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Abstract

The detection of road layout and semantics is an important issue in modern Advanced

Driving Assistance Systems (ADAS) and autonomous driving systems. In particular,

trajectory planning algorithms need a road representation to operate on: this repre-

sentation has to be spatial, as the system needs to know exactly on which areas it is

safe to drive, so that they can safely plan fine maneuvers. Since typical trajectories

are computed for timespans in the order of seconds, the spatial detection range needed

for the road representation to achieve a stable and smooth trajectory is in the tenths

to hundreds of meters. Direct detection, i.e. the usage of sensors that detect road

area by direct observation (e.g. cameras or lasers), is often not sufficient to achieve

this range, especially in inner-city, due to occlusions caused by various obstacles (e.g.

buildings and high traffic) as well as hardware limitations. State-of-the-art systems cope

with this problem by employing annotated road maps to complement direct detection.

However, maps are expensive to make and not available on every road. Furthermore,

ego-localization is a key issue in their usage.

This thesis presents a novel approach that creates a spatial road representation de-

rived from both direct and indirect road detection, i.e. the detection and interpretation

of other cues for the purpose of inferring the road area layout. Direct detection on

monocular images is provided by RTDS, a feature-based detection system that provides

road terrain confidence. Indirect detection is based on the interpretation of the other

vehicles’ behavior. Since our main assumption is that vehicles move on road area, we

estimate their past and future movements to infer the road layout where we cannot see

it directly. The estimation is carried out using a function that models the probability for

each vehicle to traverse each patch of the representation, taking into account position,

direction and speed of the vehicle, as well as the possibility of small past and future

maneuvers. The behavior of each vehicle is used not only to infer the area where road

is, but also to infer where there is not. In fact, observing a vehicle steering away from

an area it was predicted to go can be interpreted as evidence that said area is not road.

The road confidences provided by RTDS and behavior interpretation are blended

together by means of a visibility function that gives different weights to the two sources,

according to the position of the patch in the field of view and possible occlusions that

would prevent the camera to see the patch, thereby leading to unreliable results from

RTDS.
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The addition of indirect detection improves the spatial range of the representation. It

also exploits the scenarios of high traffic that are the most challenging ones for direct

detection systems, and allows for the inclusion of additional semantics, such as lanes and

driving directions. Geometrical considerations are applied to the road layout, obtaining

a distributed measure of road width and orientation. These values are used to segment

the road, and each segment is then divided into multiple lanes based on its width and

the average width of a lane. Finally, a driving direction is assigned to each lane by

observing the behavior of the other vehicles on it.

The road representation is evaluated by comparison with a ground truth obtained

from manually annotated real world images. As in most cases the entirety of road area

cannot be seen in a single image (a problem that human users share with direct detection

systems), every road is annotated in multiple different images, and the road portions

observed are converted into BEV and fused together using GPS to form a comprehensive

view of said road. This ground truth is then compared patch-wise to the representation

obtained by our system, showing a clear improvement with respect to the representation

obtained by RTDS alone.

In order to demonstrate the advantages of our approach in concrete applications, we

set up a system that couples our road representation with a basic trajectory planner.

The system reads real-world data, recorded by a mobile platform. The representation is

computed at each frame of the stream. The trajectory planner receives the current state

of the ego-car (position, direction and speed) and the location of a target area (from a

navigational map), and finds the path that leads to the target area with minimum cost.

We show that indirect road detection complements direct detection in a way that

leads to a substantial increase in spatial detection range and quality of the internal

road representation, thereby improving the smoothness of trajectories that planners can

compute, as well as their robustness over time, since the road layout in the representation

does not dramatically change only when a new road is visible. This result can help

autonomous driving systems to achieve a more human-like behavior, as their improved

road awareness allows them to plan ahead, including areas they do not see yet, just as

humans normally do.
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Chapter 1

Introduction

Chapter overview This chapter introduces the research topics presented in this work, and estab-

lishes some basic terminology. The chapter closes with an overview of the key contributions and structure

of the thesis.

1.1 Advanced Driving Assistance Systems

In the past century the car industry focused on improving crash safety by developing

passive systems, such as seat belts, ABS, Air Bags, etc. Recent technological advance-

ments (especially in electronics and informatics) allowed to move the main attention

to ”intelligent” active systems, which are called Advanced Driving Assistance Systems

(ADAS). These systems have two main purposes, first and foremost, to increase safety

by preventing dangerous situations and road casualties. In fact, cars are the means of

transport that produce the most fatalities in the world, even though the figures have

significantly decreased (especially in the western world) over the last 50 years (Jacobs

& Aeron-Thomas, 2000), thanks to the aforementioned systems. The second purpose is

to increase the comfort for the driver, especially in common situations, where driving is

tedious or annoying, like in traffic or on the daily commute. This can be achieved by

letting the system take partial control of the vehicle and allow the driver to spend their

time freely during the ride.

In order to be able to take over driving tasks, these systems need to have an under-

standing of the scene they operate on. When they are on the road, they need to detect

and recognize the elements that are present or act in their environment, such as other

vehicles, pedestrians, buildings, obstacles, curbs, and the road itself (see figure 1.1 as an

example). The amount of awareness required for driving assistance systems depends on

the complexity of the task, and has therefore increased in recent years. For example, an

ABS only needs data about the ego-car itself to be effective. Such data can be collected

by simple sensors on the wheels. The system also needs actuators to correct the breaking

of the car, in case the wheels lock. A more complex system is ACC (Advanced Cruise

1



2 Chapter 1. Introduction

Figure 1.1: Above: A typical road scene as seen by a camera. Below: Highlight of

the elements that an ADAS might need to detect; the ego-lane (light green), the other

lane (dark green), opposite lanes (light blue), lane markings (yellow), curbstones (violet),

other vehicles (red), pedestrians (orange), and traffic lights (dark blue).

Control), whose function is to manage the speed of the ego-car in a way that keeps the

distance to the vehicle in front. It detects the car directly in front of it, its position

and its speed (usually done by radar or camera), and has to be aware of the speed of

the ego-car itself. The system needs a simple logic to react to variations in speed of

the object in front (it does not even need to recognize it as a car) in order to adjust

the ego-car speed accordingly. Another common ADAS is a lane keeping system, that

makes sure that the ego-car does not leave its lane. This system needs to detect road

and be able to segment it based on e.g. lane markings (that also need to be detected and

recognized), for which a camera is commonly used. It must be aware of the direction of

motion of the ego-car and its dynamics. It also needs to know how to safely steer the

ego-car, and have actuators able to do so.

If we want to progress further, we should shift the focus from correcting a risky

behavior to preventing it. This is in fact the long term goal of ADAS research. In order

to accomplish it, an ADAS needs to be able to predict future situations, by reasoning on

the current and past scenes. For example, consider a predictive braking system, which

predicts a possible collision a few seconds in advance and reduces the speed of the ego-

car safely to prevent it. It will need to be aware of all of the elements mentioned above,

with the addition of all the road actors in the vicinity, and it will need to understand
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relations between those elements in the scene. The detected cars will need to be related

to their lanes, in order to predict their motion and to understand if they represent a

danger for the ego-vehicle. Additionally, such a system would need an extended detection

range, because the events that it has to predict would depend on entities or objects

that may be far away, since they can move at significant speed and cover the distance

in those few seconds. As a further step, such a system would need to have a driver

behavior model to understand the maneuvers made by the humans in the scene. If we

want to use this system in inner city, we also want it to warn us about pedestrians

potentially crossing the road. In this case it would need to be able to not only detect

the pedestrians and correctly classify them (i.e. understanding that the detected objects

are pedestrians), but also recognize that a pedestrian is likely about to cross the road in

front of the vehicle. It might also be necessary to communicate its reasoning to the driver

via an HMI. These kind of ADAS will be a step further towards autonomous driving

systems. Fully autonomous driving will need to manage the ego-car on the short term,

by predicting immediate risks and preventing them, and on the long term, by planning

routes and trajectories to reach the destination. Performing these tasks will require all

of the resources already mentioned, plus others, such as for example navigational maps.

Roads are an extremely dynamic environment. For this reason it is very important

for ADAS to detect its elements as early as possible: early detection can help to predict

the trajectory of the other vehicles, to evaluate risks associated to other traffic objects

and to plan longer and smoother trajectories for the ego-vehicle itself. Regarding ego-

motion, we can distinguish three levels of planning, each acting on a different time scale

and thus requiring a different detection time horizon. The lowest level is the reaction to

unexpected events, where a system has to plan short term maneuvers and corrections. It

has to deal with a very short time horizon (max. 1-2 seconds) and requires high spatial

accuracy, that is necessary to safely avoid obstacles or correct trajectories that were

computed previously with a lower spatial accuracy. This level is managed using a wide

array of sensors (e.g. lasers, cameras, radar), that detect road and objects by sensing

them directly with high accuracy but limited detection range in terms of distance. For

example, emergency breaking systems have to operate at this level, since their purpose

is to detect close objects with high reliability. Cruise control and lane keeping systems

also operate mainly at this scale, as they just need to react to changes in speed of the

preceding vehicle and to changes in direction of the lane itself. The highest level is route

planning, whose goal is to pick the most efficient roads in a network to reach a given

destination. It has to deal with a time horizon of minutes or even hours, but it does not

require high spatial accuracy. In fact, the most important information at this level is

the topology of the roads and other properties, like the number of lanes, their direction,

their speed limit, their average traffic, and so on. Modern ADAS cope with this level by

using offline navigational maps, that provide knowledge of the road ahead for a virtually

unlimited time horizon, and the information they provide is exactly the kind that is
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needed for this level of planning. Finally, there is a mid-level between the two above. It

is the one that plans trajectories, and deals with time horizons of a few seconds. This

level needs spatial knowledge of the road, as it has to make sure the planned trajectory

stays on it, but it also needs higher-level information (for example, it needs to compute

the short-term destination of the maneuver). State-of-the art control systems cope with

this level of planning by using a mix of all the resources mentioned above (Bacha et al.,

2008)(Miller et al., 2008)(Urmson et al., 2008). The result, however, is far from optimal,

since on one hand the conversion of map information from topological to spatial is not

trivial and causes high uncertainty, and on the other hand the accuracy of direct road

detection is not as good as desired at the spatial horizon needed for this time scale.

The understanding of the environment that a system needs is often achieved by build-

ing an internal representation of the environment, upon which the system can make its

computations. Environment representations can have very different forms, depending

on the purpose they serve. They differ in what they represent and in how they represent

it. The traffic environment has many aspects that a system might need to represent.

There is the road area itself, but there are also curbs, pavements, traffic signs, as well as

other road actors, e.g. vehicles and pedestrians. Even an apparently simple entity like

road can be represented in various ways: if the purpose is route planning, road is mostly

represented as a topology of road segments, as the representation is needed purely to

choose the most efficient sequence of roads, which is a problem that is commonly solved

by using graphs. If the purpose is obstacle avoidance, roads need to be represented

spatially, as the system must know exactly the spatial relation between the obstacle and

the ego-car in order to both assess the risk and react accordingly. In the latter case, the

representation can treat space as a discrete entity, by using a grid-based format, or treat

it as continuous, by using analytical functions, e.g. spline curves. A representation can

also focus on different aspects of road terrain. It might target only free space, which is

the part of the road ahead that is not occupied by obstacles or other actors. Conversely,

it might target the whole road area, regardless of its availability. Lastly, it might even

target any road-like area, that is any drivable terrain that is or is not formally part of the

road, like parking spots. All these different varieties of ”road” can be part of the scope

of a representation, depending on the purpose of the system that uses it. Additionally,

road area can also have multiple semantics. It can usually be divided in multiple lanes,

each with a driving direction assigned. Certain roads, or parts of them, can be forbidden

(e.g. emergency lanes in highways), or can have different speed limits. This additional

information can be useful for an ADAS and should definitely be available for autonomous

driving vehicles.

The data used to build a representation can be provided by external sources (e.g.

annotated maps), or taken on site by means of sensors. A typical issue of many modern

ADAS that has been addressed only lately, is that if different systems are on the same

car, they often use different sensors and separate representations. This approach is not
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optimal, as fusing information between different sources can lead to a better understand-

ing of the scene. Multiple ADAS should share their internal representation, and build

it using all the available resources. Furthermore, it has to be noted that sensors are

a limited resource: they can be expensive and they occupy valuable space in the car.

Car manufacturers need to consider these factors when deciding which and how many

sensors their cars should be equipped with. From this perspective, it is clear that having

redundant sensors is desirable on one hand, as it provides more reliable information, but

undesirable on the other, as it can be expensive and cumbersome. Therefore, ADAS

should exploit all available information to the fullest of its potential, and that means

also exploring new ways to extract additional information from the same sensor signals.

This is one of the reasons that leads to the concept of indirect detection, that we define

as inferring information by reasoning upon related entities that have been detected. This

concept is often used by human drivers: if a vehicle in front of us brakes just before a

zebra crossing, we can assume that there are pedestrians crossing the road, even if we

cannot see them as they are occluded by the vehicle itself. Indirect detection allows us

to detect entities using sensors that are meant to detect something else, or to expand the

detection range of our sensors, detecting entities that are too far away by reasoning upon

closer entities that are easier to detect. The ability to use different resources to detect

the same entity, and at the same time to detect more entities with the same resource,

increases the overall detection range of the system and allows for a certain degree of

redundancy without the need of additional sensors, thereby increasing the reliability of

the internal representation.

1.2 Motivation

As mentioned in the previous section, planning at a mid-level time horizon is a challenge

for autonomous driving systems, as neither of the resources used for the other two

levels (direct detection and navigational maps) is optimal for it. The insufficient spatial

accuracy of the direct detection methods at a mid-level time horizon is due to various

reasons. While the ego-vehicle is moving, a time horizon of a few seconds translates to a

spatial range of tenths of meters. The longer the range is, the lower the accuracy. Firstly,

every sensor has hardware limits (e.g. camera resolution) and their performances get

naturally worse with distance. Secondly, the nature of road environment itself, where

occlusions are very frequent and are a key aspect of the scenario, provides considerable

challenges to all direct detection systems: the traffic can hide large parts of road from

our field of view (FOV), and the same is true for buildings and other obstacles, in

particular at intersections and curves. The parts of road that are hidden by occlusions

get larger with the distance, so that the farther away the road we look at is, the likelier

it is that our sensors cannot sense it at all. It is important to note that all the problems

mentioned above are most frequent in inner city environments rather than in more
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Figure 1.2: Typical urban intersection as seen by a camera (above). Same scene after

road and object detection (below).

simple environments like highways, which is one of the reasons why commercial ADAS

still struggle to perform in inner city as reliably as they can currently do on highways.

Humans deal with occlusions in multiple ways. In most cases, we can understand the

layout of a road even if we cannot see it. If we see a scene like the one in figure 1.2 we

immediately recognize that the sudden enlargement of the road ahead is just part of an

intersection, and that we can expect there to be roads on both sides. Our understanding

comes from our own experience: we know how a typical road intersection looks like,

and the traffic lights, the lane markings and even the disposition of the buildings on the

left are all strong evidence of the presence of an intersection. This kind of reasoning

however is not trivial for an AI that bases its understanding on detecting directly the

road. The intersection itself can barely be seen at all, because most of it is occluded

by the car in front of us, and the part that is visible to us is far ahead, at a distance

where most direct detection method struggle with. Even our own eyes, that have much

better performances than state-of-the-art computer vision methods at this range, can

just get a glimpse of the road going to the right, even if said road is not occluded at all.

However, we can be fairly confident that there is indeed a road there, because we can

see that car D has just turned right at the intersection. This reasoning is not limited to

road area only. Even if we cannot properly see the traffic light but vehicle C in front of

us stops, we can assume that it is red. If we can see that the traffic light is green but the

vehicle still brakes, we can assume that there could be an obstacles on the road in front
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Figure 1.3: Urban intersection in two different instants. The appearance of the car from

the left side allows us to infer the presence of a road there.

of it. As a further example, figure 1.3 shows a typical inner city intersection. We as

humans can easily recognize it as such due to our driving experience, but an autonomous

system would not be able to notice the two side roads and only detect the one in front

of us, due to the buildings occluding most of the scene. In fact, the large shadows on

the left side and the surface difference on the road itself make it a significant challenge

for any autonomous system to properly detect even the non-occluded road. However, at

some point the intersection is traversed by a car, coming from the left and going right.

We normally interpret the appearance of that car in two ways: firstly, the car must be

coming from an occluded road on the left. Secondly, the car is likely heading towards

an occluded road on the right. The behavior of the car becomes then evidence that

there is indeed a drivable road on both sides of the intersection, but this happens only

because we are interpreting it. We refer to this concept as ”Behavior Interpretation” in

this thesis.

As explained above, we can exploit the fact that we are not alone on the road, and an

AI should be able to do it as well. In fact, every other driver sees a different scene from

the one we do, and has therefore a slightly different understanding of the environment,

since they can sense different portions of the environment. For example, a car driving on

one of the side roads can see its road but cannot see ours, or a car that is coming from

our opposite direction cannot see what lies behind us but does know the road it just

went through, while we cannot see it yet. Hence, although every vehicle on the road can
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potentially occlude our field of view and reduce the information we can gather directly,

that information is not lost, because it is retained in the environment representation of

those other vehicles (be it that of human drivers or AIs). This concept is one of the main

motivations of all the systems that use or plan to use car-to-car communication: the idea

is that all vehicles in the area would be able to share their representation and fuse it

into a full understanding of the environment. However, this approach presents numerous

challenges. First of all, it requires multiple cars to have the same system installed, or at

least multiple compatible systems. Furthermore, establishing a communication protocol

between multiple cars is not a trivial task, and it would probably require to set up ad hoc

infrastructures on the road to serve as communication hubs. Finally, data-security and

privacy is an issue that needs to be taken into account. For this reason we want to focus

our efforts on how to retrieve at least part of the information held by the other vehicles

as an independent system. Our problem resembles a classical system’s theory problem:

we have a black box (an unknown vehicle) that has an internal state (that includes

its environment representation) that we want to estimate from outside. Exactly as it

happens for usual systems, the vehicle has an output that we can observe: its behavior.

