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well as IMW and BiGSEM for sponsoring me for international conferences. I

thank Bernhard Eckwert, Nikolai Brandt, and Tobias Hellman for their support

for my first international talk in Cardiff.

iv



Contents

1 Introduction 2

1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A first example . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 A second example . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 A third example: The benefit of the ambiguity . . . . . . . . . 13

2 A complete folk theorem for finitely repeated games 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Model and definitions . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 The Stage-game . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 The Finitely Repeated Game . . . . . . . . . . . . . . . 22

2.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Discussion and extension . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Case of the Nash solution . . . . . . . . . . . . . . . . . 25

2.4.2 Alternative statement of Theorem 1 and Theorem 2 . . . 26

2.4.3 Case with discounting . . . . . . . . . . . . . . . . . . . 27

2.4.4 Relation with the literature . . . . . . . . . . . . . . . . 27

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Appendix 1: Proof of the Complete perfect folk theorem . . . . 30

2.7 Appendix 2: Proof of the complete Nash folk theorem . . . . . . 44

2.8 Appendix 3: In case there exists a discount factor . . . . . . . . 50

3 A note on “Necessary and sufficient conditions for the perfect

finite horizon folk theorem” [Econometrica, 63 (2): 425-430,

1995. 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 The counter-example . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 The stage-game . . . . . . . . . . . . . . . . . . . . . . . 52

v



3.2.2 The five-phase strategy of Smith . . . . . . . . . . . . . 53

3.2.3 Intuition behind the failure of Smith’s proof . . . . . . . 56

3.3 Smith’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 The stage-game . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 The finitely-repeated game . . . . . . . . . . . . . . . . . 59

3.4 A proof of Smith’s folk theorem . . . . . . . . . . . . . . . . . . 60

3.5 Proof of intermediate results . . . . . . . . . . . . . . . . . . . . 67

4 Repetition and cooperation: A model of finitely repeated games

with objective ambiguity 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 The stage-game . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 The finitely repeated game . . . . . . . . . . . . . . . . . 77

4.3 Main result and discussion . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Statement of the main result . . . . . . . . . . . . . . . . 79

4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Appendix 4: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Infinitely repeated games with discounting. What changes if

players are allowed to use imprecise devices. 94

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 The stage game . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 The infinitely repeated game . . . . . . . . . . . . . . . . . . . . 97

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



Chapter 1

Introduction

Economic situations involve interactions of agents with diverse interests. Nor-

mal form games appear as a good formal representation of such situations in

case of conflicting interests. Game theorists have provided many solution con-

cepts that try as much as possible to predict the behavior of agents involved

in a given normal form game. Some solutions are the dominant strategy equi-

librium, the Nash equilibrium due to Nash (1951), the perfect equilibrium

due to Selten (1975) and the minimax due to Von Neumann, the correlated

equilibrium and so on. The application of those concepts provides interesting

previsions in economics but also in political sciences, biology and psychology.

In some other games as insurance agreements and Cournot duopoly, the

solution concepts above mentioned fail to explain the behavior of agents as

well as the achieved outcomes. Indeed, in such games, participants do no obey

their short-term incentives and aim to optimize their long-run payoffs.

THE THEORY OF REPEATED GAMES give insights to understand and

explain how rational and compelling can the behavior of agents who have en-

gaged in a long-run relationship differ from those of agents who interact only

once. The main message of this theory is that repetition facilitates cooperation:

In a long-run relationship, an agent may abandon her short term interests and

cooperate with her vis-a-vis because she fears future penalties or because she

expects some future rewards. Trivial examples are the prisoners’ dilemma and

the Cournot oligopoly where participants achieve efficiency in the long-run.

A repeated game is obtained as a finite or an indefinite repetition of a given

normal form game, the stage-game. A strategy of a player in a repeated game
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is a contingent plan which specifies the action that player intends to choose

in the first round of that repeated game as well as the action she intends to

choose at any subsequent round given an observed history.

The most popular result of the theory of repeated games is the folk the-

orem. It characterizes the set of payoffs that agents can achieve when they

repeatedly play a stage-game. The folk theorem is said to hold if the set of

equilibrium payoffs of the repeated game includes any feasible and individually

rational payoff of the stage-game. In the folk theorem, a feasible payoff is a

convex sum of stage-game payoff vectors and, it is called individually rational

if each player’s entry is greater than or equal to her stage-game reservation

value which is her stage-game minimax payoff.

Under different classes of assumptions, game theorists have proved the folk

theorem for both finitely repeated games where the time horizon is finite and

commonly known and infinitely repeated games where the time horizon is ei-

ther uncertain or infinite, each model describing as much as possible some

specific long-run relationships. Two models of repeated games may differ from

the monitoring structure available to agents (perfect, public, private), the char-

acteristics of agents involved in the game (players with bounded memories, so-

phisticated players, short-lived or long-lived players, patient players), the type

of actions available (pure actions or mixed actions), the solution concepts (Nash

equilibrium, subgame perfect Nash equilibrium, renegotiation-proofness), the

information available to players about the game (complete or incomplete) and

so on.

This thesis provides an analysis of finitely repeated games of complete in-

formation and perfect monitoring and aim to answer two questions.

1) The folk theorem for finitely repeated game hold under some necessary and

sufficient conditions; see Benoit and Krishna (1984) for a sufficient condition

and Smith (1995) for a necessary and sufficient condition. In the case that the

folk theorem does not hold, what is the exact range of payoffs that players can

achieve using Nash equilibria or subgame perfect Nash equilibria of the finitely

repeated game?

2) Classic models of repeated games assume that players can employ only pure

and mixed actions and, in the equilibrium, at each point of time and given any

observed history, each player specify her pure action or the probability distri-

bution her action for the next period will be issued from. This assumption is

3



1.1. CONTRIBUTION

in contrast with most of observed behaviors as people more often bargain and

agree on what one could call an incomplete strategy, that is a specification of

the collusive path to be followed but not the enforcing schemes. In a long-

run relationship, players might not want to predetermine the action they will

choose if some participants deviate from the collusive path. They might for

instance think that the potential deviator might immune herself against the

punishment schemes if she knows them in advance. Moreover, if the punish-

ment scheme (off equilibrium path) is too severe, it might make it difficult to

get an agreement as players could consider that they can make mistake and

choose an unintended action, as Selten (1975) explains. Could the theory of

repeated game explain why incomplete strategies are stable?

1.1 Contribution

Repeated game models considered in this thesis are of complete information

and perfect monitoring. I implicitly assume that each player has the complete

information about her preferences and strategies as well as those of her fellow

players. Furthermore, at each point of time each player can observe the strat-

egy played by her fellow players.

This thesis provides two contributions to the repeated games literature.

The first contribution is a complete folk theorem. This theorem fully char-

acterizes the set of payoffs that are approachable by means of pure strategy

subgame perfect Nash equilibria of finite repetitions of an arbitrary normal

form game. In contrast with the classic folk theorem which provides necessary

and sufficient conditions on the stage-game which ensure that each feasible and

individually rational payoff vector of the stage-game is approachable by means

of subgame perfect Nash equilibria of the finitely repeated game, the complete

folk theorem applies to any compact normal form game and provides a full

characterization of the whole set of achievable payoffs.

The second contribution is a new model of finitely repeated game where

players can employ imprecise probabilistic devices to conceal their intentions.

The analysis of that model gives insights to understand why incomplete con-

tracts where participants agree on a collusive path and do not specify any en-

forcing scheme are widespread and stable. This new model of finitely repeated
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1.1. CONTRIBUTION

games also allows to explain the emergence of cooperation without relaxing

the assumptions the information structure available to players (see Kreps et al.

(1982) and Kreps and Wilson (1982)), the perfection of the monitoring tech-

nology (see Abreu et al. (1990), Aumann et al. (1995)) and players’ rationality

(see Neyman (1985), Aumann and Sorin (1989)).

The findings of this thesis are presented in four chapters.

In Chapter 2 I analyze the set of pure strategy subgame perfect Nash equi-

libria of any finitely repeated game with complete information and perfect

monitoring. The main result is a full characterization of the limit set, as the

time horizon increases, of the set of pure strategy subgame perfect Nash equi-

librium payoffs of any finitely repeated game. The obtained characterization

is in terms of appropriate notions of feasible and individually rational payoff

vectors of the stage-game. These notions are based on Smith’s (1995) notion of

Nash decomposition and appropriately generalize the classic notion of feasible

payoff vectors as well as the notion of effective minimax payoff defined by Wen

(1994). The main theorem nests earlier results of Benoit and Krishna (1984)

and Smith (1995). Using a similar method, I obtain a full characterization of

the limit set, as the time horizon increases, of the set of pure strategy Nash

equilibrium payoff vectors of any finitely repeated game. The obtained result

nests earlier results of Benoit and Krishna (1987).

Smith (1995) presents a necessary and sufficient condition for the finite-

horizon perfect folk theorem. In the proof of this result, the author constructs

a family of five-phase strategy profiles to approach a feasible and individually

rational payoff vector of the stage-game. In Chapter 3, I use a counter-example

to show that these strategy profiles are not subgame perfect Nash equilibria of

the discounted repeated game. Nevertheless, the characterization of attainable

payoff vectors by Smith remains true. I provide an alternative proof.

In Chapter 4 I present a model of finitely repeated games in which players

can strategically make use of objective ambiguity. In each round of a finite rep-

etition of a given finite stage-game, in addition to the classic pure and mixed

actions, players can employ objectively ambiguous actions by using imprecise

probabilistic devices as Ellsberg urns to conceal their intentions. I follow Riedel

and Sass (2014) and I call a Nash equilibrium of this extended stage-game an
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1.2. A FIRST EXAMPLE

Ellsberg equilibrium. The main finding is that, when each player has many

continuation payoffs in Ellsberg actions, any feasible payoff vector of the orig-

inal stage-game that dominates the mixed strategy maxmin payoff vector of

the original stage-game is (ex-ante and ex-post) approachable by means of sub-

game perfect Ellsberg equilibrium strategies of the finitely repeated game with

discounting. I prove that this condition is also necessary. The novelty of this

model is that it allows to approach any equilibrium payoff by simple subgame

perfect Nash equilibria, equilibria involving very few parameters. Furthermore,

at the equilibrium players do not have to predetermine the profile of (possibly

mixed) actions they will employ on punishment paths. Another finding is that

adding an infinitesimal level of ambiguity to the classic model of finitely re-

peated games allows to explain the emergence of cooperation, even if the stage

game has a unique mixed strategy Nash equilibrium.

In Chapter 5 I present a model of infinitely repeated game with complete

information and perfect monitoring and where players are allowed to employ

pure actions, mixed actions as well as an additional device which captures the

willingness of a player to exercise her right to remain silent. I show that any

feasible payoff that dominates the maxmin (modulo some players have equiv-

alent utility functions) payoff vector is sustainable by means of pure strategy

subgame perfect Nash equilibria of the infinitely repeated game with discount-

ing.

1.2 A first example

In this section, use a four-player game to illustrate how the complete (perfect)

folk theorem works. The chosen game does not satisfy neither the distinct Nash

payoff condition of Benoit and Krishna (1984) nor the recursively distinct Nash

payoffs of Smith (1995) so that the perfect folk theorem for finite time horizon

does not hold. I show how to determine the exact range of payoff vectors that

are approachable by means of pure strategies subgame perfect Nash equilib-

rium strategies of the finitely repeated game.

Consider the four-player game G whose payoff matrix is given by Table 1.1

and where the set of actions of players 1, 2, 3 and 4 are respectively given by

A1 = {a1
1, a

2
1}, A2 = {a1

2, a
2
2, a

3
2}, A3 = {a1

3, a
2
3} and A4 = {a1

4, a
2
4}.

6



1.2. A FIRST EXAMPLE

a1
2 a2

2 a3
2

a1
1

a1
4 a2

4

a1
3 1 1 1 1 0 0 0 0
a2

3 1 2 1 1 0 0 1 1

a1
4 a2

4

3 0 0 1 3 3 1 0
0 1 1 0 0 1

2
0 1

a1
4 a2

4

4 1 0 -1 0 0 0 0
0 0 -1 1 0 0 1 0

a2
1

a1
3 0 0 2 3 0 0 3 2
a2

3 0 0 3 2 0 3 2 3
3 0 1 1 1 4 1 1
0 0 0 0 1 2 1 1

3 5 2 3 1 5 3 2
0 0 3 2 0 0 2 3

Table 1.1: Payoff matrix of a game with an incomplete Nash decomposition
and where players can achieve a partial level of cooperation in finite time.

This game admits two pure Nash equilibrium profiles a1 = (a1
1, a

1
2, a

1
3, a

1
4)

and a2 = (a1
1, a

1
2, a

2
3, a

1
4). As any pure strategy subgame perfect Nash equilib-

rium play path of the finitely repeated game lasts with a phase where only pure

Nash equilibrium action profiles of the stage-game are played, this phase will

employ only the action profiles a1 and a2. As player 2 receives distinct payoffs

at Nash equilibrium profiles a1 and a2, in a second to last phase of a pure strat-

egy subgame perfect Nash equilibrium play path of the finitely repeated game,

she is willing to conform to any sequence of pure actions of the stage-game

given that (i) the last phase is long enough, (ii) the last phase pays her (in

average) strictly more than her worst stage-game pure Nash equilibrium and

(iii) the deviations during the second to last phase are punished by playing a1

in every period of the last phase.

As player 1 (respectively player 3 and player 4) receives the same payoff

at Nash equilibrium profiles a1 and a2 it is not possible to credibly punish her

if she profitably deviates during the second to last phase. Therefore, player 1

(respectively player 3 and player 4) has to play a stage-game pure best response

at any profile of actions played in the second to last phase. Consequently, for

a pure action profile of the stage-game to be eligible for a second to last phase

of a pure strategy subgame perfect Nash equilibrium of the finitely repeated

game, it has to be a pure Nash equilibrium of the new stage-game G1 that

is obtained from the stage-game G by setting the utility function of player 2

equal to a constant, say γ; see Table 1.2.

The stage-game G1 admits five pure Nash equilibrium profiles a1, a2, a3 =

(a1
1, a

1
2, a

2
3, a

2
4), a4 = (a2

1, a
2
2, a

1
3, a

1
4) and a5 = (a2

1, a
2
2, a

2
3, a

2
4) and only player 1

receives distinct payoffs at those profiles. Therefore, in a third to last phase

of any pure strategy subgame perfect Nash equilibrium play path of any finite

7



1.2. A FIRST EXAMPLE

a1
2 a2

2 a3
2

a1
1

a1
4 a2

4

a1
3 1 γ 1 1 0 γ 0 0
a2

3 1 γ 1 1 0 γ 1 1

a1
4 a2

4

3 γ 0 1 3 γ 1 0
0 γ 1 0 0 γ 0 1

a1
4 a2

4

4 γ 0 -1 0 γ 0 0
0 γ -1 1 0 γ 1 0

a2
1

a1
3 0 γ 2 3 0 γ 3 2
a2

3 0 γ 3 2 0 γ 2 3
3 γ 1 1 1 γ 1 1
0 γ 0 0 1 γ 1 1

3 γ 2 3 1 γ 3 2
0 γ 3 2 0 γ 2 3

Table 1.2: First transformation of the game G

repetition of the game G, player 1 is willing to conform to any sequence of

play of action profiles of the stage-game G given that (j) the second to last

phase is long enough, (jj) in the second to last phase she receives (in average)

strictly more than her worst pure Nash equilibrium payoff in the stage-game

G1 and that (jjj) the deviations during the third to last phase are punished by

playing a3 in every period of the second to last phase. From (i), (ii) and (iii),

player 2 will not find it profitable to deviate during the third to last phase of

any pure strategy subgame perfect Nash equilibrium play path of any finite

repetition of the game G. As player 3 (respectively player 4) receives the same

payoff at any pure strategy Nash equilibrium of the game G1, it is not possible

to motivate her to stick to a path involving an action profiles where she is

not playing a stage-game pure best response. The action profiles eligible for

the third to last phase of a subgame perfect Nash equilibrium play path are

therefore Nash equilibria of the game G2 that is obtained from G by setting the

utility functions of both players 1 and 2 equal to a constant, say γ; see Table 1.3.

a1
2 a2

2 a3
2

a1
1

a1
4 a2

4

a1
3 γ γ 1 1 γ γ 0 0
a2

3 γ γ 1 1 γ γ 1 1

a1
4 a2

4

γ γ 0 1 γ γ 1 0
γ γ 1 0 γ γ 0 1

a1
4 a2

4

γ γ 0 -1 γ γ 0 0
γ γ -1 1 γ γ 1 0

a2
1

a1
3 γ γ 2 3 γ γ 3 2
a2

3 γ γ 3 2 γ γ 2 3
γ γ 1 1 γ γ 1 1
γ γ 0 0 γ γ 1 1

γ γ 2 3 γ γ 3 2
γ γ 3 2 γ γ 2 3

Table 1.3: Payoff matrix of the game G2

The game G2 admits six pure Nash equilibrium profiles a1, a2, a3, a4, a5

and a6 = (a2
1, a

2
2, a

1
3, a

2
4) and a unique pure Nash equilibrium payoff vector

(γ, γ, 1, 1). Two remarks follow. Firstly, the Nash decomposition of the game G

is incomplete. Secondly, any pure strategy subgame perfect Nash equilibrium

play path has only three phases: A first phase that employs action profiles

8



1.2. A FIRST EXAMPLE

a1, a2, a3, a4, a5 and a6 which are pure Nash equilibria of the game G2; a

second phase that employs action profiles a1, a2, a3, a4, a5 which are pure

Nash equilibria of the game G1; and a third phase which employs action profiles

a1, a2 which are pure Nash equilibria of the original stage-game, the game G.

Therefore, the set of action profile eligible for subgame perfect Nash equilibrium

play paths of finite repetitions of the stage-game G is restricted to {a1, · · · a6}.
It follows that any subgame perfect Nash equilibrium payoff vector of any finite

repetition of the stage-game G has to be in the set of recursively feasible payoff

vectors of the game G which is the convex hull of the set

{(1, 1, 1, 1), (1, 2, 1, 1), (0, 0, 1, 1), (3, 0, 1, 1), (1, 4, 1, 1), (1, 2, 1, 1)}.

Players 3 and 4 will therefore receive their unique stage-game pure Nash

equilibrium payoff at any pure strategy subgame perfect Nash equilibrium of

the finitely repeated game. Furthermore, within the set of eligible actions

{a1, · · · , a6}, player 2 can not be pushed down by her fellow players to a pay-

off that is strictly less than 1
2
. Indeed each pure strategy subgame perfect

Nash equilibrium average payoff vector of the finitely repeated game weakly

dominate the payoff vector (0, 1
2
, 1, 1) which in turns weakly dominates the ef-

fective minimax payoff vector (0, 0, 0, 0) of the game G. I call the payoff vector

(0, 1
2
, 1, 1) the recursive effective minimax payoff vector.

The above reasoning teaches that the set of pure strategy subgame per-

fect Nash equilibrium payoff vectors of any finite repetition of the game G is

included in the convex hull of the set

{(1
8
, 1

2
, 1, 1), (11

4
, 1

2
, 1, 1), (1, 4, 1, 1)}

which is the set of recursively feasible payoff vectors that dominate the recur-

sive effective minimax payoff vector. This set is a lower-dimension subset of

the set of feasible and individually rational payoff vectors of the game G.

Theorem 1 in page 23 says that, as the time horizon increases, the set of

pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game converges to the set recursively feasible payoff vectors that dom-

inate the recursive effective minimax payoff vector. In this example, this limit

set equals the convex hull of the payoff set

{(1
8
, 1

2
, 1, 1), (11

4
, 1

2
, 1, 1), (1, 4, 1, 1)}

9



1.3. A SECOND EXAMPLE

6

-

Set of feasible and
individually rational
payoff vectors

P
la

ye
r

2 6

-

Set of recursively
feasible payoff vectors

6

-

Set of recursively feasible
and recursively individually
rational payoff vectors

Player 1

Figure 1: Equilibrium payoff vectors of players 1 and 2.

Payoff vector of players 1 ans 2 in the stage game G

1.3 A second example

In this section, I use a four-player normal form game to illustrate that when

the finite time horizon (Nash) folk theorem does not hold, not all stage game

action profiles are eligible for pure strategy Nash play paths. I then show

how to discriminate action profiles that are eligible for pure strategy Nash play

paths. Those action profiles turn out to be Nash equilibria of the stage game or

Nash equilibria of a degenerated game obtained from the stage game by making

some of the players indifferent across their set of actions. I call a payoff Nash-

feasible if it belongs to the convex hull of the set of payoffs to eligible action

profiles. Theorem 4 in page 26 says that a payoff is approachable by means of

pure strategy Nash equilibria of the finitely repeated game if and only if it is

Nash-feasible and individually rational.

In the four-player normal form game G whose payoff matrix is described by

Table 1.4 and where player 4 chooses the row of matrices (a1
4 or a2

4), player 3

chooses the column of matrices (a1
3 or a2

3), player 2 chooses the column (a1
2 or

a2
2) and player 1 chooses the row (a1

1 or a2
1), the unique pure Nash equilibrium

payoff is (2, 1, 1, 1) and the pure minimax payoff of each player is equal to 1.

As we will observe, as the time horizon increases, the set of pure strategy Nash

equilibrium payoffs of the finite repetitions of the stage-game G converges to

the convex hull of the set {(1, 1, 1, 1), (4, 1, 1, 1), (1, 4, 1, 1)}, a lower-dimension

proper subset of the set of feasible and individually rational payoff vectors.

10



1.3. A SECOND EXAMPLE

a1
3 a2

3

a1
4

a1
2 a2

2

a1
1 2 1 1 1 1 1 0 4
a2

1 1 1 0 0 0 0 0 0

a1
2 a2

2

1 0 0 1 0 1 4 0
0 5 1 1 1 0 1 0

a2
4

a1
1 1 1 1 0 6 6 4 0
a2

1 0 1 0 1 5 0 1 1
1 2 0 0 1 0 0 1
0 2 1 0 1 1 1 1

Table 1.4: Payoff matrix of the game G

In a finite repetition of the game G, any pure strategy Nash play path will

end with a phase where the unique stage-game pure Nash equilibrium profile

a1 = (a1
1, a

1
2, a

1
3, a

1
4) is repeatedly played. The average payoff of player 1 in that

last phase equals 2 and is strictly greater than her pure minimax payoff which

is equal to 1. Thus, in a second to last phase of a pure strategy Nash play path,

player 1 is willing to conform to any sequence of non-Nash equilibrium action

profiles given that the last phase is long enough and that deviations from an

ongoing path are threaten by the grim trigger strategy profile, that is, after a

unilateral deviation is observed, the author of the deviation is minimaxed so

that she received at most her minimax payoff in each subsequent period of the

repeated game. As players 2, 3 and 4 receive their pure minimax payoffs in

the last phase of all pure strategy Nash play path, in the second to last phase,

there is not a way to simultaneously make players 2, 3 and 4 play an action

where they are not at their stage game best response. Therefore, the set of

actions eligible for the second to last phase is the set of Nash equilibria of a

new game G∗1, game obtain from G by setting the utility function of player 1

equal to a constant, let’s say γ (see Table 1.5).

a1
3 a2

3

a1
4

a1
2 a2

2

a1
1 γ 1 1 1 γ 1 0 4
a2

1 γ 1 0 0 γ 0 0 0

a1
2 a2

2

γ 0 0 1 γ 1 4 0
γ 5 1 1 γ 0 1 0

a2
4

a1
1 γ 1 1 0 γ 6 4 0
a2

1 γ 1 0 1 γ 0 1 1
γ 2 0 0 γ 0 0 1
γ 2 1 0 γ 1 1 1

Table 1.5: Payoff matrix of the game G∗1.
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1.3. A SECOND EXAMPLE

The game G∗1 has two pure Nash equilibrium profiles, a1 = (a1
1, a

1
2, a

1
3, a

1
4)

and a2 = (a2
1, a

1
2, a

2
3, a

1
4) and the associated payoff vectors in the original game

G are respectively (2, 1, 1, 1) and (0, 5, 1, 1). The play path

( a1, a2, a2︸ ︷︷ ︸
2nd to last phase

, a1, a1, a1︸ ︷︷ ︸
last phase

)

is an example of two-phase pure strategy Nash play path. At such two-

phase play path, both of players 1 and 2 receive (8/6 for player 1 and 14/6 for

player 2) strictly more than their pure minimax payoffs while player 3 and 4

receive their pure strategy minimax payoffs. Thus, in the third to last phase

of a pure strategy Nash play path, players 3 and 4 need to be at their stage

game best response at any action profile played whereas players 1 and 2 are

willing to conform to any sequence of action profiles given that the two last

phases are long enough and that deviations from an ongoing path are threaten

by the grim trigger strategy. Action profiles eligible for the third to last phase

are therefore Nash equilibria of the game G∗2 obtained from G by setting the

utility functions of both players 1 and 2 equal to the constant γ (see Table

1.6).

a1
3 a2

3

a1
4

a1
2 a2

2

a1
1 γ γ 1 1 γ γ 0 4
a2

1 γ γ 0 0 γ γ 0 0

a1
2 a2

2

γ γ 0 1 γ γ 4 0
γ γ 1 1 γ γ 1 0

a2
4

a1
1 γ γ 1 0 γ γ 4 0
a2

1 γ γ 0 1 γ γ 1 1
γ γ 0 0 γ γ 0 1
γ γ 1 0 γ γ 1 1

Table 1.6: Payoff matrix of the game G∗2

The game G∗2 has four pure Nash profiles: a1 = (a1
1, a

1
2, a

1
3, a

1
4), a2 =

(a2
1, a

1
2, a

2
3, a

1
4), a3 = (a2

1, a
2
2, a

1
3, a

2
4) and a4 = (a2

1, a
2
2, a

2
3, a

2
4) and the associated

payoff vectors in the original game G are respectively (2, 1, 1, 1), (0, 5, 1, 1),

(5, 0, 1, 1) and (1, 1, 1, 1). An example of three-phase pure strategy Nash play

path is

(a3, a3, a2, a4︸ ︷︷ ︸
3rd to last phase

, a1, a2, a2︸ ︷︷ ︸
2nd to last phase

, a1, a1, a1︸ ︷︷ ︸
Last phase

).

