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Abstract. We prove existence and uniqueness of the solution of a one-dimensional rough
differential equation driven by a step-2 rough path and reflected at zero. In order to deal with
the lack of control of the reflection measure the proof uses some ideas we introduced in a previous
work dealing with rough kinetic PDEs [arXiv:1604.00437].

1. Introduction

In its original formulation [19], Lyons’ rough paths theory aimed at the study of the standard
differential model

dyt = f(yt) dxt , y0 = a ∈ Rd , t ∈ [0, T ] , (1.1)

where f : Rd → L(RN ,Rd) is a smooth enough application and x, y : [0, T ]→ Rm are (typically
non-differentiable) continuous paths. In order to deal with the lack of regularity one has to drop
both the classical differential or integral formulation of the problem and turn to a description of
the motion on arbitrarily small, but finite scales. Eq. (1.1) can be interpreted as the requirement
that increments of y should behave locally as some “germ” given by a Taylor-like polynomial
approximation of the right hand side. A rough path X constructed above the irregular signal x
is the given of the appropriate monomials with which such a local approximation is constructed.
One of the key results of the rough path theory is that, under appropriate conditions, only one
continuous function y can satisfy all these local constraints. In this case we say that the path y
satisfies the rough differential equations (RDEs) (1.1).

While the approach of Lyons [19, 21, 20] stresses more the control theoretic sides of the
theory, and in particular the mapping from rough paths over x to rough path over y, it has been
Davie [4] who observed the usefulness of these local expansions. Following Davie’s insight, one
of the author of the present paper [12] introduced a suitable Banach space where these local
expansions can be studied efficiently. The work of Friz and Victoir [11] showed also how to
systematically generate and analyse the local expansions for (1.1) leading to a very complete
theory for RDEs.

It later turned out that these principles, or at least some adaptation of them, remain valid
for other - less standard - differential models, such as delay [22] or Volterra [6] rough equations
and homogeneisation of fast/slow systems [17]. The basic idea of local coherent expansions as
effective description of rough dynamical systems has been developed more recently in numerous
PDE settings (see e.g. [13, 14, 15], to mention but a few spin-offs amongst a flourishing literature)
leading to the development of the general framework of regularity structures by Hairer [16], which
allows to handle local expansions of a large class of distributions. For a recent nice introduction
to rough path theory and some applications see [10].

This being said, in the vast majority of the situations so far covered by rough paths analysis,
and especially in all the above quoted references, the success of the method lies in an essential
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way on fix-point and contraction mapping methods to establish existence and more importantly
uniqueness of the object under consideration. Unfortunately, the existence of such a contraction
property is not known in the case of the reflected rough differential equation, which we propose
to study in this paper. To be more precise, we will focus on the one-dimensional RDE reflected at
0, which can be described as follows: given a time T > 0, a smooth function f : R→ L(RN ;R)
and a p-variation N -dimensional rough path X with 2 6 p < 3 (see Definition 1), find an
R>0-valued path y ∈ V p

1 ([0, T ]) and an R>0-valued increasing function (or “reflection measure”)
m ∈ V 1

1 ([0, T ]) that together satisfy

dy(t) = f(y(t))dXt + dmt , ytdmt = 0 . (1.2)

Thus, the idea morally is to exhibit a path y that somehow follows the dynamics in (1.1), but is
also forced to stay positive thanks to the intervention of some regular “local time” m at 0. Of
course, at this point, it is not exactly clear how to understand the right hand side of (1.2), and
we shall later give a more specific interpretation of the system, based on rough paths principles
(see Definition 2).

The stochastic counterpart of (1.2), where X is a standard N -dimensional Brownian motion
and the right hand side is interpreted as an Itô integral, has been receiving a lot of attention
since the 60’s (see e.g. [18, 23, 24, 25]), with several successive generalizations regarding the
(possibly multidimensional) containment domain of y. This Brownian reflected equation has
also been investigated more recently through the exhibition of Wong-Zakai-type approximation
algorithms [3].

When 1 6 p < 2, Problem (1.2) can be naturally interpreted and analyzed by means of
Young integration techniques. This situation was first considered by Ferrante and Rovira in
[9] for the d-dimensional positive domain Rd≥0, with exhibition of an existence result therein.

Using some sharp p-variation estimates for the Skorohod map, Falkowski and Slominski [7, 8]
have recently provided a full treatment of the Young case (at least when considering reflection
on hyperplanes), by proving both existence and uniqueness of the solution.

The more complex rough (or step-2) version of (1.2), which somehow extends the Brownian
model, has been first considered by Aida in [1], and further analysed by the same author in [2] for
more general multidimensional domains. Nevertheless, in these two references, only existence of
a solution to (1.2) can be established and the uniqueness issue is left open. The lack of regularity
of the Skorohod map clearly appears as the main obstacle towards a uniqueness result in the
approach followed in [1, 2].

Our aim in this study is to complete the above picture in the one-dimensional situation, that
is to prove uniqueness of a solution to the problem (1.2). Actually, for the reader’s convenience,
we will also provide a detailed proof of the existence of a solution in this setting, and simplify at
the same time some of the arguments used by Aida in [1, 2]. The subsequent analysis accordingly
offers a thorough - and totally self-contained - proof of well-posedness of the problem (1.2).

The strategy is inspired by the recent results on rough conservation laws [5]. Indeed, there is
an analogy between (1.2) and the kinetic formulation of conservation laws where the so-called
kinetic measure appears. As for (1.2), this measure is unknown and becomes part of the solution
which brings significant difficulties, especially in the proof of uniqueness. The latter is then
based on a tensorization-type argument, also known as doubling of variables, and subsequent
estimation of the difference of two solutions.

In the case of (1.2), we put forward a fairly simple proof of uniqueness based on a direct
estimation of a difference of two solutions. In particular, in this finite dimensional setting no



ONE-DIMENSIONAL REFLECTED ROUGH DIFFERENTIAL EQUATIONS 3

technical tensorization method is needed. The existence is then derived from a compactness
result, starting from a smooth approximation of the rough path X. In both cases, the key of
the procedure consists in deriving sharp estimates for the remainder term which measures the
difference between the (explicit) local expansion and the unknown of the problem. The strategy
thus heavily relies on the so-called sewing lemma at the core of the rough paths machinery (see
Lemma 1). The estimates on the remainder are then converted via a rough Gronwall lemma (see
Lemma 2) into estimates for the unknown (resp. for some function thereof) in order to establish
existence (resp. uniqueness).

