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Abstract. We study the Cauchy problem for a semilinear stochastic par-
tial differential equation driven by a finite-dimensional Wiener process.
In particular, under the hypothesis that all the coefficients are suffi-
ciently smooth and have bounded derivatives, we consider the equation
in the context of power scale generated by a strongly elliptic differential
operator. Application of semigroup arguments then yields the existence
of a continuous strong solution.
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1. Introduction

In the present paper, we consider the following semilinear stochastic partial
differential equation driven by a finite-dimensional Wiener process:

du =
[
Au+ F (u)

]
dt+ σ(u) dW, x ∈ TN , t ∈ (0, T ),

u(0) = u0,
(1.1)

where −A is a strongly elliptic differential operator, F is generally nonlinear
unbounded operator and the diffusion coefficient in the stochastic term is
also nonlinear.

It is a well known fact in the field of PDEs and SPDEs that many
equations do not, in general, have classical or strong solutions and can be
solved only in some weaker sense. Unlike deterministic problems, in the case
of stochastic equations we can only ask whether the solution is smooth in the
space variable. Thus, the aim of the present work is to determine conditions
on coefficients and initial data under which there exists a spatially smooth
solution to (1.1). The motivation for such a regularity result came from our
research in the field of degenerate parabolic SPDEs of second order (see [10]),
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where smooth solutions of certain approximate nondegenerate problems were
needed in order to derive the so-called kinetic formulation and to obtain
kinetic solution. Nevertheless, since the regularity result of the present paper
is based on properties of strongly elliptic operators, generalization to higher
order equations does not cause any additional problems.

The literature devoted to the existence of a classical solution to de-
terministic parabolic problems is quite extensive, let us mention for instance
the works of Friedman [7], Grunau, von Wahl [8], Ladyzhenskaya, Solonnikov,
Ural’ceva [14], Lieberman [15], von Wahl [19], Yagi [20] and the references
therein. Regularity in the case of linear parabolic SPDEs was treated by
Krylov [11], Krylov and Rozovskii [12], [13] and the references therein, and
Flandoli [6]. However, there seems to be less papers concentrated on regular-
ity for nonlinear SPDEs. The starting point for our research was the paper of
Gyöngy and Rovira [9] who studied a class of second order parabolic semilin-
ear SPDEs. However, they were only concerned with Lp-valued solutions so
our work can be regarded as an extension of their result. Related problems
were also discussed by Zhang [21], [22], nevertheless, his assumptions are not
satisfied in our case.

The main difficulty in the case of semilinear equations lies in the non-
linearities F and σ as, in higher order Sobolev spaces, we cannot expect the
Lipschitz condition to be satisfied and hence the fixed point argument cannot
be applied. This issue is closely related to the mapping properties of Nemyt-
skij operators, i.e. TG : h 7→ G(h), where h belongs to some function space E
and G : R→ R is nonlinear. It turns out (and was discussed in-depth in the
book of Runst and Sickel [18]) that the mapping properties of these operators
depend strongly on the chosen domain of definition and even for E being a
Sobolev space they do not, in general, map E to itself.

Let us make things clearer on a simple example of a heat equation with
a nonlinear right-hand side

∂tu = ∆u+H(u), x ∈ TN , t ∈ (0, T ). (1.2)

Let p ∈ [1,∞). If H : R→ R is Lipschitz continuous then

‖H(z1)−H(z2)‖Lp(TN ) ≤ C‖z1 − z2‖Lp(TN ), z1, z2 ∈ Lp(TN ),

therefore, as an easy consequence of the Banach fixed point theorem, there
exists a unique mild solution to (1.2) in Lp(TN ). However, if m ≥ 1 it is not
generally true that

‖H(z1)−H(z2)‖Wm,p(TN ) ≤ C‖z1 − z2‖Wm,p(TN ), z1, z2 ∈Wm,p(TN ),

so the existence of a solution in higher order Sobolev spaces cannot be proved
directly. In fact, even the linear growth condition fails for m ≥ 2 since the
norm of a superposition does not grow linearly with the norm of the inner
function. For example, if we consider 2 ≤ m ≤ N/p, p ∈ (1,∞), then only
linear operators map Wm,p(TN ) to itself (see [18, Theorem 5.2.4/2]).

On the other hand, for any m ∈ N and p ∈ [1,∞), under the hypothesis
of a sufficiently smooth function H having bounded derivatives one arrives
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at the fact that the Nemytskij operator TH maps W 1,mp(TN ) ∩Wm,p(TN )
to itself and the following estimate holds true for any z ∈ Wm,p(TN ) ∩
W 1,mp(TN ) (cf. Proposition 3.1, Corollary 3.2 and Remark 3.3)

‖H(z)‖Wm,p(TN ) ≤ C
(
1 + ‖z‖Wm,p(TN ) + ‖z‖mW 1,mp(TN )

)
.

It turns out to be the keystone of our proof of regularity. In particular, we
proceed successively in several steps. First of all, we consider the equation
(1.2) in Lmp(TN ) and apply the Banach fixed point theorem to conclude the
existence of an Lmp(TN )-valued mild solution. Next, we study its Picard ite-
rations as processes having values in the Sobolev spaces W 1,mp(TN ). Having
known that TH maps W 1,mp(TN ) to itself we are able to find a uniform
estimate of the W 1,mp(TN )-norm which is then used in the last step to deduce
a uniform estimate of the Wm,p(TN )-norm. Both estimates remain valid also
for the limit process and, as a consequence, the mild solution to (1.2) is even
strong (for a detailed exposition of these two concepts of solution we refer
the reader to [5]).

Unlike the introduction, in the proof of the main result, Theorem 2.1,
the integrability exponent p is only allowed to take values in [2,∞) which is
given by the use of the stochastic Itô integration in 2-smooth Banach spaces
(see [4], [16]).

As an immediate consequence of the main result, we obtain a continuous
Ck,λ-valued solution. Here, we use the Sobolev embedding theorem so the
stochastic integration in Banach spaces, i.e. Wm,p, allows us to weaken the
smoothness assumptions on coefficients. We note that the regularity of the
solution depends only on the regularity of the coefficients and the initial data
and is not limited by the order of the equation.

