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Abstract. We study the asymptotic behavior of the isentropic Navier-Stokes sys-
tem driven by a multiplicative stochastic forcing in the compressible regime, where

the Mach number approaches zero. Our approach is based on the recently developed

concept of weak martingale solution to the primitive system, uniform bounds derived
from a stochastic analogue of the modulated energy inequality, and careful analysis

of acoustic waves. A stochastic incompressible Navier-Stokes system is identified as

the limit problem.

1. Introduction

Singular limit processes bridge the gap between fluid motion considered in different
geometries, times scales, and/or under different constitutive relations as the case may
be. In their pioneering paper, Klainerman and Majda [15] proposed a general approach
to these problems in the context of hyperbolic conservation laws, in particular, they
examine the passage from compressible to incompressible fluid flow motion via the low
Mach number limit. As the problems are typically non-linear, the method applies in
general only on short time intervals on which regular solutions are known to exist. A
qualitatively new way, at least in the framework of viscous fluids, has been open by
the mathematical theory of weak solutions developed by P.-L. Lions [16]. In a series of
papers, Lions and Masmoudi [17], [18] (see also Desjardins, Grenier [8], Desjardins et al.
[9]) studied various singular limits for the barotropic Navier-Stokes system, among which
the incompressible (low Mach number) limit. The incompressible limit is characterized
with a large speed of the acoustic waves becoming infinite in the asymptotic regime.
Accordingly, the fluid density approaches a constant and the velocity solenoidal. The
limit behavior is described by the standard incompressible Navier -Stokes system.

In the present paper, we study the compressible-incompressible scenario in the context
of stochastically driven fluids. Specifically, we consider the Navier-Stokes system for an
isentropic compressible viscous fluid driven by a multiplicative stochastic forcing and
study the asymptotic behavior of solutions in the low Mach number regime. To avoid
the well known difficulties due to the presence of a boundary layer in the case of no-slip
boundary conditiones (cf. Desjardins et al. [9]), we restrict ourselves to the motion in the

“flat”N -dimensional torus TN =
(
[0, 2π]|{0,2π}

)N
, N = 2, 3 and on a finite time interval

(0, T ); we set Q = (0, T ) × TN . We study the limit as ε → 0 in the following system
which governs the time evolution of the density % and the velocity u of a compressible
viscous fluid:

d%+ div(%u)dt = 0,(1.1a)

d(%u) +
[

div(%u⊗ u)− ν∆u− (λ+ ν)∇div u +
1

ε2
∇p(%)

]
dt = Φ(%, %u) dW.(1.1b)
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Here p(%) is the pressure which is supposed to follow the γ-law, i.e. p(%) = %γ where
γ > N/2; the viscosity coefficients ν, λ satisfy

ν > 0, λ+
2

3
ν ≥ 0.

The driving process W is a cylindrical Wiener process defined on some probability space
(Ω,F ,P) and the coefficient Φ is a linear function of momentum %u and a generally non-
linear function of density % satisfying suitable growth conditions. The precise description
of the problem setting will be given in the next section.

In the limit we recover the stochastic Navier-Stokes system for incompressible fluids,
that is,

du +
[

div(u⊗ u)− ν∆u +∇π
]
dt = Ψ(u) dW,(1.2a)

div(u) = 0,(1.2b)

where π denotes the associated pressure and Ψ(u) = PHΦ(1,u), with PH being the
Helmholtz projection onto the space of solenoidal vector fields. To be more precise,
we show that for a given initial law Λ for (1.1) and the ill-prepared initial data for
the compressible Navier-Stokes system (1.1), the approximate densities converge to a
constant whereas the velocities converge in law to a weak martingale solution to the
incompressible Navier-Stokes system (1.2) with the initial law Λ. This result is then
strengthen in dimension two where we are able to prove the almost sure convergence of
the velocities.

Our approach is based on the concept of finite energy weak martingale solution to
the compressible Navier-Stokes system (1.1), whose existence was established recently
in [2] and extends the approach in [11] to the stochastic setting, see Section 2 for more
details. Similarly to its deterministic counterpart, the low Mach number limit problem
features two essential difficulties:

• finding suitable uniform bounds independent of the scaling parameter ε;
• analysis of rapidly oscillating acoustic waves, at least in the case of ill-prepared

data.

Here, the necessary uniform bounds follow directly from the associated stochastic ana-
logue of the energy inequality exploiting the basic properties of Itô’s integral, see Section
3.1. The propagation of acoustic waves is described by a stochastic variant of Lighthill’s
acoustic analogy: A linear wave equation driven by a stochastic forcing, see Section 3.2.
The desired estimates are obtained via the deterministic approach, specifically the so-
called local method proposed by Lions and Masmoudi [17, 18], adapted to the stochastic
setting.

A significant difference in comparison to the deterministic situation is the correspond-
ing compactness argument. In general it is not possible to get any compactness in ω as
no topological structure on the sample space Ω is assumed. To overcome this difficulty,
it is classical to rather concentrate on compactness of the set of laws of the approxi-
mations and apply the Skorokhod representation theorem. It gives existence of a new
probability space with a sequence of random variables that have the same laws as the
original ones and that in addition converge almost surely. However, the Skorokhod rep-
resentation Theorem is restricted to metric spaces but the structure of the compressible
Navier-Stokes equations naturally leads to weakly converging sequences. On account of
this we work with the Jakubowski-Skorokhod Theorem which is valid on a large class of
topological spaces (including separable Banach spaces with weak topology). In the two-
dimensional case we gain a stronger convergence result (see Theorem 2.9). This is based
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on the uniqueness for the system (1.2) and a new version of the Gyöngy-Krylov charac-
terization of convergence in probability [13] which applies to the setting of quasi-Polish
spaces (see Proposition A.4).

We point out that the gradient part of the velocity converges only weakly to zero
due to the presence of the acoustic waves, and, consequently, the limit in the stochastic
forcing Φ(%, %u)dW can be performed only if Φ is linear with respect to %u. However,
this setting already covers the particular case of

Φ(%, %u) dW = %Φ1 dW 1 + %uΦ2 dW 2

with two independent cylindrical Wiener processes W 1 and W 2 and suitable Hilbert-
Schmidt operators Φ1 and Φ2, which is the main example we have in mind. Here the
first term describes some external force whereas the second one may be interpreted as a
friction force of Brinkman’s type, see e.g. Angot et al. [1].

In the case of Φ(%, %u) = %Φ1, a semi-deterministic approach towards existence for
(1.1) was developed in [10] (see also [23] for the two-dimensional case). More precisely,
this particular case of multiplicative noise permits reduction of the problem that can be
solved pathwise using deterministic arguments only. Nevertheless, it seems that such a
pathwise approach is not convenient for the incompressible limit. In particular, uncon-
trolled quantities appear in the basic energy estimate and therefore the uniform bounds
with respect to the parameter ε are lost. On the contrary, the stochastic method of the
present paper heavily depends on the martingale properties of the Itô’s stochastic inte-
gral which gives sufficient control of the expected values of all the necessary quantities.

The exposition is organized as follows. In Section 2 we continue with the introductory
part: we introduce the basic set-up, the concept of solution and state the main results
in Theorem 2.8 and Theorem 2.9. The remainder of the paper is then devoted to its
proof.

2. Mathematical framework and the main result

Throughout the whole text, the symbols W l,p will denote the Sobolov space of func-
tions having distributional derivatives up to order l integrable in Lp. We will also use
W l,2(TN ) for l ∈ R to denote the space of distributions v defined on TN with the finite
norm

(2.1)
∑
k∈Z

k2l|ck(v)|2 <∞,

where ck denote the Fourier coefficients with respect to the standard trigonometric basis
{exp(ikx)}k∈Z.

