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Abstract

One of the interesting and beautiful aspects of mathematics is the existence of
connections between different areas. Such a link is an indication that, using various
mathematical notations, one can describe the same event from different points of
view. It is not only evidence of the tight relation between numerous mathematical
laws, but also a powerful tool which has helped to make progress or good predictions
in difficult mathematical problems.

In this thesis we consider a few problems in number theory and integral geometry
which both admit a probabilistic interpretation. We solve those problems using
methods from probability theory.

In the first part of the thesis we investigate the distribution of algebraic numbers
over the field Q, namely we consider the question of counting algebraic numbers and
points with algebraic conjugate coordinates in subsets of Fuclidean space. Recall
that the set of algebraic numbers over the field Q is the set of roots of polynomials
from the polynomial ring Z[t]. There is a natural connection between algebraic
numbers and zeroes of random polynomials, which allows us to understand the
distribution of algebraic numbers and points with algebraic conjugate coordinates.

We consider several different types of subsets and derive counting formulas or upper
and lower estimates for the number of points with algebraic conjugate coordinates
lying inside the given subset. We are going to use the following two methods.

e Counting integer points in multidimensional regions and using the connection
between algebraic numbers and zeroes of random polynomials.

e The measure-theoretical approach.

We analyze the results obtained by using these methods and describe the limitations
that arise when using each of them.

In the second part of the thesis we study questions connected to the distribution of
the volume of random simplices, generated as a convex hull of 2 < k4+1 <n+1
random points Xg,..., X, in R”. We interested in how the distribution of the
volume of random simplex changes under some fixed affine transformation. Our
main result is equality in distribution between the volume of the original simplex
and its affine image in terms of determinants of Gaussian random matrices.

Applying the above, we derive a new representation of intrinsic volumes of an el-
lipsoid and obtain the integral geometry formula connecting the average volume
of projections and the average volume of cross-sections of an ellipsoid. Moreover
we prove the generalization of integral formula of Furstenberg and Tzkoni [30] and
establish its affine version.
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CHAPTER 1

Introduction

This thesis consists of two parts. In the first part we investigate the distribution of
algebraic numbers over the field QQ, namely we will consider the question of counting
algebraic numbers and points with algebraic conjugate coordinates in subsets of
Fuclidean space. In the second part of the thesis we will study questions connected
to the distribution of the volume of random simplices, generated as a convex hull of
2<k+1<n+1random points Xg,..., Xy in R™.

1.1 Notation
Throughout this thesis we will use the following notations and conventions.
e We will denote by:

— #£5 the cardinality of a finite set S

An (S) the Lebesgue measure of a measurable set S C R";

Ar (S) the k-dimensional Lebesgue measure on linear or affine k-
dimensional subspace L C R™ of a measurable set S C L;

vol(D) := Ay, (D) the n-dimensional volume of a body D C R"™;

R the set of positive real numbers;

— ((-) the Riemann zeta function;

B™ the unit n-dimensional ball with volume

K = vol(B") =

e We will also use the Vinogradov symbol A < B, which means that there exists
a value ¢ > 0 such that A < ¢ B and ¢ does not depend on B. Moreover we
will write A < B when A < B and B < A.

e We will also use big O notation B = O(A) which is equivalent to the inequality
|A| < ¢ B for some ¢ > 0 independent of B.
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1.2 Distribution of Algebraic Numbers

The question of the distribution of real and complex algebraic numbers over the
field Q has been investigating during the last few years and a tight relation between
the distribution of algebraic numbers and the distribution of the zeroes of random
polynomials has been found. Recall that the number « is called an algebraic number
over the field Q if it is a root of a polynomial P € Z[t], irreducible over Q. For
the further definitions and properties of algebraic numbers, we refer the reader to
Appendix A. In this section we will describe the problem considered in this thesis
and make a review of obtained results.

1.2.1 Description of the Problem

Let A denote the field of algebraic numbers over Q and O denote the ring of algebraic
integers over Q. Denote by A,, and O, the sets of algebraic numbers and algebraic
integers of degree n respectively. Asking about the distribution of algebraic numbers
we typically consider the following question. How many algebraic numbers from A,
or O, lie in a given connected set D C C? We will assume that n > 2 since the case
n =1 is trivial.

First of all we emphasize that the sets A, and O,, are countable and that any subset
D of R or C having non-zero measure contains infinitely many algebraic numbers and
algebraic integers, even for fixed degree. Thus, in order to study the distribution of
algebraic numbers, we need to pick finite subsets of A,. For this reason we consider
a height function h : A — R, such that for any n € N and @ > 0 there are only
finitely many algebraic numbers « € A,, with h(a) < Q, and h(a/) = h(a) for all
algebraic conjugates o and «. This function gives us an order relation on the set
A,,. In this thesis we will consider two types of height function, namely the naive’
height and the elliptic height, which is a special case of the weighted [, height.

Given some algebraic number « denote by P, (t) = ant™ + ...+ a1t + ap its minimal
polynomial.

The ’'naive’ height H of an algebraic number « is equal to the 'naive’ height of its
minimal polynomial P, which is defined as follows

H(a) = H(P,) := Jmax ).

This type of height function is very natural and may be considered as a measure of
"algebraic complexity’ needed to describe the element.

The weighted [,-height is not so often used. It can be viewed as a generalization of
the 'naive’ height. Given a vector of positive weights w = (wp, w1, ..., wy) € R’}fl
and a real number 0 < p < oo define the w-weighted [, height of an algebraic
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number « as follows

n 1/P
(z i |> . p<oo
lpw(a) =< \i=0

Jnax. (wilail), p=oo.

For any vector of weights we will say that the function hw := law is the elliptic
height of an algebraic number «.

Finally, let A, (Q) be the set of algebraic numbers « € A,, with H(a) < @ and let
O,(Q) be the set of algebraic integers a € O,, with H(«) < Q. Moreover, denote
by A, w(Q) the set of algebraic numbers « of degree n with hy (o) < Q.

1.2.2 Results

Distribution of Complex Algebraic Numbers on the Unit Circle

Consider the unit circle T C C and for —7 < 81 < 2 < 7 denote by

Tp, 8, :={z € T: Arg(z) € [p1, 5]},

some arc of the circle T.

The first result of the thesis is the asymptotic formula for the number of complex
algebraic numbers of degree n and elliptic height at most @ lying on a given arc

Ts,,8,
Nn,w(Q> Bla 52) = # (ATL,W(Q> N T/317/32)

as ) — oo.

For any even n = 2m > 2, any —7 < 1 < fy < 7, and any vector of positive
weights w € Rim“ with w; = way,—; for all 0 <7 < 2m we obtain

B2
Nomw(Q, Br, B2) = v(m, w) Q" / Pwamn(t) dt +0 (Q™ (10g /™), (1.2.1)
B1
where
vol(B™+1)

v(m,w) = 2m/2+1¢ (m + L)wg . . . W

and the function pw ,,(t) is given explicitly below. Moreover, for odd n we show
that NV,w(Q, B1,82) = 0 for any w € RZ"™ and —7 < B < B2 < . It should be
also noted that our method works for any weighted [,-norm (including the maive’
height), but we consider the elliptic height only, since this case admits the simplest
type of asymptotic distribution formula.

In order to derive formula (1.2.1) we apply a method based on counting lattice
points in domains of Euclidean space. The description of the method can be found
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in Section 2.1. Using this method we show that the function pw n,(t) is equal to the
density function py, 7(t) of the zeroes of the random trigonometric polynomial

Im—k
T() : cos k@,
( 2 Wm Z \/§ Win—k

where 7g, . .., nm are independent, identically distributed real-valued standard Gaus-

sian random variables. This fact is evidence of a tight relation between the distri-
bution of algebraic numbers and the distributions of zeroes of random polynomials.
More examples of such relations are given in Section 2.2. For the precise defini-
tion of a density function and discussion of the distribution of zeroes of random
polynomials see Appendix B.

In general it is a very difficult task to derive the exact formulas for the density
functions of zeroes of random trigonometric polynomials with arbitrary distribution
of coefficients. Although, if we restrict our attention to the case where the coeffi-
cients are Gaussian random variables, the function pp, r(t) can be computed in a
precise form, using the Kac-Rice formula and special properties of Gaussian random
variables. For example, it follows from the result of Edelman and Kostlan [26] that

1/2
)
z:y:t]

which gives us the representation for the function pw ., (t) in formula (1.2.1).

DI R T o (kz) cos(ky)
pur(t) = — 920y g | 5 w2, cos(kx) cos(ky

k=1

The result (1.2.1) is obtained in joint work with Friedrich Gotze, Zakhar Kabluchko,
and Dmitry Zaporozhets [33]. For a more detailed discussion of the problem, see
Chapter 2.

Distribution of Points with Algebraic Conjugate Coordinates

The next result of the thesis describes the two-dimensional problem where, instead of
algebraic numbers, we consider points with algebraic conjugate coordinates. Given a
Borel subset D C R2, consider the function Ng(A, @, D), which counts the number
of ordered pairs a := (a1, ) of distinct conjugate algebraic numbers g, ay of
degree at most n and 'naive’ height at most @ lying within a subset D.

In case of fixed subset D € R? the asymptotic formula for N2(A, Q, D) follows from
a more general result of Kaliada, Zaporozhets, and Gotze [35]. In this thesis we
consider subsets with fixed 'position’ and measure depending on @) that vanishes as
Q tends to infinity.

The first class of subsets under consideration are rectangles Il = I; x Is with fixed
middle point and sizes A\ (I1) < Q°, A1 (I2) < Q™ %2, where s1,s9 > 0. Under
some additional conditions on values s; and so we derive the following upper and
lower bounds for the value N2(A,Q,TI), which are asymptotically the same as Q
tends to infinity

N2(A,Q,II) = Q") (IT). (1.2.2)
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For the more details we refer reader to Section 3.2.

The second class are some e-neighborhoods of a fixed curve defined by a function
f, where € < Q=*, A > 0. In should be noted that the problem of counting points
with rational coordinates in the neighborhood of curves has a rich history [41, 64, 8]
and the problem of counting points with algebraic conjugate coordinates near the
curves may be regarded as its generalization. Considering the set

LK:J = {XERQZ ‘wg—f($1)‘<01Q_)\, 1‘16J},

we obtain the following asymptotic estimates as @ tends to infinity
NE(8,Q,Lf,) = @ 1, (1.23)

where 0 < A < % and function f satisfies some additional smoothness conditions.
See Section 3.3 for the precise statement and a historical review.
The results above are based on joint work with Friedrich G&tze, and Vasili Bernik
[12].
Distribution of Algebraic Integers

The last result of this section is connected with the distribution of algebraic integers.
In contrast to algebraic numbers, algebraic integers are usually more difficult to
analyze. In particular, powerful tools like the method of counting lattice points
does not yield any good results here.

Given an interval I C R, let us denote by

the number of algebraic integers « of degree n and 'naive’ height at most @) belonging
to the interval I.

We show that for any interval I of length A; (1) < Q@7*, 0 < s < 1 with fixed middle
point the following asymptotic bounds

hold as @ tends to infinity.

We also consider the two-dimensional problem analogous to the one formulated for
points with algebraic conjugate coordinates. Given a Borel subset D C R?, consider
the function N2(O, Q, D), which counts the number of ordered pairs a := (a1, az)
of distinct conjugate algebraic integers «aq, aig of degree n and 'naive’ height at most
Q@ lying within a subset D.

For the rectangles II = I} x Iy with fixed middle point and sizes A\; (I1) < Q~°!,
A1 (I2) < Q752 we derive the following asymptotic estimates

NZ(0,Q,10) < Q") (T0), (1.2.5)
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and for the e-neighborhood of some fixed curve defined by the function f with
€ < Q~ we obtain

NE(0,Q, 1) =", (1.2.6)
as @) tends to infinity.

These formulas are based on joint work with Friedrich Gotze [32]. The detailed
description can be found in Subsection 3.4.

1.3 Random Simplices

The study of geometric probability is concerned with randomly generated geometric
objects (points, lines, convex bodies, etc.) and simple operations with them (taking
convex or linear hull, considering intersection, etc.), as well as random transfor-
mations (rotation, projection on random hyperplane, etc.). The assignment of a
probability measure to geometric objects and transformations is not necessarily an
obvious procedure and can lead to ambiguity. Therefore, one should specify how the
random geometric object is generated. Many questions of geometric probability are
eagy to formulate, but usually very difficult to answer. The important point is that
geometric probability and integral geometry are closely related and some problems
of geometric probability can be easier solved with the help of the integral geome-
try methods and vice versa. In this thesis we consider a special class of random
geometric objects, namely the convex hull of randomly generated points in R”.

Consider k£ + 1 random points Xy, ..., X; in R™. Denote by
conv(Xo, ..., Xg)

the convex hull of points Xy,..., X, which is the the smallest convex set that
contains all of them. This convex hull is an example of random polytope with
vertices Xog, ..., Xg. If 1 <k < n then the random polytope conv(Xg, ..., Xy) is a
k-dimensional simplex (maybe degenerate). Denote by

Ak (X(),...,Xk) := vol (CODV(XQ,...,Xk)) (1.3.1)

the k-dimensional volume of the simplex conv(Xy, ..., X).

In this thesis we investigate how the distribution of (1.3.1) changes under some fixed
affine transformation x — Ax, where A is a non-singular n X n matrix. We derive
the following stochastic equation

d vol (P:&€
Ar(AXo, ..., AXy) < ikf) CAR(Xo, ., X), (1.3.2)
where the random vectors Xy, ..., X} are not necessary independent, identically

distributed and have an arbitrary spherically symmetric joint distribution, £ is the
ellipsoid defined as the image of the unit ball B® under an affine transformation
AT, Ky is the volume of the k-dimensional unit ball B*, Py denotes the orthogonal
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projection operator on the linear subspace L C R", and ¢ is a random uniformly
chosen k-dimensional linear subspace, independent of Xy, ..., X.

Due to the spherical symmetry of the joint distribution of Xg, ..., Xy we can obtain
a probabilistic representation of the random value vol (P:€) in terms of determinants
of the Gaussian random matrices

vol(P:E) d <det (GTATAg) ) 1/2 )

K det (GTG)
where G is a random n x k matrix with independent, identically distributed standard
Gaussian entries.

The result above leads to some interesting integral geometry formulas. For a detailed
discussion we refer the reader to Chapter 4.

The results of this section are based on joint work with Friedrich G6tze and Dmitry
Zaporozhets [34].

1.4 Structure of Thesis

The structure of this thesis is the following. In Chapter 2, we prove formula (1.2.1)
and calculate the function pw ,(t) for some vectors w. In Chapter 3, we discuss
the results formulated in (1.2.2) — (1.2.6). In Chapter 4 we prove the main results
(1.3.2) and (1.3.3) and consider the applications to integral geometry problems. All
auxiliary results and necessary definitions are presented in Appendices A — C.






CHAPTER 2

Counting Complex Algebraic
Numbers on the Unit Circle

In this chapter, we study the distribution of algebraic numbers on the unit circle in
the complex plane which we denote by T C C. For —7 < 51 < 2 < 7 denote by

Tpy 8, = {2z € T: Arg(2) € [B1, Ba]}

some arc of the unit circle T. Our goal is to investigate the asymptotic behavior of
the value

Nowe(Q: B, B2) = # {6 € [B1, Ba]: ¥ € An (@)}

which is equal to number of complex algebraic numbers of degree n and elliptic
height at most @ lying on the arc Tg, g,.

We start with description of the general method used in the proof of our main
theorem and make a brief review of previous results and their connection to random
polynomials.

2.1 General Method

The easiest way to count algebraic numbers over Q is to count the corresponding
minimal polynomials with integer coefficients instead. The minimal polynomial P,
of a given algebraic number « of degree n is uniquely defined, irreducible, has co-
prime coefficients, and has exactly n roots. Thus, the conditions on « typically lead
to analogous restrictions for the coefficients a,, ..., ag of the polynomial P,, and the
problem of counting algebraic numbers « of degree n satisfying certain conditions
is analogous to counting irreducible polynomials of degree n with co-prime integer
coefficients under some restrictions.

Assuming next that those restrictions define the bounded set V' C R™*! and identi-
fying the polynomial P with its vector of coefficients (ay, . ..,aq) € Z"*! we reduce
the original problem of counting algebraic numbers to the counting of lattice points
in the set V. The last problem is well known and a lot of good estimates have been
obtained.

Two additional steps are needed in order to exclude from the consideration points
(an, ... a0) € Z" with ged(ay, .. .,a0) > 1 and points (an,...,ap) € Z"! which
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define a reducible polynomial P(t) = a,t"™ + ...+ ag. The first step can be easily
realized using the classical Mobius inversion formula (see, e.g., [55]). The second
step is the counting of reducible polynomials which is an old problem in number
theory.

2.1.0.1 Counting Lattice Points

The problem of counting lattice point in a given bounded subset of R” is an im-
portant topic in geometry of numbers and goes back to the old results by Lipschitz
(1865) and Davenport (1964). Consider some bounded set D C R™ and some lattice
A C R”. The basic idea says that in case the set D possess some 'nice’ boundary
properties the number of lattice points in D is approximately equal to the volume
of the set D divided by the determinant of the lattice A. The main difficulty is to
check this property and to estimate the error term

vol(D)

(D A) = (D) ~ s

where pp(D) denotes the number of lattice points in D. There is an extensive
literature on this topic and here we consider two classes of sets D, outlined below.

1. The first and the oldest class of sets was introduced by Lipschitz [48]. He
considered the sets D with boundary 0D which can be defined by finitely
many maps ¢1,...,¢n : [0,1]771 — R satisfying Lipschitz condition with
some constant L. We say that the boundary 0D is of Lipschitz class (n, M, L).
Later on the results of Lipschits were extended in [61] and [46, Chapter VI,
§2, Theorem 2|. In these papers only the homogeneously expanding sets were
considered, namely the sets of type

tD ={tx:x € D},

where D is some fixed bounded set and ¢ € R, is assumed to be some growing
parameter. The error term in this case has the form r (tD,A) = O(t" 1),
where the implicit constant depends on A, n, M and L only. The counting
result for an arbitrary bounded sets D with boundary 9D of Lipschitz class
(n, M, L) was obtained by Masser and Vaaler [49]. They also proved an esti-
mate for the error term r(D,A) in terms of the parameters n, M, L and the
successive minima of the lattice A. Similar results with a sharp error term
were obtained by Widmer [66].

2. Another class of sets was firstly defined by Davenport [22]. His approach is
applicable to bounded measurable sets D which intersect every line in at most
s intervals or single points and the same is required for any projection of D
on any linear subspace of R™. We say that such sets are of narrow class s, in
accordance with [67]. Davenport considered the case A = Z™ only and derived
an estimate for 7(D, A) in terms of the measures of all projections of the set
D on linear subspaces of R”. This result was further generalized by Schmidt
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in [58|, where he obtained a counting result for an arbitrary lattice and gave
an estimate for the error term in terms of the diameter of the set D and the
successive minima of the lattice A. The next improvement was made in [3],
where the best possible estimate for the error term was obtained.

Let us stress that for both classes of sets introduced above we get the same counting
result. Therefore it is very natural to ask for relationships between these classes and
whether one class includes the other. This question was addressed in the article of
Masser and Vaaler [49] where they pointed out that the sets with Lipschitz boundary
do not necessary belong to the narrow class, but narrow class possibly implies some
type of sets with Lipschitz boundary. A more careful analysis is due to Widmer
[67]. In particular, Widmer has described the case where the bounded set of narrow
class 1 has a boundary of a Lipschitz class (see Theorem A.2.9). It should be noted
that in general it is not an easy task to verify that some given set D is of narrow
class or has a Lipschitz parameterizable boundary.

Although there are general results with better estimates of the error r(D,A), we
shall use the result of Lang [46, Chapter VI, §2, Theorem 2| for homogeneously
expanding sets (see Theorem A.2.7) since it will be enough for our case.

2.1.0.2 Counting Reducible Polynomials

An important and difficult problem in general is to determine whether a given
polynomial P € Z[t] is irreducible over Q or not. There exist a few results which give
sufficient conditions for a polynomial to be irreducible, such as Eisenstein’s criterion
(see Lemma A.1.20) and Cohn'’s irreducibility criterion for example. Unfortunately,
they are quite far from being useful, since they cover only a small part of the set
of all irreducible polynomials [24]. The problem of finding a general criterion of
irreducibility for polynomials is very difficult and probably remains open.

On the other hand it is easier to prove that the majority of polynomials is irreducible.
In order to do so we will construct the finite subsets of polynomials P € Z[t],
considering only polynomials with bounded 'naive’ height. Denote by Ry (n, Q) the
number of reducible polynomials P € Z[t] of degree n and H(P) < Q.

The first step was made by van der Waerden [65] in 1934 who proved that almost
all polynomials P € Z[t] are irreducible over the Q. He considered the subset of
polynomials P € Z[t] of degree n and H(P) < @ and proved that only a small
part of them can be factorized into product of two integer polynomials of given
degrees. On the other hand this result does not give any precise information about
the value Ry (n, Q). The true order of Ry (n, Q) was recently found by Kuba [45].
He showed that Ry (n,Q) < Q" (log Q)p/"J, n > 2 as Q — oo. It should be noted
that this result holds for the set of polynomials of degree at most n but with different
constants. The exact asymptotic for Ry (n, Q) was given by Dubickas [25].
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2.2 Connection of the Distribution of Algebraic Num-
bers and Zeroes of Random Polynomials

In this subsection we will give a review of the previous results providing an asymp-
totic formula for the number of points with algebraic conjugate coordinates lying
in a given subset D. These results are based on applying the method described
above and using the connection between algebraic numbers and zeroes of random
polynomials.

Let us formulate the general problem. Given some fixed integer numbers k,I > 0
such that 0 < k + 2I < n, a Borel subset D C R¥ x (Cl+, a height function h and a

positive real number @) € R, consider the function /\/}(Lk’l)(Q, D) which counts the
number of ordered mixed (k,[)-tuples @ := (a1, ag, ..., k) of distinct conjugate
algebraic numbers «; of degree at most n and with h(e;) < @, lying within the
subset D. Let us emphasize that we assume that «y,...,a; are real algebraic
numbers and a4 1, ..., ok are totally complex algebraic numbers. Moreover, since
we are considering algebraic numbers over the field Q, the set of algebraic conjugate
numbers is invariant under complex conjugation. This means that we can confine
ourselves to considering only the upper complex half-plane C,.. Thus, the question
regarding the distribution of algebraic numbers reads as follows. Given some fixed
integer numbers k,! > 0 such that 0 < k421 < n, a Borel subset D C R* x (Cl+ and a

height function h we need to find the asymptotic behavior of the value ./\/}(Lk’l)(Q, D)
as ) — oo.

The first result in this direction has been obtained by Kaliada [44]. He considered
the case of an interval I C R and ’'naive’ height h = H, and proved the following

formula
n+1
(1,0) _ Q@ (1.0 () d O( n (1 L2/nj>
NEO@Q, 1) = 2<n+1/ v +0 (@ (105Q)
where the function p%l’o) : R — R is given explicitly but has a difficult structure.

The main problem here was to calculate the volume of the body A; formed by
polynomials with real coefficients, of degree at most n, naive’ height at most 1 and
having exactly 1 <[ < n roots in the interval I. Using some detailed analysis and
arguments from number theory Kaliada showed that

Zl vol(4;) = /p,gl’o)(x) dx, (2.2.1)
=1 ;

from which the formula above follows immediately.

Looking carefully at equation (2.2.1) one realizes that the sum in the left side is
(up to constant) equal to the expected value of the number of zeroes of the random
polynomial G(t) = &,t" + ... + &1t + & lying inside the interval I, where the co-
efficients §; are independent random variables uniformly distributed in the interval
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(1,0)

[—1;1]. The function py, " is called the density function of the number of real zeroes
of the random polynomial G.

Based on this observation, Kaliada, Zaporozhets, and Gotze [36, 35, 37| obtained
asymptotic formulas of the same type for more general cases. The key step of their
proofs was to derive a formula for the mixed (&, [)-correlation function pgfé) of zeroes
of random polynomial G (see the Definition B.0.2). We will mention here the last

and most general result only.

For any p € (0,00] and any fixed vector w € R?fl consider weighted [,-height
h = lpw. Then for some integers k,l > 0, such that 0 < k£ + 2] < n, and any
measurable set D C RF x Cﬂr, such that its boundary belongs to Lipschitz class
Lip(n, M, L) (see the Definition A.2.6), we have

VO](Bn—H Qn+1 (kl X Z dXdZ
2¢(n + Lwo . p" G

NED(Q, D) =

+0 (Q” (log Q)@/(”—?”J) . (22.2)

(k1)

where B} denotes the unit n-dimensional [)-ball and p, 7/ is the mixed (k,[)-

correlation function of zeroes of random polynomial G(z) := Z w; L¢;2%, where

&; are independent, identically distributed real random variables Wlth a probability
density function given by

,‘t‘p

Ft) = or (14+1)’
s11(t), p=oc.

)

D < 00,

(k1)

The exact formula for the function p, 7 was also derived in [37].

2.3 Main Result

In this section we formulate our main result.

Let Ppw(Q) denote the class of integer polynomials of degree n and with elliptic
height at most Q

Prw(Q) :={P € Z[t]: degP =n, hw(P) < Q}.

We say that an integer polynomial is prime, if it is irreducible over Q, primitive and
its leading coefficient is positive. Denote by P}, ., (@) the class of prime polynomials
from Pp, w(Q)

Prw(Q) :={P € Ppw(Q): P is prime, },

which is obviously coincide with the set of minimal polynomials of the set of algebraic
numbers of degree n and with elliptic height at most Q.
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Let us start with proving an easy fact about the algebraic numbers on the unit
circle.

Proposition 2.3.1. Any algebraic number on T, except for +1, has even degree
and its minimal polynomial is reciprocal.

Proof. Consider an algebraic number o € T with minimal polynomial
Py(t) = ant™ + ... + a1t + ao.

Since the coefficients of P are real, the complex conjugate & is also a root of P.
Moreover, o € T is equivalent to |a| = 1 and, hence, @ = a~!. Thus,

Pa(a) = P, <;> —0,

which implies that « is a root of the polynomial
Po(t) = t"Py(t™) = aot" + ... + an_1t + ap.

According to the definition of minimal polynomial we conclude that P, is a factor
of ]3a and, moreover, there are only two possibilities: P, = —]3a or P, = ]5a. The
first would imply that 1 is a root of polynomial P, which is impossible due to its
irreducibility. Therefore P, = P, which means that polynomial P, is reciprocal and

a; = ap—;, 0<1i<n.

