
Evaluating Architectural Choices for Deep Learning
Approaches for Question Answering over

Knowledge Bases
Sherzod Hakimov

Semantic Computing Group
CITEC, Bielefeld University

Soufian Jebbara
Semantic Computing Group
CITEC, Bielefeld University

Philipp Cimiano
Semantic Computing Group
CITEC, Bielefeld University

Abstract—The task of answering natural language questions
over knowledge bases has received wide attention in recent
years. Various deep learning architectures have been proposed
for this task. However, architectural design choices are typically
not systematically compared nor evaluated under the same
conditions. In this paper, we contribute to a better understanding
of the impact of architectural design choices by evaluating four
different architectures under the same conditions. We address
the task of answering simple questions, consisting in predicting
the subject and predicate of a triple given a question. In order to
provide a fair comparison of different architectures, we evaluate
them under the same strategy for inferring the subject, and
compare different architectures for inferring the predicate. The
architecture for inferring the subject is based on a standard
LSTM model trained to recognize the span of the subject in
the question and on a linking component that links the subject
span to an entity in the knowledge base. The architectures for
predicate inference are based on i) a standard softmax classifier
ranging over all predicates as output, ii) a model that predicts
a low-dimensional encoding of the property and subject entity,
iii) a model that learns to score a pair of subject and predicate
given the question as well as iv) a model based on the well-
known FastText model. The comparison of architectures shows
that FastText provides better results than other architectures.

I. INTRODUCTION

The task of Question Answering (QA) has received in-
creasing attention in the last few years. Most research has
concentrated on the task of answering factoid questions such
as Who wrote Mildred Pierced?, yielding the answer Stu-
art Kaminsky. Typically, such answers are extracted from
a knowledge base (KB). A frequently used dataset in this
context is the SimpleQuestions [2] dataset, which consists
of simple questions that can be answered with a single fact
from the Freebase KB. For instance, the question above can
be answered using the following triple from Freebase:

Subject: m.04t1ftb (mildred_pierced)
Predicate: book.written_work.author
Object: m.03nx4yz (stuart_kaminsky)

The system needs to identify the relevant entity (subject),
i.e. mildred pierced in the example question, and infer the
appropriate predicate, i.e. book.written work.author. In the
case of the SimpleQuestions dataset, all questions involve a
single triple, with the answer being the corresponding object.

Thus, the task involves essentially predicting the subject and
predicate of a triple.

Various deep learning architectures have been proposed
for this task. However, a systematic comparison of different
architectural choices has not been provided so far. In particular,
different architectures for the prediction of the property have
been proposed. Our goal is to compare and evaluate these
different architectural choices with respect to the same model
for subject entity prediction, which is based on a sequence-to-
sequence NER architecture.

The main contributions in this paper are:
• We evaluate the performance of the individual models

we provide on different levels, i.e. subject entity span
recognition, entity linking, predicate prediction and an-
swer selection.

• We compare four different architectures for predicate
prediction under the same conditions (same subject entity
recognition, same entity linking and same index)

• We show the impact of entity linking on the overall
performance on the question answering task.

The paper is structured as follows: in the next Section II
we describe the NER-based system for predicting the subject
entity as well as the four architectures for predicate prediction.
Section III presents the results of our evaluation for all
components. Before concluding, we discuss the related work.

II. METHODS

The task of answering simple questions requires identifying
the correct subject entity and the predicate from a given natural
language question. In this section, we describe in detail the
model for identifying the span of the entity and retrieving
candidates. Then, we describe four architectures for predicate
prediction that build on this common entity prediction model.
All four architectures rely on a candidate retrieval step that
extracts candidate pairs of subject and predicate and then score
pairs of subject/predicate to predict a query consisting of a
single subject and predicate.

A. Named Entity Recognition & Candidate Pair Generation

Inverted Index: We build an inverted index for all entities
in Freebase using the type.object.name and common.topic.alias

predicates, storing the frequency with with each string is asso-
ciated to the given entity or predicate. We rely on owl:sameAs
links from Freebase to DBpedia entities as provided by the
DBpedia release of 20141 to extract and add additional labels
to the index.

NER: We trained a Named Entity Recognizer (NER) system
similar to the one proposed by Chiu and Nichols [4] using
weak supervision2. We adapt the system to extract a single
entity span using an IO tagging scheme to mark tokens inside
(I) and outside (O) of the single named entity of interest.
The architecture is based on Bidirectional LSTMs (BiLSTM)
[6] composed of two LSTM [7] layers. The model uses a
threesome of features: word and character embeddings along
with the case of words (lowercase, uppercase). These features
are concatenated and fed into a neural network.