To begin with, let us set up the precise conditions on the random perturbation of
the system (1.1). Let (Ω,F , (Ft)t≥0,P) be a stochastic basis with a complete, right-
continuous filtration. The process W is a cylindrical Wiener process, that is, W (t) =∑
k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued standard Wiener

processes relative to (Ft)t≥0 and (ek)k≥1 a complete orthonormal system in a separable
Hilbert space U. To give the precise definition of the diffusion coefficient Φ, consider
ρ ∈ Lγ(TN ), ρ ≥ 0, and v ∈ L2(TN ) such that

√
ρv ∈ L2(TN ). Denote q = ρv and let

Φ(ρ,q) : U→ L1(TN ) be defined as follows

Φ(ρ,q)ek = gk(·, ρ(·),q(·)) = hk(·, ρ(·)) + αkq(·),

where the coefficients αk ∈ R are constants and hk : TN ×R→ R are C1-functions that
satisfy ∑

k≥1

|αk|2 <∞,(2.2)
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k≥1

|hk(x, ρ)|2 ≤ C
(
ρ2 + |ρ|γ+1

)
,(2.3)

∑
k≥1

|∇ρhk(x, ρ)|2 ≤ C
(
1 + |ρ|γ−1

)
.(2.4)

Remark that in this setting L1(TN ) is the natural space for values of the operator
Φ(ρ, ρv). Indeed, due to lack of a priori estimates for (1.1) it is not possible to consider
Φ(ρ, ρv) as a mapping with values in a space with higher integrability. This fact brings
difficulties concerning the definition of the stochastic integral in (1.1) because the space
L1(TN ) does not belong among 2-smooth Banach spaces nor among UMD Banach spaces
where the theory of stochastic Itô integration is well-established (see e.g. [3], [21], [19]).
However, since we expect the momentum equation (1.1b) to be satisfied only in the
sense of distributions anyway, we make use of the embedding L1(TN ) ↪→ W−l,2(TN ),
which is true provided l > N

2 , and understand the stochastic integral as a process in the

Hilbert space W−l,2(TN ). To be more precise, it is easy to check that under the above
assumptions on ρ and v, the mapping Φ(ρ, ρv) belongs to L2(U;W−l,2(TN )), the space
of Hilbert-Schmidt operators from U to W−l,2(TN ). Indeed, due to (2.2) and (2.3)∥∥Φ(ρ, ρv)

∥∥2

L2(U;W−l,2x )
=
∑
k≥1

‖gk(ρ, ρv)‖2
W−l,2x

≤ C
∑
k≥1

‖gk(ρ, ρv)‖2L1
x

≤
∑
k≥1

(∫
TN

(
|hk(x, ρ)|+ ρ|αkv|

)
dx

)2

≤ C(ρ)TN

∫
TN

(∑
k≥1

ρ−1|hk(x, ρ)|2 +
∑
k≥1

ρ|αkv|2
)

dx

≤ C(ρ)TN

∫
TN

(
ρ+ ργ + ρ|v|2

)
dx <∞,

(2.5)

where (ρ)TN denotes the mean value of ρ over TN . Consequently, if

ρ ∈ Lγ(Ω× (0, T ),P,dP⊗ dt;Lγ(TN )),
√
ρv ∈ L2(Ω× (0, T ),P,dP⊗ dt;L2(TN )),

where P denotes the progressively measurable σ-algebra associated to (Ft), and the
mean value (ρ(t))TN (that is constant in t but in general depends on ω) is for instance

essentially bounded then the stochastic integral
∫ ·

0
Φ(ρ, ρv) dW is a well-defined (Ft)-

martingale taking values in W−l,2(TN ). Finally, we define the auxiliary space U0 ⊃ U
via

U0 =

{
v =

∑
k≥1

ckek;
∑
k≥1

c2k
k2

<∞
}
,

endowed with the norm

‖v‖2U0
=
∑
k≥1

c2k
k2
, v =

∑
k≥1

ckek.

Note that the embedding U ↪→ U0 is Hilbert-Schmidt. Moreover, trajectories of W are
P-a.s. in C([0, T ];U0) (see [7]).

2.1. The concept of solution and the main result. Existence of the so-called finite
energy weak martingale solution to the stochastic Navier-Stokes system for compressible
fluids, in particular (1.1), was recently established in [2]. Let us recall the corresponding
definition of a solution and the existence result.
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Definition 2.1. Let Λ be a Borel probability measure on Lγ(TN )× L
2γ
γ+1 (TN ). Then(

(Ω,F , (Ft),P), %,u,W )

is called a finite energy weak martingale solution to (1.1) with the initial data Λ provided

(a) (Ω,F , (Ft),P) is a stochastic basis with a complete right-continuous filtration,
(b) W is an (Ft)-cylindrical Wiener process,
(c) the density % ≥ 0 is (Ft)-adapted and % ∈ Lγ(Ω;Cw([0, T ];Lγ(TN ))),
(d) the velocity u is (Ft)-adapted and u ∈ L2(Ω;L2(0, T ;W 1,2(TN ))),

(e) the momentum %u ∈ L
2γ
γ+1 (Ω;Cw([0, T ];L

2γ
γ+1 (TN ))),

(f) Λ = P ◦
(
%(0), %u(0)

)−1
.

(g) Φ(%, %u) ∈ L2(Ω× [0, T ],P,dP⊗ dt;L2(U;W−l,2(TN ))) for some l > N
2 ,

(h) for all ψ ∈ C∞(TN ) and ϕ ∈ C∞(TN ) and all t ∈ [0, T ] it holds P-a.s.〈
%(t), ψ

〉
=
〈
%(0), ψ

〉
+

∫ t

0

〈
%u,∇ψ

〉
ds,

〈
%u(t),ϕ

〉
=
〈
%u(0),ϕ

〉
+

∫ t

0

〈
%u⊗ u,∇ϕ

〉
ds− ν

∫ t

0

〈
∇u,∇ϕ

〉
ds

− (λ+ ν)

∫ t

0

〈
div u,divϕ

〉
ds+

1

ε2

∫ t

0

〈
ργ ,divϕ

〉
ds

+

∫ t

0

〈
Φ(%, %u) dW,ϕ

〉
,

(i) for all p ∈ [1,∞) the following energy inequality holds true

E
[

sup
0≤t≤T

∫
TN

(1

2
%(t)

∣∣u(t)
∣∣2 +

1

ε2(γ − 1)
%γ(t)

)
dx

]p
+ E

[ ∫ T

0

∫
TN

ν|∇u|2 + (λ+ ν)|div u|2
]p

≤ C(p)E
[ ∫

TN

(1

2

|%u(0)|2

%(0)
+

1

ε2(γ − 1)
%(0)γ

)
dx+ 1

]p
.

(2.6)

(j) Let b ∈ C1(R) such that b′(z) = 0 for all z ≥ Mb. Then for all ψ ∈ C∞(TN )
and all t ∈ [0, T ] it holds P-a.s.〈

b(%(t)), ψ
〉

=
〈
b(%(0)), ψ

〉
+

∫ t

0

〈
b(%)u,∇ψ

〉
ds−

∫ t

0

〈(
b′(%)%− b(%)u)

)
div u, ψ

〉
ds.

Remark 2.2. In Def. 2.1 (j) the continuity equation is stated in the renormalized sense.
This is part of the existence result in [2] but will not be used in the remainder of the
paper.

Theorem 2.3. Assume that for the initial law Λ there exists M ∈ (0,∞) such that

Λ
{

(ρ,q) ∈ Lγ(TN )× L
2γ
γ+1 (TN ); ρ ≥ 0, (ρ)TN ≤M, q(x) = 0 if ρ(x) = 0

}
= 1,

and that for all p ∈ [1,∞) the following moment estimate holds true∫
Lγx×L

2γ
γ+1
x

∥∥∥∥1

2

|q|2

ρ
+

1

ε2(γ − 1)
ργ
∥∥∥∥p
L1
x

dΛ(ρ,q) ≤ Cε.

Then there exists a finite energy weak martingale solution to (1.1) with the initial data
Λ.
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Concerning the incompressible Navier-Stokes system (1.2), several notions of solution
are typically considered depending on the space dimension. From the PDE point of view,
we restrict ourselves to weak solutions (although more can be proved in dimension two),
i.e. (1.2) is satisfied in the sense of distributions. From the probabilistic point of view,
we will consider two concepts, namely, pathwise (or strong) solutions and martingale (or
weak) solutions. In the former one the underlying probability space as well as the driving
process is fixed in advance while in the latter case these stochastic elements become part
of the solution of the problem. Clearly, existence of a pathwise solution is stronger and
implies existence of a martingale solution. Besides, due to classical Yamada-Watanabe-
type argument (see e.g. [13], [22]), existence of a pathwise solution follows from existence
of a martingale solution together with pathwise uniqueness. The difference lies also in
the way how the initial condition is posed: for pathwise solutions we are given a random
variable u0 whereas for martingale solutions we can only prescribe an initial law Λ.

Note that due to our assumptions on the operator Φ, the stochastic perturbations
that we obtain in the limit system (1.2) is affine linear function of the velocity and takes
the following form

Ψ(v)ek dβk = PHΦ(1,v)ek dβk =
(
PHhk(1) + αkv

)
dβk.

Besides, due to (2.2), (2.3) it holds true that

‖Ψ(v)‖2L2(U;L2
x) ≤ C

(
1 + ‖v‖2L2

x

)
,

‖Ψ(v)−Ψ(w)‖2L2(U;L2
x) ≤ C‖v −w‖2L2

x
.

