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Abstract. — We introduce an exponential-type time-integrator for the KdV equation and prove
its first-order convergence in H* for initial data in H> without imposing any CFL condition.

We consider the Korteweg-de Vries (KdV) equation
1
(1) 8tU(t,fL’) + 8§’u(t,x) + iax(U(t,{E))Z = 07 'LL(O,.Z) = UO("B)7 (ta IL’) € R x T7

where for practical implementation issues we impose periodic boundary conditions. For local-
wellposedness results of the periodic KdV equation in low regularity spaces we refer to [1, 5, 19].

In the context of the numerical time integration of (non)linear partial differential equations
splitting methods as well as exponential integrators contribute attractive classes of integration
methods. We refer to [7, 8, 9, 18] for an extensive overview, and in particular to [3, 4, 16] for
the analysis of splitting methods for Schrodinger(-Poisson) equations. In recent years, splitting
as well as exponential integration schemes (including Lawson type Runge-Kutta methods [15])
have also gained a lot of attention in the context of the numerical integration of the KdV
equation, see for instance [10, 11, 12, 13, 14, 20| and the references therein. We also refer
to [2] for a splitting approach for the Kadomtsev-Petviashvili equation.

In particular, a distinguished convergence result was obtained in [11, 10]. In the latter it was
proven that the Strang splitting, where the right-hand side of the KdV equation is split into the
linear and Burgers part, respectively, is second-order convergent in H" for initial data in H"+°
for » > 1 without imposing any CFL condition assuming that the Burgers part is solved exactly.

Here we derive a first-order exponential-type time-integrator for the KdV equation (1) based
on Duhamel’s formula

t
(2) u(t) :e*aﬁtuw% / e 2 (=9)9, (u(s))2ds
0

Key words and phrases. — KdV equation — exponential-type time integrator — convergence.



2 MARTINA HOFMANOVA & KATHARINA SCHRATZ

looking at the ”twisted variable” v(t) = eagtu(t). This idea of ”twisting” the variable is widely
used in the analysis of partial differential equations in low regularity spaces (see, for instance
[1, 5, 19] for the periodic KdV equation) and also well known in the context of numerical
analysis, see [15] for the introduction of Lawson type Runge-Kutta methods. However, instead
of approximating the appearing integral with a Runge-Kutta method (see for instance [13]) we
use the key relation

(3) k3 4+ k3 — (k1 + ko) = —3(ky + ko)kiko

which allows us to overcome the loss of derivative by integrating the stiff parts (i.e., the terms
involving 92) exactly.

The derived exponential-type integrator is unconditionally stable and we will in particular
show its first-order convergence in H' for initial data in H? without imposing any CFL condition.
A key tool in our convergence analysis is a variant of [10, Lemma 3.1].

1. An exponential-type integrator

To illustrate the idea we first consider initial values with zero mean. In Remark 1.2 we point
out the generalization to general initial values.

Assumption 1.1. — Assume that the zero-mode of the initial value is zero, i.e., 4y(0) =
(2m)~t [ u(0,z)dz = 0. Note that the conservation of mass then implies that g (t) = 0.

We will derive a scheme for the ”twisted” variable v(t) = e%'u(t). With this transformation
at hand the equation in v reads

t
(4) o(t) = g +% /0 %29, (e %5y (s))2ds.

For a small time-step 7 we iterate Duhamel’s formula and approximate the exact solution as
follows

1 T
(5) otn +7) & v(ta) + 5 / o(tn )92 (e 02 (tn+)y (¢, ))2ds.
0
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The key relation (3) now allows us the following integration technique (cf. [1, 5, 19]): We have

/T e(tn+s)82 0, (efag(thrs)v(tn) )st

0
= 3 [ et @ D iy ki, (1) 1) s
k1,k2
e—i(tn+r)((k1+k2)3—k§—k§) B e—itn((k1+k2)3—k§—kg) .
= , i(k1 + ko) Ogy (t)On, (£ )& Fr HR2)T
klzkg —i((k1 + k2)3 — K — k3) ( )k (#n) Ok (B
, 1 )
_ Z ( —i(tn+7) (k1 +h2)3 —k3—k3) _e—nn((k1+k2)3—k§—kg)> 0 Bk, (£ Oy (£ ) 1 HR2)
ka2 .
1 2 1 2
_ geai’.(tn—&—T) (e—ag(tn+7)ax—lvn) - ge{?ﬁtn (e—ai’.tnax—lvn)
Together with the approximation in (5) this yields that
1 2 1 2
(6) ,Un—f—l — " 4+ ge(?g(tn-‘m') (e—ag(tn—}—r)a;l,un) - geagtn (e—agtnaajlvn> , AnJrl —0.

