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Abstract

The main topic of this doctoral thesis is zeta functions of groups. Let G
be a unipotent group scheme defined over the ring of integers O of a number
field. The group G(O) of O-rational points is a finitely generated torsion-free
nilpotent group. We introduce two bivariate zeta functions related to groups
of the form G(O): firstly the bivariate representation zeta function of G(O),
which enumerates the isomorphism classes of irreducible complex representa-
tions of finite dimensions of its congruence quotients, and secondly the bivariate
conjugacy class zeta function of G(O), which enumerates the conjugacy classes
of each size of its congruence quotients.

These zeta functions might be used as tools for understanding another (uni-
variate) zeta functions, as they both specialise to class number zeta functions,
which enumerate class numbers of the congruence quotients. Additionally, in
case of nilpotency class two, bivariate representation zeta functions specialise
to twist representation zeta functions, which are zeta functions enumerating
the irreducible complex characters of finite dimensions up to tensoring by one-
dimensional characters.

We show that bivariate representation and bivariate conjugacy class zeta
functions satisfy Euler decompositions and that almost all of their Euler factors
are rational and satisfy functional equations. We also prove that they converge
on some domains of C? and, furthermore, their maximal domains of conver-
gence and meromorphic continuation are independent of the number field O
considered, up to finitely many local factors.

We provide formulae for the bivariate zeta functions of three infinite families
of groups of nilpotency class 2 of the form G(Q) which generalise the Heisenberg
group of 3 X 3-unitriangular matrices over O. As an application, we establish
formulae for the joint distributions of three statistics on finite hyperoctahedral
groups.

Key words and phrases: Group theory, zeta functions, finitely generated
nilpotent groups, conjugacy classes, irreducible complex characters, p-adic
integration, signed permutation statistics, hyperoctahedral group.
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Zusammenfassung

Zetafunktionen von Gruppen sind das Hauptthema dieser Doktorarbeit.
Sei G ein unipotentes Gruppenschema, welches iiber einen Ganzheitsring O
eines Zahlkorpers definiert ist. Die Gruppe G(O) der O-rationalen Punkte
ist eine endlich erzeugte torsionsfreie nilpotente Gruppe. Wir stellen zwei bi-
variate Zeta-Funktionen von Gruppen der Form G(O) vor: erstens die bivariate
Darstellungszetafunktion von G(QO), welche die Isomorphieklassen aller endlich-
dimensionalen irreduziblen komplexen Darstellungen von Kongruenzquotienten
von G(O) kodiert, und zweitens die bivariate Konjugations-klassezetafunktion
von G(0O), die die Konjugations-klassen jeder endlichen Grofle von Kongruen-
zquotienten von G(O) kodiert.

Diese bivariaten Zetafunktionen kénnen benutzen werden, um andere (uni-
variate) Zetafunktionen zu verstehen, denn beide spezialisieren sich zu Klassen-
zahlzetafunktionen, welche Klassenzahlen von Kongruenzquotienten kodieren.
AuBlerdem spezialisieren sich bivariate Darstellungszetafunktionen von Gruppen
des Nilpotenzgrades 2 zu twist Darstellungszetafunktionen, welche alle endlich
dimensionalen irreduziblen komplexen Darstellungen bis auf Tensorierung mit
eindimensionale Darstellungen kodieren.

Wir  zeigen, dass  bivariate  Darstellungs- und Konjugations-
klassezetafunktionen Fuler-Zerlegungen besitzen, und dass ihre lokalen
Faktoren rationale Funktionen sind, welche Funktionalgleichungen gentigen.
Wir zeigen auch, dass sie jeweils auf einem Gebiet von C? konvergieren.
AuBlerdem sind ihre maximalen Konvergenz- und Meromorphiebereiche bis auf
endliche viele lokale Faktoren unabhéngig von O.

Wir bestimmen explizite Formeln fiir beide bivariaten Zetafunktionen von
drei unendlichen Familien von nilpotenten Gruppen G(O) des Nilpotenz-
grades 2, welche die Heisenberg-Gruppe von 3 x 3-unipotenten Dreiecksmatrizen
iiber O verallgemeinern. Als Anwendung ermitteln wir Formeln fiir die gemein-
samen Verteilungen von drei Statistiken auf endlichen Hyperoktaedergruppen.

Schliisselworter: Gruppentheorie, Zetafunktionen, endlich erzeugte
nilpotente Gruppen, Konjugations-klassen, irreduzible komplexe Charaktere,
p-adische Integration, signierte Permutationsstatistiken,
Hyperoktaedergruppen.
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Chapter 1

Introduction and summary
of main results

Euler was the first to provide a solution to the Basel problem, which consists

of obtaining the precise value of the sum
(o]

This was done by defining and studying the zeta function
o
¢(s) = Zn‘s, (1.0.1)
n=1

which at the time was regarded as a real function. Euler gave a formula for

¢(2m) for all m € IN in terms of Bernoulli numbers. In particular, the solution
2

for the Basel problem is ((2) = %-.
Riemann extended the zeta function of Euler to a complex variable function.
This allowed to analytically continue {(s) around the pole s = 1 and to obtain a
meromorphic continuation to the whole complex plane. This complex function
is known as the Riemann zeta function, and has been intensively investigated in
the last years, mostly because of the famous Riemann hypothesis and its relation
with the distribution of prime numbers; see Section 12 and Theorem 12.3].
The series is known to converge when the real part Re(s) of s is larger
than 1, and to diverge if Re(s) < 1. Euler proved that ((s) satisfies the following

decomposition:
)= [ &), (1.0.2)

p prime

where (,(s)—called local factors of ((s)—are defined analogously to the Rie-
mann zeta function, but instead of considering all natural numbers, we consider
powers of the prime p:

S . 1
<p(8) = Zp_ls - 1 —p=s’
=0 p

The decomposition ((1.0.2)) is known as the Euler decomposition of the Riemann
zeta function ((s), and it provides a proof for the existence of infinitely many
primes, since the harmonic series (1) diverges.

1



1. Introduction and summary of main results 2

The definition of the Riemann zeta function was extended by Dirichlet by
attaching a coefficient a,, to each term of the sum (1.0.1)): the Dirichlet series
associated to a complex sequence (ay), with n € N is

D((an)n,s) := Z ann”?®,

where s is a complex variable. This generating function has a right half plane
of C as maximal domain of convergence, possibly empty; see for instance [1], The-
orem 11.8] or Theorem 1]. The infimum of all ¢ € R such that D((ay)n, s)
converges on {s € C | Re(s) > ¢} is called the abscissa of convergence of this
Dirichlet series—see [1, Theorem 11.9]—and denoted by a. If D((an)n,s) di-
verges on the whole of C, then @ = —o0.

If the sequence (an), is bounded by an integer polynomial in n, then (a, )y
is said to have polynomial growth and the Dirichlet series associated to (ay)n
converges for s € C with sufficiently large real part Re(s), that is a > —oc.

Dirichlet series serve algebraic purposes by attaching sequences (ay, ), encod-
ing some data of algebraic objects. Dedekind, for instance, defined the Dirichlet
series associated to the data (7, (K)), of a number field K with ring of integers
O given by v,(K) :=|{I <0 | |0 : I| =n}|

Cr(s) = Z’yn(K)nﬂ = Z |O :a|™?, (1.0.3)
n=1 a

where the second sum is over all nonzero ideals a of O. This generating function
is called Dedekind zeta function and satisfies the following Fuler decomposition:
1
(i (s) :1;[717|(9:p|*5’ (1.0.4)
where p ranges over the nonzero prime ideals of O. Decomposition
reflects the unique factorisation of ideals in O. In particular, the Dedekind
zeta function (g(s) of the rational numbers coincides with the Riemann zeta
function.
Zeta functions were introduced as tools in asymptotic group theory by
Grunewald, Segal and Smith in [17], where they considered the following data
of a torsion-free finitely generated nilpotent group G (or T-group for short):

a; (G)=|{H <G ||G: H| =n},

a;(G)={H 2G| |G : H| = n},

ap(G)=[{H <G||G:H|=n, H=G}|
where G denotes the profinite completion of G. The numbers a= (@), a(@),

n
and a/(G) are finite for all n € IN, since finitely generated groups have only
finitely many subgroups of each index, cf. Corollary 1.1.2]. The subgroup
zeta function, the normal zeta function, and the profinite zeta function of a

T-group G are

G(s) =) a5 (Gn™®, G(s)=> af(Gn™, ¢4(s)=>_ ap(G)n*,
n=1 n=1 n=1

(1.0.5)

respectively. In particular, C%(s) = CZS](S) = ((s).
These generating functions are Dirichlet series and hence they con-
verge for sufficiently large Re(s), as long as the associated sequences are bounded
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by polynomials.

Zeta functions are expected to satisfy some arithmetic and analytic prop-
erties. Among the arithmetic properties, they should possess Euler decompo-
sitions whose local factors are rational functions. Rationality here means the
following: let (*(s) denote a zeta function associated to some data (of a group G,
for example) with Euler decomposition [, ;. ¢y (s). We say that the local
factor (;(s) of this zeta function at p is rational in p~* if there exists a rational
function W,(X) € Q[X] such that i (s) = Wy(p~°).

The zeta functions @ satisfy Euler decompositions and their local factors
are rational functions; see ﬂ—]j, Proposition 4 and Theorem 1].

If the T-group G has nilpotency class 2, one says that G is a Ta-group. The
subgroup and normal subgroup zeta functions of free T>-groups are uniform; see
Theorem 2].

One may ask what sort of information some data a,(G) of a group G can
provide about the group and its algebraic features. Some families of groups are
characterised by their subgroup growth, that is, they are characterised by how

fast the corresponding sequence (as(G)), grows. One example is that arith-

n
metic groups in characteristic zero have the congruence subgroup property if
and only if the sequence (Y i, a=(G)), grows strictly less than n'°(") | that is,

if there is a constant a such that Y7 a=(G) < n®1°8(") for all n € N; see
Bl

?

Theorem 7.1]. Furthermore, the Polynomial Subgroup Growth Theorem
Theorem 5.1] asserts that a finitely generated residually finite group G is vir-
tually soluble of finite rank if and only if the sequence (a,(G)), is bounded
by a polynomial. In particular, a finitely generated residually finite group G is
virtually soluble of finite rank if and only if its subgroup zeta function converges
somewhere.

1.1 Zeta functions related to representations
and conjugacy classes of groups

In finite group theory, character degrees, irreducible representations and
conjugacy classes are considerably well studied; see for instance . In order
to investigate them in the context of infinite groups, one may investigate zeta
functions concerning the distributions of representations of each dimension and
conjugacy classes of each size. In the following, we discuss and define zeta
functions which encode information about representations and conjugacy classes
of groups.

1.1.1 Representation zeta functions

Given a group G, denote by Rep(G) the set of its isomorphism classes of
complex irreducible representations. Set

rn(G) = [{[p] € Rep(G) | dim(p) = n},
where [p] is the isomorphism class of the representation p : G — GL,(C). If G is
a topological group, then we only consider continuous representations. If r,(G)
is finite for each n € IN, the group G is said to be representation rigid, and one
can study the sequence (r,(G)),, through the Dirichlet series associated to it.
Throughout, denote by s a complex variable.
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Definition 1.1.1. The representation zeta function of a representation rigid

group G is
Clrr Z Tn

Representation zeta functions of rigid groups are investigated, for instance,
in . For a short introduction to representation growth
and representation zeta functions, see .

A T-group G has infinitely many one-dimensional complex irreducible rep-
resentations, that is, G is not representation rigid. Hrushovski and Martin
introduced in the first version of the paper the Dirichlet series associated
to the numbers 7, (G) of n-dimensional irreducible complex characters of G up
to tensoring by one-dimensional characters. The equivalence classes on the set
of irreducible complex representations of G under this equivalence relation are
called twist-isoclasses, and two elements of the same twist-isoclass are said to
be twist-equivalent to each other. For a T-group G, the numbers 7, (G) are all
finite, see Theorem 6.6], hence one can define a Dirichlet series encoding
this data. The following zeta function was defined in the first version of .

Definition 1.1.2. The twist representation zeta function of a T-group G is
1rr Z Tn n="%.

This zeta function converges on a (nonempty) complex half-plane, see
Lemma 2.1], and has Fuler decomposition

&)= 1] ggfp (1.1.1)

p prime
where Cl” (5) = Do Tpi(G)p™ %5 see Section 4.1]. Twist representation

zeta functlons of T-groups are studied, for instance, in
. For an introduction see [52]. The local factors in (1.1.1) are rational
19

functions in p~*, according to |19, Theorem 1.5]. Moreover, almost all local
factors satisfy functional equations under inversion of p; see Theorem D].

Let K be a number field and O its ring of integers. Let G be a unipotent
group scheme over O. The group G(O) is a T-group; see Section 2.1.1].
Twist representation zeta functions of groups G(O) associated to nilpotent Lie
lattices were studied in . Stasinski and Voll observe that, since unipotent
groups have the Congruence Subgroup Property and the strong approximation
property, the twist representation zeta functions of groups of the form G(O)
satisfy the FEuler decomposition

(&io)(®) H Eops

where p ranges over the nonzero prime 1deals of O and the completion of O at the
nonzero prime ideal p is denoted by O,. This Euler decomposition refines .

We want to study the distribution of irreducible complex representations of
some groups of the form G(O). However, instead of considering the numbers of
irreducible complex representations of G(Q) up to some equivalence relation—
such as 7, (G(O))—, we consider the distributions of the irreducible complex
representation of congruence quotients G(O/I) of G(O), where I is a nonzero
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ideal of O. Since the groups G(O/I) are finite, their representation zeta func-
tions are well defined. Our idea is to define a zeta function associated
to G(O) in two variables which encode the irreducible complex representations
of the quotients G(O/I): one of the variables keeps track of the level quotient
and the other one counts the relevant data.

Definition 1.1.3. The bivariate representation zeta function of G(O) is

ZEoy(s1,82) = D> (om0 177,
(0)£I<O

where s1 and sy are complex variables.

This generating function is a double Dirichlet series; see Section In
Proposition [2.5.5, we show that it converges if s1,so € C have sufficiently large
real parts. However, the maximal domain of convergence of Zér(o)(sl, S2) may
not be of the form {(s1,s2) € C? | Re(s1) > a1, Re(sz) > as}.

In Proposition [3.1.1] we show the Euler decomposition

Z&(0)(51,%2) HZGr(O (s1,82), (1.1.2)

where p ranges over the nonzero prime 1deals of @. When considering a fixed
prime ideal p, we write simply O, = 0 and Gy := G(o/p’V). With this notation,
the local factor at p is given by

Ziér(op)(sl,sz) Z& o) (51,52) ZCM o p[Ve2 (1.1.3)

In certain cases, one can study twist representation zeta functions through
bivariate representation zeta functions, as we now explain. A nilpotent O-Lie
lattice A is a free and finitely generated O-module A together with an antisym-
metric bi-additive form [, ] which satisfies the Jacobi identity. Let G be a
unipotent group scheme obtained from a nilpotent O-Lie lattice A in the sense
of Section 2.1.2]; see Section If GA(O) is a Ta-group, the twist repre-
sentation zeta function G (o) can be obtained from its bivariate representation
zeta function via the following specialisation, given in Proposition

(1- q’”*SZ)Z‘c?A(O)(&, 52) |s1:s—2: Cicf*,r,\(o)(s)a (1.1.4)
S2 I

where 7 is a constant depending on A, provided both the left-hand side and the
right-hand side converge.

However, no such specialisation is expected to hold in general. In Exam-
ple we exhibit a T-group of nilpotency class 3 whose bivariate representa-
tion zeta function does not specialise to its twist representation zeta function.

We are mostly interested in studying bivariate representation zeta functions
of T-groups of the form G (O). Stasinski and Voll showed in Theorem A]
that almost all local factors of twist representation zeta functions of such groups
are rational. More precisely, they proved that there are ¢ € IN and a rational
function R(X1,...,X;,Y) such that almost all local factors (‘C_rf (o) (8) are given
by

Céi\(a)( ) R()‘lv"W)\taqis)a

where ¢ = |O : p| and Ay, ..., A are algebraic integers depending on the prime p.
More than that, the local factors are uniform under base extension: if O is a
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finite extension of o with degree of inertia f = f(9,0), then

& o)) = RO, M a7 7); (1.1.5)
see Theorem A]. This property is not shared with some other zeta functions
of groups: Let H = (x1,22,y | [x1,22] — 2) be the Heisenberg group scheme,
so that the group H(O) is the Heisenberg group of upper uni-triangular 3 x 3-
matrices over O. Theorem 3] assures that the local factors Cﬁ‘(op)(s) are
given by rational functions depending not only on the prime ideal p of O but
also on the degree of the finite extension |K : Q|.

Stasinski and Voll also showed that CETA( 0) satisfies the following local func-
tional equations:

& o ()|q_>q1 ¢CE ) (5),

)\LA)A_

where d = dim(A’ ®p K), with A’ = [A, A]; see Theorem AJ.

We may wonder whether (almost all) local factors of bivariate representation
zeta functions of the groups G(O) are described by a rational function, and
whether these local factors behave uniformly under base extensions and satisfy
local functional equations under inversion of parameters. In fact, as we shall
see in Section [1.2.1] our first main result Theorem [I] establishes these features
for Z&O)(Sh S2).

1.1.2 Conjugacy class zeta functions

Conjugacy classes and their sizes reflect properties of groups; see (8] for a
survey. One may study the distribution of the conjugacy class sizes of a group G
through the sequence of numbers

cn(G) = {conjugacy classes of G of cardinality n}.

If all numbers ¢, (G) are finite, we define the following Dirichlet series.

Definition 1.1.4. The conjugacy class zeta function of the group G is
oo
F(s) = Z cn(G)n™?
n=1

Let again G be a unipotent group scheme over 0. As for the numbers
rn(G(0)), the numbers ¢,(G(O)) are not all finite. For instance, any free
abelian group has infinitely many conjugacy classes of cardinality 1. Analo-
gously to the representation case, we overcome the fact that ¢, (G(O)) may be
infinite by considering the finite numbers ¢, (G(O/I)), where I is a nonzero ideal
of O, and then attaching them to a double Dirichlet series. This way we obtain
a two-variable generating function such that one of the variables keeps track of
the level quotient and the other one keeps track of the sizes of the conjugacy
classes of these quotients.

Definition 1.1.5. The bivariate conjugacy class zeta function of G(O) is
ZE o) (s1,52) = D (Eom(s1)]0:I]7%2,
(0)£I40O
where s1 and sy are complex variables.
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Similarly to bivariate representation zeta functions of groups G(O), their
bivariate conjugacy class zeta functions converge for s1, so € C with sufficiently
large real parts—see Proposition and satisfy the Fuler decomposition

Zg(0)(51,82) = Hzg(op)(sl,@% (1.1.6)
P

see Proposition where p ranges over the nonzero prime ideals of O and
the local factors are

Z&C(Op)(sl,sQ) Z&(0)(51,52) Z (G (51) Yo :p| N, (1.1.7)

Almost all of these local factors are ratlonal, behave uniformly under finite base
extension, and satisfy functional equations, as we shall see in Theorem

1.1.3 Class number zeta function

The total number of conjugacy classes of a group G is called its class number
and is denoted by k(G). Let Irr(G) be the set of irreducible complex characters
of G. If G is a finite group, then k(G) = |Irr(G)| = |Rep(G)|. In particular,
K(G) = ¢ (0) = C&(0).

For T-groups of the form G(0O), where G is a unipotent group scheme, one
may define the following generating function.

Definition 1.1.6. The class number zeta function of the T -group G(O) is

CG(O) Z k(G(O/1))[0 :1]7*.
0)£1<40

The term ‘conjugacy class zeta function’ is sometimes used for what we call
‘class number zeta function’; see for instance .

Let G < GL,, be a Z-defined algebraic subgroup which has the strong
approximation property. For each n € IN, consider the congruence subgroup
G"(0) = ker(G(0) — G(0/p™)) of G(0) and the congruence quotient G(0,n) :=
G(0)/G™(0) = G(o/p™). In [5, Lemma 8.1], Berman, Derakhshan, Onn, and
Paajanen defined the class number zeta function of groups G(0), where o is the
valuation ring of a non-Archimedean local field, by

CE(o) () Z k(G(o,n))a™",

and show that this zeta function satlsﬁes an Euler decomposition. The proof
methods also apply to groups of the form G(Q), since unipotent groups have the
strong approximation property; see Lemma 5.5]. This means that the class
number zeta functions of groups of the form G(O) admit Euler decompositions
of the form

(&(0)(5) H CG(o
where p ranges over the nonzero prime ideals of O and the local factors are

(o) (8) Z k(Gw)g™ .
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Local class number zeta functions of Chevalley groups G(o), where o is the
valuation ring of a non-Archimedean local field of any (sufficiently large) char-
acteristic, are rational functions; see Theorem C]. Moreover, these zeta
functions only depend on the size of the residue field of o.

We study class number zeta functions of groups of the form G(O) via the fol-
lowing specialisations of the bivariate zeta functions of Definitions[I.1.3|and[I.1.5]

Zgr(O) (0,s) = ZE}C(O)( ;8) = <G(O)(S)' (1.1.8)

In particular, by showing convergence and Euler decompositions for the bi-
variate zeta functions and rationality and functional equations for their local
factors, we obtain analogous results for class numbers zeta functions via spe-

cialisation (1.1.8).

Let K be a non-Archimedean local field of characteristic zero with com-
pact discrete valuation ring £. Let ¢ be the maximal ideal of O and
= [9/PB|. Given G < GL,(D), denote by G, the image of G under
GL4(O) — GL4(O/9™). Rossmann studied class number zeta func-

tions
CGioy(s Z k(Gn)g™™

via specialisations of ask zeta functions, which are zeta functions encoding the
average sizes of the kernels of modules of matrices over . He showed the
class number zeta functions of such groups are rational and satisfy functional
equations; see Theorem 1.4 and Theorem 4.18].

We conclude Section [I.1] with a simple example.

Ezample 1.1.7. Let G(O) be the free abelian torsion-free group O™, and let p
be a nonzero prime ideal of O with ¢ = |O : p|. Then, for N € INy, it holds that
mNif =0,

g (Gn) = cgs (Gy) = {q :

0, otherwise.

Therefore, for * € {irr, cc},

- 1

Z(0)(51,52) = Zgm(s1,52) = Y ") = T—gn—=

N=0
Consequently, Z%..(s1,52) = (x(s2 —m), where (x(s) denotes the Dedekind
zeta function of the number field K. Moreover, these zeta functions converge
on {(s1,s2) € C? | Re(s2) > 1+ m} and admit meromorphic continuation to
the whole of C?; see Section

We see that the local factor at p is rational in ¢ and ¢~°2 and satisfies the
functional equation

Zom (81, 82) |gmq-1= —q" " Z5m (51, 82).

Specialisation (|1 shows that ¢X.(s) = Ck (s —m). A
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1.2 Main results

1.2.1 Arithmetic properties

Our first main result concerns uniform rationality and functional equations
of local factors of bivariate representation and bivariate conjugacy class zeta
functions of T-groups G(O) = G, (O) obtained from nilpotent Lie lattices; see
Section [2.11

Theorem 1. For each x € {irr,cc}, there exist a positive integer t* and a ra-
tional function R*(Xy,..., X+, Y1,Ys) in Q(Xq,..., X, Y1,Y2) such that, for
all but finitely many nonzero prime ideals p of O, there exist algebraic inte-
gers Xy (p), ..., Af(p) for which the following holds. For any finite extension O
of 0 := O, with relative degree of inertia f = f(O,0),
ZE(D)(SL 52) = R*()‘I (p)fv B )‘:* (p)fv q_f31 ) q_f82)>

where ¢ = |O : p|. Moreover, these local factors satisfy the following functional
equation:

Zooy(sus) | g = =T EG ) (s1, ),
A} ()] ()

where h = dimg (A ® K).

The algebraic integers A} (p) are explained in Remark

The statement of Theorem [1]is analogous to Theorem A], and its proof
relies on the methods of 51]; see Section The main tools used in the
proof of Theorem (1| are the Kirillov orbit method, the Lazard correspondence
and p-adic integration.

As mentioned in Section [I.1.3] a consequence of Theorem [I]is that the local
factors of the class number zeta function of G(Q) are rational in A;(p), ¢, and ¢g—*
and behave uniformly under base extension. Moreover, for a finite extension O
of o with relative degree of inertia f = f(O,0), the local factors satisfy the
functional equation

G| mgr =" o) ().
A (p)—=As(p) !

Rossmann proved independently in Corollary 4.10 and Theorem 4.15],
via specialisation of the ask zeta function—cf. Definition 1.3]—, rationality
and functional equations for local factors of class number zeta functions of such
groups under mild assumptions on the group G(o) and the characteristic p

of o/p.

1.2.2 Examples: Groups of type F, G, and H

We provide explicit formulae for the bivariate representation and the bi-
variate conjugacy class zeta functions of three infinite families of T3-groups.
Consequently, we obtain explicit formulae for their twist representation and
class number zeta functions. The local factors of these zeta functions are also
expressed in terms of sums over finite hyperoctahedral groups, which provides
formulae for joint distributions of three statistics on such groups.
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Definition 1.2.1. For n € N and 6 € {0,1}, consider the nilpotent Z-Lie
lattices

-Fn,(S:(xk'ayij' [xlaxj]fym,l§k§2n+5algl<]§2n+5>7
gn:<xkayij | [xiaxn—i-j]_yiﬁlgkgznal S%JS”%
Mo = (@i, Yij | [Tis Tntj] — Yijo [T5, Tnai] — Vi, 1 <k <2n,1<i<j<n).

