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Abstract

The main topic of this doctoral thesis is zeta functions of groups. Let G
be a unipotent group scheme defined over the ring of integers O of a number
field. The group G(O) of O-rational points is a finitely generated torsion-free
nilpotent group. We introduce two bivariate zeta functions related to groups
of the form G(O): firstly the bivariate representation zeta function of G(O),
which enumerates the isomorphism classes of irreducible complex representa-
tions of finite dimensions of its congruence quotients, and secondly the bivariate
conjugacy class zeta function of G(O), which enumerates the conjugacy classes
of each size of its congruence quotients.

These zeta functions might be used as tools for understanding another (uni-
variate) zeta functions, as they both specialise to class number zeta functions,
which enumerate class numbers of the congruence quotients. Additionally, in
case of nilpotency class two, bivariate representation zeta functions specialise
to twist representation zeta functions, which are zeta functions enumerating
the irreducible complex characters of finite dimensions up to tensoring by one-
dimensional characters.

We show that bivariate representation and bivariate conjugacy class zeta
functions satisfy Euler decompositions and that almost all of their Euler factors
are rational and satisfy functional equations. We also prove that they converge
on some domains of C2 and, furthermore, their maximal domains of conver-
gence and meromorphic continuation are independent of the number field O
considered, up to finitely many local factors.

We provide formulae for the bivariate zeta functions of three infinite families
of groups of nilpotency class 2 of the form G(O) which generalise the Heisenberg
group of 3 × 3-unitriangular matrices over O. As an application, we establish
formulae for the joint distributions of three statistics on finite hyperoctahedral
groups.

Key words and phrases: Group theory, zeta functions, finitely generated
nilpotent groups, conjugacy classes, irreducible complex characters, p-adic
integration, signed permutation statistics, hyperoctahedral group.

2000 Mathematics Subject Classification: 11M32, 20D15, 20F18, 20E45,
20F69, 32D15, 05E15.





Zusammenfassung

Zetafunktionen von Gruppen sind das Hauptthema dieser Doktorarbeit.
Sei G ein unipotentes Gruppenschema, welches über einen Ganzheitsring O
eines Zahlkörpers definiert ist. Die Gruppe G(O) der O-rationalen Punkte
ist eine endlich erzeugte torsionsfreie nilpotente Gruppe. Wir stellen zwei bi-
variate Zeta-Funktionen von Gruppen der Form G(O) vor: erstens die bivariate
Darstellungszetafunktion von G(O), welche die Isomorphieklassen aller endlich-
dimensionalen irreduziblen komplexen Darstellungen von Kongruenzquotienten
von G(O) kodiert, und zweitens die bivariate Konjugations-klassezetafunktion
von G(O), die die Konjugations-klassen jeder endlichen Größe von Kongruen-
zquotienten von G(O) kodiert.

Diese bivariaten Zetafunktionen können benutzen werden, um andere (uni-
variate) Zetafunktionen zu verstehen, denn beide spezialisieren sich zu Klassen-
zahlzetafunktionen, welche Klassenzahlen von Kongruenzquotienten kodieren.
Außerdem spezialisieren sich bivariate Darstellungszetafunktionen von Gruppen
des Nilpotenzgrades 2 zu twist Darstellungszetafunktionen, welche alle endlich
dimensionalen irreduziblen komplexen Darstellungen bis auf Tensorierung mit
eindimensionale Darstellungen kodieren.

Wir zeigen, dass bivariate Darstellungs- und Konjugations-
klassezetafunktionen Euler-Zerlegungen besitzen, und dass ihre lokalen
Faktoren rationale Funktionen sind, welche Funktionalgleichungen genügen.
Wir zeigen auch, dass sie jeweils auf einem Gebiet von C2 konvergieren.
Außerdem sind ihre maximalen Konvergenz- und Meromorphiebereiche bis auf
endliche viele lokale Faktoren unabhängig von O.

