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Mein lieber Sohn, du tust mir leid. 

Dir mangelt die Enthaltsamkeit. 

Enthaltsamkeit ist das Vergnügen 

An Sachen, welche wir nicht kriegen. 

Drum lebe mäßig, denke klug. 

Wer nichts gebraucht, der hat genug! 

 

aus: Die Haarbeutel (1878) – Einleitung 

 

Wilhelm Busch 

 

 

Weiß man, wie oft ein Herz brechen kann?  

Wie viel Sinne hat der Wahn?  

Lohnen sich Gefühle?  

Wie viele Tränen passen in einen Kanal?  

Leben wir noch mal?  

Warum wacht man auf?  

Was heilt die Zeit?  

 

Ich bin dein 7. Sinn,  

Dein doppelter Boden,  

Dein zweites Gesicht.  

Du bist eine kluge Prognose,  

das Prinzip Hoffnung,  

ein Leuchtstreifen aus der Nacht.  

Irgendwann find und lieb ich dich ... 

 

aus: Demo (Letzter Tag) (2002) 

 

Herbert Grönemeyer 
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1 PPP OF BIOCATALYSIS: POTENTIAL, POSSIBILITIES AND 

PERSPECTIVES 

1.1 POTENTIAL AND POSSIBILITIES 
 

The expeditious depletion of the world’s resources, which is especially true for noble 

metals, prompts us to rethink the production methods for many of today’s chemical 

compounds. Furthermore, the rapidly increasing population of the earth and the increasing 

product demand in all segments of the chemical industry force us to develop reliable (and 

at the same time sustainable) production processes which can meet our needs now and in 

the future.  

Catalysis is the key technology for enabling these processes and most promisingly its 

subarea biocatalysis (Figure 1).[1,2,3–5] Not only do biocatalytic processes perform under 

milder conditions than most conventional chemical processes and excel in selectivity, they 

also offer the opportunity of geopolitical independence. While transition metal catalyzed 

processes always depend on the current price and availability of the corresponding metal, 

biocatalysts can be simply produced by microorganisms starting from the simplest building 

blocks of life. Hence, biocatalysts can be generated everywhere in the world and do not 

require rare, depletable ore deposits. As a consequence, there can never be a shortage of 

biocatalysts. Additionally, the precious metals need to be efficiently recycled and have to 

be restricted in their exposition towards animals, humans and environment due to their 

high toxicity. Biocatalysts on the other hand are completely biodegradable and, under 

optimized cultivation procedures, cheaply produced. 

 

 

Figure 1: Classification of catalysis subareas. 
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However, biocatalysis has restrictions of its own. Enzymes may be deactivated by solvents 

or harsh reaction conditions, often require several months or even years before being used 

efficiently in a process and many chemical reactions are still not conductable (or at least 

efficiently) with biocatalysts. Hence, the successive implementation of biocatalytic 

processes into the chemical industry should always be regarded and used as an additional 

alternative to other catalytic processes, may they be homogeneous or heterogeneous.[6] 

This additional alternative should be viewed as a broadening of the chemical repertoire and 

not as the all-promising solution to every synthetic problem. New and fascinating 

possibilities open up by abiding these standpoints. 

If one is not familiar with the history of biocatalysis, one may think that this technology is 

a rather new discipline. However, the beginnings of biocatalysis stretch way further back 

and its emerge in the last century is often described in the form of waves.[7] In the first 

wave, which began roughly 100 years ago, whole-cell catalysts like baker’s yeast or the 

fungus Rhizopus arrhizus were used for hydrocyanation of aldehydes or hydroxylation of 

steroids (Figure 2).[6] The hydroxylation of progesterone by Rhizopus arrhizus decreased 

the number of synthesis steps drastically from 32 to 6, avoiding the generation of big 

amounts of waste and lowering the cost of cortisone from 200 to 6 $/g of product. 

 

 

Figure 2: Influence of biocatalysis on the efficient synthesis of cortisone.[6] 

 

In the second wave of biocatalysis which started roughly in the early 1980s, genetic 

engineering tools were developed which allowed for a site-directed mutation of enzymes. 

Furthermore, chemical modifications like immobilization methods[8] for reusing the 

enzymes were developed. As a consequence, new and unnatural substrates could be 

transformed by biocatalysts which were not recognized beforehand.[7] This led to the 

implementation of biocatalysis into the fine chemical industry, bulk chemical industry and 

pharmaceutical research since it was recognized as a part of the toolbox for organic 

chemistry.[9] Especially kinetic resolutions catalyzed by lipases (hydrolases) or asymmetric 

reductions with carbonyl reductases allowed access to enantiomerically pure alcohols and 
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esters. Another prominent example of the second wave is the development of the 

biocatalytic hydration of acrylonitrile to acryl amide, which is nowadays run at a scale of 

over 30000 tons per year with a constantly growing production volume (Scheme 1).[6,10] 

The required acrylonitrile for this process is produced by ammoxidation (SOHIO 

process).[11] Further examples of technical processes are the D-glucose isomerization to 

D-fructose with over 100000 tons per year, the kinetic resolution of phenylethylamines 

with lipases with 10000 tons per year or the hydrolysis of penicillin G to 

(+)-6-aminopenicillanic acid (6-APA) with 40000 tons per year. All of these processes are 

performed with immobilized biocatalysts.[10] 

 

 

Scheme 1: Ammoxidation of propene and biocatalytic hydration of acrylonitrile. 

 

The third wave of biocatalysis started in the early 1990s by great advances in the molecular 

biology field.[7] Especially further developments in molecular biology methods like error 

prone polymerase chain reactions opened the path to high-throughput screening of 

enzymes. The research results of Arnold and Reetz in the area of directed evolution by 

random mutagenesis or gene shuffling enabled one to improve wild-type enzymes. After a 

few rounds of mutations, drastically improved biocatalysts in terms of activity against 

substrates, solvent stability and enantioselectivity can be generated.[1,12] Hence, 

biocatalytic engineering became much more potent and coupled with improved protocols 

for gene expression and enzyme purification methods increased the value of biocatalysis 

drastically.[4,13] 

Looking at the present, highly complex modelling programs, high-throughput screening 

methods, bioinformatic tools and other achievements start to develop a fourth wave of 

biocatalysis, in which novel enzymes classes may be discovered just by the deposited data 

in gene libraries.[14] These accomplishments allows one to close the speed gap needed e.g. 

in the pharmaceutical to develop process solutions in less time.[15] Furthermore, less 

screening effort results in lower development costs and coupled with efficient fermentation 

processes reduce the overall costs of biocatalysts to a more competitive level.[16] 

As the above mentioned cortisone example shows impressively (Figure 2), biocatalysis is 

highly compatible with the principles of green chemistry, which were coined by 

Anastas.[3,17] Biocatalysis operates under mild conditions, avoids hazardous waste 

generation and is inherently safe. Additionally, it operated mostly in water or non-toxic 

solvents and the biocatalysts can be discarded as non-hazardous waste after sterilization 

or other denaturation.[18] 

Lastly, biocatalysis has been successfully coupled with metal- or organocatalysis in several 

cascade reactions that allow one to skip work-up steps of intermediates.[19] These 

processes are becoming more and more efficient and represent one of the biggest growth 

field for the future apart from newly discovered reaction types catalyzed by enzymes 

(Figure 1).  
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1.2 PERSPECTIVES 
 

Biocatalysis excels at selectivity, may it be chemo-, regio-, stereoselectivity. This property 

allows a chemist to plan complex synthesis steps without the need for protecting groups 

or enables one with the possibility to completely skip unnecessary steps. 

The rapid progress of biocatalysis in this regard reveals itself best by visualizing a selection 

of the most impactful synthetic possibilities that were conquered in the last five years. 

While earlier advances in the biocatalytic repertoire mainly focused on rather 

straightforward reactions like ester formation, amide hydrolysis etc., the current advances 

are way more subtle. Especially the advances in the field of protein engineering enabled 

several new synthetical possibilities. The big potential and impact of protein engineering 

of enzymes was recently honored by awarding the Nobel prize for chemistry of 2018 to 

Frances H. Arnold by the Royal Swedish Academy of Sciences. 

The basis of tomorrow’s chemical industry will be based on renewable resources since 

crude oil is a limited resource. Especially compounds like furane derivatives that can be 

gained out of lignocellulose are potential gamechanger in this area. In 2014, Deska et al.[20] 

described a biocatalytic Achmatowicz reaction which represents a ring rearrangement 

reaction under utilization of racemic or enantiomerical pure furyl alcohols to yield the 

corresponding pyranons with defined stereochemistry. To this end, they used a 

combination of a glucose oxidase for oxygen activation (O2 to H2O2) and conducted the 

rearrangement by usage of a chloroperoxidase (Scheme 2). Furthermore, access to the 

required enantiomerically pure furyl alcohols could be gained by reduction of the ketones 

with alcohol dehydrogenases (ADHs). A sequential cascade reaction (due to different pH 

optima of the enzymes) of the ADH-catalyzed reduction and Achmatowicz reaction could 

also be realized. This reaction may play a crucial role in an environmentally benign furane 

valorization, avoiding reagents like m-chloroperoxybenzoic acid. Two years later, in 2016, 

Hollmann et al.[21] expanded this synthetic method towards the Aza-Achmatowicz with 

nitrogen containing heterocycles. 

 

 

Scheme 2: Biocatalytic Achmatowicz reaction reported by Deska et al..[20] 

 

C-H functionalization is one of the most investigated topics in chemistry and catalysis in 

the last years. The groups of Arnold and Fasan have discovered excellent advancements 

in this field. From 2011-2016, Fasan’s group developed a high throughput screening 

method they call the “fingerprinting method” to rapidly estimate the size and shape of an 
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active site of CYP450 monooxygenases.[22] This allowed them to conduct high throughput 

screening for mutations of CYP450 monoxygenases, leading to selective hydroxylation of 

highly interesting synthetic structures like derivatives of the terpene-based anti-malaria 

drug Artemisinin.  

Furthermore, Fasan’s group discovered the possibility of intramolecular sp3 C-H amination 

with arylsulfonyl azide substrates. This C-H amination proceeds via elimination of N2 from 

the azide to bind the remaining nitrogen as nitrene to the iron atom of the heme group of 

a CYP450 monoxygenase.[23] Afterwards, the intramolecular addition to benzylic carbon 

atoms proceeded. They obtained nine different cyclic benzosulfonamines with this method, 

however with low yields and only moderate ee-values. Despite their initial success with 

this synthetic method, they deemed the CYP450 monooxygenases too labile, unproductive 

and complicated. Hence, they focused on a more stable and easier productable biocatalytic 

in their further studies: myoglobin (Mb) from sperm whale.[24] In 2014, they obtained first 

promising results by site-directed mutation of the Mb active site and could obtain cyclic 

benzosulfonamides with a total turnover number (TTN) of up to 200 and moderate 

ee-values. Additionally, they tried to enhance the catalytic performance by exchanging the 

metal centre of the heme group in Mb by exchanging it with cobalt and manganase. 

However, these attempts led to decreased catalytic activity.[24,25] 

Inspired by their progress with the C-H bond functionalization by azide compounds, Fasan’s 

group started to focus in 2015 on the insertion of carbenes into N-H and S-H bonds.[26–28] 

For this, they utilize α-diazoesters which in situ eliminate N2 and the resulting carbene is 

directly bound to the iron atom of the heme group in Mb. During these studies, they 

discovered that two distinctive mutations in the active site of Mb led to drastically increased 

TTN and allowed them to conduct biotransformation with up to 6700 TTN at 10 mM 

substrate concentrations for the N-H insertion (Scheme 3). The S-H insertion was 

conducted on 10 mM scale with up to 5440 TTN. Additionally, first attempts of an 

enantioselective S-H carbene insertion have been conducted. One selected thioether was 

obtained with up to 49% ee at 4 °C, demonstrating the challenging enantioselective 

insertion of carbenes into S-H bonds (Scheme 4). 

 

 

Scheme 3: Biocatalytic N-H insertion of carbenes reported by Fasan et al..[26] 
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Scheme 4: Biocatalytic S-H insertion of carbenes reported by Fasan et al..[27] 

 

The most impressive and syntheticially potent discovery of Fasan’s group in recent years 

has been the potential of their developed Mb platform to synthesize substituted 

cyclopropane rings out of olefins and carbenes in a highly stereoselective manner.[29–31] 

Starting in 2015, they conducted site-directed mutagenesis of the active site of Mb to 

obtain a double mutant (H64V, V68A) capable of transforming styrene with ethyl 

diazoacetate with 99.9% de for the trans-configurated product and 99.9% ee for the 

(1S,2S) enantiomer, even at 200 mM substrate concentration. They reached turnover 

numbers (TON) of up to 46800 and could also synthesize several cyclopropane derivatives 

in the same manner with the same excellent stereoselectivity and TTN of up to 14500 and 

30 mM scale (Scheme 5). The authors furthermore tried to rationalize the stereoselectivity 

of the reaction by modelling studies. 

 

 

Scheme 5: Substrate scope of the stereoselective cyclopropanation of styrene derivatives 

with ethyl diazoacetate.[29] 
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In 2016, Fasan’s group extended this synthetic platform by saturated site-directed 

mutagenesis of four amino acid residues in the active site of Mb.[30] Some of the mutants 

(76 in total) led to a switch in enantiopreference of the Mb in the cyclopropanation reaction, 

giving access to the (1R,2R)-configurated cyclopropanes at 10 mM scale with 65-99% de 

and 63-99.9% ee (Scheme 6). 

 

 

Scheme 6: Substrate scope for the saturated site-directed mutantion of Mb for switching 

the enantiopreference of the cyclization reaction, reported by Fasan et al..[30] 

 

To prove the high value of this enclose biocatalytic method, the authors furthermore 

conducted whole-cell biotransformations yielding precursors of four different 

pharmaceuticals with excellent selectivities and yields. These results exceeded literature 

reported protocols drastically and proved the already high value of this catalytic method, 

skipping transition metal catalysts and several synthetic steps (Scheme 7). As examples, 

the precursors for tranylcypromine (an antidepressant) and a TRPV1 inhibitor[32] (against 

chronic pain) were synthesized. 

The latest advance in the biocatalytic, stereoselective cyclopropanation by Fasan’s group 

is dealing with the issue of using different diazo reagents apart from ethyl diazoacetate. In 

2017, they utilized 2-diazo-1,1,1-trifluoroethane (CF3CHN2) as diazo reagent and were able 

to obtain the corresponding cyclopropanes with excellent values of up to 99.9% de and 

99.9% ee with whole-cell catalysts.[31]  

 

Besides the crucial advances in carbon-carbon bond formation, Arnold’s group has 

furthermore developed two more groundbreaking synthetic processes.[33,34]  

The first breakthrough is the discovery of the carbon-silicon bond formation, catalyzed by 

cytochrome c.[33] Enzymes that catalyze carbon-silicon bond formation are unknown to 

nature and the biocatalytic formation of those bonds would broaden the chemical repertoire 

of biocatalysis drastically. While they discovered that also other heme containing enzymes 
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like CYP450 monooxygenases or myoglobin variants, cytochrome c showed aside from the 

general activity also excellent selectivity in the carbon-silicon bond formation (Scheme 8). 

 

 

Scheme 7: Synthesis of important intermediates for pharmaceuticals by the biocatalytic, 

stereoselective cyclopropanation reported by Fasan et al..[30] 

 

The mechanism of this reaction seems to be quite similar to the one they proposed in 

conjunction with carbon-carbon bond formation. The carbon-silicon bond formation is 

postulated to proceed via carbene insertion into the silicon-hydrogen bond. The required 

carbene is formed via N2 elimination of the diazoester substrate, which is then coordinated 

to the iron atom in the heme group. 

From a broad range of cytochrome c from different organisms, they selected the 

cytochrome c from Rhodothermus marinus (Rma cyt c) as a scaffold for directed evolution, 

since it showed the best initial enantioselectivity of all enzymes. The authors proposed that 

all reactions are (R)-selective, due to comparison with literature known retention times of 

the compounds in HPLC chromatograms.[33] 

After saturated site-directed mutagenesis of three selected amino acid residues in the 

active site, they were able to transform 20 different silanes with the triple mutant of the 

cytochrome c with total turnover numbers (TTN) of up to 8210 and turnover frequencies 

(TOF) of 46 min-1. These values are up to 15 times higher than the best reported 

chemocatalytic methods, which rely on the usage of expensive transition metal complexes. 

Another advantage of this method is the high chemoselectivity of the silicon-carbon bond 

formation over other possible insertions like that of hydroxyl- or amino groups. The 

enantioselectivity of the reaction was excellent, reaching from 95-99% ee with most 

products being obtained with >99% ee. Lastly, preparative scale experiments were 

conducted on 0.1 mmol scale with an isolated yield of 70% and 98% ee utilizing E.coli 

whole cell catalysts, skipping the tedious enzyme purification steps. This discovery is a 
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powerful demonstration of the promiscuity that is inherent to biocatalysts. Although some 

possible reactions of biocatalysts do not appear in nature, scientist may alter and design 

an enzyme to perform these unnatural reactions. 

 

Scheme 8: Biocatalytic, enantioselective  silicon-carbon bond formation reported by 

Arnold et al..[33] 

 

Utilizing the same biocatalytic platform, cytochrome c from Rhodotermus marinus (Rma 

cyt c), Arnold et al. were able to perform the first reported organoborane synthesis just 

recently in 2017.[34] Strikingly, they were able to conduct all of their synthesis either with 

isolated enzymes or in E.coli whole-cell catalysts. The whole-cells proved to be more stable 

and hence more suitable for the organoborane synthesis, since they did not show any 

substrate or product inhibition in contrast to the isolated enzymes. Conducting saturated 

site-directed mutagenesis at three selected amino residues of Rma cyt c, they were able 

to obtain an optimized mutant that could synthesize the organoborane compounds with 

TTN of 890-2760 and ee-values of 84-99% for the (R)-configurated product for 13 different 

examples (Scheme 9).  

Additionally, they conducted preparative biotransformations on gram-scale to obtain one 

selected product with 92% ee and 42% isolated yield. Their results are drastically better 

than the so far reported methods for chiral organoborane synthesis, which mainly rely on 

transition metal catalysis and are only able to reach up to 32 TTN. Further findings in this 

work revolve around the continuing cell viability after organoborane synthesis, the 

possibility to switch the enantioselectivity towards the (S)-configurated organoborane 

products and to be able to transform substrates bearing bulky substrates. Towards this 

end, they conducted further mutations and obtained the (R)- and (S)-configurated 

products of a trifluorophenyl diazo compound with 1010 TTN and 92% ee for the (R)-

product, while the (S)-product was obtained with 1120 TTN and 80% ee. In a preparative 

biotransformation on 1.3 mmol-scale, they obtained the (R)-product with 40% isolated 

yield with 1100 TTN and 92% ee (Scheme 10). In summary, they demonstrated 

powerfully the high potential of biocatalysis to claim enantioselective organoborane 

synthesis as one of the most impressive additions of the biocatalytic repertoire in recent 

years. 
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Scheme 9: Biocatalytic, enantioselective organoborane synthesis reported by Arnold et 

al..[34] 

 

 

Scheme 10: Access to both enantiomers of organoboranes bearing bulky 

substituents.[34] 

 

Apart from conquering new reactivities by biocatalysis, solving inherent problems of 

processes is equally important. The fundamental flaw of oxidoreductase catalysis is that 

one-step oxidation/reduction reactions are not redox-neutral and hence require a sacrificial 

substrate to regenerate the cofactor (e.g. NADH, NADPH, FADH2). While several 

possibilities to achieve the cofactor regeneration are sufficiently researched, including e.g. 

glucose oxidation via glucose dehydrogenase (GDH) or formate oxidation via formate 
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dehydrogenase (FDH), it does not solve the inherent problem of requiring the sacrificial 

substrate. 

The best imaginable possibility to soothe this inherent problem is by utilizing O2 and H2O 

as redox equivalents for cofactor regeneration. In 2016, Kourist et al. reported a 

biocatalytic reduction of activated Michael systems with ene-reductases that took place in 

cyanobacteria.[35] These cyanobacteria (Synechocystis sp. PCC 6803) were overexpressing 

the ene reductase YgjM from Bacillus subtilis by light induction. After successful 

overexpression, a set of seven different cyclic substrates were reduced towards the 

corresponding ketones or lactams with up to 99% ee at 10-20 mM substrate without the 

need for additional cofactor regeneration other than the photosynthesis of the 

cyanobacteria (Scheme 11). The authors proved the need for light by conducting control 

experiments in a dark environment which led to significantly reduced conversion of the 

substrates. The overall cell loading was quite acceptable with 1.8 g/L of dry cell weight and 

preparative scale synthesis of (R)-2-methylsuccinimide yielded the product with 80% 

isolated yield (81 mg) and excellent 99% ee. While this synthetic methodology is still at 

an early stage, further development of it is definitely recommendable given the drastic 

decrease in waste that could be obtained by this technology. Very recently, Gröger et al. 

could transfer this concept to reductive amination of aldehydes with microalgae.[36] 

 

 

Scheme 11: Photocatalyzed reduction of activated C=C double bonds in 

cyanobacteria.[35]
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2 DISCOVERY AND STATE OF THE ART FOR UTILIZATION OF 

ALDOXIME DEHYDRATASES FOR THE BIOCATALYTIC 

NITRILE-SYNTHESIS 

2.1 INTRODUCTION 
 

Parts of this chapter have already been published in alternative form as mini-review in the 

journal ChemBioChem by the author of this thesis and his co-authors.[37] 

The advances in the biocatalytic synthesis of many compound classes like alcohols, amines, 

carboxylic acids have been quite great over the last decades (see chapter 1). However, 

the biocatalytic synthesis of nitriles had not been discovered until the late 1990s despite 

them being a product class that is mostly needed and produced by the chemical 

industry.[38,39] What makes nitriles particular interesting is the fact that nitriles are 

omnipresent in all segments of the chemical industry, ranging from high-volume low-price 

products (bulk chemicals) to high-price compounds such as pharma drugs that are 

produced only in smaller volumes. Examples for this are the pharmaceuticals vildagliptin 

and saxagliptin.[38,39,40,41–46] Various nitriles of industrial interest jointly with their 

application area are shown in Figure 3. Acrylonitrile and adiponitrile are produced on 

million tons scale and are widely used in polymers or as their precursors[38,39] whereas, 

e.g., vildagliptin is a pharmaceutical against diabetes with sales of over one billion dollar 

in 2015.[47]  

 

 

Figure 3: Overview over industrially relevant nitriles, either in the bulk chemical or 

pharmaceutical sector.. 

 

There are two main technologies for the synthesis of nitriles in the chemical industry. The 

first one is ammoxidation, which is a high temperature transformation in the gas phase 

(Scheme 12, A).[48] The other most used approach represents a substitution or addition 

reaction with hydrogen cyanide or a salt or other derivative thereof as the source for the 
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cyano functionality (Scheme 12, B).[5,49] This reaction is also mostly used in laboratories 

by organic chemists. But the major drawback and limitation of this approach is the very 

high toxicity of cyanide. Hence, a sustainable and inherently safe nitrile is still missing. 

Most promisingly, nitriles are also formed in nature by an alternative biosynthetic 

pathway.[50–53] This enzymatic approach towards nitriles has been disclosed by the Asano 

group when identifying an enzyme class called aldoxime dehydratase (Oxd) in bacteria 

(Scheme 12, C).[50–53] Oxds transform an aldoxime via dehydration into nitriles and they 

co-exist with nitrile degrading enzymes, thus being catalyzing the so-called “aldoxime-

nitrile pathway”.[52] Furthermore, the Aono and Asano groups jointly succeeded in obtaining 

the first protein structure for an Oxd enzymes, when solving this structure for the Oxd 

from Rhodococcus sp. N-771.[54] In a subsequent work, the Kobayashi group obtained a 

structure for the Oxd from Pseudomonas chlororaphis B23.[55] Such Oxd structures enabled 

to get a mechanistic insight into the course of this enzyme-catalyzed dehydration reaction 

which was found to have some similarities to CYP450 monooxygenases since Oxds are also 

heme containing enzymes (see chapter 2.2).[54,55] The Asano group also succeeded in 

disclosing and proving the biosynthetic formation of aldoximes when finding that in the 

Japanese apricot (Prunus mume) aldoxime formation occurs as a part of the amino acid 

metabolism, thus being synthesized by oxidation and decarboxylation of amino acids.[53] 

Thus, for nature (bio-)synthesis of aldoximes is rather tedious and complex, whereas 

chemically aldoximes can be easily prepared through a condensation reaction of an 

aldehyde with hydroxylamine. 

 

 

Scheme 12: Synthetic approaches towards nitriles based on ammoxidation, cyanide 

chemistry or biocatalytic dehydration. 

 

Aldehydes are easily accessible substrates and are mainly synthesized on large scale by 

hydroformylation, the biggest homogeneously metal catalyzed process technology 

(>10 million tons).[56] The combination of the readily access towards aldehydes and the 

smooth biocatalytic dehydration (which runs in water) represents an attractive option to 

broaden the spectrum of methods for the synthesis of nitriles.  
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There is a broad variety of synthetic methods already available for the dehydration of 

oximes towards the corresponding nitriles. However, none of them is capable of converting 

a racemic oxime enantioselectively into the chiral nitrile.[57–65] Some selected methods for 

oxime dehydration include copper(II) catalysis[59,60], which proceeds in acetonitrile 

smoothly and highly selectively (Figure 4). Further methods include iron(III) catalysis 

under acetonitrile-free conditions in toluene[61], the preactivation of PPh3 by oxalyl chloride 

and successive dehydration of the oxime[62] or the dehydration in presence of potassium 

phosphate (K3PO4) in xylene.[63] However, the listed methods are only an excerpt of a vast 

catalogue for oxime dehydration and one may find further methods more suitable for one’s 

purposes. 

 

 

Figure 4: A selection of conventional approaches towards nitriles by means of aldoxime 

dehydration. 

 

It should be added that there are also many possibilities to access (chiral) nitriles by 

synthetic methods other than dehydration of oximes. However, most of them require the 

usage of highly complex ligands and other auxiliaries and extreme reaction conditions, like 

the enantioselective Strecker reaction.[66] Some of the methods are presented in the 

following. 

In 2013, Guin et al. developed chiral phosphoric acids to enantioselectively protonate silyl 

ketene imines towards their nitriles.[65] For this, they synthesized racemic, secondary 

nitriles by α-alkylation of achiral, (aryl-)aliphatic nitriles at -78 °C. The obtained racemic 

nitrile was afterwards converted into the corresponding silyl ketene imine by deprotonation 

with lithium diisopropylamide (LDA) in THF at -78 °C and subsequent reaction with tert-

butyldimethylsilyl chloride (TBSCl). The enantioselective protonation with methanol as 

proton source was afterwards either conducted at room temperature or -78 °C, dependant 

on the utilized chiral phosphoric acid (2.5 or 5.0 mol%, Scheme 13). In total, 29 different 

silyl ketene imines were enantioselectively protonated, with most ee-values reaching from 

80-96% ee. Although this method does indeed yield a broad range of chiral nitriles, the 

tedious synthesis of the silyl ketene imines at extreme reaction conditions under utilization 

of many, harmful reagents and the bad atom economy of the reaction sequence drastically 

diminishes the value of this method. 



Aldoxime dehydratases – State of the art 

 

15 

 

Scheme 13: Enantioselective protonation of silyl ketene imines, catalyzed by chiral 

phosphoric acids.[65] 

 

Another possibility for the enantioselective nitrile synthesis is the stereoconvergent Negishi 

arylation and alkenylation of racemic α-bromonitriles as an example for coupling chemistry, 

reported by Choi et Fu in 2012.[67] They optimized this transformation utilizing an 

enantiopure bidentate bis(oxazoline) as chiral ligand and could conduct the Negishi 

phenylation of racemic α-bromonitriles for 12 different substrates with up to 92% ee and 

98% yield. The Negishi arylations of the racemic α-bromonitriles could be achieved for four 

different substrates with up to 94% ee and 99% yield. Lastly, the Negishi alkenylation of 

the racemic α-bromonitriles was realized for five different substrates with up to 92% ee 

and 94% yield (Scheme 14). 

While this method shows a broad substrate spectrum and leads to overall good ee-values, 

the extreme reaction conditions, rather high catalyst loading and the requirement to 

synthesize the nitriles beforehand, including the α-halogenation, make this method rather 

inconvenient for the enantioselective nitrile synthesis. 

Regarding the biocatalytic access towards chiral nitriles, a few examples are also present 

in the literature. In 2008, Kosjek et al. utilized 13 different enoate reductases (EREDs) in 

isolated form to asymmetrically reduce the C-C double bond of α,β-unsaturated nitriles. 

This study represents an early example for a biocatalytic approach and the results in the 

study were all obtained in analytical scale (0.5 mg substrate loading, 0.5 mL reaction 

volume). Nevertheless, all four initially investigated substrates were at least transformed 

by eight out of the 13 different EREDs with conversion of up to 100% and 99% ee, 
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underlining the high selectivity of this biocatalytic approach. Apart from this initial 

screening and evaluation of a substrate scope, they also reduced a pharmaceutical building 

block with up to 86% conversion and 98% ee, which is an outstanding result considering 

the fact that these were wild-type enoate reductases and the substrate is quite bulky 

(Scheme 15). However, one has to bear in mind that these results on analytical scale still 

have to be done on preparative scale to really quantify the scalability and robustness of 

this process. 

 

 

Scheme 14: Catalytic, asymmetric synthesis of secondary nitriles via stereoconvergent 

Negishi arylations and alkenylation, reported by Choi et Fu.[67] 
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Scheme 15: Biocatalytic reduction of α,β-unsaturated nitriles with EREDs.[64] 

 

An impressive example for a direct, multistep transformation of a carboxylic acid into a 

nitrile has been recently reported by Nelp et Bandarian in 2015.[68] They utilized the ATP 

dependent nitrile synthetase ToyM, which is capable of transforming 7-carboxy-7-

deazaguanine (CDG) into its corresponding nitrile, 7-cyano-7-deazaguanine (preQ6). 

This transformation occurs according to the proposed mechanism of the authors via an 

amide intermediate (ADG), which means that ToyM is capable of activating two substrates, 

the carboxylic acid and its amide (Scheme 16). The authors propose that this promiscuity 

is the result of the evolution of a nitrile synthetase. While this process is quite remarkable, 

it is still in the proof-of-concept stage and is limited to one selected substrate and was only 

conducted in analytical scale (150 µM). While the conversion seemed quite complete after 

less than 30 minutes, no isolation of the product was done. Furthermore, the need for 

utilizing more than one equivalent of ATP as a reagent makes this process quite expensive. 

However, by employing metabolic engineering, this process may be transferred to 

fermentation processes in the future. 
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Scheme 16: Biocatalytic, one pot conversion of a carboxylic acid into its nitrile catalyzed 

by ToyM, reported by Nelp et Bandarian.[68] 

 

In summary, a broad variety of methods for the enantioselective nitrile synthesis are 

already reported. However, they either rely on expensive metal catalysts, require harsh 

reaction conditions or are not yet in a state that could be efficiently utilized in bigger scale 

experiments. Most processes still rely on cyanation reactions[69], which should be replaced 

by sustainable, cyanide-free processes in the future. This may be achieved by further 

developing the biocatalytic dehydration of aldoximes with aldoxime dehydratases (Oxds). 
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2.2 PROPERTIES, STRUCTURES AND MECHANISM OF ALDOXIME DEHYDRATASES 
 

After the aldoxime dehydratase from Bacillus sp. OxB-1 (OxdB) was discovered by Asano’s 

group in the late 1990s, several Oxd enzymes have been described (Table 1). In general, 

Oxds are enzymes with a molecular weight of approximately 40 kDa. Some of them exist 

as homodimer under native conditions and all of them contain heme b as a prosthetic 

group. Their optimum pH-values range from 5.5 to 8.0 and they are stable between pH 

values ranging from 5.5 to 9.5 in some cases. In general, all of them are highly active and 

stable under neutral conditions. Their temperature stability ranges from 30-45 °C and most 

of them have an optimal temperature of 30 °C. 

 

Table 1: Properties of reported aldoxime dehydratases (Oxds).[37] 

Property OxdA[70] OxdBa,[71,72] OxdFGa,[73] 
OxdREa,[7

4,75] 
OxdRGa,[76] OxdKa,[77] 

Molecular 

weight (Da) 

Native 

76,400 42,000 34,100 80000 80000 85000 

Sequence 40,129 40,972 44,070 44,794 44,817 44,511 

Subunits 2 1 1 2 2 2 

Soret peak 

(nm) ferric 

form 

408 407 420 409 409 408 

Ferrous 

form 
428 432 431 428 428 428 

Optimum 

pHb 
5.5 7.0 5.5 8.0 8.0 7.0 

Optimum 

temp. (°C)b 
45 30 25 30 30 20 

Stability pH 6.0-8.0 6.5-8.0 4.5-8.0 6.0-9.5 6.0-9.5 5.5-6.5 

Stability 

temp. (°C)b 
<40 <45 <20 <40 <40 <30 

OxdA: aldoxime dehydratase 1 from Pseudomonas chlororaphis B23; OxdB: aldoxime 

dehydratase from Bacillus sp. OxB-1; OxdFG: aldoxime dehydratase from Fusarium 

graminearum MAFF305135; OxdRE: aldoxime dehydratase from Rhodococcus sp. N-771; 

OxdRG: aldoxime dehydratase from Rhodococcus globerulus A-4; OxdK: aldoxime 

dehydratase from Pseudomonas sp. K-9.  

a) As His6-tagged form at the N-terminus; b) The effects of pH were measured in 0.1 M buffers 

at various pHs and the effect of temperature were investiged at various temperatures between 

20 and 80 °C in 0.1 M KPB (pH 7.0) using (Z)-phenylacetaldehyde oxime ((Z)-PAOx) as 

substrate. 
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The heme b group contained in Oxds was first identified in 2000[71] and in the upcoming 

years it was shown that the iron atom in the heme b group needs to be in its ferrous (FeII) 

state to effectively catalyze the dehydration of the oximes to nitriles.[70–72] The ferric state 

(FeIII) only showed strongly reduced or no residual activity. These studies were conducted 

via utilization of several reducing and oxidizing reagents in combination with UV/Vis-

spectroscopy and EPR. Furthermore, the studies revealed that in contrast to other heme 

containing enzymes like CYP450 monooxygenases, the aldoxime substrates are directly 

bound via their N-atom to the iron (FeII) atom in the heme b of aldoxime 

dehydratases.[72,75] However, oxidizing the iron to its ferric form lead to preferentially 

coordination of the substrate via its O-atom, leading to no dehydration activity. 

The next advance in understanding the mechanism of aldoxime dehydratases was achieved 

by identifying crucial histidine residues that act as proximal ligand of the heme group and 

other histidine residues which act as a distal ligand that is crucial for catalytic 

activity.[54,55,78–83] This was achieved by mutagenesis of the respective histidine residues. 

The mechanism of Oxds was finally disclosed by obtaining two crystal structures.[54,55] In 

2009, the aldoxime dehydratase from Rhodococcus sp. N-771 (OxdRE) was reported, 

including a Michaelis complex of OxdRE with bound n-butyraldehyde oxime 

(Figure 5, A).[54] In 2013, the crystal structure of the aldoxime dehydratase from 

Pseudomonas chlororaphis B23 (OxdA) was reported (Figure 5, B).[55] 

 

 

Figure 5: Active sites of OxdRE with bound n-butyraldehyde oxime (A) and substrate-free 

OxdA (B) obtained by X-ray crystal structures.[54,55] The catalytic triad and the heme b 

group are highlighted. The graphic was generated by the PyMOL software and visualized 

by Rommelmann.[84] 

 

In both cases, mutagenesis studies were conducted after retrieving the crystal structures. 

These studies revealed that Oxds can be considered as a type of hybrid between 

monooxygenases and lipases, containing both a heme group and a catalytic triad. 

Especially the residues Arg178, His320 and Ser219 are crucial for catalytic activity and 

could be interpreted as a catalytic triad. This triad is highly conserved in the aldoxime 

dehydratases and only in OxdB the serine residue is substituted by a threonine residue. 

Furthermore, the Oxds possess a rather large, hydrophobic cavity in their active sides. This 

allows a broad range of substrates to enter it, thus being effectively dehydrated to the 

nitriles, as proven by the generally broad substrate scope of Oxds. 

Based on earlier studies, which identified intermediates in the catalytic cycle of aldoxime 

dehyratases by utilization of resonance Raman spectroscopic analysis[78], Fourier transform 

infrared (FTIR) spectroscopy[85] and quantum mechanics/molecular mechanics (QM/MM) 
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calculations[79,80] and all the above mentioned mutations to identify the crucial amino acid 

residues, a mechanism for OxdA (and in analogy for all other Oxds) was postulated 

(Scheme 17). 

 

 

Scheme 17: Proposed mechanism for the catalytic dehydration of oximes to nitriles by 

aldoxime dehydratases.[54,55,78–80,85] 

 

First, the aldoxime enters the active site and is coordinated via its N-atom to the FeII atom 

of the heme b. Hydrogen bonds between the OH-group of the aldoxime and the serine and 

distal histidine residue increases the fixation of the substrate. Next, the histidine residue 

is protonated by the arginine residue, which increases the electrophilicity of the OH-group 

of the aldoxime. By elimination of water and double electron transfer from the FeII to the 

N-atom of the aldoxime, the FeIV intermediate is formed and the dehydrated aldoxime 

intermediate is now coordinating via its α-hydrogen atom to the deprotonated histidine 

residue and the serine side chain. Lastly, by deprotonation of this intermediate and double 

electron transfer to the FeIV species, the nitrile is released and the FeII species is 

regenerated. Simultaneous re-protonation of the arginine residue closes the catalytic cycle. 

Interestingly, other enzyme classes like CYP450 monooxygenases and toluene 

dioxygenases seem to share this mechanism for the catalytic dehydration of oximes to 

nitriles.[81–83]  
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2.3 SUBSTARTE SCOPE OF ALDOXIME DEHYDRATASES 

2.3.1 ARYLALIPHATIC ALDOXIMES  

 

From the beginning of the discovery of this enzyme class on, arylaliphatic substrates have 

been one of the most investigated substrate classes for this new enzyme class. One 

substrate, (Z)-phenylacetaldoxime ((Z)-PAOx), is often described as the model substrate 

for most Oxd (Table 2, entries 1-5). This may stem from the circumstance that it is the 

metabolism product of phenylalanine in the above described aldome-nitrile pathway. A 

multitude of kinetic data for transformation of (Z)-PAOx with several Oxds has been 

reported by Asano et al.[52,53,71,73,74,76,77,86,87] Some of the most impressing results are the 

high specific activity of the Oxd from Bacillus sp. (OxdB) 19.5 U/mg in conjunction with 

examples in which 100% conversion and 89% isolated yield 0.5 M substrate concentration 

have been reported in preparative examples (Table 2, entry 1).[71,87] Among the other 

Oxds that were utilized for the transformation of (Z)-PAOx, the Oxd from Fusarium 

graminearum MAFF305135 (OxdFG) showed an extraordinary activity of 28.2 U/mg 

(Table 2, entry 4).[73] 

Adding an additional methylene moiety to the substrate structure, one obtaines the 

substrate 3-phenylpropanal oxime, which is quite similarly transformed by the Oxd 

enzymes as its homologue (Z)-PAOx. All Oxds except the one from Rhodococcus sp. 

YH3-3[86] accept it as a substrate, either as (E/Z)-mixture as in case of OxdB or as pure 

(Z)-isomer (Table 2, entries 6-11) with activity values ranging from 0.392 U/mg (OxdRG) 

up to 20.4 U/mg (OxdFG).[73] Preparative biotransformations with OxdB at 0.75 M 

substrate concentration led to 99.5%-100% conversion and 90% isolated yield, underlying 

the great synthetic potential (Table 2, entries 6 and 7).[71,87] 

4-Phenylbutanaldoxime (Table 2, entries 12-15) is the last homologue of the 

phenylalkylaldoximes that was investigated. Three Oxds, including OxdB, OxdFG and the 

Oxd from Pseudomonas sp. K-9 were capable of transforming 4-phenylbutanaldoxime with 

activitives ranging from 2.53 (Oxd from Pseudomonas sp. K-9) 14.1 U/mg (OxdFG)when 

starting from the (E/Z)-mixture. The Km-values were higher than for the other substrates 

( e.g. 5.24 mM for OxdB), but these concentrations are still quite low and do not diminish 

the synthetic value in perspective of the already high concentrations of up to 0.75 M that 

were employed in the transformation of 3-phenylpropanal oxime.[71,87] Since Oxd enzymes 

can show different activity towards (E)- or (Z)-isomers of oximes, the Km values for both 

isomers may differ. 

Methoxy- and chloro-substituted derivatives of phenylacetaldoxime have also been 

transformed by OxdB (Scheme 18). (Z)-2-(4-methoxyphenyl)acetaldehyde oxime was 

successfully converted with a maximum velocity of 2.37 U/mg[71] and (Z)-2-

(4-chlorophenyl)-acetaldehyde oxime was converted by OxdB enzyme with 1.62 U/mg.[71] 

However, no other Oxd enzyme (OxdRG and Oxd from Rhodococcus sp. strain YH3-3) was 

capable of transforming these substrates.[76,86] 

Lastly, aldoximes with a natphyl or indolyl moiety were investigated as substrates 

(Scheme 18).[71,76] (Z)-naphtylacetaldoxime was transformed when using OxdB, which is 

the biocatalyst with broadest reported substrate scope for arylaliphatic substrates until 

now.[71] (E/Z)-indolacetaldoxime, on the other hand, was shown to be converted three 

Oxds, namely OxdB, OxdFG and OxdRG with up to 19.3 U/mg in case of OxdFG.[71,73,76] 

This broad spectrum already indicates the synthetic potential of Oxds to serve as a platform 

technology for the biocatalytic nitrile synthesis. 
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Table 2: Transformation of different achiral phenylalkylaldoximes with different 

methylene units by five different Oxds.[37] 

 

Entry  n Oxd Stereoisomer 
Km 

[mM] 

vmax 

[U/mg] 

Conversion 

(Yield) 

[%] 

ref. 

1 1 Ba Z 0.872 19.5 100 (89) [71,87] 

2 1 RGb Z 1.40 0.14 - [76] 

3 1 REc Z 5.37 5.41 - [74] 

4 1 FGd Z 3.52 28.2 - [73] 

5 1 Pseudomonas sp. K-9 Z 0.991 2.61 - [77] 

6 2 Ba Z 1.36 14.3 99.5 (90) [71,87] 

7 2 Ba E/Z - - 100 [87] 

8 2 RGb Z 2.31 0.392 - [76] 

9 2 REc Z 5.88 4.59 - [74] 

10 2 FGd Z 2.76 20.4 - [73] 

11 2 Pseudomonas sp. K-9 Z 0.975 12.1 - [77] 

12 3 Ba E/Z 5.24 3.35 - [71] 

13 3 RGb E/Z n.d.e n.d.e - [76] 

14 3 FGd E/Z 1.79 14.1 - [73] 

15 3 Pseudomonas sp. K-9 E/Z 0.882 2.53 - [77] 

a) OxdB: aldoxime dehydratase from Bacillus sp. OxB-1; b) OxdRG: aldoxime dehydratase 

from Rhodococcus globerulus A-4; c) OxdRE: aldoxime dehydratase from Rhodococcus sp. 

N-771; d) OxdFG: aldoxime dehydratase from Fusarium graminearum MAFF305135; e) 

n.d.: not determined. 
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Scheme 18: (E/Z)- or (Z)-arylalkylaldoximes as substrates for OxdB, OxdFG and 

OxdRG.[71,73,76] 

 

2.3.2 AROMATIC ALDOXIMES 

 

Aromatic aldoximes that bear the aldoxime moiety in the benzylic position have also been 

investigated as Oxd subtrates in some studies so far.[71,76,86] However, only one aldoxime 

dehydratase, namely the Oxd from Rhodococcus sp. YH3-3, was capable of transforming 

four para-substituted (E)-benzaldoximes with rather low conversions from 0.06% to 24% 

at best (Table 3). Neither OxdB and OxdRG were capable of transforming any of those 

substrates in other studies.[71,76] The difference in the acceptance of arylaliphatic and 

aromatic aldoximes is still not understood. Docking studies or QM-studies may provide 

answers in this regard. 

Interestingly, heteroaromatic substrates with a pyridyl moiety were accepted as substrates 

by three different Oxds, namely OxdA, OxdRG and the Oxd from Rhodococcus sp. YH3-3 

(Table 4).[70,71,74,76,86] The best accepted substrate was (E)-isomer of the meta-substituted 

pyridyl aldoxime with a high isolated yield of 98% when using the Oxd enzyme from 

Rhodococcus sp. strain YH3-3 (entry 1), but the (Z)-isomer of this substrate was also 

transformed by the same Oxd with 20% conversion (entry 2).[71,86] Kinetic data for the (E)-

isomer are reported when using OxdRG with Km = 20 mM and vmax = 0.065 U/mg (entry 3). 

When the ortho-substituted pyridyl aldoxime was investigated as substrate (entries 4 and 

5), the yield with the Oxd from Rhodococcus sp. strain YH3-3 was lower (30%) and only 

OxdA has been reported as the only other Oxd that accepts this substrate.[70,86] 
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Table 3: Substrate scope related to aromatic (E)-aldoximes derived from benzaldehydes 

and substituted derivatives thereof.[37,86]

 

Entry R Oxd 
Km 

[mM] 

vmax 

[U/mg] 

Yield 

[%] 

1 -Me from Rhodococcus sp. YH3-3 n.d.a n.d.a (24)b 

2 -OMe from Rhodococcus sp. YH3-3 n.d.a n.d.a 6 

3 -Cl from Rhodococcus sp. YH3-3 n.d.a n.d.a (7.2)b 

4 -NO2 from Rhodococcus sp. YH3-3 n.d.a n.d.a (0.06)b 

a) n.d.: not determined; b) Conversion according to HPLC-analysis. 

 

Table 4: Substrate scope related to aldoximes derived from non-substituted 

heteroaromatic aldehydes with one heteroatom.[37] 

 

Entry Stereoisomer Oxd 
Km 

[mM] 

vmax 

[U/mg] 

Yield 

[%] 
ref. 

1 E from Rhodococcus sp. YH3-3 - - 98 [86] 

2 Z from Rhodococcus sp. YH3-3 - - (20)d [71] 

3 E RGa 20 0.065 - [76] 

4 E/Z Ab 3.4 (0.09)c - [70] 

5 E from Rhodococcus sp. YH3-3 - - 30 [86] 

a) OxdRG: aldoxime dehydratase from Rhodococcus globerulus A-4; b) OxdA: aldoxime 

dehydratase from Pseudomonas chlororaphis B23; c) The value given in parenthesis 

corresponds to the kcat-value in [min-1]; d) Conversion according to HPLC-analysis. 
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Scheme 19: Biotransformation of the indolyl- and furanyl substituted aldoximes by the 

Oxd from Rhodococcus sp. YH3-3 and attempted transformations with OxdB, OxdRE and 

OxdRG.[71,74,76,86] 

 

Other heteroaromatic substrates like the (E)-isomers of an indolyl-substituted aldoxime or 

a furanyl substituted aldoxime were accepted only by the Oxd from Rhodococcus sp. YH3-3 

as substrates, however the indolyl aldoxime only reached 0.07% conversion while the 

furanyl aldoxime was obtained with 62% yield (Scheme 19). Other aromatic substrates 

bearing a thiophene substituent were also reported to be converted with less 1%, which 

implies a strong depency of the utilized heteroaromatic system to be serve as a substrate 

for Oxds.[86] 

Further aldoxime substrates like a pyrazinealdoxime could also serve as a substrate for the 

Oxd from Rhodococcus sp. YH3-3, whose nitrile was obtained with 22% yield (Table 5, 

entry 1), while OxdB and OxdRE could not convert it.[71,74,86] Lastly, the Oxd from 

Rhodococcus sp. YH3-3 has been reported to transform an acyl substituted 

pyridinealdoxime with a conversion of 72% (entry 2) and an aromatic N-oxide aldoxime 

with 0.2% conversion (entry 3).[86] Putting all reported results for the transformation of 

aromatic aldoximes in perspective, only the Oxd from Rhodococcus sp. YH3-3 seems to be 

able to convert a multitude of substrates, especially when they bear heteroaromatic 

moieties. 

 

Table 5: Transformation of further (E)-isomers of heteroaromatic aldoximes by the Oxd 

from Rhodococcus sp. YH3-3.[86] 
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Entry Substrate Yield [%] 

1 

 

22 

2 

 

(73)a 

3 

 

(0.2)a 

a) Conversion according to HPLC-analysis. 

 

 

2.3.3 ALIPHATIC ALDOXIMES  

 

Aliphatic aldoximes represent probably the most versatile substrate class that is converted 

by Oxds into the corresponding nitriles. Apart from several linear, non-branched aldoximes 

with a carbon chainlength from two up to six carbon atoms (Table 6), many aliphatic, 

linear branched aldoximes have been reported to be efficiently converted by several Oxds 

(Table 7) . 

Regarding the aliphatic linear chain-type aldoximes high yields were found independent of 

the chain length between C2 and C6 aldoximes (Table 6).[70,71,73,74,76,77,86,87] Even (E/Z)-

acetoaldoxime, with a carbon chainlength of two carbon atoms, was converted into 

acetonitrile with 97% conversion at 100 mM substrate concentration (entry 2).[87] Its 

longer homologue propanonitrile (C3) was also obtained with 99.3% conversion (50 mM 

substrate concentration) and for n-butyronitrile (100 mM substrate concentration, C4) and 

n-pentanenitrile (250 mM substrate concentration, C5) quantitative conversions were 

observed. Lastly, n-capronitrile (C6) was converted with also converted quantitatively at 

elevated concentrations (300 mM) by OxdB (entries 3, 8, 14 and 19).[71,86,87] The kinetic 

data are quite diverse for this substrate class, but some data sets are quite astonishing. 

