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On the Navier–Stokes equation perturbed by rough transport noise
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Abstract. We consider the Navier–Stokes system in two and three space dimensions perturbed by transport
noise and subject to periodic boundary conditions. The noise arises from perturbing the advecting velocity
field by space–time-dependent noise that is smooth in space and rough in time. We study the system within
the framework of rough path theory and, in particular, the recently developed theory of unbounded rough
drivers. We introduce an intrinsic notion of a weak solution of the Navier–Stokes system, establish suitable
a priori estimates and prove existence. In two dimensions, we prove that the solution is unique and stable
with respect to the driving noise.

1. Introduction

The theory of rough paths, introduced by Terry Lyons in his seminal work [1], can
be briefly described as an extension of the classical theory of controlled differential
equations that is robust enough to allow for a pathwise (i.e., deterministic) treatment of
stochastic differential equations (SDEs). Since its introduction, the theory of ordinary
and partial differential equations driven by rough signals has progressed substantially.
We refer the reader to the works of Friz et al. [2,3], Gubinelli et al. [4–6], Gubinelli
et al. [7], Hairer [8] for a sample of the literature on the growing subject. In spite
of these exciting developments, many PDE methods have not yet found their rough
path analogues. For instance, until recently, it was not known how to construct (weak)
solutions to rough partial differential equations (RPDEs) using energy methods (or
variational methods).
The first results on energy methods for RPDEs were established in [9–11]. In [9],

the foundation of the theory of unbounded rough drivers was established and then used
to derive the well-posedness of a linear transport equation driven by a rough path in the
Sobolev scale. Expanding upon the scope of the theory, the authors of [10] developed a
rough version of Gronwall’s lemma and proved the well-posedness of nonlinear scalar
conservation laws with rough flux. In the framework of unbounded rough drivers, one
can define an intrinsic notion of a weak solution of an RPDE that is equivalent to the
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usual definition if the driving path is smooth in time. Additionally, one can obtain an
energy estimate of the solution. Prior to the development of the theory of unbounded
rough drivers and roughGronwall lemma, these problems remained open. In particular,
how to study the well-posedness of the Navier–Stokes system with rough transport
noise was out of reach. Most recently, the theory of unbounded rough drivers has been
applied to prove the existence, uniqueness and stability of two classes of equations:
(1) linear parabolic PDEs with a bounded and measurable diffusion coefficient driven
by rough paths [11] and (2) reflected rough differential equations [12].
The aimof our efforts is to study theNavier–Stokes system subject to rough transport

noise. We study the system of equations that govern the evolution of the velocity field
u : R+ ×Td → Rd and the pressure p : R+ ×Td → R of an incompressible viscous
fluid on the d-dimensional torus Td perturbed by transport-type noise:

∂t u + (u − ȧ) · ∇u + ∇ p = ν�u,

∇ · u = 0,

u(0) = u0 ∈ L2(Td;Rd),

(1.1)

where ν > 0 is the viscosity coefficient and ȧ is the (formal) derivative in time of
a function a = at (x) : R+ × Td → Rd that is divergence free in space and has
finite p-variation in time for some p ∈ [2, 3). For example, ȧ may represent noise
that is white in time and colored in space. Such noise is a formal time derivative
of an L2(Td)-valued Wiener process. However, one of the main advantages of the
theory of rough paths is that drivers that are not necessarily martingales or of finite
variation can be considered, which is in direct contrast to the classical semimartingale
theory. Consequently, ȧ may represent the time derivative of a more general spatially
dependent Gaussian orMarkov process, such as a fractional Brownian motion, BH :=
(BH,1, . . . , BH,K ) with Hurst parameter H ∈ ( 13 ,

1
2 ], coupled with a family of vector

fields σ = (σ1, . . . , σK ) : Td → RK×d ; that is, for (t, x) ∈ R+ × Td ,

at (x) =
K∑

k=1

σk(x)B
H,k
t .

Even in the case of the unperturbed Navier–Stokes system, it is unknown whether
there exists global smooth solutions, and so we study the perturbed system integrated
in time and tested against a smooth test function in space. In particular, it is necessary
to make sense of the time integral

∫ t
0 (ȧs ·∇)us ds as a spatial distribution. Testing this

integral against a smooth function φ : Td → Rd , we get

∫ t

0
(ȧs · ∇)us ds(φ) = −

∫ t

0
us((ȧs · ∇)φ) ds, (1.2)

where we have used the divergence-free assumption ∇ · ȧ = 0. However, the time
integral is not a priori well defined since we expect the solution u to inherit the same
regularity in time as a (i.e., p-variation). Indeed, L.C. Young’s theorem in [13] says
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that a Riemann–Stieltjes integral
∫

f dg exists if there are p and q with p−1+q−1 > 1,
such that f is of p-variation and g is of q-variation. Furthermore, a counterexample
is given for the case p−1 + q−1 = 1, and hence the theorem of Young cannot be used
to define (1.2), unless a has p-variation in time for p ∈ [1, 2).

The rough path theory of Lyons [1] enables us to define the integral (1.2), provided
that we possess additional information about the driving path, namely its iterated
integrand. The idea is to iterate the equation for u into the noise integral (1.2) enough
times so that the remainder is regular enough in time to be negligible. In the case
of transport noise, this iteration leads to an iteration of the spatial derivative. For
simplicity, let us explain how this iteration works for the pure-transport equation

∂t u = (ȧ · ∇)u. (1.3)

Integrating (1.3) in time, testing against a smooth function φ : Td → Rd , and then
iterating Eq. (1.3) into itself yields

ut (φ) = us(φ) −
∫ t

s
ur ((ȧr · ∇)φ) dr

= us(φ) − us

(∫ t

s
(ȧr · ∇)φ dr

)
+

∫ t

s

∫ r1

s
ur2

(
(ȧr2 · ∇)(ȧr1 · ∇)φ

)
dr2 dr1

= us(φ) − us

(∫ t

s
(ȧr · ∇)φ dr

)
+ us

(∫ t

s

∫ r1

s
(ȧr2 · ∇)(ȧr1 · ∇)φ dr2 dr1

)

−
∫ t

s

∫ r1

s

∫ r2

s
ur3

(
(ȧr3 · ∇)(ȧr2 · ∇)(ȧr1 · ∇)φ

)
dr3 dr2 dr1, (1.4)

where we have used the divergence-free assumption ∇ · ȧ = 0. If we define the
operators

A1
stφ =

∫ t

s
(ȧr · ∇)drφ and A2

stφ =
∫ t

s

∫ r1

s
(ȧr2 · ∇)(ȧr1 · ∇)dr2dr1φ, (1.5)

and let δust = ut −us , then solving the transport equation (1.3) corresponds to finding
a map t �→ ut such that u� defined by

u�
st (φ) := δust (φ) − us

([
A1,∗
st + A2,∗

st

]
φ
)

(1.6)

is of order o(|t − s|), and hence is negligible. That is, the expansion [A1
st + A2

st ]us
tested against φ provides a good local approximation of the time integral (1.2), which
is uniquely defined by the sewing lemma (see Lemma B.1). Notice that if a is smooth
in time and space, then (1.6) is an equivalent formulation of the transport equation
(1.3). Because the time singularities in (1.5) are smoothed out by averaging over time,
the equation (1.6) does not contain any time derivatives, and hence the formulation
is well-suited for irregular drivers. Under certain conditions, the pair A = (A1, A2)

defines an unbounded rough driver as defined in [9] and in Sect. 2.4 below.
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In order to show that the remainder u� is of order o(|t − s|), we shall regard it as a
distribution of third order with respect to the space variable; note that three derivatives
are taken in (1.4). One of the key aspects of the theory of unbounded rough drivers is
the process by which one obtains a priori estimates of the remainder u�. (See Sect. 3.)
The technique involves obtaining estimates of δu�

sθ t := u�
st − u�

sθ − u�
θ t , interpolating

between time and space regularity of various terms, and applying the sewing lemma
(i.e., Lemma B.1). This is yet another example of the trade-off between time and space
regularity pertinent to many PDE problems. Notice that if a is α-Hölder continuous
(essentially equivalent to α−1-variation) with respect to the time variable and the
solution u has the same regularity in time, then the first two terms on the right-hand-
side of (1.6) are proportional to |t − s|α and the last term on the right-hand side can
be bounded by |t − s|2α . Thus, in the case α ∈ ( 13 ,

1
2 ], there has to be a cancelation

between the terms on the right-hand side to guarantee that u� is of order o(|t − s|). On
the other hand, the right-hand side of (1.6) is a distribution of second order with respect
to the space variable. Accordingly, the necessary improvement of time regularity can
be obtained at the cost of loss of space regularity, that is, considering u� rather as a
distribution of third order.
In this paper, we assume that the noise term a can be factorized as follows:

at (x) = σk(x)z
k
t =

K∑

k=1

σk(x)z
k
t , (1.7)

where we adopt the convention of summation over repeated indices k ∈ {1, . . . , K }
here and below. We also assume that for all k ∈ {1, . . . , K }, the vector fields σk :
Td → Rd are bounded, divergence free, and twice differentiable with bounded first
and second derivatives. The driving signal z is assumed to be a RK -valued path of
finite p-variation for some p ∈ [2, 3) that can be lifted to a geometric rough path
Z = (Z ,Z). The first component of Z is the increment of z (i.e., Zst = zt − zs) and
the second component is the so-called Lévy’s area, which plays the role of the iterated
integral Zst =: ∫ t

s

∫ r
s dzr1 ⊗ dzr . In the smooth setting, the iterated integral can be

defined as a Riemann integral, whereas in the rough setting, it has to be given as an
input datum; the two-index map Zst is assumed to satisfy Chen’s relation

δZsθ t := Zst − Zsθ − Zθ t = Zsθ ⊗ Zθ t , s ≤ θ ≤ t,

and to be two times as regular in time as the path z. For instance, if z is a Wiener
process, then an iterated integral can be constructed using the Stratonovich stochastic
integration. Nevertheless, many other important stochastic processes give rise to (two-
step) rough paths. For more details, we refer the reader to Sect. 2.3 and the literature
mentioned therein.
The motivation for a perturbation of the form −ȧ · ∇u comes from the modeling of

a turbulent flow of a viscous fluid. In the Lagrangian formulation, an incompressible
fluids evolution is traditionally specified in terms of the flow map of particles initially
at X :
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η̇t (X) = ut (ηt (X)), η0(X) = X ∈ Td , ∇ · u = 0.

If we assume the associated fluid flowmap is a composition of a mean flow depending
on slow time t and a rapidly fluctuating flow with fast timescales ε−1t , ε 	 1, then
provided that the fast dynamics are sufficiently chaotic, on timescales of order ε−2,
the averaged slow dynamics are described by the SDE [14]

dη̄t (X) = ūt (η̄t (X))dt − σk(η̄(X, t)) ◦ dwk
t , η̄0(X) = X ∈ Td , ∇ · ū = 0,

∇ · σk = 0, (1.8)

where w := {wk}∞k=1 is a sequence of independent Brownian motions and the sto-
chastic integral is understood in the Stratonovich sense. The flow dynamics given by
(1.8) encompasses models of stochastic passive scalar turbulence that were originally
proposed by Kraichnan [15] and further developed in [16,17] and other works. In
[18–21], it was shown that the system of equations governing the resolved scale ve-
locity field ū and pressure p and {qk}∞k=1 is a stochastic version of the Navier–Stokes
system with transport noise:

dū + (ūdt − σk ◦ dwk
t ) · ∇ū + ∇ pdt + ∇qk ◦ dwk

t = ν�ūdt. (1.9)

The existence and uniqueness of solutions of (1.9) has been well-studied [19–22]. In
[21], the authors proved the existence of global weak-probabilistic solutions (i.e., mar-
tingale solutions) of a general class of stochasticNavier–Stokes equations on thewhole
space, which included (1.9). Moreover, in dimension two, the uniqueness of the global
strong probabilistic solution was established in [21] as well. The existence of strong
global solutions for the stochastic Navier–Stokes system (1.9) in three dimensions is
still an open problem.
In this paper, we develop a (rough) pathwise solution theory for (1.1), which, in

particular, offers a pathwise interpretation of (1.9) for k ∈ {1, . . . , K }. We estab-
lish the existence of weak solutions in two and three space dimensions (see Theorem
2.13) by establishing energy estimates, including the recovery of the pressure. (See
Sect. 4.1.2.) To prove existence, we use Galerkin approximation combined with a suit-
able mollification of the driving signal, uniform energy estimates of the solution, and
the remainder terms and a compactness argument. In addition, in two space dimensions
and for constant vector fields σk , we prove uniqueness and pathwise stability with re-
spect to the given driver and initial datum via a tensorization argument (see Theorem
2.14 and Corollary 2.15). This result implies a Wong–Zakai approximation theorem
for theWiener driven SPDE (1.9). To the best of our knowledge, this is the firstWong–
Zakai-type result for theNavier–Stokes system (1.9). There are a substantial number of
Wong–Zakai results for infinite dimensional stochastic evolution equations in various
settings. We mention only the work [23] of Chueshov and Millet in which the authors
derive a Wong–Zakai result and support theorem for a general class of stochastic 2D
hydrodynamical systems, including 2D stochastic Navier–Stokes. However, the diffu-
sion coefficients in [23] are assumed to have linear growth on L2(T2;R2), and hence



208 M. Hofmanová et al. J. Evol. Equ.

do not cover transport noise. We do note, however, that in [24], Chueshov and Millet
establish a large deviation result for stochastic 2D hydrodynamical systems that does
hold true for transport noise.
Our approach relies on a suitable formulation of the system (1.1) that is similar to

the formulation of the pure-transport equation (1.6) discussed above. However, due
to the structure of (1.1) and the fact that a solution is the pairing of a velocity field
and pressure (u, p), the formulation is more subtle. In fact, we present two equivalent
(rough) formulations of (1.1) in Sect. 2.5.

Let P be the Helmholtz–Leray projection and Q = I − P (see Sect. 2.1 for more
details). Applying P and Q separately to (1.1), we obtain the system of coupled
equations

∂t u + P[(u · ∇)u] = ν�u + P[(ȧ · ∇)u]
Q[(u · ∇)u] + ∇ p = Q[(ȧ · ∇)u].

We can then perform an iteration of the equation for u in the time integral of P[ȧ ·∇u]
and Q[ȧ · ∇u] like we illustrated above for the pure-transport equation (1.6). After
doing so, we obtain a coupled system of equations for the velocity field and pressure
for which the associated unbounded rough drivers are intertwined and a version of
the so-called Chen’s relation holds true. [See (2.17) and Definition 2.7.] We derive
a second equivalent formulation by summing the coupled equations from the first
formulation. This second formulation is a single equation for the velocity field in
which amodified Chen’s relation holds (see (2.21) andDefinition 2.11). An alternative
way to arrive at the second formulation is by iterating (1.1) and using that ∇ p =
Q[(ȧ · ∇)u] − Q[(u · ∇)u].
The presentation of this paper is organized as follows. In Sect. 2, we define our

notion of solution and state our main results. In Sect. 3, we derive a priori estimates of
remainder terms, which are used in Sect. 4 to prove our main results. Several auxiliary
results that are used to prove the main results are presented in appendix.

