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Abstract

We present a self-contained construction of the Euclidean ®* quantum field theory on R3
based on PDE arguments. More precisely, we consider an approximation of the stochastic
quantization equation on R3 defined on a periodic lattice of mesh size € and side length M.
We introduce a new renormalized energy method in weighted spaces and prove tightness of
the corresponding Gibbs measures as € — 0, M — co. Every limit point is non-Gaussian and
satisfies reflection positivity, translation invariance and stretched exponential integrability.
These properties allow to verify the Osterwalder—Schrader axioms for a nontrivial Euclidean
QFT apart from rotation invariance and clustering. Moreover, we establish an integration
by parts formula leading to the hierarchy of Dyson—Schwinger equations for the Euclidean
correlation functions. To this end, we identify the renormalized cubic term as a distribution
on the space of Euclidean fields. Our argument applies to arbitrary positive coupling constant
and also to multicomponent models with O(N) symmetry.

Keywords: stochastic quantization, Euclidean quantum field theory, paracontrolled calcu-
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1 Introduction

From the point of view of probability theory, one of the major achievements of the constructive
quantum field theory (CQFT) program [VW73, Sim74, GJ87, Riv9l, BSZ92, Jaf00, Jaf08, Sum12|
which flourished in the 70s and 80s can be summarized in the existence of a “wonderful new
mathematical object” (as Gelfand once put it [Jaf08]):

Theorem 1.1 There exists a one parameter family (v*)xso of measures on S'(R3) that are
non-Gaussian, Buclidean invariant and reflection positive.

A measure p on the space S'(R3) of Schwartz distributions on R? is Euclidean invariant (EI)
if it is invariant under the rigid motions of R3. Denote by ¥,(f) := fs,(R3) e u(dp) the
characteristic function of p. We say that p is reflection positive (RP) if the matrix (¥,(f; —
0f;))i; is positive semidefinite for any finite choice of Schwartz functions (f;); € S(R?) with
supp(f;) € {(w1,29,23) € R® : 21 > 0} and where 0f;(21,22,23) = fi(—x1,72,73) is the
reflection with respect to the x1 = 0 plane. Reflection positivity is a property whose crucial
importance for probability theory and mathematical physics [Bis09, Jafl8] and representation
theory [NO18, JT18| has been one of the byproducts of the constructive effort.

Surprisingly, a measure which satisfies all these three properties has been quite difficult to find.
Euclidean invariance and reflection positivity conspire against each other. Models which easily
satisfy one property hardly satisfy the other if they are not Gaussian (see e.g. [AY02, AY09]).
In the two dimensional setting the existence of the analogous object has been one of the early
successes of CQFT [Sim74, GJ87, BSZ92|, while it is likely that in four and more dimensions
such an object cannot exist [FFS92].

Theorem 1.1 (provided some additional technical properties are satisfied) implies the existence
of a relativistic quantum field theory in the Minkowski space-time R'*? which satisfies the
Wightman axioms [Wig76] (a minimal set of axioms capturing the essence of the combination of
quantum mechanics and special relativity). The translation from the commutative probabilistic
setting (Euclidean QFT) to the non-commutative Minkowski QFT setting is operated by a set



of axioms introduced by Osterwalder—Schrader [OS73, OS75| for the correlation functions of the
measure v (called Schwinger functions or Euclidean correlation functions) which shall satisfy:
a regularity axiom (OS0), an Euclidean invariance axiom (OS1), a reflection positivity axiom
(0S2), a symmetry axiom (OS3) and a cluster property (OS4).

The standard approach to construction of measures which satisfy EI, RP and are non-
Gaussian is to perturb in a non-linear way a Gaussian measure via a Gibbs-type density which is
ill-defined due to small scale (ultraviolet, in CQFT parlance) singularities as well as to large scale
ones (infrared). One is then led to introduce a cut-offs in order to tame the singularities and
regularize the measure (see e.g. our choice in (1.1) below). Such a regularization typically spoils
EI or RP (or both) and has to be subsequently removed by a more or less elaborate limiting
procedure, whose main duty is to reestablish the simultaneous validity of both properties. This
additionally requires, especially in three dimensions, to remove certain diverging quantities, a
process called renormalization.

The original proof of the OS axioms, along with additional properties of the family of measures
(") which are called ®3 measures, is scattered in a series of works covering almost a decade.
Glimm [Gli68] first proved the existence of the Hamiltonian (with an infrared regularization) in
the Minkowski setting. Then Glimm and Jaffe |[GJ73] introduced the phase cell expansion of the
regularized Schwinger functions, which revealed itself a powerful and robust tool (albeit complex
to digest) in order to handle the local singularities of Euclidean quantum fields and to prove the
ultraviolet stability in finite volume. The proof of existence of the infinite volume limit and the
verification of Osterwalder—Schrader axioms [OS73, OS75] was then completed by Feldman and
Osterwalder for A\ small [FO76| using cluster expansion methods, finally the work of Seiler and
Simon [SS76] allowed to extend the existence result to all A > 0 (this is claimed in [GJ87] even
though we could not find a clear statement in Seiler and Simon’s paper). Equations of motion
for the quantum fields were established by Feldman and Raczka [FR77].

Since this first, complete, construction, there have been several other attempts to simplify
(both technically and/or conceptually) the arguments and the <I>§ measure has been since con-
sidered a test bed for various CQFT techniques. There exists at least six methods of the proof:
the original phase cell method of Glimm and Jaffe extended by Feldman and Osterwalder [FO76],
Magnen and Seneor [MS76] and Park [Par77| (among others), the probabilistic approach of Ben-
fatto, Cassandro, Gallavotti, Nicolo, Olivieri, Presutti and Schiacciatelli [BCGT78]|, the block
average method of Bataban [Bal83| (reviewed by Dimock in [Diml13a, Dim13b, Dim14]), the
wavelet method of Battle-Federbush [Bat99|, the skeleton inequalities method of Brydges, Froh-
lich, Sokal [BFS83], the work of Watanabe on rotation invariance [Wat89] via the renormalization
group method of Gawedzki and Kupiainen [GK86|, and more recently the renormalization group
method of Brydges, Dimock and Hurd [BDH95|.

It should be said that, apart from the Glimm-Jaffe-Feldman—Osterwalder result, none of the
additional constructions seems to be as complete and to verify explicitly all the OS axioms. As
Jaffe [Jaf08] remarks:

“Not only should one give a transparent proof of the dimension d = 3 construc-
tion, but as explained to me by Gelfand [private communication|, one should make
it sufficiently attractive that probabilists will take cognizance of the existence of a
wonderful mathematical object.”

In our opinion, among all these (incomplete) methods, the simplest and the most “attractive”
one seems to be that of skeleton inequalities proposed by Sokal [Sok82| and Brydges, Frohlich,



Sokal [BFS83|, which however fails to prove rotational invariance (thus not covering completely
Theorem 1.1) and to give information for large .

In the present paper we put forward a simple, self-contained, construction of the <I>§ mea-
sure based on methods from PDE theory as well as on recent advances in the field of singular
SPDFEs. We can show invariance under translation, reflection positivity, the regularity axiom of
Osterwalder—Schrader and the non-Gaussianity of the measure, thus going a long way (albeit not
fully reaching the goal) to a complete proof of Theorem 1.1 and of its consequences for QFT.
Our proof applies to all values of the coupling parameter A > 0 as well as to natural extensions
to N-dimensional vectorial variants of the model. Furthermore, we establish an integration by
parts formula which leads to the hierarchy of the Dyson—Schwinger equations for the Schwinger
functions of the measure.

Our methods are innovative and very different from all the known constructions we enumer-
ated above. In particular, we do not rely on any of the standard tools like cluster expansion
or correlation inequalities or skeleton inequalities, and therefore our approach brings a new per-
spective to this extensively investigated classical problem, with respect to the removal of both
ultraviolet and infrared regularizations.

The key idea is to use a dynamical description of the approximate measure which relies on
an additional random source term which is Gaussian, in the spirit of the stochastic quantization
approach introduced by Nelson [Nel66, Nel67| and Parisi and Wu [PW81] (with a precursor in a
technical report of Symanzik [Sym64]).

The concept stochastic quantization refers to the introduction of a reversible stochastic dy-
namics which has the target measure as the invariant measure, here in particular the @3 measure
in d dimensions. The rigorous study of the stochastic quantization for the two dimensional
version of the ®* theory has been first initiated by Jona-Lasinio and Mitter [JLMS85| in finite
volume and by Borkar, Chari and Mitter [BCMS8§| in infinite volume. A natural d = 2 local
dynamics has been subsequently constructed by Albeverio and Rockner [AR91] using Dirichlet
forms in infinite dimensions. Later on, Da Prato and Debussche [DPDO03] have shown for the
first time the existence of strong solutions to the stochastic dynamics in finite volume. Da Prato
and Debussche have introduced an innovative use of a mixture of probabilistic and PDE tech-
niques and constitute a landmark in the development of PDE techniques to study stochastic
analysis problems. Similar methods have been used by McKean [McK95b, McK95a] and Bour-
gain [Bou96| in the context of random data deterministic PDEs. Mourrat and Weber [MW17b]
have subsequently shown the existence and uniqueness of the stochastic dynamics globally in
space and time. For the d = 1 dimensional variant, which is substantially simpler and does not
require renormalization, global existence and uniqueness have been established by Iwata [Iwa87].

In the three dimensional setting the progress has been significantly slower due to the more
severe nature of the singularities of solutions to the stochastic quantization equation. Only very
recently, there has been substantial progress due to the invention of reqularity structures theory
by Hairer [Haild| and paracontrolled distributions by Gubinelli, Imkeller, Perkowski [GIP15].
These theories greatly extend the pathwise approach of Da Prato and Debussche via insights
coming from Lyons’ rough path theory |Lyo98, LQO02, LCLO7|] and in particular the concept
of controlled paths |Gub04, FH14|. With these new ideas it became possible to solve certain
analytically ill-posed stochastic PDEs, including the stochastic quantization equation for the <I>§
measure and the Kardar—Parisi-Zhang equation. The first results were limited to finite volume:
local-in-time well-posedness has been established by Hairer [Hail4]| and Catellier, Chouk [CC18].
Kupiainen [Kupl6] introduced a method based on the renormalization group ideas of [GKS86|.



Long-time behavior has been studied by Mourrat, Weber [MW17a], Hairer, Mattingly [HM18b]
and a lattice approximation in finite volume has been given by Hairer and Matetski [HM18a|
and by Zhu and Zhu [ZZ18]. Global in space and time solutions have been first constructed
by Gubinelli and Hofmanova in [GH18|. Local bounds on solutions, independent on boundary
conditions, and stretched exponential integrability have been recently proven by Moinat and
Weber [MW18].

However, all these advances are still falling short to give a complete proof of the existence
of the <I’§ measure on the full space and of its properties. Indeed they, including essentially
all of the two dimensional results, are principally aimed at studying the dynamics with an
a priori knowledge of the existence and the properties of the invariant measure. For example
Hairer and Matetski [HM18a] use a discretization of a finite periodic domain to prove that the
limiting dynamics leaves the finite volume @% measure invariant using the a priori knowledge
of its convergence from the paper of Brydges et al. [BFS83]. Studying the dynamics, especially
globally in space and time is still a very complex problem which has siblings in the ever growing
literature on invariant measures for deterministic PDEs starting with the work of Lebowitz, Rose
and Speer [LRS88, LRS89|, Bourgain [Bou94, Bou96|, Burq and Tzvetkov [BT08b, BT08a, Tzv16]
and with many following works (see e.g. [CO12, CK12, NPS13, Chal4, BOP15]) which we cannot
exhaustively review here.

The first work proposing a constructive use of the dynamics is, to our knowledge, the work
of Albeverio and Kusuoka [AK17|, who proved tightness of certain approximations in a finite
volume. Inspired by this result, our aim here is to show how these recent ideas connecting prob-
ability with PDE theory can be streamlined and extended to recover a complete, self-contained
and simple, proof of existence of the <I>§ measure on the full space. In the same spirit see also
the work of Hairer and Iberti [HI18] on the tightness of the 2d Ising—Kac model.

Soon after Hairer’s seminal paper [Hail4|, Jaffe [Jafl4| analyzed the stochastic quantization
from the point of view of reflection positivity and constructive QFT and concluded that one has
to necessarily take the infinite time limit to satisfy RP. Even with global solution at hand a proof
of RP from dynamics seems nontrivial and actually the only robust tool we are aware of to prove
RP is to start from finite volume lattice Gibbs measures for which RP follows from the spatial
Markov property.

For this reason, the starting point of our analysis is a family (varc) e of Gibbs measures on
the periodic lattice Ay = (¢(Z/MZ))? with mesh size ¢ and side length M, given by

A —3X\ans e + 3N2bys . +m? 1
dvare o exp § —2e7 ) {4|s0!4+ el IVl ¢ [T detw),

€A .

(1.1)
where V. denotes the discrete gradient and aps ., byre are suitable renormalization constants,
m? € R is called the mass and A > 0 the coupling constant of the model. Our goal is to let € — 0
and M — oo in order to recover both full translation invariance and reflection positivity which
for var. is well known to hold. To this end, we prove that the family (vpse)ae is tight once
embedded in the space of probability measures on S'(R3). The removal of the regularization
parameters €, M requires a precise tuning of the renormalization constants (anse, bare) e

An SPDE is used to derive bounds which are strong enough to prove the tightness of the
family (vare)are. To be more precise, we study a lattice approximation of the (renormalized)

A



stochastic quantization equation
(O +m? — A)p + \p® — cop = €, (t,r) € Ry x R3, (1.2)

where ¢ is a space-time white noise on R3. The lattice dynamics is a system of stochastic
differential equation which is globally well-posed and has v/, as its unique invariant measure.
We can therefore consider its stationary solution ¢, having at each time the law vy .. We
introduce a suitable decomposition together with an energy method in the framework of weighted
Besov spaces. This allows us, on the one hand, to track down and renormalize the short scale
singularities present in the model as € — 0, and on the other hand, to control the growth of the
solutions as M — co. As a result we obtain uniform bounds which allow to pass to the limit in
the weak topology of probability measures.

The details of the renormalized energy method rely on recent developments in the analysis
of singular PDEs. In order to make the paper accessible to a wide audience with some PDE
background we implement renormalization using the paracontrolled calculus of [GIP15] which is
based on Bony’s paradifferential operators [Bon81, Mey81, BCD11]. We also rely on some tools
from the paracontrolled analysis in weigthed Besov spaces which we developed in [GH18| and on
the results of Martin and Perkowski [MP17]| on Besov spaces on the lattice.

The method we use here is novel and differs from the approach of [GH18| in that we are
initially less concerned with the continuum dynamics itself. We do not try to obtain estimates
for strong solutions and rely instead on certain cancellations in the energy estimate that permit
to significantly simplify the proof. The resulting bounds are sufficient to provide a rather clear
picture of any limit measure as well as some of its physical properties. In contrast, in [GH18]
we provided a detailed control of the dynamics (1.2) (in stationary or non-stationary situations)
at the price of a more involved analysis. Section 4.2 of the present paper could in principle be
replaced by the corresponding analysis of [GH18|. However the adaptation of that analysis to
the lattice setting (without which we do not know how to prove RP) would still require further
preparatory work that constitutes a large fraction of the present paper. Similarly, the recent
results of Moinat and Weber [MW18| (which appeared after we completed a first version of this
paper) can be conceivably used to replace a part of Section 4. Our choice of an alternative
approach is mostly motivated by the desire to provide a self-contained, elementary (to the extent
possible) and accessible argument.

Our main result is the following.

Theorem 1.2 There exists a choice of the sequence (ape,bare) e such that for any X > 0
and m?* € R, the family of measures (Vare)me (properly extended to S'(R3)) is tight. Every
accumulation point v is translation invariant, reflection positive and non-Gaussian. In addition,
for every small k > 0 there exists o >0, >0 and v = O(k) > 0 such that

/ (Bl Pl e (de) < . (1.3)
S’(R3)

Moreover, every v satisfies an integration by parts formula which leads to the hierarchy of
the Dyson—Schwinger equations for n-point correlation functions.

Remark 1.3 1. The stretched exponential integrability in (1.3) is also discussed in the work
of Moinat and Weber [MW18| (using different norms) and it is sufficient to prove the
original regularity axiom of Osterwalder and Schrader (but not its formulation given in the

book of Glimm and Jaffe [GJ87]).



2. The Dyson—Schwinger equations were first derived by Feldman and Raczka [FR77] using
the results of Glimm, Jaffe, Feldman and Osterwalder.

3. As already noted by Albeverio, Liang and Zegarlinski [ALZ06| on the formal level, the inte-
gration by parts formula gives rise to a cubic term which cannot be interpreted as a random
variable under the ‘I>§ measure. Therefore, the crucial question that remained unsolved un-
til now is how to make sense of this critical term as a well-defined probabilistic object.
In the present paper, we obtain fine estimates on the approximate stochastic quantization
equation and construct a coupling of the stationary solution to the continuum ®3 dynamics
and the Gaussian free field. This leads to a detailed description of the renormalized cubic
term as a genuine random space-time distribution. Moreover, we approximate this term in
the spirit of the operator product expansion.

4. To the best of our knowledge, our work provides the first rigorous proof of a general
integration by parts formula with an exact formula for the renormalized cubic term. In
addition, the method applies to arbitrary values of the coupling constant A > 0 if m? > 0
and A > 0 if m? < 0 and we state the precise dependence of our estimates on \. In
particular, we show that our energy bounds are uniform over X in every bounded subset of
[0, 00) provided m? > 0 (see Remark 4.6).

5. By essentially the same arguments, we are able to treat the vector version of the model,
where the scalar field ¢ : R3 — R is replaced by a vector valued one ¢ : R3 — R for some
N € N and the measures vy are given by a similar expression as (1.1), where the norm
|| is understood as the Euclidean norm in R,

To conclude this introductory part, let us compare our result with other constructions of
the <I>§ field theory. The most straightforward and simplest available proof has been given by
Brydges, Frohlich and Sokal [BFS83] using skeleton and correlation inequalities. All the other
methods we cited above employ technically involved machineries and various kinds of expansions
(they are however able to obtain very strong information about the model in the weakly-coupled
regime, i.e. when A is small). Compared to the existing methods, ours bears similarity in
conceptual simplicity to that of [BFS83], with some advantages and some disadvantages. Both
works construct the continuum @3 theory as a subsequence limit of lattice theories and the
rotational invariance remains unproven. The main difference is that [BFS83| relies on correlation
inequalities, which, on the one hand, restricts the applicability to weak couplings and only
models with N = (0, )1, 2 components (note that the N = 0 models have a meaning only in their
formalism but not in ours), but, on the other hand, allow to establish bounds on the decay of
correlation functions, which we do not have. However, our results hold for every value of A > 0
and m? € R while the results in [BFS83] works only in the so-called “single phase region”, which
essentially corresponds to small A > 0 or m? > 0 large.

Our work is intended as a first step in the direction of using PDE methods in the study
of Euclidean QFTs and large scale properties of statistical mechanical models. Another related
attempt is the variational approach developed in [BG18] for the finite volume ®3 measure. As
far as the present paper is concerned the main open problems is to establish rotational invariance
and give more information on the limiting measures, in particular establish uniqueness for small
A. It is not clear how to deduce anything about correlations from the dynamics but it seems to
be a very interesting and challenging problem.



Plan. The paper is organized as follows. Section 2 gives a summary of notation used throughout
the paper, Section 3 presents the main ideas of our strategy and Section 4, Section 5 and Section 6
are devoted to the main results. First, in Section 4 we construct the Euclidean quantum field
theory as a limit of the approximate Gibbs measures vjr.. To this end, we introduce the
lattice dynamics together with its decomposition. The main energy estimate is established in
Theorem 4.5 and consequently the desired tightness as well as moment bounds are proven in
Theorem 4.9. In Section 4.4 we establish finite stretched exponential moments. Consequently,
in Section 5 we verify the translation invariance and reflection positivity, the regularity axiom
and nontriviality of any limit measure. Section 6 is devoted to the integration by parts formula
and the Dyson—Schwinger equations. Finally, in Appendix A we collect a number of technical
results needed in the main body of the paper.
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2 Notation

Within this paper we are concerned with the <I>§ model in discrete as well as continuous setting.
In particular, we denote by A, = (EZ)d for ¢ = 27N, N € Ny, the rescaled lattice Z% and by

Aye = eZ% N T% =¢eZ%nN [—%, %)d its periodic counterpart of size M > 0. For notational
simplicity, we use the convention that the case € = 0 always refers to the continuous setting. For
instance, we denote by Ag the full space Ag = R% and by A M0 the continuous torus Ay = ’]I‘ﬁlw.
With the slight abuse of notation, the parameter ¢ is always taken either of the form ¢ = 2=V
for some N € Ny, N > Ny, for certain Ny € Ny that will be chosen as a consequence of
Lemma A.9 below, or ¢ = 0. Various proofs below will be formulated generally for ¢ € A :=
{O,Q*N;N € No, N > Ny} and it is understood that the case € = 0 or alternatively N = oo
refers to the continuous setting. All the proportionality constants, unless explicitly signalled,
will be independent of M, e, A, m?. We will track the explicit dependence on ) as far as possible
and signal when the constant depends on the value of m? > 0.

For f € /'(A.) and g € L'(A.), respectively, we define the Fourier and the inverse Fourier
transform as

]'-f(k’) = ¢ Z f(x)e—%rikw’ f—lg(,@) = /( i g(k)e%ik'xd]g,

T€Ae

where k € (¢71T)? =: A. and 2 € A.. These definitions can be extended to discrete Schwartz
distributions in a natural way, we refer to [MP17| for more details. In general, we do not specify
on which lattice the Fourier transform is taken as it will be clear from the context.

Consider a smooth dyadic partition of unity (¢;);>—1 such that ¢_; is supported in a ball
around 0 of radius 3, ¢ is supported in an annulus, ¢;(-) = ¢o(277:) for j > 0 and if |i — j| > 1



then supp ¢; Nsupp ¢; = 0. For the definition of Besov spaces on the lattice A, for e = 27N we
introduce a suitable periodic partition of unity on A. as follows

€ . (pj(x)’ j<N—J’
el = { 1= ien_ypilx), Jj=N-J, (2.1)
where z € A, and the parameter J € Ny, whose precise value will be chosen below independently
on ¢ € A, satisfies 0 < N — J < J. :=inf{j : supp ¢; N (e '1T)? # 0} — oo as € — 0. We note
that by construction there exists ¢ € Z independent of ¢ = 2= such that J. = N — /.