Wir bestimmen explizite Formeln für beide bivariaten Zetafunktionen von
drei unendlichen Familien von nilpotenten Gruppen G(O) des Nilpotenz-
grades 2, welche die Heisenberg-Gruppe von 3×3-unipotenten Dreiecksmatrizen
über O verallgemeinern. Als Anwendung ermitteln wir Formeln für die gemein-
samen Verteilungen von drei Statistiken auf endlichen Hyperoktaedergruppen.

Schlüsselwörter: Gruppentheorie, Zetafunktionen, endlich erzeugte
nilpotente Gruppen, Konjugations-klassen, irreduzible komplexe Charaktere,
p-adische Integration, signierte Permutationsstatistiken,
Hyperoktaedergruppen.
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Chapter 1

Introduction and summary
of main results

Euler was the first to provide a solution to the Basel problem, which consists
of obtaining the precise value of the sum

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+ . . .

This was done by defining and studying the zeta function

ζ(s) =

∞∑
n=1

n−s, (1.0.1)

which at the time was regarded as a real function. Euler gave a formula for
ζ(2m) for all m ∈ N in terms of Bernoulli numbers. In particular, the solution

for the Basel problem is ζ(2) = π2

6 .

Riemann extended the zeta function of Euler to a complex variable function.
This allowed to analytically continue ζ(s) around the pole s = 1 and to obtain a
meromorphic continuation to the whole complex plane. This complex function
is known as the Riemann zeta function, and has been intensively investigated in
the last years, mostly because of the famous Riemann hypothesis and its relation
with the distribution of prime numbers; see [21, Section 12 and Theorem 12.3].
The series (1.0.1) is known to converge when the real part Re(s) of s is larger
than 1, and to diverge if Re(s) ≤ 1. Euler proved that ζ(s) satisfies the following
decomposition:

ζ(s) =
∏

p prime

ζp(s), (1.0.2)

where ζp(s)—called local factors of ζ(s)—are defined analogously to the Rie-
mann zeta function, but instead of considering all natural numbers, we consider
powers of the prime p:

ζp(s) =

∞∑
i=0

p−is =
1

1− p−s
.

The decomposition (1.0.2) is known as the Euler decomposition of the Riemann
zeta function ζ(s), and it provides a proof for the existence of infinitely many
primes, since the harmonic series ζ(1) diverges.

1



1. Introduction and summary of main results 2

The definition of the Riemann zeta function was extended by Dirichlet by
attaching a coefficient an to each term of the sum (1.0.1): the Dirichlet series
associated to a complex sequence (an)n with n ∈ N is

D((an)n, s) :=

∞∑
n=1

ann
−s,

where s is a complex variable. This generating function has a right half plane
of C as maximal domain of convergence, possibly empty; see for instance [1, The-
orem 11.8] or [18, Theorem 1]. The infimum of all c ∈ R such that D((an)n, s)
converges on {s ∈ C | Re(s) > c} is called the abscissa of convergence of this
Dirichlet series—see [1, Theorem 11.9]—and denoted by α. If D((an)n, s) di-
verges on the whole of C, then α = −∞.

If the sequence (an)n is bounded by an integer polynomial in n, then (an)n
is said to have polynomial growth and the Dirichlet series associated to (an)n
converges for s ∈ C with sufficiently large real part Re(s), that is α > −∞.

Dirichlet series serve algebraic purposes by attaching sequences (an)n encod-
ing some data of algebraic objects. Dedekind, for instance, defined the Dirichlet
series associated to the data (γn(K))n of a number field K with ring of integers
O given by γn(K) := |{I EO | |O : I| = n}|:

ζK(s) =

∞∑
n=1

γn(K)n−s =
∑
a

|O : a|−s, (1.0.3)

where the second sum is over all nonzero ideals a of O. This generating function
is called Dedekind zeta function and satisfies the following Euler decomposition:

ζK(s) =
∏
p

1

1− |O : p|−s
, (1.0.4)

where p ranges over the nonzero prime ideals of O. Decomposition (1.0.4)
reflects the unique factorisation of ideals in O. In particular, the Dedekind
zeta function ζQ(s) of the rational numbers coincides with the Riemann zeta
function.