In order to obtain an approximation to the original solution u(t,) of the KdV equation (1) at
time t,, = nT we then "twist” the variable back again by setting v = e=92tnyn, This yields the
following exponential-type integrator for the KdV equation (1)

(7) un+1 _ e—T@Su + (15( —raga;1un)2 _ ée—rﬁg (az—lun>2’ 2ngrl —0.

For sufficiently smooth solutions the numerical scheme (7) is first-order convergent (without any
CFL-type condition), see Corollary 2.8 below for the precise convergence result.

Remark 1.2. — If 1p(0) = o # 0 we set 4 := u — a and look at the modified KdV equation in
u, i.e.,

(8) Oyl 4 021 + Bl + %ax(aﬁ = 0.

Note that the solution @(t) of the modified KdV equation (8) satisfies tg(t) = 0 for all ¢ as by
the conservation of mass we have that (t) = 4(0) = a. Thus, we can proceed as above: We
t

look at the twisted variable §(t) = e(@Te9)tg(¢) and carry out an approximation as above, i.e.,

I 2
Bt +7) & B(ta) + 5 /O eltt)@trade) g (o=t )@rada)y,) ) ds,

The relation

— (k14 ko)? + alky + ko) + k3 + k3 — aky — aky = —(k1 + k2)® + k3 + k3
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then allows us to derive similarly to above an exponential-type integration scheme

(9) , )
Gl g é o(03+002) (tnt7) (e—(ag—i—a@z)(tn—&—'r) o 6n) _ % (@2 +ad )t (e—(agmaz)tn o) 1~]n)
ot =o.

Finally, by setting u" = e~ (@2Fedn)tngn 4 o we then obtain an approximation to the exact

solution u(t,) of the KAV equation (1) (with non-zero zero-mode) at time t, = nr.

2. Error analysis

For simplicity we carry out the error analysis for initial values satisfying Assumption 1.1.
Furthermore, in the following we denote by (-,-) the L? scalar product, i.e., (f,g) = Jp fgdz
and by || - ||2 the corresponding L? norm.

In order to obtain a convergence result in H' we follow the strategy presented in [16, 10]:
We first prove convergence order of one half of the numerical scheme (6) in H? for solutions
in H3, see Section 2.1 Theorem 2.6. This yields essential a priori bounds on the numerical
solution in H? and allows us to prove first-order convergence globally in H', see Theorem 2.7
in Section 2.2. The latter in particular implies first-order convergence of the exponential-type
integration scheme (7) towards the KdV solution (1), see Corollary 2.8 below for the precise
convergence result.

2.1. Error analysis in H?. — We commence with the error analysis of the numerical
scheme (6) in H2. In Section 2.1.1 we carry out the stability analysis in H2. In Section 2.1.2
we show that the method is consistent of order one half in H? for solutions in H?3.

2.1.1. Stability analysis. — Set

1 —

1 2 2
(10) O (v) :=v+ geag(t”) (e_ag(tJ“T)a;lU) — éeagt (e—aitaglv) . (@7 (v))o :=0.

such that for all k we have vF*! = o7 (v¥). The following stability result holds for the numerical
flow ®7:

Lemma 2.1. — Let f € H? and g € H3. Then, for all t € R we have
|02(@7(f) — @7 (9))|| 12 < exp(TD)03(f — 9)ll 2,

where L depends on ||02f||r2 and ||03g| 2.
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Proof. — Note that

182(R7 (f) — @7 (9)l[72 = 102(F — 9)|72
1 %@geag(tw) [ (e—ag(t+7)a;1f)2 _ (e—ag(t—l—T)ax—lg>2]’a§(f —9)
— st (o)~ (o) ] 03(s - o)

1

3t — 93 (1) A— 2 _ 93 (147 a— 2

4 @Hageam(w )[(e &3 (t+ )3x1f> _ (e R (t+7) 19) }

_ 200 [ (e_agt o1 f)2 _ (e_agt o1 9)2} 12

9 9 1 1

= 10:(f = 9)llz2 + 3h + 5 12
Lemma 2.3 and Lemma 2.4 below allow us the following bounds on I; and I»: We have
(11) I+ L] < TLIO2(f = 9)lI72
where L depends on ||02f||;2 and ||02g]|;2. Hence,

107 (27 (f) — 7 (9))II72 < (L +TL)I0Z(f — 9)l|72

which yields the assertion. O

In the rest of Section 2.1.1 we will show the essential bound (11). We start with a useful
Lemma.

