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Abstract: A new proof of existence of weak solutions to stochastic differential equations
with continuous coefficients based on ideas from infinite-dimensional stochastic analysis is

presented. The proof is fairly elementary, in particular, neither theorems on representation

of martingales by stochastic integrals nor results on almost sure representation for tight
sequences of random variables are needed.
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0. Introduction. In this paper, we provide a modified proof of Skorokhod’s
classical theorem on existence of (weak) solutions to a stochastic differential equa-
tion

dX = b(t, X) dt+ σ(t, X) dW, X(0) = ϕ,

where b : [0, T ]×R
m −→ R

m and σ : [0, T ]× R
m −→ Mm×n are Borel functions of

at most linear growth continuous in the second variable. (Henceforward, by Mm×n

we shall denote the space of all m-by-n matrices over R endowed with the Hilbert-
Schmidt norm ‖A‖ = (TrAA∗)1/2.) Our proof combines tools that were proposed
for handling weak solutions of stochastic evolution equations in infinite-dimensional
spaces, where traditional methods cease to work, with results on preservation of the
local martingale property under convergence in law. In finite-dimensional situation,
the “infinite-dimensional” methods simplify considerably and in our opinion the
alternative proof based on them is more lucid and elementary than the standard
one. A positive teaching experience of the second author was, in fact, the main
motivation for writing this paper. Moreover, we believe that the reader may find
the comparison with other available approaches illuminating.

To explain our argument more precisely, let us recall the structure of the usual
proof; for notational simplicity, we shall consider (in the informal introduction only)
autonomous equations. Kiyosi Itô showed in his seminal papers (see e.g. [9], [10])
that a stochastic differential equation

dX = b(X) dt+ σ(X) dW (0.1)

X(0) = ϕ (0.2)

driven by an n-dimensional Wiener process W has a unique solution provided that
b : R

m −→ R
m, σ : R

m −→ Mm×n are Lipschitz continuous functions. A next
important step was taken by A. Skorokhod ([16], [17]) in 1961, who proved that
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there exists a solution to (0.1), (0.2) if b and σ are continuous functions of at most
linear growth, i.e.

sup
x∈Rm

‖b(x)‖ + ‖σ(x)‖

1 + ‖x‖
<∞.

It was realized only later that two different concepts of a solution are involved: for
Lipschitzian coefficients, there exists an (Ft)-progressively measurable process in
R

m solving (0.1) and such that X(0) = ϕ, whenever (Ω,F , (Ft),P ) is a stochastic
basis carrying an n-dimensional (Ft)-Wiener process and ϕ is an F0-measurable
function. (We say that (0.1), (0.2) has a strong solution.) On the other hand,
for continuous coefficients, a stochastic basis (Ω,F , (Ft),P ), an n-dimensional
(Ft)-Wiener process W and an (Ft)-progressively measurable process X may be
found such that X solves (0.1) and X(0) and ϕ have the same law. (We speak
about existence of a weak solution to (0.1), (0.2) in such a case.) It is well known
that this difference is substantial in general: under assumptions of the Skorokhod
theorem strong solutions need not exist (see [1]).

Skorokhod’s existence theorem is remarkable not only by itself, but also because
of the method of its proof. To present it, we need some notation: if M and N are
continuous real local martingales, then by 〈M〉 we denote the quadratic variation
of M and by 〈M,N〉 the cross-variation of M and N . Let M = (M i)m

i=1 and N =
(N j)n

j=1 be continuous local martingales with values in R
m and R

n, respectively.

By 〈〈M〉〉 we denote the tensor quadratic variation of M , 〈〈M〉〉 = (〈M i,Mk〉)m
i,k=1,

and we set 〈M〉 = Tr〈〈M〉〉. Analogously, we define

M ⊗N =
(
M iN j

)m n

i=1j=1
, 〈〈M,N〉〉 =

(
〈M i, N j〉

)m n

i=1j=1
.

Let X and Y be random variables with values in the same measurable space (E, E ),

we write X
D
∼ Y if X and Y have the same law on E . Similarly, X

D
∼ ν means that

the law of X is a probability measure ν on E .
Let

dXr = br(Xr) dt+ σr(Xr) dW, Xr(0) = ϕ

be a sequence of equations which have strong solutions and approximate (0.1) in
a suitable sense. (We shall approximate b and σ by Lipschitz continuous functions
having the same growth as b and σ, but likewise it is possible to use e.g. finite
difference approximations.) The linear growth hypothesis makes it possible to prove
that

the laws of {Xr; r ≥ 1} are tight, (0.3)

that is, form a relatively weakly compact set of measures on the space of continuous
trajectories. Then Skorokhod’s theorem on almost surely converging realizations
of converging laws (see e.g. [5], Theorem 11.7.2) may be invoked, which yields a
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subsequence {Xrk
} of {Xr}, a probability space (Ω̃, F̃ , P̃ ) and sequences {X̃k; k ≥

0}, {W̃k; k ≥ 0} such that

(Xrk
,W )

D
∼ (X̃k, W̃k), k ≥ 1; (X̃k, W̃k)

P̃ -a. s.
−−−−−→

k→∞
(X̃0, W̃0). (0.4)

It is claimed that X̃0 is the (weak) solution looked for. Skorokhod’s papers [16]
and [17] are written in a very concise way and details of proofs are not offered;
nowadays standard version of Skorokhod’s proof is as follows (see [18], Theorem
6.1.6, [8], Theorem IV.2.2, [12], Theorem 5.4.22): under a suitable integrability
assumption upon the initial condition,

Mk = Xrk
−Xrk

(0) −

∫ ·

0

brk
(Xrk

(s)) ds

is a martingale with a (tensor) quadratic variation

〈〈Mk〉〉 =

∫ ·

0

σrk
(Xrk

(s))σ∗
rk

(Xrk
(s)) ds,

for all k ≥ 1. Equality in law (0.4) implies that also

M̃k = X̃k − X̃k(0) −

∫ ·

0

brk
(X̃k(s)) ds

are martingales for k ≥ 1, with quadratic variations

〈〈M̃k〉〉 =

∫ ·

0

σrk
(X̃k(s))σ∗

rk
(X̃k(s)) ds.

Using convergence P̃ -almost everywhere, it is possible to show that

M̃0 = X̃0 − X̃0(0) −

∫ ·

0

b(X̃0(s)) ds

is a martingale with a quadratic variation

〈〈M̃0〉〉 =

∫ ·

0

σ(X̃0(s))σ
∗(X̃0(s)) ds.