2. Mathematical framework and main results

2.1. Notation and definitions

We begin by fixing the notation that we use throughout the paper.
We shall write a � b if there exists a positive constant C such that a ≤ b. If

the constant C depends only on the parameters p1, . . . , pn , we shall also write C =
C(p1, . . . , pn) and �p1,...,pn .

Let N0 = N ∪ {0}. For a given d ∈ N, let Td = Rd/(2πZ)d be the d-dimensional
flat torus and denote by dx the unormalized Lebesgue measure on Td . As usual, we
blur the distinction between periodic functions and functions defined on the torus Td .
For a given Banach space V with norm | · |V , we denote by B(V ) the Borel sigma-
algebra of V and by V ∗ the continuous dual of V . For given Banach spaces V1 and
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V2, we denote by L(V1, V2) the space of continuous linear operators from V1 to V2
with the operator norm denoted by | · |L(V1,V2).

For a given sigma-finite measured space (X,X, μ), separable Banach space V with
norm | · |V , and p ∈ [1,∞], we denote by L p(X; V ) the Banach space of all μ-
equivalence classes of strongly measurable functions f : X → V such that

| f |L p(X;V ) :=
(∫

X
| f |pV dμ

) 1
p

< ∞,

equipped with the norm | · |L p(X;V ). We denote by L∞(X; V ) the Banach space of all
μ-equivalence classes of strongly measurable functions f : X → V such that

| f |L∞(X;V ) := esssupX | f |V := inf{a ∈ R : μ(| f |−1
V ((a,∞)) = 0)} < ∞,

where | f |−1
V ((a,∞)) denotes the preimage of the set (a,∞) under the map | f |V :

X → R, equipped with the norm | · |L∞(X;V ). It is well known that if V = H is a
Hilbert space with inner product (·, ·)H , then L2(X; H) is a Hilbert space equipped
with the inner product

( f, g)L2(X;H) =
∫

X
( f, g)H dμ, f, g ∈ L2(X; H).

For a given Hilbert space H , we let L2
T H = L2([0, T ]; H) and L∞

T H = L∞
([0, T ]; H). Moreover, let L2 = L2(Td ;Rd).

For a given Hilbert space V , and real number T > 0, we let CT H = C([0, T ]; H)

denote the Banach space of continuous functions from [0, T ] to H , endowed with the
supremum norm in time.

For a given n ∈ Zd , let en : Td → C be defined by en(x) = (2π)− d
2 ein·x . It is

well known that {en}n∈Zd is an orthonormal system of L2(Td;C), and hence for all
f, g ∈ L2,

f =
∑

n∈Zd

f̂nen, ( f, g)L2 =
∑

n∈Zd

f̂n · ĝn,

where for each n ∈ Zd ,

f̂ in =
∫

Td
f i (x)e−n(x) dx, i ∈ {1, . . . , d}.

Let S be the Fréchet space of infinitely differentiable periodic complex-valued func-
tions with the usual set of semi-norms. Let S′ be the continuous dual space of S
endowed with the weak-star topology. For a given � ∈ S′ and test function φ ∈ S,
we denote by �(φ) the value of a distribution � at φ ∈ S. Since en ∈ S, for a given
f ∈ S′ and n ∈ Zd , we define f̂n = f (en). It is well known that f = ∑

n∈Zd f̂nen,
where convergence holds in S if f ∈ S and in S′ if f ∈ S′. This extends trivially to
the set S′ = (S′)d of continuous linear functions from S = (S)d to C endowed with
the weak-star topology.
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For a given α ∈ R, we denote by Wα,2 the Hilbert space

Wα,2 = (I − �)−
α
2 L2 =

{
f ∈ S′ : (I − �)

α
2 f ∈ L2

}

with inner product

( f, g)α =
(
(I − �)

α
2 f, (I − �)

α
2 g

)

L2
=

∑

n∈Zd

(1 + |n|2)α f̂n ·ĝn, f, g ∈ Wα,2

and induced norm | · |α . For notational simplicity, when m = 0 we omit the index
in the inner product, i.e., (·, ·) := (·, ·)0. Moreover, for any u ∈ W1,2, we write
|∇u|20 = ∑d

i=1 |Diu|20. It is easy to see that Wα,2 ⊂ Wβ,2 for α, β ∈ R with α > β

and that S is dense in Wα,2 for all α ∈ R. It can be shown that for all α, β ∈ R, the
map iα−β,α+β : Wα−β,2 → (Wα+β,2)∗ defined by

iα−β,α+β(g)( f ) = 〈g, f 〉α−β,α+β := ((I − �)
−β
2 g, (I − �)

β
2 f )α,

for all f ∈ Wα+β,2 and g ∈ Wα−β,2, is an isometric isomorphism.
Let

H0 =
{
f ∈ W0,2 : ∇ · f = 0

}
=

{
f ∈ W0,2 : f̂n · n = 0, ∀n ∈ Zd

}
.

We define P : S′ → S′ by

P f =
∑

n∈Zd

(
f̂n − n · f̂n

|n|2 n

)
en, f ∈ L2,

and let Q = I − P . It follows that P is a projection of L2 onto H0 = PL2 and that
L2 possesses the orthogonal decomposition

L2 = PL2 ⊕ QL2.

Moreover, it is clear that P, Q ∈ L(Wα,2,Wα,2) and that P and Q have operator
norm less than or equal to one for all α ∈ R. We set

Hα = PWα,2 & Hα⊥ = QWα,2.

It can be shown that for all α ∈ R (see Lemma 3.7 in [25]),

Wα,2 = Hα ⊕ Hα⊥,

where
〈 f, g〉−α,α = 0, ∀g ∈ Hα⊥, ∀ f ∈ H−α, (2.1)

and

Hα =
{
f ∈ Wα,2 : ∇ · f = 0

}
,
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Hα⊥ = {g ∈ Wα,2 : 〈 f, g〉−α,α = 0, ∀ f ∈ H−α}.
Using (2.1), one can check that i−α,α : H−α → (Hα)∗ and i−α,α : H−α

⊥ → (Hα⊥)∗
are isometric isomorphisms for all α ∈ R.

For each vector n ∈ Zd−{0}, there exists d−1 vectors {m1(n), . . . ,md−1(n)} ⊆ Rd

that are of unit length and orthogonal to n in Rd . Denoting by e j , j ∈ {1, . . . , d}, the
standard basis of Rd , it follows that

{
f0, j = e j (2π)−

d
2 : j ∈ {1, . . . , d}

}
∪

{
fn, j = m j (n)en : n ∈ Zd − {0},

j ∈ {1, . . . , d − 1}
}

is an orthonormal basis of {u ∈ L2(Td ;Cd) : ∇ · u = 0}. In dimension two, the unit
vector |n|−1n⊥ = |n|−1[n2,−n1]T is orthogonal to n = [n1, n2]T ∈ Z2 − {0}, and
hence
{
f0,1=[1, 0]T (2π)−

d
2 , f0,2=[0, 1]T (2π)−

d
2

}
∪

{
f1,n = |n|−1n⊥en : n ∈ Z2 − {0}

}

is an orthonormal basis of {u ∈ L2(T2;C2) : ∇ · u = 0}.
For a given n ∈ Zd − {0} and j ∈ {1, . . . , d − 1}, let

wsin
j,n(x) := √

2(2π)−
d
2m j (n) sin(n · x), wcos

j,n(x) := √
2(2π)−

d
2m j (n) cos(n · x).

It follows that
{
(2π)−

d
2 e j : j ∈ {1, . . . , d}

}
∪

{
wsin

j,n(x), wcos
j,n(x) : n ∈ Zd − {0}, n1 > 0,

j ∈ {1, . . . , d − 1}
}

is an orthonormal basis of H0 and an orthogonal basis of H1. We reindex this basis
by {hn}∞n=1. It is clear that w

sin
j,n and wcos

j,n are eigenfunctions of the Stokes operator

A = −P� on H0 with corresponding eigenvalues |n|2. Thus, there exist a sequence
{λn}∞n=1 of nonnegative numbers such that Ahn = λnhn , for all n ∈ N.
The following considerations shall enlighten the construction of the unbounded

rough drivers associated with (1.1) (see Sect. 2.5). Let σ : Td → Rd be twice
differentiable and divergence free. Moreover, assume that the derivatives of σ up to
order two are bounded uniformly by a constant N0. LetA1 = σ ·∇ = ∑d

i=1 σ i Di and
A2 = (σ · ∇)(σ · ∇). It follows that there is a constant N = N (d, N0, α) such that

|A1|L(Wα+1,2,Wα,2) ≤ N , ∀α ∈ [0, 2], |A2 f |L(Wα+2,2,Wα,2) ≤ N , ∀α ∈ [0, 1].
We refer the reader to [26] for the estimates in the fractional norms; the estimates
given in [26] are on the whole space, but can easily be adapted to the periodic setting.
Since P ∈ L(Wα,2,Hα) and Q ∈ L(Wα,2,Hα⊥) for all α ∈ R, both of which have
operator norm bounded by 1, we have

|PA1|L(Hα+1,Hα) ≤ N , |QA1|L(Hα+1
⊥ ,Hα⊥)

≤ N , ∀α ∈ [0, 2], (2.2)
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and
|PA2|L(Hα+2,Hα) ≤ N , |QA2|L(Hα+2

⊥ ,Hα⊥)
≤ N , ∀α ∈ [0, 1], (2.3)

and hence (PA1)∗ ∈ L((Hα)∗, (Hα+1)∗) and (QA1)∗ ∈ L((Hα⊥)∗, (Hα+1
⊥ )∗) for

α ∈ [0, 2] and (PA2)∗ ∈ L((Hα)∗, (Hα+2)∗) and (QA2)∗ ∈ L((Hα⊥)∗, (Hα+2
⊥ )∗) for

α ∈ [0, 1]. Making use of the divergence-free property of σk , k ∈ {1, . . . , K }, we find
((

−PA1
)
f, g

)
=

(
f, PA1g

)
, ∀ f, g ∈ S ∩ H0,

and
((

−QA1
)
f, g

)
=

(
f, QA1g

)
, ∀ f, g ∈ S ∩ H0⊥,

which implies that (−PA1)∗ = PA1 and (−QA1)∗ = QA1. Thus, owing to the
characterization of the duality betweenWα,2 andW−α,2 through theL2 inner product,
we have

PA1 ∈ L
(
H−α,H−(α+1)

)
, QA1 ∈ L

(
H−α

⊥ ,H−(α+1)
⊥

)
,

PA2 ∈ L
(
H−α,H−(α+2)

)
, QA2 ∈ L

(
H−α

⊥ ,H−(α+2)
⊥

)
.

In order to analyze the convective term,we employ the classical notation andbounds.
Owing to Lemma 2.1 in [27] adapted to fractional norms (see [28]), the trilinear form

b(u, �, w) =
∫

Td
((u · ∇)�) · w dx =

d∑

i, j=1

∫

Td
ui Di �

jw j dx

is continuous on Wα1,2 × Wα2+1,2 × Wα3,2 if α1, α2, α3 ∈ R+ satisfy

α1 + α2 + α3 ≥ d

2
, if αi �= d

2
for all i ∈ {1, 2, 3},

α1 + α2 + α3 >
d

2
, if αi = d

2
for some i ∈ {1, 2, 3};

that is,
|b(u, v, w)| �α1,α2,α3,d |u|α1 |v|α2+1|w|α3 . (2.4)

In the case d = 2, by virtue of the Gagliardo–Nirenberg interpolation inequality

|φ|L4(T2,R2) � |φ|
1
2
0 |φ|

1
2
1 , we have

|b(u, v, w)| � |u|
1
2
0 |u|

1
2
1 |v|1|w|

1
2
0 |w|

1
2
1 , ∀u, v, w ∈ W1,2, (2.5)

which plays an important role in the uniqueness proof. (See Theorem 4.3.) Moreover,
for all u ∈ Hα1 and (�, w) ∈ Wα2+1,2 × Wα3,2 such that α1, α2, α3 satisfy (2.4), we
have

b(u, �, w) = −b(u, w, �) and b(u, �, �) = 0. (2.6)
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For α1, α2, and α3 that satisfy (2.4) and any given (u, �) ∈ Wα1,2 × Wα2+1,2, we
define B(u, �) ∈ W−α3,2 by

〈B(u, �), w〉−α3,α3 = b(u, �, w), ∀w ∈ Wα3,2.

Similarly, we define BP = PB and BQ = QB and note that

BP := PB : Wα1,2 × Wα2+1,2 → H−α3 , BQ := QB : Wα1,2 × Wα2+1,2 → H−α3⊥ ,

for α1, α2, and α3 that satisfy (2.4). We set

B(u) = B(u, u), BP (u) := BP (u, u), and BQ(u) := BQ(u, u).

2.2. Smoothing operators

As in [9], we will need a family of smoothing operators (J η)η∈(0,1] acting on the
scale of spaces (Wα,2)α∈R; that is, we require a family (J η)η∈(0,1] such that for all
α ∈ R and β ∈ R+,

|(I − J η) f |α � ηβ | f |α+β and |J η f |α+β � η−β | f |α. (2.7)

We construct these operators from the frequency cutoff operator SN : S′ → S defined
by

SN f =
∑

|n|<N

f̂nen .

It follows that for all α ∈ R and β ∈ R+,

| f −SN f |2α =
∑

|n|≥N

(
1 + |n|2

)α | f̂n |2 ≤ N−2β
∑

|n|≥N

(
1 + |n|2

)α+β | f̂n |2 ≤ N−2β | f |2α+β

and

|SN f |2α+β =
∑

|n|<N

(
1 + |n|2

)α+β | f̂n |2 ≤ (1+ N2)β
∑

|n|≥N

(
1 + |n|2

)α | f̂n |2 � N2β | f |2α.

We define J η := S�η−1�. It is then clear that J η is a smoothing operator on Wα,2 and
that it leaves the subspaces Hα and Hα⊥ invariant.

2.3. Rough paths

For a given interval I,wedefine�I := {(s, t) ∈ I 2 : s ≤ t} and�
(2)
I := {(s, θ, t) ∈

I 3 : s ≤ θ ≤ t}. For a given T > 0, we let �T := �[0,T ] and �
(2)
T = �

(2)
[0,T ] Let P(I )

denote the set of all partitions of an interval I and let E be a Banach space with norm
| · |E . A function g : �I → E is said to have finite p-variation for some p > 0 on I
if

|g|p−var;I ;E := sup
(ti )∈P(I )

(
∑

i

|gti ti+1 |pE
) 1

p

< ∞,
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and we denote by C p−var
2 (I ; E) the set of all continuous functions with finite p-

variation on I equipped with the semi-norm | · |p−var;I ;E . In this section, we drop the
dependence of norms on the space E when convenient. We denote by C p−var(I ; E)

the set of all paths z : I → E such that δz ∈ C p−var
2 (I ; E), where δzst := zt − zs .