Lemma 2.2. — The following estimates hold for u,v,w € H?

(@2, vw — 7| (%) (e7%w) |)] < or02ull ]| 020] 2 |02 1
12
( ) ) 2 937 —8378 2 < 82 82 2
(0, (00)? = %7 (¢ %70,0) )| < erl02ul 2 020]32

for some constant ¢ > 0.
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Proof. — The key relation (3) together with the Cauchy-Schwarz inequality allows us the fol-
lowing bound

[(@Ru,vw — o[ (70 (e %7w) |y

— | Z kl + kz ,& k1+k2) <1 _ e—iT((’C1+k2)3_k%_k§)> {]klwk‘2|

E1,k2
= | Z ki + k’g U_ (k1+k2) ( sz3k1k2(k1+k2)> B, Wy |
k1,k2
<37 (R + o) 0 (k)| - [ (R + Fog) Bakog D, b, |
k1,k2
(13) =37 ) Pliy||1k(l — k)| |optby—g|
1k

<37 Pliy| (Ik(1 = k)?|[optbi—g| + [EI*[1 = k|igtdi—pl)
Lk

<sr (S )2 (30 (3 klfoul i~ #2il)?)

l

+ar( ) )72 (3 (32 Planll — il il)?)
k

l
< 3TH<'9§uHL2 (o™ % w2 + [[0® 5w 2),

where vU) (k) := |k||o%| and w) (k) := |k[7|dy|. By the Young and Cauchy-Schwarz inequality
we furthermore obtain that

(14) o™ % w2 + [0 5 w2 < oDl 0Pl + w0 [0 2 < ello® 2 0@z

< |70l 2| 0Fwll .2

for some constant ¢ > 0. Plugging (14) into (13) yields the first assertion.
Similarly we have that

P - 2
[ty (00)? = o7 (7270,0) ) < 31 3 |y + k)it oy iy otk 4, |
k1,k2

1/2
(15) — 37 S Uik — k) igbpi] < 3T(Z kﬂ@ﬁ) 1 5 o |2
k.l k

< er||030]| pellu i [0 [l < o7 030]|72110%u| 2

which yields the second assertion. O
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Lemma 2.3 (Bound on [;). — We have
1] < er (I162(F = )lz= + 19301122 ) 162(F — 9)113:
for some constant ¢ > 0.

Proof. — Note that for all ¢ € R the following relation holds
(e f,g) = (f,e""%g).
Thus, by setting (f,§) = e %% (f, g) we obtain that
2 (—0375—1 7 o —Bro-1-\> 027 =
= (02 (%0, F) = 02 (e™ 07 ) e[ - 9)
N2 .2 _
— (02 (0:1F) =02 (0:19)" 03(F — 9))-
Using the relation f2 — g2 = (f — g)? + 2(f — g)g as well as the chain rule yields that

I = (02 (07 (f - g>)2 + 207 (e—ai’f‘o‘;%f - g)) (e-aifaglg) R~ )

y ) HOXf - )

Next we use another key fact namely that
1 2 1 2
(vu, Ogu) = 5(1},(91(11) ) = —§(amv,u )

as well as that

(1=, @~ ))%) = — ()2, 02— ).
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This yields that
n=2(((F - ) e 3 - )
(e (F~9) 822 (f —g))

=9)) (e7%75) .02 F - 7))

(
+2((e %70, (F - 9)) (77 0u5) e % 0X(F - )
(

Thus, rearranging the terms leads to

I= 2 (e (F =) = (- 92,027 - )
—( (0 (F-5) ~ (0.7 -9) .0)
47 (e =) (7G) — (F = 9) (8) . 02T — 9))
+ 27 (0,1 = 9) (¢ 00d) — (0:1(F = 9) (0:9) . 62T — 9))-
With the aid of Lemma 2.2 we thus obtain that