In fact, the behavior of any car depends on its representation, just as the output of a

dynamical system depends on its state, although the nature of this dependency, as well

as the shape of the output, are not as straightforward as in the latter case. Following

this reasoning, a possible way to retrieve some of the lost information and estimate their

internal representation is by observing and interpreting their behavior. Unfortunately,

their full representation cannot be recovered, since their behavior is affected only by part

of it, but the recovered part might still be significant for us. In fact, since it is inferred

from the motion of vehicles, it is reasonable to think that such information could be

especially significant for the motion of our vehicle too. Following this reasoning, we

expect the retrieved information to be relevant for planning the motion of the ego-car.

1.3 Aim of the Thesis

In this thesis we present a novel probabilistic framework for a 2D grid-based spatial road

representation, which uses a novel indirect detection approach, based on the considera-

tions discussed in the previous section, coupled with an already existing direct detection

method. The representation consists of a regular square grid, where every square (which

we call ”patch”) holds a probability of being part of road area. The indirect detection

uses the motion of other vehicles in a scene as a cue to infer road probability, and it

is based upon the position and velocity of the vehicles in the scene, features that at

mid-range can be estimated with more reliability than road area itself (Petrovskaya &

Thrun, 2009). As a direct detection algorithm, we use the SPRAY-based visual road

terrain detection system (RTDS) published in (Fritsch, Kühnl, & Kummert, 2014). We

chose this system for its good performances in the KITTI benchmark (Geiger, Lenz, &
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Urtasun, 2012), but any kind of direct detection system providing spatial road confi-

dence values can be used in this framework. The two sources (direct and indirect) are

fused together patch-wise, based on consideration on the reliability of direct detection

and potential occlusions detected.

Since it exploits the vehicles in the scene, the indirect detection approach shows the

biggest advantages in those situations that are most challenging for direct detection

systems, and vice-versa. Therefore, fusing the two sources together allows our system to

minimize the flaws of both. The framework can be expanded by adding semantics to the

road itself. In particular, we show how to infer the lane layout and the driving direction

of each lane by geometrical considerations and by further reasoning upon the behavior

of the other vehicles.

In order to evaluate the improvement in road detection provided by the addition

of our indirect approach, we compare the performances of our full framework against

those of a baseline system featuring direct detection only. The performance is computed

on real-world recordings based on a manually annotated ground truth. Furthermore,

we set up a system that uses our framework and couples it with a trajectory planner,

and compare the trajectories obtained by the full system against those obtained with

the baseline system. The planner builds a tree of spatial nodes and uses a tree-search

algorithm to find the path with the minimum cost that leads to a target area defined

by the user. The evaluations show that our approach improves significantly the road

detection with respect to the baseline performances. It can enhance the detection of

roads in intersections, and can detect side roads that lie behind occlusions, invisible to

any direct detection system. Furthermore, it allows to compute trajectories that are

more spatially accurate and more stable over time compared to the ones obtained with

the baseline representation.

1.4 Outline

The remainder of this thesis is organized as follows: chapter 2 will present the literature

related to the topic. The following chapters will detail the theoretical framework for road

representation that we designed. Chapter 3 will focus on road probability estimation,

while chapter 4 will deal with lanes and their driving directions. Chapter 5 will present

the concrete system that we implemented to test our framework, and chapter 6 will show

and discuss the experiments we ran on it. Finally, chapter 7 will wrap up the thesis with

a discussion about the results of the thesis and future work.





Chapter 2

Related Work

Chapter overview This chapter provides an overview of the state-of-the-art of autonomous driving,

in particular in the three topics that are directly relevant to this thesis: how to perform road detection,

how to represent the road environment, and how to plan trajectories on it.

Current state-of-the-art autonomous vehicles employ accurately annotated lane-level

maps to obtain road environment information. For these systems, the main problem

to solve is self-localization and pose estimation (Matthaei, Bagschik, & Maurer, 2014).

In fact, the vehicles competing in the DARPA Urban Challenge 2007 carried multiple

LIDARs, RADARs, as well as high-end GPS and IMU sensors, but were also provided

with a detailed digital map of the road network, including updated aerial images (Bar

Hillel, Lerner, Levi, & Raz, 2014). The main purpose of the sensors was to localize the

ego-car within the maps, and to detect obstacles and other traffic participants.

In 2013, Daimler performed the BERTHA experiment (Franke et al., 2013). BERTHA

was a Mercedes S-Class with close-to-production sensors that drove autonomously along

the 100 km long Bertha Benz Memorial Route, between the German cities of Mannheim

and Pforzheim. This experiment also relied on accurately annotated digital maps, and

used cameras, radar and high precision GPS sensors to localize itself and to match the

sensed environment to the expected one. Although this approach did work well, it is

not feasible for commercial systems to rely only on annotated maps and high quality

localization systems, as it would be too expensive and not flexible enough. Onboard

environment perception performed with affordable sensors would be a more viable option.

Thus, the main problem is to reliably and accurately detect the environment, and to

build an internal representation of it.

2.1 Road Detection

Road detection is a key issue for modern ADAS. The concept of Road has multiple

aspects. In particular, it has a physical aspect (physical boundaries, e.g. curbs, and a

drivable surface) and a regulatory aspect (formal boundaries and areas, e.g. road mark-

11
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ings, emergency lanes, etc.). An ADAS may need to focus on both aspects, especially

for autonomous driving purposes, where the aim is to understand not only where the car

can drive, but also where it should drive. Over the years, different classes of methods

have been developed with the aim of making road detection as accurate and reliable

as possible. We can distinguish two main classes of road detection: direct and indirect

methods. Direct methods rely on sensing the road directly, e.g. a camera actually seeing

the road, or a laser hitting the road. Conversely, indirect methods detect road by sensing

something else, e.g. other vehicles.

2.1.1 Direct Detection Methods

Direct road detection algorithms can be divided into two categories, marked and un-

marked. Marked road detection infers road area by detecting lane markings and applying

prior knowledge about road geometry (Weigel, Cramer, Wanielik, Polychronopoulos, &

Saroldi, 2006). It is most commonly used in simple and highly structured environments

like highways. Unmarked road detection systems instead can infer road by observing

low-level visual features, such as color, texture and elevation.

Marked road detection usually aims to model lane markings as a spline curve, in order

to obtain a solid lane or road boundary from detecting part of the lane marking itself, and

to help the detection in subsequent frames. For example, (Wang, Shen, & Teoh, 2000)

proposes interpolating lane markings using Catmull-Rom splines, which hold several

good properties. They allow for arbitrary shapes, they generate continuous and smooth

curves, and they are locally controllable, i.e. small changes in a control point position

cause changes in shape that are limited to the surroundings of that point. Furthermore,

their two coordinates x and y can be decoupled, allowing for a different parametric

representation of the two. The approach presented is visual-based and involves several

steps. First, the vanishing line vertical coordinate is estimated, from which they start

extracting control points (detected by a simple edge detection filter). The control points

are determined by employing a lane model to compute the likelihood that each edge

point belongs to a possible lane marking. After the extraction is completed, the spline

curves are finally computed. (Jung & Kelber, 2004) proposes a different lane model,

where images are split into a near- and a far-field through a horizontal threshold. In

near-field, lane markings are modeled with a linear function, while in far-field they are

approximated with a parabolic function. This approach is simpler but provides a model

that is accurate enough for many applications.

Unmarked road detection is usually performed by using pixel-level feature-based clas-

sification. It is often based on camera images, where features can be computed from color

or texture, but it can also be achieved by using other sensors. For example, (Caltagirone,

Scheidegger, Svensson, & Wahde, 2017) employs a fully convolutional neural network to

detect road at pixel level by using only LIDAR-based point cloud. From this point cloud,

the approach builds a top-view representation encoding six basic statistics on each 0.1
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x 0.1 cell. The statistics used are: number of points, mean reflectivity, and mean, stan-

dard deviation, minimum and maximum elevation. Six top-view images are generated,

encoding each statistic, and fed as inputs to the network, which outputs a road confi-

dence map. The approach, due to its usage of only LIDAR data, was independent from

lighting conditions and could work in real time, giving state-of-the-art performances.

Researchers have also explored the possibility to realize hybrid approaches by com-

bining low-level features with contextual cues and priors knowledge. In this direction,

(Alvarez, Lopez, Gevers, & Lumbreras, 2014) presented an approach to estimate road

priors (e.g. road type, driving direction, number of lanes) from geographical informa-

tion (by using GPS data and a road database). Subsequently, they extract a set of

low-level features (e.g. color) and a set of five contextual cues. These were horizon line

height, vanishing points location, lane markings, 3D scene layout (i.e. the segmentation

between sky, vertical surface and ground pixels), and road shape (classified using a Sup-

port Vector Machine trained on multiple images). Finally, they use a generative model

to combine all these cues and priors, obtaining a road detection method that is robust to

varying scenarios. Another work that exploits prior knowledge is (Brust, Sickert, Simon,

Rodner, & Denzler, 2015), which proposed an image-based convolutional neural network

that detects road (and other semantic entities such as buildings, pavements, cars, etc.)

by using visual features together with the normalized position of each patch within the

image. This approach arises from the observation that the position of different cate-

gories is not uniformly distributed in the typical image (e.g. road is usually located in

the lower part, the sky is at the top, etc.). The inclusion of position information led to

a significant performance improvement over other state-of-the-art methods.

The road detection system that we use in this work is the Road Terrain Detection

System (RTDS) presented in (Fritsch et al., 2014). This method consists of two stages.

The first stage includes three base classifiers, which extract local visual appearance prop-

erties, such as color and texture. A base road classifier is specialized in generating high

confidences on road-like area and low confidences on non-road terrain. A base boundary

classifier detects boundaries between road-like area and adjacent regions, e.g. sidewalks,

traffic islands, turf. A lane marking classifier detects lane markings by employing a

dark-light-dark filter. All these three classifiers output confidence maps that are fed to

the second stage. The second stage analyzes spatial ray features (SPRAY) that are com-

puted on a set of uniformly distributed base points from the confidence maps obtained

by the three base classifiers. These features are based on lines (rays) starting from each

base point along a fixed set of R directions. Along each ray the system computes the

integral of the confidence values (which they call ”absorption”). A set of thresholds T

is defined, and the distance ρ at which the absorption hits each threshold is taken as a

feature. The process is executed for each base points, so that at the end of the feature

generation each base point has an R × T feature vector. Additionally to these ”indi-

vidual” SPRAY features, another set of features, ”ego”-SPRAY features, is computed.
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This kind of feature uses the same approach, but applies it to the lines that connect

each base point to the ego-car position. Finally, another classifier performs road terrain

classification using the set of SPRAY features obtained above as inputs.

The need of an evaluation benchmark for direct detection methods led to the develop-

ment of KITTI (Geiger et al., 2012), a public computer vision benchmark for the tasks

of optical flow, visual odometry and 3D object detection in real-world road environment.

KITTI was recorded using a mobile platform provided with a frontal monochrome and

stereo camera, a 360 deg Velodyne laser scanner and a GPS localization system. The

scenes were recorded in the city of Karlsruhe, Germany. KITTI has quickly become the

most popular benchmark dataset for road detection, but since it was created with direct

detection in mind, the recorded scene are not well suited to evaluate indirect detection

approaches.

2.1.2 Indirect Detection Methods

Due to the challenges that direct detection methods face in complex environments, re-

searchers have started developing alternative methods to infer the environment layout

without sensing it directly, which are what we call indirect detection methods. The

most promising indirect cue that has been investigated is the behavior of other entities

in the environment. This is because other vehicles are usually easier to detect than road

itself or other visual cues, and their behavior is intrinsically related to the environment

layout. Initially, the behavior of vehicles was the target to be inferred, and the road (or

the environment in general) was the cue, often helped by prior assumptions about the

generic behavior of vehicles in traffic. For example, behavioral assumptions have been

exploited to improve the tracking and predicting the behavior of vehicles (Alin, Butz, &

Fritsch, 2011). This work introduced a grid-based population code based on a spatially

distributed hidden Markov model. The approach used lane information, together with

the assumption that vehicles tend to stay on their lane, to estimate and predict current

and future position of a vehicle during overtaking maneuvers in a simulated environment.

Behavioral assumptions have also been used to predict vehicles motion at intersections

(Liebner, Baumann, Klanner, & Stiller, 2012). Here, the authors employ an Intelligent

Driver Model to estimate the observed vehicle intent by its speed profile approaching the

intersection. The model has been developed to take into account the possible presence

of a preceding vehicle, that has an influence on the speed profile of the analyzed vehicle.

The approach could discriminate between three behaviors: go straight, turn right, stop

before turning right. The geometry and location of the intersection had to be known

beforehand for the approach to work.

Information about context can be also used to classify the related danger of pedestrians

or vehicles. For example, (Weisswange, Bolder, Fritsch, Hasler, & Goerick, 2013) focused

on the assessment of risky behavior from detected vehicles in the scene. This approach

classifies all detected vehicles as risky or not risky for the ego-vehicle, by estimating their
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position, speed and orientation with respect to the ego-car and to the detected road area.

In order to evaluate the risk associated with each vehicle, they employ a decision tree to

analyze the situation, which takes into account different estimated values such as relative

position and time to contact between ego-car and vehicle, type and orientation of the

vehicle and its distance to road area if it is outside of it.

(Bonnin, Weisswange, Kummert, & Schmüdderich, 2014) pointed out that the best

inference quality is obtained with narrow-scope approaches, and thus proposed a general

context-based approach, that combines multiple classifiers for different scopes (broad

and narrow), and selects them based on the situation, employing a scenario model tree

(SMT). The SMT manages the various classifiers, and handles dependencies (every node

depends on its parent, which is a broader-scope classifier) and competing classifiers: if

a situation includes multiple classifiers, a competition function modulates the results of

each classifier to obtain a single response.

While these works focused on inferring behavior by using context, the approach we

present in this thesis aims to do the opposite: exploiting the behavior of vehicles to

infer the context. In this direction, the behavior of pedestrians has been used to infer

navigational maps for robots (O’Callaghan, Singh, Alempijevic, & Ramos, 2011). In this

work, the authors track pedestrian motion and compare it to a prior navigational map,

that indicates the motion direction on any point towards the goal. Although such map

could be derived from a variety of sources, they use a naive version, that simply assigns

to each location in the map a direction pointing straight to the goal. The pedestrian

motion direction is compared to the prior direction point by point, and the difference is

then fed as a data point to a Gaussian process that estimates a ”deviation” function,

which expresses the local difference between prior and actual pedestrian motion. As the

approach depends on the goal location, only the motion of observed pedestrians actually

going through the goal was considered. The deviation function is finally used together

with the prior map to guide a simple trajectory planner, which follows the direction

provided by the combination of the two sources all the way to the goal.

The behavior of vehicles has been used, together with lane markings detection and con-

text models, to infer road geometry at long range on highways (Fatemi, Hammarstrand,

Svensson, & Garćıa-Fernández, 2014): this work used a clothoid model to approximate

the road shape, and used the heading of detected vehicles and lane markings to estimate

the parameters of the clothoid. For this purpose, they had to take into account two

vehicle behavior models: one where the vehicle drives parallel to its lane, and one where

the vehicle is exiting or entering the lane. The transition between the two models was

managed by means of a transitional probability matrix. The experiments showed that

the addition of vehicle measurements decreased the error at long range with respect to

the sole usage of lane markings. Similarly, the behavior of vehicles has also been used

together with other visual cues in order to infer the topological and geometrical layout

of road intersections. (Geiger, Lauer, Wojek, Stiller, & Urtasun, 2013) achieves this goal
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by using multiple cues: vehicles tracklets, vanishing points, semantic scene labels, scene

flow and an occupancy grid. These cues allow to infer a set of road properties, including

the topology of the intersection, predefined as a set of seven possibilities, the location

of the center, the rotation of the intersection with respect to the frame of reference, and

the crossing angle, i.e. the relative orientation of the crossing street with respect to the

incoming street. The approach assumed that all roads had the same width, and it used

a probabilistic generative model.

Vehicles behavior has been used not only to infer the road layout, but also the lanes.

Guo et al. (Guo, Meguro, Yamaguchi, Kidono, & Kojima, 2014) use the past tra-

jectories of other vehicles to refine the parameters of a clothoid modeling lateral lane

boundaries, improving the robustness of lane detection in challenging scenarios. Thomas

et al. (Thomas, Stiens, Rauch, & Rojas, 2015) combine direct lane detection with the

trajectory of vehicles in the scene, which are used as a cue to for the lane center line.

The resulting representation is a probabilistic spatial grid, where semantic functions cre-

ated from different cues (lane dividers, road boundaries, dynamic objects) are merged

together to obtain the probability of being part of the center line for each square of the

grid.

However, all of these systems used only the trajectory (current and past behavior)

of vehicles, while the approach we present in the following chapters exploits also the

predicted behavior. Furthermore, these approaches tend to exploit behavior to infer

parameters of a model, while we want to use them to directly infer road area on each

location.

