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Chapter 1

Introduction

Dynamics of the heart beat, turbulences in flows, bursting phenomena, the
movement of a flag in the wind and the formation of congestion on the auto-
bahn have one similarity: chaotic behavior. Chaotic phenomena, such as the
three-body problem and turbulences are known for a long time. One of the
first mathematicians who realized the existence of such irregular dynamics was
Poincaré at the end of the 19th century. He examined the consequences of the
existence of homoclinic points for the geometrical structure of stable and unsta-
ble manifolds. These manifolds contain solutions that converge toward a fixed
point ξ in forward and backward time, respectively. Homoclinic structures of
autonomous systems are for example solutions which converge in both time di-
rections toward one hyperbolic fixed point ξ. Solutions of this kind are called
homoclinic orbits x(·). Each homoclinic point x(t) lies in the intersection of
the stable and unstable manifold w.r.t. ξ. Poincaré showed that they produce
complex dynamical structures. For more details and a historical overview we
refer to [109], [4] and references therein. In 1935 Birkhoff confirmed this com-
plex dynamical structure near homoclinic points by proving that these points
are the limit of periodic orbits [24], [25]. All these results are theoretical in na-
ture and the question whether transversal homoclinic points actually exist for
real-life problems remained open. In the early 60s the mathematician and me-
teorologist Edward N. Lorenz discovered chaos in a relatively simple numerical
model of a weather forecast. He proved that even small variations of the initial
data lead to quite different solutions after a short period of time – the so called
butterfly effect – see [96] . Increasingly powerful computers enabled extended
numerical computations, which helped with the formulation of scientific prob-
lems and the identification of regularities in chaotic motions. This motivated
scientists to study Poincaré’s and Birkhoff’s theoretical achievements about
homoclinic points and to continue with their investigation. Smale constructed
a geometrical structure – the so called Horseshoe map [2] – which showed
the existence of homoclinic orbits and illustrated the theoretical results. Fur-
ther, he in the West, cf. [121], and Shil’nikov in the East, cf. [119], proved
independently that in autonomous discrete time systems the dynamic near a



1 Introduction

homoclinic point is chaotic. As Kovačiv̌ and Wiggins [89, Introduction] stated

“In fact, it is not an exaggeration to claim that in virtually every
manifestation of chaotic behavior thus far, some type of homoclinic behavior

is lurking in the background.”

extensive studies of homoclinic orbits are essential in the field of dynamical
systems. For some significant results and a historical overview we refer to [65],
[49], [97] and [103]. These results and increasingly powerful computers enable
numerical calculations. One way to implement numerical computations is the
discretization of continuous systems, which leads to the question:

Do homoclinic orbits persist under discretization? (Q)

Around the 70s-80s it was proved that one-step methods reflect the long time
behavior of differential equations [125], [31], [86], [18] and [17]. For autonomous
systems the entire homoclinic orbit lies in the intersection of the stable and
unstable manifold. For continuous systems this means that the stable and
unstable manifold intersect tangentially. Thus, every homoclinic point of a
continuous autonomous system is tangential. Fiedler and Scheurle [50] ob-
served that under discretization with a one-step method the manifolds gener-
ically split (with an exponentially small splitting angle w.r.t. the used step
size), which implies that for discretized systems there may exist transversal
homoclinic orbits. Zou and Beyn [135], [137] proved that the discretization
of an autonomous continuous system with a transversal homoclinic orbit in-
duces a closed loop of homoclinic orbits, where most of these trajectories are
transversal.

One part of this thesis is the analysis of the question (Q) for nonautonomous
continuous systems.

The study of nonautonomous systems, in particular of nonautonomous ho-
moclinic orbits [126], [73], is motivated by the fact that most of the systems
modeling a realistic phenomena are nonautonomous, e.g. bacterial growth and
tumor drug treatment [87, Section 1.2]. Further, the autonomous setup is not
a special case of the nonautonomous situation. Time independent solutions
generally do not exist in nonautonomous systems. Furthermore, the manifolds
depend on time and are called fiber bundles. Thus, for nonautonomous sys-
tems a meaningful definition of homoclinic orbits requires convergence in both
time directions toward one reference trajectory. The stable and unstable fiber
bundles generally intersect transversally, which means that they only have iso-
lated points of a homoclinic orbit in common for each time. This is a contrast
to the autonomous setup, where the entire orbit lies in the intersection, see
Figure 1.1. Thus, for nonautonomous continuous systems two different kinds
of homoclinic orbits exist, transversal and tangential, see Figure 1.2.
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Figure 1.1: Stable (green) and unstable manifolds (autonomous, left) and fiber
bundles (nonautonomous, right).

tangentialtransversal

Figure 1.2: Stable (green) and unstable fiber bundles intersecting transversally
(left) and tangentially (middle,right).

We discretize nonautonomous ODEs with transversal homoclinic orbits us-
ing a one-step method. Under certain conditions we prove in Theorem 7.3.6
that by using a sufficiently small step size the discretized system has a transver-
sal homoclinic orbit as well. Further, we prove that both trajectories lie in a
sufficiently small neighborhood.

In this thesis we also analyze the question (Q) for finite time continuous
systems.

The theory of finite time dynamical systems is completely different from
the theory of infinite time dynamical systems, since the classical asymptotic
concepts do not apply to the finite time case. However, the study of these
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systems is important for at least three reasons. First, modeling observations
or collections of data over a finite time interval result in finite time dynam-
ical systems. On top of that, one is interested in the transient behavior of
solutions, which is often quite different than the long time behavior. Fi-
nally, numerical approximations are only given for finite time intervals. About
10 − 20 years ago the first studies in the finite time dynamical system the-
ory dealt amongst other topics with the development of a proper notion of
hyperbolicity [59], [62], [16], [43], [15], [12], [13], [45], [14]. Several nonequiv-
alent definitions of finite time hyperbolic systems exist. They can roughly be
separated into at least two classes. The first one is based on the concept of ex-
ponential dichotomies. We will call such systems M-hyperbolic [43, Definition
1], [14, Definition 1.2], since they require monotonic growth and decay of solu-
tions. The second one is based on the dynamical pattern of the given system.
This kind of hyperbolicity is often called D-hyperbolicity and its definition for
ODEs is given in [15], [45] and in [43]. For these two classes it holds that a
D-hyperbolic system is also an M-hyperbolic system. This was first proved by
Haller [62] for three-dimensional continuous systems and extended by Berger
et al. [14], [13, Theorem 7] for continuous systems with arbitrary dimensions.
Another proof which is based on the fiber bundles of a linearization is given
in [43, Theorem 21]. The analysis of discrete finite time systems is not as
well-developed as the analysis of continuous finite time systems and by far not
as advanced as the analysis of infinite time systems. This motivated us to
develop an adequate concept for finite time systems, in particular for discrete
finite time systems.

In this thesis we additionally introduce a definition of D-hyperbolicity for
discrete systems and prove in Theorem 5.4.2 that a discrete D-hyperbolic sys-
tem is also M-hyperbolic. Inspired by the study of homoclinic orbits in infinite
time systems we develop an approach for finite time homoclinic orbits. In par-
ticular, we present an adequate analogon of infinite time fiber bundles for finite
time systems that enables a definition of finite time homoclinic orbits. We call
a finite time orbit x(·) ε-homoclinic, ε > 0, toward a finite time hyperbolic
reference trajectory ξ(·) if

(1) x(·) lies in the intersection of the stable and unstable finite time fiber
bundle w.r.t. ξ(·) and if

(2) both endpoints of x(·) each lie in an ε-ball around the corresponding
endpoint of ξ(·).

This means that we need a notion of the finite time stable and unstable fiber
bundles such that their intersection is not always empty. For finite time stable
and unstable fiber bundles there exist various nonequivalent notions and to
our knowledge for non of them the fibers intersect. Some authors call the
stable and unstable fiber bundles area of attraction and area of repulsion and
they are often defined via decay conditions. One way to define finite time
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fiber bundles, cf. [45], [52], [83], is based on the M-hyperbolic concept, i.e. the
(un)stable finite time fiber bundle contains all points, whose orbits satisfy

(D1) monotonically decrease (increase) for all times in the finite time interval.

These fiber bundles do not intersect and, thus, for our purpose to study ε-
homoclinic orbits they are not appropriate. Hence, we introduce two alterna-
tive notions of finite time fiber bundles. First we additionally require condition
(2), i.e. the (un)stable finite time fiber bundle contains all points x, whose or-
bits x(·) satisfy

(D2) monotonically decrease (increase) for all time in the finite time interval
and the endpoint in forward (backward) time of x(·) lies in an ε-ball
around the corresponding endpoint of ξ(·).

These fiber bundles still do not intersect, but at least orbits in the fiber
bundles satisfy (2). Based on the concept of infinite time fiber bundles we
introduce a third notion of finite time fiber bundles. For infinite time au-
tonomous [120, Theorem III.7] and nonautonomous [111, Corollary 4.6.11]
systems the (un)stable fiber of a hyperbolic trajectory locally consist of those
points, whose orbits stay for all positive times in a sufficiently small neighbor-
hood of ξ and converges toward ξ. This means that our (un)stable finite time
fiber bundle contains all points x, whose orbits x(·) satisfy

(D3) the endpoint in forward (backward) time of x(·) lies in a ε-ball around the
corresponding endpoint of ξ(·) and monotonically increase in backward
(forward) time until the orbit leaves the ε-ball (or until the orbit is not
defined anymore).

For this notion of finite time fiber bundles a definition of ε-homoclinic orbits is
reasonable, i.e. (1) and (2) may be satisfied for a solution. Finally we analyze
whether homoclinic orbits persist under discretization. We prove in Theorem
7.3.6 under certain conditions that the discretization of a finite time system
with an ε-homoclinic orbit has a (2Chd + ε)-homoclinic orbit, where C > 0, h
is the step size of the applied one-step method of order d.

In summary, this means that for autonomous and nonautonomous systems
for both infinite and finite time the answer of the question (Q) under certain
conditions is:

Homoclinic orbits persist under discretization.

To verify whether a homoclinic point is transversal or tangential an anal-
ysis of the stable and unstable fiber bundles essential. For finite time systems
it is well known, cf. [105, Proposition 5.4], [76, Theorem 9], [124, Theorem
4.2] and [70, Theorem 3.5], that the stable and unstable subspace of the lin-
earization locally approximate the stable and unstable fibers. This inspires the
study of the stable and unstable set of linear finite time hyperbolic systems,
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1 Introduction

which are actually cones. For finite time systems Karrasch [83] proved, roughly
speaking, that the (un)stable cone of the linearization locally approximates
the (un)stable finite time fiber bundle of the original system, with the notion
(D1) of finite time fiber bundles. These results imply a promising approach
to approximate stable and unstable fiber bundles. Numerical techniques to
determine the stable and unstable fiber bundles exist for autonomous infinite
time systems [23], [33], [42], [44], [46], [48], [92], for nonautonomous continu-
ous [75], [95], [26], [34] and discrete infinite time systems [112], [114], [74] as
well as for finite time systems [59], [55]. Further, approximation results of ho-
moclinic orbits in discrete and continuous autonomous systems are presented
in [22] and [19], respectively, and for nonautonomous systems we refer to [70]
and [112]. For autonomous infinite time systems the choice of proposed tech-
niques is quite vast. They range from numerical continuation and boundary
value problems through Taylor expansions and the parametrization method
to fixed point iterations and set orientated methods. Some generalizations of
these techniques apply to nonautonomous infinite time systems as well. How-
ever, for this kind of systems the literature is quite sparse, in particular for
noninvertible systems.

In this thesis we introduce an algorithm which approximates fiber bundles
of nonautonomous discrete infinite time systems [Section 6.7]. This algorithm
is a generalization of the search circle algorithm in [48]. We develop numerical
tools to approximate all ε-homoclinic orbits of a D-hyperbolic system, i.e. the
intersection of the stable and unstable finite time fiber bundle. Note that in
contrast to infinite time systems stable and unstable fiber bundles in finite time
are fat objects. Thus, the intersection of the stable and unstable finite time
fibers include more than one ε-homoclinic trajectory. We call the union of all ε-
homoclinic trajectories an ε-homoclinic tube. Further we determine the width
of the stable and unstable cone and establish upper bounds for the width of the
stable and unstable cone as well as of the ε-homoclinic tube. Additionally, we
present a more detailed proof of the local approximation Theorem presented
in [83] adapted for notion (D3) of finite time fiber bundles. This means the
stable and unstable cones of the linearization provide information about the
stable and unstable cone, which motivates to study linear finite time systems.

For linear infinite nonautonomous time systems

ẋ = A(t)x, xn+1 = A(n)xn, x ∈ Rk, k ∈ N, t ∈ R, n ∈ Z

it is well known that a study of the eigenvalues of the matrix A(·) does not
help to prove hyperbolicity, see [37, p. 30] for a continuous time example due
to Vinograd and for a discrete time example we refer to [47, Example 4.17].
Similar results exist for finite time systems. Autonomous continuous systems
(2.6) are M-hyperbolic if the eigenvalues of A do not lie on the imaginary axis
and autonomous discrete systems (2.6) are M-hyperbolic if the eigenvalues of A
do not have absolute value 1. For 2-dimensional finite time systems Haller [59]
presented conditions on the spectral data of A that ensure hyperbolicity of
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1.1 Outline of This Thesis

finite time systems. Nevertheless, conditions relying on spectral data have
their pitfalls, shown in [12, Section 2]. For 3-dimensional finite time systems
the eigenvalues of A(·) do not provide any information about the dynamical
properties of the finite time system, for more details see [12, Section 2] and [60,
Theorem 1]. Berger [12, Section 2] said about this problem

“Plausible though this may be, it is actually not true.”

Therefore, we never use the eigenvalues of A(·) to determine hyperbolicity of
a dynamical systems.

Detailed Outline of This Thesis

In Chapter 2 the notion for this thesis is set. In Section 2.2 we introduce
dynamical systems and abbreviate infinite time systems as ift-systems and
finite time systems as ft-systems.

In every chapter we start with the study of ift-systems and continue with
an analogously study of ft-systems.

Chapter 3 starts with the definition of hyperbolicity for continuous and
discrete time systems on an infinite time interval. By analyzing the hyperbol-
icity conditions of an ift-system in Section 3.2 we get a reasonable definition of
hyperbolicity for finite time systems, the so called M-hyperbolicity. In Section
3.3 we point out some important differences and similarities between hyper-
bolic ift-systems and M-hyperbolic ft-systems. For example the uniqueness of
the invariant family of projectors of a hyperbolic ift-system and the nonunique-
ness for M-hyperbolic ft-systems. The definition of an infinite time exponen-
tial dichotomy is independent of the choice of norm, whereas the definition
of an finite time exponential dichotomy depends on the norm. We prove for
every autonomous hyperbolic ift-system the existence of a proper norm (Lya-
punov norm) such that the system is M-hyperbolic on each compact interval.
In Section 3.4 we present various Roughness-Theorems, which guarantee the
preservation of hyperbolicity under sufficiently small additive perturbations,
for both ift- and ft-systems.

In Chapter 4 we study stable and unstable sets of linear systems. For
linear ift-systems these sets are subspaces and for linear ft-systems they are
cones. We start this chapter with the definition of the stable and unstable
subspaces TVs,u(·) of an hyperbolic ift-system, which have the representation

TVs(t0) = R(P (t0)),
TVu(t0) = N (P (t0)),

where t0 ∈ T, T ∈ {R,Z} and P : T → R

k×k is the unique invariant family
of projectors of the hyperbolic ift-system. Then, in Section 4.1, we derive a
definition for the stable and unstable cone of an ft-system from the definition

11



1 Introduction

of the subspaces. In Section 4.2 we prove that the stable and unstable cones
IVs,u(·) of an M-hyperbolic ft-system satisfy

IVs(t0) =
⋃

P (t0)∈Pt0

R(P (t0)) and IVu(t0) =
⋃

P (t0)∈Pt0

N (P (t0))

for all t0 ∈ I, I ⊂ T a compact interval, where

Pt0 :={P (t0)|P : I → R

k×k is an invariant family of projectors such

that the the given ft-system is M-hyperbolic w.r.t. these family}.

This means, that the uniquely determined cones can be described by the union
of the nonunique families of projectors.

An explicit representation of the stable and unstable subspaces and cones
of a linear (ft-)hyperbolic system is of great interest for plotting and is es-
tablished in Chapter 5. For D-hyperbolic systems we are able to find an
explicit representation. The definitions of D-hyperbolic systems are based on
a Γ-norm, ‖·‖Γ =

√

〈·,Γ·〉, where Γ ∈ Rk×k is a positive definite symmetric
matrix and 〈·, ·〉 denotes the standard inner product. In Section 5.1 we analyze
various types of autonomous ft-systems to find cases where a matrix Γ exists
such that the given system is M-hyperbolic w.r.t. ‖·‖Γ.

In Section 5.2 we define D-hyperbolic systems. Additional to the Definition
for continuous ft-systems as in [15], [45] and [43] we give a Definition for discrete
ft-systems. The main ingredients of the D-hyperbolicity definitions are the Γ-
strain acceleration tensor MΓ(·), the Γ-strain tensor SΓ(·) and zero Γ-strain
set ZΓ(·). These tensors describe the numerical pattern of a given continuous
system [15], [12, Proposition 2]. We deduce similar properties for discrete
systems and present the results in Section 5.2.

In Section 5.3 we develop an explicit representation of stable and unstable
cones of discrete D-hyperbolic systems. We state this and an explicit represen-
tation of the cones of continuous systems, which is given in [43, Proposition 19].
In Section 5.4 we prove that every D-hyperbolic system is also M-hyperbolic.

We conclude this chapter with various examples of 2- and 3-dimensional
finite time systems ranging from autonomous and nonautonomous systems to
continuous, discrete invertible and discrete noninvertible systems. Plots of the
stable and unstable cones are shown in Section 5.5-5.7. The fact that these
cones are fat objects raises the question how wide these cones are. This is a
new question in the theory of finite time dynamical systems. In Section 5.6 and
5.7 we analyze the width of stable and unstable cones of invertible ft-systems in
2- and 3-dimensional spaces, respectively. We prove that the width of stable
cones decays in backward time while the width of unstable cones decays in
forward time. The decay depends on the eigenvalues of the Γ-strain tensor
whereas the width at the boundary times depends on the relation between
the eigenvalues. Further, we present upper bounds of the width, for which
calculation the solution operator is not needed.

12



1.1 Outline of This Thesis

In Chapter 6 we introduce three alternative notions of finite time fiber
bundles (D1), (D2) and (D3). The first notion of fiber bundles (D1), that
we present in Section 6.1, describes the monotonically stable and unstable ft-
fiber bundles. This notion is based on the M-hyperbolicity concept and is also
discussed in [45], [52] and [83]. In Section 6.2 and Section 6.3 we develop the
other two notions of finite time fiber bundles, the monotonically ε-stable and
unstable ft-fiber bundles (D2) and the ε-stable and unstable ft-fiber bundles
(D3). In Section 6.4 we analyze the characteristics of the three introduced ft-
fiber bundles. In particular, we study their invariance properties and we verify
that only the ε-stable and ε-unstable ft-fibers may intersect. These ones are
abbreviate as ft-fiber bundles. In Section 6.6 we show roughly speaking that
the stable and unstable cone of the linearization locally approximate the stable
and unstable ft-fiber bundles. More precisely, we prove this property for the
boundaries. We conclude this chapter with a new approach to approximate
the stable and unstable fiber bundles. We present an algorithm which applies
to both, invertible and noninvertible ift-systems, and is a generalization of the
search circle algorithm in [48]. For two examples, one infinite, one finite, we
plot the stable and unstable fibers. We calculate the infinite system with the
developed algorithm and the finite time systems per iteration.

Chapter 7 contains the study of homoclinic trajectories. We introduce
an adequate notion for ε-homoclinic trajectories (finite time) by requiring the
conditions (1) and (2). Further, we define the ε-homoclinic tube, which is the
union of all ε-homoclinic trajectories of an ft-systems. The two purposes of
this chapter are the development of an approach to approximate the tube and
the discretization of dynamical systems with homoclinic orbits. In Section
7.1 we develop a boundary value problem which provides the boundary of
the ε-homoclinic tube. In Section 7.3 we discretize infinite and finite time
dynamical systems with a one-step method. We prove that under certain
conditions and for sufficiently small step sizes h the discretization of an ift-
system with a transversal homoclinic orbits has a transversal homoclinic orbit
as well. Further, both homoclinic orbits lie in an Chd-neighborhood, where
C > 0 and d is the order of the applied one-step method. A similar result
holds for ft-systems. If an ft-system with an ε- homoclinic orbits is discretized
by a one-step method of order d and step size h then the discretized system
has a (2Chd + ε)-homoclinic orbit. To obtain this achievements we discretize
in Section 7.2 continuous systems, using the h-flow. This has no practical
relevance from a numerical point of view but helps to derive error estimates of
one-step methods in the last section.

We conclude this thesis with Chapter 8, where we present three applica-
tions. All for infinite time systems. Note that we studied finite time systems
and approximated the ε-homoclinic tube in Section 7.1. In this chapter we
construct a 2-dimensional example with an explicitly known homoclinic orbit.
Further, we compare orbits of a one-step method with the exact ones and
numerically verify our error estimates. For illustrating transversality of the

13



1 Introduction

computed orbits we look at the corresponding stable and unstable fiber bun-
dles of the one-step discretization. We calculate the fibers with our algorithm
from Section 6.7. The second application is a periodic autonomous ODE and
the third one a nonautonomous model from mathematical biology.
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Chapter 2

Basic Concepts

In this chapter the basis for this thesis is set. The first section establishes
a general notation used throughout this dissertation. Further, some basic
definitions are given. In subsection 2.2 we introduce dynamical systems.

Notations and Basic Definitions

In this section we first define a few symbols. Then we introduce some notations
and finally define terms, which are needed in the following.

I identity matrix
R real numbers

R≥0 real numbers ≥ 0
R>0 real numbers > 0
Z integral numbers
N natural numbers without 0
S1 unit sphere in Rk

Ū the closure of U ⊂ Rk

∂U the boundary of U ⊂ Rk

Cj set of j–times continuous differentiable systems
In the following we introduce various notations that are used throughout

this thesis. Set rZ := {. . . ,−3r,−2r,−r, 0, r, 2r, 3r, . . .}.
We shorten discrete one sided bounded intervals by

Z

+
N := [N,∞) ∩ Z, Z−

N := (−∞, N ] ∩ Z for all N ∈ Z.

To have a uniform notation for discrete and continuous compact time intervals
we will write for T ∈ {R,Z}, t± ∈ T

[t−, t+]T :=

{

[t−, t+], for T = R,

[t−, t+] ∩ Z, for T = Z.

Analogously, we define (t−, t+]T, [t−, t+)T and (t−, t+)T.



2 Basic Concepts

For a compact time interval I = [t−, t+]T we always assume t+ > t−.
For a compact interval I := [n−, n+]Z and j ∈ N we define

Ij := [t−, t+ − j]
Z

, jI := [t− + j, t+]Z.

Let ε > 0 and x ∈ Rk then the open and closed ε-ball around x are denoted
by

Bε(x) := {y ∈ Rk| ‖x− y‖2 < ε},
Bε[x] := {y ∈ Rk| ‖x− y‖2 ≤ ε},

where ‖ · ‖2 is the euclidean norm.
To shorten the notation of partial derivatives, we use upper and lower

indices, i.e. for i, j ∈ N

(ϕn)
(i,j)
x,h (x, h) :=

∂i

∂xi
∂j

∂hj
ϕn(x, h),

(ϕn)x(x, h) := (ϕn)
(1,0)
x,h (x, h) =

∂

∂x
ϕn(x, h).

Γ ∈ R

k×k denotes a positive definite (Γ > 0) and symmetric (Γ = ΓT )
matrix. The induced Γ-norm is defined by ‖ · ‖Γ =

√

〈·,Γ·〉, where 〈·, ·〉 is the
standard inner product.

Definition 2.1.1. A matrix A ∈ Rk×k is degenerate if 0 is an eigenvalue.
Otherwise we say A is nondegenerate. We call A positive definite (A > 0)
if 〈ξ, Aξ〉 > 0 holds for all ξ ∈ R

k \ {0} and say A is negative definite
(A < 0) if 〈ξ, Aξ〉 < 0 is true for all ξ ∈ Rk \ {0}. If A is not positive and not
negative definite and 〈ξ, Aξ〉 6= 0 for at least one ξ ∈ Rk than A is indefinite.

Remark 2.1.2. In this paper we also call positive semi-definite and negative
semi-definite matrices indefinite.

Definition 2.1.3. A matrix P : Rk → R

k is called a projector if P ◦P = P .

Remark 2.1.4. We denote the kernel of a matrix P by N (P ) and the range
of the matrix by R(P ). The linear case of a vector v ∈ Rk is given by L(v) :=
{λv ∈ Rk|λ ∈ R}. And for the dimension of a subspace U ⊂ R

k we write
dim(U).

Definition 2.1.5. Let A ⊂ R

k and UA ⊂ A be a subspace. We say that
UA is a subspace of maximal dimension if no subspace ŨA ⊂ A exists with
dim(ŨA) > dim(UA). If UA is a subspace of maximal dimension then we
say A is of dimension dim(UA).

Lemma 2.1.6. Let A,B ⊂ R

k be two sets with A ∩ B = {0}. If there exist
subspaces UA ⊂ A, UB ⊂ B with UA + UB = Rk then UA, UB are subspaces of
maximal dimension.
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2.2 Dynamical Systems

Proof. Assume w.l.o.g. there exists a subspace ŨA ⊂ A with dim(ŨA) >
dim(UA). Then by UA ∩ UB ⊂ A ∩ B = {0} and the dimension formula
we obtain

k = dim(UA + UB) = dim(UA) + dim(UB)− dim(UA ∩ UB)

= dim(UA) + dim(UB) < dim(ŨA) + dim(UB) = k + dim(ŨA ∩ UB).

This implies 0 < dim(ŨA∩UB) which is a contradiction to ŨA∩UB ⊂ A∩B =
{0}. Thus UA is a subspace of maximal dimension.

Definition 2.1.7. A function f : I → R is called increasing on I if for all
t, s ∈ I with t ≥ s we have f(t) ≥ f(s). If f(t) ≤ f(s) for all t, s ∈ I with t ≥ s
the function is decreasing on I. When we write f(t) is increasing (decreasing)
for t ∈ I we mean that f : I → R is increasing (decreasing) on I.

Dynamical Systems

Dynamical systems can be categorized into the following pairs of classes: finite-
dimensional and infinite-dimensional systems, continuous and discrete sys-
tems, invertible and noninvertible systems as well as autonomous and nonau-
tonomous systems. In this thesis we restrict the study of dynamical systems
to finite-dimensional systems. Systems of this kind are generated by e.g. or-
dinary differential equations, ordinary differential inequalities, ordinary differ-
ence equations and ordinary difference inequalities. For a deeper discussion
of dynamical systems we refer to [99] and [100]. A historical overview of the
field of differential equations and its developments is presented in [78, Section
11.1] and [101, Introduction]. Many problems, such as oscillating circuits, pop-
ulation dynamics, diagnosis of diseases, ocean eddies, tornados and discovery
of art forgery, in different fields ranging from physics and biology to geol-
ogy and sociology can be represented by a differential or difference equation,
see [134], [79], [129], [118] and [63]. Thus, the theory of dynamical systems
provides powerful tools to analyze such problems.

In this section we introduce dynamical systems that are generated by or-
dinary differential and ordinary difference equations. Further, we define and
analyze some properties of invariant families of projectors, which play a deci-
sive role for hyperbolic systems. Roughly speaking they provide all solutions
that decay or grow at certain rates.

For the definition of an autonomous dynamical system and the differences
between autonomous and nonautonomous systems we refer to [90, Section 1.1]
and [88, Definition 2.1 ff.]. Here, we introduce nonautonomous dynamical
systems on the Banach space Rk, k ∈ N, which include autonomous systems
as well, see [88, Definition 2.1].

Definition 2.2.1. A (nonautonomous) dynamical system is a triple

(Rk,T, ϕ),
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2 Basic Concepts

where T is a time set and ϕ : X×T×T → X is a function with the properties

• ϕ(x, t, t) = x for all t ∈ T, x ∈ Rk,

• ϕ(ϕ(x, s, r), t, s) = ϕ(x, t, r) for all t, s, r ∈ T, t ≥ s ≥ r, x ∈ Rk.

A dynamical system is invertible if the function ϕ(·, t, s) is invertible for all
t, s ∈ T. It is an infinite time system if T is infinite and a finite time
system if T is finite. If T ⊂ R is an interval then the dynamical system is
called a continuous system and if T ⊂ Z is a discrete time interval – in the
following just called an interval – then the system is called a discrete system.

For some results we have to distinguish between infinite time systems and
finite time systems. We abbreviate infinite time systems as ift-systems and
finite time systems as ft-systems.

To set a general notion consider a dynamical system

(Rk, I, ϕ) with ϕ ∈ C1(Rk × I× I,Rk) (2.1)

where I denotes an interval. In continuous time, I ⊂ R, a differential equation

ẋ(t) = f(x(t), t), t ∈ I (2.2)

generates such a dynamical system (2.1) and for f ∈ C1,0(Rk× I,Rk) solutions
of (2.2) with an initial value x(t0) = x0 locally exist and are unique (Picard-
Lindelöf Theorem [3, Theorem 8.14]). This leads to an invertible solution
operator ϕ. The infinitesimal generator is

f(x0, t) = lim
h→0,h∈R\{0}

ϕ(x0, t+ h, t)− x0
h

, t, t+ h ∈ I

for an initial value x0 ∈ Rk. If I ⊂ Z is a discrete time set a difference equation

x(n + 1) = f(x(n), n), n ∈ I (2.3)

generates a dynamical system (2.1). In contrast to (2.2), the solution operator
ϕ of (2.3) is generally not invertible. If the system is invertible then the
solution operator is invertible and satisfies

ϕ(u, n,m) :=











f(f(· · ·f(u,m), · · ·n− 2), n− 1), for n > m,

u, for n = m,

f−1(f−1(· · · f−1(u,m− 1), · · ·n− 1), n), for n < m,

see [10]. To define hyperbolicity of a solution ξ(t) = ϕ(ξ(s), t, s), t, s ∈ I, t ≥ s
of (2.2) or (2.3) we need the linearization, the variational equation, of (2.2)
along ξ(·)

u̇(t) = fx(ξ(t), t)u(t) =: A(t)u(t), t ∈ I (2.4)
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2.2 Dynamical Systems

respectively of (2.3),

u(n+ 1) = fx(ξ(n), n)u(n) =: A(n)u(n), n ∈ I. (2.5)

These equations generate a linear dynamical system

(Rk, I,Φ) with Φ(t, s) = ϕx(ξ(s), t, s), t, s ∈ I, t ≥ s.

If ϕ is the solution operator of (2.2) or (2.3) then Φ is the solution operator
of the variational equation (2.4) or (2.5), respectively. In general, we denote a
linear dynamical system by

(Rk, I,Φ) with Φ ∈ C1(I× I,Rk×k), (2.6)

which is generated by a linear differential equation

u̇(t) = A(t)u(t), t ∈ I (2.7)

or a linear difference equation

u(n+ 1) = A(n)u(n), n ∈ I1, (2.8)

where I1 := [n−, n+ − 1]
Z

if I = [n−, n+]Z. In the following we assume that

f ∈ C(1,0)(Rk × I,Rk), A ∈ C0(I,Rk×k)

for f and A of the equations (2.2), (2.3), (2.7) and (2.8).
Let T ∈ {R,Z} and I ⊂ T be an interval.

Definition 2.2.2. A trajectory of a dynamical system (2.1) is a function
x : I → R

k satisfying x(t) = ϕ(x(s), t, s) for all s, t ∈ I, t ≥ s.

For the manageability, it is sometimes helpful to use a linear notation even
if the function is actually not linear. Let X ⊂ R

k, t, s ∈ I, t ≥ s then we
define

ϕ̃(t, s)X := {ϕ(x, t, s)|x ∈ X}

and identify ϕ̃ with ϕ. For hyperbolic dynamical systems, which we introduce
in Chapter 3, the definition of an invariant family of projectors is required, see
e.g. in [115, Definition 4.2]. This family yields roughly speaking an invariant
family of subspaces, which contains solutions that decay with a certain rate
and an invariant family of subspaces, which contains solutions that grow with
a certain rate.

Definition 2.2.3. We call a family of projectors P : I → R

k×k of the
dynamical system (2.6) invariant if the projectors fulfill

Φ(t, s)P (s) = P (t)Φ(t, s)

for all t, s ∈ I with t ≥ s.
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Basic properties of invariant families of projectors, that we need in the
following, are summarized in [132, Proposition 6.82] and in the next lemma.

Lemma 2.2.4. Let I be a interval and P : I → R

k×k be an invariant family
of projectors, then

Φ(t, s)R(P (s)) ⊂ R(P (t)), Φ(t, s)N (P (s)) ⊂ N (P (t)) for all t, s ∈ I, t ≥ s.

Proof. Let t, s ∈ I, t ≥ s and ξ ∈ R(P (s)). Then we have P (s)ξ = ξ and we
obtain by the invariance of the projectors

Φ(t, s)ξ = Φ(t, s)P (s)ξ = P (t)Φ(t, s)ξ.

This implies Φ(t, s)ξ ∈ R(P (t)). Thus, Φ(t, s)R(P (s)) ⊂ R(P (t)) is satisfied.
Let ν ∈ N (P (s)), then we have P (s)ν = 0 and by the invariance of the
projectors we get

0 = Φ(t, s)P (s)ν = P (t)Φ(t, s)ν.

This implies Φ(t, s)ν ∈ N (P (t)). Thus, Φ(t, s)N (P (s)) ⊂ N (P (t)) is satisfied.

For invertible systems we can easily construct an invariant family of pro-
jectors. For two subsets Xs, Xu ⊂ Rk such that Xs ⊕Xu = Rk we can define
an invariant family of projectors P : I → R

k by

N (P (t)) := Φ(t, t0)Xu,

R(P (t)) := Φ(t, t0)Xs

for all t ∈ I and a fixed t0 ∈ I. For noninvertible systems this is not as simple as
for invertible systems. The following Lemma yields a construction of a family
of projectors such that this family is invariant.

Lemma 2.2.5. Let I = [t−, t+]Z and Φ(·, ·) be the solution operator of (2.6).
Let Xs, Xu ⊂ Rk be two subspaces such that

Xs ⊕Xu = Rk and dim(Φ(t, t−)Xu) = dim(Xu)

for all t ∈ I. Then the family of projectors P : I → R

k, recursively defined by

N (P (t)) := Φ(t, t−)Xu for t ∈ I,

R(P (t)) :=

{

Xs, for t = t−,

Φ(t, t− 1)R(P (t− 1)) +Ws(t), for t ∈ I, t 6= t−,

is invariant, where Ws(t) ⊂ Rk for t ∈ I1 are subspaces such that

(Φ(t, t− 1)R(P (t− 1)) +Ws(t))⊕ Φ(t, t−)Xu = Rk.
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2.2 Dynamical Systems

Proof. The invariance of Xu yields that the family of projectors P : I → R

k is
well defined. Let t ∈ 1I and x ∈ Rk. Then there exist xs ∈ R(P (t− 1)), xu ∈
N (P (t− 1)) such that x = xs + xu and

P (t− 1)x = P (t− 1)xs + P (t− 1)xu = xs + 0 = xs (2.9)

hold. We define ys,u := Φ(t, t− 1)xs,u. For xu ∈ N (P (t− 1)) = Φ(t− 1, t−)Xu

there exists a xuu ∈ Xu such that xu = Φ(t− 1, t−)xuu. For yu we obtain

yu = Φ(t, t− 1)xu = Φ(t, t− 1)Φ(t− 1, t−)x
u
u

= Φ(t, t−)x
u
u ∈ Φ(t, t−)Xu = N (P (t)).

Thus

P (t)yu = 0 (2.10)

holds. The definition of the ranges R(P (·)) yields

ys = Φ(t, t− 1)xs ∈ Φ(t, t− 1)R(P (t− 1)) ⊂ R(P (t)).

This leads to

P (t)ys = ys. (2.11)

By equation (2.9)-(2.11) we get

P (t)Φ(t, t− 1)x = P (t)Φ(t, t− 1)xs + P (t)Φ(t, t− 1)xu = P (t)ys + P (t)yu

= ys = Φ(t, t− 1)xs = Φ(t, t− 1)P (t− 1)x.

Inductively we obtain P (t)Φ(t, s) = Φ(t, s)P (s) for all t, s ∈ I with t ≥ s.
Hence, the family of projectors is invariant.
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Chapter 3

Hyperbolicity

An important tool to characterize structural stability of a dynamical system
is hyperbolicity, see e.g. [103], [27]. In the early eighties Mañe [98] proved that
stable systems generated by a C1 diffeomorphism must be hyperbolic. About
fifteen years later Hayashi [64] showed the same statement for C1 flows.

We start by defining hyperbolicity for continuous and discrete time systems
on an infinite time interval. By analyzing the hyperbolicity conditions of an ift-
system we get a reasonable definition of hyperbolicity for finite time systems.
In Section 3.3 we point out some important differences and similarities between
hyperbolic ift-systems and hyperbolic ft-systems. In the last Section 3.4 we
present different Roughness-Theorems, which guarantee the preservation of
hyperbolicity under sufficiently small additive perturbations.

Infinite Time Hyperbolicity

In the following we define hyperbolicity using the notion of exponential di-
chotomies, which has been developed for continuous ift-systems by e.g. Cop-
pel [40] and Palmer [104, Chapter 2]. For discrete invertible ift-systems an
exponential dichotomy, see [105], is similarly defined as in the continuous time
case. If a dynamical ift-systems is noninvertible, we may assume for an invari-
ant family of projectors P : I → R

k the regularity condition

Φ(t, s)|N (P (s)) : N (P (s)) → N (P (t)) is invertible for all t, s ∈ I, t ≥ s,

where Φ denotes the solution operator. The definition of an exponential di-
chotomy for noninvertible systems in [36, page 549], [21, Definition 17], [66,
Definition 7.6.1], [10, Definition 2.2] and [80, Definition 4.3] is based on this
regular condition, whereas the definition in [81, Definition 2.1.2] does not re-
quire the condition. If an exponential dichotomy for noninvertible ift-systems
is additionally defined with the regularity condition, in contrast to without,
then the statements about hyperbolic invertible ift-systems are fundamentally
transferable. In this dissertation we study noninvertible systems as well. Ac-
cordingly, we use [66, Definition 7.6.1] as a basis.



3 Hyperbolicity

Definition 3.1.1. Let I be an infinite time interval. The dynamical system
(2.6) has an exponential dichotomy on I if there exist constants K,α, β > 0
and an invariant family of projectors P : I → R

k×k such that the following
holds

Φ(t, s)|N (P (s)) : N (P (s)) → N (P (t)) is invertible for all t, s ∈ I, t ≥ s, (3.1)

and the estimates

‖Φ(t, s)P (s)‖ ≤ Ke−α(t−s), ‖Φ(s, t)(I− P (t))‖ ≤ Ke−β(t−s) (3.2)

are satisfied for all t, s ∈ I, t ≥ s, where Φ(s, t) denotes the inverse of
Φ(t, s)|N (P (s)). The corresponding data are (K,α, β, P (·)) and we call such
a system hyperbolic.

The constant α is often called the decay rate and β the growth rate.
If we are not interested in the exact decay or growth rate then the data are
presented by (K, ᾱ, P (·)), where ᾱ := min{α, β}. On the other hand the data
may alternatively have the form (K,α, β, P (·), Q(·)), where P (·) denotes the
family of stable projectors, which fulfills ‖Φ(t, s)P (s)‖ ≤ Ke−α(t−s) andQ(·) :=
I−P (·) denotes the family of unstable projectors, which fulfills ‖Φ(s, t)Q(t)‖ ≤
Ke−β(t−s) for t, s ∈ I, t ≥ s.

Definition 3.1.2. Let (I ⊂ R)/(I ⊂ Z) be an infinite interval then the lin-
ear equation (2.7) / (2.8) is called hyperbolic if the corresponding dynamical
system (2.6) has an exponential dichotomy in the sense of Definition 3.1.1. A
trajectory ξ(·) of system (2.1) generated by equation (2.2)/ (2.3) is hyperbolic
if the corresponding variational equation (2.4)/ (2.5) is hyperbolic.

In the next section we derive a reasonable definition of hyperbolicity for
finite time systems. This definition uses a vector-norm, not a matrix norm, and
we will see that finite time hyperbolicity depends on the chosen norm. By the
equivalence of two norms in Rk×k we immediately observe that Definition 3.1.1
is independent of the choice of the norm, i.e. that the hyperbolicity estimates
in (3.2) do not depend on the chosen norm. Using an induced matrix norm in
(3.2), yields that Definition 3.1.1 can be rewritten as follows.

Lemma 3.1.3. Let I be an infinite time interval and P : I → R

k×k an in-
variant family of projectors of (2.6) satisfying (3.1). Let α, β > 0. Then
there exists a constant K > 0 such that (3.2) is satisfied with an induced ma-
trix norm ‖·‖M if and only if there exist constants C,C ′ > 0 such that the
following estimates hold for all t, s ∈ I, t ≥ s

‖Φ(t, s)ξ‖ ≤ Ce−α(t−s)‖ξ‖ for all ξ ∈ R(P (s)), (3.3)

‖Φ(s, t)ξ‖ ≤ Ce−β(t−s)‖ξ‖ for all ξ ∈ N (P (t)), (3.4)

‖P (s)‖M ≤ C ′, (3.5)

where ‖·‖ is the corresponding vector norm to ‖·‖M .
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Proof. Assume that the linear dynamical system (2.6) has an exponential di-
chotomy on I with data (K,α, β, P (·)). Let s ∈ I and ξ ∈ R(P (s)). Let the
estimates in (3.2) be satisfied. Then for every t ≥ s we obtain

‖Φ(t, s)ξ‖ = ‖Φ(t, s)P (s)ξ‖ ≤ ‖Φ(t, s)P (s)‖M‖ξ‖ ≤ Ke−α(t−s)‖ξ‖

and analogously, for ξ ∈ N (P (s)), the estimate (3.4) is satisfied. The bounded-
ness of the projectors (3.5) follows directly from (3.2) with t = s. Conversely,
let (3.3)-(3.5) be true then we get for an induced matrix norm and for all
t, s ∈ I, t ≥ s

‖Φ(t, s)P (s)‖M = sup
ξ∈Rk

‖Φ(t, s)P (s)ξ‖
‖ξ‖ = ‖P (s)‖M sup

ξ∈Rk

‖Φ(t, s)P (s)ξ‖
‖P (s)‖M‖ξ‖

≤ ‖P (s)‖M sup
ξ∈Rk

‖Φ(t, s)P (s)ξ‖
‖P (s)ξ‖ ≤ ‖P (s)‖M sup

ξ∈R(P (s))

‖Φ(t, s)ξ‖
‖ξ‖

≤ ‖P (s)‖MCe−α(t−s).

With equation (3.5) the first estimate in (3.2) holds. Analogously, we can
conclude the second estimate in (3.2).

The estimates (3.3)-(3.5) are well known for defining hyperbolic dynamical
systems. For example in [10, Definition 2.2] we find an exponential dichotomy
definition, which is similar to the estimates (3.3)-(3.5). Kalkbrenner used
in [81, pp.6-7] a similar notation for the hyperbolicity definition of noninvertible
systems.

Finite Time Hyperbolicity

(M-Hyperbolicity)

In the literature several nonequivalent definitions of finite time hyperbolic sys-
tems exist. They can roughly be separated into at least two classes. The first
one is based on the concept of exponential dichotomies – we will call such sys-
tems M-hyperbolic – and the second one is based on the dynamical pattern of
the given system. This kind of hyperbolicity we call D-hyperbolicity. We will
define and study both classes. In this chapter we are focused on M-hyperbolic
systems and in Chapter 5 we introduce and discuss D-hyperbolic systems. For
continuous systems we find a general definition of M-hyperbolicity in [43, Defi-
nition 1] and [14, Definition 1.2]. In [16, Definition 2] and [13, Definition 1] the
same definition of M-hyperbolicity is presented using a special type of norm,
which is also used for defining D-hyperbolicity in [15], [45] and in [43]. We
study this special type of norm – the so called Γ-norm – in Section 5.1. Kar-
rasch [82, Definition 3.3] used growth rates to define hyperbolicity of invertible
systems and proved in [82, Lemma 3.5] that his definition is equivalent to the
D-hyperbolicity definition. For proving whether a system is M-hyperbolic it
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would be convenient to check concrete conditions on the spectral data of A(t)
of (2.4)/(2.5). For ift-systems it is well known that a study of the eigenvalues
of the matrix A(·) does not help to prove hyperbolicity, see [37, p. 30] for a con-
tinuous time example due to Vinograd and for a discrete time example we refer
to [47, Example 4.17]. Similar results exist for ft-systems. Autonomous contin-
uous ft-systems (2.6) are M-hyperbolic if the eigenvalues of A do not lie on the
imaginary axis and autonomous discrete ft-systems (2.6) are M-hyperbolic if
the eigenvalues of A do not have absolute value 1. For 2-dimensional ft-systems
Haller presented in [59] conditions on the spectral data of A that ensure hyper-
bolicity of ft-systems. Nevertheless, conditions relying on spectral data have
their pitfalls, shown in [12, Section 2]. For 3-dimensional ft-systems the eigen-
values of A(·) do not provide any information about the dynamical properties
of the ft-system, for more details see [12, Section 2] and [60, Theorem 1]. An
alternative is to prove D-hyperbolicity of an ft-system. This might be easier
than proving M-hyperbolicity, since the definition of D-hyperbolicity is based
on the dynamical pattern of the ft-system. In Section 5.4 we prove that every
D-hyperbolic system is also M-hyperbolic.

In this section we only introduce M-hyperbolic systems and we derive
the definition (Definition 3.2.3) from the definition of a hyperbolic ift-system
(Lemma 3.1.3).

If I is a compact interval then we observe that the estimate (3.5) is always
satisfied for a sufficiently large constant C ′ > 0. Further, the estimates (3.3)
and (3.4) are true for every invariant family of projectors P : I → R

k×k

satisfying (3.1) by choosing the constant C sufficiently large. To avoid this
we need to fix C. The fixing of C causes a dependence on the norm of the
hyperbolicity estimates (3.3) and (3.4).

Definition 3.2.1. Fix K ∈ [1,∞) and let I be a compact interval. Then
the dynamical system (2.6) is K-hyperbolic (on I and w.r.t the norm ‖ · ‖)
if there exists an invariant family of projectors P : I → R

k×k, which fulfills
(3.1), together with exponential rates α, β > 0 such that for all t, s ∈ I, t ≥ s

‖Φ(t, s)ξ‖ ≤ Ke−α(t−s)‖ξ‖ for all ξ ∈ R(P (s)),

‖Φ(s, t)ξ‖ ≤ Ke−β(t−s)‖ξ‖ for all ξ ∈ N (P (t))
(3.6)

are satisfied, where Φ(s, t) denotes the inverse of Φ(t, s)|N (P (s)).

This definition has its pros and cons. In the next example we show one
disadvantage, which motivates the search for another definition of finite time
hyperbolicity. In this example we prove that the nonhyperbolic ift-system
generated by the zero matrix is K-hyperbolic for any K > 1 and on any
compact interval.

Example 3.2.2. Consider the linear differential equation

ẋ = A(t)x, with x ∈ R2 and A(t) = 0 ∈ R2×2 (3.7)
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for all t ∈ I = [t−, t+] 6= ∅. Then the solution operator Φ of (3.7) is the

identity for all times. Define P (t) =

(

1 0
0 0

)

for all t ∈ I. Fix K > 1 and

define

α := β :=
log(K)

t+ − t−
> 0.

Choose an arbitrary s ∈ I and a norm ‖ · ‖ on R2. Then we get for all
ξ ∈ R(P (s)) and t ∈ I with t ≥ s

Ke−α(t−s)‖ξ‖ = Ke
− log(K)

(t−s)
t+−t− ‖ξ‖ ≥ Ke− log(K)‖ξ‖ = ‖ξ‖ = ‖Φ(t, s)ξ‖

and for all ξ ∈ N (P (s)) and s ≤ t ∈ I

Ke−β(t−s)‖ξ‖ = Ke
− log(K) (t−s)

t+−t− ‖ξ‖ ≥ Ke− log(K)‖ξ‖ = ‖ξ‖ = ‖Φ(s, t)ξ‖.

The estimates in (3.6) are satisfied for an arbitrary, but fixed constant K > 1.
Thus, our example is K-hyperbolic with K > 1 on any compact interval.

This should not be the case, at least not for the trivial nonhyperbolic
system. Hence, the only constant for which the system is not K-hyperbolic is
K = 1. We choose 1-hyperbolicity as an adequate notion of hyperbolicity for
ft-systems.

Solutions of hyperbolic ift-systems, which lie on the stable or unstable
manifold of a fixed point x, converge toward the fixed point, but in general not
strictly monotone. We require this monotonicity for solutions of ft-systems
by setting K = 1. To point out this essential difference we call hyperbolic
ft-systems M-hyperbolic. We define hyperbolicity for the finite time context
as in [16].

Definition 3.2.3. Let I be a compact interval. The dynamical system (2.6)
has an ft-exponential dichotomy (finite time) (on I and w.r.t. the norm ‖·‖)
if there exist an invariant family of projectors P : I → R

k×k and exponential
rates α, β > 0 with following properties. The solution operator

Φ(t, s)|N (P (s)) : N (P (s)) → N (P (t)) is invertible for all t, s ∈ I, t ≥ s (3.8)

and the estimates

‖Φ(t, s)ξ‖ ≤ e−α(t−s)‖ξ‖ for all ξ ∈ R(P (s)), (3.9)

‖Φ(s, t)ξ‖ ≤ e−β(t−s)‖ξ‖ for all ξ ∈ N (P (t)) (3.10)

are satisfied for all t, s ∈ I, t ≥ s, where Φ(s, t) denotes the inverse of
Φ(t, s)|N (P (s)). The corresponding data are (α, β, P (·)) and we call such a
system M-hyperbolic (monotonically hyperbolic on I w.r.t. ‖ · ‖).
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Definition 3.2.4. Let T ∈ {R,Z} and I ⊂ T be a compact interval. The
linear equation (2.7)/ (2.8) is called M-hyperbolic (monotonically hyperbolic
on I w.r.t. the chosen norm) if the corresponding dynamical system (2.6) has
an ft-exponential dichotomy in the sense of Definition 3.2.3. A trajectory ξ(·)
of system (2.1) generated by equation (2.2)/ (2.3) is M-hyperbolic (on I w.r.t.
the chosen norm) if the corresponding variational equation (2.4)/ (2.5) is M-
hyperbolic (on I w.r.t. the chosen norm).

It is easy to see that 1-hyperbolicity (K = 1) is equivalent to M-hyperboli-
city. We already mentioned one serious disadvantage of K-hyperbolic systems
for K > 1, i.e. that the trivial nonhyperbolic ift-system ẋ = 0 is K-hyperbolic
on every finite time interval for K > 1. Thus, why should we be interested
in K-hyperbolic (K > 1) systems? Not all hyperbolic systems on an infinite
time interval I are M-hyperbolic on a finite time subinterval J ⊂ I. At least
for each finite time interval J ⊂ I there exists a constant K > 1 such that the
given hyperbolic system is K-hyperbolic on J.

Note that we required for M-hyperbolicity that −α < 0 < β. A analysis
of the consequences if we require −α < C < β for a constant C ∈ R (it is
possible that 0 < −α or β < 0) instead of −α < 0 < β might lead to new
results but is beyond the scope of this thesis. For the infinite time case there
exist studies concerning the spectral splitting described above, cf. [8] and [9].

To prove whether a system is M-hyperbolic we have to verify the estimates
(3.9) and (3.10). We show equivalent inequalities as well as invariant properties
of the kernel and range of an invariant family of projectors which satisfies (3.8),
(3.9) and (3.10).

Lemma 3.2.5. Let system (2.6) be M-hyperbolic on a compact interval I with
an invariant family of projectors P : I → R

k×k. Then

Φ(t, s)R(P (s)) ⊂ R(P (t)) for all t, s ∈ I, t ≥ s, (3.11)

Φ(t, s)N (P (s)) = N (P (t)) for all t, s ∈ I. (3.12)

If the solution operator is invertible we have for all t, s ∈ I

Φ(t, s)R(P (s)) = R(P (t)). (3.13)

Proof. Let t, s ∈ I and t ≥ s. By Lemma 2.2.4 we get (3.11) and

Φ(t, s)N (P (s)) ⊂ N (P (t)).

The M-hyperbolicity yields that Φ(t, s)|N (P (s)) : N (P (s)) → N (P (t)) is in-
vertible for all t, s ∈ I, t ≥ s. Then the dimension of both sets satisfies
dim(N (P (s))) = dim(N (P (t))) for all t, s ∈ I. Since we already showed that
the left-hand side of (3.12) is a subset of the right-hand side we get equality
in (3.12). Assuming that the solution operator is invertible we obtain that

Φ(t, s) : R(P (s))⊕N (P (s)) = Rk → R

k = R(P (t))⊕N (P (t))
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3.2 Finite-Time-Hyperbolicity (M-Hyperbolicity)

is invertible for all t, s ∈ I, t ≥ s. By (3.8) we get the invertibility of

Φ(t, s)|R(P (s)) : R(P (s)) → R(P (t))

for all t, s ∈ I, t ≥ s. Analogous to (3.12) it follows that (3.13) holds.

In the M-hyperbolic definition, see Definition 3.2.3, we only require the
solution operator restricted to the kernel of an invariant family of projectors to
be invertible. Which statements can be established under this weak regularity
assumption about the solution operator of a linear system if it is not invertible,
i.e. if the kernel of the operator is not the zero set?

We will see that the kernel of the solution operator is a subspace of the
stable cone, see for M-hyperbolic systems Lemma 3.2.6 and Lemma 4.2.4 and
for D-hyperbolic systems see Lemma 5.3.3. In Lemma 3.2.6 we prove that
the kernel is a subspace of the range of every invariant family of projectors,
which satisfies (3.8), (3.9) and (3.10). Lemma 4.2.4 yields that the range of
every invariant family of projectors, which satisfies (3.8), (3.9) and (3.10), is a
subset of the stable cone. Note that for continuous systems the kernel of the
projectors equals the zero-set, since the solution operator is invertible. Thus,
the following lemma is always true in the continuous setting.

Lemma 3.2.6. Let I = [n−, n+]Z and (2.8) be M-hyperbolic with solution
operator Φ(·, ·). Then for all n0 ∈ I and P (n0) ∈ Pn0 := {P̃ (n0)|P̃ : I →
R

k×k is an invariant family of projectors such that
(3.8), (3.9) and (3.10) are satisfied with some constants α, β > 0} we have

N (Φ(n+, n0)) ⊂ R(P (n0)).

Proof. Fix n0 ∈ I. Let x ∈ N (Φ(n+, n0)) and P (n0) ∈ Pn0 . Then there exist
by [132, Proposition 6.82] an xs ∈ R(P (n0)) and an xu ∈ N (P (n0)) with
x = xs + xu. Thus,

Φ(n+, n0)xu = Φ(n+, n0)(x− xs) = Φ(n+, n0)x− Φ(n+, n0)xs

= 0− Φ(n+, n0)xs = Φ(n+, n0)(−xs).

By (3.11) and (3.12) we get

R(P (n+)) ⊃ Φ(n+, n0)R(P (n0))

∋ Φ(n+, n0)(−xs)
= Φ(n+, n0)xu ∈ Φ(n+, n0)N (P (n0)) = N (P (n+)).

This implies that Φ(n+, n0)xu ∈ R(P (n+))∩N (P (n+)) = {0}, see [132, Propo-
sition 6.82]. The invertibility of Φ(n+, n0)|N (P (n0)) yields xu = 0 and we obtain
x = xs ∈ R(P (n0)). Hence, the proof is complete.

For invertible systems Lemma 3.2.7 gives equivalent estimates to the M-
hyperbolic estimates (3.9) and (3.10).
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Lemma 3.2.7. Let I be a compact interval and P : I → R

k×k an invariant
family of projectors of system (2.6) satisfying (3.8) and let α, β > 0. Then the
family P and the constant β > 0 satisfy the estimate (3.10) if and only if

‖Φ(t, s)ξ‖ ≥ eβ(t−s) ‖ξ‖ for all t, s ∈ I, t ≥ s and ξ ∈ N (P (s)) (3.14)

is true. If (2.6) is invertible, then the estimate (3.9) is equivalent to

‖Φ(s, t)ξ‖ ≥ eα(t−s) ‖ξ‖ for all t, s ∈ I, t ≥ s and ξ ∈ R(P (s)). (3.15)

Proof. Let t, s ∈ I with t ≥ s and ξ ∈ N (P (s)). Then we find by the invariance
of the kernel of the family of projectors and by the invertibility of Φ(t, s)|N (P (s))

a ν ∈ N (P (t)) with ξ = Φ(s, t)ν. By (3.10) we get

‖Φ(s, t)ν‖ ≤ e−β(t−s)‖ν‖.

Multiplying with eβ(t−s) ≥ 1 we obtain

‖Φ(t, s)ξ‖ ≥ eβ(t−s)‖ξ‖.
Thus, estimate (3.10) is equivalent to (3.14). Similarly, the equivalence of (3.9)
and (3.15) follows for invertible systems.

To obtain equivalent statements of (3.9) and (3.10) we introduce the strain
tensor. This tensor is also used in continuum mechanics to describe the rate of
deformation of a body of a continuum medium (solid, liquid or gas) locally at
a certain time. For more details and physical interpretations we refer to [93, p.
46-57], [123]. The names strain-rate tensor, rate-of-strain tensor or rate-of-
deformation tensor or just strain tensor denote the same tensor.

The next definition and statements for continuous time systems originate
from [45], [15], [43], [62] and for the two dimensional case from [61]. In addition
we introduce similar concepts for discrete time systems.

Let Γ ∈ Rk×k be a positive definite symmetric matrix (ΓT = Γ > 0). Then
define ‖·‖Γ :=

√

〈·, ·〉Γ, 〈·, ·〉Γ := 〈·,Γ·〉, where 〈·, ·〉 denotes the standard inner
product. Note that this norm – called Γ-norm – is differentiable.

Definition 3.2.8. Let T ∈ {R,Z}, I ⊂ T a compact interval and let ΓT =
Γ > 0. Then the symmetric matrix

SΓ(t) :=

{

1
2
[ΓA(t) + A(t)TΓ], for T = R, t ∈ I,

A(t)TΓA(t)− Γ, for T = Z, t ∈ I1

is called the Γ-strain tensor of equation (2.7)/ (2.8). The set

ZΓ(t) := {ξ ∈ Rk|〈ξ, SΓ(t)ξ〉 = 0}

defined for all t ∈
{

I, for T = R,

I1, for T = Z
is called the zero Γ-strain set of equa-

tion (2.7)/ (2.8).
For Γ = I we write S(·) and Z(·) instead of SI(·) and ZI(·).
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In continuous time the Γ-strain tensor describes the instantaneous change
of 1

2
‖ξ(·)‖2Γ, where ξ(·) is a solution of (2.7), i.e. for t ∈ I

1

2

d

dt
‖ξ(t)‖2Γ =

1

2

d

dt
〈ξ(t),Γξ(t)〉 = 〈1

2
ξ̇(t),Γξ(t)〉+ 〈ξ(t), 1

2
Γξ̇(t)〉

= 〈1
2
A(t)ξ(t),Γξ(t)〉+ 〈ξ(t), 1

2
ΓA(t)ξ(t)〉

= 〈ξ(t), 1
2
(A(t)TΓ + ΓA(t))ξ(t)〉

= 〈ξ(t), SΓ(t)ξ(t)〉.

(3.16)

If d
dt
‖ξ(t)‖Γ ≷ 0 for all t ∈ I then ξ(·) is strictly increasing or strictly decreasing

w.r.t. the Γ-norm, respectively. For discrete systems we can use the Γ-strain
tensor to describe the change of the length of two subsequent solution points,
i.e. let ξ(·) be a solution of (2.8) then for n ∈ I1

‖ξ(n+ 1)‖2Γ − ‖ξ(n)‖2Γ = 〈ξ(n+ 1),Γξ(n+ 1)〉 − 〈ξ(n),Γξ(n)〉
= 〈A(n)ξ(n),ΓA(n)ξ(n)〉 − 〈ξ(n),Γξ(n)〉
= 〈ξ(n), [A(n)TΓA(n)− Γ]ξ(n)〉 = 〈ξ(n), SΓ(n)ξ(n)〉.

(3.17)

By (3.16)/(3.17) all nontrivial solutions ξ(·) of (2.7)/(2.8) are strictly in-
creasing (strictly decreasing) w.r.t. the Γ-norm if the Γ-strain tensor SΓ(t) is

positive (negative) definite for all t ∈
{

I, for T = R,

I1, for T = Z.

Thus, the zero Γ-strain set ZΓ(t) is a nontrivial cone if and only if SΓ(t) is
indefinite.

Studying equation (3.16) we see by the symmetry of 〈·, ·〉Γ that every solu-
tion ξ(·) of (2.7) satisfies

d

dt
‖ξ(t)‖2Γ = 2

(

〈1
2
A(t)ξ(t),Γξ(t)〉+ 〈ξ(t), 1

2
ΓA(t)ξ(t)〉

)

= 2

(

1

2
〈A(t)ξ(t), ξ(t)〉Γ +

1

2
〈ξ(t), A(t)ξ(t)〉Γ

)

= 〈A(t)ξ(t), ξ(t)〉Γ + 〈A(t)ξ(t), ξ(t)〉Γ
= 2〈A(t)ξ(t), ξ(t)〉

(3.18)

for each t ∈ I.
For proving the Roughness-Theorem 3.4.11 in Section 3.4 we introduce

equivalent statements of (3.9) and (3.10) using the Γ-strain tensor. The equiv-
alent statements, which we examine in Lemma 3.2.9, originate for continuous
time from [12, Proposition 2] and similar estimates are proved in [16, Lemma
9]. We additionally present and prove a similar statement for discrete time
systems.

Lemma 3.2.9. Let T ∈ {R,Z} , t± ∈ T and I = [t−, t+]T. An invariant family
of projectors P : I → R

k×k of (2.6) and constants α, β > 0 satisfy estimates
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(3.9) and (3.10) w.r.t. ‖·‖Γ if and only if the family P (·) and the constants

α̃ =

{

α, for T = R,

1− e−2α, for T = Z
> 0, β̃ =

{

β, for T = R,

e2β − 1, for T = Z
> 0 (3.19)

satisfy for all t, s ∈ I, t ≥ s and y ∈ Rk

〈Φ(t, s)P (s)y, SΓ(t)Φ(t, s)P (s)y〉 ≤ −α̃ ‖Φ(t, s)P (s)y‖2Γ (3.20)

as well as

〈Φ(t, s)Q(s)y, SΓ(t)Φ(t, s)Q(s)y〉 ≥ β̃ ‖Φ(t, s)Q(s)y‖2Γ , (3.21)

where Q(s) := I− P (s) for all s ∈ I.

Proof. Let y ∈ Rk and s ∈ I. Define η := P (s)y and µ := Q(s)y. For T = R
first assume that (3.9) and (3.10) are satisfied. Then we have for all t, t̃ ∈ I,
t ≥ t̃ ≥ s

‖Φ(t, s)η‖Γ =
∥

∥Φ(t, t̃)Φ(t̃, s)η
∥

∥

Γ

≤ e−α(t−t̃)
∥

∥Φ(t̃, s)η
∥

∥

Γ
= e−α(t−s)+α(t̃−s)

∥

∥Φ(t̃, s)η
∥

∥

Γ
,

which is equivalent to

eα(t−s) ‖Φ(t, s)η‖Γ ≤ eα(t̃−s)
∥

∥Φ(t̃, s)η
∥

∥

Γ
.

Thus, eα(t−s) ‖Φ(t, s)η‖Γ is decreasing, i.e. d
dt
eα(t−s) ‖Φ(t, s)η‖Γ ≤ 0. Analo-

gously, we get by (3.14) that

e−β(t−s) ‖Φ(t, s)µ‖Γ

is increasing. Hence

d

dt
e−β(t−s) ‖Φ(t, s)µ‖Γ ≥ 0

32



3.2 Finite-Time-Hyperbolicity (M-Hyperbolicity)

is satisfied. Definition 3.2.8 and equation (3.16) yield

〈Φ(t, s)η, SΓ(t)Φ(t, s)η〉

+α ‖Φ(t, s)η‖2Γ =
1

2

d

dt
‖Φ(t, s)η‖2Γ + α ‖Φ(t, s)η‖2Γ

=
1

2
e−2α(t−s) d

dt

(

e2α(t−s) ‖Φ(t, s)η‖2Γ
)

=
1

2
e−2α(t−s) d

dt

(

eα(t−s) ‖Φ(t, s)η‖Γ
)2

=
1

2
e−2α(t−s)2eα(t−s) ‖Φ(t, s)η‖Γ

d

dt

(

eα(t−s) ‖Φ(t, s)η‖Γ
)

= e−α(t−s) ‖Φ(t, s)η‖Γ
d

dt

(

eα(t−s) ‖Φ(t, s)η‖Γ
)

≤ 0,

〈Φ(t, s)µ, SΓ(t)Φ(t, s)µ〉

−β ‖Φ(t, s)µ‖2Γ =
1

2

d

dt
‖Φ(t, s)µ‖2Γ − β ‖Φ(t, s)µ‖2Γ

=
1

2
e2β(t−s) d

dt

(

e−2β(t−s) ‖Φ(t, s)µ‖2Γ
)

= eβ(t−s) ‖Φ(t, s)η‖Γ
d

dt

(

e−β(t−s) ‖Φ(t, s)η‖Γ
)

≥ 0.

Thus, the estimates (3.20) and (3.21) are fulfilled.
Reversely, assume that (3.20) and (3.21) are true. Let T = R and t ∈ I,

t ≥ s. Then we have by (3.19) α̃ = α and, thus,

0 ≥ 〈Φ(t, s)η, SΓ(t)Φ(t, s)η〉+ α̃ ‖Φ(t, s)η‖2Γ
=

1

2

d

dt
‖Φ(t, s)η‖2Γ + α ‖Φ(t, s)η‖2Γ

=
1

2
e−2α(t−s) d

dt

(

e2α(t−s) ‖Φ(t, s)η‖2Γ
)

.

The positivity of the exponential function yields

d

dt

(

e2α(t−s) ‖Φ(t, s)η‖2Γ
)

≤ 0.

This implies that

e2α(t−s) ‖Φ(t, s)η‖2Γ ≤ ‖η‖2Γ
is satisfied. Hence, estimate (3.9) is fulfilled. Further, with β̃ = β

0 ≤ 〈Φ(t, s)µ, SΓ(t)Φ(t, s)µ〉 − β̃ ‖Φ(t, s)µ‖2Γ
=

1

2

d

dt
‖Φ(t, s)µ‖2Γ − β ‖Φ(t, s)µ‖2Γ

=
1

2
e2β(t−s) d

dt

(

e−2β(t−s) ‖Φ(t, s)µ‖2Γ
)
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follows, which yields an equivalent statement of estimate (3.14)

e−2β(t−s) ‖Φ(t, s)µ‖2Γ ≥ ‖µ‖2Γ .

Thus, by Lemma 3.2.7 estimate (3.10) is fulfilled.
For T = Z let t ∈ I2, t ≥ s. By (3.19) we have α̃ = − (e−2α − 1) and

together with (3.17) we obtain that the next five inequalities are equivalent

〈Φ(t, s)η, SΓ(t)Φ(t, s)η〉 ≤ −α̃ ‖Φ(t, s)η‖2Γ ,
‖Φ(t + 1, s)η‖2Γ − ‖Φ(t, s)η‖2Γ ≤ −α̃ ‖Φ(t, s)η‖2Γ ,
‖Φ(t + 1, s)η‖2Γ − ‖Φ(t, s)η‖2Γ ≤ (e−2α − 1) ‖Φ(t, s)η‖2Γ ,

‖Φ(t + 1, s)η‖2Γ ≤ e−2α ‖Φ(t, s)η‖2Γ ,
‖Φ(t + 1, s)η‖Γ ≤ e−α ‖Φ(t, s)η‖Γ .

Hence, (3.9) follows. We get by (3.19) β =
(

e2β − 1
)

and the equivalence of
the following statements

〈Φ(t, s)η, SΓ(t)Φ(t, s)η〉 ≥ β̃ ‖Φ(t, s)η‖2Γ ,
‖Φ(t + 1, s)µ‖2Γ − ‖Φ(t, s)µ‖2Γ ≥ β̃ ‖Φ(t, s)η‖2Γ ,
‖Φ(t + 1, s)µ‖2Γ − ‖Φ(t, s)µ‖2Γ ≥ (e2β − 1) ‖Φ(t, s)η‖2Γ ,

‖Φ(t+ 1, s)µ‖2Γ ≥ e2β ‖Φ(t, s)η‖2Γ ,
‖Φ(t+ 1, s)µ‖Γ ≥ eβ ‖Φ(t, s)η‖Γ .

