (B.112) is straightforward. Con-
cerning the nonlinear terms, using the strong convergence of n™ to n in L? (Hy),
the boundedness of v in L> (D), the weak convergence of ¢ to g, in L* (Hy), the
weak convergence of ¢ to q, in L? (Hp) and 0 < 85 < 1, we get

T T
’/0 (v V', n™) dt—/o (V- Vay,n) dt’

§’/OT(V-Vq;”,nm—n) dt’+’/0T(V-V[qZI—qy],n) dt’—)O,

’/OT (B85 () qw»m™) dt—/OT (85 (¥) qw,>n) dt’ <
< ’/OT(BS(y)qunm—n) dt—/j(ﬁé(@[q?—%]m) dt)%o,

as m — +oo. From (B.110), (B.112), noting that the following embedding are
dense

C= ([0, T); Hy) = L* (Hy), C>([0,T]; Ho) — W,

we derive that g, ¢, gyo satisfy the adjoint equations (2.45¢), (2.45d) for all n €
Wy, 0 € L?*(Hy). Moreover, from equation (2.45¢), we conclude that also the
estimate (2.55) holds for ¢4 (y). Finally, in order to prove q, € H' (8§) N L*> (D),
we consider a Galerkin’s approximation of the adjoint equation (2.45a) which is
analogous to the one used for Stokes equation in the proof of Lemma 2.3. In this
way we have that qf, g} satisfy

(B.112) — (ab, ") + (Vdl, Vo) — (v, Vg, - ") dt =0,
(B.113) qv (T) =0,

for all k. Substituting ¥* = —q*, in (B.112), setting t = s and integrating in (¢, T),
with 0 <t < T, we get

T T
[l = (Vb V)] ds = [ (.95 -al) as
t t

which implies, using (B.113),

T T
1
[ alds 4 51vaE @1 < [l 9 llabl ds

t t

T
< [ Iollllueld) ds
t

T T
(B.114) Sa/ m@ﬁw+cwwmmwm/’mm#@.
t t
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Then, from (B.114), assuming o small enough, we can write

T

T
/ lagll*ds + [ Vag (1) |I> < € ||y||L°°(H0)/ gyl s,
t

t

for all 0 <t < T. Therefore, using the previous results, we derive
(B.115) layllze(p) < C (),
(B.116) lavellz2(s) < C (u).

So, considering the sequence {q’f,} ,» We can extract a subsequence (labelled by an
index m), such that

ay = dv, in L* (D),
Ayt — Qvt; in L*(8S).
Hence, q, € H' (8) N L™= (D). O
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Proof of Lemma 3.5

Proof. With ¥ = kd, V™ in the discrete state equations (3.10), using the equality

1 1
(B.117) r(r—s) 25(7’2—82) +§<T—8)2,

we have

(B.118) k ||d, VT2 + g||vvn||2 - gnvvn—ln2 + gnvvn VAV

tn
= / U, d, V") dt.
tn—1

By Young’s inequality (A.13) with 0 = 1, we get

tn 1 tn 1 tn
[V des g [ avipae s [ e
tn—l 2 tn—l 2 tn—l

and therefore, from (B.118), we can write

k v v v
(B.119) SNV + STV = SIVV TR+ S [TV = Ve
1 [t 9
<= \U||= dt.
2 tn—1
From (B.119), setting n = ¢ and summing up over the index i = 1,...,n, with

1 <n < N, we derive

1 iz, v a2, v - i i—12 1/tn 2 v 2
Z Z Z _ < Z Z
5 > "k VY| +5IVVIF+5 ;:1 IVVI=VVTIE < 5 i 4] dt+Z [V vorll™,

i=1
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which implies the results (3.22), (3.23) and (3.24). Rewriting the first state equation
(3.10a) in the following way

k (P V-4)= (V" =V" " 4) + kv (VV" V) —/tn U, ) dt

setting n = ¢ and summing up over the index i = 1,...,n, with 1 <n < N, we
note
n n tn
(Zk P",v.,p) = (V"=V"y) +VZ/{Z (VV', V) —/ U, ) dt
i=1 i=1 0

(B.120) <C ||V

n tn
V" —vonl + 1/2/{; IVVY +/ U]l dt] .
i=1 0

Using the inf-sup relation (A.26), from (B.120), we infer

ik PLY - 4)

C H k P"|| < su
: Z eV, Vo]
<o |IIV* = voul + v Sk [VVi + 3k HUilll ,
=1 =1

which implies the result (3.26). By the definition (A.40) of the projection operator
A" we realize that