1] < 7e(162(F = )iz + 1930l 22 ) 162(F — 9)113:
for some constant ¢ > 0.
Lemma 2.4 (Bound on I5). — We have
12| < TM|OZ(f = )72,

where M depends on ||0%f| 12 and ||0%g]| 2.
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Proof. — In the following let M denote a constant depending on ||02f||;2 and [|02g| 2. Setting
(f.9) = e_tag(f,g) yields that

= (@2 (o, ) a2 (o) ok (o) - 92 (0, g) )

e 2 (283’@ ) = (e 1522 a2 (0:17)" — 22 (99"
+ (07 (&Zlf) — 02 (0;'g)%, 02 (a;lf) _ 32 (0:19)%)
=I5 +1;

with

(@2 (o f) 0 (e arg) — o2 [ (0'F) - (0:%9)°).
8%( o lf) ( - g>2>

= (@2 [ (e o ) - (e %ag) | a2 (0,0F) - 22 (0:1)
02 (o5 f) 92 (0713)%).

N\ 2
Similarly to Lemma 2.2 we obtain with F := 9?2 (8;11") — 0?2 (8;157)2 by the key relation (3)
using the Cauchy-Schwarz and Young inequality that

A ky + ko)? ir 3_13_ 13 oz PN
|I§‘ = ’ Z F(lirk?)(l]{;lk;) <1 —e ((k1+k2) k3 kz)) (fklsz — 9k19k2> |
k1,k2

(k1 + ko) —ir3kyka (k1 +k 2oz
= ’ Z F (k1i+ko) ™ 7. 7. Ky koo (1 € thz(ka 2)> (fklfk2 gklgk‘2> ‘

k1,ko
<37 Y F (g (B1 + K)[[ (1 + k2)? (fklfim - §k1§k2) |
k1,k2
(17) <37 JEL[((— k) + 2|1 = k)| + &) (fi — i) frok + Ge(frmk — Gi—r)]

§6ﬂmﬁwp(§jHd—§W”*ﬁ%”mm+ud—gwﬁ*ﬂ*%ww
j=0,1

+ 6710 F |2 (1(F = 9D f VN2 + 1(F = 9 % gD|l12)
< er|0: F |2 |03 (f ~ g)IILz(Haiflle + 1029l 12)
< TM|OZ(f — )72
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where again we used the notation q)(j)(k) := |k||®g|. Similarly, we obtain for I with F :=
ag( 0375 1f) ( 01 ) that
ki+k i (13 , 2 2
|I2| = | Z F (k1+k2) ( 1]43 L 2) (ez (ki-+Hhs) — Z (k+ha) ) (fk1fk2 gk1gk2> |
2

k1,k2
18 - k1 + ko 2 —ir oz 2 2
(18) < Z |F(k1+k2)(kk)| )1 — emimSkika(ktha) || (fklfk2 - gk1gk2) |

ke 1

< TM|03(f - 9)lIZ--

Plugging the bounds (17) and (18) into (16) yields the assertion. O
2.1.2. Local error analysis. — Let ¢' denote the exact flow associated to the reformulated KdV

equation (4), i.e., v(t) = ¢'(v(0)). The following local error bound holds for the exponential-type
integrator ®7 defined in (10) with %1 = @7 (v*).

Lemma 2.5. — Let v(ty +t) = ¢'(v(ty)) € H? for 0 <t < 7. Then
192 (67 (v(tr)) — ®F, (v(t) |2 < o2,
)

where ¢ depends on supg<;<.||¢" (v(ty))|| grs-

Proof. — As e9: is a linear isometry in H" for all ¢t € R the iteration of Duhamel’s formula (4)
yields that

197 wl60)) = wlee) e < [ (0900 (0(0)))” = (00t o

< Tesupg<r< 16" (v(t)) — v(te) s,

(19)

where ¢; depends on supy<;<.||¢*(v(tx))||gs. Duhamel’s formula (4) and integration by parts
furthermore yields that

1600 60) — ol < 1| [ 5920, (20 utty +5)) dslr

< ” Z k1k2 ef?nt kika(k1+k2) ( —3itk1ka(k1+ka) ) Akl (tj +t)@k2 (tj _’_t)ei(k1+k2)x”H3

k1,ko
(20) + | Z i k o= 3it; k1k2(k1+k2)(vk1 (tj + t)Ory (5 + 1) — Opy () 0k, (tj))ei(k1+k2)m||H3
Jor K
1 d
+ H/O Y edil +s)k1k2(k1+k2)k1k2 (0 (1 + )0y (b + ) dse 57 g
k1,k2
ki + ko|1/? bl + 1k

<ctt?  sup QHU(Q +1)||3s + et sup [Fa] + [Fal sup [|o(t; + 5)[[3a.

kiko€Zso  |Kiko|'/? kikoeZao  |K1k2l  o<s<t
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Plugging (20) into (19) yields the assertion. O]

2.1.3. Global error bound. — The stability analysis in Section 2.1.1 and local error analysis in
Section 2.1.2 allows us the following global error bound in H?2.