For a given interval I , a two-index map ω : �I → [0,∞) is called superadditive if
for all (s, θ, t) ∈ �

(2)
I ,

ω(s, θ) + ω(θ, t) ≤ ω(s, t).

A two-indexmapω : �I → [0,∞) is called a control if it is superadditive, continuous
on �I and for all s ∈ I , ω(s, s) = 0.
If for a given p > 0, g ∈ C p−var

2 (I ; E), then it can be shown that the 2-index map
ωg : �I → [0,∞) defined by

ωg(s, t) = |g|pp−var;[s,t]

is a control (see, e.g., Proposition 5.8 in [29]). It is clear that |gst | ≤ ωg(s, t)
1
p for all

(s, t) ∈ �I . If ω is a control such that |gst | ≤ ω(s, t)
1
p , then using superadditivity of

the control, we have
∑

i

|gti ti+1 |p ≤
∑

i

ω(ti , ti+1) ≤ ω(s, t),

for any partition (ti ) ∈ P([s, t]). Taking supremumover all partitions yieldsωg(s, t) ≤
ω(s, t). Thus, we could equivalently define a semi-norm on C p−var

2 (I ; E) by

|g|p−var;[s,t] = inf{ω(s, t)
1
p : |guv| ≤ ω(u, v)

1
p for all (u, v) ∈ �[s,t]}.

We shall need a local version of the p-variation spaces, for which we restrict the
mesh size of the partition by a control.

DEFINITION 2.1. Given an interval I = [a, b], a control � and real number L >

0, we denote by C p−var
2,�,L(I ; E) the space of continuous two-index maps g : �I → E

for which there exists at least one control ω such that for every (s, t) ∈ �I with

�(s, t) ≤ L , it holds that |gst |E ≤ ω(s, t)
1
p . We define a semi-norm on this space by

|g|p−var,�,L;I = inf
{
ω(a, b)

1
p : ω is a control s.t. |gst |

≤ ω(s, t)
1
p , ∀(s, t) ∈ �I with �(s, t) ≤ L

}
.

REMARK 2.2. By the above analysis, it is clear that we could equivalently define
the semi-norm as

|g|p−var,�,L;I = sup
(ti )∈P�,L (I )

(
∑

i

|gti ti+1 |p
) 1

p

,
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whereP�,L(I ) denotes the family of all partitions of an interval I such that�(ti , ti+1)

≤ L for all neighboring partition points ti and ti+1. It is clear that

C p−var
2,�1,L1

(I ; E) ⊂ C p−var
2,�2,L2

(I ; E) (2.8)

for �1 ≤ �2 and L2 ≤ L1.

REMARK 2.3. Let I be an interval. We could define the local p-variation space
for 1-index maps C p−var

�,L (I ; E) as above. However, there is no difference between

the local and global spaces; that is, C p−var
�,L (I ; E) = C p−var(I ; E). Indeed, clearly

C p−var(I ; E) ⊂ C p−var
�,L (I ; E). To showC p−var

�,L (I ; E) ⊂ C p−var(I ; E), let� be such

there is a partition (s j )Jj=1 of I satisfying �(s j , s j+1) ≤ L . Then, for any partition

(ti ) ∈ P(I ), we can always find a refinement (t̃k) of (ti ) containing (s j ). It follows
from the superadditivity of � that �(t̃k, t̃k+1) ≤ L . Moreover, either an interval
(ti , ti+1) does not contain any of the (s j )Jj=1 or it contains a set {s j1(i), . . . , s jn(i)(i)}.
In the latter case, we have

δgti ti+1 = δgti s j1(i) +
jn(i)(i)−1∑

j= j1(i)

δgs j s j+1 + δgs jn(i)(i)ti+1 .

Thus, for any g ∈ C p−var
�,L (I ; E), we have

∑

(ti )∈P(I )

|δgti ti+1 |p �p

∑

(t̃i )∈P�,L

|δgt̃i t̃i+1
|p �p |g|p−var,�,L;I ,

and hence C p−var
�,L (I ; E) = C p−var(I ; E).

We now introduce the notion of a rough path. For a thorough introduction to the
theory of rough paths, we refer the reader to the monographs [29–31]. For a two-index
map g : �I → R, we define the second-order increment operator

δgsθ t = gst − gθ t − gsθ , ∀(s, θ, t) ∈ �
(2)
I .

DEFINITION 2.4. Let K ∈ N and p ∈ [2, 3). A continuous p-rough path is a pair

Z = (Z ,Z) ∈ C p−var
2

(
[0, T ];RK

)
× C

p
2 −var
2

(
[0, T ];RK×K

)
(2.9)

that satisfies the Chen’s relation

δZsθ t = Zsθ ⊗ Zθ t , ∀(s, θ, t) ∈ �
(2)
[0,T ].

A rough path Z = (Z ,Z) is said to be geometric if it can be obtained as the limit in

the product topology C p−var
2 ([0, T ];RK ) × C

p
2 −var
2 ([0, T ];RK×K ) of a sequence of

rough paths {(Zn,Zn)}∞n=1 such that for each n ∈ N,

n
st := δznst and Z

n
st :=

∫ t

s
δznsθ ⊗ dznθ ,



216 M. Hofmanová et al. J. Evol. Equ.

for some smooth path zn : [0, T ] → RK , where the iterated integral is a Riemann
integral. We denote by Cp−var

g ([0, T ];RK ) the set of geometric p-rough paths and
endow it with the product topology.

REMARK 2.5. For any continuous p-rough path Z = (Z ,Z), it is clear that we can
always find a control ω such that for all (s, t) ∈ �T ,

|Zst |p ≤ ω(s, t) and |Zst | p
2 ≤ ω(s, t).

With abuse of notation, we write ω = ωZ . This should compared with (2.10) below.

Throughout this paper, we will only consider geometric rough paths. An advantage
of working with geometric rough paths is that a first-order chain rule similar to the one
known for smooth paths holds true. We recall that such a chain rule is not true in Itô
integration theory, in which only a (second order) Itô formula is available. However,
for the Stratonovich integral, a first-order chain rule holds true. Thus, in case of a
Brownian motion, a Stratonovich integral should be used for the construction of the
iterated integral if one wishes to lift it to a geometric rough path.

2.4. Unbounded rough drivers

Since the rough perturbation in (1.1) is (unbounded) operator valued, it is necessary
to generalize the notion of a rough path accordingly. To this end, we define unbounded
rough drivers, which can be regarded as operator valued rough paths with values in
a suitable space of unbounded operators. In what follows, we call a scale any family
(Eα, | · |α)α∈R+ of Banach spaces such that Eα+β is continuously embedded into Eα

for β ∈ R+. For α ∈ R+, we denote by E−α the topological dual of Eα , and note
that, in general, E−0 �= E0.

DEFINITION 2.6. Let p ∈ [2, 3) and T > 0 be given. A continuous unbounded
p-rough driver with respect to the scale (Eα, | · |α)α∈R+ , is a pair A = (A1, A2) of
2-index maps such that there exists a continuous control ωA on [0, T ] such that for
every (s, t) ∈ �T ,

|A1
st |pL(E−α,E−(α+1))

≤ ωA(s, t) for α ∈ [0, 2], |A2
st |

p
2
L(E−α,E−(α+2))

≤ ωA(s, t) for α ∈ [0, 1], (2.10)

and Chen’s relation holds true,

δA1
sθ t = 0, δA2

sθ t = A1
θ t A

1
sθ , ∀(s, θ, t) ∈ �

(2)
T . (2.11)

We will show below that Definition 2.6 allows for a formulation of (1.1), (1.7). (See
Definitions 2.11 and 2.7.)
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2.5. Formulation of the equation

In this section, we derive a rough path formulation of (1.1), (1.7), which will be
satisfied by solutions constructed by our main result below, Theorem 2.13. The main
ideas of this stepwere already discussed in Sect. 1 in the simpler setting of the transport
equation (1.3).

We fix an arbitrary terminal time T > 0 and viscosity ν > 0. Let d ∈ {2, 3}.
Let z ∈ C p−var([0, T ];RK ) be such that it can be lifted to a continuous geometric
p-rough path Z = (Z ,Z) ∈ Cp−var

g ([0, T ];RK ) for some p ∈ [2, 3). For each
k ∈ {1, . . . , K }, assume that σk : Td → Rd is twice differentiable and divergence
free. Moreover, assume that for all k ∈ {1, . . . , K }, σk and its derivatives up to order
two are bounded uniformly. For given initial condition u0 ∈ H0, we consider the
system of Navier–Stokes equations on (t, x) ∈ [0, T ] × Td given by

∂t u + (u · ∇)u + ∇ p = ν�u + (σk · ∇)u żkt ,

∇ · u = 0,

u(0) = u0,

(2.12)

where the unknown are the velocity field u : [0, T ] × Td → Rd and pressure p :
[0, T ] × Td → R. Here and below, we use the notation

(u · ∇)u =
d∑

j=1

u j ∂u

∂x j
and (σk · ∇)u żkt =

K∑

k=1

(σk · ∇)u żkt =
K∑

k=1

d∑

j=1

σ
j
k

∂u

∂x j
żkt .

The classical way of studying the Navier–Stokes equation in the variational frame-
work is to decouple the velocity field and the pressure into two equations using the
Leray projection P defined in Sect. 2.1. Applying the solenoidal P : Wα,2 → Hα and
gradient projection Q : Wα,2 → Hα⊥ separately to (2.12) yields

∂t u + P [(u · ∇)u] = ν�u + P [(σk · ∇) u] żkt ,

∇ p + Q [(u · ∇) u] = Q [(σk · ∇) u] żkt .
(2.13)

We let

π :=
∫ ·

0
∇ pr dr.

As we did for the pure-transport equation (1.3) in the introduction, we integrate the
(2.13) over [s, t] and then iterate the equation into itself to obtain

δust +
∫ t

s
P [(ur · ∇) ur ] dr =

∫ t

s
ν�urdr +

[
AP,1
st + AP,2

st

]
us + uP,�

st ,

δπst +
∫ t

s
Q [(ur · ∇) ur )] dr =

[
AQ,1
st + AQ,2

st

]
us + uQ,�

st ,

(2.14)
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where

AP,1
st ϕ := P [(σk · ∇) ϕ] Zk

st , AP,2
st ϕ := P [(σk · ∇) P [(σi · ∇) ϕ]]Zi,k

st ,

AQ,1
st ϕ := Q [(σk · ∇) ϕ] Zk

st , AQ,2
st ϕ := Q [(σk · ∇) P [(σi · ∇) ϕ]] Zi,k

st .

To do this derivation, let us assume that we have a solution u ∈ L2
TH

1 ∩ L∞
T H0. If we

set

μ· =
∫ ·

0
[ν�ur − (ur · ∇)ur ] dr,

then by (2.4) with α1 = α3 = 1 and α2 = 0, we have μ ∈ C1−var([0, T ];W−1,2).
Iterating the first equation of (2.13) into itself gives

δust = Pδμst +
∫ t

s
P(σk · ∇)

(
us + Pδμsr +

∫ r

s
P(σi · ∇)ur1 dz

i
r1

)
dzkr

= Pδμst + P(σk · ∇)us Z
k
st +

∫ t

s
P(σk · ∇)δμsr dz

k
r

+
∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)ur1 dz

i
r1 dz

k
r

= Pδμst + P(σ · ∇k)us Z
k
st +

∫ t

s
P(σk · ∇)δμsr dz

k
r+

+
∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)

(
us + Pδμsr1 + P

∫ r1

s
(σ j · ∇)ur2 dz

j
r2

)
dzir1 dz

k
r

= Pδμst + P(σk · ∇)us Z
k
st + P(σk · ∇)P(σi · ∇)usZ

i,k
st +

∫ t

s
P(σk · ∇)δμsr dz

k
r+

+
∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)

(
Pδμsr1 + P

∫ r1

s
(σ j · ∇)ur2 dz

j
r2

)
dzir1 dz

k
r

= Pδμst + P[(σk · ∇)us ]Zk
st + P[(σk · ∇)P[(σi · ∇)us ]]Zi,k

st + uP,�
st , (2.15)

where

uP,�
st :=

∫ t

s
P(σk · ∇)Pδμsr dz

k
r

+
∫ t

s
P(σk · ∇)

∫ r

s
P(σi · ∇)

(
Pδμsr1 + P

∫ r1

s
(σ j · ∇)ur2 dz

j
r2

)
dzir1 dz

k
r .

We expect uP,�
st be in C

p
3 −var
2 ([0, T ];H−3) since μ ∈ C1− var([0, T ];W−1,2) and

u ∈ L∞
T H0.

Note that Qμ = − ∫ ·
0 Q[(ur · ∇)ur ]dr. Then, iterating the first equation of (2.13)

into second equation, we find

δπst = Qδμst + Q
∫ t

s
(σk · ∇)ur dz

k
r

= Qδμst + Q
∫ t

s
(σk · ∇)

(
us + Pδμsr + P

∫ r

s
(σi · ∇)ur1 dz

i
r1

)
dzkr
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= Qδμst + Q(σk · ∇)us Z
k
st + Q

∫ t

s
(σk · ∇)Pδμsr dz

k
r

+ Q
∫ t

s
(σk · ∇)P

∫ r

s
(σi · ∇)

(
us + Pδμsr1 + P

∫ r1

s
(σ j · ∇)ur2 dz

j
r2

)
dzir1 dz

k
r

= Qδμst + Q[(σk · ∇)us ]Zk
st + Q[(σk · ∇)P[(σi · ∇)us ]]Zi,k

st + uQ,�
st ,

where

uQ,�
st = Q

∫ t

s
(σk · ∇)Pδμsr dz

k
r

+ Q
∫ t

s
(σk · ∇)P

∫ r

s
(σi · ∇)

(
Pδμsr1 + P

∫ r1

s
(σ j · ∇)ur2 dz

j
r2) dz

i
r1

)
dzkr ,

which is expected to be in C
p
3 −var
2 ([0, T ];H−3

⊥ ).
Equation (2.14) is to be understood in the sense that we define the remainder terms

uP,� and uQ,� from the solution u and π , and have to verify that they are indeed
negligible remainders; namely, they are of order o(|t − s|). This will be made precise
in Definition 2.7 below.
The pair AP = (AP,1, AP,2) is an unbounded rough driver (Definition 2.6) on the

scale (Hα)α∈R+ . Indeed, the existence of a control ωAP such that (2.10) holds follows
from the discussion in Sect. 2.1 and the fact that (Z ,Z) is a p-rough path (Definition
2.4), which also implies Chen’s relation (2.11).We note that controlωAP can be chosen
to satisfy

ωAP (s, t) ≤ CωZ (s, t), ∀(s, t) ∈ �T , (2.16)

for a constant C > 0 depending only on d and the bounds on σ = (σ1, . . . , σK ) and
its derivatives up to order two.
The pair AQ = (AQ,1, AQ,2) satisfies (2.10) for the scale (Hα⊥)α∈R+ with a control

ωAQ , which also satisfies the bound (2.16). However, AQ is not an unbounded rough
driver since it fails to satisfy Chen’s relation (2.11). Nevertheless, it satisfies

δAQ,2
sθ t = AQ,1

θ t AP,1
sθ , for all (s, θ, t) ∈ �

(2)
T , (2.17)

which is the correct Chen’s relation for the system of Eq. (2.13) needed to establish
the required time regularity of the remainder uQ,� (see Sect. 3 and Lemma 3.5).