2.2 Environment Representation

Autonomous cars need an internal spatial representation of the environment to assess

risks or plan maneuvers. As mentioned, the representation used by BERTHA was a

set of pre-annotated digital maps, that were built to include all the road elements that

the car might have had issues detecting (Bender, Ziegler, & Stiller, 2014). One of

those elements was the layout of drivable lanes, which is especially difficult to detect

at intersections. For this reason, BERTHA employed the notion of ”Lanelets”: atomic,

interconnected lane segments with one entry and one exit. Lanelets represented both

topological and geometrical aspects of lanes. This detailed representation was built in a

semi-automated manner based on images from stereo-camera and a very accurate (and

expensive) DGPS, which was not required for the demonstration run itself, but only for

the preliminary map-building process. It is clear that such a representation, while very

accurate and reliable, needs a precise an extensive knowledge of the environment, which

at the moment is too expensive and resource-consuming to be available for large-scale

commercial purposes.

For many road-related applications, a two-dimensional representation is considered
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sufficient. These representations are usually discretized along both axis, by defining a

2D grid. The representation that we present in this thesis is also based on a regular 2D

grid.

A very popular type of grid-based representation is the occupancy grid, a spatial

representation that describes the surroundings of the ego-vehicle in terms of free or

occupied space probability. Formally, occupancy grids are defined as two-dimensional

arrays which model occupancy evidence of the environment, where the 3D world is or-

thogonally projected onto a plane parallel to the road. The plane is discretized into

tetragonal cells that never overlap, which hold an occupancy likelihood of the repre-

sented area. In (Badino, Franke, & Mester, 2007) three main formats of camera-based

occupancy grid are mentioned. The first and most common is the Cartesian map, which

represent a portion of the surrounding environment with a constant resolution along the

axis x (lateral) and z (depth). The second type is the Column-Disparity map, where

the x axis is replaced by the lateral axis u of the camera, and the z axis is replaced by

the disparity value d. The last type is the Polar occupancy grid, which has the same u

lateral axis, but has z as depth axis. While a Cartesian grid provides an intuitive way

to represent the environment, it has the drawback of its computational time, and the

uneven relation between the resolutions of images and representation: far away pixels

affect many more cells than closer pixels do. A Column-disparity grid is much faster to

compute, and its lateral resolution is equal to the lateral resolution of the images. How-

ever, its depth resolution (tied to disparity) decreases quadratically with distance, so for

applications that require high resolution at long distance the paper recommends a polar

occupancy grid, whose depth resolution is constant. Unfortunately, polar maps are very

complicated to manage over time, if the ego-vehicle moves (which is the situation to be

expected for road applications). They are better suited for instantaneous applications,

where information does not have to be carried out over successive frames, and a new

occupancy grid is created at every iteration.

Since most grid-based representations are centered around the ego-car, its motion

need to be taken into account, in order to create a correspondence between cells in

different iterations. As the ego-car moves, a mechanism to shift the representation with

it is necessary. As an example, (Weiss, Schiele, & Dietmayer, 2007) presented an online

occupancy grid for estimating the driving path. The occupancy is computed from laser

data, and the map is updated over time to represent a fixed area around the ego-vehicle.

As the ego-vehicle moves, cells are created and eliminated at two ends of the grid. To

avoid discretization errors while rotating cells, the grid orientation does not follow the

ego-vehicle, but stays fixed, whereas the ego-vehicle can rotate with respect to the grid.

The driving path is estimated starting from a center line, stemming from the ego-vehicle

in the direction of its z-axis. On both sides of the center line multiple short sub-lines are

created, parallel to it. The sub-lines move away from the center line until they find an

occupied area. Finally, the sub-lines are interpolated to find the likely driving corridor
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boundary.

The classical formulation of occupancy grid, that was born for aiding robot naviga-

tion in closed environments, assumes a static environment. The presence of dynamic

objects (e.g. other vehicles), which are very common in road environments, can raise

issues, in terms of undesired artifacts in the representation. This is the reason why

many recent approaches focus on tracking dynamic objects, sometimes treating them

separately from the static occupancy grid. For example, (Gindele, Brechtel, Schröder,

& Dillmann, 2009) proposed an occupancy grid where occupancy is preserved. It means

that the representation tends to treat the amount of occupied cells as constant, and just

moves occupancy around, based on the estimated velocity of detected objects. The rep-

resentation is enhanced by a priori map knowledge, that helps to estimate and predict

the motion of objects in the road environment. Map knowledge is exploited by using a

reachability matrix Ra,c, which expresses the likelihood that an object on cell a could

move to cell c. This matrix is computed by assigning a terrain type to each cell (”lane”,

”sidewalk” and ”unknown”), and by following certain assumptions: objects tend to stay

on their terrain type, and if they are on a lane, they follow its direction. Another in-

teresting approach was presented in (Bouzouraa & Hofmann, 2010), an occupancy grid

with focus on detecting and tracking moving objects. Their approach is based on laser

and radar detection. Additionally to the usual occupancy probability, each cell in this

representation holds a random variable describing the state of the cell, that can be either

”static” or ”dynamic”. The state is estimated by comparing the raw laser data to the

previous occupancy grid and ego-motion data. The laser data is helped by radar data,

which despite being spatially less accurate has the advantage of being able to measure

the speed of the detected object by exploiting the Doppler effect. The representation

allows for multi-object tracking, where each object is associated with the cells it is oc-

cupying. As a final example for dynamic approaches, we can mention (Danescu, Oniga,

& Nedevschi, 2011), that proposed a particle-based occupancy grid. Each cell of the

grid can hold a finite number of particles, which model multiple point hypothesis of de-

tected obstacles. The occupancy probability of a cell is defined as the ratio between the

number of particles in it and the maximum number allowed. Particles have a position

and velocity, and move accordingly at each timestep, with some random noise added.

At every measurement, particles are weighted based on the detected occupancy of their

cell. If a cell is estimated as occupied (by stereo reconstruction data), particles that are

on it get a high weight and vice-versa. After the weighting, a resampling phase decides

on whether to discard or multiply particles based on their weight. Particles with low

weight can be discarded, while particles with high weight are multiplied. A new cell

is initialized as empty if it is detected as free. Conversely, if a new cell that appears

occupied, the approach creates a small set of random particles on that cell, with ran-

dom velocities taken from a distribution of reasonable values. Particles that go outside

the representation range get deleted. Finally, object segmentation and tracking can be
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performed by clustering the particles in the representation.

In order to use occupancy grids for trajectory planning, information about free space

area has to be extracted from the grid. There are several approaches to achieve it. The

most common is global thresholding, which has the drawback to deliver very irregular

shapes for free area. For this reason, later approaches try to fit a regular curve to

the free area boundary. For example, (Schreier, Willert, & Adamy, 2013) presented a

Parametric Free Space Map, which models free space with a combination of parametric

curves and geometric primitives. After applying a threshold on the occupancy grid, the

free area undergoes a series of spatial transformations: a 2x2 median filter is applied, and

subsequently morphological erosion is employed, which aims to exclude those areas that

are too narrow for the ego-car to traverse. The resulting free areas are labelled, and the

area in front of the ego-car is selected as the most relevant one. Finally, morphological

dilation is employed to get the area back to its original size.

Researchers have also employed concepts similar to occupancy grids to encode differ-

ent environmental properties, sometimes by using unusual grid formats. For example,

(Sivaraman & Trivedi, 2014) proposed a Probabilistic Drivability Map, a grid-based rep-

resentation where each cell holds a drivability value, that is the probability that the cell

can be driven by the ego-vehicle. The cells in the grid are shaped as quadrilaterals,

whose shape follows the detected lane markings on the road. The length of the cells

is fixed as one car length, implying that a drivable cell should fully accomodate the

ego-vehicle. The lateral boundaries of each cell follow the lane markings, whose type

also influence the drivability of cells: cells that lie beyond a continuous lane marking

are not drivable by the ego-vehicle, even if they are not occupied. As another example,

(Weiherer, Bouzouraa, & Hofmann, 2013) employed the concept of interval maps. i.e.

maps that are discretized in longitudinal direction and continuous in lateral, to create an

interval occupancy map. The concept of interval map arises from the observation that

many ADAS-related tasks require a much higher precision in lateral direction rather

than in longitudinal (with respect to the ego-car orientation). These maps allow to en-

code different spatial information , such as points and areas, as well as higher properties

like occupancy. By sacrificing longitudinal accuracy, this representation is significantly

faster to compute with respect to standard 2D grids.

Even if roads are usually roughly approximated as a two-dimensional environments,

a higher number of dimensions can be useful. In fact, in order to represent complex

road environments (e.g. bridges or tunnels), two dimensional grids fall short. For these

reason, researchers have investigated higher dimension representations, or adaptations

of 2D representations that are able to encode height information (usually called 2.5D

representations). In this direction, we can mention (Kang & Chung, 2011), which devel-

oped a Probabilistic Volume Polar Grid Map, based on stereo-vision. It is a polar grid

where each cell holds a list of volumes (hexahedrons) that represent point hypothesis.

The representation is analyzed to compute the free space, as well as the first obstacles
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on all directions. Volumes can be determined to be obstacles based on their size, lo-

cation and point density. The likelihood of being an obstacle increases with size and

density. The analysis divides the space into three: ground, traversable, and upper, with

two transition areas between them. If a volume is more likely to be an obstacle if it is

located in the traversable space.

Another interesting 2.5D representation is the Stixel World (Badino, Franke, & Pfeif-

fer, 2009), an image-based representation that models vertical surfaces with a set of

narrow rectangles, whose height encodes the height of the object they represent. Stixels

are computed by first creating a column-disparity occupancy grid, and then estimating

free space by dynamic programming. The free space boundary is used as the base loca-

tion for stixels. This representation is robust and very compact, and was also used in

the BERTHA experiment.

As a more versatile approach, (Triebel, Pfaff, & Burgard, 2006) introduced the con-

cept of multi-level surface map, which is a representation where every patch of a two-

dimensional grid holds a list of detected surfaces, defined as their estimated height and

variance. Vertical objects are represented by assigning a depth value to their surface.

This representation is able to represent and compute the traversability of common com-

plex road structures.

As for full 3D representations, (Broggi, Cattani, Patander, Sabbatelli, & Zani, 2013)

used a voxel-based representation for obstacle detection, created using stereo vision. The

authors point out that 2.5D representations have issues in recognizing and representing

unconventional 3D structures, in particular concave surfaces. Voxels are created from a

disparity-based 3D point cloud which is interpolated between current and past frames,

and obstacles are segmented by color clustering. Subsequently, obstacles are tracked in

order to estimate their speed.

The approach we present in the next chapters focuses on detecting road as a semantic

entity, rather than free space. As such, our approach differs from occupancy grids

as they approximate road with drivable area, while we do not. However, similarly to

many occupancy grids, we use a 2D Cartesian grid, where a probability is computed

independently on each cell. In our case, that probability estimates whether the cell is

part of the road or not, rather than whether it is occupied or not.
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2.3 Trajectory Planning

Most state-of-the-art autonomous driving systems need a detailed environment represen-

tation to plan their trajectories on. For example, the participants of the 2011 DARPA

Urban Challenge were given road maps of the full site by the organisers (Bacha et al.,

2008)(Miller et al., 2008)(Urmson et al., 2008). The trajectories planned by state-of-

the-art systems have a time horizon in the order of a few seconds, depending on the size

of the available representation, and on the speed of their computation algorithm (the

longer the time horizon, the slower is the computation). When the system has to drive

from a point A to a point B far away, the task is divided into smaller sections, based

on checkpoints that are usually taken from a topological map. The system plans short

term maneuvers between each checkpoint once it reaches them. The way they perform

this task can vary significantly between different systems, but there are two common

approaches: computing the trajectory as an analytical function, or computing it as a

collection of nodes, by a tree search algorithm. Both approaches have to employ a cost

function to assign a cost to each location of the planning space (which, for advanced

algorithms, can have many additional dimensions), and this function depends on the

environment representation available. An important point is that the resulting trajec-

tory has to be drivable by the ego-vehicle in terms of actual vehicle dynamics. If the

trajectory is computed analytically, dynamics can be incorporated as constraints in the

process and the resulting trajectory is slower to compute (and update to sudden envi-

ronment changes) but smooth and drivable. If the trajectory is a collection of nodes, it is

quicker to compute and update, but requires a second step to make the trajectory driv-

able by a real vehicle. The approach chosen often depends on the type of representation

the system employs: analytical road representations (e.g. road boundaries estimated by

b-spline) call for an analytical solution, while for grid-based representations tree-search

is the most natural approach. For a comprehensive review of planning approaches, we

mention (González, Pérez, Milanés, & Nashashibi, 2016).

An example of analytically computed trajectory is Daimler’s BERTHA, which calcu-

lated them as the solution of a cost function minimization problem, where constraints

were imposed by road boundaries and detected obstacles(Ziegler, Bender, Dang, &

Stiller, 2014). A driving corridor was determined based on those, and the trajectory

had to minimize five different costs: it had to stay close to the middle of the corridor,

it had to keep the speed close to the desired one, and it had to minimize accelerations,

jerk and yaw rate.

The approach presented in (Guo, Kidono, & Ogawa, 2016) is particularly interesting,

because it exploits the behavior of the leading vehicle as an additional cue for the tra-

jectory computation. The leading vehicle here is defined as the preceding vehicle with

the trajectory most similar to the ego-car. Thus, it does not have to be the vehicle im-

mediately in front of it. Each detected vehicle gets a score, which represents the affinity

between its trajectory and each lane of the road. Each vehicle is assigned to the lane
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with the highest score. The score comprises three terms: the overall distance between

trajectory and lane, the similarity between trajectory and lane, and the agreement be-

tween the vehicle future movement (for a short time interval, assuming it will maintain

its current speed and direction) and lane. Subsequently, a second score is assigned to

the vehicle which have been associated to the ego-vehicle lane. This second score is

computed similarly to the first, but measures the affinity with the trajectory of the ego-

vehicle itself. The vehicle with the highest score is determined as the leading vehicle. In

this work, the ego-car trajectory is computed as a clothoid, where every control point

is represented as a point mass, connected with the others with springs and dampers.

On these masses act three external forces: an attractive force pointing to the center of

the host lane, another attractive force pointing to the leading vehicle trajectory, and

finally a repulsive force avoiding surrounding vehicles. This solution helps creating a

more human-like trajectory, especially during maneuvers to avoid obstacles, where the

leading vehicle provides a good evasion maneuver proposal.

The approaches that compute a trajectory by employing a tree of spatial nodes need

to use a tree search algorithm to find the optimal path. The most common of these

algorithms is by far A∗. A∗ (Hart, Nilsson, & Raphael, 1972) is a best-first search

algorithm, i.e. it explores those nodes that seem to be the most promising ones. To

determine how promising a node is, A∗ needs to establish a heuristic that expresses a

prior cost to a node n. This heuristic, usually indicated as h(n), is admissable only if it

never overestimates the true cost of any node. The heuristic used depends on the actual

problem considered. The search prioritizes nodes with the lowest value f(n), where

f(n) = g(n) + h(n) (2.1)

g(n) is the actual cost of the node, including all the past nodes that led to it. The

cost is calculated depending on all the various environment properties of the spatial area

included in the node (e.g. road, lanes, obstacles, etc.), and the formula to compute it is

a key aspect of any approach.

Due to its performances, A∗ is the basis of many different variants. In fact, the vast

majority of vehicles competing in the DARPA Urban Challenge 2007 relied on A∗ or

on its variants for trajectory planning in unstructured environments (Dolgov, Thrun,

Montemerlo, & Diebel, 2010). For example, Boss (Ferguson, Howard, & Likhachev,

2008) relied on a variant of A∗ called Anytime Dynamic A∗ or Anytime D∗ (Likhachev,

Ferguson, Gordon, Stentz, & Thrun, 2005), which is particularly apt to deal with sud-

den changes in environment representation (e.g. new obstacles detected). Every time

a significant change is detected, the algorithm does not recompute the solution from

scratch, but tries to repair the previous solution by looking for deviations in the local

area of the change itself. This approach ensure a very quick reaction to obstacles, and
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a trajectory that does not change dramatically over different iterations. They propose

two heuristics: one that computes the distance to the goal by taking only the ego-vehicle

motion dynamics into account but not the environment features (i.e. the environment is

considered empty and all drivable, and this heuristic can be computed in advance offline

for any location and stored in a lookup table), and another heuristic that depends on

the shortest path that traverse drivable space, without taking into account car dynamics

(considering the actual drivable area in the representation). The algorithm uses the

maximum value between these two heuristics.

Junior (Montemerlo et al., 2008) used a variant of A∗, which they call Hybrid A∗. This

algorithm has the same underlining concept of A∗, but differs in the way it generates

nodes. In this approach, nodes can be generated at any location of a continuous search

space (whereas classical A∗ only uses the center of cells), based on the dynamics of the

ego-vehicle. Paths from node to node can be curved according to the motion constraints

of the ego-vehicle. This approach guarantees that the computed path is drivable (by

construction), but since the reachable state space becomes infinite (as the location of

each node can vary freely), it cannot guarantee search completeness and minimal-cost

solution. This approach uses two heuristics that are equivalent to the ones used by Boss

(but independently developed), which they call ”non-holonomic-without-obstacles” and

”holonomic-with-obstacles”.