The paper is organized as follows. In Section 2, we review the basic set-
ting and state our main result. In Section 3, we collect important preliminary
results related to Nemytskij operators. In the final section, these results are
applied and the proof of the main theorem is established.

2. Setting and the main result

Let us first introduce the notation which will be used later on. We will con-
sider periodic boundary conditions: x ∈ TN where TN is the N -dimensional
torus. The Sobolev spaces on TN will be denoted by Wm,p(TN ) and by
Wm,p(TN ;Rn) we will denote the space of all functions z = (z1, . . . , zn) :
TN → Rn such that zi ∈Wm,p(TN ), i = 1, . . . , n.

We now give the precise assumptions on each of the terms appearing in
the above equation (1.1). We will work on a finite-time interval [0, T ], T > 0.
The operator −A is a strongly elliptic differential operator of order 2l with
variable coefficients of class C∞(TN ). Let us assume, in addition, that −A
is formally symmetric and positive, i.e. we assume that 0 belongs to the
resolvent set of −A. As an example of this operator let us mention for instance
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the second order differential operator in divergence form given by

Au =

N∑
i,j=1

∂xi
(
Aij(x)∂xju

)
,

where the coefficients Aij = Aji are real-valued smooth functions and satisfy
the uniform ellipticity condition, i.e. there exists α > 0 such that

N∑
i,j=1

Aij(x)ζiζj ≥ α|ζ|2, ∀x ∈ TN , ∀ζ ∈ RN .

Let us now collect basic facts concerning strongly elliptic differential
operators satisfying our hypotheses (for a detailed exposition we refer the
reader to [17]). Set D(Ap) = W 2l,p(TN ). Then the linear unbounded operator
Ap in Lp(TN ) defined by

Apu = Au, u ∈ D(Ap),

is the infinitesimal generator of a bounded analytic semigroup on Lp(TN ). Let
us denote this semigroup by Sp. Fractional powers of −Ap are well defined
and their domains correspond to classical Sobolev spaces (see [1, Section 10]),
i.e.(
D
(
(−Ap)δ

)
,
∥∥(−Ap)δ ·

∥∥
Lp(TN )

)
∼=
(
W 2lδ,p(TN ), ‖ · ‖W 2lδ,p(TN )

)
, δ ≥ 0.

We will also make use of the following property of analytic semigroups (see
[17, Chapter 2, Theorem 6.13]):

∀t > 0 ∀δ > 0 the operator (−Ap)δSp(t) is bounded in Lp(TN ),

‖(−Ap)δSp(t)‖ ≤ Cδ,p t−δ
(2.1)

(here ‖ · ‖ stands for the operator norm).

The nonlinear term F is defined as follows: for any p ∈ [2,∞)

F : Lp(TN ) −→W−2l+1,p(TN )

z 7−→
∑

|α|≤2l−1

aα Dαfα(z),

where aα ∈ R and the functions fα, |α| ≤ 2l − 1, are smooth enough (exact
assumptions will be given later). Let us denote by f the vector of functions
(fα ; |α| ≤ 2l − 1, aα 6= 0) and denote its length by η.

Throughout this article we fix a stochastic basis (Ω,F , (Ft)t≥0,P) with
a complete, right-continuous filtration. Let P denote the predictable σ-algebra
on Ω × [0, T ] associated with (Ft)t≥0. For simplicity we will only consider
finite-dimensional noise, however, the result can be extended to the infinite-
dimensional case. Let U be a finite-dimensional Hilbert space and let {ei}di=1

be its orthonormal basis. The process W is a d-dimensional (Ft)-Wiener pro-

cess in U, i.e. it has an expansion of the form W (t) =
∑d
i=1Wi(t) ei, where
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Wi, i = 1, . . . , d, are mutually independent real-valued standard Wiener pro-
cesses relative to (Ft)t≥0. The diffusion coefficient σ is then defined as

σ(z) : U −→ Lp(TN )

h 7−→
d∑
i=1

σi(·, z(·))〈ei, h〉, z ∈ Lp(TN ),

where the functions σ1, . . . , σd : TN × R → R satisfy the following linear
growth condition

d∑
i=1

∣∣σi(x, ξ)∣∣2 ≤ C(1 + |ξ|2), x ∈ TN , ξ ∈ R. (2.2)

Since we are going to solve (1.1) in Lp(TN ), for p ∈ [2,∞), we need to
ensure the existence of the stochastic integral as an Lp(TN )-valued process.
Recall, that Lp spaces, p ∈ [2,∞), as well as the Sobolev spaces Wm,p,
p ∈ [2,∞), m ≥ 0, belong to a class of the so-called 2-smooth Banach spaces,
which are well suited for stochastic Itô integration. (A detailed construction
of stochastic integral for processes with values in 2-smooth Banach spaces
can be found in [4] or [16].) Let us denote by γ(U;X) the space of all γ-
radonifying operators from U to a 2-smooth Banach space X. We will show
that σ(z) ∈ γ(U;Lp(TN )) for any z ∈ Lp(TN ) and

‖σ(z)‖2γ(U;Lp(TN )) ≤ C
(
1 + ‖z‖2Lp(TN )

)
.

Note, that the following fact holds true:

∀s > 0 ∃Cs ∈ (0,∞) ∀γ1, . . . , γd independent N (0, 1)-random variables

∀r1, . . . , rd ∈ R
(
E
∣∣∣ d∑
i=1

riγi

∣∣∣s) 1
s

= Cs

( d∑
i=1

r2i

) 1
2

.