For odd n, this condition implies that —1 is a root of P which, again, contradicts
with its irreducibility. O

From the Proposition 2.3.1 we immediately conclude the following.
Corollary 2.3.1.1. For any fixed vector of positive weights w, any —m < 1 < fo <
7 and odd n > 3 we have

Nn,W(Qv /81) /82) = 0.

Thus, from now on we can restrict our attention to the even n. In this case we prove
the following theorem, which is the main result of this chapter.
Theorem 2.3.2. For any integer even n = 2m, m > 1, any fized symmetric vector

of positive weights w = (wg, ..., W, ..., W), and any —m < B < fo < 7 we have
VOI(Bm+1 ) Qm+1 7 [2/m]
wa y Pl = / w,m (T dt+0 (1 " )
2mae(Q, 81, 52) = g [ P00 (@ (g @)™
B1

as Q) — oo, where ((-) denotes the Riemann zeta function and the function pw m(t)

has the form
1/2
] . (2.3.1)

s

=212 tog (U5 4 S w2, cos(ka) cos(hy)
Pw,m D20y 0g 9 2 w, .~ . cos(kx)cos(ky oyt
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2.4 Corollaries

It should be noted that in general form the limit density pw ., is difficult to analyze.
However, for some special vectors w the expression (2.3.1) can be simplified.

The first one is the Bombieri 2-norm.

we have

. 9my\ —1/2 2™
Corollary 2.4.0.1. For any integer m > 1 and w = (( . ) >k .

S (cost)®® + (2m — 1) (cost)*™ 2

2m—2 1/2
|sin t| < )
m k=0
) =4/— - .
pw,m( ) ) (cos t)2m T

Let us mention that the Bombieri 2-norm is quite 'natural’ to be considered in this

case. Particularly for the random polynomial
n n 1/2
G(z) = z; (k> %

with coefficients & being i.i.d standard Gaussian random variables, the density
function of zeroes has a very simple form, see [26], and is given by

L9 = 0

G AT (14 12)]
which coincides with the normalized Cauchy density.

The next example is the Euclidean height, namely the vector w = (1,...,1).
Corollary 2.4.0.2. For any integer m > 1 and w = (1,...,1) we have

1 sin(bmt)\ " /bmsin(bmt) b2, cos(bmt) cost
Pwn(?) T < * sint ) ( 2(sint)3 2 (sint)?
(sin(bmt))* b3, + 2bm sin(bmt) 2, N (m? + m)bzn)l/z
4(sint)* 6 sint 4(sint)? 3 ’

where b, =2m + 1.

The last example is very specific family of weight vectors depending on some positive
parameter a.
Corollary 2.4.0.3. Consider the vector of weights w € Rim for m = 2k defined as

, ~1/2
(k)1 = (4‘k ()G ax ) 0 i<k -1
(24.1)

. —1/2
k—j ] '
Wa(e—j) = (4"““ > () (;3’2-23-)<2a>2’> L 0<j<k
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e e A aamzs st

Figure 2.1: A plot of the density function pw ., (t) (defined in Corollary 2.4.0.1) of
the algebraic numbers a of degree 2m on the unit circle w.r.t. height function hy

with weights w = (( . o

and for m = 2k + 1 defined as
, ~1/2
k—j , ‘
iy = (2 ) L 0sgen
, ~1/2
k—j A ,
vaicgo = (2 S QDR o<y

where a € Ry is an fivred number. Then for any integer m > 1 we have

a

2m)_1/2)n ca)m=3;b)m=4c)m=>5d) m=7.

(2.4.2)

- B o 2
L [(m (dzn L sm=Lcos 2t — s 2 (sin 2t) ) m? d™ s™2 (sin 2t)2

Pwm(t) = —
wan(t) = dy + s (dp + s7)°

where sq = cos(2t) + a and d, =1+ a.

2.5 Proof of Theorem 2.3.2

To prove Theorem 2.3.2 we will use the method described in Section 2.1, namely
we will reduce our problem to determining the density of zeroes of some random

1/2

trigonometric polynomial. The main ingredient of the further proof is the result of
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Figure 2.2: A plot of the density function pw ,,(t) (defined in Corollary 2.4.0.2) of
the algebraic numbers a of degree 2m on the unit circle w.r.t. height function hy,
with weights w = (1,...,1): a) m=3;b) m=4;¢) m=5;d) m=T1.

Edelman-Kostlan (see Lemma B.0.4) and the representation of the uniform distribu-
tion in the (n + 1)-dimensional unit ball in terms of independent standard Gaussian
random variables (see Lemma B.0.5).

Main Part

Consider the following class of symmetric polynomials of even degree n = 2m

2m
SPp, = {P € Z[t]: P(t) = Zaiti, a; = agm_i} .
1=0

Let us define the subclass of symmetric polynomials of even degree n = 2m and
bounded elliptic height

SPmw(Q) :=SPmNPrw(Q),

and subclass of prime symmetric polynomials of even degree n = 2m and bounded
elliptic height

Sp;kn,w(Q) =8Pm N ,P’:,,W(Q)

According to Proposition 2.3.1 the set of all minimal polynomials of algebraic num-
bers a € T having degree 2m and hyw(a) < @ coincides with SP;, . (Q) and, hence,
we can restrict ourselves to this case only.
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C d

Figure 2.3: A plot of the density function pw ,,(t) (defined in Corollary 2.4.0.3) of
the algebraic numbers « of degree 12 on the unit circle w.r.t. height function hy
with weights defined by (2.4.1): a) a = 0.001; b) a =0.1; ¢) a = 1; d) a = 100.

Given a function F' : C — R and some Borel subset B C C denote by up(B) the
number of zeroes of function F' lying in B. Thus, we have

NQm,w(QaﬁbﬁQ) = Z wp (T51,52)

PeSPL, w(Q)

and, since up (Tg, g,) < 2m, we can write

2m
Nomw(Q, B1,82) = 1-#{P €SP}, (Q): pp (Tpy 5,) =1} (2.5.1)
=0

Our aim is to estimate the number of the irreducible primitive symmetric poly-
nomials having the prescribed number of the roots on the arc Tg, 3,. Identifying
polynomials with the vectors of their coefficients we reduce our problem to counting
integer points in multidimensional regions.

For [ = 0,1,...,2m denote by A; C R™ the set of points (ag,...,an) such that
the polynomial P(t) = aogt®™ + ... + amt™ + ... + ag satisfies up(Tps, 5,) = | and
hw (P) < 1. The latter condition is equivalent to the fact that vector (ag,...,anm)
belongs to the ellipsoid &, defined as

2 m—1 9
Ew 1= {(ao,...,am) e R LZ—FQZ% < 1}
Wi = Wy

with | —
Bm
vol(£y) = YAEB™T) (2.5.2)

2/ 2000 . . Wy,
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C d

Figure 2.4: A plot of the density function pw ., (t) (defined in Corollary 2.4.0.3) of
the algebraic numbers « of degree 14 on the unit circle w.r.t. height function hy
with weights defined by (2.4.2): a) a =0.001; b) a =0.1; ¢) a = 1; d) a = 100.

Then by definition of primitive polynomial we have

P (QA)) = #{P € SPmw(Q): P is primitive, up(Tg, g,) =1},

where p*(D) denotes the number of points with co-prime integer coordinates inside
some bounded set D C R™*!. This implies

S QA — #(P € P (Q): up(Ts ) = | < SRuw(m, Q). (253

where SRw(m, Q) is the number of all polynomials P € SP,, w(Q) reducible in
SP,, (i.e. which can be written as a product of two symmetric polynomials of
positive degree). The factor 1/2 in (2.5.3) is due to the positiveness of the leading
coeflicient of a prime polynomial.

Our next step is to estimate the values p*(Q 4;) and SRw(m,Q). In order to
estimate the first value we are going to use Lemma A.2.8. For this we need to make
sure that for any 0 <[ < 2m the boundary of A; is of Lipschitz class (see Definition
A2.6).

Lemma 2.5.1. For any 0 < | < 2m the boundary 0A; of the set A; belongs to
Lipschitz class Lip(m + 1, M, L) for some constants M, L depending on | and w
only.

This lemma is a slightly modified and simplified version of [37, Lemma 6.4]. We
give a detailed proof later in this section.
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The upper bound for the number of reducible symmetric polynomials SRy (m, Q)
is established in the following lemma.
Lemma 2.5.2. For any m > 2 and any vector of positive weights w we have

SRu(m, Q) < Q™ (logQ)1*/™,
where the constants in Vinogradov symbol depend on m and w only.

The proof of Lemma 2.5.2 is given below.

Now due to Lemma 2.5.1 we can apply Lemma A.2.8 to the set A; which together
with (2.5.3) and Lemma 2.5.2 gives

vol(A;)

m-+1 m [2/m]
ey +0(Q™ (log @)™,

#{P € SP:n,w(Q): mp (Tﬁl,,@) =1} =

and, by (2.5.1) we obtain

Qm—H 2m

Namaw (@81, 52) = 565 Zmol 4)+0(Q" (log@™) . (25.4)

To estimate the sum on the right side of (2.5.4) consider the random polynomial

3

G(t) == Ep(tF + 2Ry g™,
0

>
I

where the random vector (\/§w0§0,...,ﬂwm_lfm_l,wmfm) is uniformly dis-
tributed over the (m + 1)-dimensional unit ball B™*!. Then by definition of the

region A4; and since the semi-axes of &y are (vV2wo) ™!, ..., (V2wm_1)"t, w, !, we
have (A
VO 1

P T =] = . 2.5.5

[ ( 51,52) ] vol(Ey) ( )

Taking z = ¢ € T and using Euler’s formula transform G(z) as follows

3

G(Z) — é—k(eikﬁ + ei(2m—k)0) + émeime
0

—i(m—k)0 + ei(m—k)@ ¢
_ sz >m
= (Z &5 5 + 5 )

= 2¢tm0 (Zﬁm % cos (k) +€;n> =: 20 T().

il

From this we see that the distribution of zeroes of the random polynomial G(z)
on the complex unit circle coincides with the distribution of zeroes of the random
trigonometric polynomial 7'() on the interval [0, 27] and

Pluc (Tﬁlﬁz) =1 =Plur ([81,8]) =1.
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The probability on the left-hand side is difficult to calculate because of the depen-
dency of the coefficients of T. However, by proper normalization (which does not
affect the roots) we can achieve their independence.

Let no,...,nm be iid. real-valued standard Gaussian random variables and let Z
be a standard exponential random variable. By Lemma B.0.5 the random vector
(77077717 o 77771)
n 1/2
(Z Atz )
i=0

is uniformly distributed in the unit ball B™*!, that is, has the same distribution as
the vector (\/ﬁwofo, e ﬂwm_lgm_l,wmgm). Thus,

(V20) T (200 ) Tomnlte) 4
(Z o+ Z)

=0

Since dividing a polynomial by a non-zero constant does not affect its roots, the
polynomials T'(#) and

~ Nm—k
T(0) : cos k6
( 2wm Z \/§wm—k

have the same distribution of zeroes and

Plur ([61,82]) = ] = P [uz ([B1, B2]) = 1] -
Combining this with (2.5.5) and (2.5.2), we arrive at

Zl vol(4;) = vol (& ZZP ([B1, B2]) = 1]

1=0
= ME [ﬂ:ﬁ([ﬁl,ﬂ?])}'

2m/ 2 - - - Wiy

Finally, applying Lemma B.0.4 to the random function T with vec-

tor v(t) = (3,cos(t),...,cos(mt)) and covariance matrix C =
Dlag {w77L27 (ﬂwm—l)_27 EERE) (ﬂw())_2}7 we get
B2
E 117 (191 82) | = [ pwm(t)at,
B1
where
i m 1/2
1| 0? w2 1 _9
Pwm(t) = | 52y log ( 4 + 3 ;wm_k cos(kx) cos(k:y)) xyt]

1] 82 w2 2
= - 920y log ( + Zwm , cos(kx) cos(k:y)) x:y:t] ,

which together with (2.5.4) finishes the proof.
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Proof of Lemma 2.5.1

Recall that A4; C R™T! is the set of points (ag, - . ., am) € Ew such that the polyno-
mial P(2) = apz®™ + ...+ ap2z™ + ... + ag satisfies up(Ts, 5,) = [. For z = € we

have

P(z) = 2" (Z i cos (kB) + “;") —: 26 T(0),

k=1
and, hence, A; is a set of points (ag,...,an) € Ew such that the trigonometric
polynomial T satisfies 7 ([51, B2]) = L.

The boundary of A; is contained in the union of three sets:
1. the boundary of &Ey;

2. the set

A/:{(aov...,am)Gngf(ﬁl)zo or T(BQ)ZO};

3. the set A” of points (ag, .. .,am) € Ew such that the trigonometric polynomial
T has double real roots in [81, fa].

Thus, it is enough to show that each of these sets is of Lipschitz class.

(i) The boundary of Ew. Since & is a convex bounded body, by Theorem A.2.9 its
boundary belongs to the Lipschitz class.

(ii) The set A’. Without loss of generality let 7(3;) = 0, which is equivalent to

O, = —2 Z A1 cos (k1) .
k=1

Since (ag,...,am) € &Ew, there exists a constant C' := maxwi_1 such that
7

ao, - -, am—1 < C. Consider a Lipschitz map ¢ = (o, ..., ¢m) : [0,1]™ — R™H
defined as
qﬁi(to,...,tm,l):Cti, i:O,...,m—l,

and

Gm(to, - tm—1) = —QC’Ztm_k cos (kBy) .
k=1

We obviously have
ai:gbi(ao/C,...,am,l/C'), i:(),...,m—l,
which implies A" C ¢([0,1]™). Therefore A’ is of Lipschitz class.

(iii) The set A”. Suppose that (ao,...,am) € A”. Then T() has a multiple real
root, say By, which implies

T(Bo) =0, T'(o) =0, (2.5.6)
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or (excluding the trivial case By = 0), equivalently,

sin(k
am—-1 = — ka k5 BO)

sin By '

m = —2 Z am— cos (kBo) + 2 cot By Z ka,—k sin(kBo).

k=2 k=2
Again, there exists a constant C' := max w* such that ag, ..., am—o < C. Moreover,

we have |3g| < 7. Consider a map ¢ = (¢g, ..., dm) : [0,1]™ — R™H! defined as

Gi(t,to, .. tmz) =Ct;, i=0,....,m—2,

sin(kmnt
¢m—1(t7t07"' = —CZktm kK~ /N )

sin(rt) ’
and
Om(t,to, ... tm—g) = —2C Z tin—i cos (kmt) + 2C cot(mt) Z ktpn—k sin(kmt).
k=2 k=2

Since ¢ is continuously differentiable in a compact, it satisfies the Lipschitz condi-
tion. We obviously have

al:gbi(BQ/ﬂ',CLQ/C,...,amfz/C), ’iZO,...,’I’)’L,
which implies A” C ¢([0,1]™). Therefore A” is of Lipschitz class.

Proof of Lemma 2.5.2
To prove this lemma we will use the method of [45].

Consider some polynomial P(t) = ant™ + ...+ ait + ag. Denote by SRy (m, Q) the
number of symmetric reducible polynomials P € SP,, of even degree n = 2m and
bounded 'naive’ height H(P) < Q. Using the inequality

(@ < (min o |)_1 ho(c),

0<i<m

which follows from generalized mean inequality, we conclude, that

0<i<n

SRw(m, Q) < SRy ( ( min w; >_1 Q> (25.7)

and the problem reduces to estimating the value SRy (m, Q).

Denote by R2 (T) the number of pairs (P;, P;) of symmetric polynomials with in-
teger coefficients such that deg P; + deg P> = 2m and

H(P)H(Py) <T.
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Then by equation (A.1.5) from Lemma A.1.17 it is easy to see
R}, (Q1) > SRu(m,Q), (2.5.8)

where Q)1 = (22m_2\/2m + 1) Q. Since, obviously,
#{P e SP,: HP) =q} <2(k+1)(2¢ + 1)F < ¢*,

then we get

m—1
R2(T) < S afym Tt < T (log T) P

k=1 z,y€l,z,y>1,
zy<T

For the proof of this estimate we refer the reader to [45, eq. (3.2)]. Using the above
estimate and inequalities (2.5.7), (2.5.8) we obtain

~1
SRw(m,Q) < SRy (m, (Urgin w¢> Q)

<n

1
< R?, << min wi) Ql) < Q™ (logQ)*/™,

0<i<n

where the constants in Vinogradov symbol depend on m and w only. This completes
the proof.

2.6 Proofs of Corollaries

Proof of Corollary 2.4.0.1
Consider the function pw,,(t) defined by equation (2.3.1) with weights w =

<(2’T)_1/2>Zo‘ Write the kernel

Il
DN | =
7 N
=
~_—
+
—_
N
s
N~
o
O
BN
I
G
@)
o
PN
ol
s

and, using Fuler’s formula, transform it as follows

1 /2m Z2m )\ e T 4 etk omiky 4 giky
k_

—im(z+y) 2m ) ) 2m 9 . .
e -7 MY ik(z+y) M\ iky i(2m—k)zx
(S e o 2 (e

= w ((1 + ei(:}c+y)>2m + (ez’y + eim)2m>'
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Substituting the above expression into (2.3.1) we get

1T 2 1/2
wm(l) = — log Kwm )
o) =+ | 5o o] |
17 2 ' 1/2
_ = B o im(z+y)
+ |52y ( log4 —im(x + y) + log 4e Ky m(z, y)) w_y_t]
17 82 ~ 1/2
= - 1 Km )
T | 0x0y 0g Kn(,y) x:y:t]
> 02 7 o 7 o 7 1/2
- l Km(t7t) ' me(xvy)‘I:y:t - %Km(‘r?t)‘x:t ' oy m(ta y)‘y:t
T K3,(t.1) ’

2m

where K, (z,y) = (1+ ei(x+y))2m + (" + €)™, The task is to find the partial
derivatives of the function K,,(z,y) for x = y = t. Using Euler’s formula, we get

Km(t,t) — (1 + eQit)Zm + 22m62imt — 22m€2imt ((COSt)2m + 1) ; (261)

2m—

0 J - , , .
—Km(:c,t)‘x:t = a—me(t,y) = 2ime*" (1 + &*") bt 2im 22m—12imt

= 2im 22" 1e?™ (e (cost)*™ 1 +1);  (2.6.2)

0% - ; i\ 2m—1 ; 1\ 2m—2
axame(x,y)‘x:y:t = —2me*" (1 4 &*") " 2m(2m — 1)t (14 €*") "
—om(2m — 1) 22M2e2imt — gy, 92m—2 2imt (2eit<cos £)2m-1
+ (2m — 1)e?t(cost)2™2 + (2m — 1)). (2.6.3)

Thus, by equations (2.6.1), (2.6.2) and (2.6.3) we obtain

-1 . ,
Pwm(t) =1/ % ((cos t)2m 4 1) . (emt(cos £)4m=2 _ 9¢H (cost)im1
™

: . 1/2
— (2m — 1)(cost)?™ — (2m — 1)e?*(cos t)?*™ 2 4 (2m — 1)e'(cos t)*™ ! + 1) )

Using the equalities

e = cost+isint;

et = cos(2t) + isin(2t) = 2(cost)? — 1 + 2isint cost.
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we have
1/2
. poy (1 — (cos?t)*™~1 4 (2m — 1)(cost)*™ 2 (1 — cos? t) )
Pwm(t) = o2 (cost)?m +1
2m—2 1/2
V1 —cos?t ( > (cost)®® + (2m — 1) (cos t)2m2>
— ™ k=0
27 (cost)*™ +1
2m—2 1/2
|sin ¢| ( 3 (cost)?* + (2m — 1) (cos t)2m_2>
Y L k=0
22 (cost)®™ +1

Proof of Corollary 2.4.0.2

Before we start recall some trigonometric formulas which will be used in our calcu-

o . ((NSI—; él?f —¥) =1+2 iCos(k(x —y));
2 k=1
sin <N(‘”2_ y)> _ k%;d(_l)(k—l)/z <JZ> <COS x ; y)N_k (Sm z ; y) g ;
cos <N($2_ y)> = k%;ﬂ(—l)k/2 <JZ> <cos i ; y> o (sin z ; y>k

Consider the function pw n,(t) with weights w = (1,...,1). In this case the kernel
has the form

1 I /1 1
Ky m(x,y) = 3 + Zcos(lm) cos(ky) = 1 + Z (2 cosk(x +y) + 5 €08 k(x — y)>
k=1 k=1

1 1 1
:2+2l;cosk(x+y)+2;cosk(x—y)

_ sin (m+3)(z+y)) sin ((m+%)($_y))

4sin &Y 4sin £¥

sin((m+2
It should be noted that b((mit?)t) is the well-known Dirichlet kernel.
2

Expression (2.3.1) can be written as

2
1| Kwm(t,t) - aj—ay}(w,m(x,y)\x:y:t - EKym(z,t)|,_, - (%me(t, y)\y:t

pwm(t) = =
wom T K2, ,.(t,1)

In order to determine the function pw ,(t) it is necessary to find the partial deriva-
tives of the function Ky n(z,y) for z =y =t

1/2
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Recall that b, = 2m + 1. Thus, we have

by sin(bpt)

sin(by,t) N sin ((m + §)(z —y)) _ bm
r=y=t 4 4sint ’

4sint 4sin‘r—gy

vam(tv t) =

0

oz = ng’m(t,y)‘

Kw.m(@,?) a=t Oy
_ (m cos 71)”(";_3/)) sin Ll(g_y) )

- s xT—y 2 x—y
4 sin = 8 sin =

y=t
mcos(byt)  sin(2mt)
z=y=t 4sint 8sin?t

m

z=y=t 4gin L;y

mcos(by,t)  sin(2mit)
r=y=t 4sint 8sin? t

m

r—y
2

4 sin

mcos(by,t)  sin(2mt)
4sint 8sin?t

82
0xdy

e=y=t 4sin “Y 4sin® *HY 8sin® L3¢

m?sin 22E=8)) gy cos ZUEZY)) gy 2mEm)y
Kw,m(% Y) ( 2 2 2

m?sin(b,,t)  mcos(2mt)  cost sin(2mt)
4sint 4sin?t 8sin? ¢
_ mPby, m m2(2m — 1) m
B T

m(2m —1)(m —1)  m?sin(b,t) mcos(2mt) cost sin(2mt)

r=y=t 4 4 sin

r=y=t

2 4sint 4sin?t 8sin? ¢
_ costsin(2mt)  m?sin(bynt)  mcos(2mt)  (m?+ m)by,
8sin3 ¢ 4sint 48in?t 12 ’

Using the above equations we obtain

1 sin(bpmt)\ " /bmsin(bmt) b2, cos(bmt) cost
R U

Pwn(t) = P 2(sint)® 2 (sint)?

(sin(bmt))® b3, + 2bm sin(bmt) b, N (m? + m)b%l>1/2
4(sint)* 6 sin ¢ 4(sint)? 3 ’

sint

Proof of Corollary 2.4.0.3

In order to calculate the density pw,,(t) in this case we will use the following

trigonometric identities for integer £ > 0

k—1
(cost)?k =972k (if) 272N <2k> cos(2k — 2j)t, (2.6.4)
=0 N7
k
(cost)2itl = g=2(k+1) Z (2]{;;_ 1) cos(2k + 1 — 2j)t. (2.6.5)

J=0
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Consider the function pw ., (t) defined by equation (2.3.1) with weights w defined
by (2.4.1) and (2.4.2). In this case the kernel has the following form

2

w 2

w, “ . cos(ix) cos(iy)

IR

@
Il
—

Kw,m(x7y) = +

w ‘

—2
—1

2
+

wm
2

w_2 mw724 ) mw2
= ZZ—F; E_Zcosi(x—y) + 74-2 ;Zcosz(a:—i-y)

[\V] SE|

IR

@
Il
—_

(cosi(x +y) + cosi(x — y))

Let m = 2k. For any positive real a consider the expression

F(z,+y) : = (cos(x £ y) + a)™

ok o |
= - <2i)a21 (COS(.%‘ + y))Q(k‘—z) + ; (27; B 1) a22—1 (COS(QZ‘ 4 y))Q(k:—z)-H .

i=0 j=0

o i (o) oy > (P50 D costetr—i =+ e

=0 J

Rewrite this expression in the following form
1 O~ (2K [2(k — )
- - - 2i
F(x,iy>—4ki§:;<22.)( e
2k (k—1) _
<21> <k: i ]> (2a)% cos 2j(z + )

Analogously for m = 2k 4+ 1 we get

F(z,+y) : = (cos(z £ y) +a)™

k k
Z <2k + 1) 2t (cos(z £ 1)) 2FY) 4 Z (2k u 1> (cos(x & y))2k=D+L

=0 2i+1 =0
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Applying 2.6.4 and 2.6.5 we obtain

F(z,ty)
G Z (i s (5 20)+ 2k§ () cosath =i - o £0)
* g Z (") e 2 (* 0 D stz —i -+ (e

Rewrite this expression in the following form:
k .
1 2k + 1\ [2(k — 1) 2
F :l: = 2 Z+1
(@.%0) = 5 Z<2z+1>< k—i >( %)

TR (e

=i Y
k .
1 2%+ 1\ (20k— i)+ 1\ . o .
— E E 2a)* 2 1 +9).
+ 4k‘+1 == < 2 > < k—i _] )( a) COS( J + )('1‘ y)

Then, with weights w defined by (2.4.1) and (2.4.2), we get
Kwm(z,y) = F(z,y) + F(z, —y) = (cos(z +y) + a)™ + (cos(z — y) +a)™

In order to determine the function pw m,(t) we need to find the partial derivatives of
the function Ky n(z,y) for ¢ = y = t. Using the expression above and remembering
that s, = cos2t 4+ a, d, = 1+ a we have

Ky om(t,t) = (cos(2t) +a)™ + (1 +a)™;

0

0
a_ — ‘*}(wvn t
o m(t,y)

z=t Oy y=t

= ( —m (cos(z +vy) + a)mfl sin(z +y)

}(Wﬂn(mat)

—m (cos(z — y) 4+ a)™ " sin(z — y)) e
r=y=t

= —m s ! sin 2t;

82 m—2
Ty v (@:9) =m(m —1) (cos(z +y) + a)

sin’(z + )
r=y=t

r=y=t

—m (cos(z +y) +a)™ ' cos(z + y)

T=y=t

m—2

—m(m —1) (cos(x —y) + a) sin?(z — )

r=y=t
+m (cos(z +y) +a)" " cos(z — y)

r=y=t

=m(m —1)s™? (sin2t)* — m ™! cos 2t + md™ L
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Thus, we obtain

1/2
1 [m (da 1 — 5™ cos2t — s™2 (sin 2t)2> m2d™ s™2 (sin 2t)°
a a

+
g’ + 53 (di + s7)?