For example, (E/Z)-pentanal oxime was converted with vmax = 88.8 U/mg by OxdFG, which 

is the highest activity value reported for any substrate and Oxd (entry 15).  
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Table 6: Biotransformations and kinetic data of aliphatic linear, non-branched 

aldoximes.[37] 

 

Entry n Stereoisomer Oxd 
Km 

[mM] 

vmax 

[U/mg] 

Yield 

[%] 
ref. 

1 0 E/Z Aa 11 (5.6)f  [70] 

2  E/Z Bb - - (97)g [87] 

3 1 E/Z Bb 4.32 3.28 (99.3)g [71,87] 

4  E/Z RGc 5.13 0.43  [76] 

5  E/Z REd 2.17 5.78  [74] 

6  E/Z from Pseudomonas sp. K-9 0.778 2.90  [77] 

7 2 E/Z Aa 0.25 (5.4)f  [70] 

8  E/Z Bb 11.1 9.49 
46 

(100)g 
[86,87] 

9  E/Z FGe 2.87 20.4  [73] 

10  E/Z RGc 1.73 0.689  [76] 

11  E/Z REd 2.64 6.02  [74] 

12  E/Z 
from Rhodococcus sp. YH3-

3 
- - 45 [71] 

13  E/Z from Pseudomonas sp. K-9 2.16 14.8  [77] 

14 3 E/Z Bb 2.42 12.6 
53 

(100)g 
[86,87] 

15  E/Z FGe 10.1 88.8  [73] 

16  E/Z RGc 1.13 1.64  [76] 

17  E/Z REd 1.13 4.59  [74] 

18  E/Z from Pseudomonas sp. K-9 3.78 19.9  [77] 

19 4 E/Z Bb 6.12 32.3 
56 

(99.5)g 
[87] 

20  E/Z FGe 0.802 3.60  [73] 

21  E/Z RGc 2.94 1.66  [76] 

22  E/Z from Pseudomonas sp. K-9 3.12 15.3  [77] 

a) OxdA: aldoxime dehydratase from Pseudomonas chlororaphis B23; b) OxdB: aldoxime 

dehydratase from Bacillus sp. OxB-1; c) OxdRG: aldoxime dehydratase from Rhodococcus 

globerulus A-4; d) OxdRE: aldoxime dehydratase from Rhodococcus sp. N-771B; e) 
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OxdFG: aldoxime dehydratase from Fusarium graminearum MAFF305135; f) The value 

given in parenthesis corresponds to the kcat-value in [min-1]; g) Conversion according to 

gas chromatography (GC). 

 

Aliphatic alkyl aldoximes can also have a branched aliphatic chain and still serve as 

substrates for several Oxds (Table 7)[71,73,74,76,77,86,87] For example, a high conversion of 

>99% (at 200 mM substrate concentration) was achieved for the dehydration of the (E/Z)-

3-methylbutanal oxime (Table 7, entry 5).[86,87] Other aliphatic open-chain aldoximes, like 

(E/Z)-isobutyraldehyde oxime and (E/Z)-4-methylpentanal oxime, were also converted by 

several Oxd enzymes  with quite comparable kinetic values as the non-branched 

homologues (entries 1-4, 10 and 11).[74,76,77,86,87] The only cyclic aliphatic aldoxime 

substrate, (E/Z)-cyclohexanecarbaldehyde oxime, was also transformed by three different 

Oxds (OxdRG, OxdRE and Oxd from Pseudomonas sp. K-9) into cyclohexylnitrile, proving 

that also unsaturated carbon cycles may serve as a substrate motif (entries 11-

14).[71,74,76,77]  

While every reported aliphatic linear aldoxime could be transformed by at least one Oxd 

efficiently, it is important to note that none of the substrates had a carbon chainlength that 

exceeded six carbon atoms. However, substrates with a longer carbon chainlength would 

even more interesting since they may serve as precursors for the synthesis of fatty amines. 

 

Table 7: Substrate scope related to aliphatic linear, branched (E/Z)-aldoximes.[37] 

 

 

Entry n R Stereoisomer Oxd 
Km 

[mM] 

vmax 

[U/mg] 

Yield 

[%] 
ref. 

1 0 CH3/CH3 E/Z Ba - - (35.3)f [86,87] 

2 0 CH3/CH3 E/Z RGb 5.54 0.041 - [76] 

3 0 CH3/CH3 E/Z REc 1.41 8.33 - [74] 

4 0 CH3/CH3 E/Z from Pseudomonas sp. K-9 0.538 5.87 - [77] 

5 1 CH3/CH3 E/Z Ba 3.58 7.72 
50 

(99.6)f 
[86,87] 

6 1 CH3/CH3 E/Z FGd 2.66 23.1  [73] 

7 1 CH3/CH3 E/Z RGb 3.97 0.239 - [76] 

8 1 CH3/CH3 E/Z REc 2.43 5.71 - [74] 

9 1 CH3/CH3 E/Z from Pseudomonas sp. K-9 1.33 35.1 - [77] 
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Entry n R Stereoisomer Oxd 
Km 

[mM] 

vmax 

[U/mg] 

Yield 

[%] 
ref. 

10 2 CH3/CH3 E/Z Ba 2.98 10.1 - [86] 

11 2 CH3/CH3 E/Z RGb 6.76 1.32 - [76] 

12 0 -(CH2)5- E/Z RGb 1.13 0.386 - [76] 

13 0 -(CH2)5- E/Z REc 0.99 4.76 - [74] 

14 0 -(CH2)5- E/Z from Pseudomonas sp. K-9 5.96 16.8 - [77] 

a) OxdB: aldoxime dehydratase from Bacillus sp. OxB-1; b) OxdRG: aldoxime dehydratase 

from Rhodococcus globerulus A-4; c) OxdRE: aldoxime dehydratase from Rhodococcus sp. 

N-771; d) OxdFG: aldoxime dehydratase from Fusarium graminearum MAFF305135; e) 

n.a.: not accepted as a substrate; f) Conversion according to gas chromatography (GC). 

 

 

2.3.4 CHIRAL ALDOXIMES 

 

Apart from the multitude of achiral aldoximes that can be converted by Oxds, may they be 

arylaliphatic, aromatic or aliphatic substrates, chiral aldoximes have also been reported to 

be suitable substrates for Oxds. Two different substrates bearing a stereogenic center, 

namely rac-(E/Z)-2-phenylpropionaldoxime and rac-(E/Z)-mandelaldoxime, were the first 

substrates that were investigated.[71,73,74,76,77,86,87] Both substrates are racemic α-branched 

arylalkylaldoximes, but the stereochemical  course of the reaction had initially not been 

investigated. 

However, five different Oxds have been reported that accept rac-(E/Z)-2-

phenylpropionaldoxime as a substrate: OxdB, OxdFG, OxdRG, OxdRE and the Oxd from 

Pseudomonas sp. K-9 (Table 8, entries 1-5), whereas no activity was observed for the 

Oxd from Rhodococcus sp. strain YH3-3 (entry 6).[73,74,76,77,86] The Oxd from Rhodococcus 

sp. strain YH3-3 seems to be more privileged to convert aromatic aldoximes (see 

chapter 2.3.2). Regarding the activity towards the substrates, up to vmax = 18.1 U/mg 

with a Km = 3.71 mM was found for OxdFG, but OxdRE and the Oxd from Pseudomonas 

sp. K-9 also had impressive vmax values of 6.93 and 7.93 U/mg (entries 4 and 5). 

rac-(E/Z)-mandelaldoxime was the other investigated substrate (entries 6 and 7).[71,73,76] 

Only OxdFG and OxdRG were found to accept this substrate, while OxdB did not. 

Noteworthily, its kinetic data are in the same range as the ones of rac-(E/Z)-2-

phenylpropionaldoxime with vmax = 2.32 U/mg and Km = 1.70 mM for OxdFG and vmax = 

0.572 U/mg, Km = 3.23 mM for OxdRG. Unfortunately, the stereochemical reaction course 

for rac-(E/Z)-mandelaldoxime has so far not been investigated in the studies that followed 

the initial ones (see below), although this substrate is highly interesting since it contains a 

highly polar substituent (a hydroxy group) in the α-position of the stereochemical center 

in contrast to all other chiral aldoximes that were investigated. 

Recently, the synthesis of citronellyl nitrile (an terpene based aliphatic aldoxime with a 

stereocenter) and other compounds used in the fragrance industry by means of Oxds has 

been described in a patent application by BASF.[88] This result is quite interesting since the 

odors of compounds can also depend on their absolute configuration. 
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Table 8: Initial activity study of Oxd enzymes for branched chiral alkylarylaldoximes.[37] 

 

Entry Oxd Stereoisomer 
Km 

[mM] 

vmax 

[U/mg] 

Conversione 

[%] 
ref. 

1 Ba E/Z - - 37.1 [87] 

2 FGb E/Z 3.71 18.1  [73] 

3 RGc E/Z 11.9 0.81 - [76] 

4 REd E/Z 10 7.93 - [74] 

5 Pseudomonas sp. K-9 E/Z 4.07 6.93 - [77] 

6 FGb E/Z 1.70 2.32  [73] 

7 RGc E/Z 3.23 0.572 - [76] 

a) OxdB: aldoxime dehydratase from Bacillus sp. OxB-1; b) OxdFG: aldoxime dehydratase 

from Fusarium graminearum MAFF305135; c) OxdRG: aldoxime dehydratase from 

Rhodococcus globerulus A-4; d) OxdRE: aldoxime dehydratase from Rhodococcus sp. N-

771; e) According to GC analysis. 

 

In 2014, Metzner et al. conducted the first detailed study on the enantioselective nitrile 

synthesis utilizing OxdB (Scheme 20).[89,90]  

Metzner discovered that the stereochemical course of the biocatalytic dehydration is 

heavily dependent on the reaction temperature and the ratio of the (E/Z)-isomers. When 

biotransformations at 30 °C were conducted for the substrate 

rac-(E/Z)-2-phenylpropionaldoxime (PPOx) with an (E/Z)-ratio of 4:1, a conversion of over 

99% was observed. As a consequence, the formed 2-phenylpropionitrile was obtained as 

racemate. Once the reaction temperature was lowered to 8 °C, the conversion stopped at 

60% and the nitrile was obtained with 65% ee (S). This conversion correlated to the 

complete conversion of both (Z)-enantiomers and one of the (E)-enantiomers. Since the 

racemic aldoxime consists of four stereoisomers due to the mixture of (E/Z)-isomers and 

(R/S)-enantiomers, this means that exclusively the (E,R)-stereoisomer is not transformed 

by OxdB (Scheme 21). 
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Scheme 20: First study on the enantioselective nitrile synthesis utilizing OxdB as 

whole-cell catalyst by Metzner et al..[89] 

 

 

Scheme 21: Illustration of the four stereoisomers that are present in a rac-(E/Z) 

mixture of an aldoxime and their conversion into the corresponding nitrile enantiomers. 
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This hypothesis was proven when he converted the (E)-isomer enriched aldoxime (E/Z 

ratio 99:1) with 50% conversion towards the (S) nitrile with an ee-value of 98%. To 

broaden the scope of the Oxd catalyzed, enantioselective dehydration of racemic 

aldoximes, three further substrates were investigated, each belonging to a different 

substrate class. First off, rac-(E/Z)-3-cyclohexene-1-carbaldehyde oxime with an (E/Z) 

ratio of 2.2:1 was converted at 8 °C. The corresponding nitrile was obtained with 83% ee 

at 14% conversion after one hour. This substrate is quite challenging because the 

stereochemical information depends on the presence of a single carbon-carbon double 

bond in the ring. rac-(E/Z)-tetrahydrofuran-3-carbaldehyde oxime (E/Z 1.5:1), a 

heterocyclic substrate, was converted with 3% ee at 32% conversion. Lastly, conversion 

of rac-(E/Z)-3-phenylbutanal oxime (E/Z 1.5:1) led to 61% ee at 29% conversion. This 

substrate has its chiral center at the ß-position to the oxime moiety in constrast to the 

other substrates (Scheme 20).  

At first glance one can conclude from these results that especially substrates containing 

aromatic residues are privileged to yield the chiral nitrile in high enantiopurity. However, 

as has been seen in the study when different (E/Z) ratios of the aldoxime were used, the 

ee-values highly depend on the enrichment of one of the stereoisomers. Concordingly, one 

has also to consider if the separation of the (E/Z)-isomers is possible and the isomers 

should be investigated separately in the biotransformations. This is underlined by the fact 

that the biotransformation of a (Z)-enriched PPOx (E/Z ratio 1:11.5) led to the formation 

of the (R)-nitrile with 67% ee at 15% conversion. If the stereopreference of the Oxd differs 

for the (E/Z)-isomers, nitriles with low ee-values are obtained when one utilizes a substrate 

mixture with a low (E/Z)-ratio. 
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3 CYANIDE FREE, BIOCATALYTIC SYNTHESIS OF CHIRAL 

NITRILES 

3.1 MOTIVATION 
 

The former studies on the Oxd catalyzed synthesis of chiral nitriles suffer from a very 

narrow substrate scope. Furthermore, the stereochemical course of the enantioselective 

dehydration has only only been investigated for OxdB. However, several Oxds have already 

been reported in the literature and their substrate scope, performance and selectivity in 

the enantioselective nitrile synthesis may differ greatly from OxdB. 

Towards this end, commercially available racemic aldehydes and other precursors like 

benzaldehydes shall be converted into their racemic aldoximes. Following this conversion, 

an efficient method for the separation of the (E/Z)-isomers of the aldoximes shall be 

developed to enable a more detailed insight into the enantioselective nitrile synthesis in 

dependence of the configuration of the hydroxy group (Scheme 22).  

The most important factor for the success of the enantioselective nitrile synthesis study is 

the control of the (E/Z) configuration during the biotransformation. This issue can be seen 

in the different conversions of PPOx at 30 °C and 8 °C (see chapter 2.3.4). The 

interconversion of the (E/Z)-isomers is thermically dependent because the inversion barrier 

of non-substituted aldoximes is quite low and proceeds willingly at temperatures like 

30 °C.[91–96] The equilibrium ratio of the (E/Z)-isomers is also dependent on the sterical 

size of possible substituents that are close to the oxime moiety. The thermical isomerization 

at 30 °C of (E/Z)-PPOx was also proven by Metzner in his study.[89] 

For the biocatalytic transformation of the (E)- or (Z)-enriched aldoximes, the literature 

reported Oxds are required as biocatalysts. To gain access towards them, expression 

methods for the Oxds in E. coli host cells have to be developed. 

Since this substrate scope study should incorporate as many substrates as possible, the 

author conducted this study in close collaboration with Rommelmann[84] and Oike[84] by 

splitting the substrate synthesis and biotransformation of some substrates with them. 

Furthermore, some plasmids for Oxds were provided by Asano’s group. 

 

 

Scheme 22: Project plan for broadening the substrate scope of the Oxd catalyzed chiral 

nitrile synthesis. 
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3.2 SUBSTRATE SELECTION AND SYNTHESIS 
 

The substrate scrope of Metzner’s preliminary study is quite narrow and he only utilized 

OxdB as catalyst for the enantioselective nitrile synthesis.[90] As a consequence, several 

new aldoxime substrates were synthesized to broaden the substrate scope, which shall be 

investigated with all five reported Oxds in a broad substrate scope study. 

The first aspect that was deemed to be investigated was the influence of substituents on 

the phenyl moiety of the substrate rac-(E/Z)-2-phenylpropionaldoxime (PPOx). For this, a 

multi-step synthesis route was developed starting from cheap, commercially available 

bromobenzaldehydes (Scheme 23). Bromine is a highly versatile aromatic substituent, 

which allows for a broad range of cross-coupling reactions to be conducted. 

 

 

Scheme 23: Multi-step synthesis route for the synthesis of bromo-substituted PPOx 

substrates and their nitriles as reference compounds. 

 

In the first step, the bromobenzaldehydes were converted into their corresponding 

nitroalkenes in a nitroaldol condensation reaction with nitromethane. All three compounds 

could be isolated in multigram scale with moderate to good yields of 41-56% after 

recrystallization from ethanol. Next, a Michael addition of methylmagnesium bromide with 

all three nitroalkenes was successfully conducted to yield the racemic nitroalkanes with 

good yields of 48-63% after column chromatography purification. 

The crucial step in the substrate synthesis route was the disproportionation of the racemic 

nitroalkanes with benzyl bromide, which was conducted in analogy to the protocol reported 

by Czekelius et Carreira in 2005.[97] Careful conduction of the experimental procedure 

allowed to isolate the racemic, bromo-substituted PPOx-derivatives with isolated yields of 

40-48% after column chromatography.  

Lastly, a copper-catalyzed dehydration of the aldoximes in acetonitrile was conducted to 

obtain the corresponding nitrile as reference compound for HPLC analysis. All three nitriles 

could be obtained in good to excellent yields of 52-95% after column chromatography. 



Biocatalytic synthesis of chiral nitriles 

 

37 

Hence, all three required, bromo-substituted substrates could be obtained successfully, 

including their corresponding nitriles for analytical purposes. 

Apart from the bromo-PPOx derivatives, several other aldoximes were synthesized on 

gram-scale to broaden the substrate scope in terms of structure and sterical hinderance. 

Towards this end, previous investigated substrates like rac-3-cyclohexene-1-

carboxaldehyde oxime as an example for a cyclic, non-aromatic substrate and rac-3-

phenylbutyraldehyde oxime as an example for an aldoxime bearing its stereogenic center 

in β-position were synthesized from their commercially available aldehydes to investigate 

their conversion by the other Oxds (Scheme 24). Additionally, rac-2-methyl-3-(3,4-

methylenedioxyphenyl)-propanal oxime and rac-2-methyl-3-(4-

isopropylphenyl)propionaldehyde oxime were synthesized as examples for aldoximes with 

bigger substituents at their phenyl moiety. Their aldehydes are important fragrance 

compounds. However, nitriles are also important fragrance components due to their lower 

sensitivity against oxidation. Despite their general higher toxicity, several fragrance nitriles 

have been found to be non-genotoxic in in vivo and in vitro assays, increasing their 

attractiveness.[98] The last synthesized substrate was the non-chiral phenyl acetaldehyde 

oxime, which is the standard substrate for determining the activity of Oxds. 

 

 

Scheme 24: Synthesized aldoxime substrates and nitrile reference compounds from 

commercially available aldehydes. 

 

All aldoximes were isolated with high yields of 85-94% yields when they were synthesized 

with hydroxylamine hydrochloride as reagent. rac-3-phenylbutyraldehyde oxime, which 

was the only aldoxime synthesized utilizing the hydroxylamine phosphate salt, was 

obtained in 38% isolated yield. Regarding the reference nitriles, all nitriles were obtained 

with isolated yields of 33-95%, either by dehydration catalyzed by copper(II) acetate in 

acetonitrile as solvent or catalyzed by triphenylphosphine oxide and oxalyl chloride as 

activating reagent (Scheme 24).  
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Once all substrates were successfully synthesized, one crucial issue had to be considered 

before starting a substrate scope study for the enantioselective nitrile synthesis. As 

mentioned in chapter 3.1, aldoximes are prone to thermal isomerization of their 

(E/Z)-configuration dependent on the position of the hydroxyl group, even at ambient 

temperature.[91–96] However, the resulting ee-value of the aldoxime conversion by OxdB 

showed a strong dependency on the (E/Z)-ratio of the used substrate. As a consequence, 

an efficient separation of the isomers was necessary to verify the enantioselectivity of the 

biotransformation using Oxds against each isomer of the substrates. The most efficient 

methods for the separation of the isomers are column chromatography or fractional 

crystallization. Column chromatography was chosen as the method of choice for the 

separation since fractional crystallization requires tedious, time-consuming trial and error 

approaches for each compound.  

While the chromatographic properties of the (E/Z)-isomers of an aldoxime are often 

different due to their different polarity, most (E/Z)-mixtures are hard to separate since the 

polarity differences are often rather low. Hence, manual column chromatography of larger 

amounts requires many hours to complete and hence is prone to time dependent 

isomerization while the aldoxime is dissolved in the eluent. Automatic flash column 

chromatography is nowadays superior to the manual method and allows due to highly 

sensitive UV or mass detectors a fast, real-time separation of the isomers in larger amounts 

in timespans of 15 minutes or less (Figure 6). 
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Figure 6: Separation of the (E/Z)-isomers of 2-Br-PPOx by automated flash 

chromatography (top). 2D (middle) and 3D (bottom) chromatogram, recorded by a 

Biotage Isolera One equipped with an UV detector. 
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The separation of the (E/Z)-isomers was successful for almost all substrates, yielding the 

isolated isomers in ratios of up to >99:1 (E/Z) or 5:95 (E/Z), respectively (Figure 7). 

Regarding the substrate rac-2-methyl-3-(4-isopropylphenyl)propionaldehyde oxime no 

separation was required because the substrate crystallized on its own as the pure 

(E)-isomer after storage at room temperature (E/Z 98:2). The same applies for the 

standard substrate phenyl acetaldehyde oxime, whose (Z)-isomer crystallized at room 

temperature. The only substrate which could not be separated efficiently into its isomers 

was the ß-branched rac-3-phenylbutyraldehyde oxime. Even after successful separation 

via column chromatography, the isomers quickly isomerized even at 4 °C. This may result 

from the low inversion barrier since no substituent is present in the α-position of the 

aldoxime. Noteworthily, many aldoximes were liquids or oils at room temperature as an 

(E/Z)-isomer mixture, while the separated isomers were often solids. This phenomenon 

also occurs in metal alloys or salt mixtures, which are eutectic systems. 

 

 

Figure 7: All successfully separated (E)- and (Z)-isomers that serve as substrate scope 

for the biocatalytic nitrile synthesis with five different Oxds. 
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3.3 SUBSTRATE SCOPE STUDY AND LEAD STRUCTURE IDENTIFICATION 

3.3.1 SUBSTRATE OVERVIEW AND GENERAL ACTIVITY STUDY 

 

After assembling a diverse range of substrates, including aryl-aliphatic, heteroaryl-

alphatic, cyclic aliphatic and long chain aliphatic ones and successfully separating their 

(E/Z)-isomers (Scheme 25), the five Oxds from Pseudomonas chlororaphis B23 (OxdA), 

Bacillus sp. OxB-1 (OxdB), Fusarium graminearum MAFF305135 (OxdFG), Rhodococcus 

sp. N-771 (OxdRE) and Rhodococcus globerulus A-4 (OxdRG, for further information on 

Oxds, see chapter 2.2) had to be heterogeneously expressed in E. coli host cells. After 

successful expression, initial conversion studies were conducted to estimate if the Oxds 

differ in their preferred substrate structures and overall activities. 

 

 

Scheme 25: Overview of the substrate scope, including all investigated substrates. The 

substrate scope study was conducted in cooperation with Rommelmann[99] (blue 

substrates) and Oike[84](red substrates). 

 

Since the literature conditions for the optimal expression of the Oxds were inconveniently 

different for every single one of them, a general expression method that allowed a 

successful expression for all of them under the same conditions had to be evaluated. This 

was achieved by conducting the expression of the Oxds in terrific broth (TB) medium, which 

was mixed by the addition of glucose and lactose to control the expression of the Oxds by 

auto induction (AI). After consumption of the glucose, the expression starts by the 

induction of the promoter by the lactose. In contrast to induction by addition of e.g. IPTG, 

this allowed for a smoother expression. After a temperature screening from 15-30 °C, 

OxdA, OxdFG, OxdRE and OxdRG were all successfully expressed at 15 °C after 72 hours 

cultivation time (for details, see chapter (8.3.2.1), with OxdB being the only Oxd that 

had to be expressed at 30 °C for optimal results.  
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Table 9: Activity values in U/mgBWW for five different Oxds in the initial substrate 

screening against all investigated substrates. 

 

 

Entry Substrateb Entry Substrateb 

1c 

 

6 

 

2 

 

7c 

 

3 

 

8c 

 

4 

 

9c 

 

5c 

 

10c 

 

a) BWW = bio wet weight; b) (E/Z)-ratio was determined via 1H-NMR spectroscopy; c) 

These substrates were synthesized and investigated by Rommelmann[99] and Oike[84]. 
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With all five Oxds in hand, an initial activity screening of all substrates (including the 

standard substrate PAOx) as (E/Z)-mixtures at 5 mM substate concentration and 8 °C 

reaction temperature was conducted with all five Oxds as whole-cell catalysts (Table 9)). 

Additionally, a neutral pH of 7.0 was chosen for the substrate screening since the optimal 

pH-value of the Oxds lies between pH = 5.5-8.0. Additionally, (E/Z)-isomerization may 

also be induced by base or acid catalysis, which is avoided at pH = 7.0. In accordance with 

the earlier studies of Metzner, the Oxds were utilized as whole-cell catalysts to protect the 

Oxds from oxidation and faster deactivation compared to the isolated enzymes.[89] 

The amount of overexpression of all Oxds was quite comparable according to SDS-PAGE 

analysis (chapter 9.3.2.1). Since the enantioselective nitrile synthesis has to be 

conducted at 8 °C to prevent isomerization, overall activites of the whole-cell catalysts are 

drastically lower compared to their optimal temperatures, like 30 °C. Nevertheless, every 

single investigated substrate was recognized by at least one Oxd as a substrate with 

activity values of up to 0.26 U/mgBWW. If one considers that bio wet mass contains a lot of 

water, salt and other cell compartments beside the desired biocatalyst, these values are 

already quite remarkable. It is noteworthy nevertheless that substrates with bigger 

substituent residues (Table 9, entry 2, 7 and 8) showed the lowest activity values, not 

exceeding 0.01 U/mgBWW. However, these low values may also stem from their low 

solubility in aqueous media since only 2.5 vol% of DMSO as cosolvent may not be enough 

for a reasonable solubility above the Km values of the Oxds. 

 

3.3.2 INVESTIGATIONS ON THE ENANTIOSELECTIVE NITRILE SYNTHESIS ON 

ANALYTICAL SCALE 

 

After proving that the substrate scope of the Oxds is indeed very broad, a detailed 

investigation on the enantioselectivity of all Oxds against the racemic (E)- or (Z)-isomers 

of all substrates was conducted. For this study, we utilized the same reaction conditions 

(5 mM substrate conc., 2.5 vol% DMSO, 8 °C, pH = 7.0) as we did for the initial activity 

study. The results of this study are listed in Table 10 below. 

First off, Rommelmann could prove that the previous investigated rac-(E)-2-

phenylpropanal oxime is recognized by all Oxds as substrate and showed excellent 

enantioselectivity towards its nitrile by all of the Oxds when starting from a 94:6 enriched 

(E/Z)-mixture with 91-94% ee (S) at 25-26% conversion, identifying this substrate as a 

privileged one for the enantioselective nitrile synthesis.[84] Carrying on, Oike could 

demonstrate that the thiophene containing aldoxime (entry 2) is also converted with a 

certain degree of enantioselectivity by the Oxds, even though only a 70:30 (E/Z)-mixture 

could be utilized since the isomers could not be separated. The mediocre ee-values of 23-

34% for four Oxds at 10-45% conversion may stem from a simultaneous transformation 

of both isomers with different enantiospecificity, as may be derived from the high ee-value 

of 90% at 7% conversion when utilizing OxdFG as catalyst. However, this hypothesis 

remains elusive until proven otherwise. 

Next, the highly enriched (E)- and (Z)-isomers of the helional aldoxime (entries 3 and 4) 

were investigated. Surprisingly, a switch of enantiospecifity could be observed dependent 

on the used isomer. While OxdB converted the (E)-isomer (E/Z 99:1) with 70% ee at 40% 

conversion into the (R)-nitrile, the (Z)-isomer (E/Z 6:94) was converted with 36% ee at 

71% conversion into the (S)-nitrile. Hence, with the usage of the same biocatalyst, one 

can obtain different enantiomers of the desired product just by utilization of the different 
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stereoisomers of the substrate without the need of developing or searching another 

catalyst! This switch in enantiospecificity was also observed with this substrate when using 

OxdA as catalyst. 

 

Table 10: Study on the enantioselective dehydration of racemic (E)- or (Z)-enriched 

aldoximes with five different Oxds. 

 

Entry Substrate Enzyme Conv. [%]a ee [%]b 

1c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

26 

26 

25 

25 

26 

91 (S) 

94 (S) 

92 (S) 

93 (S) 

92 (S) 

2c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

18 

10 

7 

28 

45 

34 (-) 

23 (+) 

90 (+) 

27 (-) 

32 (-) 

3 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

17 

40 

52 

20 

25 

56 (S)d 

70 (R) 

83 (S) 

35 (R) 

27 (R) 

4 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

46 

71 

72 

21 

34 

15 (R) 

36 (S) 

8 (R) 

18 (R) 

15 (R) 
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Entry Substrate Enzyme Conv. [%]a ee [%]b 

5 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

54 

29 

78 

52 

66 

4 (+) 

71 (+) 

0 

13 (+) 

9 (+) 

6 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

33 

36 

30 

54 

67 

0 

35 (+) 

0 

0 

0 

7c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

38 

11 

40 

42 

50 

43 (+) 

22 (-) 

9 (+) 

22 (+) 

25 (+) 

8c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

40 

33 

11 

39 

30 

1 (-) 

40 (-) 

19 (-) 

2 (+) 

3 (+) 

[a] Absolute conversion (confirmed via calibration curves on RP-HPLC). [b] The symbols 

(+) and (-) refer to the first and second signals in chiral HPLC or GC chromatograms. [c] 

Investigated substrates by Rommelmann[99] and Oike[84]. [d] Absolute configuration was 

determined via comparison with literature data after a preparative scale experiment.[100] 

 

Furthermore, the rac-(E/Z)-3-cyclohexene-1-carbaldehyde oxime (entries 5 and 6) was 

investigated as the next substrate. For the (E)-isomer (E/Z 99:1), only OxdB showed good 

enantioselectivity against this substrate with 71% ee at 29% conversion, while none of the 

other Oxds exceeded 13% ee at 52-66% conversion. OxdFG did not show any 

enantioselectivity at all. For the (Z)-isomer (E/Z 4:96, entry 6), this tendency was even 

more drastically. Only OxdB showed any enantioselectivity with 36% ee at 35% 

conversion, while the other Oxds always yielded racemic nitriles at 30-67% conversion. 

Noteworthily, the enatiopreference was the same for both (E)- and (Z)-isomer. 

Lastly, Rommelmann[99] could successfully separate the (E/Z)-isomers of melonal oxime 

(entries 7 and 8) and transform them with all five Oxds. The obtained ee-values for both 

isomers did not exceed 43% at 38% conversion for the (E)-isomer and 40% ee at 33% 

conversion for the (Z)-isomer. 
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3.3.3 LEAD STRUCTURE HYPOTHESIS AND CONFIRMATION FOR THE ENANTIOSELECTIVE 

NITRILE SYNTHESIS 

 

Taking into account the obtained ee-values of all products emerged from the different 

substrate stereoisomers (E/Z), a clear tendency for a privileged substrate structure could 

be identified that leads to high ee-values of over 90% even at elevated conversion rates 

of 25% or higher: rac-(E)-2-phenylpropanal oxime (Table 10, entry 1) represents this 

privileged substrate. 

Key features of this proposed privileged substrate structure include the following elements 

(Figure 8):  

1. There is a strong sterical differentiation between the substituents at the stereogenic 

center, like a methyl- and a phenyl-substituent.  

2. The large substituent should be rather rigid and rotational non-flexible, as it is the 

case for the planar phenyl-substituent. By saturation of the benzene ring, its 

flexibility increases and potential π-π interactions get disrupted. 

3. The stereogenic center should be positioned in the α-position of the oxime moiety. 

 

 

Figure 8: Identified lead structure for obtaining high enantioselectivities with all Oxd 

enzymes. L = large substituent, S = small substituent 

 

These features are supported by the observation that the cyclic, aliphatic substrate rac-

(E/Z)-3-cyclohexene-1-carbaldehyde oxime (entries 5 and 6) and the rac-(E/Z)-melonal 

oxime (entries 7 and 8) show generally quite low ee-values when transformed by all five 

Oxds. Although their stereogenic center is in the α-position of the oxime moiety, their other 

aliphatic, flexible substituent lowers the enantioselectivity. The same accounts for the rac-

(E/Z)-helional aldoxime (entries 3 and 4), whose phenyl-subtituent is connected via a 

methylene bridge to the stereogenic center, increasing the flexibility and rotational 

freedom. 

 

To confirm this hypothesis and to investigate the influence of substituents at the phenyl 

moiety of rac-(E)-2-phenylpropanal oxime derivatives, the Br-derivatives with the bromine 

atom in the o-, m- and p-position were synthesized according to Scheme 23. After 

successful separation of the (E)- and (Z)-isomers, all of the six substrates (Table 11, 
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entry 1-6) were converted with the five different Oxds at the same conditions as the 

previous substrates (8 °C, pH =7.0). Apart from the Br-derivatives, Rommelmann[99] and 

Oike[84] prepared the corresponding Cl- and F-derivatives and investigated their 

transformation in analogy (Table 11, entry 7-12). The Br- and Cl-derivatives would allow 

to access cross-coupling chemistry to broaden the accessible nitrile structures.[84] 

 

Table 11: Enantioselective dehydration of (E)- and (Z)-isomer enriched, halogenated 

aldoximes. 

 

Entry Substrate Enzyme Conv. [%]a ee [%]b 

1 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

39 

7 

9 

21 

23 

88 (S)d 

9 (S) 

85 (S) 

91 (S) 

91 (S) 

2 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

3 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

- 

37 

- 

- 

- 

- 

87 (S) 

- 

- 

4 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

38 

41 

51 

33 

46 

94 (R)d 

89 (R) 

88 (R) 

94 (R) 

90 (R) 
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Entry Substrate Enzyme Conv. [%]a ee [%]b 

5 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

15 

33 

- 

- 

- 

99 (+) 

96 (+) 

- 

- 

6 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

27 

46 

- 

- 

- 

83 (-) 

84 (-) 

- 

- 

7c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

12 

2 

12 

33 

16 

97 (S)d 

87 (S) 

91 (S) 

97 (S) 

99 (S) 

8c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

5 

2 

8 

14 

6 

2 (S) 

22 (S) 

24 (R) 

26 (R) 

2 (R) 

9c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

- 

14 

- 

- 

- 

- 

51 (S) 

- 

- 

10c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

10 

3 

37 

20 

9 

93 (R)d 

67 (R) 

87 (R) 

91 (R) 

91 (R) 

11c 

 

OxdA 

OxdB 

OxdFG 

14 

7 

41 

97 (+) 

73 (+) 

83 (+) 
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Entry Substrate Enzyme Conv. [%]a ee [%]b 

OxdRE 

OxdRG 

5 

6 

64 (+) 

67 (+) 

12c 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

6 

10 

46 

3 

3 

52 (-) 

93 (-) 

94 (-) 

71 (-) 

60 (-) 

[a] Absolute conversion (confirmed via calibration curves on RP-HPLC), entry 1-4: 10 vol% 

DMSO, other entries: 2.5 vol% DMSO, entries 5-8: 3 h reaction time, entries 9+10: 4 h 

reaction time. “-“ means no product detection below the detection limit of <2%. [b] The 

symbols (+) and (-) refer to the first and second signals in chiral HPLC or GC 

chromatograms. [c] Investigated substrates by Rommelmann[99] and Oike[84]. [d] Absolute 

configuration was determined via comparison with literature data after a preparative scale 

experiment.[65,101] 

 

Strikingly, every single substrate was converted with at least 91% ee or even up to 99% ee 

by at least one of the Oxds, proving the hypothesized privileged substrate structures in an 

impressive manner. For the (E)-isomer of the o-Br-PPOx substrate (entry 1), good 

activities and high enantioselectivity were observed for all Oxds except OxdB, yielding the 

(S)-nitrile (determined by comparison with literature data[65], see chapter 3.3.4) with 

91% ee at 23% conversion when utilizing OxdRG. In contrast to this result, the (Z)-isomer 

was apparently not recognized as substrate by all five Oxds since no conversion was 

observed at all. This result emphasizes the importance and difference in recognition and 

selectivity of the (E/Z)-isomers when converted by Oxds. 

Surprisingly, the opposite tendency could be observed when the m-Br-PPOx (entry 2) was 

utilized as substrate. Only OxdFG was capable of transforming the (E)-isomer with 87% ee 

at 37% conversion into the (S)-nitrile. The (Z)-isomer, however, was accepted by all five 

Oxds and exclusively transformed into the (R)-nitrile with up to 94% ee at 38% conversion 

by OxdA. This result is in agreement with the earlier observed switch in enantiospecificity 

with the helional oxime isomers (Table 10, entries 3 and 4).  

The p-Br-PPOx substrate (entries 5 and 6) showed even another tendency than the 

previous o- and m-Br-PPOx substrates. While OxdA, OxdRE and OxdRG did neither 

recognize the (E)- or (Z)-isomer as substrate, OxdB and OxdFG transformed the (E)-isomer 

with excellent selectivity of 99% ee at 15% conversion (OxdB) or 96% ee at 33% 

conversion (OxdFG) into the nitrile. While the absolute configuration of the obtained nitrile 

could not be determined, the clear switch in enantiopreference could also be observed for 

the (Z)-isomer (entry 6). OxdB formed the nitrile with 83% ee at 27% conversion, while 

OxdFG transformed the (Z)-isomer with 84% ee at 46% conversion into the nitrile. 

Considering the fact that the (Z)-isomer was only available in an isomer ratio of (E/Z 

10:90), one can conduct from the previous results of the (E)-isomer that the obtainable 

ee-value for the (Z)-isomer could be even higher for a higher (Z)-enriched substrate since 

the residual 10% of the (E)-isomer are also transformed into the nitrile with the opposite 

absolute configuration. 
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Since bromine is from a sterical standpoint the largest of the investigated halogen 

substituents, it was expected that the observed tendencies may also be occur for the 

Cl- and F-PPOx derivativies, however in a less outstanding fashion. The Cl-PPOx substrates 

were investigated by Rommelmann[99] (entries 7-10), the F-PPOx substrates were 

investigated by Oike[84] (entries 11 and 12) and are discussed in the following. For the o-

Cl-PPOx substrate (entries 7 and 8), the same tendency was observed as for the o-Br-PPOx 

substrate. The (E)-isomer was recognized by all five Oxds as substrate and exclusively 

transformed into the corresponding (S)-nitrile (determined by comparison with literature 

data[102]) with up to 99% ee at 16% conversion (OxdRG). Regarding the (Z)-isomer, it was 

apparent that this isomer is also recognized as substrate in contrast to the (Z)-isomer of 

the o-Br-PPOx. However, the switch in enantiopreference is also observable in this case, 

but with lesser extent. OxdRE transformed the (Z)-isomer with 26% ee at 14% conversion 

into the (R)-nitrile. The m-Cl-PPOx substrate (entries 9 and 10) showed the same 

tendencies as the m-Br-PPOx substrate. The (E)-isomer was only recognized by OxdFG and 

transformed with 51% ee at 14% conversion into the (S)-nitrile. The (Z)-isomer, however, 

was recognized by all five Oxds as substrate and was exclusively transformed into the (R)-

nitrile with up to 91% ee at 20% conversion (OxdRE).  Lastly, the p-F-PPOx substrates 

investigated by Oike followed the observed tendencies of the p-Br-PPOx substrates. 

Although all Oxds seemed to be able to transform both the (E)- and (Z)-isomer of the 

substrate, especially OxdFG seemed to accept them very well since the (E)-isomer was 

transformed with 83% ee at 41% conversion into the corresponding nitrile, while the (Z)-

isomer was transformed by OxdFG with 94% ee at 46% conversion into the nitrile with the 

other absolute configuration.  

Summarizing the obtained results from the enantioselective dehydration of the 

halogenated PPOx-derivatives, one can state that the PPOx substrate platform represents 

indeed a privileged substrate structure for the enantioselective dehydration since all 

investigated substrates were at least transformed by one Oxd, including a high 

enantioselectivity of at least 91% ee, even reaching up to 99% ee.  

Furthermore, the (E)-isomers showed a tendency to be transformed into the (S)-nitriles, 

while the (Z)-isomers were predominantly transformed into the (R)-nitriles. While the 

absolute configuration is not known for every obtained nitrile, the switch in 

enantiopreference in dependence of the utilized (E)- or (Z)-isomers seems to be a 

reappearing tendency for these substrates. This may stem from the different orientation 

in the active site, especially since the aldoxime is bound via its N-atom to the Fe(II)-atom 

of the heme center (see Scheme 17, chapter 2). Moreover, in some cases only the (E)-

isomer or (Z)-isomer of the substrate was accepted at all as substrate. This may result 

from different Km-values of the substrates, but most reported Km-values for aldoxime 

substrates lie between 1-11 mM (see chapter 2), which would lead at least to some 

conversion at a substrate concentration of 5 mM. Accordingly, it should be investigated in 

the future if in some cases (E/Z)-mixtures without the tedious isomer separation can be 

used as substrate at 8°C and still yield only the highly enantiomerically enriched nitrile. 

Strikingly, it should be mentioned that all of the investigated Oxds are indeed wildtype 

enzymes without any optimization by random mutagenesis or site-directed mutagenesis. 

The obtained results of ee-values up to 99% at high conversion rates underline the big 

potential of Oxds for the enantioselective nitrile synthesis. The mild reaction conditions 

without the need for hazardous auxiliaries or catalysts make this biocatalytic approach 

highly valuable and promising. Since two crystal structures of Oxds are already reported 

(OxdA and OxdRE), docking studies and followed-up mutagenesis studies may allow for an 

even greater differentiation of the Oxds between the (E/Z)-isomers, resulting in even 

better ee-values.  
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3.3.4 ENANTIOSELECTIVE NITRILE SYNTHESIS ON PREPARATIVE SCALE 

 

From the broad diversity of the investigated substrates some of the most promising 

substrates, which were converted highly enantioselectively into their nitriles in the 

analytical scale studies, were selected for preparative scale experiments (Table 12) to 

confirm the absolute configuration of the nitriles by comparison with their literature 

reported [α]D
20 values. 

The substrate concentration was elevated to 10-25 mM for these experiments as a first 

intensification of this biocatalytic process. Additionally, 2.5 vol% of DMSO were chosen as 

cosolvent for OxdFG, while 20 vol% DMSO were used for the biotransformations with OxdA 

after confirming OxdA’s stability against DMSO in a cosolvent study (chapter 4.3). Since 

OxdA performed very well for the Br-substituted PPOx derivatives, both the (E)-isomer of 

2-Br-PPOx and the (Z)-isomer of 3-Br-PPOx were chosen as substrates for this scale-up 

experiment. Pleasingly, for (E)-2-Br-PPOx a conversion of 35% could be achieved and the 

corresponding nitrile, (S)-2-Br-PPN, was obtained with 98% ee and 21% (22 mg) isolated 

yield after column chromatography. Regarding (Z)-3-Br-PPOx, a conversion of 49% was 

observed and the corresponding nitrile, (R)-3-Br-PPN, was obtained with 87% ee and 23% 

(55 mg) isolated yield after column chromatography. 

Lastly, the (E)-isomer of helional oxime could be transformed with OxdFG with 54% 

conversion after three hours, yielding the corresponding (S)-nitrile with 46% ee and an 

isolated yield of 28% (53 mg). Since the theoretical conversion of a kinetic resolution is 

capped at 50% as is the yield, the obtained results for all three substrates are already at 

an excellent level and represent a well-suited foundation for further process development 

steps, especially considering that the utilized Oxds were all wildtype enzymes and may be 

optimized in the future. 

 

Table 12: Preparative scale biotransformations of selected substrates by Oxd whole-cell 

catalysts. 

 

Entry Substrate Enzyme Conv. [%]a ee [%] Yield [%] 

1 

 

OxdA 

(72 mgBWW) 
35 98 (S)b 

21 

(22 mg) 
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Entry Substrate Enzyme Conv. [%]a ee [%] Yield [%] 

2 

 

OxdA 

(216 mgBWW) 
49 87 (R)b 

23 

(55 mg) 

3 

 

OxdFG 

(928 mgBWW) 
54 46 (S)b 

28 

(53 mg) 

[a] Absolute conversion (confirmed via calibration curves on RP-HPLC); [b] Absolute 

configuration was determined via comparison with literature data.[65,100]  

 

3.3.5 ATTEMPTED BIOTRANSFORMATIONS OF O-METHYLATED OXIMES 

 

As the biocatalytic dehydration by Oxds is proposed to proceed via a protonation of the O-

atom of the aldoxime group (chapter 2.3)[54,55,78–80,85], one can envision O-methylated 

aldoximes as substrates for the biocatalytic nitrile synthesis. The resulting leaving group 

would be methanol and the O-methylated oximes can be as readily prepared as their non-

methylated analoga (Scheme 26). 

 

 

Scheme 26: Synthesis of the O-methylated aldoximes. 

 

Once a selection of six different O-methylated oximes could be assembled, 

biotransformations with all six substrates using five different Oxds at analytical scale were 
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conducted at pH = 7.0 and 30 °C with a reaction time of 24 hours (Table 13). 

Unfortunately, none of the substrates were transformed by any of the Oxds. As a 

consequence, O-methylated aldoximes are seemingly not suitable substrates for the 

biocatalytic dehydration by Oxds. This phenomenon may be explained by docking studies 

in the future. Results from these docking studies may also allow the development of new 

synthetic possibilities with Oxds. Additionally, biotransformations with other aldoxime 

analoga should be investigated. 

 

Table 13: Attempted biotransformations of O-methylated aldoximes with Oxds. 

 

Entry Substrate Entry Substrate 

1 

 

4 

 

2 

 

5 

 

3 

 

6 
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3.4 SUMMARY AND OUTLOOK FOR THE BIOCATALYTIC, ENANTIOSELECTIVE 

NITRILE SYNTHESIS 
 

Starting from the preliminary study of Metzner et al.[89,90], the author could identify with 

Rommelmann[99] and Oike[84] a privileged substrate structure for enantioselective nitrile 

synthesis with Oxds: 2-phenylpropanal oxime (Figure 8). This substrate was converted 

highly selectively by any of the five investigated Oxds with over 90% ee at conversion 

rates of at least 25%, sometimes even with up to 99% ee. This lead structure was identified 

after an initial, broad substrate scope study that proved the big substrate scope of Oxds 

since at least one of the Oxds was capable of recognizing the investigated compounds as 

substrate (Table 9). 

Additionally, the separation of the (E/Z)-isomers of the aldoximes by automated column 

chromatography was crucial for the enantioselectivity study since it could be shown that 

dependent on either the (E)- or (Z)-configuration of the aldoxime, the enantiopreference 

of the Oxds may change from the (S)- to the (R)-nitrile and vice versa (Table 10 and 

Table 11).[103] This observation holds especially true for 2-phenylpropanal oxime and 

should be investigated further in the future by docking studies to rationalize it. This 

phenomenon is highly exciting, since it allows the possibility to obtain two enantiomers of 

a compound with the same catalyst. Usually, one has to screen for enzymes with other 

enantiopreference in biocatalysis to be able to synthesize the other enantiomer of a 

compound. By skipping this screening effort, the efficieny of the Oxd catalyzed nitrile 

synthesis increases drastically. 

The enantioselectivity study also revealed the influence of halogen substituents at 2-

phenylpropanal oxime derivatives. The Br- and Cl-derivatives showed interesting results 

since in some cases only one of the isomers, either (E) or (Z), was recognized by some 

Oxds (Table 11). As a consequence, one can potentially skip the isomer separation in the 

future by transforming an isomer mixture, separating the product and then recycle the 

residual substrate by thermal isomerization.  

Lastly, a first process development by increasing the substrate concentration to 25 mM 

and the conduction of preparative scale experiments has been successfully conducted. 

Three substrates were converted with up to 98% ee (S) and up to 28% yield (Table 12). 

The nitriles could be isolated in an amount that allowed the determination of the absolute 

configuration by comparison with literature data.[65,100] 

Apart from the above mentioned docking studies to rationalize the enantiopreference of 

Oxds, more modifications of the substrate structure should be synthesized and investigated 

as potential substrates. Especially the methyl substituent in the α-position of the oxime 

moiety has so far not been modified and it would be intriguing to investigate its influence 

both on substrate acceptance and enantiopreference. 

Furthermore, the maximum yield of this biotransformation is limited to 50% since it 

represents a kinetic resolution. Hence, development of a dynamic kinetic resolution would 

be a nice asset since it would potentially increase the theoretical yield to 100%. Prelimnary 

results for this and in situ (E/Z)-isomerization have been conducted by Yavuzer[104] and 

Brod[105] under supervision of the author of this thesis and are currently investigated 

deeper. 

All in all, the obtained results represent a highly promising basis for further investigation 

in the Oxd-catalyzed, enantioselective nitrile synthesis. 
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4 BIOCATALYTIC SYNTHESIS OF ALIPHATIC LINEAR Α,Ω-

DINITRILES 

4.1 RELEVANCE OF ALIPHATIC LINEAR Α,Ω-DINITRILES IN INDUSTRY AND 

EVERYDAY LIFE 
 

Linear α,ω-dinitriles are of very high importance as precursors for the polymer industry, 

especially for nylons and polyurethanes. The most prominent example is adiponitrile (1,6-

hexanedinitrile) which is produced on an annual scale of over 1 million metric tons.[38,39] 

The main use of adiponitrile is the hydrogenation towards hexamethylenediamine[106] that 

is a key building block for the production of polyamides like Nylon 6.6.[38,39,107] The first 

approaches towards the synthesis of adiponitrile are based on chlorine chemistry, which 

are nowadays obsolete because of the tremendous amount of waste that was produced via 

this route and lacking sustainability.[39,108] The large waste amounts also severly hindered 

the economical profit. Today, there are two dominant production processes for adiponitrile.  

The first one was developed by Baizer from the company Monsanto in the early 1960s and 

is based on the electro-hydromerization of two molecules of acrylonitrile (Figure 9).[109] 

While this process is still applied today, it has certain selectivity problems. 

The second process, which is today the dominant one, was developed by DuPont and is 

based on the use of butadiene. Two molecules of hydrogen cyanide react in a terminal 

addition reaction to butadiene to directly yield adiponitrile (Figure 9).[110] While this 

process is nowadays successfully applied on large scale, it still has the major drawback of 

the high toxicity of hydrogen cyanide. Additionally, the regioselectivity of the addition 

reaction is somewhat problematic. 