(2.3)

The proof is, by the way, easy:
(∑d

i=1 r
2
i

)− 1
2
∑d
i=1 riγi is an N (0, 1)-random

variable. Let {γi}di=1 be a sequence of independent N (0, 1)-random variables,
by the definition of a γ-radonifying norm, using (2.3) and (2.2)

‖σ(z)‖2γ(U;Lp(TN )) = E
∥∥∥ d∑
i=1

γi σ(z)ei

∥∥∥2
Lp(TN )

= E
∥∥∥ d∑
i=1

γi σi(·, z(·))
∥∥∥2
Lp(TN )

≤
(
E
∥∥∥ d∑
i=1

γi σi(·, z(·))
∥∥∥p
Lp(TN )

) 2
p

=

(∫
TN

E
∣∣∣ d∑
i=1

γi σi(y, z(y))
∣∣∣pdy) 2

p

= C2
p

(∫
TN

( d∑
i=1

∣∣σi(y, z(y))
∣∣2) p2 dy

) 2
p

≤ C
(∫

TN

(
1 + |z(y)|2

) p
2 dy

) 2
p

≤ C
(
1 + ‖z‖2Lp(TN )

)
(2.4)



6 Martina Hofmanová

and the claim follows. In this paper, the letter C denotes a positive constant,
which is unimportant and may change from one line to another.

Let us close this section by stating the main result to be proved precisely.

Theorem 2.1. Let p ∈ [2,∞), q ∈ (2,∞), m ∈ N. We suppose that

u0 ∈ Lq(Ω;Wm,p(TN )) ∩ Lmq(Ω;W 1,mp(TN ))

and

fα ∈ Cm(R) ∩ C2l−1(R), |α| ≤ 2l − 1; σi ∈ Cm(TN × R), i = 1, . . . , d,

have bounded derivatives up to order m. Then there exists a unique solution
to (1.1) which belongs to

Lq(Ω;C([0, T ];Wm,p(TN ))) ∩ Lmq(Ω;C([0, T ];W 1,mp(TN )))

and the following estimate holds true

E sup
0≤t≤T

‖u(t)‖q
Wm,p(TN )

+ E sup
0≤t≤T

‖u(t)‖mq
W 1,mp(TN )

≤ C
(
1 + E‖u0‖qWm,p(TN )

+ E‖u0‖mqW 1,mp(TN )

)
.

Corollary 2.2. Let k ∈ N0 and u0 ∈ Lq(Ω;Ck+1(TN )) for all q ∈ (2,∞).
Assume that

fα ∈ Ck+1(R) ∩ C2l−1(R), |α| ≤ 2l − 1; σi ∈ Ck+1(TN × R), i = 1, . . . , d,

have bounded derivatives up to order k + 1. Then there exists a solution to
(1.1) which belongs to

Lq(Ω;C([0, T ];Ck,λ(TN ))) for every λ ∈ (0, 1).

Remark 2.3. In the proof, we show regularity of the mild solution, however,
the resulting estimates imply that it is even strong (see [5] for a thorough
exposition of these two concepts of solution).

3. Preliminaries

For the reader’s convenience we shall first restate the following auxiliary result
which is taken from [18, Theorem 5.2.5].

Proposition 3.1. Let m ∈ N, m ≥ 2, p ∈ [1,∞). Suppose that the function
G ∈ Cm(R) has bounded derivatives up to order m. If h ∈ Wm,p(TN ) ∩
W 1,mp(TN ) then the following estimate holds true∥∥G(h)

∥∥
Wm,p(TN )

≤ C
(
1 + ‖h‖mW 1,mp(TN ) + ‖h‖Wm,p(TN )

)
with a constant independent of h.

Proof. Since G has a linear growth we have

‖G(h)‖Lp(TN ) ≤ C
(
1 + ‖h‖Lp(TN )

)
.
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Next, we will employ the chain rule formula for partial derivatives of compo-
sitions:

DβG(h(x)) =

|β|∑
l=1

∑
α1+···+αl=β
|αi|6=0

Cβ,l,α1,...,αl G
(l)(h(x)) Dα1h(x) · · ·Dαlh(x),

where β = (β1, . . . , βN ), αi = (α1
i , . . . , α

N
i ), i = 1, . . . , l, are multiindices and

Cβ,l,α1,...,αl are certain combinatorial constants. It is sufficient to consider
|β| = m. By the Hölder inequality we obtain

∥∥G(l)(h) Dα1h · · ·Dαlh
∥∥
Lp(TN )

≤
∥∥G(l)

∥∥
L∞(R)

l∏
i=1

∥∥Dαih
∥∥
L
mp
|αi| (TN )

.

Due to interpolation inequalities, we have

‖h‖
W
|αi|,

mp
|αi| (TN )

≤ C‖h‖1−θi
W 1,mp(TN )

‖h‖θi
Wm,p(TN )

with θi =
|αi| − 1

m− 1
.

Therefore∥∥DβG(h)
∥∥
Lp(TN )

≤ C max
1≤l≤m

∑
α1+···+αl=β
|αi|6=0

l∏
i=1

‖h‖1−θi
W 1,mp(TN )

‖h‖θi
Wm,p(TN )

≤ C max
1≤l≤m

‖h‖l−
m−l
m−1

W 1,mp(TN )
‖h‖

m−l
m−1

Wm,p(TN )

≤ C
(
‖h‖mW 1,mp(TN ) + ‖h‖Wm,p(TN )

)
,

where we used the fact that the function y 7→ ay(b/a)
m−y
m−1 is monotone so the

maximal value is attained at y = 1 or y = m. The proof is complete. �

This result can be easily extended to more general outer function.

Corollary 3.2. Let m ∈ N, m ≥ 2, p ∈ [1,∞). Suppose that the function
G ∈ Cm(TN ×R) has bounded derivatives up to order m. If h ∈Wm,p(TN )∩
W 1,mp(TN ) then the following estimate holds true∥∥G(·, h(·))

∥∥
Wm,p(TN )

≤ C
(
1 + ‖h‖mW 1,mp(TN ) + ‖h‖Wm,p(TN )

)
with a constant independent of h.

Remark 3.3. The situation is much easier for the first order derivatives: fix
p ∈ [1,∞) and let h ∈W 1,p(TN )

(i) if G ∈ C1(R) has a bounded derivative then∥∥G(h)‖W 1,p(TN ) ≤ C
(
1 + ‖h‖W 1,p(TN )

)
,

(ii) if G ∈ C1(TN × R) has bounded derivatives then∥∥G(·, h(·))‖W 1,p(TN ) ≤ C
(
1 + ‖h‖W 1,p(TN )

)
,

where the constant C is independent of h.
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4. Proof of the main result

Let us review the main ideas of the proof. The proof is divided into three
steps. In the first step, we apply the Banach fixed point theorem to conclude
the existence of an Lmp(TN )-valued mild solution of (1.1). In the second
step, we study Picard iterations for (1.1) and find a uniform estimate of
the W 1,mp(TN )-norm. It is then used in the third step to derive a uniform
estimate of the Wm,p(TN )-norm. This estimate remains valid also for the
limit process and the statement follows.