(Bv? THAV") = [T A V"2 = AV,
and, following [46],
(B.121) ALV < C [ APV
So, substituting kb = A"V™ in the state equations (3.10), we have
tn B
(V" vt ThAhV”> 4 k| T A VY2 — / (u", ThAhV") dt =0,
tn—1

which implies, by Cauchy-Schwarz and Young’s inequalities,

tn
(B.122) kv ||[A"V]? = -k (4, V",A"V") + / (U, A"V") at
tn—1
1 |2 4 " 2 O 1 A hyn2
< oo (v [ dn| g DAV
tn—1
In (B.122), summing up over the index ¢ = 1,...,n, with 1 <n < N and assuming

o small enough, we get

n n tn
STk AR < O3k VP + / P,
0

=1 i=1

So, by the result (3.23) and (B.121) above, we derive the estimate (3.25). O
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B.3. Proofs of Chapter 4

Proof of Theorem 4.6

Proof. In order to show that ey (s (u),u) has a bounded inverse, we need to prove
that for all z € Z, there exists a unique dy € X, such that

(B.123) ex (s(u),u)dy = z,
and
(B.124) Idulix < Cllalz.

Equation (B.123) is equivalent to find (dy,d,) € Wq x [Wo N L>® (Hy) N L? (Ha)]
which satisfy

(B.125) / (v, %) o+ v (Vdy, Vi)

+b(dy, v, ) +b(v,dy, )
+p(dy, V[-*Ay —y+9°] - )

T
(09 [0y~ dy 430 4] 9)] di= [ (o i
0
(B.126) d,(0) = z; € S,

T
/0 [(dyta 7]>H5‘,Ho + (V [_EQAdy —dy + 3dey] 7V77)

T

(B.127) = (dy,v-Vn) = (y,dy - V)] dt:/ (22, 1) b5 1o
0

(B.128) d, (0) = 2 € H,,

for all ¢p € L? (D),n € L? (Hy). We emphasize that (v,y) in (B.125)-(B.128) are
solutions of the regularized state equations (4.10), (4.11), for a given u € L? (L?).
We formulate a Galerkin’s approximation of (B.125)-(B.128) applying the same
setting used in the proofs of Lemma 2.3 and Lemma 2.7. In this way, for any fixed
k € N, the Galerkin’s approximation of (B.125)-(B.128), consists in find (d¥,d}),
such that

(B.129) (dk,, %) + v (VdE, vaph)
b(dl,v,¢") +b(v,dE, ")
+p (d,V [—*Ay —y +y°] - ")
+p (v, V [-*Adl — di + 3 y* df] - ") = (21, 9")p- D,

(B.130) d” (0) = PFz,
(B.131)  (a )
)
)

g ")+ (V [=eAdy — dy + 3y*d, |, Vi*
— (g, v - V) = (y,d% - Vit

(B.132) d® (0) = P"z,
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for all ¥* € W, n* € V;, where
- 1
(Zo, ) e = (22, — ] (0, 1)) ag o Y me H.

We assume

k

(B.133) dy=) b;()E, d

j=1 j=1

c; (t) ¢;.

Taking into account that (v,y) in (B.125)-(B.128) are solutions of the regularized
state equations (4.10), (4.11), it can be proved that the linear system associated to
(B.129)-(B.132) has a unique solution

b () = (b (8),..., b (1), @)= (a1 (t),...,ce ()T

such that bj,c; € H'(0,T) for all i = 1,...,k. Then df € H'(Wy), d
H' (Vi N L2) solve (B.129)-(B.132) for all ¥* € C ([0, T]; Wy),n* € C ([0, T); Vi
Substituting n* = —Ad’y‘“ in (B.131), we get

c
).

1d k|12 2 k|12
IV + 722 vad)

<9 (Vdy, VAd) [+39] (V [y 4], VAL) | +] (dy.v- VAdy) |
+| (y,dv - VADY) | + [ (Z2, AdS) e 1 |
= A;+ Ay + Ay + Ay + As.