(2.7)

In dimension three, existence of a strong solution which is closely related to uniqueness
is one the celebrated Millenium Prize Problems and remains unsolved. Therefore, we
consider weak martingale solutions, see for instance [6] or [12].

Definition 2.4. Let Λ be a Borel probability measure on L2(TN ). Then(
(Ω,F , (Ft),P),u,W )

is called a weak martingale solution to (1.2) with the initial data Λ provided

(a) (Ω,F , (Ft),P) is a stochastic basis with a complete right-continuous filtration,
(b) W is an (Ft)-cylindrical Wiener process,
(c) the velocity u is (Ft)-adapted and

u ∈ L2(Ω;L2(0, T ;W 1,2
div (TN ))) ∩ L2(Ω;Cw([0, T ];L2

div(TN ))),

(d) Λ = P ◦ u(0)−1,
(e) for all ϕ ∈ C∞div(TN ) and all t ∈ [0, T ] it holds P-a.s.〈

u(t),ϕ
〉

=
〈
u(0),ϕ

〉
+

∫ t

0

〈
u⊗ u,∇ϕ

〉
ds− ν

∫ t

0

〈
∇u,∇ϕ

〉
ds+

∫ t

0

〈
Ψ(u) dW,ϕ

〉
.

Here and hereafter, the substrict div refers to the space of solenoidal (divergenceless)
functions.

Under the condition (2.7), the following existence result holds true and can be found
for instance in [6] and [12].

Theorem 2.5. Let Λ be a Borel probability measure on L2(TN ) such that for all p ∈
[1,∞) ∫

L2
x

‖v‖pL2
x
dΛ(v) ≤ C(p).

Then there exists a weak martingale solution to (1.2) with initial law Γ.
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In dimension two, pathwise uniqueness for weak solutions is known under (2.7), we
refer the reader for instance to [5], [4]. Consequently, we may work with the definition
of a weak pathwise solution.

Definition 2.6. Let (Ω,F , (Ft),P) be a given stochastic basis with an (Ft)-cylindrical
Wiener process W and let u0 be an F0-measurable random variable. Then u is called
a weak pathwise solution to (1.2) with the initial condition u0 provided

(a) the velocity u is (Ft)-adapted and

u ∈ L2(Ω;L2(0, T ;W 1,2
div (TN ))) ∩ L2(Ω;Cw([0, T ];L2

div(TN ))),

(b) u(0) = u0 P-a.s.,
(c) for all ϕ ∈ C∞div(TN ) and all t ∈ [0, T ] it holds P-a.s.〈
u(t),ϕ

〉
=
〈
u0,ϕ

〉
+

∫ t

0

〈
u⊗ u,∇ϕ

〉
ds− ν

∫ t

0

〈
∇u,∇ϕ

〉
ds+

∫ t

0

〈
Ψ(u) dW,ϕ

〉
.

Theorem 2.7. Let N = 2. Let (Ω,F , (Ft),P) be a given stochastic basis with an (Ft)-
cylindrical Wiener process W and let u0 be an F0-measurable random variable such that
u0 ∈ Lp(Ω;L2(T2)) for all p ∈ [1,∞). Then there exists a unique weak pathwise solution
to (1.2) with the initial condition u0.

The main results of the present paper are following.

Theorem 2.8. Let Λ be a given Borel probability measure on L2(TN ). Let Λε be a

Borel probability measure on Lγ(TN ) × L
2γ
γ+1 (TN ) such that for some constant M > 0

(independent of ε) it holds true that

Λε

{
(ρ,q) ∈ Lγ(TN )× L

2γ
γ+1 (TN ); ρ ≥ 1

M
,
∣∣∣ρ− 1

ε

∣∣∣ ≤M} = 1,

for all p ∈ [1,∞), ∫
Lγx×L

2γ
γ+1
x

∥∥∥∥1

2

|q|2

ρ

∥∥∥∥p
L1
x

dΛε(ρ,q) ≤ C(p),

and that the marginal law of Λε corresponding to the second component converges to Λ

weakly in the sense of measures on L
2γ
γ+1 (TN ). If

(
(Ωε,F ε, (F ε),Pε), %ε,uε,Wε

)
is a

finite energy weak martingale solution to (1.1) with the initial law Λε, ε ∈ (0, 1), then1

%ε → 1 in law on L∞(0, T ;Lγ(TN )),

uε → u in law on
(
L2(0, T ;W 1,2(TN )), w

)
,

where u is a weak martingale solution to (1.2) with the initial law Λ.

Theorem 2.9. Let N = 2 and u0 ∈ L2(T2). Let Λε be a Borel probability measure on

Lγ(T2)× L
2γ
γ+1 (T2) such that for some constant M > 0 (independent of ε) it holds true

that

Λε

{
(ρ,q) ∈ Lγ(T2)× L

2γ
γ+1 (T2); ρ ≥ 1

M
,
∣∣∣ρ− 1

ε

∣∣∣ ≤M,
∣∣∣q− u0

ε

∣∣∣ ≤M} = 1,

If
(
(Ω,F , (F ),P), %ε,uε,W

)
is a finite energy weak martingale solution to (1.1) with

the initial law Λε, ε ∈ (0, 1), then

%ε → 1 in L∞(0, T ;Lγ(T2)) P-a.s.,

uε → u in
(
L2(0, T ;W 1,2(T2)), w

)
P-a.s.,

where u is a weak pathwise solution to (1.2) with the initial condition u0.

1If a topological space X is equipped with the weak topology we write (X,w).
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Here and in the sequel, the letter C denotes a constant that might change from one
line to another and that is independent of ε.

3. Proof of Theorem 2.8

This section is devoted to the study the limit ε→ 0 in the system (1.1). To this end,
we recall that it was proved in [2] that for every ε ∈ (0, 1) there exists(

(Ωε,F ε, (F ε
t ),Pε), %ε,uε,Wε

)
which is a weak martingale solution in the sense of Definition 2.1. It was shown in [14]
that it is enough to consider only one probability space, namely,

(Ωε,F ε,Pε) =
(
[0, 1],B([0, 1]),L

)
∀ε ∈ (0, 1)

where L denotes the Lebesgue measure on [0, 1]. Moreover, we can assume without loss
of generality that there exists one common Wiener process W for all ε.

3.1. Uniform bounds. We start with an a priori estimate which is a modification of
the energy estimate (2.6) established in [2].

Proposition 3.1. Let p ∈ [1,∞). Then the following estimate holds true uniformly in
ε

E
[

sup
0≤t≤T

∫
TN

(1

2
%ε(t)

∣∣uε(t)∣∣2 +
1

ε2(γ − 1)

(
%γε (t)− 1− γ(%ε(t)− 1)

))
dx

]p
+ E

[ ∫ T

0

∫
TN

ν|∇uε|2 + (λ+ ν)|div uε|2
]p

≤ Cp E
[ ∫

TN

(1

2
%ε(0)|uε(0)|2 +

1

ε2(γ − 1)

(
%γε (0)− 1− γ(%ε(0)− 1)

))
dx+ 1

]p
≤ Cp.

(3.1)

Proof. The first inequality follows directly from Definition 2.1 and the mass conservation∫
TN

%ε(t) dx =

∫
TN

%ε(0) dx

which is a consequence of equation (1.1a). Next, we observe that due to the Taylor
theorem and our assumptions upon Λε, it holds

E
∫
TN

(
%γε (0)− 1− γ(%ε(0)− 1)

)
dx ≤ Cε2

and hence the second estimate follows (independently of ε). �

Consequently, we gain the uniform bounds, for all p ∈ [1,∞),

∇uε ∈ Lp(Ω;L2(0, T ;L2(TN ))),(3.2)
√
%εuε ∈ Lp(Ω;L∞(0, T ;L2(TN ))).(3.3)

Moreover, as ∫
TN

%ε(t) dx =

∫
TN

%ε(0) dx ≥ 1

M
|TN |,

the above estimates give rise to

(3.4) uε ∈ Lp(Ω;L2(0, T ;W 1,2(TN ))).

Let us now introduce the essential and residual component of any function h:

h = hess + hres,

hess = χ(%ε)h, χ ∈ C∞c (0,∞), 0 ≤ χ ≤ 1, χ = 1 on an open interval containing 1,
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hres = (1− χ(%ε))h.

The following lemma will be useful.

Lemma 3.2. Let P (ρ) := ργ − 1− γ(ρ− 1), with ρ ∈ [0,∞). Then there exist constants
C1, C2, C3, C4 > 0 such that

(i) C1|ρ− 1|2 ≤ P (ρ) ≤ C2|ρ− 1|2 if ρ ∈ suppχ,
(ii) P (ρ) ≥ C4 if ρ /∈ suppχ,

(iii) P (ρ) ≥ C3ρ
γ if ρ /∈ suppχ.

