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Abstract

One of the interesting and beautiful aspects of mathematics is the existence of
connections between di�erent areas. Such a link is an indication that, using various
mathematical notations, one can describe the same event from di�erent points of
view. It is not only evidence of the tight relation between numerous mathematical
laws, but also a powerful tool which has helped to make progress or good predictions
in di�cult mathematical problems.

In this thesis we consider a few problems in number theory and integral geometry
which both admit a probabilistic interpretation. We solve those problems using
methods from probability theory.

In the �rst part of the thesis we investigate the distribution of algebraic numbers
over the �eld Q, namely we consider the question of counting algebraic numbers and
points with algebraic conjugate coordinates in subsets of Euclidean space. Recall
that the set of algebraic numbers over the �eld Q is the set of roots of polynomials
from the polynomial ring Z[t]. There is a natural connection between algebraic
numbers and zeroes of random polynomials, which allows us to understand the
distribution of algebraic numbers and points with algebraic conjugate coordinates.

We consider several di�erent types of subsets and derive counting formulas or upper
and lower estimates for the number of points with algebraic conjugate coordinates
lying inside the given subset. We are going to use the following two methods.

• Counting integer points in multidimensional regions and using the connection
between algebraic numbers and zeroes of random polynomials.

• The measure-theoretical approach.

We analyze the results obtained by using these methods and describe the limitations
that arise when using each of them.

In the second part of the thesis we study questions connected to the distribution of
the volume of random simplices, generated as a convex hull of 2 ≤ k + 1 ≤ n + 1

random points X0, . . . , Xk in Rn. We interested in how the distribution of the
volume of random simplex changes under some �xed a�ne transformation. Our
main result is equality in distribution between the volume of the original simplex
and its a�ne image in terms of determinants of Gaussian random matrices.

Applying the above, we derive a new representation of intrinsic volumes of an el-
lipsoid and obtain the integral geometry formula connecting the average volume
of projections and the average volume of cross-sections of an ellipsoid. Moreover
we prove the generalization of integral formula of Furstenberg and Tzkoni [30] and
establish its a�ne version.
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Chapter 1

Introduction

This thesis consists of two parts. In the �rst part we investigate the distribution of
algebraic numbers over the �eld Q, namely we will consider the question of counting
algebraic numbers and points with algebraic conjugate coordinates in subsets of
Euclidean space. In the second part of the thesis we will study questions connected
to the distribution of the volume of random simplices, generated as a convex hull of
2 ≤ k + 1 ≤ n+ 1 random points X0, . . . , Xk in Rn.

1.1 Notation

Throughout this thesis we will use the following notations and conventions.

• We will denote by:

� #S the cardinality of a �nite set S;

� λn (S) the Lebesgue measure of a measurable set S ⊂ Rn;

� λL (S) the k-dimensional Lebesgue measure on linear or a�ne k-
dimensional subspace L ⊂ Rn of a measurable set S ⊂ L;

� vol(D) := λn (D) the n-dimensional volume of a body D ⊂ Rn;

� R+ the set of positive real numbers;

� ζ(·) the Riemann zeta function;

� Bn the unit n-dimensional ball with volume

κn := vol(Bn) =
πn/2

Γ
(
n
2 + 1

) .
• We will also use the Vinogradov symbol A� B, which means that there exists
a value c > 0 such that A ≤ cB and c does not depend on B. Moreover we
will write A � B when A� B and B � A.

• We will also use big O notation B = O(A) which is equivalent to the inequality
|A| ≤ cB for some c > 0 independent of B.
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1.2 Distribution of Algebraic Numbers

The question of the distribution of real and complex algebraic numbers over the
�eld Q has been investigating during the last few years and a tight relation between
the distribution of algebraic numbers and the distribution of the zeroes of random
polynomials has been found. Recall that the number α is called an algebraic number
over the �eld Q if it is a root of a polynomial P ∈ Z[t], irreducible over Q. For
the further de�nitions and properties of algebraic numbers, we refer the reader to
Appendix A. In this section we will describe the problem considered in this thesis
and make a review of obtained results.

1.2.1 Description of the Problem

Let A denote the �eld of algebraic numbers over Q and O denote the ring of algebraic
integers over Q. Denote by An and On the sets of algebraic numbers and algebraic
integers of degree n respectively. Asking about the distribution of algebraic numbers
we typically consider the following question. How many algebraic numbers from An
or On lie in a given connected set D ⊂ C? We will assume that n ≥ 2 since the case
n = 1 is trivial.

First of all we emphasize that the sets An and On are countable and that any subset
D of R or C having non-zero measure contains in�nitely many algebraic numbers and
algebraic integers, even for �xed degree. Thus, in order to study the distribution of
algebraic numbers, we need to pick �nite subsets of An. For this reason we consider
a height function h : A → R+, such that for any n ∈ N and Q > 0 there are only
�nitely many algebraic numbers α ∈ An with h(α) ≤ Q, and h(α′) = h(α) for all
algebraic conjugates α′ and α. This function gives us an order relation on the set
An. In this thesis we will consider two types of height function, namely the 'naïve'
height and the elliptic height, which is a special case of the weighted lp height.

Given some algebraic number α denote by Pα(t) = ant
n + . . .+ a1t+ a0 its minimal

polynomial.

The 'naïve' height H of an algebraic number α is equal to the 'naïve' height of its
minimal polynomial Pα which is de�ned as follows

H(α) = H(Pα) := max
0≤i≤n

|ai|.

This type of height function is very natural and may be considered as a measure of
'algebraic complexity' needed to describe the element.

The weighted lp-height is not so often used. It can be viewed as a generalization of
the 'naïve' height. Given a vector of positive weights w = (w0, w1, . . . , wn) ∈ Rn+1

+

and a real number 0 < p ≤ ∞ de�ne the w-weighted lp height of an algebraic
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number α as follows

lp,w(α) :=


(

n∑
i=0
|wi ai|p

)1/p

, p <∞;

max
0≤i≤n

(wi |ai|) , p =∞.

For any vector of weights we will say that the function hw := l2,w is the elliptic

height of an algebraic number α.

Finally, let An(Q) be the set of algebraic numbers α ∈ An with H(α) ≤ Q and let
On(Q) be the set of algebraic integers α ∈ On with H(α) ≤ Q. Moreover, denote
by An,w(Q) the set of algebraic numbers α of degree n with hw(α) ≤ Q.

1.2.2 Results

Distribution of Complex Algebraic Numbers on the Unit Circle .

Consider the unit circle T ⊂ C and for −π ≤ β1 < β2 ≤ π denote by

Tβ1,β2 := {z ∈ T : Arg(z) ∈ [β1, β2]},

some arc of the circle T.

The �rst result of the thesis is the asymptotic formula for the number of complex
algebraic numbers of degree n and elliptic height at most Q lying on a given arc
Tβ1,β2

Nn,w(Q, β1, β2) := # (An,w(Q) ∩ Tβ1,β2)

as Q→∞.

For any even n = 2m ≥ 2, any −π ≤ β1 < β2 ≤ π, and any vector of positive
weights w ∈ R2m+1

+ with wi = w2m−i for all 0 ≤ i ≤ 2m we obtain

N2m,w(Q, β1, β2) = v(m,w)Qm+1

β2∫
β1

pw,m(t) dt+O
(
Qm (logQ)b2/mc

)
, (1.2.1)

where

v(m,w) :=
vol(Bm+1)

2m/2+1ζ(m+ 1)w0 . . . wm
,

and the function pw,m(t) is given explicitly below. Moreover, for odd n we show
that Nn,w(Q, β1, β2) = 0 for any w ∈ R2m+1

+ and −π ≤ β1 < β2 ≤ π. It should be
also noted that our method works for any weighted lp-norm (including the 'naïve'
height), but we consider the elliptic height only, since this case admits the simplest
type of asymptotic distribution formula.

In order to derive formula (1.2.1) we apply a method based on counting lattice
points in domains of Euclidean space. The description of the method can be found
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in Section 2.1. Using this method we show that the function pw,m(t) is equal to the
density function ρm,T (t) of the zeroes of the random trigonometric polynomial

T (θ) :=
ηm

2wm
+

m∑
k=1

ηm−k√
2wm−k

cos kθ,

where η0, . . . , ηm are independent, identically distributed real-valued standard Gaus-
sian random variables. This fact is evidence of a tight relation between the distri-
bution of algebraic numbers and the distributions of zeroes of random polynomials.
More examples of such relations are given in Section 2.2. For the precise de�ni-
tion of a density function and discussion of the distribution of zeroes of random
polynomials see Appendix B.

In general it is a very di�cult task to derive the exact formulas for the density
functions of zeroes of random trigonometric polynomials with arbitrary distribution
of coe�cients. Although, if we restrict our attention to the case where the coe�-
cients are Gaussian random variables, the function ρm,T (t) can be computed in a
precise form, using the Kac-Rice formula and special properties of Gaussian random
variables. For example, it follows from the result of Edelman and Kostlan [26] that

ρn,T (t) =
1

π

[
∂2

∂x∂y
log

(
w−2
m

2
+

m∑
k=1

w−2
m−k cos(kx) cos(ky)

)∣∣∣
x=y=t

]1/2

,

which gives us the representation for the function pw,m(t) in formula (1.2.1).

The result (1.2.1) is obtained in joint work with Friedrich Götze, Zakhar Kabluchko,
and Dmitry Zaporozhets [33]. For a more detailed discussion of the problem, see
Chapter 2.

Distribution of Points with Algebraic Conjugate Coordinates .

The next result of the thesis describes the two-dimensional problem where, instead of
algebraic numbers, we consider points with algebraic conjugate coordinates. Given a
Borel subset D ⊂ R2, consider the function N 2

n(A, Q,D), which counts the number
of ordered pairs α := (α1, α2) of distinct conjugate algebraic numbers α1, α2 of
degree at most n and 'naïve' height at most Q lying within a subset D.

In case of �xed subset D ∈ R2 the asymptotic formula for N 2
n(A, Q,D) follows from

a more general result of Kaliada, Zaporozhets, and Götze [35]. In this thesis we
consider subsets with �xed 'position' and measure depending on Q that vanishes as
Q tends to in�nity.

The �rst class of subsets under consideration are rectangles Π = I1 × I2 with �xed
middle point and sizes λ1 (I1) � Q−s1 , λ1 (I2) � Q−s2 , where s1, s2 > 0. Under
some additional conditions on values s1 and s2 we derive the following upper and
lower bounds for the value N 2

n(A, Q,Π), which are asymptotically the same as Q
tends to in�nity

N 2
n(A, Q,Π) � Qn+1λ2 (Π) . (1.2.2)
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For the more details we refer reader to Section 3.2.

The second class are some ε-neighborhoods of a �xed curve de�ned by a function
f , where ε � Q−λ, λ > 0. In should be noted that the problem of counting points
with rational coordinates in the neighborhood of curves has a rich history [41, 64, 8]
and the problem of counting points with algebraic conjugate coordinates near the
curves may be regarded as its generalization. Considering the set

Lfλ,J :=
{
x ∈ R2 : |x2 − f(x1)| < C1Q

−λ, x1 ∈ J
}
,

we obtain the following asymptotic estimates as Q tends to in�nity

N 2
n

(
A, Q, Lfλ,J

)
� Qn+1−λ, (1.2.3)

where 0 < λ < 3
4 and function f satis�es some additional smoothness conditions.

See Section 3.3 for the precise statement and a historical review.

The results above are based on joint work with Friedrich Götze, and Vasili Bernik
[12].

Distribution of Algebraic Integers .

The last result of this section is connected with the distribution of algebraic integers.
In contrast to algebraic numbers, algebraic integers are usually more di�cult to
analyze. In particular, powerful tools like the method of counting lattice points
does not yield any good results here.

Given an interval I ⊂ R, let us denote by

Nn(O, Q, I) := # (On(Q) ∩ I)

the number of algebraic integers α of degree n and 'naïve' height at mostQ belonging
to the interval I.

We show that for any interval I of length λ1 (I) � Q−s, 0 < s ≤ 1 with �xed middle
point the following asymptotic bounds

Nn (O, Q, I) � Qn λ1 (I) , (1.2.4)

hold as Q tends to in�nity.

We also consider the two-dimensional problem analogous to the one formulated for
points with algebraic conjugate coordinates. Given a Borel subset D ⊂ R2, consider
the function N 2

n(O, Q,D), which counts the number of ordered pairs α := (α1, α2)

of distinct conjugate algebraic integers α1, α2 of degree n and 'naïve' height at most
Q lying within a subset D.

For the rectangles Π = I1 × I2 with �xed middle point and sizes λ1 (I1) � Q−s1 ,
λ1 (I2) � Q−s2 we derive the following asymptotic estimates

N 2
n (O, Q,Π) � Qnλ2 (Π) , (1.2.5)
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and for the ε-neighborhood of some �xed curve de�ned by the function f with
ε � Q−λ we obtain

N 2
n

(
O, Q, Lfλ,J

)
� Qn−λ, (1.2.6)

as Q tends to in�nity.

These formulas are based on joint work with Friedrich Götze [32]. The detailed
description can be found in Subsection 3.4.

1.3 Random Simplices

The study of geometric probability is concerned with randomly generated geometric
objects (points, lines, convex bodies, etc.) and simple operations with them (taking
convex or linear hull, considering intersection, etc.), as well as random transfor-
mations (rotation, projection on random hyperplane, etc.). The assignment of a
probability measure to geometric objects and transformations is not necessarily an
obvious procedure and can lead to ambiguity. Therefore, one should specify how the
random geometric object is generated. Many questions of geometric probability are
easy to formulate, but usually very di�cult to answer. The important point is that
geometric probability and integral geometry are closely related and some problems
of geometric probability can be easier solved with the help of the integral geome-
try methods and vice versa. In this thesis we consider a special class of random
geometric objects, namely the convex hull of randomly generated points in Rn.

Consider k + 1 random points X0, . . . , Xk in Rn. Denote by

conv(X0, . . . , Xk)

the convex hull of points X0, . . . , Xk, which is the the smallest convex set that
contains all of them. This convex hull is an example of random polytope with
vertices X0, . . . , Xk. If 1 ≤ k ≤ n then the random polytope conv(X0, . . . , Xk) is a
k-dimensional simplex (maybe degenerate). Denote by

∆k (X0, . . . , Xk) := vol (conv(X0, . . . , Xk)) (1.3.1)

the k-dimensional volume of the simplex conv(X0, . . . , Xk).

In this thesis we investigate how the distribution of (1.3.1) changes under some �xed
a�ne transformation x → Ax, where A is a non-singular n × n matrix. We derive
the following stochastic equation

∆k(AX0, . . . , AXk)
d
=

vol (PξE)

κk
·∆k(X0, . . . , Xk), (1.3.2)

where the random vectors X0, . . . , Xk are not necessary independent, identically
distributed and have an arbitrary spherically symmetric joint distribution, E is the
ellipsoid de�ned as the image of the unit ball Bn under an a�ne transformation
A>, κk is the volume of the k-dimensional unit ball Bk, PL denotes the orthogonal
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projection operator on the linear subspace L ⊂ Rn, and ξ is a random uniformly
chosen k-dimensional linear subspace, independent of X0, . . . , Xk.

Due to the spherical symmetry of the joint distribution of X0, . . . , Xk we can obtain
a probabilistic representation of the random value vol (PξE) in terms of determinants
of the Gaussian random matrices

vol(PξE)

κk

d
=

(
det
(
G>A>AG

)
det
(
G>G

) )1/2

, (1.3.3)

where G is a random n×k matrix with independent, identically distributed standard
Gaussian entries.

The result above leads to some interesting integral geometry formulas. For a detailed
discussion we refer the reader to Chapter 4.

The results of this section are based on joint work with Friedrich Götze and Dmitry
Zaporozhets [34].

1.4 Structure of Thesis

The structure of this thesis is the following. In Chapter 2, we prove formula (1.2.1)
and calculate the function pw,n(t) for some vectors w. In Chapter 3, we discuss
the results formulated in (1.2.2) � (1.2.6). In Chapter 4 we prove the main results
(1.3.2) and (1.3.3) and consider the applications to integral geometry problems. All
auxiliary results and necessary de�nitions are presented in Appendices A � C.





Chapter 2

Counting Complex Algebraic

Numbers on the Unit Circle

In this chapter, we study the distribution of algebraic numbers on the unit circle in
the complex plane which we denote by T ⊂ C. For −π ≤ β1 < β2 ≤ π denote by

Tβ1,β2 := {z ∈ T : Arg(z) ∈ [β1, β2]}

some arc of the unit circle T. Our goal is to investigate the asymptotic behavior of
the value

Nn,w(Q, β1, β2) := #
{
θ ∈ [β1, β2] : eiθ ∈ An,w(Q)

}
,

which is equal to number of complex algebraic numbers of degree n and elliptic
height at most Q lying on the arc Tβ1,β2 .

We start with description of the general method used in the proof of our main
theorem and make a brief review of previous results and their connection to random
polynomials.

2.1 General Method

The easiest way to count algebraic numbers over Q is to count the corresponding
minimal polynomials with integer coe�cients instead. The minimal polynomial Pα
of a given algebraic number α of degree n is uniquely de�ned, irreducible, has co-
prime coe�cients, and has exactly n roots. Thus, the conditions on α typically lead
to analogous restrictions for the coe�cients an, . . . , a0 of the polynomial Pα, and the
problem of counting algebraic numbers α of degree n satisfying certain conditions
is analogous to counting irreducible polynomials of degree n with co-prime integer
coe�cients under some restrictions.

Assuming next that those restrictions de�ne the bounded set V ⊂ Rn+1 and identi-
fying the polynomial P with its vector of coe�cients (an, . . . , a0) ∈ Zn+1 we reduce
the original problem of counting algebraic numbers to the counting of lattice points
in the set V . The last problem is well known and a lot of good estimates have been
obtained.

Two additional steps are needed in order to exclude from the consideration points
(an, . . . , a0) ∈ Zn+1 with gcd(an, . . . , a0) > 1 and points (an, . . . , a0) ∈ Zn+1 which
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de�ne a reducible polynomial P (t) = ant
n + . . . + a0. The �rst step can be easily

realized using the classical Möbius inversion formula (see, e.g., [55]). The second
step is the counting of reducible polynomials which is an old problem in number
theory.

2.1.0.1 Counting Lattice Points

The problem of counting lattice point in a given bounded subset of Rn is an im-
portant topic in geometry of numbers and goes back to the old results by Lipschitz
(1865) and Davenport (1964). Consider some bounded set D ⊂ Rn and some lattice
Λ ⊂ Rn. The basic idea says that in case the set D possess some 'nice' boundary
properties the number of lattice points in D is approximately equal to the volume
of the set D divided by the determinant of the lattice Λ. The main di�culty is to
check this property and to estimate the error term

r(D,Λ) =

∣∣∣∣µΛ(D)− vol(D)

det(Λ)

∣∣∣∣ ,
where µΛ(D) denotes the number of lattice points in D. There is an extensive
literature on this topic and here we consider two classes of sets D, outlined below.

1. The �rst and the oldest class of sets was introduced by Lipschitz [48]. He
considered the sets D with boundary ∂D which can be de�ned by �nitely
many maps φ1, . . . , φM : [0, 1]n−1 → Rn satisfying Lipschitz condition with
some constant L. We say that the boundary ∂D is of Lipschitz class (n,M,L).
Later on the results of Lipschits were extended in [61] and [46, Chapter VI,
�2, Theorem 2]. In these papers only the homogeneously expanding sets were
considered, namely the sets of type

tD = {tx : x ∈ D},

where D is some �xed bounded set and t ∈ R+ is assumed to be some growing
parameter. The error term in this case has the form r (tD,Λ) = O(tn−1),
where the implicit constant depends on Λ, n, M and L only. The counting
result for an arbitrary bounded sets D with boundary ∂D of Lipschitz class
(n,M,L) was obtained by Masser and Vaaler [49]. They also proved an esti-
mate for the error term r(D,Λ) in terms of the parameters n,M,L and the
successive minima of the lattice Λ. Similar results with a sharp error term
were obtained by Widmer [66].

2. Another class of sets was �rstly de�ned by Davenport [22]. His approach is
applicable to bounded measurable sets D which intersect every line in at most
s intervals or single points and the same is required for any projection of D
on any linear subspace of Rn. We say that such sets are of narrow class s, in
accordance with [67]. Davenport considered the case Λ = Zn only and derived
an estimate for r(D,Λ) in terms of the measures of all projections of the set
D on linear subspaces of Rn. This result was further generalized by Schmidt
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in [58], where he obtained a counting result for an arbitrary lattice and gave
an estimate for the error term in terms of the diameter of the set D and the
successive minima of the lattice Λ. The next improvement was made in [3],
where the best possible estimate for the error term was obtained.

Let us stress that for both classes of sets introduced above we get the same counting
result. Therefore it is very natural to ask for relationships between these classes and
whether one class includes the other. This question was addressed in the article of
Masser and Vaaler [49] where they pointed out that the sets with Lipschitz boundary
do not necessary belong to the narrow class, but narrow class possibly implies some
type of sets with Lipschitz boundary. A more careful analysis is due to Widmer
[67]. In particular, Widmer has described the case where the bounded set of narrow
class 1 has a boundary of a Lipschitz class (see Theorem A.2.9). It should be noted
that in general it is not an easy task to verify that some given set D is of narrow
class or has a Lipschitz parameterizable boundary.

Although there are general results with better estimates of the error r(D,Λ), we
shall use the result of Lang [46, Chapter VI, �2, Theorem 2] for homogeneously
expanding sets (see Theorem A.2.7) since it will be enough for our case.

2.1.0.2 Counting Reducible Polynomials

An important and di�cult problem in general is to determine whether a given
polynomial P ∈ Z[t] is irreducible over Q or not. There exist a few results which give
su�cient conditions for a polynomial to be irreducible, such as Eisenstein's criterion
(see Lemma A.1.20) and Cohn's irreducibility criterion for example. Unfortunately,
they are quite far from being useful, since they cover only a small part of the set
of all irreducible polynomials [24]. The problem of �nding a general criterion of
irreducibility for polynomials is very di�cult and probably remains open.

On the other hand it is easier to prove that the majority of polynomials is irreducible.
In order to do so we will construct the �nite subsets of polynomials P ∈ Z[t],
considering only polynomials with bounded 'naïve' height. Denote by RH(n,Q) the
number of reducible polynomials P ∈ Z[t] of degree n and H(P ) ≤ Q.

The �rst step was made by van der Waerden [65] in 1934 who proved that almost
all polynomials P ∈ Z[t] are irreducible over the Q. He considered the subset of
polynomials P ∈ Z[t] of degree n and H(P ) ≤ Q and proved that only a small
part of them can be factorized into product of two integer polynomials of given
degrees. On the other hand this result does not give any precise information about
the value RH(n,Q). The true order of RH(n,Q) was recently found by Kuba [45].
He showed that RH(n,Q) � Qn (logQ)b2/nc, n ≥ 2 as Q→∞. It should be noted
that this result holds for the set of polynomials of degree at most n but with di�erent
constants. The exact asymptotic for RH(n,Q) was given by Dubickas [25].
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2.2 Connection of the Distribution of Algebraic Num-

bers and Zeroes of Random Polynomials

In this subsection we will give a review of the previous results providing an asymp-
totic formula for the number of points with algebraic conjugate coordinates lying
in a given subset D. These results are based on applying the method described
above and using the connection between algebraic numbers and zeroes of random
polynomials.

Let us formulate the general problem. Given some �xed integer numbers k, l ≥ 0

such that 0 < k + 2l ≤ n, a Borel subset D ⊂ Rk × Cl+, a height function h and a

positive real number Q ∈ R+, consider the function N (k,l)
n (Q,D) which counts the

number of ordered mixed (k, l)-tuples α := (α1, α2, . . . , αk+l) of distinct conjugate
algebraic numbers αi of degree at most n and with h(αi) ≤ Q, lying within the
subset D. Let us emphasize that we assume that α1, . . . , αk are real algebraic
numbers and αk+1, . . . , αk+l are totally complex algebraic numbers. Moreover, since
we are considering algebraic numbers over the �eld Q, the set of algebraic conjugate
numbers is invariant under complex conjugation. This means that we can con�ne
ourselves to considering only the upper complex half-plane C+. Thus, the question
regarding the distribution of algebraic numbers reads as follows. Given some �xed
integer numbers k, l ≥ 0 such that 0 < k+2l ≤ n, a Borel subset D ⊂ Rk×Cl+ and a

height function h we need to �nd the asymptotic behavior of the value N (k,l)
n (Q,D)

as Q→∞.

The �rst result in this direction has been obtained by Kaliada [44]. He considered
the case of an interval I ⊂ R and 'naïve' height h = H, and proved the following
formula

N (1,0)
n (Q, I) =

Qn+1

2ζ(n+ 1)

∫
I

ρ(1,0)
n (x) dx+O

(
Qn (logQ)b2/nc

)
,

where the function ρ(1,0)
n : R → R is given explicitly but has a di�cult structure.

The main problem here was to calculate the volume of the body Al formed by
polynomials with real coe�cients, of degree at most n, 'naïve' height at most 1 and
having exactly 1 ≤ l ≤ n roots in the interval I. Using some detailed analysis and
arguments from number theory Kaliada showed that

n∑
l=1

l vol(Al) =

∫
I

ρ(1,0)
n (x) dx, (2.2.1)

from which the formula above follows immediately.

Looking carefully at equation (2.2.1) one realizes that the sum in the left side is
(up to constant) equal to the expected value of the number of zeroes of the random
polynomial G(t) = ξnt

n + . . . + ξ1t + ξ0 lying inside the interval I, where the co-
e�cients ξi are independent random variables uniformly distributed in the interval
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[−1; 1]. The function ρ(1,0)
n is called the density function of the number of real zeroes

of the random polynomial G.

Based on this observation, Kaliada, Zaporozhets, and Götze [36, 35, 37] obtained
asymptotic formulas of the same type for more general cases. The key step of their
proofs was to derive a formula for the mixed (k, l)-correlation function ρ(k,l)

n,G of zeroes
of random polynomial G (see the De�nition B.0.2). We will mention here the last
and most general result only.

For any p ∈ (0,∞] and any �xed vector w ∈ Rn+1
+ consider weighted lp-height

h = lp,w. Then for some integers k, l ≥ 0, such that 0 < k + 2l ≤ n, and any
measurable set D ⊂ Rk × Cl+, such that its boundary belongs to Lipschitz class
Lip(n,M,L) (see the De�nition A.2.6), we have

N (k,l)
n (Q,D) =

vol(Bn+1
p )Qn+1

2ζ(n+ 1)w0 . . . wn

∫
D

ρ
(k,l)
n,G (x, z) dx dz

+O
(
Qn (logQ)b2/(n−2l)c

)
, (2.2.2)

where Bnp denotes the unit n-dimensional lp-ball and ρ
(k,l)
n,G is the mixed (k, l)-

correlation function of zeroes of random polynomial G(z) :=
n∑
i=0

w−1
i ξiz

i, where

ξi are independent, identically distributed real random variables with a probability
density function given by

f(t) :=


e−|t|

p

2Γ
(

1+ 1
p

) , p <∞,

1
21[−1;1](t), p =∞.

The exact formula for the function ρ(k,l)
n,G was also derived in [37].

2.3 Main Result

In this section we formulate our main result.

Let Pn,w(Q) denote the class of integer polynomials of degree n and with elliptic
height at most Q

Pn,w(Q) := {P ∈ Z[t] : degP = n, hw(P ) ≤ Q} .

We say that an integer polynomial is prime, if it is irreducible over Q, primitive and
its leading coe�cient is positive. Denote by P∗n,w(Q) the class of prime polynomials
from Pn,w(Q)

P∗n,w(Q) := {P ∈ Pn,w(Q) : P is prime, } ,

which is obviously coincide with the set of minimal polynomials of the set of algebraic
numbers of degree n and with elliptic height at most Q.
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Let us start with proving an easy fact about the algebraic numbers on the unit
circle.
Proposition 2.3.1. Any algebraic number on T, except for ±1, has even degree

and its minimal polynomial is reciprocal.

Proof. Consider an algebraic number α ∈ T with minimal polynomial

Pα(t) = ant
n + . . .+ a1t+ a0.

Since the coe�cients of P are real, the complex conjugate ᾱ is also a root of P .
Moreover, α ∈ T is equivalent to |α| = 1 and, hence, ᾱ = α−1. Thus,

Pα(α) = Pα

(
1

α

)
= 0,

which implies that α is a root of the polynomial

P̃α(t) = tnPα(t−1) = a0t
n + . . .+ an−1t+ an.

According to the de�nition of minimal polynomial we conclude that Pα is a factor
of P̃α and, moreover, there are only two possibilities: Pα ≡ −P̃α or Pα ≡ P̃α. The
�rst would imply that 1 is a root of polynomial Pα which is impossible due to its
irreducibility. Therefore Pα ≡ P̃α which means that polynomial Pα is reciprocal and

ai = an−i, 0 ≤ i ≤ n.

For odd n, this condition implies that −1 is a root of P which, again, contradicts
with its irreducibility.

From the Proposition 2.3.1 we immediately conclude the following.
Corollary 2.3.1.1. For any �xed vector of positive weights w, any −π ≤ β1 < β2 ≤
π and odd n ≥ 3 we have

Nn,w(Q, β1, β2) = 0.

Thus, from now on we can restrict our attention to the even n. In this case we prove
the following theorem, which is the main result of this chapter.
Theorem 2.3.2. For any integer even n = 2m, m ≥ 1, any �xed symmetric vector

of positive weights w = (w0, . . . , wm, . . . , w0), and any −π ≤ β1 < β2 ≤ π we have

N2m,w(Q, β1, β2) =
vol(Bm+1)Qm+1

2m/2+1ζ(m+ 1)w0 . . . wm

β2∫
β1

pw,m(t) dt+O
(
Qm (logQ)b2/mc

)
,

as Q→∞, where ζ(·) denotes the Riemann zeta function and the function pw,m(t)

has the form

pw,m(t) =
1

π

[
∂2

∂x∂y
log

(
w−2
m

2
+

m∑
k=1

w−2
m−k cos(kx) cos(ky)

)∣∣∣
x=y=t

]1/2

. (2.3.1)
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2.4 Corollaries

It should be noted that in general form the limit density pw,m is di�cult to analyze.
However, for some special vectors w the expression (2.3.1) can be simpli�ed.

The �rst one is the Bombieri 2-norm.

Corollary 2.4.0.1. For any integer m ≥ 1 and w =
((

2m
k

)−1/2
)2m

k=0
we have

pw,m(t) =

√
m

2π2
·
|sin t|

(
2m−2∑
k=0

(cos t)2k + (2m− 1) (cos t)2m−2

)1/2

(cos t)2m + 1
.

Let us mention that the Bombieri 2-norm is quite 'natural' to be considered in this
case. Particularly for the random polynomial

G(z) =
n∑
i=0

(
n

k

)1/2

ξkz
k

with coe�cients ξk being i.i.d standard Gaussian random variables, the density
function of zeroes has a very simple form, see [26], and is given by

ρ
(1,0)
n,G (t) =

√
n

π(1 + t2)
,

which coincides with the normalized Cauchy density.

The next example is the Euclidean height, namely the vector w = (1, . . . , 1).
Corollary 2.4.0.2. For any integer m ≥ 1 and w = (1, . . . , 1) we have

pw,m(t) =
1

π

(
bm +

sin(bmt)

sin t

)−1

·
(bm sin(bmt)

2(sin t)3
− b2m

2

cos(bmt) cos t

(sin t)2

+
(sin(bmt))

2

4(sin t)4
− b3m + 2bm

6

sin(bmt)

sin t
− b2m

4(sin t)2
+

(m2 +m)b2m
3

)1/2
,

where bm = 2m+ 1.