By convention, relations that do not follow from the given ones are trivial.

Let A be one of the Z-Lie lattices of Definition We consider the
unipotent group scheme G, associated to A obtained by the construction of
Section 2.4], see Section Following , these unipotent group schemes are
denoted by F, s, Gp, and H,, and groups of the form F,, 5(O), G,(O), and
H,(O) are called groups of type F, G, and H, respectively.

The unipotent group schemes F}, s, G, and H,, provide different generalisa-
tions of the Heisenberg group scheme H = (x1, 23,y | [£1, 2] — 2). The interest
in such Z-Lie lattices arises from their very construction. Roughly speaking,
their defining relations reflect the reduced, irreducible, prehomogeneous vector
spaces of complex n X n antisymmetric matrices, complex n X n-matrices and
complex n X n symmetric matrices, respectively,—here, the relative invariants
are given respectively by Pf, det and det, where Pf(X) denotes the Pfaffian of
an antisymmetric matrix X. We refer the reader to Section 6] for details.

Bivariate conjugacy class and class number zeta functions

Theorem 2. Let n € N, and 6 € {0,1}. Then, for each nonzero prime ideal p
of O with ¢ = |0 : p|,
1_ q(2n+25*1>—(2n+5—1)31—32

Z;‘i,g(o)(‘glaS?) = 2n+3

(1- q( - )752)(1 _ q(2"2+5)+17(2n+671)51752)'

Write ¢=°* =11 and q~°2 =T,. Forn > 2,

26 (o) (51,82) =

1 - G TrTy) (1 — FET21T,) 4 g TR Ty (1 — ¢™)(1 — g~ (=0T Y
(1= g T)(1 — ¢ TP T) (1 — g 1T Ty)

Zﬁfn(o)(sl,@) =

(1= gD 1p1y)(1 = g 272 1) + U 11 (1 — g (1 — g7

)

n+1 n+1 n+1

(1— (")) (1 — ) Tpmy) (1 — g3 121y

Denote by Spec(O) the set of prime ideals of O. Specialisation (1.1.8]) yields
the following.

Corollary 1.2.2. For alln > 1 and § € {0,1},

CK(S _ (2n2+6) _ ]-)CK(S _ (2n2+6))
CK(S_ (2n+2571)) ’

where Cx(s) is the Dedekind zeta function of the number field K = Frac(O).

(50 (8) = (1.2.1)
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Furthermore, for n > 2,

2(5)—s 2(5)+1—s n2—s n
P B ST i [ A R i iy
Gn(0) (1 - qn273)2(1 B qn2+175) ’
peSpec(O)\{(0)} p p
"Y_g "Y42—s ntl)_g _n
K B (1*(152) )(1,(]52) )+qs 2 (1—gqy™th)?
CH,L(O)(S) = ("= ("T)+1-s )
pESPec(ON\{(0)} (I—gp 7 N1—¢qp* )?

where g, = |O : p|, for all p € Spec(O) \ {(0)}.

In particular, all local factors of the bivariate conjugacy class zeta functions
of groups of type I, G, and H are rational in g, g, **, and ¢, **, whilst all local
factors of their class number zeta functions are rational in g, and g, *. Moreover,
all local factors of both types of zeta functions satisfy functional equations. This
(slightly) generalises Theorem (1| for these groups.

Formula was shown independently in [38]; it is a consequence of

Proposition 5. 11 and Proposition 6.4]; see Remarks [3.2.13| and [5

Bivariate representation and twist representation zeta functions

To state our next result, we introduce some notation.
Let X,Y denote indeterminates in the field Q(X,Y). Given n € N, set
n)x =1—X"and (n)x! = (n)x(n—=1)x...(1)x. For a,b € Ny such that
> b, the X-binomial coefficient of a over b is

a (a)
<b>x = Oxlaby < 4%

Given n € W, write [n] = {1,...,n} and [n]p = [n] U {0}. Given a subset
{i1,...,41} C N, we write {i1,...,%}< meaning that iy < iz < --- < ¢;. For
I = {il, . ,il}< Q [’ﬂ — 1]0, set Ky = ij+1 — ij for all ] S [l]o, where io = 0,

ij11 = n, and define
(), = (), 60) ()
I X i) x \i-1 X.“ i1 X.

The Y-Pochhammer symbol is defined as

n—1

(X;Y) = [J(1— XY,

=0

Theorem 3. Let G € {F,,5,Gp,Hy,} for somen € N and § € {0,1}. Then,
for each nonzero prime ideal p of O with g = |O : p|,

(n—1)s1—s2

irr 71 q
ZG(U)(Sl’SQ) _ a(Gn) s2 Z fGI H a(G,i)—(n—i)s1—s2’

IC[n—1]o icl
where fa 1(X) and a(G,1), for all I = {i1,...,i1}< C [n — 1]p and for all
i € [n]o, are defined as in Table[1.1]

The numbers a(G, ) are slight modifications of the numbers a(G, %) given in
Theorem CJ, namely a(F, 5,%) = a(Fy 5,9)+2i+0 and a(G, ) = a(G,1)+21,
for G(O) of type G and H.

Since groups of type F', G, and H are Ta-groups, we may obtain formulae for
their twist zeta functions via . The constant r appearing in in this
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G | fe,1(X) | a(G,1)

Fos | G X8, | P - (50 13140
Ghn (1) x (X X)), n* —i* 4 2i

o | (T O35 X0, o)) 5 X | (44 = (1) 2

Table 1.1: Numerical data associated to Zl" for G e {Fns,Gn Hn}

case is r = a(G,n), that is, r =2n+d if A = F,, s and r = 2n if A € {G,,, H,}.

Then
a(G,i)—(n—1i)(s—2)—

irr _ 71 q
CG(U)( )_ Z ‘fGI H _ a(G i)—(n—i)(s—2)—r

IC[n—1]o iel
a(G,i)—(n—1i)s
_ -1 q*
- Z fGI H _ a(Gz) (n—1)s’
IC[n—1]o icr b

which agrees with Theorem CJ.

Formulae for the twist representation zeta functions of groups of type F, G,
and H are given in Theorem B] in terms of Dedekind zeta functions. We
remark that the bivariate representation zeta functions of these groups cannot
be written in terms of Dedekind zeta functions. For instance, using Theorem
one can calculate the bivariate representation zeta function of Fo(0). Write
Ty = ¢ * and T» = ¢~ *2. Then, ZII (U)(Sl,SQ) equals

(TS — T + ¢ Ti To — q4T1T2 — ¢TI + TP — ¢*Th T + 1
(1 — q7T1T2)(1 — q6T2T2)(1 — q4T2)
However, it follows from specialisation [I.1.4] and Corollary [1.2.2] that setting

T1 = 1 in this formula will produce a functlon on q and T, which can be written
in terms of Dedekind zeta functions.

Sums over finite hyperoctahedral groups

The polynomials fg,1(X) appearing in Tablecan be expressed in terms of
distributions of statistics on Weyl groups of type B, also called hyperoctahedral
groups By,; see Section[5.3.1] These are the groups of permutations w of the set
[£n]o = {—n,...,n} such that w(—i) = —w(¢) for all ¢ € [£n]o.

In Section [5.3.2] we describe the local bivariate representation zeta func-
tions of G(O) as sums over B, in terms of statistics on such groups. As the
local factors of the bivariate representation and the bivariate conjugacy class
zeta functions of G(O) specialise to the local factors of its class number zeta
function, the formulae in terms of statistics on hyperoctahedral groups B,, can
be compared with the formulae of Corollary which leads to formulae for
the joint distribution of three functions on Weyl groups of type B; see Proposi-
tions [5.3.5] and £.3.61

More precisely, the formulae of bivariate representation zeta functions in
terms of statistics on hyperoctahedral groups under specialisation pro-
vide a formula of the following form for the class number zeta function of G(o):

k _ ZweBn XG (w)qfﬁ(w)*deS(w)s .
CG(O)(S) = Hn (1 — q?l(G,i)fs) ;

=0

(1.2.2)
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see Lemma Here, xq is one of the linear characters (—1)"°8 or (—1)¢ of
B,,, where neg(w) denotes the number of negative entries of w, and ¢ is the
standard Coxeter length function of B,,. Moreover, the functions hg are sums
of statistics on B,, for each G and des(w) is the cardinality of the descent set

of w € B,,; see Section for definitions.

The formulae for the bivariate zeta functions given in Theorems |2 and
allow us to strengthen Theorem [1| for groups of type F, G, and H by showing
that its conclusion holds for all local factors:

Theorem 4. Let G € {F,s,Gn,H,} and x € {irr,cc}. Then, for every
nonzero prime ideal p of O with |O : p| = q, the local bivariate zeta function

Zé(o)(sl, S2) satisfies the functional equation

Za(o)(51752) |q—)q*1: 7qh7822a(0)(51’52)7

where h is the torsion free rank of A(o) = A ®, o; see the exact value of h in
Table 5.1l

In fact, Theorem [I| states that almost all local factors satisfy functional
equations of such form, whilst Theorems [2| and [3|state that all local factors are
given by the same rational functions. We give an alternative proof of Theo-
rem (4] for bivariate representation zeta functions using the descriptions (|1.2.2])

in Section [5.3.31

1.2.3 Analytic properties

Having defined and worked with the bivariate zeta functions, it is natural to
ask for their domains of convergence. As mentioned in Sections and
bivariate representation and bivariate conjugacy class zeta functions of groups
G(0O), where G is a unipotent group scheme, converge for sy, so € C with
sufficiently large real parts. In contrast with the one-variable case, however,
the maximal domain of convergence may not be of the form {(si,s2) € C? |
Re(s1) > a1, Re(s1) > as}.

In fact, the formulae of Theorems [2] and [3] show that the domains of con-
vergence of the bivariate zeta functions of groups of type F';, G and H are as
follows; see Section [2.6

* 2% (0)(s1,52) converges for
Re((2n+d —1)s1 +s2) > 2+ (2";5) and Re(s2) > 1+ (2”;5),
* Z& (0)(s1,82) converges for
Re((2n—1)s; +52) > 2+n?, Re(ns;+s2) > 1+n? and Re(sy) > 1+n?,

* ZF (o) (s1, 82) converges for
Re((2n — 1)s1 + s2) > 2+ ("31), Re(nsi +s2) > 2+ (") and
Re(s2) > 1+ ("3),
° Ziér(o)(sl, sg) for G € {F,, 5,Gy, H,} converges for
Re((n —1i)s1 + s2) > 1+ a(G,1),Vi € [n]o.
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These domains are all independent of the ring of integers O considered. More-
over, it follows easily from the formulae of Theorem [2| that Z%iyg(o)(sth)
admits meromorphic continuation to the whole C2, and that Zécn(o)(sl, s2) and
zZy (@)(51, s2) admit meromorphic continuations to open domains which are
independent of the ring of integers O. It follows from the formulae of Theo-
rem 3| that bivariate representation zeta functions of groups of type F, GG, and
H admit meromorphic continuation to
{(s1,82) € C* | Re((n — i)s1 + $2) > a(G,i),Vi € [n]o} ;

see Section 2.6

These examples raise the question of whether the domains of convergence
and meromorphic continuation being independent of O is a general phenomenon
for these bivariate zeta functions. It was previously showed by Dung and Voll in
Theorem A] that, for groups of the form G, (Q), where G, is a unipotent
group scheme associated to a O-Lie lattice A, the twist representation zeta
functions C’éfA (O)(s) converge on some open domain which is independent of O
and admit meromorphic continuations to a larger open domain which is also
independent of O.

However, zeta functions of group of the form G(O), where G is a unipotent
group scheme over O, are not expected in general to have domains of convergence
and meromorphy which are independent of O . In fact, the normal zeta function
of the Heisenberg Group H(O) has abscissa of convergence depending on the
degree of the extension |K : @), see Theorem 1.2] and Theorems 3.2
and 3.8].

Our next main result concerns these properties for the bivariate zeta func-
tions of groups of the form Ga(O); we show that for each * € {irr,cc} there
exists a finite set Q* of prime ideals of O such that the domains of convergence
and meromorphic continuation of the bivariate function

Zao s1.80) = ] Z&0,)(51,52), (1.2.3)
pEQ*
are independent of the ring of integers O. This means that, for each finite
extension L/K with ring of integers Op, the domains of convergence and mero-
morphic continuation of ZE}(OL)(Sl’ $2), up to finitely many local factors, are
the same as the ones of Zg(g(;)(sl, $2).

Let L/K be a finite extension with ring of integers Oy,. In the following, we
denote by Op ¢ the completion of O at the prime ideal B of Oy..

Theorem 5. Denote by 9&(0) the domain of convergence of Zg%)(sl,sz).
This function admits meromorphic continuation to an open domain ///é(o) 2
@a(o)' Moreover, for each finite extension L/K with ring of integers Oy, there
exists a finite subset Qy, C Spec(Oy,) such that the bivariate function
*,Q
28 (s190) = T Z&(0,.0)(51:52)
PEQL
satisfies:

1. The domain of convergence of ZE(QOL)(Sh s2) coincides with -@é(O) and

2. Z(*Z‘:(QOL)(Sl’ s2) admits meromorphic continuation to ME 0y
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In particular, the domains 9&0) and ///é(o) are independent of O. We hence
write 2& = @é‘;(@) and MAE = j/(*;(o)'

1.3 Organisation of chapters

This thesis is composed of the three articles . In the introductory
Chapter[2, we give notations and recall results that will be needed. In particular,
we explain how to obtain a unipotent group scheme G, from a nilpotent O-
Lie lattice A, calculate and recall some properties of p-adic integrals, and recall
definitions and analytic properties of complex functions on two variables and
double Dirichlet series.

Chapter [3| corresponds to the article 7 which is dedicated to algebraic
properties of the bivariate zeta functions of Definitions and We start
by showing the Euler decompositions presented in (1.1.2]) and (1.1.6). Next, we
show that almost all local factors of these decompositions can be written as p-
adic integrals. The main tools used are the Kirillov orbit method in the context
of bivariate representation zeta functions, and the Lazard correspondence in the
context of bivariate conjugacy class zeta functions. These integrals are used in
Sectionto prove the specialisation of local bivariate zeta functions of
Ta-groups G (O) to their twist representation zeta functions, and in Section
to prove Theorem The latter is proved using the methods of , which
essentially consist of writing the obtained p-adic integrals in terms of formulae
of Denef type which are uniform under base extensions.

Chapter 4| corresponds to the article , which deals with analytic prop-
erties of these bivariate zeta functions. In Section we use the formulae of
local factors in terms of formulae of Denef type given in Chapter [3| to read off
their domains of convergence, proving Theorem . In Section we extend
these zeta functions meromorphically to open domains which are independent
of O, proving Theorem [5(12).

Chapter [5| corresponds to the article ; we provide results related to the
bivariate zeta functions of groups of type F, G, and H. We calculate in Sec-
tion their bivariate conjugacy class zeta functions and in Section their
bivariate representation zeta functions. That is, we prove Theorems [2| and [3|in
these sections. As an application of these results, we obtain in Section for-
mulae for joint distributions of three statistics on finite hyperoctahedral groups
and and give an alternative proof for the fact that the bivariate representation
zeta functions of these groups satisfy functional equations for all local factors.







Chapter 2

Preliminaries

2.1 Group schemes obtained from nilpotent Lie
lattices

Here, we recall from Section 2.1.2] the construction of unipotent group
schemes G associated to nilpotent O-Lie lattices. An O-Lie lattice is a free
and finitely generated O-module A together with an antisymmetric bi-additive
form [, ] which satisfies the Jacobi identity.

Let A be a nilpotent O-Lie lattice of class ¢. Fix an O-basis (z1,...,2p)
for A. For each O-algebra R, denote by A(R) the R-module A ®» R which has
basis (x1,...,Xp), where x; = z; Q¢ 1.

Suppose that A’ C c!A, where A’ = [A, A] is the derived Lie sublattice. Define
a group operation * in A(R) in terms of Hausdorff series. The obtained group
(A(R), %) is nilpotent of class ¢ and the group operation * is given in terms of
polynomials over O which are independent of the algebra R, when considering
coordinates on the basis (x1,...,xp). This process defines a unipotent group
scheme G, over O isomorphic as a scheme to affine h-space over O which
represents the group functor R — (A(R), ). The group scheme G, is called
the unipotent group scheme associated to the O-Lie lattice A.

The group GA(O) is a T-group of same nilpotency class ¢ as A. If R is
a finitely generated pro-p ring, then G, (R) is a finitely generated nilpotent
p-group of class c.

For Lie lattices A of nilpotency class 2, a different construction of such unipo-
tent group schemes is given in Section 2.4], in which case the hypothesis
A’ C 2A is not needed. However, if this condition holds, the unipotent group
schemes obtained via such construction coincides with the latter ones. We recall
briefly this construction.

Assume ¢ = 2. Every element v of A(R) can be uniquely expressed as
V= Z?zl a;x;. Following , we adopt multiplicative notation and identify v
with x% = x{" ... x}", where x = (X1,...,%3) and @ = (a1, ...,ap). The group
multiplication % in this case is given as follows: for 1 <7 < j < h,
aj
j

Qg __

a; 05 Laia;\;
kX=X XX i

a; Aj Qi d
X Rx =x0%7, X

J
where A;; = (Al .. .,)\?j) is given by [x;,x;] = ZZ=1 )\fjxk. We then extend

this operation to the set of all monomials. For each ¢ € [h], we obtain poly-

17
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nomials M;(X,X) = Mi(X1,...,Xn, X1,...,Xp) and L;(X) = L;(X1,...,Xp)
such that
XQ*XQ/ — XQ+QI+(Mi(2yQ/))i and (Xg)fl _ X*E+(L‘(Q))i'

This process defines a unipotent group scheme G over O isomorphic as a
scheme to the group functor R+ ({x2 | a € R"}, %).

Ezample 2.1.1. Let A be the Heisenberg Lie lattice given by (z1, 22,y | [21,Z2] —
y). Given an O-algebra R, set X1 = 1 Qo 1, X3 = 23 ®p 1, and x3 = y Qo 1.

The structure constants )\fj are such that A, = (0,0,1) and A3 = Ayg =
(0,0,0). The group operation * is then given by x5% * x7* = x7*x52x3*"2, and
X ex)t = x{x;’, for all (i,5) € {(1,3),(2,3)}. It follows that the polynomials

Mi(X,X) and I;(X) vanish everywhere for ¢ = 1,2, and M3(X) = )}1X27
Ig(l) = X1X2. That is

’ ! ’ ! ’ ’ !
a1 as a3 a;_as as  _aitay; azta, aztaztajaz
Xl X2 X3 *Xl X2 X3 = Xl X2 XS 5
a1 a2 ,a3\—1 _ —ai,—az_,—aszt+aias
(x1'x57x3°) " = x7 “'xy %y :

Denote by H the unipotent group scheme associated to A.

We observe that we cannot define * by means of Hausdorff series, since
H' ¢ 2H. In fact, we would have

X1 *Xg = X1 +Xo+ %[XlaXQ] =X +Xo + 73,
which may not be an element of H(R). For instance, %} ¢ H(Z). A

Remark 2.1.2. Let G be a T-group of nilpotency class ¢ and Hirsch length h.
Then there exist a Q-Lie algebra Lg(Q) of Q-dimension h and an injective map
log : G — Lg(Q) such that log(G) spans Lg(Q) over Q; see Section 6.A].
Moreover, there exists a subgroup H of finite index in G such that log(H) is a
Z-Lie lattice inside the algebra Lg(Q) such that log(H)' C c!log(H), so that H
may be regarded as a group of the form G(Z), where G is the group scheme
obtained from the Z-Lie lattice log(H).

We may define the bivariate representation and the bivariate conjugacy class
zeta functions of G to be the respective bivariate zeta functions of H = G(Z):
Z26(s1,82) = 26 g (81, 82) = ZGz)(51, 82), * € {irr, cch.

If G is such a T-group and H; = G1(Z) and Hy = Gy(Z) are subgroups of G
of finite index, then H; and Hs are commensurable and, therefore, they have
the same pro-p completion for all but finitely many prime integers p; see
Lemma 1.8]. In particular, Zél(zp)(sl’ S2) = 252(Zp)(51, s2), for all but finitely
many primes p, that is, although Z¢ (s1,52) and ZE’H2(51, $2) may not coin-
cide, they are almost the same in the sense that they coincide except for finitely
many local factors.

2.2 Some p-adic integrals

In this section we calculate some p-adic integrals which will be used. For the
rest this section, we fix a nonzero prime ideal p of O and write 0 = O,. Let ¢
be the cardinality of O/p and p its characteristic.

Given an element z € o satisfying z € p¢ \ p¢*! for some e € Ny, its p-adic
valuation is vy(2) = e, and its p-adic norm is |z|, = ¢*»*) = ¢~°. Denote
by ||.|l, the maximum norm with respect to |.|,. For N € IN, we also denote
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by v, the function on o /pY given as follows: let Z be the image of z € o under
o — o/p" and assume that z € p¢\ p°T1. Then v,(z) = e if 0 < e < N and,
otherwise, vy (Z) = co. We write p™ for the mth ideal power p---p and p(™) is
the m-fold Cartesian power p x --- x p. The valuation v, of 0 can be extended
to 0™ by mapping each z € 0™ to vy(z) = e whenever z € p®o™ \ p*T1o™. The
p-adic norm is |z|, = ¢~ which coincides with |z||,. Given k € IN, set

We = (0%)* = {x € 0" | vp(x) = 0}.
From now on, i denotes the additive Haar measure on o, normalised so that
(o) = 1. We also denote by u the product measure on 0", for n € IN.

Lemma 2.2.1. For r € C with sufficiently large real part, and for each k € IN,

—k(r+1)(1 _ ,—1

q (1-¢7)

/ |wlpdu = 1 — g—ko+1) -
wepk —4q

Proof. For each i € IN, we see that p’ = {z € 0 | vy(x) > i} and p' \p'™! ={z €
o | vp(z) = i}. Thus, the ideal p* is the disjoint union p* = (J;2, p® \ p*+i. It
follows that

/ |w|pdp = Z/ o qTTdp=Y pet \ e
wepk i=k JwEP\pI i=k

00 . —k(r+1) (] -1
— —i(r+1) _ a1 = q ( q
;q (1-q¢7) 1— g koD O
Let A C o and B C 0". In the following, we write
Kanlrnt) = A
(y,z)EAXB

where r and t are complex variables.
The following lemma is a direct consequence of Lemma 5.8], which
assures in particular that, for r, t € C with sufficiently large real parts, one has
(1-—¢gHAd—g
(=g (=g )

Lemma 2.2.2. For r, t € C with sufficiently large real parts, and for each
n € Ny, the following holds.

Koxon(r,t) = (2.2.1)

1— —1 1—qg " —s—n __ ,—r—t—m—1\,—r—1
Kopon (rs) = (1—q")( a j:] - " - )q ,
(=gt )l =g 1)
(1 _ q_l)(]. _ q—r—n—l)q—r—t—n—l
’Cpxp(n) (7", t) =

(1 _ q—r—t—n—l)(l _ q_r_l)

Proof. Since p x 0™ =0 x 0" \ W{ x o™ and y € W7 implies both |y|, = 1 and
lz1,..., 20, yllp =1, it follows that

Kpxon (1,t) = Koxon (1,1) = Kwe xon (1, 1) = Koxon (r,t) — (W] x 0™).
The first claim then follows from (2.2.1)) and the fact that u(W{ x0") = 1—¢~1.
Analogously, since p x p{™) =p x 0™ \ p x W2,

ICpo(n) (r,t) = Icpxo" (r,t) — ICpr; (r,t) = ’Cpxo” (r,t) —(1— qin)/ \y|£du.
yep
The second claim then follows from the first part and Lemma [2.2.1 O
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For the next lemma, consider the vector of variables X = (Xi1,...,Xon)
and the matrix
X1 X2 ... Xy
M(X) = € Matay, (0[X]).
X21 X22 PN X2n

The minors of M (X) are given by M;;(X) := X1, X0;—X1;Xo; for1 <i<j <n.
Set M(X) = {My;(X) | 1< i< j<n).

Lemma 2.2.3. For s, r € C with sufficiently large real parts, the following
holds.

/ lylnIM(z) U {y}I3dp =
(y,z)Epx Wy,

(" 1A —g gt
(1—g ')A —g")
Proof. Let Ay, ..., A be representatives of the classes of 02" /p(*") which are
different of p(2™)| that is,
0?" = (UﬁmzlAm + Mathn(p)) U Mata ., (p),

where Matay, (p) is the set of all 2 x n-matrices over p. In the following, we
determine the integrals

Ly, (5.7 = | Iy IM(@) U (o}
(y,z)EpX (Am+Matayxn(p))

(+DA=¢"™g + (" —q)1—q "))

because

k
/ 5 IM@) U {3 = 3 T, (s.7)
(y,z)EPXW3, m=1

If z € Mataxy,(0) and A, determine the same class modulo Matay, (p),
then rk(z) = rk(A,,) modulo p. We consider the two cases rk(A4,,) = 1 and
rk(4,,) = 2 modulo p separately. For simplicity, assume that rk(A,,) = 1 for
1 <m <t, and that rk(4,,) =2 for t + 1 < m < k, for some ¢t € [k]o.