CHAPTER 3

Counting Points with Algebraic
Conjugate Coordinates

In this chapter we investigate the distribution of algebraic numbers with respect to
'naive’ height. Given some @) > 0 denote by P, (Q) the following class of polynomials

Pn(Q)={P € Z[t] : deg P < n,H(P) < Q}.

During this chapter we will use the notation ¢; > 0, j € N to denote the positive
values which do not depend on H(P) or ). For convenience let us also define the
following function

n—1

k

wn(z) = Z |z |*.
k=0

3.1 Introduction

Let us start with some short historical review. The first result providing some
information about the distribution of algebraic numbers was obtained in 1970 by
Baker and Schmidt [2]. In order to study the distribution of algebraic numbers
Baker and Schmidt introduced the concept of a regular system. A countable set
I' C R together with positive-valued function N : I' — RT is called a reqular system
if there exists a constant C' = C(I', N) > 0 such that for every interval I C R and
a sufficiently large number 7' > Ty(I', N, I) > 0 there exist at least C T'\; (I) points
V1,72, - -5y € I'N 1 such that

N(yi) <T, 1<i<t,
1 o (3.1.1)
Vi —v| >T 7, 1<i<j<t.
A simple example of a regular system is the set of non-zero rational numbers p/q
together with the function N(p/q) := ¢*>. An important fact is that the set A,
together with the function Ni(a) = H(a)"*! (In H(a))_3"("+1) is a regular system
[2]. This result has been improved, showing that the set A, together with the
function Na(a) = H ()" (14 o)™V [7] and the set O, together with the
function N3(a) = H(a)" (1 + o)™V [16] are regular systems. Moreover, the
same holds for the set of algebraic numbers and algebraic integers of degree at most
n.
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Let us mention that these results do not provide any information about the depen-
dence of the value Tyo(I', N, I) on the length of the interval I, although this is an
interesting question. In his monograph [17] Bugeaud showed that To(Q, N,I) =
10* (A (1))~ (log(100(Aq ([))*1))2 (see equation (5.6)) and Beresnevich [6] calcu-
lated To(Ag, No,I) = 723(X\; (1)) 73 (log 72(M\ ([))*1)3 for any interval I C [0;1],
but for arbitrary degree the question stayed open for some time.

In 2015 Bernik and Gotze [14] motivated by this problem obtained the following
result. Given an interval I C R, denote by N, (A, Q,I) the number of algebraic
numbers o € I of degree at most n and ’'naive’ height at most (). Then for any
interval I of length A\j (1) < Q@7*, 0 < s <1, and @ > Qo the following estimate
holds

No(A,Q, 1) > QA (1), (3.1.2)

where the constants in the Vinogradov symbol and the value Qg depend on n and
the middle point of the interval I only. To prove this inequality they basically
constructed a set of algebraic numbers v1, 72, ..., € Ay, N I satisfying conditions
(3.1.1) with N(a) = H(a)™*!. This allowed to conclude that Ty(A,, No,I) =
C1(n) (A1 (1))~""! for any interval I C [0;1].

The results mentioned above have many interesting applications. For example, a
regular system of algebraic numbers is used to obtain lower bounds for the Hausdorff
dimension of various sets of algebraic number |2, 23| and to prove Khinchine-type
theorems in the case of divergence |7, 11].

In this chapter we will obtain the results similar to (3.1.2) for the set of algebraic
integers and consider the two-dimensional analogue of the problem.

Given a Borel subset D C R2, consider the function N2(A, Q, D), which counts
the number of ordered pairs a := (ay,a3) € D of distinct conjugate algebraic
numbers a1, as of degree at most n and 'naive’ height at most @), and the function
N2(0,Q, D), which counts the number of ordered pairs o := (ai,as) € D of
distinct conjugate algebraic integers ay, ag of degree n and ’naive’ height at most

Q.

We will derive the upper and lower bounds for values N2(A, Q, D) and N2(O, Q, D)
in case of two classes of subsets D having fixed 'position’ and measure depending on
@ that vanishing as @) tends to infinity. The first class of subsets under consideration
are rectangles with fixed middle point, and the second class are e-neighborhoods of
some fixed curve. For algebraic integers we will derive upper and lower bounds
for the number of algebraic integers with height at most @ lying in some interval
I € R with fixed middle point and length vanishing as @) tends to infinity. We will
start by obtaining the estimates for the number of points with algebraic conjugate
coordinates and derive the result for algebraic integers using those estimates.
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3.2 Rectangles of Small Measure

Consider a rectangle IT = I x Iy with middle point d = (di,d2), d1 # da and sizes
A (1) =11 Q7" A (I2) = c12Q~*2. The condition d; # do is necessary since
it allows to exclude from consideration the neighborhood of the line x = y. The
points in this area can not be well approximated by points with algebraic conjugate
coordinates since algebraic conjugate numbers have some kind of repulsion [18, 28].

In this section we will prove a few theorems providing the upper and lower esti-
mates of the value N2(A, @Q,1I) for some choices of s; and s3. Those estimates are
asymptotic with Q — oo. Moreover upper and lower estimates are equal up to
multiplication by the constant factor.

Let us start with lower estimates since they form the most difficult and technically
involved part.

Theorem 3.2.1. For any rectangle 11 = I x Iy with middle point d = (dy,ds2),
di # do satisfying the following conditions:

1. M (L) = c1,; Q7% where s; <1 and 0 < s1+s2<1,i=1,2;
2. c1pc12 > co(n,d) >0 for s;+ s2 =1;

any integer n > 2, and any real positive Q > Qo(n,d,s) there ezists a constant
¢y = ca(n,d) > 0, such that

NZ(A,Q,11) > ca Q"o (ID) . (3.2.1)

One can not avoid the condition s1+s2 < 1 since for s;4s5 > 1 there exist rectangles
II such that the statement of Theorem 3.2.1 does not hold. The example of such
rectangle is IT = (0,0.5Q 1) x (0,0.5). It is easy to prove [14] that the interval
(O, 0.5 Q_l) does not contain algebraic numbers of any degree and height at most
Q. Tt should be noted that this example is not unique and one can construct the
rectangle which does not contain points with algebraic conjugate coordinates near
every ration point with bounded denominators.

This simple fact shows that for 1 < s1+ s2 we can not obtain the estimate (3.2.1) for
all rectangles II since the certain neighborhoods of points with algebraic coordinates
of small height and small degree do not contain any other points (a1, a2) with
algebraic conjugate coordinates o; € A,,(Q). This leads us to the definition of a set
of small rectangles which are not affected by these ’anomalous’ points.

Consider a square II = I x I with \; (I1) = A1 (I2) = c3 Q% where % < s < %.
Given positive real numbers uy,us let us define the set Ly, 4,,(Q) of points x € R?
such that there exists a polynomial P € P2(Q) with leading coefficient b satisfying
the inequalities

{yp(xi)\ <hQ™, =12, (3.2.2)

Ibo| < Q2.



34 Chapter 3. Counting Points with Algebraic Conjugate Coordinates

We say that the square II is (u1,uz)- ordinary if II N Ly, 4,(Q) = 0 and (uq, ug)-
special otherwise.

For (%, %)—ordinary squares we can prove the estimate similar to (3.2.1).
Theorem 3.2.2. For any (%,%)—ordmary square I1 = I x Iy with middle point
d = (d1,ds), di # da satisfying the following conditions:

1. M\ (L) = c3Q75, where 5 <5< 3;
2. ¢3 > co(n,d) > 0;

any integer n > 2, and any real positive Q > Qo(n,d,s) there ezxists a constant
¢y = c4(n,d) > 0, such that

N, Q,TT) > e QU1 (TI) .

The upper estimate is easier to prove and can be obtained for the bigger set of
rectangles.

Theorem 3.2.3. Let Il = I x I3 be a rectangle with a middle point d = (dy,d3),
dy # do and M\ (I;) = 5 Q%, i« = 1,2. Then for any 0 < s1,s82 < 1, any integer
n > 2, and any real positive Q > Qo(n,s,d) we have

Ng(A) Q?H) < g Qn+1)‘2 (H) )

where cg = 23" 912w, (3/2 d1)wn(3/2d2)|d1 — do| 1.

3.2.1 Some Technical Lemmas

Before we start the proofs of Theorem 3.2.1, Theorem 3.2.2 and Theorem 3.2.3 let
us formulate and prove some simple technical lemmas.

Lemma 3.2.4. Let I be an interval with middle point d and length A\ (I) < Q~*%,
s > 0. Then for any polynomial P € P,(Q), any point x € I, and any real positive

Q > Qo(s,d) we have

n!
o k1(3/2d3) Q.

IPO@) < o)

n

Proof. Consider some point x € I and some polynomial P(t) = 3 axt® € P(Q).

k=0

We obtain
pk) ) n—j-k| « M = j
| ()| = z:%(n—j—k)!a”_jx _(n—k)!Q;‘x"

Since x € I then for some —1 < 0 <1 and Q > @y we have

3
o] = |d+ 60X (1) | < 1d] +0Q* < S|d]
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and, hence,
n!
]

Lemma 3.2.5. Given some d,K € ]Rz, such that |dy — da| # 0 and K1 > Ky > 0,
denote by G := G(d,K) a set of points b € Z? satisfying

’bldi + bg‘ <K; i=1,2. (3.2.3)
Then

#G < (4dr — do| 'Ky +1) (4K + 1)

Proof. To avoid triviality assume that G # () and choose some point (b1, bg) € G.
Assume that the following system of equations in two variables

bidi +bg=1;, 1=1,2, (3.24)
holds, where |l;| < K;. Considering the difference of equations
bi(dy —dg) =11 — lo,

we obtain
b1] < (|| + |l2]) |d1 — da| ! < 2|dy — da| K.

This inequality implies that for all (by,bp) € G the value by belongs to the interval
J1, where
J1 = (—2|d1 — d2|_1K1;2|d1 — d2|_1K1) .

Assume that for some fixed b € J; there exist at least two points by, by € G with
1)171 = b271 =b and
bd; + bj70 = l@j, 1,9 =1,2.

From these equalities it follows that
|b1o — bao| = |l21 — l22| < 2K,

which implies that if at least one solution (b,a) € G exists, then for all (b1, by) € G
with b = b the value by belongs to the interval Jo(b), where

J()(b) = (a —2Ksa+ 2K2) .
Remembering that by, by € Z, we conclude

#G < (4]dy — do| 'Ky + 1) (4K> +1).
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3.2.2 Proof of Theorem 3.2.1: Lower Bound

The main ingredient of the proof of Theorem 3.2.1 is the following lemma.
Lemma 3.2.6. Consider some rectangle I1 = I x Iy with middle point d = (d;,ds2),
dy # do satisfying the conditions:

1.\ (Iz) =C1, Q7% where s; <l and 0 < s14+s52<1,1=1,2;
2. C1,1C1,2 > Co(n,d) >0 for s1 4+ s9 = 1.

Given a vector v = (v1,v2) € R% with vi+vy = n—1 denote by L := L(Q, 6y, k, v, 1)
the set of points x € II such thal there exists a polynomial P € P,(Q) salisfying the
inequalities

|P(z:)] < hy Q"

min {|P'(z;)[} < 8, Q, i=1,2. (3.2.5)

Then for any 0 < k < 1, any 0 < 0, < do(n,d, k), and any real positive Q@ >
Qo(n,s,v,d, k) we have
A2 (L) < Ko (H) .

Proof. Since di # do we can assume that for every point x € II and for @ > Qg the
following holds
|21 — xg| > e = 1Dl (3.2.6)

Let us introduce some additional notation. Given a polynomial P of degree n let
A(P) := {a;,1 <1i < n} be the set of roots of P and let

S(ay) == {:U ER: |z —a4 = 1r<r;i£1n|;r —aj|}.

Denote by

e [ the set of points x € II such that there exists an irreducible polynomial
P € P,(Q) satisfying inequalities (3.2.5) and the condition |P'(x1)| < 6, Q;

e [ the set of points x € II such that there exists an irreducible polynomial
P € P,(Q) satisfying inequalities (3.2.5) and the condition |P'(z2)| < d, Q;

e L3 the set of points x € II such that there exists a reducible polynomial
P € P,(Q) satistying inequalities (3.2.5).

Clearly, we have L C (L U Ly U Lg).

The biggest part of the proof is devoted to the case of irreducible polynomials. We
will start by considering this case and deriving the estimates for A; (L1) and A1 (L2).
Without loss of generality, assume that |P'(z1)| < 0, @ and consider the set L.

In this case the main idea is to split the interval T;, which contains all possible
values of |P'(z;)| for x € II, into sub-intervals T; 1, T; 2, T; 3 and consider the cases
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|P'(z;)| € T; , k = 1,2, 3 separately. This splitting is performed as follows
Ta= [0 20:Q8° %), Tip=[2: Qi % Q@+ 2Tm), i=1
T3 = [Q%—%Jr?(i;h); 5, Q) , Tos = [Q%—%Z+‘2(752_1>; nwn(3/2 ds) Q) .
Without loss of generality, we will assume that |d;| < |da|. We would like to verify
that if a polynomial P € P, (Q) satisfies the inequalities
P (2)] > 26, Q2 %, (3.2.7)
where x € II and ¢; = 2" 'n max(hy, 1) max(1,w,_1(dz)) then
5IP'(@3)] < [P'(i)| < 2[P'(ay)], i=1,2,
where x; € S(a;). Let us write a Taylor expansion of the polynomial P’ at point z;
P/(J}Z) = P/(Ozi) + P”(ai)(:z:i - Oéi) + ...+ ﬁP(”)(az)(xz — ai)n—l‘ (328)
Using Lemma A.1.14 and the estimates (3.2.5) for Q > Qo, we have

v;+1 v;+1
|z, — ;] < nhnc;1 Q2 <Q 2.

Then, for s; > 0 and @ > Qg we get
|| < |di| + 3A1 (L) < |di| + 5 |ds| = 5 |di

and, thus,
v;+1

g < i + Q772 < 2|d;| + 3 |di| = 3 |dil.

From this estimate and Lemma 3.2.4 we obtain the following inequality for every

term in Taylor expansion (3.2.8) starting from the second one

1 _ (4w
‘(kfll)!P(k)(ai)(wi - ai)k_l‘ < (577) nwn—k41(3/2d2) Q" >

n—1
< (571) nwn—1(3/2 ds) Q7.
Finally, we get the following estimate
P () (@i = i) + .+ Gk P ) (s — )|
<2 nw, 1(3/2d9) Q272 < 1 |P'(xy),
and, by substituting this inequality to (3.2.8) we obtain
3 |P(@)| < [P'(ai)] < 2|P'(a)].

This means that for |P'(z;)| € T; 3 and |P'(z;)| € T;2 we have |P'(o;)| € T; 3 and
|P'(c;)| € T; 2 respectively, where

U

o 1 v v o 1 v
Tig=[5Q* 7000, 25,Q), Too= |3QF 275000 20w, (3/2d5) Q)

N[

1_ v 1o v ,
Ti,2=[C7Q§_7; 2Q2 2+2(”‘1)>7 i=1,2.

Now we are going to consider the following cases:
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e the case of polynomials of the second degree n = 2 (see Subsection 3.2.2.1);
e the case of irreducible polynomials:

|P'(a1)| € T13, |P'(a2)| € Ta3 (see Subsection 3.2.2.2);

|P'(c1)| € T12, |P'(c2)| € T22 (see Subsection 3.2.2.3);

|P'(z1)| € T1 1, |P'(x2)| € Ta,1 (see Subsection 3.2.2.4);
)

|P,(041 | S 7173, |P/(Ozz)| S Tlg or |P’(a1)| S TLQ, \P’(a2)| S T273 (see
Subsection 3.2.2.5);

[P'(an)| € T3, [P'(22)] € Top or |P'(z1)] € T, [P(a2)] € Ta3 (see
Subsection 3.2.2.5);

|P'(an1)| € Tra, |[P'(x2)] € Tog or |P'(21)] € Tia, [P(a2)] € Tap (see
Subsection 3.2.2.5);

e the case of reducible polynomials (see Subsection 3.2.2.6).

Counsidering some of the cases above, we are going to use induction on the degree n.
Let us first consider the system (3.2.5) for polynomials of the second degree, which
will provide us the base of induction.

3.2.2.1 The base of induction: polynomials of the second degree.

Consider the system (3.2.5) for n = 2. Given some real numbers 721,722 > 0 under
condition 21 + 72,2 = 1 denote by L' := La(Q, 02, k, 75, 1) the set of points x € II
such that there exists a polynomial P € Py(Q) satisfying the inequalities

[P(zi)| < ha Q7727,

min {|P'(z;)|} < 02Q, i=1,2. (3.2.9)

We will show that for all rectangles II satisfying the conditions of Lemma 3.2.6, for
any 02 < 0o(d, s, k), and any @ > Qo(s, "y, d, k) we have
A9 (L,) < KAy (H) .

It should be mentioned that if polynomial P(t) = byt — by is linear, then we apply
Lemma A.1.14 to obtain

- PRl <, i=1,2

for Q@ > Qo. Hence, we immediately have |1 — x2| < € which contradicts to (3.2.6).
Thus, deg P = 2.

Consider the polynomial P(t) = bat? + b1t + by € Po(Q) with roots a1 and ay. We
would like to estimate the value |ba| assuming that P satisfies (3.2.9). Let us start
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with estimating the values |P’(a1)| and |P’(«2)|. By the third inequality of Lemma
A.1.14, for every polynomial P satisfying (3.2.9) at a point x € II, we have

VP opirot <k (3.2.10)

|2 — | < (|P(a)][b2| )
for @ > Qo and z; € S(oy).
From (3.2.10) and (3.2.6) we obtain
lag — ao| > |z — 22| — |21 — Q1| — |2 — 2| > %5
and
loy — | < |@1] + |z2| + |21 — a1| + |v2 — ag| < |di| + |do| + 1+ 5.
This leads to the following bounds
[P’ ()| = |ba a1 — | > 2 € [bal. (3.2.11)
The inequalities (3.2.10) also yield the estimates
[P ()] < |ba| (a1 — @] + |z — 25]) < (|dof + 1+ ) |ba. (3.2.12)

Now upper bounds for |P'(«;)| can be obtained from the Taylor expansion of the
polynomial P’

| P ()| < [P'(ao)| + [P ()| |wi — o] < [P'(xi)] + 5 [bal- (3.2.13)
Finally, the estimates (3.2.11) and (3.2.13) lead to the inequality
|ba| < 4e™! min {|P'(2;)|} < 462671 Q. (3.2.14)

From Lemma A.1.14 and the estimates (3.2.11) it follows that the set L’ is contained

inaunion |J op, where
PeP2(Q)

op = {x ell: |z —a < 2hoe ™! Qiﬂi\bgrl,i = 1,2} .

Simple calculations show that for ¢i1¢12 > 24/1_1h§€_2 the measure of the set op
is much smaller than the measure of the rectangle II

A2 (op) < 24h§6_2Q_1|b2]_2 < KC€1,1612 Q' =k (IT) .

Let us estimate the measure of the set L’

A (L)< > Aa(op) <2'h3e Q7 > |ba| 2. (3.2.15)
PeP2(Q) b2,b1,b0<Q:
P(t)=b2t2+b1t+b0,
op#£D

We need to estimate the number of polynomials P € Py(Q) with fixed leading
coefficient such that the system (3.2.9) holds for some point x € II.
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Assume that the inequalities (3.2.9) hold for the polynomial P and the point xg €
II. Let us estimate the value of the polynomial P at points d;. From the Taylor
expansion of polynomial P we have
|P(di)] = |P(20:) + P'(w0,) (w0, — di) + 5P (0,) (w0 — di)?|
< |P(xoq)| + [P (xo4) [\ (1) + [ba] (A1 (1:))*

Thus, from (3.2.12) for Q > Qo we obtain
|P(d;)| < |P(z0,)] + cs [b2 A1 (1i) < 2¢s max (1, [b2| A1 (1:))

where cg > 1. Without loss of generality we assume that A\ (I1) < A\ (I2).

Consider the system of equations

bod? + bid bp =1
{2 1+ 01d1 + 0g 15 (3.2.16)

bod3 + bids + by = lo

in three variables ba, b1, by € Z, where |l;| < 2¢g max (1, |b2| A1 (L;)).

Let us estimate the number of possible solutions of (3.2.16) for a fixed ba. As-
sume that for chosen by there exists at least one solution (bg, b1,1,b1,0) and consider
the system of linear equations (3.2.16) for two different triples (ba,b1,1,b1,0) and
(b2, b2.1,b2,0):

bzdz2 +bj1d; +bjo=1;;, 1,7=12.

Simple transformations lead to the following system of equations in two variables
by = b11 — b1 and by = b1 g — bao:

{51611 +bo =111 — oy, (3.2.17)

bidg + by = l12—12p.

Since |l1; — la;| < 4cg max (1, |b2|A1 (£;)) and |di — d2] = 2¢ > 0 then applying
Lemma 3.2.5 with K; = 4c¢g max (1, ]b2|A1 (I;)) we conclude

#(b1,bo) < (2*cse™ max (1, [ba| A1 (I1)) + 1) (2%cs max (1, |bo| A1 (1;)) + 1)
< 21063871 max(l, ’bg’)\l ([1)) max(l, ’bg’)\l (IZ)) .

Thus, for a fixed value of the coefficient by we get following estimate

2971 bol* Ao (TD), [b2] > 5
#(b1,bo) < {20712 |bo| M1 (I2), i < |b2| < v+ (3.2.18)

10,.—1,2 1
2% ¢, |b2]<7/\1(12).

According to (3.2.18) we need to consider the following cases.

Case 1 /\1(1[1) < |bg| < 462671Q.
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In this case the first estimate of (3.2.18) holds and for d < 2785 tetcg?hy? we
have
Ao (L) < 2Me3cgh3 Q' Ao (IT) - 402671 Q < & A (I1) .
Case 2: ( < |ba| < /\1(11)
The second estimate of (3.2.18) holds and we get
X (L) < Q' (I2) > o] ' < Q' InQ N (I2).
(A1 (I2)) < [ba|< (A (1))

Hence, for 1 = 1_% and @ > Qg we obtain

Ao (L) < Q79N (I2) < Q7 A2 (IT) < § Ao (I0).

Case 3: 1 < |by| < ﬁ

In this case the third estimate of (3.2.18) leads to

Ao (L) < 2Me73e2h3 Q1 > |ba| 72 < £ 2o (ID),
1< b2 | < (A1 (T2))

for c11c1,2 > 217I€_17TQC§E_3h%.

Combining these estimates with (3.2.15) finishes the proof.

3.2.2.2 The induction step: reducing the degree of the polynomial.

In this subsection we consider the case |P'(;)| € T3, i = 1,2 where we have the
following system of inequalities

Plai)] < h Q7" i=1,2,
%Q%_ 2 +2(n71) <|P'(a1)] < 20, Q, (3.2.19)
LQ7 I < [P/ (0n)] < 2nwn(3/2d2) Q

Denote by L33 the set of points x € II such that the inequalities (3.2.19) hold for
some polynomial P € P,(Q). By Lemma A.1.14, it follows that

Lac J U o

PePr(Q) acA2(P)
where
opla):={xell: |z;—o;| <2 'h, Q7" |P(cy)| ", i=1,2},  (3.2.20)

which implies that the following estimate for Ay (L3 3) holds

L33 Z Z )\2 UP

PePr(Q) acA2(P)
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Together with the sets op(a) consider the following expanded sets

opla) : =opi(a1) X opy(az)

={xell: |v;—a<cogQ i |P ()| ti=1,2}, (3.2.21)
("71__2%1“ Simple calculations show that for Q > Qg and n > 2 the
measure of the set o/»(ar) is much smaller than the measure of the rectangle II

where y,_1,; :=

Ao (0p(@)) 4B Q™H2Q T <42 QF < Ay (IM).

Using (3.2.20) and (3.2.21) it is easy to see that the measures Ao (op(a)) and
A2 (0 (ax)) are related as follows

Ao (op(@)) <22 2h2cg2 Q™ g (o (ar)) . (3.2.22)

Given a fixed a € Z let P,(Q,a) C Pn(Q) denote a subclass of polynomials with
the leading coefficient equal to a

Pn(Q,a) :={P € Po(Q): P(t) =at"+ ...+ ap}.
Since —@Q < a < @, the number of subclasses P, (Q, a) is

#{a} =20 +1. (3.2.23)

We are going to apply Sprindzuk’s method of essential and non-essential sets [62].
Consider a family of sets op(a), P € Pn(Q,a). A set op (a1) is called essential if
for every o’ (a), P2 # P1, the following holds

Ao (0'331 (al) N 0'332 (O[Q)) < %)\2 (0'331 (al)) . (3224)

Otherwise, the set o' (1) is called non-essential.

The case of essential sets. 1t is easy to ensure, that for any —Q < a < @), we have
the following estimate

> > A2 (0p (@) < 4N (IT). (3.2.25)
PePr(Q,a) acA?(P):
o'p (ar)—essential

Then from (3.2.22) with ¢g = 2"T4x1/2h,,, (3.2.23), and (3.2.25) we get

>, Dl > Malopl)) <270 ST X (oh(a)

a PePp(Q,a) acA?(P): PePn(Q,a) acA?(P):
o—%(a)—ess. a}(a)—ess.

< £ (T0). (3.2.26)

The case of non-essential sets. If a set o’p (cv1) is non-essential, then there exists
a set o (@) such that Ay (o (1) Nop, (a2)) > 3o (o5, (a1)). Consider the
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polynomial R = Py — Py, deg R <n — 1, H(R) < 2Q). Let us estimate the value of
polynomials R and R’ at points x € (o, (a1) N o, (a2)).
Consider the Taylor expansions of the polynomials P, and P, in the interval
op, i(a1i) Nop, (ag;)

Py(3) = Pj(0) (@i — i) + ..+ & P (00) (@i — o)™ (3.2.27)
From the estimate (3.2.19), (3.2.21), and Lemma 3.2.4 we have

[Pjlaia) (@i — az:)] < egQ71,
and, for k > 2, we get
%PJ@ (i) (i — O‘J}i)k‘ < (5) wnrr1(3/2dy)ck Q1 Fm—1i= 5+ 51
< (%) wn1(3/2dy)ck Q1.