The input sentence is tokenized. Each token in the sentence
is converted into a word embedding representation using Glove
[11] vectors (100 dimensional). Each token is also represented
in terms of characters by converting the token into a matrix
where each vector corresponds to a one-hot encoding vector
of a character. The character matrix is fed into a Convolutional
Neural Network (CNN) [9] layer which applies a convolution
function to the input vectors. It is followed by a Max-Pooling
layer that extracts the most important character features given
the token. By applying the NER model on the example
sentence, the tokens Mildred and Pierced are tagged as I while
the rest of the tokens is tagged as O.

Candidate Pair Generation: We query the index with the
single entity mention m identified by the NER component.
All matching entries are added to the set S(m). Each entry
contains a subject URI (Freebase MID) and a frequency value.
For example, the following subjects are found: m.04t1ftb,
m.01d13qs, m.04t 038, m.0cgv06r by querying the detected
entity mention Mildred Pierced.

We define a KG as a set of triples of the form (si, pi, oi)
that appear in the Freebase-2M dataset. Given a subject si, we
define the set Pred(si) of all the properties that si has as

Pred(si) := {pi | ∃oi(si, pi, oi) ∈ KB}. (1)

We further define the set of candidate pairs for mention m
as:

C(m) := {(si, pi) | si ∈ S(m) ∧ pi ∈ Pred(si)}. (2)

The next step is to find a ranking function that takes an input
question text (q), the identified mention m and candidate pairs
(C(m)={(s1, p1), (s2, p2), (s3, p3), . . . , (sn, pn)}), and returns
the highest ranking pair (s∗, p∗).

We rely on the following probabilistic formulation to infer
a predicate and subject entity:

(s∗, p∗) = argmax(si,pi)∈C(m)P (si, pi|q; θ) (3)

1http://oldwiki.dbpedia.org/Downloads2014\#links-to-freebase
2We build on the code available at https://github.com/kamalkraj/Named-

Entity-Recognition-with-Bidirectional-LSTM-CNNs

where P (si, pi) computes the probability of a pair si and pi
as follows:

P (si, pi|q; θ) = P (pi|q; θ)·P (si|q; θ) (4)

where P (pi|q; θ) is the probability of predicate pi as
computed by our four predicate models described below.
P (si|q : θ) is the probability of a subject si computed by
normalizing the frequency scores retrieved for the mention m.

In the following sections, we describe our proposed models
for the prediction of target predicates.

B. Model 1: BiLSTM-Softmax
The first model we investigate is inspired in the approach

presented by Ture et al. [12], which is based on a BiLSTM
classifier that predicts the target predicate given the question
text. Similar to the NER model, the question text is encoded on
the word and character level. Word and character embeddings
are concatenated and passed through a BiLSTM layer and
fed into a feed-forward layer with softmax activation func-
tion, which calculates a probability distribution over a set
of predicates. The model ranks all predicates based on the
input question q and the extracted subject mention m as in
P (p|q,m). Before passing the question text to our network,
we replace the entity name with a special placeholder token e
(e.g. “Who wrote e?”) that abstracts away the (inferred) subject
mention.

C. Model 2: BiLSTM-KB
Our second model incorporates pre-trained graph embed-

dings for entities and predicates into the classification. The
graph embeddings we use are computed using FastText [8]
in a similar fashion to TransE [3]. We phrase the task of
learning KB embeddings as a classification task. For each
triple t = (ei, p, ej) in the KB, we construct training samples
for the FastText classifier by treating the predicate p and the
object ej as input tokens and subject ei as the target class.
To create embedding vectors that are aware of the role of an
entity in a triple, we generate the training sample using role-
specific embeddings: esi , eoj and ps. Here, esi indicates that
the target is an entity in the subject position, eoj is an input
entity in the object position and ps an input predicate used for
predicting a subject entity. Analogously, we create a training
sample with the object being the target class. Thus, we have
different embeddings for an entity in the subject role and in
the object role.

By training a FastText classifier on the generated training
samples, we obtain vector representations for all entities and
predicates with respect to their role in the triple3. We chose
FastText as a classifier for its good performance on text
classification tasks.

The model architecture for predicting the target predicate is
similar to the first model. BiLSTM layers with word and char-
acter embeddings are used to encode the given question text.

3Due to the huge amount of target classes, training the classifier with a
full softmax objective is not feasible. Instead, we use the negative sampling
objective that is part of the FastText toolkit as an approximation to the softmax
objective.

