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On the Navier-Stokes equation perturbed by rough transport noise

MARTINA HOFMANOVA, JAMES-MICHAEL LEAHY AND TORSTEIN NILSSEN

Abstract. We consider the Navier—Stokes system in two and three space dimensions perturbed by transport
noise and subject to periodic boundary conditions. The noise arises from perturbing the advecting velocity
field by space—time-dependent noise that is smooth in space and rough in time. We study the system within
the framework of rough path theory and, in particular, the recently developed theory of unbounded rough
drivers. We introduce an intrinsic notion of a weak solution of the Navier—Stokes system, establish suitable
a priori estimates and prove existence. In two dimensions, we prove that the solution is unique and stable
with respect to the driving noise.

1. Introduction

The theory of rough paths, introduced by Terry Lyons in his seminal work [1], can
be briefly described as an extension of the classical theory of controlled differential
equations that is robust enough to allow for a pathwise (i.e., deterministic) treatment of
stochastic differential equations (SDESs). Since its introduction, the theory of ordinary
and partial differential equations driven by rough signals has progressed substantially.
We refer the reader to the works of Friz et al. [2,3], Gubinelli et al. [4-6], Gubinelli
et al. [7], Hairer [8] for a sample of the literature on the growing subject. In spite
of these exciting developments, many PDE methods have not yet found their rough
path analogues. For instance, until recently, it was not known how to construct (weak)
solutions to rough partial differential equations (RPDEs) using energy methods (or
variational methods).

The first results on energy methods for RPDEs were established in [9-11]. In [9],
the foundation of the theory of unbounded rough drivers was established and then used
to derive the well-posedness of a linear transport equation driven by a rough path in the
Sobolev scale. Expanding upon the scope of the theory, the authors of [10] developed a
rough version of Gronwall’s lemma and proved the well-posedness of nonlinear scalar
conservation laws with rough flux. In the framework of unbounded rough drivers, one
can define an intrinsic notion of a weak solution of an RPDE that is equivalent to the
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usual definition if the driving path is smooth in time. Additionally, one can obtain an
energy estimate of the solution. Prior to the development of the theory of unbounded
rough drivers and rough Gronwall lemma, these problems remained open. In particular,
how to study the well-posedness of the Navier—Stokes system with rough transport
noise was out of reach. Most recently, the theory of unbounded rough drivers has been
applied to prove the existence, uniqueness and stability of two classes of equations:
(1) linear parabolic PDEs with a bounded and measurable diffusion coefficient driven
by rough paths [11] and (2) reflected rough differential equations [12].

The aim of our efforts is to study the Navier—Stokes system subject to rough transport
noise. We study the system of equations that govern the evolution of the velocity field
u: Ry x T? — R and the pressure p : Ry x T¢ — R of an incompressible viscous
fluid on the d-dimensional torus T¢ perturbed by transport-type noise:

ou+ u—a)-Vu+Vp =vAu,
V.u=0, (1.1)
u(0) = ug € L*(T¢; RY),

where v > 0 is the viscosity coefficient and a is the (formal) derivative in time of
a function a = a;(x) : Ry x T — R that is divergence free in space and has
finite p-variation in time for some p € [2, 3). For example, @ may represent noise
that is white in time and colored in space. Such noise is a formal time derivative
of an L2(T¢)-valued Wiener process. However, one of the main advantages of the
theory of rough paths is that drivers that are not necessarily martingales or of finite
variation can be considered, which is in direct contrast to the classical semimartingale
theory. Consequently, @ may represent the time derivative of a more general spatially
dependent Gaussian or Markov process, such as a fractional Brownian motion, BY :=
(B, .., BH-K) with Hurst parameter H € (%, %], coupled with a family of vector
fields o = (o1, ...,0x) : TY — RX*4: that s, for (1, x) € Ry x T¢,

K
a:(x) = Zak(x)BtH’k.

k=1

Even in the case of the unperturbed Navier—Stokes system, it is unknown whether
there exists global smooth solutions, and so we study the perturbed system integrated
in time and tested against a smooth test function in space. In particular, it is necessary
to make sense of the time integral fot (a5 - V)ug ds as a spatial distribution. Testing this
integral against a smooth function ¢ : TY — R?, we get

t
/ (a5 - Vus ds(¢) = — /l us((as - V@) ds, (1.2)
0 0

where we have used the divergence-free assumption V - @ = 0. However, the time
integral is not a priori well defined since we expect the solution u to inherit the same
regularity in time as a (i.e., p-variation). Indeed, L.C. Young’s theorem in [13] says
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that a Riemann—Stieltjes integral f fdg exists if there are p and ¢ with p~!4+¢~! > 1,
such that f is of p-variation and g is of g-variation. Furthermore, a counterexample

is given for the case p~! + ¢!

= 1, and hence the theorem of Young cannot be used
to define (1.2), unless a has p-variation in time for p € [1, 2).

The rough path theory of Lyons [1] enables us to define the integral (1.2), provided
that we possess additional information about the driving path, namely its iterated
integrand. The idea is to iterate the equation for u into the noise integral (1.2) enough
times so that the remainder is regular enough in time to be negligible. In the case
of transport noise, this iteration leads to an iteration of the spatial derivative. For

simplicity, let us explain how this iteration works for the pure-transport equation

ou = (a-Vu. (1.3)
Integrating (1.3) in time, testing against a smooth function ¢ : T¢ — R?, and then
iterating Eq. (1.3) into itself yields

t
() = uy () — / ur (Gr - V)) dr

t t r
= us(P) — ug (/ (ar - V)¢ d}’) +/ / Ur, ((drz -V)(ay, - V)¢) drp dry

t t r
= uy(¢p) — uy (/ (ar V)d)d}’) + ug (/ / 1(drz ’v)(dn 'V)¢dr2dr1)

t r I
- / / 1 / "ty (Gory - V)G - V) iy - V) drs dra dry, (1.4)

where we have used the divergence-free assumption V - @ = 0. If we define the
operators

t t r
Alg = f (G -V)dr¢ and A2 ¢ = / / l(a,z-V)(ar] -V)drydrip,  (1.5)

and let ug; = u; —uy, then solving the transport equation (1.3) corresponds to finding
amap ¢ — u, such that u® defined by

Ul (9) = Sugy () — u ([Ai;* + Af;*] ¢) (1.6)
is of order o(|t — s|), and hence is negligible. That is, the expansion [A!, + A2 ug
tested against ¢ provides a good local approximation of the time integral (1.2), which
is uniquely defined by the sewing lemma (see Lemma B.1). Notice that if a is smooth
in time and space, then (1.6) is an equivalent formulation of the transport equation
(1.3). Because the time singularities in (1.5) are smoothed out by averaging over time,
the equation (1.6) does not contain any time derivatives, and hence the formulation
is well-suited for irregular drivers. Under certain conditions, the pair A = (Al, A2)
defines an unbounded rough driver as defined in [9] and in Sect. 2.4 below.
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In order to show that the remainder u” is of order o(|t — s|), we shall regard it as a
distribution of third order with respect to the space variable; note that three derivatives
are taken in (1.4). One of the key aspects of the theory of unbounded rough drivers is
the process by which one obtains a priori estimates of the remainder u”. (See Sect. 3.)
The technique involves obtaining estimates of § “Eez = uE, - u?e - ugt, interpolating
between time and space regularity of various terms, and applying the sewing lemma
(i.e., Lemma B.1). This is yet another example of the trade-off between time and space
regularity pertinent to many PDE problems. Notice that if a is a¢-Holder continuous
(essentially equivalent to o™
solution u has the same regularity in time, then the first two terms on the right-hand-

-variation) with respect to the time variable and the

side of (1.6) are proportional to |t — s|* and the last term on the right-hand side can
be bounded by |t — s|2°‘. Thus, in the case a € (%, %], there has to be a cancelation
between the terms on the right-hand side to guarantee that u” is of order o(|t — s]). On
the other hand, the right-hand side of (1.6) is a distribution of second order with respect
to the space variable. Accordingly, the necessary improvement of time regularity can
be obtained at the cost of loss of space regularity, that is, considering u” rather as a
distribution of third order.
In this paper, we assume that the noise term a can be factorized as follows:

K
a(x) = or(0)zf =Y o (x)zf, (1.7)
k=1
where we adopt the convention of summation over repeated indices k € {1, ..., K}
here and below. We also assume that for all k € {1, ..., K}, the vector fields oy :

T4 — R are bounded, divergence free, and twice differentiable with bounded first
and second derivatives. The driving signal z is assumed to be a RX-valued path of
finite p-variation for some p € [2, 3) that can be lifted to a geometric rough path
Z = (Z, 7). The first component of Z is the increment of z (i.e., Z;;, = z; — z,) and
the second component is the so-called Lévy’s area, which plays the role of the iterated
integral Zg; =: fs ! fs " dz,, ® dz,.In the smooth setting, the iterated integral can be
defined as a Riemann integral, whereas in the rough setting, it has to be given as an
input datum; the two-index map Zj; is assumed to satisfy Chen’s relation

8Zsor = Tigy — Liso — Loy = Zso @ Zoy, s <0 ='t,

and to be two times as regular in time as the path z. For instance, if z is a Wiener
process, then an iterated integral can be constructed using the Stratonovich stochastic
integration. Nevertheless, many other important stochastic processes give rise to (two-
step) rough paths. For more details, we refer the reader to Sect. 2.3 and the literature
mentioned therein.

The motivation for a perturbation of the form —a - Vu comes from the modeling of
a turbulent flow of a viscous fluid. In the Lagrangian formulation, an incompressible
fluids evolution is traditionally specified in terms of the flow map of particles initially
at X:
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(X)) = u, (X)), no(X)=XeT!, V.u=0.

If we assume the associated fluid flow map is a composition of a mean flow depending
on slow time 7 and a rapidly fluctuating flow with fast timescales € "'z, € < 1, then
provided that the fast dynamics are sufficiently chaotic, on timescales of order €2,

the averaged slow dynamics are described by the SDE [14]

dii (X) = it (71 (X))dt — ox(ii(X, 1)) odwk, fp(X)=XeT¢, V-i=0,
V.op =0, (1.8)

where w = {wk},fi | is a sequence of independent Brownian motions and the sto-
chastic integral is understood in the Stratonovich sense. The flow dynamics given by
(1.8) encompasses models of stochastic passive scalar turbulence that were originally
proposed by Kraichnan [15] and further developed in [16,17] and other works. In
[18-21], it was shown that the system of equations governing the resolved scale ve-
locity field u and pressure p and {gx}2 ; is a stochastic version of the Navier—Stokes
system with transport noise:

dii 4 (iadt — oy o dw¥) - Vit + V pdt + Vi o dw* = vAadr. (1.9)

The existence and uniqueness of solutions of (1.9) has been well-studied [19-22]. In
[21], the authors proved the existence of global weak-probabilistic solutions (i.e., mar-
tingale solutions) of a general class of stochastic Navier—Stokes equations on the whole
space, which included (1.9). Moreover, in dimension two, the uniqueness of the global
strong probabilistic solution was established in [21] as well. The existence of strong
global solutions for the stochastic Navier—Stokes system (1.9) in three dimensions is
still an open problem.

In this paper, we develop a (rough) pathwise solution theory for (1.1), which, in
particular, offers a pathwise interpretation of (1.9) for k € {1,..., K}. We estab-
lish the existence of weak solutions in two and three space dimensions (see Theorem
2.13) by establishing energy estimates, including the recovery of the pressure. (See
Sect. 4.1.2.) To prove existence, we use Galerkin approximation combined with a suit-
able mollification of the driving signal, uniform energy estimates of the solution, and
the remainder terms and a compactness argument. In addition, in two space dimensions
and for constant vector fields oy, we prove uniqueness and pathwise stability with re-
spect to the given driver and initial datum via a tensorization argument (see Theorem
2.14 and Corollary 2.15). This result implies a Wong—Zakai approximation theorem
for the Wiener driven SPDE (1.9). To the best of our knowledge, this is the first Wong—
Zakai-type result for the Navier—Stokes system (1.9). There are a substantial number of
Wong—Zakai results for infinite dimensional stochastic evolution equations in various
settings. We mention only the work [23] of Chueshov and Millet in which the authors
derive a Wong—Zakai result and support theorem for a general class of stochastic 2D
hydrodynamical systems, including 2D stochastic Navier—Stokes. However, the diffu-
sion coefficients in [23] are assumed to have linear growth on L2(T2; R2), and hence
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do not cover transport noise. We do note, however, that in [24], Chueshov and Millet
establish a large deviation result for stochastic 2D hydrodynamical systems that does
hold true for transport noise.