These steps will be stated as propositions.

Proposition 4.1 (Fixed point argument). Let p, q ∈ [2,∞). Assume that u0 ∈
Lq(Ω;Lp(TN )) and

fα ∈ C2l−1(R), |α| ≤ 2l − 1; σi ∈ C1(TN × R), i = 1, . . . , d,

have bounded derivatives of first order. Then there exists a unique mild solu-
tion to (1.1) which belongs to

Lq(Ω× [0, T ],P,dP⊗ dt;Lp(TN )).

Proof. Let us denote

H = Lq(Ω× [0, T ],P,dP⊗ dt;Lp(TN ))

and define the mapping(
K v

)
(t) = Sp(t)u0 +

∫ t

0

Sp(t− s)F (v(s)) ds+

∫ t

0

Sp(t− s)σ(v(s)) dW (s)

= Sp(t)u0 +
(
K1v

)
(t) +

(
K2v

)
(t), t ∈ [0, T ], v ∈H .

Here, we employ stochastic integration in Lp(TN ) as introduced in Section
2. We shall prove that K maps H into H and that it is a contraction.

Since u0 ∈ Lq(Ω;Lp(TN )) it follows easily that Sp(t)u0 ∈ H . In order

to estimate the second term, let δ = 2l−1
2l and note that

Sp(t− s)F (v(s)) = Sp(t− s)(−Ap)δ(−Ap)−δ
∑

|α|≤2l−1
aα 6=0

aαDαfα(v(s)),

where the operator (−Ap)δ commutes with the semigroup and the operator

Bp : Lp(TN ;Rη) −→ Lp(TN )

{zα}|α|≤2l−1
aα 6=0

7−→ (−Ap)−δ
∑

|α|≤2l−1
aα 6=0

aαDαzα

is bounded. Indeed, let p∗ be the conjugate exponent to p. Then the operator
Lp
∗
(TN )→ Lp

∗
(TN ), v 7→ aαDα(−Ap∗)−δv, |α| ≤ 2l− 1, is clearly bounded
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so for z ∈ Lp(TN ;Rη) we have∥∥∥∥(−Ap)−δ
∑

|α|≤2l−1
aα 6=0

aαDαzα

∥∥∥∥
Lp(TN )

= sup
v∈Lp

∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∣∣∣∣∣
∫
TN

(−Ap)−δ
∑

|α|≤2l−1
aα 6=0

aαDαzα(x) v(x) dx

∣∣∣∣∣
= sup

v∈Lp
∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∣∣∣∣∣ ∑
|α|≤2l−1
aα 6=0

∫
TN

zα(x) aαDα(−Ap∗)−δv(x) dx

∣∣∣∣∣
= sup

v∈Lp
∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∣∣∣∣∣
∫
TN

〈
z(x),

{
aαDα(−Ap∗)−δv(x)

}
|α|≤2l−1
aα 6=0

〉
Rη

dx

∣∣∣∣∣
≤ ‖z‖Lp(TN ;Rη) sup

v∈Lp
∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∥∥∥{aαDα(−Ap∗)−δv
}
|α|≤2l−1
aα 6=0

∥∥∥
Lp∗ (TN ;Rη)

≤ C ‖z‖Lp(TN ;Rη)

and the claim follows. Next, all fα, |α| ≤ 2l − 1, have bounded derivatives
hence at most linear growth, so it holds for any z ∈ Lp(TN )∥∥f(z)

∥∥
Lp(TN ;Rη) ≤ C

(
1 + ‖z‖Lp(TN )

)
. (4.1)

Later on, if there is no danger of confusion we will write Lp(TN ) instead of
Lp(TN ;Rη). Let v ∈ H , then using the above remark, the fact (2.1), the
estimate (4.1) and the Young inequality for convolutions we obtain

∥∥K1v
∥∥q

H
= E

∫ T

0

∥∥∥∥∫ t

0

Sp(t− s)F (v(s)) ds
∥∥q
Lp(TN )

dt

≤ E
∫ T

0

(∫ t

0

∥∥∥∥(−Ap)δSp(t− s)Bpf(v(s))
∥∥
Lp(TN )

ds

)q
dt

≤ C E
∫ T

0

(∫ t

0

1

(t− s)δ
∥∥Bpf(v(s))

∥∥
Lp(TN )

ds

)q
dt

≤ C E
∫ T

0

(∫ t

0

1

(t− s)δ
∥∥f(v(s))

∥∥
Lp(TN )

ds

)q
dt

≤ C E
∫ T

0

(∫ t

0

1

(t− s)δ
(
1 + ‖v(s)‖Lp(TN )

)
ds

)q
dt

≤ C T q(1−δ) E
∫ T

0

(
1 + ‖v(s)‖Lp(TN )

)q
ds = C T q(1−δ)

(
T + ‖v‖qH

)
.

(4.2)
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Next, by the Burkholder-Davis-Gundy inequality for martingales with values
in 2-smooth Banach spaces (see [3], [16]), we have∥∥K2v

∥∥q
H

= E
∫ T

0

∥∥∥∥ ∫ t

0

Sp(t− s)σ(v(s))dW (s)

∥∥∥∥q
Lp(TN )

dt

≤ C
∫ T

0

E
(∫ t

0

∥∥Sp(t− s)σ(v(s))
∥∥2
γ(U;Lp(TN ))

ds

) q
2

dt

≤ C T
q−2
2

∫ T

0

E
∫ t

0

∥∥σ(v(s))
∥∥q
γ(U;Lp(TN ))

dsdt.

(4.3)

The γ-radonifying norm can be computed, for almost every s and ω, using
(2.3) as in (2.4). Therefore∥∥K2v

∥∥q
H
≤ C T

q−2
2

∫ T

0

E
∫ t

0

(
1 + ‖v(s)‖q

Lp(TN )

)
dsdt ≤ C T

q
2

(
T + ‖v‖qH

)
.