12
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At such three-phase play path, both players 3 and 4 still receive their pure

strategy minimax payoffs. Therefore, in the game G, there is no way to lever-

age the behavior of players 3 and 4. It follows that, a pure strategy Nash

play path of the finite repetition of G will have at most three phases. A first

phase where action profiles a1, a2, a3 and a4 are played; a second phase where

actions a1 and a2 are played; and a third phase where only the action profile

a1 is played. At any occurrence of any other action profile, either player 3 or

4 will have incentive to deviate and there is no way to prevent such deviation.

This reasoning suggests that, the set of feasible payoff vectors eligible for pure

strategy Nash play paths is included in the convex hull of the set {(2, 1, 1, 1),

(0, 5, 1, 1), (5, 0, 1, 1), (1, 1, 1, 1)}, the set of Nash-feasible payoff vectors.

Theorem 2 in page 25 says that, the set of pure strategy Nash equilibrium

payoffs of finite repetitions of the game G converges to the set of Nash-feasible

and individually rational payoff vectors.

6

-

Set of feasible and
individually rational
payoff vectors

P
la

ye
r

2

6

-

Nash-feasible
payoff vectors

Set of Nash-feasible and
individually rational
payoff vectors

Player 1

Figure 2: Equilibrium payoff vectors of players 1 and 2.

Payoff vector of players 1 ans 2 in the stage game G

1.4 A third example: The benefit of the am-

biguity

In this section I present an example of a game in which the classic model of

finitely repeated games with pure and mixed strategies can not explain the

13



1.4. A THIRD EXAMPLE: THE BENEFIT OF THE AMBIGUITY

emergence of cooperation while the introduction of an infinitesimal level of

ambiguity in the model allows for sustaining cooperation.

Consider the three-player normal form game G whose payoff matrix is given

by table 1.7 in which player 1 chooses the columns (L1, RH1 or RT1), player

2 chooses the rows (H2 or T2) and player 3 chooses the matrix (L3 or R3).

In this game, the strategy L1 of player 1 is strictly dominated and therefore

player 1 will play L1 with probability 0 at any Nash equilibrium. Given that

player 1 plays L1 with probability 0, player 3 will find it strictly dominant to

play R3 with probability 1. The resulting restricted game is the well known

2 × 2 matching pennies game played by players 1 and 2, game that has a

unique mixed strategy Nash equilibrium profile where player 1 plays RH1 and

RT1 each with probability 1
2

and player 2 plays H2 and T2 each with prob-

ability 1
2
. Consequently, the game G has a unique Nash equilibrium profile

s∗ =
(
{1

2
RH1 ⊕ 1

2
RT1}, {1

2
H2 ⊕ 1

2
T2}, {R3}

)
where player 1 plays L1 with prob-

ability 0 and plays RH1 and RT1 with the same probability 1
2
, player 2 plays

H2 and T2 with the same probability 1
2

and player 3 plays R3 with probability 1.

L1 RH1 RT1

H2 -2 -2 4 6 6 0 6 6 0
T2 -2 -2 4 6 6 0 6 6 0

L1 RH1 RT1

H2 -2 -2 4 -1 1 1 1 -1 1
T2 -2 -2 4 1 -1 2 -1 1 2

L3 R3

Table 1.7: Payoff matrix of the stage-game G.

As the game G has a unique Nash equilibrium in mixed strategy, any fi-

nite repetition of G in which players are allowed to employ only pure and

mixed actions admits a unique subgame perfect equilibrium payoff which is

u(s∗) = (0, 0, 3
2
) (see Benoit and Krishna (1984)). Now assume that players

are ambiguity averse and are allowed to use sophisticated devices as Ellsberg

urns to conceal their intentions. For all ε1, ε2 ∈ [0, 1
2
], let

s(ε1, ε2) =
(
{1

2
RH1 ⊕ 1

2
RT1}, {pH2 ⊕ (1− p)T2,

1
2
− ε1 ≤ p ≤ 1

2
+ ε2}, {R3}

)
be the profile in which player 1 plays L1 with probability 0 and RH1 and

RT1 with the same probability 1
2
, player 3 plays R3 with probability 1 while

14



1.4. A THIRD EXAMPLE: THE BENEFIT OF THE AMBIGUITY

player 2 issues her action from a device whose unique known property is that

the probability to issue H2 is between 1
2
− ε1 and 1

2
+ ε2. At any profile

p =
(
{1

2
RH1 ⊕ 1

2
RT1}, {pH2 ⊕ (1− p)T2}, {R3}

)
of probability distribution

where 1
2
− ε1 ≤ p ≤ 1

2
+ ε2, player 1 and player 2 receive each 0 while player 3

receives 2− p. At the profile s(ε1, ε2), as player 3 is ambiguity averse and does

not know the value of p, she ex-ante receives her worst expected payoff, that is
3
2
−ε2. The ex-ante payoff to the profile s(ε1, ε2) is therefore (0, 0, 3

2
−ε2). Note

that at the profile s(ε1, ε2), no ambiguity averse player can profitably deviate.

Indeed, if player 1 plays L1 with probability 0, then R3 is a strictly dominant

action of player 3. The expected payoff of player 2 is independent of her chosen

action (possibly mixed) if player 1 plays RH1 and RH2 with the same proba-

bility 1
2

and player 3 plays R3 with probability 1. Furthermore, if player 3 plays

R3 with probability 1 and player 2 plays {pH2⊕(1−p)T2,
1
2
−ε1 ≤ p ≤ 1

2
+ε2},

the worst expected payoff of player 1 is maximal if she plays RH1 and RT1

with the same probability 1
2
.

At the equilibrium profile s(ε1, ε2), player 3 receives a payoff that is strictly

less than her mixed Nash equilibrium payoff. Therefore, in the repeated game,

she is willing to conform to a play of the pure action profile (RH1, H2, L3) if

it is followed by sufficiently many plays of the unique stage-game mixed Nash

equilibrium s∗ and deviations by player 3 are punished by switching each s∗ to

s(ε1, ε2). As players 1 and 2 play best responses at the profile (RH1, H2, L3),

the above described path and the associated mechanism constitute a subgame

perfect equilibrium of the finitely repeated game. At that equilibrium, player

1 (as well as player 2) receives an average payoff that is strictly greater than

her expected payoff at s∗. Thus, the behavior of players 1 and 2 can also

credibly be leveraged near the end of the finitely repeated game. This allows

to approximate collusive payoffs via subgame perfect equilibrium strategies

of the finitely repeated game. For instance the Pareto superior payoff vector

(2, 2, 2) can be approximated by the following subgame perfect equilibrium

strategy of the finitely repeated game.

1. For any t ∈ {0, . . . T1}, play s1 = (LH1, H2, L3) at time 2t and play

s2 = (RL1, L2, L3) at time 2t+ 1.

2. For any t ∈ {2T1 + 2, . . . , 2T1 + 3 + d 2
ε1
e}, play s∗.

3. If any player deviates, play s(ε1, ε2) till the end of the game.
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1.4. A THIRD EXAMPLE: THE BENEFIT OF THE AMBIGUITY

As we observe in this example, when the classic model of finitely repeated

games where players are allowed to employ only pure and mixed actions fail

to explain the emergence of cooperation, allowing players to be objectively

imprecise about the probability distribution they intend to used to issue their

actions in each round of the finitely repeated game can allow to sustain coop-

eration. This observation still holds if players are allowed to used a relatively

small level of ambiguity(that is if the upper bound of the level of imprecision of

each player approaches zero). This is counter-intuitive as the set of stage-game

actions with zero noises equals the set of mixed actions and, as in our exam-

ple, the classic models of finitely repeated game with mixed actions predict no

cooperation at all.
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Chapter 2

A complete folk theorem for

finitely repeated games

Abstract: I analyze the set of pure strategy subgame perfect Nash equilibria

of any finitely repeated game with complete information and perfect monitor-

ing. The main result is a complete characterization of the limit set, as the time

horizon increases, of the set of pure strategy subgame perfect Nash equilibrium

payoff vectors of the finitely repeated game. The same method can be used

to fully characterize the limit set of the set of pure strategy Nash equilibrium

payoff vectors of any the finitely repeated game.

Keywords: Finitely Repeated Games, Pure Strategy, Subgame Perfect Nash

Equilibrium, Limit Perfect Folk Theorem, Discount Factor.

JEL classification: C72, C73.

2.1 Introduction

This paper provides a full characterization of the limit set, as the time hori-

zon increases, of the set of pure strategy subgame perfect Nash equilibrium

payoff vectors of any finitely repeated game. The obtained characterization

is in terms of appropriate notions of feasible and individually rational payoff

vectors of the stage-game. These notions are based on Smith’s (1995) notion of

Nash decomposition and appropriately generalize the classic notion of feasible

payoff vectors as well as the notion of effective minimax payoff defined by Wen

(1994). The main theorem nests earlier results of Benoit and Krishna (1984)

17



2.1. INTRODUCTION

and Smith (1995). Using a similar method, I obtain a full characterization of

the limit set, as the time horizon increases, of the set of pure strategy Nash

equilibrium payoff vectors of any finitely repeated game. The obtained result

nests earlier results of Benoit and Krishna (1987).

Whether non-Nash outcomes of the stage-game can be sustained by means

of subgame perfect Nash equilibria of the finitely repeated game depends on

whether players can be incentivized to abandon their short term interests and

to follow some collusive paths that have greater long-run average payoffs. There

are two extreme cases. On the one hand, in any finite repetition of a stage-

game that has a unique Nash equilibrium payoff vector such as the prisoners’

dilemma, only the stage-game Nash equilibrium payoff vector is sustainable by

subgame perfect Nash equilibria of finite repetitions of that stage-game. The

underlying reason is that in the last round of the finitely repeated game, play-

ers can agree only on Nash equilibria of the stage-game as no future retaliation

is possible. Backwardly, the same argument works at each round of the finitely

repeated game since each player has a unique continuation payoff for the up-

coming rounds. On the other hand, for stage-games in which all players receive

different Nash equilibrium payoffs such as the battle of sexes, the limit perfect

folk theorem holds: Any feasible and individually rational payoff vector of the

stage-game is achievable as the limit payoff vector of a sequence of subgame

perfect Nash equilibria of the finitely repeated game as the time horizon goes

to infinity.

Benoit and Krishna (1984) established that for the limit perfect folk the-

orem to hold, it is sufficient that the dimension of the set of feasible payoff

vectors of the stage-game equals the number of players and that each player

receives distinct payoffs at Nash equilibria of the stage-game.1 Smith (1995)

provided a weaker, necessary and sufficient condition for the limit perfect folk

theorem to hold. Smith (1995) showed that it is necessary and sufficient that

the Nash decomposition of the stage-game is complete; as I explain below. The

distinct Nash payoffs condition and the full dimensionality of the set of feasible

payoff vectors as in Benoit and Krishna (1984) or the complete Nash decom-

position of Smith (1995) allow us to construct credible punishment schemes

1Fudenberg and Maskin (1986) introduced the notion of full dimensionality of the set
of feasible payoff vectors and used it to provide a sufficient condition for the perfect folk
theorem for infinitely repeated games.
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2.1. INTRODUCTION

and to (recursively) leverage the behavior of any player near the end of the

game. These are essential to generate a limit perfect folk theorem. In the case

that the stage-game admits a unique Nash equilibrium payoff vector, Benoit

and Krishna (1984) demonstrated that the set of subgame perfect Nash equi-

librium payoff vectors of the finitely repeated game is reduced to the unique

stage-game Nash equilibrium payoff vector.

A part of the puzzle remains unresolved. Namely, for a stage-game that

does not admit a complete Nash decomposition, what is the exact range of

payoff vectors that are achievable as the limit payoff vector of a sequence of

subgame perfect Nash equilibria of finite repetitions of that stage-game?

The Nash decomposition of a normal form game is a strictly increasing se-

quence of non-empty groups of players. Players of the first group are those

who receive at least two distinct Nash equilibrium payoffs in the stage-game.

The second group of players of the Nash decomposition, if any, contains each

player of the first group as well as some new players. New players are those

who receive at least two distinct Nash equilibrium payoffs in the new game

that is obtained from the stage-game by setting the utility function of each

player of the first group equal to a constant. This idea can be iterated. After

a finite number of iterations, the player set no longer changes. The Nash de-

composition is complete if its last element equals the whole set of players.

If the stage-game has an incomplete Nash decomposition, then the set of

players naturally breaks up into two blocks where the first block contains all

the players whose behavior can recursively be leveraged near the end of the

finitely repeated game. In contrast, it is not possible to control short run incen-

tives of players of the second block. Therefore, each player of the second block

has to play a stage-game pure best response at any profile that occurs on a

pure strategy subgame perfect Nash equilibrium play path. Stage-game action

profiles eligible for pure strategy subgame perfect Nash equilibrium play paths

of the finitely repeated game are therefore exactly the stage-game pure Nash

equilibria of what one could call the effective one shot game, the game obtained

from the initial stage-game by setting the utility function of each player of the

first block equal to a constant.

This restriction of the set of eligible actions for pure strategy subgame
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perfect Nash equilibrium play paths has two main implications. Firstly, for

a feasible payoff vector to be approachable by pure strategy subgame perfect

Nash equilibria of the finitely repeated game, it has to be in the convex hull of

the set of Nash equilibrium payoff vectors of the effective one shot game. I in-

troduce the concept of a recursively feasible payoff vector. I call a payoff vector

recursively feasible if it belongs to the convex hull of the set of payoff vectors

to profile of actions that are Nash equilibria of the effective one shot game.

Secondly, as subgame perfect Nash equilibria are protected against unilateral

deviations even off equilibrium paths, any player of the second block has to be

at her best response at any action profile occurring on a credible punishment

path. Therefore, only pure Nash equilibria of the effective one shot game are

eligible for credible punishment paths in any finite repetition of the original

stage-game. Consequently, a player of the first block can guarantee herself a

payoff that is strictly greater than her effective minimax payoff. I call this

payoff the recursive effective minimax payoff.

The main finding of this paper says that, as the time horizon increases, the

set of payoff vectors of pure strategy subgame perfect Nash equilibria of the

finitely repeated game converges to the set of recursively feasible payoff vectors

that dominate the recursive effective minimax payoff vector.

The paper proceeds as follows. In Section 2 I introduce the model and the

definitions. Section 3 states the main finding of the paper and sketches the

proof. In Section 4, I discuss some extensions and Section 5 concludes the

paper. Proofs are provided in the Appendices.

2.2 Model and definitions

2.2.1 The Stage-game

Let G = (N,A = ×i∈NAi, u = (ui)i∈N) be a stage-game where the set

of players N = {1, ..., n} is finite and where for all player i ∈ N the set Ai

of actions of player i is compact. Given player i ∈ N and an action pro-

file a = (a1, ..., an) ∈ A, let ui(a) denote the stage-game utility of player i

given the action profile a. Given an action profile a ∈ A, i ∈ N a player,

and a′i ∈ Ai an action of player i, let (a′i, a−i) denote the action profile in

which all players except player i choose the same action as in a, while player i
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chooses a′i. A stage-game pure best response of player i to the action profile a

is an action bi(a) ∈ Ai that maximizes the stage-game payoff of player i given

that the choice of other players is given by a−i. An action profile a ∈ A is a

pure Nash equilibrium of the stage-game G (denoted by a ∈ Nash(G))

if ui(a
′
i, a−i) ≤ ui(a) for all player i ∈ N and all action a′i ∈ Ai.

Let γ be a real number that is strictly greater than any payoff a player might

receive in the stage-gameG.2 A player is said to have to have distinct pure Nash

payoffs in the stage-game if there exist two pure Nash equilibria of the stage-

game in which this player receives different payoffs. Let τ(G) = (N,A, (u′i)i∈N)

be the normal form game where the utility function of player i is defined by

u′i =

{
γ if i has distinct Nash payoffs in G

ui otherwise
.

Let G0 := G and Gl+1 := τ(Gl) for all l ≥ 0. For all l ≥ 0, let Nl be the

set of players with a utility function that is constant to γ in the game Gl. As

N is finite, there is an h ∈ [0,+∞) such that Nl+1 = Nl for all l ≥ h. Let

Ã = Nash(Gh) be the set of pure Nash equilibria of the game Gh.

Definition 1 The set of recursively feasible payoff vectors of the game

G is defined as the convex hull Conv[u(Ã)] of the set u(Ã) = {u(a) | a ∈ Ã}.

Let ∼ be the equivalence relation defined on the set of players as follows:

Player i is equivalent to j (denoted by i ∼ j) if there exists αij > 0 and βij ∈ R
such that for all a ∈ Ã, we have ui(a) = αij · uj(a) + βij. For all i ∈ N , let

J (i) be the equivalence class of player i and let

µ̃i = mina∈Ã maxj∈J (i) maxa′j∈Aj

[
αij · uj(a′j, a−j) + βij

]
and µ̃ = (µ̃1, · · · , µ̃n).

If the stage-game G does not have any pure Nash equilibrium, then the set

of pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game is empty. If the stage-game G admits at least one pure Nash

equilibrium, then Ã is non-empty and µ̃ is well defined.

2As the set A of action profiles is compact and the utility function u is continuous on
A, the set u(A) = {u(a) | a ∈ A} is compact and therefore bounded. This guarantee the
existence of γ.
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Definition 2 The payoff µ̃i is the recursive effective minimax of player

i in the stage-game G.

Call a payoff vector recursively individually rational if it dominates the recur-

sive effective minimax payoff vector µ̃. Let Ĩ = {x = (x1, . . . , xn) ∈ R | xi ≥
µ̃i for all i ∈ N} be the set of recursively individually rational payoff vectors.

2.2.2 The Finitely Repeated Game

Let G be the stage-game. Given T > 0, let G(T ) denote the T−repeated

game obtained by repeating the stage-game T times. A pure strategy of player

i in the repeated game G(T ) is a contingent plan that provides for each history

the action chosen by player i given this history. That is, a strategy is a map σi :⋃T
t=1A

t−1 → Ai where A0 contains only the empty history. The strategy profile

σ = (σ1, ..., σn) of G(T ) generates a play path π(σ) = [π1(σ), ..., πT (σ)] ∈ AT

and player i ∈ N receives a sequence (ui(πt(σ))1≤t≤T of payoffs. The prefer-

ences of player i ∈ N among strategy profiles are represented by the average

utility uTi (σ) = 1
T

∑T
t=1 ui[πt(σ)].

A strategy profile σ = (σ1, ..., σn) is a pure strategy Nash equilibrium

of G(T ) if uTi (σ′i, σ−i) ≤ uTi (σ) for all i ∈ N and for all pure strategies σ′i of

player i.

A strategy profile σ = (σ1, ..., σn) is a pure strategy subgame per-

fect Nash equilibrium of G(T ) if given any t ∈ {1, ..., T} and any history

ht ∈ At−1, the restriction σ|ht of σ to the history ht is a Nash equilibrium of

the finitely repeated game G(T − t+ 1).

Let d be the Euclidean distance of Rn, A and B be two closed and bounded

non-empty subsets of the metric space (Rn, d).3 The Hausdorff distance (based

on d) between A and B is given by

dH(A,B) = max
{

supx∈A d(x,B), supy∈B d(y, A)
}
,

where d(x, Y ) = infy∈Y d(x, y).

3The choice of the euclidean distance is without loss of generality as all distances derived
from norms are equivalent in finite dimension.
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For any T > 0, let E(T ) be the set of subgame perfect Nash equilibrium

payoff vectors of G(T ). Let E be such that the Hausdorff distance between

E(T ) and E goes to 0 as T goes to infinity. The set E is the Hausdorff limit

of the set of subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game. As I show later in the Appendix 1, the limit set E exists and

is unique.

2.3 Main result

Theorem 1 Let G be a normal form stage-game with a finite number of play-

ers and a compact set of action profiles. As the time horizon increases, the set

of pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game converges (in the Hausdorff sense) to the set of recursively fea-

sible and recursively individually rational payoff vectors.

The proof of Theorem 1 is provided in the Appendix 1. It consists of four steps

that I describe below.

First step. Using the Hausdorff distance, I show that the limiting set E is

well defined. This means that, as the time horizon increases, the set of subgame

perfect Nash equilibrium payoff vectors of the finitely repeated game converges.

The main ingredient of this proof is the conjunction lemma borrowed from

Benoit and Krishna (1984); see Lemma 2. The conjunction lemma says that, if

π and π are, respectively, subgame perfect Nash equilibrium play paths of G(T )

and G(T ), then the conjunction (π, π) is a subgame perfect Nash equilibrium

play path of G(T + T ).

Second step. I prove by induction on the time horizon that on every pure

strategy subgame perfect Nash equilibrium play path of a finite repetition of

the stage-game G, only action profiles in Ã are played. It follows that the set

of pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game is included in the set of recursively feasible payoff vectors, see

Lemma 6 and Corollary 1.

Third step. I show that for all T > 0, any pure strategy subgame perfect

Nash equilibrium payoff vector of the finitely repeated game G(T ) dominates

the recursive effective minimax payoff vector. This means that in any pure

strategy subgame perfect Nash equilibrium of the finitely repeated game G(T ),
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each player receives at least her recursive effective minimax payoff, see Lemma

7.

Fourth step. Given t > 0 and a recursively feasible payoff vector y that

dominates the recursive effective minimax payoff vector, I construct a sub-

game perfect Nash equilibrium payoff vector yt of the finitely repeated game

G(t) such that the sequence (yt)t≥1 converges to y. The family of equilibrium

strategies that I use to sustain a target play path is similar to those used by

Smith (1995), Fudenberg and Maskin (1986), Abreu et al. (1994) and Goss-

ner (1995). The challenge here is to independently motivate each player of

the block Nh to be an effective punisher during a punishment phase. Indeed,

as some players of the block Nh might have equivalent utility functions, the

payoff asymmetry lemma of Abreu et al. (1994) does not generate a suitable

reward payoff family. To overcome this difficulty, I make use of a more powerful

lemma, Lemma 9, which guarantees the existence of a multi-level reward path

function. The following five phases briefly describe the above later family of

strategy profiles.

The first phase (Phase P0) of the considered strategy consists to repeatedly

follow a target play path πy that has an average payoff equal to y. The second

phase [Phase P(i)] is a punishment phase and prescribes a way to punish a

player, say i, if she belongs to the block Nh and is the only one who deviated

from the first phase. During this phase, each player of the block Nh\J (i) can

play whatever pure action she wants while players of the block J (i)∪ (N\Nh)

are required to play according to a profile m̃i.4 The third phase serves as a

compensation for players of the equivalence class J (i). Indeed, those players

might receive strictly less than their recursive effective minimax payoff in each

period of the phase P(i). The fourth phase is a transition. During the fifth

phase, players of the block Nh are rewarded. The reward level of each player

depends on whether she was effective punisher during the last punishment

phase or not. It turns out that an utility maximizing player will find it strictly

dominant to be an effective punisher during the phase P(i).

4At the profile of actions m̃i, player i does not have to be at a pure best response. If she
plays a pure best response to m̃i, she receives at least her stage-game pure minimax payoff
but no more than her stage-game recursive effective minimax payoff.
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2.4 Discussion and extension

2.4.1 Case of the Nash solution

Theorem 1 provides a complete characterization of the limit set of the set of

pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game. In this section, I provide similar result for the set of pure

strategy Nash equilibrium payoff vectors of the finitely repeated game.

I find convenient to introduce few notations.

Let G = (N,A = ×i∈NAi, u = (ui)i∈N) be a compact normal form game.

For all player i, let µi = mina∈Amaxai∈Ai
ui(ai, a−i) be the minimax payoff of

player i and µ = (µ1, ..., µn) be the minimax payoff vector of the game G.

Let τ ∗(G) = (N,A, (u∗i )i∈N) be the normal form game where the utility

function u∗i of player i ∈ N is the same as in the original game G, unless the

original game G has a pure Nash equilibrium in which player i has a payoff

that is strictly greater than her minimax payoff µi. In that case, her utility

function u∗i equals the constant γ.