This yields (3.14) and Lemma 3.2.7 implies (3.10). Thus, (3.9) and (3.10) are
equivalent to (3.20) and (3.21).

A similar statement for continuous systems that is established in [16, Lem-
ma 9] uses the notation of growth rates. For the Roughness-Theorem 3.4.5
in Section 3.4 we need the theory of growth rates as well. Hence, we give a
short introduction and point out some of the relations between M-hyperbolic
systems and their growth rates. In addition to [82], [43] and [16] we define the
extremal growth rates also for noninvertible systems.

For I = [n−, n+]Z we define the following function

ΦTker : R
k × I → I ∪ {n+ + 1},

(ξ, n0) 7→ n̊ :=

{

minKerξn0
, if Kerξn0

6= ∅,
n+ + 1, otherwise

with Kerξn0
:= {n ∈ [n0, n+]Z|Φ(n, n0)ξ = 0}. This function provides the

earliest time, if it exists, at which the given vector lies in the kernel of the
solution operator. For an invertible system ΦTker(x) = n+ + 1 for all x ∈ Rk.
Thus, our definition of growth rates is for invertible systems equivalent to [82,
Definition 2.11].
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3.2 Finite-Time-Hyperbolicity (M-Hyperbolicity)

Definition 3.2.10. Let Φ be the solution operator of (2.6) for I = [t−, t+]T,
t± ∈ T ∈ {R,Z}. Let i ∈ {0, . . . , k} and X ∈ Grki = Gr(i,Rk), where Grki
denotes the Grassmann manifold, which contains all i-dimensional subspaces
of Rk. We define the upper and lower growth rate of X under Φ by

λ(X,Φ) :=







sup
x∈X,‖x‖=1

λ(x,Φ), i 6= 0

−∞, i = 0,

λ(X,Φ) :=







inf
x∈X,‖x‖=1

λ(x,Φ), i 6= 0

∞, i = 0

with

λ(x,Φ) :=











sup
t,s∈I,t6=s,

t,s<ΦTker(x,t−)

{

ln(‖Φ(t,t−)x‖)−ln(‖Φ(s,t−)x‖)
t−s

}

, if case (i),

−∞, otherwise,

λ(x,Φ) :=







−∞, if ΦTker(x, t−) ∈ I,

inf
t,s∈I,t6=s

{

ln(‖Φ(t,t−)x‖)−ln(‖Φ(s,t−)x‖)
t−s

}

, otherwise,

where case (i) is

ΦTker(x, t−) >

{

t−, for T = R,

t− + 1, for T = Z
.

Further, we define the minimal upper and maximal lower i-growth
rate of Φ

λi(Φ) :=







min
X∈Grki

{λ(X,Φ)}, i 6= 0

−∞, i = 0,

λi(Φ) :=







max
X∈Grki

{λ(X,Φ)}, i 6= 0

∞, i = 0.

For a definition of Grassmann manifolds and for the proof of its manifold
properties we refer to [94, p.22]. The Grassmann manifold Grki is the set of
all i-dimensional subspaces of Rk. Thus, it is obvious that for any projector
P ∈ Rk×k with dim(R(P )) =: i and dim(N (P )) = k − i =: r

λi(Φ) ≤ λ(R(P ),Φ),

λr(Φ) ≥ λ(N (P ),Φ)
(3.22)
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3 Hyperbolicity

holds. The following relations between M-hyperbolic invertible systems and
their growth rates can be found in [82, Lemma 3.3] and in [16, Lemma 12]. For
invertible systems Lemma 3.2.11 implies equivalent statements to the exponen-
tial dichotomy estimates (3.9) and (3.10) and Lemma 3.2.12 yields equivalent
conditions about growth rates to the M-hyperbolicity conditions (3.8), (3.9)
and (3.10).

Lemma 3.2.11. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Let P : I →
R

k×k be a family of invariant projectors of (2.6) satisfying (3.8). Set ℓ :=
dim(R(P (t−))) and r := k − ℓ. If the family P (·) and constants α, β > 0
satisfy (3.9) and (3.10) then they also satisfy

λℓ(R(P (t−)),Φ) ≤ −α and λr(N (P (t−)),Φ) ≥ β. (3.23)

If the system (2.6) is invertible then the statements (3.9) and (3.10) are equiv-
alent to (3.23).

Proof. Let (3.9) and (3.10) be satisfied for α, β > 0 and P (·). For x ∈
R(P (t−)) Lemma 2.2.4 yields Φ(s, t−)x ∈ R(P (s)) for all s ∈ I. Thus, we
have

‖Φ(t, t−)x‖ = ‖Φ(t, s)Φ(s, t−)x‖ ≤ eα(t−s) ‖Φ(s, t−)x‖

for all t, s ∈ I, t ≥ s. Setting t̄ := ΦTker(x, t−) we get by Definition 3.2.10

sup
t,s∈I,t6=s,

t,s<t̄

{

ln (‖Φ(t, t−)x‖)− ln (‖Φ(s, t−)x‖)
t− s

}

= sup
t,s∈I,t6=s,

t,s<t̄







ln
(

‖Φ(t,t−)x‖
‖Φ(s,t−)x‖

)

t− s







≤ sup
t,s∈I,t6=s,

t,s<t̄

{

ln(e−α(t−s))

t− s

}

= sup
t,s∈I,t6=s,

t,s<t̄

{−α(t− s)

t− s

}

=− α < 0.

For the growth rate follows

λ(R(P (t−)),Φ) = sup
x∈R(P (t−)),‖x‖=1,

t,s∈I,t6=s,
t,s<ΦTker(x,t−)

{

ln (‖Φ(t, t−)x‖)− ln (‖Φ(s, t−)x‖)
t− s

}

≤ −α.

Lemma 3.2.7 yields ‖Φ(t, s)ξ‖ ≥ eβ(t−s) ‖ξ‖ for all ξ ∈ N (P (s)) and t, s ∈ I,
t ≥ s. Using Lemma 3.2.5 we get for x ∈ N (P (t−))

‖Φ(t, t−)x‖ = ‖Φ(t, s)Φ(s, t−)x‖ ≥ eβ(t−s) ‖Φ(s, t−)x‖
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3.2 Finite-Time-Hyperbolicity (M-Hyperbolicity)

for all t, s,∈ I, t ≥ s. This estimate implies

λ(N (P (t−)),Φ) = inf
x∈N (P (t−)),‖x‖=1,

t,s∈I,t6=s

{

ln (‖Φ(t, t−)x‖)− ln (‖Φ(s, t−)x‖)
t− s

}

≥ inf
t,s∈I,t6=s

{

β(t− s)

t− s

}

≥ β.

Conversely, assume that Φ is invertible and (3.23) holds. For any fixed

x ∈ R(P (t−)) \ {0}, y ∈ N (P (t−)) \ {0}

set t̊ := ΦTker(x, t−). By the Definition 3.2.10 of the growth rates we obtain

ln (‖Φ(t, t−)x‖)− ln (‖Φ(s, t−)x‖) ≤ λℓ(R(P (t−)),Φ)(t− s)

for all t, s ∈ I, t̊ ≥ t > s and

ln (‖Φ(t, t−)y‖)− ln (‖Φ(s, t−)y‖) ≥ λr(N (P (t−)),Φ)(t− s)

for all t, s ∈ I, t > s. After transformation and insertion of (3.22) the inequal-
ities

‖Φ(t, t−)x‖ ≤ eλℓ(Φ)(t−s) ‖Φ(s, t−)x‖ for all t, s ∈ I, t̊ ≥ t ≥ s, (3.24)

‖Φ(t, t−)y‖ ≥ eλr(Φ)(t−s) ‖Φ(s, t−)y‖ for all t, s ∈ I, t ≥ s (3.25)

hold. The estimate (3.24) is true even for all t, s ∈ I, t ≥ s. By the invertibility
of Φ (3.9) follows. Lemma 3.2.7 and the invertibility of Φ yield the equivalence
of (3.25) and (3.10). Thus, (3.9) and (3.10) are satisfied.

With Lemma 3.2.11 we prove an alternative characterization of M-hyper-
bolicity using growth rates.

Lemma 3.2.12. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Let (2.6) be
invertible and r ∈ {0, . . . , k}. Then the following statements are equivalent.

(a) System (2.6) is M-hyperbolic (w.r.t. ‖·‖) on I with an invariant family
of projectors P : I → R

k×k with dim(R(P (t−))) = r.

(b) The growth rates of (2.6) satisfy

λr(Φ) < 0, (3.26)

λℓ(Φ) > 0, (3.27)

with ℓ := k − r.

If (2.6) is noninvertible then (b) follows from (a).
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3 Hyperbolicity

Proof. For (2.6) let condition (a) be satisfied and denote the dichotomy data
by (α, β, P (·)). We have R(P (t−)) ∈ Grkr , N (P (t−)) ∈ Grkℓ with ℓ := k − r.
Lemma 3.2.11 and the estimates (3.22) yield

λr(Φ) ≤ λ(R(P (t−)),Φ) = −α < 0,

λℓ(Φ) ≥ λ(N (P (t−)),Φ) ≥ β > 0.

Consider that (2.6) is invertible and, conversely, assume (b). By [82, Re-
mark 2.18] and [43, Remark 9] there exist Xs ∈ Grkr and Xu ∈ Grkℓ such that

λr(Φ) = λ(Xs,Φ), λℓ(Φ) = λ(Xu,Φ).

For any fixed x ∈ Xs \ {0}, y ∈ Xu \ {0} set t̊ := ΦTker(x, t−). By Definition
3.2.10 we obtain

ln (‖Φ(t, t−)x‖)− ln (‖Φ(s, t−)x‖) ≤ λr(Φ)(t− s) for all t, s ∈ I, t̊ ≥ t > s,

ln (‖Φ(t, t−)y‖)− ln (‖Φ(s, t−)y‖) ≥ λℓ(Φ)(t− s) for all t, s ∈ I, t > s.

After transformation

‖Φ(t, t−)x‖ ≤ eλr(Φ)(t−s) ‖Φ(s, t−)x‖ for all t, s ∈ I, t > s,

‖Φ(t, t−)y‖ ≥ eλℓ(Φ)(t−s) ‖Φ(s, t−)y‖ for all t, s ∈ I, t > s

are satisfied. By the definition of the extremal growth rates we have Φ(t, t−)x 6=
0 for all x ∈ Xu \ {0} and t ∈ I. This implies that

Φ(t, t−)|Xu
: Xu → Φ(t, t−)Xu

is injective, thus, bijective. This implies that Φ(·, t−)Xu is invariant. The
subspaces Xs,u satisfy by definition

Xs ⊕Xu = Rk.

The invertibility of the system yields

Φ(t, t−) : Xs ⊕Xu = Rk → R

k = Φ(t, t−)Xs + Φ(t, t−)Xu

for all t ∈ I. Then Φ(·, t−)Xs is invariant, since Φ(·, t−)Xu is invariant. Thus,
we can define a family of projectors P : I → R

k by R(P (s)) := Φ(s, t−)Xs,
N (P (s)) := Φ(s, t−)Xu for all s ∈ I. This family of projectors is invariant and
we get that

‖Φ(t, s)ξ‖ ≤ eλr(Φ)(t−s) ‖ξ‖ ,
‖Φ(t, s)µ‖ ≥ eλℓ(Φ)(t−s) ‖µ‖

is satisfied for all ξ ∈ R(P (s)), µ ∈ N (P (s)) and t, s ∈ I, t ≥ s. Thus, the
hyperbolic estimates (3.9) and (3.14) are true and, hence, by Lemma 3.2.7
system (2.6) is M-hyperbolic with exponential rates α := −λr(Φ) > 0 and
β := λℓ(Φ) > 0.
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Finite and Infinite Time Hyperbolic Systems: Dif-

ferences and Similarities

In this section we study differences and similarities between infinite time hy-
perbolic systems (Definition 3.1.1, Lemma 3.1.3) and finite time M–hyperbolic
systems (Definition 3.2.3).

One difference is that the invariant family of projectors of an M–hyperbolic
(finite time hyperbolic) system is not unique, see Example 3.3.1, whereas the
family of projectors of an hyperbolic ift–system is unique.

For autonomous ft–systems there exists at most one autonomous projector
such that the system is M–hyperbolic w.r.t. that projector. Still, there may
exist more than one nonautonomous family of projectors. The autonomous
projector is the unique projector of the associated hyperbolic ift–system, see
Theorem 3.3.3. Example 3.3.4 shows that an ft–system can be M–hyperbolic
although it is not M-hyperbolic w.r.t. the unique projector of the associated ift–
system. Further, we obtain that every autonomous system which is hyperbolic
on infinite time is also M–hyperbolic w.r.t. a proper norm (Lyapunov norm)
on every finite time interval, cf. Theorem 3.3.2.

In the literature the uniqueness of the family of projectors of a hyperbolic
ift–system is well known. For continuous time see e.g. [104, p.227], for invertible
systems in discrete time we refer to [105, Proposition 2.3] and for noninvertible
systems in discrete time see [66, Theorem 7.6.5]. The following example of a
finite time differential equation shows that a system can be M–hyperbolic
with different invariant families of projectors. This implies that the invariant
family of projectors P : I → R

k according to Definition 3.2.3 is generally
not unique. The example is a modified and elaborated version of the second
example in [16, Example 4].

Example 3.3.1. Assume t−, t+ ∈ R with t− < 0 < t+ and

ẋ = A(t)x =

(

1 0
0 −2

)

x, x ∈ R2 for t ∈ I = [t−, t+].

The solution operator is Φ(t, s) = diag(et−s, e−2(t−s)). Choose the Euclidean–
norm. Then the differential equation is M–hyperbolic with the invariant family

of projectors P (t) =

(

0 0
0 1

)

, t ∈ I and with exponential rates ᾱ = 2, β̄ = 1.

If we take P (0) and disturb the stable part towards the unstable direction with

δ > 0 we get Pδ(0) =

(

0 0
δ 1

)

. We see that Pδ(0) is still a projector and we

obtain the invariant family belonging to Pδ(0) by

Pδ(t) = Φ(t, 0)Pδ(0)Φ(0, t) =

(

et 0
0 e−2t

)(

0 0
δ 1

)(

e−t 0
0 e2t

)

=

(

0 0
δe−3t 1

)

.

In the following we prove that there exist exponential rates such that the given
system is M–hyperbolic with this disturbed family of projectors Pδ. Since the

39



3 Hyperbolicity

range R(Pδ(t)) does not depend on δ, we just need to verify (3.10). For the
kernel we get

N (Pδ(t)) =

{(

x
y

)

∈ R2
∣

∣

∣
− y = δe−3tx

}

. (3.28)

Let

(

x
y

)

∈ N (Pδ(s)) with δ ≥ 0 and assume that (3.10) is true using the

Euclidean–norm for a 1 = β̄ ≤ β > 0. Let t, s ∈ I with t > s. Then we have

e−2(t−s)x2 + e4(t−s)y2 =

∥

∥

∥

∥

(

e−(t−s)x
e2(t−s)y

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

e−(t−s) 0
0 e2(t−s)

)(

x
y

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

Φ(t, s)

(

x
y

)∥

∥

∥

∥

2

≤ e−2β(t−s)

∥

∥

∥

∥

(

x
y

)∥

∥

∥

∥

2

= e−2β(t−s)(x2 + y2).

This equals

(e−2(t−s) − e−2β(t−s))x2 ≤ (e−2β(t−s) − e4(t−s))y2.

Dividing by (e−2β(t−s) − e4(t−s)) < 0 and extract the root we get

(

e−2(t−s) − e−2β(t−s)

e−2β(t−s) − e4(t−s)

)

1
2

|x| ≥ |y|.

Taking β = 1 we obtain |y| = 0 and, thus, the constant δ must be zero. This
leads to the same kernel as before. To get more than one family of projectors
we have to reduce the exponential rate β. Assume β = 0.5. Then

(

e−2(t−s) − e−(t−s)

e−(t−s) − e4(t−s)

)

1
2

|x| =
(

e−(t−s) − 1

1− e5(t−s)

)

1
2

|x| ≥ |y|

is satisfied for all t, s ∈ I with t > s. The left-hand side is minimal for s = t−
and t = t+. Combining this result with the definition of the kernel (3.28) we
observe that

(

e−(t+−t−) − 1

1− e5(t+−t−)

)

1
2

e3t ≥ δ (3.29)

must be true for all t ∈ I. The left-hand side is minimal for t = t−. Hence,
for all different δ such that (3.29) is satisfied with t = t− we get another
invariant family of projectors, which fulfills estimate (3.10) with exponential
rate β = 0.5.
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Example 3.3.1 illustrates that by reducing the exponential rates of a hyper-
bolic ift–system with constant K = 1 we generally get more than one invariant
family of projectors for the system on every compact interval. In Chapter 4
we prove that the stable and unstable sets are cones which coincide with the
union of the kernel and range of all invariant families of projectors. In the fol-
lowing we discuss hyperbolicity of autonomous systems on finite and infinite
time intervals. Consider the autonomous system

ẋ(t) = Ax(t) respectively x(t + 1) = Ax(t) (3.30)

with A ∈ Rk×k, x ∈ Rk and t ∈ T ∈ {R,Z}. Define for all t ∈ N
A−t : Rk  R

k,

x 7→ {y ∈ Rk|Aty = x}.
The arrow  symbolizes that the given map is a set-valued map. For an
introduction of set-valued systems we refer to [6]. Further, define for any
t ∈ T

B(t) :=

{

eAt, for T = R,

At, for T = Z.

Denote the solution operator of (3.30) by Φ(·, ·). It satisfies Φ(t, s) = B(t− s)
for all t, s ∈ I, t ≥ s.

The next theorem states that for any autonomous hyperbolic ift–system
a proper norm (Lyapunov norm) exists such that the given system is M–
hyperbolic (w.r.t. this norm) on every compact interval. The definition and
properties of a Lyapunov norm can be found in [11], [38, Def. 2.4.9] and [84,
Def. 5.3.2].

Theorem 3.3.2. Let system (3.30) have an exponential dichotomy on T ∈
{R,Z} w.r.t. ‖·‖ with data (K,α, β, Ps, Pu). Then for any rates α̃ ∈ (0, α), β̃ ∈
(0, β) there exists a norm ‖·‖L such that system (3.30) is M–hyperbolic w.r.t.
‖·‖L on every compact interval I ⊂ T with projector Ps.

Proof. Exploiting the dichotomy estimates (3.2), we see that ‖B(t)Psx‖ ≤
Ke−αt ‖Psx‖, ‖B(−t)Pux‖ ≤ Ke−βt ‖Pux‖ are bounded for all t ≥ 0 and

x ∈ Rk. Fix α̃ ∈ (0, α), β̃ ∈ (0, β) and define µ := e−α̃ ∈ (e−α, 1), γ := e−β̃ ∈
(e−β, 1). Choose a, b ∈ N sufficiently large such that

K

(

e−α

µ

)a

< 1, K

(

e−β

γ

)b

< 1 (3.31)

are satisfied. The Lyapunov norm (Lyapunov adapted norm) is defined by

‖x‖L :=















a
∫

0

µ−r ‖B(r)Psx‖ dr +
0
∫

−b

γr ‖B(r)Pux‖ dr, T = R,

a
∑

r=0

µ−r ‖B(r)Psx‖+
0
∑

r=−b

γr ‖B(r)Pux‖ , T = Z.
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Next we show the ft–exponential dichotomy estimates (3.9) and (3.10). Let
T = R and t, s ∈ T with t ≥ s. The projectors satisfy

PuPs = (I− Ps)Ps = Ps − P 2
s = Ps − Ps = 0. (3.32)

By the invariance of the projector Ps and the solution operator B, by the
hyperbolicity estimates (3.2), by equation (3.32) and by estimate (3.31) we
have for all x ∈ Rk

‖Φ(t, s)Psx‖L
= ‖B(t− s)Psx‖L

=

a
∫

0

µ−r ‖B(r)PsB(t− s)Psx‖ dr +
0
∫

−b

γr ‖B(r)PuB(t− s)Psx‖ dr

=

a
∫

0

µ−r
∥

∥B(r)B(t− s)P 2
s x
∥

∥ dr +

0
∫

−b

γr ‖B(r)B(t− s)PuPsx‖ dr

=

a
∫

0

µ−r ‖B((t− s) + r)Psx‖ dr

=µ(t−s)







a+(t−s)
∫

(t−s)

µ−r ‖B((t− s) + r − (t− s))Psx‖ dr







=µ(t−s)





a
∫

0

µ−r ‖B(r)Psx‖ dr

+

a+(t−s)
∫

a

µ−r ‖B(r)Psx‖dr −
(t−s)
∫

0

µ−r ‖B(r)Psx‖ dr





=µ(t−s)



‖Psx‖L +

(t−s)
∫

0

(

µ−(r+a) ‖B(r + a)Psx‖ − µ−r ‖B(r)Psx‖
)

dr





=µ(t−s)



‖Psx‖L +

(t−s)
∫

0

µ−r
(

µ−a ‖B(a)(PsB(r)x)‖ − ‖B(r)Psx‖
)

dr





≤µ(t−s)



‖Px‖L +

(t−s)
∫

0

µ−r

(

K

(

e−α

µ

)a

‖PsB(r)x‖ − ‖PsB(r)x‖
)

dr





≤µ(t−s) ‖Psx‖L
≤e−α̃(t−s) ‖Psx‖L .
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For T = Z the proof of the estimate follows analogously. For the readers
convenience we show the second ft–exponential dichotomy estimate (3.10) for
T = Z. Let T = Z and t, s ∈ I with t ≥ s. Then for all x ∈ Rk we see similar
to the previous calculations that

‖Φ(s, t)Pux‖L

=

0
∑

r=−b

γr ‖B(−(t− s) + r)Pux‖

=

−(t−s)
∑

r=−b−(t−s)

γr+(t−s) ‖B(r)Pux‖

=γ(t−s)

(

0
∑

r=−b

γr ‖B(r)Pux‖

+

−(b+1)
∑

r=−b−(t−s)

γr ‖B(r)Pux‖ −
0
∑

r=−(t−s)+1

γr ‖B(r)Pux‖
)

=γ(t−s)



‖Pux‖L +
0
∑

r=−(t−s)+1

γr
(

γ−(b+1) ‖B(r − (b+ 1))Pux‖ − ‖B(r)Pux‖
)





=γ(t−s)

(

‖Pux‖L

+

0
∑

r=−(t−s)+1

γr
(

γ−(b+1) ‖B(−(b+ 1))PuB(r)x‖ − ‖PuB(r)x‖
)

)

≤γ(t−s)



‖Pux‖L +

0
∑

r=−(t−s)+1

γr

(

K

(

e−β

γ

)b+1

− 1

)

‖PuB(r)x‖





≤γ(t−s) ‖Pux‖L
≤e−β̃(t−s) ‖Pux‖L ,

is satisfied. Analogously, we obtain the same estimate for T = R. These
estimates show that system (3.30) has an exponential dichotomy on T with
(1, α̃, β̃, Ps) w.r.t. ‖·‖L. This implies that (3.30) is M–hyperbolic (w.r.t. ‖·‖L)

on every compact interval I ⊂ T with rates α̃, β̃ and projector Ps.

Next we prove that if an autonomous system is M–hyperbolic with an au-
tonomous projector then the system is also hyperbolic (infinite) with the same
projector and exponential rates. This fact and the uniqueness of the infinite
time exponential dichotomy projector imply that an autonomous system can-
not be M–hyperbolic w.r.t. two different autonomous projectors. Note that
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3 Hyperbolicity

for ift-systems the constant K in (3.2) depends on the infimum of the angles
between the image and kernel of the invariant family of projectors over time.
The estimates (3.9) and (3.10) are only satisfied for ift-systems if the image
and kernel of the invariant family of projectors are orthogonal for all times.
In [131] this special class of exponential dichotomy of linear ODEs is called a
strong dichotomy.

Theorem 3.3.3. Let system (3.30) be M–hyperbolic (w.r.t. ‖·‖) on a compact
interval I ⊂ T ∈ {R,Z} with an autonomous projector P and with exponential
rates α, β > 0. Then system (3.30) has an exponential dichotomy on T with
projector P and with rates α, β.

Proof. The M–hyperbolicity yields for t, s ∈ I with t ≥ s and x ∈ Rk

‖Φ(t, s)Px‖ ≤ e−α(t−s) ‖Px‖ . (3.33)

Next, we prove that this estimate is satisfied even for all t, s ∈ T, t ≥ s and
x ∈ Rk. Let t, s ∈ T with t ≥ s and denote by ℓ the length of the finite interval
I. Then there exist a ∈ N0 and b ∈ R with 0 ≤ b < ℓ such that t− s = aℓ+ b.
With estimate (3.33) and the invariance of P and Φ we obtain for x ∈ Rk and
all t, s ∈ T, t ≥ s

‖Φ(t, s)Px‖ = ‖B(t− s)Px‖ = ‖B(aℓ + b)Px‖ = ‖B(b)P (B(aℓ)x)‖
≤ e−αb ‖P (B(aℓ)x)‖ = e−αb ‖B(ℓ)P (B((a− 1)ℓ)x)‖ .

Inductively, we see that

‖Φ(t, s)Px‖ ≤ e−αb ‖B(l)P (B((a− 1)l)x)‖ ≤ e−α(b+al) ‖Px‖ = e−α(t−s) ‖Px‖

is satisfied for t, s ∈ I, t ≥ s. For the matrix norm we get

‖Φ(t, s)P‖ = sup
x∈Rk\{0}

‖Φ(t, s)Px‖
‖x‖

≤ e−α(t−s) sup
x∈Rk\{0}

‖Px‖
‖x‖ = e−α(t−s) ‖P‖ = Ke−α(t−s)

with K := ‖P‖ for all t, s ∈ T, t ≥ s. Similarly, it follows that

‖Φ(s, t)(I− P )‖ ≤ Ke−β(t−s)

for all t, s ∈ R, t ≥ s with K := ‖I− P‖. This implies that (3.30) has an
exponential dichotomy on T with projector P and exponential rates α and β
and constant K = max{‖P‖ , ‖I− P‖}.

A hyperbolic ift–system with projector P̄ may be M–hyperbolic (w.r.t. ‖·‖)
on a compact interval I with an invariant family of projectors P : I → R

k but
not with P̄ . The following example illustrates this statement.
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Example 3.3.4. Consider the system

ẋ = Ax :=

(

0.2 −1
0 0.1

)

x, x ∈ R2 (3.34)

on I ⊂ R. Then the solution operator of system (3.34) is Φ(s + t, s) := eAt =
(

e0.2t 10(e0.1t − e0.2t)
0 e0.1t

)

for all t, s ∈ I. On I = R the system (3.34) has an

exponential dichotomy with projector P̄ = 0. Let I = [0, 1] and use ‖·‖2. For

x =
(

0 1
)T

we get

‖Φ(0, 1)(I− P̄ )x‖2 =
∥

∥

∥

∥

e−A

(

0
1

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

10(e−0.1 − e−0.2)
e−0.1

)∥

∥

∥

∥

2

≥
∥

∥

∥

∥

(

0.86
0.9

)∥

∥

∥

∥

2

> 1 = ‖x‖2 ≥ e−β‖(I− P̄ )x‖2

for all β > 0. We see that (3.34) is not M–hyperbolic (w.r.t. ‖·‖2) on I = [0, 1]

with the projector P̄ . Choose P (0) =

(

0 1
0 1

)

and P (t) = Φ(t, 0)P (0)Φ(0, t) =
(

0 10− 9e0.1t

0 1

)

for all t ∈ I and define α = 0.01, then for all t, s ∈ I with

t ≥ s the following is true

e0.11t
√

(10− 9e0.1t)2 + 1 ≤ e0.11s
√

(10− 9e0.1s)2 + 1. (3.35)

Using this setup we obtain for all t, s ∈ I with t ≥ s and x =
(

x1 x2
)T ∈ R2

‖Φ(t, s)P (s)x‖2 =
∥

∥

∥

∥

(

10e0.1(t−s) − 9e0.2(t−s)e0.1s

e0.1(t−s)

)∥

∥

∥

∥

2

|x2|

= e−0.1s

∥

∥

∥

∥

(

10e0.1t − 9e0.2t

e0.1t

)∥

∥

∥

∥

2

|x2|

= e0.1(t−s)

∥

∥

∥

∥

(

10− 9e0.1t

1

)∥

∥

∥

∥

2

|x2| = e0.1(t−s) ‖P (t)x‖2 .

We conclude with inequality (3.35) that

‖P (t)x‖2 =
√

(10− 9e0.1t)2 + 1|x2| ≤ e−0.11(t−s)
√

(10− 9e0.1s)2 + 1|x2|
= e−0.11(t−s) ‖P (s)x‖2 .

Combining these estimates we get for all t, s ∈ I with t ≥ s and for any x ∈ R2

‖Φ(t, s)P (s)x‖2 = e0.1(t−s) ‖P (t)x‖2 ≤ e0.1(t−s)e−0.11(t−s) ‖P (s)x‖2
= e−0.01(t−s) ‖P (s)x‖2 .
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3 Hyperbolicity

Let t, s ∈ I with t ≥ s, x ∈ R2 and Q(t) = I− P (t) then

‖Φ(s, t)Q(t)x‖2
=

∥

∥

∥

∥

(

e−0.2(t−s) 10
(

e−0.1(t−s) − e−0.2(t−s)
)

0 e−0.1(t−s)

)(

1 −10 + 9e0.1t

0 0

)

x

∥

∥

∥

∥

2

= e−0.2(t−s)

∥

∥

∥

∥

(

1 −10 + 9e0.1t

0 0

)

x

∥

∥

∥

∥

2

= e−0.2(t−s) ‖Q(t)x‖2 .

We see that system (3.34) is M–hyperbolic (w.r.t. ‖·‖2) on I = [0, 1] with the

invariant family of projectors P (t) =

(

0 10− 9e0.1t

0 1

)

.

Perturbation Results

Are (ft-) exponential dichotomies robust under small additive perturbations
of the equation? For infinite time systems this is true. Various Roughness-
Theorems provide precise bounds on the magnitude of the allowed (additive)
perturbation. In the following we list some of these perturbation results. For
continuous ift-systems a roughness result, which originates from [40, Chap.
4, Prop. 1], is presented in Theorem 3.4.1. We find a Roughness-Theorem
for discrete invertible ift-systems with the content from Theorem 3.4.2 in [105,
Proposition 2.10] or [85, Lemma 2.3]. For noninvertible systems we refer to [21,
Theo. 19] and [117, Satz 2.1] and we present the statement in Theorem 3.4.3.
Some of the perturbation results have been proved for compact time intervals,
as well. In this thesis we differentiate between the hyperbolicity terms for
ift- and ft-systems. Thus, we present the Roughness-Theorems for ift-systems
only for infinite time intervals, but all infinite time Roughness-Theorems are
transferable to K-hyperbolic ft-systems. For invertible ft-systems we prove two
different roughness results, which guarantee the persistence of M-hyperbolicity.
For noninvertible ft-systems the question: “Are M-hyperbolic systems robust
under small additive perturbations?” still remains open to our knowledge.

Theorem 3.4.1 (Roughness-Theorem for continuous ift-systems).
Let I ∈ {[t−,∞), (−∞, t+],R} with t± ∈ R and assume that the differential
equation (2.7) is hyperbolic on I with data (K,α, β, P (·)). Let B(·) : I → R

k×k

satisfy

δ := sup
t∈I

‖B(t)‖ < γ

4K2
, with γ = min{α, β} (3.36)

and denote by Ψ(·, ·) the solution operator of

ẏ = [A(t) +B(t)]y. (3.37)
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3.4 Perturbation Results

Then (3.37) is hyperbolic on I with data
(

5K2

2
, γ − 2Kδ, γ − 2Kδ,Q(·)

)

where

N (Q(t−)) := N (P (t−)), for I = [t−,∞),

R(Q(t+)) := R(P (t+)), for I = (−∞, t+],

R(Q(0)) := R(P (0)),N (Q(0)) := N (P (0)), for I = R.

Theorem 3.4.2 (Roughness-Theorem for discrete invertible ift-systems).
Let I ∈ {Z+

n−
,Z−

n+
,Z}, n± ∈ Z and assume that the difference equation (2.8)

is invertible and hyperbolic on I with data (K,α, Pn).
Then for 0 < β < α and every EI ∈ (Rk×k)I with

‖EI‖ ≤ 1

2
inf
n∈I

‖A−1
n ‖−1, (3.38)

‖EI‖ ≤ 1

2
K−1

(

1

eβ − e−α
+

1

e−β − e−α
+

1

eα − e−β

)−1

, (3.39)

the equation
un+1 = (An + En)un, n ∈ I

has an exponential dichotomy on I with data (2K + 1, β, Qn(En)).

Theorem 3.4.3 (Roughness-Theorem for discrete noninvertible ift-systems).

Let I ∈ {Z+
n−
,Z−

n+
,Z}, n± ∈ Z and assume that the difference equation (2.8)

is hyperbolic on I with data (K,α, Pn).
Then for 0 < β < α there exists a positive constant γ = γ(K,α, β) such

that for every EI ∈ (Rk×k)I with

‖EI‖ ≤ γ

the equation

un+1 = (An + En)un, n ∈ I1 :=











Z

+
n−
, for I = Z+

n−
,

Z

−
n+−1, for I = Z−

n+
,

Z, for I = Z

has an exponential dichotomy on I with data (2K, β,Qn(En)).

In the following we study the robustness of M-hyperbolic systems. As
we have seen in the infinite time case a small perturbation of a hyperbolic
system does not destroy the hyperbolicity. The only drawback is a larger
constant and that the new exponential rates are generally smaller. For M-
hyperbolicity the system must be “hyperbolic” with constant K = 1, so a
perturbed M-hyperbolic system is only M-hyperbolic if the constant K does
not change. Thus, the infinite time Roughness-Theorems are not transferable
to M-hyperbolic systems, whereas all these Roughness-Theorems apply to K-
hyperbolic systems.
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3 Hyperbolicity

Theorem 3.4.4 (Roughness-Theorem for cont. K-hyperbolic ft-systems).
Fix K ∈ [1,∞). Let equation (2.7) be defined for t ∈ I = [t−, t+] ⊂ R

and be K-hyperbolic (on I w.r.t. ‖·‖) with an invariant family of projectors
P : I → R

k×k and exponential rates α, β > 0. Let B : I → R

k×k satisfy

δ := sup
t∈I

‖B(t)‖ < γ

4K2
, with γ = min{α, β}

and denote by Ψ(·, ·) the solution operator of

ẏ = [A(t) +B(t)] y. (3.40)

Then (3.40) is 5K2

2
-hyperbolic (on I w.r.t. ‖·‖) with an invariant family of

projectors Q : I → R

k×k (w.r.t. Ψ), which satisfies N (Q(t−)) = N (P (t−)),
and exponential rates α̃ := γ − 2Kδ =: β̃.

Proof. The expanded system

ẋ = Ã(t)x, t ∈ J = [t−,∞) (3.41)

of system (2.7) with

Ã(t) =

{

A(t), for t ∈ I,

A(t+), for t ∈ J \ I

has an exponential dichotomy on J with constant K, exponential rates α, β
and the invariant family of projectors P̃ : J → R

k×k with

P̃ (s) := Φ̃(s, t−)P (t−)Φ̃(t−, s) for all s ∈ J

with Φ̃(t, s) :=











Φ(t, s), for t, s ∈ I,

Φ(t+, s), for t ∈ J \ I, s ∈ I,

Id, for t, s ∈ J \ I,
where Φ(t, s) denotes the solution operator of (2.7). The Roughness-Theorem
3.4.1 applies to the expanded system (3.41). Thus, for every B̃ : J → R

k×k

which fulfills (3.36), the perturbed system ẏ = [Ã(t)+B̃(t)]y has an exponential
dichotomy on [t−,∞) with constant K̃ = 5K2

2
, with an invariant family of

projectors Q+ : [t−,∞) → R

k×k, which satisfies N (Q+(t−)) = N (P̃ (t−)) =
N (P (t−)), and with exponential rates α̃ := γ − 2Kδ =: β̃. Set B(t) := B̃(t)
for t ∈ I then by Definition 3.2.1 we obtain that (3.40) is 5K2

2
-hyperbolic with

Q(t) := Q+(t) for t ∈ I and with α̃, β̃.

Analogously, we get statements for discrete time K-hyperbolic systems,
which are equivalent to Theorem 3.4.2 and Theorem 3.4.3.

Does there exist for every M-hyperbolic system a sufficiently small pertur-
bation such that the perturbed system is M-hyperbolic, too? Or does every
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3.4 Perturbation Results

perturbation destroy the M-hyperbolicity? An exponential dichotomy (ift) of
an invertible dynamical system persists under sufficiently small perturbations,
which we prove in the following. To our knowledge, for noninvertible systems
there still does not exist an answer to these questions. A Roughness-Theorem,
which uses extremal growth rates, is presented in [82, Theo. 3.13]. This the-
orem works only for invertible systems. It yields a condition under which a
perturbed M-hyperbolic invertible system still remains M-hyperbolic. This
condition requires a sufficiently small distance of the solution operators. It
does not imply a boundary on the magnitude of the allowed perturbation.
However, it is a first indicator that M-hyperbolicity is preserved under suf-
ficiently small perturbations, at least for invertible systems. In [82, Theo.
3.13] the Roughness-Theorem is presented without a proof. For the reader’s
convenience a proof is stated here in addition.

Theorem 3.4.5 (Roughness-Theorem for invertible ft-systems).
Let I be a compact interval. Let system (2.6) be invertible and M-hyperbolic
(w.r.t. ‖·‖) on I with solution operator Φ and with an invariant family of
projectors P : I → R

k×k with dim(R(P (t−))) = r ∈ {0, . . . , k}. Then any
dynamical system with solution operator Ψ is M-hyperbolic (w.r.t. ‖·‖) on I

with an invariant family of projectors Q : I → R

k×k with dim(R(Q(t−))) = r
if

d̃I(Φ,Ψ) := sup
X∈Grk1

{

max
{

|λ(X,Φ)− λ(X,Ψ)| ,
∣

∣λ(X,Φ)− λ(X,Ψ)
∣

∣

}}

< min
{

−λr(Φ), λk−r(Φ)
}

. (3.42)

Proof. By Lemma 3.2.12 it suffices to show λr(Ψ) < 0 < λk−r(Ψ). By (3.42)
we get for r 6= 0

λr(Ψ) = min
X∈Grkr

{

λ(X,Ψ)
}

= min
X∈Grkr

{

λ(X,Ψ)− λ(X,Φ) + λ(X,Φ)
}

≤ inf
X∈Grkr

{∣

∣λ(X,Ψ)− λ(X,Φ)
∣

∣

}

+ min
X∈Grkr

{

λ(X,Φ)
}

≤ sup
X∈Grkr

{∣

∣λ(X,Ψ)− λ(X,Φ)
∣

∣

}

+ λr(Φ)

≤ sup
X∈Grk1

{∣

∣λ(X,Ψ)− λ(X,Φ)
∣

∣

}

+ λr(Φ)

< −λr(Φ) + λr(Φ) = 0

and for r = 0 we obtain by definition λ0(Ψ) = −∞ < 0. For r 6= k we see

λk−r(Ψ) = max
X∈Grkk−r

{λ(X,Ψ)} − max
X∈Grkk−r

{λ(X,Φ)} + max
X∈Grkk−r

{λ(X,Φ)}

≥ − sup
X∈Grkk−r

{|λ(X,Ψ)− λ(X,Φ)|}+ λk−r(Φ)

≥ − sup
X∈Grk1

{|λ(X,Ψ)− λ(X,Φ)|}+ λk−r(Φ)

> −λk−r(Φ) + λk−r(Φ) = 0
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3 Hyperbolicity

and for r = k we have by definition λ0 = ∞ > 0.

The last Roughness-Theorem we like to present gives an upper bound on the
magnitude of perturbation such that the perturbed M-hyperbolic system is still
M-hyperbolic. Therefore, we need various technical calculations. To shorten
the actual proof of the Roughness-Theorem 3.4.11 we show the technical details
in several lemmas. The theorem originates from Berger [12, Lemma 2], where
it is stated for continuous systems only. Consider the differential and difference
equation

ẋ(t) = Ã(t)x(t), (3.43)

x(t + 1) = Ã(t)x(t) (3.44)

x ∈ R

k, Ã ∈ C0(I,Rk×k), t ∈ IR,Z :=

{

I, for T = R,

I1, for T = Z
. Denote their

associated solution operator by Φ̃. For every matrix function B ∈ C0(I,Rk×k)
and induced matrix norm ‖·‖ define

‖B‖∞ := max
t∈IR,Z

‖B(t)‖ .

Lemma 3.4.6. Let I ⊂ R be a compact interval and Γ = ΓT > 0. Let Φ be
the solution operator of (2.7). Then

e−(t−s)‖A‖Γ,∞ ‖µ‖Γ ≤‖Φ(t, s)µ‖Γ (3.45)

is satisfied for all t, s ∈ I, t ≥ s and µ ∈ Rk.

Proof. Let t, s ∈ I, t ≥ s and µ ∈ Rk. By (3.18) and the Cauchy-Schwarz
inequality

∣

∣

∣

∣

d

dt
‖Φ(t, s)µ‖2Γ

∣

∣

∣

∣

= |2〈A(t)Φ(t, s)µ,Φ(t, s)µ〉Γ| ≤ 2 ‖A‖Γ,∞ ‖Φ(t, s)µ‖2Γ .

follows. Thus,

−2 ‖A‖Γ,∞ ‖Φ(t, s)µ‖2Γ ≤ d

dt
‖Φ(t, s)µ‖2Γ

and

−2 ‖A‖Γ,∞
(

−‖Φ(t, s)µ‖2Γ
)

≥ d

dt

(

−‖Φ(t, s)µ‖2Γ
)

are satisfied. Using [30, Lemma II.4.9], which is similar to Gronwall’s Lemma
we obtain

−‖Φ(t, s)µ‖2Γ ≤
(

−‖Φ(s, s)µ‖2Γ
)

e−(t−s)2‖A‖Γ,∞ = −e−(t−s)2‖A‖Γ,∞ ‖µ‖2Γ .

Taking the square root and multiplying with −1 we get (3.45).
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3.4 Perturbation Results

Lemma 3.4.7. Let I ⊂ Z be a compact interval and (2.8) be invertible. Fur-
ther, let ‖·‖ be any norm in Rk. Then

∥

∥A−1
∥

∥

−(t−s)

∞ ‖µ‖ ≤ ‖Φ(t, s)µ‖ ≤ ‖A‖(t−s)
∞ ‖µ‖ (3.46)

is satisfied for all t, s ∈ I and µ ∈ Rk. If
∥

∥

∥
Ã− A

∥

∥

∥

∞
≤ 1

2
‖A−1‖−1

∞ holds for

Ã(·) of (3.44) then

(

2 ‖A‖(t−s)
∞

)−1

‖µ‖ ≤
∥

∥

∥
Φ̃(t, s)µ

∥

∥

∥
≤
(

1

2

∥

∥A−1
∥

∥

−1

∞ + ‖A‖∞
)(t−s)

‖µ‖

is true for all t, s ∈ I and µ ∈ Rk.

Proof. For the associated solution operator of (2.8) we have

‖Φ(t, s)‖ = ‖A(t− 1) · · ·A(s)‖ ≤ ‖A(t− 1)‖ · · · ‖A(s)‖ ≤ ‖A‖(t−s)
∞ ,

‖Φ(s, t)‖ =
∥

∥A−1(s) · · ·A−1(t− 1)
∥

∥ ≤
∥

∥A−1
∥

∥

(t−s)

∞

(3.47)

for all t, s ∈ I, t ≥ s. Every invertible matrix B and induced matrix norm ‖·‖
satisfies

‖B‖−1 = ‖B‖−1
∥

∥BB−1
∥

∥ ≤ ‖B‖−1 ‖B‖
∥

∥B−1
∥

∥ =
∥

∥B−1
∥

∥ .

Applying this to (3.47) then
(

∥

∥A−1
∥

∥

(t−s)

∞

)−1

≤ ‖Φ(s, t)‖−1 ≤
∥

∥Φ(s, t)−1
∥

∥ = ‖Φ(t, s)‖

follows for all t, s ∈ I, t ≥ s. With
∥

∥A−1
∥

∥

−1 ‖x‖ =
∥

∥A−1
∥

∥

−1 ∥
∥A−1Ax

∥

∥ ≤
∥

∥A−1
∥

∥

−1 ∥
∥A−1

∥

∥ ‖Ax‖ = ‖Ax‖

(3.46) is proved. Let
∥

∥

∥
Ã−A

∥

∥

∥

∞
≤ 1

2
‖A−1‖−1

∞ . Then the Banach-Lemma,

cf. [69, Lemma 5.3] yields that Ã is invertible and satisfies

∥

∥

∥
Ã−1

∥

∥

∥

∞
≤ ‖A−1‖∞

1− ‖A−1‖∞
∥

∥

∥
Ã−A

∥

∥

∥

∞

≤ ‖A−1‖∞
1− 1

2

= 2
∥

∥A−1
∥

∥

∞ .

Hence, with (3.46) we obtain for Ã

(

2
∥

∥A−1
∥

∥

(t−s)

∞

)−1

‖µ‖ ≤
∥

∥

∥
Ã−1

∥

∥

∥

−(t−s)

∞
‖µ‖ ≤

∥

∥

∥
Φ̃(t, s)µ

∥

∥

∥
≤
∥

∥

∥
Ã
∥

∥

∥

(t−s)

‖µ‖

≤
(∥

∥

∥
Ã− A

∥

∥

∥

∞
+ ‖A‖∞

)(t−s)

‖µ‖

≤
(

1

2

∥

∥A−1
∥

∥

−1

∞ + ‖A‖∞
)(t−s)

‖µ‖

for all t, s ∈ I, t ≥ s and µ ∈ Rk.
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Lemma 3.4.8. Let I ⊂ Z be a compact interval. If for the systems (2.8) and
(3.44)

∥

∥

∥
Ã− A

∥

∥

∥

∞
≤ 1

holds then
∥

∥

∥
Φ̃(t, s)− Φ(t, s)

∥

∥

∥
≤
(

(1 + ‖A‖∞)(t−s) − ‖A‖(t−s)
∞

)∥

∥

∥
Ã− A

∥

∥

∥

∞

is satisfied for all t, s ∈ I, t ≥ s.

Proof. Fix s ∈ I. For t = s the statement is trivial. Thus, assume there exists
a T ∈ I such that the statement is satisfied for all t ∈ I, s ≤ t < T . Let
∥

∥

∥
Ã− A

∥

∥

∥

∞
≤ 1 then

∥

∥

∥
Φ̃(T, s)− Φ(T, s)

∥

∥

∥

≤
∥

∥

∥
Φ̃(T, T − 1)

(

Φ̃(T − 1, s)− Φ(T − 1, s)
)∥

∥

∥

+
∥

∥

∥

(

Φ̃(T, T − 1)− Φ(T, T − 1)
)

Φ(T − 1, s)
∥

∥

∥

≤
∥

∥

∥
Ã
∥

∥

∥

∞

(

(1 + ‖A‖∞)(T−1−s) − ‖A‖(T−1−s)
∞

)∥

∥

∥
Ã− A

∥

∥

∥

∞

+
∥

∥

∥
Ã−A

∥

∥

∥

∞
‖A‖(T−1−s)

∞

≤
((∥

∥

∥
Ã− A

∥

∥

∥

∞
+ ‖A‖∞

)(

(1 + ‖A‖∞)(T−1−s) − ‖A‖(T−1−s)
∞

)

+ ‖A‖(T−1−s)
∞

) ∥

∥

∥
Ã− A

∥

∥

∥

∞

≤
(

(1 + ‖A‖∞)
(

(1 + ‖A‖∞)(T−1−s) − ‖A‖(T−1−s)
∞

)

+ ‖A‖(T−1−s)
∞

)

∥

∥

∥
Ã− A

∥

∥

∥

∞

=
(

(1 + ‖A‖∞)(T−s) − ‖A‖(T−1−s)
∞ − ‖A‖(T−s)

∞ + ‖A‖(T−1−s)
∞

)∥

∥

∥
Ã− A

∥

∥

∥

∞

=
(

(1 + ‖A‖∞)(T−s) − ‖A‖(T−s)
∞

)∥

∥

∥
Ã−A

∥

∥

∥

∞

follows.

Lemma 3.4.9. Let T ∈ {R,Z}, t± ∈ T, I = [t−, t+]T and Γ = ΓT > 0. Let
(2.7)/ (2.8) be invertible and M-hyperbolic w.r.t. ‖·‖Γ on I with data (α, β, P ).
Fix s ∈ I and let µ ∈ Rk. Define η̃ := η̃(t) := Φ̃(t, s)µ, η := η(t) = Φ(t, s)µ
for all t ∈ I, t ≥ s. If

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ δ :=

{

(t+ − t−)−1, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞

}

, for T = Z
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holds then

‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) ≤ C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

, (3.48)

is satisfied with

C =







2(t+ − t−)e
1+2(t+−t−)‖A‖Γ,∞ , for T = R,

2
(

‖A−1‖Γ,∞ + ‖A‖Γ,∞ ‖A−1‖Γ,∞
)(t+−t−)

, for T = Z.

If

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ min

{

δ, (2C)−1
}

holds then

(

‖η̃‖2Γ − ‖η‖2Γ
)

≤ 4C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ (3.49)

is satisfied.

Proof. The first step is to find an upper bound for ‖η̃ − η‖Γ. Let t, s ∈ I, t ≥ s
be fixed. The definition of η̃, η yields

‖η̃ − η‖Γ =
∥

∥

∥

(

Φ̃(t, s)− Φ(t, s)
)

µ
∥

∥

∥

Γ
≤
∥

∥

∥
Φ̃(t, s)− Φ(t, s)

∥

∥

∥

Γ
‖µ‖Γ . (3.50)

Let T = R. Then the variation of constants formula yields

Φ̃(t, s)− Φ(t, s) =

∫ t

s

Φ(t, τ)
(

Ã(τ)− A(τ)
)

Φ̃(τ, s)dτ, (3.51)

since

d

dt

(

Φ̃(t, s)− Φ(t, s)
)

= Ã(t)Φ̃(t, s)− A(t)Φ(t, s)

= A(t)
(

Φ̃(t, s)− Φ(t, s)
)

+
(

Ã(t)− A(t)
)

Φ̃(t, s).

By Lemma 3.4.6 the solution operators Φ and Φ̃ satisfy

e−(r−z)|‖A‖Γ,∞ ‖ξ‖Γ ≤ ‖Φ(r, z)ξ‖Γ ≤ ‖Φ(r, z)‖Γ ‖ξ‖Γ ,

e
−(r−z)‖Ã‖

Γ,∞ ‖ξ‖Γ ≤
∥

∥

∥
Φ̃(r, z)ξ

∥

∥

∥

Γ
≤
∥

∥

∥
Φ̃(r, z)

∥

∥

∥

Γ
‖ξ‖Γ
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for all r, z ∈ I, r ≥ z and ξ ∈ Rk. These estimates imply together with (3.51)
∥

∥

∥
Φ̃(t, s)− Φ(t, s)

∥

∥

∥

Γ

≤
∫ t

s

‖Φ(t, τ)‖Γ
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

∥

∥

∥
Φ̃(τ, s)

∥

∥

∥

Γ
dτ

≤
∫ t

s

e(t−τ)‖A‖Γ,∞

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
e
(τ−s)‖Ã‖

Γ,∞dτ

≤
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
e(t−s)‖A‖Γ,∞

∫ t

s

e
(τ−s)

(

‖Ã‖
Γ,∞

−‖A‖Γ,∞

)

dτ

≤
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
e(t−s)‖A‖Γ,∞

∫ t

s

e
(τ−s)

(

‖Ã−A‖
Γ,∞

+‖A‖Γ,∞−‖A‖Γ,∞

)

dτ

≤
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
e(t−s)‖A‖Γ,∞

∫ t

s

e
(τ−s)‖Ã−A‖

Γ,∞dτ

≤e(t−s)‖A‖Γ,∞

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞






e
(t−s)‖Ã−A‖

Γ,∞
1

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

− 1
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞







=e(t−s)‖A‖Γ,∞

(

e
(t−s)‖Ã−A‖

Γ,∞ − 1
)

. (3.52)

For 0 ≤ x ≤ 1 the trivial estimate ex − 1 ≤ 2x is satisfied. If
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ (t+ − t−)

−1 =: δR1

holds we get
(

e
(t−s)‖Ã−A‖

Γ,∞ − 1
)

≤ 2(t− s)
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
.

Thus, estimate (3.52) becomes for
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ (t+ − t−)−1 =: δR1

∥

∥

∥
Φ̃(t, s)− Φ(t, s)

∥

∥

∥

Γ
≤e(t−s)‖A‖Γ,∞

(

e
(t−s)‖Ã−A‖

Γ,∞ − 1
)

≤2(t− s)e(t−s)‖A‖Γ,∞

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

≤CR1
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
(3.53)

with CR1 := 2(t+ − t−)e
(t+−t−)‖A‖Γ,∞. Let T = Z. Then Lemma 3.4.8 yields for

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ 1 =: δZ1

∥

∥

∥
Φ̃(t, s)− Φ(t, s)

∥

∥

∥

Γ
≤
(

(

1 + ‖A‖Γ,∞
)(t−s)

− ‖A‖(t−s)
Γ,∞

)

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

≤
(

1 + ‖A‖Γ,∞
)(t−s) ∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

≤ CZ1

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
(3.54)
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with CZ1 :=
(

1 + ‖A‖Γ,∞
)(t+−t−)

. Altogether for T ∈ {R,Z} let

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ δ1 :=

{

δR1 = (t+ − t−)
−1, for T = R,

δZ1 = 1, for T = Z,

then the upper bound (3.50) becomes by (3.53) and (3.54)

‖η̃ − η‖Γ ≤
∥

∥

∥
Φ̃(t, s)− Φ(t, s)

∥

∥

∥

Γ
‖µ‖Γ ≤ C1

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖µ‖Γ

with 0 < C1 :=







CR1 = 2(t+ − t−)e
(t+−t−)‖A‖Γ,∞ , for T = R,

CZ1 =
(

1 + ‖A‖Γ,∞
)(t+−t−)

, for T = Z.

Thus, we have

‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) ≤ C1

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
(‖µ‖Γ ‖η̃‖Γ + ‖µ‖Γ ‖η‖Γ) . (3.55)

Let
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ δ2 :=

{

δR2 := ∞, for T = R,

δZ2 := 1
2
‖A−1‖−1

Γ,∞ , for T = Z.

Then Lemma 3.4.6 yields for T = R

e−(t+−t−)‖A‖Γ,∞ ‖µ‖Γ ≤ ‖Φ(t, s)µ‖Γ = ‖η‖Γ ,
e
−(t+−t−)‖Ã‖

Γ,∞ ‖µ‖Γ ≤
∥

∥

∥
Φ̃(t, s)µ

∥

∥

∥

Γ
= ‖η̃‖Γ ,

i.e.
‖µ‖Γ ≤ ‖η‖Γ e(t+−t−)‖A‖Γ,∞ ,

‖µ‖Γ ≤ ‖η̃‖Γ e
(t+−t−)‖Ã‖

Γ,∞ ,
(3.56)

and Lemma 3.4.7 yields for T = Z

∥

∥A−1
∥

∥

−(t−s)

Γ,∞ ‖µ‖Γ ≤ ‖Φ(t, s)µ‖Γ = ‖η‖Γ ,
(

2
∥

∥A−1
∥

∥

(t−s)

Γ,∞

)−1

‖µ‖Γ ≤
∥

∥

∥
Φ̃(t, s)µ

∥

∥

∥

Γ
= ‖η̃‖Γ ,

i.e.

‖µ‖Γ ≤ ‖η‖Γ
∥

∥A−1
∥

∥

(t−s)

Γ,∞ ,

‖µ‖Γ ≤ ‖η̃‖Γ 2
∥

∥A−1
∥

∥

(t−s)

Γ,∞ .
(3.57)

Let

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ δ := min{δ1, δ2} =

{

(t+ − t−)−1, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞

}

, for T = Z.
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Inserting (3.56) and (3.57) in (3.55) we get the first estimate (3.48)

‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ)
≤C1

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
(‖µ‖Γ ‖η̃‖Γ + ‖µ‖Γ ‖η‖Γ)

≤C1

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞







(

e
(t+−t−)‖Ã‖

Γ,∞ ‖η̃‖2Γ + e(t+−t−)‖A‖Γ,∞ ‖η‖2Γ
)

, for T = R,
(

2 ‖A−1‖(t+−t−)
Γ,∞ ‖η̃‖2Γ + ‖A−1‖(t+−t−)

Γ,∞ ‖η‖2Γ
)

, for T = Z

≤C1

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

{

e
(t+−t−)

(

‖Ã−A‖
Γ,∞

+‖A‖Γ,∞

)

(

‖η̃‖2Γ + ‖η‖2Γ
)

, for T = R,

2 ‖A−1‖(t+−t−)
Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

, for T = Z

≤C
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

(3.58)

with a constant

0 < C := C1

{

e1+(t+−t−)‖A‖Γ,∞ , for T = R,

2 ‖A−1‖(t+−t−)
Γ,∞ , for T = Z.

=







2(t+ − t−)e
1+2(t+−t−)‖A‖Γ,∞ , for T = R,

2
(

‖A−1‖Γ,∞ + ‖A‖Γ,∞ ‖A−1‖Γ,∞
)(t+−t−)

, for T = Z.

With the triangular inequality, with the third binomial formula and with (3.58)
we get the upper bound

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣ = |(‖η̃‖Γ − ‖η‖Γ) (‖η̃‖Γ + ‖η‖Γ)|
≤ |‖η̃‖Γ − ‖η‖Γ| (‖η̃‖Γ + ‖η‖Γ)
≤ ‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) (3.59)

≤C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

≤2C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ + C

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣ .

Rearranging the terms in (3.59) yields
(

1− C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣ ≤ 2C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ .

For
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ min

{

δ, (2C)−1} the estimate (3.49) follows by the latter

estimate, i.e.

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣ =
∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣

(

1− C
1

2C

)

2

≤
∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣

(

1− C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

2

≤4C
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
‖η̃‖2Γ .
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Lemma 3.4.10. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Let Γ = ΓT > 0
and µ ∈ Rk. Fix s ∈ I. Define η̃ := η̃(t) := Φ̃(t, s)µ, η := η(t) := Φ(t, s)µ for
all t ∈ I t ≥ s. Let

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ δ :=

{

(t+ − t−)−1, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞

}

, for T = Z.

Then

∣

∣

∣
〈η̃, S̃Γ(t)η̃〉 − 〈η, SΓ(t)η〉

∣

∣

∣
≤ C̄

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

(3.60)

is satisfied for all t ∈ I, t ≥ s with

C̄ :=

{

1 + ‖A‖Γ,∞C, for T = R,
(

1 + 2 ‖A‖Γ,∞
)

+
(

‖A‖2Γ,∞ + 1
)

C, for T = Z
(3.61)

and

C :=







2(t+ − t−)e
1+2(t+−t−)‖A‖Γ,∞ , for T = R,

2
(

‖A−1‖Γ,∞ + ‖A‖Γ,∞ ‖A−1‖Γ,∞
)(t+−t−)

, for T = Z.
(3.62)

Proof. For T = R we get by equations (3.16) and (3.18), by the symmetry of
〈·, ·〉Γ and by the Cauchy-Schwarz inequality

∣

∣

∣
〈η̃, S̃Γη̃〉 − 〈η, SΓη〉

∣

∣

∣

=
∣

∣

∣
〈Ãη̃, η̃〉Γ − 〈Aη, η〉Γ

∣

∣

∣

≤
∣

∣

∣
〈(Ã−A)η̃, η̃〉Γ

∣

∣

∣
+ |〈Aη̃, η̃〉Γ − 〈Aη, η〉Γ|

≤
∣

∣

∣
〈(Ã−A)η̃, η̃〉Γ

∣

∣

∣
+ |〈A(η̃ − η), η̃〉Γ|+ |〈Aη, η̃〉Γ − 〈Aη, η〉Γ|

≤
∣

∣

∣
〈(Ã−A)η̃, η̃〉Γ

∣

∣

∣
+ |〈A(η̃ − η), η̃〉Γ|+ |〈Aη, (η̃ − η)〉Γ|

≤
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ + ‖A‖Γ,∞ ‖η̃ − η‖Γ ‖η̃‖Γ + ‖A‖Γ,∞ ‖η‖Γ ‖η̃ − η‖Γ

=
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ + ‖A‖Γ,∞ ‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) . (3.63)
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For T = Z we have by equation (3.17) and the latter arguments
∣

∣

∣
〈η̃, S̃Γη̃〉 − 〈η, SΓη〉

∣

∣

∣

=
∣

∣

∣
〈Ãη̃, Ãη̃〉Γ + 〈η̃, η̃〉Γ − 〈Aη,Aη〉Γ − 〈η, η〉Γ

∣

∣

∣

≤
∣

∣

∣
〈((Ã− A) + A)η̃, ((Ã−A) + A)η̃〉Γ − 〈Aη,Aη〉Γ

∣

∣

∣

+ |〈η̃ − η, η̃〉Γ|+ |〈η, η̃ − η〉Γ|
≤
∣

∣

∣
〈(Ã− A)η̃, (Ã−A)η̃〉Γ

∣

∣

∣
+ 2

∣

∣

∣
〈(Ã− A)η̃, Aη̃〉Γ

∣

∣

∣
+ |〈Aη̃, Aη̃〉Γ − 〈Aη,Aη〉Γ|

+ |〈η̃ − η, η̃〉Γ|+ |〈η, η̃ − η〉Γ|
≤
∣

∣

∣〈(Ã− A)η̃, (Ã−A)η̃〉Γ
∣

∣

∣+ 2
∣

∣

∣〈(Ã− A)η̃, Aη̃〉Γ
∣

∣

∣+ |〈A(η̃ − η), Aη̃〉Γ|
+ |〈Aη,A(η̃ − η)〉Γ|+ |〈η̃ − η, η̃〉Γ|+ |〈η, η̃ − η〉Γ|

≤
∥

∥

∥
Ã−A

∥

∥

∥

2

Γ,∞
‖η̃‖2Γ + 2

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
‖A‖Γ,∞ ‖η̃‖2Γ + ‖A‖2Γ,∞ ‖η̃ − η‖Γ ‖η̃‖Γ

+ ‖A‖2Γ,∞ ‖η‖Γ ‖η̃ − η‖Γ + ‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ)

≤
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

(

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
+ 2 ‖A‖Γ,∞

)

‖η̃‖2Γ

+
(

‖A‖2Γ,∞ + 1
)

‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) . (3.64)

Lemma 3.4.9 yields for T ∈ {R,Z} the upper bound

‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) ≤ C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

with C defined in (3.62). By inserting this bound in estimates (3.63) and (3.64)
the statement (3.60) follows, i.e.
∣

∣

∣
〈η̃, S̃Γη̃〉 − 〈η, SΓη〉

∣

∣

∣

≤























∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ + ‖A‖Γ,∞ ‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) , for T = R

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
+ 2 ‖A‖Γ,∞

)

‖η̃‖2Γ
+
(

‖A‖2Γ,∞ + 1
)

‖η̃ − η‖Γ (‖η̃‖Γ + ‖η‖Γ) , for T = Z

≤























∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ + ‖A‖Γ,∞C

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

, for T = R
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
+ 2 ‖A‖Γ,∞

)

‖η̃‖2Γ
+
(

‖A‖2Γ,∞ + 1
)

C
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

, for T = Z

≤C̄
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

with constant C̄ defined in (3.61).
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3.4 Perturbation Results

Finally, we have all tools at hand to prove the Roughness-Theorem for
M-hyperbolic invertible systems. For continuous systems see [12, Lemma 2].

Theorem 3.4.11 (Roughness-Theorem for invertible ft-systems).
Let T ∈ {R,Z}, t± ∈ T, I = [t−, t+]T and Γ = ΓT > 0. Let (2.7)/ (2.8) be
invertible and M-hyperbolic w.r.t. ‖·‖Γ on I with data (α, β, P ). If

∥

∥

∥
Ã(t)− A(t)

∥

∥

∥

Γ,∞
< δ

with

δ := min

{

δ
Z

, (4Cd)
−1 1− e−α

2eα − e−α
, (4Cd)

−1 e
β − 1

eβ

}

,

δ
Z

:=

{

∞, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞

}

, for T = Z
, (3.65)

Cd := max{C, C̄}

and C, C̄ defined in (3.62) and (3.61) then (3.43)/ (3.44) is M-hyperbolic w.r.t.
‖·‖Γ on I with constants 1

2
α, 1

2
β.

Proof. To show that the system (denoted in the following by g-system) gener-
ated by (3.43)/(3.44) is M-hyperbolic with rates 1

2
α, 1

2
β we apply Lemma 3.2.9.

Thus, we have to show that an invariant family of projectors P̃ : I → R

k×k of
the g-system exists such that

〈Φ̃(t, s)ξ, S̃Γ(t)Φ̃(t, s)ξ〉 ≤ −α̂
∥

∥

∥
Φ̃(t, s)ξ

∥

∥

∥

2

Γ
(3.66)

is satisfied for all t, s ∈ I, t ≥ s and all ξ ∈ R(P̃ (s)) and additionally that

〈Φ̃(t, s)ξ, S̃Γ(t)Φ̃(t, s)ξ〉 ≥ β̂
∥

∥

∥
Φ̃(t, s)ξ

∥

∥

∥

2

Γ
(3.67)

holds for all t, s ∈ I, t ≥ s and ξ ∈ N (P̃ (s)) with

α̂ :=

{

1
2
α, for T = R,

1− e−α, for T = Z,
, β̂ :=

{

1
2
β, for T = R,

eβ − 1, for T = Z.

Let ξ ∈ Rk and fix s ∈ I. Let t ∈ I, t ≥ s. Define η̃ := η̃(t) := Φ̃(t, s)ξ and
η := η(t) := Φ(t, s)ξ. In the following for legibility the dependency of t is not
explicitly written down. First, we prove (3.66) for all ξ ∈ R(P (s)) and (3.67)
for all ξ ∈ N (P (s)) for our fixed s and all t ∈ I, t ≥ s. Then we define the
family of projectors P̃ . From Lemma 3.4.10 we obtain

∣

∣

∣
〈η̃, S̃Γη̃〉 − 〈η, SΓη〉

∣

∣

∣
≤ C̄

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

(3.68)
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3 Hyperbolicity

with constant C̄ > 0 defined in (3.61) for

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ δ1 :=

{

(t+ − t−)−1, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞

}

, for T = Z.

Let
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ δ2 := min

{

δ1, (2C)
−1
}

, Cd := max{C̄, C}

with C defined in (3.62). The triangular inequality is used to separate 〈η̃, S̃Γη̃〉
from the rest of (3.68). Then we insert the equivalent M-hyperbolic estimates

〈η, SΓη〉 ≤ −ᾱ ‖η‖2Γ , 〈η, SΓη〉 ≥ β̄ ‖η‖2Γ

from Lemma 3.2.9 with

ᾱ :=

{

α, for T = R,

1− e−2α, for T = Z
, β̄ :=

{

β, for T = R,

e2β − 1, for T = Z.

Thus, we get with (3.49)

〈η̃, S̃Γ, η̃〉
≤〈η, SΓη〉+ C̄

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

≤− ᾱ ‖η‖2Γ + C̄
∥

∥

∥Ã− A
∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

=− ᾱ
(

‖η‖2Γ − ‖η̃‖2Γ + ‖η̃‖2Γ
)

+ C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

(

2 ‖η̃‖2Γ + ‖η‖2Γ − ‖η̃‖2Γ
)

≤− ᾱ ‖η̃‖2Γ + ᾱ
∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣

+ 2C̄
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ + C̄

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣

=−
(

ᾱ− 2C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ +
(

ᾱ + C̄
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣

≤−
(

ᾱ− 2C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ +
(

ᾱ + C̄
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

4C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ

≤−
(

ᾱ− 2Cd (1 + 2ᾱ)
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
− 4C̄C

∥

∥

∥
Ã− A

∥

∥

∥

2

Γ,∞

)

‖η̃‖2Γ

≤−
(

ᾱ− 2Cd (1 + 2ᾱ)
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
− 2C̄

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ

≤−
(

ᾱ− 4Cd (1 + ᾱ)
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ

=−
(

(

1− e−2α
)

− 4Cd

(

2− e−2α
)

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

‖η̃‖2
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3.4 Perturbation Results

for all µ ∈ R(P (s)). Let
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞
≤ δ13 := min

{

δ2, (4Cd)
−1 e−α−e−2α

2−e−2α

}

.