Substituting these estimates into (3.2.27) we obtain

|Pj ()] < wp—1(3/2d2)(1 + co)" QMm12,
and, thus,

|R(x:)| < |Py()| + | Pa(z5)] < 2wn—1(3/2d2)(1 4 cg)™ Qn—1s (3.2.28)

Analogously, consider Taylor expansions of the polynomials P and Py in the interval
o'p, i(Q1i) Nop, (az)

P(a:) = Pjlaga) + -+ o P (o) (i — )" L, (3.2.29)

and, from the estimate (3.2.19), (3.2.21), and Lemma 3.2.4 we obtain

Tn—1,i

(b1 (Tm=Li 1
(k_ll)ypj(k)(oéi)(iﬁi —Oéi)kfl‘ < n(ﬁj) Wn—k+1(3/2d2)cg Q' * 1)< 2 +2)

< (1) wno1(3/2da) ek [Pi(as)]

for k > 2. Substituting these estimates into (3.2.27) we have
|Pj(i)| < nwn—1(3/2d2)(1 + ¢o)" " [Pj(eji)]
and, thus, from (3.2.19) we finally get
min {|R/(x7)[} < min {|P{(z9)]} + min {|Py(z)]}
< 4nwn(3/2d2) (1 + )" 16, Q. (3.2.30)

The inequalities (3.2.28) and (3.2.30) hold for every point x € (o', (1) N o, (€2)).
Applying Lemma A.1.15 with the fact \; (03317i(a1,i) N 033272-((12,1‘)) >

A (033172-(04171)) we obtain that for every point x € o) (a1) the following

|R(z;)| < c10Q %%, min{|R'(z;)|} < 116, Q (3.2.31)
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holds for some cy9 and ¢;; depending on n and d.
Denote by L’ the set of points x € II such that there exists a polynomial R €
Pr—1(Q1) satisfying the inequalities

’R(l‘l)’ < c12hn—1 Q;'ynfl’i, 1=1,2

miin{\R’(xi)H < 0p-1Q1,

where Ql = QQ, Cl12 = max (27" 1 1) Cl()h 1 and 5n 1= 2611 6

The estimates (3.2.31) imply that for any —Q < a < @ we have

U U op(a) C L.

PePr(Q,a) acA%(P):
o'p (a)—non-essential

Thus, by the induction hypothesis we obtain

> DL > Ao (op(a)) < Xo (L)) < S X0 (M),  (3.2.32)

a PePn(Q,a) acA%(P):
o'p (ar)—non-essential

for a sufficiently small §,, and @ > Q. Then, the estimates (3.2.26) and (3.2.32)
allow us to write

A2 (Ls;3) < 35 A2 (IT).
3.2.2.3 The case of sub-intervals TLQ and T272
For |P'(cv)| € Ti 2 and |P'(az)| € T2 we have the following system of inequalities

{‘Pmn < By Q7Y

1_Y 1 %, Y (3.2.33)
cr Q272 < ‘Pl(ai)’ <2Q2 27D, 4 =1,2.

Denote by Ls 2 the set of points x € IT such that there exists a polynomial P € P,(Q)
satisfying (3.2.33). By Lemma A.1.14 we get

Lac U U o

PePr(Q) aeA2(P)

where

op(a) = {x ell: |z —oay <2 In 67_1 Q" N +1 ;1= 172} . (3.2.34)
This leads to the following estimate

L2 2 Z Z )\2 UP

PePn(Q) acA?(P)

In this case we can not apply induction since the degree of the polynomial can not
be reduced. Let us use a different method to estimate the measure of the set Lo .
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Let us cover the rectangle II by a set of disjoint rectangles I, = Jy , X Jo, where
v;+1
M (Jig) = 1 Q"2 #2425, > 0 such that IT C (JTI; and TI, N 1T # §. Thus, the

k
number K of rectangles II; can be estimated as follows

K < 4 max (M (1) ( (J10) 1) mas (A (1) O (o)1)

n+1 .
24 Q7 TR ), (), s < Ut
v1+1
= 24Q 3 el )\ (11), 51 < LJI,SQ > U2T+1, (3235)

4 'u2+1_ +1 1
2 Q 2 f22)\ (IQ), S| > v12 , 82 < %

We will say that a polynomial P belongs to Il if there exists a point x € Il; such
that the inequalities (3.2.33) hold for polynomial P.

Let us prove that there is no rectangle IIj, containing two or more irreducible polyno-
mials P € P,(Q). Assume the converse: let P;, Py € Il be irreducible polynomials
and let the inequalities (3.2.33) hold for polynomial P; at a point x; € II;. Thus,
for Q > Qg and for every point x € Il we have

v,

+1 ,
|2 — agl < o — 2| + [ — aggl < QT2 TR (3.2.36)

where Tji € S(Oéjﬂ').
Let us estimate the values |Pj(z;)| for x € II;. Consider the Taylor expansion of
the polynomial P; in the interval J; j

Pj(l‘z) = PJ’»(aM)(xi — Oéjﬂ;) +...+ % Pj(n)(aj,i)(xi — Ozjﬂ;)n-

From the estimates (3.2.33) and (3.2.36) we obtain

v

|P]{(ozj7i)(a:i — Oéjﬂ‘)‘ < Q_vi+2("*1)+52’i7

k _k_ kY _ L SR
[ P () (@i — aga)| < QBT TR « @ T Em e

for g9, < 2(%1)2 and Q > Q. Then any €3 > 0 and for Q > Qo we can write the
following estimate

|P(i)| < Q"R TR < QT Emem eate (3.2.37)

Applying Lemma A.1.16 with n;, = ”’2—'“

have

o
—¢e9; and T = v; — o1y 24 — €3 We

7'1—1—7'2—1—2:(n—l)—%—62,1—62’2—1—2—283:n+%—€271—€2,2—263,

Q(Ti+1—77¢):2<Ui—ﬁ—@,i—&ﬁ—l—%“%-&m)=U¢+1— Yo — 2e3.

n

Substituting these expressions into (A.1.4) we get

M‘F’n:2n+%*5z,1*€2,2*68322n+%
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for eg; = 4(%1)2 and €3 = 4—18. This contradicts to Lemma A.1.16 with § =

Hence, every rectangle II;, contains at most one polynomial P € P,(Q) and we have

A2 (L22) < Z A2 (op(a)).

s

Together with the estimates (3.2.34) and (3.2.35) this leads to

Ao (LQ’Q) < Q_52’1_82’2)\2 (H) < % A (H)

for Q > Qg and s; < “’;1, 1=1,2. If 5, > ”isrl, then for Q) > )y we obtain

2(Lag) < ) Xelop(a) < Q™ A (In) A (I2) < 45 Xo (I0).
PePL(Q)
3.2.2.4 The case of a small derivative

Let us discuss a 51tuat10n where |P'(z;)| < 2¢7 Q2 7. In this case, we show that
|P'(a;)| < 3cr Q2% where z; € S(a).

Indeed, let |P'(c;)| > 3¢r Q2% and consider a Taylor expansions
P'(x;) = P'(;) + P"(c) (i — i) + .. + Gty PO () (i — i)™

Using our assumption and repeating the steps from the beginning of the proof of
Lemma 3.2.6 we obtain

P () (z — o) + ...+ ﬁp(") () (z; — )" Y < er Q7.
This gives us the following contradiction
|P'(0q)] < 3er Q3%
Now denote by L1, the set of points x € II such that there exists a polynomial

P € P, (Q) satistying

{|P(mi)| DA (3.2.38)

IP'(0;)] < 37 Q2 2, i=1,2.

We will classify polynomials P € P, (Q) satisfying (3.2.38) according to the distribu-
tion of their roots and the size of the leading coefficient. This type of classification
was introduced by Sprindzuk [62].

In the rest of the proof we will assume that the roots of the polynomial P are sorted
by distance from o; = a1

|1 — i) <o — iz <o <o — il
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Let ¢4 > 0 be a sufficiently small constant. For every polynomial P € P,(Q) of
degree 3 < m < n we define the numbers wy ; and woj, 2 < j < m as solutions of
the equations

) —arj| = Q7M. Jag1 — g | = Q¥

Let us also define the vectors k; = (ki2,...,kim) € Z™ 1 as follows
(]{1'73'—1)84 Swi,j <I€Z’7j€4, i:1,2,2§j <m.
It is clear, that k;2 > ... > ki .

Thus, we have m(m — 1) pairs of vectors kj, ko that correspond to a polynomial
P € P,(Q) of degree m depending on the choice of roots a1 and ag 1. Let us define
subclass of polynomials P,,(Q, k1, ke, u) C Pp(Q) as follows. A polynomial P of
degree m with leading coefficient a,, belongs to a subclass P,,(Q, ky, ko, u), if:

1. the vectors (ki, ka) correspond to the roots (ai, ag) of polynomial P;
2. Q" < |apm| < QU4 where u € g4 Z.

Let us estimate the number of different subclasses P, (Q, ki, ko, u). First of all,
since 1 < |a,| < @ we have
0 S u S 1-— 4.
Then from [18, 28] and the natural bound for the roots of polynomial P € P,(Q)
we have
Q> |ag, — ajy| > H(P)™™ > Q7™
which leads to the estimate
1 m—1

=+ 1< ki <
€4 €4

m—1
Thus, an integer vector k; can take at most (g + 1) values and the number of

subclasses P, (Q, ki, ka, u) can be estimated as follows

#{m, ki, ko, u} < (e +1), (3.2.39)

n

. i—1
where ¢13 = ) (é + 1) . Define the values p; ;
i=2

{pi,j = (kijs1+ ...+ kim) €4, 1<j<m—1, (3.2.40)

Dij = 07 j =m.

Using this notation we derive the following estimates for a polynomial P €
Pm(Q>klak2>u)

m
QU <[P/ (aw)| = lam| [T laia — aup| < QUi+,
k=2
m

PO ()] < lam| ] lais — cipl < QurpsttmeDa o
k=j+1

(3.2.41)
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Since we concern only with polynomials satisfying the system (3.2.38), we assume
that for at least one value of u the following inequalities hold

QU P < |P(ay)| <3c7Q273, i=1,2.
This condition implies
v V:
P1,1 >u4 ——, R — (3.2.42)

Now let us obtain an estimate for the measure of the set L; ;. From Lemma A.1.14

L171 C U U U Up(a),

m,kl ,k2 u PEPy, (Q,kl ,kz ,u) OLE.A2 (P)

we have

where

1/j
opla)i=dxell: |z —az|<1g;1<nm(2 5 @ H!an ai,kr>

This, together with notation (3.2.40) and the estimates (3.2.41), yields

op(a) C {x ell:|z; — oyl <1 min <(2mh e Qw>} (3.2.43)

— 2 1<<m
for P € Pp(Q, k1, ko, u).

The numbers j = m1 and j = mo in the formula above provide the best estimates
for the roots oy and as respectively if for all 1 < k < m the following holds

1 7'“7'Ui+pi,'ml- 1/k 7“7”'L+pi,k
@"h )V QT < (@M )YPQTF o, i=1,2. (3.2.44)
Hence, assuming (3.2.44), we have
—u—vi+Di m,
op(a) C {x ell: |z — o < %(thn)l/mi Q } . (3.2.45)

Let us cover the rectangle II by a system of disjoint rectangles I, m, = Jmy X Iy,
“vaifpi.m-
———++¢&5

where \i (Jm,) = 2Q° ™ , €5 > 0. The number K of rectangles Il m,
can be estimated as follows:

u+tvy —P1,my + u+”2*p2,m2

K<2'Q  m mz 2% N\ (I0). (3.2.46)

Let us show that there is no rectangle Il,,, ,,, containing two or more irreducible
polynomials. Assume there are two irreducible polynomials Py, P, such that the
inequalities (3.2.38) hold for polynomial P; at points x; € Il m,. Then for all
points x € I, m, and for Q > Qo, we obtain

UtV —Pi m;
—L+te

<Q ™ % (3.2.47)

i — aja| < i — @il + [ — ag
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where Tji € S(Oéj,i).

Let us estimate |Pj(z;)|, where x € I, 1m,. Considering a Taylor expansions of
the polynomial P; in the interval J,,, and using estimates (3.2.41), (3.2.44), and
(3.2.47) we have

l! P‘(k)(aj,i)(ﬂfi - Ozjﬂ-)k < Q*”Ji+(m+1)54+ks5’

k=g
and, hence,
‘Pj(l'z'” < Q_Ui+(m+1)54+m55 < Q_Ui+(m+1)(54+55)' (3.2.48)
Applying Lemma A.1.16 with n; = Hv‘m;flml —esand 73 = v; — (M + 1)(eq + €5),
and taking e4 = m and g5 = m, we obtain

71—1—72+2:n—|—1—%—2(m—|—1)55,

2ri+1—m) =20 +2 -2 L opey
Let us estimate the expression 2(7; + 1 — n;) using the inequalities (3.2.42)

2pi,mi
m

vi+2—u-+

’UZ'—|-1—%—2TTL€5, m; =1,

—%—2m55, m; 22,

2(71“"1_771‘)2{ zvi+1—%—2m€5.

Substituting this expressions into (A.1.4) leads to contradiction in Lemma A.1.16
with § = 2.
2

This means that there exists at most one irreducible polynomial P €
P (Q, ki1, ko, u) belonging to the rectangle I, ,,, and, thus,

X (L) <Y > X(p@)< Y Y Xa(op(a).

m.ki,ko,u PEPR(Q,k1,k2,u) m, ki, ko, u mq my

Then by estimates (3.2.39), (3.2.45) and (3.2.46) for @ > Qo we get

Ao (L11) < Q2% X (II) < £ Xy (11).

3.2.2.5 Mixed cases
The case of sub-intervals TLQ, T273 (Tl,g, TQQ)
Consider the system of inequalities

|P(z:)] < hn @7,
1_v 1 v, v
C7 QQ 2 S ‘Pl(a1)| < 2@2 2 2(”*1)7 (3249)

1Q2 7305 < |P(ag)| < 2nwn(3/2d2) Q, i =1,2.

Denote by Ls 3 the set of points x € II such that the inequalities (3.2.49) hold for
some polynomial P € P,(Q).
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As in the case of small derivatives, we classify polynomials P € P,(Q) according
to the distribution of their roots and the size of their leading coefficients. Let us
define subclasses Py, (Q, ko, u) C P,(Q) as follows. A polynomial P of degree m
with leading coefficient a,, belongs to a subclass P, (Q, ko, u) if

1. the vector ko correspond to the root g of polynomial P;
2. Q" < |apm| < QU4 where u € g4 Z.
Then
#{m, ko, u} < ci3(e;t + 1). (3.2.50)

Let us fix some m, ky and u and denote by L,,(Q, ks, u) the set of points x € II
such that there exists a polynomial P € P, (Q, ko, u) satisfying (3.2.49). Then

Lys C U m(Q, ko, u).

ka,

Define the value [ := vg—p2 1 +u— ks 24 and let [I] be the integer part and {l} be the
fractional part of [. Moreover, define the value 6 := 1 — {I} > 0. Let L},(Q, ko, u),
1 < g < 207! 41 be the set of points x € II such that there exists a polynomial
P € Pp(Q, ko, u) satisfying the system (3.2.49) under condition

10(g—1) v1 v196

1 v v
QP AT < [Plan)] < ep Q2 2 TARD,

It is clear now that L, (Q, ke, u) C |J L (Q, ko, u) and, hence,
g

Lysc |J JL%(Q ke, u). (3.2.51)

m,ko,u g

By Lemma A.1.14 we obtain

LI(Q, ko, u) C U U or(a),

PePr(Q ko,u) acA2(P)

where

vi_1_v10(g—1)

op(a) = dxetr: [T1—a] <2 hy et QI L g5 )
[Ty — ag| < 2™ 1h, QT2 TP2ATY

Let us cover the rectangle IT by a system of disjoint rectangles Il = Jy; X Joy,

v10(g—1)
where A1 (J15) = 3 Q 5~ 56 and M (Jag) = %Q*klﬁ‘“{l}. The number
K of rectangles II;, € II can be estimated as

v10(g—

K < 9t QF i+ Gy Hheasa—so il 3y (3.2.53)
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Assume that every rectangle Il contains at most omQll+3

Pi.(Q,ko,u). Then by inequalities (3.2.52) and (3.2.53) we get
2 (Lin(Q, ko, u)) <3~ Ao (L5 (Q k2, w) <)% Aa (op(a))
g

g Il

polynomials P; €

< 23mHap2e-l (9971 4 1) Qvztp2a—uthapea—FHIHD ), (1)
<Q T n (1),
and, hence, by (3.2.50) and (3.2.51) for @ > Qo we conclude
Ao (Lag) < ciz(ert + 1) Q4 Ao (1) < £ 2o (D). (3.2.54)

Now we will show that it is the only possible case and rectangle Il can not contain
more than 2mQU+=2 polynomials Pj € P7(Q, ko, u).

Assume that there exists a rectangle Il containing more than 2QO+% polynomials
P; € P3(Q,ko,u) and the inequalities (3.2.49) hold for polynomial P; at point
x; € IlI. Then for all points x € Il and @ > Qo we obtain
[ws — aja| < lws — jol + )0 — ajo| < QP22 oMy, Qratr2a

< Qe {lh fogm-lp Rttt @ R22sa—{ll (3.9 55)
where x;2 € S(o2).
From the Taylor expansions of polynomials P; in the interval Jjj, the estimates
(3.2.41) and (3.2.55) it follows that

% })](k) (Oéj72)(l'2 _ Oéj,g)k < Qu—pg,k-f—(m-i-l)&;—kk2,264—k{l}

u— —ko oeq4—{l}+(m+1)e
< QWP 2,264—{1}+( )4’

which for @ > Qg allows us to write
[Pj(w2)] < 5 QuPeakrasa—{liH(mt2)en, (3.2.56)

Similarly, repeating the calculations by analogy with Section 3.2.2.3 (see inequality
(3.2.37)) for eg < (ngill)g, we have

10
|Pj(a1)] < §Q At e, (3.2.57)

6
2

By pidgeonhole principle we can find at least N := [Q } + 1 polynomials from

Pi(Q, ko, u) belonging to IIj, such that their coefficients @, ..., @y41—p coincide.
Let us call them P, ..., Py. If [[] = 0, then we can simply ignore this step. Consider
the polynomials R; j = P; — Pj, 1 <i < j < N of degree at most m — [{].

From the inequalities (3.2.56) and (3.2.57), we obtain that at every point of the
rectangle II; the polynomials R; ; satisfy

_ v16
[Rj (1) < Q" Fat=n T,

3.2.58
’Rij(x2)| < Qu—p2,1—k2,264—{l}+(m+2)€4’ ( )
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Assume that among polynomials R; ; we can find at least two polynomials without

common roots. Then we can apply Lemma A.1.16 with m, = v — — 2¢¢,

010
4(n—1)
Ty = —u-+pa+heges+{I}—(m+2)eq, m = Y +3+ Ui(eﬁg__li) —e6, M2 = kopea+{l},
so that we have

T+ 1 =01+ 1 — g40% — 26,

o+ 1=1—u+pe1+kooes+{l} — (m+ 2)ey,
2(7'1+1—771)=U1+1—2?,117%—2567
2o +1—m2) =2 —2u+2py; — 2(m + 2)ey.

Substituting these expressions into (A.1.4) yields
My =201 +5— 20020 4 8po 4 ko peq — Bu+ {1} — 3(m + 2)es — 4eg
Using the equation v; = n — 1 — v and inequality

9(1+29) 3 3
Yoy < (30+1) 2 <20+ 1

for e4 = g 0 and eg¢ < 6% we finally obtain

8(m+2)

Mz oy > 2(n — vo + 21+ kooes —u+ {1}) + (pz,l — k272€4) +(1—u)+ %9
>2(m — [I]) + §.

This inequality contradict to Lemma A.1.16 for § = % > 0.

The case when among polynomials R;;, 1 < ¢ < j < N + 1 we can not find two
polynomials without common roots is considered in [13].

By analogy we can define and consider the set Lj o for the case of sub-intervals 77 3,
T2,2 and obtain the estimate Az (L32) < 55 A2 (II).

The case where one derivative is small and the other derivative lies in
the sub-interval T, 3 or Th o

Taking into account the estimate for |P’(«;)| obtained in Section 3.2.2.4 consider
the system of inequalities

|P(2)| < hp Q7
[Pl(a1)] < 3e7 Q2 7, (3.2.59)
1Q2~%F < |P/(an)] < 2nwn(3/2d) Q, i=1,2.

Denote by Lj 2 the set of points x € IT such that there exists a polynomial P € P, (Q)
satisfying (3.2.59). Let us again classify polynomials P € P,(Q) according to the
distribution of their roots and the size of leading coefficients. We will consider the
subclasses of polynomials P, (Q, k1, ko, u) defined above.
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By analogy with Section 3.2.2.4 (see inequality (3.2.43)) we conclude

LLQ C U U U O‘p(a),

m, k1, ka,u PEP,, (Q,k1,k2,u) acA2(P)

where for P € P,,(Q, ki, ko, u) we have

R
21 —ar| <1 min (@) YiQT T
= 21<i<m ’

|2y — ag| < 2™ 1, QU2 P2

opla) :=¢xell:

If the inequalities (3.2.44) hold for i = 1, then the estimate numbered as j = m; is
optimal for the root oy, and we have

—u—v1+P1 my
op(e) CAxeTl: |lmi—o| 5@ k)™M QL 59 60
|x2 _ 042| < 2m—1hn Q—u—v2+p2,1

Define the value [ := vy —pa 1 +u— k2 264 as in the previous case and let us cover the
rectangle II by a system of disjoint rectangles Il = Jy , X Jo i, where A\ (J1 i) =

“JFUl*Pl,ml

%Q_ e T and A\ (Jo) = %Q_k&ﬁ‘*_{l}, and estimate the number K of
rectangles Il € IT as follows

UtV —P1 mq

K<otQ wmr theesatilizer (3.2.61)

Assume that every rectangle Il contains at most 2™ Q[l]“‘% polynomials P €
P (Q, ki,ka,uw). Then by inequalities (3.2.59), (3.2.39), and (3.2.61) for Q@ > Qo
we get

A2 (L1s) < Q—u—v2+p2,1+k2,254—%7+[l]+{l} Ao (II) < Q—% Ao (IT) < £ X (IT) .

Now assume that there exists a rectangle I containing more than 2™ QUH% poly-
nomials Pj € Py, (Q, k1, ko, u). Using the calculations described in the previous case
(see estimate (3.2.54)) and in Section 3.2.2.4 (see estimate (3.2.48)) for every point
x € Il we obtain

|P;(x1)] < %Q*“ﬁ(m“)(g“”), |Pj(22)] < %Qufngfk2,254f{l}+(m+2)a4' (3.2.62)

By pidgeonhole principle we can find at least N := [Q%?} 4+ 1 polynomials
Pj € Pimn(Q, k1, k2, u) belonging to Iy such that their coefficients apm, ..., am 1
coincide. Thus, let us consider the differences R; ; = P, — P;, 1 <1 < j < N, which
are polynomials of degree at most m — [].

Using inequalities (3.2.62), we conclude that for every point x € IIj the following
holds

|Rij(x1)| < Q7v1+(m+1)(s4+s7),
’Rij(xQN < Qufpz,l*k2,2€4*{l}+(m+2)€4’
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Assume that among polynomials R; ; we can find at least two polynomials without
common roots and apply Lemma A.1.16 with 74 = v1 — (m + 1)(eq + €7), 72 =

U+v1—P1,m o
—u+p21t+kogea+{l} —(m+2)es, m = — = —e7, M2 = kg 2e4+ {l}, so that
we have

m+1l=v1+1—(m+1)(eq+e7),
T+ 1= 1—u+p271+k2,254—|—{l}— (m+2)z~:4.

Repeating the arguments from the end of Section 3.2.2.4 we obtain

2(mn+1—m)>vi+1—2(m+ 1)esg — 2mey,
2(7’2 +1- 772) =2—-2u+ 2p271 — 2(m + 2)54.

Substituting these expressions into (A.1.4) for g4 = m and ey = m yields

My > 201 + 54 3pay + kogeq — 3u+ {1} — ]
> 2n — 2vg + 2pa 1 + 2kg 064 — 2u+ {l} + % >2(m—[I]) = {I}+1+ %
> 2(m — ) + 5.

This inequality contradicts to Lemma A.1.16 with § = %

If among polynomials R; j, 1 <7 < j < N we can not find two polynomials without
common roots then we use the arguments described in [13].

By analogy we can define and consider the set Lo for the case when one derivative
is small and the other derivative lies in the sub-interval T173 or TLQ and obtain the
estimate AQ (L271) < 1i8 )\2 (H)

Thus, we have Ly € |J L;y, which leads to the following estimate
1<i,j<2

A2 (L) < Z A2 (Lij) + A2 (L33) + A2 (L23) + A2 (L32) < § A2 (ID).

1<i,j<2

Similarly, A2 (L2) < % A2 (IT). These estimates conclude the proof of Lemma 3.2.6
in the case of irreducible polynomials.

3.2.2.6 The case of reducible polynomials

In this section we will estimate the measure of the set L3. Clearly, the results of
Lemma A.1.16 can not be applied directly in this case. Let a polynomial P of
degree n be a product of several (not necessarily different) irreducible polynomials
P, P, ..., Py, m > 2 where deg P, = n; and ny + ...+ n,;,, = n. Then by Lemma
A.1.17 and definition of the height function we have

H(R) SH(Pl)H(PQ)H(Pm) §014H(P) §614Q = Ql-
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Denote by Ls(k,eg) the set of points x € II such that there exists a polynomial
R € Pr(Q1) satisfying the inequality

|R(z1)R(x2)| < h2 Q7 Fe. (3.2.63)
If a polynomial P satisfies the inequalities (3.2.5) at a point x € II, we can write
|P(£L’1)P(ZE2)| = |P1({L‘1)P1(:L‘2)| et |PS($1)PS(IL‘2)| S h% Q_TH_I. (3264)

Since n = ny + ...+ ny, and m > 2, it is easy to see that at least one of the
inequalities
|P@(£U1)Pz(:l,‘2)| S h% Q_ni—’—ag, n; 2 2, (3.2.65)
|Pi(21)Pi(w2)| < hi Q%, ni=1,i

I
—

.o,m,

hold at the point x for 1 > eg > % Indeed, without loss of generality assume that
ng=...=nm =1land 1 <npy 41 < ... <y and assume that the inequalities
(3.2.65) do not hold for any ¢ = 1,...,m then

[P(1)Plas)] > B2m @ mmatm=2miss > p2m qrnt > p2m g nt,

which contradicts to (3.2.64). Hence, x € L3 (nj,eg) fornj > 2 orx € L3 (1,1 — ¢3)
and we have

n—1
Ls C <U L3(k‘,€8)) U L3(1,1 —eg).
k=2

Let us estimate the measure of the set L3(k,es), 2 < k < n — 1. Denote by Li(k,t)
the set of points x € II such that there exists a polynomial P € Py(Q1) satisfying
the inequalities

|P(z1)| < hy Q1
|P(x2)| < h2 Q711 (3.2.66)
mln{\P’(aZ)|} <0pQ1, x; € S(Oéi),i =1,2.