The last example is very speci�c family of weight vectors depending on some positive
parameter a.
Corollary 2.4.0.3. Consider the vector of weights w ∈ R2m

+ for m = 2k de�ned as
w2(k−j)−1 =

(
4−k

k−j∑
i=1

(
2k

2i−1

)(
2k−2i+1
k−i−j

)
(2a)2i−1

)−1/2

, 0 ≤ j ≤ k − 1;

w2(k−j) =

(
4−k+1

k−j∑
i=0

(
2k
2i

)(
2k−2i
k−i−j

)
(2a)2i

)−1/2

, 0 ≤ j ≤ k;

(2.4.1)
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Figure 2.1: A plot of the density function pw,m(t) (de�ned in Corollary 2.4.0.1) of
the algebraic numbers α of degree 2m on the unit circle w.r.t. height function hw
with weights w =

((
2m
k

)−1/2
)n
k=0

: a) m = 3; b) m = 4; c) m = 5; d) m = 7.

and for m = 2k + 1 de�ned as
w2(k−j) =

(
2 · 4−k−1

k−j∑
i=0

(
2k+1

2i

)(
2k−2i+1
k−i−j

)
(2a)2i

)−1/2

, 0 ≤ j ≤ k;

w2(k−j)+1 =

(
2 · 4−k

k−j∑
i=0

(
2k+1
2i+1

)(
2k−2i
k−i−j

)
(2a)2i+1

)−1/2

, 0 ≤ j ≤ k;

(2.4.2)

where a ∈ R+ is an �xed number. Then for any integer m ≥ 1 we have

pw,m(t) =
1

π

m
(
dm−1
a − sm−1

a cos 2t− sm−2
a (sin 2t)2

)
dma + sma

+
m2 dma s

m−2
a (sin 2t)2

(dma + sma )2

1/2

,

where sa = cos(2t) + a and da = 1 + a.

2.5 Proof of Theorem 2.3.2

To prove Theorem 2.3.2 we will use the method described in Section 2.1, namely
we will reduce our problem to determining the density of zeroes of some random
trigonometric polynomial. The main ingredient of the further proof is the result of



2.5. Proof of Theorem 2.3.2 17

a b

c d

Figure 2.2: A plot of the density function pw,m(t) (de�ned in Corollary 2.4.0.2) of
the algebraic numbers α of degree 2m on the unit circle w.r.t. height function hw
with weights w = (1, . . . , 1): a) m = 3; b) m = 4; c) m = 5; d) m = 7.

Edelman-Kostlan (see Lemma B.0.4) and the representation of the uniform distribu-
tion in the (n+ 1)-dimensional unit ball in terms of independent standard Gaussian
random variables (see Lemma B.0.5).

Main Part

Consider the following class of symmetric polynomials of even degree n = 2m

SPm :=

{
P ∈ Z[t] : P (t) =

2m∑
i=0

ait
i, ai = a2m−i

}
.

Let us de�ne the subclass of symmetric polynomials of even degree n = 2m and
bounded elliptic height

SPm,w(Q) := SPm ∩ Pn,w(Q),

and subclass of prime symmetric polynomials of even degree n = 2m and bounded
elliptic height

SP∗m,w(Q) := SPm ∩ P∗n,w(Q).

According to Proposition 2.3.1 the set of all minimal polynomials of algebraic num-
bers α ∈ T having degree 2m and hw(α) ≤ Q coincides with SP∗m,w(Q) and, hence,
we can restrict ourselves to this case only.
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a b

c d

Figure 2.3: A plot of the density function pw,m(t) (de�ned in Corollary 2.4.0.3) of
the algebraic numbers α of degree 12 on the unit circle w.r.t. height function hw
with weights de�ned by (2.4.1): a) a = 0.001; b) a = 0.1; c) a = 1; d) a = 100.

Given a function F : C → R and some Borel subset B ⊂ C denote by µF (B) the
number of zeroes of function F lying in B. Thus, we have

N2m,w(Q, β1, β2) =
∑

P∈SP∗m,w(Q)

µP (Tβ1,β2)

and, since µP (Tβ1,β2) ≤ 2m, we can write

N2m,w(Q, β1, β2) =

2m∑
l=0

l ·#
{
P ∈ SP∗m,w(Q) : µP (Tβ1,β2) = l

}
. (2.5.1)

Our aim is to estimate the number of the irreducible primitive symmetric poly-
nomials having the prescribed number of the roots on the arc Tβ1,β2 . Identifying
polynomials with the vectors of their coe�cients we reduce our problem to counting
integer points in multidimensional regions.

For l = 0, 1, . . . , 2m denote by Al ⊂ Rm the set of points (a0, . . . , am) such that
the polynomial P (t) = a0t

2m + . . . + amt
m + . . . + a0 satis�es µP (Tβ1,β2) = l and

hw (P ) ≤ 1. The latter condition is equivalent to the fact that vector (a0, . . . , am)

belongs to the ellipsoid Ew de�ned as

Ew :=

{
(a0, . . . , am) ∈ Rm+1 :

a2
m

w−2
m

+ 2

m−1∑
k=0

a2
k

w−2
k

≤ 1

}
with

vol(Ew) =
vol(Bm+1)

2m/2w0 . . . wm
. (2.5.2)
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a b

c d

Figure 2.4: A plot of the density function pw,m(t) (de�ned in Corollary 2.4.0.3) of
the algebraic numbers α of degree 14 on the unit circle w.r.t. height function hw
with weights de�ned by (2.4.2): a) a = 0.001; b) a = 0.1; c) a = 1; d) a = 100.

Then by de�nition of primitive polynomial we have

µ∗(QAl) = #{P ∈ SPm,w(Q) : P is primitive, µP (Tβ1,β2) = l},

where µ∗(D) denotes the number of points with co-prime integer coordinates inside
some bounded set D ⊂ Rm+1. This implies∣∣∣∣12 µ∗(QAl)−#{P ∈ SP∗m,w(Q) : µP (Tβ1,β2) = l}

∣∣∣∣ ≤ SRw(m,Q), (2.5.3)

where SRw(m,Q) is the number of all polynomials P ∈ SPm,w(Q) reducible in
SPm (i.e. which can be written as a product of two symmetric polynomials of
positive degree). The factor 1/2 in (2.5.3) is due to the positiveness of the leading
coe�cient of a prime polynomial.

Our next step is to estimate the values µ∗(QAl) and SRw(m,Q). In order to
estimate the �rst value we are going to use Lemma A.2.8. For this we need to make
sure that for any 0 ≤ l ≤ 2m the boundary of Al is of Lipschitz class (see De�nition
A.2.6).
Lemma 2.5.1. For any 0 ≤ l ≤ 2m the boundary ∂Al of the set Al belongs to

Lipschitz class Lip(m + 1,M,L) for some constants M , L depending on l and w

only.

This lemma is a slightly modi�ed and simpli�ed version of [37, Lemma 6.4]. We
give a detailed proof later in this section.
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The upper bound for the number of reducible symmetric polynomials SRw(m,Q)

is established in the following lemma.
Lemma 2.5.2. For any m ≥ 2 and any vector of positive weights w we have

SRw(m,Q)� Qm (logQ)b2/mc ,

where the constants in Vinogradov symbol depend on m and w only.

The proof of Lemma 2.5.2 is given below.

Now due to Lemma 2.5.1 we can apply Lemma A.2.8 to the set Al which together
with (2.5.3) and Lemma 2.5.2 gives

#{P ∈ SP∗m,w(Q) : µP (Tβ1,β2) = l} =
vol(Al)

2ζ(m+ 1)
Qm+1 +O

(
Qm (logQ)b2/mc

)
,

and, by (2.5.1) we obtain

N2m,w(Q, β1, β2) =
Qm+1

2ζ(m+ 1)

2m∑
l=0

l vol(Al) +O
(
Qm (logQ)b2/mc

)
. (2.5.4)

To estimate the sum on the right side of (2.5.4) consider the random polynomial

G(t) :=
m−1∑
k=0

ξk(t
k + t2m−k) + ξmt

m,

where the random vector
(√

2w0ξ0, . . . ,
√

2wm−1ξm−1, wmξm
)
is uniformly dis-

tributed over the (m + 1)-dimensional unit ball Bm+1. Then by de�nition of the
region Al and since the semi-axes of Ew are (

√
2w0)−1, . . . , (

√
2wm−1)−1, w−1

m , we
have

P [µG (Tβ1,β2) = l] =
vol(Al)

vol(Ew)
. (2.5.5)

Taking z = eiθ ∈ T and using Euler's formula transform G(z) as follows

G(z) =

m−1∑
k=0

ξk(e
ikθ + ei(2m−k)θ) + ξme

imθ

= 2eimθ

(
m−1∑
k=0

ξk
e−i(m−k)θ + ei(m−k)θ

2
+
ξm
2

)

= 2eimθ

(
m∑
k=1

ξm−k cos (kθ) +
ξm
2

)
=: 2eimθ T (θ).

From this we see that the distribution of zeroes of the random polynomial G(z)

on the complex unit circle coincides with the distribution of zeroes of the random
trigonometric polynomial T (θ) on the interval [0, 2π] and

P [µG (Tβ1,β2) = l] = P [µT ([β1, β2]) = l] .
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The probability on the left-hand side is di�cult to calculate because of the depen-
dency of the coe�cients of T . However, by proper normalization (which does not
a�ect the roots) we can achieve their independence.

Let η0, . . . , ηm be i.i.d. real-valued standard Gaussian random variables and let Z
be a standard exponential random variable. By Lemma B.0.5 the random vector

(η0, η1, . . . , ηn)(
n∑
i=0

η2
i + Z

)1/2

is uniformly distributed in the unit ball Bm+1, that is, has the same distribution as
the vector

(√
2w0ξ0, . . . ,

√
2wm−1ξm−1, wmξm

)
. Thus,((√

2w0

)−1
η0, . . . ,

(√
2wm−1

)−1
ηm−1, w

−1
m ηn

)
(

n∑
i=0

η2
i + Z

)1/2

d
= (ξ0, . . . , ξm).

Since dividing a polynomial by a non-zero constant does not a�ect its roots, the
polynomials T (θ) and

T̃ (θ) :=
ηm

2wm
+

m∑
k=1

ηm−k√
2wm−k

cos kθ

have the same distribution of zeroes and

P [µT ([β1, β2]) = l] = P
[
µT̃ ([β1, β2]) = l

]
.

Combining this with (2.5.5) and (2.5.2), we arrive at
2m∑
l=0

l vol(Al) = vol (Ew)
2m∑
l=0

l P[µT̃ ([β1, β2]) = l]

=
vol(Bm+1)

2m/2w0 · · ·wm
E
[
µT̃ ([β1, β2])

]
.

Finally, applying Lemma B.0.4 to the random function T̃ with vec-
tor v(t) =

(
1
2 , cos(t), . . . , cos(mt)

)
and covariance matrix C =

Diag
{
w−2
m , (
√

2wm−1)−2, . . . , (
√

2w0)−2
}
, we get

E
[
µT̃ ([β1, β2])

]
=

β2∫
β1

pw,m(t) dt,

where

pw,m(t) =
1

π

[
∂2

∂x∂y
log

(
w−2
m

4
+

1

2

m∑
k=1

w−2
m−k cos(kx) cos(ky)

)∣∣∣
x=y=t

]1/2

=
1

π

[
∂2

∂x∂y
log

(
w−2
m

2
+

m∑
k=1

w−2
m−k cos(kx) cos(ky)

)∣∣∣
x=y=t

]1/2

,

which together with (2.5.4) �nishes the proof.
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Proof of Lemma 2.5.1

Recall that Al ⊂ Rm+1 is the set of points (a0, . . . , am) ∈ Ew such that the polyno-
mial P (z) = a0z

2m + . . .+ amz
m + . . .+ a0 satis�es µP (Tβ1,β2) = l. For z = eiθ we

have

P (z) = 2eimθ

(
m∑
k=1

am−k cos (kθ) +
am
2

)
=: 2eimθ T̃ (θ),

and, hence, Al is a set of points (a0, . . . , am) ∈ Ew such that the trigonometric
polynomial T̃ satis�es µT̃ ([β1, β2]) = l.

The boundary of Al is contained in the union of three sets:

1. the boundary of Ew;

2. the set

A′ =
{

(a0, . . . , am) ∈ Ew : T̃ (β1) = 0 or T̃ (β2) = 0
}

;

3. the set A′′ of points (a0, . . . , am) ∈ Ew such that the trigonometric polynomial
T̃ has double real roots in [β1, β2].

Thus, it is enough to show that each of these sets is of Lipschitz class.

(i) The boundary of Ew. Since Ew is a convex bounded body, by Theorem A.2.9 its
boundary belongs to the Lipschitz class.

(ii) The set A′. Without loss of generality let T̃ (β1) = 0, which is equivalent to

am = −2
m∑
k=1

am−k cos (kβ1) .

Since (a0, . . . , am) ∈ Ew, there exists a constant C := max
i
w−1
i such that

a0, . . . , am−1 ≤ C. Consider a Lipschitz map φ = (φ0, . . . , φm) : [0, 1]m → Rm+1

de�ned as
φi(t0, . . . , tm−1) = Cti, i = 0, . . . ,m− 1,

and

φm(t0, . . . , tm−1) = −2C

m∑
k=1

tm−k cos (kβ1) .

We obviously have

ai = φi(a0/C, . . . , am−1/C), i = 0, . . . ,m− 1,

which implies A′ ⊂ φ([0, 1]m). Therefore A′ is of Lipschitz class.

(iii) The set A′′. Suppose that (a0, . . . , am) ∈ A′′. Then T̃ (θ) has a multiple real
root, say β0, which implies

T̃ (β0) = 0, T̃ ′(β0) = 0, (2.5.6)
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or (excluding the trivial case β0 = 0), equivalently,

am−1 = −
m∑
k=2

kam−k
sin(kβ0)

sinβ0
,

am = −2
m∑
k=2

am−k cos (kβ0) + 2 cotβ0

m∑
k=2

kam−k sin(kβ0).

Again, there exists a constant C := max
i
w−1
i such that a0, . . . , am−2 ≤ C. Moreover,

we have |β0| ≤ π. Consider a map φ = (φ0, . . . , φm) : [0, 1]m → Rm+1 de�ned as

φi(t, t0, . . . , tm−2) = Cti, i = 0, . . . ,m− 2,

φm−1(t, t0, . . . , tm−2) = −C
m∑
k=2

ktm−k
sin(kπt)

sin(πt)
,

and

φm(t, t0, . . . , tm−2) = −2C
m∑
k=2

tm−k cos (kπt) + 2C cot(πt)
m∑
k=2

ktm−k sin(kπt).

Since φ is continuously di�erentiable in a compact, it satis�es the Lipschitz condi-
tion. We obviously have

ai = φi(β0/π, a0/C, . . . , am−2/C), i = 0, . . . ,m,

which implies A′′ ⊂ φ([0, 1]m). Therefore A′′ is of Lipschitz class.

Proof of Lemma 2.5.2

To prove this lemma we will use the method of [45].

Consider some polynomial P (t) = ant
n + . . .+ a1t+ a0. Denote by SRH(m,Q) the

number of symmetric reducible polynomials P ∈ SPm of even degree n = 2m and
bounded 'naïve' height H(P ) ≤ Q. Using the inequality

H(α) ≤
(

min
0≤i≤m

|wi|
)−1

hw(α),

which follows from generalized mean inequality, we conclude, that

SRw(m,Q) ≤ SRH

(
m,

(
min

0≤i≤n
wi

)−1

Q

)
(2.5.7)

and the problem reduces to estimating the value SRH(m,Q).

Denote by R2
m(T ) the number of pairs (P1, P2) of symmetric polynomials with in-

teger coe�cients such that degP1 + degP2 = 2m and

H(P1)H(P2) ≤ T.
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Then by equation (A.1.5) from Lemma A.1.17 it is easy to see

R2
m (Q1) ≥ SRH(m,Q), (2.5.8)

where Q1 =
(
22m−2

√
2m+ 1

)
Q. Since, obviously,

#{P ∈ SPk : H(P ) = q} ≤ 2(k + 1)(2q + 1)k � qk,

then we get

R2
m(T )�

m−1∑
k=1

∑
x,y∈Z,x,y≥1,

xy≤T

xkym−k � Tm (log T )b2/mc .

For the proof of this estimate we refer the reader to [45, eq. (3.2)]. Using the above
estimate and inequalities (2.5.7), (2.5.8) we obtain

SRw(m,Q) ≤ SRH

(
m,

(
min

0≤i≤n
wi

)−1

Q

)

≤ R2
m

((
min

0≤i≤n
wi

)−1

Q1

)
� Qm (logQ)b2/mc ,

where the constants in Vinogradov symbol depend onm and w only. This completes
the proof.

2.6 Proofs of Corollaries

Proof of Corollary 2.4.0.1

Consider the function pw,m(t) de�ned by equation (2.3.1) with weights w =((
2m
k

)−1/2
)2m

k=0
. Write the kernel

Kw,m(x, y) :=
w−2
m

2
+

m∑
k=1

w−2
m−k cos(kx) cos(ky)

=
1

2

(
2m

m

)
+

m∑
k=1

(
2m

m− k

)
cos(kx) cos(ky)

and, using Euler's formula, transform it as follows

Kw,m(x, y) =
1

2

(
2m

m

)
+

m∑
k=1

(
2m

m− k

)
e−ikx + eikx

2

e−iky + eiky

2

=
e−im(x+y)

4

(
2m∑
k=0

(
2m

k

)
eik(x+y) +

2m∑
k=0

(
2m

k

)
eikyei(2m−k)x

)

=
e−im(x+y)

4

((
1 + ei(x+y)

)2m
+
(
eiy + eix

)2m )
.
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Substituting the above expression into (2.3.1) we get

pw,m(t) =
1

π

[
∂2

∂x∂y
logKw,m(x, y)

∣∣∣
x=y=t

]1/2

=
1

π

[
∂2

∂x∂y

(
− log 4− im(x+ y) + log 4eim(x+y)Kw,m(x, y)

)∣∣∣
x=y=t

]1/2

=
1

π

[
∂2

∂x∂y
log K̃m(x, y)

∣∣∣
x=y=t

]1/2

=
1

π

K̃m(t, t) · ∂2

∂x∂y K̃m(x, y)
∣∣
x=y=t

− ∂
∂xK̃m(x, t)

∣∣
x=t
· ∂∂y K̃m(t, y)

∣∣
y=t

K̃2
m(t, t)

1/2

,

where K̃m(x, y) =
(
1 + ei(x+y)

)2m
+
(
eiy + eix

)2m
. The task is to �nd the partial

derivatives of the function K̃m(x, y) for x = y = t. Using Euler's formula, we get

K̃m(t, t) =
(
1 + e2it

)2m
+ 22me2imt = 22me2imt

(
(cos t)2m + 1

)
; (2.6.1)

∂

∂x
K̃m(x, t)

∣∣
x=t

=
∂

∂y
K̃m(t, y) = 2ime2it

(
1 + e2it

)2m−1
+ 2im 22m−1e2imt

= 2im 22m−1e2imt
(
eit(cos t)2m−1 + 1

)
; (2.6.2)

∂2

∂x∂y
K̃m(x, y)

∣∣
x=y=t

= −2me2it
(
1 + e2it

)2m−1 − 2m(2m− 1)e4it
(
1 + e2it

)2m−2

− 2m(2m− 1) 22m−2e2imt = −2m 22m−2e2imt
(

2eit(cos t)2m−1

+ (2m− 1)e2it(cos t)2m−2 + (2m− 1)
)
. (2.6.3)

Thus, by equations (2.6.1), (2.6.2) and (2.6.3) we obtain

pw,m(t) =

√
m

2π2

(
(cos t)2m + 1

)−1
·
(
e2it(cos t)4m−2 − 2eit(cos t)4m−1

− (2m− 1)(cos t)2m − (2m− 1)e2it(cos t)2m−2 + (2m− 1)eit(cos t)2m−1 + 1
)1/2

.

Using the equalities

eit = cos t+ i sin t;

e2it = cos(2t) + i sin(2t) = 2(cos t)2 − 1 + 2i sin t cos t.
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we have

pw,m(t) =

√
m

2π2
·

(
1− (cos2 t)2m−1 + (2m− 1)(cos t)2m−2

(
1− cos2 t

) )1/2

(cos t)2m + 1

=

√
m

2π2
·

√
1− cos2 t

(
2m−2∑
k=0

(cos t)2k + (2m− 1) (cos t)2m−2

)1/2

(cos t)2m + 1

=

√
m

2π2
·
|sin t|

(
2m−2∑
k=0

(cos t)2k + (2m− 1) (cos t)2m−2

)1/2

(cos t)2m + 1
.

Proof of Corollary 2.4.0.2

Before we start recall some trigonometric formulas which will be used in our calcu-
lations

sin
(
(N + 1

2)(x− y)
)

sin x−y
2

= 1 + 2

N∑
k=1

cos(k(x− y));

sin

(
N(x− y)

2

)
=
∑
k odd

(−1)(k−1)/2

(
N

k

)(
cos

x− y
2

)N−k (
sin

x− y
2

)k
;

cos

(
N(x− y)

2

)
=
∑
k even

(−1)k/2
(
N

k

)(
cos

x− y
2

)N−k (
sin

x− y
2

)k
.

Consider the function pw,m(t) with weights w = (1, . . . , 1). In this case the kernel
has the form

Kw,m(x, y) =
1

2
+

m∑
k=1

cos(kx) cos(ky) =
1

4
+

m∑
k=1

(
1

2
cos k(x+ y) +

1

2
cos k(x− y)

)

=
1

2
+

1

2

m∑
k=1

cos k(x+ y) +
1

2

m∑
k=1

cos k(x− y)

=
sin
(
(m+ 1

2)(x+ y)
)

4 sin x+y
2

+
sin
(
(m+ 1

2)(x− y)
)

4 sin x−y
2

.

It should be noted that
sin((m+ 1

2
)t)

sin t
2

is the well-known Dirichlet kernel.

Expression (2.3.1) can be written as

pw,m(t) =
1

π

Kw,m(t, t) · ∂2

∂x∂yKw,m(x, y)
∣∣
x=y=t

− ∂
∂xKw,m(x, t)

∣∣
x=t
· ∂∂yKw,m(t, y)

∣∣
y=t

K2
w,m(t, t)

1/2

.

In order to determine the function pw,m(t) it is necessary to �nd the partial deriva-
tives of the function Kw,m(x, y) for x = y = t.
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Recall that bm = 2m+ 1. Thus, we have

Kw,m(t, t) =
sin(bmt)

4 sin t
+

sin
(
(m+ 1

2)(x− y)
)

4 sin x−y
2

∣∣∣
x=y=t

=
bm
4

+
sin(bmt)

4 sin t
;

∂

∂x
Kw,m(x, t)

∣∣∣
x=t

=
∂

∂y
Kw,m(t, y)

∣∣∣
y=t

=

(
m cos bm(x−y)

2 )

4 sin x−y
2

−
sin 2m(x−y)

2

8 sin2 x−y
2

)∣∣∣
x=y=t

+
m cos(bmt)

4 sin t
− sin(2mt)

8 sin2 t

=
m

4 sin x−y
2

∣∣∣
x=y=t

− m

4 sin x−y
2

∣∣∣
x=y=t

+
m cos(bmt)

4 sin t
− sin(2mt)

8 sin2 t

=
m cos(bmt)

4 sin t
− sin(2mt)

8 sin2 t
;

∂2

∂x∂y
Kw,m(x, y)

∣∣∣
x=y=t

=

(
m2 sin bm(x−y)

2 )

4 sin x−y
2

+
m cos 2m(x−y)

2 )

4 sin2 x−y
2

−
sin 2m(x−y)

2 )

8 sin3 x−y
2

)∣∣∣
x=y=t

− m2 sin(bmt)

4 sin t
− m cos(2mt)

4 sin2 t
+

cos t sin(2mt)

8 sin3 t

=
m2bm

4
+

m

4 sin2 x−y
2

∣∣∣
x=y=t

− m2(2m− 1)

4
− m

4 sin2 x−y
2

∣∣∣
x=y=t

+
m(2m− 1)(m− 1)

2
− m2 sin(bmt)

4 sin t
− m cos(2mt)

4 sin2 t
+

cos t sin(2mt)

8 sin3 t

=
cos t sin(2mt)

8 sin3 t
− m2 sin(bmt)

4 sin t
− m cos(2mt)

4 sin2 t
+

(m2 +m)bm
12

.

Using the above equations we obtain

pw,m(t) =
1

π

(
bm +

sin(bmt)

sin t

)−1

·
(bm sin(bmt)

2(sin t)3
− b2m

2

cos(bmt) cos t

(sin t)2

+
(sin(bmt))

2

4(sin t)4
− b3m + 2bm

6

sin(bmt)

sin t
− b2m

4(sin t)2
+

(m2 +m)b2m
3

)1/2
,

Proof of Corollary 2.4.0.3

In order to calculate the density pw,m(t) in this case we will use the following
trigonometric identities for integer k ≥ 0

(cos t)2k = 2−2k

(
2k

k

)
+ 2−2k+1

k−1∑
j=0

(
2k

j

)
cos(2k − 2j)t, (2.6.4)

(cos t)2k+1 = 2−2(k+1)
k∑
j=0

(
2k + 1

j

)
cos(2k + 1− 2j)t. (2.6.5)
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Consider the function pw,m(t) de�ned by equation (2.3.1) with weights w de�ned
by (2.4.1) and (2.4.2). In this case the kernel has the following form

Kw,m(x, y) =
w−2
m

2
+

m∑
i=1

w−2
m−i cos(ix) cos(iy)

=
w−2
m

2
+

m∑
i=1

w−2
m−i
2

(cos i(x+ y) + cos i(x− y))

=

(
w−2
m

4
+

m∑
i=1

w−2
m−i
2

cos i(x− y)

)
+

(
w−2
m

4
+

m∑
i=1

w−2
m−i
2

cos i(x+ y)

)
.

Let m = 2k. For any positive real a consider the expression

F (x,±y) : = (cos(x± y) + a)m

=

k∑
i=0

(
2k

2i

)
a2i (cos(x± y))2(k−i) +

k∑
i=1

(
2k

2i− 1

)
a2i−1 (cos(x± y))2(k−i)+1 .

Then, using equations 2.6.4 and 2.6.5 we get

F (x,± y)

=
1

4k

k∑
i=0

(
2k

2i

)
(2a)2i

(2(k − i)
k − i

)
+ 2

k−i−1∑
j=0

(
2(k − i)

j

)
cos 2(k − i− j)(x± y)


+

1

2 · 4k
k∑
i=1

(
2k

2i− 1

)
(2a)2i−1

k−i∑
j=0

(
2(k − i) + 1

j

)
cos(2(k − i− j) + 1)(x± y)

 .

Rewrite this expression in the following form

F (x,±y) =
1

4k

k∑
i=0

(
2k

2i

)(
2(k − i)
k − i

)
(2a)2i

+
2

4k

k∑
j=1

k−j∑
i=0

(
2k

2i

)(
2(k − i)
k − i− j

)
(2a)2i cos 2j(x± y)

+
1

2 · 4k
k−1∑
j=0

k−j∑
i=1

(
2k

2i− 1

)(
2(k − i) + 1

k − i− j

)
(2a)2i−1 cos(2j + 1)(x± y).

Analogously for m = 2k + 1 we get

F (x,±y) : = (cos(x± y) + a)m

=
k∑
i=0

(
2k + 1

2i+ 1

)
a2i+1 (cos(x± y))2(k−i) +

k∑
i=0

(
2k + 1

2i

)
a2i (cos(x± y))2(k−i)+1 .
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Applying 2.6.4 and 2.6.5 we obtain

F (x,± y)

=
1

2 · 4k
k∑
i=0

(
2k + 1

2i+ 1

)
(2a)2i+1

(2(k − i)
k − i

)
+ 2

k−i−1∑
j=0

(
2(k − i)

j

)
cos 2(k − i− j)(x± y)


+

1

4k+1

k∑
i=0

(
2k + 1

2i

)
(2a)2i

k−i∑
j=0

(
2(k − i) + 1

j

)
cos(2(k − i− j) + 1)(x± y)

 .

Rewrite this expression in the following form:

F (x,±y) =
1

2 · 4k
k∑
i=0

(
2k + 1

2i+ 1

)(
2(k − i)
k − i

)
(2a)2i+1

+
1

4k

k∑
j=1

k−j∑
i=0

(
2k + 1

2i+ 1

)(
2(k − i)
k − i− j

)
(2a)2i+1 cos 2j(x± y)

+
1

4k+1

k∑
i=0

k∑
j=0

(
2k + 1

2i

)(
2(k − i) + 1

k − i− j

)
(2a)2i cos(2j + 1)(x± y).

Then, with weights w de�ned by (2.4.1) and (2.4.2), we get

Kw,m(x, y) = F (x, y) + F (x,−y) = (cos(x+ y) + a)m + (cos(x− y) + a)m .

In order to determine the function pw,m(t) we need to �nd the partial derivatives of
the function Kw,m(x, y) for x = y = t. Using the expression above and remembering
that sa = cos 2t+ a, da = 1 + a we have

Kw,m(t, t) = (cos(2t) + a)m + (1 + a)m ;

∂

∂x
Kw,m(x, t)

∣∣∣
x=t

=
∂

∂y
Kw,m(t, y)

∣∣∣
y=t

=
(
−m (cos(x+ y) + a)m−1 sin(x+ y)

−m (cos(x− y) + a)m−1 sin(x− y)
)∣∣∣
x=y=t

= −msm−1
a sin 2t;

∂2

∂x∂y
Kw,m(x, y)

∣∣∣
x=y=t

= m(m− 1) (cos(x+ y) + a)m−2 sin2(x+ y)
∣∣∣
x=y=t

−m (cos(x+ y) + a)m−1 cos(x+ y)
∣∣∣
x=y=t

−m(m− 1) (cos(x− y) + a)m−2 sin2(x− y)
∣∣∣
x=y=t

+m (cos(x+ y) + a)m−1 cos(x− y)
∣∣∣
x=y=t

= m(m− 1) sm−2
a (sin 2t)2 −msm−1

a cos 2t+mdm−1
a .
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Thus, we obtain

pw,m(t) =
1

π

m
(
dm−1
a − sm−1

a cos 2t− sm−2
a (sin 2t)2

)
dma + sma

+
m2 dma s

m−2
a (sin 2t)2

(dma + sma )2

1/2

.



Chapter 3

Counting Points with Algebraic

Conjugate Coordinates

In this chapter we investigate the distribution of algebraic numbers with respect to
'naïve' height. Given someQ > 0 denote by Pn(Q) the following class of polynomials

Pn(Q) = {P ∈ Z[t] : degP ≤ n,H(P ) ≤ Q}.

During this chapter we will use the notation cj > 0, j ∈ N to denote the positive
values which do not depend on H(P ) or Q. For convenience let us also de�ne the
following function

ωn(x) =
n−1∑
k=0

|x|k.

3.1 Introduction

Let us start with some short historical review. The �rst result providing some
information about the distribution of algebraic numbers was obtained in 1970 by
Baker and Schmidt [2]. In order to study the distribution of algebraic numbers
Baker and Schmidt introduced the concept of a regular system. A countable set
Γ ⊂ R together with positive-valued function N : Γ→ R+ is called a regular system

if there exists a constant C = C(Γ, N) > 0 such that for every interval I ⊂ R and
a su�ciently large number T > T0(Γ, N, I) > 0 there exist at least C Tλ1 (I) points
γ1, γ2, . . . , γt ∈ Γ ∩ I such that

N(γi) ≤ T, 1 ≤ i ≤ t,
|γi − γj | > T−1, 1 ≤ i < j ≤ t.

(3.1.1)

A simple example of a regular system is the set of non-zero rational numbers p/q
together with the function N(p/q) := q2. An important fact is that the set An
together with the function N1(α) = H(α)n+1 (lnH(α))−3n(n+1) is a regular system
[2]. This result has been improved, showing that the set An together with the
function N2(α) = H(α)n+1 (1 + |α|)−n(n+1) [7] and the set On together with the
function N3(α) = H(α)n (1 + |α|)n(n−1) [16] are regular systems. Moreover, the
same holds for the set of algebraic numbers and algebraic integers of degree at most
n.
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Let us mention that these results do not provide any information about the depen-
dence of the value T0(Γ, N, I) on the length of the interval I, although this is an
interesting question. In his monograph [17] Bugeaud showed that T0(Q, N, I) =

104(λ1 (I))−2
(
log(100(λ1 (I))−1)

)2
(see equation (5.6)) and Beresnevich [6] calcu-

lated T0(A2, N2, I) = 723(λ1 (I))−3
(
log 72(λ1 (I))−1

)3
for any interval I ⊂ [0; 1],

but for arbitrary degree the question stayed open for some time.

