
Quasilinear generalized parabolic Anderson
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Abstract. We present in this note a local in time well-posedness result for the singular
2-dimensional quasilinear generalized parabolic Anderson model equation

Btu´ apuq∆u “ gpuqξ

The key idea of our approach is a simple transformation of the equation which allows to
treat the problem as a semilinear problem. The analysis is done within the elementary
setting of paracontrolled calculus.

1 Introduction

Tremendous progress has been made recently in the application of rough path
ideas to the construction of solutions to singular stochastic partial differential equa-
tions (PDEs) driven by time/space rough perturbations, in particular, using Hairer’s
theory of regularity structures [12] and the tools of paracontrolled calculus intro-
duced by Gubinelli, Imkeller and Perkowski in [11]. We refer the reader to the
works [2, 6, 8, 14, 15, 16] for a tiny sample of the exponentially growing literature
on the subject. The (generalised) parabolic Anderson model equation itself was
studied from both points of view in different settings in [5, 6, 7, 11, 12, 13]. The
class of equations studied so far in the literature centers around semilinear problems
with nonlinear lower order terms that are not well defined in the classical sense.
We investigate in the present paper the possibility of extending these methods to-
wards a quasilinear setting, that is, towards problems with nonlinear dependence
on the solution in the leading order term. The first result in this direction was
obtained very recently by Otto and Weber in their work [17], in which they study
the p1` 1q-dimensional time/space periodic equation

Btu´ P
`

apuq∆u
˘

“ P
`

gpuqξ
˘

,

with a mildy irregular time/space periodic noise ξ of parabolic Hölder regularity
pα ´ 2q, for 2

3 ă α ă 1 – P stands here for the projection operator on zero spatial
mean functions. They develop for that purpose a simplified, parametric, version of
regularity structures in the line of Gubinelli’s approach to rough differential equa-
tions using controlled paths. This approach requires a whole new setting that is
described at length in [17]. It is elegantly rephrased by Furlan and Gubinelli [10]
in a work which is independent and simultaneous to the present one. They use a
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variant of paracontrolled calculus based on paracomposition operators for the study
of the evolution quasilinear equation

Btu´ apuq∆u “ gpuqξ, up0q “ u0,

where ξ is a space white noise on the 2-dimensional torus. This is the equation
which we study here.

Recall that the zero mean space white noise ξ over the 2-dimensional torus is
almost surely of spatial Hölder regularity α ´ 2, for any 2

3 ă α ă 1, and write
pξεq0ăεď1 for the family of smoothened noises obtained by convolution of ξ with the
heat kernel. See below for the definition of the spatial and parabolic Hölder spaces
Cα and CαT mentioned in the statement.

1. Theorem – Let a function a P C3
b , with values in some compact interval of p0,8q,

and a function g P C3
b be given. Let also a regularity exponent α P

`

2
3 , 1

˘

be given,
together with an initial condition u0 P C

α. Then there are some diverging constants
cε and a random time T , defined on the same probability space as space white noise,
such that the solutions uε to the well-posed equations

Btu
ε ´ apuεq∆uε “ gpuεq ξε ´ cε

"

´g1g

a

¯

puεq ´
´a1g2

a2

¯

puεq

*

with initial value u0, converge, as ε decreases to 0, almost surely in the parabolic
Hölder space CαT to a limit element u P CαT , unique solution of the paracontrolled
singular equation

Btu´ apuq∆u “ gpuqξ, up0q “ u0. (1)

A solution to a paracontrolled singular equation is more properly a pair pu, u1q;
the above improper formulation is justified in so far as u1 will actually be a func-
tion of u. This statement is the exact analogue of the main result obtained by
Furlan and Gubinelli in [10], using their extension of paracontrolled calculus based
on paracomposition operators. The present work makes it clear that the basic tools
of paracontrolled analysis are sufficient for the analysis of this equation. Note here
the slight improvement over [10] in the convergence of uε to the limit function u,
that takes place here in the parabolic Hölder space CαT rather than just in CTC

α.
Note here that our approach works verbatim if one replaces the operator apuq∆u
by aijpuqB2

ij , for some matrix-valued function apuq that is symmetric and uniformly
elliptic, and for u taking values in some finite dimensional vector space. Adding a
term bipuqBi in the dynamics would not cause any trouble in the range of regularity
α P

`

2
3 , 1

˘

where we are working. Last, note that in the scalar-valued case, solving
equation (1) is equivalent to solving an equation of the form

Btv ´∆
`

bpvq
˘

“ fpvqξ, vp0q “ v0,

after setting v :“ Apuq, with A a primitive of 1{a, with b the inverse of A, and
f “ pg{aq ˝ b.

The precise setting of paracontrolled calculus that will be used here in the analysis
of the singular equation (1) is detailed in Section 2, where the proof of Theorem 1
is given in three steps. A number of elementary results have been put aside in
Appendix.
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Notations. We gather here a number of notations that will be used in the text.

‚ Let P stand for the heat semigroup associated with the Laplace operator ∆
on the 2-dimensional torus, L :“ Bt´∆ stand for the heat operator, and L ´1

stand for the resolution operator of the heat equation L u :“ pBt´∆qu “ f ,
with null initial condition, given by the formula

`

L ´1f
˘

ptq :“

ż t

0
Pt´sfs ds,

for a time-dependent distribution f . We use a similar notation if ∆ is replaced
by another uniformly elliptic operator.

‚ Given a positive time horizon T , a regularity exponent α, and a Banach
space E, write CαTE for Cα

`

r0, T s, E
˘

. Given a real regularity exponent α,
we denote by Cα the spatial Hölder space and by Cα the parabolic Hölder
space, both defined for instance in terms of Besov spaces built from the
parabolic operator L – see e.g. [5]. For α P p0, 2q, the parabolic space Cα,

or CαT , coincides as a set with CTC
α X C

α{2
T L8, and the Besov norm on Cα

is equivalent to the elementary norm

} ¨ }Cα :“ } ¨ }CTCα ` } ¨ }Cα{2T L8
.