The difference is that this model predicts the pre-computed
property embedding vector instead of a categorical encoding.
We obtain a probability distribution by computing the cosine
similarity to all predicates in Freebase-2M normalized across
all properties.

D. Model 3: BiLSTM-Binary

This model is different from the other 2 models explained
above (see Section II-B and Section II-C) in terms of the
input to the model. While BiLSTM-KB introduces external
knowledge about predicates from a knowledge base, this
model learns to associate the question text with the tokens in
the predicate URI. The input is composed of a question text
q and the label of a single predicate pi and the model outputs
a binary decision (0 or 1) indicating if the predicate is correct
for the question. By giving the label of a predicate as an input
feature, the model can potentially use the similarity between
the question text (e.g. Who wrote e?) and the predicate
label (e.g. book.written work.author) to determine if the given
predicate tokens matches the question text.

The inputs q and pi are tokenized and fed into encoding
layers that use word and character embeddings. The encoding
is the same process explained in Section II-B where the tokens
are represented by word and character embeddings and fed into
2-layer BiLSTM.

E. Model 4: FastText-Softmax

Our last model relies on FastText to train a classifier to
predict the predicate given the question text. The FastText
tool implements a linear classifier on top of a bag-of-N-gram
representation of a text using word N-grams to preserve local
word order and character N-grams for robustness against out-
of-vocabulary words. The model outputs a probability for each
predicate. The score for a candidate pair is computed using
Equation 3. The highest scoring pair is selected as the final
output. For a detailed description of the model architecture we
refer to [8]. Due to the moderate size of the target vocabulary4,
we can train the classifier with a full softmax objective. We
trained the classifier for 50 epochs and a hidden layer size of
100. The classifier uses word N-grams of size 1 and 2 and
character N-grams of size 5.

III. EVALUATION

In this section we present the results of the evaluation of
the different components for NER (subject entity recognition),
entity linking and predicate prediction. All results are provided
on the given test split of the SimpleQuestions [2] dataset.

A. Named Entity Recognition

The evaluation shows the accuracy for detecting the correct
mention of the subject entity in the question. We trained a
BiLSTM-CRF NER system on the SimpleQuestions training
split. The model was trained for 100 epochs, with 100-
dimensional Glove word embeddings and 200-dimensional
LSTM layers. To judge whether the NER prediction is correct,

41629 predicates in the training set.

we query the index for n-grams in the detected subject entity
span and regard the prediction as correct if the corresponding
subject entity from the triple is contained in the results of the
index lookup. The NER component achieves an accuracy of
0.82.

B. Named Entity Linking

Once the subject mention m has been extracted from the
NER system, the next step is to select an entity from the
knowledge base that is denoted by the subject entity mention
m detected by the NER system. We rank the entities retrieved
from the index inversely according to the frequency value
stored in the index. We evaluate whether the correct entity
is contained in the top k entities retrieved. Table I shows the
Recall@k score for different values of k. We see that retrieving
more than 10 entities does not increase the recall significantly
above what we obtain with the top 10 candidates alone.

TABLE I
NAMED ENTITY LINKING EVALUATION ON TEST SPLIT USING RECALL@K

K Recall@k

1 0.68
2 0.74
5 0.79
10 0.81
25 0.82
100 0.82

C. Predicate Prediction

The results for the different predicate predicting models are
given in Table II, showing the results for the best hyperparame-
ters chosen on a development set. The table gives the accuracy
for predicate prediction as well as for answer retrieval. It can
be observed that the best results are obtained by the FastText-
Softmax model, followed at equal distance by the BiLSTM-
Softmax and BiLSTM-Binary architectures. The BiLSTM-KB
approach performs worst and scores more than 10 points below
the FastText-Softmax model.

TABLE II
EVALUATION OF FOUR MODELS ON PREDICATE PREDICTION AND ANSWER

TASKS, THE REPORTED RESULTS ARE ACCURACY FOR THE RESPECTIVE
TASKS.

Name Predicate Prediction Answer Prediction

BiLSTM-Softmax 0.74 0.67
BiLSTM-KB 0.68 0.61
BiLSTM-Binary 0.73 0.66
FastText-Softmax 0.79 0.68

D. Answer Prediction

The task of question answering on the SimpleQuestions
dataset requires a system to output a single triple consisting
of a subject and a predicate. We evaluated the four proposed
models on prediction of a triple consisting of a subject and a
predicate. The predicated pairs are ranked using Equation 3.

