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The window of opportunity for effective climate change mitigation is
closing. Hence, it is decisive to understand how to accelerate the diffusion
of climate friendly technologies. Path dependence of technological change is
an explanation for sluggish diffusion even if a technology is superior in the
long run. This paper studies the determinants of diffusion, learning and the
coevolution of innovation and heterogeneous absorptive capacity. I show
how the effectiveness of different market based climate policies depends on
the type and strength of diffusion barriers.

I introduce a macroeconomic agent-based model that is an eco-technology
extended version Eurace@unibi model. Technology is heterogeneous by type
(green or brown). Firms choose between types when acquiring capital goods
and build up type-specific technological know-how that is needed to exploit
the productive potential of capital. Path dependence is operationalized as
accumulated diffusion barriers taking the form of inferior technical perfor-
mance of supplied green capital and type-specific know-how of adopters.
The barriers interrelate with positive feedback loops from market induced
innovation dynamics and learning by doing, and analyze how these mecha-
nisms explain path dependence and the emerging macroeconomic patterns
of technology diffusion. Environmental taxes can outweigh a lower technical
performance and subsidies perform better if lacking capabilities hinder firms
to adopt a sufficiently mature technology.
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1. Introduction

Climate change is an existential threat for human conditions of living. In its 2018
Special Report, the IPCC has highlighted that there is a window of opportunity to
limit Global Warming to a manageable level, but the window is closing. The effective
mitigation of climate change and the avoidance of its potentially disastrous consequences
is critically dependent on a profound technological transformation from current fossil-
fuel and resource-intensive techniques of production to climate friendly alternatives.
Such technological transformation requires the development and fast diffusion of
environmentally sound technologies (cf. [European Commission [2011; IPCC|2015). Aim
of innovation oriented climate policies is to overcome barriers and to strengthen drivers
of green technology diffusion to accelerate the process of technological transformation.
To design effective policies, it is important to understand the determinants of technology
diffusion. The objective of this paper is to contribute to the understanding of these
determinants and to link microeconomic insights on barriers to green technology
adoption decisions of individual firms with the macroeconomic study of directed
technological change. In a policy experiment, I show that the effectiveness of diffusion
policies is sensitive to the type and strength of barriers, i.e. whether barriers relate to
the side of technology supply or demand.

In this paper, green technologies are interpreted as eco-innovations. Eco-innovations
are defined comprehensively as any type innovation across the whole economic system
that are environmentally more benign than the incumbent technological solution.
These innovations contribute to the achievement of climate targets and to overcome
resource scarcity, and should simultaneously establish a path of sustainable economic
growth (O’Brien et al.[2014]). Innovation and climate targets are combined, and the
complementary nature of environmental targets and economic development emphasized
(Foxon and Andersen|2009)). This contrasts with the trade-off conception that is
suggested by numerous theoretical approaches in the economics of climate change that
interpret any climate policy intervention as distortion to otherwise optimally allocated
production and research resources (cf. Jaeger||2013} |Stern/[2008). Eco-innovation policies
abandon the idea of directional neutrality of technological progress, and are aimed to
steer the direction of technological development to establish a technological paradigm
of sustainability.

These considerations shift the focus from aggregate welfare considerations towards
an understanding of economic conditions that influence the direction of technological
change. Dosi| (1982) introduced the concept of technological paradigms embedded
in the mindsets of technological practitioners, i.e. those who are in charge for the
utilization, deployment and development of technical solutions. Their mindsets are
built upon the prevalent technological environment, and are critical for the nature of
technological solutions that are selected and technologically further developed. |[Cohen
and Levinthal| (1990) emphasize that firm specific technological capabilities determine
firms’ perception and ability to commercially adopt technological novelties.

The contingency of technology choice and innovation on the economic status-quo
represents a source of path dependence. Path dependence is empirically well documented
for the choice between the green and brown technologies (cf. |Aghion et al.[2014, [2016;



Allan et al.[[2014; [Kemp and Volpi 2008} |Safarzynska et al.[[2012; [Sarr and Noailly|[2017]).
This contingency represents an impediment for the diffusion of clean technologies if
there is an incumbent alternative. Breaking path dependence in technological change
is critical for the long-term effectiveness of climate policy, and the conditions how to
overcome it are an important field of study for climate-economists working on directed
technological change.

Existing macroeconomic studies on endogenous directed technological change identify
the relative profitability of using and developing a particular technology to be decisive
for the technology choice. Other approaches focusing on diffusion investigate the
role of technological learning in terms of unit costs that are decreasing in cumulative
production experiences. |Gillingham et al. (2008)) and Popp et al| (2010) provide
comprehensive overview studies. Common to these studies is their aggregate nature
and the abstraction from heterogeneity of technology types and its users. Though other
studies found heterogeneity to be critical for the speed and shape of diffusion patterns
(Allan et al.[2014; |(Comin et al.||2006)).

In this study, I enrich the macroeconomic perspective on directed endogenous
technological change by a microeconomic framework with an emphasis on evolving
heterogeneity of firms in terms of capabilities to profitably adopt clean technologies.
Technological capabilities of firms are accumulated over time during the process of
production and represent a form of organizational learning (Thompson| 2012)). I
show that these capabilities represent a decisive factor of green technology diffusion.
Capabilities are technology specific and hint to the nature of the technological paradigm.

Green technologies interpreted as eco-innovations encompass the organizational and
infrastructural environment that affects the effective productive usability of capital
goods (Arundel and Kemp|2009). The two technologies are interpreted as competing
technological regimes (Kemp|/1994). Brown capital is assumed to be incumbent and
green to be a market entering technology that can possibly replace the incumbent.
Endogenous innovation and technological learning weaken or strengthen the firm specific
profitability of technology adoption resulting in a bifurcation-like pattern of technology
choice. Hence, the economy converges either to a green or brown technological state
while the probability of a technological regime shift in favor of green technologies
is dependent on initial conditions, endogenous technological advances and learning.
Innovation oriented climate policies aim to alter the market conditions in favor of green
technologies.

This study differs from equilibrium based approaches in one fundamental dimension.
Equilibrium models rely on the assumption of socially optimal environmental-economic
pathways representing climate policy as allocation problem (cf. Balint et al.2017}; Haas
and Jaeger|2005). In contrast, this study frames the choice of the technological pathway
as coordination problem with self-reinforcing dynamics. Welfare judgments about
policy outcomes are made by the evaluation of macroeconomic variables of interest
such as aggregate output, environmental effectiveness, unemployment or distributional
patterns.

This simulation study is based on an eco-technology extension of the macroeconomic
agent-based model (ABM) Eurace@unibi (Dawid et al.|2011} [2018d). The Eurace@unibi
model is able to reproduce macro- and microeconomic stylized facts and was formerly



used in different policy studies (e.g. |Dawid and Gemkow||2013; Dawid et al.||2014]
2018blc). The structure of the model resembles traditional macroeconomic models. In
contrast to representative agent approaches, it is characterized by agent-heterogeneity,
a high degree of behavioral resolution in agents’ decision making routines that are
subject to bounded rationality and limited foresight, and the focus on the dynamics of
interaction. The eco-technology extended version of the model allows to investigate the
dynamic interplay between technological characteristics, learning and innovation, its
implications for green technology diffusion and the (long-term) effectiveness innovation-
oriented climate policy. In this paper, I introduce the eco-technology extension of
the model and show how the model reproduces stylized patterns of green technology
diffusion. In a baseline simulation, the model exhibits a probabilistic technological
regime shift. This shift is not necessarily stable but depends on the dynamics of
competition, innovation and learning. These dynamics are partly probabilistic and
partly a result from market interactions. In a series of experiments, I analyze how the
market entry conditions interrelate with the emergent pattern of diffusion. I find that
not only the performance of supplied technology important, but also the capabilities
of technology users. The simulation results helps understanding diverse and partly
opposite observations in empirical studies of technology diffusion. Two results from
the study of barriers are worth being emphasized. First, technological uncertainty is
costly. If the technological regime is unclear, potential adopters do not know in which
technology to invest and possibly waste learning and R&D resources in the technology
that is obsolete in the long run. Second, the analysis shows that relative prices and the
relative performance of technology types matter. This could be a potential starting
point for policies that steer the technological development in a sustainable direction.

In a policy experiment, I show that different policy instruments perform differently
well conditional on the type and strength of diffusion barriers. If barriers are related to
the technical performance of green capital goods, environmental taxes compensate for
the disadvantage for the lower productivity. This barrier type is a supply-side barrier
because the technological knowledge embedded in the productivity of the capital good
can be bought on the market.

Barriers in terms of lacking capabilities of firms to make effective use of the green
technology are demand-side barriers. Capabilities can not be bought on the market, but
are learned during technology utilization. If barriers are demand-sided, subsidies can
be a trigger of technological transition. Further, if the green technology is sufficiently
competitive by its technological properties, a tax imposed on the utilization of brown
capital in the pre-existing capital stock may work in an unintended direction because
it hampers firms’ financial capabilities to invest in green technologies.

Previous studies climate economic studies have focused on diffusion barriers at the
supply side taking account of policy induced directed technical change. In this study,
I show that the distinction between the two barrier types and their coevolution is
essential to understand the differential effectiveness of different political instruments.

The remainder of the paper is structured as follows: In section [2| I motivate the
objective and methodological approach of the paper by a survey of the related literature.
In section [3]and [4] I introduce the main features of the eco-technology extension of
the Eurace@unibi model and the design of experiments. The results of the baseline



simulation and a series of experiments on the technological starting conditions of the
entrant technology are discussed in section [5 and section [6] is dedicated to the policy
experiments. Section [7] concludes with a discussion of the empirical interpretation and
core insights of the analysis for diffusion policiesEl

2. Related literature

This study is most closely linked to three branches in the literature. On the theoretical
side, it bridges the macroeconomic literature on endogenous and directed technological
change with evolutionary, microeconomic studies of technological learning, and high-
lights the implications for the effectiveness of climate policy. On the methodological
side, the paper belongs to the young branch of evolutionary, agent-based macroeconomic
analyses of climate policy.

2.1. Directed technological change as evolutionary process

Two aspects are in focus of macroeconomic studies of green technologies diffusion
belonging to the field of directed technological change. First, technological change is
endogenous, i.e. it is driven by goal oriented decisions about R&D investments and
adoption. Second, technological change is non-neutral and the choice between different
technology types is dependent on the relative performance of types. Climate policies

aim to influence the relative profitability in favor of green technologies (Acemoglu et al.
2012).

Two branches of literature on endogenous directed technological change can be
distinguished. The first branch is rooted in the neoclassical equilibrium tradition, and
the second is based on evolutionary theory (see for an overview Balint et al. 2017}
|Gillingham et al.|2008; [Loschel 20025 [Popp et al.|2010; Sarr and Noailly|2017). The
former has a relatively long modeling tradition and related studies build on (computable)
general equilibrium and optimal growth models that have achieved a high degree of
empirical coverage and complexity (Gillingham et al.|[2008} [Loschel 2002 [Pizer and|
[Popp|2008; [Sarr and Noailly|2017).

Evolutionary approaches on macroeconomic green technological change represents a
rather young field of research and climate policy analyses at the macro-level are scarce.
Such studies are based on agent-based computational methods and allow the simulation
of complex, nonlinear interactions of heterogeneous agents (Balint et al.|[2017} [Farmer]
let al.|2015} Gerst et al.|[2013} Lamperti et al.|2018; |Sarr and Noailly|[2017). This project
belongs to the second branch of literature.

In the evolutionary tradition, much emphasis is put on adaptive behavior and
interactions at the microeconomic level as source of emerging macroeconomic stylized
patterns of innovation, diffusion and technological change. The emphasis on interactions

LAll results that are presented and discussed in this paper are available online in a separate data
publication. The data publication does also contain the code of the simulation model and the
software that was used for the statistical evaluation of the simulated data, and should enable the

user to reproduce the results (see 2019).



is shared by many scholars on eco-innovation who emphasize the (yet) underexploited
potential of evolutionary approaches to study the complex interactive processes that
underly green technology development and diffusion (e.g. Rennings| 2000} [Safarzyniska)
2012).

Eco-innovations are defined as any technology for economic activity that is envi-
ronmentally less detrimental than the incumbent alternative. The concept serves as
interpretative framework for climate friendly technologies that compete with incum-
bent, conventional alternatives. In a macroeconomic framework, this is captured by
the binary distinction between green and brown technologies. Eco-innovation is not
linked to specific technical applications, but rather reflects a broader technological
paradigm in terms of defining and achieving economic targets. argues
eco-innovation diffusion to be an evolutionary process, and emphasizes the long-term
transitory nature of eco-innovation.

Transition processes are subject to multi-level interactions of individuals and their
socio-economic and structural environment. Challenges for sustainable transition poli-
cies are path dependence and lock-in effects that result from scale effects in technological
learning and development, group dynamics, bounded rationality, and the coevolution of
structures and behavior (Safarzynska et al|2012)). Technological path dependence and
lock-in effects in technology choice and the resulting modeling challenges have been
extensively discussed by numerous authors (Arthur|1988; Dosi|[1991} |Gillingham et al.|
[2008} [Loschel| 2002} |[Sarr and Noailly|2017; [Unruh![2000).

The evolutionary concept builds on an analogy between biological evolution and the
three stage concept of innovation, i.e. invention, innovation in terms of commercializa-
tion of an invention, and diffusion . Emphasis is put on the interaction
with the environment. The economic environment influences the decisions of firms and
investors whether an invention is selected to be introduced on the market
[Foxon and Andersen|[2009)).

The economic environment is a broad concept and captures regulatory, infrastructural,
technological and behavioral aspects (Safarzynska et al|/2012). In this study, the
economic environment is understood as all factors that enable or hinder firms to adopt
climate friendly routines in their production processes. It is closely linked to the idea
of absorptive capacity (Cohen and Levinthal|[1990). Here, I subsume the economic
environment within firms’ capabilities to effectively exploit the productive value of a
specific technology. Potential adopters are faced with firm, industry or region specific
challenges that arising from evolved infrastructures, technological capabilities and
behavioral routines (Arundel and Kemp|/2009). Firms are heterogeneous in terms of
absorptive capacity. This capacity influences the perception and the productive value
of a technological solution, and was highlighted a source of heterogeneous adoption
patterns (Allan et al|2014). I extend the interpretation of absorptive capacity to cover
both, firm’s capabilities but also firm specific external conditions such as complementary
infrastructures that result from a coevolutionary process of using a specific production
technology.

The decisive property of absorptive capacity and barriers to adoption is the cumu-
lative nature, not the conceptual coverage. The accumulation of technology specific
capabilities is dependent on the extent to which a specific technology type is used and




can be interpreted as a microeconomic source of dynamic increasing returns that may
result in path dependence (Arthur|[1989; Dosi and Nelson). Absorptive capacity can be
interpreted as technology specific capabilities of the adopter. The cumulative nature of
technology specific capabilities can cause path-dependence of technological development
and the sectoral composition of the economy. Path-dependence of technological progress
is a widely recognized stylized fact of technological change (Arthur|[1988} [Dosi|[1982]
[1991; Hanusch and Pyka|2007; [Huang et al.[2017), and is particularly important for
climate policy design and the green transformation of the economy (Aghion et al.[[2014]
[2016} [Kemp and Volpil2008; [Safarzynska et al.[2012)).

These findings underline the notion of technological paradigms by , and
highlight technological learning and limits to the transferability of capabilities across
technology types to be an important determinant of successful diffusion. This is in line
with the empirical investigations on barriers of eco-innovation diffusion (Arundel and
. In the present study, I take up the idea of technology specific capabilities as
ability to make productively use of technical equipment of a certain type and study the
interplay of knowledge accumulation, diffusion and policy. This investigation is based on
an evolutionary, agent-based macroeconomic model. The model builds a bridge between
the macroeconomic literature on directed technological change and the microeconomic
(evolutionary) literature on the determinants of technology adoption. I propose a
consistent modeling framework to embed the evolution of firm specific technological
capabilities of firms and its interdependence with macroeconomic technological progress
and innovation diffusion.

2.2. Evolutionary, agent-based macroeconomic models and
climate change

Aspects such as the accounting for uncertainty, interactions of boundedly rational,
heterogeneous agents and the emergence of multiple equilibria are critical for the
analysis of technological change in the long run (Farmer et al|[2015)). Agent-based
evolutionary models offer a tool to account for these aspects, though the number of
these models is small.

Many existing approaches on eco-friendly technologies focus on the diffusion of
specific technologies in spatially bounded areas (e.g. |[Cantono and Silverberg||2009}
[Karakaya et al.|2014} Schwarz and Ernst|[2009; |Sopha et al.|2011} Zhang et al.|2011)), but
are highly detailed with regard to the individual and regional adoption circumstances
and technological characteristics. These models provide insights into the micro-level
dynamics of innovation and diffusion processes, but lack important macroeconomic
feedbacks.

The number of macroeconomic studies on green directed technological change is much
scarcer. Seminal approaches in macroeconomic agent-based climate policy modeling
were made by |Gerst et al| (2013); Lamperti et al.| (2018); [Rengs et al.| (2015]); Wolf|
(2013).

The existing macroeconomic agent-based models focus on different aspects related
to the nexus of climate, the economy and policy. Similar to climate economic modeling
in Computable General Equilibrium and Integrated Assessment Models, the ENGAGE




model, proposed by |Gerst et al.| (2013)) offers a detailed representation of the energy
sector. The model is dedicated to serve as tool for scenario and policy discovery.
It is calibrated on US data and captures different types of endogenous innovation
improving labor or energy efficiency in the capital or consumption goods producing
sector. Technological change from learning by doing and accumulated R&D efforts is
manifested in energy efficiency and productivity improvements of capital goods.

The Lagom models developed by [Haas and Jaeger| (2005)) and [Wolf et al.| (2013)
present an early attempt to large-scale agent-based climate economic modeling. Much
emphasis is put on the role of heuristically behaving agents with heterogeneous, adaptive
expectations. Agents learn over time which implemented in the updating of structural
characteristics represented by technology and consumption coefficients, mark-up rules
and reference wages. Technological change occurs via imitation of successful behavioral
routines and technological characteristics, and mutation which is interpreted as innova-
tion. This process is independent of endogenous dynamics associated with differential
R&D investments. A remarkable feature of the Lagom model is the possibility to use
empirical input-output data and the possibility of a regional disaggregation.

Rengs et al| (2015]) focus on the evolution of consumption behavior and the interplay
of Veblen- and snob-effects steering the development of consumers’ preferences for sus-
tainable products. Diffusion among consumers arises through conspicuous consumption
and herding behavior. The authors investigate how an interplay of different endogenous
consumption dynamics interrelates with different types of climate policy.

The most recent approach in macroeconomic climate ABM is, to the best of my
knowledge, the agent-based integrated assessment model (ABIAM) developed by
Lamperti et al.| (2018]). It captures not only coevolutionary features of the economy,
but also potential feedbacks from climate change. The model is based on the K4S
macroeconomic ABM (Dosi et al.|2017)) that is extended with a climate-economy
module. Endogenous growth emerges from different types of incremental innovation
that is improving labor productivity, energy efficiency or environmental friendliness.
The directedness of technological change enters via the substitution possibilities and
different types of renewable and fossil fuel energy and energy efficiency improvements.

It remains to be emphasized that agent-based climate economic models are at
relatively early stage of development, and are hardly comparable in terms of empirical
and sectoral disaggregation as achieved by popular equilibrium based climate-economic
models. Therefore, these models should be seen, at least in the short term, as valuable
methodological complement being able to shed light on aspects in climate-economic
studies that are difficult or infeasible to capture by aggregate equilibrium based methods
(Balint et al.|[2017; [Farmer et al.||2015; [Pindyck|[2013)). In contrast to the agent-based
climate economic modeling approaches discussed above, the model presented in this
paper focuses on the demand side of technology in terms of evolving absorptive capacity
of heterogeneous of firms that are potential adopters of green technology. Firms differ
in their abilities to learn to make effectively use of specific technologies. This is a source
of initial, but also emergent heterogeneity, and may have important implications for
the success of green technology diffusion.
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Figure 1: This figure gives an overview of the structure of the macroeconomic framework and shows how
technology is embedded in this framework. It shows the main agents (two capital producers
(G for green, C for conventional), firms, households), their main activities and the markets as
places of their interaction. Gray (magenta) arrows indicate interactions on the market (flows
of knowledge). A is the productivity of capital goods K, and B are technological capabilities
of firms that are embedded in the technology specific skills b of employees L. Productivity of
capital goods increases via endogenous innovation A A, households’ skills increase by learning Ab.
The financial module manages the settlement of monetary transfers and credit supply and serves
as mechanism of macroeconomic closure (not shown here, see verbal explanations in the text

and (Dawid et al.||2018d))). Blue arrows indicate the link of production technology to the main

indicators for macroeconomic evaluation.

3. The model

The model is an extension of the macroeconomic, agent-based model Eurace@unibi (cf.
Dawid et al.|2018d). In previous studies, the Eurace@unibi model was shown to be
able to reproduce a number of macro- and microeconomic stylized facts.

In the following subsections, I briefly sketch the macroeconomic structure of Eu-
race@unibi. Subsequently, I explain the most relevant parts of the eco-technology
extension in more detail. A more comprehensive technical documentation of the model
extension can be found in the appendix .

3.1. Overview

The Eurace@unibi model represents a macroeconomy composed of groups of heteroge-
neous agents that are linked by their trans- and interactions. The most relevant agents
are depicted in the flowchart in figure [I] Households supply labor on the labor market
to consumption goods (CG) firms and spend their income for consumption and savings.
Households are heterogeneous with regard to income and specific skill endowment b.
CG firms use labor L and capital K to produce a homogeneous consumption good.
Employees of a firm need to know how to use capital goods for production. This
know-how captured by employees’ specific skill level and the average skill level of the
workforce is a proxy for technological capabilities B of the firm. This determines how

11



productively the firm can make use of its capital stock K. Capital or investment goods
(IG) are supplied by two heterogeneous IG firms, each representing a specific technology
type. Each of them supplies a range of vintages of different productivity levels A. By
probabilistic, incremental innovation, IG firms are enabled to supply more productive
capital goods.