We conclude that K (H ) ⊂H for any T > 0.
In order to show the contraction property of K1, we will mimic the

procedure from (4.2) and use the Lipschitz continuity of f . Indeed, fα, |α| ≤
2l − 1, have bounded derivatives so they are Lipschitz continuous and∥∥f(z1)− f(z2)‖Lp(TN ) ≤ C ‖z1 − z2‖Lp(TN ), z1, z2 ∈ Lp(TN ),

can be proved as (4.1). For v, w ∈H∥∥K1v −K1w
∥∥q

H
= E

∫ T

0

∥∥∥∥∫ t

0

Sp(t− s)
(
F (v(s))− F (w(s))

)
ds

∥∥∥∥q
Lp(TN )

dt

≤ E
∫ T

0

(∫ t

0

∥∥(−Ap)δSp(t− s)Bp
(
f(v(s))− f(w(s))

)∥∥
Lp(TN )

ds

)q
dt

≤ C E
∫ T

0

(∫ t

0

1

(t− s)δ
∥∥Bp(f(v(s))− f(w(s)

)∥∥
Lp(TN )

ds

)q
dt

≤ C E
∫ T

0

(∫ t

0

1

(t− s)δ
∥∥f(v(s))− f(w(s))

∥∥
Lp(TN )

ds

)q
dt

≤ C E
∫ T

0

(∫ t

0

1

(t− s)δ
‖v(s)− w(s)‖Lp(TN )ds

)q
dt

≤ C T q(1−δ) E
∫ T

0

‖v(s)− w(s)‖q
Lp(TN )

ds = C T q(1−δ)‖v − w‖qH .

In the case of K2 we employ the same calculations as in (4.3) and the sequel:∥∥K2v −K2w
∥∥q

H
= E

∫ T

0

∥∥∥∥∫ t

0

Sp(t− s)
(
σ(v(s))− σ(w(s))

)
dW (s)

∥∥∥∥q
Lp(TN )

dt

≤ C
∫ T

0

E
(∫ t

0

∥∥Sp(t− s)(σ(v(s))− σ(w(s))
)∥∥2
γ(U;Lp(TN ))

ds

) q
2

dt

≤ C T
q−2
2

∫ T

0

E
∫ t

0

∥∥σ(v(s))− σ(w(s))
∥∥q
γ(U;Lp(TN ))

dsdt.
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Let z1, z2 ∈ Lp(TN ). Then for the γ-radonifying norm we have∥∥σ(z1)− σ(z2)
∥∥q
γ(U;Lp(TN ))

≤
(
E
∥∥∥ d∑
i=1

γi
(
σi(·, z1(·))− σi(·, z2(·))

)∥∥∥2
Lp(TN )

) q
2

≤
(
E
∥∥∥ d∑
i=1

γi
(
σi(·, z1(·))− σi(·, z2(·))

)∥∥∥p
Lp(TN )

) q
p

= C

(∫
TN

( d∑
i=1

∣∣σi(y, z1(y))− σi(y, z2(y))
∣∣2) p2 dy

) q
p

≤ C ‖z1 − z2‖qLp(TN )
,

where the last inequality follows from the fact that all σi, i = 1, . . . , d, have
bounded derivatives and therefore are Lipschitz continuous. We conclude∥∥K2v −K2w

∥∥q
H
≤ C T

q
2 ‖v − w‖qH .

Consequently ∥∥K v −K w‖H ≤ C
(
T 1−δ + T

1
2

)
‖v − w‖H ,

where the constant does not depend on T and u0. Therefore, if

C
(
T 1−δ + T

1
2

)
< 1 (4.4)

then the mapping K has unique fixed point u in H which is a mild solution
of (1.1). Furthermore, by a standard use of the factorization lemma, it has
continuous trajectories with values in Lp(TN ), i.e. belongs to

Lq(Ω;C([0, T ];Lp(TN ))).

Therefore, the condition on T can be easily removed by considering the equa-
tion on intervals [0, T̃ ], [T̃ , 2T̃ ], . . . with T̃ satisfying (4.4).

�

The estimates from previous proposition can be improved in order to
obtain a better regularity of u.

Proposition 4.2 (Estimate in W 1,p(TN )). Let p ∈ [2,∞), q ∈ (2,∞). Assume
that u0 ∈ Lq(Ω;W 1,p(TN )) and

fα ∈ C2l−1(R), |α| ≤ 2l − 1; σi ∈ C1(TN × R), i = 1, . . . , d,

have bounded derivatives of first order. Then the mild solution of (1.1) belongs
to

Lq(Ω;C([0, T ];W 1,p(TN )))

and the following estimate holds true

E sup
0≤t≤T

‖u(t)‖q
W 1,p(TN )

≤ C
(
1 + E‖u0‖qW 1,p(TN )

)
. (4.5)
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Proof. Recall that u is the limit of Picard iterations: let u0(t) = u0 and for
n ∈ N define

un(t) = Sp(t)u0 +

∫ t

0

Sp(t− s)F
(
un−1(s)

)
ds

+

∫ t

0

Sp(t− s)σ
(
un−1(s)

)
dW (s).

We will show

E sup
0≤t≤T

‖un(t)‖q
W 1,p(TN )

≤ C
(
1 + E‖u0‖qW 1,p(TN )

)
, ∀n ∈ N, (4.6)

with a constant C independent of n. By induction on n, assume that the
hypothesis is satisfied for un−1 and compute the estimate for un. We will
proceed term by term and follow the ideas of Proposition 4.1. Consider the
operators Sp(t), t ≥ 0, restricted to the Sobolev space W 1,p(TN ) and denote
them by S1,p(t), t ≥ 0. These operators form a bounded analytic semigroup
on W 1,p(TN ) generated by the part of Ap in W 1,p(TN ) (see [2, Theorem
V.2.1.3]). Let us denote this generator by A1,p. Therefore we have

E sup
0≤t≤T

‖Sp(t)u0‖qW 1,p(TN )
= E sup

0≤t≤T
‖S1,p(t)u0‖qW 1,p(TN )

≤ C E‖u0‖qW 1,p(TN )
.