Then we have

〈η̃, S̃Γη̃〉

≤ −
(

(

1− e−2α
)

− 4Cd

(

2− e−2α
)

∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ
≤−

(

1− e−2α −
(

e−α − e−2α
))

‖η̃‖2Γ
=−

(

1− e−α
)

‖η̃‖2Γ
=− α̂ ‖η̃‖2Γ .

The second estimate (3.67) for our fixed s ∈ I results from the same line

of argument for
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
≤ δ23 := min

{

δ2, (4Cd)
−1 e2β−eβ

e2β

}

and each µ ∈
N (P (s)), i.e.

〈η̃, S̃Γη̃〉
≥〈η, SΓη〉 − C̄

∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

≥β̄ ‖η‖2Γ − C̄
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

(

‖η̃‖2Γ + ‖η‖2Γ
)

≥
(

β̄ − 2C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ −
(

β̄ + C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

∣

∣‖η̃‖2Γ − ‖η‖2Γ
∣

∣

≥
(

β̄ − 2C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ −
(

β̄ + C̄
∥

∥

∥
Ã−A

∥

∥

∥

Γ,∞

)

4C
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞
‖η̃‖2Γ

≥
(

β̄ − 4Cd(1 + β̄)
∥

∥

∥
Ã− A

∥

∥

∥

Γ,∞

)

‖η̃‖2Γ
≥
(

e2β − 1−
(

e2β − eβ
))

‖η̃‖2Γ
=
(

eβ − 1
)

‖η̃‖2Γ
=β̂ ‖η̃‖2Γ .

Before we define the invariant family of projectors P̃ : I → R

k×k fulfilling
(3.66) and (3.67) we show

δ := min

{

δ
Z

, (4Cd)
−1 1− e−α

2eα − e−α
, (4Cd)

−1 e
β − 1

eβ

}

≤ min
{

δ2, δ
1
3, δ

2
3

}

, (3.69)

where δ
Z

is defined in (3.65). We have

min
{

δ2, δ
1
3, δ

2
3

}

= min

{

δ2, (4Cd)
−1 e

−α − e−2α

2− e−2α
, (4Cd)

−1 e
2β − eβ

e2β

}

= min

{

δ2, (4Cd)
−1 1− e−α

2eα − e−α
, (4Cd)

−1 e
β − 1

eβ

}

.
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For δ2 = min {δ1, (2C)−1} and δ1 =

{

(t+ − t−)−1, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞

}

, for T = Z

follows with

(2C)−1 =







1
4
(t+ − t−)−1e−(1+2(t+−t−)‖A‖Γ,∞), for T = R,

1
4

(

1 + ‖A‖Γ,∞
)−(t+−t−)

‖A−1‖−(t+−t−)
Γ,∞ , for T = Z

<

{

(t+ − t−)
−1, for T = R,

1
2
‖A−1‖−(t+−t−)

Γ,∞ , for T = Z

δ2 =

{

(2C)−1, for T = R,

min
{

1, 1
2
‖A−1‖−1

Γ,∞ (2C)−1
}

, for T = Z.

With

(2C)−1 ≥ (2Cd)
−1 ≥ (4Cd)

−1 ≥ (4Cd)
−1 e

β − 1

eβ
.

we obtain (3.69).
Finally, we define the invariant family of projectors P̃ : I → R

k×k, which
satisfies (3.66) for all µ ∈ R(P̃ (s)) and (3.67) for all µ ∈ N (P̃ (s)) and all t ∈ I,
t ≥ s. We already proved that by choosing δ sufficiently small the perturbed
equation (3.43)/(3.44) is invertible as well. Thus, the solution operators Φ and
Φ̃ are both invertible. Hence, we define an invariant family of projectors by

P̃ (s) := P (s), P̃ (t) := Φ̃(t, s)P̃ (s)Φ̃(s, t), t ∈ I.

Then

〈Φ̃(t, s)µ, S̃Γ(t)Φ̃(t, s)µ〉 ≤ −α̂
∥

∥

∥
Φ̃(t, s)µ

∥

∥

∥

2

Γ
for all µ ∈ R(P (s)) = R(P̃ (s)),

〈Φ̃(t, s)µ, S̃Γ(t)Φ̃(t, s)µ〉 ≥ β̂
∥

∥

∥
Φ̃(t, s)µ

∥

∥

∥

2

Γ
for all µ ∈ N (P (s)) = N (P̃ (s))

are satisfied for all t ∈ I, t ≥ s. By the invariance of P̃ and by the invertibility
of Φ̃

〈Φ̃(t, t0)ξ, S̃Γ(t)Φ̃(t, t0)ξ〉 ≤ −α̂
∥

∥

∥
Φ̃(t, t0)ξ

∥

∥

∥

2

Γ
for all ξ ∈ R(P̃ (t0),

〈Φ̃(t, t0)ξ, S̃Γ(t)Φ̃(t, t0)ξ〉 ≥ β̂
∥

∥

∥
Φ̃(t, t0)ξ

∥

∥

∥

2

Γ
for all ξ ∈ N (P̃ (t0)).

follows for all t0, t ∈ I with t ≥ t0. Thus, by Lemma 3.2.9 the Equation
(3.43)/(3.44) is M-hyperbolic with the invariant family of projectors P̃ and
rates 1

2
α, 1

2
β.

Corollary 3.4.12. Let the assumptions of Theorem 3.4.11 be satisfied. Then
for each s ∈ I the perturbed equation (3.43)/ (3.44) is M-hyperbolic with the
invariant family of projectors P̃ (t) := Φ̃(t, s)P (s)Φ̃(s, t), t ∈ I.
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Chapter 4

Stable and Unstable Subspaces
and Cones

For analyzing hyperbolic (i)ft-systems, it is convenient to study their stable
and unstable set. These sets are invariant under the solution operator and they
comprise the solutions that decay or grow at certain rates. In this chapter we
start with linear systems. For linear ift-systems these sets are subspaces and
for linear ft-systems they are cones. The stable and unstable subspaces of a
linearized system are used to find the stable and unstable manifolds or fiber
bundles of the underlying nonlinear system. The Stable Manifold Theorem
states, roughly speaking, that the subspaces are tangential to the manifolds.
We discuss the nonlinear setup in detail in Section 6.6. There, we present an
analogous statement for finite time systems as well.

This chapter starts with the definition of the stable and unstable subspaces
of an ift-system and presents an alternative representation using the unique
invariant family of projectors. Then we derive a definition for the stable and
unstable cone of an ft-system from the definition of the subspaces and prove
that the cones have a similar relation to the invariant families of projectors.
This means that the uniquely determined cones can be described by the union
of the nonunique projectors.

Let system (2.6) be hyperbolic on I = T ∈ {R,Z} with the unique invariant
family of projectors P : T → R

k. Then the stable and unstable set of 0 at
time t0 ∈ T are defined as

TVs(t0) :=

{

ξ ∈ Rk
∣

∣

∣
sup
t≥t0

‖Φ(t, t0)ξ‖ <∞
}

,

TVu(t0) :=

{

ξ ∈ Rk
∣

∣

∣
sup
t≤t0

‖Φ(t, t0)ξ‖ <∞
} (4.1)

if the system is invertible. For the definition and for a proof of the following
property (4.2) we refer to [104, p.227] for continuous time systems and to [105,
Proposition 2.3] for discrete time invertible systems. Analog statments for
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noninvertible systems are presented in [8, Theorem 2.5]. These sets satisfy

TVs(t0) = R(P (t0)),
TVu(t0) = N (P (t0)) (4.2)

for all t0 ∈ T, which shows that the stable and unstable sets are subspaces.
This is not true for ft-systems.

For a compact interval I let system (2.6) be M-hyperbolic. Then an in-
variant family of projectors P : I → R

k×k, which fulfills (3.9) and (3.10) with
rates α, β > 0, is generally not unique. We expect that the stable and unstable
t0-sets

IVs,u(t0) of the M-hyperbolic system (2.6) satisfy

IVs(t0) =
⋃

P (t0)∈Pt0

R(P (t0)) and IVu(t0) =
⋃

P (t0)∈Pt0

N (P (t0)) (4.3)

for all t0 ∈ I, where

Pt0 :={P (t0)|P : I → R

k×k is an invariant family of projectors, which

fulfills (3.8), (3.9) and (3.10) with constants α, β > 0}.

We could use equation (4.3) as a definition for the stable and unstable sets
IVs,u(·). However, we prefer to define the finite time sets similar to (4.1), see
Definition 4.1.3/ 4.1.5, and then show in Theorem 4.2.4 that the statements
in (4.3) are satisfied.

Stable and Unstable Cones

In [43] we find a definition for the stable and unstable t0-set
IVs,u(t0) of a

continuous ft-system. We derive an adequate definition for the stable and
unstable sets of discrete ft-systems. We will see that the sets IVs,u(t0) are
double-cones for all t0 ∈ I. Therefore, we start with the definition of various
types of cones, see [67, Example 1.1.4], [122, Definition 2.1.2] and [28, Definition
2.11 and Exercise 2.12]. Then we define the stable and unstable set and study
their properties and we conclude this chapter with the proof of the statements
in (4.3).

Definition 4.1.1. A subset C ⊂ Rk is called a cone if λC ⊂ C for all λ ∈ R,
λ ≥ 0. A cone is a convex cone if the cone is convex, i.e. if C +C ⊂ C. We
call C ⊂ Rk a closed cone if C is closed and an open cone if C \{0} is open.
Further, we say D := −C ∪C is a (closed, open, convex) double-cone if
C is a (closed, open, convex) cone. A cone C is a connected cone if C \ {0}
is connected. Let D ⊂ R

k be a double-cone such that D \ {0} consists of two
connected cones C,−C, then C is called a half-cone of D and D is called a
connected double-cone. Let C ⊂ R

k be a nontrivial connected cone. By
defining

X := ∂C ∩ ∂S1,
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4.1 Stable and Unstable Cones

where S1 ⊂ R

k denotes the unit sphere, we define the width dC of C with
the help of the Hausdorff-distance between the connected components of X . Let
Xi, 1 ≤ i ≤ n be the connected components of X such that X =

⋃n
i=1Xi. The

width is defined by

dC :=

{

max{‖x− y‖2|x, y ∈ X} , if n = 1;

max{dH(Xi,Xj)|i, j ∈ {1, . . . , n}, i 6= j} , if n > 1,
(4.4)

with dH(Xi,Xj) := max{d(xi,Xj)|xi ∈ Xi},
and d(xi,Xj) := min{‖xi − xj‖2 |xj ∈ Xj}. (4.5)

If D ⊂ R

k is a connected double-cone then its width equals the width of its
half-cone.

The angle τC of a nontrivial connected cone C ⊂ Rk with −C̄ ∪ C̄ 6= Rk

is defined as

τC := arccos

(

1− (dC)
2

2

)

.

Remark 4.1.2. The equations (4.4)-(4.5) are well defined. Indeed the Haus-
dorff-distance dH : X×X → R and the distance d : X×X → R are continuous
and X is compact (see below) and, hence, they reach their maximum and min-
imum on X × X . The set X is compact, since X = ∂C ∩ ∂S1 is bounded by
the boundedness of S1 and it is closed since both sets ∂C and ∂S1 are closed.

We should mention that a cone or a double-cone, which is connected, is
generally not a connected cone or connected double-cone in the sense of Def-
inition 4.1.1; it must still be connected without 0. For an illustration see the
top graphs in Figure 4.1.

We present a few examples of cones in 2-dimensional spaces in Figure 4.1
to see the difference between a connected cone and a cone, which is not a
connected cone. In the second row of Figure 4.1 we see on the left a connected
cone and on the right a connected double-cone. The pattern part marks one
half-cone. The bottom pictures show the angle and width of a (double-)cone in
a 2-dimensional space. The boundary of a nonempty open connected double-
cone in a 2-dimensional subspace consists of two disjoint subspaces, see middle
right part of Figure 4.1. Further, every connected cone in a 2-dimensional
subspace is a convex cone. In higher dimensional subspaces this is generally
not true, see for example Figure 4.6.

It is easy to see, that the intersection of two (connected, closed, double)
cones is also a (connected, closed, double) cone. This is important for the def-
inition of the stable and unstable t0-sets

IVs,u(t0) of continuous ft-systems as
in [43]. This definition is not transferable to the discrete time case, since dis-
crete systems are generally not invertible. We introduce an adequate definition
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not connected (double-)cone

connected cone connected double-cone

with pattern half-cone

α

angle α of a connected cone

D

C
X1

X2

dC = dD

width dD of a
connected double-cone D

Figure 4.1: Different types of cones and the angle and width of a (double-)cone
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4.1 Stable and Unstable Cones

for discrete systems in Definition 4.1.5. This definition applies to continuous
time systems as well. However, we will define the (un)stable cones of continu-
ous and discrete systems separately, since the definition for continuous systems
avoids technicalities that occur for noninvertible systems only.

Definition 4.1.3. Consider equation (2.7) on I = [t−, t+]. Let t0 ∈ I and ‖·‖
be any norm in Rk. We define the two cones

IV +
s (t0) :=

{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t0)ξ‖eαt is decreasing for t ∈ [t0, t+]
}

,
IV −

s (t0) :=
{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t0)ξ‖eαt is decreasing for t ∈ [t−, t0]
}

,

and we denote their intersection IVs(t0) := IV +
s (t0) ∩ IV −

s (t0) as the stable
t0-cone w.r.t. ‖·‖. Similarly, we define the unstable t0-cone w.r.t. ‖·‖ by
IVu(t0) :=

IV +
u (t0) ∩ IV −

u (t0), where the two cones are defined as

IV +
u (t0) :=

{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(t, t0)ξ‖e−βt is increasing for t ∈ [t0, t+]
}

,
IV −

u (t0) :=
{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(t, t0)ξ‖e−βt is increasing for t ∈ [t−, t0]
}

.

For noninvertible (discrete) systems we can not define IV −
s,u as above, since

Φ(t, t0) may not be defined for all t ∈ [t−, t0]. Therefore, we first define two
maps for I = [n−, n+]Z

ΦTmin : R
k × I → I,

(ξ, n0) 7→ n̄ := min
{

n ∈ [n−, n0]Z
∣

∣∃x ∈ Rk : Φ(n0, n)x = ξ
}

,

ΦTpre : R
k × I R

k,

(ξ, n0) 7→
{

µ ∈ Rk
∣

∣Φ(n0, n̄)µ = ξ with n̄ := ΦTmin(ξ, n0)
}

.

The arrow  indicates that the given map is a set-valued map, see [6]. The
first function provides the earliest time at which a preimage of a vector ξ under
Φ still exists. The second function yields all preimages to that time (earliest
defined time). Figure 4.2 illustrates an example, where the images of the two
functions for a pictured vector ξ are marked.

We should mention that in contrast to ΦTpre the function ΦTker is not a set-
valued function. The image of ΦTker(ξ, n0) is the earliest time n at which
Φ(n, n0) maps ξ to 0.

Basic properties of these three functions are presented in the next lemma.

Lemma 4.1.4. Let I = [n−, n+]Z and Φ be the solution operator associated
with (2.8).

(a) Then

ΦTmin(ξ, n0) ≥ ΦTmin(Φ(n1, n0)ξ, n1)

is satisfied for all ξ ∈ Rk and n1, n0 ∈ I, n1 > n0.
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4 Stable and Unstable Subspaces and Cones

= ΦTmin(ξ, n0)

ΦTpre(ξ, n0) =

n̄ n̄− 1 n̄− 2 n0n0 − 1n0 − 2

xn̄

x̃n̄
xn̄+1

xn̄+2

xn0−2 xn0−1

ξ

yn0−2
yn0−1

Φ(n̄ + 1, n̄)

Φ(n̄ + 1, n̄)

Φ(n̄ + 2, n̄+ 1)

Φ(n0 − 2, n̄+ 2)

Φ(n0 − 1, n0 − 2)

Φ(n0 − 1, n0 − 2)
Φ(n0, n0 − 1)

Φ(n0, n0 − 1)

Figure 4.2: An illustration of the two functions ΦTpre(ξ, n0), ΦTmin(ξ, n0) for
an example vector ξ at time n0 ∈ I.

(b) If

ΦTmin(ξ, n0) = ΦTmin(Φ(n1, n0)ξ, n1)

holds for all ξ ∈ Rk and n1, n0 ∈ I, n1 > n0 then

ΦTpre(ξ, n0) ⊂ ΦTpre(Φ(n1, n0)ξ, n1).

(c) For all

ξ̄ ∈
{

ξ ∈ Rk \ {0}|∃β > 0 : ‖Φ(n, n−)ξ‖e−βn is increasing for all n ∈ I
}

we have

ΦTker(ξ̄, n−) /∈ I.

Proof. Fix n1, n0 ∈ I, n1 > n0 and let ξ ∈ Rk. For (a) let n̄0 := ΦTmin(ξ, n0)
then there exists x̄0 ∈ R

k such that Φ(n0, n̄0)x̄0 = ξ holds. It follows by
Φ(n1, n̄0)x̄0 = Φ(n1, n0)ξ that

ΦTmin(Φ(n1, n0)ξ, n1) = min
{

n ∈ [n−, n1]Z
∣

∣∃x ∈ Rk : Φ(n1, n)x = Φ(n1, n0)ξ
}

≤ n̄0.

For (b) let

ΦTmin(ξ, n0) = ΦTmin(Φ(n1, n0)ξ, n1)

then

ΦTpre(ξ, n0)

=
{

µ ∈ Rk
∣

∣Φ(n0, n̄)µ = ξ with n̄ := ΦTmin(ξ, n0)
}

=
{

µ ∈ Rk
∣

∣Φ(n0, n̄)µ = ξ with n̄ := ΦTmin(Φ(n1, n0)ξ, n1)
}

⊂
{

µ ∈ Rk
∣

∣Φ(n1, n0)Φ(n0, n̄)µ = Φ(n1, n0)ξ with n̄ := ΦTmin(Φ(n1, n0)ξ, n1)
}

=ΦTpre(Φ(n1, n0)ξ, n1).
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4.1 Stable and Unstable Cones

For (c) let

ξ̄ ∈
{

ξ ∈ Rk \ {0}
∣

∣∃β > 0 : ‖Φ(n, n−)ξ‖e−βn is increasing for all n ∈ I
}

.

Assume there exists an n̂ ∈ I with

n̂ = ΦTker(ξ̄, n−).

Then

0 =
∥

∥Φ(n̂, n−)ξ̄
∥

∥ e−βn̂ ≥
∥

∥ξ̄
∥

∥ e−βn− > 0.

This is a contradiction, thus, the assumption is wrong, i.e. ΦTker(ξ̄, n−) /∈ I.

With these functions we are able to define the stable and unstable cone
for noninvertible systems. The main difference to the invertible systems is the
definition of IV −

s (·). In Figure 4.3 we illustrate differences between solutions of
invertible and noninvertible systems. Assume that Φ is the solution operator of
an invertible system and Ψ is the solution operator of a noninvertible system.
Let ξ ∈ Rk, which is pictured in black in Figure 4.3. The invertible system has
an invertible solution operator and yields for any previous time t ∈ [n−, n0]
one preimage of ξ under Φ(t, n0), marked in blue.

n+n0n̄ nn−

ξ
Φ(n−, n̄) Φ(n̄, n0)

Ψ(n̄, n) Ψ(n, n0)

µ

η

Figure 4.3: Example that illustrates all preimages of a vector ξ for an invertible
(blue) and for a noninvertible system (green).

Definition 4.1.3 implies ξ ∈ IV −
s (n0) if

‖Φ(t, n0)ξ‖ eαt is decreasing for all t ∈ [n−, n0]Z and any α > 0.

This is equivalent to ξ ∈ IV −
s (n0) if

‖Φ(t, n−)µ‖ eαt is decreasing for all t ∈ [n−, n0]Z and any α > 0,
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4 Stable and Unstable Subspaces and Cones

where µ ∈ ΦTpre(ξ, n0) and n− = ΦTpre(ξ, n0). This condition does not use
the inverse of the solution operator. Thus, it is an ansatz for noninvertible
systems.

If a system is noninvertible then the preimages of ξ under Ψ(n0, ·) may
not be unique and there may not exist a preimage of ξ to every previous time
t ∈ [n−, n0]Z. All preimages of ξ are plotted in Figure 4.3 in green. The
function ΨTmin(·, n0) determines for ξ the earliest time at which a preimage
of ξ under Ψ exists. In Figure 4.3 this time is denoted by n̄. It is possible
that more than one preimage to time n̄ exists. Each of these preimages result
in a “maximal long” solution, marked in Figure 4.3 by a black, red and blue
circle. We want that the vector ξ lies in IV −

s (n0) if ξ is part of a maximal long
solution which is “decreasing”. More precisely, ξ ∈ IV −

s (n0) if there exists a
η ∈ ΨTpre(ξ, n0) such that

‖Ψ(t, n̄)η‖ e−αt is decreasing for all t ∈ [n̄, n0]Z.

With this background we define the almost stable and unstable cones of a
discrete system. Note that the following definition is analog to Definition 4.1.3
for invertible systems, i.e. the almost stable cone coincides with the stable
cone.

Definition 4.1.5. Consider equation (2.8) on I = [n−, n+]Z. Let n0 ∈ I and
‖·‖ be any norm in Rk. We define the two cones

IV +
s (n0) :=

{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(n, n0)ξ‖ eαn is decreasing for n ∈ [n0, n+]Z
}

,
IV −

s (n0) :=
{

ξ ∈ Rk
∣

∣∃µn̄ ∈ ΦTpre(ξ, n0), n̄ := ΦTmin(ξ, n0),

∃α > 0 : ‖Φ(n, n̄)µn̄‖ eαn is decreasing for n ∈ [n̄, n0]Z
}

,

and we denote their intersection
I
V̄s(n0) :=

IV +
s (n0)∩ IV −

s (n0) as the almost
stable n0-cone w.r.t. ‖·‖. Similarly, we define the unstable n0-cone w.r.t.
‖·‖ by IVu(n0) :=

IV +
u (n0) ∩ IV −

u (n0), where the two cones are defined as

IV +
u (n0) :=

{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(n, n0)ξ‖ e−βn is increasing for n ∈ [n0, n+]Z
}

,
IV −

u (n0) :=
{

ξ ∈ Rk
∣

∣

ΦTmin(ξ, n0) = n−, ∃µn−
∈ ΦTpre(ξ, n0),

∃β > 0 :
∥

∥Φ(n, n−)µn−

∥

∥ e−βn is increasing for n ∈ [n−, n0]Z
}

.

Remark 4.1.6. All sets in the above definitions are actually cones, even
double-cones.

Indeed, let t0 ∈ I and ξ ∈ IV +
s (t0). Then there exists α > 0 such that

‖Φ(t, t0)ξ‖eαt (4.6)

is decreasing for t ∈ [t0, t+]T. Further, for all λ ∈ R

‖Φ(t, t0)λξ‖eαt = |λ|‖Φ(t, t0)ξ‖eαt (4.7)
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4.1 Stable and Unstable Cones

is decreasing for t ∈ [t0, t+]T. Analogously, we can show the same statement
for IV −

s (t0) and IV ±
u (t0). Hence, all t0-sets

IV ±
s,u(t0) are cones. Thus, IVs(t0),

I
V̄s(t0) and IVu(t0), as the intersections of IV −

s (t0) and IV ±
u (t0), are cones as

well. They are double-cones, since equation (4.7) holds for all λ ∈ R.

Before we define the stable cone for noninvertible systems, we study the
almost stable cone.

Remark 4.1.7. For noninvertible systems (2.6) with I = [n−, n+]Z it is pos-
sible that:

a) The almost stable cone
I
V̄s(·) is not forward invariant, i.e.

Φ(n,m)
I
V̄s(m) 6⊂ I

V̄s(n) for any n,m ∈ I, n > m.

b) dim(
I
V̄s(n+) ∩ IVu(n+)) > 0.

The next two examples prove these statements.

Example 4.1.8. Consider the noninvertible system

x(n + 1) = Bx(n), n ∈ I = [0, 2]
Z

, B =

(

2 0
0 0

)

. (4.8)

We show the existence of a vector x ∈ I
V̄s(n+ − 1) =

I
V̄s(1) such that Bx /∈

I
V̄s(n+) =

I
V̄s(2). Hence, we prove a).

Figure 4.4 shows all preimages of

(

2
0

)

under B. We see that x̄ :=

(

1
2

)

0

1

2

√
5

1 2

B

B

B

B
{(

0.5
x

)

∣

∣

∣
x ∈ R

}

{(

1
x

)

∣

∣

∣
x ∈ R \ {0, 2}

}

(

1
0

)

(

2
0

)

(

1
2

)

2-norm

BTmin

((

2
0

)

, 2

)

=

BTpre

((

2
0

)

, 2

)

=

x̄ :=

ȳ

:=

Figure 4.4: Preimages of (2, 0)T under B of equation (4.8).

has no preimage and its norm is decreasing in forward time, i.e. ‖x̄‖ ≥ ‖Bx̄‖.
This implies x̄ ∈ I

V̄s(1).
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4 Stable and Unstable Subspaces and Cones

Every preimage of Bx̄ in BTpre(Bx̄, 2) under B2 maps under B to ȳ :=
(

1
0

)

. The vector ȳ maps to Bx̄ and, thus, its norm is not decreasing in

forward time (‖ȳ‖ < ‖Bx̄‖). This yields Bx̄ /∈ I
V̄s(2) and a) is proved.

Example 4.1.9. To show statement b) we consider the system

x(n+ 1) = B(n)x(n), n ∈ I = [0, 2]
Z

, B(n) =























(

2 0

0 0.5

)

, for n = 0,

(

2 0

0 0

)

, for n = 1.

(4.9)

We prove that x :=

(

2
0

)

satisfies x ∈
(

I
V̄s(2)∩IVu(2)

)

=
(

I
V̄s(n+) ∩ IVu(n+)

)

,

hence, we prove b).

Figure 4.5 shows different preimages of x.

(

0.5
0

)

is a preimage at time

0 1 2

B(0)

B(0)
B(1)

B(1)

(

0.5
0

)

(

1
0

)

(

2
0

)

(

1
2

)(

0.5
4

)

Figure 4.5: Preimages of (2, 0)T under B(·) of equation (4.9).

0 and its norm is increasing in forward time. Thus, x ∈ I
V̄u(2).

(

0.5
4

)

is

another preimage of x at time 0 and its norm is decreasing in forward time.

Thus, x ∈ I
V̄s(2). This yields x ∈

(

I
V̄s(2) ∩ IVu(2)

)

.

The stable and unstable subspace of an hyperbolic ift-system are invariant
due to (4.2) and the invariance of the family of projectors, i.e.

Φ(n,m)TVs(m) = TVs(n) holds for all n,m ∈ T ∈ {R,Z}, n ≥ m.
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For continuous ft-systems the stable and unstable cones are invariant as well.
This is shown in Lemma 4.2.1.

For noninvertible systems the stable cone should be at least forward invari-
ant. Thus, we need according to example (4.1.8) a modification of the almost
stable cone.

Further, only 0 lies in the intersection of the stable and unstable subspace
of an ift-system at each time. For noninvertible systems example 4.1.9 shows
that this is not the case for the “last” time. Thus, we do not define the stable
cone of noninvertible systems for the “last” time.

Definition 4.1.10. Consider (2.8) on I = [n−, n+]Z. We define the stable
(n+ − 1)-cone by

IVs(n+ − 1) :=
I
V̄s(n+ − 1).

Then we recursively define the stable n0-cones, n0 ∈ I2 by

IVs(n0) :=
{

ξ ∈ I
V̄s(n0)

∣

∣

∣
Φ(n0 + 1, n0)ξ ∈ IVs(n0 + 1)

}

.

If equation (2.8) is invertible. Then the cone

IVs(n+) :=
I
V̄s(n+)

is called stable n+-cone.

This definition yields a forward invariant stable cone. For a proof see
Lemma 4.2.1. Note, that the almost stable and stable cones coincide for in-
vertible discrete ft-systems, i.e.

IVs(n0) =
I
V̄s(n0) for all n0 ∈ I.

Characteristics of the (Almost) Stable and Un-

stable Cone

We rewrite the almost stable and unstable cones of an ft-system such that they
are not an intersection as in Definition 4.1.5. Further, we prove some charac-
teristics, e.g. invariant properties, and we show that our cones are equivalent
to the cones Karrasch defined in [83, Definition 4.4.]. This helps to finally
prove statement (4.3).

For I = [n−, n+]Z and n0 ∈ I we get with the monotony of e

eαn > eαm, for all α > 0, n,m ∈ I, n > m
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4 Stable and Unstable Subspaces and Cones

the equivalent representation

I
V̄s(n0) =

{

ξ ∈ Rk
∣

∣∃µn̄ ∈ ΦTpre(ξ, n0) with n̄ := ΦTmin(ξ, n0) and

∃α > 0 : ‖Φ(n, n̄)µn̄‖ eαn is decreasing for n ∈ [n̄, n+]Z
}

=
{

ξ ∈ Rk
∣

∣∃µn̄ ∈ ΦTpre(ξ, n0) with n̄ := ΦTmin(ξ, n0) and

∃α > 0 : ‖Φ(n, n̄)µn̄‖ eαn ≤ ‖Φ(m, n̄)µn̄‖ eαm

for all n,m ∈ [n̄, n+]Z, n ≥ m
}

=
{

ξ ∈ Rk
∣

∣∃µn̄ ∈ ΦTpre(ξ, n0) with n̄ := ΦTmin(ξ, n0)

and n̊ := ΦTker(ξ, n0) : ‖Φ(n, n̄)µn̄‖ < ‖Φ(m, n̄)µn̄‖
for all n,m ∈ [n̄, n̊]

Z

, n > m
}

∪ {0}

(4.10)

of the almost stable n0-cone of (2.8). Similarly, the unstable n0-cone of (2.8)
is

IVu(n0) =
{

ξ ∈ Rk
∣

∣

ΦTmin(ξ, n0) = n−, ∃µn−
∈ ΦTpre(ξ, n0),

∃β > 0 :
∥

∥Φ(n, n−)µn−

∥

∥ e−βn is increasing for n ∈ I
}

=
{

ξ ∈ Rk
∣

∣

ΦTmin(ξ, n0) = n−, ∃µn−
∈ ΦTpre(ξ, n0), ∃β > 0 :

∥

∥Φ(n, n−)µn−

∥

∥ e−βn ≥
∥

∥Φ(m,n−)µn−

∥

∥ e−βm

for all n,m ∈ I, n ≥ m
}

=
{

ξ ∈ Rk
∣

∣

ΦTmin(ξ, n0) = n−∃µn−
∈ ΦTpre(ξ, n0) :

∥

∥Φ(n, n−)µn−

∥

∥ >
∥

∥Φ(m,n−)µn−

∥

∥ for all n,m ∈ I, n > m
}

∪ {0}.

(4.11)

For invertible systems (2.8) we obtain

IVs(n0) =
I
V̄s(n0)

=
{

ξ ∈ Rk
∣

∣ ‖Φ(n, n0)ξ‖ < ‖Φ(m,n0)ξ‖ for all n,m ∈ I, n > m
}

∪ {0}, (4.12)
IVu(n0) =

{

ξ ∈ Rk
∣

∣ ‖Φ(n, n0)ξ‖ > ‖Φ(m,n0)ξ‖ for all n,m ∈ I, n > m
}

∪ {0} (4.13)

for all n0 ∈ I. Note, that the cones of (2.7) have the same characterization.
The following lemma summarizes some basic properties of the almost sta-

ble, of the stable and of the unstable cone. The statements for the continuous
time systems can be found in [43]. For T = R we define the sets

I
V̄s(t) :=

IVs(t), t ∈ I.

Lemma 4.2.1. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Then the stable and
unstable cones of system (2.6) satisfy

IVu(t−) =
IV +

u (t−),
IVu(t+) =

IV −
u (t+),

I
V̄s(t−) =

IV +
s (t−), (4.14)
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4.2 Characteristics of the (Almost) Stable and Unstable Cone

and for invertible systems

IVs(t+) =
IV −

s (t+)

holds. The sets IV +
s , IV +

u are forward invariant and the sets IV −
s , IV −

u are
backward invariant for invertible systems, i.e. for all t0, t1, t2 ∈ I with t1 ≥
t0 ≥ t2

Φ(t1, t0)
IV +

s,u(t0) ⊂ IV +
s,u(t1) (4.15)

holds and we have

Φ(t2, t0)
IV −

s,u(t0) ⊂ IV −
s,u(t2), if (2.6) is invertible. (4.16)

The unstable cone is invariant and the stable cone is at least forward invariant,
i.e. for every t0, t1 ∈ I, t1 ≥ t0 the equation

Φ(t1, t0)
IVu(t0) =

IVu(t1) (4.17)

holds and we obtain

Φ(t1, t0)
IVs(t0)

{

= IVs(t1) , if (2.6) is invertible,

⊂ IVs(t1) , otherwise.
(4.18)

The almost stable cone is forward invariant w.r.t. t−, i.e. for every t ∈ I we
have

Φ(t, t−)
I
V̄s(t−) ⊂ I

V̄s(t). (4.19)

Further it satisfies

I
V̄s(t−) =

IVs(t−). (4.20)

Their intersection satisfies, if t+ 6= t−,

IVu(t) ∩ IVs(t) = {0}, (4.21)

IVu(t) ∩ I
V̄s(t) = {0} (4.22)

for all t ∈
{

I , if (2.6) is invertible,

I1 , otherwise.
.

Proof. The equations in (4.14) are true since IV +
s,u(t+) = R

k = IV −
s,u(t−) holds

by the definition of the cones. To show (4.15) let t0, t1 ∈ I with t1 ≥ t0 and
ξ ∈ Φ(t1, t0)

IV +
s (t0). Then there exists a µ ∈ IV +

s (t0) such that ξ = Φ(t1, t0)µ.
Further by the definition of IV +

s (t0) there exists an α > 0 such that

‖Φ(t, t0)µ‖ eαt = ‖Φ(t, t1)Φ(t1, t0)µ‖ eαt = ‖Φ(t, t1)ξ‖ eαt
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is decreasing for all t ∈ [t1, t+]T ⊂ [t0, t+]T. This implies ξ ∈ IV +
s (t1). Analo-

gously, we obtain

Φ(t1, t0)
IV +

u (t0) ⊂ IV +
u (t1).

Let system (2.6) be invertible and let t0, t2 ∈ I, t0 ≥ t2 then

Φ(t2, t0)
IV −

s (t0) ={Φ(t2, t0)ξ ∈ Rk|∃µ ∈ Rk : Φ(t0, t−)µ = ξ, ∃α > 0 :

‖Φ(t, t−)µ‖ eαt is decreasing for all t ∈ [t−, t0]}
⊂{ξ̃ ∈ Rk|∃µ ∈ Rk : Φ(t2, t−)µ = ξ̃, ∃α > 0 :

‖Φ(t, t−)µ‖ eαt is decreasing for all t ∈ [t−, t2] ⊂ [t−, t0]}
=IV −

s (t2).

The relation (4.16) for the “unstable” cone IV −
u can be proved in the same way.

To show (4.17) let t0, t1 ∈ I, t1 ≥ t0. Then by Lemma 4.1.4 (a)

Φ(t1, t0)
IVu(t0) =

{

Φ(t1, t0)ξ ∈ Rk
∣

∣

∣ΦTmin(ξ, t0) = n−, ∃µt− ∈ ΦTpre(ξ, t0),

∃β > 0 : ‖Φ(t, t−)µt−‖e−βt is increasing for all t ∈ I

}

=
{

ξ̃ ∈ Rk
∣

∣

∣ΦTmin(ξ̃, t1) = n−, ∃µt− ∈ ΦTpre(ξ̃, t1),

∃β > 0 : ‖Φ(t, t−)µt−‖e−βt is increasing for all t ∈ I

}

=IVu(t1)

holds. Next we show (4.18). If (2.6) is invertible we obtain for all t1, t0 ∈ I,
t1 ≥ t0

Φ(t1, t0)
IVs(t0) =

{

Φ(t1, t0)ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t−)ξ‖ eαn is decreasing

for all n ∈ I, µ ∈ ΦTpre(ξ, t0)
}

=
{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(n, n−)µ‖ eαn is decreasing

for all n ∈ I, µ ∈ ΦTpre(Φ(t1, t0)ξ, t1)
}

= IVs(t1).

If (2.6) is not invertible we get directly by Definition 4.1.10

Φ(t0 + 1, t0)
IVs(t0) ⊂ IVs(t0 + 1) for t0 ∈ I1.

Hence, we inductively obtain

Φ(t1, t0)
IVs(t0) ⊂ IVs(t1) for all t1, t0 ∈ I, t1 ≥ t0.

Equation (4.14) and (4.15) yield for all t ∈ I

Φ(t, t−)
I
V̄ (t−) = Φ(t, t−)

IV +
s (t−) ⊂ IV +

s (t). (4.23)
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For every µ ∈ I
V̄s(t−) there exists an α > 0 such that ‖Φ(t, t−)µ‖ eαt is de-

creasing for all t ∈ I. Since ΦTmin(ξ, t) = t− holds for all t ∈ I and all

ξ ∈ Φ(t, t−)
I
V̄s(t−) we have

Φ(t, t−)
I
V̄s(t−) ⊂ IV −

s (t) (4.24)

for all t ∈ I. Equation (4.23) and (4.24) leads to (4.19).
By (4.14) and (4.19) we obtain

Φ(n+ − 1, n−)
I
V̄s(n−) ⊂ I

V̄s(n+ − 1) = IVs(n+ − 1).

Thus,
I
V̄s(n−) =

IVs(n−).
The statement (4.21) follows if (4.22) holds. Therefore, let t0 ∈ I, t0 < t+

and ξ ∈ I
V̄s(t0)∩ IVu(t0) ⊂ IV +

s (t0)∩ IV +
u (t0). By the definition of IV +

s (t0) and
IV +

u (t0) we get that α, β > 0 exist such that ‖Φ(t, t0)ξ‖ eαt is decreasing and
‖Φ(t, t0)ξ‖ e−βt is increasing for t ∈ [t0, t+]T. The properties of an exponential
function lead to ‖Φ(t, t0)ξ‖ = 0 for all t ∈ [t0, t+]T and, hence, ξ = 0.

Let system (2.6) be invertible. For t0 = t+ (t0 > t−) we get that ξ ∈
IV −

s (t0) ∩ IV −
u (t0) has exactly one preimage for all t ∈ [t−, t0]T. Let ξ− ∈ Rk

such that ξ = Φ(t0, t−)ξ−. Then by ξ ∈ IV −
s (t0) there exists an α > 0 such

that ‖Φ(t, t−)ξ−‖eαt is decreasing for all t ∈ [t−, t0]T and by ξ ∈ IV −
u (t0) there

exists a β > 0 such that ‖Φ(t, t−)ξ−‖e−βt is increasing for all t ∈ [t−, t0]T. This
leads to ξ− = 0 and, thus, ξ = 0.

Another characteristic of the stable and unstable cone is that except for
2-dimensional dynamical systems they are generally not convex double-cones.
For an illustration we consider the 3-dimensional discrete equation

u(n+ 1) = A(n)u(n), n ∈ [1, 6]
Z

(4.25)

where A(n) = D(n+ 1)BD(−n) with

B =





0.8 0 0
0 0.9 0
0 0 1.2



 , D(n) =





cos(nϕ) 0 − sin(nϕ)
sin(nϕ) 0 cos(nϕ)

0 1 0



 with ϕ =
π

3

for all n ∈ Z. Denote the solution operator by Φ(·, ·). The intersection of the
1-stable cone with the Euclidean unit-ball is illustrated in Figure 4.6.

We observe that the stable cone is not a convex double-cone, i.e. the half-cones
are not convex cones. The intersection in Figure 4.6 is approximated using the
MATLAB-command isosurface. The input of the function isosurface is a
value table

g1(x) = max
ℓ∈[1,5]

Z

{‖Φ(ℓ + 1, 1)x‖ − ‖Φ(ℓ, 1)x‖}
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x1
x2

x3

Figure 4.6: 1-stable cone of (4.25) intersected by the Euclidean unit-ball.

for x on the cuboid [−1.1, 1.1]3 discretized with a 500×500×500 grid. Further
cones which are not convex double-cones are presented in [55, Section 3.3].
Note that the stable cones plotted and calculated there are not equivalent to
our stable cones. The stable cone defined in [55] coincides with our cone IV +

s .

Before we prove equation (4.3) we show that Karraschs definition of the
(un)stable cone, see [83, Definition 4.4], is equivalent to our Definition 4.1.3.
The definition in [83] is similar to the equation (4.3), which we want to estab-
lish.

Lemma 4.2.2. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T then the Definition
4.1.3/4.1.5 of the unstable cone and almost stable cone is equivalent to the
Definition 4.4 of [83], i.e. the following holds

IVs(t−) :=
{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t−)ξ‖ eαt is decreasing for all t ∈ I
}

=Vs(Φ) :=
{

ξ ∈ Rk
∣

∣∃X ∈ Gr(1,Rk) : ξ ∈ X, λ(X,Φ) < 0
}

∪ {0},
IVu(t−) :=

{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(t, t−)ξ‖ e−βt is increasing for all t ∈ I
}

=Vu(Φ) :=
{

ξ ∈ Rk
∣

∣∃X ∈ Gr(1,Rk) : ξ ∈ X, λ(X,Φ) > 0
}

∪ {0},

with λ and λ defined as in (3.26), (3.27).

Proof. We prove IVs(t−) = Vs(Φ) and IVu(t−) = Vu(Φ) similarly follows with
Lemma 4.1.4 (c). We begin by introducing a map which gives the extremal
growth rate of a single vector. Therefore, we need the sets

(I× I×Rk)
(t−)
6= :=

{

(t, s, ξ) ∈ (I× I×Rk)
∣

∣t 6= s, t, s < ΦTker(ξ, t−)
}

,

(I× I)
(ξ,t−)
6= :=

{

(t, s) ∈ (I× I)|(t, s, ξ) ∈ (I× I×R)t−6=
}

.
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The map is well defined by

∆ :
(

I× I×Rk
)t−

6= → R, (4.26)

(t, s, ξ) 7→ ln(‖Φ(t, t−)ξ‖)− ln(‖Φ(s, t−)ξ‖)
t− s

.

It is easily seen that for all (t, s, ξ) ∈
(

I× I×Rk
)t−

6= and λ ∈ R

∆(t, s, ξ) = ∆(s, t, ξ), ∆(t, s, ξ) = ∆(t, s, λξ) (4.27)

hold. For ξ ∈ Rk define the set

Xξ :=
{

λξ ∈ Rk|λ ∈ R
}

.

Obviously

Xξ ∈ Gr(1,Rk) (4.28)

for all ξ ∈ Rk \ {0}, since Gr(1,Rk) is the set of all 1-dimensional subspaces
of Rk. By (4.20), (4.26), (4.27) and (4.28) the statement holds, i.e.

IVs(t−) =
I
V̄s(t−)

=
{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t−)ξ‖ eαt is decreasing for all t ∈ I
}

=
{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t−)ξ‖ eαt is decreasing

for all t ∈ [t−, ΦTker(ξ, t−)]
}

=
{

ξ ∈ Rk \ {0}
∣

∣

∣
∃α > 0 : ‖Φ(t, t−)ξ‖ eαt ≤ ‖Φ(s, t−)ξ‖ eαs

for all (t, s) ∈ (I× I)
(ξ,t−)
6= , t > s

}

∪ {0}

=
{

ξ ∈ Rk \ {0}
∣

∣

∣
∃α > 0 : ln(‖Φ(t, t−)ξ‖) + αt ≤ ln(‖Φ(s, t−)ξ‖) + αs

for all (t, s) ∈ (I× I)
(ξ,t−)
6= , t > s

}

∪ {0}

=
{

ξ ∈ Rk \ {0}
∣

∣

∣
∃α > 0 :

ln(‖Φ(t, t−)ξ‖)− ln(‖Φ(s, t−)ξ‖)
t− s

≤ −α

for all (t, s) ∈ (I× I)
(ξ,t−)
6= , t > s

}

∪ {0}
=
{

ξ ∈ Rk \ {0}
∣

∣∃α > 0 : ∆(t, s, ξ) ≤ −α
for all (t, s) ∈ (I× I)

(ξ,t−)
6= , t > s

}

∪ {0}
=
{

ξ ∈ Rk \ {0}
∣

∣∆(t, s, ξ) < 0 for all (t, s) ∈ (I× I)
(ξ,t−)
6= , t > s

}

∪ {0}

=
{

ξ ∈ Rk \ {0}
∣

∣∆(t, s, ξ) < 0 for all (t, s) ∈ (I× I)
(ξ,t−)
6=

}

∪ {0}

=







ξ ∈ Rk \ {0}
∣

∣

∣

∣

∣

sup
(t,s)∈(I×I)

(ξ,t−)

6=

∆(t, s, ξ) < 0







∪ {0}
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=



















ξ ∈ Rk \ {0}
∣

∣

∣

∣

∣

sup
x∈Xξ,‖x‖=1

(t,s)∈(I×I)
(ξ,t−)

6=

∆(t, s, x) < 0



















∪ {0}

=
{

ξ ∈ Rk \ {0}
∣

∣λ(Xξ,Φ) < 0
}

∪ {0}
=
{

ξ ∈ Rk
∣

∣∃X ∈ Gr(1,Rk) : ξ ∈ X, λ(X,Φ) < 0
}

∪ {0}
= Vs(Φ).

The next lemma provides a condition, which guarantees that a system is M-
hyperbolic. It also shows a part of the statement (4.3). The whole statement
(4.3) is proved in Theorem 4.2.4. For a similar result of the following in
continuous time we refer to [43, Theorem 14] and [83, Proposition 4.6].

Lemma 4.2.3. Let T ∈ {R,Z}, t± ∈ T and system (2.6) be defined on the

compact interval I = [t−, t+]T. Let Ĩ :=

{

I , if (2.6) is invertible,

I1 , otherwise.

Then P : I → R

k×k is an invariant family of projectors with

R(P (t)) ⊂ IVs(t) for all t ∈ Ĩ, (4.29)

N (P (t)) ⊂ IVu(t) for all t ∈ I (4.30)

if and only if system (2.6) is M-hyperbolic on I with this family of projectors.

Proof. First we show that M-hyperbolicity follows if (4.29) and (4.30) hold.
We start with the proof of (3.9).

Let s ∈ Ĩ and ξ ∈ R(P (s)) ⊂ IVs(s) ⊂ IV +
s (s). Then there exists an α > 0

such that ‖Φ(t, s)ξ‖ eαt is decreasing for t ∈ [s, t+]T. This leads to

‖Φ(t, s)ξ‖ eαt ≤ ‖Φ(s, s)ξ‖ eαs (4.31)

for all t ≥ s. Even if (2.6) is not invertible estimate (4.31) is satisfied for
t ≥ t+ =: s. Thus, we get the equivalent M-hyperbolic estimate

‖Φ(t, s)ξ‖ ≤ e−α(t−s) ‖ξ‖ for all t, s ∈ I, t ≥ s and all ξ ∈ R(P (s)). (4.32)

Next we prove that

Φ(t, s)|N (P (s)) : N (P (s)) → N (P (t)) (4.33)

is invertible for all t, s ∈ I, t ≥ s. First we show injectivity. Therefore, let
t, s ∈ I, t ≥ s and ξ1,2 ∈ N (P (s)) with Φ(t, s)ξ1 = Φ(t, s)ξ2. Then

Φ(t, s)(ξ1 − ξ2) = 0, i.e. ΦTker(ξ1 − ξ2, s) ∈ I.
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The subspace property of N (P (s)) yields ξ1 − ξ2 ∈ N (P (s)). For all ξ ∈
N (P (s)) \ {0} Lemma 4.1.4 implies ΦTker(ξ, s) /∈ I. Thus, ξ1 − ξ2 = 0. This
proves that (4.33) is injective.

Invertibility follows if N (P (t)) has the same dimension for all t ∈ I. Let
t, s ∈ I, t ≥ s and N (P (r)) ⊂ IVu(r) for all r ∈ I. Lemma 2.1.6 and

N (P (r))⊕R(P (r)) = Rk

imply that N (P (r)), r ∈ I is a subspace of maximal dimension in IVu(r).
Equation (4.17) yields the existence of a subspace U(s) ⊂ IVu(s) such that
Φ(t, s)U(s) = N (P (t)). This leads to

dim(N (P (s))) ≥ dim(U(s)) ≥ dim(N (P (t))). (4.34)

From the injectivity of (4.33) and with (4.34) follows

dim(N (P (t))) = dim(N (P (s))).

Thus, (4.33) is invertible.
It remains to prove the second M-hyperbolic estimate (3.10). Let s ∈ I and

ξ ∈ N (P (s)) ⊂ IVu(s) ⊂ IV −
u (s) then there exists a β > 0 and a unique µ ∈ Rk

with Φ(s, t−)µ = ξ such that ‖Φ(t, t−)µ‖ e−βt is increasing for t ∈ [t−, s]T. This
leads to

‖Φ(t, t−)µ‖ e−βt ≤ ‖Φ(s, t−)µ‖ e−βs

for all t ≤ s. Denote the inverse of Φ(s, t)|N (P (s)) by Φ(t, s) then we get the
equivalent M-hyperbolic statement

‖Φ(t, s)ξ‖ ≤ eβ(t−s) ‖ξ‖ for all ξ ∈ N (P (s)), t ≤ s. (4.35)

The equations (4.32), (4.35) and the invertibility of (4.33) prove that (2.6) is
M-hyperbolic on I with P (·).

Conversely, let (2.6) be M-hyperbolic on I with the invariant family of
projectors P (·) and dichotomy rates α, β > 0. Let s ∈ I and µ(s) ∈ N (P (s))
then we have

‖Φ(t, s)µ(s)‖ ≤ eβ(t−s)‖µ(s)‖ for all t ∈ I, t ≤ s

which implies

‖Φ(t, s)µ(s)‖e−βt ≤ ‖µ(s)‖e−βs. (4.36)

By the invertibility of Φ(t, s)|N (P (s)) there exists a µ(t−) ∈ N (P (t−)) such that
Φ(s, t−)µ(t−) = µ(s). Together with (4.36) we obtain for all t ∈ I, t ≤ s

‖Φ(t, t−)µ(t−)‖ e−βt = ‖Φ(t, s)Φ(s, t−)µ(t−)‖ e−βt = ‖Φ(t, s)µ(s)‖ e−βt

≤ ‖µ(s)‖ e−βs = ‖Φ(s, t−)µ(t−)‖ e−βs,
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i.e. ‖Φ(t, t−)µ(t−)‖ e−βt is increasing for all t ∈ I. Hence, µ(s) ∈ IVu(s), see
(4.11). Thus, N (P (s)) ⊂ IVu(s).

Next we prove R(P (t)) ⊂ IVs(t) for all t ∈ Ĩ.
We have

‖Φ(t, s)ξ(s)‖ ≤ e−α(t−s)‖ξ(s)‖ for all t, s ∈ I, t ≥ s and ξ(s) ∈ R(P (s)),

which implies

‖Φ(t, s)ξ(s)‖eαt ≤ ‖Φ(s, s)ξ(s)‖eαs.

For s ∈ Ĩ ⊂ I and ξ(s) ∈ R(P (s)) it follows that ‖Φ(t, s)ξ‖eαt is decreasing for
all t ∈ [s, t+]T. Hence, ξ(s) ∈ IV +

s (s) for all s ∈ Ĩ and ξ(s) ∈ R(P (s)), i.e.

R(P (s)) ⊂ IV +
s (s), for all s ∈ Ĩ. (4.37)

Combined with (4.14) we have

R(P (t−)) ⊂ IV +
s (t−) =

I
V̄s(t−) ⊂ IV −

s (t−).

By induction we show R(P (t)) ⊂ IV −
s (t) for all t ∈ Ĩ. Fix s ∈ Ĩ. Assume

R(P (t0)) ⊂ IV −
s (t0) for all t0 < s.

Let ξ ∈ R(P (s)) and s̄ := ΦTmin(ξ, s).

For s̄ = s we obtain ξ ∈ IV −
s (s). This implies with (4.37) R(P (s)) ⊂ I

V̄s(s).
For s̄ < s, let ξ̃ ∈ ΦTpre(ξ, s). The invariance of the family of projectors

leads to

ξ = P (s)ξ = P (s)Φ(s, s̄)ξ̃ = Φ(s, s̄)P (s̄)ξ̃.

This yields ξ̄ := P (s̄)ξ̃ ∈ R(P (s̄)) and

ξ̄ ∈ ΦTpre(ξ, s). (4.38)

Our assumption and s̄ < s imply ξ̄ ∈ R(P (s̄)) ⊂ IV −
s (s̄). By Definition 4.1.5

we get with ξ̄ ⊂ IV −
s (s̄) and (4.38)

ξ ∈ IV −
s (s). (4.39)

Statements (4.39) and (4.37) prove R(P (t)) ⊂ I
V̄s(t) for all t ∈ Ĩ. By Definition

4.1.10 we directly obtain

R(P (t+ − 1)) ⊂ I
V̄s(t+ − 1) = IVs(t+ − 1).

Additionally,

Φ(t+ − 1, t+ − 2)R(P (t+ − 2)) ⊂ R(P (t+ − 1)) ⊂ IVs(t+ − 1)
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4.2 Characteristics of the (Almost) Stable and Unstable Cone

holds and yields

R(P (t+ − 2)) ⊂ IVs(t+ − 2).

Inductively the statement R(P (t)) ⊂ IVs(t) follows for all t ∈ I1. If (2.6) is
invertible we directly obtain by (4.18)

R(P (t+)) = Φ(t+, t+ − 1)R(P (t+ − 1)) ⊂ Φ(t+, t+ − 1)IVs(t+ − 1) = IVs(t+).

Finally, we are able to prove that the stable cone is the union of the range
whereas the unstable cone is the union of the kernel of all invariant projectors,
which satisfy (3.8), (3.9) and (3.10), i.e. (4.3). This is the analog statement
to the infinite time case (4.2), where the invariant family is unique. The
nonuniqueness of the invariant family of projectors implies that the finite time
(un)stable set is not a subspace as in the infinite time case. The (un)stable set
is a cone, a union of subspaces.

Theorem 4.2.4. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Let system (2.6)

be M-hyperbolic and Ĩ :=

{

I , if (2.6) is invertible,

I1 , otherwise.

Then we have

⋃

P̃ (t0)∈Pt0

R(P̃ (t0)) =
IVs(t0) for all t0 ∈ Ĩ,

and
⋃

P̃ (t0)∈Pt0

N (P̃ (t0)) =
IVu(t0) for all t0 ∈ I,

where Pt0 := {P̃ (t0)|P̃ : I → R

k×k is an invariant family of projectors, which
fulfills (3.8), (3.9) and (3.10) with constants α, β > 0}.

Proof. Let t0 ∈ I and P̃ (t0) ∈ Pt0 then system (2.6) is M-hyperbolic with the
invariant family of projectors P̃ : I → R

k×k belonging to P̃ (t0). By Lemma
4.2.3 we get

R(P̃ (t)) ⊂ IVs(t) for all t ∈ Ĩ

and N (P̃ (t)) ⊂ IVu(t) for all t ∈ Ĩ.

Conversely, fix t̄ ∈ Ĩ and let

ξ̄(t̄) ∈ IVs(t̄).

Next we construct a family of projectors P̃ : I → R

k×k with ξ̄(t̄) ∈ R(P̃ (t̄)).
Then we prove P̃ (t) ∈ Pt for all t ∈ I.
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4 Stable and Unstable Subspaces and Cones

Since system (2.6) is M-hyperbolic with an invariant family of projectors
P : I → R

k×k we obtain by Lemma 4.2.3

R(P (t0)) ⊂ IVs(t0) for all t0 ∈ Ĩ

and N (P (t0)) ⊂ IVu(t0) for all t0 ∈ I. (4.40)

This implies that there exists a subspace

Sξ̄(t̄) ⊂ IVs(t̄)

of dimension dim(R(P (t̄))) with ξ̄(t̄) ∈ Sξ̄(t̄). Every ξ ∈ Sξ̄(t̄) satisfies either

ΦTpre(ξ, t̄) = t̄ or there exists a µ ∈ IVs(t̄ − 1) with ξ = Φ(t̄, t̄ − 1)µ. This
implies inductively by the forward invariance of Φ and IVs (equation (4.18))
the existence of subspaces Sξ̄(t), t ∈ [t−, t̄)T with

Sξ̄(t) ⊂ IVs(t) (4.41)

and dim(Sξ̄(t)) = dim(R(P (t))) such that

Φ(t, s)Sξ̄(s) ⊂ Sξ̄(t) for all t, s ∈ [t−, t̄]T, t > s. (4.42)

Additionally, by the latter arguments there exits subspaces Sξ̄(t), t ∈ (t̄, t+]T
of dimension dim(R(P (t))) such that

(4.41) is satisfied for all t ∈ Ĩ (4.43)

and (4.42) is satisfied for all t, s ∈ [t̄, t+]T, t ≥ s. (4.44)

Define the family of projectors P̃ : I → R

k×k recursively by N (P̃ (t)) :=
N (P (t)) and

R(P̃ (t)) :=











Φ(t, t−)Sξ̄(t−) , for (i)
{

Sξ̄(t−) , if t = t−,

Φ(t, t− 1)R(P̃ (t− 1))⊕W (t) , if t > t−
, for (ii)

with (i) for invertible systems and with (ii) for noninvertible systems, where

W (t) ⊂
{

IVs(t) , for t ∈ [t− + 1, t+ − 1]
Z

,

R

k , for t = t+.

such that

Φ(t, t− 1)R(P̃ (t− 1))⊕W (t) = Sξ̄(t), (4.45)

holds for all t ∈ I. This family is well defined by equation (4.21) and by the
equations (4.40)-(4.44). Further, we have

ξ̄(t̄) ∈ R(P̃ (t̄)),

Φ(t, t− 1)R(P̃ (t− 1))⊕W (t)⊕N (P (t)) = Sξ̄(t)⊕N (P (t)) = Rk,
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4.2 Characteristics of the (Almost) Stable and Unstable Cone

It remains to show, that P̃ : I → R

k×k satisfies P̃ (t) ∈ Pt for all t ∈ I.
For invertible systems we obtain that the family of projectors is invariant

by definition. By (4.40), (4.41) and (4.18) the relations N (P̃ (t)) = N (P (t)) ⊂
IVu(t) and R(P̃ (t)) = Φ(t, t0)Sξ̄(t−) ⊂ Φ(t, t0)

IVs(t0) = IVs(t) hold. Finally,

Lemma 4.2.3 leads to P̃ (t) ∈ Pt for all t ∈ I.
For noninvertible systems Lemma 2.2.5 yields that the family of projectors

P̃ : I → R

k×k is invariant, since

Φ(t, s)N (P̃ (s)) = Φ(t, s)N (P (s)) = N (P (t)) = N (P̃ (t))

holds by Lemma 3.2.5 for all t, s ∈ I, t ≥ s. Equations (4.40), (4.41) and (4.45)
yield N (P̃ (t)) = N (P (t)) ⊂ IVu(t) and R(P̃ (t)) = Sξ̄(t) ⊂ IVs(t) for all t ∈ I.

Lemma 4.2.3 implies P̃ (t) ∈ Pt for all t ∈ I.
The inclusion

⋃

P̃∈Pt0

N (P̃ ) ⊃ IVu(t0),

for any t0 ∈ I, can be shown just as the statement
⋃

P̃∈Pt0
R(P̃ ) = IVs(t0).

However, we will prove it for the readers convenience. Fix t̄ ∈ I and let

µ̄(t̄) ∈ IVu(t̄).

Next we construct a family of projectors P̂ : I → R

k×k with µ̄(t̄) ∈ N (P̂ (t̄)).
Then we show that P̂ (t) ∈ Pt for all t ∈ I.

By (4.40) there exists a subspace Uµ̄(t̄) ⊂ IVu(t̄) of dimension dim(N (P (t̄)))
with µ̄(t̄) ∈ Uµ̄(t̄). Further, by the invariance of Φ and IVu (Equation (4.17))
there exist subspaces Uµ̄(t) for all t ∈ I with

Uµ̄(t) ⊂ IVu(t) (4.46)

and dimension dim(N (P (t))) such that

Φ(t, s)Uµ̄(s) = Uµ̄(t) for all t, s ∈ I, t ≥ s.

Define the family of projectors P̂ : I → R

k×k by

N (P̂ (t)) := Uµ̄(t),

R(P̂ (t)) := R(P (t))

for all t ∈ I. With equation (4.46), (4.40) and (4.21) we get

N (P̂ (t))⊕R(P̂ (t)) = Uµ̄ ⊕R(P (t)) = Rk

for all t ∈ I, since dim(R(P (t))) = dim(N (P (t))) = k. Thus, the family is
well defined. Further, we have

µ̄(t̄) ∈ N (P̂ (t̄)).

The family of projectors is invariant by definition and by (4.40), (4.46) we
obtain N (P̂ (t)) = Uµ̄(t) ⊂ IVu(t) and R(P̂ (t)) = R(P (t)) ⊂ IVs(t) for all t ∈ I.

Finally, Lemma 4.2.3 leads to P̂ (t) ∈ P(t) for all t ∈ I.
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4 Stable and Unstable Subspaces and Cones

This theorem and Corollary 3.4.12 state that the stable cone of an M-
hyperbolic system is a subset of the stable cone of an sufficiently small per-
turbed system.
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Chapter 5

Explicit Representations of
(Un)Stable Subspaces and Cones

An explicit representation of the stable and unstable subspaces and cones of
a linear (ft-)hyperbolic system is of great interest for nemerical approxima-
tion. We start this chapter with the study of ift-systems and their (un)stable
subspaces. Then we move on with ft-systems. For a subset of M-hyperbolic
systems we are able to find an explicit representation. This kind of systems
are D-hyperbolic systems, which we define in Section 5.2.

In infinite time the invariant family of projectors P : I → R

k×k, I ∈ {R,Z}
of an exponential dichotomy is unique and satisfies

TVs(t) = R(P (t)), TVu(t) = N (P (t)).

To picture the stable and unstable subspaces we “only” need to find the unique
family of projectors P . For invertible systems in discrete time

x(n + 1) = A(n)x(n), n ∈ Z (5.1)

we get with the help of the Green’s function G(·, ·), see [105], that u(n) =
G(n,N + 1)r for N ∈ Z is the unique bounded solution of

x(n + 1) = A(n)x(n) + δn,Nr, n ∈ Z, (5.2)

where δi,j =

{

1, if i = j,

0, else
is the Kronecker delta. By [71, Theorem 2.1 and

Corollary 1] we have the following.

Corollary 5.0.1. Let the inhomogeneous equation (5.2) possess for all N ∈ Z
and r ∈ Rk a unique bounded solution fulfilling

‖u(n)‖ ≤
{

Ke−α(n−N−1) ‖r‖ , for n ≥ N + 1,

Ke−β(N+1−n) ‖r‖ , for n ≤ N.



5 Explicit Representations of (Un)Stable Subspaces and Cones

Fix N ∈ Z and let (ui(n))n∈Z be the unique bounded solution of (5.2) for
r = ei, i = 1, . . . , k, where ei is the i-th unit vector. Then (5.1) possesses an
exponential dichotomy on Z with projector

P (N + 1) = (u1(N + 1), u2(N + 1), . . . , uk(N + 1)).

This means, with the help of the unique solution of (5.2) we get the unique
projector of (5.1). For ft-systems we observed that the family of projectors is
not unique. Hence, we cannot just approximate the projectors to get the stable
and unstable cones. Doan, Palmer and Siegmund found an explicit form of the
stable and unstable cone if the system is D-hyperbolic, see [43, Proposition 19].
In Section 5.4 we show that all D-hyperbolic systems, which we will introduce
in Section 5.2, are also M-hyperbolic w.r.t. the same norm. To verify whether
a system is D-hyperbolic we analyze the dynamical characteristics of solutions
by using a ‖ · ‖Γ :=

√

〈·,Γ·〉 norm, where Γ ∈ R

k×k is a positive definite,
symmetric matrix and 〈·, ·〉 denotes the standard inner product. Before we
introduce further tensors in Section 5.2, which we need to define hyperbolicity
with the help of the dynamical pattern as in [61], [15], [45], [43], we study
autonomous systems and analyze whether a matrix Γ exists such that the
system is M-hyperbolic with respect to ‖ · ‖Γ. After we derived the explicit
form of the cones we consider various examples to get an idea how stable and
unstable cones are formed. In general the cones are not subspaces. Therefore,
it is interesting to know how wide these cones are, i.e. how large the angle of
the cone is. In Section 5.6 and 5.7 we present different statements about the
width and the angle of a cone.

Γ-Norm and M-Hyperbolicity w.r.t. the Γ-Norm

First we analyze properties of the ‖ · ‖Γ :=
√

〈·,Γ·〉 norm, where Γ ∈ Rk×k

is a positive definite, symmetric matrix and 〈·, ·〉 denotes the standard inner
product. We study different types of autonomous systems to find cases where
a matrix Γ exits such that the given system is M-hyperbolic with respect to
‖ · ‖Γ.

Theorem 5.1.1. Let A ∈ Rk×k be diagonalizable, T ∈ {R,Z} and the system

{

ẋ = Ax, for T = R,

x(t + 1) = Ax(t), for T = Z,
x ∈ Rk, t ∈ T (5.3)

be hyperbolic on T. Then there exists a positive definite symmetric matrix
Γ ∈ Rk×k such that equation (5.3) is M-hyperbolic on every finite time interval
with respect to the Γ-norm.

Proof. The given autonomous system (5.3) is hyperbolic. Denote by α, β the
exponential rates and by PA the invariant projector. A is diagonalizable, hence,
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5.1 Γ-Norm and M-Hyperbolicity w.r.t. the Γ-Norm

a matrix S ∈ Gl(Rk×k) exists such that S−1AS =: D is an diagonal matrix.
We define PD := S−1PAS. Let ΦA denote the solution operator of (5.3) then
ΦD := S−1ΦAS is the solution operator of

{

ẏ = Dy, for T = R,

y(t+ 1) = Dy(t), for T = Z,
y ∈ Rk, t ∈ T. (5.4)

By definition of PD and ΦD as well as by the invariance of ΦA and the projector
PA the equations

PDΦD = S−1PASS
−1ΦAS = S−1PAΦAS

= S−1ΦAPAS = S−1ΦASS
−1PAS = ΦDPD,

PDPD = S−1PASS
−1PAS = S−1P 2

AS = S−1PAS = PD

hold. This shows that PD is an invariant projector of (5.4). The relation
0 = PDx = S−1PASx, x ∈ Rk yields

N (PD) = S−1N (PA).

This leads to

ΦDN (PD) = S−1ΦASS
−1N (PA) = S−1ΦAN (PA) = S−1N (PA) = N (PD),

since ΦA satisfies (3.8). Thus, ΦD satisfies (3.8) and the inverse of Φt
D|N (PD),

t ∈ T
+
0 exists. We denote it by Φ−t

D , t ∈ T
+
0 . Let the exponential rates α, β > 0

satisfy

α ≤







− max
i∈{1,··· ,k}

{(ΦD)i,i|(ΦD)i,i < 0}, for T = R,

− ln( max
i∈{1,··· ,k}

{|(ΦD)i,i| | |(ΦD)i,i| < 1}), for T = Z,
,

β ≤







min
i∈{1,··· ,k}

{|(ΦD)i,i| |(ΦD)i,i > 0}, for T = R,

ln( min
i∈{1,··· ,k}

{|(ΦD)i,i| | |(ΦD)i,i| > 1}), for T = Z.

If they do not, reduce them until they do. It is easy to see that
∥

∥Φt
DPD

∥

∥

2
≤ e−αt for all t ∈ T

+
0 , (5.5)

∥

∥Φt
D(I− PD)

∥

∥

2
≤ eβt for all t ∈ T

−
0 (5.6)

holds, for more details see [107, p. 91] and [32, p. 386]. The equation PDx =
S−1PASx, x ∈ Rk yields

R(PD) = S−1R(PA).

Define Γ := (S−1)TS−1 then Γ is symmetric and we see by

〈ξ,Γξ〉 = 〈ξ, (S−1)TS−1ξ〉 = 〈S−1ξ, S−1ξ〉 =
∥

∥S−1ξ
∥

∥

2

I
> 0
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5 Explicit Representations of (Un)Stable Subspaces and Cones

for all ξ ∈ Rk \ {0} that Γ is positive definite. The Γ-norm and the identity
norm are related as follows

max
06=y∈R(PD)

‖ΦDy‖I
‖y‖I

= max
06=y∈R(PD)

〈S−1ΦASy, S
−1ΦASy〉

〈y, y〉

= max
06=y∈R(PD)

〈ΦASy,ΓΦASy〉
〈y, y〉 = max

06=x∈R(PA)

〈ΦAx,ΓΦAx〉
〈S−1x, S−1x〉

= max
06=x∈R(PA)

〈ΦAx,ΓΦAx〉
〈x,Γx〉 = max

06=x∈R(PA)

‖ΦAx‖Γ
‖x‖Γ

.