In 2015 Bernik and Götze [14] motivated by this problem obtained the following
result. Given an interval I ⊂ R, denote by Nn(A, Q, I) the number of algebraic
numbers α ∈ I of degree at most n and 'naïve' height at most Q. Then for any
interval I of length λ1 (I) � Q−s, 0 < s ≤ 1, and Q > Q0 the following estimate
holds

Nn(A, Q, I)� Qn+1λ1 (I) , (3.1.2)

where the constants in the Vinogradov symbol and the value Q0 depend on n and
the middle point of the interval I only. To prove this inequality they basically
constructed a set of algebraic numbers γ1, γ2, . . . , γt ∈ An ∩ I satisfying conditions
(3.1.1) with N(α) = H(α)n+1. This allowed to conclude that T0(An, N2, I) =

C1(n) (λ1 (I))−n−1 for any interval I ⊂ [0; 1].

The results mentioned above have many interesting applications. For example, a
regular system of algebraic numbers is used to obtain lower bounds for the Hausdor�
dimension of various sets of algebraic number [2, 23] and to prove Khinchine-type
theorems in the case of divergence [7, 11].

In this chapter we will obtain the results similar to (3.1.2) for the set of algebraic
integers and consider the two-dimensional analogue of the problem.

Given a Borel subset D ⊂ R2, consider the function N 2
n(A, Q,D), which counts

the number of ordered pairs α := (α1, α2) ∈ D of distinct conjugate algebraic
numbers α1, α2 of degree at most n and 'naïve' height at most Q, and the function
N 2
n(O, Q,D), which counts the number of ordered pairs α := (α1, α2) ∈ D of

distinct conjugate algebraic integers α1, α2 of degree n and 'naïve' height at most
Q.

We will derive the upper and lower bounds for values N 2
n(A, Q,D) and N 2

n(O, Q,D)

in case of two classes of subsets D having �xed 'position' and measure depending on
Q that vanishing as Q tends to in�nity. The �rst class of subsets under consideration
are rectangles with �xed middle point, and the second class are ε-neighborhoods of
some �xed curve. For algebraic integers we will derive upper and lower bounds
for the number of algebraic integers with height at most Q lying in some interval
I ∈ R with �xed middle point and length vanishing as Q tends to in�nity. We will
start by obtaining the estimates for the number of points with algebraic conjugate
coordinates and derive the result for algebraic integers using those estimates.
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3.2 Rectangles of Small Measure

Consider a rectangle Π = I1 × I2 with middle point d = (d1, d2), d1 6= d2 and sizes
λ1 (I1) = c1,1Q

−s1 , λ1 (I2) = c1,2Q
−s2 . The condition d1 6= d2 is necessary since

it allows to exclude from consideration the neighborhood of the line x = y. The
points in this area can not be well approximated by points with algebraic conjugate
coordinates since algebraic conjugate numbers have some kind of repulsion [18, 28].

In this section we will prove a few theorems providing the upper and lower esti-
mates of the value N 2

n(A, Q,Π) for some choices of s1 and s2. Those estimates are
asymptotic with Q → ∞. Moreover upper and lower estimates are equal up to
multiplication by the constant factor.

Let us start with lower estimates since they form the most di�cult and technically
involved part.
Theorem 3.2.1. For any rectangle Π = I1 × I2 with middle point d = (d1, d2),

d1 6= d2 satisfying the following conditions:

1. λ1 (Ii) = c1,iQ
−si, where si < 1 and 0 < s1 + s2 ≤ 1, i = 1, 2;

2. c1,1 c1,2 > c0(n,d) > 0 for s1 + s2 = 1;

any integer n ≥ 2, and any real positive Q > Q0(n,d, s) there exists a constant

c2 = c2(n,d) > 0, such that

N 2
n(A, Q,Π) ≥ c2Q

n+1λ2 (Π) . (3.2.1)

One can not avoid the condition s1+s2 ≤ 1 since for s1+s2 > 1 there exist rectangles
Π such that the statement of Theorem 3.2.1 does not hold. The example of such
rectangle is Π =

(
0, 0.5Q−1

)
× (0, 0.5). It is easy to prove [14] that the interval(

0, 0.5Q−1
)
does not contain algebraic numbers of any degree and height at most

Q. It should be noted that this example is not unique and one can construct the
rectangle which does not contain points with algebraic conjugate coordinates near
every ration point with bounded denominators.

This simple fact shows that for 1 < s1 +s2 we can not obtain the estimate (3.2.1) for
all rectangles Π since the certain neighborhoods of points with algebraic coordinates
of small height and small degree do not contain any other points (α1, α2) with
algebraic conjugate coordinates αi ∈ An(Q). This leads us to the de�nition of a set
of small rectangles which are not a�ected by these 'anomalous' points.

Consider a square Π = I1 × I2 with λ1 (I1) = λ1 (I2) = c3Q
−s where 1

2 < s < 3
4 .

Given positive real numbers u1, u2 let us de�ne the set Lu1,u2(Q) of points x ∈ R2

such that there exists a polynomial P ∈ P2(Q) with leading coe�cient b2 satisfying
the inequalities {

|P (xi)| < hQ−ui , i = 1, 2,

|b2| < Qs−
1
2 .

(3.2.2)
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We say that the square Π is (u1, u2)- ordinary if Π ∩ Lu1,u2(Q) = ∅ and (u1, u2)-

special otherwise.

For
(

1
2 ,

1
2

)
-ordinary squares we can prove the estimate similar to (3.2.1).

Theorem 3.2.2. For any
(

1
2 ,

1
2

)
-ordinary square Π = I1 × I2 with middle point

d = (d1, d2), d1 6= d2 satisfying the following conditions:

1. λ1 (Ii) = c3Q
−s, where 1

2 < s < 3
4 ;

2. c3 > c0(n,d) > 0;

any integer n ≥ 2, and any real positive Q > Q0(n,d, s) there exists a constant

c4 = c4(n,d) > 0, such that

N 2
n(A, Q,Π) ≥ c4Q

n+1λ2

(
Π
)
.

The upper estimate is easier to prove and can be obtained for the bigger set of
rectangles.
Theorem 3.2.3. Let Π = I1 × I2 be a rectangle with a middle point d = (d1, d2),

d1 6= d2 and λ1 (Ii) = c5Q
−si , i = 1, 2. Then for any 0 < s1, s2 < 1, any integer

n ≥ 2, and any real positive Q > Q0(n, s,d) we have

N 2
n(A, Q,Π) < c6Q

n+1λ2 (Π) ,

where c6 = 23n+9n2ωn(3/2 d1)ωn(3/2 d2)|d1 − d2|−1.

3.2.1 Some Technical Lemmas

Before we start the proofs of Theorem 3.2.1, Theorem 3.2.2 and Theorem 3.2.3 let
us formulate and prove some simple technical lemmas.
Lemma 3.2.4. Let I be an interval with middle point d and length λ1 (I) � Q−s,

s > 0. Then for any polynomial P ∈ Pn(Q), any point x ∈ I, and any real positive

Q > Q0(s, d) we have

|P (k)(x)| ≤ n!

(n− k)!
ωn−k+1(3/2 di)Q.

Proof. Consider some point x ∈ I and some polynomial P (t) =
n∑
k=0

akt
k ∈ Pn(Q).

We obtain

|P (k)(x)| =

∣∣∣∣∣∣
n−k∑
j=0

(n− j)!
(n− j − k)!

an−jx
n−j−k

∣∣∣∣∣∣ ≤ n!

(n− k)!
Q

n−k∑
j=0

|x|j .

Since x ∈ I then for some −1 ≤ θ ≤ 1 and Q > Q0 we have

|x| = |d+ θλ1 (I) | ≤ |d|+ θ Q−s ≤ 3

2
|d|
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and, hence,

|P (k)(x)| ≤ n!

(n− k)!
ωn−k+1(3/2 d)Q.

Lemma 3.2.5. Given some d,K ∈ R2, such that |d1 − d2| 6= 0 and K1 ≥ K2 > 0,

denote by G := G(d,K) a set of points b ∈ Z2 satisfying

|b1di + b0| ≤ Ki, i = 1, 2. (3.2.3)

Then

#G ≤
(
4|d1 − d2|−1K1 + 1

)
(4K2 + 1) .

Proof. To avoid triviality assume that G 6= ∅ and choose some point (b1, b0) ∈ G.
Assume that the following system of equations in two variables

b1di + b0 = li, i = 1, 2, (3.2.4)

holds, where |li| ≤ Ki. Considering the di�erence of equations

b1(d1 − d2) = l1 − l2,

we obtain

|b1| ≤ (|l1|+ |l2|) |d1 − d2|−1 ≤ 2|d1 − d2|−1K1.

This inequality implies that for all (b1, b0) ∈ G the value b1 belongs to the interval
J1, where

J1 :=
(
−2|d1 − d2|−1K1; 2|d1 − d2|−1K1

)
.

Assume that for some �xed b ∈ J1 there exist at least two points b1,b2 ∈ G with
b1,1 = b2,1 = b and

bdi + bj,0 = li,j , i, j = 1, 2.

From these equalities it follows that

|b1,0 − b2,0| = |l2,1 − l2,2| ≤ 2K2,

which implies that if at least one solution (b, a) ∈ G exists, then for all (b1, b0) ∈ G
with b1 = b the value b0 belongs to the interval J0(b), where

J0(b) := (a− 2K2; a+ 2K2) .

Remembering that b1, b0 ∈ Z, we conclude

#G ≤
(
4|d1 − d2|−1K1 + 1

)
(4K2 + 1) .
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3.2.2 Proof of Theorem 3.2.1: Lower Bound

The main ingredient of the proof of Theorem 3.2.1 is the following lemma.
Lemma 3.2.6. Consider some rectangle Π = I1×I2 with middle point d = (d1, d2),

d1 6= d2 satisfying the conditions:

1. λ1 (Ii) = c1,iQ
−si where si < 1 and 0 < s1 + s2 ≤ 1, i = 1, 2;

2. c1,1 c1,2 > c0(n,d) > 0 for s1 + s2 = 1.

Given a vector v = (v1, v2) ∈ R2
+ with v1+v2 = n−1 denote by L := L(Q, δn, κ,v,Π)

the set of points x ∈ Π such that there exists a polynomial P ∈ Pn(Q) satisfying the

inequalities |P (xi)| < hnQ
−vi ,

min
i
{|P ′(xi)|} < δnQ, i = 1, 2.

(3.2.5)

Then for any 0 < κ < 1, any 0 < δn ≤ δ0(n,d, κ), and any real positive Q >

Q0(n, s,v,d, κ) we have

λ2 (L) < κλ2 (Π) .

Proof. Since d1 6= d2 we can assume that for every point x ∈ Π and for Q > Q0 the
following holds

|x1 − x2| > ε = |d1−d2|
2 . (3.2.6)

Let us introduce some additional notation. Given a polynomial P of degree n let
A(P ) := {αi, 1 ≤ i ≤ n} be the set of roots of P and let

S(αi) :=

{
x ∈ R : |x− αi| = min

1≤j≤n
|x− αj |

}
.

Denote by

• L1 the set of points x ∈ Π such that there exists an irreducible polynomial
P ∈ Pn(Q) satisfying inequalities (3.2.5) and the condition |P ′(x1)| < δnQ;

• L2 the set of points x ∈ Π such that there exists an irreducible polynomial
P ∈ Pn(Q) satisfying inequalities (3.2.5) and the condition |P ′(x2)| < δnQ;

• L3 the set of points x ∈ Π such that there exists a reducible polynomial
P ∈ Pn(Q) satisfying inequalities (3.2.5).

Clearly, we have L ⊂ (L1 ∪ L2 ∪ L3).

The biggest part of the proof is devoted to the case of irreducible polynomials. We
will start by considering this case and deriving the estimates for λ1 (L1) and λ1 (L2).
Without loss of generality, assume that |P ′(x1)| < δnQ and consider the set L1.

In this case the main idea is to split the interval Ti, which contains all possible
values of |P ′(xi)| for x ∈ Π, into sub-intervals Ti,1, Ti,2, Ti,3 and consider the cases
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|P ′(xi)| ∈ Ti,k, k = 1, 2, 3 separately. This splitting is performed as follows

Ti,1 =
[
0; 2c7Q

1
2
− vi

2

)
, Ti,2 =

[
2c7Q

1
2
− vi

2 ; Q
1
2
− vi

2
+

vi
2(n−1)

)
, i = 1, 2;

T1,3 =
[
Q

1
2
− v1

2
+

v1
2(n−1) ; δnQ

)
, T2,3 =

[
Q

1
2
− v2

2
+

v2
2(n−1) ; nωn(3/2 d2)Q

)
.

Without loss of generality, we will assume that |d1| < |d2|. We would like to verify
that if a polynomial P ∈ Pn(Q) satis�es the inequalities

|P ′(xi)| ≥ 2c7Q
1
2
− vi

2 , (3.2.7)

where x ∈ Π and c7 = 2n−1n max(hn, 1) max(1, ωn−1(d2)) then

1
2 |P

′(xi)| ≤ |P ′(αi)| ≤ 2|P ′(xi)|, i = 1, 2,

where xi ∈ S(αi). Let us write a Taylor expansion of the polynomial P ′ at point xi

P ′(xi) = P ′(αi) + P ′′(αi)(xi − αi) + . . .+ 1
(n−1)!P

(n)(αi)(xi − αi)n−1. (3.2.8)

Using Lemma A.1.14 and the estimates (3.2.5) for Q > Q0, we have

|xi − αi| ≤ nhnc−1
7 Q−

vi+1

2 < Q−
vi+1

2 .

Then, for si > 0 and Q > Q0 we get

|xi| ≤ |di|+ 1
2λ1 (Ii) ≤ |di|+ 1

4 |di| =
5
4 |di|

and, thus,

|αi| ≤ |xi|+Q−
vi+1

2 < 5
4 |di|+

1
4 |di| =

3
2 |di|.

From this estimate and Lemma 3.2.4 we obtain the following inequality for every
term in Taylor expansion (3.2.8) starting from the second one∣∣∣ 1

(k−1)!P
(k)(αi)(xi − αi)k−1

∣∣∣ < (k−1
n−1

)
nωn−k+1(3/2 d2)Q1− (k−1)(1+vi)

2

≤
(
k−1
n−1

)
nωn−1(3/2 d2)Q

1
2
− vi

2 .

Finally, we get the following estimate∣∣∣P ′′(αi)(xi − αi) + . . .+ 1
(n−1)!P

(n)(αi)(xi − αi)n−1
∣∣∣

< 2n−1nωn−1(3/2 d2)Q
1
2
− vi

2 < 1
2 |P

′(xi)|,

and, by substituting this inequality to (3.2.8) we obtain

1
2 |P

′(xi)| ≤ |P ′(αi)| ≤ 2 |P ′(xi)|.

This means that for |P ′(xi)| ∈ Ti,3 and |P ′(xi)| ∈ Ti,2 we have |P ′(αi)| ∈ T i,3 and
|P ′(αi)| ∈ T i,2 respectively, where

T 1,3 =
[

1
2 Q

1
2
− v1

2
+

v1
2(n−1) ; 2δnQ

)
, T 2,3 =

[
1
2 Q

1
2
− v2

2
+

v2
2(n−1) ; 2nωn(3/2 d2)Q

)
,

T i,2 =
[
c7Q

1
2
− vi

2 ; 2Q
1
2
− vi

2
+

vi
2(n−1)

)
, i = 1, 2.

Now we are going to consider the following cases:
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• the case of polynomials of the second degree n = 2 (see Subsection 3.2.2.1);

• the case of irreducible polynomials:

|P ′(α1)| ∈ T 1,3, |P ′(α2)| ∈ T 2,3 (see Subsection 3.2.2.2);

|P ′(α1)| ∈ T 1,2, |P ′(α2)| ∈ T 2,2 (see Subsection 3.2.2.3);

|P ′(x1)| ∈ T1,1, |P ′(x2)| ∈ T2,1 (see Subsection 3.2.2.4);

|P ′(α1)| ∈ T 1,3, |P ′(α2)| ∈ T 2,2 or |P ′(α1)| ∈ T 1,2, |P ′(α2)| ∈ T 2,3 (see
Subsection 3.2.2.5);

|P ′(α1)| ∈ T 1,3, |P ′(x2)| ∈ T2,1 or |P ′(x1)| ∈ T1,1, |P ′(α2)| ∈ T 2,3 (see
Subsection 3.2.2.5);

|P ′(α1)| ∈ T 1,2, |P ′(x2)| ∈ T2,1 or |P ′(x1)| ∈ T1,1, |P ′(α2)| ∈ T 2,2 (see
Subsection 3.2.2.5);

• the case of reducible polynomials (see Subsection 3.2.2.6).

Considering some of the cases above, we are going to use induction on the degree n.
Let us �rst consider the system (3.2.5) for polynomials of the second degree, which
will provide us the base of induction.

3.2.2.1 The base of induction: polynomials of the second degree.

Consider the system (3.2.5) for n = 2. Given some real numbers γ2,1, γ2,2 > 0 under
condition γ2,1 + γ2,2 = 1 denote by L′ := L2(Q, δ2, κ,γ2,Π) the set of points x ∈ Π

such that there exists a polynomial P ∈ P2(Q) satisfying the inequalities|P (xi)| < h2Q
−γ2,i ,

min
i
{|P ′(xi)|} < δ2Q, i = 1, 2.

(3.2.9)

We will show that for all rectangles Π satisfying the conditions of Lemma 3.2.6, for
any δ2 < δ0(d, s, κ), and any Q > Q0(s,γ2,d, κ) we have

λ2

(
L′
)
< κλ2 (Π) .

It should be mentioned that if polynomial P (t) = b1t − b0 is linear, then we apply
Lemma A.1.14 to obtain ∣∣∣xi − b0

b1

∣∣∣� Q−γ2,i < ε
4 , i = 1, 2

for Q > Q0. Hence, we immediately have |x1−x2| < ε which contradicts to (3.2.6).
Thus, degP = 2.

Consider the polynomial P (t) = b2t
2 + b1t+ b0 ∈ P2(Q) with roots α1 and α2. We

would like to estimate the value |b2| assuming that P satis�es (3.2.9). Let us start
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with estimating the values |P ′(α1)| and |P ′(α2)|. By the third inequality of Lemma
A.1.14, for every polynomial P satisfying (3.2.9) at a point x ∈ Π, we have

|xi − αi| <
(
|P (xi)||b2|−1

)1/2
< h

1/2
2 Q−

γ2,i
2 < ε

8 , (3.2.10)

for Q > Q0 and xi ∈ S(αi).

From (3.2.10) and (3.2.6) we obtain

|α1 − α2| > |x1 − x2| − |x1 − α1| − |x2 − α2| > 3
4 ε

and

|α1 − α2| < |x1|+ |x2|+ |x1 − α1|+ |x2 − α2| < |d1|+ |d2|+ 1 + ε
4 .

This leads to the following bounds

|P ′(αi)| = |b2| |α1 − α2| > 3
4 ε |b2|. (3.2.11)

The inequalities (3.2.10) also yield the estimates

|P ′(xi)| ≤ |b2| (|α1 − xi|+ |α2 − xi|) ≤
(
|d2|+ 1 + ε

4

)
|b2|. (3.2.12)

Now upper bounds for |P ′(αi)| can be obtained from the Taylor expansion of the
polynomial P ′

|P ′(αi)| ≤ |P ′(xi)|+ |P ′′(xi)| |xi − αi| ≤ |P ′(xi)|+ ε
2 |b2|. (3.2.13)

Finally, the estimates (3.2.11) and (3.2.13) lead to the inequality

|b2| < 4ε−1 min
i

{
|P ′(xi)|

}
< 4δ2ε

−1Q. (3.2.14)

From Lemma A.1.14 and the estimates (3.2.11) it follows that the set L′ is contained
in a union

⋃
P∈P2(Q)

σP , where

σP :=
{
x ∈ Π : |xi − αi| < 2h2ε

−1Q−γ2,i |b2|−1, i = 1, 2
}
.

Simple calculations show that for c1,1c1,2 > 24κ−1h2
2ε
−2 the measure of the set σP

is much smaller than the measure of the rectangle Π

λ2 (σP ) ≤ 24h2
2ε
−2Q−1|b2|−2 < κc1,1c1,2Q

−1 = κλ2 (Π) .

Let us estimate the measure of the set L′

λ2

(
L′
)
≤

∑
P∈P2(Q)

λ2 (σP ) ≤ 24h2
2ε
−2Q−1

∑
b2,b1,b0≤Q:

P (t)=b2t2+b1t+b0,
σP 6=∅

|b2|−2. (3.2.15)

We need to estimate the number of polynomials P ∈ P2(Q) with �xed leading
coe�cient such that the system (3.2.9) holds for some point x ∈ Π.
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Assume that the inequalities (3.2.9) hold for the polynomial P and the point x0 ∈
Π. Let us estimate the value of the polynomial P at points di. From the Taylor
expansion of polynomial P we have

|P (di)| = |P (x0,i) + P ′(x0,i)(x0,i − di) + 1
2P
′′(x0,i)(x0,i − di)2|

≤ |P (x0,i)|+ |P ′(x0,i)|λ1 (Ii) + |b2| (λ1 (Ii))
2 .

Thus, from (3.2.12) for Q > Q0 we obtain

|P (di)| < |P (x0,i)|+ c8 |b2|λ1 (Ii) ≤ 2c8 max (1, |b2|λ1 (Ii)) ,

where c8 > 1. Without loss of generality we assume that λ1 (I1) ≤ λ1 (I2).

Consider the system of equations{
b2d

2
1 + b1d1 + b0 = l1,

b2d
2
2 + b1d2 + b0 = l2

(3.2.16)

in three variables b2, b1, b0 ∈ Z, where |li| ≤ 2c8 max (1, |b2|λ1 (Ii)).

Let us estimate the number of possible solutions of (3.2.16) for a �xed b2. As-
sume that for chosen b2 there exists at least one solution (b2, b1,1, b1,0) and consider
the system of linear equations (3.2.16) for two di�erent triples (b2, b1,1, b1,0) and
(b2, b2,1, b2,0):

b2d
2
i + bj,1di + bj,0 = lj,i, i, j = 1, 2.

Simple transformations lead to the following system of equations in two variables
b̃1 = b1,1 − b2,1 and b̃0 = b1,0 − b2,0:{

b̃1d1 + b̃0 = l1,1 − l2,1,
b̃1d2 + b̃0 = l1,2 − l2,2.

(3.2.17)

Since |l1,i − l2,i| ≤ 4c8 max (1, |b2|λ1 (Ii)) and |d1 − d2| = 2ε > 0 then applying
Lemma 3.2.5 with Ki = 4c8 max (1, |b2|λ1 (Ii)) we conclude

#(b̃1, b̃0) ≤
(
24c8ε

−1 max (1, |b2|λ1 (I1)) + 1
) (

24c8 max (1, |b2|λ1 (Ii)) + 1
)

≤ 210c2
8ε
−1 max (1, |b2|λ1 (I1)) max (1, |b2|λ1 (Ii)) .

Thus, for a �xed value of the coe�cient b2 we get following estimate

#(b1, b0) ≤


210ε−1c2

8 |b2|2 λ2 (Π) , |b2| ≥ 1
λ1(I1) ,

210ε−1c2
8 |b2|λ1 (I2) , 1

λ1(I2) ≤ |b2| <
1

λ1(I1) ,

210ε−1c2
8, |b2| < 1

λ1(I2) .

(3.2.18)

According to (3.2.18) we need to consider the following cases.

Case 1: 1
λ1(I1) ≤ |b2| ≤ 4δ2ε

−1Q.
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In this case the �rst estimate of (3.2.18) holds and for δ2 < 2−18κ−1ε4c−2
8 h−2

2 we
have

λ2

(
L′
)
≤ 214ε−3c2

8h
2
2Q
−1λ2 (Π) · 4δ2ε

−1Q < κ
3 λ2 (Π) .

Case 2: 1
λ1(I2) ≤ |b2| <

1
λ1(I1) .

The second estimate of (3.2.18) holds and we get

λ2

(
L′
)
� Q−1λ1 (I2)

∑
(λ1(I2))−1≤|b2|≤(λ1(I1))−1

|b2|−1 � Q−1 lnQλ1 (I2) .

Hence, for ε1 = 1−s1
2 and Q > Q0 we obtain

λ2

(
L′
)
� Q−1+ε1λ1 (I2)� Q−ε1λ2 (Π) ≤ κ

3 λ2 (Π) .

Case 3: 1 ≤ |b2| < 1
λ1(I2) .

In this case the third estimate of (3.2.18) leads to

λ2

(
L′
)
≤ 214ε−3c2

8h
2
2Q
−1

∑
1≤|b2|≤(λ1(I2))−1

|b2|−2 ≤ κ
3 λ2 (Π) ,

for c1,1c1,2 > 217κ−1π2c2
8ε
−3h2

2.

Combining these estimates with (3.2.15) �nishes the proof.

3.2.2.2 The induction step: reducing the degree of the polynomial.

In this subsection we consider the case |P ′(αi)| ∈ T i,3, i = 1, 2 where we have the
following system of inequalities

|P (xi)| < hnQ
−vi , i = 1, 2,

1
2 Q

1
2
− v1

2
+

v1
2(n−1) ≤ |P ′(α1)| < 2δnQ,

1
2 Q

1
2
− v2

2
+

v2
2(n−1) ≤ |P ′(α2)| < 2nωn(3/2 d2)Q.

(3.2.19)

Denote by L3,3 the set of points x ∈ Π such that the inequalities (3.2.19) hold for
some polynomial P ∈ Pn(Q). By Lemma A.1.14, it follows that

L3,3 ⊂
⋃

P∈Pn(Q)

⋃
α∈A2(P )

σP (α),

where

σP (α) :=
{
x ∈ Π : |xi − αi| < 2n−1hnQ

−vi |P ′(αi)|−1, i = 1, 2
}
, (3.2.20)

which implies that the following estimate for λ2 (L3,3) holds

λ2 (L3,3) ≤
∑

P∈Pn(Q)

∑
α∈A2(P )

λ2 (σP (α)).
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Together with the sets σP (α) consider the following expanded sets

σ′P (α) : = σ′P,1(α1)× σ′P,2(α2)

=
{
x ∈ Π : |xi − αi| < c9Q

−γn−1,i |P ′(αi)|−1, i = 1, 2
}
, (3.2.21)

where γn−1,i := (n−2)vi
n−1 . Simple calculations show that for Q > Q0 and n ≥ 2 the

measure of the set σ′P (α) is much smaller than the measure of the rectangle Π

λ2

(
σ′P (α)

)
≤ 4c2

9Q
−n+2Q−1+n−2

2 < 4c2
9Q
−n

2 < λ2 (Π) .

Using (3.2.20) and (3.2.21) it is easy to see that the measures λ2 (σP (α)) and
λ2 (σ′P (α)) are related as follows

λ2 (σP (α)) ≤ 22n−2h2
nc
−2
9 Q−1λ2

(
σ′P (α)

)
. (3.2.22)

Given a �xed a ∈ Z let Pn(Q, a) ⊂ Pn(Q) denote a subclass of polynomials with
the leading coe�cient equal to a

Pn(Q, a) := {P ∈ Pn(Q) : P (t) = atn + . . .+ a0} .

Since −Q ≤ a ≤ Q, the number of subclasses Pn(Q, a) is

# {a} = 2Q+ 1. (3.2.23)

We are going to apply Sprindºuk's method of essential and non-essential sets [62].
Consider a family of sets σ′P (α), P ∈ Pn(Q, a). A set σ′P1

(α1) is called essential if
for every σ′P2

(α2), P2 6= P1, the following holds

λ2

(
σ′P1

(α1) ∩ σ′P2
(α2)

)
< 1

2λ2

(
σ′P1

(α1)
)
. (3.2.24)

Otherwise, the set σ′P1
(α1) is called non-essential.

The case of essential sets. It is easy to ensure, that for any −Q ≤ a ≤ Q, we have
the following estimate∑

P∈Pn(Q,a)

∑
α∈A2(P ):

σ′P (α)�essential

λ2

(
σ′P (α)

)
≤ 4λ2 (Π) . (3.2.25)

Then from (3.2.22) with c9 = 2n+4κ−1/2hn, (3.2.23), and (3.2.25) we get∑
a

∑
P∈Pn(Q,a)

∑
α∈A2(P ):
σ′P (α)�ess.

λ2 (σP (α)) ≤ 2−10
∑

P∈Pn(Q,a)

∑
α∈A2(P ):
σ′P (α)�ess.

λ2

(
σ′P (α)

)
< κ

72 λ2 (Π) . (3.2.26)

The case of non-essential sets. If a set σ′P1
(α1) is non-essential, then there exists

a set σ′P2
(α2) such that λ2

(
σ′P1

(α1) ∩ σ′P2
(α2)

)
> 1

2λ2

(
σ′P1

(α1)
)
. Consider the
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polynomial R = P2 − P1, degR ≤ n− 1, H(R) ≤ 2Q. Let us estimate the value of
polynomials R and R′ at points x ∈

(
σ′P1

(α1) ∩ σ′P2
(α2)

)
.

Consider the Taylor expansions of the polynomials P1 and P2 in the interval
σ′P1,i

(α1,i) ∩ σ′P2,i
(α2,i)

Pj(xi) = P ′j(αj,i)(xi − αj,i) + . . .+ 1
n! P

(n)
j (αj,i)(xi − αj,i)n. (3.2.27)

From the estimate (3.2.19), (3.2.21), and Lemma 3.2.4 we have

|P ′j(αj,i)(xi − αj,i)| ≤ c9Q
−γn−1,i ,

and, for k ≥ 2, we get∣∣∣ 1
k!P

(k)
j (αj,i)(xi − αj,i)k

∣∣∣ ≤ (kn)ωn−k+1(3/2 di)c
k
9 Q

1−kγn−1,i− k2 + k
2
γn−1,i

≤
(
k
n

)
ωn−1(3/2 di)c

k
9 Q
−γn−1,i .

Substituting these estimates into (3.2.27) we obtain

|Pj(xi)| ≤ ωn−1(3/2 d2)(1 + c9)nQ−γn−1,i ,

and, thus,

|R(xi)| < |P1(xi)|+ |P2(xi)| < 2ωn−1(3/2 d2)(1 + c9)nQ−γn−1,i (3.2.28)

Analogously, consider Taylor expansions of the polynomials P ′1 and P
′
2 in the interval

σ′P1,i
(α1,i) ∩ σ′P2,i

(α2,i)

P ′j(xi) = P ′j(αj,i) + . . .+ 1
(n−1)!P

(n)
j (αj,i)(xi − αj,i)n−1, (3.2.29)

and, from the estimate (3.2.19), (3.2.21), and Lemma 3.2.4 we obtain∣∣∣ 1
(k−1)!P

(k)
j (αi)(xi − αi)k−1

∣∣∣ ≤ n(k−1
n−1

)
ωn−k+1(3/2 d2)ck−1

9 Q
1−(k−1)

(
γn−1,i

2
+ 1

2

)
≤ n

(
k−1
n−1

)
ωn−1(3/2 d2)ck−1

9 |P ′j(αi)|,

for k ≥ 2. Substituting these estimates into (3.2.27) we have

|Pj(xi)| ≤ nωn−1(3/2 d2)(1 + c9)n−1 |P ′j(αj,i)|

and, thus, from (3.2.19) we �nally get

min
i

{
|R′(xi)|

}
≤ min

i

{
|P ′1(xi)|

}
+ min

i

{
|P ′2(xi)|

}
≤ 4nωn(3/2 d2)(1 + c9)n−1δnQ. (3.2.30)

The inequalities (3.2.28) and (3.2.30) hold for every point x ∈
(
σ′P1

(α1) ∩ σ′P2
(α2)

)
.