By the integral representation theorem for martingales with an absolutely continu-
ous quadratic variation (see e.g. [12], Theorem 3.4.2, or [8], Theorem II.7.1’), there

exists a Wiener process Ŵ (on an extended probability space) satisfying

M̃0 =

∫ ·

0

σ(X̃0(s)) dŴ (s).
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Therefore, (Ŵ , X̃0) is a weak solution to (0.1), (0.2). (In the cited books, martingale
problems are used instead of weak solutions. Then the integral representation
theorem is hidden in the construction of a weak solution from a solution to the
martingale problem, so a complete proof is essentially the one sketched above.)

This procedure has two rather nontrivial inputs: the Skorokhod representation
theorem, and the integral representation theorem whose proof, albeit based on a
simple and beautiful idea, becomes quite technical if the space dimension is greater
than one. An alternative approach to identification of the limit was discovered
recently (see [3], [14]) in the course of study of stochastic wave maps between
manifolds, where integral representation theorems for martingales are no longer
available. The new method, which refers only to basic properties of martingales
and stochastic integrals, may be described in the case of the problem (0.1), (0.2)

in the following way: One starts again with a sequence {(X̃k, W̃k)} such that (0.4)
holds true. If the initial condition is p-integrable for some p > 2, it can be shown
in a straightforward manner, using the almost sure convergence, that

M̃0, ‖M̃0‖
2 −

∫ ·

0

‖σ(X̃0(s))‖
2 ds, M̃0 ⊗ W̃0 −

∫ ·

0

σ(X̃0(s)) ds

are martingales, in other words,

〈

M̃0 −

∫ ·

0

σ(X̃0(s)) dW̃0(s)

〉

= 0,

whence one concludes that (W̃0, X̃0) is a weak solution. If the additional integra-
bility hypothesis on ϕ is not satisfied, the proof remains almost the same, only a
suitable cut-off procedure must be amended.

We take a step further and eliminate also the Skorokhod representation theorem.
Let P̃k be the laws of (Xrk

,W ) on the space U = C ([0, T ]; R
m)×C ([0, T ]; R

n); we

know that the sequence {P̃k} converges weakly to some measure P̃0. Denote by
(Y,B) the canonical process on U and set

M̄k = Y − Y (0) −

∫ ·

0

brk
(Y (s)) ds, k ≥ 0

(with br0 = b, σr0 = σ). Then

M̄k, ‖M̄k‖
2 −

∫ ·

0

‖σrk
(Y (s))‖2 ds, M̄k ⊗B −

∫ ·

0

σrk
(Y (s)) ds, (0.5)

are local martingales under the measure P̃k for every k ≥ 1, as can be inferred quite
easily from the definition of the measure P̃k. Now one may try to use Theorem
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IX.1.17 from [11] stating, roughly speaking, that a limit in law of a sequence of
continuous local martingales is a local martingale. We do not use this theorem
explicitly, since to establish convergence in law of the processes (0.5) as k → ∞ is
not simpler than to check the local martingale property for k = 0 directly, but our
argument is inspired by the proofs in the book [11]. The proof we propose is not
difficult and it is almost self-contained, it requires only two auxiliary lemmas (with
simple proofs) from [11] on continuity properties of certain first entrance times
which we recall in Appendix. Once we know that the processes (0.5) are local
martingales for k = 0 as well, the trick from [3] and [14] may be used yielding that
(B, Y ) is a weak solution to (0.1), (0.2). It is worth mentioning that this procedure
is independent of any integrability hypothesis on ϕ.

The proof of (0.3) not being our main concern notwithstanding, we decided to
include a less standard proof of tightness inspired also by the theory of stochastic
partial differential equations. We adopt an argument proposed by D. Gątarek and
B. Go ldys in [6] (cf. also [4], Chapter 8), who introduced it when studying weak
solutions to stochastic evolution equations in Hilbert spaces, and which relies on the
factorization method of G. Da Prato, S. Kwapień and J. Zabczyk (see [4], Chapters
5 and 7, for a thorough exposition) and on compactness properties of fractional
integral operators. The fractional calculus has become popular amongst probabilists
recently because of its applications to fractional Brownian motion driven stochastic
integrals and a proof of tightness using it may suit some readers more than the
traditional one based on estimates of moduli of continuity.

Let us close this Introduction by stating the result to be proved precisely.

Theorem 0.1. Let b : [0, T ] × R
m −→ R

m and σ : [0, T ] × R
m −→ Mm×n be

Borel functions such that b(t, ·) and σ(t, ·) are continuous on R
m for any t ∈ [0, T ]

and the linear growth hypothesis is satisfied, that is

∃K∗ <∞ ∀t ∈ [0, T ] ∀x ∈ R
m ‖b(t, x)‖ ∨ ‖σ(t, x)‖ ≤ K∗

(
1 + ‖x‖

)
. (0.6)

Let ν be a Borel probability measure on R
m. Then there exists a weak solution to

the problem

dX = b(t, X) dt+ σ(t, X) dW, X(0)
D
∼ ν. (0.7)

We recall that a weak solution to (0.7) is a triple ((G,G , (Gt),Q),W,X), where
(G,G , (Gt),Q) is a stochastic basis with a filtration (Gt) that satisfies the usual
conditions, W is an n-dimensional (Gt)-Wiener process and X is an R

m-valued
(Gt)-progressively measurable process such that Q ◦X(0)−1 = ν and

X(t) = X(0) +

∫ t

0

b(r,X(r)) dr+

∫ t

0

σ(r,X(r)) dW (r)

for all t ∈ [0, T ] Q-almost surely.
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The rest of the paper is devoted to the proof of Theorem 0.1. In Section 1,
a sequence of equations with Lipschitzian coefficients approximation (0.7) is con-
structed, tightness of the set of their solutions being shown in Section 2. In Section
3, cluster points of the set of approximating solutions are identified as weak solu-
tions to (0.7).
Acknowledgements. The authors are indebted to Martin Ondreját for many

useful discussions.

1. Approximations. In this Section we introduce a sequence of equations which
have strong solutions and approximate the problem (0.7). If E and F are metric
spaces, we denote by C (E;F ) the space of all continuous mappings from E to F .
For brevity, we shall sometimes write CV instead of C ([0, T ]; R

V ) if V ∈ N. If
f ∈ C ([0, T ];F ) and s ∈ [0, T ] then the restriction of f to the interval [0, s] will be
denoted by ̺sf . Plainly, ̺s : C ([0, T ];F ) −→ C ([0, s];F ) is a continuous mapping.
Finally, Lq(G; R

V ) stands for the space of q-integrable functions on G with values
in R

V .
Our construction is based on the following proposition.

Proposition 1.1. Suppose that F : R+ × R
N −→ R

V is a Borel function of at
most linear growth, i.e.