The paper is organized along a very simple division. In Section 2, we start with a few reminders
on the rough paths setting and topologies, which allows us to give a rigorous interpretation of
the problem (1.2), as well as the statement of our well-posedness result (Theorem 4). We also
introduce the two main technical ingredients of our analysis therein, namely the above-mentioned
sewing and Gronwall lemmas, with statements borrowed from [5]. Section 3 is then devoted to
the proof of uniqueness, while Section 4 closes the study with the proof of existence. Regarding
the latter existence issue, we will first provide an exhaustive treatment of the problem in the
one-dimensional situation (the main topic of the paper), and then give a few details on possible
extensions of our arguments to more general multidimensional domains (Section 4.2).

2. Setting and main result

To settle our analysis, we will need the following notations and definitions taken from rough
paths theory. First of all, let us recall the definition of the increment operator, denoted by δ. If
g is a path defined on [0, T ] and s, t ∈ [0, T ] then δgst := gt− gs, if g is a 2-index map defined on
[0, T ]2 then δgsut := gst − gsu − gut. For g : [0, T ] → E and ϕ : E → F (with E,F two Banach
spaces), we will also use the convenient notations

JϕK(g)st :=

∫ 1

0
dτ ϕ(gs + τ(δg)st) , JJϕKK(g)st :=

∫ 1

0
dτ

∫ τ

0
dσ ϕ(gs + σ(δg)st) . (2.1)

Observe in particular that if ϕ is a smooth enough mapping, then

δϕ(g)st = J∇ϕK(g)stδgst and JϕK(g)st − ϕ(gs) = JJ∇ϕKK(g)st . (2.2)

In the sequel, given an interval I we call a control on I (and denote it by ω) any superadditive
map on SI := {(s, t) ∈ I2 : s 6 t}, that is, any map ω : SI → [0,∞[ such that,

ω(s, u) + ω(u, t) 6 ω(s, t), s 6 u 6 t.

We will say that a control ω is regular if lim|t−s|→0 ω(s, t) = 0. Also, given a control ω on a time
interval I = [a, b], we will use the notation ω(I) := ω(a, b).

Now, given a time interval I, a parameter p > 0, a Banach space E and a function g : SI → E,
we define the p-variation norm of g as

‖g‖V̄ p2 (I;E) := sup
(ti)∈P(I)

(∑
i

|gtiti+1 |p
) 1

p

,

where P(I) denotes the set of all partitions of the interval I, and we denote by V̄ p
2 (I;E) the set

of maps g : SI → E for which this quantity is finite. In this case,

ωg(s, t) := ‖g‖p
V̄ p2 ([s,t];E)

defines a control on I, and we denote by V p
2 (I;E) the set of elements g ∈ V̄ p

2 (I;E) for which
ωg is regular on I. We then denote by V̄ p

1 (I;E), resp. V p
1 (I;E), the set of paths g : I → E
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such that δg ∈ V̄ p
2 (I;E), resp. δg ∈ V p

2 (I;E). Finally, we define the space V̄ p
2,loc(I;E) of maps

g : SI → E such that there exists a countable covering {Ik}k of I satisfying g ∈ V̄ p
2 (Ik;E) for

every k. We write g ∈ V p
2,loc(I;E) if the related controls can be chosen regular.

Definition 1. Fix a time T > 0 and let N > 1, 2 6 p < 3. Then we call a continuous
N -dimensional p-variation rough path on [0, T ] any pair

X = (X1,X2) ∈ V p
2 ([0, T ];Rd)× V p/2

2 ([0, T ];Rd,d) (2.3)

that satisfies the relation

δX2;ij
sut = X1,i

su X
1,j
ut , s < u < t ∈ [0, T ] , i, j ∈ {1, . . . , d} . (2.4)

Such a rough path X is said to be geometric if it can be obtained as the limit, for the p-variation
topology involved in ( 2.3), of a sequence of smooth rough paths (Xε)ε>0, that is with Xε =
(Xε,1,Xε,2) explicitly defined as

X
ε,1,i
st := δxε,ist , X

ε,2,ij
st :=

∫ t

s
δxε,isu dxε,ju ,

for some smooth path xε : [0, T ]→ RN .

We are now in a position to provide a clear interpretation of the problem (1.2).

Definition 2. Given a time T > 0, a real a ≥ 0, a differentiable function f : R → L(RN ;R)
and a p-variation N -dimensional rough path X with 2 6 p < 3, a pair (y,m) ∈ V p

1 ([0, T ];R>0)×
V 1

1 ([0, T ];R>0) is said to solve the problem ( 1.2) on [0, T ] with initial condition a if there exists

a 2-index map y\ ∈ V p/3
2,loc([0, T ];R) such that for all s, t ∈ [0, T ], we haveδyst = fi(ys)X

1,i
st + f2,ij(ys)X

2,ij
st + δmst + y\st

y0 = a and mt =
∫ t

0 1{yu=0}dmu

, (2.5)

where we have set f2,ij(ξ) := f ′i(ξ)fj(ξ) and m([0, t]) := mt.

Remark 3. Eq. (2.5) should be read as the given of a local expansion of the function y: it says
that around each time point s the function can be approximated by the germ

t 7→ ys + f(ys)X
1
st + f2(ys)X

2
st + δmst

up to terms of order ω(s, t)p/3 where ω is a control. The term δmst is characteristic for this
reflected problem: the measure m increases only at times u where yu = 0 effectively “kicking” the
path y away from the negative axis. In some sense it can be considered as a Lagrange multiplier
enforcing the constraint yu ≥ 0 for all u ∈ [0, T ].

With this interpretation in hand, our well-posedness result reads as follows:

Theorem 4. Let T > 0 and a > 0. If f ∈ C3
b (R;L(RN ,R)), that is if f is 3-time differentiable,

bounded with bounded derivatives, and if X is a continuous geometric N -dimensional p-variation
rough path, then Problem (1.2) admits a unique solution (y,m) on [0, T ] with initial condition
a.