Applying Lemma A.1.15 with the fact λ1

(
σ′P1,i

(α1,i) ∩ σ′P2,i
(α2,i)

)
>

1
2λ1

(
σ′P1,i

(α1,i)
)
we obtain that for every point x ∈ σ′P1

(α1) the following

|R(xi)| < c10Q
−γn−1,i , min

i

{
|R′(xi)|

}
< c11δnQ (3.2.31)
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holds for some c10 and c11 depending on n and d.

Denote by L′ the set of points x ∈ Π such that there exists a polynomial R ∈
Pn−1(Q1) satisfying the inequalities|R(xi)| < c12hn−1Q

−γn−1,i

1 , i = 1, 2

min
i
{|R′(xi)|} < δn−1Q1,

where Q1 = 2Q, c12 = max
i

(2γn−1,i) c10h
−1
n−1 and δn−1 = 2c11 δn.

The estimates (3.2.31) imply that for any −Q ≤ a ≤ Q we have⋃
P∈Pn(Q,a)

⋃
α∈A2(P ):

σ′P (α)�non-essential

σ′P (α) ⊂ L′.

Thus, by the induction hypothesis we obtain∑
a

∑
P∈Pn(Q,a)

∑
α∈A2(P ):

σ′P (α)�non-essential

λ2 (σP (α)) ≤ λ2

(
L′
)
≤ κ

72 λ2 (Π) , (3.2.32)

for a su�ciently small δn and Q > Q0. Then, the estimates (3.2.26) and (3.2.32)
allow us to write

λ2 (L3,3) ≤ κ
36 λ2 (Π) .

3.2.2.3 The case of sub-intervals T̄1,2 and T̄2,2

For |P ′(α1)| ∈ T̄1,2 and |P ′(α2)| ∈ T̄2,2 we have the following system of inequalities{
|P (xi)| < hnQ

−vi ,

c7Q
1
2
− vi

2 ≤ |P ′(αi)| < 2Q
1
2
− vi

2
+

vi
2(n−1) , i = 1, 2.

(3.2.33)

Denote by L2,2 the set of points x ∈ Π such that there exists a polynomial P ∈ Pn(Q)

satisfying (3.2.33). By Lemma A.1.14 we get

L2,2 ⊂
⋃

P∈Pn(Q)

⋃
α∈A2(P )

σP (α),

where

σP (α) :=
{
x ∈ Π : |xi − αi| ≤ 2n−1hnc

−1
7 Q−

vi+1

2 , i = 1, 2
}
. (3.2.34)

This leads to the following estimate

λ2 (L2,2) ≤
∑

P∈Pn(Q)

∑
α∈A2(P )

λ2 (σP (α)).

In this case we can not apply induction since the degree of the polynomial can not
be reduced. Let us use a di�erent method to estimate the measure of the set L2,2.



3.2. Rectangles of Small Measure 45

Let us cover the rectangle Π by a set of disjoint rectangles Πk = J1,k × J2,k, where

λ1 (Ji,k) = 1
2 Q
− vi+1

2
+ε2,i , ε2,i > 0 such that Π ⊂

⋃
k

Πk and Πk ∩ Π 6= ∅. Thus, the

number K of rectangles Πk can be estimated as follows

K ≤ 4 max
(
λ1 (I1) (λ1 (J1,k))

−1 , 1
)

max
(
λ1 (I2) (λ1 (J2,k))

−1 , 1
)

=


24Q

n+1
2
−ε2,1−ε2,2λ2 (Π) , si <

vi+1
2 ,

24Q
v1+1

2
−ε2,1λ1 (I1) , s1 <

v1+1
2 , s2 ≥ v2+1

2 ,

24Q
v2+1

2
−ε2,2λ1 (I2) , s1 ≥ v1+1

2 , s2 <
v2+1

2 .

(3.2.35)

We will say that a polynomial P belongs to Πk if there exists a point x ∈ Πk such
that the inequalities (3.2.33) hold for polynomial P .

Let us prove that there is no rectangle Πk containing two or more irreducible polyno-
mials P ∈ Pn(Q). Assume the converse: let P1, P2 ∈ Πk be irreducible polynomials
and let the inequalities (3.2.33) hold for polynomial Pj at a point xj ∈ Πk. Thus,
for Q > Q0 and for every point x ∈ Πk we have

|xi − αj,i| ≤ |xi − xj,i|+ |xj,i − αj,i| ≤ Q−
vi+1

2
+ε2,i , (3.2.36)

where xj,i ∈ S(αj,i).

Let us estimate the values |Pj(xi)| for x ∈ Πk. Consider the Taylor expansion of
the polynomial Pj in the interval Ji,k

Pj(xi) = P ′j(αj,i)(xi − αj,i) + . . .+ 1
n! P

(n)
j (αj,i)(xi − αj,i)n.

From the estimates (3.2.33) and (3.2.36) we obtain∣∣P ′j(αj,i)(xi − αj,i)∣∣� Q
−vi+

vi
2(n−1)

+ε2,i ,∣∣∣ 1
k! P

(k)
j (αj,i)(xi − αj,i)k

∣∣∣� Q1− k
2
− kvi

2
+kε2,i � Q

−vi+
vi

2(n−1)
+ε2,i

for ε2,i <
vi

2(n−1)2
and Q > Q0. Then any ε3 > 0 and for Q > Q0 we can write the

following estimate

|Pj(xi)| � Q
−vi+

vi
2(n−1)

+ε2,i < Q
−vi+

vi
2(n−1)

+ε2,i+ε3 . (3.2.37)

Applying Lemma A.1.16 with ηi = vi+1
2 − ε2,i and τi = vi − vi

2(n−1) − ε2,i − ε3 we
have

τ1 + τ2 + 2 = (n− 1)− 1
2 − ε2,1 − ε2,2 + 2− 2ε3 = n+ 1

2 − ε2,1 − ε2,2 − 2ε3,

2(τi + 1− ηi) = 2
(
vi − vi

2(n−1) − ε2,i − ε3 + 1− vi+1
2 + ε2,i

)
= vi + 1− vi

n−1 − 2ε3.

Substituting these expressions into (A.1.4) we get

Mτ ,η = 2n+ 1
2 − ε2,1 − ε2,2 − 6ε3 ≥ 2n+ 1

8
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for ε2,i = vi
4(n−1)2

and ε3 = 1
48 . This contradicts to Lemma A.1.16 with δ = 1

8 .

Hence, every rectangle Πk contains at most one polynomial P ∈ Pn(Q) and we have

λ2 (L2,2) ≤
∑
Πk

λ2 (σP (α)).

Together with the estimates (3.2.34) and (3.2.35) this leads to

λ2 (L2,2)� Q−ε2,1−ε2,2λ2 (Π) < κ
36 λ2 (Π)

for Q > Q0 and si <
vi+1

2 , i = 1, 2. If si ≥ vi+1
2 , then for Q > Q0 we obtain

λ2 (L2,2) ≤
∑

P∈Pn(Q)

λ2 (σP (α))� Q−ε2,i λ1 (I1) λ1 (I2) < κ
36 λ2 (Π) .

3.2.2.4 The case of a small derivative

Let us discuss a situation where |P ′(xi)| ≤ 2c7Q
1
2
− vi

2 . In this case, we show that
|P ′(αi)| ≤ 3c7Q

1
2
− vi

2 , where xi ∈ S(αi).

Indeed, let |P ′(αi)| > 3c7Q
1
2
− vi

2 and consider a Taylor expansions

P ′(xi) = P ′(αi) + P ′′(αi)(xi − αi) + . . .+ 1
(n−1)!P

(n)(αi)(xi − αi)n−1.

Using our assumption and repeating the steps from the beginning of the proof of
Lemma 3.2.6 we obtain∣∣∣P ′′(αi)(xi − αi) + . . .+ 1

(n−1)!P
(n)(αi)(xi − αi)n−1

∣∣∣ ≤ c7Q
1
2
− vi

2 .

This gives us the following contradiction

|P ′(αi)| ≤ 3c7Q
1
2
− vi

2 .

Now denote by L1,1 the set of points x ∈ Π such that there exists a polynomial
P ∈ Pn(Q) satisfying {

|P (xi)| < hnQ
−vi ,

|P ′(αi)| < 3c7Q
1
2
− vi

2 , i = 1, 2.
(3.2.38)

We will classify polynomials P ∈ Pn(Q) satisfying (3.2.38) according to the distribu-
tion of their roots and the size of the leading coe�cient. This type of classi�cation
was introduced by Sprindºuk [62].

In the rest of the proof we will assume that the roots of the polynomial P are sorted
by distance from αi = αi,1

|αi,1 − αi,2| ≤ |αi,1 − αi,3| ≤ . . . ≤ |αi,1 − αi,n|.
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Let ε4 > 0 be a su�ciently small constant. For every polynomial P ∈ Pn(Q) of
degree 3 ≤ m ≤ n we de�ne the numbers ω1,j and ω2,j , 2 ≤ j ≤ m as solutions of
the equations

|α1,1 − α1,j | = Q−ω1,j , |α2,1 − α2,j | = Q−ω2,j .

Let us also de�ne the vectors ki = (ki,2, . . . , ki,m) ∈ Zm−1 as follows

(ki,j − 1) ε4 ≤ ωi,j < ki,j ε4, i = 1, 2, 2 ≤ j ≤ m.

It is clear, that ki,2 ≥ . . . ≥ ki,m.

Thus, we have m(m − 1) pairs of vectors k1,k2 that correspond to a polynomial
P ∈ Pn(Q) of degree m depending on the choice of roots α1,1 and α2,1. Let us de�ne
subclass of polynomials Pm(Q,k1,k2, u) ⊂ Pn(Q) as follows. A polynomial P of
degree m with leading coe�cient am belongs to a subclass Pm(Q,k1,k2, u), if:

1. the vectors (k1,k2) correspond to the roots (α1, α2) of polynomial P ;

2. Qu ≤ |am| < Qu+ε4 , where u ∈ ε4 Z.

Let us estimate the number of di�erent subclasses Pm(Q,k1,k2, u). First of all,
since 1 ≤ |am| ≤ Q we have

0 ≤ u ≤ 1− ε4.

Then from [18, 28] and the natural bound for the roots of polynomial P ∈ Pn(Q)

we have
Q� |αj1 − αj2 | � H(P )−m+1 � Q−m+1,

which leads to the estimate

− 1

ε4
+ 1 ≤ ki,j ≤

m− 1

ε4
.

Thus, an integer vector ki can take at most
(
m
ε4

+ 1
)m−1

values and the number of

subclasses Pm(Q,k1,k2, u) can be estimated as follows

#{m,k1,k2, u} ≤ c2
13(ε−1

4 + 1), (3.2.39)

where c13 =
n∑
i=2

(
i
ε4

+ 1
)i−1

. De�ne the values pi,j{
pi,j = (ki,j+1 + . . .+ ki,m) ε4, 1 ≤ j ≤ m− 1,

pi,j = 0, j = m.
(3.2.40)

Using this notation we derive the following estimates for a polynomial P ∈
Pm(Q,k1,k2, u)

Qu−pi,1 ≤ |P ′(αi)| = |am|
m∏
k=2

|αi,1 − αi,k| ≤ Qu−pi,1+(m+1)ε4 ,

|P (j)(αi)| � |am|
m∏

k=j+1

|αi,1 − αi,k| � Qu−pi,j+(m+1)ε4 , j ≥ 2.

(3.2.41)
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Since we concern only with polynomials satisfying the system (3.2.38), we assume
that for at least one value of u the following inequalities hold

Qu−pi,1 ≤ |P ′(αi)| ≤ 3c7Q
1
2
− vi

2 , i = 1, 2.

This condition implies

p1,1 > u+
v1 − 1

2
, p2,1 > u+

v2 − 1

2
. (3.2.42)

Now let us obtain an estimate for the measure of the set L1,1. From Lemma A.1.14
we have

L1,1 ⊂
⋃

m,k1,k2,u

⋃
P∈Pm(Q,k1,k2,u)

⋃
α∈A2(P )

σP (α),

where

σP (α) :=

x ∈ Π : |xi − αi| ≤ min
1≤j≤m

(
2m−j hnQ

−vi
|P ′(αi,1)|

j∏
k=2

|αi,1 − αi,k|

)1/j
 .

This, together with notation (3.2.40) and the estimates (3.2.41), yields

σP (α) ⊂
{
x ∈ Π : |xi − αi| ≤ 1

2 min
1≤j≤m

(
(2mhn)1/j Q

−u−vi+pi,j
j

)}
(3.2.43)

for P ∈ Pm(Q,k1,k2, u).

The numbers j = m1 and j = m2 in the formula above provide the best estimates
for the roots α1 and α2 respectively if for all 1 ≤ k ≤ m the following holds

(2mhn)1/mi Q
−u−vi+pi,mi

mi ≤ (2mhn)1/kQ
−u−vi+pi,k

k , i = 1, 2. (3.2.44)

Hence, assuming (3.2.44), we have

σP (α) ⊂
{
x ∈ Π : |xi − αi| ≤ 1

2 (2mhn)1/mi Q
−u−vi+pi,mi

mi

}
. (3.2.45)

Let us cover the rectangle Π by a system of disjoint rectangles Πm1,m2 = Jm1×Jm2 ,

where λ1 (Jmi) = 1
2 Q
−
u+vi−pi,mi

mi
+ε5 , ε5 > 0. The number K of rectangles Πm1,m2

can be estimated as follows:

K ≤ 24Q
u+v1−p1,m1

m1
+
u+v2−p2,m2

m2
−2ε5 λ2 (Π) . (3.2.46)

Let us show that there is no rectangle Πm1,m2 containing two or more irreducible
polynomials. Assume there are two irreducible polynomials P1, P2 such that the
inequalities (3.2.38) hold for polynomial Pj at points xj ∈ Πm1,m2 . Then for all
points x ∈ Πm1,m2 and for Q > Q0, we obtain

|xi − αj,i| ≤ |xi − xj,i|+ |xj,i − αj,i| < Q
−
u+vi−pi,mi

mi
+ε5 , (3.2.47)
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where xj,i ∈ S(αj,i).

Let us estimate |Pj(xi)|, where x ∈ Πm1,m2 . Considering a Taylor expansions of
the polynomial Pj in the interval Jmi and using estimates (3.2.41), (3.2.44), and
(3.2.47) we have ∣∣∣ 1

k! P
(k)
j (αj,i)(xi − αj,i)k

∣∣∣� Q−vi+(m+1)ε4+kε5 ,

and, hence,
|Pj(xi)| � Q−vi+(m+1)ε4+mε5 < Q−vi+(m+1)(ε4+ε5). (3.2.48)

Applying Lemma A.1.16 with ηi =
u+vi−pi,mi

mi
− ε5 and τi = vi − (m + 1)(ε4 + ε5),

and taking ε4 = 1
12(m+1) and ε5 = 1

4(3m+1) , we obtain

τ1 + τ2 + 2 = n+ 1− 1
6 − 2(m+ 1)ε5,

2(τi + 1− ηi) = 2vi + 2− 2
u+vi−pi,mi

mi
− 1

6 − 2mε5.

Let us estimate the expression 2(τi + 1− ηi) using the inequalities (3.2.42)

2(τi + 1− ηi) ≥

{
vi + 2− u+

2pi,mi
m − 1

6 − 2mε5, mi ≥ 2,

vi + 1− 1
6 − 2mε5, mi = 1,

≥ vi + 1− 1
6 − 2mε5.

Substituting this expressions into (A.1.4) leads to contradiction in Lemma A.1.16
with δ = 1

2 .

This means that there exists at most one irreducible polynomial P ∈
Pm(Q,k1,k2, u) belonging to the rectangle Πm1,m2 and, thus,

λ2 (L1,1) ≤
∑

m,k1,k2,u

∑
P∈Pm(Q,k1,k2,u)

λ2 (σP (α)) ≤
∑

m,k1,k2,u

∑
Πm1,m2

λ2 (σP (α)).

Then by estimates (3.2.39), (3.2.45) and (3.2.46) for Q > Q0 we get

λ2 (L1,1)� Q−2ε5 λ2 (Π) < κ
36 λ2 (Π) .

3.2.2.5 Mixed cases

The case of sub-intervals T̄1,2, T̄2,3 (T̄1,3, T̄2,2)

Consider the system of inequalities
|P (xi)| < hnQ

−vi ,

c7Q
1
2
− v1

2 ≤ |P ′(α1)| < 2Q
1
2
− v1

2
+

v1
2(n−1) ,

1
2Q

1
2
− v2

2
+

v2
2(n−1) ≤ |P ′(α2)| < 2nωn(3/2 d2)Q, i = 1, 2.

(3.2.49)

Denote by L2,3 the set of points x ∈ Π such that the inequalities (3.2.49) hold for
some polynomial P ∈ Pn(Q).
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As in the case of small derivatives, we classify polynomials P ∈ Pn(Q) according
to the distribution of their roots and the size of their leading coe�cients. Let us
de�ne subclasses Pm(Q,k2, u) ⊂ Pn(Q) as follows. A polynomial P of degree m
with leading coe�cient am belongs to a subclass Pm(Q,k2, u) if:

1. the vector k2 correspond to the root α2 of polynomial P ;

2. Qu ≤ |am| < Qu+ε4 , where u ∈ ε4 Z.

Then

#{m,k2, u} ≤ c13(ε−1
4 + 1). (3.2.50)

Let us �x some m, k2 and u and denote by Lm(Q,k2, u) the set of points x ∈ Π

such that there exists a polynomial P ∈ Pm(Q,k2, u) satisfying (3.2.49). Then

L2,3 ⊂
⋃

m,k2,u

Lm(Q,k2, u).

De�ne the value l := v2−p2,1+u−k2,2ε4 and let [l] be the integer part and {l} be the
fractional part of l. Moreover, de�ne the value θ := 1− {l} > 0. Let Lgm(Q,k2, u),
1 ≤ g ≤ 2θ−1 + 1 be the set of points x ∈ Π such that there exists a polynomial
P ∈ Pm(Q,k2, u) satisfying the system (3.2.49) under condition

c7Q
1
2
− v1

2
+
v1θ(g−1)
4(n−1) ≤ |P ′(α1)| < c7Q

1
2
− v1

2
+

v1gθ
4(n−1) .

It is clear now that Lm(Q,k2, u) ⊂
⋃
g
Lgm(Q,k2, u) and, hence,

L2,3 ⊂
⋃

m,k2,u

⋃
g

Lgm(Q,k2, u). (3.2.51)

By Lemma A.1.14 we obtain

Lgm(Q,k2, u) ⊂
⋃

P∈Pm(Q,k2,u)

⋃
α∈A2(P )

σP (α),

where

σP (α) :=

{
x ∈ Π : |x1 − α1| ≤ 2m−1hn c

−1
7 Q

− v1
2
− 1

2
− v1θ(g−1)

4(n−1) ,

|x2 − α2| ≤ 2m−1hnQ
−v2+p2,1−u

}
. (3.2.52)

Let us cover the rectangle Π by a system of disjoint rectangles Πk = J1,k × J2,k,

where λ1 (J1,k) = 1
2 Q
− v1

2
− 1

2
− v1θ(g−1)

4(n−1)
+ε6 and λ1 (J2,k) = 1

2 Q
−k2,2ε4−{l}. The number

K of rectangles Πk ∈ Π can be estimated as

K ≤ 24Q
v1
2

+ 1
2

+
v1θ(g−1)
4(n−1)

+k2,2ε4−ε6+{l}
λ2 (Π) . (3.2.53)
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Assume that every rectangle Πk contains at most 2mQ[l]+
ε6
2 polynomials Pj ∈

Pgm(Q,k2, u). Then by inequalities (3.2.52) and (3.2.53) we get

λ2 (Lm(Q,k2, u)) ≤
∑
g

λ2 (Lgm(Q,k2, u)) ≤
∑
g

∑
Πk

λ2 (σP (α))

≤ 23m+4h2
nc
−1
7

(
2θ−1 + 1

)
Q−v2+p2,1−u+k2,2ε4− ε62 +[l]+{l} λ2 (Π)

≤ Q−
ε6
4 λ2 (Π) ,

and, hence, by (3.2.50) and (3.2.51) for Q > Q0 we conclude

λ2 (L2,3) ≤ c13(ε−1
4 + 1)Q−

ε6
4 λ2 (Π) ≤ κ

36 λ2 (Π) . (3.2.54)

Now we will show that it is the only possible case and rectangle Πk can not contain
more than 2mQ[l]+

ε6
2 polynomials Pj ∈ Pgm(Q,k2, u).

Assume that there exists a rectangle Πk containing more than 2mQ[l]+
ε6
2 polynomials

Pj ∈ Pgm(Q,k2, u) and the inequalities (3.2.49) hold for polynomial Pj at point
xj ∈ Πk. Then for all points x ∈ Πk and Q > Q0 we obtain

|x2 − αj,2| ≤ |x2 − xj,2|+ |xj,2 − αj,2| < Q−k2,2ε4−{l} + 2m−1hnQ
−v2+p2,1−u

≤ Q−k2,2ε4−{l} + 2m−1hnQ
−k2,2ε4−l � Q−k2,2ε4−{l}, (3.2.55)

where xj,2 ∈ S(αj,2).

From the Taylor expansions of polynomials Pj in the interval J2,k, the estimates
(3.2.41) and (3.2.55) it follows that∣∣∣ 1

k! P
(k)
j (αj,2)(x2 − αj,2)k

∣∣∣� Qu−p2,k+(m+1)ε4−k k2,2ε4−k{l}

< Qu−p2,1−k2,2ε4−{l}+(m+1)ε4 ,

which for Q > Q0 allows us to write

|Pj(x2)| < 1
2 Q

u−p2,1−k2,2ε4−{l}+(m+2)ε4 . (3.2.56)

Similarly, repeating the calculations by analogy with Section 3.2.2.3 (see inequality
(3.2.37)) for ε6 <

v1
(n−1)2

, we have

|Pj(x1)| < 1
2 Q
−v1+

v1θ
4(n−1)

+2ε6 . (3.2.57)

By pidgeonhole principle we can �nd at least N :=
[
Q

ε6
2

]
+ 1 polynomials from

Pgm(Q,k2, u) belonging to Πk such that their coe�cients am, . . . , am+1−[l] coincide.
Let us call them P1, . . . , PN . If [l] = 0, then we can simply ignore this step. Consider
the polynomials Ri,j = Pi − Pj , 1 ≤ i < j ≤ N of degree at most m− [l].

From the inequalities (3.2.56) and (3.2.57), we obtain that at every point of the
rectangle Πk the polynomials Ri,j satisfy|Ri,j(x1)| < Q

−v1+
v1θ

4(n−1)
+2ε6 ,

|Ri,j(x2)| < Qu−p2,1−k2,2ε4−{l}+(m+2)ε4 ,
(3.2.58)
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Assume that among polynomials Ri,j we can �nd at least two polynomials without
common roots. Then we can apply Lemma A.1.16 with τ1 = v1 − v1θ

4(n−1) − 2ε6,

τ2 = −u+p2,1 +k2,2ε4 +{l}−(m+2)ε4, η1 = v1
2 + 1

2 + v1θ(g−1)
4(n−1) −ε6, η2 = k2,2ε4 +{l},

so that we have

τ1 + 1 = v1 + 1− v1θ
4(n−1) − 2ε6,

τ2 + 1 = 1− u+ p2,1 + k2,2ε4 + {l} − (m+ 2)ε4,

2(τ1 + 1− η1) = v1 + 1− v1g θ
2(n−1) − 2ε6,

2(τ2 + 1− η2) = 2− 2u+ 2p2,1 − 2(m+ 2)ε4.

Substituting these expressions into (A.1.4) yields

Mτ ,η = 2v1 + 5− v1θ(1+2g)
4(n−1) + 3p2,1 + k2,2ε4 − 3u+ {l} − 3(m+ 2)ε4 − 4ε6

Using the equation v1 = n− 1− v2 and inequality

v1θ(1+2g)
4(n−1) ≤

(
3
4θ + 1

)
v1
n−1 ≤

3
4θ + 1,

for ε4 = θ
48(m+2) and ε6 ≤ θ

64 we �nally obtain

Mτ ,η ≥ 2(n− v2 + p2,1 + k2,2ε4 − u+ {l}) + (p2,1 − k2,2ε4) + (1− u) + 1
8θ

≥ 2(m− [l]) + θ
8 .

This inequality contradict to Lemma A.1.16 for δ = θ
8 > 0.

The case when among polynomials Ri,j , 1 ≤ i < j ≤ N + 1 we can not �nd two
polynomials without common roots is considered in [13].

By analogy we can de�ne and consider the set L3,2 for the case of sub-intervals T̄1,3,
T̄2,2 and obtain the estimate λ2 (L3,2) ≤ κ

36 λ2 (Π).

The case where one derivative is small and the other derivative lies in

the sub-interval T̄2,3 or T̄2,2

Taking into account the estimate for |P ′(α1)| obtained in Section 3.2.2.4 consider
the system of inequalities

|P (xi)| < hnQ
−vi ,

|P ′(α1)| < 3c7Q
1
2
− v1

2 ,
1
2Q

1
2
− v2

2 ≤ |P ′(α2)| < 2nωn(3/2 d2)Q, i = 1, 2.

(3.2.59)

Denote by L1,2 the set of points x ∈ Π such that there exists a polynomial P ∈ Pn(Q)

satisfying (3.2.59). Let us again classify polynomials P ∈ Pn(Q) according to the
distribution of their roots and the size of leading coe�cients. We will consider the
subclasses of polynomials Pm(Q,k1,k2, u) de�ned above.
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By analogy with Section 3.2.2.4 (see inequality (3.2.43)) we conclude

L1,2 ⊂
⋃

m,k1,k2,u

⋃
P∈Pm(Q,k1,k2,u)

⋃
α∈A2(P )

σP (α),

where for P ∈ Pm(Q,k1,k2, u) we have

σP (α) :=

x ∈ Π :
|x1 − α1| ≤ 1

2 min
1≤j≤m

(
(2mhn)1/j Q

−u−v1+p1,j
j

)
,

|x2 − α2| ≤ 2m−1hnQ
−u−v2+p2,1

 .

If the inequalities (3.2.44) hold for i = 1, then the estimate numbered as j = m1 is
optimal for the root α1, and we have

σP (α) ⊂

{
x ∈ Π : |x1 − α1| ≤ 1

2 (2mhn)1/m1 Q
−u−v1+p1,m1

m1 ,

|x2 − α2| ≤ 2m−1hnQ
−u−v2+p2,1

}
. (3.2.60)

De�ne the value l := v2−p2,1 +u−k2,2ε4 as in the previous case and let us cover the
rectangle Π by a system of disjoint rectangles Πk = J1,k × J2,k, where λ1 (J1,k) =

1
2 Q
−
u+v1−p1,m1

m1
+ε7 and λ1 (J2,k) = 1

2 Q
−k2,2ε4−{l}, and estimate the number K of

rectangles Πk ∈ Π as follows

K ≤ 24Q
u+v1−p1,m1

m1
+k2,2ε4+{l}−ε7 λ2 (Π) . (3.2.61)

Assume that every rectangle Πk contains at most 2mQ[l]+
ε7
2 polynomials P ∈

Pm(Q,k1,k2, u). Then by inequalities (3.2.59), (3.2.39), and (3.2.61) for Q > Q0

we get

λ2 (L1,2)� Q−u−v2+p2,1+k2,2ε4− ε72 +[l]+{l} λ2 (Π)� Q−
ε7
2 λ2 (Π) ≤ κ

18 λ2 (Π) .

Now assume that there exists a rectangle Πk containing more than 2mQ[l]+
ε7
2 poly-

nomials Pj ∈ Pm(Q,k1,k2, u). Using the calculations described in the previous case
(see estimate (3.2.54)) and in Section 3.2.2.4 (see estimate (3.2.48)) for every point
x ∈ Πk we obtain

|Pj(x1)| < 1
2 Q
−v1+(m+1)(ε4+ε7), |Pj(x2)| < 1

2 Q
u−p2,1−k2,2ε4−{l}+(m+2)ε4 . (3.2.62)

By pidgeonhole principle we can �nd at least N :=
[
Q

ε7
2

]
+ 1 polynomials

Pj ∈ Pm(Q,k1,k2, u) belonging to Πk such that their coe�cients am, . . . , am+1−[l]

coincide. Thus, let us consider the di�erences Ri,j = Pi −Pj , 1 ≤ i < j ≤ N , which
are polynomials of degree at most m− [l].

Using inequalities (3.2.62), we conclude that for every point x ∈ Πk the following
holds {

|Ri,j(x1)| < Q−v1+(m+1)(ε4+ε7),

|Ri,j(x2)| < Qu−p2,1−k2,2ε4−{l}+(m+2)ε4 ,



54 Chapter 3. Counting Points with Algebraic Conjugate Coordinates

Assume that among polynomials Ri,j we can �nd at least two polynomials without
common roots and apply Lemma A.1.16 with τ1 = v1 − (m + 1)(ε4 + ε7), τ2 =

−u+ p2,1 + k2,2 ε4 + {l}− (m+ 2)ε4, η1 =
u+v1−p1,m1

m1
− ε7, η2 = k2,2ε4 + {l}, so that

we have

τ1 + 1 = v1 + 1− (m+ 1)(ε4 + ε7),

τ2 + 1 = 1− u+ p2,1 + k2,2ε4 + {l} − (m+ 2)ε4.

Repeating the arguments from the end of Section 3.2.2.4 we obtain

2(τ1 + 1− η1) ≥ v1 + 1− 2(m+ 1)ε4 − 2mε7,

2(τ2 + 1− η2) = 2− 2u+ 2p2,1 − 2(m+ 2)ε4.

Substituting these expressions into (A.1.4) for ε4 = 1
48(m+2) and ε7 = 1

8(3m+1) yields

Mτ ,η ≥ 2v1 + 5 + 3p2,1 + k2,2ε4 − 3u+ {l} − 1
4

≥ 2n− 2v2 + 2p2,1 + 2k2,2ε4 − 2u+ {l}+ 7
4 ≥ 2(m− [l])− {l}+ 1 + 3

4

≥ 2(m− [l]) + 3
4 .

This inequality contradicts to Lemma A.1.16 with δ = 3
4 .

If among polynomials Ri,j , 1 ≤ i < j ≤ N we can not �nd two polynomials without
common roots then we use the arguments described in [13].

By analogy we can de�ne and consider the set L2,1 for the case when one derivative
is small and the other derivative lies in the sub-interval T̄1,3 or T̄1,2 and obtain the
estimate λ2 (L2,1) ≤ κ

18 λ2 (Π).

Thus, we have L1 ⊂
⋃

1≤i,j≤2
Li,j , which leads to the following estimate

λ2 (L1) ≤
∑

1≤i,j≤2

λ2 (Li,j) + λ2 (L3,3) + λ2 (L2,3) + λ2 (L3,2) ≤ κ
4 λ2 (Π) .

Similarly, λ2 (L2) ≤ κ
4 λ2 (Π). These estimates conclude the proof of Lemma 3.2.6

in the case of irreducible polynomials.

3.2.2.6 The case of reducible polynomials

In this section we will estimate the measure of the set L3. Clearly, the results of
Lemma A.1.16 can not be applied directly in this case. Let a polynomial P of
degree n be a product of several (not necessarily di�erent) irreducible polynomials
P1, P2, . . . , Pm, m ≥ 2, where degPi = ni and n1 + . . .+ nm = n. Then by Lemma
A.1.17 and de�nition of the height function we have

H(Pi) ≤ H(P1)H(P2) · . . . ·H(Pm) ≤ c14H(P ) ≤ c14Q =: Q1.
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Denote by L3(k, ε8) the set of points x ∈ Π such that there exists a polynomial
R ∈ Pk(Q1) satisfying the inequality

|R(x1)R(x2)| < h2
nQ
−k+ε8
1 . (3.2.63)

If a polynomial P satis�es the inequalities (3.2.5) at a point x ∈ Π, we can write

|P (x1)P (x2)| = |P1(x1)P1(x2)| · . . . · |Ps(x1)Ps(x2)| ≤ h2
nQ
−n+1. (3.2.64)

Since n = n1 + . . . + nm and m ≥ 2, it is easy to see that at least one of the
inequalities

|Pi(x1)Pi(x2)| ≤ h2
nQ
−ni+ε8 , ni ≥ 2, (3.2.65)

|Pi(x1)Pi(x2)| ≤ h2
nQ
−ε8 , ni = 1, i = 1, . . . ,m,

hold at the point x for 1 > ε8 >
1
2 . Indeed, without loss of generality assume that

n1 = . . . = nm1 = 1 and 1 < nm1+1 ≤ . . . ≤ nm and assume that the inequalities
(3.2.65) do not hold for any i = 1, . . . ,m then

|P (x1)P (x2)| ≥ h2m
n Q−n+m1+(m−2m1)ε8 ≥ h2m

n Q−n+m
2 ≥ h2m

n Q−n+1,

which contradicts to (3.2.64). Hence, x ∈ L3 (nj , ε8) for nj ≥ 2 or x ∈ L3 (1, 1− ε8)

and we have

L3 ⊂

(
n−1⋃
k=2

L3(k, ε8)

)
∪ L3(1, 1− ε8).