Then (2.1) yields a periodic partition of unity on A.. The reason for choosing the upper index
as N — J and not the maximal choice J. will become clear in Lemma A.9 below, where it allows
us to define suitable localization operators needed for our analysis. The choice of parameters Ny
and J is related in the following way: A given partition unity (¢;);>—1 determines the parameters
Je in the form J. = N — ¢ for some ¢ € Z. By the condition N — J < J. we obtain the first lower
bound on J. Then Lemma A.9 yields a (possibly larger) value of J which is fixed throughout
the paper. Finally, the condition 0 < N — J implies the necessary lower bound Ny for N, or
alternatively the upper bound for ¢ = 27 < 27N and defines the set A. We stress that once
the parameters J, Ny are chosen, they remain fixed throughout the paper.

Remark that according to our convention, (cp?)j>_1 denotes the original partition of unity
(¢;)j=—1 on R4 which can be also read from (2.1) using the fact that for e = 0 we have J. = cc.

Now we may define the Littlewood—Paley blocks for distributions on A, by

A5 f = FH5F L),

which leads us to the definition of weighted Besov spaces. Throughout the paper, p denotes a
polynomial weight of the form

pla) = (ha)™ = (1 + [ha|*) /2 (2.2)

for some v > 0 and h > 0. The constant h will be fixed below in Lemma 4.4 in order to produce
a small bound for certain terms. Such weights satisfy the admissibility condition p(x)/p(y) <
p~t(z —y) for all z,y € RL For a € R, p,q € [1,00] and ¢ € [0, 1] we define the weighted Besov
spaces on A, by the norm

1/q 1/q
1fllBgso) = < > 2"”q||A§f||qu,s(p)> = ( > 2"‘”|!,0A§f||%p,5> ,
—1<j<N—J —1<j<N—J

where LP* for e € A\ {0} stands for the L? space on A, given by the norm

1/p
1fllzoe = (sd > \f(x)p>

TEA:

(with the usual modification if p = c0). Analogously, we may define the weighted Besov spaces
for explosive polynomial weights of the form p~!. Note that if ¢ = 0 then By (p) is the classical
weighted Besov space B, (p). In the sequel, we also employ the following notations

Cp) = BIlp),  HO(p) = B35 (p).

)



In Lemma A.1 we show that one can pull the weight inside the Littlewood—Paley blocks in the
definition of the weighted Besov spaces. Namely, under suitable assumptions on the weight that
are satisfied by polynomial weights we have || f|[gaz(,) ~ [[of gz in the sense of equivalence of

norms, uniformly in e. We define the duality procziﬁct on A. by

(f,9)e =" fla)g(x)

rEA

and Lemma A.2 shows that B, V°(p™") is included in the topological dual of By g (p) for conjugate
exponents p,p’ and ¢, ¢'.

We employ the tools from paracontrolled calculus as introduced in [GIP15], the reader is
also referred to [BCD11]| for further details. We shall freely use the decomposition fg = f <
g+ fog+ f =g, where f = g=g > f and f o g, respectively, stands for the paraproduct of f
and ¢ and the corresponding resonant term, defined in terms of Littlewood—Paley decomposition.
More precisely, for f,g € §'(A:) we let

f=g:= > AfNSg,  fogi= ) ASfASg

1<, j<SN—Jyi<j—1 1<i,j <N =J,invg

We also employ the notations f < g:= f < g+ fogand f Xg:= f < g+ f = g. For notational
simplicity, we do not stress the dependence of the paraproduct and the resonant term on ¢ in
the sequel. These paraproducts satisfy the usual estimates uniformly in e, see e.g. |[MP17],
Lemma 4.2, which can be naturally extended to general B,y (p) Besov spaces as in [MW17b],
Theorem 3.17.

Throughout the paper we assume that m? > 0 and we only discuss in Remark 4.6 how to
treat the case of m? < 0. In addition, we are only concerned with the 3 dimensional setting and
let d = 3. We denote by A, the discrete Laplacian on A, given by

d

Acf(z)=e2) (fle+ee)—2f(@) + flz —ee)), x€A.,

=1

where (€;)i=1,. 4 is the canonical basis of R?. Tt can be checked by a direct computation that
the integration by parts formula

d
(At ghrre = —(Vef. Veghe = > Y fla+ €e;) — f(@) g(z + cei) — g(x)

g
mEAIM,E =1

holds for the discrete gradient

V. - (Lt i@y

9

IR

We let 2, :=m? - A,, £ . :=0;+ 2. and we write .Z for the continuum analogue of .Z ..
We let .2 -1 to be the inverse of .% . on A. such that £ -1f = v is a solution to .Z .v = f,
v(0) = 0.
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3 Overview of the strategy

With the goals and notations being set, let us now outline the main steps of our strategy.

Lattice dynamics. For fixed parameters ¢ € A, M > 0, we consider a stationary solution
@M. to the discrete stochastic quantization equation

L epme + )\SOZ]))\/LE +(=3hane +3Nbare)ome = Enre, x € Apre, (3.1)

whose law at every time ¢ > 0 is given by the Gibbs measure (1.1). Here &y is a discrete
approximation of a space-time white noise ¢ on R? constructed as follows: Let &7 denote its
periodization on ’]I‘ﬁlw given by

Eni(h) :=&(har), where  hps(t,x) == 1[7%7%)01(1') Z h(t,z +vy),
yeMZ

where h € L?(R x Rd) is a test function, and define the corresponding spatial discretization by

gM,é‘(tvx) = €7d<§M(t7 ')7 1|-7I‘<6/2>7 (t,l') € R x AM,&‘-

Then (3.1) is a finite-dimensional SDE in a gradient form and it has a unique invariant measure
Ve given by (1.1).

Recall that due to the irregularity of the space-time white noise in dimension 3, a solution
to the limit problem (1.2) can only exist as a distribution. Consequently, since products of
distributions are generally not well-defined it is necessary to make sense of the cubic term. This
forces us to introduce a mass renormalization via constants anse, by = 0 in (3.1) which shall
be suitably chosen in order to compensate the ultraviolet divergencies. In other words, the
additional linear term shall introduce the correct counterterms needed to renormalize the cubic
power and to derive estimates uniform in both parameters M,e. To this end, aps . shall diverge
linearly whereas bys. logarithmically and these are of course the same divergencies as those
appearing in the other approaches, see e.g. Chapter 23 in [GJ87].

Energy method in a nutshell. Our aim is to apply the so-called energy method, which is
one of the very basic approaches in the PDE theory. It relies on testing the equation by the
solution itself and estimating all the terms. To explain the main idea, consider a toy model

Lu+ =, z e R3,

driven by a sufficiently regular forcing f such that the solution is smooth and there are no
difficulties in defining the cube. Testing the equation by u and integrating the Laplace term by
parts leads to

1 4
SOullullze +m?|lullZz + [IVullfe + Allulza = (f,u).

Now, there are several possibilities to estimate the right hand side using duality and Young’s
inequality, namely,

I7llz2llwlle < Comal£13 + Pl
(Fru) < U fllpassllullze < CoA™V3)FIYS, + oAl[ull4.
1 - el < Coma |l F12-1 + S(m2 |2, + | Vu||2,)

11



This way, the dependence on u on the right hand side can be absorbed into the good terms on
the left hand side by choosing 6 € (0,1). If in addition u was stationary hence in particular
t+— E|lu(t)||2 is constant, then we obtain

Com2|1f1172 s
m’Ellu(®)[72 + EIVu(t)l|72 + AEllu(t)7a < § CoA~V3| fII70 -

Coma | FIl3-1

To summarize, using the dynamics we are able to obtain moment bounds for the invariant
measure that depend only on the forcing f. Moreover, we also see the behavior of the estimates
with respect to the coupling constant \. Nevertheless, even though using the L*-norm of u
introduces a blow up for A — 0, the right hand side f in our energy estimate below will always
contain certain power of A in order to cancel this blow up and to obtain bounds that are uniform
as A — 0.

Decomposition and estimates. Since the forcing £ on the right hand side of (1.2) does not
possess sufficient regularity, the energy method cannot be applied directly. Following the usual
approach within the field of singular SPDESs, we shall find a suitable decomposition of the solution
©M.e, isolating parts of different regularity. In particular, since the equation is subcritical in the
sense of Hairer [Hail4| (or superrenormalizable in the language of quantum field theory), we
expect the nonlinear equation (1.2) to be a perturbation of the linear problem . X = &. This
singles out the most irregular part of the limit field ¢. Hence on the approximate level we set
©Me = Xnme + Nae where Xy is a stationary solution to

-iﬂsXM,s = gM,e’ (3'2)

and the remainder 7,/ is expected to be more regular.
To see if it is indeed the case we plug our decomposition into (3.1) to obtain

L e + 3Nbarconre + A[X o]+ A3nar e[ XD + A3n3s e Xare + Ay = 0. (3.3)

Here [[XJZ\/[@]} and [[XI?\)/I,a]] denote the second and third Wick power of the Gaussian random
variable X7, defined by

[[X%I,e]] = X%Le — QM. [[X]%/[,s]] = X]%I,s - BaM’EXMﬁ’ (3'4)

where aps . := E[X}; _(t)] is independent of ¢ due to stationarity. It can be shown by direct com-
putations that appeared already in a number of works (see [CC18|, [Hail4|, |[Hail5|, [MWX16])
that [[X12\4,s]] is bounded uniformly in M, e as a continuous stochastic process with values in the
weighted Besov space € ~17%¢(p%) for every x,o > 0, whereas [X ]?45]] can only be constructed
as a space-time distribution. In addition, they converge to the Wick power [X?] and [X?3] of X.
In other words, the linearly growing renormalization constant aps. gives counterterms needed
for the Wick ordering.

Note that X is a continuous stochastic process with values in € ~1/27%(p?) for every x, o > 0.
This limits the regularity that can be obtained for the approximations X7 . uniformly in M, e.
Hence the most irregular term in (3.3) is the third Wick power and by Schauder estimates we
expect 1y to be 2 degrees of regularity better. Namely, we expect uniform bounds for 77, in
&Y 2=#(p?) which indeed verifies our presumption that n M,e is more regular than @7 .. However,

12



the above decomposition introduced new products in (3.3) that are not well-defined under the
above discussed uniform bounds. In particular, both 7,/ . [[X% Eﬂ and 77]2\4, X, do not meet the
condition that the sum of their regularities is strictly positive, which is a convenient sufficient
condition for a product of two distributions to be analytically well-defined.

Therefore, we need to continue with the decomposition in the same spirit in order to cancel
the most irregular term in (3.3), namely, [X ]3{45]] The usual way, which can be found basically
in all the available works on the stochastic quantization (see e.g. in [CC18|, [GH18|, [Hail4],
[Hail5], [MW17a]) is therefore to define X\X/l,s as the stationary solution to

L Xire = [X3re), (3.5)

leading to the decomposition ¢ = Xare — )\X\X/LE + Care. Writing down the dynamics for
(M, we observe that the most irregular term is the paraproduct [[X12\4,g]] >~ X\X/LE which can be
bounded uniformly in 4 ~17%(p?) and hence this is not yet sufficient for the energy method
outlined above. Indeed, the expected (uniform) regularity of (as. is € 17%(p?). However, we
point out that not much is missing.

In order to overcome this issue, we proceed differently than the above cited works and let
Y e be a solution to

L Ve = —[X3 ] = BNZE[XR D) - Yare,  Yare(0) = =AX,.(0), (3.6)

where %< is the localization operator defined in Section A.2. With a suitable choice of the
constant L = L(\, M, ¢) determining %< (cf. Lemma A.12, Lemma 4.1) we are able to construct
the unique solution to this problem via Banach’s fixed point theorem. Consequently, we find our
decomposition @y = Xpre + Yy e + dare together with the dynamics for the remainder

Z 6¢M,a + >‘¢§\/[,5 - _BA[[XJQ\/[,E]] - ¢M,6 - 3)‘[[X]2\/[,a]] 0 (Z)M,s - 3)\2bM,6¢M,€ + EM,e- (37)

The first term on the right hand side is the most irregular contribution, the second term is not
controlled uniformly in M, e, the third term is needed for the renormalization and Zjs . contains
various terms that are more regular and in principle not problematic or that can be constructed
as stochastic objects using the remaining counterterm —i’))\QbM6 (Xnme+ Yare).

The advantage of this decomposition with ¢»s . as opposed to the usual approach leading to
Cum,e above is that together with [X %45]] we cancelled also the second most irregular contribution
(%< [[XJQWE]]) >~ Y., which is too irregular to be controlled as a forcing f using the energy
method. The same difficulty of course comes with [[X%/[’E]} >~ ¢nre in (3.7), however, since it
depends on the solution ¢y we are able to control it using a paracontrolled ansatz. To explain
this, let us also turn our attention to the resonant product [[XJQVI -] © éar,. which poses problems
as well. When applying the energy method to (3.7), these two terms appear in the form

<p4¢M,€a _3)\[[X]2\4,5]] o ¢M,E>s + <P4¢M,e, _BA[[XJQ\/[@]] > ¢M,e>€y

where we included a polynomial weight p as in (2.2). The key observation is that the presence of
the duality product permits to show that these two terms approximately coincide, in the sense that
their difference denoted by D, .(dnr e, —3)\[[X]2V[75]], ¢m.e) is controlled by the expected uniform
bounds. This is proven generally in Lemma A.13. As a consequence, we obtain

1
iatnqu,&”%?ﬁ + )‘HQSM,EHZ[LA,E + <¢M,s> Qs¢M,s>z—:
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= <p4¢M,€7 -3 2>\[[X]2\475]] -~ ¢M,6>€ + Dp475(¢M,67 _3)‘[[X]2\J7a]]7 ?Z)M,e) + EM,E-

Finally, since the last term on the left hand side as well as the first term on the right hand
side are diverging, the idea is to couple them by the following paracontrolled ansatz. We define

2 Vue =2 bue +3[Xase] - e

and expect that the sum of the two terms on the right hand side is more regular than each of
them separately. In other words, 1. is (uniformly) more regular than ¢,/ .. Indeed, with this
ansatz we may complete the square and obtain

1
SOlP* Earellioe + Mlpdnrellpac +m? 0" Pareliac + 10" Vernrelloe = Opare + Ppi e,

where the right hand side, given in Lemma 4.2, can be controlled by the norms on the left hand
side, in the spirit of the energy method discussed above.

These considerations lead to our first main result proved as Theorem 4.5 below. In what fol-
lows, Q,(Xaz,¢) denotes a polynomial in the p-weighted norms of the involved stochastic objects,
the precise definition can be found in Section 4.1.

Theorem 3.1 Let p be a weight such that p* € L*0 for some 1 € (0,1). There exists a constant
a = a(m?) > 0 such that

%2,6 + ‘|p2V577/)M75H%2,5] + ”p2¢M75H%{172N,5

1
iatHPzGﬁM,a”%zs + oM pparell7ae +mP|p*ns

< Cr i Qp(Xnse),

where C/\,t = )\3 + )\(1276)/(2+9)| logt’4/(2+9) + )\7 fO?" H = 1{35in

Here we observe the precise dependence on A which in particular implies that the bound is
uniform over A in every bounded subset of [0, 00) and vanishes as A — 0.

Tightness. In order to proceed to the proof of the existence of the Euclidean CI)é field theory,
we shall employ the extension operator £° from Section A.4 which permits to extend discrete
distributions to the full space R3. An additional twist originates in the fact that by construction
the process Y/ . given by (3.6) is not stationary and consequently also ¢y . fails to be stationary.
Therefore the energy argument as explained above does not apply as it stands and we shall go
back to the stationary decomposition ppre = Xpre — /\Xj\//LE + (e, while using the result of
Theorem 3.1 in order to estimate (jr.. Consequently, we deduce tightness of the family of the
joint laws of (E%pnre, E5 X s, 58X\X4,s) evaluated at any fixed time ¢ > 0, proven in Theorem 4.9
below. To this end, we denote by (¢, X, X\V) a canonical representative of the random variables
under consideration and let  := ¢ — X + AxY.

Theorem 3.2 Let p be a weight such that p* € LYY for some v € (0,1). Then the family of joint
laws of (EacpM,s,gaXM’E,SEXLﬁ), ee A, M > 0, evaluated at an arbitrary time t > 0 is tight.
Moreover, any limit measure p satisfies for all p € [1,00)

2 2
EMHCPH;—uz—zﬁ(pz) S14+ A%, Eu”d‘fg(pz) SN NP\

EpllCl-angry SN+ A, Eullcliy ) SA+A.
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Osterwalder—Schrader axioms. The projection of a limit measure p onto the first component
is the candidate ®3 measure and we denote it by v. Based on Theorem 3.2 we are able to show
that v is translation invariant and reflection positive, establishing (partly) OS1 and OS2, see
Section 5.2 and Section 5.3. In addition, we prove that the measure is nontrivial, i.e. non-
Gaussian. To this end, we make use of the decomposition ¢ = X — AXT + ¢ together with the
moment bounds from Theorem 3.2. Since X is Gaussian whereas X is not, the idea is to use
the regularity of ¢ to conclude that it cannot compensate X" which is less regular. In particular,
we show that the connected 4-point function is nonzero, see Section 5.4.

It remains to discuss a stretched exponential integrability of ¢, leading to the distribution
property OSO shown in Section 5.1. More precisely, we show the following result which can be
found in Proposition 4.11.

Proposition 3.3 Let p be a weight such that p* € L*° for some v € (0,1). For every x € (0,1)
small there exists v = O(k) > 0 small such that

1—v
/S iy PRI e d9) < o0

provided B > 0 is chosen sufficiently small.

In order to obtain this bound we revisit the bounds from Theorem 3.1 and track the precise
dependence of the polynomial @Q,(Xjps) on the right hand side of the estimate on the quantity
|Xare|l which will be defined through (4.3), (4.4), (4.5) below taking into account the number
of copies of X appearing in each stochastic object. However, the estimates in Theorem 3.1 are
not optimal and consequently the power of ||Xj/.|| in Theorem 3.1 is too large. To optimize we
introduce a large momentum cut-off [X ]:%/[,s]]g given by a parameter K > 0 and let [X %475]]> =
[X ]3\’48]] —[X ]?475]]@ Then we modify the dynamics of Yy, to

L Ve = —[Xirls = 3NZE[X3re]) = Vi,

which allows for refined bounds on Y, yielding optimal powers of || Xzl

Integration by parts formula. The uniform energy estimates from Theorem 3.2 and Propo-
sition 3.3 are enough to obtain tightness of the approximate measures and to show that any
accumulation point satisfies the distribution property, translation invariance, reflection positiv-
ity and nontriviality. However, they do not provide sufficient regularity in order to identify
the continuum dynamics or to establish the hierarchy of Dyson—Schwinger equations providing
relations of various n-point correlation functions. This can be seen easily since neither the res-
onant product [[X%wﬁﬂ O Ppe NOT [[ij\/[’a]] o e is well-defined in the limit. Another and even
more severe difficulty lies in the fact that the third Wick power [X3] only exists as a space-time
distribution and is not a well-defined random variable under the ®3 measure, cf. [ALZ06].

To overcome the first issue, we introduce a new paracontrolled ansatz Xne = @dpe +

3/\X\](4,6 = ¢m,e and show that xas. possesses enough regularity uniformly in M, e in order

to pass to the limit in the resonant product [X%, ] o xare. Namely, we establish uniform bounds

for x e in LlTBllj?’“’s (p*). This not only allows to give meaning to the critical resonant product

in the continuum, but it also leads to a uniform time regularity of the processes ¢as.. We obtain
the following result proved below as Theorem 6.2.
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Theorem 3.4 Let 5 € (0,1/4) and o € (0,1). Then it holds true that for all p € [1,00) and
7€ (0,T)

sup  Elon|? + sup  Elparel < 00,

2p
8,1 p—1—3k, —1/2-2k,e( 2
£€EAM>0 Wr Bi U e) e A M0 LyepH= /27202 ()

where L?TH_IM_Q”’E(/)Q) — LOO(T, T; H_1/2_2H’€(p2)).

This additional time regularity is then used in order to treat the second issue raised above and
to construct a renormalized cubic term [¢?®]. More precisely, we derive an explicit formula for [¢?]
including [X?3] as a space-time distribution, where time indeed means the fictitious stochastic
time variable introduced by the stochastic quantization, nonexistent under the <I>§ measure. In
order to control [X?] we re-introduce the stochastic time and use stationarity together with the
above mentioned time regularity. Finally, we derive an integration by parts formula leading to
the hierarchy of Dyson—Schwinger equations connecting the correlation functions. The precise
result proved in Theorem 6.7 reads as follows.

Theorem 3.5 Let F: S'(R3) — R be a cylinder function such that
IF(0)] + IDF @) gisss pos-ey < Crllelyos/asn o

for some n € N. Any accumulation point v of the sequence (vare o (€)™Y satisfies

[ PP@de) =2 [[00® - D)l F(en(de) + ATL(E),

where for a smooth h : R — R with supph C [1,T] for some 0 <7 < T < 0o and [, h(t)dt =1
it holds

TP =B, | [ KOO0
R
and [p3] is given by an explicit formula, namely, (6.6).

In addition, we are able to characterize 7, (F') in the spirit of the operator product expansion,
see Lemma 6.5.

4 Construction of the Euclidean ®* field theory

This section is devoted to our main result. More precisely, we consider (3.1) which is a discrete
approximation of (1.2) posed on a periodic lattice Ajs.. For every e € (0,1) and M > 0 (3.1)
possesses a unique invariant measure that is the Gibbs measure vy given by (1.1). We derive
new estimates on stationary solutions sampled from these measures which hold true uniformly
in ¢ and M. As a consequence, we obtain tightness of the invariant measures while sending both
the mesh size as well as the volume to their respective limits, i.e. € — 0, M — oc.

4.1 Stochastic terms

Recall that the stochastic objects Xz, [X?wﬁ]], [X ]?\’/[E]] and XL’ . were already defined in (3.2),
(3.4) and (3.5). As the next step we provide further details and construct additional stochastic
objects needed in the sequel. All the distributions on Ajps. are extended periodically to the
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full lattice A.. Then X\J{(/[,a which is a stationary solution to (3.5) satisfies X\X/[,E = X\X/LE(O) +

£ MX3.] with XLﬁ(O) = f_ooo Pz X3, D (s)ds, where P denotes the semigroup generated
by £ - on A.. Then it holds for every k,o0 > 0 and some 8 > 0 small

Y Y
||XM,€||CT<€1/2*K75(/;U) + ||XM,E||C§/2LOO,E(p0) S; L,

uniformly in M, € thanks to the presence of the weight. For details and further references see e.g.
Section 3 in [GH18|. Here and in the sequel, T' € (0, 00) denotes an arbitrary finite time horizon

and Cp and C’g/ ? are shortcut notations for C ([0, T]) and CA/2([0, T7]), respectively. Throughout
our analysis, we fix k,3 > 0 in the above estimate such that 8 > 3x. This condition will be
needed for the control of a parabolic commutator in Lemma 4.4 below. On the other hand, the
parameter o > 0 varies from line to line and can be arbitrarily small.