In the eco-technology extension of the model, capital goods do not only differ in
terms of productivity, but also by technology type. One of the two IG producers
supplies a climate friendly, green technology, the other supplies an environmentally
harmful, conventional alternative. Both IG producers invest part of their revenue from
selling capital goods in R&D which positively affects the probability of innovation
success, i.e. the likelihood to incrementally increase the supplied productivity by a
factor of (1 + AA). Dependent on the productive properties of capital and firms’
technological capabilities, CG firms make their investment decisions and buy capital
goods on the capital market. Technology in the model is interpreted as the aggregate
of the productivity characteristics of capital, firms’ technological capabilities and the
type of capital (green or conventional). The production technology of firms is decisive
for their competitiveness in terms of production efficiency and for its environmental
performance. On the aggregate level, technology is a core indicator to study diffusion
patterns, and the economic and environmental performance.

Every agent has a bank account. Banks pay interest on agents’ deposits and give
credits to CG firms in case that a firm’s financial means are insufficient to cover current
expenditures and to finance investment. The financial market is also used as a technical
tool to ensure the macroeconomic and financial closure of the model. A government
which is not shown in the flowchart in figure [I has a re-distributive and regulatory
function. It collects income from taxes, pays unemployment benefits. The government
is able to set specific innovation-oriented climate policies.

The model features endogenous firm entry and exit. Firms that are unable to repay
loans run into bankruptcy and exit the market. New firms are founded randomly and
start building up production capacities out of an initial monetary budget (see Harting
(2015)).

The transactions between the agents are stock-flow consistent. Agents behave
boundedly rational and have limited foresight, respectively incomplete information.
Decision making and information updating processes and routines are asynchronous
which is a source of stickiness of prices, wages and production decisions. Asynchrony
means that some routines are executed on a daily, other on a monthly or yearly basis, or
event based. For example, firms’ credit demand routine is only executed if own financial
means are insufficient. The asynchrony of production and consumption routines allows
the modeling of inventory holdings on the CG market instead of instantaneous market
clearing. Rather than being perfectly rational profit and utility maximizers, households
and firms underly incomplete information and execute adaptive behavioral routines
based on expectations.

For an extensive and formal introduction to the baseline model itself, its calibration
and applications in economic policy analysis, the interested reader is referred to articles
of the original developers of the model (e.g. |[Dawid et al.|[2018b|d}; Harting2015). A
very detailed technical overview of the baseline model is given in Dawid et al.| (2011)).

12



FEzxtensions of the Eurac@unibi model

Static properties

Technology

IG firms Price competition among two IG firms, each representing a different tech-
nology type tg = {c, g} with ¢ as conventional and g as green type.

CG firms Environmental impact and resource use associated with utilization of non-
green capital and type-specific technological capabilities B;? of CG firms
i€ 1.

Households Type-specific capabilities b,? of household h € H to work effectively with
production capital of her employer.

Dynamics

Innovation

IG firms Endogenous, probabilistic technological improvements in IG sectors depen-
dent on sectoral R&D investments.

Diffusion

CG firms Technology adoption decision based on relative expected profitability which
is dependent on firms’ technology type-specific capabilities.

Learning

Households Learning is dependent on the type of technology they are using at work.
Employees as “carrier” of tacit part of evolving technological knowledge of
firms.

Policy

Government Innovation and climate policy measures: Material input taxes, subsidies for

eco-innovation adoption and clean production.

Table 1: Overview of the eco-technology extension added to the original Eurace@unibi.

3.2. The eco-technology extension of Eurace@unibi

The most relevant changes and extensions compared to the baseline model are listed
in table[I] The full code of the extended model is available in an accompanying data
publication [Hotte| (2019).

The focus of this model extension are endogenous innovation dynamics of competing
technologies supplied by two representative capital good producers. These are modeled
as a technology race between an incumbent, conventional technology ¢ and an entrant,
environmentally sound green technology g. The use of the conventional technology
is not only environmentally harmful, it also requires material and energy inputs that
are costly. The green technology is environmentally neutral and allows adopters to
reduce material input costs, i.e. it is potentially technologically superior in the long
run. More generally, technological superiority is interpreted as unit production costs
reduction that is enabled by radical innovation and not achievable by the incumbent
technology. This may concern any type of variable input costs to production that is
used in a bundle with production labor. It can be a material input but also another
type of labor that can be replaced by a machine or any type of regulatory compliance
costs. Examples are energy saving, computer and automation technologies, open source
software and digital payment systems. In the climate context, input costs savings
can also be regulatory compliance costs, often named as Pollution Abatement Costs
Expenditures. In this study, the radical innovation is interpreted as a stylized version of
input-saving eco-innovation defined as any change in (production) routines that is less
environmentally harmful than the incumbent alternative (Arundel and Kemp|/2009),
but note that it may also be a regulatory shock that makes the use of the conventional
technology more costly.
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The most decisive part of the model is the representation of firms’ production
technology. Firms use labor and capital as inputs. Technology is interpreted as a
bundle of immaterial properties embodied the these two inputs. It is composed of two
dimensions. A codified dimension of technology is represented by the productivity A"
of a capital good k¥. The index v indicates a specific vintage of capital that is supplied
by an IG producer ig = ¢, g. If not explicitly defined differently, throughout the paper
superscript indices are used to indicate qualitative information about the type of a
variable, i.e. the vintage or technology type. Subscript indices refer to the agent or
time dimension ¢ associated with the variable. If ig is used in the superscript, it refers
to the characteristic of the technology item, if it is used in the subscript, it indicates
that this variable is associated the capital good producer ig.

The second, tacit dimension of technology are technological capabilities B of a CG
firm that are embodied in the technological skills of the firm’s workforce L. These
capabilities are needed to make effective use of the productive properties of a capital
good A". In other words, employees need to know how to use a specific type of capital
productively. This knowledge is technology specific. An employee who knows how
to use a conventional capital good does not necessarily know how to use the green
alternative, but she can learn it if she accumulates experience when working with it.
That means, employees, and consequently firms, are learning by doing. The codified
part of technology is available on the market and uniform to all firms, but the tacit
part is firm specific and introduces adopter heterogeneity. It can also be interpreted as
a firm’s absorptive capacity for a specific technology.

Henceforth, I will refer to the productivity of capital as theoretical productivity
when referring to AV and as effective productivity A®f/ when referring to the bundle
of codified and tacit technological knowledge of firms. The effective productivity is

bounded by the availability of matching technological capabilities, hence AZEtf fo =

min[AY, Bfgt] with index v as pointer to a specific vintage in the firm’s capital stock.
Vintages are characterized by the tuple (AY,1(v)) where 1(v) is the indicator for
technology type ig. It takes the value one if the vintage is conventional, and zero
otherwise. Hence, v simultaneously indicates the theoretical productivity and the
technology type. The theoretical productivity of a capital good is a static property
and uniform for all firms, but the effective productivity is firm specific and the source
of heterogeneous benefits of adoption. The effective productivity of a given vintage v
may change over time due to learning.

Barriers to diffusion are embedded in the two dimensions of technology. Lacking
capabilities can represent a barrier to green technology diffusion even if green capital is
superior in terms of input cost savings.

Next to lacking capabilities, a second type of diffusion barriers can exist that is
associated with technological characteristics of the capital good itself, i.e. green capital
goods could be technologically less mature and have a relatively lower productivity
A?. These barriers represent a stylized aggregate of different types of diffusion barriers
that had been documented in the empirical literature on eco-innovation (cf. |Arundel
and Kemp |2009). Diffusion barriers can be the source of a technological lock-in in the
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Figure 2: Schematic representation of the innovation, learning and diffusion module within the Eurace@Qunibi
model. (1) Micro-level: Innovation and learning, i.e. IG sectors are learning by searching (LBS)
via the re-investment of profits from selling capital goods K;, in R&D and incrementally shift
the technological frontier AY upwards. Households are learning by doing (LBD) when working
at firms with specific production capital. (2) Meso-level: Technology adoption by CG firms.
CG firms acquire labor L and capital K” to produce. Firms’ tacit technological knowledge is
embedded in the skills of their employees B*Y. CG firms decide which technology type ig € {c, g}
is bought. (3) Macroeconomic level: Diffusion and economic performance. At the macroeconomic
level the emergent properties of micro- and meso-level interaction become observable in terms
of technology diffusion patterns measured by the share of green capital used vY and in terms of
economic indicators such as aggregate productivity AEST and aggregate output Y.

conventional technology. Innovation oriented climate policies are aimed to overcome
such barriers and to prevent a technological lock-in in the incumbent technology.

Two types of learning dynamics influence the evolution of the two dimensions of
technology, i.e. the evolution of barriers. First, employees are learning by doing. CG
firms buy capital goods from IG firms and add the newly bought capital goods to
their capital stock. A firm’s capital stock is composed of vintages that may differ
by productivity and technology type. Employees learn dependent on the type of the
production machinery they use at work. The higher the relative intensity of working
with a technology type and the better quality of the capital equipment of a certain
technology type at the firm level, the faster employees accumulate the corresponding
skills.

Second, endogenous innovation in the IG sector affects the codified part of technology
represented by the level of labor productivity of supplied capital. IG firms invest a
fraction of profits in R&D that positively affect the probability to successfully innovate
and launch a new, more productive capital good on the market. Hence, IG firms are
learning by searching. Higher profits of an IG firm are associated with a faster pace
of technological progress in the corresponding sector. A stylized representation of
technology, the learning mechanism and the role of technology for the macroeconomic
outcome is shown in figure [2}
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In the subsequent subsections, I introduce the relevant parts of the model extension in
technical detail. These parts are the CG firms’ production technology highlighting the
difference between the theoretical and effective productivity of capital, and employees’
learning function. A more comprehensive description of other relevant parts of the
model, such as the investment decision rule of CG firms and the pricing, production
and innovation routines of the capital good producers can be found in the appendix
. To understand the findings of the simulation analysis, it is not required to know
the technical implementation of the model introduced in the following subsections. An
impatient reader may feel free to skip it and continue with section [4

3.2.1. Consumption goods firms’ production technology

CG firms produce homogeneous consumption goods with a constant returns to scale
Leontief technology combining labor, capital and, in case of conventional capital, natural
resource inputs. Labor is hired on the labor market. Capital goods are accumulated in
a stock which can be expanded by investment and depreciates over time. The capital
stock is composed of various items that can differ by productivity and technology type.
It is important to note the vintage approach. Newer machines are in tendency more
productive, and capital stock items can be either green or conventional.

The variable K7, indicates the quantity of capital goods of type v with the char-
acteristics (AY,1(v)) within the firm’s current capital stock K;;. Formally, the
amount of capital of type v is given by K7, := {k € K;|A"(k) = A", 1(k) = 1(v)}.
Further, I use the notation KZ% when referring to the part of the capital stock
that is composed of vintages of technology type ig, i.e. Kf, = > 1(v)- K}, and
K}, =3,0~-1(v))- K}, = K; — K, where 1(v) is the technology type identifier
taking the value one (zero) if the vintage v is of conventional (green) type.

In absence of technology specific skills, different vintages are perfect substitutes, but
in their presence the exploitation of the productivity of a given vintage at the firm
level is constrained by the firm’s technological capabilities. The effective productivity
Aif Fo of a capital good v is given by

Aftff” = min[A”,B;gJ (1)

where AV is the theoretical productivity and Bf,gt is the average specific skill level
of firm ¢’s employees. Technology specific skills are accumulated over time, hence
the effective productivity of a capital stock item AlEtf fo changes over time and varies
across firms. The skill-dependent exploitation of productivity imposes a barrier to the
adoption of new technology because it takes time until workers have learned how to
use new machinery while their skills may be sufficient to exploit the productivity of
older vintages.
Total feasible output @;; of firm ¢ in ¢ is given by

\%4

\4
Q=2 (min[Kz"fvmaX[O’Lw— > K] -Aff”) 2)

v=1 k=v+1
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where L;; is the number of employees, and ZI)/ 1 K7, is the firm’s ordered capital
stock composed of V' different capital stock items. Ordered refers to the running order
of capital that is determined by the cost-effectiveness of capital goods. It may occur
that firms do not utilize their full capacity, for example when the available amount of
labor or demand for consumption goods are insufficient and using costs of capital goods
exceed the expected marginal revenue. In such case, most cost-effective capital goods
are used first. Firms can only use as much capital as workers are available in the firm
to operate the machines. This is captured by the term max [0 L, — ZZ:U_H K;ft}

The cost effectiveness (7, is given by the marginal product AEf fv divided by using

costs, i.e. wage w;; and, if it is a conventional capital good, unit costs of the natural

resource input c{, i.e.
A
Ci,t w4 + ]l( ) eco (3)
where 1(v) indicates the capital typeﬂ

The decision about the production quantity is based on demand estimations and
inventory stocks. Based on estimated demand curves, firms determine the profit
maximizing price-quantity combination. Because the estimation can be imperfect
and prices can not be immediately adjusted, the consumption goods market does not
necessarily clear (see for additional detail Dawid et al.[2018d).

Production costs of a firm are composed of wage payments and expenditures for
natural resource inputs required for each conventional vintage that is used. Total
resource costs are given by the resource unit price cf°® multiplied with the total amount
of conventional capital that is used in current production, i.e.

\%4

0= 1) - Ky (4)
v=1
with V as the set of vintages that are actually utilized for production in ¢. The natural
resource input costs ¢f“ = e - p® are composed of the user price p§® for the input
multiplied with an efficiency parameter e. The real price of the natural resource is
assumed to be constant, i.e. it is exogenously given and grows at the same rate as the
average wage in the economy. Hence, on average the ratio between variable labor and
resource input costs is held constantﬂ
The utilization of capital causes an environmental damage that is for simplification
reasons assumed to be linear in the amount of conventional vintages used,

\%4
Diy=e-y 1(v)- K, (5)
v=1

with e as fix environmental efficiency parameter. The share of conventional capital
goods used by a firm in current production determines the environmental quality

2The process of hiring new employees is explained in the references of the original model.

3In case of equality of a vintage’s cost-effectiveness the vintages are ordered by productivity and in
case of further equality the green vintage is used first.

4Note that this does only hold on average because wages may be different across firms.
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of a consumption good. The quality is assumed to be not observable to consumers.
The economy wide environmental impact is obtained by aggregating the firm level
environmental damage over firms, i.e. D; = ZZ D, . For reasons of simplification,
environmental feedbacks on the economy are assumed away, since the focus of the
present modeling approach is the study of technology diffusion.

Periodically, firms decide whether to invest in new capital items either for reasons of
capacity expansion or to replace depreciated or obsolete units. This decision is based
on the expectations about the relative profitability of different investment options. On
the capital goods market, each capital producer supplies a range of vintages of different
productivity. Hence, the available capital goods differ not only by technology type, but
also by productivity within the same technology category. Using the estimated net
present value, firms try to identify the best combination of quantity, productivity and
technology type, and invest if sufficient financial means are available. These routines
are explained in more detail in the appendix (B.2]).

3.2.2. Capital goods and innovation

Two IG firms ig € {c, g} offer a range of capital vintages indexed by v = {1,...,V}
that differ by productivity. The index v = 1 refers to the least productive vintage
supplied by firm ig and v = V' to the most productive. The incumbent firm ¢ produces
conventional, the entrant firm g produces green capital goods.

The productivity AY of vintages offered by IG firm ig at time ¢ depends on its current
technological frontier. The frontier A};t corresponds to the productivity level of the
most productive vintage indexed with V. If an IG firm successfully innovates it its
technological frontier is shifted upwards and the firm is able to offer a new and more

productive vintage with the productivity
AZJ,t+1 = (1 + AA) : Az“;t- (6)

Productivity enhancements are discrete steps given by AA - A};t where the factor
AA is uniform across IG sectors, but the productivity enhancement in absolute terms
depends on the current level of the frontier. Hence, there is a positive externality from
existing technological knowledge.

The success of innovation is probabilistic and IG firms are able to influence the
probability of success by investment in R&D. The probability of success Py, ; is given
by

IP;g.¢[success| = p- (1 + ﬁ&\Digyt)" (7)

where p is a fix minimum probability of innovation success. It can be interpreted as
technological knowledge that is generated independently of the market for example in
public research institutions or by inventors that are independent of the market. E&\Digyt
is ig’s R&D intensity in the current month. The parameter n € (0, 1] determines the
returns to R&D. When IG firms successfully innovate, they add a new and more
productive vintage to the array of supplied vintages.

IG firms can only offer a limited number of vintages given by V. If this number is
exceeded, the least productive vintage v = 1 becomes obsolete and is removed from
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the supply array. After the removal, vintages are re-indexed such that the index v =1
corresponds again the the least, and V' to the most productive vintage.

Innovation is associated with a learning process that has a positive side effect on the
production costs of the whole range of supplied vintages. Labor costs for the production
of a vintage v are proportional to its relative productivity in comparison to the least
productive vintage v = 1. This proportion remains constant, but the least productive
vintage is a more productive version after successful innovation. Hence, innovation
allows the IG sector to produce more productivity units with given inputs.

IG firms use labor to produce capital goods and use adaptive mark-up pricing in
response to the developments of their market share, profit and past pricing decisions.
Profits are partly re-invested in R&D and partly recycled back to households as
dividends. These and other routines such as production and pricing are explained in

the appendix (see B.1)).

3.2.3. Employees’ technological learning

Households act as consumers, savers, and employees. The consumption decision is
based on a multinomial logit function where the purchasing probability negatively
depends on the price of the good (see Dawid et al[2018d). CGs are assumed to be
homogeneous from the consumer perspective even though products may differ by the
environmental performance in production.

Technological learning is embedded in households’ technology specific skills. Tech-
nology specific skills b;lg, , are learned during work. The speed of learning depends on
the technological properties of the capital stock that is used by the employer and the
household’s learning ability that depends on its (fix) general skills b]“" and moderates
the speed of learning (cf. Dawid et al.[2018c).

There are two ways how technology specific skills are accumulated. Households
learn by using a specific technology type w;ft. Part of the technological knowledge
learned is transferable across types and contributes to the accumulation of technology
specific skills of the alternative technology type indexed by —ig with ig # —ig and
ig, —ig € {c, g} ,

The evolution of the technology specific skill level b;ﬁt is given by

bifs = b o - max [P 1), i ®)
with x*Pc [0,1] as spillover intensity or degree of transferability of technological
knowledge. Technology spillovers represent the part of technology specific skills that is
transferable [

58kills are assumed to be not perfectly disjoint and limitations affect only the speed of learning. In
principle, the difference in skills across technology types Aby, ; = b;{qt - b;ztg can be completely
closed via spillovers even if workers were never exposed to technolo’gy typ’e —ig with ig, —ig €
{c, g}, —ig # ig, but the pace of learning in skill category —ig is lower.
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The pace of learning zbzgt is dependent on the intensity of learning I/th and the degree

of technological novelty Ab;gt. It is given by
quiii({t = max [th’ V;L‘?t] ‘ Ab?f,t' (9)

with x* € [0,1] as lower bound. The intensity of learning in a specific technology
. Kig
9 __ h,t
ht™ Kpn.
This is interpreted as as intensity of effort or time invested in learning a specific type of
skills (cf. |Cohen and Levinthal [1990). Learning of a certain technology type ig is faster,
if the relative amount of this type in the used capital stock is higher assuming that the
relative amount reflects how intensely a worker is applying his technological knowledge
and learns by doing. The fix parameter x** € [0,1] imposes a minimum level on
the sensitivity of learning to the exposure of the employees to a certain technological
environment.

Employees learn only if “there is something new to learn”. Ab;ﬁt: max|0, (Aibg, ‘ fbfff )]

category ig is dependent on the relative amount of technology ig that is used v

represents the learning potential with Azg’t as average productivity of capital of type ig
that is used at the firm where the household is working. The learning potential is given
by the gap between the average productivity level A}?, and the households current skill

level b;iqt. The larger the gap is, the larger is the “amount” of technological knowledge
the emf)loyee may learn and the faster is the pace of learning. This assumption reflects
a notion from the learning curve literature that employees learn faster if they are
exposed to novel technological environments (Thompson|2012).

3.2.4. Green technology producer’s market entry and barriers to diffusion

At the day of market entry tg, the eco-technology becomes available as investment
possibility for CG firms. At that time, the capital stocks of all CG firms consist of
merely conventional capital, and workers have only worked with conventional capital. In
the literature on eco-innovation diffusion, it is extensively discussed how (green) entrant
technologies may suffer from different types of adoption barriers, such as technological
disadvantages, infrastructural and network effects in favor of the incumbent technology,
skill and learning related barriers, and/ or financial constraints of the adopter or the
vintage structure of the adopter’s capital stock (Arundel and Kemp|[2009; |Carlsson and
Stankiewicz{|1991; [Triguero et al.|[2013).

I focus on those barriers that undermine the effective productivity of capital and
result from lower relative knowledge stocks stemming from less cumulated R&D efforts
and less experience in technology utilization. Barriers to diffusion are effective in two
ways. At the day of market entry tg, the entrant green technology sector has a lower
technological frontier A;t ,- Hence, supplied vintages have a lower productivity than
those supplied by the incumbent. Further, the green technology is new to firms and
employees have not yet learned how to use the new technology. They have a relatively
lower endowment with technology specific knowledge b‘z’to for green capital utilization.

To ensure comparability across simulation runs, the market entry conditions of the
green technology are normalized in relation to the incumbent conventional technology.
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At the day of market entry tp, the green IG firm starts supplying a first vintage of
green capital. This green vintage is initialized proportionally to the least productive
vintage offered by the conventional firm, i.e.

Al :(lfﬂA)'Al

g,to ¢,to

(10)

where 4 € [0,1) is the percentage technological disadvantage of green technology at
the day of market entry. It is assumed, that the market entry of the green technology
was associated with a technological breakthrough that enables the rapid development
of further varieties of green capital. In particular, a whole array becomes successively
available. Half a year after the day of market entry, the next and incrementally more
productive vintage is added with the productivity level A2, = (1 4+ AA)- A}, =
(1—p4)- Ag,toﬂ This procedure repeats every sixth month until the array of supplied
vintages has reached the maximum supply number. Further technological progress
happens through the innovation procedure as introduced above (see [3.2.2). Note that
the initial supply array is proportional to the supply array of the conventional producer
in tg. The green vintages are supplied at the same prices as vintages of the incumbent
in to, but the price per productivity unit is higher due to the assumed technological
disadvantage.

Similarly is the initialization of technology specific skills for green capital utilization.
Households’ endowment with green technology specific skills is scaled in relation to its
specific skill level for conventional technology use, i.e.

b‘Z,to = (1 - Bb) : i,to' (11)

The parameter 5° € [0,1) describes a technological knowledge gap, in particular it
determines the extent to which households’ skill level for green technology utilization is
lower in relation to that of the conventional technology. For example, if 54 = 5° = .05,
supplied vintages of the green firm have a 5% lower productivity and employees have a
5% lower level of knowledge about the utilization of green technology in comparison to
conventional capital.