Zeta functions were introduced as tools in asymptotic group theory by
Grunewald, Segal and Smith in [17], where they considered the following data
of a torsion-free finitely generated nilpotent group G (or T -group for short):

a≤n (G) = |{H ≤ G | |G : H| = n}|,
aEn (G) = |{H EG | |G : H| = n}|,

a∧n(G) = |{H ≤ G | |G : H| = n, Ĥ ∼= Ĝ}|,

where Ĝ denotes the profinite completion of G. The numbers a≤n (G), aEn (G),
and a∧n(G) are finite for all n ∈ N, since finitely generated groups have only
finitely many subgroups of each index, cf. [31, Corollary 1.1.2]. The subgroup
zeta function, the normal zeta function, and the profinite zeta function of a
T -group G are

ζ≤G (s) =

∞∑
n=1

a≤n (G)n−s, ζEG (s) =

∞∑
n=1

aEn (G)n−s, ζ∧G(s) =

∞∑
n=1

a∧n(G)n−s,

(1.0.5)

respectively. In particular, ζ≤Z (s) = ζEZ (s) = ζ(s).

These generating functions are Dirichlet series (1.0.3) and hence they con-
verge for sufficiently large Re(s), as long as the associated sequences are bounded



1. Introduction and summary of main results 3

by polynomials.
Zeta functions are expected to satisfy some arithmetic and analytic prop-

erties. Among the arithmetic properties, they should possess Euler decompo-
sitions whose local factors are rational functions. Rationality here means the
following: let ζ∗(s) denote a zeta function associated to some data (of a group G,
for example) with Euler decomposition

∏
p prime ζ

∗
p (s). We say that the local

factor ζ∗p (s) of this zeta function at p is rational in p−s if there exists a rational
function Wp(X) ∈ Q[X] such that ζ∗p (s) = Wp(p

−s).
The zeta functions (1.0.5) satisfy Euler decompositions and their local factors

are rational functions; see [17, Proposition 4 and Theorem 1].
If the T -group G has nilpotency class 2, one says that G is a T2-group. The

subgroup and normal subgroup zeta functions of free T2-groups are uniform; see
[17, Theorem 2].

One may ask what sort of information some data an(G) of a group G can
provide about the group and its algebraic features. Some families of groups are
characterised by their subgroup growth, that is, they are characterised by how
fast the corresponding sequence (a≤n (G))n grows. One example is that arith-
metic groups in characteristic zero have the congruence subgroup property if
and only if the sequence (

∑n
i=1 a

≤
i (G))n grows strictly less than nlog(n), that is,

if there is a constant a such that
∑n
i=1 a

≤
i (G) < na log(n) for all n ∈ N; see [31,

Theorem 7.1]. Furthermore, the Polynomial Subgroup Growth Theorem [31,
Theorem 5.1] asserts that a finitely generated residually finite group G is vir-
tually soluble of finite rank if and only if the sequence (an(G))n is bounded
by a polynomial. In particular, a finitely generated residually finite group G is
virtually soluble of finite rank if and only if its subgroup zeta function converges
somewhere.

1.1 Zeta functions related to representations
and conjugacy classes of groups

In finite group theory, character degrees, irreducible representations and
conjugacy classes are considerably well studied; see for instance [20]. In order
to investigate them in the context of infinite groups, one may investigate zeta
functions concerning the distributions of representations of each dimension and
conjugacy classes of each size. In the following, we discuss and define zeta
functions which encode information about representations and conjugacy classes
of groups.

1.1.1 Representation zeta functions

Given a group G, denote by Rep(G) the set of its isomorphism classes of
complex irreducible representations. Set

rn(G) = |{[ρ] ∈ Rep(G) | dim(ρ) = n}|,
where [ρ] is the isomorphism class of the representation ρ : G→ GLn(C). If G is
a topological group, then we only consider continuous representations. If rn(G)
is finite for each n ∈ N, the group G is said to be representation rigid , and one
can study the sequence (rn(G))n through the Dirichlet series associated to it.
Throughout, denote by s a complex variable.
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Definition 1.1.1. The representation zeta function of a representation rigid
group G is

ζ irr
G (s) =

∞∑
n=1

rn(G)n−s.