Case 1: Suppose that m € [t], that is, rk(4,,) = 1. Then, in particular,
vp(M;j(z)) > 1 for all 1 < i < j < n. By making a suitable change of variables,
we can consider A,, to be the matrix with (1, 1)-coordinate 1 and 0 elsewhere.
Hence, each z = (z;;) € Ap,+Matoy, (p) is given by 211 = 1+Q11 and x;; = Q5
for (i,7) # (1,1), where Q;; are suitable elements of p for (¢,5) € [2] x [n].
Consequently,

M (z) = (14 Q11)Q2 — @21Q1;, fori=1landj=2,...,n,
. Q1iQ2; — Q2iQ1j, for1 <i<j<n,
so that [|[M(z)l||, = [|Mi2(z), ..., Min(z)||y. Therefore

T, (5,7) = / WIEIMy2(@), ., My, yl3dp
(y,z)epxMataxn (p)

= p(p+D) / Wil o 2o, yl3du
(Y521 5eesTp—1)EPpXp(n=1)

1 (1 _ qfl)(]_ _ qfrfn)qfrfsfn

(I—gqg==s (1 —qg 1)~
where the domain of integration of the integral in the first equality is justified
by the translation invariance of the Haar measure and the last equality is due

Lemma 2.2.2
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Case 2: We now assume that m € {t +1,...,k}, that is, rk(4,,) = 2. In
this case, each z € A4,, + Matay,(p) has rank two modulo p, which means that
at least one of the M;;(z) has valuation zero. Consequently,

—2n—r—1 —1
. q l—¢q
IAm (577") = / ‘y|pd/‘ = (—r—l )
(y,z)Epxp2" l—gq

There are (¢+1)(¢™ — 1) matrices of rank 1 and ¢(¢" —1)(¢" ! — 1) matrices
of rank 2 in Matgy, (IF,) and, consequently,

k
/ WEIM@) Uylde = 3 Ta, (5,7)
(y,x)epx W3,

m=1

=(q+1)(¢" = 1)Za,(s,7) + q(q" = 1)(¢" " = 1)Ta, (s,7)

= ((qln_—q1)1(15(ci—_);—:—8";) g+ =g ™™g+ (" —q)(1—¢"°™),

as desired. O

In the following lemma, we show how to write certain p-adic integrals with
domains of integration of the form o x 0™ in terms of p-adic integrals with
domains of integration of the form p x WS.

In the following lemma we adopt the following notation: n € IN and
R(Y) = R(Y1,...,Y,) is a matrix of polynomials R(Y);; € o[Y] with ug =
max{rkpyac(o)R(2) | z € 0" }. Let F;(R(y)) be the set of i x i-minors of R(Y).

Lemma 2.2.4. Letr andt be complea: variables Define
1F:(R(y)) Uz F;—1(R(y))II;

r,t) = =P
= Lk '”H ||Fz NI R

o | Fi(R(y)) Uz Fi1(R(y)Il;
700= [ I i

If both Z(r,t) and J(r,t) converge, then

I(r,t) = Wﬁ (=g H+T(r0). (2.2.2)

and

Proof. Since 0 = W Up and 0" = W2 Up(™), the integral Z(r,t) equals

 IE(R) U (R,
/(xvy)Gfoo"Id‘u+/(myy)€p><o" |33|p11_[1 ”Fl*l( ())Ht au
e IF(R(3)) UaFi 1 (R()I,
={-g )”(’t”/(x,y)epxpm' 'PH ||Fz R

Equality (2.2.2) follows from the change of coordinates p(™ — 0" given by
z=(x1,...,2,) — (xl/q, . :En/q) and from p — o given by y — y/q:

IE(R() U Fa (R,
g d/,b — q—r—ut—n—lz- ’I",t . D
[ "’H i Wl :?)

2.3 Principalisation of ideals

We follow Section 2] here.
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Theorem 2.3.1. Theorem 1.0.1] Let T be a sheaf of ideals on a smooth
algebraic variety defined over a ground field of characteristic zero. There is a
principalisation (Y, h) of Z, that is, a sequence

X=Xodx &2 oy e x
of blow-ups h; : X; — X;_1 with smooth centres C;_1 C X;_1 satisfying:

1. The exceptional divisor E; of the induced morphism h* = hyohgo---0oh; :
X; — X has only simple normal crossings and C; has simple mnormal
crossings with F;.

2. Setting h = hy o hg o --- o h,., the total transform h*(Z) is the ideal of a
simple normal crossing divisor E which is a natural linear combination of
the irreducible components of the divisor E,..

Let R be the valuation ring of a finite extension K of Q,, the field of p-adic
numbers, and let P be the maximal ideal of R. A principalisation (Y, h) is said
to have good reduction modulo if T and (Y, h) are defined over a p-adic field K.
By Theorem 2.4], if (Y, h) is a principalisation defined over a number field K
with ring of integers O, then (Y, h) has good reduction modulo P for all but
finitely many maximal ideals P of O.

Let I,n,m € IN and fix I C [n — 1] and a finite index set J,; for each k € [I].
For each x € [l] and ¢ € J,, let f;, be a finite set of polynomials f(Y) =
f(Y1,...,Y,,) over a number field K, and let (Y,h) with h : Y — A™ be a
principalisation of the ideal Z given by

k
I= H H (fm)v

rk=11€J,
where (f,;,) is the ideal generated by the set f,,.

Set also V = Spec(K[Y]/Z) and V,,, = Spec(K[Y]/(fs.)). Let T be a finite
set indexing the irreducible components E, of the pre-image h=*(V). Then
there are nonnegative integers N, and N, such that

1
h_l(v) = Z N, E, h_l(VnL) = Z Nuwi Ny By
ueT k=1

Similarly, v, — 1 denotes the multiplicity of E,, in the divisor h*(dY; A--- A
dYg). One calls (Nuy., Vu)uev,reli) e, the numerical data of (Y, h).

2.4 Two complex variables

In this section, we recall briefly the meaning of holomorphy and meromorphy
for complex functions on two variables. We refer the reader to for further
information about functions on several complex variables. We call domain a
connected open subset of C? (with the usual topology).

Definition 2.4.1. Let U C C? be an open set. A continuous function f : U — C
s holomorphic if it is holomorphic in each variable. Equivalently, the function f
is holomorphic if it satisfies the system of homogeneous equations g—zij =0, for
Jj =1,2, where for Re(z;) = x; and Im(z;) = y;,

o _1(o .0
oz 2\ox; oy )
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Ezample 2.4.2. Let a and b be nonzero real numbers and ¢ € R. The function
f:C? — C given by f(z1, 22) = az; + bzy + ¢ is holomorphic on the whole C?.
Its zero set is

V(f) ={(21,22) € C* | az; + bz = —c}.

In particular, the function g = % has set of poles V (f). A

In the one variable case, a function is meromorphic on a certain domain if it
is locally the quotient of two holomorphic functions such that the denominator
is nonzero. In particular, a meromorphic function may only have finite-order
isolated poles. In Example[2.4.2] we see that the rational function ¢ has infinitely
many poles and none of them is isolated. However, we shall see that ¢ is a
meromorphic function on the whole C2. This is because meromorphy on several
complex variables allows for set of (non-isolated) poles, as long as this set is
sufficiently “small”. More precisely, we call a subset M of a domain Q C C?
thin if it is relatively closed on €2, that is, an intersection of a closed subset with
any set, and if for each z = (21, 29) € C? there is a neighbourhood U, of z and
a holomorphic function f, such that M NU, C V(f,) = {x € C? | f,(x) = 0}.
Particularly, if f : Q — C is a nonzero holomorphic function, then V(f) := {z €
C? | f(z) = 0} is a thin set.

Definition 2.4.3. Definition 2.1 of Chap. VI] A meromorphic function
on a domain Q C C? is a function f : Q — C such that there exists a thin
set M C Q for which f is holomorphic on Q\ M and, for each zo € Q, there
exist a neighbourhood Uy, of zg in  and holomorphic functions g,h : Uy, — C
with g # 0 such that V(h) C M and

f(z):}gl((zg, forz e U\ M.

In particular, we see that if f(z) = ig% with g, h : Q@ — C holomorphic and
h £ 0, then, since V'(h) is thin, f is meromorphic on €.

The following result states that the complement of a thin set in a domain is
also a domain.

Proposition 2.4.4. Proposition 1.8 of Chap. VI] Let M be a thin subset
of a domain Q C C2. Then Q\ M is connected.

2.5 Double series

In this section, we recall some properties of double series. We refer the
reader to Section 7] for further results and definitions on double sequences
and double series. For simplicity we write (am.,n) = (@m,n)m.neN-

We observe that a (single) series (a,)nenw can be regarded as a double series
(@m,n) by defining a1, = an, and a,,, = 0, for all n € N and m € N5q. In
particular, the results on double series also hold for (single) series. The converse
does not hold. For instance, in contrast with single sequences, a convergent
double sequence need not be bounded. An example in which this property fails
is the double sequence of terms a1 = n and @y, =1, forn € INand m € IN-;.

However, a double series ZZ(m,n) Grm.n With nonnegative coefficients is
convergent if and only if the double sequence (A,,,) of its partial sums
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Ay = D1 D02 aky is bounded above; Proposition 7.14]. A dou-
ble sequence (am,n) is monotonically nondecreasing if appn < @mi1, and
Am,n < Gmpt1. One defined monotonically increasing, monotonically nonin-
creasing, and monotonically decreasing similarly. A monotonic double sequence
is convergent if and only if it is bounded; see Proposition 7.4].

For the sake of completeness, we show the following Lemmata, which are
analogous to similar results on single series.

Lemma 2.5.1. Let (ay,n) be a bounded double sequence and let > Z(m’n) bm.n

be an absolutely convergent double series. Then ZZ(m,n) Gynnbm,n converges
absolutely.

Proof. There exists M > 0 such that |a,, | < M for all m,n € IN. Since the
monotonically non-decreasing double sequence (3-7"; >, |bk.i|)m,n converges,
it is bounded by a positive real number N. Therefore,

m.on m n
ZZ|ak,lbk,l <MZZ|I)M\ < MN. 0

k=1 1=1 k=11=1

Lemma 2.5.2. A double series ) Z(m,n) Qm,n converges absolutely if and only
if the product [T T],, ) (1 + @m,n) converges absolutely.

Proof. Denote by Py, ,, the partial product [[;-, [T}~ (1 + |ax,|) and by Sy,
the partial sum Y ;" > | |ak,|. The double sequences (P, ;) and (Sp,,,) are
positive non-decreasing double sequences and hence they converge if and only
if they are bounded. One the one hand, since 1 +z < e” for all x € R, it
follows that

Pon= H H(l + lak,) < H He‘ak’ll =e’mm,
k=11=1 k=11=1
On the other hand, it is easy to see that P, , > 1+ Sy, . Therefore, (P, ,,) is
bounded if and only if (S, ) is bounded. O

2.5.1 Polynomial growth

It is well known that if a complex sequence (a,)nen grows at most polyno-
mially, the Dirichlet series D((an)nen,s) := Y poq ann”* converges for s € C
with sufficiently large real part. We now show that an analogous result holds
for double Dirichlet series. We remark that the converse also holds for Dirichlet
series.

Definition 2.5.3. A double sequence (an m)n,men of complex numbers is said
to have polynomial growth if there exist positive real numbers a; and as and a
constant C > 0 such that |an m| < Cn**m®2 for all n,m € IN.

Proposition 2.5.4. If the double sequence (G m)n,men has polynomial growth,
then there exist aq, as € R such that the double Dirichlet series

oo 0o
D((an,m)n,mele S1, 82) = Z Z (1/7177TL’I7‘_‘S17”I’L_‘92

n=1m=1

converges absolutely for (s1,s2) € C? satisfying Re(s1) > a1 and Re(sz) > as.
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Proof. Let B1, B2 € IN and C' > 0 be such that |a, | < CnftmP2, for all
n,m € IN. Then

1
ZZ ‘n(sl::::sz < CZZ nRe(sl)—Bl,rnRe(sz)—B2 :
n m n m

The relevant statement of Proposition then follows from the fact that, for
p,q € R, the harmonic double series

oo oo 1
Z Z kplq
k=1 1=1
converges if and only if p > 1 and ¢ > 1; see Example 7.10(iii)]. O

For G a unipotent group scheme over O and m, n positive integers, write

Tam(G(O) = > 1a(G(O/])) and ¢y (G(0)) = > cn(G(O/)).
1490 90
|O:I|=m |O:I|=m

The bivariate representation and the bivariate conjugacy class zeta functions
of G(O) are given by the following double Dirichlet series with nonnegative
coefficients:

[M]8
[M]8

2oy s15) = 3 D ru (GO,

1

Z& o) (51,9) = D Y cam(G(O)n " m ™,

n=1m=1

1

g i
g %

Proposition 2.5.5. The bivariate zeta functions Ziér(o)(sl,SQ) and
Z&C(O)(sl,SQ) converge (at least) on some domain of the form

{(s1,82) € C? | Re(s1) > a1, Re(s2) > as},

for some real constants c; and as.

Proof. Let vy, (0) := {I<Q0 | |O : I| = m}|. The Dedekind zeta function of the
number field K is given by (x(s) = > ~_; ymm ™ *, and is known to converge
for Re(s) > 1. In particular, the partial sums Z%Zl ~m are bounded by (M),
where Z(X) is a polynomial in Z[X].

Given I <O, the finite group G(O/I) is a congruence quotient of a torsion-
free nilpotent and finitely generated group. Then there exists 2(X) € Z[X]
such that, for all I <O, |G(O/I)| < Z2(m), where m = |O : I|.

Given I < O, the finite group G(O/I) has at most |G(O/I)| conjugacy
classes. Consequently, for each (n,m) € IN?,

nm(GO) = 3 u(G(O/T)) < P(m)2(m).
Wi

Analogously, 7, m (G(0)) < Z(m)2(m), since r,(G(O/I)) < |G(O/I)]. O

When finite, the abscissa of convergence of a Dirichlet series > 2 | a,n™*
gives the precise degree of polynomial growth of the sequence (3!, a;),. How-
ever, for double Dirichlet series > °_ | > | ay, nm™*'n~ %2, this might not be
the case. For instance, in Example we show that the bivariate represen-
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tation zeta function of the Heisenberg group H(Q) is given by
1 — g%
T (- )
We see that the maximal domain of convergence of Zﬁr( o) (51,52) is
Du(o) = {(s1,82) € C? | Re(s1 + s2) > 2 and Re(sz) > 3}.
Then this zeta function converges on
Dy oy = 1(51,52) € C? | Re(s1) > a1, Re(ss) > as},

for many choices of (a1, az) € R?, for instance (—1,3) and (—2,4). However, we
cannot choose the minimum of such pairs, as they are not always comparable.

Zgr(o)(sh 52) = (

2.6 Convergence of bivariate Euler products

In this section we recall from @ Theorem 2.7] the domains of convergence
and meromorphy of the Euler products on several variables. In that article,
Delabarre deals with Euler products of the form

(s1,--osn) = [ ™ ....p7*"p79),
p prime
for n > 1 and a nonzero integral constant ¢, where h(Xy,...,X,, X,t1) €
Z[X1,...,Xn, Xnt1]- We observe that Delabarre’s main results admit straight-
forward generalisations to products over prime ideals of O, but we illustrate this
just for the case n = 2.

For simplicity, denote by P the set of nonzero prime ideals of O. For each
p € P, denote by g, the cardinality of the residue field O/p. We are interested
in the domains of convergence and meromorphy of the Euler products

Ze(s1,82) = [ ] Mgy a5 45°),
pepP
where ¢ is a fixed nonzero integer and h(X1, Xo, X3) € Z[ X1, X, X3] is a poly-
nomial

h(Xl, )(27 Xg) =1+ Z an?LjX;XZ,ngs,j’

Jj=1

with a; # 0 and @; = (a1, a2, a0,;) € Z3\ {0}, for each j € [r], where for
each n € IN, we write [n] = {1,...,n}. Set aj = (a1, 2;).

The polynomial h(Xy, Xa, X3) is called cyclotomic if there exists a finite set
I c N1\ {0} such that

h(X17X2aX3) = H (1_X1>\1X2)\2X§\3)’Y()\)7
)\:(A1,)\2,)\3)€I
where the v(A) are nonzero positive integers. If h is cyclotomic, then Z.(s1, s2)

can be meromorphically continued to the whole C2. For this reason, from now
on, we assume that A is not constant and does not contain cyclotomic factors.

For each § > 0, set
We(6) = {(s1,52) € C? | Re(aq js1 + g js2) > 0 —cays, j € [r]}.
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Proposition 2.6.1. [4 Theorem 2.7] The product (s1,s2) + Zc(s1,s2) con-
verges absolutely in the domain W.(1) and admits meromorphic continuation to
W.(0).
Set h(X1,X2,X3) = Y a; X7 XX = h(X1, X5, X3) — L
Lemma [2.5.2] then ylelds that the sum
peP
converges absolutely in the domain W,(1).

Remark 2.6.2. Let @@ C P be a finite set of prime ideals of O. Since

qc 51;32 Hh 7(];52,(]3:6)
peQ
is analytic, the infinite product
_ Zc(81, 82
DPe 81352 H h a Zaq C): C(,S ,)S —ps
p H h( 1 2 )
PGP\Q peP qp 7QP aqp

also admits meromorphic continuation to W, (0). It converges on W, (1) if the set
of zeros V (p) of q.(s1, $2) is not contained in this domain. It follows that Propo-
sition holds if we consider Z.(s1, s2) as a product over almost all nonzero
prime ideals of O, as long as the zeros of the corresponding h(q, **, gy *2,qp ©)
do not lie in W,(1).






Chapter 3

Arithmetic properties

of ZE((’))

This chapter comprises the results of , which concerns arithmetic prop-
erties of the bivariate zeta functions Ziéf(o) and Z&?(O)’

Firstly, we prove in Section that they satisfy Fuler decompositions, so
that we can relate local and global results. We then write almost all local terms
of these bivariate zeta functions in terms of p-adic integrals in Section In
particular, this shows that these local factors are rational functions.

In Section we prove specialisation , that is, we prove that in case
of nilpotency class 2 bivariate representation zeta functions specialise to twist
representation zeta functions.

In Section [3.4] we prove Theorem

3.1 Euler decomposition

Most of our main results concern local properties of bivariate representation
and bivariate conjugacy class zeta functions. In this section, we show that the
corresponding global zeta functions admit Euler decompositions in terms of such
local factors, allowing us to relate local and global results.

In the following, G is a unipotent group scheme defined over O (not neces-
sarily associated to a nilpotent Lie lattice).

Proposition 3.1.1. For s, so € C with sufficiently large real parts,

Ziér(O)(slv S2) = Hzg(op)(sla $2),
P
where p ranges over all nonzero prime ideals of O.

Proof. For each prime ideal p of O, set g, = |O : p|. Given a nonzero ideal I
of O with prime factorization I = p{* ---pSr, with p; # p, if i # j, we show that

1Cr%r(O/I H Céromaef)

29
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so that
Z& 0y (s1,89) = Z (&on ()]0 1|7
(0)£1<90
= D o (51) Gloppery (51)65,% gy 7
(0)£1<10
=11 Z CGlospm) (51)g ™% = Hzlér(o (51, 82)-
p N=0

Recall that Irr(G) denotes the set of complex 1rredu01ble characters of a
group G. For an ideal I as above, since unipotent groups satisfy the strong
approximation property—cf. Lemma 5.5]—there is an isomorphism

G(O/I) =2 G(O/pft) x - x G(O/per). (3.1.1)
Hence
Ir(G(O/I)) 2 Irr(G(O/pTY)) x -+ x Irr(G(O/pir)).

For simplicity, write Irr; = Irr(G(O/p5")). Since r,(G(O/I)) = |{x €
Irr(G(O/I)) : x(1) = n}|, it follows that

(&lo/n(s) = oo ox(m) = > x1(1) 7% ox (1) 70

x€Irr(G(O/1)) (X17 LX) Elrry X XTIy,
=11 > xm™ Hcg(omel) =
1=1 x; €lrr;

Proposition 3.1.2. For sy, so € C with sufficiently large real parts,

ZG(0)(81,82) = HZ&OP)(&, 52),
p
where p ranges over all nonzero prime ideals of O.

Proof. As explained in Proposition it suffices to show the identity

ao/n( H CG(o/pei)

for each nonzero ideal I of O with prime factorization I = pi'---pS, with
p; # p; if ¢ # j. Because of (3.1.1), each conjugacy class C' of G(O/I) =
G(O/pft) x --- x G(O/per) is of the form C = C; x --- x Cy, where C; is a

conjugacy class of G(O/p;?), for each i € [r]. Thus
a(GO/M) = Y e (GO/T)) - en, (G(O/p;)).

n1,...,nr€Ng
ni-Np=n

Again, set g, = |O : p| for each nonzero prime ideal p of O. We shall see in
Remark that all conjugacy classes of G(O/p;*) have size a power of gy, .
Consequently

GomB) = > g (GO/pF) e (GO/pr ) apt - apr) ™

B kU (Z g (G(O/pyf) nks) H Ca(o/pir) () =
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3.2 Bivariate zeta functions in terms of p-adic
integrals

Our results rely on the fact that local bivariate representation and local
bivariate conjugacy class zeta functions of groups associated to unipotent group
schemes can be written in terms of p-adic integrals. The main goal of this section
is to obtain formulae for these local factors in terms of p-adic integrals. This is
done using the methods of Section 2.2], in which Voll shows how Poincaré
series encoding elementary divisor types of certain matrices can be written in
terms of p-adic integrals. We recall in Section these methods and some
definitions needed.

Throughout Section [3.2] denote by G = G, a unipotent group scheme asso-
ciated to a nilpotent O-Lie lattice A. In Section we show how to rewrite
the coefficients of the bivariate representation and the bivariate conjugacy class
zeta functions of groups of the form G(O) in terms of elementary divisor types
of certain matrices and use this in Section [3.2.3] to rewrite the mentioned bi-
variate zeta functions in terms of Poincaré series as the ones of Section 2.2]
and hence obtain descriptions of these functions in terms of p-adic integrals.

For the rest of Section fix a nonzero prime ideal p of O, and 0 = O,,.
Denote by ¢ the cardinality of O/p and by p its characteristic.

3.2.1 Poincaré series and p-adic integrals

Denote by 7 € o a uniformiser of 0. A matrix M € Mat,,x,(0/pY) is
said to have elementary divisor type (my,...,m.) € IN§ if it is equivalent (by
elementary row and column operations) to the to the matrix

Ik

where € is the rank of M, and 0 < m; < mg < --- < m, < N. Write v(M) =
(mq,...,m¢) to indicate the elementary divisor type of M.

Given k, N € N, set

Wi n = ((0/p™)")" = {x € (0/p™)" | vp(x) = 0}.

For each k € IN, let also Wy o = (0)¥, and recall from Section the notation
WZ = {x € o* | vy(x) = 0}.

Given n € IN and a matrix R(Y) = R(Y1,...,Y,) of polynomials R(Y);; €
o[Y] with ur = max{rkpac(o)R(2) | z € 0™}, define for each m € ING™

N = {y € WEy | W(R(y)) = m} and (3.2.1)

N]%,R,m = |m?\7,72,m"

The number N,  , is zero unless m = (my, ..., My, ) satisfies
0=myg < <my, <N.
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Let r = (71,...,Tur ) be a vector of variables. Consider the Poincaré series
Por(tt) = > Nigma N Zdimm, (3.2.2)
NeN
me]NgR

In Section 2.2] it is shown that the series (3.2.2)) are given in terms of
p-adic integrals of the form:

e 1F:(R(y)) Uz Fr_1(R(y))l"
Zr(r,t) = 1—g 1 /(x,y)EpXW pH ||Fk 1R i

(3.2.3)
where p1 is the additive Haar measure on o normalised so that p(o"*1) =1,
and F;(R(y)) is the set of nonzero j x j-minors of R(y).

n+1

This is done by decomposing the domain of the integral 2, z in subdomains
where the integrands are constant, as we now explain. Set

ONRm = {(z,y) €p x W) |vp(z) = N, v(R(y)) = m}.
Then, for (z,y) € @N’Rma
| Fr(R(y)) UzFr_1(R(y))l:"*

H \Fk LRI

and consequently

u
7Nt72k51 TEME
)

1 - s o
Zor(r,t) = —g 1 g |ON R.mlg N S rima
NelN
meNy®

According to Lemma 2.2]
N]%,R,m = (1 - q_l)_qu(n+1)®N,R,ma

so that

Por(r,t) = Zor(r,t —n—1). (3.2.4)

Suppose now that M € Mat,x,,(0/p") is an antisymmetric matrix. Then
its elementary divisor type is of the form:
v(M) = (m1,my,ma, ma, ..., Mg, Mg),

where 2¢ is the rank of M. For simplicity, we write O(M) = (m1,ma, ..., m¢)
for the elementary divisor type of the antisymmetric matrix M.
Assume now that R(Y) is antisymmetric, in which case ug is even. For each

uR
m € N, , we write

mNRm'_{yE N | 7(R(y)) = m},

and N§ p o = |‘IIN Rr.ml- For R(Y) antisymmetric, we assume that the vector
of variables r is of the form r = (ri,7r1,. .. ,ru?n,ru?n) so that

u

Por(tt)= > Nigme N 2ES (3.2.5)

u

NEeN, meN, 2
Given x € o with vy(z) = N, y € 0" with 7(R(y)) = m, and k € [ug], we
obtain from Lemma 4.6(1) and (ii)] the following for the antisymmetric
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matrix R(y):
[ For(R(y)) UzFor—1(R(Y)|lp  [1For-1(R(y)) UzFoi—1)(R(¥))lp

[ F2k—1(R(y))lp B ||F2(k71)(R(Y))Hp

_ q— min(my,N)

and

| For(R(y)) U 22 Fog— 1) (R(¥)) 1y _ g2min(meN)
1 Fok—1) (R(Y))

Therefore, if R(Y) is an antisymmetric matrix, the series (3.2.5) can be
described by the p-adic integral

Por(r,t) = Zor(r,t —n— 1) -

1 / |t e 11—[ [ For(R(y)) U 22 Fo—1)(R(y ))H;kdu
1—q! (m,g)EPXW“ ||F2(k DRI

3.2.2 The numbers r,(Gy) and ¢,(Gy)

Recall the notation Gy = G(o/p"). We now write the local bivariate zeta
functions at p in terms of sums encoding the elementary divisor types of certain
matrices associated to A. This is done by rewriting the numbers r,(Gy) and
cn(GN) forne Nand N € ]NO, in terms of the cardinalities N§  ,, of the sets

N.R,m defined in Section In each case, R is one of the two commutator
matrices of A which we now define.