For our own trajectory planner, we employ another variant of A∗, called Fringe search

(Björnsson, Enzenberger, Holte, & Schaeffer, 2005): This algorithm uses the same con-

cept used by A∗ of estimating the remaining cost to reach the target from each node

in order to select which nodes to expand first, but unlike A∗ it iterates over two lists,

now and later, which store respectively the current and next iteration. The planner

goes through the nodes stored in now, expands them and inserts their children in one

of the two lists depending on their expected cost. If it is lower than a threshold, they

get inserted in now, while if it is higher they go into later. Once the iteration over now

ends because all the remaining nodes have an estimated cost higher than a threshold,

the algorithm increases the threshold, moves all the nodes from later to now, and moves

to the next iteration. The main advantage of Fringe Search is that these lists do not

need to be sorted, unlike what happens for A∗, which needs to sort all open nodes by

cost, a process that can be very time-consuming.
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Road Probability Framework

Chapter overview In this chapter we present our probabilistic framework, that fuses direct and in-

direct detection to infer road probability in a 2D grid map.

3.1 Motivation

The core concept of our approach is to combine a direct road detection method with an

indirect method that takes advantage of one of the main problems of direct visual road

detection systems: other vehicles in the scene, that create occlusions. Our reasoning is

that the motion of those vehicles holds valuable information that can potentially cover

the loss of direct visibility. By observing and interpreting their motion, we can infer in-

formation from their representations to complement our own one. The basic assumption

of our approach is that all vehicles move on road area. Therefore, all patches that are

traversed by a vehicle must be road. Similarly, if we can estimate which patches will be

traversed by the vehicle in the future, or have been in the past, we can infer the road

probability of those patches as well. In this chapter we build a probabilistic framework

that uses information from direct and indirect detection to infer a road probability for

each location of a 2D grid map. We will call each location a ”patch”. All the com-

putations are carried out patch-wise, ignoring any spatial interaction between different

patches. Every patch is computed independently from its neighbors, but that does not

mean they bear no relation between each other. In fact, the inputs they receive do carry

a spatial relation, so that ultimately the road probability of neighboring patches is likely

to be similar, even if this spatial relation is not explicit in the probability formulation.

3.2 Road Probability Formula

In this section we derive the main road probability formula that is used independently

on every patch. We denote patches using only one index i, instead of using two, in order

to improve readability. The road probability has to be computed from our inputs, which

25
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Figure 3.1: Euler diagram of the four events.

are direct-detection-based road confidence and position and velocity of detected moving

vehicles in the scene.

We define four events:

� Event R The event that the considered patch is part of the road. In the notation

we use, p(Ri) is the probability that patch i is road, and our goal is to compute it

as a function of our inputs.

� Event C The event that the considered patch has been, is or will be traversed by

at least one moving road vehicle. The time window in which C is considered is

not necessarily relevant for our approach, but obviously p(Ci) can be realistically

estimated only in a reasonably limited time window. This estimation is a key

aspect of the approach, and will be discussed in detail in the next chapter. For

simplicity, we assume that if a vehicle traverses a patch, then that patch is part of

the road. In this case, we can state that C ⊆ R, and thus p(Ri|Ci) = 1,∀i.

� Event V The event that the considered patch is visible to the direct detection

system. We assume that V is independent from R, so that p(Ri∩Vi) = p(Ri)p(Vi).
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� Event D The event that the considered patch has been correctly evaluated by

the direct detection system. Since this can happen only if the patch is visible, we

can consider D ⊆ V , and thus p(Vi|Di) = 1,∀i. Conversely, p(Di|Vi) expresses

the reliability of the direct detection system. p(Ri|Di) is the road confidence value

provided by said system, and it is one of the inputs of our approach. For simplicity,

we assume that D is independent from C, so that p(Di ∩ Ci) = p(Di)p(Ci). It

could be argued that there is a possible dependency between the two events, since

direct detection always fails for patches that are directly under a vehicle. However,

this dependency only influences a very narrow subset of C and it is unclear how

to quantify it. Additionally, this effect is already covered by event V : patches

directly under a vehicle are obviously not visible, so D will be always false on

them as a consequence. This is why we can simplify the relation between C and

D as independent events.

Figure 3.1 shows an Euler diagram of these events. Our objective in this section is to

obtain a formulation of p(Ri) in terms of our inputs. In order to do so, we apply the

law of total probability by splitting R into R ∩D and R ∩D:

p(Ri) = p(Ri ∩Di) + p(Ri ∩Di)

= p(Ri|Di)p(Di) + p(Ri|Di)p(Di)

= p(Ri|Di)p(Di) + p(Ri|Di) [1− p(Di)] (3.1)

Focusing now on the term p(Ri|Di), we want to express it with respect to event C.

p(Ri|Di) =
p(Ri ∩Di)

p(Di)

p(Ri ∩Di) = p(Ri ∩ Ci ∩Di) + p(Ri ∩ Ci ∩Di)

= p((Ri ∩ Ci) ∩Di) + p(Ri ∩
(
Ci ∩Di

)
)

(3.2)

Assuming C and D are independent, and recalling that Ri∩Ci = Ci, ∀i by construction,

we have:

p(Ri ∩Di) = p(Ci ∩Di) + p(Ri|
(
Ci ∩Di

)
)p(Ci ∩Di)

= p(Ci)p(Di) + p(Ri|
(
Ci ∩Di

)
)p(Ci)p(Di)

=
[
p(Ci) + p(Ri|

(
Ci ∩Di

)
)p(Ci)

]
p(Di)

(3.3)

To which immediately follows

p(Ri|Di) =

[
p(Ci) + p(Ri|

(
Ci ∩Di

)
)p(Ci)

]
p(Di)

p(Di)

= p(Ci) + p(Ri|
(
Ci ∩Di

)
)p(Ci)

(3.4)
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The term p(Ri|
(
Ci ∩Di

)
) will be discussed in section 3.4. Substituting (3.4) into equa-

tion (3.1), and recalling that p(Di) = p(Di|Vi)p(Vi), leads to our main road probability

formula:

p(Ri) = p(Ri|Di)p(Di|Vi)p(Vi) +
[
p(Ci) + p(Ri|

(
Ci ∩Di

)
)p(Ci)

]
[1− p(Di|Vi)p(Vi)]

(3.5)

This equation features two main terms, modulated by p(Di|Vi)p(Vi) and its negation.

The first term, p(Ri|Di), is the direct detection contribution. The second, p(Ci) +

p(Ri|
(
Ci ∩Di

)
)p(Ci), is the indirect detection contribution (see sections 3.3 and 3.4).

The modulation via p(Di|Vi)p(Vi) = p(Di) represents a trade-off between direct and in-

direct detection, depending on the estimated probability that direct detection is correct,

and how much it is to be trusted (see section 3.5).

3.3 Behavior Interpretation

The indirect detection contribution (that we call ”Behavior Interpretation”) in our

framework is based on the event Ci. This is the event that patch i is traversed by

a moving vehicle. The event is not dependent on time: it can happen in the future,

present or past. Only one vehicle is necessary for the event, and in case of multiple

vehicles j the event Ci is the union of the events that any vehicle j traverses patch i,

Ci,j . Thus, we can write:

Ci =
⋃
j

Ci,j (3.6)

For simplicity, we assume that Ci,j are all independent from each other. This is a

strong assumption, since it is clear that there can be situations where the trajectories of

two vehicles depend on each other (they want to avoid collisions), but since our event C

ignores the time component of trajectories, this interaction is much less significant. For

example, consider figure 3.2. Here, vehicles A, B and C are traversing an intersection.

Vehicle A is heading straight ahead, while vehicles B and C are on the opposing lane and

want to turn to their left, intersecting with the path of vehicle A. As these three vehicles

are on a collision course, we can expect the drivers to change their trajectories to avoid

a crash. In this sense, the trajectories of the vehicles are obviously not independent

from each other. However, the events Ci,j associated to them are inter-dependent only

in time domain, and not in space. Vehicle B does not modify the space component of its

trajectory, but it simply brakes instead, letting vehicle A pass and only then eventually

resuming its motion. The patches that vehicle B traverses are not changed by vehicle

A, only the timing is. The same reasoning can be applied to vehicle C: it brakes in

order not to hit vehicle B, but it does not change the spatial component of its trajectory.
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Figure 3.2: Intersection scene, where the trajectories of vehicles A, B and C are not

independent. However, the inter-dependency is solely in the time domain.

Hence, while trajectories can definitely change depending on other trajectories, in many

instances only their time component is affected, and since the definition of event C does

not include any constraint about time, we can ignore this dependency and treat Ci,j as

independent events. Since we treat them as independent events, their probabilities sum

in the following fashion:

pn(Ci) = p(Ci,1) + p(Ci,2)− p(Ci,1)p(Ci,2) if n = 2

pn(Ci) = pn−1(Ci) + p(Ci,n)− pn−1(Ci)p(Ci,n) if n > 2

(3.7)

3.3.1 Trajectory Cloud

The probability p(Ci,j) can be estimated with various methods. However, most state-

of-the-art methods aim to predict the trajectory of a vehicle, whose concept is different

from the patch-based event C, so they would need to be modified to fit with our time-free

definition of said event. Alternatively, if a sufficiently rich database is available, it would

be possible to build an empirical function by observing the motion of a large number of

actual vehicles in different scenarios. In this work we chose to employ a simple kinematic

model, using a 2D function, that provides a probability value given the relative location
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Figure 3.3: Concept of trajectory cloud. The detected vehicle has many possible tra-

jectories, that cover a certain area with different probability (represented as shades of

green).

of the patch i in the reference system of vehicle j (x is the pitch axis and z is the roll

axis), and the speed of the vehicle itself. Nevertheless, it is important to keep in mind

that the validity of the whole framework does not depend on the particular model used

for p(Ci,j).

Vehicle j can have many possible trajectories, as its yaw and speed can vary freely

in time. Our probability function has to model all possible trajectories, without the

time constraint. In fact, we only care about whether vehicle j can traverse patch i, and

not when. The resulting function should look like a trajectory ”cloud”, that comprises

all possible trajectories (figure 3.3). Since we want to estimate both past and future

positions of the vehicle, we use a function symmetrical with respect to the x axis of the

vehicle’s reference system. Intuitively, the function produces high values immediately in

front of the vehicle, because those patches will be traversed almost certainly. The values

fade away with distance, as the vehicle could change its direction and thus potentially

cover a wider area. We chose to keep this probabilistic approach also under the car, so

that we can model possible position errors due to inaccurate detection. Every vehicle has

a rectangular shape, with a certain direction and speed. If the detection was perfectly
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accurate our p(C) function should just have the shape of the vehicle itself, with a 100%

probability on the patches covered. However, every kind of detection yields some form

of error. To account for that, we model the vehicle in a simplified way as a set of

single points along its x-axis. Due to detection error, we can assume every point has

a Gaussian-like probability of being on the location it was detected on. The standard

deviation of this probability is one of the parameters of our system. Since the probability

function has the same shape for all points, we integrate it along the x-axis, between

the boundaries of the rectangle. The resulting shape is the one of a difference of two

error functions. Regarding the z-axis, the probability is constant within the rectangle

boundaries. Beyond them, we need to take into account the possible maneuvers of the

vehicle: it could be heading straight, or turn left or right. Our solution is to keep

the function obtained by integration, and just spread it along the x-axis by progressively

increasing the variance. This way decreases the further away we look at. The boundaries

spread is modeled as dependent on the vehicle speed. The higher the speed, the slower

the variance increase, since the vehicle will be less likely to turn at high speed. The

function is formulated as follows:

p(Ci,j) =
1

2

[
erf

(
xi,j + ηj√

2σi,j

)
− erf

(
xi,j − ηj√

2σi,j

)]
(3.8)

σi,j =


ωj for |zi,j | ≤ Lj

2

ωj +A

(
zi,j−

Lj
2

)2

|vj |2 for |zi,j | > Lj

2

(3.9)

Here [xi,j , zi,j ] is the position of patch i in the reference system of vehicle j, Lj is the

length of the vehicle j, ηj is a parameter related to the width of it, ωj is related to the

uncertainty of its position, and A is a tuning factor. A contour plot of this function with

two different values of A is shown in figure 3.4. A controls the rate at which the variance

increases, and thus letting the function be as wide as desired at long distances.

The function estimates the patches that should be traversed by the vehicle in the

future (in front of it), in the present (under it), and in the past (behind it). However,

the entirety of the function domain is not used at every iteration. In fact, the ”past”

estimation is employed only as soon as a vehicle appears (and an estimation of its speed

is available). This estimation will not change further, as any future will not tell us

more about the vehicle’s past. Conversely, present and future estimations are computed

at every iteration while the vehicle is visible. In fact, every new observation provides

more accurate information. This reasoning leads to a different management of the three

different domains that will be explained in the following subsection.
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Figure 3.4: Contour plot of p(Ci,j), with j being a vehicle centered in [0, 0] and facing

upwards, using two different parameters A. On the left A = 0.01, while on the right

A = 0.02.

3.3.2 Temporary and Permanent Estimations

As the detected position and velocity of vehicles change at every measurement, it is

necessary to define a way to update the estimated p(Ci,j). For this purpose we distinguish

two main cases: temporary and permanent estimations. Temporary estimations p(Ci,j)
∼

need to be refreshed at every iteration, as they depend on the current state of the

observed vehicles. The estimated future positions of vehicles are considered temporary

by our system. At every time step, the previous estimation will be dropped and replaced

with a newer one. Conversely, permanent estimations p(Ci,j)
∞ are those that depend

on the state of the vehicle in a particular instant, and thus do not change with further

measurements. Estimated past and present positions are permanent: they are computed

only once, and will never change, no matter the successive behavior of their vehicle.

To handle this difference, each patch of the representation grid does not only hold a

probability value, but also two lists: the first list includes all the vehicles that have a

temporary estimated probability to traverse the patch in the future, along with the value

p(Ci,j)
∼ itself. The second list includes all vehicles that have a permanent probability

to have traversed the patch, again with p(Ci,j)
∞. When a vehicle disappears from the

scene, its future p(Ci,j)
∼ does not disappear with it, but instead is just moved to the

permanent list and changed into p(Ci,j)
∞. The disappearance of a vehicle can be a very

useful event: it means that it went to a road we cannot see, and therefore we want

to save the last estimation we had of the area it was heading to. It will not change

anymore, if we assume the vehicle has disappeared for good. If it does reappear (i.e. the

disappearance was due to a misdetection), the system will be able to retrieve its p(Ci,j)

and prevent inconsistencies. After some time, each permanent p(Ci,j)
∞ are merged into

a single value p(Ci)
∞, in order to avoid an unreasonable memory burden for the system.



3.4. Unpredicted Maneuvers 33

3.4 Unpredicted Maneuvers

The term p(Ri|Ci ∩ Di) in (3.5) is a very important element of the road probability

formula. It is the probability that patch i is road, in the case that none of the vehicles

in the scene traverses it and the direct detection does not provide reliable information.

This term could be interpreted simply as the prior probability P0 of a patch being road,

as other vehicles and direct detection do not provide information about it. It could be set

to 0.5 if we do not know anything, or it could be set to the average road/not-road ratio

in the environment we are in, if we have data about it. However, we can realize that the

term p(Ri|Ci ∩Di) does not have to be the same value for every patch i. In fact, there

are many cases where it is evident it really should not. For example, consider figure 3.5,

which shows a painted roundabout partially occluded by a vehicle. The incoming vehicles

initially point to the center of the roundabout, so that p(Ci) will be high there, and so

will p(Ri). However we will soon observe them entering the roundabout and changing

direction accordingly. All of them will avoid the center of the roundabout itself, because

it is not road. This is a behavior that provides information not only about the road area

that was actually traversed by the vehicles, but also about the center of the roundabout.

All those vehicles were supposed to traverse the center of the roundabout, but instead

they all actively avoided it, giving us strong evidence that said area is not road. We

can think that patches in the center of the roundabout had a high probability to be

traversed by a vehicle at some point, and this fact should lead to a low probability for

those patches to be road in case they end up not being traversed at all. Conversely,

patches that were not predicted to be traversed (e.g. patches outside the roundabout)

are not affected by this behavior. This reasoning is useful also in other situations, and

is used by human drivers too. If we observe multiple vehicles that make unexpected

maneuvers to avoid a certain area we cannot see well, we instinctively prepare to avoid

that area ourselves. There could be a pothole, or something we do not want to run over.

At the very least, we will slow down and wait to be able to see that area well before

traversing it.

As a less obvious example, consider figure 3.6. It shows a vehicle appearing from a

road on the left side, apparently heading straight towards an area we cannot see on the

right. However, the vehicle steers away before entering that area. In this situation, the

fact that the vehicle did not traverse, for example, the courtyard at our left does not give

us any information about it, because the trajectory of the vehicle was always far from

that area. However, the fact that it did not traverse the area it was initially predicted

to drive on is a hint we can consider. The vehicle was headed there, but it avoided it.

This behavior can suggest that said area is not road, although the information provided

by a single vehicle is not sufficient for us to be sure of it. This is an important difference

between inferring where road is and inferring where it is not: while we just need one

vehicle traversing a patch to state that the patch is road, the same cannot be said about

the opposite. The more vehicles avoid the same patch, the more information about it
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Figure 3.5: A small urban roundabout, where the unpredicted maneuvers of the vehicles

marked in red, avoiding the center area, give us evidence that the center is not road, even

if we cannot see it properly.

they give us.