One of the biggest challenges in the field of future’s chemicals product tree is the task to 

enable access to existing bulk chemicals by changing the raw material basis, replacing 

hazardous methodologies and reagents by more environmentally benign processes. For 

aliphatic, linear α,ω-dinitriles, several attempts have been investigated over the last years 

and decades in order to find new production processes (especially for adiponitrile). Some 

of the newly investigated approaches for green-chemistry based nitrile synthesis 

(especially adiponitrile) utilize heterogeneous catalysis like non-noble metal oxides-based 

nanocatalysts or homogeneous catalysis, utilizing an iron nitrate/TEMPO system.[111,112] 

While these approaches are quite elegant avoiding the use of cyanides and starting from 

readily available alcohols (like 1,6-hexanediol), some limitations exist. The heterogeneous 

approach suffers from high reaction temperatures (≥130 °C) and runs at elevated pressure 

of five bar of pure molecular oxygen (O2), thus raising safety issues. The homogeneous 

approach runs at mild reaction conditions but high catalyst loading (5 mol%) and tedious 

separation of the used iron nitrate and TEMPO are drawbacks. On the other hand, nature 

provides unique opportunities for organic synthesis. Thus, it is worth to identify natural 

approaches towards the preparation of specific functional groups and adapt them to 

chemical synthesis. 

Since Oxds showed great potential in the synthesis of several aliphatic mononitriles (see 

chapter 2) and chiral nitriles (see chapter 3), the broad investigation of Oxds’ potential 

for the synthesis of the industrially important aliphatic, linear α,ω-dinitriles was deemed to 

be investigated.[52,70,74,76,77,86,87,89,103,113] In the following, the results of this biocatalytic 

production process that avoids the usage of cyanide are presented. 
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Figure 9: Today’s production processes towards adiponitrile and the newly envisioned, 

biocatalytic production route via Oxd catalysis. 
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4.2 SUBSTRATE SYNTHESIS BASED ON DIALDEHYDES OR THEIR ACETALS 
 

The new approach for the biocatalytic α,ω-dinitrile synthesis is based on the preparation 

of the dialdoximes as key intermediate, which is afterwards dehydrated twice by the 

aldoxime dehydratase to yield the dinitrile. As a consequence, the author had to synthesize 

the dialdoximes out of the corresponding α,ω-dialdehydes (Scheme 27). It was decided 

to investigate substrates with a carbon chain length of 3-10 carbon atoms since dinitriles 

of this chain length have a high relevance in the chemical industry. Due to their high 

reactivity, most α,ω-dialdehydes are only available in their protected form as acetals. One 

other α,ω-dialdehyde, glutaraldehyde (C5 dialdehyde), can be commercially purchased as 

aqueous solution. For the other α,ω-dialdehydes with a chain length of 6-10 carbon atoms, 

a synthetic approach had to be found which allowed access to bigger quantaties of them. 

The availability of the dialdehydes is so low because the double, n-terminal 

hydroformylation of dienes like butadiene towards adipaldehyde has severe selectivity 

issues that are still object of research.[114–117] The best reported result reaches up to 73% 

selectivity for the double n-terminal hydroformylation of butadiene towards adipaldehyde. 

However, the formed adipaldehyde has to react in situ with two molecules of a dialcohol to 

form the stable bis-acetal. This additional protection step makes the process economically 

unattractive.[114] 

 

 

Scheme 27: Synthetic approach towards linear, aliphatic α,ω-dinitriles starting from 

dialdehydes or the acetals. 

 

For the preparation of the C3 and C4-dialdoxime from their bis-dimethyl acetals they were 

in situ cleaved by addition of the hydrochloride salt of hydroxylamine to release the 

dialdehydes. After neutralization with sodium carbonate, the dialdoxime instantly starts to 

precipitate from the reaction solution. Glutaraldehyde (C5) was directly used for the 

dialdoxime synthesis from a commercial source. Adipaldehyde, the most intriguing 

substrate, had to be synthesized in larger quantaties. For this, trans-1,2-cyclohexanediol 

was oxidized with sodium periodate (NaIO4, Scheme 28). The largest reaction scale was 

110 mmol of trans-1,2-cyclohexanediol, which had to be conducted in 2 liter round bottom 

flasks (Figure 10). Regarding the C7-C10 dialdehydes, a very recently reported protocol 

by Bobbitt et al. was utilized.[118] The reagent for this oxidation is called Bobbitt’s salt and 

it represents a tetrafluoroborate salt of a 2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO) 

derivate (Scheme 28). Other approaches for the selective alcohol oxidation like the Dess-

Marin periodinane and other ones have also been reported, but are way more complicated 

and restricted.[119] Both approaches yield the dialdehydes in very high yields and in multi 

gram scale, paving the way towards larger scale reactions.  
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Afterwards, the α,ω-dialdehydes were converted in analogy to the C3-C4 substrates by 

directly converting the α,ω-dialdehydes with hydroxylamine hydrochloride and sodium 

carbonate in aqueous solution, yielding the α,ω-dialdoximes with good yields 

(Scheme 29). 

 

 

Scheme 28: Synthesis of the α,ω-dialdehydes with a chain length of 6-10 carbon atoms 

by oxidation of trans-1,2-cyclohexanediol or α,ω-dialcohols. 

 

 

Scheme 29: Synthesis of the α,ω-dialdoximes by conversion with hydroxylamine 

hydrochloride and sodium carbonate in aqueous solution.  
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Interestingly, while the dialdoximes may appear as rather simple molecules, almost 

nothing is known about them in the literature or they have not been reported at all in many 

cases![120,121] While monoaldoximes are often oils or solids that melt are rather low 

temperatures, α,ω-dialdoximes are very high melting solids that rather decompose at 

highly elevated temperatures than melting at all. These properties go hand in hand with 

the high stability of the α,ω-dialdoximes. While the α,ω-dialdehydes are highly reactive 

and prone to decomposition via oxidation, aldol reaction etc., the α,ω-dialdoximes showed 

no sign of deterioration when stored at room temperature for several months. This property 

might be helpful in technical applications since they eliminate the need for severe safety 

precautions to protect the substances from decomposition.The synthesized α,ω-

dialdoximes can be simply purified via filtration and drying in vacuo, yielding them with 

purities of up to ≥99%.  

 

 

Figure 10: 2 liter scale reaction for the preparation of adipaldehyde starting from 

trans-1,2-cyclohexanediol. 

 

Regarding the α,ω-dinitriles of interest, commercial reference compounds were purchased 

for establishing analytical methods to quantify the later conducted activity assays of the 

Oxds. 
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4.3 PROOF OF THE BIOTRANSFORMATION PROCESS  
 

Once all α,ω-dialdoximes substrates with a chain length of 3-10 carbon atoms were 

assembled, the proof of concept for the biocatalytic dinitrile synthesis could be started. 

Towards this end the author decided to overexpress the same five aldoxime dehydratases 

(Oxds) in E.coli that we already utilized in the studies for the enantioselective, biocatalytic 

nitrile synthesis (chapter 3). This includes the following Oxds: OxdA from Pseudomonas 

chlororaphis B23, OxdB from Bacillus sp. OxB-1, OxdFG from Fusarium graminearum 

MAFF305135, OxdRE from Rhodococcus sp. N-771 and OxdRG from Rhodococcus 

globerulus A-4. 

The overexpression was conducted via the described protocol in chapter 9.3.2.1 and the 

overexpression was confirmed by SDS-PAGE (Figure 36). Before evaluating the activity 

of all five Oxds for the α,ω-dialdoximes substrates, a broad cosolvent study was conducted 

because the α,ω-dialdoximes substrates were empirically found to be hardly soluble in 

purely aqueous media. Since the reported Km-values in the literature for linear, aliphatic 

monoaldoximes with chain lenghts of two to six carbon atoms range from 0.25 – 11.1 mM, 

the addition of cosolvents was deemed necessary to avoid the issue of not reaching 

substrate concentrations that allow the enzymes to work a maximum velocity. For this, ten 

different water-soluble cosolvents were added to the activity assay of all five Oxds with the 

standard substrate phenylacetaldehyde oxime (PAOx). The assay was conducted at 500 µL 

scale after a preincubation time of 20 minutes for each solvent to make a first selection 

among the cosolvents (Figure 11, Figure 12, Figure 13, Figure 14, Figure 15). The 

activities were calculated in relation to a reference activity assay in which 2.5 vol% of 

DMSO were used as cosolvent. 

 

 

Scheme 30: Long-term stability study for five Oxds with ten different water-miscible 

cosolvents. 
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Figure 11: Relative activity of OxdA(C) in presence of water soluble cosolvents (for 

different volumetric percentages). The relative activity values correlate to a reference 

activity assay with 2.5 Vol% DMSO as cosolvent. 
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Figure 12: Relative activity of OxdB in presence of water soluble cosolvents (for 

different volumetric percentages). The relative activity values correlate to a reference 

activity assay with 2.5 Vol% DMSO as cosolvent. 
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Figure 13: Relative activity of OxdFG(N) in presence of water soluble cosolvents (for 

different volumetric percentages). The relative activity values correlate to a reference 

activity assay with 2.5 Vol% DMSO as cosolvent. 

 

M
eO

H

Et
O
H

iP
rO

H

D
M
S
O

S
ul
fo
la
n

TH
F

D
M
C

PP
C

D
M
F

D
M
A
c

0

10

20

30

40

50

60

70

80

90

100

r
e
l.

 a
c
ti

v
it

y
 [

%
]

Cosolvent

 10%

 20%

 30%

 

Figure 14: Relative activity of OxdRE(N) in presence of water soluble cosolvents (for 

different volumetric percentages). The relative activity values correlate to a reference 

activity assay with 2.5 Vol% DMSO as cosolvent. 
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Figure 15: Relative activity of OxdRG(N) in presence of water soluble cosolvents (for 

different volumetric percentages). The relative activity values correlate to a reference 

activity assay with 2.5 Vol% DMSO as cosolvent. 

 

The selected ten cosolvents ranged from polar, protic solvents like methanol, ethanol and 

2-propanol over to polar, non-protic solvents like dimethyl sulfoxide (DMSO), sulfolan, 

tetrahydrofuran (THF), dimethyl carbonate (DMC), propylene carbonate (PPC), 

dimethylformamide (DMF) and dimethylacetamide (DMAc). As one can depict from the 

figures above, especially the whole-cell catalysts containing OxdA and OxdB showed high 

short-time tolerance against a broad selection of the ten cosolvents. For OxdFG, OxdRE 

and OxdRG, they only showed some tolerance against DMSO at 10 vol% and almost no 

tolerance against the other five cosolvents. 

For OxdA, especially methanol and DMSO were tolerated quite well with levels of up to 

20 vol%. The most promising results were obtained for OxdB. Every cosolvent, expect for 

THF, is short-termed tolerated with up to 20 vol%. Especially ethanol, 2-propanol and 

DMSO showed high potential for further investigation. Additionally, DMC was deemed to 

be further investigated. Based on these results, only OxdA and OxdB were further 

investigated. 

Since most biotransformations require several hours to complete, a long-term stability 

study for the stability of the whole-cell catalysts against the cosolvents was necessary. The 

long-term study was conducted with 10 or 20 vol% of methanol or DMSO for OxdA and 

with 20 vol% of ethanol, 2-propanol and DMSO for OxdB. Additionally, 10 vol% of DMC 

were investigated for OxdB. The whole-cell suspension was incubated with the cosolvent 

and the standard activity assay was started after incubation times of 15, 30, 60, 120 and 

180 minutes (Scheme 31, Scheme 32). The obtained activity values were set in relation 

to a reference activity assay in which 2.5 Vol% DMSO were used as cosolvent. 
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Scheme 31: Long-term stability study for OxdA(C). 
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Scheme 32: Long-term stability study for OxdB. 
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The results were highly intriguing. While for OxdA the relative activity (and also overall 

activity) decreased slowly with DMSO over three hours, methanol led to a stronger 

deactivation over three hours. Moreover, DMSO seemed to increase the activity of the 

whole-cell catalyst compared to a reference experiment without DMSO. This may result 

from higher permeability of the cell membrane because of DMSO. However, this hypothesis 

would have to be confirmed by further experiments. Nevertheless, OxdA was stable enough 

in the presence of 20 vol% DMSO to continue with the studies of the α,ω-dialdoxime 

conversion. 

Regarding OxdB, even more promising results were obtained. While 2-propanol and DMC 

led to a rather fast deactivation of the whole-cell catalyst, ethanol seemed to be without 

any negative effect on the relative activity of the whole-cell catalyst. However, one has to 

carefully consider that this is relative activity in comparison to a reference experiment 

without any cosolvent. The absolute activity of the whole-cell catalyst slowly decreased 

during the three hours of the experiment. The best result was obtained with DMSO. DMSO 

activated the whole-cell catalyst, which is in agreement with the results for OxdA. 

Additionally, the relative activity of the whole-cell catalyst increased over time in the 

presence of DMSO: This correlates with a long-term stable, absolute activity. By reasons 

unknown, DMSO seems to stabilize the whole-cell catalyst.  

Based on the encouraging results for the stability of the whole-cell catalyst harboring OxdA 

and OxdB in presence of DMSO, biotransformations on analytical scale with the eight 

different α,ω-dialdoxime substrates (C3-C10) were conducted (Figure 17). The 

concentrations of the substrates ranged from 3.0 mM to 75 mM in order to get an insight 

into the impact of substrate concentrations on the activity and reaction course . Due to the 

low solubility of the α,ω-dialdoximes in most all organic media, a solvent screening 

including correction factors for the extraction of the α,ω-dialdoximes and α,ω-dinitriles 

were determined. The most suitable solvent for extraction of both, α,ω-dialdoxime and 

α,ω-dinitrile, was found to be 2-methyltetrahydrofuran. 

Interestingly, a very strong dependency on the carbon chain length of the substrate and 

the conversion by the Oxds could be observed. The C3-dialdoxime, whose dinitrile 

malononitrile is a well-researched compound that is broadly applied in the chemical 

industry[122], was not accepted at all by OxdA or OxdB. This is in good agreement with the 

result of the attempted desymmetrization of a prochiral 1,3-dialdoxime in the investigation 

of the enantioselective, biocatalytic nitrile synthesis (chapter 3).  

Regarding the C4 and C5-dioximes, both Oxds did only marginally produce the 

α,ω-dinitrile, but instead seemed to accumulate an unkown intermediate (Scheme 33, 

Figure 16). This tendency was also observed in the preparative scale experiments that 

were conducted with both OxdA and OxdB. The consumption of the substrate was 

accompanied by an increasing peak in the GC chromatograms that was located directly 

between the peaks of the α,ω-dialdoxime and the α,ω-dinitrile. Since the C6 dioxime and 

the higher analogues are converted towards the α,ω-dinitrile with the same appearing 

intermediate peak, we postulate that this unknown intermediate may indeed be the 

monodehydrated species that bears one aldoxime and one nitrile moiety. As a 

consequence, OxdA and OxdB only seem to be able to dehydrate α,ω-dialdoximes with a 

chainlength of up to five atoms only once. This phenomen should be rationalized by docking 

studies in the near future. 
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Scheme 33: Attempted synthesis of succino- and glutaronitrile by biocatalytic 

dehydration. 

 

 

Figure 16: GC-chromatograms illustrating the formation of the postulated mononitrile-

monoaldoxime intermediate in the biocatalytic dehydration of α,ω-dialdoximes. 

A: Reference chromatogram of pure adiponitrile and adipaldehyde dioxime; B: Overlay of 

GC-chromatograms in an activity assay. 
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The best results for the conversion of an α,ω-dialdoxime into its α,ω-dinitrile was obtained 

with the C6 dioxime, adipaldehyde dioxime. Both OxdA and OxdB showed the highest 

activity for this substrate, reaching up to 46 mU/mgBWW for OxdA and 169 mU/mgBWW for 

OxdB. It should be mentioned that the calculated activity values correspond to the 

formation of one molecule of α,ω-dinitrile out of one molecule of α,ω-dialdoxime, including 

two dehydration steps. The activity values peaked at substrate concentration of 12.5 mM 

and did only slight decrease at higher concentrations, showing great promise for 

preparative biotransformations with substrate concentrations of 75 mM and higher. To the 

great delight of the author, adipaldehyde dioxime is the most interesting substrate since 

its dinitrile adiponitrile is the precursor of hexamethylenediamine (HMDA), the most used 

α,ω-diamine for the synthesis of polyamides, in this case of Nylon 6,6. 

Interestinly, the substrate preferences of the Oxds seemed to differ once the higher 

analogues of the α,ω-dialdoximes were investigated. While OxdB seemed to accept the C7 

dioxime almost as good as the C6 dioxime, the activity values of the C8-C10 dioximes were 

drastically lower (Figure 17). In contrast to these results, OxdA seemed to have a higher 

affinity towards the α,ω-dialdoximes with longer carbon chains. The usage of the C7-C9 

dioximes led to almost the same activity values of the C6 dioxime, but seemingly led to a 

mediocre substrate inhibition at elevated concentration. The C10 dioxime was the only 

α,ω-dialdoxime that led to increasing activity values even at 75 mM concentration. 

Noteworthly, the C7-C10 dioxime showed slight precipitation of the substrate at elevated 

concentrations, but this did not negatively impact the activity values. In its reported crystal 

structure, OxdA is known to have a very big hydrophobic pocket in its active site, which 

may be the reason why longer chain α,ω-dialdoximes are so well accepted. Unfortunately, 

no crystal structure has so far been reported for OxdB, which could help to understand the 

substrate preference of this enzyme. 
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Figure 17: Activity values of OxdA and OxdB in mU/mgBWW for the C3-C10 dioximes. 

BWW = Bio wet weight; U-values calculated according to the conversion of one molecule 

of dialdoximes to one molecule of dinitrile. 
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4.4 BIOPROCESS DEVELOPMENT FOR THE ADIPONITRILE SYNTHESIS 
 

Based on the obtained results of the substrate scope studies and due to its high industrial 

relevance, it was decided to conduct a bioprocess development for the adiponitrile 

synthesis to evaluate the synthetic potential of this process platform. For this upscaling, 

both OxdA and OxdB were chosen as whole-cell catalysts. 

The process development was started by 10 g/L of substrate loading at 100 mL scale, 

which corresponds roughly to the 75 mM substrate concentration that was used in the 

analytical scale experiments. Importantly, all experiments were conducted in sealable 

shaking flasks and the air atmosphere was replaced by an argon atmosphere to push back 

the oxidation of the FeII atom in the heme to FeIII. Since Oxds require iron in its ferrous 

state (FeII) to be active, it is essentiell to push back this oxidation.[54,55,79,80] 

The initial experiments with 10 g/L substrate loading proceeded smoothly and led to 

complete conversion towards adiponitrile, both with OxdA and OxdB as catalysts 

(Table 14, entry 1 and 3). The isolated yields also reached 75% and 55% and the chemical 

purity of the adiponitrile was determined via 1H-NMR spectroscopy and GC analysis. To the 

author’s great delight, the obtained adiponitrile was quantitatively pure, underlining the 

high chemoselectivity of this biocatalytic process. Since the substrate scope study revealed 

that concentrations of 12.5 mM are sufficient to reach the maximum velocity of both OxdA 

and OxdB, DMSO was excluded since this simplified the purification by extraction with an 

organic solvent drastically. No negative impact due to the absence of the organic solvent 

could be observed. Complete conversion was again achieved for both OxdA and OxdB with 

isolated yields of 59% and 70% on gram scale (Table 14, entry 2 and 4). 

Since the substrate adipaldehyde dioxime is a colorless solid and the product adiponitrile 

is a liquid, one can track the conversion visually by the disappearing of the substrate (for 

photos, see Scheme 34). Due to the relatively high solubility of adiponitrile in water 

(~50 g/L)[38], no organic phase is formed during the product formation. 

Since the overall activity of OxdB against adipaldehyde dioxime is around three times as 

high compared to OxdA, the further process development was optimized using exclusively 

OxdB. Since substrate loadings of 10 g/l were easily converted completely to adiponitrile, 

an up-scaling to 50 g/L (347 mM) was conducted (Table 14, entry 5 and 6). Both 

experiments, with or without DMSO, led again to complete conversion towards adiponitrile 

with isolated yields of 67% and 80% (up to 2.9 g of pure adiponitrile). During these 

experiments, a slightly negative effect of DMSO on the long-term activity of OxdB was 

discovered since the biotransformation without DMSO was completed after 22 hours, 

whereas the biotransformation with DMSO required 87 hours to complete. 

Increasing the substrate loading even further to 100 g/L led to a maximum conversion of 

70-75% towards adiponitrile. Even after further biocatalyst was added to the 

biotransformation, no more conversion was observed. This may result from decreased 

stability of the enzyme under this high substrate and product loading. Another explanation 

could be the solubility limit of adiponitrile, which is reached at around 70-75% conversion 

of 100 g/L adipaldehyde dioxime. Studies by Jochmann[123] revealed that Oxd whole-cell 

catalysts are quite rapidly deactivated once a two-phase system is utilized for 

biotransformations with Oxds. 

Nevertheless, complete conversion with 50 g/L substrate loading could already be realized.  
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Table 14: Preparative scale synthesis of adiponitrile with up to 100 g/L substrate 

loading. 

 

Entry Oxd 
Substrate 

conc. [g/L] 

Biomass 

[gBWW]a 
Time [h] 

Conv. 

[%] 
Yield [%] 

1b 

OxdA/ 

20% 

DMSO 

10 
0.58 

(23 U) 
96 >99 

75 

(608 mg) 

2b OxdA 10 
1.16 

(46 U) 
64 >99 

59 

(480 mg) 

3b 

OxdB/ 

20% 

DMSO 

10 
0.51 

(57 U) 
18 >99 

55 

(446 mg) 

4b OxdB 10 
0.51 

(57 U) 
15 >99 

70 

(570 mg) 

5b 

OxdB 

/20% 

DMSO 

50 
1.50 

(171 U) 
87 >99 

67 

(2.47 g) 

6b OxdB 50 
1.50 

(171 U) 
22 >99 

80 

(2.91 g) 

7c 

OxdB 

/20% 

DMSO 

100 
0.75 

(86 U) 
41 70 

63 

(1.18 g) 

8b OxdB 100 
4.00 

(456 U) 
41 75 

63 

(4.78 g) 

[a] BWW = Bio wet weight, U = Unit, defined as µmol/min produced product; [b] 100 mL 

reaction volume; [c] 25 mL reaction volume. 
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Surprisingly, it was found during the bioprocess development that DMSO does not have a 

positive effect on performance of the biotransformation but rather seemed to be hindering 

the Oxds. Normally, water-miscible cosolvents are utilized to increase the soluble substrate 

concentration and are often mandatory assets when the substrate loading shall be 

increased in a process. As a consequence, the author hypothesizes that the solubility of 

adipaldehyde dioxime has to be sufficient to reach the maximum velocity of the Oxds 

because it lies significantly above the corresponding Km values (or at least high enough to 

reach a good velocity). It was observed that concentrations of 12.5 mM to 25 mM led to 

the highest velocity with OxdB (Figure 17). These concentrations correlate to substrate 

loadings of 1.8 g/L to 3.6 g/L of adipaldehyde dioxime. To proof this hypothesis and to 

rationalize the impact of DMSO on the solubility of the substrate, detailed solubility 

measurements were conducted by Gruber-Wölfler a Maier[124] from the TU Graz. By 

controlled heating of a sample and measuring the transmission of light through it, clear 

points can be determined. At the clear point, the compound is completely dissolved and 

the sample is then slowly cooled to determine the cloud point. At the cloud point, 

precipitation of the compound initiates and the light is scattered stronger. 

To simulate the reaction medium of the biotransformations, two different media were 

selected for the solubility measurements. The first one consisted of 50 mM potassium 

phosphate buffer (KPB) solution (pH = 7) and the second consisted of 50 mM KPB (pH = 7) 

with 20 vol% DMSO as cosolvent. These media are the exactly the ones that were used in 

the biotransformations. The obtained data points were fitted with van’t Hoff type equations, 

whereby a good match was found (Figure 18). 

 

 

Figure 18: Determination of the solubility of adipaldehyde dioxime in presence or 

absence of DMSO in the reaction medium by Gruber-Wölfler et Maier.[124] 

 

As one can depict from the data, the cloud points are around 3-4 g/kg substrate loading 

for both systems. The influence of DMSO on the solubility of adipaldehyde dioxime is only 

marginable, which explains the good results obtained in the biotransformation in which 

DMSO was excluded. With 3-4 g/kg of solvent, the active concentrations are in the range 

of the maximum velocity observed in the substrate scope study. Interestingly, the clear 

points lie in the range of <1 g/kg, which is below the required concentrations of at least 
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12.5 mM to reach a reasonable velocity. Since the substrate solution was not heated prior 

to a biotransformation, there are different explanations for the succifient velocity of the 

biotransformation.  

Since the loading of wet whole-cell catalysts in the biotransformation was in the range of 

1-4 g/L, it may have a positive effect on the solubility of the substrate. Another explanation 

may be the very slow dissolving speed of the dioxime in aqueous media, since the crystal 

energy of oximes has been found to be very high and may in this case be kinetically or 

thermodynamically hindered.[125] Lastly, the increasing concentration of adiponitrile in the 

reaction medium may have a positive effect on the solubility of the dioxime since 

adiponitrile is highly soluble in water and may have a better effect as a cosolvent compared 

to DMSO. 

Whichever explanation may be the case, the results from the substrate loading 

experiments demonstrate that even under exclusion of a water soluble co-solvent high 

substrate loadings of up to 50 g/L of adipaldeyhde dioxime can be completely converted 

to adiponitrile with biocatalyst loading of roughly 1-4 wt%. 

After rationalizing the influence of the cosolvent on the performance of the 

biotransformation and selecting the most promising results that were obtained on the 

100 mL scale experiments, an experiment on liter scale was conducted to proof that the 

biocatalytic α,ω-dinitrile synthesis can already be easily scaled to bigger volumes. The 

selected scale was determined to be 1 L reaction volume and a substrate loading of 50 g/L 

Adipaldehyde dioxime (Scheme 34). 

To the great delight of the author, an excellent conversion of >99% was observed after 

27 hours of reaction time and adiponitrile could be isolated after aqueous extraction with 

MTBE with an isolated yield of 62% (23.1 g). The chemical purity was >98% according to 

GC analysis and 1H-NMR spectroscopy, which demonstrates the high practicability, 

robustness and scalability of the developed biocatalytic α,ω-dinitrile synthesis. These 

results underline the potential of this Oxd catalyzed process technology for technical scale 

applications and is the first example of a cyanide-free, biocatalytic production method of 

this nylon precursor at ambient, neutral conditions in water and with an excellent 

chemoselectivity. 
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Scheme 34: Synthesis of adiponitrile at a substrate loading of 50 g/L on liter scale. The 

photos show the reaction mixtures at the start of the reaction (left) and after a reaction 

time of 27 hours (right). 
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4.5 HIGH CELL-DENSITY FERMENTATION 
 

While the adiponitrile synthesis was very successful with complete conversion at 50 g/L 

substrate loading and liter scale, a decisive aspect for the technical feasibility of the 

chemoenzymatic dinitrile synthesis lies in the availability of the biocatalyst. At lab scale 

cultivation of microorganisms like E. coli can be sufficiently conducted in shaking flasks to 

obtain the cells with a biomass of a few grams per liter. However, for technical scale high 

biomass concentrations of several hundred grams per liter are necessary to decrease the 

cost per gram of biocatalyst drastically. In addition, cheap nutrition media should be 

utilized and the fermentation should be producing a high amount of biomass in a short 

period of time. 

To successfully achieve high cell-density fermentations, one requires specialized equipment 

(Figure 19). In this case, the specialized equipment consists of custom designed glass 

fermenters of three liter capacity, which are connected to a broad diversity of electronical 

devices, probes and tubes. The oxygen saturation level, pH value and temperature are 

constantly measured and digitally controlled during the fermentation. The workgroup of 

Friehs provided this experimental setup and in cooperation with Risse a fed batch approach 

for the high cell-density fermentation by connecting a reservoir with feed medium to the 

fermenter was chosen. This feed medium contains high amounts of glycerol as a cheap 

carbon source and is slowly added to the main medium after the initial growth phase of 

the E. coli was completed.  

Since OxdB contains a heme b group that has to be in its reduced, ferrous (FeII) state to 

be active, the author decided to conduct two fermentation approaches with different 

amounts of oxygen saturation. In the first approach, the oxygen saturation was set to 

p = 5-20% (low O2, p = saturation level). In the second approach, the oxygen saturation 

was set to p = 30-70% (high O2). The oxygen saturation level is referenced to the oxygen 

content before beginning of the bacterial growth. The preset oxygen level were constantly 

monitored and controlled by selective addition of sterilized air to the fermentation broth.  

Regarding the cultivation medium, the previously utilized autoinduction medium (AI 

medium), which has the advantage of not requiring an additional induction agent like IPTG 

was chosen. The autoinduction is started by lactose, which is added to the terrific broth 

(TB) medium together with glucose. Initially, the E. coli cells metabolize the glucose and 

after depletion of the glucose, expression of the OxdB is initiated by the remaining lactose 

which actives the lac operon.  

The above mentioned feed medium also contained high amounts of magnesium sulfate to 

ensure a high cell growth rate. Both, the feed and AI medium, contained two antibiotics 

(34 µg/mL chloramphenicol, 100 µg/mL carbenicillin) to ensure that only cells harboring 

the plasmid containing the OxdB gene are able to grow. 

The pH value was held constant by two control bottles that contained NaOH as base or 

H3PO4 as acid, which were added to the culture medium if necessary. Lastly, a bottle 

containing an anti-foaming agent was attached to the fermenter to inhibit excessive foam 

formation during the fermentation (Figure 20). 
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Figure 19: High cell-density equipment utilized for the overexpression of OxdB in E.coli 

BL21 (DE3) Codon+ RIL. Left fermenter: Low oxygen level (low O2), right fermenter: High 

oxygen level (high O2). 

 

Figure 20: Bioreactor with external flasks containing feed medium (A), acid (B), base 

(C) and anti-foaming agent (D). 

A 

 

B 

 

C 

 

D 
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The high increase in biomass could very well be observed over the time by the formation 

of the light brown biomass, compared to the dark brown culture medium in the beginning 

(Figure 21). 

 

                           

Figure 21: A fermentation in the bioreactor at the beginning (left) and after 24 hours 

(right). 

 

After 72 hours, the feed medium was exhausted and the high cell-density fermentation 

was completed. After filtration and washing of the biomass, two pellets were obtained. 

From the low O2 fermentation, 375 g of wet biomass were obtained. From the high O2 

fermentation, 260 g of wet biomass were obtained. As one can see from Figure 22, a 

slight difference in color can be observed for both pellets. 

 

 

Figure 22: The obtained pellets (wet biomass) from the conducted high cell-density 

fermentations (left bag: Low O2, right bag: High O2). 
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After the fermentation, the activity of the biocatalyst and the overexpression of the OxdB 

had to be verified (Table 15). For this, the standard activity assay for the conversion of 

phenylacetaldehyde oxime (PAOx) was conducted (for the reaction condictions, see chapter 

9.3.2.2).  

 

Table 15: Determined activity values of the obtained wet biomass. 

 

 OxdB (low O2) OxdB (high O2) OxdB (shaking flask) 

protein conc. 

(mg/mL) 

23.2 24.3 20.5 

activity (PAOx) 

(mU/mgBWW) 

57 51 2180[103] 

 

While the protein concentration of the crude extracts of the E. coli were quite in the same 

range, the overall activity of the E. coli cells from the high cell-density fermentations was 

drastically decreased in comparison to the ones from shaking flask cultivation. As a 

consequence, the overexpression of the OxdB was checked via SDS-PAGE (Figure 23). 

The OxdB was successfully expressed in all cultivations (40 kDa, red circle), but the 

expression was slightly better in the shaking flask cultivation compared to the high cell-

density fermentation. Concordingly, it cannot be explained why the activity is so drastically 

lower (fourty times lower) for the high cell-density fermentations with only these analytical 

results. 
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Figure 23: SDS-PAGE of the crude extracts containing OxdB. S = Shaking flask, low = 

low O2, high = high O2, M= Marker. 

 

There are possible explanations for the drastically lower activity of the high cell-density 

fermentations that should be looked into in future experiments. 

1. The iron atom is in its ferric form (FeIII) and not the required ferrous form (FeII) 

inside the active site. This hypothesis could be proven by adding a reducing agent 

(like sodium dithionite) to the activity assay. If the activity is recovered, this 

hypothesis is confirmed. 

2. The E.coli could not form enough heme b to incorporate it inside of the OxdB. This 

could be investigated by comparing the OxdB of shaking flask cultivation and high 

cell-density fermentation with mass spectrometry since OxdB without a heme b 

group has a lower molecular weight than one with a heme b group. 

3. Due to iron depletion, other metals were incorporated into the active site of the 

OxdB. As a consequence, the OxdB would not be active. 

 

In summary, first approaches towards the production of big quantaties of Oxds have been 

conducted for the first time. Further steps, like analysis of the fermentation protocol, strain 

selection, medium selection and additive dosage are tasks for the future to establish a 

successful high cell-density fermentation protocol. 
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4.6 IMMOBILIZATION OF OXDB FROM BACILLUS SP. OXB-1 BY CROSSLINKING 

WITH GLUTARALDEHYDE TO OBTAIN CLEAS FOR PROCESS INTENSIFICATION OF 

LINEAR ALIPHATIC Α,Ω-DINITRILE SYNTHESIS 

4.6.1 OVERVIEW OF DIFFERENT ENZYME IMMOBILIZATION STRATEGIES 

 

Altough enzymes excel at chemo-, regio- and enantioselectivity and operate under very 

mild conditions in mainly aqueous media, they often lack long-term stability under process 

conditions.[8] As a consequence, efficient immobilization strategies had to be developed 

over the last decades to ensure the long-term stability of enzymes. This allows for efficient 

recycling of the biocatalyst, which lowers the overall cost of the process drastically because 

the expression, purification and optional immobilization of an enzyme are a very big cost 

factors. Additionally, immobilization of enzymes facilitates the easy separation of the 

biocatalyst from the reaction mixture which drastically simplifies workup procedures. As a 

consequence, enzyme leaching and hence residual levels of protein in the final product are 

nearly negligible. Since industrial production processes can differ drastically by terms of 

the reactor type and size, temperature, pressure or mechanical stress, one has to keep 

these parameters in mind when selecting a certain immobilization method.[8,126] Especially 

mechanical abrasion can lead to rapid decomposition of the immobilized catalyst. 

To decide which immobilization one should select, the most prominent approaches shall be 

presented in the following (Figure 24). 

 

 

Figure 24: Different types of immobilization methods for enzymes. 
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In principal, one can divide the immobilization methods for enzyme immobilization into 

three categories: 

 

1. Carrier binding, where the carrier mostly consists of a polymer bead that can 

optionally be chemically modified on its surface. 

2. Entrapment of the enzyme either by an anorganic or organic matrix. 

3. Crosslinking of the enzyme with itself by applying a crosslinking agent. 

 

4.6.1.1 Enzyme immobilization by carrier binding 

 

Regarding carrier binding, this method is nowadays broadly applied due to the great variety 

of different available resins for immobilization. Some companies (Purolite, Resindion) have 

completely specialized themselves to the production of immobilization resins.[127,128] Most 

resins are made out of Poly(methyl methacrylate) (PMMA), styrene or copolymers of the 

former with other building blocks like divinylbenzene (DVB). The beads have a spherical 

shape and may be chemically modified to allow immobilization by different types of 

interaction between enzyme and carrier (Figure 25). 

 

 

Figure 25: Chemically modified polymer beads (carriers) for enzyme immobilization with 

different modes of interaction.[127] 

 

Modification of PMMA beads with short carbon linkers that contain a terminal amino or 

epoxy moiety results in resins that can bind enzymes by covalent binding. The epoxy ring 

can bind by nucleophilic attack of amino acid side chains like the ones of lysine, serine etc., 

while the amino spacers are preactivated with glutaraldehyde. After activation, the 

glutaraldehyde reacts with free amino side chains to form imino bridges between enzymes 

and carrier. However, the concrete binding mode is highly complex and the above 

mentioned description only represents a simplification.[129] As one can imagine, covalent 

binding represents a big interference in the complex interactions that determine the 

tertiary structure of an enzyme. As a result, major losses in enzyme activity are observed. 

However, covalent binding is the strongest possible interaction and leads to no or only 

negligible leaching of the enzyme off the carrier. 
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Other resins adsorb the enzymes by hydrophobic interaction. Most prominently, octadecyl 

groups are attached to the surface of the resins to increase the hydrophobicity of the 

carrier. Alternatively, enzymes can be adsorbed by highly porous styrene resins with big 

cavities. The enzyme wanders into the cavities, being surrounded by a hydrophobic 

environment. This method is milder than covalent binding, but may still lead to strong 

distortion of the enzyme structure because the hydrophobic areas of the enzyme will mainly 

try to interact with the carrier. Many enzymes however are mainly hydrophilic on the 

surface, turning the enzyme inside out and potentially deactivating it. 

Lastly, one can attach substituted amino groups on the surface of a resin. These amino 

groups can either directly be positively charged (for quarternary amines) or be preactivated 

by acidic treatment (for tertiary amines). If the isoelectric point of an enzyme is known, 

adjustment of the pH above it turns the enzyme into a polyanion. As a result, it is strongly 

bound to the carrier by ionic interaction without distorting its tertiary structure. 

 

4.6.1.2 Enzyme immobilization by entrapment 

 

Regarding the entrapment of an enzyme in an anorganic or organic matrix a broad variety 

of reported matrices exists, however only a small selection will be presented here. One of 

the oldest methods is the immobilization in calcium alginate beads. Due to the rather big 

pore size of the alginate beads, preferably whole cell catalysts are immobilized with this 

method. By dropping a suspension of whole cells and sodium alginate in a solution of 

calcium chloride, insoluble calcium alginate is formed and builds a protective barrier around 

the whole cells.[130] However, these beads are not very mechanically robust. 

Another entrapment method is the immobilization in hydrogels. Hydrogels based on 

polyvinyl alcohol are already well established and utilized for industrial processes 

(Lentikats).[8,131] However, since these hydrogels represent an open polymer matrix, 

leaching of the enzyme can occur. As a consequence, mainly whole-cell catalysts are 

utilized for immobilization. Alternatively, prior crosslinking of the enzyme increases the 

size of the biocatalyst and reduces leaching as well.[131] A rather new approach is the 

immobilization of enzymes in hydrogels that are based on polyacrylic acid or 

polyacrylamide, so-called superabsorbers.[132] The superabsorbers provide an aqueous, 

natural environment for the enzyme, which is completely immobilized in the 

superabsorber. By applying a liquid, organic phase to the reaction, one can easily separate 

the immobilized enzyme and superabsorber by filtration. Hence, recycling of the 

immobilized biocatalyst is rather easily conducted.In 2014, Gröger et al. utilized the 

immobilization of an ADH in a superabsorber matrix for the combination of an 

organocatalytic, enantioselective aldol reaction followed up by a biocatalytic reduction with 

the immobilized ADH (Scheme 35).[132] 
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Scheme 35: Co-immobilization of a (S)-selective ADH from Rhodococcus sp. in 

superabsorber, reported by Gröger et al..[132] 

 

Instead of using an open-pored prepolymerized organic matrix, one can also consider 

completely enclosing an enzyme in an inpenetrable organic matriy by polymerizing the 

organic matrix in situ as a suspension with the enzyme. In this case, the enzyme is 

contained in an aqueous environment surrounded by a solid organic matrix. As an example, 

polydimethylsiloxane (PDMS) can be mixed with a pre-made enzyme solution and dropped 

into a solution of polyvinylalcohol in water. The formed droplets slowly polymerize, 

irreversibly trapping the enzyme inside in discrete aqueous droplets. Starting in 2005, 

Ansorge-Schumacher’s group immobilized several lipases in PDMS beads for esterifications 

and dynamic kinetic resolutions.[133] They could impressively show the equally distributed 

aqueous droplets in the organic matrix, proving the native environment for the enzyme 

inside the PDMS beads. 

In 2014, Langermann et al. expanded this method towards the biocatalytic, 

enantioselective cyanation of benzaldehyde with oxynitrilases utilizing commercially 

available Sylgard 184, the monomer of polydimethylsiloxane.[134] They stressed the point 

that the used organic phase for the reactions has to be saturated with water to prevent a 

slow extraction of the aqueous phase from the PDMS beads.  

Drawbacks of this intriguing method are the rather long preparation time that can last 

several days because of the slow curing of PDMS at low temperature like room 

temperature. To decrease the curing time, one can increase the temperature. However, 

this may lead in conjunction with the curing time to strong inactivation of the biocatalyst. 

On top of that, a highly reproducible protocol for highly monodisperse PDMS is very difficult 

to establish, as Rivadeneira could show in his bachelor thesis under supervision of the 

author of this thesis.[135] In his work, the aldoxime dehydratase from Bacillus sp. OxB-1 

(OxdB) was immobilized as crude extract and as whole cell-catalyst (in E.coli) in PDMS 

beads.  

To circumvent the drawbacks of the long curing time and reproduction issues, von 

Langermann et al. changed the polymer matrix in 2017 towards polyurethanes.[136] By 

premixing of the enzyme with the polymer precursor, the same highly dispersed aqueous 

dropelets are obtained as with the PDMS method. However, the polyurethane precursors 

rapidly and controllable polymerizes at ambient temperature once ultraviolet light is 

radiated upon him. Completely cured polyurethane is obtained in only five minutes, which 

drastically decreases the stress on the immobilized enzyme. The polyurethane is obtained 

as a solid plate that can be grinded to obtain it as small chips with a big surface area. As 

with the PDMS method, no or only negligible leaching can be observed.[136] 
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4.6.1.3 Enzyme immobilization by cross-linking 

 

The last category to immobilize an enzyme is by crosslinking it with a crosslinking agent 

like glutaraldehyde. While several crosslinking agents exist, the most prominent is 

glutaraldehyde (1,5-pentanedial). The crosslinking can then be applied to the 

corresponding enzyme formulation to crosslink it. One of the first methods was to crosslink 

crystallized enzymes to obtain crosslinked enzyme crystals (CLECs).[8] While these 

represent a good formulation, the biggest drawback is the often not achieveable 

crystallization of the enzyme and the prior, expensive and time-intensive purification of 

the enzyme. Another approaches lies in the easily achieveable precipitation of an enzyme, 

followed by a crosslinking protocol. If one uses this approach, he obtains crosslinked 

enzyme aggregates (CLEAs). Instead of purified enzyme, one can simply utilize crude 

extract for the immobilization protocol. The precipitation acts as a purification step on itself, 

combining purification and immobilization in one step.  

The benefit of CLEAs in comparison to free enzymes lies in the often improved operational 

stability in terms of tolerance against heat, organic solvents and autolysis. Additionally, 

the CLEAs show a low tendency of leaching and do not require an often rather expensive 

carrier to conduct the immobilization.[8] The crosslinking agent can also be mixed with 

other components that will help to finetune and optimize the immobilization, like amino 

containing sugars (chitosan) or siloxanes.[131] As with the immobilization on preactivated 

amino resins, the crosslinking of the enzymes in CLEA formation are rather complex and 

are not limited to imine formation.[129] As a consequence, further reduction with reagents 

as sodium hydroboride (NaBH4) may in principle conducted but to rarely show any benefit. 

Especially the group of Sheldon has developed many contributions on the field of CLEA 

research, allowing a broad range of biotransformations with several enzyme classes to be 

conducted with CLEAs.[8,137,138,139] 

Regarding Oxds, no investigations on immobilization have been conducted until today. 

Because of that, the author decided to pursue this challenging endeavor by choosing CLEAs 

as the first method for the immobilization of Oxds because of the well documented and 

rather straight-forward protocols in literature. Additionally, as mentioned earlier, the 

encapsulation of Oxds in PDMS beads was conducted by Rivadeneira under the supervision 

of the author.[135] However, the encapsulation attempt was not investigated further. 
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4.6.2 EXPRESSION AND PURIFICATION OF OXDB(CHIS6) BY NI-NTA AFFINITY 

CHROMATOGRAPHY 

 

Firstly, the aldoxime dehydratase from Bacillus sp. OxB-1 (OxdB) had to be 

heterogeneously expressed in E. coli BL21(DE3) cells. For simpler purification of the 

enzyme in later stages, the gene encoding for the OxdB harbored a sixfold C-terminal His-

Tag (His6) and was located in a pET-22b(+) vector. The cultivation and overexpression was 

conducted on 500 mL scale in two different protocols. The first method for expression 

utilized TB-Medium and induction of expression by addition of IPTG. The other method 

utilized Auto-Induction medium (AI Medium), for which no additional reagents for 

expression are necessary. 

Both protocols led to successful expression of the OxdB (Figure 26, Lane 1,6, 42 kDa). 

 

 

Figure 26: SDS-PAGE analysis of the OxdB(C) expression in E. Coli BL21 (DE3). Lanes: 

M = Marker, Lanes 1-5: Crude extract (AI protocol), purified OxdB, Ni-NTA-column 

elution, CLEA supernatant, Washing fraction; Lanes 6-10: Crude extract (TB protocol), 

purified OxdB, NiNTA-column elution, CLEA supernatant, Washing fraction. 

 

The OxdB was purified by means of Ni-NTA affinity chromatography (Figure 27) yielding 

the OxdB in a high purity with only residual parts of other proteins remaining (Figure 26, 

Lane 2,7). 
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Figure 27: E.coli pellet (left) harboring OxdB(CHis6) and purification via Ni-NTA affinity 

chromatography (right).[140] 

 

4.6.3 CLEA FORMATION AND ACTIVITY QUANTIFICATION IN AQUEOUS MEDIUM 

 

The purified OxdB was subsequently immobilized by CLEA formation (Table 16). Since the 

crosslinking by glutaraldehyde represents a major incision in the conformation of enzyme, 

the resulting activity recovery is always below the level of the non-immobilized enzyme. 

Nevertheless, the CLEAs could be obtained with an activity recovery of up to 23% 

(Table 17). For the cross-linkings, 0.5-2.0 wt% of glutaraldehyde were utilized to 

investigate its influence on the CLEA formation. 

 

Table 16: Activity of different OxdB(CHis6) formulations including CLEAs (0.5-2.0 wt% 

glutaraldehyde). 

Entry Formulation mg/mL Activity (mU/mg) 

1 Purified OxdB(CHis6) 4.72 1630 

2 Crude extract 7.02 4940b 

3 Supernatant 

CLEA 0.5-2.0 

n.d. 0 

4 Washing fraction 

0.5-2.0 

2.64-3.54 127-284 

5 CLEA 

0.5-2.0 

700-800 µga 336-372 

a. dry weight; b. mU/mL; n.d. = not determinable 
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Table 17: Immobilization yield, effiency and activity recovery of the obtained CLEAs 

(0.5-2.0 wt% glutaraldehyde). 

CLEA Immobilization 

yield [%] 

Immobilization 

efficiency [%] 

Activity recovery 

[%] 

0.5 83 26 21 

1.0 90 23 21 

2.0 92 25 23 

 

Due to interference of glutaraldehyde with the Bradford-Assay, which determines the 

protein concentration of solutions, no quantitative result could be obtained for the protein 

concentration of the CLEA supernatant.[129] Nevertheless, the SDS-PAGE (Figure 26) 

showed no detectable protein content and the results were promising for further 

experiments. The formed CLEAs were hence used for a recycling study in aqueous media.  

 

4.6.4 RECYCLING STUDY FOR LONG-TERM STABILITY DETERMINATION OF OXDB-

CLEAS IN AQUEOUS UND ORGANIC MEDIUM 

 

For 10 cycles, the CLEAs showed reappearing activity (Scheme 36). However, it decreased 

quite drastically with only ~20 mU/mg remaining activity at the 10th cycle. The reason for 

the declining activity has not been finally determined, since it may result from leaching of 

the enzyme out of the CLEAs, the inactivation of the enzyme by oxidation of the heme 

group or because of deactivating effects of the 50 vol% acetonitrile which was used to 

quench the activity assay. Compared to the cosolvent study from chapter 4.3, in which 

the highest amount of the cosolvents did not exceed 20 vol% because a higher amount 

deactivated the whole-cell catalysts very rapidly, 50 vol% is by far the highest achieved 

amount of water-miscible cosolvent investigated so far. Considering the whole amount of 

time that the Oxd was in contact with 50 vol-% acetonitrile, it would account for over three 

hours which was the longest time investigated in the prior stability study in chapter 4.3. 

The obtained results show a potential stabilization of the OxdB by crosslinking since the 

CLEAs can be recycled for several cycles. However, the utilization of 50 vol% acetonitrile 

for quenching the activity assay may be the reason for the rather quick declining activity 

values. Interestingly, the initial activity of the CLEAs in the first reaction cycle is always 

lower than the subsequent ones. This may result from conformational changes due to 

freeze-drying and hence lower accessibility of the active sites in the beginning 

(Scheme 36, Cycle 1). Furthermore, the CLEAs retained around 40% of their activity after 

storing them for one day at room temperature after the first three reaction cycles. These 

intriguing results for the first ever approach to obtain long-term stability of aldoxime 

dehydratases is promising for further optimization. 

The subsequent seven cycles (Scheme 36, Cycle 4-10) showed the same phenomenon 

with the rising activity after the first cycle and then slowly decreasing activity with only up 

to 20 mU/mg remaining activity after the 10th cycle. 
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Scheme 36: Results of the recycling study of the obtained CLEAs. 

 

Beside the recycling study in aqueous medium, a further recycling study in organic medium 

(MTBE) with the freeze-dried CLEAs was conducted because earlier results of Jochmann[123] 

showed high tolerance of whole cells containing OxdB against MTBE. However, no 

conversion could be detected even after the first cycle (Scheme 37). This result indicates 

that Oxds either require an aqueous phase for the reaction or that the organic medium 

inactivates them. 

 

Scheme 37: Recycling studies of OxdB(CHis6)-CLEAs in organic medium. 