IV. RELATED WORK

Bordes et al. [2] have presented the first results on the
SimpleQuestions dataset. Their approach is based on Memory
Networks [13]. The approach corrupts the dataset to generate
negative samples by assigning random questions from the
dataset to Freebase entity and predicate pairs. Aghaebrahimian
et al. [1] proposed a method that predicts the predicate and
subject separately. Their approach uses a two-layered CNN
for ranking predicates and named entity linking approach that
ranks subjects.

Yin et al. [14] proposed an approach that uses Convolutional
Neural Networks (CNN) with attentive max pooling along with
an entity detection and linking system. They also proposed to
use character embeddings in combination with word embed-
dings since character embeddings generalize better in handling
out-of-vocabulary (OOV) words. Similarly, Golub et al. [5]
proposed an approach that uses both LSTM and CNN encoders
together with character-level embeddings. The authors show
that character embeddings generalize better compared to word
embeddings (0.78 vs 0.38). Similarly, Lukovnikov et al. [10]
proposed another system that encodes subject and predicate
using character and word level embeddings to learn a function
that optimizes both subject and predicate assignments by
introducing negative samples. Our BiLSTM-Binary uses a
similar approach by introducing negative samples for predicate
prediction. Ture et al. [12] proposed a rather simple model
based on RNNs without any attention mechanism. They es-
sentially propose to use a model with 2-BiGRU layers for
prediction of predicates and a model with 2-BiLSTM layers
to predict the span for the subject. Our BiLSTM-Softmax for
predicting the property is inspired by their model. However,
we could not even come close to reproduce their results with
a simplified version of their architecture.

V. CONCLUSION

In this paper, we analyzed four different model architectures
for predicate prediction on the task of answering simple ques-
tions. We have strived for comparing these for architectures
under the same conditions, using the same subject entity de-
tection component as well as the same linking component and
the same inverted index. We have shown how well the single
components perform on sub-tasks and could show that our
model can reach around 82% in subject entity span detection
and 82% Recall at about 10 retrieved index entries for entity
linking. In some cases the NER system selects an incorrect
span when the question contains some proper name which is
not part of a target span, e.g. “where is mineral hot springs,
colorado?” the expected span is “mineral hot springs” while
the NER system recognizes the span “springs, colorado”. In
spite of the errors made by the NER component, the predicate
inference tasks achieves accuracies of close to 80%. The best
model is the FastText-Softmax, which outperforms the other
three models both on predicate prediction and answer predic-
tion. The worst results are achieved by BiLSTM-KB, hinting at
the fact that the prediction of low-dimensional property vectors
is not effective. This needs further investigation. In general,

an avenue for future work might be to design joint inference
systems that move away from a pipeline architecture and
predict the subject entity and predicate jointly. The BiLSTM-
Binary goes in this direction, but shows only comparable
results to the BiLSTM-Softmax model.

Unfortunately, we were not able to reproduce the perfor-
mance of some published approaches on the task, which
clearly shows the need of working towards a fair compari-
son between approaches within one unified framework and
environment.

ACKNOWLEDGEMENTS

This work was supported by the Cluster of Excellence
Cognitive Interaction Technology ’CITEC’ (EXC 277) at
Bielefeld University, which is funded by the German Research
Foundation (DFG).

REFERENCES

[1] A. Aghaebrahimian and F. Jurčı́ček, “Open-domain factoid question
answering via knowledge graph search,” in Proceedings of the Workshop
on Human-Computer Question Answering, 2016, pp. 22–28.

[2] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale
simple question answering with memory networks,” arXiv preprint
arXiv:1506.02075, 2015.

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Pro-
ceedings of Advances in Neural Information Processing Systems (NIPS),
2013, pp. 2787–2795.

[4] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
lstm-cnns,” arXiv preprint arXiv:1511.08308, 2015.

[5] D. Golub and X. He, “Character-level question answering with atten-
tion,” in Proceedings of the International Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2016.

[6] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2013, pp. 6645–6649.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv preprint arXiv:1607.01759, 2016.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[10] D. Lukovnikov, A. Fischer, J. Lehmann, and S. Auer, “Neural network-
based question answering over knowledge graphs on word and character
level,” in Proceedings of the 26th International Conference on World
Wide Web (WWW), 2017, pp. 1211–1220.

[11] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. of the International Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

[12] F. Ture and O. Jojic, “No need to pay attention: Simple recurrent neural
networks work!” in Proceedings of the International Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2017,
pp. 2866–2872.

[13] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in Proc. of
the 6th International Conference on Learning Representations, 2015.

[14] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze, “Simple question
answering by attentive convolutional neural network,” Proc. of the
26th International Conference on Computational Linguistics (COLING),
2016.