Together with (5.5) and (5.6) we observe that
∥

∥Φt
Ax
∥

∥

Γ
≤ e−αt ‖x‖Γ for all x ∈ R(PA), t ∈ T

+
0 ,

∥

∥Φt
Ax
∥

∥

Γ
≤ eβt ‖x‖Γ for all x ∈ N (PA), t ∈ T

−
0

and consequently (5.3) is M-hyperbolic on every finite time interval with re-
spect to the Γ-norm.

Does a matrix Γ exist for nondiagonalizable matrices? And if it does,
what does this matrix Γ look like? In this thesis we will not answer these
questions. However, we will study a Jordan-block matrix in Theorem 5.1.4 with
eigenvalue λ < 0, which generates a hyperbolic system on R with the identity
projector and exponential rate −λ. We will prove that no positive definite
symmetric matrix Γ ∈ R

k×k exists such that the system generated by the
Jordan-block matrix is M-hyperbolic w.r.t. the Γ-norm on a compact interval
with the unique infinite time projector (identity projector) and exponential
rate −λ. The question if there exists a matrix Γ such that the system is
M-hyperbolic if we reduce the exponential rate −λ still remains open.

In the proof of Theorem 5.1.1 we see which matrix Γ we can chose to get
M-hyperbolicity w.r.t. ‖ · ‖Γ.
Remark 5.1.2. A possible positive definite symmetric matrix Γ such that equa-
tion (5.3) is M-hyperbolic (w.r.t. ‖·‖Γ) is Γ = (S−1)TS−1, where S ∈ Gl(Rk×k)
such that S−1AS is a diagonal matrix.

Additionally, in the prove of Theorem 5.1.1 a relation between the (un)stable
subspace of an autonomous ift-system and the (un)stable cone of the same au-
tonomous ft-system is shown.

Corollary 5.1.3. Let A ∈ Rk×k be diagonalizable and system (5.3) be hyper-
bolic on T ∈ {R,Z}. Then by Lemma 4.2.4 the stable (unstable) subspace of
the ift-system (5.3), which do not depend on the the chosen norm, lies inside
the stable (unstable) cone w.r.t. ‖·‖Γ of any ft-system, which is defined by A.

Next we analyze a Jordan-block matrix with eigenvalue λ < 0. In Theorem
3.3.2 we proved that a Lyapunov norm exists such that the given system is
M-hyperbolic on every compact interval with the identity projector and a rate
α ≤ −λ. We will see that this Lyapunov norm is not generated by a positive
definite symmetric matrix Γ, at least not for the exponential rate −λ.
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5.1 Γ-Norm and M-Hyperbolicity w.r.t. the Γ-Norm

Theorem 5.1.4. Let I = [t−, t+], t− 6= t+ and A ∈ Rk×k be a Jordan-block
w.r.t. the eigenvalue λ < 0. Then for every positive definite symmetric Γ ∈
R

k×k the system

ẋ = Ax, x ∈ Rk (5.7)

is not M-hyperbolic (w.r.t. ‖·‖Γ) with the identity projector and exponential
rate −λ.

Proof. The solution operator of (5.7) satisfies for s, t+ s ∈ I

Φ(t + s, s) := eAt = eλt

















1 t 0 · · · 0

0 1
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 1 t
0 · · · 0 0 1

















=: eλtÃ(t).

Assume that equation (5.7) is M-hyperbolic (w.r.t. ‖·‖Γ) on I = [t−, t+] with
the identity projector P , exponential rate α = −λ and Γ positive definite and
symmetric. Then we have

eλt
∥

∥

∥
Ã(t)x

∥

∥

∥

Γ
= ‖Φ(t+ s, s)x‖Γ ≤ e−αt ‖x‖Γ = eλt ‖x‖Γ (5.8)

for all x ∈ R

k = R(P ) and t + s, s ∈ I with t ≥ 0. Let x ∈ R

k and

x̃ :=
(

x2 · · · xk 0
)T

then the equation

Ãx = x+ tx̃

holds. (5.8) and the symmetry of Γ leads for t = t+ − t− > 0 to

0 ≥
∥

∥

∥
Ãx
∥

∥

∥

Γ
− e−(λ−λ)t ‖x‖Γ

= 〈Ã(t)x,ΓÃ(t)x〉 − 〈x,Γx〉
= 〈x+ tx̃,Γ(x+ tx̃)〉 − 〈x,Γx〉
= 〈x,Γx〉+ 2t〈x,Γx̃〉+ t2〈x̃,Γx̃〉 − 〈x,Γx〉
= 2t〈x,Γx̃〉+ t2〈x̃,Γx̃〉.

Take x =
(

x1 1 0 · · · 0
)T

with x1 > 0 then

0 ≥ 2t(Γ11x1 + Γ21) + t2Γ11

= Γ11(2tx1 + t2) + Γ212t

= 2t

(

Γ11x1 +
t

2
Γ11 + Γ21

)

. (5.9)
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5 Explicit Representations of (Un)Stable Subspaces and Cones

By rearranging (5.9) we get

−Γ21 ≥ Γ11x1 +
t

2
Γ11. (5.10)

Since Γ is positive definite the estimate 0 < eTi Γei = Γii is satisfied for all i ∈
{1, . . . , k}, where ei denotes the unit vector. This means that the right hand
side of (5.10) is unbounded for all x1 > 0. Therefore no Γ21 exists such that
(5.10) is satisfied for all x1 > 0. Thus no positive definite symmetric matrix Γ
exists such that system (5.7) is M-hyperbolic with the identity projector and
exponential rate −λ.

D-Hyperbolicity

We introduce the Γ-strain acceleration tensor MΓ(·) in addition to the Γ-strain
tensor SΓ(·) and zero Γ-strain set ZΓ(·), which are defined in Definition 3.2.8.
These tensors are the main ingredients of the D-hyperbolicity definition. For
D-hyperbolic systems we can state an explicit representation of the stable and
unstable cone, which we do in Section 5.3. Therefore, we analyze these tensors
and study their definiteness. The Γ-strain acceleration tensor is called the
Cotter-Rivlin rate in continuum mechanics, see [35, Subsection 4.3.13.]. All of
the following definitions and statements for continuous time systems originate
from [45], [15], [43] and for the two dimensional continuous time case we refer
to [61]. In addition, we introduce similar concepts for discrete time systems.

For system (2.7) we impose the following assumption.

(A0) Let the matrix function A of (2.7) satisfy A ∈ C1(I,Rk×k).

We define the Γ-strain acceleration tensor MΓ(·) and show why the tensor
has the given form. Additionally, we present a relation between the definiteness
of this tensor and the dynamical characteristics of solutions.

Definition 5.2.1. Let T ∈ {R,Z}, I ⊂ T be a compact interval and let Γ =

ΓT > 0. For T = R assume (A0). For every t ∈
{

I, for T = R,

I2, for T = Z
the

matrix

MΓ(t) :=

{

ṠΓ(t) + SΓ(t)A(t) + A(t)TSΓ(t), for T = R,

A(t)TSΓ(t + 1)A(t)− SΓ(t), for T = Z

is called the Γ-strain acceleration tensor of (2.7)/ (2.8). Denote by MZΓ
(t)

the restriction of ξ 7→ 〈ξ,MΓ(t)ξ〉 to ZΓ(t). We call MZΓ
(t) negative/positive

definite if it attains only negative/positive values for all ξ ∈ ZΓ(t) \ {0} and
indefinite if it attains both negative and positive values on ZΓ(t). For Γ = I
we write M(·) instead of MI(·).
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The dynamical properties of solutions ξ(·) of the continuous system (2.7)
intersecting the set ZΓ(t0), t0 ∈ I depend on the sign of the second derivative of
t 7→ ‖ξ(t)‖2 at t = t0. The sign characterizes whether the solution ξ(·) crosses
transversally from a region with increasing norm to a region with decreasing
norm or vice versa, for more details see Lemma 5.2.4. With equation (3.16)
and assumption (A0) we get the identity

1

2

d2

dt2
‖ξ(t)‖2Γ =

d

dt
〈ξ(t), SΓ(t)ξ(t)〉

= 〈ξ̇(t), SΓ(t)ξ(t)〉+ 〈ξ(t), ṠΓ(t)ξ(t) + SΓ(t)ξ̇(t)〉
= 〈ξ(t), (ṠΓ(t) + SΓ(t)A(t) + A(t)TSΓ(t))ξ(t)〉
= 〈ξ(t),MΓ(t)ξ(t)〉.

(5.11)

Hence, the dynamical properties of solutions of (2.7) intersecting the set ZΓ(t0),
t0 ∈ I depend on the definiteness of the matrix MZΓ

(t0). Continuous solutions
which pass from a region with increasing (decreasing) norm to a region with
decreasing (increasing) norm must intersect the set ZΓ(·). Thus, the definite-
ness of MZΓ

(t0), t0 ∈ I determines if a solution can leave or enter a region.
More details are presented in Lemma 5.2.2.

Solutions ξ of the discrete system (2.8) can jump from a region with in-
creasing norm to a region with decreasing norm or vice versa without an inter-
mediate stop at ZΓ(·). The positive definiteness of MZΓ

(n) for all n ∈ I does
not prevent solutions from jumping from a region with increasing norm to a
region with decreasing norm. It ensures that a solution has increasing norm
after leaving the set ZΓ(n0), n0 ∈ I. This can be seen by the following relation
of SΓ and MΓ. With equation (3.17) we get for all n ∈ I2

((

‖ξ(n+ 2)‖2Γ − ‖ξ(n+ 1)‖2Γ
)

−
(

‖ξ(n+ 1)‖2Γ − ‖ξ(n)‖2Γ
))

= 〈ξ(n+ 1), SΓ(n + 1)ξ(n+ 1)〉 − 〈ξ(n), SΓ(n)ξ(n)〉
= 〈A(n)ξ(n), SΓ(n+ 1)A(n)ξ(n)〉 − 〈ξ(n), SΓ(n)ξ(n)〉
= 〈ξ(n), [A(n)TSΓ(n+ 1)A(n)− SΓ(n)]ξ(n)〉
= 〈ξ(n),MΓ(n)ξ(n)〉.

(5.12)

For a more detailed statement about the dynamical properties of solutions of
(2.8) we need to analyze the definiteness of MΓ(n) for all n ∈ I. In Lemma
5.2.3 and 5.2.5 we present some of them. We start with some properties of the
tensor for continuous systems.

Lemma 5.2.2. Assume (A0). Let I ⊂ R be a compact interval, Γ = ΓT > 0
and let MZΓ

(t) of (2.7) be positive definite for all t ∈ I. Fix ξ ∈ Rk \ {0} and
t0 ∈ I with 〈ξ, SΓ(t0)ξ〉 > 0 then we have

〈Φ(t, t0)ξ, SΓ(t)Φ(t, t0)ξ〉 > 0 for all t ∈ I, t > t0.
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Let ξ ∈ Rk and t0 ∈ I with 〈ξ, SΓ(t0)ξ〉 < 0 then we have

〈Φ(t, t0)ξ, SΓ(t)Φ(t, t0)ξ〉 < 0 for all t ∈ I, t < t0.

Proof. Let ξ ∈ Rk and t0 ∈ I with 〈ξ, SΓ(t0)ξ〉 > 0. Assume that there exists
a t̄ ∈ I, t̄ > t0 such that

〈Φ(t, t0)ξ, SΓ(t)Φ(t, t0)ξ〉
{

= 0, for t = t̄,

> 0, for t̄ > t ≥ t0.
(5.13)

Then ξ(t̄) := Φ(t̄, t0)ξ ∈ ZΓ(t̄) and by the positive definiteness of MZΓ
(t̄) and

(5.11) we have

d

dt
〈ξ(t̄), SΓ(t̄)ξ(t̄)〉 = 〈ξ(t̄),MΓ(t̄)ξ(t̄)〉 > 0.

This implies with 〈Φ(t̄, t0)ξ, SΓ(t̄)Φ(t̄, t0)ξ〉 = 0 that a t1 ∈ I, t0 ≤ t1 < t̄ exists
with

〈Φ(t1, t0)ξ, SΓ(t1)Φ(t1, t0)ξ〉 < 0

which is a contradiction to (5.13). Analogously, we get the second claim (“<“).

For discrete systems we introduce the corresponding statement.

Lemma 5.2.3. Let I ⊂ Z be a compact interval, Γ = ΓT > 0 and let MΓ(n)
of (2.8) be positive definite for all n ∈ I2. Fix ξ ∈ Rk \ {0} and n0 ∈ I2 with
〈ξ, SΓ(n0)ξ〉 > 0 then we have for all n ∈ I1, n ≥ n0 with Φ(n, n0)ξ 6= 0

〈Φ(n, n0)ξ, SΓ(n)Φ(n, n0)ξ〉 > 0.

Let ξ ∈ Rk \ {0} and n0 ∈ I1 with 〈ξ, SΓ(n0)ξ〉 < 0 and let n̄ ∈ I, n̄ < n0 and
ξ̄ ∈ Rk with Φ(n0, n̄)ξ̄ = ξ then we have

〈Φ(n, n̄)ξ̄, SΓ(n)Φ(n, n̄)ξ̄〉 < 0 for all n ∈ [n̄, n0 − 1]
Z

.

Proof. Fix ξ ∈ Rk \ {0}. Define ξ(n) := Φ(n, n0)ξ for all n ∈ I, n ≥ n0. Then
by the positive definiteness of MΓ(n1) for all n1 ∈ I2 and equation (5.12) we
have for all n ∈ I2 with ξ(n+ 1) 6= 0

0 < 〈ξ(n),MΓ(n)ξ(n)〉
= 〈ξ(n+ 1), SΓ(n + 1)ξ(n+ 1)〉 − 〈ξ(n), SΓ(n)ξ(n)〉.

(5.14)

With 〈ξ, SΓ(n0)ξ〉 > 0 we get inductively for all n ∈ I2, n > n0 with ξ(n+1) 6=
0 6= ξ(n)

〈ξ(n+ 1), SΓ(n + 1)ξ(n+ 1)〉 > 〈ξ(n), SΓ(n)ξ(n)〉 > 〈ξ(n0), SΓ(n0)ξ(n0)〉 > 0.

The same proof works analogously for the second claim (”<”).
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The characteristics of solutions of the continuous system (2.7), which in-
tersect the zero Γ-strain set ZΓ(·), are summarized in the next lemma.

Lemma 5.2.4. Assume (A0). Let I ⊂ R be a compact interval and Γ =
ΓT > 0. Assume ξ̄(·) is a solution of (2.7) with ξ̄(t0) ∈ ZΓ(t0) for a t0 ∈ I and
assume that the Γ-strain acceleration tensor fulfills

〈ξ̄(t0),MΓ(t0)ξ̄(t0)〉 > 0.

Then there exist t1, t2 ∈ I with t1 > t0 > t2 such that

〈ξ̄(t), SΓ(t)ξ̄(t)〉







> 0, for t1 > t > t0 (5.15)

= 0, for t = t0 (5.16)

< 0, for t0 > t > t2. (5.17)

Further, if the Γ-strain acceleration tensor MZΓ
(t) is positive definite for

all t ∈ I then equation (5.15) holds for all t ∈ I with t > t0 and equation
(5.17) for all t ∈ I with t < t0. If MZΓ

(t) is negative definite for all t ∈ I then
equation (5.17) holds for all t ∈ I with t > t0 and equation (5.15) for all t ∈ I

with t < t0.

Proof. Let ξ̄(t0) ∈ ZΓ(t0) and 〈ξ̄(t0),MΓ(t0)ξ̄(t0)〉 > 0. Then we have
〈ξ̄(t0), SΓ(t0)ξ̄(t0)〉 = 0 and with (5.11) we obtain d

dt
〈ξ̄(t0), SΓ(t0)ξ̄(t0)〉 > 0.

Thus, there exist t1, t2 ∈ I with t1 > t0 > t2 such that for all t1 > t > t0
equation (5.15) holds and for all t2 < t < t0 equation (5.17).

Let now MZΓ
(t) be positive definite for all t ∈ I. By Lemma 5.2.2 and with

the statements (5.15)-(5.17) we conclude (5.15) for all t ∈ I with t > t0 and
(5.17) for all t ∈ I with t < t0. The statement for MZΓ

negative definite follows
analogously.

For the discrete system (2.8) the characteristics of solutions which intersect
the zero Γ-stain set ZΓ(·) depend on the definiteness of MΓ.

Lemma 5.2.5. Let I = [n−, n+]Z and Γ = ΓT > 0. Assume ξ̄(n0) ∈ ZΓ(n0)
for an n0 ∈ I2. Let ΦTmin(ξ̄(n0), n0) =: n̄ and ξ̄(n̄) ∈ ΦTpre(ξ̄(n0), n0). Set
ξ̄(n) := Φ(n, n̄)ξ̄(n̄) for all n ∈ [n̄, n+]Z. Let MΓ(n) be positive definite for all
n ∈ I2 then we have

〈ξ̄(n), SΓ(n)ξ̄(n)〉



































{

> 0, if ξ̄(n) 6= 0,

= 0, if ξ̄(n) = 0,
, for n ∈ I, n+ > n > n0 (5.18)

= 0, for n = n0 (5.19)
{

< 0, if ξ̄(n) 6= 0,

= 0, if ξ̄(n) = 0
, for n ∈ I, n̄ ≤ n < n0. (5.20)

Let MΓ(n) be negative definite for all n ∈ I, n ∈ I2 then we have that (5.18)
holds for all n̄ ≤ n < n0, equation (5.19) for n = n0 and equation (5.20) for
all n ∈ I, n+ > n > n0.
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Proof. Let MΓ(n) be positive definite for all n ∈ I2. Fix n0 ∈ I2 and let
ξ̄(n0) ∈ ZΓ(n0)\{0}. Then we get equation (5.19) by the definition of the zero
Γ-strain set. The positive definiteness of MΓ(n0) and (5.19) yield

0 < 〈ξ̄(n0),MΓ(n0)ξ̄(n0)〉
= 〈ξ̄(n0 + 1), SΓ(n0 + 1)ξ̄(n0 + 1)〉 − 〈ξ̄(n0), SΓ(n0)ξ̄(n0)〉
= 〈ξ̄(n0 + 1), SΓ(n0 + 1)ξ̄(n0 + 1)〉

and the positive definiteness of MΓ(n0 − 1) implies for n0 − 1 ∈ I

0 < 〈ξ̄(n0 − 1),MΓ(n0 − 1)ξ̄(n0 − 1)〉
= 〈ξ̄(n0), SΓ(n0)ξ̄(n0)〉 − 〈ξ̄(n0 − 1), SΓ(n0 − 1)ξ̄(n0 − 1)〉
= −〈ξ̄(n0 − 1), SΓ(n0 − 1)ξ̄(n0 − 1)〉.

With Lemma 5.2.3 we obtain (5.18) and (5.20). The statement for negative
definite MΓ follows analogously.

As in [15, Definition 2.4], [43, Definition 17] and [61] the whole space can be
separated into different regions. Every region contains points of a special type.
In fact, the type of a point is determined by the definiteness of the Γ-strain
tensor SΓ(·) and of the Γ-strain acceleration tensor MΓ(·) of the linearization
at this point. The dynamical characteristics of a solution is defined by the
regions it passes. They can be grouped in different classes, i.e. if a solution
stays in a region of strictly increasing/decreasing norm (repelling/attracting),
or if it crosses just once from a region with strictly increasing norm into a region
with strictly decreasing norm (quasihyperbolic) or vise versa (hyperbolic), or
if it crosses the regions several times (elliptic). Systems are classified by the
different types of solutions, which exist for the given system. Important for
us are systems that only have repelling, attracting and hyperbolic solutions.

Therefore, SΓ(t), t ∈
{

I, for I ⊂ R,
I1, for I ⊂ Z needs to be indefinite, otherwise the

system only has attracting or repelling solutions. Additionally, it needs to be
nondegenerate (no eigenvalue is 0) to exclude a region with constant norm. As

we have seen in Lemma 5.2.2 to Lemma 5.2.5 that

{

MZΓ
(t), t ∈ I, for I ⊂ R,

MΓ(t), t ∈ I2, for I ⊂ Z
must be positive definite to get hyperbolic solutions. This type of system is
called D-hyperbolic, since it is defined by the notion of the dynamical pattern.
We summarize the latter thoughts for a continuous linear dynamical system in
a proper definition, which is also presented in [43, Definition 17] [15, Definition
2.4].

Definition 5.2.6. Assume (A0). Let I ⊂ R be a compact interval and Γ =
ΓT > 0. System (2.7) at time t ∈ I is called

• attracting if SΓ(t) is negative definite,
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• repelling if SΓ(t) is positive definite,

• quasihyperbolic if SΓ(t) is indefinite and nondegenerate and MZΓ
(t) is

negative definite,

• hyperbolic if SΓ(t) is indefinite and nondegenerate and MZΓ
(t) is posi-

tive definite,

• elliptic if SΓ(t) is indefinite and nondegenerate MZΓ
(t) is indefinite,

• degenerate in the other cases.

System (2.7) is called attracting/repelling etc. (on I) if it is attracting/repelling
etc. for all t ∈ I.

Definition 5.2.7. Assume (A0). Let I ⊂ R be a compact interval and Γ =
ΓT > 0. System (2.7) is called D-hyperbolic (dynamical hyperbolic on I w.r.t.
‖·‖Γ) if it is hyperbolic in the sense of Definition 5.2.6.

Note that if ‖·‖Γ(t) :=
√

〈·,Γ(t)·〉 is allowed to depend on time t ∈ I then the

Γ(t)-strain tensor equals SΓ(t) = 1
2

[

A(t)Γ(t) + Γ(t)AT (t) + Γ̇(t)
]

. Is means,

we find for every solution x̄(·) a family of matrices Γ(·) such that x̄(·) lies in
the attracting or repelling region of the linearized system. A discussion of a
time depending norm is beyond the scope of this thesis.

For discrete time systems the D-hyperbolic definition is slightly different.
We have one more condition. Surely, there exist adequate definitions of attract-
ing, repelling, etc. discrete ft-systems. However, we do not introduce them in
this thesis.

Definition 5.2.8. Let I ⊂ Z be a compact interval and Γ = ΓT > 0. Sys-
tem (2.8) is called D-hyperbolic (on I w.r.t. ‖·‖Γ) if SΓ(n) is indefinite and
nondegenerate for all n ∈ I1, if MΓ(n) is positive definite for all n ∈ I2 and if
SΓ(n) has for all n ∈ I1 the same number of positive eigenvalues λ > 0.

The additional condition is

SΓ(n) has for all n ∈ I1 the same number of positive eigenvalues λ > 0.
(5.21)

For continuous D-hyperbolic systems this is always true, since we require that
SΓ(t) is nondegenerate for all t ∈ I. Hence, we do not need to mention this
condition explicitly for the continuous time case. However, is it necessary
for discrete systems to have an additional condition? Yes, it is. We want
that every D-hyperbolic system is an M-hyperbolic system as well. For con-
tinuous systems this statement is proved in Theorem 5.4.2. For a reference
see [43, Corollary 22]. To obtain this relation for discrete systems the addi-
tional condition is important. We first illustrate by an example that we need
an additional condition. Then we state why it has to be (5.21).
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In the following example we construct a system for which SΓ(n) is indefinite
and nondegenerate for all n ∈ I1 and for which MΓ(n) is positive definite for
all n ∈ I2. Note that the additional condition (5.21) is not satisfied. Then we
prove that this system is not M-hyperbolic.

Example 5.2.9. Assume u(n + 1) = A(n)u(n) is a finite time system on
I = {0, 1, 2} with A(0) = diag

(

1
2
, 1
2
, 2
)

and A(1) = diag
(

1
2
, 2, 2

)

. Set Γ = I.
We see that

S(0) = A(0)TA(0)− I = diag

(

−3

4
,−3

4
, 3

)

,

S(1) = A(1)TA(1)− I = diag

(

−3

4
, 3, 3

)

are nondegenerate and indefinite and we get

M(0) = A(0)TS(1)A(0)− S(0) = diag

(

− 3

16
,
3

4
, 12

)

− diag

(

−3

4
,−3

4
, 3

)

= diag

(

9

16
,
6

4
, 9

)

,

which is positive definite. Assume that our system is M-hyperbolic. Then the
following must be true for an α, β > 0 and for a projector P (1) ∈ R3×3

∥

∥

∥

∥

diag

(

1

2
, 2, 2

)

ξ

∥

∥

∥

∥

= ‖A(1)ξ‖ ≤ e−α ‖ξ‖ for all ξ ∈ R(P (1)), (5.22)

∥

∥

∥

∥

diag

(

2, 2,
1

2

)

ξ

∥

∥

∥

∥

=
∥

∥A(0)−1ξ
∥

∥ ≤ e−β ‖ξ‖ for all ξ ∈ N (P (1)). (5.23)

Estimate (5.22) forces R(P (1)) ∈
{

L(ξ)
∣

∣ξ ∈ R3 : ξ1 = 1, ξ22 + ξ23 <
1
4

}

and es-
timate (5.23) forces N (P (1)) ∈

{

L(ξ)
∣

∣ξ ∈ R3 : ξ3 = 1, ξ21 + ξ22 <
1
4

}

.

By this choices of range and kernel no projector P (1) exists such that
R(P (1)) +N (P (1)) = R3. Hence, our system is not M-hyperbolic.

This proves that we need to add another condition to the D-hyperbolic
definition. However, why do we require that the number of positive eigenvalues
of SΓ(n) is the same for all n ∈ I1? In the next section we see that the stable and
unstable cone of an M-hyperbolic system depends on SΓ(·). More precisely, the
dimension of the (un)stable cone depends on the number of negative (positive)
eigenvalues of SΓ(·). If the number of positive eigenvalues changes for different
times the dimension of the cones changes. Then by (4.3) also the dimension
of the range of “the projectors” changes. This is not allowed for an invariant
family of projectors. Thus the number of positive eigenvalues of SΓ(n) need
to stay the same for all n ∈ I1.
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An Explicit Representation of (Un)Stable Cones

The following propositions imply explicit forms of the stable and unstable
cones for D-hyperbolic systems. This enables the calculation and illustration
of the cones of D-hyperbolic systems. We introduce the explicit representation
of IV ±

u,s and their boundaries for the continuous case in Proposition 5.3.1, which
originates from [43, Proposition 19]. Then we find an explicit representation
of the stable and unstable cones IVs,u and their boundaries. This conclusion
is stated in Corollary 5.3.2. Further we develop related results for discrete
time systems. These achievements are summarized in Proposition 5.3.4 and
Corollary 5.3.5.

Proposition 5.3.1. Let I = [t−, t+] and Γ = ΓT > 0. Assume (A0) and
assume that (2.7) is D-hyperbolic on I. Then the following statements hold:

(i) For each t0 ∈ [t−, t+)

IV +
u (t0) = {ξ ∈ Rk|〈ξ, SΓ(t0)ξ〉 > 0} ∪ {0}

is a connected double-cone and the boundary of IV +
u (t0) satisfies

∂IV +
u (t0) ⊂ {ξ ∈ Rk|〈ξ, SΓ(t0)ξ〉 = 0} = ZΓ(t0).

(ii) For each t0 ∈ (t−, t+]

IV −
s (t0) = {ξ ∈ Rk|〈ξ, SΓ(t0)ξ〉 < 0} ∪ {0}

is a connected double-cone and the boundary of IV −
s (t0) satisfies

∂IV −
s (t0) ⊂ {ξ ∈ Rk|〈ξ, SΓ(t0)ξ〉 = 0} = ZΓ(t0).

(iii) For each t0 ∈ I and any ξ ∈ ZΓ(t0) we get

Φ(t, t0)ξ ∈
{

IV +
u (t), for all t > t0

IV −
s (t), for all t < t0.

For the proof we refer to [43, Proposition 19]. The stable and unstable cone
IVs,u can be characterized with the help of Proposition 5.3.1 and the equations
(4.14), (4.18).

Corollary 5.3.2. Under the assumptions of Proposition 5.3.1 we obtain that

IVs(t0) = {ξ ∈ Rk|〈Φ(t+, t0)ξ, SΓ(t+)Φ(t+, t0)ξ〉 < 0} ∪ {0}, (5.24)
IVu(t0) = {Φ(t0, t−)ξ ∈ Rk|〈ξ, SΓ(t−)ξ〉 > 0} ∪ {0} (5.25)

are open connected double-cones for all t0 ∈ I. Their boundaries satisfy

∂IVs(t0) = Φ(t0, t+)∂
IVs(t+) ⊂ Φ(t0, t+)ZΓ(t+),

∂IVu(t0) = Φ(t0, t−)∂
IVu(t−) ⊂ Φ(t0, t−)ZΓ(t−).
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Proof. Proposition 5.3.1 and Lemma 4.2.1 imply

IVs(t0) = Φ(t0, t+)
IVs(t+) = Φ(t0, t+)

IV −
s (t+)

= {Φ(t0, t+)ξ ∈ Rk|〈ξ, SΓ(t+)ξ〉 < 0} ∪ {0}
= {ξ ∈ Rk|〈Φ(t+, t0)ξ, SΓ(t+)Φ(t+, t0)ξ〉 < 0} ∪ {0}

and

IVu(t0) =Φ(t0, t−)
IV +

u (t−)

={Φ(t0, t−)ξ ∈ Rk|〈ξ, SΓ(t−)ξ〉 > 0} ∪ {0}.

By Proposition 5.3.1 the sets IV +
u (t−),

IV −
s (t+) are open connected double-

cones. Thus, the continuity of the linear function Φ(·, ·) and of 〈·, ·〉 yield
by [29, p. 109, Proposition 4] that the stable and unstable t0-cones IVs,u(t0),
t0 ∈ I, are open connected double-cones. The boundaries of IVs(t+) and IVu(t−)
satisfy

∂IVs(t+) = ∂IV −
s (t+) ⊂ {ξ ∈ Rk|〈ξ, SΓ(t+)ξ〉 = 0} = ZΓ(t+),

∂IVu(t−) = ∂IV +
u (t−) ⊂ {ξ ∈ Rk|〈ξ, SΓ(t−)ξ〉 = 0} = ZΓ(t−).

With the invariance of the cones IVs(·), IVu(·) (Lemma 4.2.1) and the continuity
of Φ(·, ·) we get by [128, Lemma 6.4] that the boundaries ∂IVs(·), ∂IVu(·) are
invariant. Hence, we obtain for every t0 ∈ I

∂IVs(t0) = Φ(t0, t+)∂
IVs(t+) ⊂ Φ(t0, t+)ZΓ(t+),

∂IVu(t0) = Φ(t0, t−)∂
IVu(t−) ⊂ Φ(t0, t−)ZΓ(t−).

In Lemma 5.7.2 we prove that even

∂IVs(t0) = Φ(t0, t+)ZΓ(t+),

∂IVu(t0) = Φ(t0, t−)ZΓ(t−)

hold for all t0 ∈ I.
We develop similar statements for the stable and unstable cones of discrete

systems. The proof of the following proposition for invertible discrete systems
is similar to the one of Proposition 5.3.1. The proof of the statements about
the cones of a noninvertible system is more involved and requires a few more
steps. Therefore, we first show that for noninvertible D-hyperbolic systems the
kernel of the solution operator is a subset of the stable cone. Note, that we
already proved this statement for M-hyperbolic systems in Lemma 3.2.6 and
Lemma 4.2.4.

Lemma 5.3.3. Let I = [n−, n+]Z and Γ = ΓT > 0. Assume that (2.8) is
D-hyperbolic on I (w.r.t. ‖·‖Γ). Then for every n0 ∈ I1 we have

N (Φ(n+, n0)) ⊂ IVs(n0).
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Proof. Let n0 ∈ I1 and ξ ∈ N (Φ(n+, n0)) with n̄ := ΦTmin(ξ, n0) and n̊ :=

ΦTker(ξ, n0) then Φ(n, n0)ξ 6= 0 for all n0 ≤ n < n̊. By Lemma 5.2.5 we get for
all µ ∈ ΦTpre(ξ, n0)

〈Φ(n, n̄)µ, SΓ(n)Φ(n, n̄)µ〉
{

= 0, for n ≥ n̊,

< 0, for n̄ ≤ n < n̊.

This implies with (3.17) for all n̄ ≤ n < n̊

0 > 〈Φ(n, n̄)µ, SΓ(n)Φ(n, n̄)µ〉 = ‖Φ(n + 1, n̄)µ‖2Γ − ‖Φ(n, n̄)µ‖2Γ
which is equivalent to

‖Φ(n, n̄)µ‖Γ < ‖Φ(m, n̄)µ‖Γ

for all n,m ∈ [n̄, n̊]
Z

, n > m. This leads with (4.10) to ξ ∈ I
V̄s(n0). With

Φ(n0 + 1, n0)ξ = 0 ∈ IVs(n0 + 1) follows directly that ξ ∈ IVs(n0).

Proposition 5.3.4. Let I = [n−, n+]Z and Γ = ΓT > 0. Assume that (2.8) is
D-hyperbolic on I (w.r.t. ‖·‖Γ). Then the following statements hold:

(i) For each n0 ∈ 1I

IV −
s (n0) =

{

ξ ∈ Rk|ΦTmin(ξ, n0) = n0 ∨
(

ΦTmin(ξ, n0) =: n̄ < n0

∧ ∃µ̄ ∈ ΦTpre(ξ, n0) : 〈µ, SΓ(n0 − 1)µ〉 < 0 (5.26)

for µ := Φ(n0 − 1, n̄)µ̄
)}

∪ {0}

is a connected double-cone.

(ii) For each n0 ∈ I1

L(n0) :=
{

ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0
}

is an open connected double-cone and

I
V̄s(n0) =

{

ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0
}

∪N (Φ(n+, n0)), (5.27)
IVs(n0) =

{

ξ ∈ L(n0)|Φ(n0 + 1, n0)ξ ∈ IVs(n0 + 1)
}

∪N (Φ(n+, n0)).
(5.28)

(iii) For each n0 ∈ I1

IV +
u (n0) =

{

ξ ∈ Rk|〈ξ, SΓ(n0)ξ〉 > 0
}

∪ {0} (5.29)

is an open connected double-cone and the boundary of IV +
u (n0) satisfies

∂IV +
u (n0) ⊂

{

ξ ∈ Rk|〈ξ, SΓ(n0)ξ〉 = 0
}

. (5.30)
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Proof. We start with the proof of (i) and first show (5.26). Fix n0 ∈ 1I. By
definition of IV −

s (n0) we have 0 ∈ IV −
s (n0). Let ξ ∈ IV −

s (n0) \ {0} with

ΦTmin(ξ, n0) =: n̄ < n0 then there exist an α > 0 and a µ̄ ∈ R

k with
Φ(n0, n̄)µ̄ = ξ such that ‖Φ(n, n̄)µ̄‖Γ eαn is decreasing for n ∈ [n̄, n0]. This
means that

‖ξ‖2Γ e2α(n0) − ‖µ‖2Γ e2α(n0−1) ≤ 0

is satisfied for µ := Φ(n0 − 1, n̄)µ̄. Dividing by e2α(n0−1) we get with equation
(3.17)

0 ≥ e2α ‖ξ‖2Γ − ‖µ‖2Γ > ‖ξ‖2Γ − ‖µ‖2Γ = 〈µ, SΓ(n0 − 1)µ〉.

Conversely, let ξ ∈ R

k. If ΦTmin(ξ, n0) = n0 then we directly see that
ξ ∈ IV −

s (n0). Suppose ΦTmin(ξ, n0) =: n̄ < n0. Let µ̄ ∈ ΦTpre(ξ, n0) such that
the estimate 〈µ, SΓ(n0 − 1)µ〉 < 0 is true for µ = Φ(n0 − 1, n̄)µ̄. Then Lemma
5.2.3 leads for all n̂ ∈ [n̄, n0 − 1]

Z

and µ̂ ∈ Rk with Φ(n0 − 1, n̂)µ̂ = µ to

〈Φ(n, n̂)µ̂, SΓ(n)Φ(n, n̂)µ̂〉 < 0 for all n ∈ [n̂, n0 − 1]
Z

. (5.31)

Defining

a := aΓ(n̄) := max
n∈[n̄,n0−1]

Z

{

〈Φ(n, n̄)µ̄, SΓ(n)Φ(n, n̄)µ̄〉
‖Φ(n + 1, n̄)µ̄‖2Γ

}

implies for all n ∈ [n̄, n0 − 1]
Z

a− 〈Φ(n, n̄)µ̄, SΓ(n)Φ(n, n̄)µ̄〉
‖Φ(n + 1, n̄)µ̄‖2Γ

≥ 0 (5.32)

and we obtain by (5.31) that a < 0 . Further define

α := αΓ(n̄) :=
1

2
ln (1− aΓ(n̄)) > 0

then

−a = e2α − 1. (5.33)

For all n ∈ [n̄, n0 − 1]
Z

we get with (3.17), with (5.33) and with (5.32)

‖Φ(n+ 1, n̄)µ̄‖2Γ e2α(n+1) − ‖Φ(n, n̄)µ̄‖2Γ e2αn

=e2αn
((

e2α − 1
)

‖Φ(n+ 1, n̄)µ̄‖2Γ + ‖Φ(n+ 1, n̄)µ̄‖2Γ − ‖Φ(n, n̄)µ̄‖2Γ
)

=e2αn
((

e2α − 1
)

‖Φ(n+ 1, n̄)µ̄‖2Γ + 〈Φ(n, n̄)µ̄, SΓ(n)Φ(n, n̄)µ̄〉
)

=e2αn ‖Φ(n + 1, n̄)µ̄‖2Γ

(

−a + 〈Φ(n, n̄)µ̄, SΓ(n)Φ(n, n̄)µ̄〉
‖Φ(n+ 1, n)µ̄‖2Γ

)

≤ 0.
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This means ‖Φ(n, n̄)µ̄‖Γ eαn is decreasing for n ∈ [n̄, n0]Z. Hence, ξ ∈ IV −
s (n0)

and (5.26) is shown.
Before we prove that the cone is a connected double-cone we show the

statements (5.27) and (5.29).

For the proof of statement (5.27) let ξ ∈ I
V̄s(n0)\N (Φ(n+, n0)) and define

n̄ := ΦTmin(ξ, n0). Then there exists (see equation (4.10)) a µ ∈ Rk such that
Φ(n0, n̄)µ = ξ and

‖Φ(n, n̄)µ‖Γ < ‖Φ(m, n̄)µ‖Γ for all n,m ∈ [n̄, n+]Z, n > m.

With equation (3.17)

0 > ‖Φ(n + 1, n̄)µ‖2Γ − ‖Φ(n, n̄)µ‖2Γ = 〈Φ(n, n̄)µ, SΓ(n)Φ(n, n̄)µ〉

follows for all n ∈ [n̄, n+ − 1]
Z

. For n = n+ − 1 we obtain

0 > 〈Φ(n+ − 1, n̄)µ, SΓ(n+ − 1)Φ(n+ − 1, n̄µ〉
= 〈Φ(n+ − 1, n0)Φ(n0, n̄)µ, SΓ(n+ − 1)Φ(n+ − 1, n0)Φ(n0, n̄)µ〉
= 〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉.

Conversely, let ξ ∈ Rk \ N (Φ(n+, n0)) with

〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0

and define n̄ = ΦTmin(ξ, n0). Then Lemma 5.2.3 and equation (3.17) yield

0 > 〈Φ(n, n̄)µ, SΓ(n)Φ(n, n̄)µ〉 = ‖Φ(n + 1, n̄)µ‖2Γ − ‖Φ(n, n̄)µ‖2Γ
for all µ ∈ Rk with Φ(n0, n̄)µ = ξ and all n ∈ [n̄, n+ − 1]

Z

. This means that

0 > ‖Φ(n, n̄)µ‖Γ − ‖Φ(m, n̄)µ‖Γ for all n,m ∈ [n̄, n+]Z, n > m

is satisfied and it implies ξ ∈ I
V̄s(n0). By Lemma 5.3.3 we have

N (Φ(n+, n0)) ⊂ IVs(n0) ⊂ I
V̄s(n0). (5.34)

Thus, equation (5.27) is shown. Equation (5.28) directly follows from (5.27)
and (5.34).

For the proof of statement (5.29) fix n0 ∈ I1 and let ξ ∈ IV +
u (n0) \ {0}.

Define ξ(n) := Φ(n, n0)ξ for all n ∈ [n0, n+]Z. Then there exists a β > 0 such
that ‖ξ(n)‖Γ e−βn is increasing for n ∈ [n0, n+]Z, hence

‖ξ(n+ 1)‖2Γ e−2β(n+1) − ‖ξ(n)‖2Γ e−2βn ≥ 0

is satisfied for all n ∈ [n0, n+ − 1]
Z

. Dividing by e−2βn implies with (3.17)

0 ≤ ‖ξ(n+ 1)‖2Γ e−2β − ‖ξ(n)‖2Γ < ‖ξ(n+ 1)‖2Γ − ‖ξ(n)‖2Γ = 〈ξ(n), SΓ(n)ξ(n)〉
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for all n ∈ [n0, n+ − 1]
Z

.
Conversely, let ξ ∈ Rk with 〈ξ, SΓ(n0)ξ〉 > 0. Define ξ(n) := Φ(n, n0)ξ for

all n ∈ [n0, n+]Z. By Lemma 5.2.3 we obtain

〈ξ(n), SΓ(n)ξ(n)〉 > 0 for all n ∈ I1, n ≥ n0. (5.35)

Defining

bΓ := min
n∈[n0,n+−1]

Z

{

〈ξ(n), SΓ(n)ξ(n)〉
‖ξ(n)‖2Γ

}

.

we see by (5.35) that bΓ > 0. It follows

−bΓ +
〈ξ(n), SΓ(n)ξ(n)〉

‖ξ(n)‖2Γ
≥ 0 (5.36)

for all n ∈ [n0, n+ − 1]
Z

. Further define β := βΓ := 1
2
ln(1 + bΓ) > 0 then

−bΓ = 1− e2β . (5.37)

For all n ∈ [n0, n+ − 1]
Z

we get with (3.17), with (5.36) and with (5.37)

‖ξ(n+ 1)‖2Γ e−2β(n+1) − ‖ξ(n)‖2Γ e−2βn

=e−2β(n+1)
(

(1− e2β) ‖ξ(n)‖2Γ + ‖ξ(n+ 1)‖2Γ − ‖ξ(n)‖2Γ
)

=e−2β(n+1)
(

(1− e2β) ‖ξ(n)‖2Γ + 〈ξ(n), SΓ(n)ξ(n)〉
)

=e−2β(n+1) ‖ξ(n)‖2Γ

(

−bΓ +
〈ξ(n), SΓ(n)ξ(n)〉

‖ξ(n)‖2Γ

)

≥ 0.

This means that ‖ξ(n)‖Γ e−βn is increasing for n ∈ [n0, n+]Z, hence ξ ∈
IV +

u (n0). Thus (5.29) follows.
Next we finish the proof of statement (i) by proving that IV −

s (n0) is a
connected double-cone for all n0 ∈ 1I.

Fix n0 ∈ 1I. If the set IV −
s (n0) \ {0} is connected then the half-cones

of IVs(n0) are connected, i.e. IV −
s (n0) is a connected double-cone. Assume

that IV −
s (n0) \ {0} is not connected. We need to show that the half-cones of

IV −
s (n0) are connected. Denote by C one half-cone of IV −

s (n0). Then every
x ∈ IV −

s (n0) = C ∪ (−C) satisfies one of the cases

{

x ∈ C, case (a),

−x ∈ C, case (b).

For every x ∈ C \ {0} and y ∈ (−C) \ {0} we have

xy 6⊂ IV −
s (n0), (5.38)
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where xy denotes the line between x and y, since IV −
s (n0)\{0} is not connected.

Let x ∈ C \ {0} and y ∈ IV −
s (n0) \ {0}. To prove that C is connected we show

that one of the two cases is true
{

xy ⊂ IV −
s (n0) \ {0}, case (1),

x(−y) ⊂ IV −
s (n0) \ {0}, case (2).

(5.39)

This is sufficient, since the two cases above lead by (5.38) to

{

xy ⊂ C, in case (1),

x(−y) ⊂ C, in case (2).
(5.40)

The cases (5.40) state that for every two points x, y ∈ C there exists a path
between these two points which lies in the cone C, i.e. C is connected.

The cases in (5.39) are true, if

{

tx+ (1− t)y ∈ IV −
s (n0) \ {0}, for case (1),

tx− (1− t)y ∈ IV −
s (n0) \ {0}, for case (2).

(5.41)

is satisfied for all t ∈ [0, 1].
In the following we show (5.41) first for ΦTmin(x, n0) = n0 and then for

ΦTmin(x, n0) < n0. Fix t ∈ (0, 1). For

ΦTmin(x, n0) = n0 (5.42)

suppose both cases in (5.41) are not true then there exist µ1,2 ∈ Rk with

tx+ (1− t)y = Φ(n0, n0 − 1)µ1,

tx− (1− t)y = Φ(n0, n0 − 1)µ2,

i.e. ΦTmin(tx± (1− t)y, n0) < n0. We get

tx =
1

2
(tx+ (1− t)y + tx− (1− t)y) = Φ(n0, n0 − 1)

1

2
(µ1 + µ2),

which is a contradiction to (5.42). Thus, one of the cases in (5.41) is true.
Assume

ΦTmin(x, n0) < n0.

Then there exists µ1 ∈ Rk with

Φ(n0, n0 − 1)µ1 = x such that 〈µ1, SΓ(n0 − 1)µ1〉 < 0. (5.43)

If ΦTmin(tx + (1 − t)y, n0) = n0 then the first case of (5.41) is true. So
suppose there exists a µ ∈ Rk with

tx+ (1− t)y = Φ(n0, n0 − 1)µ,
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i.e. ΦTmin(tx + (1 − t)y, n0) < n0. By (5.43) we obtain (1 − t)y = Φ(n0, n0 −
1)(µ− tµ1). This implies

ΦTmin(y, n0) < n0,

which induces with y ∈ IV −
s (n0) \ {0} that there exists µ2 ∈ Rk with

Φ(n0, n0 − 1)y = µ2 such that 〈µ2, SΓ(n0 − 1)µ2〉 < 0. (5.44)

Define

a := t(1− t) (〈µ1, SΓ(n0 − 1)µ2〉+ 〈µ2, SΓ(n0 − 1)µ1〉) . (5.45)

We have with (5.43) and (5.44)
{

〈tµ1 + (1− t)µ2, SΓ(n0 − 1)(tµ1 + (1− t)µ2)〉, a ≤ 0,

〈tµ1 − (1− t)µ2, SΓ(n0 − 1)(tµ1 − (1− t)µ2)〉, a > 0,

=

{

t2〈µ1, SΓ(n0 − 1)µ1〉+ (1− t)2〈µ2, SΓ(n0 − 1)µ2〉+ a, a ≤ 0,

t2〈µ1, SΓ(n0 − 1)µ1〉+ (1− t)2〈µ2, SΓ(n0 − 1)µ2〉 − a, a > 0,
(5.46)

<0.

This implies one of the cases in (5.41) with tx± (1− t)y = Φ(n0, n0− 1)(tµ1±
(1 − t)µ2). Thus IV −

s (n0) is a connected double-cone for every n0 ∈ 1I. Now
we complete the proof of statements (ii) and (iii) by showing that

L(n0) :=
{

ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0
}

is an open connected double-cone for all n0 ∈ I1, since the proof that IV +
u (n0)

is an open connected double-cone for all n0 ∈ I1 follows analogously to the one
of L(n0).

Fix n̄ ∈ I1 and let x, y ∈ L(n̄). Define µ1 := Φ(n+ − 1, n̄)x and µ2 :=
Φ(n+ − 1, n̄)y and a as in (5.45) with the setting n0 := n+. Then as in (5.46)
we get

〈Φ(n+ − 1, n̄)(tx± (1− t)y), SΓ(n+ − 1)Φ(n+ − 1, n̄)(tx± (1− t)y)〉
=〈tµ1 + (1− t)µ2, SΓ(n+ − 1)(tµ1 + (1− t)µ2)〉 < 0,

for + or −, i.e. L(n̄) is a connected double-cone. That the cone is open follows
by the continuity of Φ(·, ·) and 〈·, ·〉, more precisely there exists an ε > 0 such
that for all ξ ∈ Bε(x)

〈Φ(n+ − 1, n̄)ξ, SΓ(n+ − 1)Φ(n+ − 1, n̄)ξ〉 < 0

holds, i.e. L(n0) is an open connected double-cone for all n0 ∈ I1.
The relation (5.30) holds directly, since the sets

{ξ ∈ Rk|〈ξ, SΓ(n0)ξ〉 > 0} and {ξ ∈ Rk|〈ξ, SΓ(n0)ξ〉 < 0}

are open.
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For the stable and unstable cones of a discrete D-hyperbolic system we get
an explicit representation by Lemma 4.2.1 and Proposition 5.3.4. The repre-
sentation of the boundaries can be shown as in the continuous case (Corollary
5.3.2). First we define for a subset U ⊂ Rk and n,m ∈ I with n ≥ m

Φpre(n,m)U :=
{

ξ ∈ Rk|Φ(n,m)ξ ∈ U
}

.

Corollary 5.3.5. Under the assumptions of Proposition 5.3.4 we obtain that
the almost stable n+-cone is an open connected double-cone with the represen-
tation

I
V̄s(n+) =R(Φ(n+, n+ − 1))C

∪ {ξ ∈ Rk|ΦTmin(ξ, n+) =: n̄ < n+ ∧ ∃µ̄ ∈ ΦTpre(ξ, n+) :

〈µ, SΓ(n+ − 1)µ〉 < 0 for µ := Φ(n+ − 1, n̄)µ̄} ∪ {0}.

For all n0 ∈ I1 we get that the almost stable n0-cone is a double-cone with the
representation

I
V̄s(n0) = L(n0)∪̇N (Φ(n+ − 1, n0))

and additionally that the stable n0-cone satisfies

IVs(n0) =
{

ξ ∈ L(n0)
∣

∣Φ(n0 + 1, n0)ξ ∈ IVs(n0 + 1)
}

∪̇N (Φ(n+ − 1, n0)).
(5.47)

For all n0 ∈ I the unstable cone is an open connected double-cone, which can
be represented by

IVu(n0) =
{

Φ(n0, n−)ξ ∈ Rk|〈ξ, SΓ(n−)ξ〉 > 0
}

∪ {0}. (5.48)

The boundary of the unstable cone satisfies for all n0 ∈ I

∂IVu(n0) = Φ(n0, n−)∂
IVu(n−) ⊂ Φ(n0, n−)ZΓ(n−), (5.49)

whereas the boundary of the almost stable cone satisfies for n0 ∈ I1

∂
I
V̄s(n0) ⊂ Φpre(n+ − 1, n0)ZΓ(n+ − 1).

Let (2.8) be invertible then the stable cones IVs(n) are open connected
double-cones for all n ∈ I and

IVs(n+) = Φ(n+, n+ − 1)L(n+ − 1) ∪ {0}, (5.50)

IVs(n0) =
I
V̄s(n0) = L(n0) ∪ {0}, (5.51)

∂IVs(n0) ⊂ Φ(n0, n+ − 1)ZΓ(n+ − 1) (5.52)

hold for all n0 ∈ I.
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Proof. By Proposition 5.3.4 the almost stable n+-cone is an open connected
double-cone, which can also be represented as

I
V̄s(n+) =

IV −
s (n+)

=
{

ξ ∈ Rk|ΦTmin(ξ, n0) = n0 ∨
(

ΦTmin(ξ, n0) =: n̄ < n0

∧ ∃µ̄ ∈ ΦTpre(ξ, n0) : 〈µ, SΓ(n0 − 1)µ〉 < 0

for µ := Φ(n0 − 1, n̄) = µ̄
)}

∪ {0}
={ξ ∈ Rk|ΦTmin(ξ, n+) = n+}
∪ {ξ ∈ Rk|ΦTmin(ξ, n+) =: n̄ < n+ ∧ ∃µ̄ ∈ ΦTpre(ξ, n+) :

〈µ, SΓ(n+ − 1)µ〉 < 0 for µ := Φ(n+ − 1, n̄)µ̄} ∪ {0},
=R(Φ(n+, n+ − 1))C

∪ {ξ ∈ Rk|ΦTmin(ξ, n+) =: n̄ < n+ ∧ ∃µ̄ ∈ ΦTpre(ξ, n+) :

〈µ, SΓ(n+ − 1)µ〉 < 0 for µ := Φ(n+ − 1, n̄)µ̄} ∪ {0}.

For all n0 ∈ I1 we see by Proposition 5.3.4 and Lemma 5.2.5 that the almost
n0-stable cone is a double-cone with the representation

I
V̄s(n0) =

{

ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0
}

∪N (Φ(n+, n0))

=
{

ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0
}

∪̇N (Φ(n+ − 1, n0))

=L(n0)∪̇N (Φ(n+ − 1, n0))

Indeed, for n0 ∈ I1 and ξ ∈ N (Φ(n+, n0)) we have

〈Φ(n+, n+ − 1)Φ(n+ − 1, n0)ξ, SΓ(n+)Φ(n+, n+ − 1)Φ(n+ − 1, n0)ξ〉 = 0

and Lemma 5.2.5 yields

〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0

if Φ(n+ − 1, n0)ξ 6= 0, i.e. ξ /∈ N (Φ(n+ − 1, n0)). Recursively, we obtain the
representation (5.47) of the stable n0-cone for all n0 ∈ I1.

For all n0 ∈ I the unstable cone is an open connected double-cone and
(5.48) holds, since IVu(·) is invariant and IV −

u an open connected double-cone
by Proposition 5.3.4. The boundary of IVu(·) fulfills (5.49) by the latter argu-
ments. For the boundary of the almost stable cone we have for n0 ∈ I1

∂
I
V̄s(n0) ⊂{ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 = 0}

={ξ ∈ Rk|Φ(n+ − 1, n0)ξ ∈ ZΓ(n+ − 1)}
=Φpre(n+ − 1, n0)ZΓ(n+ − 1).
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Let (2.8) be invertible then we obtain

IVs(n+) =
{

ξ ∈ Rk
∣

∣〈µ, SΓ(n+ − 1)µ〉 < 0 for µ := Φ(n+ − 1, n+)ξ
}

∪ {0}
= Φ(n+, n+ − 1)L(n+ − 1) ∪ {0}

and for all n0 ∈ I1 we have

I
V̄s(n0) = L(n0) ∪ {0}.

Recursively, this yields

IVs(n0) =
I
V̄s(n0) = L(n0) ∪ {0}

for all n0 ∈ I1 and thus the boundary of the stable cone satisfies (5.52). By
Proposition 5.3.4 the set L(n+ − 1) is a open connected double-cone. The
continuity of Φ(·, ·) implies by (5.50) and (5.51) that the stable cones IVs(n)
are open connected double-cones for all n ∈ I.

In contrast to invertible systems the stable cone of a noninvertible system
is usually not an open cone. Indeed, we proved for all n0 ∈ I1 that IVs(n0) is
the disjunct union of a subset of an open connected double-cone and a closed
double-cone, cf. (5.47).

The explicit form of
I
V̄s(n+) turns out to be quite complicated. Roughly

speaking we start with points at the end time n+ then find special points to
a previous time and finally go back to the time n+. Is this necessary? What
happens if we start at the “first” time and then just go forward in time to n+.
We introduce the sets

A :=
{

ξ ∈ Rk
∣

∣

ΦTmin(ξ, n+) = n̄ < n+ ∧ ∃µ̄ ∈ Rk with µ̄ ∈ ΦTpre(ξ, n+) :

〈µ, SΓ(n+ − 1)µ〉 < 0 for µ = Φ(n+ − 1, n̄)µ̄
}

=IVs(n+) \ {ξ ∈ Rk
∣

∣

ΦTmin(ξ, n+) = n+}
B :=

⋃

n∈I1

{

Φ(n+, n)ξ ∈ Rk
∣

∣

ΦTmin(ξ, n) = n,

〈µ, SΓ(n+ − 1)µ〉 < 0 for µ = Φ(n+ − 1, n)ξ
}

.

In Figure 5.1 we illustrate for an example that the sets A and B may be
different for noninvertible systems. To find all points in A we start with all
point at the end time n+, marked in green on the left panel. Then we take all
preimages to the “minimal” time each, i.e. to time ΦTmin(·, n+). These points
are marked in the left half of Figure 5.1 by a red circle. Then we map the
points with Φ to time n+ − 1, marked by a red square. Every point µ at time
n+ − 1, which satisfies 〈µ, SΓ(n+ − 1)µ〉 < 0 is plotted in blue. Thus, every
green point, which is connected to a blue point with a red square lies in A.
Hence, the two green points encircled in black lie in A. The right panel of
Figure 5.1 shows how we find all points in the set B. Therefore, we start by
marking all vectors ξ, which satisfy ΦTmin(ξ, n) = n for an n ∈ [n−, n+ − 1]

Z

.
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n+n+ − 1n+ − 2n+ − 3 n+n+ − 1n+ − 2n+ − 3

Figure 5.1: Example to illustrate that the sets A and B are not necessary the
same sets.

These points are encircled in green. The next step is to map these points with
Φ to time n+ − 1, marked in the right half of Figure 5.1 by a red square.
Again, all boundary points, which are connected to a blue point marked by
a red square lie in B. Hence, the tree points encircled in black lie in B. We
see that there exists one more point in the set B, highlighted in yellow , then
in set A. This point is not part of a “maximal long” solution with decreasing
norm. Thus, the point marked in yellow is not part of IVs(n+). This implies
that the representation of the stable cone can not be simplified with the help
of set B.

M-Hyperbolicity and D-Hyperbolicity

Before we study various examples in Section 5.5 to see how stable and un-
stable cones can look like we prove that every D-hyperbolic system is also
M-hyperbolic. To obtain this result implied by Theorem 5.4.2 we first show
some properties of the dimensions of stable and unstable cones. Related re-
sults for the continuous time case can be found in [43, Theorem 14, Theorem
21 and Remark 16].

Lemma 5.4.1. Let T ∈ {R,Z}, t± ∈ I, I = [t−, t+]T and Γ = ΓT > 0.
Assume that equation (2.8) is D-hyperbolic (T = Z) resp. assume (A0) and
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that equation (2.7) is D-hyperbolic (T = R). Then there exist subspaces

{0} 6= Ū ⊂ IVu(t−) and {0} 6= S̄ ⊂
{

IVs(t+), for T = R,
IVs(t+ − 1), for T = Z

such that
dim(Ū) + dim(S̄) = k

holds. Further, there exist subspaces

{0} 6= U(t) ⊂ IVu(t) and {0} 6= S(t) ⊂ IVs(t)

such that

U(t)⊕ S(t) = Rk and dim(U(t)) = dim(Ū), dim(S(t)) = dim(S̄)

hold for all t ∈ I.
If (2.7) is not invertible then there exist subspaces

S ′(t), N(t) ⊂ IVs(t) with N(t) := N (Φ(t+ − 1, t)) 6= {0}

such that

S(t) = S ′(t)⊕N(t), t ∈ I1.

Proof. By Definition 3.2.8 SΓ(t) is symmetric for all t ∈ I. This yields that all
eigenvalues lie in R, see [5, p. 692]. The D-hyperbolicity of (2.7)/(2.8) implies
that SΓ(t) is nondegenerate for all t ∈ I, i.e. no eigenvalue of SΓ(t) equals
0. Additionally, the number of positive eigenvalues (0 < d < k) is constant
in time. The definition of D-hyperbolicity yields this directly for the discrete
case, whereas the same follows for the continuous time case by the continuity
of SΓ(·) and that SΓ(t) is nondegenerate for all t ∈ I. Define

t̄+ :=

{

t+, for T = R,

t+ − 1, for T = Z.

Let µ1, . . . , µd denote the positive eigenvalues of SΓ(t̄+) and λ1, . . . , λd of
SΓ(t−). Further let µd+1, . . . , µk denote the negative eigenvalues of SΓ(t̄+)
and λd+1, . . . , λk of SΓ(t−). Due to the symmetry of SΓ(t) for all t ∈ I there
exist orthogonal matrices Q,R ∈ Rk×k such that

SΓ(t−) = QTdiag(λ1, . . . , λk)Q,

SΓ(t̄+) = RTdiag(µ1, . . . , µk)R

With Proposition 5.3.1/5.3.4 we obtain

IVu(t−) =
IV +

u (t−) =
{

ξ ∈ Rk
∣

∣〈ξ, QTdiag(λ1, . . . , λk)Qξ〉 > 0
}

∪ {0}
=
{

QT ξ
∣

∣ξ ∈ Rk : 〈ξ, diag(λ1, . . . , λk)ξ〉 > 0
}

∪ {0},
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for T = R we get

IVs(t̄+) =
IV −

s (t+) =
{

RT ξ
∣

∣ξ ∈ Rk : 〈ξ, diag(µ1, . . . , µk)ξ〉 < 0
}

∪ {0}

and for T = Z we have

IVs(t̄+) =
I
V̄s(t+ − 1) =

{

ξ ∈ Rk
∣

∣〈Rξ, diag(µ1, . . . , µk)Rξ〉 < 0
}

∪ {0}
=
{

RT ξ
∣

∣ξ ∈ Rk : 〈ξ, diag(µ1, . . . , µk)ξ〉 < 0
}

∪ {0}.

By the orthogonality of Q,R and Lemma 4.2.1 it follows that

Ū :=
{

QT (ξ1, . . . , ξd, 0, . . . , 0)
T
∣

∣ξ1, . . . , ξd ∈ R
}

⊂ IVu(t−)

is a d-dimensional subspace of IVu(t−) and that

S̄ :=
{

RT (0, . . . , 0, ξd+1, . . . , ξk)
T
∣

∣ξd+1, . . . , ξk ∈ R
}

⊂ IVs(t̄+)

is a (k − d)-dimensional subspace of IVs(t̄+). For the dimensions we obtain

dim(Ū) + dim(S̄) = d+ (k − d) = k.

For invertible systems, Lemma 4.2.1 yields

U(t) := Φ(t, t−)Ū ⊂ Φ(t, t−)
IVu(t−) =

IVu(t),

S(t) := Φ(t, t+)S̄ ⊂ Φ(t, t+)
IVs(t+) =

IVs(t)

for every t ∈ I. Hence, we see

{0} ⊂ U(t) ∩ S(t) ⊂ IVu(t) ∩ IVs(t) = {0}.

Since Φ(·, ·) is nonsingular for invertible systems the dimension of U(t) and
S(t) equals the dimension of Ū and S̄, respectively. Combining these results
we get

dim(U(t) + S(t)) = dim(U(t)) + dim(S(t))− dim(U(t) ∩ S(t))
= dim(Ū) + dim(S̄)− dim({0}) = k.

This leads to S(t)⊕ U(t) = Rk for every t ∈ I.
If (2.6) is noninvertible we find for all t ∈ I2 a subspace

S ′(t) ={ξ̄ ∈ Rk|Φ(t+ − 1, t)ξ̄ := RT (0, . . . , 0, ξd+1, . . . , ξk)
T ,

ξi ∈ R for i ∈ {d+ 1, . . . , k} and not all ξi = 0} ∪ {0}
⊂I
V̄s(t)

with

dim(S ′(t)) = k − d− dim(N (Φ(t+ − 1, t))), (5.53)

S ′(t) ∩N (Φ(t+ − 1, t)) = {0}. (5.54)
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5.4 M-Hyperbolicity and D-Hyperbolicity

We observe that

Φ(t + 1, t)S ′(t) ⊂ S ′(t+ 1) and Φ(t+ − 1, t+ − 2)S ′(t+ − 2) ⊂ S̄

for all t ∈ I3. This implies

S ′(t) ⊂ IVs(t)

for all t ∈ I1. Lemma 4.2.1 leads to

U(t) := Φ(t, t−)Ū ⊂ Φ(t, t−)
IVu(t−) =

IVu(t)

and by Lemma 5.3.3 and (4.21) we obtain

U(t) ∩ (S ′(t)⊕N(Φ(t+ − 1, t)) ⊂ IVu(t) ∩ IVs(t) = {0} (5.55)

for all t ∈ I1 and further we get

d = dim(Ū) = dim(Φ(t, t−)Ū) + dim(N (Φ(t, t−)) ∩ Ū)
= dim(U(t)) + 0 = dim(U(t)) (5.56)

Combining (5.53) and (5.56) we have for every t ∈ I1

dim(S ′(t)) + dim(N (Φ(t+ − 1, t))) + dim(U(t))

=k − d− dim(N (Φ(t+ − 1, t))) + dim(N (Φ(t+ − 1, t))) + d = k.

This together with (5.54), (5.55) implies for all t ∈ I1

U(t)⊕ S ′(t)⊕N(t) = Rk,

where N(t) = N (Φ(t+ − 1, t)). For t+ and noninvertible systems we have
IVs(t+) = R

k. Thus, there exist a subspace S ⊂ IVs(t+) such that U(t+)⊕S =
R

k holds.

Finally we show that every D-hyperbolic system is also M-hyperbolic. This
result can be found in [43, Corollary 22] for continuous ft-systems. Doan,
Palmer and Siegmund additionally proved in [43, Theorem 21] that every con-
tinuous dynamical system is M-hyperbolic if the system is either attracting,
repelling or quasihyperbolic, see Proposition 5.4.3.

Theorem 5.4.2. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Let Γ =
ΓT > 0 and assume for the continuous case (A0). Let system (2.6) gener-
ated by (2.7)/ (2.8) be D-hyperbolic w.r.t. the Γ-norm. Then system (2.6) is
M-hyperbolic w.r.t. the Γ-norm.
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5 Explicit Representations of (Un)Stable Subspaces and Cones

Proof. By Lemma 5.4.1 there exist subspaces S(t) ⊂ IVs(t) and U(t) ⊂ IVu(t)
for all t ∈ I with S(t)⊕ U(t) = Rk. Define the family of projectors by

R(P (t)) :=











Φ(t, t−)S(t−), for T = R,
{

S(t−), for t = t−,

Φ(t, t− 1)R(P (t− 1)) +W (t), for t > t−
, for T = Z

⊂ IVs(t),

where W (t) ⊂ IVs(t) such that

dim(R(P (t))) = dim(S(t))

and by

N (P (t)) := Φ(t, t−)U(t−) ⊂ Φ(t, t−)
IVu(t−) =

IVu(t)

for all t ∈ I. Then Lemma 2.2.5 yields that this family is invariant, since
dim(N (P (t))) = dim(U(t−)) = k − dim(S(t−)) = k − dim(R(P (t)) for all
t ∈ I. Thus, by Lemma 4.2.3 system (2.6) is M-hyperbolic.

Corollary 5.4.3. Let I = [t−, t+], Γ = ΓT > 0. Assume (A0). If system (2.4)
is repelling, attracting, hyperbolic or quasihyperbolic according to Definition
5.2.6 then it is also M-hyperbolic.

Proof. If SΓ(t) is positive (negative) definite, then we directly obtain by (3.16)
that there exists an α > 0 (β > 0) such that ‖Φ(t, s)ξ‖Γ ≤ eα(t−s) ‖ξ‖Γ
(‖Φ(t, s)ξ‖Γ ≤ e−β(t−s) ‖ξ‖Γ) is satisfied for all ξ ∈ R

k, t, s ∈ I with t ≥ s
(t ≤ s), since I is a compact interval. Thus, system (2.4) is M-hyperbolic.

Otherwise if (2.4) is hyperbolic then Theorem 5.4.2 implies the M-hyper-
bolicity of (2.4).

For quasihyperbolic systems analog statements as the ones in Proposition
5.3.1 exist, see [43, Proposition 20], and the M-hyperbolicity follows similar to
Theorem 5.4.2. For a proof we refer to [43, Theorem 21].

Examples of 2-Dimensional D-Hyperbolic

Systems

In this section we study different types of two-dimensional D-hyperbolic ft-
systems and plot their stable and unstable cones. The stable and unstable
subspaces of the extended ift-system on R or Z are pictured for comparison
in addition. We start with continuous autonomous time systems and move on
with a nonautonomous continuous ft-system.

For discrete systems it is possible that the solution operator is not invert-
ible. Therefore, we plot the cones of two invertible and of one noninvertible
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discrete autonomous time systems as well as of one nonautonomous noninvert-
ible ft-system. In the next section we analyze the width of the cones. Mean-
while, we have an eye on the decay of the boundary distance in the following
examples.

Example 5.5.1. Consider the system
(

ẋ
ẏ

)

=

(

1 0
0 −4

)(

x
y

)

=: A

(

x
y

)

(5.57)

for t ∈ I = [0, π] and let Γ be the identity. We see that A ∈ C1(I,R2×2)
and we obtain that the symmetric strain tensor, defined in Definition 3.2.8,

S = S(t) =

(

1 0
0 −4

)

is indefinite and nondegenerate for each t ∈ I. The

matrix M(t) = SA + AS = 2A2 =

(

2 0
0 32

)

, defined in Definition 5.2.1,

is positive definite. Hence, the system is D-hyperbolic and Proposition 5.3.1
applies. The solution operator of (5.57) is

Φ(t, s) =

(

et−s 0
0 e−4(t−s)

)

.