Theorem 2.6. — Let the solution of (4) satisfy v(t) € H?® for t < T. Then there eists a
70 > 0 such that for all 7 < 19 and t, < T we have

[o(t) = 0" ||z < er'/?,
where ¢ depends on supg<;<;, |[v(t)|| s and t,, but can be chosen independently of T.
Proof. — The triangular inequality yields that
lo(thr1) = v Hlgz = (|97 (v(tr)) — 7, (v*) |12
< (17 (v(tr)) — @F, (0(te)) |2 + 19, (v(th)) — @F, (V") 2

Thus, iterating the estimate (21) we obtain with the aid of Lemma 2.1 (with g = v(ty) € H?)
and Lemma 2.5 that as long as v¥ € H? (for 0 < k < n) we have that

(21)

Jo(tns1) = 0™ g2 < er2 + e lfu(tn) = vl < er¥/2 e (¥ 4 e u(t1) = 0" o)

n
< CTS/QZetkL < er!/?t, el
k=0
where ¢ depends on supg<i<q,, [[v(t)| g3, L depends on supg<i<p,l|v(tr)l|gs as well as on

SUPg<p<n |[V*| 2 and we have used the fact that do(t,) = 0f. The assertion then follows by a
bootstrap, respectively, ”Lady Windermere’s fan” argument, see, for example [3, 6, 10, 16]. O

2.2. Error analysis in H!. — The error analysis in H? of the numerical scheme (6) given
in Section 2.1 yields a priori bounds on the numerical solution in H? for solutions in H?. This
allows us to derive the following first-order convergence bound in H'.

Theorem 2.7. — Let the solution of (4) satisfy v(t) € H? for t < T. Then there exists a
70 > 0 such that for all 7 < 19 and t, <T we have

[o(tn) = v"|[gr <er,
where ¢ depends on supg<;<;, ||v(t)||gs and t,,, but can be chosen independently of T.

Proof. — Note that Duhamel’s formula (4) implies the first-order consistency bound
(22)

i —03(t),+5) 48 —02(t+s 2
106 () = @7, ot < [ 102 ] (55000 wit)))” = (50 0(0) o
< Tersupg<i<, |0 (v(tr) — v(te) || 2

< 7'20181lpogt§TH¢t(U(tk))HH37

where ¢; depends on supg<;<,||¢"(v(tx))]| gr2-

2
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Furthermore, as v(t) € H? for t < T we have the boundedness of the numerical solution in
H? a priori thanks to Theorem 2.6, i.e., there exists a 79 > 0 such that for all 7 < 75 v € H?
as long as t, < T. In particular a stability estimate of type

(23)  110:(27(f) — @7 (9))llz2 < exp(rL)|0u(f = 9llz2, L = L1032, 1029]l2)

is therefore sufficient for our bootstrapping argument in H'! by choosing f = v" € H? and
g = v(t,) € H3. The stability bound (23) follows similarly to Lemma 2.1: Note that

®7(f) = 27972 = 10:(f — 9)Z2
(0,2 (2o ) (%0 50) ] 8, (s — g)
(.0 (0,1 ) — (e 0; ) |, 0uls — )
]8 RHE) [ <678§(t+‘r)8;1f>2 _ (e—ag(tﬂ)a;lg)q
- axeawt (0, 7) — (e ®0:%9) " | I

1 1
= 10u(f = 9)lI72 + i+l

10z

—~

+

,_\CO\D—‘OO\H

(24)

Similarly to the proof of Lemma 2.3 we can rewrite I; as
h={f~5.(F =97~ (7 (F - g))

F 6 (F -3 =% (e (F-9))

—2f - 5.9(F - 5) = %[ (%) (e (F-9)) )

2] = §,(0:9) (071 (F = 9)) = 7| (27 (0:9)) (70,1 (F - 9)) -
As in Lemma 2.2 we obtain by the key relation (3) that

I(u,0,w) = |{u, vw — %7 [ (e*f?%fv) (e*aifw) } <373 (R + ko) (g gy - Rkl 90, b, .