Let R be either O or 0. Let N be an R-submodule of some R-module M.
The isolator of N is the smallest submodule ¢(N) of M containing N such
that the R-module quotient M/i(N) is torsion-free. The submodule N is said
isolated if L(N) = N or, equivalently, if M /N is torsion free.

Set g = A(0) = A®p 0. Let g’ be the derived Lie sublattice of g, and let 3 be
its centre. According to Lemma 2.5], the centre 3 of g is isolated. Consider
the following torsion-free O-ranks:

h=r1k(g), a=rk(g/3), ©b=rk(g), r=rk(g/g), z=rk().

Also k =rk(u(g") /(9" N3)) = rk(u(g" +5)/3)-
The commutator matrices are defined with respect to a fixed o-basis & =

(e1,...,ep) of the o-Lie lattice g, satisfying the conditions

(€a—k+1,-- -, €q) is an o-basis for ¢(g’ + 3),

(€a41,--+,€a_kip) is an o-basis for «(g’ N3), and
(ea+1,---,€p) is an o-basis for 3.

Denote by  the natural surjection g — g/3. Let e = (e1,...,e,). Then
e = (e1,...,€4) is an o-basis of g/3. The e; can be chosen so that there are
nonnegative integers cy, ..., ¢, with the property that

(T €q_ki1,---,T%e,) is an o-basis of g’ + 3 and

(T eqi1, ..., T%€q_kts) is an o-basis of g’ N3,

by the elementary divisor theorem. Fix an o-basis f = (f1,..., fp) for g’ satis-
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fying

(fi,- s fx) = (T€q_gi1,-..,T%€,) is an o-basis of g’ + 3 and
(feats---s fo) = (T eqrt, ..., mPeq_k1p) is an o-basis of g’ N 3.

For 4,j € [a] and k € [b], let Af; € o be the structure constants satisfying

b
[ei, ej] = Z )\?jfk- (3.2.7)
k=1
The following matrices were previously defined in Definition 2.1].

Definition 3.2.1. The A-commutator and the B-commutator matrices of g =
A(o0) with respect to e and £ are, respectively,

AXy,. Xa) = [ DOMX; | € Matoy(o[X]), and
j=1

ik

b
B(Yi,....Y}) = (Z Aijk> € Matoxaq(0[Y]),
— g

ij

where X = (X1,...,X,) and Y = (Y1,...,Y)) are independent variables.

Since A}; = —AK, for all 4,j € [a] and k € [b], the matrix B(y) is antisym-
metric for each y € o®.

First, we rewrite the numbers 7,(Gpy) in terms of numbers N]‘\’,’B,m, and
then we describe the numbers ¢,(Gy) in terms of numbers N 4 ,,,, where A
and B denote the A-commutator and the B-commutator matrices of g with
respect to e and f defined above.

r,(Gy) and elementary divisor types of the B-commutator matrix

Given a compact abelian group a, write @ = Hom$™ (a, C*). Set gy :=
A ®o o/pY, and let gy = [gn, on] and 35 = 3 ®, o/p™.

Given an element w of gx = Homz(gy, C*), define the form

BY ign xan — C%, (u,v) — w([u,v]).
The radical of BYY is
Rad(BY) = {u € gn | Vv € gn : BY (u,v) = 1}.

If the nilpotency class ¢ of A is smaller than the characteristic p of the residue
field o/p, then the Kirillov orbit method reduces the problem of enumerating the
characters of Gy to the problem of determining the indices in gy of Rad(BY)
for w € g¢fy. In particular, the statement of the Kirillov orbit method given
in Theorem 3.1(1)] asserts that if w is an element of the coadjoint orbit
of g, then the size of this orbit coincides with the index |g : Rad(BL)|.

The principal congruence quotient G is a finite p-group of nilpotency
class ¢, so that the dimensions of the irreducible complex representations of Gy
are powers of p. Using the Kirillov orbit method Theorem 3.1], O’Brien
and Voll show in Section 3.2] that, if p > ¢, then

rp(G) = {w e gy | Rad(BY) : sn| = p~*law /swl | lon /gl p 2. (3.28)
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Remark 3.2.2. In Section 2.4.2], a Kirillov orbit method formalism is devel-
oped for group schemes of nilpotency class ¢ = 2 which is valid for all primes p.
This means that, in case of nilpotency class 2, equation of r,(G ) holds
for all prime ideals p.

We now relate (3.2.8)) to the B-commutator matrix of g.
Tensoring the o-bases e and f with o/p" yields ordered sets ey =

(e1.Ny---rean)and fy = (fin,..., fo.v) such that (€1 y,...,e.n) is an o/p™-
basis for 3 and fy is an o/p™V-basis for gy as o/p¥-modules.

Using similar arguments as the ones of Section 2], we define the following

coordinate systems:
a

on :on/3n — (0/p™), E:ijej’N»—)x:(azl,...,xa),
j=1

b
Uy gy = (/™) w=Y uifin ey =w),
=1

where, for N € Ny, fy = (fl\fN,...,fng) is the o/p-dual lattice for 59\\, =
Hom, (g, C*). We notice that g;/31 and g} are regarded as o/p-vector spaces
in the construction of Section 2]. In the coordinate systems above, we
regard gn/3n and gy as o/p™Y-modules for all N € IN.

Lemma 3.2.3. Given T € gn /35 and w € g//z\v with ¢n(T) = x = (z1,...,%4q)
and Yy (w) =y = (y1,---,Yp), it holds that

7 € Rad(BY)/3n if and only if B(y)x"™ =0,

where x% is the transpose of x, regarded as a 1 X a-matriz.
Proof. Here, denote by  the natural surjection gx — gn/3n. An element

T € gn/3n belongs to Rad(B)/5 exactly when w(z,v] = 1, for all v € gn. Fix
x € gy such that ¢ (T) = x = (21,...,74) € (0/p™)?. Then

lei, v, 2] = ei,N,Zinej,N ng €i,N>€j,N] = ZZ)\”wjsz (3.2.9)
j=1

j=11=1
Since Y (w) =y = (y1,...,Yp), for each i € [a]
b a b Yk b s
([es, = H Fin Z)‘ 25 fiN :H(fkv,N(fk,N))yk = X
k=1 J=11=1 k=1

This expression equals 1 exactly when 2221 2?21 )\fjxjyk = 0. Now, by defi-
nition, 22:1 )\ijk = B(y)i;, where B(y) is the A-commutator matrix of Def-

inition evaluated at y. Consequently, # € Rad(BY)/;n if and only if
> i—1 B(y)ijz; = 0, for all j € [a], that is, B(y)x"™ = 0. 0

Fix an elementary divisor type 7(B(y)) = (m1,...,myy,) € [N]y®, where
2up = max{rkpy.c(0)B(2) | z € 0"}

Since B(y) is similar to the matrix Diag(z™, 7™ ... 75 7"*5 04_04y),
where 0, 2., = (0,...,0) € Z% 245 the system B(y)x" = 0 in o/p"
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equivalent to
T =29 = 0 mod pN*ml,
0 mod pV—m2,

I3 = T4

Toup—1 = Toypy = 0 mod pN_muB .
In particular, for 2ug < a, the elements xs,,+1,..., 2%, are arbitrary elements
1% ) ) B+1 ) y

of o/p™. Moreover

{x € o/pN | x =0 mod pN*mﬂ'}\ =q™.
Hence, the number of solutions of B(y)x™ = 0 in o/pY is
g?mitetmup)t(e=2us)N 1n other words, Lemma assures that

[Rad(BY) /32| = 20+ Ho i),

when B(y) has elementary divisor type (mi,...,m,,;). In particular,
Rad(BY)/3n satisfies

[Rad(BY) : sn| = ¢ ¥ lgn/an| = "V 7%
exactly when B(y) has elementary divisor type (mg,...m,,) satisfying
ZjuzBl m; = upN — i. Consequently, expression (3.2.8) can be rewritten as
follows, for r = rk(g/g’) = h — b.
(@) = S [y € (ofs™) | #(B(y)) = mba™ 3, (32.10)
meDY

where

upB
DN .= {m:(ml,...,muB)elNgB | my <  <myy <N, Zmi:uBN—i}.
=1

Remark 3.2.4. The numbers r,(Gy) are zero whenever n is not a power of q.
In fact, as explained above, for each w € g/ with ¥y (w) =y and V(B(y)) =
(m1,...,myy), one has that
|Rad(Bi,v)/3N| _ q2M+(a—2uB)N’ where M =mq +--- + Moy -

Moreover, |gn/3n| = ¢*V, so that equality |[Rad(BY) : 35| = p~%|gn/3n] is
satisfied if and only if p* = ¢¥58—M.

For a matrix R(Y)) = R(Y1,...,Y,) of polynomials as the one at the begin-
ning of Section and for m = (mq,...,m.) € IN§, define

WY ».m = {y € (0/p™)" | ¥(R(y)) = m}.
Expression (3.2.10f) is written in terms of cardinalities of such sets, which are
related to the cardinalities N % ,, of the sets MY » |, as follows. Write m—m =
(mi1—m,...,mc—m), for all m € Ny. If R(y) is such that v,(y) = vp(R(y)),
for all y € 0™, then
‘Qn?V,R,m‘ :N]%—ml,R,m—ml' (3'2'11)

Indeed, the map Ny, = m-m, = WY ».m 8lven by g — 71y is a bijection.
Equality (3.2.11)) applied to (3.2.10)) yields the following result.

Lemma 3.2.5. Suppose that either ¢ = 2 or ¢ < p. For each i € Ny and
N € Ny,

) — [4 TN —2i
Tqi (GN) - E NN—ml,B,(O,mg—ml,.4.,muB—ml)q :

(ml,...,muB)EDg
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¢n(Gy) and elementary divisor types of the A-commutator matrix

We now show an analogous result to Lemma [3.2.5| for the numbers ¢, (Gy).
For x € gn/3n, the adjoint homomorphism ad gN/;,N — gy is given

by ad.(z) = [z,z], for all z € gn/3n. Let ad} : gN — gN/g,N be the map
w — w o ad,. Since the principal congruence quotient Gy is a finite p-group,
the sizes of its conjugacy classes are powers of p and, according to Section 3],
for ¢ < p,

e (Gw) = {7 € an/an | [Ker(ad))| = p gyl }] vl o7 (3:2.12)
This formula reflects the fact that the Lazard correspondence induces an order-
preserving correspondence between subgroups of Gy and sublattices of gy,
and maps normal subgroups to ideals. Moreover, centralizers of elements of Gy
correspond to centralizers of elements of gn under the Lazard correspondence.
Remark 3.2.6. The cardinalities of gy and gn/3n are powers of ¢, and hence so

is the cardinality of Ker(ad}). In particular, the equality |Ker(ad})| = p_i|g/’]\v|
can only be satisfied if p* is a power of ¢. That is, the number ¢, (Gy) is zero
unless n is a power of q.

Lemma 3.2.7. Given x € gn/3n and w € QIQ\V with ¢n(z) = x = (21,...,%4)
and Yn(w) =y = (Y1,---, %),
w € Ker(ad?) if and only if A(x)y™ = 0.

Proof. An element w € g/’]\v belongs to Ker(ad}) exactly when w(z,v] = 1 for all
v € gn/3n. Expressing these conditions in coordinates, just as in Lemma
we see that the expression on the statement of this lemma holds. O

Fix an elementary divisor type v(A(x)) = (mq,...,m,, ), where
ua = max{rkpac(0)A(2) | z € 0 }.

As in the representation case, we show that the system A(x)y"™ = 0 in o/p® has
gmitmetetmu, +0-ua)N golutions in o/pV. For z =1k(3) = h — a, this yields

(@)= 3 Ixe M) [ v(AG) = mileN T, (3.213)
meDY

where

uA
Dg = {m—(ml,...7muA)€]l\TgA |m1§~~§muA§N, Zmi—uANz}.
i=1

Equality (3.2.11)) applied to (3.2.13)) gives the following lemma.

Lemma 3.2.8. Suppose that p > c. For each i € Ny and N € Ny,
N
Cqi (GN) = Z NJQ’—ml,A,(O,mg—ml,...,mu,A —ml)qz "

(ml,‘..,muA)eDfX

3.2.3 Bivariate zeta functions as p-adic integrals

We now write almost all local factors of the bivariate zeta functions of G(QO)
in terms of Poincaré series such as and hence obtain formulae for them
in terms of p-adic integrals. This is done using the descriptions of the num-
bers r,(Gn) of Lemma and the descriptions of the numbers ¢, (Gy) of
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Lemma|3.2.8, Therefore, the finitely many local terms which are not written in
terms of p-adic integrals are the ones whose corresponding prime ideals do not
satisfy the assumptions of these Lemmata. That is, for the bivariate represen-
tation zeta functions, we write all local factors in terms of p-adic integrals in
case of nilpotency class ¢ = 2 and, in case of nilpotency class ¢ > 2, we exclude
the local terms at prime ideals p with residue field cardinality p < ¢. For the
bivariate conjugacy class zeta functions the exception is given by local factors
at prime ideals p with residue field cardinality p < c.

Recall from Section that the dimensions of irreducible complex repre-
sentations as well as the sizes of the conjugacy classes of Gy are powers of g,
allowing us to write the local terms of the (univariate) representation and con-
jugacy class zeta functions of the principal congruence quotient Gy as

‘" Zr (Gn)g —is and (&, Zc (GnN)g —is,

These sums are ﬁnlte, since G is a finite group. Consequently, the local factors
of the bivariate zeta functions are given by

o o0

ZG(O)(Sl,SQ Z qu (Gn)g 1752 and
N=0 =0

Z6(0)(51,92) Z g,
N=0i=

The expressions for r,,(Gy) and ¢, (G N) given in Lemmata and yield,
respectively,

2 (s1,82) = (3.2.14)
r—s2)N—(2+s1)i

Z Z Z N]%fml,BKO,mz*mlwwmuB 7m1)q( e ’

N=014=0 (my,...,my,)EDY

25 (s1,52) (3.2.15)

00 oo
o (z—s2)N—(1+4s1)t
Z Z Z NN—m1,A,(O,mg—ml,...,m“A —ml)q :

N=01=0 (ml,...,muA)ED%

We now show how to rewrite these sums as Poincaré series of the form (3.2.2)).
In preparation for this, we need two lemmata.

Lemma 3.2.9. Let s be a complex variable, (am)men, o sequence of real num-
bers, and let ¢ € Z>5. The following holds, provided both series converge.

oo N-—1 _s %)
S o]
N=0

N=1m=0

Proof. In fact,

co N-—1 co N-—1 co N-—-1
M=) D ama™V =3 > ama™™ =3 D amg Y
N=1m=0 N=1m=0 N=1m=0

oo N 9]
_ aoqfs + Z Z amqfs(N+1) o Z amqfs(NJrl)
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%) S
_ aoqfs + Z aqus(N+1) _ qfs Z aqusN. 0
N=1 N=0

Lemma 3.2.10. Let s and t be complexr variables and q € 7Z. Let also
RY) = R(Y1,...,Y,) be a matriz of polynomials R(Y);; € o[Y] with u =
max{rkpyac(o)R(2) | 2 € 0"}. The following holds, provided both series con-
verge.

Z Z Z N&—77L17R7(0,m2—M1,-4.,mu—m1)qisN7ti (3216)

N=0i=0 0<m; <---<my, <N
o1 mi=uN—i

1 > w
= —(stut) N+t 3% m;
=1_ = 14+ Z Z NJ%,R(Tnl,mz,...,mu)q (stut) g1y
N=1 (my,..rsmy) ENG
Proof. Let m = (mq,...,m,) and recall the notation m — m = (m; —
m,...,my —m), for m € INy.
As N]%.R,m =0 unless 0 = m; < mo < -+ < my < N, in which case

0 < >5_;my < uN, the condition }3;_, m; = uN — i implies that the only
values of ¢ which are relevant for the sum (3.2.16)) are 0 < ¢ < ulN. Hence, the
expression on the left-hand side of (3.2.16|) can be rewritten as

oo uN

L+, > NR o Ry @SN (3.2.17)

N=1i=0 0<m; <---<m, <N
iy myj=uN—i

Restricting the summation in (3.2.17) to m; = 0 leads to

o0
> > NR ROy N2 ),
9 ) S T2 5.0 e s Ty

N=10<ma<---<my <N
e mi<(u—1)N

The fact that N&R’m =0unless 0 =m; <my < --- <my < N allows us to
rewrite this as

S % A O ()

N=1melNy
Our goal now is to write the part of the summation in (3.2.17) with m; > 0 in
terms of S(s,t). Set m’ = (0,mb,...,ml).

oo ulN

o —sN—ti
E E E NN—ml,R,m—mlq

N=1i=0 0<m;<--<my <N
o1 mj=uN—i

e} N
0 —sN—t(uN=>"% . m;
> 2 Yo MmN TR

N=1mi=1m;<mo<---<m, <N
Sy mySuN-m

Z NG » m,q—(s+ut)N+t((E;=2 m})+um; )
—mi, /X,

L0<my < <m/, <N—m;
oy m) <u(N—my)

] =

>

N=1 maq

(3.2.18)
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N-1
q_SN Z Z N&7R7m,qt((2;:2 m'j)—um)

1 m=0 ogmfzg.ugm;gm
i mi<um

= f: - Z > N (B ma)zem), (3.:2.19)
N=

m=0 melNy

Apply Lemma- o (3-2.19) by setting
5 Ay o (55,

melNy

M

2
I

This gives
co uN

Z Z Z Nl%—ml,R,m—ml qisNiti

N=1i=1 0<m;<---<my<N
2jes my=uN—i

o0
= EED DD D SR
q N=1meNy
q—S
= 1+ 8(s,t)).
L0 S(s)

Combining the expressions for the parts of the sum with m; = 0 and m; > 0
yields

o oo
0 —sN—ti
N,R,(m1,ma,...;my)4

N=0i=0 0<m; <---<m,<N

>jeq my=uN—i
q’ 1
e (1+8(s,1) =

— (1+8(s,1)). O

=1+8(s,t) +

By applying Lemma|[3.2.10/ to (3.2.14) and (3.2.15)), we obtain the following.

Proposition 3.2.11. The bivariate zeta functions of G(o) can be described by

2 (s182) = (3.2.20)
1 u (—s1—2)
R (00 S o e
N= 1(m17 ,muB)elNuB
Zg(o)(81,$2) = (3.2.21)
e L S S

1 _ qZ*SQ
N=1(m,,..., muA)elNSA

Expression (3 is of the form Wlth t =ups; + s9 +2up — r and
TR = —5—= 2 for each k € [up], whilst (3.2.21] m is (3.2.2) with t = uas1+s2t+ua—z
and Tk = —5 — 1 for each k € [u,]. Therefore these choices of t and r applied
to 6) and to (3.2.4)) yields the following. Recall that a+2z = rk(g/3)+1k(3) =
rk(g ) = h and that b +r = rk(g’) + rk(g/¢g’) = h. In the following, we write
Z, »(r,t) meaning %, r(r,tly,), where 1, = (1,...,1) € INg® and R is
either the A-commutator matrix or the B-commutator matrix of g.
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Proposition 3.2.12. The bivariate zeta functions of G(o) can be described by

. 1
Zgr(o)(sl,SQ) = 1—(]77"_52 (1 + 2B (7S§72,’LL381 4+ s9 +2up — h — 1)) ,
(3.2.22)
1
Z&(0) (51, 82) = jpupe— (1+ Z5.4(—s1—Luasi +s2+ua—h—1)),

(3.2.23)
as long as either ¢ =2 or p > ¢ for (3.2.22)), and as long as p > ¢ for (3.2.23)).

In particular, specialisation (1.1.8) provides the following formulae for the
class number zeta function of G(o):

1

o (9) = T (U Zoa(FLs tua—h = 1)), (3.2.24)
1

=7 g (Ut Zop (“Lst2up —h—1)). (3.2.25)

Remark 3.2.13. Recall the Z-Lie lattice F, 5 of Deﬁnition and that for g =
Fn,s @0 0 with centre 3 it holds that @ = rk(g/3) = 2n + ¢. The B-commutator
matrix of F,, 5 is the generic a X a-antisymmetric matrix. In particular, we see
that s0,(0) = {Bz, ,;(z) | € o*}, where s0,(0) is the orthogonal Lie algebra of
a x a-matrices M over o satisfying M + M = 0.

In particular, formula for the class number zeta function of F), 5(o)
also follows from Proposition 5.11], which gives a formula for the ask zeta
function Zgiﬁ(o)(T) of the orthogonal Lie algebra s04(0), d € IN; see Defini-
tion 1.3].

In fact, when comparing the p-adic integral 4.3)] with (3.2.25)),
we see that C}‘,M(U)(s) = Ziii(o)(qfﬁ(;)), and hence \ Proposition 5.11]

shows (1.2.1)).

Remark 3.2.14. Formula coincides with the p-adic integral obtained
from the p-adic integral [38] (4.3)] together with the specialisation given in
Theorem 1.7].

In fact, for each z € g, let ad, : g — ¢’ be the adjoint homomorphism
ad;(z) = [z,2], for all z € g. As in Section let # = (e1,...,en) be a
basis of g with the properties described there; we use the notation that was
set up in this context. For each x € g, we can write x = Zle x;e;, for some
x; € 0. Let x = (x1,...,25,) € o". The b x h-matrix representing ad, is such
that its submatrix composed of its first a columns is the transpose A(x)" of the
A-commutator matrix of A and the remaining columns have only zero entries.

The integrals there are taken over o x 0% instead of p x W as in (3.2.24).
The fact that they coincide is due Lemma [2.2.4

We conclude this section with an example.

Ezample 3.2.15. Let H(O) be the Heisenberg group over @. The unipotent
group scheme H is obtained from the Z-Lie lattice

A= <x1,f1/'27y | [-'I/']_,ZL‘Q] - y>
The commutator matrices of g = A(o) with respect to the ordered sets e =
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(z1,22) and f = (y) are
0 Y

-Y 0
The A-commutator matrix has rank 1 and the B-commutator matrix has rank 2

over the respective fields of rational functions, that is, u4 = ug = 1. Moreover,
h =r1k(g) = 3, and
FUA(X, X9)) = {=X1, Xa},  Fa(B(Y)) = {V?}.
Thus, if (z1,z2) € Wy, that is, vy (21, 22) = 0, then ||Fy (A(z1,22))]|, = 1. Also,
if y € WP, then v, (y?) = 0, which gives || Fa(B(y))l, = 1.
It follows from Proposition and Lemma that

. ]. — - S So—
Zi_lir(o)(51752) = 1—q72_52 (1 + (1 —q 1) 1\/( |U}|p1+ 2 2du>

X
A(Xl,XQ) = [ ¥ 1 and B(Y) =
A1

WY)EPXWY
1— q—$1—82
B (1 — qlf«Sl*S?)(l 7 q2782)7
1
o (81’52) I S (S (1 N q—l)—l/ |w|81+52—3d/~L
H(o) 1—gl—= (w,z1,22)EPpX W3 ’
1 _ q—31—82

= . A
(]_ _ qlfsg)(]_ _ q2751752)

3.3 Twist representation zeta functions

In this section, we assume that G is a unipotent group scheme of nilpo-
tency class 2 associated to a O-Lie lattice A without the assumption A’ C 2A,
constructed as explained in Section We provide a univariate specialisation
of the bivariate representation zeta function of G(o) which results in the twist
representation zeta function of this group.

According to Corollary 2.11 and Proposition 2.18], the twist represen-
tation zeta function of G (o) may be written as

&loy(8) =14 2, B(—s/2,ups —b— 1),

where b = 1k(g), 2up = max{rkpc(o)B(z) | z € 0°} and Z p(r,t) is the
integral 2, »(r,t) given in (3.2.6) when R(Y) is the B-commutator matrix
B(Y). Recall that » = rk(g/g’) = h — b. We have shown in Proposition [3.2.12
that

(1-— qT*S2)Zi&O)(51,52) =1+2%p(—-2—s51)/2,ups1 +s2 +2up —h—1).

Comparing the expressions for (g(o)(s) and (1 — qr’”)Zgr(o)(sl, $2), we obtain
the desired specialisation.