In general terms, p(Ri|Ci∩Di) (which we call ”Avoidance”) should be low for patches

that are predicted to be traversed, while it should be equal to a prior probability P0 if

there are no vehicles that seem to be heading there. In order to model this reasoning,



3.4. Unpredicted Maneuvers 35

Figure 3.6: Urban intersection, where the maneuver of the vehicle marked in red decreases

the probability of the presence of a side road we cannot see.

we want the avoidance to be dependent on p(Ci). However, the importance of this term

is highest when vehicles avoid a patch, i.e. when their trajectory cloud changes. For

this reason, we want the term to be dependent only on the part of the trajectory cloud

that can actually change, i.e. p(Ci)
∼ (see section 3.3.2). If we make the avoidance

be dependent on the current value of p(Ci)
∼, the effect will be lost as soon as the

vehicles perform their maneuvers and our system does not predict them to traverse

the patch anymore. In order to keep this effect after the maneuver, our solution is to

have the avoidance being dependent on the maximum value of p(Ci)
∼ over time, i.e.

pmax(Ci)
∼. This ensures that the effect stays after maneuvers are completed. We model

the avoidance, p(Ri|Ci ∩Di), with the following function:

p(Ri|Ci ∩Di) = P0

(
pmin(Ci)

∼)k = P0 (1− pmax(Ci)
∼)k (3.10)

Where P0 is the prior probability and k > 0 a tuning factor. If there are no cars in

the scene, or if no cars are predicted to traverse patch i, the term equals to the prior

probability, while it decreases the likelier a patch is to be traversed. Figure 3.7a shows

the effect of the k parameter on the values of the overall behavior interpretation term

p(Ri|Di) = p(Ci) + p(Ri|Ci ∩ Di)p(Ci) as a function of p(Ci), with pmax(Ci) = p(Ci),

which is the case where the avoidance maneuver has not happened yet. The graph shows

that for k > 1 the term has a minimum with p(Ci) 6= 0, which means that at certain
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(a) p(Ri|Di) for no unpredicted maneuvers,

with p(Ci) = pmax(Ci)

(b) p(Ri|Di) after unpredicted maneuvers,

with p(Ci) = 0

Figure 3.7: (a): Value of the behavior interpretation term with different values of k in

a scenario without (or before) unpredicted maneuvers, with P0 = 0.5. (b): Value of

the behavior interpretation term with different values of k after unpredicted maneuvers.

Note that if p(Ci) = 0, then p(Ri|Di) = p(Ri|Ci ∩Di)

values an increase in p(Ci) would lead to a decrease in the overall probability. Since we

want to avoid this effect, we set 0 < k ≤ 1. Figure 3.7b shows the value of the behavior

interpretation term as a function of pmax(Ci) when p(Ci) = 0, which is the case when

patch i was supposed to be traversed with a certain probability, but it has been avoided

instead. Here p(Ri|Di) = p(Ri|Ci∩Di), so we can see how the avoidance value decreases

the higher the probability pmax(Ci) is, modeling how the patch is unlikely to be road

the more it was likely to be traversed in the first place.

3.5 Direct Detection

In order to complete the framework, we need a direct visual detection system. Any kind

of direct detection system can be incorporated, as long as it provides a Birds’ Eye View

(BEV) confidence map that can be translated into a probability of each patch being

road.

3.5.1 Visibility

In our road probability formula, p(Vi) represents the chance that patch i is visible to

the direct detection system. The direct detection system has to provide road confidence

values in a predefined field of view, whose shape and position relative to the ego-car

depends on the specifics of the chosen system, and by our definition every patch outside

this area has p(Vi) = 0. Inside the area, the system checks for occlusions, caused by
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other vehicles or static obstacles detected by the sensors. If a patch lies behind an

occlusion, its p(Vi) is set to 0, while if it is not occluded we set p(Vi) = 1. The road

probability formula uses the maximum value recorded, so that if a patch was visible at

some point, the information is not lost when the patch gets occluded. If we denote the

current visibility computed at time t = t0 as p(Vi)[t0], then the visibility value p(Vi)|t=t0
used in the road probability formula for that iteration is

p(Vi)|t=t0 = max [p(Vi)[t]] for t ≤ t0 (3.11)

3.5.2 Reliability

The reliability of direct detection, p(Di|Vi), is computed for every patch that is consid-

ered visible by the system. The term expresses the probability that the patch can be

classified correctly by the direct detection. Since we define Di as a subset of Vi, p(Di|Vi)
is not significant when the patch is not visible, as p(Vi) = 0. We can expect this term

to vary within the FOV, as the reliability of any direct detection system will not be the

same everywhere. In fact, as explained in section 1.2, direct road detection performances

are very susceptible to various factors, such as road texture, illumination, etc. Further-

more, it is to be expected that the reliability of any direct detection algorithm decreases

with distance (Kühnl, Tobias, Kummert, & Fritsch, 2011), as well as with viewing angle,

e.g. due to the fact that pixels progressively comprise a larger area. For this reason, we

model p(Di|Vi) with a spatial function dependent on the relative position of each patch

in a reference frame centered on the ego-car. The function parameters depend on the

expected performances of the chosen system, and can be estimated by collecting statis-

tics on real data, or by modeling. We can expect that for most systems the function will

have higher values on the center of the field of view and in the vicinity of the ego-vehicle,

while it will have lower values on the sides and on the far edge of the FOV. See section

5.5 for details about the actual function we use in our experiments.

The road probability formula at each iteration uses the average p(Di|Vi) over time,

using p(Vi) as a weight, so that only the iterations when the patch was visible are

significant. The direct detection term used in the formula, p(Ri|Di), is also the average

over time of the values p(Ri|Di)[t] provided at each iteration t, using the respective

values of p(Di|Vi)[t]p(Vi)[t] as weights. Therefore, we can write:

p(Di|Vi)|t=t0 =

∑t0
t=0 p(Vi)[t]p(Di|Vi)[t]∑t0

t=0 p(Vi)[t]
(3.12)

p(Ri|Di)|t=t0 =

∑t0
t=0 p(Vi)[t]p(Di|Vi)[t]p(Ri|Di)[t]∑t0

t=0 p(Vi)[t]p(Di|Vi)[t]
(3.13)

Figure 3.8 shows an example of the direct detection contribution weight, i.e. p(Di) =

p(Di|Vi)p(Vi), showing that the area immediately in front of the sensor is typically not
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Figure 3.8: Exemplary contour plot of the direct detection contribution weight, with the

sensor placed in [0,0] and an occlusion caused by another vehicle centered in [5,20]m.

visible, and that the values decay with distance and angle. It also shows the effects of

an occlusion caused by a vehicle in the FOV, which makes the contribution drop to zero

in the area under and behind it.

3.6 Conclusions

In this chapter we presented the mathematical formulation of a framework to compute

road probability in a spatial representation, as well as the hypothesis under which it is

conceived. It uses a novel indirect detection method, based on the observed and predicted

behavior of the other vehicles in the scene (which we call ”Behavior interpretation”),

in combination with a direct detection method. Behavior interpretation analyzes the

past, present and future motion of vehicles and enables our framework to exploit part

of the scene understanding of other vehicles, interpreting their motion not only to infer

where road is, but also to infer where it is not. The framework is formulated in a way

to be independent of the implementation of the function used to estimate the vehicles

behavior, and of the direct detection method used. In following chapters we will present
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the setup of the actual system we use for the experiments, along with the direct detection

method we have chosen. The experiments show that the system has good performances

on real world data. In the next chapter we will enhance the representation obtained

with our framework by adding lanes and driving directions. We will present a geometric

approach to divide a road representation into segments and lanes, and we will employ a

behavior-based method to assign a driving direction to each lane, further exploiting the

behavior of the other vehicles in the scene. The addition of this semantic information is

potentially helpful in many ADAS applications.





Chapter 4

Lane Segmentation and Directions

Chapter overview In this chapter we present a geometry-based approach for estimating semantics of

road segments, given a spatial road representation. We use estimations of width and orientation, along

with the motion of vehicles in the scene, to segment lanes and assign directions to them

4.1 Motivation

Knowing the spatial layout of the road is important to act in a traffic environment, but

in many cases it is not sufficient for many ADAS or autonomous driving purposes. Many

applications additionally require knowledge about different road semantics. These are

higher-level information that go beyond the road/non-road dichotomy. The semantics

that can be of interest for ADAS applications are diverse. For example, knowledge of lane

layout is necessary to predict lane change maneuvers by other drivers, and the collision

risk associated with it. Speed limit information is crucial for any autonomous driving

vehicle, and it depends on each particular road and lane. Emergency lanes on highways,

bicycle lanes in inner city are all examples of road that should not be traversed, despite

being part of road area and unoccupied. Furthermore, lanes often have only one driving

direction allowed on them, so while planning maneuvers a system should make sure the

ego-vehicle direction remains consistent to the one allowed at all times.

In this chapter we present an approach to estimate two of those semantic features:

lane layout and driving directions. The approach uses geometric assumptions to estimate

width and orientation of a road segment. It is based on a simple parallel boundaries

road model, where width and orientation are related quantities. The estimation of

both is carried out for every road patch, creating a distributed measure. Subsequently,

patches that are close together and have a similar associated road width and orientation

are clustered to form road segments. Each road segment is then divided into different

lanes based on its width. Finally, the system uses the observed and estimated behavior

of other traffic participants to infer the driving direction of each lane. Therefore, it

can be classified as an indirect detection method, since it does not directly detect lane

41
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Figure 4.1: Parallel road boundaries model. The road orientation is orthogonal to its

width (left). We estimate true width and orientation by sampling a subset of predefined

orientations (right).

markings or driving direction signals. The approach can be applied to any grid-based

spatial representation that provides a binary road classification, i.e. a patch is either

road or not. As the representation we detailed in the previous chapter is probabilistic, we

can always convert the result into a binary classification by applying a threshold to the

road probability. If the probability is higher than the threshold, the patch is considered

road and vice-versa.

4.2 Orientation and Width

As a first step we estimate the direction and width of roads. Since our goal is to per-

form this estimation without sensing road marking directly, we have to make geometric

assumptions for our road model. The fundamental assumption of our model is that the

true orientation of a road is orthogonal to its width line (defined as the shortest distance

segment between its two boundaries, figure 4.1). This assumption arises from the basic

model of a road with parallel boundaries. Since actual roads are not always like that,

our approach will be carried out in a distributed fashion, computing local road width

and orientation on each patch that belongs to road. Here, the patch-centered road width

is defined as the width line passing through the patch itself, and the patch-centered road

orientation is the orientation orthogonal to it.

4.2.1 Width Sampling

For every patch i that is considered road, the system estimates road orientation γ̂i and

road width ω̂i. The algorithm starts by measuring the width of the patch-centered

distance between road boundaries along a limited number of orientations (see figure

4.1), that we define using the angles γn in a predefined set Γ, with 0 ≤ γn < π. For

each orientation, the width centered on patch i, ωi(γn), is computed by scanning the
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representation in both directions along the selected orientation until a non-road patch

is found, and then computing the euclidean distance di1,i2 between the last road patches

in both directions. If we call those two patches l and r, we can write:

ωi(γn) = di,l + di,r (4.1)

Additionally, we also need to compute the relative position of patch i within the road

for each orientation. In order to do so, we define the value ρi(γn) as:

ρi(γn) =
di,l

di,r + di,l
(4.2)

Where patch l is the last road patch in the same direction defined by angle γn, while

patch r is the last road patch in the opposite direction, γn + π.

Each possible orientation angle γ ∈ [0, π) delivers one width value by construction.

Therefore, the road width can be seen as a function of the orientation angle. According

to our hypothesis, the true road orientation is the one that delivers the minimum road

width:

ωi −→ ωi(γ)

ω̂i = min [ωi(γ)]

γ̂i = argmin [ωi(γ)]

(4.3)

The function ωi(γ) is defined for every γ ∈ <, and is periodic so that ωi(γ) = ωi(γ +

π). The road width values measured by the system (with γn ∈ Γ) are samples of this

function. The higher the number of width values measured, the higher the accuracy of

the estimation, as well as the computational time. Since the true function ωi(γ) has a

shape which depends on the actual shape of each road (so it could be different in different

patches), we estimate the minimum by a generic second-order interpolation: the system

fits a parabola to the values of γn at the lowest computed ωi(γn), and its two neighbors.

γ̂n,i = argmin [ωi(γn)] for γn ∈ Γ
ωi (γ̂n,i) = Aγ̂2

n,i +Bγ̂n,i + C

ωi
(
γ̂n,i + π

4

)
= A

(
γ̂n,i + π

4

)2
+B

(
γ̂n,i + π

4

)
+ C

ωi
(
γ̂n,i − π

4

)
= A

(
γ̂n,i − π

4

)2
+B

(
γ̂n,i − π

4

)
+ C

(4.4)
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Figure 4.2: Exemplary width samples, interpolated to estimate the function minimum.

After solving the linear system and obtaining the parameters of the parabola A,B,C,

finding the minimum is:

γ̂i =
−B
2A

ω̂i = C − B2

4A

(4.5)

The relative position ρi of the patch along the road is obtained with a similar concept,

considering it as a function of γ. In a parallel boundaries model, we can assume the

relative position of a patch is constant with respect to γ. Having measured four values

of ρi(γn,i), we just linearly interpolate the two values that are closest to γ̂i, i.e. γA,i and

γB,i and estimate the relative position in correspondence of γ̂i.

ρ̂i(γ̂i) = [ρi(γB,i)− ρi(γA,i)]
γ̂i − γA,i
γB,i − γA,i

+ ρi(γA,i)

(4.6)
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4.2.2 Model Limitations

The assumption of a straight road with parallel boundaries does not hold inside inter-

sections. Here, the geometry of the road is completely different from the original model,

and finding a road orientation and road width for each patch is an ill-posed problem.

However, we could still apply our algorithm to scenes where intersections are present,

in order to see how the system behaves there. Figures 4.3a and 4.3b show the output of

an ideal 90 deg intersection, made by two orthogonal 10m wide roads. The road orienta-

tions inside the intersection seem inconsistent, showing a large variety of unrelated values

changing abruptly in contiguous patches, while the road widths appear much larger than

expected, approximately twice as large as the roads themselves. These features make

it possible to distinguish and segment intersections in post-processing. Although the

orientation and width values are not usable, the system currently is at least capable of

recognizing intersections.

Another issue occurs in correspondence of curves in wide roads, as shown in figures

4.3c and 4.3d, where the approach is applied to an ideal circular road. In patches at

the outer part of wide curves it can happen that one of the orientations next to the one

with minimum width presents a very large width, due to the road curvature. It occurs

when ωi (γ̂n±1,i) >> ωi (γ̂n,i). This makes the second-order interpolation unsuited to

find a reasonable minimum, often resulting in a value of ω̂i that is much lower than the

true width (sometimes even lower than zero). Since it depends on low sample size, this

problem can be dealt with by increasing the number of sample orientations, at the cost

of a longer computational time.

4.3 Road Segmentation

The next step is road segmentation. Each road patch is clustered together with other

road patches, based on their width, orientation and spatial proximity. Two patches are

considered part of the same road segment Sj if they are not more than 1m apart, the

difference between their road width is less than a threshold m and the difference between

their orientation is less than a threshold o.

4.3.1 Lane Segmentation

After clustering, the system computes the width of each road segment ωj by averaging

over the values of all its Nj patches:

ωj =
1

Nj

Nj∑
i∈Sj

ω̂i (4.7)
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Figure 4.3: (a)(b): Output of the orientation and width estimation, performed on a 90 deg

intersection made by two 10m wide roads. (c)(d): Output of the orientation and width

estimation, performed on a circular road with radius 60m and width 8m. The estimations

have been performed using four sample orientations (see chapter 5 for details).

Subsequently, it assigns a certain number of lanes Λj to each segment, based on its

width and a predefined average width Ω of a lane. This value can be different in different

areas or environments, and can be estimated from data statistics.

Λj = bωj
Ω
c (4.8)

After the number of lanes is determined, the system divides each road segment into

the assigned number of lanes with equal width. This step is performed by checking the

relative position of each patch in the road and assigning an ID to it, depending on the

lane it falls into. The system assigns ID 0 to the rightmost lane, assuming the driving

direction is equal to its orientation γ̂i. This direction is set as the default direction φi
of each patch in the lane. All other lane IDs are assigned incrementally towards the

left. The system assumes each road segment as two-way, and assigns a default direction

φi = γ̂i to all the patches belonging to the right half of the road segment (in case of odd
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number of lanes, the central lane is included), and assigns a default direction φi = γ̂i+π

to the patches belonging to the left half.

4.3.2 Driving Directions

The final step involves using the observed and estimated motion of all vehicles in the

scene. Since our framework already has that information (see chapter 3 for details), we

just need to extend that approach. Every patch i of our road representation holds a

list with all the vehicles j in the scene that have a probability p(Ci,j) to traverse it in

the future, present or past. For this method we need an additional information: the

direction φi,j that the vehicle j had or would have (assuming a regular motion) on patch

i. φi,j is estimated as follows:

φi,j =

φj if |xi,j | ≤ ηj ∨ |zi,j | ≤ Lj

2

φj − 2 arctan
xi,j
zi,j

otherwise.
(4.9)

Where φj is the current direction of vehicle j.

Figure 4.4 shows an exemplary plot of the direction of a vehicle centered in (0, 0)m

and heading north (that is, with direction π
2 ). The estimated direction φi,j of all cars

on one patch is checked and those that have an incompatible direction with respect to

the patch’s orientation are discarded. The remaining directions, that are similar to the

road orientation within a certain angle limit, are used to decide by means of a weighted

sum whether the direction of the patch has to be inverted or not. If ∆ is the set of all

vehicles whose directions are consistent with the default direction of the patch, and Θ

the set of all vehicles whose direction is consistent with the opposite of the default, we

have:

φi =

{
φi if

∑
j p(Ci,j)−

∑
k p(Ci,k) ≥ Ξ

φi + π if
∑

j p(Ci,j)−
∑

k p(Ci,k) < Ξ
(4.10)

Where j ∈ ∆, k ∈ Θ, and Ξ is a threshold that acts as a bias towards the initial

direction: in order to invert it, the system must have a certain amount of evidence.