Proof. The first statement follows immediately from the Taylor theorem. The second
one is a consequence of the fact that P is strictly convex and attains its minimum at
ρ = 1. If ρ /∈ suppχ and ρ[0, 1) then the third statement is a consequence of the second

one. Finally, we observe that the function P (ρ)
ργ is increasing for large ρ ∈ [1,∞) and

its value at ρ = 1 is zero. This implies the remaining part of (iii) and the proof is
complete. �

Accordingly, we obtain the following uniform bounds, for all p ∈ [1,∞)[%ε − 1

ε

]
ess
∈ Lp(Ω;L∞(0, T ;L2(TN ))),

[%ε]res + [1]res

ε2
∈ Lp(Ω;L∞(0, T ;Lγ(TN ))),

therefore, setting ϕε := 1
ε (%ε − 1), we deduce that

ϕε ∈ Lp(Ω;L∞(0, T ;Lmin(γ,2)(TN ))).(3.5)

As the next step, we want to show that

%ε → 1 in Lp(Ω;L∞(0, T ;Lγ(TN ))),(3.6)

which in particular leads to

%ε ∈ Lp(Ω;L∞(0, T ;Lγ(TN ))).(3.7)

Then, combining (3.3), (3.7) and (3.4) and (3.7), respectively, we deduce the uniform
bounds, for all p ∈ [1,∞),

%εuε ∈ Lp(Ω;L∞(0, T ;L
2γ
γ+1 (TN ))),(3.8)

%εuε ⊗ uε ∈ Lp(Ω;L2(0, T ;L
6γ

4γ+3 (TN ))).(3.9)

Let us now verify (3.6). Since for all δ > 0 there exists Cδ > 0 such that

ργ − 1− γ(ρ− 1) ≥ Cδ|ρ− 1|γ

if |ρ− 1| ≥ δ and ρ ≥ 0, we obtain

E
[

sup
0≤t≤T

∫
TN
|%ε − 1|γ dx dt

]p
= E

[
sup

0≤t≤T

∫
TN

1{|%ε−1|≥δ}|%ε − 1|γ dxdt

]p
+ E

[
sup

0≤t≤T

∫
TN

1{|%ε−1|<δ}|%ε − 1|γ dxdt

]p
≤ Cδ E

[ ∫
TN

(
%γε − 1− γ(%ε − 1)

)
dxdt

]p
+ Cδγp ≤ Cδε2p + Cδγp.

Letting first ε→ 0 and then δ → 0 yields the claim.
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3.2. Acoustic equation. In order to proceed we need the Helmholtz projection PH
which projects L2(TN ) onto divergence free vector fields

L2
div(TN ) := C∞div(TN )

‖·‖2
.

Moreover, we set Q = Id − PH . Recall that PH can be easily defined in terms of the
Fourier coefficients ak (cf. (2.1), in particular it can be shown that both PH and Q are
continuous in all W l,q(TN )-spaces, l ∈ R, q ∈ (1,∞).

Let us now project (1.1b) onto the space of gradient vector fields. Then (1.1) rewrites
as

εdϕε + divQ(%εuε)dt = 0,(3.10a)

εdQ(%εuε) + γ∇ϕεdt = εFε dt+ εQΦ(%ε, %εuε) dW,(3.10b)

Fε = ν∆Quε + (λ+ ν)∇ div uε −Q[div(%εuε ⊗ uε)]−
1

ε2
∇[%γε − 1− γ(%ε − 1)].

The system (3.10) may be viewed as a stochastic version of Lighthill’s acoustic analogy
associated to the compressible Navier-Stokes system. Note that Proposition 3.1 yields

Fε ∈ Lp(0, T ;L1(0, T ;W−l,2(TN )))(3.11)

uniformly in ε.

3.3. Compactness. Let us define the path space X = X% ×Xu ×X%u ×XW where

X% = Cw(0, T ;Lγ(TN )), Xu =
(
L2(0, T ;W 1,2(TN )), w

)
,

X%u = Cw([0, T ];L
2γ
γ+1 (TN )), XW = C([0, T ];U0).

Let us denote by µ%ε , µuε and µP(%εuε), respectively, the law of %ε, uε, P(%εuε) on the
corresponding path space. By µW we denote the law of W on XW and their joint law
on X is denoted by µε.

To proceed, it is necessary to establish tightness of {µε; ε ∈ (0, 1)}.

Proposition 3.3. The set {µuε ; ε ∈ (0, 1)} is tight on Xu.

Proof. This is a consequence of (3.4). Indeed, for any R > 0 the set

BR =
{
u ∈ L2(0, T ;W 1,2(TN )); ‖u‖L2(0,T ;W 1,2(TN )) ≤ R

}
is relatively compact in Xu and

µuε(B
c
R) = P

(
‖uε‖L2(0,T ;W 1,2(TN )) ≥ R

)
≤ 1

R
E‖uε‖L2(0,T ;W 1,2(TN )) ≤

C

R

which yields the claim. �

Proposition 3.4. The set {µ%ε ; ε ∈ (0, 1)} is tight on X%.

Proof. Due to (3.8), {div(%εuε)} is bounded in Lp(Ω;L∞(0, T ;W−1, 2γ
γ+1 (TN ))) and

therefore the continuity equation yields the following uniform bound, for all p ∈ [1,∞),

%ε ∈ Lp(Ω;C0,1([0, T ];W−1, 2γ
γ+1 (TN )).

Now, the required tightness in follows by a similar reasoning as in Proposition 3.3 to-
gether with (3.7) and the compact embedding (see [20, Corollary B.2])

L∞(0, T ;Lγ(TN )) ∩ C0,1([0, T ];W−2, 2γ
γ+1 (TN ))

c
↪→ Cw([0, T ];Lγ(TN )).

�

Proposition 3.5. The set {µPH(%εuε); ε ∈ (0, 1)} is tight on X%u.
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Proof. We decompose PH(%εuε) into two parts, namely, PH(%εuε)(t) = Y ε(t) + Zε(t),
where

Y ε(t) = PHqε(0)−
∫ t

0

PH
[

div(%εuε ⊗ uε)− ν∆uε
]
ds,

Zε(t) =

∫ t

0

PHΦ(%ε, %εuε) dW (s).

Hölder continuity of (Y ε). We show that there exists l ∈ N such that for all κ ∈ (0, 1/2)
it holds true

(3.12) E‖Y ε‖Cκ([0,T ];W−l,2(TN )) ≤ C.

Choose l such that L1(TN ) ↪→W−l+1,2(TN ). The a priori estimates (3.4) and (3.9) and
the continuity of P yield

E
∥∥∥∥Y ε(t)− Y ε(s)∥∥∥∥θ

W−l,2(TN )

= E
∥∥∥∥∫ t

s

P
[

div(%εuε ⊗ uε) + ν∆uε
]
ds

∥∥∥∥θ
W−l,2(TN )

≤ C E
∥∥∥∥∫ t

s

div(%εuε ⊗ uε) ds

∥∥∥∥θ
W−l,2(TN )

+ C E
∥∥∥∥∫ t

s

∆uε ds

∥∥∥∥θ
W−l,2(TN )

≤ C E
∥∥∥∥∫ t

s

%εuε ⊗ uε ds

∥∥∥∥θ
L1(TN )

+ C E
∥∥∥∥∫ t

s

∇uε ds

∥∥∥∥θ
L1(TN )

≤ C|t− s|θ/2

and (3.12) follows by the Kolmogorov continuity criterion.
Hölder continuity of (Zε). Next, we show that also

E‖Zε‖Cκ([0,T ];W−l,2(TN )) ≤ C,

where l ∈ N was given by the previous step and κ ∈ (0, 1/2). From the embedding
L1(TN ) ↪→ W−l,2(TN ), (2.2), (2.3), the a priori estimates and the continuity of PH we
get

E
∥∥∥∥Zε(t)− Zε(s)∥∥∥∥θ

W−l,2(TN )

= E
∥∥∥∥∫ t

s

PHΦ(%ε, %εuε) dW

∥∥∥∥θ
W−l,2(TN )

≤ C E
∥∥∥∥ ∫ t

s

Φ(%ε, %εuε) dW

∥∥∥∥θ
W−l,2(TN )

≤ C E
(∫ t

s

∑
k≥1

∥∥gk(%ε, %εuε)
∥∥2

W−l,2
dr

) θ
2

≤ C E
(∫ t

s

∑
k≥1

∥∥gk(%ε, %εuε)
∥∥2

L1 dr

) θ
2

≤ C E
(∫ t

s

∫
TN

(%ε + %ε|uε|2 + %γε ) dx dr

) θ
2

≤ C|t− s| θ2
(

1 + E sup
0≤t≤T

‖√%εuε‖
θ
L2 + E sup

0≤t≤T
‖%ε‖θγ/2Lγ

)
≤ C|t− s| θ2

and the Kolmogorov continuity criterion applies.
Conclusion. Collecting the above results we obtain that

E‖PH(%εuε)‖Cκ([0,T ];W−l,2(TN ) ≤ C

for some l ∈ N and all κ ∈ (0, 1/2). This implies the desired tightness by making use of
(3.8), continuity of PH together with the compact embedding (see [20, Corollary B.2])

L∞(0, T ;L
2γ
γ+1 (TN )) ∩ Cκ([0, T ];W−l,2(TN ))

c
↪→ Cw([0, T ];L

2γ
γ+1 (TN )).