∃L <∞ ∀t ≥ 0 ∀x ∈ R
N ‖F (t, x)‖ ≤ L

(
1 + ‖x‖

)
,

such that F (t, ·) ∈ C (RN ; R
V ) for any t ∈ R+. Then there exists a sequence of

Borel functions Fk : R+ × R
N −→ R

V , k ≥ 1, which have at most linear growth
uniformly in k, namely

∀k ≥ 1 ∀t ≥ 0 ∀x ∈ R
N ‖Fk(t, x)‖ ≤ L

(
2 + ‖x‖

)
,

which are Lipschitz continuous in the second variable uniformly in the first one,

∀k ≥ 1 ∃Lk <∞ ∀t ≥ 0 ∀x, y ∈ R
N ‖Fk(t, x) − Fk(t, y)‖ ≤ Lk‖x− y‖,

and which satisfy

lim
k→∞

Fk(t, ·) = F (t, ·) locally uniformly on R
N

for all t ≥ 0.

The proof is rather standard so it is not necessary to dwell on its details: one
takes a smooth function ζ ∈ C∞(RN ) such that ζ ≥ 0, supp ζ ⊆ {x ∈ R

N ; ‖x‖ ≤ 1}
and

∫

RN ζ dx = 1 and sets

Gk(t, x) = kN

∫

RN

F (t, y)ζ
(
k(x− y)

)
dy
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for k ≥ 1, t ≥ 0 and x ∈ R
N . The functions Gk have all desired properties except for

being only locally Lipschitz, but it is possible to modify them outside a sufficiently
large ball in an obvious manner.

Let the coefficients b and σ satisfy the assumptions of Theorem 0.1. Using
Proposition 1.1 we find Borel functions bk : [0, T ] × R

m −→ R
m and σk : [0, T ] ×

R
m −→ Mm×n, k ≥ 1, such that

sup
k≥1

sup
t∈[0,T ]

{
‖bk(t, x)‖ ∨ ‖σk(t, x)‖

}
≤ K∗

(
2 + ‖x‖

)
, x ∈ R

m, (1.1)

bk(t, ·) and σk(t, ·) are Lipschitz continuous uniformly in t ∈ [0, T ] and converge
locally uniformly on R

m as k → ∞ to b(t, ·) and σ(t, ·), respectively, for all t ∈ [0, T ].
Fix an arbitrary stochastic basis (Ω,F , (Ft),P ), on which an n-dimensional (Ft)-
Wiener process W and an F0-measurable random variable ϕ : Ω −→ R

m with

ϕ
D
∼ ν are defined. It is well known that for any k ≥ 1 there exists a unique (Ft)-

progressively measurable R
m-valued stochastic process Xk solving the equation

dXk = bk(t, Xk) dt+ σk(t, Xk) dW, Xk(0) = ϕ. (1.2)

Moreover, for any p ∈ [2,∞[ there exists a constant C∗ <∞, depending only on p,
T and K∗, such that

sup
k≥1

E sup
0≤t≤T

‖Xk(t)‖p ≤ C∗

(
1 + E‖ϕ‖p

)
, (1.3)

provided that ∫

Rm

‖x‖p dν(x) = E‖ϕ‖p <∞.

2. Tightness. Let {Xk; k ≥ 1} be the sequence of solutions to (1.2). Plainly,
the processes Xk may be viewed as random variables Xk : Ω −→ Cm (where the
Polish metric space Cm is endowed with its Borel σ-algebra). In this section, we
aim at establishing the following proposition.

Proposition 2.1. The set {P ◦X−1
k ; k ≥ 1} of Borel probability measures on

C ([0, T ]; R
m) is tight.

To this end, let us recall the definition of the Riemann-Liouville (or fractional
integral) operator: if q ∈ ]1,∞], α ∈ ] 1q , 1] and f ∈ Lq([0, T ]; R

m), we define a

function Rαf : [0, T ] −→ R
m by

(
Rαf

)
(t) =

∫ t

0

(t− s)α−1f(s) ds, 0 ≤ t ≤ T.
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The definition is correct, as an easy application of the Hölder inequality shows.
Note that, in particular, R1f =

∫ ·

0
f(t) dt. It is well-known (and may be checked

by very straightforward calculations) that Rα is a bounded linear operator from
Lq([0, T ]; R

m) to the space C 0,α−1/q([0, T ]; R
m) of (α− 1

q )-Hölder continuous func-

tions (see e.g. [15], Theorem 3.6). Balls in C 0,α−1/q([0, T ]; R
m) are relatively com-

pact in C ([0, T ]; R
m) by the Arzelà-Ascoli theorem, hence we arrive at

Lemma 2.2. If q ∈ ]1,∞] and α ∈ ] 1
q
, 1], then Rα is a compact linear operator

from Lq([0, T ]; R
m) to C ([0, T ]; R

m).

We shall need also a Fubini-type theorem for stochastic integrals in the following
form (a more general result may be found in [4], Theorem 4.18):

Lemma 2.3. Let (X,Σ, µ) be a finite measure space, (G,G , (Gt),Q) a stochastic
basis, and B an n-dimensional (Gt)-Wiener process. Denote by M the σ-algebra
of (Gt)-progressively measurable sets and assume that ψ : [0, T ]×G×X −→ Mm×n

is an M ⊗Σ-measurable mapping such that

∫

X

(∫ T

0

∫

G

‖ψ(s, x)‖2 dQ ds

)1/2

dµ(x) <∞. (2.1)

Then
∫

X

[∫ T

0

ψ(s, x) dB(s)

]

dµ(x) =

∫ T

0

[∫

X

ψ(s, x) dµ(x)

]

dB(s)

Q-almost surely.

The last auxiliary result to be recalled is the Young inequality for convolutions
(see, for example, [13], Theorem 4.2).

Lemma 2.4. Let p, r, s ∈ [1,∞] satisfy

1

p
+

1

q
= 1 +

1

s
.

If f ∈ Lp(Rd) and g ∈ Lq(Rd), then the integral

(f ∗ g)(x) ≡

∫

Rd

f(x− y)g(y) dy

converges for almost all x ∈ R
d, f ∗ g ∈ Ls(Rd) and

∥
∥f ∗ g

∥
∥

Ls ≤ ‖f‖Lp‖g‖Lq .
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In fact, we shall need only a particular one-dimensional case of Lemma 2.4: if
f ∈ Lp(0, T ), g ∈ Lq(0, T ), 1

p
+ 1

q
= 1 + 1

s
, then

∫ T

0

∣
∣
∣
∣

∫ t

0

f(t− r)g(r) dr

∣
∣
∣
∣

s

dt ≤ ‖f‖s
Lp(0,T )‖g‖

s
Lq(0,T ). (2.2)

Now we derive a representation formula that plays a key role in our proof of
Proposition 2.1.