If 7 is a localizer defined for some given constant L > 0 according to Lemma A.12, we let
Ye be the solution of (3.6) hence

Yire = —AXj. — £ D BMZEIXRL]) = Yare). (4.1)

Note that this is an equation for Yy, which also implies that Y/, is not a polynomial of the
Gaussian noise. However, as shown in the following lemma, Y3/, can be constructed as a fixed
point provided L is large enough.

Lemma 4.1 There exists Lo = Lo(A\) > 0 and L = L(A\,M,e) > 0 with a (not relabeled)
subsequence satisfying L(X\, M,e) — Lo as € — 0, M — oo, such that (3.6) with %< determined

by L has a unique solution Yyre that belongs to Cr% /2" (p%) N C$/2L°°(p"). Furthermore, it
holds

%
HYM76||CT(gl/2—K,E(pJ) S )\HXM7€HCT%Jl/Q—n,E(po)y

Y Y
¥atell g e oy S MK lcgnn-me oy + 1Sl g2 o)
where the proportionality constant is independent of M, e.

Proof We define a fixed point map
K:Y Y= -AX}, — & BANZEX3]) = V]

for some L > 0 to be chosen below. Then it holds in view of the Schauder estimates from
Lemma 3.4 in [MP17], the paraproduct estimates as well as Lemma A.12 that

IKTs = V2 g 1/2mne oy S MK D) = (Vi = Va) g s/

<O IXR o —1-ne (o) IY1 = Yallog oo (o) < 811Y1 = Yall oy 1/2-me (oo

for some 6 € (0,1) independent of A\, M,e provided L = L(A,M,e) in the definition of the
localizer %< is chosen to be the smallest L > 0 such that

M| Z1X5r | Cp 3/ () S CX2 2| (X3 Tl epg—1-ne(pry < 0.
In particular, we have that

2112 = C5(1 4+ AIIX R Dl opg 1w o) (42)
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which will be used later in order to estimate the complementary operator % by Lemma A.12.
Note that L(A, M, e) a priori depends on M, e. However, due to the uniform bound on

2 2
” [[XM,E]] HCTgflf’("/Q!e(po') + H IIXM,E]] ||C%/2Loo,£(pa)

valid for some v € (0,1), we may use compactness to deduce that for every fixed A > 0 there
exists a subsequence (not relabeled) such that L(\,M,e) — Lg(\). This will also allow to
identify the limit of the localized term below in Section 6.

Next, it holds

> ¥
1KY lpigrrzre ooy < Al Xz

Crg1/2-re (o) + CAMZEIXRr D) = Vi -s/2-ne (o)

v ~
< )\HXM,EHCT%1/27”’5(/)U) =+ 6||YHCT%1/27”’5(,0‘7)'

Therefore we deduce that K leaves balls in C7%/2~%<(p?) invariant and is a contraction on
Cr€Y/?~%2(p7). Hence there exists a unique fixed point Y and the first bound follows. Next,
we use the Schauder estimates (see Lemma 3.9 in [MP17]) to bound the time regularity as follows

Vs el

Y 2
C?/QLW,E(pU) g A||XM,E||C§/2LW,€(pU) + C)\”(%;:[[XM,E:[I) > YM75|’CT%73/2*’€15(/)0)

.
SAMXnrell s/ poore ooy T OI¥aellopigr/oneom)

Y Y
S A|’XM,€|’C$/2Lm,€(pU) + )\||XM,E||CT%1/2*“15(pU)'
The proof is complete. O

According to this result, we remark that Y. itself is not a polynomial in the noise terms,
but with our choice of localization it allows for a polynomial bound of its norm. As the next
step, we introduce further stochastic objects needed below. Namely,

X\](/[,s = 3;1[[)(]2\/[,5]]7 X\]T/J,s = XM@ © X\]VW,&??

% _
XM,E = 9[[XJ2\/[,5]] © Qe IHXJZ\/[,s]] - 3bM,€?
XV\J\@Z,s = 9[[X12\4,5]] o X\](Lz-: - 35M,E(t)7 X\Z%[,s = 3[[X]2\4,5]] © X\Xd,s - 3bM,5XM,57

where bM,E,l;Myg(t) are suitable renormalization constants. It follows from standard estimates
that |base(t) — bamre| S |logt| uniformly in M, e. We denote collectively

XM,E = (XM,€7 IIX]2W,E:|]7X\]VW,E7XX,S"X\E,E?XM,E?X\E,E)'

These objects can be constructed similarly as the usual <I>§ terms, see e.g. [GHI18, Hailb,
MWX16|. Note that we do not include X\X/[a in Xpse since it can be controlled by [X3, ]
using Schauder estimates. In order to have a 7precise control of the number of copies of X a7p—
pearing in each stochastic term we define || X/ .|| as the smallest number bigger than 1 and all
the quantities

1/2 Y 1/3
I Xnsellegs-1nneqprys NXAEis ey 1 Xirelgigonems:  (43)
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v oo1/3 Xro1/4
|!XM,8|10/§/2LM,W,), 1 X e oy (4.4)

Ny 1/4 SNy 1/4 ¥ 1/5
IXnrell g ey 1Nl wepry 1ALy 1y (45)

Note that it is bounded uniformly with respect to M, e. Besides, if we do not need to be precise
about the exact powers, we denote by @Q,(Xxz¢) a generic polynomial in the above norms of the
noise terms X7, whose coefficients depend on p but are independent of M, e, A, and change
from line to line.

4.2 Decomposition and uniform estimates

With the above stochastic objects at hand, we let ¢/ be a stationary solution to (3.1) on Aps .
having at each time ¢ > 0 the law vp7 .. We consider its decomposition @nre = Xpre+Yre+dnr e
and deduce that ¢y satisfies

$5¢M,5 + A¢?\4,5 = _3/\[[X]2\4,s]] - ¢M,5 - 3/\[[X]2\/[75]] < (YM,E + ¢M,e>
3N (Xare + Yore + dare) = SMUELIX3, D) = Yiue (4.6)
=3AXnre(Yare + dme)® = Ay — 3Ny e — 3AY a0, -

Our next goal is to derive energy estimates for (4.6) which hold true uniformly in both parameters
M, e. To this end, we recall that all the distributions above were extended periodically to the full
lattice Ac. Consequently, apart from the stochastic objects, the renormalization constants and
the initial conditions, all the operations in (4.6) are independent of M. Therefore, for notational
simplicity, we fix the parameter M and omit the dependence on M throughout the rest of this
subsection. The following series of lemmas serves as a preparation for our main energy estimate
established in Theorem 4.5. Here, we make use of the approximate duality operator D, . as well
as the commutators C¢, C. and C. introduced Section A.3.

Lemma 4.2 It holds
1
iathQ(bEH%wa + >\Hp¢€”%4»5 + m2‘|p2¢6||%2,6 + ”p2v6¢6||%2,6 = @p‘l,s + \Ilp‘l,s (47)

with
Ve = de + 2 BAIXZ] - ¢, (4.8)
Opi e = —([Ve, p' e, Veibe)e + ([2c, 0" 2 7' BAIXZ] > oe], ) + (092, a2x ¥y,
+D i o (6, —3A[XZ], 0c) + (00, Ce(e, BAIXZ], BALXZ]))<
+Dps o (02, 3A[XZ], 2 T BAIXZ] - @)
U= (p¢e, —BA[XZ] < (Yo + @) — BAX(Yz + ¢)° — AVZ — 3AY . — BAY.¢?).
+(p" e, —BNUEIXZ]) = Ye + N Ze)e,

and

Ze= XJ 4+ XY+ 3(be— be) Vet Cu(Ye, 3[X2], 3[X2]) — 3[X 2] 0.2 71 (3%E[X2] = Y2) . (4.9)
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Proof Noting that (4.6) is of the form & .¢. + )\gbg’ = U., we may test this equation by p¢.
to deduce

1
§at<ﬂ2¢a’ P2¢a>a + )‘<P2¢£7 P2¢§>8 =P+ Vs,

with
(I)p4,a = <P4¢57 —2 0 — 3)‘|1X3]] = Qe — 3/\[[X52]] ° P — 3)\2ba¢e>e,

and

U= (p e, —3A[XZ] < (Yz + ¢) — BAX(Yz + ¢)? — AYZ — 3AY2 9. — 3AY.97)-
+(p b, 3N (ZEL[XZ]) = Ye — BA[XZ] o Yz — 3A2b (X + Y2))-.

We use the fact that (f =) is an approximate adjoint to (fo) according to Lemma A.13 to rewrite
the resonant term as

(p'de, —3A[XZ] 0 ¢e)e = (p"de, =BA[XZ] = de)e + Dps o(de, —3A[XZ], ),
and use the definition of ¢ in (4.8) to rewrite ®,. as
O = (p"e, =2 e)e + (20, p"] 2 7 BAIXZ] = ¢e, ).
H(P BAIXZ] = 6], 2 7 BAIXZ] = ¢el)e — 3N (p e, be)e + Dy (e, —3A[XZ], ¢c).
For the first term we write
(p"e, =2 e)e = —m® (p", e)e — (p'Vetbe, Vethe)e = ([Ve, p']t0e, Vetbe)e.
Next, we use again Lemma A.13 to simplify the quadratic term as
(' BAIXZ] > ¢c], 2 BAIXZ] > ¢:])e = (p' ¢, BA[XZ]) 0 2 ' BA[XZ] = ¢c]),
+Dpi ¢ (02, 3A[XZ], 2 T BALXZ] = ¢2])
hence Lemma A.14 leads to
= (p"¢2, ON[X2] 0 2 1 [XZ])_ + (p' e, C= (9, BA[XZ], BALXZ]) e
+D 1 ¢ (62, 3A[X2], 2 ' BALXZ] - @) -
We conclude that
O = —m?(p"e, ¥e)e — (p'Vetbe, Vetbe)e — ([Ve, pte, Vetbe).
+([2¢,0"] 27 BAIXZ] = el ve), + (p" 62, 9N [X2] 0 2 ' [X2] — 3%,
+D s o(fe, —3AIXZ], ¢c) + (p* e, Ce(e, BALXZ], BA[XZ]))e
+D . (6, 3N[X2], 2 7 BA[XZ] = o)) -

As the next step, we justify the definition of the resonant product appearing in ¥, . and show
that it is given by Z. from the statement of the lemma. To this end, let

Ze = =3\ [X2] o Yz — 3be(X. + Y2),

20



and recall the definition of Y/, (4.1). Hence by Lemma A.14
Z = 3[X2] o X! — 3b.X. + 3[X2] 0 2 7' (3[X2] - Yz) — 3b.Y-
—3[XZ] 0 2 T (3UE[XZ] - Vo)
= (3[X2] o X! — 3b.X.) + (3[X2] 0 £ Z'3[X2] — 3b.)Y: + 3(b: — b)Y
+C(Y2, 31X2] 31X2]) - 8[XZ] o 2 7 (32 X2] - Yo

which is the desired formula. In this formulation we clearly see the structure of the renormaliza-
tion and the appropriate combinations of resonant products and the counterterms. O

As the next step, we estimate the new stochastic terms appearing in Lemma 4.2. Here and
in the sequel, ¥ = O(k) > 0 denotes a generic small constant which changes from line to line.

Lemma 4.3 It holds true
1Z2()lleg —1/2-me oy S (14 Allog ] + A2)[|IX |7+,
IXYell g —172-me(pry S A+ A2 IXl,

IXeYZ g —172-meory S (A2 + X)X,

Proof By definition of Z. and the discussion in Section 4.1, Lemma 4.1, Lemma A.14, Lemma A.12
and (4.2) we have (since the choice of exponent o > 0 of the weight corresponding to the stochas-
tic objects is arbitrary, o changes from line to line in the sequel)

A s
1Z(@®)llep—1/2-re () S NXe Ml opig—172-re(aoy + 11X lers e ooy 1Yl opg 1/2-me (or)

Hlog Yz llopi 1/2-me (o) + (IYellowrra—re ooy + 1¥ell 72 e o) XD -1 )

F(1 4+ AMIX 2N g -1-me (o) P NXENE -1 (o) | Vel i 172 (o
< (14 A+ Mlogt] + \2)[IX, |7+

and the first claim follows since o > 0 was chosen arbitrarily.

Next, we recall (4.1) and the fact that X\ff = X. 0 X! can be constructed without any
renormalization in C7% ~"°(p”). As a consequence, the resonant term reads

X.oY. = -AXJ — X. 0.2 7V [3X (%E[X2]) > Vi, (4.10)

where the for the second term we have (since % is a contraction) that
M|Xe 0.2 21 3 (U2 > Y gy ame o
S MXellggag 1720 oy [ (ZENXZD) = Yel| opop -1-me (0

S MXell g —1/2-re (o XDl —1-me oo [ Vel op oo ey S A2 IXe]°. (4.11)

For the two paraproducts we obtain directly

1Xe < Yellopg —2ne(p30) S 1Xellopag —1/2-me ooy 1 Vel opig 172 ooy S MKl (4.12)
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1Xe = Yellgpog -1/2-me (o) S I Xellopas—172-re (oo 1Yol op oo ooy S MIXeNl*. (4.13)

We proceed similarly for the remaining term, which is quadratic in Y;. We have
X.oY?=X.0(2Ye <Y.) + X.0 (Yoo Yr)
_ 2 -1 2
=—X.0(2Y: < AX") = X.0 (2Y. < L' BA(%[XZ]) = Yi]) + Xeo (Yoo X2)

= _2)‘X\§/Y; — AC(Ye, 2X1/7X€) —AXco0 (21/;‘ = Dge_l [3 (%ﬁﬂXaQ]]) s YE]) + Xeo (YeoYo).

Accordingly,
1Xz 0 Y2y e iy S MIXS Nt o | Vel o ome (o
Yzl s (o) 1 XX g 172 (oo | Xell g —1/2n2 (o)
FAXellopg —172-r0 (o) HYaHQcTLoo,s(po) IIX 2] cpis —1-me (o)
1 Xellgyip 172y 1 Vel g ooy 1 Vel g 12 oy S (A2 4+ N3 |Xe? (4.14)

and for the paraproducts

”XE =< }/;2‘|CT(572m,s(p4a) S HX‘?HCT(K_I/Q_K’E(pa)H}/‘EHQCT(KI/Q—K,E(pU) S )\2HX€||77

1Xe = Y2llepg-12-me(pioy S IXellgpig -172-ne (o) | YelZppooneory S NI
This gives the second bound from the statement of the lemma. O

Let us now proceed with our main energy estimate. In view of Lemma 4.2, our goal is to
control the terms in © 1 . + ¥ 4 . by quantities of the from

cN)Qp(Xe) + S(Allpgellzac +m?0°Yel|Fo + 1p*Veroe|F2e),

where 6 > 0 is a small constant which can change from line to line. Indeed, with such a bound
in hand it will be possible to absorb the norms of ¢., . from the right hand side of (4.7) into
the left hand side and a bound for ¢., . in terms of the noise terms will follow.

Lemma 4.4 Let p be a weight such that p* € L*9 for some + € (0,1). Then it holds
1Ot el + 1 ps | < (W + AIZOCHD 10 42+ 1 \T)Q,,(X.)
FOANpeelac + 10°0eF-one +mP|p*Wel|F2e + 1P*Verbe||72),

1/2—4k
1-2k

where 0 =

Proof Since the weight p is polynomial and vanishes at infinity, we may assume without loss
of generality that 0 < p < 1 and consequently p® < ,0’8 whenever o > 8 > 0. We also observe
that due to the integrability of the weight it holds (see Lemma A.G)

o™ bell p2e S llpgell e

with a constant that depends only on p. In the sequel, we repeatedly use various results for
discrete Besov spaces established in Section A. Namely, the equivalent formulation of the Besov
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norms (Lemma A.1), the duality estimate (Lemma A.2), interpolation (Lemma A.3), embed-
ding (Lemma A.4), a bound for powers of functions (Lemma A.7) as well as bounds for the
commutators (Lemma A.14).

Even though it is not necessary for the present proof, we keep track of the precise power of
the quantity ||X.|| in each of the estimates. This will be used in Section 4.4 below to establish the
stretched exponential integrability of the fields. We recall that ¥ = O(k) > 0 denotes a generic
small constant which changes from line to line.

In view of Lemma 4.2 we shall bound each term on the right hand side of (4.7). We have

‘<[V57P4]¢57 Vetbe)e| < CpHPZwSHLQ,E”szawa”L% < CEC;%HPZ%H%ZE + 5||P2V5¢5H%2,5-

This term can be absorbed provided C, = [|p~4[V., p¥]||Le- is sufficiently small, such that
C’(;Cg < m?, which can be obtained by choosing h > 0 small enough (depending only on m? and
0) in the definition (2.2) of the weight p. Next,

(200" 22 BAXE - 0] i), | < (22 BAXE - 0] (20, 6%] ),

and we estimate explicitly

10722, 0] We| o < Colllp®ellp2e + 107 Verde || 2 2))

for another constant C,, depending only on the weight p, which can be taken smaller than m? by
choosing h > 0 small, and consequently

[([2:,0"] 21 BAIXZ] = 6cl ve) | S X107 be | p2e (M2 (|9 || L2 + [19* Vet 2.)

S NCs|IXe|® 4+ (Al pgel|1ae + M| 0°0e]F2e + |97 VerbelF2.e),

since ¢ is sufficiently small.
Using Lemma A.2, Lemma A.7, interpolation from Lemma A.3 with for § = %:4212
inequality we obtain

and Young’s

o2, X )l S N0 X wnellp' 702 prs S N2 XY g llp el e 1977 bl e

S NIX] M lpdell 2102 el ane < ATV THOC KB + 5Nl p@ellfae + 10 Ge | Fr1-2n)-

Recall that since o is chosen small, we have the interpolation inequality (see Lemma A.3)

6l aszimegramorey < 10ellimcqpron e i ame
where 0 = 1{2__22{ Similar interpolation inequalities will also be employed below. Then, in view
of Lemma A.13 and Young’s inequality, we have

MDys (e, =3[XZT, 8)| S Al [X2TNleg 1w 19~ 2 delfpn 2

S A7 [X2]

(7 1— na‘|p1+L¢5"L2s”p ¢E||H1 2/15

S AIXe H |’P¢€HL4€”P2¢6HH1 2k,e )‘2/97105”&5”8“9 + 5()\”P¢€HL4,E + HPQQbeH?p%n,s)-

Similarly,
N |D s (¢, 3[X2], 2 ' BIXZ] = o))
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< N7 [X: ST e pane |02 T BIXE] - o

where we further estimate by Schauder and paraproduct estimates

’H172n,5 9

7440 2 BIX2) - el s S 10" IXD = Gl s

S o7 IX2 g -1-nellp"™ be 2

and hence we deduce by interpolation with 6 = 762 and embedding that

A2 |D . (e, 3[X2], 2 71 BIXZ] = ¢e))| S M|l 0" be | 2c |07 B2 | pran.e

S )\2HX€H4Hp¢€”}:§2Hp2¢EHH1 2%,e
< AT/ O IX B + 5 poe | 1a.e + 1102 PelF1—2n.c)-

Due to Lemma A.14 and interpolation with § = 1= g” we obtain

N2 [(p" e, C (e, 3IXZD, BIXZD) ) S N lpT[XZNG e ll0° ™7 e o

< XG5 |10+ el |3 | o2l 1 o
S NG IX™H + Sl pdel e + 17 0elF-2mc)-

Then we use the paraproduct estimates, the embedding € 1/2=%<(p?) ¢ HY/?=2%2(p?=7/2) (which
holds due to the integrability of p* for some ¢ € (0,1) and the fact that o can be chosen small),

together with Lemma 4.1 and interpolation to deduce for 8 = 1/2 5'/” that

N(p* e, =3[X2] < (Yz+ 62))|
i —1-ne |07 P (Ve + 6) | prasz-owe| 077 2Pl asovan.e
S AP [X 2Nl —1-me 107 2Yel pr1s2—2ne 10772 e | g1/ m,e
A7 [X 2] Nl -1-nee “P270/2¢s”i11/2+3n,8
SAMIEN 0 el 1920 | 58 e + X210+ 02 020N T o)
(AE=0/246) 4 Az/"‘l)CaHXeHS“9 + (Al poellzae + 197Gl -2nc)-

S A7 1X2]

N

Next, we have

M(p*6e, ~BXVe +0%)el S Al Xellg 1729002 o721
AP XeYell 2o well0 0 a2 + A7 XY 21 60 o e
1,1 1,1
Here we employ Lemma A.7 and interpolation to obtain for 6 = I{Z_Ei“

M p” Xellg=1r2-rz 10" 762l vztwe S AT Xellg-1/2- wellp@ellFac 10”77 dell prasaan.e

S AN pgel 722107 Gl 2. < ACTVOCHIXPH + SNl pel e + 10 dellF1-2mc)
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and similarly for the other two terms, where we also use Lemma 4.3 and the embedding H'~2%¢(p?) C
HY/24262 (53719 and H1/2+2""5(p2) ;/22+2,{ “(p?) C 311’/12+H’8(p4*") together with interpola-

1/2 4k
tion with 0 = 5

Mp” XeYellg-1/2-ne 1962 pr/zeme + Allp” XYl -1/2-me 19777 el g/

< 2 X)Xl el 2 15 el vz + (O + A K102l g1/
< O 4 X)X N2 20 158 e+ (0% AV X206 | e 19202 [ i -
€ (020 | \12-00/2500) g 1540 . Sp6ellbae + 10°6:0p-2es).  (4.15)

Next, we obtain

M(p e, =Y2)el S Mp7Yellzoocllp" 27 Gell e S MK o0l pae < NC5lIXe )™ + 0N pe [ a.e

(4.16)
and similarly
A(p pe, =3Y202)e| S Mp7YelFooe ' 02| 1.2
SNVIX®llpg: 170 < NCslIXc ™ + 0M|pgel|7ac (4.17)
M(p* b, =3Yed2)el S Mlp7Yellnooe 072 ) pre S AllpYell oo || pe|F1.c
SNIXPllogelFae < NCslIXe || + 0A[| pgel| 7 .- (4.18)

Then, by (4.2)

M be, =3(ZE[XP]) = Ye)e| S M7 ZETX 2Nl —1+0me |07 Ye | Lo 19727 e[| pr-sne

AL+ Mo [X 2NNl -1-0.0) ¥ |07 [X 2Dl —1-me 17 Vel | Low2 17 Be | pra-2e.c
S 2+ X)X P2 e r1-ame < (A A)Co I + 61 0° 0 G -omer (4:19)

1/2 4K
—2K

N2[{p" s Ze)el S N210° Zell 172 07 el s

and finally for 8 =

S (% 4+ X log t] + A IXel| ™|l e |41 0° Bl 32
< ()\(879)/(2+9) + A\(12-9) /(2+9)‘ logt\4/(2+9 4+ A\(16-0)/(2+0) )Cs|1 X< |12

+ 6(Npgellpac + 197Gl Fra-2ee). (4.20)
The proof is complete. O

Now we have all in hand to establish our main energy estimate.