(B.134)

Using Young’s, Holder’s, Poincaré’s inequalities and the embedding H? — C (Q),
we can write

Ay < o[ VA + C1 (o) [IVdy]1*,

Ay =3y| (2y d}, Vy- VA) + (v, Vd} - VAdY) |
<3y [2 Ille(ay ldyllzs [1Vyllze IV Ady] + HyHi(Q) IV, | HVAdZH]
< C llyllze VA [Vdy]| < o[ VAdy|* + Ca (o) llyllz IV,

As < ldy | [Vlle() VA < ol VA + Cs (o) [Vl Ve,
As < [ylle(ay ISl VA < o VA* + Ci (o) [lylze V)7,

A < cr||VAd’;||2 + Cs (0) || 22|31 -

Hence, inserting the estimates of Ay, ..., A5 above in (B.134), we derive
(B.135) 1i||Vd’“||2+7»52||VAdk||2
' 2 dt Y Y
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<50 [[VAdy* + [C1 (0) + Ca (o) Iyl = + C5 (o) [[V322] IV Ty ]1*
+Ci (0) [yl 1dv ]l + Cs (o) [| 217

With 9" = d* in (B.129), we observe

1d
B.1 ——|d¥||? dr|?
(B.136) Sk 4 v V|
—p (4, V [-*Adl —di + 3 y* d})] - dY) + (z1,dY)p-p
= By + By + Bs + By,
where

By < dy|l [Vves ldvllus < o [[VAY[P* + C (o) vl 1Y),

By < p ||d*|pa ||V [2Ay —y + 7] || 1d8]| e <
< ol|VdE |2+ Cy (0) |V [~2Ay —y + *] ||” V5|2,

By < p llllgoy IV [-e2Ads — df +3 42 & | 1|
<9 & llegay IVAE] 1G5+ p llogay 11V 112
60 12y IdS1ze 1Vl ISl +3 p gl q) 19450 1]
< o[ VAN +Ci (o) lylide 19512 + IV + Co [yl + lyllfe] 1S,

By < o |[[VAY|* + Cs (0) [|z1[|5--
Inserting the estimates of By, ..., By in (B.136), we infer

1d k12 k112
(B.137) S + v V|

<30 ||[VAY|* + UHVAdl;H2

+ (14 Co (o) |V [~y =y + 4] ) V)

+(Cr (@) IVl + Ci o) gl + Ca [yl + Iylle] ) ts)?
+C3(0) ||z1]

2
D+

Summing (B.135) and (B.137) and multiplying by two, produces
d
(B.138) QS 12 + [1VdS]12] +2 ][Vl +2 7 €2 VA2
<60 [[VA[* + 12 0 [|[VAdL|]
+(C1 (@) Iz + C2 (@) IVl + C [yl + Iylie] ) s 2

+(C1(0) + C5 () Iyl + Co (0) IVl + C1 (0) IV [~e2Ay =y + 57T 12 [V
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+Cs (o) lz1]lp- + Co (o) |23+

In (B.138), assuming o enough small and rearranging, we realize

d
(B.139) S IS+ [1vas)?) + o (v + [vad)P)

b+ Cu ||Zl7,

<Gy D(v,y) (IS +IVaS]2] + Co ]
where
2
D (v,y) = 1+ lyllte + lyllze + +llyllze + VI + |V [-*Ay —y + 7] ||
Since y € L*® (H?),v € L™ (H?) ,w := —*Ay—y+y* € L* (H'), we can integrate
(B.139) in the interval (0,¢), where 0 < t < T and applying Gronwall’s lemma.

In this way, we can claim that there exists a constant C'(v,y), dependent on the
norms of ||v|| and [|y|| but independent of k, such that

(B.140) Iy (&) 117 + 1V dy (6) P + 14y 120,60y + AT 220,120

< C(v,y) [lzllZopey + 122072y + 1P 25]* + IIVP’“24||2] :

for all t € (0,7]. The basis {¢;},  used for the Galerkin’s approximation, is such

that i
8dy

on loo
So, Adj (t) € L§ and then, by Poincaré-Wirtinger’s inequality (A.15), we have

|Ad ] < C IVAE].
Furthermore, following [17] and [40], it holds
[dfl < C 1A,
Hence, from (B.140), we get
(B.141) 1813 s+ 08 e )+ 1 N3
<CW) Izl + 122l s + I2sll3 + 2l ).

independently on k. From the Galerkin’s approximation (B.129), (B.130), we can
write

T T
/ (dt,. 4 / v (VE, Vob) — B (db, v, ) — B (v, db, )] dt
0 0
p( —’ Ay —y+y°] b)) dt

—?Ady — dy +3 y* dy] - ") + (21,9")p D] dt.
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for all 4* € C ((0,T); Wy,). So, given v € C=((0,T); D), we set 1" = P¥4) in
(B.142). In this way, we derive