24 hours 

storage 
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4.6.5 ADIPONITRILE SYNTHESIS IN ORGANIC, AQUEOUS AND BIPHASIC SYSTEMS 

 

To validate the results of the long-term stability studies, a two-step experiment was 

conducted in which the biotransformation of (E/Z)-adipaldehyde oxime was conducted first 

in pure organic medium (MTBE). In accordance with the previous study, no product 

(adiponitrile) was detected via 1H-NMR analysis in the organic phase and hence no 

conversion was achieved. However, the remaining CLEAs and the product were after 

evaporation of the solvent mixed with KPB (50 mM, pH = 7.0) and the biotransformation 

in this aqueous medium yielded 69% of adiponitrile after 18 hours at 30 °C. This indicates 

that while the CLEAs may not be active in purely organic media, they are also stable and 

not strongly deactivated even after 18 hours remaining in the organic medium 

(Scheme 38).  

 

 

Scheme 38: Adiponitrile synthesis with OxdB(CHis6)-CLEAs in organic and aqueous 

medium. 

 

Hence, a biotransformation with the same amount of (E/Z)-adipaldehyde oxime was 

conducted in a biphasic system consisting of 1:1 (v/v) MTBE/KPB (50 mM, pH = 7.0) 

(Scheme 39). Since (E/Z)-adipaldehyde oxime is almost insoluble in MTBE, the whole 

substrate remained in the aqueous phase, while the product adiponitrile is constantly 

extracted into the organic phase.  

 

 

Scheme 39: Adiponitrile synthesis attempt in a biphasic system with OxdB-CLEAs. 

 

According to 1H-NMR analysis, 1.8% yield of adiponitrile was obtained after 18 hours. This 

result indicates that the CLEAs may rather quickly be deactivated by the interface of the 

two phases.  

In conclusion, further immobilization methods should be investigated in the near future. 

Especially polymer carriers seem to be promising since crosslinking by glutaraldehyde to 

form CLEAs also worked sufficiently. Especially free amino groups are used in the 

crosslinking and covalent binding to polymer carriers that are based on linking via epoxy 

groups. These carriers may also allow operating in biphasic systems.  
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4.7 OUTLOOK FOR THE TECHNICAL FEASIBILITY OF THE BIOCATALYTIC 

ADIPONITRILE SYNTHESIS 
 

The overall progress for the biocatalytic synthesis of linear, aliphatic α,ω-dinitriles 

(especially for adiponitrile) in this work represents a very good foundation for the further 

development of an industrially feasible process. The already achieved high substrate 

loadings of 50 g/L, which can be quantitatively converted towards adiponitrile in liter scale 

prove the scalability of this process. 

To increase the economical feasibility, first endeavors for the high cell-density fermentation 

of OxdB expressing E. coli have been conducted. The initial results allow, despite the low 

activity of the produced biomass, a further development in this field. Once optimized, Oxds 

will be available at a comparable cheap price. If improved mutants of the Oxds are 

developed in the future, one can already rely on the established high cell-density 

fermentation protocols to produce highly productive biocatalysts.  

Additionally, first results for the immobilization of Oxds have been developed. Crosslinking 

with glutaraldehyde yielded CLEAs that showed reappearing activity for at least 10 cycles 

of activity assays. Additionally, the CLEAs tolerated 50 vol% of acetonitrile during the 

quenching and work-up procedures and could be stored for several days. Additionally, the 

activity recovery after the CLEA formation was quite high with 21%. In the future, further 

immobilization methods like binding to polymer carriers or immobilization of the crude 

extract or whole cells in a polymer matrix like PDMS beads or polyacrylic acids 

(superabsorber) should be looked into. 

Apart from the optimization and availability of the biocatalyst, another part is even more 

crucial for the technical feasibility: The availability of the substrate is still not satisfying. As 

mentioned earlier, many attempts have been done to improve the double, n-terminal 

hydroformylation of butadiene towards adipaldehyde.[114–117] However, only marginable 

success has been achieved so far. The best reported result reaches up to 73% selectivity 

for the double n-terminal hydroformylation. However, the formed adipaldehyde has to 

react in situ with two molecules of a dialcohol to form the stable bis-acetal. This additional 

protection step makes the process economically unattractive.[114] A very intriguing possible 

alternative for the hydroformylation of alkenes is the usage of biocatalysts. Just recently, 

Kamer et al. modified a lipid-transport protein with a phosphine ligand that binds rhodium 

and catalyzes the hydroformylation of octene and longer olefins with high linear selectivity 

under very mild reaction conditions.[141] Furthermore, carboxylate reductases (CARs) are 

currently under intensive investigation for the reduction of carboxylic acids to 

aldehydes.[142] 

A currently emerging alternative for the access of the substrate is based on artificial 

photosynthesis. Researchers from the companies Evonik and Siemens collaborate in the 

so-called “Rheticus” program. They combine solar powered electrochemical reduction of 

CO2 and H2O to syngas (H2 and CO) with a microbial fermentation to obtain aliphatic, linear 

alcohols like butan-1-ol or n-hexan-1-ol.[143] This approach opens up an access route 

towards adipaldehyde from completely renewable resources! The obtained n-hexan-1-ol 

from the artificial photosynthesis can be afterwards terminally hydroxylated via an 

enzymatic method developed by Fujii et al..[144] They utilized a CYP monooxygenase to 

terminally hydroxylate long chain alkanes and aliphatic monoalcohols towards the α,ω-

dialcohols, with a carbon chain length of 5-16 carbon atoms. Especially mid-range 

substrates like the C6-C10 alkanes and monoalcohols were highly accepted substrates for 
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the terminal hydroxylation. This microbial terminal hydroxylation has also been conducted 

for the synthesis of ω-aminolaurate.[145]  

Once an α,ω-dialcohol has been synthesized, a multitude of methods exists to selectively 

oxidize the alcohol moieties into aldehydes. While some of them are conventional chemical 

methods, biocatalytic approaches for this also exist.[145] While this access towards 

adipaldehyde is still rather a vision than a reality, it opens up a very promising vision to 

solve this longstanding issue. 

Once the adipaldehyde is produced, our approach with the formation of the dioxime by 

condensation with hydroxylamine and the highly selective, biocatalytic dehydration 

towards adiponitrile will be a highly valuable production route (Scheme 40).  

 

 

Scheme 40: Envisioned access to adiponitrile starting from renewable resources. 

 

In view of the author, this route is even more promising than the reductive amination of 

adipaldehyde towards hexamethylenediamine. First, adipaldehyde is a highly reactive 

compound that would undergo severe side reactions during the process of a reductive 

amination. Second, while this may seem trivial, the nitriles can be accessed via this route. 

These can always be easily converted into the amines, but the reverse reaction is way 

more complicated. Additionally, nitriles can also be used as intermediates for other 

functional groups, making the access towards several dinitriles (and not only adiponitrile) 

a valuable platform technology. 
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5 CHIRAL N-ACYL-Α-AMINONITRILES VIA COPPER 

CATALYSIS AND INCORPORATION INTO A DE NOVO 

SYNTHESIS OF VILDAGLIPTIN 

5.1 NITRILES IN THE PHARMACEUTICAL INDUSTRY 
 

As of 2010, over 30 nitrile-containing pharmaceuticals were prescribed for a broad variety 

of medical indications and over 20 nitrile-containing lead structures were under clinical 

development.[44] Nitrile containing pharmaceuticals have been a stable of their own in the 

last decades with some representatives of them being one of the first choices for the 

treatment of severe diseases like breast cancer or angina (Figure 28). The most 

prominent compounds in this regard are:  

 

1. Anastrazole, which is marketed as Arimidex by Astra-Zeneca and used against 

estrogen-dependent breast cancer. 

2. Verapamil, which is a calcium channel antagonist and used against angina by 

relaxing blood vessels to allow easier pumping of the heart. Several attempts for 

the enantioselective synthesis of Verapamil have also been endeavored.[102,146] 

3. Gallopamil, a methoxy derivative of Verapamil with a tenfold higher potency. 

 

 

Figure 28: Nitrile-containing pharmaceuticals that are broadly prescribed.[44] 

 

As one can already conclude from these pharmaceuticals, most of the nitrile-containing 

pharmaceuticals either contain an aromatic nitrile moiety or nitrile next to a quarternary 

carbon atom. The reason behind this structural preference lies in the potential oxidation of 

the α-carbon atom next to the nitrile moiety, resulting in cyanhydrins. Cyanhydrins can 

decompose into the corresponding aldehyde and cyanide, which is highly toxic because it 

inhibits the aerobic production of ATP in cells.[44] 

The nitrile moiety is a highly polar group that is relatively small and highly solubilized. It 

can act as a surrogate for carbonyl moieties and can form strong hydrogen bonds with 

hydrogen bond donors like carboxyl or hydroxyl groups that are present in several amino 

acid side chains. Additionally, like in the case of Verapamil, the nitrile moiety can form 

complexes with metal ions like calcium, potentially resulting in an inhibition or deactivation 

of a protein.[44] Furthermore, its small size allows it to reach even highly covered areas 

within proteins, which other substituents or motifs are not able to reach.  
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Despite the high concerns for cyanide release of nitrile-containing pharmaceuticals, several 

pharmaceuticals and lead structures have been developed, that are highly potent in e.g. 

the treatment of diabetes. Especially the advances in molecular modelling and docking 

studies have lead to an increase of nitrile-containing molecules in the pharmaceutical 

industry since these tools allow a proper estimation of the function and potential 

metabolism of the pharmaceutical compound in the body.[44] 

Since diabetes is an ever expanding disease in the industrial nations, the treatment of it is 

paramount. Regarding the diabetes mellitus type II, several pharmaceuticals have been 

developed over the last decades for efficient treatment of it. One class of the developed 

pharmaceuticals is called gliptins and they act as competitive inhibitors of the enzyme 

dipeptidyl peptidase IV (DPP-4), which is resposible for the degradation of 

incretins.[43,44,147] With low levels of incretins the glucose level in blood is increased, leading 

to the typical symptoms of diabetes. The first reported example of gliptins was the 

compound Sitagliptin in the year 2006, which is nowadays produced via a biocatalytic 

transamination and marketed by Merck & Co..[148] The development of this biocatalytic 

process is one of the most impressive industrial process examples of biocatalysis and has 

sparked a huge amount of attention back in 2010 (Scheme 41). 

 

 

Scheme 41: Comparison of the biocatalytic and metal-catalyzed production of sitagliptin 

phosphate reported by Savile et al..[148] 
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Some of the gliptins contain a nitrile moiety and some of them have already been proven 

themselves as valuable compounds on the pharmaceutical market. A prominent example 

is Vildagliptin, which has been developed and marketed by Novartis (Figure 29).[41–43] 

With sales numbers of 1.14 billion dollars in 2015, it is ranked in the top 10 of the world’s 

top selling diabetes drugs.[47] Another example for the high success of gliptins is 

Saxagliptin, which was developed jointly by Bristol-Myers Squibb (BMS) and Astra-Zeneca. 

Saxagliptin is now marketed by Astra-Zeneca and reached sales numbers of 786 million 

dollars in 2015.[45–47] Furthermore the compounds NVP-DPP-728 and Anagliptin have been 

developed. All of these compounds share the same backbone containing the nitrile moiety, 

which is derived from L-proline. 

The nitrile-containing gliptins inhibit the DPP-4 by a nucleophilic attack of a serin side chain 

of the DPP-4 to the nitrile moiety. As a result, the serin side chain is reversibly, covalently 

bound to the gliptin (Figure 6).[44] 

 

 

Figure 29: Nitrile-containing gliptins (top) and the inhibition of Dipeptidyl peptidase IV 

(DPP-4) by nitrile containing gliptins (bottom), including the X-ray crystal structure of 

DPP-4 (PDB-File: 1PFQ, visualized with NGI-Viewer). 

 

Beside their high potential for the treatment of diabetes type II, gliptins have also proven 

themselves to treat osteoporosis in an efficient manner.[147,149] Ambrosi et al. could show 

in 2017 that treatment of elderly, obese animals with sitagliptin led to increased bone 

healing properties. The animals tended to produce bigger amounts of DPP-4, which led to 

decreased bone cell formation in their bone marrow. These results may allow for an 

efficient treatment of osteoporosis especially for obese, elderly people in the future.  
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5.2 COPPER-CATALYZED DEHYDRATION OF N-ACYL Α-AMINO ALDOXIMES AND 

IMPLEMENTATION INTO A DE NOVO SYNTHESIS OF VILDAGLIPTIN 

5.2.1 STATE OF THE ART OF THE VILDAGLIPTIN SYNTHESIS 

 

The current synthesis of nitrile-containing gliptins starts from L-proline, which is a cheap 

building block from the chiral pool with reported kilo prices in the range of 40 $ per 

kilogram.[60,150] In case of the highest selling one, Vildagliptin, Villhauer et al. disclosed its 

synthesis in 1998 and 2003 (Scheme 42).[42,43]  

 

 

Scheme 42: Synthesis of Vildagliptin reported by Villhauer et al..[42,43] 

 

As one can depict from this synthetic sequence, a key step is the amidation of L-proline to 

yield L-prolinamide. While this transformation may seem trivial at first, direct amidation of 

carboxylic acids is not efficient and often requires a two-step sequence of acyl chloride 

formation and subsequent amidation. These steps are very waste intensive and increase 

the price of the process drastically. The secondary amine of L-prolinamide is afterwards 

protected by nucleophilic substitution with chloroacetyl chloride under presence of 

potassium carbonate in THF. Another critical step is then the dehydration of the primary 

amide group of the N-protected prolinamide. Villhauer et al. utilize trifluoroacetic anhydride 

for this, but its utilization leads to big amounts of acidic, fluorinated wastes. The final step 

involves a nucleophilic substitution of an amino derivative of adamantane to yield 

Vildagliptin.  

As one can depict from this reaction sequence, especially the prolinamide formation and 

the subsequent dehydration with trifluoroacetic anhydride are critical steps that should be 

avoided. In 2015, Pellegatti et Sedelmeier tried to soothe these issues by implementing a 

dehydration of the N-acyl prolinamide with the Vilsmeier reagent in flow chemistry 

(Scheme 43).[41] The Vilsmeier reagent is formed by a reaction of N,N-dimethylformamide 

(DMF) with phosphoryl chloride (POCl3). Other reagents like oxalyl chloride ((COCl)2) or 

thionyl chloride (SOCl2) were unfit for flow application due to gas formation and excessive 

heat formation. The flow application allowed to convert 2.34 mol of the N-acyl prolinamide 

(5.8 kg h-1 L-1) towards the N-acyl cyanopyrrolidine, demonstrating the big potential of 

flow chemistry.[41] Nevertheless, the excessive use of highly toxic DMF and POCl3 does not 

solve the hazard and waste issues of the Vildagliptin synthesis.  
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Scheme 43: Application of a Vilsmeier reagent dehydration in continuous flow by 

Pellegatti et Sedelmeier.[41] 

 

5.2.2 COPPER-CATALYZED DEHYDRATION OF N-ACYL Α-AMINO ALDOXIMES 

 

To circumvent these issues, suitable reagents and reaction conditions had to be identified 

that would allow for a less waste intensive synthetic route towards Vildagliptin. It was 

decided to approach the synthesis of the key intermediate, the N-acyl pyrrolidine, via a 

two-step approach that started off from the N-acyl α-amino aldehyde. By condensation 

with hydroxylamine, one can obtain the corresponding aldoxime that can subsequently be 

dehydrated towards the nitrile. The big advantage of this route compared to the amide 

dehydration is the fact that aldoximes can quite elegantly be dehydrated in comparison to 

the amides. There are plenty of possibilities for aldoxime dehydration; however one must 

carefully evaluate the practicability and economic impact of each route.  

From the broad selection of methods for nitrile synthesis out of aldehydes over aldoximes, 

some of the inventions in this field have focused on one-pot strategies to skip workup 

procedures. While some of these approaches seem attractive at first glance, one has to 

evaluate the economical impact and workload to prepare the required reagents for these 

one-pot procedures. For example, An et al. reported in 2015 that they can convert 40 

examples of aldehydes directly into the nitriles by employing the reagent O-(4-CF3-

benzoyl)-hydroxylamine (CF3-BHA) and Brønsted acid catalysis at ambient conditions.[151] 

However, they did not discuss that the synthesis of their reagent requires four steps to be 

synthesized! These steps included acyl chloride formation with toxic thionyl chloride or 

oxalyl chloride, extremely atom inefficient protection of hydroxylamine with Di-tert-
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butyldicarbonat (Boc2O), coupling of both compounds and final deprotection of the amine 

group by trifluoroacetic acid (Scheme 44).[152] Furthermore, CF3-BHA is not recycled and 

has to be disposed as environmentally hazardous halogenated, organic waste. As a 

consequence, their proposed one-pot procedure for the nitrile synthesis is simply not 

practicable and is in reality not a one-pot procedure but rather a five step sequence.  

 

 

Scheme 44: Waste intensive synthesis of the reagent CF3-BHA for the one-pot synthesis 

of nitriles out of aldehydes.[152] 

 

While this example may seem drastic, the drawbacks of many reported one-pot procedures 

for the nitrile synthesis out of aldehydes are in the same range as the one discussed above, 

eliminating most approaches if environmental, cost and waste issues are considered. 

Examples of such procedures include the utilization of hexamethyldisilazane (HMDS)[153], 

expensive derivatives of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) in stoichiometric 

amounts[154] or highly toxic ethyl dichlorophosphate.[155] Additionally, these procedures 

require excessive usage of Brønsted bases like DBU or pyridine.[154,155] Apart from one-pot 

procedures, many methods for the dehydration of oximes towards their nitriles have been 

disclosed. However, most of these methods lack the practicability like most of the one-pot 

procedures. For example, Denton et al. reported a method in 2012 that relies on activation 

of triphenylphosphine oxide (Ph3PO) by oxalyl chloride to dehydrate the aldoximes.[62] 

While this protocol is broadly applicable, oxalyl chloride is a highly toxic and corrosive 

compound. Furthermore, triphenylphosphine oxide (Ph3PO) is a highly unwanted side 

product, which is also one of the biggest concerns with Wittig olefinations up to this day. 

Another method reported by Hendrickson et al. in 1976 utilizes triflic anhydride, 

stoichiometric amounts of triethyl amine and operates at -78 °C to dehydrate the 

oximes.[156] This combination makes the method unattractive for further consideration. 

There are plenty of different methods to obtain the corresponding nitriles from aldoximes 

and if one wishes to dwelve deeper into this matter, several book chapters and reviews 

regarding this matter are present in the literature.[57,58,157] Additionally, a vast amplitude 

for the preparation of oximes, also out of other compound classes (like amines or nitro 

compounds) exists.[91,97,158,159] The same is true for nitriles.[63,160] 

After critical assessment of this vast amplitude of synthetic possibilities, it was decided to 

investigate a copper-catalyzed dehydration of aldoximes into nitriles in acetonitrile as 

reaction medium for the synthesis of the required N-acyl α-aminonitrile motif. In 1983, 

Attanasi et al. discovered that a wide variety of aliphatic and aromatic aldoximes was 

smoothly converted into their nitriles if they were treated with copper(II) acetate 

(Cu(OAc)2) in boiling acetonitrile.[161] In their study, they used 5-10 mol% of Cu(OAc)2 and 

obtained eight different nitriles with yields ranging from 85-98%. In 2013, Ma et al. 

extended this method to a broader substrate scope screening and identifying the 

transformation of the aldoxime into the corresponding amide if no acetonitrile is present.[59] 
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Additionally, they demonstrated the high tolerance against other functional groups of this 

method and conducted a parameter screening. 

To rationalize the mechanism of the aldoxime dehydration in acetonitrile, Tambara et Dan 

Pantoş conducted a more detailed mechanistic study in 2013, when they investigated the 

palladium-catalyzed dehydration of aldoximes into nitriles (Scheme 45). They proposed 

that the aldoxime is coordinated to the metal center via its nitrogen atom and after 

coordination of a nitrile molecule to the metal center, an in situ H2O transfer takes place 

to yield the former nitrile as the corresponding amide and the former aldoxime as the 

nitrile. In case of the absence of acetonitrile, the H2O transfer is conducted between the 

already desired nitrile product and the substrate, which in the long run ends with complete 

conversion towards the unwanted amide product. By adding acetonitrile in an excessive 

amount, the equilibrium for the in situ H2O transfer is drastically shifted towards the 

hydration of acetonitrile, yielding one equivalent of acetamide as side product.  

 

 

Scheme 45: Proposed mechanism for the metal-catalyzed dehydration of aldoxime to 

nitriles in the presence of acetonitrile, reported by Tambara et Pantoş.[162] 

 



Chiral N-Acyl-α-aminonitriles 

 

98 

Due to the high polarity and boiling point of acetamide, its separation from the nitrile 

products via distilliation or chromatography can be easily achieved. Additionally, acetamide 

can be recovered and reused since it is part of several industrial segments, e.g. as solvent 

or softener additive.  

This method incorporates many aspects that allow for a less waste and hazard intensive 

approach to N-acyl α-aminonitriles and was hence chosen for further investigation. The 

side product can be reused, the utilized metal catalyst is very cheap and relatively low 

toxic, the utilized solvent can be recycled for further reaction cycles and the separation of 

the product from the catalyst and side product is easily conducted. Apart from the chosen 

method, a later reported method in 2016 from Hyodo et al. utilizes Fe(III) catalysts in 

boiling toluene to dehydrate the aldoximes towards the nitriles without the need for 

acetonitrile.[61] The authors stated that they were inspired by the mechanism of aldoxime 

dehydratases, which shows the high value and impact of aldoxime dehydratase catalysis 

even among synthetic chemists that are not familiar with biocatalysis. A slight drawback 

of their method is, however, the rather low maximum substrate concentration of 50 mM to 

circumvent the amide formation, high temperature (refluxing toluene) and long reaction 

time of 24 hours. 

 

5.2.3 DISCOVERY OF THE STEREOCHEMISTRY RETENTION DURING ALDOXIME 

DEHYDRATION 

 

To investigate the potential of the copper-catalyzed dehydration of aldoximes for the 

synthesis of N-protected α-aminonitriles, both enantiomers of the N-Boc protected 

phenylalaninal were commercially purchased and converted to the aldoximes by 

condensation with hydroxylamine in a mixture of H2O/1-propanol after 18 hours at room 

temperature. Both aldoximes were obtained with excellent isolated yields of 84% and 92% 

(Scheme 46). 

 

 

Scheme 46: Two-step synthesis of N-Boc protected α-aminonitriles of phenylalanine 

starting from the α-aminoaldehyde. 

 

Since α-carbonyl compounds can form their corresponding enol and racemize in the 

progress, it had to be clarified that neither in the aldoxime nor in the nitrile synthesis any 

or only marginable racemization occurs. For this, mixtures of the (R)-configurated aldoxime 

and nitrile, as well as the (S)-configurated ones were measured via chiral HPLC 

(Figure 30). These measurements revealed that indeed no or only marginable 

racemization occurs in the synthesis sequence. For the (R)-enantiomer of the nitrile, an 

ee-value of 97% was measured, while the (S)-enantiomer had an ee-value of 98%. While 

one might argue that these results imply that a slight racemization may occur, this may 
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indeed be not the case. Unfortunately, the commercial supplier of the N-Boc protected 

phenylalaninal did not give any specification regarding the optical purity of the aldehydes, 

only a purity percentage of 97%.[60] If the remaining 3% of the substrate consist of another 

compound or the other enantiomer remains illusive. Nevertheless, the copper-catalyzed 

dehydration to obtain N-acyl α-aminonitriles proved its simplicity and practicability in the 

synthesis of the required products with easy conductable synthetic procedures and easy 

workups. 

 

 

Figure 30: Chromatograms of the (R) and (S)-enantiomers for the aldoximes and 

nitriles of phenylalaninal on chiral HPLC. 
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5.2.4 IMPLEMENTATION OF THE COPPER-CATALYZED DEHYDRATION INTO A DE NOVO-

SYNTHESIS OF VILDAGLIPTIN BY ROMMELMANN 

 

Based on the gained insights into the mild and highly selective dehydration of the 

N-protected aldoximes without any observable racemization by the author, 

Rommelmann[99] transferred and optimized this procedure by several parameters and 

implemented it into a de novo-approach for the synthesis of Vildagliptin. 

First, he evaluated the minimal amount of required acetonitrile for the dehydration reaction 

of the N-Boc proline aldoxime (Table 18). For this, varying amounts of acetonitrile were 

dissolved in ethyl acetate and the conversion towards the N-acyl cyanopyrrolidine was 

determined via 1H-NMR measurements. This study revealed that the conversion towards 

the nitrile did not increase above 15 equivalents of acetonitrile and 10 equivalents of 

acetonitrile were the best compromise between conversion and a minimal used amount of 

acetonitrile as reagent/solvent.  

 

Table 18: Solvent screening for the conversion of the N-Boc α-amino aldoxime towards 

the N-acyl cyanopyrrolidine by Rommelmann.[60,99] 

 

Entry Solvent Amount of acetonitrile (eq.) Conversion (%) 

1 ethyl acetate 1 54 

2 ethyl acetate 2 57 

3 ethyl acetate 4 71 

4 ethyl acetate 6 74 

5 ethyl acetate 8 78 

6 ethyl acetate 10 81 

7 ethyl acetate 15 92 

8 ethyl acetate 20 92 

9 acetonitrile 64 92 

10 2-methyl THF 10 70 

11 dimethyl carbonate 10 94 

12 ethanol 10 80 

13 methanol 10 74 

14 water 10 46 

15 cyclohexane 10 88 

16 toluene 10 89 
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After this study, he compared the suitability of different solvents in conjunction with 

10 equivalents of acetonitrile for the best conversion towards the cyanopyrrolidine 

(Table 18). While highly polar, protic solvents as methanol and ethanol resulted in a 

conversion of 74-80%, water led to a decreased conversion of only 46%. This circumstance 

was explained by the proposed mechanism of the dehydration, in which the in situ 

eliminated H2O from the aldoxime is transferred irreversibly to the acetonitrile to yield 

acetamide as side product and the other nitrile is released.[59,162] In the presence of water, 

the formed nitrile can also be hydrated again, resulting in the unwanted amide of the N-acyl 

cyanopyrrolidine as side product. Apolar, aprotic solvents like cyclohexane and toluene led 

to high conversions of 88-89%. The best results were obtained with the polar, aprotic 

solvent dimethyl carbonate with a conversion of 94%. Dimethyl carbonate is a green 

solvent and superior to other polar, aprotic solvents like ethyl acetate or 2-methyl 

tetrahydrofuran which only led to 70-81% conversion. 

Afterwards, Rommelmann developed a de novo-approach towards vildagliptin starting from 

L-proline methyl ester hydrochloride (Scheme 47) and the results of this synthesis were 

jointly published with the results of the author of this thesis (see chapter 5.2.3).[60,99] 

 

 

Scheme 47: Developed de novo-approach towards Vildagliptin by Rommelmann.[99]  

 

L-proline methyl ester hydrochloride was chosen by Rommelmann as starting material 

since the methyl ester of proline is easily produced directly from L-proline. To circumvent 

expensive reduction methods towards the L-prolinal, a ruthenium-catalyzed high-pressure 

hydrogenation towards L-prolinol was chosen. While the methyl ester was converted 

towards L-prolinol with complete conversion, the isolation of L-prolinol by extraction was 

difficult due to its high solubility in water. Hence, only 25% isolated yield were obtained. 

However, this problem can be easily solved by precipitation with hydrochloric acid (HCl) in 

future attempts. Afterwards, the L-prolinol was acylated with chloroacetyl chloride in 

dichloromethane and the N-acyl prolinol was obtained with 71% isolated yield. One could 
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also envision conducting the acylation step first, followed by the high-pressure 

hydrogenation. However, no conversion of the N-acylated proline methyl ester was 

observed under the same reaction conditions (100 °C, 100 bar H2).  

For obtaining the N-acylated prolinal, a selective oxidation method of the alcohol towards 

the aldehyde is required. (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) has proven itself 

as a selective catalyst to oxidize primary alcohols selectively towards aldehydes in two 

phase-systems under utilization of hypochlorite as stoichiometric oxidation reagent over 

the last decades. Employing this strategy led to 54% isolated yield of the N-acylated 

prolinal. Other oxidation methods like the well-known Swern oxidation, led to 

decomposition of the substrate.  

Coming back to the earlier discovered two-step synthesis of the N-acylated 

cyanopyrrolidine, the obtained prolinal was converted with hydroxylamine hydrochloride 

towards the N-acylated prolinal aldoxime with complete conversion. However, 

Rommelmann reports that due to a non-optimized workup procedure, the isolated yield did 

not exceed 45%. Nevertheless, subsequent dehydration of the aldoxime yielded the N-

acylated cyanopyrrolidine with complete conversion and 61% isolated yield. In 

concordance with the earlier results, no racemization of the starting material could be 

observed in the reaction sequence. The subsequent conversion towards Vildagliptin has 

already been described in the literature and was hence not conducted in the present study. 

In summary, the newly developed de novo-approach towards Vildagliptin could be realized 

thanks to the jointly discovered non-racemizing two-step access route towards N-acylated 

α-aminonitriles. This approach almost exclusively avoids usage of toxic reagents and 

operates under mild reaction conditions without the generation of big waste streams. As a 

result, a patent application has been filed for the two-step synthesis of N-acylated α-

aminonitriles in 2017 and the de novo-approach towards Vildagliptin was published in 

Organic Process Research & Development in 2017.[60] 
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6 NEW LUBRICANT ESTER STRUCTURES BASED ON 

RENEWABLE RESSOURCES 

6.1 ESTOLIDES - INTRODUCING SUSTAINABILITY IN THE LUBRICANT INDUSTRY  
 

Considering the growing impact of anthropogenous emissions on the ecosystem of the 

earth and the rapid depletion of fossil resources, one has to intensify and expand the 

production of high volume chemical compounds that are based on renewable resources. 

Furthermore, these compounds should be non-persistent and biodegradable. 

However, newly developed compounds also have to fulfill economic standards (generating 

profit, reliable production processes etc.) to establish themselves on the market. 

Additionally, their performance should be equal if not superior compared to the already 

established products on the market.[163] 

For the lubricant industry, most of today’s products are based on petrochemical compounds 

which are obtained during the refining process of crude oil.[39,164] This resource stock opens 

up a broad selection basis of compounds. Thus, all required performance windows in terms 

of viscosity, product lifetime and material compatibility can be reached.[164] There exist a 

few tendencies/rules for the properties of lubricant base fluids.[163] 

 

1. A high degree of branching of lubrication base fluids increases the low-temperature 

characteristics, leads to low viscosity indices and high hydrolytic stabilities. 

2. High linearity leads to high viscosity indices and relatively poor low-temperature 

characteristics. 

3. Low saturation leads to outstanding low-temperature characteristics, but on the 

other hand leads to limited oxidation stability. 

4. High saturation leads to outstanding oxidation stability, but to poor low-

temperature characteristics. 

 

There are some properties that are often investigated and help to classify the performance 

of a lubricant. The pour point of a lubricant describes the minimum temperature at which 

the lubricant is still pouring. The viscosity describes the resistance of a lubricant against 

deformation. If a lubricant has a high viscosity index, the viscosity of it changes only 

marginally over a broad temperature range. Furthermore, the cloud point of a lubricant 

describes the temperature at which the crystallization of the oil components starts. In 

dependence of the charasteric profile of a lubricant, it may be privileged for different 

applications. 

One of the most promising renewable feedstocks for the lubricant industry are vegetable 

oils. Especially soybean, sunflower and rapeseed oil is nowadays available with up to 85% 

of oleic acid ((9Z)-octadec-9-enoic acid) in their fat content. Oleic acid is due to its high 

availability and easily controlled chemical modification highly capable to serve as a platform 

molecule for a broad range of new lubricant structures.[164,165] However, also other fatty 

acids are highly interesting for the lubricant industry and various oils from different plants 

are currently under investigation for their potential as lubricant base oils, e.g. Cuphea, 

Lesquerella, Meadowfoam and Pennycress oils.[166] 
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In recent years, the focus on a certain product class based on fatty acids (especially oleic 

acid) has been intensified: Estolides. Estolides are esters of fatty acids either by 

esterification with e.g. diacids, dialcohols or with themselves as bifunctional fatty acids 

may be utilized as estolide building block. Estolides thereby incorporate a huge potential 

for diverse lubricant structures.[167,168]  

Estolides have a special nomenclature of their own, which is illustrated below in 

Scheme 48[167,168] This rather unconventional nomenclature is based on the number of 

branching fatty acid chains that are connected to the base fatty acid chain. If we look at 

the given example in Scheme 48, the case n = 1 would be described as diestolide, since 

the estolide number (EN) would be 2 due to the formula EN = n+1. Hence, a diestolide 

represents a fatty acid trimer. The last branching fatty acid chain is also often referred to 

as capping fatty acid. The estolide linkage that connects the fatty acid chains often 

constitutes of a simple C-O-bond, but other linkages like C-C or C-N bonds are also 

possible. 

 

 

Scheme 48: Estolide nomenclature explanation.[167] 

 

Estolides may furthermore incorporate several unsaturated C-C double bonds, free OH-

groups or other functionalities. The amount of functionalization of the estolide can be 

controlled by the choice of the base fatty acid (or a fatty acid mixture) which is used for 

the estolide synthesis and subsequent chemical modifications. Lastly, estolides can be 

optionally be esterificated at the carboxyl group of the base fatty acid chain with a broad 

selection of alcohols which increases their structural diversity and physical/chemical 

properties. 

The most promising and well investigated access route to estolides has been reported by 

Cermak et al. in 2013[169], which is an improved process for an estolide production by 

oligomerization of oleic acid under presence of catalytic or stoichiometric amounts of HClO4 

(perchloric acid), which they initially described in 1994 and refined several times 

(Scheme 49).[169,170,171–175] 
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Scheme 49: Synthesis of oleic acid based estolide oligomers by HClO4 catalysis.[169] 

 

While this approach allows a rather straight-forward access to high performance estolides, 

it has several drawbacks.  

1. The protonation of the C-C double bond by perchloric acid leads to migration of the 

C-C double bond by repeated protonation and elimination, before the addition of 

the lowly nucleophilic carboxyl group of another fatty acid chain binds to the 

carbocation. It was reported that the migration leads to mixtures of C5-C13 adduct 

mixtures of the obtained, increasing the complexity of the estolides.[168,171] 

2. The amount of oligomerization is hard to control and the synthesized estolides are 

complex mixtures containing mono-, di-, tri- and higher branched estolides up to 

nonaestolides (EN = 10).[168] While some efforts have been undertaken to control 

the oligomerization degree of the obtained estolides by introducing saturated fatty 

acids (e.g. lauric acid) as stable capping chains[169,171], the acid catalyzed route will 

always lead to a estolide mixture. 

Another strategy for the synthesis of estolides beside the nucleophilic addition of a carboxyl 

group to a carbocation is based on naturally occurring fatty acids that contain a hydroxyl 

group like ricinoleic acid (from castor oil), 12-hydroxystearic acid or lesquerolic acid (from 
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lesquerella oil, Table 19). Cermak et al.[176] and Teeter et al.[177] investigated the 2-

ethylhexylesters of these fatty acids and obtained excellent pour points, cloud points and 

low viscosity indices.  

 

Table 19: Physical properties of several 2-ethylhexyl estolide esters.[167,176,177] 

 

Base acid Capping acid 

Pour 

point 

(°C) 

Cloud 

point 

(°C) 

Viscosity 

at 40 °C 

(cSt) 

Viscosity 

at 100 °C 

(cSt) 

ricinoleic oleic -54 <-54 34.5 7.6 

ricinoleic 2-ethylhexaonic -51 <-51 70.6 11.8 

ricinoleic coco (C12-C16) -36 -30 29.0 6.5 

ricinoleic stearic 3 23 41.7 8.6 

lesquerolic oleic -48 -35 35.4 7.8 

lesquerolic 2-etylhexaonic -54 <-54 51.1 10.1 

lesquerolic coco (C12-C16) -24 <-24 40.4 8.4 

lesquerolic stearic 3 12 38.6 8.2 

hydroxystearic acetic -63 n.d. n.d. n.d. 

hydroxystearic propanoic -62 n.d. n.d. n.d. 

hydroxystearic butanoic -31 n.d. n.d. n.d. 

hydroxystearic oleic -36 <-36 68.3 12.2 
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Base acid Capping acid 

Pour 

point 

(°C) 

Cloud 

point 

(°C) 

Viscosity 

at 40 °C 

(cSt) 

Viscosity 

at 100 °C 

(cSt) 

hydroxystearic stearic 6 25 43.6 8.7 

hydroxyarachidic oleic -12 -6 37.0 7.9 

hydroxyarachidic stearic 6 31 45.7 9.1 

n.d. = not determined 

 

As one can depict from the data in Table 19, they are in excellent accordance with the 

rules/tendencies which were described earlier. The pour points and cloud points are the 

lowest for the unsaturated estolide esters and the highest for the saturated ones. 

Beside the chosen base fatty acid for an estolide, the other important component that 

determines the physical properties of the estolide is the alcohol, which is used for 

esterification. In 2001, Isbell et al.[178] investigated the influence of the alcohol on the low-

temperature properties and viscosities of estolides. Beside the oleic acid estolide they also 

investigated estolides based on crambe and meadowfoam oil[179], which contain mainly 

erucic acid (crambe) or 5-eicosenoic acid (meadowfoam). They observed the best pour 

points for the oleic acid estolides which bear the estolide linkage in C9-position, while erucic 

acid estolides (C13 linkage) and 5-eicosenoic acid estolides (C5 linkage) lacked in low 

temperature performance. Especially Guerbet alcohols, e.g. 2-ethylhexanol, showed the 

best performance and properties when used for esterification with the estolides 

(Table 20). Furthermore, this study revealed that estolides with rather low EN numbers 

(EN = 1.1-1.5) have lower pour point as their analogues with higer EN numbers.  
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Table 20: Physical properties of oleic acid, erucic acid and 5-eicosenoic acid estolides, 

which are esterificated with different alcohols.[167,178] 

 

Estolide 
Melting 

point (°C) 

Viscosity at 

40 °C (cSt) 

Viscosity at 

100 °C 

(cSt) 

erucic estolide 0 679.0 58.6 

erucic estolide 2-ethylhexyl ester -12 184.4 26.1 

5-eicosenoic estolide 6 229.8 27.4 

5-eicosenoic estolide 2-ethylhexyl ester -1 104.2 16.5 

oleic estolide -31 404.9 40.0 

oleic estolide methyl ester -27 169.1 23.7 

oleic estolide butyl ester -27 238.4 30.3 

oleic estolide decyl ester -10 149.0 21.4 

oleic estolide oleyl ester -22 187.2 26.8 

oleic estolide 2-methylpropyl ester -32 200.7 26.7 

oleic estolide 2-ethylhexyl ester -34 161.2 22.5 

oleic estolide C18 Guerbet ester -43 206.6 27.4 

oleic estolide C24 Guerbet ester -32 169.4 24.3 
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Beside the base fatty acid chain and the alcohol used for esterification, the last important 

component for the physical properties of the estolide is the capping fatty acid. Isbell et 

al.[172] revealed that the pour point of oleic estolides capped with saturated fatty acids are 

lowest when they are capped with mid-sized linear fatty acids (C8 and C10, see Table 21) 

because their disrupt the alignment of the aliphatic chains best. This result was in good 

accordance with the observed properties of the estolides listed in Table 20, where the 

oleic estolides (C9 linkage) also showed the best low-temperature properties compared to 

C5- and C13-linked estolides. 

 

Table 21: Influence of the capping acid on the properties of oleic estolides.[167,172] 

 

Capping fatty 

acid 
ENa 

Pour 

point 

(°C) 

Cloud 

point 

(°C) 

Viscosity 

at 40 °C 

(cSt) 

Viscosity 

at 100 °C 

(cSt) 

butyric (C4) 2.8 -30 -36 125.5 19.3 

caproic (C6) 3.5 -30 -34 114.5 17.9 

octanoic (C8) 3.0 -36 -41 104.4 16.8 

decanoic (C10) 2.7 -39 n.d.b 93.8 15.5 

lauric (C12) 2.2 -36 -32 73.9 13.0 

myristic (C14) 2.0 -25 -22 80.5 13.9 

palmitic (C16) 1.4 -12 -13 81.6 13.5 

stearic (C18) 1.1 -5 -4 81.8 14.0 

a. According to GC-analysis; b. n.d. = not determined 

 

Importantly, the oleic estolides do not possess any unsaturated functionalities anymore, 

which is reflected in their excellent oxidative stability. Cermak et al.[173] could demonstrate 

that the oleic estolide have comparable oxidative stability over 240 minutes in the “Rotating 

Pressure Vessel Oxidation Stability Test” (RPVOT) like standard hydraulic fluids and 

aviation lubricants, when they are formulated with standard additives like butylated 

hydroxytoluene (BHT) or alkylated diphenylamines (ADA). This result underlines the high 

potential of estolide to compete with already established products in the lubricant market. 
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The newest developments in the estolide subject have dealt with disclosing new 

functionalities and properties. In 2016, Doll et al.[174,175] synthesized carbonated oleic 

estolide 2-ethylhexyl esters (Scheme 50), which were further functionalized with 

hexamethylenediamine (H2N(CH2)6NH2) to yield carbamate containing estolides. They 

started with an epoxidation of the unsaturated C-C double bond of the capping oleic acid 

chain. Afterwards, high pressure addition of CO2 was conducted to yield the cyclic 

carbonate estolides. These were opened by hexamethylenediamine, which represents an 

isocyanate-free access route towards carbamates. Furthermore, they analyzed the C-C 

double bond geometry and other bond formations of the estolides via extensive NMR-

studies. Earlier studies by Lowery et al.[180] and Li et al.[181] also dealt with further 

functionalization of epoxidized fatty acids for usage as lubricants. 

 

 

Scheme 50: Synthesis of carbonated oleic estolide esters and functionalization with 

hexamethylenediamine. 
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Lastly, some chemo- and biocatalytic esterifications for the synthesis of various esters of 

fatty acids that are suitable as materials for estolide synthesis have been conducted.[182,183–

188] Additionally, estolide synthesis by lipase catalyzed polymerization of fatty acids has 

also been conducted. 

Most recently, Martin-Arjol et al.[189] used lipases to synthesize estolides. They started from 

the unsaturated fatty acids 10(S)-hydroxy-8(E)-octadecenoic acid and 7,10(S,S)-

dihydroxy-8(E)-octadecenoic acid and polymerized them under neat conditions at 80 °C 

for 168 hours to obtain their unsaturated estolide esters (Scheme 51).  

 

 

Scheme 51: Lipase-catalyzed estolide synthesis under neat conditions.[189] 

 

However, several problems are inherent in this approach.  

 10(S)-hydroxy-8(E)-ocatadecenoic acid and 7,10(S,S)-dihydroxy-8(E)-

octadecenoic acid have to be synthesized by fermentation of oleic acid with 

Pseudomonas aeruginosa 42A2, hence increasing the cost of the fatty acid 

tremendously. 

 The lipases show relatively low activity towards the substrates, which is obvious 

regarding the high enzyme loading (12% (w/w)) and the incomplete conversions of 

up to 72% and 95%.  

 The products are a broad mixture of oligomers (reaching up to decamers). This 

leads to hardly analyzable products. 

 The unsaturation of the base fatty acid leads to low oxidative stability. 

Hydrogenation of the C-C double bond is preferable; however this is only achievable 

after tedious protection and successive deprotection of the OH-groups. 

 The viscosities of the synthesized estolides are very high with 402-3235 cSt 

compared to other estolides which have been reported (e.g. 161 cSt at 40 °C for 

oleic acid 2-ethylhexyl ester, see Table 20). 

 

In summary, many pioneering works in the lubricant production out of renewable resources 

have been conducted in the last year, but the gap to commercial application has to be 

closed yet.  
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6.2 NEW LUBRICANT ESTER STRUCTURES – SYNTHESIS AND 

BIODEGRADABILITY 
 

Our project started with the evaluation for an alternative approach for the controlled 

lubricant ester oligomer synthesis based on oleic acid. One possibility is the addition of a 

formyl fragment by hydroformylation (Scheme 52).[56,163,190] By subsequent 

hydrogenation of the aldehyde moiety, one obtains a hydroxylated fatty acid ester that can 

be esterificated with a carboxylic acid (or its derivate) of choice.  

As a starting point for the access of the new estolide structures via hydroformylation, one 

can consider the reported work of the Börner[191], Behr[192] and Hapiot[193,194] groups on the 

hydroformylation of methyl oleate and triglycerides of unsaturated fatty acids. 

 

 

Scheme 52: New, envisioned access route to estolide structures by modification at the 

C-C double bond of oleic acid. 
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However, the hydroformylation setup requires a lot of expertise and expensive hardware. 

Hence, an alternative route that could be conducted in lab scale had to be identified.  

First, the esterification of oleic acid had to be optimized. In contrast to the conventional 

esterification that requires an excess of alcohol and Brønsted acid catalysis under reflux 

conditions, we decided to utilize the commercially available, immobilized lipase CAL-B 

(Novozym 435) for the esterification. In contrast to the conventional approach, only 

stoichiometric amounts of alcohol are required and the process can be run at lower 

temperatures (here 50 °C) and under neat conditions. To drive the reaction equilibrium 

towards complete conversion, we used molecular sieves (4 Å pore size) to bind the one 

equivalent of water that is formed during the esterification. Regarding the alcohol of choice 

for the esterification, we decided to use Guerbet alcohols. These alcohols are known for 

their excellent softener qualities and low viscosity levels and have already been proven to 

be the most promising alcohols to give estolides excellent viscosity properties (see 

Table 20). Furthermore, some earlier research had already been conducted for the 

synthesis of esters of fatty acids with Guerbet alcohol, including by means of biocatalytic 

esterification in up to 3000 L scale.[183–188] With this method, we were able to obtain the 

synthesized esters with 97-99% purity (according to GC analysis) on gram scale 

(Scheme 53). These esters were highly pure because of the mild reaction conditions of 

the lipase catalyzed esterification. 

 

 

Scheme 53: Biocatalytic esterification of oleic acid with several Guerbet alcohols on 

gram scale. 

 

Since the 2-ethylhexyl esters are privileged for low temperature applications due to their 

low melting points, we scaled up the synthesis for the 2-ethylhexyl oleate to 100 mmol 

scale and obtained 37.3 g (95% isolated yield) 2-ethylhexyl oleate.[167,178] 

Due to the high cost of the biocatalyst, recycling of it for several production cycles is a 

requisite for its economic viability. As a consequence, we decided to conduct the 

biocatalytic esterification with an equipped catalyst container for heterogeneous catalysts 

(SpinChem-reactor), in which we deposited the immobilized biocatalyst and the molecular 

sieves ( 

Figure 31). Fortunately, we could not observe any deterioration of the biocatalyst activity 

after three production cycles. This proves the high practicability of the Novozym 435. More 

precisely, 96-98% conversion towards 2-ethylhexyl oleate was observed in all production 

batches (Figure 32). For better mixing of the components, we decided to use cyclohexane 

as a solvent in these experiments since it can easily be removed after esterification in 

vacuo. The high conversion values correlate very well with the batch production in a stirred 

flask.  
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Figure 31: Left: Reaction setup for the 

biocatalytic esterification of oleic acid with 2-

ethylhexanol in a SpinChem-reactor. Top 

right: Rotating reactor during a 

biotransformation. Bottom right: Catalyst 

container filled with Novozym 435 and 

molecular sieves 4 Å. 
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Figure 32: Time course for the conversion towards 2-ethylhexyl oleate. 
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For further upscaling of this esterification, in vacuo removal of the formed H2O in the 

reaction should be considered since molecular sieves are a major cost factor. The in situ 

removal of H2O for biocatalyzed estolide synthesis could already been shown by Martin-

Arjol et al.[189] in 2015. 

 

As an alternative to the hydroformylation of oleic acid esters exists a literature known 

approach via ene reaction with paraformaldehyde to introduce the required C1 fragment 

in one step as an hydroxy group. For this, either free oleic acid or its esters are treated 

with paraformaldehyde in dichloromethane in presence of aluminium Lewis acids 

(Scheme 54).[163,165,195–197] After several optimization experiments, it was decided to 

conduct the ene reaction only for the 2-ethylhexyl oleate instead of pure oleic acid since 

the overall yields were significantly higher. Under optimized conditions, the unsaturated, 

hydroxymethylated Guerbet ester could be obtained in up to 69% yield (17.6 g) after 

vacuum distillation. One of the advantages of this access route is the clearly defined 

position of the fatty acid chain modification. While the HClO4-catalyzed approach by 

Cermak, Isbell et al.[169] (see Scheme 49) leads to mixtures of C5-C13 adducts, this Lewis 

acid catalyzed ene reaction always leads to a 1:1 mixture of C9/C10 adducts. These 

positions have been proven to be the best ones for optimal properties of the estolides. A 

drawback of this synthesis is the required overstochiometric amount (3.3 eq.) of aluminium 

Lewis acid and paraformaldehyde due to high waste generation. An alternative, catalytic 

approach would enhance the viability of this promising modification method for oleic acid 

and its derivatives. Additionally, Friedel-Crafts acylation of oleic acid derivates with acid 

chlorides followed up by hydrogenation of the obtained carbonyl moiety would open up the 

path to structures with higher branching and probably even better properties for use as 

lubricants.[165,198] 

 

 

Scheme 54: Ene reaction of oleic acid or 2-ethylhexyl oleate. 

 

Once the hydroxymethylated oleic acid derivatives were obtained, hydrogenation of the 

C-C double bond was conducted with molecular hydrogen (H2) under atmospheric pressure, 

catalyzed by palladium immobilized on carbon (Pd/C) at room temperature. The 

hydrogenated, saturated alcohols could be obtained in 25% yield for the free acid 

derivative and 62% yield for the 2-ethylhexyl ester, respectively (Scheme 55). However, 

tedious work-up via column chromatography was necessary since hydrogenation of 

unprotected alcohols by Pd/C is accompanied by formation of side products by 

de-/hydrogenation of the OH-group. To avoid this drawback, the hydrogenation was 

conducted after esterification of the unsaturated, hydroxymethylated alcohol. In this case, 

hydrogenation was highly selective and yielded the saturated new dimer in high purity with 
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up to 81% yield (1.62 g). This hydrogenation could be conducted on bigger scale with 

similar yields. 