4. Settings and experiments

4.1. Calibration and initialization of parameters

The simulations are run with H = 1600 households, two IG firms, two private banks
and I = 120 CG firms. Because CG firms can enter or exit the market, the number of
CG firms can vary over time. At the initialization period, the active number of CG
firms is set to 74[] The simulations are run for 7' = 15000 iterations corresponding
to approximately 62.5 years interpreting one iteration as working day and a year to

6Six months can be referred as to “rapid” in comparison to the innovation probability that ranges
around 3% (not constant) which corresponds to approximately one innovation each five years.

"Do not wonder about this apparently arbitrary number. It is due to the calibration via running the
model through a transition period before the experiment starts.
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consist of 240 working days. The runs were repeated 210 times to generate a sufficiently
large sample of simulated economic data that can be analyzed.

At the beginning of the simulations, the conventional technology is incumbent.
After to= 600 iterations, the green capital supplier enters the market. At the day of
market entry, the green technology producer is assumed to suffer from entry barriers
corresponding to a 84 = 5% lower frontier productivity AY, and 8° = 5% lower
technology specific skills biﬂfo embodied in employees’ capabilities. These assumptions
are later relaxed in a series of experiments about drivers and barriers to diffusion, and
their interplay with innovation oriented climate policy.

To justify the model’s suitability as tool for economic analysis, the model’s link to
the observed economic reality needs to be demonstrated. This is done by an indirect
calibration approach (cf. [Fagiolo et al.|2017)), i.e. the model is calibrated such that
it reproduces empirical stylized facts as for example growth rates, auto- and cross-
correlation patterns of GDP, output, unemployment, investment and consumption
aggregates. An overview of the stylized facts used for model validation is provided in
appendix [A] The parameter settings are summarized in the appendix Most of the
parameter values are taken from the original Eurace@unibi model (see for more detail
on the model calibration Dawid et al.[2018b, and the references therein). Some of the
parameters have been slightly adjusted to iron out distortions caused by the model
extension.

Other parameters allow to steer the cyclical volatility of the model for example
via the time horizon chosen for the smoothing of dividend payments or the revenue
recycling of IG producers. These parameters are set relatively conservative to reduce
the influence of business cycle dynamics on technology choice. These dynamics may
reveal insights into the industrial dynamics in economically fragile environments and
investment cycles, but hamper the isolation of the different determinants of technology
choice ]

In this analysis, moderate technological spillovers are assumed, i.e. Y*P'= 5
and Y= .5. An in-depth analysis on the role of learning spillovers for technology
choice and the evolution of market structure is subject to a forthcoming study. The
characterization of eco-technology and associated learning spillovers is highly stylized.
It is likely that the technological knowledge required for either technology is partly
transferable (cf.|Cohen and Levinthal [1990). For example, skills such as programming
or basic engineering knowledge are usable independently of the type of capital that is

8This might be a restrictive assumption because business cycles had been shown to play a decisive role
for the investment in new technologies. For example, |Anzoategui et al.| (2016) have investigated the
role of business cycles on a technology adoption and explain the persistence of negative productivity
shocks by reduced investments in new technology during crises, but did not distinguish between
different types of technology. Purpose of this study is the investigation of factors that hinder the
switch between different, substitutive technology types even though the study of the impact of
business cycles on directed technological change represents a promising field for further research.
Hershbein and Kahn| (2018)) have provided job posting based indication that the Great Recession
was a trigger of routine-biased technological change in severely hit areas in the US. Though, an
investigation of the role of business cycles in the presence of different barriers to adoption is beyond
the scope of this study.
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used, but technological knowledge about the technical details of a combustion machine
has little use in the production of wind energy.

Studies on corporate learning suggest employees being exposed to changes in their
working environment to learn faster which justifies the x**> 0 assumption (Thompson
2012). Further, these parameters are sector and technology dependent, but sectoral
heterogeneity is not within the scope of the present analysis. The choice of the values
for the barriers and learning parameters is based on a series of sensitivity tests. These
values are set such that the probability of a green transition is roughly 50%.

4.2. Simulations

A series of experiments is run to investigate the coevolution of technology diffusion,
the stocks of technological knowledge and relative superiority of a technology type.
The initial conditions at the day of market entry can be decisive for the type of the
technological regime at the end of simulation time.

The experiments investigated below start with a baseline scenario with fixed entry
barriers at a sufficiently low level such that a technological regime shift toward green
technologies occurs in approximately 49% of the cases. The analysis of the benchmark
helps understanding the dynamics of the model and to characterize two types of possible
regimes with either green or conventional technology dominance.

The parameters 84 and 8° represent different types of barriers to green technology
diffusion. In simulation experiments, I investigate first the relationship between
diffusion and the strength of barriers. In a subsequent experiment, I explore the
implications for the design of innovation oriented climate policies comparing different
political instruments, namely an environmental tax that makes the use of the incumbent
conventional technology more expensive and two subsidies that either stimulate the
adoption of green technology at the firm level, i.e. an investment subsidy for green
capital, or focus on the creation of “green product markets”, i.e. a price support paid
for final goods that are produced with green machinery.

5. Results

In this section, I give an overview of the core findings of the simulations. In the first
subsection, I discuss the bifurcation like pattern that results as a consequence of the
technological regime shift. Thereafter, I present the results of the experiments on the
strength of barriers.

The most relevant indicator for technology diffusion is share of conventional capital
used in ¢t. The inverse (1 — vf) indicates green technology diffusion at the intensive
margin, i.e. it indicates how intensively a certain technology is used in tﬂ

9 An alternative indicator is the productivity weighted share of green capital in production. Which
indicator to use is a matter of priority setting in the analysis. The unweighted measure has the
advantage that it is more informative about the environmental performance of the economy and
about employees exposure to a specific technology type and its consequences for learning. However,
the link between these two aspects and the unweighted diffusion measure is a result from the
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Insights on the evolution of adoption barriers are derived from the differences in the
stocks of codified and tacit technological knowledge which are represented as the ratio
of frontier productivity of the conventional to the green technology a; := AZt / A;t

and the ratio of the corresponding skill levels 3; := b¢/b] where big is the average
technology specific skill level of all households in the economy.

5.1. The baseline scenario: Two possible technological regimes

For this exercise, the entry barriers are set at a sufficiently low level such that the the
green technology outperforms the conventional in terms of effective using costs captured
by (7 for an average firm. This setting is chosen to illustrate that path dependence
in technological learning may outweigh technological superiority in the long run. In a
subsequent sensitivity test, this assumption will be relaxed.

As expected, initial adoption rates are high which is plausible from the fact of lower
effective using costs. Figure |3| illustrates the evolution of the share of conventional
capital use in the simulation runs. On the left hand side, the share is shown for the
average across runs. On the right hand side, it is shown for single runs. It becomes clear
that the consideration of the average hides a pattern of divergence in the technology
choice. The disaggregated plot indicates that a phase of initial green technology take up
is not necessarily sustainable. In the beginning, in almost all simulation runs the share
of conventional capital used decreases, but in approximately 51% of the considered cases
the initial diffusion reverses after some time and the share converges to a technological
state with roughly 100% utilization of conventional capital. Though, the technological
regime is not necessarily stable. In some of the simulation runs, the direction of the
diffusion process switches several times.

Henceforth, I use the word “technological regime” to describe the dominance of a
technology type measured at the intensive margin. A technological regime is defined
by the set of runs that match the threshold condition of 50%, i.e. 7°° = {r €
R/{rsviteh}yg, < 5} and rem = {r € R/{r*"#"}|vg > 5} where r represents

a single run out of the full set of runs R and r*V*“" is a special case introduced

below. I define a regime shift or green transition by a situation where the incumbent
conventional technology is replaced by the entrant green until the end of simulation

v K7 e .
time, i.e. V5. = % > .5. The plotted diffusion curves reveal that the divergence

it

is even stronger and a more rigorous definition could be applied since the technology
share converges to one of the extreme values of almost 100% or 0%. Using these
definitions, 98 (107) out of 210 runs are defined as eco (conv) scenarios. The remaining
5 are classified as switch scenarios which are discussed in further detail below. The
distinction between different technological regimes and a look on the diffusion curves
reveals that initial adoption is not necessarily stable. In some cases the fall back
towards the conventional technology is subject to a second reversal towards the green
technology. Hence, it is important to understand why this happens in the simulations

Leontief assumption made about the production technology with respect to both, labor and natural
resource inputs.
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Figure 3: These plot show the evolution of the share conventional capital used for production from the day
of market entry onwards. The lower the share, the higher is the diffusion of green capital in actual
production. Figureshows the average across all simulation runs. Figureshows the share for
each single run. The colors are an indicator for the type of technological regime. Green (red) can
be interpreted as scenarios in which the economy converges to a technological regime with only
green (conventional) capital utilization. The color blue indicates those runs, that are characterized
profound switches between the two types of technology used. Precise definitions of the regimes
are introduced in the text.

and what can be learned from these insights about real world patterns of technological
competition and diffusion.

Before addressing questions related to the process of transition, it is worth mentioning
the key difference between the green and the conventional regime that is relevant for
climate policy analysis. Next to the technological divergence, there is also a divergence
in the environmental performance. The use of conventional machinery is associated with
a negative environmental externality. This externality can be assessed by considering the
evolution of the aggregate environmental impact . The model is calibrated such
that the environmental impact stabilizes at a given level if a technological transformation
does not take place and is reduced to almost zero if there is a transition to green
technology. Though, the evolution of environmental impact per unit of output (called
eco-efficiency) reveals a pattern of relative decoupling caused by improvements in
productivity , hence the reduction of damage per unit of output. Though, for the
achievement of climate targets an absolute decoupling is needed, i.e. the reduction of
the aggregate environmental impact (Arundel and Kemp|2009). In particular, relative
improvements in efficiency are not sufficient if the gain in terms of reduced emissions is
outweighed by an increase in economic outputH

Three questions arise from these observations and guide the following analysis: (1)
What are the underlying reasons for the convergence to stable states, (2) for the

10This insight has given rise to the debate related to post-growth economies (e.g. .
Much of the controversy is sensitive to the choice and definition of economic output and empirical
issues of measurement, though there is a consensus about the necessity of change in patterns of
production and consumption and subject of this study is to gain an understanding of the drivers
and barriers of change.
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probabilistic nature of the technological regime shift, and (3) why is the regime shift
reversed in some cases. Further, I investigate the macroeconomic implications. To
address the third question, I define an additional state of technological regimes, called
switch regimes, where the diffusion pattern exhibits high volatility over the considered
simulation period.

These scenarios are identified by two criteria: (a) The level of conventional (green)
technology utilization did not converge to a level close to 100% by the end of the
simulation horizon, i.e. it is less than 90%: a := (v4f, < 90%),ig € {c,g}. (b) The final
level of conventional (green) capital utilization is Higher than 50%, but the minimum
level of conventional (green) technology utilization within the second half of simulation
time had been fallen below 25%, i.e. b := (z/'Tgm > .5 A mingepy,,,, 1) Ve < 25),1g €
{¢,g}. In these scenarios, the variation in the diffusion dynamics is high for a long
time which is an indication for late or lacking technological convergence. The criteria
for the selection of the switch scenarios are set arbitrarily and specifically for the
given set of simulations, but identify those scenarios that are characterized by a long
lasting uncertainty about the final technological state. I refer to this phenomenon as
technological uncertainty.

The switch scenarios occur relatively rarely. In the present set of simulations it
happened only in 5 out of 210 runs. A proper statistical analysis of this scenario
type would require a larger sample, and the insights drawn about r***<" should be
interpreted as hints to interesting aspects rather than generally valid regularities.
Henceforth, the results are represented as aggregates across runs differentiated by
technological regime.

Which are the drivers of technological convergence? A good candidate to
explain the stabilization in final states is the endogenous nature of learning. As
illustrated by figure [4 the bifurcation like pattern is also observable in the evolution
of the ratio of technology specific skills needed for conventional capital utilization
over those required for green capital 3; and in the corresponding ratio of frontier
productivity ay. Worth noting is the contrast between the smooth and lagged process
of learning by doing captured by the skill ratio in comparison to the jumpy nature of
the technological frontier that results from the probabilistic nature of innovation. In
consequence, the divergence of the §; curves is smoother than the divergence of the
frontier curve c;. In the initial phase, the skill related disadvantage is increasing for all
regime types, while the difference in the frontier productivity exhibits an immediate
divergence between the different regimes. Hence, the relatively lower endowment with
skills for green capital utilization can be seen as a factor that retards the process of
green transformation. In contrast, the difference in the technological frontier diverges
early and appears to be an early indicator for the direction of further technological
evolution. Alternative explanation for the technological divergence could rely in relative
prices for capital goods. In figure [f] two plots of capital price indicators are shown. The
plot on the left hand side, [5a] shows the ratio of nominal prices for the most productive
vintage of the conventional producer and green producer. As expected, the adaptive
pricing rule causes a divergence such that the prices for the more demanded technology
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Figure 4: Plots of the evolution of entry barriers from the day of market entry onwards. Figure show
the evolution of the percentage difference of technology specific skills (the technological frontier)
for an average run within the corresponding technological regime (as defined in the text) indicated
by the colors.

type are higher in nominal terms, i.e. the green technology is nominally more (less)
expensive if the green (conventional) technology dominates the market. Though, more
important than nominal prices are prices per productivity unit. Here, the opposite is
true. Apparently, endogenous technical progress that shifts the technological frontier
upwards dominates the price dynamics of adaptive pricing in response to market
demand.

It becomes clear from all these plots that the divergence between green and con-
ventional technological regimes is not only reflected in technology utilization, but also
in capital prices, skills and technological development. It seems that the endogenous
nature of technological innovation is an important force that governs the process of
divergence of the two technological regimes.

The evaluation of the price per productivity ratio, points to an aspect that may
help answering the questions about the stability of diffusion. The curve for of the
switch scenarios remains relatively close to the initial level during the first half of the
simulation horizon and later rather co-moves with the curve of the conventional regimes
while the nominal price ratio, but also the a; and §; curves rather co-move with the
curve that represents the eco regimes. Another interesting question is how firms’ ability
to make effective use of a technology develops. In figure [6al the evolution of the ratio of
the average effective productivity AtEf 1G9 4f firms is shown. This pattern very well
coincides with the observations made about the evolution of the frontier and technology
specific skill ratio.

The degree of technological novelty of a capital good is a measure for difference
between employees technology specific skills and the technological frontier of a technol-
ogy type and is decisive for the pace of learning (see above . It is here defined
as the ratio of the frontier productivity and employees’ corresponding skill level, i.e.
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Figure 5: The colors indicate the scenario type as defined in the text (green for r°°°, red for r°°™", blue
for pewitehy, Figurethe evolution of the ration of prices paid for the most productive vintages
supplied by the conventional and green producer. Figure @ shows the evolution of the price-per-
productivity-unit ratio.

(A}/g’t / big ).Employees learn only if they are exposed to technological novelties. Roughly
spoken, they learn only if there is something new to learn. The evolution of the
relative degree of technological novelty, i.e. the ratio of novelty of the two technology
types, is shown in figure [6b] In the green scenarios, at the early phase of technology
uptake the degree of technological novelty of the green technology increases rapidly
but stabilizes after some time. Worth mentioning is one observation. The relative
degree of technological novelty is higher for the dominating technology.The divergence
in the relative degree of novelty across technological regimes indicates further, that
the dominating technology grows faster in productivity than the corresponding skill
level. The pace of technological improvement by innovation is relatively larger for the
dominating technology. Learning in the dominated technology is to a higher extend
driven by spillovers than by learning by doing.

It is not only interesting to study the patterns of technological development, but also
to have a look on the macroeconomic outcome in general. A relevant issue in studies on
directed technological change are the costs of learning during the transformation towards
green or technologies that replace an incumbent conventional technology type. Costs of
learning can be interpreted as a type of abatement costs. Traditionally, abatement costs
are a concept in climate policy analysis and understood as production inefficiencies in
terms of distorted allocations of production resources when environmental regulations
are imposed (cf. [Pizer and Popp|2008)). Though, the concept of abatement costs relies on
the assumption of efficient production with unique equilibrium in the business-as-usual
(when no policy is applied), an assumption that does obviously not hold in this study.

The model gives an evolutionary interpretation of abatement costs, namely those
costs that result from the switch to an alternative, less mature and routinized technology.
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Figure 6: The colors indicate the scenario type as defined in the text. Figure shows the evolution of
the ratio average effective productivity of firms, and figure @ shows how the relative degree of
novelty develops. A value > 1 indicates that the conventional technology is relatively “more new”
to employees than the green technology. The degree of novelty is an indicator for the pace of
progress and is relevant for the speed of learning.

The simulation results exhibit multiple (stochastically determined) stable economic
pathways that can be compared with each other.

The technology shift is associated with the obsolescence of technological knowledge
which is more pronounced if the technological pathway is uncertain and producers
enduringly switch between green and conventional capital. Figures [7] illustrate dif-
ferences in macroeconomic indicators across the different technological regimes, i.e.
monthly (log) output and the number of active firms. Additional plots on further
macroeconomic indicators such as unemployment, the price for the natural resource
and the consumer price index can be found in figure in the appendix. To check the
significance of differences across scenario types, I ran a series of Wilcoxon rank sum
tests comparing the averages of different subsets of time accounting for different phases
of diffusion (before market entry, initial, medium , and end phase) and with/without
control for switch scenarios. The tests confirm that the differences across all scenario
types in output, unemployment and the natural resource price are not significant
before the day of market entry, but become significant if comparing later snapshots
in time. The eco and switch scenario do not exhibit significant differences in monthly
output in the initial phase of technology diffusion, i.e. in ¢ € [601, 3000], but both are
associated with significantly lower output than the conventional regimes. This could
be interpreted as learning costs in terms of lower productivity and output. In the
long run, learning costs in terms of lower output are not significant when comparing
the eco and conventional regime, but the switch scenarios exhibit significantly lower
output. A similar observation can be made when considering the unemployment rate,
but here, the switch scenarios are associated with lower unemployment. These findings
are interpreted as costs of technological uncertainty that is reflected in a lower output
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in absolute terms and in relative terms per unit of labor. Lower unemployment rates
can be desirable, but in the present case it represents a waste of resources if invested
labor resources are not associated with a gain in total wealth and when neglecting
distributional consequences. A summary of the test statistics for the time before market
entry and the whole sample is provided in table [15]in the appendix. The Wilcoxon
test further confirms that there is no significant difference in the price for the natural
resource in relation to the wage when comparing the green and the conventional regime.
This is intended by the design of the price adjustment mechanism that determines the
price of the natural resource, and confirms the technological divergence in the baseline
scenario is driven by other factors than the evolution of input prices.

Apparently, there are no abatement costs in terms of output in the long run if the
technological evolution is clear cut, i.e. when comparing green and conventional regimes.
But there are learning costs. In the early phase of technology diffusion, i.e. in the first
ten years after market entry, aggregate output is significantly lower. But this is only a
temporary effect that diminishes by the end of simulation time. The time series of the
number of active firms indicates stronger competition that leads to the market exit of
firms and, likely as a consequence, higher unemployment. As observable in the plot of
the evolution of the number of active firms, figure [7] the market cleansing at the end of
the transition time occurs only in the case of a technological regime shift but not when
the conventional technology remains dominant. This is in line with the Schumpeterian
idea of creative destruction associated with radical innovation. Competitive pressure
increases and leads to the market exit of firms that are not able to adapt to the new
technological environment.

In contrast, if there is high uncertainty about the resulting technological regime and
the evolution is characterized by enduring switches between green and conventional
technologies, no technological specialization occurs. Costs of learning and the obsoles-
cence of knowledge are high. The plot of monthly output indicates that these costs are
reflected in final output.

5.1.1. The model’s empirical relevance: Stylized facts of diffusion and
technological superiority

The results of these simulation exercises can be linked to two patterns that are central
in empirical studies on diffusion and can be used for the validation of the model[T]

1. Patterns of diffusion:

Many studies in innovation economics refer to an s-shaped pattern of diffusion. It
captures the observation that diffusion processes are composed of a phase of early
adoption with low adoption rates, a phase of acceleration when the adoption rate
reaches its maximum and a phase of saturation. This is explained by different
potential reasons such as the spread of information and heterogeneous benefits
from technology adoption (Allan et al.|2014; [Kemp and Volpi|2008; |Nelson and
Winter|[1977; [Pizer and Popp|[2008; [Rogers||2010)).

HFurther stylized facts that served as guideline for the design of the model are summarized in appendix
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Figure 7: These figures show the evolution of output and the number of active firms. The different colors
indicate the technological regime type. The jumpy behavior (esp. for the number of active firms)
of the blue line (indicating switch scenarios is due to the small number of runs within the set).

Though, the s-shaped pattern is a generally observed pattern when considering
diffusion at the intensive margin and taking account of replacement dynamics.
The intensive margin refers to the intensity of use, and not only to the binary
occurrence whether the utilization of a technology was observed or not (named as
extensive margin). |Comin et al.| (2006) made a comprehensive study on historical
technology adoption data covering 115 different technologies, 150 countries and
200 years. They found that the s-shape does not to hold in general when using the
intensive margin as diffusion measure. In some cases, the authors confirmed the
s-shaped pattern, in other cases, they observed concave or even inverted u-shaped
patterns. The authors argue the different patterns to be (partly) explainable
by the types of technologies under consideration and by the circumstances of
adoption. Inverted u-shapes refer to situations in which a technology initially
diffuses until it is replaced by a superior technological alternative. The present
study sheds light the dynamic interplay of learning and endogenous innovation in
an environment of two competing alternatives. Learning and innovation are key
to understand the evolution of substitutability and superiority among competing
technologies. Recall that technology specific skills can be interpreted very broadly
and may capture all supporting factors that facilitate the effective utilization
of a technology, are built up over time of use and are not bought by individual
users on the market. This can be specific knowledge, but also infrastructure,
institutions and supply and demand networks, etc.

