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Abstract. We study a BGK-like approximation to hyperbolic conserva-
tion laws forced by a multiplicative noise. First, we make use of the
stochastic characteristics method and establish the existence of a solu-
tion for any fixed parameter ε. In the next step, we investigate the limit
as ε tends to 0 and show the convergence to the kinetic solution of the
limit problem.
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1. Introduction

In the present paper, we consider a scalar conservation law with stochastic
forcing

du+ div
(
A(u)

)
dt = Φ(u) dW, t ∈ (0, T ), x ∈ TN ,

u(0) = u0
(1.1)

and study its approximation in the sense of Bhatnagar-Gross-Krook (a BGK-
like approximation for short). In particular, we aim to describe the conser-
vation law (1.1) as the hydrodynamic limit of the stochastic BGK model, as
the microscopic scale ε goes to 0.

The literature devoted to the deterministic counterpart, i.e. correspond-
ing to the situation Φ = 0, is quite extensive (see [1], [12], [16], [17], [18], [19],
[20], [21]). In that case, the BGK model is given as follows(

∂t + a(ξ) · ∇
)
fε =

χuε − fε

ε
, t > 0, x ∈ TN , ξ ∈ R, (1.2)
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where χuε , the so-called equilibrium function, is defined by

χuε(ξ) = 10<ξ<uε − 1uε<ξ<0,

and a is the derivative of A. The differential operator ∇ is with respect to the
space variable x. The additional real-valued variable ξ is called velocity; the
solution fε is then a microscopic density of particles at (t, x) with velocity ξ.
The local density of particles is defined by

uε(t, x) =

∫
R
fε(t, x, ξ) dξ.

The collisions of particles are given by the nonlinear kernel on the right hand
side of (1.2). The idea is that, as ε → 0, the solutions fε of (1.2) converge
to χu where u is the unique kinetic or entropy solution of the deterministic
scalar conservation law.

The addition of the stochastic term to the basic governing equation is
rather natural for both practical and theoretical applications. Such a term can
be used for instance to account for numerical and empirical uncertainties and
therefore stochastic conservation laws has been recently of growing interest,
see [2], [3], [6], [8], [11], [13], [23], [24], [25]. The first complete well-posedness
result for multi-dimensional scalar conservation laws driven by a general mul-
tiplicative noise was obtained by Debussche and Vovelle [6] for the case of
kinetic solutions. In the present paper, we extend this result and show that
the kinetic solution is the macroscopic limit of stochastic BGK approxima-
tions. As the latter are much simpler equations that can be solved explicitly,
this analysis can be used for developing innovative numerical schemes for
hyperbolic conservation laws.

The BGK model in the stochastic case reads

dF ε + a(ξ) · ∇F ε dt =
1uε>ξ − F ε

ε
dt− ∂ξF εΦdW − 1

2
∂ξ
(
G2(−∂ξF ε)

)
dt,

F ε(0) = F ε0 ,

(1.3)

where the function F ε corresponds to fε +10>ξ, the local density uε is given
as above, and the function G2 will be defined in (2.1). Note, that setting
Φ = 0 in (1.3) yields an equation which is equivalent to the deterministic
BGK model (1.2). Our purpose here is twofold. First, we make use of the
stochastic characteristics method as developed by Kunita in [15] to study a
certain auxiliary problem. With this in hand, we fix ε and prove the existence
of a unique weak solution to the stochastic BGK model (1.3). Second, we
establish a series of estimates uniform in ε which together with the results of
Debussche and Vovelle [6] justify the limit argument, as ε→ 0, and give the
convergence of the weak solutions of (1.3) to the kinetic solution of (1.1).

Let us make some comments on the deterministic BGK model (1.2).
Even though the general concept of the proof is analogous, we point out that
the techniques required by the stochastic case are significantly different. In
particular, the characteristic system for the deterministic BGK model consists
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of independent equations

dxi(t)

dt
= ai(ξ), i = 1, . . . , N,

and the ξ-coordinate of the characteristic curve is constant. Accordingly, it
is much easier to control the behavior of fε for large ξ. Namely, if the initial
data fε0 are compactly supported (in ξ), the same remains valid also for the
solution itself and also the convergence proof simplifies. On the contrary, in
the stochastic case, the ξ-coordinate of the characteristic curve is governed
by an SDE and therefore this property is, in general, lost. Similar issues has
to be dealt with in order to obtain all the necessary uniform estimates. To
overcome this difficulty, it was needed to develop a suitable method to control
the decay at infinity in connection with the remaining variables ω, t, x. (cf.
Proposition 5.3).

There is another difficulty coming from the complex structure of the
characteristic system for the stochastic BGK model (1.3). Namely, the finite
speed of propagation that is an easy consequence of boundedness of the solu-
tion u of the conservation law in the deterministic case (see for instance [20])
is no longer valid and therefore some growth assumptions on the transport
coefficient a are in place. The hypothesis of bounded derivatives is natural
for the stochastic characteristics method as it implies the existence of global
stochastic flows. Even though this already includes one important example
of Burgers’ equation it is of essential interest to handle also more general co-
efficients having polynomial growth. This was achieved by a suitable cut-off
procedure which also guarantees all the necessary estimates.

The exposition is organized as follows. In Section 2, we introduce the
basic setting and state the main result, Theorem 2.1. In order to make the
paper more self-contained, Section 3 provides a brief overview of two concepts
which are the keystones of our proof of existence and convergence of the BGK
model. On the one hand, it is the notion of kinetic solution to stochastic
hyperbolic conservation laws, on the other hand, the method of stochastic
characteristics for first-order linear SPDEs. Section 4 is mainly devoted to
the existence proof for stochastic BGK model, however, in the Subsection 4.2
we establish some important estimates useful in Section 5. This final section
contains technical details of the passage to the limit and completes the proof
of Theorem 2.1.

2. Setting and the main result

We now give the precise assumptions on each of the terms appearing in the
above equations (1.1) and (1.3). We work on a finite-time interval [0, T ],
T > 0, and consider periodic boundary conditions: x ∈ TN where TN is the
N -dimensional torus. The flux function

A = (A1, . . . , AN ) : R −→ RN
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is supposed to be of class C4,η, for some η > 0, with a polynomial growth of
its first derivative, denoted by a = (a1, . . . , aN ).

Regarding the stochastic term, let (Ω,F , (Ft)t≥0,P) be a stochastic ba-
sis with a complete, right-continuous filtration. The initial datum may be ran-
dom in general, i.e. F0-measurable, and we assume u0 ∈ Lp(Ω;Lp(TN )) for
all p ∈ [1,∞). As we intend to apply the stochastic characteristics method de-
veloped by Kunita [15], we restrict ourselves to finite-dimensional noise. Our
method extends to infinite-dimensional setting, however, substantial general-
ization of the results concerning stochastic flows have to be established. Let U
be a finite-dimensional Hilbert space and (ek)dk=1 its orthonormal basis. The

process W is a d-dimensional (Ft)-Wiener process: W (t) =
∑d
k=1 βk(t) ek

with (βk)dk=1 being mutually independent real-valued standard Wiener pro-
cesses relative to (Ft)t≥0. The diffusion coefficient Φ is then defined as

Φ(z) : U −→ L2(TN )

h 7−→
d∑
k=1

gk(·, z(·))〈ek, h〉, z ∈ L2(TN ),

where the functions g1, . . . , gd : TN × R → R are of class C4,η, for some
η > 0, with linear growth and bounded derivatives of all orders. Under these
assumptions, the following estimate holds true

G2(x, ξ) =

d∑
k=1

|gk(x, ξ)|2 ≤ C
(
1 + |ξ|2

)
, x ∈ TN , ξ ∈ R. (2.1)

However, in order to get all the necessary estimates (cf. Corollary 4.11, Re-
mark 4.12), we restrict ourselves to two special cases: either

gk(x, 0) = 0, x ∈ TN , k = 1, . . . , d, (2.2)

hence (2.1) rewrites as

G2(x, ξ) ≤ C|ξ|2, x ∈ TN , ξ ∈ R,
or we strengthen (2.1) in the following way

G2(x, ξ) ≤ C, x ∈ TN , ξ ∈ R. (2.3)

Note, that the latter is satisfied for instance in the case of additive noise.
In this setting, we can assume without loss of generality that the σ-

algebra F is countably generated and (Ft)t≥0 is the completed filtration
generated by the Wiener process and the initial condition. Let us denote by
P the predictable σ-algebra on Ω × [0, T ] associated to (Ft)t≥0 and by Ps
the predictable σ-algebra on Ω× [s, T ] associated to (Ft)t≥s. For notational
simplicity, we write L∞Ps(Ω× [s, T ]× TN × R) to denote1

L∞
(
Ω× [s, T ]× TN × R,Ps ⊗ B(TN )⊗ B(R),dP⊗ dt⊗ dx⊗ dξ

)
.

Concerning the initial data for the BGK model (1.3), one possibility
is to consider simply F ε0 = 1u0>ξ, however, one can also take some suitable

1B(TN ) and B(R), respectively, denotes the Borel σ-algebra on TN and R, respectively.
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approximations of 1u0>ξ. Namely, let {uε0; ε ∈ (0, 1)} be a set of approximate
F0-measurable initial data, which is bounded in Lp(Ω;Lp(TN )) for all p ∈
[1,∞), and assume in addition that uε0 → u0 in L1(Ω;L1(TN )). Thus, setting
F ε0 = 1uε0>ξ, f

ε
0 = χuε0 yields the convergence fε0 → f0 = χu0

in L1(Ω×TN ×
R).

Let us close this section by stating the main result to be proved precisely.

Theorem 2.1 (Hydrodynamic limit of the stochastic BGK model). Let the
above assumptions hold true. Then, for any ε > 0, there exists F ε ∈ L∞P (Ω×
[0, T ]×TN ×R) which is a unique weak solution to the stochastic BGK model
(1.3) with initial condition F ε0 = 1uε0>ξ. Furthermore, if fε = F ε−10>ξ then

(fε) converges in Lp(Ω×[0, T ]×TN×R), for all p ∈ [1,∞), to the equilibrium
function χu, where u is the unique kinetic solution to the stochastic hyperbolic
conservation law (1.1). Besides, the local densities (uε) converge to the kinetic
solution u in Lp(Ω× [0, T ]× TN ), for all p ∈ [1,∞).

Throughout the paper, we use the letter C to denote a generic positive
constant, which can depend on different quantities but ε and may change
from one line to another. We also employ a shortened notation for various
Lp-type norms, e.g. we write ‖ · ‖Lpω,x,ξ for the norm in Lp(Ω× TN ×R) and

similarly for other spaces.

3. Preliminary results

As we are going to apply the well-posedness theory for kinetic solutions of
hyperbolic scalar conservation laws (1.1) as well as the theory of stochas-
tic flows generated by stochastic differential equations, we provide a brief
overview of these two concepts.

3.1. Kinetic formulation for scalar conservation laws

The main reference for this subsection is the paper of Debussche and Vovelle
[6]. For further reading about the kinetic approach used in different settings,
we refer the reader to [4], [10], [16], [17], or [21]. In the paper [6], the notion
of kinetic and generalized kinetic solution to (1.1) was introduced and the
existence, uniqueness and continuous dependence on initial data were proved.
In the following, we present the main ideas and results while skipping all the
technicalities.

Let u be a smooth solution to (1.1). It follows from the Itô formula that
u also satisfies the kinetic formulation of (1.1)

∂tF + a(ξ)· ∇F = δu=ξΦ(u)Ẇ + ∂ξ

(
m− 1

2
G2δu=ξ

)
, (3.1)

where F = 1u>ξ and m is an unknown kinetic measure, i.e. a random non-
negative bounded Borel measure on [0, T ]×TN ×R that vanishes for large ξ
in the following sense: if BcR = {ξ ∈ R; |ξ| ≥ R} then

lim
R→∞

Em
(
TN × [0, T ]×BcR

)
= 0.