 

 

Scheme 55: Hydrogenation of the C-C double bonds of the hydroxymethylated oleic acid 

derivatives by molecular hydrogen (H2). 

 

The selective esterification of the hydroxymethylated 2-ethylhexyl oleic acid esters was the 

next important step for the synthesis of the estolide dimers. Initially, we esterificated the 

saturated alcohol with the fatty acids in MTBE at 50-60 °C to obtain the dimer with 85% 

or 56% isolated yield (see Scheme 56). 

 

 

Scheme 56: Biocatalytic esterification of the hydroxymethylated 2-ethylhexyl oleic acid 

ester with stearic acid or oleic acid. 

 

However, the above mentioned selectivity problems with the hydrogenation of 

non-protected alcohols prompted us to esterificate the unsaturated product of the ene 

reaction, 2-ethylhexyl (E)-9+10-(hydroxymethyl)octadec-10+8-enoate (C9/C10 adduct, 

1:1 ratio), directly with stearic acid and conduct the hydrogenation with the formed estolide 

dimer (see Scheme 55 and Scheme 57). After the desired dimer was filtrated over silica, 

it could be obtained with up to 73% yield (11.9 g) in high purity. 
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Scheme 57: Biocatalytic esterification of the unsaturated, hydroxymethylated alcohol 

with stearic acid. 

 

 

There are different synthetic routes to obtain the new dimer structures. Based on the above 

mentioned results, the following one was chosen as the most promising one with respect 

to selectivity and yield: First, esterification of oleic acid with Guerbet alcohols is conducted. 

Second, ene reaction with paraformaldehyde of the Guerbet oleates is conducted. Third, 

esterification of fatty acids with the allyl alcohol derivate is conducted. Last, palladium 

catalyzed hydrogenation yields the saturated, new dimer (Scheme 58). 
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Scheme 58: Synthetic route overview for the synthesis of new lubricant esters. The 

preferred route is marked in blue. All reactions after the ene reaction include the C10-

addition regioisomers (C9/C10 ratio: 1:1). 
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After successfully establishing an access towards the new estolide structures, the author 

decided to synthesize a reported estolide structure to get a direct comparison between the 

old and new structures in terms of their biodegradation. Towards this end, it was decided 

to synthesize a monoestolide 2-ethylhexyl ester derived from 12-hydroxystearic acid that 

is capped with stearic acid (Scheme 59). 12-Hydroxystearic acid is accessible by 

hydrogenation of ricinoleic acid from castor oil.[165,167] 

 

 

Scheme 59: Synthesis of 2-ethylhexyl 12-(stearoyloxy)octadecanoate starting from 12-

hydroxystearic acid. 

 

The biocatalytic esterification of 2-ethylhexanol with 12-hydroxystearic acid was conducted 

with Novozym 435 (30 mg/mmol) at 75 °C for 5 hours and yielded the 2-ethylhexyl 12-

hydroxyoctadecanoate with 73% yield after purification via vacuum distillation. Regarding 

the possible formation of 12-hydroxystearic acid oligomers by self-condensation, no 

amount of this side-product was detected via 1H-NMR after five hours. This can be 

explained with the manifold faster catalyzed esterification of the primary hydroxy moiety 

with the carboxyl group through the Novozym 435. The slow reaction speed for the 

esterification of secondary esters with Novozym 435 was already shown by Martin-Arjol et 

al.[189] (see Scheme 51, chapter 6.1). 
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To avoid slow transesterification of the 2-ethylhexyl 12-hydroxyoctadecanoate with stearic 

acid, stearoyl chloride (n-C17H35COCl) was used for the selective esterification to yield the 

monoestolide 2-ethylhexyl 12-(stearoyloxy)octadecanoate with a total yield of 54% 

(36.0 g) after column chromatography. For that synthetic step, products from four 

separate reactions on 10 g scale (referring oleic acid) were combined for the purification 

via column chromatography.  

The most important criteria for the sustainability of a lubricant is its biodegradability, since 

every year huge amounts of lubricants are leaked into the environment, polluting huge 

amounts of water and ground. Hence, we decided to test the biodegradability of the newly 

synthesized estolides according to the OECD guideline 301 F. This guideline describes the 

biodegrading of a chemical compound in a closed-bottle test. For a successful 

biodegradation, over 60% of the investigated compound has to be decomposed after a 

defined time frame (28 days) under aerobic conditions. 

To get a valuable comparison in terms of biodegradability, it was decided to test the newly 

synthesized lubricant ester, harboring a bridging methylene moiety, against the already 

reported estolide structure by Cermak et al.[176], which is derived from 12-hydroxystearic 

acid (Figure 33). 

 

 

Figure 33: Structures of the investigated estolides for the biodegradibility test according 

to guideline OECD 301 F (closed-bottle test). 

 

Beside the minium amount of 60% which have to be degraded, another criterion is the 

degradation of 50% of the compound in a time frame of 10 days once the first 10% have 

been degraded. 

The closed-bottle test was conducted by Klüber Lubrication in Munich and the result is 

excellent.[199] After 28 days, 81.3% of the new lubricant ester have been degraded and the 

first 60% have been degraded after 8 days (Figure 34). These values proof the ready 

biodegradability of the new estolide and underline its potential as a sustainable alternative 

based on renewable resources. In comparison, the known estolide structure was also 

degraded to a total amount of 83.3% after 28 days, with the first 60% being degraded 

after 7 days (Figure 35). This result is very similar to the newly synthesized lubricant 

ester and demonstrates that the additional methylene moiety poses no threat to the 

biodegradability of a lubricant ester.  
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Figure 34: Biodegradability test according to OECD 301 F of the new lubricant ester, 

performed by and at Klüber Lubrication.[199] 

 

Figure 35: Biodegradability test according to OECD 301 F of the known estolide, 

performed by and at Klüber Lubrication.[199]  
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6.3 SUMMARY AND OUTLOOK FOR THE ESTOLIDE SYNTHESIS 
 

The successful synthesis of new lubricant ester dimer structures, including the positive 

results for the biodegradability (see Figure 34 and Figure 35), opens the path towards a 

highly attractive substrate motif for sustainable, environmentally friendly lubricants that 

are based on renewable resources. Synthesis of the dimers on multi-gram scale was 

successful and an access route via an ene reaction could be identified.  

Another important milestone for the technical application of the new lubricant ester 

structures is the hydroformylation of the oleic acid esters in large scale. Based on the 

earlier works of the Börner[191], Behr[192] and Hapiot[193,194] groups, this milestone should 

be feasible in a short-time period by implementing the know-how of a specialized company 

(e.g. OXEA). 

Beside the access towards lubricant ester dimers, the controlled access towards higher 

oligomers represents an important topic for this compound class. Currently, these 

investigations are on-going. In this approach, oligomerization of the unsaturated, 

hydroxymethylated oleic acid derivate by lipase catalysis is one of the possible access 

routes (Scheme 60). 

 

 

Scheme 60: Lipase catalyzed oligomerization of 9+10-(hydroxymethyl)octadec-10+8-

ene acid (C9/C10 mixture, 1:1 ratio). 

 

Another possibility to gain access towards higher oligomers is represented by the 

esterification with the diacid PRIPOL 1013 (one of its possible constitutions is shown in 

Scheme 61). Further investigations are necessary to optimize this route. 

Lastly, the ene reaction of oleic acid with formaldehyde is still far from an optimal state. 

Especially the large amounts of required Lewis acid are a drawback of this route. Maybe 

better reagents or catalysts exist that can be applied for a more efficient ene reaction, 

lowering to generated waste amount drastically. 
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Scheme 61: Esterification of PRIPOL 1013 with the unsaturated alcohol derivative of 

oleic acid. 
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7 SUMMARY AND OUTLOOK 
 

Several achievements could be realized in the course of this thesis. First off, the chiral 

nitrile synthesis with aldoxime dehydratases (Oxds) has been thoroughly investigated by 

transforming a broad range of arylaliphatic and aliphatic substrates, which were 

synthetically prepared, with five different Oxds as whole cell catalyst. Apart from the 

substrate scope broadening, a lead structure for obtaining high ee-values in the chiral 

nitrile synthesis has been identified: 2-phenylpropanal oxime (PPOx) and its derivatives. 

Transforming the racemic, brominated PPOx derivatives led to ee-values of at least 90% 

(and up to 99%) even at elevated conversion rates close to 50% in a kinetic resolution. 

Additionally, an impressive phenomenon could be observed when the in advance separated 

(E)- or (Z)-stereoisomers of the aldoximes were utilized as substrates: The 

enantiopreference of the Oxds switched in dependence of the (E/Z)-configuration, yielding 

either the (S)-nitrile preferentially out of the (E)-isomers or the (R)-nitrile out of the (Z)-

isomers. As a consequence, both enantiomers can be synthesized by the same biocatalyst 

without the need to screen for a new catalyst with different enantiopreference 

(Scheme 62). This project was conducted in cooperation with Rommelmann[99], Oike[84] 

and the Asano group from the Toyama Prefectural University. 

 

 

Scheme 62: Project overview of the enantioselective, biocatalytic nitrile synthesis. 

 

Additionally, a first process development by conducting preparative scale experiments was 

successful (Scheme 63). Three substrates were transformed at 10-25 mM substrate 

concentration with isolated yields of up to 28% and ee-values with up to 98% (S).  
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Scheme 63: Biocatalytical synthesized chiral nitriles on preparative scale. 

 

Apart from the achievements for the chiral nitrile synthesis with Oxds, the synthesis of 

dinitriles with Oxds could be shown for the first time (Scheme 64). Eight different 

dialdoximes, of which most were completely unknown in literature, with a chainlength from 

three to ten carbon atoms were synthesized and subsequently investigated for conversion 

by Oxds in a broad substrate scope study. 

 

 

Scheme 64: Dialdoxime synthesis, substrate scope study and adiponitrile synthesis 

upscaling. 
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Especially adipaldehyde dioxime was identified as a privileged substrate. The synthesis of 

its dinitrile, the industrially highly important adiponitrile (precursor of 

hexamethylendiamine), was intensified in a process development study. Up to 50 g/L 

substrate loading could be completly converted into adiponitrile, even at liter scale (23.1 g 

isolated adiponitrile). This is the first example of an adiponitrile synthesis at ambient 

conditions in water without the generation of any waste except from two molecules of 

water and excellent chemoselectivity without any detectable side products. In cooperation 

with Gruber-Wölfler and Maier from the TU Graz the solubility of the adipladehyde dioxime 

in the reaction medium could be rationalized.[124] Additionally, first results in the 

immobilization of Oxds were obtained and high cell-density fermentations were conducted 

to obtain larger amounts of Oxds in cooperation with the Friehs group. 

For the development of an alternative access route towards the anti-diabetic drug 

Vildagliptin, a two-step synthesis route for the synthesis of phenylalaninal nitrile starting 

from phenylalaninal was developed. Both enantiomers were separately converted into their 

aldoximes and subsequently dehydrated towards (S)- and (R)- nitrile in high yields 

(Scheme 65). Fortunately, no racemization of the phenylalaninal nitrile could be observed, 

which is paramount for the Vildagliptin synthesis. Rommelmann[99] implemented this 

method into a de novo-synthesis of Vildagliptin starting from L-proline methyl ester. 

 

 

Scheme 65: Two-step, cyanide-free synthesis of the nitrile (top) out of phenylalaninal 

and implementation of the concept in the de novo-synthesis of Vildagliptin by 

Rommelmann[99] (bottom). 

 

Lastly, new lubricant ester structures based on oleic acid as renewable resource have been 

synthesized in four steps after evaluating the most promising synthesis sequence in multi-

gram scale (Scheme 66). First off, biocatalytic esterification of oleic acid with several 

Guerbet alcohols yielded the oleate esters with very high yields and purity (up to 95% yield 

and 99% purity). For implementation of a bridging methylene group, an ene reaction with 

formaldehyde and a Lewis acid led to hydroxymethylene derivate of the oleate with 69% 

yield. The unsaturated dimer was obtained after biocatalytic esterification with 73% yield 

and was successfully hydrogenated to the saturated dimer with 81% yield. This dimer 

represents a promising lubricant structure and has been proven to be biodegradable in a 
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closed bottle test (according to OECD 301 F) at Klüber Lubrication in Munich.[199] After 

28 days, 81.3% of the new lubricant ester dimer was completely degraded. This result is 

highly promising for the application of these lubricant esters in maritime environments, 

since it will not polute the environment for a prolonged time span. Apart from the dimer, 

first functionalized derivatives of the dimer have been synthesized to gain access towards 

even higher oligomers of the lubricant esters, since these may even better perform at low 

temperatures due to lower melting point and lower viscosities. 

 

 

Scheme 66: Multi-step synthesis of new lubricant ester dimer structures. 
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8 ZUSAMMENFASSUNG UND AUSBLICK 
 

Verschiedene Errungenschaften konnten im Laufe dieser Arbeit realisiert werden. Zunächst 

wurde die chirale Nitrilsynthese mit Aldoximedehydratasen (Oxds) durchgängig 

untersucht, indem eine Bandbreite an synthetisierten arylaliphatischen und aliphatischen 

Aldoximsubstraten mit fünf verschiedenen Oxd-Ganzzellkatalysatoren umgesetzt wurde. 

Zusätzlich wurde neben dem Erweitern des Substratspektrums eine privilegierte 

Leitstruktur identifiziert, mit welcher hohe ee-Werte bei der chiralen Nitrilsynthese erzielt 

werden konnte: 2-Phenylpropionaldehydoxim (PPOx) und seine Derivate. Die 

Transformation der racemischen, bromierten PPOx-Derivate in einer kinetischen 

Racematspaltung führte zu ee-Werten von mindestens 90% (und sogar bis zu 99%) selbst 

bei höheren Umsatzraten nah an 50%. Darüber hinaus wurde ein beeindruckendes 

Phänomen beobachtet der Verwendung von zuvor getrennten (E)- oder (Z)-

Stereoisomeren der Aldoxime als Substrate: Die Enantiopräferenz der Oxds wechselte in 

Abhängigkeit von der (E/Z)-Konfiguration, wobei entweder das (S)-Nitril bevorzugt aus 

den (E)-Isomeren oder das (R)-Nitril bevorzugt aus den (Z)-Isomeren gebildet wurde. 

Folglich können beide Enantiomere der Nitrile mit dem gleichen Biokatalysator zugänglich 

gemacht werden ohne nach weiteren Biokatalysatoren mit einer anderen Enantiopreferenz 

zu suchen (Schema 1). Dieses Projekt wurde in Kooperation mit Rommelmann[99], Oike[84] 

und der Asano-Gruppe von der Toyama Prefectural University durchgeführt. 

 

 

Schema 1: Projektübesicht der enantioselektiven, biokatalytischen Nitrilsynthese. 

 

Desweiteren wurde hierfür eine erste Prozessentwicklung durchgeführt, indem 

Experimente im präparativen Maßstab erfolgreich durchgeführt werden konnten 

(Schema 2). Drei Substrate wurden bei 10-25 mM Substratkonzentration erfolgreich mit 

isolierten Ausbeute von bis zu 28% und ee-Werte von bis zu 98% (S) erhalten. 
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Schema 2: Biokatalytisch synthetisierte chirale Nitrile im präparativen Maßstab. 

 

Neben den Errungenschaften in der chiralen Nitrilsynthese mit Oxds konnte auch erstmalig 

die Synthese von Dinitrilen mit Oxds demonstriert werden. (Schema 3). Acht 

verschiedene Dialdoxime mit einer Kettenlänge von drei bis zehn Kohlenstoffatomen, von 

denen die meisten komplett unbekannt in der Literatur waren, wurden synthetisiert und 

anschließend wurde ihre Umsetzung durch Oxds in einer breiten Substratkspektrumsstudie 

untersucht. 

 

 

Schema 3: Dialdoximsynthese, Substratspektrumsstudie und Hochskalierung der 

biokatalytischen Adiponitrilsynthese. 
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Als besonders privilegiertes Substrat konnte Adipaldehyddioxim identifiziert werden. Die 

Synthese dessen Dinitrils, des industriell höchst wichtigen Adiponitrils (Vorstufe von 

Hexamethylendiamin), wurde in einer Prozessentwicklungsstudie intensiviert. Bis zu 50 g/L 

an Substratmenge konnten komplett zu Adiponitril selbst im Litermaßstab umgesetzt 

werden (23.1 g isoliertes Adiponitril). Dies ist das erste Beispiel einer Adiponitrilsynthese 

bei Umgebungsbedingungen in Wasser ohne die Generierung von Abfall außer zwei 

Äquivalenten Wasser. Die Chemoselektivität war auch exzellent und es konnten keine 

detektierbaren Nebenprodukte festgestellt werden. In Kooperation mit Gruber-Wölfler und 

Maier von der TU Graz konnte die Löslichkeitkeit von Adipaldehyddioxim im 

Reaktionsmedium rationalisiert werden.[124] Zusätzlich wurden erste Ergebnisse in der 

Immoblisierung von Oxds erhalten und Hochzelldichtefermentationen wurden in 

Kooperation mit der Friehs-Gruppe durchgeführt, um größere Mengen an Oxds zu erhalten. 

Bezüglich der Entwicklung Entwicklung einer alternativen Zugangsroute zu dem 

Antidiabetesmedikament Vildagliptin konnte eine zweistufige Syntheseroute für die 

Darstellung des Nitrils ausgehend von Phenylalaninal entwickelt werden. Beide 

Enantiomere dessen wurden getrennt voneinander in ihre entsprechenden Aldoxime 

umgewandelt und anschließend entweder zu (S)- oder (R)-Nitril in hohen Ausbeuten 

dehydratisiert (Schema 4). Bemerkenswerterweise wurde hierbei keine Racemisierung 

des Nitrils beobachtet werden, welches eine Grundvoraussetzung für eine erfolgreich 

Vildagliptinsynthese darstellt. Rommelmann[99] implizierte diese Methode erfolgreich in 

eine de novo-Synthese von Vildagliptin ausgehend von L-Prolinmethylester. 

 

 

Schema 4: Zweistufie, cyanidfreie Synthese der Nitrile ausgehend von Phenylalaninal 

(oben) und Implementierung des Konzepts in eine de novo-Synthese von Vildagliptin 

durch Rommelmann[99] (unten). 

 

Als letztes konnten neue Schmierstoffesterstrukturen basierend auf Ölsäure als 

erneuerbaren Rohstoff in vier Stufen und Multigrammmaßstab synthetisiert werden, 

nachdem die vielversprechendste Synthesesequenz identifiziert wurde (Schema 5). Als 

erstes lieferte die biokatalytische Veresterung von Ölsäure mit verschiedenen 

Guerbetalkoholen die Oleatester mit sehr hohen Ausbeuten und Reinheit (bis zu 95% 
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Ausbeute und 99% Reinheit). Zur Einführung einer verbrückenden Methylengruppe wurde 

eine En-Reaktion mit Formaldehyd in Anwesenheit einer Lewissäure durchgeführt, wodurch 

ein Hydroxymethylenderivat des Oleatesters mit 69% Ausbeute erhalten wurde. Das 

ungesättigte Dimer wurde erhalten nach biokatalytischer Veresterung mit 73% Ausbeute 

und wurde anschließend erfolgreich hydriert zum gesättigten Dimer mit 81% Ausbeute. 

Dieses Dimer stellt eine vielversprechende Schmierstoffstruktur dar und seine 

Bioabbaubarkeit konnte erfolgreich in einem manometrischen Respirationstest (nach OECD 

301F) durch Klüber Lubrication in München nachgewiesen werden.[199] Nach 28 Tagen 

waren 81.3% des neuen Schmierstoffester-Dimers komplett abgebaut. Dieses Ergebnis is 

vielversprechend für die Anwendung dieser Schmierstoffester im maritimen Bereich, da es 

die Umwelt nicht für einen längeren Zeitraum verschmutzen würde. Neben dem 

beschriebenen Dimer konnten erste funktionalisierte Derivate des Dimers synthetisiert 

werden, um Zugang zu höheren Oligmeren der Schmierstoffester zu erhalten. Diese 

könnten nämlich noch bessere Niedrigtemperatureigenschaften besitzen wie einen 

niedrigeren Schmelzpunkt oder niedrigere Viskositäten. 

 

 

Schema 5: Mehrstufige Synthese von neuen Schmierstoffstrukturen. 
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9 EXPERIMENTAL PROCEDURES 

9.1 GENERAL INFORMATION 
 

All chemicals were purchased by commercial suppliers and used as received if not explicitly 

stated otherwise. 

(E/Z)-isomer separation of the oximes was achieved by manual column chromatography 

with silica 60 (0.04-0.063 µm particle size) or by utilization of the Biotage „Isolera One“ 

flash chromatography system with cyclohexane/ethyl acetate mixtures. 

Evaporation of organic solvents was conducted at 20 °C bath temperature after (E/Z)-

separation to suppress isomerization. Otherwise, 40 °C was used.  

E.coli BL21-CodonPlus(DE3)-RIL cells were transformed with the corresponding plasmid 

containing the gene for each of the aldoxime dehydratases and stored at -80 °C as cryo 

culture in glycerol prior to use. 

The gene for the aldoxime dehydratase from Bacillus sp. OxB-1 (OxdB) used for chiral 

nitrile synthesis was located on a pUC 18 vector. 

The gene for the his-tagged aldoxime dehydratase from Bacillus sp. OxB-1 (OxdBCHis6) used 

in the immobilization studies was located on a pET22b vector. 

The genes for the aldoxime dehydratases from Pseudomonas chlororaphis (OxdA), 

Fusarium graminearum (OxdFG), Rhodococcus erythropolis (OxdRE) and Rhodococcus 

globerulus (OxdRG) were purchased by GeneArt (Thermo Scientific) in their codon 

optimized form, located on pET28a or pET28b plasmids with an sixfold N- or C-terminal 

His-Tag (see Appendix). 

OxdB(CHis6) was purified via NiNTA affinity chromatography with 1 mL His GraviTrap 

columns (GE Healthcare) according to the given protocol. 

Cell lysis was conducted by sonification of cell suspension at 0 °C. 

Bradford-Assays for protein concentration determinations were conducted with a standard 

protocol on 250 µL scale. 

SDS-PAGE analysis was conducted with 4% Polyacrylamide collection gels and 12% 

Polyacrylamide separation gels in a Mini-PROTEAN Electrophoresis cell (Bio-Rad 

Laboratories). 

 

 

  



Experimental procedures 

 

134 

9.2 ANALYTICAL METHODS 
 

Thin-layer chromatography (TLC) measurements were performed on Merck silica gel 60 

F254 plates. Oximes were visualized by UV light or staining with potassium permanganate 

solution. Nitriles were visualized by staining with Phosphomolybdic acid. 

NMR spectra were recorded on a Bruker Avance III 500 at a frequence of 500 MHz (1H) or 

125 MHz (13C). The chemical shift δ is given in ppm and referenced to the corresponding 

solvent signal (CD2Cl2 or CDCl3). Coupling constants are given in Hz.  

CHN analysis was conducted by the CHN measurement service of the Bielefeld University. 

IR spectra were measured on a Nicolet 380 of the Thermo Electron Corporation. 

ESI Mass spectra were recorded on a Bruker Esquire 3000 in positive Ion mode.  

Melting points were recorded on a Melting Point B-540 of the Büchi company. 

Conversion of some biotransformations was determined by RP-HPLC measurements in 

comparison to a calibration curve. Measurements were conducted on a Macherey-Nagel 

Nucleodur C18 HTec column at 40 °C with acetonitrile/water as mobile phase and UV 

detection at 210 or 220 nm. 

Enantiomeric ratios were determined by Chiral HPLC measurements on the Daicel Chiracel 

OB-H, OJ-H and AD-H at 20 °C with supercritical CO2/isopropanol as mobile phase. 

Alternatively, enantiomeric ratios could also be determined on a chiral GC column BGB-

174 (0.25 mm ID, 0.25µm film, 30 m) from the BGB Analytik AG company with N2 as a 

carrier gas. 

Optical rotations were measured on a Perkin Elmer Model 341 Polarimeter at 20 °C and 

589 nm. 

High resolution mass spectra are recorded using an Agilent 6220 time-of-flight mass 

spectrometer (Agilent Technologies, Santa Clara, CA, USA) in extended dynamic range 

mode equipped with a Dual-ESI source, operating with a spray voltage of 2.5 kV. Nitrogen 

served both as the nebulizer gas and the dry gas. Nitrogen was generated by a nitrogen 

generator NGM 11. Samples are introduced with a 1200 HPLC system consisting of an 

autosampler, degasser, binary pump, column oven and diode array detector (Agilent 

Technologies, Santa Clara, CA, USA) using a C18 Hypersil Gold column (length: 50 mm, 

diameter: 2.1 mm, particle size: 1,9 μm) with a short gradient (in 4 min from 0% B to 

98% B, back to 0% B in 0.2 min, total run time 7.5 min) at a flow rate of 250 μL/min and 

column oven temperature of 40°C. HPLC solvent A consists of 94.9% water, 5% acetonitrile 

and 0.1% formic acid, solvent B of 5% water, 94.9% acetonitrile and 0.1% formic acid. 

The mass axis was externally calibrated with ESI-L Tuning Mix (Agilent Technologies, Santa 

Clara, CA, USA) as calibration standard. 

Conversion of some biotransformations was determined by GC measurements in 

comparison to a calibration curve. GC-chromatograms were recorded on a Shimadzu GC-

2010 using the column Phenomenex ZB-5MSi with different temperature programs and H2 

as carrier gas. 

 

  



Experimental procedures 

 

135 

9.3 CYANIDE-FREE, BIOCATALYTIC SYNTHESIS OF CHIRAL NITRILES 

9.3.1 SYNTHESIS OF REFERENCE COMPOUNDS 

9.3.1.1 General procedure 1 (GP1): Nitroaldol condensation of aromatic 

aldehydes with Nitromethane 

 

 

The synthesis was conducted in analogy to Wong et al..[200] The corresponding 

benzaldehyde (1.0 eq.), ammonium acetate (0.1 eq.) and nitromethane (6.5 eq.) were 

dissolved in acetic acid and heated to reflux for 24 hours. Afterwards, complete conversion 

was confirmed via TLC (cyclohexane/ethyl acetate). Water was added; the precipitate was 

filtered off and dried in vacuo. Recrystallization from ethanol yielded the corresponding E-

nitroalkene as crystalline solid. The crude product could also be purified via column 

chromatography (cyclohexane/ethyl acetate). 

 

9.3.1.1.1 Synthesis of (E)-1-bromo-4-(2-nitrovinyl)benzene  

 

The synthesis was conducted according to GP1. 

4-Bromobenzaldehyde (5.55 g, 30.0 mmol), ammonium acetate 

(231 mg, 3.00 mmol) and nitromethane (10.5 mL, 197 mmol) 

were dissolved in 15 mL acetic acid and refluxed for 24 hours. 

Recrystallization yielded the product as green, crystalline solid.  

 

Yield: 3.86 g, 56%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.93 (d, 1H, 3J = 13.7 Hz, CH=CH), 7.59 (m, 2H, 

Ar-H), 7.58 (d, 1H, 3J = 13.7 Hz, CH=CH), 7.42 (m, 2H, Ar-H). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 137.9, 137.6, 132.9, 130.5, 129.1, 126.9.  

 

The analytical data correspond in analogy to the literature.[201] 
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9.3.1.1.2 Synthesis of (E)-1-bromo-4-(2-nitrovinyl)benzene  

 

The synthesis was conducted according to GP1. Freshly distilled 

3-Bromobenzaldehyde (2.33 mL, 20.0 mmol), ammonium acetate 

(154 mg, 2.00 mmol) and nitromethane (7.0 mL, 131 mmol) were 

dissolved in 10 mL acetic acid and refluxed for 24 hours. 

Recrystallization yielded the product as green, crystalline solid. 

 

 

Yield: 1.85 g, 41%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.92 (d, 1H, 3J = 13.7 Hz, CH=CH), 7.70 (t, 1H, 
4J = 1.8 Hz, Ar-H), 7.62 (m, 1H, Ar-H), 7.56 (d, 1H, 3J = 13.7 Hz, CH=CH), 7.47 (m, 1H, 

Ar-H), 7.34 (t, 1H, 3J = 8.0 Hz, Ar-H). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 138.2, 137.5, 135.0, 132.2, 131.8, 131.0, 127.8, 

123.6.  

 

The analytical data corresponds to literature values.[202] 

 

 

9.3.1.1.3 Synthesis of (E)-1-bromo-4-(2-nitrovinyl)benzene  

 

The synthesis was conducted according to GP1. Freshly distilled 

2-Bromobenzaldehyde (2.33 mL, 20.0 mmol), ammonium acetate 

(154 mg, 2.00 mmol) and nitromethane (7.0 mL, 131 mmol) were 

dissolved in 10 mL acetic acid and refluxed for 24 hours. 

Recrystallization yielded the product as bright yellow, crystalline solid. 

 

 

Yield: 2.36 g, 52%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 8.38 (d, 1H, 3J = 13.7 Hz, CH=CH), 7.69 (dd, 1H, 
3J = 7.9 Hz, 4J = 1.4 Hz, Ar-H), 7.57 (dd, 1H, 3J = 7.7 Hz, 4J = 1.8 Hz, Ar-H), 7.53 (d, 1H, 
3J = 13.7 Hz, CH=CH), 7.39 (dt, 1H, 3J = 7.7 Hz, 4J = 1.4 Hz, Ar-H), 7.34 (dt, 1H, 
3J = 7.9 Hz, 4J = 1.8 Hz, Ar-H). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 139.0, 137.7, 134.2, 133.1, 130.5, 128.6, 128.2, 

126.5.  

 

The analytical data corresponds to literature values.[203] 
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9.3.1.2 General procedure 2 (GP2): Michael Addition of methylmagnesium 

bromide with Nitroalkenes 

 

 

 

The synthesis was carried out in a heat dried schlenk flask under argon. Dry toluene was 

filled into the flask and cooled to 0 °C. The nitroalkene (1.0 eq.) was dissolved and a 3.0 M 

solution of methylmagnesium bromide in diethyl ether (1.5 eq.) was slowly added to the 

solution under vigorous stirring. After three at 0 °C, complete conversion was achieved 

according to TLC (cyclohexane/ethyl acetate) and saturated NH4Cl-solution (1:1, v/v) was 

added. The phases were separated and the aqueous phase was extracted three times with 

ethyl acetate (1:1, v/v). After washing of the organic phase with brine (1:3, v/v), it was 

dried over MgSO4 and the solvent was removed in vacuo. Column chromatography 

(cyclohexane/ethyl acetate 6:1 or 10:1, v/v) yielded the racemic nitroalkanes as oils. 

 

9.3.1.2.1 Synthesis of rac-1-bromo-4-(1-nitropropan-2-yl)benzene 

 

The synthesis was carried out according to GP2. (E)-1-bromo-4-(2-

nitrovinyl)benzene (1.82 g, 8.00 mmol) was dissolved in 50 mL dry 

toluene at 0 °C and methylmagnesium bromide (4.00 mL, 

12.0 mmol) was added. Work up yielded the product as yellow oil. 

 

 

Yield: 1.10 g, 60%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.46 (d, 1H, 3J = 8.4 Hz, Ar-H), 7.11 (d, 1H, 
3J = 8.4 Hz, Ar-H), 4.51 (dd, 1H, 2J = 12.2 Hz, 3J = 7.7 Hz, CHCH2NO2), 4.48 (dd, 1H, 
2J = 12.2 Hz, 3J = 7.7 Hz, CHCH2NO2), 3.62 (sx, 1H, 3J = 7.2 Hz, CHCH2NO2), 1.37 (d, 3H, 

3J = 7.1 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 140.0, 132.3, 128.8, 121.6, 81.6, 38.3, 18.8. 

 

The analytical data corresponds with literature data.[204] 
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9.3.1.2.2 Synthesis of rac-1-bromo-3-(1-nitropropan-2-yl)benzene 

 

The synthesis was carried out according to GP2. (E)-1-bromo-3-(2-

nitrovinyl)benzene (1.80 g, 7.90 mmol) was dissolved in 50 mL dry 

toluene at 0 °C and methylmagnesium bromide (4.00 mL, 12.0 mmol) 

was added. Work up yielded the product as yellow oil. 

 

 

 

 

Yield: 928 mg, 48%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.40 (d, 1H, 3J = 7.8 Hz, Ar-H), 7.38 (s, 1H, Ar-H), 

7.22 (t, 1H, 3J = 7.8 Hz, Ar-H), 7.16 (d, 1H, 3J = 7.7 Hz, Ar-H), 4.53 (dd, 1H, 2J = 12.2 Hz, 

3J = 7.8 Hz, CHCH2NO2), 4.48 (dd, 1H, 2J = 12.2 Hz, 3J = 7.8 Hz, CHCH2NO2), 3.61 (sx, 

1H, 3J = 7.2 Hz, CHCH2NO2), 1.37 (d, 3H, 3J = 7.1 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 143.3, 130.9, 130.7, 130.2, 125.8, 123.1, 81.5, 

38.4, 18.8. 

 

The analytical data corresponds with literature data.[204] 

 

 

9.3.1.2.3 Synthesis of rac-1-bromo-2-(1-nitropropan-2-yl)benzene 

 

The synthesis was carried out according to GP2. (E)-1-bromo-2-(2-

nitrovinyl)benzene (1.82 g, 8.00 mmol) was dissolved in 50 mL dry 

toluene at 0 °C and methylmagnesium bromide (4.00 mL, 12.0 mmol) 

was added. Work up yielded the product as yellow oil. 

 

 

 

Yield: 1.15 g, 63%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.59 (m, 1H, Ar-H), 7.32 (m, 1H, Ar-H), 7.24 (m, 

1H, Ar-H), 7.14 (m, 1H, Ar-H), 4.66 (dd, 1H, 2J = 12.2 Hz, 3J = 6.0 Hz, CHCH2NO2), 4.48 

(dd, 1H, 2J = 12.2 Hz, 3J = 8.8 Hz, CHCH2NO2), 4.16 (m, 1H, CHCH2NO2), 1.40 (d, 3H, 

3J = 7.0 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 139.8, 133.7, 129.1, 128.2, 127.4, 124.6, 80.3, 

37.4, 17.8. 

 

The analytical data corresponds with literature data.[205] 
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9.3.1.3 General procedure 3 (GP3): Synthesis of racemic aldoximes via 

disproportionation of racemic nitroalkanes with benzyl bromide 

 

 

 

The syntheses were carried out in a heat dried schlenk flask under argon atmosphere in 

analogy to Czekelius.[97] Freshly distilled THF was given into the flask. KOH (85 wt% 

pellets, 1.05 eq.) and molecular sieves 4 Å were added and the suspension was stirred for 

one hour. Afterwards, benzyl bromide (1.1 eq.) and tetrabutylammonium iodide (TBAI, 

0.05 eq.) were added. Lastly, the nitroalkane (1.0 eq.) was added over 5 min. The resulting 

suspension was stirred for three hours at room temperature and conversion was checked 

via TLC (cyclohexane/ethyl acetate). Water (1:1, v/v) was added, the phases were 

seperated and the aqueous phase was extracted three times with ethyl acetate. Drying 

over MgSO4 and removal of the solvent in vacuo yielded an oily crude product. Purification 

via automated column chromatography (cyclohexane/ethyl acetate) yielded the (E)- and 

(Z)- isomers as colorless solids or oils depending on percentage of isomeric excess. 

 

 

9.3.1.3.1 Synthesis of rac-(E/Z)-2-(4-bromophenyl)propanal oxime 

 

The synthesis was carried out according to GP3. 10 mL THF were 

given into the schlenk flask, 85 wt% KOH (176 mg, 2.67 mmol) 

and molecular sieves 4 Å (150 mg) were added. Benzyl bromide 

(332 µL, 2.80 mmol) and TBAI (47.0 mg, 127 µmol) were added 

after an hour. rac-1-bromo-4-(1-nitropropan-2-yl)benzene 

(580 mg, 2.54 mmol) was added and the reaction mixture was 

stirred for three hours. Work up and purification via automated 

column chromatography (cyclohexane/ethyl acetate 6:1, v/v) yielded the (E)-isomer 

(>99% E) as pale yellow oil, which crystallized at -20 °C and the (Z)-isomer (89% Z) as 

colorless, crystalline solid. 

 

Combined yield: 228 mg, 40%. 

 

rac-(E)-2-(4-bromophenyl)propanal oxime: 

 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.47 (d, 1H, 3J = 6.0 Hz, CHNOH), 7.46 (m, 2H, 

Ar-H), 7.13 (m, 2H, Ar-H), 7.12 (s, 1H, NOH), 3.63 (qi, 1H, 3J = 6.8 Hz, Ph-CH), 1.41 (d, 

3H, 3J = 7.0 Hz, CH3). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 154.8, 142.0, 132.2, 129.8, 121.1, 40.3, 19.1. 

IR (neat) [cm-1]: 3241, 2965, 2924, 1486, 1447, 1402, 1369, 1300, 1074, 1008, 948, 

933, 821, 716, 699, 533. 
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RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 22.7 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1 = 20.4 min, Rt2 = 23.9 min. 

 

 

rac-(Z)-2-(4-bromophenyl)propanal oxime: 

 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.45 (m, 2H, Ar-H), 7.33 (s, 1H, NOH), 7.17 (m, 

2H, Ar-H), 6.75 (d, 1H, 3J = 7.3 Hz, CHNOH), 4.38 (qi, 1H, 3J = 7.2 Hz, Ph-CH), 1.39 (d, 

3H, 3J = 7.2 Hz, CH3). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 155.3, 142.3, 132.2, 129.6, 120.8, 34.9, 18.9. 

IR (neat) [cm-1]: 3184, 3076, 2974, 2849, 1486, 1450, 1400, 1320, 1074, 1007, 928, 

893, 881, 821, 696, 631, 613, 509. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 26.3 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1 = 25.1 min, Rt2 = 26.3 min. 

 

rac-(E,Z)-2-(4-bromophenyl)propanal oxime: 

EA: calcd for C9H10BrNO: C, 47.39; H, 4.42; N, 6.14. Found: C, 47.913; H, 4.63; N, 6.06. 

MS (ESI): m/z = 228.1, 230.1 [M+H]+. 

 

 

9.3.1.3.2 Synthesis of rac-(E/Z)-2-(3-bromophenyl)propanal oxime  

 

The synthesis was carried out according to GP3. 20 mL THF were given 

into the schlenk flask, 85 wt% KOH (264 mg, 3.99 mmol) and 

molecular sieves 4 Å (230 mg) were added. Benzyl bromide (496 µL, 

4.18 mmol) and TBAI (71.0 mg, 190 µmol) were added after an hour. 

rac-1-bromo-3-(1-nitropropan-2-yl)benzene (928 mg, 3.80 mmol) 

was added and the reaction mixture was stirred for three hours. Work 

up and purification via automated column chromatography 

(cyclohexane/ethyl acetate 8:1, v/v) yielded the (E)-isomer (96% E) 

as pale yellow oil and the (Z)-isomer (87% Z) as pale yellow oil. 

 

Combined yield: 342 mg, 40%. 

 

rac-(E)-2-(3-bromophenyl)propanal oxime: 
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1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.48 (d, 1H, 3J = 6.0 Hz, CHNOH), 7.39 (m, 2H, 

Ar-H), 7.21 (m, 2H, Ar-H), 7.06 (s, 1H, NOH), 3.64 (qi, 1H, 3J = 6.8 Hz, Ph-CH), 1.42 (d, 

3H, 3J = 7.0 Hz, CH3). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 154.7, 145.3, 131.1, 130.9, 130.5, 126.8, 123.1, 

40.6, 19.1. 

IR (neat) [cm-1]: 3253, 2971, 2930, 1592, 1566, 1474, 1449, 1424, 1299, 1073, 997, 

929, 879, 781, 694, 669, 597. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 21.3 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1+2 = 16.6 min. 

 

rac-(Z)-2-(3-bromophenyl)propanal oxime: 

 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.45 (m, 1H, Ar-H), 7.44 (s, 1H, NOH), 7.38 (m, 

1H, Ar-H), 7.23 (m, 2H, Ar-H), 6.76 (d, 1H, 3J = 7.3 Hz, CHNOH), 4.39 (qi, 1H, 3J = 7.2 Hz, 

Ph-CH), 1.40 (d, 3H, 3J = 7.2 Hz, CH3). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 155.1, 145.5, 130.9, 130.8, 130.3, 126.6, 123.1, 

35.2, 18.9. 

IR (neat) [cm-1]: 3221, 3082, 2970, 2872, 1592, 1567, 1474, 1453, 1423, 1375, 1322, 

1073, 1022, 928, 877, 816, 780, 691. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 24.6 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1 = 19.6 min, Rt2 = 21.4 min. 

 

 

rac-(E,Z)-2-(3-bromophenyl)propanal oxime: 

 

EA: calcd for C9H10BrNO: C, 47.39; H, 4.42; N, 6.14. Found: C, 47.59; H, 4.52; N, 5.88. 

MS (ESI): m/z = 228.2, 230.1 [M+H]+. 

 

 

9.3.1.3.3 Synthesis of rac-(E/Z)-2-(2-bromophenyl)propanal oxime 

 

The synthesis was carried out according to GP3. 20 mL THF were given 

into the schlenk flask, 85 wt% KOH (348 mg, 5.25 mmol) and 

molecular sieves 4 Å (300 mg) were added. Benzyl bromide (653 µL, 

5.50 mmol) and TBAI (93.0 mg, 250 µmol) were added after an hour. 

rac-1-bromo-2-(1-nitropropan-2-yl)benzene (1.14 g, 5.00 mmol) was 

added and the reaction mixture was stirred for three hours. Work up 
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and purification via automated column chromatography (cyclohexane/ethyl acetate 8:1, 

v/v) yielded the (E)-isomer (>99% E) and the (Z)-isomer (96% Z) as colorless solids. 

 

Combined yield: 550 mg, 48%. 

 

rac-(E)-2-(2-bromophenyl)propanal oxime: 

 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.57 (dd, 1H, 3J = 8.0 Hz, 4J = 1.2 Hz, Ar-H), 7.54 

(d, 1H, 3J = 5.0 Hz, CHNOH), 7.39 (s, 1H, NOH), 7.32 (dt, 1H, 3J = 7.6 Hz, 4J = 1.2 Hz, 

Ar-H), 7.25 (dd, 1H, 3J = 7.8 Hz, 4J = 1.8 Hz, Ar-H), 3.64 (dq, 1H, 3J = 7.0, 5.0 Hz, Ph-

CH), 1.42 (d, 3H, 3J = 7.0 Hz, CH3). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 154.0, 142.0, 133.6, 129.1, 129.0, 128.4, 124.7, 

40.0, 18.3. 

IR (neat) [cm-1]: 3268, 2973, 1469, 1432, 1369, 1287, 1248, 1023, 1009, 948, 935, 762, 

751, 722, 661, 593, 546,  

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 19.1 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1+2 = 14.2 min. 

 

rac-(Z)-2-(2-bromophenyl)propanal oxime: 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.96 (s, 1H, NOH), 7.56 (dd, 1H, 3J = 8.0 Hz, 
4J = 1.0 Hz, Ar-H), 7.31 (m, 2H, Ar-H), 7.12 (ddd, 1H, 3J = 9.0, 6.0 Hz, 4J = 3.0 Hz, 

Ar-H),6.87 (d, 1H, 3J = 6.5 Hz, CHNOH), 4.66 (qi, 1H, 3J = 7.0 Hz, Ph-CH), 1.42 (d, 3H, 
3J = 7.1 Hz, CH3). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 154.8, 143.0, 133.6, 128.8, 128.6, 128.5, 124.5, 

36.0, 18.8. 

IR (neat) [cm-1]: 3180, 3059, 2858, 1469, 1458, 1436, 1309, 1056, 1019, 937, 903, 867, 

818, 748, 699, 653, 567. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 19.1 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1+2 = 19.7 min. 

 

rac-(E,Z)-2-(3-bromophenyl)propanal oxime: 

EA: calcd for C9H10BrNO: C, 47.39; H, 4.42; N, 6.14. Found: C, 47.61; H, 4.61; N, 6.13. 

MS (ESI): m/z = 228.0, 230.0 [M+H]+. 
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9.3.1.4 General procedure 4 (GP4): Synthesis of aldoximes by condensation of 

aldehydes with hydroxyl amine salts 

 

 

 

Hydroxylamine hydrochloride (1.5 eq.) and sodium carbonate (0.75 – 1.5 eq.) were 

dissolved in H2O at room temperature. Aldehyde was added to this solution and stirred 

vigorously until complete conversion according to TLC analysis (cyclohexane/ethyl acetate 

in different volumetric percentages) was achieved. The solution was extracted three times 

with ethyl acetate (1:1 v/v) and the combined organic phases were washed with H2O (1:3 

v/v). Drying over MgSO4 and evaporation of the solvent gave a crude product, which was 

purified by column chromatography if necessary. The (E/Z)-ratio of the product was 

determined by 1H-NMR spectroscopy in CD2Cl2. The isomers were, if possible, separated 

via column chromatography or automated flash chromatography. 

 

9.3.1.4.1 (E/Z)-phenyl acetaldehyde oxime 

 

The synthesis was carried out according to GP4. Hydroxylamine 

hydrochloride (4.34 g, 62.4 mmol) and sodium carbonate (6.61 g, 

62.4 mmol) were dissolved in 50 mL H2O at room temperature. After 

the addition of phenyl acetaldehyde (5.00 g, 41.6 mmol) the colorless 

suspension was stirred for 3 hours, upon which complete conversion 

was achieved according to TLC analysis (cyclohexane/ethyl acetate 

1:1, v/v). The work up yielded the product as colorless solid, containing a mixture of (E/Z)-

isomers (E/Z = 5:95). 

 

Yield: 5.06 g, 91%. 

 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 8.88 (s, 1H, CH=NOH), 8.33 (s, 1H, CH=NOH), 

7.52 (t, 1H, 3J = 6.3 Hz, CH=NOH), 7.35-7.21 (m, 5H, Ph-H), 6.88 (t, 1H, 3J = 5.4 Hz, 

CH=NOH), ), 3.72 (d, 2H, 3J = 5.4 Hz, CH2), 3.53 (d, 2H, 3J = 6.3 Hz, CH2). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 151.4, 151.22, 137.4, 136.9, 129.4, 129.3, 129.2, 

129.2, 127.4, 127.2, 36.4, 32.1. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 210 nm, Rt1 = 7.2 min (E), Rt2 = 8.5 min (Z). 

 

The data corresponds with literature data.[206] 
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9.3.1.4.2 rac-(E/Z)-3-cyclohexene-1-carboxaldehyde oxime 

 

The synthesis was carried out according to GP4. Hydroxylamine 

hydrochloride (3.13 g, 45.0 mmol) and sodium carbonate (4.77 g, 

45.0 mmol) were diluted in 50 mL H2O at RT. After the addition of 

rac-3-cyclohexene-1-carboxaldehyde (3.40 mL, 30.0 mmol) the 

colorless suspension was stirred for 3 hours, upon which complete 

conversion was achieved according to TLC analysis. The product was 

obtained as colorless oil after work up, which consisted of a 3:1 mixture of (E/Z)-isomers. 

 

Yield: 3.54 g, 94%. 

rac –(E)-3-cyclohexene-1-carboxaldehyde oxime:  

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.39 (d, 1H, 3J = 6.1 Hz, CH=NOH), 7.18 (s, 1H, 

CH=NOH), 5.69 (m, 2H, CH=CH), 2.49 (m, 1H, CH-CH-NOH), 2.16 (m, 1H), 2.09 (m, 2H), 

2.02 (m, 1H), 1.85 (m, 1H), 1.52 (m, 1H).  

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 155.8, 127.5, 125.7, 35.0, 29.1, 26.7, 24.7. 

 

 

rac –(Z)-3-cyclohexene-1-carboxaldehyde oxime:  

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.14 (s, 1H, CH=NOH), 6.60 (d, 1H, 3J = 7.1 Hz, 

CH=NOH), 5.69 (m, 2H, CH=CH), 3.21 (m, 1H, CH-CH-NOH), 2.24 (m, 1H), 2.10 (m, 2H), 

1.91 (m, 1H), 1.82 (m, 1H), 1.57 (m, 1H). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 156.7, 127.6, 125.7, 30.3, 28.6, 25.8, 24.4. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 210 nm, Rt1 = 7.2 min (E), Rt2 = 8.1 min (Z). 

 

The data corresponds with the literature.[89] 
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9.3.1.4.3 rac-(E/Z)-3-phenylbutyraldehyde oxime 

 

Hydroxylamine phosphate (3.31 g, 16.8 mmol) und sodium 

acetate (3.67 g, 44.8 mmol) were suspended in 100 mL dest. H2O. 

After addition of rac-3-phenylbutyraldehyde (5.00 mL, 33.6 mmol) 

the colorless suspension was stirred for 3 hours, upon which 

complete conversion was achieved according to TLC analysis 

(cyclohexane/ethyl acetate, 2:1). The product was obtained as 

colorless oil after work up, which consisted of a 1:1 mixture of 

(E/Z)-isomers according to 1H-NMR analysis. 

 

Yield: 2.10 g, 38%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.31-7.19 (m, 5H, Ph-H), 7.28 (m, 1H, CH=NOH), 

6.62 (t, 1H, 3J = 5.3 Hz, CH=NOH), 2.98 (sx, 1H, 3J = 7.0 Hz, Ph-CH-CH3), 2.96 (sx, 1H, 
3J = 7.0 Hz, Ph-CH-CH3), 2.65 (m, 2H, Ph-CH-CH2),  2.46 (m, 2H, Ph-CH-CH2), 1.29 (d, 

3H, 3J = 7.0 Hz, CH3), 1.28 (d, 3H, 3J = 7.0 Hz, CH3). 

 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 151.9, 151.5, 146.6, 146.4, 129.1, 129.0, 127.4, 

127.4, 126.9, 126.9, 38.5, 38.2, 37.8, 33.4, 22.6, 22.2. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 210 nm, Rt1 = 22.6 min (E), Rt2 = 26.5 min (Z). 

NP-HPLC: Daicel Chiracel OD-H, CO2/Isopropanol 98:2, v/v, 30 min, 0.7 mL/min; 60 min 

98:2 to 90:10, v/v, 20 °C, 210 nm, Rt1 = 45.0 min, Rt2 = 47.5 min, Rt3 = 57.7 min, 

Rt4 = 64.3 min. 