Denote by L3(k,t) the set of points x € II such that there exists a polynomial
P € Pp(Q1) satisfying the inequalities

|P(a1)| < by Q5
l+eg

|P(as)] < h2Q, 7 (3.2.67)
|P'(ci)| > 0x Q1, x5 € S(ai), i=1,2.

By the definition of the set L3(k,eg) it is easy to see that

Ny N2
Ls(k,eg) C (U Li(k,1—i(1 - 58))> U (U L2(k,1—i(1 — 358)/2)> ,
=0

1=0
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where Ni = {QJ{E%;?‘} and Ny = [“127’“73_52858}

The system (3.2.66) is a system of the form (3.2.5). Furthermore, since the polyno-
mials P € Pr(Q1) are irreducible and k < n, we can apply the above arguments for
a sufficiently small constant d; and @1 > @y to obtain the following estimate

Ao (Li(k,t)) < v A2 (1) - (3.2.68)
Now let us estimate the measure of the set L3(k,t). From Lemma A.1.14 we have

Lyktc J U eoplat),

PePy (Ql) ac A2 (P)
where

oplet) {XGH o1 — 0| < 25 K2 Q4P (o), }
P ’ = :

_ —k 8y _
|2y — o) <2VRZQ, T 7 P ()7

Let us estimate the value of the polynomial P at the middle point d of the rectangle
II. Consider a Taylor expansion

P(d;) = P'(ci)(di — i) + 5 P"(ci)(di — ci)® + ... + 75 P®)(0i) (di — o). (3.2.69)
If polynomial P satisfy (3.2.67) at point x¢ € II then

di —aq| < i (1) + 287 th26, 1 Q4 Y,
(3.2.70)

_ 1+58_ _
‘dQ—Oé2| <\ (12)+2k_1h315];1 Ql =gt 1.

Without loss of generality, let us assume that ¢ > —k + H% — t. Then we can
rewrite the estimates (3.2.70) as follows:

A (), t<1-—sq,
|d1—a1|s{cl5 1 () o | — aa| < M (I2) .

CI5Q§_1a 1_81§t§17

where c15 = Qkflhiék_l + ¢1,1. We remind that A\; (I;) = ¢1;, Q™% and s1 < sa.

Using these inequalities and expression (3.2.69) allows us to write

cie@i A (f1), t<1-—sq,

P(dy)| <c A (lg). (3.2.71
6@l 1s<t<l, [P(d2)| < c16 Q1M1 (12) . ( )

|P(d1)| < {

Fix a vector a = (ag,...,a2) € ZF~1 and consider a subclass Pj(a) of polynomials
P which satisfy (3.2.67) and have the same vector of coefficients a, namely P(t) =
aptf+. . Fast? +ait+ag. For Q1 > Qy, the number of such classes can be estimated
as follows

= ([—Ql; Q) 'n Z"“‘l) = (2Q1 + 1)1 < 2k @k (3.2.72)
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Let us estimate the value #Py(a). Choose a polynomial Py € P(a) and consider
the difference between the polynomials Py and P; € Pi(a) at points d;. By (3.2.71)
we have

2c16 Q1M (I1), t<1—sy,

ap,1 — aj1)di + (ao,0 — ajo0)| <
(ao1 — a51)ds + (a0 — a50) {2%% RO

|(a0,1 — aj1)da + (o0 — aj0)| < 2c16 Q11 (I2) .

This implies that the number of different polynomials P; € Py(a) does not exceed
the number of integer solutions of the system

‘b1d2+b0| SKM 221727

where KQ = 2616 Ql/\l (IQ) and Kl = 2616 Ql)\l (Il) ift <1— S1 and K1 = 2616 Qtl
ifl—g <t<1.

It is easy to see that K; > 2¢16 Q) ™ > QF° for Q1 > Q. Thus, by Lemma 3.2.5
we have

27T QI N (), t<1—s,

Y QT M (R), 1-si i<l

#Pr(a) < {

This estimate and the inequality (3.2.72) mean that the number N of polynomials
P € P(Q1) satisfying the system (3.2.67) can be estimated as follows

{2k+7511 Q¥ Xy (IT), t<1—s, (3.2.73)

2k+7€1_1 Qlf+t )\1 (IQ) N 1-— S1 S t S 1.

On the other hand, the measure of the set op(a,t) satisfies the inequality

—k—2+ 1+2€8

22k p4 52 . t<1-—
A2 (op(a,t)) < nk Ql_k_l_t+1+58 b (3.2.74)
22kh%5];2 Ql 2 )\1 (Il) y 1-— S1 S t § 1.

Then, by estimates (3.2.73) and (3.2.74), for Q1 > Qo we get

l—eg

Ao (L3(k, 1)) < 2175 2hteit Q) 7 Mo (IT) < Ao (IT) . (3.2.75)

Kk
27L(N2+1)

The inequalities (3.2.68) and (3.2.75) lead to the following estimate
A2 (L3 (k,e8)) < 5 A2 (II).

Now let us estimate the measure of the set L3(1,1 — eg) for eg > max(si, s2,1/2).
For every point x € L3(1,1 — eg) there exists a rational point Z—? such that

’xl —a )xz — % < hi Qf58|a1|_2.

al
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Since |z1 — x2| > €1 one of the values
the sets

T; — Z—? is bigger than <. Thus, we consider

oi(ap/ar) == {x ell:

gzhial—lQl—fﬂalr?}, i=1,2.  (3.2.76)

T; — Z—(l’
Simple calculations show that for ci 1c12 > 4h%5f1 we have
p20; (ag/ar) < 4h%er Q1 < poll.

Let us define the following sets

o; = U a; (ao/al), i:1,2.

1<ap,a1<Q1

It is easy to see that L3(1,1 —eg) C (01 Uoz) and we need to estimate the measure
of the sets o1 and o9.

For a fixed value a; let us consider the set N(a1) := {ag € Z : 0; (ap/a1) # @}. The
cardinality of this set can be estimated by the following way

3A1 (L) |aal, )\I%Ii) < la1| < Qx,
27 1 S |CL1| <

#N(a1) < {

1
)\1(11-) :

These inequalities together with (3.2.76) imply

Ao (O‘Z) < Z N(al))\Q (Gi ((Ig/a1))

1<|a1]<Q:

< 8hpnert Q7% A (1) > jaa |~
1<ar]|<(A1 (L))"

+12h2e71 Q1 Ao (IT) > jaa| ™!

(A1) <lar <@
<2m?h2ert QU A1 (1) + 12h2e7 Q1 In Q1A (TT) < £ Xo (T0)

for Q1 > Qo and £g > max(sy, s2). Then,

A2 (L3(1,1 —eg)) < g A2 (IT)
and, finally, choosing eg > max(s1, s2,1/2), we obtain

n—1

A2 (L3) <> Mo (La(k,es)) + Ao (Ls(1,1 — 5)) < 5 Ao (I)..
k=2

This proves Lemma 3.2.6 in case of reducible polynomials.

Combining estimates for the different cases yields the final estimate

Ao (L) < Ao (Ll) + A (LQ) + Ao (Lg) <KAo (H) .
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Remark 3.2.7. Note, that in case of reducible polynomials we do not use the in-
equality min {|P'(x;)|} < 6, Q. It means, that the set Lg is the set of points x € 11
(2

such that there exists a reducible polynomial P € Py (Q) satisfying the inequalities

|P(z;)| < hp, Q7Y i=1,2.

3.2.2.7 The final part of the proof

Let us use Lemma 3.2.6 to finish the proof. Consider a set B; := II \
Lo(Q,8,,v,II) for n > 2, v1 = vg = 251 k= 1, Q > Qo, hy = \/§(|d1| +
|d2])/? max (1,3\d1\,3|d2|)”2/2 and a sufficiently small constant §,,. From Lemma

3.2.6 it follows that
A2 (B1) > 2 X0 (I0). (3.2.77)

Let us prove that for every point x € II there exists a polynomial P € P,(Q)
satisfying
n—1
|P(x))| < h,Q 2, i=1,2.

By Minkowski’s linear forms theorem (Lemma A.2.3) for every point x € II there
exists a non-zero polynomial P(t) = ant™ + ...+ a1t + ag € Z[t] satisfying

|P(z)] < ha Q"7 aj] < max (1,3]d1],3]de)) "1 Q (i=1,2, 2<j<n).

One can easily verify that |a1] < @ and |ag| < @, hence P € P,(Q).

Then, by Remark 3.2.7 we conclude that for every point x; € Bj there exists an
irreducible polynomial P; € P,(Q) satisfying

|Pi(z1)] < ha Q7
|P{(214)] > 0,Q, i=12.

Consider the roots aq, as of the polynomial P, such that z;; € S(a;). By Lemma
3.2.4, we have

|21 — o] < nhpd; QT i=1,2. (3.2.78)
Let us prove that ag,as € R. Assume the converse: let o; € C, then its complex
conjugate @; is also the root of the polynomial P, and z1; € S(&;). Hence, from
the estimates (3.2.78) and Lemma A.1.18 we have

_n—1
[P ()] < lanllas —ai| <7 Q2 .

On the other hand, a Taylor expansion of the polynomial P; in the interval S(«;)
implies that
[P’ ()] > 500 Q-

These two inequalities contradict each other.
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Let us choose a maximal system of points with algebraic conjugate coordinates
I'={~,...,7,} satisfying the condition that rectangles

o(vg) = {x €R%: |z — Y4l < né;lenTH,i = 1,2}, 1<k <t,
do not intersect. Furthermore, let us introduce expanded rectangles
o (ve) = {X € R%: |z — Y4 < 2nh,d," Q_nTH,i = 1,2} , 1<k<t, (3.2.79)
and show that .
By C | o' () (3.2.80)
k=1

To prove this fact, we will show that for any point x; € B there exists a point
~; € T such that x; € o/(v;). Since x; € Bj, there is a point « satisfying the
inequalities (3.2.78). Thus, either a € T' and x1 € ¢/(a), or there exists a point
v € I satisfying

i = Yl < nhndLQTIE, i=12,

which implies that x; € o/(5,). Hence, from (3.2.77),(3.2.79) and (3.2.80) we have
t
122 (1) < X2 (B1) £ 3 Ae(01(vy)) < 12902036, 2 Q7"
k=1
which yields the estimate
NZ(A, Q) >t > ¢y Q" g (I).

3.2.3 Proof of Theorem 3.2.2: Lower Bound

The proof of Theorem 3.2.2 is based on the following lemma.
Lemma 3.2.8. Given a vector v = (v1,v2) € Ri with v1+v9 = n—1 consider some

e )— ordinary square Il = Iy x Iy with middle point d = (dy,dz), di # da

n—1’n—1
satisfying the conditions:

o A\ (1) = A (I2) = c3Q%, where % <s< %;
e c3 > co(n,d) > 0;
and denote by L := L(Q, 6y, k, v,11) the set of points x € I such that there exists a
polynomial P € P,(Q) satisfying the inequalities
|P(i)] < hn Q7

min {|P'(z;)|} < 0, Q, i=1,2 (3.2.81)

Then for any 0 < rk < 1, any 0 < &, < do(n,d,k), and any positive Q >
Qo(n,s,v,d, k) we have
A2 (L) < kAo (IT) .

Proof. The proof of Lemma 3.2.8 is analogous to the proof of Lemma 3.2.6, except
for the base of induction.
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3.2.3.1 The base of induction: polynomials of the second degree.

Consider the system (3.2.81) for n = 2. Given some 721,722 > 0 under condition
Y21 + 72,2 = 1 and an (y2,1,72,2)- ordinary square II = I; x Iy under conditions of
Lemma 3.2.8 denote by L' := Ls(Q, 62, k,75,II) the set of points x € II such that
there exists a polynomial P € Ps(Q) satisfying inequalities

|P(2i)| < ha Q7724,
min {|P'(z;)[} < 62 Q, i=1,2, (3.2.82)
|b2| > QS_%.

We will show that for any d2 < dp(d, s, k) and any Q > Qo(s, k,7ys,d) we have
A2 (L,) < KXo (ﬁ) .

Consider a polynomial P(t) = bat? + b1t +bg € Po(Q). Applying the same argument
as we used in Subsection 3.2.2.1, we obtain upper and lower bounds for the absolute
value of the derivative P’ at roots g, ae and at points z1, xo, where x; € S(a;)

|P'(cvi)| > %E |ba], | P'(x;)] < (ldﬂ +|da| + 1+ i) |ba|. (3.2.83)
These estimates lead to the following inequality
‘bg‘ < 4(52671 Q.

From Lemma A.1.14 and the estimates (3.2.82), (3.2.83) it follows that L’ is a subset

of aunion |J op, where
PeP2(Q)

op={x€Il: |z;— | <2hse™ ' Q" |by| !i=1,2}. (3.2.84)
Since the square II is (72,1, 72,2)- ordinary then for ¢z > 4h26*1/1*1/2 we have
Ao (op) <2h3e™2Q7 Y bo| 2 < kE Q™ =k Ny (IT) .
Then we can write the following estimate for the measure of the set L’:

X (L)< Y0 Ag(op) <2'h3e2Q 7! > |ba| 2.
PeP2(Q) b2,b1,b0<Q:
P(t)=bat?+b1t+bg
op#D

Let us estimate the number of polynomials P € P2(Q) having fixed leading coeffi-
cient and satisfying the inequalities (3.2.82) at some point x € II.

Consider the value of polynomial P at the points di,dy. From Taylor expansions
and estimates (3.2.83) we have

|P(di)| < [P(xi)] + e [b2| A1 (1), (3.2.85)
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for @@ > Q. Counsider a system of equations

bod? + bydy + by =1
{2 1 +01d1 + 0o 15 (3.2.86)

bad3 + bidy + by = I,

in three variables by, b1, by € Z, where |;| < 2¢13 max (1, |b2|A1 (1;)), 1 = 1, 2.

Let us estimate the number of possible solutions of (3.2.86) for a fixed ba. As-
sume that for chosen by there exists at least one solution (ba,b1,1,b1,0) and consider
the system (3.2.86) for two different triples (b2, b1,1,b1,0) and (ba, b2 1,b20). Simple
transformations lead to the following system of linear equations in two variables
61 = b1,1 — b271 and 50 = bl,O — bQ’O

{61d1 +bo = lo1 — Lj1, (3.2.87)

bidy +bo = lo2 — 2.

Applying Lemma 3.2.5 with K; = 4c13 max (1, |b2|A1 (I;)) we derive the following
estimate for a fixed value of the coefficient by

210ctse ™2 [baf? Ao (TT) ,  [b2] > 5! Q7

3.2.88
210c2.e72, Q‘g*% < |be| < cgl Q°. ( )

#(b1,bo) < {

Let us consider the following two sets

L) = U op, Ly = U op-
PeP2(Q), PeP2(Q),
o5 'Q < bs| <462c71Q Q" E<|bal<cs’ @°

The set Ly: In this case for 0y < 2 ¥k Le; Ry 2e® we have
Ao (L) < 2Mefgh3e Q71 - 462e71QNo (TI) < & X2 (ID)

The set LY: Consider the polynomials P under condition sté < |ba| < c3'@*. For
every set op we define the expanded set

op = {X eTl:  |zj— oy < dhoe 'k™V2Q 20|yt i = 1, 2} : (3.2.89)

Let us prove that for |ba| < cig Q2, where cjg = Lew!2hyt (Jdi] + |da]) ™! those
sets do not intersect.

Consider polynomials P;, j = 1,2 with roots o 1, @ 2 and leading coefficients |b; 2| <
C19 Q%. Without loss of generality we will assume |by 2| < |b22|. Let there exists
a point xg € (0331 N 0332). Since P; and P, have no common roots, the resultant
R(P1, Py) does not vanish, and the following estimate holds

1= [b12*b22*lary — azallary — azallons — azillon s — agal. (3.2.90)
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By the estimates (3.2.89) we have
lan; — o] < a1 — 04| + |azs — z04] < 2c10 Q772 |by o] 7L

On the other hand for Q > Qg we get

(|d1] + |d2l) ,
(|di] + |dz]) -

la11 — agp] < ag 1|+ |azz| <
<

3
2
3
2

lar2 — ag1] <laga] +[az

By substituting these inequalities into (3.2.90) we obtain

1 < |R(P1, Py)| < 36h3e 267" (|d1] + |da)® |bool? Q7! < 1.

This contradiction yields the following estimate
> Xo(op) < & > Ao (o) < £ (D).

PeP R
PEP(Q), _fem@
Q"2 <|ba|<cro Q2 Q7 2<[b2[<c19 Q2

Consider the case |ba| > cig Q%. Denote by P2(Q,k) C P2(Q), 1 < k < K :=

|:1I12 (g:i;)} + 1 a subclass of polynomials defined as follows

Pa(Q.k) = { P € Po(Q) : luan Q¥+ < [ba] < 1k Q¥

where
/\1 =S, ll = C?Tla
_ 28¢c18ha /K Iy
e = A1 — (1 —s) 21, zk:% for2< k<K,
_1 _
AK+1 = 5, Ik 11 = cio.

These equations give A\, = s — (1 —s) (1 — %%1) for2<k<K.

Let us consider the following sets L(k) := |J  op and estimate the measure of
PEP2(Q:k)
every set as follows

2'h3cty -1 —2
Ay (L) = D Xa(op) < —2522Q > b
PEP2(Q.k) L1 QM+ < |bo| <L QM
214p2.2 1 1

Then for k = 1 we obtain
o (L(1)) < Zi}f; Q—1-2sH1=sts < £ 2Q~% < Ly (ﬁ) :

for 1 <k < K —1 we have

1

1
)\2 (L(k)) S Zg% Q—1+8—(1—S) (1— 2kf_l)—QS-i-(l—S) (2— 2197_1) < & C%Q_QS _ ﬁ )\2 (ﬁ) :
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andfork:K,s<%andQ>Q0weget

1472 C9de (1 __1 1472 3—4s
N (LK) < 2 :4c2181KQ 245 (1—s) (1 QK_l) < :f%:lKQ 3+2s+(1—s) 55>

2hcl _3
< Ml =3 < 5 3, (TD).

Then, we obtain following estimate for the measure of the set L}

A2 (Lh) < > Ao (op)+ D Ao (L(k) < 5 (D),

PeP2(Q), 1<k<K
1 1
Q577 <|b2|<019 Q7

and, thus,

A2 (L) < Xo (LY) + A2 (Lh) < kA (ID)
Now the proof of Lemma 3.2.8 can be finished by repeating the proof of Lemma
3.2.6. 0

Theorem 3.2.2 can be proved by applying the results of Lemma 3.2.8 to the proof
of Theorem 3.2.1.

3.2.4 Proof of Theorem 3.2.3: Upper Bound

Assume the converse. Let
N’r% (A> Qv H) Z Ce Qn+1>‘2 (H)

and consider a point a with algebraic conjugate coordinates oy, o € A, g (Q) NIL
Let P be a minimal polynomial of algebraic numbers oy and as and let us derive an
estimate for the polynomial P at points dj,ds. Since oy € I; then by Lemma 3.2.4
we have

1P (ay)| < mzillgﬁwnkarl(g/Qdi)Qa

for all 1 <k <mn and @ > Q. From these estimates and a Taylor expansion of P
in the intervals I;, i = 1,2 we obtain the following inequalities

di)| < Z |5 PM) () (di — q)*| < 2"wn(3/2d;) QA1 (1) . (3.2.91)
Let us fix a vector a := (ay,...,a2) € Z" ! and denote by P,(Q,a) C P,(Q) the
following subclass of polynomials
Pn(Q,a) == {P € Pp(Q): P(t) = ant" + ...+ ast’ + art + ao satisfies (3.2.91)}

having the same vector of coefficients a and satisfying (3.2.91). The number of non-
empty subclasses P, (Q,a) is bounded by the number of vectors a lying inside the
box [—Q; Q]"_l, which can be estimated as follows

# (@@ nz ) = @+ ) < 2n Q! (3.2.99)
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for @ > Qq. It should also be noted that every point with algebraic conjugate
coordinates from the set A, (Q) NII corresponds to a polynomial P € P,(Q) that
satisfies (3.2.91). On the other hand, every polynomial P € P, (Q) satisfying (3.2.91)
corresponds to at most n? such points. This allows us to write

ce Q"I (TI) < N2 (A, Q,TI) < n? Z#Pn(Qa)-

Thus, by the estimate (3.2.92) and pigeonhole principle applied to the vectors a and
polynomials P satisfying (3.2.91), there exists a vector ag such that

#Pn(Q,a0) > c627"n Q%X (II) . (3.2.93)

Let us find an upper bound for the value #P,(Q, ap). In order to do this, we fix some
polynomial Py € P,(Q,ag) and consider the difference between the polynomials Py
and P; € Pp(Q,ap) at points d;, i = 1,2. From the estimate (3.2.91) it follows

|Po(di) — Pj(di)| = [(ao1 — aj1)di + (a0 — aj0)| < 2" 1w (3/2d;) QA (1) .

Thus, the number of different polynomials P; € P,(Q,ag) does not exceed the
number of integer solutions of the following system

’bldi -+ b()‘ < 2”+1wn(3/2 d,) QM (I)iv 1=1,2.

Now let us apply Lemma 3.2.5 with K; = 2""1w,,(3/2d;) QA1 (I;). Since A\ (I;) =
c5Q% and s; < 1, we have K; > 2" 1w, (3/2d;)cs Q1% > max (|dy — da, 1) for
Q@ > Qo. This implies that

#Pn(Q,a0) < 22"8|dy — do| wn(3/2d1)wn (3/2d2) QAo (IT)

which contradicts to inequality (3.2.93) for cg = 23" 912w, (3/2d1)wn(3/2ds)|d1 —
de|~1. Thus,
NE(A,Q,TT) < cg Q" Ay (7).

3.3 Neighborhood of Curves

One of the interesting and important topic is the distribution of points with rational
coordinates near curves. Let f : Jy — R be a C?(.Jp) function defined on a finite
open interval Jy C R. Suppose also that there exist constants Cy, C3 with 0 < Cy <
('3 < 0o such that

Co < [f"(2)] < O

for all x € Jy. We will denote the class of such functions by F(Cs, Cs, Jy). Consider
the following set
<@ }

Nf(Q’)“J)::#{(Zl l;z)E@Q 0<q<Q,—eJ 'f<p1> 7;2
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where J C Jp and 0 < A < 2. In other words, the quantity N¢(Q, A, J) denotes the
number of rational points with bounded denominators lying within a certain neigh-
borhood of the curve parametrized by f. The problem is to find the asymptotics

for Nt(Q, A, J) as Q — oo.

The next results are formulated for functions f € F(Cs,C3,Jy). The first step in
solving the problem above has been made by Huxley in [41], where he proved the
following upper estimate for any € > 0

Ny (@A, J) < @

An estimate without ¢ in the exponent has been obtained in 2006 in paper of
Vaughan and Velani [64]. They showed that

NiQ A J) < Q¥ 4 Qate,

and, moreover, under the additional condition that f has Lipschitz continuous sec-
ond derivative with Lipschitz constant 6 € (0,1) we have

NHQAT) < @4+ 5,

where the constants in the Vinogradov symbol depend on Cy, Cs and the measure
of the interval J only. It should be noted that for A < %, the estimate of Vaughan
and Velani is indeed better than the estimate of Huxley for an arbitrary function
f € F(Cq,Cs,Jp), but for A > % only functions having a Lipschitz continuous
second derivative with Lipschitz constant 8 < 3 — % give the best possible upper
bound <« Q3. The lower estimate of the same order was obtained by Beresnevich,
Dickinson and Velani [8] for any function f € C3(Jp).

3.3.1 Main Result

Since the set of rational numbers with denominator at most @ is basically the set of
algebraic numbers of first degree and 'naive’ height at most @), we can formulate the
problem above in a more general setup, namely for the set of points with algebraic
conjugate coordinates. Let f : Jy — R be a continuously differentiable function
defined on a finite open interval Jy C R and satisfying the conditions:

sup |f(x)] := 0 < 00, #{x e Jy: f(z) =2} < 0. (3.3.1)

xzE€Jy

Denote by L}(Q, A, J) the following set

Li,] = L{,J(Q) = {X ER?: |z — f(z1)] < (% + ¢20) €21 Q™" =z e J} , (3.3.2)

where J C Jy. The problem reduces to counting points with algebraic conjugate
coordinates in specific domain Lﬁ\c ;- A few years ago, Bernik, Gotze, and Kukso
[13] obtained the following lower bound

N2 (A,Q,L{J) > QA
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for 0 < A < %, @ > Qo, where the constants in the Vinogradov symbol and the

value Qg depend on n, A, the function f and the length of the interval J only.

We will improve on this result to obtain an identical estimate for 0 < A < % and
derive the upper bound of the same order.

Theorem 3.3.1. Let f : Jg — R be a continuously differentiable function defined on
a finite open interval Jy C R and satisfying the conditions (3.3.1). Let L§7J be the
set defined by (3.3.2). Then for any 0 < A < %, integer n. > 2, co1 > co(n, A, J, f)
and positive Q > Qo(J, f,n, \) there exists the positive values caa, cos depending on
J, f, and n only, such that

en QN < NZ (8,Q. L) < s @M

To prove Theorem 3.3.1 we are going to use the results of Theorem 3.2.1, Theorem
3.2.2 and Theorem 3.2.3.

Note that the distance between algebraically conjugate numbers is bounded from
below [18, 28], meaning that a certain neighborhood of the line y = z must
be excluded from consideration. For this purpose let us consider the set Dy :=
{z € J:|f(z) — x| < 5}, where ¢ > 0 is a small positive constant. Since the num-
ber of points z € J such that f(z) = x is finite, for a sufficiently small constant e
we have that A1 (Dg) < $A1 (J).