6 Martina Hofmanová

Hence we arrive at the notion of kinetic solution: let u ∈ Lp(Ω×[0, T ],P,dP⊗
dt;Lp(TN )), ∀p ∈ [1,∞). It is said to be a kinetic solution to (1.1) provided
F = 1u>ξ is a solution, in the sense of distributions over [0, T ] × TN × R,
to the kinetic formulation (3.1) for some kinetic measure m. Replacing the
indicator function by a general kinetic function F we obtain the definition of
a generalized kinetic solution. It corresponds to the situation where one does
not know the exact value of u(t, x) but only its law given by a probability
measure νt,x. More precisely, let F (t), t ∈ [0, T ], be a kinetic function on
Ω × TN × R and νt,x(ξ) = −∂ξF (t, x, ξ). Then F is a generalized kinetic
solution to (1.1) provided: F (0) = 1u0>ξ and for any test function ϕ ∈
C∞c ([0, T )× TN × R),∫ T

0

〈
F (t), ∂tϕ(t)

〉
dt+

〈
F (0), ϕ(0)

〉
+

∫ T

0

〈
F (t), a(ξ)· ∇ϕ(t)

〉
dt

= −
d∑
k=1

∫ T

0

∫
TN

∫
R
gk(x, ξ)ϕ(t, x, ξ) dνt,x(ξ) dxdβk(t)

− 1

2

∫ T

0

∫
TN

∫
R
G2(x, ξ)∂ξϕ(t, x, ξ)dνt,x(ξ) dx dt+m(∂ξϕ)

(3.2)

holds true P-a.s.. The assumptions considered in [6] are the following: the
flux function A is of class C1 with a polynomial growth of its derivative; the
process W is a (generally infinite-dimensional) cylindrical Wiener process, i.e.
W (t) =

∑
k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued

standard Wiener processes and (ek)k≥1 a complete orthonormal system in a
separable Hilbert space U; the mapping Φ(z) : U → L2(TN ) is defined for
each z ∈ L2(TN ) by Φ(z)ek = gk(·, z(·)) where gk ∈ C(TN × R) and the
following conditions ∑

k≥1

|gk(x, ξ)|2 ≤ C
(
1 + |ξ|2

)
,

∑
k≥1

|gk(x, ξ)− gk(y, ζ)|2 ≤ C
(
|x− y|2 + |ξ − ζ|h(|ξ − ζ|)

)
,

are fulfilled for every x, y ∈ TN , ξ, ζ ∈ R, with h being a continuous nonde-
creasing function on R+ satisfying, for some α > 0,

h(δ) ≤ Cδα, δ < 1.

Under these hypotheses, the well-posedness result [6, Theorem 11, Theorem
19] states: For any u0 ∈ Lp(Ω × TN ) for all p ∈ [1,∞) there exists a unique
kinetic solution to (1.1). Besides, any generalized kinetic solution F is actually
a kinetic solution, i.e. there exists a process u such that F = 1u>ξ. Moreover,
if u1, u2 are kinetic solutions with initial data u1,0 and u2,0, respectively, then
for all t ∈ [0, T ]

E‖u1(t)− u2(t)‖L1
x
≤ E‖u1,0 − u2,0‖L1

x
.
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3.2. Stochastic flows and stochastic characteristics method

The results mentioned in this subsection are due to Kunita and can be found
in [14] and [15]. To begin with, we introduce some notation. We denote by

Cl,δb (Rd) the space of all l-times continuously differentiable functions with
bounded derivatives up to order l (the function itself is only required to be
of linear growth) and δ-Hölder continuous l-th derivatives.

Let Bt = (B1
t , . . . , B

m
t ) be an m-dimensional Wiener process and let

bk : Rd → Rd, k = 0, . . . , m. We study the following system of Stratonovich’s
stochastic differential equations

dφt = b0(φt) dt+

m∑
k=1

bk(φt) ◦ dBkt . (3.3)

Under the hypothesis that b1, . . . , bm ∈ Cl+1,δ
b (Rd) and b0 ∈ Cl,δb (Rd) for

some l ≥ 1 and δ > 0, and for any given y ∈ Rd, s ∈ [0, T ], the problem
(3.3) possesses a unique solution starting from y at time s. Let us denote this
solution by φs,t(y). It enjoys several important properties. Namely, it is a
continuous Cl,ε-semimartingale for any ε < δ and defines a forward Brownian
stochastic flow of Cl-diffeomorphisms, i.e. there exists a null set N of Ω such
that for any ω ∈ N c, the family of continuous maps {φs,t(ω); 0 ≤ s ≤ t ≤ T}
satisfies

(i) φs,t(ω) = φr,t(ω) ◦ φs,r(ω) for all 0 ≤ s ≤ r ≤ t ≤ T ,
(ii) φs,s(ω) = Id for all 0 ≤ s ≤ T ,
(iii) φs,t(ω) : Rd → Rd is l-times differentiable with respect to y, for all

0 ≤ s ≤ t ≤ T , and the derivatives are continuous in (s, t, y),
(iv) φs,t(ω) : Rd → Rd is a Cl-diffeomorphism for all 0 ≤ s ≤ t ≤ T ,
(v) φti,ti+1 , i = 0, . . . , n − 1, are independent random variables for any

0 ≤ t0 ≤ · · · ≤ tn ≤ T .

Therefore, for each 0 ≤ s ≤ t ≤ T , the mapping φs,t(ω) has the inverse
ρs,t(ω) = φs,t(ω)−1 which satisfies

(vi) ρs,t(ω) : Rd → Rd is l-times differentiable with respect to y, for all
0 ≤ s ≤ t ≤ T , and the derivatives are continuous in (s, t, y),

(vii) ρs,t(ω) = ρs,r(ω) ◦ ρr,t(ω) for all 0 ≤ s ≤ r ≤ t ≤ T ,

and consequently ρs,t is a stochastic flow of Cl-diffeomorphisms for the back-
ward direction. Indeed, the following holds true: For any 0 ≤ s ≤ t ≤ T ,
the process ρs,t(y) satisfies the backward Stratonovich stochastic differential
equation with the terminal condition y

ρs,t(y) = y −
∫ t

s

b0
(
ρr,t(y)

)
dr −

m∑
k=1

∫ t

s

bk
(
ρr,t(y)

)
◦ d̂Bkr ,

where the last term is a backward Stratonovich integral defined by Kunita
[15] using the time-reversing method. To be more precise, the Brownian mo-
tion B is regarded as a backward martingale with respect to its natural two
parametric filtration

σ
(
Br1 −Br2 ; s ≤ r1, r2 ≤ t

)
, 0 ≤ s ≤ t ≤ T,
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the integral is then defined similarly to the forward case and both stochastic
flows φs,t as well as ρs,t are adapted to this filtration. Furthermore, we have a
growth control for both forward and backward stochastic flow. Fix arbitrary
δ ∈ (0, 1), then the following convergences hold uniformly in s, t, P-a.s.,

lim
|y|→∞

|φs,t(y)|
(1 + |y|)1+δ

= 0, lim
|y|→∞

|ρs,t(y)|
(1 + |y|)1+δ

= 0,

lim
|y|→∞

(1 + |y|)δ

1 + |φs,t(y)|
= 0, lim

|y|→∞

(1 + |y|)δ

1 + |ρs,t(y)|
= 0.

In the remainder of this subsection we will discuss the stochastic charac-
teristics method where the theory of stochastic flows plays an important role.
We restrict our attention to a first-order linear stochastic partial differential
equation of the form

dv = b0(y) · ∇yv dt+

m∑
k=1

bk(y) · ∇yv ◦ dBkt ,

v(0) = v0,

(3.4)

with coefficients bk : Rd → Rd, k = 0, . . . , m. The associated stochastic char-
acteristic system is defined by a system of Stratonovich stochastic differential
equations

dφt = b0(φt) dt+

m∑
k=1

bk(φt) ◦ dBkt , (3.5)

A solution of (3.5) starting at y is the so-called stochastic characteristic curve

of (3.4) and will be denoted by φt(y). Assume that b1, . . . , bm ∈ Cl+1,δ
b (Rd)

and b0 ∈ Cl,δb (Rd) for some l ≥ 3 and δ > 0. If the initial function v0 lies

in Cl,δ(Rd), then the problem (3.4) has a unique strong solution which is a
continuous Cl,ε-semimartingale for some ε > 0 and is represented by

v(t, y) = v0
(
φ−1t (y)

)
, t ∈ [0, T ], (3.6)

where the inverse mapping φ−1t is well defined according to the previous
paragraph. It satisfies (3.4) in the following sense

v(t, y) = v0(y) + b0(y) ·
∫ t

0

∇yv(r, y) dr +

m∑
k=1

bk(y) ·
∫ t

0

∇yv(r, y) ◦ dBkr .

Moreover, if the initial condition v0 is rapidly decreasing then so does the
solution itself and

E sup
t∈[0,T ]

(∫
Rd
|v(t, y)|(1 + |y|)n dy

)p
<∞, ∀n ∈ N0, p ∈ [1,∞).

The choice of the Stratonovich integral is more natural here and is given
by application of the Itô-Wentzell-type formula in the proof of the explicit
representation of the solution (3.6). Indeed, in this case it is close to the
classical differential rule formula for composite functions (cf. [14, Theorem
I.8.1, Theorem I.8.3]).
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4. Solution to the stochastic BGK model

This section is devoted to the existence proof for the stochastic BGK model
(1.3). Let us start with the definition of its solution.

Definition 4.1. Let ε > 0. Then F ε ∈ L∞P (Ω × [0, T ] × TN × R) satisfying
F ε−10>ξ ∈ L1(Ω× [0, T ]×TN×R) is called a weak solution to the stochastic
BGK model (1.3) with initial condition F ε0 provided the following holds true
for a.e. t ∈ [0, T ], P-a.s.,〈

F ε(t), ϕ
〉

=
〈
F ε0 , ϕ

〉
+

∫ t

0

〈
F ε(s), a · ∇ϕ

〉
ds

+
1

ε

∫ t

0

〈
1uε(t)>ξ − F ε(t), ϕ(t)

〉
dt+

d∑
k=1

∫ t

0

〈
F ε(s), ∂ξ(gkϕ)

〉
dβk(s)

+
1

2

∫ t

0

〈
F ε(s), ∂ξ(G

2∂ξϕ)
〉

ds.

Remark 4.2. In particular, for any ϕ ∈ C∞c (TN × R), there exists a rep-
resentative of 〈F ε(t), ϕ〉 ∈ L∞(Ω × [0, T ]) which is a continuous stochastic
process.

In order to solve the stochastic BGK model (1.3), we intend to employ
the stochastic characterics method introduced in the previous section. Hence
we need to reformulate the problem in Stratonovich form. It will be seen from
the following lemma (see Corollary 4.4) that on the level of above defined
weak solutions the problem (1.3) is equivalent to

dF ε + a(ξ) · ∇F ε dt =
1uε>ξ − F ε

ε
dt− ∂ξF εΦ ◦ dW +

1

4
∂ξF

ε∂ξG
2 dt,

F ε(0) = F ε0 .

Lemma 4.3. If X be a C1(TN × R)-valued continuous (Ft)-semimartingale

whose martingale part is given by −
∫ t
0
∂ξXΦ dW , then

−
∫ t

0

∂ξXΦ dW +
1

2

∫ t

0

∂ξ
(
G2∂ξX

)
dt = −

∫ t

0

∂ξXΦ ◦dW +
1

4

∫ t

0

∂ξX∂ξG
2dt.

(4.1)
Moreover, the same is valid in the sense of distributions as well: let X be a
D′(TN ×R)-valued continuous (Ft)-semimartingale whose martingale part is

given by −
∫ t
0
∂ξXΦ dW , i.e. 〈X(t), ϕ〉 is a continuous (Ft)-semimartingale

with martingale part −
∫ t
0
〈∂ξXΦ,ϕ〉dW for any ϕ ∈ C∞c (TN × R). Then

(4.1) holds true in D′(TN × R).