2 Paracontrolled setting

Let ξ stand for a space white noise on the 2-dimensional torus. In its simplest
form, the multiplication problem raised by an ill-posed product, like the term gpuqξ
in the model 2-dimensional generalised (PAM) equation

L u “ gpuqξ,

is dealt within paracontrolled calculus by looking for solutions u of the equation in
an a priori rigidly structured, graded, solution space, whose elements locally look like
some reference function built from ξ only by classical means. This approach requires
the problem-independent assumption that some product(s) involving only the noise ξ
can be given an analytical sense in some appropriate distribution/function space(s);
this is typically done using some probabilistic tools. The datum of ξ and all these

distributions defines the enhanced noise pξ. In the present setting where the spatial
noise ξ is pα ´ 2q-Hölder, for 2

3 ă α ă 1, only one extra component needs to be
added to ξ to get the enhanced noise, the associated solution space has two levels,
and a potential solution u two components

`

u, u1
˘

. The structure of the elements in
the solution space and the datum of the enhanced noise allow for a proper analytical
definition fo the product gpuqξ and show that

v :“ Pu0 `L ´1
`

gpuqξ
˘

takes values in the solution space; write Φ
`

u, u1
˘

:“
`

v, v1
˘

for its components, with

Φ a regular fuction of pu, u1
˘

. The equation

u “ Pu0 `L ´1
`

gpuqξ
˘

,

or rather,
pu, u1

˘

“ Φ
`

u, u1
˘

is then solved on a short time interval using a fixed point argument. The short
time horizon is what provides the local contracting character of the map Φ. This
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scheme works particularly well for an initial condition u0 P C
2α, as the term Pu0

can then be inserted in some remainder term; see for instance [5]. One needs to
adopt a different functional setting for the levels of the solution space to work with
an initial condition u0 in Cα, see [11]. Schauder estimates are used crucially in this
reasoning to ensure that L ´1

`

gpuqξ
˘

takes values in the solution space, and one has
good quantitative controls on its two levels.

The situation gets more complex in the quasilinear setting where the operator

L u :“ Bt ´ apuq∆

depends itself on the solution u of the equation L uu “ gpuqξ. Both Otto-Weber [17]
and Furlan-Gubinelli [10] work with parameter dependent operators L b :“ Bt´ b∆,
for a real-valued positive parameter b ranging in a compact subinterval of p0,8q, and
take profit from b-uniform Schauder estimates. The difficulty in their approaches is
to get a fixed point reformulation of the equation in an adequate setting. The new
rough path-flavoured setting developed at length by Otto and Weber in [17] has an
elegant counterpart in the relatively short work [10] of Furlan and Gubinelli, that
requires an extension of paracontrolled calculus via the introduction of paracompo-
sition operators and associated continuity results, mixing seminal works of Alinhac
[1] in the 80’s and the basic tools of paracontrolled calculus [11]. We show in the
present work that the analysis of the quasilinear generalised (PAM) equation (1) can
be run efficiently using the elementary paracontrolled calculus, with no need of any
new tools.

The foundations of paracontrolled calculus were laid down in the seminal work
[11] of Gubinelli, Imkeller and Perkowski, to which we shall refer the reader for a
number of facts used here – see also [5, 6, 7] for extensions. We refer to the book [4] of
Bahouri, Chemin and Danchin for a gentle introduction to the use of paradifferential
calculus in the study of nonlinear PDEs. We shall then freely use the notations
Πfg and Πpf, gq for the paraproduct of f by g and the corresponding resonant
term, defined in terms of Littlewood-Paley decomposition, for any two functions f
and g in some spatial Hölder spaces of any regularity exponent. We will denote
by Π the modified paraproduct on parabolic functions/distributions introduced in
[11], formula (36) in Section 5, in which the time fluctuations of the low frequency
distribution/function are averaged differently at each space scale. (This modified
paraproduct is different from the parabolic paraproduct introduced in [7].) The
following definition of a paracontrolled distribution will make clear what a “rigidly
structured, graded, solution space” may look like. We fix once and for all some
regularity exponents α P

`

2
3 , 1

˘

and β P
`

2
3 _

α
2 , α

˘

, and define X P Cα as the
(random) zero spatial mean solution of the equation

´∆X “ ξ.

Definition – We define the space Cα,βpXq of functions paracontrolled by X as

the set of pairs of parabolic functions pu, u1q P Cα ˆ Cβ such that

u7 :“ u´Πu1X P Cα

satisfies

sup
0ătďT

t
2β´α

2

›

›u7
›

›

C2β ă 8.

Setting
›

›pu, u1q
›

›

α,β
:“ }u1}Cβ ` }u

7}Cα ` sup
0ătďT

t
2β´α

2

›

›u7
›

›

C2β
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turns Cα,βpXq into a Banach space.

Mention here that different choices can be done for the norm on the space of con-
trolled functions; different purposes may lead to different choices – see for instance
the study of the 2-dimensional generalised (PAM) equation done in [5]. Given a
positive time horizon T , set

uT0 :“ PTu0,

to shorten notations, and recall for future use the bounds

}uT0 }C2β À T´
2β´α

2 }u0}Cα

and
›

›uT0 ´ u0

›

›

L8
À T

α
2 }u0}Cα .

Our starting point for the analysis of the quasilinear generalised (PAM) equation

Btu´ apuq∆u “ gpuqξ

is to rewrite it under the form

L 0u :“ Btu´ apu
T
0 q∆u “ gpuqξ `

`

apuq ´ apuT0 q
˘

∆u. (2)

Notice that the term
`

apuq´apuT0 q
˘

∆u is still part of the leading order operator, so
one cannot expect to treat it by perturbation methods. A suitable paracontrolled
ansatz allows however to cancel out the most irregular part of this term and leave
us with a remainder that has a better regularity and can then be treated as a
perturbation term. This simplification mechanism rests heavily on the fact that
since the solution remains “close” to its initial value on a small time interval, the
difference apuq´apuT0 q, and

`

apuq´apuT0 q
˘

∆u with it, needs to be small in a suitable
sense.

2.1 Fixed point setting

We rephrase in this section equation (1), or equivalently equation (2), as a fixed
point problem in Cα,βpXq for a regular map Φ from Cα,βpXq to itself. This requires
that we first make it clear that the a priori ill-defined products gpuqξ and

`

apuq ´

apuT0 q
˘

∆u actually make sense for u paracontrolled by X. This holds under the

assumption that ΠpX, ξq can be properly defined as an element of CTC
2α´2; such

matters are dealt with in Section 2.3, from which Theorem 1 will follow. Given the
regularizing properties of the resolution operator of the operator L 0, encoded in
the Schauder estimates that we shall use below, terms in CTC

ěα`β´2, where the
space CTC

ěα`β´2 is the union of CTC
γ for γ ě α ` β ´ 2, will be considered as

remainders in the analysis of different terms done in this section.