Let us estimate the measure of the set L3(k, ε8), 2 ≤ k ≤ n− 1. Denote by L1
3(k, t)

the set of points x ∈ Π such that there exists a polynomial P ∈ Pk(Q1) satisfying
the inequalities 

|P (x1)| < h2
nQ

t
1,

|P (x2)| < h2
nQ
−k+1−t
1 ,

min
i
{|P ′(αi)|} < δkQ1, xi ∈ S(αi), i = 1, 2.

(3.2.66)

Denote by L2
3(k, t) the set of points x ∈ Π such that there exists a polynomial

P ∈ Pk(Q1) satisfying the inequalities
|P (x1)| < h2

nQ
t
1,

|P (x2)| < h2
nQ
−k+

1+ε8
2
−t

1 ,

|P ′(αi)| > δkQ1, xi ∈ S(αi), i = 1, 2.

(3.2.67)

By the de�nition of the set L3(k, ε8) it is easy to see that

L3(k, ε8) ⊂

(
N1⋃
i=0

L1
3(k, 1− i(1− ε8))

)
∪

(
N2⋃
i=0

L2
3(k, 1− i(1− 3ε8)/2)

)
,
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where N1 =
[

2+k−ε8
1−ε8

]
and N2 =

[
4+2k−2ε8

1−3ε8

]
.

The system (3.2.66) is a system of the form (3.2.5). Furthermore, since the polyno-
mials P ∈ Pk(Q1) are irreducible and k < n, we can apply the above arguments for
a su�ciently small constant δk and Q1 > Q0 to obtain the following estimate

λ2

(
L1

3(k, t)
)
< κ

2n(N1+1) λ2 (Π) . (3.2.68)

Now let us estimate the measure of the set L2
3(k, t). From Lemma A.1.14 we have

L2
3(k, t) ⊂

⋃
P∈Pk(Q1)

⋃
α∈A2(P )

σP (α, t),

where

σP (α, t) :=

{
x ∈ Π :

|x1 − α1| ≤ 2k−1h2
nQ

t
1 |P ′(α1)|−1,

|x2 − α2| ≤ 2k−1h2
nQ
−k+

1+ε8
2
−t

1 |P ′(α2)|−1.

}

Let us estimate the value of the polynomial P at the middle point d of the rectangle
Π. Consider a Taylor expansion

P (di) = P ′(αi)(di − αi) + 1
2P
′′(αi)(di − αi)2 + . . .+ 1

k! P
(k)(αi)(di − αi)k. (3.2.69)

If polynomial P satisfy (3.2.67) at point x0 ∈ Π then

|d1 − α1| ≤ λ1 (I1) + 2k−1h2
nδ
−1
k Qt−1

1 ,

|d2 − α2| ≤ λ1 (I2) + 2k−1h2
nδ
−1
k Q

−k+
1+ε8

2
−t−1

1 .
(3.2.70)

Without loss of generality, let us assume that t ≥ −k + 1+ε8
2 − t. Then we can

rewrite the estimates (3.2.70) as follows:

|d1 − α1| ≤

{
c15 λ1 (I1) , t < 1− s1,

c15Q
t−1
1 , 1− s1 ≤ t ≤ 1,

|d2 − α2| ≤ λ1 (I2) .

where c15 = 2k−1h2
nδ
−1
k + c1,1. We remind that λ1 (Ii) = c1,iQ

−si and s1 ≤ s2.

Using these inequalities and expression (3.2.69) allows us to write

|P (d1)| <

{
c16Q1 λ1 (I1) , t < 1− s1,

c16Q
t
1, 1− s1 ≤ t ≤ 1,

|P (d2)| < c16Q1 λ1 (I2) . (3.2.71)

Fix a vector a = (ak, . . . , a2) ∈ Zk−1 and consider a subclass Pk(a) of polynomials
P which satisfy (3.2.67) and have the same vector of coe�cients a, namely P (t) =

akt
k+. . .+a2t

2+a1t+a0. For Q1 > Q0, the number of such classes can be estimated
as follows

#
(

[−Q1;Q1]k−1 ∩ Zk−1
)

= (2Q1 + 1)k−1 < 2kQk−1
1 . (3.2.72)
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Let us estimate the value #Pk(a). Choose a polynomial P0 ∈ Pk(a) and consider
the di�erence between the polynomials P0 and Pj ∈ Pk(a) at points di. By (3.2.71)
we have

|(a0,1 − aj,1)d1 + (a0,0 − aj,0)| ≤

{
2c16Q1λ1 (I1) , t < 1− s1,

2c16Q
t
1, 1− s1 ≤ t ≤ 1,

|(a0,1 − aj,1)d2 + (a0,0 − aj,0)| ≤ 2c16Q1λ1 (I2) .

This implies that the number of di�erent polynomials Pj ∈ Pk(a) does not exceed
the number of integer solutions of the system

|b1di + b0| ≤ Ki, i = 1, 2,

where K2 = 2c16Q1λ1 (I2) and K1 = 2c16Q1λ1 (I1) if t < 1− s1 and K1 = 2c16Q
t
1

if 1− s1 ≤ t ≤ 1.

It is easy to see that Ki ≥ 2c16Q
1−s1
1 > Qε91 for Q1 > Q0. Thus, by Lemma 3.2.5

we have

#Pk(a) ≤

{
27ε−1

1 Q2
1 λ2 (Π) , t < 1− s1,

27ε−1
1 Qt+1

1 λ1 (I2) , 1− s1 ≤ t ≤ 1.

This estimate and the inequality (3.2.72) mean that the number N of polynomials
P ∈ Pk(Q1) satisfying the system (3.2.67) can be estimated as follows

N ≤

{
2k+7ε−1

1 Qk+1
1 λ2 (Π) , t < 1− s1,

2k+7ε−1
1 Qk+t

1 λ1 (I2) , 1− s1 ≤ t ≤ 1.
(3.2.73)

On the other hand, the measure of the set σP (α, t) satis�es the inequality

λ2 (σP (α, t)) ≤

22kh4
nδ
−2
k Q

−k−2+
1+ε8

2
1 , t < 1− s1,

22kh4
nδ
−2
k Q

−k−1−t+ 1+ε8
2

1 λ1 (I1) , 1− s1 ≤ t ≤ 1.
(3.2.74)

Then, by estimates (3.2.73) and (3.2.74), for Q1 > Q0 we get

λ2

(
L2

3(k, t)
)
≤ 23k+7δ−2

k h4
nε
−1
1 Q

− 1−ε8
2

1 λ2 (Π) < κ
2n(N2+1) λ2 (Π) . (3.2.75)

The inequalities (3.2.68) and (3.2.75) lead to the following estimate

λ2 (L3(k, ε8)) ≤ κ
2n λ2 (Π) .

Now let us estimate the measure of the set L3(1, 1 − ε8) for ε8 ≥ max(s1, s2, 1/2).
For every point x ∈ L3(1, 1− ε8) there exists a rational point a0

a1
such that∣∣∣x1 − a0

a1

∣∣∣ ∣∣∣x2 − a0
a1

∣∣∣ < h2
nQ
−ε8
1 |a1|−2.
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Since |x1− x2| > ε1 one of the values
∣∣∣xi − a0

a1

∣∣∣ is bigger than ε1
2 . Thus, we consider

the sets

σi (a0/a1) :=
{
x ∈ Π :

∣∣∣xi − a0
a1

∣∣∣ ≤ 2h2
nε
−1
1 Q−ε81 |a1|−2

}
, i = 1, 2. (3.2.76)

Simple calculations show that for c1,1c1,2 > 4h2
nε
−1
1 we have

µ2σi (a0/a1) ≤ 4h2
nε
−1
1 Q−2ε8

1 ≤ µ2Π.

Let us de�ne the following sets

σi =
⋃

1≤a0,a1≤Q1

σi (a0/a1) , i = 1, 2.

It is easy to see that L3(1, 1− ε8) ⊂ (σ1 ∪ σ2) and we need to estimate the measure
of the sets σ1 and σ2.

For a �xed value a1 let us consider the set N(a1) := {a0 ∈ Z : σi (a0/a1) 6= ∅}. The
cardinality of this set can be estimated by the following way

#N(a1) ≤

{
3λ1 (Ii) |a1|, 1

λ1(Ii)
≤ |a1| ≤ Q1,

2, 1 ≤ |a1| < 1
λ1(Ii)

.

These inequalities together with (3.2.76) imply

λ2 (σi) ≤
∑

1≤|a1|≤Q1

N(a1)λ2 (σi (a0/a1))

≤ 8h2
nε
−1
1 Q−ε81 λ1 (Ii)

∑
1≤|a1|<(λ1(Ii))

−1

|a1|−2

+ 12h2
nε
−1
1 Q−ε81 λ2 (Π)

∑
(λ1(Ii))

−1≤|a1|≤Q1

|a1|−1

≤ 2π2h2
nε
−1
1 Q−ε81 λ1 (Ii) + 12h2

nε
−1
1 Q−ε81 lnQ1λ2 (Π) ≤ κ

4n λ2 (Π)

for Q1 > Q0 and ε8 > max(s1, s2). Then,

λ2 (L3(1, 1− ε8)) ≤ κ
2n λ2 (Π) ,

and, �nally, choosing ε8 > max(s1, s2, 1/2), we obtain

λ2 (L3) ≤
n−1∑
k=2

λ2 (L3(k, ε8)) + λ2 (L3(1, 1− ε8)) ≤ κ
2 λ2 (Π) .

This proves Lemma 3.2.6 in case of reducible polynomials.

Combining estimates for the di�erent cases yields the �nal estimate

λ2 (L) ≤ λ2 (L1) + λ2 (L2) + λ2 (L3) ≤ κλ2 (Π) .
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Remark 3.2.7. Note, that in case of reducible polynomials we do not use the in-

equality min
i
{|P ′(xi)|} < δnQ. It means, that the set L3 is the set of points x ∈ Π

such that there exists a reducible polynomial P ∈ Pn(Q) satisfying the inequalities

|P (xi)| < hnQ
−vi , i = 1, 2.

3.2.2.7 The �nal part of the proof

Let us use Lemma 3.2.6 to �nish the proof. Consider a set B1 := Π \
Ln(Q, δn,v,Π) for n ≥ 2, v1 = v2 = n−1

2 , κ = 1
4 , Q > Q0, hn =

√
3
2(|d1| +

|d2|)1/2 max (1, 3|d1|, 3|d2|)n
2/2 and a su�ciently small constant δn. From Lemma

3.2.6 it follows that

λ2 (B1) ≥ 3
4 λ2 (Π) . (3.2.77)

Let us prove that for every point x ∈ Π there exists a polynomial P ∈ Pn(Q)

satisfying

|P (xi)| ≤ hnQ−
n−1
2 , i = 1, 2.

By Minkowski's linear forms theorem (Lemma A.2.3) for every point x ∈ Π there
exists a non-zero polynomial P (t) = ant

n + . . .+ a1t+ a0 ∈ Z[t] satisfying

|P (xi)| ≤ hnQ−
n−1
2 , |aj | ≤ max (1, 3|d1|, 3|d2|)−n−1 Q (i = 1, 2, 2 ≤ j ≤ n).

One can easily verify that |a1| < Q and |a0| < Q, hence P ∈ Pn(Q).

Then, by Remark 3.2.7 we conclude that for every point x1 ∈ B1 there exists an
irreducible polynomial P1 ∈ Pn(Q) satisfying{

|P1(x1,i)| < hnQ
−n−1

2 ,

|P ′1(x1,i)| > δnQ, i = 1, 2.

Consider the roots α1, α2 of the polynomial P1 such that x1,i ∈ S(αi). By Lemma
3.2.4, we have

|x1,i − αi| ≤ nhnδ−1
n Q−

n+1
2 , i = 1, 2. (3.2.78)

Let us prove that α1, α2 ∈ R. Assume the converse: let αi ∈ C, then its complex
conjugate ᾱi is also the root of the polynomial P1, and x1,i ∈ S(ᾱi). Hence, from
the estimates (3.2.78) and Lemma A.1.18 we have

|P ′(αi)| ≤ |an||ᾱi − αi| ≤ c17Q
−n−1

2 .

On the other hand, a Taylor expansion of the polynomial P1 in the interval S(αi)

implies that

|P ′(αi)| ≥ 1
2δnQ.

These two inequalities contradict each other.
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Let us choose a maximal system of points with algebraic conjugate coordinates
Γ = {γ1, . . . ,γt} satisfying the condition that rectangles

σ(γk) =
{
x ∈ R2 : |xi − γk,i| < nδ−1

n Q−
n+1
2 , i = 1, 2

}
, 1 ≤ k ≤ t,

do not intersect. Furthermore, let us introduce expanded rectangles

σ′(γk) =
{
x ∈ R2 : |xi − γk,i| < 2nhnδ

−1
n Q−

n+1
2 , i = 1, 2

}
, 1 ≤ k ≤ t, (3.2.79)

and show that

B2 ⊂
t⋃

k=1

σ′(γk). (3.2.80)

To prove this fact, we will show that for any point x1 ∈ B1 there exists a point
γk ∈ Γ such that x1 ∈ σ′(γk). Since x1 ∈ B1, there is a point α satisfying the
inequalities (3.2.78). Thus, either α ∈ Γ and x1 ∈ σ′(α), or there exists a point
γk ∈ Γ satisfying

|αi − γk,i| ≤ nhnδ−1
n Q−

n+1
2 , i = 1, 2,

which implies that x1 ∈ σ′(γk). Hence, from (3.2.77),(3.2.79) and (3.2.80) we have

3
4 λ2 (Π) ≤ λ2 (B1) ≤

t∑
k=1

λ2 (σ1(γk)) ≤ t 26n2h2
nδ
−2
n Q−n−1,

which yields the estimate

N 2
n(A, Q,Π) ≥ t ≥ c2Q

n+1λ2 (Π) .

3.2.3 Proof of Theorem 3.2.2: Lower Bound

The proof of Theorem 3.2.2 is based on the following lemma.
Lemma 3.2.8. Given a vector v = (v1, v2) ∈ R2

+ with v1 +v2 = n−1 consider some(
v1
n−1 ,

v2
n−1

)
- ordinary square Π = I1 × I2 with middle point d = (d1, d2), d1 6= d2

satisfying the conditions:

• λ1 (I1) = λ1 (I2) = c3Q
−s, where 1

2 < s < 3
4 ;

• c3 > c0(n,d) > 0;

and denote by L := L(Q, δn, κ,v,Π) the set of points x ∈ Π such that there exists a

polynomial P ∈ Pn(Q) satisfying the inequalities|P (xi)| < hnQ
−vi ,

min
i
{|P ′(xi)|} < δnQ, i = 1, 2.

(3.2.81)

Then for any 0 < κ < 1, any 0 < δn ≤ δ0(n,d, κ), and any positive Q >

Q0(n, s,v,d, κ) we have

λ2 (L) < κλ2

(
Π
)
.

Proof. The proof of Lemma 3.2.8 is analogous to the proof of Lemma 3.2.6, except
for the base of induction.
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3.2.3.1 The base of induction: polynomials of the second degree.

Consider the system (3.2.81) for n = 2. Given some γ2,1, γ2,2 > 0 under condition
γ2,1 + γ2,2 = 1 and an (γ2,1, γ2,2)- ordinary square Π = I1 × I2 under conditions of
Lemma 3.2.8 denote by L′ := L2(Q, δ2, κ,γ2,Π) the set of points x ∈ Π such that
there exists a polynomial P ∈ P2(Q) satisfying inequalities

|P (xi)| < h2Q
−γ2,i ,

min
i
{|P ′(xi)|} < δ2Q, i = 1, 2,

|b2| > Qs−
1
2 .

(3.2.82)

We will show that for any δ2 < δ0(d, s, κ) and any Q > Q0(s, κ,γ2,d) we have

λ2

(
L′
)
< κλ2

(
Π
)
.

Consider a polynomial P (t) = b2t
2 +b1t+b0 ∈ P2(Q). Applying the same argument

as we used in Subsection 3.2.2.1, we obtain upper and lower bounds for the absolute
value of the derivative P ′ at roots α1, α2 and at points x1, x2, where xi ∈ S(αi)

|P ′(αi)| > 3
4 ε |b2|, |P ′(xi)| ≤

(
|d1|+ |d2|+ 1 + ε

4

)
|b2|. (3.2.83)

These estimates lead to the following inequality

|b2| < 4δ2ε
−1Q.

From Lemma A.1.14 and the estimates (3.2.82), (3.2.83) it follows that L′ is a subset
of a union

⋃
P∈P2(Q)

σP , where

σP :=
{
x ∈ Π : |xi − αi| < 2h2ε

−1Q−γ2,i |b2|−1, i = 1, 2
}
. (3.2.84)

Since the square Π is (γ2,1, γ2,2)- ordinary then for c3 > 4h2ε
−1κ−1/2 we have

λ2 (σP ) ≤ 24h2
2ε
−2Q−1|b2|−2 < κc2

3Q
−2s = κλ2

(
Π
)
.

Then we can write the following estimate for the measure of the set L′:

λ2

(
L′
)
≤

∑
P∈P2(Q)

λ2 (σP ) ≤ 24h2
2ε
−2Q−1

∑
b2,b1,b0≤Q:

P (t)=b2t2+b1t+b0
σP 6=∅

|b2|−2.

Let us estimate the number of polynomials P ∈ P2(Q) having �xed leading coe�-
cient and satisfying the inequalities (3.2.82) at some point x ∈ Π.

Consider the value of polynomial P at the points d1, d2. From Taylor expansions
and estimates (3.2.83) we have

|P (di)| ≤ |P (xi)|+ c18 |b2|λ1 (Ii) , (3.2.85)
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for Q > Q0. Consider a system of equations{
b2d

2
1 + b1d1 + b0 = l1,

b2d
2
2 + b1d2 + b0 = l2,

(3.2.86)

in three variables b2, b1, b0 ∈ Z, where |li| ≤ 2c18 max (1, |b2|λ1 (Ii)), i = 1, 2.

Let us estimate the number of possible solutions of (3.2.86) for a �xed b2. As-
sume that for chosen b2 there exists at least one solution (b2, b1,1, b1,0) and consider
the system (3.2.86) for two di�erent triples (b2, b1,1, b1,0) and (b2, b2,1, b2,0). Simple
transformations lead to the following system of linear equations in two variables
b̃1 := b1,1 − b2,1 and b̃0 := b1,0 − b2,0{

b̃1d1 + b̃0 = l0,1 − lj,1,
b̃1d2 + b̃0 = l0,2 − lj,2.

(3.2.87)

Applying Lemma 3.2.5 with Ki = 4c18 max (1, |b2|λ1 (Ii)) we derive the following
estimate for a �xed value of the coe�cient b2

#(b1, b0) ≤

{
210c2

18ε
−2 |b2|2 λ2

(
Π
)
, |b2| > c−1

3 Qs,

210c2
18ε
−2, Qs−

1
2 < |b2| < c−1

3 Qs.
(3.2.88)

Let us consider the following two sets

L′1 =
⋃

P∈P2(Q),

c−1
3 Qs<|b2|<4δ2ε−1Q

σP , L′2 =
⋃

P∈P2(Q),

Qs−
1
2<|b2|<c−1

3 Qs

σP .

The set L′1: In this case for δ2 < 2−19κ−1c−2
18 h

−2
2 ε5 we have

λ2

(
L′1
)
≤ 214c2

18h
2
2ε
−4Q−1 · 4δ2ε

−1Qλ2

(
Π
)
< κ

2 λ2

(
Π
)
.

The set L′2: Consider the polynomials P under condition Qs−
1
2 < |b2| < c−1

3 Qs. For
every set σP we de�ne the expanded set

σ′P :=
{
x ∈ Π : |xi − αi| < 4h2ε

−1κ−1/2Q−γ2,i |b2|−1, i = 1, 2
}
. (3.2.89)

Let us prove that for |b2| < c19Q
1
2 , where c19 = 1

18 εκ
1/2h−1

2 (|d1|+ |d2|)−1 those
sets do not intersect.

Consider polynomials Pj , j = 1, 2 with roots αj,1, αj,2 and leading coe�cients |bj,2| <
c19Q

1
2 . Without loss of generality we will assume |b1,2| < |b2,2|. Let there exists

a point x0 ∈
(
σ′P1
∩ σ′P2

)
. Since P1 and P2 have no common roots, the resultant

R(P1, P2) does not vanish, and the following estimate holds

1 = |b1,2|2|b2,2|2|α1,1 − α2,1||α1,1 − α2,2||α1,2 − α2,1||α1,2 − α2,2|. (3.2.90)
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By the estimates (3.2.89) we have

|α1,i − α2,i| ≤ |α1,i − x0,i|+ |α2,i − x0,i| < 2c19Q
−γ2,i |b1,2|−1.

On the other hand for Q > Q0 we get

|α1,1 − α2,2| ≤ |α1,1|+ |α2,2| ≤ 3
2 (|d1|+ |d2|) ,

|α1,2 − α2,1| ≤ |α1,2|+ |α2,1| ≤ 3
2 (|d1|+ |d2|) .

By substituting these inequalities into (3.2.90) we obtain

1 ≤ |R(P1, P2)| < 36h2
2ε
−2κ−1 (|d1|+ |d2|)2 |b2,2|2Q−1 < 1

4 .

This contradiction yields the following estimate∑
P∈P2(Q),

Qs−
1
2<|b2|<c19Q

1
2

λ2 (σP ) ≤ κ
4

∑
P∈P2(Q),

Qs−
1
2<|b2|<c19Q

1
2

λ2 (σ′P ) ≤ κ
8 λ2

(
Π
)
.

Consider the case |b2| > c19Q
1
2 . Denote by P2(Q, k) ⊂ P2(Q), 1 ≤ k ≤ K :=[

ln2

(
2−2s
3−4s

)]
+ 1 a subclass of polynomials de�ned as follows

P2(Q, k) :=
{
P ∈ P2(Q) : lk+1Q

λk+1 ≤ |b2| ≤ lkQλk
}
,

where

λ1 = s, l1 = c−1
3 ,

λk = λk−1 − (1− s) 21−k, lk =
28c18h2

√
K lk−1√

κε2c3
for 2 ≤ k ≤ K,

λK+1 = 1
2 , lK+1 = c19.

These equations give λk = s− (1− s)
(
1− 1

2k−1

)
for 2 ≤ k ≤ K.

Let us consider the following sets L(k) :=
⋃

P∈P2(Q,k)

σP and estimate the measure of

every set as follows

λ2 (L(k)) =
∑

P∈P2(Q,k)

λ2 (σP ) ≤ 214h22c
2
18

ε4
Q−1

∑
lk+1Q

λk+1≤|b2|≤lkQλk
|b2|−2

≤ 214h22c
2
18lk

ε4l2k+1
Q−1−2λk+1+λk .

Then for k = 1 we obtain

λ2 (L(1)) ≤ c23κ
4K Q−1−2s+1−s+s ≤ κ

4K c2
3Q
−2s < κ

4K λ2

(
Π
)

;

for 1 < k ≤ K − 1 we have

λ2 (L(k)) ≤ c23κ
4K Q

−1+s−(1−s)
(

1− 1
2k−1

)
−2s+(1−s)

(
2− 1

2k−1

)
≤ κ

4K c2
3Q
−2s = κ

4K λ2

(
Π
)

;
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and for k = K, s < 3
4 and Q > Q0 we get

λ2 (L(K)) ≤ 214h22c
2
18 lK

ε4c219
Q
−2+s−(1−s)

(
1− 1

2K−1

)
≤ 214h22c

2
18 lK

ε4c219
Q
−3+2s+(1−s) 3−4s

2−2s

≤ 214h22c
2
18 lK

ε4c219
Q−

3
2 < κ

4K λ2

(
Π
)
.

Then, we obtain following estimate for the measure of the set L′2

λ2

(
L′2
)
≤

∑
P∈P2(Q),

Qs−
1
2<|b2|<c19Q

1
2

λ2 (σP ) +
∑

1≤k≤K
λ2 (L(k)) ≤ κ

2 λ2

(
Π
)
,

and, thus,
λ2

(
L′
)
≤ λ2

(
L′1
)

+ λ2

(
L′2
)
≤ κλ2

(
Π
)
.

Now the proof of Lemma 3.2.8 can be �nished by repeating the proof of Lemma
3.2.6.

Theorem 3.2.2 can be proved by applying the results of Lemma 3.2.8 to the proof
of Theorem 3.2.1.

3.2.4 Proof of Theorem 3.2.3: Upper Bound

Assume the converse. Let

N 2
n(A, Q,Π) ≥ c6Q

n+1λ2 (Π)

and consider a point α with algebraic conjugate coordinates α1, α2 ∈ An,H(Q)∩Π.
Let P be a minimal polynomial of algebraic numbers α1 and α2 and let us derive an
estimate for the polynomial P at points d1, d2. Since αi ∈ Ii then by Lemma 3.2.4
we have

|P (k)(αi)| ≤ n!
(n−k)! ωn−k+1(3/2 di)Q,

for all 1 ≤ k ≤ n and Q > Q0. From these estimates and a Taylor expansion of P
in the intervals Ii, i = 1, 2 we obtain the following inequalities

|P (di)| ≤
n∑
k=1

∣∣ 1
k!P

(k)(αi)(di − αi)k
∣∣ ≤ 2nωn(3/2 di)Qλ1 (Ii) . (3.2.91)

Let us �x a vector a := (an, . . . , a2) ∈ Zn−1 and denote by Pn(Q,a) ⊂ Pn(Q) the
following subclass of polynomials

Pn(Q,a) :=
{
P ∈ Pn(Q) : P (t) = ant

n + . . .+ a2t
2 + a1t+ a0 satis�es (3.2.91)

}
having the same vector of coe�cients a and satisfying (3.2.91). The number of non-
empty subclasses Pn(Q,a) is bounded by the number of vectors a lying inside the
box [−Q;Q]n−1, which can be estimated as follows

#
(

[−Q;Q]n−1 ∩ Zn−1
)

= (2Q+ 1)n−1 < 2nQn−1 (3.2.92)



3.3. Neighborhood of Curves 65

for Q > Q0. It should also be noted that every point with algebraic conjugate
coordinates from the set An(Q) ∩ Π corresponds to a polynomial P ∈ Pn(Q) that
satis�es (3.2.91). On the other hand, every polynomial P ∈ Pn(Q) satisfying (3.2.91)
corresponds to at most n2 such points. This allows us to write

c6Q
n+1λ2 (Π) < N 2

n(A, Q,Π) ≤ n2
∑
a

#Pn(Q,a).

Thus, by the estimate (3.2.92) and pigeonhole principle applied to the vectors a and
polynomials P satisfying (3.2.91), there exists a vector a0 such that

#Pn(Q,a0) ≥ c6 2−nn−2Q2λ2 (Π) . (3.2.93)

Let us �nd an upper bound for the value #Pn(Q,a0). In order to do this, we �x some
polynomial P0 ∈ Pn(Q,a0) and consider the di�erence between the polynomials P0

and Pj ∈ Pn(Q,a0) at points di, i = 1, 2. From the estimate (3.2.91) it follows

|P0(di)− Pj(di)| = |(a0,1 − aj,1)di + (a0,0 − aj,0)| ≤ 2n+1ωn(3/2 di)Qλ1 (Ii) .

Thus, the number of di�erent polynomials Pj ∈ Pn(Q,a0) does not exceed the
number of integer solutions of the following system

|b1di + b0| ≤ 2n+1ωn(3/2 di)Qλ1 (I)i , i = 1, 2.

Now let us apply Lemma 3.2.5 with Ki = 2n+1ωn(3/2 di)Qλ1 (Ii). Since λ1 (Ii) =

c5Q
−si and si < 1, we have Ki ≥ 2n+1ωn(3/2 di)c5Q

1−si > max (|d1 − d2|, 1) for
Q > Q0. This implies that

#Pn(Q,a0) ≤ 22n+8|d1 − d2|−1ωn(3/2 d1)ωn(3/2 d2)Q2λ2 (Π) ,

which contradicts to inequality (3.2.93) for c6 = 23n+9n2ωn(3/2 d1)ωn(3/2 d2)|d1 −
d2|−1. Thus,

N 2
n(A, Q,Π) < c6Q

n+1λ2 (Π) .

3.3 Neighborhood of Curves

One of the interesting and important topic is the distribution of points with rational
coordinates near curves. Let f : J0 → R be a C2(J0) function de�ned on a �nite
open interval J0 ⊂ R. Suppose also that there exist constants C2, C3 with 0 < C2 ≤
C3 <∞ such that

C2 ≤ |f ′′(x)| ≤ C3

for all x ∈ J0. We will denote the class of such functions by F(C2, C3, J0). Consider
the following set

Nf (Q,λ, J) := #

{(
p1

q
,
p2

q

)
∈ Q2 : 0 < q ≤ Q, p1

q
∈ J,

∣∣∣∣f (p1

q

)
− p2

q

∣∣∣∣ < Q−λ
}
,
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where J ⊂ J0 and 0 ≤ λ < 2. In other words, the quantity Nf (Q,λ, J) denotes the
number of rational points with bounded denominators lying within a certain neigh-
borhood of the curve parametrized by f . The problem is to �nd the asymptotics
for Nf (Q,λ, J) as Q→∞.

The next results are formulated for functions f ∈ F(C2, C3, J0). The �rst step in
solving the problem above has been made by Huxley in [41], where he proved the
following upper estimate for any ε > 0

Nf (Q,λ, J)� Q3−λ+ε.

An estimate without ε in the exponent has been obtained in 2006 in paper of
Vaughan and Velani [64]. They showed that

Nf (Q,λ, J)� Q3−λ +Q
1
2

+λ
2 ,

and, moreover, under the additional condition that f has Lipschitz continuous sec-
ond derivative with Lipschitz constant θ ∈ (0, 1) we have

Nf (Q,λ, J)� Q3−λ +Q1−λ(θ−1)
2 ,

where the constants in the Vinogradov symbol depend on C2, C3 and the measure
of the interval J only. It should be noted that for λ ≤ 5

3 , the estimate of Vaughan
and Velani is indeed better than the estimate of Huxley for an arbitrary function
f ∈ F(C2, C3, J0), but for λ > 5

3 only functions having a Lipschitz continuous
second derivative with Lipschitz constant θ ≤ 3 − 4

λ give the best possible upper
bound� Q3−λ. The lower estimate of the same order was obtained by Beresnevich,
Dickinson and Velani [8] for any function f ∈ C3(J0).

3.3.1 Main Result

Since the set of rational numbers with denominator at most Q is basically the set of
algebraic numbers of �rst degree and 'naïve' height at most Q, we can formulate the
problem above in a more general setup, namely for the set of points with algebraic
conjugate coordinates. Let f : J0 → R be a continuously di�erentiable function
de�ned on a �nite open interval J0 ⊂ R and satisfying the conditions:

sup
x∈J0
|f ′(x)| := c20 <∞, #{x ∈ J0 : f(x) = x} <∞. (3.3.1)

Denote by Lnf (Q,λ, J) the following set

Lfλ,J = Lfλ,J(Q) :=
{
x ∈ R2 : |x2 − f(x1)| <

(
1
2 + c20

)
c21Q

−λ, x1 ∈ J
}
, (3.3.2)

where J ⊆ J0. The problem reduces to counting points with algebraic conjugate
coordinates in speci�c domain Lfλ,J . A few years ago, Bernik, Götze, and Kukso
[13] obtained the following lower bound

N 2
n

(
A, Q, Lfλ,J

)
� Qn+1−λ
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for 0 < λ < 1
2 , Q > Q0, where the constants in the Vinogradov symbol and the

value Q0 depend on n, λ, the function f and the length of the interval J only.