Theorem 4.5 Let p be a weight such that p* € L*0 for some 1 € (0,1). There exists a constant

1/2—4k
a=a(m?) € (0,1) such thatforﬁ—/ﬁ

1
iath%aH%z,s + a[N|pde| 1ac + M| 02 0e |72 + 107V erbe|F2] + 107 Pel|51—2n.c (4.21)
< ()\3 + /\(1279)/(2+0)‘ logt\4/(2+9) + )\7)Qp(Xe)-
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Proof As a consequence of (4.8), we have according to Lemma A.5, Lemma A.4, Lemma A.1
_ 2
1P Gellin-ane < [[0°2 2 BAIXZ] = @6l ga-2ee + 07 ¢ellfp—anc

S NN IX2NG -1-re 197 bel T2 + 0% el
SNQu(Xe) + Alpeell7ae + 0°VelFae + 1P Verte| 2. (4.22)

Therefore, according to Lemma 4.4 we obtain that

1
5OUP0clT2e + Allpgelzae +m?llpVellZze + 119 Vetbell7a

< (A A 10g 4| 1 AT)Q, (Xe) + SC(Allpde e + 10°el T2 + 107 Verpel|7 ).

Choosing 6§ > 0 sufficiently small (depending on m? and the implicit constant C' from Lemma A.5)
allows to absorb the norms of ¢., 1. from the right hand side into the left hand side and the
claim follows. O

Remark 4.6 We point out that the requirement of a strictly positive mass m? > 0 is to some
extent superfluous for our approach. To be more precise, if m? < 0 then we may rewrite the
mollified stochastic quantization equation as

(at — A + 1)905 + )\90:; =& + (1 - m2)806

and the same decomposition as above introduces an additional term on the right hand side of
(4.7). This can be controlled by

(L= m?)(p e, Xe + Ve + 6c)| S Cin1Qp(Xe) + (N p@el e + 1107 Pl Fri-2me),

where we write Cjs -1 to stress that the constant is not uniform over small A. As a consequence,
we obtain an analogue of Theorem 4.5 but the uniformity for small A is not valid anymore.

Corollary 4.7 Let p be a weight such that p* € L*° for some « € (0,1). Then for all p € [1,00)

_ 1/2-4k
and 0 = 1=

1 _
%@HPQ%H%’Z,E + AP0l 75E7 < AN + ACO72/CH0) 1og 1]/ H0) 1 \0)Q, (X)) PHD/2. (4.23)

Proof Based on (4.21) we obtain
1 2 2(p—1
25 Oll07 0l s + NP0l ool

< ()\3 + /\(12*9)/(2+0)| logt|4/(2+6) + >\7)||P2¢5Hi(£;1)Qp(Xe)'

The L*norm on the left hand side can be estimated from below by the L?-norm, whereas on the
right hand side we use Young’s inequality to deduce

1 2 2p+2
%@HP%J\LZQ,E + Al p% e[ 75t

< )\[()\2 + )\(10729)/(2+9)| logt|4/(2+9) 4 )\G)QP(XE)](erl)/Q + 5)\||P2¢5Hig—;2

Hence we may absorb the second term from the right hand side into the left hand side. O
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4.3 Tightness of the invariant measures

Recall that @7, is a stationary solution to (3.1) having at time ¢ > 0 law given by the Gibbs
measure vps.. Moreover, we have the decomposition . = Xnre + Yare + @ure, where Xy, is
stationary as well. By our construction, all equations are solved on a common probability space,
say (Q, F,P), and we denote by E the corresponding expected value.

Theorem 4.8 Let p be a weight such that p* € L*° for some 1+ € (0,1). Then for everyp € [1,00)
it holds

sup  (Ell¢are(0) — XM,S(O)Hip/%zms(p%)l/z SA+ A7/2,
e€A,M>0

sup (E|¢ne(0) — XM=6<O)H§,€,5(p2))1/2p < A2 1 )\3/2,
ec A,M>0

Proof Let us show the first claim. Due to stationarity of onre — Xpre = Yare + ¢, it holds

1 T
Ellp* (91,6 (0) = Xar,e(0)1F1/2-20c = 7'/0 Ellp*(oa,e(5) = Xt (5))[71/2-20.-ds
_ l T]E 2 Y 2 d
=7/ 19" (Prr,(8) + Yare(s)) |1 2-2x.cds

1 /7 1 (7
S | EI o (ancs +  [EIYare(5) pa-aes

In order to estimate the right hand side, we employ Theorem 4.5 together with Lemma 4.1 to
deduce

Bl p*(#a1,2(0) = X1, (0)) 171 /2-20.c

1 (o
S Cr (N + A)EQ,(Xare) + EEHP%M@(O)H%M +El07YarellZ, 120
C C
< C‘r()‘2 + )‘7)EQP(XM,€) + ?E||P2(90M,€(O) - XM,&(O))H%ZE + ?EHP2YM76(O)H%Q£

C
< Cr (W + ADEQ)(Xare) + ?EIIPQWM,E(O) — Xz (0) 17z

Finally, taking 7 > 0 large enough, we may absorb the second term from the right hand side into
the left hand side to deduce

E[l0*(¢21(0) = X1 (O 71/2-20e < Cr (N + AEQp(Xore)-

Observing that the right hand side is bounded uniformly in M, e, completes the proof of the first
claim.

Now, we show the second claim for p € [2,00). The case p € [1,2) then follows easily from
the bound for p = 2. Using stationarity as above we have

1 T
Elp*(on1,e(0) = Xare ()7 = T/O E|lp*(dare(s) + Yare(s)) | 75 -ds
1 (7 1 (7
<2 [TEIR o ds + 3 [ BV (4.24)
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Due to Corollary 4.7 applied to p—1 and the fact that for any o > 0it holds [ |log 5|2/ (H+0)ds <
Cp o1 for all 7 > 1, we deduce

a / El|p*¢are(5)]|7 .ds < Cpo[T(A2 + XOP/2 4 7o\ G0/ (X )]
0
At 2 2(p—1)
+ mEHP P1,£(0 )Hng
< Cpo[T(A2 + XOP/2 4 71 \PB=0/ R, (X )]
+ Cp A E p2(oar,2(0) — Xaro(0))][2% Y
+ COATE p2Yar(0)][297Y.

Plugging this back into (4.24) and using Young’s inequality we obtain

EHPQ((PM,E((D _XM,E( ) HL2€ <=2 [(}\2+)\6)p/2+7_0)\]?(5 0)/(2+6)]E[Qp(XM,5)}

C Cp\?P
+0—LE|p*(0a1,2(0) = Xnr(0 NIae + Cé,p+ E[Qp(Xase)]-
Taking 7 = max(1, A\=%) leads to
Cpo o\ p(5—
Bl (parc(0) — Xare(O)I2. < BT[N 4 NP2 4 27 NS0 CHOIEQ, (K )

+0C,aEll0*(011,6(0) = Xare(0) [ 2. + N Cspt-Cpa NPE[Qp(Xnre)]

and choosing § > 0 small enough, we may absorb the second term on the right hand side into
the left hand side and the claim follows O

The above result directly implies the desired tightness of the approximate Gibbs measures
vm,e- To formulate this precisely we make use of the extension operators £° for distributions on
A¢ constructed in Section A.4. We recall that on the approximate level the stationary process
©m,e admits the decomposition ¢pr e = Xpre + Yare + dare, where Xy, is stationary and Yy .
is given by (4.1) with X\Xma being also stationary. Accordingly, letting

CM,& =Y 5_1 [3)\ (%sﬂXJQ\Lg]]) >~ YM,E] + d’M,e =:NMMe + ¢M,s

we obtain gy e = Xpre — )\Xj\//[ . + Cue, where all the summands are stationary.

The next result shows that the family of joint laws of (E%¢ e, £ X e, 5EX\X/[ .) at any chosen
time ¢t > 0 is tight. In addition, we obtain bounds for arbitrary moments of the lfmiting measure.
To this end, we denote by (¢, X, X\V) a canonical representative of the random variables under
consideration and let { := p — X + X

Theorem 4.9 Let p be a weight such that p* € L* for some v € (0,1). Then the family of joint
laws of (EE@M,E,EEXM’E,EaX\X/‘,E), e € A M > 0, evaluated at an arbitrary time t > 0 is tight.
Moreover, any limit probability measure p satisfies for all p € [1, 00)

2 2
EMH‘PH;—l/%zn(pz) ST+, EMHCHLZ;(pz) SN+ AP A

EpllCl-angry SN+, Eullcliy ) SA+A.
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Proof Since by Lemma A.15
2
EH‘C:EXM@( )HH 1/2-2k(p2) EHXM75(0)H;,l/g,&s(pg) S 17
uniformly in M, e, we deduce from Theorem 4.8 that

EH‘SE‘PM,E(O)Hi?—l/Q—zn(pz) ST+

uniformly in M, e. Integrating (4.23) in time and using the decomposition of ¢y leads to
P éare()|7.e < 0°0a(0)[ 7. + CIAN + AO)PTVQ (X o) D/

< Cpll P (pare(0) = Xare ()17 . + Coll p?Yar(0)[[75 . + CAN + XO)PHI2Q (X ) PHD/2,

Hence due to Theorem 4.8 we obtain a uniform bound
Ellp®pare(t) |75 Se AP+ NPT,

for all ¢ > 0. In addition, the following expressions are bounded uniformly in M, e according to
Lemma 4.1 and Theorem 4.5

2
E”nM,a”CI")TCglfn,a(pa) 5 )\4p

I

T T
)\/0 E[|¢are(t) et +/0 E[|éar.e (0)|[71-2me 2y dt S A° + AT,

whenever the weight p is such that p* € L* for some ¢+ € (0,1). In view of stationarity
of Care and the embedding CLlre(p%) C Hl_z’”(pQ), we therefore obtain a uniform bound

E|[Care(t )HH1 2n.e( SAZ 4+ 27 as well as E||Cae(t )||L25 < AP+ N3P L \YP for every t > 0.
Similarly, using statlonarlty together with the embeddlng e (p?) C Bg:;(p) as well as
L*4(p) C Bgﬁo(p) we deduce a uniform bound E||(az (¢ )HBO . < A+ A6 for every ¢ > 0.

Consequently, by Lemma A.15 the same bounds hold for the corresponding extended distri-
butions and hence the family joint laws of (€@, E5 X e, S‘EXL’E) at any time ¢ > 0 is tight.
Therefore up to a subsequence we may pass to the limit as € — 0, M — oo and the uniform
moment bounds are preserved for every limit point. O

The marginal of p corresponding to ¢ is the desired <I>§l measure, which we denote by v.
According to the above result, v is obtained as a limit (up to a subsequence) of the continuum
extensions of the Gibbs measures vys . given by (1.1) as ¢ — 0, M — oc.

4.4 Stretched exponential integrability

The goal of this section is to establish better probabilistic properties of the @% measure. Namely,
we show that szgpMﬁ||11T1;_“1/2_2N’E is uniformly (in M, ¢e) exponentially integrable for every v =
O(k) > 0, hence we recover the same stretched exponential moment bound for any limit measure
v. To this end, we revisit the energy estimate in Section 4.2 and take a particular care to optimize

the power of the quantity || Xjz.|| appearing in the estimates. Recall that it can be shown that

%] < o0 (4.25)
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uniformly in M, e for a small parameter 5 > 0 (see [MW18]). Accordingly, it turns out that the
polynomial Q,(Xxz,¢) on the right hand side of the bound in Lemma 4.4 shall not contain higher
powers of || Xy .|| than 84+ O(k). In the proof of Lemma 4.4 we already see what the problematic
terms are. In order to allow for a refined treatment of these terms, we introduce an additional
large momentum cut-off and modify the definition of Yjs . from (3.6), leading to better uniform
estimates and consequently to the desired stretched exponential integrability.

More precisely, let K > 0 and take a compactly supported, smooth function v : R — Ry
such that ||v||1 = 1. We define

[[X}\s/f,a]]< = UK *t AiKHX;\d/[,E]L

where the convolution is in the time variable and vy (t) := 25v(25¢). With standard arguments

one can prove that

sup (2 N2 [XF, < lloproee)?/?
KeN

is exponentially integrable for a small parameter and therefore we can modify the definition of
| Xas.e]l to obtain

11X ed<llopos S 25O Ky, ) (4.26)
while still keeping the validity of (4.25). Moreover, we let IIX]?{/LE]]> = [[X%Ls]] - [[X%’E]]g and
define X\X/l’67> to be the stationary solution of

L X = X - X<

By choosing K we can have that
< 27K(1/272H)”X\X4

S 2RO S X ne

v
”XM,5,>HCTL°0’E(p”) 7&-7>HCT651/2—K,,6(p0')

which holds true provided
2K/2 _ ||XM5H1/(1_4H)-

Next, we redefine Y/ . to solve
YVire = —AXy o — £ D BN D) = Yare]

The estimates of Lemma 4.1 are still valid with obvious modifications. In addition, we obtain

107 Yaselloproes(ory S MXazel?, 107 Yasell opig 172—me oy S MXnsell?,
and by interpolation it follows for a € [0,1/2 — k] that

17 Yrellcrigos oy S MXagel[Fe/ /270, (4.27)
From now on we avoid, as usual, to specify explicitly the dependence on M since it does not play
any role in the estimates. The energy equality (4.7) in Lemma 4.2 now reads

1
iatHPQQbéH%ZE + TE = @P“,a + \Ilp‘*,e + <P4¢5a _)\[[Xg]k)a: (4-28)

where
Yo = Alpoelfa + m2l0% el o + 1929t

and © 1 ., ¥ 4 . where defined in Lemma 4.2. Our goal is to bound the right hand side of (4.28)
with no more than a factor || X7 for some ¥ = O(k). In view of the estimates within the
proof of Lemma 4.4 we observe that the bounds (4.15), (4.16), (4.17), (4.18), (4.19) and (4.20)
need to be improved.
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Lemma 4.10 Let p be a weight such that p* € L*Y for some v € (0,1). Then there is 9 =
O(k) > 0 such that

1Ol + [ pa | + (" 6o, ~AIX3])e] < C5(A+ AT/3 log /3 4+ A) [ X[+ 4 5.

Proof Let us begin with a new bound for the term with X.Y2 appearing in (4.15). For the
resonant term we get from the interpolation estimate (4.27) that the bound (4.14) can be updated
as

167 Xe 0 Y2l cpig—me S NIIXe]|®F 4+ WX S (A 4 M)XK ]|

where we used that, due to the presence of the localizer (see (4.2)), we can bound
—(1-6r)
107 ZX2 g —s/200me S NP7IXED g —1me (L AP IXE 1) S X (4:29)
giving an improved bound for the paracontrolled term which reads as follows

o7 0 (212 < 2 21 [30 (2 [X2D) = Vo))l o

S M7 Xellg-1/2-me |07 Vel oo |07 2 IX2] | g —ajovan S AP Xe]PH
Consequently, for 6 = gz

)‘|<p4¢€aXEOYaQ>€| S )‘HansoyeQ £~ ||p4_a¢€||Bf’ ()‘3+)‘4)||X ||6+19”:0¢6||L46Hp CbsHHl 2k,e

< ()\(12—9)/(2+9) + )\(16—0)/(2+9))05HX6H8+19 + 5T5

1/2—4k
1-2k

For the paraproducts we have for 6 =

@ —1/2—k,c ||PJY6 H%OO’E

Mo, Xe 1 V2)el S Nlo* 2260 | o/aenc|7 Xe

SN lpdellfac 0Pl o < A2 CHOCHIX|[® + 5.

Let us now consider the term with X.Y. always in (4.15). In view of (4.11), (4.12), (4.13) we
shall modify the bound of the resonant product which using the decomposition (4.10) together
with (4.11) and the bound (4.29). We obtain

107 Xe 0 Yellg—re S MKl + XX S (A + A%,
—4
and consequently, for 6 = 2:,

M(p'02, Xe 0 Yo)e| S Alp7Xe 0 Yellg—rellp ™72l pre S (W2 + Al *llpge | 52 110° el 11 o

< ()\(7—«9)/(14-9) + )\(11_0)/(1+0))06||Xa||8 + (STE.

_1/2—4k
For the paraproducts we have for § = ~{=-

M(p* 62, Xe X Yool S Alp* 762 v 107 Xellg 172 07 Ve s

SN P L E2 PP el il e < AT/ OHDC5|IX |8 + 5.
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With the improved bound for Y, (4.16), (4.17), (4.18) can be updated as follows
[(p"6e AY2)el S Mpdellpacllo”VellEprome S A NlpdellacXel® < oAllp@el1ae + CsX X%,

[ be, BAYZ be)e| S Allp@ellFac 07 Yol poee S Allpdelfac IXell* < OMpdel e + CoX*|Xe]|%,
[(p" b, BAYz@2)e| S Mllpdellzac 07 Vellorroes S NllpdellfacIXell® < OAllpellLae + Cod”[IXe*
Now, let us update the bound (4.19) as

M(p'de, =B(ZE[X7]) = Yo)e| < N+ N)C5|XPH + 8] 0° el 3120

Next, we shall improve the bound (4.20). Here we need to use a different modification for each

term appearing in (p*¢., \Z.). as defined in (4.9). For § = 1/2-4r

=3, We bound

(0" e, )‘QX?M S Nt HBi/me’s ”PUX\? lcpig —1/2-r.e

SN p0e]|8ac 1pPbel |1 o |1 Xe]|P < AEO/CHI Oy X8 + 67
< (AW 4+ AH0s|IX |8 + 07,

Next, we have

2|6, IV < 22|(ph6, X MY )|+ 22|(ph62, X 0 V)|

1—4k
=2, we bound

where, for 0 =
N2 [(p e, X 00 Yo)e] S X042 0e | s 1077 X 90 Yo

SN2 00e |9 |92 bel 12 o 107 X g e [ 07 Yo oo < AB=O/CHOC I[P+ + 57,
< (N + X3 Gy X BT + 0.

and the resonant term is bounded as

22| 4@, o Yo)e| S N2[1p" 27 e e || 07 X H% me|lp7Yellgpzee S NP e || pac | X |57
< Cs A3 4 670 < (A3 + M |IX |3+ + 67,
Now,

N [(p' e, (b — be)Ye)e| S [Mog tIA%|p" 7 el pre |07 Y owe S [og t]YPATEC5|Xc %2 4 6T

1-5
Next, for § = =57,

X2| (42, Ce(Ve, BIX2], BIX2D)el S X 00" 6l el Vellgamel |0 TX 2T -1

SN p0el|8ac |92 el i o [ Xc||F7 < AOZO/CHO O x5 4 57,
< (N + XY CyIX ¥ + 0

32



At last, we have
N |(ptoe, —31X2] 0.2 71 (32E[X2] - V)|

SN0 7 Gell e |07 Yelloore 07 [X 2Dl —1-mee || 07 ZUENXED| 5 -1,

S N5 0o e[ 47  ACH IO/ 4 5T < (08 + MG + 6T,

This concludes the estimation of (p*¢., \2Z.). giving us
[(p"de, N2 Ze)e| < (A + M) Gy I*F + 07T
Finally, we arrive to the additional term introduced by the localization. Using (4.26) we obtain
(e, ~AIX Rl <Del S Mpdelloc o7 [XRrel<lloprome S Mpdell 252X, |2

<Gy |IX ¥ + 67,
where we also see that the power 8 + 1 is optimal for this decomposition. O

Let (¢e) := (1 + [|p2¢c]|25.)/% and (pc). = (1 + Hp2g0€|]§{,1/2,2m)1/2. With Lemma 4.10 in
hand we can proceed to the proof of the stretched exponential integrability.