We will now define our first notion of solution to (2.12).

DEFINITION 2.7. A pair of weakly continuous functions (u, π) : [0, T ] → H0 ×
H−3

⊥ is called a solution of (2.12) if u ∈ L2
TH

1 ∩ L∞
T H0 and uP,� : �T → H−3 and

uQ,� : �T → H−3
⊥ defined for all φ ∈ H3, ψ ∈ H3⊥ and (s, t) ∈ �T by

uP,�
st (φ) := δust (φ) +

∫ t

s
[ν (∇ur , ∇φ) + BP (ur )(φ)] dr − us

([
AP,1,∗
st + AP,2,∗

st

]
φ
)

,

(2.18)

uQ,�
st (ψ) := δπst (ψ) +

∫ t

s
BQ(ur )(ψ) dr − us

([
AQ,1,∗
st + AQ,2,∗

st

]
ψ

)
, (2.19)
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satisfy

uP,� ∈ C
p
3 −var
2,�,L ([0, T ];H−3) and uQ,� ∈ C

p
3 −var
2,�,L ([0, T ];H−3

⊥ ), (2.20)

for some control � and L > 0.

REMARK 2.8. Applying (2.4) with α1 = 0, α2 = 2, and α3 = 0, we get

BP (u)(φ) = BP (u, u)(φ) = BP (u, φ)(u) � |u|20|φ|3,

from which it follows that the dr -integral in (2.18) is well defined since u ∈ L∞
T H0.

One could also obtain an estimate that requires less regularity on φ by applying (2.4)
with α1 = 1, α2 = 0, and α3 = 1 to get,

|BP(u)(φ)| � |u|21|φ|1,

from which it follows that the dr -integral in (2.18) is well defined since u ∈ L2
TH

1.
However, we must test by φ ∈ H3 to ensure that the remainder term uP,�(φ) has the
required time regularity. An analogous argument holds for the BQ term in (2.20).

REMARK 2.9. In (2.18) and (2.20), we opt for distributional evaluation notation
for most terms, and continue to do so throughout the paper. That is,

uP,�
st (φ) = 〈uP,�

st , φ〉−3,3, δust (φ) = (δust , φ)0 , us
([

AP,1,∗
st + AP,2,∗

st

]
φ
)

0

=
(
us ,

[
AP,1,∗
st + AP,2,∗

st

]
φ
)

0
,

uQ,�
st (φ) = 〈uQ,�

st , ψ〉−3,3, us
([

AQ,1,∗
st + AQ,2,∗

st

]
ψ

)

0
=

(
us ,

[
AQ,1,∗
st + AQ,2,∗

st

]
ψ

)

0
.

REMARK 2.10. Due to (2.8), there is no restriction in taking the same� and L > 0
for both local variation spaces in (2.20).

We will now discuss an alternative way of formulating the equation. We can arrive
at this formulation by performing an iteration directly on (2.12):

δust = δμst − δπst + (σk · ∇)us Z
k
st + (σk · ∇)(σi · ∇)usZ

i,k
st

+
∫ t

s
(σk · ∇)δμsr dz

k
r −

∫ t

s
(σk · ∇)δπsr dz

k
r

+
∫ t

s
(σk · ∇)

∫ r

s
(σi · ∇)

(
δμsr1 − δπsr1 +

∫ r1

s
(σ j · ∇)ur2 dz

j
r2

)
dzir1 dz

k
r .

The integral
∫ t
s (σk · ∇)δπsr dzkr is not regular enough in time for it to be a negligible

remainder. Indeed, we expect π to have finite p-variation, so that
∫ ·
0(σk · ∇)δπsr dzkr

should only have finite p
2 -variation. If we define

ū�
st =

∫ t

s
(σk · ∇) δμsr dz

k
r +

∫ t

s
(σk · ∇)

∫ r

s
(σi · ∇)

(
δμsr2 − δπsr2
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+
∫ r1

s

(
σ j · ∇)

ur2 dz
j
r2

)
dzir1 dz

k
r ,

then we expect ū� to be in C
p
3 −var
2 ([0, T ];W−3,2). Moreover, we have

δust = δμst − δπst + (σk · ∇)us Z
k
st + (σk · ∇)(σi · ∇)usZ

i,k
st + ū�

st

−
∫ t

s
(σk · ∇)δπsr dz

k
r .

In order to complete the formulation, we use Eq. (2.13) for π to deduce

−
∫ t

s
(σk · ∇) δπsrdz

k
r = − (σk · ∇) Q ((σi · ∇) us)Z

i,k
st +

∫ t

s
(σk · ∇) Qδμsrdz

k
r

−
∫ t

s
(σk · ∇)

∫ r

s
Q (σi · ∇)

(
δμsr1 − δπsr1

+
∫ r1

s

(
σ j · ∇)

ur1dz
j
r1

)
dzir1dz

k
r .

All the terms above except for (σk · ∇)Q [(σi · ∇)us]Z
i,k
st belong to C

p
3 −var
2 ([0, T ];

W−3,2), and hence we may include them in a new remainder

u�
st := ū�

st −
∫ t

s
(σk · ∇)Qδμsr dz

k
r

−
∫ t

s
(σk · ∇)

∫ r

s
Q(σi · ∇)

(
δμsr1 + δπsr1 +

∫ r1

s
(σ j · ∇)ur1 dz

j
r2

)
dzir1 dz

k
r .

Combining the above, we obtain

δust = δμst − δπst + (σk · ∇) us Z
k
st + (σk · ∇) (σi · ∇) usZ

i,k
st

− (σk · ∇) Q [σi · ∇us]Z
i,k
st + u�

st

= δμst − δπst + (σk · ∇) us Z
k
st + (σk · ∇) P [(σi · ∇) us]Z

i,k
st + u�

st .

Thus, the pair A = (A1, A2) defined by

A1
stϕ = (σk · ∇)ϕZk

st , A2
stϕ = (σk · ∇)P [(σi · ∇)ϕ]Zi,k

st

satisfies (2.10) for the scale (Wα,2)α∈R+ with control ωA. However, this pair does not
satisfy Chen’s relation (2.11), but does satisfy

δA2
sθ t = A1

θ t P A1
sθ , ∀(s, θ, t) ∈ �

(2)
T . (2.21)

Since AP = PA and AQ = QA, the controls ωAP , ωAQ , and ωA can be chosen so
that

ωAP (s, t), ωAQ (s, t) ≤ ωA(s, t) ≤ CωZ (s, t), ∀(s, t) ∈ �T ,

where C is a constant depending only on d and the bounds on σ = (σ1, . . . , σK ) and
its derivatives up to order two.
Thus, alternatively, we may formulate a solution to (2.12) as follows.
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DEFINITION 2.11. A pair of weakly continuous functions (u, π) : [0, T ] →
H0 ×H−3

⊥ is called a solution of (2.12) if u ∈ L2
TH

1 ∩ L∞
T H0 and u� : �T → W−3,2

defined for all φ ∈ W3,2 and (s, t) ∈ �T by

u�
st (φ) = δust (φ) +

∫ t

s
[ν(∇ur , ∇φ) + B(ur )(φ)] dr − us

([
A1,∗st + A2,∗st

]
φ
)

+ δπst (φ),

satisfies u� ∈ C
p
3 −var
2,�,L ([0, T ];W−3,2) for some control � and L > 0.

The following lemma says that both formulations were derived in a consistent way
and are equivalent.

LEMMA 2.12. Definitions 2.7 and 2.11 are equivalent.

Proof. Clearly, PAi
st = AP,i

st and QAi
st = AQ,i

st for i ∈ {1, 2}.Moreover, themapping

C
p
3 −var
2,�,L

(
[0, T ];W−3,2

)
→ C

p
3 −var
2,�,L

(
[0, T ];H−3

)
× C

p
3 −var
2,�,L

(
[0, T ];H−3

⊥
)

u� �→
(
uP,�, uQ,�

)
:= (

Pu�, Qu�
)

is continuous and invertible with inverse

C
p
3 −var
2,�1,L1

(
[0, T ];H−3

)
× C

p
3 −var
2,�2,L2

(
[0, T ];H−3

⊥
)

→ C
p
3 −var
2,�,L

(
[0, T ];W−3,2

)

(
uP,�, uQ,�

)
�→ uP,� + uQ,�

where � := �1 +�2 and L := L1 ∧ L2. The rest of the proof is straightforward. �

In the remainder of the paper, we use Definition 2.7.

2.6. Main results

Let us now formulate our main results.

THEOREM 2.13. Let d ∈ {2, 3}. Assume that for each k ∈ {1, . . . , K }, σk : Td →
Rd and its derivatives up to order two are bounded uniformly and that σk is divergence
free. For a given u0 ∈ H0 andZ ∈ Cp−var

g ([0, T ];RK ), there exists a solution of (2.12)
in the sense of Definition 2.7 satisfying the energy inequality

sup
t∈[0,T ]

|ut |20 +
∫ T

0
|∇ur |20 dr ≤ |u0|20.

Moreover, u ∈ C p−var([0, T ];H−1) and π ∈ C p−var([0, T ];H−3
⊥ ).

The proof of this result is presented in Sect. 4.1 as a consequence of the stronger
statement in Theorem 4.1. It proceeds in two steps: first (see Sect. 4.1.1), the velocity
field is constructed using compactness as a limit of suitable Galerkin approximations
combined with an approximation of the driving signal z by smooth paths. Second, the
pressure is recovered (see Sect. 4.1.2).
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For two space dimensions and constant vector fields, we prove that the solution
(u, π) is unique as a consequence of the stronger statement Theorem 4.3. In Sect. 4.2,
we prove uniqueness via a tensorization argument, which allows us to estimate the
difference of two solutions by the difference of their initial conditions. We remark that
one cannot directly use the techniques from [10], since this way of approximating the
Dirac-delta violates the divergence-free condition.

THEOREM 2.14. If d = 2 and σk is constant function of x ∈ Td for all k ∈
{1, . . . , K }, then for a given u0 ∈ H0 and Z ∈ Cp−var

g ([0, T ];RK ), there exists a
unique solution of (2.12). Moreover, u ∈ CTH0, π ∈ C p−var([0, T ];H−1

⊥ ), and

sup
t∈[0,T ]

|ut |20 + 2ν
∫ T

0
|∇ur |20 dr = |u0|20.

Owing to Theorem 2.14, in dimension two, there exists a solution map � that maps
every initial condition u0 ∈ H0, family of constant vector fields σk , k ∈ {1, . . . , K },
and continuous geometric p-rough path Z = (Z ,Z) to a unique solution (u, π) of
(2.12). The following stability result is proved in Sect. 4.3.

COROLLARY 2.15. In dimension two and for constant vector fields σk , k ∈
{1, . . . , K }, the solution map

� : H0 × R2×K × Cp−var
g

(
[0, T ];RK

)
→ L2

TH
0 ∩ CTH0

w × C1−var
(
[0, T ];H−2

⊥
)

(u0, σ,Z) �→ (u, π)

is continuous.

REMARK 2.16. It is tempting to try to rewrite (1.1) using a flow transformation by
following the ideas in [3,32,33]. More specifically, suppose that there is sufficiently
regular invertible map ϕ : [0, T ] × Td → Td such that

ϕ̇t (x) = ȧt (ϕt (x)), ϕ0(x) = 0,

and let us define �t (x) := ut (ϕt (x)). Differentiating in time, we find

∂t �t (x) = ∂t ut (ϕt (x)) + ȧt (ϕt (x)) · ∇ut (ϕt (x))

= ν�ut (ϕt (x)) − ut (ϕt (x)) · ∇ut (ϕt (x)) − ∇ pt (ϕt (x)),

which could be rewritten in terms of v using ∇�t (x) = ∇ut (ϕt (x))∇ϕt (x) provided
ϕt (·) is a diffeomorphism. If we assume all the driving vector fields are divergence
free, then we have det(∇ϕt (x)) = 1 so that the equation for � is a Navier–Stokes-type
equation, including coefficients from a unimodular matrix depending on t and x . This
could account for further difficulties, but it seems plausible that one can solve such an
equation. The added value of the construction we present in this paper is that it allows
for an intrinsic notion of solution to (1.1) and estimates of the corresponding rough
integral.
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REMARK 2.17. In three dimensions, it is known that the Stratonovich Navier–
Stokes equation

du + (u · ∇)u dt + ∇ p = ν�u dt + ∇u ◦ dw

has a probabilistically weak solution (see, e.g., [19,21,22]). Nevertheless, whether
the solution probabilistically strong is still an open question. In other words, it is not
known whether the solution to the above equation is adapted to the filtration generated
by the Wiener process w. Even though a prime example of a driving rough path in
our equation is a Wiener process with its Stratonovich lift and solving rough PDEs
corresponds to a non-probabilistic (pathwise) construction of solutions, we still can not
answer this question at this point. The reader should note that using the compactness
criterion Lemma A.2, we obtain a subsequence of the approximate solutions that a
priori depends the randomness variable ω (not a control). The question whether the
full sequence converges is very difficult to answer, as it is intimately related to the
issue of uniqueness. Indeed, if uniqueness held true in three dimensions, then every
subsequence of {uN }∞N=1 would converge to the same limit, and hence the full sequence
would converge.As a consequence, the proof of stability inCorollary 2.15would imply
that the solution (u, π) depends continuously on the given data (u0, σ,Z) and is thus
adapted to the filtration generated by the Brownian motion.

3. A priori estimates of remainders

In this section, we derive a priori estimates of the remainder terms uP,� and uQ,�

and |u|p−var;[0,T ];H−1 . Let (u, π) be a solution of (2.13) in the sense of Definition 2.7.
For t ∈ [0, T ], we let

μt (φ) = −
∫ t

0
[ν(∇ur ,∇φ) + BP (ur )(φ)] dr, φ ∈ H1.

It follows that for (s, t) ∈ �T ,

δust = δμst + AP,1
st us + AP,2

st us + uP,�
st , (3.1)

where the equality holds in H−3. For all (s, t) ∈ �T , let

ωμ(s, t) =
∫ t

s
(1 + |ur |1)2 dr,

where we recall that | · |1 denotes the H1-norm. Since u ∈ L2
TH

1, ωμ is a control.
Using (2.4) with α1 = α3 = 1 and α2 = 0, we obtain |BP (ur )|−1 � |ur |21, and hence
|δμst |−1 � ωμ(s, t).
We begin with an important lemma which provides an estimate of uP,� in terms

of the given data. The following result is a special case of [10, Theorem 2.5], but we
include a proof for the readers convenience. Let us define the map

u�
st := δust − AP,1

st us = δμst + AP,2
st us + uP,�

st . (3.2)
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The first expression for u�
st consists of terms that are less regular in time and more

regular in space than the second expression for u�
st . We use this fact along with the

smoothing operators and the sewing lemma (B.1) to estimate the remainder terms.