As above, let δ = 2l−1
2l and consider the operator

B1,p : W 1,p(TN ;Rη) −→W 1,p(TN )

{zα}|α|≤2l−1
aα 6=0

7−→ (−Ap)−δ
∑

|α|≤2l−1
aα 6=0

aαDαzα.

We will show that it is a bounded operator. Indeed, according to the compu-
tations in the proof of Proposition 4.1, for any z ∈W 1,p(TN ;Rη),∥∥B1,pz∥∥Lp(TN )

≤ C‖z‖Lp(TN ;Rη).

For any multiindex β = (β1, . . . , βN ) such that |β| = 1, we can write∥∥DβB1,pz
∥∥
Lp(TN )

=
∥∥∥Dβ(−Ap)−

1
2l (−Ap)−

2l−1
2l + 1

2l

∑
|α|≤2l−1
aα 6=0

aαDαzα

∥∥∥
Lp(TN )

,

where the operator Lp(TN )→ Lp(TN ), v 7→ Dβ(−Ap)−
1
2l v, is bounded. For

each α, |α| ≤ 2l − 1, let us fix a multiindex α′ such that it is of order 1 and
α − α′ is also a multiindex, i.e. |α′| = 1 and |α − α′| = |α| − 1. Note, that
if p∗ is the conjugate exponent to p, the operator Lp

∗
(TN )→ Lp

∗
(TN ), v 7→
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aαDα−α′(−Ap∗)
−2l+2

2l v, |α| ≤ 2l − 1, is bounded as well. We conclude

∥∥∥(−Ap)
−2l+2

2l

∑
|α|≤2l−1
aα 6=0

aαDαzα

∥∥∥
Lp(TN )

= sup
v∈Lp

∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∣∣∣∣∣
∫
TN

(−Ap)
−2l+2

2l

∑
|α|≤2l−1
aα 6=0

aαDαzα(x) v(x) dx

∣∣∣∣∣
= sup

v∈Lp
∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∣∣∣∣∣ ∑
|α|≤2l−1
aα 6=0

∫
TN

Dα′zα(x) aαDα−α′(−Ap∗)
−2l+2

2l v(x) dx

∣∣∣∣∣
≤
∥∥∥{Dα′zα

}
|α|≤2l−1
aα 6=0

∥∥∥
Lp(TN ;Rη)

× sup
v∈Lp

∗
(TN )

‖v‖
Lp
∗
(TN )
≤1

∥∥∥∥{aαDα−α′(−Ap∗)
−2l+2

2l v
}
|α|≤2l−1
aα 6=0

∥∥∥∥
Lp∗ (TN ;Rη)

≤ C ‖z‖W 1,p(TN ;Rη)

and the claim follows. Therefore, we have

E sup
0≤t≤T

∥∥∥∥∫ t

0

Sp(t− s)F
(
un−1(s)

)
ds

∥∥∥∥q
W 1,p(TN )

≤ E sup
0≤t≤T

(∫ t

0

∥∥∥(−Ap)δSp(t− s)B1,pf
(
un−1(s)

)∥∥∥
W 1,p(TN )

ds

)q
≤ E sup

0≤t≤T

(∫ t

0

∥∥∥(−A1,p)
δS1,p(t− s)B1,pf

(
un−1(s)

)∥∥∥
W 1,p(TN )

ds

)q
≤ C E sup

0≤t≤T

(∫ t

0

1

(t− s)δ
∥∥f(un−1(s)

)∥∥
W 1,p(TN )

ds

)q
≤ CT q(1−δ)E sup

0≤t≤T

∥∥f(un−1(t)
)∥∥q
W 1,p(TN )

.

To deduce a similar estimate for the stochastic term, we need to consider
stochastic integration in W 1,p(TN ). Employing the Hölder inequality and
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the equivalence of norms on W 1,p(TN ) we obtain for z ∈W 1,p(TN )

∥∥σ(z)
∥∥q
γ(U;W 1,p(TN ))

=

(
E
∥∥∥ d∑
i=1

γi σi
(
·, z(·)

)∥∥∥2
W 1,p(TN )

) q
2

≤
(
E
∥∥∥ d∑
i=1

γi σi
(
·, z(·)

)∥∥∥p
W 1,p(TN )

) q
p

≤ C
(
E
∥∥∥ d∑
i=1

γi (−Ap)
1
2lσi

(
·, z(·)

)∥∥∥p
Lp(TN )

) q
p

= C

(∫
TN

( d∑
i=1

∣∣(−Ap) 1
2lσi

(
y, z(y)

)∣∣2) p2 dy

) q
p

≤ C
d∑
i=1

∥∥σi(·, z(·))∥∥qW 1,p(TN )
.

Since q ∈ (2,∞), we make use of the maximal estimate for stochastic con-
volution [3, Corollary 3.5] which can be proved by the factorization method.
For the reader’s convenience we recall the basic steps of the proof. Let
ϑ ∈ (1/q, 1/2), then according to the stochastic Fubini theorem [4, Proposi-
tion 3.3(v)],∫ t

0

Sp(t− s)σ
(
un−1(s)

)
dW (s) =

1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1Sp(t− s) y(s)ds,

where

y(s) =
1

Γ(1− ϑ)

∫ s

0

(s− r)−ϑSp(s− r)σ
(
un−1(r)

)
dW (r).