2. Path-dependence of technological change:
Path dependence in processes of neutral and (climate friendly) directed techno-
logical change is documented in the innovation and endogenous growth literature.
Identified sources of path-dependence are learning and network externalities, the
institutional environment, habits and search and information frictions (Aghion
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et al.|[2014, |2016; |Arthur|[1988} [Dosil[1982, (1991} [Hanusch and Pyka|2007; [Huang
et al.|2017; [Safarzynska et al.|2012)). In this study, path dependence of tech-
nological change is reflected in the two stocks of technological knowledge, i.e.
technology specific skills and the productivity of the available technology types.
The perceived, relative profitability of a technology type determines whether it
is chosen by adopters. The relative difference between green and brown skills,
interpreted as tacit, and between the corresponding technological frontiers, in-
terpreted as codified technological knowledge, are informative about the relative
profitability. The main distinction between these two knowledge types from an
economic point of view is that, in contrast to codified, tacit knowledge can not be
bought on the market. There is a general endowment with tacit knowledge in the
economy embedded in the economy’s labor force, but its level is heterogeneous
across firms [

The bifurcation-like patterns of the two types of relative knowledge stocks a; =

AY B . . . .
<t and By = &5 coincide with the convergence towards one of two possible
Ag.t B}

technological regimes.

The Eurace@unibi-eco model is able to reproduce different types of diffusion curves
dependent on the settings concerning the entry barriers.

Barriers can also be prohibitively high that either no diffusion at all occurs or only
for a very short period in time. A small fraction of firms invests in green capital goods,
but the market penetration of green capital does not achieve a sufficiently high level.
Technological disadvantages of the green technology become stronger as a result of
endogenous learning and innovation. In the long run, the green technology is not any
longer used by individual firms.

If barriers are sufficiently low, the model shows an concave diffusion pattern measured
by the share of green capital used in current production. Initial diffusion starts
immediately because the green technology outperforms the conventional alternative
until it slows down. The slow down is caused by two reasons. First, the skill related
barrier is increasing. Learning in a category is positively dependent on the share of the
technology type that is used and the pre-existing capital stocks are entirely composed
of conventional capital. This favors the incumbent technology at the early phase of
diffusion. Second, the green technology producer increases prices in response to the
positive demand shock.

The most interesting case are intermediate barriers ranging between 5 — 10% pro-
ductivity and skill related disadvantages. These values are associated with s-shaped
and inverted u-shaped patterns with fluctuations if the periodicity of observations
is sufficiently small (e.g. monthly, non-smoothed data). In the initial phase, the
technology slowly starts diffusing. The slow start is mainly explainable by the relatively
smaller supply portfolio of green alternatives. At the day of market entry, only one
vintage of green capital is available on the market, but a higher number of conventional

121t is also possible to consider cross-regional differences in the endowment with technology specific
skills to investigate cross-country differences in technology adoption, but this is not purpose of this
study.
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alternatives. As a consequence, the probability that the green vintage meets the
technological requirements of potential adopters is smallE

After some time, the diffusion process accelerates until competitive pricing dynamics
and endogenous learning from the pre-existing capital infrastructure cause a slow down
in the diffusion process. Endogenous learning conditional on technological legacy leads
to the second stylized fact of technology diffusion, namely path dependence and the
possibility of a technological lock-in. Endogenous learning represents only one type of
path dependence, but the simulations show that path dependence may be such strong
that even after an initial diffusion of an initially superior technology the diffusion
process is reverted. In such case, the diffusion curve exhibits a u-shaped pattern.

This matches the argument brought by |Comin et al.| (2006) that inverted u-shapes
may occur when the diffusing technology is replaced by a superior substitute. In the
present study, both types of capital are perfect substitutes with regard to the output
that is produced. Endogenous learning can undermine the initial superiority of the
green technology, represented as permanently reduced material input costsE

5.2. Barriers to diffusion

What is marginal impact of the strength of barriers on the transition probability?
To address this question, I run a series of Monte Carlo experiments randomizing the
level of skill 3% and technology related barriers 4 within the critical value range that
allows to generate a sufficiently well mixed sample of simulation runs converging to
one of the two technological regimes. Preceding analyses have shown that barriers can
be prohibitively high that a regime shift does effectively not occur within a tractable
amount of simulation runs. These analyses have pointed to a value of approximately
> 20% while it needs to be noted that the stochastic nature of the model it is not
possible to analytical derive a definite threshold level. To obtain a balanced sample of
green and conventional regimes, the value range is set sufficiently low to generate data
within the range of critical levels of diffusion barriers, i.e. f° and 84 are uniformly
drawn from the interval [0,.15]. The distribution of the initial conditions is plotted in
figure Ba] As before, a divergence of barriers is observable. In figure [BD] the differences
in the barriers are shown at the end of simulation time. Two clusters in the opposite
corners of the plot have formed.

5.2.1. The level of entry barriers

Compared to the baseline scenario, the diffusion barriers are higher on average. As
expected, this reduces the frequency of simulation runs that exhibit a transition towards

13 This insight is derived from counter-factual simulations, the supply restriction was assumed away and
an immediate market penetration was observed even though this penetration was not necessarily
permanent.

14 An important difference to the patterns of diffusion studied by |Comin et al] is the type of data that
is used. The simulation model represents an experimental tool that allows the collection of data at
the desired resolution in time, at well defined definition of technology and without any problem of
missing data. These conditions are difficult to meet by research in economic history, though the
parallels in the observed patterns are striking.
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(a) t = 600 (b) t = 15000 (c) All periods

Figure 8: Figure illustrates the distribution of the settings of the barriers at the day of market entry.
The colors of the points indicate the scenario type (green for r°°?, red for r°°"", blue for TS“”tCh)‘
In ﬁgure the distribution of barriers is shown across the whole simulation time. Note that the
scaling across axes differs, i.e. the absolute dispersion inandis higher than in ¢ = 600. The
colors indicate the share of conventional (red) or green (green) capital used.

t Mean (Std) [min,max] | Mean (Std) [min,max] | Mean (Std) [min,max] | p-value*
Frontier gap conv eco

600 064 (.043)  [.001,.150] | .082 (.041)  [.002,.150] | .032 (.027)  [.001,.133] 2.3e-16
15000  .117 (.373)  [-.506,.535] ‘ 531 (.322)  [-.204,1.24] ‘ -.594 (.304)  [-1.41,-.033] ‘ <2e-16
Skill gap conv eco

600 077 ((046)  [.001,.149] | .089 (.042)  [.001,.149] | .052 (.032)  [.001,.148] 4.8¢-10
15000  .117 (.373)  [-.506,.535] ‘ 393 (.085)  [.133,.535] ‘ -.360 (.084)  [-.506,-.152] ‘ <2.3e-16

Table 2: This table show the initialization of entry barriers. In the columns eco and conv, the properties of
the corresponding subsets are shown, i.e. those initializations that result in an eco (conv) regime
and the lower part of table shows how the barriers have evolved until the end of simulation time.
*The p-value in the last column indicates the significance of difference between the green and
conventional scenario derived from a two-sided Wilcoxon test on equality of means.

green technology, i.e. 77 out of 210 runs which corresponds to 37%. The corresponding
plots of the time series of the diffusion measure vf can be found in the appendix

The descriptive analysis of the barrier settings that are associated with a green
transition indicates that a transition is more likely if barriers are low. This is illustrated
by the time series plots of the skill and productivity ratios, but also visible at the
degree of technological novelty and the price-per-productivity ratio (see . The
time series are disaggregated by scenario type and exhibit a significant difference in the
mean values at the day of market entry in favor the of the resulting regime. Barriers
and prices per productivity unit for green capital are on average higher in the subset of
runs that exhibit a lock in in the technological regime. This observation is summarized
in table [2] showing the means and value ranges of the initialization for the full set of
runs and the subset of green and conventional regimes. A two sided Wilcoxon test
confirms the significance of the differences in the mean.

Comparing the average outcome of green and lock-in regimes, weak support for a
better macroeconomic performance of the green regime in terms of aggregate output
can be found during the late phase of diffusion and when considering the average across
all periods . This is confirmed by a Wilcoxon test at a 5% significance level (table
116]). Though, the permanence of this effect is not clear since the differences are no
longer significant in the last period of simulation. A further observation is the amount
of firm exits at the late phase of technology diffusion which is significantly higher when
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a green transition occurs (cf. . A possible explanation is that those firms that miss
the opportunity to switch to green technology are no longer competitive if the green
technology permanently establishes on the market. Note that the model only has a very
stylized, stochastic firm entry rule such that only firm exits can be studied, but entry
dynamics are insufficiently captured. The green scenarios are further associated with a
significantly higher unemployment rate at the early phases of technology diffusion.

What is the impact of the level of barriers on the transition probability?
The random initialization of barriers allows to study the role of entry barriers by a
simple regression of the final state on initial technological conditions and a set of
ControlsE Next to an analysis on the macroeconomic level, I test how initial conditions
at the firm level help explaining the transition probability. Because the share of
conventional capital utilization of individual firms at the end of simulation can be
almost perfectly explained by the technological regime, i.e. all firms use almost 0 or
100% capital of a specific type, this does not allow to study adopter heterogeneity,
but rather contributes to the understanding of the transition at the macro level. In
addition to these analyses, I investigate the role of firm heterogeneity at an early phase
of diffusion, i.e. I seek to identify the characteristics of early adopters.

15The variation in the control variables beyond the randomized entry conditions arise from the period
until the day of market entry ¢ € [0,600]. The initial population in ¢ = 0 is identical in all simulation
runs. In all specifications, I used smoothed values, i.e. one year averages, of the time dependent
explanatory variables.
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9¢

Initial conditions and techn. regime shift Dependent variable: Aggregate share conventional capital used.

OLS Probit
(1) (2) (3) 4) (5) (6) (1) (8) 9) (10)
(Intercept)  .2754%**F  2676*** 0103 -0.1351 -36.47 S7039%FF  _Q4T0FFF 3 6088FF*  _1.1221. 1.95.2
(.0605) (.0437) (.0550) (.0884) (45.16) (.1901) (.1794) (.3805) (.6059)  (257.0)
B .0448%* .0377FF* 0188 .0202 L1387 L1896%** -.3162*%  -3.098.
(.0065) (.0052) (.0200) (.0202) (.0226) (.0317) (.1552)  (.1626)
B4 L0BA8*HK  O507THFHK  1136%*K  1167H** (2285%F%  2716%** 1842 .2101
(.0052) (.0047) (.0152) (.0153) (.0307) (.0382) (.1498)  (.1658)
(8%)? .0026* .0025% .0286%* .0284**
(.0012) (.0012) (.0091)  (.0010)
(84)2 -0.0023%*  -.0024** -.0009 -.0004
(.0009) (.0009) (.0089)  (.0010)
B - g4 -.0035%**  _ 0035%** .0218. .0232
(.0010) (.0010) (.0129)  (.0138)
B¢ 15.71 120.0.
(11.41) (70.87)
AY, -.6661 -7.601
(.9565) (6.358)
Output 3.509 16.11
(5.886) (32.87)
##firms -.0246 -.1550
(.0304) (.1721)
w? -2.430 -13.51
(1.764) (10.18)
Adj./ps.R> 1814 .3492 L4769 .5316 .5316 .1316 3157 4761 4954 14824
F-statistic ~ 47.31 96.25 113.1 48.44 24.72
AIC 237.67 197.02 125.15 131.88 136.64 237.67 186.86 142.61 137.26 140.85

Significance codes: 0 *¥*¥*¥ 001 “**¥ 01 “*> 05 ¢ .1 ‘’ 1. R?: for OLS heterosked. adjusted; for Probit adjusted McFadden pseudo.

Table 3: Technological regime shift and initial conditions: Share conventional capital v§ on the macroeconomic level in T" = 15000 on diffusion barriers

BA, ,Bb, measured in percentage points, and initial macroeconomic conditions (¢ = 600). The diffusion barriers are defined as percentage difference
between the technological frontier and technology specific skill levels (see. Columns: (1)-(5) OLS, (6)-(10) binary Probit.



For all these model specifications, I ran a simple OLS and a binary Probit regression.
The binary specification is appropriate due to the binary nature of the response variable,
i.e. the share of conventional capital that is used in the last period is roughly 100%
or 0%, but there is little variation in between. Though, these coefficients are less
straightforward to interpret because the marginal influence of an explanatory variable
depends on the other explanatory variables. The OLS version allows a straightforward
interpretation of the coefficients.

The results of the regression analysis at the macroeconomic level are summarized in
table 3l

As expected, the barriers 84 and 8° both enter with positive coefficients, and are
economically and statistically significant at the < .1% level across different linear
model specifications. Positive coefficients indicate a higher share of conventional capital
utilization in ¢ = 15000, i.e. a negative association with the likelihood of a technological
regime shift. I repeated these regression exercises for different snapshots in time,
i.e. in ten-year steps after the day of market entry using no longer the initial, but
contemporaneous barrier level. The results (not shown here) confirm the relationships
to hold across time and can be interpreted as indication of path dependence.

What can be said about the magnitude of effects? Comparing the results of
the OLS and the binary Probit regressions, it is consistently found that the frontier
related barrier 54 enters with a larger coefficient. Hence, the supply-sided barrier
exhibits a stronger association with the transition dynamics than the demand-sided
barrier. The adjusted R? of the OLS (Probit) suggest that approximately 18% (13%)
of the variation can be explained by the skill barrier alone compared to 35% (32%)
when considering only the frontier barrier. Including both barriers in simple linear
terms helps explaining roughly half of the variation. The coefficients of the linear
OLS model can be roughly interpreted as marginal effect probability of a technological
lock-in in the conventional regime (or inverse of the transition probability). Considering
the regression specification without the interaction term, a change by one percentage
point in B4 (%) is associated with a 5% (3.8%) higher share of conventional capital
utilization. Though, the effects are non-linear. The value range of the target variable
is truncated and barriers can be prohibitively high, i.e. a transition becomes highly
unlikely and does effectively not occur within a reasonable amount of simulation runs.
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Techn. regime and initial conditions. Dependent variable: Share conventional capital used by firms in ¢ = 15000

OLS Probit
1) (2) (3) (4) (5) (6) (1) (8) (9) (10)
(Intercept) 2837FFF  2642%FF  _ (0120. S 1478%FF  _3.036%FF - 6569FF*  -0277F** 2 B7AFFX ] 093%F*  _17.90%**
(.0070) (.0051) (.0064) (.0103) (.2867) (.0218) (.0207) (.0437) (.0698) (1.652)
B .0440%** L0372%F*  0189%F* 0217k 1353%** JA866*FF* L 3226%K* | 2965%**
(.0008) (.0006) (.0023) (.0024) (.0026) (.0036) (.0178) (.0191)
BA L0BB4*F*  OBI5RAR  1ROFFK 1]72%w* \2204%F%  9720%Fk 9ok .1996%**
- (.0006) (.0005) (.0018) (.0018) (.0035) (.0044) (.0171) (.0189)
(8%) L0026%F* 0025%** L0287 L0276%**
(.0001) (.0001) (.0011) (.0011)
CRR -.0026%%* - 0025%** -0.0016 -.0010
(.0001) (.0001) (.0010) (.0011)
(8°84) -.0035%%*% - 0036%** L02259%F% (0221 **F*
(.0001) (.0001) (.0015) (.0016)
B, .3880 2.595
(.3118) (1.804)
AS, .0887 -.8045
pomp! (.1666) (.98716)
employees .0036 .0178
(.0026) (.0148)
Output .0599 .4323
(.0472) (.2722)
Age .0003* .0019.
(.0002) (.0010)
Price 2.358%** 14.27%%*
(.1862) (1.076)
Unit costs .0762%* .5090***
(.0265) (.1510)
Adj./ps.RZ 1757 .3503 L4742 5374 .5448 1469 .3385 .5015 5434 .5546
F-statistic 3394 8588 7182 3701 1436
AIC 18666.85  14874.77 11506.30  9468.82 8393.00 17724 13744 10355 9485.8 8378.8

Significance codes: 0 **¥*° 001 **° 01 *’ .05 ¥ .1 ‘> 1. R?: for OLS heterosked. adjusted; for Probit adjusted McFadden pseudo.

Table 4: Firm level regression: Share conventional capital utilization at firms ViC,T at the end of simulation time (7" = 15000) on barriers and initial firm
characteristics (¢ = 600). Columns: (1)-(5) OLS, (6)-(10) binary probit.



The relationship between barriers and the transition probability is not straightforward
to identify and specific to the restrictions imposed by the design of the model and
the experiment. Here, I restrict the analysis to the incorporation of quadratic and
interaction terms of the barriers[]

In the OLS specification, the frontier gap 54 exhibits a diminishing negative effect
on diffusion and its quadratic term enters with a negative coefficient. The opposite is
found for the skill related barrier. Though, these findings are confirmed by the binary
Probit model, but are not or only weakly significant when using aggregate data at the
macroeconomic level.

This regression exercise is repeated at a higher level of disaggregation considering
the responses of individual firms to study whether firm characteristics at the day
of market entry play a rolem At the end of simulation time, the variation in the
diffusion measure vy 7 can be almost perfectly explained by the technological regime
type. Hence, the results of this analysis rather reflect the regime than the individual
technology ChOlceE The regression results yield similar results as before with regard to
the direction, magnitude, significance and explanatory power of entry barriers. Again,
I find that the inhibiting effect of the frontier (skill) barrier is diminishing (increasing).
Using firm level data, the coefficients of the skill barrier and the interaction term exhibit
higher significance in the Probit model. The squared frontier gap is not significant,
but this is not surprising and is due to difference in the functional form of the two
models and the interdependence of the marginal effects of explanatory variables in the
Probit model. This is supported by the finding, that the coefficient of the skill related
barrier has a large and significant negative coefficient in the Probit specification with
interaction terms, but its squared value enters with a positive one. This indicates that
low skill related barriers do not impose a (strong) barrier to diffusion which is in line
with the finding of increasing coeflicient in the OLS model.

167 refrain from an in-depth study of the functional form of the relationship between different types of
barriers and diffusion for mainly two reasons. First, the effect of the barriers on the pattern of
diffusion is sensitive to the assumptions on the shape of the endogenous innovation and learning
function. These functions are set in a plausible, but stylized way and the outcome should not
be over-interpreted in quantitative terms. It should be kept in mind that the mechanisms that
determine technological learning and the success of innovation in the economic reality are likely to
vary strongly across different technological fields due to different patterns of innovation, learning
and spillovers across technology types. Second, the better fit of more complex functional forms
comes at the cost of lower ease of interpretation and an expected lower generalizability, also referred
as to bias-variance trade-off (cf.|Bishop||2006)). The chosen version is sufficient to underline the
core insights derived from this study.

17T make a simple static cross sectional analysis even though it would be possible to apply panel
methods incorporating run or firm fix effects and to study the dynamics over time. Run fix
effects would undermine the explanatory power of barriers which are specific to a given set of runs.
Similarly, firm fix effects are not relevant here because a similar distribution of firms is given in
each sample of a run. Variation between firms across runs is low stems from the period before the
day of market entry. The inclusion of firm controls is expected to capture this variation.

18 A simple regression of v p ona dummy variable indicating the regime type explains > 99% of
variation. Given the mtercept of .9992, the coefficient of a dummy that indicates a green regime
accounts for —.9984. The R? accounts for .9995. Similar findings hold true for a binary Probit
specification of the regression, but in such case the interpretation of coefficients is less obvious.
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The interaction term of barriers (34 3%) is significant at a < .1% level and enters with
a negative coefficient in the OLS models at the macro- and microeconomic level. In the
Probit specification it is only significant at the firm level, but enters with the opposite
sign. Again, this difference can be explained by the different functional forms of OLS
and Probit models and the fact that an OLS model is less precise in the prediction of
truncated variables at the boundaries. Even though the functional form of the influence
of the barriers is not entirely clear from this analysis, a comparison of the AIC suggests
the models with interaction terms to be preferable.

The total marginal effect of an increase in a specific barrier is given by the composite
of the linear, the quadratic and the interaction term and is sensitive to the level of
the both barriers. The coefficients of the interaction term are negative in the OLS
specification. Hence, given that a barrier is sufficiently low, the negative effect of a
marginal increase in a barrier is decreasing in the level of the other barrier and may
diminish if the other barrier is prohibitively high. For example, if the frontier barrier is
such high that the green technology does not diffuse at all, the skill barrier is irrelevant.
Further, the cumulative marginal effect of both barriers is relatively stronger if barriers
are asymmetrically distributed (e.g. high 44 and low £°, and vice versa).

The observed relationship of the interaction of the two barrier types does not hold
true in the Probit model, though an increase of barriers does not necessarily coincide
with a lower transition probability. Suppose that barriers are sufficiently low, i.e. such
that the negative coefficient of 3° outweighs the positive coefficients of its squared value
and the interaction term. In such case, a marginal increase in £° may be associated
with a lower probability of technological lock-in. It is likely that this pattern in the data
is captured differently by the two model specifications. Following the Probit model,
increasing symmetry of barriers is only associated with a higher transition probability
if both barriers are sufficiently low and only a marginal increase in 3° is considered.
This points to the importance of effective productivity.

Are other macro- and microeconomic conditions systematically related to
the transition probability? In the regression analyses at the macroeconomic level,
the included macroeconomic control variables are not significant and do not contribute to
the explanation of the variation. This is not surprising due to the design of experiments.
The variation in the controls only arises from the transition period ¢ € [0,600] that is
required for technical reasons. The coefficients of variation are low (< .05) across all
control variables besides the barriersE The irrelevance of the controls slightly changes
when repeating the regression with controls taken from later snapshots in time when
the variation between different simulation runs is higher. Though it should be kept
in mind that this could be partly due to the joint determination of macroeconomic
conditions and the technological regime. The Wilcoxon test confirmed the significance
of difference between the two regime types.

190ther macroeconomic controls such as the price for the material input pg¢° and relative capital

prices that are typically included in climate policy and diffusion studies are not relevant in this
experiment or implied by other controls. The variation in pf©® is, by design, linearly bound to the
wage. Capital prices are uniform at the time of initialization. The variation in the capital price

per productivity unit is captured by B84,
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Using firm level data to explain technology diffusion, I find the stocks of codified
Af, and tacit knowledge By, to be significant in the OLS and Probit version of the
model. The stock of tacit knowledge B, enters with a negative coefficient, hence it
is positively associated with the probability of a green transition. The opposite holds
true for the stock of codified knowledge. Again, the variation across runs arises from
the transition period and due to the cross-sectional nature of the regression analysis,
it captures differences in the distribution of firm characteristics between simulation
runs. Relatively higher stocks of Af, indicate a c.p. higher productivity of conventional
capital that is used by individual firms that survive until the end of the simulation
horizon*"| A higher stock of AfF; could indicate recent investment in high-quality
conventional capital. This points to the importance of investment cycles, but definite
conclusions would require a deeper going analysis. Tacit knowledge By, is partly
transferable across technology types, but Af; is bound to a specific item in the capital
stock. This conceptual difference in the two types of technological knowledge may help
understanding the opposite signs of their coefficients. Higher endowment with tacit
knowledge is an indication for the availability of skilled workers and seems to have a
positive association with the probability of a technological regime shift.