Let G∗0 := G and G∗l+1 := τ ∗(G∗l) for all l ≥ 0. For all l ≥ 0, let N∗l be

the set of players with a utility function that is constant to γ in the game G∗l.

As N is finite, there is an h ∈ [0,+∞) such that N∗l+1 = N∗l for all l ≥ h. Let

A∗ = Nash(G∗h) be the set of pure Nash equilibria of the game G∗h.

Definition 3 The set of Nash-feasible payoff vectors of the game G is

defined as the convex hull Conv[u(A∗)] of the set u(A∗) = {u(a) | a ∈ A∗}.

Recall that a payoff vector is called individually rational if it dominates the

minimax payoff vector of the stage-game.

Theorem 2 Let G be a normal form stage-game with a finite number of play-

ers and a compact set of action profiles. As the time horizon increases, the set

of pure strategy Nash equilibrium payoff vectors of the finitely repeated game

converges (in the Hausdorff sense) to the set of Nash-feasible and individually

rational payoff vectors.

The proof of Theorem 2 is provided in Appendix 2.
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2.4.2 Alternative statement of Theorem 1 and Theorem

2

Theorem 1 and Theorem 2 respectively provide the limit set of the set of pure

strategy subgame perfect Nash equilibrium payoff vectors of any finitely re-

peated game and the limit set of the set of pure strategy Nash equilibrium

payoff vectors of any finitely repeated game. Theorem 1 and Theorem 2 can

equivalently be stated as necessary and sufficient conditions on a feasible payoff

vector of any given stage-game to be approachable by equilibrium strategies of

finite repetitions of that stage-game.

Recall that a payoff vector is called feasible if it belongs to the convex hull

of the set of stage-game payoff vectors u(A) = {u(a) | a ∈ A}.

Definition 4 A feasible payoff vector x is approachable by means of pure strat-

egy subgame perfect Nash equilibria of the finitely repeated game if for all ε > 0

there exists an integer Tε such that for all T > Tε, the finitely repeated game

G(T ) has a pure strategy subgame perfect Nash equilibrium whose average pay-

off vector is within ε of x.

Definition 5 A feasible payoff vector x is approachable by means of pure strat-

egy Nash equilibria of the finitely repeated game if for all ε > 0 there exists an

integer Tε such that for all T > Tε, the finitely repeated game G(T ) has a pure

strategy Nash equilibrium whose average payoff vector is within ε of x.

Theorem 3 Let G be a normal form stage-game with a finite number of play-

ers and a compact set of action profiles. Let x be a feasible payoff vector. The

following statements are equivalent.

1 The payoff vector x is recursively feasible and recursively individually ratio-

nal.

2 The payoff vector x is approachable by means of pure strategy subgame perfect

Nash equilibria of the finitely repeated game.

Theorem 4 Let G be a normal form stage-game with a finite number of play-

ers and a compact set of action profiles. Let x be a feasible payoff vector. The

following statements are equivalent.

1 The payoff vector x is Nash-feasible and individually rational.
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2 The payoff vector x is approachable by means of pure strategy Nash equilibria

of the finitely repeated game.

The equivalence of Theorem 1 (respectively Theorem 2) and Theorem 3

(respectively Theorem 4) follow from Lemma 5 (respectively Lemma 13).

2.4.3 Case with discounting

Theorem 1 and Theorem 2 assume no discounting. This assumption is without

loss of generality. The underlying reason is that a payoff continuation lemma for

finitely repeated game with discounting holds. This lemma allows to approach

any feasible payoff vector by means of deterministic paths in the case that there

exists a discount factor. I show in the Appendix 3 how to make use this payoff

continuation lemma to prove the effective folk theorem for finitely repeated

games with discounting.

Lemma 1 (Payoff continuation lemma for finitely repeated game) For

any ε > 0, there exists k > 0 and δ < 1 such that for any feasible payoff vector

x, there exists a deterministic sequence of profile of stage-game actions {aτ}kτ=1

whose discounted average payoff is within ε of x for all discount factor δ ≥ δ.

This lemma establishes that for any positive ε, there exists an uniform k > 0

and δ such that any feasible payoff is within ε of the discounted average of a

deterministic path of length k for any discount factor greater than or equal to δ.

2.4.4 Relation with the literature

Finitely repeated games with complete information and perfect monitoring has

extensively been studied. This paper provides a generalization of earlier results

by Benoit and Krishna (1984), Benoit and Krishna (1987), Smith (1995) and

González-Dı́az (2006).

The sequence of subset (Nl)l≥0 defined in Section 2.2.1 induces a Nash de-

composition 0  N1  · · ·  Nh. The Nash decomposition is called complete if

Nh = N . Smith (1995) proved that having a complete Nash decomposition is

a necessary and sufficient condition for the limit perfect folk theorem to hold.

Under a complete Nash decomposition, the set of recursively feasible payoff
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vectors equals the classic set of feasible payoff vectors and the recursive effec-

tive minimax payoff vector equals the classic effective minimax payoff vector.

In that case, Theorem 3 says that any feasible payoff vector that dominates

the effective minimax payoff vector is approachable by means of pure strategy

subgame perfect Nash equilibria of the finitely repeated game. That is the

message of the limit perfect folk theorem.

Benoit and Krishna (1984) showed that, if the dimension of the set of fea-

sible payoff vectors of the stage-game equals the number of players and each

player receives at least two distinct payoffs at pure Nash equilibria of the stage-

game, then the limit perfect folk theorem holds. This result is a particular case

of Theorem 3. Indeed, under the distinct stage-game Nash equilibrium pay-

offs condition of Benoit and Krishna (1984), the Nash decomposition of the

stage-game equals ∅  Nh = N which is complete and therefore the set of

the recursively feasible payoff vectors equals the classic set of the feasible pay-

off vectors and the recursive effective minimax payoff vector equals the classic

effective minimax payoff vector. Furthermore, under the full dimensionality

condition, the effective minimax payoff vector equals the minimax payoff vec-

tor.

Benoit and Krishna (1987) provided a sufficient condition under which any

feasible and individually rational payoff vector can be approximated by the av-

erage payoff in a Nash equilibrium of the finitely repeated game. The authors

showed that it is sufficient that any player receives in at least one stage-game

Nash equilibrium a payoff that is strictly greater than her minimax payoff

vector. Basically, under this condition, the decomposition ∅  N∗1 = N is

complete and the set of Nash-feasible payoff vectors equals the set of feasible

payoff vector. In such a case, Theorem 4 says that any feasible and individually

rational payoff vector of the stage-game can be approached by means of pure

strategy Nash equilibria of the finitely repeated game.

González-Dı́az (2006) studied the set of Nash equilibrium payoff vectors of a

finitely repeated game. His analysis however, differs from that of Section 2.4.1

of this paper . Indeed, González-Dı́az (2006) restricted attention to a particular

set of payoff vectors –the set of payoff vectors that belong to the convex hull

of the set of payoff vectors to profile of pure actions of the stage-game that

dominate the pure minimax payoff vector of the stage-game–. This restriction
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is not without loss of generality, since the set of Nash equilibrium payoff vectors

of the finitely repeated game might converge to a higher-dimension upper set.

Theorem 2 and Theorem 4 of this paper provide a full characterization of the

whole limit set of the set of pure strategy Nash equilibrium payoffs of the

finitely repeated game.

2.5 Conclusion

This paper analyzed the set of pure strategy subgame perfect Nash equilib-

rium payoff vectors of the finitely repeated games with complete information.

The main finding is an effective folk theorem. It is a complete characterization

of the limit set, as the time horizon increases, of the set of pure strategy sub-

game perfect Nash equilibrium payoff vectors of the finitely repeated game. As

the time horizon increases, the limiting set always exists, is closed, convex and

can be strictly in between the convex hull of the set of stage-game Nash equi-

librium payoff vectors and the classic set of feasible and individually rational

payoff vectors. Our finding exhibits the exact range of cooperative payoffs that

players can achieve in finite time horizon. One might wonder if similar results

holds in the case that players can employ unobservable mixed strategies or in

the case that equilibrium strategies are are protected against renegotiation.
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2.6 Appendix 1: Proof of the Complete per-

fect folk theorem

2.6.1 On the existence of the limit set of the set of pure

strategy subgame perfect Nash equilibrium payoff

vectors of the finitely repeated game

In this section, I show that the limit set of the set of pure strategy subgame

perfect Nash equilibrium payoff vectors of any finitely repeated game is well

defined. Precisely, I prove that for any stage-game, the set of feasible payoff

vectors that are approachable by means of pure strategy subgame perfect Nash

equilibria of the finitely repeated game equals the limit set E. As corollary,

I obtain that the limit set E is a compact and convex subset of the set of

feasible payoff vectors of the stage-game. The main ingredient of this proof

is the conjunction lemma established by Benoit and Krishna (1984) . The

conjunction lemma says that the conjunction of two subgame perfect Nash

equilibrium play paths is a subgame perfect Nash equilibrium play path of the

corresponding finitely repeated game. I state it below. Note that the convexity

and the compactness of E considerably simplify the proof of Theorems 1 and

3.

Lemma 2 (See Benoit and Krishna (1984) ) If π and π are two subgame

perfect Nash equilibrium play paths of G(T ) and G(T ) respectively, then the

conjunction (π, π) is a subgame perfect Nash equilibrium play path of G(T+T ).

Let G be a compact normal form game and let ASPNE(G) be the set of all

feasible payoff vectors of the stage-game G that are approachable by means of

pure strategy subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game (see Definition 4).

Lemma 3 The set ASPNE(G) is compact and convex.

Proof of Lemma 3.

The reader can check that ASPNE(G) is a closed subset of the set of feasible

payoff vectors which is compact. The set ASPNE(G) is therefore compact.

Since ASPNE(G) is closed, its convexity holds if z = 1
2
(x+y) ∈ ASPNE(G) for

all x, y ∈ ASPNE(G). Let x, y ∈ ASPNE(G) and let ε > 0. Choose T x0 and T y0
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from the Definition 4 such that for all T > max{T x0 , T
y
0 }, the finitely repeated

game G(T ) has two pure strategy subgame perfect Nash equilibria σx and σy

such that d(x, uT (σx)) < ε
5

and d(y, uT (σy)) < ε
5
. Let T > max{T x0 , T

y
0 }, σx

and σy be two pure strategy subgame perfect Nash equilibria of the game G(T )

such that d(x, uT (σx)) < ε
5

and d(y, uT (σy)) < ε
5
. Let π = (π(σx), π(σy)) be

the conjunction of the subgame perfect Nash equilibrium play paths π(σx) and

π(σy) generated by the strategies σx and σy respectively. Let a ∈ Nash(G) be

a pure Nash equilibrium of the stage-game G and π′ = (a, π(σx), π(σy)) be the

conjunction of the pure Nash equilibrium a and the play path π. From Lemma

2, π and π′ are respectively subgame perfect Nash equilibrium play paths of

G(2T ) and G(2t+ 1). In addition, d(z, u2T (π)) < 4ε
5

and

d(z, u2T+1(π′)) < d(z, u2T (π)) + d(u2T (π), u2T+1(π′)) <
4ε

5
+

2ρ

2T + 1

where ρ = 2 maxa∈A ‖u(a)‖∞. Consequently, for all T > 2 max{T x0 , T
y
0 ,

10ρ
ε
},

the finitely repeated game G(T ) has a pure strategy subgame perfect Nash

equilibrium whose average payoff is within ε of z. That is z ∈ ASPNE(G).

Lemma 4 For all T > 0, E(T ) ⊆ ASPNE(G).

Proof of Lemma 4.

Let σ be a pure strategy subgame perfect Nash equilibrium of the finitely

repeated game G(T ) and π(σ) = (π1(σ), · · · , πT (σ)) be the play path generated

by σ. Let x = uT (σ). For all s ≥ 0 and t ∈ {2, · · · , T}, let

π(s, t) = (πt(σ), · · · , πT (σ), π(σ), · · · , π(σ)︸ ︷︷ ︸
s times

)

be a play path of G((s+ 1)T − t+ 1). From Lemma 2, π(s, l) is a pure strat-

egy subgame perfect Nash equilibrium play path of the finitely repeated game

G((s+1)T−t+1). Moreover, the sequence of payoff vectors
(
u(s+1)T−t+1[π(s, l)]

)
s≥0

converges to x.

Lemma 5 As the time horizon increases, the set of pure strategy subgame

perfect Nash equilibrium payoff vectors of the finitely repeated game converges

to the set ASPNE(G).5

Proof of Lemma 5. Let ε > 0. We search for Tε > 0 such that for all

T > Tε, dH(ASPNE(G), E(T )) < ε. Let {B(xl, ε
2
) | xl ∈ P, l = 1, ..., L} be

5The convergence in this lemma uses the Hausdorff distance. See Section 2.2.2.
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a finite covering of ASPNE(G).6 For all l = 1, ..., L take T l0 given by the def-

inition of “xl ∈ ASPNE(G)” with ε
2
.7 Pose T0 = maxl≤L T

l
0. Let T > T0 and

let x ∈ ASPNE(G). Let xl0 ∈ ASPNE(G) be such that x ∈ B(xl0 , ε
2
) and let

y ∈ E(T ) be such that d(xl0 , y) < ε
2
. We have d(x, y) ≤ d(x, xl0)+d(xl0 , y) < ε.

This implies that d(x,E(T )) < ε. Consequently, supx∈ASNPE(G) d(x,E(T )) ≤ ε.

Furthermore, from Lemma 4, d(y,ASPNE(G)) = 0 for all y ∈ E(T ). That

is supy∈E(T ) d(y,ASPNE(G)) = 0. It follows that dH(ASPNE(G), E(T )) =

supx∈P d(x,E(T )) ≤ ε for all T > T0. Take Tε = T0.

2.6.2 The recursive feasibility of pure strategy subgame

perfect Nash equilibrium payoff vectors of the finitely

repeated game

Lemma 6 Let G be a compact normal form game, let T > 0, and let σ

be a pure strategy subgame perfect Nash equilibrium of G(T ). The support

Supp(π(σ)) = {π1(σ) . . . πT (σ)} of the subgame perfect Nash equilibrium play

path π(σ) = (π1(σ) . . . πT (σ)) is included in the set Nash(Gh) of pure Nash

equilibrium profiles of the effective game Gh.

Proof of Lemma 6.

If Nh = N, then Nash(Gh) = A and Supp(π(σ)) ⊆ Nash(Gh). Now assume

that N\Nh 6= ∅. Let’s proceed by induction on the time horizon T .

For T = 1, the pure strategy subgame perfect Nash equilibrium σ is a pure Nash

equilibrium of the stage-game G. By construction, the sequence (Nash(Gl))l≥0

is increasing and therefore Nash(G) = Nash(G0) ⊆ Nash(Gh).

Suppose that T > 1 and that the support of any subgame perfect Nash equilib-

rium play path of the finitely repeated game G(t) with t ∈ {1, . . . , T −1} is in-

cluded in the set Nash(Gh) and let’s show that {π1(σ), . . . , πT (σ)} ⊆ Nash(Gh).

The restriction σ|π1(σ) of σ to the history π1(σ) is a pure strategy subgame

perfect Nash equilibrium of the game G(T − 1) and the induction hypothesis

implies that the support {π2(σ) . . . πT (σ)} of the play path π(σ|π1(σ) ) generated

by the strategy profile σ|π1(σ) is included in Nash(Gh). It remains to show that

π1(σ) ∈ Nash(Gh).

At this point I proceed by contradiction. Assume that π1(σ) /∈ Nash(Gh).

Then, in the game Gh, there exists a player i ∈ N who has a strict incentive

6B(x, ε) = {y ∈ Rn / d(x, y) < ε}
7See Definition 4.
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to deviate from the pure action profile π1(σ). This player has to be in the

block N\Nh since any player of the block Nh has a constant utility function

in the game Gh. Let σ′i be a pure strategy one shot deviation of player i from

σ that consists in playing a stage-game pure best response bi[π1(σ)] to π1(σ)

in the first round of the finitely repeated game G(T ) and conforming to σi

from the second round on. At the pure strategy profile (σ′i, σ−i), player i re-

ceives ui(π
1) + e (with e > 0) in the first round. Let h1 = (bi(π1(σ)), π1(σ)−i)

be the observed history after this first round and σ|h1 be the restriction of

σ to the history h1. We have (σ′i, σ−i)|h1 = σ|h1 and σ|h1 is a pure strategy

subgame perfect Nash equilibrium of G(T − 1). By induction hypothesis, the

support of the play path generated by σ|h1 is included in Nash(Gh). There-

fore, at the profile (σ′i, σ−i) player i receives the sequence of stage-game payoffs

{ui(π1) + e, ni, . . . , ni} where ni is her unique stage-game pure Nash equilib-

rium payoff.8 Since player i receives {ui(π1(σ)), ni, ...ni} at the strategy profile

σ, we have uTi (σ′i, σ−i) > uTi (σ). This contradicts the fact that σ is a pure

strategy subgame perfect Nash equilibrium of G(T ) and concludes the proof.

Let F̃ be the set of recursively feasible payoff vectors. We have the following

corollary.

Corollary 1 Let G be a compact normal form game, let T > 0, and let σ be

a pure strategy subgame perfect Nash equilibrium of G(T ). Then the average

payoff vector uT (σ) belongs to the set F̃ .

2.6.3 Necessity of the recursive effective minimax payoff

for the complete perfect folk theorem

Wen (1994) shows that any subgame perfect Nash equilibrium payoff vec-

tor of the infinitely repeated game weakly dominates the effective minimax

payoff vector. This domination also holds for finitely repeated games. The

following lemma provides a sharp upper bound. The lemma says that, any

pure strategy subgame perfect Nash equilibrium payoff vector of the finitely

repeated game weakly dominates the recursive effective minimax payoff vector.

8Recall that each player of the block N\Nh has a unique pure Nash equilibrium payoff
in the game Gh. This payoff equals her unique pure Nash equilibrium payoff in the original
game G.
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Lemma 7 Let G be a compact normal form game, let T ≥ 1, and let σ be

a pure strategy subgame perfect Nash equilibrium of the finitely repeated game

G(T ). Then the average payoff vector uT (σ) dominates the recursive effective

minimax payoff vector of the stage-game.

I find convenient to recall the definition of the recursive effective minimax

payoff before proceeding to the proof of Lemma 7.

Let ∼ be the equivalence relation defined on the set of players as follows:

Player i is equivalent to j (denoted by i ∼ j) if there exists αij > 0 and βij ∈ R
such that for all a ∈ Ã, we have ui(a) = αij · uj(a) + βij. For all i ∈ N , let

J (i) be the equivalence class of player i and let

µ̃i = mina∈Ã maxj∈J (i) maxa′j∈Aj

[
αij · uj(a′j, a−j) + βij

]
and µ̃ = (µ̃1, . . . , µ̃n). The payoff µ̃i is the recursive effective minimax

of player i in the stage-game G and the n-tuple µ̃ is the recursive effective

minimax payoff vector of the stage-game G.

Proof of Lemma 7.

I proceed by induction on the time horizon T .

At T = 1, pure strategy subgame perfect Nash equilibria of the game G(T ) are

pure Nash equilibria of the stage-game G and uT (σ) dominates µ̃.9

Assume that T > 1 and that the average payoff vector to any pure strat-

egy subgame perfect Nash equilibrium of the finitely repeated game G(t) with

0 < t < T dominates the recursive effective minimax payoff vector µ̃. Let us

show that the payoff vector uT (σ) dominates µ̃.

Let π1(σ) be the action profile played in the first round of the game G(T )

according to σ. The restriction σ|π1(σ) of the strategy σ to the history π1(σ)

is a pure strategy subgame perfect Nash equilibrium of the finitely repeated

game G(T − 1) and by induction hypothesis, we have that the payoff vec-

tor uT−1(σ|π1(σ) ) dominates µ̃. Suppose now that uT (σ) does not dominates

µ̃. Then there exists a player i ∈ N such that uTi (σ) < µ̃i. It follows

that ui[π1(σ)] < µ̃i since uTi (σ) is a convex combination of ui[π1(σ)] and

9Indeed, as each pure Nash equilibrium of the stage-game G is a pure Nash equilibrium of
the game Gh and each player plays a best response in Nash equilibrium, the Nash equilibrium
payoff of any player is greater than or equal to her recursive effective minimax payoff. It
follows that any pure Nash equilibrium payoff vector weakly dominates the recursive effective
minimax payoff vector.

34



2.6. APPENDIX 1: PROOF OF THE COMPLETE PERFECT FOLK
THEOREM

uT−1
i (σ|π1(σ) ). Moreover, as π1(σ) ∈ Nash(Gh), we have uj[π1(σ)] < µ̃j for

all j ∈ J (i). From the definition of µ̃, there exists a player i0 ∈ J (i) and a

pure action ai0 ∈ Ai0 of player i0 such that ui0 [ai0 , π1(σ)−i0 ] ≥ µ̃i0 . Consider

the pure strategy one shot deviation σ′i0 of player i0 from σ in which she plays

ai0 in the first round of the finitely repeated game G(T ) and conforms to her

strategy σi0 from the second round on. We have

uTi0(σ′i0 , σ−i0) = 1
T
ui0 [ai0 , π1(σ)−i0 ] + T−1

T
uT−1
i0

(σ|(ai0 ,π1(σ)−i0
) )

which is greater than or equal to µ̃i0 . Indeed, since σ|(ai0 ,π1(σ)−i0
) is a pure strat-

egy subgame perfect Nash equilibrium play path of the finitely repeated game

G(T − 1), the induction hypothesis implies that u(σ|(ai0 ,π1(σ)−i0
) ) dominates µ̃.

2.6.4 Sufficiency of the recursive feasibility and the re-

cursive effective individual rationality

From Corollary 1 and Lemma 7, the set of pure strategy subgame perfect Nash

equilibrium payoff vectors of any finite repetition of the stage-game G is in-

cluded in the set of recursively feasible and recursively individually rational

payoff vectors. To complete the proofs of Theorem 1, it is left to show that any

recursively feasible and recursively individually rational payoff vector belongs

to the limit set E. In what follows, I prove that any recursively feasible and

recursively individually rational payoff vector is approachable by means of pure

strategy subgame perfect Nash equilibria of the finitely repeated game. This

will conclude the proof of Theorem 1 as well as the proof of Theorem 3, see

Lemma 5. I proceed with 3 lemmata. The message of the first lemma is that

in the finitely repeated game, players of the block Nh receive distinct payoffs

at pure strategy subgame perfect Nash equilibria.

The sequence of subsets (Nl)l≥0 defined in Section 2.2.1 induces a separa-

tion of the set of players into two blocks Nh and N\Nh. As a corollary of

Lemma 6, each player of the block N\Nh (if any) receives her unique stage-

game pure Nash equilibrium payoff at each round of a pure strategy subgame

perfect Nash equilibrium of any finite repetition of the stage-game G. The un-

derlying reason is that there is no way to credibly leverage the behavior of any

player of the latter block near the end of the game. The next lemma says that

each player of the block Nh receives distinct payoffs at pure strategy subgame
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perfect Nash equilibria of the finitely repeated game. The construction of this

lemma is inspired by Smith (1995).

Let G be a compact normal form game that has at least two distinct pure

Nash equilibrium payoff vectors. Let

∅ = N0  N1  ...  Nh

be the Nash decomposition of G.

Lemma 8 There exists T0 such that for all T ≥ T0, each player of Nh receives

at least two distinct payoffs at pure strategy subgame perfect Nash equilibria of

the finitely repeated game G(T ).

Proof of Lemma 8.

I prove that for all g ≤ h, there exists T0,g such that for all T ≥ T0,g, each

player of the block Ng receives distinct payoffs at pure strategy subgame perfect

Nash equilibria of G(T ). Obviously this property holds for g = 1 since each

player of the block N1 receives distinct payoffs at pure Nash equilibria of the

stage-game G. Let g ≥ 1 and assume that the property holds for g. For all

j ∈ Ng, let πj,g and πj,g be respectively the best and the worst pure strategy

subgame perfect Nash equilibrium play path of player j in the game G(T0,g).

Let ρ = 2 maxa∈A ‖u(a)‖∞ and ψ > 0 such that

−ρ+ ψ · T0,g ·
∑

j∈Ng
uTi (πj,g) > ψ |Ng| · T0,g · uTi (πi,g)

for all i ∈ Ng. Each player j ∈ Ng is willing to conform to any pure action

profile followed by ψ cycles (πi,g)i∈Ng if deviations by player j are punished by

switching each πi,g to πj,g. Let i0 ∈ Ng+1\Ng and let yi0,g and zi0,g the best

and respectively the worst pure strategy Nash equilibrium of player i0 in the

one shot game Gg. Player i0 receives distinct payoffs at pure strategy subgame

perfect Nash equilibrium play paths

πi0 =

yi0,g, (πi,g)i∈Ng , · · · , (πi,g)i∈Ng︸ ︷︷ ︸
ψtimes


and

πi0 =

zi0,g, (πi,g)i∈Ng , · · · , (πi,g)i∈Ng︸ ︷︷ ︸
ψtimes

.
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This guarantee the existence of T0,g+1 such that each player of the block

Ng+1\Ng receives distinct payoffs at pure strategy subgame perfect Nash equi-

libria of G(T0,g+1). Repeatedly appending the same stage-game pure Nash

equilibrium profile at each πi0 and πi0 , we obtain for each T ≥ T0,g+1 and

i0 ∈ Ng+1\Ng two pure strategy subgame perfect Nash equilibrium play paths

of G(T ) at which player i0 receives distinct payoffs. This concludes the proof

of the lemma.