T T
(B.143) /0 (df,. ) dt = /0 (d,, P*yp) dt

T

:/ [—v (Vd, VP*) — B (dY,v,P*yp) — B (v,d}, Pe)] dt
0
T

—:/ p(di,V [-*Ay —y +y°] - Pry) dit+
0

T

+/ (=0 (y,V [-*Ad) — db + 3 y* db] - P*) + (21, P*)p- p| dt =
0

=D, + Dy + Dy + Dy + D5 + D,

Using the properties of the projection operator P*, we note that

T
D < / IVai|| [VPFe]| dt < C 18 ey 9z,
T
Doy < / 15 (9 vllge [P*plls dt < C ¥ lloeqeee) 1 ey 146]1ceco,
0

T
Di<p / 18l |V [=22Ay — g+ 4] || 1IP*3p s dt
0

S C ||d]gj||L°°(H0) H - 52A?/ -y + ngLQ(Hl) ||¢||L2(D)a

T
Dy <o [ gy IV [0~ 3" ] | 1P410s

< C lyllzeqry (IAd5 2y + It + 191wz Iz ) I lzm),

T
Dy s/ ]
0

Inserting the estimates of Dy,..., Dg in (B.143), using (B.141), we infer

p|[P*||p dt < ||z1]lr2(p+) |9 L2()-

T 1
~ 2
[ (@) dt] < 0 @) [lmalBacmny + Nl + sl + ali] 16l
0

for all ¢p € C° ((0,T) ;D). So, from the dense embedding (A.8), we realize that

-

2

(B.144)  [|d Iz < C W) [zl 3eo + 120 s + I28l13 + 2l

From the Galerkin’s approximation (B.131), we have

T T
/ (d];ta n’“) dt = —7/ (V [—€2Ad§ — d’;C + 3y2d’yﬂ ,Vnk) dt
0 0
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T
(B.145) + / [(dy,v- V") + (y,d5 - VI*) + (Zo, ) e ]t
0

for all n* € C*((0,T);Vi). So, given n € C*((0,T); H'), we set in (B.145)
n* = Pkn. We get

T
(B.146) / (dF,, P*n) dt
0
T
=—v /0 (V [-*Ad} — dj + 3y°dy| , V.P*y) dt

T

+/ [(df,v -V P*n) + (y,d§ - VP*n) + (%, P*n) - ] dt =
0

=F\ +F,+E;+E,

Using the properties of the projection operator P*, we derive

By < C (1A g2y + 1081 2oy + 19wy 1082 ) Il
T
k k k
By < [ 150 Wlegay 9Pl dt < C 1vliwmisey ldSlzzcny nllizan
0

T
Es S/ HyHc(Q) i)l (VP | dt < C Y| Lo 2y ||di€r||L2(’D) 191 z2¢ay
0

T
E4§/ || Za| 1+
0

Inserting the estimates of Fy, ..., E, above in (B.146) and using (B.141), we can
write

Pryllgn dt < || Zall sz 1nllzecan)-

1

~ 2
(B.147)  [ldyll 2y < C () [I|Zl||i2(p*) + 12072 ey + N2slls + l2allz, |-

Considering the sequences {dﬁ}keN , {d’;}keN, using the estimates (B.141), (B.144)
and (B.147), there exist subsequences (labelled by an index m), such that

(B.148) d’ —d,, in Wy,
(B.149) Ay — d,, in W,
(B.150) Ay = d,, in L (H,),
(B.151) A — d,, in L* (L7) ,
(B.152) Ay — d,, in L7 (Hya) .

as m — +o0o. Next, we show that d,d, solve (B.125)-(B.128). It holds

(B.153) /0 (A, ™) + v (Vd™, V™)
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+ Bd™,v, ™) + B (v,d™, ™)
p(d),V [=* Ay —y+y°] - ™)

T
(Y [-2AdT — a3y 7] )] di = / (21, 9™ d,
0

(B.154) d7(0) = Pz,

T
/0 [(din.n™) +~ (V [-e*Ad) — d + 3y°d] . V™) +

T
(B155) - (dZI,V : V’f}m) — (y,dz1 : Vnm)} dt = / <22777m>H6‘,H0 dt,
0

(B.156) dr (0) = P™z,

for all m, 4™ € C*((0,T7);D), n™ € C*((0,T); Hy). So, given ¢ € L* (D),
n € L* (Hy), we set in (B.153)-(B.156) ¥»™ = P™1p and ™ = P™n, which are such

that
(B.157) P — 4|20y — 0,

as m — +o00. Then, using (B.148) and (B.157), we derive

T
’/ vtv dt—/ <dvt7¢>’D*,’D dt — 0,
0

’/ (Vd™, v dt—/OT (Vd,, V) dt| — 0,

from (B.148), (B.157) and the boundedness of Vv - 4 in L? (L?), we infer

’/ ™) dt—/OTB(dv,v,zp) dt’
(

[ Bz -+ B - v
< C [|[d¢M2) [IVIiLem) 9™ — 2]