Proposition 4.11 There exists an o > 0, 0 < C < 1 and v = O(k) > 0 such that for every
B >0 it holds
12

D,eBltde) ™Y | aeﬂ<t¢s>1‘“(1 —0)B{td) TV THEY . < 1+ B/ONIX

Consequently, for any accumulation point v we have
/ 66<¢>i7vy<d(p) < 00
S'(R?)

provided B > 0 is sufficiently small.
Proof We apply (4.28) and Lemma 4.10 to obtain

, OyePtde) ™" 1-v 1
1+ W — Bltge) §8t(t2‘|p2¢€"%2*5)

= P [ (—Te + O, + Va4 (pPe, —AIXE]<)e) + tl]p?0c 2]
< emt%)lﬂ) [tQ(_TE + ®p4,z-: + \I]p‘*,s + <P4¢757 _A[[Xg]]<>€) + 5t2)‘||p¢€||4L476 + Cé,)\*l]

< P09 [42(1 — 26) T + Cot?(og /3 + D)X |3 + C5 5-1],

(te)

where by writing Cs 51 we point out that the constant is not uniform over small A. Therefore
by absorbing the constant term Cj -1 in ||X|*+7 we have

ByeP 1) ™" 1 eBlt0) ™Y (1 — 1) Bt ) VL (1 — 20) 82T,

v 4.30
< G €167 (1 ) 3(t.) - 182(| log 13 + 1) X[+ (4.30)
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Now we can have two situations at any given time, either ||X.||? < §||tpgb€||L48 or |IXc|I? >
g||tqug\|L4e for some fixed and small ¢ > 0. In the first case the right hand side of (4.30) is
bounded by

05,)\_166(t¢5>17v(1 _ ’U),B<t¢ > v—1 4+19/2t2(| logt|4/3 + 1)||tp¢€||£14+819/2 (1- ”U)’

and we can choose v = v(k) so that (4 +9/2)(1 — v) = 4 and by taking ¢ small (depending on
d, X through Cj 5-1) we can absorb this term into the left hand side since for ¢ € (0,1) it will be
bounded by

Csa1€9 ™ (1 = 0)B(tg) 0122 pg |4

In the case ||X.[|? > §||75,oqbg\|L46 we have

X2 > slitpeell 1o 2 slito®sell 22 2 s((tge) ™ = 1),

provided p is chosen to be of sufficient decay, and therefore we simply bound the right hand side
of (4.30) by

< Cy a1 ePIONEN? X840 < 1y ((28/CO) %N,

The first claim is proven.
It remains to prove the bound for ¢.. By Hélder’s inequality, we have

B[P0 0)=X=(0)1 ] _ ReBlee(D=Xe(1)' ] < RBY=(D)+B(6-() )

< [E[e2PO=00) 7 1/2[E[28( (1) 7)) 1/2

and we observe that (Yz(1))!=% < 14 ||X.||? so the first term on the right hand side is integrable
uniformly in € by (4.25). On the other hand, using Lemma 4.11 we have
12

t
E[e28 (=) _,_/ E[ae??506) ™ (1 — 0)28(sd=(s)) "V 2 Te(s)]ds < E[1 + 2F/ONX
0

]

and therefore
E[e28(0=()' 7] < E[1 4 @8/,

We conclude that

sup E[e8#:0)-X 00 ™"] < [[2B0+HIKID|U2E] 4 (@B/ONKITL/2 < o
eeA

uniformly in € by (4.25), from which the claim follows. O

5 The Osterwalder—Schrader axioms and nontriviality

The goal of this section is to establish several important properties of any limit measure v ob-
tained in the previous section. Osterwalder and Schrader [OS73, OS75] introduced the following
axioms for a family (S, € S'(R?)®"),en, -
Let RS = {(z1,292,73) € R3 : 27 > 0}, RY = {(zW,...;2™) € R} : 0 < xgl) <-e <
xgn)} and
S'(R¥) := {f € S'(R*) : supp(f) C R¥"}.
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0S0 (Distribution property) It holds Sy = 1. There is a Schwartz norm || - || on &'(R%) and
B > 0 such that for all n € N and fi,..., f, € S(R3) it holds

[Sn(f1® ... ® fn)| < (n!) ﬁHHlels- (5.1)

OS1 (Euclidean invariance) For each n € N, g = (a, R) € R*x O(3), fi,..., fr € S(RY) it holds

Sn((a, R).[1®...®(a,R).fn) = Sn(f1®...® fn),
where (a, R).fn () = fn(a + Rz) and where O(3) is the orthogonal group of R3.

0S2 (Reflection positivity) For all sequences (fn, € Sc(R3")),en, with finitely many nonzero
elements, it holds

n,meNy

where Of, (™M), ..., 2) = f(02M, ... 02() and O(x1,22,23) = (—x1,22,23) is the
reflection with respect to the plane 1 = 0.

0S3 (Symmetry) For all n € N, f1,..., f, € S(R?) and 7 a permutation of n elements:
Sn(fl Q& fn) = Sn(fw(l) ®--® fw(n))

The reconstruction theorem of [OS75] asserts that functions (S, )nen, which satisfy OS0-3 are
the Euclidean Green’s functions (or Schwinger functions) of a uniquely determined Wightman
theory (maybe lacking the cluster property). The reader is referred to [GJ87| for a detailed
exposition of the Euclidean approach to QFT.

For any measure ;1 on S'(R?) we define S}, € (§'(R?))®" as

Sp(fi®: @ fn) ;:/ p(f1) - o(fadiuldp),  neEN, fi,.... fn € S(R?).

S'(R3)
In this case OS3 is trivially satisfied.
Along this section we will prove that, for any accumulation point v, the functions (S%),
satisfy additionally OS0, OS2 and OS1 with the exception of invariance with respect to SO(3)
(but including reflections) and moreover that it is not a Gaussian measure.

5.1 Distribution property

Here we are concerned with proving the bound (5.1) for correlation functions of v.

Proposition 5.1 There exists B > 1 and K > 0 such that any limit measure v constructed via
the procedure in Section j satisfies: for alln € N and all fi,..., f, € H/*t2%(p=2) we have

Eulo(f1) - o(f)]l < KM)P T illsoeen pay.

i=1

In particular, it satisfies OS0.
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Proof Forany a € (0,1) and any n € N we obtain with the notation (p), = (1+||‘:0H§{71/272~(p2)) /

By [ll-1/2-2 )] < Eu[(0)2®/) < E[(0)M21] < 57 ([n/a]E, [#)]

@

< Kn(ng)l/a[gy[eff(@ ],

where we used the fact that Stirling’s asymptotic approximation of the factorial allows to estimate

n/o [n/a] nla n/a+1
falt< ¢ (PLD) T nuga 2 < 0 (2) T nfuya)

e

< K" [(S)” (27m>1/2} U < g e

for some constants C, K, uniformly in n (we allow K to change from line to line). From this we
can conclude using Proposition 4.11. O

5.2 Translation invariance

For h € R? we denote by 75, : S'(R3) — S’(R?) the translation operator, namely, Tj,f(z) :=
f(z—h). Analogically, for a measure p on S’'(R?) we define its translation by Tpu(F) := pu(FoT,)
where F' € Cy(S'(R?)). We say that y is translation invariant if for all A € R? it holds Tj,u = p.

Proposition 5.2 Any limit measure v constructed via the procedure in Section / is translation
mvariant.

Proof By their definition in (1.1), the approximate measures vjs. are translation invariant
under lattice shifts. That is, for h. € A. it holds Tp_vare = vare. In other words, the processes
o and Ty @pre coincide in law. In addition, since the translation 7;,_. commutes with the
extension operator £°, it follows that £par . and T E%¢nr e coincide in law. Now we recall that
the limiting measure v was obtained as a weak limit of the laws of £5¢. on H~1/2726(p2+7).
If h € R? is given, there exists a sequence he € A, such that h. — h. Let x € (0,1) be small and
arbitrary. Then we have for F € Cg’l(H_l/Q_‘g”(pZ*V)) that

Thw(F)=v(FoT,) = lim Po (55¢M75)_1(F oTp) = lim E[F(ThEpn )]
e—0,M —o0 e—0,M —o0
_ : e _ : e _
= s—>01,1m—>ooE{F( Th.E50ne)] = E_)()171m_> E[F(Epme)] = v(F),

where in the third inequality we used the regularity of F' and Theorem 4.8 as follows
E[FE(Thé pume) = F(Th.E5pure)] < IFll oo BINThE Prre = The € omellpr-1/2-3n 24

S (b= he) EllE°0mell g-1/2-2m(p2tv) S (R —he)® =0 as e —0.

If F e Cy(H~Y/2735(p%t7)), then by approximation and dominated convergence theorem we also
get Tpv(F) = v(F'), which completes the proof. O
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5.3 Reflection positivity

As the next step we recover the reflection positivity of the measure v. We fix an index i € {1, 2, 3}
and establish reflection positivity of v with respect to the reflection given by the hyperplane
R~ x {0} x R3~%. To this end, we denote Ri,é = {x € R%x; > &} and define the space of
functionals F' depending on fields restricted to Ri’ s by

K
Hys = {Z ckei*"(f’“);ck e€C, fi € Cgo(Ri),K € N}
k=1

and let Hy = Hy . For a function f: R?® — R we define its reflection

(ef)(.%') = (Qlf)(.l‘) = f(ZL'l, ey Lj—1y —Ljy Ljg-1s - - - ,563)

and extend it to F' € H4 by 0F(o(f1),...,¢(fr)) = F(e(0f1),...,0(0fk)). Hence for F € H 5
the reflection F depends on ¢ evaluated at z € R3 with z; < —.
A measure p is reflection positive if

K
BOPF) = | 1 POPI9) = 33 V(1= ) 0.

for all F' = Zszl cre’?Un) € 1,

Proposition 5.3 Any limit measure v constructed via the procedure in Section / is reflection
positive with respect to all reflections 0 = 0*, i € {1,2,3}. In particular, it satisfies OS2.

Proof We recall that our Euclidean quantum field theory v was obtained as a limit of (suitable
continuum extensions of) the measures vys. given by (1.1). It is known that for every e, M the
measures V) reflection positive (on Aps.), see [GJ87|. Therefore, we obtain
E,J0FF] = lim E[0F(Epp)F(E¢me)] = lim  E[F(0Epum:)F(E o))
e—0,M —o0 e—0,M—o0

Next, we observe that since the function w in the definition of the extension operator £° was
chosen radially symmetric, the reflection and the extension operator commute. Moreover, if
F e M, s then Fo&° € Hy when € is small enough (depending on ¢) and therefore due to the
reflection positivity of vy, for all ' € H s we have

E,0FF) = lim E[F(E0pne)F(E%pn )]

e—0,M —oc0
= lim E[§(Fo&)pme(Fo&%)pme = 0.
e—0,M—oc0
Using the support properties of v we can approximate any F' € H, by functions in H4 5 and
therefore obtain the first claim. Let us now show that (5.2) holds. Note that, thanks to the
exponential integrability satisfied by v any polynomial of the form G = }_ ©®"(fr) for se-
quences (f, € Sc(R¥"))en, with finitely many nonzero elements, belongs to L?(v). In particular
it can be approximated in L?(v) by a sequence (F},), of cylinder functions in H,. Therefore
E,[0GG] = lim;, o E,[0F,F,] > 0 and we conclude that

S @@ ) = S E o™ (050%™ (fn)] = ELIGG) > 0.

n,meENy n,meENy
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5.4 Nontriviality

This section is devoted to the proof of nontriviality, that is, non-Gaussianity.

Theorem 5.4 If A > 0 then any limit measure v constructed via the procedure in Section / is
non-Gaussian.

Proof In order to show that the limiting measure v is non-Gaussian, it is sufficient to prove
that the connected four-point function is nonzero, see [BFS83|. In other words, we shall prove
that the distribution

Ul (@1, ... 24) = Eu[p(z1) - - p(24)]
—E,[p(21)p(22) By [p(23)p(24)] — By (1)@ (23)]Ey [p(22)p(24)]
—Ey[p(z1)p(za)|Bylp(z2)o(23)],  @1,...,24 €RY,

is nonzero.

To this end, we recall that in Theorem 4.9 we obtained a limit measure  which is the joint law
of (¢, X, X\V) and that v is the marginal corresponding to the first component. Let K; = F~ly;
be a Littlewood-Paley projector and consider the connected four-point function UJ convolved
with (K, K;, K;, K;) and evaluated at (z1,...,24) = (0,...,0), that is,

Uy * (Kq, Ki, Ki, K3)(0,0,0,0) = E, [(Ai0)*(0)] — 3E,[(Ai)*(0)]°

= Eu[(Aip)*(0)] — 3E,.[(Aip)*(0)]* =: L(p, ¢, 0, ¢),

where L is a quadrilinear form. Since under the limit x4 we have the decomposition ¢ = X —
AXT 4 ¢, we may write

L(p, ¢, 0,0) = L(X, X, X, X) —4AL(X, X, X, X ) + R (5.3)

where R contains terms which are at least bilinear in X' or linear in ¢. Due to Gaussianity of
X, the first term on the right hand side of (5.3) vanishes. Our goal is to show that the second
term behaves like 2! whereas the terms in R are more regular, namely, bounded by 2¢(1/2+%) In
other words, R cannot compensate 4\L(X, X, X, XY) and as a consequence L(p, @, ¢, p) # 0 if
A>0.

Let us begin with L(X, X, X, XY). To this end, we denote k931 = k1 + k2 + k3 and recall
that

(A X)(0) = / il / D RO s, ).

R —00
0
(AX")(0) = / ds /Rd /Rd /Rd pi(Kprag)e” ™ Hhnz =)

X H /8 6_[m2+|kl|2](8_8l)£(d817 dkl) ’

1=1,2,37~°

where [-] denotes Wick’s product. Hence denoting H := [4m? + |kpja3)|* + [k1|? + |k2|* + |ks|?]
we obtain

L(X, X, X XT) = E [(AX)(0)(AX)(0)(AiX)(0) (X7 (0)
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0 s
= 3!/ dS/ / / @i(Kpag)e ) H [/ 62[m2+|kl|2](8Sl)%(kz)dszdkz]
o0 JRJRd JRE —o0

=1,2,3

_3!/-0 ds/ / / (k- ) —s) H k‘ dkl
=3 N e S Rd% [123])€ o wi( lmQ_Hkl’Q
3
/ / / wi(k 123]
Rd JRd JRE

Let us now estimate various terms in R. The terms containing only combinations of X, x'
can be estimated directly whereas for terms where ( appears it is necessary to use stationarity
due to the limited integrability in space. For instance,

dk i(—8+49) i
c,oi(k:l)} ~ 24 ~ 2.
I= 123[ m? + |k f?

B [(a:x) 0)2:) 0)(a:X7)(0) (A x")(0)]

< 92i(=1/2-K)9=2i(1/2-R)g [HX X0

€ 1/2=r(p

4K
€ — 1/2— .Lc(p U)i| 52

and similarly for the other terms without ¢ which are collectively of order 24%(\2 4 A\*). For the
remaining terms, we fix a weight p as above and use stationarity. In addition, we shall be careful
about having the necessary integrability. For instance, for the most irregular term we have

E[(A:X)*(0)(A:0)(0)] = /Rd pH(@)E[(AiX)* (2)(Ai¢) (2)]dz = E(p", (A X)*(Ai())
and we bound this quantity as
E[(2:X)*(0)(2i) (0)]] < E[AiXe | Zoo (pry 1A 1 (p1-37)] S EUIAXe (700 o) |1 A€ | £2(2)]
< 9=3i(=1/2=r)gi(-1+2r) g HXH%A/%K( . HCHBF% 2

< 2—31'(—1/2_”)21'(_1"‘2'i (E[ —1/2=r () ])1/2< [”CHBl 2 ] 1/2

5 21(1/2+5N)()\ + )\7/2)'
where we used Theorem 4.9. Next,
E[(2:X)?(0)(A:0)*(0)]] < B[l AiX |70 (o) | AiC | 2o+ A€ [ £2(02)]

< 2—2i(—1/2—n)2—i(1—2n)E[

a oo IClBg Il r-2n ()] S 2745 (A 4N,

and

EI(AX)O)(AQP O] < EIIAX] oo o) | AL co-orss)
E[IAX]| e ooy | AC )

SJ 2—i(—1/2—/§)E ”X

<
<

3
(K—l/Q—n(pcr)HCHBg’oo(p)
< i(1/24R) (\3/4 4 \9/2)

[E[(A:) O] = B, (M) < EN(Ai€) 1 Lag) <ElIClzy ()] S A+ X%
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Proceeding similarly for the other terms we finally obtain the bound
|R’ g 21’(1/2+5/€)()\3/4 + )\7)'
Therefore for a fixed A > 0 there exists a sufficiently large ¢ such that
E[(Aip)*(0)] = 3(E[(Aip)*(0)’])* S —2A <0,

and the proof is complete. O

6 Integration by parts formula and Dyson—Schwinger equations

The goal of this section is twofold. First, we introduce a new paracontrolled ansatz, which allows
to prove higher regularity and in particular to give meaning to the critical resonant product in
the continuum. Second, the higher regularity is used in order to improve the tightness and to
construct a renormalized cubic term [¢3]. Finally, we derive an integration by parts formula
together with the Dyson—Schwinger equations and we identify the continuum dynamics.

6.1 Improved tightness

In this section we establish higher order regularity and a better tightness which is needed in
order to define the resonant product [X2] o ¢ in the continuum limit. Recall that the equation
(4.6) satisfied by ¢ar. has the form

L come = —3NX3] = dnre + Unie, (6.1)
where
UM,z—: = *3)\[[X]2\/[75]] < (YM,E + ¢M,z—:) - 3)\2bM,s(XM,s + YM,z—: + d)M,E)
—BNUE[X3, ) = Yare — 3AXare(Vare + dare)® — AV .
—3AYJ2M76¢ Me — 3>\YM75¢§W’6 — Agﬁm.
If we let

XM = ¢M,s + 3)\X\](M75 - ¢M,€7 (62)

we obtain by the commutator lemma, Lemma A.14,

3)‘[[XJ2\/[,5]] © ¢M,s + 3)\2bM,€¢M,€ = _3>‘[[XJ2\/1,5]] © (BAXL,E >~ ¢M,E) + 3)‘2bM,€¢M,E
+ 3)‘[[X]2\/[,a]] © XMe

Ny ~
= 22Xy Onte + 302 (bare — bare(8))dare
+ A2C-(dare, —3X by o, BIX 3 ]) + 3ALX ] © Xare

Recalling that Zy/. = _3)‘_1[[X12\4,5]] o Yare — 3bame(Xare + Yar,e) can be rewritten as (4.9) and
controlled due to Lemma 4.3, where we also estimated Xy Yy . and X M,EYJQW,ga we deduce

Usie = — XXy bure + 30 0ars — bare(t))onre + N2Co(onren—3XY . 3[X2,])
+3)\[X]2\/[,€]] O XM,
AN Znre = 3MXG ] < (Yare + dare) = BMZENXG, D) = Yare — 3AX Yy,
—6AX 1 Varebare — 3AXaredd, . — AV . — BAYZ Gare — 3AVar 62, — Adl, ..
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Consequently, the equation satisfied by x s reads

L oxme = Ledne+3NXY ] - dure +3NXY, . = L b — 6AVX, . - Vedure
Une+3M\X), . = L ¢ — 6AVX), . = Vedse
= Une+3AXY . = (=3A[X3, ] = dare + Unre) — 6AVX], . = Vo,

(6.3)
where the bilinear form V. f < V.g is defined by

Vef <Veg = 1(Aa(f <9)—Af <g—f=<A)

2

and can be controlled as in the proof of Lemma A.14.

Next, we state a regularity result for xase, proof of which is postponed to Appendix A.6.
While it is in principle possible to keep track of the exact dependence of the bounds on A we
do not pursue it any further since there seems to be no interesting application of such bounds.
Nevertheless, it can be checked that the bounds in this section remain uniform over A belonging
to any bounded subset of [0, c0).

Proposition 6.1 Let p be a weight such that p* € L*° for some + € (0,1). Let dM e be a solution
o0 (6.1) and let xp e be given by (6.2). Then

HP4XM76HL1TB}+13“’E < CT,m2,/\Qp(XM,a)(1 + HP2¢M,S(0)HL2£)-

We apply this result in order to deduce tightness of the sequence (pas)ar as time-dependent
stochastic processes. In other words, in contrast to Theorem 4.8, where we only proved tightness
for a fixed time ¢ > 0, it is necessary to establish uniform time regularity of (¢are)ame. To this
end, we recall the decompositions

PMe = XM,E + YM@ + (bM,a = XM,a - )\XL,E + CM,&
with
CM,e = YM,E + )\X\]VW,E + ¢M,€ = _35_1[3)‘(%;[[)(12\/[,5]] ~ YM,E] + ¢M,€- (6-4)
Theorem 6.2 Let 3 € (0,1/4). Then it holds true that for all p € [1,00) and 7 € (0,T)

2p 2p <
sejl,lz\gwE”@M’g”Wﬁ’lBiif?’“‘s(p“") * sejl,lj\gwE”@M’s”Lif’TH_I/Q‘Q“’g(p?) S Oy < oo,

where LS_OTH—l/Q—Qm,a(pQ) — LOO(’T, T; H_1/2_2H’E(p2)).

Proof Let us begin with the first bound. According to Proposition 6.1 and Theorem 4.8 we
obtain that

2 2

2 sincy < CraBQo(Xare)(1+ Ellp o (0)[5.)

< CrpEQ)(X)(1+ E|lp*(0a1,(0) — Xnr e (0)) |75 - + Ellp*Yar<(0)[175..)

is bounded uniformly in M,e. In addition, the computations in the proof of Proposition 6.1
imply that also E ||.Z -xare|| is bounded uniformly in M,e. As a consequence, we

deduce that

EllOcx el

Ellxm.e

2p
— 143k,
L%“Bl,1+ HE(P4)

2 2 2 2
LZ;B;%Jr?’NvE([,AL) < E”(As —m )XM,EHLZB;i#»SN,e(pAI) +E ||$ eXM,e L%B;%+3n,s(p4)
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is also bounded uniformly in M, e.

Next, we apply a similar approach to derive uniform time regularity of ¢s.. To this end, we
study the right hand side of (6.1). Observe that due to the energy estimate from Theorem 4.5 and
the bound from Proposition 6.1 together with Theorem 4.8 the following are bounded uniformly
in M, e

E”[[XME]] ~ ¢M€HL2 H-1-re(p2to) EH[[XM a]] © XMEHLl B% = (prta)’

whereas all the other terms on the right hand side of (6.1) are uniformly bounded in better
function spaces. Hence we deduce that

2p 2p
EHat(ZSMJfHL%«B;}_BK E( 4+o—) E”( )(ZSMEH —1 3K, 5( 4+o‘) +E Hg6¢M,8HL%B1—&—3H,E(p4+J)

is bounded uniformly in M, e.
Now we have all in hand to derive a uniform time regularity of (ar. Using Schauder estimates
together with (6.4) it holds that

-1 ery2 2p
EHCMg”W(l 2K)/2, 1B;}—3ﬁ,5(p4+0) g E H$€ [3)\(%> [[‘XM,E]] - YM7£:|HC§}7H>/2LOO7E(;)U)

+E”¢M5H 11B 1 8 (it

is bounded uniformly in M, e.
Finally, since for all 5 € (0,1) we have that both

E[| X2 E|| X},

CB% 1/2—k— 2,85( cr) 6||cﬁ<51/2 K— 2,85(0 )

are bounded uniformly in M, e, we conclude that so is E|lpaz.e [l for 8 € (0,1/4),

W,Bl —1 3.8 (o)
which completes the proof of the first bound.

In order to establish the second bound we recall the decomposition ¢pr e = Xpre+ Yy e +Onre
and make use of the energy estimate from Corollary 4.7. Taking supremum over t € [7,7] and
expectation implies

sup El|om o 12 < 0.
_sp el o

The claim now follows using the bound for X . together with the bound for Yjs . in Lemma 4.1.
O

Even though the uniform bound in the previous result is far from being optimal, it is sufficient
for our purposes below.