LEMMA 3.1. Assume that (u, π) solves (2.12) according to Definition 2.7. For

(s, t) ∈ �T such that �(s, t) ≤ L, let ωP,�(s, t) := |uP,�|
p
3
p
3 −var;[s,t];H−3 . Then there

is a constant L̃ > 0, depending only on p and d, such that for all (s, t) ∈ �T with
�(s, t) ≤ L and ωA(s, t) ≤ L̃,

ωP,� (s, t) �p |u|
p
3
L∞
T H0ωA (s, t) + ωμ (s, t)

p
3

(
ωA (s, t)

1
3 + ωA (s, t)

2
3

)
(3.3)

and

ωP,� (s, t) �p |u|
p
3
L∞
T H0ωA (s, t) +

(
1 + |u|L∞

T H0

) 2p
3

(t − s)
p
3 ωA (s, t)

1
12 . (3.4)

Proof. Recall that the second-order increment operator δ is defined on two indexmaps
g : �

(2)
T → R by δgsθ t := gst − gθ t − gsθ for all (s, θ, t) ∈ �

(2)
T . It is easy to see that

for a one-index map f , we have δ(δ f )sθ t = 0. Applying δ to (2.18), we find that for
all φ ∈ H3 and (s, θ, t) ∈ �

(2)
T ,

δuP,�
sθ t (φ) = δusθ

(
AP,2,∗

θ t φ
)

+ u�
sθ

(
AP,1,∗

θ t φ
)

,

where u�
sθ is defined in (3.2). We decompose δuP,�

sθ t (φ) into a smooth (in space) and
non-smooth part using the smoothing operator J η to get

uP,�
sθ t (φ) = δuP,�

sθ t

(
J ηφ

) + δuP,�
sθ t

((
I − J η

)
φ
)
,

for some η ∈ (0, 1] that will be specified later. We will now proceed to analyze term
by term. To estimate the non-smooth part, we use (2.7) and that u�

sθ = δusθ − AP,1
sθ us

to obtain

∣∣∣δuP,�
sθ t ((I − J η)φ)

∣∣∣ ≤ |u|L∞
T H0

(∣∣∣AP,1∗
θ t ((I − J η)φ)

∣∣∣
0
+

∣∣∣AP,1,∗
sθ AP,1∗

θ t ((I − J η)φ)

∣∣∣
0

+
∣∣∣A2∗

θ t ((I − J η)φ)

∣∣∣
0

)

� |u|L∞
T H0

(
ωA(s, t)

1
p |(I − J η)φ|1 + ωA(s, t)

2
p |(I − J η)φ|2

)

� |u|L∞
T H0

(
ωA(s, t)

1
p η2 + ωA(s, t)

2
p η

)
|φ|3.

In order to estimate the smooth part, we use the form u�
st = δμsθ + AP,2

sθ us + uP,�
sθ to

get
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δuP,�
sθ t

(
Jηφ

) = δμsθ

(
AP,1,∗

θ t Jηφ
)

+ us
(
AP,2,∗
sθ AP,1,∗

θ t Jηφ
)

+ uP,�
sθ

(
AP,1,∗

θ t Jηφ
)

+ δμsθ

(
AP,2,∗

θ t Jηφ
)

+ us
(
AP,1,∗
sθ AP,2,∗

θ t Jηφ
)

+ us
(
AP,2,∗
sθ AP,2,∗

θ t Jηφ
)

+ uP,�
sθ

(
AP,2,∗

θ t Jηφ
)

,

Estimating each term and using (2.7), for all (s, θ, t) ∈ �
(2)
T such that �(s, t) ≤ L ,

we find

|δuP,�
sθ t (J

ηφ)| � ωμ(s, t)ωA(s, t)
1
p |J ηφ|2 + |u|L∞

T H0ωA(s, t)
3
p |J ηφ|3

+ ωP,�(s, t)
3
p ωA(s, t)

1
p |J ηφ|4

+ ωμ(s, t)ωA(s, t)
2
p |J ηφ|3 + |u|L∞

T H0ωA(s, t)
3
p |J ηφ|3

+ |u|L∞
T H0ωA(s, t)

4
p |J ηφ|4

+ ωP,�(s, t)
3
p ωA(s, t)

2
p |J ηφ|5

�
(
ωμ(s, t)ωA(s, t)

1
p +|u|L∞

T H0ωA(s, t)
3
p + ωP,�(s, t)

3
p ωA(s, t)

1
p η−1

+ωμ(s, t)ωA(s, t)
2
p + |u|L∞

T H0ωA(s, t)
3
p + |u|L∞

T H0ωA(s, t)
4
p η−1

+ ωP,�(s, t)
3
p ωA(s, t)

2
p η−2

)
|φ|3. (3.5)

Setting η = ωA(s, t)
1
p λ for some constant λ > 0 to be determined later, we have

|δuP,�
sθ t |−3 � |u|L∞

T H0ωA(s, t)
3
p (λ−1 + 1 + λ + λ2) + ωμ(s, t)ωA(s, t)

1
p

+ ωμ(s, t)ωA(s, t)
2
p + ωP,�(s, t)

3
p (λ−1 + λ−2)

�p

(
|u|

p
3
L∞
T H0ωA(s, t)(λ−1 + 1 + λ + λ2)

p
3 + ωμ(s, t)

p
3 ωA(s, t)

1
3

+ ωμ(s, t)
p
3 ωA(s, t)

2
3 + ωP,�(s, t)(λ

−1 + λ−2)
p
3

) 3
p

.

Applying Lemma B.1, we get

|uP,�
st |

p
3−3 �p |u|

p
3
L∞
T H0ωA (s, t)

(
λ−1 + 1 + λ + λ2

) p
3 + ωμ (s, t)

p
3 ωA (s, t)

1
3 .

+ ωμ (s, t)
p
3 ωA (s, t)

2
3 + ωP,� (s, t)

(
λ−1 + λ−2

) p
3

.

Since ωP,� = |uP,�|
p
3
p
3 −var;[s,t];H−3 is equal to the infimum over all controls satisfying

|uP,�
st |−3 ≤ ωP,�(s, t)

3
p (see (2.7)), there is a constant C = C(p, d) such that
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ωP,�(s, t) ≤ C

(
|u|

p
3
L∞
T H0ωA(s, t)(λ−1 + 1 + λ + λ2)

p
3 + ωμ(s, t)

p
3 ωA(s, t)

1
3

+ ωμ(s, t)
p
3 ωA(s, t)

2
3 + ωP,�(s, t)(λ

−1 + λ−2)
p
3

)
.

Choosing λ such that C(λ−1 + λ−2)
p
3 ≤ 1

2 and L̃ > 0 such that η = ωA(s, t)
1
p λ ≤

L̃λ ≤ 1, we obtain (3.3).
The proof of (3.4) replaces the bound δμst (φ) � ωμ(s, t)|φ|1 with the bound

|δμst (φ)| ≤
∫ t

s
(ν|(ur ,�φ)| + |BP (ur )(φ)|) dr �

∫ t

s

(
|ur |0|φ|2 + |ur |20|φ|3−ε

)
dr

� (t − s)(1 + |u|L∞
T H0)2|φ|3−ε,

where we have used the antisymmetric property of BP and (2.4) with α1 = α3 = 0
and α2 = 3− ε for any ε < 1

2 . We note that this is only possible when d ≤ 3. The rest

of the proof is similar to the proof of (3.3). Indeed, in (3.5), the termωμ(s, t)ωA(s, t)
1
p

is replaced with (1+|u|L∞
T H0)2(t−s)ωA(s, t)

1
p η−1+ε and the termωμ(s, t)ωA(s, t)

2
p

is replaced with (1 + |u|L∞
T H0)2(t − s)ωA(s, t)

2
p η−2+ε . Moreover, we still take η =

ωA(s, t)
1
p λ and for simplicity let ε = 1

4 . �

REMARK 3.2. We use the estimate (3.4) in the proof of existence, since it is allows
us to obtain a bound independent of the Galerkin approximation.

LEMMA 3.3. Assume that (u, π) is a solution to (2.12). Then u ∈ C p−var([0, T ];
H−1) and there is a constant L̃ > 0, depending only on p and d, such that for all
(s, t) ∈ �T with �(s, t) ≤ L, ωA(s, t) ≤ L̃, and ωP,�(s, t) ≤ L̃, it holds that

ωu(s, t) �p (1 + |u|L∞
T H0)p(ωP,�(s, t) + ωμ(s, t)p + ωA(s, t)),

where ωu(s, t) := |u|p
p−var;[s,t];H−1 .

Proof. For all η ∈ (0, 1], (s, t) ∈ �T and φ ∈ H1, we have

δust (φ) = δust (J
ηφ) + δust ((I − J η)φ).

Applying (2.7), we find

|δust ((I − J η)φ)| ≤ 2|u|L∞
T H0 |(I − J η)φ|0 � η|u|L∞

T H0 |φ|1.
In order to estimate the smooth part, we expand δust using (3.1) and then apply (2.7)
to get

|δust
(
J ηφ

) | ≤ |uP,�
st

(
J ηφ

) | + |δμst
(
J ηφ

) | + |us
(
AP,1,∗
st J ηφ

)
| + |us

(
AP,2,∗
st J ηφ

)
|

� ωP,� (s, t)
3
p |J ηφ|3 + ωμ (s, t) |J ηφ|1 + |u|L∞

T H0ωA (s, t)
1
p |J ηφ|1
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+ |u|L∞
T H0ωA (s, t)

2
p |J ηφ|2

�
(
ωP,� (s, t)

3
p η−2 + ωμ (s, t) + |u|L∞

T H0ωA (s, t)
1
p

+|u|L∞
T H0ωA (s, t)

2
p η−1

)
|φ|1,

for all (s, t) ∈ �T such that �(s, t) ≤ L . Setting η = ωP,�(s, t)
1
p + ωA(s, t)

1
p and

choosing L̃ > 0 such that η ∈ (0, 1], we get

|δust |−1 �p

(
1 + |u|L∞

T H0

) (
ωP,�(s, t) + ωμ(s, t)p + ωA(s, t)

) 1
p ,

which proves the claim. �

The following lemma shows that the solution u is controlled by AP,1.

LEMMA 3.4. Assume that (u, π) is a solution of (2.12). Then u� ∈ C
p
2 −var
2 ([0, T ];

H−2) and there is a constant L̃ > 0, depending only on p and d, such that for all
(s, t) ∈ �T with �(s, t) ≤ L, ωA(s, t) ≤ L̃, and ωP,�(s, t) ≤ L̃, it holds that

ω� (s, t) �p

(
1 + |u|L∞

T H0

) p
2

(
ωP,� (s, t) + ωμ (s, t)

p
2 + ωA (s, t)

)
,

where ω�(s, t) := |u�|
p
2
p
2 −var;[s,t];H−2 .

Proof. For all η ∈ (0, 1], (s, t) ∈ �T and φ ∈ H2, we have

u�
st (φ) = u�

st (J
ηφ) + u�

st
(
(I − J η)φ

)
.

We recall that we have two formulas for u�:

u�
st = δust − AP,1

st us = δμst + AP,2
st us + uP,�

st .

As explained above, we employ the first formula to estimate the non-smooth part and
the second one to estimate the smooth part. Applying (2.7), we find
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|u�
st

((
I − J η

)
φ
) | ≤ |δust

((
I − J η

)
φ
) | + |us

(
AP,1,∗
st

(
I − J η

)
φ
)

|
≤ |u|L∞

T H0 | (I − J η
)
φ|0 + |u|L∞

T H0ωA (s, t)
1
p | (I − J η

)
φ|1

�
(
η2|u|L∞

T H0 + η|u|L∞
T H0ωA (s, t)

1
p

)
|φ|2.

In order to estimate the non-smooth part, we apply (2.7) to obtain

|u�
st

(
J ηφ

) | ≤ |uP,�
st

(
J ηφ

) | + |δμst
(
J ηφ

) | + |us
(
AP,2,∗
st J ηφ

)
|

� ωP,� (s, t)
3
p |J ηφ|3 + ωμ (s, t) |J ηφ|1 + |u|L∞

T H0ωA (s, t)
2
p |J ηφ|2

≤
(
ωP,� (s, t)

3
p η−1 + ωμ (s, t) + |u|L∞

T H0ωA (s, t)
2
p

)
|φ|2,

for all (s, t) ∈ �T with �(s, t) ≤ L . Setting η = ωP,�(s, t)
1
p + ωA(s, t)

1
p and

choosing L̃ > 0 such that η ∈ (0, 1], we find

|u�
st |−2 �p (1 + |u|L∞

T H0)
(
ωP,�(s, t) + ωμ(s, t)

p
2 + ωA(s, t)

) 2
p
,

which proves the claim. �

We now derive estimates for ωQ,�. The computation in the proof of the lemma show
why (2.17) is the correct Chen’s relation for this system.

LEMMA3.5. Assume that (u, π) solves (2.12). For (s, t) ∈ �T such that�(s, t) ≤
L, let ωQ,�(s, t) := |uQ,�|

p
3
p
3 −var;[s,t];H−3

⊥
. Then there is a constant L̃ > 0, depending

only on p and d, such that for all (s, t) ∈ �T with �(s, t) ≤ L and ωA(s, t) ≤ L̃,

ωQ,� (s, t) �p |u|
p
3
L∞
T H0ωA (s, t)+ωμ (s, t)

p
3 ωA (s, t)

1
3 +ωP,� (s, t)+ωu (s, t)

1
3 ωA (s, t)

2
3 .

(3.6)

Proof. Applying δ to (2.18), we find that for all ψ ∈ H3⊥ and (s, θ, t) ∈ �
(2)
T ,

δuQ,�
sθ t (ψ) = uQ,�

st (ψ) − uQ,�
sθ (ψ) − uQ,�

θ t (ψ)

= δusθ
(
AQ,1,∗

θ t ψ
)

+ δusθ
(
AQ,2,∗

θ t ψ
)

− us
(
AP,1,∗

θ t AQ,1,∗
θ t ψ

)

= u�
sθ

(
AQ,1,∗

θ t ψ
)

+ δusθ
(
AQ,2,∗

θ t ψ
)

,

where we have used (2.17) in the second equality. Using Lemma 3.3, it is easy to see
that the last term satisfies (3.6), so we focus on the first term.