Solving 〈
(

x
y

)

, S

(

x
y

)

〉 = 0 we get |x| = 2|y|. This leads for every t0 ∈ I to

IVs(t0) =

{

(

et0−π 0
0 e−4(t0−π)

)(

x
y

)

∈ R2

∣

∣

∣

∣

∣

|x| < 2|y|
}

∪
{(

0
0

)}

,

IVu(t0) =

{

(

et0 0
0 e−4(t0)

)(

x
y

)

∈ R2

∣

∣

∣

∣

∣

|x| > 2|y|
}

∪
{(

0
0

)}

.

These cones are illustrated in Figure 5.2. In the left chart the green dashed
lines show parts of the boundary of the stable cone, while the red dashed lines
represent a part of the boundary of the unstable cone. The green (red) lines
display all points on the boundary of the stable (unstable) cone with norm 0.5.
Since the cones are symmetric it suffices to study one half-cone each. They
are plotted in the right diagram of Figure 5.2 (green, red). For comparison
the stable and unstable subspaces RVs (blue) and RVu (yellow) of the ift-system
(5.57) for I = R are additionally presented in the right figure.

We see that the stable subspace RVs lies inside the stable cone IVs and RVu
is a subset of IVu. This underlines the theory, since A is diagonal, cf. Corollary
5.1.3.

Further, we notice that the width of the boundary of the stable cone decreases
in backward time while the width of the boundary of the unstable cone decreases
in forward time.

This implies the questions:
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Figure 5.2: Stable (green) and unstable (red) cone of the ft-system (5.57). In
the right graph only one half of each cone is plotted. In addition, we displayed
in the right figure one half of each stable (blue) and unstable (yellow) subspace
of the ift-system (5.57) on I = R.

• How fast decreases the width of the boundaries of I
Vs and of

I
Vu?

• How does the decay of the width of the boundaries depend on
the system?

For a first answer we compare the cones of system (5.57) with the ones of
(

ẋ
ẏ

)

=

(

2 0
0 −8

)(

x
y

)

= 2A

(

x
y

)

, (5.58)

t ∈ I = [0, π]. The D-hyperbolicity of system (5.58) (w.r.t. the identity norm)
follows straight away, since the generating matrices of (5.58) and (5.57) only
differ by the factor 2. In Figure 5.3 we plotted in the left the cones of system
(5.57) and in the right the cones of system (5.58).

For an exact comparison of the decay of the width of the boundaries we create
a table, where we note the angles of the cones at different times. Therefore,
denote by τ 1s,u(t) the angle of the stable and unstable t-cone of system (5.57)
and by τ 2s,u(t) the angle of the t-cones of system (5.58). In Table 5.1 the angles
of the cones of system (5.57) and (5.58) are presented for 8 different times.

The stable t+-cone IVs(t+) as well as the unstable t−-cone IVu(t−) are the
same for both systems. However, we see in Figure 5.3 that the width of the
cones of system (5.58) decays faster than the width of the cones of system
(5.57). Table 5.1 yields that the angle of the (un)stable t-cones of system (5.58)
decays in backward (forward) time twice as fast as the angle of the (un)stable
t-cones of system (5.57). By definition of the angle the same properties hold
for the width.
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Figure 5.3: Stable (green) and unstable (red) cone of system (5.57) (left) and
of system (5.58) (right).

t− = 0 t = π
40

t = 2π
40

t = 4π
40

t = 36π
40

t = 38π
40

t = 39π
40

t+ = π
τ 1s 1.9a 2.8a 4.2a 9.2a 0.25π 0.47π 0.59π 0.70π
τ 2s 0 0 0 0 0.055π 0.25π 0.47 0.70π
τ 1u 0.30π 0.21π 0.14π 0.070π 2.3a 1.0a 7.1a 4.8a
τ 2u 0.30π 0.14π 0.070π 0.014π 0 0 0 0

Table 5.1: Angle of the stable and unstable t-cones of system (5.57) (τ 1s,u(t))
and of (5.58) (τ 2s,u(t)) rounded to mantissa size two, where a = π10−7.

The matrix functions defining systems (5.57) and (5.58) differ by the factor
2. Hence, their eigenvalues differ by the factor 2 as well. Thus, we expect that
the decay of the width of the stable and unstable cones depends on the eigen-
values of the matrix defining the autonomous system. The width of IVs(t+)
and the width of IVu(t−) just depends on the relations of the eigenvalues, since
the angles and thus the width of each of this cones is the same for both systems
(5.57) and (5.58).

Form these observations we deduce our first conjectures that turn
out to be wrong in general:

• The decay of the width of the cones depends on the eigenvalues
of the matrix defining the autonomous system.

• The width of I
Vs(t+) and the width of I

Vu(t−) just depend on
the relations of these eigenvalues.

In Section 5.6 we analyze the behavior of the width of the cones. We prove
in Lemma 5.6.5 that the angle of the cones of system (5.58) decays twice as fast
as the angle of the cones of system (5.57) in the right time direction. Further
we show that the decay is d-times faster if the defining matrix differ by the
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factor d. Before we start with the theoretical part, we have a look at a few
more examples. The next one shows that the stable and unstable subspaces of
an ift-system do not have to lie in the exact center of the cones of a shortened
ft-system.

Example 5.5.2. Consider the system

(

ẋ
ẏ

)

=

(

1 q
0 −4

)(

x
y

)

=: A

(

x
y

)

, q ∈ N0 (5.59)

for t ∈ I = [t−, t+]. Let Γ be the identity. Then the symmetric strain tensor

S = S(t) =
1

2

((

1 q
0 −4

)

+

(

1 0
q −4

))

=

(

1 q

2
q

2
−4

)

has the eigenvalues λ1 :=
−3+

√
25+q2

2
> 0 and λ2 :=

−3−
√

25+q2

2
< 0 and is in-

definite and nondegenerate for every t ∈ I and q ∈ N0. The strain acceleration
tensor is

M =M(t) = SA+ ATS =

(

2 − q

2

− q

2
32 + q2

)

.

The eigenvalues are
34+q2±

√
(34+q2)2−256−7q2

2
> 0 and the matrix M is positive

definite for all t ∈ I and q ∈ N0. This means that system (5.59) is D-hyperbolic

on I. The matrix A has

(

1
0

)

as an eigenvector to the eigenvalue 1 and

(

q
−5

)

as an eigenvector to −4. Then the solution operator is given by

Φ(t, s) =

(

1 q
0 −5

)(

et−s 0
0 e−4(t−s)

)(

1 q

5

0 −1
5

)

=

(

et−s q

5
(et−s − e−4(t−s))

0 e−4(t−s)

)

.

Next we solve 〈
(

x
y

)

, S

(

x
y

)

〉 = 0, i.e.

0 = x2 + qxy − 4y2 = x2 + qxy +
q2

4
y2 − q2

4
y2 − 4y2 =

(

x+
q

2
y
)2

− 16 + q2

4
y2.

Bringing 16+q2

4
y2 to the other side, taking the square root and solving the equa-

tion for x we get x =
−q±

√
16+q2

2
y. This leads by (5.24), (5.25) to

IVs(t0) =

{

(

et0−1 q

5
(et0−1 − e−4(t0−1))

0 e−4(t0−1)

)(

x
y

)

∈ R2

∣

∣

∣

∣

∣

c1x < y < c2x

}

∪
{(

0
0

)}

,

IVu(t0) =

{

(

et0 q

5
(et0 − e−4(t0))

0 e−4(t0)

)(

x
y

)

∈ R2

∣

∣

∣

∣

∣

c2x < y < c1x

}

∪
{(

0
0

)}

for every t0 ∈ I with c1 :=
2

−q+
√

16+q2
and c2 :=

2

−q−
√

16+q2
.
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5.5 Examples of 2-Dimensional D-Hyperbolic Systems

We have two purposes. We like to show that the stable and unstable sub-
spaces do not lie in the exact center of the stable and unstable cone, respectively.
Additionally, we are interested in the decay of the width of the boundaries.

For the first aim let I = [0, 1] and q = 1. In Figure 5.4 one half-cone of
the stable cone IVs (green) and unstable cone IVu (red) are illustrated by their
boundaries up to a size of norm 1. The stable subspace RVs of the ift-system
(5.59) for I = R is colored in blue while the unstable subspace RVu is yellow.
In the right part of Figure 5.4 the cones and subspaces are projected to the
x− y-plane. Thus, we see where the subspaces of (5.59) are located inside the
cones.

0
0.5

1

−101
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−0.5

0

0.5

1

x

y

t
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IVu

RVs

RVu
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0

0.5
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x
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IVu

RVs

RVu

Figure 5.4: One half of the stable IVs (green) and unstable IVu (red) cone of
system (5.59) with q = 1 together with one half of the stable RVs (blue) and
unstable RVu (yellow) subspace of the same system for I = R are illustrated.
The right picture is a projection to the x− y-plane of the left figure.

In contrast to the first example (5.57) (Figure 5.2) the subspaces of the ex-
pended ift-system are not located in the exact center of the cones. This can
easily be seen, since they are not orthogonal towards each other.

For analyzing the decay of the width of the cones of system (5.59) for dif-
ferent q let I = [0, π] as in example (5.57). Denote by τ qs,u(t) the angle of the
t-cones of system (5.59), where q ∈ {0, 1, 2, 3, 4, 5, 6, 10}. Note that system
(5.59) with q = 0 equals system (5.57). In Table 5.2 the angles τ qs,u(·) are each
presented for 6 different times and are rounded to mantissa size two. Denote
by λapprox an approximation of λ from

τ qs,u(t0)e
λ(t1−t0) ≥ τ qs,u(t1), t0, t1 ∈ I, t0 ≤ t1.

Therefore, we approximate ln(τ qs,u(t)) = λt + d with the MATLAB-function
polyfit for t from 0 in 200 steps up to π. In the last column the approximated
growth or decay rate λapprox is notated with mantissa size four.
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5 Explicit Representations of (Un)Stable Subspaces and Cones

t− = 0 t = π
20

t = 2π
20

t = 18π
20

t = 19π
20

t+ = π λapprox
τ 0u 0.295π 0.143π 0.0659π 2.31a 1.05a 0.481a −4.996
τ 1u 0.300π 0.143π 0.0658π 2.29aπ 1.04a 0.472a −4.999
τ 2u 0.312π 0.145π 0.0650π 2.22a 1.01a 0.457a −5.007
τ 3u 0.328π 0.145π 0.0633π 2.12a 0.965a 0.437a −5.018
τ 4u 0.345π 0.143π 0.0607π 1.99a 0.906a 0.408a −5.031
τ 5u 0.361π 0.140π 0.0575π 1.84a 0.840a 0.376a −5.043
τ 6u 0.375π 0.135π 0.0540π 1.70a 0.775a 0.352a −5.054
τ 10u 0.414π 0.111π 0.0410π 1.24a 0.563a 0.251a −5.088

τ 0s 1.92a 4.21a 9.23a 0.251π 0.471π 0.705π 4.951
τ 1s 1.90a 4.17a 9.15a 0.245π 0.461π 0.700π 4.948
τ 2s 1.85a 4.06a 8.90a 0.229π 0.436π 0.688π 4.940
τ 3s 1.76a 3.87a 8.48a 0.209π 0.402π 0.672π 4.932
τ 4s 1.66a 3.63a 7.96a 0.188π 0.366π 0.655π 4.924
τ 5s 1.54a 3.37a 7.39a 0.168π 0.332π 0.640π 4.919
τ 6s 1.42a 3.11a 6.82a 0.151π 0.301π 0.626π 4.915
τ 10s 1.03a 2.27a 4.97a 0.104π 0.210π 0.587π 4.912

Table 5.2: Angles of the stable and unstable cones τ qu of system (5.59) on
I = [0, π] for q ∈ {0, 1, 2, 3, 4, 5, 6, 10} and approximated growth and decay
rate λapprox.

We see that the angle of the unstable t−-cones increases for greater q and
that the angle of the stable t+-cone decreases. Further, we see that the approx-
imated decay rate is increasing in absolute value and that the approximated
growth rate is decreasing when q increases.

This example shows that our conjecture that the decay of the width of the
cones depends on the eigenvalues of the defining matrix (A) is generally not
correct, otherwise the approximated decay rates would have been the same
for all q. Thus, we conjecture that the decay of the width depends on the
eigenvalues of the symmetric part (S := 1

2
(A+AT )) of the matrix (A) defining

the autonomous system, since they are quite close to the eigenvalues of the
defining matrix (A), but they differ a little bit for different q. Having a look
at the first column of Table 5.2 we see that the angle of IVu(t−) varies for q ∈
{0, 1, 2, 3, 4, 5, 6, 10}. Our first idea about these angles needs to be improved
as well.

Our revised conjectures are:

• The decay of the width depends on the eigenvalues of the sym-
metric part (S := 1

2
(A + AT )) of the matrix (A) defining the

autonomous system.

• The width of I
Vu(t−) and the width of I

Vs(t+) depend on the
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5.5 Examples of 2-Dimensional D-Hyperbolic Systems

relation of the eigenvalues of the symmetric part.

In Lemma 5.6.1 we prove this conjectures. Next, we study an nonau-
tonomous ft-system. We construct a nonautonomous ft-system by rotating
the autonomous system (5.57). We expect that the decay of the width stays
the same, since a rotation leads to a similar strain tensor and thus, the eigen-
values are invariant under this transformation.

Example 5.5.3. Let D =

(

cos(t) − sin(t)
sin(t) cos(t)

)

and A =

(

1 0
0 −4

)

. Further, let

u(t) be a solution of equation (5.57) for t ∈ I = [0, π]. Then v(t) = D(t)u(t)
is a solution of the nonautonomous system

v̇(t) = Ḋ(t)u(t) +D(t)u̇(t) = [Ḋ(t) +D(t)A]u(t) = [Ḋ(t) +D(t)A]DT (t)v(t)

=

(

cos2(t)− 4 sin2(t) 5 sin(t) cos(t)− 1
5 sin(t) cos(t) + 1 sin2(t)− 4 cos2(t)

)

v(t) =: Ã(t)v(t)

(5.60)
for t ∈ I. Let t, s ∈ I then the solution operator is

Φ̃(t, s) = D(t)eAteA(−s)D(s)T

=

(

c(t)c(s)et−s + s(t)s(s)e−4(t−s)
c(t)s(s)et−s − s(t)c(s)e−4(t−s)

s(t)c(s)et−s − c(t)s(s)e−4(t−s)
s(t)s(s)et−s + c(t)c(s)e−4(t−s)

)

with c = cos and s = sin. For the strain tensor we get for every t ∈ I

S̃(t) = 1
2
[Ã(t) + ÃT (t)] = 1

2
[Ḋ(t) +D(t)A]DT (t) +D(t)[ḊT (t) + AT (t)DT (t)]]

= 1
2
[Ḋ(t)DT (t) +D(t)ḊT (t) +D(t)[A + AT ]DT (t)]

= D(t)[1
2
[A+ AT ]DT (t) = D(t)SDT (t)

=

(

cos2(t)− 4 sin2(t) 5 sin(t) cos(t)
5 sin(t) cos(t) sin2(t)− 4 cos2(t)

)

,

since for every differentiable DT = D−1 holds

Ḋ(t)DT (t) +D(t)ḊT (t) = 0. (5.61)

Thus S̃(t) and S are similar for all t ∈ I. This means the eigenvalues are the
same and we obtain that S̃(t) is indefinite and nondegenerate for all t ∈ I.
With equation (5.61) the strain acceleration tensor satisfies for every t ∈ Ĩ

M̃(t) = ˙̃S(t) + S̃(t)Ã(t) + ÃT (t)S̃(t)

= Ḋ(t)SDT (t) +D(t)SḊT (t) +D(t)SDT (t)Ḋ(t)DT (t) +D(t)SADT (t)

+D(t)ḊT (t)D(t)SDT (t) +D(t)ATSDT (t)

= Ḋ(t)SDT (t) +D(t)SḊT (t)−D(t)SḊT (t)− Ḋ(t)SDT (t)

+D(t)[SA+ ATS]DT (t)

= D(t)MDT (t).
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5 Explicit Representations of (Un)Stable Subspaces and Cones

This establishes that M̃(t) is positive definite for every t ∈ I. Thus, the rotated
system (5.60) is still D-hyperbolic w.r.t. the identity norm. The stable cone IVs
and the unstable cone IVu of system (5.60) are plotted in Figure 5.5. The right
panel shows one half-cone of each cone together with one half of each stable
RVs and unstable subspace RVu of the extended ift-system (5.60) on I = R.
The boundaries and the subspaces for all times t ∈ I = [0, π] are plotted up to
a vector-length of 0.5.
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Figure 5.5: Stable (green) and unstable (red) cone of system (5.60). In the
right panel one half-cone of each cone is plotted and together with one half of
the stable (blue) and unstable (black) subspace of (5.60) for I = R.

We observe that the cones of this system rotate around the (0, 0, t)-axis and the
subspaces are still included in the exact center. For the original and rotated
systems the angle and the position of the stable t+-cone and unstable t−-cone
are identical. As well, the decay of the angles stays the same only the position
of the t-cones (t 6= t+, t 6= t−) differs.

As conjectured the decay of the angles does not change by rotating the
system, which is a nonautonomous similarity transformation. Next, we study
discrete time systems and start with the invertible case.

Example 5.5.4. Consider the systems

(

x(n + 1)
y(n+ 1)

)

=

(

2 0
0 0.5

)(

x(n)
y(n)

)

=: A

(

x(n)
y(n)

)

, (5.62)

(

x(n + 1)
y(n+ 1)

)

=

(

4 0
0 0.25

)(

x(n)
y(n)

)

=: A2

(

x(n)
y(n)

)

(5.63)
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5.5 Examples of 2-Dimensional D-Hyperbolic Systems

for all n ∈ I = [0, 8]
Z

and let Γ be the identity. Then the symmetric strain
tensor

S = S(n) =























(

3 0

0 −3
4

)

, of system (5.62),

(

15 0

0 −15
16

)

, of system (5.63)

is indefinite and nondegenerate for all n ∈ I. The matrix

M(n) = ATSA− S =























(

9 0

0 9
16

)

, of system (5.62),

(

152 0

0
(

15
16

)2

)

, of system (5.63)

is positive definite. Thus, the given systems (5.62) and (5.63) are D-hyperbolic
and Corollary 5.3.5 applies. The solution operator is

Φ(n,m) = An−m =























(

2n−m 0

0
(

1
2

)n−m

)

, of system (5.62)

(

4n−m 0

0
(

1
4

)n−m

)

, of system (5.63).

Solving 〈
(

x
y

)

, S

(

x
y

)

〉 = 0 we get

|x| =
{

1
2
|y|, for system (5.62),

1
4
|y|, for system (5.63).
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This leads for every n0 ∈ I to

IVs(n0)

=























{

ξ ∈ R2
∣

∣〈A8−1−n0ξ, SA8−1−n0ξ〉 < 0
}

∪
{(

0

0

)}

, for n0 ∈ [0, 7]
Z

,

{

Aξ ∈ R2
∣

∣〈ξ, Sξ〉 < 0
}

∪
{(

0

0

)}

, for n0 = 8,

=
{

An0−7ξ ∈ R2
∣

∣〈ξ, Sξ〉 < 0
}

∪
{(

0
0

)}

=























{(

2n0−7 0

0 0.5n0−7

)(

x

y

)

∈ R2

∣

∣

∣

∣

∣

|x| < 1
2
|y|
}

∪
{(

0

0

)}

, for (5.62),

{(

4n0−7 0

0 0.25n0−7

)(

x

y

)

∈ R2

∣

∣

∣

∣

∣

|x| < 1
4
|y|
}

∪
{(

0

0

)}

, for (5.63),

IVu(n0)

=























{(

2n0 0

0 0.5n0

)(

x

y

)

∈ R2

∣

∣

∣

∣

∣

|x| > 1
2
|y|
}

∪
{(

0

0

)}

, for (5.62),

{(

4n0 0

0 0.25n0

)(

x

y

)

∈ R2

∣

∣

∣

∣

∣

|x| > 1
4
|y|
}

∪
{(

0

0

)}

, for (5.63).

In the Figure 5.6 these cones are illustrated. For a clearer picture we only
plotted one half-cone each. In the left part of Figure 5.6 the cones of system
(5.62) are presented and in the right part we plotted the cones of system (5.63)
for comparison. The green (red) lines show the boundaries of the (un)stable
cone at each time 0, 1, 2, . . . , 8 up to a vector length of 0.5. The dashed lines
illustrate the decrease of the angle between the boundaries. We observe that
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Figure 5.6: One of the stable IVs (green) and one of the unstable IVu (red)
half-cone of system (5.62) in the left and of system (5.63) on the right.

the decrease of the angle of the cones of system (5.63) is faster then the one
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5.5 Examples of 2-Dimensional D-Hyperbolic Systems

of the angle of the cones of system (5.62). We expect that the decrease of the
right cones is twice as fast as of the left cones. For accurate data we calculate
the angles for all times and present them with mantissa size three in Table 5.3.
There, τ 1s,u denotes the angle of the stable and unstable cone of system (5.62)
and τ 2s,u of system (5.63). Further, we denote by λapprox an approximation of
λ from

τ is,u(n0)e
λ(n1−n0) ≥ τ is,u(n1), n0, n1 ∈ I, n0 ≤ n1, i ∈ {1, 2}.

Therefore, we approximate ln(τ 1s,u(n)) = λn + d with the MATLAB-function
polyfit for n ∈ [0, 8]

Z

and ln(τ 2s (n)) = λn+ d for n ∈ [1, 8]
Z

and ln(τ 2u(n)) =
λn+ d for n ∈ [0, 7]

Z

. We see that the angles of both systems are different for

t τ 1s τ 2s τ 1u τ 2u
0 1.94 · 10−5 0 7.05 · 10−1 8.44 · 10−1

1 7.77 · 10−5 9.49 · 10−9 2.95 · 10−1 1.56 · 10−1

2 3.11 · 10−4 1.52 · 10−7 7.92 · 10−2 9.95 · 10−3

3 1.24 · 10−3 2.43 · 10−6 1.99 · 10−2 6.22 · 10−4

4 4.97 · 10−3 3.89 · 10−5 4.97 · 10−3 3.89 · 10−5

5 1.99 · 10−2 6.22 · 10−4 1.24 · 10−3 2.43 · 10−6

6 7.92 · 10−2 9.95 · 10−3 3.11 · 10−4 1.52 · 10−7

7 2.95 · 10−1 1.56 · 10−1 7.77 · 10−5 9.49 · 10−9

8 7.05 · 10−1 8.44 · 10−1 1.94 · 10−5 0
λapprox 1.34 2.68 −1.34 −2.68

Table 5.3: The angle of the stable and unstable cone of system (5.62) (τ 1s,u)
and of system (5.63) (τ 2s,u).

all times, but the decay and growth rate of system (5.63) is twice the decay and
growth rate of system (5.62).

In Lemma 5.6.1 we show, that the angles of the stable and unstable cone
depend on SΓ. For continuous systems we obtain by (3.16) that 〈x(·), SΓ(·)x(·)〉
is equivalent to the gradient of the solution x(·) ∈ Rk. Therefore, it does not
make a difference whether we take one or two infinitesimal time steps. On the
contrary 〈x(·), SΓ(·)x(·)〉 displays for discrete systems the change of the length
of x(·) in one step and obviously it does play a role if we take one or two steps.

For an illustration we show this behavior for a solution x(·) pictured in
Figure 5.7 of a dynamical system defined on I = [1, 9]. We see that ‖x(2)‖ >
‖x(1)‖, whereas ‖x(n + 2)‖ ≤ ‖x(n)‖ for all n ∈ I. This means that x(1) ∈
IV 2

s (1) and x(1) /∈ IV 1
s (1), where IV 1,2

s (1) denotes the stable cone of the “one
step/two steps moving” system. Thus IV 2

s (1) ⊂ IV 1
s (1). Generally, the angle

of the stable cone increases if the number of steps increases. This explains why
the angle of the stable cone at time n = 8 of system (5.62) is smaller than the
corresponding angle of system (5.63).
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Figure 5.7: An example for illustrating that the angle of a systems changes if
the system goes two steps instead of one step at the same time.

Finally, we turn our attention to noninvertible discrete systems.

Example 5.5.5. Consider the system
(

x(n + 1)
y(n+ 1)

)

=

(

2 0
0 0

)(

x(n)
y(n)

)

=: B

(

x(n)
y(n)

)

(5.64)

for n ∈ I = [0, 3]
Z

and let Γ be the identity. Then the symmetric strain tensor

S = S(n) =

(

3 0
0 −1

)

of system (5.64) is indefinite and nondegenerate for all

n ∈ I. The matrix M = M(n) = BTSB − S =

(

9 0
0 0

)

is positive definite.

Thus, the given system (5.62) is D-hyperbolic and Corollary 5.3.5 applies. The
solution operator is for m,n ∈ I with n ≥ m given by

Φ(n,m) = Bn−m =

(

2n−m 0
0 0

)

.

Solving 〈
(

x
y

)

, S

(

x
y

)

〉 = 0 we get
√
3|x| = |y|. Hence, we have

{ξ ∈ R2
∣

∣〈ξ, Sξ〉 < 0} =

{(

x
y

)

∈ R2

∣

∣

∣

∣

√
3|x| < |y|

}

,

{ξ ∈ R2
∣

∣〈ξ, Sξ〉 > 0} =

{(

x
y

)

∈ R2

∣

∣

∣

∣

√
3|x| > |y|

}

,

{

ξ ∈ R2
∣

∣〈Biξ, SBiξ〉 < 0
}

=

{(

x
y

)

∈ R2

∣

∣

∣

∣

√
3|2ix| < 0

}

= ∅
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5.6 Estimates for the Width of (Un)Stable Cones in 2-Dimensional Systems

for all i ∈ Z+ and

{

Φ(n+, n+ − 1)ξ ∈ Rk
∣

∣∃µ ∈ Rk,Φ(n+, n+ − 1)ξ = Φ(n+, n̄)µ,

n̄ = ΦTmin(ξ, n+ − 1) : 〈ξ, Sξ〉 < 0
}

=

{(

2x
0

)

∈ R2

∣

∣

∣

∣

∃µ ∈ ΦTpre

((

2x
0

)

, n+ − 1

)

= L
((

1
0

))

,

x ∈ R :
√
3|x| < 0

}

=∅.

The range R(Φ(n+, n+ − 1)) = R(B) =

{(

x
y

)

∈ R2

∣

∣

∣

∣

y = 0

}

yields for all

n0 ∈ I1

R(Φ(n+, n+ − 1))C =
{

ξ ∈ R2
∣

∣

ΦTmin(ξ, n+) = n+

}

=

{(

x
y

)

∈ R2

∣

∣

∣

∣

y 6= 0

}

,

N (Φ(n+, n0)) = N (Bn+−n0) = N
((

2n+−n0 0
0 0

))

=

{(

x
y

)

∈ R2

∣

∣

∣

∣

x = 0

}

.

By Corollary 5.3.5 and the above statements the cones satisfy for all n0 ∈ I2 =
[n−, n+ − 2]

Z

, n1 ∈ I

I
V̄s(n+) =

{(

x
y

)

∈ R2

∣

∣

∣

∣

y 6= 0

}

∪
{(

0
0

)}

,

IVs(n+) = R
k,

IVs(n+ − 1) =

{(

x
y

)

∈ R2

∣

∣

∣

∣

√
3|x| < |y|

}

∪
{(

x
y

)

∈ R2

∣

∣

∣

∣

x = 0

}

=

{(

x
y

)

∈ R2

∣

∣

∣

∣

√
3|x| < |y|

}

∪
{(

0
0

)}

,

IVs(n0) =

{(

x
y

)

∈ R2

∣

∣

∣

∣

x = 0

}

,

IVu(n1) =

{

Bn1−n−

(

x
y

)

∈ R2

∣

∣

∣

∣

√
3|x| > |y|

}

∪
{(

0
0

)}

.

In Figure 5.8 these cones are illustrated. The fixed point 0 is marked for each
time by a black ball.

Estimates for the Width of (Un)Stable Cones in

2-Dimensional Systems

For cones, the width and its change in time are of interest. For linear systems
the width depends on the eigenvalues of the symmetric part of the defining
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x1

x2

t

Figure 5.8: The stable (green) and unstable (red) cones of system (5.64).

matrix. The width of stable cones is decreasing in backward time in relation
to the negative eigenvalues, while the width of unstable cones is decreasing in
forward time in relation to the positive eigenvalues. In this section we con-
centrate the study on 2-dimensional systems. In Section 5.7 we present and
prove estimates of the width of the (un)stable cone in 3 or higher dimensional
systems (finite dimensional). The angle and the width of a cone is only de-
fined for connected cones. In this thesis we restrict the study of the width of
(un)stable cones to invertible systems. In Corollary 5.3.2 and Corollary 5.3.5
we proved that these cones are open connected double-cones. Note that the
results of the unstable cones in discrete invertible M-hyperbolic systems also
apply to noninvertible M-hyperbolic (regular) systems. The following lemma
characterizes the zero strain set of a linear system, which leads with Corollary
5.3.2 and Corollary 5.3.5 to the boundaries of the stable and unstable cones.
A similar statement for continuous systems can be found in [45, Proposition
29]. Additionally, this lemma yields the width of the stable and unstable cones
for invertible systems.

First make the assumptions:

(A1) Let T ∈ {R,Z}, t± ∈ T, I = [t−, t+]T and Γ = ΓT > 0. Assume
{

(A0) and that system (2.6), generated by (2.7), for T = R,

that the system (2.6), generated by (2.8), for T = Z

is D-hyperbolic on I w.r.t. ‖·‖Γ.

(A2) Let Ĩ :=

{

I, for T = R,

I1, for T = Z,
t̄+ := t̄ :=

{

t+, for T = R,

t+ − 1, for T = Z,
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and t̄− := t−.

(A3) Assume (A2) and let k = 2. Let λ1(t) > 0 > λ2(t) be the eigenvalues of
SΓ(t) and U(t) = (v1(t) v2(t)) be an orthogonal matrix, where vi(t) are
eigenvectors to λi(t) for i ∈ {1, 2}, for all t ∈ Ĩ.

By Definition 3.2.8 the matrix SΓ(t) is symmetric for all t ∈ Ĩ. Thus, the
assumption that for SΓ(t) and all t ∈ Ĩ an orthogonal basis of eigenvalues
exists is trivial.

Lemma 5.6.1. Let k = 2. Assume (A1) and (A3). Then the zero Γ-strain
set is for every t ∈ Ĩ

ZΓ(t) = L
(

U(t)

(
√

|λ2(t)|
√

λ1(t)

))

∪ L
(

U(t)

(

−
√

|λ2(t)|
√

λ1(t)

))

=
{

x ∈ R2
∣

∣∃λ ∈ R : x = λ(
√

|λ2(t)|v1(t)±
√

λ1(t)v2(t))
}

. (5.65)

Let (2.6) be invertible. Then the width ds(t+) of the stable t+-cone IVs(t+) for
continuous systems is

ds(t+) =

√

4|λ2(t+)|
|λ2(t+)|+ λ1(t+)

(T = R),

the width ds(t+ − 1) of the stable t+ − 1-cone IVs(t+ − 1) for discrete systems
is

ds(t+ − 1) =

√

4|λ2(t+ − 1)|
|λ2(t+ − 1)|+ λ1(t+ − 1)

(T = Z), (5.66)

and the width du(t−) of the unstable t−-cone IVu(t−) is

du(t−) =

√

4λ1(t−)

|λ2(t−)|+ λ1(t−)
(T ∈ {R,Z}). (5.67)

The width ds(t) of the stable t-cone is for t ∈ I

ds(t) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Φ(t, t̄)U(t̄)

(

√

|λ̄2|
√

λ̄1

)

∥

∥

∥

∥

∥

Φ(t, t̄)U(t̄)

(

√

|λ̄2|
√

λ̄1

)∥

∥

∥

∥

∥

2

−
Φ(t, t̄)U(t̄)

(

−
√

|λ̄2|
√

λ̄1

)

∥

∥

∥

∥

∥

Φ(t, t̄)U(t̄)

(

−
√

|λ̄2|
√

λ̄1

)∥

∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

, (5.68)

where λ̄1,2 := λ1,2(t̄).

129



5 Explicit Representations of (Un)Stable Subspaces and Cones

The width du(t) of the unstable t-cone is for t ∈ I

du(t) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Φ(t, t−)U(t−)

(

√

|λ−2 |
√

λ−1

)

∥

∥

∥

∥

∥

Φ(t, t−)U(t−)

(

√

|λ−2 |
√

λ−1

)∥

∥

∥

∥

∥

2

−
Φ(t, t−)U(t−)

(

√

|λ−2 |
−
√

λ−1

)

∥

∥

∥

∥

∥

Φ(t, t−)U(t−)

(

√

|λ−2 |
−
√

λ−1

)∥

∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

,

(5.69)

where λ−1,2 := λ1,2(t−).

Proof. For clarity we do not explicitly mention the dependency on t. Let
ξ ∈ ZΓ ⊂ R

2. Then there exist constants a, b ∈ R such that ξ = av1 + bv2
holds. Since U is an orthogonal matrix we have 〈v1, v2〉 = 0, 〈vi, vi〉 = 1 for
i ∈ {1, 2} and

0 = 〈ξ, SΓξ〉 = 〈av1 + bv2, SΓav1 + SΓbv2〉
= 〈av1, SΓav1〉+ 〈av1, SΓbv2〉+ 〈bv2, SΓav1〉+ 〈bv2, SΓbv2〉
= a2〈v1, λ1v1〉+ ab〈v1, λ2v2〉+ ab〈v2, λ1v1〉+ b2〈v2, λ2v2〉
= a2λ1 + b2λ2

follows. This leads to a = ±
√

|λ2|c and b = ±
√
λ1c, where c ∈ R+

0 . Thus, by
Definition 3.2.8 equation (5.65) is true.

Let system (2.6) be invertible. By Corollary 5.3.2/5.3.5 the sets IVs(t)
and IVu(t) are connected double-cones for all t ∈ I and by Lemma 5.4.1 they
are nontrivial. It follows that the half-cones of IVs(t) and IVu(t), t ∈ I are
nontrivial connected cones and the width of all cones is defined, see Definition
4.1.1. To calculate them we need for each cone two linear independent vectors
on the boundary of one half-cone. The sums of the pairwise linear independent
vectors

ṽ1 :=
√

|λ2|v1 +
√

λ1v2 ∈ ZΓ,

ṽ2 := −
√

|λ2|v1 +
√

λ1v2 ∈ ZΓ,

ṽ3 :=
√

|λ2|v1 −
√

λ1v2 ∈ ZΓ

are ṽ1 + ṽ2 = 2
√
λ1v2 =: cv2 and ṽ1 + ṽ3 = 2

√

|λ2|v1 =: dv1. Additionally,

〈cv2, SΓcv2〉 = c2〈v2, λ2v2〉 = c2λ2 < 0,

〈dv1, SΓdv1〉 = d2〈v1, λ1v1〉 = d2λ1 > 0

hold. This means

ṽ1(t+) + ṽ2(t+) ∈ IVs(t+) for T = R,

ṽ1(t+ − 1) + ṽ2(t+ − 1) ∈ IVs(t+ − 1) for T = Z,

ṽ1(t−) + ṽ3(t−) ∈ IVu(t−) for T ∈ {R,Z},
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i.e. ṽ1(t̄) and ṽ2(t̄) as well as ṽ1(t−) and ṽ3(t−) are linear independent vectors
on the boundary of a half cone of IVs(t̄) respectively IVu(t−). By Definition
4.1.1, by the invertibility of Φ and by the invariance of the cones the width
ds,u(t) of IVs,u(t) satisfies (5.68) and (5.69) for all t ∈ I. Further, the width
ds(t+) of IVs(t+) for T = R fulfills

ds(t+) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

U(t+)

(
√

|λ2(t+)|
√

λ1(t+)

)

∥

∥

∥

∥

U(t+)

(
√

|λ2(t+)|
√

λ1(t+)

)∥

∥

∥

∥

2

−
U(t+)

(

−
√

|λ2(t+)|
√

λ1(t+)

)

∥

∥

∥

∥

U(t+)

(

−
√

|λ2(t+)|
√

λ1(t+)

)∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

.

Note that ‖·‖2 and the standard inner product 〈·, ·〉 are invariant under or-

thogonal transformations and that equation

∥

∥

∥

∥

(

x
y

)∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

−x
y

)∥

∥

∥

∥

2

holds for

every x, y ∈ R. Thus, we get

ds(t+) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

(
√

|λ2(t+)|
√

λ1(t+)

)

∥

∥

∥

∥

(
√

|λ2(t+)|
√

λ1(t+)

)∥

∥

∥

∥

2

−

(

−
√

|λ2(t+)|
√

λ1(t+)

)

∥

∥

∥

∥

(
√

|λ2(t+)|
√

λ1(t+)

)∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

(

2
√

|λ2(t+)|
0

)

∥

∥

∥

∥

(
√

|λ2(t+)|
√

λ1(t+)

)∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

√

4|λ2(t+)|
|λ2(t+)|+ λ1(t+)

.

Analogously, we obtain (5.66) and (5.67).

Lemma 5.6.1 characterizes the width of the stable and unstable t-cones
with the help of the solution operator. Additionally, we derive by the following
lemma upper bounds of the width of the t-cones, even if we do not have an
exact representation of the solution operator.

Lemma 5.6.2. Let k = 2 and assume (A1) and (A3). Let the given system
be invertible. Further let w1,2(t̄) ∈ ∂IVs(t̄) be linear independent with

w1(t̄) + w2(t̄) ∈ IVs(t̄)

and let w1,2(t−) ∈ ∂IVu(t−) be linear independent with

w1(t−) + w2(t−) ∈ IVu(t−).

Further let vs(t̄±) ∈ IVs(t̄±), vu(t̄±) ∈ IVu(t̄±) with ‖vs(t̄±)‖2 = 1 = ‖vu(t̄±)‖2
and with corresponding exponential rates α(t̄±), β(t̄±) > 0, see Definition 4.1.3
and Definition 4.1.5, such that

w1,2(t̄±) = vs(t̄±) + c1,2(t̄±)vu(t̄±)

131



5 Explicit Representations of (Un)Stable Subspaces and Cones

holds with constants c1(t̄±), c2(t̄±) ∈ R. Then the width ds(t) of the stable
t-cone IVs(t) and the width du(t) of the unstable t-cone IVu(t) satisfy with
δ(t̄±) := α(t̄±) + β(t̄±)

ds(t) ≤ C|c1(t̄)− c2(t̄)|e−δ(t̄)(t̄−t) for all t ∈ Ĩ, (5.70)

du(t) ≤ C|c1(t−)− c2(t−)|e−δ(t−)(t−t−) for all t ∈ I, (5.71)

where C > 0 is a constant.

Proof. For clarity of presentation we leave out the dependency on t̄. By Lemma
5.4.2 system (2.6) is M-hyperbolic. Further, by Lemma 4.2.4 and Definition
3.2.3 the estimates (3.10) and (3.15) are satisfied for vs, vu, more precisely vs,u
and their corresponding exponential rates α, β > 0 fulfill

‖Φ(t, t̄)vs‖Γ ≥ eα(t̄−t) ‖vs‖Γ ≥ C1e
α(t̄−t) ‖vs‖2 = C1e

α(t̄−t), (5.72)

‖Φ(t, t̄)vu‖Γ ≤ e−β(t̄−t) ‖vu‖Γ ≤ C2e
−β(t̄−t) ‖vu‖2 = C2e

−β(t̄−t) (5.73)

for all t ∈ Ĩ and for constants C1,2 > 0, since all norms in Rk are equivalent
and ‖vs,u‖2 = 1 by the above conditions. Fix t ∈ Ĩ and define

d1(t) := ‖Φ(t, t̄)(vs + c1vu)‖2 ,
d2(t) := ‖Φ(t, t̄)(vs + c2vu)‖2 .

Then the width ds(t) of the stable t-cone satisfies by Definition 4.1.1

ds(t) :=

∥

∥

∥

∥

Φ(t, t̄)(vs + c1vu)
1

d1(t)
− Φ(t, t̄)(vs + c2vu)

1

d2(t)

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

Φ(t, t̄)(vs + c1vu)
1

‖Φ(t, t̄)vs‖2
− Φ(t, t̄)(vs + c2vu)

1

‖Φ(t, t̄)vs‖2

∥

∥

∥

∥

2

=

∥

∥

∥

∥

(c1 − c2)Φ(t, t̄)vu
1

‖Φ(t, t̄)vs‖2

∥

∥

∥

∥

2

≤C2

C1
|c1 − c2|

‖Φ(t, t̄)vu‖Γ
‖Φ(t, t̄)vs‖Γ

.

The estimates (5.72), (5.73) and δ := α + β lead to

ds(t) ≤
(

C2

C1

)2

|c1 − c2|e−δ(t̄−t).

Analogously, we obtain the approximation of the width du(t), t ∈ I of the
unstable t-cone IVu(t) with the help of vs,u(t−).

Remark 5.6.3. If all assumptions of Lemma 5.6.2 are satisfied and Γ is the
identity we get that (5.70) and (5.71) are satisfied with C = 1, i.e. the width
ds(t) and du(t) fulfills

ds(t) ≤ |c1(t̄)− c2(t̄)|e−δ(t̄)(t̄−t) for all t ∈ Ĩ,

du(t) ≤ |c1(t−)− c2(t−)|e−δ(t−)(t−t−) for all t ∈ I.
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If Γ is the identity we find a relation between the width ds,u(t̄±) of the
(un)stable t̄±-cone IVs,u(t̄±) and the width ds,u(t) of the (un)stable t-cone
IVs,u(t) for all t ∈ Ĩ resp. t ∈ I. More precisely, the smaller the width of
the stable and unstable t̄±-cones the smaller the width of the other stable and
unstable cones.

Lemma 5.6.4. Let k = 2 and assume (A1) and (A3) for Γ = I. Let (2.6) be
invertible. Then

v1(t) ∈ IVu(t), v2(t) ∈ IVs(t) (5.74)

for all t ∈ Ĩ.
Let v1(t̄) ∈ IVu(t̄), v2(t−) ∈ IVs(t−). Denote the corresponding exponential
rates of v2(t̄±) ∈ IVs(t̄±) by α̃(t̄±) and of v1(t̄±) ∈ IVu(t̄±) by β̃(t̄±) > 0. Then
the width ds(t) and du(t) of the stable and unstable t-cones IVs(t) and IVu(t)
fulfill

ds(t) ≤
√

1 +
|λ2(t̄)|
λ1(t̄)

e−δ̃(t̄)(t̄−t)ds(t̄) for all t ∈ Ĩ,

du(t) ≤
√

1 +
|λ2(t−)|
λ1(t−)

e−δ̃(t−)(t−t−)du(t−) for all t ∈ I

with δ̃(t±) = α̃(t±) + β̃(t±) and ds,u(t̄±) from Lemma 5.6.1.

Proof. For the eigenvectors v1,2(t) of the Γ-strain tensor SΓ(t), t ∈ Ĩ, we have
by the orthonormality of v1,2

〈v1(t), SΓ(t)v1(t)〉 = 〈v1(t), λ1(t)v1(t)〉 = λ1(t) > 0,

〈v2(t), SΓ(t)v2(t)〉 = 〈v2(t), λ2(t)v2(t)〉 = λ2(t) < 0.

Corollary 5.3.2 yields v1(t) ∈ IVu(t) and v2(t) ∈ IVs(t) for all t ∈ Ĩ. Define the
linear independent vectors

w1(t̄±) := v2(t̄±) +

√

|λ2(t̄±)|
√

λ1(t̄±)
v1(t̄±),

w2(t̄±) := v2(t̄±)−
√

|λ2(t̄±)|
√

λ1(t̄±)
v1(t̄±).

Then equation (5.65) implies

w1,2(t̄) ∈ Z(t̄) = ∂IVs(t̄),

w1,2(t−) ∈ Z(t−) = ∂IVu(t−)
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by Corollary 5.3.2 and Corollary 5.3.5 and by the fact that exactly two linear
independent vectors lie in ZΓ(t̄±). Further, we have by (5.74)

w1(t̄) + w2(t̄) = 2v1(t̄) ∈ IVs(t̄),

w1(t−) + w2(t−) = 2v1(t−) ∈ IVu(t−).

Lemma 5.6.2 yields that the width satisfies for all t ∈ Ĩ

ds(t) ≤
2
√

|λ2(t̄)|
√

λ1(t̄)
e−δ̃(t̄)|t̄−t| =

√

1 +
|λ2(t̄)
λ1(t̄)

√

4|λ2(t̄)|
|λ2(t̄)|+ λ1

e−δ̃(t̄)|t̄−t|

where δ̃(t̄) := α̃(t̄) + β̃(t̄). Lemma 5.6.1 implies that

ds(t̄) =

√

4|λ2(t̄)|
|λ2(t̄)|+ λ1

.

Thus, we obtain

ds(t) =

√

1 +
|λ2(t̄)|
λ1(t̄)

e−δ̃(t̄)|t̄−t|ds(t̄).

The approximation for the unstable cone follows analogously.

In Example 5.5.1 we saw numerically that the decay of the angle of the
stable and unstable cone of (5.58) is two times as fast as the decay of the
angle of the stable and unstable cone of (5.57). This statement is proved in
the following.

Lemma 5.6.5. Let t± ∈ R and I = [t−, t+]. Assume that

ẋ(t) = Ax(t), t ∈ I (5.75)

is D-hyperbolic on I = [t−, t+] with invertible matrix A ∈ R2×2 and denote by
d1s,u(t) the width of the stable/unstable t-cone. Further, denote the width of the
stable/unstable t-cone of

ẋ(t) = µAx(t), t ∈ I, µ ∈ R>0 (5.76)

by dµs,u(t). Then we have for all r ∈ [0, t+−t−
µ

]

dµs (t+ − r) = d1s(t+ − µr),

dµu(t− + r) = d1u(t− + µr).

Proof. In this proof we skip the dependency on t. Let λ be an eigenvalue of
S = A and v a corresponding eigenvector then we have

Sµv = µAv = µλv,
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where Sµ is the strain tensor of (5.76). Thus, v is an eigenvector of S and Sµ.
This implies that the matrix U with orthonormal eigenvectors of S as columns
and the matrix Uµ with orthonormal eigenvectors of Sµ as columns satisfy
U = Uµ. Additionally, we obtain if and only if λ1 and λ2 are the eigenvalues of
S then µλ1 and µλ2 are the eigenvalues of Sµ. Denote the solution operator of
system (5.75) by Φ(·, ·) and the solution operator of system (5.76) by Φµ(·, ·).
Fix r ∈ [0, t+−t−

µ
]T. Then we find the following relation between the two

operators

Φµ(t+ − r, t+) = eµA(t+−r−t+) = eA(t+−µr−t+) = Φ(t+ − µr, t+).

By Lemma 5.6.1 we have for the width of the stable cones

dµs (t+ − r)

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

Φµ(t+ − r, t+)Uµ

(√

|µλ2|√
µλ1

)

∥

∥

∥

∥

Φµ(t+ − r, t+)Uµ

(√

|µλ2|√
µλ1

)∥

∥

∥

∥

2

−
Φµ(t+ − r, t+)Uµ

(

−
√

|µλ2|√
µλ1

)

∥

∥

∥

∥

Φµ(t+ − r, t+)Uµ

(

−
√

|µλ2|√
µλ1

)∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

Φ(t+ − µr, t+)U
√
µ

(√

|λ2|√
λ1

)

∥

∥

∥

∥

Φ(t+ − µr, t+)U
√
µ

(√

|λ2|√
λ1

)∥

∥

∥

∥

2

−
Φ(t+ − µr, t+)U

√
µ

(

−
√

|λ2|√
λ1

)

∥

∥

∥

∥

Φ(t+ − µr, t+)U
√
µ

(

−
√

|λ2|√
λ1

)∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

Φ(t+ − µr, t+)U

(√

|λ2|√
λ1

)

∥

∥

∥

∥

Φ(t+ − µr, t+)U

(√

|λ2|√
λ1

)∥

∥

∥

∥

2

−
Φ(t+ − µr, t+)U

(

−
√

|λ2|√
λ1

)

∥

∥

∥

∥

Φ(t+ − µr, t+)U

(

−
√

|λ2|√
λ1

)∥

∥

∥

∥

2

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

=d1s(t+ − µr).

The defining matrices of system (5.57) and (5.58) are A =

(

1 0
0 −4

)

and

A2 =

(

2 0
0 −8

)

, respectively. For the angle τ 1s (·) of the stable cone of system

(5.57) and for the angle τ 2s (·) of the stable cone of system (5.58) we obtain the
relation

τ 2s (t+ − r) = arccos

(

2− (d2s(t+ − r))
2

2

)

= arccos

(

2− (d1s(t+ − 2r))
2

2

)

= τ 1s (t+ − 2r)

for r ∈ [0, t+−t−
2

]. Thus, the angle of the stable cone of system (5.58) decreases
two times as fast as the angle of the stable cone of system (5.57).
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Next we check how close the upper bounds of the width given by Lemma
5.6.4 are compared to the exact width of the stable cones of (5.57) and (5.58).

Example 5.6.6. Consider systems (5.57) and (5.58) for t ∈ I = [0, π]. Let Γ
be the identity. Then we get by Lemma 5.6.1 for both systems that the width
ds = ds(t+) of the stable t+-cone satisfies

ds =







2
√
4√

1+4
= 4√

5
, for system (5.57),

2
√
8√

2+8
=
√

4×8
10

=
√

16
5
= 4√

5
, for system (5.58).

Next we verify the assumptions of Lemma 5.6.4. We prove that the eigenvectors
of the strain tensor lie inside the infinite time subspaces, i.e. the eigenvectors lie
in the stable cone with the infinite time exponential rates. The stable subspace

of system (5.57) and (5.58) for I = R is L
((

0
1

))

and the unstable subspace

is L
((

1
0

))

. The eigenvectors of

S =























(

1 0

0 −4

)

, of system (5.57),

(

2 0

0 −8

)

, of system (5.58)

are

(

0
1

)

to the negative eigenvalue and

(

1
0

)

to the positive eigenvalue. Thus,

the eigenvectors of S of system (5.57) fulfill the estimates (3.9) and (3.10)
with the exponential rates α1 := 1 and β1 := 4, while the eigenvectors of S of
(5.58) fulfill (3.9) and (3.10) with α2 := 2 and β2 := 8. Lemma 5.6.4 applies
and yields that the width d1s(t) of the stable t-cone of system (5.57) satisfies

d1s(t) ≤
√

1 +
4

1
e−(4+1)(π−t) 4√

5
= 4e−5(π−t),

and the width d2s(t) of the stable t-cone of system (5.58) satisfies

d2s(t) ≤
√

1 +
8

2
e−(8+2)(π−t) 4√

5
= 4

(

e−5(π−t)
)2
.

With this approximated width (dapprox(·)) we find approximations ∂IV approx
s of

the boundaries ∂IVs. For our systems (5.57) and (5.58) we have

∂IVs(t) =

{

λ

(

ds(t)
2

x2

)

∣

∣

∣
λ ∈ R, (ds(t))2 + x22

}

,

∂IV approx
s (t) :=

{

λ

(

dapprox(t)
2

x2

)

∣

∣

∣
λ ∈ R, (dapprox(t))2 + x22 = 1

}

.

In Figure 5.9 we plot the boundaries ∂IVs of the stable cone and their approx-
imation ∂IV approx

s at norm 1, projected onto the t− x1 plane.
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Figure 5.9: In the top the boundaries ∂IVs of the stable half-cone (green) and
their approximation ∂IV approx

s (blue) at norm 1 are projected onto the t − x1
plane. The bottom parts show the decay of the width of the boundaries and
of the width of their approximation by a logarithmic scale in backward time.
On the left panel we illustrate the stable cone for system (5.57) and on the
right panel for system (5.58).

These are shown on the left for system (5.57) and on the right for system
(5.58). The approximation ∂IV approx

s looks quite good for both systems except
for times close to π, where the width of the cones is much smaller than the
approximated width. In the bottom part of Figure 5.9 we see by a logarithmic
scale that the width of the cones as well as the distant of the exact boundaries
and their approximation decays towards 0 in backward time.

(Un)Stable Cones in 3- or Higher Dimensional D-

Hyperbolic Systems

In this section we study two different autonomous 3 dimensional systems. We
calculate and plot the stable and unstable cones and will see that the width of
the cones decreases in one time direction each. Finally we finish this chapter
with an analysis of the width of the stable and unstable cone in three or
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5 Explicit Representations of (Un)Stable Subspaces and Cones

higher finite dimensional D-hyperbolic systems, where we prove the decrease
and obtain bounds for the width.

For this purpose the boundaries of the cones are of relevance. Corollary
5.3.2 and Corollary 5.3.5 motivate to invest in the study of the zero Γ-strain set
ZΓ(·). Analogously to Lemma 5.6.1, we obtain the following characterization
of the zero Γ-strain set.

Lemma 5.7.1. Assume (A1) and (A2). Then the zero Γ-strain set of (2.7)/
(2.8) is for k ≥ 2 and t ∈ Ĩ

ZΓ(t) = {U(t)x|x ∈ Rk :

k
∑

i=1

x2iλi(t) = 0},

where λi(t) are the eigenvalues of SΓ(t), vi(t) the associated eigenvectors such
that U(t) = (v1(t) · · · vk(t)) is orthogonal.

The next Lemma implies a explicit representation of the boundaries of the
stable and unstable cone.

Lemma 5.7.2. Assume (A1) and (A2). Then

ZΓ(t̄) = ∂IVs(t̄), ZΓ(t−) = ∂IVu(t−), (5.77)

∂IVu(t−) = Φ(t0, t−)ZΓ(t−), t0 ∈ I. (5.78)

Additionally, if (2.6) is invertible we obtain

∂IVs(t0) = Φ(t0, t̄)ZΓ(t̄) (5.79)

for all t0 ∈ Ĩ.

Proof. Let λ1(t) be the eigenvalues of SΓ(t) and vi(t) the associated eigenvec-
tors such that U(t) = (v1(t) · · · vk(t)) is orthogonal for all t ∈ Ĩ. Let t ∈ Ĩ and
x ∈ ZΓ(t) \ {0}. Then there exist ai, i ∈ {1, . . . , k} such that

x =

k
∑

i=1

aivi(t)

and by Lemma 5.7.1 we have

0 = 〈x, SΓ(t)x〉 =
k
∑

i=1

a2iλi(t).

Since x 6= 0 there exists j ∈ {1, . . . , k} with aj 6= 0. W.l.o.g. let λj > 0. Thus,
for every neighborhood U of x there exists an ε > 0 such hat

y± :=
k
∑

i=1,i 6=j

aivi(t) + (aj ± ε)vj(t) ∈ U.
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W.l.o.g. let aj > 0. Then for ε < aj we get

〈y±, SΓ(t)y±〉 =
k
∑

i=1,i 6=j

a2iλi(t) + (aj ± ε)2λj(t)

=

k
∑

i=1

a2iλi(t) + (±2εaj + ε2)λj(t)

= (±2εaj + ε2)λj(t)

〈y+, SΓ(t)y+〉 = (2εaj + ε2)λj > 0,

〈y−, SΓ(t)y−〉 = (−2εaj + ε2)λj < (−2ε2 + ε2)λj(t) = −ε2λj(t) < 0.

By Corollary 5.3.2 and 5.3.5 it follows that

y− ∈ IVs(t̄), y+ ∈ IVu(t−)

and, thus,

x ∈ ∂IVs(t̄), x ∈ ∂IVu(t−).

This proves (5.77). The invariance of ∂IVu and ∂IVs leads to (5.78) and (5.79).

With this information we are able to plot the boundaries of the (un)stable
cones of 3 dimensional systems.

Example 5.7.3. Consider the system

ẋ =





1 0 0
0 −2 0
0 0 −4



 x =: Ax (5.80)

for I = [0, 3]. Let Γ be the identity. It is easily seen that this is a D-hyperbolic
system with solution operator

Φ(t, s) =





et−s 0 0
0 e−2(t−s) 0
0 0 e−4(t−s)



 .

By calculating

Φ(t0, 3)Z(3) = {ξ ∈ R3|〈Φ(3, t0)ξ, AΦ(3, t0)ξ〉 = 0},
Φ(t0, 0)Z(0) = {ξ ∈ R3|〈Φ(0, t0)ξ, AΦ(0, t0)ξ〉 = 0}

for all t0 ∈ I we obtain the boundaries of IVs(t0) and IVu(t0), respectively. The
eigenvalues of A are 1,−2 and −4. Hence, the stable subspace of the infinite

system generated by the associated eigenvectors
(

0 1 0
)T

,
(

0 0 1
)T

must lie
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inside IVs(t0) for all t0 ∈ I, cf. Corollary 5.1.3. This leads to the fact, that the
stable cone IVs(t0) is infinite in the two directions of the two eigenvectors, see
Figure 5.11. Analogously, we see that the unstable cone IVu(t0) is infinite in the

direction of the eigenvector
(

1 0 0
)T

belonging to the eigenvalue 1. Figure

5.10 shows the boundaries ∂IVu(t0) of system (5.80) for different times t0 and
the unstable subspace of the infinite system. The lightest red cone illustrates the
boundary ∂IVu(0). The darkest red cone represents the boundary of the unstable
cone at time 0.8. We see that this cone is close to the unstable subspace, marked
in black. The other cones from light to dark red illustrate the boundaries of
IVu(t0) at t0 = 0.2, t0 = 0.4 and t0 = 0.6, respectively. In the right panel
of Figure 5.10 the cones are projected to the x2 − x3-plane. We see that they
are elliptic, which is caused by the different negative eigenvalues of S (−2 and
−4).

x1
x2

x3

x2

x3

Figure 5.10: The boundaries of the unstable cone IVu (light to dark red) at
time 0 up to 0.8 in 0.2 steps and the infinite subspace (black).

Analogously, Figure 5.11 shows that the boundaries of IVs(t0) converge in
backward time (t0 ց t−) to the stable subspace of the infinite system, marked in
light green-back. The boundary of IVs(3) is plotted in the darkest green, while
the boundary of IVs(2.2) is illustrated in the lightest green. The three cones
between, from dark to light, represent the boundaries of IVs(t0) at t0 = 2.8,
t0 = 2.6 and t0 = 2.4.

Since the stable and unstable subspace are generally not orthogonal towards
each other we study a second example.

Example 5.7.4. Consider the modified system

ẋ =





1 1 0
0 −2 0
0 0 −4



 x =: Ãx (5.81)
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x1

x2

x3

Figure 5.11: The boundaries of the stable cones IVs (dark to light green) at
time 3 down to 2.2 in −0.2 steps and the infinite subspace (light green-black).

for I = [0, 3] and let Γ be the identity. This system is also D-hyperbolic. The

eigenvectors of Ã are
(

1 0 0
)T

,
(

1 −3 0
)T

and
(

0 0 1
)T

corresponding
to the eigenvalues 1,−2 and −4, respectively. To see the difference between the
stable cones of system (5.80) and (5.81) we illustrate in Figure 5.12 the cones
of (5.81) at the same times (3, 2.8, 2.6, 2.4 and 2.2) and in the same colors as
in Figure 5.11.

Lemma 5.7.6 ensures that the boundary of the stable and unstable cone
converge against the stable and unstable subspace of the infinite system if
the subspace lies inside the cone. More precisely, we show that the width of
the cones decreases exponentially fast in one time direction. The width of the
stable cone decreases in backward time whereas the width of the unstable cone
decreases in forward time. First we introduce exponential rates of subspaces.

Lemma 5.7.5. Let T ∈ {R,Z}, t± ∈ I, I = [t−, t+]T be a compact interval
and let Γ = ΓT > 0. Assume

{

(A0) and that (2.6), generated by (2.7), for T = R,

that systems (2.6), generated by (2.8), for T = Z

is M-hyperbolic on I w.r.t. ‖·‖Γ and invertible. Let S ⊂ IVs(t+) and U ⊂
IVu(t+) be subspaces. Then there exist exponential rates α, β > 0 such that

‖Φ(t0, t+)vs‖Γ ≥ eα(t+−t0) ‖vs‖Γ ,
‖Φ(t0, t+)vu‖Γ ≤ e−β(t+−t0) ‖vu‖Γ

(5.82)
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x1

x2

x3

Figure 5.12: The boundaries of the stable cones IVs (dark to light green) at
time 3 down to 2.2 in −0.2 steps and the infinite subspace (light green-black).

hold for all t0 ∈ I and vs ∈ S, vu ∈ U .

Proof. By Theorem 4.2.4 we find a family of projectors P : I → R

k×k with
S ⊂ R(P (t+)) and U ⊂ N (P (t+)) such that (2.6) is M-hyperbolic on I with
this family of projectors. Hence, there exist exponential rates α, β > 0 such
that

‖Φ(t0, t+)vs‖Γ ≥ eα(t+−t0) ‖vs‖Γ ,
‖Φ(t0, t+)vu‖Γ ≤ e−β(t+−t0) ‖vu‖Γ

hold for all t0 ∈ I and vs ∈ S ⊂ R(P (t+)), vu ∈ U ⊂ N (P (t+)).

Note, that for every D-hyperbolic invertible system the same holds, i.e. for
every subspace of the cones there exists an exponential rate in the sense of
(5.82).

Lemma 5.7.6. Assume (A1) and that system (2.6) with k = 3 is invertible.
Let S ⊂ IVs(t+) be a subspace of maximal dimension r ∈ {1, 2} with exponential
rate α and let v1s , . . . , v

r
s ∈ S be a basis. Further let v1u, . . . , v

k−r
u ∈ IVu(t+)

be a basis of a subspace U ⊂ IVu(t+) with exponential rate β which satisfies
U ⊕ S = Rk. Then the distance of the stable cone IVs(t0), t0 ∈ I, satisfies

ds(t0) ≤ C̄e−δ(t+−t0) (5.83)

with δ = α+ β.
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Proof. For clarity we do not always mention the dependency on t+ explicitly.
By Corollary 5.3.2/ 5.3.5 one of the two cases

{

IVs(t+) is a connected cone, case (i)
IVs(t+) has two connected half-cones, case (ii)

is true. Set

I

CVs(t+) :=

{

IVs(t+), case (i)

half-cone of IVs(t+), case (ii)

and denote by Xi, i ∈ {1, . . . , ℓ} the connected components of ∂ICVs(t+)∩ ∂S1,
where S1 is the unit sphere in Rk. Note that the subspace S ⊂ IVs(t+) satisfies

dim(S)

{

= 1, if ℓ = 1,

= 2, if ℓ = 2.
(5.84)

Let

x̄ ∈ ∂ICVs(t+) ∩ ∂S1

then we find λi, µj ∈ R, i ∈ {1, . . . , r}, j ∈ {1, . . . , k − r} such that

x̄ =
r
∑

i=1

λiv
i
s +

k−r
∑

j=1

µjv
j
u.

Define vs :=
∑

r
i=1λiv

i
s ∈ S ⊂ IVs(t+) and vu :=

∑

k−r
j=1µjv

j
u ∈ U ⊂ IVu(t+).

Since S has the exponential rate α the estimate

‖Φ(t0, t+)vs‖Γ ≥ eα(t+−t0) ‖vs‖Γ (5.85)

holds by (3.15) for all t0 ∈ I. For vu we get by (3.10) for every t0 ∈ I

‖Φ(t0, t+)vu‖Γ ≤ e−β(t+−t0) ‖vu‖Γ . (5.86)

First we prove for ℓ = 1 and every x̄, ȳ ∈ X1 that there exists a constant C̄ > 0
such that

∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)x̄‖2
− Φ(t0, t+)ȳ

‖Φ(t0, t+)ȳ‖2

∥

∥

∥

∥

2

≤ C̄e−δ(t+−t0) (5.87)

holds for all t0 ∈ I, where δ := α + β. Let ℓ = 1. Then we obtain by (5.84)

x̄ = λ1v
1
s +

k−1
∑

j=1

µjv
j
u
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with vs = λ1v
1
s and vu =

∑k−1
j=1 µjv

j
u. For every ȳ ∈ ∂ICVs(t+)∩ ∂S1 there exist

λ̃1, µ̃j ∈ Rk, j ∈ {1, . . . , k − 1} such that

ȳ = λ̃1v
1
s +

k−1
∑

j=1

µ̃jv
j
u.

Set y = λ1

λ̃1
ȳ = vs +

λ1

λ̃1

∑k−1
j=1 µ̃jv

j
u =: vs + ṽu. Let t0 ∈ I. Then we get

for the distance between the normed Φ(t0, t+)x̄ ∈ ∂ICVs(t0) and the normed
Φ(t0, t+)ȳ ∈ ∂ICVs(t0)

∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)x̄‖2
− Φ(t0, t+)ȳ

‖Φ(t0, t+)ȳ‖2

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)x̄‖2
−

λ̃1

λ1
Φ(t0, t+)y

λ̃1

λ1
‖Φ(t0, t+)y‖2

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)vs‖2
− Φ(t0, t+)y

‖Φ(t0, t+)vs‖2

∥

∥

∥

∥

2

=
‖Φ(t0, t+)(vu − ṽu)‖2

‖Φ(t0, t+)vs‖2
.

Using (5.85) and (5.86) and the equivalence of ‖ · ‖2 and ‖ · ‖Γ then there exist
constants C > 0, C(x̄, ȳ) > 0 such that the distance satisfies

∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)x̄‖2
− Φ(t0, t+)ȳ

‖Φ(t0, t+)ȳ‖2

∥

∥

∥

∥

2

≤ C
‖Φ(t0, t+)(vu − ṽu)‖Γ

‖Φ(t0, t+)vs‖Γ
≤ C

‖(vu − ṽu)‖Γ e−β(t+−t0)

‖vs‖Γ eα(t+−t0)

≤ C(x̄, ȳ)e−δ(t+−t0)

≤ C̄e−δ(t+−t0)

with δ = α + β and C̄ := max
{

C(x, y)
∣

∣x, y ∈ (∂ICVs(t+) ∩ ∂S1)
}

(exists since

∂ICVs(t+) ∩ ∂S1 is compact). This shows estimate (5.87) for ℓ = 1.

Next we prove for ℓ = 2 that we find for every x̄ ∈ Xi, i ∈ {1, 2} a ȳ ∈ Xj ,
j 6= i and a C̄ > 0 such that (5.87) holds for all t0 ∈ I. Let ℓ = 2. First we
construct a special ȳ ∈ Rk and show that ȳ ∈ ∂ICVs(t+) ∩ ∂S1. Then we prove
that x̄ and ȳ lie in different connecting components of ∂ICVs(t+) ∩ ∂S1.

Equation (5.24) yields that for vs ∈ IVs(t+) a s > 0 exists such that

〈vs, SΓvs〉 = −s.

By (5.25) we obtain 〈Φ(t−, t+)vu, SΓ(t+)Φ(t−, t+)vu〉 > 0 and with Lemma
5.2.2 〈vu, SΓ(t+)vu〉 > 0 is satisfied. This means there exists a u > 0 such that

〈vu, SΓ(t+)vu〉 = u.
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The symmetry of 〈·, ·〉 and SΓ leads since x̄ ∈ ∂ICVs(t+) ⊂ ∂IVs(t+) to

0 = 〈x̄, SΓx̄〉 = 〈vs, SΓvs〉+ 2〈vs, SΓvu〉+ 〈vu, SΓvu〉
= −s + 2〈vs, SΓvu〉+ u. (5.88)

For y := y(λ) := λ
(

vs +
−s
u
vu
)

, λ ∈ R we see using (5.88)

〈y, SΓy〉 = λ2〈vs, SΓvs〉+ λ22
−s
u

〈vs, SΓvu〉+ λ2
(−s
u

)2

= λ2
(

−s− s

u
2〈vs, SΓvu〉+

s2

u2
u

)

= λ2
(

−s− s

u
(s− u) +

s2

u

)

= 0.

This implies y ∈ ∂IVs(t+). Set λ̄ ∈ R such that ȳ := y(λ̄) ∈ ∂ICVs(t+) and
‖ȳ‖ = 1, i.e. ȳ ∈ ∂ICVs(t+) ∩ ∂S1. Next we show, that x̄ and ȳ lie in different
connecting components. Since vu /∈ S and s

u
> 0 we observe that the vectors

x̄ = vs + vu and ȳ = vs − s
u
vu lie on different sides of the two dimensional

subspace S, see (5.84). This means every path between x̄ and ȳ goes through
S. Further, we have S∩∂IVs(t+) ⊂ IVs(t+)∩∂IVs(t+) = {0}, since IVs(t+)\{0}
is by Corollary 5.3.2/ 5.3.5 open. Thus, there does not exist a path between
x̄ and ȳ which lies in ∂ICVs(t+) ∩ ∂S1 ⊂ ∂IVs(t+) \ {0}. Hence, x̄ and ȳ lie in
different connecting components.