�
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Since also the lawµW is tight as being Radon measures on the Polish space XW we
can finally deduce tightness of the joint laws µε.

Corollary 3.6. The set {µε; ε ∈ (0, 1)} is tight on X .

The path space X is not a Polish space and so our compactness argument is based
on the Jakubowski-Skorokhod representation theorem instead of the classical Skorokhod
representation theorem, see [14]. To be more precise, passing to a weakly convergent
subsequence µε (and denoting by µ the limit law) we infer the following result.

Proposition 3.7. There exists a subsequence µε, a probability space (Ω̃, F̃ , P̃) with X -

valued Borel measurable random variables (%̃ε, ũε, q̃ε, W̃ε), n ∈ N, and (%̃, ũ, q̃, W̃ ) such
that

(a) the law of (%̃ε, ũε, q̃ε, W̃ε) is given by µε, ε ∈ (0, 1),

(b) the law of (%̃, ũ, q̃, W̃ ), denoted by µ, is a Radon measure,

(c) (%̃ε, ũε, q̃ε, W̃ε) converges P̃-a.s. to (%̃, ũ, q̃, W̃ ) in the topology of X .

Let us now fix some notation that will be used in the sequel. We denote by rt the
operator of restriction to the interval [0, t] acting on various path spaces. In particular,
if X stands for one of the path spaces X%, Xu or XW and t ∈ [0, T ], we define

rt : X → X|[0,t], f 7→ f |[0,t].(3.13)

Clearly, rt is a continuous mapping. Let (F̃ ε
t ) and (F̃t), respectively, be the P̃-augmented

canonical filtration of the process (%̃ε, ũε, W̃ε) and (%̃, ũ, W̃ ), respectively, that is

F̃ ε
t = σ

(
σ
(
rt%̃ε, rtũε, rtW̃ε

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ],

F̃t = σ
(
σ
(
rtũ, rtW̃

)
∪
{
N ∈ F̃ ; P̃(N) = 0

})
, t ∈ [0, T ].

3.4. Identification of the limit. The aim of this subsection is to identify the limit
processes given by Proposition 3.7 with a weak martingale solution to (1.2). Namely,
we prove the following result which in turn verifies Theorem 2.8.

Theorem 3.8. The process W̃ is a (F̃t)-cylindrical Wiener process and(
(Ω̃, F̃ , (F̃t), P̃), ũ, W̃

)
is a weak martingale solution to (1.2) with the initial law Λ.

The proof proceeds in several steps. First of all, we show that also on the new prob-
ability space (Ω̃, F̃ , P̃), the approximations %̃ε, ũε solve the corresponding compressible
Navier-Stokes system (1.1).

Proposition 3.9. Let ε ∈ (0, 1). The process W̃ε is a (F̃t)-cylindrical Wiener process
and (

(Ω̃, F̃ , (F̃ ε
t ), P̃), %̃ε, ũε, W̃ε

)
is a finite energy weak martingale solution to (1.1) with initial law Λε.

Proof. The first part of the claim follows immediately form the fact that W̃ε has the
same law as W . As a consequence, there exists a collection of mutually independent
real-valued (F̃t)-Wiener processes (β̃εk)k≥1 such that W̃ε =

∑
k≥1 β̃

ε
kek.

To show that the continuity equation (1.1a) is satisfied, let us define, for all t ∈ [0, T ]
and ψ ∈ C∞(TN ), the functional

L(ρ,q)t = 〈ρ(t), ψ〉 − 〈ρ(0), ψ〉 −
∫ t

0

〈q,∇ψ〉ds.



INCOMPRESSIBLE LIMIT FOR COMPRESSIBLE FLUIDS WITH STOCHASTIC FORCING 13

Note that (ρ,q) 7→ L(ρ,q)t is continuous on X% × X%u. Hence the laws of L(%ε, %εuε)t
and L(%̃ε, %̃εũε)t coincide and since (%ε, %εuε) solves (1.1a) we deduce that

Ẽ
∣∣L(%̃ε, %̃εũε)t

∣∣2 = E
∣∣L(%ε, %εuε)t

∣∣2 = 0

hence (%̃ε, %̃εũε) solves (1.1a).
To verify the momentum equation (1.1b), we define for all t ∈ [0, T ] and ϕ ∈ C∞(TN )

the functionals

M(ρ,v,q)t =
〈
q(t),ϕ

〉
−
〈
q(0),ϕ

〉
+

∫ t

0

〈
q⊗ v,∇ϕ

〉
dr − ν

∫ t

0

〈
∇v,∇ϕ

〉
dr

− (λ+ ν)

∫ t

0

〈
div v,divϕ

〉
dr +

a

ε2

∫ t

0

〈
ργ ,divϕ

〉
dr

N(ρ,q)t =
∑
k≥1

∫ t

0

〈
gk(ρ,q),ϕ

〉2
dr,

Nk(ρ,q)t =

∫ t

0

〈
gk(ρ,q),ϕ

〉
dr,

letM(ρ,v,q)s,t denote the incrementM(ρ,v,q)t−M(ρ,v,q)s and similarly forN(ρ,q)s,t
and Nk(ρ,q)s,t. We claim that with the above uniform estimates in hand, the mappings

(ρ,v,q) 7→M(ρ,v,q)t, (ρ,v,q) 7→ N(ρ,q)t, (ρ,v,q) 7→ Nk(ρ,q)t

are well-defined and measurable on a subspace of X% × Xu × X%u where the joint law
of (%̃, ũ, %̃ũ) is supported, i.e. where all the uniform estimates hold true. Indeed, in the
case of N(ρ,q)t we have by (2.2), (2.3) similarly to (2.5)∑

k≥1

∫ t

0

〈
gk(ρ,q), ϕ

〉2
ds ≤ C

∑
k≥1

∫ t

0

‖gk(ρ,q)‖2L1 ds ≤ C.

M(ρ,v,q) and Nk(ρ,v)t can be handled similarly and therefore, the following random
variables have the same laws

M(%ε,uε, %εuε)
d∼M(%̃ε, ũε, %̃εũε),

N(%ε, %εuε)
d∼ N(%̃ε, %̃εũε),

Nk(%ε, %εuε)
d∼ Nk(%̃ε, %̃εũε).

Let us now fix times s, t ∈ [0, T ] such that s < t and let

h : X%|[0,s] ×Xu|[0,s] ×XW |[0,s] → [0, 1]

be a continuous function. Since

M(%ε,uε, %εuε)t =

∫ t

0

〈
Φ(%ε, %εuε) dW,ϕ

〉
=
∑
k≥1

∫ t

0

〈
gk(%ε, %εuε),ϕ

〉
dβk

is a square integrable (Ft)-martingale, we infer that[
M(%ε,uε, %εuε)

]2 −N(%ε, %εuε), M(%ε,uε, %εuε)βk −Nk(%ε, %εuε)

are (Ft)-martingales. Besides, it follows from the equality of laws that

Ẽh
(
rs%̃ε, rsũε, rsW̃ε

)[
M(%̃ε, ũε, %̃εũε)s,t

]
= Eh

(
rs%ε, rsuε, rsWε

)[
M(%ε,uε, %εuε)s,t

]
= 0,

(3.14)
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Ẽh
(
rs%̃ε, rsũε, rsW̃ε

)[
[M(%̃ε, ũε, %̃εũε)

2]s,t −N(%̃ε, %̃εũε)s,t

]
= Eh

(
rs%ε, rsuε, rsWε

)[
[M(%ε,uε, %εuε)

2]s,t −N(%ε, %εuε)s,t

]
= 0,

(3.15)

Ẽh
(
rs%̃ε, rsũε, rsW̃ε

)[
[M(%̃ε, ũε, %̃εũε)β̃

ε
k]s,t −Nk(%̃ε, %̃εũε)s,t

]
= Eh

(
rs%ε, rsuε, rsWε

)[
[M(%ε,uε, %εuε)βk]s,t −Nk(%ε, %εuε)s,t

]
= 0.