+‘/ </ )-V]v-¢d:c) dt‘_>o’

by (B.148), (B.157) and the boundedness of v - % in L? (L?), we observe
T
)/ (v dt— [ Blvdw) df
0

)/ (v.d7 ™ — ) + B (v.dy — dy.ap) di |
C [Vl 1d¢ 2y 1™ — ¥ |lL2)]

+’/0 (/Q[V~V](d:,”—dv).¢dx> dt’—>0,
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using (B.150), (B.152), (B.157) and the boundedness of w - % in L? (H**), we note
T
)/ m T ™) —/ (dy, V- ) dt
0
< )/ (7, V- ™ — ap) + (47 — d,y, Ve - )] dt

< O iy Vol 167 = oo + | [ (05—t Vr-ap)

= C || |z ) [0l 2y 1197 = ey + )/0 (w, V [d7 —d,] -9p) dt| -0,

from (B.149), (B.152), (B.157) and the boundedness of y - 1, y*- Vy -1 and y> - 1)
in L2 (L?), we realize

[y et sy ] ) o

_/OT (5, V [~*Ad, —dy +3 37 d,] - ) dt |

< ‘/OT (v, V [-°Ad) —d)" + 3y ] - [p™ — o)) di

b [ VAl - a) - (- a) +3 v (@ - )] ) a

< C Nyl (1@ ez + 15 2y (1+ 191w )| 197 = Wleecy
/OT(y,VA[dm—d ]-4) dt)+‘/T (v, V [d) = dy] - ) dt‘

+6‘/ |.Vy- ) dt)+3)/ LV A = d,] - 1) dt‘—>0,

2

+e

by (B.149) and (B.158), we have

T
’/ d;{; m dt—/ <dyt77]>H6‘,Ho dt’ — 0,
0

using (B.149), (B.152), (B.158) and the boundedness of y- Vy-Vnin L? (H'*) and
y*-Vnin L*(L?), we get

T
| / (V [-*Ady —d +3 > d] V™) de
0
T
— /0 (V [-e*Ad, — dy + 3 y* d,] , V) dt }
T
= ‘ /0 (V [-*Ady —dy' +3 4> df] ,V [ — 1)) dt

+/T (V [—52A (dzl - dy) - (dzl - dy) +3y° (dT - dy)} ,Vn) dt )
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<c [nAdmz(Hl o g 2oy (1+ ||?/||%oo(H2 )} ™ = 2o
T
/ (VA [dm — d,], Vn) dt‘+‘/ ], n) dt |

+6)/ |, Vy- V) dt‘+3‘/ (2, ¥ [am d}~Vn)dt)—>0,

+e?

from (B.149), (B.151) and (B.158), we can write

T T
‘/ (v - V™) dt—/ (dy,v - V1) dt‘
0

T
)/ (v -V [ = n)) dt+/ (dy = dy, v V) d
0
< Ny 2oy 1Vlleey 0™ = nllc2cme) + dy" = dyllzzezy [[VIiLee@2) [10llL2 (o) = 0,

by (B.148), (B.158) and the boundedness of y - V in L? (L?), we derive

T T
[ vy a- [ wde v @
0 0

:‘/OT(?/,dT-V[Um—U]) dt+/0T(y,[di,”—dv].Vn) dt

T
< yllzeecazy [1dY L2z 1™ — nllz2 o) +’/ (y,[dy —dy] - V) dt| — 0.
0

So, we can claim that (dy,d,) € Wy x (WoN L™ (Hy) N L? (Hpa)) satisfies the
equations (B.125) and (B.127), for all ¢p € C*((0,7);D), n € C* ((0,T); Hy).
Then, from the dense embeddings

C>((0,T); Hy) = L*(Hy),
CZ((0,T); D) — L*(D),

we infer that (dy, d,) satisfies the equations (B.125) and (B.127), for ally € L* (D),
n € L? (Hy). Concerning the initial conditions (B.126), (B.128), considering 1 =
E(1—t)T), E€eDandn=((1—-1t/T), ¢ € Hy, we note