Our approach relies on a suitable formulation of the system (1.1) that is similar to
the formulation of the pure-transport equation (1.6) discussed above. However, due
to the structure of (1.1) and the fact that a solution is the pairing of a velocity field
and pressure (u, p), the formulation is more subtle. In fact, we present two equivalent
(rough) formulations of (1.1) in Sect. 2.5.

Let P be the Helmholtz—Leray projection and Q = I — P (see Sect. 2.1 for more
details). Applying P and Q separately to (1.1), we obtain the system of coupled
equations

o+ Pl(u-Viul = vAu + P[(a - V)u]
Ol - Vyul+Vp = Ql(a- Vyul.

We can then perform an iteration of the equation for « in the time integral of P[a - Vu]
and Ql[a - Vu] like we illustrated above for the pure-transport equation (1.6). After
doing so, we obtain a coupled system of equations for the velocity field and pressure
for which the associated unbounded rough drivers are intertwined and a version of
the so-called Chen’s relation holds true. [See (2.17) and Definition 2.7.] We derive
a second equivalent formulation by summing the coupled equations from the first
formulation. This second formulation is a single equation for the velocity field in
which a modified Chen’s relation holds (see (2.21) and Definition 2.11). An alternative
way to arrive at the second formulation is by iterating (1.1) and using that Vp =
Ola - Viul — Q[(u - Vyul.

The presentation of this paper is organized as follows. In Sect. 2, we define our
notion of solution and state our main results. In Sect. 3, we derive a priori estimates of
remainder terms, which are used in Sect. 4 to prove our main results. Several auxiliary
results that are used to prove the main results are presented in appendix.

2. Mathematical framework and main results
2.1. Notation and definitions

We begin by fixing the notation that we use throughout the paper.

We shall write a < b if there exists a positive constant C such that a < b. If
the constant C depends only on the parameters py, ..., p,, we shall also write C =
C(pi,....pn)and Sp . p,-

Let No = N U {0}. Fora given d € N, let T¢ = R?/(2nZ)? be the d-dimensional
flat torus and denote by dx the unormalized Lebesgue measure on T¢. As usual, we
blur the distinction between periodic functions and functions defined on the torus T¢.
For a given Banach space V with norm | - |y, we denote by B(V) the Borel sigma-
algebra of V and by V* the continuous dual of V. For given Banach spaces V| and
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Va2, we denote by L(V1, V,) the space of continuous linear operators from V| to V5
with the operator norm denoted by | - | £(v;, vy)-

For a given sigma-finite measured space (X, X, i), separable Banach space V with
norm | - |y, and p € [1, o0], we denote by L”(X; V) the Banach space of all u-
equivalence classes of strongly measurable functions f : X — V such that

1
P
[flerx,vy = </x |f|€d,u> < 00,

equipped with the norm | - |zr(x.v). We denote by L°(X; V) the Banach space of all
u-equivalence classes of strongly measurable functions f : X — V such that

| flLooqx:vy = esssupy | flv = inf{a € R : u(|f]},' ((a, 00)) = 0)} < o0,

where | f |‘_,1 ((a, 00)) denotes the preimage of the set (a, co) under the map | f|y :
X — R, equipped with the norm | - [z (x.v). It is well known thatif V = H is a
Hilbert space with inner product (-, -) 7, then L>(X; H) is a Hilbert space equipped
with the inner product

(s ®r2xm = /X(ﬁ udu, f.geL*(X; H).

For a given Hilbert space H, we let L3 H=L?([0,T]; H) and L?H =L
([0, T1; H). Moreover, let L? = L2(T%; R?).

For a given Hilbert space V, and real number T > 0, welet CtH = C([0, T]; H)
denote the Banach space of continuous functions from [0, 7] to H, endowed with the
supremum norm in time.

For a given n € 74 let e, : TY — C be defined by e (x) = (2n)_%ei”'x. It is
well known that {e,}, .z« is an orthonormal system of L?(T?; C), and hence for all
f.g e L?,

f=2" hens (fLOL2=) fa-én

neZd neZd

where for each n € Zd,
£ =f Fi®e—n(x) dx, iefl,....d}.
Td

Let S be the Fréchet space of infinitely differentiable periodic complex-valued func-
tions with the usual set of semi-norms. Let 8’ be the continuous dual space of S
endowed with the weak-star topology. For a given A € &' and test function ¢ € S,
we denote by A(¢) the value of a distribution A at ¢ € S. Since e, € S, for a given
f eS8 andn € Z4, we define f, = f(e,). It is well known that f = Y nezd fuen,
where convergence holds in Sif f € Sand in 8’ if f € §'. This extends trivially to
the set ' = (8')¢ of continuous linear functions from S = (S)? to C endowed with
the weak-star topology.
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For a given o € R, we denote by W*? the Hilbert space
Wo2 = (] — A 512 = {feS’:(I—A)%feLz]
with inner product

(£.9a= (U =BT LU =D)Fg) = P A+ PV fiGr figeW?

neZd

and induced norm | - |,. For notational simplicity, when m = 0 we omit the index
in the inner product, i.e., (-,-) := (-, -)o. Moreover, for any u € W2 we write
|Vu|% = Zle |D,-u|(2). It is easy to see that W2 c W2 fora, € R with > S8
and that S is dense in W%2 for all & € R. It can be shown that for all «, B € R, the
map ig—p.atp : WO P2 — (WeHA2)* defined by

iapat 5@ ) = (8. Napuasp = (I = D)7 g, (I = 2)* fla,

for all f € WetA:2 and g € W2 is an isometric isomorphism.
Let

H=[rew'?: v.r=ol={rew: f n=0 vaez].
We define P : S — S’ by

Pr=3% (ﬁ,—%n)en, fel?

neZd

and let Q = I — P. It follows that P is a projection of L? onto H’ = PL? and that
L? possesses the orthogonal decomposition

L’ = PL’>® QL.

Moreover, it is clear that P, Q € L(W*2 W*2) and that P and Q have operator
norm less than or equal to one for all @ € R. We set

HY = PW*? & HY = QW*2.
It can be shown that for all « € R (see Lemma 3.7 in [25]),
Wﬂl,z — HC{ 69 HO{

where
<f1 g)—a,(x = 01 Vg e HO( ) Vf E H*Ot, (21)

and

H“:{feW”"zz V-f:O},
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HY = (g € W2 (f, g)—aa =0, Vf cH ™).

Using (2.1), one can check that i_q : H* — (H*)* and i_o : H* — (HY)*
are isometric isomorphisms for all @ € R.

Foreach vectorn € Zd—{O},there existsd —1 vectors {m(n), ...,mg—_1(n)} C R?
that are of unit length and orthogonal to n in RY. Denoting by e;, j € {1, ..., d}, the

standard basis of RY, it follows that
{fo,j —e;Qm) % je {1,...,d}} U {f,,,,- =mjn)en : n e Z4— {0},
je{l,...,d—l}}

is an orthonormal basis of {u € L?(T%; C%) : V - u = 0}. In dimension two, the unit
vector |n|~'nt = |n|7'[na, —n]7 is orthogonal to n = [n1, ny]7 € Z* — {0}, and
hence

{for=11,0" @)%, fo2=10, 17| U ffi = Inl~'nten s n e 22 - (0)])

is an orthonormal basis of {u € L?(T?; C?) : V - u = 0).
For a givenn € /) and j € {l,...,d — 1}, let

Sm(x) =~2Qm1)” 2m,(n)sm(n x), C(’S()c) =~2Qm)” 2m,(n)cos(n X).
It follows that
{(2n)*%ej: je{l,...,d}}u[ Wit (x), W00+ ne 20— (0}, ny >0,

je{l,...,d—l}}

is an orthonormal basis of HO and an orthogonal basis of H!. We reindex this basis
by {hn},2 . Itis clear that w " and w S are eigenfunctions of the Stokes operator
A = —PA on H? with correspondmg elgenvalues |n|?. Thus, there exist a sequence
{An }"f’:l of nonnegative numbers such that Ah, = A,h,, foralln € N.

The following considerations shall enlighten the construction of the unbounded
rough drivers associated with (1.1) (see Sect. 2.5). Let o : T¢ — R be twice
differentiable and divergence free. Moreover, assume that the derivatives of o up to
order two are bounded uniformly by a constant No. Let A' = o -V = Z?Zl o' D; and

= (0 - V)(o - V). It follows that there is a constant N = N (d, Ny, «) such that

| A w12 w2y < N, Yo €[0,2], | A f|power22.we2y < N, Va € [0, 1],

We refer the reader to [26] for the estimates in the fractional norms; the estimates
given in [26] are on the whole space, but can easily be adapted to the periodic setting.
Since P € L(W*2, H%) and Q € L(W%2 H*) for all « € R, both of which have
operator norm bounded by 1, we have

|PA | pperrt ey < No QA | pgpont oy <N, Ve €[0,2], (22)
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and
2
|P.7( lraet2 gy <N, |QA lL(HTZ’Hi) <N, Ya € [0, 1], 2.3)

and hence (PAY* € L(H*)*, (H*T)*) and (QAN* € L(HY)*, (HYT)*) for
a € [0,2]and (PA?)* € L((H*)*, (H**2)*) and (QA*)* € L((HY)*, (H“+2) ) for
a € [0, 1]. Making use of the divergence-free property of oy, k € {1, ..., K}, we find

((-P') £.6) = (r.P's). VigesnH,
and
((~oa') £.6) = (. 0's). vrgesnm!,

which implies that (—PA")* = PA! and (—QA")* = QA'. Thus, owing to the
characterization of the duality between W*2 and W% 2 through the L? inner product,
we have

Al e £(HeH @) ol e £ (e ),
Aer (H—“, H_("‘+2)) L QA el (H_“ H ("‘“))

In order to analyze the convective term, we employ the classical notation and bounds.
Owing to Lemma 2.1 in [27] adapted to fractional norms (see [28]), the trilinear form

b(u,v,w) = / ((w-Vy)-wdx = Z/ uiDl-vjwj dx

i,j=1

is continuous on W92 x We2t1l2 5o W32 if o) oy, a3 € R; satisty

d d
a1+a2+a325, if a,';éz foralli € {1, 2, 3},
d . d .
a1+a2+a3>5, 1fozi=§ for some i € {1, 2, 3};
that is,
|b(u v, w)| <0(1 w,03,d |u|a1|v|a2+l|w|a3 (24’)

In the case d = 2 by virtue of the Gagliardo—Nirenberg interpolation inequality

#1412 R2) S |¢|0 |¢|1 , we have

11 1 1
210,12 2 2 1,2
b, v, w)| < lulglulf vhilwlglwli, Yu,v,we W, 2.5

which plays an important role in the uniqueness proof. (See Theorem 4.3.) Moreover,
for all u € H*! and (v, w) € woeatlh2 o Wwes.2 guch that oy, oo, a3 satisfy (2.4), we
have

b(u,v,w) = —b(u,w,v) and b(u,v,v) =0. (2.6)
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For a1, oo, and a3 that satisfy (2.4) and any given (u,v) € W2 x Wwetlh2 we
define B(u, v) € W2 by
(B, 0), W) —g3.05 = bu, v, w), VY € W2,
Similarly, we define Bp = PB and By = QB and note that
Bp = PB: W2 x W2 g~ By:= QB : W2 x W2 o g%,
for oy, vy, and a3 that satisfy (2.4). We set
B(u) = B(u,u), Bp(u):= Bp(u,u), and Bg(u) := Bo(u, u).