 

The data corresponds with literature data.[89] 

 

 

9.3.1.4.4 rac-(E/Z)-2-methyl-3-(3,4-methylenedioxyphenyl)-propanal oxime 

 

The synthesis was carried out according to GP4. Hydroxylamine 

hydrochloride (2.71 g, 39.0 mmol) and sodium carbonate 

(4.13 g, 39.0 mmol) were dissolved in 50 mL H2O at room 

temperature. rac-2-methyl-3-(3,4-

methylenedioxyphenyl)propanal (3, 4.30 mL, 26.0 mmol) was 

added to the solution, upon which a pale yellow suspension was 

obtained. After two hours complete conversion was achieved 

according to TLC analysis (cyclohexane:ethyl acetate 3:1, v/v). The work up yielded the 

product as yellow oil, containing a mixture of (E/Z)-isomers (62:38).  

 

Yield: 4.75 g, 88%. 
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rac-(E)-2-methyl-3-(3,4-methylenedioxyphenyl)propanal oxime: 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.55 (s, 1H, CHNOH), 7.33 (d, 1H, 3J = 6.2 Hz, 

CHNOH), 6.74-6.60 (m, 3H, Ph-H), 5.92 (s, 2H, OCH2O), 2.75-2.52 (m, 2H, PhCH2), 2.60 

(m, 1H, CH3CH), 1.04 (d, 3H, 3J = 6.7 Hz, CH3CH). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 156.2, 148.2, 146.5, 133.8, 122.6, 109.9, 108.5, 

101.6, 41.0, 36.9, 17.8. 

 

rac-(Z)-2-methyl-3-(3,4-methylenedioxyphenyl)propanal oxime: 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.91 (s, 1H, NOH), 6.74-6.60 (m, 3H, Ph-H), 6.54 

(d, 1H, 3J = 7.4 Hz, CHNOH), 5.91 (s, 2H, OCH2O), 3.34 (sept, 1H, 3J = 7.2 Hz, CH3CH), 

2.75-2.52 (m, 2H, PhCH2), 1.02 (d, 3H, 3J = 7.0 Hz, CH3CH). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 157.1, 148.1, 146.5, 133.9, 122.4, 109.8, 108.4, 

101.6, 40.5, 31.9, 17.3. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt1 = 15.3 min, Rt2 = 17.2 min. 

NP-HPLC: Daicel Chiracel OD-H, CO2/Isopropanol 99:1, v/v, 1.0 mL/min, 20 °C, 210 nm, 

30 min to CO2/Isopropanol 95:5, v/v, 1.2 mL/min, 20 °C, 210 nm, 30 min; RtE1 = 41.7 min, 

Rt2 = 43.0 min, RtZ1 = 48.3 min, RtZ2 = 48.3 min. 

 

The data corresponds with literature data.[159] 

 

9.3.1.4.5 rac-(E/Z)-2-methyl-3-(4-isopropylphenyl)propionaldehyde oxime 

 

The synthesis was carried out according to GP4. 

Hydroxylamine hydrochloride (2.74 g, 39.4 mmol) and sodium 

carbonate (4.18 g, 39.4 mmol) were dissolved in 50 mL H2O 

at room temperature. The addition of rac-2-methyl-3-(4-

isopropylphenyl)propionaldehyde (5.26 mL, 26.3 mmol) led to 

formation of a colorless suspension. Complete conversion was 

achieved after four hours according to TLC analysis 

(cyclohexane:ethyl acetate 3:1, v/v). Work up yielded the 

product as colorless oil, which crystallized overnight as colorless solid. The (E/Z)-ratio was 

98:2 according to 1H-NMR analysis. 

 

Yield: 4.61 g, 85%. 

 

 

rac-(E)-2-methyl-3-(4-isopropylphenyl)propionaldehyde oxime: 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.35 (d, 1H, 3J = 6.1 Hz, CHNOH), 7.25 (s, 1H, 

CHNOH), 7.17-7.06 (m, 4H, Ph-H), 2.92-2.57 (m, 2H, PhCH2), 2.65 (m, 1H, (CH3)2CH), 

1.24 (d, 6H, 3J = 6.9 Hz, (CH3)2CH), 1.04 (d, 3H, 3J = 6.7 Hz, CH3CH). 



Experimental procedures 

 

147 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 156.4, 147.4, 137.3, 129.6, 126.9, 40.9, 36.8, 

34.3, 24.4, 17.9. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 50:50, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt1 = 13.2 min. 

NP-HPLC: Daicel Chiracel OD-H, CO2/Isopropanol 98:2, v/v, 1.0 mL/min, 20 °C, 210 nm, 

Rt1 = 24.4 min, Rt2 = 29.0 min. 
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9.3.1.5 General procedure 5 (GP5): Copper (II) catalyzed synthesis of racemic 

nitriles  

 

 

 

The syntheses were carried out in analogy to Ma et al..[15] Copper(II) acetate (2-10 mol-

%) was dissolved in acetonitrile at room temperature. The corresponding aldoxime 

(1.0 eq.) was added and the solution was heated to reflux for 60 to 90 minutes. Complete 

conversion was determined via TLC (cyclohexane/ethyl acetate) and the solvent was 

removed in vacuo. The crude product was suspended in cyclohexane/ethyl acetate and 

filtered over a short plug of silica to yield the product as oil. Alternatively, vacuum 

distillation could be used for purification. 

 

9.3.1.5.1 Phenyl acetonitrile 

 

The synthesis was carried out according to GP5. Copper(II) acetate 

(74 mg, 407 µmol) was dissolved in 10 mL acetonitrile. Phenyl 

acetaldehyde (541 mg, 4.00 mmol) was added to the solution. After 

refluxing for 60 minutes, work up was conducted (cyclohexane/ethyl 

acetate 2:1, v/v) and yielded the product as pale yellow oil. 

 

Yield: 153 mg, 33%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.39 (m, 2H, Ph-H), 7.34 (m, 3H, Ph-H), 3.76 (s, 

2H, CH2). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 130.0, 129.3, 128.2, 128.1, 118.0, 23.8. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 210 nm, Rt = 11.3 min. 

 

The analytical data corresponds with the literature.[207] 
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9.3.1.5.2 rac-3-cyclohexene-1-carbonitrile 

 

 The synthesis was carried out according to GP5. Copper(II) acetate 

(143 mg, 827 µmol) was dissolved in 20 mL acetonitrile. (E/Z)-rac-3-

cyclohexene-1-carbaldehydoxime (1.02 g, 8.16 mmol) was added to 

the solution. After refluxing for 90 minutes, work up was conducted 

(cyclohexane/ethyl acetate 2:1, v/v) and yielded the product as yellow 

oil. 

 

Yield: 590 mg, 67%. 

 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.75 (m, 1H, CH=CH-CH2-CH), 5.64 (m, 1H, 

CH=CH-CH2-CH), 2.81 (m, 1H, CH-CN), 2.38 (m, 1H, CH=CH-CH2-CH), 2.33 (m, 1H, 

CH=CH-CH2-CH), 2.22 (m, 1H, CH=CH-CH2-CH2) 2.12 (m, 1H, CH=CH-CH2-CH2), 1.98 (m, 

1H, CH=CH-CH2-CH2), 1.89 (m, 1H, CH=CH-CH2-CH2). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 127.13 (CH=CH-CH2-CH), 123.4 (CH=CH-CH2-

CH), 122.61 (CN), 28.31 (CH=CH-CH2-CH), 25.47 (CH=CH-CH2-CH2), 24.78 (CH-CN), 

23.06 (CH=CH-CH2-CH2). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 210 nm, Rt = 10.1 min. 

Chiral GC (FID): BGB-174 (0.25 ID x 30m, 0.25 µm film), 120 °C (isocratic), Rt1= 8.3 min, 

Rt2 = 8.5 min. 

 

The analytical data corresponds with the literature.[89] 

 

 

9.3.1.5.3 rac-3-phenylbutanenitrile 

 

Dry CH2Cl2 (30 mL) was added to a heat dried schlenk flask and 

cooled to 0 °C. Triphenylphosphine oxide (44.8 mg, 150 µmol) and 

oxalyl chloride (370 µL, 4.59 mmol) were added. rac-(E/Z)-3-

phenylbutyraldehyde oxime (500 mg, 3.06 mmol) was dissolved in 

7 mL CH2Cl2 and added dropwise. The reaction mixture was brought 

to room temperature and complete conversion was confirmed via 

TLC (MTBE). Saturated NaHCO3 was added and the aqueous phase 

was extracted three times with CH2Cl2 (1:1, v/v). The combined 

extracts were washed with brine, dried over MgSO4 and the solvent was removed in vacuo. 

Filtration over a short plug of silica (MTBE) yielded the product as yellow oil. 

 

Yield: 382 mg, 86%.  

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.35 (m, 2H, Ph-H m), 7.26 (m, 3H, Ph-H o, p), 

3.16 (sx, 1H, 3J = 7.0 Hz, CH)), 2.61 (dd, 1H, 2J = 16.6 Hz, 3J = 6.4 Hz, CH2), 2.57 (dd, 

1H, 2J = 16.6 Hz, 3J = 6.4 Hz, CH2), 1.46 (d, 3H, 3J = 7.0 Hz, CH3). 
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13C-NMR (125 MHz, CDCl3): δ [ppm] = 143.3, 129.0, 127.5, 126.7, 118.7, 36.7, 26.5, 

20.8. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 210 nm, Rt = 26.0 min. 

NP-HPLC: Daicel Chiracel OD-H, CO2/Isopropanol 98:2, v/v, 30 min, 0.7 mL/min, 20 °C, 

210 nm, Rt1 = 21.5 min, Rt2 = 23.6 min. 

 

The analytical data corresponds with the literature.[89] 

 

9.3.1.5.4 rac-α-methyl-1,3-benzodioxole-5-propanenitrile 

 

The synthesis was carried out according to GP5. Copper(II) acetate 

(32.6 mg, 179 µmol) was dissolved in 6.0 mL acetonitrile. rac-

(E/Z)-2-methyl-3-(3,4-methylenedioxyphenyl)-propanal oxime 

(372 mg, 1.80 mmol) was added to the solution. After refluxing for 

90 minutes, work up was conducted (cyclohexane/ethyl acetate 

2:1, v/v) and yielded the product as pale yellow oil. Alternatively 

to NMR, conversion could be measured via RP-HPLC. 

 

Yield: 313 mg, 92%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 6.76 (d, 1H, 3J = 7.9 Hz, O-C=CH=CH), 6.70 (d, 

1H, 4J = 1.6 Hz, O-C=CH=C), 6.68 (dd, 1H, 3J = 7.9 Hz, 4J = 1.6 Hz, O-CH=CH), 5.94 (s, 

2H, O-CH2-O), 2.78 (m, 3H, PhCH2, CHCN), 1.32 (d, 3H, 3J = 6.6 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 147.9, 146.9, 130.6, 122.6, 122.3, 109.4, 108.5, 

101.2, 39.8, 27.9, 17.6. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 70:30, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt = 23.6 min,  

NP-HPLC: Daicel Chiracel OD-H, CO2/Isopropanol 99:1, v/v, 1.0 mL/min, 20 °C, 210 nm, 

30 min to CO2/Isopropanol 95:5, v/v, 1.2 mL/min, 20 °C, 210 nm, 30 min; 

Rt(S) = 23.5 min, Rt(R) = 24.5 min. 

 

The analytical data corresponds with the literature.[100] 

 

9.3.1.5.5 rac-α-methyl-4-(1-methylethyl)-benzenepropanenitrile 

 

The synthesis was carried out according to GP5. Copper(II) 

acetate (26.5 mg, 146 µmol) was dissolved in 5.0 mL acetonitrile. 

rac-(E/Z)-2-methyl-3-(4-isopropylphenyl)propionaldehyde oxime 

(300 mg, 1.46 mmol) was added to the solution. After refluxing 

for two hours, work up was conducted (cyclohexane/ethyl acetate 

6:1, v/v) and yielded the product as pale greenish oil. Alternatively 

to NMR, conversion could be measured via RP-HPLC. 
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Yield: 260 mg, 95%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.19 (m, 4H, Ph-H), 2.94-2.76 (m, 4H, (CH3)2CH, 

PhCH2, CHCN), 1.32 (d, 3H, 3J = 6.8 Hz, CH3CHCN), 1.25 (d, 6H, 3J = 6.9 Hz, (CH3)2CH). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 148.0, 134.3, 129.1, 126.9, 122.8, 39.8, 33.9, 

27.7, 24.1, 17.8. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 50:50, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt = 19.1 min. 

NP-HPLC: Daicel Chiracel OD-H, CO2/Isopropanol 98:2, v/v, 1.0 mL/min, 20 °C, 210 nm, 

Rt1 = 11.0 min, Rt1 = 11.8 min. 

 

The analytical data corresponds with the literature.[63] 

 

9.3.1.5.6 rac-2-(4-bromophenyl)propanenitrile 

 

The synthesis was carried out according to GP5. Copper(II) acetate 

(16 mg, 88 µmol) was dissolved in 5 mL acetonitrile. rac-(E/Z)-2-

(4-bromophenyl)propanal oxime (200 mg, 877 µmol) was added and 

the reaction mixture was heated to reflux for 90 minutes. The crude 

product was purified via vacuum distillation (10-3 mbar, 150 °C) to 

yield the product as colorless oil. 

 

Yield: 97 mg, 52%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.52 (d, 2H, 3J = 8.3 Hz, Ar-H), 7.23 (d, 2H, 

3J = 8.3 Hz, Ar-H), 3.87 (q, 1H, 3J = 7.3 Hz, Ph-CH), 1.62 (d, 3H, 3J = 7.3 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 136.2, 132.5, 128.6, 122.3, 121.2, 31.0, 21.5. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 37.1 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt1 = 10.1 min, Rt2 = 11.7 min. 

 

The analytical data corresponds with literature data.[208] 

 

9.3.1.5.7 rac-2-(3-bromophenyl)propanenitrile 

 

The synthesis was carried out according to GP5. Copper(II) acetate 

(8.2 mg, 45 µmol) was dissolved in 5 mL acetonitrile. rac-(E/Z)-2-

(3-bromophenyl)propanal oxime (103 mg, 452 µmol) was added and 

the reaction mixture was heated to reflux for 90 minutes. The crude 

product was purified by filtration over silica (cyclohexane/ethyl acetate 

8:1, v/v) to yield the product as pale green oil.  
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Yield: 83 mg, 87%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.51 (m, 1H, Ar-H), 7.48 (m, 1H, Ar-H), 7.30 (m, 

1H, Ar-H), 7.27 (t, 1H, 3J = 7.8 Hz, Ar-H), 3.87 (q, 1H, 3J = 7.3 Hz, Ph-CH), 1.65 (d, 3H, 

3J = 7.3 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 139.3, 131.5, 130.9, 130.1, 125.6, 123.3, 31.1, 

21.5. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 35.0 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt(S) = 9.0 min, Rt(R) = 11.2 min. 

 

The analytical data corresponds with literature data.[208] 

 

 

9.3.1.5.8 rac-2-(2-bromophenyl)propanenitrile 

 

The synthesis was carried out according to GP5. Copper(II) acetate 

(5.7 mg, 32 µmol) was dissolved in 5 mL acetonitrile. rac-(E/Z)-2-

(2-bromophenyl)propanal oxime (72 mg, 32 µmol) was added and the 

reaction mixture was heated to reflux for 90 minutes. The crude product 

was purified by filtration over silica (cyclohexane/ethyl acetate 8:1, v/v) 

to yield the product as pale yellow oil. 

 

Yield: 63 mg, 95%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.59 (m, 2H, Ar-H), 7.39 (m, 1H, Ar-H), 7.30 (m, 

1H, Ar-H), 7.20 (dt, 1H, 3J = 7.7 Hz, 4J = 1.5 Hz, Ar-H), 4.36 (q, 1H, 3J = 7.2 Hz, Ph-CH), 

1.62 (d, 3H, 3J = 7.2 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 136.7, 133.5, 129.9, 128.6, 128.5, 122.8, 121.2, 

31.6, 20.4. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 70:30, 1.5 mL/min, 

40 °C, 210 nm, Rt = 34.2 min. 

NP-HPLC: Daicel Chiracel OB-H, CO2/isopropanol 98:2, 1.5 mL/min, 20 °C, 210 nm, 

Rt(S) = 6.3 min, Rt(R) = 7.6 min. 

 

The analytical data corresponds with literature data.[209] 
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9.3.2 PREPARATION OF WHOLE CELL CATALYSTS AND BIOTRANSFORMATIONS OF 

ALDOXIMES INTO NITRILES 

9.3.2.1 General procedure 6 (GP6): Expression and storage of the aldoxime 

dehydratases (Oxds) 

 

Pre-culture: 10 mL LB-medium in a 100 mL Erlenmeyer flask containing 50 µg/mL 

kanamycin or 100 µg/mL carbenicillin and 34 µg/mL chloramphenicol were inoculated with 

an E. coli clone and incubated at 37 °C and 180 rpm for 24 hours. 

Main culture: 100-450 mL (in 100-500 mL Erlenmeyer flasks) auto-induction medium 

(Recipe for 1L: 890 mL TB-Medium (pH = 7.0), 10 mL 50 g/L glucose and 100 mL 20 g/L 

lactose) was inoculated with 1.0 Vol.-% of the pre-culture, followed by addition of 

50 µg/mL kanamycin or 100 µg/mL carbenicillin and 34 µg/mL chloramphenicol. The 

culture was incubated for one hour at 37 °C and 180 rpm, followed by incubation at 15 °C 

(OxdA, OxdFG, OxdRE, OxdRG) or 30 °C (OxdB) for 72 hours. 

The cells were harvested by centrifugation (4000 g, 4 °C, 15 min). The supernatant was 

discarded and the pellets were washed twice with 50 mM potassium phosphate buffer 

(pH = 7.0). After repeated centrifugation (4000 g, 4 °C, 15 min) and weighing of the 

pellets (bio wet weight, BWW), they were suspended in 50 mM potassium phosphate buffer 

(50-fold concentrated, pH = 7.0), optionally overlaid with argon and stored at 4 °C as 

resting cell suspension (typically 25-35 wt%). 

 

Table 22: Used plasmids for the transformation of E. coli. 

Entry Vector/plasmid Source 

organism 

Aldoxime 

dehydratase 

Provider Resistance 

1 pET28_OxdA(C) Pseudomonas 

chlororaphis 

B23 

OxdA Asano 

group 

Kanamycin 

3 pUC19_OxdB Bacillus sp. 

OxB-1 

OxdB Asano 

group 

Carbenicillin 

4 pET28_OxdFG(N) Fusarium 

graminearum 

OxdFG Thermo 

Fisher 

Scientific 

Kanamycin 

5 pET28_OxdRE(N) Rhodococcus 

erythropolis 

OxdRE Thermo 

Fisher 

Scientific 

Kanamycin 

6 pET28_OxdRG(N) Rhodococcus 

globerulus A-

4 

OxdRG Thermo 

Fisher 

Scientific 

Kanamycin 

      

 

Overexpression of the aldoxime dehydratases was checked via SDS-PAGE. A 25 wt% cell 

suspension was disrupted by ultrasound sonification (Sonoplus HD 2070, 5 x 2 min, 10% 

power) on ice. Insoluble cell components were separated via centrifugation (21500 g, 4 °C, 
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15 min). 10 µL of the diluted crude extract (1 mg protein/mL) were pipetted into the 

collection gel and analyzed via SDS-PAGE (12% separation gel).  

 

 

Figure 36: SDS-PAGE of all five crude extracts for OxdA (A), OxdB (B), OxdFG (FG), 

OxdRE (RE), OxdRG (RG). The molecular weight of the Oxds is in good agreement with 

the literature data. [70,71,73,74,76,113,210] 
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9.3.2.2 General procedure 7 (GP7): Standard protocol for determination of Oxd 

activity 

 

The corresponding aldoxime was dissolved in DMSO (200 mM). The reaction volume of 

500 µL in a 1.5 mL micro reaction tube with shaking of 1400 rpm at 8 °C or 30 °C consisted 

of varying amounts of 50 mM KPB (pH = 7.0) and resting cell suspension (total volume 

487.5 µL, typically 2-6 mgBWW). The assay was started by addition of 12.5 µL substrate 

(final concentration of 5 mM). 100 µL 0.1 M HCl and 400 µL acetonitrile were added after 

60 seconds to quench the reaction. 800 µL of the supernatant after centrifugation 

(15000 g, 4 °C, 5 min) were transferred into a vial and measured on RP-HPLC for 

conversion. The activity was calculated in U/mgBWW (Units are defined as µmol/min). 

 

Table 23: Calculated activities for different whole cell catalysts. 

Entry Substrate Aldoxime 

dehydratase 

Storage 

time 

[days]a 

Temperature 

[°C] 

U/mgBWW 

1a 

 

OxdA(C) 3 30 0.60 

1b (E/Z 1:19) 

 

OxdB 3 30 2.18 

1c  OxdFG(N) 3 30 0.46 

1d  OxdRE(N) 3 30 1.69 

1e  OxdRG(N) 3 30 0.65 

2a 

 

OxdA(C) 3 8 0.24 

2b 

 

(E/Z 3:1) OxdB 3 8 0.08 

2c  OxdFG(N) 3 8 0.14 

2d  OxdRE(N) 3 8 0.04 

2e  OxdRG(N) 3 8 0.02 

3a 

 

OxdA(C) 3 8 0.17 

3b 

 

(E/Z 1:1) OxdB 3 8 0.06 

3c  OxdFG(N) 3 8 0.04 

3d  OxdRE(N) 3 8 0.02 

3e  OxdRG(N) 3 8 0.01 
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Entry Substrate Aldoxime 

dehydratase 

Storage 

time 

[days]a 

Temperature 

[°C] 

U/mgBWW 

4a 

 

OxdA(C) 3 8 0.10 

4b (E/Z 6:4) 

 

OxdB 3 8 0.04 

4c  OxdFG(N) 3 8 0.03 

4d  OxdRE(N) 5 8 0.02 

4e  OxdRG(N) 5 8 0.01 

5ab 

 

OxdA(C) 7 8 <0.01 

5bb (E/Z 98:2) 

 

OxdB(N) 7 8 <0.01 

5cb  OxdFG(N) 7 8 <0.01 

5db  OxdRE(N) 4 8 <0.01 

5eb  OxdRG(N) 4 8 <0.01 

6a 

 

OxdA(C) 3 8 0.01 

6b (E/Z > 99:1) OxdB 3 8 <0.01 

6c  OxdFG(N) 3 8 <0.01 

6d  OxdRE(N) 3 8 0.02 

6e  OxdRG(N) 3 8 0.01 

7a 

 

OxdA(C) 3 8 - c 

7b (E/Z = 4:96) OxdB 3 8 - c 

7c  OxdFG(N) 3 8 - c 

7d  OxdRE(N) 3 8 - c 

7e  OxdRG(N) 3 8 - c 

8a 

 

OxdA(C) 3 8 - c 

8b (E/Z = 96:4) OxdB 3 8 - c 
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Entry Substrate Aldoxime 

dehydratase 

Storage 

time 

[days]a 

Temperature 

[°C] 

U/mgBWW 

8c  OxdFG(N) 3 8 0.02 

8d  OxdRE(N) 3 8 - c 

8e  OxdRG(N) 3 8 -c 

9a 

 

OxdA(C) 3 8 0.01 

9b (E/Z = 5:95) OxdB 3 8 0.03 

9c  OxdFG(N) 3 8 0.02 

9d  OxdRE(N) 3 8 0.02 

9e  OxdRG(N) 3 8 0.01 

10a 

 

OxdA(C) 3 8 - c 

10b (E/Z > 99:1) OxdB 3 8 0.01 

10c  OxdFG(N) 3 8 0.02 

10d  OxdRE(N) 3 8 - c 

10e  OxdRG(N) 3 8 - c 

10a 

 

OxdA(C) 3 8 - c 

10b (E/Z = 10:90) OxdB 3 8 0.02 

10c  OxdFG(N) 3 8 0.02 

10d  OxdRE(N) 3 8 - c 

10e  OxdRG(N) 3 8 - c 

a time span between harvest of cells and activity assay, b after 2 hours, c no conversion 

detected. 
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9.3.2.3 General procedure 8 (GP8): Enantioselective biotransformations of (E)- 

and (Z)-enriched racemic aldoximes into chirale nitriles on analytical scale 

 

 

 

The corresponding aldoxime was dissolved in DMSO or a DMSO/H2O mixture (50-200 mM). 

This stock solution was stored at -20 °C prior to usage. The reaction volume of 500 µL in 

a 1.5 mL micro reaction tube with shaking of 1400 rpm at 8 °C consisted of varying 

amounts of 50 mM KPB (pH = 7.0) and resting cell suspension (total volume 450-487.5 µL, 

typically 2 6 mgBWW). The assay was started by addition of the substrate DMSO stock 

solution (12.5 µL-50 µL, final concentration of 5 mM). 100 µL 0.1 M HCl and 400 µL 

acetonitrile were added after 15 minutes to quench the reaction. 800 µL of the supernatant 

after centrifugation (15000 g, 4 °C, 5 min) were transferred into a vial and measured on 

RP-HPLC for conversion. The activity was calculated in U/mgBWW (Units are defined as 

µmol/min). Afterwards, the 500 µL of the sample were extracted with MTBE (1:1, v/v) by 

vortexing for 60 seconds. The organic phase was washed once with brine (1:1, v/v) and 

subsequently analyzed by chiral HPLC to determine the ee-value of the obtained nitrile.  

 

Table 24: Conversions and ee-values of the enantioselective nitrile synthesis with five 

different Oxds on analytical scale. 

Entry Substrate Enzyme Conv. [%]a ee [%]b 

1 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

17 

40 

52 

20 

25 

56 (S)c 

70 (R) 

83 (S) 

35 (R) 

27 (R) 

2 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

46 

71 

72 

21 

34 

15 (R) 

36 (S) 

8 (R) 

18 (R) 

15 (R) 

3 

 

OxdA 

OxdB 

54 

29 

4 (+) 

71 (+) 
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Entry Substrate Enzyme Conv. [%]a ee [%]b 

OxdFG 

OxdRE 

OxdRG 

78 

52 

66 

0 

13 (+) 

9 (+) 

4 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

33 

36 

30 

54 

67 

0 

35 (+) 

0 

0 

0 

5d 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

39 

7 

9 

21 

23 

88 (S)c 

9 (S) 

85 (S) 

91 (S) 

91 (S) 

6d 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

7 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

- 

37 

- 

- 

- 

- 

87 (S) 

- 

- 

8 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

38 

41 

51 

33 

46 

94 (R)c 

89 (R) 

88 (R) 

94 (R) 

90 (R) 

9 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

15 

33 

- 

- 

- 

99 (+) 

96 (+) 

- 

- 
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Entry Substrate Enzyme Conv. [%]a ee [%]b 

10 

 

OxdA 

OxdB 

OxdFG 

OxdRE 

OxdRG 

- 

27 

46 

- 

- 

- 

83 (-) 

84 (-) 

- 

- 

[a] Absolute conversion (confirmed via calibration curves on RP-HPLC), entry 1-4: 

2.5 vol% DMSO, entry 5-10: 10 vol% DMSO, entries 5-8: 3 h reaction time, entries 9+10: 

4 h reaction time. “-“ means no product detection below the detection limit of <2%. [b] 

The symbols (+) and (-) refer to the first and second signals in chiral HPLC or GC 

chromatograms. [c] Absolute configuration was determined via comparison with literature 

data after a preparative scale experiment.[65,101] 
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9.3.2.4 General procedure 9 (GP9): Enantioselective biotransformations of (E)- 

and (Z)-enriched racemic aldoximes into chirale nitriles on preparative scale 

 

 

 

Into a flask under argon atmosphere at 8 °C with stirring of 300 rpm were given 50 mM 

potassium phosphate buffer (KPB, pH = 7.0) and the resting cell suspension containing 

OxdA or OxdFG. The substrate stock solution in DMSO was added (final substrate 

concentration of 25 mM, 20 vol% DMSO) and the reaction mixture was stirred for three 

hours. A 500 µL aliquot was taken out of the reaction mixture and treated with 100 µL 

0.1 M HCl and 400 µL acetonitrile to quench the reaction. 800 µL of the supernatant after 

centrifugation (15000 g, 4 °C, 5 min) were transferred into a vial and measured on RP-

HPLC for conversion. The rest of the reaction mixture was extracted three times with MTBE 

(1:1, v/v), washed with brine (1:3, v/v) and the combined extracts were dried over MgSO4. 

Removal of the solvent under reduced pressure yielded the crude product as oil which was 

purified via column chromatography (cyclohexane/ethyl acetate). Enantiomeric excess was 

measured on chiral HPLC with the methods listed in chapter 4 and the absolute 

configuration was determined via the optical rotation of the compounds in reference to 

literature data. 

 

9.3.2.4.1 Synthesis of (S)-2-(2-bromophenyl)propanenitrile 

 

The synthesis was carried out according to GP9. KPB (4.00 mL) and 

resting cell suspension containing OxdA (12.0 mL, 72 mg cells, 2.8 U) 

were mixed with a DMSO substrate solution (125 mM, 4.00 mL, final 

concentration 25 mM). Conversion was 35% after three hours according 

to RP-HPLC. Work up (cyclohexane/ethyl acetate 7:1, v/v) yielded the 

product as pale yellow oil (98% ee according to chiral HPLC). 

 

Yield: 22 mg, 21%. 

[α]D
20: -38 (c = 1.0, CH2Cl2).[65] 
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9.3.2.4.2 Synthesis of (R)-2-(3-bromophenyl)propanenitrile 

 

The synthesis was carried out according to GP9. KPB (9.00 mL) and 

resting cell suspension containing OxdA (27.0 mL, 216 mg cells, 

3.50 U) were mixed with a DMSO substrate solution (125 mM, 9.00 mL, 

final concentration 25 mM). Conversion was 49% after three hours 

according to RP-HPLC. Work up (cyclohexane/ethyl acetate 8:1, v/v) 

yielded the product as pale yellow oil (87% ee according to chiral HPLC). 

 

Yield: 55 mg, 23%. 

[α]D
20: +18 (c = 1.1, CH2Cl2).[65] 

 

 

9.3.2.4.3 Synthesis of (S)-α-methyl-1,3-benzodioxole-5-propanenitrile 

 

The synthesis was carried out in analogy to GP9. KPB (96.0 mL) 

and resting cell suspension containing OxdFG (1.50 mL, 928 mg 

cells, 17.0 U) were mixed with a DMSO substrate solution 

(400 mM, 2.50 mL, final concentration 10 mM). Conversion was 

54% after three hours according to RP-HPLC. Work up 

(cyclohexane/ethyl acetate 6:1, v/v) yielded the product as pale 

yellow oil (46% ee according to chiral HPLC). 

 

Yield: 53 mg, 28%. 

[α]D
20: +18 (c = 1.3, CHCl3).[100] 

 

 

9.3.3 SYNTHESIS AND ATTEMPTED BIOTRANSFORMATIONS OF O-METHYLATED 

ALDOXIMES 

9.3.3.1 General procedure 10 (GP10): O-methylated aldoxime synthesis by 

condensation of aldehydes with hydroxylamine hydrochloride 

 

 

 

O-methylhydroxylamine hydrochloride (1.5 eq.) and sodium carbonate (1.5 eq.) were 

dissolved in H2O at room temperature. Aldehyde (1.0 eq.) was added to this solution and 

stirred vigorously until complete conversion according to TLC analysis (cyclohexane/ethyl 

acetate in different volumetric percentages) was achieved. The solution was extracted 

three times with ethyl acetate (1:1 v/v) and the combined organic phases were washed 
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with H2O (1:3 v/v). Drying over MgSO4 and evaporation of the solvent gave a crude 

product, which was purified by column chromatography if necessary. The (E/Z)-ratio of the 

product was determined by 1H-NMR spectroscopy in CD2Cl2. 

 

 

9.3.3.1.1 rac-(E/Z)-2-phenylpropionaldehyde O-methyloxime 

 

The synthesis was carried out according to GP10. 

O-methylhydroxylamine hydrochloride (933 mg, 11.2 mmol) and 

sodium carbonate (1.18 g, 11.2 mmol) were dissolved in 20 mL H2O 

at room temperature. After the addition of RAC-2-

phenylpropionaldehyde (1.00 g, 7.45 mmol) stirring of the solution 

was conducted for 24 hours. The work up yielded the product as 

colorless oil. The (E/Z)-ratio was 1:1 according to 1H-NMR analysis. 

Yield: 1.09 g, 97%. 

 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.45 (d, 1H, 3J = 6.5 Hz, CHNOCH3), 7.42-

7.22 (m, 5H, Ar-H), 6.73 (d, 1H, 3J = 7.4 Hz, CHNOCH3), 4.33 (quint, 1H, 3J = 7.4 Hz, 

PhCHCH3), 3.86 (s, 3H, CHNOCH3), 3.82 (s, 3H, CHNOCH3), 3.65 (quint, 1H, 3J = 6.8 Hz, 

PhCHCH3), 1.43 (d, 3H, 3J = 7.0 Hz, CHCH3) 1.38 (d, 3H, 3J = 7.2 Hz, CHCH3). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 50:50, 1.0 mL/min, 

40 °C, 210 nm, Rt = 10.5 min. 

 

 

9.3.3.1.2 rac-(E/Z)-cyclohex-3-enecarbaldehyde O-methyl oxime 

 

The synthesis was carried out according to GP10. 

O-methylhydroxylamine hydrochloride (1.14 g, 13.6 mmol) and sodium 

carbonate (1.44 g, 13.6 mmol) were dissolved in 15 mL H2O at room 

temperature. The addition of rac-3-cyclohexene carboxaldehyde 

(1.03 mL, 9.08 mmol) led to formation of a colorless suspension. 

Complete conversion was achieved after 22 hours according to TLC 

analysis (cyclohexane:ethyl acetate 30:1, v/v). Work up and column 

chromatography (pure cyclohexane) yielded the product as colorless oil. 

The (E/Z)-ratio was 3:1 according to 1H-NMR analysis. 

 

Yield: 305 mg, 24%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.31 (d, 1H, 3J = 6.3 Hz, CHNOCH3), 6.51 (d, 1H, 
3J = 7.2 Hz, CHNOCH3), 5.69 (m, 2H, CH=CH), 3.81 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 

3.10 (m, 1H, CHCHNOCH3), 2.46 (m, 1H, CHCHNOCH3), 2.22-1.73 (m, 6H), 1.53-1.48 

(m, 1H). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 50:50, 1.0 mL/min, 

40 °C, 210 nm, Rt = 9.3 min.  
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9.3.3.1.3 rac-(E/Z)-2-methyl-3-(3,4-methylenedioxyphenyl)propanal O-methyloxime 

 

The synthesis was carried out according to GP10. 

O-methylhydroxylamine hydrochloride (651 mg, 7.80 mmol) 

and sodium carbonate (827 mg, 7.80 mmol) were dissolved in 

15 mL H2O at room temperature. rac-2-methyl-3-(3,4-

methylenedioxyphenyl)propanal (1.00 mL, 5.20 mmol) was 

added to the solution, upon which a orange solution was 

obtained. After 20 hours complete conversion was achieved 

according to TLC analysis (cyclohexane:ethyl acetate 30:1, 

v/v). The work up yielded the product as orange liquid. The (E/Z)-ratio was 2:1 according 

to 1H-NMR analysis. 

 

Yield: 710 mg, 62%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.25 (d, 1H, 3J = 6.4 Hz, CHNOCH3), 6.74-

6.59 (m, 3H, Ar-H), 6.45 (d, 1H, 3J = 7.4 Hz, CHNOCH3), 5.92 (s, 2H, OCH2O), 5.91 (s, 

2H, OCH2O), 3.78 (s, 3H, CHNOCH3), 3.74 (s, 3H, CHNOCH3), 3.23 (sept, 1H, 3J = 7.1 Hz, 

CHCH3) 2.75-2.49 (m, 2H, Ar-CH2CH), 2.57 (m, 1H, CHCH3), 1.04 (d, 3H, 3J = 6.6 Hz, 

CHCH3), 0.98 (d, 3H, 3J = 7.0 Hz, CHCH3). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 50:50, 1.0 mL/min, 

40 °C, 210 nm, Rt = 10.7 min. 

 

 

9.3.3.1.4 rac-(E/Z)-3-phenylbutyraldehyde O-methyloxime 

 

The synthesis was carried out according to GP10. O-

methylhydroxylamine hydrochloride (845 mg, 10.1 mmol) and 

sodium carbonate (1.07 g, 10.1 mmol) were dissolved in 15 mL H2O 

at room temperature. The addition of rac-3-phenylbutyraldehyde 

(1.00 g, 6.75 mmol) led to formation of a colorless suspension. 

Complete conversion was achieved after 20 hours according to TLC 

analysis (cyclohexane:ethyl acetate 3:1, v/v). Work up yielded the 

product as colorless oil. The (E/Z)-ratio was 1:1 according to 1H-NMR 

analysis. 

 

Yield: 795 mg, 66%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.32-7.18 (m, 5H, Ar-H), 7.24 (m, 1H, CHNOCH3), 

6.52 (t, 1H, 3J = 5.4 Hz, CHNOCH3), 3.80 (s, 3H, CHNOCH3), 3.74 (s, 3H, CHNOCH3), 2.94 

(m, 1H, PhCHCH3), 2.66-2.53 (m, 2H, PhCHCH2), 2.49-2.39 (m, 2H, PhCHCH2), 1.29 (d, 

3H, 3J = 6.9 Hz, PhCHCH3), 1.28 (d, 3H, 3J = 6.9 Hz, PhCHCH3). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 50:50, 1.0 mL/min, 

40 °C, 210 nm, Rt1 = 12.1 min, Rt2 = 13.0 min. 
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9.3.3.1.5 rac-(E/Z)-2-methyl-3-(4-isopropylphenyl)propionaldehyde O-methyloxime 

 

The synthesis was carried out according to GP10. O-

methylhydroxylamine hydrochloride (659 mg, 7.89 mmol) and 

sodium carbonate (836 mg, 7.89 mmol) were dissolved in 

15 mL H2O at room temperature. The addition of rac-2-methyl-

3-(4-isopropylphenyl)propionaldehyde (1.00 g, 5.26 mmol) led 

to formation of a colorless suspension. Complete conversion 

was achieved after 22 hours according to TLC analysis 

(cyclohexane:ethyl acetate 3:1, v/v). Work up yielded the 

product as colorless liquid. The (E/Z)-ratio was 1:2 according 

to 1H-NMR analysis. 

 

Yield: 890 mg, 77%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.28 (d, 1H, 3J = 6.4 Hz, CHNOCH3), 7.17-7.06 

(m, 4H, Ar-H), 6.47 (d, 1H, 3J = 7.4 Hz, CHNOCH3), 3.76 (s, 3H, CHNOCH3), 3.74 (s, 3H, 

CHNOCH3), 3.27 (sept, 1H, 3J = 7.1 Hz CH2CHCH3), 2.88 (sept, 1H, 3J = 7.0 Hz, 

(CH3)2CH), 2.87 (sept, 1H, 3J = 7.0 Hz, (CH3)2CH), 2.79-2.53 (m, 2H, PhCH2), 2.61 (sept, 

1H, 3J = 7.1 Hz CH2CHCH3), 1.23 (d, 6H, 3J = 6.9 Hz, (CH3)2CH), 1.22 (d, 6H, 3J = 7.0 Hz, 

(CH3)2CH), 1.05 (d, 3H, 3J = 6.6 Hz, CH2CHCH3), 1.00 (d, 3H, 3J = 6.8 Hz, CH2CHCH3). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, water/acetonitrile 50:50, 1.0 mL/min, 

40 °C, 210 nm, Rt = 49.0 min. 

 

 

9.3.3.1.6 (E/Z)-3-phenylpropionaldehyde O-methyloxime 

 

The synthesis was carried out according to GP10. 

O-methylhydroxylamine hydrochloride (1.01 g, 11.3 mmol) and 

sodium carbonate (1.20 g, 11.3 mmol) were dissolved in 15 mL 

H2O at room temperature. The addition of freshly distilled 3-

phenylpropionaldehyde (1.00 mL, 7.53 mmol) led to formation of 

a colorless suspension. Complete conversion was achieved after 

19 hours according to TLC analysis (cyclohexane:ethyl acetate 3:1, v/v). Work up yielded 

the product as colorless liquid. The (E/Z)-ratio was 7:3 according to 1H-NMR analysis. 

 

Yield: 990 mg, 81%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.38 (t, 1H, 3J = 5.9 Hz, CHNOCH3), 7.32-7.18 

(m, 5H, Ar-H), 6.64 (t, 1H, 3J = 5.3 Hz, CHNOCH3), 3.83 (s, 3H, CHNOCH3), 3.77 (s, 3H, 

CHNOCH3), 2.81 (t, 2H, 3J = 7.7 Hz PhCH2CH2), 2.79 (t, 2H, 3J = 8.0 Hz PhCH2CH2), 2.62 

(dt, 2H, 3J = 7.9 Hz, 5.3 Hz, PhCH2CH2), 2.49 (dt, 2H, 3J = 8.1 Hz, 6.1 Hz, PhCH2CH2). 
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9.3.3.2 Attempted biotransformations of O-methylated aldoximes 

 

 

 

The corresponding aldoxime was dissolved in DMSO (200 mM). The reaction volume of 

500 µL in a 1.5 mL micro reaction tube with shaking of 1400 rpm at 30 °C consisted of 

varying amounts of 50 mM KPB (pH = 7.0) and resting cell suspension (total volume 

487.5 µL, typically 2-6 mgBWW). The assay was started by addition of 12.5 µL substrate 

(final concentration of 5 mM). 500 µL acetonitrile were added after 24 hours to quench the 

reaction. 800 µL of the supernatant after centrifugation (15000 g, 4 °C, 5 min) were 

transferred into a vial and measured on RP-HPLC for conversion. However, none of the 

investigated substrates was transformed by any of the five Oxds. 

 

 

Table 25: Investigated O-methylated aldoximes for the biocatalytic nitrile synthesis. 

Entry Substrate Entry Substrate 

1 

 

4 

 

2 

 

5 

 

3 

 

6 
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9.4 BIOCATALYTIC PRODUCTION OF ADIPONITRILE AND RELATED ALIPHATIC 

LINEAR Α,Ω-DINITRILES 

9.4.1 SYNTHESIS OF REFERENCE COMPOUNDS 

9.4.1.1 General procedure 11 (GP11): Adipaldehyde synthesis by oxidation of 

trans-1,2-Cyclohexanediol 

 

 

 

Silica (275 g) was suspended in 900 mL CH2Cl2 in a 2 L three-

necked flask equipped with two 500 mL dropping funnels. 

Afterwards, the apparatus was flushed with argon and a solution of 

NaIO4 (38.0 g, 178 mmol) in 250 mL H2O was added dropwise. 

trans-1,2-cyclohexanediol (15.8 g, 136 mmol) was dissolved in 

500 mL CH2Cl2 and also added dropwise to the suspension. After 

stirring for 24 hours at room temperature, the solid was filtered off 

and washed with CH2Cl2. The solvent of the filtrate was evaporated in vacuo to yield 

Adipaldehyde as pale yellow liquid. 

 

Yield: 14.4 g, 93%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 9.75 (m, 2H, CH2CH2CHO), 2.46 (m, 4H, 

CH2CH2CHO), 1.65 (m, 4H, CH2CH2CHO). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 202.03, 43.66, 21.57. 

 

The analytical data corresponds with the literature.[211,212] 
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9.4.1.2 General procedure 12 (GP12): Synthesis of linear, aliphatic α,ω-

dialdehydes by oxidation of linear, aliphatic α,ω-dialcohols with Bobbitt’s salt 

(4-(Acetylamino)-2,2,6,6-tetramethyl-1-oxo-piperidinium tetrafluoroborate) 

 

 

 

The syntheses were carried out according to Miller et al..[118] To a heat dried round bottom 

flask was added dialcohol (1.0 eq.) and 100 mL dichloromethane under an inert gas 

atmosphere. After stirring for five minutes at room temperature, silica (2 mass eq. to 

substrate) and Bobbitt’s salt (2.1 eq.) were added, resulting in a yellow suspension. After 

stirring for 120 hours, filtration of the slurry through a 3 cm thick pad of silica was 

conducted. The residue was washed with dichlormethane and the filtrate was freed from 

the solvent in vacuo to yield the α,ω-dialdehydes as pale yellow liquids. 

 

 

9.4.1.2.1 Heptanedial 

 

The synthesis was carried out according to GP12. 1,7-Heptanediol 

(1.32 g, 10.0 mmol) was dissolved in 100 mL dichloromethane. 

Bobbit’s salt (6.30 g, 21.0 mmol) and silica (2.64 g) were added. 

Work-up yielded heptanedial as pale yellow liquid. 

 

 

Yield: 650 mg, 51%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 9.75 (m, 2H, CH2COH), 2.44 (t, 4H, 3J = 7.3 Hz, 

CH2COH), 1.64 (qi, 4H, 3J = 7.4 Hz, CH2CH2COH), 1.35 (m, 2H, CH2CH2CH2COH). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 202.41, 43.72, 28.70, 21.86. 

 

The analytical data corresponds with the literature.[118] 
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9.4.1.2.2 Octanedial 

 

The synthesis was carried out according to GP12. 1,8-

Octanediol (1.46 g, 10.0 mmol) was dissolved in 100 mL 

dichloromethane. Bobbit’s salt (6.30 g, 21.0 mmol) and silica 

(2.64 g) were added. Work-up yielded octanedial as pale 

yellow liquid. 

 

 

Yield: 925 mg, 65%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 9.75 (m, 2H, CH2COH), 2.42 (t, 4H, 3J = 7.3 Hz, 

CH2COH), 1.62 (qi, 4H, 3J = 7.0 Hz, CH2CH2COH), 1.34 (m, 4H, CH2CH2CH2COH). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 202.68, 43.87, 28.97, 21.91. 

 

The analytical data corresponds with the literature.[118,211] 

 

 

9.4.1.2.3 Nonanedial 

 

The synthesis was carried out according to GP12. 1,9-

Nonanediol (1.60 g, 10.0 mmol) was dissolved in 100 mL 

dichloromethane. Bobbit’s salt (6.30 g, 21.0 mmol) and 

silica (2.64 g) were added. Work-up yielded nonanedial as 

pale yellow liquid. 

 

Yield: 1.18 g, 76%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 9.75 (m, 2H, CH2COH), 2.41 (t, 4H, 3J = 7.3 Hz, 

CH2COH), 1.61 (qi, 4H, 3J = 7.1 Hz, CH2CH2COH), 1.32 (m, 6H, CH2CH2CH2CH2COH). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 202.83, 43.95, 29.20, 29.03, 22.06. 

 

The analytical data corresponds with the literature.[118] 

 

 

9.4.1.2.4 Decanedial 

 

The synthesis was carried out according to GP12. 1,10-

Decanediol (1.74 g, 10.0 mmol) was dissolved in 100 mL 

dichloromethane. Bobbit’s salt (6.30 g, 21.0 mmol) and 

silica (2.64 g) were added. Work-up yielded decanedial as 

pale yellow liquid. 

Yield: 1.22 g, 72%. 
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1H-NMR (500 MHz, CDCl3): δ [ppm] = 9.73 (m, 2H, CH2COH), 2.39 (t, 4H, 3J = 7.1 Hz, 

CH2COH), 1.59 (qi, 4H, 3J = 6.9 Hz, CH2CH2COH), 1.28 (m, 8H, CH2CH2CH2CH2COH). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 202.88, 43.93, 29.19, 29.11, 22.07. 

 

The analytical data corresponds with the literature.[118] 
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9.4.1.3 General procedure 13 (GP13): Synthesis of linear, aliphatic α,ω-

dioximes via condensation of Bis(dimethyl)acetals with hydroxylamine 

hydrochloride 

 

 

 

Hydroxylamine hydrochloride (3.0 eq.) was dissolved in H2O at room temperature. The 

solution was degassed under vacuum, followed by flushing with argon to establish an inert 

atmosphere. The corresponding bis(dimethylacetal) was added to the solution and the 

suspension was heated to 40 °C, at which the reaction mixture became a clear solution. 

After 5 minutes sodium carbonate (1.5 eq.) was added, upon which a colorless solid 

precipitated. The suspension was cooled to 0 °C for 24 hours, upon which more solid 

precipitated. The solid was filtered off, washed with water and dried in vacuo. The dioximes 

had predominately Z,Z-configuration. 

 

 

9.4.1.3.1 Malonoaldehyde dioxime 

 

The synthesis was carried out according to GP13. 

1,1,3,3-Tetramethoxypropane (5.00 mL, 30.4 mmol) was given to 

a solution of hydroxylamine hydrochloride (6.34 g, 91.2 mmol) in 

20 mL H2O. Heating to 40 °C resulted in a yellow solution, into 

which sodium carbonate (4.83 g, 45.6 mmol) was added. Work up 

yielded the product as colorless solid. (E/Z)-ratio (including both oxime groups) was 1:99 

according to 1H-NMR.  

 

Yield: 744 mg, 28%. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 11.03 (s, 2H, CH2(CHNOH)2), 6.78 (t, 2H, 
3J = 5.3 Hz, CH2(CHNOH)2), 3.19 (t, 2H, 3J = 5.3 Hz, CH2(CHNOH)2). 

13C-NMR (125 MHz, DMSO): δ [ppm] = 144.94, 22.63. 

GC (FID): Phenomenex ZB-5MSi, 1.03 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 100 °C -> 125 °C (5 °C/min), 125 °C -> 205 °C (40 °C/min); Rt dinitrile = 2.36 min, 

Rt dioxime = 4.04 min. 

HRMS (ESI): calcd for C3H7N2O2 [M+H]+ : 103.0502, found: 103.0508. 