The next lemma establishes the existence of a multi-level reward path func-

tion. In the case that the full dimensionality condition of Fudenberg and

Maskin (1986) or the non-equivalent utility (NEU) condition of Abreu et al.

(1994) does not hold, a multi-level reward path function can still be used to

independently control the incentives of players of the block Nh and motivate

them to be effective punishers during a punishment phase. This lemma also

allows to leverage the behavior of players of the block Nh near the end of the

game.

Lemma 9 Let ∅ = N0  N1  ...  Nh be the Nash decomposition of the

game G. Then there exists φ > 0 such that for all p ≥ 0 there exists rp > 0

and

θp : {0, 1}n ∪ {(−1, · · · ,−1)} → Arp := A× · · · × A

such that for all α ∈ {0, 1}n∪{(−1, · · · ,−1)}, θp(α) is a play path generated by

a pure strategy subgame perfect Nash equilibrium of the repeated game G(rp).

Furthermore, for all i ∈ Nh and α, α′ ∈ {0, 1}n, we have

u
rp
i [θp(1, α−i)]− urpi [θp(0, α−i)] ≥ φ, (2.1)

u
rp
i [θp(α)]− urpi [θp(−1, · · · ,−1)] ≥ φ (2.2)

and

|urpi [θp(α)]− urpi [θp(αJ (i)
, α′

N\J (i)
)]| < 1

2p
. (2.3)

Proof of Lemma 9. The set ASPNE(G) of feasible payoff vectors that are

approachable by means of pure strategy subgame perfect Nash equilibria of

finite repetitions of the stage-game G is non-empty and convex and therefore

has a relative interior point x, see Lemma 3. Let φ > 0 such that the relative
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ball B̃(x, 5φn) is included in ASPNE(G).10 For all α ∈ {−1, 0, 1}n and j ∈ Nh,

let

θj(α) = xj − φ|J (j)|+ 3φ
∑

j′∈J (j) α
′
j.

For all j /∈ Nh, let

θj(α) = xj.

I recall that if j /∈ Nh, then xj is the unique stage-game pure Nash equilibrium

payoff of player j. For all α ∈ {−1, 0, 1}n, let

θ(α) = (θ1(α), · · · , θn(α)).

For all α ∈ {0, 1}n and i ∈ Nh we have

θi(1, α−i)− θi(0, α−i) = 3φ;

θi(α)− θi(−1, · · · ,−1) ≥ 3φ

and

‖θ(α)− x‖ < 5nφ.

Furthermore, since players of the block Nh receive distinct payoffs at pure

strategy subgame perfect Nash equilibria of the finitely repeated game (see

Lemma 8), each of them also receives distinct payoffs within the set ASPNE(G)

(see Lemma 4). It follows that

θ(α) ∈ B̃(x, 5φn) ⊆ ASPNE(G).

For all p ≥ 0, let εp = 1
2

min{φ, 1
2p
}. For all α ∈ {0, 1}n ∪ {(−1, · · · ,−1)}, let

T0,α,p < ∞ and for all T ≥ T0,α,p, let σα,p be a pure strategy subgame perfect

Nash equilibrium of the repeated game G(T ) such that ‖uT (σα,p)−θ(α)‖ < εp.

Let rp = max{T0,α,p | α ∈ {0, 1}n ∪ {(−1, · · · ,−1)}}. For all α ∈ {0, 1}n ∪
{(−1, · · · ,−1)}, let θp(α) be the pure strategy subgame perfect Nash equilib-

rium play path generated by the pure strategy subgame perfect Nash equilib-

rium σα,p of the repeated game G(rp).

Lemma 10 Let G be a compact normal form game. We have F̃∩Ĩ ⊆ ASPNE(G).

10For simplicity and as ASPNE(G) is convex, one can take

B̃(y, 5φn) = {x ∈ ASPNE(G) | d(x, y) < 5φn}.
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Proof of Lemma 10.

Let G be a compact normal form game. If G admits no pure Nash equilibrium,

then F̃ = ∅ and F̃ ∩ Ĩ ⊆ ASPNE(G). If G admits a unique pure Nash equilib-

rium payoff vector x, then F̃ = {x} = ASPNE(G) and F̃ ∩ Ĩ ⊆ ASPNE(G).

Now suppose that G admits at least two distinct pure Nash equilibrium pay-

off vectors. Normalize the game such that the recursive effective minimax of

each player equals 0 and such that two equivalent players have the same utility

function on Ã. Consider

F1 = {1
p

∑
1≤l≤p u(al) | p > 0, al ∈ Ã ∀l ≤ p}

and

I1 = {x ∈ Rn | xi > 0 if i ∈ Nh and xi = 0 otherwise}.

It is immediate that the closure of F1 ∩ I1 is equal to the set F̃ ∩ Ĩ. From

Lemma 3, ASPNE(G) is closed. Therefore, it is enough to show that F1∩ I1 ⊆
ASPNE(G). Let

y = 1
k

∑
1≤l≤k u(al) ∈ F1 ∩ I1

and

πy = (a1, ..., ak).

For all i ∈ Nh, let

m̃i ∈ argmina∈Ã maxj∈J (i) maxa′i∈Ai
ui(a

′
i, a−i).

11

Obtain φ, r1 and θ1 with p = 1 from the Lemma 9. Let q1 > 0 and q2 > 0

such that

0 < q1ui(m̃
i) + q2r1u

r1
i [θ1(1, · · · , 1)] <

q1 + q2r1

2
yi (2.4)

and

− 2ρ+
q1

2
yi > 0 for all i ∈ Nh. (2.5)

Given q1, q2 and r1, choose r such that

− 2(q1 + q2r1)ρ+ rφ > 0. (2.6)

Given q1 q2, r1 and r, choose p0 > 0 such that

q2r1

2
yi −

r

2p0
> yi −

r

2p0
> 0 (2.7)

11Few comments on m̃i are provided in footnote 4.
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Apply the Lemma 9 to p0 and obtain rp0 and θp0 . Update q1 ← rp0q1; q2 ←
rp0q2r1; r ← rp0r. The parameters φ, θ1, q1, q2, r, r1 and θp0 are such that

0 < q1ui(m̃
i) + q2u

r1
i [θ1(1, · · · , 1)] <

q1 + q2

2
yi (2.8)

− 2(q1 + q2)ρ+ rφ > 0 (2.9)

− 2ρ+
q1 + q2

2
yi −

r

2p0
> 0 (2.10)

and

yi −
r

2p0
> 0 for all i ∈ Nh. (2.11)

Let

π̂s = (πy, ..., πy︸ ︷︷ ︸
s times

, θp0(1, · · · , 1)).

Assume that for all s ≥ 0 there exists σs a pure strategy subgame perfect

Nash equilibrium of the finitely repeated game G(sk + r) such that the play

path π(σs) generated by σs equals π̂s. Since the limit of usk+r(π̂s) as s goes

to infinity equals the payoff vector y and k is finite, there exists sε > 0 such

that for all T > sεk + r, the finitely repeated game G(T ) has a pure strategy

subgame perfect Nash equilibrium whose average payoff vector is within ε of

y. This will conclude the proof of Lemma 10.

Let s ≥ 0. Let us construct a pure strategy subgame perfect Nash equilib-

rium σs of the finitely repeated game G(sk + r) such that the play path π(σs)

generated by σs equals π̂s.

In the following, a deviation from a strategy profile of the finitely repeated

game G(sk + r) is called “late” if it occurs during the last q1 + q2 + r periods

of the game G(sk + r). In the other case the deviation is called “early”.

Set α = (1, · · · , 1) and consider the pure strategy profile σs described by the

following 5 phases.

P0 (Main play path): In this phase, players are required to play the (sk+ r−
t+ 1)th to last profile of actions of the path π̂s at time t, 1 ≤ t ≤ sk+ r. If player i ∈ Nh deviates early, start the Phase P(i);

if j ∈ Ng′\Ng′−1 deviates late, then start Phase LD.

Ignore any deviation by a player i /∈ Nh
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P(i) (Punish player i): Reorder the profile of actions in each upcoming cycle

of length k of the main play path according to player i′s preferences,

starting from her best profile.

During this phase, each player of the block J (i) ∪ (N\Nh) is required

to play as in the action profile m̃i while players of the block Nh\J (i)

can play whatever pure action they want. This phase last for q1 periods.

[If any player j ∈ J (i) deviates early, restart P(i) ; if player j ∈ J (i)

deviates late, start LD; Ignore any deviation by a player i /∈ Nh.]

At the end of this phase and for all j ∈ Nh\J (i), set αj = 0 if there is at

least one period of the punishment phase P(i) where player j played an

action different to m̃i
j. In the other case, set αj = 1. Go to phase SPE.

SPE (Compensation): Follow q2
r1

times a pure strategy SPNE of the game

G(r1) whose play path is θ1(1, · · · , 1).

Go to Phase P0

LD (Late deviation): Each player can play whatever action she wants till

period sk. At period sk, set Set α = (−1, · · · ,−1). Go to EG.

EG (End-game): Follow r
rp0

times a pure strategy subgame perfect Nash equi-

librium of the finitely repeated game G(rp0) that supports the equilibrium

play path θp0(α).

The strategy profile σs is a pure strategy subgame perfect Nash equilibrium

of the finitely repeated game G(sk + r). To see this, I show that parameters

φ, θ1, q1, q2, r, r1 and θp0 are chosen in such a way to deter any deviation

from the main play path as well as any deviation from the minimax phase.

I first show that a utility maximizing player j ∈ Nh\J (i) will find it

strictly dominant to be effective punisher during any punishment phase P(i).12

The underlying reason is that for each player j ∈ Nh, the average utility

u
rp0
j (θp0(αj, α−j)) is strictly increasing in αj. Indeed, if player j ∈ Nh\J (i) is

effective punisher during the Phase P(i), she gets at least

1. −(q1 + q2)ρ in the phases P(i) and SPE;

2. some payoff Uj till period sk;

12I call player j ∈ Nh\J (i) effective punisher during the punishment phase P(i) if αj = 1
at the end of the latter phase. After the punishment phase P(i), if α−J (i) = (1, . . . , 1), then
the average payoff of player i during the punishment phase P(i) is less than or equal to 0,
independently of the value of αi.
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3. ru
rp0
i [θp0(1, α−j)] in the last r periods of the repeated game G(sk + r).

That is in total −(q1 + q2)ρ+ Uj + ru
rp0
i [θp0(1, α−j)]. If she is not effective

punisher, she get at most

1. (q1 + q2)ρ in the phases P(i) and SPE;

2. the same payoff Uj till period sk;

3. ru
rp0
i [θp0(0, α−j)] in the last r periods of the repeated game G(sk + r).

That is in total (q1 + q2)ρ + Uj + ru
rp0
i [θp0(0, α−j)] which is less than or

equal to (q1 + q2)ρ + Uj + ru
rp0
i [θp0(1, α−j)] − rφ, see inequality (2.1). Since

−2(q1 + q2)ρ+ rφ > 0, we have

−(q1 + q2)ρ+ Uj + ru
rp0
i [θp0(1, α−j)] > (q1 + q2)ρ+ Uj + ru

rp0
i [θp0(0, α−j)]

Thus, it is strictly dominant for any player of the block Nh\J (i) to be effec-

tive punisher during the punishment phase P(i). No player of the block N\Nh

will have any incentive to deviate given that players of the block Nh\J (i) are

effective punisher. Indeed, every player of the block N\Nh plays a stage-game

pure best response at each profile of actions a ∈ Ã.13.

1) No early deviation from the phase P(i) is profitable

If after l1k + l2 (where l2 < k) periods in the Phase P(i) a player j ∈
J (i) deviates unilaterally, the strategy profile σs prescribes to start a new

punishment phase P(i) followed by a SPE phase, to reorder the profiles of the

target path, and to go back to the Phase P0. Such deviation is not profitable.

Indeed, if player j deviates early, she receives at most:

1. 0 in the first l1k + l2 periods of the Phase P(i).

2. q1ui(m̃
i) + q2u

r1
i [θ1(1, · · · , 1)] in the new phase P(i) and the following

SPE phase;

3. some payoff Ui till period sk;

13In the finitely repeated game G(sk + r), after any history h, the strategy profile σs

prescribes to play the stage-game action profile σs(h) which belongs to Ã = Nash(Gh), see
Lemma 6. As every player of the block N\Nh plays a stage-game pure best response in any

profile a ∈ Ã, no player of the block N\Nh can profitably deviate from the strategy profile
σs.
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4. the payoff ru
rp0
i [θp0(α)] + r

2p0
in the End-game.

If player i does not deviate, she receives at least:

1. q1ui(m̃
i) + q2u

r1
i [θ1(1, · · · , 1)] in the Phases P(i) and SPE;

2. l1kyi + l2yi till the end of the phase SPE ;

3. the same payoff Ui till period sk;

4. the payoff ru
rp0
i [θp0(α)] in the End-game.

As yi − r
2p0

> 0 and l1kyi + l2yi ≥ 1, no early deviation from the phase P(i) is

profitable.

2) No early deviation during phase P0 is profitable

If from the phase P0 a player let’s say i deviates early, then the strategy

profile σs prescribes to start phase P(i), to update α and to go to the phase

SPE. Such a deviation is not profitable. Indeed, if player i deviates early from

the phase P0, she receives at most

1. ρ in the deviation period;

2. q1ui(m̃
i) + q2u

r1
i [θ1(1, · · · , 1)] in the phase P(i) and the following SPE

phase;

3. some payoff Ui till the period sk;

4. the payoff ru
rp0
i [θp0(αJ (i)

, 1, · · · , 1)] till the end of the game.

In total ρ + q1ui(m̃
i) + q2u

r1
i [θ1(1, · · · , 1)] + Ui + ru

rp0
i [θp0(αJ (i)

, 1, · · · , 1)]

which is strictly less than ρ + q1+q2
2
yi + Ui + ru

rp0
i [θp0(αJ (i)

, 1, · · · , 1)], see in-

equality (2.8). If player i does not deviates, she get at least

1. −ρ in that deviation period;

2. Followed by (q1 + q2)yi corresponding to the phases P(i) and SPE;14

3. the same payoff Ui till period sk;

4. the payoff ru
rp0
i [θp0(α)] in the phase EG.

14Indeed there is no loss of generality to consider that q1 and q2 are multiple of k.
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That is in total −ρ+ (q1 + q2)yi + Ui + ru
rp0
i [θp0(α)] which is greater than

−ρ+ (q1 + q2)yi + Ui + ru
rp0
i [θp0(αJ (i)

, 1, · · · , 1)]− r
2p0

, see inequality (2.3).

Early deviations from the main path are therefore deterred by inequality

(2.10).

3) No late deviation is profitable.

If from an ongoing phase (P0 or P(i)) a player let’s say j ∈ Nh deviates late,

she receives at most

1. (q1 + q2)ρ till the beginning of the phase EG;

2. ru
rp0
j [θp0(−1, · · · ,−1)] in the phase EG.

If player j does not deviates, she receives at least

1. −(q1 + q2)ρ till the beginning of the phase EG;

2. ru
rp0
i [θp0(α)] in the phase EG, where α ∈ {0.1}n.

As ru
rp0
i [θp0(α)] is grater than or equal to ru

rp0
i [θp0(−1, · · · ,−1)] + rφ (see

inequality (2.2)), and −2(q1 + q2)ρ + rφ > 0, no late deviation is profitable.

This concludes the proof.

2.7 Appendix 2: Proof of the complete Nash

folk theorem

2.7.1 On the existence of the limit set of the set of pure

strategy Nash equilibrium payoff vectors of the

finitely repeated game

In this section, I show that the limit set of the set of pure strategy Nash equi-

librium payoff vectors of the finitely repeated game is well defined. Namely, I

show that for any compact stage-game, this limit set equals the set of feasible

payoff vectors that are approachable by means of pure strategy Nash equilib-

ria of the finitely repeated game (see Definition 5). I proceed with lemmata.

These lemmata as well as their proofs are very similar to those used in Section

2.6.1.
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Let G be a compact normal form game and let ANE(G) be the set of feasible

payoff vectors that are approachable by means of pure strategy Nash equilibria

of the finitely repeated game. For any T > 0, let NE(T ) be the set of pure

strategy Nash equilibrium payoff vectors of the finitely repeated game G(T ).

Let NE be the Hausdorff limit of the set of pure strategy Nash equilibrium

payoff vectors of the finitely repeated game.

Lemma 11 The set ANE(G) is a compact and convex set.

Proof of Lemma 11. It is immediate that ANE(G) is a closed subset of the

set of feasible payoff vectors of the stage-game G. As the set of feasible payoff

vectors is compact, the set ANE(G) is also compact. The convexity of the set

ANE(G) follows from the fact that the conjunction of two pure strategy Nash

equilibrium play paths remains a pure Nash equilibrium play path.

Lemma 12 For all T > 0, NE(T ) ⊆ ANE(G).

Proof of Lemma 12. Let σ be a pure strategy Nash equilibrium of the

finitely repeated game G(T ) and π(σ) = (π1(σ), · · · , πT (σ)) be the play path

generated by σ. Let x = uT (σ). For all s ≥ 0 and t ∈ {2, . . . , T}, the play

path

π(s, t) = (πt(σ), · · · , πT (σ), π(σ), · · · , π(σ)︸ ︷︷ ︸
s times

)

is a pure strategy Nash equilibrium play path of the finitely repeated game

G((s + 1)T − t + 1) and the sequence
(
u(s+1)T−t+1[π(s, l)]

)
s≥0

converges to x.

Lemma 13 As the time horizon increases, the set of pure strategy Nash equi-

librium payoff vectors of the finitely repeated game converges to the set ANE(G).

The proof of this lemma is similar to the one of Lemma 5 and therefore omitted.

2.7.2 On the Nash feasibility of pure strategy Nash equi-

librium payoff vectors of the finitely repeated game

Lemma 14 For any T > 0 and any pure strategy Nash equilibrium σ of the

finitely repeated game G(T ), the support {π1(σ), · · · , πT (σ)} of the play path

π(σ) = (π1(σ), · · · , πT (σ)) generated by σ is included in the set Nash(G∗h) of

pure Nash equilibria of the one shot game G∗h.
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Proof of Lemma 14. I proceed by induction on the time horizon T . For

T = 1, σ is a pure Nash equilibrium of the stage-game G. As the sequence of

sets (Nash(G∗l))l≥0 is increasing, we have Nash(G) = Nash(G∗0) ⊆ Nash(G∗h)

and the support {π1(σ)} of the play path π(σ) is included in Nash(G∗h) .

Assume that T > 1 and that the support of the play path generated by any pure

strategy Nash equilibrium of the finitely repeated game G(t) with 0 < t < T is

included in Nash(G∗h) and let’s show that {π1(σ), · · · , πT (σ)} ⊆ Nash(G∗h).

The restriction σ|π1(σ) of the strategy profile σ to the history π1(σ) is a pure

strategy Nash equilibrium of the finitely repeated game G(T − 1) and by in-

duction hypothesis, the support {π2(σ), · · · , πT (σ)} of σ|π1(σ) is included in the

set Nash(G∗h). It remains to prove that π1(σ) ∈ Nash(G∗h). Suppose that

π1(σ) /∈ Nash(G∗h). Then there exists a player i ∈ N who has an incentive to

deviate from the pure action profile π1(σ) in the game G∗h. Player i has to be

a member of the block N\N∗h since each player of the block N∗h has a constant

utility function in the game G∗h.

Let σ′i be the pure strategy of player i in the finitely repeated game G(T ) in

which player i plays a stage-game pure best response at each round of the

finitely repeated game. There is no lost if we assume that σ is the grim trigger

strategy profile associated to the path π(σ).15

At the pure strategy profile (σ′i, σ−i), player i receives the sequence of stage-

game payoffs

{ui(π1(σ)) + e, n∗i , · · · , n∗i }

whereas at σ she receives

{ui(π1(σ)), n∗i , · · · , n∗i }

where e > 0 and n∗i is her unique pure Nash equilibrium payoff in the stage-

game G. This implies that uT (σ′i, σ−i) > uT (σ). The pure strategy σ′i is

therefore a profitable deviation of player i from σ. This contradicts the fact

that σ is a pure strategy Nash equilibrium of the finitely repeated game G(T ).

It follows that π1(σ) ∈ Nash(G∗h), which concludes the proof.

15The grim trigger strategy profile associated to a path π ∈ AT is a strategy profile σπ

of the finitely repeated game G(T ) in which players follow the path π until a unique player
deviates. After a unilateral deviation has been observed, the grim trigger strategy profile
prescribes to punish the deviator by pushing her down to her minimax payoff till the end of
the game. It is straightforward to see that a path is a pure strategy Nash equilibrium play
path of the finitely repeated game if and only if the grim trigger strategy profile associated
to that path is a pure strategy Nash equilibrium of that finitely repeated game.
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From Lemma 14, it follows that only the payoff vectors of the convex hull

F of the set u(Nash(G∗h)) = {u(a) | a ∈ Nash(G∗h)} can be sustainable

by pure strategy Nash equilibria of the finitely repeated game. We have the

following corollary.

Corollary 2 For any T > 0 and for all pure strategy Nash equilibrium σ of

the finitely repeated game G(T ), the average payoff vector uT (σ) belongs to the

set F of Nash-feasible payoff vectors of the stage-game G.

2.7.3 Proof of Theorem 2

From Corollary 2, any pure strategy Nash equilibrium payoff vector of any

finite repetition of the stage-game has to be Nash-feasible. Denoting by I the

set of payoff vectors that dominate the minimax payoff vector µ, we have that

NE(T ) ⊆ F ∩ I for all T ≥ 1.

Lemma 16 says that any payoff vector x ∈ F ∩ I is approachable by means

of pure strategy Nash equilibria of the finitely repeated game. This lemma

concludes the proofs of both Theorem 2 and Theorem 4 as the limit set NE

equals the set ANE(G) of payoff vectors that are approachable by means of

pure strategy Nash equilibria of the finitely repeated game; see Lemma 13. I

first construct an appropriate end-game strategy.

Similarly to the case of pure strategy subgame perfect Nash equilibrium

solution, the sequence of subsets (N∗l )l≥0 defined in Section 2.4.1 induces a

separation of the set of players into two blocks N∗h and N\N∗h . As a corollary

of Lemma 14, each player of the block N\N∗h (if any) receives her unique stage-

game pure Nash equilibrium payoff at each pure strategy Nash equilibrium of

any finite repetition of the stage-game G.16 The next lemma says that there

exists a pure strategy Nash equilibrium of a finite repetition of the stage-game

G where each player of the block N∗h receives an average payoff that is strictly

greater than her pure minimax payoff.

Lemma 15 Let G be a compact normal form game and

∅ = N∗0  N∗1  · · ·  N∗h its decomposition.17 Then there exists T0 > 0

16Indeed, at any profile of action a ∈ Nash(G∗h), each player of the block N∗h receives her
unique stage-game pure Nash equilibrium payoff vector. This payoff equals her stage-game
pure minimax payoff.

17See Section 2.4.1 for the definition of the sequence (N∗l )l≥0.
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and a pure strategy Nash equilibrium of the repeated game G(T0) at which each

player of the block N∗h receives an average payoff that is strictly greater than

her stage-game pure minimax payoff.

Proof of Lemma 15. I will prove the following property by induction on

g: for all g ≤ h and all i ∈ N∗g , there exists Ti,g > 0 and a pure strategy Nash

equilibrium of the repeated game G(Ti,g) at which player i receives an average

payoff that is strictly greater than her stage-game pure minimax payoff.

For g = 1, take Ti,g = 1 for each i ∈ N∗1 .

Fix g ∈ {1, · · · , h − 1} and assume that the property holds for g. Pose N∗g =

{j1, · · · , jm}. For all j ∈ N∗g , let Tj,g > 0 and let πj be a play path generated

by a pure strategy Nash equilibrium of the finitely repeated game G(Tj,g) at

which player j receives an average payoff that is strictly greater than her stage-

game pure minimax payoff. Let πN
∗
g = (πj1 , · · · , πjm). The trigger strategy

associated to πN
∗
g is a pure strategy Nash equilibrium of the repeated game

G(
∑

j∈N∗g
Tj,g) and the average payoff of each player of the block N∗g at that

Nash equilibrium is strictly greater than her stage-game pure minimax payoff.18

Let i ∈ N∗g+1\N∗g and let yi,g be the best pure Nash equilibrium profile of player

i in the one shot game G∗g. There exists k > 0 such that the trigger strategy

associated to the path

(yi,g, πN
∗
g , · · · , πN∗g︸ ︷︷ ︸
k times

)

is a pure strategy Nash equilibrium of the repeated game G(1+k ·
∑

j∈N∗g
Tj,g).