(3.16)

The proof is hereby complete. �

Consequently, we recover the result of Proposition 3.1 together with all the uniform
estimates of the previous subsection. In particular, we find (for a subsequence) that

(3.17) %̃ε → 1 in L∞(0, T ;Lγ(TN )) P̃-a.s.

Corollary 3.10. We have the following bounds uniform in ε, for all p ∈ [1,∞) and
l > N

2 , √
ϕ̃εũε ∈ Lp(Ω, L∞(0, T ;L2(TN ))),

ϕ̃ε ∈ Lp(Ω, L∞(0, T ;Lmin(2,γ)(TN ))),

F̃ε ∈ Lp(0, T ;L1(0, T ;W−l,2(TN )))

where ϕ̃ε = %̃ε−1
ε and

F̃ε = ν∆Quε + (λ+ ν)∇div ũε −Q[div(%̃εũε ⊗ ũε)]−
1

ε2
∇[%̃γε − 1− γ(%̃ε − 1)].

Proposition 3.11. We have the following convergence P̃-a.s.

PH ũε → ũ in L2(0, T ;Lq(TN )) ∀q < 2N
N−2 .(3.18)

Proof. Since the joint laws of (%ε,uε,PH(%εuε)) and (%̃ε, ũε, q̃ε) coincide, we deduce
that q̃ε = PH(%̃εũε) a.s. and consequently it follows from the proof of Proposition 3.5
that

(3.19) Ẽ‖PH(%̃εũε)‖Cκ([0,T ];W−l,2(TN )) ≤ C
for some κ ∈ (0, 1) and l ∈ N.

Besides, it follows from (3.17) and the convergence of ũε to ũ that

%̃εũε ⇀ ũ in L2(0, T ;L
2γ
γ+1 (TN )) P̃-a.s.(3.20)

If we pass to the limit in the continuity equation, we see that div ũ = 0, which in turn
identifies q̃ with ũ. Indeed, due to continuity of P we obtain

PH(%̃εũε) ⇀ ũ in L2(0, T ;L
2γ
γ+1 (TN )) P̃-a.s.

Thus with Proposition 3.7 and the compact embedding L
2γ
γ+1 (TN )

c
↪→W−1,2(TN )

PH(%̃εũε)→ ũ in L2(0, T ;W−1,2(TN )) P̃-a.s.(3.21)

Since

div ũε ⇀ 0 in L2(0, T ;L2(TN )) P̃-a.s.(3.22)

we have also that

PH ũε ⇀ ũ in L2(0, T ;W 1,2(TN )) P̃-a.s.(3.23)

So combining (3.21) with (3.23) we conclude that

PH(%̃εũε) · PH ũε ⇀ |ũ|2 in L1(Q) P̃-a.s.
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Using Proposition 3.7 yields P̃-a.s.∣∣∣ ∫
Q

(
|PH ũε|2 − PH(%̃εũε) · PH ũε

)
dxdt

∣∣∣ ≤ ‖%̃ε − 1‖L∞(0,T ;Lγ)‖ũε‖2L2(0,T ;Ls)

−→ 0,

where s = 2γ
γ−1 <

2N
N−2 . This implies ‖PH ũε‖2 → ‖ũ‖2 and hence

PH ũε → ũ in L2(0, T ;L2(TN )).

Combining this with weak convergence in L2(0, T ;W 1,2(TN )) (recall Proposition 3.7)
yields the claim. �

In the following we aim to identify the limit in the gradient part of the convective term.
To this end, we adopt the deterministic approach proposed by Lions and Masmoudi [18].
We introduce the dual space

W−l,2div (TN ) ≡
[
W l,2

div(TN )
]∗
.

In particular, two elements of W−l,2div (TN ) are identical if their difference is a gradient.

Proposition 3.12. For l > N
2 we have P̃-a.s.

div(%̃εũε ⊗ ũε) ⇀ div(ũ⊗ ũ) in L1(0, T ;W−l,2div (TN )).

Proof. Following [18] we decompose

%̃εũε = ũ + PH
(
%̃εũε − ũ

)
+Q

(
%̃εũε − ũ

)
,

%̃εũε = ũ + PH
(
ũε − ũ

)
+Q

(
ũε − ũ

)
.

The claim follows once we can show that the following convergences hold true weakly in

L1(0, T ;W−l,2div (TN )) P̃-a.s.:

div
(
ũ⊗ PH

(
ũε − ũ

))
⇀ 0,(3.24)

div
(
ũ⊗Q

(
ũε − ũ

))
⇀ 0,(3.25)

div
(
PH
(
%̃εũε − ũ

)
⊗ ũ

)
⇀ 0,(3.26)

div
(
Q
(
%̃εũε − ũ

)
⊗ ũ

)
⇀ 0,(3.27)

div
(
PH
(
%̃εũε − ũ

)
⊗ PH

(
ũε − ũ

))
⇀ 0,(3.28)

div
(
PH
(
%̃εũε − ũ

)
⊗Q

(
ũε − ũ

))
⇀ 0,(3.29)

div
(
Q
(
%̃εũε − ũ

)
⊗ PH

(
ũε − ũ

))
⇀ 0,(3.30)

div
(
Q
(
%̃εũε − ũ

)
⊗Q

(
ũε − ũ

))
⇀ 0,(3.31)

The first four convergences follow from Proposition 3.7, (3.20) and the continuity of
PH and Q respectively. The convergences (3.28)-(3.30) are consequences of (3.17) and
(3.18). In fact, the only critical part is (3.31). First, we need some improved space
regularity. Similarly to [18], we use mollification by means of spatial convolution with
a family of regularizing kernels with a parameter δ = δ(ω). As a matter of fact, thanks
to the special geometry of the flat torus TN , the mollified functions can be taken as
projections to a finite number of modes of the trigonometric basis {exp(ikx)}k∈Z . In
particular, the mollification commutes with all spatial derivatives as well as with the
projections Ph and Q.
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We take δ = δ(ω) so small that P̃-a.s.

‖(%̃εũε)δ − %̃δεũδε‖
L2(L

2γ
γ+1 )

+ ‖(%̃εũε)δ − %̃εũε‖
L2(L

2γ
γ+1 )

≤ δ,(3.32)

‖(%̃εũε)δ − ũδε‖
L2(L

2γ
γ+1 )

+ ‖ũδε − ũε‖
L2(L

2N
N−2 )

+ ‖ũδ − ũ‖
L2(L

2N
N−2 )

≤ δ,(3.33)

uniformly in ε. We note that the norm ‖ũδε− ũε‖
L2(L

2N
N−2 )

can be made uniformly small

as a consequence of the gradient estimate (3.2).
As the mollification commutes with div and Q, it is enough to show

div
(
Q
(
%̃δεũ

δ
ε − ũδ

)
⊗Q

(
ũδε − ũδ

))
⇀ 0,(3.34)

for fixed δ instead of (3.31). Second, we write

Q
(
ũδε − ũδ

)
= Q

(
%̃δεũ

δ
ε − ũδ

)
+Q

(
(1− %̃δε)ũδε

)
.

By (3.17), the continuity of Q and the boundedness of ũδε we know that

Q
(
(1− %̃δε)ũδε

)
→ 0 in L2(Q)

P̃-a.s. So (3.34) follows from

div
(
Q
(
%̃δεũ

δ
ε − ũδ

)
⊗Q

(
%̃δεũ

δ
ε − ũδ

))
⇀ 0,(3.35)

in L1(0, T ;W−l,2div (TN )). As div
(
Qũδ ⊗ Qũδ

)
= 1

2∇|Qũδ|2, the convergence (3.35) is a
consequence of

div
(
Q
(
%̃εũε

)δ ⊗Q(%̃εũε)δ)⇀ 0 in L1(0, T ;W−l,2div (TN )),(3.36)

thanks to (3.20) and (3.32). In order to show (3.36) (we need to introduce the function

Ψ̃ε = ∆−1 div(%̃εũε) which satisfies ∇Ψ̃ε = Q(%̃εũε). We have the system of equations

d(εϕ̃ε) = −∇Ψ̃ε dt, d∇Ψ̃ε = −γ
ε
∇ϕ̃ε dt+ F̃ε dt+QΦ(%̃ε, %̃εũε)dW̃ε.