IR (neat) [cm-1]: 3081, 3041, 2809, 1660, 1434, 1399, 1320, 1252, 946, 927, 860, 782, 

746, 676. 
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9.4.1.3.2 Succinaldehyde dioxime 

 

The synthesis was carried out according to GP13. Succinaldehyde 

bis(dimethylacetal) (2.65 mL, 15.0 mmol) was given to a 

solution of hydroxylamine hydrochloride (3.13 g, 45.0 mmol) in 

10 mL H2O. The phase separation disappeared at room 

temperature, upon which sodium carbonate (2.38 g, 22.5 mmol) 

was added. Work up yielded the product as colorless solid. (E/Z)-ratio (including both 

oxime groups) was 8:92 according to 1H-NMR. 

 

Yield: 1.12 g, 64%. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 10.86 (s, 2H, CH2(CHNOH)2), 6.66 (m, 2H, 

CH2(CHNOH)2), 2.38 (m, 2H, CH2(CHNOH)2). 

13C-NMR (125 MHz, DMSO): δ [ppm] = 149.37, 21.55. 

GC (FID): Phenomenex ZB-5MSi, 1.03 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 100 °C -> 135 °C (5 °C/min), 135 °C -> 215 °C (40 °C/min); Rt dinitrile = 3.04 min, 

Rt dioxime = 5.30 min. 

HRMS (ESI): calcd for C4H9N2O2 [M+H]+ : 117.0659, found: 145.0669. 

IR (neat) [cm-1]: 3085, 3043, 2868, 2810, 1671, 1448, 1420, 1328, 1234, 1037, 935, 

918, 879, 807, 774, 753, 717. 
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9.4.1.4 General procedure 14 (GP14): Synthesis of linear, aliphatic α,ω-

dioximes via condensation of linear, aliphatic α,ω-dialdehydes with 

hydroxylamine hydrochloride 

 

 

 

Hydroxylamine hydrochloride (3.0 eq.) was diluted in H2O (optionally 20 vol% methanol 

were added) at room temperature. The corresponding dialehyde was added to the solution 

and the suspension was stirred at room temperature After 5 minutes sodium carbonate 

(1.5-3.0 eq.) was added, upon which a colorless solid precipitated. The suspension was 

further stirred at room temperature for 4-24 hours. The solid was filtered off, washed with 

water and dried in vacuo. The product was obtained as colorless solid. The dioximes had 

predominately Z,Z-configuration. 

 

9.4.1.4.1 Glutaraldehyde dioxime  

 

The synthesis was conducted in analogy to GP14. A 50wt% 

solution of glutaraldehyde (2.00 mL, 11.2 mmol) was given to 

a solution of hydroxylamine hydrochloride (2.34 g, 33.6 mmol) 

and sodium carbonate (3.56 g, 33.6 mmol) in 50 mL H2O. 

After 30 min the solution turned into a colorless suspension. 

After two hours complete conversion was achieved according to TLC. The purity of the 

crude product after extraction with ethyl acetate was satisfactory for further syntheses. 

The (E/Z)-ratio (including both oxime groups) was 8:92 according to 1H-NMR. 

 

Yield: 960 mg, 66%. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 10.77 (s, 2H, Z, CHNOH), 10.41 (s, 2H, E, CHNOH), 

7.30 (t, 2H, E, 3J = 5.8 Hz, CHNOH), 6.65 (t, 2H, Z, 3J = 5.4 Hz, CHNOH), 2.23 (m, 4H, Z, 

CH2CHNOH), 2.11 (m, 4H, E, CH2CHNOH), 1.55 (m, 2H, E/Z, CH2).  

13C-NMR (125 MHz, DMSO): δ [ppm] = 149.81 (Z), 149.11 (E), 24.43 (Z)., 24.16 (E), 

22.94 (E), 22.38 (Z). 

GC (FID): Phenomenex ZB-5MSi, 0.87 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 140 °C -> 190 °C (5 °C/min); Rt dinitrile = 2.61 min, Rt dioxime  = 3.63 min. 

 

The analytical data corresponds with the literature.[121] 
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9.4.1.4.2 Adipaldehyde dioxime  

 

The synthesis was carried out according to GP14. 

Adipaldehyde (14.1 g, 124 mmol) was dissolved in 100 mL 

H2O and 25 mL methanol. Hydroxylamine hydrochloride 

(25.9 g, 372 mmol) was added and afterwards sodium 

carbonate (19.7 g, 186 mmol). Work up yielded the product 

as colorless solid. (E/Z)-ratio (including both oxime groups) was 7:93 according to 1H-

NMR.  

 

Yield: 12.6 g, 70%. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 10.73 (s, 2H, Z, CHNOH), 10.36 (s, 2H, E, CHNOH), 

7.29 (t, 2H, E, 3J = 5.9 Hz, CHNOH), 6.63 (t, 2H, Z, 3J = 5.3 Hz, CHNOH), 2.24 (m, 4H, Z, 

CH2CHNOH), 2.10 (m, 4H, E, CH2CHNOH), 1.42 (m, 4H, E/Z, CH2).  

13C-NMR (125 MHz, DMSO): δ [ppm] = 150.16, 150.14, 149.39, 149.37, 28.72, 28.71, 

26.03, 25.71, 25.47, 25.16, 24.33. 

GC (FID): Phenomenex ZB-5MSi, 0.87 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 140 °C -> 190 °C (5 °C/min); Rt dinitrile = 3.08 min, Rt dioxime  = 4.52 min. 

HRMS (ESI): calcd for C6H13N2O2 [M+H]+ : 145.0972, found: 145.0972. 

IR (neat) [cm-1]: 3182, 3084, 3039, 2934, 2865, 2810, 1664, 1451, 1415, 1345, 1322, 

1058, 924, 826, 803, 733, 721, 705. 

 

 

9.4.1.4.2 Heptanedial dioxime  

 

The synthesis was conducted in analogy to GP14. 

Hydroxylamine hydrochloride (1.02 g, 14.7 mmol) was 

dissolved in 10 mL H2O and 2.5 mL methanol. 

Heptanedial (630 mg, 4.92 mmol) was added, followed 

by sodium carbonate (782 mg, 7.38 mmol). Work up 

yielded the product as colorless solid. (E/Z)-ratio (including both oxime groups) was 14:86 

according to 1H-NMR. 

 

Yield: 532 mg, 68% yield. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 10.71 (s, 2H, Z, CHNOH), 10.36 (s, 2H, E, CHNOH), 

7.28 (t, 2H, E, 3J = 5.9 Hz, CHNOH), 6.63 (t, 2H, Z, 3J = 5.3 Hz, CHNOH), 2.21 (m, 4H, Z, 

CH2CHNOH), 2.08 (m, 4H, E, CH2CHNOH), 1.41 (m, 4H, E/Z, CH2CH2CHNOH), 1.29 (m, 

2H, E/Z, CH2CH2CH2CHNOH). 

13C-NMR (125 MHz, DMSO): δ [ppm] = 150.29, 149.49, 28.86, 28.66, 28.37, 25.97, 

25.35, 24.45. 

GC (FID): Phenomenex ZB-5MSi, 0.87 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 140 °C -> 190 °C (5 °C/min); Rt dinitrile = 4.02 min, Rt dioxime  = 4.78+5.95 min. 

MS (ESI): m/z = 159.0 [M+H]+.  
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HRMS (ESI): calcd for C7H15N2O2 [M+H]+ : 159.1128, found: 159.1131. 

IR (neat) [cm-1]: 3180, 3078, 3033, 2928, 2859, 1456, 1438, 1417, 1313, 1059, 920, 

886, 814, 769, 722. 

 

 

9.4.1.4.3 Octanedial dioxime 

 

The synthesis was conducted in analogy to GP14. 

Hydroxylamine hydrochloride (1.32 g, 19.0 mmol) was 

dissolved in 16 mL H2O and 4 mL methanol. Octanedial 

(900 mg, 6.33 mmol) was added, followed by sodium 

carbonate (1.01 g, 9.49 mmol). Work up yielded the 

product as colorless solid. (E/Z)-ratio (including both oxime groups) was 40:60 according 

to 1H-NMR. 

 

Yield: 900 mg, 83% yield. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 10.70 (s, 2H, Z, CHNOH), 10.34 (s, 2H, E, CHNOH), 

7.28 (t, 2H, E, 3J = 5.9 Hz, CHNOH), 6.62 (t, 2H, Z, 3J = 5.3 Hz, CHNOH), 2.21 (m, 4H, Z, 

CH2CHNOH), 2.08 (m, 4H, E, CH2CHNOH), 1.40 (m, 4H, E/Z, CH2CH2CHNOH), 1.28 (m, 

4H, E/Z, CH2CH2CH2CHNOH).  

13C-NMR (125 MHz, DMSO): δ [ppm] = 150.32, 149.53, 28.93, 28.60, 28.29, 26.15, 

25.53, 24.52. 

GC (FID): Phenomenex ZB-5MSi, 0.87 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 140 °C -> 190 °C (5 °C/min); Rt dinitrile = 4.89 min, Rt dioxime  = 5.90+7.37 min. 

MS (ESI): m/z = 173.0 [M+H]+. 

HRMS (ESI): calcd for C8H17N2O2 [M+H]+ : 173.1285, found: 173.1284. 

IR (neat) [cm-1]: 3177, 3085, 3038, 2925, 2851, 1464, 1450, 1417, 1329, 1071, 918, 

861, 813, 737, 719, 711. 

 

 

9.4.1.4.4 Nonanedial dioxime  

 

The synthesis was conducted in analogy to GP14. 

Hydroxylamine hydrochloride (1.55 g, 22.3 mmol) 

was dissolved in 16 mL H2O and 4 mL methanol. 

Nonanedial (1.16 g, 7.42 mmol) was added, 

followed by sodium carbonate (1.18 g, 11.1 mmol). 

Work up yielded the product as colorless solid. (E/Z)-ratio (including both oxime groups) 

was 9:91 according to 1H-NMR. 

 

Yield: 1.02 g, 74% yield. 
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1H-NMR (500 MHz, DMSO): δ [ppm] = 10.71 (s, 2H, Z, CHNOH), 10.35 (s, 2H, E, CHNOH), 

7.27 (t, 2H, E, 3J = 5.9 Hz, CHNOH), 6.61 (t, 2H, Z, 3J = 5.3 Hz, CHNOH), 2.20 (m, 4H, Z, 

CH2CHNOH), 2.07 (m, 4H, E, CH2CHNOH), 1.40 (m, 4H, E/Z, CH2CH2CHNOH), 1.27 (m, 

6H, E/Z, CH2CH2CH2CH2CHNOH). 

13C-NMR (125 MHz, DMSO): δ [ppm] = 150.30, 149.50, 28.97, 28.80, 28.53, 28.48, 

26.25, 25.63, 25.51, 24.55. 

GC (FID): Phenomenex ZB-5MSi, 0.87 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 150 °C -> 200 °C (5 °C/min); Rt dinitrile = 5.18 min, Rt dioxime  = 6.18+7.61 min. 

MS (ESI): m/z = 187.0 [M+H]+. 

HRMS (ESI): calcd for C9H19N2O2 [M+H]+ : 187.1441, found: 187.1446. 

IR (neat) [cm-1]: 3194, 3085, 2923, 2848, 1463, 1440, 1416, 1329, 1308, 916, 840, 814, 

749, 737, 712. 

 

 

9.4.1.4.5 Decanedial dioxime  

 

The synthesis was conducted in analogy to GP14. 

Hydroxylamine hydrochloride (1.72 g, 

24.7 mmol) was dissolved in 20 mL H2O and 5 mL 

methanol. Decanedial (1.40 g, 8.22 mmol) was 

added, followed by sodium carbonate (1.31 g, 

12.3 mmol). Work up yielded the product as colorless solid. (E/Z)-ratio (including both 

oxime groups) was 43:57 according to 1H-NMR. 

 

Yield: 1.22 g, 74% yield. 

1H-NMR (500 MHz, DMSO): δ [ppm] = 10.69 (s, 2H, Z, CHNOH), 10.33 (s, 2H, E, CHNOH), 

7.28 (t, 2H, E, 3J = 5.9 Hz, CHNOH), 6.62 (t, 2H, Z, 3J = 5.3 Hz, CHNOH), 2.20 (m, 4H, Z, 

CH2CHNOH), 2.07 (m, 4H, E, CH2CHNOH), 1.39 (m, 4H, E/Z, CH2CH2CHNOH), 1.26 (m, 

8H, E/Z, CH2CH2CH2CH2CHNOH). 

13C-NMR (125 MHz, DMSO): δ [ppm] = 150.32, 149.51, 28.95, 28.85, 28.69, 28.54, 

26.25, 25.63, 24.54. 

GC (FID): Phenomenex ZB-5MSi, 0.87 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 150 °C -> 200 °C (5 °C/min); Rt dinitrile = 6.32 min, Rt dioxime  = 7.58+9.13 min. 

MS (ESI): m/z = 201.1 [M+H]+. 

HRMS (ESI): calcd for C10H21N2O2 [M+H]+ : 201.1598, found: 201.1595. 

IR (neat) [cm-1]: 3184, 3080, 2923, 2849, 1465, 1446, 1323, 918, 884, 816, 745, 718. 
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9.4.2 BIOTRANSFORMATIONS FOR THE BIOCATALYTIC PRODUCTION OF ALIPHATIC 

LINEAR Α,Ω-DINITRILES 

9.4.2.1 General procedure 15 (GP15): Activity assay for the biocatalytic 

dehydration of dioximes by OxdA and OxdB 

 

 

 

800 µL of a whole cell catalyst suspension in 50 mM KPB, pH = 7.0 (2.0 mgBWW, containing 

OxdA or OxdB) was mixed with 0-192 µL DMSO and incubated for five minutes at 30 °C 

and vigorous shaking. The assay was started by adding 8-200 µL of a 375 mM stock 

solution of the substrate in DMSO. The assay was stopped by addition of 1.0 mL 2-Me-THF 

and immediate extraction of the substrate by vortexing for 60 seconds. After centrifugation 

(4 °C, 15000 g, 5 min), the supernatant (800 µL) was transferred into a GC-vial and 

analyzed by gas chromatography. The conversion was determined by calibration curves, 

including a correction factor accounting for incomplete extraction of the substrate and 

product. 

 

Table 26: Activity values for OxdA and OxdB in mU/mgBWW. 

Substratea

/ Conc.  

3.0 mM 6.25 mM 12.5 mM 25 mM 50 mM 75 mM 

C4 (OxdA) n.d. 3.3±0.1 4.7±1.3 10.2±0.4 12.3±1.2 15.1b±0.5 

C5 (OxdA) 2.7±0.1 6.6±0.0 9.7±0.1 13.0±0.2 16.9b±0.2 15.6b±0.1 

C6 (OxdA) 27.8±0.9 34.6±0.3 41.4±0.4 40.4b±3.2 38.7b±0.4 45.6b±5.0 

C7 (OxdA) 32.7±0.3 42.4±0.4 46.3b±0.3 45.9b±0.3 29.8b±0.3 24.2b±0.1 

C8 (OxdA) 26.6±0.2 35.4b±0.8 50.1b±0.2 39.6b±0.2 28.3b±0.1 17.5b±0.3 

C9 (OxdA) 24.8±0.7 36.1b±0.3 50.6b±0.7 40.9b±0.4 32.0b±0.0 23.6b±0.5 

C10 (OxdA) 6.1±0.1 12.3b±0.3 21.7b±0.2 29.6b±0.1 41.7b±0.1 49.4b±1.7 

C4 (OxdB) 15.2±0.4 28.1±0.9 37.3±0.5 33.6±0.8 18.5±0.1 16.6b±1.6 

C5 (OxdB) 4.9±0.1 7.9±0.0 10.1±0.1 12.3±0.4 15.0b±0.0 15.0b±0.7 

C6 (OxdB) 51.5±0.2 91.8±0.4 145±0.3 169b±0.9 151b±0.6 114b±0.1 

C7 (OxdB) 61.4±0.3 62.0±0.1 151b±0.9 129b±0.7 117b±0.1 139b±0.2 

C8 (OxdB) 25.1±0.5 38.9b±0.5 54.5b±0.3 39.2b±0.1 30.8b±0.2 29.6b±0.1 

C9 (OxdB) 28.7±0.4 43.9b±0.6 70.3b±0.1 62.1b±0.3 58.2b±0.2 67.2b±0.5 

C10 (OxdB) 7.0±0.2 9.1b±0.1 13.5b±0.0 17.7b±0.2 22.9b±0.1 27.9b±0.5 

a) no conversion detected for the C3-dioxime; b) partial precipitation of the substrate.  
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9.4.2.2 General procedure 16 (GP16): Influence of water soluble cosolvents on 

the activity of Oxds (short term studies) 

 

 

 

Into a 1.5 mL micro reaction tube with shaking of 1400 rpm at 30 °C were given 

400/350/300 µL 50 mM KPB (pH = 7.0) and 50 µL resting cell suspension. Afterwards a 

water-soluble cosolvent (37.5/87.5/137.5 µL) was added. The suspension was incubated 

for 20 minutes and the assay was started by addition of 12.5 µL phenylacetaldehyde oxime 

(400 mM, final concentration of 10 mM), dissolved in the corresponding cosolvent. 100 µL 

0.1 M HCl and 400 µL acetonitrile were added after 60 seconds to quench the reaction. 

800 µL of the supernatant after centrifugation (15000 g, 4 °C, 5 min) were transferred into 

a vial and measured on RP-HPLC for conversion according to a calibration curve. The 

relative activity was determined by comparison with a reference experiment, in which no 

cosolvent was added during the incubation time. 

 

 

M
eO

H

Et
O
H

iP
rO

H

D
M
S
O

S
ul
fo
la
n

TH
F

D
M
C

PP
C

D
M
F

D
M
A
c

0

10

20

30

40

50

60

70

80

90

100

r
e
l.

 a
c
ti

v
it

y
 [

%
]

Cosolvent

 10%

 20%

 30%

 

Figure 37: Relative activity of OxdA(C) in presence of water soluble cosolvents (for 

different volumetric percentages). 
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Figure 38: Relative activity of OxdB in presence of water soluble cosolvents (for 

different volumetric percentages). 
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Figure 39: Relative activity of OxdFG(N) in presence of water soluble cosolvents (for 

different volumetric percentages). 

 



Experimental procedures 

 

180 

M
eO

H

Et
O
H

iP
rO

H

D
M
S
O

S
ul
fo
la
n

TH
F

D
M
C

PP
C

D
M
F

D
M
A
c

0

10

20

30

40

50

60

70

80

90

100

r
e
l.

 a
c
ti

v
it

y
 [

%
]

Cosolvent

 10%

 20%

 30%

 

Figure 40: Relative activity of OxdRE(N) in presence of water soluble cosolvents (for 

different volumetric percentages). 
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Figure 41: Relative activity of OxdRG(N) in presence of water soluble cosolvents (for 

different volumetric percentages). 
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9.4.2.3 General procedure 17 (GP17): Influence of water soluble cosolvents on 

the activity of OxdA und OxdB (long term studies) 

 

Into a 1.5 mL micro reaction tube with shaking of 1400 rpm at 30 °C were given 

350/300 µL 50 mM KPB (pH = 7.0) and 100 µL resting cell suspension. Afterwards were 

added 37.5/87.5 µL of MeOH/DMSO (for OxdA) or 37.5/87.5 µL EtOH/iPrOH/DMSO/DMC 

(for OxdB). The suspension was incubated for 15/30/60/120/180 minutes and the assay 

was started by addition of 12.5 µL substrate (400 mM, final concentration of 10 mM), 

dissolved in the corresponding cosolvent. 100 µL 0.1 M HCl and 400 µL acetonitrile were 

added after 60 seconds to quench the reaction. 800 µL of the supernatant after 

centrifugation (15000 g, 4 °C, 5 min) were transferred into a vial and measured on RP-

HPLC for conversion. The relative activity was determined by comparison with a reference 

experiment, in which no cosolvent was added during the incubation time. 
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Scheme 67: Long-term stability study for OxdA(C). 
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Scheme 68: Long-term stability study for OxdB. 
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9.4.2.4 General procedure 18 (GP18): Preparative scale experiments for the 

biocatalytic synthesis of adiponitrile 

 

 

 

A 100 mL reaction mixture consisting of whole cell catalyst suspension in 50 mM KPB, pH = 

7.0 (0.6-4.0 wt%BWW, containing OxdA or OxdB) and the solid adipaldehyde oxime (1.0-

10 g) were mixed in a sealable glass flask. Argon was flushed through the flask and it was 

sealed afterwards. The mixture was stirred at 180 rpm at 30 °C. In case of using DMSO as 

a cosolvent, the reaction mixture consisted of 80 mL cell suspension and 20 mL DMSO. An 

aliquot of 1.0 mL was taken several times to determine the conversion via gas 

chromatography (GC). For this, the aliquot was mixed with 1.0 mL 2-Me-THF and extracted 

for 1 minute. The supernatant was taken off und injected into the GC apparatus. The 

conversion was determined according to calibration curves. 

After complete conversion to adiponitrile, the reaction mixture was extracted three times 

with MTBE (1:1, v/v). In case of using DMSO as cosolvent, the combined extracts were 

washed once with brine (1:3, v/v). Subsequently, the extracts were dried over MgSO4, 

filtered and the solvent was removed in vacuo to yield adiponitrile as pale yellow liquid 

with 98-99% purity. The purity of the product was determined via 1H-NMR- and GC-

analysis. 

 

Table 27: Preparative scale synthesis with 10-100 g/L substrate concentration. 

Entry Oxd 
Substrate 

conc. [g/L] 

Biomass 

[gBWW]a 
Time [h] 

Conv. 

[%] 
Yield [%] 

1 
OxdA/ 

20% DMSO 
10 

0.58 

(23 U) 
96 >99 

75 

(608 mg) 

2 OxdA 10 
1.16 

(46 U) 
64 >99 

59 

(480 mg) 

3 
OxdB/ 

20% DMSO 
10 

0.51 

(57 U) 
18 >99 

55 

(446 mg) 

4 OxdB 10 
0.51 

(57 U) 
15 >99 

70 

(570 mg) 

5 

OxdB 

/20% 

DMSO 

50 
1.50 

(171 U) 
87 >99 

67 

(2.47 g) 
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6 OxdB 50 
1.50 

(171 U) 
22 >99 

80 

(2.91 g) 

7b OxdB 50 
24.0 

(6000 U) 
27 >99 

62 

(23.1 g) 

8c 

OxdB 

/20% 

DMSO 

100 
0.75 

(86 U) 
41 70 

63 

(1.18 g) 

9 OxdB 100 
4.00 

(456 U) 
41 75 

63 

(4.78 g) 

[a] BWW = Bio wet weight, U = Unit, defined as µmol/min produced product; [b] 

1000 mL reaction volume; [c] 25 mL reaction scale. 
 

 

 

9.4.2.5 Attempted biotransformation of succinaldehyde dioxime and 

glutaraldehyde dioxime 

 

 

 

A 100 mL reaction mixture consisting of 80 mL whole cell catalyst suspension in 50 mM 

KPB, pH = 7.0 (0.5-0.6 wt%BWW, containing OxdA or OxdB) and 20 mL DMSO containing 

the dissolved succinaldehyde dioxime/glutaraldehyde dioxime (375 mM, final 

concentration 75 mM) were mixed in a sealable glass flask. Argon was flushed through the 

flask and it was sealed afterwards. The mixture was stirred at 180 rpm at 30 °C. An aliquot 

of 1.0 mL was taken several times to determine the conversion via gas chromatography 

(GC). For this, the aliquot was mixed with 1.0 mL 2-Me-THF and extracted for 1 minute. 

The supernatant was taken off und injected into the GC apparatus. The conversion was 

determined according to calibration curves. However, only marginable amounts of dinitrile 

were detected apart from unquantifiable amouts of an unkown intermediate. 

 

 

9.4.2.6 High cell-density fermentations of OxdB 

 

For further information regarding the medium composition and antibiotic dosage, see 

chapter 9.3.2.1. A preculture (50 mL LB-medium, containing chloramphenicol and 

carbenicillin) was inoculated with an E. coli clone and incubated at 30 °C for 16 hours. 
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2 x 2 liter of AI-medium were prepared and treated with carbenicillin and chloramphenicol. 

Additionally, the feed medium was prepared. 

Recipe for feed medium: Glycerol (527 g) and yeast extract (90 g) were mixed with 

distilled H2O to a total volume of 900 mL. Furthermore, MgSO4 • 7 H2O (20 g) and lactose 

(20 g) were dissolved in 100 mL distilled H2O. After autoclaving, both solutions were 

combined to give 1 liter of feed medium. 

Two liters of AI-medium were given into a fermenter each and the feed medium was 

connected to the fermenter. The main culture was inoculated with the previously prepared 

preculture (20 mL, 1%) and the fermentation process was started. The oxygen saturation 

level (p) was set to p = 5-20% (low O2) or 30-70% (high O2). Reservoirs with base, acid 

and anti-foaming agent were connected to the apparatus. During the fermentation, feed 

medium was constantly added to the main culture. The feed medium also contained 

chloramphenicol and carbenicillin. The fermentation was stopped after 72 hours and 375 g 

(low O2) and 260 g (high O2) of wet biomass were obtained. 

 

9.4.3 EXPRESSION, PURIFICATION AND IMMOBILIZATION BY CROSSLINKING OF HIS-

TAGGED ALDOXIME DEHYDRATASE FROM BACILLUS SP. OXB-1 (OXDBCHIS6)  

 

9.4.3.1 Expression of OxdB(CHis6) in E.Coli BL21 (DE3) 

 

Pre-culture: 5 mL LB-medium containing 50 µg/mL ampicillin were inoculated with an 

E. coli BL21 (DE3) clone harboring the OxdB(CHis6) gene on a pET22b vector. Afterwards, 

the pre-culture was incubated at 37 °C and 180 rpm for 24 hours. 

Main culture:  

Variant A: 500 mL (in a 500 mL Erlenmeyer flask) of Auto-induction medium (Recipe for 

500 mL: 410 mL Terrific-broth medium containing 12.0 g Yeast extract, 6.0 g polypeptone, 

4.0 g glycerol, mixed with 50 mL potassium phosphate buffer (4.7 g K2HPO4 and 1.1 g 

KH2PO4) and 10 mL of 60% glycerol solution, 5 mL of 10% glucose solution and 25 mL of 

8% lactose solution) was inoculated with 5 mL (1.0 vol%) of the pre-culture, followed by 

addition of 100 µg/mL Ampicillin. The culture was incubated for one hour at 37 °C and 

180 rpm, followed by incubation at 30 °C for 72 hours. 

Variant B: A: 500 mL (in a 500 mL Erlenmeyer flask) of Terrific broth medium (Recipe for 

500 mL: 450 mL H2O containing 12.0 g yeast extract, 6.0 g polypeptone, 4.0 g glycerol, 

mixed with 50 mL potassium phosphate buffer (4.7 g K2HPO4 and 1.1 g KH2PO4)) was 

inoculated with 5 mL (1.0 vol%) of the pre-culture, followed by addition of 100 µg/mL 

ampicillin. The culture was incubated at 37 °C and 180 rpm until OD600 reached 0.5-0.7, 

upon which IPTG (final conc. 1 mM) was added. The main culture was then incubated at 

30 °C for 48 hours. 

The cells were harvested by centrifugation (4000 g, 4 °C, 15 min). The supernatant was 

discarded and the pellets were washed twice with 50 mM potassium phosphate buffer (KPB, 

pH = 7.0). After repeated centrifugation (4000 g, 4 °C, 15 min) and weighing of the pellets 

(bio wet weight, BWW), they were stored at -20 °C until further use. 
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9.4.3.2 Purification of OxdB(CHis6) by NiNTA affinity chromatography 

 

The harvested cell pellet was thawed and suspended in 20 mM TRIS-HCl buffer (pH = 8.0) 

containing 10 mM imidazole and 300 mM NaCl (binding buffer, usually 25-35 wt%). The 

cells were disrupted by ultrasound at 0 °C and the cell debris was centrifuged off (21500 g, 

4 °C, 30 min).  

The NiNTA column was equilibrated with 10 column volumina (CV) of binding buffer (see 

above) and the crude extract was given onto the column at room temperature. After flow 

through of the crude extract, the column was washed with 10 CV of binding buffer and the 

retained OxdB(CHis6) was eluted with 5 mL elution buffer (20 mM TRIS-HCl, 150 mM 

Imidazole, 300 mM NaCl, pH = 8.0).  

The obtained OxdB(CHis6) was re-buffered to 50 mM KPB (pH = 7.0) via ultrafiltration and 

its purity confirmed via SDS-PAGE. The flow through of the NiNTA column did not contain 

any residual OxdB(CHis6). OxdB(CHis6) was stored at -20 °C until further use. 

 

9.4.3.3 Optimized of CLEA formation by crosslinking of purified OxdB(CHis6) 

with glutaraldehyde 

 

150 µL of purified OxdB(CHis6) (700 µg) was treated with 96 mg of (NH4)2SO4 at 0 °C (85% 

saturation rate). The suspension was slowly shaken at 0 °C for 60 minutes to complete the 

precipitation. Afterwards, glutaraldehyde solution (final concentration of 0.5, 1.0, 2.0 wt%) 

was added and the suspension was slowly shaken for two hours at 0 °C. Afterwards, the 

formed CLEAs were centrifuged off (10000 g, 4 °C, 30 min). The supernatant was taken 

off and the CLEAs were washed with 150 µL KPB (50 mM, pH = 7.0). This washing fraction 

was collected and the CLEAs were either dried in vacuo at room temperature or freeze-

dried at -50 °C in vacuo. The obtained CLEAs (~800 µg) were stored at 4 °C until further 

use. The activity of the CLEAs was determined according to the assay described in the next 

chapter and the results are summarized in Table 28. 

 

Furthermore, the immobilization yield, activity recovery and immobilization efficiency were 

determined according to the following equations.[8,138,139] 

 

Immobilization yield (%) = 100 x 
immobilized activity

starting activity
= 100 x 

Apure − Asupernatant −  Awashing

Apure

 

Immobilization efficiency (%) = 100 x 
observed activity

immobilized activity
= 100 x 

ACLEAs

Apure − Asupernatant − Awashing

 

Activity recovery (%) = 100 x 
observed activity

starting activity
= 100 x 

ACLEAs

Apure
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Table 28: Immobilization yield, effiency and activity recovery for the obtained CLEAs. 

CLEA Immobilization 

yield [%] 

Immobilization 

efficiency [%] 

Activity recovery 

[%] 

0.5 83 26 21 

1.0 90 23 21 

2.0 92 25 23 

 

 

9.4.3.3 Activity assays for determination of OxdB(CHis6) activity 

 

9.4.3.3.1 Purified OxdB(CHis6) 

 

 

10 µL (~50 µg) purified OxdB(CHis6) was dissolved in 477.5 µL KPB (50 mM, pH = 7.0) and 

incubated for 5 minutes at 30 °C. The assay was started by adding 12.5 µL of a 400 mM 

stock solution of (E/Z)-phenylacetaldehyde oxime (final concentration 10 mM). After 60 

seconds at 30 °C and 1400 rpm shaking, 500 µL acetonitrile was added. The solution was 

centrifuged (15000 g, 4 °C, 5min) and 800 µL were transferred into a HPLC vial. The 

conversion was determined via RP-HPLC. The activity values are summarized in Table 29. 

 

9.4.3.3.2 Crude extract of (CHis6), CLEA supernatant and washing fraction 

 

 

40 µL of crude extract, supernatant of the CLEA formation or the washing fraction of CLEA 

formation containing OxdB(CHis6) was dissolved in 447.5 µL KPB (50 mM, pH = 7.0) and 

incubated for 5 minutes at 30 °C. The assay was started by adding 12.5 µL of a 400 mM 

stock solution of (E/Z)-phenylacetaldehyde oxime (final concentration 10 mM). After 60 

seconds at 30 °C and 1400 rpm shaking, 500 µL Acetonitrile was added. The solution was 

centrifuged (15000 g, 4 °C, 5min) and 800 µL were transferred into a HPLC vial. The 

conversion was determined via RP-HPLC. The activity values are summarized in Table 29. 
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9.4.3.3.3 OxdB(CHis6) CLEAs 

 

 

 

Freeze dried OxdB(CHis6)-CLEA (800-1700 µg) was suspended in 487.5 µL KPB (50 mM, 

pH = 7.0) and incubated for 5 minutes at 30 °C. The assay was started by adding 12.5 µL 

of a 400 mM stock solution of (E/Z)-phenylacetaldehyde oxime (final concentration 

10 mM). After 15 minutes at 30 °C and 1400 rpm shaking, 500 µL acetonitrile was added. 

The suspension was centrifuged (15000 g, 4 °C, 5min) and 800 µL were transferred into a 

HPLC vial. The conversion was determined via RP-HPLC. The activity values are 

summarized in Table 29. 

 

Table 29: Summary of the activies of different OxdB(CHis6) formulations including CLEAs. 

Entry Formulation mg/mL  Activity (mU/mg) 

1 Purified OxdB(C
His6

) 4.72 1630 

2 Crude extract 7.02 4940
b

 

3 Supernatant  

CLEA 0.5-2.0 

n.d. 0 

4 Washing fraction  

0.5-2.0 

2.64-3.54 127-284 

5 CLEA  

0.5-2.0 
700-800 µg

a

 336-372 

a. dry weight; b. mU/mL; n.d. = not determinable 
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9.4.3.4 General procedure 19 (GP19): Recycling study for the long-term 

stability of OxdB(CHis6) CLEAs in aqueous media 

 

 

Freeze dried OxdB(CHis6)-CLEAs (800 µg) were stored for two days at 4 °C in KPB (50 mM, 

pH = 7.0) prior to use. The CLEAs were suspended in 487.5 µL KPB (50 mM, pH = 7.0). 

The assay was started by adding 12.5 µL of a 400 mM stock solution of (E/Z)-

phenylacetaldehyde oxime (final concentration 10 mM). After 15 minutes at 30 °C and 

1400 rpm shaking, 500 µL acetonitrile was added. The suspension was centrifuged 

(15000 g, 4 °C, 5 min) and the supernatant was taken off for RP-HPLC analysis. The CLEAs 

were washed with 500 µL KPB (50 mM, pH = 7.0) and centrifuged off again (15000 g, 4 °C, 

5 min). Afterwards, new 487.5 µL of KPB (50 mM, pH = 7.0) were added and the procedure 

started again for a total of ten cycles. The activity values are listed in Table 30. 

 

Table 30: Activity (in mU/mg) of freeze dried OxdB(CHis6)-CLEAs in aqueous media for 

10 cycles. 

Cycle 

 

CLEA 

1 2 3 4a 5a 6a 7a 8a 9a 10a 

0.5% 

Glutaraldehyde 

131 198 176 68 70 56 39 30 23 19 

1.0% 

Glutaraldehyde 

60 80 65 28 29 27 26 19 18 16 

2.0% 

Glutaraldehyde 

126 181 175 68 82 78 62 44 35 30 

a. Cycles conducted after 24 hour storage of the CLEAs at room temperature in KPB 

(50 mM, pH = 7.0) 
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9.4.3.5 General procedure 20 (GP20): Recycling study for the long-term 

stability of OxdB(CHis6) CLEAs in organic media 

 

 

 

Freeze dried OxdB(CHis6)-CLEA (1.7 mg, 220 mU) was mixed at 30 °C with 1.0 mL MTBE 

containing 10 mM (E/Z)-phenylacetaldehyde oxime in a 1.5 mL micro reaction tube. The 

suspension was shaken for 15 min at 30 °C and afterwards the CLEAs were centrifuged off 

(15000 g, 4 °C, 5 min) and the supernatant was freed from the solvent in vacuo and the 

conversion was determined according to 1H-NMR analysis (in CDCl3). This procedure was 

repeated for 10 cycles. 

 

Table 31: Observed conversion of (E/Z)-PAOx in organic media with OxdB-CLEAs. 

Cycle 

 

1 2 3 4 5 6 7 8 9 10 

Conv. 

[%] 

0 0 0 0 0 0 0 0 0 0 

Activity 

[U/mg] 

- - - - - - - - - - 

 

 

9.4.3.6 Synthesis of adiponitrile in aqueous and organic media with OxdB(CHis6) 

CLEAs 

 

 

Freeze dried OxdB(CHis6)-CLEA (5.1 mg, 663 mU) was mixed at 30 °C with 1.5 mL MTBE 

and (E/Z)-adipaldehyde dioxime (15 mg, 104 µmol) in a 1.5 mL micro reaction tube. The 

suspension was vigorously shaken for 18 h at 30 °C and afterwards the CLEAs were 

centrifuged off (15000 g, 4 °C, 5min) and the supernatant was freed from the solvent in 

vacuo and the conversion was determined according to 1H-NMR analysis (in CDCl3). No 

product and hence conversion could be detected. 

The residue in the micro reaction tube containing the OxdB(CHis6)-CLEA and (E/Z)-

adipaldehyde dioxime was mixed with 1.5 mL of 50 mM KPB (pH = 7.0) and the reaction 

mixture was vigorously shaken for 18 hours at 30 °C. The CLEAs were centrifuged off 
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(15000 g, 4 °C, 5 min) and the supernatant was extracted three times with 1.5 mL each. 

The solvent was removed in vacuo and the yield of adiponitrile was determined via 1H-NMR 

analysis (CDCl3 with TMS (0.03 v/v) as internal standard).  

 

Yield: 6.9 mg, 62%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 2.43 (m, 4H, CH2CH2CN), 1.83 (m, 4H, CH2CH2CN). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 118.80, 24.36, 16.76. 

 

The analytical data corresponds with the literature.[112] 

 

9.4.3.7 Synthesis of adiponitrile in a biphasic system with OxdB(CHis6) CLEAs 

 

 

 

Freeze dried OxdB(CHis6)-CLEA (1.7 mg, 221 mU) was mixed with 750 µL MTBE, 750 µL 

50 mM KPB (pH = 7.0) and (E/Z)-adipaldehyde dioxime (15 mg, 104 µmol) in a 1.5 mL 

micro reaction tube. The suspension was vigorously shaken for 16 h at 30 °C and 

afterwards the CLEAs were centrifuged off (15000 g, 4 °C, 5 min). The phases were 

separated and the organic phase was freed from the solvent in vacuo and the conversion 

was determined according to 1H-NMR analysis (in CDCl3 TMS, 0.03 v/v, as internal 

standard).  

 

Yield: 205 µg, 1.8%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 2.43 (m, 4H, CH2CH2CN), 1.83 (m, 4H, CH2CH2CN). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 118.80, 24.36, 16.76. 

 

The analytical data corresponds with the literature.[112] 
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9.5 CHIRAL N-ACYL-Α-AMINONITRILES VIA COPPER CATALYSIS AND 

INCORPORATION INTO A DE NOVO SYNTHESIS OF VILDAGLIPTIN 

9.5.1 GENERAL PROCEDURE 21 (GP21): CONDENSATION OF MONO-ALDEHYDES 

WITH HYDROXYLAMINE SALTS 

 

 

 

Hydroxylamine hydrochloride (1.5 eq.) and sodium carbonate (1.5 eq.) were dissolved in 

a mixture of H2O and 1-propanol at room temperature. Aldehyde was added to this solution 

and stirred vigorously until complete conversion according to TLC analysis 

(cyclohexane/ethyl acetate 3:1, v/v) was achieved. The solution was extracted three times 

with ethyl acetate (1:1 v/v) and the combined organic phases were washed with H2O (1:3 

v/v). Drying over MgSO4 and evaporation of the solvent gave a crude product, which was 

purified by silica column chromatography if desired. The (E/Z)-ratio of the product was 

determined by 1H-NMR spectroscopy in CD2Cl2. 

 

9.5.1.1 (E/Z)-N-Boc-D-phenylalaninal oxime  

 

The synthesis was carried out according to GP21. Hydroxylamine 

hydrochloride (146 mg, 2.11 mmol) and sodium carbonate (223 mg, 

2.11 mmol) were dissolved in 5 mL H2O and 4 mL 1-propanol at RT. 

After the addition of N-Boc-D-phenylalaninal (350 mg, 1.40 mmol) 

the resulting solution was stirred for 18 hours, upon which complete 

conversion was achieved according to TLC analysis. The work up 

yielded the product as colorless solid. The isomers were separated by 

column chromatography (cyclohexane:ethyl acetate 3:1, v/v), freed 

from the solvent at room temperature and obtained as colorless solids. 

 

(E)-N-Boc-D-phenylalaninal oxime: 

Yield: 200 mg, 54%. 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 10.50 (s, 1H, NOH), 7.65 (s, 1H, NH), 7.42 (br s, 

1H, CHNOH), 7.31 (m, 2H, Ar-H) 7.23 (m, 1H, Ar-H), 7.18 (m, 2H, Ar-H), 4.98 (s, 1H, 

CH2CHNH), 4.52 (m, 1H, CH2CHNH), 2.96 (m, 2H, CH2), 1.38 (s, 9H, Boc-H). 

 

 

(Z)-N-Boc-D-phenylalaninal oxime: 

Yield: 142 mg, 38%. 
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1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 7.75 (s, 1H, NOH), 7.32 (m, 2H, Ar-H), 7.24 (m, 

3H, Ar-H), 6.68 (d, 1H, 3J = 6.1 Hz, CHNOH), 4.93 (m, 1H, CH2CHNH), 4.79 (s, 1H, NH), 

3.03 (dd, 1H, 2J = 13.9 Hz, 3J = 5.4 Hz, CH2), 2.94 (m, 1H, CH2), 1.38 (s, 9H, Boc-H). 

 

(E/Z)-N-Boc-D-phenylalaninal oxime: 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 156.8, 155.8, 155.5, 153.0, 151.0, 149.2, 137.6, 

137.3, 130.15, 129.9, 19.0, 127.2, 81.6, 80.2, 51.7, 48.3, 41.8, 39.9, 37.9, 28.6. 

MS (ESI): m/z = 265.1 ([M+H]+), 287.2 ([M+Na]+), 551.3 ([2M+Na]+). 

IR [cm-1]: 3349, 1690, 1518, 1245, 1165, 698. 

MP: 125 °C. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 50:50, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt = 5.4 min. 

NP-HPLC: Daicel Chiracel AD-H, CO2/Isopropanol 95:5, v/v, 0.75 mL/min, 30 min -> 

90:10, 2.00 mL/min, 30 min, 20 °C, 210 nm, RtZ = 40.6 min, RtE = 43.5 min. 

 

The analytical data corresponds in analogy with the literature.[213] 

 

 

9.5.1.2 (E/Z)-N-Boc-L-phenylalaninal oxime  

 

The synthesis was carried out according to GP21. Hydroxylamine 

hydrochloride (100 mg, 1.43 mmol) and sodium carbonate (152 mg, 

1.43 mmol) were dissolved in 5 mL H2O and 4 mL 1-propanol at RT. 

After the addition of N-Boc-L-phenylalaninal (238 mg, 955 µmol) the 

colorless suspension was stirred for 18 hours, upon which complete 

conversion was achieved according to TLC analysis. The work up 

yielded the product as colorless solid.  

 

Yield: 212 mg, 84%. 

(E,Z)-N-Boc-L-phenylalaninal oxime: 

1H-NMR (500 MHz, CD2Cl2): δ [ppm] = 10.02 (s, 1H, NOH), 7.86 (s, 1H, NOH), 7.54 (s, 

1H, NH), 7.42 (br s, 1H, CHNOH), 7.33-7.18 (m, 5H, Ar-H), 6.68 (d, 1H, 3J = 6.1 Hz, 

CHNOH), 5.71 (br s, 1H), 4.95 (s, 1H, CH2CHNH), 4.81 (s, 1H, NH), 4.52 (m, 1H, 

CH2CHNH), 3.03 (dd, 1H, 2J = 13.9 Hz, 3J = 5.4 Hz, CH2), 2.96 (m, 2H, CH2), 1.38 (s, 9H, 

Boc-H). 

13C-NMR (125 MHz, CD2Cl2): δ [ppm] = 156.7, 155.7, 155.4, 153.1, 151.2, 149.4, 137.6, 

137.3, 130.2, 129.9, 129.1, 129.0, 127.3, 127.2, 81.5, 80.1, 51.7, 41.7, 39.9, 28.5. 

IR [cm-1]: 3349, 1690, 1518, 1245, 1165, 699. 

MP: 127 °C. 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 50:50, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt = 5.4 min. 
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NP-HPLC: Daicel Chiracel AD-H, CO2/Isopropanol 95:5, v/v, 0.75 mL/min, 30 min -> 

90:10, 2.00 mL/min, 30 min, 20 °C, 210 nm, RtZ = 43.5 min, RtE = 55.1 min. 

 

The analytical data corresponds with the literature.[213] 

 

9.5.2 GENERAL PROCEDURE 22 (GP22): COPPER(II) ACETATE CATALYZED 

DEHYDRATION OF Α-AMINO ALDOXIMES 

 

 

 

Copper(II) acetate (10 mol-%) was dissolved in acetonitrile. Upon addition of the 

aldoxime, a rapid change in color from cyan to deep green was observed. The resulting 

suspension was heated to reflux for 60 minutes. After removal of the acetonitrile in vacuo, 

complete conversion was determined via TLC analysis (cyclohexane/ethyl acetate 2:1, 

v/v). The crude product, containing one equivalent of acetamide, was dissolved in 

cyclohexane/ethyl acetate (2:1, v/v) and filtered over a small silica column (4 cm), 

effectively removing acetamide and residual copper(II) acetate. Removal of the solvent 

yielded the desired nitrile. To determine the retention of absolute configuration, the 

product was analyzed by chiral HPLC. Alternatively to NMR, conversion could be measured 

via RP-HPLC. 

 

9.5.2.1 (R)-N-Boc-Phenylalanine Nitrile  

 

The synthesis was carried out according to GP22. Copper(II) acetate 

(10.3 mg, 56.7 µmol) was dissolved in 1.5 mL acetonitrile. (E/Z)-N-

Boc-D-phenylalaninal oxime (150 mg, 567 µmol) was added and the 

reaction mixture was heated to reflux for 60 min. The work up yielded 

the product as a colorless solid. 

 

 

Yield: 116 mg, 83%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.33 (m, 5H, Ar-H), 4.84 (br s, 2H, CH and NH), 

3.09 (m, 2H, PhCH2), 1.44 (s, 9H, Boc-H). 

MS (ESI): m/z = 269.1 ([M+Na]+), 515.2 ([2M+Na]+). 

IR [cm-1]: 3350, 2922, 1688, 1518, 700. 

MP: 115 °C. 

[α]20
D: + 16 (c 0.98 dioxane). 
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RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 50:50, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt = 9.0 min. 

NP-HPLC: Daicel Chiracel AD-H, CO2/Isopropanol 95:5, v/v, 0.75 mL/min, 30 min -> 

90:10, 2.00 mL/min, 30 min, 20 °C, 210 nm, Rt = 23.3 min. 

 

The analytical data corresponds in analogy with literature data.[66,214] 

 

 

9.5.2.2 (S)-N-Boc-phenylalanine Nitrile  

 

The synthesis was carried out according to GP22. Copper(II) acetate 

(7.3 mg, 40.2 µmol) was dissolved in 1.0 mL acetonitrile. (E/Z)-N-Boc-

L-phenylalaninal oxime (85.0 mg, 322 µmol) was added and the 

reaction mixture was heated to reflux for 60 min. The work up yielded 

the product as a colorless solid. 

 

 

Yield: 73 mg, 92%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.33 (m, 5H, Ar-H), 4.84 (br s, 2H, CH and NH), 

3.09 (m, 2H, PhCH2), 1.44 (s, 9H, Boc-H).  

IR [cm-1]: 3351, 2923, 1688, 1518, 700. 

MP: 115 °C. 

[α]20
D: - 16 (c 0.98 dioxane). 

RP-HPLC: Macherey-Nagel Nucleodur C18 HTec, Water/Acetonitrile 50:50, v/v, 

1.0 mL/min, 40 °C, 220 nm, Rt = 9.0 min. 

NP-HPLC: Daicel Chiracel AD-H, CO2/Isopropanol 95:5, v/v, 0.75 mL/min, 30 min -> 

90:10, 2.00 mL/min, 30min, 20 °C, 210 nm, Rt = 20.9 min. 

 

The analytical data corresponds with literature data.[66,214] 
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9.6 NEW LUBRICANT ESTER STRUCTURES BASED ON RENEWABLE RESOURCES 

9.6.1 GENERAL PROCEDURE 23 (GP23): BIOCATALYTIC SYNTHESIS OF OLEIC ACID 

ESTERS BY ESTERIFICATION OF OLEIC ACID WITH GUERBET ALCOHOLS 

 

 

 

Oleic acid (1.0 eq.) and Guerbet alcohol (1.0 eq.) were mixed with CAL-B (Novozym 435, 

30 mg/mmol Substrate) and molecular sieves 4Å (120 mg/mmol). The reaction mixture 

was stirred at 50 °C for 24 hours and afterwards filtered through a 0.2 µM PTFE-Filter. The 

corresponding oleic acid ester was obtained in 97-99% purity. 

 

 

9.6.1.1 2-ethylhexyl oleate  

 

 

The synthesis was carried out according to GP23. Oleic acid (31.6 mL, 100 mmol) and 2-

ethylhexanol (15.6 mL, 100 mmol) were mixed with Novozym 435 (3.00 g) and molecular 

sieves 4Å (12.0 g). 2-ethylhexyl oleate (99% purity) was obtained as colorless liquid.  

 

Yield: 37.3 g, 95%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.34 (m, 2H, CH=CH), 3.98 (dd, 2H, 2J = 5.8 Hz, 
3J = 2.4 Hz, OCH2), 2.29 (t, 2H, 3J = 7.5 Hz, CH2CH2COOR), 2.01 (m, 4H, CH2CH=CHCH2), 

1.61 (qi, 2H, 3J = 7.3 Hz, CH2CH2COOR), 1.56 (sept, 1H, 3J = 6.0 Hz, OCH2CH), 1.28 (m, 

28H), 0.88 (m, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.21, 130.11, 129.87, 66.76, 38.90, 34.58, 

32.05, 30.57, 29.91, 29.84, 29.67, 29.47, 29.33, 29.29, 29.26, 29.07, 27.36, 27.31, 

25.19, 23.95, 23.12, 22.83, 14.25, 14.18. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min, Rt = 3.51 min. 

HRMS (ESI): calcd for C26H50O2Na [M+Na]+: 417.3703, found: 417.3699. 
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IR (neat) [cm-1]: 2956, 2922, 2853, 1736, 1461, 1240, 1171, 724. 