At the later Nash equilibrium, player i receives an average payoff that is

strictly greater than her stage-game pure minimax payoff. Take Ti,g+1 =

1 + k ·
∑

j∈N∗g
Tj,g. This concludes the proof of the lemma.

Lemma 16 Let G be a compact normal form game. Any Nash-feasible and

individually rational payoff vector is approachable by means of pure strategy

Nash equilibria of the finitely repeated game.

Proof of Lemma 16. Let x be a Nash-feasible and individually rational

payoff vector and ε > 0. I wish to construct a time horizon Tε,x such that

for all T ≥ Tε,x, the finitely repeated game G(T ) has a pure strategy Nash

equilibrium σε,x,T satisfying d(x, uT (σε,x,T )) < ε.

18Note that each player of the block N\N∗g plays a stage-game pure best response at any

profile of actions of the path πN
∗
g .
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Let x′ ∈ F ∩ I such that

d (x, x′) ≤ ε
8

and x′i > µi for all i ∈ N∗h .19

Since Q is dense in R, there exists a sequence (γt)1≤t≤p of strictly positive

rationals numbers and a sequence (at)1≤t≤p of elements of Nash(G∗h) such that

d (x′,
∑p

t=1 γtu(at)) < ε′

8

and
∑p

t=1 γt = 1 where

ε′ = min{ ε
2
,mini∈N∗h(x′i − µi)}

is strictly positive. Let x′′ =
∑p

t=1 γtu(at). We have ui(a
t) = µi for all t, 1 ≤

t ≤ p and i /∈ N∗h . Thus, x′′i = µi for all i /∈ N∗h . We also have x′′i > µi for all

i ∈ N∗h . This holds since d(x′, x′′) < x′i−µi for all i ∈ N∗h . Consider a sequence

of natural numbers (qt)1≤t≤p such that for all t, t′ ∈ {1, ..., p} we have γt
γt′

= qt
qt′

.

Let q =
∑p

t=1 qt and

π = (a1, a1, · · · , a1︸ ︷︷ ︸
q1 times

, · · · , ap, ap, · · · , ap︸ ︷︷ ︸
qp times

).

Let πh be a play path generated by a pure strategy Nash equilibrium of the

repeated game G(T0) at which each player of the block N∗h receives an average

payoff that is strictly greater than her stage-game pure minimax payoff, see

Lemma 15. There exists k > 0 such that the trigger strategy associated to the

path

π(q) = (π, πh, · · · , πh︸ ︷︷ ︸
k times

)

is a pure strategy Nash equilibrium of the repeated game G(q + kT0). Let

π̂(s, q) be the play path defined by

π̂(s, q) = (π, · · · , π︸ ︷︷ ︸
s times

, π(q)).

The grim trigger strategy profile σπ̂(s,q) associated to π̂(s, q) is a pure strategy

Nash equilibrium of the finitely repeated game G(u(s+1)q+kT0). As s increases,

the payoff vector u(s+1)q+kT0(σπ̂(s,q)) converges to x′′. Therefore, there exists

sε,x > 0 such that for all s ≥ sε,x, d(x′, u(s+1)q+kT0(σπ̂(s,q))) < ε
8
. Choose sε,x

large enough such that ρ
s
< ε

8
for all s > sε,x and take Tε,x = (sε,x + 1)q + kT0.

19One could take x′ = x+ ε
8·d(x,y) (y − x) where y is the average payoff vector to the pure

Nash equilibrium given by Lemma 15.
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2.8 Appendix 3: In case there exists a dis-

count factor

If there exists a discount factor, then one only has to adjust the proofs of

Lemmata 10 and 16. In the proof of Lemma 10, one can apply Lemma 1 to

y and obtain πy and thereafter use the discounted version of Lemma 9, see

Lemma 17 below. To adjust the proof of Lemma 16, one can apply Lemma 1

to ε = ε′

8
and obtain a deterministic path π whose discounted average is within

ε of x′. The proof of Lemma 1 is postponed to Section 4.5.2.

Lemma 17 Let ∅ = N0  N1  ...  Nh be the Nash decomposition of the

stage-game G. Then there exists φ > 0 such that for all p ≥ 0 there exists

rp > 0, δp ∈ (0, 1) and

θp : {0, 1}n ∪ {(−1, · · · ,−1)} → Arp := A× · · · × A

such that for all α ∈ {0, 1}n ∪ {(−1, · · · ,−1)} and δ ∈ (δp, 1), θp(α) is a

play path generated by a pure strategy subgame perfect Nash equilibrium of the

repeated game with discounting G(δ, rp).20 Furthermore, for all i ∈ Nh and

α, α′ ∈ {0, 1}n and δ ∈ (δp, 1), we have

u
rp,δ
i [θp(1, α−i)]− urp,δi [θp(0, α−i)] ≥ φ, (2.12)

u
rp,δ
i [θp(α)]− urp,δi [θp(−1, · · · ,−1)] ≥ φ (2.13)

and

|urp,δi [θp(α)]− urp,δi [θp(αJ (i)
, α′

N\J (i)
)]| < 1

2p
. (2.14)

20I recall that in the discounted repeated game G(δ, rp), the utility of player i at the play

path θp(α) is u
rp,δ
i [θp(α)] = 1−δ

1−δrp
∑rp
t=1 δ

t−1ui(θ
p
t (α)), where θpt (α) is the t th profile of

action of θp(α).
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Chapter 3

A note on “Necessary and

sufficient conditions for the

perfect finite horizon folk

theorem” [Econometrica, 63 (2):

425-430, 1995.]1

Abstract: Smith (1995) presented a necessary and sufficient condition for the

finite-horizon perfect folk theorem. In the proof of this result, the author

constructed a family of five-phase strategy profiles to approach feasible and

individually rational payoff vectors of the stage-game. These strategy pro-

files are not subgame perfect Nash equilibria of the finitely repeated game. I

illustrate this fact with a counter-example. However, the characterization of

attainable payoff vectors by Smith remains true. I provide an alternative proof.

Keywords: Finitely Repeated Games, Subgame Perfect Nash Equilibrium,

Folk Theorem, Discount Factor.

JEL classification: C72, C73.

1I am grateful to Christoph Kuzmics, Frank Riedel and Tim Hellmann for their helpful
comments. Special thanks to Olivier Gossner who highlighted a mistake in an earlier version
version of this note.
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3.1. INTRODUCTION

3.1 Introduction

Benoit and Krishna (1984) proved a finite-horizon perfect folk theorem un-

der two sufficient conditions on the stage-game. The first condition is the

full-dimensionality defined in Fudenberg and Maskin (1986). A stage-game

meets the full-dimensionality condition if the dimension of the set of feasible

payoff vectors equals the number of players. The second condition of Benoit

and Krishna (1984) is that each player receives at least two distinct payoffs at

stage-game Nash equilibria. Smith (1995) generalized the result of Benoit and

Krishna (1984) and provided a necessary and sufficient condition for the finite-

horizon perfect folk theorem. Smith’s (1995) condition is that the stage-game

has recursively distinct Nash payoffs. This basically means that there exists a

time horizon T such that each player receives at least two distinct payoffs at

subgame perfect Nash equilibria of the T -fold repeated game.

In the proof of this result, and under the assumption that the stage-game

has recursively distinct Nash payoffs, Smith constructed a family of five-phase

strategy profiles to approximate feasible payoff vectors that dominate the ef-

fective minimax payoff vector of the stage-game. These strategy profiles are

not subgame perfect Nash equilibria of the finitely repeated game. I illustrate

this fact with a counter-example. However, the characterization of attainable

payoff vectors by Smith remains true. I provide an alternative proof.

This note is organized as follows. Section 3.2 provides a counter-example

and discusses the failure of Smith’s (1995) proof. Section 3.3 recalls the model

and formally states the finite-horizon perfect folk theorem of Smith (1995) and

Section 3.4 provides an alternative proof the later result.

3.2 The counter-example

3.2.1 The stage-game

Consider the three-player stage-game G whose payoff matrix is given in Table

3.1. In the game G, player 1 chooses lines (a1
1 or a2

1), player 2 chooses columns

(a1
2 or a2

2) and player 3 chooses matrices (a1
3 or a2

3).

The pure action profiles (a2
1, a

1
2, a

2
3) and (a1

1, a
2
2, a

2
3) are Nash equilibria of

the stage-game G and each player receives distinct payoffs at those action pro-
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a1
3 a2

3

a1
2 a2

2

a1
1 0 0 0 2 2 0
a2

1 0 0 0 1 1 0

a1
2 a2

2

2 2 2 3 3 3
2 2 1 2 2 2

Table 3.1: Payoff matrix of the stage-game G.

files. Therefore, this game has recursively distinct Nash payoffs, see Definition

6. Players 1 and 2 have the same utility function and are therefore equivalent.2

The pure effective minimax payoff of player 1 (respectively player 2) equals 1

and is uniquely provided by the action profile w1 = w2 = (a2
1, a

2
2, a

1
3).3

The payoff vector u = (3
2
, 3

2
, 3

2
) is feasible and strictly dominates the effective

minimax payoff vector µ̃ = (1, 1, 1). The payoff vector u is therefore approach-

able by means of subgame perfect Nash equilibria of the finitely-repeated game

with discounting; see Theorem 5.

In the proof of Theorem 5 of Smith (1995) which is stated in page 59 of

this note, to approach the feasible payoff vector u, the author used a five-phase

strategy. I recall it below and show that it is not a subgame perfect Nash

equilibrium profile.

3.2.2 The five-phase strategy of Smith

The strategy profile used by Smith (1995) employs the concept of payoff asym-

metry family that I briefly recall below.

The payoff asymmetry family

The concept of payoff asymmetry family is introduced by Abreu et al. (1994).

Such a family allows to suitably reward effective punishers after a punish-

ment phase. In our example, the payoff vectors x1 = x2 = (1.3, 1.3, 1.3) and

x3 = (1.4, 1.4, 1.2) form a payoff asymmetry family relatively to u. Indeed, the

2Player i is equivalent to player j in the game G if the utility function of player i is a
positive affine transformation of the utility function of player j.

3The mixed effective minimax payoff of both players 1 and 2 also equals 1 and is uniquely
provided by the pure action profile w1.
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payoff family {x1, x2, x3} meets the following requirements:

(A1) xi >> µ̃ for all i ∈ {1, 2, 3}, [strict individually rationality]

(A2) xii < ui for all i ∈ {1, 2, 3}, [target payoff domination]

and

(A3′) xii < xji for all i, j ∈ {1, 2, 3}, i � j.4 [payoff asymmetry]

I should notice that (A3′) is an adjusted version of the original requirement

(3) in Abreu et al. (1994) where the game meets the NEU (non-equivalent

utility) property.

Length of phases

Let βi be the best payoff vector of player i in the game G.

Let ωi be worst payoff vector of player i in the game G.

Choose q such that for all i, ωii + qxii > βii + 1. Take q = 4.

Given q, choose r such that for all j with j � i,

qωjj + rxij > βjj + rxjj + (q − 1)uj + 1. Take r = 86.

Take th(q + r) = 3(q + r).

Smith’s strategy

Let a be the outcome of a public randomization device that has an average

payoff of u = (3
2
, 3

2
, 3

2
).

Let T ≥ th(r+q) and σ be the strategy profile of the finitely-repeated game

G(T ) described by the following five phases.

1. MAIN PATH: Play a until period T − th(r+ q). [If any player i deviates

4The notation i � j means that player i is not equivalent to player j in the game G.
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early, start 3; if some player deviates late, start 5.5]

2. GOOD RECURSIVE PHASE: Play the stage-game Nash equilibrium

profile (a1
1, a

2
2, a

2
3) till the end of the finitely-repeated game G(T ).

3. MINIMAX PHASE: Play wi for q periods. [If player j (with j � i)

deviates, start 4.] Set j ← i.

4. REWARD PHASE: Play xj for r periods. [ If i deviates early, restart 3;

if some player deviates late, start 5.]

5. BAD RECURSIVE NASH PHASE: Play the stage-game Nash equilib-

rium (a2
1, a

1
2, a

2
3) until the end of the game.

A profitable deviation from σ

For all k ≥ 0, let T (k) = k + r + q + th(r + q). Let σ′1 be a strategy of

player 1 in which player 1 deviates from a in the first period of the repeated

game as well as at the beginning of each REWARD PHASE and plays her

stage-game best response in each period of the MINIMAX PHASE. This de-

viation is profitable for large k. Indeed, if player 1 does not deviate from σ,

she gets at most an expected payoff of A(k) = 1
T (k)
{β1+ 3(k+r+q−1)

2
+3th(r+q)}.

If she deviates and plays σ′1, she gets at least B(k) = 1
T (k)
{2(k−dk−1

q+1
e−2)}

where dk−1
q+1
e is the smallest integer greater than or equal to k−1

q+1
.

As k goes to ∞, A(k) goes to 3
2

and B(k) goes to 8
5
.

This means that for sufficiently long time horizon T and sufficiently high

discount factor δ, the strategy profile σ is not a Nash equilibrium of the finitely-

repeated game G(δ, T ) and therefore not a subgame perfect Nash equilibrium

of G(δ, T ).

5A deviation is called late if it occurs during the final q + r + th(r + q) periods of the
repeated game; all others are called early deviations.
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3.2.3 Intuition behind the failure of Smith’s proof

Denote by wi the profile of stage-game mixed actions at which player i receives

her effective minimax payoff.6

If the utility function of player i in the stage-game G is equivalent to that

of another player, say player j, then the effective minimax payoff of player

i might be strictly greater than her minimax payoff and player i might even

have a strict incentive to deviate from wi. Indeed, it might be the case that

only player j plays a stage-game best response at the profile wi. In that case,

it is not convenient to use the five-phase strategy profile of Smith (1995) to

approximate a payoff vector in which player i receives strictly less than her

best response payoff at wi.

Indeed, during the third phase of the five-phase strategy of Smith (1995),

player i is minimaxed using the stage-game action profile wi where she might

not be at a stage-game best response. In addition, during this phase, devia-

tions by any player who is equivalent to player i (including player i) are ignored.

As in the counter-example above, player i might find it profitable to deviate

from an ongoing path (either from the MAIN PATH or from the REWARD

PHASE) to push her fellow players to start the MINIMAX PHASE where she

is punished.

This failure of is not minor in the sense that for any specification of the

action profile to be used in the MINIMAX PHASE where i = 1, at least one

player will find it strictly profitable to deviate from the five-phase strategy of

Smith (1995).

Denote a MINIMAX PHASE where i = 1 by MP(1).

Indeed, if for a given specification w1 of the stage-game profile to be re-

peatedly played in the phase MP(1) the strategy profile σ is a subgame perfect

Nash equilibrium of the finitely-repeated game G(T ), then at w1 player 3 has

to play a1
3 with strictly positive probability. Otherwise the punishment payoff

6The strategy profile defined in page 63 has a slightly different interpretation. Indeed
at that profile, a player whose utility function is equivalent to that of player i might have
incentive to deviate. If she does so, she receives at most her stage-game effective minimax
payoff.
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of player 1 in the minimax phase MP(1) will be strictly greater than player 1’s

entry in the target payoff vector u = (3
2
, 3

2
, 3

2
). Given the choice of player 3 in

w1, player 2 has to play a2
2 with probability 1 at the profile w1. Otherwise she

will find it strictly profitable to deviate from σ and repeatedly play her best

response at w1 during the phase MP(1), as she will not be punished if she does

so. Given that player 2 plays a2
2 with probability 1 in the profile w1, player 1

has to play a1
1 with probability 1 in the profile w1. Otherwise she will find it

strictly profitable to deviate and to play a1
1 with probability 1 in each round of

the phase MP(1). Therefore, only convex sums of payoff vectors (2, 2, 0) and

(3, 3, 3) are possible payoff to the profile of actions w1. This implies that player

1 receives an average payoff greater than or equal to 2 in each round of the

minimax phase MP(1), which is strictly greater than her entry in the target

equilibrium payoff u. This contrasts the idea of punishment behind a minimax

phase, which is to deter deviations. A player should not find it profitable to

start a minimax phase.

The above reasoning teaches that the incentives of any player who is not

at her stage-game best response at the profile w1 have to be controlled during

a minimax phase. Note that this reasoning is not possible in case the stage-

game meets the NEU (non-equivalent utility) property of Abreu et al. (1994)

or the full dimensionality property of Fudenberg and Maskin (1986). Under

those conditions, no player is equivalent to another and therefore any stage-

game profile at which player i plays a stage-game best response and receives

her minimax payoff is suitable for a minimax phase, see Benoit and Krishna

(1984) and Smith (1993) for the finite-horizon perfect folk theorem under those

properties.

The methods of Benoit and Krishna (1984) and Smith (1993) do not easily

extend to games where some players have equivalent utility functions. But

still, the finite-horizon perfect folk theorem for games that possibly violate the

NEU condition as stated in Smith (1995) holds. This note provides a clear

proof.

In the next section I recall Smith’s (1995) model and state his finite-horizon

perfect folk theorem. I provide the proof of the latter theorem in Section 3.4.
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3.3 Smith’s model

3.3.1 The stage-game

Let G = 〈Ai, πi; i = 1, ..., n〉 be a finite normal form n-player game, where Ai

is player i’s finite set of actions, and πi : A = ×ni=1Ai → R is player i’s utility

function. Let Mi be player i’s mixed action set and let M = ×ni=1Mi. For any

profile of actions a ∈ A, set π(a) = (π1(a), . . . , πn(a)). For any profile of mixed

actions µ = (µ1, . . . , µn) ∈ M , denote by π(µ) = (π1(µ), . . . , πn(µ)) the vector

of expected payoffs of players.

Let J = {1, . . . , n} be the set of players. Let J (i) be the set of players

whose utility function is a positive affine transformation of πi. Let

µ̃i = minµ∈M maxj∈J (i) maxµ′j πi(µ
′
j, µ−j)

be the effective minimax payoff of player i. Normalize the utilities functions of

players such that µ̃i = 0 for all i. Let F = co{π(µ) : µ ∈ M} be convex hull

of the set of expected payoff vectors. Let F ∗ = {u ∈ F : ui > 0, for all i} be

the feasible and strictly rational set.

Given a subset of players J ′ = {j1, . . . , jm} ⊂ J and their mixed actions

profile

aJ ′ = (aj1 , . . . , ajm) ∈Mj1 ×Mj2 × · · · ×Mjm ≡MJ ′ , (3.1)

let G(aJ ′) be the induced (n − m)−player game for players J \J ′ obtained

from G when the actions of players J ′ are fixed to aJ ′ .

Define a Nash decomposition of the game G as an increasing sequence of

h ≥ 0 nonempty subset of players from J , namely

{∅ = J0 ( J1 ( · · · ( Jh ⊆ J}, (3.2)

so that for g = 1, . . . , h, actions eJg−1 , fJg−1 ∈MJg−1 exist with a pair of Nash

payoff vectors y(eJg−1) of G(eJg−1) and y(fJg−1) of G(fJg−1) different exactly

for players in Jg\Jg−1, ie

y(eJg−1)i 6= y(fJg−1)i (3.3)

for all i ∈ Jg\Jg−1.
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Definition 6 The game G has recursively distinct Nash payoffs if there is a

Nash decomposition with Jh = J .

3.3.2 The finitely-repeated game

Let G(δ, T ) be the T−fold repeated game in which players discount the futur

with the parameter δ < 1. Smith (1995) assumed that the monitoring struc-

ture is perfect so that each player can condition her current action on the past

actions of all players.

A strategy behavioral strategy of player i in the repeated game G(δ, T ) is

a T−tuple αi = (αi1, . . . , αi,T ) where for all t ∈ {1, . . . , T} and past history

ht ∈ At−1 (with A0 = ∅), αit(h
t) is the (possibly mixed) action that player i

intends to play at time t if she observes ht. The objective function of player

i in the finitely-repeated game G(δ, T ) is the expected discounted sum of her

stage-game payoffs:

πδiT (α) := 1−δ
1−δT

∑T
t=1 δ

t−1πit(α)

where πit(α) is player i′s expected payoff at period t with the strategy profile

α = (α1, . . . , αn). The strategy profile α is a Nash equilibrium of the finitely-

repeated game G(δ, T ) if for all player i, αi maximizes the objective function

πδiT (·, α−i) of player i.

The strategy profile α is a subgame perfect Nash equilibrium of the finitely-

repeated game G(δ, T ) if after any history ht, the restriction α|ht of α to the

history ht is a Nash equilibrium of the remaining game.

Let

V (δ, T ) = {πδT (α) = (πδ1T (α), · · · , πδnT (α)) | α is a

subgame perfect Nash equilibrium of G(δ, T )}

be the set of subgame perfect Nash equilibrium payoff vectors of the finitely-

repeated game G(δ, T ).

Theorem 5 (See Smith (1995)) Suppose that the stage-game G has recur-

sively distinct Nash payoffs. Then for the finitely-repeated game G(δ, T ), ∀u ∈
F ∗ and ∀ε > 0, ∃T0 < ∞ and δ0 < 1 so that T ≥ T0 and δ ∈ [δ0, 1] ⇒ ∃v ∈
V (δ, T ) with ‖u− v‖ < ε.
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3.4 A proof of Smith’s folk theorem

I follow Smith (1995) and assume that players condition their choices on the

outcome of a publicly observed exogenous continuous random variable. For

simplicity, I also assume that the discount factor equals 1. The later assump-

tion is without loss of generality as it does not change the incentives of players

if those are strict.

The main ingredient of the proof of Theorem 5 is a multi-level reward path

function whose existence is guaranteed by the recursively distinct Nash payoffs

condition, see Lemma 18. The multi-level reward path function allows to inde-

pendently leverage the behavior of players near the end of the finitely-repeated

game, no matter if there are or not players who have equivalent utility func-

tions. In addition, and backwardly, this multi-level reward path function allows

to leverage the behavior of players at any stage of the finitely-repeated game.

Gossner (1995) used similar method to prove a finite-horizon perfect folk

theorem with unobservable mixed strategies. The advantage of Lemma 18 is

that it does not require the dimension of the set of feasible payoff vectors to

equal the number of players neither each player to have at least two distinct

payoffs at Nash equilibria of the stage-game.

Denote by G(T ) the T -fold finitely repeated game G(δ, T ) where the dis-

count factor δ equals 1. In the game G(T ), the utility of player i at the

behavioral strategy α is

πTi (α) := limδ→1 π
δ
iT (α)

which is equal to the payoff average 1
T

∑T
t=1 πiT (α). Let

V (1, T ) := {πT (α) = (πT1 (α), · · · , πTn (α)) | α is a SPNE of G(T )}

be the set of subgame perfect Nash equilibrium payoff vectors of the finitely

repeated game G(T ) and let

AP = {u ∈ F | ∀ε > 0, ∃T0 <∞ so that T ≥ T0 ⇒ ∃v ∈
V (1, T ) with ‖u− v‖ < ε}

be the set of feasible payoff vectors that are approachable by means of subgame

perfect Nash equilibria of finite repetitions of the stage-game G. To prove The-

orem 5, we will show that F ∗ ⊆ AP .
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Lemma 18 Suppose that the stage-game G has recursively distinct Nash pay-

offs. Then there exists φ > 0 such that for all p ≥ 0, there exists rp > 0

and

θp : {0, 1}n ∪ {(−1, · · · ,−1)} →M rp := M × · · · ×M

such that for all γ ∈ {0, 1}n∪{(−1, · · · ,−1)}, θp(γ) is a play path generated by

a subgame perfect Nash equilibrium of the repeated game G(rp). Furthermore,

for all i ∈ N , γ, γ′ ∈ {0, 1}n we have

π
rp
i [θp(1, γ−i)]− πrpi [θp(0, γ−i)] ≥ φ (3.4)

π
rp
i [θp(γ)]− πrpi [θp(−1, · · · ,−1)] ≥ φ (3.5)

|πrpi [θp(γ)]− πrpi [θp(γJ (i)
, γ′
J\J (i)

)]| < 1

2p
. (3.6)

This lemma says that, if the stage-game G has recursively distinct Nash

payoffs, then we can (almost-) independently leverage the behavior of each

player near the end of the game. This lemma also allows to construct credible

punishment schemes and to approximate any feasible payoff vector that dom-

inates the effective minimax payoff vector by means of SPNE of the finitely

repeated game.

Assume that the finitely repeated game will last with a reward phase where

players are rewarded with respect to their behavior in the earlier stage of the

repeated game, that players are informed that the reward path to be used is

a SPNE path θp(γ) of the repeated game G(rp). Furthermore, assume that γ

is initialized to the value (1, · · · , 1) and that each player has the possibility

to update her entry in the vector γ each time where a player whose utility

function is not equivalent to her deviates. Inequality (3.4) says that, given

the profile γ−i of players of the block J \{i}, player i strictly prefers the path

θp(1, γ−i) to the path θp(0, γ−i). Inequality (3.6) ensures that the incentives of

players of different equivalence classes are almost independent for sufficiently

large p. The strategy constructed in the proof of Theorem 5 does not allow a

player to strategically improve her payoff by giving to players whose utilities’

function are equivalent to her a chance to update their entries in the vector γ.
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Consider for instance the stage-game whose payoff matrix is given by Table

3.1. In that game, player 1 and player 2 have the same utility function and are

therefore equivalent. Figure 3 below displays the relative position of the payoff

vectors πrp [θp(γ)] where γ ∈ {0, 1}3 ∪ {(−1,−1,−1). The path θp(−1,−1,−1)

will allow to deter deviations that occurs near the end of the game.