Let us conclude this preliminary section with a presentation of the two main technical results
that will be used in our analysis, and the proofs of which are elementary and can be found e.g.
in [5].
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Lemma 1 (Sewing lemma). Fix an interval I, a Banach space E and a parameter ζ > 1.
Consider a map G : I3 → E such that G ∈ Im δ and for every s < u < t ∈ I,

|Gsut| 6 ω(s, t)ζ ,

for some regular control ω on I. Then there exists a unique element ΛG ∈ V 1/ζ
2 (I;E) such that

δ(ΛG) = G and for every s < t ∈ I,

|(ΛG)st| 6 Cζω(s, t)ζ , (2.6)

for some universal constant Cζ .

Lemma 2 (Rough Gronwall Lemma). Fix a time horizon T > 0 and let g : [0, T ] → [0,∞) be
a path such that for some constants C,L > 0, κ > 1 and some controls ω1, ω2 on [0, T ] with ω1

being regular, one has

δgst 6 C( sup
06r6t

gr)ω1(s, t)
1
κ + ω2(s, t), (2.7)

for every s < t ∈ [0, T ] satisfying ω1(s, t) 6 L. Then it holds

sup
06t6T

gt 6 2ecL,κ ω1(0,T )

{
g0 + sup

06t6T
(ω2(0, t)e−cL,κ ω1(0,t))

}
,

where cL,κ is defined as

cL,κ = sup

(
1

L
, (2Ce2)κ

)
. (2.8)

3. Uniqueness

Theorem 5. Let T > 0 and a > 0. If f ∈ C3
b (R;L(RN ,R)) and X is an N -dimensional

p-variation rough path, then Problem (1.2) admits at most one solution (y,m) on [0, T ] with
initial condition a.

Proof. Let (y, µ) and (z, ν) be two solutions for (2.5). Set Y := (y, z) ∈ V p
1 ([0, T ];R2) and with

decomposition (2.5) in mind, write

δYst = Fi(Ys)X
1,i
st + F2,ij(Ys)X

2,ij
st + δMst + Y \

st , 0 6 s 6 t 6 T. (3.1)

where we use the shorthands Fi(Y ) := (fi(y), fi(z)), F2,ij(Y ) := (f2,ij(y), f2,ij(z)), M := (µ, ν) ∈
V 1

1 ([0, T ];R2) and Y \ := (y\, z\) ∈ V p/3
2,loc([0, T ];R2). From now non and until the end of the proof,

we fix an interval I ⊂ [0, T ] such that Y \ ∈ V p/3
2 (I;R2) and consider the following controls on

I:
ωY (s, t) := ‖Y ‖p

V̄ p1 ([s,t])
, ωY,\(s, t) := ‖Y \‖p/3

V̄
p/3
2 ([s,t])

,

ω∆(s, t) := ‖y − z‖p
V̄ p1 ([s,t])

, ω∆,\(s, t) := ‖y\ − z\‖p/3
V̄
p/3
2 ([s,t])

,

ωM (s, t) := ‖M‖V̄ 1
1 ([s,t]) = ‖µ‖V̄ 1

1 ([s,t]) + ‖ν‖V̄ 1
1 ([s,t]) .

Without loss of generality, we will assume that ωX(I) 6 1, where ωX is a fixed control such that

|X1
s,t|+ |X2

s,t|1/2 6 ωX(s, t)1/p, 0 6 s 6 t 6 T .

Now, consider a smooth function ϕ : R→ R>0 and set h(x1, x2) := ϕ(x1−x2) for all x1, x2 ∈ R.
A direct computation via Taylor expansion, combined with (3.1), shows that

δh(Y )st = J∇hK(Y )st δYst = Hi(Ys)X
1,i
st +H2,ij(Ys)X

2,ij
st +

∫ t

s
ϕ′(yu−zu)(dµu−dνu)+h\st (3.2)
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where h\ is a map in V
p/3

2 (I;R), and where we have set, for all Y = (y, z) ∈ R2,

Hi(Y ) := ∇h(Y )Fi(Y ) = ϕ′(y − z)(fi(y)− fi(z)) (3.3)

H2,ij(Y ) := ∇Hi(Y )Fj(Y )

= ϕ′(y − z)(f2,ij(y)− f2,ij(z)) + ϕ′′(y − z)(fi(y)− fi(z))(fj(y)− fj(z)) . (3.4)

Step 1: A general estimate on h\. Given that h\ is a remainder term, we wish to use the
sewing map to estimate it. Applying δ to eq. (3.2) and using (2.4), we get, for 0 6 s 6 u 6 t 6 T :

δh\sut = δHi(Y )suX
1,i
ut −H2,ij(Ys)X

1,j
suX

1,i
ut + δH2,ij(Y )suX

2,ij
ut

=
(
δHi(Y )su −H2,ij(Ys)X

1,j
su

)
X

1,i
ut + δH2,ij(Y )suX

2,ij
ut . (3.5)

We need to expand the quantity δHi(Y )su −H2,ij(Ys)X
1,j
su in (3.5), in order to show that h\ is

suitably small and depends in a very precise way on ϕ and on the difference ∆ := y− z. In fact,
by Taylor expansion and using (3.1) we get

δHi(Y )su −H2,ij(Ys)X
1,j
su = J∇HiK(Y )suδYsu −H2,ij(Ys)X

1,j
su

= J∇HiK(Y )suFj(Ys)X
1,j
su + J∇HiK(Y )suF2,jk(Ys)X

2,jk
su + J∇HiK(Y )suY

\
su

+J∇HiK(Y )suδMsu −H2,ij(Ys)X
1,j
su

= (J∇HiK(Y )su −∇Hi(Ys))Fj(Ys)X
1,j
su + J∇HiK(Y )suF2,jk(Ys)X

2,jk
su

+J∇HiK(Y )suY
\
su + J∇HiK(Y )suδMsu ,

since H2,ij(Y ) = ∇Hi(Y )Fj(Y ). Plugging this identity back into equation (3.5) and neglecting
to write down explicitly the time indexes, we end up with:

δh\ = (J∇HiK(Y )−∇Hi(Y ))Fj(Y )X1,j
X

1,i + J∇HiK(Y )F2,jk(Y )X2,jk
X

1,i

+J∇HiK(Y )Y \
X

1,i + J∇HiK(Y ) δM X
1,i + δH2,ij(Y )X2,ij . (3.6)