Having the directions distributed over all patches can allow certain areas of a lane to

have a different direction from the rest of it, depending on the motion of the traffic in

the scene.

4.4 Conclusions

In this chapter we presented a method for estimating additional road semantics, such

as road width, orientation, lanes layout and driving directions. While this method
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Figure 4.4: Exemplary plot of the estimated direction φi,j , where j is a vehicle centered

in (0, 0)m and φj = π
2

has been conceived with the representation presented in the previous chapter in mind, it

works with any grid-based binary road representation. The approach applies geometrical

considerations to infer road width and orientation in a patch-centered fashion, and then

uses them to divide the road in multiple segments. Subsequently, it compares the width

of each segment with a predefined average lane width to assign a number of lanes to the

segment. Each lane has a default direction based on its position within the segment,

and the system can change this direction based on the motion of other vehicles in the

scene. Future work should focus on improving the performances of the approach in

intersections, and in particular on finding a method to exploit the driving direction

of other vehicles for intersection maneuvers. Furthermore, it would be interesting to

investigate fusing this indirect approach with a direct one, possibly in a similar way as

we did for the road/non-road framework.

The next chapter will present the concrete system architecture used for the experi-

ments, and will detail some of the implementation of the concepts presented in these

last two chapters.



Chapter 5

System Architecture

Chapter overview In this chapter we describe the system architecture that we built around our road

representation formulation to apply it to real-world data. We also specify the parameter selections that

we will use for our experimental analyses in the following chapters.

5.1 System Overview

In order to test and evaluate our theoretical formulation for road representation we

constructed a system architecture around its implementation that connects with the

different required data sources. Figure 5.1 shows the block diagram of the system. It

can be divided into three stages. The first stage processes the inputs and computes the

variables for the road probability formula. The second stage applies the formula and

manages the representation grid, while the third stage uses the representation to estimate

additional semantics and plan trajectories. The system has multiple inputs: the first

input comprises ego-car data, from CAN and GPS, that are used to estimate the pose of

the ego-car in representation coordinates (see section 5.2). The representation module

uses this to transform the ego-relative coordinates of all other inputs to representation

coordinates. The second input is a gray-scale image stream. The images are used by

the Direct Detection module, which outputs a top-down view road confidence map (see

section 5.5 for details). The third input is a list of detected vehicles with position and

velocity. The detected vehicles are used by the Behavior Interpretation module, which

computes the past and future positions of each of them (see section 3.3), as well as by

the Occlusion Check module (see section 5.4). The latter computes the visibility of each

patch, and can also use an additional input, the detected static objects. Once all inputs

have been processed, the representation module computes the road probability for each

patch, as explained in chapter 3. The final stage operates on the representation obtained

in stage 2 with two blocks, one computing lanes and driving direction, while the other

is a trajectory planner (see section 5.8), which uses the representation (with or without

additional semantics) to compute the trajectory to reach a destination defined by user.

49



50 Chapter 5. System Architecture

Figure 5.1: Block diagram of the system architecture. Inputs and outputs are represented

as ovals, modules are rectangles. Dashed arrows represent optional connections. The

three stages are highlighted in red.

5.2 Pose Estimation

As all sensor measurements refer to the ego-car as frame of reference, we need a way

to estimate its position in our representation coordinates at any point in time. Since

available GPS is not reliable enough to locate the ego-car accurately, especially in in-

ner city, we use a simplified model to estimate the motion of the ego-car, given speed

measured by the sensors and orientation measured by GPS. The motion of the ego-car

is approximated as linear between two iterations, so that the distance traveled depends

only on its speed. If at iteration t we call the position and yaw of the ego-car respectively

pe[t] and γe[t], and if we call ∆T the duration between two timesteps, we can compute:

pe[t] = pe[t− 1] + ∆T
(|ve[t]|+ |ve[t− 1]|)

2

[
cos

γe[t] + γe[t− 1]

2
, sin

γe[t] + γe[t− 1]

2

]
(5.1)
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(a) Ego-Motion estimation model (b) Occlusion Model

Figure 5.2: (a) Sketch describing the motion estimation between two iterations t−1 and t.

The motion is approximated as straight, with a speed and direction that are the average

between the respective values measured at the two iterations. (b) Sketch describing the

occlusion estimation. The black poly-line is a static object outline detected by sensors.

While patch 1 is visible, patch 2 is not, as the line connecting it with the ego-car intersects

the outline.

We approximate the speed and direction between iterations t− 1 and t as the average

between the values measured at those two iterations. Figure 5.2a shows a sketch.

5.3 Vehicle Detection

The platform is equipped with 6 Ibeo Lux Lidars including Ibeo Lux Fusion System for

360 degree object detection and tracking (see figure 5.3(left)). The scanner estimates

position, direction, speed and size of detected moving objects (see figure 5.3(right) as

a visualization of lidar output). The Lidar software provides detected vehicles as 3D

bounding boxes, and our system uses their projection onto 2D to approximate each

vehicle’s shape as a rectangle.

5.4 Occlusions

Detecting occlusions is necessary for a correct management of the visibility term and

the balance between direct and indirect detection. In our system, occlusions are also

detected by the 360 degrees Lidar scanner system mentioned in the previous section.

The Lidar scanner detects two kind of objects: moving objects and static objects. We

can exploit both to determine the visibility of each patch. As mentioned in section 5.3,

detected vehicles are approximated as 2D rectangles by our system. Detected static

objects are instead treated differently. The Lidar system only provides their outline as
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Figure 5.3: (left) The Lidar setup of our mobile platform. (right) A visual representation

of Lidar output, with detected vehicles as orange boxes and static object outlines in red.

Note that the grid refers to the Lidar system’s own representation, and is not equal to

our road representation grid.

a poly-line. The occlusion check is carried out for each patch that lies within the direct

detection area. A patch is considered occluded if the line between its location and the

camera location (i.e. in front of the ego-car) intersects with any static object outline

or any moving object box. Figure 5.2b shows an example, with a static object outline

occluding a patch from view of the ego-car. If a patch is not occluded, its visibility p(V )

is 1, otherwise it is 0.

5.5 Direct Detection

As mentioned in chapter 2, we chose RTDS (Fritsch et al., 2014) as direct detection

system. We chose this system for its good performances in the KITTI benchmark (Geiger

et al., 2012), but any kind of direct detection system providing confidence levels can be

used in this framework.

RTDS takes as input a grey-scale image and, after processing it, outputs an 8-bit

confidence map that is projected to Birds’ Eye View (BEV) using camera perspective

parameters. The result is a rectangular BEV image (with generic boundaries x ∈ [xa, xb]

and z ∈ [za, zb]) in camera-centered coordinates, where every pixel represents confidence

(from 0 to 255) that it is road (figure 5.4(left)). For our purposes, we transform the

camera-centered coordinates into representation coordinates (which we can do by know-

ing the ego-car position, and the relative position of the camera within the ego-car) and

we approximate the probability p(Ri|Di) as the confidence value in the patch, re-scaled

to an appropriate range of values. The range of [0, 1] can be the obvious choice, but it

is not the only one. In fact, the confidence map that we use expresses ”positive” road
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Figure 5.4: (left) Example of RTDS road confidence map, with the axis marked in red.

(right) This figure shows the difference between the shortest road detection range and the

camera position. The ego-car (on the far left) is considered at position Ze (off-screen),

while the camera is mounted on the front windshield, at position ZC . The front end of

the car occludes the road directly under and in front of it, so that the camera cannot see

any road before point ZV , the shortest detection range.

confidence, that is, it does not necessarily expresses a confidence between non-road ↔
road, but expresses a confidence between unknown ↔ road. That is why, during the

translation between confidence and actual probability, the interval [0, 1] might not be

the most appropriate. Considering that our system implicitly uses the probability value

of P0 to express a totally unknown area (that is, in fact, the road probability value of

a patch with no data available), the interval [P0, 1] might be a better choice. In our

experiments we tried both (see chapter 6), with a preference for the latter.

The spatial domain of p(Ri|Di) is a rectangle (base 2b, length 2l) with boundaries that

can be defined by the user, and should take into account the position of the camera on the

car and its field of view. Ideally, the shortest detection range ZV , which corresponds to

the lower boundary of the rectangle, is determined by the camera angle and the occlusion

caused by the front end of the ego-car (see figure 5.4(right)). For our experiments we

have set the boundaries at x = [−10, 10]m and z = [7, 62]m, where 7m was the shortest

detection range. The resulting confidence map has a resolution that can also be defined
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by the user, and depends on the capabilities of the camera and hardware. Setting a

high resolution results in an increased computational load. For our system, we set a

resolution of 0.05m, which is much finer than the one of our representation grid (0.5m).

For this reason, the BEV road confidence values κ(x, z) are averaged over each patch of

our representation. In order to determine which representation patch a pixel belongs to,

the location of each pixel is converted into representation coordinates and is assigned to

the patch with the closest center location. After averaging over all the pixels assigned

to a patch, the process provides a value p(Ri|Di) for each patch at every iteration.

p(Ri|Di) =
1

Ni

Ni∑
(x,z)∈i

κ(x, z) (5.2)

In order to use these values we still need to define a reliability function. The function

could be constructed based on data, by computing accurate statistics about the reliability

of RTDS in the configuration used, or on modeling, as we do in this work. Our model

uses a simple function, that fulfills the properties mentioned in section 3.5: it should

have higher values in the middle of the Field Of View (FOV) (which in this case is a

rectangle), and lower values at long distance and at the sides. The function we chose is

the following:

p(Di|Vi) = cos

(
E
Xi,e

b

)
cos

(
F
Zi,e
2l

)
(5.3)

Where the FOV has to be the same as the provided BEV confidence map, in this

case being a rectangle with a width of 2b and a length of 2l. [xi,e, zi,e] is the position of

patch i in the reference system of the ego-vehicle, and E,F are two constant parameters,

that control the decrease in reliability along the x and z axis. In order to always obtain

positive values, we have to set E,F ∈
(
0, π2

]
. A contour plot of this function can be seen

in figure 5.5.

5.6 Representation Grid

Our approach uses a regular square grid map as an internal representation of the envi-

ronment. Every patch is treated as independent from the others, and all calculations are

carried out patch-wise. For this reason our representation can be implemented as a list

of independent patch instances. Each patch holds several values, including its location in

map coordinates. The experiments that we will present in next chapter have been using

a fixed representation grid, created at the beginning of each stream with a reference
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Figure 5.5: Examples of reliability function with different values of parameters E and

F . (Top-Left): E = 1, F = 1. (Top-Right): E = 1.5, F = 1.(Bottom-Left): E = 1,

F = 1.5.(Bottom-Right): E = 1.5, F = 1.5.

frame aligned to the ego-vehicle initial pose. Each patch of the grid represents a 0.5m

x 0.5m of area. We chose this spatial resolution as a compromise between high spatial

accuracy and short computational time. The representation is built at the beginning of

each stream, and its coordinates are centered on to the ego-car initial position, with the

z axis aligned with the ego-car initial direction (see figure 5.6).

5.7 Lanes

As explained in chapter 4, our approach needs to measure the road width along a few

fixed sample orientations. For our actual implementation we used 4 orientations, de-

fined by the angles Γ = {0, π4 ,
π
2 ,

3π
4 }. We chose these orientations because they allow

to measure the width by simply counting adjacent road patches along the horizontal,

vertical and diagonal directions, and scaling the result based on the resolution chosen.

In order to alleviate possible errors, orientation, width and relative position are filtered

by spatial convolution with a 5x5 Gaussian mask, and finally stored into each patch.
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Figure 5.6: The grid is aligned with the position of the ego-car (dashed in red) at the

first frame. The patch corresponding to that position (in green) is defined as patch (0, 0).

The system has to handle different reference frames (for example, those centered in other

cars, marked in black, used for the behavior interpretation, or the current reference of

the ego-car, marked in red).

The road segments are distinguished by assigning to each patch the ID of its segment.

The average width that was used for the experiments presented in section 6.2 is 3.2m,

which was chosen as a good compromise between typical lane widths for primary and

secondary roads in Germany(Hall, Powers, Turner, Brilon, & Hall, 1995)).

5.8 Trajectory Planner

In order to show the potential of our system in terms of utility for trajectory planning,

we set up a standard trajectory planner for grid representations that uses our road

representation to compute trajectories. The planner employs Fringe Search (Björnsson

et al., 2005), a variant of A∗, as path finding algorithm. This algorithm uses the same

concept used by A∗ of estimating the remaining cost to reach the target from each node

in order to select which nodes to expand first, but unlike A∗ it iterates over two lists,

now and later, which store respectively the current and next iteration. The planner
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Figure 5.7: Example for a given timestep of the path planning tree structure. The cost

of each node is based on all the patches within the respective red area (the width of the

rectangle is the same as the ego-car). In blue are the nodes that have been expanded. In

green, the nodes in now. In orange, the nodes in later. The green area represents road.

goes through the nodes stored in now, expands them and inserts their children in one of

the two lists depending on their expected cost. If it is lower than a threshold, they get

inserted in now, while if it is higher they go into later. Once the iteration over now ends

because all the remaining nodes have an estimated cost higher than a threshold, the

algorithm increases the threshold, moves all the nodes from later to now, and proceeds

to the next iteration. The planner’s goal is to compute the best path between the initial

position A to any point in the target area. In an actual (in real time) application the

target area is meant to be defined by the user, as a destination point in a navigational

map. In order to model this, in our experiments the target will be an area defined by

a center location decided by user. The target area has the shape of a 2D Gaussian

function (that we denote fT ), where every patch has a ”target score” that will be taken

into account by the planner. The higher the score, the lower is the overall cost of a path

ending in that point. The Gaussian shape serves to model the spatial uncertainty caused

by the topological nature of a navigational map, which will have errors in the order of
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meters, as well as the uncertainty of GPS self-localization. The planner computes the

optimal trajectory by performing a tree search, over nodes representing a certain spatial

area. Such tree is exemplified in Figure 5.7. At every node the vehicle can either turn

left, right or go straight. Turning is modeled as increasing the yaw rate, so that the

vehicle can turn more if it started turning on the previous node. Every node can have

a predefined number Nc of children, one that keeps its yaw rate and an equal number

of children that either increase it or decrease it, so that Nc = 1 + 2Nc′ , with Nc′ ∈ ℵ.

The number of children per node is a design choice, as a higher number means bigger

coverage but longer computational time. The amount of yaw-rate increase or decrease is

also a design parameter, and it depends on the dynamics of the ego-car and on the type

of trajectory we want to model (e.g. harsh or smooth maneuvers). The distance D(n)

between a node and its parent depends on the speed of the ego-car (every node models

the distance traveled by the ego-car during a fixed amount of time), which in turn is

modeled as dependent on its yaw rate, in the following fashion:

D(n) = (V0 −B |δγ(n)|)T0 (5.4)

T0 is a time constant that defines the time step between a node and its parent, and

δγ(n) is the difference in direction between them (which models the ego-car yaw rate).

The term B |δγ(n)|, where B is a tuning parameter (strictly positive), models the slowing

down of a car during a maneuver, as the distance traveled decreases with yaw rate. It

also allows to have a finer tree coverage within the most important part of a maneuver.

The algorithm assigns a cost to each node, that includes a road-dependent term, a

yaw-rate-dependent term and an optional, lane-dependent term. The road cost depends

on the road probability of all the N patches that the ego-car will traverse if it drives there

from the parent node. The same holds true for the lane-dependent cost. The formula

we chose is:

CR(n) =
1

N

N∑
i∈n

(
1

p(Ri)
− 1

)
(5.5)

CY (n) = |γ(n)| (5.6)

CΦ(n) =
1

N

N∑
i∈n
|φe − φi| (5.7)

C(n) = 1 + JCR(n) +KCY (n) + LCΦ(n) + C(n′) + Y (n) (5.8)

Here CR(n), CY (n) and CΦ(n) are, respectively, the cost associated to road probability,

yaw rate and lane direction. Note that, in case p(Ri) is lower than a certain threshold,



5.9. Middleware 59

the cost is not computed and the node is marked as a dead end. C(n′) is the cost of

the parent node (without the estimated part), while J , K and L are tuning parameters.

The estimated remaining cost Y (n) to reach the target is approximated as the number

of nodes required to arrive there at maximum speed. Since the base cost of each node

is 1, this is the best case scenario for the cost formula, as the actual cost can never be

lower than that. Every node has five children: one that maintains the yaw rate, two

that increase it to the right (by 0.25 and 0.5 rad/s) and two that increase it to the left

(by the same amounts). In order to speed up the algorithm, every node that has a cost

higher than a predefined limit is flagged, and any of its children that also have a cost

higher than the threshold are closed and marked as dead ends. The same happens if the

distance to the center of target area increases for three consecutive nodes. Dead ends

are eliminated by not being expanded and not being moved to the later list. When a

path reaches a valid target, the iteration is completed and if there are multiple paths

that end on a valid target the algorithm sorts them based on their cost C(n) and the

value of the target function at their location (fT (n)), obtaining the final trajectory cost

FC(n).

FC(n) = (CMAX − fT (n))C(n) (5.9)

Where CMAX is a tuning parameter (strictly higher than 1, the maximum value of

fT (n)), whose value we set as 2. The trajectory with the lowest final cost is the output

of the planner.