Lemma 2.5. Let ψ be an Mm×n-valued progressively measurable process such
that

E

∫ T

0

‖ψ(s)‖q ds <∞

for some q > 2. Choose α ∈ ] 1q ,
1
2 [ and set

Z(t) =

∫ t

0

(t− u)−αψ(u) dW (u), 0 ≤ t ≤ T.

Then ∫ t

0

ψ(s) dW (s) =
sinπα

π

(
RαZ

)
(t)

for all t ∈ [0, T ] P -almost surely.

Proof. The result is well-known and widely used for infinite-dimensional systems
(see e.g. [4], § 5.3). For finite-dimensional equations, the proof is slightly simpler
and thus it is repeated here for the reader’s convenience.

Since s−2α ∈ L1(0, T ), E‖ψ(·)‖2 ∈ L1(0, T ), their convolution

t 7−→

∫ t

0

(t− s)−2αE‖ψ(s)‖2 ds = E

∫ t

0

∣
∣(t− s)−α‖ψ(s)‖

∣
∣
2

ds

belongs to L1(0, T ) as well and so is finite almost everywhere in [0, T ], which implies
that Z(t) is well defined for almost all t ∈ [0, T ]. By the Burkholder-Davis-Gundy
inequality,

E

∫ T

0

‖Z(t)‖q dt =

∫ T

0

E

∥
∥
∥
∥

∫ s

0

(s− u)−αψ(u) dW (u)

∥
∥
∥
∥

q

ds

≤ CqE

∫ T

0

(∫ s

0

(s− u)−2α‖ψ(u)‖2 du

)q/2

ds

≤ Cq

(∫ T

0

s−2α ds

)q/2(∫ T

0

E‖ψ(u)‖q du

)

;
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the last estimate being a consequence of (2.2) and the fact that E‖ψ(·)‖2 ∈
Lq/2(0, T ). Hence Z(·, ω) ∈ Lq(0, T ; R

m) for P -almost all ω ∈ Ω and RαZ is
well defined P -almost surely.

Further,

∫ t

0

(

E

∫ t

0

∥
∥(t− s)α−11[0,s[(u)(s− u)−αψ(u)

∥
∥
2

du

)1/2

ds

=

∫ t

0

(t− s)α−1

(∫ s

0

(s− u)−2αE‖ψ(u)‖2 du

)1/2

ds

≤

(∫ t

0

s(α−1)q∗ ds

)1/q∗(∫ t

0

(∫ s

0

(s− u)−2αE‖ψ(u)‖2 du

)q/2

ds

)1/q

≤

(∫ t

0

s(α−1)q∗ ds

)1/q∗(∫ t

0

s−2α ds

)1/2(∫ t

0

E‖ψ(u)‖q du

)1/q

<∞,

where 1
q∗

+ 1
q

= 1 and the Hölder and Young inequalities were used consecutively.

This means that the hypothesis (2.1) of Lemma 2.3 is satisfied and this lemma may
be used to obtain

(
RαZ

)
(t) =

∫ t

0

(t− s)α−1

(∫ s

0

(s− u)−αψ(u) dW (u)

)

ds

=

∫ t

0

∫ t

0

(t− s)α−11[0,s[(u)(s− u)−αψ(u) dW (u) ds

=

∫ t

0

[∫ t

0

(t− s)α−11[0,s[(u)(s− u)−α ds

]

ψ(u) dW (u)

=

∫ t

0

[∫ t

u

(t− s)α−1(s− u)−α ds

]

ψ(u) dW (u)

=

∫ t

0

[∫ 1

0

(1 − v)α−1v−α dv

]

︸ ︷︷ ︸

=
π

sinπα

ψ(u) dW (u).

Q.E.D.
Proof of Proposition 2.1. Let an arbitrary ε > 0 be given, we have to find a

relatively compact set K ⊆ Cm such that

inf
k≥1

P
{
Xk ∈ K

}
≥ 1 − ε.

In what follows, we shall denote by Di constants independent of k and by | · |q the
norm of Lq(0, T ; R

m).
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First, we prove our claim under an additional assumption that there exists p > 2
such that

E‖ϕ‖p <∞. (2.3)

Plainly, a compact set Γ ⊆ R
m may be found satisfying

ν(Γ ) = P
{
ϕ ∈ Γ

}
≥ 1 −

ε

3
.

Take an α ∈ ] 1p ,
1
2 [. By Lemma 2.5,

Xk(t) = ϕ+

∫ t

0

bk(s,Xk(s)) ds+

∫ t

0

σk(s,Xk(s)) dW (s)

= ϕ+
[
R1b(·, Xk(·))

]
(t) +

sinπα

π

(
RαZk

)
(t), 0 ≤ t ≤ T,

P -almost surely, where

Zk(s) =

∫ s

0

(s− u)−ασk(u,Xk(u)) dW (u), 0 ≤ s ≤ T.

Applying the Chebyshev inequality, (1.1) and (1.3) we get

P
{
|bk(·, Xk(·))|p ≥ Λ

}
≤

1

Λp
E

∫ T

0

∥
∥bk(t, Xk(t))

∥
∥

p
dt

≤
1

Λp
Kp

∗E

∫ T

0

(
2 + ‖Xk(t)‖

)p
dt

≤
D1
Λp

(
1 + E‖ϕ‖p

)
.

Similarly, invoking in addition the Burkholder-Davis-Gundy and Young inequalities,

P
{
|Zk|p ≥ Λ

}
≤

1

Λp
E

∫ T

0

‖Zk(t)‖p dt

≤
D2
Λp

E

∫ T

0

(∫ t

0

(t− s)−2α
∥
∥σk(s,Xk(s))

∥
∥
2

ds

)p/2

dt

≤
D2
Λp

(∫ T

0

s−2α ds

)p/2(∫ T

0

E
∥
∥σk(s,Xk(s))

∥
∥

p
ds

)

≤
D3
Λp

(
1 + E‖ϕ‖p

)
.
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Let us choose Λ0 <∞ so that

D1 +D3
Λp
0

(
1 + E‖ϕ‖p

)
<
ε

3

and set

K =
{

f ∈ C ([0, T ]; R
m); f = x+R1r +

sinπα

π
Rαv, x ∈ Γ,

r, v ∈ Lp(0, T ; R
m), |r|p ∨ |v|p ≤ Λ0

}

.

Since the operators R1 and Rα are compact, the set K is relatively compact and

P
{
Xk /∈ K

}
≤ P

{
ϕ /∈ Γ

}
+ P

{
|bk(·, Xk(·))|p > Λ0

}
+ P

{
|Zk|p > Λ0

}

≤
2

3
ε < ε

for any k ≥ 1, which completes the proof of tightness under the additional assump-
tion (2.3).