3.3.2 Proof: Lower Bound
Instead of the interval J, let us consider the set J \ Dy = |J Jx. Due to condition
(3.3.1) the number of intervals Jj is finite and ’

X2 (J\ Do) > 2X; (J). (3.3.3)
Now for every strip Lf\c”]k (Q) we have L{Jk(Q) N{xeR?: |z1 —zo| <} =0.
For every interval J; = [by1,bk 2] consider the strip L{Jk(Q) and estimate the

cardinality of the set A/ (A, Q, L’; Jk> forafixed 0 < A < % Let us divide the strip
Lf\ch (@) into subsets

E;j = {X ER?: 2 € Jij, |z — f(x1)| < (% —|—020) c3 Q_)‘},

where Jy, ; = [y, Yj+1], Yo = b1 and y; = yj—1+ca1 Q. The number t;, of subsets
Ej for Q > (o can be estimated as follows

A1 (k) 1 —1
te > B s LT oMM (). 3.3.4
b Ny TR @ (3:3:4)

Define f; := : <max f(z) + min f(x)) and consider the rectangles

zEJkyj ZEJkyj

IT; .= {x €ER?:x € kg \96‘2 *fj’ < %03 Q_A}~
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Since f is continuous and differentiable function on every interval Ji; and

sup |f'(z)| < sup|f'(z)| = c20 by the mean value theorem we have
(EGJ]CJ' zeJ

max f(z) — min f(z)| <[ (€)M (Jry) < caoen @7,

J;EJ;C,]- IEJk’j
which means that II; C E; for every 1 < j < ;. Thus, every set E; corresponds to
the square IT; = I; 1 x I;2 of size Ay (I;) = c%lQ_Q)‘.

00861:0<)\§%.

In this case, we apply the result of Theorem 3.2.1 to every square II; to derive the
estimate

N2 (A, Q, 1) > ca Q"o (I1;) = cach, Q172
for @ > Qo and c21 being sufficiently large. Using (3.3.3) and (3.3.4) we have

ty
NE(8,Q.14,) 2 3D N (A,QT) = Seaem QA ()

k=1
> Sege i (J) QU = e QTN

.1 3
0(1862. §<)\<Z

In this case we need to apply Theorem 3.2.2. Let us estimate the number of (%, %)—
%, %)— special square contains the points xg
such that there exists a polynomial P € Po(Q) with leading coefficient by satisfying

the inequalities

special squares 11;. By the definition, (

_1 .
{ |P(z0.)| < haQ72, i=1,2, (335)

lba| < Q3.

Repeating the steps of the proof from the beginning of Subsection 3.2.2.1 we obtain
the following estimates

|[P'(on)] = [P'(a2)] > Felba]-

Thus, by Lemma A.1.14 the set of points x satisfying (3.3.5) for a fixed polynomial
P is a subset of the following square

op = {X eR?: |z — ;] < 2hge ™! Q_%\bgrl,i = 1,2}.

Let us estimate the number of squares IL;, such that II; Nop # 0. It is easy to see
that the width of the strip L(Q, A, Ji) is smaller than the height of the square op for
sufficiently large co1. Hence, every op intersects with at most 4h25_1c2_11 Q)‘fé |bo| 1

11

squares II;. Therefore, the number my of (5, 5)— special squares II; can be estimated

as follows

I _1 _ 1 - _1 _
my < Z 4h2€ 10211 Q)‘ 2 ‘bg‘ 1 < 4h2€ 10211 Q/\ 2 Z ‘bg‘ 1
PeP3(Q) b2,b1,bo
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Now we need to estimate the number of polynomials P € P3(Q) having leading
coefficient by and satisfying the inequalities (3.3.5) at some point x € L¢(Q, A, Ji).

Since the function f is continuously differentiable on the interval J and sup |f’(x)| <
zeJy
€20, by the mean value theorem we get

gg;f(ﬂf) irel{]rif(w) <201 (Jk),

which implies that the set L(Q, A, Jy) belongs to a rectangle II = I; x I3, where
A1 (I2) = c20 A1 (11) = cao1 (Ji)-

Let us estimate the value of the polynomial P at the middle point d of the rectangle
II. Using the arguments from the beginning of Subsection 3.2.2.1 we obtain

|P(d1)| < caa|bo| M (Jk), |P(d2)] < caacao |ba| A1 (Jk) -

and, hence, for a fixed value of bs the number of polynomials P € P3(Q) satisfying
the inequalities (3.3.5) at some point x € II can be estimated as follows

#(b1,b0) < 2eaocyie [baf* (M1 (Jr))7
Using this estimate we obtain
m1 < 2 haeaocdycte ™ (M (J)? @72 D byl

1
lb2|<Q*2

1 _3
< 27h262003402115 ’ (A1 (Jk))2 Qg/\ 2

1

for \ < % and Q@ > Qo. By (3.3.6), it follows that the number of (%, %)—ordinary

squares II; does not exceed
meo >t — %tk > %tk. (3.3.7)

From Theorem 3.2.2 and the estimate (3.3.7) we obtain

NE(A,QLL,)=ZY Y NEA QL) = feren QA XX ()
k HjGLf(Q,)\,Jk)
H‘j—(%,%)—special

> Sesen i (J) QU = e QTN

3.3.3 Proof: Upper Bound

In the same way as in the previous section, let us divide the set Lf\’J(Q), J = [b1, bo]
into subsets

E; = {x €R*:xy € Jj, | f(w1) — m2| < (3 + c20) e Q_/\},



70 Chapter 3. Counting Points with Algebraic Conjugate Coordinates

where J; = [y;—1,y;], ¥o = b1, yj+1 = y; + (% + %czo) c21 @ and the number ¢ of
subsets F; satisfies the inequality

A1 (J)
A1 ()

t< < (3+3c0) el @ M (). (3.3.8)

€Jj

Define f; := : <max flz)+ mi}a f(w)) and consider the squares
x j reJ;

I, = {x eR?: 21 € Jj, | f; — 2| < (5 + 3ca0) e Q’A}-

Since the function f is continuously differentiable on the interval J, and
max |f'(z)| = c20, it is easy to see that E; C II;, 1 < j < t.
re

Note that the squares 11, satisfy the conditions of Theorem 3.2.3. Therefore
n 2 1
NZ (A, QL) < 6 Q™' Na (1) = c663 (5 + Fe0)” Q72N

These inequalities, together with the estimate (3.3.8), lead to the following

N2 (8.Q.L ) < coem (3 + Fer) M () @17 = ey @1

3.4 Distribution of Algebraic Integers and Points with
Conjugate Algebraic Integer Coordinates

In this section we investigate the distribution of algebraic integers on the real line
and the distribution of the points with algebraic conjugate integer coordinates in
the Euclidean plane. We will consider the same problem as in the previous sections
formulated for algebraic integers.

The first part of this section is devoted to the study of one-dimensional case, namely
algebraic integers. Given an interval I C R, denote by N, (O, @, I) the number of
algebraic integers « € I of degree n and 'naive’ height at most (). We will prove
the following theorem.

Theorem 3.4.1. For any interval I of length A\ (I) = co5Q™%, 0 < s < 1 with
middle point d, any integer n > 2, positive real Q > Qo(n,d, s), and ca5 > co(n,d) >
0 there exist positive constants cag, cor depending on n and d only, such that

crQ" M (1) > Ny (0,Q, 1) > c26Q™ A1 (1) .

Remark 3.4.2. It should be noted that the condition s < 1 can not be omitted.
As was mentioned above there exist intervals of length < Q~' which do not contain
algebraic numbers from the set Ap(Q). Since On(Q) C Ap(Q) the same statement
holds for algebraic integers.

Another way to formulate Theorem 3.4.1 is to say that the set of real algebraic
integers of degree n forms a regular system and from the proof of Theorem 3.4.1
one can immediately derive the following corollary.
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Corollary 3.4.2.1. The set of algebraic integers O, together with function
N3(o) = H(a)™ (1 + |a))"™ Y is a regqular system with parameter Ty(O,, N3, I) =
C(n) (A (D)™

In the second part of this section we proceed with the study of two-dimensional
analogue of Theorem 3.4.1. Asin case of points with algebraic conjugate coordinates
consider a rectangle IT = I} x Iy with middle point d = (dy,ds2), di # da and sizes
A (Il) =C1,1 Q%1 )\ (Iz) =C1,2 Q™ %2, where 0 < 51+ s9 < 1.

Theorem 3.4.3. For any rectangle 11 = Iy x Iy with middle point d = (dy,ds2),
di # do satisfying the following conditions:

1. M (L) =c1,Q %, where s; <1l and 0 < s; +s2<1,i=1,2;
2. c1pc12 > co(n,d) >0 for s;+s2 =1;

any integer n > 3, and any positive real Q > Qo(n,d,s) there exists a constant
cog = c8(n,d) > 0, such that

N2(0,Q,10) > 23 Q"o (1)

Theorem 3.4.4. Let Il = I1 x Is be a rectangle with a middle point d, dy # do and
sides \1 (I;) = ¢5 Q™ %, i =1,2. Then for any integern > 3, any 0 < s1,s2 < 1, and
any positive real@ > Qo(n,s,d) we have

NZ(0,Q,10) < 20 Q" Az (1),
where cog = 23" 92w, (3/2 d1)wn(3/2ds)|dy — da| 1.
Proof. The proof of Theorem 3.4.4 is analogous to the proof of Theorem 3.2.3. O

The last result is analogue of Theorem 3.3.1.

Theorem 3.4.5. Let f : Jy — R be a continuously differentiable function defined
on a finite open interval Jy C R and satisfying the conditions (3.3.1). Let L{J be
the set defined by (8.3.2). Then for any 0 < A\ < %, any integer n > 3, and any
positive real Q > Qo(J, f,n, \) there exists the positive constants csp,cs1 depending
on J, f and n only, such that

0@ <N (0.Q, L) < en @

Proof. The proof of this Theorem is analogous to the proof of Theorem 3.3.1 using
the result of Theorem 3.4.3 instead of the result of Theorem 3.2.1 and the result of
Theorem 3.4.4 instead of the result of Theorem 3.2.3. O
3.4.1 Proof of Theorem 3.4.1

3.4.1.1 Lower Bound

The proof of the lower bound is based on the following lemma.
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Lemma 3.4.6 (see [14]). Let I C R be the interval of length A\ (I) = c32 Q" 1, where
c32 > 0. Denote by L, = L,(Q,9,1) the set of points © € I such that there exists a
polynomial P € P, (Q) satisfying the inequalities

{|P<x>r <Q™,
|P'(z)] < 6Q.

Then A1 (Ly) < M1 (I) for 6 < dp(n) > 0, and Q > Qo(n).

Remark 3.4.7. It suffices to take §(n) = 27" "®n=2 (see [14] for more details).
Remark 3.4.8. One can also prove Lemma 3.4.6 in a bit more general form, namely
for the intervals I of length A\ (I) = c32Q™°%, 0 < s <1 and for the system

{|P<x>| <hQ™,
|P'(z)] < 6Q,

where h is some constant independent of Q). The proof in this case is the same as
in the original statement and the only changes appear in the value of the constants
09, co and Qo. We will use this more general form of Lemma 3.4.6 in our proof.

Let L' = L,,_1(Q, 0, I) be the set of points = € I such that there exists a polynomial
P € P,,_1(Q) satisfying the inequalities

{'P(x)‘ <hQ™, (3.4.1)

|P'(z)] < 6Q.

Applying Lemma 3.4.6 for @ > Qo and § < dp(n,d) we can estimate the measure of
the set L' as follows
A (LY <A (1),

Let us consider the set B! := I\L!. From the Minkowski’s linear forms theorem
(Lemma A.2.3) it follows that for every point x € I and @ > Qo there exists a
non-zero polynomial P(t) = a,—1t"" + ...+ a1t + ag € Z[t] satisfying

P@)| <hQ™, oy < 2d 7w (3/20) Q (1<j<n—1),

where h = (3/2dw, (%d))nil. Omne can easily verify that |ag| < @ and, hence,
P € P,_1(Q). This means that for any ro € B' and any polynomial P € P,,_1(Q)
we have

{\Pwo) < hQ™t,
|P'(x0)] > 9 Q,

and, moreover, Ay (B) > 3\ (I).

Comnsider an arbitrary point zo € B! and examine successive minima 71, ..., 7, of
the compact convex set K defined by inequalities

|an,1:1:871 +...F+arxo+ ag| < hQ—nt1,
|(n — Dap—120"2 + ...+ 2asw0 + a1] < Q, (3.4.2)
\an_l\, ey ‘a2’ S Q
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Assume, that 74 < §. Then for ¢ being sufficiently small there exists a non-zero
polynomial Py € P,,—1(Q) satisfying the inequalities

|Py(x0)| < 0h Q™" < h@Q "1,
| Py (o) < 0Q,
H(PO) S Q7

which contradicts the fact that zp € B! = I\Ll. thus, we conclude that 7,1 >
... > 71 > 9. Since the volume vol(K) of the compact convex set K is equal to 2", we
get from Lemma A.2.5 that 7 ...7, <1 and, hence, that 7, < §—"H+1. Therefore we
can choose n linearly independent polynomials P;(t) = am_ltnfl +...+a;1t+ap €
Z[t], satisfying the inequalities

|Py(0)| < 6 FHh Q7
[P/ (20)| <677 Q, (3.4.3)
laij] <07 Q, 2<j<n—1

Applying well-known estimates from the geometry of numbers (see [19, pp. 219])
we obtain
D = det ’(a@j_l)zjzl‘ < nl

Moreover, from Lemma A.1.19 it follows that there exists a prime number p, which
does not divide D and satisfies

n! <p < 2nl (3.4.4)

Our next step is to construct the irreducible monic polynomial of degree n using
polynomials P;. Consider the following system of linear equations in n variables
01,...,0,
n A~
zg 4+ p Y 0iPi(x0) = p(n + 1)6 " TTh Q"
i=1
n n
nag ' +p 3 0iPl(0) = pQ +p 3 [Pl(wo)], (3.4.5)
i=1 i=1

n

Qiam-zo, 2§j§n—1
1

)

In order to calculate the determinant D of this system, it is convenient to transform
it as follows. Multiply the k-th equation, where k = 3,...,n, by pxlg_l and subtract
it from the first equation of the system (3.4.5). Similarly, multiply the k-th equation,
where k =3,...,n, by p(k— 1)3:]6”*2 and subtract it from the second equation. After
making these transformations the determinant D may be written as follows

1,10+ a0 ... Ap1%0 + Anpo
~ 9 CL171 e aml
D=p . _ .

a1n—1 e Gn.n—1
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Since the polynomials P; are linearly independent, we conclude that D= p?D # 0.
Hence, there exists a unique solution (61, ...,0,) of the system (3.4.5).

For integers ki, ..., ky, consider the following construction, which is a polynomial of
degree n with integer coefficients

n
Pt)=t"+p Y kPi(t) =t"+plan1t" " +... + art + ag)
=1

n
where a; = > kja; ; and k; satisfies
i=1

10; — ki < 1. (3.4.6)

The polynomial P is irreducible if it satisfies the conditions of Lemma A.1.20. Let
us show that there exists a suitable combinations of the coefficients k;. Clearly,
the first and the second condition of (A.1.6) hold for any k;. It remains to show
that ap = kia10 + ... + kpano is not divisible by p. Since p does not divide
D, there exists a number 1 < j < n such that a;o is not divisible by p. There
are two possible values for k; satisfying the condition (3.4.6), which we denote as
k:jl and k‘? = k'jl + 1. Then, either a(l) = ka1 + ... + k:jl-aj,g + ...+ kpano or
ag =kiaro+...+ k?aj,() + ...+ knano = a} + ajo is not divisible by p. Therefore,
choosing k; in this manner yields an irreducible polynomial P.

Next we estimate the values |P(x¢)|, |P'(zo)| and H(P). Combining (3.4.3) and
(3.4.6) with the system of equations (3.4.5) we obtain the following inequalities.

From the first equation of the system it follows that
ps " Th Q™" < |P(x0)| < p(2n + 1)5 " HAQTH, (3.4.7)
Similarly, from the second equation of the system we have
pQ < |P'(wo)l < (p+2pné ") Q, (3.4.8)
and the remaining equations of the system give
laj| <né™"Q, 2<j<n-1 (3.4.9)

Finally, using (3.4.7)—(3.4.9) and the inequality |zo| < 3|d| for @ > Qo we obtain
the following estimates for the coefficients a; and ag
n—1

Jax| < |P'(zo)| + nlzo[* ™+ jlaol’ayl
=2

n—1
< (p+2pns " Q + (né—”“Z(m 1) (§|d|)’“> Q

k=1
< (p+ (20 + nwy (3d)) né™ ") @, (3.4.10)
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n
jao| < [P(wo)| + |zo|™ + larzo| + ) |wol|ay|

j=2
< p@2n+ DE"RQ T + (3p+ (3p+ Swn (3d)) né) 1] Q
+wn (3d) n6™" Q < pesa(n, d) Q. (3.4.11)

Now, from the estimates (3.4.9)—(3.4.11) and the inequality (3.4.4) we have

Consider the roots aq, . . ., ay of the polynomial P, where |29 — «1| = min |z¢ — ;.
7

Using Lemma A.1.14, we get
lzo — | < n|P(xo)|| P (x0)| 7 . (3.4.13)
Substituting inequalities (3.4.7) and (3.4.8) into (3.4.13) we obtain
lzo — 1] <n@n+ 1) " Q™" =1 c34 Q™ (3.4.14)

If a1 is a complex root of the polynomial P, then its complex conjugate is also a root
of the polynomial P. Hence, by (3.4.12), (3.4.14) and the estimates |a;| < H(P)+1,
1 <i<mn (see 54, Theorem 1.1.2]), we deduce that

n

|P(x0)| = H 20 — i < c3,Q7%" (2 + 2n! (2nd~ " + 1) Q)n_Q.
i=1
This inequality contradicts (3.4.7) for @Q > Q. Thus, ay is real.
Finally, take a maximal system of real algebraic integers I' = {~1, ..., v} such that

|vi — ] > c32Q™™, 1 <i# j <m. Let us show that for any point zo € B! there
exists an algebraic number v € T" such that |zg — 7] < 2¢34 Q™. According to the
above arguments and (3.4.14) for any point zo € B! there exists a real algebraic
integer oy € I such that |zg — ay| < 34 Q™. If oy € T, then we can take v = oy,
otherwise, there exists v; € I" such that |a; — ;| < ¢34Q~" and, hence,

lzo — il < lzo —a] + | — vi| < 2e34Q7".

In this case, we take v = ;. Therefore,

m
B! c U {zel:|z—v<2eQ7"}
i=1

and

m

4dmesy Qin >\ (U {HZ el: ‘Z‘ — 'Yi| < 2c34 Qn}> >\ (Bl) > %/\1 (I) .
=1

This inequality implies that

N (0,Q1,1) >m > 5 Q"M (I) = a6 QN ()
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for Q1 > Qo and the proof is complete.

From the proof of Theorem 3.4.1 it follows, that the set of algebraic integers of

n
degree n forms a regular system with respect to the function N(a) = (%)

and Ty = cg5A1 (1) ", where the constant ¢35 is independent of Ay (I).
3.4.1.2 Upper Bound
The proof of upper bound is very similar to the proof of Theorem 3.2.3.

Assume that
Nn (O7Q>I) > Co27 QTL)\l (I) .

Consider a point a € A, (Q) NI and let P be its minimal polynomial. Let us derive
an estimate for the polynomial P at point d. By Lemma 3.2.4 we have

PO (@)] < 2 w1 (3/2) Q,
for all 1 < k <n and Q > @Qo. From these estimates and a Taylor expansion of P

in the intervals I we obtain

|P(d)| < zn: |5 P®) (@) (d — a)¥| < 2"w,(3/2d) QA (). (3.4.15)
k=1

Let us fix a vector a := (an_1,...,a1) € Z" ! and denote by P,(Q,a) C P,(Q) the
subclass of polynomials

Pn(Q,a) = {P € Pp(Q): P(t) =t" + an_1t""' + ...+ art + ap, P satisfies (3.4.15)}

with the same vector of coefficients a such that P satisfies (3.4.15). The number
of non-empty subclasses P, (Q,a) is bounded above by the number of vectors a €
[—Q; Q]"_l, which can be estimated as follows

#(F@ernz ) =@e T <2 (3.4.16)
for QQ > Qg. This allows us to write

o1 Q"M (I) < N, (0,Q,1) <n Y #Pu(Q,a).

Thus, by the estimate (3.4.16) and pigeonhole principle we conclude that there exists
a vector ag such that

#Pn(Q,a0) > c2727"n1Q M (1) (3.4.17)

Let us find an upper bound for the value #P,(Q,ap). Fix some polynomial
Py € Pn(Q,ap) and consider the difference between the polynomials Py and
P; € Pn(Q,ap) at point d. From the estimate (3.4.15) it follows

|Po(d) — Pj(d)| = |aoo — ajo| < 2" wn(3/2d) QA1 (1),

which contradicts to inequality (3.4.17) for co7 = 22""*nw, (3/2d). Thus the proof
is complete.
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3.4.2 Proof of Theorem 3.4.3

The proof of Theorem 3.4.3 follows by the same method as the proof of Theorem
3.4.1, but it contains some non-trivial elements which require special attention.

We will start with using Lemma 3.2.6, which is two-dimensional analogue of Lemma
3.4.6. Given positive v; and vg satisfying the condition v; + v = n — 2 denote by
L? = L, 1(Q,6,v,II) the set of points x € II such that there exists a polynomials
P € P,—1(Q) satisfying the inequalities

[P(zi)| <hQ7,

min {|P'(z;)|} <0Q, i=1,2. (3.4.18)

Lemma 3.2.6 implies that
Ao (L?) < ¢ Xp (IT)

for § < dp(n —1,d) < 1and @ > Qo(n —1,v,d,s).
Let us consider the set B? := I1\ L2. Using Minkowski’s linear form theorem (Lemma

A.2.3) it is easy to ckeck that for every point x € II there exists a polynomial
P € P,,_1(Q) such that

[P(z)| <hQ7", i=12,

where h = \/g(\dl\ + |do )1/ max (1, 3|dy |, 3|d2|) /2. Hence, for any point x €
B? and any polynomial P € P,_1(Q) we have

|P(xi)| <hQ,
Pl(a)] >0Q, i=1.2

Consider an arbitrary point x € B? and examine the successive minima 7q,...,7,
of the compact convex set K defined by

}an_lx?_l 4. taim + ao‘ <hQ@Yi,

}(n — l)an_lx?_Q + ...+ 2a0m; + a1’ <Q, i1=1,2,
lan—1],...,|a2] < Q.
Assuming 77 < § we obtain that for sufficiently small ¢ there exists a polynomial
P € P,_1(Q) satisfying the inequalities
|P(x;)| < 0hQ™V < h@Q™i,
[P(z;)] <6Q, i=12,
H(P) < Q.

This leads to a contradiction, since x ¢ L?. Thus, 71 > §. Since the volume of the
compact convex set K is at least 2", we conclude by Lemma A.2.3 that 71 ...7, <1
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and 7, < 8L, Thus, by definition of successive minima, we can choose n linearly
independent polynomials P;(t) = aj,—1t"" ' + ...+ aji1t + a;o € Z[t] satisfying the
inequalities

|Pj(ai)| < 67" Hh Q™

|Pj(x;)] <671 Q, i=1,2, (3.4.19)

laje| <67 Q, 4<k<n-1

with
D :=det ](ajyk,l);kzl\ S nl.

Using Lemma A.1.19 choose a prime p satisfying
n! <p < 2n! (3.4.20)
and consider a system of linear equations in n variables 64,...,60,
x! +p Zn:l 0;Pj(z;) = p(n+1)0 " "hQ,
j=

n n
nzi ' +p Y 0;Pi(z:i) =pQ+p Y |Pj(xi)], i=1,2 (3.4.21)
i=1 j=1

n
> Oja;r—1 =0, 5<k<n
j=1

Our next goal is to show that the determinant D(x) of this system does not vanish.
Let us transform the system (3.4.21) as follows. Multiply the k-th equation, where
k =15,6,...,n, by pxk L ( respectively by pmg_l) and subtract it from the first
(respectively the second) equation of the system (3.4.21). Similarly, multiply the
k-th equation, where k = 5,6,...,n, by p (k— 1)3:]{’*2 (respectively by p (k — 1):1:]2“*2)
and subtract it from the third (respectively the fourth) equation. After these trans-
formations the determinant of system (3.4.21) may be written as

3 3
> akalf e > amkx’f
k=0 k=0
3 k 3 k
Zalka Zanka
3 =
R Zk alkx - Zk akxkl
D(x) =p* = ! k1 !
Zk alk:ckl Zk ankxkl
a174 RN an74
a1n—1 N An,n—1

We proceed to show that ﬁ(x) is equal to D up to a multiple depending only on x1,
x9 and p. Multiply the third (respectively the fourth) row by %xl (respectively by
%:cg) and subtract it from the first (respectively the second) row. Then subtracting
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the first (respectively the third) row from the second (respectively the fourth) row

gives:

a1,296% + 2a1,171 + 3a1 0
a172(:1:2 -+ Il) + 2a171
3a1,37% + 2a1 971 + a1
f)(x) — pHze—a1)? 3a1,3(:1c2 + 1’1) + 2a1,2

a1.4

a1n—1

an 273 + 205,171 + 3an 0
an72(952 + xl) + 2(1”71
3ay,372 + 205,271 + An 1
3an73 (1’2 + xl) + 2an,2
Q.4

an,n—1

Now let us subtract the second row multiplied by x; from the first row and the fourth
row multiplied by % from the third row. Then subtract the third row multiplied by

% from the fourth row, and finally subtract the fourth row multiplied by x1x2,
1

T9 + x1 and %:1:1 — %%2 from the first, the second and the third row respectively.
Consequently we obtain the inequality

A

D(x) = p4(:c2 — x1)4D > 0,

since the polynomials P; are linearly independent and |z7 — x2| > ‘dl%ﬂ > 0.

Hence, the system (3.4.21) has a unique solution (61, ...,60,). Moreover, there exist

integers k1, ..., k, satisfying
0; —ki| <1, i=1,...,n, (3.4.22)

such that the following polynomial with integer coefficients

n
Pt)=t"+p > kPi(t)=t"+p(an1t"" +...+ a1t +ag),
j=1

n
where ar, = ) kja; is irreducible. This follows by the same arguments as in the
j=1
previous section.