Representation zeta functions of rigid groups are investigated, for instance,
in [2, 3, 4, 16, 22, 25, 30]. For a short introduction to representation growth
and representation zeta functions, see [23].

A T -group G has infinitely many one-dimensional complex irreducible rep-
resentations, that is, G is not representation rigid. Hrushovski and Martin
introduced in the first version of the paper [19] the Dirichlet series associated
to the numbers r̃n(G) of n-dimensional irreducible complex characters of G up
to tensoring by one-dimensional characters. The equivalence classes on the set
of irreducible complex representations of G under this equivalence relation are
called twist-isoclasses, and two elements of the same twist-isoclass are said to
be twist-equivalent to each other. For a T -group G, the numbers r̃n(G) are all
finite, see [29, Theorem 6.6], hence one can define a Dirichlet series encoding
this data. The following zeta function was defined in the first version of [19].

Definition 1.1.2. The twist representation zeta function of a T -group G is

ζ ĩrr
G (s) =

∞∑
n=1

r̃n(G)n−s.

This zeta function converges on a (nonempty) complex half-plane, see [48,
Lemma 2.1], and has Euler decomposition

ζ ĩrr
G (s) =

∏
p prime

ζ ĩrr
G,p(s), (1.1.1)

where ζ ĩrr
G,p(s) =

∑∞
i=0 r̃pi(G)p−is; see [52, Section 4.1]. Twist representation

zeta functions of T -groups are studied, for instance, in [11, 12, 19, 37, 46, 48,
49, 51]. For an introduction see [52]. The local factors in (1.1.1) are rational
functions in p−s, according to [19, Theorem 1.5]. Moreover, almost all local
factors satisfy functional equations under inversion of p; see [51, Theorem D].

Let K be a number field and O its ring of integers. Let G be a unipotent
group scheme over O. The group G(O) is a T -group; see [48, Section 2.1.1].
Twist representation zeta functions of groups G(O) associated to nilpotent Lie
lattices were studied in [48]. Stasinski and Voll observe that, since unipotent
groups have the Congruence Subgroup Property and the strong approximation
property, the twist representation zeta functions of groups of the form G(O)
satisfy the Euler decomposition

ζ ĩrr
G(O)(s) =

∏
p

ζ ĩrr
G(Op)(s),

where p ranges over the nonzero prime ideals ofO and the completion ofO at the
nonzero prime ideal p is denoted byOp. This Euler decomposition refines (1.1.1).

We want to study the distribution of irreducible complex representations of
some groups of the form G(O). However, instead of considering the numbers of
irreducible complex representations of G(O) up to some equivalence relation—
such as r̃n(G(O))—, we consider the distributions of the irreducible complex
representation of congruence quotients G(O/I) of G(O), where I is a nonzero
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ideal of O. Since the groups G(O/I) are finite, their representation zeta func-
tions (1.1.1) are well defined. Our idea is to define a zeta function associated
to G(O) in two variables which encode the irreducible complex representations
of the quotients G(O/I): one of the variables keeps track of the level quotient
and the other one counts the relevant data.

Definition 1.1.3. The bivariate representation zeta function of G(O) is

Z irr
G(O)(s1, s2) =

∑
(0) 6=IEO

ζ irr
G(O/I)(s1)|O : I|−s2 ,

where s1 and s2 are complex variables.