Corollary 6.3 Let p be a weight such that p* € L* for some v € (0,1). Let 8 € (0,1/4) and a €
(0,8). Then the family of joint laws of (E5ppm e, EXpre) is tight on Wi 1B1 L=dr(pitoy iy,

loc loc
where
H cga(i)fn
i=1,..,7
with a(1) = a(7) = —1/2, a(2) = -1, a(3) = 1/2, a(4) = a(5) = a(6) = 0.
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Proof According to Theorem 6.31 in [Tri06] we have the compact embedding
Bl—% 3/{([04—1—0) C B—l 4/1(p4+20)
and consequently since o < 8 the embedding

1 11—
ngc B 1 3m(p4+a) C lecc Bl,ll 4n(p4+2a>
is compact, see e.g. Theorem 5.1 [AmmO00]. Hence the desired tightness of ¢/, follows from
Theorem 6.2 and Lemma A.15. The tightness of £X/. follows from the usual arguments and
does not pose any problems. O

As a consequence, we may extract a converging subsequence of the joint laws of the processes
(E5ome, EXnre) Me I I/Vloc By, 1R (phtoy x Cﬁ/ X. Let fi denote any limit point. We denote

by (¢,X) the canonical processes on VVlf;CIB 1=AR (phtoy C’l'f)/c X and let pu be the law of the
pair (¢, X) under i (or the projection of [ to the first two components). Observe that there
exists a measurable map ¥ : (¢, X) — (¢, X) such that i = o W~!. Therefore we can represent
expectations under [i as expectations under p with the understanding that the elements of X
are constructed canonically from X via W. Furthermore, Y, ¢, (, x are defined analogously as
on the approximate level as measurable functions of the pair (¢, X). In particular, the limit
localizer %- is determined by the constant Lg obtained in Lemma 4.1. Consequently, all the
above uniform estimates are preserved for the limiting measure and the convergence of the
corresponding lattice approximations to Y, ¢, (, x follows. In addition, the limiting process ¢ is

stationary in the following distributional sense: for all f € C$°(R4) and all 7 > 0, the laws of

p(f) and @(f(-—7)) on S'(R?)

coincide. Based on the time regularity of ¢ it can be shown that this implies that the laws of
©(t) and ¢(t + 7) coincide for all 7 > 0 and a.e. t € [0,00). The projection of u on ¢(t) taken
from this set of full measure is the measure v as obtained in Theorem 4.9.

6.2 Integration by parts formula

The goal of his section is to derive an integration by parts formula for the <I>§ measure on the
full space. To this end, we begin with the corresponding integration by parts formula on the
approximate level, that is, for the measures vy . and pass to the limit.

Let F be a cylinder functional on S'(R3), that is, F(p) = ®(p(f1),...,0(fn)) for some
®:R* - Rand f1,..., fn € S(R?). Let DF(p) denote the L2-gradient of F. Then it holds for
fields . defined on A,

o = dZacp “P(f1)s o (€0 () (e £:) (@) = £« DF (€502 (1),

where x € A; and w, is the kernel involved in the definition of the extension operator £° from
Section A.4. By integration by parts it follows that

OF (&%)
()

8‘/M 5(90)

JlwexDFE D) = o) = 2 [P T o ag)
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- / F(E ) Mo () (—3Aant.o+37\2bar. ) (@) var. (dip) -2 / F(E°0)[m? — Adp(x)vare(de).

(6.5)
According to Theorem 4.9, we can already pass to the limit on the left hand side as well as in the
second term on the right hand side of (6.5). Namely, we obtain for any accumulation point v and
any (relabeled) subsequence (vpr. o (£5)71) s converging to v that the following convergences
hold in the sense of distributions in the variable z € R?

/ £°[w. * DF(£%0))(x)var(dp) — / DF(E%) (2)v(dp),

/ F(EQ)EIm? — Adp(a)rare(dg) — / F(g)[m? — Alp(z)v(dg).

The remainder of this section is devoted to the passage to the limit in (6.5), leading to the
integration by parts formula for the limiting measure in Theorem 6.7 below. In particular, it is
necessary to find a way to control the convergence of the cubic term and to interpret the limit
under the ®3 measure.

Let us denote

[¢°hare(¥) = @(y)* + (—Baare + 3Nbare) o (y).
We shall analyze carefully the distributions Js-(F) € S’(A:) given by

Trio(F) =z / F(E Q) e (x)var (),

in order to determine the limit of £5J)/-(F) (as a distribution in z € R?) as (M, ) — (o0, 0).
Unfortunately, even for the Gaussian case when A = 0 one cannot give a well-defined meaning
to the random variable 3 under the measure v. Additive renormalization is not enough to cure

this problem since it is easy to see that the variance of the putative Wick renormalized limiting
field

[¥°l=  lim  E[¢’Tme

e—0,M —oc0

is infinite. In the best of the cases one can hope that the renormalized cube [¢?] makes sense
once integrated against smooth cylinder functions F(¢). Otherwise stated, one could try to
prove that (Jase)ne converges as a linear functional on cylinder test functions over S’(R?).

To this end, we work with the stationary solution ¢y . and introduce the additional notation

3Dt y) == oare(t,y)® + (=3anre + 3Abare)onre(t,y).
As the next step, we employ the decomposition
OoMe = Xme — /\XL,E + (M e

in order to find a decomposition that can be controlled by our estimates. We rewrite

[e3] = [X3.0+31X3 J(-AXY, . + Cure) + BAbarcpnr,e
+3XM75(_)\X\]VW7E +Care)® + (_AX\]VM,E + Care).

Next, we use the paraproducts and paracontrolled ansatz to control the various resonant products.
For the renormalized resonant product 3[[XJ2W,EH o (_A‘X\JVW,E + Care) + 3Abarcpr,e we first recall
that

PMe = XM,& + YM,E + ¢M,aa ¢M,e = _BAX\](/[,E - ¢M,a + XM,e-
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Therefore using the definition of Zys. in (4.9) we have
3[X3 0o (_AX\;/M75 + Q) 30 epme = 3[X3d o (Yare + dne) + 3Nbarene
= 3[X3;] 0 Yare + 3Moare(Xase + Yire)

A
+3[X3; ] 0 bare + 3Abascpse

and
3[[XJ2\/[,5]] © M + 3NOMPMe = 3[[X]2\4,5]] o (_3)‘X\J(/[,s - ¢M,€) + 3Abp P e + 3[[X§4,5]] O XMe

= XY Oare + 3M(bare — bare(8)bare + ACe(bare, —3XY 0 3IXE ) + 31XF 1] 0 xare

The remaining resonant product that requires a decomposition can be treated as

BXnse o (—AX] . +Cue)? = BNXne o (X, )% — 6AXare o (X]; Core) +3Xarz 0 Ry,

= 6M\2Xpc0 (X) . = X)) + 30 X000 (XY, 0 XY, )
—6AX a0 (X], . = Cure) — 6AX e o (X]; . < Care)
+3XM,E © C]2\475

_ Yo e v Y

— 6>\()\XM,E CM,E)XM,E + GACa(AXM,E CM,E?XM757XM,5)
+3A2 Xy 0 (X]; 0 X1, ) — 6AX e o (XT . < Cure)
+3XM,E © C]2\47g7

where we used the notation f < g=f <g+ fog.

These decompositions and our estimates show that the products are all are controlled in
the space L'(0,T, Bill_?m’e(p“")). The term [[X?LE]] requires some care since it cannot be
defined as a function of t. Indeed, standard computations show that £°[X3, ] — [X?] in
W %9% =3/27K:2(p7) | namely, it requires just a mild regularization in time to be well defined
and it is the only one among the contributions to [[goi])’\/[@]] which has negative time regularity. In
particular, we may write [[(,0?\/[78]] = [[X]%/[,aﬂ + H.(on e, Xare) where for p € [1, 00)

geju]\[;wEH[[XME]]HW,K wgsirnsey T S0 ENHe (soMa,XMe)HLlB 13 ity < OO

is uniformly bounded in M,e. The dependence of the function H. on & comes from the corre-
sponding dependence of the paraproducts as well as the resonant product on e.

Now, let h: R — R be a smooth test function with supp h C [7,T] for some 0 < 7 < T < 00
and such that flR t)dt = 1. Then by stationarity we can rewrite the Littlewood—Paley blocks

AV jM,a ( )
85a(F) = [ HOBIF(E oar )85k (Os I

R
- [ / h(t)F(fsoM,E(t))A;[[X;iy,au<t>dt} TE [ [ PO F(E e 0D Horre Kar )

= A5 T (F) + A5 T4 (F).
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As a consequence of Corollary 6.3 and the discussion afterwards we extract a subsequence con-
verging in law and using the uniform bounds we may pass to the limit and conclude

lim & Tme(F) =E, [Ah(t)F(¢(t))ﬂw3ﬂ(t)dt = Ju(F).

e—0,M —o00

Here [¢?] is expressed (as [go%/[ﬁ]] before) as a measurable function of (¢, X) given by

%] = [X%]+3[X2 X (-AXY +¢) = AZ - AKX Yo+ 3NB(1)o
FAC(6, —3XY,3[X2]) + 3[X%] o x +3X M (—AXT + )2 +6AXY — )XV
+6ACAX =, X7 X)+3X02X o (X 0 X)) —6AX 0 (X' <¢)+3X0(?
+(=AXT + )3,
(6.6)
where we used the notation f X g = f < g+ f > g and (,¢,Y are defined as starting from
(¢, X) = ¥(p, X) as

=X -AX+¢  (=-ZLBANZIXY]) - Y]+ o,

the operator C' is the continuum analog of the commutator C. defined in (A.8), the localizer %~
is given by the constant Lo from Lemma 4.1 and B(-) (appearing also in the limit Z, cf. (4.9))
is the uniform limit of bys. — barc(-) on [r,T]. Let us denote H(p, X) := [¢3] — [X3].

Remark that our uniform bounds remain valid for the limiting measure . As a consequence
we obtain the following result.

Lemma 6.4 Let F : S'(R3) — R be a cylinder function such that
[F(e)] + HDF(‘P)HB;(tgg(p—zl—a) < CFH‘PHT[L{fl/%%(pz)

for some n € N. Let i be an accumulation point of the sequence of laws of (E5pnre, E5X ).
Then it holds (along a subsequence) that E5Tp(F) — Ju(F) in 8'(RY), where J,(F) is given
by

Tu(F) = Ey [[Rh(t)F(w(t))ﬂX3ﬂ(t)dt] +Ey, [/R h(t)F(p(t)H (i, X)()dt| =: TX (F)+ T (F)

for any function h as above. Moreover, we have the estimate

Hjlf((F) ‘6)_3/2_"‘(#’) + HJf(F)||B;}73N(p4+J) 5/1/7’7/ CF

where the implicit constant depends on p, h but not on F.

Proof For any cylinder function F' satisfying the assumptions and since supp h € [1,T] we have
the following estimate for arbitrary conjugate exponents p,p’ € (1,00)

1T (Pl s/ S B [ F Dyt I Ty 2

, 1/p
S It PO DY (B I, oy i)
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» 1/p
S It = PO )7 S ( [ e dtds> .

Since for arbitrary conjugate exponents ¢,q € (1,00) it holds

1
EulF(p(t)) — Flp(s)” < /0 Eul(DE(e(s) + 7(p(t) — ¢(s))), o(t) — @(s))[Pdr

1
< [ ArBAIDF(6(5) + 7000) = PNy ae) 7 Bl = R0

S C?(Eullw(o)Hﬁfi/%%(pz))l/q Epulle®) — o(s)] ’g—i—sn(pm))l/q,
we obtain due to Theorem 4.8 that

1/(pq)

EP‘H()O(t) - ()0(8)‘ pq7173n d+o
B1,1 (p )dtds

X . <
HJH (F) G =3/2=K(po) Cr /[(],T]Q |t _ S|(1+/€)pq

S CrEU g 1se 1)

where @« = 1+ k — 1/(pg). Finally, choosing p,q € (1,00) sufficiently small and x € (0,1)
appropriately, we may apply the Sobolev embedding Wf#l C WP? together with the uniform
bound from Theorem 6.2 (which remains valid in the limit) to deduce

17 (F)

Pq 1/(pq)
(6/*3/2*”(p°’) S./ CF(]ENnguwﬁqlBi%*SN(pll-{—G‘)) S CF'

To show the second bound in the statement of the lemma, we use the fact that supph C [1, T
for some 0 < 7 < T < o0 to estimate

1T CF) g 1-9s sy < Ballle = Fo(O) ey |H (9, ) 3 105 )

2 1/2 2 1/2
< ORI, 1272 2e(p) > Bl H (2, I roan o)) 2 S Co
where the last inequality follows from Theorem 6.2 and the bounds in the proof of Proposition 6.1.

a

Heuristically we can think of J,(F) as given by

Tu(F) ~ / F(@)[6*|0)v(dg).

However, as we have seen above, this expression is purely formal since [3] is only a space-time
distribution with respect to p and therefore [¢3](0) is not a well defined random variable. One
has to consider F' +— J,(F) as a linear functional on cylinder functions taking values in S'(R?)
and satisfying the above properties. Lemma 6.4 presents a concrete probabilistic representation
based on the stationary stochastic quantization dynamics of the <I>§ measure.

Alternatively, the distribution J,(F') can be characterized in terms of ¢(0) without using the
dynamics, in particular, in the spirit of the operator product expansion as follows.
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Lemma 6.5 Let F be a cylinder function as in Lemma 6.4 and v the first marginal of u. Then
there exists a sequence of constants (cy)nen tending to oo as N — 0o such that

Tu(F) = 1im [ F(p)[(Acne)® — en(Acng)lv(de).

N—o0

Proof Let
Ton(F) = / F@)[(Aene)? — ex(Aay)lr(de).

Then by stationarity of ¢ under p we have for a function h satisfying the above properties

Jun(F) = E, [ [ BOPA(Beplt) - ex(Bewoli)]at].

At this point is not difficult to proceed as above and find suitable constants (cy)nyen which
deliver the appropriate renormalizations so that

[(Acne)’ = en(Acvp)] = [¢°]

and therefore, using the control of the moments, prove that

Ton(F) > E, [ [ rFeanea] - g

a

Remark 6.6 By the previous lemma it is now clear that J,, does not depends on . but only on
its first marginal v. So in the following we will write J, := J,, to stress this fact.

Using these informations we can pass to the limit in the approximate integration by parts
formula (6.5) and obtain an integration by parts formula for the ®4 measure in the full space.
This is the main result of this section.

Theorem 6.7 Any accumulation point v of the sequence (vare o (E5) V) satisfies

/ DF(p)u(dp) = 2 / [(m? — A)glF(p)v(dg) + 20 Tu(F). (6.7)

When interpreted in terms of n-point correlation functions, the integration by parts formula
(6.7) gives rise to the hierarchy of Dyson—Schwinger equations for any limiting measure v.

Corollary 6.8 Letn € N. Any accumulation point v of the sequence (Va0 ()™ ) satisfies

Z 0(z — xi)Bylp(a1) - - o(@im1)p(wipr) - - o(xa)] = By [[(m? — Ag)o(@)]p(a1) - - ()]

A lim E,[p(z1) - o(zn) (Acno())? — enAcne(z))]

N—oo

as an equality for distributions in S'(R3)®M+1),
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In particular, this allow to express the (space-homogeneous) two-point function S¥(z —y) :=
E,[¢(x)e(y)] of v as the solution to

Oz —y) = (m* — Az)S5(z —y) — A Jim [(Te AZN)SI) (Y, ,x, ) — en(AenS3) (2 — ),

where the right hand side includes the four point function SY(z1,...,z4) := E,[@o(x1) - - - o(x4)].

Finally, we observe that the above arguments also allow us to pass to the limit in the stochas-
tic quantization equation and to identify the continuum dynamics. To be more precise, we use
Skorokhod’s representation theorem to obtain a new probability space together with (not rela-
beled) processes (¢ns,e, Xas,e) defined on some probability space and converging in the appropriate
topology determined above to some (¢, X). We deduce the following result.

Corollary 6.9 The couple (p,X) solves the continuum stochastic quantization equation
Lo+A’l=¢ i SRy xRY,

where £ = . X and [p%] is given by (6.6).

A Technical results

In this section we present auxiliary results needed in the main body of the paper.

A.1 Besov spaces

First, we cover various properties of the discrete weighted Besov spaces such as an equivalent
formulation of the norms, duality, interpolation, embeddings, bounds for powers of functions and
a weighted Young’s inequality.

Lemma A.1 Let o € R, p,q € [1,00]. Fiz n > |a| and assume that p is a weight such that

H’OHB&-,FOIO’E(p_l) + ||p_1HBgof;ovf(p) <1

uniformly in €. Then
1flB2z (o) ~ NofllBge

where the proportionality constant does not depend on €.

Proof We write pf = p < f + p = f and estimate by paraproduct estimates
o < Fllgss = o < Flgosoip S Dolloeon 1l S 1152
lo = fllge = llo = Flliseg 10 S I llBga ol s, -1y S 1 sgg ol griie -1y

5 HfHBg,’;(p)a

which implies one inequality. For the converse one, we write f = p= < (pf) + p~! = (pf), and
estimate

o™ < (0l o) S o e llof 1 ses

o™ = (0H)llgs ) < Iefllsgello™ sne ) S lofllsoello™ | prrie -
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Lemma A.2 Leta € R, p,p’,q,q € [1,00] such that p,p’ and q,q" are conjugate exponents. Let
p be a weight as in Lemma A.1. Then

(.90 S Wl ll9le

with a proportionality constant independent of €. Consequently, B ~ C;E(p_l) C (Bpg(p~))*.

Proof In view of Lemma A.1 it is sufficient to consider the unweighted case. Let f € By, and

g€ B . Then by Parseval’s theorem and Holder’s inequality we have
e f@gle) = > > ATf(a)ASg(x)
z€AL —1<ij<N—J  ax€A.

- ¥ / (k) F (k)3 (k) Fo(k)dk

—1<4, <N —J,i~j
= ) 29279 Y ASF(2)ASg(x) < 13525 191 e
—1<i,j<N—J,inj TEA.
|

Lemma A.3 Let ¢ € A. Let aaa()aala5750aﬁl € R: P,P0,P1,4,90,q1 € [1700] and 0 € [07 1]
such that

1 0 1-6 1 0 1-6
a=0ag+(1—0ai, B=08+(1-0p, —=—+-—" —=—F—.
p Po p1 q q0 q1

Then it holds
£l Boe o8y < HfHBaos (p%0) [¥alie als (1)’

Proof The proof is a consequence of Holder’s inequality. Let us show the claim for p, po, p1, ¢,
qo, q1 € [1,00) and € € A\ {0}. If some of the exponents p, po, p1, ¢, o, 1 are infinite or we are
in the continuous setting, the proof follows by obvious modifications. We write

PP ASFIE e = D 175 F(@) P = D (07%P|A5 f (@) %) (=P A5 f ()| 0P)
rEA: ke

and apply Holder’s inequality to the conjugate exponents g—; and (13719)10 to obtain

0p/po (1-6)p/p1
1P A FI2, < (ed > pﬁ°p0|A§f|p0> (ed > pﬁlplmiﬂpl)

TEA,. rEAL

- ||Aaf||Lp0 € pﬁo ”AefHLpl E(pﬁl)

Consequently,
k
Hqug;;(pﬁ) < Z 2¢ q”PBAEfHLps
—1<EN—J
Oaok 0ok
< Z (2 0 q||Aaf||Lp0€ pﬁo)) (2(1 pLe%] ‘IHASf”LPl a(p61)>

—1<j<N—J
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and by Holder’s inequality to the conjugate exponents 2 9— and a e)q

q
HfHBS,’(f(pB)
0q/q0 (1-0)q/q

k k
< o 2eokoAsf D (o) Yo vk As | 1)
—1<j<N—J —1<j<N—J

0)q
= || £11% o0 (0 118 BELE ()"
a

We note that by our construction of the Littlewood—Paley projectors on A., in each of the
cases j = —1, 5 € {0,...,N —J —1} and j = N — J, there exists an L'-kernel K such that
the Littlewood—Paley block A5f is given by a convolution with 274kC(27-). See Lemma A.2 in
[MP17] for more details. For notational simplicity we omit the dependence of K on the three
cases above.

Lemma A.4 Let e € A and let B > 0. Then it holds
L**(p) = Bys(p),  L*(p) C By, (p)
and the proportional constants do not depend on €.

Proof Due to Lemma A.1 together with Parseval’s equality we directly obtain the first claim.

Consequently, by Young’s inequality together with the fact that % < p~H(z—y) (for a universal

proportionality constant that depends only on p) we have that

0, = su AEfllraey = su 2JAKC (2. % 4
e = 50 15 lisegy = sup IR« Flunegy

S sup WU (2N ety | Fll e oy S NI e
—1<j<N—JH 2 zre ol llzae ) S N f oo

Lemma A.5 Let k € (0,1), p € [1,00] and let p be a polynomial weight

<
HfHB;;fvg(p) ~ HfHBz;;vf(p) + vaf”B;;ﬂE(p)v
where the proportionality constant does not depend on €.

Proof Let j > 0. Let K; = K. = ]—"_14,0;‘7 and denote f(j = f(j,g = Ziwj K; .. Then it holds
that ASf = K; x A5 f and we write

Ry ASf = (1d—A.) " (1d —AL) (K  ASf)

= (Id—A) NEK;« ASf) — (Id—A.) T VIVL(EK; « ASf). (A1)

For the second term it holds by translation invariance of V.

(Id —As) 'VEVL(K;  ASf) = (Id—AL) T 'VIK;) * (ASVLf).
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hence by Young inequality
11 =2 VER) * A5Vl ey S 104 A VIR o |ASVeF e
The kernel V; , := (Id —AE)—lv;’ZKj is given by

Vj,g(k’) _ / 627rik T

671 (1 _ 6727?[515)

1—1—22 _, e 2sin?(ricxy)

&5 (x)dx

where ¢% = >, ;. Now using (1 — 22 A ) Me2rike — (1 + 22|27k |2)M 27k and integrating
by parts (1 — A,)™ we have

671 (1 _ 6727”'8:(:@)

7] — dz
14237 e 2sin®(miexy)

(1 4+ 22120k )MV, (k)| < / (1— 29 A,V

@?(w)]

and it is possible to check that (using that 27 < 1)

8_1(1 _ 6—27Fi6$g) < 2—j]1 N
142 Zgzl e~ 2 sin’(miexy)

(1 _22ij)M ~ 27 A

0]

uniformly in j where A is an annulus centered at the origin. Therefore
Vie(k)| S 2772(1 + 2% |2nk| %)~

and from this is easy to deduce that |[Vjellp1e(,-1) S 277 uniformly in j and e.
A similar computation applies to the first term in (A.1) to obtain

10 =A0) TG * A5 ) ooy S N0 =A) T Kl pre (o) 185 fll o) S 272 1 A5 fll v ()

and the proof is complete. O

Lemma A.6 Lete € A and let . > 0. Let p be a weight such that p* € L*0. Then

o™ fllzee S llpfllzee,

where the proportionality constant does not depend on €.