2.2. Smoothing operators

As in [9], we will need a family of smoothing operators (J"),¢(,1] acting on the

scale of spaces (W2, g that is, we require a family (J),¢ (0,17 such that for all
acRand g e Ry,

=T fla S0P1flatp and [ flarp S 0PI fla 2.7)

We construct these operators from the frequency cutoff operator Sy : S — S defined
by

Snf = Z fnen-

In|<N

It follows that forallo € Rand B € Ry,

Fosufl= 3 (m?) 1R =8 Y (14R) AR < v,

[n|=N [n|=N
and
at+pf A o A
Sv 2= (1+mP) T 1AR = a+NP Y (14 mP) 1P S NP1
Inl<N In|=N

We define J" := §|,-1,. It is then clear that J" is a smoothing operator on W2 and
that it leaves the subspaces H* and HY invariant.

2.3. Rough paths

Fora giveninterval /, we define Ay := {(s, ) € I?:s <t}and A?) ={(s,0,1) €
IP:s <6 <t).ForagivenT > 0,welet A7 := App7jand AP = Al Let P(1)
denote the set of all partitions of an interval / and let E be a Banach space with norm
| - |g. A function g : A — E is said to have finite p-variation for some p > 0 on /
if

1
V4
|glp—var;1;E == sup <Z|gtit:‘+l|[1§> < 0,

e \5
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and we denote by Cf “Y4(I; E) the set of all continuous functions with finite p-
variation on I equipped with the semi-norm | - |, _yar;7; £. In this section, we drop the
dependence of norms on the space E when convenient. We denote by C?~Y¥(I; E)
the set of all paths z : I — E such that §z € Cg_var(l; E), where 8z 1= 7y — z5.
For a given interval /, a two-index map w : A; — [0, 00) is called superadditive if

for all (s,6,1) € A?),
w(s,0)+w@, 1) <wls,t).

A two-indexmap w : A; — [0, 00) is called a control if it is superadditive, continuous

on Ayandforalls € I, w(s,s) = 0.

If foragiven p > 0, g € Cf _Var(l ; E), then it can be shown that the 2-index map

wg : Aj — [0, 00) defined by
a)g(S7 1) = |g|§7var;[s,t]

1
is a control (see, e.g., Proposition 5.8 in [29]). It is clear that |gy| < w, (s, t)» for all

1
(s,t) € A;.If wis a control such that |gs| < w(s, t) 7, then using superadditivity of
the control, we have

D g l” <Y o titn) < 0. 1),
i i

for any partition (¢;) € P([s, t]). Taking supremum over all partitions yields w, (s, 1) <
w(s, t). Thus, we could equivalently define a semi-norm on Cé] VI E) by

1 1
|g|p—var;[s,t] =inf{w(s,?)? : |guv| < w(u,v)? forall (u,v) € A[s,t]}-

We shall need a local version of the p-variation spaces, for which we restrict the
mesh size of the partition by a control.

DEFINITION 2.1. Given an interval I = [a, b], a control @ and real number L >
0, we denote by Cﬁ ;\iaLI(I ; E) the space of continuous two-index maps g : A; — E
for which there exists at least one control @ such that for every (s,7) € A; with
w(s,t) < L,itholds that |gs;|g < w(s, t)%. We define a semi-norm on this space by

1
lglp—var,m,L;1 = inf [w(a, b)? : wis acontrol s.t. |g]
1
<w(s,t)?, V(s,t) € A withw (s, 1) < L} .

REMARK 2.2. By the above analysis, it is clear that we could equivalently define
the semi-norm as

1

P
|g|p7var,w,L;I = sup (Z |gt,’li+1|P> s

(t)€Pw. (D) \
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where P 1. (I) denotes the family of all partitions of an interval I such that @ (#;, #; 1)
< L for all neighboring partition points #; and f;41. It is clear that

Cy i Us E) CCY ™ (15 E) (2.8)
forw; < wrand Ly < L;.

REMARK 2.3. Let I be an interval. We could define the local p-variation space
for 1-index maps C, i Var(I E) as above. However, there is no difference between
the local and global spaces; that is, C, P Valr(I E) = CP7Y¥(I; E). Indeed, clearly
CP=v(I; E) C CL )" (I; E). To show cP 13 E) C CP™(I; E), letw be such
there is a partition (s ]) =1 of I satisfying zzr(s j»$j+1) < L. Then, for any partition
(t;) € P(I), we can always find a refinement () of (¢;) containing (s ). It follows
from the superadditivity of w that @ (f, fx4+1) < L. Moreover, either an interval
(ti, ti+1) does not contain any of the (sj)]J.:1 or it contains a set {s;, (), - .-, sj"(,.)(,')}.
In the latter case, we have

Jn@()—1
Sgt,'t,ur] = Sgt,x&‘j] i) + Z (SgSijJr] + Sgsjn(i)(i)ti+1 .
J=j1@)

Thus, for any g € ng_Lvar(I; E), we have

> g l” Sp D 188517 Sp l8lp—varw. L
(t)eP) (()ePw.L

and hence C2~, Vm(l E) = CP™Var ([ E).

We now introduce the notion of a rough path. For a thorough introduction to the
theory of rough paths, we refer the reader to the monographs [29-31]. For a two-index
map g : A; — R, we define the second-order increment operator

88500 = g5t — 801 — 80, V(s.0.1) € AP
DEFINITION 2.4. Let K € Nand p € [2, 3). A continuous p-rough path is a pair
= (2.Z)eCl™™ ([o, ) RK) x Cp ([o, T];RKXK) (2.9)
that satisfies the Chen’s relation
8701 = Zso ® Zgr. ¥(5,0.1) € Ay,

A rough path Z = (Z, Z) is said to be geometric if it can be obtained as the limit in

p_
the product topology Cp Y410, T1: RX) x sz Var([O, T1; RE*K) of a sequence of
rough paths {(Z", Z”)}fjo:1 such that for each n € N,

t
no._ g.n no.__ n n
Y =20zy and Z ._/ 8759 ® dzg,
s
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for some smooth path z" : [0, T] — RX, where the iterated integral is a Riemann
integral. We denote by Cg V[0, T1; RX) the set of geometric p-rough paths and
endow it with the product topology.

REMARK 2.5. For any continuous p-rough path Z = (Z, Z), it is clear that we can
always find a control w such that for all (s, t) € Ar,

|Zal? <o(s.1) and |Zy|? < (s, 1),
With abuse of notation, we write w = wz. This should compared with (2.10) below.

Throughout this paper, we will only consider geometric rough paths. An advantage
of working with geometric rough paths is that a first-order chain rule similar to the one
known for smooth paths holds true. We recall that such a chain rule is not true in It6
integration theory, in which only a (second order) Itd formula is available. However,
for the Stratonovich integral, a first-order chain rule holds true. Thus, in case of a
Brownian motion, a Stratonovich integral should be used for the construction of the
iterated integral if one wishes to lift it to a geometric rough path.

2.4. Unbounded rough drivers

Since the rough perturbation in (1.1) is (unbounded) operator valued, it is necessary
to generalize the notion of a rough path accordingly. To this end, we define unbounded
rough drivers, which can be regarded as operator valued rough paths with values in
a suitable space of unbounded operators. In what follows, we call a scale any family
(E”, |- lo)aer, of Banach spaces such that E**F is continuously embedded into E¢
for B € R4. For o € Ry, we denote by E~¢ the topological dual of E¢, and note
that, in general, E =0 +E 0,

DEFINITION 2.6. Let p € [2,3) and T > 0 be given. A continuous unbounded
p-rough driver with respect to the scale (E%, | - |¢)aeR,, is a pair A = (A, A?) of
2-index maps such that there exists a continuous control w4 on [0, 7] such that for
every (s,1) € Ar,

)4
1,p 2,2
SN o gy S @aGs, 1) for @ €10,21 1AZ 17 poa g,

< wals,t) for a €[0,1], (2.10)
and Chen’s relation holds true,
SAl, =0, 8A%, =Al AL, V(.00 € A(TZ). (2.11)

We will show below that Definition 2.6 allows for a formulation of (1.1), (1.7). (See
Definitions 2.11 and 2.7.)
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2.5. Formulation of the equation

In this section, we derive a rough path formulation of (1.1), (1.7), which will be
satisfied by solutions constructed by our main result below, Theorem 2.13. The main
ideas of this step were already discussed in Sect. 1 in the simpler setting of the transport
equation (1.3).

We fix an arbitrary terminal time 7 > 0 and viscosity v > 0. Let d € {2, 3}.
Let z € CPY([0, T]; RX) be such that it can be lifted to a continuous geometric
p-rough path Z = (Z,7) € Cgivar([O, T1; RX) for some p € [2,3). For each
k € {1,..., K}, assume that oy : T¢ — R4 is twice differentiable and divergence
free. Moreover, assume that for all k € {1, ..., K}, oy and its derivatives up to order
two are bounded uniformly. For given initial condition uy € H, we consider the
system of Navier-Stokes equations on (7, x) € [0, T'] x T¢ given by

ou+ - -VYu+Vp=vAu+ (o - V)uz’f,

V.u=0, (2.12)
u(0) = u,
where the unknown are the velocity field u : [0, T] x TY — R¢ and pressure p :
[0, T] x T4 — R. Here and below, we use the notation

K

d
17
(u-Vyu =Zu/W and (o - VIuif = (ox - Vyuzf = Zzo—k—z,
j=1 J

k=1 k=1 j=1

The classical way of studying the Navier—Stokes equation in the variational frame-
work is to decouple the velocity field and the pressure into two equations using the
Leray projection P defined in Sect. 2.1. Applying the solenoidal P : W%? — H® and
gradient projection Q : W*?2 — HY separately to (2.12) yields

ou+ P[(u-Vul =vAu+ P [(or - V) u]z'f,

Vp+ Qlu-Vyul = Ql(ox - V)ul 2¥.

T :=/ Vp,dr.
0

As we did for the pure-transport equation (1.3) in the introduction, we integrate the
(2.13) over [s, t] and then iterate the equation into itself to obtain

(2.13)

We let

t t
Sun—i—/ Pl(uy-V)u,] dr =/ vAurdr+[A£’1 + AP? ]uﬁuf}“,
: s (2.14)
871”4—/ O, - Vyu)] dr = [Ag’l + 492 ]uﬁu?,”,
S
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where

Ao = Plox VYol Z5,  ALPp = Pl(or- V) Pl(o; - V) ]| 2}

st

AZ'o = 0llon - V)gl 25, AS%e = Ql(ok - V) Pl(oi - V) o]l Z}'.

To do this derivation, let us assume that we have a solution u € LZTHl N L‘;OHO. If we
set

W= / (v AUy — (uy - Vyuy]dr,
0

then by (2.4) with @] = a3 = 1 and a = 0, we have u € C' V¥ ([0, T]; W~ 1.2).
Iterating the first equation of (2.13) into itself gives

t r .
Sugr = PSjig + / P(og - V) (u + PSpigr + / P(o; - Vup, dz’rl) dzk
S S
t
= PS5 + P(ox - Vug Z&, + f P(ok - V)bpgr dzf
s
t r .
+/ P(oy - V)/ P(o; - Vyuy, dzl, dzk
s N
k ! k
= Pépust + P(o - Vpus Zg; +/ P(oy - V)Spusr dz, +
N
t r rl . A
+/ P(ak.V)/ P(o; - V) (us + PS8pisr, +P/ ;- Vur, dziz) dz}, dzk
N N S
. t
= Pojug + Plog - Vs Zhy + Ploy - V) Ploy - Vs ZiF + f Pox - V)pugr dzk+
S
t r r . . X
+f P (oy - V)/ P(o; - V) <P8us,1 + P/ (0 - Vur, dzi2> dzﬁ,1 dz,
N N S
' P
= P8yt + Pl(oy - VIus1ZE, + Pl(oy - V) Pl(o; - VyugNZEF +ul?, (2.15)

where

t
P
ul? :=/ P(oy - V)P dz*

N

t r ri . .
+/ P (o - V)/ P(o; V) <P3Msr1 + P/ (0j - Vuy, dzé) dz;, dz*.
N N s

L_
3 —var

We expect uf;’u be in C; ([0, T]; H3) since w € C'=Ya([0, T]; W 12) and
u e LHO.