Using elementary algebraic manipulations, as well as the relation H2,ij(Y ) = ∇Hi(Y )Fj(Y ), we
obtain:

(J∇HiK(Y )su −∇Hi(Ys))Fj(Ys)

= (JH2,ijK(Y )su −H2,ij(Ys)) + (J∇HiK(Y )suFj(Ys)− JH2,ijK(Y )su)

= JJ∇H2,ijKK(Y )suδYsu − J∇Hi(·)J∇Fj(·)KK(Y )suδYsu ,

where the identity JH2,ijK(Y )su − H2,ij(Ys) = JJ∇H2,ijKK(Y )suδYsu directly stems from (2.2),
and where we define:

J∇Hi(·)J∇Fj(·)KK(Y )su :=

∫ 1

0
∇Hi(Ys + τδYsu)

∫ τ

0
∇Fj(Ys + σδYsu) dσdτ .

Therefore, we can rewrite eq. (3.6) as

δh\ = JJ∇H2,ijKK(Y )δY X1,j
X

1,i − J∇Hi(·)J∇Fj(·)KK(Y )δY X1,j
X

1,i

+J∇HiK(Y )F2,jk(Y )X2,jk
X

1,i + J∇HiK(Y )Y \
X

1,i

+J∇HiK(Y )δM X
1,i + J∇H2,ijK(Y )δY X2,ij . (3.7)

In order to further evaluate the rhs of this relation in terms of the test function ϕ, let us write
explicit expressions for the gradients ∇Hi(Y ) and ∇H2,ij(Y ) computed at (a, b) ∈ R2:

∇Hi(Y )(a, b) = ϕ′′(y − z)(fi(y)− fi(z))(a− b) + ϕ′(y − z)(f ′i(y)− f ′i(z))a
+ϕ′(y − z)f ′i(z)(a− b)
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and

∇H2,ij(Y )(a, b) = ϕ′′(y − z)(f2,ij(y)− f2,ij(z))(a− b) + ϕ′(y − z)(f ′2,ij(y)a− f ′2,ij(z)b)

+ϕ′′′(y − z)(fi(y)− fi(z))(fj(y)− fj(z))(a− b)
+2ϕ′′(y − z)(fi(y)− fi(z))(f ′j(y)a− f ′j(z)b) .

At this point, consider the quantity

|||ϕ||| := sup
y,z∈R

(|ϕ′(y − z)|+ |y − z||ϕ′′(y − z)|+ |y − z|2|ϕ′′′(y − z)|) . (3.8)

Then, denoting by Cf any quantity that only depends on f , we have for all 1 ≤ i, j, k ≤ N and
s < t ∈ I,

|J∇HiK(Y )st|+ |J∇H2,ijK(Y )st| 6 Cf |||ϕ|||
|J∇HiK(Y )stF2,jk(Ys)| 6 Cf |||ϕ||| ‖y − z‖∞;[s,t]

|J∇Hi(·)J∇Fj(·)KK(Y )stδYst| 6 Cf |||ϕ||| (ω∆(s, t)1/p + ‖y − z‖∞;[s,t]ωY (s, t)1/p)

|JJ∇H2,ijKK(Y )stδYst| 6 Cf |||ϕ||| (ω∆(s, t)1/p + ‖y − z‖∞;[s,t]ωY (s, t)1/p)

|J∇HiK(Y )stY
\
st| 6 Cf |||ϕ||| (ω∆,\(s, t)

3/p + ‖y − z‖∞;[s,t]ωY,\(s, t)
3/p) .

Going back to (3.7), we get that for all s < u < t ∈ I,

|δh\sut| 6 Cf |||ϕ|||
[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3 + ωX(s, t)1/3ω∆,\(s, t)

]3/p
where ω? is the control on I given for every s < t ∈ I by

ω?(s, t) := ωM (s, t)p/3ωX(s, t)1/3 + ‖y − z‖p/3∞;[s,t]ωX,Y (s, t) ,

with

ωX,Y (s, t) := ωX(s, t) + ωY (s, t)1/3ωX(s, t)2/3 + ωY,\(s, t) .

We are therefore in a position to apply the sewing lemma and conclude that for all s < t ∈ I,

|h\st| 6 Cf,p |||ϕ|||
[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3 + ωX(s, t)1/3ω∆,\(s, t)

]3/p
(3.9)

for some quantity Cf,p that only depends on f and p.

Step 2: A first application. Our aim now is to apply the previous bound to the non-smooth
function ϕ(ξ) = ϕ0(ξ) := |ξ|. To this end, we will rely on the smooth approximation ϕε defined

for ε > 0 as ϕε(ξ) =
√
ε2 + |ξ|2 for all ξ ∈ R. Let us denote the associated objects with

hε, h
\
ε, Hε,i, Hε,2,ij ,.... In this case

|ϕ′ε(ξ)| 6 1 , |ϕ′′ε(ξ)| 6 1/
√
ε2 + |ξ|2 , |ϕ′′′ε (ξ)| 6 3/(ε2 + |ξ|2)

and so, with the notation (3.8), we have the uniform estimate |||ϕε||| 6 3. Plugging this estimate
into (3.9), we get:

|h\ε,st| 6 Cf,p
[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3 + ωX(s, t)1/3ω∆,\(s, t)

]3/p
. (3.10)

Furthermore, explicit elementary computations show that

lim
ε→0

ϕε = | · |, lim
ε→0

ϕ′ε = sign, and lim
ε→0

ϕ′′ε = δ0, (3.11)

where the first two limits are simple limits of functions, and the last one is understood in the
weak sense. Notice that we also use the convention sign(0) = 0 above.
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With those preliminaries in mind, let us take limits in (3.2). To begin with, as ε → 0, a
standard dominated convergence argument and relation (3.11) yield:∫ t

s
ϕ′ε(yu − zu)d(µu − νu)→

∫ t

s
sign(yu − zu)d(µu − νu). (3.12)

In addition, owing to the fact that yt > 0, zt > 0, we have∫ t

s
sign(yu − zu)d(µu − νu)

=

∫ t

s
1{yu>zu>0}dµu −

∫ t

s
1{zu>yu>0}dµu −

∫ t

s
1{yu>zu>0}dνu +

∫ t

s
1{zu>yu>0}dνu.