Let us estimate the values |P(z;)| and | P'(z;)|. By the inequalities (3.4.19), (3.4.22),
and (3.4.21) we obtain

pd "R QT < |P(2y)| < p(2n+ 1)0TTRQTY, i=1,2, (3.4.23)

pQ < |P'(z)| < (p+2pms ") Q, i=1,2. (3.4.24)

Finally, we need to estimate the height H(P). By (3.4.21) and inequalities (3.4.19),
(3.4.22), we have

lag| <nd "L Q, 4<k<n-1 (3.4.25)
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It remains to estimate |agl, |a1|, |az| and |az|. By (3.4.23) - (3.4.25) and the in-

equalities |z;| < |d;| + 3, for @ > Qo we have

n
a3z} + asx? + a1z + aol < |P(x;) + Z (Ids] + 1) |ag| < e36,4Q,
k=4

n
’3&31’? + 2a2xi + a1] S \P’(xl)\ + Z k (‘dl‘ + l)k \ak\ < 037’1'Q, 1= 1, 2, (3.4.26)
k=4

where

{h, n =3, {p+2pn5_”+1h, n =3,
C36,i =

ntl , n B 2 5—n+1 A n
= (|| + 1), n > 3 425 (|| + 1), 0> 3.

We emphasize that in order to simplify equations we do not care about the accuracy
of the constants. Consider the following system of linear equations for ag, a1, as
and as

{agxf + agx% +a1x; +ag = ll,i, (3 4 27)

3&3%22 +2a0z; + a1 =1lp;, i=1,2.
According to the above computations the determinant of the system (3.4.27) does
not vanish. Thus, the system has a unique solution, which may be found by Cramer’s
rule. Combining this with estimates (3.4.26), (3.4.20) and |z;| < |d;| + 3 one can
easily verify
|aj|<638Q, 0§j§3.

Applying (3.4.25) now yields the following estimate
H(P) < max (czs,n6 ") Q =: Q1. (3.4.28)

Consider the roots a1, ..., oy, of the polynomial P, where |z; — o;| = min |z; — ).
j

By Lemma A.1.14 and estimates (3.4.23), (3.4.24), we have

lzi — ] <n@2n+ 1) " HhQ V! =c30Q Y, i=1,2, (3.4.29)

where c3g = n(2n + 1)6~"F1h. Let us prove that aj,as € R for vy = vy = ”772

Assume the converse: let o; € C, then its complex conjugate is also a root of the
polynomial P. Hence, by (3.4.28), (3.4.29) and Lemma A.1.18 we conclude that

n

|P(ai)] = [ 17— ajl < B Q7 - ca0 Q = canczy @
j=1

This inequality contradicts (3.4.23) for Q@ > Q.

Let I' = {~;,...,7;} be a maximal system of points with real algebraic conjugate
integer coordinates satisfying the condition that rectangles

o(vg) == {XERZ: |zi — Vil < c30Q 72,0 = 1,2}, 1<k <t,
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do not intersect. Furthermore, let us introduce the expanded rectangles
o' (v) == {X eR?: |z; — Viil < 2¢39 Q 2,i= 1,2} , 1<k<t,
and show that

B> c | o' (). (3.4.30)
k=1

To prove this fact, we are going to show that for any point x; € B? there exists a
point 7, € I such that x; € o/(5,). Since x; € B2, there is an point a with real
algebraic conjugate integer coordinates satisfying the inequalities (3.4.29). Thus,
either a € T and x1 € o’/(a), or there exists a point v, € I satisfying

o — il S e @2, i=1,2,

which implies that x; € o/(v}). Hence, from (3.4.30) and the estimate Ay (B?) >
3 X2 (I) we have

t
X (1) < g (B?) < ];1 Ao (a1(y)) < 1283 Q7™

which together with (3.4.28) yields the estimate

N2(0,Q1,T1) > > e25 QAo (I1) .






CHAPTER 4

Affine Transformation of Random
Simplices and Integral Geometry

In this chapter we will consider the random k-dimensional simplices defined as con-
vex hull of random points X, ..., X in R", k < n.

Before we start let us recall some definitions. For k£ € {0,...,n}, the linear Grass-
mannian of k-dimensional linear subspaces of R" is denoted by G,, 1, and is equipped
with a unique rotation invariant Haar measure v, . Analogously, for k € {0,...,n},
the affine Grassmannian of k-dimensional affine subspaces of R" is denoted by A,,
and is equipped with a unique rigid motion invariant Haar measure i, ;. It should
be noted that v, is normalized by

Vn,k(Gn,k) = 17

which means that v, ;, is probabilistic measure on Gy, ;. For L € Gy, or L € A, 1,
we denote by Ar the k-dimensional Lebesgue measures on L. We will denote by
(+,+) the Euclidean scalar product in R™ and by || - ||2 the induced norm.

Some of the sets we consider have dimension less than n. In fact, we consider 3
classes: the convex hulls of k£ + 1 points, orthogonal projections to k-dimensional
linear subspaces, and intersections with k-dimensional affine subspaces, where k €
{0,...,n}. In this case vol(-) stands for the k-dimensional volume.

Consider k£ + 1 random points X, ..., X; in R™ and denote by
CODV()(()7 N ,Xk)

their convex hull, which is the the smallest convex set that contains all of them.
This convex hull is an example of random polytope with vertices Xop,..., Xg. If
1 < k < n then the random polytope conv(Xy, ..., Xj) is a k-dimensional simplex
(maybe degenerate). Denote by

Ak (X[),...,Xk) := vol (COHV(Xo,...,Xk)) (401)

the k-dimensional volume of the simplex conv(Xj,..., X;). One natural question
here is to find the distribution of the random variable Ay (Xo, ..., Xj). This is very
difficult problem. So far it has been studied for a few models of random variables
Xo, ..., Xj only , which were defined in [51] and [56]:
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1. The Gaussian model: Xy,..., X} are i.i.d. standard Gaussian random vectors
with density function

F () = 2m) e (g2 xe R

2. The Beta model with parameter v > 0: Xy, ..., Xy are i.i.d. points in the unit
ball B™ with density function

\+

) (1 _ HXHZ)(V—Q)/Q

) =722 , x€B"

SN

r(
Iy

(%)

3. The Beta prime model with parameter v > 0: Xg, ..., Xy are i.i.d. points with
density function

n+v
)(1+\| 12)" IR xern,

T

4. The spherical model: Xy, ..., X are uniformly distributed on the unit sphere
centered at the origin of R"™.

_ L
£ (] = 772

The investigation of this problem started with the calculation of the moments
E [Ak (Xo,..., X)) |. (4.0.2)

Miles derived exact formulas for (4.0.2) where Xo,..., X} are generated by one
of the four models described above: for the Gaussian model and integer p > 0
see |51, Equation (70)], for the Beta model with parameter v > 0 and integer
p > 0 see |51, Equation (74)|, for the Beta prime model with parameter v > 0 and
integer 0 < p < g see [51, Equation (72)]. Those formulas provide a representation
of the moments (4.0.2) in terms of Gamma functions. It should be noted that
the formula for the spherical model can be easily obtained from the Beta model
with parameter v > 0 by letting v — 0. The extension of Miles’ result to non-
integer moments p > —1 has been recently obtained by Kabluchko, Temesvari,
and Thile [42, Proposition 2.8]. The latter result allows to predict the volume
distribution of the random simplex conv(Xp, ..., Xi) and, finally, using the moments
method, Grote, Kobluchko, and Théle [38, Theorem 2.5] obtained a probabilistic
representation of the volume of a random simplex generated by one of the four
models.

In next sections we will investigate how the distribution of the volume of random
simplex changes under some fixed affine transformation. As an application we de-
rive the new representation of intrinsic volumes of some ellipsoid, obtain integral
geometry formula connecting the average volume of projections and the average
volume of cross-sections of an ellipsoid, prove the generalization of integral formula
of Furstenberg and Tzkoni [30] and establish its affine version.
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4.1 Main Result

For a fixed k € {1,...,n} consider n-dimensional random vectors Xo, ..., X} (not
necessarily independent and identically distributed) with an arbitrary spherically
symmetric joint distribution. By this we mean that the (k + 1)-tuple (Xo,..., Xk)
is equidistributed with (UXj,...,UX}) for any orthogonal n x n matrix U. Con-
sider some non-degenerate affine transformation on R", defined by x — Ax, where
A is non-singular n X n matrix, and apply this transformation to the simplex
conv(Xo, ..., Xg).

In those settings one can ask the following question.
Problem 4.1.1. How does the distribution of the volume (4.0.1) changes under the
affine transformations?

For k = n, the answer is obvious: it is multiplied by the determinant of the trans-
formation, namely for any xg,...,%X, € R" we have

A, (Axg, ..., Axy,) = | det(A)] Ay (X0, - -, Xn) -

The case k < n presents a more delicate problem, since the above equality does not
hold anymore. The theorem below provides the solution of Problem 4.1.1.
Theorem 4.1.2. Let A be non-singular n X n matriz and let £ be the ellipsoid
defined by

£ = {xeR”;xT(ATA)—lxg 1}. (4.1.1)
Then we have

d Vol (P€)

Ar(AXo, ..., AXy) .

< Ap(Xoy ..oy Xk), (4.1.2)
where & is random k-dimensional linear subspace, uniformly distributed with respect

to vy i and independent of Xo,..., Xy and P, denotes the orthogonal projection
operator on k-dimensional linear subspace L € G, 1, .

It is obvious that all four density functions described above are spherically symmetric
and, thus, (4.1.2) is applicable to those models.

The main ingredients of the proof of Theorem 4.1.2 is the following deterministic
version of (4.1.2).

Proposition 4.1.3. Let A and £ be as in Theorem 4.1.2. Consider the vectors
X1,...,Xg € R™ and denote by L the span (linear hull) of x1,...,X;. Then

vol(PLE)

Ak<0, AXl, e ,AXk> = o

~Ak(O,X1,...,Xk). (413)

Remark 4.1.4. Let us stress that here the origin is added to the convex hull. This
is important for obtaining the deterministic equation.
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4.1.1 Connection with Intrinsic Volumes

The concept of intrinsic volumes is an important characteristic of the convex sets.
Given some convex set K C R”, consider its parallel body

K. := {X e R": inf ||z —s|j2 < e} .
seEK

The volume of K, is a polynomial in € of degree at most n

n

VOI(KE) = Z Gniklﬁin,kvk(K).
k=0

This result is known as the Steiner formula. The functionals Vj,...,V,, are called
the intrinsic volumes and they depend only on K and not on the dimension of its
surrounding space.

Due to Kubota’s formula (C.1.1), the average volume of k-dimensional projection
E vol(P:€) is proportional to the k-th intrinsic volume Vj(€) of the ellipsoid £ (see
Section C.1 for more details). Thus, taking expectation in (4.1.2) readily implies
the following corollary.

Corollary 4.1.4.1. Under the assumptions of Theorem 4.1.2 we have

E Ak(AXO,...,AXk)} - <”> o Vi(E)E [Ak(XO,...,Xk) L (414

k Kn

The formula for Vi (€) was derived in [68]. Relation (4.1.4) can be generalized to
higher moments using the notion of generalized intrinsic volumes introduced in [21].

4.1.2 Connection with Gaussian Random Matrices

The next point to be mentioned is that the distribution of the volume of a random
projection P¢& is not known and even moments would be difficult to find in general.
This fact makes the equation (4.1.2) less convenient to use. We can get rid of this
problem finding a representation of the random variable vol (P¢£) in terms of the
determinants of Gaussian random matrices.

Theorem 4.1.5. Under the assumptions of Theorem 4.1.2 we have

Vol(Pe8) 4 ((det (GTATAG)\"? 4 (det (GIGa) )"
ko \ det (GTG) ~ \ det (GTG) ’

(4.1.5)

where G is a random n X k matriz with i.7.d. standard Gaussian entries N;; and
Ga 15 a random n X k matriz with the entries a;N;;, where ai,...,a, denote the
singular values of A.

Using the representation (4.1.5), we obtain the following version of (4.1.2).
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Corollary 4.1.5.1. Under the assumptions of Theorem 4.1.2 we have

J (det (GTATAG

1/2
Ak(AXO) . aAXk) = det (GTG) )> Ak(X07 s 7Xk)

Il

(det (GLGa)

1/2
Ap(Xg,..., X
det (GTG) > k( 0, 3 k)?

where the random matrices G and Gy are defined as in Theorem 4.1.5.

The important special case k = 1 corresponds to the distance between two random
points.
Corollary 4.1.5.2. For any non-singular n X n matric A with singular values

ai,...,ay we have
d |a?NZ+ -+ a2 N2
[AXo — AXy[s 2 \/ e o=l
where N1, ..., Ny are i.i.d. standard Gaussian random variables.

These results will be used in the next subsection to study integral geometry problems
for ellipsoids.

4.2 Random Points in Ellipsoids

Suppose that Xg,..., X are independent, identically distributed random n-
dimensional vectors, which are uniformly distributed in some convex set K C R"”
with non-empty interior (denote by ~ U(K)). A classical problem of stochastic
geometry is to find the distribution of Ay (Xo, ..., X)) starting with its moments

1
E Ak(XO,...,Xk)p:| = W / Ak(XO,...,Xk)deQ...ka. (421)

Kk+1

To the best of our knowledge, for general K a formula for (4.2.1) is not known even
forn = 2,k = p = 1, where the problem reduces to the calculating the mean distance
between two random points uniformly chosen in a planar convex set (see [15], [31],
[57, Chapter 4], [50, Chapter 2|, [5]).

The case of arbitrary k and n was studied for K being a ball only. In [51] it was
shown (see also [59, Theorem 8.2.3]) that for Xj,..., X ~ U(B") and any integer
p > 0 we have

k+1
K Kk(n n b
E[A(Xo,. ., Xp)P| = iy e, Zek (4.2.2)
(k+1)(n+p) bn+p,k
where ry, are defined in (C.0.1) and by, are defined in (C.0.2). In [42, Proposition
2.8 and p.23] this relation was extended to all real p > —1. Theorem 4.1.2 implies
the following generalization of (4.2.2) for the ellipsoids.
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Theorem 4.2.1. For any non-degenerate ellipsoid £ C R™ consider random n-
dimensional vectors X, ..., X uniformly distributed in ellipsoid £. Then any real
number p > —1 we have

k p
E|AL(X, X, )P = 1 l{ni;}) KE(n4p)+d bn,k E{VOI(ng) } 493
k( Oycvvy k) _(k")p k+1 b D ) ()
)RR B(k+1)(ntp) Ontp.k K

where £ is a uniformly chosen random k-dimensional linear subspace in R™, inde-
pendent of Xo, ..., Xp.

Note that (4.2.3) is indeed a generalization of (4.2.2) since P:B" = B* almost surely
and vol(B¥)P = k7. For k =1 formula (4.2.3) was recently obtained in [39].

By Kubota’s formula (C.1.1), the right-hand side of (4.2.3) with p = 1 is propor-
tional to the k-th intrinsic volume of £, which implies the following result.
Corollary 4.2.1.1. For any non-degenerate ellipsoid £ C R™ consider random n-
dimensional vectors X, ..., X uniformly distributed in ellipsoid €. Then,

1 (ot Rk
B8 o X0 = o8 G+ ! <n<n+1;k+1>> e

Very recently, for random n-dimensional vectors Xo, . .., X uniformly distributed in
the unit ball B", a formula for the distribution of Ag(Xp, ..., Xx) has been derived
[38]. For a random variable n and positive ay,as > 0 we write n ~ B(aq, ) to
denote that n has a Beta distribution with parameters a1, as and the density

[(ag + a9) 1 1
—— M (1 =), te(0,1).
It was shown in [38] that for random n-dimensional vectors Xp, ..., X} uniformly
distributed in unit ball B™ the following holds
d
()2 n(1 =) Ap(Xo, ..., Xp)? = (1 =)y - -, (4.2.4)
where 1,7, m1, ..., n, are independent random variables independent of Xy, ..., X,
such that
kn n—k+i k—1i
‘B[Sl .~ B 1).
777 /’7 < 2 + ) 2 ) 772 2 ) 2 —"_

Multiplying both sides of (4.2.4) by vol (PgS)Q /K2 and applying Theorem 4.1.2 and
Theorem 4.1.5 leads to the following generalization of (4.2.4).

Theorem 4.2.2. For any non-degenerate ellipsoid £ C R™ consider random n-
dimensional vectors Xo, ..., Xg uniformly distributed in the ellipsoid £. Then, we
have

(k)% (1= )" Ap(Xo, ..., Xk)? s 2 (1= n)F - vol (Pe€)?

det (GTG )
L1 _nVep, ... & \Ma a)
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where G is a random n x k matriz with i.i.d. standard Gaussian entries N;j, Ga
is a random n X k matriz with the entries a;N;; and ai1,...,a, are the length of
semi-azxes of £.

Taking £ = 1 yields the following stochastic equality for the distribution of the
distance between two random points in ellipsoid £.
Corollary 4.2.2.1. Under the assumptions of Theorem 4.2.2 we have

aiNf + -+ a;N?
NZ+---+NZ2 )’

d
(=) -1 Xo - X122 (1= o) my (

where N1, ..., Ny are i.i.d. standard Gaussian random variables.

4.3 Integral Geometry Formulas

For an arbitrary convex compact body K, any real p > —n, and k = 1 it is possible to
express (4.2.1) in terms of the lengths of the one-dimensional sections of K [20, 43|

2nky, n
[ o= xall s = T [ ol (1 B ()

K2 An,l

This formula can not be extended to k > 1 for arbitrary convex body K, but for
ellipsoids K = £ this is possible.

Theorem 4.3.1. For any non-degenerate ellipsoid € C R™, any integer 0 < k < n,
and any real p > —n + k — 1 we have

Ak(XU, c. ,Xk)p dXO c. dxk
Ek+1

k+1

1 Kpip  Kk(ntp)+k  bnk / ntl
- : 1(EN BT 4 (dE). (431
B ottt G [ k€ B ). 11

n,k

Combining this theorem with Theorem 4.2.1 readily gives the following connection
between the average volumes of k-dimensional cross-sections and projections of an
ellipsoid.

Theorem 4.3.2. For any non-degenerate ellipsoid £ C R™, any integer 0 < k < n,
and any real p > 0 we have

Fat Kk(ntp)+k

n+1

/ vol (€N E)YPY" 1y, 1(dE)
K~ Rk(n+p)+n

n,k

:VO]((C/’)IH_1 /VOI(PLg)p I/mk(dL).
Gn,k

For p = 0, we obtain the following integral formula.
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Corollary 4.3.2.1. For any non-degenerate ellipsoid € C R™ and any integer 0 <
k <n we have

n+1
/ vol (5 N E)n-‘rl ,Ufn,k;(dE) _ ’%i Hn(k‘-i-l)

vol (E)FF1. 4.3.2
T Ki(n+1) ©) ( )
An,k

This result may be regarded as an affine version of the following integral formula of
Furstenberg and Tzkoni [30]:

n

/ vol (€N L)" vpi(dL) = %’; vol (£)F .
Gn,k:

Our next theorem generalizes this formula in the same way as (4.3.1) general-
izes (4.3.2).

Theorem 4.3.3. For any non-degenerate ellipsoid € C R™, any integer 0 < k < mn,
and any real p > —n + k we have

/Ak(o,xl, ‘e ,Xk)pdxl . ..ka
&k

_ 1 iy b 1(ENLP v, (dL). (4.3.3
- (k!)p Kﬁ-ﬁ-n bn+p,k Vo ( ) Vn,k( ) ( -9 )

n,k

In probabilistic language it may be formulated as

k
1 Kn+p bn,k
(K W2 b

E [AL(0, X1,..., Xp)P| = E [vol (€N &P |,

where X1,..., Xy are independent, identically distributed random vectors uniformly
distributed in £ and £ is a uniformly chosen random k-dimensional linear subspace
in R™.

4.4 Proofs: Part I

4.4.1 Proof of Proposition 4.1.3

To avoid trivialities we assume that dim L = k, i.e. X1, ..., X} are in general position.
Let eq,...,er € R™ be some orthonormal basis in L. Let Or, and X denote n x k
matrices whose columns are eq, ..., e, and X1, ..., X} respectively. It is easy to check

that OLOI is a n X n matrix corresponding to the orthogonal projection operator
Pr.. Thus,

0.0 X = X. (4.4.1)
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Recall that & is defined by (4.1.1). It is known (see, e.g., [60, Appendix H]) that
the orthogonal projection Pr€ is an ellipsoid in L and

vol (PL€) = | det (O] HOL ) }1/ g (4.4.2)

where

H:= AT A.

A well-known formula for the volume of a k-dimensional parallelepiped and (C.2.1)
implies that for any x1,...,x; € R", we have

AR(0,%1, ..., xz) = [d ¢ (XTX> }1/2 (4.4.3)

il
Therefore,
1/2 1/2
Kl AR0, Ax, .. ., Axy) = [det ((AX)T AX” - [det (XTﬂx)] :
Applying (4.4.1) produces
det (XTHX> — det (XTOLOZHOLOEX)
= det ( HOL) det (XTOL) det (OIX)
= det (OL HOL) det (XTOLOTX>
( THO
4.

— det L) det (XTX) ,

which together with (4.4.2) and (4.4.3) finishes the proof.

4.4.2 Proof of Theorem 4.1.2

We will introduce two proofs of the Theorem 4.1.2. The first proof is simple and
straight forward. It does not require the existence of joint density of Xy, ..., Xi. The
second proof is based on the Blaschke-Petkantschin formula and the characteristic
function uniqueness theorem. The similar approach will be used to prove Theorems
4.3.1 and 4.3.3. In the second proof we will assume that the joint density function
of Xp, ..., X} exists.

The first proof

Fist of all note that with probability one the equation

vol(PeE)

Kk

AR(Xo,..., Xg) =0

holds if and only if
Ag(AXy,...,AXy) =0,
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which in turn is equivalent to
dim conv(Xo, ..., Xx) < k.

Therefore to prove (4.1.2) it is enough to show that the conditional distributions of
A(AXo, ..., AXy) and N AL (X, LX) given dimconv(Xo, ..., Xi) = k
are equal. Thus without loss of generality we can assume that the simplex
conv(Xy, ..., Xy) is not degenerate with probability one.

Since the joint distribution of Xy, ..., Xy is spherically symmetric, for any orthog-
onal matrix U we have

Ap(AXo,. .., AXy) = Ag(0, A(X1 — Xo), ..., A(Xk — Xo) (4.4.4)
L AR(0, AUX, — UXo), ..., AUX; — UXo).
Now let T be a random orthogonal matrix chosen uniformly from SO(n) with respect

to the probabilistic Haar measure and independently of Xg, ..., X;. The linear span
of X1 — Xo,..., X, — X is a k-dimensional linear subspace of R™. Thus,

¢ :=span(0, T X7 — T Xo,...,TX — T Xp)

is a random wuniformly chosen k-dimensional linear subspace independent of
Xo, ..., Xk Applying Proposition 4.1.3 to the vectors TX; — T Xg,..., T X — T X
we obtain

Ap(0, A(TX1 — TXp), ..., A(TX, — TXo)

1(P
_ vol(Fef) | A0, TX1 — TXo, ..., TXy — TXo)

_ vol(Fef) | Ap(TXo, YX1,..., TXk)

U
<
S
S.

pa
o

Combining this with (4.4.4) for U = T finishes the proof.

The second proof

Denote by f(xo,...,Xx) the joint density function of (Xo,..., Xy). Let

palt): = / exp (z't log Ak (Axg, ... ,Axk)) f(xo,...,xk)dxg...dxg
(Rn)k+1
= / exp (itlog Ak(0, A(x1 — X0), . .., A(x — X0)))
(Rn)k+1

X f(Xo,...,Xk)dX()...ka
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be a characteristic function of log Ax(AXo,...,AXk). In particular, denoting
by I the identity matrix, we obtain that ¢;(t) is a characteristic function of
log Ag(Xo, ..., Xg). Substituting yo = x¢ and y; = x; — x¢ for 1 <1i < k leads to

patt) = [ exp (itlog|conv(0, Ays,.... Ay
(Rn)k+1

X f(yo,¥y1+Yo0---,¥x +Yyo)dyo...dyx
= / exp (itlog | conv(0, Ay1, ..., Ayr)|) 9(y1,---,yk) dy1 ... dys,
(Rn)F

where

9(y1,-- o YE) = /f(YOaY1 +Y0---, Yk +¥0) dyo.
]Rn
Using the linear Blaschke-Petkantschin formula (see (C.2.2)) with

h(Yla s ,Yk) ‘= eXp (ZthgAk(Ov AYIa S ,AYk)) g(ylv R 7yk)
gives

@alt) = by (k)" * / /exp (itlog Ag(0, Ay, ..., Ayr))9(¥1,---,¥k)
Gn,k Lk

X Ak(0,¥y1, ... ,yk)n_k Ar(dyr) ... A\p(dyg) Vnd(dL). (4.4.5)
Applying Proposition 4.1.3 to (4.4.5) leads to

1(P,
QA(t) = by (k)" / exp (itlog VOE%L(‘:)> /eXp (itlog Ag(0,y1,---,¥%))

Gn#k’ Lk

X g(¥1s - YO AR, Y1, -, ¥)" F AL(dy1) ... An(dyy) vnx(dL).

Since f is spherically symmetric, the function

hA(t) L= bn,k(k!)n_k / eXp (Zt log Ak’(oa Yi,.-- ,Yk))g(yh cee aYk)
Lk
X Ap(0,¥1, -, ¥1)" " AL(dy1) ... AL(dy)

does not depend on the choice of L. Indeed, consider any L' € Gy, . There exists
an orthogonal matrix U such that L = UL’. Substituting y; = Uz; gives

ha(t) = by r(k)"F / exp (itlog Ak(0,Uz1,...,Uz))g(Uz,...,Uzy)
L'k
x Ap(0,Uz1,...,Uzp)" % N} (dz1) ... N} (dz).
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Now the claim follows from
Ak((), Uzl, NN Uzk) = Ak(O, Zl,..., Zk)

and

g(Uzl,...,Uzk):/f(yo,Uz1+yo...,Uzk+y0)dy0
Rn
—/f(UYOaUZI+UYO---7UZk+UYO)dYO
RTL

:/f(YOaZ1+YO~~aZk+YO)dYO
]Rn

=g(z1,...,2),

where at the second step we did a change of variables yo — Uy and at the third
step we used the spherical symmetry of f.