: Relative open ball with radius 1
2p

and centre θ(γ)

player 3

p
la

ye
rs

1,
2

� πrp [θp(−1,−1,−1)]

� πrp [θp(0, 0, 1)]

� πrp [θp(0, 1, 1)] = πrp [θp(1, 0, 1)]

� πrp [θp(1, 1, 1)]
-πrp [θp(1, 1, 0)]

-πrp [θp(1, 0, 0)] = πrp [θp(0, 1, 0)]

-πrp [θp(0, 0, 0)]

Figure 3: An example of relative position of the payoff vectors πrp [θp(γ)].

A detailed proof of Lemma 18 is presented in Section 3.5.

Proof of Smith’s (1995) folk theorem.

Let u be a feasible payoff vector that lies in the relative interior of F ∗, and let

a be the outcome of a public randomization device that has an expected payoff

vector of u.

Obtain φ, r1 and θ1 with p = 1 from the Lemma 18. Let q1 > 0 and q2 > 0

such that

0 < q1πi(w
i) + q2r1π

r1
i [θ1(1, · · · , 1)] <

q1 + q2r1

2
ui (3.7)

62



3.4. A PROOF OF SMITH’S FOLK THEOREM

and

− 2ρ+
q1

2
ui > 0 for all i ∈ N. (3.8)

Given q1, q2 and r1, choose r such that

− 2(q1 + q2r1)ρ+ rφ > 0. (3.9)

Given q1 q2, r1 and r, choose p0 > 0 such that

q2r1

2
ui −

r

2p0
> ui −

r

2p0
> 0 (3.10)

Apply the Lemma 18 to p0 and obtain rp0 and θp0 . Update q1 ← rp0q1; q2 ←
rp0q2r1; r ← rp0r. The quantities φ, θ1, q1, q2, r, r1 and θp0 are such that

0 < q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] <

q1 + q2

2
ui (3.11)

− 2(q1 + q2)ρ+ rφ > 0 (3.12)

− 2ρ+
q1 + q2

2
ui −

r

2p0
> 0 (3.13)

and

ui −
r

2p0
> 0 for all i ∈ N. (3.14)

The T−period equilibrium outcome sequence is

a, . . . , a; θp0(1, · · · , 1)

where a is played for T − r periods and the path θp0(1, · · · , 1) is of length r.

Now I describe the subgame perfect Nash equilibrium σ of the finitely-repeated

game that supports the equilibrium path. For all i ∈ J , let wi be a stage-game

action profile such that

maxj∈J (i) maxmj∈Mj
ui(mj, w

i
−j) = 0.

At the action profile wi, no player of the block J (i) has to be at a best re-

sponse. Playing a best response to the action profile wi, a player of the block

J (i) receives at most her effective minimax payoff.

Set γ = (1, · · · , 1). From now on, call a deviation late if it occurs during

the final q1 + q2 + r periods of the finitely-repeated game G(T ); all others are

called early deviations. The strategy profile σ involves 5 phases and can be

graphed as follows:
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2

1

3

45

Early deviation

Late deviation

Lat
e
de

vi
at

io
n

Early
deviation

N
orm

al
p
ath

N
orm

al
p
ath

N
or

m
al

pa
th N

orm
al path

q1 periods at most q1 + q2

periods

q2 periods
rp0 periods

1. MAIN PATH: Play a until period T − r. [If any player i deviates early,

start 2; if some player deviates late, start 3.] Go to 4.

2. MINIMAX PHASE P (i): During this phase, each player j ∈ J (i) has

to play her action wij while each player of the block N\J (i) can play whatever

action she wants. This phase last for q1 periods. [If any player j ∈ J (i)

deviates early, restart 2.; if any player j ∈ J (i) deviates late, start 3.]

At the end of this phase, for all player j /∈ J (i), set γj = 0 if there is at least

one period of the MINIMAX PHASE where player j played an action different

to wij and set γj = 1 otherwise. Go to 5.

3. LATE DEVIATION: Each player can play whatever action she wants

till period T − r. At period T − r, set γ = (−1, · · · ,−1). Go to 4.

4. END OF THE GAME: Follow r
rp0

times a SPNE that supports the

equilibrium path θp0(γ).
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5. SPE PHASE: Follow q2
r1

times the SPNE of the game G(r1) whose play

path is θ1(1, · · · , 1). Go back to 1.

For sufficiently large time horizon T , the strategy profile σ is a

subgame perfect Nash equilibrium of the finitely repeated game G(T )

In the following, call a player j /∈ J (i) effective punisher if γj = 1 at the

end of the MINIMAX PHASE P (i). I prove the following:

A) It is strictly dominant for any player j /∈ J (i) to be effective punisher

during a MINIMAX PHASE P (i)

B) No early deviation from the MINIMAX PHASE is profitable

C) No early deviation from the MAIN PATH is profitable

D) No late deviation is profitable

A) It is strictly dominant to be effective punisher during a MIN-

IMAX PHASE

If player j /∈ J (i) is effective punisher, she receives at least:

1. −(q1 + q2)ρ during the MINIMAX PHASE and the SPE PHASE;

2. some payoff Uj till period T − r;

3. r · πrp0
i [θp0(1, γ−j)] in the last r periods of the repeated game.

In total she receives at least −(q1 + q2)ρ+ Uj + r · πrp0
i [θp0(1, γ−j)].

If player j is not effective punisher, she receives at most:

1. (q1 + q2)ρ during the MINIMAX PHASE and the SPE PHASE;

2. the same payoff Uj till period T − r;

3. r · πrp0
i [θp0(0, γ−j)] in the last r periods of the repeated game.

In total (q1 + q2)ρ + Uj + r · πrp0
i [θp0(0, γ−j)] which is less than or equal to

(q1 +q2)ρ+Uj +r ·πrp0
i [θp0(1, γ−j)]−rφ, see inequality (3.4). As −2(q1 +q2)ρ+

rφ > 0, it is strictly dominant for any player j /∈ J (i) to be effective punisher.

65



3.4. A PROOF OF SMITH’S FOLK THEOREM

B) No early deviation from the MINIMAX PHASE is profitable

If player i ∈ J (i) deviates early from the MINIMAX PHASE, she receives at

most:

1. 0 in the deviation period;

2. q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] in the new MINIMAX PHASE and the fol-

lowing SPE PHASE;

3. some payoff Ui till the end of the game.

If player i does not deviates, she receives at least:

1. q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] + ui till the end of the SPE PHASE;

2. the payoff Ui − r
2p0

till the end of the game.

As ui − r
2p0

> 0, no early deviation from the MINIMAX PHASE is profitable.

C) No early deviation from the MAIN PATH is profitable

If player i deviates early from the MAIN PATH, she receives at most:

1. ρ in the deviation period;

2. q1πi(w
i) + q2π

r1
i [θ1(1, · · · , 1)] in the MINIMAX PHASE and the SPE

PHASE;

3. some payoff Ui till period T − r;

4. r · πrp0
i [θp0(γJ (i)

, 1, · · · , 1)] in phase 4.

In total ρ+q1πi(w
i)+q2π

r1
i [θ1(1, · · · , 1)]+Ui+r ·π

rp0
i [θp0(γJ (i)

, 1, · · · , 1)] which

is strictly less than ρ+ q1+q2
2
ui +Ui + r · πrp0

i [θp0(γJ (i)
, 1, · · · , 1)], see inequality

(3.11).

If player i does not deviates, she receives at least:

1. −ρ+ (q1 + q2) · ui till the end of the SPE PHASE;

2. the same payoff Ui till period T − r;

3. r · πrp0
i [θp0(γ)] in phase 4.
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In total −ρ+ (q1 + q2) · ui + Ui + r · πrp0
i [θp0(γ)] which is strictly greater than

−ρ+ (q1 + q2) · ui + Ui + r · πrp0
i [θp0(γJ (i)

, 1, · · · , 1)]− r
2p0

, see inequality (3.6).

As −2ρ + q1+q2
2
ui − r

2p0
> 0, no early deviation from the MAIN PATH is

profitable.

D) No late deviation is profitable

If from an ongoing path (MAIN PATH or MINIMAX PHASE) player i deviates

late, then she receives at most:

1. (q1 + q2)ρ till the beginning of the END OF THE GAME;

2. r · πrp0
i [θp0(−1, · · · ,−1)] in the END OF THE GAME.

If player i does not deviate, she receives at least:

1. −(q1 + q2)ρ till the beginning of the END OF THE GAME;

2. r · πrp0
i [θp0(γ)] in the END OF THE GAME, where γ ∈ {0, 1}n.

As r ·πrp0
i [θp0(γ)] ≥ r ·πrp0

i [θp0(−1, · · · ,−1)] + rφ and rφ > 2(q1 + q2)ρ, no late

deviation is profitable. This concludes the proof.

3.5 Proof of intermediate results

In this section I proceed to the proof of Lemma 18. I first show that under the

recursively distinct Nash payoffs condition, each player has many continuation

equilibrium payoffs, which is necessary for the construction of our multi-level

reward path function.

Lemma 19 Suppose that the stage-game G has recursively distinct Nash pay-

offs. Then there exists T0 > 0 such that for all T > T0, each player receives at

least two distinct payoffs at SPNE of G(T ).

Proof of Lemma 19.

Let {∅ = J0 ( J1 ( · · · ( Jh = J } be the Nash decomposition of G.

I show by induction that for all l ≤ h there exists T0,l > 0 such that each player

of Jl receives distinct payoffs at SPNE of G(T ) for all T > T0,l.

Players of the block J1 receive distinct payoffs at Nash equilibria of G. There-

fore, the property holds for l = 1. Let l < h such that T0,l exists. Let

i ∈ Jl+1\Jl, and let µ be a Nash equilibrium profile of G(µJl) in which player
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i receives a payoff that is different to her unique stage-game Nash equilibrium

payoff. Let η1 and η2 be two SPNE play paths of G(T0,l + 1) where each player

of Jl receives distinct payoffs. The path ηi = (µ, η1, η2 · · · , η1, η2) is a SPNE

play path. At ηi, player i receives a payoff that is different to her stage-game

Nash equilibrium payoff which is also a SPNE payoff. The conjunction lemma

(see Benoit and Krishna (1984)) guarantee the existence of T0,l+1.

Proof of Lemma 18.

The set AP is non-empty and convex and therefore has a relative interior point

x. Let φ > 0 such that the relative ball B̃(x, 5φn) is included in AP . For all

γ ∈ {−1, 0, 1}n and j ∈ J , let

θj(γ) = xj − φ|J (j)|+ 3φ
∑

j′∈J (j) γj′

and

θ(γ) = (θ1(γ), · · · , θn(γ)).

For all γ ∈ {0, 1}n, we have

θi(1, γ−i)− θi(0, γ−i) = 3φ;

θi(γ)− θi(−1, · · · ,−1) ≥ 3φ

and

‖θ(γ)− x‖ < 5nφ.

Furthermore, since each player receives distinct payoffs within the set AP and

players within the same equivalence class J (i) have equal entry at the payoff

vector θ(γ), we have that

θ(γ) ∈ B̃(x, 5φn) ⊆ AP .7

Let p ≥ 0 and ε = 1
2

min{φ, 1
2p
}. For each γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}, there

exists T0γp < ∞ so that for all T ≥ T0γp, there exists αγp a subgame perfect

Nash equilibrium of the repeated game G(T ) such that ‖πT (αγp)− θ(γ)‖ < ε.

Take rp = max{T0γp | γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}}. For all γ ∈ {0, 1}n ∪
{(−1, · · · ,−1)} and p ≥ 0, let θp(γ) be the SPNE play path generated by the

SPNE αγp of the repeated game G(rp).
7Indeed, from Lemma 19, each player receives distinct payoffs at subgame perfect Nash

equilibria of finite repetitions of the stage-game G and, as corollary of the conjunction lemma
(see Lemma 3.2 in Benoit and Krishna (1984)), each subgame perfect Nash equilibrium payoff
vector of a finite repetition of the stage-game G with no discount belongs to AP .
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Chapter 4

Repetition and cooperation: A

model of finitely repeated games

with objective ambiguity

Abstract: In this paper, we present a model of finitely repeated games in which

players can strategically make use of objective ambiguity. In each round of a

finite repetition of a finite stage-game, in addition to the classic pure and mixed

actions, players can employ objectively ambiguous actions by using imprecise

probabilistic devices such as Ellsberg urns to conceal their intentions. We

find that adding an infinitesimal level of ambiguity can be enough to approxi-

mate collusive payoffs via subgame perfect equilibrium strategies of the finitely

repeated game. Our main theorem states that if each player has many continu-

ation equilibrium payoffs in ambiguous actions, any feasible payoff vector of the

original stage-game that dominates the mixed strategy maxmin payoff vector is

(ex-ante and ex-post) approachable by means of subgame perfect equilibrium

strategies of the finitely repeated game with discounting. Our condition is also

necessary.

Key words: Objective Ambiguity, Ambiguity Aversion, Finitely Repeated

Games, Subgame Perfect Equilibrium, Ellsberg Urns, Ellsberg Strategies.

JEL classification: C72, C73, D81
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4.1 Introduction

Contrary to the predictions of early models of repeated games with complete

information and perfect monitoring which state that any finite repetition of a

stage-game with a unique Nash equilibrium admits a unique subgame perfect

Nash equilibrium payoff (see Benoit and Krishna (1984), Gossner (1995), Smith

(1995)), the experimental evidence suggests at least a partial level of coopera-

tion (see Kruse et al. (1994) and Sibly and Tisdell (2017)). This paper presents

a new model of finitely repeated games with complete information and perfect

monitoring that allows for an explanation of the emergence of cooperation in a

larger class of normal form games. This class includes some stage-games with

a unique Nash equilibrium.

The inconsistency of the predictions of the classic model of finitely repeated

games with complete information and perfect monitoring with empirical evi-

dence is subject to an extensive discussion and has led game theorists to relax

their assumptions on the information structure available to players (see Kreps

et al. (1982) and Kreps and Wilson (1982)), the perfection of the monitoring

technology (see Abreu et al. (1990), Aumann et al. (1995)) and players’ ratio-

nality (see Neyman (1985), Aumann and Sorin (1989)). However, the type of

actions available to players also matters.

How well do pure and mixed actions capture the intentions of players in-

volved in a dynamic game?

Greenberg (2000) argues that in a dynamic game, a player might want to

exercise her right to remain silent. In the rock-paper-scissors game, a player

might want to play ”rock” with probability 0. These intentions are not cap-

tured by a pure or a mixed action, but rather by a set of lotteries over the set

of the player’s actions.

The strategies used in the proofs of the folk theorems to sustain equilibrium

payoffs involve some punishment phases in which potential deviators are pun-

ished. In such phases, the player being punished responds to the punishment

scheme settled by her fellow players, which is usually a minimax profile. In

daily life, it is not always clear how precise a player would be when specify-

ing what she intends to do in the event that her fellow player deviates from
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an agreement. An illustration of this situation can be found in incomplete

contracts in which participants agree on the collusive paths to follow but are

silent (totally ambiguous) about the enforcing mechanisms. In such cases, play-

ers might think that the deviator herself might be immune to the punishment

scheme if she is aware of it in advance. Such behavior is not well-captured by

pure or mixed strategies of the classic models of repeated games.

This paper presents a model of finitely repeated games with complete infor-

mation and perfect monitoring in which players are allowed to use objectively

ambiguous actions. In each period of the repeated game, in addition to the

classic pure and mixed actions, players can employ objectively ambiguous ac-

tions by concealing their intentions in imprecise probabilistic devices, such as

Ellsberg urns. I follow the work of Riedel and Sass (2014) and Riedel (2017) in

referring to such imprecise action as an Ellsberg action. An Ellsberg action of

a player can be thought of as a compact and convex set of probability distri-

butions over the set of pure actions of that player. As in the related literature

on ambiguity in games (see Riedel and Sass (2014), Riedel (2017), Greenberg

(2000), Gilboa and Schmeidler (1989) and Ellsberg (1961)), I assume that play-

ers are ambiguity-averse and aim to maximize the worst payoff they expect to

receive.

The main finding of this paper is that our model of finitely repeated games

can explain the emergence of cooperation where the classic model with pure

and mixed strategies fails to do so. We provide an example game to illustrate

the idea that adding an infinitesimal level of ambiguity can be enough to ap-

proximate collusive payoffs via subgame perfect equilibrium strategies of the

finitely repeated game. The main theorem states that if each player has many

continuation equilibrium payoffs in Ellsberg actions, any feasible payoff vector

that dominates the mixed strategy effective maxmin payoff vector is (ex-ante

and ex-post) approachable by means of subgame perfect equilibrium strate-

gies of the finitely repeated game with discounting. The existence of multiple

continuation equilibrium payoffs in Ellsberg actions for each player is also a

necessary condition for cooperation to arise in the finite horizon.

Earlier models of finitely repeated games assumed that players could employ

only pure or mixed actions. Benoit and Krishna (1984), Benoit and Krishna

(1987), and Smith (1995) provided conditions on the stage game that ensures
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that the set of equilibrium payoffs of the finitely repeated game includes any

feasible payoff that dominates the minimax payoff vector. Gossner (1995) ana-

lyzed finitely repeated games in which players are allowed to use mixed actions,

but do randomize privately.

Kreps et al. (1982) analyzed finite repetitions of the prisoners’ dilemma and

showed that the incompleteness of the information on players’ options could

generate a significant level of cooperation, and Kreps and Wilson (1982) showed

that adding a small amount of incomplete information about players’ payoffs

could give rise to a reputation effect and therefore allow the monopolist to earn

a relatively high payoff in finite repetitions of the Selten’s chain-store game.

Neyman (1985) proved that in presence of complete information and per-

fect monitoring, utility-maximizing players can achieve cooperative payoffs in

finite repetitions of the prisoners’ dilemma given that there is a bound on the

complexity of strategies available to them. Aumann and Sorin (1989) studied

two-person games with common interests and demonstrated that if each player

ascribes a positive probability to the event that her fellow player has a bounded

recall, cooperative outcomes can be approximated by pure strategy equilibria.

Mailath et al. (2002) studied examples of finitely repeated games with im-

perfect public monitoring and illustrated that less informative signals about

players’ actions can allow for approximate Pareto superior payoffs by means of

perfect equilibria of the repeated game, even if the stage game has a unique

Nash equilibrium payoff. Sekiguchi (2002) studied the imperfect private mon-

itoring case and provided a characterization of the stage-game whose finite

repetitions admit non-trivial equilibrium outcomes.

The remainder of this paper is organized as follows: Section 2 presents the

model as well as some preliminary results. The main theorem of the paper is

presented and discussed in Section 3. Section 4 provides the proofs.
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4.2 The Model

4.2.1 The stage-game

The initial stage-game

I represent a finite normal form game G by (N,S, u) where for all i ∈ N , Si

is the set of pure actions of player i. Both the set of players N = {1, ..., n}
and the set S = ×i∈NSi of actions are finite. The utility of player i given

s = (s1, ..., sn) ∈ S is measured by ui(s). A mixed strategy of player i ∈ N

is a probability distribution pi over the set Si. Let ∆Si be the set of mixed

strategies of player i. We will abusively denote by ∆S = ∆S1 × ...×∆Sn the

set of profiles of mixed strategies. At the profile p = (p1, .., pn) ∈ ∆S, player

i receives the expected payoff ui(p) =
∑

s∈S p(s)ui(s) where for all s ∈ S,

p(s) =
∏

i∈N pi(si), pi(si) being the probability that player i assigns to the

action si according to the distribution pi. For any p = (p1, ..., pn) ∈ ∆S, i ∈ N
and p′i ∈ ∆Si, (p′i, p−i) denotes the strategy profile in which all players except

i behave the same as in p and the choice of i is p′i. A profile of mixed strategy

p ∈ ∆S is a Nash equilibrium of G (p ∈ Nash(G)) if for all i ∈ N and

p′i ∈ ∆Si, ui(p
′
i, p−i) ≤ ui(p).

The payoff vector x = (x1, ..., xn) is a feasible vector of the game G if it

belongs to the convex hull of the set of payoff vectors of the game G. That

is, if there exists a sequence (λl)1≤l≤L of positive real numbers and a sequence

(al)1≤l≤L of pure actions’ profile such that ΣL
l=1λl = 1 and x = ΣL

l=1λlu(al).

For all players i, j ∈ N , player i is equivalent to player j if there exists two real

numbers βij and αij > 0 such that ui(s) = αijuj(s) + βij for all s ∈ S. Denote

by J (i) the set of players that are equivalent to player i. Let

µi = minp∈∆S maxj∈J (i) maxp′j∈∆Sj
ui(p−j, p

′
j) = ui(m

i)

be the mixed strategy effective minimax payoff1 of player i and µ =

(µ1, ..., µn) be the effective minimax payoff vector of the game G. Let

νi = maxj∈J (i) maxpj∈∆Sj
minp−j∈×k 6=j∆Sk

ui(p−j, pj)

be the mixed strategy effective maxmin payoff of player i and ν =

(ν1, ..., νn) be the effective maxmin payoff vector of the game G. Let V ∗ be

1The effective minimax has been introduced by Wen (1994). The effective minimax payoff
of a player is her reservation value in the stage-game and equals her minimax payoff if she
is not equivalent to any other player.
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the set of feasible payoff vectors that strictly dominates the effective maxmin

payoff vector ν.

The Ellsberg game

To ease the presentation of our results, we consider a very simple model of

Ellsberg game and where players employ only reduced strategies. Riedel and

Sass (2014) and Riedel (2017) provide a general model.

Let G = (N,S, u) be a finite normal form game. An Ellsberg strategy

Pi of player i is a compact set of probability distributions over the set Si. Let

Pi = {Pi ⊆ ∆Si | Pi is compact} be the set of Ellsberg strategies of player i and

P be the set of Ellsberg strategy profiles. Given a profile P = (P1, ..., Pn) ∈ P ,

the utility of player i is given by ui(P ) = minp∈P ui(p). The 3-tuple (N,P , u)

is the Ellsberg extension of the game G. For any P ∈ P , i ∈ N and P ′i ∈ Pi,
(P ′i , P−i) denotes the Ellsberg strategy profile in which all players except i be-

have the same as in P and the choice of i is P ′i . A profile of Ellsberg strategy

P ∈ P is an Ellsberg equilibrium of G (P ∈ E(G)) if for all player i ∈ N
and Ellsberg strategy P ′i ∈ Pi of player i, ui(P

′
i , P−i) ≤ ui(P ).

Priliminary results on the Ellsberg game

In the Ellsberg game, players have richer set of strategies and can even exercise

their right to remain silent (totally ambiguous). Remaining silent can be more

severe than employing a mixed strategy minimax profile. More importantly,

remaining silent is an optimal punishment strategy profile in the Ellsberg game.

We have the following lemma.

Lemma 20 In the Ellsberg game, remaining silent is an optimal punishment

strategy.

Proof. of Lemma 20. Let j ∈ N and P−j ∈ P−j, be an Ellsberg profile of

players of the block −j. We have P−j ⊆ ×k 6=j∆Sk and therefore

ui(×k 6=j∆Sk, Pj) ≤ ui(P−j, Pj).

This means that, in the Ellsberg game, to punish an ambiguity averse players,

it is optimal for her opponents to remain silent.
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Intuitively, if on a punishment path all punishers exercise their right to

remain silent, then, the target player, if she is ambiguity averse, will play a

prudent strategy and will ex-ante receive at most her mixed strategy maxmin

payoff. To illustrate how severe such punishment scheme can be, in comparison

to the classic mixed strategy minimax, consider the three-player game whose

payoff matrix is given by Table 4.1.

c d

a 0 0 0 1 −1 1

b −1 1 1 0 0 −1

c d
1 1 −1 −1 1 1
1 −1 0 0 0 0

e f

Table 4.1: Payoff matrix of a three-player game where the use of Ellsberg
strategies allow for severe punishment schemes.

In this game, player 1 chooses the rows (a or b), player 2 chooses the columns

(c or d), and player 3 chooses the matrices (e or f). If only mixed strategies

are allowed, each player can ensure herself the payoff 0. This is not possible

under ambiguity. Indeed, under ambiguity, no player can ensure herself a pay-

off strictly greater than −1
2
.

Suppose that player 2 plays c, and that player 3 plays e. Player 1 best

responds playing a and receives a payoff equals 0. Moreover, given any mixed

strategy profile of players 2 and 3, player 1 receives positive payoff if she plays

a mixed strategy best response. Therefore, the mixed strategy minimax payoff

of player 1 equals 0. Now suppose that player 2 and player 3 remain silent.

Then, player 1, if she is ambiguity averse, will play a prudent strategy. She

will mix a and b with equal probability and will ex-ante receive her mixed

strategy maxmin payoff, −1
2
. Using similar argument (this game is some how

symmetric), the reader can check that the mixed strategy minimax payoff of

both players 2 and 3 equal 0 and that the mixed strategy maxmin payoff of

both players 2 and 3 equals −1
2
. Thus, employing Ellsberg strategy allows to

settle punishment schemes that are more severe than classic minimax strategies.