Other control variables such as the age, price and unit costs enter with statistically
significant positive coeflicients, i.e. are positively associated with a technological lock
in. Higher unit costs can either reflect inefficiencies in the production process or an
additional cost burden from capital investment annuities. Higher prices have a similar
association, but may have additionally a negative effect on the demand side. Though,
the variation in these control variables is low at the considered snapshot in time and -
within this experiment - they are only of minor economic significance as determinant
of the probability of a technological transition.

Which firms are early adopters? In a second step, I repeat the regression analysis
for an earlier snapshot in time and ask for the role of diffusion barriers and firm
characteristics at an early phase of the diffusion process. This is done by regressing the
share of conventional capital used on firm level in period 1800, i.e. 5 years after market
entry, on barriers and firm characteristics. At this time, the variation in the share of
conventional capital utilization across firms is high. The results from this regression
give insights for the macroeconomic process of diffusion patterns, but also give insights
on the relationship between firm characteristics and individual green technology uptake,
i.e. the likelihood of being an early adopter.

Five years after market entry, diffusion at the intensive margin is low, i.e. on average
conventional capital utilization accounts for 81.26% on average and the median firm
uses 100%, i.e. it has not adopted green technology at all, but the variation is high.
Firms exist that use only green capital. The cross-sectional standard deviation of
conventional capital utilization accounts for 29.22%. A simple OLS (Probit) regression

20T here is one theoretical exception. By the design of the simulation program it is possible that the
ID of a firm that is exiting the market is re-used for a newly founded firm. I do not control for
that. Due to the small number of newly founded firms and the relatively large pool of “available
IDs”, I expect the influence of these firms to be negligible in quantitative terms. Further, it does
not undermine the interpretation with respect to the transition probability.
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of v 1500 on a dummy variable that indicates the resulting technological regime explains
39.57% (28.22%) of variation.

Again, both types of barriers are highly significant across all regression settings
and enter always with positive and statistically significant coefficients. Though, the
economic significance of barriers is lower than in the analysis before, i.e. interpreting
the coefficients of the linear model as marginal effects, a 1% increase in 84 (8%) is
associated with a 2.74% (2.91%) higher share of conventional capital utilization in
t = 1800. In contrast to the analysis above, the demand-sided barrier appears to be
more decisive in the early phase of diffusion when using the OLS model. The inclusion
of the squared terms indicates that the marginal negative effect of barriers on the the
pace of diffusion is diminishing, i.e. both enter with a negative coefficient in the OLS
model specification. In the Probit specification, the squared term of the skill barrier
exhibits a positive coefficient indicating an increasing marginal eﬂect@

The barrier interaction term (34 /3?) is statistically significant and has a positive as-
sociation with green technology adoption. Hence, symmetric barriers are less inhibiting
than asymmetric. This underlines the importance of effective productivity, i.e. the
bundle of skills and physical capital, is more decisive than either of these components
in isolation.

In addition, also the stocks of tacit and codified knowledge are statistically and
economically significant. The stock of tacit knowledge is positively associated with
diffusion. By design of the model, skills are symmetrically scaled down by the skill
related entry barrier, i.e. each firm has a similar in the beginning skill mtz’o@ Hence,
the stock variable reflects the general endowment of a firm with human capital and not
technology specific knowledge. The stock of codified knowledge is negatively associated
with the likelihood to be an early adopter. At the day of market entry, firms do only
have conventional capital and a high level of Af, indicates the quality of the firms’
capital stock. The negative association with diffusion suggests that firms with more
productive capital stock are less likely to be early adopters.

21Note that in the early phase of diffusion, the variation within the range of green technology utilization
is high. Hence, the binary specification of the Probit model insufficiently accounts for the variation
within the value range of I/ic’t while the OLS model does not capture the truncated nature and the
interdependence of marginal effects with the levels of other explanatory variables, if not explicitly
included.

22The skill ratio is only approximately identical because the data used for regression is smoothed
taking the yearly average and initial technology uptake is differently across firms.
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Identify early adopters Dependent variable: Share conventional capital used at firm level in ¢ = 1800.

OLS Probit
1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(Intercept) 5461 F** L6054 *** .3921*** L1027*** -.8139%** .2292%** -.0913%** -1.648%** =1L -11.48%**
(.0042) (.0033) (.0040) (.0057) (.1539)) (.0253) (.0219) (.0425) (.0747) (2.005)
ﬁb .0329 L0291 *** L0684 *** .0685*** .1915%%* .2462%** 204 7F** 21T71HF*
(.0005) (.0004) (.0013) (.0013) (.0041) (.0058) (.0224) (.0231)
BA .0307*** L0274%** L08T75*** L0881 *** .2536*** .2698*** .3789F** .3882%**
(.0004) (.0003) (.0010) (.0010) (.0056) (.0060) (.0172) (.0181)
(8%)? -.0009%** . 0009%** 007 7H** .0070%**
(.0001) (.0001) (.0018) (.0018)
(84)? -.0020%%*% - 0020%** -.0047F%%  _ 0053%**
(.0001) (.0001) (.0012) (.0012)
(B°84) -.0038%%%  _ 0038%** S.0159%F%  _ 0148%%*
(.0001) (.0001) (.0020) (.0021)
B, - T3LTH*H -6.898**
(.1647) (2.151)
AL, 1.448%%% 12.67%%*
(.0883) (1.167)
#employees .0006 -.0038
(.0014) (.0173)
Output -.0251 .2390
(.0264) (.3180)
Age .0003* .0015
(.0001) (.0014)
Price 363 7F*F* 4.201%*
(.0983) (1.329)
Unit costs -.0203 -0.2407
(.0148) (.1807)
Adj./ps.R2 2634 .2893 4911 6371 .6480 .2345 3125 5287 .5348 .5451
F-statistic 5349 6089 7218 5253 2276
AIC 5349 541.00 -4454.08 -9509.46 -9972.83 10292 9243.2 6335.8 6254.1 6049.5

Significance codes: 0 ¥¥¥ 001 *¥¥ 01 “*¥> 05 ¢ .1 ‘’ 1. R?: for OLS heterosked. adjusted; for Probit adjusted McFadden pseudo.

Table 5:

Firm level regression: Share conventional capital utilization at firms Vf,t in an early phase of technology diffusion (¢ = 1800) on barriers and initial
firm characteristics (¢ = 600). Columns: (1)-(5) OLS, (6)-(10) binary probit.



6. What is the scope of green technology diffusion
policies?

In the analysis above, it was shown that the dynamic interplay between long- and
short-term technological performance is decisive to understand processes of technology
diffusion. In the short run, taking knowledge stocks as given, the incumbent technology
outperforms the entrant if barriers are sufficiently high. The entrant technology is
superior in the long run, but only if disadvantages in terms of lower technological
knowledge are overcome. Path dependence in technological learning at the firm level
countervails the process of initial technology diffusion triggered by the technology’s
superiority in terms of lower input costs. A relevant question for the design of innovation
oriented climate policy design is how different political instruments affect these dynamics,
whether policy measures can bridge the costly period of learning and can prevent the
relapse into the conventional technological regime.

6.1. Two simple experiments

To investigate this question, I ran two simulation experiments on a set of policies,
namely a mixture of a tax on the resource input and one of two subsidies. A green
investment subsidy reduces the price of green capital goods and a price support is
granted for eco-friendly produced consumption goods.

The policy instruments are implemented as follows:

e An environmental tax 05 is imposed as a Value added tax (VAT) on material
inputs. This makes the use of conventional capital relatively more costly for CG
firms,

P = (1+0°0) - pie. (12)

Because the environmental impact of production is proportional to the use of
material inputs, this tax can also be interpreted as a tax on the environmental
externality.

v

e An investment subsidy ;" reduces the the price for green capital goods,
Py =(1-0"")pi. (13)

cons

e The government may also pay a green consumption price support o for
environmentally sound produced CGs, i.e.

piy=(1- iz ") - pig (14)
This subsidy is directly paid to firms and is proportional to the share of green
Ki,t

capital used in current production VZ ;= . The price support allows CG firms

K¢
to achieve a higher mark-ups when producing in an environmentally friendly

Wayﬁ

23Note that the consumption subsidy is analogous to a higher willingness to pay of consumers for
green products.
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The tax and the subsidy rates are initialized at a fix level at the day of market entry.
The government seeks to balance its budget and adjusts other taxes accordingly, i.e. if
the budget balance is negative, non-environmental taxes are increased and vice versa if
the balance is positive.

The two types of subsidies conceptually reflect the difference between static and
dynamic aspects of technological superiority. The investment subsidy decreases the
price for green capital goods immediately and all green technology adopters benefit
homogeneously. The price support for green consumption goods, in contrast, relates
to the dynamic aspect of technological barriers. Whether firms benefit depends on
the relative extent to which they are using green capital and it has a more permanent
effect dependent on the vintage structure of the capital stock. The support by the
consumption subsidy becomes stronger if more green capital is adopted. This reinforces
the increasing returns of green technology adoption resulting from learning at the firm
level and endogenous innovation in the capital goods sector.

Further, the investment subsidy serves as an incentive to expand capacity because it
is proportional to the absolute amount of green investments. The consumption subsidy,
in contrast, is paid proportionally to the relative amount of green capital utilization.

I perform Monte Carlo experiments on these policy instruments within two different
settings. First, I make a comparison against the baseline scenario with the 5% fix entry
barriers discussed above (see . Second, to explore the interplay of policy and the
strength of barriers, I ran a set of policy simulations with randomized barriers drawn
from the interval [0,.15] as done in the sensitivity test above (see [5.2).

The levels of the two subsidies and the eco-tax are drawn at random from a uniform
distribution. In preceding exploratory analyses, average levels for the two subsidies
were found that generate similar results in terms of diffusion effectiveness. The diffusion
effectiveness does not necessarily coincide with the environmental effectiveness which is
also responsive to output and productivity growth. This will be discussed in further
detail below. For each experiment, I ran 210 simulation runs a 15000 iterations. The
policy measures are applied after the green capital goods producer has brought the full
range of its vintage supply to the market and terminated abruptly, i.e. without any
phasing out, shortly before the end of the simulation horizon.

6.1.1. Green technology diffusion and the strength of policy

In the first experiment, barriers are fixed at a 5% level and the policy parameters are
initialized at random values. The random initializations are summarized in table [6l In
the first two columns, I show the mean and standard deviation and the value range
of the random draws for the whole set of simulation runs. In the latter four columns,
these descriptives are disaggregated by regime type. The last column shows the p-value
of a Wilcoxon test which confirms that those scenarios that exhibit a green transition
were on average initialized with a significantly higher eco-tax and consumption subsidy.
Before discussing the effect of the policy parameters on the resulting technological
state, it is worth summarizing some descriptive observations of the simulation results.

The diffusion measure represented as aggregate across simulation runs (see figure
suggests that the policy has stimulated the diffusion of green technologies. Transitions
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Figure 9: The policy experiment (baseline) is represented by the dark (bright) colored curve (resp. dark-red

(gray) in @ the colors (green, red, blue) indicate the type of the technological regime
(eco, conventional, switch). Figures @ and show the evolution of the macroeconomic diffu-
sion measure vy comparing the policy experiment with the baseline. The aggregated diffusion
curve illustrates the total difference in diffusion, while the disaggregation into green and conven-
tional regimes hides the effectiveness of policies on diffusion due to the different sample sizes, i.e.
differences in the number of runs classified as green and conventional regimes.
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@ conv eco

Mean(Std) [min,max] [ Mean(Std) [min,max] [ Mean(Std) [min,max] [ p-value
9o 506(302)  [.000,.991] | .399(.203)  [.000,.950] | .540(.299) _ [.002, .991] 004
U?O"S .013(.007) [3.3e-5,.025] .011(.007) [.001,.025] .014(.007) [ 3.3e-5,.025] .029
o™ 052(.028)  [.000,.010] | .049(.028)  [.000,.099] | .052(.029)  [.003, .010] 456

Table 6: Overview of parameter and variable initialization, i.e. in t9 = 600. The four columns on the right-
hand side show the initialization by regime type, i.e. eco and conv. The last column shows the
p-value of a two-sided Wilcoxon test on the alternative hypothesis of equality of means.

towards a green technological regime are observed at a higher frequency compared
to the baseline scenario introduced above (see . When using the classifications of
green and conventional regimes as introduced above, 158 (45) scenarios are classified
as green (conventional) technological regime. The remaining seven fall into the switch
category. Neglecting the switch scenarios, this corresponds to a transition probability
of approximately 76% compared to 49% in the baseline. In figure [9] several time
series of some of the macroeconomic and technological core indicators are shown in
comparison to the baseline scenario focusing only on the difference between green and
conventional regimes and referring to the switch scenarios only when the difference to
the two relatively “stable” technological regimes is worth noting. The colors of the
time series (green, red, blue) indicate the regime type (eco, conventional, switch) and
the brightness (dark, bright) of colors the simulation set (experiment, baseline). The
qualitative patterns of evolution of macroeconomic and technological indicators during
the phase of policy application are similar to those of the baseline scenario discussed
above, but the quantitative differences between the experiment and the baseline can be
interpreted as expected side effects of the policies.

Using a two-sided Wilcoxon test, I evaluate the significance of differences of the
patterns in the time series that are disaggregated by regime type and policy application.
I compare the average outcome of the type-disaggregated time series for different phases
of diffusion. This helps addressing the question whether policies perform differently at
different phases of technological transition and whether the performance is conditional
on the technological state at the end of simulation time. The results are summarized
in table [l The findings confirm that the transition to green technologies occurs
more rapidly, i.e. the v is significantly lower in the subset of green technological
regimes in the first 10 years after market entry, but also later. Though, in later phases
the difference is less significant. The same finding is observed within the subset of
conventional regimes. The mean value of v of conventional regimes in the policy
scenarios is lower than the mean of green regime in the baseline during the early
diffusion phase. This indicates the effectiveness of policy as accelerator of diffusion in
the beginning, but this is not always sufficient to trigger a technological regime change.

The technological indicators, i.e. the frontier productivity ratio cy, the skill ratio 5,
AL /b7
Ag /b
the same divergent behavior as above, but the divergence is slightly less pronounced
when the policies are applied. The policies influence the market outcome and only
indirectly affect the technological indicators. The Wilcoxon tests (see table [7]) confirm

these findings, i.e. the less pronounced difference between regime types and that the

the ratio of technological novelty and relative capital price indicators exhibit
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difference between the policy and the baseline in the technological variables seems to
be driven indirectly by developments on the market. In particular, the difference in the
frontier ratio a4 is not or only weakly significant when comparing green (conventional)
regimes with and without policy. Hence, policies have only a minor influence on the
evolution of the relative frontier at the early phase of diffusion which is partly due to
the sluggish response of R&D expenditures to changes in revenue@ The technology
uptake in the early diffusion phase is driven by prices and other determinants and not
by an indirectly policy induced increase in innovation. In contrast, the specific skill
ratio §; seems to be sensitive to policy at the early phase of diffusion. This is not
surprising due to the significantly higher technology uptake in both regime types if
policies are applied. The observation that the technological differences between the
two regime types is less pronounced in the presence of policy is an indication for the
effectiveness of policy at the margin, i.e. the policy may trigger a transition even
though the green technology is not clearly dominating by its technological properties.

Though, the application of the policies is not without costs. Firms have a lower
average productivity compared to the baseline and produce at higher unit costs
regardless whether considering green or conventional regimes. This is also reflected
in the evolution of the eco-efficiency which indicates the environmental impact
per unit of output produced. This is due to two reasons. First, the environmental tax
makes the utilization of conventional capital more expensive causing an increase in unit
costs if conventional capital is used. This undermines the financial capacities of firms
to invest. Second, if firms use green capital goods, production efficiency is (initially)
lower due to the barriers and learning costs. The policies have a distorting impact on
the investment decisions of firms and firms may be induced to invest in capital types
that are inferior to the alternative that would be chosen in the absence of policy. The
application of the policy is associated with a series of market exits of firms. Surviving
firms are larger measured by the number of employees per firm . Hence, policy
benefits are distributed asymmetrically across firms.

Evaluating the policy outcome in terms of aggregate output , the policy does not
exhibit a significant effect if a technological transition occurs. Though, if the economy
is locked in in the conventional technology, policy is costly in terms of aggregate output.
This finding underlines the notion of costliness of technological uncertainty. Climate
policy is costly if it has no effect, i.e. if it does not trigger a transition towards green
technology. It increases the technological uncertainty reflected in the less pronounced
divergence of the technology indicators, i.e. the frontier productivity «; and skill ratio
B, associated with a delayed specialization in the conventional technology. Further,
the tax on the environmental resource imposes an additional cost burden for firms and
negatively affects firms’ financial capacities to invest. On the other hand, if the policy
successfully triggers the transition, it might be a supporting factor for firms that adopt
green technology but comes at the disadvantage of those that do not adopt.

25The R&D budget is computed as a fix fraction of the rolling average profit computed across five
years (see . Note that the influence of expectations about future profitability for the R&D
budget allocation are neglected in this model. This is justified by the technological uncertainty,
but might be taken into consideration in future studies (see also section .
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€eco conv

Mean (Std) p-value Mean (Std) p-value
t Baseline Policy Baseline Policy
e Early 685 (.132) 463 (.077) <2.20-16 .896 (.069) .588 (.123) <2.2c-16
Late 106 (169) 041 (.044) .0266 953 (.082) 730 (.205)  <2.2¢-16
o Early .986 (.055)  .989 (.052) .9605 1.11 (.065)  1.08 (.045) .0165
Late  .817 (. 104) 842 (.083) .0480 1.28 (.152)  1.20 (.121) .0060
Be Early  1.06 (.020) 1.05 (.015)  3.9e-7  1.10 (.016) 1.07 (.015)  2.1e-13
Late  .904 (.054) .896 (.043) 2047 1.21 (.049) 1.14 (.061)  2.0e-10
Output Early 8.11 (.016) 8.1 (.021) 808 8.12 (.021) 8.11 (.017)  2.3e-5
Late  8.50 (.104)  8.52 (.125) 1534 852 (.096) 8.43 (.089)  5.9¢-7
Unit costs Early 1.04 (.063) 1.05 (.065) <2.2e-16 1.04 (.063) 1.05 (.067) <2.2¢-16
Late  1.63 (.151) 1.65 (.185) <2.2e-16 1.64 (.161) 1.66 (.197)  7.7e-13
# Employees  Early  20.6 (5.13) 21.4 (5.94) <2.2e-16 20.5 (5.04) 21.3 (6.00)  1.2e-11
Late  19.5 (4.16) 23.6 (5.30) <2.2e-16  19.5 (4.00) 23.4 (5.36) <2.2e-16

Table 7: The early (late) phase of diffusion and policy horizon is defined as ¢t € [600,3000] ([3001, 12000]).
In the two sided Wilcoxon test, averages within these time intervals are compared.

The sharp decline at the end of the policy horizon is eye-catching. A similar kink is
observable in the average number of employees per firm @D and the unemployment rate
(not shown here). This is due to abrupt end of policy measures, i.e. there is no smooth
phasing out of policy and firms struggle with the adaptation to the changed economic
environment. Preceding analyses using only one of the two subsidies have shown that
this sharp effect is only associated with the consumption subsidy. This can be explained
by the long-term nature of the consumption subsidy. In the presence of o¢°"* > 0,
firms investing in green capital anticipate the price support when setting prices, selling
goods and making investment decisions. The immediate end of policy renders their
pricing behavior inappropriate for the new political environment. The abruptness is not
necessarily realistic, but serves as illustration of the possible consequences of unforeseen
political shocks. The abrupt end of policy has no effect if the economy is locked-in the
conventional technological regime. Particularly the discontinuation of subsidies has
an effect firms rather than the eco-tax which is only paid by firms using conventional
technology.

The channels of policy transmission and its effectiveness are not entirely clear from
this analysis recalling the initial distributions of policy rates summarized in [6] The
columns on the right-hand side in table show the initial policy parameters disaggregated
by scenario type. As expected, the initialization of the eco-tax is on average significantly
higher in those simulation runs that result in the eco regime than in those classified as
conventional. The p-value (.004) of a Wilcoxon test on the equality of means highlights
that this difference is statistically significant. Further, eco regimes exhibit a higher
initialization of the two subsidies, but only the difference in the consumption subsidy
o™ is statistically significant with a p-value of .029. This is surprising because
preceding analyses on policy instruments in isolation, all policy measures were effective
as diffusion stimuli. The design of the policy experiment, i.e. the choice of the value
range for subsidies, was made such that the two subsidies perform similarly well in
their impact on diffusion.

The analysis in the preceding section has highlighted the importance of
different types of adoption barriers for the diffusion of green technologies, and in
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€eco conv

Mean(Std)  [min,max] | Mean(Std) [min,max] | Mean(Std) [min,max] | p-value
BA 071(.041)  [.000,.148] | .054(.035) [.000,.138] | .097(.036)  [.003,148] | 2.6e-13
g .080(.045)  [.001,.150] | .079(.046)  [.001,.149] | .080(.044)  [.001,.150] | .916
geeo 531(.299)  [.006,.999] | .530(.304)  [.006,.995] | .532(.292)  [.007,.999] 916
ocons .012(.007) [.000,.025] .012(.007) [.000,.025] .012(.007) [.000,.024] .692
o™ 050(.029)  [.001,.100] | .054(.020)  [.001,.100] | .044(.028)  [.002,.099] | .010

Table 8: Overview of parameter and variable initialization, i.e. in tg = 600. The four columns on the right
hand side show the initialization by regime type, i.e. eco and conwv.

consequence it is expectable that barriers also play a role for the effectiveness of
innovation oriented climate policies. The analysis of the interaction of both is subject
to the subsequent subsection.

6.1.2. The interplay between barriers and the strength of policy

The interplay between the strength of barriers and policy can be investigated by an
experiment with randomized diffusion barriers and randomized tax and subsidy rates.
These valued are drawn uniformly from the intervals that were used in the experiments
above, i.e. B4, % € [0,.15], 0°°° € [0,1], o™ € [0,.10] and o°°"* € [0,.025]. The
qualitative properties of the macroeconomic and technological outcome are similar to
those above and are not discussed here to avoid repetition. For the sake of completeness,
an overview of the macroeconomic and technological outcome of the simulations is
provided in the appendix The random barrier experiment (see section serves
as baseline scenario without policy. Briefly summing up the diffusion impact, the policy
seems to have a positive effect on the transition probability, i.e. approximately 61% of
the simulation runs (129 out of 210) exhibit a transition to green technologies compared
to 27% in the baseline.