Note that Qu = — fo Ol (uy - V)u,]dr. Then, iterating the first equation of (2.13)
into second equation, we find

t
dmgr = Qpst + Q/ (ox - Vuy dzlr‘
S

! r )
= Qdpust + Q/ (or - V) (”s + Popgr + P/ (07 - Vup, dziq) dz];
s s
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t
— Qbpust + Q(0x - Vus 2, + 0 f (0% - V) Pbjugy dek
N

13 r r . .
+0 / (o - V)P / (- V) (us + Pojigr, + P f (0} - Vur, dzﬁz)dz’rl azk
S N N
= Q85 + Ol(oy - VIus1ZE, + Ql(oy - V) PL(o; - Vyug 1ZEK + u @7,

where
0.4 ' k
Ug = Q/ (oK - V)P sy er
N

t r r . .
+0 [ @-vr [ @ <P8Mm 0 OB dzfz)dzlrl) azt,
N N N

which is expected to be in cf‘““([o, T, H).

Equation (2.14) is to be understood in the sense that we define the remainder terms
u?? and u2? from the solution u and 7, and have to verify that they are indeed
negligible remainders; namely, they are of order o(|t — s|). This will be made precise
in Definition 2.7 below.

The pair A¥ = (AP!, A”?) is an unbounded rough driver (Definition 2.6) on the
scale (H¥)qeRr, - Indeed, the existence of a control w, p such that (2.10) holds follows
from the discussion in Sect. 2.1 and the fact that (Z, Z) is a p-rough path (Definition
2.4), which also implies Chen’s relation (2.11). We note that control w, » can be chosen
to satisfy

wypr(s,t) < Cwz(s,t), VY(s,t) € Ar, (2.16)

for a constant C > 0 depending only on d and the bounds on o = (o7y, ..., 0g) and
its derivatives up to order two.

The pair A2 = (A21) A2-2) satisfies (2.10) for the scale (HY ))ger,, with a control
w40, which also satisfies the bound (2.16). However, A2 is not an unbounded rough
driver since it fails to satisfy Chen’s relation (2.11). Nevertheless, it satisfies

8AG = AG ALY, forall (5.0.1) € AP, (2.17)

which is the correct Chen’s relation for the system of Eq. (2.13) needed to establish
the required time regularity of the remainder u <% (see Sect. 3 and Lemma 3.5).
We will now define our first notion of solution to (2.12).

DEFINITION 2.7. A pair of weakly continuous functions (u, 7) : [0, T] — HY x
H " is called a solution of (2.12) ifu € L2H' N L¥H® and u”* : Ay — H™3 and
u@": Ar — H> defined for all ¢ € H?, ¢ € H3 and (s,1) € At by
P, ! Pls | P2«
s (9) 1= Sust (§) + f v (Vur, V) + B @] dr —us ([al " + 45> o).
S
(2.18)

t
uGH W) = bt (9) + / B dr —us ([48"* + 4% w). (2.19)
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satisfy

P __y, P _var
wPiecy (0. T HTY)  and  u?Pe i) (0. THHDY),  (2.20)
for some control @ and L > 0.
REMARK 2.8. Applying (2.4) with o1 = 0, @p = 2, and a3 = 0, we get
Bp(u)(¢) = Bp(u, u)(¢) = Bp(u, ¢)(u) < ulflols,

from which it follows that the dr-integral in (2.18) is well defined since u € L‘;OHO.
One could also obtain an estimate that requires less regularity on ¢ by applying (2.4)
with oy = 1, p = 0, and o3 = 1 to get,

1Bp () (@)] S lul?1dl1,

from which it follows that the dr-integral in (2.18) is well defined since u € LZH!.
However, we must test by ¢ € H? to ensure that the remainder term u? ’”((f)) has the
required time regularity. An analogous argument holds for the By term in (2.20).

REMARK 2.9. In (2.18) and (2.20), we opt for distributional evaluation notation
for most terms, and continue to do so throughout the paper. That is,

ugu(tﬁ) =(u sz ) 3.3, Sust (¢) = (Buse, ¢)g, us (I:Ag’l’*-l-Ag’z’*] ¢>0
= (us [Af}‘ Tl
w0 = 3 noaa s ([A AT = (o [AR AR w)

REMARK 2.10. Due to (2.8), there is no restriction in taking the same & and L > 0
for both local variation spaces in (2.20).

We will now discuss an alternative way of formulating the equation. We can arrive
at this formulation by performing an iteration directly on (2.12):

Sty = Sjugy — 87y + (0% - Vg 25 + (ox - V) (07 - Vyus Z5F

t t
4 / (01 V)b dek — f (01 - V)ryy d2*
S S

t r ry . .
[ @ [ @ (au =y [0y o dz£2> de!, dzt.
N N s

The integral fs "ox - V)émy, dz’; is not regular enough in time for it to be a negligible
remainder. Indeed, we expect 7 to have finite p-variation, so that fo'(crk - V)ormg, dz’,‘
should only have finite g—variation. If we define

sz—/ (o - V)(Sﬂvrdz +/ (0% - V)/ (0i - V) (8ﬂvr2 87Tsr2
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1 . ]
—i—/ (O’j . V) U, dzé) dz’r1 dzlr‘,
N

p_
then we expect % to be in C23 Var([O, T1; W_3’2). Moreover, we have
Susr = Spse — 875t + (0% - Vg ZK, + (ox - V)07 - Vyus Zif + it
t
— f (o - V)87, dz).
S

In order to complete the formulation, we use Eq. (2.13) for 7 to deduce

t . t
- / (0% - V) 875zl = — (01 - V) Q (07 - V) ug) Zi + / (0% - V) Q8pusrdzy

t r
- f (o% - V)/ Q(o;-V) (‘Sﬂsrl - 87Tsr1
srl s | |
+/ (0j-V)up de1> dz;, dzk.
s

P_
3 —var

All the terms above except for (0% - V) Q [(0; - V)u,] Zi’tk belong to C; ([0, T,
W~32), and hence we may include them in a new remainder

t
iy = ity — f (0% - V) Q8 dzf
N

- /St(ok V) /Sr 0(0; - V) <3M,, + 87y, + /S” () - Vuy, dz{Z) dzl, dz¥.
Combining the above, we obtain
Sugy = Sibgt — 815 + (0% - V) usZé‘, + (o - V) (0; - V) MSZ?,k
— (0% - V) Qlo; - Vug1 75K + u?,
= Sptsr — 875 + (0k - V) s ZX + (0% - V) P [(07 - V) us1 ZEK + i,
Thus, the pair A = (A!, A?) defined by
Ao = (ox - V)9Zh,, A29 = (o - V)P [(0; - V@I Zi}

satisfies (2.10) for the scale (W%2),er . with control w4. However, this pair does not
satisfy Chen’s relation (2.11), but does satisfy

8AZ, = AbPAL,. Y(s.0.1) € AP 2.21)

Since A” = PA and A9 = QA, the controls w,r, w40, and w4 can be chosen so
that

CL)AP(S, t)5wAQ(S7t) S (I)A(S, t) S CC()Z(S,t), V(sa t) € AT5

where C is a constant depending only on d and the bounds on o = (oy, ..., 0g) and
its derivatives up to order two.
Thus, alternatively, we may formulate a solution to (2.12) as follows.
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DEFINITION 2.11. A pair of weakly continuous functions (u, ) : [0, T] —
H® x H? is called a solution of (2.12) ifu € L2H' N L¥H  and u® : Ax — W32
defined for all € W2 and (s, 1) € A7 by

; ! I 2
@) = bus @)+ [ 10077, 99) + B @) dr = us ([ + 23] 0) + 5700,
N

P __ .
satisfies u” € Ciwj/,ir([o, T1; W—32) for some control & and L > 0.

The following lemma says that both formulations were derived in a consistent way
and are equivalent.

LEMMA 2.12. Definitions 2.7 and 2.11 are equivalent.
Proof. Clearly, PAL, = Al and QAL = A9 fori € {1, 2}. Moreover, the mapping

p_ L_ L_
3 —var 3 —var 3 —var

Sor (10 TEW2) > ¢ (10,77 x5 (10,71 H)

u’ > (uP’”, uQ’t) = (Pu’, QuY)

c

is continuous and invertible with inverse

o ([o, T: H*3) xCi ([o, Tl; Hf) S ([0, T; W’”)

2,@,L2

(MP,u’ uQ,u> s uPl 2

where @ := @ + @y and L := L A L,. The rest of the proof is straightforward. [J
In the remainder of the paper, we use Definition 2.7.

2.6. Main results

Let us now formulate our main results.

THEOREM 2.13. Letd € {2, 3}. Assume that for each k € {1, ..., K}, oy : T —
R? and its derivatives up to order two are bounded uniformly and that oy is divergence
p—var

free. Fora givenug € H and Z € Cy ([0, T1; RX), there exists a solution of (2.12)
in the sense of Definition 2.7 satisfying the energy inequality

T
2 2 2
sup |ut|0+/ [Vu,lgdr < |uolg.
t€l0,T] 0

Moreover, u € CP~ ([0, T]; H™Y) and = € CP~([0, T1; Hf).

The proof of this result is presented in Sect. 4.1 as a consequence of the stronger
statement in Theorem 4.1. It proceeds in two steps: first (see Sect. 4.1.1), the velocity
field is constructed using compactness as a limit of suitable Galerkin approximations
combined with an approximation of the driving signal z by smooth paths. Second, the
pressure is recovered (see Sect. 4.1.2).
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For two space dimensions and constant vector fields, we prove that the solution
(u, ) is unique as a consequence of the stronger statement Theorem 4.3. In Sect. 4.2,
we prove uniqueness via a tensorization argument, which allows us to estimate the
difference of two solutions by the difference of their initial conditions. We remark that
one cannot directly use the techniques from [10], since this way of approximating the
Dirac-delta violates the divergence-free condition.

THEOREM 2.14. If d = 2 and oy is constant function of x € T for all k €
{1,..., K}, then for a given up € H and Z Clgjivar([O, Tl; RK), there exists a
unique solution of (2.12). Moreover, u € CTH®, m € CP~V¥ ([0, T; Hj_l), and

T
sup |ut|g+2u/ |Vu, |5 dr = |uol3.
tel0,T] 0

Owing to Theorem 2.14, in dimension two, there exists a solution map I" that maps
every initial condition ug € HO, family of constant vector fields oy, k € {1, ..., K},
and continuous geometric p-rough path Z = (Z, Z) to a unique solution (u, ) of
(2.12). The following stability result is proved in Sect. 4.3.

COROLLARY 2.15. In dimension two and for constant vector fields oy, k €
{1, ..., K}, the solution map

I HO x R2K 5 cpmvar ([0, Tl: RK) — L2HN CrHY x ¢l ([o, TI: Hf)
(wo,0,Z) — (u, m)
s continuous.