Let

µEi = minP∈P maxj∈J (i) maxP ′j∈Pj
ui(P−j, P

′
j)

be the pure effective minimax payoff of player i ∈ N in the Ellsberg game. We

have the following lemma.
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Lemma 21 Let G be a finite normal form game. The pure strategy effec-

tive minimax payoff of a player in the Ellsberg game equals her mixed strategy

effective maxmin payoff in the original game G.

Proof. of Lemma 21. From Lemma 20, we have µEi = maxj∈J (i) maxPj∈Pj
ui(×k 6=j∆Sk, Pj).

Let j ∈ J (i) and pj ∈ ∆Sj. We have

ui(×k 6=j∆Sk, {pj}) ≤ maxPj∈Pj
ui(×k 6=j∆Sk, Pj)

and therefore

minp−j∈×k 6=j∆Sk
ui(p−j, pj) ≤ µEi .

It follows that

νi ≤ µEi .

That is, the mixed strategy effective maxmin payoff of player i in the Ells-

berg game is less than or equal to her effective minimax payoff in the Ellsberg

game. The effective minimax payoff of player i in the Ellsberg game is less

than or equal her mixed strategy effective maxmin payoff as well. Indeed,

µEi = maxj∈J (i) maxPj∈Pj
ui(×k 6=j∆Sk, Pj)

= maxPj∗∈Pj∗ ui(×k 6=j∗∆Sk, Pj∗)
= ui(×k 6=j∗∆Sk, P ∗j∗)

for some j∗ ∈ J (i) and P ∗j∗ ∈ Pj∗ . We have

µEi = minp−j∗∈×k 6=j∗∆Sk,pj∗∈P ∗j∗ ui(p−j∗ , pj∗)

= minp−j∗∈×k 6=j∗∆Sk ui(p−j∗ , p
∗
j∗)

for some p∗j∗ ∈ P ∗j∗ . As p∗j∗ ∈ P ∗j∗ ⊆ ∆Sj∗ , we have

µEi ≤ maxpj∗∈∆Sj∗ minp−j∗∈×k 6=j∗∆Sk
ui(p−j∗ , pj∗).

So,

µEi ≤ maxj∈J (i) maxpj∈∆Sj
minp−j∈×k 6=j∆Sk

ui(p−j, pj).

We conclude that µEi = νi. So, the reservation value of a player in the

Ellsberg game equals her mixed strategy effective maxmin payoff.
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Further notations

Let G = (N,S, u) be a finite normal form game and let γ be a number that

is strictly greater than any payoff a player might receive in the game G. Let

τ(G) = (N,S, u′) be the normal form game where the payoff function u′i of

player i ∈ N is equals γ if i has distinct Ellsberg equilibrium payoff in the

game G. In the case player i has a unique Ellsberg equilibrium payoff in the

game G, u′i(s) = ui(s) for all s ∈ S. For all l > 0, let Nl be the set of players

who have their payoff function equal to the constant γ in the game τ (l)(G),

where τ (l) is the l th compound of τ . Let h be minimal such that Nh is a

maximal element of the sequence {Nl}∞l=1.

Definition 7 The sequence N0 = ∅ ⊆ N1 ⊆ ... ⊆ Nh is the Ellsberg decompo-

sition of the game G.

Definition 8 The Ellsberg decomposition N0 = ∅ ⊆ N1 ⊆ ... ⊆ Nh is complete

if Nh = N .

4.2.2 The finitely repeated game

Let G be a finite normal form game which I will refer to as the stage game.

Given T > 1 and δ < 1, let G(δ, T ) be the game obtained by repeating the stage

game T times and where players’ discount factor is δ. In the game G(δ, T ),

in every round, each player observes the properties of the profile of Ellberg

strategies chosen (or equivalently the properties of the randomization devices

chosen by players) as well as the realized action profile, receives her payoff as

in the stage game and chooses her Ellsberg strategy for the next period. A

player may therefore condition her behavior on the history of Ellsberg profiles

used in the previous periods. Formally, a strategy of player i in the repeated

game G(δ, T ) is a map σi : ∪Tt=1P t−1 → Pi where P0 is the empty set. Given

a history ht = (h1, .., ht−1) ∈ P t−1 = P × ... × P , the strategy σi of player i

recommends to play the Ellsberg strategy σi(h
t) at period t, 1 ≤ t ≤ T . In the

repeated game G(δ, T ), the discounted average payoff of a player given a play

path (s1, ..., sT ) ∈ ST is

uδi (s
1, ..., sT ) = 1−δ

1−δT ΣT
t=1δ

t−1ui(s
t).

The strategy profile σ = (σ1, ..., σn) induces a set of probability distributions

P (σ) over the set ST of play paths of length T . Players are ambiguity averse
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and aim to maximize the minimal expected payoff that they could get from

the set P (σ). That is, given σ−i, player i chooses σi in order to maximize

uδi (σ−i, σi) = minp∈P (σ−i,σi)

∑
h∈ST p(h)uδi (h)

where p(h) is the probability with which the history h is observed according

to the probability distribution p. The strategy profile σ is an Ellsberg equi-

librium of G(δ, T ) if for all player i, and given σ−i, the strategy σi maximizes

the minimal expected payoff of player i. The strategy profile σ is a subgame

perfect equilibrium of G(δ, T ) if for all t < T and history ht ∈ St−1, the

restriction σ|ht of the strategy profile σ to the observed history ht is an Ellsberg

equilibrium of the game G(δ, T − t+ 1).

Any ex-ante payoff vector to a subgame perfect equilibrium strategy of the

finitely repeated game with discounting dominates the mixed strategy effective

maxmin payoff vector of the game G.

Lemma 22 Let G be a finite normal form game, δ < 1, T > 0, σ be a subgame

perfect equilibrium of G(δ, T ) and ν be the mixed strategy effective maxmin

payoff vector of the game G. Then, uδi (σ) ≥ νi for all i ∈ N .

Indeed, playing a prudent strategy in each period of the finitely repeated

game, at least one player of a given equivalence class can guarantee to herself

(and therefore to the whole class) her effective maxmin payoff.

Lemma 23 Let G be a finite normal form game. Any payoff vector that is

ex-post approachable by means of subgame perfect equilibrium strategies of the

finitely repeated game with discounting dominates the mixed strategy effective

maxmin payoff vector of the game G.

This lemma says that, if players are allowed to strategically make use of ob-

jective ambiguity, then, a necessary condition for a payoff vector to be ex-post

approachable by means of subgame perfect equilibria of the finitely repeated

game is that, the latter payoff vector dominates the mixed strategy effective

maxmin payoff vector of the stage game G. Indeed, if a payoff vector is ex-post

approachable by subgame perfect equilibria of the finitely repeated game, then,

it is ex-ante approachable by subgame perfect equilibria and thus dominates

the mixed strategy maxmin payoff vector.
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4.3 Main result and discussion

In this section I present the main finding of this paper. It is convenient to

introduce 2 definitions.

Definition 9 Let G be a finite normal form game and σ be a strategy profile

of the finitely repeated game with discounting G(δ, T ). The support of P (σ) is

the set of histories h ∈ ST such that there exists a probability distribution in

P (σ) that assigns a strictly positive probability to the history h.

Definition 10 The support of a strategy profile of the finitely repeated game

is the set of possible play paths.

Definition 11 Let G be a normal form game and x a payoff vector. The payoff

vector x is ex-post approachable by means of subgame perfect equilibria of the

finitely repeated with discounting if for any ε > 0, there exists δ < 1 and T such

that, for all δ ≥ δ, T ≥ T , G(δ, T ) has a subgame perfect equilibrium profile σ

such that
∥∥uδ(h)− x

∥∥
∞ < ε for all play path h ∈ ST in the support of P (σ).2

A payoff vector is ex-post approachable by mean of subgame perfect equi-

libria of the finitely repeated game if it can approached by subgame perfect

equilibria that have the following property. the discounted payoff to any play

path within the support of the strategy is closed enough to the given payoff

vector.

4.3.1 Statement of the main result

Theorem 6 Let G be a finite normal form game such that V ∗ 6= ∅. The

following are equivalent.

1. G has a complete Ellsberg decomposition.

2. Any point of V ∗ is ex-post approachable by means of subgame perfect

equilibria of the finitely repeated game with discounting.

3. The set of points of V that are approachable by means of subgame perfect

equilibria of the finitely repeated with discounting has a relative interior

point.

2For all payoff vector x = (x1, ..., xn), ‖x‖∞ = max1≤i≤n|xi|
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The most laborious part of the proof of Theorem 6 is to show that, under

the statement 1) of Theorem 6, it is possible to ex-post approach any feasi-

ble payoff vector of the game G that dominates the mixed strategy effective

maxmin payoff vector by means of subgame perfect equilibrium strategies of

the finitely repeated game. The role of Statement 1) here is to leverage the

behavior of players in the End-game, phase of equilibrium strategies of the

finitely repeated game where essentially (recursive) equilibrium profiles of the

stage game are played, see Lemma 25 and Lemma 26. As we do not assume

that the dimension of the set of feasible payoff vectors equals the number of

players, the block J (i) might contains more than one player. It is therefore not

immediate to make use of the payoff asymmetry lemma of Abreu et al. (1994) to

construct a suitable reward phase. Lemma 26 allows to independently reward

players and motivate them to be effective punisher during a punishment phase.

Moreover, as the time horizon is finite, the powerful payoff continuation

lemma of Fudenberg and Maskin (1991) does not apply. We obtain a version

of the latter lemma for finitely repeated games with discounting which says

that, for any positive ε, there exists uniform k > 0 and δ such that, any fea-

sible payoff is within ε of the discounted average of a deterministic path of

length k for any discount factor greater than or equal to δ, see Lemma 24.

Basically, the payoff continuation lemma for finitely repeated games provides

an uniform integer k such that, any feasible payoff vector x can be approxi-

mated by a deterministic path of the same length k. Appending finitely many

such deterministic paths, we obtain a deterministic path π whose discounted

average is closed enough to the payoff vector x and, at any (sufficiently) early

point of time, the continuation payoff of the path π is closed enough to the

payoff vector x.

In Section 4.5.1, given a feasible payoff vector ofG that dominates the mixed

strategies effective maxmin payoff vector, I construct a sequence of subgame

perfect equilibrium strategies of the finitely repeated game such that, ex-post,

all the possible corresponding sequences of discounted payoff vectors converge

to that target payoff vector.
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4.3.2 Discussion

While both necessary and sufficient, Statement 1) of Theorem 6 is weaker

than Smith’s (1995) necessary and sufficient condition. Indeed, as mixed Nash

equilibria of the stage-game are also Ellsberg equilibria, a complete Nash de-

composition (see Smith (1995) for a formal definition of Nash decomposition)

induces a complete Ellsberg decomposition. However, a complete Ellsberg de-

composition does not necessarily induce a complete Nash decomposition. The

three-player game whose payoff matrix is provided in Table 1.7 serves as an

illustration. In that game, each player has a unique mixed Nash equilibrium

payoff but many continuation equilibrium payoffs in Ellsberg actions (see Sec-

tion 1.4 for details).

For the game in Table 1.7, the classic models of finitely repeated games

in which players can employ only pure and mixed actions predict no coopera-

tion at all. Our model predicts that any feasible payoff vector that dominates

the mixed strategy effective maxmin payoff vector is approachable by means

of subgame perfect equilibria of the finitely repeated game with discounting.

Moreover, we are able to approximate the cooperative and Pareto superior

payoff vector (2, 2, 2) by means of a simple subgame perfect equilibrium of the

finitely repeated game. Thus, the use of imprecise probabilistic devices in the

finitely repeated game model can allow for an explanation of the emergence of

cooperation in finite repetitions of a non-cooperative game where the classic

models of finitely repeated games with pure and mixed strategies fail to do so.

As the Ellsberg extension of a finite normal form game is still a normal form

game, it might appear logical to apply an existing limit perfect folk theorem

[see, e.g., Benoit and Krishna (1984)] to the Ellsberg game and obtain the

set of payoff vectors that are ex-ante approachable by means of the subgame

perfect equilibrium strategies of the finitely repeated game. The previsions of

Theorem 6 and Lemma 23 of this paper are different in the sense that they

provide (under a weak condition) a characterization of the set of payoff vectors

that are ex-post (and thus ex-ante) approachable by means of subgame perfect

equilibrium strategies of the finitely repeated game. The difference between

the former and the latter sets of payoff vectors can be clearly observed in the

three-player game G, whose payoff matrix is given by Table 4.2.

In the Ellsberg extension Γ of the game G, each player has distinct Nash
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c d
a 0 0 0 1 −1 1

b −1 1 1 0 0 −1

c d
1 1 −1 −1 1 1
1 −1 0 0 0 0

e f

Table 4.2: Some Ellsberg payoff vectors are non feasible and an ex-ante ap-
proximation is vague.

equilibrium payoffs and no two players have equivalent utility functions. The

limit perfect folk theorem of Benoit and Krishna (1984) states that any payoff

vector that lies in the convex hull of the set of payoff vectors of the game Γ and

which dominates the pure minimax payoff vector (−1
2
,−1

2
,−1

2
) of the game Γ is

approachable by means of subgame perfect Nash equilibrium strategies of finite

repetitions of the game Γ [which is equivalent to being ex-ante approachable by

means of subgame perfect (Ellsberg) equilibrium strategies of finite repetitions

of G]. The payoff vector (−1
3
,−1

3
,−1

3
) is therefore ex-ante approachable by

means of subgame perfect equilibrium strategies of finite repetitions of the

Ellsberg game. Note that, ex-post, in each period of finite repetitions of the

game Γ, players receive payoffs as in the game G and it is not possible to

implement/approach the payoff vector (−1
3
,−1

3
,−1

3
) in the repeated game as

the ex-post sum of payoffs of players 1 and 2 is always greater than or equal 0.

More importantly, the payoff vector (−1
3
,−1

3
,−1

3
) does not belong to the set of

feasible payoff vectors of the game G. In addition, applying the existing limit

perfect folk theorems to the Ellsberg game does not guarantee that any feasible

payoff vector of the game G which dominates the mixed strategy effective

maxmin payoff vector of the game G can be approached by subgame perfect

Nash equilibrium strategy of finite repetitions of the Ellsberg game and whose

ex-post payoff vector is closed enough to the target payoff vector.

4.4 Conclusion

This paper presented a model of finitely repeated games with complete infor-

mation and perfect monitoring in which players can strategically make use of

objective ambiguity. In addition to the classic pure and mixed actions, Ells-

berg urns are available to players. An Ellsberg urn captures the quantity of

information a player might want to know and share about her intentions. The

main theorem provides a weak condition under which any feasible payoff vec-
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tor that dominates the maxmin payoff vector of the stage-game is achievable

via subgame perfect equilibria of the finitely repeated game with discounting.

This new model explains how players can sustain collusive payoff vectors for

some cases in which the classic models of finitely repeated games with pure

and mixed actions fail to explain the emergence of cooperation.

4.5 Appendix 4: Proofs

4.5.1 Sketch of the proof of Theorem 6

In this section, Given a feasible payoff vector that dominates the mixed strat-

egy effective maxmin payoff vector, I explain how to construct a subgame

perfect equilibrium strategy σ of the finitely repeated game with discounting

and whose ex-post payoff vectors is closed enough to the target payoff vector.

Let y ∈ V ∗. The construction of σ involves few ingredients. The most

important are the target path and the end-game-strategy. The target path is a

finite sequence of pure action profiles of the stage game. It is obtained by ap-

plying our Lemma 24 (payoff continuation lemma for finitely repeated games)

to the payoff vector y. The end-game-strategy corresponds to the very last

phase of the game. It is a family of subgame perfect equilibria of the finitely

repeated game. It allows to independently leverage the behavior of players in

the finitely repeated game, regardless of whether some players are equivalent

or not.

The strategy profile σ involves 5 phases. The first phase consists in some

conjunction of the target path. If a player unilaterally deviates early during

this phase, the strategy σ prescribes to start the second phase and thereafter

to go to the third phase.

The second phase is a punishment phase where a potential deviator i is

punished. There is no specific requirement for players of the block N\J (i)

while players of the block J (i) have to remain silent, that is completely am-

biguous. At the end of this phase, we record in a boolean vector α, the set of

players who were silent during the punishment phase. We prove that for large

discount factor, an ambiguity averse player of the block N\J (i) will find it

strictly dominant to remain silent during the punishment phase.
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The third phase serves as a compensation. Indeed, it might be the case that

the punishment phase is more severe than required and players of the block

J (i) may receive a negative ex-ante payoff in each period of the punishment

phase. The fourth phase serves as a transition. In the fifth phase, players are

credibly rewarded.

Note that, if no deviation from σ occurs in the repeated game, players will

follow some loops of the target path and then move to the end-game-strategy.

In Section 4.5.4 I show that for sufficiently long time horizon and large discount

factor, the strategy profile σ is a subgame perfect equilibrium of the finitely

repeated game and that the deterministic part of the resulting discounted av-

erage payoff will be close enough to y and the ambiguous part will goes to 0.

Now I proceed to the detailed proof of Theorem 6. To ease this proof, I

introduce three lemmata.

4.5.2 The payoff continuation lemma for finitely repeated

games

Lemma 24 For any ε > 0, there exists k > 0 and δ < 1 such that for all

x ∈ V , there exists a deterministic sequence of stage game actions {sτ}kτ=1

whose discounted average payoff is within ε of x for all discount factor δ ≥ δ.

Lemma 24 establishes that for any positive ε, one can construct uniform

k > 0 and δ such that, any feasible payoff is within ε of the discounted average

of a deterministic path of length k for any discount factor greater or equal δ.

This lemma allow to approach any feasible payoff vector by deterministic paths

of the finitely repeated game in presence of discount factor.

Proof. of Lemma 24. Let ε > 0 and y =
∑m

l=1 α
lu(al) ∈ V be a feasible

payoff, where al ∈ S for l = 1, ...,m. Assume that there exists m integers

q1, q2, ..., qm such that for all l = 1, ...,m, αl = ql
Q

where Q =
∑m

l=1 ql. Consider

the sequences {by,p}Qp=1 and {cy,τ}∞τ=1 defined as follows.

by,p = al if and only if
∑

l′<l ql′ < p ≤
∑

l′≤l ql′

cy,τ = by,p if and only if τ − p ≡ 0[Q].

To have a clear view of the construction of the sequences {by,p}Qp=1 and
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{cy,τ}∞τ=1, consider this simple example where m = 3, q1 = 2, q2 = 1, q3 = 4,

Q = 7, and therefore y = 2
7
u(a1) + 1

7
u(a2) + 4

7
u(a2). Table 4.3 provides the

value of by,p for p = 1, ..., 7 while Table 4.4 provides the value of cy,τ , τ ≥ 1.

by,p by,1 by,2 by,3 by,4 by,5 by,6 by,7

al a1 a1 a2 a3 a3 a3 a3

Table 4.3: Values of by,τ , τ ≥ 1

cy,τ cy,1 cy,2 cy,3 cy,4 cy,5 cy,6 cy,7 cy,8 cy,9 cy,10 cy,11 cy,12 cy,13 cy,14 ...
by,p by,1 by,2 by,3 by,4 by,5 by,6 by,7 by,1 by,2 by,3 by,4 by,5 by,6 by,7 ...
al a1 a1 a2 a3 a3 a3 a3 a1 a1 a2 a3 a3 a3 a3 ...

Table 4.4: Values of cy,τ , τ ≥ 1

We can observe that the undiscounted average payoff of the sequence {cy,τ}∞τ=1

is equal to 2
7
u(a1) + 1

7
u(a2) + 4

7
u(a2).

Going back to the general case, let l ∈ {1, ...,m}, Θ = AQ+B where A > 0

and 0 ≤ B < Q and consider

N(l, cy,Θ) = {τ | cy,τ = al}

and

β(l, cy,Θ) = 1−δ
1−δΘ

∑
τ∈N(l,cy ,Θ) δ

τ−1.

We have

1−δ
1−δΘ

∑
τ≤Θ δ

τ−1u(cy,τ ) =
∑m

l=1 β(l, cy,Θ)u(al)

and

β(1, cy,Θ) = 1−δ
1−δΘ

[
1−δp1

1−δ
1−δAQ

1−δQ + δAQ 1−δp
′
1

1−δ

]
where p′1 = min{B, p1};

β(2, cy,Θ) = 1−δ
1−δΘ

[
δp1 1−δp2

1−δ
1−δAQ

1−δQ + δAQ+p1 1−δp
′
2

1−δ

]
where p′2 = min{max{0, B − p1}, p2};
.

.

.
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β(m, cy,Θ) = 1−δ
1−δΘ

[
δp1+...+pm−1 1−δpm

1−δ
1−δAQ

1−δQ + δAQ+p1+...+pm−1 1−δp′m
1−δ

]
where p′m = min{max{0, B − p1 − ...− pm−1}, pm}.
As

limδ→1 β(l, cy,Θ) = pl
AQ+B

AQ
Q

= pl
Q+B

A

and

limA→+∞
pl

Q+B
A

= pl
Q

,

there exists Ay > 0 such that, for all A ≥ Ay, there exists δy,A < 1 such

that for all δ > δy,A, ∥∥ 1−δ
1−δΘ

∑
τ≤Θ δ

τ−1u(cy,τ )− y
∥∥ < ε

2

for all B, 0 ≤ B < Q. Let {B̃(y, ε
2
), y ∈ Y }3 be a finite open covering

of the compact set V where Y is the set of convex sum of stage game payoff

vectors with rational coefficients. Pose A = max{Ay, y ∈ Y }, k = Q(A + 1)

and δ = max{δy,A+1, y ∈ Y }. Let x ∈ V and y ∈ Y such that x ∈ B̃(y, ε
2
).

Take sτ = cy,τ for τ = 1, ..., k.

The next two lemmata explain how to leverage the behavior of players in

the very last phase of the game where essentially only stage game (recursive)

equilibrium profile are played.

4.5.3 The end-game-strategy

Lemma 25 Assume that the Ellsberg decomposition ∅ ⊆ N1 ⊆ ... ⊆ Nh of the

game G is complete. Then there exists φe > 0, T > 0, δ ∈ (0, 1) and for all

i ∈ N , there exists σi,1 and σi,2 two strategy profiles of the T−fold repeated

game such that

1. σi,1 and σi,2 are subgame perfect equilibria of the finitely repeated game

G(δ, T ) for all δ ∈ (δ, 1);

2. uδi (σ
i,1) > φe + uδi (σ

i,2).

3B̃(y, ε2 ) = {z ∈ V | ‖z − y‖∞ < ε
2}
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Lemma 26 Suppose that the stage-game G has a complete Ellsberg decompo-

sition. Then there exists φ > 0 such that for all p ≥ 0, there exists rp >

0, δ ∈ (0, 1) and a family {θp(γ) | γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}} of strat-

egy profiles of the rp−fold repeated game such that for all δ ∈ (δ, 1) and

γ ∈ {0, 1}n ∪ {(−1, · · · ,−1)}, θp(γ) is a subgame perfect equilibrium of the

finitely repeated game G(δ, rp). Furthermore, for all δ ∈ (δ, 1) i ∈ N and

γ, γ′ ∈ {0, 1}n we have

uδi [θ
p(1, γ−i)]− uδi [θp(0, γ−i)] ≥ φ (4.1)

uδi [θ
p(γ)]− uδi [θp(−1, · · · ,−1)] ≥ φ (4.2)

|uδi [θp(γ)]− uδi [θp(γJ (i)
, γ′
J\J (i)

)]| < 1

2p
. (4.3)

The proofs of Lemmata 25 and 26 are respectively similar to the proofs of

Lemmata 8 and 9 and are therefore omitted.

4.5.4 Proof of the Theorem 6

Proof of Theorem 6. Let G be a finite normal form game such that V ∗ 6= ∅.
Let’s shift the utility function of the game G to have the effective maxmin

payoff of each player equal to 0 and so that within the same equivalence class,

players, if many, have the same payoff function. This does not change the

strategic behavior of players.

Part 1. (1⇒2). Assume that the Ellsberg decomposition of the game is

complete. Let ε > 0 and y ∈ V ∗. I wish to construct δ < 1 and T > 0, and

for all δ ≥ δ and T ≥ T , a subgame perfect equilibrium strategy profile σT of

G(δ, T ) such that
∥∥uδ(h)− y

∥∥
∞ < 3ε for all history h in the support of P (σT ).

Apply the payoff continuation lemma (see Lemma 24) to ε and obtain k > 0,

δ0 < 1, and a deterministic path

πy = (s1, ..., sk)

such that

d(y, uδ(πy)) < ε
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for all δ ∈ (δ0, 1). For all δ ∈ (δ0, 1), let

y = limδ→1 u
δ(πy).

Obtain φ, r1 and θ1 with p = 1 from the Lemma 26 and let

u1,r1 [θ1(1, · · · , 1)] = lim
δ→1

uδ[θ1(1, · · · , 1)].