Proof. We will only prove the second part of the statement as the first one
is straightforward and follows similar arguments. Let us recall the relation
between Itô and Stratonovich integrals (see [14] or [15]). Let Y be a contin-
uous local semimartingale and Ψ be a continuous semimartingale. Then the
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Stratonovich integral is well defined and satisfies∫ t

0

Ψ ◦ dY =

∫ t

0

Ψ dY +
1

2
〈〈Ψ, Y 〉〉t,

where 〈〈·, ·〉〉t denotes the cross-variation process. Therefore, we need to calcu-
late the cross variation of −∂ξXgk and the Wiener process βk, k = 1, . . . , d.
Towards this end, we take a test function ϕ ∈ C∞c (TN × R) and derive the
martingale part of 〈∂ξXgk, ϕ〉 (in the following, we emphasize only the cor-
responding martingale parts).

〈X,ϕ〉 = · · · −
∫ t

0

〈
∂ξXgk, ϕ

〉
dβk(s),

〈X, gkϕ〉 = · · · −
∫ t

0

〈
∂ξXgk, gkϕ

〉
dβk(s),

〈∂ξX, gkϕ〉 = · · ·+
∫ t

0

〈
∂ξXgk, ∂ξ(gkϕ)

〉
dβk(s),

where 〈
∂ξXgk, ∂ξ(gkϕ)

〉
= −

〈
∂ξ(∂ξXgk), gkϕ

〉
= −

〈
∂2ξXg

2
k, ϕ

〉
− 1

2

〈
∂ξX∂ξg

2
k, ϕ

〉
= −

〈
∂ξ(g

2
k∂ξX), ϕ

〉
+

1

2

〈
∂ξX∂ξg

2
k, ϕ

〉
.

Consequently

〈〈
〈−∂ξXgk, ϕ〉, βk

〉〉
t

=

∫ t

0

〈
∂ξ(g

2
k∂ξX), ϕ

〉
ds− 1

2

∫ t

0

〈
∂ξX∂ξg

2
k, ϕ

〉
ds

and the claim follows by summing up over k. �

Corollary 4.4. Let ε > 0. If F ε ∈ L∞P (Ω × [0, T ] × TN × R) is such that
F ε − 10>ξ ∈ L1(Ω × [0, T ] × TN × R) then it is a weak solution to (1.3)
if and only if, for any ϕ ∈ C∞c (TN × R), there exists a representative of
〈F ε(t), ∂ξ(gkϕ)〉 ∈ L∞(Ω× [0, T ]) which is a continuous (Ft)-semimartingale
and the following holds true for a.e. t ∈ [0, T ], P-a.s.,

〈
F ε(t), ϕ

〉
=
〈
F ε0 , ϕ

〉
+

∫ t

0

〈
F ε(s), a · ∇ϕ

〉
ds

+
1

ε

∫ t

0

〈
1uε(t)>ξ − F ε(t), ϕ(t)

〉
dt+

d∑
k=1

∫ t

0

〈
F ε(s), ∂ξ(gkϕ)

〉
◦ dβk(s)

− 1

4

∫ t

0

〈
F ε(s), ∂ξ(ϕ∂ξG

2)
〉

ds.
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As the first step in order to show the existence of a solution to the
stochastic BGK model, we shall study the following auxiliary problem:

dX + a(ξ) · ∇X dt = −∂ξXΦ ◦ dW +
1

4
∂ξX∂ξG

2 dt,

X(s) = X0.
(4.2)

It will be shown in Corollary 4.10 that this problem possesses a unique weak
solution provided X0 ∈ L∞(Ω× TN × R). Let

S = {S(t, s); 0 ≤ s ≤ t ≤ T}

be its solution operator, i.e. for any 0 ≤ s ≤ t ≤ T we define S(t, s)X0 to
be the solution to (4.2). Then we have the following existence result for the
stochastic BGK model.

Theorem 4.5. For any ε > 0, there exists a unique weak solution of the
stochastic BGK model (1.3) and is represented by

F ε(t) = e−
t
εS(t, 0)F ε0 +

1

ε

∫ t

0

e−
t−s
ε S(t, s)1uε(s)>ξ ds. (4.3)

The proof of Theorem 4.5 will be divided into several steps. First, we
have to concentrate on the problem (4.2).

4.1. Application of the stochastic characteristics method

In this subsection, we prove the existence of a unique solution to (4.2) and
study the behavior of the solution operator S. The equation (4.2) is a first-
order linear stochastic partial differential equation of the form (3.4), however,
the coefficient a, as well as ∂ξG

2 in the case of (2.2), is not supposed to have
bounded derivatives. For this purpose we introduce the following truncated
problem: let (kR) be a smooth truncation on R, i.e. let kR(ξ) = k(R−1ξ),
where k is a smooth function with compact support satisfying 0 ≤ k ≤ 1 and

k(ξ) =

{
1, if |ξ| ≤ 1

2 ,

0, if |ξ| ≥ 1,

and define gRk (x, ξ) = gk(x, ξ)kR(ξ), k = 1, . . . , d, and aR(ξ) = a(ξ)kR(ξ).
Coefficients ΦR and GR,2, respectively, can be defined similarly as Φ and G2,
respectively, using gRk instead of gk.2 Then

dX + aR(ξ) · ∇X dt = −∂ξXΦR ◦ dW +
1

4
∂ξX∂ξG

R,2 dt,

X(s) = X0

(4.4)

can be solved by the method of stochastic characteristics. Indeed, the sto-
chastic characteristic system associated with (4.4) is defined by the following

2For notational simplicity we write GR,2 as an abbreviation for
(
GR

)2
and similarly gR,2k

instead of
(
gRk

)2
.
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system of Stratonovich’s stochastic differential equations

dϕ0
t = −1

4
∂ξG

R,2(ϕt) dt+

d∑
k=1

gRk (ϕt) ◦ dβk(t),

dϕit = aRi (ϕ0
t ) dt, i = 1, . . . , N,

(4.5)

where the processes ϕ0
t and ϕit, i = 1, . . . , N, respectively, describe the evolu-

tion of the ξ-coordinate and xi-coordinate, i = 1, . . . , N, respectively, of the
characteristic curve.

Let us denote by ϕRs,t(x, ξ) the solution of (4.5) starting from (x, ξ) at

time s. Then ϕR defines a stochastic flow of C3-diffeomorphisms and we de-
note by ψR the corresponding inverse flow. It is the solution to the backward
problem

dψ0
t =

1

4
∂ξG

R,2(ψt) d̂t−
d∑
k=1

gRk (ψt) ◦ d̂βk(t),

dψit = −aRi (ψ0
t ) d̂t, i = 1, . . . , N.

(4.6)

Remark 4.6. Note, that unlike the deterministic BGK model (i.e. gk = 0,
k = 1, . . . , d), the stochastic case is not time homogeneous: ϕRs,t 6= ϕR0,t−s.

Proposition 4.7. Let R > 0. If X0 ∈ C3,η(TN×R) almost surely,3 there exists
a unique strong solution to (4.4) which is a continuous C3,ϑ-semimartingale
for some ϑ > 0, i.e. it satisfies (4.4) in the following sense

X(t, x, ξ; s) = X0(x, ξ)− aR(ξ) ·
∫ t

s

∇X(r, x, ξ; s) dr

−
d∑
k=1

gRk (x, ξ)

∫ t

s

∂ξX(r, x, ξ; s) ◦ dβk(r)

+
1

4
∂ξG

R,2(x, ξ)

∫ t

s

∂ξX(r, x, ξ; s) dr,

Moreover, it is represented by

X(t, x, ξ; s) = X0

(
ψRs,t(x, ξ)

)
.

Proof. The above representation formula corresponds to (3.6). It can be
shown in a straightforward manner using the Itô-Wentzell formula (see [15,
Theorem 6.1.9]). �

It is obvious, that the domain of definition of the solution operator to
(4.4), hereafter denoted by SR, can be extended to more general functions
which do not necessarily fulfil the assumptions of Proposition 4.7. In this
case, we define consistently

SR(t, s)X0 = X0

(
ψRs,t(x, ξ)

)
, 0 ≤ s ≤ t ≤ T.

3η > 0 is the Hölder exponent from Section 2.
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Since diffeomorphisms preserve sets of measure zero the above is well defined
also if X0 is only defined almost everywhere. The resulting process cannot be
a strong solution to (4.4), however, as it will be seen in Corollary 4.9 it can
still satisfy (4.4) in a weak sense. In the following proposition we establish
basic properties of the operator SR.

Proposition 4.8. Let R > 0. Let SR = {SR(t, s), 0 ≤ s ≤ t ≤ T} be defined
as above. Then

(i) SR is a family of bounded linear operators on L1(Ω × TN × R) having
the operator norm bounded by 1, i.e. for any X0 ∈ L1(Ω × TN × R),
0 ≤ s ≤ t ≤ T , ∥∥SR(t, s)X0

∥∥
L1
ω,x,ξ

≤ ‖X0‖L1
ω,x,ξ

, (4.7)

(ii) SR verifies the semigroup law

SR(t, s) = SR(t, r) ◦ SR(r, s), 0 ≤ s ≤ r ≤ t ≤ T,
SR(s, s) = Id, 0 ≤ s ≤ T.

Proof. Fix arbitrary 0 ≤ s ≤ t ≤ T . The linearity of SR(t, s) follows eas-
ily from its definition. In order to prove (4.7), we will proceed in several
steps. First, we make an additional assumption upon the initial condition
X0, namely,

X0 ∈ L1(Ω× TN × R) ∩ L∞(Ω× TN × R). (4.8)

Let us now consider a suitable smooth approximation of X0. In particular,
let (hδ) be an approximation to the identity on TN × R, and (kδ) a smooth
truncation on R, i.e. define kδ(ξ) = k(δξ), where k was defined at the begin-
ning of this subsection. Then the regularization Xδ

0 , defined in the following
way

Xδ
0 (ω) =

(
X0(ω) ∗ hδ

)
kδ,

is bounded, pathwise smooth and compactly supported and

Xδ
0 −→ X0 in L1(Ω× TN × R);

∥∥Xδ
0

∥∥
L1
ω,x,ξ

≤ ‖X0‖L1
ω,x,ξ

. (4.9)

Furthermore, also all the partial derivatives ∂ξX
δ
0 , ∂xiX

δ
0 , i = 1, . . . , N, are

bounded, pathwise smooth and compactly supported.

Next, the process Xδ = SR(t, s)Xδ
0 is the unique strong solution to (4.4)

or equivalently

dX + aR(ξ) · ∇X dt = −∂ξXΦR dW +
1

2
∂ξ
(
GR,2∂ξX

)
dt,

X(s) = Xδ
0

(4.10)

which follows by a similar approach as in Lemma 4.3. For any x ∈ TN , ξ ∈ R,
the above stochastic integral is a well defined martingale with zero expected
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value. Indeed, for each k = 1, . . . , d, we have4

E
∫ T

s

∣∣∂ξXδgRk (x, ξ)
∣∣2 dr = C E

∫ T

s

∣∣∇x,ξXδ
0

(
ψRs,r(x, ξ)

)
· ∂ξψRs,r(x, ξ)

∣∣2 dr

≤ C E
∫ T

s

∣∣∂ξψRs,r(x, ξ)∣∣2 dr <∞

since gRk is bounded and the process ∂ξψ
R
s,r(x, ξ) solves a backward bilinear

stochastic differential equation with bounded coefficients (see [15, Theorem
4.6.5]) and therefore possesses moments of any order which are bounded in
0 ≤ s ≤ r ≤ T, x ∈ TN , ξ ∈ R. Nevertheless, we point out the same is
not generally true without the assumption (4.8). In this case, the stochastic
integral can happen to be a local martingale only, which would significantly
complicate the subsequent steps.