In table[8] I give an overview on the initializations of barriers and policy parameters
and make a comparison of means across green and conventional regime types.

On the right-hand side of the table, the initializations are split by regime type, i.e.
the mean values and intervals of initializations are shown for the subsets of runs that
are ex-post classified as green or conventional regime using the threshold v§ < .5.
Comparing the means of 34 and 3° confirms the finding of section i.e. that entry
barriers are decisive for the transition to green technology. Now, only the productivity
related barrier 84 is significant.
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16

Technological regime and the interplay of barriers and policy.

Dependent variable: vy, at firm level in ¢t = 15000

OLS Probit
&) @) 3) (4) () (6) (1) ®) ) (10)
(Intercept) 5122%F* -.0304 - 1792%FF _10225 -.3018 .0314 -1.7435%FF  _2.3862FFF  _1.646%FF  -2.560.
(.0131) (.0185) (.0244) (.0302) (.3899) (.0337) (.0795) (.1029) (.1326) (1.4793 )
[Zaad .0002 -.1590%** L0827*** .0886*** .0004 -.5839%** 4912%** 5104%**
(.0001) (.0105) (.0177) (.0196) (.0004) (.0386) (.0776) (.0848)
ocons .0125%* -.0068 .0004 .0074 .0339* .0066 -.0790 -.0503
) (.0061) (.0050) (.0132) (.0136) (.0156) (.0185) (.0565) (.0586)
o' -.0211%** -.0189***  _.0403***  _.0386** -.0540%** -.0751%** -.2133%F*  _2059%**
(.0015) (.0012) (.0034) (.0034) (.0039) (.0046) (.0158) (.0162)
ﬁf .0135%** 1.079%** - 4167FF* _ABE3*F* .0306* 3.940%** -2.665%F* 2 789 **
(.0034) (.0704) (.1125) (.1258) (.0126) (.2578) (.4900) (.5386)
(ﬁi’)2 -.0008***  -.0053*** oI L7 .1180%** -.0008** -0.0188%*** A861%** .4900***
(.0002) (.0003) (.0081) (.0084) (.0002) (.0013) (.0325) (.0337)
ﬁtA .0357*** .0417%** L0275%** L027T7H** .1437%** 1745%** .0832%** .0915%**
(.0031) (.0030) (.0035) (.0036) (.0139) (.0144) (.0169) (.0174)
(ﬁf‘)2 .0015%** .0012%** L0011 %** .0011%** .0029%*** .0021%** .0022%* .0019*
(.0002) (.0002) (.0002) (.0002) (.0007) (.0008) (.0008) (.0008)
(ﬁ;’BtA) .0002 -.0000 L0681 *** L0081 *** .0014* .0001 3T2THFH .3706***
(.0002) (.0002) (.0079) (.0081) (.0007) (.0007) (.0383) (.0394)
(ﬁi’eeco) -.0199***  _.0199%** -.0820%** - 0825%**
(.0013) (.0014) (.0053) (.0054)
(ﬁfgc"”s) -.0084*** - 0088*** -.0380*** . (0399%**
) (.0011) (.0011) (.0043) (.0044)
(5?0”‘”) .0008** .0007** .0035%** .0032%*
(.0003) (.0003) (.0010) (.0011)
(B{r0°°°) -.0110%**% - 0111%** -.0603%**% - 0600%**
(.0013) (.0013) (.0062) (.0064)
(ﬁtAUCO"S) .0066*** .0063*** .0415%** .0402%**
(.0011) (.0011) (.0050) (.0052)
(ﬁtAaim’) .0017*** .0016*** .0122%** .0118**
(.0003) (.0003) (.0013) (.0014)
fyt .9319* 3.420%*
(.4066) (1.567)
f,t -.0448 .2901
(.2471) (.9626)
~+other ~+other
contr. contr.
Adj./ps.R> .0143 3273 .3509 .3706 3697 .0101 .2738 .3013 3317 .3311
F-statistic 65.32 1299 902.4 562.1 354.9
AIC 18936 13841 13367 12961 12282 18095 13274 12771 12215 11574
BIC 18973 13894 13442 13081 12454 18125 13319 12839 12327 11738

Significance codes: 0 *** 001 “**’ 01 “*> .05 .1 ‘’ 1. R2: for OLS heterosked. adjusted; for Probit adjusted McFadden pseudo.

Table 9: Technological regime shift and initial conditions: Share conventional capital uf’T in T = 15000 on diffusion barriers, policy parameters and initial
conditions (¢ = 720). Columns: (1)-(5) OLS, (6)-(10) binary probit. The policy parameters and barriers are measured in percentage points.



Considering the policy parameters, it seems that the mean value of initial taxes and
subsidies is not systematically different across the two subsets of green and conventional
regimes, except for the investment subsidy which is higher in the green subset, i.e. .054
compared to .044. A Wilcoxon test confirms that only the difference in the investment
subsidy is significant at a 1% level. This is at odds with the observation above when
the barriers were fixed and only 0*™ was not significant. Though, this table gives an
overview of the parameters in isolation and does not account for potential interactions
among policies@

The insignificance of mean shifts of policies and the observation of a profound differ-
ence in the transition probability compared to the baseline with random barriers but
without policy suggest that it is not sufficient to study barriers and policy instruments
in isolation. To shed light on the interrelation between the final technological state and
the interplay of barriers and policy, I repeat the regression analysis from above and
perform a linear regression of the share of conventional capital used by individual firms
at the end of simulations v{ ;. on initial conditions, i.e. on the barrier settings and firm
specific controls. As before, at the end of simulations, the economy converged to one
of the two possible technological states and the variation between the extrema of 0%
and 100% is low and v;, can directly be associated with the type of the technological
regime.

In column (1) and (6), the results of an regression of v{, on the set of policy
parameters are show. This configuration has only little explanatory power. The R?
suggests that only 1.4% (1%) of the variation can be explained by the linear (Probit)
model. Only the investment subsidy exhibits a positive association with a technological
regime shift. It is significant at a < 1% level. The consumption subsidy is slightly less
significant (5%) and has, surprisingly, a positive coefficient, hence it is associated with
a higher conventional capital utilization in ¢ = 15000, i.e. it seems to inhibit diffusion.

In column (2) and (7), the analysis is repeated, but this time on barriers only. The
findings are in line with those discussed in more detail above. Barriers inhibit diffusion.
Both effects are non-linear. The marginal effect of the productivity (skill) related
barrier 44 (B°) is increasing (decreasing). The interaction term is not significant. The
observations on the interaction and squared terms deviate from the findings above (|5.2.1))
where both barriers and the interaction term exhibited decreasing marginal effects
in the linear model. Using the barriers instead of policy parameters as explanatory
variables, is more powerful in explaining the variation, i.e. the R? accounts for roughly
33% in the OLS, and 27.4% in the Probit model. In the previous analysis, barriers
and their interaction and squared terms were able to explain more than 60% of the
variation in the OLS model. The much lower R? and the differences in the coefficients
are an indication for a possible interaction between barriers and policy variables.

When the policy variables are added as simple linear terms to the regression model,
the coefficients exhibit the same qualitative association with the transition probability
but have a slightly larger coefficients, i.e. are economically more significant. In

26The comparison of means is not a comparative static, ceteris paribus analysis at the mean. The
random parameters are drawn from a uniform distribution. With an increase in sample size, a
statistical c.p. analysis could be simulated, but the insights are only point estimates valid at the
mean. The given sample of simulation runs is apparently too small to obtain significant results.
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this specification, not only the investment subsidy, but also the resource tax have
a significantly positive association with the transition probability. Interpreting the
coefficients as marginal impacts of policy and barriers on the transition probability, an
increase in o™ by one percentage point corresponds to a 2% increase in the transition
probability. An analogous interpretation could, but should not, be applied to the
eco-tax. The 15.9% coefficients seems unrealistically high and can only be explained by
the presence of barriers, i.e. the skill barrier enters with a very high coefficient which
suggests a misspecification of the simple linear model.

In columns (4)-(5) and (9)-(10), I show the result from an analysis with explicit
account for interactions between barriers and policy. All interaction terms are statisti-
cally highly significant, i.e. most of them at a < 1% level. The coefficients differ only
slightly between the model with and without controls.

How does the effectiveness of different policies depend on the strength of
barriers? The main result from this analysis is that the effectiveness of policies is
sensitive to the level of barrier, but the direction of their interaction is not uniform
across different policy instruments. Subsequently, I discuss the findings instrument by
instrument.

1. The environmental tax serves only as a diffusion stimulus, if barriers are
sufficiently high. Both interaction terms £°6°¢° and $46°°° have economically
and statistically significant, negative coefficients, but the tax alone has a positive
one. Hence, in the absence of barriers the tax exhibits an inhibiting effect on
technology diffusion. In a preceding analysis, I have run a simulation experiment
on the policy instruments in isolation. The tax performed badly with regard to
its macroeconomic and environmental outcome. A tax imposes an additional
cost burden on firms which negatively affects their financial capacity to invest.
This is associated with lower economic output, productivity, but also less green
technology diffusion. By the design of the experiment, the green technology
is superior to the conventional in the early phase after market entry which
triggers the initial surge of green technology adoption given that barriers are
sufficiently low. The tax reduces firms investment activities in general and as a
consequence, it also slows down the diffusion of green technologies. Though, if
barriers are sufficiently high, the tax outweighs the barrier imposed disadvantage
in productivity performance of the green technology and distorts investment
incentives accordingly.

2. The inclusion of barrier-policy interaction terms does explain why the consump-
tion subsidy did not exhibit a significant effect in the analyses before, although
preceding analyses on policy instruments in isolation (not shown and discussed
here) have indicated that the consumption subsidy is one of the most economi-
cally and environmentally efficient means to stimulate green technology diffusion.
The interaction terms reveal the mechanisms that determine effectiveness of
the consumption subsidy. The two interaction terms o™ and 40" enter
the regression equation with opposite signs, i.e. the former has a stimulating,
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the latter an inhibiting effect on green technology diffusion. The consumption
subsidy is a long term oriented policy instrument. It rewards firms that switch
permanently and consistently to the green technology and strengthens the effect
of increasing returns of learning and endogenous innovation. The consumption
subsidy is proportional to the amount of green technology that is used. Hence,
firms with a large share of green technology utilization benefit more, but also
learn faster to exploit efficiently the green technology because the relative speed
of learning is positively dependent on the relative amount of green technology
use (cf. . This may be a decisive competitive advantage of green over
conventional firms when the technological outcome is uncertain. The effectiveness
of the consumption subsidy is undermined if the green technology suffers from
low productivity in terms of its technical characteristics. Hence, the subsidy is
a good instrument to strengthen and stabilize an ongoing diffusion process of a
technology that is sufficiently mature to compete with the incumbent, but whose
permanent adoption is uncertain because firms do insufficiently well know how
to use it. It is worth emphasizing that consumption subsidy is analogous to a
higher willingness to pay of consumers for green products assuming that the
environmental performance of the product is perfectly observable. The experiment
on different subsidy levels would be reflected in different levels of the willingness
to pay.

3. The investment subsidy in contrast, does irrespectively of the presence of
barriers exhibit a statistically and economically significant effect. This effect is
diminishing in the level of barriers. The subsidy decreases the price for green
capital goods and distorts the investment decision accordingly.

When including the same firm level control variables as in the analyses above, only
the stock of knowledge By, is significant and exhibits a negative effect on technology
diffusion. The explanatory power of the other microeconomic conditions that were
significant in the experiment before are outweighed by the policies.

The policies are effective via different channels which are differently important at
different stages of the diffusion process. To shed light on these mechanisms, I made
another regression analysis on the impact of policy on technology diffusion, firm size
measured as number of employees and unit production costs at different snapshots in
time, i.e. 5, 10 and 35 years (t € {1800, 3000,9000}) after the green technology has
entered the market. The effects of the policies may not only differ across time, but
also differ across technological regimes, i.e. the policy outcome might be different in a
transition compared to a lock-in. This difference can be studied by the inclusion of
interaction terms of policy and dummy variables that indicate a green transition.

The interaction terms allow to answer the question how the policy affects the diffusion
process given that a green transition is successful. I do further include the same set of
firm level control variables as above and barriers to diffusion. In table I do only
show the coeflicients of the policy variables and regime-type dummy and its interaction
terms of an OLS regression. The results can be interpreted as a simple correlation
analysis between the outcome and the initial conditions. I chose the OLS version for
reasons of simplification and ease of interpretation.
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Do effects of policy differ across time and scenario type?

Dep. var: vy ,, #employees; ¢, UnitCosts; ¢

T

Vi #employees; ¢ UnitCosts; ¢
t 1,800 3,000 9,000 [ 1,800 3,000 9,000 [ 1,800 3,000 9,000
1[eco] - 1719%FF - 4005%F*  _.9431%** .2868 7267* .1325 -.0153* .0648%** .2640%**
(.0106) (.0124) (.0046) (.2438) (.3272) (.3969) (.0060) (.0058) (.0116)
gece .0134%** -.0150** .0024 1285 .3450%* 0843 0030 .0504%** .0966%**
(.0042) (.0049) (.0018) (.0967) (.1302) (.1596) (.0024) (.0023) .0047
ad -.0203*%** - 0205***  -.0001 0245 .0033 -.1013** 0007 .0054%** -.0088***
(.0010) (.0011) (.0004) (.0221) (.0296) (.0354) (.0005) (.0005) (.0010)
ocons S.0794%F*%  _1043%*F*  _.0094*** 1671. 2625* L7501%** 1 -.0039. .0156%** .0363%**
(.0038) (.0044) (.0016) (.0874) (.1165) (.1393) (.0022) (.0021) (.0041)
1[eco]f°c® .0009*** -.0007***  0004*** .0016 0030 .0138%** -.0004***  8.3e-5 .0006***
(.0001) (.0001) (4.9¢-5) (.0026) (.0035) (.0043) (6.5e-5) (6.3e-5) (.0001)
]l[cco]a””’ -.0021. .0061*** -.0049*** -.0324 -.0639 LT212%%* .0011 -.0068*** -.0422%**
(.0012) (.0014) (.0005) (.0281) (.0377) (.0462) (.0007) (.0007) (.0013)
Lleco]o ™ -.0243*** .0308*** -.0063** -.0400 -.3233* -.5856%* .0280%*** -.0008 -.0545%**
(.0048) (.0056) (.0021) (.1102) (.1477) (.1794) (.0027) (.0026) (.0052)
Adjﬂ/ps,l*?,2 .6335 6779 L9729 6950 5471 .1910 .1808 .3294 .2852
F-statistic 1148 1348 21250 1514 774.2 140.9 147.4 315.1 237.5
AIC -6095 -2020 -28704 85363 90115 87703 -22692 -23453 -4488
BIC -5912 -1838 -28524 85545 90296 87883 -22510 -23272 -4308
Mean .6010 .4022 4242 21.26 21.33 22.78 1.071 1.251 1.765
Std. (.3251) (.3970) (.4888) (8.207) (8.838) (7.797) (.1271) (.1305) (.2421)

Significance codes: 0 **¥*¥° 001 **° 01 “*’ 05 ¥ .1 ‘> 1. R?: for OLS heterosked. adjusted.

Table 10: This table shows the coefficients of an OLS regression of the dependent variable vy ,, #employees; , UnitCosts; ; measured at firm level in
t € {1800, 3000, 9000} on the different policy measures and its interaction terms with a type dummy 1 (eco) indicating that a green transition has
occurred until the end of the simulation horizon. Not shown are the coefficient of a set of firm level controls evaluated at the begin of simulations,

i.e. BY

it

Af B4, BY, output, price, firm age.



Five years after market entry, firms in the set of eco regimes exhibit on average a
share of conventional capital utilization that is by 17% lower compared to firms in
the lock in regimes. This indicates path dependence. Dependent on the policies, the
difference is even larger. The subsidies have in general a negative association with the
share of conventional capital that is used in ¢ = 1.800. Conditional on a transition the
observed relationship is even stronger. The consumption subsidy exhibits a stronger
effect than the investment subsidy. The coefficients can be roughly interpreted as
percentage change. An increase in the consumption subsidy by one percentage point is
associated with 7.9% lower share of conventional capital utilization and, conditional on
a regime shift, the effect is even by 2.4% larger@ The two subsidies have in general,
i.e. independent of the green transition, a positive effect on diffusion evaluated 5
years after market entry. Surprisingly, the tax enters with an opposite coefficient, i.e.
higher tax rates are associated with less diffusion in the beginning. Most likely, this
is due to the negative impact of the tax on investment in general. Firms’ investment
decisions are subject to financial constraints. Additional cost burdens hamper firms’
capacity to invest. This is very well in line with the findings above. If investments
in the green alternative are sufficiently attractive, costs imposed on the pre-existing
production capital stock of firms can be associated with an unintended slow down in the
transition process@ The other firm level variables of interest do, mostly, not exhibit
a significant association with the policy variables at this early stage of the diffusion
process. Only unit costs have a slightly positive, but highly significant, association
with the consumption subsidy and, surprisingly, a negative one with the eco-tax given
that a transition occurs. Unit costs do not only reflect variable input costs, but also
annuities of past investments and effective productivity. Because the tax hampers firms’
financial capabilities to invest, lower investment activities may explain why the tax has
a negative association with unit costs in the short run given that a transition occurs.
The consumption subsidy reduces the pressure from price competition for firms that
produce more environmentally friendly, i.e. it allows less productive firms with higher
unit costs to survive on the market because they can charge higher mark-ups.

Ten years after market entry, i.e. in ¢ = 3000, the policies, irrespective of the
resulting technological regime, exhibit a statistically and economically strong association
with technology diffusion. An increase by one percentage point in the consumption
(investment) subsidy is associated with a 10% (2.1%) lower share of conventional capital
use. Recalling the different value ranges of the two subsidies, i.e. o™ € [0,.025]
and o™ € [0,.1], qualifies the difference, i.e. the difference suggested by the different
scales of coefficients diminishes when considering changes in relative terms such as

27Recall the value range of the subsidy, i.e. %™ € [0,.025]. For the regression analysis, the policy
parameters were transformed in percentage points, i.e. multiplied by 100. Though, the relative
effect of the consumption subsidy has to be deflated if compared to o*?¥ € [0,.1].

28Though, recall the difference in the absolute and relative environmental performance of firms. A
lower share of conventional capital used is not necessarily associated with a lower environmental
impact because of the distinction between replacement and capacity expansion investments. In
reality, capacity expansion investments are often associated with an additional environmental
burden when taking account the whole life-cycle of the capital good comparable to the well known
rebound effect even if the capital good performs environmentally better during the time of use (cf.
Arundel and Kemp|/2009)).
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doubling the subsidy rate. Surprisingly, the interaction terms of the subsidies with the
type dummy 1(eco) have positive coefficients, i.e. a negative association with green
technology diffusion. The sign of these two variables has flipped compared to ¢t = 1800.
This confirms that subsidies can have a distorting impact on the transition probability.

The intermediate phase of technology diffusion is characterized by a high degree of
technological competition (see e.g. . In the presence of policies, the divergence
of the technological variables is on average less pronounced at an early phase of
diffusion. This retards the emergence of a clear technological pathway and can explain
the counterintuitive observation that the share of conventional capital utilization is
increasing in the strength of policy in the intermediate diffusion phase. The stronger
the policy is, the less clear is the divergence of technological indicators. The policy
shifts the margin. Some of the simulations runs in the subset of eco regimes are policy
induced, i.e. in such cases the transition would most likely not have occurred in the
absence of policy.

Further, firms that are not able to sustain in the intensified technological competition,
increasingly leave the market. Ten years after market entry, it is more obvious which
of the two technological regimes emerges. The subsidies have influenced firms to invest
in green capital even if this may be an individually non-optimal solution in terms of
quantity and productivity. In plot in the appendix, I show the evolution of the
number of active firms comparing the two technological states in the baseline and the
policy experiment. The number of market exits is highest in the policy experiment given
that a green transition occurs. Hence, the result can be interpreted such that the subsidy
has induced some firms to adopt green capital even though the quantity-productivity
combination is not a sustainable firm strategy.

The policies do not only show an association with the diffusion measure, but also
with the number of employees and unit costs. In transition regimes, firms are on
average larger and have higher unit costs in ¢ = 3000. Irrespective of the technological
regime, unit costs are positively associated with the policy parameters except from the
investment subsidy, i.e. the stronger the policy is, the higher unit costs are observed.
Only the investment subsidy exhibits, conditional on a green transition, a negative
relationship.

At the late phase of the simulation time, i.e. 35 years (¢t = 9000) after the day of
market entry, the convergence to one of the two technological states is largely completed.
More than 94% of the variation in the share of conventional capital utilization at firm
level can be explained by the type dummy. In contrast to the preceding analysis on
policies and their interaction with barriers, the investment subsidy and the eco-tax do
not any longer exhibit a significant effect if not controlling for the technological regime.
When controlling for the regime, both subsidies exhibit a positive impact on diffusion,
i.e. are associated with a lower share of conventional capital utilization. At this time,
firms that are not any longer able to sustain on the market have exited. The negative
coefficients of the interaction terms 1(eco)o indicate that the subsidies have stimulated
a deepening of the green capital adoption among the surviving firms. Though, the
effects of the policy parameters are small. At the late stage of the diffusion process,
the variation in the share of conventional capital utilization across different runs is
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rather a question of the regime and the self-enforcing dynamics than of policy. Only
within a regime class, the policies can explain part of the variation.

Regarding the firm size measured as number of employees, the two types of subsidies
exhibit different effects. When not controlling for the regime type, the investment
subsidy exhibits a negative association with the number of employees. Though, this
negative association is overcompensated if a green transition was successful. Also the
consumption tax has a net positive association with the number of employees, but its
coefficients exhibit opposite coefficients compared to the investment subsidy, i.e. the
positive association of the subsidy with firm size is lower if a green transition occurs.
The positive association of policy and firm size is due to the higher number of market
exits in the presence of policy (cf. [C.4i). The investment subsidy distorts instantaneous
investment decisions most while the stimulating effect of the consumption subsidy
has a long term nature. This can explain the difference between the two measures.
The investment subsidy is an incentive for firms to quickly build up green capacity.
Those who invest relatively more, take more advantage of the subsidy. In contrast, the
consumption subsidy is proportionally paid to firms. Firms benefit independently of
their size and the subsidy is not an incentive to increase capacity.