Proposition 3.3.1. If G(o) has nilpotency class 2 and s1, so € C have suffi-
ciently large real parts, then

(1 - qr_52)ziér(o)(81a 32) |5135*2: Clcr;r(a)(s)
S2 T

As mentioned in Section no such specialisation is expected to hold
for G(O) with nilpotency class ¢ > 3. In fact, when counting isomorphism
classes instead of twist-isoclasses of irreducible complex representations of G(o),



3. Arithmetic properties of Zé(@) 43

we overcount the ones which are twist-equivalent. As explained in Sec-
tion 2.2.1], one may count the representations belonging to coadjoint orbits of g
to obtain the number of representations of G(o) up to twist. However, by doing
so, for each co-adjoint orbit 2 C g and ¥ € €, one overcounts the number of
representations which are twist equivalent to 1. This number is given by the
index of Gy 2 = {w € g | ¥(w,g]) = 1} in g. It is clear that this index is 1 in
nilpotency class ¢ = 2, but might be larger otherwise.

In the following example, we exhibit a group G(O) of nilpotency class ¢ =
3 whose bivariate representation zeta function does not specialise to its twist
representation zeta function.

Example 3.3.2. Consider the free nilpotent Z-Lie lattice on 2 generators of
class 3:

fa2 = (T1, 22,9, 21, 22 | [21, 22] — ¥, [y, 21] — 21, [y, 22| — 22),
and relations that do not follow from the given ones are trivial. Let §3 2 be the

unipotent group scheme obtained from f3 2, and denote by 332 and by ffw the
centre and the derived Lie lattice of {3 o2, respectively.

The B-commutator matrix of fs o with respect to e = (y,z1,22) and f =
(21, 22,y) is

0 i Y,
B(Y17}6,Y3) = _Yl 0 YE’)
Y, —Y; 0

Thus, up = 1, Fo(B(Y)) = {1}, and Fy(B(Y)) D {Y2,YZ,Y2}. By Proposi-
tion [3.2.12 and Lemma [2.2.1

. 1
Zirr (81,32) =— |1+ (1 — q—l)—l/ |w|51+52—4d:u
§2,3(0) 1— 252 (w,y1,y2,y3)EPX WS P

1 _ q751*52
= A=) (1) (3.3.1)
In Table 1], Rossmann provides the following formula for the twist represen-
tation zeta function of f3o—denoted by Ls g in [37]—, provided g is sufficiently
large, by implementing his methods in Zeta :
- 1— g2
Fa2(0)(8) = (1— q(l—s)(il _) )
Comparing and , we see that there is no specialisation of the

form (1.1.4) for the bivariate representation zeta function of §s2(0) in terms of
its twist representation zeta function.

(3.3.2)

For completeness, we now calculate the bivariate conjugacy class and the
class number zeta functions of §32(0). The A-commutator matrix of f3 o with
respect to e and f is

X X3 0
A(X1, X0, X3)= | - X4 0 X3
0 -X1 -X5
Thus, ua = 2, Fo(AX)) = {1}, Fi(AX)) = {—X;,£X5, X3}, and
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F(A(X)) D {X2, 7X22,X§}. Hence

1 - - —
Z%Zg(o)(51732) =T s, 1+(1—g¢q 1) 1/ |w|‘2381+s;: 4d,u
) 1= q (w,z1,22,23)EPX WS

—251—82

1—¢q
(1 —g>52)(1 — g3~ 2s1=s2)

Specialisation (1.1.8]) yields

S

1—q~

k _
(Faa(0) (8) = 01— @)1 — )
This formula agrees with the one given in Section 9.3, Table 1]. VAN

3.4 Local functional equations—proof of Theo-

rem

In this section, we prove Theorem

A formula of Denef type is a finite sum of the form

> Vilo/p)[Wilg,q* . q7*), (3.4.1)
i=1
where |V;(0/p)| denotes the number o/p-rational points of reductions modulo p
of a suitable algebraic variety V; defined over O and W;(X,Y, Z) is a rational
function.

Formulae of Denef type are used in Section 2| to show that functions
defined in terms of certain p-adic integrals are rational functions and satisfy
functional equations. The expressions given in Section 2] are generalised
in 3] Section 4].

As we shall see in Section the integrals describing the bivariate rep-
resentation and the bivariate conjugacy class zeta functions of groups of the
form G(O) appearing in Proposition are special cases of the integrals
studied in 7 and hence they fit the framework of . We apply in Sec-
tion the methods used in these papers to prove Theorem [Il Firstly, how-
ever, we recall from the mentioned family of p-adic integrals in Section
and then recall from how to write them in terms of formulae of Denef type
in Section In Section we recall briefly their methods for showing
functional equations.

3.4.1 A family of p-adic integrals

Fix n, d, | € N, and let I C [n — 1]. Define further:
1. J, a finite index set, for each k € [I],
2. €, € Lo, foreach i € I, k € [I] and ¢ € J,,

3. F,,(Y) = F..(Y1,...,Y,) afinite set of polynomials over O, for each x € [I]
and ¢ € J.
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Let also W(o0) C 0 be a union of cosets modulo p(¥. The following integral is
defined and investigated in [51] Section 2J:

1 Sk
Zyviori(s) = / 1‘[ U (TIx ) Fe)|| an 342)
pHIXW(0) 21 ||ieg, \iel P
where s = (s1,...,8;) is a vector of complex variables and X = (X;)es
and Y = (Y1,...,Y;) are independent integration variables. The notation

(Ilier Xi) Fru(Y) means the set {([T;c; X7) f(Y) | f(Y) € Fa(¥Y)}.
The term du denotes the additive Haar measure on ol/*? normalised so that
d,u( |I|+d) 1.

The numbers d, I, n as well as the data I, Ji, €, and Fy, (Y) will be
referred to as the data associated to the integral Zyy (o) 1(s)-

3.4.2 Formulae of Denef type

We now recall from Section 2] how to write the p-adic integrals
in terms of formulae of Denef type.

We make the further assumptions on the data associated to the inte-
gral Zyy(e),1(s): firstly, d = n?, so that we can identify o with the set Mat, xn (0)
and, secondly, W(o) = GL,(0). Thirdly, the ideals (Fj,) are assumed to be in-
variant under the natural action of the standard Borel subgroup B C GL,
of upper triangular matrices in GL,,, acting on K|Y7,...,Y,2] by right matrix
multiplication.

Consider the O-ideal

l
I= H H (FRL(X))a

r=1.1€J,

and fix a principalisation (Y, h) of Z—cf. Section [2.3}—with & : Y — GLq4/B.

Let T be the finite set indexing the irreducible components F, of the pre-
image of h of the subvariety V of GLd/B defined by Z. Set |T| = t. The
numerical data associated to (Y, h) i (Nuxs, Vo )ure, Where Ny, denotes the
multiplicity of the irreducible component F, in the pre-image under h of the
variety defined by the ideal (F};,) and v, — 1 denotes the multiplicity of E,, in
the divisor h*(du(y)); see Section

l
Definition 3.4.1. Let N € N, U C T, (d.,) € ]NOH”“:l v and write m =
(my)uer € NV and n= (n;)ie; € NI, Define

n) =Y "ni+ Y vumu,

el uelU
‘CK,L(m7 Il) = Z CiruMi + Z Num,mua fOT’ K€ [”7 L e JH?
i€l uelU
and
_ - - min KL —0ke K
5517(dKL)(Q7§) — Z q L(mn)—>7, | s {Li,(m)—d,, L€ }

(m,n)eNY  xINI

For the special case N =1 and (d,,) = (0), write 2y 1(q, s) := E}] 1,00 )(q, s).

We remark that (Y, h) has good reduction modulo p for all but finitely many
prime ideals p of O. In case of good reduction, we consider the following numbers
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of o/p-rational points of reductions modulo p of algebraic varieties over O: for
each U CT,
cu(o/p) =Ha €Y(o/p) | (a € Eu(o/p) & u € U) and h(a) € W(o)}],

where ~ denotes reduction modulo p.

Proposition 3.4.2. Theorem 2.2] If (Y,h) has good reduction modulo p,
then
(1—g~ )"

Z cuo.r(0/p)(q — 1)Y= 1(g, ).

ZW(U),I(ﬁ) - (n)
q\? UCT

We denote by @7 the finite set of prime ideals p such that (Y, k) has bad
reduction modulo p. The local factors given by the prime ideals p € ()1 are the
ones excluded in the statement of Theorem (1| (together with the prime ideals
p satisfying p < ¢ when considering Zg(o), and the prime ideals p satisfying
p < ¢ for ¢ # 2 when considering Zgr(o)). However, the integrals Zyy o), 1(s)
with p € Q1 can also be written in terms of formulae of Denef type, as follows.

Given N € N and a € Y (o/p"), set

YV ={y€Y(0) |y =amod p"}.
As explained in 3| Section 4.3], for each p € @1, there exists N € IN such that
the following holds: on the cosets Y.V, there exist U(a) C T, j(a) € Ny and
l

(de(a)) € ]NOH":1 7 such that

|Feoo bl =g~ @ T |yulp and

ueU(a)
W (du(y) = ¢ 7@ T |lpe"dpv),
u€eU (a)

where v, are the coordinate functions of v for each u € U(a). Denote by (Y, he)

the principalisation over the field of fractions £ = Frac(o) of o obtained from
(Y, h) by base extension.

1
Given U C T, j € Ng and (d,) € ]N(l)_[*‘=1 J”, consider the following number
of o/p-rational points of reductions modulo p of an algebraic variety over O:

e, (e (0/pY) = {a € Y(o/p™) [U(a) = U, j(a) = j, (du(a)) = (dw.)
and Tir(a) € GL, (o/p")}].
Proposition 3.4.3. @ Corollary 4.2] If (Y,h) has bad reduction modulo p,
L
there exist N € IN, finite sets J C Ny, and A C ]N(l)_[“:1 7% such that

(]__q*l)lll B i
Zw(o),1(8) = T Nz Z CU,j,(dm,)(o/p)(qN_qN I)IU‘(] jig,l,(dm)(%@'
a UCT,jeJ
(de)EA

3.4.3 Proof of Theorem

Let L be a finite extension of the field of fractions K = Frac(O) of O. For a
fixed prime ideal B of Oy, dividing p, write O for the completion O, ¢z. Denote
by f = f(O,0) the relative degree of inertia, hence |O/%B| = ¢/. Set gr, = A(D),
and let 3z, be its centre and g’ its derived Lie sublattice. Since O, is a ring of
integers of a number field L, we can choose ordered sets e and f as the ones of
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Section such that € and f are bases of g1, /31, and g7, respectively. Define
the commutator matrices A(X) and B(Y) of g with respect to e and f as
in Definition [3.2.1l Recall the p-adic integrals 25 p(r,t) and 2o a(r,t) given
in (3.2.6) and (3.2.3), respectively. Consider the following functions:

zig;(o)(m, $2) =14+ Zo 5 (-2, ups1 + s2 + 2up —h— 1), (3.4.3)
Z& oy (51,82) = 1+ Lo a(—1— s1,uasy + 82 +ua —h—1). (3.4.4)

We call the functions (3.4.3) and (3.4.4) the main terms of the bivariate repre-
sentation, respectively, of the bivariate conjugacy class zeta functions of G(9O).

We have shown in Proposition |3.2.12| that

irr 1 irr

Z6(0)(51:%2) = T 7=y Z6(o) (51, 52) and
cC 1 cc

Zao)(51:82) = Ty 26 (0) (510 92)

It thus suffices to show the relevant statement of Theorem [Il for the bivariate
zeta functions’ main terms. In fact, for x = f(z — s2) and = = f(r — s2), the
term (1 — ¢®)~! is rational and

1 1
Toge o=
Therefore, we only need to show that the p-adic integrals appearing in
and fit the framework of Section 2.3] and [3| Section 4]. In other
words, we must show that their integrands are defined over O—hence only their
domains of integration vary with the ring O—and that these p-adic integrals
can be expressed in terms of the integrals given in Section 2.1].

The condition that the integrands of the integrals appearing in
and are defined over O is needed since the ©-bases defined in Sec-
tion are only defined locally, so that the matrices A(X) and B(Y) are
also defined locally. We must assure that there exist O-bases e and f as the
ones of Section such that the commutator matrices A(X) and B(Y), de-
fined with respect with these e and f are defined over O, and hence so are the
sets of polynomials F;(A(X)) and Fy;(B(Y)).

Since the matrix B(Y) is the same as the one appearing in the integrands
of (2.8)] and A(X) is obtained in an analogous way, the argument of
Section 2.3] also holds in this case. Namely, we choose an O-basis f for a free
finite-index O-submodule of the isolator i(A’) of the derived O-Lie sublattice
of A; see Section By Lemma 2.5], f can be extended to an O-basis e
for a free finite-index O-submodule M of A. If the residue characteristic p of p
does not divide |A : M| or |[i(A’) : A’|, this basis e may be used to obtain an
O-basis for A(D), by tensoring the elements of e with O.

Remark 3.4.4. The condition “p does not divide |i(A’) : A’|” is missing in [48],
but this omission does not affect the proof of Theorem A, since this condi-
tion only excludes a finite number of prime ideals p. This was first pointed out

in Section 3.3].

We now relate Z&D)(sl,@) and ng(g)(sl,SQ) with the general inte-

gral (342).

Set I = {1} and write 71 = z. Set also n = b = rk(g’), hence d = b. In
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addition, we set [ = 2up + 1, and J, = {1,2} for k € [up], and J, = {1} for
ug < k <2up + 1. Moreover,

k |J | Fi; | ek
<up 1 For(B(y)) 0
ugp <k<2up |1 FZ(kflfuB)(B(g)) 0
2up + 1 1 {1} 1
<up 2 Fye—1)(B(y)) 2

Table 3.1: Data associated to the integral Zgr, (0),{1}

We see that, with this set-up, the integral (3.4.2)) is given by

Zaon ()= | Jalfzee . (3.45)
PxGLy (D)
uB 2up
[ 1Far(BY)) U a?Fao—1) (BY)) 15 1 Fa (-1 (BOY) 13 dp.
k=1 k=up+1

Although the domain of integration of the integral involves GL(9),
the integrand only depends on the entries of the first column, say, since the B-
commutator matrix is defined in b variables. Consequently, we can interpret ng
as the “space of first columns” of GL;(9) and we may consider the domain of
integration of to be WbD as long as we correct the integral by multiplying
it by the measure of the remaining entries of matrices of GLy(9). That is,
ZGLb(D),{l}(§) is equal to

b—1 -1 Uup
<H(1 - qf9)> /‘anbD [ kl;[l [ Far (B(Y)) U 2” Fy—1y (B(Y) |35 -

=1
2u3
H [ Fo(k—1-up) (BY)) I3 dp-
k=up+1
Let 1o, = (L,...,1) € Z*5, 0,,, = (0,...,0) € Z"#, and write
irr 1 1 irr
a :(7511”37517133“3)3 D) :(Oquousal)a

b = (=1yy, luy, 2up — h — 1),
It follows that

1-g)!
b—
o—1(1—q77)
Analogously, for n = a, d = a?, and [ = 2uy4 + 1, one can find appropriate
data Ji, e1jk, and Fj;(X) such that
1-g¢ )
g1 (1—q7°)

Z&D)(sl, s2) =1+ ZGLy(9).{1} (al"s1 +ab sy + b)) .

ZE;C(D)(SI, 82) =1+ ZGLQ(D),{l}(aECSI + agCSQ + bcc)7

for
a‘ic = (_1UA7 1o,, UA)v a(2:c = (OUA7O7J«A7 1)7
b = (=14,, 1y, ,ua —h—1).
Therefore, the bivariate zeta functions fit the framework of Section 2.1]
and Section 4], which concludes the proof of Theorem [1} see Section
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3.4.4 Functional equations

We now recall the methods of for showing the existence of functional
equations for the integrals . Here, we make the additional assumption
that p is such that the principalisation (Y, h) given in Section has good
reduction modulo p.

Consider the normalised integral

—~

Zw(o)1(8) = ( (1—¢ H (1-¢7" ) Zw(0),1(8)- (3.4.6)

Let by (o/p) denote the number of o/p—ratlonal points of the reduction modulo p
of the smooth projective variety Ey = ﬂu €U E,,. These numbers are related to

the numbers cy(0/p) defined in Section
cvio/p)= Y (*1)'U\V‘bu(0/P)~
VCUcT
According to Corollary 2.1], one may write

Twioyi(s) = (H ﬂjf?) > bule/e) Y (-1 Vig = 1) 1=y 4. 5),
UcTr vCcU

i=1

(3.4.7)

Let L be a finite extension of K = Frac(O), and let P be a prime ideal

of Op. Denote by O the completion of the ring of integers O at PB. Let also

R = Frac(9). By base extension, we obtain a principalisation (Yg, hg). All such

principalisations have good reduction modulo ; cf. Proposition 2.3 and

Theorem 2.4]. If O|o has degree of inertia f = f(9, 0)—and hence |O /| = ¢/—
then

-1
Zywoy,1(8) = ( 1—q¢HH H _kf> Zyw(0),1(5)-

According to Section 2.1] and (3| (4.10)], the numbers by (O /) are given
by alternating sums of powers of Frobenius eigenvalues:

2((2’)—\U|) ‘ tu,i
O/ = > (DY ol
i=0 Jj=1

where ty; are nonnegative integers and oy ; are nonzero complex numbers
satisfying

2((3)-1U) tu,s
b (/) = ¢TI0y (9 /) = (=1 ayd s

i=0 j=1
see (13)] and [3| (4.11)].

Remark 3.4.5. The numbers ay; ; are algebraic integers which will be denoted
by A1(p), .- -, Ae(p). As we have seen in Section the bivariate zeta functions

may be written in terms of integrals Zyy (o) 7(s). The algebraic numbers A} (p),
appearing in the statement of Theorem [I| are given by such Ag(p).

The effect of inverting ¢ and ¢~ in Zy/(q, s) is clear, since these are rational
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functions in these parameters. It then follows that, for each i € [n]

—_~—

(Zwe(® + 0= 0 2w () | gy = (3-48)
Aj—=A;7
g '" (ZW(O),®(§) +(1- q_fn)ZW(a),{i}(§)> :

In Section we have shown that for each * € {irr, cc} there exist vectors
aj, a3, and b* and suitable n € Z such that
-1

n—1
ZE(D)(SM s2) =1+ ((1 — q*f) H(l — qfk)> ZGLH(O),{I}(aikSl + ajsy + b*)
k=1

=1+ (1-q¢ ™) ZaL,(0).(1}(afs1 + ajsz + b¥).
Moreover, it is not difficult to see that
ZaL, (0),z(ajs1 +azsy +b*) =1,
so that

Z&0)(81,82) = Zar, (9),0(as1 + a3s2 + b7)

+(1—q ) ZaL, (0).013 (@] 51 + a3sz + bY).
Thus, the functional equations for the bivariate zeta function Za(g)(sl,@)

follows from (3.4.8).



Chapter 4

Analytic properties of ZE(O)

This chapter comprises the results of , which concerns analytic properties
of the bivariate zeta functions Ziéf(o) and Z(C}C(O). The main goal here is to prove
Theorem [5l

Let G be the unipotent group scheme obtained from the nilpotent O-Lie
lattice A. In Proposition we have shown that the bivariate zeta functions

Ziér(o)(sl, s2) and Z(C:f(o)(sl, s2) converge at least on some domains of the form

{(s1,52) € C* | Re(s1) > a1, Re(sz) > as},
for some real constants oy and ay. Recall from Section that a domain is a
connected open subset of C? with the usual topology.

In this chapter, we show that the maximal domains of convergence of these
zeta functions are independent of the ring of integers O and that they admit
meromorphic continuations to domains which are also independent of O, all this
possibly with exception of finitely many local factors. This is done using the
formulae of Denef type describing these zeta functions obtained in Section

Throughout this chapter, we adopt the notation introduced in Sec-
tion In particular, (Y,h) is the principalisation of the O-ideal Z =
Hf-;:1 [I,cs, (Fe(Y)) given in that section.

Recall that @ is the finite set of all nonzero prime ideals p such that (Y, h)
has bad reduction modulo p. Let Q" be the finite set of all nonzero prime
ideals p of O with residue field of characteristic p satisfying:

1. p divides |A : M|[e(A") : A'|, or
2. forc#2 allp<ec.

where ¢(A’) is the isolator of the derived Lie sublattice A" and M is the free O-
submodule of A of finite index described in Section Moreover, we denote
by Q%5° the finite set of all nonzero prime ideals p of O with residue field of
characteristic p satisfying:

1. p divides |A : M|[e(A") : A'|, or
2.p<e.

For % € {irr, cc}, denote by Q* the finite set Q1 U Q% of “bad primes”.

ol
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Recall that Zgr(u)(sl, s2) and Z&C(o)(sl, sy) are the main terms
and of the bivariate representation, respectively, of the bivariate con-
jugacy class zeta functions of G(o). When determining the domains of conver-
gence and meromorphic continuation of the global bivariate zeta functions, it
suffices to determine the respective domains of convergence of the products of
the main terms of their local factors. In fact, the products Hp(l —q¢ )71 and
[1,(1 - ¢**1)~! converge for Re(sy) > 1 — 7 and Re(sz) > 1 — z, respectively,
and both admit meromorphic continuation to the whole C?; cf. Section

In Section we prove Theorem [5|[1): for * € {irr, cc}, we determine in
Section the domain of convergence Z¢, , of the infinite product

Y0y (51,52) = H 20y (51552), (4.0.1)
pEQ*
and show that 7¢ ¢, is independent of O, that is 7 ) = Z¢. In Sectionm

we determine the domains of convergence % of the local factors gg;(sl, S2)
for p € Q1 and show that they strictly contain the domain Z¢. Denote by €7,
the intersection of all €, with p € Q1. Since 1 is finite, this means that the
domain of convergence of the infinite product

936(0)(81,82) = H ZE(U)(51>52) (4.0.2)
PEQ3
is 9g, since 25 N6, = 2&. The primes belonging to @5 are the primes
excluded in Theorem

In Section [4.2| we prove Theorem [5{|2): we show in Sections and

that the product gé«g)(S],SQ) admits meromorphic continuation to a do-
main .#«4- which is independent of O©. We then show in Section that
ME = Mg+ N CG, is a domain strictly containing Z¢, and then conclude
that B¢ ) (s1, 52) admits meromorphic continuation to .Z¢.

4.1 Convergence

4.1.1 Good reduction

Let « € {irr,cc}. The goal of this section is to determine the maximal
domain of convergence Z¢, ¢ of g(*;(o)(sh s2), given in

Recall the integrals Zyy(,),1(s) defined in , and that for p ¢ Q* this
integral may be written in terms of the functions =y 1(q,s) for U C T see
Definition [3.4.1] and Proposition In this chapter, we only consider the
case I = {1} and thus we write simply Zyy(o)(s) for Zyy (o) {1}(s) and drop the
subscripts I and i appearing in the data associated to Zyy(4)(s). Recall that for
each x € {irr, cc} there are integral vectors aj, a3, b*, a positive integer n = n*
and suitable data associated to the integral Zqr,, (0)(s) such that

Z&0)(51,82) =14 (1 - a ") Zar, (0)(@js1 + a5sy + b)
(1 _q_l)_l * * *
=1 + ﬁZGLn(O)(alsl + 3282 + b ) (411)
o—1(1—q7%)

The functions Ey(g,s) are rewritten in Section 3.1] in terms of zeta
functions of polyhedral cones in a fan. This allows the deduction of formulae for
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the integrals Zyy (o) (s) from which one can read off the domain of convergence. In
analogy to 7 we apply this formula to the integrals Zgy,, (0)(ajs1 +a3s2 +b*)
with p ¢ Q* to determine the domain of convergence of gé(o)(sl, s2). We recall
from Section 3.1] the notation needed.

Let ¢ be the cardinality of the set T" defined in Section Let {R;}ieful,
be a finite triangulation of ]Rt;f)l consisting of pairwise disjoint cones R; such
that each of them is a relatively open simple rational polyhedral cone with
the property of eliminating the “min-terms” in the exponent of ¢ in Zy(q, s).
Assume that Ry = {0} and that Ry,..., R, are the one-dimensional cones in
this triangulation. For each j € [2] let r; € ]N(t)+1 denote the shortest integral
vector on the cone R;. Then R; = Ry or;.

All cones R; are generated (as semigroups) by one-dimensional cones, so
that for each i € [w] there exists a set M; C [z] such that R; is the direct sum

of monoids
Ri = @ R>01‘j.

JjeEM;
Since R; = Rsor; exactly when i € [z], it follows that |M;| = 1 if and only if
i € [z]. Because the R; are simple,

R NING™' = € Nr;.
JjeEM;
For U C T, the domain of summation of = (g, s) is
6y ={m € N}, x N | m,, = 0 if and only if u € T\U}.

Denote by W/, the (unique) subset of [w] such that €7 is the disjoint union

U rinING,

iewy,

and by W’ the union of all W/;, that is, W’ C [w] is the set of index of cones

which do not lie in the boundary component R x {0} of RL{.
Given i € W', denote by U; the unique subset U C T such that i € W/;, and

ci(o/p) = cu,(o/p).

Proposition 4.1.1. Proposition 3.2] For p ¢ Q*, there exist @7;,, € N and
B; € Ny for each j € [z] and k € [l] such that

wzcl(o/p)q_lmﬂ .
q(’;) iEW jem, L — 4 Zl”':l FiwontBs)
Proposition applied to gives the following result.
Proposition 4.1.2. Forp ¢ Q*, there exist A7;, A3, Bj € Q, for each j € [2],

q — (o Fjest+B;)
ZG1,(0)(8) =

15>
such that ZG(O)(817 s9) is given by

* *
S1 —Asz‘Z—B,-

(1 _ q—l)nq—(;) U, s
bt G ch(o/p l |H —A ;81—A3 82— B
o—1(1—q77) icw’ JjEM;
Remark 4.1.3. The numbers «7j,, of Proposition are constructed so that
Z en, @ix = 0 if and only if the cone R; lies in the boundary component
Rzo x {0}, that is, if and only if ¢ ¢ W’. Similar arguments show that Aj;,

Aj; of Proposition are such that > .., A1y and 30, Asj are zero if
and only if i ¢ W’. Moreover, all the B}’s of Proposition are nonnegative,
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this follows from similar arguments as for the %;; see their construction in
Section 3.1] and Remark 3.6].