Hence, using the conditions µt =
∫ t

0 1{yu=0}dµu, νt =
∫ t

0 1{zu=0}dνu, we end up with:∫ t

s
sign(yu − zu)d(µu − νu) = −

[ ∫ t

s
1{zu>yu>0}dµu +

∫ t

s
1{yu>zu>0}dνu

]
= −

[ ∫ t

s
1{zu>yu>0}d(µu + νu) +

∫ t

s
1{yu>zu>0}d(µu + νu)

]
= −

∫ t

s
1{yu 6=zu}d(µu + νu) = −ωM (s, t) +

∫ t

s
1{yu=zu}d(µu + νu) . (3.13)

Recall that Hi and H2,ij are defined respectively by (3.3) and (3.4). Thanks to (3.11), it thus
clearly holds that

lim
ε→0

Hε,i(Y ) = Ψi(Y ) , and lim
ε→0

Hε,2,ij(Y ) = Ψ2,ij(Y ) , (3.14)

where the limits are simple limits of functions and where we have:

Ψi(Y ) := sgn(y − z)(fi(y)− fi(z)) , Ψ2,ij(Y ) := sgn(y − z)(f2,ij(y)− f2,ij(z)) .

Taking relations (3.12), (3.13) and (3.14) into account, we can now take limits as ε→ 0 in (3.2).

This ensures the convergence of the quantity h\ε,st to some limit Φ\
st (for all s < t ∈ I), and

using (3.9) we get that the path Φ(Y ) := |y − z| satisfies the following equation:

δΦ(Y )st = Ψi(Ys)X
1,i
st + Ψ2,ij(Ys)X

2,ij
st − ωM (s, t) +

∫ t

s
1{yu=zu}d(µu + νu) + Φ\

st . (3.15)

Moreover, invoking relation (3.10), we have for all s < t ∈ I:

|Φ\
st| 6 Cf,p

[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3 + ωX(s, t)1/3ω∆,\(s, t)

]3/p
. (3.16)

Here and in the sequel, we denote by Cf,p any quantity that only depends on f and p.

Step 3: Bounds for ω∆ and ω∆,\. Let us now estimate ω∆ and ω∆,\ in terms of ω?. To this
end, we can first use the fact that the path ∆ := y − z is (obviously) given by h(Y ) with the
choice ϕ(ξ) = ψ(ξ) := ξ. In this case h\ = y\ − z\, |||ψ||| = 1, so that (3.9) becomes

|y\st − z
\
st| 6 Cf,p

[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3 + ωX(s, t)1/3ω∆,\(s, t)

]3/p
for all s < t ∈ I, and accordingly we have

ω∆,\(s, t) 6 C
(1)
f,p

[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3 + ωX(s, t)1/3ω∆,\(s, t)

]
for some fixed constant C

(1)
f,p . As a result, for any interval I0 ⊂ I satisfying

C
(1)
f,pωX(I0)1/3 6 1/2 , (3.17)
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and for all s < t ∈ I0, we have

ω∆,\(s, t) 6 2C
(1)
f,p

[
ω?(s, t) + ωX(s, t)2/3ω∆(s, t)1/3

]
. (3.18)

Besides, going back to the equation satisfied by ∆ (again, take ϕ(ξ) = ξ in (3.2)), we easily
obtain that for all s < t ∈ I,

|δ∆st| 6 Cf,p
[
‖y − z‖p∞;[s,t]ωX(s, t) + ωM (s, t)p + ω∆,\(s, t)

3
]1/p

,

so

ω∆(s, t) 6 Cf,p
[
‖y − z‖p∞;[s,t]ωX(s, t) + ωM (s, t)p + ω∆,\(s, t)

3
]

and for any interval I0 ⊂ I satisfying (3.17), we get by (3.18)

ω∆(s, t) 6 C(2)
f,p

[
‖y − z‖p∞;[s,t]ωX(s, t) + ωM (s, t)p + ω?(s, t)

3 + ωX(s, t)2ω∆(s, t)
]
,

for some constant C
(2)
f,p . Finally, for any interval I0 ⊂ I satisfying both (3.17) and

C
(2)
f,pωX(I0)2 6 1/2 , (3.19)

and for all s < t ∈ I0, we have

ω∆(s, t) 6 2C
(2)
f,p

[
‖y − z‖p∞;[s,t]ωX(s, t) + ωM (s, t)p + ω?(s, t)

3
]
. (3.20)

Step 4: Conclusion. By injecting (3.18) and (3.20) into (3.16), we can derive the following
assertion: for any interval I0 ⊂ I satisfying (3.17) and (3.19), and all s < t ∈ I0, it holds that

|Φ\
st| 6 Cf,p

[
ω?(s, t)

3/p + ‖y − z‖∞;[s,t]ωX(s, t)3/p + ωM (s, t)ωX(s, t)2/p
]
,

which, by the definition of ω?, gives

|Φ\
st| 6 Cf,p

[
‖y − z‖∞;[s,t]ωX,Y (s, t)3/p + ωM (s, t)ωX(s, t)1/p

]
.

Going back to eq. (3.15) and observing that ‖y− z‖∞;[s,t] = sup[s,t] Φ(Y ), we obtain that for any
such interval I0 and for all s < t ∈ I0,

δΦ(Y )st+ωM (s, t) 6 Cf,p
(

sup
[s,t]

Φ(Y )+ωM (s, t)
)[
ωX(s, t)+ωX,Y (s, t)3

]1/p
+

∫ t

s
1{yu=zu}(dµu+dνu) .

We are finally in a position to apply the Rough Gronwall Lemma 2 with ω1 := ωX + ω3
X,Y and

ω2(s, t) :=
∫ t
s 1{yu=zu}(dµu + dνu), and assert that for every 0 6 s < t 6 T ,

sup
[s,t]

Φ(Y ) + ωM (s, t) 6 Cf,p,X,Y
[
Φ(Ys) +

∫ t

s
1{yu=zu}(dµu + dνu)

]
,

that is

sup
r∈[s,t]

|yr − zr|+ ωM (s, t) 6 Cf,p,X,Y
[
|ys − zs|+

∫ t

s
1{yu=zu}(dµu + dνu)

]
,

for some constant Cf,p,X,Y .