We will improve on this result to obtain an identical estimate for 0 < λ < 3
4 and

derive the upper bound of the same order.
Theorem 3.3.1. Let f : J0 → R be a continuously di�erentiable function de�ned on

a �nite open interval J0 ⊂ R and satisfying the conditions (3.3.1). Let Lfλ,J be the

set de�ned by (3.3.2). Then for any 0 < λ < 3
4 , integer n ≥ 2, c21 > c0(n, λ, J, f)

and positive Q > Q0(J, f, n, λ) there exists the positive values c22, c23 depending on

J , f , and n only, such that

c22Q
n+1−λ ≤ N 2

n

(
A, Q, Lfλ,J

)
≤ c23Q

n+1−λ.

To prove Theorem 3.3.1 we are going to use the results of Theorem 3.2.1, Theorem
3.2.2 and Theorem 3.2.3.

Note that the distance between algebraically conjugate numbers is bounded from
below [18, 28], meaning that a certain neighborhood of the line y = x must
be excluded from consideration. For this purpose let us consider the set D0 :={
x ∈ J : |f(x)− x| < ε

2

}
, where ε > 0 is a small positive constant. Since the num-

ber of points x ∈ J such that f(x) = x is �nite, for a su�ciently small constant ε
we have that λ1 (D0) < 1

4λ1 (J).

3.3.2 Proof: Lower Bound

Instead of the interval J , let us consider the set J \D0 =
⋃
k

Jk. Due to condition

(3.3.1) the number of intervals Jk is �nite and

λ2 (J \D0) ≥ 3
4λ1 (J) . (3.3.3)

Now for every strip Lfλ,Jk(Q) we have Lfλ,Jk(Q) ∩
{
x ∈ R2 : |x1 − x2| < ε

}
= ∅.

For every interval Jk = [bk,1, bk,2] consider the strip Lfλ,Jk(Q) and estimate the

cardinality of the set N 2
n

(
A, Q, Lfλ,Jk

)
for a �xed 0 < λ < 3

4 . Let us divide the strip

Lfλ,Jk(Q) into subsets

Ej :=
{
x ∈ R2 : x1 ∈ Jk,j , |x2 − f(x1)| <

(
1
2 + c20

)
c3Q

−λ
}
,

where Jk,j = [yj , yj+1], y0 = bk,1 and yj = yj−1 + c21Q
−λ. The number tk of subsets

Ej for Q > Q0 can be estimated as follows

tk ≥
λ1 (Jk)

λ1 (Jk,j)
− 1 > 1

2 c
−1
21 Q

λ λ1 (Jk) . (3.3.4)

De�ne f j := 1
2

(
max
x∈Jk,j

f(x) + min
x∈Jk,j

f(x)

)
and consider the rectangles

Πj :=
{
x ∈ R2 : x1 ∈ Jk,j ,

∣∣x2 − f j
∣∣ ≤ 1

2c3Q
−λ} .
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Since f is continuous and di�erentiable function on every interval Jk,j and
sup
x∈Jk,j

|f ′(x)| ≤ sup
x∈J
|f ′(x)| = c20 by the mean value theorem we have

∣∣∣∣max
x∈Jk,j

f(x)− min
x∈Jk,j

f(x)

∣∣∣∣ ≤ |f ′(ξ)|λ1 (Jk,j) < c20c21Q
−λ,

which means that Πj ⊂ Ej for every 1 ≤ j ≤ tk. Thus, every set Ej corresponds to
the square Πj = Ij,1 × Ij,2 of size λ2 (Πj) = c2

21Q
−2λ.

Case 1: 0 < λ ≤ 1
2 .

In this case, we apply the result of Theorem 3.2.1 to every square Πj to derive the
estimate

N 2
n (A, Q,Πj) ≥ c2Q

n+1λ2 (Πj) = c2c
2
21Q

n+1−2λ,

for Q > Q0 and c21 being su�ciently large. Using (3.3.3) and (3.3.4) we have

N 2
n

(
A, Q, Lfλ,J

)
≥
∑
k

tk∑
j=1

N 2
n (A, Q,Πj) ≥ 1

2c2c21Q
n+1−λ∑

k

λ1 (Jk)

≥ 3
8c2c21λ1 (J) Qn+1−λ = c22Q

n+1−λ.

Case 2: 1
2 < λ < 3

4 .

In this case we need to apply Theorem 3.2.2. Let us estimate the number of
(

1
2 ,

1
2

)
-

special squares Πj . By the de�nition,
(

1
2 ,

1
2

)
- special square contains the points x0

such that there exists a polynomial P ∈ P2(Q) with leading coe�cient b2 satisfying
the inequalities {

|P (x0,i)| < h2Q
− 1

2 , i = 1, 2,

|b2| ≤ Qλ−
1
2 .

(3.3.5)

Repeating the steps of the proof from the beginning of Subsection 3.2.2.1 we obtain
the following estimates

|P ′(α1)| = |P ′(α2)| > 3
4 ε |b2|.

Thus, by Lemma A.1.14 the set of points x satisfying (3.3.5) for a �xed polynomial
P is a subset of the following square

σP :=
{
x ∈ R2 : |xi − αi| ≤ 2h2ε

−1Q−
1
2 |b2|−1, i = 1, 2

}
.

Let us estimate the number of squares Πj , such that Πj ∩ σP 6= ∅. It is easy to see
that the width of the strip Lf (Q,λ, Jk) is smaller than the height of the square σP for

su�ciently large c21. Hence, every σP intersects with at most 4h2ε
−1c−1

21 Q
λ− 1

2 |b2|−1

squares Πj . Therefore, the numberm1 of
(

1
2 ,

1
2

)
- special squares Πi can be estimated

as follows

m1 ≤
∑

P∈P2(Q)

4h2ε
−1c−1

21 Q
λ− 1

2 |b2|−1 ≤ 4h2ε
−1c−1

21 Q
λ− 1

2

∑
b2,b1,b0

|b2|−1
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Now we need to estimate the number of polynomials P ∈ P2(Q) having leading
coe�cient b2 and satisfying the inequalities (3.3.5) at some point x ∈ Lf (Q,λ, Jk).
Since the function f is continuously di�erentiable on the interval J and sup

x∈Jk
|f ′(x)| <

c20, by the mean value theorem we get∣∣∣∣max
x∈Jk

f(x)− min
x∈Jk

f(x)

∣∣∣∣ < c20 λ1 (Jk) ,

which implies that the set Lf (Q,λ, Jk) belongs to a rectangle Π = I1 × I2, where
λ1 (I2) = c20 λ1 (I1) = c20λ1 (Jk).

Let us estimate the value of the polynomial P at the middle point d of the rectangle
Π. Using the arguments from the beginning of Subsection 3.2.2.1 we obtain

|P (d1)| ≤ c24 |b2|λ1 (Jk) , |P (d2)| ≤ c24c20 |b2|λ1 (Jk) .

and, hence, for a �xed value of b2 the number of polynomials P ∈ P2(Q) satisfying
the inequalities (3.3.5) at some point x ∈ Π can be estimated as follows

#(b1, b0) ≤ 25c20c
2
24ε
−1|b2|2 (λ1 (Jk))

2 .

Using this estimate we obtain

m1 ≤ 27h2c20c
2
24c
−1
21 ε
−3 (λ1 (Jk))

2 Qλ−
1
2

∑
|b2|<Qλ−

1
2

|b2|

≤ 27h2c20c
2
24c
−1
21 ε
−3 (λ1 (Jk))

2 Q3λ− 3
2

<
1

4
c−1

21 λ1 (Jk) Q
λ < tk

2 . (3.3.6)

for λ < 3
4 and Q > Q0. By (3.3.6), it follows that the number of

(
1
2 ,

1
2

)
-ordinary

squares Πj does not exceed

m2 ≥ tk − 1
2 tk >

1
2 tk. (3.3.7)

From Theorem 3.2.2 and the estimate (3.3.7) we obtain

N 2
n

(
A, Q, Lfλ,J

)
≥
∑
k

∑
Πj∈Lf (Q,λ,Jk)

Πj�( 1
2
, 1
2)-special

N 2
n (A, Q,Πj) ≥ 1

4c4c21Q
n+1−λ∑

k

λ1 (Jk)

≥ 3
16c4c21λ1 (J) Qn+1−λ = c22Q

n+1−λ.

3.3.3 Proof: Upper Bound

In the same way as in the previous section, let us divide the set Lfλ,J(Q), J = [b1, b2]

into subsets

Ej :=
{
x ∈ R2 : x1 ∈ Jj , |f(x1)− x2| <

(
1
2 + c20

)
c21Q

−λ
}
,
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where Jj = [yj−1, yj ], y0 = b1, yj+1 = yj +
(

1
2 + 3

2c20

)
c21Q

−λ and the number t of
subsets Ej satis�es the inequality

t ≤ λ1 (J)

λ1 (Jj)
≤
(

1
2 + 3

2c20

)−1
c−1

21 Q
λ λ1 (J) . (3.3.8)

De�ne f j := 1
2

(
max
x∈Jj

f(x) + min
x∈Jj

f(x)

)
and consider the squares

Πj :=
{
x ∈ R2 : x1 ∈ Jj ,

∣∣f j − x2

∣∣ < (1
2 + 3

2c20

)
c21Q

−λ
}
.

Since the function f is continuously di�erentiable on the interval J , and
max
x∈J
|f ′(x)| = c20, it is easy to see that Ej ⊂ Πj , 1 ≤ j ≤ t.

Note that the squares Πj satisfy the conditions of Theorem 3.2.3. Therefore

N 2
n (A, Q,Πj) ≤ c6Q

n+1λ2 (Πj) = c6c
2
3

(
1
2 + 3

2c20

)2
Qn+1−2λ.

These inequalities, together with the estimate (3.3.8), lead to the following

N 2
n

(
A, Q, Lfλ,J

)
≤ c6c21

(
1
2 + 3

2c20

)
λ1 (J) Qn+1−λ = c23Q

n+1−λ.

3.4 Distribution of Algebraic Integers and Points with

Conjugate Algebraic Integer Coordinates

In this section we investigate the distribution of algebraic integers on the real line
and the distribution of the points with algebraic conjugate integer coordinates in
the Euclidean plane. We will consider the same problem as in the previous sections
formulated for algebraic integers.

The �rst part of this section is devoted to the study of one-dimensional case, namely
algebraic integers. Given an interval I ⊂ R, denote by Nn(O, Q, I) the number of
algebraic integers α ∈ I of degree n and 'naïve' height at most Q. We will prove
the following theorem.
Theorem 3.4.1. For any interval I of length λ1 (I) = c25Q

−s, 0 < s ≤ 1 with

middle point d, any integer n ≥ 2, positive real Q > Q0(n, d, s), and c25 > c0(n, d) >

0 there exist positive constants c26, c27 depending on n and d only, such that

c27Q
n λ1 (I) ≥ Nn (O, Q, I) ≥ c26Q

n λ1 (I) .

Remark 3.4.2. It should be noted that the condition s ≤ 1 can not be omitted.

As was mentioned above there exist intervals of length � Q−1 which do not contain

algebraic numbers from the set An(Q). Since On(Q) ⊂ An(Q) the same statement

holds for algebraic integers.

Another way to formulate Theorem 3.4.1 is to say that the set of real algebraic
integers of degree n forms a regular system and from the proof of Theorem 3.4.1
one can immediately derive the following corollary.
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Corollary 3.4.2.1. The set of algebraic integers On together with function

N3(α) = H(α)n (1 + |α|)n(n−1) is a regular system with parameter T0(On, N3, I) =

C(n) (λ1 (I))−n.

In the second part of this section we proceed with the study of two-dimensional
analogue of Theorem 3.4.1. As in case of points with algebraic conjugate coordinates
consider a rectangle Π = I1 × I2 with middle point d = (d1, d2), d1 6= d2 and sizes
λ1 (I1) = c1,1Q

−s1 , λ1 (I2) = c1,2Q
−s2 , where 0 < s1 + s2 < 1.

Theorem 3.4.3. For any rectangle Π = I1 × I2 with middle point d = (d1, d2),

d1 6= d2 satisfying the following conditions:

1. λ1 (Ii) = c1,iQ
−si, where si < 1 and 0 < s1 + s2 ≤ 1, i = 1, 2;

2. c1,1 c1,2 > c0(n,d) > 0 for s1 + s2 = 1;

any integer n ≥ 3, and any positive real Q > Q0(n,d, s) there exists a constant

c28 = c28(n,d) > 0, such that

N 2
n (O, Q,Π) ≥ c28Q

nλ2 (Π) .

Theorem 3.4.4. Let Π = I1× I2 be a rectangle with a middle point d, d1 6= d2 and

sides λ1 (Ii) = c5Q
−si , i = 1, 2. Then for any integern ≥ 3, any 0 < s1, s2 < 1, and

any positive realQ > Q0(n, s,d) we have

N 2
n (O, Q,Π) < c29Q

nλ2 (Π) ,

where c29 = 23n+9n2ωn(3/2 d1)ωn(3/2 d2)|d1 − d2|−1.

Proof. The proof of Theorem 3.4.4 is analogous to the proof of Theorem 3.2.3.

The last result is analogue of Theorem 3.3.1.
Theorem 3.4.5. Let f : J0 → R be a continuously di�erentiable function de�ned

on a �nite open interval J0 ⊂ R and satisfying the conditions (3.3.1). Let Lfλ,J be

the set de�ned by (3.3.2). Then for any 0 < λ < 1
2 , any integer n ≥ 3, and any

positive real Q > Q0(J, f, n, λ) there exists the positive constants c30, c31 depending

on J , f and n only, such that

c30Q
n−λ ≤ N 2

n

(
O, Q, Lfλ,J

)
≤ c31Q

n−λ.

Proof. The proof of this Theorem is analogous to the proof of Theorem 3.3.1 using
the result of Theorem 3.4.3 instead of the result of Theorem 3.2.1 and the result of
Theorem 3.4.4 instead of the result of Theorem 3.2.3.

3.4.1 Proof of Theorem 3.4.1

3.4.1.1 Lower Bound

The proof of the lower bound is based on the following lemma.



72 Chapter 3. Counting Points with Algebraic Conjugate Coordinates

Lemma 3.4.6 (see [14]). Let I ⊂ R be the interval of length λ1 (I) = c32Q
−1, where

c32 > 0. Denote by Ln = Ln(Q, δ, I) the set of points x ∈ I such that there exists a

polynomial P ∈ Pn(Q) satisfying the inequalities{
|P (x)| < Q−n,

|P ′(x)| < δQ.

Then λ1 (Ln) < 1
4 λ1 (I) for δ < δ0(n) > 0, and Q > Q0(n).

Remark 3.4.7. It su�ces to take δ(n) = 2−n−8n−2 (see [14] for more details).

Remark 3.4.8. One can also prove Lemma 3.4.6 in a bit more general form, namely

for the intervals I of length λ1 (I) = c32Q
−s, 0 < s ≤ 1 and for the system{

|P (x)| < ĥQ−n,

|P ′(x)| < δQ,

where ĥ is some constant independent of Q. The proof in this case is the same as

in the original statement and the only changes appear in the value of the constants

δ0, c0 and Q0. We will use this more general form of Lemma 3.4.6 in our proof.

Let L1 = Ln−1(Q, δ, I) be the set of points x ∈ I such that there exists a polynomial
P ∈ Pn−1(Q) satisfying the inequalities{

|P (x)| < ĥQ−n+1,

|P ′(x)| < δQ.
(3.4.1)

Applying Lemma 3.4.6 for Q > Q0 and δ < δ0(n, d) we can estimate the measure of
the set L1 as follows

λ1

(
L1
)
≤ 1

4 λ1 (I) .

Let us consider the set B1 := I\L1. From the Minkowski's linear forms theorem
(Lemma A.2.3) it follows that for every point x ∈ I and Q > Q0 there exists a
non-zero polynomial P (t) = an−1t

n−1 + . . .+ a1t+ a0 ∈ Z[t] satisfying

|P (x)| ≤ ĥ Q−n+1, |aj | ≤ 2
3 d
−1ω−1

n (3/2d) Q (1 ≤ j ≤ n− 1),

where ĥ =
(
3/2 dωn

(
3
2d
))n−1

. One can easily verify that |a0| < Q and, hence,
P ∈ Pn−1(Q). This means that for any x0 ∈ B1 and any polynomial P ∈ Pn−1(Q)

we have {
|P (x0)| < ĥQ−n+1,

|P ′(x0)| ≥ δ Q,

and, moreover, λ1

(
B1
)
≥ 3

4 λ1 (I).

Consider an arbitrary point x0 ∈ B1 and examine successive minima τ1, . . . , τn of
the compact convex set K de�ned by inequalities

|an−1x
n−1
0 + . . .+ a1x0 + a0| ≤ ĥ Q−n+1,

|(n− 1)an−1x
n−2
0 + . . .+ 2a2x0 + a1| ≤ Q,

|an−1|, . . . , |a2| ≤ Q.
(3.4.2)
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Assume, that τ1 ≤ δ. Then for δ being su�ciently small there exists a non-zero
polynomial P0 ∈ Pn−1(Q) satisfying the inequalities

|P0(x0)| ≤ δĥQ−n+1 < ĥQ−n+1,

|P ′0(x0)| ≤ δ Q,
H(P0) ≤ Q,

which contradicts the fact that x0 ∈ B1 = I\L1. thus, we conclude that τn−1 ≥
. . . ≥ τ1 > δ. Since the volume vol(K) of the compact convex setK is equal to 2n, we
get from Lemma A.2.5 that τ1 . . . τn ≤ 1 and, hence, that τn ≤ δ−n+1. Therefore we
can choose n linearly independent polynomials Pi(t) = ai,n−1t

n−1+. . .+ai,1t+ai,0 ∈
Z[t], satisfying the inequalities

|Pi(x0)| ≤ δ−n+1ĥ Q−n+1,

|P ′i (x0)| ≤ δ−n+1Q,

|ai,j | ≤ δ−n+1Q, 2 ≤ j ≤ n− 1.

(3.4.3)

Applying well-known estimates from the geometry of numbers (see [19, pp. 219])
we obtain

D := det |(ai,j−1)ni,j=1| ≤ n!.

Moreover, from Lemma A.1.19 it follows that there exists a prime number p, which
does not divide D and satis�es

n! < p < 2n!. (3.4.4)

Our next step is to construct the irreducible monic polynomial of degree n using
polynomials Pi. Consider the following system of linear equations in n variables
θ1, . . . , θn 

xn0 + p
n∑
i=1

θiPi(x0) = p(n+ 1)δ−n+1ĥ Q−n+1,

nxn−1
0 + p

n∑
i=1

θiP
′
i (x0) = pQ+ p

n∑
i=1
|P ′i (x0)|,

n∑
i=1

θiai,j = 0, 2 ≤ j ≤ n− 1.

(3.4.5)

In order to calculate the determinant D̂ of this system, it is convenient to transform
it as follows. Multiply the k-th equation, where k = 3, . . . , n, by p xk−1

0 and subtract
it from the �rst equation of the system (3.4.5). Similarly, multiply the k-th equation,
where k = 3, . . . , n, by p (k−1)xk−2

0 and subtract it from the second equation. After
making these transformations the determinant D̂ may be written as follows

D̂ = p2

∣∣∣∣∣∣∣∣∣
a1,1x0 + a1,0 . . . an,1x0 + an,0

a1,1 . . . an,1
...

. . .
...

a1,n−1 . . . an,n−1

∣∣∣∣∣∣∣∣∣
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Since the polynomials Pi are linearly independent, we conclude that D̂ = p2D 6= 0.
Hence, there exists a unique solution (θ1, . . . , θn) of the system (3.4.5).

For integers k1, . . . , kn consider the following construction, which is a polynomial of
degree n with integer coe�cients

P (t) = tn + p

n∑
i=1

kiPi(t) = tn + p (an−1t
n−1 + . . .+ a1t+ a0),

where aj =
n∑
i=1

kiai,j and ki satis�es

|θi − ki| ≤ 1. (3.4.6)

The polynomial P is irreducible if it satis�es the conditions of Lemma A.1.20. Let
us show that there exists a suitable combinations of the coe�cients kj . Clearly,
the �rst and the second condition of (A.1.6) hold for any kj . It remains to show
that a0 = k1a1,0 + . . . + knan,0 is not divisible by p. Since p does not divide
D, there exists a number 1 ≤ j ≤ n such that aj,0 is not divisible by p. There
are two possible values for kj satisfying the condition (3.4.6), which we denote as
k1
j and k2

j := k1
j + 1. Then, either a1

0 = k1a1,0 + . . . + k1
jaj,0 + . . . + knan,0 or

a2
0 = k1a1,0 + . . .+ k2

jaj,0 + . . .+ knan,0 = a1
0 + aj,0 is not divisible by p. Therefore,

choosing kj in this manner yields an irreducible polynomial P .

Next we estimate the values |P (x0)|, |P ′(x0)| and H(P ). Combining (3.4.3) and
(3.4.6) with the system of equations (3.4.5) we obtain the following inequalities.

From the �rst equation of the system it follows that

pδ−n+1ĥ Q−n+1 ≤ |P (x0)| ≤ p(2n+ 1)δ−n+1ĥ Q−n+1. (3.4.7)

Similarly, from the second equation of the system we have

pQ ≤ |P ′(x0)| ≤ (p+ 2pnδ−n+1)Q, (3.4.8)

and the remaining equations of the system give

|aj | ≤ nδ−n+1Q, 2 ≤ j ≤ n− 1. (3.4.9)

Finally, using (3.4.7)�(3.4.9) and the inequality |x0| ≤ 3
2 |d| for Q > Q0 we obtain

the following estimates for the coe�cients a1 and a0

|a1| ≤ |P ′(x0)|+ n|x0|n−1 +

n−1∑
j=2

j|x0|j−1|aj |

≤ (p+ 2pnδ−n+1)Q+

(
nδ−n+1

n−1∑
k=1

(k + 1)
(

3
2 |d|
)k)

Q

≤
(
p+

(
2p+ nωn

(
3
2d
))
nδ−n+1

)
Q, (3.4.10)
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|a0| ≤ |P (x0)|+ |x0|n + |a1x0|+
n∑
j=2

|x0|j |aj |

≤ p(2n+ 1)δ−n+1ĥ Q−n+1 +
(

3
2p+

(
3p+ 3

2ωn
(

3
2d
))
nδ−n+1

)
|d|Q

+ ωn
(

3
2d
)
nδ−n+1Q ≤ pc32(n, d)Q. (3.4.11)

Now, from the estimates (3.4.9)�(3.4.11) and the inequality (3.4.4) we have

H(P ) ≤ 2n!c33Q =: Q1. (3.4.12)

Consider the roots α1, . . . , αn of the polynomial P , where |x0−α1| = min
i
|x0 − αi|.

Using Lemma A.1.14, we get

|x0 − α1| ≤ n|P (x0)||P ′(x0)|−1. (3.4.13)

Substituting inequalities (3.4.7) and (3.4.8) into (3.4.13) we obtain

|x0 − α1| ≤ n(2n+ 1)δ−n+1Q−n =: c34Q
−n. (3.4.14)

If α1 is a complex root of the polynomial P , then its complex conjugate is also a root
of the polynomial P . Hence, by (3.4.12), (3.4.14) and the estimates |αi| ≤ H(P )+1,
1 ≤ i ≤ n (see [54, Theorem 1.1.2]), we deduce that

|P (x0)| =
n∏
i=1

|x0 − αi| ≤ c2
34Q

−2n
(
2 + 2n!

(
2nδ−n+1 + 1

)
Q
)n−2

.

This inequality contradicts (3.4.7) for Q > Q0. Thus, α1 is real.

Finally, take a maximal system of real algebraic integers Γ = {γ1, . . . , γm} such that
|γi − γj | > c32Q

−n, 1 ≤ i 6= j ≤ m. Let us show that for any point x0 ∈ B1 there
exists an algebraic number γ ∈ Γ such that |x0 − γ| ≤ 2c34Q

−n. According to the
above arguments and (3.4.14) for any point x0 ∈ B1 there exists a real algebraic
integer α1 ∈ I such that |x0 − α1| ≤ c34Q

−n. If α1 ∈ Γ, then we can take γ = α1,
otherwise, there exists γi ∈ Γ such that |α1 − γi| ≤ c34Q

−n and, hence,

|x0 − γi| ≤ |x0 − α1|+ |α1 − γi| ≤ 2c34Q
−n.

In this case, we take γ = γi. Therefore,

B1 ⊂
m⋃
i=1

{
x ∈ I : |x− γi| ≤ 2c34Q

−n}
and

4mc34Q
−n ≥ λ1

(
m⋃
i=1

{
x ∈ I : |x− γi| ≤ 2c34Q

−n}) ≥ λ1

(
B1
)
≥ 3

4 λ1 (I) .

This inequality implies that

Nn (O, Q1, I) ≥ m > 3
16c
−1
34 Q

nλ1 (I) = c26Q
n
1λ1 (I)
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for Q1 > Q0 and the proof is complete.

From the proof of Theorem 3.4.1 it follows, that the set of algebraic integers of

degree n forms a regular system with respect to the function N(α) =
(

H(α)

(1+|α|)n−1

)n
and T0 = c35λ1 (I)−n, where the constant c35 is independent of λ1 (I).

3.4.1.2 Upper Bound

The proof of upper bound is very similar to the proof of Theorem 3.2.3.

Assume that
Nn (O, Q, I) > c27Q

nλ1 (I) .

Consider a point α ∈ An(Q)∩ I and let P be its minimal polynomial. Let us derive
an estimate for the polynomial P at point d. By Lemma 3.2.4 we have

|P (k)(α)| ≤ n!
(n−k)! ωn−k+1(3/2 d)Q,

for all 1 ≤ k ≤ n and Q > Q0. From these estimates and a Taylor expansion of P
in the intervals I we obtain

|P (d)| ≤
n∑
k=1

∣∣ 1
k!P

(k)(α)(d− α)k
∣∣ ≤ 2nωn(3/2 d)Qλ1 (I) . (3.4.15)

Let us �x a vector a := (an−1, . . . , a1) ∈ Zn−1 and denote by Pn(Q,a) ⊂ Pn(Q) the
subclass of polynomials

Pn(Q,a) :=
{
P ∈ Pn(Q) : P (t) = tn + an−1t

n−1 + . . .+ a1t+ a0, P satis�es (3.4.15)
}

with the same vector of coe�cients a such that P satis�es (3.4.15). The number
of non-empty subclasses Pn(Q,a) is bounded above by the number of vectors a ∈
[−Q;Q]n−1, which can be estimated as follows

#
(

[−Q;Q]n−1 ∩ Zn−1
)

= (2Q+ 1)n−1 < 2nQn−1 (3.4.16)

for Q > Q0. This allows us to write

c27Q
nλ1 (I) < Nn (O, Q, I) ≤ n

∑
a

#Pn(Q,a).

Thus, by the estimate (3.4.16) and pigeonhole principle we conclude that there exists
a vector a0 such that

#Pn(Q,a0) ≥ c27 2−nn−1Qλ1 (I) . (3.4.17)

Let us �nd an upper bound for the value #Pn(Q,a0). Fix some polynomial
P0 ∈ Pn(Q,a0) and consider the di�erence between the polynomials P0 and
Pj ∈ Pn(Q,a0) at point d. From the estimate (3.4.15) it follows

|P0(d)− Pj(d)| = |a0,0 − aj,0| ≤ 2n+1ωn(3/2 d)Qλ1 (I) ,

which contradicts to inequality (3.4.17) for c27 = 22n+4nωn(3/2 d). Thus the proof
is complete.
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3.4.2 Proof of Theorem 3.4.3

The proof of Theorem 3.4.3 follows by the same method as the proof of Theorem
3.4.1, but it contains some non-trivial elements which require special attention.

We will start with using Lemma 3.2.6, which is two-dimensional analogue of Lemma
3.4.6. Given positive v1 and v2 satisfying the condition v1 + v2 = n − 2 denote by
L2 = Ln−1(Q, δ,v,Π) the set of points x ∈ Π such that there exists a polynomials
P ∈ Pn−1(Q) satisfying the inequalities|P (xi)| < hQ−vi ,

min
i
{|P ′(xi)|} < δQ, i = 1, 2.

(3.4.18)

Lemma 3.2.6 implies that
λ2

(
L2
)
≤ 1

4 λ2 (Π)

for δ < δ0(n− 1,d) < 1 and Q > Q0(n− 1,v,d, s).

Let us consider the set B2 := Π\L2. Using Minkowski's linear form theorem (Lemma
A.2.3) it is easy to ckeck that for every point x ∈ Π there exists a polynomial
P ∈ Pn−1(Q) such that

|P (xi)| ≤ hQ−vi , i = 1, 2,

where h =
√

3
2(|d1|+ |d2|)1/2 max (1, 3|d1|, 3|d2|)(n−1)2/2. Hence, for any point x ∈

B2 and any polynomial P ∈ Pn−1(Q) we have{
|P (xi)| < hQ−vi ,

|P ′(xi)| > δQ, i = 1, 2.

Consider an arbitrary point x ∈ B2 and examine the successive minima τ1, . . . , τn
of the compact convex set K de�ned by

∣∣an−1x
n−1
i + . . .+ a1xi + a0

∣∣ ≤ hQ−vi ,∣∣(n− 1)an−1x
n−2
i + . . .+ 2a2xi + a1

∣∣ ≤ Q, i = 1, 2,

|an−1|, . . . , |a2| ≤ Q.

Assuming τ1 ≤ δ we obtain that for su�ciently small δ there exists a polynomial
P ∈ Pn−1(Q) satisfying the inequalities

|P (xi)| < δhQ−vi < hQ−vi ,

|P ′(xi)| < δQ, i = 1, 2,

H(P ) < Q.

This leads to a contradiction, since x 6∈ L2. Thus, τ1 > δ. Since the volume of the
compact convex set K is at least 2n, we conclude by Lemma A.2.3 that τ1 . . . τn ≤ 1
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and τn ≤ δ−n+1. Thus, by de�nition of successive minima, we can choose n linearly
independent polynomials Pj(t) = aj,n−1t

n−1 + . . .+ aj,1t+ aj,0 ∈ Z[t] satisfying the
inequalities 

|Pj(xi)| ≤ δ−n+1hQ−vi ,

|P ′j(xi)| ≤ δ−n+1Q, i = 1, 2,

|aj,k| ≤ δ−n+1Q, 4 ≤ k ≤ n− 1.

(3.4.19)

with
D := det |(aj,k−1)nj,k=1| ≤ n!.

Using Lemma A.1.19 choose a prime p satisfying

n! < p < 2n! (3.4.20)

and consider a system of linear equations in n variables θ1, . . . , θn

xni + p
n∑
j=1

θjPj(xi) = p(n+ 1)δ−n+1hQ−vi ,

nxn−1
i + p

n∑
j=1

θjP
′
j(xi) = pQ+ p

n∑
j=1
|P ′j(xi)|, i = 1, 2,

n∑
j=1

θjaj,k−1 = 0, 5 ≤ k ≤ n.

(3.4.21)

Our next goal is to show that the determinant D̂(x) of this system does not vanish.
Let us transform the system (3.4.21) as follows. Multiply the k-th equation, where
k = 5, 6, . . . , n, by p xk−1

1 ( respectively by p xk−1
2 ) and subtract it from the �rst

(respectively the second) equation of the system (3.4.21). Similarly, multiply the
k-th equation, where k = 5, 6, . . . , n, by p (k−1)xk−2

1 (respectively by p (k−1)xk−2
2 )

and subtract it from the third (respectively the fourth) equation. After these trans-
formations the determinant of system (3.4.21) may be written as

D̂(x) = p4 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

3∑
k=0

a1,kx
k
1 . . .

3∑
k=0

an,kx
k
1

3∑
k=0

a1,kx
k
2 . . .