We intend to integrate the equation (4.10) with respect to the variables
ω, x, ξ and expect the stochastic integral to vanish. Towards this end, it is
needed to verify the interchange of integrals with respect to x, ξ and the
stochastic one. We make use of the stochastic Fubini theorem [5, Theorem
4.18]. In order to verify its assumptions, the following quantity∫
TN

∫
R

(
E
∫ T

s

∣∣∂ξXδgRk (x, ξ)
∣∣2 dr

) 1
2

dξ dx

=

∫
TN

∫
R
|gRk (x, ξ)|

(
E
∫ T

s

∣∣∇x,ξXδ
0

(
ψRs,r(x, ξ)

)
· ∂ξψRs,r(x, ξ)

∣∣2 dr

) 1
2

dξ dx

should be finite. Recall that gRk , k = 1, . . . , d, are bounded and the moments
of ∂ξψ

R
s,r(x, ξ) are finite and bounded in s, r, x, ξ. Thus, since ∇x,ξXδ

0 is
bounded and pathwise compactly supported it is sufficient to show that so
does ∇x,ξXδ

0

(
ψRs,r(x, ξ)

)
. However, this fact follows immediately from the

growth control on the stochastic flow ψR. Indeed, all the assertions of [15,
Section 4.5], in particular Exercise 4.5.9 and 4.5.10, can be modified in order
to obtain corresponding results for the component ψR,0s,r only. Hence, for any
η ∈ (0, 1), we have uniformly in s, r, x, P-a.s.,

lim
|ξ|→∞

|ψR,0s,r (x, ξ)|
(1 + |ξ|)1+η

= 0, lim
|ξ|→∞

(1 + |ξ|)η

1 + |ψR,0s,r (x, ξ)|
= 0.

Consequently, it yields: for any fixed L > 0, there exists l > 0 such that if
|ξ| > l then it holds uniformly in s, r, x, P-a.s.,

(1 + |ξ|)η ≤ L(1 + |ψR,0s,r (x, ξ)|).

The support of Xδ
0 as well as ∇x,ξXδ

0 in the variable ξ is included in [− 1
δ ,

1
δ ].

Therefore, if in addition (1 + |ξ|)η > L(1 + 1
δ ) then |ψR,0s,r (x, ξ)| > 1

δ for all

s, r, x, P-a.s., and accordingly ∇x,ξXδ
0

(
ψRs,r(x, ξ)

)
= 0 for all s, r, x, P-a.s..

As a consequence, the stochastic Fubini theorem can be applied.

4By ∇x,ξ we denote the gradient with respect to the variables x, ξ.
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Therefore, integrating the equation (4.10) with respect to ω, x, ξ yields

E
∫
TN

∫
R
Xδ(t, x, ξ) dξ dx+ E

∫ t

s

∫
R
aR(ξ) ·

∫
TN
∇Xδ(r, x, ξ) dx dξ dr

= E
∫
TN

∫
R
Xδ

0 dξ dx+
1

2
E
∫ t

s

∫
TN

∫
R
∂ξ
(
GR,2(x, ξ)∂ξX

δ(r, x, ξ)
)

dξ dxdr

where the second term on the left hand side vanishes due to periodic boundary
conditions and the second one on the right hand side due to the compact
support of GR,2 in ξ. Hence we obtain

E
∫
TN

∫
R
SR(t, s)Xδ

0 dξ dx = E
∫
TN

∫
R
Xδ

0 dξ dx

where the integrals on both sides are finite. Note, that if Xδ
0 is nonnegative

(nonpositive) then also SR(t, s)Xδ
0 stays nonnegative (nonpositive). There-

fore,(
SR(t, s)Xδ

0

)+
= SR(t, s)(Xδ

0 )+,
(
SR(t, s)Xδ

0

)−
= SR(t, s)(Xδ

0 )−,

and by splitting the initial data into positive and negative part we obtain
that (4.7) is satisfied with equality in this case.

In addition to (4.9), also the convergence SR(t, s)Xδ
0 → SR(t, s)X0

holds true in L1(Ω×TN ×R). Indeed, let us fix δ1, δ2 ∈ (0, 1). Then (4.7) is

also fulfilled by Xδ1
0 −X

δ2
0 hence the set {SR(t, s)Xδ

0 ; δ ∈ (0, 1)} is Cauchy in
L1(Ω×TN ×R) and the limit is necessarily SR(t, s)X0 since diffeomorphisms
preserve sets of zero measure. Finally, application of the Fatou lemma gives
(4.7) for X0.

As the next step, we avoid the hypothesis (4.8). Let X0 ∈ L1(Ω×TN×R)
and consider the following approximations

Xn
0 = X0 1|X0|≤n, n ∈ N.

Then clearly

Xn
0 −→ X0 in L1(Ω× TN × R),

∥∥Xn
0

∥∥
L1
ω,x,ξ

≤ ‖X0‖L1
ω,x,ξ

and Xn
0 ∈ L∞(Ω× TN × R) hence the estimate (4.7) is valid for all Xn

0 . As
above, it is possible to show that SR(t, s)Xn

0 → SR(t, s)X0 in L1(Ω×TN×R)
and by the lower semicontinuity of the norm we obtain the claim.

Finally, item (ii) can be shown by the flow property of ψ:

SR(t, r) ◦ SR(r, s)X0 = X0

(
ψRs,r

(
ψRr,t(x, ξ)

))
= X0

(
ψRs,t(x, ξ)

)
= SR(t, s)X0.

�

Corollary 4.9. Let R > 0. For any Fs ⊗ B(TN ) ⊗ B(R)-measurable initial
datum X0 ∈ L∞(Ω × TN × R) there exists a unique X ∈ L∞Ps

(
Ω × [s, T ] ×

TN × R
)

that is a weak solution to (4.10), i.e. the following holds true for
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any φ ∈ C∞c (TN × R), a.e. t ∈ [s, T ], P-a.s.,〈
X(t), φ

〉
=
〈
X0, φ

〉
+

∫ t

s

〈
X(r), aR · ∇φ

〉
dr

+

d∑
k=1

∫ t

s

〈
X(r), ∂ξ(g

R
k φ)

〉
dβk(r) +

1

2

∫ t

s

〈
X(r), ∂ξ(G

R,2∂ξφ)
〉

dr.

(4.11)

Furthermore, it is represented by X = SR(t, s)X0.

Proof. Let us start with the proof of uniqueness. Due to linearity, it is enough
to prove that any L∞-weak solution to (4.10) starting from the origin X0 = 0
vanishes identically. Let X be such a solution. First, let (hτ ) be a symmetric
approximation to the identity on TN ×R and test (4.10) by φ(x, ξ) = hτ (y−
x, ζ − ξ). (Here, we employ the parameter τ in order to distinguish from
the regularization defined in Proposition 4.8, which will also be used in this
proof.) Then Xτ (t) := X(t) ∗ hτ , for a.e. t ∈ [s, T ], satisfies

Xτ (t, y, ζ) = −
∫ t

s

[
aR · ∇X(r)

]τ
(y, ζ) dr −

d∑
k=1

∫ t

s

[
∂ξX(r)gRk

]τ
(y, ζ) dβk(r)

+
1

2

∫ t

s

[
∂ξ
(
GR,2∂ξX(r)

)]τ
(y, ζ) dr

hence is smooth in (y, ζ) and can be extended to become continuous on [s, T ].
Now, we will argue as in [9, Theorem 20] and make use of the stochastic flow
ϕR. From the Itô-Wentzell formula for the Itô integral [15, Theorem 3.3.1]
we deduce

Xτ
(
t, ϕRs,t(ỹ, ζ̃)

)
= −

∫ t

s

[
aR · ∇X(r)

]τ(
ϕRs,r(ỹ, ζ̃)

)
dr

−
d∑
k=1

∫ t

s

[
∂ξX(r)gRk

]τ(
ϕRs,r(ỹ, ζ̃)

)
dβk(r)

+
1

2

∫ t

s

[
∂ξ
(
GR,2∂ξX(r)

)]τ(
ϕRs,r(ỹ, ζ̃)

)
dr

+

∫ t

s

∇Xτ
(
r, ϕRs,r(ỹ, ζ̃)

)
· aR

(
ϕR,0s,r (ỹ, ζ̃)

)
dr

+

d∑
k=1

∫ t

s

∂ξX
τ
(
r, ϕRs,r(ỹ, ζ̃)

)
gRk
(
ϕRs,r(ỹ, ζ̃)

)
dβk(r)

+
1

2

∫ t

s

∂2ξX
τ
(
r, ϕRs,r(ỹ, ζ̃)

)
GR,2

(
ϕRs,r(ỹ, ζ̃)

)
dr

−
d∑
k=1

∫ t

s

∂ξ
[
∂ξX(r)gRk

]τ(
ϕRs,r(ỹ, ζ̃)

)
gRk
(
ϕRs,r(ỹ, ζ̃)

)
dr

= J1 + J2 + J3 + J4 + J5 + J6 + J7.
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As the next step, we intend to show that J1 + J4 → 0, J2 + J5 → 0, and J3 +
J6 +J7 → 0 in D′(TN ×R), P-a.s., as τ → 0. Remark, that unlike [9], working
with the Stratonovich form of (4.10) would not bring any simplifications
here. To be more precise, the Stratonovich version of the Itô-Wentzell formula
(see [15, Theorem 3.3.2]) is close to the classical differential rule formula for
composite functions hence any correction terms (as J6, J7 in the Itô version)
are not necessary; however, due to the dependence on x, ξ of the coefficients
gRk , the corresponding Stratonovich integrals would not cancel and therefore
in order to guarantee their convergence to zero, one would need to control
the correction terms J6, J7 anyway.

Let us proceed with the proof of the above sketched convergence. To-
wards this end, we employ repeatedly the arguments of the commutation
lemma of DiPerna and Lions [7, Lemma II.1]. In particular, in the case of
J1 + J4 we obtain for a.e. r ∈ [s, t], P-a.s., that

aR · ∇Xτ (r)−
[
aR · ∇X(r)

]τ −→ 0 in D′(TN × R). (4.12)

Indeed, since

aR(ξ) · ∇Xτ (r, x, ξ)−
[
aR · ∇X(r)

]τ
(x, ξ)

=

∫
TN

∫
R
X(r, y, ζ)

[
aR(ξ)− aR(ζ)

]
· ∇hτ (x− y, ξ − ζ)dζdy

and τ |∇hτ |(·) ≤ Ch2τ (·), we obtain the following bound by standard esti-
mates on convolutions : for any φ ∈ C∞c (TN × R)∣∣∣〈aR · ∇Xτ (r)−

[
aR · ∇X(r)

]τ
, φ
〉∣∣∣

≤ C
∥∥aR∥∥

W 1,∞(R)‖X(r)‖Lp(Kφ)‖φ‖Lq(TN×R),

where Kφ ⊂ TN ×R is a suitable compact set and p, q ∈ [1,∞] are arbitrary
conjugate exponents. As a consequence, it is sufficient to consider X(r) con-
tinuous in (x, ξ) as the general case can be concluded by a density argument.
We have∫

TN

∫
R
X(r, y, ζ)

[
aR(ξ)− aR(ζ)

]
· ∇hτ (x− y, ξ − ζ)dζdy

=

∫
TN

∫
R

∫ 1

0

X(r, y, ζ)DaR
(
ζ + σ(ξ − ζ)

)
(ξ − ζ) · ∇hτ (x− y, ξ − ζ)dσdζdy

=

∫
TN

∫
R

∫ 1

0

X
(
r, x− τ ỹ, ξ − τ ζ̃

)
DaR

(
ξ − (1− σ)τ ζ̃

)
ζ̃ · ∇h(ỹ, ζ̃)dσdζ̃dỹ

−→ X(r, x, ξ)DaR(ξ) ·
∫
TN

∫
R
ζ̃∇h(ỹ, ζ̃)dζ̃dỹ = 0

hence (4.12) follows by the dominated convergence theorem. Moreover, we
deduce also that for a.e. r ∈ [s, t], P-a.s.,

aR
(
ϕR,0s,r

)
· ∇Xτ

(
r, ϕRs,r

)
−
[
aR · ∇X(r)

]τ(
ϕRs,r

)
−→ 0 in D′(TN × R).