Assume now that [s, t] is an interval where y 6= z in (s, t) but y(s) = z(s). Then

sup
r∈[s,t]

|yr − zr|+ ωM (s, t) 6 0

which implies that supr∈[s,t] |yr−zr| = 0 everywhere so we find a contradiction and such interval
cannot exist. This concludes the proof of uniqueness. �
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4. Existence

4.1. The one-dimensional case.

Theorem 6. Let T > 0 and a > 0. If f ∈ C2
b (R;L(RN ,R)) and X is a geometric N -dimensional

p-variation rough path, then Problem (1.2) admits at least one solution (y,m) on [0, T ] with
initial condition a.

Just as in [1, 2], our strategy towards existence will appeal to some a priori bound on the
measure term of the (approximated) equation. The result more generally applies to the so-called
Skorohod problem and it can be read as follows in the one-dimensional case.

Lemma 3. Let g be a continuous R-valued path defined on some interval I = [`1, `2], and
consider a solution (y,m) ∈ C(I;R>0) × V 1

1 (I;R>0) of the Skorohod problem associated with g
in the domain R>0, that is (y,m) satisfies for all s < t ∈ I δyst = δgst + δmst ,

y`1 = g`1 , mt =
∫ t

0 1{yu=0}dmu

.

Then for all s < t ∈ I it holds that

δmst 6 8 ‖g‖0,[s,t] , (4.1)

where ‖g‖0,[s,t] := sups6u<v6t |δguv|.

The proof of (4.1) can be easily derived from the arguments of the proof of [3, Lemma 2.3]
(namely, the same arguments as those leading to the forthcoming general Lemma 4). Let us
provide some details though, not least to give the non-initiated reader an insight on how the
specific constraints of the reflecting problem can be exploited.

Proof of Lemma 3. For all s < t ∈ I, one has

|δyst|2 = |δgst|2 + |δmst|2 + 2δgstδmst = |δgst|2 + 2

∫ t

s
δmsu dmu + 2

∫ t

s
δgst dmu

= |δgst|2 + 2

∫ t

s
δysu dmu + 2

∫ t

s
δgut dmu ,

where we have just used the fact that δmsu = δysu − δgsu for the last identity. Moreover, since∫ t
s yudmu =

∫ t
s yu1{yu=0}dmu = 0 and ys > 0, we get:

|δyst|2 6 |δgst|2 + 2

∫ t

s
δgut dmu .

Therefore,

|δyst|2 6 ‖g‖20,[s,t] + 2 ‖g‖0,[s,t] δmst 6 5 ‖g‖20,[s,t] +
1

4
|δmst|2 ,

and so ‖y‖0,[s,t] 6 3 ‖g‖0,[s,t] + 1
2 δmst. Finally,

δmst 6 ‖y‖0,[s,t] + ‖g‖0,[s,t] 6 4 ‖g‖0,[s,t] +
1

2
δmst ,

and the result follows. �
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Proof of Theorem 6. We start from a sequence of smooth rough paths Xε converging to X as
ε→ 0, in the space of continuous p-variation geometric rough paths. We can then find a regular
control ωX such that, for all s, t ∈ [0, T ],

|X1
st|+ |X2

st|1/2 6 ωX(s, t)1/p, sup
ε>0

(|Xε,1
st |+ |X

ε,2
st |1/2) 6 ωX(s, t)1/p .

For every ε > 0, let Xε be the path which corresponds to Xε and consider the solution yε to
reflected ODEs starting from y0: dyεt = f(yεt ) dXε

t + dmε
t

yε0 = y0 and mε
t =

∫ t
0 1{yεu=0}dm

ε
u

.

Recall that the existence (and uniqueness) of such a solution is a standard result, based on the
Lipschitz regularity of the Skorohod map with respect to the supremum norm. Then by Taylor
expansion it is not difficult to show that these solutions correspond to rough solutions (yε,mε)
in the sense of (2.5)

δyεst = fi(y
ε
s)X

ε,1,i
st + f2,ij(y

ε
s)X

ε,2,ij
st + δmε

st + yε,\st s, t ∈ [0, T ] (4.2)

where yε,\ ∈ V p/3
2 ([0, T ];R). Let us set from now on

ωyε(s, t) := ‖yε‖p
V̄ p1 ([s,t];E)

, ωε,\(s, t) := ‖yε,\‖p/3
V̄
p/3
2 ([s,t];E)

,

ωmε(s, t) := ‖mε‖V̄ 1
1 ([s,t];E) = δmε

st = mε([s, t]) ,

and observe that from eq. (4.2) we have

|δyεst| 6 Cf (ωX(s, t)1/p + ωX(s, t)2/p) + ωmε(s, t) + ωε,\(s, t)
3/p . (4.3)

Here and in the sequel, we denote by Cf , resp. Cf,p, any quantity that only depends on f , resp.
(f, p).

Step 1: Bounds on the approximate solutions. We would like to pass to the limit in ε
and obtain solutions of the limiting problem. In order to do so we need uniform estimates for

yε,\st . They are obtained via an application of the sewing map.

To this end, one can proceed as in the proof of Theorem 5, Step 1. Specifically, we can just
replace Y by y, H by f and H2 by f2 in relation (3.5). We then repeat all the steps up to
relation (3.7), which yields the following relation for δyε,\ (for more simplicity, we neglect to
write down the time indexes explicitly):

δyε,\ = JJ∇f2,ijKK(yε)δyεXε,1,j
X
ε,1,i − J∇fi(·)J∇fj(·)KK(yε)δyεXε,1,j

X
ε,1,i

+J∇fiK(yε)f2,jk(y
ε)Xε,2,jk

X
ε,1,i + J∇fiK(yε)yε,\Xε,1,i

+J∇fiK(yε)δmε
X
ε,1,i + J∇f2,ijK(yε)δyεXε,2,ij . (4.4)

Combining this expansion with (4.3), we get, for every interval I ⊂ [0, T ] such that ωX(I) 6 1
and all s < u < t ∈ I,

|δyε,\sut| 6 Cf
[
ωyε(s, t)