3∑
k=0

an,kx
k
2

3∑
k=1

k · a1,kx
k−1
1 . . .

3∑
k=1

k · an,kxk−1
1

3∑
k=1

k · a1,kx
k−1
2 . . .

3∑
k=1

k · an,kxk−1
2

a1,4 . . . an,4
...

. . .
...

a1,n−1 . . . an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We proceed to show that D̂(x) is equal to D up to a multiple depending only on x1,
x2 and p. Multiply the third (respectively the fourth) row by 1

3x1 (respectively by
1
3x2) and subtract it from the �rst (respectively the second) row. Then subtracting
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the �rst (respectively the third) row from the second (respectively the fourth) row
gives:

D̂(x) = p4(x2−x1)2

9 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,2x
2
1 + 2a1,1x1 + 3a1,0 . . . an,2x

2
1 + 2an,1x1 + 3an,0

a1,2(x2 + x1) + 2a1,1 . . . an,2(x2 + x1) + 2an,1
3a1,3x

2
1 + 2a1,2x1 + a1,1 . . . 3an,3x

2
1 + 2an,2x1 + an,1

3a1,3(x2 + x1) + 2a1,2 . . . 3an,3(x2 + x1) + 2an,2
a1,4 . . . an,4
...

. . .
...

a1,n−1 . . . an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now let us subtract the second row multiplied by x1 from the �rst row and the fourth
row multiplied by 1

2 from the third row. Then subtract the third row multiplied by
x2+x1
x21

from the fourth row, and �nally subtract the fourth row multiplied by x1x2,

x2 + x1 and 3
2x1 − 1

2x2 from the �rst, the second and the third row respectively.
Consequently we obtain the inequality

D̂(x) = p4(x2 − x1)4D > 0,

since the polynomials Pj are linearly independent and |x1 − x2| > |d1−d2|
2 > 0.

Hence, the system (3.4.21) has a unique solution (θ1, . . . , θn). Moreover, there exist
integers k1, . . . , kn satisfying

|θi − ki| ≤ 1, i = 1, . . . , n, (3.4.22)

such that the following polynomial with integer coe�cients

P (t) = tn + p

n∑
j=1

kjPj(t) = tn + p (an−1t
n−1 + . . .+ a1t+ a0),

where ak =
n∑
j=1

kjaj,k is irreducible. This follows by the same arguments as in the

previous section.

Let us estimate the values |P (xi)| and |P ′(xi)|. By the inequalities (3.4.19), (3.4.22),
and (3.4.21) we obtain

pδ−n+1hQ−vi ≤ |P (xi)| ≤ p(2n+ 1)δ−n+1hQ−vi , i = 1, 2, (3.4.23)

pQ ≤ |P ′(xi)| ≤
(
p+ 2pnδ−n+1

)
Q, i = 1, 2. (3.4.24)

Finally, we need to estimate the height H(P ). By (3.4.21) and inequalities (3.4.19),
(3.4.22), we have

|ak| ≤ nδ−n+1Q, 4 ≤ k ≤ n− 1. (3.4.25)
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It remains to estimate |a0|, |a1|, |a2| and |a3|. By (3.4.23) � (3.4.25) and the in-
equalities |xi| ≤ |di|+ 1

2 , for Q > Q0 we have

|a3x
3
i + a2x

2
i + a1xi + a0| ≤ |P (xi)|+

n∑
k=4

(|di|+ 1)k |ak| < c36,iQ,

|3a3x
2
i + 2a2xi + a1| ≤ |P ′(xi)|+

n∑
k=4

k (|di|+ 1)k |ak| < c37,iQ, i = 1, 2, (3.4.26)

where

c36,i =

{
h, n = 3,

2nδ−n+1h (|di|+ 1)n , n > 3;
c37,i =

{
p+ 2pnδ−n+1h, n = 3,

4pn2δ−n+1h (|di|+ 1)n , n > 3.

We emphasize that in order to simplify equations we do not care about the accuracy
of the constants. Consider the following system of linear equations for a0, a1, a2

and a3 {
a3x

3
i + a2x

2
i + a1xi + a0 = l1,i,

3a3x
2
i + 2a2xi + a1 = l2,i, i = 1, 2.

(3.4.27)

According to the above computations the determinant of the system (3.4.27) does
not vanish. Thus, the system has a unique solution, which may be found by Cramer's
rule. Combining this with estimates (3.4.26), (3.4.20) and |xi| ≤ |di| + 1

2 one can
easily verify

|aj | < c38Q, 0 ≤ j ≤ 3.

Applying (3.4.25) now yields the following estimate

H(P ) < max
(
c38, nδ

−n+1
)
Q =: Q1. (3.4.28)

Consider the roots α1, . . . , αn of the polynomial P , where |xi − αi| = min
j
|xi − αj |.

By Lemma A.1.14 and estimates (3.4.23), (3.4.24), we have

|xi − αi| < n(2n+ 1)δ−n+1hQ−vi−1 = c39Q
−vi−1, i = 1, 2, (3.4.29)

where c39 = n(2n + 1)δ−n+1h. Let us prove that α1, α2 ∈ R for v1 = v2 = n−2
2 .

Assume the converse: let αi ∈ C, then its complex conjugate is also a root of the
polynomial P . Hence, by (3.4.28), (3.4.29) and Lemma A.1.18 we conclude that

|P (xi)| =
n∏
j=1

|xi − αj | ≤ c2
39Q

−n · c40Q = c40c
2
39Q

−n+1.

This inequality contradicts (3.4.23) for Q > Q0.

Let Γ = {γ1, . . . ,γt} be a maximal system of points with real algebraic conjugate
integer coordinates satisfying the condition that rectangles

σ(γk) :=
{
x ∈ R2 : |xi − γk,i| < c39Q

−n
2 , i = 1, 2

}
, 1 ≤ k ≤ t,
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do not intersect. Furthermore, let us introduce the expanded rectangles

σ′(γk) :=
{
x ∈ R2 : |xi − γk,i| < 2c39Q

−n
2 , i = 1, 2

}
, 1 ≤ k ≤ t,

and show that

B2 ⊂
t⋃

k=1

σ′(γk). (3.4.30)

To prove this fact, we are going to show that for any point x1 ∈ B2 there exists a
point γk ∈ Γ such that x1 ∈ σ′(γk). Since x1 ∈ B2, there is an point α with real
algebraic conjugate integer coordinates satisfying the inequalities (3.4.29). Thus,
either α ∈ Γ and x1 ∈ σ′(α), or there exists a point γk ∈ Γ satisfying

|αi − γk,i| ≤ c39Q
−n

2 , i = 1, 2,

which implies that x1 ∈ σ′(γk). Hence, from (3.4.30) and the estimate λ2

(
B2
)
≥

3
4 λ2 (Π) we have

3
4 λ2 (Π) ≤ λ2

(
B2
)
≤

t∑
k=1

λ2 (σ1(γk)) ≤ t24c2
39Q

−n,

which together with (3.4.28) yields the estimate

N 2
n (O, Q1,Π) ≥ t ≥ c28Q

n
1λ2 (Π) .





Chapter 4

A�ne Transformation of Random

Simplices and Integral Geometry

In this chapter we will consider the random k-dimensional simplices de�ned as con-
vex hull of random points X0, . . . , Xk in Rn, k ≤ n.

Before we start let us recall some de�nitions. For k ∈ {0, . . . , n}, the linear Grass-
mannian of k-dimensional linear subspaces of Rn is denoted by Gn,k and is equipped
with a unique rotation invariant Haar measure νn,k. Analogously, for k ∈ {0, . . . , n},
the a�ne Grassmannian of k-dimensional a�ne subspaces of Rn is denoted by An,k
and is equipped with a unique rigid motion invariant Haar measure µn,k. It should
be noted that νn,k is normalized by

νn,k(Gn,k) = 1,

which means that νn,k is probabilistic measure on Gn,k. For L ∈ Gn,k or L ∈ An,k
we denote by λL the k-dimensional Lebesgue measures on L. We will denote by
〈·, ·〉 the Euclidean scalar product in Rn and by ‖ · ‖2 the induced norm.

Some of the sets we consider have dimension less than n. In fact, we consider 3
classes: the convex hulls of k + 1 points, orthogonal projections to k-dimensional
linear subspaces, and intersections with k-dimensional a�ne subspaces, where k ∈
{0, . . . , n}. In this case vol(·) stands for the k-dimensional volume.

Consider k + 1 random points X0, . . . , Xk in Rn and denote by

conv(X0, . . . , Xk)

their convex hull, which is the the smallest convex set that contains all of them.
This convex hull is an example of random polytope with vertices X0, . . . , Xk. If
1 ≤ k ≤ n then the random polytope conv(X0, . . . , Xk) is a k-dimensional simplex
(maybe degenerate). Denote by

∆k (X0, . . . , Xk) := vol (conv(X0, . . . , Xk)) (4.0.1)

the k-dimensional volume of the simplex conv(X0, . . . , Xk). One natural question
here is to �nd the distribution of the random variable ∆k (X0, . . . , Xk). This is very
di�cult problem. So far it has been studied for a few models of random variables
X0, . . . , Xk only , which were de�ned in [51] and [56]:
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1. The Gaussian model: X0, . . . , Xk are i.i.d. standard Gaussian random vectors
with density function

f (‖x‖) = (2π)−n/2 exp

(
−1

2
‖x‖2

)
, x ∈ Rn.

2. The Beta model with parameter ν > 0: X0, . . . , Xk are i.i.d. points in the unit
ball Bn with density function

f (‖x‖) = π−n/2
Γ
(
n+ν

2

)
Γ
(
ν
2

) (
1− ‖x‖2

)(ν−2)/2
, x ∈ Bn.

3. The Beta prime model with parameter ν > 0: X0, . . . , Xk are i.i.d. points with
density function

f (‖x‖) = π−n/2
Γ
(
n+ν

2

)
Γ
(
ν
2

) (
1 + ‖x‖2

)−(n+ν)/2
, x ∈ Rn.

4. The spherical model: X0, . . . , Xk are uniformly distributed on the unit sphere
centered at the origin of Rn.

The investigation of this problem started with the calculation of the moments

E
[
∆k (X0, . . . , Xk)

p
]
. (4.0.2)

Miles derived exact formulas for (4.0.2) where X0, . . . , Xk are generated by one
of the four models described above: for the Gaussian model and integer p ≥ 0

see [51, Equation (70)], for the Beta model with parameter ν > 0 and integer
p ≥ 0 see [51, Equation (74)], for the Beta prime model with parameter ν > 0 and
integer 0 ≤ p < ν

2 see [51, Equation (72)]. Those formulas provide a representation
of the moments (4.0.2) in terms of Gamma functions. It should be noted that
the formula for the spherical model can be easily obtained from the Beta model
with parameter ν > 0 by letting ν → 0. The extension of Miles' result to non-
integer moments p > −1 has been recently obtained by Kabluchko, Temesvari,
and Thäle [42, Proposition 2.8]. The latter result allows to predict the volume
distribution of the random simplex conv(X0, . . . , Xk) and, �nally, using the moments
method, Grote, Kobluchko, and Thäle [38, Theorem 2.5] obtained a probabilistic
representation of the volume of a random simplex generated by one of the four
models.

In next sections we will investigate how the distribution of the volume of random
simplex changes under some �xed a�ne transformation. As an application we de-
rive the new representation of intrinsic volumes of some ellipsoid, obtain integral
geometry formula connecting the average volume of projections and the average
volume of cross-sections of an ellipsoid, prove the generalization of integral formula
of Furstenberg and Tzkoni [30] and establish its a�ne version.
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4.1 Main Result

For a �xed k ∈ {1, . . . , n} consider n-dimensional random vectors X0, . . . , Xk (not
necessarily independent and identically distributed) with an arbitrary spherically

symmetric joint distribution. By this we mean that the (k + 1)-tuple (X0, . . . , Xk)

is equidistributed with (UX0, . . . , UXk) for any orthogonal n × n matrix U . Con-
sider some non-degenerate a�ne transformation on Rn, de�ned by x→ Ax, where
A is non-singular n × n matrix, and apply this transformation to the simplex
conv(X0, . . . , Xk).

In those settings one can ask the following question.
Problem 4.1.1. How does the distribution of the volume (4.0.1) changes under the
a�ne transformations?

For k = n, the answer is obvious: it is multiplied by the determinant of the trans-
formation, namely for any x0, . . . ,xn ∈ Rn we have

∆n (Ax0, . . . , Axn) = | det(A)|∆n (x0, . . . ,xn) .

The case k < n presents a more delicate problem, since the above equality does not
hold anymore. The theorem below provides the solution of Problem 4.1.1.
Theorem 4.1.2. Let A be non-singular n × n matrix and let E be the ellipsoid

de�ned by

E :=
{
x ∈ Rn : x>(A>A)−1x ≤ 1

}
. (4.1.1)

Then we have

∆k(AX0, . . . , AXk)
d
=

vol (PξE)

κk
·∆k(X0, . . . , Xk), (4.1.2)

where ξ is random k-dimensional linear subspace, uniformly distributed with respect

to νn,k and independent of X0, . . . , Xk and PL denotes the orthogonal projection

operator on k-dimensional linear subspace L ∈ Gn,k .

It is obvious that all four density functions described above are spherically symmetric
and, thus, (4.1.2) is applicable to those models.

The main ingredients of the proof of Theorem 4.1.2 is the following deterministic
version of (4.1.2).
Proposition 4.1.3. Let A and E be as in Theorem 4.1.2. Consider the vectors

x1, . . . ,xk ∈ Rn and denote by L the span (linear hull) of x1, . . . ,xk. Then

∆k(0, Ax1, . . . , Axk) =
vol(PLE)

κk
·∆k(0,x1, . . . ,xk). (4.1.3)

Remark 4.1.4. Let us stress that here the origin is added to the convex hull. This

is important for obtaining the deterministic equation.
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4.1.1 Connection with Intrinsic Volumes

The concept of intrinsic volumes is an important characteristic of the convex sets.
Given some convex set K ⊂ Rn, consider its parallel body

Kε :=

{
x ∈ Rn : inf

s∈K
‖x− s‖2 ≤ ε

}
.

The volume of Kε is a polynomial in ε of degree at most n

vol(Kε) =

n∑
k=0

εn−kκn−kVk(K).

This result is known as the Steiner formula. The functionals V0, . . . , Vn are called
the intrinsic volumes and they depend only on K and not on the dimension of its
surrounding space.

Due to Kubota's formula (C.1.1), the average volume of k-dimensional projection
E vol(PξE) is proportional to the k-th intrinsic volume Vk(E) of the ellipsoid E (see
Section C.1 for more details). Thus, taking expectation in (4.1.2) readily implies
the following corollary.
Corollary 4.1.4.1. Under the assumptions of Theorem 4.1.2 we have

E
[
∆k(AX0, . . . , AXk)

]
=

(
n

k

)−1 κn−k
κn

Vk(E)E
[
∆k(X0, . . . , Xk)

]
. (4.1.4)

The formula for Vk(E) was derived in [68]. Relation (4.1.4) can be generalized to
higher moments using the notion of generalized intrinsic volumes introduced in [21].

4.1.2 Connection with Gaussian Random Matrices

The next point to be mentioned is that the distribution of the volume of a random
projection PξE is not known and even moments would be di�cult to �nd in general.
This fact makes the equation (4.1.2) less convenient to use. We can get rid of this
problem �nding a representation of the random variable vol (PξE) in terms of the
determinants of Gaussian random matrices.
Theorem 4.1.5. Under the assumptions of Theorem 4.1.2 we have

vol(PξE)

κk

d
=

(
det
(
G>A>AG

)
det
(
G>G

) )1/2
d
=

(
det
(
G>aGa

)
det
(
G>G

) )1/2

, (4.1.5)

where G is a random n × k matrix with i.i.d. standard Gaussian entries Nij and

Ga is a random n × k matrix with the entries aiNij, where a1, . . . , an denote the

singular values of A.

Using the representation (4.1.5), we obtain the following version of (4.1.2).
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Corollary 4.1.5.1. Under the assumptions of Theorem 4.1.2 we have

∆k(AX0, . . . , AXk)
d
=

(
det
(
G>A>AG

)
det
(
G>G

) )1/2

∆k(X0, . . . , Xk)

d
=

(
det
(
G>aGa

)
det
(
G>G

) )1/2

∆k(X0, . . . , Xk),

where the random matrices G and Ga are de�ned as in Theorem 4.1.5.

The important special case k = 1 corresponds to the distance between two random
points.
Corollary 4.1.5.2. For any non-singular n × n matrix A with singular values

a1, . . . , an we have

‖AX0 −AX1‖2
d
=

√
a2

1N
2
1 + · · ·+ a2

nN
2
n

N2
1 + · · ·+N2

n

· ‖X0 −X1‖2,

where N1, . . . , Nn are i.i.d. standard Gaussian random variables.

These results will be used in the next subsection to study integral geometry problems
for ellipsoids.

4.2 Random Points in Ellipsoids

Suppose that X0, . . . , Xk are independent, identically distributed random n-
dimensional vectors, which are uniformly distributed in some convex set K ⊂ Rn
with non-empty interior (denote by ∼ U(K)). A classical problem of stochastic
geometry is to �nd the distribution of ∆k (X0, . . . , Xk) starting with its moments

E
[
∆k(X0, . . . , Xk)

p
]

=
1

(vol(K))k+1

∫
Kk+1

∆k(x0, . . . ,xk)
p dx0 . . . dxk. (4.2.1)

To the best of our knowledge, for general K a formula for (4.2.1) is not known even
for n = 2, k = p = 1, where the problem reduces to the calculating the mean distance
between two random points uniformly chosen in a planar convex set (see [15], [31],
[57, Chapter 4], [50, Chapter 2], [5]).

The case of arbitrary k and n was studied for K being a ball only. In [51] it was
shown (see also [59, Theorem 8.2.3]) that for X0, . . . , Xk ∼ U(Bn) and any integer
p ≥ 0 we have

E
[
∆(X0, . . . , Xk)

p
]

=
κk+1
n+p

κk+1
n

κk(n+p)+n

κ(k+1)(n+p)

bn,k
bn+p,k

, (4.2.2)

where κk are de�ned in (C.0.1) and bq,k are de�ned in (C.0.2). In [42, Proposition
2.8 and p.23] this relation was extended to all real p > −1. Theorem 4.1.2 implies
the following generalization of (4.2.2) for the ellipsoids.
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Theorem 4.2.1. For any non-degenerate ellipsoid E ⊂ Rn consider random n-

dimensional vectors X0, . . . , Xk uniformly distributed in ellipsoid E. Then any real

number p > −1 we have

E
[
∆k(X0, . . . , Xk)

p
]

=
1

(k!)p
κk+1
n+p

κk+1
n

κk(n+p)+d

κ(k+1)(n+p)

bn,k
bn+p,k

E
[

vol (PξE)p
]

κpk
, (4.2.3)

where ξ is a uniformly chosen random k-dimensional linear subspace in Rn, inde-
pendent of X0, . . . , Xk.

Note that (4.2.3) is indeed a generalization of (4.2.2) since PξBn = Bk almost surely
and vol(Bk)p = κpk. For k = 1 formula (4.2.3) was recently obtained in [39].

By Kubota's formula (C.1.1), the right-hand side of (4.2.3) with p = 1 is propor-
tional to the k-th intrinsic volume of E , which implies the following result.
Corollary 4.2.1.1. For any non-degenerate ellipsoid E ⊂ Rn consider random n-

dimensional vectors X0, . . . , Xk uniformly distributed in ellipsoid E. Then,

E
[
∆k(X0, . . . , Xk)

]
=

1

2k
((n+ 1)!)k+1

((n+ 1)(k + 1))!

(
κk+1
n+1

κ(n+1)(k+1)

)2

Vk(E).

Very recently, for random n-dimensional vectors X0, . . . , Xk uniformly distributed in
the unit ball Bn, a formula for the distribution of ∆k(X0, . . . , Xk) has been derived
[38]. For a random variable η and positive α1, α2 > 0 we write η ∼ B(α1, α2) to
denote that η has a Beta distribution with parameters α1, α2 and the density

Γ(α1 + α2)

Γ(α1) Γ(α2)
tα1−1 (1− t)α2−1, t ∈ (0, 1).

It was shown in [38] that for random n-dimensional vectors X0, . . . , Xk uniformly
distributed in unit ball Bn the following holds

(k!)2 η(1− η)k ∆k(X0, . . . , Xk)
2 d

= (1− η′)k η1 · · · ηk, (4.2.4)

where η, η′, η1, . . . , ηk are independent random variables independent of X0, . . . , Xk,
such that

η, η′ ∼ B
(
n

2
+ 1,

kn

2

)
, ηi ∼ B

(
n− k + i

2
,
k − i

2
+ 1

)
.

Multiplying both sides of (4.2.4) by vol (PξE)2 /κ2
k and applying Theorem 4.1.2 and

Theorem 4.1.5 leads to the following generalization of (4.2.4).
Theorem 4.2.2. For any non-degenerate ellipsoid E ⊂ Rn consider random n-

dimensional vectors X0, . . . , Xk uniformly distributed in the ellipsoid E. Then, we

have

(k!)2 η (1− η)k ∆k(X0, . . . , Xk)
2 d

= κ−2
k (1− η′)k η1 · · · ηk vol (PξE)2

d
= (1− η′)k η1 · · · ηk

(
det
(
G>aGa

)
det (G>G)

)
,
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where G is a random n × k matrix with i.i.d. standard Gaussian entries Nij, Ga

is a random n × k matrix with the entries aiNij and a1, . . . , an are the length of

semi-axes of E.

Taking k = 1 yields the following stochastic equality for the distribution of the
distance between two random points in ellipsoid E .
Corollary 4.2.2.1. Under the assumptions of Theorem 4.2.2 we have

η(1− η) · ‖X0 −X1‖22
d
= (1− η′) η1

(
a2

1N
2
1 + · · ·+ a2

nN
2
n

N2
1 + · · ·+N2

n

)
,

where N1, . . . , Nn are i.i.d. standard Gaussian random variables.

4.3 Integral Geometry Formulas

For an arbitrary convex compact bodyK, any real p > −n, and k = 1 it is possible to
express (4.2.1) in terms of the lengths of the one-dimensional sections of K [20, 43]:∫

K2

‖x0 − x1‖p2 dx0dx1 =
2nκn

(n+ p) (n+ p+ 1)

∫
An,1

vol (K ∩ E)p+n+1 µn,1(dE).

This formula can not be extended to k > 1 for arbitrary convex body K, but for
ellipsoids K = E this is possible.
Theorem 4.3.1. For any non-degenerate ellipsoid E ⊂ Rn, any integer 0 ≤ k ≤ n,
and any real p > −n+ k − 1 we have∫
Ek+1

∆k(x0, . . . ,xk)
p dx0 . . . dxk

=
1

(k!)p
κk+1
n+p

κp+n+1
k

κk(n+p)+k

κ(k+1)(n+p)

bn,k
bn+p,k

∫
An,k

vol (E ∩ E)p+n+1 µn,k(dE). (4.3.1)

Combining this theorem with Theorem 4.2.1 readily gives the following connection
between the average volumes of k-dimensional cross-sections and projections of an
ellipsoid.
Theorem 4.3.2. For any non-degenerate ellipsoid E ⊂ Rn, any integer 0 ≤ k ≤ n,
and any real p ≥ 0 we have

κk+1
n

κn+1
k

κk(n+p)+k

κk(n+p)+n

∫
An,k

vol (E ∩ E)p+n+1 µn,k(dE)

= vol(E)k+1

∫
Gn,k

vol (PLE)p νn,k(dL).

For p = 0, we obtain the following integral formula.
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Corollary 4.3.2.1. For any non-degenerate ellipsoid E ⊂ Rn and any integer 0 ≤
k ≤ n we have∫

An,k

vol (E ∩ E)n+1 µn,k(dE) =
κn+1
k

κk+1
n

κn(k+1)

κk(n+1)
vol (E)k+1 . (4.3.2)

This result may be regarded as an a�ne version of the following integral formula of
Furstenberg and Tzkoni [30]:∫

Gn,k

vol (E ∩ L)n νn,k(dL) =
κnk
κkn

vol (E)k .

Our next theorem generalizes this formula in the same way as (4.3.1) general-
izes (4.3.2).
Theorem 4.3.3. For any non-degenerate ellipsoid E ⊂ Rn, any integer 0 ≤ k ≤ n,
and any real p > −n+ k we have∫
Ek

∆k(0,x1, . . . ,xk)
p dx1 . . . dxk

=
1

(k!)p
κkn+p

κp+nk

bn,k
bn+p,k

∫
Gn,k

vol (E ∩ L)p+n νn,k(dL). (4.3.3)

In probabilistic language it may be formulated as

E
[
∆k(0, X1, . . . , Xk)

p
]

=
1

(k!)p
κkn+p

κp+nk

bn,k
bn+p,k

E
[

vol (E ∩ ξ)p+n
]
,

where X1, . . . , Xk are independent, identically distributed random vectors uniformly
distributed in E and ξ is a uniformly chosen random k-dimensional linear subspace
in Rn.

4.4 Proofs: Part I

4.4.1 Proof of Proposition 4.1.3

To avoid trivialities we assume that dimL = k, i.e. x1, . . . ,xk are in general position.
Let e1, . . . , ek ∈ Rn be some orthonormal basis in L. Let OL and X denote n × k
matrices whose columns are e1, . . . , ek and x1, . . . ,xk respectively. It is easy to check
that OLO>L is a n × n matrix corresponding to the orthogonal projection operator
PL. Thus,

OLO
>
LX = X. (4.4.1)
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Recall that E is de�ned by (4.1.1). It is known (see, e.g., [60, Appendix H]) that
the orthogonal projection PLE is an ellipsoid in L and

vol (PLE) = κk

[
det
(
O>LHOL

) ]1/2
, (4.4.2)

where
H := A>A.

A well-known formula for the volume of a k-dimensional parallelepiped and (C.2.1)
implies that for any x1, . . . ,xk ∈ Rn, we have

∆k(0,x1, . . . ,xk) =
1

k!

[
det
(
X>X

) ]1/2
. (4.4.3)

Therefore,

k! ∆k(0, Ax1, . . . , Axk) =
[

det
(

(AX)>AX
) ]1/2

=
[

det
(
X>HX

) ]1/2
.

Applying (4.4.1) produces

det
(
X>HX

)
= det

(
X>OLO

>
LHOLO

>
LX

)
= det

(
O>LHOL

)
det
(
X>OL

)
det
(
O>LX

)
= det

(
O>LHOL

)
det
(
X>OLO

>
LX

)
= det

(
O>LHOL

)
det
(
X>X

)
,

which together with (4.4.2) and (4.4.3) �nishes the proof.

4.4.2 Proof of Theorem 4.1.2

We will introduce two proofs of the Theorem 4.1.2. The �rst proof is simple and
straight forward. It does not require the existence of joint density ofX0, . . . , Xk. The
second proof is based on the Blaschke-Petkantschin formula and the characteristic
function uniqueness theorem. The similar approach will be used to prove Theorems
4.3.1 and 4.3.3. In the second proof we will assume that the joint density function
of X0, . . . , Xk exists.

The �rst proof

Fist of all note that with probability one the equation

vol(PξE)

κk
·∆k(X0, . . . , Xk) = 0

holds if and only if
∆k(AX0, . . . , AXk) = 0,
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which in turn is equivalent to

dim conv(X0, . . . , Xk) < k.

Therefore to prove (4.1.2) it is enough to show that the conditional distributions of

∆k(AX0, . . . , AXk) and vol(PξE)
κk

· ∆k(X0, . . . , Xk) given dim conv(X0, . . . , Xk) = k

are equal. Thus without loss of generality we can assume that the simplex
conv(X0, . . . , Xk) is not degenerate with probability one.

Since the joint distribution of X0, . . . , Xk is spherically symmetric, for any orthog-
onal matrix U we have

∆k(AX0, . . . , AXk) = ∆k(0, A(X1 −X0), . . . , A(Xk −X0) (4.4.4)
d
= ∆k(0, A(UX1 − UX0), . . . , A(UXk − UX0).

Now let Υ be a random orthogonal matrix chosen uniformly from SO(n) with respect
to the probabilistic Haar measure and independently of X0, . . . , Xk. The linear span
of X1 −X0, . . . , Xk −X0 is a k-dimensional linear subspace of Rn. Thus,

ξ := span(0,ΥX1 −ΥX0, . . . ,ΥXk −ΥX0)

is a random uniformly chosen k-dimensional linear subspace independent of
X0, . . . , Xk. Applying Proposition 4.1.3 to the vectors ΥX1−ΥX0, . . . ,ΥXk−ΥX0

we obtain

∆k(0, A(ΥX1 −ΥX0), . . . , A(ΥXk −ΥX0)

=
vol (PξE)

κk
·∆k(0,ΥX1 −ΥX0, . . . ,ΥXk −ΥX0)

=
vol (PξE)

κk
·∆k(ΥX0,ΥX1, . . . ,ΥXk)

d
=

vol (PξE)

κk
·∆k(X0, X1, . . . , Xk).

Combining this with (4.4.4) for U = Υ �nishes the proof.

The second proof

Denote by f(x0, . . . ,xk) the joint density function of (X0, . . . , Xk). Let

ϕA(t) : =

∫
(Rn)k+1

exp
(
it log ∆k(Ax0, . . . , Axk)

)
f(x0, . . . ,xk) dx0 . . . dxk

=

∫
(Rn)k+1

exp
(
it log ∆k(0, A(x1 − x0), . . . , A(xk − x0))

)
× f(x0, . . . ,xk) dx0 . . . dxk



4.4. Proofs: Part I 93

be a characteristic function of log ∆k(AX0, . . . , AXk). In particular, denoting
by I the identity matrix, we obtain that ϕI(t) is a characteristic function of
log ∆k(X0, . . . , Xk). Substituting y0 = x0 and yi = xi − x0 for 1 ≤ i ≤ k leads to

ϕA(t) =

∫
(Rn)k+1

exp
(
it log | conv(0, Ay1, . . . , Ayk)|

)
× f(y0,y1 + y0 . . . ,yk + y0) dy0 . . . dyk

=

∫
(Rn)k

exp
(
it log | conv(0, Ay1, . . . , Ayk)|

)
g(y1, . . . ,yk) dy1 . . . dyk,

where

g(y1, . . . ,yk) :=

∫
Rn

f(y0,y1 + y0 . . . ,yk + y0) dy0.

Using the linear Blaschke-Petkantschin formula (see (C.2.2)) with

h(y1, . . . ,yk) := exp
(
it log ∆k(0, Ay1, . . . , Ayk)

)
g(y1, . . . ,yk)

gives

ϕA(t) = bn,k(k!)n−k
∫

Gn,k

∫
Lk

exp
(
it log ∆k(0, Ay1, . . . , Ayk)

)
g(y1, . . . ,yk)

×∆k(0,y1, . . . ,yk)
n−k λL(dy1) . . . λL(dyk) νn,k(dL). (4.4.5)

Applying Proposition 4.1.3 to (4.4.5) leads to

ϕA(t) = bn,k(k!)n−k
∫

Gn,k

exp

(
it log

vol (PLE)

κk

)∫
Lk

exp
(
it log ∆k(0,y1, . . . ,yk)

)
× g(y1, . . . ,yk)∆k(0,y1, . . . ,yk)

n−k λL(dy1) . . . λL(dyk) νn,k(dL).

Since f is spherically symmetric, the function

hA(t) : = bn,k(k!)n−k
∫
Lk

exp
(
it log ∆k(0,y1, . . . ,yk)

)
g(y1, . . . ,yk)

×∆k(0,y1, . . . ,yk)
n−k λL(dy1) . . . λL(dyk)

does not depend on the choice of L. Indeed, consider any L′ ∈ Gn,k. There exists
an orthogonal matrix U such that L = UL′. Substituting yi = Uzi gives

hA(t) = bn,k(k!)n−k
∫
L′k

exp
(
it log ∆k(0, Uz1, . . . , Uzk)

)
g(Uz1, . . . , Uzk)

×∆k(0, Uz1, . . . , Uzk)
n−k λ′L(dz1) . . . λ′L(dzk).
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Now the claim follows from

∆k(0, Uz1, . . . , Uzk) = ∆k(0, z1, . . . , zk)

and

g(Uz1, . . . , Uzk) =

∫
Rn

f(y0, Uz1 + y0 . . . , Uzk + y0) dy0

=

∫
Rn

f(Uy0, Uz1 + Uy0 . . . , Uzk + Uy0) dy0

=

∫
Rn

f(y0, z1 + y0 . . . , zk + y0) dy0

= g(z1, . . . , zk),

where at the second step we did a change of variables y0 → Uy0 and at the third
step we used the spherical symmetry of f .