As usual, we split the equality into smooth and non-smooth parts ψ = J ηψ + (I −
J η)ψ for η ∈ (0, 1] to be determined later. In order to estimate the non-smooth part,
we use u�

sθ = δusθ − AP,1
sθ us and (2.7) to obtain
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(
δusθ − AP,1

sθ us
) ((

I − J η
)
ψ

)

= δusθ
(
AQ,1,∗

θ t

(
I − J η

)
ψ

)
− us

(
AP,1,∗
sθ AQ,1,∗

θ t

(
I − J η

)
ψ

)

≤ 2|u|L∞
T H0ωA (s, t)

1
p | (I − J η

)
ψ |1 + |u|L∞

T H0ωA (s, t)
2
p | (I − J η

)
ψ |2

� |u|L∞
T H0

(
ωA (s, t)

1
p η2 + ωA (s, t)

2
p η

)
|ψ |3.

To estimate the smooth part, we write u�
st = δμsθ + AP,2

sθ us + uP,�
sθ and apply (2.7) to

get

(
δusθ − AP,1

sθ us
) (

J ηψ
)

= δμsθ

(
AQ,1,∗

θ t J ηψ
)

+ us
(
AP,2,∗
sθ AQ,1,∗

θ t J ηψ
)

+ uP,�
sθ

(
AQ,1,∗

θ t J ηψ
)

� ωμ (s, t) ωA (s, t)
1
p |J ηψ |2 + |u|L∞

T H0ωA (s, t)
3
p |J ηψ |3

+ ωP,� (s, t)
3
p ωA (s, t)

1
p |J ηψ |4

�
(
ωμ (s, t) ωA (s, t)

1
p + |u|L∞

T H0ωA (s, t)
3
p + ωP,� (s, t)

3
p ωA (s, t)

1
p η−1

)
|ψ |3.

Setting η = ωA(s, t)
1
p and choosing L̃ such that η ∈ (0, 1], we get

|δuQ,�
sθ t |−3 �

(
|u|L∞

T H0ωA(s, t)
3
p + ωμ(s, t)ωA(s, t)

1
p + ωP,�(s, t)

3
p

+ωu(s, t)
1
p ωA(s, t)

2
p

)

�p

(
|u|

p
3
L∞
T H0ωA(s, t) + ωμ(s, t)

p
3 ωA(s, t)

1
3 + ωP,�(s, t)

+ωu(s, t)
1
3 ωA(s, t)

2
3

) 3
p
.

Using Lemma B.1, we obtain the first inequality. The proof of the second inequality
is similar to the first; see the end of proof of Lemma 3.1. �

By virtue of Lemma 3.5 and (2.19), we see immediately that π ∈ C p−var ([0, T ];
H−3

⊥ ), although we conjecture that there is better spatial regularity.

4. Proof of the main results

4.1. Existence, proof of Theorem 2.13

4.1.1. Galerkin approximation

We prove the existence of a solution using a Galerkin approximation. Let {hn}∞n=1
be the smooth orthonormal basis of H0 discussed in Sect. 2.1. Recall that there exist
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a sequence {λn}∞n=1 of nonnegative numbers such that −�hn = λnhn , for all n ∈ N.
For a given N ∈ N, let HN = span({h1, . . . , hN }) and PN : H−1 → HN be defined
by

PN � :=
N∑

n=1

(�, hn)hn, � ∈ H−1.

Since Z ∈ C p−var
g ([0, T ];RK ) is a geometric rough path, there is a sequence of RK -

valued smooth paths {zN }∞N=1 such that their canonical liftsZ
N = (ZN ,ZN ) converge

to Z in the rough path topology. We assume that

|ZN
st | � ωZ (s, t)

1
p , |ZN

st | � ωZ (s, t)
2
p , ∀ (s, t) ∈ �T . (4.1)

For convenience, let N0 denote a constant that bounds σ = (σ1, . . . , σK ) and its
derivatives up to order two.
We consider the following N th order Galerkin approximations of (2.12):

∂t u
N + PN BP

(
uN

)
= νPN�uN +

K∑

k=1

PN P
[
(σk · ∇) uN

]
żN ,k
t , (4.2)

where uN (0) = PNu0. If we assume that

uN
t (x) =

N∑

n=1

cNn (t)hn(x),

then plugging in this expansion for uN (t, x) into (4.2) and testing against hn we derive
an ODE for the coefficients (cNn )Nn=1:

ċNn (t) +
N∑

j,l=1

Bj,l,nc
N
j (t)cNl (t) = νλnc

N
n (t) +

K∑

k=1

N∑

j=1

Ak, j,nc
N
j (t)żN ,k

t , (4.3)

where Bj,l,i := PN BP (h j , hl)(hn) and Ak, j,n := ((σk · ∇)h j )(hn). Owing to (2.4)
with α1 = 1, α2 = 0, and α3 = 1, for all j, l and n, we have

|Bj,l,n| ≤ |h j |1|hl |1|hn|1.

Moreover, for all k, j, and i ,

|Ak, j,n| ≤ |σk |L∞|h j |1|hn|0.

Thus, (4.3) has locally Lipschitz coefficients, and so there exists a unique solution
(cn)Nn=1 of (4.3) on a time interval [0, TN ), for some TN > 0. Therefore, uN

t (x) =∑N
n=1 c

N
n (t)hn(x) is a solution of (4.2) on the time interval [0, TN ).
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To get a global solution, we derive a global energy estimate of uN . Testing (4.2)
against uN and using (2.6), the divergence theorem, and that ∇ · σk = 0, for all
k ∈ {1, . . . , K }, we get

|uN
t |20 + 2ν

∫ t

0
|∇uN

s |20 ds = |PNu0|20 − 2
∫ t

0
PN BP

(
uN
s , uN

s , uN
s

)
ds

+
K∑

k=1

∫ t

0

(
(σk · ∇) uN

s , uN
s

)
żN ,k
s ds

= |PNu0|20 ≤ |u0|20, ∀t ∈ [0, TN ).

It follows that the L2-norm of uN is non-increasing in time, and hence that (cn)Nn=1
does not blow up in finite time. Therefore, uN ∈ CTH0 ∩ L2

TH
1 solves (4.2).

Integrating (4.2) over [s, t], and then iterating the equation into the integral against
żN as we did in (2.15), we find

δuN
st =

∫ t

s

(
νPN�uN

r − PN BP

(
uN
r

))
dr + AN ,1

st uN
s + AN ,2

st uN
s + uN ,�

st , (4.4)

where P̃N := PN P ,

AN ,1
st φ := P̃N [(σk · ∇) φ] ZN ,k

st ,

AN ,2
st φ := P̃N

[
(σk · ∇) P̃N

[(
σ j · ∇)

φ
]]

Z
N , j,k
st ,

μN
t := PN

∫ t
0

(
ν�uN

r − BP (uN
r )

)
dr , and

uN ,�
st :=

∫ t

s
P̃N

[
(σk · ∇) δμN

sr

]
żN ,k
r dr

+ P̃N

∫ t

s

∫ r

s
(σk · ∇) P̃N

[
(σi · ∇) δμN

sr1

]
żN ,i
r1 żN ,k

r dr1 dr

+
∫ t

s

∫ r

s

∫ r1

s
P̃N

[
(σk · ∇) P̃N

[
(σi · ∇) P̃N

[(
σ j · ∇)

uN
r2

]]]
żN , j
r2 żN ,i

r1 żN ,k
r dr2 dr1 dr,

Owing to (2.2), (2.3), and (4.1), we have that (AN ,1, AN ,2) is uniformly bounded
in N as a family of unbounded rough drivers on the scale (Hα)α∈R+ . That is, there
exists a control ωAN such that (2.10) holds and for all (s, t) ∈ �T ,

ωAN (s, t) �N0 ωZ (s, t).

It is straightforward to check that uN ,� ∈ C
p
3 −var
2 ([0, T ]; HN ) by estimating term

by term; one makes use of (2.2), (2.3), (2.4), and that uN is smooth in space and zN

is smooth in time. For all (s, t) ∈ �T , let ωN ,�(s, t) := |uN ,�|
p
3
p
3 −var;[s,t];H−3 . Arguing

as in Lemma 3.1, we find that there is an L > 0 such that for all (s, t) ∈ �T with
ωZ (s, t) ≤ L ,
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ωN ,� (s, t) �p |uN |
p
3
L∞
T HN

ωAN (s, t) +
(
1 + |uN |L∞

T HN

) 2p
3

(t − s)
p
3 ωAN (s, t)

1
12

�p,N0 |u0|
p
3
0 ωZ (s, t) + (1 + |u0|0) 2p

3 (t − s)
p
3 . (4.5)

THEOREM 4.1. There exists a subsequence of {uN }∞N=1 that converges weakly in
L2
TH

1, weak-* in L∞
T H0, and strongly in L2

TH
0 ∩CTH−1 to a solution of (2.18) that

is weakly continuous in H0.

Proof. Since {uN }∞N=1 is uniformly bounded in L2
TH

1 ∩ L∞
T H0, an application of

Banach–Alaoglu yields a subsequence, which we will relabel as {uN }∞n=1, that con-
verges weakly in L2

TH
1 and weak-* in L∞

T H0. To obtain a further subsequence that
converges strongly in L2

TH
0 ∩CTH−1, we need to apply Lemma A.2; that is, we need

to show there exists a controls ω and ω̄ and L , κ > 0 independent of N such that
|δuN

st |−1 ≤ ω(s, t)κ for all (s, t) ∈ �T with ω̄(s, t) ≤ L . The proof of this is similar
to the proof of Lemma 3.3, except that we need a slightly different bound on the drift
term. This bound, in particular, does not yield p-variation of the solution.
Let φ ∈ H1. Decomposing δuN

st into a smooth and non-smooth part using J η for
some η ∈ (0, 1], we get

|δuN
st (φ) | ≤ |δuN

st

(
J ηφ

) | + |δuN
st

((
I − J η

)
φ
) |

� ωN ,� (s, t)
3
p |J ηφ|3 + (t − s)

(
1 + |uN |L∞

T HN

)2 |J ηφ|3
+ |uN |L∞

T HN

(
ωAN (s, t)

1
p |φ|1 + ωAN (s, t)

2
p |J ηφ|2

)

+ |uN |L∞
T HN | (I − J η

)
φ|0

� η−2ωN ,� (s, t)
3
p |φ|1 + η−2 (t − s) (1 + |u0|0)2 |φ|1

+ |u0|0
(
ωZ (s, t)

1
p + η−1ωZ (s, t)

2
p

)
|φ|1 + η|u0|0|φ|1.

Using (4.5) together with η = ωZ (s, t)
1
p + (t − s)

1
p and L > 0 chosen such that

η ∈ (0, 1], we find

|δuN
st |−1 ≤ (1 + |u0|0)2

[(
ωZ (s, t)

3
p + (t − s) ωZ (s, t)

1
p
)
η−2

+ (t − s) η−2 +
(
ωZ (s, t)

1
p + ωZ (s, t)

2
p η−1

)
+ η

]

�N0 (1 + |u0|0)2
(
ωZ (s, t)

1
p + (t − s)1−

2
p

)
.

By Lemma A.2, there is a subsequence of {uN }∞N=1 which we continue to denote by
{uN }∞N=1 converging strongly to an element u inCTH−1∩L2

TH
0. Furthermore, owing

to Lemma A.3, we know that u is continuous with values in H0
w (i.e., H0 equipped

with the weak topology).
Our goal now is to pass to the limit in (4.4) tested against some φ ∈ H3 as N tends

to infinity. Clearly,
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|(AN ,1
st − AP,1

st )φ|0 =
∣∣∣PN P

[
σk · ∇)φ

]
ZN ,k
st − P

[
(σk · ∇)φ

]
Zk
st

∣∣∣
0

≤ |PN P
[
(σk · ∇)φ

]
(ZN ,k

st − Zk
st )|0 + |(I − PN )P

[
(σk · ∇)φ

]
Zk
st |0.

Making use of (2.2), we get

|PN P (σk · ∇) φ|0|ZN ,k
st − Zk

st | �N0 |φ|1|ZN
st − Zst |,

|(I − PN )P [(σk · ∇) φ] Zk
st |0 ≤ |I − PN |L(H0,H0) |P [(σk · ∇) φ]|0 |Zst | �N0 |I

−PN |L(H0,H0)|φ|1|Zst |.
Moreover, we have

∣∣∣
(
AN ,2
st − AP,2

st

)
φ

∣∣∣
0

≤
∣∣∣P̃N

[
(σk · ∇)P̃N [(σ j · ∇)φ]

]
(Z

N , j,k
st − Zst )

∣∣∣
0

+
∣∣∣(I − PN )P

[
(σk · ∇)P[(σ j · ∇)φ]]Z j,k

st

∣∣∣
0

+
∣∣∣P̃N

[
(σk · ∇)(I − PN )P[(σ j · ∇)φ]]Z j,k

st

∣∣∣
0
.

Now, applying (2.3), we find
∣∣∣P̃N

[
(σk · ∇) P̃N

[(
σ j · ∇

)
φ
]] (

Z
N , j,k
st − Z

j,k
st

)
|0 �N0 |φ|2

∣∣∣ZN , j,k
st − Z

j,k
st

∣∣∣,
∣∣∣ (I − PN ) P

[
(σk · ∇) P[(σ j · ∇)φ]]Z j,k

st

∣∣∣
0

�N0 |I − PN |L(H0,H0)|φ|2
∣∣∣Z j,k

st

∣∣∣,
∣∣∣P̃N (σk · ∇) (I − PN ) P[(σ j · ∇)φ])Z j,k

st

∣∣∣
0

�N0 |I − PN |L(H1,H1)|φ|2
∣∣∣Z j,k

st

∣∣∣.

Therefore,

AN ,i,∗
st φ → AP,i,∗

st φ

in H0 for i ∈ {1, 2} as N → ∞, and hence
∣∣∣
(
uN
s , AN ,i,∗

st φ
)

−
(
us , A

P,i,∗
st φ

)∣∣∣ ≤N0

∣∣∣
(
uN
s − us , A

N ,i,∗
st φ

)
−

(
us , (A

P,i,∗
st − AN ,i,∗

st

)
φ
)∣∣∣

�N0

∣∣∣uN
s − us

∣∣∣−1
|φ|3 + |us |0|

(
AP,i,∗
st − AN ,i,∗

st

)
φ|0 → 0

as N → ∞. Finally, using the strong convergence in L2
TH

0 of {uN } and (2.4), we find
∣∣∣∣
∫ t

s

[
BP (ur )(φ) − BP

(
uN
r

)
(φ)

]
dr

∣∣∣∣

≤
∣∣∣∣
∫ t

s
BP

(
ur − uN

r , ur
)
(φ) dr

∣∣∣∣ +
∣∣∣∣
∫ t

s
BP

(
uN
r , ur − uN

r

)
(φ) dr

∣∣∣∣

�
∫ t

s

∣∣∣ur − uN
r

∣∣∣
0
|ur |0 dr |φ|3 +

∫ t

s

∣∣∣ur − uN
r

∣∣∣
0

∣∣∣uN
r

∣∣∣
0
dr |φ|3 → 0

as N → ∞.
Since all of the terms in Eq. (4.4) converge when applied to φ, the remainder

uN ,�
st (φ) converges to some limit uP,�

st (φ). Owing to the uniform bound (4.5), we have

uP,� ∈ C
p
3 −var
2,�,L ([0, T ];H−3) for some control � depending only on ωZ and L > 0

depending only on p, which proves that u is a solution of (2.18). �
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4.1.2. Pressure recovery

To finalize the proof of existence, we need to prove that the pressure term π exists
and satisfies (2.19). To this end, we first show that we can construct the rough integral

It = Q
∫ t

0
(σk · ∇)ur dZ

k
r , I0 = 0,

using the sewing lemma, Lemma B.1. Let hst = AQ,1
st us + AQ,2

st us for (s, t) ∈ �T . It
follows that h ∈ C p−var

2 ([0, T ];H−2
⊥ ). Applying the δ operator to h and using (2.17),

for (s, θ, t) ∈ �
(2)
T , we have

δhsθ t =
(
δAQ,2

sθ t

)
us − AQ,1

θ t δusθ − AQ,2
θ t δusθ

= AQ,1
θ t AP,1

sθ us − AQ,1
θ t δusθ − AQ,2

θ t δusθ

= −AQ,1
θ t u�

sθ − AQ,2
θ t δusθ ,

where we recall that u�
st = δust − AP,1

st us [see (3.2)]. Owing to Lemma 3.3 and (3.4),
which establish the regularity of δu and u�, there are controls ω and � and an L > 0
such that for all (s, θ, t) with �(s, t) ≤ L , we have

|δhsθ t |−3 �p

(
ωA(s, t)

1
3 ω�(s, t)

2
3 + ωA(s, t)

2
3 ωu(s, t)

1
3

) 3
p =: ω(s, t)

3
p .