This generating function is a double Dirichlet series; see Section 2.5. In
Proposition 2.5.5, we show that it converges if s1,s2 ∈ C have sufficiently large
real parts. However, the maximal domain of convergence of Z irr

G(O)(s1, s2) may

not be of the form {(s1, s2) ∈ C2 | Re(s1) > α1, Re(s2) > α2}.
In Proposition 3.1.1, we show the Euler decomposition

Z irr
G(O)(s1, s2) =

∏
p

Z irr
G(Op)(s1, s2), (1.1.2)

where p ranges over the nonzero prime ideals of O. When considering a fixed
prime ideal p, we write simply Op = o and GN := G(o/pN ). With this notation,
the local factor at p is given by

Z irr
G(Op)(s1, s2) = Z irr

G(o)(s1, s2) =

∞∑
N=0

ζ irr
GN

(s1)|o : p|−Ns2 . (1.1.3)

In certain cases, one can study twist representation zeta functions through
bivariate representation zeta functions, as we now explain. A nilpotent O-Lie
lattice Λ is a free and finitely generated O-module Λ together with an antisym-
metric bi-additive form [ , ] which satisfies the Jacobi identity. Let GΛ be a
unipotent group scheme obtained from a nilpotent O-Lie lattice Λ in the sense
of [48, Section 2.1.2]; see Section 2.1. If GΛ(O) is a T2-group, the twist repre-
sentation zeta function GΛ(o) can be obtained from its bivariate representation
zeta function via the following specialisation, given in Proposition 3.3.1:

(1− qr−s2)Z irr
GΛ(o)(s1, s2) |s1→s−2

s2→r
= ζ ĩrr

GΛ(o)(s), (1.1.4)

where r is a constant depending on Λ, provided both the left-hand side and the
right-hand side converge.

However, no such specialisation is expected to hold in general. In Exam-
ple 3.3.2, we exhibit a T -group of nilpotency class 3 whose bivariate representa-
tion zeta function does not specialise to its twist representation zeta function.

We are mostly interested in studying bivariate representation zeta functions
of T -groups of the form GΛ(O). Stasinski and Voll showed in [48, Theorem A]
that almost all local factors of twist representation zeta functions of such groups
are rational. More precisely, they proved that there are t ∈ N and a rational

function R(X1, . . . , Xt, Y ) such that almost all local factors ζ ĩrr
GΛ(o)(s) are given

by

ζ ĩrr
GΛ(o)(s) = R(λ1, . . . , λt, q

−s),

where q = |O : p| and λ1, . . . , λt are algebraic integers depending on the prime p.
More than that, the local factors are uniform under base extension: if O is a
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finite extension of o with degree of inertia f = f(O, o), then

ζ ĩrr
GΛ(O)(s) = R(λf1 , . . . , λ

f
t , q
−fs); (1.1.5)

see [48, Theorem A]. This property is not shared with some other zeta functions
of groups: Let H = 〈x1, x2, y | [x1, x2] − z〉 be the Heisenberg group scheme,
so that the group H(O) is the Heisenberg group of upper uni-triangular 3 × 3-
matrices over O. [17, Theorem 3] assures that the local factors ζCH(Op)(s) are

given by rational functions depending not only on the prime ideal p of O but
also on the degree of the finite extension |K : Q|.

Stasinski and Voll also showed that ζ ĩrr
GΛ(o) satisfies the following local func-

tional equations:

ζ ĩrr
GΛ(o)(s) | q→q−1

λi→λ−1
i

= qdζ ĩrr
G(o)(s),

where d = dim(Λ′ ⊗O K), with Λ′ = [Λ,Λ]; see [48, Theorem A].

We may wonder whether (almost all) local factors of bivariate representation
zeta functions of the groups G(O) are described by a rational function, and
whether these local factors behave uniformly under base extensions and satisfy
local functional equations under inversion of parameters. In fact, as we shall
see in Section 1.2.1, our first main result Theorem 1 establishes these features
for Z irr

G(O)(s1, s2).

1.1.2 Conjugacy class zeta functions

Conjugacy classes and their sizes reflect properties of groups; see [8] for a
survey. One may study the distribution of the conjugacy class sizes of a group G
through the sequence of numbers

cn(G) = {conjugacy classes of G of cardinality n}.
If all numbers cn(G) are finite, we define the following Dirichlet series.

Definition 1.1.4. The conjugacy class zeta function of the group G is

ζcc
G (s) =

∞∑
n=1

cn(G)n−s.