REMARK 2.16. Itis tempting to try to rewrite (1.1) using a flow transformation by
following the ideas in [3,32,33]. More specifically, suppose that there is sufficiently
regular invertible map ¢ : [0, T'] x T¢ — T¢ such that

@1 (x) = a; (@1 (x)),  @o(x) =0,

and let us define v; (x) := u;(¢;(x)). Differentiating in time, we find

00 (x) = 01y (@r (%)) + s (01 (%)) - Vuy (1 (x))
= VAU (¢ (x)) — ur (@1 (x)) - Vg (@1 (x)) — V(@1 (%)),

which could be rewritten in terms of v using Vv, (x) = Vu,(¢;(x)) Ve, (x) provided
() is a diffeomorphism. If we assume all the driving vector fields are divergence
free, then we have det(Vg, (x)) = 1 so that the equation for v is a Navier—Stokes-type
equation, including coefficients from a unimodular matrix depending on ¢ and x. This
could account for further difficulties, but it seems plausible that one can solve such an
equation. The added value of the construction we present in this paper is that it allows
for an intrinsic notion of solution to (1.1) and estimates of the corresponding rough
integral.
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REMARK 2.17. In three dimensions, it is known that the Stratonovich Navier—
Stokes equation

du+ (u-Vyudt +Vp =vAudt + Vuodw

has a probabilistically weak solution (see, e.g., [19,21,22]). Nevertheless, whether
the solution probabilistically strong is still an open question. In other words, it is not
known whether the solution to the above equation is adapted to the filtration generated
by the Wiener process w. Even though a prime example of a driving rough path in
our equation is a Wiener process with its Stratonovich lift and solving rough PDEs
corresponds to a non-probabilistic (pathwise) construction of solutions, we still can not
answer this question at this point. The reader should note that using the compactness
criterion Lemma A.2, we obtain a subsequence of the approximate solutions that a
priori depends the randomness variable @ (not a control). The question whether the
full sequence converges is very difficult to answer, as it is intimately related to the
issue of uniqueness. Indeed, if uniqueness held true in three dimensions, then every
subsequence of {u™} &—1 would converge to the same limit, and hence the full sequence
would converge. As a consequence, the proof of stability in Corollary 2.15 would imply
that the solution (u, ) depends continuously on the given data (u¢, o, Z) and is thus
adapted to the filtration generated by the Brownian motion.

3. A priori estimates of remainders

In this section, we derive a priori estimates of the remainder terms u?% and u@-*
and |u| ,_yar[0,77;0-1- Let (u, ) bea solution of (2.13) in the sense of Definition 2.7.
Fort € [0, T], we let

t
mi (@) = —/0 [v(Vur, V§) + Bp(u,)(¢)] dr, ¢ € H'.

It follows that for (s, t) € Ap,

Sugy = Spusr + AL ug + AL Pug +uly” G.1)

where the equality holds in H3. For all (s, t) € Ar,let
t
oy (s, 1) = f (1 + |uy|)* dr,
N

where we recall that | - |; denotes the H!-norm. Since u € LZTHl, wy, is a control.
Using (2.4) with @] = a3 = 1 and ap = 0, we obtain |Bp (u,)|-1 < |ur|%, and hence
1815 1-1 S w5, 1).

We begin with an important lemma which provides an estimate of #”% in terms
of the given data. The following result is a special case of [10, Theorem 2.5], but we
include a proof for the readers convenience. Let us define the map

Pl P2 P,
uf, = 8ug — Ay U = S + Ay Tus + g 7 (3.2)
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The first expression for uf, consists of terms that are less regular in time and more
regular in space than the second expression for u?,. We use this fact along with the

smoothing operators and the sewing lemma (B.1) to estimate the remainder terms.

LEMMA 3.1. Assume that (u, ) solves (2.12) accordzng to Definition 2.7. For
(s,t) € At suchthatw (s, t) < L, let wp (s, 1) == lu® ”|P var (s HS Then there
is a constant L > 0, depending only on p and d, such thatfor all (s,t) € At with
w(s,t) < Landwp(s,t) <L,

P 1 2
wr: (5.1) Sp ] oo (5.1 + 0 (5,05 (04 .05 + 04 (5,0F)  (33)

and

2 p

)4
wp.s (5.1) Sp Il soppoa (s,t)+(l+|u|Lc%oHo> (-5 was.0.  (34)

Proof. Recall that the second-order increment operator § is defined on two index maps
g: A(Tz) — R by dgsor := g5+ — 801 — g5 forall (s, 0,1) € A(Tz). It is easy to see that
for a one-index map f, we have §(6f)s0r = 0. Applying § to (2.18), we find that for
allp € H? and (5,0, 1) € A,

ulil (@) = suso (A57"6) +ul, (40,79).

#

where u, is defined in (3.2). We decompose su” o (¢) into a smooth (in space) and

non-smooth part using the smoothing operator J" to get

sy (@) = Bugg (J19) +bug/ (1 1") ).

for some 1 € (0, 1] that will be specified later. We will now proceed to analyze term
by term. To estimate the non-smooth part, we use (2.7) and that uie =dugp— A fe’lus
to obtain

gyt (= I < ulgomo (|45 = )| + |G Al = 10|
+|ada—ame )
< llsemo (@4 (D71 = Il +0as D71 = I)12)

1 2
S lulggm (@4, 079 + 06,070 913,

In order to estimate the smooth part, we use the form u’ st = Ofso + A" s 2ug + uP "o

get
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P 1, P2, P 1, P,1,
oulyy (170) = duso (Ag; ¥ 19) +us (ALP= AR 01g) +ulE (g 079)
+5m( 5 I19) + us (Afe’l’*APZ*J"qS) +uy (Al Al M)
+uf9”(AP2*J”¢>)

Estimating each term and using (2.7), for all (s, 6, t) € A(Tz) such that w (s, 1) < L,
we find

18ulgl (T S @, (s, Dwals, t)p|J"¢|2 + lul Lomowals, t)l’IJ”¢>|3
+ wp (s, 17 was. t)FIJ”¢>|4
(s, DA, 717913 + lul eowals, 17 1763
- lul o als. 1) 7 17 ls
+wp (s, D7 wA(s, )7 1T7ls
< (a)M(s, Hawa s, t)% +|u|LcT>oHoa)A(s, t)% + wp (s, t)%a)A(s, t)%rf]
(s, Dwals, f)% + |ulpsepo@a (s, l)% + |u| emowa (s, t)%n_1

3 2 _
+ wp(s 00D T2) 9ls. (3.5)
. 1 .
Setting n = w4 (s, t) ? A for some constant A > 0 to be determined later, we have

1
|5“s9z| 3 < |u|LooHoa)A(s t) AT+ a+22 )+ wu (s, Hwals, t)?

+ (s, Dwa(s, 0+ wp.y(s, Hr (472

£ _ » 4 1
<p <|u|,f%oHowA(s, DT+ 1424+ 105 + wu(s, )T wals, 1)3

)4 2 —1 2. 2\7
+ wu (s, D)3 wa(s, )3 +wpy(s, (A" +A77)3

Applying Lemma B.1, we get

14
3

1
bt <, |u|LOOHOa)A 6.0 (7 1A +22) o, 60 04 (5,07

L
3

o (.05 w4 (5,07 +wps (s, z)()\ Ly )

P
Since wp y = lul-? % I is equal to the infimum over all controls satisfying

3
|u£’u|_3 < wpy(s, )7 (see (2.7)), there is a constant C = C(p, d) such that
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ya »
wpy(s,1) < C <|u|zooH0a)A(s, DO 14+ 4+25 + (s 0 Fwals, )3
T
4 2 -1 N4
+ ou(s, 1)3wa(s, 1)3 +opy(s, )7 +2177)3 ).

L
3

~ 1
Choosing A such that C(A~! + AH3 < % and L > O such that n = wa(s, )P A <

Lx < 1, we obtain (3.3).
The proof of (3.4) replaces the bound s () S w, (s, 1)|¢[1 with the bound

t t
81251 (@)] < / WlGur, A)| + [Bp () @)]) dr < / (1ol 12 + Ly 31 ls—c ) dr
N N
S (=) + Jul pop0)* 1013,

where we have used the antisymmetric property of Bp and (2.4) with vy = a3 = 0
anday =3 —e€eforanye < % We note that this is only possible when d < 3. The rest

1
of the proof is similar to the proof of (3.3). Indeed, in (3.5), the term w,, (s, t)wa (s, 1) P

1+e

1 2
is replaced with (14 |M|LC;OHO)2(I —8)wa(s, t)7n~ 7€ and the term w, (s, Hwa (s, 1) ?

—2+€_ Moreover, we still take n =

2
is replaced with (1 + IulL%oHo)z(t —S)wa(s, 1)Pn
1
wA(s, )P A and for simplicity let € = %{. 0

REMARK 3.2. We use the estimate (3.4) in the proof of existence, since it is allows
us to obtain a bound independent of the Galerkin approximation.

LEMMA 3.3. Assume that (u 1) is a solution to (2.12). Then u € CP~Y¥([0, T];
H™Y) and there is a constant L > 0, dependmg only on p and d, such that for all
(s 1) € Ar withw (s, 1) < L, wa(s, 1) < L, and wp (s, 1) < L, it holds that

wu(s,1) Sp (14 |ul Lsopo) P (@p (s, 1) + @u (s, )P + wa(s. 1)),
where wy (s, t) = |u|17 vari[s./]:H-1"
Proof. Foralln € (0, 1], (s, 1) € A7 and ¢ € H', we have

Sutgi () = Sug (J"P) + Sug (I — J)).
Applying (2.7), we find
|8usi (I = TN < 2ulpgepol (I — TN@lo < nlul Lsopmoldlr-

In order to estimate the smooth part, we expand duy,; using (3.1) and then apply (2.7)
to get

Bue (70) | = luly® (976) |+ 181ar (J70) |+ lus (AT 070) |+ luy (45> 079) |

3 1
S opy (5,07 [J¢13 + wp (s, 6) 17"l + lulopowa (s, 07 AL
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2
+ lulpomoa (s, 0) 7 | 1Pl
3 1
S (0rs 607 172 4 0, (5.0 + lulgemon (5,007

z
Hul eoon (.07 1) ],

1 1
for all (s, ¢) € Ar such that w(s,t) < L. Setting n = wp (s, 1)? + wa(s,t)? and
choosing L > 0 such that n € (0, 1], we get

1
|Suse|—1 Sp (1 + |M|L;°H0) (wps(s, 1) + @u(s, )P + wals, )7,

which proves the claim. U

The following lemma shows that the solution « is controlled by A1

p_
LEMMA 3.4. Assume that (u, ) is a solution of (2.12). Then ut e sz Var([O, Tl;

H~2) and there is a constant L > 0, depending only on p and d, such that for all
(s,t) e Ar withw (s,t) < L, wa(s,t) < L, and wp (s, t) < L, it holds that

]

0 5.0 Sp (14 lulzep ) * (0ps (5.0 + 0, 5,05 + 04 (5.1))

P
e 2
where wg (s, t) = |u |g7var;[s,t];H_2'

Proof. Forall n € (0,1], (s,7) € Ar and ¢ € H?, we have
uly (@) = ul (J7) + uy (T = T)p).
We recall that we have two formulas for u*:
uEt = Sug — Ag’lus = Oy + A£’2us + uspt’n.

As explained above, we employ the first formula to estimate the non-smooth part and
the second one to estimate the smooth part. Applying (2.7), we find
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(1= 7)) | =< louss (1= ") ) |+ lus (A" (1= 77) )|
1
< lul zomol (I = J7) $lo + ul goppwa (5,07 | (1 = ") s
1
S (710l om0 + nlul zmoa (5,07 ) Il

In order to estimate the non-smooth part, we apply (2.7) to obtain

6y (J79) 1 <l (J76) |+ IS5t (476) | + lus (A7) |
3 2
S 0ps (5,07 171913 + 0, (5.0 [l + [l zomowa (5,07 11712

3 2
< (0ps (.07 17"+ 0 (5.0 + lul zopoo (.07 ) [l

1 1
for all (s,7) € Ar with @w(s,7) < L. Setting n = wp(s,1)? + wa(s,t)? and
choosing L > 0 such that € (0, 1], we find

2
4 7
w2 Sp (1+ lulopo) (@755, + 05,08 +04(5.0)) 7

which proves the claim. g

We now derive estimates for wg ;. The computation in the proof of the lemma show
why (2.17) is the correct Chen’s relation for this system.