Thus h4(t) does not depend on the choice of L, which implies
vol (Pgé’))

wa(t) =ha(t)E exp (it log .
k

In particular,

pr(t) = ha(t).
Comparing the last two equalities and applying the characteristic function unique-
ness theorem, we arrive at

vol (P:E)

log Ap(AXo, ..., AX)) 2 log
Kk

+ 10gAk(X0, e Xk),
and the theorem follows.

4.4.3 Proof of Corollary 4.1.5

Denote by Gi,...,G) € R? the columns of the matrix G. Hence, AG1,...,AG} €
R? are the columns of the matrix AG. Using Proposition 4.1.3 with x; = G; and
applying (4.4.3) to G and AG gives

/2 vol (P,€
=

| det (GTATAG ). | det (GTG)]I/ g

Kk

or

?

1/2
det (GTATAG)\?  vol(P8)
det (GTG) R
where 7 is the linear hull of G4, ...,Gg. Since G1,...,Gy are i.i.d. standard Gaus-
sian vectors, 7 is uniformly distributed in G,, ; with respect to v, x, given dimn = k,

which holds a.s. This implies 1 4 ¢, and the corollary follows.
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4.4.4 Proofs of Theorem 4.2.1 and Theorem 4.2.2

For any non-degenerate ellipsoid £ there exist a unique symmetric positive-definite
n X n matrix A such that

E=AB"={xeR": |[A'x|| <1} = {x ceR": x"A7%x < 1}.

Since Xy, ..., X are i.i.d. random vectors uniformly distributed in £, we have that
A71Xy,..., A7 X}, are ii.d. random vectors uniformly distributed in B™. It follows
from Theorem 4.1.2 that

Ap(Xo, ..., Xp) = A(AAT X, ..., AATIXY) (4.4.6)

1 (P
4 AL (A1 Xo, ... A-Lxy) YOLEEE).

K
Taking the p-th moment and applying (4.2.2) implies Theorem 4.2.1.
Now apply (4.2.4) to A=' Xy, ..., A71 X}, we get

(612 (1 — )k AR(A™ X0, ..., A7 X2 L (1= i)y

Multiplying by % and applying (4.4.6) implies Theorem 4.2.2.

4.4.5 Proof of Corollary 4.2.1.1

From Kubota’s formula (see (C.1.1)) and Theorem 4.2.1 we have
E [Ay(Xo, - Xp)| = ans Vi(©),

where

k+1
l Bn+1 Fk(n+1)4n bn,k Kn—k

An | = .
kY i K1y net) bnsik (3) Bn

From the definition of by, ;, (see (C.0.2)) and &, (see (C.0.1)) we obtain

k+1
Oy = Kn+1 Bk(n+1)4n (n +1-— k)' Kn—k+1 Kn—k
n, -
feth Ky (DR Kn

(n—l—l—k)!( I (in+1) )k“
)

a2+ \T (An+1)+1

y L (3(k+1)(n+1)+1) T(3(n+1)+1) I (3n+1)
1 I 1 -
F(3((k+1)n+k)+1) T (3(n—k+1)+1) T (3(n—k)+1)

Using Legendre’s duplication formula for the Gamma function

F(Z) IR <Z + ;) = 21_2Z7T1/2F(22),
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the recursion F( + 2z) = 2I'(2), and the fact that k,n € Z we obtain
o, — I (3(k+1)(n+1)+1) I'(3n+3) T (3n+1)
" 7Tk/2n‘ F(% (k+n+k)+1) T (3(n—k)+3) T (3(n—k)+1)

1) k+1
- (3(n+1)+1)
L P(5k+1)(n+ )( I (In+1) )’““
T eya)f TR+ )+ > 1) \T (n+1)+1)
(

B (C(4n+ 1) T (dn+ 14 )" i)
() T (5 (ntnt k) + ) T (3t k+m) 14 3) \ Reweniern
(

+
2
((n+DH* K1
K(n41)(k4+1)

1
T2 (n+1)(k+1))!
4.5.1 Proof of Theorem 4.3.1

4.5 Proofs: Part 11

Let us consider the expression

J:= / Ak(xg,...,xx)Pdxg...dxg

gk+1
= / Ag(xg,...,x H]lgxl )dxg ... dxg

(Rn)k+1

Using the affine Blaschke-Petkantschin formula (see (C.2.3)) with
h(xo,...,Xk) = Ag(Xo0, ..., Xk l_I]l‘gxZ
yields the following representation

k
J = bmk(k!)nfk / / Ak(XO, e ,Xk)p+nflg H ]lg(xi) )\E(dXO) - /\E(dxk) ,un?k(dE)

An,k Ek+1 =0

= bn’k(k:!)nfk / / Ak(XQ, .. ,Xk)ernflC )\E(dX()) ... )\E(dxk) Mn,k(dE)'
Ank (ENE)k+1
Now fix some E € A, . Applying Theorem 4.2.1 to the ellipsoid £ N E' gives

1 —
ol (€ M )T / Ap(X0,. .., x5)P TR Ap(dxo) ... Ap(dxy)
VO
(ENE)k+1
k+1

- —k 1
(RDPER=F DI K1) () Dtk
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which leads to

J 1 K’:Lillo K;k(ner)Jrk bnak / 1 (g e E)p+n+1 (dE)

= VO TL,k :
(kP Hi—i_m_l K (k+1)(n+p) brtp.k A :

n,k

4.5.2 Proof of Theorem 4.3.3

The proof is similar to the previous one. Let us consider the expression

= /Ak(O,Xl,...,xk)pdxl...dxk

k
h(X17 e 7Xk‘) = Ak(O,Xl, e 7Xk‘)p H]lg(X,J
=1
gives
J = by, (K" F //Ak()xl,..., )Pk (4.5.1)
n k Lk
k
x [ Le(xi) An(dxy) ... AL(dxg) vnp(dL)
=1
= by (k) / [ Au0x1 P AL A () (L),
nk Lﬂg)k

Fix some L € G, 1. Since £ N L is an ellipsoid, there exists a linear transformation
Ar : L — RF such that Az(€ N L) = B*. Applying the coordinate transformation
x; =Aryi, 1t =1,2,...,k, we get

/ Ap(0,x1, .., xp) PR N (dxq) .. A (dxg)
(LNE)k
vol (€N L)PH" _
:(p% / AR(0,y1,. .,y dyr . dyge (45.2)
" (84"

It is known (see, e.g., [59, Theorem 8.2.2|) that

n— —p—n bk
Ak(oa yi,... 7yk)p+ g dyl cdyg = (k') Ptk Kfz—i—p b : (453)
(BF)*

Substituting (4.5.3) and (4.5.2) into (4.5.1) finishes the proof.






APPENDIX A

Some Results From Number
Theory and Geometry of Numbers

A.1 Number Theory

In this section we recall some definitions from algebra and number theory and in-
troduce necessary technical lemmas.

A.1.1 Definitions

Definition A.1.1. A non-constant polynomial P is irreducible over the field
F if its coefficients belong to F and it can not be factored into the product of two
non-constant polynomials with coefficients in F.

In this thesis we will consider only the case F = QQ and polynomials with rational
coefficients P € Q[t].

Definition A.1.2. A non-constant polynomial P is monic if its leading coefficient
is equal to 1.

Definition A.1.3. A non-constant polynomial P(t) of degree n is reciprocal if it
satisfies t"P(1/t) = £P(t).

Definition A.1.4. Let P(t) = ant' + ...+ ap € Z[t]. The greatest common divisor
of the coefficients ao, ..., ay is called the content of P and denoted by cont(P).
Definition A.1.5. A polynomial is primitive if its content is equal to 1.
Definition A.1.6. The ’naive’ height of the polynomial P(t) = a,t' + ...+ ag is

the value H(P) = Jnax la;|.
<i<n

Definition A.1.7. Given the vector w = (wy, ..., wy) of positive weights we define
the weighted 1, height of the polynomial P(t) = ant' + ...+ ag as follows

n 1/19
Sluad) . p<ox
hpw(P) == (i—o o 7 ’
Joax w; lail, p=oc.

Note, that for w' = (1,...,1) and p = oo we have hy, wi(P) = H(P).

Definition A.1.8. A number « is called an algebraic number if there exists an
irreducible over the Q primitive polynomial P € Z[t] such that P(a) = 0. The
polynomial defined above is unique for any algebraic number o and it is called the
minimal polynomial of algebraic number «.
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Definition A.1.9. The algebraic number « is called an algebraic integer if its
minimal polynomial P € Z[t] is monic.

Definition A.1.10. Two algebraic numbers are called algebraic conjugates if
they have the same minimal polynomaial.

Definition A.1.11. The degree of algebraic number « is degree of its minimal
polynomial deg(a) = deg P.

We will denote the field of algebraic numbers by A and the set of algebraic numbers
of degree n € N by A,,.

Definition A.1.12. Height function is the function h : A — Ry such that for
any n € N and Q > 0 there are only finitely many algebraic numbers a € A, with
h(a) < Q and for any algebraic conjugates & and o we have h(a') = h(a).
Definition A.1.13. Let I' be a countable set of real numbers and N : ' — RT
be a positive-valued function. The pair (I', N') is called a regular system if there
exists a constant C = C(I', N) > 0 such that for every interval I C R the following
property is satisfied: for a sufficiently large number Ty = To(T', N, I) > 0 and an
arbitrary integer T > Ty there exist y1,7v2,...,v € I' N1 satisfying

1) N <T, 1<i<t,

2)  |n—yl>Th, 1<i<j<t,
3)  t>CT.
A.1.2 Lemmas
For a polynomial P with roots aq,aq, ..., a, define the following set

S(a) == {a: eER: |z —a4 = lrgljign]x — aj\}.

Assume that the roots of the polynomial P are sorted by distance from o; = ;1
|1 — i) <o — iz <o <o — il

Lemma A.1.14. Let x € S(a;). Then

[P ()]

|x — ;| < m- ) (A.1.1)
z — oy < 271 ||sz((2)’|’ (A.1.2)

| P()]
[P ()]

|x — a;| < min (2"j g — ol .. oy — g

1<j<n

>1/j . (A.1.3)

Proof. Considering the polynomial P and its derivative P’ at the point x we get

n
[P/(@)[[P(@)| 7t < ) e — a7t <z —an| 7
=1
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which establishes the first inequality.
For a proof of the second and the third inequalities see [62], [10]. O

Lemma A.1.15. Lel I be an interval, and let A C I be a measurable sel with
wiA > %mI. If for some 6,v > 0, some polynomial P € Z[t] of degree n and all
x € A the inequality |P(x)| < § QY holds, then for all points x € I we have

P(@)] < 6"(n+1)"'5Q".

The proof of this lemma can be found in [9].
Lemma A.1.16. Let §, 11, n2 be real positive numbers, and let Py, Py € Z[t] poly-
nomials without common roots of degrees at most n such that

max (H(P)), H(P,)) < K,

for some K > Ky(9). Let Ji1,Jo C R be intervals of sizes pJ; = K™, pJo = K.
If for some 11,70 > 0 and for all (x1,x2) € J1 X Ja, the inequalities

max (| Py (z;)|, | Pa(z)]) < K™7, i=1,2,
hold, then

My =11+ 7+2+2max(11 +1—n1,0) +2max(mo+1—12,0) < 2n+4. (A.1.4)

The proof of this lemma can be found in [53].
Lemma A.1.17. For any Py, P> € Z[t] of degrees no = deg Po» > deg P1 = n; > 0
we have

(22 F g 1 1) H(Py) H(P)
SHPP) <(1+m)H(P)H(P,). (Al5)

For the proof see e.g. |54, Theorem 4.2.2|.
Lemma A.1.18. For any subset of roots o, ..., i, 1 < s <n, of the polynomial
P(t) € Z[t] of degree n and with leading coefficient a,, we have

S
[T les,| < (n+1)2° H(P) - an| .
j=1

The proof can be found in [29].
Lemma A.1.19 (Bertrand postulate). For any integer n > 2 there exists a prime
p such that n < p < 2n.

Proved by P. Chebyshev in 1850 (see for instance [52, Theorem 2.4|).
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Lemma A.1.20 (Eisenstein criterion). Let P(t) = ant™ + ...+ a1t + ag be a poly-
nomial with integer coefficients. If there exists a prime number p such that:

an 20 mod p,
a;=0 modp, i=0,....,n—1 (A.1.6)
ag #0 mod p?,

then P is irreducible over the Q.

For a proof see [27].

A.2 Geometry of Numbers

Definition A.2.1. Let g1,892,...,8, be linearly independent points in R™. Then
the set

A={zeR": z=u1g1+ ...+ un8n,u; € Z},

is called a lattice. The system of points g1,82,...,8n is called a basis of A.
Definition A.2.2. If A is a lattice and the rows of matriz G form a basis of A then
| det G| is called the determinant of A and denoted by det(A).

The two fundamental results in geometry of number belong to Minlowski who can
be considered as the founder of this area.

Theorem A.2.3 (Minkowski’s linear forms theorem). Let A be an n-dimensional
lattice and let a; ;, bj >0, 1 <1,j < n, be real numbers such that

by ... by > det(A) |det (a; ).

Then there is a point x € A other than zero satisfying

n n
Zal,jxj < bl, Zai,jxj < bi, 2<i<n.
Jj=1 Jj=1

For the proof see [19, pp. 73].

Definition A.2.4. Let K be a bounded central symmetric convexr body in R"™ and
A € R"™ be a lattice. The k-th successive minimum 1, = 7(K,A) of the body K
with respect to the lattice A is the lower bound of the numbers T such that the body
7 K contains k linearly independent lattice points.

Theorem A.2.5 (Minkowski’s 2nd theorem on successive minima). Let K be a
bounded central symmetric convex body in R™ and let 11,...,7, be the successive
minima of body K in the n-dimensional lattice A with determinant det(A). Then

n

2
— det(A) < mi7a... T vOI(K) < 27 det(A).
n!
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The best general references here are [19, pp. 203], [47, pp. 59].

Another important topic in geometry of numbers is counting lattice points in some
bounded subset D of the Euclidean space. This problem has a numerous applications
in number theory. There are a lot of results providing good estimates under some
conditions for subset D (see [67] for brief review).

Definition A.2.6 (|67|). We say that a set D is in Lip(n, M, L) (or of Lipschitz
class (n,M,L)) if D is a subset of R", and if there are M maps ¢1,...,0n
[0,1]""1 — R™ satisfying Lipschitz condition

|¢1(X)7¢Z(Y)| SL’X7y|v X,y € [Oa 1]n—1’ 1=1,..., M, (A21)
such that D is covered by the images of the maps ¢;.

Given some bounded set D C R" some lattice A in R™ denote by pa (D) the number
of lattice points in D. For a real number ¢ > 0 and a set D C R™ denote by

tD = {tx:x € D},
the dilate of D by the number .

The following theorem is stated for the sets of type tD and gives the asymptotic
formula for pa(tD) when t — oc.

Theorem A.2.7. Let A be a lattice in R™ and let D be a bounded set in R™ such
that the boundary 0D of D is in Lip(n, M,L). Then

"+ 0 (tn—l) ’

where the implicit constant in the big O notation depends on n, L, M only.
For the proof see [46, Chapter VI, §2].

We will apply the Theorem A.2.7 in case A = Z™. Given some bounded set D C R"”
denote by p*(D) the number of points with coprime integer coordinates in D. The
following lemma provides asymptotic formula for p*(¢D) when t — oo.

Lemma A.2.8. Let D be a bounded set in R™, n > 2 such that the boundary 0D of
D is in Lip(n, M, L). Then

vol(D)
¢(n)

where the implicit constant in the big-O-notation depends on n, L, M only.

p*(tD) =

"+ 0 (t”*l (log t) W’”) : (A.2.2)

Results of this type are well-known, see for example the classical monograph by
Bachmann [1, pp. 436-444] (in particular, formulas (83a) and (83b) on pages 441-
442). The basic ingredient of the proof is the classical Mébius inversion formula (see
[55]) and Theorem A.2.7. For the detailed proof of Lemma A.2.8, see [36].

In general it is not easy to verify that the boundary of some given set is of Lipschitz
type. The following result gives one easy criteria.
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Theorem A.2.9. If D C R" is a bounded convex set which lies in a ball of radius
R, then dD is in Lip(n, 1,8n%%R).

The proof of this theorem can be found in [67].



APPENDIX B

Random polynomials

In this chapter we collect some fact connected with random polynomials, random
functions and distribution of their zeroes.

Definition B.0.1 ([63]). Let n be positive integer, let co,...,c, be determinis-
tic complex numbers, and let & (which we call the atom distribution) be a com-
plex random wvariable of mean zero and finite non-zero variance. Given the coef-
ficients cg, ..., c, and atom distribution &, we associate the random polynomsial

G : C — C defined by formula

n

G(2) =) ciki,

=0
where &g, ..., &, are jointly independent copies of &.

The definition above can be considered in a more general way, namely instead
of functions 1, z,..., 2, one can consider any collection of differentiable functions
fo(t), ..., fa(t) and define the random functional F' : C — C as follows

F(z):=) &fi(2). (B.0.1)
i=0

The zeroes of random function F' form the point process and the most natural way
to describe the point process is via its correlation function.

Definition B.0.2 (|63]). The k-point correlation function piLk)F :CF = Ry of
the set of zeroes (counting multiplicity) {(1, (2, ...} of random func’tion F is defined
for any natural number k by requiring

Bl Y elG)| = [e@nli@aa,

i1,...,0 — distinct Ck

for any continuous, compactly supported, test function ¢ : C¥ — R, with the con-
vention p(oo) = 0.

The k-point correlation function does not allow us to consider real and complex
zeroes separately. Moreover this function is not well-defined in case of random
polynomial G with real coefficients since their zeroes are symmetric with respect
to real axis and it’s natural to expect some zeroes lying on real axis. Thus, k-
point correlation function may become singular on the real axis. The solution of
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the problem in this case is to divide the complex plane C into three pieces, namely
C =C;UC_UR, where C4 := {z € C: Imz > 0} is the upper half-plane and
Ct :={z € C:Imz < 0} is the lower half-plane, and define the mixed (k,[)-point
correlation function.

Definition B.0.3 ([63]). For any natural numbers k,1 > 0, 1 < k+ 2l we define the
mixed (k,l)-point correlation function pgg’}? :REx (Cy U C_)l — Ry of the set
of zeroes (counting multiplicity) of random fm,zction F to be the function defined by
formula

E Z (Cila'-wCikann"-?C]l / / XZ,O ;)(X Z)dXdZ

U1yl — distinct

ko
J1ye-ngi— distinct R* (cyucC-)

for any continuous, compactly supported, test function ¢ : RF x CF — R, where
G runs over an arbitrary enumeration of the real zeroes of F and 5]- TUNS over an
arbitrary enumeration of the zerces of F in C, UC_.

It is clear that due to symmetry in case of random polynomials G we can restrict
ourselves to the consideration of the zeroes in R and C only.

Lemma B.0.4. Let v(t) = (fo(t),...,fn(t))T be any collection of differentiable
functions and &g, ..., &, be elements of multivariate normal distribution with mean
zero and covariance matriz C. The expected number of real zeroes on an interval
(or measurable set) I of the random function F(t), defined by (B.0.1) is

[P

1

where

(1,0) 1 0? 1/2
) _ T
P (1) = - [ax(?y log <v(x) Cv(y)) :c—y—t:| . (B.0.2)

For the proof see [26].

The following lemma gives the representation of random vector £ having uniform
distribution in the (n + 1)-dimensional unit ball in terms of independent random

variables.
Lemma B.0.5. Let ng,m1,...,nn be i.i.d. standard Gaussian random variables,
and let Z be an exponential random variable independent of no,n1,- .., M- Then the

random vector
E — (77077717 o 77771)

n
> ml*+ 2
i=0

has the uniform distribution on the (n + 1)-dimensional unit ball.

This lemma is the special case of the more general result [4, Theorem 1, p = 2|.
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Integral Geometry

In this chapter we introduce some basic notions of integral geometry following [59].

For p > 0 we write
7P/2

where for an integer k we have k; = vol (IB%k), and for any real p > 0 and any real
number ¢ > p — 1 we write

(C.0.1)

Wog—pt1-..-W
byp = P C.0.2
= IR (€02)
with wy := kkj being equal to the area of unit (k — 1)-dimensional sphere for an

integer k.

Definition C.0.1. For k € {0,...,n}, let G, 1, be the set of all k-dimensional linear
subspaces of R", and let A, i, be the set of all k-dimensional affine subspaces of R™.
The sets Gy 1, and A, can be endowed with the finest topologies (see [59, Section
13.2] for more details). Thus the topological spaces Gy, 1, are called linear Grass-
mannians and the topological spaces Ay 1. are called affine Grassmannians.

According to |59, Theorem 13.2.11], there is a unique rotation invariant Haar mea-
sure vy i, on Gy, i, normalized by

Vn,k(Gn,k) = 17

and, according to [59, Theorem 13.2.12], there is a unique rigid motion invariant
Haar measure i, on A, i, normalized by

Mo ke ({E € An,k : ENB" a ®}> = Kn—k-

For any linear subspace L € G4, we denote by A, the k-dimensional Lebesgue mea-
sures on L and for any affine subspace I/ € A4 we denote by Ag the k-dimensional
Lebesgue measures on E. The Lebesgue measure on R" is denoted by A,.
Definition C.0.2. By a convex body in R™ we understand a compact convex subset
of R™ with non-empty interior.

Definition C.0.3. Given a subset S C R"™ and a point x € R" we define by

d = inf ||z —
(¢,5) = inf [}z — 51l

the distance between the point and the set.
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Definition C.0.4. For k-dimensional subspace L C R", k < n denote by Pr, : R" —
L the orthogonal projection operator:

Pr(z) :==d(z, L).

Definition C.0.5. The linear hull (span) of a set X C R™ is the smallest linear
subspace of R™ that contains X and is denoted by span(X). If the set X consists of
the finite number of points X = {x1,...,xm} then the linear hull of X can be also
defined as the following set

span(X) = span(z1,...,Ty) = {Z AiTi: \; € R} .
i=1

Definition C.0.6. The convex hull of a set X C R" is the smallest convex set that
contains X and is denoted by conv(X). If the set X consists of the finite number
of points X = {x1,...,xm} then the conver hull of X can be also defined as the
following set

conv(X) = conv(xy,...,Ty) = {Z ATt A > O’Z/\i = 1} )
i=1 i=1

Definition C.0.7. The n-dimensional stmplex is the n-dimensional polytope which
is the convex hull of n + 1 points in R™, n < m (vertices of the simplex).
Definition C.0.8. For subsets A, B C R", the set A+ B:={a+b:a€c A be B}
is the Minkowskt sum of the sets A and B.

Definition C.0.9. For conver body K C R"™ and € > 0, the set

Ko=K+eB"={xeR": d(x,K) <e}

is the parallel body of K at distance e.

C.1 Intrinsic Volumes

The concept of intrinsic volumes is an important characteristic of the convex sets.
In this section we introduce the definition of intrinsic volumes and some important
properties. For more details we refer the reader to [59, Section 14.2].

Given some convex set K C R"™ consider its parallel body K. It is an interesting
fact that the volume of K, is a polynomial in € of degree at most n. This result is
known as the Steiner formula and can be written as follows

n

VOI(KE) = Z Gn_klﬂin,kvk(K).
k=0

The functionals Vj, ..., V, are called the intrinsic volumes. Due to the normal-
ization Vi (K) depends only on K and not on the dimension of its surrounding
space.



C.2. Blaschke-Petkantschin Formulas 109

In general it is very difficult task to derive the good representation for the intrinsic
volumes Vi (K). One of the representations, known as Kubota’s formula, is very
useful:

Vi(K) = <Z> ﬁk::_k / vOl(PLK) vy i (dL). (C.1.1)

It should be noted that some intrinsic volumes have the geometric meaning. For
example, V,,(K) is equal to n-dimensional volume, 2V,,_1(K) is equal to surface area

and 2';2;1 V1(K) is equal to mean width of the body K.

C.2 Blaschke-Petkantschin Formulas

In this section we will introduce such powerful tool as Blaschke-Petkantschin formu-
las.

For k € {0,...,n} and xi,...,x; € R"™ we denote by Vj(x1,...,x;) the k-
dimensional volume of the parallelepiped spanned by the vectors xi,...,x;. For
k + 1 points xq,...,Xx; € R" we denote by

Ag (%0, ...,xy) = vol (conv(xg, ..., Xg))

the k-dimensional volume of the convex hull of xq, ..., x;. Moreover the following
equality holds for any xgq,...,x; € R™

1

= k'vk (Xl—xo,...7Xk—X0). (0.2.1)

Aq (X(),. . ,Xk)

It is typical situation in the area of Integral Geometry when one needs to integrate
some non-negative measurable function h : (R”)k — R4 with respect to product
measure \¥. To this end, we integrate first over the k-tuples of points in a fixed
k-dimensional linear subspace L, with respect to the product measure )\]z, and then
integrate over G, i, with respect to v, ;. The corresponding transformation formula
is known as the linear Blaschke-Petkantschin formula (see [59, Theorem 7.2.1]):

h(x1,. .., xp) dxy ... dxg = by (k)" h(x1,...,x;) (C.2.2)
/ I

(Rn)k n,k Lk

X Ak(O, X1y.-- ,Xk)nik )\L(dx1) . )\L(dxk) mG(dL),
where by, ; is defined in (C.0.2).
A similar affine version (see [59, Theorem 7.2.7]) may be stated as follows:
h(Xo, .. ,Xk) dxg...dxg = bmk(k!)nik / / h(Xo, R ,Xk) (C23)

(Rn)k+1 Ap j ER+1
X Ap(x0, .-, x)" F Ap(dxo) ... Ap(dxp) pin ik (dE).
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C.3 Ellipsoids

Any non-degenerate centered ellipsoid €& C R” is defined by some unique symmetric
positive-definite n X n matrix H as

€= {x e R": VxTH 1x < 1} . (C.3.1)

The volume of £ is given by vdet H - vol(B") and the formulas for the intrinsic
volumes can be found in [68].

Since H is symmetric positive-definite, there exists a unique symmetric positive-
definite n x n matrix A (called a square root of H) such that H = A? (see, e.g., [40,
Theorem 7.2.6]). Hence (C.3.1) is equivalent to

E=AB" := {X eER™: VxTA2x = ||A™ x| < 1}.
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