Let again G be a unipotent group scheme over O. As for the numbers
rn(G(O)), the numbers cn(G(O)) are not all finite. For instance, any free
abelian group has infinitely many conjugacy classes of cardinality 1. Analo-
gously to the representation case, we overcome the fact that cn(G(O)) may be
infinite by considering the finite numbers cn(G(O/I)), where I is a nonzero ideal
of O, and then attaching them to a double Dirichlet series. This way we obtain
a two-variable generating function such that one of the variables keeps track of
the level quotient and the other one keeps track of the sizes of the conjugacy
classes of these quotients.

Definition 1.1.5. The bivariate conjugacy class zeta function of G(O) is

Zcc
G(O)(s1, s2) =

∑
(0) 6=IEO

ζcc
G(O/I)(s1)|O : I|−s2 ,

where s1 and s2 are complex variables.
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Similarly to bivariate representation zeta functions of groups G(O), their
bivariate conjugacy class zeta functions converge for s1, s2 ∈ C with sufficiently
large real parts—see Proposition 2.5.5—and satisfy the Euler decomposition

Zcc
G(O)(s1, s2) =

∏
p

Zcc
G(Op)(s1, s2), (1.1.6)

see Proposition 3.1.2, where p ranges over the nonzero prime ideals of O and
the local factors are

Zcc
G(Op)(s1, s2) = Zcc

G(o)(s1, s2) =

∞∑
N=0

ζcc
GN

(s1)|o : p|−Ns2 . (1.1.7)

Almost all of these local factors are rational, behave uniformly under finite base
extension, and satisfy functional equations, as we shall see in Theorem 1.

1.1.3 Class number zeta function

The total number of conjugacy classes of a group G is called its class number
and is denoted by k(G). Let Irr(G) be the set of irreducible complex characters
of G. If G is a finite group, then k(G) = |Irr(G)| = |Rep(G)|. In particular,
k(G) = ζcc

G (0) = ζ irr
G (0).

For T -groups of the form G(O), where G is a unipotent group scheme, one
may define the following generating function.

Definition 1.1.6. The class number zeta function of the T -group G(O) is

ζk
G(O)(s) =

∑
(0)6=IEO

k(G(O/I))|O : I|−s.

The term ‘conjugacy class zeta function’ is sometimes used for what we call
‘class number zeta function’; see for instance [5, 38, 39, 41].

Let G ≤ GLm be a Z-defined algebraic subgroup which has the strong
approximation property. For each n ∈ N, consider the congruence subgroup
Gn(o) = ker(G(o)→ G(o/pn)) of G(o) and the congruence quotient G(o, n) :=
G(o)/Gn(o) ∼= G(o/pn). In [5, Lemma 8.1], Berman, Derakhshan, Onn, and
Paajanen defined the class number zeta function of groups G(o), where o is the
valuation ring of a non-Archimedean local field, by

ζk
G(o)(s) =

∞∑
n=0

k(G(o, n))q−ns,

and show that this zeta function satisfies an Euler decomposition. The proof
methods also apply to groups of the form G(O), since unipotent groups have the
strong approximation property; see [35, Lemma 5.5]. This means that the class
number zeta functions of groups of the form G(O) admit Euler decompositions
of the form

ζk
G(O)(s) =

∏
p

ζk
G(Op)(s),

where p ranges over the nonzero prime ideals of O and the local factors are

ζk
G(o)(s) =

∞∑
N=0

k(GN )q−Ns.
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Local class number zeta functions of Chevalley groups G(o), where o is the
valuation ring of a non-Archimedean local field of any (sufficiently large) char-
acteristic, are rational functions; see [5, Theorem C]. Moreover, these zeta
functions only depend on the size of the residue field of o.

We study class number zeta functions of groups of the form G(O) via the fol-
lowing specialisations of the bivariate zeta functions of Definitions 1.1.3 and 1.1.5

Z irr
G(O)(0, s) = Zcc

G(O)(0, s) = ζk
G(O)(s). (1.1.8)

In particular, by showing convergence and Euler decompositions for the bi-
variate zeta functions and rationality and functional equations for their local
factors, we obtain analogous results for class numbers zeta functions via spe-
cialisation (1.1.8).