5.9 Middleware

The system has been implemented using two middlewares. The first, RTMaps�, has been

used also to record the data on the mobile platform. It is a modular toolkit for stream

synchronization and processing developed by Intempora (http://www.intempora.com).

It allows to replay a recorded stream (camera images, Lidar-detected objects, CAN

data, etc.) offline, and we use it to read and pre-process (mostly decoding) the data, as

well as to visualize the inputs as they are fed to the rest of the system. The processed

inputs are sent to the second middleware, ToolBOS (Brain Operating System). ToolBOS

(Ceravola, Stein, & Goerick, 2008) is a brain-inspired infrastructure which focuses on

modularization and synchronization of processes for intelligent systems, and comprises

multiple elements. The main elements are the BBCM (Brain Bytes Component Model)

and BBDM (Brain Bytes Data Model), based on which all the middleware is developed.

The design tool that we used to develop our system is called DTBOS (Design Tool for

Brain Operating System), while the middleware that supports its modular execution is

RTBOS (Real-Time Brain Operating System). This middleware supports the execution
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of scripts in different languages. In our application, the scripts used were written in

Python.

5.10 Conclusions

In this chapter we presented the system architecture that we used to implement our

road representation and to test it on a real-world data application. The core of the

system is our grid-based road representation, which we build by collecting direct detec-

tion information, from the RTDS method, and behavior-based detection information,

from our own Behavior Interpretation method. The road representation can then be

further enhanced with lane segmentation and driving direction, exploiting geometrical

and behavioral considerations. The system also includes a trajectory planner which can

compute a trajectory for the ego-vehicle to reach a user-defined destination. The planner

creates a tree of spatial nodes on the representation, and employs the Fringe search al-

gorhitm to find the path with the lowest overall cost. The system has been implemented

as a set of Python scripts, using two middlewares: RTMaps for data pre-processing, and

ToolBOS for the execution of RTDS and the rest of the framework. In the next chapter

we will test the system on real-world data through multiple experiments.
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Experiments Report

Chapter overview In this chapter we apply our framework to test its performances on real-world

recordings.

In order to evaluate the performances of our system, we recorded real world scenes

with a mobile platform. The platform is a 2015 Honda CR-V equipped with 6 Ibeo Lux

Lidars including Ibeo Lux Fusion System for 360 degree tracking (see figure 5.3) and an

IDS UI-3580 camera in the front windshield. The composition of the dataset to be used

in the evaluation is an important point. For this test to show how the approach works

compared to a standard detection system, we need to test it on scenes that are relevant

in terms of showing behavior interpretation effects. As such, the data have to include

scenes where there are other cars on the road, as without them our representation would

be equal to a direct detection system by construction, and where there are occluded

roads that cannot be seen by direct detection. Considering these requirements, most

of public available datasets are not suitable for our purposes. For the same reason, the

dataset we test our system on is very limited in size, and for a comprehensive evaluation

a much larger dataset will be needed.

6.1 Road Classification

In this section we test and evaluate the road classification performances of our system.

6.1.1 Ground Truth

The results that are shown in this section refer to a stream of over 2 minutes, part of

a larger recording. In this stream our mobile platform makes a full lap around a block,

occasionally stopping due to other cars. The recording was done in the city of Offenbach,

Germany. In order to get a ground truth to compare our systems representation against,

we hand-labeled the road area in an amount of frames necessary to get a good coverage of

the whole stream, and then we built a grid map, with the same size as the representation

our system will create, by mapping every labeled frame onto it. The mapping has been
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Figure 6.1: This sketch shows the process for building the ground truth. The ego-car

(in grey) drives on road and an user manually annotates the road ahead (here in green),

which depends on its field of view (in blue). The road annotated in different frames (here

4 frames are represented, indicated by the red number on the ego-car position) is merged

together.

performed by firstly transforming every image from perspective into BEV, and then

placing it with the proper position and orientation on the grid (see figure 6.1). Every

square whose center location has been annotated as part of the road for at least two

frames, is considered true road area. The placement onto the grid has been made by

estimating the motion of the mobile platform using the approach described in section

5.2. However, the estimation of the trajectory, based on these data, is far from optimal.

The reason is two-fold. On one hand, the approach used is an approximation of the

actual motion of a car, and as such will always yield a certain amount of errors. On

the other hand, the data (images, Lidar, CAN) used for this experiment was available

at a frequency of 2Hz. This low frequency made the ego-motion approximation very

unreliable in correspondence of the sharp turns the car had to make in these narrow

urban intersections, as the yaw change between frames was too large to fit into our

assumption of linear motion. As a result, after loop closure the road overlap is off by
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1-2m. As this method is the same we use to build our representation grid, the two

representations will be properly aligned, as long as we run our tests only on the same

lap we built the ground truth with, and we stop just before closure. Figure 6.2(left)

shows the ground truth obtained by this process.

We chose this method for multiple reasons. First of all, comparing our representa-

tion to the ground truth frame by frame, like it is usually done for evaluating visual

direct detection systems, would be limiting. This is because ground truth is affected by

occlusions, as it is based on camera images, and cannot see occluded road areas, while

our representation can. Road areas that lie behind occlusions are in fact an important

part of our approach, and in a single frame they cannot be annotated properly and

thus cannot be evaluated. Furthermore, road area that lies outside the camera field

of view can be detected by our approach, as it can detect vehicles at 360-degrees, and

of course that cannot be compared with a single-frame ground truth. The evaluation

has been made by comparing the performances of our full system with the ones of the

direct detection system it uses, the RTDS(Fritsch et al., 2014), trained on 80 images for

the first stage and another 80 for the second. The images used for the training came

from a different area of the same recording. Since our representation is meant to keep

information from past frames, we chose to let the RTDS do so as well, by building a

RTDS-only representation wherethe road probability of each patch is determined only

by the average RTDS confidence over all the past frames. This was done in spite of the

standard practice of evaluating the output frame-by-frame, which is usually done for

direct detection systems. Taking into account the average of all past frames also enables

RTDS to detect road area behind the ego-vehicle, by accumulating results from past

frames.

6.1.2 Experiments

For this test we chose a representation grid of 200m x 250m, with 0.5m x 0.5m squares.

The size of the representation has been chosen large enough to cover the whole block

and some of the external roads. It is important to note that a few roads in the ground

truth are beyond the scope of the RTDS, as the ego-vehicle never drives on them, while

they can be detected by the behavior interpretation instead.

The experiment has been run by using our system with both p(Ri|Di) ranges of [0, 1]

and [0.5, 1] (see section 5.5 for details), in order to compare the two approaches. It is

important to note that the data we recorded for this experiment did not include static

object outlines, so our system could only detect occlusions due to other vehicles, and

not other obstacles, like buildings. This has effect on the performances of the whole

system, as RTDS tends to provide many false positives during intersection maneuvers,

that would be discarded (as they lie on occluded area) if we could detect buildings.

Both configurations (full system and RTDS only) have been run offline and the evalu-

ation has been performed by comparing the output representation with the ground truth
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every 5 frames, sampling the threshold TH uniformly in the interval [0, 1] with a step

size of 0.02, for a total of 51 threshold values: a patch with a road probability higher

than the threshold is considered road, while it is considered non-road in the opposite

case. The classification on each of the considered frames was then compared patch-wise

with the ground truth, thus building a confusion matrix. As the representation builds

up with each frame, comparing it with the entire ground truth would not be meaningful.

Instead, we will carry out the comparison only within a certain range around the ego-car,

which is the area where the system can detect enough objects to build the representa-

tion. In fact, we will use three different ranges, to show the different spatial range of

the two configurations used. The ranges that we will use are {30, 50, 70}m. We chose

to evaluate the performance by computing the F1-score, which is the harmonic mean

between precision and recall:

P =
TP

TP + FP
(6.1)

R =
TP

TP + FN

F1 =
2PR

P +R

Where TP and FP are the numbers of true and false positives, FN is the number of

false negatives, P and R are precision and recall, and F1 is the F1-score.

Figure 6.2 shows a comparison between ground truth and the accumulated RTDS

confidence map. The accumulation has been done frame by frame, and the result is

the average between all confidence values (re-scaled to [0, 1]) over time on each patch,

without any visibility or reliability considerations. This comparison shows the strengths

and weaknesses of RTDS. In particular, one can notice how many artifacts are produced

around intersections, and the fact that side roads cannot be detected unless the ego-car

traverses them.

Figure 6.3 shows the representation obtained by the full system, with direct detection

scaled to [0, 1], at a frame towards the end of the stream. The ego-car is on the right-

most road section, and is about to complete the lap. We show the representation at this

point, so that a few properties of it are easier to see. A few important areas have been

marked with numbers to help the reader. The intersection marked with (0) is the starting

position of the ego-vehicle, and thereby the origin of our representation coordinate system

(0, 0). The false positives in the representation are caused by mis-detections of RTDS in

areas that were only seen for very few framse, during the maneuver that the ego-vehicle

made in order to enter the traffic from its parking spot. From there, it makes a clock-wise

lap around the whole block. The two roads marked with (1) could not be detected by a

direct system at all, but the vehicles moving on them enabled the behavior interpretation
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Figure 6.2: (left) The ground truth representation obtained as explained in section 6.1.1.

(right) A representation obtained by accumulating the direct detection output (with the

confidence values interpreted as road probability) over the whole stream.

to do so. It is also possible to see a curved road on the left side, as the vehicle that

allowed us to detect it made an evasion maneuver which lowered the probability of road

in the avoided area as intended. However, since the vehicle was detected by Lidar and

was outside the camera FOV, we do not know the actual reason of that maneuver, and

we can only assume the vehicle had to avoid an obstacle. The areas marked with (2) are

artifacts caused by the RTDS, and are due to its limited training set and challenging

imaging conditions. Those artifacts are mostly located on buildings, and the full system

would eliminate them entirely if it could detect buildings as obstacles. Even so, however,

one can notice how those artifacts are significantly filtered out by the reliability function,

which gives low values at long range. The ego-car current position is marked with (3).

It is possible to see that the road still has to be completed, but the RTDS is seeing

part of it, and another part is given by the detection of two cars in the vicinity of the

first intersection (4). One of those two cars has been detected during maneuver, and

that produces the artifact that can be seen towards the right, while the other car does

give us a precise idea of the road we are about to connect to. Points number (3) and

(4) are the reason why we show the representation at this point in time, and not at

the end of the lap, since the direct detection will eventually see the missing road, and

the behavior interpretation effect would not be significant anymore to be appreciated.

Marked with (5) are three intersections where the presence of vehicles in front of us

allowed the behavior interpretation to partially fill the discontinuity caused by the weak

performance of the RTDS, that did not detect road accurately in all intersections. The

RTDS did, however, detect the external roads marked with (6), as they were clear from

traffic and placed in front of the ego-vehicle. The full system also detected the side road

marked with (7), although not entirely, as the vehicle traversing it was coming from an
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Figure 6.3: The road representation obtained by the full system (with direct detection

values scaled to [0, 1]) towards the end of the stream.

occlusion. The figure also shows the different range of values that the full system output,

compared to the ”raw” direct detection: the main difference is that, while the RTDS

simply gives 0 in absence of information, our full system gives 0.5. This is a potential

benefit of our system, as it is not bound to a rigid classification between road and not

road like RTDS, but it can classify areas as ”unknown”.

Figure 6.4 shows the average performances of the full system compared to the raw

RTDS output over the whole stream, comparing for every frame the internal representa-

tion of each versus the ground truth only within a limited radius from the ego-car, and

then averaging the F1-score over all the considered frames. From this evaluation it can

be seen that the full system has a significantly higher performance than the RTDS alone.

Additionally, the comparison within different ranges shows the increased spatial range

of our full system, which within 70m exhibits performances superior to what RTDS does

within 30m. Note that, as expected, the threshold at which the full system works best

is much higher than the one of RTDS.

Figure 6.5 shows the representation achived at the end of the stream, by two different

configurations of our system. On the left is the configuration that uses only direct
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Figure 6.4: F1-score plots of the raw RTDS data and of our full system, with direct

detection values scaled to [0, 1]. The F1-score was evaluated within three different radii

around the ego-car.

detection data (including visibility and reliability) re-scaled to [0.5, 1]. It is basically our

full system, only without behavior interpretation. It is possible to see how the reliability

can partially filter out the artifacts in intersections. On the right is the full system, which

uses the same direct detection data shown on the left, with behavior interpretation. Here

we can see that the re-scaling of the direct detection values from [0, 1] to [0.5, 1] does

make a significant difference qualitatively, as in this picture the transition between inside

and outside the field of view appears smoother than in picture 6.3(right). Quantitatively,

the effect can be seen in the evaluation shown in Figure 6.6. Here, we have evaluated

the average F1-score for three configurations. The first one is the raw RTDS ouput

already shown previously. The second is our system with only direct detection (scaled

to [0.5, 1]) as shown in figure 6.5(left). The last one in our full system, with behavior

intepretation, shown in figure 6.5(right). This comparison clearly shows the advantages

of our framework, which takes into account the reliability of the direct detection system,

and adds to it an additional source of information, the behavior of other vehicles. Note

also that the addition of the behavior interpretation is more beneficial at higher ranges,
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Figure 6.5: Final representation obtained by the system with two configurations, RTDS-

only (left) and RTDS + Behavior interpretation (right). Both with direct detection values

scaled to [0.5, 1]

as the increase in F1-score is higher, so that the loss in performance with distance is

reduced compared to direct detection only. It can be noticed that the full system with

direct detection values scaled to [0.5, 1] performs slightly better than the one shown in

figure 6.4, with values scaled to [0, 1]. Unsurprisingly, the effective threshold is higher,

at around 0.75, compared to 0.7 for the former configuration.
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Figure 6.6: F1-score plots of the raw RTDS data and of our full system, first with only

RTDS scaled to [0.5, 1] and then with full behavior interpretation using the same RTDS

data. The F1-score was evaluated within three different radii around the ego-car.
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6.2 Lane Segmentation and Driving Directions

In order to show the potential benefits of our approach over lane segmentation and

driving direction estimation, we will show a few qualitative tests on real world data. For

a proper evaluation, we will need a much larger dataset. Before the real world data,

however, we evaluated the geometric approach explained in section 4.2 on ideal scenes,

to show the performances of the estimation, which is fundamental in our whole system.

The ideal scenes are simulated road layouts (without vehicles) that have been drawn

onto a representation grid with a shape defined by user.

6.2.1 Road Direction and Width Estimation

In this section we evaluate our model estimating only road orientation and road width

on ideal scenes. We test our approach on two scenarios, on a 200m x 200m square

grid, with patches of size 0.5m x 0.5m. The first one is a long, straight road, with a

variety of different orientations and widths. Since our approach is based on measuring

width along the 4 main orientations mentioned in 5.7, we want to test the capabilities

of the approach on different orientations. Thus, we use the following set of orientations:

18 deg, 22.5 deg, 30 deg, 36 deg. The results (see table 6.1 and figure 6.7a-b for the 30 deg

experiment, as an example) show that the approach is very robust in this particular

scenario. The average error for road width was between −1.3m (the worst scenario,

occurring for a 12m road with an orientation of 22.5 deg) and −0.1m (occurring for a

4m road with orientation of 36 deg). The mean square error was between 0.9m2 and

3.3m2. The average absolute error for road orientation ranged from a best case of less

than 0.1 deg to a worst case of 1.8 deg, occurred at the widest road and the orientation

of 22.5 deg, which is the most distant from any of the main orientations we use in the

algorithm. The percentage of patches with an orientation error of less than 5 deg was

80% in the worst case and higher than 85% in all the others, reaching 100% in a few

cases. The percentage of patches with an orientation error of less than 10 deg was always

at least 99%.

The second scenario is meant to test the performances on curves. For this purpose, we

generated a perfectly circular road and test our algorithm on it, using different radii and

widths. By doing so, we make sure the approach is tested on all orientations. The radii

we used were 40, 50, 60, 70, 80 meters, while the road widths were 4, 6, 8, 10, 12 meters.

The results for width estimation are shown in table 6.2. This experiment clearly shows

the issue discussed in section 4.2.2: the width is underestimated at the outer part of wide

curves. The effect is more evident at smaller radii, and it occurs systematically at certain

orientations, while at others it does not. In figure 6.7c-d one example is shown, for a

width of 8m and a radius of 60m. It is apparent that the most troublesome orientations

are the ones that are in between the four main orientations used by the algorithm. Over

the whole experiment the average error in width was between −0.2m (occurring for all
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W\Φ 18 deg 22.5 deg 30 deg 36 deg

4m 0.43m(11%) 0.49m(12%) 0.18m(5%) 0.09m(2%)

6m 0.65m(11%) 0.69m(11%) 0.28m(5%) 0.10m(2%)

8m 0.66m(8%) 0.90m(11%) 0.35m(4%) 0.13m(2%)

10m 0.68m(7%) 1.12m(11%) 0.46m(5%) 0.16m(2%)

12m 0.82m(7%) 1.30m(11%) 0.62m(5%) 0.20m(2%)

Table 6.1: Average absolute (and relative) error in estimated width for an ideal straight

road of true width W and orientation Φ.