Next we show estimate (5.87). Fix t0 ∈ I. Then we get for the distance
between the normed Φ(t0, t+)x̄ and Φ(t0, t+)ȳ as in the case ℓ = 1

∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)x̄‖2
− Φ(t0, t+)ȳ

‖Φ(t0, t+)ȳ‖2

∥

∥

∥

∥

2

=

∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)x̄‖2
− λ̄Φ(t0, t+)ȳ(1)

λ̄ ‖Φ(t0, t+)ȳ(1)‖2

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

Φ(t0, t+)x̄

‖Φ(t0, t+)vs‖2
− Φ(t0, t+)ȳ(1)

‖Φ(t0, t+)vs‖2

∥

∥

∥

∥

2

≤
∥

∥Φ(t0, t+)(vs + vu − (vs − s
u
vu))

∥

∥

2

‖Φ(t0, t+)vs‖2
=

(1 + s
u
) ‖Φ(t0, t+)vu‖2

‖Φ(t0, t+)vs‖2
≤ C

(1 + s
u
) ‖Φ(t0, t+)vu‖Γ

‖Φ(t0, t+)vs‖Γ
≤ C(1 +

s

u
)
‖vu‖Γ e−β(t+−t0)

‖vs‖Γ eα(t+−t0)

≤ C(x̄)e−δ(t+−t0)

≤ C̄e−δ(t+−t0)
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5 Explicit Representations of (Un)Stable Subspaces and Cones

for constants C,C(x̄) > 0 with C̄ := max
{

C(x)
∣

∣x ∈ (∂IVs(t+) ∩ ∂S1)
}

and
δ = α + β.

Finally we proof (5.83). Note that by Definition 4.1.1 the distance of IVs(t+)
equals the distance of I

CVs(t+) for all t0 ∈ I. Fix t0 ∈ I and denote by Xi(t),
i ∈ {1, 2} the connecting components of ∂ICVs(t) ∩ ∂S1 for all t ∈ I. For ℓ = 1
the distance of IVs(t+) satisfies by (5.87) and the invertibility of Φ(·, ·)

ds(t) = max{‖x− y‖2 |x, y ∈ X1(t0)}
≤ max{C̄e−δ(t+−t0)|x, y ∈ X1(t0)} = C̄e−δ(t+−t0).

Let ℓ = 2. Then we obtain by (5.87)

dH(X1(t0),X2(t0)) = max{min{‖x1 − x2‖2 |x2 ∈ X2(t0)}|x1 ∈ X1(t0)}
≤ max{‖x̄− ȳ(x̄)‖2 |x̄ ∈ X1(t0) and ȳ(x̄) as defined before}
≤ max{C̄e−δ(t+−t0)|x̄ ∈ X1(t0)}
= C̄e−δ(t+−t0)

and directly

dH(X2(t0),X1(t0)) ≤ C̄e−δ(t+−t0).

Thus, the distance of IVs(t+) satisfies

ds(t0) = max{dH(X1(t0),X2(t0)), dH(X2(t0),X1(t0))} ≤ C̄e−δ(t+−t0).
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Chapter 6

Fiber Bundles in Finite and
Infinite Time

In dynamical systems, stable and unstable manifolds of a hyperbolic trajectory
are important sources for understanding underlying dynamics. Fiber bundles
are the nonautonomous equivalent of hyperbolic manifolds in the autonomous
case. Their study is important to understand the local behavior of nonlinear
systems. In many areas of science and engineering invariant manifolds help
formulating problems and finding special solutions. In [133] the benefit of
invariant manifolds theory for various examples is discussed.

In this chapter we study finite and infinite time fiber bundles. We present
three different ways to define finite time fiber bundles (ft-fiber bundles) and
analyze the advantage and disadvantage between these concepts. To study
homoclinic trajectories, which is our purpose later, the stable and unstable
fiber bundle need to intersect. We analyze this property for the three concepts
and find in this way an adequate analogon to the infinite time fiber bundles.
In the last section we prove that roughly speaking the (un)stable cone of a
linearization locally approximates the (un)stable (ft-)fiber bundles of the orig-
inal system. This enables the numerical computation of the fiber bundles,
which will be focused on in Section 6.7. We start this chapter by defining the
invariant infinite time fiber bundles. The definition of invariant fiber bundles
for ODE models can be found in [113]. Note that invariant fiber bundles of
difference equations are similarly defined, see [7].

Definition 6.0.1. Stable and unstable global fiber bundles of a trajectory
x̄(·) of equation (2.2)/ (2.3) are defined as

W x̄
s,u := {(x, t) ∈ Rk ×R : lim

s→±∞
‖ϕ(x, s, t)− x̄(s)‖ = 0} (cont.)

W x̄
u := {(x0, t0)Rk × Z : ∃ solution x : Z→ R

k : x(t0) = x

lim
t→−∞

‖x(t)− x̄(t)‖ = 0} (disk.)

and global t-fibers are W x̄
s,u(t) := {x ∈ Rk : (x, t) ∈ W x̄

s,u}.



6 Fiber Bundles in Finite and Infinite Time

Local fiber bundles w.r.t. a neighborhood U(·) ⊂ R

k of x̄(·) are defined
as

UW
x̄
s := {(x, t) ∈ W x̄

s : ϕ(x, s, t) ∈ U(s) ∀s ≥ t},
UW

x̄
u := {(x, t) ∈ W x̄

u : ϕ(x, s, t) ∈ U(s) ∀s ≤ t}

and local t-fibers are UW
x̄
s,u(t) := {x ∈ Rk : (x, t) ∈ UW

x̄
s,u}.

Monotonically (Un)Stable Ft-Fiber Bundles

In the literature we find, for example, in [45, Definition 35] a definition of
stable and unstable fiber bundles for planar nonautonomous finite time differ-
ential equations, which requires a strictly monotonic convergence of solutions
in forward or backward time towards the reference trajectory. This definition
can be extended to higher dimensional differential equations. Hence, we call
these sets monotonically (un)stable ft-fiber bundles. Note, that these sets do
not have a manifold structure. However, they are some kind of analogon to the
infinite time fiber bundles and, hence, we call them ft-fiber bundles. Thus, if
we speak of ft-fiber bundles we do not mean that they satisfy respective topo-
logical structure, we only want to point out that they have analog properties
as the infinite time fiber bundles.

In Section 6.2 and 6.3 we introduce two more sets, the monotonically ε-
(un)stable ft-fiber bundle and respectively the ε-(un)stable ft-fiber bundle. We
point out the differences between these concepts and analyze which one of the
three definitions is the best suited analogon to the infinite time fiber bundle
for our purpose, the study of homoclinic trajectories.

Definition 6.1.1. Let x̄ : I → R

k be a solution of (2.2) with I a compact
interval and t0 ∈ I. Then the set

IM x̄
s (t0) :=

{

x0 ∈ Rk
∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄‖ < 0 for all t ∈ I

}

∪ {x̄(t0)}

is called the monotonically stable t0-ft-fiber of x̄ on I w.r.t. the chosen
norm and

IM x̄
u (t0) :=

{

x0 ∈ Rk
∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄‖ > 0 for all t ∈ I

}

∪ {x̄(t0)}

is called the monotonically unstable t0-ft-fiber of x̄ on I w.r.t. the chosen
norm. Further the sets

IM x̄
s,u :=

{

(x0, t0) ∈ Rk × I
∣

∣x0 ∈ IM x̄
s,u(t0)

}

are called the monotonically stable and unstable ft-fiber bundles of x̄
on I w.r.t. the chosen norm.
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6.1 Monotonically (Un)Stable Ft-Fiber Bundles

Next we show that for linear systems the stable and unstable cone, defined
for a differentiable norm as in (4.12) and (4.13), coincide with the fiber bundles,
defined as above, united with zero.

Lemma 6.1.2. Let ‖ · ‖ be an arbitrary differentiable norm in Rk, I ⊂ R

a compact interval and t0 ∈ I. Further let IVs(t0),
IVu(t0) be the stable and

unstable t0-cone w.r.t. the chosen norm ‖ · ‖ of an M-hyperbolic system on I

with solution operator Φ(·, ·) and exponential rates α, β > 0. Then we have

IVs(t0) =
{

ξ ∈ Rk
∣

∣

d
dt
‖Φ(t, t0)ξ‖ < 0 for all t ∈ I

}

∪ {0} = IM0
s (t0), (6.1)

IVu(t0) =
{

ξ ∈ Rk
∣

∣

d
dt
‖Φ(t, t0)ξ‖ > 0 for all t ∈ I

}

∪ {0} = IM0
u(t0), (6.2)

where IMs,u(t0) are the monotonically stable and unstable ft-fiber bundles of
the given system.

Proof. For ξ ∈ IVs(t0) the inequality ‖Φ(t, t0)ξ‖eαt ≤ ‖Φ(s, t0)ξ‖eαs holds for
all t, s ∈ I with t ≥ s. Thus, we obtain for all t ∈ I

0 ≥ d

dt

[

‖Φ(t, t0)ξ‖eαt
]

= eαt
d

dt
‖Φ(t, t0)ξ‖+ ‖Φ(t, t0)ξ‖αeαt. (6.3)

The inequality is trivial for ξ = 0. For ξ 6= 0 we have ‖Φ(t, t0)ξ‖αeαt > 0 for
all t ∈ I. By (6.3) the estimate d

dt
‖Φ(t, t0)ξ‖ < 0 holds for all t ∈ I, since

eαt > 0. This leads to

IVs(t0) ⊂ {ξ ∈ Rk| d
dt
‖Φ(t, t0)ξ‖ < 0 for all t ∈ I} ∪ {0} = IM0

s (t0).

Next we show IM0
s (t0) ⊂ IVs(t0). By definition of IVs(t0) it follows that 0 ∈

IVs(t0) for all t0 ∈ I. Let ξ ∈ IM0
s (t0) \ {0} then there exists an r ∈ R with

r > 0 such that

max
t∈I

d

dt
‖Φ(t, t0)ξ‖ = −r,

since I is a compact interval. Choose α small enough such that

max
t∈I

‖Φ(t, t0)ξ‖α ≤ r

holds then we get

d

dt

[

‖Φ(t, t0)ξ‖eαt
]

= eαt
(

d

dt
‖Φ(t, t0)ξ‖+ ‖Φ(t, t0)ξ‖α

)

≤ eαt
(

max
t∈I

d

dt
‖Φ(t, t0)ξ‖+max

t∈I
‖Φ(t, t0)ξ‖α

)

≤ eαt (−r + r) = 0

for all t ∈ I. Hence, the inequality

‖Φ(t, t0)ξ‖eαt ≤ ‖Φ(s, t0)ξ‖eαs

holds for all t, s ∈ I with t ≥ s. This leads to ξ ∈ IVs(t0) and (6.1) is proved.
Analogously, we can show (6.2).

149



6 Fiber Bundles in Finite and Infinite Time

Remark 6.1.3. Assume (A0). Let Γ = ΓT > 0 and let system (2.7) be D-
hyperbolic on the compact interval I ⊂ R w.r.t. the Γ-norm. Denote by Φ(·, ·)
the solution operator then we have

IVs(t0) =
{

ξ ∈ Rk|〈Φ(t, t0)ξ, SΓ(t)Φ(t, t0)ξ〉 < 0 for all t ∈ I
}

∪ {0} ,
IVu(t0) =

{

ξ ∈ Rk|〈Φ(t, t0)ξ, SΓ(t)Φ(t, t0)ξ〉 > 0 for all t ∈ I
}

∪ {0} .
Indeed, since a Γ-norm is differentiable the statements follow from equa-

tions (6.1), (6.2) and equation (3.16). Without using equations (6.1) and (6.2)
we already showed (see equations (5.24), (5.25))

IVs(t0) =
{

ξ ∈ Rk|〈Φ(t+, t0)ξ, SΓ(t+)Φ(t+, t0)ξ〉 < 0
}

∪ {0},
IVu(t0) =

{

ξ ∈ Rk|〈Φ(t−, t0)ξ, SΓ(t−)Φ(t−, t0)ξ〉 > 0
}

∪ {0}.
Since our system is D-hyperbolic MZΓ

(t) is positive definite for all t ∈ I and
we get by Corollary 5.2.2 for all ξs ∈ IVs(t0) \ {0}, ξu ∈ IVu(t0) \ {0} and
t ∈ I = [t−, t+]

Φ(t, t0)ξs = Φ(t, t+)Φ(t+, t0)ξs ∈ {ξ ∈ Rk|〈ξ, SΓ(t)ξ〉 < 0},
Φ(t, t0)ξu = Φ(t, t−)Φ(t−, t0)ξu ∈ {ξ ∈ Rk|〈ξ, SΓ(t)ξ〉 > 0}.

In the following we study an example of a solution of an infinite time au-
tonomous hyperbolic dynamical system, which lies on the infinite time stable
manifold. We show that a finite part of this solution lies on the finite time
monotonically unstable ft-fiber bundle, defined in Definition 6.1.1. One hy-
perbolic system that has the properties described in the following example is
generated by the differential equation

d

dt

(

u1
u2

)

=

(

−u2 + 0.98u1
u21 − u2

)

. (6.4)

Example 6.1.4. Consider a hyperbolic autonomous dynamical system on R,
which has a fixed point ξ and a nontrivial solution x(·) with lim

t→∞
x(t) = ξ, i.e.

x(t) ∈ W ξ
s (t). Denote by ϕ the solution operator. Let t−, t+, s−, s+ ∈ R with

t+ > t− > s+ > s−, t+ − t− = s+ − s−.

The solution x(·) curvess as presented in Figure 6.1.

For I = [t−, t+] we observe that x(t0) ∈ IM ξ
s (t0) for all t0 ∈ I, while for

I = [s−, s+] we get x(t0) ∈ IM ξ
u(t0) for all t0 ∈ I.

Thus, we see that a finite part of an infinite solution can lie on the mono-
tonically unstable ft-fiber although the infinite solution lies on the stable fiber.

To avoid this or at least to reduce the possibility of such a case we introduce
the variable ε > 0 and require a addional condition. The new bundles are
called monotonically ε-(un)stable ft-fiber bundles and are introduced in the
next section.
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6.2 Monotonically ε-(Un)Stable Ft-Fiber Bundles

x(t−)

x(t+)

x(s−)

x(s+)

ξ

x(t−)

x(t+)

x(s−)

x(s+)

ξ
ε

x(t̄)

Figure 6.1: A fixed point ξ (black) and a solution x(·) which converges to the
fixed point (presented in green). In the right an ε-ball is drawn around ξ and
the solution point x(t̄) on the border is marked by a blue cross.

Monotonically ε-(Un)Stable Ft-Fiber Bundles

In this section we introduce a second way to define ft-fiber bundles, the so
called monotonically ε-(un)stable ft-fiber bundles. We find similarities to the
monotonically (un)stable ft-fiber bundles. Additionally to the continuous time
case, we define the monotonically ε-(un)stable ft-fibers for discrete time sys-
tems as well.

In the following let Bε(y) :=
{

x ∈ Rk
∣

∣ ‖x− y‖2 < ε
}

denote the open ε-ball
around y ∈ Rk with radius ε ∈ R>0.

Definition 6.2.1. Let x̄ : I → R

k be a solution of (2.2) and ε > 0. Then the
set

I

εM
x̄
s :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ < 0 for all t ∈ I,

ϕ(x0, t+, t0) ∈ Bε(x̄(t+))

}

∪ {(x̄(t0), t0)|t0 ∈ I}

is called the monotonically ε-stable ft-fiber bundle of x̄ on I w.r.t. the
chosen differentiable norm and

I

εM
x̄
u :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ > 0 for all t ∈ I,

ϕ(x0, t−, t0) ∈ Bε(x̄(t−))

}

∪ {x̄(t0), t0)|t0 ∈ I}

is called the monotonically ε-unstable ft-fiber bundle of x̄ on I w.r.t. the
chosen differentiable norm.

I

εM
x̄
s (t) :=

{

x0 ∈ Rk
∣

∣(x0, t) ∈ I

εM
x̄
s

}

, I

εM
x̄
u (t) :=

{

x0 ∈ Rk
∣

∣(x0, t) ∈ I

εM
x̄
u

}

are the monotonically ε-stable and monotonically ε-unstable ft-t-fibers.
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6 Fiber Bundles in Finite and Infinite Time

The almost stable and unstable cones with the explicit form given in (4.10),
(4.11) represent ft-fiber bundles of a linearized system. The construction helps
to define the ft-fiber bundles of a nonautonomous nonlinear difference equation.
First we need a kernel function for I = [n−, n+]Z and a solution x̄ : I → R

k of
(2.3)

ϕT x̄
ker : R

k × I → I ∪ {n+ + 1},

(ξ, n0) 7→
{

min{n ∈ [n0, n+]Z|ϕ(ξ, n, n0)− x̄(n) = 0}, if it exists,

n+ + 1, otherwise.

This function yields the earliest time at which a vector ξ is mapped onto the
solution x̄, i.e. the earliest time at which ξ lies in the kernel of ϕ(ξ, ·, n0)− x̄(·).

Definition 6.2.2. Let x̄ : I → R

k be a solution of (2.3) and ε > 0. Then the
set

I

εM
x̄
s :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣
∃µ ∈ ϕTpre(ξ, n0) with n̄ := ϕTmin(ξ, n0) and

n̊ := ϕT x̄
ker(µ, n̄) : ‖ϕ(µ, n, n̄)− x̄(n)‖ < ‖ϕ(µ,m, n̄)− x̄(m)‖

for all n,m ∈ [n̄, n̊]
Z

, n > m and ϕ(ξ, n+, n0) ∈ Bε(x̄(n+)),
}

is called the monotonically ε-stable ft-fiber bundle of x̄ on I w.r.t. the
chosen norm and

I

εM
x̄
u :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣ϕTmin(ξ, n0) = n− and ∃µ ∈ ϕTpre(ξ, n0) ∩Bε(x̄(n−)) :

‖ϕ(µ, n, n−)− x̄(n)‖ > ‖ϕ(µ,m, n−)− x̄(m)‖ for all n,m ∈ I, n > m
}

∪ {(x̄(t0), t0)|t0 ∈ I}

is called the monotonically ε-unstable ft-fiber bundle of x̄ on I w.r.t. the
chosen norm.

I

εM
x̄
s (n) :=

{

x0 ∈ Rk
∣

∣

∣
(x0, n) ∈ I

εM
x̄
s

}

, I

εM
x̄
u (n) :=

{

x0 ∈ Rk
∣

∣

∣
(x0, n) ∈ I

εM
x̄
u

}

are called the monotonically ε-stable and ε-unstable ft-n-fibers.

The following example shows the main advantage of monotonically ε-stable
and ε-unstable ft-fiber bundles over monotonically stable and unstable ft-fiber
bundles.

Example 6.2.3. Consider the setting in Example 6.1.4 and in Figure 6.1. Let
ε > 0 and I := [r−, r+]. Then a solution y(·) with y(t) ∈ I

εM
ξ
s (t), t ∈ I satisfies

y(r+) ∈ Bε(ξ), i.e. the boundary point x(r+) of x(·) lies in the ε-ball around the
fixed point ξ. A solution z(·) with z(t) ∈ I

εM
ξ
u(t), t ∈ I satisfies y(r−) ∈ Bε(ξ),

i.e. the boundary point x(r−) of x(·) lies in the ε-ball around the fixed point ξ.
For r± := t± the given solution x(·) satisfies x(t+) ∈ Bε(ξ), cf. the right part
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6.2 Monotonically ε-(Un)Stable Ft-Fiber Bundles

of Figure 6.1. This leads to x(t0) ∈ I

εM
ξ
s (t0) for all t0 ∈ I. For r± := s± the

solution x(·) shown in the right half of Figure 6.1 satisfies

x(s−) /∈ Bε(ξ).

Thus, for I = [s−, s+] we have

x(t0) ∈ IM ξ
u(t0), x(t0) /∈ I

εM
ξ
u(t0)

for all t0 ∈ I.

This shows that Definition 6.2.1 prevents or at least reduces the risk that
finite parts of a stable infinite time solution lie on the unstable finite time fiber.

A disadvantage of Definition 6.2.1 in contrast to Definition 6.1.1 is that not
all finite time parts of a monotonically stable infinite time solution lie in the
monotonically ε-stable ft-fiber although they lie on the monotonically stable
ft-fiber. This fact illustrates the following example.

Example 6.2.4. Consider a hyperbolic autonomous dynamical system on I =
R, which has a fixed point ξ and two nontrivial solutions y(·), z(·) which
monotonically converges towards the fixed point ξ as presented in Figure 6.2,
where t−, t+, s−, s+ ∈ R with

t+ > t− > s+ > s−, t+ − t− = s+ − s−.

y(t−)

y(t+)

y(s−)

y(s+)

ξ
ε

ξ
ε

z(t̄)

z(s)

z(r)

Figure 6.2: A fixed point ξ in an ε-ball (black) and solutions y(·) (left) and
z(·) (right) (presented in green) which converges towards the fixed point.
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6 Fiber Bundles in Finite and Infinite Time

For I = [t−, t+] we have y(t0) ∈ I

εM
ξ
s (t0) for all t0 ∈ I, while for Î = [s−, s+]

we have

y(t0) ∈ ÎM ξ
s (t0), y(t0) /∈ Î

εM
ξ
s (t0)

for all t0 ∈ Î.

Thus, Definition 6.2.1 may yields less solutions which are stable in infi-
nite time than Definition 6.1.1. The differential equation (6.4) generates a
dynamical system with the required properties of example 6.2.4.

Both ft-fiber bundles (monotonically and monotonically ε) have one disad-
vantage in common. If a infinite stable solution ends in the ε-ball the finite time
parts may not line in the ft-fibers. An illustration is presented the following
example.

Example 6.2.5. Consider the setting of Example 6.2.4. The solution z(·)
intersects three times the boundary of the ε-ball. The intersections are marked
with an cross at time t̄ in blue, at s in red and at r in magenta. For I =
[s− 1, t̄+ 1] we see

z(t0) /∈ IM ξ
s (t0), z(t0) /∈ I

εM
ξ
s (t0)

for all t0 ∈ I, although x(t+) ∈ Bε(ξ). The finite solution does not monotoni-
cally converge towards the fixed point ξ.

We analyze convergence properties of solutions on the continuous stable
infinite fiber bundles. Therefore, let ξ̄ be a fixed point of a continuous infinite
time dynamical system and x̄(·) be a solution with x̄(t) ∈ W ξ̄

s (t) for all t ∈
R. The solution x̄ convergences towards the fixed point ξ̄ but in general not
monotonically. It satisfies

lim
t→∞

x̄(t) = ξ̄.

This means we find a T ∈ R such that d
dt
‖x̄(t)− ξ‖ < 0 for all t > T . An

adaption to a finite time interval (if I is sufficiently large and T ∈ I \ {t+})
leads to the existence of a T ∈ I \ {t+} such that d

dt
‖x̄(t)− ξ‖ < 0 for all

t ∈ I, t > T . Thus, we do not require monotonic convergence on the whole
interval I. Hence, we should demand monotonic convergence inside an ε-ball
around ξ for all forward defined times from the time at which the solution last
intersects with the boundary of the ε-ball. Important is that we do not require
monotonicity for all times, at which the solution lies inside the ε-ball. This
means for the solution z(·) illustrated in the right panel of Figure 6.2 that we
require monotonicity for all times t ∈ I, t > t̄ (x(t̄) is marked by a blue cross)
and not for times t ∈ I with r < t < s. Ft-fiber bundles with these properties
are defined in the next section and are called ε-(un)stable ft-fiber bundles.
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ε-(Un)Stable Ft-Fiber Bundles

A third way to define ft-fiber bundles is presented in this section. In contrast
to the other two definitions a monotonically decrease or growth of the whole
solution is not required for solutions on these ft-fiber bundles, which are called
the ε-(un)stable ft-fiber bundles. As mentioned in the last section for the
definition we need the last and first time at which a solution intersects with
the boundary of the ε-ball.

Therefore, we introduce two functions, which yield the first and last time
at which an orbit intersects with the boundary of an ε-ball around a given
trajectory. Let ε > 0 then define

I

ϕBmin
ε : Rk ×Rk × I → I ∪ {t+ + 1},

(µ, x̄, t̄) 7→
{

t+ + 1, if ϕ(µ, t+, t̄) /∈ Bε(ϕ(x̄, t+, t̄)),

min
{

t̂ ∈ I|t̂ ≥ t̄, ϕ(µ, t, t̄) ∈ Bε(ϕ(x̄, t, t̄))∀t ∈ I, t > t̂
}

, else,

I

ϕBmax
ε : Rk ×Rk → I ∪ {t− − 1},

(µ, x̄) 7→
{

t− − 1, if µ /∈ Bε(x̄),

max
{

t̂ ∈ I|ϕ(µ, t, t−) ∈ Bε(ϕ(x̄, t, t−))∀t ∈ I, t < t̂
}

, else.

For the solution z(·), illustrated in the right panel of Figure 6.2, the first
function yields I

ϕBmin
ε (x(t), ξ, t) = t̄ for all t ∈ I if t̄ ∈ I. In the following lemmas

we summarize some basic properties, as the symmetry, of these functions.

Lemma 6.3.1. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T be a compact interval.
Let ε > 0 and ϕ be the solution operator of (2.1) then

I

ϕBmin
ε (x, y, t0) =

I

ϕBmin
ε (y, x, t0),

I

ϕBmax
ε (x, y) = I

ϕBmax
ε (y, x)

hold for all x, y ∈ Rk and t0 ∈ I.

Proof. Let x, y ∈ Rk and t0 ∈ I. Assume ϕ(x, t+, t0) /∈ Bε(ϕ(y, t+, t0)) then

ε ≤ ‖ϕ(x, t+, t0)− ϕ(y, t+, t0)‖2 = ‖ϕ(y, t+, t0)− ϕ(x, t+, t0)‖2 ,

i.e. ϕ(y, t+, t0) /∈ Bε(ϕ(x, t+, t0)). Thus, I

ϕB
min
ε (x, y, t0) =

I

ϕB
min
ε (y, x, t0) holds.

Next assume ϕ(x, t+, t0) ∈ Bε(ϕ(y, t+, t0)) then

I

ϕB
min
ε (x, y, t0) = min

{

t̂ ∈ I
∣

∣t̂ ≥ t0, ϕ(x, t, t0) ∈ Bε(ϕ(y, t, t0))∀t ∈ I, t > t̂
}

= min
{

t̂ ∈ I
∣

∣t̂ ≥ t0, ϕ(y, t, t0) ∈ Bε(ϕ(x, t, t0))∀t ∈ I, t > t̂
}

= I

ϕB
min
ε (y, x, t0)

follows. Analogously, we get I

ϕB
max
ε (x, y) = I

ϕB
max
ε (y, x).
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Lemma 6.3.2. Let I be a compact interval and x̄ : I → R

k be a solution of
(2.2)/ (2.3) and let ε > 0. For each x ∈ Rk

I

ϕBmin
ε (x, x̄(t1), t1) ≤ I

ϕBmin
ε (ϕ(x, t2, t1), x̄(t2), t2)

is satisfied for all t1, t2 ∈ I, t2 ≥ t1.

Proof. Let x ∈ Rk, T ∈ {R,Z}, t± ∈ T and t1, t2 ∈ I := [t−, t+]T, t2 ≥ t1. If
t+ + 1 = I

ϕBmin
ε (x, x̄(t1), t1) /∈ I then

ϕ(ϕ(x, t2, t1), t+, t2) = ϕ(x, t+, t1) /∈ Bε(x̄(t+)).

Thus t+ + 1 = I

ϕBmin
ε (ϕ(x, t2, t1), x̄(t2), t2) /∈ I. Assume I

ϕBmin
ε (x, x̄(t1), t1) ∈ I

then

I

ϕBmin
ε (x, x̄(t1), t1)

=min{t̂ ∈ I
∣

∣t̂ ≥ t1, ϕ(x, t, t1) ∈ Bε(x̄(t)) for all t ∈ I, t > t̂}
≤{t̂ ∈ I

∣

∣t̂ ≥ t2, ϕ(x, t, t1) ∈ Bε(x̄(t)) for all t ∈ I, t > t̂}
={t̂ ∈ I

∣

∣t̂ ≥ t2, ϕ(ϕ(x, t2, t1), t, t2) ∈ Bε(x̄(t)) for all t ∈ I, t > t̂}
=I

ϕBmin
ε (ϕ(x, t2, t1), x̄(t2), t2).

With the help of the latter studied functions we are able to define the
ε-stable and ε-unstable ft-fiber bundles. We start with the continuous case.

Definition 6.3.3. Let I = [t−, t+] and ε > 0. Let x̄ : I → R

k be a solution of
(2.2). Then the set

I

εW
x̄
s :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

t̂ := I

ϕBmin
ε (ϕ(x0, t−, t0), x̄(t−), t−) ∈ I and

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ < 0 for all t ∈ I, t > t̂

}

∪ {(x̄(t0), t0)|t0 ∈ I}

is called the ε-stable ft-fiber bundle of x̄ on I w.r.t. the chosen differen-
tiable norm. The ε-unstable ft-fiber bundle of x̄ on I w.r.t. the chosen
differentiable norm is defined as

I

εW
x̄
u :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

t̂ := I

ϕBmax
ε (ϕ(x0, t−, t0), x̄(t−)) ∈ I and

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ > 0 for all t ∈ I, t < t̂

}

∪ {(x̄(t0), t0)|t0 ∈ I}.

The sets

I

εW
x̄
s (t) :=

{

x0 ∈ Rk
∣

∣(x0, t) ∈ I

εW
x̄
s

}

,
I

εW
x̄
u (t) :=

{

x0 ∈ Rk
∣

∣(x0, t) ∈ I

εW
x̄
u

}

are the ε-stable and ε-unstable ft-t-fibers.
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Analogously to the continuous time case, we define the ε-stable and ε-
unstable ft-fiber bundles.

Definition 6.3.4. Let I := [n−, n+]Z with n± ∈ Z and ε < 0. Further, let
x̄ : I → R

k be a solution of (2.3). Then the set

I

εW
x̄
s :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣
∃µ ∈ ϕTpre(ξ, n0) with n̄ := ϕTmin(ξ, n0),

n̊ := ϕT x̄
ker(µ, n̄) and n̂ := I

ϕBmin
ε (µ, x̄(n̄), n̄) ∈ I :

‖ϕ(µ, n, n̄)− x̄(n)‖ < ‖ϕ(µ,m, n̄)− x̄(m)‖
for all n,m ∈ I, n̊ ≥ n > m > n̂

}

is called the ε-stable ft-fiber bundle of x̄ on I w.r.t. the chosen norm. The
ε-unstable ft-fiber bundle of x̄ on I w.r.t. the chosen norm is defined as

I

εW
x̄
u :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣ϕTmin(ξ, n0) = n− and ∃µ ∈ ϕTpre(ξ, n0) with

n̂ := I

ϕBmax
ε (µ, x̄(n−)) ∈ I :

‖ϕ(µ, n, n−)− x̄(n)‖ > ‖ϕ(µ,m, n−)− x̄(m)‖
for all n,m ∈ I, m < n < n̂

}

∪
{

(x̄(n), n)
∣

∣n ∈ I
}

.

The sets

I

εW
x̄
s (n) :=

{

x ∈ Rk|(x, n) ∈ I

εW
x̄
s

}

,
I

εW
x̄
u (n) :=

{

x ∈ Rk|(x, n) ∈ I

εW
x̄
u

}

are called the ε-stable and ε-unstable ft-n-fiber.

Characteristics of the Ft-Fiber Bundles

In this section we analyze the characteristics of the ft-fiber bundles defined in
Definition 6.1.1, Definition 6.2.1, 6.2.2 and Definition 6.3.3, 6.3.4. In particular
we study their invariance properties and we verify whether the stable and
unstable fibers intersect. These facts enable us to determine an adequate
analogon of the infinite time fiber bundles for finite time systems.

Remark 6.4.1. The ft-fiber bundles IM x̄
s (t0),

I

εM
x̄
s (t0) and I

εW
x̄
s (t0) of an in-

vertible system are open sets for all t ∈ I. The ft-fiber bundles IM x̄
u (t0),

I

εM
x̄
u (t0)

and I

εW
x̄
u (t0) of any dynamical system are open for all t ∈ I.

Indeed, the monotonically ft-fiber bundles IM x̄
s,u(t0) are open for all t ∈ I ⊂

R, see [45, Remark 36].
To prove that I

εM
x̄
s (t0), t0 ∈ I of an invertible system is open it is sufficient

to prove that for each x0 ∈ I

εM
x̄
s (t0) a δ > 0 exists such that

ϕ(t+, t0)Bδ(x0) ⊂ Bε(x̄(t+)).
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Let t0 ∈ I and x0 ∈ I

εM
x̄
s (t0). By the continuity of ϕ we find for every Bδ(x0)

a δ1 > 0 such that ϕ(t+, t0)Bδ(x0) ⊂ Bδ1(ϕ(x0, t+, t0)). Thus, for δ sufficiently
small we obtain

ϕ(t+, t0)Bδ(x0) ⊂ Bδ1(ϕ(x0, t+, t0)) ⊂ Bε(x̄(t+)).

For noninvertible systems there exist a t0 ∈ I and a x̄(t0) 6= ξ ∈ I

εM
x̄
s (t0) with

ϕT x̄
ker(ξ, t0) = t0. With these points the sets are not open. Since for every t0

and each ξ ∈ I

εM
x̄
u (t0) we have ϕT x̄

ker(ξ, t0) /∈ I the set I

εM
x̄
u (t0) of any dynamical

system is open. Analogously, we obtain that I

εW
x̄
u (t0), t0 ∈ I of an invertible

system and I

εW
x̄
u (t0), t0 ∈ I of any dynamical system are open.

The ft-fibers have invariance properties. For IM x̄
s,u we refer to [45, Theorem

37]. The following lemma shows that I

εM
x̄
s,u(t) are “invariant” sets for all t ∈ I,

ε > 0. In Lemma 6.4.3 we prove the same invariance properties for I

εW
x̄
s,u,

ε > 0.

Lemma 6.4.2. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T. Assume that
x̄ : I → R

k is a solution of (2.2)/ (2.3) and ε > 0. Then the monotonically
ε-unstable ft-fiber bundle I

εM
x̄
u is invariant and the monotonically ε-stable ft-

fiber bundle I

εM
x̄
s is at least forward invariant w.r.t. t−, i.e. we have for all

t1, t0 ∈ I, t1 > t0

I

εM
x̄
u (t1) = ϕ(t1, t0)

I

εM
x̄
u (t0), (6.5)

I

εM
x̄
s (t1) ⊃ ϕ(t1, t−)

I

εM
x̄
s (t−) (6.6)

and if ϕ is invertible

I

εM
x̄
s (t1) = ϕ(t1, t0)

I

εM
x̄
s (t0). (6.7)

Proof. We show the invariance for the ε-stable ft-fibers. For T = R let t0, t1 ∈ I

and x(t0) ∈ I

εM
x̄
s (t0) \ {x̄(t0)}. Then we have for all t ∈ I

0 >
d

dt
‖ϕ(x(t0), t, t0)− x̄(t)‖ =

d

dt
‖ϕ(ϕ(x(t0), t1, t0), t, t1)− x̄(t)‖ .

This implies ϕ(x(t0), t1, t0) ∈ I

εM
x̄
s (t1) and we get

ϕ(t1, t0)
I

εM
x̄
s (t0) ⊂ I

εM
x̄
s (t1). (6.8)

Thus (6.6) is shown. Since ϕ is invertible and (6.8) holds for all t0, t1 ∈ I we
get (6.7). By the same arguments we obtain Equation (6.5).
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For T = Z we get for all t ∈ I

ϕ(t, t−)
I

εM
x̄
s (t−)

=
{

ϕ(ξ, t, t−) ∈ Rk
∣

∣ξ ∈ I

εM
x̄
s (t−)

}

=
{

ϕ(ξ, t, t−) ∈ Rk
∣

∣ϕ(ξ, t+, t−) ∈ Bε(x̄(t+)) and

‖ϕ(ξ, t, t−)− x̄(t)‖ < ‖ϕ(ξ, s, t−)− x̄(s)‖
for all t, s ∈ I, t̊ ≥ t > s with t̊ := ϕT x̄

ker(ξ, t−)
}

⊂
{

ξ̃ ∈ Rk
∣

∣

ϕTmin(ξ̃, t) = t−, t̊ := ϕT x̄
ker(ξ̃, t) : ϕ(ξ̃, t+, t) ∈ Bε(x̄(t+)),

∃ξ ∈ ϕTpre(ξ̃, t) : ‖ϕ(ξ, t, t−)− x̄(t)‖ < ‖ϕ(ξ, s, t−)− x̄(s)‖
for all t, s ∈ I, t̊ ≥ t > s

}

⊂I

εM
x̄
s (t).

Further for all t1, t0 ∈ I with t1 > t0 we obtain by Lemma 4.1.4

ϕ(t1, t0)
I

εM
x̄
u (t0)

=
{

ϕ(ξ, t1, t0) ∈ Rk
∣

∣

ϕTmin(ξ, t0) = t− ∧ ∃µ ∈ ϕTpre(ξ, t0) ∩ Bε(x̄(t−)) :

‖ϕ(µ, t, t−)− x̄(t)‖ > ‖ϕ(µ, s, t−)− x̄(s)‖ for all t, s ∈ I, t > s
}

∪ {x̄(t0)}
=
{

ξ̃ ∈ Rk
∣

∣

ϕTmin(ξ̃, t1) = t− ∧ ∃µ ∈ ϕTpre(ξ̃, t1) ∩Bε(x̄(t−)) :

‖ϕ(µ, t, t−)− x̄(t)‖ > ‖ϕ(µ, s, t−)− x̄(s)‖ for all t, s ∈ I, t > s
}

∪ {x̄(t0)}
=I

εM
x̄
u (t1).

Let ϕ be invertible then we have

ϕ(t1, t0)
I

εM
x̄
s (t0)

=
{

ϕ(t1, t0)ξ ∈ Rk
∣

∣ ‖ϕ(ξ, t, t0)− x̄(t)‖ < ‖ϕ(ξ, s, t0)− x̄(s)‖
for all t, s ∈ I, t > s and ϕ(ξ, t+, t0) ∈ Bε(x̄(t+))} ∪ {x̄(t1)}

=
{

ξ̃ ∈ Rk
∣

∣

∣

∥

∥

∥
ϕ(ξ̃, t, t1)− x̄(t)

∥

∥

∥
<
∥

∥

∥
ϕ(ξ̃, s, t1)− x̄(s)

∥

∥

∥

for all t, s ∈ I, t > s and ϕ(ξ̃, t+, t1) ∈ Bε(x̄(t+))
}

∪ {x̄(t1)}
=I

εM
x̄
s (t1).

Note that I

εM
x̄
s is in general not forward invariant, see Example 4.1.8.

The ft-fiber bundles have the same invariance properties as the monotoni-
cally ft-fiber bundles.
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Lemma 6.4.3. Let T ∈ {R,Z}, t± ∈ T and I := [t−, t+]T and let ε > 0.
Further, let x(·) be a trajectory of system (2.2)/ (2.3) then the ε-unstable ft-
t-fibers are invariant under ϕ(·, t) for all t ∈ I and the ε-stable ft-t−-fiber is
forward invariant, i.e.

ϕ(t, t−)
I

εW
x̄
s (t−) ⊂ I

εW
x̄
s (t) for all t ∈ I,

ϕ(t1, t0)
I

εW
x̄
u (t0) =

I

εW
x̄
u (t1) for all t1, t0 ∈ I, t1 ≥ t0.

If the system is invertible then the ft-t-fibers are invariant under ϕ(·, t) for all
t ∈ I ,i.e.

ϕ(t1, t0)
I

εW
x̄
s,u(t0) =

I

εW
x̄
s,u(t1) for all t1, t0 ∈ I.

Proof. Let ε > 0. Let x̄(·) be a trajectory of (2.3), t0 ∈ I. For all t1 ∈ I,
t1 ≥ t0 we obtain

ϕ(t1, t0)
I

εW
x̄
u (t0)

=
{

ϕ(x, t1, t0) ∈ Rk
∣

∣

ϕTmin(x, t0) = t− and ∃µ ∈ ϕTpre(x, t0) with

t̂ := I

ϕBmax
ε (µ, x̄(t−)) ∈ I : ‖ϕ(µ, t, t−)− x̄(t)‖ > ‖ϕ(µ, s, t−)− x̄(s)‖

for all s, t ∈ I, s < t < t̂
}

∪ {x̄(t1)}
=
{

y ∈ Rk
∣

∣

ϕTmin(y, t1) = t− and ∃µ ∈ ϕTpre(y, t1) with

t̂ := I

ϕBmax
ε (µ, x̄(t−)) ∈ I : ‖ϕ(µ, t, t−)− x̄(t)‖ > ‖ϕ(µ, s, t−)− x̄(s)‖

for all s, t ∈ I, s < t < t̂
}

∪ {x̄(t1)}
=I

εW
x̄
u (t1).

The forward invariance of the ε-stable ft-t−-fiber is given by

ϕ(t, t−)
I

εW
x̄
s (t−)

:=
{

ϕ(x−, t, t−) ∈ Rk
∣

∣

∣̊
t := ϕT x̄

ker(x−, t−) and t̂ := I

ϕBmin
ε (x−, x̄(t−), t−) ∈ I :

‖ϕ(x−, t1, t−)− x̄(t1)‖ < ‖ϕ(x−, t0, t−)− x̄(t0)‖
for all t1, t0 ∈ I, t̊ ≥ t1 > t0 > t̂

}

∪ {x̄(t)}

=
{

x ∈ Rk
∣

∣

∣
∃x− ∈ ϕTpre(x, t) with t− := ϕTmin(x, t), t̊ := ϕT x̄

ker(x−, t−) and

t̂ := I

ϕBmin
ε (x−, x̄(t−), t−) ∈ I :

‖ϕ(x−, t1, t−)− x̄(t1)‖ < ‖ϕ(x−, t0, t−)− x̄(t0)‖
for all t1, t0 ∈ I, t̊ ≥ t1 > t0 > t̂

}

∪ {x̄(t)}

⊂
{

x ∈ Rk
∣

∣

∣
∃µ ∈ ϕTpre(x, t) with t̄ := ϕTmin(x, t), t̊ := ϕT x̄

ker(µ, t̄) and

t̂ := I

ϕBmin
ε (µ, x̄(t̄), t̄) ∈ I :

‖ϕ(µ, t1, n̄)− x̄(t1)‖ < ‖ϕ(µ, t0, n̄)− x̄(t0)‖
for all t1, t0 ∈ I, t̊ ≥ t1 > t0 > t̂

}

∪ {x̄(t)}
=I

εW
x̄
s (t).
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Let x̄(·) be a trajectory of (2.2) or of an invertible system (2.3). For t1 ∈ I we
have

ϕ(t1, t0)
I

εW
x̄
s (t0)

:=
{

ϕ(x0, t1, t0) ∈ Rk
∣

∣

∣
t̂ := I

ϕBmin
ε (ϕ(x0, t−, t0), x̄(t−), t−) ∈ I and

‖ϕ(x0, t, t0)− x̄(t)‖ < ‖ϕ(x0, s, t0)− x̄(s)‖ for all t, s ∈ I, t > s > t̂
}

∪ {x̄(t1)}
=
{

x ∈ Rk
∣

∣

∣
t̂ := I

ϕBmin
ε (ϕ(ϕ(x, t0, t1), t−, t0), x̄(t−), t−) ∈ I and

‖ϕ(ϕ(x, t0, t1), t, t0)− x̄(t)‖ < ‖ϕ(ϕ(x, t0, t1), s, t0)− x̄(s)‖
for all t, s ∈ I, t > s > t̂

}

∪ {x̄(t1)}
=
{

x ∈ Rk
∣

∣

∣
t̂ := I

ϕBmin
ε (ϕ(x, t−, t1), x̄(t−), t−) ∈ I and

‖ϕ(x, t, t1)− x̄(t)‖ < ‖ϕ(x, s, t1)− x̄(s)‖ for all t, s ∈ I, t > s > t̂
}

∪ {x̄(t1)}
=I

εW
x̄
s (t1).

Analogously, we get for the ε-unstable ft-fibers ϕ(t1, t0)
I

εW
x̄
u (t0) =

I

εW
x̄
u (t1).

It is easy to see that the monotonically ε-(un)stable ft-t-fibers are subsets
of the ε-(un)stable ft-t-fibers and of the monotonically (un)stable ft-t-fibers,
i.e.

I

εM
x̄
s,u(t) ⊂ I

εW
x̄
s,u(t) for all t ∈ I, (6.9)

I

εM
x̄
s,u(t) ⊂ IM x̄

s,u(t) for all t ∈ I.

In the following we analyze where and when the sets I

εM
x̄
s,u and I

εW
x̄
s,u coin-

cide. We show in Lemma 6.4.4 that the ft-fibers I

εW
x̄
s,u and the monotonically

ft-fibers I

εM
x̄
s,u coincide in a small neighborhood of the solution x̄. For linear

D-hyperbolic systems we prove in Lemma 6.4.5 that the (monotonically) ε-
(un)stable ft-fibers coincide with the ε-(un)stable ft-fibers and locally coincide
with the (un)stable cones.

Lemma 6.4.4. Let T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T be a compact interval.
Let x̄(·) be a solution of system (2.1) and fix ε > 0. Then there exists an ε̄ > 0
such that

I

εM
x̄
s,u(t−) ∩ Bε̄(x̄(t−)) =

I

εW
x̄
s,u(t−) ∩Bε̄(x̄(t−)).

Proof. By (6.9) it follows that the left-hand side of the claim is a subset of the
right-hand side.
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6 Fiber Bundles in Finite and Infinite Time

For the other inclusion first note that an ε̄ > 0 exists such that

ϕ(t, t−)Bε̄(x̄(t−)) ⊂ Bε(x̄(t)) (6.10)

holds for all t ∈ I, since ϕ is continuous, I is a compact interval and x̄(t) =
ϕ(x̄(t−), t, t−) for all t ∈ I. Let x0 ∈ I

εW
x̄
s,u(t−) ∩ Bε̄(x̄(t−)). Then by equation

(6.10) we have

ϕ(x0, t, t−) ⊂ Bε(x̄(t)), for all t ∈ I.

This implies with t− = ϕTmin(x0, t−) and all x ∈ ϕTpre(x0, t−) that

I

ϕBmin
ε (x, x̄(t−), t−) = t−,

I

ϕBmax
ε (x, x̄(t−)) = t+,

which means that the solution corresponding to x0 stays in the ε-ball for all
times t ∈ I. By definition the solutions lies in I

εW
x̄
s,u and thus it is monotonically

increasing/ decreasing for all times t ∈ I. Hence, we see

x0 ∈ I

εM
x̄
s,u(t−) ∩ Bε̄(x̄(t−)).

Next we show that the ε-(un)stable ft-fiber of a linear D-hyperbolic system
locally coincides with the (un)stable cone, see Definition 4.1.3/4.1.5.

Lemma 6.4.5. Assume (A1). Then for every ε > 0, t0 ∈ I and solution
x̄ : I → R

k of (2.7)/ (2.8) we get

I

εW
x̄
s,u(t0) =

I

εM
x̄
s,u(t0). (6.11)

Further the sets I

εW
0
s,u(t0) and

I
V̄s(t0)/

IVu(t0) locally coincide, i.e.

I

εW
0
s (t0) =

I
V̄s(t0) ∩ Φpre(t+, t0)Bε(0), (6.12)

I

εW
0
u (t0) =

IVu(t0) ∩ Φ(t0, t−)Bε(0). (6.13)

Proof. Let ε > 0 and t0 ∈ I. Assume x0 ∈ I

εW
x̄
s (t0) \ {x̄(t0)} and let tmin :=

ΦTmin(x0, t0) then there exists an xmin ∈ ΦTpre(y0, n0) (in the case T = R the
preimage xmin is unique and exists to time t−) such that

t̂ := I

ΦBε(xmin, x̄(tmin), tmin) ∈ I

and
{

d
dt
‖Φ(t, tmin)xmin − x̄(t)‖Γ < 0, for T = R,

‖Φ(s, tmin)xmin − x̄(s)‖Γ < ‖Φ(t, tmin)xmin − x̄(t)‖Γ, for T = Z
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6.4 Characteristics of the Ft-Fiber Bundles

holds for all

{

t ∈ I, t > t̂, for T = R,

t, s ∈ I, t̊ ≥ s > t > t̂, for T = Z

with t̊ := ϕT x̄
ker(xmin, tmin) (in the case T = R we have t̊ = t+). By equation

(3.16)/(3.17) we get

0 > 〈Φ(t, tmin)xmin − x̄(t), SΓ(t)(Φ(t, tmin)xmin − x̄(t))〉 (6.14)

for all t ∈ I,

{

t > t̂, for T = R,

t̊− 1 ≥ t > t̂, for T = Z.

By the D-hyperbolicity of (2.7)/ (2.8) Lemma 5.2.2/5.2.3 applies and we obtain
equation (6.14) for all t ∈ [tmin, t̂)T. This leads to

{

d
dt
‖Φ(t, tmin)xmin − x̄(t)‖Γ < 0, for T = R,

‖Φ(s, tmin)xmin − x̄(s)‖Γ < ‖Φ(t, tmin)xmin − x̄(t)‖Γ , for T = Z

for all

{

t ∈ I, t ≥ tmin, for T = R,

t, s ∈ I, t̊ ≥ s > t ≥ tmin, for T = Z.

By the definition of the monotonically ε-stable ft-t0-fiber we get x0 ∈ I

εM
x̄
s (t0)

and thus

I

εW
x̄
s (t0) ⊂ I

εM
x̄
s (t0).

With equation (6.9) we get (6.11).
The statement about the unstable sets follows analogously.
Next we note that x̄(·) := 0 is a solution of the linear equation (2.7)/(2.8)

and as a consequence the left-hald sides of the claims (6.12) and (6.13) are
well defined. Using (6.11) and the definition of the monotonically ε-stable
ft-t0-fiber we get for T = R

I

εW
0
s (t0) =

I

εM
0
s (t0)

=

{

x0 ∈ Rk

∣

∣

∣

∣

∣

d

dt
‖Φ(t, t0)x0‖Γ < 0 for all t ∈ I, Φ(t+, t0)x0 ∈ Bε(0)

}

∪ {0}

and for T = Z

I

εW
0
s (t0) =

I

εM
0
s (t0)

=
{

ξ ∈ Rk
∣

∣∃xmin ∈ ΦTpre(ξ, t0) with tmin := ΦTmin(ξ, t0),

t̊ := ΦT 0
ker(xmin, tmin) : ‖Φ(s, tmin)xmin‖Γ < ‖Φ(t, tmin)xmin‖Γ

for all s, t ∈ I, t̊ ≥ s > t ≥ tmin,Φ(t+, t0)ξ ∈ Bε(0)
}

.

Equation (4.12)/ (4.10) prove that the ft-fiber bundles satisfy equation (6.12).
The second claim (6.13) follows analogously.
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6 Fiber Bundles in Finite and Infinite Time

For every finite time solution x̄ : I → R

k of (2.2) or (2.3) and every ε > 0
the intersection of the monotonically (ε-)stable and the (ε-)unstable ft-fiber
bundle is empty, i.e.

IM x̄
s ∩ IM x̄

u = ∅, I

εM
x̄
s ∩ I

εM
x̄
u = ∅ for every solution x̄ : I → R

k, ε > 0.

(Un)Stable Ft-Fiber Bundles and

Ft-Hyperbolicity

We determine an adequate analogon of the infinite time fiber bundles for finite
time systems with the help of the studied characteristics in the previous section.
Further we define ft-hyperbolic trajectories and the stable and unstable ft-
fiber bundles of the linearization. These fiber bundles roughly speaking locally
approximate the fiber bundles of the original system, which we prove in the
next section.

Because of the invariance of the monotonically (ε-)unstable ft-fiber bundles
and the at least forward invariance of the monotonically (ε-)stable ft-fiber
bundles w.r.t. t− we can not extend the fibers such that they will intersect.
Our purpose later is to find homoclinic trajectories, which lie in the intersection
of the stable and unstable fibers, see Chapter 7. Hence, we are interested in the
intersection of the stable and unstable ft-fibers. Thus, in this thesis we choose
the ε-stable and ε-unstable ft-fibers (Definition 6.3.3/6.3.4) as the analogon of
the stable and unstable fibers (Definition 6.0.1) for finite time systems.

Next we define stable and unstable ft-fiber bundles of a linearization and
ft-hyperbolic solutions. We need the following condition:

(A3) Let f : Rk × I → R

k of equation (2.2) be a continuous function with

continuous derivatives fx and f
(2)
x .

Roughly speaking a solution x̄ of a nonlinear system is call ft-hyperbolic if the
linearization w.r.t. x̄ is D-hyperbolic.

Definition 6.5.1. Assume (A3). Let I ⊂ R be a compact interval and Γ =
ΓT > 0. A solution x̄ : I → R

k of (2.2) is called ft-hyperbolic (finite time
hyperbolic on I w.r.t. ‖·‖Γ) if for all t ∈ I the symmetric part

S x̄
Γ(t) :=

1
2
(Γfx(x̄(t), t) + (fx(x̄(t), t))

TΓ)

of fx(x̄(t), t) is indefinite and

M x̄
Γ(t) := Ṡ x̄

Γ(t) + S x̄
Γ(t)fx(x̄(t), t) + fx(x̄(t), t)

TS x̄
Γ(t)

with Ṡx
Γ(t) = (Sx

Γ)t (t) + (Sx
Γ)x(t)f(x(t), t) is positive definite for all t ∈ I.
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Definition 6.5.2. Let I ⊂ Z be a compact interval and Γ = ΓT > 0. A
solution x̄ : I → R

k of (2.3) is called ft-hyperbolic (finite time hyperbolic on
I w.r.t. ‖ · ‖Γ) if for all n ∈ I1 the symmetric matrix

S x̄
Γ(n) := ((fn)x(x̄(n)))

T Γ(fn)x(x̄(n))− Γ

is indefinite and

M x̄
Γ(n) := ((fn)x(x̄(n)))

T S x̄
Γ(n+ 1)(fn)x(x̄(n))− S x̄

Γ(n)

is positive definite for all n ∈ I2.

If x̄ : I → R

k is an ft-hyperbolic solution of (2.2)/(2.3) then the linearized

equation (2.4)/(2.5) is D-hyperbolic. Let Ĩ :=

{

I1, if (2.3) is noninvertible,

I, otherwise

and let t̄ :=

{

t+ − 1, for (2.3),

t+, for (2.2).

We call

IV x̄
s :=

{

(x0, t0) ∈ Rk × Ĩ
∣

∣〈Φ(t̄, t0)x0, S x̄
Γ(t̄)Φ(t̄, t0)x0〉 < 0

}

(6.15)

∪ {(0, t0) ∈ Rk × Ĩ}

and

IV x̄
u :=

{

(Φ(t0, t−)x−, t0) ∈ Rk × I
∣

∣〈x−, S x̄
Γ(t−)x−〉 > 0

}

(6.16)

∪ {(0, t0) ∈ Rk × I}

the stable and unstable ft-fiber bundle of the linearization. These
sets coincide with the stable and unstable cone of the linearized system, see
Corollary 5.3.2/ 5.3.5. By Lemma 6.4.5 this is a well-considered definition.

We show in Section 6.6 roughly speaking that the (un)stable ft-fiber bundle
of the linearization locally approximates the (un)stable ft-fiber bundle of the
original system. For this purpose [83, Theorem 4.13] functions as a basis.
We first show that our monotonically ε-(un)stable t−-fiber is equivalent to
a modified version of the domains of finite-time attraction/repulsion of [83,
Definition 4.9].

Lemma 6.5.3. Let T ∈ {R,Z}, t± ∈ T, I = [t−, t+]T, ε > 0 and let x̄ : I → R

k

be an ft-hyperbolic solution of (2.2)/ (2.3). Then the monotonically ε-stable
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6 Fiber Bundles in Finite and Infinite Time

and ε-unstable ft-t−-fibers of Definition 6.2.1/ 6.2.2

I

εM
x̄
s (t−) =































{

ξ ∈ Rk| d
dt
‖ϕ(ξ, t, t−)− x̄(t)‖ < 0 for all t ∈ I,

ϕ(ξ, t+, t−) ∈ Bε(x̄(t+))
}

∪ {x̄(t−)} , for T = R,
{

ξ ∈ Rk
∣

∣ ‖ϕ(ξ, t, t−)− x̄(t)‖ < ‖ϕ(ξ, s, n−)− x̄(s)‖
for all t, s ∈ I, t̊ ≥ t > s with t̊ := ϕT x̄

ker(ξ, t−),

ϕ(ξ, t+, t−) ∈ Bε(x̄(t+))
}

, for T = Z,

I

εM
x̄
u (t−) =



















{

ξ ∈ Rk| d
dt
‖ϕ(ξ, t, t−)− x̄(t)‖ > 0 for all t ∈ I,

ξ ∈ Bε(x̄(t−))
}

∪ {x̄(t−)} , for T = R,
{

ξ ∈ Rk
∣

∣ ‖ϕ(ξ, t, t−)− x̄(t)‖ > ‖ϕ(ξ, s, t−)− x̄(s)‖
for all t, s ∈ I, t > s, ξ ∈ Bε(x̄(t−))

}

∪ {x̄(t−)} , for T = Z

are equivalent to

Ms
x̄ :=







ξ ∈ Rk \ {x̄(t−)}
∣

∣

∣

∣

∣

sup
(t,s)∈(I×I)ξ

6=

∆x̄
ϕ(t, s, ξ) < 0, ϕ(ξ, t+, t−) ∈ Bε(x̄(t+))







∪ {x̄(t−)},

Mu
x̄ :=

{

ξ ∈ Rk \ {x̄(t−)}
∣

∣

∣

∣

inf
(t,s)∈(I×I)ξ

6=

∆x̄
ϕ(t, s, ξ) > 0, ξ ∈ Bε(x̄(t−))

}

∪ {x̄(t−)},
respectively with

∆x̄
ϕ : (I× I×Rk) 6= → R, (6.17)

(t, s, ξ) 7→ ln (‖ϕ(ξ, t, t−)− x̄(t)‖)− ln (‖ϕ(ξ, s, t−)− x̄(s)‖)
t− s

,
(

I× I×Rk
)

6= :=
{

(t, s, ξ) ∈ I× I×Rk
∣

∣t 6= s, t, s ≤ ϕT x̄
ker(ξ, t−)

}

,

(I× I)ξ6= := {(t, s) ∈ I× I|t 6= s, t, s ≤ ϕT x̄
ker(ξ, t−)} .

Proof. Let ξ ∈ Rk \{x̄(t−)}. Set t̊ := ϕT x̄
ker(ξ, t−). Note that t̊ = t+ for T = R.

Then we have










d
dt
‖ϕ(ξ, t, t−)− x̄(t)‖ < 0 for all t ∈ I, for T = R,

‖ϕ(ξ, t, t−)− x̄(t−)‖ < ‖ϕ(ξ, s, t−)− x̄(t−)‖
for all t, s ∈ I, t̊ ≥ t > s, for T = Z

⇔‖ϕ(ξ, t, t−)− x̄(t)‖ − ‖ϕ(ξ, s, t−)− x̄(s)‖ < 0 for all t, s ∈ I, t̊ ≥ t > s

⇔∆x̄
ϕ(t, s, ξ) =

ln (‖ϕ(ξ, t, t−)− x̄(t)‖)− ln (‖ϕ(ξ, s, t−)− x̄(s)‖)
t− s

< 0

for all t, s ∈ I, t̊ ≥ t > s

⇔ sup
(t,s)∈(I×I)ξ6=

∆x̄
ϕ(t, s, ξ) < 0.
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6.6 Local Approximation of (Ft-)Fiber Bundles

Thus, the stable sets are equivalent. The equivalence of the unstable sets
follows analogously.

Local Approximation of (Ft-)Fiber Bundles

In infinite time, I ∈ {R,Z}, local stable and unstable fiber bundles UW
0
s,u

(see Def. 6.0.1) of a hyperbolic fixed point 0 exist and can be represented by
a local graph representation. For discrete invertible systems we refer to [70,
Theorem 3.2], for noninvertible systems to [58, Theorem and proof 3.8] and
[124, Theorem 4.1] and for continuous systems see [76, Theorem 6.5)]. Further
references are [110, Theorem 4.9], [112, Theorem 3.2] and [113, Theorem 3.2].
More precisely, if (2.4)/(2.5) has an exponential dichotomy with the family of
projectors P : I → R

k, there exist maps s± : I× U → R

k with

s+(t, x) = s+(t, P (t)x) ∈ N (P (t)), s−(t, x) = s−(t, (I− P (t))x) ∈ R(P (t))

such that the fiber bundles of (2.2)/(2.3) satisfy

UW
0
s =

{

(t, x+ s+(t, x)) ∈ I×Rk|x ∈ R(P (t)) ∩ U
}

,

UW
0
u =

{

(t, x+ s−(t, x)) ∈ I×Rk|x ∈ N (P (t)) ∩ U
}

.

With this representation we can show that the stable and unstable subspace
of the linearization locally approximate the stable and unstable fibers. In
particular, under smoothness assumptions we have

T0W
0
s (t0) = V 0

s (t0), T0W
0
u (t0) = V 0

u (t0) (6.18)

for t0 ∈ I where T0W
0
s,u(t0) denotes the tangent space of W 0

s,u(t0) at 0, i.e.

T0W
0
s,u(t0) :=

{

ν ∈ Rk|∃ζ ∈ C1((−δ, δ), IεW 0
s,u(t0)) : ζ(0) = 0, ζ̇(0) = ν

}

,

see [21, p. 3370]. For a proof and more details we refer to [105, Proposition
5.4], [76, Theorem 9], [124, Theorem and proof 4.2] and [70, Theorem 3.5].

In the following we show for finite time systems roughly speaking that
the (un)stable cone of the linearization locally approximates the (un)stable
ft-fiber bundle of the original system. More precisely, the boundaries locally
approximate each other. This statement proved in Theorem 6.6.1 holds for
continuous systems as well as for discrete systems. In particular, we show a
result for our ft-fibers, which is analogous to [83, Theorem 4.13]. We use some
of the definitions and techniques presented in [83]. From now on let T ∈ {R,Z}
and let I ⊂ T be a compact interval. First we define the growth rate of a
point by

µ : Rk \ {0} × C(I× I×Rk,Rk) → R, (x, ϕ) 7→ inf
(t,s)∈(I×I)x

6=

∆ϕ(t, s, x),

µ : Rk \ {0} × C(I× I×Rk,Rk) → R, (x, ϕ) 7→ sup
(t,s)∈(I×I)x6=

∆ϕ(t, s, x),
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6 Fiber Bundles in Finite and Infinite Time

with ∆ϕ := ∆0
ϕ, (I× I)x6= defined in (6.17).

Then we have by definition of λ, λ, see equations (3.26) -(3.27), for all
X ∈ Gr(1,Rk) and x̄ ∈ X \ {0}

λ(X,Φ) = sup
x∈X,‖x‖=1,
(t,s)∈(I×I)x6=

∆Φ(t, s, x) = sup
x∈X,‖x‖=1

µ(x,Φ) = µ(x̄,Φ), (6.19)

λ(X,Φ) = inf
x∈X,‖x‖=1,
(t,s)∈(I×I)x6=

∆Φ(t, s, x) = inf
x∈X,‖x‖=1

µ(x,Φ) = µ(x̄,Φ). (6.20)

Let ϕ be the solution operator of of the differential equation (2.2)/the difference
equation (2.3) and Φ be the solution operator of the of the linearization along
the zero reference trajectory (2.4)/(2.5). For analyzing the common properties
of the solution operator ϕ and the solution operator Φ we introduce a measure
of their approximation as in [83, equation (44a),(44b)]

m : R≥0 → R≥0 (6.21)

ν 7→







0, ν = 0,

sup
x∈Bν [0]\{0}

max{|µ(x, ϕ)− µ(x,Φ)|, |µ(x, ϕ)− µ(x,Φ)|}, ν 6= 0,

where Bν [0] :=
{

x ∈ Rk
∣

∣ ‖x‖ ≤ ν
}

denotes the close ν-ball around 0 with
radius ν.

In the following we need that m is continuous at 0. Karrasch yields condi-
tions under which m is continuous at 0 in the discrete and in the continuous
time case. For more information we refer to [83, Lemma 4.10 and Lemma
4.11]. Let 0 be a fixed point of (2.2)/(2.3), ε, δ > 0 and I

εW
0
s,u be the ft-fiber

bundles of (2.2)/(2.3) of 0. Then the stable and unstable tangent sets at
a general point x ∈ ∂IεW

0
s,u(t), t ∈ I, are defined by

Tx∂
I

εW
0
s,u(t) :=

{

ν ∈ Rk|∃ζ ∈ C1((−δ, δ), ∂IεW 0
s,u(t)) : ζ(0) = x, ζ̇(0) = ν

}

,

(6.22)

where ∂IεW
0
s,u denotes the boundary of the ft-fiber bundles I

εW
0
s,u. An analogous

definition of (6.22) can be found in [21, p. 3370]. We show that the tangent
set at 0 of the boundary of the ft-fibers of the original system equals the cone
boundary of the linearized (along zero) system.

Theorem 6.6.1. Let ε > 0, T ∈ {R,Z}, t± ∈ T and I = [t−, t+]T be a compact
interval. Let Γ = ΓT > 0 and 0 : I → R

k be an ft-hyperbolic solution (w.r.t.
‖·‖Γ) of equation (2.2)/ (2.3). Assume (A1). Let I

εW
0
s,u be the ft-fiber bundles

of equation (2.2)/ (2.3) and let IV 0
s,u be the ft-fiber bundles of the linearization

(2.4)/ (2.5). If the function m defined in (6.21) is continuous at 0 then the
tangent set at 0 of the boundary ∂IεW

0
s,u equals the boundary ∂IV 0

s,u, i.e. for all
t ∈ I we have

T0ϕ(t, t−)∂
I

εW
0
s,u(t−) = Φ(t, t−)∂

IV 0
s,u(t−). (6.23)
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Proof. Lemma 6.4.4 yields the existence of an ε̄ > 0 such that

I

εWs,u(t−) ∩Bε̄(0) =
I

εM
0
s,u(t−) ∩ Bε̄(0)

and by Lemma 6.5.3 we obtain

I

εW
0
s,u(t−) ∩ Bε̄(0) =

I

εMs,u(t−) ∩ Bε̄(0) =Ms,u
0 ∩Bε̄(0).

This means that we have

I

εW
0
s (t−) ∩Bε̄(0) =

{

ξ ∈ Bε̄(0)
∣

∣µ(ξ, ϕ) < 0
}

∪ {0}, (6.24)
I

εW
0
u (t−) ∩Bε̄(0) =

{

ξ ∈ Bε̄(0)
∣

∣µ(ξ, ϕ) > 0
}

∪ {0}. (6.25)

For the stable and unstable ft-fibers of the linearization, see (6.15) and (6.16),
we obtain by Lemma 4.2.2 and (6.19), (6.20)

IV 0
s (t−) =

{

ξ ∈ Rk \ {0}
∣

∣∃X ∈ Gr(1,Rk) : ξ ∈ X, λ(X,Φ) < 0
}

∪ {0},
=
{

ξ ∈ Rk \ {0}
∣

∣µ(x,Φ) < 0
}

∪ {0}, (6.26)
IV 0

u (t−) =
{

ξ ∈ Rk \ {0}
∣

∣µ(x,Φ) > 0
}

∪ {0}. (6.27)

First we show that for any

X, Y ∈ Gr(1,Rk) with X ⊂ IV 0
s (t−), Y ⊂ IV 0

u (t−) there exists

a δ > 0 such that Bδ(0) ∩X ⊂ I

εW
0
s (t−), Bδ(0) ∩ Y ⊂ I

εW
0
u (t−). (6.28)

Let X, Y ∈ Gr(1,Rk) with X ⊂ IV 0
s (t−) and Y ⊂ IV 0

u (t−) then by (6.26) and
(6.27) as well as by the definition of µ and µ we have for all x1, x2 ∈ X \ {0},
y1, y2 ∈ Y \ {0}

µ(x1,Φ) = µ(x2,Φ) < 0, µ(y1,Φ) = µ(y2,Φ) > 0.

By the continuity of m there exists a δ > 0 such that m(ν) < −µ(x,Φ) and
m(ν) < µ(y,Φ) for each ν ∈ [0, δ] and x ∈ X \ {0}, y ∈ Y \ {0}. For all
x ∈ Bδ[0] ∩X \ {0}, y ∈ Bδ[0] ∩ Y \ {0} we have with (6.21)

−µ(x,Φ) > m(δ) ≥ |µ(x, ϕ)− µ(x,Φ)| ,
µ(y,Φ) > m(δ) ≥

∣

∣µ(y,Φ)− µ(y, ϕ)
∣

∣ .