The analysis of the term gpuqξ is done as in Gubinelli, Imkeller and Perkowski’s
treatement of the generalised (PAM) equation, using paralinearisation of gpuq and
the continuity of the correctors

Cpa, b, ξq “ Π
`

Πab, ξ
˘

´ aΠpb, ξq,

Cpa, b, ξq :“ Π
`

Πab, ξ
˘

´ aΠpb, ξq,

from CTC
α1 ˆCTC

α2 ˆCα´2 to CTC
α1`α2`α´2, provided α1`α2`α ą 2. It gives

gpuqξ “ Πgpuqξ `Πξ

`

gpuq
˘

` g1puqu1ΠpX, ξq ` p‹q, (3)

for a remainder p‹q that is the sum of g1puqΠ
`

u7, ξ
˘

and an element of CTC
2α`β´2,

whose norm depends polynomially on
›

›pu, u1q
›

›

α,β
, and which depends continuously



6

on ξ P Cα´2. Given the regularity assumption on u7 the term g1puqΠ
`

u7, ξ
˘

can only
be evaluated in a weighted space.

We shall use the following elementary lemma to make clear that the term
`

apuq´

apuT0 q
˘

∆u is well-defined when u is paracontrolled by X, and give a description for
it up to some remainder term; the proof of the lemma is given in Appendix for
completeness.

2. Lemma – The following two estimates hold.

‚ Let f, g P Cβ, a P Cα and b P Cα´2 be given. Then
›

›

›
Π
`

Πfa,Πgb
˘

´ fgΠpa, bq
›

›

›

C2α`β´2
À }f}Cβ}g}Cβ}a}Cα}b}Cα´2 .

‚ For f in the parabolic Hölder space Cβ, we have the intertwining continuity
estimate

›

›

›
L 0

`

ΠfX
˘

´ΠapuT0 qf

`

´∆X
˘

›

›

›

CTCα`β´2
À

´

1` T´
2β´α

2 }u0}Cα

¯

}f}Cβ}X}Cα .

We shall use the notation p˚q for an element of CTC
ěα`β´2 which may change

from line to line, but which depends continuously on ξ P Cα´2; such distributions
are remainders in the present analysis. We use first the paracontrolled structure of
u in the term ∆u, and the continuity result on the commutator

“

∆,Π
‰

, given in
Lemma 5.1 of [11], to write

`

apuq ´ apuT0 q
˘

∆u “ ´
`

apuq ´ apuT0 q
˘

Πu1ξ ` p˚q `
`

apuq ´ apuT0 q
˘

∆u7

“ ´Πpapuq´apuT0 qqu1
ξ ´Π

´

apuq ´ apuT0 q,Πu1ξ
¯

` p˚q

`
`

apuq ´ apuT0 q
˘

∆u7;

the second equality is a special case of Theorem 6 in [6]. Note that the term in ∆u7

cannot go inside the remainder as it has an explosive spatial C2β norm at time 0`.
Using that

`

Πu1ξ ´ Πu1ξ
˘

P CTC
α`β´2, such as proved in Lemma 5.1 of [11], the

first continuity estimate of Lemma 2 then gives

Π
´

apuq,Πu1ξ
¯

“ a1puq pu1q2 ΠpX, ξq ` a1puqu1Π
`

u7, ξ
˘

` p˚q; (4)

we have in addition
›

›

›
Π
`

apuT0 q,Πu1ξ
˘

›

›

›

Cα`2β´2
À }a}C1

´

1` T´
2β´α

2 }u0}Cα

¯

}u1}Cβ}ξ}Cα´2 .

(Schauder estimates for the resolution operator of L 0 will later take care of the
exploding factor in T .) We can thus rewrite equation (2) at this point under the
form

L 0u “ Πgpuq´papuq´apuT0 qqu
1ξ `

`

apuq ´ apuT0 q
˘

∆u7 ` p˚1q;

building on the second identity of Lemma 2, we end up with the equation

ΠapuT0 qu
1ξ `L 0u7 “ Πgpuq´papuq´apuT0 qqu

1ξ `
`

apuq ´ apuT0 q
˘

∆u7 ` p˚2q,

that is

L 0u7 “ Πgpuq´apuqu1ξ `
`

apuq ´ apuT0 q
˘

∆u7 ` p˚2q.

We use here the notation p˚iq to single out these particular terms, as opposed to
the above unspecified remainders; each of them takes the form

p˚iq “
`

g1puq ´ a1puqu1
˘

Π
`

u7, ξ
˘

` p˚iqěα`β´2,
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with p˚iqěα`β´2 P CTC
ěα`β´2. As said above, the term involving u7 needs to be

evaluated in a weighted space, although it has positive space regularity at each posi-
tive time. Let say that a constant depends on the data if it depends on }ξ}Cα´2 ,
}X}Cα ,

›

›ΠpX, ξq
›

›

C2α´2 , }g}C3
b
, }a}C3

b
and possibly }u0}Cα . Given the fact that

p˚iqěα`β´2 is given explicitly in terms of multilinear functions of u, u1 or C2
b func-

tions of u, the term p˚iqěα`β´2 defines a function of pu, u1q P Cα,βpXq that is locally
Lipschitz, with a Lipschitz constant that depends polynomially on

›

›pu, u1q
›

›

α,β
, and

p˚iqěα`β´2 has itself a CTC
ěα`β´2-norm that is polynomial in terms of

›

›pu, u1q
›

›

α,β
;

everything depends of course on the data.

For pu, u1q P Cα,βpXq, set
Φpu, u1q :“ pv, v1q,

where

v1 :“
gpuq ´

`

apuq ´ apuT0 q
˘

u1

apuT0 q

L 0v :“ ΠapuT0 qv
1ξ `

`

apuq ´ apuT0 q
˘

∆u7 ` p˚1q,

with vt“0 “ u0, and

L 0v7 :“
`

apuq ´ apuT0 q
˘

∆u7 ` p˚2q, (5)

with v7t“0 “ u0 ´Πv1t“0
X. For λ positive, set

BT pλq :“

"

pu, u1q P Cα,βpXq ; ut“0 “ u0, u
1
t“0 “

gpu0q

apu0q
,
›

›pu, u1q
›

›

α,β
ď λ

*

.

We are going to prove that

‚ the map Φ sends BT pλq into itself, for an adequate choice of radius λ and a
choice of sufficiently small time horizon T ,

‚ it is in that case a contraction of BT pλq.

2.2 Fixed point

We first give in the next lemma a control on the two terms involving v7 in the
dynamics (5) of v.

3. Lemma – Given u :“ pu, u1q, u1 :“ pu1, u
1
2q, u2 :“ pu2, u

1
2q P BT pλq, set

ε1puq :“ ε1pu, u
1q “

`

g1puq ´ a1puqu1
˘

Πpu7, ξq,

ε2puq :“ ε2pu, u
1q “

`

apuq ´ apuT0 q
˘

∆u7.