Therefore, by Lemma B.1, there exists a unique path I ∈ C p−var([0, T ];H−3
⊥ ) and

two-index map I � ∈ C p−var
2,�,L([0, T ];H−3

⊥ ) such that

δ Ist = AQ,1
st us + AQ,2

st us + I �
st .

and

|I �
sθ t |−3 �p ω(s, t)

3
p .

We define

πt := −
∫ t

0
BQ(ur ) dr + It ,

or alternatively using the local approximation

δπst = −
∫ t

s
BQ(ur ) dr + AQ,1

st us + AQ,2
st us + uQ,�

st ,

where uQ,�
st := I �

st . Owing to Lemma 3.5 and (2.19), we have that π ∈ C p−var ([0, T ];
H−3

⊥ ).
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4.2. Uniqueness in two spatial dimensions, proof of Theorem 2.14

The objective of this section is to prove that the solution (u, π) of (2.12) is unique
when d = 2 and σk is constant function of x ∈ T2 for all k ∈ {1, . . . , K }. Assume for
a moment that all functions are smooth and that we have two solutions of (2.12):

∂t u
i
t = ν�uit − P(uit · ∇)uit + P(σk · ∇)uit ż

k
t , i ∈ {1, 2}.

Then � := u1 − u2 satisfies

∂t � = ν��− (BP (u1) − BP (u2)) + P(σk · ∇)�żkt ,

and the chain rule gives for all x ∈ T2,

1

2
∂t |�(x)|2 = ν�(x) · ��(x) − �(x) · (BP (u1(x)) − BP (u2(x)))

+�(x) · (σk · ∇)�(x)żkt .

One could proceed by integrating with respect to x to obtain uniqueness and energy
estimates. However, in the rough case, many of our objects are distributions, and so
the action of integrating with respect to x is actually applying a distribution to a test
function.
Since we do not expect our solution to be regular enough to perform this operation,

we shall employ a doubling of the variables trick; that is,we consider t �→ �⊗2
t (x, y) :=

�t (x)�t (y)T, where T denotes the transpose. This is a well defined operation for any
distribution and we get the formula for the square by testing this distribution against
an approximation of the Dirac-delta in x = y. We remark that one cannot directly use
the techniques from [10], since this way of approximating the Dirac-delta violates the
divergence-free condition.
Let u1 and u2 be solutions of (2.12), as defined by Definition 2.7. For all φ ∈ H3

and i ∈ {1, 2} and (s, t) ∈ �T , we have

δuist (φ) = δμi
st (φ) + uis

([
AP,1,∗
st + AP,2,∗

st

]
φ
)

+ ui;P,�
st (φ) ,

where

μi
t (φ) = −

∫ t

0

[
ν

(
∇uir ,∇φ

)
+ BP (uir )(φ)

]
dr.

Setting � = u1−u2, �� = u1;P,� −u2;P,� andμt (φ) = − ∫ t
0 [ν(∇�r ,∇φ)+(BP (u1r )−

BP (u2r ))(φ)] dr , we have

δ�st (φ) = δμst (φ) + �s
([

AP,1,∗
st + AP,2,∗

st

]
φ
)

+ ��st .
Define

ωμ(s, t) = ωμ1(s, t) + ωμ2(s, t),
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and notice that

|δμst (φ)|−1 � ωμ(s, t).

We denote by a ⊗̂ b the symmetrization of the tensor product of two functions
a, b : T2 → R2; that is,

a ⊗̂ b (x, y) := 1

2
(a ⊗ b + b ⊗ a) (x, y) = 1

2

(
a (x) b (y)T + b (x) a (y)T

)
, (x, y) ∈ T2.

LEMMA4.2. Theweakly continuousmapping �⊗2
t : [0, T ] → H−3

x ⊗H−3
y satisfies

the equation

δ�⊗2
st − 2

∫ t

s

(
ν�r ⊗̂ ��r − �r ⊗̂

(
BP

(
u1r

)
− BP

(
u2r

)))
dr =

(
�1
st + �2

st

)
�⊗2
s + �⊗2,�

st ,

where

�1 := AP,1 ⊗ I + I ⊗ AP,1, �2 := AP,2 ⊗ I + I ⊗ AP,2 + AP,1 ⊗ AP,1,

and v⊗2,� ∈ C
p
3 −var
2,�,L ([0, T ];H−3

x ⊗ H−3
y ), for a control � and L > 0.

Proof. Elementary algebraic manipulations yield

δv⊗2
st = 2�s ⊗̂ δ�st + δ�st ⊗ δ�st = 2�s ⊗̂ ��st + 2�s ⊗̂ δμst + 2�s ⊗̂ A1

st �s

+ 2�s ⊗̂ AP,2
st �s +

(
�
�
st + δμst + AP,2

st �s

)⊗2 + 2
(
�
�
st + δμst + AP,2

st �s

)

⊗̂ AP,1
st �s + AP,1

st �s ⊗ AP,1
st �s .

Thus,

δv⊗2
st −2

∫ t

s

[
ν�r ⊗̂ ��r − �r ⊗̂

(
BP (u1r ) − BP (u2r )

)]
dr =

(
�1
st + �2

st

)
�⊗2
s +�⊗2,�

st ,

(4.6)
where

�
⊗2,�
st := −2

∫ t

s
δ�sr ⊗̂

[
ν��r + (BP

(
u1r

)
− BP

(
u2r

)]
dr + 2��st ⊗̂ �s

+
(
�
�
st + δμst + AP,2

st �s

)⊗2 + 2
(
�
�
st + δμst + AP,2

st �s

)
⊗̂ AP,1

st �s

= −2
∫ t

s
νδ�sr ⊗̂ ��rdr + 2

∫ t

s
δ�sr ⊗̂

[
BP

(
u1r

)
−BP

(
u2r

)]
dr+2��st ⊗̂ �s

+ ��st ⊗ ��st + ��st ⊗̂ δμst + ��st ⊗̂ AP,2
st �s + δμst ⊗ δμst + δμst ⊗̂ AP,2

st �s

+ AP,2
st �s ⊗ AP,2

st �s + 2��st ⊗̂ AP,1
st �s + δμst ⊗̂ AP,1

st �s + AP,2
st �s ⊗̂ AP,1

st �s .

Estimating �⊗2,�
st term by term and making use of (2.2), (2.3), and (2.4), we find that

there is a control � and L > 0 such that v⊗2,� ∈ C
p
3 −var
2,�,L ([0, T ];H−3

x ⊗ H−3
y ). �
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Let {f0,1, f0,2} ∪ {f1,n}n∈Z2−{0} be the orthonormal basis of {u ∈ L2(T2;C2) :
∇ · u = 0} described in Sect. 2.1. Define

FN (x, y) := f0,1 ⊗ f0,1 + f0,2 ⊗ f0,2 +
∑

|n|<N ,n �=0

f1,n(x) ⊗ f1,n(y).

It follows that for all f, g ∈ H0, f ⊗ g(FN ) → ( f, g) as N → ∞, and hence
�⊗2(FN ) → |�|20 as N → ∞. Since ∇f1,n = inf1,n , for all n ∈ Z2 − {0}, we have
∇x FN + ∇y FN = 0.
Motivated by this, we will test Eq. (4.6) FN and pass to the limit as N → ∞ to

derive the equation for the square. Because σk is constant, we have

�
1,∗
st FN = ((σk · ∇x )FN + (σk · ∇y)FN )Zk

st = 0

and

�
2,∗
st FN = (σk · ∇x )

(
σ j · ∇x

)
FNZ

j,k
st + (

σk · ∇y
) (

σ j · ∇y
)
FNZ

j,k
st

+ (σk · ∇x )
(
σ j · ∇y

)
FN Z

j
st Z

k
st

= (σk · ∇x )
(
σ j · ∇x

)
FNZ

j,k
st + (σk · ∇x )

(
σ j · ∇x

)
FNZ

k, j
st

− (σk · ∇x )
(
σ j · ∇x

)
FN Z

j
st Z

k
st

= 0,

where we have used (σk · ∇)(σ j · ∇) = (σ j · ∇)(σk · ∇) and Z
j,k
st + Z

k, j
st = Z j

st Z
k
st .

Applying the divergence theorem, we get

∫ t

s
ν�r ⊗ ��r (FN ) dr = −

∫ t

s
ν�r ⊗ ∇�r (∇y FN ) dr =

∫ t

s
ν�r ⊗ ∇�r (∇x FN ) dr

= −
∫ t

s
ν∇�r ⊗ ∇�r (FN ) dr,

and hence that

2
∫ t

s
ν�r ⊗̂ ��r (FN ) dr = −2

∫ t

s
ν∇�r ⊗ ∇�r (FN ) dr.

Since v ∈ L2
TH

1, we have ∇�r ⊗ ∇�r (FN ) → |∇�r |20 as N → ∞ for almost all
r ∈ [s, t]. Owing to the bound |∇�r ⊗ ∇�r (FN )| ≤ |∇�r |20, we apply the dominated
convergence theorem to get that

lim
N→∞ 2

∫ t

s
ν�r ⊗̂ ��r (FN ) dr = −2ν

∫ t

s
|∇�r |20 dr.

Using the divergence theorem again, we find
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∫ t

s
�r ⊗ (uir · ∇)uir (FN ) dr = −

∫ t

s
�r ⊗ (uir )

T uir (∇y FN ) dr

= −
∫ t

s
∇�r ⊗ (uir )

T uir (FN ) dr.

Using the interpolation inequality |(uir )T uir |0 � |uir |
1
2
0 |uir |

1
2
1 , we apply the dominated

convergence theorem to get

lim
N→∞ 2

∫ t

s
�r ⊗̂ BP (uir )(FN ) dr = 2

∫ t

s
BP (uir )(�r ) dr.

We are now ready to finish the proof of uniqueness.

THEOREM 4.3. Let d = 2 and assume the vector fields σk(x) = σk , k ∈
{1, . . . , K }, are constant. Suppose that u1 and u2 are two solutions of (2.12) in the
sense of Definition 2.7. Then the difference v = u1 − u2 satisfies

|�t |20+2
∫ t

0
(BP (u1r ) − BP (u2r ))(�r ) dr + 2ν

∫ t

0
|∇�r |20 dr = |�0|20, ∀t ∈ [0, T ].

(4.7)

Furthermore, there is a constant c = c(ν, T ) such that

|�t |20 +
∫ t

0
|∇�r |20 dr �ν,T |�0|20 exp

{
c
∫ t

0
|u1r |20|u1r |21 dr

}
, ∀t ∈ [0, T ]. (4.8)

Therefore, there exists a unique solution u of (2.12).

REMARK 4.4. The right-hand side of (4.8) is finite. Indeed, we have

∫ t

0
|u1r |20|u1r |21 dr ≤ sup

t∈[0,T ]
|u1t |20

∫ T

0
|u1r |21 dr,

which is finite since u ∈ L2
TH

1 ∩ L∞
T H0.

Proof of Theorem 4.3. Testing equation (4.6) against FN and using that �
i,∗
st FN = 0

for i ∈ {1, 2}, we find

δ�⊗2
st (FN ) − 2

∫ t

s

(
ν�r ⊗̂ ��r + �r ⊗̂

(
BP

(
u1r

)
− BP

(
u2r

)))
dr(FN ) = �⊗2,�

st (FN ).

Since the left-hand-side is an increment of a function, the right-hand-side (s, t) �→
�
⊗2,�
st (FN )must be as well. By virtue of Lemma 4.2, we know that �⊗2,�(FN ) has finite
p
3 -variation, which is only possible if �⊗2,�

st (FN ) = 0. Thus, for every N ∈ N,

δ�⊗2
st (FN ) − 2

∫ t

s

(
ν�r ⊗̂ ��r − �r ⊗̂

(
BP

(
u1r

)
− BP

(
u2r

)))
dr(FN ) = 0.
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Passing to the limit as N → ∞ in the above equality, we get

δ(|v|20)st+2
∫ t

s

(
BP

(
u1r

)
− BP

(
u2r

))
(�r ) dr + 2ν

∫ t

s
|∇�r |20 dr = 0, ∀t ∈ [0, T ].

Moreover, using (2.6), (2.5), and Young’s inequality (i.e, ab ≤ εa
4
3 +cεb4, ∀a, b, ε ≥

0, where cε is a constant depending only on ε), for every ε > 0, we have

(BP (u1)−BP (u2))(�) = −BP (�, �)(u1) ≤ c|�|
3
2
1 |�|

1
2
0 |u1|

1
2
0 |u1|

1
2
1 ≤ ε|�|21+cε |�|20|u1|20|u1|21,

and hence

|�t |20 + 2ν
∫ t

0
|∇�r |20 dr ≤ |�0|20 + ε

∫ t

0
|�r |21 dr + cε

∫ t

0
|�r |20|u1r |20|u1r |21 dr.

Choosing ε small enough, we find

|�t |20 +
∫ t

0
|∇�r |20 dr �ν |�0|20 +

∫ t

0
|�r |20(1 + |u1r |20|u1r |21) dr.

We then complete the proof by applying Gronwall’s lemma. From the uniqueness
of the velocity and the pressure recovery in Sect. 4.1.2, we immediately obtain the
uniqueness of the associated pressure π . �

4.2.1. Energy equality and continuity

Letting u1 = u and u2 = 0 in (4.7), where u is the unique solution, we obtain the
following corollary.