(@ (0) — dy (0) &) = / = (@7, 4) + (v, $)pe 0 — (3, A7 — dy)pr ] dE > 0,

T
(dy (0) —d, (0),¢) :/0 (= (d3i,m) + {dyes ) e i = (e, ) = dy) e ] dt = 0,
as m — +oo, for all £ € D, ( € Hy. Furthermore

dy (0) = P"z3 — z3, inS,
d;n (O) = PmZ4 — 24, in Lg

Then, we can conclude dy (0) = z3, d, (0) = 2z4. It remains to show that the so-
lution (dy, d,) of equations (B.125)-(B.128) is unique. Let us assume that (dy1, dy1),



226 Appendix B. Proofs

(dya, dy2) are two solutions of (B.125)-(B.128). Then, (hy, h,) = (dys — dy1,dy2 — dip)
satisfies

T
B159) [ o+ (Ve T9) + B by v.$) + B(v by,
0
+p(hy, V =Dy =y +y°] ) +p (y,V [~ Ahy — hy + 3y hy] -4p)] dt =0,
(B.160) h, (0) = 0,
T
(B.161) / [(hyt, 77>H;;,Ho + 7 (V [—eQAhy —hy + 3y2hy] ,Vn)
0

— (hy,v-Vn) = (y,hy - V)] dt =0,

(B.162) hy (0) =0,

for all ¢ € L* (D) ,n € L? (Hy). We set ¢ = xjo4 hy in (B.159) and n = x[o.4 hy,

with 0 <t < T, where
1 if se]0,t],
X[0.4] (s) =

0 otherwise

Thus, using Young’s inequality, we realize
(B.163) /t Ldm 2 + v Vi 2] ds
' o [2ds™Y v
t
:—/ [B(hv,v,hv)
0
0 (hy, Vo 1)+ p (4, V [-€20hy = hy+3 4 hy] -hy) | ds
t
S/O [||hv|| IVvlls [[byllee + 1Ay llzs [Vewlize [hyll +ylleq)
< (I 20+ 1981+ [y Wayllze 19yl + 1912y 1981 ) I ds
t
< [ oIl + oIV A+ 1 [Ty 2+
0

+(C2(0) IVIiEe + C e + Ca (o) Nylide + Cs Iyl ) Invl?] ds,

‘11 d
(B.164) [ [51vmle +2 219 ane]
0 L2ds
t
B _/ [7 (Vhy,VAh,) =6 v (y hy, Vy-VAR,) — 3 v (va Vhy - VAhy)
0
+ (hy,v - VAR, + (y, by - VAhy)} ds

t
S/O [’V VRV AR +6 5 [[Ylleay I12yllze [Vylles VAR
37 Wl ) 90l 11V Dy |+ [y 1¥]leay VAR,

ylle(ay Il VAR, | ds
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< [ 198817+ Calo) Il Il
+(C3(0) + Ca(0) Nyl + Cs (o) VI )1V R |12 s,
Summing (B.163) and (B.164) and multiplying by two, we have
brd
(B.165) /0 (I + 190y 2) + 2 v Vhy |2 + 2 5 2V AR |12 ds
< /Ot 20 |[Vhy [P +120 VAR, |?
+(C1 (o) IVl + o llwlide + s (o) 1yl + Ca llglSe ) I
+(Cs+ Co (0) + C1 (0) 1yl + Cs (o) VI3 ) [y 2] dis.
Choosing in (B.165) 0 < v and 6 0 < v €%, we get
t Iy (&) 12+ Ay (2) 2 < Iy (0) |2+ 1A, (0) |
+C / [ Dl + VI + i3 + il + IyllSe | (Il + 190, 12) ds,
which implies, applying Gronwall’s lemma,
Iy (&) 12+ VA, (D117 < |1y (0) 112 + [ Vhy (0) 2]
X exp (o / [+ ol + IVl + e + ol + o] ds) .

Then from the initial conditions (B.160), (B.162), we can claim h, = 0, h, = 0.
So, we have shown that given

7 = (21, 20,23,24) € Z = L* (D*) x L* (H}) x 8 x H,,
the system of PDEs (B.125)-(B.128) has a unique solution
dy = (dy. d,) € X = W x [Wy N L™ (Hy) N L2 (H)] .
Furthermore, from the estimates (B.141), (B.144) and (B.147), we have derived
I B, + eyl 1y + 1y 2
< C () [lalfpey + 22l + lzals + el |-

Hence the equation (B.123) and the estimate (B.124) are satisfied. This conclude
the proof. O
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