Then we have the estimates

sup
0ătďT

t
2β´α

2

›

›ε1puqptq
›

›

C2α´2 À C1

`

}u}α,β
˘

,

sup
0ătďT

t
2β´α

2

›

›ε2puqptq
›

›

C2β´2 À T
α´β
2 C1

`

}u}α,β
˘

` C2

for a constant C1

`

}u}α,β
˘

depending polynomially on the data and }u}α,β, and C2

depending on the data, and

sup
0ătďT

t
2β´α

2

›

›

›

`

εipu1q ´ εipu2q
˘

ptq
›

›

›

C2α´2
À C3

`

}u1}α,β , }u2}α,β
˘ ›

›u1 ´ u2

›

›

α,β
,

sup
0ătďT

t
2β´α

2

›

›

›

`

εipu1q ´ εipu2q
˘

ptq
›

›

›

C2β´2
À T

α´β
2 C3

`

}u1}α,β , }u2}α,β
˘
›

›u1 ´ u2

›

›

α,β
,
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for a constant C3

`

}u1}α,β, }u2}α,β
˘

depending polynomially on the data and }u1}α,β
and }u2}α,β.

Remark the gain of a factor T
α´β
2 in the estimate for the local Lipschitz character

of ε2 as a function of u; this is taken care of by Schauder estimates for ε1.

Proof – The size bound for εipuqptq is elementary. For ε1puq, write
›

›

›

 `

g1puq ´ a1puqu1
˘

Π
`

u7, ξ
˘(

ptq
›

›

›

C2α´2
À

›

›

`

g1puq ´ a1puqu1
˘

ptq
›

›

Cβ

›

›u7ptq
›

›

C2β }ξ}α´2

À p¨ ¨ ¨ q
›

›u7ptq
›

›

C2β }ξ}Cα´2

with

p¨ ¨ ¨ q “ }g1}C1

`

p1` }u}Cα
˘

` }a1}C1

`

1` }u}Cα
˘

}u1}Cβ ,

and use the fact that 3β ´ 2 is positive to get
›

›

 `

apuq ´ apuT0 q
˘

∆u7
(

ptq
›

›

C2β´2 À
›

›apuq ´ apuT0 q
›

›

Cβ

›

›u7ptq
›

›

C2β .

This can be further estimated using
›

›apuq ´ apuT0 q
›

›

Cβ ď
›

›apuq ´ apu0q
›

›

Cβ `
›

›apu0q ´ apu
T
0 q
›

›

Cβ
,

where
›

›apuq ´ apu0q
›

›

Cβ À T
α´β
2 }a}C2

´

1` }u}Cα
¯

}u´ u0}Cα ,

and from Lemma 8 in the Appendix
›

›apu0q ´ apu
T
0 q
›

›

Cβ ď }a
1}C1

›

›u0 ´ u
T
0

›

›

L8
` }a2}C0

›

›u0 ´ u
T
0

›

›

L8
}u0}Cβ ` }a1}C0}u0 ´ u

T
0 }Cβ

À T
α´β

2 }u0}Cα .

Therefore

›

›

 `

apuq ´ apuT0 q
˘

∆u7
(

ptq
›

›

C2β´2 À T
α´β
2

`

1` }u}Cα ` }u0}Cα
˘
›

›u7ptq
›

›

C2β .

We only look at the Lipschitz estimate for ε2 and leave the reader treat the
easier case of ε1. It suffices in the former case to write

›

›

›

!

`

apu1q ´ apu
T
0 q
˘

∆u7
1 ´

`

apu2q ´ apu
T
0 q
˘

∆u7
2

)

ptq
›

›

›

C2β´2

ď

›

›

›

 `

apu1q ´ apu2q
˘

∆u7
1

(

ptq
›

›

›

C2β´2
`

›

›

›

!

`

apu2q ´ apu
T
0 q
˘

∆pu7
1 ´ u

7
2q

)

ptq
›

›

›

C2β´2

À
›

›

`

apu1q ´ apu2q
`

tq
›

›

Cβ

›

›u7
1

›

›

C2β `

´

›

›apu1q ´ apu0q
›

›

Cβ `
›

›apu0q ´ apu
T
0 q
›

›

Cβ

¯

›

›u7
1 ´ u

7
2

›

›

C2β

À T
α´β

2 }a}C2

`

1` }u1}Cα

˘

}u1 ´ u2}Cα

›

›u7
1ptq

›

›

C2β

` T
α´β

2

´

}a}C2

`

1` }u1}Cα

˘

` }u0}Cα

¯

›

›u7
1 ´ u

7
2

›

›

C2β

to get the result. B

4. Lemma – For u1, u2 in BT pλq and v1 :“ Φpu1q “
`

v1, v
1
1

˘

and v2 :“ Φpu2q “
`

v2, v
1
2

˘

, we have the estimates

›

›v11}Cβ À T
α´β
2 C1

`

}u1}α,β
˘

` C2,

}v12 ´ v
1
1}Cβ À T

α´β
2 C3

`

}u1}α,β, }u2}α,β
˘
›

›u1 ´ u2

›

›

α,β
.
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Proof – We first bound
›

›v11}Cβ and start for that purpose from the rough estimate

}v11}Cβ ď

›

›

›

›

1

apuT0 q

›

›

›

›

Cβ

´

›

›gpu1q
›

›

Cβ `
›

›

`

apu1q ´ apu
T
0 q
˘

u11
›

›

Cβ

¯

.

Lemma 8 gives on the one hand
›

›gpu1q
›

›

Cβ À T
α´β
2 }g}C1

´

1` }u1}Cα
¯

`
›

›gpu0q
›

›

Cβ
.

(Be careful that u1 is not the time 1 value of some u.) On the other hand, as
in the proof of Lemma 3, we have

›

›

›

`

apu1q ´ apu
T
0 q
˘

u11

›

›

›

Cβ
À T

α´β
2

`

1` }u1}Cα ` }u0}Cα
˘

}u11}Cβ .

In order to obtain the Lipschitz bound of the statement, Lemma 8 gives us again
›

›gpu1q ´ gpu2q
›

›

Cβ À T
α´β
2 }g}C2

´

1` }u1}Cα
¯

}u1 ´ u2}Cα ,

and, with bi :“ apuiq ´ apu
T
0 q, for i “ 1, 2,

›

›b1u
1
1 ´ b2u

1
2

›

›

Cβ ď }b1}Cβ}u
1
1 ´ u

1
2}CTL8 ` }b1}CTL8}u

1
1 ´ u

1
2}Cβ

` }b1 ´ b2}Cβ}u
1
2}CTL8 ` }b1 ´ b2}CTL8}u

1
2}Cβ

À T
β
2 }a}C1

´

1` }u1}Cα ` }u0}α

¯

}u11 ´ u
1
2}Cβ

` T
α
2 }a}C1}u1}Cα}u

1
1 ´ u

1
2}Cβ

` T
α´β
2 }a}C2

`

1` }u1}Cα
˘

}u1 ´ u2}Cα}u
1
2}Cα

` T
α
2 }a}C2

`

1` }u2}Cα
˘

}u1 ´ u2}Cα}u
1
2}Cβ .