Finally, let ϕ be arbitrary. Let ε > 0 be fixed, we may find Π ≥ 0 such that
P {‖ϕ‖ > Π} < ε

2 . Let X̂k, k ≥ 1, be the solutions to

dX̂k = bk(t, X̂k) dt+ σk(t, X̂k) dW, X̂k(0) = 1{‖ϕ‖≤Π}ϕ. (2.4)

The initial condition in (2.4) satisfies (2.3), so by the first part of the proof we know

that the set {P ◦ X̂−1
k ; k ≥ 1} is tight and there exists a compact set K ⊆ Cm such

that
inf
k≥1

P
{
X̂k /∈ K

}
≤
ε

2
.

Since the coefficients bk, σk are Lipschitz continuous in space variables,

1{‖ϕ‖≤Π}X̂k = 1{‖ϕ‖≤Π}Xk P -almost surely

for all k ≥ 1, this implies

P
{
Xk /∈ K

}
≤ P

{
X̂k /∈ K

}
+ P

{
‖ϕ‖ > Π

}
< ε

for any k ≥ 1 and tightness of the set {P ◦X−1
k ; k ≥ 1} follows. Q.E.D.

Corollary 2.6. The set {P ◦ (Xk,W )−1; k ≥ 1} is a tight set of probability
measures on C ([0, T ]; R

m) × C ([0, T ]; R
n).

By the Prokhorov theorem, the set {P ◦ (Xk,W )−1; k ≥ 1} is relatively (se-
quentially) compact in the weak topology of probability measures, so it contains

12



a weakly convergent subsequence. Without loss of generality we may (and shall)
assume that the sequence {P ◦ (Xk,W )−1}∞k=1 itself is weakly convergent. Let us

set for brevity P̃k = P ◦ (Xk,W )−1, k ≥ 1, and denote the weak limit of {P̃k}
∞
k=1

by P̃0. Set further

U = Cm × Cn, U = Borel(Cm) ⊗ Borel(Cn),

and let (Y,B) be the process of projections on U , that is

(Yt, Bt) : Cm × Cn −→ R
m × R

n, (h, g) 7−→ (h(t), g(t)), 0 ≤ t ≤ T.

Finally, let (Ut) be the P̃0-augmented canonical filtration of the process (Y,B),
that is

Ut = σ
(
σ(̺tY, ̺tB) ∪ {N ∈ U ; P̃0(N) = 0}

)
, 0 ≤ t ≤ T.

3. Identification of the limit. In this section we shall show that ((U,U ,

(Ut), P̃0), B, Y ) is a weak solution to the problem (0.7). Towards this end, define

Mk = Y − Y (0) −

∫ ·

0

bk(r, Y (r)) dr, k ≥ 0,

where we set b0 = b, σ0 = σ. The proof is an immediate consequence of the
following four lemmas.

Lemma 3.1. The process M0 is an m-dimensional local (Ut)-martingale on

(U,U , P̃0).

Lemma 3.2. The process B is an n-dimensional (Ut)-Wiener process on

(U,U , P̃0).

Lemma 3.3. The process

‖M0‖
2 −

∫ ·

0

∥
∥σ(r, Y (r))

∥
∥
2

dr

is a local (Ut)-martingale on (U,U , P̃0).

Lemma 3.4. The process

M0 ⊗B −

∫ ·

0

σ(r, Y (r)) dr

is an Mm×n-valued local (Ut)-martingale on (U,U , P̃0).

13



Proofs of these lemmas have an identical structure, so we prove only the first
of them in detail, the other ones being treated only in a concise manner. In the
course of the proof, we shall need two easy results on continuity properties of the
first entrance times as functionals of paths. Let V ≥ 1, for any L ∈ R+ define

τL : CV −→ [0, T ], f 7−→ inf
{
t ≥ 0; ‖f(t)‖ ≥ L

}

(with a convention inf ∅ = T ).

Lemma 3.5. (a) For any f ∈ CV , the function L 7−→ τL(f) is nondecreasing
and left-continuous on R+.
(b) For each L ∈ R+, the mapping τL is lower semicontinuous. Moreover, τL is

continuous at every point f ∈ CV for which τ•(f) is continuous at L.

If (Zt)t∈[0,T ] is a continuous R
V -valued stochastic process defined on a proba-

bility space (G,G , q), then
(
τL(Z)

)

L≥0
is a stochastic process with nondecreasing

left-continuous trajectories, whence we get

Lemma 3.6. The set

{
L ∈ R+; q{τ•(Z) is not continuous at L} > 0

}

is at most countable.

Lemma 3.5 is proved (but not stated exactly in this form) in [11], see Lemma
VI.2.10 and Proposition VI.2.11 there. For Lemma 3.6, see [11], Lemma VI.3.12.
In the book [11], τL is considered as a function on the Skorokhod space D, in our
case the proofs simplify further; they are recalled in Appendix to keep the paper
self-contained.

Further, let us quote an useful result on weak convergence of measures (cf. e.g.
[2], Proposition IX.5.7).

Lemma 3.7. Let {νr}r≥1 be a sequence of Borel probability measures on a
metric space Θ converging weakly to a Borel probability measure ν0. Let f : Θ −→ R

be a bounded real function continuous at ν0-almost all points of Θ. Then

lim
r→∞

∫

Θ

f dνr =

∫

Θ

f dν0.

Proof of Lemma 3.1. The idea of the proof is simple: define processes

µk = Xk −Xk(0) −

∫ ·

0

bk(r,Xk(r)) dr, k ≥ 1,

in analogy with the definition of Mk but using the solutions Xk to the problem
(1.2) instead of the process Y . We shall prove: i) µk, k ≥ 1, are local martingales,
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ii) Mk, k ≥ 1, are local martingales with respect to the measure P̃k due to the

equality of laws P̃k ◦ (Y,B)−1 = P ◦ (Xk,W )−1, iii) M0 is a local martingale as a
limit of local martingales Mk.

First, as Xk solves (1.2),

µk(t) =

∫ t

0

σk(r,Xk(r)) dWr, 0 ≤ t ≤ T,

and so µk is a local (Ft)-martingale. Take an L ∈ R+, for the time being arbitrary.
Obviously, τL(Xk) is a stopping time and µk(· ∧ τL(Xk)) is a bounded process by
(1.1) and the definition of τL, hence µk(· ∧ τL(Xk)) is a martingale.