Unit production costs are on average higher in those simulation runs that exhibit
a technological transition. Though, the subsidy-type interaction term are negatively
associated with unit costs. This supports the hypothesis, that the subsidies have
stimulated investment in more productive capital goods.

6.2. Insights from the policy analysis

For effective climate change mitigation policies aim to accelerate a sustainable transfor-
mation of the economy. Policy makers have different instruments at disposal. Here,
I studied the impact of three types of market based policy instruments, namely a
resource tax, a green investment subsidy and a price support for environmentally
benign products and evaluated the outcome of the policy measures compared to a
business as usual scenario without policy. In an additional experiment, I studied the
sensitivity of policy effectiveness to the strength of diffusion barriers.
Four core insights can be derived from the preceding analysis.

1. Policy can effectively stimulate a green transition. The analyses have
shown that policy measures are effective as diffusion stimulus at the intensive
margin independently of final technological outcome. Policies stimulate green
technology adoption at the margin, i.e. in an environment of technological uncer-
tainty where none of the two technologies clearly dominates by its technological
characteristics. Higher green technology utilization during the diffusion process
is associated with increasing returns to adoption resulting from learning and
endogenous innovation, i.e. it is a path dependent process. The higher intensity
of green technology utilization positively affects the probability of a technological
regime. This could be also interpreted as extensive margin of diffusion referring
to the distinction made by |Comin et al.| (2006]).
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2. The effectiveness of policy measures is conditional on the type of dif-
fusion barrier that needs to be overcome. If barriers take the form of
insufficient technological capabilities to exploit the productive value of green
capital, i.e. if firms do insufficiently know how to use green machinery, it is
a question of learning by using to make the green technology competitive. A
price support for green products stimulates the creation of green markets and
serves as a stimulus for green technology take-up, utilization and learning. An
environmental tax can be detrimental if it reduces firms’ financial capacities
to invest. But, if the barrier is related to the technological properties of the
green capital good, i.e. if it is sufficiently less productive than the conventional
alternative, the tax compensates firms enduringly for having adopted an inferior
technology. The disadvantage at the firm level resulting from the skill related
barrier is overcome by learning over time. In contrast,the firm level disadvantage
arising from the investment in a less productive machine remains until the capital
good is depreciated or taken out of use. Hence, a tax can compensate for this
permanent disadvantage.

An investment subsidy is an instantaneous price mechanism that influences firms’
investment decision. In contrast to the consumption subsidy, its effectiveness is
independent of the type of barriers.

An alternative view on the different types of diffusion barriers can be derived
from a technological life-cycle perspective. At early phases of development, new
technologies are less mature and exhibit a lower productivity. In such situation,
diffusion and further development can be stimulated by environmental taxation.
At later stages, when technologies are sufficiently mature and diffusion success is a
matter of technological know-how and experience in green technology utilization,
it is more effective to support the creation of green consumer markets and not
to undermine firms’ financial capabilities to invest. Investment subsidies distort
the investment choice with regard to the technology choice, but regarding the
amount and chosen productivity level. These subsidies should be handled with
care because the increase technological uncertainty and can undermine efficiency
improving specialization effects.

3. Policies can be detrimental if the transition does not occur. Policies in-
crease green technology take up in the early phase of diffusion. This is beneficial if
the transition takes place because firms and the innovation sector earlier specialize
in the green technology. If the transition does not occur the specialization in the
conventional technology is retarded. This has a negative effect on productivity.
When using the relative indicator eco-efficiency as environmental performance
measure, the presence of policies reduces the environmental performance per unit
of output. Though, recall that relative indicators are not sufficient to combat
climate change. By the design of the model, the increase in productivity is asso-
ciated with an increase in output which offsets the positive effect of an improved
efficiency of resource utilization if the economy is on a stable technological path

(. CTa).
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4. Policies affect firms asymmetrically. Policies strengthen competition among
firms. The introduction of the environmental tax imposes an additional cost
burden on firms leading to a series of market exits. Those firms that successfully
adopt green capital benefit from the subsidies. If a transition occurs some of the
non-adopters are no longer able to survive on the market because they suffer from
additional competitive disadvantages associated with the subsidies. In contrast,
if the transition does not occur, the number of market exits is lower. Green
firms do not benefit any longer from green subsidies when switching back to
the conventional technology, but do not suffer from policy induced competitive
disadvantages. The consumption and the investment subsidy exhibit opposite
effects on firm size. The consumption subsidy is proportional to the amount of
green technology utilization, while the investment subsidy is bound to investment
activities. Hence, firms that invest more frequently and expand capacity are
benefit relatively more than those that invest less.

The limitations of the present model should be kept in mind. In particular, the model
does insufficiently take account of firm entry dynamics which could have an effect on
the dynamics in the firm population and market competition. The contingency of
policy effects on the type of barriers highlights that it is important to understand the
characteristics the technology and the adopter population when searching for appro-
priate instruments. Many of the results are further bound to the assumptions about
the endogenous innovation and learning mechanism and the role of cross-technology
spillovers in the evolution of technological knowledge stocks. An in-depth investigation
of these interdependencies in the process of technological change are beyond the scope
of this study but are a promising field for future research. Technological sectors may
differ enormously with regard to the strength of diffusion barriers and path dependence
and sectoral boundaries are not necessarily clear ex-ante when trying identify the
potential population of adopters and spillovers in technological development across
sectoral boundaries may exist. These restrictions should be kept in mind before deriving
policy conclusions from this study.

Many approaches in the existing literature of economic climate policy analysis are
based on neoclassical equilibrium models with homogeneous agents and focus on price
and related market mechanisms that stimulate the substitution of conventional by green
capital. The nexus of climate policy and directed technological change is represented
as allocation problem. The introduction of heterogeneous and interacting agents allows
to re-frame it as problem of coordination in the process of technological learning and
specialization (cf. |Jaeger] (2013])).

In this analysis, I focus on the role of adoption barriers and introduce a distinction
between two types of barriers. The technology related barrier 34 reflects an inferiority
in a knowledge stock that can be traded on the market, i.e. firms can buy capital
goods with specific productivity properties. The other barrier type /3° is related to
a non-tradable knowledge stock that accumulates by individual learning at the firm
level. T have shown, that market based climate policy instrument perform differently
conditional of strength of either of these barriers. Taxes can help overcoming an
inferiority related to tradable knowledge. That is typically the channel how climate
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friendly directed technological change is captured in equilibrium models (cf. |[Loschel
2002; [Popp et al.|[2010]).

In contrast, overcoming the skill related barrier is a matter of doing. Hence, it is a
question of time that is needed for learning whether the green technology permanently
replaces the conventional alternative. Learning by doing can be stimulated by subsidies
that compensate firms for the temporary skill dependent disadvantage in green capital
utilization. In this study, endogenous innovation is a “by-product” of increased adoption
and strengthens the convergence to a stable technological state. If the green technology
mostly suffers from skill related inferiority and if firms investment decision is subject
to financial constraints, taxes on pre-existing capital stock items can have unintended
effects if they undermine firms’ financial capabilities to invest in green machinery.

The economic outcome of the transition process is conditional on the evolution of
the two types of knowledge stocks. The resulting pace of technological specialization is
higher if agents behave coordinately and all learning and R&D resources are allocated
to only one of the two technology types.

The ABM framework does further allow to investigate dynamics in the firm population.
Not every firm is successful in switching to the green technology. Firms that fail to
switch to the emergent technological paradigm are not able to sustain on the market.
Different policy measures have different distributional impacts. Not considered here
are aspects that concern the obsolescence of technological knowledge of individual
employees.

7. Discussion and concluding remarks

One comment on the interpretation of “technological superiority” of the green technology
should be made before continuing. Technological superiority was assumed to take
the form of reduced material input costs. Recall that this may be generalized to any
type of variable cost reduction that is enabled by the adoption of a radically new
technology. In this study, I neglected the “stakeholders” of the variable input that is
replaced by the entrant technology. Dependent on the purpose of study and the type
of interpretation of the radical technology, this might be important. In the context
of skill-biased technological change these stakeholders can be employees whose jobs
will be replaced by machines. In the context of climate policy, stakeholders can be the
owners of natural resources and employees in the material resource extraction sector.

In the proposed model the source of the material input costs is exogenous and the
costs are distributed back to households as a lump-sum transfer. Hence, there is a
negative income effect for households if material inputs are not any longer required.
Unemployment and distributional effects are neglected and left for future investigations.

If incorporating labor market effects the degree of mobility of employment across sec-
tors is decisive which can be captured by the transferability of technological knowledge
across sectors. The mobility is linked to the skill endowment of individual workers.
A forthcoming study will address a related issue, in particular the transferability of
knowledge across technology types. This has also some empirical underpinnings by
(Vona et al.|[2015) who found that industrial sectors with a high employment share in
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occupations with a non-routine, adaptive skill requirement profile are faster in the adop-
tion of environmental technologies in response to a regulatory shock. Similar findings
were made in the literature on skill- and routine-biased technical change (Autor et al.
2003). Their findings indicate that the cross-technology transferability of knowledge
might be important for industries to be able to cope with radical technological change
and climate policy interventions.

7.1. An alternative interpretation of the Monte Carlo
experiments

This study is based on a very abstract understanding of green and conventional
technology. The use of the eco-innovation concept is highly flexible in terms of
interpretation. An eco-technology is every technology that is less detrimental for the
climate than the incumbent alternative. Hence, the concept of eco-innovation can be
applied to any economic sector.

Technological sectors may differ enormously with regard to the strength of diffusion
barriers and path dependence and sectoral boundaries are not necessarily clear ex-ante
when trying identify the potential population of adopters and spillovers in technological
development across sectoral boundaries may exist.

Different sectors face different barriers and it is not clear whether and how heteroge-
neous sectors with heterogeneous barriers can be studied as a macroeconomic aggregate.
In particular, interactions among sectors and within the evolution of sector specific
barriers are likely. A technological breakthrough in one sector may facilitate innovation
in another sector.

In the framework of the model, perfect substitutability of eco- and conventional
capital in terms of produced output was assumed. The model could be interpreted not
only in a macroeconomic aggregate sense, but also as a within-sector competition study.
Within a specific technological field, there are two technological solutions that compete,
comparable to the sectoral scope within the studies by e.g. |Arthur| (1988); Kitahara and
Oikawal (2017); Mowery and Rosenberg| (1999)). Broadening the scope, technological
sectors may differ enormously with regard to entry conditions and the strength of
path dependence. Also the boundaries of sectors can be questioned when technological
change is disruptive. For example, in the transition towards renewable energy the
coupling of formerly separated sectors is decisive. That means to transform the systems
of electricity production, transportation, heating and industry simultaneously. Such
aspects of coevolution supply and demand, and the heterogeneity in terms of barriers to
adoption on different levels have been rarely considered in the macroeconomic literature.

Having this in mind, the experiments on the different levels of barriers can be inter-
preted as a cross-sector study where different barrier combinations represent alternative
sectors that are faced with market entering eco-innovations. In this interpretation,
a single simulation run with a specific barrier setting represents a single sector and
the average across simulation runs is interpreted as macroeconomic aggregate. This
neglects interactions among the sectors, but could serve as rough approximation if
sectors are sufficiently distant.
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Linking this interpretation with the findings of the policy experiments, it becomes
clear that there is no one-size-fits-all optimal policy. The effectiveness of policy is
sensitive to sector specific and evolving levels of the two types diffusion barriers.

7.2. Summing up and outlook

Core finding of the study is that technological uncertainty is costly.

As seen above the switch scenarios performed significantly worse in terms of
aggregate output and productivity variables. This is due to the wasted resources
when it is for a long time unclear in which type of R&D to invest and which types of
technological skills to learn. This insight is also informative for the design of policies.
As shown above, policies may be detrimental if the transition does not take place
because they retard the process of technological specialization. Hence, policy measures
should only be applied if the technological transition is taken seriously. Insufficient
stringency of policy increases technological uncertainty and may have adverse effects.
For a proper design of policy, one should take account of the heterogeneous nature of
diffusion barriers, policies should be sufficiently strict and long-termed and should not
end abruptly such that firms can anticipate the end of policy when making strategic
pricing and investment decisions. Technological uncertainty can be also seen as lack
of technological coordination. Hence, it should be a guideline for policy not only to
allocate resources efficiently, but also to ensure that economic agents to not act in
opposite directions.

Summing up, the present model points to multiple issues that are related to the
process of green technology diffusion and conventional technology substitution. It
is a diffusion model where radical innovation allows the market entry of the green
technology producer. The analysis have shown that technological superiority in terms
of permanent variable cost reductions are not sufficient to ensure long term diffusion.
If knowledge related barriers and path dependence in technological learning affect
evolution of the effective usability of green technologies, processes of initial green
technology uptake can be even reversed. Innovation oriented climate policies, i.e. an
environmental tax and subsidies for green investment and climate friendly products,
can stimulate the diffusion process and the probability of a technological regime shift.
Though, dependent on the type of diffusion barriers, policies perform differently well.
Taxes help overcoming disadvantages related to the productivity of the green alternative.
Subsidies help overcoming barriers related to non-tradable capabilities at the firm level
that are needed for the effective utilization of the green technologies. If barriers are
only a question of lacking experience of adopters in green technology utilization, taxes
can even hamper the diffusion if they undermine firms’ financial capacity to invest.

One core limitation of the model are the simplifying assumptions about the cross-
sectoral transferability of technological knowledge. These are introduced in the process
of learning justified by qualitative insights from the literature. Though, technological
knowledge is not only transferable in the process of individual learning at the level of
the firm, but also in the the innovation sector across different technological fields. The
analysis has highlighted that the divergence in the paths of learning and innovation
play an important role for the establishment of a technological regime. An analysis of
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spillovers in the evolution of the two types of technological knowledge and its implica-
tions for the process of technology diffusion and a green technological transformation
is beyond the scope of this study.
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A. Stylized facts and empirical calibration

The model is supposed to serve as tool for the economic analysis of green technology
diffusion and scenario exploration. In order to justify the model’s suitability for this
objective, the model needs to be empirically validated. In this section, the model’s
ability to match economic stylized facts that are established in the literature. Below,
I introduce stylized facts of innovative processes that were used to design the model.
Stylized facts of innovation that serve for model validation are discussed in the main
text body of this article.

A.1. Economic stylized facts for model validation

In this subsection, an overview of micro- and macroeconomic stylized facts that are
reproduced by the model is provided. The selection of validation criteria follows the
approach used in Dawid et al.| (2018b). The authors discuss and motivate the use
of specific stylized facts more comprehensively pointing to their counterparts in the
empirical literature. Here, I give only a short overview and show a subset of validation
criteria to demonstrate the models ability to reproduce empirically observed economic
regularities and is expected to provide an appropriate tool for economic scenario
exploration and policy analysis. All data and the corresponding R code is provided
in the online documentation to allow the reader to reproduce the results. The results
presented below refer to the simulation results of the baseline scenario (cf. section
. The references to the empirical counterparts of the stylized facts are discussed in
more detail in Dawid et al.| (2018b). Here, I do only demonstrate that extended model
behaves in a similar way as the original Eurace@unibi model.

1. The model is able to reproduce growth rates, business cycle volatility and
persistence patterns similar to those documented in the empirical literature.
The average growth rate of the 210 simulation runs accounts for .0156 and an
average standard deviation of .OOllE The average growth rate is slightly lower
than empirically documented values, but this is merely a matter of scaling of
productivity progress parameters in the model, but does not qualitatively change
the results. The variation across different simulation runs is low and indicates
robustness of the model simulations.

2. Business cycle volatility is evaluated by the size of the cyclical component.
It is measured as average of the absolute size of the percentage deviation of
the time series from its bandpass filtered trend data. The average size of a
business cycle accounts for .0013, i.e. aggregate output variates on average by
0.1 percent. The standard deviation of the variation accounts for .0017. Again,
the variation across runs, i.e. the standard deviation of per-run average size of
the business cycle (standard deviation) is low accounting for .0004 (.0005). The

29These values are the arithmetic mean of 210 run-specific average growth rates computed as geometric
mean in bandpass filtered time series across 15.000 iterations representing roughly 60 years. The
standard deviation is the average standard deviation of run specific deviations over time. The
variation across runs in means (standard deviations) accounts for .0010 (.0011).
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model reproduces slightly less volatile patterns than the original model. Though,
as discussed in the text, this is intended and caused by the design of functions
that have a smoothing effect (for example revenue recycling routines implemented
via dividend and R&D budgets or governmental budget smoothing). Purpose of
study is the understanding of the relevance of knowledge accumulation processes
for technology diffusion. Stronger cyclical dynamics would make this analysis
more difficult and are left for future investigations.

3. Co-movement of key variables with the business cycle is shown in table
[I1] by a representation of the cross-correlation structure of macroeconomic key
variables and business cycle dynamics. The values in the table indicate the
correlation of the cyclical part of band pass filtered time series data with the
business cycle measured as output fluctuations for different time lags. The
table confirms the pro-cyclical behavior consumption, investment, employment
and vacancies. Anti-cyclical behavior is observed for wages, mark-ups and
unemployment.

4. The relative magnitude of fluctuations of macroeconomic variables differs
in their extent. In figure I show the relative magnitude of the percentage
variation in the cyclical argument of the bandpass filtered time series of output,
consumption and investment. The plot covers a 10-year time period close to the
end of simulation time and shows the time series of a randomly drawn single
simulation runﬂ In line with the empirical literature, investment exhibits a
higher volatility than consumption and output. Moreover, the figure reveals
the lag structure of the three variables, i.e. production responds to a positive
consumption shock with a time lag and an output shock precedes a boom in
investment. In figure [A-IB] an analogous plot is shown for the relative magnitude
of variations in output, vacancies and unemployment.

5. Labor market properties can be summarized by a Beveridge and Phillips
curve. The model reproduces a Beveridge curve which illustrates the
relationship between unemployment and vacancies, i.e. higher unemployment is
associated with a lower vacancy rate. The Phillips curve shown in shows
the relationship between unemployment and inflation. The figures on show these
curves for a single randomly selected run for a 20 year snapshot in the first and
second half of the simulation horizon.

These presented stylized facts are only a fraction of the stylized facts that can be
reproduced by the Eurace@unibi model as discussed in [Dawid et al| (2018a). Here,
I restrict the analysis to the facts shown above to give the reader an insight to the
macroeconomic dynamics and interactions that are simulated by the model. Purpose
of this short discussion is to motivate why the model is expected to deliver simulation
results that can be plausibly linked to the observed economic reality.

30 All material to reproduce these plots are provided in the online documentation. The late snapshot
in time is chosen because the technological transition has completed. Preliminary analyses have
shown that the observed patterns are consistent across time.
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Figure A.1: These plots show the relative magnitude of fluctuations captured by the cyclical argument of
macroeconomic bandpass filtered time series and measured as percentage. The shown series
cover a 10 year period at the end of the simulation horizon of a randomly drawn single run out
of the set of 210 simulation runs.
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Figure A.2: These figures show a Phillips and Beveridge curve for a randomly drawn simulation run. The
data accounts for unsmoothened time series data covering the whole simulation period of roughly
60 years. Outliers are removed from the data.
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t-4 t-3 t-2 t-1 0 t+1 t42 t+3 t44

Output -.126 .233 .609 .894 1.00 .894 .609 .233 -.126
(.084) (.066) (.036) (.010) (.000) (.010) (.036) (.066) (.084)
Consumption -.470 -.468 -.330 -.070 .249 .536 .705 .709 .555
(.065) (.066) (.068) (.066) (.061) (.062) (.063) (.062) (.062)
Unemployment .150 -.205 -.583 -.875 -.992 -.896 -.619 -.247 113
(.082) (.066) (.042) (.024) (.022) (.023) (.039) (.064) (.081)
Vacancies -.150 .011 .204 .379 .489 .501 414 .258 .079
(.063) (.060) (.081) (.113) (.134) (.134) (.116) (.088) (.068)
Price .010 .135 .253 .330 .345 .294 .193 .072 -.039
(.106) (.122) (.144) (.158) (.155) (.136) (.111) (.099) (.105)
Wage .082 .097 .098 .075 .029 -.034 -.099 -.151 =177
(.091) (.093) (.098) (.101) (.101) (.101) (.104) (.110) (.114)
Debt -.129 -.025 .102 .216 .286 .294 241 .149 .047
(.124) (.130) (.126) (.114) (.100) (.090) (.090) (.095) (.010)
Inflation -.351 -.328 -.216 -.044 139 .278 .338 .310 .218
(.099) (.091) (.087) (.096) (.113) (.121) (.115) (.101) (.090)
Productivity .107 -.016 -.155 -.270 -.326 -.305 -.216 -.089 .037
(.111) (.096) (.104) (.131) (.150) (.148) (.126) (.099) (.089)
Investment -.231 -.161 -.053 .071 179 .245 .256 .215 .143
(.087) (.086) (.097) (.110) (.116) (.111) (.097) (.083) (.083)
Price eco -.141 -.272 -0.345 -.336 -.248 -.111 .031 137 185
(.104) (.118) (.129) (.127) (.114) (.103) (.102) (.106) (.105)
Mark ups -.170 .065 .315 .510 .595 .549 1391 173 -.037

Table 11: This table shows cross correlation patterns in the volatility of macroeconomic time series with
(lagged) business cycle dynamics, i.e. variation in aggregate output. All variables are measured as
cyclical argument of the underlying time series. The first row corresponds to the autocorrelation
of a business cycle. The presented values are averages of the run-wise correlations. In parentheses,
I the standard deviation across simulation runs is shown.

A.2. Stylized facts of (eco-)innovation

The Eurace@unibi-eco model is designed and validated along a number of stylized
facts that can be derived from the empirical studies. It can be distinguished between
characteristics of (eco-)innovation that served as priors for the model design and
observed patterns that are used for validation. In this subsection, an overview stylized
facts of (eco-)innovation is given and it is briefly explained how these aspects are
incorporated in the Eurace@unibi-eco model. The observed patterns related to model
validation are discussed in the main article (esp. [5.1)).

1. Uncertainty and the stochastic nature of innovation:

Innovation processes are subject to different types of uncertainty, in particular
uncertainty with regard to success in the research process at the inventor’s stage,
uncertainty about the market value of successful innovation, and uncertainty on
the adopters level about the benefits and optimal timing of adoption (cf.|Dosi|1988;
Nelson and Winter|[1977; \Windrum|1999). In Eurace@unibi, innovation success
is probabilistic, the pricing of the innovative outcome follows an adaptive process
of learning about the market value of the innovative outcome, and adopters’
decisions are based on estimations about the evolution of the uncertain market
environment rather than optimality calculations.