B

5. Lemma – Let an initial condition f0 P C
α be given, together with another function

g P C2, bounded below by a positive constant. Let also φ1 P C
`

p0, T s, C2β´2
˘

with

sup
0ătďT

t
2β´α

2

›

›φ1ptq
›

›

C2β´2 ă 8, (6)

and φ2 P C
`

p0, T s, Cα`β´2
˘

with

sup
0ătďT

t
2β´α

2

›

›φ2ptq
›

›

Cα`β´2 ă 8 (7)

be given. Let f be the solution to the evolution equation

Btf ´ g∆f “ φ1 ` φ2, fp0q “ f0. (8)

Then, choosing the time horizon T small enough, we have the estimate

sup
0ătďT

t
2β´α

2

›

›fptq
›

›

C2β ` }f}Cα

À }f0}Cα ` sup
0ătďT

t
2β´α

2

›

›φ1ptq
›

›

C2β´2 ` T
α´β
2 sup

0ătďT
t
2β´α

2

›

›φ2ptq
›

›

Cα`β´2 ,
(9)

with an implicit multiplicative positive constant in the right hand side depending only
on the Cα-norm of g.

The fact that this multiplicative positive constant depends only on the Cα-norm
of g is crucial for what comes next.
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Proof – Let pQtq0ďtďT stand for the semigroup generated by the operator divpg∇¨q.
We know from [3] and [5] that the resolution operator associated with the heat
operator built from divpg∇¨q satisfies the Schauder estimates, such as stated
in Lemma A.7-A.9 of [11] and Corollary 4.5 in [9], with implicit multiplicative
constants depending only on the Cα-norm of g. Write ∇g ¨ ∇f for

ř

i Big Bif .
The solution f to equation (8) is given in mild formula

ft “ Qtf0 ´

ż t

0
Qt´s

`

∇g ¨∇fpsq
˘

ds`

ż t

0
Qt´sφ1psq ds`

ż t

0
Qt´sφ2psqds.

Note that since the exponent p2β ` α´ 2q is positive, we have

sup
0ătďT

t
2β´α

2

›

›∇g ¨∇fptq
›

›

Cα´1 À }g}Cα sup
0ătďT

t
2β´α

2

›

›fptq
›

›

C2β .

It follows from the Schauder estimates that we have at any positive time t in
p0, T s the upper bound

t
2β´α

2

›

›fptq
›

›

C2β À sup
0ăsďt

s
2β´α

2

›

›φ1psq
›

›

C2β´2 ` T
α´β
2 sup

0ăsďt
s

2β´α
2

›

›φ2psq
›

›

Cα`β´2

` T
1`α´2β

2 }g}Cα sup
0ăsďt

s
2β´α

2

›

›fpsq
›

›

C2β ` }f0}Cα ;

taking the time horizon T small enough then yields part of the estimate of the
statement. Next, we have

›

›fptq ´ fpsq
›

›

L8
ď
›

›pQt´s ´ Idqf0

›

›

L8
`

›

›

›

›

ż t

s
Qt´rp∇g ¨∇fqdr

›

›

›

›

L8

`

›

›

›

›

ż s

0
pQt´s ´ IdqQs´rp∇g ¨∇fqdr

›

›

›

›

L8
`

›

›

›

›

ż t

s
Qt´rφ1prqdr

›

›

›

›

L8

`

›

›

›

›

ż s

0
pQt´s ´ IdqQs´rφ1prqdr

›

›

›

›

L8
`

›

›

›

›

ż t

s
Qt´rφ2prq dr

›

›

›

›

L8

`

›

›

›

›

ż s

0
pQt´s ´ IdqQs´rφ2prqdr

›

›

›

›

L8
“: I1 ` ¨ ¨ ¨ ` I7.

Using Lemma A.8 [11] to the first term, we obtain

I1 À |t´ s|
α
2 }f0}Cα .

For the other terms, and for any positive exponent a, we use repeatedly the
following elementary extension of Lemma A.7 of [11]

›

›Qtu
›

›

L8
À t´

a
2 }u}C´a . (10)

(It can be seen to hold as follows. Writing L for the operator divpg∇¨q and

setting Rs :“ psLqe´sL, we know that Rsu is bounded in L8 by s´a{2 if u is C´a

– this semigroup picture of Hölder spaces is explained and used for instance in
[5]. The above continuity estimate comes then from the integral representation
Qt “

ş8

t Rs
ds
s .) Apply then (10) to the second term and Lemma A.8 of [11] to
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the third one to get

I2 ` I3 À

ż t

s
pt´ rq

α´1
2

›

›∇g ¨∇fprq
›

›

Cα´1 dr ` |t´ s|
α
2

ż s

0

›

›

›
Qs´r

`

∇g ¨∇fprq
˘

›

›

›

Cα
dr

À }g}Cα

"

sup
0ărďt

r
2β´α

2

›

›fprq
›

›

C2β

*
ż t

s
pt´ rq

α´1
2 r´

2β´α
2 dr

` |t´ s|
α
2 }g}Cα

"

sup
0ărďt

r
2β´α

2

›

›fprq
›

›

C2β

*
ż s

0
ps´ rq´

1
2 r´

2β´α
2 dr

À

´

|t´ s|
1
2
`α´β ` T

1
2
´β`α

2 |t´ s|
α
2

¯

}g}Cα

"

sup
0ărďt

r
2β´α

2

›

›fprq
›

›

C2β

*

À T
1`α´2β

2 |t´ s|
α
2 }g}Cα

"

sup
0ărďt

r
2β´α

2

›

›fprq
›

›

C2β

*

.

We bound similarly the quantities

I4 ` I5 À

ż t

s
pt´ rq´1`β

›

›φ1prq
›

›

C2β´2dr ` |t´ s|
α
2

ż s

0

›

›Qs´rφ1prq
›

›

Cα
dr

À |t´ s|
α
2

"

sup
0ărďt

r
2β´α

2

›

›φ1prq
›

›

C2β´2

*
ż t

s
pt´ rq´1`β´α

2 r´
2β´α

2 dr

` |t´ s|
α
2

"

sup
0ărďt

r
2β´α

2

›

›φ1prq
›

›

C2β´2

*
ż s

0
ps´ rq´1`β´α

2 r´
2β´α

2 dr

and, since 2β ´ α ď β, and one can assume 0 ď t ď T ď 1,

I6 ` I7 À

ż t

s
pt´ rq´1`α

2
`
β
2

›

›φ2prq
›

›

Cα`β´2 dr ` |t´ s|
α
2

ż s

0

›

›Qs´rφ2prq
›

›

Cα
dr

À |t´ s|
α
2 T

α´β
2

"

sup
0ărďt

r
2β´α

2

›

›φ2prq
›

›

Cα`β´2

*
ż t

s
pt´ rq´1`β

2 r´
β
2 dr

` |t´ s|
α
2 T

α´β
2

"

sup
0ărďt

r
2β´α

2

›

›φ2prq
›

›

Cα`β´2

*
ż s

0
ps´ rq´1`β

2 r´
β
2 dr.