1/pωX(s, t)2/p + (ωX(s, t)2/p + ωmε(s, t) + ωε,\(s, t)
3/p)ωX(s, t)1/p

]
6 Cf,p

[
ωX(s, t) + ωX(s, t)1/3ωmε(s, t)

p/3 + ωX(s, t)1/3ωε,\(s, t)
]3/p

.
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We are therefore in a position to apply the sewing lemma and assert that for every interval
I ⊂ [0, T ] such that ωX(I) 6 1 and all s < t ∈ I, we have

|yε,\st | 6 Cf,p
[
ωX(s, t) + ωX(s, t)1/3ωmε(s, t)

p/3 + ωX(s, t)1/3ωε,\(s, t)
]3/p

,

which immediately entails that

ωε,\(s, t) 6 C
(1)
f,p

[
ωX(s, t) + ωX(s, t)1/3ωmε(s, t)

p/3 + ωX(I)1/3ωε,\(s, t)
]
,

for some constant C
(1)
f,p . As a result, for every interval I ⊂ [0, T ] such that

ωX(I) 6 1 and C
(1)
f,pωX(I)1/3 6 1/2 , (4.5)

one has

ωε,\(s, t) 6 2C
(1)
f,p

[
ωX(s, t) + ωX(s, t)1/3ωmε(s, t)

p/3
]
, s < t ∈ I. (4.6)

Step 2: Control of the approximate measures. Consider the path gε : [0, T ]→ R defined
as gεt := yεt −mε

t , and observe that (yε,mε) is then a solution of the Skorohod problem in R>0

associated with gε, in the sense of Lemma 3. Therefore, by (4.1), it holds that

ωmε(s, t) 6 8 ‖gε‖0,[s,t] . (4.7)

On the other hand, from eq. (4.2), we have

δgεst = fi(y
ε
s)X

ε,1,i
st + f2,ij(y

ε
s)X

ε,2,ij
st + yε,\st , 0 6 s 6 t 6 T ,

and so

‖gε‖0,[s,t] 6 Cf
[
ωX(s, t)1/p + ωX(s, t)2/p + ωε,\(s, t))

3/p
]
. (4.8)

Injecting successively (4.8) and (4.6) into (4.7) yields that for every interval I satisfying the
conditions in (4.5) and every s < t ∈ I,

ωmε(s, t) 6 C
(2)
f,p

[
ωX(s, t)1/p + ωX(I)1/pωmε(s, t)

]
,

for some constant C
(2)
f,p , and so, if we assume in addition that

C
(2)
f,pωX(I)1/p 6 1/2 , (4.9)

we obtain

ωmε(s, t) 6 2C
(2)
f,pωX(s, t)1/p , s < t ∈ I . (4.10)

From here we can easily conclude that

ωmε([0, T ]) 6 Cf,p,X (4.11)

for some quantity Cf,p,X independent from ε.

Step 3: Passage to the limit for the measure. With all the bounds in place we can now
pass to the limit as ε → 0 via subsequences. We start with the measure. Using (4.11) we can

assert that there exists a weakly convergent subsequence of measures (mε(k))k>1 on [0, T ], and
we will denote by m their limit. Then it holds that

m([0, t]) = lim
k
mε(k)([0, t]) t ∈ C (4.12)

where C ⊆ [0, T ] is the (dense) set of continuity points of the function t 7→ m([0, t]). Now
consider any interval I satisfying both the conditions in (4.5) and in (4.9), and for s < t ∈ I,
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introduce a sequence s`, resp. t`, of points in C decreasing to s, resp. increasing to t, and such
that sk < tk. Using (4.10), we have

m(]s`, t`]) = lim
k
mε(k)(]s`, t`]) 6 Cf,p ωX(s, t)1/p ,

and so m([s, t]) 6 Cf,p ωX(s, t)1/p, which proves that the function mt := m([0, t[) is continuous
and accordingly that m ∈ V 1

1 ([0, T ];R>0), as expected.

Step 4: Passage to the limit for the path. Consider the subsequence (yε(k),mε(k))k as
defined in the previous step. Using (4.3) we have, for all s, t ∈ [0, T ],

lim sup
k
|δyε(k)

st | 6 Cf (ωX(s, t)1/p + ωX(s, t)2/p) + ωm(s, t) + lim sup
k

ωε(k),\(s, t)
3/p ,

and for every interval I satisfying both the conditions in (4.5) and in (4.9) (we denote J the
family of such intervals), we have

lim sup
k

ωε(k),\(s, t) 6 Cf,p
[
ωX(s, t) + ωX(s, t)1/3ωm(s, t)p/3

]
, s < t ∈ I .

From this bound we can choose a further subsequence, still called (yε(k),mε(k))k so that yε(k) → y
in C([0, T ];R>0). It is easy now to pass to the limit in eq. (4.2) and conclude that there exists
a map y\ : ∆[0,T ] → R such that

δy = fi(y)X1,i + f2,ij(y)X2,ij + δm+ y\ ,

and

|y\st| 6 Cf,p
[
ωX(s, t) + ωX(s, t)1/3ωm(s, t)p/3

]3/p
, s < t ∈ I ∈ J .

The fact that mt =
∫ t

0 1{yu=0} dmu (for all t) follows immediately from the relation mε
t =∫ t

0 1{yεu=0} dmε
u, and finally the pair (y,m) does define a solution to the RRDE (2.5). �

4.2. Generalization to multidimensional domains. We conclude this study with a few
details on possible extensions of the previous arguments (towards existence) to more general
multidimensional domains. Together, these results will thus offer a simplification of some of the
arguments and topologies used in [1, 2].

Let us first extend Definition 2 of a reflected rough solution to more general settings, along
the classical approach of the reflected problem. Let D ⊂ Rd be a connected domain and for
every x ∈ ∂D, denote by Nx the set of inward unit normal vectors at x, that is

Nx := ∪r>0Nx,r , Nx,r := {n ∈ Rd : |n| = 1, B(x− rn, r) ∩D = ∅}

where B(z, r) := {y ∈ Rd : |y − z| < r}, for z ∈ Rd and r > 0.