The numbers ¢;(0/p) are all divisible by
. n—1
") I - a7,
0=1

because of the way of construction of the relevant integrals; see Remark 3.5].
Proposition shows that the poles of the main terms of the bivariate

zeta functions are the ones occurring in the terms
(1 _ qA;‘jsl—A;jSQ—B*)—l

for j € M; and i € W’ such that (A}

15

A;_y) 7& (070) Since (ATWA;]) 7& (070)
exactly when j € W', it follows that the poles of Z*G(a)(sl, s2) are unions of sets
Py ={(s1,82) | Aljs81 + ASjs2 = B}, j € [Z]nW'.

—_~—

Consequently, the domain of convergence of Za(o) (81, 82) is a finite intersec-
tion of sets of the following form.

Definition 4.1.4. For each 6 > 0 and each i € W' N [z], set
@Z"g = {(81, 82) eC? | Re(AikiSl + A;iSQ) >1-— Bz* — (5}

e~

Proposition [4.1.2/shows that the generating function Zg o)(sl, S9) converges

at least on the domain ()¢, jqw Zj1-
We now want to investigate the domain of convergence of the infinite product
&0 (51, 52). For each i € W, let

* * *
—Aljsl—A2j52—Bj

3 (1—g g )

; _ , —1)lvil q
Bipo1:92) = i = gy iCe/P)a =) HM e
(4.1.2)
By Proposition
Za(o)(sl, 82) =1+ Z Z;p(sl, 82).
€W’
Thus,

o) (s1:52) = [ <1+ > Z?‘I,(sl,sz)>. (4.1.3)

p¢Q* ew’

We now determine the domain of absolute convergence %; of the product
[Tpgq-(1+Z7,(s1,52)), that is, of the sum 3 o 5. Z7 (51, 52); cf. Lemmam
Since W' is a finite set, %(*;(O)(sl, s7) converges absolutely on (. Z.

In preparation for that, we need some notation. In the set-up of Section|3.4.2
T is the finite set of irreducible components F,, of the pre-image under h of the
variety defined by Z, and Ey := (. Eu. Denote by dy the dimension of Ey.
For each U C T, it holds that dy = (5) — |U]; see Proposition 4.13]. The
family of the irreducible components over K of Ey; of maximal dimension dy is
denoted by {Fu}ver,, where Iy is a finite set of indices. For b € Iy, denote
by ly(Fup) the number of irreducible components of Fyp, over o/pY which are
absolutely irreducible over an algebraic closure of o/p™.

We now record a useful consequence of the Lang-Weil estimate.
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Lemma 4.1.5. @ Proposition 4.9] There exists C > 0 such that for allU C T
and p ¢ Q*,

1
culo/p) = > Lp(Fup)g™| < Cq™ ™2,

bely

and l,(Fup) > 0 for a set of prime ideals with positive density. This means
in particular that, for any sequence (ry)pgq+ of rational numbers, a sum of the

form Zp%@* cu(o/p)ry converges absolutely if and only if ZP%Q* qdurp con-
verges absolutely.

In Proposition 4.9], it is shown that, for each b € Iy7, the number I, (Fyp)
is positive for a set of prime ideals of positive density. We remark that the
finitely many prime ideals excluded are elements of Q*; see the proof of
Lemma 4.7].

Proposition 4.1.6. For each i € W', the domain of absolute convergence of
the product [[,¢q- (1 + 27, (s1,52)) is

— 2
-@i = ﬂ -@j,l N (51,82) S C ’ Z Re (AL‘Sl —|—A§j82) >1— Z Bj
jEM; JEM; JEM;
—Afjs1-ASjsa— B
AT, oAz, -BT COnverges absolutely

Proof. If j € M; N W', then each term 1q

if and only if (s1, s2) € Z;1, for each j € M;. If j € M; \ W’, the corresponding
— A% sy~ A% 5B}

q 2
AT, A% 5B has no poles and converges on the whole C=.

1-¢q
For (s1,s2) € 91, the convergent sequence ((1 — ¢~ 15517 4252=87)=1) jg 3

decreasing sequence when ¢ increases, and hence it is bounded. The sequence

term

( g;ll (1- q_e)_l) is also bounded when ¢ increases. Therefore, to determine

where the series Zp ¢Qr Zi’jp(sl, s9) converges absolutely, it suffices to determine
the domain of absolute convergence of the series

S (@) a Beifo/p)(g — 1)Vilgm Zoea (Aimt et By,

pEQ*
The Lang-Weil estimate of Lemma [4.1.5| guarantees that the series above con-
verges absolutely if and only if so does the following series:

P O A U e e e
PEQ*
which in turn converges absolutely for (s, s2) € C? satisfying

Re [ > Ajsi+ A58 | >1- Y B+ Ui - <Z>+dUi:1— > B;,

JEM; JEM; JEM;
because of the identity dy, = (5) — |U;| and Proposition It follows that

the domain of absolute convergence of the series } ;. Z,(s1, 52), and hence
of the product [],zq.(1+ 2‘%(31, s2)) is Z;, as desired. O

If i € W' N [z], since M; = {i}, the set Z; is given simply by
9; = {(81, 82) € C? | Re(Ale + A;iSQ) >1-— Bz*} = @i,0~ (414)
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We now show that the domain of absolute convergence of %é(o)(sl, s9) is
given by an intersection of such sets.

Corollary 4.1.7. The product gé(o)(sl, S2) converges on the domain
Doy =25= () %, (4.1.5)
i€[z]NW!
which is independent of the ring of integers O.
Proof. It is clear that Z¢ is independent of O, since so are the sets %;. Proposi-
tion shows that ¢ ) (51, s2) converges absolutely on (¢, Z;. We claim
that ﬂiEW' -@Z = ﬂie[z]ﬂW’ ‘@Z
Let (81, 82) S niewlm[z] 9;. Given k € w’

Z Re(A};s1 + Aj;s0) = Z Re(Aj;s1 + A5;52)

JEMj, JeEMENW’
S SR )
JEMENW' JEMi

The equality is justified by the fact that (A7;, A3;) = (0,0) if and only if j & W,
and the second inequality follows from the fact that Bf > 0 for all j € W', We

have shown that (s1,s2) € P for each k € W’'. Therefore, mie[z]ﬁW/ 9; C
Niew Pk O

4.1.2 Bad reduction

For each p € @1, denote by ¢} the domain of convergence of the local factor
Z&(0)(81,52). We now show that € 2 Z¢. A consequence is that

Beoy(s1:52) = [[ Z&0)(51,92)
PEQ3
converges absolutely on Z¢ because @ is a finite set.

Recall that the main terms of the bivariate zeta functions are given in
in terms of the p-adic integrals Zgr,, (0)(afs1 + a5sz + b*) of (3.4.2), where
aj, a5 and b* are the integral vectors defined in Section The poles of
Z(ajsi+a3sy+b*), in turn, are the poles of functions Zff , (¢, a1s1+a2s2+b)
of Definition by Proposition [3.4.3

The next proposition is analogous to Proposition 4.5] and is proven in
the same way.

Proposition 4.1.8. Given q, N € N, a family of integers (dy,) for k € [I] and
L € Je, and a1, ap, b € Z!, the set of poles of E{}’(dm)(q,alsl + agss + b) is
independent of q, N and (dy,), for allU CT.

Since the function Eg(dm)(q, a1$1 + a282 + b) may be rewritten as

qZ“EU(Nil)quU,(d}“-i-EueU Nuno(N—1))(@; @151 + azs3 + b),

it follows from Proposition that the functions E](}[’(dm)(q, a;s; +assa+b)
and Eb,(o)(q, a;s) +azss + b) ==y (g, a181 + azso + b) have the same poles.
In particular, the function Zgy,, (o)(ajs1 +a3s2+b*) converges absolutely on

the domain ﬂie[z]ﬂW’ PDj1 2 P& as in the good reduction case. This concludes
the proof of Theorem [5|(1)).
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4.2 Meromorphic continuation

We start by showing that the bivariate function %é(o)(sl, s2) admits mero-
morphic continuation to a domain g+ 2 Z¢; recall the concept of meromor-
phy in two complex variables in Definition [2.4.3]

For each i € W/, set R, = {j € W' | 9; = Z;}, where Z; is the set defined

in (4.1.4)). Set also

Z=ieWnll| (| 2 #%
JEW'\R;
In other words, Z is the set of indices ¢ such that the boundary 0%; of Z; shares

infinitely many points with the boundary 09¢ of Z§.
For each * € {irr,cc} and p ¢ Q*, define

Vir(s1,2) = [[ (1 = ci(o/p)q g~ Al —Asime B0,
IER
Observe that [ 4o Vp is convergent on Zg, since for each i € # the sum
> p¢Qr ci(o/p)q~Wiq= A1 —A252=B7 converges on 2. Recall from (4.1.3) that
Y&0)(51,52) = oo (1 + Xiew 214 (s1,52)). Then, for (s1,s2) € Z¢,
Hng* (1 + ZieW’ Z;ip (317 82))‘/;3*(51a 32)
pgq- Ve(s1:52) 7

provided that the numerator on the right-hand side converges. In the following,
we show that

gé(O)(Shsz) =

(i) The product J[,¢q-(1+ 2 ,cpr /2’?;(81, 52))Vy (51, 82) is meromorphic on

a domain .Z}. 2 2¢ which is independent of O, and

=

(if) The product [, ¢q. Vi'(s1,s2) is meromorphic on a domain ML D D,
which is independent of O.

4.2.1 Proof of (i)

We now introduce some convenient notation. The following is a modification
of the relations = of Section 4] and =x of Definition 4.4].

Definition 4.2.1. Given families (fy(s1,52))pgq- and (gp(s1,52))pgq- of bi-
variate complex functions and a domain D, we write

H fp =D H 9y
pEQ” pEQ*
to indicate that 3. (fp(s1,52) — gp(s1, 52)) is absolutely convergent on D.

The following Lemmata establish convenient properties of =p.

Lemma 4.2.2. Let (fy(s1,52)), (9p(s1,52)), and (hy(s1,s2)) be families of bi-
variate complex functions indexed by p ¢ Q*, and let D and D' be domains

of C2. If [o¢o- fo =p [peq- 90 and [1gq- 90 =p' [lgq- he, then

H fp =DND’ H hp~

pPEQ* pEQ*
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In particular, if Hp%Q* gp(s1,s2) converges absolutely on the domain D' and

[p¢o- fo =p Ipgq- 9v, then [1,¢q- fo(s1,52) converges absolutely on the do-
main DND.

Proof. The first claim follows from the fact that

D 1 fe(s1s82)=hp(s1,2) < > (1fp(s1,52)=gp(s1,52) [ +|gp (51, 52)—hp(s1, 52)])-
PEQ™ PEQ*

By definition, Hp%Q* gp(s1,s2) being absolutely convergent on D’ is equiva-
lent to [[,¢po- 9p =p’ 1. The second claim then follows from the first part of
Lemma@ffﬁ O

Lemma 4.2.3. Let (fy(s1,52)), (gp(s1,52)), and (Xy(s1,s2)) be families of
bivariate complex functions indexed by p ¢ Q*, and let D and D’ be domains
of C2. If [ogo- fo =p pgq- 95 and (Xp(s1,52)) is bounded on D', then

H foXp =pnpr H IpXp-
pEQ” pEQ”

Proof. This is clear, as the partial sums > |fy(s1,52) — gp(s1, 52)||Xp (51, 52)]
are bounded on DN D'. O

In the following, we write 2z 5 = (;c4 Zi,s for each § > 0.

Proposition 4.2.4. There ezists a domain Dy which is independent of O sat-
isfying the following condition: for each 6 > 0 the intersection D1 N Dz 5 is a
domain strictly containing 2¢& and such that

11 (1 + > 2:) Vo=p, [] <1 + Zé:) Vi (4.2.1)

pgQ* ew’ peEQ* IER

Proof. The domain D] := ﬂieW’\.% 9; strictly contains 2§, by choice of Z,
and is independent of O, since so are the domains &;, for all 1 € W’.

The domain Dj has the property that, for each § > 0, the intersection
D] N Pg5 is a domain strictly containing 2&. In fact, if D) N Dzs = D&,
then since 2 s is a translation of ¢ which strictly contains it, we must have
D) = 9¢§.

The definition of =p, yields

0 <1+szfp) o T <1+Zéjfp>.
peQ* ew’ pEQ* IER

Since the sequence (Vp*(sl,SQ))peQ* is positive monotonically non-increasing

on Dy, = (e Qi,(duﬁl)’ Lemma assures that holds for Dy :=
D/l N @Vp'

Clearly, given v, 7/ > 0, the intersection Zp , N D~ is Di min{~,y'}- Thus,
for each 6 > 0, and for v := min{dy, | i € Z},

Dl N @%,5 :_) Dll N @%,min{é,fy-i-l} 2 @a O

We now use Lemma, to show that there exists § > 0 such that

I1 (1 +3° é:) Vi =g, 1. (4.2.2)

PEQ" i€



4. Analytic properties of ZE(O) 59

Then (4.2.2) and Proposition together imply
I (143 20) % =

pEQ* iew’
where #g. := D1 N P45, which is independent of the ring of integers O. In
preparation for this, we need three lemmata. In following, consider the auxiliary
functions

25, (s1,82) = ci(o/p)g Mg A1 A2 =Bl e 5,

Lemma 4.2.5. There exist 2 > 0 and a domain Dy D P55, such that

[T vi=r. II (1—23’%) -
pEQ* PEQ* =2
Proof. We first notice that

Z |V 51,82 1722 81,52

pEQ* 1ER
:Z H(l_T(Sl’Sz (1—22 31752>‘
peEQ* lieZ IER
|22 L
DI | ENCRENE (4.2.3)
pgEQ* |1=2 IIIglg icl

By applying successively the Lang-Weil estimate of Lemma to (4.2.3), we
obtain that }Z,oo. [V (s1,82) = (1 = 32,c 27, (51, 52))| converges if and only
if the series

|Z|

E E E 151 (Al;s1+A3;s2+B])

p¢Q* |1=2 IC%
|I]=l

converges, which in turn converges on the domain D, defined by

{(31,32) €C?| ZRe(A’{isl + A%s0) > 1 — ZBi’ I C # with |I] > 2}.
iel i€l
Finally, if (s1,52) € Zg,1, then for each I € Z with |I] > 2,

* * 1 * *
3" RelAjsi + Afen) > 3 (2 _ Bi) >1-Y 08,
iel el iel
that is, 9@7% C D,. O

Lemma 4.2.6. There exist 3 > 0 and a domain D3 O P s, such that

(12 %) = 11 (1+X%)
pPEQ* 1ER pPEQ* IER
Proof. For each p ¢ Q* and i € Z, set

n—1

Spils1,s2) = (1—q~)"q~(3) (1) Vilgve — (1—g~Aior=A502=B0) T (1-¢ 7).
=1
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For each i € #Z the sequences

n—1
(H (1- q‘e)_1> and  ((1— g A A =Bl)=l)

0=1
are positive and monotonically non-increasing for Re(Aj;s1 + Aj;s2) > —Bjf
when ¢ increases. Thus, if the series

> 3 [Spailsr sa)eilo/p)g g Al i
PEQ* IER
converges absolutely on D3, then the series

> Y |E e m) ~ 2 (51 )

PEQ* iEX

_ Z Z \sz 81732 )ei(o/p)gig™ 181~ Ay02— 5]
)L — g A

pEQ* iR o 1 (1-q-

also converges absolutely on D3N PDg1.
The claim of Lemma [4.2.6] then follows from the fact that the series

n—1

Z Z ( (0/p)g~2ATis1—245,52-2B; H(l _ q‘9)>
PEQ* EZR =1

converges absolutely on %y, 1, because of the Lang-Weil estimate of

Lemma [4.1.5| and Proposition O

Lemma 4.2.7. The product

H <<1 + ZZ*»P(SM 82)) (1 — Z?*’p(sl, Sg)))
PEQ* i€EZ i€ER

converges absolutely on the domain .@@7%.

Proof. Let us show that

I1 (1 + Z%(31732)> (1 - Z%(51’82)> =%ay

PEQ* I€ER iER
In fact,
3 IR DEAIISIIED SE O
PEQ* iER iER

= 3 Y [E 1520 E (1,8

PEQ* IER JEX
= 3 30D [eilo/mhes(o/p)a e s g ATt AL I - (s AL e (BT
PEQ* IER jER
which, by Lemma [4.1.5] converges if and only if the following series converges:
I ‘q (ATiFAT o1 —(A5+A5))s2—(BI+5]) | |
PEQ* IEX JEXR
Proposition [2.6.1] assures that the latter series converges on

Dy = {(s1,50) € C% | Re((A};+A7,)s1+ (A3, +A3,)s0) > 1-Bi — B3, i,j € %}.
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In particular, if we choose ¢ = j in %, we see that for each (s1, s2) € Dy,
1—-2B? 1

In other words, Dy C @%’%. The equality Dy = 2@7% holds, since (s1,s2) €

Dz,; implies

1-2B; n 1—2B;
2 2

There is § > 0 such that the domains Dy and D3 of Lemmata and
satisfy

Re((A7; + A7j)s1 + (A3 + A3j)s2) > =1-B;-B;. O

D> ND3 N .@@7% 2 Dp.s, N D5, N .@%,% =D%.s.
It then follows from Lemmata [4.2.2] |[4.2.5] [4.2.6] and |4.2.7] that

[Ta+> 2z )V =0, [T+> 20> Z,)

pEQ* IEX pEQ* iER IER
=005 [[ (04D Z5)0- D Z5,) =0, 1,
pEQ* iER IER

which confirms (4.2.2)).

4.2.2 Proof of (ii)

For i € #, we define the following functions, which are analogous to the V;(s)

of Section 4.2].

Vi (s1,82) :== H (1= ci(o/p)gtviq~Aim— Az =B,
pEQ*
It suffices to show that each V;*(s1,s2) admits meromorphic continuation to
P;i.a, for some A > 0. Then, since Z is finite, it will follow that

H Vi'(s1,82) = H Vp*(sl,Sz)
1ER pPEQ*
admits meromorphic continuation to L//é* = ﬂie% Din-
The following proposition is analogous to Lemma 4.6].

Proposition 4.2.8. For eachi € W and b € Iy,, the function

Vii(s1,82) = [T (1= p(Fu p)g~ e~ Aaema= B0
pgQ*
converges absolutely on 2;. Moreover, there exists 6; > 0 such that V4 ;(s1, s2)
admits meromorphic continuation to %; s,.

Proof. For each i € # and b € Iy, the convergence of V; ;(s1, s2) follows from
the fact pointed out in the proof of Lemma 4.6] that [, (Fy, ;) is bounded
by the number of absolutely irreducible components of Fy;, 5. Then, for a suf-
ficiently large C' > 0, the sum Zpé@* lp(FUﬁb)q*AESlfA;;@fo is majored by
C>peo g Atisi—Azs2= BT which converges for Re(A%;s1 + Abs9) > 1 — B,
Let L|K be a finite Galois extension and S the finite set of prime ideals p
of O which are unramified and of the prime ideals p such that the reduction of
Fy, » mod p is smooth. Denote by Frob, (p unramified) the conjugacy class in
the Galois group of L|K consisting of Frobenius elements. Given aq,a2,b € R
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with (a1, az2) # (0,0) and a representation p of the Galois Group of L|K, one
can show that the Artin L-function

Lp, ,(a151 + azsy +b) = Hdet(l — p(Frob),q~ 11 —azs2=0)~1

converges for Re(ays1 + agse) > 1 — b and admits meromorphic continuation to
the whole €2, the same way that L, ,(s) does; see Section 10 of Chap.VII].
This is due essentially to the facts that, although we are considering two vari-
ables, the function L, ;(a181 + azse +b) is being taken over values on C given
by the entire function w : C? — C defined by w(s1, s2) = a1s1 + azsz + b.

In particular, the second part of this proposition follows from similar argu-
ments as the ones of Lemma 4.6]. O

Proposition assures that > .o. [ (Fy, p)q~ATs1=A2%2= 87 converges
absolutely on Z; and admits meromorphic continuation to %; s, for some J; > 0
and, hence, the sum >y >0 000 I (Fu,b)q —ALis1—42:52-B7 als0 does, because
Iy, is finite. '

For each i € #, define

*(81,82) H H (1 —1,( l*ﬂUi,b)q_IL‘Tigl —Azis2— H Vii(s1, 82).

bely, pgQ~ bely,
(4.2.4)
Since Iy, is finite, Propositionassures that V (s1, 82) converges on %; and
admits meromorphic continuation to Z; s, for some d¢; > 0.

The Lang-Weil estimate of Lemma [4.1.5] gives a positive constant A;
such that V (s1,82) =9, 4, V (s1,82) for each i € Z. Tt follows from
Lemma [4.2.2] that V;*(s1,s2) is a meromorphic function on % wmings,,a;}, and
therefore ng* Vi*(s1,82)(s1,82) is meromorphic on Pz A = (V;cyp Zia, for
A= mm{él, i

i€ R}

4.2.3 Proof of Theorem
It follows from the results of Sections and [£.2.2] that 95 ) (s1, 52) is

meromorphic on the domain ///g}* ﬁ///é*, which is mdependent of O. Moreover,
,//4;* = Y. for some A > 0 and the intersection of ///é* with a domain of
the form Z% s with 6 > 0 is a domain strictly containing Z¢.

In Section we have shown that, for p € @1, the domain of convergence
%, of Z G(o) (sl, 52) is a domain of the form 2;.5. Denote by %51 the
1ntersect10n of all € with p € Q1.

Since the function

ie[z]NW’

—_~—

11 2600 152)

p¢Qs

is meromorphic on g = M) = My. N MG NG, it is left to show
that .#¢ is a domain strictly contalmng 2&.

In fact, for each ¢ € [z]NW’ the domain 2, s is a translation of the domain ;.
Thus, Z is also the set of all indices ¢ € [2] N W’ such that the boundary

0%, s shares infinitely many points with the boundary 0 (mie[z]ﬁW’ 91-,5). In

other words, ﬂle[z]ﬂw, Dis = Nicwr Zis = Pa,5- Therefore, the domains of
convergenoe %, for p € Q1 are domains of the form %4 s with § > 0, and hence
= D%~ for some 7 > 0, which concludes the proof of Theorem I.



Chapter 5

Groups of type F, G, and H

This chapter comprises the results of , which concerns bivariate zeta
functions of groups of type F, G, and H.
Fix n € IN and 6 € {0,1}. Recall the nilpotent Z-Lie lattices of Defini-
tion [[.2.1k
Fos =@, yij | [xi,2j] —4ij, 1 <k <2n+6,1<i<j<2n+490),
Gn = Tk, Yij | @i Tnag] — ¥ij. 1 <k <2n,1 < 4,5 <n),
Hp = (@k: Yig | [0 Tntg] — Yig, [T, Tt — 935, 1<k <2n,1<i<j<n).
By convention, relations that do not follow from the given ones are trivial.
In this chapter, we consider the unipotent group scheme G = G, associated

to one of the Z-Lie lattices F, 5, Gy, or ‘H,, given above, that is, A is one of the
Z-Lie lattices Fy, 5, Gn, o Hy.

In this chapter, we prove Theorems [2] and [3] in Sections [5.1] and respec-
tively. We also give an alternative prove to Theorem [| for the representation
case in Section In Section formulae for the joint distribution of
three functions on Weyl groups of type B are obtained by writing the local class
number zeta functions of G(O) as sums over finite hyperoctahedral groups in
terms of statistics on such groups and then comparing these formulae with the

ones given in Corollary

Fix a prime ideal p of O. As in Section set g = A(0) = A®p 0 and
let g’ and 3 be the derived Lie sublattice and the centre of g, respectively. We
observe that the numbers h, a, b, r, and z defined in Section are given as
follows in the current context.

A | h=1k(g) | a=r1k(g/s) | b=rk(g) =rk(s) ==

fn,é (2n+2§+1) 2n—|—5 (2n2+6)
gn n? + 2n 2n n2
Hn (n;—l) +2TL m (n-2|-1)

Table 5.1: Constants associated to Fy, 5, G, and H,,

63
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5.1 Bivariate conjugacy class zeta functions—
Proof of Theorem

5.1.1 Commutator matrices

Proposition describes bivariate zeta functions in terms of p-adic in-
tegrals whose integrand is given in terms of minors of commutator matrices.
In order to explicitly calculate these integrals, we describe the A-commutator
matrix of groups of type F, G, and H. In this chapter we write A, (X) instead
of A(X) for the commutator matrix of g = A(o).

We determine the ordered sets e and f defined in Section [3.2.2] in the con-
text of the Lie lattice A € {Fns,Gn,Hn}t. The ordered set e is given by
e = (z1,...,2,), where the z; are the elements appearing in the presenta-
tion of A of Definition and the ordering is x; > x;4; for each i € [a — 1].
Then € = (e, ...,¢,) is an o-basis of g/3, where ~ denotes the natural surjection
9 — 9/3.