This implies for all x ∈ Bδ[0] ∩X \ {0}, y ∈ Bδ[0] ∩ Y \ {0}

µ(x, ϕ) < 0 and µ(y, ϕ) > 0,

which leads by (6.24) and (6.25) for δ < ε̄ to (6.28).
Define

Vs,u :=
(

R

k \ IV 0
s,u(t−)

)

∪ {0},

Ws,u :=
(

R

k \ I

εW
0
s,u(t−)

)

∪ {0}.
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We prove that for any

X, Y ∈ Gr(1,Rk) with X ⊂ Vs, Y ⊂ Vu there exists a δ > 0

such that Bδ[0] ∩X ⊂ Ws, Bδ[0] ∩ Y ⊂ Wu. (6.29)

Therefore, we need the boundary of IV 0
s,u(t−) w.r.t. µ and µ. By the D-

hyperbolicity of the linearization we can apply Corollary 5.3.2 and 5.3.5 as
well as Lemma 5.2.2 and 5.2.3 and we obtain

IV 0
s (t−)

=
{

ξ ∈ Rk \ {0}
∣

∣µ(ξ,Φ) < 0
}

∪ {0}
=
{

ξ ∈ Rk
∣

∣〈Φ(t̄, t−)ξ, SΓ(t̄)Φ(t̄, t−)ξ〉 < 0
}

∪ N (Φ(t̄, t−)),

V a

:=
{

ξ ∈ Rk \ {0}
∣

∣µ(ξ,Φ) > 0
}

∪ {0}

=

{

ξ ∈ Rk
∣

∣ sup
t,s∈I, t>s

‖Φ(t, t−)ξ‖Γ − ‖Φ(s, t−)ξ‖Γ > 0

}

∪ {0}

=

{

{

ξ ∈ Rk
∣

∣

d
dt
‖Φ(t, t−)ξ‖Γ > 0 for any t ∈ I

}

, for T = R,
{

ξ ∈ Rk
∣

∣ ‖Φ(t + 1, t−)ξ‖Γ − ‖Φ(t, t−)ξ‖Γ > 0 for any t ∈ I1

}

, for T = Z,

∪ {0}
=
{

ξ ∈ Rk
∣

∣〈Φ(t, t−)ξ, SΓ(t)Φ(t, t−)ξ〉 > 0 for any t ∈ Ĩ

}

∪ {0}
⊃
{

ξ ∈ Rk
∣

∣〈Φ(t̄, t−)ξ, SΓ(t̄)Φ(t̄, t−)ξ〉 > 0
}

∪ {0} =: V̄ a.

Statement (4.19) and Lemma 5.7.2 yield

IV 0
s (t−) ⊂Φpre(t̄, t−)

IV 0
s (t̄)

=Φpre(t̄, t−)
(

IV 0
s (t̄) ∪ ZΓ(t̄)

)

=
{

Φpre(t̄, t−)ξ ∈ Rk
∣

∣〈ξ, SΓ(t̄)ξ〉 ≤ 0
}

=
{

ξ ∈ Rk
∣

∣〈Φ(t̄, t−)ξ, SΓ(t̄)Φ(t̄, t−)ξ〉 ≤ 0
}

.

This implies

(

IV 0
s (t−) \ {0}

)

∪̇ (Va \ {0}) ∪̇
{

ξ ∈ Rk
∣

∣µ(ξ,Φ) = 0
}

=Rk

=IV 0
s (t−)∪̇

(

V̄ a \ {0}
)

⊂IV 0
s (t−) ∪ (V a \ {0})

=∂IV 0
s (t−) ∪

(

IV 0
s (t−) \ {0}

)

∪ (V a \ {0}) .

Thus,

{

ξ ∈ Rk
∣

∣µ(ξ,Φ) = 0
}

⊂ ∂IV 0
s (t−).
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Analogously, we get

{

ξ ∈ Rk
∣

∣µ(ξ,Φ) = 0
}

⊂ ∂IV 0
u (t−).

These statements yield together with (6.24), (6.25), (6.26), (6.27) and the
continuity of µ and µ

IV 0
s (t−) =

{

ξ ∈ Rk \ {0}
∣

∣µ(ξ,Φ) ≤ 0
}

∪ {0},
IV 0

u (t−) =
{

ξ ∈ Rk \ {0}
∣

∣µ(ξ,Φ) ≥ 0
}

∪ {0},
I

εW
0
s (t−) ∩ Bε̄(0) ⊂{ξ ∈ Bε̄[0] \ {0}|µ(ξ, ϕ) ≤ 0} ∪ {0},

I

εW
0
u (t−) ∩ Bε̄(0) ⊂

{

ξ ∈ Bε̄[0] \ {0}|µ(ξ, ϕ) ≥ 0
}

∪ {0}

and hence

Vs =
(

R

k \ IV 0
s (t−)

)

∪ {0}
=
{

ξ ∈ Rk \ {0}
∣

∣µ(ξ,Φ) > 0
}

∪ {0},
Vu =

(

R

k \ IV 0
u (t−)

)

∪ {0}
=
{

ξ ∈ Rk \ {0}
∣

∣µ(ξ,Φ) < 0
}

∪ {0},
Ws ∩Bε̄[0] :=

((

R

k \ I

εW
0
s (t−) ∩Bε̄(0)

)

∪ {0}
)

∩Bε̄[0]

⊃ {ξ ∈ Bε̄[0] \ {0}|µ(ξ, ϕ) > 0} ∪ {0}. (6.30)

Wu ∩Bε̄[0] :=
((

R

k \ I

εW
0
u (t−) ∩Bε̄(0)

)

∪ {0}
)

∩Bε̄[0]

⊃
{

ξ ∈ Bε̄[0] \ {0}|µ(ξ, ϕ) < 0
}

∪ {0}. (6.31)

Let X, Y ∈ Gr(1,Rk) with X ⊂ Vs, Y ⊂ Vu. Then analogously to the prove of
(6.28) there exists a δ > 0 such that for all x ∈ Bδ[0]∩X\{0}, y ∈ Bδ[0]∩Y \{0}
the following holds

µ(x,Φ) > m(δ) ≥ |µ(x,Φ)− µ(x, ϕ)| ,
−µ(y,Φ) > m(δ) ≥

∣

∣µ(y, ϕ)− µ(y,Φ)
∣

∣ ,

which imply

µ(x, ϕ) > 0, µ(y, ϕ) < 0.

This leads with (6.30) and (6.31) and δ < ε̄ to

Bδ[0] ∩X ⊂ Ws, Bδ[0] ∩ Y ⊂ Wu,

i.e. (6.29) is proved.
Our next step is to prove

∂IV 0
s,u(t−) = T0∂

I

εW
0
s,u(t−). (6.32)
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Let X ∈ Gr(1,Rk) with X ⊂ ∂IV 0
s,u(t−) and assume

X 6⊂ T0∂
I

εW
0
s (t−).

Define

Ts,u :=
{

X ∈ Gr(1,Rk)
∣

∣X ⊂ T0∂
I

εW
0
s,u(t−)

}

,

T a
s,u :=

{

X ∈ Gr(1,Rk)
∣

∣∃δ > 0 : X ∩Bδ[0] ⊂ Ws

}

,

T i
s,u :=

{

X ∈ Gr(1,Rk)
∣

∣∃δ > 0 : X ∩Bδ[0] ⊂ I

εW
0
s,u(t−)

}

.

Then

Ts,u∪̇T a
s,u∪̇T i

s,u = Rk

is satisfied. For X we obtain w.l.o.g.

X ⊂ T i
s,u with dT (X, T

a
s,u) = ρ, (6.33)

where

dT (X, T
b
s,u) := inf

{

d(X, Y )|Y ∈ Gr(1,Rk), Y ⊂ T b
s,u

}

, b ∈ {i, a},
d(X, Y ) := inf

{

‖x− y‖2
∣

∣x ∈ X, y ∈ Y with ‖x‖2 = 1 = ‖y‖2
}

.

Let X1 ∈ Gr(1,Rk) with

X1 ∈ Vs,u and d(X1, X) < ρ. (6.34)

Then by (6.33) we have

X1 ⊂ T i
s,u. (6.35)

Statement (6.34), (6.29) and the definition of T i,a
s,u yield

X1 ⊂ T a
s,u,

which is a contradiction to (6.35) and ,thus,

∂IV 0
s,u(t−) ⊂ T0∂

I

εW
0
s,u(t−)

holds.
Conversely, let Y ∈ Gr(1,Rk) with Y ⊂ T0∂

I

εW
0
s,u(t−) and assume Y 6⊂

∂IV 0
s,u(t−). Then Y ⊂ IVs,u(t−) or Y ⊂ Vs,u. The statements (6.28) and (6.29)

yield a contradiction. Thus,

∂IV 0
s,u(t−) ⊃ T0∂

I

εW
0
s,u(t−)

holds and (6.32) is shown.
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Finally, we prove claim (6.23). Let x ∈ Φ(t, t−)∂
IV 0

s,u(t−) then there exists
a

y ∈ ∂IV 0
s,u(t−) = T0∂

I

εW
0
s,u(t−) (6.36)

with

x = Φ(t, t−)y. (6.37)

Further by (6.36) and (6.22) there exists a function ζ ∈ C1((−δ, δ), ∂IεW 0
s,u(t−))

with ζ(0) = 0 and ζ̇(0) = y. The function

ϕ(t, t−)ζ ∈ C1((−δ, δ), ϕ(t, t−)∂IεW 0
s,u(t−))

satisfies ϕ(ζ(0), t, t−) = ϕ(0, t, t−) = 0 and since Φ is the linearization of ϕ we
get with (6.37)

d

dt
ϕ(ζ(0), t, t−) = Φ(t, t−)ζ̇(0) = Φ(t, t−)y = x.

This implies x ∈ T0ϕ(t, t−)∂
I

εW
0
s,u(t−), which leads to

Φ(t, t−)∂
IV 0

s,u(t−) ⊂ T0ϕ(t, t−)∂
I

εW
0
s,u(t−).

Conversely, let x ∈ T0ϕ(t, t−)∂
I

εW
0
s,u(t−). Then there exists a function

ζ ∈ C1((−δ, δ), ϕ(t, t−)∂IεW 0
s,u(t−)) with ζ(0) = 0 and ζ̇(0) = x. Since ϕ ∈

C1(I × I × Rk,Rk) there exists a function ν ∈ C1((−δ, δ), ∂IεW 0
s,u(t−)) with

ν(0) = 0 such that ζ(ρ) = ϕ(ν(ρ), t, t−) holds for all ρ ∈ (−δ, δ). Then
0 = ϕ(ν(0), t, t−) = ζ(0) is still true and we get by the definition of a tangent
set (6.22) and equation (6.32) that

x = ζ̇(0) =
d

dt
ϕ(ν(0), t, t−)

= Φ(t, t−)ν̇(0) ∈ Φ(t, t−)T0∂
I

εW
0
s,u(t−) = Φ(t, t−)∂

IV 0
s,u(t−).

This leads to

Φ(t, t−)∂
IV 0

s,u(t−) ⊃ T0ϕ(t, t−)∂
I

εW
0
s,u(t−)

and our claim (6.23) is shown.

An Algorithm to Calculate Fiber Bundles

In this section we numerically approximate the fiber bundles we introduced
and studied in the last sections. More precisely, we approximate fiber bundles
of infinite and finite time systems for both invertible and noninvertible sys-
tems. Numerical tools for their computation in invertible infinite time systems
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6 Fiber Bundles in Finite and Infinite Time

are often based on continuation techniques, see for example [106, Subchapter
6.2], [68], [91] or [92]. If the system is noninvertible, stable sets cannot be
computed via backward iteration. To avoid this problem, the authors of [48]
proposed a refined approach – the so called search circle algorithm – for com-
puting stable sets without applying the inverse mapping for 2-dimensional
autonomous infinite time systems.

The method that we introduce here generalizes these ideas to the nonau-
tonomous case where 0 is a hyperbolic fixed point. Another algorithm that
works for invertible and noninvertible, autonomous and nonautonomous 2 or 3
dimensional systems is the contour algorithm. Hüls introduced this algorithm
in [74] for discrete time systems and additionally, applied it to continuous time
systems in [75].

Most of these techniques also apply for finite time systems. Before we study
algorithms for finite time systems, we present a generalization of the search
circle algorithm for infinite time system as in [54, Subsection 5.2].

Consider

x(n + 1) = f(x(n), n) =: fn(x(n)), fn(0) = 0, x(n) ∈ R2 for all n ∈ Z.

The algorithm chooses the first point on the tangent space of the stable
fiber, which is a good linear approximation of the fiber. This subspace can
formally be expressed as the stable subspace of an exponential dichotomy,
which the variational equation

un+1 = Dfn(0)un, n ∈ Z

possesses due to our hyperbolicity assumption, see (6.18). Indeed, these sub-
spaces are numerically accessible for at least discrete invertible systems, see
Corollary 5.0.1.

One step of the algorithm works as follows. Assume we already have an
approximation of the (n + 1)-th fiber, given by the set of points Mn+1 :=
{pn+1

1 , . . . , pn+1
ℓn+1

} that are marked in blue in Figure 6.3. Further assume that
the points pn1 , . . . , p

n
r on the n-th fiber have also been computed (light blue

data in Figure 6.3). We search for the next point pnr+1 on a circular segment γ
shown in Figure 6.3. Therefore, its boundary points pnend and pnstart are mapped
by fn. If the angle α of the circular segment is chosen appropriately, fn(p

n
start)

and fn(p
n
end) lie on different sides of the (n + 1)-th fiber and thus, fn(γ) has

a common intersection with this fiber. For its approximation, we first detect
the neighboring points pn+1

left , pn+1
right ∈ Mn+1 and then calculate the point of

intersection between the line segment pn+1
left p

n+1
right and fn(γ) using bisection. Its

preimage under fn is the next point pnr+1 on the n-th fiber. In case fn(γ) lies
beyond the (n + 1)-th fiber, the continuation of the n-th fiber stops and we
proceed with the (n − 1)-th fiber. Note that the first fibers that we compute
in this way are rather short, but expanding dynamics on the stable fibers – in
backward time – lead to an increase of length if n decreases.
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0

0

pn1 pn2

pn3 pnr−1 pnr

pnr+1

pnstart

pnend

fn(γ)

γ

α
α

pn+1
1

pn+1
2

pn+1
left−1 pn+1

left

pn+1
right

pn+1
ℓn+1−1 pn+1

ℓn+1

fn(p
n
start)

fn(p
n
end) fn(p

n
r+1)

fn

fiber at time n

fiber at time n+ 1

Figure 6.3: Approximation of stable fiber bundles.

Figure 6.4 illustrates this increase of length for our artificial example from
Section 8.1. In the left diagram the stable fibers are extremely close to each
other. To reveal the differences we rotate the highlighted area of the left picture
and show its zoom in the right part of Figure 6.4. The bottom stable fiber
(darkest shade of green) in Figure 6.4 is the first computed one and belongs
to time 70h. Since this is the first fiber we approximate we start with a small
part of the stable subspace of the linearization. Then by using our algorithm
we computed the rest of the plotted fibers; the last computed one is the 65-th
fiber at the top (lightest shade of green). Particularly, the shades of green
from dark to light show the order, in which stable fibers are calculated by our
algorithm.

We finally note that details on the choice of the search angle α and on
techniques for step size control have a similar implementation in autonomous
systems and can be found in [48].

The computation of unstable fiber bundles is not so involved. We can
choose points on the tangent space and iterate them in forward time, jumping
in this way from fiber to fiber (neglecting small approximation errors).

In Figure 6.5 the stable and unstable fibers of the trivial solution of the
model from Section 8.1 are shown. The stable fibers (green) are computed with
the algorithm from above while the unstable fibers (red) are approximated by
forward iteration. The diagram visualizes the fiber bundles on the time interval
[−30h, 30h].
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−0.015 −0.01 −0.005 0
0

0.01

0.02

0.03

0

x2

x1

Figure 6.4: Computation of stable fibers for (8.3), (8.4) with h = 0.04.

x2

x1

t

Figure 6.5: Stable and unstable fiber bundles of (8.3), (8.4) with h = 0.04.

In the following we approximate 2-dimensional finite time dynamical sys-
tems. Analogously to the infinite time case, we compute the stable and unsta-
ble fibers via iteration if the given system is invertible. By Theorem 6.6.1 the
stable and unstable cones of the linearization locally approximate the stable
and unstable fibers. Thus, all points in the cones which are at least ε close to
the ft-hyperbolic solution are a good first approximation. By iterating these
sets we get approximations of the stable and unstable fibers for all times in the
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given interval. Hence, the length of the fibers increase in the respective time
direction as in the infinite time case. In contrast to infinite time systems we
can not extend the time interval such that our algorithm provids sufficiently
long fibers. For the infinite time system (8.3) we approximated the fiber bun-
dles on [−70h, 70h] and plotted them only on the time interval [−30h, 30h] for
h = 0.04. In Figure 6.5 these fibers are illustrated and we see that they are
sufficiently long. For comparison we plotted in Figure 6.6 the boundary of the
stable and unstable fibers of the finite time system (7.9), which we study in
Chapter 7. In the left top picture the increase of the length of the stable fibers
is visualized. In the right top part the stable and unstable fibers, approximated
by iteration, are presented. As expected, the fibers are not one dimensional as
the ones of the infinite time system. At the bottom of Figure 6.6 the stable
and unstable fibers are plotted for the times 1.9 (left) and 0.7 (right). It is
easily seen that the length of the stable fibers at times close to 2.5 and of the
unstable fibers at times close to −2.5 is very short, while in the middle of the
interval both fibers, the stable and unstable ones are of a proper length.

x1

x2

t

x1

x2

t

-2 -1.5 -1 -0.5 0 0.5
-0.5

0

0.5

1

1.5

2

x1

x2

-2 -1.5 -1 -0.5 0 0.5
-0.5

0

0.5

1

1.5

2

x1

x2

Figure 6.6: Stable (green) and unstable (red) fibers of (7.9) computed via
iteration; at the bottom left at time 1.9 and at the bottom right at time 0.7.
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This is not the case for all finite time systems. If the interval is to short then the
fibers may not grow fast enough. Thus, we may only be able to approximate
the fibers in a small neighborhood of the solution. Hence, we probably do
not get the information we are interested in, for example, if the stable and
unstable fibers intersect. Another drawback of finite time fiber bundles is that
they are generally not invariant or at least forward invariant. More precisely,
for noninvertible systems they are not invariant. If the system is invertible
we already found a way to approximate the fiber bundles. If the system is
not invertible we would like to approximate the fibers by a similar algorithm
as described before for noninvertible, infinite time systems. The problem is
that we need forward invariance of the boundaries for the algorithm to work.
Assume the boundary of the stable fibers are forward invariant then, we can
apply the algorithm onto each of the two boundary curves. If the boundary
of the stable fiber bundle is not forward invariant we get an approximation of
the fibers by defining a new forward invariant set, which includes the fibers.
Let

I

εŴ
x̄
s := {(x0, n0) ∈ Rk × I

∣

∣n̂ := I

ϕBmin
ε (x0, x̄(n0), n0) ∈ I, n̊ := ϕT x̄

ker(x0, n0) :

‖ϕ(x0, n2, n0)− x̄(n2)‖ < ‖ϕ(x0, n1, n0)− x̄(n1)‖
for all n1, n2 ∈ I, n̊ ≥ n2 > n1 > n̂}

be the forward ε-stable ft-fiber bundle of a solution x̄ : I → R

k of (2.3)
for an ε > 0. For this set we easily see that

I

εW
x̄
s ⊂ I

εŴ
x̄
s .

Further, these sets are forward invariant, i.e.

ϕ(n2, n1)
I

εŴ
x̄
s (n1) ⊂

I

εŴ
x̄
s (n2)

holds for all n1, n2 ∈ I, n2 > n1 by the following. Let n1, n2 ∈ I, n2 > n1 and

let x ∈ I

ϕŴ
x̄
s (n1) then n̂ := I

ϕBmin
ε (x, x̄(n1), n1) ∈ I and

‖ϕ(x, n, n1)− x̄(n)‖ < ‖ϕ(x,m, n1)− x̄(m)‖

holds for all n,m ∈ I, n̊ ≥ n > m ≥ n̂ with n̊ := ϕT x̄
ker(x, n1). Further, by

Lemma 6.3.2 we have n̂ ≤ ñ := I

ϕBmin
ε (ϕ(x, n2, n1), x̄(n2), n2) ∈ I. Hence,

‖ϕ(ϕ(x, n2, n1), n, n2)− x̄(n)‖ < ‖ϕ(ϕ(x, n2, n1), m, n2)− x̄(m)‖

holds for all n̊ ≥ n > m ≥ ñ ≥ n̂. Last we prove that either n̊ ≤ n2 or

ϕT x̄
ker(ϕ(x, n2, n1), n2) = n̊ holds. Let n̊ > n2. Then

n2 < n̊ =min{n ∈ [n1, n+]Z
∣

∣ϕ(x, n, n1) = 0}
=min{n ∈ [n2, n+]Z

∣

∣ϕ(ϕ(x, n2, n1), n, n2) = 0} = ϕT x̄
ker(x, n2).
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Thus, ϕ(x, n2, n1) ∈
I

εŴ
x̄
s (n2).

Note that Contour techniques also apply to finite time systems. In [55] an
algorithm is introduced and applied to various examples of 2 and 3 dimensional
systems. The stable fibers considered there coincide with our forward invari-

ant set
I

εŴ
x̄
s . Thus, we can apply the contour algorithm to approximate the

forward ε-stable ft-fiber bundle. The obtained approximation is a superset of
the original stable ft-fiber bundle and, thus, an approximation for the original
stable ft-fiber bundle.
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Chapter 7

(In)Finite Time Homoclinic
Trajectories

Systems that describe phenomena with chaotic properties often exhibit homo-
clinic orbits. Examples for chaotic behavior are electrical circuits [127], lasers
in nonlinear optics [41], bursting phenomena in mathematical biology [1] and
chemical reactions with chaotic oscillations in the reactant concentrations [56].
Further references to examples are mentioned in [89]. All these examples show
homoclinic dynamics and, thus, the analysis of homoclinic orbits is of great
interest.

In this chapter we study homoclinic trajectories of continuous and discrete,
finite and infinite time systems. These trajectories lie in the intersection of
stable and unstable fiber bundles. In finite time the intersection is generally
more than a point or curve. Thus, we define the homoclinic tube, which is
the union of all homoclinic trajectories. We present a way to numerically
approximate this tube and prove that the distant of the boundaries decays to
the middle of the finite time interval if the distant remains sufficiently small for
all times. Further, we prove in Section 7.3 that homoclinic orbits of continuous
time systems induce homoclinic orbits of a system, discretized by a one-step
method. Therefore, we analyze the h-flow of a dynamical system in Section
7.2.

Most results for infinite time systems that are presented in this chapter
originate from the publication [54].

The following definition of homoclinic trajectories can be found for discrete
infinite time systems in [73] and for a similar definition in continuous infinite
time we refer to [19].

Definition 7.0.1. Two bounded trajectories x(·) and y(·) of the system (2.1)
for I := T ∈ {R,Z} are homoclinic toward each other if

lim
t→±∞,
t∈T

‖x(t)− y(t)‖ = 0. (7.1)
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If y(t) = 0 for all t ∈ T is a (trivial) trajectory (equilibrium) of (2.1) and
if x(·) is homoclinic toward y(·) then (7.1) has the form limt→±∞ ‖x(t)‖ =
0. Unless stated otherwise, homoclinic always means homoclinic toward the
equilibrium 0. A homoclinic trajectory is also called a homoclinic orbit.
Studying the definition of the stable and unstable fiber bundle (Def. 6.0.1) we
observe that equation (7.1) is equivalent to

x(t) ∈ W y
s (t) ∩W y

u (t) for all t ∈ T. (7.2)

This means that every homoclinic orbit lies in the intersection of the stable
and unstable fiber bundle.

To obtain an adequate definition for “homoclinic” trajectories in finite time
we transfer the properties of an infinite time trajectory to the finite time case.
The condition (7.1) only works for infinite time trajectories. For finite time
systems we cannot take limt→±∞. Hence, it is only meaningful to assume that
the trajectories are close to each other at the boundary times t±. This leads
to the condition

‖x(t±)− y(t±)‖2 < ε, (7.3)

for a fixed ε > 0.
To point out the dependency of ε we define ε-homoclinic trajectories for

finite time system. The condition (7.3) does not yield (7.2) for our ft-fiber
bundles. Thus, in finite time we have to examine (7.2) explicitly. In contrast
to infinite time systems, fibers in finite time are fat objects. Hence, the inter-
section of the stable and unstable ft-fiber bundle normally includes more than
one ε-homoclinic trajectory. Therefore, we define the intersection of the stable
and unstable ft-fibers as the ε-homoclinic tube. This tube is the union of all
ε-homoclinic trajectories.

Definition 7.0.2. Let T ∈ {R,Z} and I = [t−, t+]T be a compact interval
with t± ∈ T. Two different trajectories x(·) and y(·) of system (2.1) are ε-
homoclinic towards each other (form an ε-homoclinic trajectory pair)
if

x(t) ∈ I

εW
y
s (t) ∩ I

εW
y
u (t) for a t ∈ I. (7.4)

Trajectories which are ε-homoclinic towards the hyperbolic fixed point 0 are
called ε-homoclinic trajectories.

Let x̄(·) be a trajectory. The ε-homoclinic t-tube

IT x̄
ε (t) :=

I

εW
x̄
s (t) ∩ I

εW
x̄
u (t)

is the set of all trajectories of (2.2) or (2.3) at time t ∈ I which are ε-
homoclinic towards x̄(·). The ε-homoclinic tube is defined by

IT x̄
ε =

{

(x0, t0) ∈ Rk × I|x0 ∈ IT x̄
ε (t0)

}

.
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Remark 7.0.3. • For invertible systems an ε-homoclinic trajectory pair
satisfies (7.4) for all t ∈ I, see Corollary 7.0.6.

• Caused by the monotonicity of I

εW
y
s,u(·) a solution x(·) ∈ I

εW
y
s (·)∩ I

εW
y
u (·)

has to leave the ε-ball around y(·). This means, the only trivial ε-
homoclinic trajectory pair (x(·), y(·)) satisfies y(·) = x(·). Indeed, from
‖x(t)− y(t)‖2 < ε for all t ∈ I follows I

εW
y
s,u(t) =

I

εM
y
s,u(t) and thus, the

intersection is

I

εW
y
s (t) ∩ I

εW
y
u (t) =

I

εM
y
s (t) ∩ I

εM
y
u(t) = {y}.

• The ε-homoclinic tube may consists of two tubes, since the fibers extent
to two sides.

As mentioned before we want that an ε-homoclinic trajectory pair satisfies
(7.3). This is not explicitly required in the Definition 7.0.2. However, (7.3)
follows from (7.4).

Lemma 7.0.4. Let (x(·), y(·)) form an ε-homoclinic trajectory pair of system
(2.2)/ (2.3) then ‖x(t±)− y(t±)‖2 < ε is satisfied.

Proof. By Definition 7.0.2 we have x(t) ∈ I

εW
y
s (t) ∩ I

εW
y
u (t) for a t ∈ I. Then

the definitions of the t-fibers lead to x(t±) ∈ Bε(y(t±)). Thus, we have
‖x(t±)− y(t±)‖2 < ε.

Lemma 7.0.5. The definition of an ε-homoclinic trajectory pair is symmetric,
i.e. if (x(·), y(·)) is an ε-homoclinic trajectory pair then (y(·), x(·)) is one as
well.

Proof. Let (x(·), y(·)) be an ε-homoclinic trajectory pair. We show that if

x(t0) ∈ I

εW
y
s (t0) ∩ I

εW
y
u (t0)

for a t0 ∈ I then

y(t0) ∈ I

εW
x
s (t0) ∩ I

εW
x
u (t0).

Let x(t0) ∈ I

εW
y
s (t0) \ {0} and t̄ = I

ϕBmin
ε (x(t−), y(t−), t−). Then we have

{

d
dt
‖x(t)− y(t)‖ < 0 for all t ∈ I, t > t̄, in continuous time,

‖x(t)− y(t)‖ < ‖x(s)− y(s)‖ for all t, s ∈ I, t > s > t̄, in discrete time.

By the symmetry of the estimates and the symmetry of ϕBmin
ε (·, ·, t) (Lemma

6.3.1) for all t ∈ I we have y(t0) ∈ I

εW
x
s (t0). Analogously, we can prove that

from x(t0) ∈ I

εW
y
u (t0) the statement y(t0) ∈ I

εW
x
u (t0) follows.
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Corollary 7.0.6. Let ε > 0. If x(·), y(·) are two different trajectories of an
invertible systems (2.2)/ (2.3) such that there exist t0, t1 ∈ I with

x(t0) ∈ I

εW
y
s (t0), x(t1) ∈ I

εW
y
u (t1)

then we get for all t ∈ I

x(t) ∈ I

εW
y
s (t) ∩ I

εW
y
u (t).

If x(·), y(·) are two different trajectories of a (non)invertible system (2.3) such
that there exists n0 ∈ I with

x(t−) ∈ I

εW
y
s (t−), x(n0) ∈ I

εW
y
u (n0)

then we get for all n ∈ I

x(n) ∈ I

εW
y
s (n) ∩ I

εW
y
u (n).

Proof. Let (2.2)/(2.3) be invertible and x(t0) ∈ I

εW
y
s (t0), x(t1) ∈ I

εW
y
u (t1) for

any t0, t1 ∈ I. Then we have for all t ∈ I by the invariance of the fiber bundles
(Lemma 6.4.3)

x(t) = ϕ(x(t0), t, t0) ∈ ϕ(t, t0)
I

εW
y
s (t0) =

I

εW
y
s (t),

x(t) = ϕ(x(t1), t, t1) ∈ ϕ(t, t1)
I

εW
y
u (t1) =

I

εW
y
u (t),

which prove the first statement.
Let (2.2)/(2.3) be noninvertible and x(t−) ∈ I

εW
y
s (t−), x(n0) ∈ I

εW
y
u (n0) for

any n0 ∈ I. Then we have for all n ∈ I

x(n) = ϕ(x(t−), n, t−) ∈ ϕ(n, t−)
I

εW
y
s (t−) ⊂ I

εW
y
s (n),

x(n) = ϕ(x(n0), n, n0) ∈ ϕ(n, n0)
I

εW
y
u (n0) =

I

εW
y
u (n),

which prove the second statement.

In the following we need the Banach space of bounded functions which is
defined for i ∈ N as

X i =
{

u(·) ∈ Ci(R,Rk) : ‖u‖i =
i
∑

j=0

sup
t∈R

∥

∥u(j)(t)
∥

∥

∞ <∞
}

.

For infinite time systems the way the stable and unstable fibers intersect is of
interest. If they intersect transversally than homoclinic orbits are preserved
under a small perturbation of the system. For tangential intersections homo-
clinic orbits generally vanish if the system is perturbed. Thus, we analyze
whether the intersection is transversal or tangential. First we have a look
at the definition of a infinite time transversal orbit and an illustration of the
different types of intersections.
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Definition 7.0.7. A homoclinic orbit x̄(·) of (2.2) for I = R is called trans-
versal if the following is true.

(T) A function u(·) ∈ X1 satisfies

u̇(t) = fx(x̄(t), t)u(t), t ∈ R
if and only if u(·) = 0.

Geometrically, transversality means that stable and unstable fiber bundles
intersect transversally along the homoclinic orbit, see Theorem 7.0.10. In Fig-
ure 7.1 both types of intersection, transversal (top left) and tangential (bottom
left) are pictured. For each system we also plotted the fiber bundles of two
sufficiently small perturbed systems (second and third coulomb). Note that
in nonautonomous continuous ift-systems the intersection of stable and unsta-
ble fibers at a fixed time does not necessarily have a whole orbit in common.
As mentioned before a transversal intersection is preserved under small per-
turbation whereas a tangential intersection does typically not survive under
perturbation. This can be seen in Figure 7.1. The second and third picture
of the first row still have a homoclinic (blue) point whereas the second and
third picture of the second row do not have a homoclinic point. For stable and
unstable ft-fibers the way of intersection does not play a role for the existence
of ε-homoclinic points of a perturbed system. For small perturbations an in-
tersection is always preserved if the fibers are fat sets. In the right panels of
Figure 7.1 two different kinds of intersection are plotted, before and after per-
turbing the system. The fiber bundles are illustrated as fat sets, since this is
in general the case. Figure 7.1 shows that the fibers of the perturbed systems
(fifths and sixths column) intersect for both types of intersection (blue points).

Studying the last row of Figure 7.1 we claim that

Claim 7.0.8. It is possible to get a nontrivial ε-homoclinic tube of an au-
tonomous system although the same system for I = R does not have a non-
trivial homoclinic trajectory.

In Section 7.1 we illustrate this statement by an explicit example and we
give numerical tools to approximate an ε-homoclinic tube.

Before we summarize alternative characterizations of transversality in The-
orem 7.0.10 we impose for system (2.2) a few assumptions under which we later
show that homoclinic orbits of (2.2) induce homoclinic orbits of a discretized
system.
From now on assume I = R or that I = [t−, t+] ⊂ R is a compact interval.

(A4) Let h > 0 and if I is compact such that t−
h
, t+

h
∈ Z. Define

J := Jh :=

{

Z, if I = R,

[n−, n+]Z := [ t−
h
, t+

h
]
Z

, if I = [t−, t+].
(7.5)
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7 (In)Finite Time Homoclinic Trajectories

Figure 7.1: Examples of fiber bundles (infinite time left panels, finite time
right panels). Two different kinds of intersection, tangential (bottom) and
transversal (top), of the stable (green) and unstable (red) fiber are plotted.
The fibers are plotted before (1. and 4. column) and after perturbing (2.,
3., 5. and 6. column) the system. All homoclinic points (intersections) are
marked in blue.

Further set

J1 :=

{

Z, if J = Z,

[ t−
h
, t+

h
− 1]

Z

, if J = [ t−
h
, t+

h
]
Z

.
(7.6)

(A5) f ∈ C1(Rk×I,Rk) satisfies conditions, assuring existence and uniqueness
of global solutions of (2.2) as well as the following estimates for the
solution operator ϕ. For any compact set K ⊂ Rk there exist constants
C1(K), h1(K) > 0 such that the inequality

‖ϕx(x, t, s)‖ ≤ C1(K)

holds for all x ∈ K and |t− s| ≤ h1(K). For n ∈ J1 let

ϕn(x, h) := ϕ(x, (n + 1)h, nh)

be Cd smooth w.r.t. h, d ≥ 1. Mixed derivatives (ϕn)
(1,ℓ)
x,h , ℓ ∈ {0, . . . , d}

exist and satisfy the uniform Lipschitz condition
∥

∥

∥
(ϕn)

(1,d)
x,h (x, µ1)− (ϕn)

(1,d)
x,h (x, µ2)

∥

∥

∥
≤ C1(K) ‖µ1 − µ2‖

for all x ∈ K, 0 ≤ µ1,2 ≤ h1(K) and n ∈ J1.

Further, let
∥

∥

∥
(ϕn)

(r,1)
x,h (x, h)

∥

∥

∥
≤ C1(K) for all n ∈ Z, r ∈ {0, 1}, x ∈ K

and 0 ≤ h ≤ h1(K).

(A6) 0 ∈ Rk satisfies f(0, t) = 0 for all t ∈ I.
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Remark 7.0.9. If (2.2) possesses a (hyperbolic) bounded solution ξ(·) ∈ X0,
then the transformed system

ẏ = g(y, t), g(y, t) := f(y + ξ(t), t)− f(ξ(t), t)

has 0 as a t-independent (hyperbolic) equilibrium. Thus, without loss of gener-
ality (A6) is fulfilled. Note that (A5) is invariant under this transformation.

(A7) 0 is (ft-)hyperbolic. Denote the data of the corresponding variational
equation

ẋ = fx(0, ·)x

by (K, β, P s,u(·)).

(A8) A nontrivial homoclinic orbit x̄(·) of (2.2) exists.

Next we present equivalent statements to (T) from Defintion 7.0.7.

Theorem 7.0.10. Let I = R. Assume (A5)-(A8), then the following state-
ments are equivalent

(ac) The homoclinic orbit x̄(·) is transversal in the sense of (T).

(bc) The variational equation

u̇ = fx(x̄(·), ·)u (7.7)

has an exponential dichotomy on R.

(cc) The linear operator

L(x̄) : X1 → X0, L(x̄)u(·) := u̇(·)− fx(x̄(·), ·)u(·)

is a homeomorphism.

(dc) The tangent spaces Tx̄(0)W
0
s,u(0) of the fibers W 0

s,u(0) at the point x̄(0)
satisfy

Tx̄(0)W
0
u (0)⊕ Tx̄(0)W

0
s (0) = R

k.

Proof. (ac)⇒(bc): Since x̄(·) is a homoclinic orbit w.r.t. the hyperbolic equi-
librium 0, the Roughness-Theorem 3.4.1 applies and gives an exponential
dichotomy of (7.7) that we can extend to R+ and R−. By assuming (ac),
a nontrivial bounded solution cannot exist. Using [104, Prop. 2.1] half
sided dichotomies can be combined into a dichotomy on R.
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7 (In)Finite Time Homoclinic Trajectories

(bc)⇒(cc): Assuming (bc) then N (L(x̄)) = {0 ∈ X1} directly follows. On
the other hand by [39, Chapter V.1] we obtain for each r ∈ X0 – using
Green’s function – a unique bounded solution inX1 of the inhomogeneous
equation

u̇ = fx(x̄(·), ·)u+ r(·).
Thus L(x̄) is injective and surjective.

(cc)⇒(ac): The claim immediately follows, since L(x̄) is a homeomorphism.

(ac)⇔ (dc): For a proof we refer to the end of Section 7.2 where we introduce
the discrete equivalent of these statements.

We see that every homoclinic orbit which is transversal is also a hyperbolic
trajectory and vice versa. Since Theorem 7.0.10 is not applicable to finite time
systems we assume

(A9) The homoclinic orbit x̄(·) is (ft-)hyperbolic.

For the infinite time case this is equivalent to x̄(·) is a transversal orbit,
as assumed in [54]. Several of the following results hold true for bounded
(ft-)hyperbolic trajectories that need not to be homoclinic. For this case, we
assume

(A10) Let ȳ(·) be a (ft-)hyperbolic bounded trajectory of (2.2). Denote by
(K̄, β̄, Q̄s,u(·)) the (ft-)dichotomy data of the corresponding variational
equation

u̇ = fx(ȳ(·), ·)u
and let S ȳ(t, s) be its solution operator.

Approximation of ε-Homoclinic Tubes and Nu-

merical Tools

In this subsection we concentrate on ε-homoclinic tubes. We prove Claim 7.0.8,
i.e.

it is possible to get a nontrivial ε-homoclinic tube of an autonomous system
although the same system for I = R does not have a nontrivial homoclinic

trajectory,

with the help of an explicit example. Further, we find numerical tools to
approximate this tubes and a theoretical statement about their width. To
actually plot ε-homoclinic tubes it is helpful that they are invariant under the
solution operator.
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7.1 Approximation of ε-Homoclinic Tubes and Numerical Tools

Lemma 7.1.1. Let x̄(·) be an ft–hyperbolic trajectory of the invertible ft–
system (2.2)/ (2.3) and let ε > 0. Then the ε-homoclinic t-tube

IT x̄
ε (t) =

IW x̄
s (t) ∩ IW x̄

u (t)

is open and invariant under ϕ(·, t).

Proof. By Lemma 6.4.3 both, the ε-stable IW x̄
s (t) and the ε-unstable IW x̄

u (t) ft-
t-fibers are invariant under ϕ(·, t) for all t ∈ I, i.e. the intersection is invariant.
By Definition 6.3.3/ 6.3.4 we see that I

εW
x̄
s,u(t) are open sets for all t ∈ I. Thus,

the ε-homoclinic t-tube is open.

By the continuity of ϕ(·, ·) we get that the boundary of the tube is invari-
ant. To plot the tube (boundary of the tube) it is sufficient to calculate the
boundary of IT x̄

ε (t−) and plot its image under ϕ(t, t−) for all t ∈ I.
To show that Claim 7.0.8 is true we first consider the autonomous system

ẋ =

(

1.6 (x(1) + x(2)2)
−1.6 (−x(1)2 + x(2))

)

= f(x), x ∈ R2 (7.8)

on I = R. For this system a nontrivial homoclinic orbit exists. With the
Numlab application for Matlab [102] the manifolds of the hyperbolic fixed point
0 are plotted for the parameters h := 0.01 and l = 300, where h denote the
step size of the classical Runge-Kutta method and l the number of steps. The
generated plot is presented in the left of Figure 7.2. The time independency
of the system induces that the fibers are autonomous. This means that if
the manifolds intersect then they have the whole homoclinic orbit in common,
since the fibers are invariant. Hence, the manifolds intersect tangentially and
the existing homoclinic orbit is tangential. As illustrated in Figure 7.1 (left
bottom panel) the homoclinic orbit vanishes by perturbing the given system
(7.8). To prove this we study the perturbed system

ẋ =

(

1.6 (x(1) + x(2)2)
−1.6016 (−x(1)2 + x(2))

)

= f(x), x ∈ R2. (7.9)

For comparison we also let Numlab plot the manifolds of the hyperbolic fixed
point 0 of the perturbed system (7.9) for the same parameters (h = 0.01,
l = 300). These manifolds are pictured in the right half of Figure 7.2. Note
that the manifolds do not intersect. Hence, the system (7.9) does not have a
nontrivial homoclinic trajectory.

In the following example we show that on a finite time interval system
(7.9) has a nontrivial ε-homoclinic tube. This proves Claim 7.0.8. Further we
develop a tool to approximate the tube.
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Figure 7.2: The stable and unstable manifolds of the fixed point 0 of system
(7.8) (left) and (7.9) (right).

Example 7.1.2. Consider the finite time autonomous system (7.9) on I =
[−2.5, 2.5]. We see that 0 is a fixed point. Our aim is to find all nontrivial
ε-homoclinic trajectories towards 0 for ε := 0.1 and prove that at least one ε-
homoclinic orbit exists. First we start with the approximation of the stable and
unstable fiber bundles. Therefore, we compute the stable and unstable cones Vs,u
of the linearization with the help of Lemma 5.6.1. To apply this lemma we show
that 0 is an ft-hyperbolic solution, i.e. fx(0) is D-hyperbolic w.r.t. the euclidean
norm (Γ = I). The symmetric part of fx(0) is fx(0) = diag(1.6,−1.6016) itself
(indefinite and nondegenerate) and the acceleration tensor is M = 2fx(0)

2

(positive definite). Thus, 0 is an ft-hyperbolic solution and by Lemma 5.6.1 we
have

∂Vs(2.5) = ∂Vu(−2.5) = L
((√

1.6016√
1.6

))

∪ L
((

−
√
1.6016√
1.6

))

.

Since these boundaries approximate the boundaries of the fiber bundles locally,
see Theorem 6.6.1, we take as a first approximation all points in the cones
which are at least ε close to 0.

These sets are illustrated in Figure 7.3 in the light green (Vs(2.5) ∩ Bε(0))
and in light red (Vu(−2.5) ∩Bε(0)). To prove which points

xu(−2.5) ∈ ∂ (Vu(−2.5) ∩ Bε(0))

(bright red in the top left picture) satisfy

xu(2.5) = Φ(2.5,−2.5)xu(−2.5) ∈ Vs(2.5) ∩ Bε(0)
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7.1 Approximation of ε-Homoclinic Tubes and Numerical Tools
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Figure 7.3: Finding all ε = 0.1-homoclinic trajectories to the fixed point 0 of
system (7.9).
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7 (In)Finite Time Homoclinic Trajectories

we need the solution operator Φ(·, ·) of system (7.9). Since the solution operator
is not given explicitly we approximate xu(2.5) with the help of the classical
Runge-Kutta method of order 4, see [108, S.172]. This is a discretization
method, thus, we need a step size

h :=
5

n
, n = 500.

We calculate {Φ(2.5,−2.5)x|x ∈ (∂(Vs(−2.5) ∩Bε(0)) ∩G)}, where G is a
adjusted fine grid. These points are plotted in red in the right middle part of
Figure 7.3. The ones which satisfy xu(2.5) ∈ Vs(2.5) ∩Bε(0) are marked with
an x and are also plotted (red) in the panel below. Further, their preimages
at time −2.5 are plotted (red) in the left bottom part. Next we search for all
points

xu(−2.5) ∈ Vu(−2.5) ∩ Bε(0)

which satisfy

xu(2.5) = Φ(2.5,−2.5)xu(−2.5) ∈ ∂(Vs(2.5) ∩ Bε(0)).

With time reversal and negative step size for the classical Runge-Kutta method
we obtain an approximation of {Φ(−2.5, 2.5)x|x ∈ (∂(Vs(2.5) ∩Bε(0)) ∩G)},
illustrated in green in the left middle part of Figure 7.3. The points x which
satisfy

x ∈ Vu(−2.5) ∩Bε(0)

are marked by an x and are also plotted (green) in the panel below. Fur-
ther, their images at time 2.5 are shown (green) in the right bottom graphic.
Φ(·,−2.5)xu(−2.5) is an ε-homoclinic trajectory towards 0 if and only if the
point xu(−2.5) lies inside the (by the red and green x) marked set in the left
bottom panel of Figure 7.3. The boundary points at time 2.5 lie inside the
marked set in the right bottom panel.

The boundary of the ε = 0.1-homoclinic tube w.r.t. the fixed point 0 is
illustrated in the top of Figure 7.4. To approximate it we started with the
boundary (green and red points in the right bottom picture of Figure 7.3) of the
ε = 0.1-homoclinic t = 2.5-tube. Then we searched the previous points with the
help of the classical Runge-Kutta method and step size −0.01. The boundary of
all ε = 0.1-homoclinic orbit points at time 2.5 are the boundary point in green.
The magenta boundary points mirror the boundary of the ε = 0.1-homoclinic
tube at time −2.5. For each 0.5-time step the points of the boundary are marked
in different colors from magenta over yellow to green. The left panel of Figure
7.4 shows a sector of the orbit tube from the top. The whole tube projected to
the x1-x2-plane is plotted in the right panel of Figure 7.4.
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Figure 7.4: All ε = 0.1-homoclinic trajectories w.r.t. the fixed point 0 of system
(7.9).

With the method described above we construct a boundary value problem,
which enables a direct calculation of the boundary of the tube. This ansatz
also applies to noninvertible dynamical systems. Consider

ẋ = f(x, t), x ∈ Rk, t ∈ I = [t−, t+]

and assume that 0 is an ft-hyperbolic solution. Let Γ = ΓT > 0 and let
SΓ(t) =

1
2
[Γfx(0, t) + fx(0, t)

TΓ] be the symmetric part of fx(0, t) for all t ∈ I.

Denote by IVs,u(t), t ∈ I the stable and unstable t-cones of the linearized
system. We discretize this system by applying a one-step method

xn+1 = f̃n(xn), n ∈ [0, N ]
Z

with step size h = t+−t−
N

and N ∈ N, N > 0. First define an operator whose
zeros imply trajectories of the one-step method, i.e. F : R(N+1)k → R

Nk,
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F







x0
...
xN






:=







x1 − f̃0(x0)
...

xN − f̃N−1(xN−1)






.

Let X =
(

x0 . . . xN
)T

, fix2 ∈ R be variable and fix1 ∈ R be a constant.

Define the operator F1 : R
(N+1)k+1 → R

(N+1)k+1 by

F1

(

X
fix2

)

:=





F (X)
b1proj(x0, xN , fix2)
〈x0, SΓ(t−)x0〉



 ,

with boundary condition

b1proj : R
k ×Rk ×R→ R

k, b1proj(x, y, µ) :=

(

Ys(t−)
Tx− fix1

Yu(t+)
Ty − µ

)

,

where Ys,u(t) forms a basis of (Uu,s(t))
⊥ and Us,u(t) ⊂ IVs,u(t) is a vector

space of maximal dimension for all t ∈ I. This is an adapted version of the
projection boundary condition presented in [72] for the infinite time case. Note
that Ys(t−)Tx − fix1 displays the “distance” between x and the ft-hyperbolic
solution 0 at time t−. For an ε-homoclinic orbit the “distance” does not need
to be zero. It is variable in the interval (−ε, ε), since the boundary point of a
homoclinic orbit x(·) satisfies ‖x(t±)‖ < ε.

Further define the following operator F2 : R
(N+1)k+1 → R

(N+1)k+1 by

F2

(

X
fix2

)

:=





F (X)
b1proj(x0, xN , fix2)

‖x0‖2 − ε



 .

Let now fix2 ∈ R be a constant.
Then define the operators F3,4 : R

(N+1)k+1 → R

(N+1)k+1 by

F3

(

X
fix1

)

:=





F (X)
b2proj(x0, xN , fix1)
〈xN , SΓ(t+)xN 〉



 , F4

(

X
fix1

)

:=





F (X)
b2proj(x0, xN , fix1)

‖xN‖2 − ε



 ,

with the boundary condition

b2proj : R
k ×Rk ×R→ R

k, b2proj(x, y, µ) :=

(

Ys(t−)
Tx− µ

Yu(t+)
Ty − fix2

)

.

If fix1,2 are fixed, then b1proj(x, y, fix2) = b2proj(x, y, fix1) for all x, y ∈ R. This
means that if (x, fix2) is a zeros of F1 with fixed fix1 and if x(N +1) solves the
last equation of F3,4 then (x, fix1) is a zero of F3,4 with fixed fix2.
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To get the boundary of an ε-homoclinic tube we first need to find a fix1 ∈
(0, ε] such that X ∈ R(N+1)k with F1(X, µ) = 0 for a µ ∈ R lies on the bound-
ary of the ε-homoclinic tube. Note that the stable cone is a good approximation
of the stable fiber in a small neighborhood of 0. Thus, it is sufficient to prove
that the boundary point X(N + 1) = xN (at time t+) lies on the boundary of
the intersection of the stable cone and the ε-ball around 0, i.e.

〈xN , SΓ(t+)xN〉 ≤ 0, ‖xN‖2 = ε

or 〈xN , SΓ(t+)xN〉 = 0, ‖xN‖2 ≤ ε.
(7.10)

We change fix1 sufficiently small and approximate with the Newton method a
zero of F1 with the changed fix1. If the condition (7.10) is satisfied for the new
zero we continue with this procedure until the condition is not satisfied. This
leads to a set of trajectories which form one part of the tube boundary. The
boundary of the ε-homoclinic tube consists of six segments. The first segment
is the one we just calculated. The other five segments are obtained in a similar
way. We need to find a zero

of F1 for fix1 ∈ [−ε, 0),
of F2 for fix1 ∈ [−ε, ε],

which satisfy condition (7.10). Via continuation w.r.t. fix1 in the given interval
as long as (7.10) is true we get two more curves of the tube boundary. Further
we need a zero

of F3 for fix2 ∈ [−ε, 0) and fix2 ∈ (0, ε],

of F4 for fix2 ∈ [−ε, ε]

which satisfy
〈x0, SΓ(t−)x0〉 ≥ 0, ‖x0‖ = ε

or 〈x0, SΓ(t−)x0〉 = 0, ‖x0‖ ≤ ε.
(7.11)

Via continuation this time w.r.t fix2 as long as (7.11) is true we get the rest of
the tube boundary.

We can calculate all six parts of the tube boundary separately or combined.
For the first alternative we need for each function F2,4 one initial trajectory and
for F1,3 two, one for a fixed parameter in [−ε, 0) and one for a fixed parameter
in (0, ε]. This means, we need six initial trajectories. Via continuation we
obtain six curves, which together form the boundary of the tube. The second
alternative requires only one initial trajectory. Figure 7.5 describes a way to
obtain the entire boundary with just one initial trajectory. We start with one
initial trajectory x, one initial parameter fix2 and a fixed fix1 ∈ (0, ε] such that
(x, fix2) is a zero of F1 which satisfies (7.10). This solution and fixed constant
fix1 are marked in black in Figure 7.5. Via continuation as described above
w.r.t. fix1 as long as (7.10) is satisfied we get a curve with boundary points
(x±, fix±2 ). Denote the fixed constants by fix±1 . The boundary points satisfy
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7 (In)Finite Time Homoclinic Trajectories

〈x+N , SΓx
+
N 〉 = 0 and

∥

∥x−N
∥

∥

2
= ε. Then (x+, fix+

1 ) is a zero of F3 with constant

fix+
2 and (x−, fix−1 ) is a zero of F4 with constant fix−2 . Via continuation w.r.t.

fix2 we get two more parts of the tube boundary (curves) and for each boundary
point with fixed constant a initial point for an other Fi function (with fixed
constant). Continuing this procedure until the curves reach its initial point, we
get the entire boundary via continuation from one initial trajectory. In Figure
7.5 we see how to change fix1 and fix2 such that we get a zero of another Fi

function. Further it shows which function Fi we have to use.

(

x
fix2

)

fix1

(

x−

fix−2

)

fix−1

(

x+

fix+2

)

fix+1
(

x−

fix−1

)

fix−2

(

x+

fix+1

)

fix+2

(

y−
yfix−1

)

yfix−2

(

y+
yfix+1

)

yfix+2

(

y−
yfix−2

)

yfix−1

(

y+
yfix+2

)

yfix+1

(

z−
zfix−2

)

zfix−1

(

z+
zfix+2

)

zfix+1

(

z−
zfix−1

)

zfix−2

(

z+
zfix+1

)

zfix+2

F1

F4 F3

F2
F1 F3

Figure 7.5: Circle of continuation to approximate the boundary of an ε-
homoclinic tube with one initial trajectory x.

Finally we apply this method to equation (7.9).

Example 7.1.11. (part 2)
We apply the continuation algorithm from above, which is based on the

boundary value problems Fi, and obtain as illustrated in Figure 7.6 the bound-
ary of the tube. We plotted the boundary at time −2.5 and 2.5 to illustrate
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where the boundary of the tube and the stable and unstable cone coincide. The
boundary value problem requires for the solution points at these times that they
lie in the (un)stable cone and an ε-ball.

-0.1 0 0.1

-0.1

0

0.1

x1

x2

F1

Vu(−2.5) ∩ Bε(0)

x̄(−2.5)

-0.1 0 0.1

-0.1

0

0.1

x1

x2

F4

Vs(2.5) ∩ Bε(0)

x̄(2.5) ȳ(2.5)
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Figure 7.6: Calculation of all points of the ε-homoclinic tube of system (7.9)
with the boundary value problem.

Having another look at Figure 7.4 we see in the bottom panel that the dis-
tance between the boundaries decreases if the distant to the fixed point increases.
To analyze this in more detail we take three points X1, X2 and X3 on the
boundary of the ε-tube at time 2.5. These points are marked in black in Figure
7.7.
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Figure 7.7: Three reference points of the boundary of the ε-homoclinic tube
at time 2.5 (marked in black) of system (7.9).

We approximate the corresponding orbits X1(·), X2(·) and X3(·) with the clas-
sical Runge-Kutta method and step size h = −0.01. First we take the orbit
X1(·) and calculating for each 0.01-time step the smallest distance d to the
orbit X2(·), i.e.

d(t0) := min
t∈(I∩hZ)

‖X1(t0)−X2(t)‖2 , t0 ∈ I ∩ 0.01Z.

In Figure 7.8 the blue dashed line shows this distance. The solid blue line
gives us the distance between the same orbits approximated with a smaller
step size h = −0.001. The green lines illustrates the distance of X1(·) to the
orbit X3(·) and the black lines of X2(·) to X3(·). The dashed lines show the
distance between the orbits approximated with step size h = −0.01 while the
solid lines illustrate the distance between the orbits approximated with step size
h = −0.001. In the right part of Figure 7.8 we computed for each logarithmic
distance graph a linear fit to all points from time −2.3 to −1.8 and a second
fit to all points from time 1.3 to 1.8.

The linear fits provide approximations of the gradients. We observe that the
distance decays exponentially fast to the middle of the interval. In general the
distance does not decays towards the the exact middle of the interval. The
place (time) depends on the exponential rates. The graphs corresponding to
step size h = −0.001 (solid lines) decreases until they reach J1 and the graphs
corresponding to step size h = −0.01 (dashed lines) only until they reach J ⊂ J1
(in Figure 7.8 the intervals J and J1 are coordinated for the black graphs).
We expect that the decay does not stop in an interval J of J1, as the plotted
graphs, if we theoretically calculate the distance between the continuous orbits.
In Figure 7.9 we illustrate the reason why the decay stops. In the left part we
plotted the three orbits X1(·) (blue), X2(·) (red) and X3(·) (green) projected to
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Figure 7.8: The distance of three different trajectories (Φ(·, 2.5)Xi, i = 1, 2, 3)
over the time interval.

the x1-x2-plane. The right part shows a section of these orbits (points of the
orbit for times close to 0). Two distances calculated between the discretized
orbits are marked with a black line. The brown lines illustrate the distance
between the continuous orbits, which are shorter than the black lines.
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Figure 7.9: Numerical artifacts are causing that the distance does not expo-
nentially decrease for times close to 0.

199



7 (In)Finite Time Homoclinic Trajectories

We expect that the approximation of the distances gets more precise the
smaller we choose the step size. Further we await that in the theoretical case
the distance decays exponentially fast towards the middle of the given interval
I. Beyn, Hüls and Schenke studied in [21] infinite time discrete hyperbolic
dynamical systems. They showed that two finite orbit segments in a small
neighborhood of a hyperbolic orbit converge exponentially fast towards each
other (for t towards some time in the given finite time interval). Inspired by
this publication we study a solution x(·) of a continuous finite time dynamical
system which generates a K-hyperbolic, K ∈ [1,∞), variational equation. We
prove that two solutions of the original system in a small neighborhood of
the solution x(·) converge exponentially fast towards each other (for t towards
some time in the interval).

Theorem 7.1.12. Let I = [t−, t+], K ∈ [1,∞) and x̄ : I → R

k be a solution
of equation (2.2). Further let

u̇(t) = fx(x̄(t), t)u(t)

be K-hyperbolic (w.r.t. ‖·‖) on I with α, β > 0. Then there exists an ε̄ > 0,
0 < α̃ ≤ α, 0 < β̃ ≤ β and a constant C > 0 such that for all 0 < ε ≤ ε̄ any
two solutions z1, z2 of (2.2) with sup

t∈I
‖z1,2(t)− x̄(t)‖ ≤ ε satisfy

‖z1(t)− z2(t)‖ ≤ 5εK2C(e−α̃(t−t−) + e−β̃(t+−t))

for all t ∈ I.

Proof. Define d(t) = z1(t)− z2(t) for all t ∈ I. Then d(·) solves

ḋ(t) = ż1(t)− ż2(t) = f(z1(t), t)− f(z2(t), t)

=

∫ 1

0

fx(z2(t) + sd(t), t)dsd(t) =: A(t)d(t).

Next we show that

u̇(t) = A(t)u(t) (7.12)

has an exponential dichotomy on I with K̃ = 5K2

2
and exponential rates 0 <

α̃ ≤ α, 0 < β̃ ≤ β. For that purpose we use Theorem 3.4.4 and need to show
that

sup
t∈I

‖A(t)− fx(x̄(t), t)‖ <
min{α, β}

4
.
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The modulus of continuity is given by

ω(fx,R
k, δ)

= sup

{

sup
t∈I

‖fx(x(t), t)− fx(y(t), t)‖
∣

∣

∣

∣

∣

x, y : I → R

k : sup
t∈I

‖x(t)− y(t)‖ ≤ δ

}

.

Choose ε̄ > 0 such that ω(fx,R
k, ε) < min{α,β}

4
for all 0 < ε ≤ ε̄. Then by

sup
t∈I

‖z2(t) + sd(t)− x̄(t)‖ ≤ s sup
t∈I

‖z1(t)− x̄(t)‖+ (1− s) sup
t∈I

‖z2(t)− x̄(t)‖

≤ sε+ (1− s)ε = ε, s ∈ [0, 1],

we get

sup
t∈I

‖A(t)− fx(x̄(t), t)‖ ≤
∫ 1

0

sup
t∈I

‖fx(z2(t) + sd(t), t)− fx(x̄(t), t)‖ds

≤
∫ 1

0

ω(fx,R
k, ε)ds

= ω(fx,R
k, ε) <

min{α, β}
4

.

This implies an exponential dichotomy (w.r.t. ‖·‖) of (7.12) on I with K̃ = 5K2

2
,

0 < α̃ ≤ α, 0 < β̃ ≤ β and an invariant family of projectors Q : I → R

k×k.
Denote the solution operator of (7.12) by Ψ, then the solution d(·) of (7.12)
satisfies

d(t) = Q(t)d(t) + (I−Q(t))d(t) = Q(t)Ψ(t, t−)d(t−) + (I−Q(t))Ψ(t, t+)d(t+)

= Ψ(t, t−)Q(t−)d(t−) + Ψ(t, t+)(I−Q(t+))d(t+).

Combining this with

sup
t∈I

‖d(t)‖ = sup
t∈I

‖z1(t)− x̄(t) + x̄(t)− z2(t)‖

≤ sup
t∈I

‖z1(t)− x̄(t)‖+ sup
t∈I

‖z2(t)− x̄(t)‖ ≤ ε+ ε = 2ε

we obtain

‖d(t)‖ ≤ ‖Ψ(t, t−)Q(t−)d(t−)‖+ ‖Ψ(t, t+)(I−Q(t+))d(t+)‖

≤ 5K2

2
e−α̃(t−t−) ‖Q(t−)d(t−)‖+

5K2

2
e−β̃(t+−t) ‖(I−Q(t+))d(t+)‖

≤ 5K2

2
sup
t∈I

‖d(t)‖C
(

e−α̃(t−t−) + e−β̃(t+−t)
)

≤ 5εK2C
(

e−α̃(t−t−) + e−β̃(t+−t)
)

with C = max{‖Q(t−)‖ , ‖I−Q(t+)‖}.
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Corollary 7.1.13. Let I = [t−, t+], K ∈ [1,∞) and x̄ : I → R

k be a solution
of equation (2.2). Further let

u̇(t) = fx(x̄(t), t)u(t)

be M-hyperbolic (w.r.t. ‖·‖) on I with α, β > 0. Then there exists an ε̄ > 0,
0 < α̃ ≤ α, 0 < β̃ ≤ β and a constant C > 0 such that for all 0 < ε ≤ ε̄ any
two solutions z1, z2 of (2.2) with sup

t∈I
‖z1,2(t)− x̄(t)‖ ≤ ε satisfy

‖z1(t)− z2(t)‖ ≤ 2εC(e−α̃(t−t−) + e−β̃(t+−t))

for all t ∈ I.

Proof. Using Theorem 3.4.11 instead of Theorem 3.4.4 we obtain the constant
1 instead of 5K2

2
.

For K-hyperbolic systems we conclude that the distance of the boundary
of the ε-homoclinic tube decreases to the middle of the given interval if the
distance stays sufficiently small for all times within the interval. In our example
(7.9) this is the case.

Discretization by the h-Flow

In this subsection, we discretize the differential equation (2.2), using the h-
flow. From a numerical point of view, this ansatz is of no practical relevance.
It is introduced for deriving error estimates of one-step methods in the next
subsection.

From now on if not other mentioned assume (A4). Further, let ϕ(·, t, s)
be defined for all t, s ∈ I (invertible). We consider the h-flow

ϕn(x, h) := ϕ(x, (n+ 1)h, nh), n ∈ J1 (7.13)

and note that the resulting dynamical system generated by the difference equa-
tion

xn+1 = ϕn(xn, h), n ∈ J1, xn ∈ Rk (7.14)

is invertible. An orbit

ϕJ(·, h) :=
{

ϕ
Z

(·, h), for J = Z

(·;ϕJ1(·, h)) , for J 6= Z

that satisfies the boundary condition b(·, ϕn+−1(·, h)) = 0) is a zero of the
operator

Υ : SJ ×R→ SJ, (xJ, h) 7→
(

xn+1 − ϕn(xn, h), n ∈ J1

hb(xn−
, xn+), if J 6= Z

)
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that operates on the Banach space of bounded sequences

SJ :=

{

{

x
Z

= (xn)n∈Z : xn ∈ Rk, ‖x
Z

‖ := supn∈Z ‖xn‖ <∞
}

, if J = Z,
{

xJ = (xn)n∈J : xn ∈ Rk
}

, if J 6= Z.

Assuming (A10), the discretized orbit

ȳJ(h) := (ȳn(h))n∈J := (ȳ(nh))n∈J (7.15)

is bounded and a zero of Υ, where ϕ is the solution operator of (2.2), if
the boundary condition equals zero. Further, we look at the corresponding
variational equation, b ∈ C1(R2k,Rk), that we obtain by differentiating Υ
w.r.t. the first component

ΥxJ
(ȳJ(h), h) : SJ → SJ, (7.16)

uJ 7→
(

un+1 − (ϕn)x(ȳn(h), h)un, n ∈ J1

h(D1b(ȳn−
, ȳn+)un−

+D2b(ȳn−
, ȳn+)un+), if J 6= Z.

)

Transversality of homoclinic orbits x
Z

(h) in discrete time systems is char-
acterized by one of the equivalent properties given in Theorem 7.2.1, see The-
orem 7.0.10 for the continuous time case and note that all results applied in
the proof have a discrete time counterpart. For the equivalence of (a∆) and
(d∆) we particularly refer to [70, Lemma 3.7] .

Theorem 7.2.1. Let I = R. Assume (A5)-(A8) and let h > 0. Then x̄
Z

(h)
is a homoclinic orbit of (7.13). Furthermore, the following statements are
equivalent:

(a∆) un+1 = (ϕn)x(x̄n(h), h)un, u
Z

∈ S
Z

⇔ u
Z

= 0.

(b∆) The variational equation

un+1 = (ϕn)x(x̄n(h), h)un, n ∈ Z
has an exponential dichotomy on Z.

(c∆) Υx
Z

(x̄
Z

, h) is a homeomorphism.

(d∆) The tangent spaces Tx̄0W
0
s,u(0, h) of the global stable and unstable 0-fibers

W 0
s,u(0, h) of the h-flow xn+1 = ϕn(xn, h) satisfy

Tx̄0W
0
s (0, h)⊕ Tx̄0W

0
u (0, h) = R

k.

As in the continuous time case the statements in Theorem 7.2.1 are not
equivalent for finite time systems. We want at least that from statement (b∆)
statement (c∆) follows. Therefore, it is important that the domain of defini-
tion and the range of Υx

Z

have the same dimension. This is the reason why
we added for finite time systems to the one-step-method a boundary condi-
tion. To prove that from (b∆) the statement (c∆) follows we need assumptions
depending on the boundary condition.
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7 (In)Finite Time Homoclinic Trajectories

(A11) Let the images of the projectors Q̄s(t−), Q̄u(t+) satisfy R(Q̄s(t−)) ⊕
R(Q̄u(t+)) = R

k and let the boundary condition b(·, ·) satisfies b ∈
C1(R2k,Rk) and b := b(ȳn−

, ȳn+) = 0. Further, let

B(ȳJ) :=h
(

D1b+D2bΦ(n+, n−)|R(Q̄s(t−)) D1bΦ̄(n−, n+) +D2b|R(Q̄u(t+))

)

:

R(Q̄s(n−))⊕R(Q̄u(n+)) → R

k

be invertible. For any compact set K ⊂ R

k there exist a constant
C(K) > 0 such that

∥

∥bx(xn−
, xn+)− bx(yn−

, yn+)
∥

∥ ≤ C(K) ‖xJ − yJ‖
holds for all xn, yn ∈ Rk, n ∈ J.

With these assumptions we obtain that for ft-hyperbolic trajectories yJ the
operator ΥxJ

(yJ, h) is a homeomorphism (“(b∆) → (c∆)”). The proof is similar
to [73, Theorem 4] and [21, Theorem 6] for infinite autonomous and nonau-
tonomous systems on finite time intervals.

Theorem 7.2.2. Let I = [t−, t+]. Assume (A4), (A5) and that ȳ(·) is a
trajectory of (2.2). Then ȳJ(h) is a trajectory of (7.13). Let the variational
equation

un+1 = (ϕn)x)(ȳn(h), h)un, n ∈ J1

have an ft-exponential dichotomy with the invariant family of projectors
Q̄s,u(hn) = Q̄s,u

n (h), n ∈ J and solution operator Φ(n,m), m,n ∈ J, n ≥ m.
Further assume (A11). Then ΥxJ

(yJ, h) is a homeomorphism.

Proof. By (A5) it is sufficient to show that (7.16) is bijective. Hence, we have
to prove that for every yJ1 ∈ SJ1 and r ∈ Rk there exists a unique solution ūJ
of the boundary value problem

ΥxJ
(ȳJ, h)uJ =

(

yJ1
r

)

.