(4.13)
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It can be seen by using the change of variables formula: let JψRs,r denote the

Jacobian of the inverse flow ψRs,r, then∣∣∣〈aR(ϕR,0s,r

)
· ∇Xτ

(
r, ϕRs,r

)
−
[
aR · ∇X(r)

]τ(
ϕRs,r

)
, φ
〉∣∣∣

=
∣∣∣〈aR · ∇Xτ (r)−

[
aR · ∇X(r)

]τ
, φ
(
ψRs,r

)∣∣JψRs,r∣∣〉∣∣∣
≤ C

∥∥aR∥∥
W 1,∞(R)‖X(r)‖Lp(K)

∥∥φ(ψRs,r)JψRs,r∥∥Lq(K)

≤ C
∥∥aR∥∥

W 1,∞(R) ess sup
s≤r≤T

‖X(r)‖Lp(K)‖φ‖L∞(K) sup
s≤r≤T

∥∥JψRs,r
∥∥
Lq(K)

<∞,

which holds for a suitably chosen compact set K ⊂ TN × R as φ(ψRs,r) is

compactly supported in TN × R and any conjugate exponents p, q ∈ [1,∞].
The estimate of sups≤r≤T ‖JψRs,r‖Lq(K) is an immediate consequence of the

fact that for almost every ω ∈ Ω the mapping (r, x, ξ) 7→ DψRs,r(ω, x, ξ) is
continuous due to the properties of stochastic flows (see Subsection 3.2, (vi))
and therefore (r, x, ξ) 7→ JψRs,r(ω, x, ξ) is bounded on the given compact set
[s, T ]×K. Having this bound in hand, we infer (4.13) by using density again.
Accordingly, the almost sure convergence J1 + J4 → 0 in D′(TN ×R) follows
by the dominated convergence theorem.

In order to pass to the limit in the case of J2 + J5, we employ the same
approach as above so we will only write the main points of the proof. We
obtain∣∣∣〈gRk (ϕRs,r) ∂ξXτ

(
r, ϕRs,r

)
−
[
gRk ∂ξX(r)

]τ(
ϕRs,r

)
, φ
〉∣∣∣

≤ C
∥∥gRk ∥∥W 1,∞(R) ess sup

s≤r≤T
‖X(r)‖Lp(K)‖φ‖L∞(K) sup

s≤r≤T

∥∥JψRs,r
∥∥
Lq(K)

hence for a.e. r ∈ [s, T ], P-a.s.,

gRk
(
ϕRs,r

)
∂ξX

τ
(
r, ϕRs,r

)
−
[
gRk ∂ξX(r)

]τ(
ϕRs,r

)
−→ 0 in D′(TN × R)

and accordingly we conclude by the dominated convergence theorem for sto-
chastic integrals [22, Theorem 32] that P-a.s. (up to subsequences) J2+J5 → 0
in D′(TN × R).

Now, it remains to verify the convergence of J3 + J6 + J7. As the first
step, we will show that for a.e. r ∈ [s, T ], P-a.s., in D′(TN × R)

1

2

[
∂ξ
(
gR,2k ∂ξX(r)

)]τ
+

1

2
∂2ξξX

τ (r)gR,2k − ∂ξ
[
∂ξX(r)gRk

]τ
gRk −→ 0. (4.14)

Towards this end, we observe

1

2

[
∂ξ
(
gR,2k ∂ξX(r)

)]τ
(x, ξ) =

1

2

〈
∂ζX(r)gR,2k , ∂ξhτ (x− ·, ξ − ·)

〉
,

1

2
∂2ξξX

τ (r, x, ξ)gR,2k (x, ξ) =
1

2

〈
∂ζX(r), ∂ξhτ (x− ·, ξ − ·)

〉
gR,2k (x, ξ),

−∂ξ
[
∂ξX(r)gRk

]τ
(x, ξ) gRk (x, ξ) = −

〈
∂ζX(r)gRk , ∂ξhτ (x− ·, ξ − ·)

〉
gRk (x, ξ),
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and hence the left hand side of (4.14) evaluated at (x, ξ) is equal to

1

2

∫
TN

∫
R
∂ζX(r, y, ζ)

(
gRk (y, ζ)− gRk (x, ξ)

)2
∂ξhτ (x− y, ξ − ζ)dζdy

= −
∫
TN

∫
R
X(r, y, ζ)

(
gRk (y, ζ)− gRk (x, ξ)

)
∂ζg

R
k (y, ζ)∂ξhτ (x− y, ξ − ζ)dζdy

+
1

2

∫
TN

∫
R
X(r, y, ζ)

(
gRk (y, ζ)− gRk (x, ξ)

)2
∂2ξξhτ (x− y, ξ − ζ)dζdy

= I1(x, ξ) + I2(x, ξ).

Next, we proceed as in the case of J1 + J4. We obtain∣∣〈I1 + I2, φ
〉∣∣ ≤ C∥∥gRk ∥∥2W 1,∞(TN×R)‖X(r)‖Lp(Kφ)‖φ‖Lq(TN×R)

which holds true for a suitable compact set Kφ ⊂ TN × R and arbitrary
conjugate exponents p, q ∈ [1,∞] and in the case of X(r) continuous in (x, ξ)

I1(x, ξ) −→ −X(r, x, ξ)
(
∂ξg

R
k (x, ξ)

)2
,

I2(x, ξ) −→ X(r, x, ξ)
(
∂ξg

R
k (x, ξ)

)2
,

which yields (4.14) by the dominated convergence theorem and density. As
the next step, we conclude that∣∣∣〈I1

(
ϕRs,r

)
+ I2

(
ϕRs,r

)
, φ
〉∣∣∣

≤ C
∥∥gRk ∥∥2W 1,∞(TN×R) ess sup

s≤r≤T
‖X(r)‖Lp(K)‖φ‖L∞(K) sup

s≤r≤T

∥∥JψRs,r
∥∥
Lq(K)

and consequently for a.e. r ∈ [s, T ], P-a.s.,

1

2

[
∂ξ
(
gR,2k ∂ξX(r)

)]τ(
ϕRs,r

)
+

1

2
∂2ξξX

τ
(
r, ϕRs,r

)
gR,2k

(
ϕRs,r

)
− ∂ξ

[
∂ξX(r)gRk

]τ(
ϕRs,r

)
gRk
(
ϕRs,r

)
−→ 0 in D′(TN × R).

Therefore, the desired convergence of J3 + J6 + J7 is verified.

Finally, since it holds true for a.e. t ∈ [s, T ] that

Xτ (t)
w∗−→ X(t) in L∞(TN × R), P-a.s.,

we obtain for any φ ∈ C∞c (TN × R)〈
X
(
t, ϕRs,t

)
, φ
〉

=
〈
X(t), φ

(
ψRs,t

)∣∣JψRs,t∣∣〉 = lim
τ→0

〈
Xτ (t), φ

(
ψRs,t

)∣∣JψRs,t∣∣〉
= lim
τ→0

〈
Xτ
(
t, ϕRs,t

)
, φ
〉

= 0

hence X = 0 since ϕRs,t is a bijection and the proof of uniqueness is complete.

The proof of the explicit formula for X follows by employing the regu-
larization Xδ

0 as in the proof of Proposition 4.8. The process Xδ = SR(t, s)Xδ
0
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is the unique strong solution to (4.4) or equivalently (4.10) by using a similar
approach as in Lemma 4.3. Consequently, it satisfies for all φ ∈ C∞c (TN ×R)〈
Xδ(t), φ

〉
=
〈
Xδ

0 , φ
〉

+

∫ t

s

〈
Xδ(r), aR(ξ) · ∇φ

〉
dr

+

d∑
k=1

∫ t

s

〈
Xδ(r), ∂ξ(g

R
k φ)

〉
dβk(r) +

1

2

∫ t

s

〈
Xδ(r), ∂ξ(G

R,2∂ξφ)
〉

dr.

Now, it only remains to take the limit as δ → 0. As Xδ
0 → X0 for a.e.

ω, x, ξ we have Xδ = SR(t, s)Xδ
0 → SR(t, s)X0 = X for a.e. ω, x, ξ and

every t ∈ [s, T ]. Therefore, the convergence in all the terms apart from the
stochastic one follows directly by the dominated convergence theorem. For the
case of stochastic integral we can apply the dominated convergence theorem
for stochastic integrals. Since it holds〈

Xδ(r), ∂ξ(g
R
k φ)

〉
−→

〈
X(r), ∂ξ(g

R
k φ)

〉
, a.e. (ω, r) ∈ Ω× [s, T ]

and, setting K = suppφ ⊂ TN × R,∣∣〈Xδ(r), ∂ξ(g
R
k φ)

〉∣∣ ≤ C ∫
K

∣∣Xδ
0

(
ψRs,r(x, ξ)

)∣∣dξ dx ≤ C,

where the constant C does not depend on δ due to the fact that

‖Xδ
0‖L∞ω,x,ξ ≤ ‖X0‖L∞ω,x,ξ .

Thus, we deduce (up to subsequences) the almost sure convergence of the
stochastic integrals. Furthermore, SR(t, s)X0 is exactly the representative (in
t) of the unique weak solution of (4.10) that satisfies (4.11) for all t ∈ [s, T ],
in particular, t 7→ 〈SR(t, s)X0, φ〉 is a continuous (Ft)t≥s-semimartingale for
any φ ∈ C∞c (TN × R). �

As the next step, we derive the existence of a unique weak solution to
(4.2) which can be equivalently rewritten as

dX + a(ξ) · ∇X dt = −∂ξXΦ dW +
1

2
∂ξ(G

2∂ξX) dt,

X(s) = X0

(4.15)

due to Lemma 4.3. With regard to the definition of the truncated coefficients,
let us define

τR(s, x, ξ) = inf
{
t ≥ s; |ϕR,0s,t (x, ξ)| > R

}
(with the convention inf ∅ = T ). Clearly, for any s ∈ [0, T ], x ∈ TN , ξ ∈ R,
τR(s, x, ξ) is a stopping time with respect to the filtration (Ft)t≥s. Never-
theless, it can be shown that the blow-up cannot occur in a finite time and
therefore

sup
R>0

τR(s, x, ξ) = T, P-a.s., s ∈ [0, T ], x ∈ TN , ξ ∈ R.
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Indeed, for any R > 0, the process ϕR,0 satisfies the Itô equation

dϕR,0t =

d∑
k=1

gRk (ϕRt ) dβk(t)

where all the coefficients gRk satisfy the linear growth estimate (2.1) that
is independent of R and x and therefore the claim follows by a standard
estimation technique for SDEs. Moreover, if R′ > R then due to uniqueness
τR
′
(s, x, ξ) ≥ τR(s, x, ξ) and SR′(t, s)X0 = SR(t, s)X0 on [0, τR(s, x, ξ)]. As

a consequence, the pointwise limit[
S(t, s)X0

]
(ω, x, ξ) := lim

R→∞

[
SR(t, s)X0

]
(ω, x, ξ), 0 ≤ s ≤ t ≤ T,

exists almost surely and we obtain the following result.

Corollary 4.10. The family S = {S(t, s), 0 ≤ s ≤ t ≤ T} consists of bounded
linear operators on L1(Ω×TN ×R) having the operator norm bounded by 1,
i.e. for any X0 ∈ L1(Ω× TN × R), 0 ≤ s ≤ t ≤ T,∥∥S(t, s)X0

∥∥
L1
ω,x,ξ

≤ ‖X0‖L1
ω,x,ξ

.