To determine f, define

{Gj)e2n+d? |1 <i<j<2n+6}, ifA=F,s,

DA = [TL]Q, ifA:gn,

{6, j) e l1<i<j<n}, if A=Hn,
and let y;; be the elements appearing in the relations of the presentation of A
of Definition m Then f = (yij)i,j)ep,, With ordering given by y;; > yw,
whenever either ¢ < k or ¢ = k and j < [. For simplicity, we write f =
(ij)(i.j)eps = (fi,---, fo) so that fi > --- > f,. The following lemma relates
the notations f = (f1,..., fs) and £ = (yi;)(i,5)eDa -

Lemma 5.1.1. Let wp : Dy — [b] be the map satisfying yi; = fu,j)- Then
(Zi )af(i—"z_l)‘Fja Z'fA:fn,(;a
(i—=Dn—()+4,  ifA=H,.

Proof. For A = F,, 5, the ordering of the y;; is given by the following identities:

wr, (1,7 +1) =w(i,j) +1, 1<i<j<a,
wr, s(1,14+1) =wr, ;(i—1,a) + 1, 1<i<a,
In particular, for 1 <i < j < a,
wr, s(,§) =wr, (] 1)+ 1= =wzg, (Gi+1)+j—i—1

=wr, (i—1a)+j—1i.
Since wr, ;(1,7) = j — 1, we see that wr, ;(2,7) = (a — 1) +j — 2, and thus
wfn,s(3,j) =(a—1)+ (a—2) +j — 3. Inductively,
i—1

wr, s (i)=Y (a=k)+j—i=(—-1a— () +j—i=(i—Da+ () +i
k=1
The other cases follow from similar arguments. O
Let X = (Xy,...,X,) be a vector of variables and, for m € [a], set

Q:A,m = {WA(m7j) | (ma]) € DA}
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We want to determine the submatrix AE\m) (X) of Apx(X) composed by the
columns of index in €, ,, so that

Ar, (X) = [ AY (X)) AR () oaRhx) |,
) = AP AP AP |,

for A € {Gn,Hn}. For A € {F,5,Gn, Hn}, the matrices Ax(X) all have size
a X b. Set

(m—1)a— (m;'l) +m, iftA=Fns
VAm =< (m — 1)n, ifA=G,

(m=Dn—(3)+m—1, if A="%H,,

so that €x . = {vam +1,...,Am + kA m}, where
a—m, itA=F.s,
k/\’m =3\"n if A= gnv

n—m+1, ifA=%H,,

that is, the jth column of Ag\m) (X) is the (va,m + 7)th column of Ax(X).

The relations of A show that, for (i, ) € Dy and for k € €4 ,,,, the structure
constants involving (%, j) are the ones in the following table:

A structure constants involving (i, j)
1, ifk=wr (i,9),
fn,zs Ai@j — ) .}-n,é( ’J)
0, otherwise,
" in+7) 0, otherwise,

1, ifk=wy,(i,7)
Hy | N =k =D
i(n+j) J(n+i) {0, otherwise.

Table 5.2: Structure constants for F,, 5, G,, and H,,

Since €4y, is composed of all wa (m, j) with (m, j) € Dy, it is clear that the

indices k € €y ,, of the columns of AE\m) (X) cannot equal wp(4,7) if i # m. In
particular, )\fj =0ifi,7 #m. Every k € €4, is of the form k& = vy ,,, + 1, for

some | € [ka ). Recall that the (i,1)th entry of AS\m) (X) is the (i,vpm + 1)th
entry of Ax(X), that is,

A (X)), = AN i(un )
In the following, we determine Ag\m)(i ) of each type separately.

A-commutator matrices of groups of type F

For A = F,;s, the index k = vg, ;m + [ coincides with wz, ;(m,j) =

VF,sm +J —m if and only if j = [ +m. It follows that )\fj = 1 if and
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only if i = m and j = m + . Hence the (m,{)th entry of A(;-:)é (X) is

v m+l
ml_ E )\]: o Xj:Xm+la
and, for ¢ # m, its (i,1)th entry is

1% m l - X lf I=m =+ l
A(m Z _ A Fr,5mT m>s s
e Z 0, otherwise.

Given s,7 € IN, let Oy, be the (s X r)-zero matrix and let 15 be the (s x s)-
identity matrix, both over o[X]. It follows that, for each m € [a — 1],

O(mfl)x(2n+67m)
A_(;::?é (K) - Xm+1 Xm+2 o X2n+5 S Mat(2n+5)><(2n+6—m) (U[X])
*Xm 1(2n+§—m)

A-commutator matrices of groups of type G

For A = G, the index k = vg, m + 1 coincides with wg, (m,j) = vg, m +J
if and only if j = I. Tt follows that A\* int) = 1 if and only if i = m and j = [.

Hence the (m,{)th entry of A(m (X) is
A(m) Z AVQ,L 7n+lX Xn+l,

and, for ¢ # m, its (i,{)th entry is

-X ifi=n+1
A 7] — /\Vgn ”L+lX — ms )
Gn = Z 0, otherwise.

Hence, for each m € [n],

O(mfl)xn
(m) Xn+1 Xn+2 (R X2n
AgV(X) = 0 € Mata, xn (0[X]). (5.1.1)
(n—m)xn
~X,,1,

A-commutator matrices of groups of type H

For A = H,, the index k = vy, + | coincides with wy, (m, ) = va, .m +

j—m+1if and only if j = m+1—1. If follows that )\Z(nﬂ) )\;“(n_ﬂ) 1 if and

onlylfeltherZ—mandj—m—i—l—lorj—mandZ—m—l—l—l Therefore

AG(x Z Ao X = X i1,

v m l
A(m)( (n+m)l Z y ?-;Ln+m+ Xm+l—1~
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For i € [n] \ {m}, the (i,1)th entry of Agz) (X) is

ZAVHH m.+l - Xn+m7 lf'l/:m+lf 1,
i(nt9) Knts 0, otherwise.
Fori:n+tw1tht€[]\{m} the (3, )thentryofA ( ) is
-X ift=m+1-1
(m) Z _ )\UHn m+l ) ms ,
o o Z (n+t) 0, otherwise.
Hence, for each m € [n],
O(mfl)x(nferl)
Xn+m Xn+m+1 ce X2n
Xn+m
m XTL m
A’E"L,L) (K) = + € MathX(n7m+1)(0[X]).
O(m—l)x(n—m+1)
_Xm _Xm+1 e —Xn
—X,,
~X,,

(5.1.2)

Ezample 5.1.2. We now illustrate the form of each commutator matrix.

[ X, X3 Xy
—X1 X3 Xy
A7l = X, X Xi |
-X1 Xz —X3
L X, Xs Xe 7
X, Xs X
Xy X5 X
Ag,(X) = )
X3 — X2 —X3
-X1 -Xo —X3
-Xi -Xo —X3
i Xe X5 Xe | -
X, Xs  Xg
Xy X5 Xs
Ay, (X) = ;
X, -X, —Xs
-X, X, —Xs
i X, ~X, —X; |
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where the omitted entries equal zero. A

It is not difficult to see that A (X) has rank a — 1 in all cases, that is,
ug =a—1.

We now proceed to a detailed analysis of the A-commutator matrix in each
individual type.

5.1.2 Conjugacy class zeta functions of groups of type F

Lemma 5.1.3. Forw € p and x € W¢, that is, for x € 0® such that v,(x) =0,
1F%(AF, , (%)) UwFr 1 (AF, (%))l
[1Fx—1 (A, ;)

Proof. The columns of A, ,(X) are of the form

=1, forallk € [a —1]. (5.1.3)

kth I‘OW{ Xj
, for each j,k € [a], (5.1.4)
jth row { — X

where the nondisplayed entries equal 0. Denote column (5.1.4) by Cj ;. For
each i € [a], consider the (a x (a — 1))-submatrix K;(X) of Ar, ,(X) composed

of the columns Cj 1, ..., Cii—1, Cit1,i,Ciy2, ..., Cqy in this order. That is,

Cia Ciic1 Ciy1, Ca,i

S o~ = PESS
X;

X
Ki(X)= |-X1 ... =Xi1 Xin Xa |,
—X;
L —Xi

Given x € W7, it is clear that, for at least one iy € [a], the matrix K, (x) has
rank a — 1. That is, for each k € [a — 1], there exists a (k x k)-minor of K, (x)
which is a unit. Since the (k x k)-minors of K;,(x) are elements of Fy(Ar, ;(x)),

expression (5.1.3)) follows. O
Lemma Proposition [3.2.12, and Lemma yield

Z.C)’:Cnyg(o)(slv 52)

1 ) (2n+6—1)s1+s2— 2n+5)_o
s (e [l )
B w,z)EPXWJ

n+s
1_ q(2"+2571)—(2n+6—1)51—32

(1 B q(2n2+5)_52)(1 _ q(2n2+5)+1—(2n+5—1)81—82)’
proving Theorem |2| for groups of type F'.

Remark 5.1.4. Formula (1.2.1]) for the class number zeta function F, 5(O) re-
flects the K-minimality of A = F,, 5; see Lemma 6.2 and Definition 6.3]. In
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fact, the proof of Lemma shows that
1F%(AF,, (@) UyFi 1 (AF, ,@)llp vl
[Fe—1(AF, s ())llp o
Thus, the formula for the local factors of the class number zeta function of
F, s(O) given in Corollary coincides with the formula of the class number

zeta function of F,, s(0) given by the specialisation of the formula given in
Proposition 6.4]; see Remark [3.2.14

5.1.3 Conjugacy class zeta functions of groups of type GG

We first describe the determinant of a square matrix in terms of its 2 x 2-
minors, which will be used to describe the minors of Ag, (X). Given a matrix
mi; Mg

M = (mij), let M) (r.s) =

My Mys

Lemma 5.1.5. Given t € IN, let G = (gij)lgi,ngt and U = (Uij)lgi,jSQt—i-l
be matrices with g;; = ¢(X)ij, wij = w(X)i; € o[X]. Let i = {i1,...,4},
i=A{s,...,jt} C [2t]. Then, for suitable as;, fi; € {—1,1},

det(G) = > @G 250G 4da) * Clat-10).2050):
iUj=[21]
iq<jq, VqElt]

2t+1

det(U) = Z Z 5i,jU1iU(1,i1),(2,j1)U(3,i2),(4,j2) T U(2t71,it),(2t,jt)-

i=1 iUj=[26+1\{i}
ifl<qu qu[t]

Proof. Given two subsets I, J C [2t] of equal cardinality m, denote by G 1,7 the
determinant of the (2t — m) x (2t — m)-submatrix of G obtained by excluding
the rows of indices in I and columns of index in J. The entries of the submatrix
G114k} = (Jij)ij obtained from G by excluding its first row and its kth column
are given by

Gis = 4 905 if j € [k —1],
T ey, g e k2t 1)
Consequently,
R k-1 o 21 } R
Gy gk = Z(_1)1+]g2jG{1,2},{j,k} + Z (=)' goj41)G 1,2} (k.5 +1} -
j=1 i=k
It follows that
2t
det(G) = Z(—l)lJrkglkG{l}){k}
k=1
2t k—1 2t . N
= Z Z gleZJG{l 2}, {5k} — Z (1) 915925 G 11,21, (k)
k=1 \j=1 j=k+1
2%-1 2t

=3 > (=D N Gimg2 — 91:92m) G 2y (i)

m=1i=m+1
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2t—1 2t . _ .
= Z Z (1) G (1 my,2,0) G 1.2} {mai}-
m=2i=m-+1

The relevant claim of Lemma for the matrix G follows by induction on ¢.
The claim for the matrix U follows by the first part, since its determinant is
2t+1

det(U) = Z(—l)i—"_luli(/]\{l}’{i}. O

i=1

Lemma 5.1.6. For each r € [2n], the nonzero elements of F.(Ag, (X)) are
either of one of the following forms or a sum of these terms.

Xiy oo Xiy Xy - Xy o = Xy - X, Xy o Xy -

Proof. Lemma describes each element of F},(Ag, (X)) in terms of sums of
products of (2 x 2)-minors of Ag_ (X). It then suffices to show that these minors
are all either 0 or of the forms X;X; or —X, X, for some 4, j € [2n|. This can
be seen from the description of Ag, (X) in terms of the blocks (5.1.1). O

The proof of Theorem [2| for groups of type G follows from the following
Proposition.

Proposition 5.1.7. Let X = (X1,...,Xa,) be a vector of variables. Given
Aw € [n]o such that 0 < w+ A < 2n — 1, for all choices of i1, ..., iw, j1, «--,
Jx € [n], one of

Xiy o Xiy Xy - Xy or = Xy - X, Xy o Xy
is an element of F,1x(Ag, (X)).

In fact, for z,y € o, it holds that min{v,(z + y),vs(x),vp(y)} =

min{wv,(z),vp(y)}. Thus, if some term of the form
Xiy Xy - X, Xy o Xy — Xy Xy - Ko, Xty -+ Xy
is a minor of the commutator matrix Ag, (X), then, assuming the claim in
Proposition holds, both
Xiy Xiy - X, Xy - Xy and X, X, -+ Xpo , Xoppy -+ X,

are minors of this commutator matrix (up to sign), and hence, when consid-
ering these three terms, only the last two will be relevant in order to de-
termine ||F.(Ag, (X))|lp- In this case, we may assume that all elements are
of the form given in Proposition while computing ||F,(Ag, (X))|, and
I1F(Ag, (X)) UwF,—1(Ag, (X))]p-

Firstly we show Proposition for the case where both {iy,...,i,} and

{j1,---,7x} have cardinality smaller than n.
Lemma 5.1.8. Let w, A € [n]g not both zero and not both n. Given iy, ..., i,
J1, -5 dx € [n] such that |{i1,... i}, |[{j1,---,Jr}| < n, either

Xiy - Xi, Xogy - Xowin o7 — Xiy - Xiu Xy - X
is an element of Fx+w(Ag, (X)).

Proof. For each (i,j) = (i1,...,%w,J1,---,Jx) as in the assumption of
Lemma [5.1.8) we construct explicitly a submatrix of Ag, (X) which is, up to
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reordering of rows and columns, of the form

Xn+j1

Koty — (5.1.5)

'
where T(X) = (¢(X);;) and W(X) = (w(X),;) are such that ¢(X);; = 0 and
w(X);; =0, if ¢ < j. It is clear that the determinant of this matrix is one of
X5, - Xy Xngjy o Xy -

The main fact we use is that the columns of Ag, (X) are of the form

ith row { | X045
: (5.1.6)
(n+ j)th row { | —X;

where the nondisplayed terms equal zero. For each i,j € [n], there is exactly
one column of Ag, (X) with X,,4, in the ith row, and exactly one column with
—X, in the (n + ¢)th row.

Fix I3 € [n]\ {i1,...,iu} and let ¢; denote the unique column of Ag, (X)
with X, 4;, in the l3th row. Inductively, fix I € [n] \ {l1, ..., le—1, %k, - - 59w }s
for each k € [A], and let ¢x be the unique column of Ag, (X) with X,,;, in the
{th row.

Analogously, fix m; € [n]\ {j1,...,jx} and let C; be the index of the unique
column of Ag, (X) with —X;, in the (n+ mq)th row, and, inductively, fix m, €
[P\ {ma,...,mg—1,Jq,--.,Jr}, for each ¢ € [w], and let C, be the index of the
unique column of Ag, (X) with —X;_ in the (n + m,)th row.

From , one sees that the columns ¢, and C, are given by

Cp Cq
lth row{ Xntju igth row { Kntmyg
(5.1.7)
(n+ ji) throw{ | =X, (n+my) throw { | —X;,

By construction, the indices ¢; are all distinct, and so are the indices C,. If
¢ = C4 for some k € [A] and some ¢ € [w], then we would obtain I = i,.
Analogously, the indices Iy, ...,Ix,n+ m1,...,n + my are all distinct.

Consider the matrix M; j)(X) composed of columns ¢; and C, and of rows
lp and n 4+ my, for k € [A] and ¢ € [w]. This matrix is of the form for
some matrices T(X) € Matyx,,(0[X]) and W (X) € Mat,,«(0[X]). Let us show
that, in fact, ¢(X);; = 0 and w(X);; =0 for ¢ < j.

The only nonzero entries of C; are the ones of indices i, and n 4+ m,. We
chose each [ so that I ¢ {i1,...,ik}. Since any of the rows l1,...,l, is the
igth row of Ag, (X), it follows that ¢(X),q = 0, for all ¢ < ¢. Analogously, since
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the only nonzero entries of ¢ are I, and n+ j, and my ¢ {j1,..., 4}, it follows
that w(X); = 0, for all ¢ < k. O

Proof of Proposition Lemma shows the claim of Proposition [5.1.7

for all cases, except for w = n and iy,...,7, all distinct, and for A = n and
J1s- -, Jn all distinct. Let us show the last case, the other one is analogous.
Assume that ji,...,j, are all distinct and w € [n — 1]p. For k € [n], we

can define /;; as in the proof of Lemma since |{i1,...,%u}| < n. We also
set ci as in the proof of Lemma As |{j1,...,Jn}| = n, we cannot choose
my € [n]\{Jj1,--.,Jn} Instead, we consider the rows n+ ji, for k € [w]. Denote
by C, the column of Ag, (X) with —X;_in the (n+ j;)th row. By construction,
the indices ¢, for k € [n], are all distinct, and so are the indices C,, for g € [w].
The indices ¢, and C, coincide, for some k € [n| and ¢ € [w], if and only if
ig = lg. It follows that all ¢, and C4 are distinct. Let M ;(X) be the submatrix
of Ag, (X) composed by columns ¢, and C, and of rows I), and n + j,, for each
k € [n] and q € [A], where i = (i1,...,i)\) and j = (j1,. .., Jn)-

Then, as in Lemma [5.1.8] B(X) is of the form (5.1.5)), but the matrix W (T')
is such that w(X);; = 0if ¢ # j. O

In particular, Propositionshows that, for each r € [2n] and each k € [n],
either X* or —XP is an element of Fj(Ag, (X)). Hence, if x € W§,, then at
least one (k x k)-minor of Ag, (x) has valuation zero. This gives

1£%(Ag,, (%)) U wFy—1(Ag, (%))
[1Fx—1(Ag,, (x))llp
For k€ {n+1,...,2n — 1}, the elements of Fj,(Ag, (X)) can be assumed to be
of the form

e =1, for all k € [n]. (5.1.8)

Xiy - Xi, Xnpiy - Xngins
where w, A € [n]g satisfy w + A =k, and 41, ..., 9w,j1, -- -, Jr € [0].

Given x € W3, let M =vp(xq,...,2,) and N = vy(Tp+1,...,%2,). Then

U {Xll "'Xian+j1 "'XnJrjA ‘ ila oo 7iw,j17~ .. ,j)\ € [TL}}
w+A=k

0<w,A<n P
_ qfnmin{M,N}f(kfn) max{M,N}'
Consequently, for w € p,
|Fu(Ag, (%)) UwFis(Ag, ()l _ [llons v samwlly, 30 =N < 1,
HFk—l(Agn(X))HP ||xn+1a"'7x2naw”p7 lfOZMSN
(5.1.9)

Combining (5.1.8) and (5.1.9) yields

T 1F(4g, (%)) UwFy 1 (Ag, ()lp _
1l

[1Fk—1(Ag, (x))llp
||x1,...7xn,w||gfl, if0=M <N,
[Tnt1s oo Topswl[p™, if0=N <M.
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Consequently, the p-adic integral given in (3.2.23) in this case is

/ | G Dsrsz =2 H " |[Fu(Ag, (2) U wFe1 (g, @)l ™"
(w,z)€EpX P HFk 1(Agn( ))||p1 S1

- (2n—1)s1+s2—n%—2 —(n—1)(1+s1)
—2 | l§ s,z wl dn
(W, 150 sT2n ) EPX P XWE

2n—1)s1+s —n%-2
+/ ‘w|}(l )s1+s2
(w,x1,...,T2n)EPXWE XW 2

_ (1 _ q—n + 2q—1+(n—1)81 _ q'rLz—nsl—sz _ an—n—nsl—sz> .

dp

(1 _ qil)(l _ qfn)qn +1—(2n—1)s1—s2
(1 _ qn2+1—(2n—1)sl—32)(1 _ qn2_ns1—32)a

where the ﬁI‘bt and the second integrals of the second equality are calculated in

Lemmata [2.2.2] and [2.2.1] respectively.
It follows from Proposition [3.2.12] that

ngn(a)(sh 89) = (1 + 25,4, (—51 —1,(2n —1)s; + 8o — n? — 2)) =

1— qnz—SQ
(1= POy (1 = @O TP ) + ¢ TP Ty (1— g ) (1 — g VT
(1 =™ To)(1 — ¢ T To) (1 — qn* 1T ™ Ty)

where T7 = ¢~ *®! and Ty = ¢~ *2, proving Theorem [2 for groups of type G.

)

5.1.4 Conjugacy class zeta functions of groups of type H

In this section, we denote by A(X);; the (¢, j)th coordinate of the commu-
tator matrix Ay, (X).
By (5.1.2), each column of Ay, (X) is of one of the following forms:

sth row { Xntr
sth row { Xnts
rth row { Xnts

(n 4 s)th row { X,
(n+ s)th row { | =X,
(n 4 r)th row { - X,

(5.1.10) - (5.1.11)
where the nondisplayed entries equal zero. These columns have the following

symmetry:
—X,;, ifandonly if A(X);x = Xnaj,
A(X)(n-‘ri)k = ! . . ( ) g - A
0, if and only if A(X),; = 0.

For each s € [n], there is exactly one column of the form (5.1.10), and the
columns ((5.1.11)) occur exactly once for each pair s < r of elements of [n].

X (5.1.12)

Lemma 5.1.9. For w € p, x € Wy, and k € [n],
[1F% (A, (%)) U wFg 1 (Az,, (%))

1Ft(Are, ()]s -
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Proof. Fix m € [n]. For each g € [m — 1], denote by C, the index of the unique

column of Ay, (X) which has X, 1, in the gth row. Recall that Agzll) (X) is
the submatrix of Ay, (X) given in (5.1.2)). The submatrix U,,(X) of Ay, (X)

composed of columns Cy, ...

, Cm—1 and the columns of Ag_;n ) (X) and rows

1,...,nis
Cl CQ Cmfl A"E’-TLZ) (X)
A~ =~ _
Xn+m
Xn—i—m
X
( ) Xn+1 Xn+2 Xn+m—1 Xn+m Xn+m+1 X2n
Xn-l—m
i Xntm ]
Symmetry (5.1.12) implies that the submatrix L,,(X) of Ay, (X) composed
of columns Cy, ..., C,,,—1 and the columns of AE:ZZL) (X)androws n+1,...,2nis
C1 CQ Cm— 1 AS:ZL) (l)
—_~— A~ ~~ :
Xn+m
—X,,
_ _Xm
@)=\ %, —Xp . Xt | ~Xm X X,
—X,,
L 7Xm_
If x = (21,...,%2,) is such that (xp41,...,22,) € W2, then there exists

my € [n] such that the matrix U,,, (x) has maximal rank n, that is, for each
k € [n], at least one of the (k X k)-minors of Uy, (x) is a unit. Analogously,
if (z1,...,2,) € W2, then there exists mo € [n] such that the matrix L,,,(x)
has maximal rank n. Since the (k x k)-minors of U, (x) and of L,,,(x) are

elements of Fj (A, (x)), the result follows.

O

In the next lemma, we show that the sets F),y;(Ay, (X)), for I € [n — 1],
are given in terms of linear combinations of products of (¢, j)-minors M;;(X) :=

XiXntj — X X4 of the following matrix
Xo
Xn+2

M(Xy,..., Xa) =

X1
Xn+1

Xn

S Mathn(o[Xl, ..
X2n

s Xan]).

Lemma 5.1.10. Let k = n+1, for somel € [n—1]. Then the nonzero elements
of F,(Ay, (X)) are sums of terms of the form

: Misjs (&)v

D
foriy, ... is,41,---,7Js € [n], and f1,...

Xy, M, 5, (X) ..
, fr € 2n], where r +2s =k and s > I.

Proof. Lemma describes each element G of Fj (A, (X)) in terms of sums
of products of minors of the form Gy, n,),(ms,nz)- It then suffices to show that
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these minors are all either 0 or of the forms X, X,,, —X, X, or M;;(X), for some
u,v€[2n]and 1 <i<j<n.

Since k = n+1, there are at least [ pairs of rows of G whose indices in Ay, (X)
are of the form ¢ and n + ¢, for some ¢ € [n]. Denote by A the exact number of

such pairs of rows occurring in G, and assume that, for m € {1,3,...,2\ — 1},
the mth and the (m+ 1)th rows of G correspond, respectively, to rows of indices
of the form ¢t and n + ¢ in Ay, (X), for some ¢ € [n]. In this case,

A(X);; = 0if and only if A(X )(z+1)] =0,

for alli € {1,3,...,2A—1} and j € [("+1)], because of (5.1.12). Therefore, for

ki, ko € [("H)] distinct and m € {1,3,...,2\ — 1}, the minor G, 1,), (mt1,k2)
is either 0 or M;;(X), for some 1 <i < j < n, as the columns of this minor are
either of the form (0,0)T or (X,,4;, —X;)7T, for some i € [n].

For i,j € [n] distinct, there is at most one column of Ag_(X) whose nonzero
rows are the ones of indices in {i,j,n + i,n + j}, it follows that each of the
remaining minors of G are either equal to 0 or of one of the forms X;X; or
—X;X;, for some distinct i, j € [2n]. O

Let x = (z1,...,%2,) € W3, with v,(z,) =0, say. Then

Up (x;QMiljl (X) e Misjs (X)) < Up (xf1 L, Mll]l( ) e Misjs (X))7 (5'1'13)
for all v,/ € N, f1,..., frr € [2n] and 41,...,%5,71,...,Js € [n].