Hence application of the Hölder, Burkholder-Davis-Gundy and Young in-
equalities yields (here the constant C is independent on T )

E sup
0≤t≤T

∥∥∥∥∫ t

0

Sp(t− s)σ
(
un−1(s)

)
dW (s)

∥∥∥∥q
W 1,p(TN )

≤ CT
q
2−1 E

∫ T

0

∥∥σ(un−1(s)
)∥∥q
γ(U;W 1,p(TN ))

ds

so

E sup
0≤t≤T

∥∥∥∥∫ t

0

Sp(t− s)σ
(
un−1(s)

)
dW (s)

∥∥∥∥q
W 1,p(TN )

≤ CT
q
2−1

d∑
i=1

E
∫ T

0

∥∥σi(·, un−1(s, ·)
)∥∥q
W 1,p(TN )

ds

≤ CT
q
2

d∑
i=1

E sup
0≤t≤T

∥∥σi(·, un−1(t, ·)
)∥∥q
W 1,p(TN )
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and finally

E sup
0≤t≤T

‖un(t)‖q
W 1,p(TN )

≤ C E‖u0‖qW 1,p(TN )

+ CT q(1−δ)E sup
0≤t≤T

∥∥f(un−1(t)
)∥∥q
W 1,p(TN )

+ CT
q
2

d∑
i=1

E sup
0≤t≤T

∥∥σi(·, un−1(t, ·)
)∥∥q
W 1,p(TN )

,

where the constant does not depend on n. Now, we make use of Remark 3.3
and obtain

E sup
0≤t≤T

‖un(t)‖q
W 1,p(TN )

≤ C E‖u0‖qW 1,p(TN )

+ C
(
T q(1−δ) + T

q
2

)(
1 + E sup

0≤t≤T
‖un−1(t)‖q

W 1,p(TN )

)
.

Let us make an additional hypothesis: assume that T is such that

CT = C
(
T q(1−δ) + T

q
2

)
< 1. (4.7)

Denoting Kn = E sup0≤t≤T ‖un(t)‖q
W 1,p(TN )

, n ∈ N0, we have

Kn ≤ C E‖u0‖qW 1,p(TN )
+ CT

(
1 +Kn−1

)
and inductively in n

E sup
0≤t≤T

‖un(t)‖q
W 1,p(TN )

≤ C̃T
(
1 + E‖u0‖qW 1,p(TN )

)
, (4.8)

where C̃T is independent n. So (4.6) follows if T is sufficiently small.
In order to remove this condition, we consider a suitable partition of

the interval [0, T ]. Let T̃ > 0 satisfy (4.7) and 0 < T̃ < 2T̃ < · · · < KT̃ = T
for some K ∈ N. Fix k ∈ {1, . . . ,K}. We will study the processes un, n ∈ N,
on the interval [(k − 1)T̃ , kT̃ ] and find an estimate similar to (4.8). Each
un, n ∈ N, is the unique mild solution to the corresponding linear equation

dun =
[
Aun + F

(
un−1

)]
dt+ σ

(
un−1

)
dW, x ∈ TN , t ∈ (0, T ),

u(0) = u0.

Let v(t, s, ;u0), t ≥ s ≥ 0, be the mild solution of this problem with the
initial condition u0 given at time s. It follows from the uniqueness that for
arbitrary t ≥ r ≥ s ≥ 0

v
(
t, r; v(r, s;u0)

)
= v(t, s;u0) P-a.s.

and therefore we can write

un(t) =Sp
(
t− (k − 1)T̃

)
un
(
(k − 1)T̃

)
+

∫ t

(k−1)T̃
Sp(t− s)F

(
un−1(s)

)
ds

+

∫ t

(k−1)T̃
Sp(t− s)σ

(
un−1(s)

)
dW (s), t ∈

[
(k − 1)T̃ , T

]
.
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Following the same approach as above we obtain

E sup
(k−1)T̃≤t≤kT̃

‖un(t)‖q
W 1,p(TN )

≤ C̃T̃
(

1 + E
∥∥un((k − 1)T̃

)∥∥q
W 1,p(TN )

)
with a constant similar to C̃T in (4.8). Hence

E sup
(k−1)T̃≤t≤kT̃

‖un(t)‖q
W 1,p(TN )

≤ C̃T̃
(

1 + E sup
(k−2)T̃≤t≤(k−1)T̃

∥∥un(t)
∥∥q
W 1,p(TN )

)
≤

K∑
i=1

(C̃T̃ )i + (C̃T̃ )KE‖u0‖qW 1,p(TN )
≤ C̄

(
1 + E‖u0‖qW 1,p(TN )

)
,

where the constant C̄ is independent of k and n. Finally, the estimate (4.6)
follows:

E sup
0≤t≤T

‖un(t)‖q
W 1,p(TN )

= E max
k=1,...,K

sup
(k−1)T̃≤t≤kT̃

‖un(t)‖q
W 1,p(TN )

≤
K∑
k=1

E sup
(k−1)T̃≤t≤kT̃

‖un(t)‖q
W 1,p(TN )

≤ KC̄
(
1 + E‖u0‖qW 1,p(TN )

)
.

We have now all in hand to deduce that the sequence {un; n ∈ N} is
bounded in

Lq(Ω;L∞(0, T ;W 1,p(TN )))

and therefore has a weak-star convergent subsequence. Since any norm is
weak-star lower semicontinuous we get the estimate (4.5) for the limit process
u. Moreover, since the stochastic convolution has a continuous modification
according to [3, Corollary 3.5], the proof is complete. �

Proof of regularity in higher order Sobolev spaces (order greater than 1)
is more complicated as the norm of a superposition does not, in general, grow
linearly with the norm of the inner function (cf. Proposition 3.1, Corollary
3.2, Remark 3.3).

Proposition 4.3 (Estimate in Wm,p(TN )). Let p ∈ [2,∞), q ∈ (2,∞), m ∈ N,
m ≥ 2. Assume that u0 ∈ Lq(Ω;Wm,p(TN )) ∩ Lmq(Ω;W 1,mp(TN )) and

fα ∈ Cm(R) ∩ C2l−1(R), |α| ≤ 2l − 1; σi ∈ Cm(TN × R), i = 1, . . . , d,

have bounded derivatives up to order m. Then the mild solution of (1.1)
belongs to

Lq(Ω;C([0, T ];Wm,p(TN )))

and the following estimate holds true

E sup
0≤t≤T

‖u(t)‖q
Wm,p(TN )

≤ C
(
1 + E‖u0‖qWm,p(TN )

+ E‖u0‖mqW 1,mp(TN )

)
. (4.9)
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Proof. First, we intend to prove the following estimate for the Picard itera-
tions

E sup
0≤t≤T

‖un(t)‖q
Wm,p(TN )

≤ C
(
1+E‖u0‖qWm,p(TN )

+E‖u0‖mqW 1,mp(TN )