Furthermore, for any Fs ⊗ B(TN ) ⊗ B(R)-measurable initial datum X0 ∈
L∞(Ω × TN × R) there exists a unique X ∈ L∞Ps(Ω × [s, T ] × TN × R) that
is a weak solution to (4.15). Besides, it is represented by X = S(t, s)X0

and t 7→ 〈S(t, s)X0, φ〉 is a continuous (Ft)t≥s-semimartingale for any φ ∈
C∞c (TN × R). Consequently, S verifies the semigroup law

S(t, s) = S(t, r) ◦ S(r, s), 0 ≤ s ≤ r ≤ t ≤ T,
S(s, s) = Id, 0 ≤ s ≤ T.

Proof. The first part of the proof follows directly from Proposition 4.8 while
the rest is a consequence of Corollary 4.9. �

Corollary 4.11. For all n ∈ [0,∞) it holds

sup
0≤s≤T

E sup
s≤t≤T

∥∥(S(t, s)10>ξ − 10>ξ

)
(1 + |ξ|)n

∥∥
L1
x,ξ

≤ C. (4.16)

Proof. Remark, that if (2.2) is fulfilled, then for any 0 ≤ s ≤ t ≤ T and

x ∈ TN the process ϕR,0s,t (x, 0) ≡ 0 is a solution to the first equation in (4.5)
for any R > 0. Moreover, since the solution to (4.5) is unique, we deduce

ϕR,0s,t (x, ξ)

{
≥ 0, if ξ ≥ 0,

≤ 0, if ξ ≤ 0.

As a consequence, the same is valid for the inverse stochastic flow ψR,0 hence
SR(t, s)10>ξ = 10>ξ for all R > 0 and thus the left hand side in (4.16) is
zero.
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In the case of (2.3), it is enough to prove the statement for any SR
provided the constant is independent on R. The stochastic characteristic
system (4.5) rewritten in terms of Itô’s integral takes the following form

dϕ0
t =

d∑
k=1

gRk (ϕt) dβk(t),

dϕit = aRi (ϕ0
t ) dt, i = 1, . . . , N,

whereas, in the case of the inverse flow, (4.6) reads

dψ0
t = −

d∑
k=1

gRk (ψt) d̂βk(t),

dψit = −aRi (ψ0
t ) dt, i = 1, . . . , N.

Thus, we obtain

SR(t, s)10>ξ − 10>ξ = 1∑d
k=1

∫ t
s
gRk (ψRr,t(x,ξ))d̂βk(r)>ξ

− 10>ξ

= 1
|ξ|≤
∣∣∑d

k=1

∫ t
s
gRk (ψRr,t(x,ξ))d̂βk(r)

∣∣
≤
(
1 +

∣∣∑d
k=1

∫ t
s
gRk (ψRr,t(x, ξ))d̂βk(r)

∣∣)n+2

(1 + |ξ|)n+2

and since the fact that ψRr,t ◦ ϕRs,t = ϕRs,r implies

d∑
k=1

∫ t

s

gRk (ψRr,t(x, ξ)) d̂βk(r) =

d∑
k=1

∫ t

s

gRk (ϕRs,r(y, ζ)) dβk(r)

by setting (x, ξ) = ϕRs,t(y, ζ), we deduce that

E sup
s≤t≤T

∫
TN

∫
R

∣∣S(t, s)10>ξ − 10>ξ

∣∣(1 + |ξ|)n dξ dx

≤ C + C sup
(y,ζ)∈RN×R

E sup
s≤t≤T

∣∣∣∣ d∑
k=1

∫ t

s

gRk (ϕRs,r(y, ζ)) dβk(r)

∣∣∣∣n+2

≤ C + C sup
(y,ζ)∈RN×R

E
( d∑
k=1

∫ T

s

∣∣gRk (ϕRs,r(y, ζ))
∣∣2 dr

)n+2
2

≤ C,

where the constant C does not depend on R and s. �

Remark 4.12. Let us make some comments on hypotheses (2.2), (2.3) as the
proof of Corollary 4.11 is their only use. The main difficulty in proving (4.16)
comes from the unknown structure of dependence of the stochastic flows ϕR

and ψR on ξ in connection with the remaining variables ω, x, s, t. Although
one cannot say much in general, it is possible to find some (mostly simple)
examples such that (4.16) holds true even without (2.2), (2.3).
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(i) If the stochastic characteristic curve is governed by a linear system of
stochastic differential equation as for instance

dϕ0
t =

N∑
k=0

(
1 + ϕkt

)
dβk(t),

dϕit = ϕ0
t dt, i = 1, . . . , N,

i.e. neither (2.2) nor (2.3) is fulfilled since g0(x, ξ) = 1 + ξ, then both
forward and backward stochastic flow are given by explicit formulas
where the dependence on ξ is clear and, as a consequence, the statement
of Corollary 4.11 remains valid.

(ii) By using χcu(ξ) = 1−c<ξ<u−1u<ξ<−c instead of χu = 10<ξ<u−1u<ξ<0,
the condition (2.2) can be relaxed to

∃c ∈ R such that gk(x, c) = 0 ∀x ∈ TN , k = 1, . . . , d.

Now, we have all in hand to complete the proof of Theorem 4.5.

Proof of Theorem 4.5. Recall, that the local densities are defined as follows

uε(t, x) =

∫
R
fε(t, x, ξ) dξ =

∫
R

(
F ε(t, x, ξ)− 10>ξ

)
dξ (4.17)

hence the function F ε is not integrable with respect to ξ. For the purpose
of the proof it is therefore more convenient to consider the process hε(t) =
F ε(t)−S(t, 0)10>ξ instead and prove that it exists and is given by a suitable
integral representation. Due to Corollary 4.10, S(t, s)10>ξ is the unique weak
solution to (4.15) hence hε solves

dhε + a(ξ) · ∇hε dt =
(1uε>ξ − S(t, 0)10>ξ)− hε

ε
dt− ∂ξhεΦdW

− 1

2
∂ξ
(
G2(−∂ξhε)

)
dt,

hε(0) = χuε0 ,

(4.18)

in the sense of distributions. Then, by Lemma 4.3 and the weak version of
Duhamel’s principle, the problem (4.18) admits an equivalent integral repre-
sentation

hε(t) = e−
t
εS(t, 0)χuε0 +

1

ε

∫ t

0

e−
t−s
ε S(t, s)

[
1uε(s)>ξ −S(s, 0)10>ξ

]
ds (4.19)

and thus can be solved by a fixed point method. According to the identity∫
R
|1α>ξ − 1β>ξ|dξ = |α− β|, α, β ∈ R,

some space of ξ-integrable functions seems to be well suited to deal with the
nonlinearity term 1uε>ξ. Let us denote H = L∞(0, T ;L1(Ω×TN ×R)) and
show that the mapping(

K g
)
(t) = e−

t
εS(t, 0)χuε0 +

1

ε

∫ t

0

e−
t−s
ε S(t, s)

[
1v(s)>ξ − S(s, 0)10>ξ

]
ds,
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where the local density v(s) =
∫
R(g(s, ξ) + S(s, 0)10>ξ − 10>ξ)dξ is defined

consistently with (4.17), is a contraction on H . Let g, g1, g2 ∈ H with
corresponding densities v, v1, v2. By Proposition 4.8, Corollary 4.11 and the
assumptions on initial data, we arrive at∥∥(K g)(t)

∥∥
L1
ω,x,ξ

≤ e−
t
ε ‖χuε0‖L1

ω,x,ξ
+

1

ε

∫ t

0

e−
t−s
ε ‖1v(s)>ξ − S(s, 0)10>ξ‖L1

ω,x,ξ
ds

≤ ‖uε0‖L1
ω,x

+ sup
0≤s≤t

(
‖χv(s)‖L1

ω,x,ξ
+ ‖S(s, 0)10>ξ − 10>ξ‖L1

ω,x,ξ

)
≤ C + sup

0≤s≤t
‖g(s)‖L1

ω,x,ξ
,

with a constant independent on t, hence∥∥K g
∥∥
L∞t L

1
ω,x,ξ

≤ C + ‖g‖L∞t L1
ω,x,ξ

<∞.

Next, we have∥∥(K g1)(t)− (K g2)(t)
∥∥
L1
ω,x,ξ

≤ 1

ε

∫ t

0

e−
t−s
ε ‖1v1(s)>ξ − 1v2(s)>ξ‖L1

ω,x,ξ
ds

=
1

ε

∫ t

0

e−
t−s
ε ‖v1(s)− v2(s)‖L1

ω,x
ds

≤ 1

ε

∫ t

0

e−
t−s
ε ‖g1(s)− g2(s)‖L1

ω,x,ξ
ds,

so ∥∥K g1 −K g2
∥∥
L∞t L

1
ω,x,ξ

≤
(
1− e−

T
ε

)
‖g1 − g2‖L∞t L1

ω,x,ξ

and according to the Banach fixed point theorem, the mapping K has a
unique fixed point in H . Moreover, we deduce from Corollary 4.10 that hε

is measurable with respect to P ⊗B(TN )⊗B(R) and therefore, according to
the semigroup property of the solution operator S, we obtain the existence
of a unique weak solution to (1.3) that is expressed as (4.3) and the proof is
complete. �

Remark 4.13. As a consequence of Corollary 4.10, it can be seen that the
representative hε(t) of the unique weak solution to (4.18) that is given by
(4.19) satisfies: t 7→ 〈hε(t), φ〉 is a continuous (Ft)-semimartingale for any φ ∈
C∞c (TN×R). Accordingly, t 7→ 〈F ε(t), φ〉 is a continuous (Ft)-semimartingale
for any φ ∈ C∞c (TN × R) provided F ε(t) is the representative of the unique
weak solution to (1.3) given by (4.3).

4.2. Further properties of the solution operator

In the previous subsection we showed that the family S consists of bounded
linear operators on L1(Ω × TN × R) with the operator norm bounded by 1
which was essential for the existence proof for the stochastic BGK model in
Theorem 4.5. Nevertheless, for the proof of convergence of the BGK approx-
imation in the next section, namely, to derive certain uniform estimates, we
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need to study also its behavior in other spaces. In particular, S(t, s)X0 is well
defined if X0 ∈ Lp(Ω× TN × R) and we obtain the following result.

Proposition 4.14. For any p ∈ [2,∞), the family S consists of bounded li-
near operators on Lp(Ω × TN × R) having the operator norm bounded by
1. Moreover, the solution to (4.2) belongs to Lp(Ω;L∞(0, T ;Lp(TN × R)))
provided X0 ∈ Lp(Ω× TN × R) and the following estimate holds true

sup
0≤s≤T

E sup
s≤t≤T

∥∥S(t, s)X0

∥∥p
Lpx,ξ
≤ C ‖X0‖pLpω,x,ξ . (4.20)

Proof. Note, that it is enough to prove the statement for any SR as the limit
case of S then follows by Fatou lemma provided the constant in (4.20) does
not depend on R. If R > 0 is fixed then we use the same approach as in
the proof of Proposition 4.8, i.e. we will only prove the statement under the
additional assumption

X0 ∈ Lp(Ω× TN × R) ∩ L∞(Ω× TN × R).

Let Xδ
0 be bounded, pathwise smooth and compactly supported regulariza-

tions of X0 such that

Xδ
0 −→ X0 in Lp(Ω× TN × R),

∥∥Xδ
0

∥∥
Lpω,x,ξ

≤ ‖X0‖Lpω,x,ξ ,

and Xδ = SR(t, s)Xδ
0 is the unique solution to (4.15). Now, we apply the Itô

formula to the function h(v) = ‖v‖p
Lpx,ξ

. If q is the conjugate exponent to p

then h′(v) = p|v|p−2v ∈ Lq(TN × R) and

h′′(v) = p(p− 1)|v|p−2Id ∈ L (Lp(TN × R);Lq(TN × R)).