Hereafter, times s, t ∈ [0, T ], s ≤ t, and a continuous function

γ : C ([0, s]; R
m) × C ([0, s]; R

n) −→ [0, 1]

will be fixed but otherwise arbitrary. Obviously, γ(̺sXk, ̺sW ) is a bounded Fs-
measurable function, hence

Eγ(̺sXk, ̺sW )µk(t ∧ τL(Xk)) = Eγ(̺sXk, ̺sW )µk(s ∧ τL(Xk)) (3.1)

by the martingale property of µk(· ∧ τL(Xk)).
Note that the mapping

[0, T ] × Cm −→ R
m, (u, h) 7−→ h(u) − h(0) −

∫ u

0

bk(r, h(r)) dr

is continuous for any k ≥ 0 due to the continuity of bk(r, ·), and the mapping

Cm −→ [0, T ] × Cm, h 7−→ (ξ ∧ τL(h), h)

is Borel for any ξ ∈ [0, T ] fixed by Lemma 3.5(b), thus also their superposition

Hk(ξ, ·) : Cm −→ R
m, h 7−→ h(ξ ∧ τL(h)) − h(0) −

∫ ξ∧τL(h)

0

bk(r, h(r)) dr

is Borel. Consequently, the mapping

Cm × Cn −→ R
m, (h, g) 7−→ γ(̺sh, ̺sg)Hk(ξ, h)

is Borel. Since µk(ξ ∧ τL(Xk)) = Hk(ξ,Xk), k ≥ 1, and Mk(ξ ∧ τL(Y )) = Hk(ξ, Y ),
k ≥ 0, we get

P ◦
[
γ(̺sXk, ̺sW )µk(ξ ∧ τL(Xk))

]−1
= P̃k ◦

[
γ(̺sY, ̺sB)Mk(ξ ∧ τL(Y ))

]−1
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for all k ≥ 1 by the definition of P̃k, which together with (3.1) implies

Ẽkγ(̺sY, ̺sB)Mk(t ∧ τL(Y )) = Ẽkγ(̺sY, ̺sB)Mk(s ∧ τL(Y )), k ≥ 1. (3.2)

Now, suppose in addition that L is chosen so that

P̃0
{
τ•(Y ) is continuous at L

}
= 1. (3.3)

(Lemma 3.6 shows that such a choice is possible.) Then

P̃0
{

(f, g) ∈ U ; τL(·) is continuous at f
}

= 1

by Lemma 3.5(b) and the fact that Y is a canonical projection from U onto Cm, so
also

P̃0
{

(f, g) ∈ U ; H0(ξ, ·) is continuous at f
}

= 1.

This implies that γ(̺sY, ̺sB)H0(ξ, Y ) is a bounded function continuous P̃0-almost
everywhere on U for any ξ fixed. We may estimate

∥
∥Ẽkγ(̺sY, ̺sB)Hk(ξ, Y ) − Ẽ0γ(̺sY, ̺sB)H0(ξ, Y )

∥
∥

≤
∥
∥Ẽkγ(̺sY, ̺sB)

[
Hk(ξ, Y ) −H0(ξ, Y )

]∥
∥

+
∥
∥Ẽkγ(̺sY, ̺sB)H0(ξ, Y ) − Ẽ0γ(̺sY, ̺sB)H0(ξ, Y )

∥
∥.

From Lemma 3.7 we obtain that

lim
k→∞

Ẽkγ(̺sY, ̺sB)H0(ξ, Y ) = Ẽ0γ(̺sY, ̺sB)H0(ξ, Y ).

Further,
∥
∥
∥Ẽkγ(̺sY, ̺sB)

[
Hk(ξ, Y ) −H0(ξ, Y )

]∥
∥

≤ Ẽk

∥
∥Hk(ξ, Y ) −H0(ξ, Y )

∥
∥

= Ẽk

∥
∥
∥
∥

∫ ξ∧τL(Y )

0

[
bk(r, Y (r)) − b0(r, Y (r))

]
dr

∥
∥
∥
∥

= Ẽk1{τL(Y )>0}

∥
∥
∥
∥

∫ ξ∧τL(Y )

0

[
bk(r, Y (r)) − b0(r, Y (r))

]
dr

∥
∥
∥
∥

≤ Ẽk1{τL(Y )>0}

∫ ξ∧τL(Y )

0

∥
∥bk(r, Y (r)) − b0(r, Y (r))

∥
∥ dr

≤ Ẽk1{τL(Y )>0}

∫ T

0

∥
∥bk(r, Y (r ∧ τL(Y ))) − b0(r, Y (r ∧ τL(Y )))

∥
∥ dr

≤ Ẽk1{τL(Y )>0}

∫ T

0

sup
‖z‖≤L

∥
∥bk(r, z) − b0(r, z)

∥
∥ dr

≤

∫ T

0

sup
‖z‖≤L

∥
∥bk(r, z) − b0(r, z)

∥
∥ dr,
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as ‖Y (r ∧ τL(Y ))‖ ≤ L on the set {τL(Y ) > 0}. Since bk(r, ·) → b0(r, ·) locally
uniformly on R

m for every r ∈ [0, T ] and

sup
‖z‖≤L

∥
∥bk(r, z) − b0(r, z)

∥
∥ ≤ 2K∗(2 + L)

by (0.6) and (1.1), we have

lim
k→∞

∫ T

0

sup
‖z‖≤L

∥
∥bk(r, z) − b0(r, z)

∥
∥ dr = 0

by the dominated convergence theorem, hence

lim
k→∞

Ẽkγ(̺sY, ̺sB)Hk(ξ, Y ) = Ẽ0γ(̺sY, ̺sB)H0(ξ, Y )

for any ξ ∈ [0, T ]. Therefore,

Ẽ0γ(̺sY, ̺sB)M0(t ∧ τL(Y )) = Ẽ0γ(̺sY, ̺sB)M0(s ∧ τL(Y )) (3.4)

follows from (3.2). If G ⊆ C ([0, s]; R
m × R

n) is an arbitrary open set, then there
exist continuous functions gl : C ([0, s]; R

m × R
n) −→ [0, 1] such that gl ր 1G on

C ([0, s]; R
m × R

n) as l → ∞. Therefore, using the Levi monotone convergence
theorem we derive from (3.4) that

Ẽ01G(̺sY, ̺sB)M0(t ∧ τL(Y )) = Ẽ01G(̺sY, ̺sB)M0(s ∧ τL(Y )). (3.5)

Further,

{
G ⊆ C ([0, s]; R

m × R
n); G Borel and (3.5) holds for 1G

}

is a λ-system containing, as we have just shown, the system of all open sets in
C ([0, s]; R

m × R
n) closed under finite intersections. Consequently, (3.5) holds for

all Borel sets G ⊆ C ([0, s]; R
m × R

n), that is

Ẽ01AM0(t ∧ τL(Y )) = Ẽ01AM0(s ∧ τL(Y ))

holds for all A ∈ σ(̺sY, ̺sB), thus for all A ∈ Us. We see that M0(· ∧ τL(Y ))
is a (Ut)-martingale, whenever L ∈ R+ satisfies (3.3). It remains to note that by
Lemma 3.6 there exists a sequence Lr ր ∞ such that

P̃0
{
τ•(Y ) is continuous at Lr for every r ≥ 1

}
= 1.
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As {τLr
(Y )} is plainly a localizing sequence of stopping times, we conclude that

M0 is a local (Ut)-martingale on (U,U , P̃0), as claimed. Q.E.D.