Proof By Hélder’s inequality

1o Fllz2e < o' llpacllofllzec,
and since for |x —y| < 1 the quotient % is uniformly bounded above and below, it follows from
Lemma A.3 [MP17] that

Il = 3 @) S [t Ga)de < o

TEA,

where the proportional constant only depends on p. O
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Lemma A.7 Let a > 0. Let p1, p2 be weights. Then for every B > 0 it holds true
£ 2B orpn) S I Np2c o 1 | mret2s.e )

130 2 ey 1 e oyl 28

where the proportionality constants do not depend on €.

Proof Due to the paraproduct estimates and the embeddings of Besov spaces, we have for every
8>0
2
”f HBaEthpﬂ N HfHB ﬁffn)Hf”Ba+B€@2)§5HfHB Be( 1)”f”3352@5@2)

S Iz (o)l fl Hrat2s.e ()

For the cubic term, we write

Hf?)HBaE (p3p2) < Hf = fQHBaE (p2p2) + Hf - fQHBi’f(p%pz) + HfOfQH ﬁ’f(p%pg)

and estimate each term separately. The second and the third term can be estimated directly by

2 2 2
If=f ||B“plp2 +|fof ||B‘”p1p2 SIS HB BE %)Hf”ngﬁ’s(m)

S pgpe ()1l o2 gy S 1T (oo) £ | revs2me ()

For the remaining term, we have

2 a < 2
17 % sz 2w S 102200 1

where by the paraproduct estimates and Lemma A.4

Hf2||BZ/§{3£s( S Wl s 2e o 1 pgr20e ) S W lpacon 1l rrevzse o)

p1p2) (p2)
which completes the proof. O
Lemma A.8 Let p be a polynomial weight. Let p,q,r € [1,00] be such that %—i— 1= %—i— %. Then

1f *e gllzreoy S N lzeeo-1)llgll Lo (o)

r—p p
1f *< gllrogp) S sup, 1™ ) = M pelF oo (,-1) gl zas o),
ye

where *. denotes the convolution on A: and the proportionality constants are independent of e.

Proof We observe that for a polynomial weight of the form p(x) = (z)™" for some v > 0, it
holds that p(y) < p(z)p~ (2 — y). Accordingly,

[fgw)p)l = e Y fly—x)g St lofly =)l (= = y)lg() p(x)

xeEA rEA,
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hence the claim follows by (unweighted) Young’s inequality. For the second bound, we write

_ 1, - r—p r—q
Fg@p)l £ Y 1™ Ny = 2)P(eg) @) 7|~ )y = )| |(pg) ()] +
TEA,
and apply Holder’s inequality with exponents 7, %, rTqu

[f+9W)p) S <€d Dol Ny - x)l”!ﬂQ(%)\") r 167 ) — i e log | i

rEA

< (ad Yol Ny - x)lplpg(ﬂf)!q> sup (67 F)( — ) e o9 | e

€A yER?

Finally, taking the rth power and integrating completes the proof. O

A.2 Localizers

As the next step, we introduce another equivalent formulation of the weighted Besov spaces
B (p) in terms of suitable point evaluation of the Littlewood—Paley decomposition. First, for
J € Ny such that N — J < J., o € R and ¢ € A we define the Besov space b5 oo (p) of sequences

A= (Aj,m)flgjgN,‘Lmezd by the norm

Moz o) = sup 2% sup p(277 " m)[Ajml.
—1<jSN—J meZd

Note that we do not stress the dependence of boys(p) on the parameter J as in the sequel we
only consider one fixed J for all ¢ € A given by Lemma A.9 below. The next result shows the
desired equivalence.

Lemma A.9 Leta € R, e € A and let p be a weight. There exists J € Ny (independent of € ) with
the following property: f € Bso(p) if and only if it is represented by X = (Njm) _1<j<N—Jmezd €
bodioo(p) such that

£ Besze o) ~ IAp2soe () (A.2)

where the proportionality constants do not depend on e. In particular, given f € BS3so(p) the
coefficients A are defined by

Nim(f) = A5f(277m),  —1<j<N-J meZ, (A.3)

and given X € bodoo(p) the distribution f is recovered via the formula

F= > F N Fpiza(N), (A.4)

—1<j<N—J

where Fy—j—sza denotes the Fourier transform on the lattice 277774,

54



Proof Let us first discuss the decomposition (A.4). We recall that if f € S'(A;) then Ff =

ZfléjéNfJ @5 Ff where for j < N — J the function @;F [ is supported in a ball of radius

proportional to 2. Let j < N — J and let B; C R? be a cube centered at the origin with length
277 We choose J € Ny such that supp ¢ C Bj. Next, we identify Bj with (27+T)d c (2N T)¢
and regard @5 F f as a periodic function on (27+/T)?. Then using a Fourier series expansion we
may write

5 —Jj— —27mi27 I "I m-z
(G5 FN() =277 37 Xy (N)e 272772 = Fyiaga(No (D) (2)
meZd
where
wi2=I = m. — —Jj— —Jj—
M) i= [ (GF DTy = FGFDE T m) = (27 m).
j
If j = N — J then by definition of ¢S we see that ©5F f is a periodic function on (2N T)?. Hence
we obtain the same formula (since —j — J = —N)

Nl = /(2N1r)d(‘:0§]:f)(y)€2m2jJm'ydy = ASf(277 7 m).

Therefore, we have derived the decomposition (A.4) with coefficients given by (A.3).
It remains to establish the equivalence of norms (A.2). One direction is immediate, namely,
for every N — J < J; we have

sup 2% sup p(277 7 m) [N ()l = sup 2% sup p(277 7 m)|ASF(277 m)|
“1<GEN—J  mezd “1<GSN-J  mezd

< sup 2% sup p(x)|ASf ().
—1<j<N—-J TEA:

Conversely, if € A, belongs to the cube of size 2777/ centered at 277~/ m, we write
A5 f ()] < |Af () = AS 27 m)| + (A5 F(277 T m)], (A.5)

Now we shall multiply the above inequality by p(z) and estimate. To this end, we recall that due
to the admissibility condition for polynomial weights there exists v > 0 and ¢; > 0 (depending
only on p) such that

,OE:E; S+ !\/gQ—j—J—1’2)V/2 <e¢; whenever |z —z| < Vd2 T L
p(z

In addition, to estimate the first term in (A.5), we recall that for —1 < j < N — J the Fourier
transform of A? f is supported in a ball of radius proportional to 2/ hence by a computation

similar to Bernstein’s lemma (since by our construction |z —277~/m| < Vd2—i—J -1
p(2)|AS f(z) — ASF277Im)| < 2277 AS fll oo )

for some universal constant co > 0 independent of f and . If j = N — J then A, coincides with
the lattice 27777/Z¢ and therefore we do not need to do anything. Consequently it follows from
(A.5) that

1A fll oo (p) < €227 THIAS fllpoo ) + 1 SHIZDdP(ij‘]m)m;f(?*jf‘]m)!-
me
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Hence, making J € N possibly larger such that ¢;277/~! < 1, we may absorb the first term on
the right hand side into the left hand side and the claim follows. O

Remark A.10 Throughout the paper, the parameter J € Ny is fixed as in Lemma A.9. Con-
sequently, from the condition 0 < NN — J we obtain the necessary lower bound Ny for N, or
alternatively the upper bound for ¢ = 27~ < 27N and defines the set A. These parameters
remain fixed for the rest of the paper.

Remark A.11 Note that the formulas (A.3), (A.4) depend on the chosen partition of unity
(¢j)j=—1 and our construction of the associated periodic partitions of unity on A, via (2.1).

It follows from the previous lemma that we may identify f € BSso(p) with its coefficients
(Njn(f)) —1<jcN—Jmezd € bdoo(p). This consideration leads us to the definition of localization
operators needed for the analysis of the ®3 model. Although the principle idea is similar to
Section 2.3 in [GH18|, we present a different definition of the localizers here. It is based on the
equivalent description of the Besov spaces from Lemma A.9 and is better suited for the discrete
setting.

Given (Lg)k>—1 C (0,00) and f € S'(A;) we define

02/>8f = ()‘j,m (%sf))qgjngJ,meZd ’ %éaf = ()‘J}m (%gf))—lgjgN—J,mEZd
where

Nim(f),  ifjm| ~2¥andj > Ly, for some k € {—1,0,1,...},
0, otherwise,

N (20 = {

Xim(f) if jm| ~ 2¥and j < Ly, for some k € {—1,0,1,...}
' . - J, , y Uy Ly ’
Ajm (%é f) - { 0, otherwise .

We observe that by definition f = %< f + %£ f and the localizers %<, 7S will only depend on €
through the cut-off of the coefficients A (and consequently on the construction of the partition

of unity on A., cf. Remark A.11), whereas the sequence (Lg)g>—1 will be chosen uniformly for
all e € A.

Lemma A.12 Let p be a weight. Let a, 5,7 € R and a,b,c € R such that a < B <7, a<b<c
and r = (b—a)/(f—a) =(c—b)/(y—B) > 0. Let L > 0 be given. There exists a sequence
(Lg)k>—1 defining the above localizers such that

1% Fll ey S 271 e oty

H%éfHngw(pc) S 2(7_6)L|‘f‘|3&?oo(pb)’

where the proportionality constants do not depend on € € A. Moreover, the sequence (Lg)g>—1
depends only on L, p and the ratio r.

Proof Since a < § and a < b, it holds by Lemma A.9

1% fll ey S sup 299 sup (27~ m) N (22F)]
’ —1<j<N—-J mezZd
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= sup sup 2021 pr=b (279~ ) 209 p (277 m) |\ ()]
k2—1m~2k Ly <j<N—-J

5 ||f||3576 by SUpP sup Q(Q—ﬁ)jpa—b(2—j_Jm)
3500 (P?) k>—1m~2k, Ly <j<N—J

S Al e () sup 207D 70(2F),
Boo’oo(pb) E>—1
where we used the fact that a < b, 277 < 275 and that the weight is decreasing to get
P (2T m) S T2 S 2.
Now we set ¢, = — log, p(2F) to obtain

H%ifHngfoo(pa) < HfHBffoo(pb) ks>uE)1 9—(B—a)Lr+(b—a)ck (A.6)

On the other hand, since v >  and ¢ > b we have by the same arguments

% fll pre ey S sup 207 sup p“(279 7 m) [Ny (%2 f)]
’ —1<j<N-J meZa

= sup sup 2(7_'8)jpc_b(2_j_Jm)Zijb(Q_j_Jm)|)\j7m(f)]
k>2—=1mn~2k —1<G<LgAN(N—J)

< (v=B)Li—(c=b)ck

~ Hf”ngfoo(pb) kS;E)I 2 . (A7)
We see that if the weight is decreasing at infinity, it holds ¢ — co. From (A.6) we obtain the
condition —(8 —«a) Ly + (b—a)cxy = —(8 — a) L hence we shall choose Ly = L+ (b—a)cx /(8 — ).
Similarly, (A.7) yields (y — 8)Lg — (¢ — b)ex = (v — B)L hence Ly = L+ (¢ — b)er/(y — B).

Balancing these two conditions gives (b —a)/(8 —«a) = (¢—b)/(y — ) and completes the proof.
g

A.3 Duality and commutators

In this section we define various commutators and establish suitable bounds. We denote by C;
the operator introduced in Lemma 4.3 [MP17], which for smooth functions satisfies

Ce(f,9,h) =ho(f <g) = f(hoyg). (A.8)

We recall that if p,p1,p2 € [1,00] and «a, 8,7 € R are such that % = p% + /p%, a+ B+~ >0and
B+ v # 0, then the following bound holds

129 B gt oy S I o 19 2oy 1 e (A.9)

As the next step, we show that g > is an approximate adjoint of go in a suitable sense, as first
noted in |[GUZ18].
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Lemma A.13 Letc € A. Let a, 8,7 € R be such that o,y >0, +~v <0 anda+5+~v >0
and let p1, p2, p3 be weights and let p = p1paps. There exists a bounded trilinear operator

Dpe(fsg,h) : H**(p1) x €%%(pa) x H*(p3) — R
such that
[Dpe (9 M S 1 e (o) 191l 5.2 (o) 1 v ()
where the proportionality constant is independent of €, and for smooth functions we have
Dpe(frg:h) = (pf,g0h)e — (p(f < g), h)e.
Proof We define
Dp,E(f7g7h> = <p7 CE(f?Quh)>6 - <p7 (f = g) - h>6 - <p7 (f = g) = h>€7

where C. was defined above. Hence the desired formula holds for smooth functions. By (A.9)
and the paraproduct estimates we have

IC=(F, 9 W) sy S ICe(F 9 Mgy S 17 19l e o WP

I(F < 9) = hllggzscipy S I < 9) = Bllpc (S DN oo 19l e oy 11335 )
1 =% ) < bl gpir-sey SN < 9) < bll oy S 1732 o190 e oy 11332 )
and the right hand side is estimated by
1 Bg2 o 19l gose _ (o) 1l B2 (02) S N B35 o) 191 B2 (o) 1PNl B3 (00)-
Consequently,

1Dpe(F 9. W] S 10l s | g oo 191 o 12535 )
which completes the proof. O

Next, we show several commutator estimates. To this end, A, denotes the discrete Laplacian
on A, and we define the corresponding elliptic and parabolic operators by 2, := m? — A, and
L.=0,+ 2., where m?> > 0.

Lemma A.14 Lete € A. Leta, 3,7 € R such that o € (0,1), f+v+2 < 0 and a+5+v+2 > 0.
Let p1, p2, p3 be space weights and let py, ps, pe be space-time weights. Then there exist bounded
trilinear operators

Co: H¥(p1) x €% (p2) x €7 (p3) = HPT7F2% (p1paps),
Ce : C1€ “*(pa) x C1% "< (ps) x CrE 7 (ps) — Cr€ P72 (45 pg)
such that for every § > 0 it holds
IC=(f, 95 W) | 118422 (o1 papa) S I Nz (o) 19115 8.2 (o) Pl 4. ()
||C_'€(f, 9, h) HCT%B*‘W‘Q € (papspe)

S (M llere aeon + 1l gar2 e (o) 19l ore 52 o) 1Pllore 0.2 o)

where the proportionality constants are independent of €, and for smooth functions we have
Ce(frg,h) =ho2 ' (f <g)— f(ho2 g), (A.10)
Ce(fog.h)=ho 2 7 (f <g)— f(ho 2 'g).
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Proof First, we define
C(fogh) :=ho [271(f <g) — f < 27"g] + C- (f.279,h),

where C. was introduced above. Hence for smooth functions we obtain the desired formula
(A.10). Moreover, by (A.9) the operator C; can be estimated (uniformly in €) for 6 > 0 as

Hcs (fa 2 ;197 h) HHﬁ+W+275(p1p2p3) S HCa (fv 2 ;197 h) “Bg,-g;'+2+6’5(p1pzp3)

S s (o l9lle 8.2 (o) 1Pl 0.2 o) S 1 Lo (o) 9]l 5.2 (o) 1Pl 52482 ) -

For the first term in CN'6 we write
2f=9)-f=x2g=2"[f<2.279-2.(f<279)]
and as a consequence

Hh o [e@ gl(f <g) —f= Qe_lg] “Ha+ﬁ+”f+2’g(/’1p2p3)

S llgtsey If < 22192 (f <2 '9) HHMB*&,E(

Finally, we observe that due to an argument similar to Lemma A.8 [MP17| we may control

p1p2)

1
Vef <Veg:= i(Ae(f <g)—Af<g—f= Agg),
hence it holds that

If=2:2709—2:(f < 27°9) | gars—sc(pp)

Slf<2.27g-2.(f< QEIQ)HB;L@,E(MPQ) S 1 llBge (o l19lle 52 (o)

S.; Hf”Ha’E(m)||g||f5’5(p2)'

We proceed similarly for the parabolic commutator C., but include additionally a modified
paraproduct given by

f=<g:= Y ASQifAY,

1<, j<N—Jji<j—1
where

Qif(t) = /Rz?iQ(22i(t —s)f((sVO0)AT)ds

for some smooth, nonnegative, compactly supported function @ : R — R that integrates to 1.
Namely, we define

Co(frgh)i=ho[ZNf <9 —f <L g +ho[LN(f<g—f=9)]
tholf <L g—f<ZL g +C.(f.£ " g.h),
and observe that for smooth functions it holds
Ce(frg:h)=ho [N f<g)—f <L gl +[ho(f<ZL1g)—f(hoZ )]
=hoZ Nf=<g)—f(hoZ'yg),
and the desired bound follows from Lemma 4.7 in [MP17] and (A.9). 0
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A.4 Extension operators

In order to construct the Euclidean quantum field theory as a limit of lattice approximations, we
need a suitable extension operator that allows to extend distributions defined on the lattice A.
to the full space R%. To this end, we fix a smooth, compactly supported and radially symmetric
nonnegative function w € C°(R?) such that suppw C B; 2 where By 5 C R? is the ball centered
at 0 with radius 1/2 and [ps w(z)dz = 1. Let w®(-) := e %w(e~!-) and define the extension

operator £° by
gEf = wE *E f7 f ES’(A&-),

where by *. we denote the convolution on the lattice A..

Lemma A.15 Let a € R, p,q € [1,00] and let p be a weight. Then the operators
£° 1 BYE () — BS,(0)
are bounded uniformly in €.

Proof Within the proof we denote * the convolution on R? whereas . stands for the convolution
on A.. Let K; = fﬂg,}gpj and K5 = ]-"flgpj. First, we observe that for 7 < N — J we have

AG(E°f) = Kjx (W *c f) = w® * (K5 *c f) = ESASS.
Consequently,

(CE£) (CEANE £\ Z—1<j<N—J:j~ig€(A§f) if 1<N-—J
AEH = ) A€ Ajf)—{ Ai(EFAN_,f) if i>N-J

For i < N —J we obtain by Young’s inequality for convolutions, Lemma A.8 and the construction
of w®, uniformly in ¢, that

1AE Nroy < Do Il e A5f o)

—1<G<N—J:jrsi

_ 1—1 1
< swp [ =l o,y S I8 flem S 3 A e

d . .o . .
yeR —1<G<N—J:j~i —1<G<N—J:j~i

Ifi > N — J then we write let K; = > j~i K and
AN(EEAS_ f) = Ki* (W& xe AN_ f) = Ki* K; xw® %o A5 f = (K *w®) * K; % AN_ f.
Hence by Lemma A.8

1AU(ETAN s ) lro(r) S N w || progp-1) 1K %2 AN_ s fll ooy

_ _ 1—1 1
S G w[| o) sup 1™ Ki) (= M6 1Kl 10,1y | AN 5 fll 2 ()
ye

1

Now we estimate the first term on the right hand side (using the fact that the weight p~" increases

with |z|) as follows

||Kl * wEHLl,O(p—l) = /Rd

/Rd 29K (24 (x —y))e w (g) dy‘ p~Hx)dz

60



d2’dK (£2(z — y))w(y )dy‘ Yex)da

/
<Xk

225

9 (20— ) <y>dy' o (2)dz

/ 12K (21 (z — y)) Agw(y )dy‘ Yx)da.
R4
Using p~1(z) < p~H(y)p~%(z — y) for some a > 0 and Young’s inequality we obtain

HKZ * w€||L1,0(p71) < Z HAngLoo(p—l)HEindK(EQid')HLl,O(p—a)

~Y
0:26~e20

b
S D Al S (2 lwllpy, o1y
0:26~e2t

where b > 0 will be chosen below. To summarize, we have shown that

1A(EEAT s Nllrog) S (€2) PIAN s fllreo)

Therefore,

IS = S HAE Ny + S 2HAE N,

—1<i<N—-J N—-J<i<oo

S Y 2NN ey F ANl e Y 20T
—1<j<N—J N—J<i<oo

If @ < 0 then we may choose b = 0 to obtain

171y S S0 2NNy = I

—1<jSN—-J

If @ > 0 then we choose b > ag to get

€ISy (S 30 AL,y + 1A Fllmee 2N D00 D),
’ —1<j<N—J

where due to ¢ = 27 it holds e 2N =/)(@g=b) — 9g(N=T)a49Jb y1d consequently

1€ 150 iy S Do 29UAS N pey = 1F e

—1<j<SN—-J

holds true uniformly in €.

61



A.5 A Schauder estimate

In this section we establish a suitable Schauder-type estimate needed in Section A.6.

Lemma A.16 Let p be a weight and let Pf = etBe=m?) denote the semigroup generated by
A, —m?. Then there exists ¢ > 0 uniform in € such that for all =1 < j < N — J it holds true

_ m2 c 27
125 AS fllprepy S €7 2 AS Fll o),

where the proportionality constant does not depend on € and t > 0.

Proof Recall that the discrete Laplacian A, acts in the Fourier space as
F(e MBI f)(k) = &0 f(),

where

I (k) = (m? + 4sin®(enk) /e?).

Consequently, for —1 < j < N — J we have using the fact that F~!(gh) = .FRle(g) *. F1(h)

(where F~1 denotes the inverse Fourier transform on the lattice A.) we obtain

m2—A. _ j j
N[ =80) 1] = [270V (27.)] #. AS,
where

Via) i= [ et @ag(eag,

where ¢ is obtained by a rescaling of ¢; = Z—1<i<oo;i~j ¢;. Next, for M € N we want to show
that
+ 27z i(x ¢~ t(m?+c2? , z € R". .
1 2 2 M‘/j S t(m “+c2 ]) Rd A].l

Indeed, with this in hand we may apply Lemma A.8 to deduce the claim.
In order to show (A.11) we compute

1+ 2PV (o) = [ (1= 89 em e @O e)dg

- /R P11 — MM e F D p(¢)]de
where for a multiindex o € N¢

agae—tlg(yﬁ) — e—tl5(2]§) Z Cajﬁaglg(Qjé)

0<|BI<lal
therefore using the bounds from Lemma 3.5 in [MP17] we obtain

‘ageftlg(2j§)| < eftm2672tc(2j£)2 Z E(|ﬁ\72)V0(1 + ’2j§‘2) < eftheftc(Zjé)Q.

0<|Bl<]e
Therefore
[(1+ |27Tﬂs|2)MVj(x)\ < / 6,150(235)2@(5)(15 < o—tm? —tc2%
Rd
and (A.11) is proven. -
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Lemma A.17 Let o € R and let p be a weight. Let v solve
L v=f, v(0) = vp.
Then it holds
lollz3 52y S 1ol + 1711y po2e
where the proportionality constant does not depend on T' and €.

Proof Applying the Littlewood—Paley projectors we obtain

t
ASu(t) = PfASvg —l—/o PE A5 f(s)ds.