Therefore∥∥Xδ(t)
∥∥p
Lpx,ξ

=
∥∥Xδ

0

∥∥p
Lpx,ξ

− p
∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2Xδ aR(ξ) · ∇Xδ dξ dxdr

− p
d∑
k=1

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2Xδ∂ξX

δgRk (x, ξ) dξ dxdβk(r)

+
p

2

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2Xδ ∂ξ

(
GR,2∂ξX

δ
)

dξ dxdr

+
p(p− 1)

2

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p−2∣∣∂ξXδ

∣∣2GR,2(x, ξ) dξ dxdr.

Using integration by parts, the second term on the right hand side vanishes.
Besides, having known the behavior of Xδ for large ξ, we integrate by parts
in the fourth term and obtain the fifth term with opposite sign. To deal with
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the stochastic term, we also integrate by parts and observe

−p
∫
R

∣∣Xδ
∣∣p−2Xδ∂ξX

δgRk (x, ξ) dξ

= p(p− 1)

∫
R

∣∣Xδ
∣∣p−2∂ξXδXδgRk (x, ξ) dξ + p

∫
R

∣∣Xδ
∣∣p∂ξgRk (x, ξ) dξ

hence

−p
∫
R

∣∣Xδ
∣∣p−2Xδ∂ξX

δgRk (x, ξ) dξ =

∫
R

∣∣Xδ
∣∣p∂ξgRk (x, ξ) dξ

and we arrive at∥∥Xδ(t)
∥∥p
Lpx,ξ

=
∥∥Xδ

0

∥∥p
Lpx,ξ

+

d∑
k=1

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p∂ξgRk (x, ξ) dξ dx dβk(r),

where the stochastic integral on the right hand side is a martingale with zero
expected value. Taking the expectation now yields

E
∥∥Xδ(t)

∥∥p
Lpx,ξ

= E
∥∥Xδ

0

∥∥p
Lpx,ξ

.

In order to derive (4.20), we employ the Burkholder-Davis-Gundy inequality
and boundedness of ∂ξgk:

E sup
s≤t≤T

∥∥Xδ(t)
∥∥p
Lpx,ξ
≤ E

∥∥Xδ
0

∥∥p
Lpx,ξ

+

d∑
k=1

E sup
s≤t≤T

∫ t

s

∫
TN

∫
R

∣∣Xδ
∣∣p∂ξgRk (x, ξ) dξ dxdβk(r)

≤ E
∥∥Xδ

0

∥∥p
Lpx,ξ

+ C E
(∫ T

s

∥∥Xδ(r)
∥∥2p
Lpx,ξ

dr

) 1
2

≤ E
∥∥Xδ

0

∥∥p
Lpx,ξ

+
1

2
E sup
s≤t≤T

∥∥Xδ(t)
∥∥p
Lpx,ξ

+ C

∫ T

s

E
∥∥Xδ(r)

∥∥p
Lpx,ξ

dr

hence

E sup
s≤t≤T

∥∥Xδ(t)
∥∥p
Lpx,ξ
≤ C E

∥∥Xδ
0

∥∥p
Lpx,ξ

.

Note, that the constant C does not depend on δ, s, R. Therefore, the fact that
the operator norm is equal to 1 as well as the validity of (4.20) follow easily
by the same reasoning as in the proof of Proposition 4.8. �

Proposition 4.15. Assume that w ∈ Lp(Ω× TN ) for all p ∈ [1,∞). Then for
all n ∈ [0,∞) there exists r ∈ [1,∞) such that

sup
0≤s≤T

E sup
s≤t≤T

∥∥(S(t, s)χw
)
(1 + |ξ|)n

∥∥
L1
x,ξ

≤ C
(

1 + ‖w‖rLrω,x
)
,

where the constant C does not depend on w.
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Proof. We will prove that the claim holds true for all SR with a constant
independent of R. Let us denote by ψR,x the vector of all xi-coordinates of

the stochastic flow ψR, i.e. ψR,xs,t (x, ξ) =
(
ψR,1s,t (x, ξ), . . . , ψR,Ns,t (x, ξ)

)
. Since it

holds, for any m ∈ [0,∞),

|χw| ≤
(1 + |w|2)m

(1 + |ξ|2)m
1|ξ|<|w|

we can estimate∣∣SR(t, s)χw
∣∣(1 + |ξ|n) =

∣∣χw(ψR,xs,t (x,ξ))(ψ
R,0
s,t (x, ξ))

∣∣(1 + |ξ|)n

≤
(
1 +

∣∣w(ψR,xs,t (x, ξ))
∣∣2)m

(1 + |ψR,0s,t (x, ξ)|2)m
1|ψR,0s,t (x,ξ)|<|w(ψR,xs,t (x,ξ))|(1 + |ξ|)n

≤ (1 + |ξ|2)n/2

(1 + |ψR,0s,t (x, ξ)|2)m
SR(t, s)

[
(1 + |w|2)m1|ξ|<|w|

]
,

(4.21)

where the exact value of the exponent m will be determined later on. Now,
we make use of the classical moment estimate for SDEs that in our setting
reads

sup
0≤s≤T

(y,ζ)∈TN×R

E sup
s≤t≤T

(1 + |ϕR,0s,t (y, ζ)|2)p

(1 + |ζ|2)p
≤ C, ∀p ∈ [1,∞),

and rewritten in terms of the inverse flow by setting (x, ξ) = ϕRs,t(y, ζ)

sup
0≤s≤T

(x,ξ)∈TN×R

E sup
s≤t≤T

(1 + |ξ|2)p

(1 + |ψR,0s,t (x, ξ)|2)p
≤ C, ∀p ∈ [1,∞), (4.22)

with a constant independent of R. Therefore, employing (4.21), the Young
inequality, (4.22) and Proposition 4.14 we obtain by a suitable choice of m

sup
0≤s≤T

E sup
s≤t≤T

∫
TN

∫
R

∣∣SR(t, s)χw
∣∣(1 + |ξ|)n dξ dx

≤ C sup
0≤s≤T

E sup
s≤t≤T

∫
TN

∫
R

(1 + |ξ|2)n

(1 + |ψR,0s,t (x, ξ)|2)2m
dξ dx

+ C sup
0≤s≤T

E sup
s≤t≤T

∫
TN

∫
R

∣∣∣SR(t, s)
[
(1 + |w|2)m1|ξ|<|w|

]∣∣∣2dξ dx

≤ C + C
∥∥(1 + |w|2)m1|ξ|<|w|

∥∥2
L2
ω,x,ξ

≤ C
(

1 + ‖w‖4m+1

L4m+1
ω,x

)
which completes the proof. �

5. Convergence of the BGK approximation

In this final section, we investigate the limit of the stochastic BGK model
as ε → 0 and prove our main result, Theorem 2.1. To be more precise,
we consider the following weak formulation of (1.3), which is satisfied by
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F ε, and show its convergence to the kinetic formulation of (1.1). Let ϕ ∈
C∞c ([0, T )× TN × R) then∫ T

0

〈
F ε(t), ∂tϕ(t)

〉
dt+

〈
F ε0 , ϕ(0)

〉
+

∫ T

0

〈
F ε(t), a · ∇ϕ(t)

〉
dt

= −1

ε

∫ T

0

〈
1uε(t)>ξ − F ε(t), ϕ(t)

〉
dt+

∫ T

0

〈
∂ξF

ε(t)ΦdW (t), ϕ(t)
〉

+
1

2

∫ T

0

〈
G2∂ξF

ε(t), ∂ξϕ(t)
〉

dt.

(5.1)

A similar expression holds true also for hε, namely, it satisfies the weak
formulation of (4.18). However, as in the following we restrict our attention
to the representatives F ε(t) and hε(t), respectively, given by (4.3) and (4.19),
respectively, we point out that both are true even in a stronger sense. For the
case of hε(t), we have: let ϕ ∈ C∞c (TN × R) then it holds for all t ∈ [0, T ]〈
hε(t), ϕ

〉
=
〈
hε0, ϕ

〉
+

∫ t

0

〈
hε(s), a · ∇ϕ

〉
ds

+
1

ε

∫ t

0

〈
1uε(s)>ξ − S(s, 0)10>ξ − hε(s), ϕ

〉
ds

−
∫ t

0

〈
∂ξh

ε(s)Φ dW (s), ϕ
〉
− 1

2

∫ t

0

〈
G2∂ξh

ε(s), ∂ξϕ
〉

ds.

(5.2)

Proof of Theorem 2.1. Taking the limit in (5.1) is quite straightforward in
all the terms apart from the first one on the right hand side and can be done
immediately. Remark, that according to the representation formula (4.3) it
holds that the set of solutions {F ε; ε ∈ (0, 1)} is bounded in L∞P (Ω× [0, T ]×
TN × R), more precisely, F ε ∈ [0, 1], ε ∈ (0, 1). Therefore, by the Banach-
Alaoglu theorem, there exists F ∈ L∞P (Ω× [0, T ]×TN ×R) such that, up to
subsequences,

F ε
w∗−→ F in L∞P (Ω× [0, T ]× TN × R). (5.3)

Hence, almost surely,∫ T

0

〈
F ε(t), ∂tϕ(t)

〉
dt −→

∫ T

0

〈
F (t), ∂tϕ(t)

〉
dt,∫ T

0

〈
F ε(t), a · ∇ϕ(t)

〉
dt −→

∫ T

0

〈
F (t), a · ∇ϕ(t)

〉
dt,

1

2

∫ T

0

〈
G2∂ξF

ε(t), ∂ξϕ(t)
〉

dt −→ 1

2

∫ T

0

〈
G2∂ξF (t), ∂ξϕ(t)

〉
dt.

and, according to the hypotheses on the initial data,〈
F ε0 , ϕ(0)

〉
−→

〈
1u0>ξ, ϕ(0)

〉
.

We intend to prove a similar convergence result for the stochastic term as
well. Since〈

F ε, ∂ξ(gkϕ)
〉
−→

〈
F, ∂ξ(gkϕ)

〉
, a.e. (ω, t) ∈ Ω× [0, T ],
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and, due to the boundedness of F ε and the assumptions on gk,∣∣〈F ε, ∂ξ(gkϕ)
〉∣∣ ≤ C,

the dominated convergence theorem for stochastic integrals gives (up to sub-
sequences) the desired almost sure convergence∫ T

0

〈
∂ξF

ε(t)Φ dW (t), ϕ(t)
〉
−→

∫ T

0

〈
∂ξF (t)ΦdW (t), ϕ(t)

〉
.

Furthermore, multiplying (5.1) by ε yields, almost surely,∫ T

0

〈
1uε(t)>ξ − F ε(t), ϕ(t)

〉
dt −→ 0 (5.4)

and, in particular,

∂ξ1uε>ξ − ∂ξF ε −→ 0 (5.5)

in the sense of distributions over (0, T ) × TN × R almost surely. In order to
obtain the convergence in the remaining term of (5.1) and in view of the
kinetic formulation of (1.1), we need to show that the term 1

ε (1uε>ξ − F ε)
can be written as ∂ξm

ε where mε is a random nonnegative measure over
[0, T ]× TN × R bounded uniformly in ε. However, if we define

mε(ξ) =
1

ε

∫ ξ

−∞

(
1uε>ζ − F ε(ζ)

)
dζ

=
1

ε

∫ ξ

−∞

(
1uε>ζ − S(t, 0)10>ζ − hε(ζ)

)
dζ,

(5.6)

it is easy to check that mε ≥ 0 since F ε ∈ [0, 1]. Indeed, mε(−∞) = mε(∞) =
0 and mε(t, x, ·) is increasing if ξ ∈ (−∞, uε(t, x)) and decreasing if ξ ∈
(uε(t, x),∞).

Due to the convergence in (5.1) it can be seen that for almost every
ω ∈ Ω there exists a distribution m(ω) such that, almost surely,∫ T

0

〈
mε, ϕ(t)

〉
dt −→

∫ T

0

〈
m,ϕ(t)

〉
dt, (5.7)

for any ϕ ∈ C∞c ([0, T ) × TN × R). Besides, the conditions on test functions
can be relaxed so that (5.7) holds true for any ϕ ∈ C∞c ([0, T ]×TN×R). Now,
it remains to verify that m is a kinetic measure. The following proposition
will be useful.