LEMMA 3.5. Assume that (u, ) solves (2.12). For (s, t) € At suchthatw (s, t) <

2 N
L, let wg (s, 1) := [u@3 Then there is a constant L > 0, depending
3

—var;[s,/;H
only on p and d, such that for all (s,t) € Ar withw (s,t) < L and ws(s,t) < L,

£ L 1 1 2
wQ g (s, 1) SP |u|z§°]—[0wf‘ (s, )4y (s,1)3 w4 (s,1)3 +wp g (s, 0)+wy (s,1)3 wy (s,1)3 .
3.6)

Proof. Applying § to (2.18), we find that for all » € H3 and (s,6,1) € A,

suly ) = ul () —uGt ) —ul W)

1, .2,
= ’420 (AQQI *w) + Sugp (A(,Q, *lﬁ) ,

where we have used (2.17) in the second equality. Using Lemma 3.3, it is easy to see
that the last term satisfies (3.6), so we focus on the first term.

As usual, we split the equality into smooth and non-smooth parts ¢ = J7y + (I —
JMy for n € (0, 1] to be determined later. In order to estimate the non-smooth part,
we use ”Ee = Suz9 — ASPg’lus and (2.7) to obtain
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(uso =A%) ((1 =97 w)
= bugo (AZT (1= 17 v) = ug (AL AZ " (1= 07)v)
1 2
< 2lulpzepowa (5,07 | (I = I") Yl + |ul pogowa (.7 [ (I = J") Yl

1 2
S lulgepo (@4 (5,07 02 + 04 (5,07 0) /.

To estimate the smooth part, we write u?t = 0usg + Affus + ufe’u and apply (2.7) to
get

(530 — Af;’lus> (J1y)
= b1y (AZ I ) + g (AL AL ) 4l (4G )
S0 (5. wa (5,07 [T 1 + lul pzopowa (5. 07 [T s
+ops (5.7 wa (5.7 114

1 3 3 1 _
S (wu (s, ) @A (5, 1)7 + |ulpopowa (5, 1)7 +wpy (s, )P wa (s, 1)7 1) [¥13.
1 ~
Setting n = w4 (s, t)7 and choosing L such that n € (0, 1], we get
0.4 3 1 3
|8u‘y9’t |—3 5 (lulL%OHO(,UA(S, t)p + (,()M(S, I)Q)A(S, t)P + a)P,D(Sﬂ t) 4
1 2
+awy (s, 1) 7 wa(s, t)F)

4 4 1
S,p <|u|2(7>_OHOwA(S7 t) + U)M(S, t)3CUA(S, t)3 +a)P,ﬂ(s1 t)

1 2 3
+wu(s,t)?wA(s,t)3>” .

Using Lemma B.1, we obtain the first inequality. The proof of the second inequality
is similar to the first; see the end of proof of Lemma 3.1. O

By virtue of Lemma 3.5 and (2.19), we see immediately that # € CP~V*" ([0, T,
Hf), although we conjecture that there is better spatial regularity.

4. Proof of the main results
4.1. Existence, proof of Theorem 2.13
4.1.1. Galerkin approximation

We prove the existence of a solution using a Galerkin approximation. Let {h,}72
be the smooth orthonormal basis of H? discussed in Sect. 2.1. Recall that there exist
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a sequence {)\,,},‘1"3:1 of nonnegative numbers such that —Ah,, = A,h,, foralln € N.
For a given N € N, let Hy = span({h1, ..., hy}) and Py : H! — Hy be defined
by
N
Pyv = Z(v, hw)h,, veH L.
n=1

Since Z € Cgivar([O, T1; RK) is a geometric rough path, there is a sequence of RK-
valued smooth paths (Y },O\,O:] such that their canonical lifts ZY = (ZV, zZV) converge
to Z in the rough path topology. We assume that

1 2
1ZN) Swz(s,007, 1ZNI Swz(s,0)P, Y(s,1) € Ar. (4.1)

For convenience, let Ny denote a constant that bounds o = (o, ..., 0k) and its
derivatives up to order two.
We consider the following Nth order Galerkin approximations of (2.12):

K
d,u" + PyBp (uN) —vPyau + 3 PyP [(ak V) uN] Nk, (4.2)
k=1

where u® (0) = Pyug. If we assume that
N

uf () =Y e (ha(x),
n=1

then plugging in this expansion for u™ (¢, x) into (4.2) and testing against /1,, we derive
an ODE for the coefficients (¢} )N_,:

N K N
N+ D BiuacY ) ) = viae) )+ DY A jacY 0 @3)
j.l=1 k=1 j=1

where Bj;; := PyBp(hj, hy)(h,) and A jn = ((o% - V)hj)(h,). Owing to (2.4)
with @y = 1, 0p = 0, and a3 = 1, for all j, [ and n, we have

[Bj1nl < Ihjlilhltlhnlr.
Moreover, for all k, j, and i,
[Ak,jnl < loklLeelhjlihalo.
J J

Thus, (4.3) has locally Lipschitz coefficients, and so there exists a unique solution
(cn)fl\’:l of (4.3) on a time interval [0, Ty), for some Tn > 0. Therefore, ufv x) =
Zflv:l cflv (t)h,,(x) is a solution of (4.2) on the time interval [0, Ty ).
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To get a global solution, we derive a global energy estimate of uV. Testing (4.2)
against " and using (2.6), the divergence theorem, and that V - o = 0, for all
kefl,...,K}, we get

t t
|u§V|g+2v/ \Vul R ds = |PNu0|g—2/ Py Bp (uy,uy,uy) ds
0 0

K
+Zf ((ok-V)ufv,uﬁ.V)i?]’kds
k=170
= |Pyuoly < |uolg, ¥t € [0, Ty).

It follows that the L2-norm of u is non-increasing in time, and hence that (c;) ,11\/:1
does not blow up in finite time. Therefore, u™ € C7H° N L2TH1 solves (4.2).

Integrating (4.2) over [s, t], and then iterating the equation into the integral against
N as we did in (2.15), we find

t
Suly =f (VPNAM,{V — PyBp (uﬁ\')) dr 4+ AN N oA N2, N +ult 44
N

where I5N = Py P,

AN g = Py [(on - V) 1 ZIYF,
Ay?¢ =Py [(ok -V) Py [(0j - V) ¢]] ZNI*

t
M{V =Py fo (vAuﬁV - Bp(uﬁv)) dr, and
N t
g = / Py [(ak V) auﬁi] Nk dr
5
~ t r ~ .
+PN/ / (ox - V) Py I:(O'i-V)SMxI:IZ'{\]/vlz'iv,kdrl dr
s s
t r oo 5 . ) )
+f / f Py [(ak -V) Py [(a,- -V) Py [(oj V) uNm i NNk dry dry dr,
s N s

Owing to (2.2), (2.3), and (4.1), we have that (A1, AN-2) is uniformly bounded
in N as a family of unbounded rough drivers on the scale (H*)4eR, . That is, there
exists a control w4~ such that (2.10) holds and for all (s, 1) € A7,

wpn (s, 1) Sy, wz(s,1).

p_
It is straightforward to check that uht e C23 Var([O, T1]; Hy) by estimating term
by term; one makes use of (2.2), (2.3), (2.4), and that u® is smooth in space and el

p
is smooth in time. For all (s, t) € A7, letwy (s, 1) 1= |uN-" H var: Arguing
3 B

[s,¢];H-3"
as in Lemma 3.1, we find that there is an L > 0 such that for all (s, ) € Ar with
wz(s,1) < L,
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2p
£ 3 p L
on; (s, 1) Sp |MN|Z%OHN0)AN (s, 1)+ (1 + IuNIL;oHN) (t —5)3 wyn (s,1)12

L 2p r
SpoNo luolg @z (s, 1) + (14 luolo) 3 (1 — )3 . (4.5)

THEOREM 4.1. There exists a subsequence of {u™ }N— that converges weakly in
LZTHI, weak-* in L‘;OHO, and strongly in L2TH0 N CrH™! 10 a solution of (2.18) that
is weakly continuous in H°.

Proof. Since {uN}%:l is uniformly bounded in LZTH1 N LC;OHO, an application of
Banach-Alaoglu yields a subsequence, which we will relabel as {u"v }o2 ,, that con-
verges weakly in L:‘}Hl and weak-* in LC;OHO. To obtain a further subsequence that
converges strongly in LZTH0 NCrH™!, we need to apply Lemma A.2; that is, we need
to show there exists a controls w and @ and L, k > 0 independent of N such that
|5u§f|_1 < w(s, t)" forall (s,t) € Ar with w(s, 1) < L. The proof of this is similar
to the proof of Lemma 3.3, except that we need a slightly different bound on the drift
term. This bound, in particular, does not yield p-variation of the solution.

Let ¢ € H'. Decomposing sul into a smooth and non-smooth part using J" for

some 1 € (0, 1], we get
sul} (9) | < [8ul) (J79) | + 5ull (1 — ") ¢) |
S w0719+ 0 =) (14 1 my ) 17701
1z (@av 5,07 181+ 048 (5,07 1I7812)
+ 1N oo | (T = T") Blo
S 20N (5,07 [0l + 172 (0 = 5) (1 + uolo)? 1611
+luolo (07 (5,07 +07 0z (5,107 ) 191 + nluololg .

1 1
Using (4.5) together with n = wz(s,t)? 4+ (t — s)» and L > 0 chosen such that
n € (0, 1], we find

Bulfl1 = (L luolo)? [ (07 (5,007 + (¢ = )@z .07 )~
1 2
=)0+ (02 .07 + oz (5,07 07" ) 4]

Sy (1 luolo)? (wz (5.7 + (1 — s)‘—%) ,

By Lemma A.2, there is a subsequence of {u’ }%—; which we continue to denote by
{uV }%— converging strongly to an element u in Ct H'n LzTHO. Furthermore, owing
to Lemma A.3, we know that u is continuous with values in H% (i.e., H® equipped
with the weak topology).

Our goal now is to pass to the limit in (4.4) tested against some ¢ € H? as N tends
to infinity. Clearly,
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N,
(A

Al Dolo = |Pu P ok - 19] 2K = P [0 - V19 2K |
< Py P [(or - V)] (Zi " = ZEDlo + 1 = Py) P [(ok - V)] ZKs o
Making use of (2.2), we get
[Py P (o1 - V) BlolZy ™ — ZE | S 191112 — Zal,
(I = Py)P (0% - V) $1 Z§ 1o < [T — Py o w0y | P Lok - V) @llo |1 Zse| S 1
—Pn| 0 10y 19111 Zst |-

Moreover, we have
k
(a2 = a%2)e| = |y [0 D) Pulco; - Drg1| @ = 200

+ | = PoP [ VPG - VI 2|

+| By [0 ) = PPl - VI 2|

Now, applying (2.3), we find
‘ﬁNI:(Uk -V) ﬁN[(Uj . V)¢]] (Zﬁ\z]’j’k - Zﬁf) lo Snp 1912|Z
| (1= Pr) P [0 ) Pleoy - DB ZLE| S 1 = Pl o o) 812| 2

| P (01 - V) (1 = P Ploj - DIBDZEE| S 1T = Pl pqan a2 2

Njk_ij

)

’

Jk
st

Js
st

Therefore,

N’*(ﬁ—)APl*(ﬁ

st

inHY fori € {1,2} as N — o0, and hence
1 459) o 4250) 2 (o = 459%) — (o 25— 15)0)|

P N
Swo [l = us| 1915 + luslol (A = AN )glo — 0

— Uy

as N — oo. Finally, using the strong convergence in LZTH0 of {u™} and (2.4), we find

/ t [ Br@n @)~ Be(u) ) @)] ar
’ t

/SBp(ur— ) 1) @) dr
S/t Iodr|¢|3+/t

as N — oo.
Since all of the terms in Eq. (4.4) converge when applied to ¢, the remainder
Yt . (@) converges to some limit ui’u(d)) Owing to the uniform bound (4.5), we have

_|_

/t BP(M}},V,M,« —uiv)(qb)dr

N
r

=<

uy —ul

— d 0
Ur olur |, driels —

ult e C; 5 VM([O T1; H3) for some control & depending only on wz and L > 0
dependmg only on p, which proves that u is a solution of (2.18). 0
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4.1.2. Pressure recovery