The right-hand-side only belongs to W−l,2(TN ). So we apply mollification and gain

Ψ̃δ
ε = ∆−1 div(%̃εũε)

δ and ∇Ψ̃δ
ε = Q(%̃εũε)

δ. The system of equations for ϕ̃δε and Ψ̃δ
ε

reads as

d(εϕ̃δε) = −∆Ψ̃δ
ε dt, d∇Ψ̃δ

ε = −γ
ε
∇ϕ̃δε dt+ F̃δε dt+QΦ(%̃ε, %̃εũε)

δdW̃ε.(3.37)

We note that for the special choice, where the mollification is taken as the projection
onto a finite number of Fourier modes, the system (3.37) reduces to a finite number of
equations.

Now, we apply Itô’s formula to the function

f(εϕ̃δε,∇Ψ̃δ
ε) =

∫
TN

εϕ̃δε∇Ψ̃δ
ε ·ϕ dx,

with ϕ ∈ C∞div(TN ) arbitrary and gain∫
TN
εϕ̃δε(t)∇Ψ̃δ

ε(t) ·ϕ dx

= −
∫ t

0

∫
TN

∆Ψ̃δ
ε∇Ψ̃δ

ε ·ϕ dxdσ − γ
∫ t

0

∫
TN

ϕ̃δε∇ϕ̃δε ·ϕ dxdσ

+ ε

∫ t

0

∫
TN

ϕ̃δεF̃
δ
ε ·ϕdxdσ + ε

∫
TN

∫ t

0

ϕ̃δεϕ · QΦ(%̃ε, %̃εũε)
δdW̃ε dx.

And we have∫ t

0

∫
TN

∆Ψ̃δ
ε∇Ψ̃δ

ε ·ϕdxdσ
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=
1

2

∫ t

0

∫
TN
∇|∇Ψ̃δ

ε|2 ·ϕ dx dσ −
∫ t

0

∫
TN
∇Ψ̃δ

ε ⊗∇Ψ̃δ
ε : ∇ϕ dxdσ

= −
∫ t

0

∫
TN
∇Ψ̃δ

ε∇Ψ̃δ
ε : ∇ϕ dxdσ,∫ t

0

∫
TN
ϕ̃δε∇ϕ̃δε ·ϕ dxdσ =

1

2

∫ t

0

∫
TN
∇|ϕ̃δε|2 ·ϕ dxdσ = 0,

due to divϕ = 0. So we end up with∫ t

0

∫
TN
∇Ψ̃δ

ε ⊗∇Ψ̃δ
ε : ∇ϕdxdσ = −ε

∫
TN

ϕ̃δε(t)∇Ψ̃δ
ε(t) ·ϕ dx

+ ε

∫ t

0

∫
TN

ϕ̃δεF̃
δ
ε ·ϕ dx dσ + ε

∫
TN

∫ t

0

ϕ̃δεϕ · QΦ(%̃ε, %̃εũε)
δdW̃ε dx.

For fixed δ > 0 the right-hand-side vanishes P̃-a.s. for ε → 0 at least after taking a
subsequence due to Corollary 3.10, Proposition 3.7 and the properties of the mollification.
Finally we conclude with (3.36) which implies the last missing convergence (3.31) as
explained above. �

Now, we have all in hand to complete the proof of Theorem 3.8 which implies the
proof of our main result, Theorem 2.8.

Proof of Theorem 3.8. The first part of the claim follows immediately from the fact that
all W̃ε are cylindrical Wiener processes due to Proposition 3.9. As a consequence, there
exists a collection of mutually independent real-valued (F̃t)-Wiener processes (β̃k)k≥1

such that W̃ =
∑
k≥1 β̃kek.

In order to show that (1.2) is satisfied in the sense of Definition 2.4, let us take a
divergence free test function ϕ ∈ C∞div(TN ) and consider the functionals M, N, Nk from
Proposition 3.9. This way we only study the approximate equation (1.1b) projected by
PH and the pressure term drops out. Having (3.14), (3.15) and (3.16) in hand, we intend
to pass to the limit as ε→ 0 and to deduce

Ẽh
(
rsũ, rsW̃

)[
M(1, ũ, ũ)s,t

]
= 0,(3.38)

Ẽh
(
rsũ, rsW̃

)[
[M(1, ũ, ũ)2]s,t −N(1, ũ)s,t

]
= 0,(3.39)

Ẽh
(
rsũ, rsW̃

)[
[M(1, ũ, ũ)β̃k]s,t −Nk(1, ũ)s,t

]
= 0.(3.40)

Note that the proof will then be complete. Indeed, (3.38), (3.39) and (3.40) imply that

the process M(1, ũ, ũ) is a (F̃t)-martingale and its quadratic and cross variations satisfy,
respectively,

〈〈M(1, ũ, ũ)〉〉 = N(1, ũ), 〈〈M(1, ũ, ũ), β̃k〉〉 = Nk(1, ũ),

and consequently 〈〈
M(1, ũ, ũ)−

∫ ·
0

〈
Φ(1, ũ) dW̃ ,ϕ

〉〉〉
= 0

hence (1.2a) is satisfied in the sense required by Definition 2.4.
Let us now verify (3.38), (3.39) and (3.40). First of all we observe that

M(%̃ε, ũε, %̃εũε)t →M(1, ũ, ũ)t a.s.

due to Proposition 3.7, Proposition 3.12 and (3.21). Application of the Vitali convergence
theorem together with the uniform estimates (3.4), (3.8) and (3.9) justifies the passage
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to the limit in (3.14) and (3.38) follows. The same argument implies the passage to the
limit in the part of (3.15) and (3.16) involving M .

Finally, we comment on the passage to the limit in the terms coming from the sto-
chastic integral, i.e. N and Nk. The convergence in (3.16) being easier, let us only focus
on (3.15) in detail. As the first step we note that the convergence∑

k≥1

〈
gk(%̃ε, %̃εũε),ϕ

〉2 →∑
k≥1

〈
gk(1, ũ),ϕ

〉2 P̃⊗ L-a.e.

follows once we show that

(3.41)
〈
Φ(%̃ε, %̃εũε) · ,ϕ

〉
→
〈
Φ(1, ũ) · ,ϕ

〉
in L2(U;R) P̃⊗ L-a.e.

To this end, we write∥∥〈Φ(%̃ε, %̃εũε) · ,ϕ
〉
−
〈
Φ(1, ũ) · ,ϕ

〉∥∥
L2(U;R)

≤
(∑
k≥1

∣∣〈hk(%̃ε)− hk(1),ϕ
〉∣∣2) 1

2

+

(∑
k≥1

|αk|2
∣∣〈%̃εũε − ũ,ϕ

〉∣∣2) 1
2

= I1 + I2.

For I2 we use (2.2) together with (3.21) to obtain I2 → 0 for a.e. (ω, t). For I1 we apply
the Minkowski integral inequality, the mean value theorem, (2.3) and (2.4) to obtain

I1 ≤ C
( ∑

k≥1

∥∥hk(%̃ε)− hk(1)
∥∥2

L1
x

) 1
2

≤ C
∫
TN

(∑
k≥1

∣∣hk(%̃ε)− hk(1)
∣∣2) 1

2

dx

≤ C
∫
TN

(
1 + %̃

γ−1
2

ε

)
|%̃ε − 1|dx ≤ C

[ ∫
TN

(
1 + %̃

γ−1
2

ε

)p
dx

] 1
p
[ ∫

TN
|%̃ε − 1|q dx

] 1
q

where the conjugate exponents p, q ∈ (1,∞) are chosen in such a way that

p
γ − 1

2
< γ + 1 and q < γ.

Therefore, using (3.7), (3.17) we deduce

Ẽ
∫ T

0

I1 dt→ 0.

and so for a subsequence I → 0 for a.e. (ω, t) and (3.41) follows. Besides, since, for all
p ≥ 2,

Ẽ
∫ t

s

∥∥〈Φ(%̃ε, %̃εũε) ·,ϕ
〉∥∥p
L2(U;R)

dr

≤ C Ẽ
∫ t

s

‖%̃ε‖
p
2

L2

(
1 + ‖%̃ε‖γLγ + ‖

√
%̃εũε‖2L2

) p
2

dr

≤ C
(

1 + Ẽ sup
0≤t≤T

‖%̃ε‖γpLγ + Ẽ sup
0≤t≤T

‖
√
%̃εũε‖2pL2

)
≤ C

due to (3.3), (3.7), we obtain the convergence in (3.15) and therefore ũ solves (1.2). It
follows immediately from our construction that for all p ∈ [1,∞)

ũ ∈ Lp(Ω̃;L2(0, T ;W 1,2
div (TN ))).