Thus hA(t) does not depend on the choice of L, which implies

ϕA(t) = hA(t)E exp

(
it log

vol (PξE)

κk

)
.

In particular,
ϕI(t) = hA(t).

Comparing the last two equalities and applying the characteristic function unique-
ness theorem, we arrive at

log ∆k(AX0, . . . , AXk)
d
= log

vol (PξE)

κk
+ log ∆k(X0, . . . , Xk),

and the theorem follows.

4.4.3 Proof of Corollary 4.1.5

Denote by G1, . . . , Gk ∈ Rd the columns of the matrix G. Hence, AG1, . . . , AGk ∈
Rd are the columns of the matrix AG. Using Proposition 4.1.3 with xi = Gi and
applying (4.4.3) to G and AG gives[

det
(
G>A>AG

)]1/2
=

vol (PηE)

κk
·
[

det
(
G>G

)]1/2
,

or (
det
(
G>A>AG

)
det
(
G>G

) )1/2

=
vol (PηE)

κk
,

where η is the linear hull of G1, . . . , Gk. Since G1, . . . , Gk are i.i.d. standard Gaus-
sian vectors, η is uniformly distributed in Gn,k with respect to νn,k, given dim η = k,

which holds a.s. This implies η
d
= ξ, and the corollary follows.
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4.4.4 Proofs of Theorem 4.2.1 and Theorem 4.2.2

For any non-degenerate ellipsoid E there exist a unique symmetric positive-de�nite
n× n matrix A such that

E = ABn =
{
x ∈ Rn : ‖A−1x‖ ≤ 1

}
=
{
x ∈ Rn : x>A−2x ≤ 1

}
.

Since X0, . . . , Xk are i.i.d. random vectors uniformly distributed in E , we have that
A−1X0, . . . , A

−1Xk are i.i.d. random vectors uniformly distributed in Bn. It follows
from Theorem 4.1.2 that

∆k(X0, . . . , Xk) = ∆k(AA
−1X0, . . . , AA

−1Xk) (4.4.6)

d
= ∆k(A

−1X0, . . . , A
−1Xk)

vol (PξE)

κk
.

Taking the p-th moment and applying (4.2.2) implies Theorem 4.2.1.

Now apply (4.2.4) to A−1X0, . . . , A
−1Xk we get

(k!)2 η(1− η)k ∆k(A
−1X0, . . . , A

−1Xk)
2 d

= (1− η′)k η1 · · · ηk.

Multiplying by
vol(PξE)

κk
and applying (4.4.6) implies Theorem 4.2.2.

4.4.5 Proof of Corollary 4.2.1.1

From Kubota's formula (see (C.1.1)) and Theorem 4.2.1 we have

E
[
∆k(X0, . . . , Xk)

]
= αn,k Vk(E),

where

αn,k :=
1

k!

κk+1
n+1

κk+1
n

κk(n+1)+n

κ(k+1)(n+1)

bn,k
bn+1,k

κn−k(
n
k

)
κn
.

From the de�nition of bn,k (see (C.0.2)) and κp (see (C.0.1)) we obtain

αn,k =
κk+1
n+1

κk+1
n

κk(n+1)+n

κ(k+1)(n+1)

(n+ 1− k)!κn−k+1

(n+ 1)!κn+1

κn−k
κn

=
(n+ 1− k)!

πk/2(n+ 1)!

(
Γ
(

1
2n+ 1

)
Γ
(

1
2(n+ 1) + 1

))k+1

×
Γ
(

1
2(k + 1)(n+ 1) + 1

)
Γ
(

1
2 ((k + 1)n+ k) + 1

) Γ
(

1
2(n+ 1) + 1

)
Γ
(

1
2(n− k + 1) + 1

) Γ
(

1
2n+ 1

)
Γ
(

1
2(n− k) + 1

) .
Using Legendre's duplication formula for the Gamma function

Γ (z) Γ

(
z +

1

2

)
= 21−2z π1/2 Γ (2z) ,
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the recursion Γ (1 + z) = z Γ (z), and the fact that k, n ∈ Z we obtain

αn,k =
(n− k)!

πk/2n!

Γ
(

1
2(k + 1)(n+ 1) + 1

)
Γ
(

1
2 ((k + 1)n+ k) + 1

) Γ
(

1
2n+ 1

2

)
Γ
(

1
2n+ 1

)
Γ
(

1
2(n− k) + 1

2

)
Γ
(

1
2(n− k) + 1

)
×

(
Γ
(

1
2n+ 1

)
Γ
(

1
2(n+ 1) + 1

))k+1

=
1

(2
√
π)
k

Γ
(

1
2(k + 1)(n+ 1) + 1

)
Γ
(

1
2 ((k + 1)n+ k) + 1

) ( Γ
(

1
2n+ 1

)
Γ
(

1
2(n+ 1) + 1

))k+1

=
1

(2
√
π)
k

(
Γ
(

1
2n+ 1

)
Γ
(

1
2n+ 1 + 1

2

))k+1

Γ
(

1
2 (kn+ n+ k) + 1

)
Γ
(

1
2(kn+ k + n) + 1 + 1

2

) ( κk+1
n+1

κ(n+1)(k+1)

)2

=
1

2k
((n+ 1)!)k+1

((n+ 1)(k + 1))!

(
κk+1
n+1

κ(n+1)(k+1)

)2

.

4.5 Proofs: Part II

4.5.1 Proof of Theorem 4.3.1

Let us consider the expression

J : =

∫
Ek+1

∆k(x0, . . . ,xk)
p dx0 . . . dxk

=

∫
(Rn)k+1

∆k(x0, . . . ,xk)
p

k∏
i=0

1E(xi) dx0 . . . dxk.

Using the a�ne Blaschke-Petkantschin formula (see (C.2.3)) with

h(x0, . . . ,xk) := ∆k(x0, . . . ,xk)
p

k∏
i=0

1E(xi)

yields the following representation

J = bn,k(k!)n−k
∫

An,k

∫
Ek+1

∆k(x0, . . . ,xk)
p+n−k

k∏
i=0

1E(xi)λE(dx0) . . . λE(dxk)µn,k(dE)

= bn,k(k!)n−k
∫

An,k

∫
(E∩E)k+1

∆k(x0, . . . ,xk)
p+n−k λE(dx0) . . . λE(dxk)µn,k(dE).

Now �x some E ∈ An,k. Applying Theorem 4.2.1 to the ellipsoid E ∩ E gives

1

vol (E ∩ E)k+1

∫
(E∩E)k+1

∆k(x0, . . . ,xk)
p+n−k λE(dx0) . . . λE(dxk)

=
1

(k!)p+n−k
κk+1
n+p

κp+n+1
k

κk(n+p)+k

κ(k+1)(n+p)

bk,k
bn+p,k

vol (E ∩ E)p+n−k ,
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which leads to

J =
1

(k!)p
κk+1
n+p

κp+n+1
k

κk(n+p)+k

κ(k+1)(n+p)

bn,k
bn+p,k

∫
An,k

vol (E ∩ E)p+n+1 µn,k(dE).

4.5.2 Proof of Theorem 4.3.3

The proof is similar to the previous one. Let us consider the expression

J : =

∫
Ek

∆k(0,x1, . . . ,xk)
p dx1 . . . dxk

=

∫
(Rn)k

∆k(0,x1, . . . ,xk)
p

k∏
i=1

1E(xi) dx1 . . . dxk.

Using the linear Blaschke-Petkantschin formula (see (C.2.2)) with

h(x1, . . . ,xk) := ∆k(0,x1, . . . ,xk)
p

k∏
i=1

1E(xi)

gives

J = bn,k(k!)n−k
∫

Gn,k

∫
Lk

∆k(0,x1, . . . ,xk)
p+n−k (4.5.1)

×
k∏
i=1

1E(xi)λL(dx1) . . . λL(dxk) νn,k(dL)

= bn,k(k!)n−k
∫

Gn,k

∫
(L∩E)k

∆k(0,x1, . . . ,xk)
p+n−k λL(dx1) . . . λL(dxk) νn,k(dL).

Fix some L ∈ Gn,k. Since E ∩ L is an ellipsoid, there exists a linear transformation
AL : L → Rk such that AL(E ∩ L) = Bk. Applying the coordinate transformation
xi = ALyi, i = 1, 2, . . . , k, we get∫

(L∩E)k

∆k(0,x1, . . . ,xk)
p+n−k λL(dx1) . . . λL(dxk)

=
vol (E ∩ L)p+n

κp+nk

∫
(Bk)k

∆k(0,y1, . . . ,yk)
p+n−k dy1 . . . dyk. (4.5.2)

It is known (see, e.g., [59, Theorem 8.2.2]) that∫
(Bk)k

∆k(0,y1, . . . ,yk)
p+n−k dy1 . . . dyk = (k!)−p−n+k κkn+p

bk,k
bn+p,k

. (4.5.3)

Substituting (4.5.3) and (4.5.2) into (4.5.1) �nishes the proof.





Appendix A

Some Results From Number

Theory and Geometry of Numbers

A.1 Number Theory

In this section we recall some de�nitions from algebra and number theory and in-
troduce necessary technical lemmas.

A.1.1 De�nitions

De�nition A.1.1. A non-constant polynomial P is irreducible over the �eld

F if its coe�cients belong to F and it can not be factored into the product of two

non-constant polynomials with coe�cients in F.

In this thesis we will consider only the case F = Q and polynomials with rational
coe�cients P ∈ Q[t].
De�nition A.1.2. A non-constant polynomial P is monic if its leading coe�cient

is equal to 1.

De�nition A.1.3. A non-constant polynomial P (t) of degree n is reciprocal if it

satis�es tnP (1/t) ≡ ±P (t).

De�nition A.1.4. Let P (t) = ant
t + . . .+ a0 ∈ Z[t]. The greatest common divisor

of the coe�cients a0, . . . , an is called the content of P and denoted by cont(P ).

De�nition A.1.5. A polynomial is primitive if its content is equal to 1.

De�nition A.1.6. The 'naïve' height of the polynomial P (t) = ant
t + . . .+ a0 is

the value H(P ) = max
0≤i≤n

|ai|.

De�nition A.1.7. Given the vector w = (w0, . . . , wn) of positive weights we de�ne

the weighted lp height of the polynomial P (t) = ant
t + . . .+ a0 as follows

hp,w(P ) :=


(

n∑
i=0
|wi ai|p

)1/p

, p <∞;

max
0≤i≤n

wi |ai|, p =∞.

Note, that for w1 = (1, . . . , 1) and p =∞ we have h∞,w1(P ) = H(P ).
De�nition A.1.8. A number α is called an algebraic number if there exists an

irreducible over the Q primitive polynomial P ∈ Z[t] such that P (α) = 0. The

polynomial de�ned above is unique for any algebraic number α and it is called the

minimal polynomial of algebraic number α.
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De�nition A.1.9. The algebraic number α is called an algebraic integer if its

minimal polynomial P ∈ Z[t] is monic.

De�nition A.1.10. Two algebraic numbers are called algebraic conjugates if

they have the same minimal polynomial.

De�nition A.1.11. The degree of algebraic number α is degree of its minimal

polynomial deg(α) = degP .

We will denote the �eld of algebraic numbers by A and the set of algebraic numbers
of degree n ∈ N by An.
De�nition A.1.12. Height function is the function h : A → R+ such that for

any n ∈ N and Q > 0 there are only �nitely many algebraic numbers α ∈ An with

h(α) ≤ Q and for any algebraic conjugates α′ and α we have h(α′) = h(α).

De�nition A.1.13. Let Γ be a countable set of real numbers and N : Γ → R+

be a positive-valued function. The pair (Γ, N) is called a regular system if there

exists a constant C = C(Γ, N) > 0 such that for every interval I ⊂ R the following

property is satis�ed: for a su�ciently large number T0 = T0(Γ, N, I) > 0 and an

arbitrary integer T > T0 there exist γ1, γ2, . . . , γt ∈ Γ ∩ I satisfying

1) N(γi) ≤ T, 1 ≤ i ≤ t,
2) |γi − γj | > T−1, 1 ≤ i < j ≤ t,
3) t > C T |I|.

A.1.2 Lemmas

For a polynomial P with roots α1, α2, . . . , αn de�ne the following set

S(αi) :=

{
x ∈ R : |x− αi| = min

1≤j≤n
|x− αj |

}
.

Assume that the roots of the polynomial P are sorted by distance from αi = αi,1

|αi,1 − αi,2| ≤ |αi,1 − αi,3| ≤ . . . ≤ |αi,1 − αi,n|.

Lemma A.1.14. Let x ∈ S(αi). Then

|x− αi| ≤ n ·
|P (x)|
|P ′(x)|

, (A.1.1)

|x− αi| ≤ 2n−1 · |P (x)|
|P ′(αi)|

, (A.1.2)

|x− αi| ≤ min
1≤j≤n

(
2n−j

|P (x)|
|P ′(αi)|

|αi − αi,2| . . . |αi − αi,j |
)1/j

. (A.1.3)

Proof. Considering the polynomial P and its derivative P ′ at the point x we get

|P ′(x)||P (x)|−1 ≤
n∑
i=1

|x− αi|−1 ≤ n|x− α1|−1,
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which establishes the �rst inequality.

For a proof of the second and the third inequalities see [62], [10].

Lemma A.1.15. Let I be an interval, and let A ⊂ I be a measurable set with

µ1A ≥ 1
2µ1I. If for some δ, v > 0, some polynomial P ∈ Z[t] of degree n and all

x ∈ A the inequality |P (x)| < δQ−v holds, then for all points x ∈ I we have

|P (x)| < 6n(n+ 1)n+1δ Q−v.

The proof of this lemma can be found in [9].
Lemma A.1.16. Let δ, η1, η2 be real positive numbers, and let P1, P2 ∈ Z[t] poly-

nomials without common roots of degrees at most n such that

max (H(P1), H(P2)) < K,

for some K > K0(δ). Let J1, J2 ⊂ R be intervals of sizes µJ1 = K−η1, µJ2 = K−η2.

If for some τ1, τ2 > 0 and for all (x1, x2) ∈ J1 × J2, the inequalities

max (|P1(xi)|, |P2(xi)|) < K−τi , i = 1, 2,

hold, then

Mτ ,η := τ1 + τ2 + 2 + 2 max(τ1 + 1− η1, 0) + 2 max(τ2 + 1− η2, 0) < 2n+ δ. (A.1.4)

The proof of this lemma can be found in [53].
Lemma A.1.17. For any P1, P2 ∈ Z[t] of degrees n2 = degP2 ≥ degP1 = n1 > 0

we have

(
2n1+n2−2

√
n1 + n2 + 1

)−1
H(P1)H(P2)

≤ H(P1P2) ≤ (1 + n1)H(P1)H(P2). (A.1.5)

For the proof see e.g. [54, Theorem 4.2.2].
Lemma A.1.18. For any subset of roots αi1 , . . . , αis, 1 ≤ s ≤ n, of the polynomial

P (t) ∈ Z[t] of degree n and with leading coe�cient an we have

s∏
j=1

|αij | ≤ (n+ 1)2nH(P ) · |an|−1.

The proof can be found in [29].
Lemma A.1.19 (Bertrand postulate). For any integer n ≥ 2 there exists a prime

p such that n < p < 2n.

Proved by P. Chebyshev in 1850 (see for instance [52, Theorem 2.4]).
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Lemma A.1.20 (Eisenstein criterion). Let P (t) = ant
n + . . .+ a1t+ a0 be a poly-

nomial with integer coe�cients. If there exists a prime number p such that:
an 6≡ 0 mod p,

ai ≡ 0 mod p, i = 0, . . . , n− 1

a0 6≡ 0 mod p2,

(A.1.6)

then P is irreducible over the Q.

For a proof see [27].

A.2 Geometry of Numbers

De�nition A.2.1. Let g1,g2, . . . ,gn be linearly independent points in Rn. Then

the set

Λ := {x ∈ Rn : x = u1g1 + . . .+ ungn, ui ∈ Z} ,

is called a lattice. The system of points g1,g2, . . . ,gn is called a basis of Λ.

De�nition A.2.2. If Λ is a lattice and the rows of matrix G form a basis of Λ then

| detG| is called the determinant of Λ and denoted by det(Λ).

The two fundamental results in geometry of number belong to Minlowski who can
be considered as the founder of this area.
Theorem A.2.3 (Minkowski's linear forms theorem). Let Λ be an n-dimensional

lattice and let ai,j, bj > 0, 1 ≤ i, j ≤ n, be real numbers such that

b1 · . . . · bn ≥ det(Λ) |det (ai,j)| .

Then there is a point x ∈ Λ other than zero satisfying∣∣∣∣∣∣
n∑
j=1

a1,jxj

∣∣∣∣∣∣ ≤ b1,
∣∣∣∣∣∣
n∑
j=1

ai,jxj

∣∣∣∣∣∣ < bi, 2 ≤ i ≤ n.

For the proof see [19, pp. 73].
De�nition A.2.4. Let K be a bounded central symmetric convex body in Rn and

Λ ∈ Rn be a lattice. The k-th successive minimum τk = τk(K,Λ) of the body K

with respect to the lattice Λ is the lower bound of the numbers τ such that the body

τ K contains k linearly independent lattice points.

Theorem A.2.5 (Minkowski's 2nd theorem on successive minima). Let K be a

bounded central symmetric convex body in Rn and let τ1, . . . , τn be the successive

minima of body K in the n-dimensional lattice Λ with determinant det(Λ). Then

2n

n!
det(Λ) ≤ τ1τ2 . . . τn vol(K) ≤ 2n det(Λ).
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The best general references here are [19, pp. 203], [47, pp. 59].

Another important topic in geometry of numbers is counting lattice points in some
bounded subsetD of the Euclidean space. This problem has a numerous applications
in number theory. There are a lot of results providing good estimates under some
conditions for subset D (see [67] for brief review).
De�nition A.2.6 ([67]). We say that a set D is in Lip(n,M,L) (or of Lipschitz

class (n,M,L)) if D is a subset of Rn, and if there are M maps φ1, . . . , φM :

[0, 1]n−1 → Rn satisfying Lipschitz condition

|φi(x)− φi(y)| ≤ L |x− y| , x,y ∈ [0, 1]n−1, i = 1, . . . ,M, (A.2.1)

such that D is covered by the images of the maps φi.

Given some bounded set D ⊂ Rn some lattice Λ in Rn denote by µΛ(D) the number
of lattice points in D. For a real number t > 0 and a set D ⊂ Rn denote by

tD := {tx : x ∈ D},

the dilate of D by the number t.

The following theorem is stated for the sets of type tD and gives the asymptotic
formula for µΛ(tD) when t→∞.
Theorem A.2.7. Let Λ be a lattice in Rn and let D be a bounded set in Rn such

that the boundary ∂D of D is in Lip(n,M,L). Then

µΛ(tD) =
vol(D)

det(Λ)
tn +O

(
tn−1

)
,

where the implicit constant in the big O notation depends on n, L, M only.

For the proof see [46, Chapter VI, �2].

We will apply the Theorem A.2.7 in case Λ = Zn. Given some bounded set D ⊂ Rn
denote by µ∗(D) the number of points with coprime integer coordinates in D. The
following lemma provides asymptotic formula for µ∗(tD) when t→∞.
Lemma A.2.8. Let D be a bounded set in Rn, n ≥ 2 such that the boundary ∂D of

D is in Lip(n,M,L). Then

µ∗(tD) =
vol(D)

ζ(n)
tn +O

(
tn−1 (log t)b2/nc

)
, (A.2.2)

where the implicit constant in the big-O-notation depends on n, L, M only.

Results of this type are well-known, see for example the classical monograph by
Bachmann [1, pp. 436�444] (in particular, formulas (83a) and (83b) on pages 441�
442). The basic ingredient of the proof is the classical Möbius inversion formula (see
[55]) and Theorem A.2.7. For the detailed proof of Lemma A.2.8, see [36].

In general it is not easy to verify that the boundary of some given set is of Lipschitz
type. The following result gives one easy criteria.
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Theorem A.2.9. If D ⊂ Rn is a bounded convex set which lies in a ball of radius

R, then ∂D is in Lip(n, 1, 8n5/2R).

The proof of this theorem can be found in [67].



Appendix B

Random polynomials

In this chapter we collect some fact connected with random polynomials, random
functions and distribution of their zeroes.
De�nition B.0.1 ([63]). Let n be positive integer, let c0, . . . , cn be determinis-

tic complex numbers, and let ξ (which we call the atom distribution) be a com-

plex random variable of mean zero and �nite non-zero variance. Given the coef-

�cients c0, . . . , cn and atom distribution ξ, we associate the random polynomial

G : C→ C de�ned by formula

G(z) :=
n∑
i=0

ciξiz
i,

where ξ0, . . . , ξn are jointly independent copies of ξ.

The de�nition above can be considered in a more general way, namely instead
of functions 1, z, . . . , zn one can consider any collection of di�erentiable functions
f0(t), . . . , fn(t) and de�ne the random functional F : C→ C as follows

F (z) :=
n∑
i=0

ξifi(z). (B.0.1)

The zeroes of random function F form the point process and the most natural way
to describe the point process is via its correlation function.
De�nition B.0.2 ([63]). The k-point correlation function ρ

(k)
n,F : Ck → R+ of

the set of zeroes (counting multiplicity) {ζ1, ζ2, . . .} of random function F is de�ned

for any natural number k by requiring

E

 ∑
i1,...,ik� distinct

ϕ(ζi1 , . . . , ζik)

 =

∫
Ck

ϕ(z)ρ
(k)
n,F (z)d z,

for any continuous, compactly supported, test function ϕ : Ck → R, with the con-

vention ϕ(∞) = 0.

The k-point correlation function does not allow us to consider real and complex
zeroes separately. Moreover this function is not well-de�ned in case of random
polynomial G with real coe�cients since their zeroes are symmetric with respect
to real axis and it's natural to expect some zeroes lying on real axis. Thus, k-
point correlation function may become singular on the real axis. The solution of
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the problem in this case is to divide the complex plane C into three pieces, namely
C = C+ ∪ C− ∪ R, where C+ := {z ∈ C : Im z > 0} is the upper half-plane and
C+ := {z ∈ C : Im z < 0} is the lower half-plane, and de�ne the mixed (k, l)-point
correlation function.
De�nition B.0.3 ([63]). For any natural numbers k, l ≥ 0, 1 ≤ k+2l we de�ne the

mixed (k, l)-point correlation function ρ
(k,l)
n,F : Rk× (C+ ∪ C−)l → R+ of the set

of zeroes (counting multiplicity) of random function F to be the function de�ned by

formula

E

 ∑
i1,...,ik� distinct

j1,...,jl� distinct

ϕ(ζi1 , . . . , ζik , ζ̄j1 , . . . , ζ̄jl)

 =

∫
Rk

∫
(C+∪C−)l

ϕ(x, z)ρ
(k,l)
n,F (x, z)dxd z,

for any continuous, compactly supported, test function ϕ : Rk × Ck → R, where
ζi runs over an arbitrary enumeration of the real zeroes of F and ζ̄j runs over an

arbitrary enumeration of the zeroes of F in C+ ∪ C−.

It is clear that due to symmetry in case of random polynomials G we can restrict
ourselves to the consideration of the zeroes in R and C+ only.
Lemma B.0.4. Let v(t) = (f0(t), . . . , fn(t))> be any collection of di�erentiable

functions and ξ0, . . . , ξn be elements of multivariate normal distribution with mean

zero and covariance matrix C. The expected number of real zeroes on an interval

(or measurable set) I of the random function F (t), de�ned by (B.0.1) is∫
I

ρ
(1,0)
n,F (t) dt,

where

ρ
(1,0)
n,F (t) =

1

π

[
∂2

∂x∂y
log
(
v(x)>C v(y)

) ∣∣∣
x=y=t

]1/2

. (B.0.2)

For the proof see [26].

The following lemma gives the representation of random vector ξ having uniform
distribution in the (n + 1)-dimensional unit ball in terms of independent random
variables.
Lemma B.0.5. Let η0, η1, . . . , ηn be i.i.d. standard Gaussian random variables,

and let Z be an exponential random variable independent of η0, η1, . . . , ηn. Then the

random vector

ξ :=
(η0, η1, . . . , ηn)√

n∑
i=0
|ηi|2 + Z

has the uniform distribution on the (n+ 1)-dimensional unit ball.

This lemma is the special case of the more general result [4, Theorem 1, p = 2].
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Integral Geometry

In this chapter we introduce some basic notions of integral geometry following [59].

For p > 0 we write

κp :=
πp/2

Γ
(p

2 + 1
) , (C.0.1)

where for an integer k we have κk = vol
(
Bk
)
, and for any real p > 0 and any real

number q > p− 1 we write

bq,p :=
ωq−p+1 . . . ωq
ω1 · · ·ωp

(C.0.2)

with ωk := kκk being equal to the area of unit (k − 1)-dimensional sphere for an
integer k.
De�nition C.0.1. For k ∈ {0, . . . , n}, let Gn,k be the set of all k-dimensional linear

subspaces of Rn, and let An,k be the set of all k-dimensional a�ne subspaces of Rn.
The sets Gn,k and An,k can be endowed with the �nest topologies (see [59, Section

13.2] for more details). Thus the topological spaces Gn,k are called linear Grass-

mannians and the topological spaces An,k are called a�ne Grassmannians.

According to [59, Theorem 13.2.11], there is a unique rotation invariant Haar mea-
sure νn,k on Gn,k, normalized by

νn,k(Gn,k) = 1,

and, according to [59, Theorem 13.2.12], there is a unique rigid motion invariant
Haar measure µn,k on An,k, normalized by

µn,k ({E ∈ An,k : E ∩ Bn 6= ∅}) = κn−k.

For any linear subspace L ∈ Gd,k we denote by λL the k-dimensional Lebesgue mea-
sures on L and for any a�ne subspace E ∈ Ad,k we denote by λE the k-dimensional
Lebesgue measures on E. The Lebesgue measure on Rn is denoted by λn.
De�nition C.0.2. By a convex body in Rn we understand a compact convex subset

of Rn with non-empty interior.

De�nition C.0.3. Given a subset S ⊂ Rn and a point x ∈ Rn we de�ne by

d(x, S) := inf
s∈S
‖x− s‖2

the distance between the point and the set.
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De�nition C.0.4. For k-dimensional subspace L ⊂ Rn, k ≤ n denote by PL : Rn →
L the orthogonal projection operator:

PL(x) := d(x, L).

De�nition C.0.5. The linear hull (span) of a set X ⊂ Rn is the smallest linear

subspace of Rn that contains X and is denoted by span(X). If the set X consists of

the �nite number of points X = {x1, . . . , xm} then the linear hull of X can be also

de�ned as the following set

span(X) = span(x1, . . . , xm) =

{
m∑
i=1

λixi : λi ∈ R

}
.

De�nition C.0.6. The convex hull of a set X ⊂ Rn is the smallest convex set that

contains X and is denoted by conv(X). If the set X consists of the �nite number

of points X = {x1, . . . , xm} then the convex hull of X can be also de�ned as the

following set

conv(X) = conv(x1, . . . , xm) =

{
m∑
i=1

λixi : λi ≥ 0,
m∑
i=1

λi = 1

}
.

De�nition C.0.7. The n-dimensional simplex is the n-dimensional polytope which

is the convex hull of n+ 1 points in Rm, n ≤ m (vertices of the simplex).

De�nition C.0.8. For subsets A,B ⊂ Rn, the set A+B := {a+ b : a ∈ A, b ∈ B}
is the Minkowski sum of the sets A and B.

De�nition C.0.9. For convex body K ⊂ Rn and ε > 0, the set

Kε := K + εBn = {x ∈ Rn : d(x,K) ≤ ε}

is the parallel body of K at distance ε.

C.1 Intrinsic Volumes

The concept of intrinsic volumes is an important characteristic of the convex sets.
In this section we introduce the de�nition of intrinsic volumes and some important
properties. For more details we refer the reader to [59, Section 14.2].

Given some convex set K ⊂ Rn consider its parallel body Kε. It is an interesting
fact that the volume of Kε is a polynomial in ε of degree at most n. This result is
known as the Steiner formula and can be written as follows

vol(Kε) =

n∑
k=0

εn−kκn−kVk(K).

The functionals V0, . . . , Vn are called the intrinsic volumes. Due to the normal-
ization Vk(K) depends only on K and not on the dimension of its surrounding
space.
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In general it is very di�cult task to derive the good representation for the intrinsic
volumes Vk(K). One of the representations, known as Kubota's formula, is very
useful:

Vk(K) =

(
n

k

)
κn

κkκn−k

∫
Gn,k

vol(PLK) νn,k(dL). (C.1.1)

It should be noted that some intrinsic volumes have the geometric meaning. For
example, Vn(K) is equal to n-dimensional volume, 2Vn−1(K) is equal to surface area
and 2κn−1

dκn
V1(K) is equal to mean width of the body K.

C.2 Blaschke-Petkantschin Formulas

In this section we will introduce such powerful tool as Blaschke-Petkantschin formu-
las.

For k ∈ {0, . . . , n} and x1, . . . ,xk ∈ Rn we denote by ∇k (x1, . . . ,xk) the k-
dimensional volume of the parallelepiped spanned by the vectors x1, . . . ,xk. For
k + 1 points x0, . . . ,xk ∈ Rn we denote by

∆q (x0, . . . ,xk) := vol (conv(x0, . . . ,xk))

the k-dimensional volume of the convex hull of x0, . . . ,xk. Moreover the following
equality holds for any x0, . . . ,xk ∈ Rn:

∆q (x0, . . . ,xk) =
1

k!
∇k (x1 − x0, . . . ,xk − x0) . (C.2.1)

It is typical situation in the area of Integral Geometry when one needs to integrate
some non-negative measurable function h : (Rn)k → R+ with respect to product
measure λkn. To this end, we integrate �rst over the k-tuples of points in a �xed
k-dimensional linear subspace L, with respect to the product measure λkL, and then
integrate over Gn,k, with respect to νn,k. The corresponding transformation formula
is known as the linear Blaschke-Petkantschin formula (see [59, Theorem 7.2.1]):∫
(Rn)k

h(x1, . . . ,xk) dx1 . . . dxk = bn,k(k!)n−k
∫

Gn,k

∫
Lk

h(x1, . . . ,xk) (C.2.2)

×∆k(0,x1, . . . ,xk)
n−k λL(dx1) . . . λL(dxk) νn,k(dL),

where bn,k is de�ned in (C.0.2).

A similar a�ne version (see [59, Theorem 7.2.7]) may be stated as follows:∫
(Rn)k+1

h(x0, . . . ,xk) dx0 . . . dxk = bn,k(k!)n−k
∫

An,k

∫
Ek+1

h(x0, . . . ,xk) (C.2.3)

×∆k(x0, . . . ,xk)
n−k λE(dx0) . . . λE(dxk)µn,k(dE).
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C.3 Ellipsoids

Any non-degenerate centered ellipsoid E ⊂ Rn is de�ned by some unique symmetric
positive-de�nite n× n matrix H as

E =
{
x ∈ Rn :

√
x>H−1x ≤ 1

}
. (C.3.1)

The volume of E is given by
√

detH · vol(Bn) and the formulas for the intrinsic
volumes can be found in [68].

Since H is symmetric positive-de�nite, there exists a unique symmetric positive-
de�nite n×n matrix A (called a square root of H) such that H = A2 (see, e.g., [40,
Theorem 7.2.6]). Hence (C.3.1) is equivalent to

E = ABn :=
{
x ∈ Rn :

√
x>A−2x = ‖A−1x‖ ≤ 1

}
.
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