Since for any fixed positive exponent δ P p0, 1q, we have
ż t

0
pt´ rq´1`δ r´δ dr À 1,

uniformly in t P p0, T s and T ď 1, we deduce that

}f}
C
α{2
T L8

À }f0}Cα ` sup
0ătďT

t
2β´α

2

›

›φ1ptq
›

›

C2β´2

` T
α´β
2 sup

0ătďT
t
2β´α

2

›

›φ2ptq
›

›

Cα`β´2 .

Very similar arguments give the estimate

}ft}Cα À }f0}α ` }g}Cα sup
0ărďt

r
2β´α

2

›

›fprq
›

›

C2β

ż t

0
pt´ rq´

1
2 r´

2β´α
2 dr

` sup
0ărďt

r
2β´α

2

›

›φ1prq
›

›

C2β´2

ż t

0
pt´ rq´1`β´α

2 r´
2β´α

2 dr

` sup
0ărďt

r
β
2

›

›φ2prq
›

›

Cα`β´2

ż t

0
pt´ rq´1`β

2 r´
β
2 dr,
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from which we finally get

}f}L8T Cα À }f0}Cα ` sup
0ătďT

t
2β´α

2

›

›φ1ptq
›

›

C2β´2

` T
α´β
2 sup

0ătďT
t
2β´α

2

›

›φ2ptq
›

›

Cα`β´2 ,

and the result of the statement. B

Recall that u0 is α-Hölder. The following statement is a direct corollary of
Lemma 5 and the fact that while uT0 is regular as a consequence of the regular-
izing properties of the heat semigroup, its norm as a regular element blows up as T
decreases to 0. On the other hand, the spatial α-Hölder norm of uT0 , or apuT0 q, is
controlled in terms of the α-Hölder norm of u0, with no exploding factor, uniformly
in T near 0`.

6. Corollary – Assume we are given some functions φ1 P C
`

p0, T s, C2β´2
˘

and φ2 P

C
`

p0, T s, Cα`β´2
˘

satisfying the estimates (6) and (7). Given z0 P C
α and z1 P Cβ,

let z stand for the solution of the quation
`

Bt ´ apu
T
0 q∆

˘

z “ ΠapuT0 qz
1ξ ` φ1 ` φ2, zp0q “ z0.

Then pz, z1q P Cα,βpXq, and we have the size estimate

sup
0ătďT

t
2β´α

2

›

›z7ptq
›

›

C2β `
›

›z7
›

›

Cα

À }z0}Cα `
›

›z1p0q
›

›

L8
}X}Cα ` T

α´β
2

`

1` }u0}Cα
˘

}z1}Cβ}X}Cα

sup
0ătďT

t
2β´α

2

›

›φ1ptq
›

›

C2β´2 ` T
α´β
2 sup

0ătďT
t
2β´α

2

›

›φ2ptq
›

›

Cα`β´2 ,

(11)

with an implicit multiplicative positive constant in the right hand side depending only
on the Cα-norm of u0. If py, y1q P Cα,βpXq is associated similarly to another set of
data ψ1, ψ2, y0 and y1, with y solution of the equation

`

Bt ´ apu
T
0 q∆

˘

y “ ΠapuT0 qy
1pξq ` ψ1 ` ψ2, yp0q “ y0 P C

α,

then

sup
0ătďT

t
2β´α

2

›

›z7ptq ´ y7ptq
›

›

C2β `
›

›z7 ´ y7
›

›

Cα

À }z0 ´ y0}Cα `
›

›z1p0q ´ y1p0q
›

›

L8
}X}Cα ` T

α´β
2

`

1` }u0}Cα
˘

}z1 ´ y1}Cβ}X}Cα

` sup
0ătďT

t
2β´α

2

›

›φ1ptq ´ ψ1ptq
›

›

C2β´2 ` T
α´β
2 sup

0ătďT
t
2β´α

2

›

›φ2ptq ´ ψ2ptq
›

›

Cα`β´2 ,

here again, with an implicit multiplicative positive constant in the right hand side
depending only on the Cα-norm of u0.

Proof – Recall we write L 0 for the operator Bt ´ apu
T
0 q∆, for short. Set

z7 :“ z ´Πz1X.

As this function is the solution of the equation

L 0z7 “ L 0z ´L 0
´

Πz1X
¯

“ ΠapuT0 qz
1ξ ` φ1 ` φ2 ´

!

L 0
´

Πz1X
¯

`ΠapuT0 qz
1p´ξq

)

`ΠapuT0 qz
1p´ξq

we have

L 0z7 “ φ1 ` φ2 ´

!

L 0
`

Πz1X
˘

`ΠapuT0 qz
1p´ξq

)

,
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with initial condition

z7p0q “ z0 ´Πz1p0qX P Cα.

We can then apply Lemmas 5 and 2 to get the estimate (11) from estimate (9).
The estimate for z7 ´ y7 is obtained by the same argument. B

We now have in hands all we need to prove Theorem 1 in its abstract form. Recall
that the map

Φpuq “ Φpu, u1q “: v “: pv, v1q

was defined at the end of Section 2.1, and note as a preliminary remark that
›

›v7t“0

›

›

Cα
ď Cpu0q

`

1` }X}Cα
˘

, for a positive constant depending only on }u0}Cα .

7. Theorem – The map Φ is a contraction from BT pλq into itself, for λ large enough
and T small enough.

Proof – Given the definition of Φ and the size estimates proved in Lemma 3, Lemma
4 and Corollary 6, we see that the bound

›

›Φpuq
›

›

α,β
À C1 ` C2

`

}u}α,β
˘

T
α´β
2

holds for some positive constants Ci depending on the data, and C2 depending
also on }u}α,β. The set BT pλq is then sent into itself by Φ for an adequate choice
of parameters λ and T .