Set M(x) = {My;(x) | 1 < i < j < n}. 1 M)l = | Mg, (), for some

iO) j07 then

H{Miljl( ) T Mizjz (X) ‘ 1<ip <jm<n, me [k)}}HP

= [ Migjo ()l = [ML()][- (5.1.14)
Expressions (5.1.13)) and (5.1.14) then assure that, for m € [n — 1]y and for
i1y 57;17,7'1’" '7jl € [n]7 and f17"'7fm € [2’”‘])

Up (x%Miojo (X)l) < Vp (xfl s xeriljl (X) T Misjs (X))v

Lemma |5.1.10| states that the k x k-minors of Ay, (X) are of the form
Xfl e XfTMiljl (K) e Misjs (K)’

or sums of such terms, where » + 2s = k and s > [. The maximal value for r
occurs when s = [.

We now show that, for all £k = n + [ with [ € [n — 1], all terms of the
form X7 M;; (X)! are elements of Fj(Ay, (X)), for k = m + 2[. This implies in

particular that, for x € W3, as above, the term z'’ M; (x)! is an element of
Fy (A, (x)) and, therefore

1Fx (Aze, (O)lp = [ Migjo (3)'llp = [[Migjo () [y = M) [-
Assuming this holds, the integrand of can be simplified as follows.

| Fs(Ase, () U wFypt 1 (s, (69l

[ Frri—1(Age, (x) [l

M) 1 <i<j <nfUw{My(x)'™" [1<i<j<n}]

- I{M; ()1 [ 1 < < j <}l

= [{Mi;(x) [1 <i <j <n}pU{whlp = [M(x) U{w}p. (5.1.15)
Proposition 5.1.11. Given | € [n—1], let k =n+1 and m =n —1. Then,
for all f € 2n] and 1 < i < j < n, either X?Mij(i)l or fX%nMij(X)l is an
element of Fi,(Ay, (X)).
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Proof. Let f € [nj and 1 < ¢ < j < m. We show that, up to sign, both
X}TLM”(X)l and XZ:_fM”(X)l lie in Fk(AHn (K))

First, we show that X;’j_fMij(K)l € Fr(Ay, (X)). We consider the cases
m > 3, m = 2 and m = 1 separately. In most cases, we do the following: we
choose specific indices ri, ..., rm, Ri, ..., Ry of rows of Ay, (X), and then set
Cs) C;, and Cg to be indices of columns of Ay, (X)) as in the following table.

Index | Unique column of Ay, (X) satisfying

Cs rsth entry is X, 4 ¢
Cé Ryth entry is X4
Cl Ryth entry is X, ;

Table 5.3: Indices of columns—proof of Proposition |5.1.11

The choices of 7, and R, are made such that the submatrix A(X) of Ay, (X)

obtained by its rows Qf indices T1Lyee s Tm, Ri, n+ Ry, ..., R, n+ R; and
columns c¢1, ..., ¢m, C}, C{, ..., C}, C], in this order, is of the form
Xoss Xotra oo Xogr, 7
Xn+f ' *
Xy
Xn+i XnJrj ) (5116)
0 X, —X,
XnJri XnJrj
—Xi =X ]

which has determinant X7 - M;;(X )L

Case 1. Assume that m > 3. First, we consider f ¢ {i,7}. Set r1 = f, ro =1,
rg = j. Inductively, fix ry € [n]\{r1,...,75—1}, for each s € {4,...,m}. Fix also
R1 € [n]\ {r1,...,mm} and, inductively, R, € [n] \ {r1,...,"m,R1,..., Rg—1}

The submatrix A(X) of Ay (X) described above is of the form (5.1.16).

In fact, column ¢; is of the form and, for s € {2,...,m}, cs is of the
form (5.1.11]), so that the only nonzero entries of ¢; in Ay, (X) are the ones of
index f, rs, n+ f, and n + rs. Since r1 = f and rs & {r1,...,75_1}, it follows
that the nonzero entries of this column which appear in the submatrix A(X)
are X, 4, in the row of index r; = f, and X,,4 s in the row of index 7,.

Given ¢ € [I], the only nonzero entries of C} in Ay, (X) are the ones of rows
whose index are elements of {i, R4,n + i,n + R,}. Since R, # 14, it follows
that the row n + i is not one of the rows of index n + R, t € [I], that is, the
only nonzero rows of the form R or of the form n + R in Cé which appear in
A(X) are the ones with ¢ = ¢. The same argument shows that, the only nonzero
entries of Cg of the form R; or n + R; in [1(1) are the ones with t = gq.

If fe{ij}, fixr = f, o € {5,571\ {f}, and set inductively rs € [n] \
{r1,...,7s_1}, for each s € {3,...,m}. The indices R; are chosen as in the
former case. The matrix A(X) is in this case of the form (5.1.16), by similar
arguments as the ones for the former case.

Case 2. Assume that m = 2, that is, we want to find a minor of the
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form X2 M”( ). If f ¢ {i,j}, set v = f, 7o = i, and Ry = j. Then fix,
inductively, Rq € [n]\ {ri,m2, R1,...,Rg-1}.

If fe{ij}, weset ri = f, ro € {t,5}\ {f} and Ry, for ¢ € [I], as in the
former cases.

These choices give matrices A(X) of the form (5.1.16).

Case 3. Assume that m = 1. If f € {i,j}, set 1 = f, R1 € {i,5} \ {f},
Rz € [n]\{r1,R1}, and, inductively, Ry € [n]\{r1,R1,...,R¢—1}. The obtained
matrix A(X) is of the desired form.

For m =1 and f ¢ {i,j}, we need a slightly different construction: we set
ry = f, but, in this case, we consider c1 and c]17 which are the indices of the
columns of Ay, (X) containing, respectively, X,,y; and X,,1; in the rith row.
Then set Ry =i and Ry = j and, inductively, R, € [n]\{r1,R1,...,Rq-1}, for
all ¢ € {3,...,1}. Denote by C, and by CJ the index of the columns of Ay, (X)
containing, respectively, X,; and X,,1; in the R4th row. There are only 21 —1
indices CJ and CJ in total, since C{ = C3.

Similar arguments as the ones of the former cases show that the matrix
composed of rows r1, Ri, n+ Ry, ..., Ry, n+ R; and columns ¢, ¢}, Ci, C,

Cj, ..., C},Cl, in this order, is
[ Xnti Xogy 0 0 0 0
Xn+f 0 Xn+i Xn+j O Xn+R3 0 Xn-‘rRl 0
- Xy 0 -X; X - Xz, 0 —Xg, 0
0 Xnyr| 0 Xppi | Xoyy 0 Xn+Ry 0 Xn+R,
0 - Xy 0 -X; | —X; 0 —XRr, 0 —Xg,
Xn+i XnJr]
0 0 0 | Ty 0
Xn+i Xn+j
B 0 0 0 g T |
The determinant of such matrix is
[(Xnvi Xnyj 0 0 0 ]
Xn—i—f 0 Xn+i X7L+j 0
M (X)' 2 det | | -X; 0 -X; —X; 0 = Xy p M (X))
0 Xnys 0 Xpyi | Xogy
| O - Xy 0 -Xi | =X ]

The minors of the form X' M;; (X)! (up to sign) are obtained by repeating
the constructions above for each case but considering rows n + rg instead of
rs, for all s € [m]. The determinants of the matrices obtained in this way are
of the desired form because of the symmetry of the columns of Ay (X) given

by (5.1.19). O

For each x € W3, combining ((5.1.15) with Lemma we obtain

T 1F (A, (%)) U wF_1 (s, (%))l
1 1Fer (e, G s ) Ul

= [[IM(x
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Thus, for groups of the form H, (o), the p-adic integral appearing in (3.2.23)) is
T, (51, 82) =

(2n—1)s1+s2— (") -2 —(n—1)(1+s
/ ol )72 () U o}y PO,
(w,z)epx W3,

which is a specialisation of the integral given in Lemma Combining
Lemma with Proposition |3.2.12] yields

1 14+ (1 —g ") " Tu,(s1,52))

Zlc’ign(o)(slaSZ) = n+1)_
2 EP)

1-— q(
= ZFHW (q7 q781 B q782)7

where ZFy, (q,T1,T») is given by

(1 =111 - (D211 + TP (1 - ) (A - g DT

(1 - ¢ 1) (1= g ) (1 - o3P Ty
This proves Theorem [2| for groups of type H.

5.2 Bivariate representation zeta functions—
proof of Theorem

Recall that g := A(0), and the constants a, b, r and z associated to it
given in Table Consider the B-commutator matrix Ba(Y) = B(Y) of g of
Definition with respect to the e and f given in Section

Recall the numbers N¥ p . = [{y € Wy y | ¥(B(y)) = m}| of Section
Write m = (myq, ..., my, ). Recall from Section that

2 (51,52) = (3-2.20)

A=) (1630 3 AR g Nmsrboat2un—n) =228 my 5=
N=1 me]NgB o
Given a set I = {i1,...,4} < C [n — 1o, recall that p; := i;41 — ¢; for all
j € [l]o, where iy = 0, 4.1 = n. Choose 1 = (r;);e; € N and let N = Y icrTie
Following Section 3], define the following sets, which form a partition
of Wy
Nr. (G) ={y e Wy x : v(B(y))

:(0,...,07Til,...,7“il,’f‘il +’I“il71,...,7"il —|—T1‘l71,...7N7...,N)}.
—_—— ——— —_————
pi terms  p;_; terms 1i_o terms po terms

For A € {F,s5,Gn, Hn}, it holds that 3 = ¢/, so that
Mm+s, HG=F,,
=rk(g/g) =a:=r1k = ’ o
ri=rkle/g) = a:=rk(g/s) {Qn, it G € {Gn, Hy)

For simplicity, consider § = 0 when G € {G,, H,}, so that we can write a =
2n 4+ § uniformly.

Using these facts and the equality a(G,n) = 2n + J, as in Table we
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rewrite Zgr( o) 88 follows.
(1—g*(Gmm=2) “r(a)(sl, s2)

_ E § ‘NI 7“1 q7 ZiEI Ti(nsl+52+2nfr)fzi61 iry(—2—s1)
IC[n—1]¢ rrelN{

S N (G)fgTrer s s 2, (5.2.1)
IC[n—1]p rreN!

The cardinalities |Ny ., (G)| are described in Proposition 3.4] in terms
of the polynomials fg ; and the numbers a(G, ) defined in Table[1.1]as follows.

N7+, (G)] = fa.i(q")grer (#(GD=2i70), (5.2.2)

Combining (5.2.1)) with (5.2.2) yields
irr 1 ri(a % n—i)s1—s
ZG<°>(81’52):W S Y faulg R @G- mn e

IC[n—1]o rreN!
a(G,i)—(n—1i)s1—s2

— 71 q
- 1_qa(G n)—so Z fGI H a(G i)—(n—i)s;—sg

IC[n—1]o il

This concludes the proof of Theorem [3]

5.3 Hyperoctahedral groups and functional
equations

In this section, we relate the formulae of Theorem [3| to statistics on Weyl
groups of type B, also called hyperoctahedral groups B,,. Specialisation
then provides formulae for the class number zeta functions of groups of type F,
G, and H in terms of such statistics. By comparing these formulae to the ones
of Corollary we obtain formulae for joint distributions of three functions
on such Weyl groups.

We also use the descriptions of the bivariate representation zeta functions in
terms of Weyl group statistics in Section |5.3.3|in order to prove Theorem

Some required notation regarding hyperoctahedral groups is given in Sec-

tion [B.3.11

5.3.1 Hyperoctahedral groups B,

We briefly recall the definition of the hyperoctahedral groups B,, and some
statistics associated to them. For further details about Coxeter groups and
hyperoctahedral groups we refer the reader to @

The Weyl groups of type B are the groups B, for n € IN, of all bijections

w : [£n] = [£n] with w(—a) = —w(a), for all a € [£n], with operation given
by composition. Given an element w € B,, write w = [ay,...,a,] to denote
w(i) = a;.

Definition 5.3.1. For w € B,,, the inversion number, the number of negative
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entries and the number of negative sum pairs of w are defined, respectively, by
inv(w) = [{(i,7) € [0]* | i < j,w(i) > w(5)},
neg(w) = [{i € [n] | w(i) <0},
nsp(w) = |{(4, ) € []* : i # j,w(i) + w(j) < O}].

Let s, =[1,...,i—1,i+1,4,...,n] fori € [n— 1] and so = [-1,2,...,n] be
elements of B,,. Then (B, Sp) is a Coxeter system, where Sp = {8;}icfn—1],-

In @ Proposition 8.1.1] it is shown that the Cozeter length on B, with
respect to the generating set Sp is given by

£(w) = inv(w) + neg(w) + nsp(w), for w € B,.

The right descent of w € B, is the set
D(w) ={s; € Sp | w(i) > w(i+1)}.
For simplicity, we identify Sp with [n — 1] in the obvious way, so that D(w) C
[n — 1]o. Moreover, for I C Sg, define

By, ={w € B, | D(w) CI°=Sp\I}.
Ezample 5.3.2. Let wy = [—1,..., —n] be the longest element of B,,. Then
inv(wg) = (Z), neg(wo) =n, Llwg) =n?*  D(wo) = Sp. A
Consider w € B,,. The following statistics are used in the present work.
L(w) = 31{(i.9) € [£n} | < jw(i) > w(i),i 2 0mod 2}],  (5:3.1)
des(w) = [ D(w)],

i€D(w)
maj(w) = Y i,

i€D(w)
rmaj(w) = Z n—i

i€D(w)

The statistics des(w), maj(w), and rmaj(w) are called the descent number, the
magor index, and the reverse major index of w, respectively.

5.3.2 Bivariate representation zeta functions and statis-
tics of Weyl groups

The following lemma describes the polynomials fg ; defined in Table in
terms of statistics on the groups B,,, where G € {F,, 5, Gp, Hp,}.
Lemma 5.3.3. Letn € N,0 € {0,1} and I C [n — 1]g. Then

1. [}8, Proposition 4.6]

fF S I(X) _ Z (_1)nog(w)AX'(2£+(2671)ncg)(w)7
weBL®

fa, 1(X) = Z (fl)neg(w)Xf(w)v

wEBL®
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2. [, Theorem 5.4]
fr, 1(X) = Z (—1)w) x L(w),
weB®
Lemma 5.3.4. Givenn € N, § € {0,1}, and a prime ideal p of O,
zweBn XG(w)q—hc(w) HieD(w) qU(Gi)=(n—i)s1—s2

ZG(O)(Slv s2) = H?:O(l _ qa(G,i)—(n—i)51—sz) ’
where, for each w € B,
G ‘ xa(w) ‘ ha(w)
Fos (—1)neg(“’) 20(w) 4 (20 — 1) neg(w)
G, | (=1)resw) (w)
H, | (1)) L(w)

Table 5.4: Statistics associated to Zgr(o)(sl, s9) for G € {Fo.5,Gn, Hn}

Proof. Applying Lemma to the formulae of Theorem [3| one obtains the
following expression for Zirr( ) (51, 82):
a(G,i)—(n—1i)s1—s2

m Z Z XG hG(w)H 3 a(Gz —(n—1i)s1—s2’

IC[n—1]o we BI° zeI

which can be rewritten as the claimed sum because of Lemma 4.4]. O

Specialisation (1.1.8) applied to Lemma yields that
k ~ Yuen, Xaw)g "¢ i py "0
CG(o)(Sh 52) = H?:O(l _ qa(G,z’)—s)

Y wen, Xa(w)g e g(Zicpa) a(Gi)—des(w)s “ao
- H?:O(l _ qa(G,i)—s) . ( wJ. )

Proposition 5.3.5. For n € N and § € {0,1}, the following holds in Q[X, Z].
Z (71)neg(w)X7(2(Zfo')+(26fl) neg —(26—3) rmaj —(2n+4) des)(w)ZdeS(w)
weBy,

= (1 - X(M';_l)z) ﬁ (1 — x ()= (2’+‘5)+22+5Z)

=2

Proof. On the one hand, since
2n+ 49 21+ 0
a(Fps,1) = ( n; ) — ( Z;L >+2i+5 =2(n?—i?)+ (26 —3)(n—1)+2n+9,

it follows that

q(ZiED(w) a(Fan,’L‘))—deS(U))S (20+(26—3) rmaj +(2n+d5—s) des) (w) )

=q
Hence
ZweB (71)neg(w)q7(2(£70)+(2671) neg —(26—3) rmaj —(2n+4d—s) des)(w)
CFnéo)()_ Hl 0(17(1(715’5) 5)
On the other hand, Corollary asserts that
(2n+571)_s (21L+6—1)_s
s 9) = -
n - 2n+48 2n+45 - — N .
5(0) (1 B q( 2+ )+1—5)(1 _ q( 2+ )—S) Hzlz()(]' _ qa(Fn,a,Z) s)
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Therefore
Z (_l)neg(w)q7(2(ffa)+(2571) neg —(26—3) rmaj —(2n+d—s) des)(w)
weB,
2n48—1 n .
= (1 — (" )_S) 11 (1 - q‘i(F""s’”q*S>
i=2
_ (1 _ q(2n+2571)_s) H <1 _ q(2n2+6)_(2i;»6)+2i+5q_s) .
i=2
The formal identity follows as these formulae hold for all prime powers g and
all s € C with sufficiently large real part. O

For a geometric interpretation of £ — o, we refer the reader to Section 2].
It can be easily checked that, for n > 2 and w € B,

H q*(Gni)=s — glo+2maj—s des)(w) (5.3.3)
i€D(w)

H g Hni)=s — g3 (o—3rmaj)(w)+(2n—s) des(w) (5.3.4)
i€D(w)

The following proposition follows from (5.3.2)), Corollary equalities (5.3.3)
and (5.3.4)), and arguments analogous to those given in the proof of Proposi-

tion [9.3.5)
Proposition 5.3.6. For n € IN and i € [n]o, set

fi(n,i) =n? —i® +2i, and f2(n,i) = ("5 — ("5 + 2i.
Then, the following identities hold in Q[X, Z].

Z (71)neg(w)X7(Zfo'72 maj)(w)Zdes(w) _
weBy,

((1 ~x2B) 21— x2G+z) £ x 71 - XY (1 - X*"“)) [[xnt0z2),
1=3

and

Z (_l)l(w)X—%(2L—a+3 rmaj +4n des)(w) 7des(w) _

wEB,
n

((1 ~xG - xGr2z)+ x()za - X*”+1)2) [J(x%z).
i=3
Remark 5.3.7. By setting X = 1 in the equations of Propositions and
we obtain the equalities
Z (_l)neg(w)Zdes(w) _ Z (_1)€(w)Zdes(w) _ (1 o Z)n7
we B, weB,
which were first proven in Theorem 3.2].

5.3.3 Functional equations—proof of Theorem 4| (repre-
sentation case)

We recall that the formulae of Proposition [3.2.12 of the local factors of the
bivariate representation zeta function of groups of type F, G, and H hold for all
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nonzero prime ideals p, since we consider the construction of the unipotent group
schemes of class 2 given in Section 2.4]. In particular, the descriptions of
the local terms of the bivariate representation zeta functions of groups of type
F, G, and H in terms of Weyl statistics given in Lemma also hold for
all nonzero prime ideals. We use Lemma to show that all local terms of
these bivariate zeta functions satisfy functional equations. Recall that, for each
n € IN, the longest element of By, is wy = [-1,—2,..., —n].

Theoremfollows from the same arguments of the proof of Theorem 2.6]
applied to the expressions of Lemmal|5.3.4] In fact, although hg is not one of the
statistics b - 1, or b - lg defined in Theorem 2.6], it satisfies the equations
(2.6) of [24], that is,

hg(wwy) + hg(w) = hg(wp).
In fact, one can easily show that g € {inv,neg, ¢} satisfies g(wwo) = g(wp) —
g(w), for all w € By, and the equation L(wwg) = L(wow) = L(wg) — L(w)
is |47, Corollary 7]. Therefore the conclusion of [24] Theorem 2.6] also holds for
the expressions given in Lemma [5.3.4
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Micizjnw Zi> PP- 56

MNicae Zi,s, for 6 > 0, pp. 58
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K

o
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0
WkN
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Number field with ring of integers O, pp. 2
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Gy

G(o/p"N), pp.5

Group schemes and Lie lattices

A

Fn,é

Gn

3

O-Lie lattice, pp. 17
Unipotent group scheme, pp. 4

Unipotent group scheme associated to A (also denoted
by G), pp. 17

Heisenberg group scheme, pp. 6

Nilpotent Z-lattice of Definition pp- 10
Nilpotent Z-lattice of Definition [1.2.1] pp. 10
Nilpotent Z-lattice of Definition pp- 10
A(o) := A xp o0, pp.33

Derived Lie sublattice [g, g] of g, pp. 33
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nsp
maj

rmaj

Hyperoctahedral group, pp. 79

Element w of B, given by w(i) = a;, for each i € [n], pp. 79
Longest element wy = [—1,..., —n] of By, pp. 80

Right descent {s; € Sp | w(i) > w(i+ 1)}, pp. 80

Inversion number, pp. 79

Number of negative entries, pp. 79

Number of negative sum pairs, pp. 79

Major index maj(w) = ZieD(w) i, w € By, pp.80

Reverse major index rmaj(w) = ZieD(w) n —i, w € By, pp. 80
Coxeter length of B,,, pp. 80

n? —i%, w € B, pp.80

Statistic on B,, given by o(w) = ZiED(

w)

Statistic on B, given in (5.3.1)), pp. 80
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Matrices

0, 0,...,0) € Z"

Osxr (s x 1)-zero matrix

1 (s x s)-identity matrix

Matyxp(R) Set of all a x b-matrices over a ring R

Mtr Transpose of the matrix M

v(M) Elementary divisor type of the matrix M, pp. 31

(M) Elementary divisor type of an antisymmetric matrix M, pp. 32
A(X) A-Commutator matrix, pp. 34

Apr(X) A-Commutator matrix of A € {F,, 5, G, Hn}, pp. 64
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F;(M) Set of all j x j-minors of the matrix M, pp. 32

p-adic integrals and functions

Up p-adic valuation, pp. 18

[ p-Adic norm, pp. 18

[-1p Maximum p-adic norm, pp. 18

Zor p-Adic integral defined in (3.2.3)), pp. 32
Zf Function given in (4.1.2)), pp. 54

Zw(o).1 Integral given in (3.4.2)), pp. 45

g-Symbols

(n)x 1— X", pp.11

(n)x! (n)x(n=1)x...(1)x, pp. 11

(‘Z)X %, for a > b, pp. 11

(D x (Z)x(iﬁl)x . (jf)x, where I = {iy,...,i;}<, pp. 11

(X;Y), [T~ (1 — XY?) (Pochhammer symbol), pp. 11
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N

[£n]o

{Z'17 .« e 7il}<

Rep(G)
Irr(G)

0
N,R,m

0
NN,R,m

Q1

Q*

WI

{1,2,...}

{0,1,2,...}

{1,...,n}, neN

{0,1,...,n}, ne N

{-n,...,n},nelN

Set {i1,...,4} such that iy < --- <4, pp.11

Set of isomorphism classes of complex irreducible representations
of a group G, pp.3

Set of isomorphism classes of complex irreducible characters of a
group G, pp.7

{y e W3y | v(R(y)) = m}, pp. 31

Cardinality of MY % 1, PP- 31

{(m17""mUA) € [N]E)LA | mp <o < My, Z?ﬁlmi =ualN —
i}, pp. 37
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i}, pp. 36

Set of prime ideals p such that (Y, h) has bad reduction mod-
ulo p, pp. 46

Set Q1 U Q5 of “bad primes”, pp. 51

Set indexing the irreducible components of the pre-image of h of
the subvariety defined by Z, pp. 45

Set of index ¢ of cones R; which do not lie in the boundary com-
ponent RY; x {0} of Rtg%l, pp. 53

Set of indices i € W' such that the boundary 0%; of %; shares
infinitely many points with the boundary 02¢& of 2¢&, pp. 57

Zeta functions

Riemann zeta function, pp.1

Dedekind zeta function of a number field K, pp. 2
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Ciér Representation zeta function of a rigid group G, pp.4
57 Twist representation zeta function of a T-group G, pp. 4
& Conjugacy class zeta function of a group G, pp. 6
Cé(o) Class number zeta function of G(O), pp.7
Zgr( o) Bivariate representation zeta function of G(O), pp. 5
Zg(o) Bivariate conjugacy class zeta function of G(O), pp. 6
ZE(O) Bivariate representation or bivariate conjugacy class zeta function

of G(O) (i.e. * € {irr,cc}), pp.8
Other Functions
E{}[J’(dm) Function given in Definition pp- 45
Hur Same function as E%]’I’(O), see Definition pp- 45
Other Symbols

rn(G) Number of isomorphism classes of n-dimensional representations
of a group G, pp.3

7 (Q) Number of twist-equivalent n-dimensional representations of a T-
group G, pp.4

en(G) Number of conjugacy classes of a group G of size n, pp.6

k(Q) Class number of a group G, pp.7

re(s) Real part of a complex number s

s Additive Haar measure on o normalised so that p(0) = 1 or the

product measure on 0™, n € IN, pp. 19
(Nuke, V)  Numerical data of a principalisation, pp. 22
(M) Isolator of the module M, pp. 33

=p Relation given in Definition pp. 57
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