1,R2
The Cauchy-Schwarz and Young inequality furthermore yield that
I(u,v,w) < 31> Ulail|(U— k)kl[oxdr—i] < 37 (S 12 af?) % [o® s w®z
k,l l
26 .
(26) < erllgpul gzmin (o e, o0zl )

< e7]|0pul p2min (03]l 2|0z w]| 2, 103w]| 121020 12) -
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The above bound allows us to control the first and last two terms in (25) as long as f —g,g € H>.
Furthermore,

2
T(u,v,v) <37 Y [U[ay||(l — k)klloptr—i| < 37 Z|k| [8]2) 2 [ % v D2
(27) kil
< 37| 0| 2 D 1 [Jo D2 < cfuaxvnynazunm,

which allows us to control the second term in (25) as long as f —g € H! and g € H>.
Using the bounds (26) and (27) in (25) yields that

(28) \L] < TL0s(f = 972y L= LUOZ(f = 9)ll2: [1029] £2)-
Next we write Iy = I$ + I3 with
IS :<ax (678278;1];)2 _a, (efa§7—8;1§)2 B 89667627[ (8;1f>2 B (3;1,@)2},
o, (%0, F) — 0, (e #0,%5) )
1= (%[ (0, ) — (0 '9) | - (0:1) 0. (0,9)".
0. (a;lf)2 — 9, (0719)%).
Note that by the Cauchy-Schwarz and Young inequality we have with F' := 9, <8; 1 f>2 —
0 (071)” that

(29)
k1 + k ir 3_13_1.3 2z PN
|I2‘ - ‘ Z F k1+k2)( 1](3 L 2) <1 —e ((k1+k2) M k2)> (fk1fk2 - gk1gk2> |
ey ks 2
k + k —iT 2 <
- ‘ Z F k1+k2) 1]{: k 2) (1 € 3k1k2 k1+k2)) (fklsz gklgk)2> ‘
1 k2 2
<37 Z ’F—(k1+k2)(k1 + kQ)H(kl + k2)’ (fklka - §k1§k2> ‘
k1,k2

. /2, 3 i )
<37 (S PIAR) T (1 -0« FOlla + 1(F - 9 # O
l
LoN1/2, )
37 (o PIAR) (1= 2" gl + 1~ 2«3Vl )
l

< erl@uFllze (IGF = DO (L +130se) + 1 = DOl (1D e + 15V 1e) )
< M7)0u(F - 312,
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where M depends on |0y f| 2 and ||0zg||r2. A similar bound holds for I§ which implies that
(30) L2 < M7(|0:(f — )72, M = M(|0x |2, 10291 2)-

Plugging the bounds (28) as well as (30) into (24) yields the stability estimate (23).
With the aid of the stability estimate (23) and the local error bound (22) the proof then
follows the line of argumentation to the proof of Theorem 2.6. O

Corollary 2.8. — Let the solution of the KdV equation (1) satisfy u(t) € H> fort <T. Then
there exists a 19 > 0 such that for oll T < 719 and t, < T the exponential-type integration
scheme (7) is first-order convergent in H', i.e.,

[utn) = u"[lgr <er,
where ¢ depends on supg<;<;, ||u(t)| gs and t,,, but can be chosen independently of T.

Proof. — The assertion follows from Theorem 2.7 as e is a linear isometry in H! for all

teR 0

3. Numerical experiments

In this section we numerically underline the first-order convergence rate of the numerical
scheme (7) approximating the solution u(t,) of the KdV equation (1) given in Corollary 2.8.
For the space discretization we use a Fourier pseudo spectral method, see [17], where we choose
the largest Fourier mode K = 2!2 (i.e., the spatial mesh size Az = 0.0015) and integrate up
to T = 2. The error measured in the corresponding discrete H' norm for the initial value

u(0, x) = 2sech (%x)2 sin(x) is illustrated in Figure 1.

10°
107"}
=102}
103
) [Py = lultn) — u"lla |
10 : :
1074 103 1072 107!

T

FIGURE 1. Orderplot (double logarithmic). Error in " defined in (7) measured in a
discrete H' norm. The slope of the dashed line is one.
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