Let q1 > 0 and q2 > 0 such that

0 < q1kui(∆S) + q2r1ku
1,r1
i [θ1(1, · · · , 1)] <

q1k + q2r1k

2
yi for all i ∈ N

and

−2kρ+
q1k

2
yi > 0 for all i ∈ N

where

ρ = maxa∈A ‖u(a)‖∞.

Given q1, q2 and r1, choose r such that

−2(q1k + q2r1k)ρ+ rφ > 0.

Given q1 q2, r1 and r, choose p > 0 such that

q2r1k

2
yi −

r

2p
> yi −

r

2p
> 0 for all i ∈ N.

Apply the Lemma 26 to p and obtain rp and θp. Update q1 ← rpq1; q2 ←
rpq2; r ← rpr. The parameters φ, θ1, q1, q2, r, r1 and θp are such that

− 2q1kρ+ rφ > 0; (4.4)

yi −
r

2p
> 0; (4.5)

2kρ+ q1kui(∆S)+ q2r1ku
1,r1
i [θ1(1, · · · , 1)]+

r

2p
− (q1k+ q2r1k−k)yi < 0 (4.6)

and

− 2(q1k + q2r1k)ρ+ rφ > 0 for all i ∈ N. (4.7)

Let

π = ( πy, ..., πy︸ ︷︷ ︸
C+q1+q2r1 times

)
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Set α = (1, · · · , 1).

From now on, a deviation by a player from an ongoing path is called “early

deviation” if it occurs during the first Ck periods of the game. In the other

case, the deviation is called “late deviation”. Consider the strategy profile σ

of the finitely repeated game described by the following 5 phases.

P0 (Main path): At any time t, play the t th action profile of the path π. [If

player i deviates early, start the Phase Pi; if player i deviates late, start

LD. Ignore any simultaneous deviation.] Go to Phase EG.

Pi (Punish player i): Reorder the profile of actions in each upcoming cycle

of length k of the main path according to player i′s preferences, starting

from her best profile.

This phase last for q1k periods and each player of the block J (i) has to

remain silent (completely ambiguous). Each player of the block N\J (i)

can play whatever Ellsberg action she wants. [If any player j ∈ J (i)

deviates early, start Pj; if player j ∈ J (i) deviates late, start LD.]

At the end of this phase, for all j /∈ J (i), set αj = 0 if there is at least one

period of the punishment phase where player j was not silent (completely

ambiguous) and set αj = 1 otherwise. Go to Phase SPE.

SPE Follow q2k times the subgame perfect equilibrium θ1(1, · · · , 1). Go to

Phase P0.

LD Each player can play whatever action she wants till period (C+q1+q2r1)k.

At period (C + q1 + q2r1)k, set α = (−1, · · · ,−1) and go to Phase EG.

EG Follow r
rp

times the subgame perfect equilibrium θp(α).

Now, I show that given any history, there is no profitable unilateral and

single shot deviation if the discount factor is high enough.

c-1) It is strictly dominant for any player j /∈ J (i) to remain silent

during a punishment phase Pi.

As players are ambiguity averse and aim to maximize their worst expected

utility, they will individually find it strictly dominant to remain silent during
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any punishment phase. Indeed, if during a punishment phase (say Pi) player

j /∈ J (i) is silent, she receives at least

1. −1−δq1k

1−δ ρ during the punishment phase;

2. δq1k 1−δq2r1k

1−δ uδj(θ
1(1, · · · , 1)) during the SPE phase;

3. some payoff Uj(δ) up to the period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(1, αj)] in the Phase EG.

In total, she gets

−1− δq1k

1− δ
ρ+δq1k

1− δq2r1k

1− δ
uδj(θ

1(1, · · · , 1))+Uj(δ)+δ
c+(q1+q2r1)k 1− δr

1− δ
uδj [θ

p(1, αj)]

If player j is not silent during the Phase Pi, she receives at most

1. 1−δq1k

1−δ ρ during the punishment phase;

2. δq1k 1−δq2r1k

1−δ uδj(θ
1(1, · · · , 1)) during the SPE phase;

3. the same payoff Uj(δ) till period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ

[
uδj [θ

p(1, αj)]− φ
]

in the Phase EG,

see Lemma 26.

In total, she gets

1− δq1k

1− δ
ρ+δq1k

1− δq2r1k

1− δ
uδj(θ

1(1, · · · , 1))+Uj(δ)+δ
c+(q1+q2r1)k 1− δr

1− δ
[
uδj [θ

p(1, αj)]− φ
]

Thus, player j will find it strictly dominant to remain silent if

− 2
1− δq1k

1− δ
ρ+ δc+(q1+q2r1)k 1− δr

1− δ
φ > 0 (4.8)

As δ goes to 1, the left hand of the latter inequality goes to −2q1kρ+ rφ which

is strictly positive, see Equation (4.4). Therefore, there exists δ1 ∈ (δ0, 1) such

that the Inequality (4.8) holds for all δ ∈ (δ1, 1).

Now assume that δ ∈ (δ1, 1) so that, it is strictly dominant for any player

j /∈ J (i) to be silent on punishment phases. We wish to prove that, for suf-

ficiently large discount factor, σ is a subgame perfect equilibrium strategy of

the finitely repeated game.
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c-2) No early deviation from Phase Pi by a player j ∈ J (i) is prof-

itable.

If after l1k+l2 rounds in the Phase Pi player j ∈ J (i) deviates, she receives:

1. at most 0 from the beginning of the Phase Pi till the deviation period;

2. an ex-ante payoff δl1k+l2+1U1
j (δ) during the Phases Pj and the new SPE

phase;

3. some payoff U2
j (δ) till the period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(α)] in the Phase EG.

If player j does not deviates, she receives at least:

1. the ex-ante payoff U1
j (δ) + δq1k+q2r1k 1−δl1k+l2+1

1−δ uδi (π
y) till the end of the

new SPE phase;

2. the payoff Ũ2
i (δ) till period (C + q1 + q2r1)k;4

3. the ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ

[
uδj [θ

p(α)]− 1
2p

]
in the Phase EG, see

Lemma 26.

As yi − r
2p
> 0 [see Equation (4.5)], there exists δ2 ∈ (δ1, 1) such that for all

δ ∈ (δ2, 1), no early deviation from Phase Pi is profitable.

c-3) No early deviation from Phase P0 is profitable.

If during Phase P0, a player let’s say i deviates early, the strategy profile

σ prescribes to start the punishment phase Pi followed by the Phase SPE, to

update the boolean vector α and to go back to the Phase P0. For sufficiently

high discount factor, such a deviation is not profitable. Indeed, if player i

deviates early during Phase P0, she receives at most

1. ρ in the deviation period;

2. δ 1−δq1k

1−δ ui(∆S) + δq1k+1 1−δq2r1k

1−δ uδi [θ
1(1, · · · , 1)] in the punishment phase;5

4Recall that U2
i (δ) is the discounted sum of a deterministic sequence of payoffs and Ũ2

i (δ)
is the discounted sum over a permutation of the same deterministic sequence of payoffs.
Therefore, as δ goes to 1, both sums converge to the same limit.

5Recall that all players will be effective punishers.
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3. some payoff U2
i (δ) till the period (C + q1 + q2r1)k;

4. an ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(α)] in the Phase EG.

If player i does not deviate during the Phase P0, she receives at least

1. −1−δl
1−δ ρ till the end of the ongoing k−cycle (for some l ≤ k);

2. δl 1−δ
q1k+q2r1k−k

1−δ uδi (π
y)−δl+q1k+q2r1k−k 1−δ1+k−l

1−δ ρ corresponding to the Phase

Pi and the Phase SPE;

3. the payoff Ũ2
i (δ) till the period (C + q1 + q2r1)k;6

4. the ex-ante payoff δc+(q1+q2r1)k 1−δr
1−δ u

δ
j [θ

p(αJ (i), α
′
−J (i))] in the Phase EG.

From Lemma 26, the latter ex-ante payoff is greater than or equal to

δc+(q1+q2r1)k 1−δr
1−δ

(
uδj [θ

p(α)]− 1
2p

)
.

Therefore, as δ goes to 1, the limit of the profit from deviating is above bounded

by

2kρ+ q1kui(∆S) + q2r1ku
1,r1
i [θ1(1, · · · , 1)] +

r

2p
− (q1k + q2r1k − k)yi

which is strictly negative, see Equation (4.6).

Therefore, there exists δ3 ∈ (δ2, 1) such that for all δ ∈ (δ3, 1), no early

deviation from Phase P0 is profitable.

c-4) No late deviation is profitable.

If from an ongoing phase (P0 or Pi) a player let’s say j ∈ N deviates late,

she receives at most

1. 1−δq1k+q2r1k

1−δ ρ till the beginning of the phase EG;

2. the ex-ante payoff δq1k+q2r1k 1−δr
1−δ u

δ
j [θ

p(−1, · · · ,−1)] in the Phase EG.

If player j does not deviates, she receives at least

1. −1−δq1k+q2r1k

1−δ ρ till the beginning of the phase EG;

6Note that limδ→1 Ũ
2
i (δ) = limδ→1 U

2
i (δ).
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2. the ex-ante payoff δq1k+q2r1k 1−δr
1−δ u

δ
j [θ

p(α)] in the Phase EG, where α ∈
{0.1}n. From Lemma 26, the latter ex-ante payoff is strictly greater than

δq1k+q2r1k 1−δr
1−δ

(
uδj [θ

p(−1, · · · ,−1)] + φ
)
.

As −2(q1k+q2r1k)ρ+rφ > 0 [see Equation (4.7)], there exists δ4 ∈ (δ3, 1) such

that for all δ ∈ (δ4, 1), no late deviation is profitable.

Therefore, for all δ ∈ (δ4, 1) and given any history h of the repeated game,

no player has any incentive to deviate from σ|h. That is σ is a subgame perfect

equilibrium for all C > 0. Choose C high enough and δ ∈ (δ4, 1) such that

1−δk
1−δ(C+q1+q2r1)k+r ρ+ δ(C+q1+q2r1)k 1−δr

1−δ(C+q1+q2r1)k+r ρ < ε

For all T ≥ T and δ ∈ (δ, 1), let σT be the restriction of σ to the last

T periods of the finitely repeated game G(δ, T ). Let h be an history in the

support of P (σT ). We have∥∥uδ(h)− uδ(π)
∥∥
∞ < 2ε

and therefore ∥∥uδ(h)− y
∥∥
∞ < 3ε

for all T ≥ T and δ ≥ δ.

Part 2. (2⇒3). Assume that any point of V ∗ is approachable by means of

subgame perfect Ellsberg equilibrium of the finitely repeated game. As V ∗ is

non empty, V ∗ has non empty relative interior and statement 3) of Theorem 6

holds.

Part 3. (3⇒1). Assume that the Ellsberg decomposition of the game G

is incomplete. By induction on the time horizon, players of the block N\Nn

receive their unique stage game Ellsberg equilibrium payoff in each period of

the finitely repeated game. That is, any player of the block N\Nn has a

unique subgame perfect equilibrium payoff in the finitely repeated game. This

contradicts the statement 3) of Theorem 6.
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Chapter 5

Infinitely repeated games with

discounting. What changes if

players are allowed to use

imprecise devices.

Abstract: In this note, I present a model of infinitely repeated game with

complete information and perfect monitoring and where players are allowed

to employ pure actions, mixed actions as well as an additional device which

captures the willingness of a player to exercise her right to remain silent. I

show that any feasible payoff that dominates the maxmin (modulo some players

have equivalent utility functions) payoff vector is sustainable by means of pure

strategy subgame perfect Nash equilibria of the infinitely repeated game with

discounting.

5.1 Introduction

In game of conflict, cooperation is often observed. Even in a world where

binding agreements can not be written. Some examples are the prisoners’

dilemma, the peace negotiation game and the Cournot duopoly. The theory of

repeated game argues that, an agent involved in such conflicts may expect to

have a long-term relationship and, may abandon her short term interest and

behave nicely because she expects a some future reward or alternatively because

she fears future retaliations. Famous results of this theory are known as Folk

Theorems. A Folk Theorem saids to holds if the set of Nash equilibrium payoffs
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or alternatively the set of subgame perfect Nash equilibrium payoffs of the

repeated game includes any feasible payoff vector that dominates the minimax

payoff vector. The idea behind Folk Theorems is that, if the stage game is

rich enough [see for instance Benoit and Krishna (1984), Smith (1995) and

Fudenberg and Maskin (1991) for sufficient and necessary conditions], players

can construct credible punishment and reward paths and therefore sustain

collusive payoffs, using Nash equilibrium or subgame perfect Nash equilibrium

strategies of the repeated game.

Repeated game models till now have assumed that, in each period, players

predetermine their actions (possibly mixed) for the next period. This assump-

tion is quite restrictive as, on punishment path for instance, the player being

punished best responds to the punishment strategy setled by her fellow players.

To be efficient, punishers might find optimal to be impredictable and therefore

not predetermine their actions or the probability distributions their actions

will be issued from, and conceal their intentions in imprecise (and possibly

probabilistic) devices as Ellsberg urns (urns with unknown composition). Such

behavior creates an objective ambiguity to the target player and she can not

secure a payoff that is strictly greater than her maxmin payoff.

Indeed, if the punishers exercise their right to remain silent on a punish-

ment path and if in addition the target player is ambiguity averse (Ellsberg

(1961) illustrates that players do display aversion to ambiguity), then she will

respond to the silence of her fellow players by playing a prudent strategy and

will expect to receive her maxmin payoff in each period of the ongoing punish-

ment phase.

For some games, the maxmin payoff vector is strictly dominated by the

minimax payoff vector. In those cases, using the model presented in this paper,

it is possible to sustain some feasible payoff vectors that do not dominate the

minimax payoff vector by means of subgame perfect equilibrium strategies of

the infinitely repeated game. An illustration is the famous two-player zero sum

game rock-paper-scissors where player are allowed to choose only pure actions.

If randomization devices are available so that players can choose mixed actions,

then the three-player game whose payoff matrix is given by Table 5.1, and where

player 1 chooses the row (a or b), player 2 chooses the column (c or d) and
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player 3 chooses the matrix (e or f) is an example. In fact, each player has a

minimax payoff equal to 0 and a maxmin payoff equal to −1
2
.

c d
a 0 0 0 1 −1 1

b −1 1 1 0 0 −1

c d
1 1 −1 −1 1 1
1 −1 0 0 0 0

e f

Table 5.1: Payoff matrix of a three-player game where the mixed strategy
maxmin payoff vector is strictly dominated by the mixed strategy minimax
payoff vector.

In this paper, I analyze infinitely repeated games with complete informa-

tion, perfect monitoring and discounting. I allow players to exercise their right

to remain silent so that they can conceal their strategy in imprecise (and possi-

bly probabilistic) devices as Ellsberg urn. The main finding is that, any payoff

vector that dominate the effective maxmin payoff vector is sustainable by means

of pure strategy subgame perfect equilibrium of the infinitely repeated game.

5.2 The stage game

I represent a compact normal form game G by (N,S, u = (ui)i∈N) where

the set of players N = {1, ..., n} is finite and the set S =
∏

i∈N Si of actions is

compact1. Given a player i ∈ N , Si denotes the set of pure actions of player

i. The utility of player i given s = (s1, ..., sn) ∈ S is measured by ui(s). The

utility function u is assumed to be continue. For all players i, j ∈ N , player i

is equivalent to player j if there exists two real numbers βij and αij > 0 such

that ui(s) = αijuj(s)+βij for all s ∈ S. Denotes by ĩ the set of players that are

equivalent to player i. Let µi = maxj∈̃i maxpj∈Sj
mins−j∈S−j

ui(s−j, sj) be the

pure strategy effective maxmin payoff of player i and µ = (µ1, ..., µn) the

pure strategy effective maxmin payoff vector of the game G. The payoff vector

x = (x1, ..., xn) is feasible if there exists a sequence (λl)1≤l≤p of positive real

numbers and a sequence (al)1≤l≤p of profile of pure actions such that Σp
l=1λl = 1

and x = Σp
l=1λlu(al). Let V be the set of all feasible payoff vectors and V ∗ be

the set of feasible payoff vectors that strictly dominate µ.

1One can think of G as a finite normal for game or a mixed extension of a finite normal
form game.
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5.3 The infinitely repeated game

Let G be a compact normal form game which we will refer to as the stage game.

Given δ < 1, let G(δ) be the infinitely repeated game with discount factor δ

where players can use only pure actions. In the game G(δ), in each point of

time, each player observes the profile chosen in the previous period, receive her

payoff to the realized action profile as in the stage game and makes her choice

for the next period (player i might choose a single pure action from Si or decide

to remain silent and choose the whole set Si). The choice of a player at a given

period may depend on the observed history. Formally, a pure strategy of player

i in the game G(δ) is a map σi : ∪t≥1S
′t−1 → S ′i where S ′0 is the empty set,

S ′i = Si ∪ {Si} and S ′ =
∏

i∈N S
′
i . Given any history ht = (h1, .., ht−1) ∈ St−1,

the strategy σi of player i recommends to play σi(h
t) ∈ S ′i at period t, t ≥ 1.

In the repeated game G(δ), the discounted average payoff of player i ∈ N given

any play path π = (s1, ..., st, ...) ∈ S∞ is

uδi (π) = (1− δ)Σ∞t=1δ
t−1ui(s

t).

As players may exercise their right to remain silent in some periods, a pure

strategy profile σ = (σ1, ..., σn) might generate different play paths. Let P (σ)

be set of possible play paths that can be generated by σ. The profile σ is

a pure strategy Nash equilibrium of G(δ) if for all player i, and given σ−i,

the pure strategy σi maximizes the minimal expected payoff minπ∈P (σ) u
δ
i (π) of

player i. The strategy profile σ is a pure strategy subgame perfect Nash

equilibrium of G(δ) if for all t ≥ 1 and history ht ∈ St−1, the restriction σ|ht

of the strategy profile σ to the observed history ht is a pure strategy Nash

equilibrium of the game G(δ).

As argued in the introduction, remaining silent on a punishment path can

be more severe than employing minimax strategies. A target player, if she is

ambiguity averse, best responds to the silence of her opponents by playing a

prudent strategy, aiming to secure her maxmin payoff. Theorem 7 shows that,

in any pure strategy subgame perfect equilibrium of the infinitely repeated

game with discounting, each player receives at least her effective maxmin pay-

off.

Theorem 7 For all i ∈ N and δ ∈ (0, 1), player i’s average equilibrium payoffs

in G(δ) are not less than her effective maxmin payoff.
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Proof of Theorem 7. To start, normalize the payoffs of the stage game such

that ui = uj if i ∈ j̃ and the effective maxmin payoff of each player equals 0.

Let δ ∈ (0, 1) and σ be a pure strategy subgame perfect Nash equilibrium of

G(δ). Assume that there exists i ∈ N such that uδi (σ) < 0. Let j ∈ ĩ be a

player whose maxmin payoff is equal to 0. Let σ′j be the pure strategy of player

j in the infinitely repeated game G(δ) that consists in playing her stage game

prudent strategy in every period. In each point of time, player j receives a

positive payoff at (σ−j, σ
′
j). Therefore, we have uδi (σ−j, σ

′
j) ≥ 0. Furthermore,

uδj(σ) = uδi (σ) < 0. The deviation σ′j is thus profitable. A contradiction holds

as σ is a subgame perfect equilibrium.

Theorem 8 shows that the set of pure strategy subgame perfect equilibrium

payoff vectors of the infinitely repeated game includes any feasible payoff vector

that strictly dominates the effective maxmin payoff vector.

Theorem 8 For any x ∈ V ∗, there exists δ ∈ (0, 1) such that for all δ ∈ (δ, 1),

G(δ) has a subgame perfect Nash equilibrium strategy with deterministic play

path and with average payoff x.

The proof of this theorem is constructive and employs the payoff continu-

ation lemma of Fudenberg and Maskin (1991). I recall it below.

Lemma 27 (Lemma 2 of Fudenberg and Maskin (1991)) For any ε > 0, there

exists δ < 1 such that for all δ ≥ δ and every v ∈ V ∗ with vi ≥ ε for all i, there

is a deterministic sequence of pure strategies whose average discounted payoffs

are v, and whose continuation payoffs at each time are within ε of v.

Proof of Theorem 8. Let x ∈ V ∗. Apply the payoff asymetry lemma of

Abreu et al. (1994) and obtain a payoff asymetry family (yi)i∈N of elements of

V ∗ such that for all i ∈ N , player i prefers x to yi and any player j /∈ ĩ prefers

yi to yj.

Now choose ε > 0 such that

• 2ε < yii ,

• B(x, ε) ⊆ V ∗ ,

• B(yi, ε) ⊆ V ∗ for all i ∈ N and

• 2ρ

2ρ+(yji−yii)
<

yii−2ε

yii
for all i, j ∈ N such that i /∈ j̃,
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• x̃i > ỹii for all x̃ ∈ B(x, ε), ỹi ∈ B(yi, ε) and i ∈ N ,

• ỹji > ỹii for all ỹi ∈ B(yi, ε), ỹj ∈ B(yj, ε) and i, j ∈ N such that i /∈ j

where for all x′ ∈ V and ε′ > 0, B(x′, ε′) = {x” ∈ V | ‖x”− x′‖ < ε′} and

‖x′‖ = maxi∈N |x′i|.
Apply Lemma 27 to ε and obtain a discount factor threshold δε, a deter-

ministic path π = {s(t)} and for all i ∈ N a deterministic path πi = {si(t)}
such that

• the discounted average uδ(π) of the path π is equal to x ∀δ ∈ (δε, 1),

• for all i ∈ N , the discounted average uδ(πi) of the path πi is equal to yi

∀δ ∈ (δε, 1),

• at each point of time, and for all δ ∈ (δε, 1), the continuation payoffs of

the sequences π, π1, ..., πn are respectively within ε of x, y1, ..., yn.

Choose δ1 ∈ (δε, 1) and T1 such that

ρ(1− δ1) < ε

and

2ρ

2ρ+(yji−yii)
< δT1+2

1 < δT1
1 <

yii−2ε

yii
.

Those choices are possible as the set {δt | δ ∈ (δε, 1) and t > 0} is dense in

[0, 1]. There exists δ ∈ (δ1, 1), such that for all δ ∈ (δ2, 1), there exists T such

that the following inequalities holds.

• ρ(1− δ) + δtyii < −ρ(1− δt) + δtyji for all t ≤ T and for all i, j ∈ N such

that i /∈ j̃, (1)

• ρ(1− δ) + δT+1yii < yii − ε for all i ∈ N . (2)

Let δ ∈ (δ, 1). For any player i ∈ N , consider the strategy σi in the game

G(δ) defined by the 4 following phases.

1) Main path (P0): Play ai(1) in the first period and continue to follow the

path {ai(t)} till a unique player deviates. If player j deviates, go to phase Pj.

2) Punish player j (Pj): Remain silent for T periods. If a unique player j′

break the silence, then, set j = j′ and restart phase Pj. Go to phase Rj.
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3) Reward players of the block N\{j} (Rj): Start and follow the path

{aji (t)} till a unique player deviates. If player k deviates, set j = k and restart

phase Pj.

I now show that the strategy profile σ = (σ1, ..., σn) is a pure strategy

subgame perfect equilibrium of G(δ). Precisely, I show that, no pure strategy

one shot deviation from any phase leads to a higher continuation payoff.

a) If player i deviates during the phase P0, as she is ambiguity averse, she

receives at most ρ(1− δ) + δTyii as continuation payoff. If she does not deviate,

she gets at least xi − ε. From (2), such deviation is not profitable.

b) If player i deviates during the phase Pj where i /∈ j̃, she receives at most

ρ(1− δ) + δ[0.(1− δT ) + δTyii] as continuation payoff. If she does not deviate,

she gets at least −ρ(1− δt) + δtyji for some t ≤ T . From (1), such deviation is

not profitable.

c) If player i deviates during the phase Pj where i ∈ j̃, she receives at most

0.(1− δ)+ δ[x.(1− δT )+ δTyii] as continuation payoff, where x = ui(∆S). If she

does not deviate, she gets at least x(1 − δt) + δtyii for some t ≤ T . As t ≤ T

and x ≤ 0, we have that

δ[x.(1− δT ) + δTyii] < x(1− δt) + δtyii

and the deviation is not profitable.

d) If player i deviates during the phase Rj, as she is ambiguity averse, she

receives at most ρ(1− δ) + δTyii as continuation payoff. If she does not deviate,

she receives at least yii − ε. From (2), such deviation is not profitable.

The strategy profile σ is therefore a pure strategy subgame perfect equilib-

rium of G(δ) and the associated payoff is x.

5.4 Conclusion

Theorem 8 shows that, if players are allowed to conceal their actions in

imprecise devices, then the set of pure strategy subgame perfect equilibrium

payoff vectors of the infinitely repeated game with discounting will includes

the set of feasible payoff vectors that dominate the effective maxmin payoff

vector of the stage-game, a set which is larger (and even strictly larger for

a non degenerated set of games with at least three players) than the set of

equilibrium payoff vectors predicted by the classic model (see Wen (1994) for

a general result with the classic model).
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