2. Incremental nature of innovation:
“Standing on the shoulders of giants”, inventors build on previous knowledge when
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researching for technological novelties (cf. |Dosi||1988). In Eurace@unibi, IG firms
incrementally shift upwards their technological frontier through innovation.

. Technological change is (partly) embodied in capital:

Technology is the means that transforms specific inputs into a valuable output
good. Part of these means is embodied in the type of production capital that can
be bought on the market. This can be the technical characteristics of physical
machinery, but it can also be a codified type of technical knowledge that can be
bought on the market as human capital. If other types of capital are used in
production, technology is changed (e.g. |[Romer|[1990; [Windrum||1999)). This is
also captured in Eurace@unibi where technological change in the quantitative
(productivity growth) growth) and qualitative (technology type) dimension is
channeled through the adoption of new capital goods.

. Tacit knowledge as second dimension of technology:

The non-capital type of technology is referred as to know-how. Technological
change does not only occur through the replacement of capital, but might also
refer to non-tradable, tacit knowledge that is applied in the utilization of inputs
that can be bought on the market. Tacit knowledge accumulates through learning
processes and not via market transactions. At the firm level, tacit knowledge and
technological learning imposes a trade-off between static and dynamic efficiency
when the adoption of a superior technology is hindered if the required level of
technological capabilities is not yet available but would be accumulated after
adoption (cf. [Dawid|2006; Di Stefano et al.[[2012; Dosi| 1991} [Windrum!|1999)).
Tacit knowledge is represented in the Eurace@unibi model in the form of evolving
technology specific skills of a firm’s workforce that are needed to effectively use
capital goods.

. Heterogeneity of innovation adopters: Costs and benefits of innovation
adoption can be heterogeneous. This can be due to heterogeneous preferences
and experiences, different adoption costs dependent on capabilities and the
compatibility with current endowments (Allan et al.|[2014} [Nelson and Winter
1977). In the model, this is captured by the heterogeneity of CG firms in terms
of capabilities, expectations, capital endowments and financial capacities.

. Spillovers and knowledge externalities:

Spillovers and knowledge externalities are positive externalities that arise from
and during the development and diffusion of a new technology. These spillovers
occur via different channels, and typically refer to the public good nature of
technological knowledge or to the process of corporate learning that is either
associated with the influx of externally acquired technological knowledge via
labor mobility or by learning that is triggered by the exposure to a technological
novelty. (Allan et al.|[[2014} |Gillingham et al.[[2008} [Pizer and Popp|2008). In
the model, spillovers do not refer to knowledge flows in R&D processes, and are
only captured by the spillovers in the evolution of tacit knowledge, i.e. cross-
technology spillovers in learning and the dependence of learning on the technical
characteristics of production capital, and additionally via labor mobility.
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7. Creative destruction and technological obsolescence: Creative destruc-
tion and/ or technological obsolescence refer to the phenomenon of replacement
of an incumbent technology by a new one. This process is associated with a loss
in the value of the old technology, equipment and skills that are complementary
to the old, but not or only imperfectly transferable to the utilization of the
new technology (Klimek et al. 2012 [KOhler et al. [2006). This feature enters
the model in the way of technology specific skills. When firms adopt an other
technology type, their capabilities in the utilization of the replaced technology
are not required any longer and experience a loss in value.

8. Sunk costs and the vintage structure of capital as adoption barrier:
Investment and the adjustment of capital is not instantaneous. Rather, firms
invest at certain points in time and the undertaken investment is available for
the firm until it is fully depreciated. After being paid once, investment costs are
considered as sunk-costs. Besides variable costs of capital utilization, relative costs
and benefits of different investment opportunities are not relevant for the firm’s
production planning. This may inhibit the adoption of a new technology even if
is superior (Ambec et al.[2013; |[Dosi|[1991; |[Kemp and Volpi [2008; Metcalte||[1988)).
The FEurace@unibi-eco model applies a vintage capital approach, i.e. firms have a
capital stock that is composed of different vintages of capital that depreciate over
time and undertake new investments at a given periodicity if old capital needs to
be replaced or a capacity expansion is intended.
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B. Technical appendix: Model documentation

B.1. Investment goods sector
B.1.1. Production

To produce IGs, firms need only labor as input. For reasons of simplification, the IG
firms are not integrated in the labor market and use only virtual labor with constant
returns to scale, i.e.

ki, =a"- L (15)
where oV is a scaling factor determining the amount of labor L needed to produce one
unit of capital goods. The scaling factor depends on the ratio of the productivity of
the least productive vintage v = 1 that is currently supplied to the vintage v. Hence,
it is more expensive to produce a more productive vintage, but successful innovation
shifts the ratio (see . Virtual means that labor is not explicitly modeled, hence
without the incorporation of labor market feedbacks if IG firms adjust their production
quantity. The wvirtual labor input is costly and the price for labor follows the same
development as average wages in the economy. In order to ensure the model’s closure,
the costs for labor inputs are recycled back to the economy as a transfer to households.
This assumption can be interpreted as a separated labor market. Hence, there are some
invisible households who receive a labor income from their work in the capital goods
sector and consume in the same proportions as households working in the CG sector.
The use of virtual labor as input implies that capacity constraints are assumed away.

B.1.2. Pricing

IG firms impose an adaptive mark-up over unit production costs captured by the wage
proxy mentioned above . Adaptive pricing rules are a common approach for
heuristic pricing rules in agent-based models for example in |Assenza et al.| (2015). The
price p;, ; of vintage v is given by

lab,v

Pige =" (L4 pigt) (16)

where piabm are labor costs for producing one unit of capital v, and p;4,; is an adaptive
mark-up over production costs that is imposed by firm ig. Labor unit costs are vintage

. . . .. . . AY

specific and proportional to the relative productivity of a vintage, i.e. piab’” = plab. T
ig,t

where A}g’t is the productivity of the least productive vintage v = 1 currently offered
by firm ig. More productive vintages are assumed to require relatively more labor to
produce and are consequently more costly in production. These higher production
costs are reflected in the final vintage price. The firm specific mark-up p;4,; follows an
updating rule that takes account of trends of firms’ pricing, market shares and profits

in a given horizon of past periods. The adaption rule is given by

Wigi—1 - (14 0H) if case A
Mig,t = § Max[fi, ftig¢—1] - (1 —0*) if case B (17)
Hig,t—1 else
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where 1 is a fix minimum mark-up level and §* the size of the updating step. Different
cases for the updating routine have to be distinguished:

(A) Firms increase the mark-up in three cases:

i)

ii)

iii)

They have increased the mark-up in past periods but did not lose market
share w;g; measured in relative sales, i.e. [A¢pigs > 0 A Agwigy > 0] where
A indicates the deviation from the average over a given number of past
periods.

They have increased the mark-up and lost market share, but profits m;g
where rising, i.e. [Atuig,t > 0N Awwigr <ONAymige > O}.

They have decreased the mark-up and the market share weakly increased
but profits decreased, formally [At/,(,igﬂg <ONAwigr > 0N Amige < 0].
From this observation firms conclude that the mark-up was too low to be
profit maximizing even though they gained a higher market share.

(B) Firms decrease the mark-up in two cases:

i

ii)

They have increased the mark-up in past periods, lost market share and
made lower profits, i.e. [Aguigr = 0AAwigy < 0AATig, < 0]. Controlling
for the market share is a test on the association of the decrease on profits
with lost competitiveness. Decreasing profits can be also due to cyclical
volatility of investment, but does not necessarily imply that mark-ups were
too high.

Firms decreased the mark-up, gained weakly market share but made lower
profits, i.e. [Atuig’t < ONAwwigr < 0N Aymigy < 0]. Theoretically, a
firm can make higher profits even though it has decreased prices and lost
market share. This can happen if the market size has increased sufficiently
which might be caused by the price decrease. The combined condition of
[Atwigr < 0AAymig s < 0] indicates that the decrease in profits is not (only)
due to changes in the demand on the IG market but at least partly results
from a suboptimal pricing strategy.

The minimum threshold ensures that the mark-up never falls below a given
minimum value.

In the remaining cases, e.g. when firms decreased prices, lost market share but made
higher profits, they are uncertain about the strategy and keep the price constant.

B.1.3. Revenue allocation

IG firms revenue is composed of two parts. The first part accounts for the virtual
wage payments for labor inputs to IG production. The amount is fueled back into
the economy as a lump-sum transfer that is uniformly allocated across households.
The remaining part of IG firms’ revenue accounts for profits m;,,; stemming from the
mark-up pricing. A given share A € (0,1) is reinvested in R&D. The remaining share
(1 — A) of profits is paid as dividends to shareholders. The R&D expenditures are
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smoothed to iron out short term volatility of CG firms investment activity. Hence,
monthly R&D expenditures are computed as a running average of past profits m;,
over the R&D budgeting horizon 77, i.e.

Trd

i 1
R&Dtg = W Z )\ﬂ'ig,tf‘r- (18)
T=1

R&D expenditures in the real economy account mostly for the wages of researchers.
Because there is no labor market for R&D labor in the present model version, these
payments have to be transfered back to the economy to ensure model closure. This is
done by treating R&D expenditures as dividends that are paid to shareholders, i.e. to
households that have invested in risky assets. A similar smoothing routine is applied
to the labor cost dummy such that transfer payments exhibit a lower volatility than
firms’ investments.

B.2. Consumption goods sector
B.2.1. Investment decision

At a given periodicity of time, firms invest to replace depreciated and/or obsolete
capital and to expand their capacity. When firms invest they are faced to a decision
in which vintage to invest and how many items to buy. Hence, they have to decide
about the quantity K", the productivity A¥ and the technology type ig of the capital
good they want to buy. This decision is based on the net present value (NPV) of an
investment option and firms chose the option that is expected to have the highest NPV.
The NPV is given by the expected, discounted profit #¥ conditional on an investment
in I} less investment costs, i.e.

Tin'u
NPV = =5 I+ > (1) Alver (19)
=0

where P} is the unit price of a certain vintage and I} the amount of capital items to be
bought. Expected profits 7}, take account of expected revenues, labor, resource input
costs and financial costs from previous credit installments, are accumulated over the
time horizon T and discounted with rate p. When computing the expected profits,
firms anticipate market developments and learning dynamics of employees (see .

Investment and production expenditures have to be financed in advance. If the firm’s
own financial means on the bank account are not sufficient, it applies for a credit from
private banks.
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C. Simulations

C.1. Parameter settings

Parameter name Symbol BAU value Remarks

CG market parameters

Depreciation rate .03 Depreciation of capital (value).

Linear depreciation month 60 Depreciation of capita (units).

Discount rate P .01 Discounting e.g. in firms’ investment decision.

Investment time horizon T 60 Number of periods for NPV calculation.

Wage wealth ratio 2

# of incomes for consump- 4 Number of last incomes used by HH to determine cur-

tion budget rent consumption budget (consumption smoothing).

Pricing periodicity 2

~eonst 15 Strength of competition, price sensitivity of final

goods consumers.

Investment periodicity 4

Investment steps 1.0

Maximal # investment 5

steps

Maximal # vintages under 5

consideration

Efficiency coefficient e 1 Efficiency of natural resource use.

Endogenous firm birth haz- 1 Switch on/ off endogenous probability, i.e. founding

ard rate of new firms more likely the less firms are active on
the market.

# installment periods 15 Number of periods for credit installment.

Long-term horizon 72 Length of horizon for firm’s longterm expectations on
market development.

Short-term horizon 12 Analogously.

Learning parameters

General skill level bien {1,2} Households’ general skill level. Random choice with
equal likelihood.

Absorptive capacity X(bff") {.0125,.03703} Households’ absorptive capacity (dependent on gen-
eral skill level).

Minimum learning inten-  x*‘™* .5 Lower bound to learning intensity.

sity

Spillover intensity XSM” .5 Learning spillovers across technology types.

Labor market

Wage reservation update .05 Amount by which reservation wages are updated after
non-successful job application.

Fraction maximum dis- .15 Maximum share of workforce that can be dismissed in

missals a month.

Table 12: CG and labor market parameters
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IG market parameters

Returns to R&D n 1.0 Exponent of R&D influence on innovation probability.
Exogenous innovation D 2.5

probability

Exogenous productivity ~AA .04

progress

Maximal # offered IGs |4 6

Maximal # last prices for 12 Length of horizon taken into consideration in mark-up
adaptation adaptation mechanism.

Maximal # last prices for 12 Length of horizon taken into consideration for price
smoothing smoothing.

IG price smoothing .05

IG minimal mark-up .05

IG mark-up constant .25 Constant used for initialization.

Strength 1G transfer .1 Responsiveness of IG transfers paid to HH to IG sales,
smoothing i.e. to volatility of investment.

# months IG transfer 90 Smoothing of IG revenue paid to HH as proxy for labor
smoothing income in IG sector.

# months IG R&D budget T7¢ 60

smoothing

Eco IG market entry

Day of market entry to 600

% initial specific skill differ- ﬁb .05 Can be scaled by strength of entry barriers. When
ence random set to .15.

% initial technology differ- B4 .05 Can be scaled by strength of entry barriers

ence

Innovation periodicity af- 6 The entrant does not enter the market with the full

ter entry

range of vintages, rather it adds every six months a
new vintage to the supply array until it has reached
the maximal length.

Table 13: IG market and market entry parameters

Policy parameters

ECB interest rate
Unemployment benefit (%)
Government budget hori-
zon

Adaptive tax rates

Debt limit

C.2. Plots and tables

C.2.1. Baseline scenario

% of last income that is paid as unemployment benefit.

Taxes adapt such that gov. budget is long term bal-
anced.

Table 14: Policy parameters

The figures on the aggregate environmental impact and eco-efficiency reveal that there
is a relative decoupling of environmental damage and production activities. The level
in figure stabilizes even if no transition to the green technology takes place. This
is due to improved production efficiency and in consequence a reduction of emissions
per unit of output (cf. figure[C.1b). Though the improvement in terms of eco-efficiency
is fully outweighed by an increase in the total quantity of output. This phenomenon is
also known as rebound effect (cf. /Arundel and Kemp|2009).

The Wilcoxon test confirm the significance of differences in particular for the switch
and the other two scenarios. In the beginning, before the green capital producer enters
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Figure C.1: These figures show the evolution of the aggregate environmental impact and eco-efficiency as
environmental impact per unit of output. The colors indicate the scenario type (see text)

Mean (Std) p-value
t eco conv switch [ eco, conv eco, switch conv, switch
Share conv. capital use
0, 600] 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) ‘ NA NA NA
0, 15000] .1991 (.0777) .9583 (.0463) .6720 (.1195) <2.2e-16 .00018 .00020
Monthly output
10,600] ‘ 8.067 (.0023) 8.067 (.0022) 8.068 (.0024) ‘ 7334 .9084 19326
0, 15000] 8.509 (.1035) 8.522 (.0868) 8.322 (.0640) .3981 .0006 .0003
Unemployment rate
10, 600] 7.472 (.2187) 7.456 (.2024) 7.397 (.2138) .8357 .6730 .6120
0, 15000] ‘ 12.18 (6.611) 11.95 (5.604) 8.089 (.4756) ‘ .4430 .0009 .0006
Eco-price-wage-ratio
[0, 600] .0952 (2.5e-5) .0952 (3.6e-5) .0952 (1.8e-5) .6930 .9939 .7353
[0, 15000] ‘ .0951 (5.6e-5) .0951 (4.6e-5) .0952 (1.8e-5) ‘ .5549 .0054 .0063

Table 15: In this table the results of a Wilcoxon test on equality of means are shown. The means are
computed as average over the a subset of periods and disaggregated by run. The time interval
t € [0,600] corresponds to the time before market entry, the interval ¢ € [0, 150000] for the sample

average. Test on other time intervals are not presented here, but are available in the accompanying
data publication.

the market, the differences are not significant but a considerable divergence is observable
thereafter. Even though there are learning costs in terms of lower aggregate output
in the switch scenario, the unemployment rate is lower which is due to lower average
productivity. Though, unit costs are higher, Firms charge higher prices but lower
mark-ups. This additionally lowers the opportunities of investments and higher prices
are reflected in lower real wages. In the switch scenario, firms have more employees on
average but produce a lower quantity of output.

It is not shown here that the transition to the green economy is associated with
temporary learning costs. Aggregate output is significantly lower in the eco scenarios,
but only in the initial phase of technology diffusion (¢ € [601,3000]). This difference
diminishes after the economy has converged to the final technological state.
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Figure C.2: These figures show the evolution of macroeconomic and firm-level key indicators. The different
colors indicate the technological regime type. The jumpy behavior (esp. for the number of

active firms) of the blue line (indicating switch scenarios is due to the small number of runs
within the set).
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C.2.2. Random barrier experiment

Mean (Std) p-value Mean (Std) p-value
t eco conv eco, conv_| eco conv eco, conv
Share conventional capital used Eco-price-wage-ratio
[601, 3000] 6337 (.1830) 9595 (.0844)  <2.2¢-16 | .0951 (6.8e-5)  .0952 (5.0e-5) .3544
[3001, 5400] .1549 (.1903) 19486 (.1371) <2.2e-16 .0951 (8.7e-5) .0951 (6.6e-5) .0011
[5401, 15000] .0278 (.0455) 19922 (.0520) <2.2e-16 .0951 (4.9e-5) .0951 (4.7e-5) .1846
[0, 15000] .1840 (.0763) .9803 (.0616) <2.2e-16 .0951 (4.3e-5) .0951 (3.8e-5) .0137
% frontier gap % skill gap
[601, 3000] -.0414 (.0586)  .1142 (.0677) <2.2e-16 .0425 (.0338) .1147 (.0454) <2.2e-16
[3001, 5400] -.1702 (.1209)  .1740 (.1154) <2.2e-16 | -.0485 (.0550) .1590 (.0596) <2.2e-16
[5401,15000] | -.4132 (.2310)  .3731 (.2208) <2.2e-16 | -.2408 (.0780) 2964 (.0764) <2.2e-16
[0, 15000] -.2970 (.1677)  .2881 (.1608) <2.2e-16 | -.1530 (.0595) .2371 (.0617) <2.2e-16
Monthly output Unemployment rate
[601, 3000] 8.118 (.0203) 8.120 (.0177) .2065 8.089 (.6501) 8.608 (.7857) 2.9e-8
[3001, 5400] 8.272 (.0664) 8.263 (.0572) .3618 10.59 (3.292) 9.121 (1.825) .0002
[5401, 15000] 8.722 (.1306) 8.681 (.1340) .0335 14.71 (9.688) 11.78 (4.641) .0525
[0, 15000] 8.527 (.0916) 8.500 (.0933) .04593 12.70 (6.597) 10.67 (3.191) .0420
# active firms
[601, 3000] 71.52 (1.298) 71.56 (1.150) .5416
[3001, 5400] 70.62 (2.035) 71.26 (2.000) .02798
[5401, 15000] 73.11 (4.209) 74.52 (2.910) .0427
[0, 15000] 72.50 (2.788) 73.51 (2.095) .0192

Table 16: In this table the results of a Wilcoxon test on equality of means are shown. The means are
computed as average over the a subset of periods and disaggregated by run. The time interval
[601,3000] corresponds to the first ten years after market entry. In this phase, technological
uncertainty is high. [3001, 5400] corresponds to the subsequent decade. [5401, 15000] to a phase of
convergence to the final technological state in most of the simulation runs.The interval [0, 150000]
accounts for the sample average.
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Figure C.3: These figures summarize the technological and macroeconomic outcome of the random barrier
experiment disaggregated by regime type. Note that the number of switch regimes (blue line)
is one which explains the jumpy behavior of the time series. Again, the switch regimes exhibits
a less strong divergence in the relative knowledge stocks which are decisive for the stabilization
of a technological regime. Further, the switch regimes is associated with costs of technological
uncertainty in terms of lower productivity and output.
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C.2.3. Policy experiments
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Figure C.4: These figures summarize the macroeconomic and technological characteristics of the policy ex-

periments with randomized diffusion barriers (6.1.2) in comparison to the baseline scenario with

randomized barriers, but without policy ‘

85



D. Abbreviations

List of abbreviations

ABM Agent-based Model(ing)
CG Consumption good

IG Investment good

NPV Net present value

VAT Value added tax

List of indices

¢ Index of CG firm i € {1,...,1}

ig Index of IG sector ig € {c,g}. It also indicates the technology type of capital goods that
are produced in this sector.

v Index of vintage of a capital good with properties (A", 1(v))

List of parameters

b7*" Household h’s general skill level

x'™ Minimum technology specific learning factor representing learning spillovers across
technology types

P Intensity of cross-technology learning spillovers

e Efficiency coefficient for the use of material and energy inputs

n Returns to R&D

4 Minimum mark-up in IG sector

p Fix minimum probability of innovation success in IG sector

p Discount rate

T Investment time horizon

T"% R&D budgeting horizon

to Day of eco-IG firm’s market entry

V' Maximal number of vintages that can be supplied by IG producers and simultaneously
index for the most productive vintage (technological frontier)

List of variables

A;ft Average productivity level of capital of type ig of household h’s employer
Aftf fo Effective productivity of vintage v for firm 4 in ¢

Aivg_’t Technological frontier in IG sector ig in time ¢
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A" Labor productivity of vintage v

B;’; Average specific skill level of employees in firm i for technology ig

b;'lg’ ., Technology specific skills of household A in ¢ for technology type ig € {c, g}
c°® Unit costs for natural resource inputs

D; Aggregate environmental impact

Ab;fft Learning gap between the employer’s technology and household’s skills
0" Percentage adjustment of mark-ups in IG sector

1(v) Binary indicator for conventional technology with 1(v) =1 and 1(v) =0
IY Investment in vintage v in units of capital goods

L Labor

L;+ Number of employees of firm 3

g, Mark-up in sector ig

I/]i{]t Share of capital of type ig € {c, g} in the used capital stock of household h’s employer
wig,s Market share of firm ig

7+ Expected period profit conditional on an investment in vintage v

Tig,t Profit of firm ig

P;4,: Probability of successful innovation

pi“b’v Marginal labor costs in IG production of vintage v

p; Investor price for capital vintage v

Dig,+ Supply price of v

Qi,: Consumption good output

E&\Diw R&D intensity in sector ig

o¢°™® Price support for environmentally sound produced products

0" Subsidy for investments in green capital

07°° Environmental tax imposed on natural resource inputs

w; ¢+ Mean wage of firm ¢ in ¢
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