The map inherits its contracting character on BT pλq from the Lipschitz esti-

mates given in Lemma 3, Lemma 4 and Corollary 6, and the fact that v7t“0 is
fixed, and depends only on u0, for functions v7 built from Φ. B

As the map Φ depends continuously on the enhanced noise pξ :“
`

ξ,ΠpX, ξq
˘

P

Cα´2 ˆ C2α´2, and the contracting character of Φ is locally uniform on pξ, its fixed

point depends continuously on pξ; we denote it by I
`

pξ
˘

. Given a zero spatial mean
smooth function ζ on the 2-dimensional torus, denote by Z the solution to the
equation ´∆Z “ ζ. The function I extends the solution map I that associates to a
smooth ’noise’ ζ the solution to the well-posed quasilinear equation

Btv ´ apvq∆v “ gpvqζ, vt“0 “ u0 P C
α,

in the sense that

Ipζq “ I
`

ζ,ΠpZ, ζq
˘

,

for any smooth noise. (The fact that all these functions can be defined on the same
time interval is part of the claim.)

2.3 Renormalisation

The above analysis of the singular quasilinear equation (1) requires that we start
from the data of ξ P Cα´2 and ΠpX, ξq P C2α´2. For a typical realization of space
white noise, X is only in Cα and one cannot make sense of the resonant term ΠpX, ξq
on a purely analytical basis. Gubinelli, Imkeller and Perkowski first showed in [11]
that if ξε :“ Pεξ, and Xε solves the equation ´∆Xε :“ ξε, then there exists diverging
constants cε such that

Π
`

Xε, ξε
˘

´ cε
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converges almost surely in C2α´2 to some limit element, denoted by ΠpX, ξq. At the
same time, identities (3) and (4) make it clear that

I
´

ξε,Π
`

Xε, ξε
˘

´ cε
¯

“ Iε
`

ξε
˘

,

where Iε stands for the solution map that associates to a smooth ’noise’ ζ the solution
to the well-posed quasilinear equation

Btv ´ apvq∆v “ gpvqζ ´ cε
"

g1g

a
´ a1

´g

a

¯2
*

pvq, vt“0 “ u0.

Theorem 1 follows as a consequence of the continuity of the map I and the almost

sure convergence of
´

ξε,Π
`

Xε, ξε
˘

´ cε
¯

to
`

ξ,ΠpX, ξq
˘

in Cα´2 ˆ C2α´2, together

with the remark that for pu, u1q P Cα,βpXq, we have the bound

}u}Cα À }u
1}Cβ}X}Cα `

›

›u7
›

›

Cα ,

a consequence of the elementary Lemma 12.

A Elementary side results

We collect in this Appendix a number of elementary side results, together with
their proofs, to make this work self-contained. They can all be found somewhere
else in some form or another. As a warm-up, we start with some elementary claims,
used in the main body of the text. Recall the classical notation ∆i for the Fourier
multipliers used in Littlewood-Paley decomposition; refer to Bahouri, Chemin and
Danchin’s textbook [4] for the basics on this subject.

8. Lemma – 1. For u in the spatial Hölder space Cα, we have
›

›gpuq
›

›

Cα
ď }g}C1

`

1` }u}Cα
˘

,

and
›

›gpuq ´ gpvq
›

›

Cα
ď }g}C2

`

1` }u}α
˘

}u´ v}Cα .

2. For u in the parabolic Hölder space Cα, and 0 ă β ď α, we have
›

›gpuq
›

›

Cβ À T
α´β
2 }g}C1

`

1` }u}Cα
˘

`
›

›gpu0q
›

›

Cβ
,

and if ut“0 “ vt“0, then
›

›gpuq ´ gpvq
›

›

Cβ À T
α´β
2 }g}C2

`

1` }u}Cα
˘

}u´ v}Cα .

Proof – The Lipschitz estimate of point 1 comes by writing
`

gpuq ´ gpvq
˘

pxq ´
`

gpuq ´ gpvq
˘

pyq

as the boundary term of the integral of the derivative of the function s P r0, 1s ÞÑ
`

gpuq ´ gpvq
˘`

y ` spx´ yq
˘

.

To see point 2, take any function h P Cβ and start from the following two
estimates

›

›∆i

 

hptq ´ hp0q
(›

›

L8
À

#

2´iα }h}CT Cα

T
α
2 }h}

C
α{2
T L8

to get by interpolation of the two upper bounds the estimate

}h}CTCβ À T
α´β
2 }h}εCTCα }h}

1´ε

C
α
2
T L8

`
›

›hp0q
›

›

Cβ
.
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It follows that if ut“0 “ vt“0, then we have
›

›gpuq ´ gpvq
›

›

CT Cβ
À T

α´β
2

›

›gpuq ´ gpvq
›

›

ε

CTCα

›

›gpuq ´ gpvq
›

›

1´ε

C
α{2
T L8

À T
α´β
2 }g}C2

!

p1` }u}CT Cαq}u´ v}CT Cα

`

´

1` }u}
C
α{2
T L8

¯

}u´ v}
C
α{2
T L8

)

.

The Lipschitz estimate of point 2 then comes as a consequence of the inequality
›

›gpuq ´ gpvq
›

›

C
β{2
T L8

ď T
α´β
2

›

›gpuq ´ gpvq
›

›

C
α{2
T L8

ď T
α´β
2 }g}C2

´

1` }u}
C
α{2
T L8

¯

}u´ v}
C
α{2
T L8

.

B

The next result is a variation on Gubinelli, Imkeller and Perkowski’s fundamental
’commutator’ lemma; it is the first part of Lemma 2. It also happens to be special
case of a more general result, proved in Theorem 2 of [6]. Recall that we work with
α ą 2

3 .

9. Lemma – Let f, g P Cβ, and a P Cα and b P Cα´2 be given, such that Πpa, bq is a
well-defined element of C2α´2. Then

›

›

›
Π
`

Πfa,Πgb
˘

´ pfgqΠpa, bq
›

›

›

C2α`β´2
À }f}Cβ}g}Cβ}a}Cα}b}Cα´2 .

Proof – Denote by Kk,xpzq :“ Kkpx´ zq the convolution kernel of the Littlewood-
Paley projector ∆k. We have

∆k

´

Π
`

Πfa,Πgb
˘

¯

pxq “

ż

Kk,xpyq
´

Π
`

Πfpyqa,Πgpyqb
˘

¯

pyq dy

`

ż

Kk,xpyq
´

Π
`

Πf´fpyqa,Πgpyqb
˘

¯

pyq dy

`

ż

Kk,xpyq
´

Π
`

Πfa,Πg´gpyqb
˘

¯

pyq dy

“: I1 ` I2 ` I3.