)
, (4.10)

with a constant independent of n. By induction on n, assume that the hy-
pothesis is satisfied for un−1 and compute the estimate for un. The following
arguments and calculations are mostly similar to those in Proposition 4.2.
Recall that according to (4.6), we have

E sup
0≤t≤T

‖un(t)‖mq
W 1,mp(TN )

≤ C
(
1 + E‖u0‖mqW 1,mp(TN )

)
, ∀n ∈ N. (4.11)

Let us consider the restrictions of the operators Sp(t), t ≥ 0, to the Sobolev
space Wm,p(TN ) and denote them by Sm,p(t), t ≥ 0. By [2, Theorem V.2.1.3],
we obtain a strongly continuous semigroup on Wm,p(TN ) generated by part
of Ap in Wm,p(TN ). We denote the generator by Am,p. It follows

E sup
0≤t≤T

‖Sp(t)u0‖qWm,p(TN )
= E sup

0≤t≤T
‖Sm,p(t)u0‖qWm,p(TN )

≤ C E‖u0‖qWm,p(TN )
.

As above, we employ the following bounded operator: let δ = 2l−1
2l

Bm,p : Wm,p(TN ;Rη) −→Wm,p(TN )

{zα}|α|≤2l−1
aα 6=0

7−→ (−Ap)−δ
∑

|α|≤2l−1
aα 6=0

aαDαzα,

so

E sup
0≤t≤T

∥∥∥∥ ∫ t

0

Sp(t− s)F
(
un−1(s)

)
ds

∥∥∥∥q
Wm,p(TN )

≤ E sup
0≤t≤T

(∫ t

0

∥∥∥(−Am,p)δSm,p(t− s)Bm,pf
(
un−1(s)

)∥∥∥
Wm,p(TN )

ds

)q
≤ C E sup

0≤t≤T

(∫ t

0

1

(t− s)δ
∥∥f(un−1(s)

)∥∥
Wm,p(TN )

ds

)q
≤ CT q(1−δ)E sup

0≤t≤T

∥∥f(un−1(t)
)∥∥q
Wm,p(TN )

.
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And for the stochastic term, z ∈Wm,p(TN ),

∥∥σ(z)
∥∥q
γ(U;Wm,p(TN ))

=

(
E
∥∥∥ d∑
i=1

γi σi
(
·, z(·)

)∥∥∥2
Wm,p(TN )

) q
2

≤ C
(
E
∥∥∥ d∑
i=1

γi (−Ap)
m
2l σi

(
·, z(·)

)∥∥∥p
Lp(TN )

) q
p

= C

(∫
TN

( d∑
i=1

∣∣(−Ap)m2l σi(y, z(y)
)∣∣2) p2 dy

) q
p

≤ C
d∑
i=1

∥∥σi(·, z(·))∥∥qWm,p(TN )

hence

E sup
0≤t≤T

∥∥∥∥∫ t

0

Sp(t− s)σ
(
un−1(s)

)
dW (s)

∥∥∥∥q
Wm,p(TN )

≤ CT
q
2−1 E

∫ T

0

∥∥σ(un−1(s)
)∥∥q
γ(U;Wm,p(TN ))

ds

≤ CT
q
2

d∑
i=1

E sup
0≤t≤T

∥∥σi(·, un−1(t, ·)
)∥∥q
Wm,p(TN )

.

We conclude

E sup
0≤t≤T

‖un(t)‖q
Wm,p(TN )

≤ C E‖u0‖qWm,p(TN )

+ CT q(1−δ)E sup
0≤t≤T

∥∥f(un−1(t)
)∥∥q
Wm,p(TN )

+ CT
q
2

d∑
i=1

E sup
0≤t≤T

∥∥σi(·, un−1(t, ·)
)∥∥q
Wm,p(TN )

.

Applying Proposition 3.1, Corollary 3.2 and (4.11) we obtain

E sup
0≤t≤T

‖un(t)‖q
Wm,p(TN )

≤ C E‖u0‖qWm,p(TN )
+ C

(
T q(1−δ) + T

q
2

)
×
(

1 + E sup
0≤t≤T

‖un−1(t)‖mq
W 1,mp(TN )

+ E sup
0≤t≤T

‖un−1(t)‖q
Wm,p(TN )

)
≤ C E‖u0‖qWm,p(TN )

+ C
(
T q(1−δ) + T

q
2

)
×
(

1 + E‖u0‖mqW 1,mp(TN )
+ E sup

0≤t≤T
‖un−1(t)‖q

Wm,p(TN )

)
.

Let T satisfy the following condition

CT = C
(
T q(1−δ) + T

q
2

)
< 1
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and defineKn = E sup0≤t≤T ‖un(t)‖q
Wm,p(TN )

, n ∈ N0, L0 = E‖u0‖mqW 1,mp(TN )
.

Then we have

Kn ≤ C E‖u0‖qWm,p(TN )
+ CT

(
1 + L0 +Kn−1

)
hence inductively in n

E sup
0≤t≤T

‖un(t)‖q
Wm,p(TN )

≤ C̃T
(
1 + E‖u0‖qWm,p(TN )

+ E‖u0‖mqW 1,mp(TN )

)
,

where the constant does not depend on n. Therefore (4.10) follows under the
additional hypothesis upon T . However, this condition can be removed by
the same approach as in Proposition 4.2.

Similarly to Proposition 4.2 we deduce that the sequence {un; n ∈ N}
is bounded in

Lq(Ω;L∞(0, T ;Wm,p(TN )))

and therefore (4.9) holds true. Existence of a continuous modification follows
again from [3, Corollary 3.5]. �

Proof of Theorem 2.1. If m = 1 the proof is an immediate consequence of
Propositions 4.1 and 4.2. The case m ≥ 2 follows from Propositions 4.1, 4.2
and 4.3. �

Proof of Corollary 2.2. Let m = k+1. According to Theorem 2.1 there exists
a solution of (1.1) which belongs to

Lq(Ω;C([0, T ];Wm,p(TN ))), ∀p ∈ [2,∞).

If p > N , then according to the Sobolev embedding theorem, the space
Wm,p(TN ) is continuously embedded in Ck,λ(TN ) for λ ∈ (0, 1−N/p). Hence
the assertion follows. �
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