To finalize the proof of existence, we need to prove that the pressure term 7w exists
and satisfies (2.19). To this end, we first show that we can construct the rough integral

t
L=0 [ Vuaz. n=o.
0

using the sewing lemma, Lemma B.1. Let hy; = ASQ,’luS + ASQ,’qu for (s,t) € A7. It
follows that i € C5 ™Y ([0, T1; H]%). Applying the § operator to & and using (2.17),
for (s,0,1) € A(Tz), we have

2 ! 2
Shyp: = (aAS%, ) uy — AL sugy — AL su,p

1 1 2
= A AR g — AL Susg — AL Sugg
1 2
= A2t — AL sug,
where we recall that u?, = Sug — Af,’lus [see (3.2)]. Owing to Lemma 3.3 and (3.4),

which establish the regularity of 8u and u*, there are controls w and & and an L > 0
such that for all (s, 6, t) with w (s, ) < L, we have

5 3
8hsorl =3 Sp (@5, 03 0x(5,05 + (s, DT, (5,0 )" =t 05,17,

Therefore, by Lemma B.1, there exists a unique path I € CP~Y¥([0, T]; HI3) and
two-index map I° € C;i ;V’aLr([O, TI; Hf) such that

1 2
8§ = ASQZ ug + ASQ, us + ISJ,.
and
u 3
g -3 Sp (s, )7
We define

t
Ty = —/ Bo(u,)dr + I,
0

or alternatively using the local approximation
! 1 2
brtss = —/ Bo(up) dr + AJ g + A3 u + ugy”,
N

where uSQ,‘n = Ijt. Owing to Lemma 3.5 and (2.19), we have that w € CP~v" ([0, T'];
H ).
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4.2. Uniqueness in two spatial dimensions, proof of Theorem 2.14

The objective of this section is to prove that the solution (u, ) of (2.12) is unique
when d = 2 and oy, is constant function of x € T2 forall k € {1, ..., K}. Assume for
a moment that all functions are smooth and that we have two solutions of (2.12):

dul = vAul — Pl - Vyul + P(oy - VYulzE, i e{1,2).

1

Then v := u! — u? satisfies

dv=vAv— (Bpu') — Bp?) + P(oy - V)vi¥,

and the chain rule gives for all x € T2,

1
anv(xn2 = vo(x) - Av(x) — v(x) - (Bp(u'(x)) — Bpu*(x)))
H0(x) - (0% - V)o(x)zk,

One could proceed by integrating with respect to x to obtain uniqueness and energy
estimates. However, in the rough case, many of our objects are distributions, and so
the action of integrating with respect to x is actually applying a distribution to a test
function.

Since we do not expect our solution to be regular enough to perform this operation,
we shall employ a doubling of the variables trick; thatis, we consider ¢ +—> v?z (x,y) =
v (x)v;(y)T, where T denotes the transpose. This is a well defined operation for any
distribution and we get the formula for the square by testing this distribution against
an approximation of the Dirac-delta in x = y. We remark that one cannot directly use
the techniques from [10], since this way of approximating the Dirac-delta violates the
divergence-free condition.

Let u! and u? be solutions of (2.12), as defined by Definition 2.7. For all ¢ € H3
andi € {1,2} and (s, t) € Ay, we have

by @) = oyl @)+l (AL + AL 9) + 0™ @),
where
i) = — /0 t [v(Vui. Vo) + Brah @] o

Settingv = u' —u?, 0" = u"PE—uZ P and y, (¢) = — [y [v(Vor, Vo) + (Bp(u}) —
Bp(u?))(¢)]dr, we have

Sust (6) = St () + oy ([ AT+ AT*] ¢) + i
Define

wy (s, 1) = w1 (s, 1)+ ;2 (s, 1),
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and notice that

Bpst ()1 S s, 1).

We denote by a ® b the symmetrization of the tensor product of two functions
a,b:T? — RZ; that is,

a®b(x,y)::E(a®b+b®a)(x,y)=E(a(x)b(y) +b(x)a(y) ) (x,y) e T-.

LEMMA 4.2. The weakly continuous mapping 0?2 1[0, T] — H;3 ®Hy_3 satisfies
the equation

t
5v§’2 — 2/ (vvr ® Avy —ur ® (Bp(u}) — Bp(u%))) dr = (FSI, + l"szt) v?z + vgz’u,
N
where

M=alleorrieal!, M.=aP2gr+1eAP?2 APl g APt

%—Var

®2.4
and v S Cz,w,L

([0, T1; H;3 ® H;3), for a control @ and L > 0.
Proof. Elementary algebraic manipulations yield
sv®2 = 20, & Sug; + Suy ® Svgy = 205 ® UE; + 205 & Spusr + 205 & Al vg

+ 20, ® Ag’zvs + (v;, +us + A;Dl’zvs)(g)2 +2 (vit + Sps + A5’2v‘v)
® ASPt’le + Ag’lvs ® As’lvs.

Thus,

8v§2—2 /t [vvr & Avy — v, @ (Bp(u}) - Bp(btf))] dr = (FS]I + l"szt) v;®2—|—v§2’u,
s

4.6)
where

t
52 [ s 0 ) 3 (8] 2500

N

®2 n
+ (UE, + S + A‘5’20s> +2 (UE, + Sy + ASF;’205> ® Aft’lvs

t '
= —2/ V8 & Av,.dr + 2/ Svgr & [Bp (u})—Bp (u%)] dr+21)Et & vy
N s

5 5 P2 5 P2
+ UE; ® UE[ + UE[ ® dusr + UE[ ® A_y[ Vs + Optsr @ Sfgr + Sjusr @ Ast Us
+ AP0 @ A0+ 208, & AL oy + S & AL oy + AL 0 & AL,

Estimating vgz’t term by term and making use of (2.2), (2.3), and (2.4), we find that
p_
there is a control @ and L > 0 such that v®%% ¢ Ciwir([o, T1; H;3 ® H;,3). O
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Let {fo.1,f02} U {f1.n},ez2_(0) be the orthonormal basis of {u € L*(T%; C?) -
V - u = 0} described in Sect. 2.1. Define

Fy(,y)=fo1®fo1+fo2®f2+ D fi.() @f,.().
[n|<N,n#0

It follows that for all f,g € H°, f ® g(Fy) — (f,g) as N — oo, and hence
vV®2(Fy) — |u|(2) as N — oo. Since Vi, = inf) ,, foralln € Z? — {0}, we have
ViFy +VyFy =0.

Motivated by this, we will test Eq. (4.6) Fx and pass to the limit as N — oo to
derive the equation for the square. Because oy is constant, we have

LY Fy = (0r - Vo) Fy + ok - Vy) Fy)Z = 0
and

T2 Fy = (ok - Vi) (0} - Vi) FNZEE + (o1 - V) (0 - V) FNZ
+ (0% - Vi) (0 - Vy) FyZ},Z¥
= (o1 - Vi) (0 - Vi) ENZL + (01 - V) (0 - Vi) FNZL
— (0 - V) (0 - Vi) Fn 2L, 25,
=0,

where we have used (o3 - V)(0; - V) = (0 - V)(0x - V) and Z2}* + 7% = 77, k..
Applying the divergence theorem, we get

t t t
/ v, ® Av,(Fy)dr = —/ v, ® Vo, (Vy Fy)dr = / v, ® Vo, (VyFy)dr
S St S
= —/ vVu, ® Vu,.(Fy)dr,
N
and hence that

1t t
2/ v, ® Av.(Fy)dr = —2/ VvV, @ Vo, (Fy) dr.
N N

Since v € LQTHl, we have Vi, ® Vu,(Fy) — |Vv,|% as N — oo for almost all
r € [s, t]. Owing to the bound |Vv, ® Vo, (Fy)| < |er|%, we apply the dominated
convergence theorem to get that

t t
lim Zf vor ® Av, (Fy)dr = —2‘)/ |er|(2)dr.
s N

N—o0

Using the divergence theorem again, we find
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t t
/ o ® (uy - Vyur.(Fy)dr = —/ v ® (u’r)Tu’r(VyFN) dr
N N

t
- _/ Vo, @ W) ul (Fy)dr.
N

. . R |
Using the interpolation inequality |(u!) ul|o < |ul|}|ul|}, we apply the dominated
convergence theorem to get

1 13
lim 2/ v, ® Bp(ul)(Fy)dr =2/ Bp(u)(v,)dr.
N—o00 s s

We are now ready to finish the proof of uniqueness.

THEOREM 4.3. Let d = 2 and assume the vector fields op(x) = oy, k €
{1,..., K}, are constant. Suppose that u' and u* are two solutions of (2.12) in the
sense of Definition 2.7. Then the difference v = u' — u? satisfies

t t
o 5+2 / (Bp(u}) — Bp(u))(v,) dr +2v / |Vorlgdr = |uolg, V¢ €0, T1.
0 0
4.7)

Furthermore, there is a constant ¢ = c¢(v, T) such that

t t
|u,|3+/ Vo 3dr <u.1 |vo|(2)exp{c/ |u}|§|u}|%dr}, Vi e[0,T]. (4.8)
0 0

Therefore, there exists a unique solution u of (2.12).
REMARK 4.4. The right-hand side of (4.8) is finite. Indeed, we have
Lol o [T
/ lu, plu,l7dr < sup |u, |0/ lu, |7 dr,
0 1€[0,T] 0
which is finite since u € LZH' N L¥HC.
Proof of Theorem 4.3. Testing equation (4.6) against Fy and using that Fé’t* Fy =0

fori € {1, 2}, we find

Sv®2 (Fy) — 2/; (vvr ® Av, + v, ® (BP (u}) — Bp (ﬁ))) dr(Fy) = v (Fy).

Since the left-hand-side is an increment of a function, the right-hand-side (s, 7) —

vgz’D(FN) must be as well. By virtue of Lemma 4.2, we know that v®29( Fy) has finite

%-variation, which is only possible if u§§2~“(F ~) = 0. Thus, for every N € N,

SUB2(Fy) — 2ft (Uvr & Av — vy & (Bp (u‘) — Bp (uz))> dr(Fy) = 0.
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Passing to the limit as N — oo in the above equality, we get
t 1
5(|v|g)s,+2/ (Bp (ul) — Bp (uf))(v,)dr + 21)/ Vo, 2dr =0, Viel0,T].
N N

. . o 4
Moreover, using (2.6), (2.5), and Young’s inequality (i.e, ab < €a3 +c€b4,‘v’a, b,e >
0, where c. is a constant depending only on €), for every € > 0, we have
301 11
(Bp")—Bp@?)(v) = —Bp @, v)") < clolf oIg lu"1Z1u' 7 < elvl?+celofflu13lu' 3,

and hence
2 ! 2 2 ! 2 ! 20..102,.1,2
|Ut|0+2v/ |Vv,|0dr =< |U0|o+€/ |Ur|1dr+ce/ |vr|0|ur|0|ur|1dr.
0 0 0

Choosing € small enough, we find

1 t
2 2 2 2 1,2,..1,2
|vt|o+/ Vo, 2dr <, |U0|o+/ 10, 21+ 1 Bl ) dr.
0 0

We then complete the proof by applying Gronwall’s lemma. From the uniqueness
of the velocity and the pressure recovery in Sect. 4.1.2, we immediately obtain the
uniqueness of the associated pressure 7. U

4.2.1. Energy equality and continuity

Letting ul =y andu? = 0in (4.7), where u is the unique solution, we obtain the
following corollary.