 

 

9.6.1.2 2-butyloctyl oleate  

 

 

The synthesis was carried out according to GP23. Oleic acid (1.59 mL, 5.00 mmol) and 2-

butyloctanol (1.12 mL, 5.00 mmol) were mixed with Novozym 435 (150 mg) and molecular 

sieves 4Å (600 mg). 2-butyloctyl oleate (97% purity) was obtained as colorless liquid. 

 

Yield: 1.30 g, 58%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.34 (m, 2H, CH=CH), 3.96 (d, 2H, 2J = 5.8 Hz, 

OCH2), 2.29 (t, 2H, 3J = 7.5 Hz, CH2CH2COOR), 2.01 (m, 4H, CH2CH=CHCH2), 1.61 (m, 

2H, CH2CH2COOR), 1.60 (m, 1H, OCH2CH), 1.28 (m, 36H), 0.88 (m, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.21, 130.11, 129.87, 67.16, 37.43, 34.60, 

32.06, 31.97, 31.44, 31.11, 29.92, 29.86, 29.78, 29.68, 29.47, 29.35, 29.31, 29.28, 

29.07, 27.36, 27.32, 26.82, 25.21, 23.14, 22.83, 22.81, 14.25, 14.24, 14.19. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 4.27 min. 

HRMS (ESI): calcd for C30H58O2Na [M+Na]+: 473.4329, found: 473.4324. 

IR (neat) [cm-1]: 2954, 2922, 2853, 1737, 1457, 1241, 1169, 723. 

 

 

9.6.1.3 2-hexyldecyl oleate  

 

 

The synthesis was carried out according to GP23. Oleic acid (1.59 mL, 5.00 mmol) and 2-

hexyldecanol (1.44 mL, 5.00 mmol) were mixed with Novozym 435 (150 mg) and 

molecular sieves 4Å (600 mg). 2-hexyldecyl oleate (97% purity) was obtained as colorless 

liquid. 
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Yield: 1.51 g, 60%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.34 (m, 2H, CH=CH), 3.97 (d, 2H, 2J = 5.8 Hz, 

OCH2), 2.29 (t, 2H, 3J = 7.5 Hz, CH2CH2COOR), 2.01 (m, 4H, CH2CH=CHCH2), 1.61 (m, 

2H, CH2CH2COOR), 1.60 (m, 1H, OCH2CH), 1.28 (m, 44H), 0.88 (m, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.22, 130.12, 129.87, 67.18, 37.45, 34.61, 

32.06, 31.97, 31.44, 30.12, 29.92, 29.86, 29.78, 29.72, 29.68, 29.48, 29.36, 29.32, 

29.29, 27.37, 27.32, 26.86, 26.82, 25.21, 22.84, 22.81, 14.26, 14.25. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 5.65 min. 

HRMS (ESI): calcd for C34H66O2Na [M+Na]+: 529.4955, found: 529.4951. 

IR (neat) [cm-1]: 2921, 2852, 1737, 1464, 1169, 722. 

 

9.6.1.4 2-octyldodecyl oleate  

 

 

The synthesis was carried out according to GP23. Oleic acid (1.59 mL, 5.00 mmol) and 2-

octyldodecanol (1.78 mL, 5.00 mmol) were mixed with Novozym 435 (150 mg) and 

molecular sieves 4Å (600 mg). 2-octyldodecyl oleate (98% purity) was obtained as 

colorless liquid. 

 

Yield: 1.67 g, 59%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.34 (m, 2H, CH=CH), 3.97 (d, 2H, 2J = 5.8 Hz, 

OCH2), 2.29 (t, 2H, 3J = 7.5 Hz, CH2CH2COOR), 2.01 (m, 4H, CH2CH=CHCH2), 1.61 (m, 

2H, CH2CH2COOR), 1.60 (m, 1H, OCH2CH), 1.28 (m, 52H), 0.88 (m, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.22, 130.12, 129.87, 67.19, 37.43, 34.61, 

32.08, 32.07, 31.42, 30.12, 29.92, 29.87, 29.82, 29.81, 29.77, 29.72, 29.69, 29.52, 

29.48, 29.36, 29.32, 29.29, 27.37, 27.32, 26.85, 25.21, 22.84, 14.27. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 7.70 min. 

HRMS (ESI): calcd for C34H66O2Na [M+Na]+: 585.5581, found: 585.5568. 

IR (neat) [cm-1]: 2920, 2852, 1737, 1464, 1170, 722. 
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9.6.1.5 General procedure 24 (GP24): Recycling of Novozym 435 for the 

synthesis of 2-ethylhexyl oleate in a SpinChem reactor 

 

 

Oleic acid (18.9 mL, 60.0 mmol) and 2-ethylhexanol (9.4 mL, 60.0 mmol) were dissolved 

in 100 mL cyclohexane in a 200 mL SpinChem Vessel V2. Novozym 435 (1.80 g) and 

molecular sieves 4Å (7.4 g) were separately given into a SpinChem RBR S2 rotating bed 

reactor and the bed reactor was sealed. The reaction solution was stirred at 700 rpm for 

24 hours at 50 °C. The conversion was determined after 3, 6, 9 and 24 hours by 1H-NMR 

analysis. After 24 hours reaction time yielded removal of the solvent in vacuo 2-ethylhexyl 

oleate (98% purity) as colorless liquid.  

 

Yield: 22.5 g, 95%. 

 

 

Table 32: Observed conversions in the recycling of Novozym 435. 

Time (h) 
First cycle 

conversion (%) 

Second cycle 

conversion (%) 

Third cycle 

conversion (%) 

3 86 95 92 

6 98 96 96 

9 98 96 96 

24 98 98 96 
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9.6.2 GENERAL OPERATING PROCEDURE 25 (GP25): ENE REACTION OF OLEIC ACID 

AND OLEIC ESTERS WITH PARAFORMALDEHYDE AND LEWIS ACIDS 

 

 

In reference to Metzger et Biermann[195,196]: Oleic acid (1.0 eq.) oder its 2-ethylhexylester 

(1.0 eq.) and paraformaldehyde (2.3 eq.) were mixed under argon in dry dichloromethane 

and cooled to 0 °C. EtAlCl2 or Me2AlCl (2.3 - 3.3 eq., 1.0 M in n-hexane) were added 

dropwise and the reaction mixture was stirred at room temperature for two hours. Water 

(1:1 v/v) was added and the pH adjusted to 1 with 4 M HCl. The organic and aqueous 

phase were separated and the aqueous one was extracted three times with diethyl ether 

(1:1 v/v). The combined organic phases were dried with MgSO4 and freed from the solvent 

in vacuo. The products were obtained as colorless oils after column chromatography. The 

products were obtained as 1:1 mixture of the C9 and C10-adducts. 

 

9.6.2.1 (E)-9+10-(hydroxymethyl)octadec-10+8-enoic acid 

 

 

The synthesis was carried out according to GP25. Oleic acid (4.73 mL, 15 mmol) and 

Paraformaldehyde (1.04 g, 34.5 mmol) were treated with Me2AlCl (34.5 mL, 34.5 mmol). 

Work-up and column chromatography (cyclohexane/ethyl acetate 7:3, v/v) yielded the 

product as colorless liquid.  

 

Yield: 1.50 g, 32%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.52 (m, 1H, CH=CHCH), 5.13 (m, 1H, CH=CHCH), 

3.52 (m, 1H, CH2OH), 3.33 (m, 1H, CH2OH), 2.34 (2 t, 2H, 3J = 7.5 Hz, CH2COO), 2.15 

(m, 1H, CH=CHCH), 2.04 (m, 2H, CH2CH=CH), 1.64 (m, 2H, CH2CH2COO), 1.27 (m, 22H), 

0.88 (2 t, 3H, CH3). 
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13C-NMR (125 MHz, CDCl3): δ [ppm] = 179.15, 179.07, 134.33, 133.88, 131.64, 131.30, 

66.15, 66.10, 46.06, 34.01, 34.01, 32.82, 32.68, 32.03, 32.01, 31.27, 31.21, 29.82, 

29.69, 29.68, 29.57, 29.45, 29.37, 29.29, 29.28, 29.26, 29.16, 28.99, 28.79, 27.24, 

27.15, 27.07, 24.80, 24.75, 22.82, 22.81, 14.25. 

 

The analytical data corresponds with literature data.[195] 

 

9.6.2.2 2-ethylhexyl (E)-9+10-(hydroxymethyl)octadec-10+8-enoate 

 

 

The synthesis was carried out according to GP25. Oleic acid ester (23.7 g, 60 mmol) and 

paraformaldehyde (4.14 g, 138 mmol) were treated with EtAlCl2 (198 mL, 198 mmol). 

Work-up by vacuum distillation (at 10-3 mbar) yielded the product as colorless liquid.  

 

Yield: 17.6 g, 69%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.51 (m, 1H, CH=CHCH), 5.12 (m, 1H, CH=CHCH), 

3.98 (m, 2H, COOCH2), 3.51 (m, 1H, CH2OH) 3.32 (m, 1H, CH2OH), 2.29 (2 t, 2H, 
3J = 7.5 Hz, CH2COO), 2.12 (m, 1H, CH=CHCH), 2.02 (m, 2H, CH2CH=CH), 1.61 (m, 2H, 

CH2CH2COO), 1.56 (m, 1H, OCH2CH), 1.27 (m, 28H), 0.88 (3 t, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.21, 174.18, 134.27, 133.90, 131.58, 131.33, 

66.79, 66.77, 66.12, 66.09, 46.09, 38.88, 34.56, 34.54, 32.81, 32.72, 32.02, 31.99, 

31.25, 31.23, 30.56, 29.81, 29.67, 29.67, 29.64, 29.46, 29.44, 29.34, 29.28, 29.24, 

29.10, 29.06, 28.90, 27.23, 27.18, 25.16, 25.12, 23.93, 23.12, 22.81, 22.80, 14.25, 

14.24, 14.19, 11.13. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 4.29, 4.53 min. 

HRMS (ESI): calcd for C27H52O3Na [M+Na]+: 447.3809, found: 447.3813. 

IR (neat) [cm-1]: 2923, 2854, 1733, 1462, 1379, 1171, 1032, 969. 
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9.6.3 GENERAL WORKING PROCEDURE 26 (GP26): PALLADIUM CATALYZED C=C-

HYDROGENATION OF OLEIC ACID DERIVATIVES 

 

 

 

The unsaturated acid (1.0 eq.) or 2-ethylhexylester (1.0 eq.) of the oleic acid derivatives 

was dissolved in cyclohexane under a H2-atmosphere. Palladium on carbon (Pd/C, 10% Pd, 

20 wt.-%) was added. The reaction mixture was stirred at room temperature for two hours 

and afterwards filtered through a 0.2 µM PTFE-Filter. Column chromatography yielded the 

product as colorless oil.  

 

9.6.3.1 9+10-(hydroxymethyl)octadecanoic acid 

 

 

The synthesis was carried out according to GP26. (E)-9+10-(hydroxymethyl)octadec-

10+8-enoic acid (450 mg, 1.44 mmol) was dissolved in 25 mL cylcohexane under H2 

atmosphere. Pd/C (90 mg) was added. Work-up and column chromatography 

(cyclohexane/ethyl acetate 1:2, v/v) yielded the product as colorless oil.  

 

Yield: 130 mg, 25%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.53 (d, 2H, 3J = 5.5 Hz CH2OH), 2.35 (t, 2H, 
3J = 7.5 Hz, CH2COO), 1.63 (qi, 2H, 3J = 7.3 Hz, CH2CH2COO), 1.45 (m, 1H, HOCH2CH), 

1.27 (m, 36H), 0.88 (t, 3H, 3J = 6.9 Hz, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 179.62, 65.81, 65.79, 40.59, 34.15, 34.14, 32.05, 

31.07, 31.02, 30.99, 30.22, 30.05, 29.91, 29.80, 29.78, 29.76, 29.49, 29.30, 29.15, 

29.13, 27.04, 26.92, 26.88, 24.80, 22.83, 14.27. 

HRMS (ESI): calcd for C19H38O3Na [M+Na]+: 337.2713, found: 337.2717. 

IR (neat) [cm-1]: 2913, 2848, 1699, 1469, 1185, 972, 719. 
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9.6.3.2 2-ethylhexyl 9+10-(hydroxymethyl)octadecanoate 

 

 

The synthesis was carried out according to GP26. 2-ethylhexyl (E)-9+10-

(hydroxymethyl)octadec-10+8-enoate (1.06 g, 2.50 mmol) was dissolved in 50 mL 

cylcohexane under H2 atmosphere. Pd/C (212 mg) was added. Work-up and column 

chromatography (cyclohexane/ethyl acetate 7:1, v/v) yielded the product as colorless oil. 

 

Yield: 660 mg, 62%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.97 (m, 2H, COOCH2), 3.54 (d, 2H, 3J = 5.5 Hz 

CH2OH), 2.29 (t, 2H, 3J = 7.5 Hz, CH2COO), 1.61 (m, 2H, CH2CH2COO), 1.56 (m, 1H, 

OCH2CH), 1.27 (m, 36H), 0.89 (3 t, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.27, 174.26, 66.79, 65.85, 65.83, 40.67, 

38.90, 34.60, 34.58, 32.05, 31.08, 31.07, 31.05, 30.57, 30.22, 30.14, 30.02, 29.81, 

29.78, 29.76, 29.59, 29.49, 29.41, 29.40, 29.30, 29.07, 27.05, 27.01, 26.97, 25.19, 

23.95, 23.13, 22.83, 14.27, 14.20, 11.15. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 4.61 min. 

HRMS (ESI): calcd for C27H54O3Na [M+Na]+: 449.3965, found: 449.3975. 

IR (neat) [cm-1]: 2921, 2853, 1736, 1459, 1171, 1031. 
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9.6.3.3 2-ethylhexyl 9+10-((stearoyloxy)methyl)octadecanoate 

 

 

The synthesis was carried out according to GP26. 2-ethylhexyl (E)-9-

((stearoyloxy)methyl)octadec-10-enoate (2.00 g, 2.9 mmol) was dissolved in 50 mL 

cylcohexane under H2 atmosphere. Pd/C (400 mg) was added. Work-up and column 

chromatography (cyclohexane/ethyl acetate 15:1, v/v) yielded the product as colorless oil. 

 

Yield: 1.62 g, 81%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.97 (m, 4H, COOCH2), 2.28 (t, 4H, 3J = 7.5 Hz, 

CH2COO), 1.61 (m, 6H, CH2CH2COO), 1.25 (m, 62H), 0.89 (m, 12H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.22, 174.16, 67.13, 66.75, 38.91, 37.46, 

34.60, 34.58, 32.07, 31.42, 30.58, 30.12, 30.06, 29.94, 29.85, 29.81, 29.76, 29.71, 

29.65, 29.63, 29.58, 29.46, 29.43, 29.39, 29.34, 29.32, 29.07, 26.85, 25.21, 23.95, 

23.12, 22.84, 14.25, 14.18, 11.13. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 14.4 min. 

HRMS (ESI): calcd for C45H88O4Na [M+Na]+: 715.6575, found: 715.6573. 

IR (neat) [cm-1]: 2921, 2852, 1736, 1463, 1169. 
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9.6.4 GENERAL OPERATING PROCEDURE 27 (GP27): BIOCATALYTIC ESTERIFICATION 

OF FATTY ACIDS WITH HYDROXYMETHYLATED OLEIC ACID DERIVATES TO ESTOLIDE 

DIMERS 

 

 

The hydroxylmethylated 2-Ethylhexyloleate (1.0 eq.) was mixed with a fatty acid (1.0 eq.) 

and dissolved in MTBE. Novozym 435 (CAL-B, 30 mg/mmol) and molecular sieves 4Å (120 

mg/mmol) were added. The reaction mixture was stirred for 24 hours at 50 or 60 °C. 

Filtration through a 0.2 µM PTFE-Filter was conducted afterwards. Removing the solvent in 

vacuo yielded the product as colorless oil. 

 

9.6.4.1 2-ethylhexyl 9+10-((stearoyloxy)methyl)octadecanoate 

 

 

The synthesis was carried out according to GP27. 2-ethylhexyl 9+10-

(hydroxymethyl)octadecanoate (51.7 mg, 100 µmol) and stearic acid (28.4 mg, 100 µmol) 

were dissolved  in 50 µL MTBE. Novozym 435 (3 mg) and molecular sieves 4Å (12 mg) 

were added at 50 °C. Work-up yielded the product as colorless oil. 

 

Yield: 58 mg, 85%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.97 (m, 4H, COOCH2), 2.28 (t, 4H, 3J = 7.5 Hz, 

CH2COO), 1.61 (m, 6H, CH2CH2COO), 1.25 (m, 62H), 0.89 (m, 12H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.22, 174.16, 67.13, 66.75, 38.91, 37.46, 

34.60, 34.58, 32.07, 31.42, 30.58, 30.12, 30.06, 29.94, 29.85, 29.81, 29.76, 29.71, 

29.65, 29.63, 29.58, 29.46, 29.43, 29.39, 29.34, 29.32, 29.07, 26.85, 25.21, 23.95, 

23.12, 22.84, 14.25, 14.18, 11.13. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 14.4 min. 
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HRMS (ESI): calcd for C45H88O4Na [M+Na]+: 715.6575, found: 715.6573. 

IR (neat) [cm-1]: 2921, 2852, 1736, 1463, 1169. 

 

 

9.6.4.2 2-(8-((2-ethylhexyl)oxy)-8-oxooctyl)undecyl oleate and 11-((2-

ethylhexyl)oxy)-2-octyl-11-oxoundecyl oleate 

 

 

The synthesis was carried out according to GP27. 2-ethylhexyl 9+10-

(hydroxymethyl)octadecanoate (51.7 mg, 100 µmol) and oleic acid (28.2 mg, 100 µmol) 

were mixed with Novozym 435 (3 mg) and molecular sieves 4Å (12 mg) and stirred at 

60 °C. Work-up yielded the product as colorless oil. 

 

Yield: 39 mg, 56%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.34 (m, 2H, CH=CH), 3.98 (m, 2H, COOCH2), 3.95 

(m, 2H, COOCH2), 2.29 (2 t, 4H, 3J = 7.4 Hz, CH2COO), 1.61 (m, 4H, CH2CH2COO), 1.56 

(m, 2H, OCH2CH), 1.27 (m, 58H), 0.89 (4 t, 12H, CH3). 

MS (ESI): m/z = 691.5 [M+H]+. 

IR (neat) [cm-1]: 2959, 2926, 2856, 1736, 1257, 1011, 865, 790, 700. 
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9.6.4.3 2-ethylhexyl 9 und 10-((stearoyloxy)methyl)octadec-8 und 10-enoate 

 

 

2-ethylhexyl (E)-9+10-(hydroxymethyl)octadec-10+8-enoate (10.0 g, 23.5 mmol) was 

mixed with a stearic acid (6.70 g, 23.5 mmol) and heated to 70 °C, upon which the stearic 

acid melted. Novozym 435 (CAL-B, 706 mg, 30 mg/mmol) and molecular sieves 4Å (3.3 g, 

120 mg/mmol) were added. The reaction mixture was stirred for 24 hours at 70 °C. 

Filtration through a 0.2 µM PTFE-Filter was conducted afterwards. Removing the solvent in 

vacuo and filtration of silica (cyclohexane/ethyl acetate 15:1, v/v) yielded the product as 

colorless oil. 

 

Yield: 11.9 g, 73%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 5.40 (m, 1H, CH=CH), 5.14 (m, 1H, CH=CH), 3.98 

(m, 3H, COOCH2), 2.29 (m, 4H, CH2COO), 1.97 (m, 2H, CHCH2) 1.61 (m, 5H, CH2CH2COO 

+ OCH2CH), 1.27 (m, 60H), 0.88 (4 t, 12H, CH3). 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 14.1 min. 

HRMS (ESI): calcd for C45H86O4Na [M+Na]+: 713.6418, found: 713.6419. 

IR (neat) [cm-1]: 2959, 2926, 2856, 1736, 1257, 1011, 865, 790, 700. 
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9.6.5 SYNTHESIS OF 2-ETHYLHEXYL 12-(STEAROYLOXY)OCTADECANOATE STARTING 

FROM 12-HYDROXYSTEARIC ACID 

 

9.6.5.1 2-ethylhexyl 12-hydroxyoctadecanoate 

 

 

12-hydroxystearic acid (21.3 g, 70.9 mmol) was mixed with 2-ethylhexanol (11.1 mL, 

70.9 mmol) and the reaction mixture was heated to 75 °C, at which 12-hydroxystearic acid 

melted. Afterwards, Novozym 435 (2.13 g, 30 mg/mmol Substrate) and molecular sieves 

4Å (8.51 g) were added and the reaction mixture was stirred for five hours at 75 °C. The 

reaction mixture was diluted with cyclohexane and filtered over a 0.2 µm PTFE membrane, 

yielding the crude product as colorless oil. The crude product was purified via vacuum 

distillation (10-2 mbar) to yield 2-ethylhexyl 12-hydroxyoctadecanoate as colorless oil. 

 

Yield: 21.5 g, 73%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.98 (m, 2H, COOCH2), 3.57 (m, 1H, OH), 2.28 (t, 

2H, 3J = 7.4 Hz, CH2COO), 1.61 (m, 2H, CH2CH2COO), 1.56 (m, 1H, OCH2CH), 1.28 (m, 

36H), 0.88 (4 t, 9H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.24, 72.12, 66.77, 38.90, 37.64, 37.63, 34.59, 

31.99, 30.57, 29.83, 29.73, 29.66, 29.58, 29.53, 29.40, 29.30, 29.07, 25.79, 25.76, 

25.19, 23.94, 23.12, 22.76. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 3.56 min. 

HRMS (ESI): calcd for C26H52O3Na [M+Na]+: 435.3809, found: 435.3800. 

IR (neat) [cm-1]: 2922, 2853, 1736, 1463, 1246, 1172. 
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9.6.5.2 2-ethylhexyl 12-(stearoyloxy)octadecanoate 

 

2-ethylhexyl 12-hydroxyoctadecanoate (39.3 g, 96.7 mmol, distributed into four equal 

parts) was dissolved in 100 mL pyridine each. Stearoyl chloride (33.7 mL, 99.8 mmol, 

distributed into four equal parts) was slowly added and the resulting orange reaction 

mixture was stirred at room temperature for 14 hours. Afterwards, two reactions were 

combined and were treated with 100 mL H2O and 100 mL concentrated HCl each. After 

washing of the organic phase, the phases were separated and the aqueous phase was 

extracted additional two times with 100 mL cyclohexane each. The combined extracts were 

carefully washed with 100 mL saturated sodium bicarbonate solution and the organic 

phases were dried over MgSO4. and freed from the solvent in vacuo. The crude product 

was purified via column chromatography (cyclohexane/ethyl acetate 15:1, v/v) to yield the 

product as pale yellow oil. 

 

Yield: 36.0 g, 54%. 

1H-NMR (500 MHz, CDCl3): δ [ppm] = 4.86 (qi, 1H, 3J = 6.1 Hz CH2CHOOCCH2), 3.98 

(m, 2H, COOCH2), 2.29 (2t, 4H, 3J = 7.6 Hz, CH2COO), 1.61 (m, 4H, CH2CH2COO), 1.56 

(m, 1H, OCH2CH), 1.49 (m, 4H, CH2CH(O)CH2), 1.28 (m, 58H), 0.88 (m, 12H, CH3). 

13C-NMR (125 MHz, CDCl3): δ [ppm] = 174.23, 173.83, 74.19, 66.77, 38.91, 34.90, 

34.60, 34.32, 32.08, 31.91, 30.58, 29.85, 29.81, 29.78, 29.69, 29.68, 29.61, 29.52, 

29.47, 29.43, 29.36, 29.35, 29.33, 29.08, 25.48, 25.43, 25.34, 25.21, 23.96, 23.13, 

22.84, 22.73, 14.27, 14.21, 14.19, 11.14. 

GC (FID): Phenomenex ZB-5MSi, 0.5 ml/min (H2), Inj. Temp.: 300 °C, Det. Temp.: 

350 °C; 300 °C -> 350 °C (5 °C/min), 350 °C for 5 min; Rt = 13.1 min. 

HRMS (ESI): calcd for C44H86O4Na [M+Na]+: 701.6418, found: 701.6423. 

IR (neat) [cm-1]: 2921, 2852, 1733, 1463, 1172. 
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10 LIST OF ABBREVIATIONS 
 

2-Me-THF = 2-methyltetrahydrofuran 

6-APA = (+)-6-aminopenicillanic acid 

ADA = Alkylated diphenylamines 

ADH = Alcohol dehydrogenase 

AI = Auto induction 

ATP = Adenosine triphosphate 

BHT = Butylated hydroxytoluene 

Bn = Benzyl 

Boc2O = Di-tert-butyl dicarbonate 

BWW = Bio wet weight 

CAL-B = Candida Antarctica Lipase B 

CDG = 7-carboxy-7-deazaguanine 

CHN analysis = Elemental analysis 

CLEAs = Crosslinked enzyme aggregates 

CLECs = Crosslinked enzyme crystals 

CV = Column volume 

CYP450 = Cytochrome P450 

d = doublet 

DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene 

de = Diastereomeric excess 

DMAc = Dimethylacetamide 

DMC = Dimethyl carbonate 

DMF = Dimethylformamide 

DMSO = Dimethyl sulfoxide 

DPP-4 = Dipeptidyl peptidase IV 

DVB = Divinylbenzene 

E. coli = Escherichia coli 

EA = Elemental analysis 

ee = Enantiomeric excess 

EN = Estolide number 

EPR = Electron paramagnetic resonance 

ERED = Ene reductase 

ESI = Electrospray ionization 
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EtOH = Ethanol 

FID = Flame ionization detector 

FTIR = Fourier-transform infrared 

GC = Gas chromatography 

GDH = Glucose dehydrogenase 

HMDA = Hexamethylenediamine 

HMDS = Hexamethyldisilazane 

HPLC = High-performance liquid chromatography 

HRMS = High-resolution mass spectrometry 

iPrOH = 2-Propanol 

IPTG = Isopropyl β-D-1-thiogalactopyranoside 

IR = Infrared 

J = Coupling constant [Hz] 

kcat = Catalytic rate 

Km = Michaelis constant 

KPB = Potassium phosphate buffer 

LB = Lysogeny broth 

LDA = Lithium diisopropylamide 

m = Multiplet 

Mb = Myoglobin 

MeCN = Acetonitrile 

MeOH = Methanol 

MM = Molecular mechanics 

MP = Melting point 

MS = Mass spectrometry 

MTBE = Methyl tert-butyl ether 

NAD(P) / NAD(P)H = Nicotinamide adenine dinucleotide (phosphate) 

NiNTA = Nickel nitrilotriacetic acid 

NMR = Nuclear magnetic resonance 

NP-HPLC = Normal phase high-performance liquid chromatography 

OD600 = Optical density at 600 nm 

OECD = Organisation for Economic Co-operation and Development 

Oxd = Aldoxime dehydratase 

OxdA = Aldoxime dehydratase from Pseudomonas chlororaphis B23 

OxdB = Aldoxime dehydratase from Bacillus sp. OxB-1 

OxdFG = Aldoxime dehydratase from Fusarium graminearum MAFF305135 
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OxdK = Aldoxime dehydratase from Pseudomonas sp. K-9 

OxdRE = Aldoxime dehydratase from Rhodococcus sp. N-771 

OxdRG = Aldoxime dehydratase from Rhodococcus globerulus A-4 

p = Saturation level 

PAOx = Phenylacetaldehyde oxime 

PDMS = Polydimethylsiloxane 

PLP = Pyridoxal phosphate 

PMMA = Poly(methyl methacrylate) 

PPC = Propylene carbonate 

ppm = Parts per million 

PPOx = 2-phenylpropionaldoxime 

preQ6 = 7-cyano-7-deazaguanine 

PTFE = Polytetrafluoroethylene 

PU = Polyurethane 

q = Quartet 

qi = Quintet 

QM = Quantum mechanics 

RP-HPLC = Reversed phase high-performance liquid chromatography 

RPVOT = Rotating Pressure Vessel Oxidation Stability Test 

Rt = Retention time 

RT = Room temperature 

s = Singulet 

SDS-PAGE = Sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

sept = Septet 

sx = Sextet 

t = Triplet 

TB = Terrific broth 

TBAI = Tetrabutylammonium iodide 

TBSCl = tert-butyldimethylsilyl chloride 

TEMPO = (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

THF = Tetrahydrofuran 

TLC = Thin-layer chromatography 

TMEDA = Tetramethylethylenediamine 

TOF = Turnover frequency 

TON = Turnover number 

ToyM = Nitrile synthetase from Streptomyces risomus 
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TRIS = Tris(hydroxymethyl)aminomethane 

TTN = Total turnover number 

U = Unit (enzyme activity) 

UV = Ultraviolet radiation/light 

v/v = Volume ratio 

Vis = Visible radiation/light 

vMax= Maximum reaction rate 

YgjM = Ene reductase from Bacillus subtilis 

δ = Chemical shift (in ppm) 
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12 APPENDIX 

12.1 SEQUENCES AND PLASMIDS CARDS OF THE ALDOXIME DEHYDRATASES 

(OXDS) 

12.1.1 ALDOXIME DEHYDRATASE FROM PSEUDOMONAS CHLORORAPHIS B23 

(OXDA) 

Gene sequence 

ATGGAAAGCGCAATTGATACCCATCTGAAATGTCCGCGTACCCTGAGCCGTCGTGTTCCGGAAGA

ATATCAGCCTCCGTTTCCGATGTGGGTTGCACGTGCCGATGAACAGCTGCAGCAGGTTGTTATGG

GTTATCTGGGTGTTCAGTATCGTGGTGAAGCACAGCGTGAAGCAGCACTGCAGGCAATGCGTCA

TATTGTTAGCAGCTTTAGCCTGCCGGATGGTCCGCAGACCCATGATCTGACCCATCATACCGATA

GCAGCGGTTTTGATAATCTGATGGTTGTGGGTTATTGGAAAGATCCGGCAGCACATTGTCGTTGG

CTGCGTAGTGCCGAAGTTAATGATTGGTGGACCAGCCAGGATCGTCTGGGTGAAGGTCTGGGTT

ATTTTCGTGAAATTAGCGCACCGCGTGCAGAACAGTTTGAAACCCTGTATGCATTTCAGGATAATC

TGCCTGGTGTTGGTGCAGTTATGGATAGCACCAGCGGTGAAATTGAAGAACATGGTTATTGGGG

TAGCATGCGTGATCGTTTTCCGATTAGCCAGACCGATTGGATGAAACCGACCAATGAACTGCAGG

TTGTTGCCGGTGATCCGGCAAAAGGTGGTCGTGTTGTTATTATGGGTCATGATAACATTGCACTG

ATTCGTAGCGGTCAGGATTGGGCAGATGCAGAAGCAGAAGAACGTAGCCTGTATCTGGATGAAA

TTCTGCCGACCCTGCAGGATGGTATGGATTTTCTGCGTGATAATGGTCAGCCGCTGGGTTGTTAT

AGCAATCGTTTTGTTCGTAATATCGATCTGGATGGCAATTTTCTGGATGTGAGCTATAACATTGGT

CATTGGCGTAGCCTGGAAAAACTGGAACGTTGGGCAGAAAGCCATCCGACCCATCTGCGTATTTT

TGTTACCTTTTTTCGTGTTGCAGCCGGTCTGAAAAAACTGCGTCTGTATCATGAAGTTAGCGTGAG

TGATGCAAAAAGCCAGGTGTTTGAATATATCAACTGTCATCCGCATACCGGCATGCTGCGTGATG

CAGTTGTTGCACCGACCAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGA 

 

 

Amino acid sequence (352 AS, 40.129 kDa) 

MESAIDTHLKCPRTLSRRVPEEYQPPFPMWVARADEQLQQVVMGYLGVQYRGEAQREAALQAMRHI

VSSFSLPDGPQTHDLTHHTDSSGFDNLMVVGYWKDPAAHCRWLRSAEVNDWWTSQDRLGEGLGY

FREISAPRAEQFETLYAFQDNLPGVGAVMDSTSGEIEEHGYWGSMRDRFPISQTDWMKPTNELQVV

AGDPAKGGRVVIMGHDNIALIRSGQDWADAEAEERSLYLDEILPTLQDGMDFLRDNGQPLGCYSNR

FVRNIDLDGNFLDVSYNIGHWRSLEKLERWAESHPTHLRIFVTFFRVAAGLKKLRLYHEVSVSDAKS

QVFEYINCHPHTGMLRDAVVAPT 

 

 

 

12.1.2 ALDOXIME DEHYDRATASE FROM BACILLUS SP. STRAIN OXB-1 (OXDB) IN 

PUC18 

Gene sequence (Changed the start codon from TTG to ATG)[1b] 

ATGAAAAATATGCCGGAAAATCACAATCCACAAGCGAATGCCTGGACTGCCGAATTTCCTCCTGA

AATGAGCTATGTAGTATTTGCGCAGATTGGGATTCAAAGCAAGTCTTTGGATCACGCAGCGGAAC

ATTTGGGAATGATGAAAAAGAGTTTCGATTTGCGGACAGGCCCCAAACATGTGGATCGAGCCTTG

CATCAAGGAGCCGATGGATACCAAGATTCCATCTTTTTAGCCTACTGGGATGAGCCTGAAACATT
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TAAATCATGGGTTGCGGATCCTGAAGTACAAAAGTGGTGGTCGGGTAAAAAAATCGATGAAAATA

GTCCAATCGGGTATTGGAGTGAGGTAACGACCATTCCGATTGATCACTTTGAGACTCTTCATTCC

GGAGAAAATTACGATAATGGGGTTTCACACTTTGTACCGATCAAGCATACAGAAGTCCATGAATA

TTGGGGAGCAATGCGCGACCGCATGCCGGTGTCTGCCAGTAGTGATTTGGAAAGCCCCCTTGGC

CTTCAATTACCGGAACCCATTGTCCGGGAGTCTTTCGGAAAACGGCTAAAAGTCACGGCGCCGG

ATAATATTTGCTTGATTCGAACCGCTCAAAATTGGTCTAAATGTGGTAGCGGGGAAAGGGAAACG

TATATAGGACTAGTGGAACCGACCCTCATAAAAGCGAATACGTTTCTTCGTGAAAATGCTAGTGA

AACAGGCTGTATTAGTTCAAAATTAGTCTATGAACAGACCCATGACGGCGAAATAGTAGATAAAT

CATGTGTCATCGGATATTATCTCTCCATGGGGCATCTTGAACGCTGGACGCATGATCATCCAACA

CATAAAGCGATCTACGGAACCTTTTATGAGATGTTGAAAAGGCATGATTTTAAGACCGAACTTGCT

TTATGGCACGAGGTTTCGGTGCTTCAATCCAAAGATATCGAGCTTATCTATGTCAACTGCCATCCG

AGTACTGGATTTCTTCCATTCTTTGAAGTGACAGAAATTCAAGAGCCTTTACTGAAAAGCCCTAGC

GTCAGGATCCAGTGA 

 

Amino acid sequence (351 AS, 40.151 kDa) 

MKNMPENHNPQANAWTAEFPPEMSYVVFAQIGIQSKSLDHAAEHLGMMKKSFDLRTGPKHVDRAL

HQGADGYQDSIFLAYWDEPETFKSWVADPEVQKWWSGKKIDENSPIGYWSEVTTIPIDHFETLHSG

ENYDNGVSHFVPIKHTEVHEYWGAMRDRMPVSASSDLESPLGLQLPEPIVRESFGKRLKVTAPDNIC

LIRTAQNWSKCGSGERETYIGLVEPTLIKANTFLRENASETGCISSKLVYEQTHDGEIVDKSCVIGYYL

SMGHLERWTHDHPTHKAIYGTFYEMLKRHDFKTELALWHEVSVLQSKDIELIYVNCHPSTGFLPFFEV

TEIQEPLLKSPSVRIQ 

 

 

12.1.3 ALDOXIME DEHYDRATASE FROM BACILLUS SP. STRAIN OXB-1 (OXDB(CHIS6), 

CODON-OPTIMIZED) IN PET-22B 

Gene sequence  

ACAGGGAACGGGGGCGGAAATTCCCTCTAGAATAATTTTGGTTTAACTTTAAGGAAGGAGGATAT

ACATATGAAAAATATGCCGGAAAATCACAATCCACAAGCGAATGCCTGGACTGCCGAATTTCCTC

CTGAAATGAGCTATGTAGTATTTGCGCAGATTGGGATTCAAAGCAAGTCTTTGGATCACGCAGCG

GAACATTTGGGAATGATGAAAAAGAGTTTCGATTTGCGGACAGGCCCCAAACATGTGGATCGAG

CCTTGCATCAAGGAGCCGATGGATACCAAGATTCCATCTTTTTAGCCTACTGGGATGAGCCTGAA

ACATTTAAATCATGGGTTGCGGATCCTGAAGTACAAAAGTGGTGGTCGGGTAAAAAAATCGATGA

AAATAGTCCAATCGGGTATTGGAGTGAGGTAACGACCATTCCGATTGATCACTTTGAGACTCTTC

ATTCCGGAGAAAATTACGATAATGGGGTTTCACACTTTGTACCGATCAAGCATACAGAAGTCCAT

GAATATTGGGGAGCAATGCGCGACCGCATGCCGGTGTCTGCCAGTAGTGATTTGGAAAGCCCCC

TTGGCCTTCAATTACCGGAACCCATTGTCCGGGAGTCTTTCGGAAAACGGCTAAAAGTCACGGCG

CCGGATAATATTTGCTTGATTCGAACCGCTCAAAATTGGTCTAAATGTGGTAGCGGGGAAAGGGA

AACGTATATAGGACTAGTGGAACCGACCCTCATAAAAGCGAATACGTTTCTTCGTGAAAATGCTA

GTGAAACAGGCTGTATTAGTTCAAAATTAGTCTATGAACAGACCCATGACGGCGAAATAGTAGAT

AAATCATGTGTCATCGGATATTATCTCTCCATGGGGCATCTTGAACGCTGGACGCATGATCATCCA

ACACATAAAGCGATCTACGGAACCTTTTATGAGATGTTGAAAAGGCATGATTTTAAGACCGAACTT

GCTTTATGGCACGAGGTTTCGGTGCTTCAATCCAAAGATATCGAGCTTATCTATGTCAACTGCCAT

CCGAGTACTGGATTTCTTCCATTCTTTGAAGTGACAGAAATTCAAGAGCCTTTACTGAAAAGCCCT

AGCGTCAGGATCCAGCTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCC

GAAAGAAGTTTTTT 
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Amino acid sequence (359 AS, 41.216 kDa) 

MKNMPENHNPQANAWTAEFPPEMSYVVFAQIGIQSKSLDHAAEHLGMMKKSFDLRTGPKHVDRAL

HQGADGYQDSIFLAYWDEPETFKSWVADPEVQKWWSGKKIDENSPIGYWSEVTTIPIDHFETLHSG

ENYDNGVSHFVPIKHTEVHEYWGAMRDRMPVSASSDLESPLGLQLPEPIVRESFGKRLKVTAPDNIC

LIRTAQNWSKCGSGERETYIGLVEPTLIKANTFLRENASETGCISSKLVYEQTHDGEIVDKSCVIGYYL

SMGHLERWTHDHPTHKAIYGTFYEMLKRHDFKTELALWHEVSVLQSKDIELIYVNCHPSTGFLPFFEV

TEIQEPLLKSPSVRIQLEHHHHHH 

 

12.1.4 ALDOXIME DEHYDRATASE FROM FUSARIUM GRAMINEARUM MAFF305135 

(OXDFG(NHIS6), CODON-OPTIMIZED) IN PET28A 

Gene sequence  

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGC

TGCGTAGCCGTTTTCCGGCAAGCCATCATTTCACCGTTAGCGTTTTTGGTTGTCAGTATCATAGCG

AAGCACCGAGCGTTGAAAAAACCGAACTGATTGGTCGTTTCGATAAACTGATTGATAGCGCAGCA

ATTCATGTGGAACATCTGGAACAGAATGATGTGCCGAGCAAAATTTGGATGAGCTATTGGGAAAG

TCCGCAGAAATTCAAACAGTGGTGGGAAAAAGATGATACCGCAAGCTTTTGGGCAAGCCTGCCG

GATGATGCAGGTTTTTGGCGTGAAACCTTTAGCCTGCCTGCAACCCGTGCAATGTATGAAGGCAC

CGGTAAAGATGCCTATGGTTTTGGTCATTGTGGTAGCCTGATTCCGCTGACCACCAAAACCGGCT

ATTGGGGTGCATATCGTAGCCGTATGACACCGGATTTTGAAGGTGATACCTTTTCAAGCCCGATT

CCGACCTATGCAGATCAGAGCGTTCCGGCAGATAAAATTCGTCCGGGTCGTGTTCGTATTACCGA

TTTTCCGGATAATCTGTGCATGGTTGTTGAAGGTCAGCATTATGCAGATATGGGTGAACGTGAAC

GCGAATATTGGAACGAAAATTTTGATGGTCTGACGAAACAGTGGGTTACCAATGTTGTTACCGCA

GGTCATGAACAGGGTATGGTTATTGCACGTGCCTGTCATGGTTTTGCCGGTGAAAAAAAACTGGG

TGCAACCAATGGTCCGGTGAATGGTATTTTTCCGGGTCTGGATTATGTTCATCAGGCACAGATTC

TGATTTGGCAGGATATTAGCAAAATGGAACATATCGGTCGTTATGATCAGACCCATGTTAAACTG

CGTCGCGATTTTATGAAAGCCTATGGTCCGGGTGGTGAAATGGAAGGTGGTGATCTGCTGCTGT

GGGTTGATCTGGGTATTCTGAAAAAAGACGAAATCGATGCCGAATATGTGGGTTGCTATGAAAGT

ACCGGTTTTCTGAAACTGGATAAAGGCCAGTTTTTCAAAGTTGAAAGCACCGCAGGTAGCAAACT

GCCGAGCTTTTTTGATGAACCGATTGAAAGCAAACCGATCGAATGGTAA 

 

Amino acid sequence (383 AS, 43.380 kDa) 

MGSSHHHHHHSSGLVPRGSHMLRSRFPASHHFTVSVFGCQYHSEAPSVEKTELIGRFDKLIDSAAIH

VEHLEQNDVPSKIWMSYWESPQKFKQWWEKDDTASFWASLPDDAGFWRETFSLPATRAMYEGTG

KDAYGFGHCGSLIPLTTKTGYWGAYRSRMTPDFEGDTFSSPIPTYADQSVPADKIRPGRVRITDFPD

NLCMVVEGQHYADMGEREREYWNENFDGLTKQWVTNVVTAGHEQGMVIARACHGFAGEKKLGAT

NGPVNGIFPGLDYVHQAQILIWQDISKMEHIGRYDQTHVKLRRDFMKAYGPGGEMEGGDLLLWVDL

GILKKDEIDAEYVGCYESTGFLKLDKGQFFKVESTAGSKLPSFFDEPIESKPIEW 
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12.1.5 ALDOXIME DEHYDRATASE FROM RHODOCOCCSS ERYTHROPOLIS 

(RHODOCOCCSS SP. N-771, OXDRE(NHIS6), CODON-OPTIMIZED) IN PET28A 

Gene sequence  

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGG

AAAGCGCAATTGGTGAACATCTGCAGTGTCCGCGTACCCTGACCCGTCGTGTTCCGGATACCTAT

ACCCCTCCGTTTCCGATGTGGGTTGGTCGTGCAGATGATGCACTGCAGCAGGTTGTTATGGGTTA

TCTGGGTGTTCAGTTTCGTGATGAAGATCAGCGTCCGGCAGCACTGCAGGCAATGCGTGATATTG

TTGCAGGTTTTGATCTGCCGGATGGTCCGGCACATCATGATCTGACCCATCATATTGATAATCAG

GGCTATGAAAACCTGATTGTGGTGGGTTATTGGAAAGATGTTAGCAGCCAGCATCGTTGGAGCA

CCAGCACCCCGATTGCAAGTTGGTGGGAAAGCGAAGATCGTCTGAGTGATGGTCTGGGTTTTTTT

CGTGAAATTGTGGCACCGCGTGCAGAACAGTTTGAAACCCTGTATGCATTTCAAGAAGATCTGCC

TGGCGTTGGTGCAGTTATGGATGGTATTAGCGGTGAAATTAACGAACATGGTTATTGGGGTAGCA

TGCGTGAACGTTTTCCGATTAGCCAGACCGATTGGATGCAGGCAAGCGGTGAACTGCGTGTTATT

GCCGGTGATCCGGCAGTTGGTGGTCGTGTTGTTGTTCGTGGTCATGATAACATTGCACTGATTCG

TAGCGGTCAGGATTGGGCAGATGCCGAAGCAGATGAACGTAGCCTGTATCTGGATGAAATTCTG

CCGACCCTGCAGAGCGGTATGGATTTTCTGCGTGATAATGGTCCTGCAGTTGGTTGTTATAGCAA

TCGTTTTGTGCGCAACATTGATATCGATGGCAATTTTCTGGATCTGAGCTATAACATTGGTCATTG

GGCAAGCCTGGATCAGCTGGAACGTTGGAGCGAAAGCCATCCGACCCATCTGCGTATTTTTACCA

CCTTTTTTCGCGTTGCAGCCGGTCTGAGCAAACTGCGTCTGTATCATGAAGTTAGCGTTTTTGATG

CAGCAGATCAGCTGTATGAATACATTAATTGTCATCCGGGTACAGGTATGCTGCGTGATGCAGTT

ACCATTGCAGAACATTAA  

 

Amino acid sequence (373 AS, 42.032 kDa) 

MGSSHHHHHHSSGLVPRGSHMESAIGEHLQCPRTLTRRVPDTYTPPFPMWVGRADDALQQVVMGY

LGVQFRDEDQRPAALQAMRDIVAGFDLPDGPAHHDLTHHIDNQGYENLIVVGYWKDVSSQHRWST

STPIASWWESEDRLSDGLGFFREIVAPRAEQFETLYAFQEDLPGVGAVMDGISGEINEHGYWGSMR

ERFPISQTDWMQASGELRVIAGDPAVGGRVVVRGHDNIALIRSGQDWADAEADERSLYLDEILPTL

QSGMDFLRDNGPAVGCYSNRFVRNIDIDGNFLDLSYNIGHWASLDQLERWSESHPTHLRIFTTFFRV

AAGLSKLRLYHEVSVFDAADQLYEYINCHPGTGMLRDAVTIAEH 

 

 

 

12.1.6 ALDOXIME DEHYDRATASE FROM RHODOCOCCSS GLOBERULUS A-4 

(OXDRG(NHIS6), CODON-OPTIMIZED) IN PET28A 

Gene sequence  

ATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGGCCTGGTGCCGCGCGGCAGCCATATGG

AAAGCGCAATTGGTGAACATCTGCAGTGTCCGCGTACCCTGACCCGTCGTGTTCCGGATACCTAT

ACCCCTCCGTTTCCGATGTGGGTTGGTCGTGCAGATGATACCCTGCATCAGGTTGTTATGGGTTA

TCTGGGTGTTCAGTTTCGTGGTGAAGATCAGCGTCCGGCAGCACTGCGTGCAATGCGTGATATT

GTTGCAGGTTTTGATCTGCCGGATGGTCCGGCACATCATGATCTGACCCATCATATTGATAATCA

GGGCTATGAAAACCTGATTGTGGTGGGTTATTGGAAAGATGTTAGCAGCCAGCATCGTTGGAGC

ACCAGCCCTCCGGTTAGCAGTTGGTGGGAAAGCGAAGATCGTCTGAGTGATGGTCTGGGTTTTTT

TCGTGAAATTGTGGCACCGCGTGCAGAACAGTTTGAAACCCTGTATGCATTTCAGGATGATCTGC

CTGGTGTTGGTGCAGTTATGGATGGTGTTAGCGGTGAAATTAATGAACATGGTTATTGGGGTAGC

ATGCGTGAACGTTTTCCGATTAGCCAGACCGATTGGATGCAGGCAAGCGGTGAACTGCGTGTTG

TTGCCGGTGATCCGGCAGTTGGCGGTCGTGTTGTGGTTCGTGGTCATGATAACATTGCACTGATT
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CGTAGCGGTCAGGATTGGGCAGATGCCGAAGCAGATGAACGTAGCCTGTATCTGGATGAAATTC

TGCCGACCCTGCAGAGCGGTATGGATTTTCTGCGTGATAATGGTCCTGCAGTTGGTTGTTATAGC

AATCGTTTTGTGCGCAACATTGATATCGATGGCAATTTTCTGGATCTGAGCTATAACATTGGTCAT

TGGGCAAGCCTGGATCAGCTGGAACGTTGGAGCGAAAGCCATCCGACCCATCTGCGTATTTTTAC

CACCTTTTTTCGCGTTGCAGAAGGTCTGAGCAAACTGCGTCTGTATCATGAAGTTAGCGTTTTTGA

TGCAGCAGATCAGCTGTATGAATACATTAATTGTCATCCGGGTACAGGTATGCTGCGTGATGCAG

TTATTACCGCAGAACATTAA  

 

Amino acid sequence (373 AS, 42.055 kDa) 

MGSSHHHHHHSSGLVPRGSHMESAIGEHLQCPRTLTRRVPDTYTPPFPMWVGRADDTLHQVVMGY

LGVQFRGEDQRPAALRAMRDIVAGFDLPDGPAHHDLTHHIDNQGYENLIVVGYWKDVSSQHRWST

SPPVSSWWESEDRLSDGLGFFREIVAPRAEQFETLYAFQDDLPGVGAVMDGVSGEINEHGYWGSM

RERFPISQTDWMQASGELRVVAGDPAVGGRVVVRGHDNIALIRSGQDWADAEADERSLYLDEILPT

LQSGMDFLRDNGPAVGCYSNRFVRNIDIDGNFLDLSYNIGHWASLDQLERWSESHPTHLRIFTTFFR

VAEGLSKLRLYHEVSVFDAADQLYEYINCHPGTGMLRDAVITAEH 

 

 