W\R 40m 50m 60m 70m 80m

4m 0.44m(11%) 0.24m(6%) 0.19m(5%) 0.18m(4%) 0.20m(5%)

6m 0.81m(13%) 0.66m(11%) 0.54m(9%) 0.41m(7%) 0.30m(5%)

8m 1.27m(16%) 1.04m(13%) 0.88m(11%) 0.76m(9%) 0.62m(8%)

10m 1.55m(16%) 1.46m(15%) 1.28m(13%) 1.09m(11%) 0.94m(9%)

12m 1.80m(15%) 1.83m(15%) 1.72m(14%) 1.56m(13%) 1.33m(11%)

Table 6.2: Average absolute (and relative) error in estimated width for an ideal circular

road of radius R and true width W .

narrow roads, regardless of the radius) and −1.8m (occurring for the 12m wide road and

40m radius), showing that the approach does seem slightly biased towards lower width

values. As for the directions, the average absolute error was between 2 deg and 4 deg,

with the worst performances occurring in the same cases as the worst width estimations.

Here, the larger the radius, the better the performances. The percentage of patches with

a direction error lower than 5 deg ranged from 76% in the worst situation to 97% in the

best, being over 85% in 23 cases out of 25. The percentage of patches with a direction

error lower than 10 deg was 94% in the worst case and was never lower than 98% in all

the others, reaching 100% in multiple cases.

6.2.2 Experiments

In this section we test our system on real world data, to show the potential of our

approach. The data were taken by our mobile platform, with the same setup detailed

in section 6.1. As we lack a reliable way to precisely annotate the direction and width

of roads, this experiments focus on lane segmentation, in particular on showing that

the system can recognize the correct number of lanes (which can easily be annotated

by the user), and can estimate their direction (especially with respect to the others, i.e.

distinguishing opposing lanes).

In the first experiment (figure 6.8(left)), the ego-car is standing at a traffic light, on

the rightmost lane of the incoming road, and observes a T-shaped intersection, made

by three roads with three lanes each. In order to show the performances of the lane
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Figure 6.7: (a)(b): Output of the orientation and width estimation, performed on a 90 deg

intersection made by two 10m wide roads, with an orientation of 30 deg and 120 deg.

(c)(d): Output of the orientation and width estimation, performed on a circular road

with radius 60m and width 8m. The estimations have been performed using four sample

orientations (see chapter 5 for details).

segmentation algorithm without any influence from the rest of the system, the input road

representation (figure 6.8(top-left)) has been created by manual annotations instead of

by our road estimation algorithm. The Lidars detect two vehicles, both coming from

the left road. One of them follows the middle lane, going straight into the right road,

while the other follows the rightmost lane and turns into the same road as the ego-

car stands. In figure 6.8(middle-left) it is possible to appreciate the road segmentation

performed by the current system, which is not meant to handle intersections yet. Even

though inside the intersection itself the segmentation is irregular, the three roads are still

clearly segmented. Figure 6.8(bottom-left) shows the driving direction of each patch as

inferred by the system. The system correctly divides all three road segments into three

lanes and assigns the correct direction to the middle lane, from left to right, using

information from the vehicle that traversed it. As for the road where the ego-vehicle

is, no vehicles traverse the middle lane, and thus the system has no proper means to
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estimate the direction. Since the car turning into that road has a chance to be directed

towards that lane, in absence of any other cue the system assigns its direction to the

lane.

The second experiment (figure 6.8(right) shows a two-lane straight road, with only

one direction allowed. In this experiment the input (figure 6.8(top-right)) is provided

by our road representation system, thresholded at 75%, which we determined as the

most effective threshold (see section 6.1.2). It has to be noted that the resulting road

representation is not perfect, as it shows three small artifacts near the center line, in

the form of patches incorrectly shown as non-road. These artifacts are produced due

to an insufficient road visibility for RTDS (caused by bad lighting conditions and the

vehicle occlusion), only partially filled by the behavior interpretation. In the stream, the

ego-car travels on the left lane, and overtakes another vehicle on the right lane. Figure

6.8(middle-right) shows the lane segmentation performed by the algorithm, with the

default directions assigned. Figure 6.8(bottom-right) shows the final direction of each

patch. The figures shows that the system correctly divides the road into two lanes and

assigns the correct direction to both of them, by observing the two vehicles in the scene.

The artifacts present in the representation input do cause artifacts in lane segmentation

and direction estimation, although the figures show that the effect is spatially confined.



74 Chapter 6. Experiments Report

Figure 6.8: Two lane segmentation experiments side by side: (Top) Exemplary image

(Top-left) and road representation input. (Middle) Road segmentation for the first ex-

periment and default directions for the second experiment. (Bottom) Output of the lane

direction estimation.
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6.3 Trajectory Evaluation

In this section we apply our trajectory planner onto road representations obtained with

real-world data recorded by our mobile platform in the town of Offenbach am Main,

Germany. As these experiments were run using more recent data, recorded with an

upgraded version of our mobile platform, they did have detected static objects outlines

available, so that our system could recognize correctly areas occluded by buildings, as

explained in section 5.4.

For the experiments presented in this section, the planner will not use lane and driv-

ing direction information. This allows us to decrease the complexity of the parameter

evaluation in section 6.3.1 by eliminating one variable, parameter L, which will be set

to 0.

Similarly to what we did in section 6.1, we will use a system with RTDS only as

baseline in these experiments. Our goal is to test if the increased range granted by

the behavior-based enhancement produces a representation that, by being more precise

at long range and more stable over time with respect to our baseline, allows to plan

more precise and stable trajectories (i.e. the computed trajectories change as little as

possible over successive iterations). The experiments all use short streams, where the two

representations are computed and updated at every frame of the stream. The streams

chosen show intersections in inner city, with buildings occluding the destination road,

since these are the best scenarios in terms of evaluating differences between our full

system and the baseline. The scenes have vehicles moving from or towards the road that

is defined by the user as target location. The location has been defined on a commercially

available navigational map.

The planner computes the best trajectory based on each representation, and the tra-

jectories can be compared using different measures. We focus our planning on the spatial

aspect of these trajectories: the only dynamic property of the car that is taken into ac-

count is its speed, which is modeled implicitly, as it is dependent on its yaw rate. To

evaluate stability over time, the most straightforward measurement is to compare the

difference in placement of corresponding nodes over time. In order to establish which

nodes correspond to each other, we enumerate them with an index within a trajectory,

from finish to start. Nodes with the same index are considered corresponding. In case

two trajectories have a different number of nodes, the nodes that have no counterpart

are ignored.

However, we can extract more information from each trajectory. For example, we can

define the turning point of a single trajectory as the location of the node that exhibits

the highest yaw rate (in case there are multiple nodes with the same highest yaw rate,

the turning point is the first one). We will measure both the location of the turning

point and its displacement over time, to ensure that the trajectory is precise and stable.

Another possible feature is the position (and stability over time) of the end point, which

we define as the last node of a trajectory. Since the destination is defined as an area,
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the actual end of the maneuver can vary, and it is desirable that it moves as little as

possible, to ensure a stable maneuver.

6.3.1 Parameter Evaluation

In this section we compare the results of trajectory planning with variable cost parame-

ters J (weight on road probability cost) and K (weight on yaw rate cost), as explained

in section 5.8. The goal of this experiment is to find the optimal parameters in terms

of stabilityof over time of the resulting trajectories using on one hand our representa-

tion and on the other hand the baseline representation. It makes sense to find the best

parameters for each of them separately, since in a real application the system would be

optimized for its own representation only. In order to perform this evaluation, we set up

a preliminary experiment. The system runs on a short stream with both representations

computed at every frame. The trajectory planner computes the optimal trajectory to

reach an area of the road to the right side of the intersection, at 4 specific frames that are

separated by 0.5s from each other and starting 0.5s after the start of the stream itself.

The planner uses 25 different parameters combinations (5 x 5), for a total of 200 com-

puted trajectories. The set of combinations is limited in order to speed up the process,

but for a rigorous evaluation a much larger set would be required. In order to identify

the parameter set yielding the most stable results, we evaluated the obtained trajectories

with three measures of stability. The first one is the standard deviation of the turning

point location over the 4 computed frames of the stream. The second measure is the

standard deviation of the end node, while the final measure is the average standard

deviation of all corresponding nodes of the trajectories. Since all three measurements

refer to a spatial displacement, establishing an importance priority between them would

be difficult. We chose as the best parameter set the one that exhibits the lowest sum of

all three measures (in meters). Table 6.3 shows the value for all sets. It can be noted

that the sum is consistently higher for the RTDS-only configuration, which implies that

its performances are overall worse (in the chosen metric) than our full system. Further-

more, note that the best parameter set for the full system has a bigger J
K ratio, which

can be interpreted as that the best performances are achieved by giving a bigger impact

to the road cost, while the RTDS-only configuration prefers (in comparison) to give less

impact to it, and more to the yaw-rate, probably due to the lower quality of the road

representation.

6.3.2 Experiments

In this section we apply the trajectory planner to two situations using the parameters

obtained in the previous section. The planner computes a trajectory on both represen-

tations obtained at 10 specific frames separated by 0.2s each. The computation of the

representations started 0.5s before the first of these frames. The first stream presents a

scene where the ego-car starts roughly 40m from the intersection. The target area was
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Full-System RTDS-only

J\ K 4 8 12 16 20 4 8 12 16 20

10 3.75 4.73 5.02 4.82 3.59 3.18 3.84 5.03 9.81 5.85

15 3.32 3.75 3.57 4.73 4.82 5.57 3.61 6.84 6.77 11.30

20 2.81 3.82 3.75 3.48 4.73 5.58 4.80 3.14 6.38 6.77

25 2.83 3.23 3.22 5.06 3.44 5.52 6.41 5.52 4.51 6.03

30 5.16 3.23 3.75 3.75 3.59 6.67 6.57 3.86 3.15 6.05

Table 6.3: Total score (sum of three measures in meters) for each combination of J and

K on both configurations. Best scores highlighted in red.

Figure 6.9: [Intersection 1] Turning point location (x coordinate as x markers, z coor-

dinate as point markers) of the trajectories computed with the baseline representation

(blue) and the full representation (red), over all 10 frames (from 0 to 9). The grey dashed

line represents the true distance from the initial position to the intersection, as reference.

centered at [−20, 38]m with respect to the initial reference system of the ego-car, lying

on the leftmost lane of a wide two-lane road (one way). Figure 6.9 shows the location

of the turning point in each computed trajectory. While the standard deviation is com-

parable in the two configurations (3.8m for the baseline, 4m for the full representation),
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Figure 6.10: [Intersection 2] Turning point location (x coordinate as x markers, z coor-

dinate as point markers) of the trajectories computed with the baseline representation

(blue) and the full representation (red), over all 10 frames (from 0 to 9). The grey dashed

line represents the true distance from the initial position to the intersection, as reference.

the average location is very different ([−4.2, 33.1]m for the baseline, [−5.9, 40.2]m for the

full representation).

In Figure 6.11 we show examples of the computed trajectory for each representation in

three different frames. Our full representation clearly show the destination lane, detected

thanks to a vehicle traversing the intersection on it, and the planner correctly turns in the

intersection. Conversely, the baseline representation cannot see the side road, and the

planner turns very early, taking the shortest path in correspondence to an enlargement

of the road in proximity of the intersection. The end point of both configurations is

sufficiently stable, although it does show a slight advantage for our full representation

(standard deviation of 0.9m against the 1.4m of the baseline configuration).

The second stream shows a similar scene, where the ego-car has to turn left to a

target area centered at [−20, 35]m in the ego-car initial reference system,but this time

the intersection is more complicated, since the target road is not perpendicular to the

initial one. The intersection itself starts much closer to the ego-car than in the previous
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Figure 6.11: The trajectories computed with the two different configurations, (left)

RTDS-only and (right) full system, at two exemplary frames (number 2 and 10) of the

first intersection. The target area is marked as a red circle.

example (at around 30m from the initial position) as it can be clearly seen in Figure

6.12 from the road enlargement detected by RTDS. Here the two configurations show

significantly different results. Although the location of the turning point shown in figure

6.10 differs less with respect to the previous example (average [−2.2, 26.9]m for the

baseline, [−4.7, 31.4]m for the full representation), in this one the full representation

allows for a very stable trajectory (standard deviation of 3.9m for the baseline, 2.4m for

the full representation ). The turning point does not change anymore after the third

frame, while the baseline representation still produces unstable trajectories. The end

point produced with the full representation is also much more stable than its counterpart,

with a standard deviation of 0.53m against a baseline of 1.6m.



80 Chapter 6. Experiments Report

Figure 6.12: The trajectories computed with the two different configurations, (left)

RTDS-only and (right) full system, at two exemplary frames (number 2 and 10) of the

second intersection. The target area is marked as a red circle.

6.4 Conclusions

In this chapter we presented real-world experiments performed on different configura-

tions of our system. We ran three types of experiments. One for evaluating the road

classification performances, one for testing lane segmentation and driving directions, and

one for trajectory planning. For the experiments that required it, a ground truth has

been built by annotating images and merging annotated road along the stream. The

experiments have been run to show the qualitative improvement in performances pro-

vided by adding behavior interpretation to a direct detection system. For this reason

we compared our system to a reduced version, that does not use indirect detection, as a

benchmark. The experiments showed that the classification performances of our full sys-
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tem outperform a purely direct detection system, particularly at long ranges (50-70m),

and that this improvement in performance is relevant for trajectory planning, allowing

the computation of more precise and stable trajectories. Future work should focus on

creating and using a larger dataset for an extensive quantitative evaluation of the system.

Unfortunately, existing datasets (e.g. KITTI) were built with direct detection in mind,

and they lack scenes that are significant for our approach, which are those with other

vehicles moving to occluded areas of interest. In the next chapter we will conclude by

discussing the strengths and limitations of the presented approach, as well as suggesting

future work to improve it.





Chapter 7

Conclusions

Road detection is a key issue for modern ADAS and autonomous driving systems, as

they need a precise and reliable understanding of the road layout while operating. The

motivation of this thesis was to improve the performance and reliability of state-of-the-

art direct road detection systems, which suffer from various environmental issues, in

particular occlusions, that are abundant in inner city scenarios. The aim was to develop

a novel indirect approach for road detection, which exploits the behaviour of the other

vehicles to infer road probability on a two-dimensional representation grid. Since the

other vehicles are a main cause of occlusion in the aforementioned scenarios, such an

approach can be expected to perform best in situations that are particularly unfavor-

able to direct detection systems, and therefore it can complement them. For this reason,

we presented a consistent framework for fusing information from the two sources. The

details of the indirect approach, as well as those of the framework, were presented in

chapter 3. In chapter 4 we showed how to extend the representation obtained previously

by adding additional semantics. The semantics chosen were lanes and driving directions.

Our approach estimates them by employing geometrical considerations to segment roads

and lanes, and subsequently by observing the behavior of the other vehicles to infer driv-

ing directions on each lane. We designed a system in which we could implement and

test this approach. The system is described in chapter 5. Tests were run on real world

data recorded by our mobile platform. The experiments were described in chapter 6

and can be divided into three categories, based on their goal. The first category aimed

at spatially evaluating the road classification performances of the framework. The clas-

sification was compared patch-wise to a ground truth obtained by manual annotation

of images accumulated over the whole stream. The second category aimed at showing

qualitatively the potential of the lane and driving direction estimation. The third cat-

egory aimed at using our representation to compute trajectories, employing a custom

trajectory planner, showing that it allows for more precise and stable trajectories over

multiple iterations. The experiment showed that the addition of indirect detection can

significantly improve the road classification with respect to a baseline system using only

direct detection, and that this improvement has a positive effect on the quality (in the

metrics we considered) on the computed trajectories.
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84 Chapter 7. Conclusions

The concept of indirect road detection and its inclusion in a coherent framework

has the potential to greatly improve road detection, particularly in inner-city scenarios,

where state-of-the-art systems still struggle. The fusion of direct and indirect detection

covers the weak points of both, and allows for a more reliable and stable environment

understanding, especially at mid-range (50-70m).

The nature of this approach (in particular of the indirect detection part) makes it

complicated to define a proper method for a full evaluation of its performances. In fact,

our approach presents its best performances only in certain well defined scenarios, since

it depends on the presence and number of other vehicles on the road. While this is a

problem in terms of scarsity of scenes in annotated public databases (as mentioned in

chapter 6), this is also a problem in terms of deciding which kind of scenes would be fair

to evaluate our approach on. In fact, picking scenes full of traffic and occlusions would

guarantee the best conditions for indirect detection, by employing the worst conditions

for direct detection. On the other hand, picking scenes with low traffic would not

show any significant improvements over a standard direct detection system. A proper

evaluation would need a dataset including various different scenarios, having a realistic

distribution.

Another important point for a full evaluation is the metric that will be used to evaluate

the performances. In this thesis we used various methods, e.g. patch-wise comparison

with ground truth. While we believe that the metrics we chose are significant enough

to show the performances of our framework as a proof of concept, a full evaluation may

need different metrics, or just more of them, especially when comparing trajectories.

Aside from performing an extensive evaluation, the system can also be refined in terms

of employing better models. For example, the estimation of the probability p(C) can use

a more realistic model, possibly taking into account car dynamics, or real-world statistics.

The same can be said for the direct detection reliability function, which depends on the

particular direct detection method used. These refinements are possible because our

framework does not depend on the particular models employed by its components. In

fact, we regard its versatility as one of the best features of our approach.

Finally, indirect detection as a concept could be extended to other elements of road

environment, and future research may aim to investigate upon those. For example, the

state of a traffic light could be inferred by observing the behavior of other cars, while the

behavior of pedestrians may be used to detect sidewalks and zebra-crossings, and the

behavior of bycicles could be used to detect bycicle lanes. In general terms, the behavior

of other intelligent entities is a resource that is routinely used by biological intelligence,

and therefore future intelligent cars should also try to exploit it.
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