Proof of Lemma 3.2. By our construction, P ◦W−1 = P̃k ◦ B−1 for each
k ≥ 1, so also P ◦W−1 = P̃0 ◦B

−1 and B is an n-dimensional Wiener process (with

respect to its canonical filtration) on (U,U , P̃0). In particular, its tensor quadratic
variation satisfies 〈〈B〉〉t = tI. Mimicking the procedure from the previous proof we
may check easily that B is a local (Ut)-martingale, hence an (Ut)-Wiener process
by the Lévy theorem. Q.E.D.
Proof of Lemma 3.3. We know that µk, k ≥ 1, are local martingales and

〈µk〉 =

〈∫ ·

0

σk(r,Xk(r)) dWr

〉

=

∫ ·

0

∥
∥σk(r,Xk(r))

∥
∥
2

dr,

thus

‖µk‖
2 −

∫ ·

0

∥
∥σk(r,Xk(r))

∥
∥
2

dr, k ≥ 1,

are continuous local martingales. For times s ≤ t and a function γ introduced in
the proof of Lemma 3.1 we get

Eγ(̺sXk, ̺sW )
[∥
∥µk(t ∧ τL(Xk))

∥
∥
2
−

∫ t∧τL(Xk)

0

∥
∥σk(r,Xk(r))

∥
∥
2

dr
]

= Eγ(̺sXk, ̺sW )
[∥
∥µk(s ∧ τL(Xk))

∥
∥
2
−

∫ s∧τL(Xk)

0

∥
∥σk(r,Xk(r))

∥
∥
2

dr
]

. (3.6)

Note that

Cm −→ R, h 7−→
∥
∥Hk(ξ, h)

∥
∥
2
−

∫ ξ∧τL(h)

0

∥
∥σk(r, h(r))

∥
∥
2

dr

is a Borel mapping for all k ≥ 0 and ξ ∈ [0, T ]. It can be seen easily that it suffices
to check that

Cm −→ R, h 7−→

∫ u

0

∥
∥σk(r, h(r))

∥
∥
2

dr

is a continuous mapping for any u ∈ [0, T ]; this follows from the estimate

∣
∣
∣
∣

∫ u

0

∥
∥σk(r, h1(r))

∥
∥
2

dr −

∫ u

0

∥
∥σk(r, h2(r))

∥
∥
2

dr

∣
∣
∣
∣

≤

∫ u

0

{∥
∥σk(r, h1(r))

∥
∥ +

∥
∥σk(r, h2(r))

∥
∥

}∣
∣
∣

∥
∥σk(r, h1(r))

∥
∥ −

∥
∥σk(r, h2(r))

∥
∥

∣
∣
∣ dr

≤ K∗

(

4 + ‖h1‖Cm
+ ‖h2‖Cm

)∫ u

0

∥
∥σk(r, h1(r)) − σk(r, h2(r))

∥
∥ dr
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for h1, h2 ∈ Cm, continuity of functions σk(r, ·) and the dominated convergence
theorem.

Hence (3.6) yields

Ẽkγ(̺sY, ̺sB)
[∥
∥Mk(t ∧ τL(Y ))

∥
∥
2
−

∫ t∧τL(Y )

0

∥
∥σk(r, Y (r))

∥
∥
2

dr
]

= Ẽkγ(̺sY, ̺sB)
[∥
∥Mk(s ∧ τL(Y ))

∥
∥
2
−

∫ s∧τL(Y )

0

∥
∥σk(r, Y (r))

∥
∥
2

dr
]

.

Passing to the limit exactly in the same way as in the proof of Lemma 3.1 we obtain

Ẽ0γ(̺sY, ̺sB)
[∥
∥M0(t ∧ τL(Y ))

∥
∥
2
−

∫ t∧τL(Y )

0

∥
∥σ0(r, Y (r))

∥
∥
2

dr
]

= Ẽ0γ(̺sY, ̺sB)
[∥
∥M0(s ∧ τL(Y ))

∥
∥
2
−

∫ s∧τL(Y )

0

∥
∥σ0(r, Y (r))

∥
∥
2

dr
]

provided that L ∈ R+ satisfies (3.3), and the proof may be completed easily. Q.E.D.
Proof of Lemma 3.4. Since µk and W are continuous local martingales, the

process µk ⊗ W − 〈〈µk,W 〉〉 is an Mm×n-valued local martingale. Let us denote

µk = (µi
k)m

i=1, W = (W j)n
j=1 and σk = (σij

k )m
i=1

n
j=1. Then

〈
µi

k,W
j
〉

=

〈 n∑

l=1

∫ ·

0

σil
k (r,Xk(r)) dW l(r),W j

〉

=

n∑

l=1

∫ ·

0

σil
k (r,Xk(r)) d〈W l,W j〉r

=

∫ ·

0

σij
k (r,Xk(r)) dr,

therefore,

µk ⊗W −

∫ ·

0

σk(r,Xk(r)) dr (3.7)

is an Mm×n-valued local martingale. The process (3.7) stopped at τL(Xk,W ) is
bounded, hence it is a martingale and so

Eγ(̺sXk, ̺sW )
[(
µk ⊗W

)
(t ∧ τL(Xk,W )) −

∫ t∧τL(Xk,W )

0

σk(r,Xk(r)) dr
]

= Eγ(̺sXk, ̺sW )
[(
µk ⊗W

)
(s ∧ τL(Xk,W )) −

∫ s∧τL(Xk,W )

0

σk(r,Xk(r)) dr
]

,
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whenever 0 ≤ s ≤ t ≤ T and γ is a continuous function as above. (Since Cm×Cn
∼=

Cm+n, it is clear how τL(f, g) is defined for (f, g) ∈ Cm×Cn.) Now we may proceed
as in the proof of Lemma 3.1. Q.E.D.