Definition 7. Given a time T > 0, an element a ∈ D, a differentiable function f : Rd →
L(RN ;Rd) and a p-variation N -dimensional rough path X with 2 6 p < 3, a pair (y,m) ∈
V p

1 ([0, T ];D)× V 1
1 ([0, T ];Rd) is said to solve the reflected rough equation in D with initial con-

dition a if there exists a 2-index map y\ ∈ V
p/3

2,loc([0, T ];Rd) such that for all s, t ∈ [0, T ], we

have δyst = fi(ys)X
1,i
st + f2,ij(ys)X

2,ij
st + δmst + y\st

y0 = a and mt =
∫ t

0 1{yu∈∂D}nyud|m|u
, (4.13)

where we have set f2,ij(ξ) := ∇fi(ξ)fj(ξ), |m|t := ‖m‖V̄ 1
1 ([0,t];Rd) and for each y ∈ ∂D, ny ∈ Ny.
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The existence of a solution for (4.13) can actually be derived from the same arguments as in the
one-dimensional situation. The only step of the procedure needing for a revision is the so-called
Step 2, since it involves the a priori bound (4.1) which is specific to the one-dimensional Skorohod
problem. To this end, we shall exploit the following (sophisticated) substitute, borrowed from
[1, Lemma 2.2].

Lemma 4. Let D ⊂ Rd be connected domain that satisfies the two following assumptions:

(A) There exists a constant r0 > 0 such that Nx = Nx,r0 6= ∅ for any x ∈ ∂D ;

(B) There exist constants δ0 > 0 and β > 1 satisfying: for every x ∈ ∂D, there exists a unit
vector lx such that 〈lx, n〉 > 1/β for every n ∈ ∪y∈B(x,δ0)∩∂DNy .

Let g ∈ V p
1 (I;Rd), for some interval I = [`1, `2], such that g`1 ∈ D, and consider a solution

(y,m) ∈ C(I;D) × V 1
1 (I;Rd) of the Skorohod problem associated with g in the domain D, that

is (y,m) satisfies for all s < t ∈ I δyst = δgst + δmst ,

y`1 = g`1 , mt =
∫ t

0 1{yu=0}nyud|m|u
,

where |m|t := ‖m‖V̄ 1
1 ([0,t];Rd) and for each y ∈ ∂D, ny ∈ Ny. Then for all s < t ∈ I it holds that

‖m‖V 1
1 ([s,t]) 6 C1[epC2(1+‖g‖0,[s,t])‖g‖V̄ p1 ([s,t]) + 1](eC2(1+‖g‖0,[s,t]) + 1)‖g‖0,[s,t] , (4.14)

where C1, C2 are constants depending only on the domain and ‖g‖0,[s,t] := sups6u<v6t |δguv|.

Theorem 8. Let D ⊂ Rd be a connected domain satisfying Conditions (A) and (B) of Lemma
4. Then there exists at least one solution (y,m) to the reflection problem (4.13) in D.

Remark 9. Of course, Theorem 6 can retrospectively be obtained as a particular application of
Theorem 8. Nevertheless, we have found it important, for pedagogical reasons, to first provide a
full and self-contained treatment of the one-dimensional situation.

Proof. As mentionned above, and apart from minor changes of notation due to the vectorial
character of the equation, Steps 1, 3 and 4 of the proof of Theorem 6 can be readily transposed
to this setting, and thus we only need to focus on the extension of Step 2.

In fact, with the same notations as in the one-dimensional proof and considering only those
intervals I = [s0, t0] satisfying the two conditions in (4.5), we have by (4.14), (4.8) and (4.6)
that for all s < t ∈ I,

ωmε(s, t) 6 Ψ(ωgε,ε(s, t)) 6 Ψ(Cf,p(ωX(s, t) + ωX(s, t)ωmε(s, t)
p)), (4.15)

where
Ψ(λ) := C1[epC2(1+λ1/p)λ+ 1](eC2(1+λ1/p) + 1)λ1/p

and Cf,p is a fixed constant. Eq. (4.15) implies in particular that the control ωmε is regular if
ωX is regular, which is our case. Let GI be the function

GI(λ) := Ψ(Cf,p(1 + ωX(I)λp)).

By choosing t0 near to s0 we can have both (4.5) and GI(3GI(0)) 6 2GI(0), since ωX(I)→ 0 as
t0 ↓ s0. This choice of t0 depends only on ωX and GI(0) (which is actually independent of I).
Now eq. (4.15) implies also that

ωmε(s0, t) 6 GI(ωmε(s0, t)) , t ∈ I .



ONE-DIMENSIONAL REFLECTED ROUGH DIFFERENTIAL EQUATIONS 15

We want to establish that ωmε(I) 6 2GI(0) and to this end we can apply the method of
continuity. Let A ⊆ I be the set of t ∈ I such that the property ωmε(s0, t) 6 2GI(0) is true.
Note that [s0, s0 + δ] ⊆ A for δ small enough by the continuity of the control ωmε . Moreover A
is closed in I since if (tn)n ⊆ A is a sequence converging to t∗ then, again by regularity of ωmε
we have ωmε(s0, t∗) = limn ωmε(s0, tn) 6 2GI(0). Finally A is also open in I since if t∗ ∈ A then
for δ small enough ωmε(s0, t) 6 3GI(0) for all t ∈ (t∗ − δ, t∗ + δ) ∩ I. But then our choice of I
guarantee that

ωmε(s0, t) 6 GI(ωmε(s0, t)) 6 GI(3GI(0)) 6 2GI(0) , t ∈ (t∗ − δ, t∗ + δ) ∩ I ,
from which we see that (t∗ − δ, t∗ + δ) ∩ I ⊆ A and that A is open in I. We can then conclude
that A = I, namely that ωmε(I) 6 2GI(0). Now we can reason in this way for any nonempty
interval It,δ = (t−δ, t+δ)∩[0, T ] by choosing δ = δ(t) > 0 small enough to satisfy our conditions.
In this way we construct an open covering ∪tIt,δ(t) of [0, T ] from which we can extract a finite
covering (Ik)k independent of ε and such that

ωmε(Ik) 6 2GI(0)

for all Ik in the covering. This bound provides us with the expected substitute for (4.11), and
we can then follow Steps 3 and 4 of the proof of Theorem 6 to get the conclusion. �
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