Proposition 5.1. The set of local densities {uε; ε ∈ (0, 1)} is bounded in
Lp(Ω;L∞(0, T ;Lp(TN ))) for all p ∈ [1,∞).

Proof. We need to find a uniform estimate for uε. It follows from the definition
of uε (4.17) and (4.3) that

uε(t, x) = e−
t
ε

∫
R

(
S(t, 0)1uε0>ξ − 10>ξ

)
dξ

+
1

ε

∫ t

0

e−
t−s
ε

∫
R

(
S(t, s)1uε(s)>ξ − 10>ξ

)
dξ ds.
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Let us now define the following auxiliary function

H(s) =

∣∣∣∣∫
R

(
S(t, s)1uε(s)>ξ − 10>ξ

)
dξ

∣∣∣∣ .
Then

H(t) ≤ e−
t
εH(0) + (1− e−

t
ε ) max

0≤s≤t
H(s)

and we conclude that H(t) ≤ H(0), t ∈ [0, T ]. In order to estimate H(0), we
make use of Proposition 4.15 and Corollary 4.11. If p = 1 they can be used
directly

E sup
0≤t≤T

∫
TN
|uε(t, x)|dx ≤ E sup

0≤t≤T

∫
TN

∫
R

∣∣S(t, 0)1uε0>ξ − 10>ξ

∣∣dξ dx

≤ E sup
0≤t≤T

∥∥S(t, 0)χuε0
∥∥
L1
x,ξ

+ E sup
0≤t≤T

∥∥S(t, 0)10>ξ − 10>ξ

∥∥
L1
x,ξ

≤ C
(

1 + ‖uε0‖
r1
L
r1
ω,x

)
,

whereas the case of p ∈ (1,∞) can be dealt with by the Hölder inequality
and the fact that∣∣S(t, 0)1uε0>ξ − 10>ξ

∣∣p =
∣∣S(t, 0)1uε0>ξ − 10>ξ

∣∣.
Indeed,

E sup
0≤t≤T

∫
TN
|uε(t, x)|p dx ≤ E sup

0≤t≤T

∫
TN

(∫
R

∣∣S(t, 0)1uε0>ξ − 10>ξ

∣∣dξ)pdx
≤ C E sup

0≤t≤T

∥∥S(t, 0)χuε0(1 + |ξ|)p
∥∥
L1
x,ξ

+ C E sup
0≤t≤T

∥∥(S(t, 0)10>ξ − 10>ξ

)
(1 + |ξ|)p

∥∥
L1
x,ξ

≤ C
(

1 + ‖uε0‖
rp

L
rp
ω,x

)
.

The above exponents rp are given by Proposition 4.15 and the proof is com-
plete. �

Corollary 5.2. For any n ∈ [0,∞) it holds

sup
0≤t≤T

E
∥∥hε(t)(1 + |ξ|)n

∥∥
L1
x,ξ

≤ C.

Proof. It follows from (4.19), Proposition 4.15, Corollary 4.11 and Proposi-
tion 5.1 that

sup
0≤t≤T

E
∥∥hε(t)(1 + |ξ|)n

∥∥
L1
x,ξ

≤ sup
0≤s≤t≤T

E
∥∥S(t, s)χuε(s)(1 + |ξ|)n

∥∥
L1
x,ξ

+ sup
0≤s≤t≤T

E
∥∥(10>ξ − S(s, 0)10>ξ

)
(1 + |ξ|)n

∥∥
L1
x,ξ

≤ C
(

1 + sup
0≤s≤T

‖uε(s)‖rLrω,x
)
≤ C.

�
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As a consequence, the assumptions of [6, Theorem 5] are satisfied for
νεt,x = δuε(t,x)=ξ and hence there exists a kinetic measure νt,x vanishing at
infinity such that νε → ν in the sense given by this theorem. We deduce
from (5.5) that ∂ξF = −ν hence F is a kinetic function in the sense of [6,
Definition 4].

Remark, that it follows now from (5.6) that the function mε(t) satisfies

sup
0≤t≤T

E
∥∥mε(t)(1 + |ξ|)n

∥∥
L1
x,ξ

≤ C(ε),

for any ε fixed. Nevertheless, we do not know yet if this fact holds true also
uniformly in ε. Towards this end, we will study the weak formulation for hε

and employ a suitable test function.

Proposition 5.3. For any p ∈ [0,∞) it holds

E
∫
[0,T ]×TN×R

|ξ|2p dmε(t, x, ξ) ≤ C. (5.8)

Proof. Let p ∈ [1/2,∞). Regarding (5.2), we need to test by ϕ(ξ) = ξ2p+1

2p+1 .

Due to the behavior of mε and hε for large ξ we can consider test functions
which are not compactly supported in ξ, however, in this case the stochastic
integral is not necessarily a martingale. Therefore we will first employ the
truncation ϕδ(ξ) = ϕ(ξ)kδ(ξ) and then pass to the limit. We have

0 ≤ E
∫ T

0

〈
mε(t), ∂ξϕ

δ
〉

dt = E
〈
hε0, ϕ

δ
〉
− E

〈
hε(T ), ϕδ

〉
− 1

2
E
∫ T

0

〈
G2∂ξh

ε(t), ∂ξϕ
δ
〉

dt.

The first and the second term on the right hand side can be estimated by
Corollary 5.2

E
〈
hε0, ϕ

δ
〉
− E

〈
hε(T ), ϕδ

〉
≤ C,

while for the remaining term we first employ the growth properties of G2 and
∂ξG

2 to obtain

E
∫ T

0

〈
G2∂ξh

ε(t), ∂ξϕ
δ
〉

dt

≤ C E
∫ T

0

〈
|hε(t)|, (1 + |ξ|)∂ξϕδ + (1 + |ξ|2)∂2ξϕ

δ
〉

dt

≤ C E
∫ T

0

〈
|hε(t)|, (1 + |ξ|)2p+3

〉
dt ≤ C.

The constant C is independent of δ thus the claim follows.
If p = 0 a suitable modification in the above estimation leads to the

proof in this case whereas the case of p ∈ (0, 1/2) follows from (5.8) for p = 0
and p = 1/2 due to the fact that |ξ|2p ≤ 1 + |ξ|. �
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Setting p = 0 in (5.8) we regard mε as random variables with values in
Mb([0, T ]×TN ×R), the space of bounded Borel measures on [0, T ]×TN ×R
whose norm is given by the total variation of measures. We deduce that the
set of laws {P ◦ [mε]−1; ε ∈ (0, 1)} is tight and therefore any sequence has a
weakly convergent subsequence due to the Prokhorov theorem. Consequently,
the law of m is supported inMb([0, T ]×TN ×R). Besides, m is nonnegative
as it holds true for all mε. Moreover, since C0([0, T ] × TN × R), the space
of continuous functions vanishing at infinity equipped with the supremum
norm, is the predual of Mb([0, T ] × TN × R) and C∞c ([0, T ] × TN × R) is
dense in C0([0, T ] × TN × R) it can be seen that (5.7) holds true for any
ϕ ∈ C0([0, T ] × TN × R). Now, it is left to verify the three points of the
definition of a kinetic measure [6, Definition 1]. The second requirement giving
the behavior for large ξ follows from the above uniform estimate (5.8). Indeed,
let (kδ) be a truncation on R, e.g. the set of functions defined in the proof of
Proposition 4.8, then

E
∫
[0,T ]×TN×R

|ξ|2p dm(t, x, ξ) ≤ lim inf
δ→0

E
∫
[0,T ]×TN×R

|ξ|2pkδ(ξ) dm(t, x, ξ)

= lim inf
δ→0

lim
ε→0

E
∫
[0,T ]×TN×R

|ξ|2pkδ(ξ) dmε(t, x, ξ) ≤ C.

As a consequence, m vanishes for large ξ. The first point of [6, Definition
1] is straightforward for φ ∈ C0([0, T ] × TN × R) as a pointwise limit of
measurable functions is measurable. The case of φ ∈ Cb([0, T ] × TN × R)
now follows by employing the truncation (kδ) together with the dominated
convergence theorem as δ → 0 and the behavior of m at for large ξ. In order
to show predictability of the process

t 7−→
∫
[0,t]×TN×R

φ(x, ξ) dm(s, x, ξ)

in the case of φ ∈ C0(TN × R) let us remark that due to (5.2) it is the
pointwise limit (in ω and t) of predictable processes

t 7−→
∫
[0,t]×TN×R

φ(x, ξ) dmε(s, x, ξ)

and hence is also measurable with respect to the predictable σ-algebra. The
case of φ ∈ Cb(TN ×R) can be verified by using truncations as above. There-
fore, we have proved that m is a kinetic measure.

Finally, we deduce that F satisfies the generalized kinetic formulation
(3.2) and thus is a generalized kinetic solution to (1.1). Since any generalized
kinetic solution is actually a kinetic one, due to the reduction theorem [6,
Theorem 11], it follows that F = 1u>ξ and ν = δu, where u ∈ Lp(Ω× [0, T ]×
TN ) is the unique kinetic solution to (1.1). Therefore, it only remains to verify
the strong convergence of fε and uε to χu and u, respectively.

According to (5.3), we deduce for fε = F ε − 10>ξ that

fε
w∗−→ χu in L∞(Ω× [0, T ]× TN × R),
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and by (5.4) it holds

χuε −→ χu in D′((0, T )× TN × R), P-a.s..

Besides, {χuε ; ε ∈ (0, 1)} is bounded in L∞(Ω× [0, T ]×TN ×R) hence (up to
subsequences) it converges weak* in this space and since C∞c ((0, T )×TN×R)
is separable and dense in L1([0, T ]×TN ×R), it follows that χu is the limit,
i.e.

χuε
w∗−→ χu in L∞(Ω× [0, T ]× TN × R).

Furthermore, according to Proposition 5.1, it holds for any n ∈ [0,∞)

sup
0≤t≤T

E
∫
TN

∫
R

(
|χuε(t)|+ |χu(t)|

)
(1 + |ξ|)n dξ dx ≤ C, (5.9)

hence we can relax the conditions on test functions and obtain the strong
convergence χuε → χu in L2(Ω× [0, T ]× TN × R). Indeed,

E
∫ T

0

∫
TN

∫
R
|χuε − χu|2 dξ dxdt

= E
∫ T

0

∫
TN

∫
R
|χuε | − 2χuεχu + |χu|dξ dxdt −→ 0

(5.10)

since for the first term on the right hand side we have

E
∫ T

0

∫
TN

∫
R
|χuε |dξ dx dt = E

∫ T

0

∫
TN

∫
R

(
χuε1ξ>0 − χuε1ξ<0

)
dξ dx dt

where 1ξ>0,1ξ<0 can be taken as test functions due to (5.9) and for the second
term on the right hand side we consider χu as a test function. As |χα−χβ |p =
|χα−χβ | we conclude also the strong convergence in all Lp(Ω×[0, T ]×TN×R),
p ∈ [1,∞).

Moreover, a similar approach can be used to prove the convergence of
fε. Indeed, the same calculation as in (5.10) gives

fε −→ χu in L2(Ω× [0, T ]× TN × R)

and using the uniform bound of {fε; ε ∈ (0, 1)} in L∞(Ω× [0, T ]× TN ×R)
we deduce the convergence in Lp(Ω× [0, T ]× TN × R) for all p ∈ [1,∞).

Eventually, by the properties of the equilibrium function we have

uε −→ u in L1(Ω× [0, T ]× TN ).

On the other hand, it follows from Proposition 5.1 that the set {uε; ε ∈ (0, 1)}
is bounded in Lp(Ω× [0, T ]×TN ), for all p ∈ [1,∞), hence by application of
the Hölder inequality, we get also the strong convergence

uε −→ u in Lp(Ω× [0, T ]× TN ) ∀p ∈ [1,∞).

Therefore, the proof of convergence in the stochastic BGK model is complete.
�
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