Proof of Theorem 0.1. Lemmas 3.1–3.4 having been established, it is straight-
forward to prove that ((U,U , (Ut), P̃0), B, Y ) is a weak solution of (0.7). Since

P̃0 ◦ Y (0)−1 = P̃k ◦ Y (0)−1 = P ◦ ϕ−1 = ν by our construction, it remains only to
show that

Y (t) = Y (0) +

∫ t

0

b(r, Y (r)) dr+

∫ t

0

σ(r, Y (r)) dB(r)

for any t ∈ [0, T ] P̃0-almost surely, that is

M0(t) =

∫ t

0

σ(r, Y (r)) dB(r) for all t ∈ [0, T ] P̃0-almost surely. (3.8)

Obviously, (3.8) is equivalent to
〈

M0 −

∫ ·

0

σ(r, Y (r)) dB(r)

〉

T

= 0 P̃0-almost surely. (3.9)

We have
〈

M0 −

∫ ·

0

σ(r, Y (r)) dB(r)

〉

T

= 〈M0〉T +

〈∫ ·

0

σ(r, Y (r)) dB(r)

〉

T

− 2

m∑

i=1

〈

M i
0,

n∑

j=1

∫ ·

0

σij(r, Y (r)) dBj(r)
〉

T

= 〈M0〉T +

∫ T

0

∥
∥σ(r, Y (r))

∥
∥
2

dr

− 2

m∑

i=1

〈

M i
0,

n∑

j=1

∫ ·

0

σij(r, Y (r)) dBj(r)
〉

T
.

By Lemma 3.3,
〈
M0

〉

T
=

∫ T

0

∥
∥σ(r,X(r))

∥
∥
2

dr,

and by Lemma 3.4 we obtain
m∑

i=1

n∑

j=1

〈

M i
0,

∫ ·

0

σij(r, Y (r)) dBj(r)
〉

T
=

m∑

i=1

n∑

j=1

∫ T

0

σij(r, Y (r)) d〈M i
0, B

j〉r

=

m∑

i=1

n∑

j=1

∫ T

0

(
σij(r, Y (r))

)2
dr

=

∫ T

0

∥
∥σ(r, Y (r))

∥
∥
2

dr,
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hence (3.9) holds true. Q.E.D.
Remark 3.1. If the coefficients b and σ of the equation (0.7) are defined on

R+ × R
m and satisfy the assumptions of Theorem 0.1 there, then there exists a

weak solution to (0.7) defined for all times t ≥ 0. The proof remains almost the
same, only its part concerning tightness requires small modifications. However, it
suffices to realize that the space C (R+; R

V ) equipped with the topology of locally
uniform convergence is a Polish space whose Borel σ-algebra is generated by the
projections f 7→ f(t), t ≥ 0 and whose closed subset K is compact if and only if
{̺T f ; f ∈ K} is a compact subset of C ([0, T ]; R

V ) for all T ≥ 0.
Remark 3.2. Tracing the proofs in Section 3, we can check easily that, unlike

the proof of tightness in Section 2, they depend only on the following properties of
the coefficients b = b0, σ = σ0 and their approximations bk, σk:

1◦ the functions bk(r, ·), σk(r, ·) are continuous on R
m for any r ∈ [0, T ] and

k ≥ 0,
2◦ bk(r, ·) → b(r, ·), σk(r, ·) → σ(r, ·) locally uniformly on R

m as k → ∞ for
any r ∈ [0, T ],

3◦ the functions bk, σk are locally bounded uniformly in k ≥ 0, i.e.

sup
k≥0

sup
r∈[0,T ]

sup
‖z‖≤L

{
‖bk(r, z)‖ ∨ ‖σk(r, z)‖

}
<∞

for each L ≥ 0.

As a consequence, Theorem 0.1 remains valid if existence of a suitable Lyapunov
function is supposed instead of the linear growth hypothesis. One proceeds as
in the proof of Theorem 0.1, approximating the coefficients b and σ by bounded
continuous functions that satisfy the same Lyapunov estimate as b and σ. However,
the proof of tightness is more technical, although no fundamentally new ideas are
needed; details may be found in a companion paper [7].

4. Appendix. To keep the paper self-contained as much as possible, we provide
here proofs of Lemmas 3.5 and 3.6.
Proof of Lemma 3.5. Choose f ∈ CV and L > 0 arbitrarily. The function

K 7→ τK(f) is obviously nondecreasing, hence it has a left-hand limit at the point
L and

lim
K→L−

τK(f) ≤ τL(f). (4.1)

If ‖f‖CV
< L then ‖f‖CV

< L− δ for some δ > 0 and thus τL(f) = T = τK(f) for
all K ∈ [L− δ, L], so we may assume that ‖f‖CV

≥ L. Then ‖f(τK(f))‖ ≥ K for
all K ∈ [0, L] and continuity of f yields

∥
∥f

(
lim

K→L−
τK(f)

)∥
∥ = lim

K→L−

∥
∥f(τK(f))

∥
∥ ≥ lim

K→L−
K = L,
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whence
τL(f) ≤ lim

K→L−
τK(f),

which together with (4.1) proves the statement (a).
To prove (b), take an arbitrary sequence {fr} in CV such that fr → f uniformly

on [0, T ] as r → ∞. Let ε > 0, then

max
[0,τL(f)−ε]

‖f‖ < L,

so there exists r0 ∈ N such that

max
[0,τL(f)−ε]

‖fr‖ < L

for all r ≥ r0, thus τL(fr) ≥ τL(f) − ε for all r ≥ r0. Since ε was arbitrary,

lim inf
r→∞

τL(fr) ≥ τL(f),

that is, τL is lower semicontinuous at the point f .
Finally, assume in addition that τ•(f) is continuous at the point L. If τL(f) = T

then
T = τL(f) ≤ lim inf

r→∞
τL(fr) ≤ lim sup

r→∞
τL(fr) ≤ T

(note that τL is [0, T ]-valued) and we are done. So assume that τL(f) < T and
take an arbitrary ε > 0 satisfying τL(f) + ε < T . By continuity, a K > L may be
found such that τK(f) < τL(f) + ε. Consequently,

max
[0,τL(f)+ε]

‖f‖ ≥ K > L,

thus
max

[0,τL(f)+ε]
‖fr‖ ≥ L

for all r sufficiently large, that is τL(fr) ≤ τL(f)+ε for all r sufficiently large, which
implies

lim sup
r→∞

τL(fr) ≤ τL(f)

and τL is upper semicontinuous at f . Q.E.D.
Proof of Lemma 3.6. Here we follow the book [11] closely. First, note that

for any given u > 0 q-almost any trajectory of τ•(Z) has only finitely many jumps
of size greater than u. For brevity, set

∆τL(Z) = lim
M→L+

τM (Z) − τL(Z)
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and define recursively random times

Σ0(u) = 0, Σp(u) = inf
{
L > Σp(u); ∆τL(Z) > u

}
, u > 0, p ∈ N.

Plainly, the set
{
L ≥ 0; q{Σp(u) = L} > 0

}

is at most countable for any p ∈ N and u > 0, hence it only remains to note that

{
L ≥ 0; q{∆τL(Z) > 0} > 0

}
=

∞⋃

p=0

∞⋃

r=1

{
L ≥ 0; q{Σp(r−1) = L} > 0

}
.
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