COROLLARY 4.5. Let d = 2 and assume the vector fields σk(x) = σk are constant
for all k ∈ {1, . . . , K }. Then the unique solution u of (2.12) is in CTH0 and satisfies
the energy equality:

|ut |20 + 2ν
∫ t

0
|∇ur |20 dr = |u0|20, ∀t ∈ [0, T ]. (4.9)

Proof. We start by showing that u is continuous as a mapping with values in H0

equipped with the weak topology. It is immediate from (3.1) that lims→t us(φ) =
ut (φ) for any φ ∈ H3. Moreover, since {|us |0}s∈[0,T ] is bounded, there exists a
subsequence {usn }n ⊂ {us}s→t such that usn (φ) has a limit for all φ ∈ H3. Be-
cause H3 is dense in H0 and weak limits are unique, we must have convergence
lims→t us(φ) = ut (φ) for all φ ∈ H0. By virtue of the energy equality (4.9), we have
that lims→t |us |0 = |ut |0, which implies strong convergence. �
REMARK 4.6. For constant vector fields σk , we have AQ,i

st us = 0 for i ∈ {1, 2},
and so (2.19) reduces to the deterministic case; that is,

πt = −
∫ t

0
Q(ur · ∇)ur dr.

Applying (2.4)withα1 = 1, α2 = 0 andα3 = 1,wefind thatπ ∈ C1−var([0, T ];H−1
⊥ ).
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4.3. Stability in two spatial dimension, proof of Corollary 2.15

Proof of Corollary 2.15. For n ∈ N, consider a sequence of initial conditions {un0}∞n=1
⊂ H0, constant vector fields {σ n}∞n=1 ⊂ Rd×K and continuous geometric p-rough
paths {Zn = (Zn,Zn)}∞n=1 ∈ Cp−var

g ([0, T ];RK ). According to Theorem 4.1, there
exists a sequence (un, πn)∞n=1 of solutions to (2.13) corresponding to the datum
{(un0, σ n,Zn)}∞n=1. Moreover, by virtue of the energy equality (4.9), we have

|unt |20 + 2ν
∫ t

0
|∇unr |2 dr = |un0|2, ∀t ∈ [0, T ]. (4.10)

Thus, in view of Lemmas 3.1 and 3.3 and Remark 2.3, we obtain

|un|p−var;[0,T ];H−1 ≤ c
(|un0|0, |σ n|, |Zn|p−var;[0,T ], |Zn| p

2 −var;[0,T ]
)
, (4.11)

for some function c that is increasing in its arguments.
Assume now that un0 → u0 in H0, σ n → σ in R2×K and Zn → Z = (Z ,Z) in

the rough path topology (2.9) (i.e., Zn → Z in C p−var
2 ([0, T ];RK ) and Z

n → Z in
C p−var
2 ([0, T ];RK×K )). Then the estimates (4.10) and (4.11) yields a uniform (in n)

bound for the sequence {un}∞n=1 in L∞
T H0 ∩ L2

TH
1 ∩ C p−var([0, T ];H−1). Hence,

due to Lemma A.3, there exists u ∈ L∞
T H0 ∩ L2

TH
1 ∩C p−var([0, T ];H−1) such that,

up to a subsequence,

un → u in L2
TH

0 ∩ CTH0
w

as n tends to infinity.
Similar to the proof of Theorem 4.1, we may pass to the limit in the equation and

verify that u solves (2.13) with the datum (u0, σ,Z). Since uniqueness holds true
for (2.13) in two dimensions with constant vector fields, we deduce that the whole
sequence un converges to u in L2

TH
0 ∩ CTH0

w.
To see the convergence of πn , we note that since the vector fields are constant we

have AQ,i
st us = 0 for i ∈ {1, 2}, and hence

πn
t = −

∫ t

0
BQ(unr ) dr.

The convergence πn → π in C1−var([0, T ];H−2
⊥ ) follows since un converges to u in

L2
TH

0. Indeed,
∣∣∣∣
∫ t

s
BQ(ur )(ψ) − BQ(unr )(ψ) dr

∣∣∣∣

≤
∣∣∣∣
∫ t

s
BQ

(
ur − unr , ur

)
(ψ) dr

∣∣∣∣ +
∣∣∣∣
∫ t

s
BQ

(
unr , ur − unr

)
(ψ) dr

∣∣∣∣

�
∫ t

s
|ur − unr |0|ur |1|ψ |2 dr +

∫ t

s
|unr |1|ψ |2|ur − unr |0 dr

for every ψ ∈ H2⊥, where we have used (2.6) and (2.4) with α1 = α2 = 0 and α3 = 2,
as well as α1 = 1, α2 = 1 and α3 = 0. �
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A Compact embedding results

The following compact embedding result is comparable to the fractional version of
the Aubin-Lions compactness result (see, e.g., [22, Theorem 2.1]). Before we come
to the embedding itself, we need to prove a simple lemma.

LEMMA A.1. If ω is a continuous control, then

lim
a→0

sup
s∈[0,T ]

sup
t∈[s,s+a]

ω(s, t) = 0.

Proof. Owing to superadditivity, for any t ∈ [s, s+a], we haveω(s, t) ≤ ω(s, s+a),
and hence the claim follows once we show that

lim
a→0

sup
s∈[0,T ]

ω(s, s + a) = 0.

Suppose, by contradiction, that there exists an ε > 0 and a sequence {(sn, an)}∞n=1 ⊂
[0, T ] × [0, 1] such that limn→∞ an = 0 and

ω(sn, sn + an) > ε, ∀n ∈ N.

Since [0, T ] is compact, there exists an s ∈ [0, T ] and a subsequence {(snk , ank )}∞k=1 ⊂
{(sn, an)}∞n=1 converging to (s, 0). By the continuity of the control ω, we have

ε ≤ lim
k→∞ ω(snk , snk + ank ) = ω(s, s) = 0,

which is a contradiction. �
LEMMA A.2. Let ω and � be a controls on [0, T ] and L , κ > 0. Let

X = L2
TH

1 ∩
{
g ∈ CTH−1 : |δgst |−1 ≤ ω(s, t)κ , ∀(s, t) ∈ �T with �(s, t) ≤ L

}

be endowed with the norm

|g|X = |g|L2
TH

1 + sup
t∈[0,T ]

|gt |−1 + sup

{ |δgst |−1

ω(s, t)κ
: (s, t) ∈ �T s.t. �(s, t) ≤ L

}
.

Then X is compactly embedded into CTH−1 and L2
TH

0.

Proof. For each a ∈ (0, L] and every g ∈ L2
TH

−1, let us define the function Jag :
[0, T ] → H−1 by

Jags = 1

a

∫ s+a

s
gt dt = 1

a

∫ a

0
gs+t dt,

where we extend g to R+ by letting g = gT outside [0, T ]. Clearly, s �→ Jags is
continuous from [0, T ] into H−1; that is, Ja is a well-defined map from L2

TH
−1 to

CTH−1. Moreover, using Hölder’s inequality, for i ∈ {−1, 1}, we find

|Jags |i ≤ 1

a

∫ a

0
|gs+t |i dt ≤ 1√

a

(∫ a

0
|gs+t |2i dt

) 1
2

, (A.1)
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which implies

∫ T

0
|Jags |2i ds ≤ 1

a

∫ T

0

∫ a

0
|gs+t |2i dtds =

∫ T

0
|gt |2i dt,

and hence |Jag|L2
TH

i ≤ |g|L2
TH

i ; that is, Ja : L2
TH

i → Hi is a bounded operator for
i ∈ {−1, 1}.

Let us show that Jag → g in CTH−1 as a → 0 uniformly with respect to X . For
each s ∈ [0, T ], g ∈ X , we have

|Jags − gs |−1 = 1

a

∣∣∣∣
∫ s+a

s
gt dt −

∫ s+a

s
gs dt

∣∣∣∣−1
≤ 1

a

∫ s+a

s
|gt − gs |−1 dt

≤ 1

a

∫ s+a

s
ω(s, t)κ dt ≤ sup

t∈[s,s+a]
ω(s, t)κ ,

which converges uniformly in s to 0 as a → 0 by Lemma A.1.

Let G be a bounded subset of L2
TH

1, with norm bound denoted N0. Using Hölder’s
inequality, for all s, t ∈ [0, T ] and g ∈ G, we obtain

|Jagt − Jags |−1 = 1

a

∣∣∣∣
∫ s+a

t+a
gr dr −

∫ t

s
gt dt

∣∣∣∣−1
≤ 2

a
N0

√|s − s̄|,

and hence for a fixed a, JaG is uniformly equicontinuous H−1. Owing to (A.1), for
each s ∈ [0, T ], we have that |Jags |1 ≤ 1√

a
N0, and hence for a fixed a, JaG is

pointwise bounded inH1. SinceH1 is compactly embedded inH−1, for a fixed a, JaG
is pointwise relatively compact in H−1. Therefore, by the generalized Arzelà–Ascoli
theorem JaG is relatively compact in CTH−1.

To conclude the proof, let {gn}∞n=1 be a bounded sequence in X . In particular, by
Banach–Alaoglu, there exists a subsequence {gnk }∞k=1 that converges in the weak*-
topology of L2

TH
1 to some g ∈ L2

TH
1. We can reduce to the case g = 0, and hence

the proof of the compact embedding of X in CTH−1 is complete if we can show that
|gnk |CTH−1 → 0 as k → ∞.

To this end, for any fixed a ∈ [0, L], by the above Arzelà–Ascoli argument,
{Jagnk }∞k=1 has a convergent subsequence in CTH−1, which we also denote by
{Jagnk }∞k=1. We note that this subsequence may depend on a. Combining this with
the fact that gnk → 0 in the weak*-topology of L2

TH
1, we see that for any f ⊗ φ ∈

CT ⊗ H1, we have

lim
k→∞

∫ T

0
Jag

nk
r (φ) fr dr = lim

k→∞

∫ T

0
gnkr (φ)J ∗

a fr dr = 0,

so that limk→∞ Jagnk = 0 in CTH−1. Since all subsequences converges to the same
limit, this means the full sequence converges. For any a ∈ (0, L]
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|gnk |CTH−1 ≤ |Jagnk |CTH−1 + |Jagnk − gnk |CTH−1

≤ |Jagnk |CTH−1 + sup
s∈[0,T ]

sup
t∈[s,s+a]

ω(s, t)κ .

Letting k → ∞ first and then a → 0, we find that |gnk |CTH−1 → 0 as k → ∞, which
shows that X is compactly embedded in CTH−1.

Let us now show that the set X is compactly embedded in L2
TH

0. Using Young’s
inequality, for h ∈ H1 and any ε > 0,

|h|20 = h(h) ≤ |h|−1|h|1 ≤ Cε |h|2−1 + ε|h|21
for some appropriate constant Cε > 0. Consequently, proceeding with the same se-
quence above, we find

|gnk |2
L2
TH

0 ≤ Cε |gnk |2L2
TH

−1 + ε|gnk |2
L2
TH

1 ≤ Cε |gnk |2CTH−1 + ε sup
n∈N

|gn|2
L2
TH

1 .

Letting k → ∞ first, we have

lim
n→∞ |gn|2

L2
TH

0 ≤ ε sup
n∈N

|gn|2
L2
TH

1,

and then letting ε → 0, we conclude the proof. �

Denote by CTH0
w the space of H0-valued weakly continuous functions on [0, T ].

LEMMA A.3. Let ω and � be controls on [0, T ] and L , κ > 0. Let

Y = L∞
T H0 ∩

{
g ∈ CTH−1 : |δgst |−1 ≤ ω(s, t)κ , ∀(s, t) ∈ �T with �(s, t) ≤ L

}
,

be endowed with the norm

|g|Y = |g|L∞
T H0 + sup

t∈[0,T ]
|gt |−1 + sup

{ |δgst |−1

ω(s, t)κ
: (s, t) ∈ �T s.t. �(s, t) ≤ L

}
.

Then Y is compactly embedded into CTH0
w.

Proof. Let g ∈ Y be arbitrarily chosen. First, we will show that for all ϕ ∈ H0, the
mapping

t �→ 〈gt , ϕ〉 ∈ CTR. (A.2)

To this end, we observe that since g ∈ L∞
T H0, it follows that there exists R > 0 such

that gt ∈ BR for all t ∈ [0, T ], where BR ⊂ H0 is a ball of radius R. Let {hn}∞n=1 ⊂ H1

be a family whose finite linear combinations are dense in H0. Then

|〈gt , ϕ〉 − 〈gs, ϕ〉| ≤
∣∣∣∣∣∣

〈
gt − gs,

∑

n≤M

βnhn

〉∣∣∣∣∣∣
+

∣∣∣∣∣∣

〈
gt − gs, ϕ −

∑

n≤M

βnhn,

〉∣∣∣∣∣∣

≤
∣∣∣∣∣∣

〈
gt − gs,

∑

n≤M

βnhn,

〉∣∣∣∣∣∣
+ 2R

∣∣∣∣∣∣
ϕ −

∑

n≤M

βnhn

∣∣∣∣∣∣
0
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≤ c(M)ω(s, t)κ + 2R

∣∣∣∣∣∣
ϕ −

∑

n≤M

βnhn

∣∣∣∣∣∣
0

, (A.3)

where the last term can be made small uniformly for all s, t ∈ [0, T ] by taking M
large enough and suitable {βm}Mm=1. Hence, (A.2) follows. The compactness of the
embedding follows from the generalized Arzelà–Ascoli theorem. Indeed, the ball BR

is relatively weakly compact, and the desired equicontinuity follows from (A.3). �

B Sewing lemma

The following lemma, referred to as the sewing lemma, lies at the very foundation
of the theory of rough paths. The proof is a straightforward modification of Lemma
2.1 in [10]. See, also, Lemma 4.2 in [31].

LEMMAB.1. (c.f. Lemma 2.1 in [10] and Lemma 4.2 in [31] Let I be a subinterval
of [0, T ], E be a Banach space and ζ ∈ [0, 1). Let ω and � be controls on I and
L > 0. Assume that h : �I → E is such that for all (s, u, t) ∈ �

(2)
I with�(s, t) ≤ L,

|δhsut | ≤ ω(s, t)
1
ζ .

Then there exists a unique pathIh : I → E withIh0 = 0 such that�h := h−δIh ∈
Cζ−var
2,�,L(I ; E). Moreover, there exists a universal constant Cζ > 0 such that for all

(s, t) ∈ �I with �(s, t) ≤ L,

|(�h)st | ≤ Cζ ω(s, t)
1
ζ . (B.1)

Furthermore, if h ∈ C p−var
2,�,L(I ; E) for some p ≥ ζ , then Ih ∈ C p−var(I ; E).

The following corollary is immediate since Ih is a path with Ih0 = 0, and hence
vanishes if Ih ∈ C p−var(I ; E) for p < 1.

COROLLARY B.2. Assume the hypothesis of Lemma B.1. If h ∈ C p−var
2,�,L(I ; E) for

some p < 1, then for all (s, t) ∈ �I with �(s, t) ≤ L,

|hst | ≤ Cζ ω(s, t)
1
ζ .
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