The first term gives
´

Π
`

Πfpyqa,Πgpyqb
˘

¯

pyq “
ÿ

i„j

∆i

`

Πfpyqa
˘

pyq∆j

`

Πgpyqb
˘

pyq

“
ÿ

i„j

fpyqgpyq
`

∆ia
˘

pyq
`

∆jb
˘

pyq “ fpyqgpyqΠpa, bqpyq

so it remains to estimate I2 and I3 in the spatial Hölder space C2α`β´2. We
have

|I2| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kk,xpyq
ÿ

i„jÁk

∆i

`

Πf´fpyqa
˘

pyqgpyq
`

∆jb
˘

pyq dy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À }f}Cα}a}Cα}g}L8}b}Cα´2

ż

ˇ

ˇKk,xpyq
ˇ

ˇ

˜

ÿ

iÁk

2´p2α`β´2qi

¸

dy;

since 2α` β ´ 2 ą 0 we obtain in the end

|I2| À 2´p2α`β´2qk}f}Cα}a}Cα}g}L8}b}Cα´2
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Similarly, we have

|I3| À 2´p2α`β´2qk}f}L8}a}Cα}g}Cβ}b}Cα´2 ,

which completes the proof. B

10. Lemma – Given f P C2β, g P Cβ, and h P Cα´2, with regularity exponents in
p0, 2q, we have

›

›f Πgh´Πfgh
›

›

Cβ`α´2 À }f}C2β}g}Cβ}h}Cα´2 .

Proof – We have

f Πgh “ Πf pΠghq `ΠΠghpfq `Π
`

f,Πgh
˘

“
`

Πf pΠghq ´Πfgh
˘

`Πfgh`ΠΠghpfq `Π
`

f,Πgh
˘

,

where
›

›Πf

`

Πgh
˘

´Πfgh
›

›

Cβ`α´2 À }f}L8 }g}Cβ }h}Cα´2 ,

due to Proposition 23 of [6], and
›

›Π
`

f,Πgh
˘›

›

C2β`α´2 À }f}C2β }g}L8 }h}Cα´2

›

›ΠΠghf
›

›

C2α´2 À }f}Cα }g}L8 }h}Cα´2 .

B

The next proposition gives the second part of Lemma 2; recall L 0 “ Bt´apu0q∆.

11. Proposition – Given u1 P Cβ, we have the following continuity result for a commu-
tator

›

›

›
L 0

`

Πu1X
˘

´ΠapuT0 qu
1p´∆Xq

›

›

›

CT Cα`β´2
À

`

1` T´
2β´α

2 }u0}Cα
˘

}u1}Cβ}X}Cα .

Proof – Recall first from Lemma 5.1 in [11] that
›

›Πu1p∆Xq ´Πu1p∆Xq
›

›

CTCα`β´2 À }u
1}
C
β{2
T L8

}X}Cα . (12)

Then we write

L 0
`

Πu1X
˘

´ΠapuT0 qu
1p´∆Xq “

!

L 0
`

Πu1X
˘

` apuT0 qΠu1p∆Xq
)

` apuT0 q
!

Πu1p∆Xq ´Πu1p∆Xq
)

`

!

ΠapuT0 qu
1p∆Xq ´ apuT0 qΠu1p∆Xq

)

,

and observe that the second term on the right hand side can be estimated with
inequality (12)
›

›

›
apuT0 q

!

Πu1p∆Xq ´Πu1p∆Xq
)
›

›

›

Cα`β´2
À

`

1` }u0}α
˘

}u1}
C
β{2
T L8

}X}Cα ,

and that the third term can be taken care of by Lemma 10
›

›ΠapuT0 qu
1p∆Xq ´ apuT0 qΠu1p∆Xq

›

›

Cα`β´2 À
`

1` T´
2β´α

2 }u0}Cα
˘

}u1}Cβ}X}Cα .

We now estimate the first term. Since X does not depend on t,

Bt
`

Πu1X
˘

“
ÿ

i

BtpSi´1Qiu
1q∆iX.
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The spatial Fourier transform of Bt
`

Si´1Qiu
1
˘

∆iX is localized in an annulus of

size 2i, we obtain from estimate (32) in [11] that
›

›BtpSi´1Qiu
1q
›

›

CTL8
“

›

›BtpQiSi´1u
1q
›

›

CTL8

À 2´pβ´2qi
›

›Si´1u
1
›

›

C
β{2
T L8

À 2´pβ´2qi}u1}
C
β{2
T L8

,

so
›

›BtpΠu1X
˘
›

›

CTCα`β´2 À }u
1}Cβ}X}Cα . (13)

We have, on the other hand,

∆
`

Πu1X
˘

´Πu1p∆Xq “ Π∆uX ´ 2Π∇u1p∇Xq,

with
›

›QiSi´1∆u1
›

›

CTL8
ď

›

›Si´1∆u1
›

›

CTL8
À 2´pβ´2qi}u1}CTCβ

and
›

›QiSi´1∇u1
›

›

CTL8
À 2´pβ´1qi}u1}CTCβ .

Altogether, this gives
›

›∆pΠu1Xq´Πu1p∆Xq
›

›

CTCα`β´2 “ }Π∆upXq´2Π∇u1p∇Xq}CTCα`β´2 À }u1}Cβ}X}Cα ,

(14)
so we deduce from (13) and (14) that
›

›

›
L 0pΠu1pXqq ´ apu

T
0 qΠu1p´∆Xq

›

›

›

CTCα`β´2

“

›

›

›
Bt
`

Πu1X
˘

´ apuT0 q
!

∆pΠu1pXqq ´Πu1p∆Xq
)›

›

›

CTCα`β´2

À
`

1` }apuT0 q}Cβ
˘

}u1}Cβ}X}Cα ,

which concludes the proof. B

12. Lemma – Given f P Cβ and g P Cα, we have
›

›Πfg
›

›

Cα À }f}Cβ}g}Cα .

Proof – Let work here with the canonical heat operator L :“ Bt ´ ∆. We have
from the classical Schauder estimates

›

›Πfg
›

›

Cα À
›

›Πfp0qg
›

›

Cα
`
›

›L
`

Πfg
˘
›

›

CTCα´2 ,

and the rough bound
›

›Πfp0qg
›

›

Cα
ď }f}CTL8}g}Cα . Next, we write, with L g “

´∆g,

L
`

Πfg
˘

“

!

L
`

Πfg
˘

´Πf p´∆gq
)

´Πf p∆gq,

and use commutator Lemma 5.1 of [11] to get
›

›

›
L

`

Πfg
˘

´Πf p´∆gq
›

›

›

CT Cβ`α´2
À }f}Cβ}g}Cα ,

and
›

›

›
Πf p´∆gq

›

›

›

CTCα´2
À }f}CTL8}g}Cα .

B
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