Denote by Φ(m,n) the inverse of Φ(n,m)|R(Q̄u
m(h)) for all n,m ∈ I, n ≥ m.

The general solution of the linear equation is given by

un := Φ(n, n−)v− + Φ(n, n+)v+ +
∑

m∈J1
G(n,m+ 1)ym

with v− ∈ R(Q̄s
n−

(h)) and v+ ∈ R(Q̄u
n+
(h)), where G(·, ·) is the Green’s func-

tion, see [105].
To show that the solution is unique we have to prove that v− and v+ are

unique. We insert the general solution into the boundary condition

r =hD1b(ȳn−
, ȳn+)[v− + Φ(n−, n+)v+ +

∑

m∈J1
G(n−, m+ 1)ym]

+ hD2b(ȳn−
, ȳn+)[Φ(n+, n−)v− + v+ +

∑

m∈J1
G(n+, m+ 1)ym].
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7.2 Discretization by the h-Flow

Since yJ1 is fixed and given we define

R = hD1b(ȳn−
, ȳn+)

∑

m∈J1
G(n−, m+ 1)ym + hD2b(ȳn−

, ȳn+)
∑

m∈J1
G(n+, m+ 1)ym.

Set b = b(ȳn−
, ȳn+). Then we need to solve

r −R = h[D1b+D2bΦ(n+, n−)]v− + h[D1bΦ(n−, n+) +D2b]v+

= h
(

D1b+D2bΦ(n+, n−) D1bΦ(n−, n+) +D2b
)

(

v−
v+

)

= B(ȳJ)

(

v−
v+

)

.

By (A11) the vectors v− and v+ are unique.

(Ft-)Hyperbolicity as well as transversality of a trajectory in continuous
time carries over to the discrete trajectory generated by the h-flow.

Lemma 7.2.3. (a) Assume (A4), (A5) and (A10), then ȳJ(h) is a (ft-)hyper-
bolic bounded trajectory of ϕn(·, h).

(b) Let J = Z. Assume (A5)-(A8), then the following statements are equiv-
alent.

(b1) The continuous time orbit x̄(·) is transversal.

(b2) There exists an ĥ > 0 such that x̄
Z

(h) is a transversal homoclinic
orbit of the h-flow ϕn(·, h) for all step sizes 0 < h ≤ ĥ.

Proof. Assume (A4), (A5) and (A10). Denote by Φ(·, ·) the solution operator
of the variational equation

un+1 = (ϕn)x(ȳn(h), h)un, n ∈ J1 (7.17)

and observe by the following that

Φ(n,m) = S ȳ(nh,mh), n,m ∈ J. (7.18)

Since S ȳ(·, ·) is the solution operator of u̇ = fx(ȳ(·), ·)u we get for s, t ∈ I

d

dt
S ȳ(t, s) = fx(ȳ(t), t)S

ȳ(t, s). (7.19)

Further, ϕ(ȳ(s), t, s) is a solution of ẋ = f(x, t). Inserting and differentiating
by x yields with ϕ(ȳ(s), t, s) = ȳ(t) the equation

d

dt
ϕx(ȳ(s), t, s) = fx(ȳ(t), t)ϕx(ȳ(s), t, s). (7.20)
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7 (In)Finite Time Homoclinic Trajectories

Comparing (7.19) and (7.20) we get by the uniqueness of the solution operator

S ȳ(t, s) = ϕx(ȳ(s), t, s). (7.21)

Since Φ(·, ·) is the solution operator of (7.17) we get with (7.13), (7.15) and
(7.21)

Φ(n + 1, n) = (ϕn)x(ȳn(h), h)

= ϕx(ȳ(nh), (n+ 1)h, nh) = S ȳ((n+ 1)h, nh).
(7.22)

This implies (7.18) since Φ(·, ·) and S ȳ(·, ·) are both solution operators. Using
the continuous time dichotomy data from (A10), we define

Qs,u
n (h) := Q̄s,u(hn), n ∈ J

and immediately obtain that (7.17) has an (ft-)exponential dichotomy on J

with data (K̄, hβ̄, Qs,u
n (h)). This completes the proof of (a).

For proving (b) assume (A5)-(A8). If (b1) holds true, then Theorem 7.0.10
guarantees that (5.1) has an exponential dichotomy onR. An application of (a)
combined with the observation that the h-flow preserves homoclinic structures
proves (b2).

To show the implication "(b2)⇒(b1)", we assume that (b1) is not sat-
isfied, i.e. the orbit x̄(·) is not transversal. Then a nontrivial bounded so-
lution u(·) of (5.1) exists. As a consequence, we find an h̃ > 0 such that
u
Z

(h) = (u(nh))n∈Z 6= 0 for all 0 < h ≤ h̃ and un+1(h) = S x̄((n+1)h, nh)un(h)
holds for all n ∈ Z, where S x̄(s, t) is the solution operator of (5.1). Applying
the identity

S x̄((n+ 1)h, nh) = (ϕn)x(x̄n(h), h)

for all n ∈ Z (see (7.22)) we obtain

un+1(h) = (ϕn)x(x̄n, h)un(h), n ∈ Z.

Since u
Z

(h) 6= 0 for all h ≤ h̃ Theorem 7.2.1 (a∆) applies and thus x̄
Z

(h) is
not transversal for all h ≤ h̃. This violates condition (b2).

Before we are finally able to prove the last equivalence relation of Theorem
7.0.10 we show that the stable and unstable 0-fiber bundles W 0

s,u(0) of the con-
tinuous infinite time system generated by (2.2) coincide with those W 0

s,u(0, h)
of the system generated by (7.14) for h sufficiently small. For finite time sys-
tems this statement is generally not true. We can not guarantee that a function
which is strictly decreasing (increasing) on a discrete interval is also strictly
decreasing (increasing) on the continuous interval no matter how small the
step size h is. This is not dramatical since Lemma 7.2.4 is only needed to fin-
ish the proof of Theorem 7.0.10. Hence, the statement W 0

s,u(0, h) =W 0
s,u(0) is

important for transversal orbits. We showed that we do not have to explicitly
distinguish between transversal and tangentil finite time homoclinic orbits.

206



7.2 Discretization by the h-Flow

Lemma 7.2.4. Assume (A4), (A5) and (A6) and 0 ∈ I. Let I = [t−, t+]
and ε > 0. Then for every h > 0 we have

I

εW
0
s,u(0) ⊂ I

εW
0
s,u(0, h),

where I

εW
0
s,u(0, h) are the (un)stable 0-fiber bundles of (7.14) and I

εW
0
s,u(0) of

(2.2). Let I = R. Then there exists a constant ĥ > 0 such that

W 0
s,u(0, h) = W 0

s,u(0)

holds for all 0 < h < ĥ, where W 0
s,u(0, h) are the (un)stable 0-fiber bundles of

(7.14) and W 0
s,u(0) of (2.2).

Proof. Let I = [t−, t+] with 0 ∈ I. By the invertibilily of the solution operator
we have

I

εW
0
s (0) ={ξ ∈ Rk

∣

∣t̂ := I

ϕBmin
ε (ϕ(ξ, t−, 0), 0) ∈ I :

d

dt
‖ϕ(ξ, t, 0)‖ ≤ 0 for all t ∈ I, t > t̂}

={ξ ∈ Rk
∣

∣t̂ := I

ϕBmin
ε (ϕ(ξ, t−, 0), 0) ∈ I :

‖ϕ(ξ, t, 0)‖ ≤ ‖ϕ(ξ, s, 0) for all t, s ∈ I, t > s > t̂}
⊂{ξ ∈ Rk

∣

∣t̂ := I

ϕBmin
ε (ϕ(ξ, t−, 0), 0) ∈ J :

‖ϕ(ξ, th, 0)‖ ≤ ‖ϕ(ξ, sh, 0)‖ for all t, s ∈ J, t > s > t̂}
=I

εW
0
s,u(0, h).

Analogously, the statement holds for the unstable fiber bundles.
Let I = R. Then W 0

s,u(0) ⊂ W 0
s,u(0, h) is true since

{

x ∈ Rk
∣

∣ lim
s→±∞,
s∈R

‖ϕ(x, s, 0)‖ = 0

}

⊂
{

x ∈ Rk
∣

∣ lim
n→±∞,
n∈Z

‖ϕ(x, nh, 0)‖ = 0

}

holds. For proving the other inclusion let x0 ∈ W 0
s,u(0, h). For every t ∈ R we

find an n ∈ Z such that nh ≤ t ≤ (n + 1)h holds. With (A5), (A6) and the
mean value theorem we get

sup
nh≤t≤(n+1)h

‖ϕ(x0, t, 0)‖

= sup
nh≤t≤(n+1)h

‖ϕ(ϕ(x0, nh, 0), t, nh)− ϕ(0, t, nh)‖

= sup
nh≤t≤(n+1)h

∥

∥

∥

∫ 1

0

ϕx(sϕ(x0, nh, 0), t, nh)dsϕ(x0, nh, 0)
∥

∥

∥

≤C1‖ϕ(x0, nh, 0)‖. (7.23)

From x0 ∈ W 0
s,u(0, h) it follows that lim

n→±∞,
n∈Z

‖ϕ(x0, nh, 0)‖ = 0 holds. With

(7.23) we get lim
t→±∞,
t∈R

‖ϕ(x0, t, 0)‖ = 0 and consequently x0 ∈ W 0
s,u(0).
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7 (In)Finite Time Homoclinic Trajectories

Combining these results, we prove the remaining statements of Theorem
7.0.10.
Proof of Theorem 7.0.10, “(ac) ⇔ (dc)”. It follows from Lemma 7.2.3 (b) that
an ĥ > 0 exists such that (ac) ⇔ (a∆ holds for all h ≤ ĥ). Applying Theorem
7.2.1 we get (a∆) ⇔ (d∆) and finally, Lemma 7.2.4 yields (d∆ holds for all
h ≤ ĥ) ⇔ (dc).

Corollary 7.2.5. Let x̄
Z

be a transversal homoclinic orbit of the map ϕn(·, h).
Then x̄

Z

is a regular solution of the operator Υ, i.e. Υ(x̄
Z

, h) = 0 and
Υx

Z

(x̄
Z

, h) is a homeomorphism.

Discretization by a One-Step Method

For a general one-step method, we prove a closeness result for approximate
trajectories in our nonautonomous context. From this, we conclude our main
theorem - the persistence of homoclinic orbits under one-step discretizations.
We still assume (A4).

We consider a general one-step method

xn+1 = ψn(xn, h), xn ∈ Rk, n ∈ J1 (7.24)

with step size h > 0. The orbits of (7.24) are zeros of the operator

Υ̃ : SJ ×R→ SJ, (xJ, h) 7→
(

xn+1 − ψn(xn, h), n ∈ J1

hb(xn−
, xn+), for J = [n−, n+]Z

)

if their boundary points are zeros of the boundary condition b. We assume
consistency of order d as well as smoothness:

(A12) For any compact set K ⊂ R

k there exist constants C2(K), h2(K) > 0
such that the consistency estimate of order d ∈ N

‖ϕn(x, h)− ψn(x, h)‖ ≤ C2(K)hd+1

holds for all n ∈ J1, x ∈ K and 0 < h ≤ h2(K).

(A13) Mixed derivatives of ψn(x, h) up to order 3 exist. For any compact set
K ⊂ Rk the derivatives are continuous and uniformly bounded by some
constant C̃(K) in K× (0, h3(K)], with 0 < h3(K) sufficiently small. Fur-

thermore, ψn(x, h) is Cd smooth in h and mixed derivatives (ψn)
(1,d)
x,h (x, h)

exist and satisfy the uniform Lipschitz estimate

∥

∥

∥
(ψn)

(1,d)
x,h (x, µ1)− (ψn)

(1,d)
x,h (x, µ2)

∥

∥

∥
≤ C3(K) |µ1 − µ2|

for all n ∈ J1, x ∈ K and 0 < µ1,2 ≤ h3(K) with a constant C3(K) > 0.
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7.3 Discretization by a One-Step Method

The following lemma summarizes closeness estimates between the h-flow
and an one-step method with step size h. Garay proved in [51] closeness
estimates for autonomous infinite time systems which are also satisfied for
finite time systems. With our uniformity Assumptions (A12) and (A13)
Garay’s approach immediately carries over to the nonautonomous case. For
the readers convenience, a sketch of the proof is presented. For more details
the reader is refert to [53, Lemma 2.3.1].

Lemma 7.3.1. Assume (A4),(A5), (A12) and (A13). Then for any com-
pact set K ⊂ R

k there exist constants C̃(K), C4(K), h4(K) > 0 such that for
all x ∈ K and 0 < h ≤ h4(K) with h4(K) ≤ h1,2,3(K) the following statements
hold true:

(i) sup
n∈J1

‖(ϕn)x(x, h)− (ψn)x(x, h)‖ ≤ C4(K)hd+1,

(ii) ψn(x, h) = x+h∆n(x, h) for all n ∈ J1, where ∆n(x, h) :=
∫ 1

0
(ψn)h(x, sh)ds

has the same smoothness properties as ψn except for losing one derivative
with respect to h. Further, for r ∈ {0, 1, 2} the following estimates are
true:

sup
n∈J1

‖(∆n)
(r)
x (x, h)‖ ≤ C̃(K), (7.25)

sup
n∈J1

‖(ψn)x(x, h)
−1‖ ≤ 1

1− hC̃(K)
. (7.26)

Proof. With Taylor’s formula at h = 0 and (A13) we get for all n ∈ J1

ϕn(x, h)− ψn(x, h)

=

∫ 1

0

(

(1−s)d−1

(d−1)!
(ϕn(x, sh)− ψn(x, sh))

(d)
h − (ϕn(x, 0)− ψn(x, 0))

(d)
h

)

dshd

for all x ∈ K, 0 < h ≤ h4(K). By differentiating this expression w.r.t. x and
using (A5) and (A12) we get the estimate from (i). The second statement
follows immediately from the mean value theorem. The estimate (7.25) is a
direct consequence of (A13) and with the Banach-Lemma we obtain (7.26)
for sufficiently small h.

Corollary 7.3.2. Assume (A4) and (A5). Then for any compact set K ⊂ Rk

there exist constants C1(K), h4(K) > 0 such that for all x ∈ K and 0 < h ≤
h4(K) with h4(K) ≤ h1(K)

sup
n∈J1

∥

∥(ϕn)x (x, h)
−1
∥

∥ ≤ 1

1− hC1(K)

holds.
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7 (In)Finite Time Homoclinic Trajectories

Now, we have all tools at hand to prove hd-closeness between orbits of
the continuous time system and orbits of the one-step discretization, see [136,
Theorem 4.3] for a related result in autonomous systems.

Theorem 7.3.3. Assume (A4),(A5) and (A10)-(A13). Then there exist
constants h5, δ > 0 such that for all 0 < h ≤ h5 the operator Υ̃(·, h) has a
unique zero ỹJ(h) in a δ-neighborhood of ȳJ(h).
Furthermore, ỹJ(h) is a (ft-)hyperbolic bounded trajectory of (7.24) that satis-
fies

sup
n∈J

‖ỹn(h)− ȳn(h)‖ = O(hd). (7.27)

Proof. Let K ⊂ Rk be compact and sufficiently large. We prove the statements
from above by applying Lemma A.0.1 with the settings: F = Υ̃, Y = SJ, Λ =
R

+, Z = SJ and v̄0(h) = ȳJ(h), δ1 = δ and δ2 = h5.

We verify the assumptions of Lemma A.0.1 and first prove that Υ̃(·, h) for
0 < h ≤ h5 is invertible with uniformly bounded inverse. Since the boundary
conditions of Υ̃xJ

(xJ, h) and ΥxJ
(xJ, h) are the same we get by Lemma 7.3.1

the closeness estimate
∥

∥

∥
Υ̃xJ

(xJ, h)−ΥxJ
(xJ, h)

∥

∥

∥
= sup

n∈J1
‖(ϕn)x(xn, h)− (ψn)x(xn, h)‖

≤ C4(K)hd+1 (7.28)

for all 0 < h ≤ h4(K) and xJ ∈ KJ. Lemma 7.2.3 (a) yields an exponential
dichotomy of the generated dynamical system (7.17). The exponential rate
is hβ̄ the invariant family of projector is Qs,u

n (h) := Q̄s,u(hn) and for J =
Z we have a constant K̄. Denote the corresponding solution operator by
Φ(n,m), m,n ∈ J1. Further, by Theorem 7.2.1 for I = Z and by Theorem
7.2.2 for I = [n−, n+]Z we see that ΥxJ

(ȳJ(h), h) is a homeomorphism for all 0 <
h ≤ h4(K). Then the Banach-Lemma and the estimate (7.28) guarantee the
existence of a possible smaller bound 0 < h5 ≤ h4(K) such that Υ̃xJ

(ȳJ(h), h)
is a homeomorphism for all 0 < h ≤ h5. Consequently, we obtain for any
r̃J, rJ ∈ SJ unique solutions ũJ, uJ ∈ SJ of the inhomogeneous equations

Υ̃xJ
(ȳJ(h), h)ũJ = r̃J, ΥxJ

(ȳJ(h), h)uJ = rJ. (7.29)

Assume J = Z. By [105, Lemma 2.7] we obtain

‖u
Z

‖ ≤ K̄
1 + e−hβ̄

1− e−hβ̄
‖r
Z

‖ = K̄
1 + e−hβ̄

1− e−hβ̄
‖Υx

Z

(ȳ
Z

(h), h)u
Z

‖ . (7.30)

Assume J = [n−, n+]Z. Then we have for the norm of the Green’s function

‖G(n,m)‖ ≤ e−hβ̄|n−m|
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7.3 Discretization by a One-Step Method

for all n,m ∈ J. For a proof of the estimate see [105]. Let n ∈ J, n 6= n− be
fixed then we obtain

∥

∥

∥

∥

∥

∑

m∈J1
G(n,m+ 1)

∥

∥

∥

∥

∥

≤
∑

m∈J,m6=n−

‖G(n,m)‖ ≤
∑

m∈J,m6=n−

e−hβ̄|n−m|

=
∑

n−<m≤n

e−hβ̄|n−m| +
∑

n<m≤n+

e−hβ̄|n−m|

=

n−n−1
∑

i=0

e−hβ̄i +

n+−n
∑

i=1

e−hβ̄i

=
1− (e−hβ̄)n−n−

1− e−hβ̄
+
e−hβ̄(1− (e−hβ̄)n+−n)

1− e−hβ̄

≤ 1 + e−hβ̄

1− e−hβ̄
=: CG(h)

and for n = n− we have

∥

∥

∥

∥

∥

∑

m∈J1
G(n,m+ 1)

∥

∥

∥

∥

∥

≤
∑

m∈J,m6=n−

e−hβ̄|n−m| =
∑

n−<m≤n+

e−hβ̄|n−m| =

n+−n−
∑

i=1

e−hβ̄i

=
e−hβ̄(1− (e−hβ̄)n+−n−)

1− e−hβ̄
≤ 1 + e−hβ̄

1− e−hβ̄
= CG(h).

Since uJ is a solution of the second inhomogeneous equation of (7.29) there
exist v− ∈ R(Q̄s

n−
(h)), v+ ∈ R(Q̄u

n+
(h)) such that

un = Φ(n, n−)v− + Φ(n, n+)v+ +
∑

m∈J1
G(n,m+ 1)rm

holds for all n ∈ J. Studying the boundary condition of ΥxJ
(ȳJ(h), h) and

denoting b := b(ȳn−
, ȳn+) we have just as in the proof of Theorem 7.2.1

B(ȳJ)

(

v−
v+

)

= rn+ − h

(

D1b
∑

m∈J1
G(n−, m+ 1)rm +D2b

∑

m∈J1
G(n+, m+ 1)rm

)

.

First define some constants

Cb := max {‖D1b‖ , ‖D2b‖ , 1} , (7.31)

CB−1 := max
{∥

∥B−1(ȳJ)
∥

∥ , 1
}

. (7.32)
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7 (In)Finite Time Homoclinic Trajectories

Then we get by (A11),CG(h) =
1+e−hβ̄

1−e−hβ̄
≥ 1 and h ≤ 1

∥

∥

∥

∥

(

v−
v+

)∥

∥

∥

∥

≤
∥

∥B−1(ȳJ)
∥

∥

∥

∥

∥

∥

∥

rn+ − h

(

D1b
∑

m∈J1
G(n−, m+ 1)rm +D2b

∑

m∈J1
G(n+, m+ 1)rm

)∥

∥

∥

∥

∥

≤CB−1

(

‖rJ‖+ hCb

(∥

∥

∥

∥

∥

∑

m∈J1
G(n−, m+ 1)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∑

m∈J1
G(n+, m+ 1)

∥

∥

∥

∥

∥

)

‖rJ‖
)

≤CB−1 (1 + 2hCbCG(h)) ‖rJ‖
≤3CB−1CbCG(h) ‖rJ‖ . (7.33)

For the solution uJ we obtain by the hyperbolicity and (7.33), (7.31) and (7.32)

‖un‖ ≤ ‖Φ(n, n−)v−‖+ ‖Φ(n, n+)v+‖+
∥

∥

∥

∥

∥

∑

m∈J1
G(n,m+ 1)

∥

∥

∥

∥

∥

‖rJ‖

≤ ‖v−‖+ ‖v+‖+ CG(h) ‖rJ‖

≤ 2

∥

∥

∥

∥

(

v−
v+

)∥

∥

∥

∥

+ CG(h) ‖rJ‖

≤ 6CB−1CbCG(h) ‖rJ‖+ CG(h) ‖rJ‖
≤ 7CB−1CbCG(h) ‖rJ‖
≤ K̄CG(h)

∥

∥ΥxJ
(ȳJ(h), h)uJ

∥

∥ (7.34)

for a constant K̄ = 7CB−1Cb and all n ∈ J.
For J = Z and J = [n−, n+]Z we get by an elementary estimate for the

exponential (see [53, Lemma 1.3.1.]) and estimate (7.30), (7.34)

‖uJ‖ ≤ K̄
1 + e−hβ̄

1− e−hβ̄

∥

∥ΥxJ
(ȳJ(h), h)uJ

∥

∥ ≤ 1

νh

∥

∥ΥxJ
(ȳJ(h), h)uJ

∥

∥ (7.35)

with some constant ν > 0 that does neither depend on h nor on rJ.
Combining (7.28) with (7.35) for rJ := ΥxJ

(ȳJ(h), h)ũJ, the estimate

‖r̃J‖ =
∥

∥

∥
Υ̃xJ

(ȳJ(h), h)ũJ

∥

∥

∥

≥
∥

∥ΥxJ
(ȳJ(h), h)ũJ

∥

∥−
∥

∥

∥
(ΥxJ

(ȳJ(h), h)− Υ̃xJ
(ȳJ(h), h))ũJ

∥

∥

∥

≥ νh ‖ũJ‖ − C4(K)hd+1 ‖ũJ‖ ≥ 1

2
νh
∥

∥

∥
Υ̃xJ

(ȳJ(h), h)
−1r̃J

∥

∥

∥
(7.36)

holds for all 0 < h ≤ h5 with a possibly smaller h5. Since (7.36) holds true for
all r̃J ∈ SJ we conclude

∥

∥

∥
Υ̃xJ

(ȳJ(h), h)
−1
∥

∥

∥

−1

≥ νh

2
. (7.37)
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7.3 Discretization by a One-Step Method

Next, we verify Assumption (A.1) of Lemma A.0.1. Therefore define

σ(h) :=
νh

2
and κ(h) :=

σ(h)

2
. (7.38)

Lemma 7.3.1, (A13) and the mean value theorem yield with ¯C(K) := sup
{

C(K), C̃(K)
}

∥

∥

∥
Υ̃xJ

(xJ, h)− Υ̃xJ
(ȳJ(h), h)

∥

∥

∥
(7.39)

≤ sup
{

h
∥

∥((∆n)x(ȳn(h), h)− (∆n)x(xn, h))n∈J1
∥

∥ , h
∥

∥bx(xn−
, xn+)− bx(ȳn−

(h), ȳn+(h))
∥

∥

}

,

≤ sup

{

h

∫ 1

0

∥

∥

∥

(

(∆n)
(2)
x (ȳn(h) + s(xn − ȳn(h)), h)

)

n∈J1

∥

∥

∥
ds ‖ȳJ(h)− xJ‖ , hC(K) ‖xJ − ȳJ(h)‖

}

≤ ¯C(K)h ‖ȳJ(h)− xJ‖ (7.40)

for all xJ ∈ KJ and 0 < h ≤ h4(K). Note that for sufficiently small δ the
estimate C̄(K)hδ ≤ κ(h) holds. By (7.40)(7.37) and (7.38) Assumption (A.1)
is confirmed for all ‖xJ − ȳJ(h)‖ ≤ δ:

∥

∥

∥
Υ̃xJ

(xJ, h)− Υ̃xJ
(ȳJ(h), h)

∥

∥

∥
≤ C̄(K)hδ ≤ κ(h) < σ(h) =

νh

2

≤
∥

∥

∥
Υ̃xJ

(ȳJ(h), h)
−1
∥

∥

∥

−1

.

Assumption (A.2) of Lemma A.0.1 immediately follows from (A12) for
sufficiently small h5, 0 < h ≤ h5:

∥

∥

∥
Υ̃(ȳJ(h), h)

∥

∥

∥
=
∥

∥

∥
Υ̃(ȳJ(h), h)−Υ(ȳJ(h), h)

∥

∥

∥

= ‖(ϕn(ȳn(h), h)− ψn(ȳn(h), h))n∈J1‖

≤ C2(K)hd+1 ≤ νh

4
δ ≤ σ(h)

2
δ = (σ(h)− κ(h))δ.

Thus, Lemma A.0.1 applies and guarantees the existence of a unique zero
ỹJ(h) of Υ̃(·, h) in a δ-neighborhood of ȳJ(h), satisfying the inequality (7.27)

‖ỹJ(h)− ȳJ(h)‖ ≤ (σ(h)− κ(h))−1
∥

∥

∥
Υ̃(ȳJ(h), h)

∥

∥

∥

≤ 4
νh
C2(K)hd+1 =

4C2(K)

ν
hd (7.41)

for all 0 < h ≤ h5.
Next, we prove hyperbolicity of this solution.
In order to show that the variational equation, given in terms of the opera-

tor Υ̃xJ
(ỹJ(h), h), has an exponential dichotomy on J, we apply the Roughness-

Theorem 3.4.2/3.4.11 with the settings: A(n) := An =: (ϕn)x(ȳn(h), h) and
Ã(n) := Ãn := (ψn)x(ỹn(h), h) and En := Ã(n) − A(n) = (ψn)x(ỹn(h), h) −
(ϕn)x(ȳn(h), h), n ∈ J1.
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7 (In)Finite Time Homoclinic Trajectories

With (7.40) and (7.41) it follows

∥

∥

∥
Υ̃xJ

(ỹJ(h), h)− Υ̃xJ
(ȳJ(h), h)

∥

∥

∥
≤C̄(K)h ‖ỹJ(h)− ȳJ(h)‖

≤C̄(K)h
4C3(K)

ν
hd = Ĉ(K)hd+1

and combining this result with (7.28) we obtain

‖EJ1‖ =
∥

∥

∥
ÃJ1 − AJ1

∥

∥

∥

= sup
n∈J1

‖(ψn)x(ỹn(h), h)− (ϕn)x(ȳn(h), h)‖

= ‖Υ̃xJ
(ỹJ(h), h)−ΥxJ

(ȳJ(h), h)‖
≤ ‖Υ̃xJ

(ỹJ(h), h)− Υ̃xJ
(ȳJ(h), h)‖+ ‖Υ̃xJ

(ȳJ(h), h)−ΥxJ
(ȳJ(h), h)‖

≤ (Ĉ(K) + C4(K))hd+1. (7.42)

By Corollary 7.3.2 we observe for h sufficiently small

∥

∥A−1
J1

∥

∥ = sup
n∈J1

‖(ϕn)x(ȳn(h), h)
−1‖ ≤ 1

1− hC1(K)
(7.43)

and together with (7.42) this yields the estimate

1

2
inf
n∈J1

‖A−1
n ‖−1 ≥ 1

2
(1− hC1(K)) ≥ (Ĉ(K) + C4(K))hd+1 ≥ ‖EJ1‖ (7.44)

for h sufficiently small. This is the first Assumption (3.38) of the Roughness-
Theorem 3.4.2. For verifying the second Assumption (3.39) and the condi-
tion of the Roughness-Theorem 3.4.11, note that (7.17) has an exponential
dichotomy on J with rate hβ̄ and for J = Z with constant K̄. By Taylor
expanding we observe

(

1

e
hβ̄
2 − e−hβ̄

+
1

e−
hβ̄
2 − e−hβ̄

+
1

ehβ̄ − e−
hβ̄
2

)−1

=
3

10
β̄h+O(h2), (7.45)

(

1− e−hβ̄

2ehβ̄ − e−β̄

)

= β̄h+O(h2), (7.46)

(

ehβ̄−1

ehβ̄

)

= β̄h+O(h2). (7.47)

As a consequence

‖EJ1‖ ≤(Ĉ(K) + C4(K))hd+1

≤1

2
K̄−1

(

1

e
hβ̄
2 − e−hβ̄

+
1

e−
hβ̄
2 − e−hβ̄

+
1

ehβ̄ − e−
hβ̄
2

)−1 (7.48)
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7.3 Discretization by a One-Step Method

holds true for h sufficiently small, i.e. the second assumption (3.39) is satisfied.
Minimize h5 > 0 such that (7.43), (7.44) and (7.48) are satisfied for all 0 <
h ≤ h5.

Next we prove the condition of the Roughness-Theorem 3.4.11. In the
following let C0 > 0 be a generic constant which will increase if necessary.
Assumption (A5) yields

‖AJ1‖ ≤ C1(K)

for 0 < h ≤ h1(K) (h5 ≤ h4(K) ≤ h1(K)). Together with (7.43) we obtain for
the constants C, C̄ and Cd from the Roughness-Theorem 3.4.11

C = 2
(∥

∥A−1
J1

∥

∥+ ‖AJ1‖
∥

∥A−1
J1

∥

∥

)(n+−n−)

≤ 2

(

1

1− hC1(K)
+

C1(K)

1− hC1(K)

)(n+−n−)

≤ C0

(1− hC1(K))(n+−n−)

and

C̄ = (1 + 2 ‖AJ1‖) +
(

‖AJ1‖2 + 1
)

C

≤ (1 + 2C1(K)) +
(

C1(K)2 + 1
) C0

(1− hC1(K))(n+−n−)

≤ C0

(

1 +
1

(1− hC1(K))(n+−n−)

)

= C0
(1− hC1(K))(n+−n−) + 1

(1− hC1(K))(n+−n−)

≤ C0
2

(1− hC1(K))(n+−n−)
≤ C0

(1− hC1(K))(n+−n−)

and

Cd = max{C, C̄} ≤ C0

(1− hC1(K))(n+−n−)

for all 0 < h ≤ h5. This implies

(4Cd)
−1 ≥ (1− hC1(K))(n+−n−)

4C0
>

1

8C0
(7.49)

for h sufficiently small. Combined with (7.42), (7.46) and with (7.47)
∥

∥

∥
ÃJ1 − AJ1

∥

∥

∥
≤ (Ĉ(K) + C4(K))hd+1

< min

{

1, (4Cd)
−1 1− e−hβ̄

2ehβ̄ − e−hβ̄
, (4Cd)

−1 e
hβ̄ − 1

ehβ̄

}

(7.50)

follows for h sufficiently small. Thus, the condition of the Roughness-Theorem
3.4.11 is satisfied. Minimize h5 > 0 such that (7.49) and (7.50) are satisfied
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7 (In)Finite Time Homoclinic Trajectories

for all 0 < h ≤ h5. Theorem 3.4.2/3.4.11 applies and guarantees that the
variational equation, given in terms of Υ̃xJ

(ỹJ(h), h), has an exponential di-

chotomy on J with rate hβ̄

2
and for J = Z with constant 2K̄ + 1. Thus, ỹJ(h)

is a (ft-)hyperbolic bounded trajectory of the h-step method ψJ1(·, h) for all
0 < h ≤ h5.

We exploit this result for analyzing discretized homoclinic orbits. Note that
the application of a one-step method turns the equilibrium 0 into a bounded
trajectory.

Corollary 7.3.4. Assume (A5)-(A7), (A12),(A13) and (A11). Choose
h5 and δ as in Theorem 7.3.3. Then there exists a C > 0 such that for all
0 < h ≤ h5 a unique (ft-)hyperbolic bounded trajectory ξ̃J(h) of (7.24) in a
δ-neighborhood of the equilibrium 0 of (2.2) exists which satisfies

sup
n∈J

∥

∥

∥
ξ̃n(h)− 0

∥

∥

∥
≤ Chd. (7.51)

The variational equation, belonging to Υ̃x
Z

(ξ̃
Z

(h), h), has an (ft-)exponential
dichotomy on J with rate hβ

2
and for J = Z with constant 2K + 1.

Further, assume (A8) and (A9). Then there exists a unique (ft-)hyperbolic
bounded trajectory x̃J(h) of (7.24) in a δ-neighborhood of the (ft-)hyperbolic (ε-
)homoclinic orbit x̄J(h) (ε > 0) of the h-flow which satisfies

sup
n∈J

‖x̃n(h)− x̄n(h)‖ ≤ Chd. (7.52)

Furthermore, for J = Z there exists an N ∈ Z+ such that

sup
n∈Z±

±N

‖x̃n(h)− ξ̃n(h)‖ ≤ 3Chd (7.53)

holds with Z+
N := [N,∞) ∩ Z, Z−

−N := (−∞,−N ] ∩ Z. For J = [n−, n+]Z

∥

∥

∥
x̃n±

(h)− ξ̃n±
(h)
∥

∥

∥
≤ 2Chd + ε (7.54)

is satisfied.

Proof. Fix 0 < h ≤ h. It remains to prove the estimate (7.53) for sufficiently
large |n|, n ∈ Z and (7.54). First consider J = Z. With (7.51), (7.52) and
(A8), see Definition 7.0.1, there exist a N := N(h) ∈ Z+ such that

sup
n∈Z±

±N

‖x̃n(h)− ξ̃n(h)‖

≤ sup
n∈Z

‖x̃n(h)− x̄n(h)‖+ sup
n∈Z±

±N

‖x̄n(h)− 0‖+ sup
n∈Z

‖0− ξ̃n(h)‖ ≤ 3Chd.
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For J = [n−, n+]Z we obtain by the latter arguments

∥

∥

∥
x̃n±

(h)− ξ̃n±
(h)
∥

∥

∥
≤ sup

n∈J
‖x̃n(h)− xn(h)‖+

∥

∥xn±
(h)− 0

∥

∥+ sup
n∈J

∥

∥

∥
0− ξ̃n(h)

∥

∥

∥

≤2Chd + ε.

For J = [n−, n+]Z the estimate (7.54) implies that (x̃J(h), ξ̃J(h)) forms
a (2Chd + ε)-homoclinic pair. For the infinite time cases J = Z we know,
from the previous results, that the tails of the discretized hyperbolic bounded
trajectories x̃

Z

(h) and ξ̃
Z

(h) of (7.24) stay in a common small neighborhood.
In the following we show that these trajectories are indeed homoclinic toward
each other for all 0 < h ≤ h5. This can be achieved by establishing the identity

lim
n→±∞

∥

∥

∥
x̃n(h)− ξ̃n(h)

∥

∥

∥
= 0.

The next lemma states that if two hyperbolic bounded trajectories stay in
a sufficiently small common neighborhood, then they converge towards each
other. Note that a related result for the autonomous case can be found in [105,
Lemma 5.3].

Lemma 7.3.5. Assume that fn ∈ C1(Rk,Rk) for n ∈ Z and let ξ
Z

be a bounded
trajectory of the difference equation

xn+1 = fn(xn), n ∈ Z. (7.55)

Further, assume that (fn)x is uniformly Lipschitz with constant L in a neigh-
borhood of ξ

Z

for all n ∈ Z and that the variational equation

un+1 = (fn)x(ξn)un, n ∈ Z (7.56)

has an exponential dichotomy on Z with data (K,α, P s,u
n ). Fix n1 ∈ N and let

x
Z

be a second bounded trajectory of (7.55), satisfying the following estimates
with some constant 0 < β < α:

‖(xn − ξn)n∈T‖ ≤ L−1 inf
n∈T

‖(fn)x(ξn)−1‖−1, (7.57)

‖(xn − ξn)n∈T‖ ≤ L−1K−1

(

1

eβ − e−α
+

1

e−β − e−α
+

1

eα − e−β

)−1

, (7.58)

for T ∈ {Z−
n1
,Z+

n1
}.

Then there exists a constant C̃ > 0 such that the exponential estimate

‖xn − ξn‖ ≤ C̃e−β|n−n1| (7.59)

holds for all n ∈ T.
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Proof. First we define zn := xn − ξn for n ∈ T and get with the mean value
theorem

zn+1 = xn+1 − ξn+1 = fn(xn)− fn(ξn)

= fn(zn + ξn)− fn(ξn) =

∫ 1

0

(fn)x(ξn + szn)dszn.

By defining Bn =
∫ 1

0
(fn)x(ξn + szn)ds we see that zT is a bounded solution of

un+1 = Bnun, n ∈ T. (7.60)

To finish the proof, we show that (7.60) has an exponential dichotomy on T

with data (2K + 1, β, Qs,u
n ).

Assume this dichotomy is already known. Then we get zn = Qu
nzn for

n ∈ T− = Z−
n1

and zn = Qs
nzn for n ∈ T+ = Z+

n1
since zT is a bounded solution

of (7.60). Denote by Φ(·, ·) the corresponding solution operator, then

‖zn‖ = ‖Φ(n, n1)Q
s,u
n1
zn1‖ ≤ (2K + 1)e−β|n−n1|‖zn1‖

for n ∈ T± which completes the proof of (7.59).
For proving an exponential dichotomy of (7.60), we start with (7.56) that

already has an exponential dichotomy and apply the Roughness-Theorem 3.4.2.
To verify its assumptions, we use the estimate

‖Bn − (fn)x(ξn)‖ ≤
∫ 1

0

‖(fn)x(ξn + szn)− (fn)x(ξn)‖ds

≤ L

∫ 1

0

‖szn‖ds ≤
1

2
L‖zn‖ for all n ∈ T.

Then Assumption (3.38) of the Roughness-Theorem 3.4.2 directly follows from
(7.57) and (3.39) from (7.58).

Our next step is to show that discretized infinite time homoclinic trajecto-
ries converge towards each other. For this task, Lemma 7.3.5 is applied to the
one-step method ψ

Z

(·, h) and the hyperbolic bounded trajectories ξ̃
Z

(h) and
x̃
Z

(h).
From Corollary 7.3.4 we know that the variational equation, belonging to

Υ̃x
Z

(ξ̃
Z

(h), h), has an exponential dichotomy on Z with constant 2K + 1 and
dichotomy rate hβ

2
. Let K ⊂ R

k be compact and sufficiently large such that

ξ̃
Z

(h), x̃
Z

(h) ∈ KZ. Then the Lipschitz constant of (ψn)x is L := hC̃(K), see
equation (7.40). The first Assumption (7.57) of Lemma 7.3.5 for T± := Z±

±N

follows with (7.26) and (7.53) for h sufficiently small:

sup
n∈T±

‖x̃n(h)− ξ̃n(h)‖ ≤ 3Chd ≤ h−1C̃(K)−1(1− hC̃(K))

≤ L−1 inf
n∈Z

‖(ψn)x(ξ̃n(h), h)
−1‖−1.
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The second one (7.58) is fulfilled with β̄ := β

2
since

sup
n∈T±

‖x̃n(h)− ξ̃n(h)‖ ≤ 3Chd ≤ h−1C̃(K)−1

2K + 1
3C(2K + 1)C̃(K)h2

≤ L−1

2K + 1

(

1

e
hβ̄
2 − e−hβ̄

+
1

e−
hβ̄
2 − e−hβ̄

+
1

ehβ̄ − e−
hβ̄
2

)

−1

follows from (7.53) and (7.45) for h sufficiently small. Now we apply Lemma
7.3.5 and get a constant C5 > 0 such that

‖x̃n(h)− ξ̃n(h)‖ ≤ C5e
−hβ

4
|n−N | (7.61)

for all n ∈ T±.
Summarizing these results we have seen that bounded trajectories in con-

tinuous time lead to bounded trajectories in discrete time, staying close to each
other. This achievement holds for infinite and finite time systems. Further-
more, if the tails of two trajectories of a nonautonomous infinite time system
lie for all future (past) times in a sufficiently small neighborhood, then they
converge exponentially fast towards each other in forward (backward) time.
As a consequence, (ε-)homoclinic orbits induce (2Chd + ε-)homoclinic orbits
of the system discretized by a one-step method which are close to themselves.
We summarize this, our main result, in the following theorem.

Theorem 7.3.6. Let x̄(·) be a(n) (ε-)homoclinic orbit of the continuous time
system (2.2) w.r.t. the fixed point 0 and assume that our Assumptions (A5)-
(A9), (A12),(A13) and (A11) are satisfied. Then we find constants h̄, C > 0
such that two (ft-)hyperbolic bounded trajectories ξ̃J(h) and x̃J(h) of the one-
step approximation (7.24) exist which satisfy

sup
n∈J

‖ξ̃n(h)− 0‖ ≤ Chd, sup
n∈J

‖x̃n(h)− x̄n(h)‖ ≤ Chd,







limn→±∞
∥

∥

∥
x̃n(h)− ξ̃n(h)

∥

∥

∥
= 0, for J = Z,

∥

∥

∥
x̃n±

(h)− ξ̃n±
(h)
∥

∥

∥
< 2Chd + ε, for J = [n−, n+]Z

for all 0 < h < h̄,

i.e. (x̃J(h), ξ̃J(h)) forms a ((2Chd + ε)-)homoclinic orbit pair of (7.24).
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Chapter 8

Applications

In this last chapter we study various examples, which underline our theoret-
ical results. The infinite time statements originate from the publication [54].
First, we construct a 2-dimensional example with an explicitly known homo-
clinic orbit. We compare orbits of a one-step method with the exact ones and
numerically verify our error estimates for various step sizes.

For illustrating transversality of the computed orbits we plot the corre-
sponding stable and unstable fiber bundles of the one-step discretization. We
apply our algorithm from Section 6.7.

Periodic forcing of an autonomous ODE leads to a special class of nonau-
tonomous systems. We construct a model of this type and discuss the underly-
ing autonomous dynamics and their influence on invariant fiber bundles along
a homoclinic orbit.

Finally, a 2-dimensional continuous time model from mathematical biology
is introduced that is nonautonomous due to time variant environmental influ-
ences. For its time discretization we compute a homoclinic orbit as well as
invariant fiber bundles.

For finite time situations we already approximated and potted the ε-homoclinic
tube for an 2-dimensional systems, cf. Section 7.1.

An Artificial Example with Explicitly Known Ho-

moclinic Orbits

We start with the Hamiltonian system

ẋ = f(x) =

(

x2
x21 − 4

)

,

which has the homoclinic orbit

x̂(t) = 2(1− 3sech2(t), 6sech2(t)tanh(t))

with respect to the fixed point (2, 0), see [20, Section 11.2.2], [57, Section 7.3].



8 Applications

To construct a nonautonomous example, we first shift the fixed point to
(0, 0). This leads us to the new system

ẋ = f(x) =

(

x2
x21 + 4x1

)

(8.1)

with corresponding homoclinic orbit

x̄(t) = 6(−sech2(t), 2sech2(t)tanh(t)). (8.2)

Next we add a nonautonomous term as follows

ẋ = g(x, t) := f(x) +

(

x1(x1 − x̄1(t))
x2(x2 − x̄2(t))

)

=

(

x2 + x21 + 6sech2(t)x1
x21 + 4x1 + x22 − 12sech2(t)tanh(t)x2

)

. (8.3)

Obviously, (0, 0) is for all t ∈ R a fixed point; furthermore, (8.2) is still a
homoclinic orbit w.r.t. (0, 0) of this new system.

For a one-step discretization, we choose Heun’s method with step size h
which has order d = 2 and obtain the discrete time system

xn+1 = Fn(xn) := xn+
h

2
(g(xn, tn) + g(xn + hg(xn, tn), tn+1)) , n ∈ Z. (8.4)

Tools for the numerical approximation of homoclinic orbits in nonautono-
mous systems have been proposed in [70,73]. The key idea lies in introducing
boundary value problems to obtain error controlled orbit segments on a finite
time interval. More precisely, we compute an orbit segment (x̃n−

, . . . , x̃n+) by
solving the periodic boundary value problem











xn−+1 − Fn−
(xn−

)
...

xn+ − Fn+−1(xn+−1)
xn−

− xn+











=











0
...
...
0











, (8.5)

using Newton’s method with an appropriate initial guess. For the model (8.4),
we start with the exact orbit (8.2). Note that the sparse structure of the
derivative allows efficient computations. We solve (8.5) on the time-interval
[−30, 30] with the step size h = 0.03, i.e. n± = ±1000. Figure 8.1 shows the
orbit with time dependence (right) and without it (left).

The middle and lower diagrams in Figure 8.1 illustrate the homoclinic
orbit together with transversally intersecting fibers. In the left middle panel
the orbit projected to the x1-x2-plain and the fiber bundles at time 20h are
presented. The right middle panel pictures the fibers at the next time instance
21h. The lower diagram visualizes transversally intersecting fiber bundles on
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Figure 8.1: Homoclinic orbit and transversally intersecting fiber bundles of
(8.3), (8.4) with h = 0.04.
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the time interval [−30h, 30h]. The stable fibers (green) are computed with the
algorithm from Section 6.7 while the unstable fibers (red) are approximated
by forward iteration.

We conclude that this orbit is truly nonautonomous, since two fibers at
different times do not coincide.

Theorem 7.3.6 states that the maximal error e
Z

(h) := maxn∈Z ‖x̃n−x̄(hn)‖
that occurs by approximating the original orbit using an h-step method of order
d is less than Chd, with some constant C > 0. Furthermore, the computation
of finite orbit segments by solving (8.5) introduces a second error. A precise
analysis of this second error, cf. [73, Theorem 5], reveals that its maxima
occur at the boundary points of the finite interval whereas this error decreases
exponentially fast towards the midpoint. Thus, we avoid secondary errors by
computing a solution of (8.5) on the time-interval [−30, 30] and determine the
maximal error e(h) := max

n∈[− 5
h
, 5
h ]∩Z

‖x̃n − x̄(hn)‖ only on the center [−5, 5].

Figure 8.2 illustrates the numerical output of this procedure for various step
sizes from 0.00005 up to 0.04 in a double logarithmic scale. The slope of the
graph represents the exponent d. In Figure 8.2 it is 1.9930 in accordance with
Theorem 7.3.6.

10
−5

10
−3

10
−1

10
−7

10
−4

10
0

e(h)

h

Figure 8.2: Maximal error between exact and numerically approximated orbits.

A Periodic Nonautonomous ODE

In τ -periodic ODEs, stable (and unstable) fibers of a fixed point at times t and
t+ τ , t ∈ R coincide. For an illustration we modify (8.1) to the τ = π-periodic
model

ẋ = f(x, t) =

(

−(1 + 0.3 sin(2t))x2
x21 + x1

)

. (8.6)
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Discretizing this system with Heun’s method and step size h = π
30

leads to a
30-periodic difference equation of the form

xn+1 = gn(xn), gn = gn+30, n ∈ Z. (8.7)

This discrete time system exhibits a homoclinic orbit w.r.t. the fixed point
(−1, 0), see Figure 8.3 for an illustration.

−1.5 −1 −0.5 0 0.5

−1

−0.5

0

0.5

1

 

 

x2

x1

Figure 8.3: Homoclinic orbit segment on the time interval [−200h, 200h]∩ hZ
of (8.6) and the fibers at time (20 + 30n)h, n ∈ [−7, 6] ∩ Z, h = π

30
.

We further observe that stable and unstable fibers intersect transversally
at every 30th point along the orbit. Stable and unstable fibers at time 20h are
depicted in Figure 8.3. For their computation, we apply the algorithm from
Section 6.7.

Note that alternatively, autonomous tool for computing homoclinic orbits
from [22] as well as the search circle algorithm, introduced in [48], are directly
applicable to Gn := gn+29 ◦ · · · ◦ gn, n ∈ Z fixed. We do not follow this
route, since this problem typically has a worse condition number than the
nonautonomous equation (8.7).

An Example from Mathematical Biology

Let us apply our techniques to a more realistic model from mathematical biol-
ogy. The dynamics of the growth of algea and zooplankton, typically Daphnia,
is presented in [116] with the help of a periodically forced predator-prey system.
The authors introduce a 2-dimensional ODE

dA
dt

= 0.5A
(

1− A
10

)

− 0.4Z
(

A
A+0.6

)

+ 0.01(10− A),

dZ
dt

= 0.24Z A
A+0.6

− 0.15Z −E Z2

Z2+0.52
,

(8.8)
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where (A) describes the amount of edible algea and (Z) the amount of large
herbivorous zooplankton. The growth of zooplankton is influenced by the fish
population and some other environmental terms (E). Our first step is to search
for homoclinic structures in the autonomous system (8.8), see [116, Figure 6b],
which can be found for

E := 0.0784372294995495865 . . .

Next we add a time-dependent perturbation to E reflecting time dependent
environmental influences. Choosing

E(t) := 0.0784372294995495865+ exp(−0.2t2)

(8.8) is a continuous time nonautonomous 2-dimensional ODE of the form

ẋ = g(x, t) with x :=
(

A Z
)T

. We start with an analysis of the underlying
dynamics by searching for homoclinic structures. To study this we are looking
at the discretized system. For the one-step discretization xn+1 = Fn(xn) of the
system we take Heun’s method (8.4). First we compute a bounded trajectory
x̂[n−,n+] of (8.4) replacing the fixed point from the autonomous case. For this
task, we solve, as in Section 8.1, the periodic boundary value problem (8.5) on
the time-interval [−1750, 1750] with step size h = 0.5, i.e. n± = ±3500. Using
this bounded solution x̂[n−,n+] the transformed system

yn+1 = Gn(yn), Gn(yn) := Fn(yn + x̂n)− x̂n+1, n ∈ [n−, n+ − 1] (8.9)

has (0, 0) as an n independent fixed point.
To obtain a homoclinic orbit w.r.t. the fixed point (0, 0), see Figure 8.4

(left), we solve the periodic boundary value problem (8.5) with Gn(·) instead
of Fn(·) and initial value

(0, . . . , 0, xn, Gn(xn), Gn+1Gn(xn), . . . , Gn+249Gn+248 · · ·Gn(xn), 0, . . . , 0),

n = −125, x−125 =

(

−0.081
0.096

)

.

In the top right diagram of Figurer 8.4 the stable (green) and unstable
(red) fibers at time 0 are plotted. The stable fiber is approximated with the
algorithm introduced in Section 6.7. The fibers intersect each other transver-
sally in a single point. This is also the case for fibers in the time interval
[−30h, 30h], see the lower diagram in Figure 8.4. For the original continuous
time system, this is a strong evidence for transversal homoclinic trajectories,
satisfying (A9).
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Figure 8.4: Homolinic orbit of (8.9) with h = 0.5 (top left) and transversally
intersecting fiber bundles (right and bottom).
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Appendix A

A Lipschitz Inverse Mapping
Theorem

The following quantitative version of the Lipschitz inverse mapping theorem
cf. [130, §3 Lemma 1], [77, Appendix C] is essential for proving Theorem 7.3.3.

Lemma A.0.1. Let F : Y × Λ → Z be a Cℓ, ℓ ≥ 1 mapping from a Banach
space Y × Λ into some Banach space Z. Assume there exists a function v̄0 :
Λ → Y such that Fv(v̄0(ε), ε) are homeomorphisms for all |ε| ≤ δ2, and there
exist some constants κ(ε) > 0, σ(ε) > 0 such that for all ‖v − v̄0(ε)‖ ≤ δ1 and
|ε| ≤ δ2 we have

‖Fv(v, ε)− Fv(v̄0(ε), ε)‖ ≤ κ(ε) < σ(ε) ≤
∥

∥Fv(v̄0(ε), ε)
−1
∥

∥

−1
, (A.1)

‖F (v̄0(ε), ε)‖ ≤ (σ(ε)− κ(ε))δ1. (A.2)

Then for any |ε| ≤ δ2, F (·, ε) has a unique zero ṽ(ε) with ‖ṽ(ε)− v̄0(ε)‖ ≤ δ1
that is Cℓ-smooth w.r.t. ε. The following estimates hold for all ‖vi − v̄0(ε)‖ ≤
δ1, i = 1, 2

‖ṽ(ε)− v̄0(ε)‖ ≤ (σ(ε)− κ(ε))−1 ‖F (v̄0(ε), ε)‖ ,
‖v1 − v2‖ ≤ (σ(ε)− κ(ε))−1 ‖F (v1, ε)− F (v2, ε)‖ .





Appendix B

Assumptions, Functions, Sets

Assumptions

(A0) Let the matrix function A of (2.7) / (2.8) satisfy A ∈ C1(I,Rk×k).

(A1) Let T ∈ {R,Z}, t± ∈ T, I = [t−, t+]T and Γ = ΓT > 0. Assume

{

(A0) and that system (2.6), generated by (2.7), for T = R,

that the system (2.6), generated by (2.8), for T = Z

is D-hyperbolic on I w.r.t. ‖·‖Γ.

(A2) Let Ĩ :=

{

I, for T = R,

I1, for T = Z,
t̄+ := t̄ :=

{

t+, for T = R,

t+ − 1, for T = Z,

and t̄− := t−.

(A3) Assume (A2) and let k = 2. Let λ1(t) > 0 > λ2(t) be the eigenvalues of
SΓ(t) and U(t) = (v1(t) v2(t)) be an orthogonal matrix, where vi(t) are
eigenvectors to λi(t) for i ∈ {1, 2}, for all t ∈ Ĩ.

(A4) Let h > 0 and if I is compact such that t−
h
, t+

h
∈ Z. Define

J := Jh :=

{

Z, if I = R,

[n−, n+]Z := [ t−
h
, t+

h
]
Z

, if I = [t−, t+].

Further set

J1 :=

{

Z, if J = Z,

[ t−
h
, t+

h
− 1]

Z

, if J = [ t−
h
, t+

h
]
Z

.

(A5) f ∈ C1(Rk×I,Rk) satisfies conditions, assuring existence and uniqueness
of global solutions of (2.2) as well as the following estimates for the



B Assumptions, Functions, Sets

solution operator ϕ. For any compact set K ⊂ Rk there exist constants
C1(K), h1(K) > 0 such that the inequality

‖ϕx(x, t, s)‖ ≤ C1(K)

holds for all x ∈ K and |t− s| ≤ h1(K). For n ∈ J1 let

ϕn(x, h) := ϕ(x, (n + 1)h, nh)

be Cd smooth w.r.t. h, d ≥ 1. Mixed derivatives (ϕn)
(1,ℓ)
x,h , ℓ ∈ {0, . . . , d}

exist and satisfy the uniform Lipschitz condition
∥

∥

∥
(ϕn)

(1,d)
x,h (x, µ1)− (ϕn)

(1,d)
x,h (x, µ2)

∥

∥

∥
≤ C1(K) ‖µ1 − µ2‖

for all x ∈ K, 0 ≤ µ1,2 ≤ h1(K) and n ∈ J1.

Further, let
∥

∥

∥
(ϕn)

(r,1)
x,h (x, h)

∥

∥

∥
≤ C1(K) for all n ∈ Z, r ∈ {0, 1}, x ∈ K

and 0 ≤ h ≤ h1(K).

(A6) 0 ∈ Rk satisfies f(0, t) = 0 for all t ∈ I.

(A7) 0 is (ft-)hyperbolic. Denote the data of the corresponding variational
equation

ẋ = fx(0, ·)x
by (K, β, P s,u(·)).

(A8) A nontrivial homoclinic orbit x̄(·) of (2.2) exists.

(A9) The homoclinic orbit x̄(·) is (ft-)hyperbolic.

(A10) Let ȳ(·) be a (ft-)hyperbolic bounded trajectory of (2.2). Denote by
(K̄, β̄, Q̄s,u(·)) the (ft-)dichotomy data of the corresponding variational
equation

u̇ = fx(ȳ(·), ·)u
and let S ȳ(t, s) be its solution operator.

(A11) Let the images of the projectors Q̄s(t−), Q̄u(t+) satisfy R(Q̄s(t−)) ⊕
R(Q̄u(t+)) = R

k and let the boundary condition b(·, ·) satisfies b ∈
C1(R2k,Rk) and b := b(ȳn−

, ȳn+) = 0. Further, let

B(ȳJ) :=h
(

D1b+D2bΦ(n+, n−)|R(Q̄s(t−)) D1bΦ̄(n−, n+) +D2b|R(Q̄u(t+))

)

:

R(Q̄s(n−))⊕R(Q̄u(n+)) → R

k

be invertible. For any compact set K ⊂ R

k there exist a constant
C(K) > 0 such that

∥

∥bx(xn−
, xn+)− bx(yn−

, yn+)
∥

∥ ≤ C(K) ‖xJ − yJ‖
holds for all xn, yn ∈ K, n ∈ J.
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(A12) For any compact set K ⊂ R

k there exist constants C2(K), h2(K) > 0
such that the consistency estimate of order d ∈ N

‖ϕn(x, h)− ψn(x, h)‖ ≤ C2(K)hd+1

holds for all n ∈ J1, x ∈ K and 0 < h ≤ h2(K).

(A13) Mixed derivatives of ψn(x, h) up to order 3 exist. For any compact set
K ⊂ Rk the derivatives are continuous and uniformly bounded by some
constant C̃(K) in K× (0, h3(K)], with 0 < h3(K) sufficiently small. Fur-

thermore, ψn(x, h) is Cd smooth in h and mixed derivatives (ψn)
(1,d)
x,h (x, h)

exist and satisfy the uniform Lipschitz estimate

∥

∥

∥
(ψn)

(1,d)
x,h (x, µ1)− (ψn)

(1,d)
x,h (x, µ2)

∥

∥

∥
≤ C3(K) ‖µ1 − µ2‖

for all n ∈ J1, x ∈ K and 0 < µ1,2 ≤ h3(K) with a constant C3(K) > 0.
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Functions

ΦTker : R
k × I → I ∪ {n+ + 1}

(ξ, n0) 7→ n̊ :=

{

minKerξn0
, if Kerξn0

6= ∅
n+ + 1, otherwise

Kerξn0
:= {n ∈ [n0, n+]Z|Φ(n, n0)ξ = 0}

ΦTmin : Rk × I → I

(ξ, n0) 7→ n̄ := min{n ∈ [n−, n0]Z|∃x ∈ Rk : Φ(n0, n)x = ξ}
ΦTpre : R

k × I R

k

(ξ, n0) 7→
{

µ ∈ Rk
∣

∣Φ(n0, n̄)µ = ξ with n̄ := ΦTmin(ξ, n0)
}

Φpre(n,m)U :=
{

ξ ∈ Rk|Φ(n,m)ξ ∈ U
}

ϕT x̄
ker : R

k,×I → I ∪ {n+ + 1}

(ξ, n0) 7→
{

min{n ∈ [n0, n+]Z|ϕ(ξ, n, n0)− x̄(n) = 0}, if it exists

n+ + 1, otherwise

I

ϕBmin
ε : Rk ×Rk × I → I ∪ {t+ + 1}

(µ, x̄, t̄) 7→
{

t+ + 1, if ϕ(µ, t+, t̄) /∈ Bε(ϕ(x̄, t+, t̄))

min
{

t̂ ∈ I|t̂ ≥ t̄, ϕ(µ, t, t̄) ∈ Bε(ϕ(x̄, t, t̄))∀t ∈ I, t > t̂
}

, else

I

ϕBmax
ε : Rk ×Rk → I ∪ {t−1},

(µ, x̄) 7→
{

t−1, if µ /∈ Bε(x̄)

max
{

t̂ ∈ I|ϕ(µ, t, t−) ∈ Bε(ϕ(x̄, t, t−))∀t ∈ I, t < t̂
}

, else.

Tensor and Their Properties

SΓ(t) :=

{

1
2
[ΓA(t) + A(t)TΓ], for T = R, t ∈ I,

A(t)TΓA(t)− Γ, for T = Z, t ∈ I1,

MΓ(t) :=

{

ṠΓ(t) + SΓ(t)A(t) + A(t)TSΓ(t), for T = R, t ∈ I,

A(t)TSΓ(t+ 1)A(t)− SΓ(t), for T = Z, t ∈ I2

1

2

d

dt
‖ξ(t)‖2Γ = 〈ξ(t), SΓ(t)ξ(t)〉 (3.16)

d

dt
‖ξ(t)‖2Γ = 2〈A(t)ξ(t), ξ(t)〉 (3.18)

1

2

d2

dt2
‖ξ(t)‖2Γ = 〈ξ(t),MΓ(t)ξ(t)〉 (5.11)
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‖ξ(n+ 1)‖2Γ − ‖ξ(n)‖2Γ = 〈ξ(n), SΓ(n)ξ(n)〉 (3.17)
( (

‖ξ(n+ 2)‖2Γ − ‖ξ(n+ 1)‖2Γ
)

−
(

‖ξ(n+ 1)‖2Γ − ‖ξ(n)‖2Γ
) )

= 〈ξ(n),MΓ(n)ξ(n)〉 (5.12)

Sets

ZΓ(t) := {ξ ∈ Rk|〈ξ, SΓ(t)ξ〉 = 0}
L(n0) :=

{

ξ ∈ Rk|〈Φ(n+ − 1, n0)ξ, SΓ(n+ − 1)Φ(n+ − 1, n0)ξ〉 < 0
}

Cones Continuous

IV +
s (t0) :=

{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t0)ξ‖eαt is decreasing for t ∈ [t0, t+]
}

IV −
s (t0) :=

{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(t, t0)ξ‖eαt is decreasing for t ∈ [t−, t0]
}

IV +
u (t0) :=

{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(t, t0)ξ‖e−βt is increasing for t ∈ [t0, t+]
}

IV −
u (t0) :=

{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(t, t0)ξ‖e−βt is increasing for t ∈ [t−, t0]
}

IVs(t0) :=
IV +

s (t0) ∩ IV −
s (t0)

IVu(t0) :=
IV +

u (t0) ∩ IV −
u (t0)

IVs(t0) = {ξ ∈ Rk|〈Φ(t+, t0)ξ, SΓ(t+)Φ(t+, t0)ξ〉 < 0} ∪ {0} (5.24)
IVu(t0) = {Φ(t0, t−)ξ ∈ Rk|〈ξ, SΓ(t−)ξ〉 > 0} ∪ {0} (5.25)

Cones Discrete

IV +
s (n0) :=

{

ξ ∈ Rk
∣

∣∃α > 0 : ‖Φ(n, n0)ξ‖ eαn is decreasing for n ∈ [n0, n+]Z
}

IV −
s (n0) :=

{

ξ ∈ Rk
∣

∣∃µn̄ ∈ ΦTpre(ξ, n0), n̄ := ΦTmin(ξ, n0),

∃α > 0 : ‖Φ(n, n̄)µn̄‖ eαn is decreasing for n ∈ [n̄, n0]Z
}

IV +
u (n0) :=

{

ξ ∈ Rk
∣

∣∃β > 0 : ‖Φ(n, n0)ξ‖ e−βn is increasing for n ∈ [n0, n+]Z
}

IV −
u (n0) :=

{

ξ ∈ Rk
∣

∣

ΦTmin(ξ, n0) = n−, ∃µn−
∈ ΦTpre(ξ, n0),

∃β > 0 :
∥

∥Φ(n, n−)µn−

∥

∥ e−βn is increasing for n ∈ [n−, n0]Z
}

I
V̄s(t0) :=

IV +
s (t0) ∩ IV −

s (t0)
IVu(t0) :=

IV +
u (t0) ∩ IV −

u (t0)

IVs(n+ − 1) :=
I
V̄s(n+ − 1)

IVs(n0) :=
{

ξ ∈ I
V̄s(n0)

∣

∣

∣
Φ(n0 + 1, n0)ξ ∈ IVs(n0 + 1)

}

(n0 ∈ I2)

IVs(n+) :=
I
V̄s(n+) (invertible)
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I
V̄s(n+) = R(Φ(n+, n+ − 1))C

∪ {ξ ∈ Rk|ΦTmin(ξ, n+) =: n̄ < n+ ∧ ∃µ̄ ∈ ΦTpre(ξ, n+) :

〈µ, SΓ(n+ − 1)µ〉 < 0 for µ := Φ(n+ − 1, n̄)µ̄} ∪ {0}
I
V̄s(n0) = L(n0)∪̇N (Φ(n+ − 1, n0)) (n0 ∈ I1) (5.47)
IVs(n0) =

{

ξ ∈ L(n0)
∣

∣Φ(n0 + 1, n0)ξ ∈ IVs(n0 + 1)
}

(n0 ∈ I1)

∪̇N (Φ(n+ − 1, n0)) (5.52)
IVu(t0) = {Φ(t0, t−)ξ ∈ Rk|〈ξ, SΓ(t−)ξ〉 > 0} ∪ {0} (5.48)

IVs(n+) = Φ(n+, n+ − 1)L(n+ − 1) ∪ {0} (invertible) (5.50)

IVs(n0) =
I
V̄s(n0) = L(n0) ∪ {0} (invertible) (5.51)

Fibers Continuous

IM x̄
s :=

{

(x0, t0) ∈ Rk × I
∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄‖ < 0 for all t ∈ I

}

∪ {(x̄(t0), t0)|t0 ∈ I}
IM x̄

u :=

{

(x0, t0) ∈ Rk × I
∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄‖ > 0 for all t ∈ I

}

∪ {(x̄(t0), t0)|t0 ∈ I}
I

εM
x̄
s :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ < 0 for all t ∈ I,

ϕ(x0, t+, t0) ∈ Bε(x̄(t+))

}

∪ {(x̄(t0), t0)|t0 ∈ I}

I

εM
x̄
u :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ > 0 for all t ∈ I,

ϕ(x0, t−, t0) ∈ Bε(x̄(t−))

}

∪ {x̄(t0), t0)|t0 ∈ I}

I

εW
x̄
s :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

t̂ := I

ϕBmin
ε (ϕ(x0, t−, t0), x̄(t−), t−) ∈ I and

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ < 0 for all t ∈ I, t > t̂

}

∪ {(x̄(t0), t0)|t0 ∈ I}

I

εW
x̄
u :=

{

(x0, t0) ∈ Rk × I

∣

∣

∣

∣

t̂ := I

ϕBmax
ε (ϕ(x0, t−, t0), x̄(t−)) ∈ I and

d

dt
‖ϕ(x0, t, t0)− x̄(t)‖ > 0 for all t ∈ I, t < t̂

}

∪ {(x̄(t0), t0)|t0 ∈ I}
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Fibers Discrete

I

εM
x̄
s :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣
∃µ ∈ ϕTpre(ξ, n0) with n̄ := ϕTmin(ξ, n0) and

n̊ := ϕT x̄
ker(µ, n̄) : ‖ϕ(µ, n, n̄)− x̄(n)‖ < ‖ϕ(µ,m, n̄)− x̄(m)‖

for all n,m ∈ [n̄, n̊]
Z

, n > m and ϕ(ξ, n+, n0) ∈ Bε(x̄(n+)),
}

I

εM
x̄
u :=

{

(ξ, n0) ∈ Rk× I

∣

∣

∣ϕTmin(ξ, n0) = n− and ∃µ ∈ ϕTpre(ξ, n0) ∩Bε(x̄(n−)) :

‖ϕ(µ, n, n−)− x̄(n)‖ > ‖ϕ(µ,m, n−)− x̄(m)‖ for all n,m ∈ I, n > m
}

∪ {(x̄(t0), t0)|t0 ∈ I}
I

εW
x̄
s :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣
∃µ ∈ ϕTpre(ξ, n0) with n̄ := ϕTmin(ξ, n0),

n̊ := ϕT x̄
ker(µ, n̄) and n̂ := I

ϕBmin
ε (µ, x̄(n̄), n̄) ∈ I :

‖ϕ(µ, n, n̄)− x̄(n)‖ < ‖ϕ(µ,m, n̄)− x̄(m)‖
for all n,m ∈ I, n̊ ≥ n > m > n̂

}

I

εW
x̄
u :=

{

(ξ, n0) ∈ Rk × I

∣

∣

∣ϕTmin(ξ, n0) = n− and ∃µ ∈ ϕTpre(ξ, n0) with

n̂ := I

ϕBmax
ε (µ, x̄(n−)) ∈ I :

‖ϕ(µ, n, n−)− x̄(n)‖ > ‖ϕ(µ,m, n−)− x̄(m)‖
for all n,m ∈ I, m < n < n̂

}

∪
{

(x̄(n), n)
∣

∣n ∈ I
}

.
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