Hence according to Lemma A.16 there exists ¢ > 0 such that for —1 < j < N — J and uniformly
in7T >0ande

T T
Flassio = [ X 280t < [ X 2P Al

—1<j<N—J —1<G<N—J

T ‘ t
+/0 Z 2a]/0 HPtE—sA;f(S)HLl,s(p)det

—1<j<N—J

o
. _ 2 25
< Y 2@]/ e T At ASvg | e )
—1<j<N—J 0

i T O s)(m2t+e22
n Z 9 ]/0 [/O e (t—s)( +2J)dt:| HA;f(S)HLl,s(p)dS

—1<j<N—-J
2)7 2)7 T
< 2D Ajugllprey + 3 2D / 1A% £ ()| e (s
—1<j<N—J —1<j<N—J 0

= Ivoll g2y + 11y g2

A.6 Regularity of x/.
Finally, we proceed with the proof of the proof of Proposition 6.1.

Proof of Proposition 6.1 For notational simplicity we fix the parameter M and omit the
dependence of the various distributions on M throughout the proof. In addition, the A-dependent
constants are always bounded uniformly over A € [0, \g] for every Ag > 0.

In view of (6.2) we obtain

g g Y
1P* " Xell Lo r2e < 107 @ell e roe + 1077 (BAXL = ¢e)llpgor2e < Callp el oo 122 Qp(Xe),

where, by Theorem 4.5,

1020 (0) 122, < ConQp(Xe) + (|92 (0)] 2.
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Thus

1p* Xl Lo r2e < CraQp(Xe) (L + [1p*¢=(0)]| 2. (A.12)

Next, we intend to apply Lemma A.17 to (6.3) in the form
HP4X€||L%"3117+13”’5 S ||p4Xs(O)||B;’}+3N’5 + Hp4$ sXsHLlTBiiJrBN,E .

In view of the second term on the right hand side of (6.3) we shall therefore estimate U in
B£11+3”’€ (p*=7) as the weight p° will be lost to control X" Let us first show how to bound the
terms that contain higher powers of ¢, all the other terms being straightforward. By paraproduct
estimates Lemma A.7 and Lemma A.6, we obtain

”p4_0>‘XE¢?HBf}+3”’5 S >\||PUX€H<@”—1/2‘“*E||p4_20¢§||3}/12+2“’€

S AP Xellg-1/2rcllp ™ Sellpac |0 bell grossne < AQp(Xe)l|pell o llp? Gl m-2ee

while

1" 7302 5 rooee S Mo Yellgr/a-ne o' 2762 5

S Allp”Ye ||<51/2*~5”Plﬂ(z’EHL?vfHPQ¢EHH2W < NQp(Xe)llp@ell . [l 0° b || 1-2mc

—4K
—2K

and by interpolation for § =

lp* ”M%IIB vane S Mlp* 702 g S Model|7acllo*7 Ge |l prone

S AHP¢€‘|L4EHP1+L¢6HL2EHPQ¢EHH1 e S AHP%HiﬁHquﬁsHHl 2h,e -

Consequently, we use the embeddings B;;’“E(p%ﬂ) C By (p'™) and B&EE (0P < B (p'77)
for e € R (provided the weight possesses enough integrability and 8, > 0 are sufficiently small).
We deduce

6% Uell g eome S A2 X g -nell gl r-sme + N2 ot 1926 r-an

.
1m0 XY Nl r-ne |92 e
1m0 xe e+ X207 2

+ X p7[X2]
+ A7 1X2] PR
F A IX 1w (16 Yelg2mne + 620l -ave)
A+ A1) IX2 o 157 Vel 12
+ AT XY2 172 + NP7 XYz
+ M0 Xellgg—1/2-nellpell pac |07 Gell pri—zme + A7 Y1 ome
APV 2o 9Bl + A7 Yellg 1z el e 9702 e
+ Mlpge 752110 e [l 122 o

< [1og H(3Qp(Xe) + A2 26 | r1ses) + Qp(X) (N2 + X)
+ (A + )‘Q)QP(XE)(HP2¢8HH1*2W + HP4720X5H31+12W + HpéaHL“||P2¢€HH1*2W)

+ Qp(Xs)()\?)Hp(ﬁaHL‘l»E + )‘Hp(ﬁaHi—Zg ”p2¢6HH1 2e)-

€ —1/2—kK,e szqngHlf?n,a
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Thus
16" Xel gy v30e S 11" Uell i pvome
+ Al XY Nl 1me M IX2 e -1 0 Gl 2+ [10* Vel 1)
+ M7 XY g1l G 112
<O\ 10 t(Qp(Xe) + 1920 pr1-2e) + CrQp(Xc)
+ CAQp(X) (190l rn-2e + 10" Xl prze + 100z pac 190 p-2c)

+ CaQp(Xe)(lpde | ae + llp@el T2 127 Gell 1 o e)
Using repeatedly the Young inequality and also (4.22) we obtain

HP4$ aXEHBfiJrS,»;; < Ch(1 4+ |logt| + \logt‘Q)Qp(Xg) + )\”pngH%&e + ||p2¢g‘|%[1_2me
+ C)\Qp(XE) ||,04_20—X5||Bi-§2m,5 .

This bound, together with the energy estimate from Theorem 4.5 imply
HP4$ EXEHLITBl_i%K’E < Orm2 2 Qp(Xe)(1 + HP4_2JX6HL%311+12W)-

By interpolation, embedding and the bound (A.12) we obtain for § = }iiz (and under the
condition that &, 0t € (0,1) were chosen such that § < 2 _3" 2‘) that

T
4—2 24042 0
o™ Xell 1 pryane 5/0 1™ an(t)lB ellotx(t Wigrse.edt

T T
S [ I O e Ol et S 1 e O e [ IOl

T
S CraQuE 1+ 26O [ IOl et

Consequently,
Hp4$ EX&HL%B;}J*’ME < CT,m2,)\QP(XE)

T
+CrAQUEN 1+ 1926 0)122) [ I Ol

< O 5@ () + 12620 12.) + 0" Xl 3 1t

which finally leads to

194 %ell gy prsane < 0 Xe (O] g sme + Oz aQp(Ke)(1+ [202(0) | 12)

by Lemma A.17 and since x:(0) = ¢-(0) and L?(p?) C J}3_1+3"i “(p*), the claim follows. O

65



References

[AK17]

[ALZ06]

[AmmO0]

[AR91]

[AY02]

[AY09]

[Balg3)

[Bat99)]
[BCD11]|

[BCG*78]

[BCMSS|

[BDHO5)

IBFSS3]

[BG18]

S. Albeverio and S. Kusuoka. The invariant measure and the flow associated to the
@g—quantum field model. arXiv:1711.07108, November 2017.

S. Albeverio, S. Liang, and B. Zegarlinski. Remark on the integration by parts formula
for the ¢§—quantum field model. Infinite Dimensional Analysis, Quantum Probability
and Related Topics, 9(1):149-154, 2006.

H. Amman. Compact embeddings of vector-valued sobolev and besov spaces. Glasnik
Matematicki, 35(55):161-177, 2000.

S. Albeverio and M. Réckner. Stochastic differential equations in infinite dimensions:
solutions via Dirichlet forms. Probability Theory and Related Fields, 89(3):347-386,
1991.

S. Albeverio and M. W. Yoshida. H — C' maps and elliptic SPDEs with polynomial
and exponential perturbations of Nelson’s Euclidean free field. Journal of Functional
Analysis, 196(2):265-322, 2002.

S. Albeverio and M. W. Yoshida. Hida distribution construction of non-Gaussian
reflection positive generalized random fields. Infinite Dimensional Analysis, Quantum
Probability and Related Topics, 12(1):21-49, 2009.

T. Bataban. Ultraviolet stability in field theory. The go§ model. In Scaling and self-
similarity in physics (Bures-sur-Yvette, 1981/1982), volume 7 of Progr. Phys., pages
297-319. Birkh&user Boston, Boston, MA, 1983.

G. Battle. Wavelets and Renormalization. World Scientific, 1999.

H. Bahouri, J.-Y. Chemin, and R. Danchin. Fourier Analysis and Nonlinear Partial
Differential Equations. Springer, January 2011.

G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicolo, E. Olivieri, E. Presutti, and
E. Scacciatelli. Some probabilistic techniques in field theory. Communications in
Mathematical Physics, 59(2):143-166, 1978.

V. S. Borkar, R. T. Chari, and S. K. Mitter. Stochastic quantization of field theory in
finite and infinite volume. Journal of Functional Analysis, 81(1):184-206, November
1988.

D. Brydges, J. Dimock, and T. R. Hurd. The short distance behavior of ¢3. Com-
munications in Mathematical Physics, 172(1):143-186, 1995.

D. C. Brydges, J. Frohlich, and A. D. Sokal. A new proof of the existence and
nontriviality of the continuum ¢j and ¢3 quantum field theories. Comm. Math.
Phys., 91(2):141-186, 1983.

N. Barashkov and M. Gubinelli.  Variational approach to Euclidean QFT.
arXiw:1805.10814, May 2018. arXiv: 1805.10814.

66



[Bis09)

[Bon81]

[BOP15]

[Bou94|

[Bou96|

[BSZ92)

[BT08a]

[BT08b]

[CC18]

[Chal4]

[CK12]

[CO12|

[Dim13al

[Dim13b|

[Dim14]

M. Biskup. Reflection Positivity and Phase Transitions in Lattice Spin Models. In
R. Kotecky, editor, Methods of Contemporary Mathematical Statistical Physics, vol-
ume 1970, pages 1-86. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

J.-M. Bony. Calcul symbolique et propagation des singularités pour les équations aux
dérivées partielles non linéaires. Annales scientifiques de I’Ecole normale supérieure,
14(2):209-246, 1981.

A. Bényi, T. Oh, and O. Pocovnicu. On the probabilistic Cauchy theory of the
cubic nonlinear Schrédinger equation on R? | d > 3. Transactions of the American
Mathematical Society, Series B, 2(1):1-50, 2015.

J. Bourgain. Periodic nonlinear Schrodinger equation and invariant measures. Com-
munications in Mathematical Physics, 166(1):1-26, 1994.

J. Bourgain. Invariant measures for the 2D-defocusing nonlinear Schrodinger equa-
tion. Communications in Mathematical Physics, 176(2):421-445, 1996.

J. C. Baez, 1. E. Segal, and Z.-F. Zhou. Introduction to algebraic and constructive
quantum field theory. Princeton Series in Physics. Princeton University Press, Prince-
ton, NJ, 1992.

N. Burq and N. Tzvetkov. Random data Cauchy theory for supercritical wave equa-
tions. I. Local theory. Inventiones Mathematicae, 173(3):449-475, 2008.

N. Burq and N. Tzvetkov. Random data Cauchy theory for supercritical wave equa-
tions. II. A global existence result. Inventiones Mathematicae, 173(3):477-496, 2008.

R. Catellier and K. Chouk. Paracontrolled distributions and the 3-dimensional
stochastic quantization equation. to appear in The Annals of Probability, 2018.

S. Chatterjee. Invariant Measures and the Soliton Resolution Conjecture. Commu-
nications on Pure and Applied Mathematics, 67(11):1737-1842, November 2014.

S. Chatterjee and K. Kirkpatrick. Probabilistic Methods for Discrete Nonlin-
ear Schrodinger Equations. Communications on Pure and Applied Mathematics,
65(5):727-757, May 2012.

J. Colliander and T. Oh. Almost sure well-posedness of the cubic nonlinear
Schrédinger equation below L2(T). Duke Mathematical Journal, 161(3):367-414,
February 2012.

J. Dimock. The renormalization group according to Balaban, I. Small fields. Reviews
in Mathematical Physics, 25(07):1330010, July 2013.

J. Dimock. The renormalization group according to Balaban. II. Large fields. Journal
of Mathematical Physics, 54(9):092301, September 2013.

J. Dimock. The renormalization group according to Balaban III. Convergence. An-
nales Henri Poincaré, 15(11):2133-2175, November 2014.

67



[DPDO3]

[FFS92|

[FH14]

[FOT6]

[FR77]

|GH18]

[GIP15]

[GJT73]

[GJ8T]

[GKS6)

[G1i68)]

[Gub04]

[GUZ18]

[Hail4]

[Hail5]

[HI18]

[HM18a]

G. Da Prato and A. Debussche. Strong solutions to the stochastic quantization
equations. The Annals of Probability, 31(4):1900-1916, 2003.

R. Fernéndez, J. Frohlich, and A. D. Sokal. Random Walks, Critical Phenomena, and
Triviality in Quantum Field Theory. Springer Berlin Heidelberg, Berlin, Heidelberg,
1992.

P. K. Friz and M. Hairer. A Course on Rough Paths: With an Introduction to
Regularity Structures. Springer, August 2014.

J. S. Feldman and K. Osterwalder. The Wightman axioms and the mass gap for
weakly coupled ¢4 quantum field theories. Annals of Physics, 97(1):80-135, 1976.

J. S. Feldman and R. Raczka. The relativistic field equation of the /\d)§ quantum field
theory. Annals of Physics, 108(1):212-229, September 1977.

M. Gubinelli and M. Hofmanova. Global solutions to elliptic and parabolic ®* models
in Euclidean space. ArXiv e-prints, April 2018.

M. Gubinelli, P. Imkeller, and N. Perkowski. Paracontrolled distributions and singular
PDEs. Forum of Mathematics. Pi, 3:€6, 75, 2015.

J. Glimm and A. Jaffe. Positivity of the ¢3 Hamiltonian. Fortschritte der Physik.
Progress of Physics, 21:327-376, 1973.

J. Glimm and A. Jaffe. Quantum physics. A functional integral point of view. Springer-
Verlag, New York, second edition, 1987.

K. Gawedzki and A. Kupiainen. Asymptotic freedom beyond perturbation theory. In
Phénomeénes critiques, systémes aléatoires, théories de jauge, Part I, II (Les Houches,
1984 ), pages 185-292. North-Holland, Amsterdam, 1986.

J. Glimm. Boson fields with the : ¢* : interaction in three dimensions. Communica-
tions in Mathematical Physics, 10:1-47, 1968.

M. Gubinelli. Controlling rough paths. Journal of Functional Analysis, 216(1):86-140,
2004.

M. Gubinelli, B. E. Ugurcan, and I. Zachhuber. Semilinear evolution equations for
the Anderson Hamiltonian in two and three dimensions. July 2018.

M. Hairer. A theory of regularity structures. Inventiones mathematicae, 198(2):269—
504, March 2014.

M. Hairer. Regularity structures and the dynamical qb% model. arXiv:1508.05261,
August 2015.

M. Hairer and M. Iberti. Tightness of the Ising-Kac model on the two-dimensional
torus. Journal of Statistical Physics, 171(4):632-655, 2018.

M. Hairer and K. Matetski. Discretisations of rough stochastic PDEs. The Annals of
Probability, 46(3):1651-1709, May 2018.

68



[HIM18D)|

[Twa87]

[Jaf00]

[Jafog]

[Jaf14]

[Jaf18]

[JLMS85]

[JT18]

[Kup16]

[LCLO7]

[LQ02|

[LRS8S]

[LRS89]

[Lyo98|

[McK95a]

[McK95b)

M. Hairer and J. Mattingly. The strong feller property for singular stochastic pdes.
Annales de Ulnstitut Henri Poincare Probabilites et Statistiques, 54:1314-1340, 2018.

K. Iwata. An infinite dimensional stochastic differential equation with state space
C(R). Probability Theory and Related Fields, 74(1):141-159, March 1987.

A. Jaffe. Constructive quantum field theory. In Mathematical Physics 2000, pages
111-127. May 2000.

A. Jaffe. Quantum theory and relativity. In Group representations, ergodic theory,
and mathematical physics: a tribute to George W. Mackey, volume 449 of Contemp.
Math., pages 209-245. Amer. Math. Soc., Providence, RI, 2008.

A. Jaffe. Quantum Fields, Stochastic PDE, and Reflection Positivity.
arXiv:1411.296/4, November 2014. arXiv: 1411.2964.

A. Jaffe. Reflection Positivity Then and Now. arXiv:1802.07880  [hep-th,
physics:math-ph/, February 2018. arXiv: 1802.07880.

G. Jona-Lasinio and P. K. Mitter. On the stochastic quantization of field theory.
Communications in Mathematical Physics (1965-1997), 101(3):409-436, 1985.

P. Jorgensen and F. Tian. Reflection positivity, duality, and spectral theory. Journal
of Applied Mathematics and Computing, April 2018.

A. Kupiainen. Renormalization Group and Stochastic PDEs. Annales Henri Poincaré,
17(3):497-535, March 2016.

T. J. Lyons, M. J. Caruana, and T. Lévy. Differential Equations Driven by Rough
Paths: Ecole d’Eté de Probabilités de Saint-Flour XXXIV-2004. Springer, 1 edition,
June 2007.

T. Lyons and Z. Qian. System Control and Rough Paths. Oxford University Press,
2002.

J. L. Lebowitz, H. A. Rose, and E. R. Speer. Statistical mechanics of the nonlinear
Schrodinger equation. Journal of Statistical Physics, 50(3-4):657-687, 1988.

J. L. Lebowitz, H. A. Rose, and E. R. Speer. Statistical mechanics of the nonlinear
Schrodinger equation. II. Mean field approximation. Journal of Statistical Physics,
54(1-2):17-56, 1989.

T. Lyons. Differential equations driven by rough signals. Revista Matemdtica
Iberoamericana, pages 215-310, 1998.

H. P. McKean. Erratum: Statistical mechanics of nonlinear wave equations. iv. cubic
schrodinger. Comm. Math. Phys., 173(3):675, 1995.

H. P. McKean. Statistical mechanics of nonlinear wave equations. iv. cubic
schrodinger. Comm. Math. Phys., 168(3):479-491, 1995.

69



[Mey81]

[MP17]

[MS76]

[MW17a]

[MW17b]

[MW18]

[MWX16]

[Nel66]

[Nel67]

[NO18]

[NPS13]

[0S73]

|0S75]

[Par77]

[PWS1]

[Rivo1]

[Sim74]

Y. Meyer. Remarques sur un théoréme de J.-M. Bony. In Rendiconti del Circolo
Matematico di Palermo. Serie 11, pages 1-20, 1981.

J. Martin and N. Perkowski. Paracontrolled distributions on Bravais lattices and
weak universality of the 2d parabolic Anderson model. ArXiv e-prints, April 2017.

J. Magnen and R. Sénéor. The infinite volume limit of the ¢§ model. Ann. Inst. H.
Poincaré Sect. A (N.S.), 24(2):95-159, 1976.

J.-C. Mourrat and H. Weber. The dynamic ‘1>§ model comes down from infinity.
Comm. Math. Phys., 356(3):673-753, 2017.

J.-C. Mourrat and H. Weber. Global well-posedness of the dynamic ®* model in the
plane. The Annals of Probability, 45(4):2398-2476, July 2017.

A. Moinat and H. Weber. Space-time localisation for the dynamic ¢3 model.
arXiw:1811.05764, November 2018. arXiv: 1811.05764.

J.-C. Mourrat, H. Weber, and W. Xu. Construction of ¢§ diagrams for pedestrians.
arXiv:1610.08897, October 2016. arXiv: 1610.08897.

E. Nelson. Derivation of the Schrédinger equation from Newtonian mechanics. Phys.
Rewv., (150):1079-1085, 1966.

E. Nelson. Dynamical theories of Brownian motion. Princeton University Press,
Princeton, N.J., 1967.

K.-H. Neeb and G. Olafsson. Reflection Positivity—A Representation Theoretic Per-
spective. arXiv:1802.09037, February 2018. arXiv: 1802.09037.

A. Nahmod, N. Pavlovié¢, and G. Staffilani. Almost Sure Existence of Global Weak
Solutions for Supercritical Navier—Stokes Equations. SIAM Journal on Mathematical
Analysis, 45(6):3431-3452, January 2013.

K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions. Commu-
nications in Mathematical Physics, 31(2):83-112, June 1973.

K. Osterwalder and R. Schrader. Axioms for Euclidean Green’s functions II. Com-
munications in Mathematical Physics, 42(3):281-305, October 1975.

Y. M. Park. Convergence of lattice approximations and infinite volume limit in the
(\p* —o¢? —T¢)3 field theory. Journal of Mathematical Physics, 18(3):354-366, 1977.

G. Parisi and Y. S. Wu. Perturbation theory without gauge fixing. Scientia Sinica.
Zhongguo Kezue, 24(4):483-496, 1981.

V. Rivasseau. From Perturbative to Constructive Renormalization. Princeton Uni-
versity Press, Princeton, N.J, 2 edition edition, May 1991.

B. Simon. P(¢)2 Fuclidean (Quantum) Field Theory. Princeton University Press,
Princeton, N.J, April 1974.

70



[Sok82]

SS76]

[Sum12|

[Sym64]

[Tri06]
[Tzv16]

[VW73]

[Wat89|

[Wig76]

2718

A. D. Sokal. An alternate constructive constructive approach to the gog quantum
field theory and a possible destructive approach to gpi. Ann. Inst. Henri Poincare A,
37:317-398, 1982.

E. Seiler and B. Simon. Nelson’s symmetry and all that in the Yukawa2 and (TE4)3
field theories. Annals of Physics, 97(2):470-518, April 1976.

S. J. Summers. A Perspective on Constructive Quantum Field Theory.
arXiw:1203.3991 [math-ph/, March 2012. arXiv: 1203.3991.

K. Symanzik. A modified model of Euclidean quantum field theory. Courant Institute
of Mathematical Sciences, Report IMM-NYU 327, 1964.

H. Triebel. Theory of Function Spaces III. Springer, August 2006.
N. Tzvetkov. Random data wave equations. 2016.

G. Velo and A. Wightman, editors. Constructive quantum field theory. Springer-
Verlag, Berlin-New York, 1973.

H. Watanabe. Block spin approach to ¢3 field theory. Journal of Statistical Physics,
54(1-2):171-190, 1989.

A. S. Wightman. Hilbert’s sixth problem: mathematical treatment of the axioms of
physics. pages 147-240, 1976.

R. Zhu and X. Zhu. Lattice approximation to the dynamical gb§ model. The Annals
of Probability, 46(1):397-455, 2018.

71



	Introduction
	Notation
	Overview of the strategy
	Construction of the Euclidean 4 field theory
	Stochastic terms
	Decomposition and uniform estimates
	Tightness of the invariant measures
	Stretched exponential integrability

	The Osterwalder–Schrader axioms and nontriviality
	Distribution property
	Translation invariance
	Reflection positivity
	Nontriviality

	Integration by parts formula and Dyson–Schwinger equations
	Improved tightness
	Integration by parts formula

	Technical results
	Besov spaces
	Localizers
	Duality and commutators
	Extension operators
	A Schauder estimate
	Regularity of M,