COROLLARY 4.5. Letd = 2 and assume the vector fields o (x) = oy are constant
forallk € {1, ..., K. Then the unique solution u of (2.12) is in CtHC and satisfies
the energy equality:

t
|ut|g+2u/ \Vu, 13 dr = |uol3, Vrel0,T]. (4.9)
0

Proof. We start by showing that u is continuous as a mapping with values in H°
equipped with the weak topology. It is immediate from (3.1) that lims_,; us(¢) =
ui(¢) for any ¢ € H3. Moreover, since {luslo}seo, 7] is bounded, there exists a
subsequence {ug,}, C {us}s—; such that u,, (¢) has a limit for all ¢ € H3. Be-
cause H? is dense in H? and weak limits are unique, we must have convergence
limg_,; ug(¢p) = u,;(¢) forall p € HO. By virtue of the energy equality (4.9), we have
that limg—,; |us|o = |u¢lo, which implies strong convergence. Il

REMARK 4.6. For constant vector fields o;, we have ASQ,’iu s = 0fori € {1, 2},
and so (2.19) reduces to the deterministic case; that is,

t
T = —/ O(uy - Vyu, dr.
0

Applying (2.4)withay = 1, @y = Oandaz = 1, wefindthatr € C' =V ([0, T; Hll).
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4.3. Stability in two spatial dimension, proof of Corollary 2.15

Proof of Corollary 2.15. Forn € N, consider a sequence of initial conditions {u}72 |
C HO, constant vector fields {o"}%°, C R4*K and continuous geometric p-rough
paths (Z" = (Z",Z")}32 | € Cg_var([O, T1; RX). According to Theorem 4.1, there
exists a sequence (u",7")°° | of solutions to (2.13) corresponding to the datum

{(ug, 0", Z")};2 . Moreover, by virtue of the energy equality (4.9), we have
t
|u;’|% + 2v/ |Vuf|2dr = |u8|2, vVt € [0, T]. (4.10)
0

Thus, in view of Lemmas 3.1 and 3.3 and Remark 2.3, we obtain

|un|p—var;[O’T];H*1 S C(|M8|0, |O-n|7 |Zn|p—VaI';[0,T]s |Zn|§—va_r;[0,T])s (411)

for some function c that is increasing in its arguments.

Assume now that u; — ug in H° 6" > o inR>*X and 2" - Z = (Z,7Z) in
the rough path topology (2.9) (i.e., Z" — Z in C}" ([0, T]; R¥) and Z" — Z in
Cy ([0, T1; RE*K)). Then the estimates (4.10) and (4.11) yields a uniform (in n)
bound for the sequence {u"}7° | in L‘;OHO N LZTHl N CP~va ([0, T]; H~1). Hence,

due to Lemma A.3, there exists u € L‘;OHO N LZTH1 NCP~Ya([0, TT; H_l) such that,
up to a subsequence,

W" —u in L3H° N CrHY

as n tends to infinity.

Similar to the proof of Theorem 4.1, we may pass to the limit in the equation and
verify that u solves (2.13) with the datum (uq, o, Z). Since uniqueness holds true
for (2.13) in two dimensions with constant vector fields, we deduce that the whole
sequence u"* converges to u in L2TH0 N CTHS).

To see the convergence of 7", we note that since the vector fields are constant we
have ASQt’iuS = 0fori € {1, 2}, and hence

t
! = —/(; Bo(u})dr.

The convergence 7" — 7 in C' =V ([0, T; HIZ) follows since u” converges to u in
LZHC. Indeed,

t
/ Bo(ur)(¥) — Bo(uy)(¥) dr

N

<

+

! !
/ By (u, —uy, u,) () dr / By (u:’, Uy — u'r’) (¥)dr
s N
t t
f,/ |ur —uf|o|u,|1|1//|2dr+/ luy L1l l2luy — uylo dr
N S

for every € H? , where we have used (2.6) and (2.4) with ] = ap = 0 and a3 = 2,
aswellasa; =1, o =l and a3 = 0. ]
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A Compact embedding results

The following compact embedding result is comparable to the fractional version of
the Aubin-Lions compactness result (see, e.g., [22, Theorem 2.1]). Before we come
to the embedding itself, we need to prove a simple lemma.

LEMMA A.l. If w is a continuous control, then

lim sup sup w(s,t)=0.
a=>05e[0,T] 1€[s,5+al

Proof. Owing to superadditivity, forany ¢ € [s, s +a], wehave w (s, t) < w(s, s+a),
and hence the claim follows once we show that

lim sup w(s,s+a)=0.
a=0¢[0,7]

Suppose, by contradiction, that there exists an € > 0 and a sequence {(s,, an)}ff’: 1 C
[0, T'] x [0, 1] such that lim,,_, 5o @, = 0 and

w(sy, Sp +ay) >¢€, YneN.

Since [0, T']is compact, there exists ans € [0, T'] and a subsequence {(snk,ank)},‘zi1 C
{(Sn» an)};2, converging to (s, 0). By the continuity of the control w, we have
€ < lim w(sp, Sn, +an,) = w(s,s) =0,
k— 00

which is a contradiction. 0

LEMMA A.2. Let w and w be a controls on [0, T and L,k > 0. Let
X =L2H'N {g e CrH™! 2 18gy|—1 < w(s, 1)<, ¥(s,1) € Ay with @ (s, 1) < L}

be endowed with the norm

{|8gxt|—l

o(s. D 1(s,t) € Ar st (s, 1) < L} .

Iglx = gl 21 + sup [gi|-1 + sup
tel0,7T]

Then X is compactly embedded into CTH™! and LZTHO.

Proof. For each a € (0, L] and every g € LZTH’l, let us define the function J, g :

[0,7]— H ! by
1 s+a 1 a
Jagsz_f gtdt:_f 8s+¢ dt,
aJs aJo

where we extend g to Ry by letting g = g7 outside [0, T]. Clearly, s — J,gs is
continuous from [0, T'] into H!; that is, J, is a well-defined map from L2TH’1 to
CTH’l. Moreover, using Holder’s inequality, for i € {—1, 1}, we find

1

1 [ 1 ([ 5> \?
[agsli = ;/0 |gs+li df = 7 (/0 |8s+¢l; dt) , (A.D)
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which implies

T 1 T a T
2ds < — 2 dtds = 2d
[Jagslids < |gs4¢]; dtds = |g: 7 dt,
0 a Jo 0 0

. ; .72 hi i
and hence |Jag|L%H,- < |g|L2TH,-, thatis, J, : L7H' — H' is a bounded operator for
ief{-1,1}.
Let us show that J,g — g in C7H™! as @ — 0 uniformly with respect to X. For
eachs € [0,T], g € X, we have

s+a s+a 1 s+a
/ g dt —f gsdr| < —/ lgr — &sl—y dt
s s —~1 aJs

1 s+a
< —/ w(s,n)dt < sup  w(s, 1),
aJs

tels,s+al

1

[Jags — &sl-1=—
a

which converges uniformly in s to 0 as @ — 0 by Lemma A.1.

Let G be a bounded subset of LQTH1 , with norm bound denoted Ny. Using Holder’s
inequality, for all s, ¢ € [0, T] and g € G, we obtain

1 s+a t
/ grdr — / g dr
t+a s

[Jagr — Jagsl-1 = —
a

2
< —No/Is = 5],
a

—1

and hence for a fixed a, J,G is uniformly equicontinuous H~!. Owing to (A.1), for
each s € [0, T], we have that |J,gs]1 < \/LENO, and hence for a fixed a, J,G is
pointwise bounded in H'. Since H! is compactly embedded in H™!, for a fixed a, J,G
is pointwise relatively compact in H™!. Therefore, by the generalized Arzela—Ascoli
theorem J,G is relatively compact in C7H™!.

To conclude the proof, let {g"}7° ; be a bounded sequence in X. In particular, by
Banach—Alaoglu, there exists a subsequence {g"*};°, that converges in the weak*-
topology of LZTHl to some g € L2TH1. We can reduce to the case g = 0, and hence
the proof of the compact embedding of X in C7H™! is complete if we can show that
lg"|c,m—1 — O0ask — oo.

To this end, for any fixed a € [0, L], by the above Arzela—Ascoli argument,
{Jag™ )72, has a convergent subsequence in CrH™!, which we also denote by
{Jag™ )72 ;- We note that this subsequence may depend on a. Combining this with
the fact that g"* — 0 in the weak*-topology of L2TH1, we see that forany f ® ¢ €
Cr® H!, we have

T T
tim [ gl @7, dr = tim [ g (@) 5 dr =
k—o00 Jo k—o00 Jo

so that limg— o0 Jo€™* = 0in CrH™!. Since all subsequences converges to the same
limit, this means the full sequence converges. For any a € (0, L]
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1g"lcmt < 1ag™lcpmt + 8™ — 8" cpmt

< [Jag"lc,m-1+ sup  sup  w(s, )"
s€[0,T]tels,s+al

Letting k — oo first and then a — 0, we find that [g"*|c, g-1 — 0 as k — oo, which
shows that X is compactly embedded in C7H™!.

Let us now show that the set X is compactly embedded in LZTHO. Using Young’s
inequality, for 7 € H' and any € > 0,

|h13 = h(h) < |h|_1|h]; < Cc|h|* | + €lh]}

for some appropriate constant C. > 0. Consequently, proceeding with the same se-
quence above, we find

n|2

12 2 2 2
|gnk |L2TH0 = C€|gnk|L%H—l + 6|gnk|L%‘Hl = C€|gnk|CTH—] + € sup |g L%Hl'
neN

Letting k — oo first, we have
: 2 2
18" o = E:zglgn|Ll’THl’
and then letting ¢ — 0, we conclude the proof. U
Denote by C THSJ the space of H’-valued weakly continuous functions on [0, T].

LEMMA A.3. Let w and w be controls on [0, T] and L,k > 0. Let
Y = LFHO N {g e CrH™ - |8gy]-1 < (s, 1), V(s, 1) € Ar with ar (s, 1) < L] ,

be endowed with the norm

{|585t|—1

o(s. D 1(s,t) € At st (s, 1) < L} .

Igly = [glreemo + sup [gr|-1 + sup
1€[0,T]

Then Y is compactly embedded into C THE).

Proof. Let g € Y be arbitrarily chosen. First, we will show that for all ¢ € H, the
mapping
t+— (gr,9) € CTR. (A.2)

To this end, we observe that since g € L‘;OHO, it follows that there exists R > 0 such
that g, € Bgforallt € [0, T'], where B C HC is a ball of radius R. Let {ha}o2, C H!
be a family whose finite linear combinations are dense in H?. Then

(g1, ) — (g5, )| =< <gt — 8o ) ,Bnhn> + <gz — 8.9 ) ﬁnhn,>

n<M n=M

IA

<gt — 8s> Z ﬁnhn’> +2R (2 Z lgnhn

n<M n<M 0



Vol. 19 (2019) On the Navier—Stokes equation perturbed by rough transport noise 245

< c(Mo(s. ) +2R |9 = > Buha| . (A3)
n<M 0

where the last term can be made small uniformly for all s,¢ € [0, T'] by taking M
large enough and suitable {ﬁm}gle. Hence, (A.2) follows. The compactness of the
embedding follows from the generalized Arzela—Ascoli theorem. Indeed, the ball Bg
is relatively weakly compact, and the desired equicontinuity follows from (A.3). [

B Sewing lemma

The following lemma, referred to as the sewing lemma, lies at the very foundation
of the theory of rough paths. The proof is a straightforward modification of Lemma
2.11in [10]. See, also, Lemma 4.2 in [31].

LEMMA B.1. (c.f Lemma 2.1 in[10] and Lemma 4.2 in [31] Let I be a subinterval
of [0, T, E be a Banach space and ¢ € [0, 1). Let w and @w be controls on I and
L > 0. Assumethath : Aj — E issuchthatforall (s,u,t) € ASZ) withw (s,t) < L,

1
[8hur] < w(s, )%

Then there exists a unique path Th : I — E with Tho = 0 suchthat Ah := h—6Th €
Cé ;UvaLr (I; E). Moreover, there exists a universal constant C; > 0 such that for all

(s,t) e Aywithw (s, t) < L,
1
[(Ah)si| < Ceao(s, 1) (B.1)

Furthermore, if h € Ci;‘jaLr(I; E) for some p > ¢, then Th € CP~Y¥(I; E).

The following corollary is immediate since 7 is a path with 7hy = 0, and hence
vanishes if 7h € CP~V¥(I; E) for p < 1.

COROLLARY B.2. Assume the hypothesis of Lemma B.1. If h € Cﬁ _wvir(l ; E) for
some p < 1, then for all (s,t) € Ay withw (s, t) <L,

1
lhst] < Croo(s, )t
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