Besides, since we have (due Proposition 3.7 and (3.17))√
%̃εũε ⇀ ũ in L1(Ω;L1(Q))
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lower semi-continuity of the functional

w̃ 7→ Ẽ
[

sup
t∈(0,T )

∫
TN
|w̃|2 dx

] p
2

yields ũ ∈ Lp(Ω̃;L∞(0, T ;L2(TN ))) on account of Corollary 3.10. The usual argument
about the fractional time derivative (in the distributional sense) implies

ũ ∈ Lp(Ω̃;Cw([0, T ];L2
div(TN )))

and the proof is complete. �

4. Proof of Theorem 2.9

In order to complete the proof of Theorem 2.9, we make use of Proposition A.4 which
is a generalization of the Gyöngy-Krylov characterization of convergence in probability
introduced in [13] adapted to the case of quasi-Polish spaces. It applies to situations
when pathwise uniqueness and existence of a martingale solution are valid and allows to
establish existence of a pathwise solution. We recall that in the case of N = 2 pathwise
uniqueness for (1.2) is known (cf. Theorem 2.5).

We consider the collection of joint laws of

(%n,un,P(%nun), %m,um,P(%mum)) on X% ×Xu ×X%u ×X% ×Xu ×X%u,

denoted by µn,m. For this purpose we define the extended path space

X J = X% ×Xu ×X%u ×X% ×Xu ×X%u ×XW
As above, denote by µW the law of W and set νn,m to be the joint law of

(%n,un,P(%nun), %m,um,P(%mum),W ) on X J .

Similarly to Corollary 3.6 the following fact holds true. The proof is nearly identical and
so will be left to the reader.

Proposition 4.1. The collection {νn,m; n,m ∈ N} is tight on X J .

Let us take any subsequence {νnk,mk ; k ∈ N}. By the Jakubowski-Skorokhod theo-
rem, Theorem A.2, we infer (for a further subsequence but without loss of generality we
keep the same notation) the existence a probability space (Ω̄, F̄ , P̄) with a sequence of
random variables

(%̂nk , ûnk , q̂nk , %̌mk , ǔmk , q̌mk , W̄k), k ∈ N,
converging almost surely in X J to a random variable

(%̂, û, q̂, %̌, ǔ, q̌, W̄ )

and

P̄
(
(%̂nk , ûnk , q̂nk , %̌mk , ǔmk , q̌mk , W̄k) ∈ ·

)
= νnk,mk(·).

Observe that in particular, µnk,mk converges weakly to a measure µ defined by

µ(·) = P̄
(
(%̂, û, q̂, %̌, ǔ, q̌) ∈ ·

)
.

As the next step, we should recall the technique established in Subsection 3.4. Analo-
gously, it can be applied to both

(%̂nk , ûnk , q̂nk , W̄k), (%̂, û, q̂, W̄ )

and

(%̌mk , ǔmk , q̌mk , W̄k), (%̌, ǔ, q̌, W̄ )
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in order to show that (û, W̄ ) and (ǔ, W̄ ) are weak martingale solutions to (1.2) defined
on the same stochastic basis (Ω̄, F̄ , (F̄t), P̄), where (F̄t) is the P̄-augmented canonical
filtration of (û, ǔ, W̄ ). Besides, we obtain that

%̂ = %̌, q̂ = û, q̌ = ǔ P̄-a.s.

In order to verify the condition (A.1) from Proposition A.4 we employ the pathwise
uniqueness result for (1.2) in two dimensions, cf. Theorem 2.5. Indeed, it follows from
our assumptions on the approximate initial laws Λε that û(0) = ǔ(0) = u0 P̄-a.s.,
therefore according to Theorem 2.7 the solutions û and ǔ coincide P̄-a.s. and

µ
(

(%1,u1,q1, %2,u2,q2); (%1,u1,q1) = (%2,u2,q2)
)

= P̄
(

(%̂, û, q̂) = (%̌, ǔ, q̌)
)

= P̄(û = ǔ) = 1.

Now, we have all in hand to apply Proposition A.4. It implies that the original
sequence (%ε,uε,P(%εuε)) defined on the initial probability space (Ω,F ,P) converges in
probability in the topology of X% × Xu × X%u to a random variable (%,u,q). Without
loss of generality, we assume that the convergence is almost sure and again by the
method from Subsection 3.4 we finally deduce that u is a pathwise weak solution to
(1.2). Actually, identification of the limit is more straightforward here since in this case
all the work is done for the initial setting and only one fixed driving Wiener process W
is considered. The proof of Theorem 2.9 is complete.

Appendix A. Quasi-Polish spaces

The so-called quasi-Polish spaces are topological spaces that are not necessarily metriz-
able but nevertheless they enjoy several important properties of Polish spaces. Let us
recall their definition introduced in [14].

Definition A.1. Let (X, τ) be a topological space such that there exists a countable
family

{fn : X → [−1, 1]; n ∈ N}
of continuous functions that separate points of X.

Among the properties of quasi-Polish spaces used in the main body of this paper
belongs the following Jakubowski-Skorokhod representation theorem, see [14, Theorem
2].

Theorem A.2. Let (X, τ) be a quasi-Polish space and let S be the σ-field generated
by {fn; n ∈ N}. If {µn; n ∈ N} is a tight sequence of probability measures on (X,S),
then there exists a subsequence (nk), a probability space (Ω,F ,P) with X-valued Borel
measurable random variables {ξk; k ∈ N} and ξ such that µnk is the law of ξk and ξk
converges to ξ in X a.s. Moreover, the law of ξ is a Radon measure.

Next, we need to adapt the Gyöngy-Krylov characterization of convergence in prob-
ability introduced in [13] to the setting of quasi-Polish spaces. Recall that the original
argument for the case of Polish spaces follows from the following simple observation
made in [13, Lemma 1.1].

Lemma A.3. Let X be a Polish space equipped with the Borel σ-algebra. A sequence of
X-valued random variables {Yn; n ∈ N} converges in probability if and only if for every
subsequence of joint laws, {µnk,mk ; k ∈ N}, there exists a further subsequence which
converges weakly to a probability measure µ such that

µ
(
(x, y) ∈ X ×X; x = y

)
= 1.
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In view of our application in Subsection 4, we are interested in the sufficiency of the
above condition.

Proposition A.4. Let (X, τ) be a quasi-Polish space. Let {Yn; n ∈ N} be a sequence
of X-valued random variables. Assume that for every subsequence of their joint laws
{µnk,mk ; k ∈ N} there exists a further subsequence which converges weakly to a probability
measure µ such that

(A.1) µ
(
(x, y) ∈ X ×X; x = y

)
= 1.

Then there exists a subsequence {Ynl ; l ∈ N} which converges a.s.

Proof. Let f̃ be the one-to-one and continuous mapping defined by

f̃ : X → [−1, 1]N

x 7→ {fn(x); n ∈ N},

where fn were given by Definition A.1. Since due to assumption

(Ynk , Ymk)
d→ (Y, Y ) in X ×X

for every (nk), (mk) and some Y with the law µ, we deduce from the continuous mapping
theorem that (

f̃(Ynk), f̃(Ymk)
) d→

(
f̃(Y ), f̃(Y )

)
in [−1, 1]N × [−1, 1]N

for every (nk), (mk). Since [−1, 1]N × [−1, 1]N is a Polish space, Lemma A.3 applies to

the sequence {f̃(Yn); n ∈ N} and the convergence in probability follows. Consequently,

there exists a subsequence {f̃(Ynl); n ∈ N} which converges a.s. and it only remains to
prove that Ynl converges to Y a.s. To this end, we proceed by contradiction: Assume
that Ynl does not converge a.s. to Y . Then there exists a set of positive probability
Ω∗ ⊂ Ω such that for all ω ∈ Ω∗ there exists a neighborhood N (ω) of Y (ω) and for every
l0 ∈ N there exists l ≥ l0 such that Ynl(ω) /∈ N (ω). However, as the sequence {fn; n ∈ N}
separates points of X, there exists n ∈ N such that fn(Ynl(ω)) 6= fn(Y (ω)) and as a

consequence there exists a neighborhood V(ω) of f̃(Y (ω)) such that f̃(Ynl(ω)) /∈ V(ω).

This contradicts the a.s. convergence of f̃(Ynl) and completes the proof. �
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[4] M. Capiński, A note on uniqueness of stochastic Navier-Stokes equations, Univ. Iagell. Acta Math.

30 (1993), 219–228.
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[7] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia Math. Appl.,
vol. 44, Cambridge University Press, Cambridge, 1992.

[8] B. Desjardins, E. Grenier, Low Mach number limit of viscous compressible flows in the whole space.

R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1986, 2271–2279.
[9] Desjardins, B.; Grenier, E.; Lions, P.-L.; Masmoudi, N. Incompressible limit for solutions of the

isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. (9)

78 (1999), no. 5, 461–471.
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