Let K be a non-Archimedean local field of characteristic zero with com-
pact discrete valuation ring O. Let P be the maximal ideal of O and
q = |O/P|. Given G ≤ GLn(O), denote by Gn the image of G under
GLd(O) → GLd(O/P

n). Rossmann [38, 39] studied class number zeta func-
tions

ζk
G(O)(s) :=

∞∑
n=0

k(Gn)q−ns

via specialisations of ask zeta functions, which are zeta functions encoding the
average sizes of the kernels of modules of matrices over O. He showed the
class number zeta functions of such groups are rational and satisfy functional
equations; see [38, Theorem 1.4 and Theorem 4.18].

We conclude Section 1.1 with a simple example.

Example 1.1.7. Let G(O) be the free abelian torsion-free group Om, and let p
be a nonzero prime ideal of O with q = |O : p|. Then, for N ∈ N0, it holds that

rqi(GN ) = cqi(GN ) =

{
qmN , if i = 0,

0, otherwise.

Therefore, for ∗ ∈ {irr, cc},

Z∗G(o)(s1, s2) = Z∗om(s1, s2) =

∞∑
N=0

qN(m−s2) =
1

1− qm−s2
.

Consequently, Z∗Om(s1, s2) = ζK(s2 − m), where ζK(s) denotes the Dedekind
zeta function of the number field K. Moreover, these zeta functions converge
on {(s1, s2) ∈ C2 | Re(s2) > 1 + m} and admit meromorphic continuation to
the whole of C2; see Section 2.6.

We see that the local factor at p is rational in q and q−s2 and satisfies the
functional equation

Z∗om(s1, s2) |q→q−1= −qm−s2Z∗om(s1, s2).

Specialisation (1.1.8) shows that ζk
om(s) = ζK(s−m). 4
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1.2 Main results

1.2.1 Arithmetic properties

Our first main result concerns uniform rationality and functional equations
of local factors of bivariate representation and bivariate conjugacy class zeta
functions of T -groups G(O) = GΛ(O) obtained from nilpotent Lie lattices; see
Section 2.1.

Theorem 1. For each ∗ ∈ {irr, cc}, there exist a positive integer t∗ and a ra-
tional function R∗(X1, . . . , Xt∗ , Y1, Y2) in Q(X1, . . . , Xt∗ , Y1, Y2) such that, for
all but finitely many nonzero prime ideals p of O, there exist algebraic inte-
gers λ∗1(p), . . . , λ∗t∗(p) for which the following holds. For any finite extension O
of o := Op with relative degree of inertia f = f(O, o),

Z∗G(O)(s1, s2) = R∗(λ∗1(p)f , . . . , λ∗t∗(p)f , q−fs1 , q−fs2),

where q = |O : p|. Moreover, these local factors satisfy the following functional
equation:

Z∗G(O)(s1, s2) | q→q−1

λ∗j (p)→λ∗j (p)−1

= −qf(h−s2)Z∗G(O)(s1, s2),

where h = dimK(Λ⊗K).

The algebraic integers λ∗k(p) are explained in Remark 3.4.5.

The statement of Theorem 1 is analogous to [48, Theorem A], and its proof
relies on the methods of [3, 48, 51]; see Section 3.4. The main tools used in the
proof of Theorem 1 are the Kirillov orbit method, the Lazard correspondence
and p-adic integration.

As mentioned in Section 1.1.3, a consequence of Theorem 1 is that the local
factors of the class number zeta function of G(O) are rational in λi(p), q, and q−s

and behave uniformly under base extension. Moreover, for a finite extension O
of o with relative degree of inertia f = f(O, o), the local factors satisfy the
functional equation

ζk
G(O)(s) | q→q−1

λ∗j (p)→λ∗j (p)−1

= −qf(h−s)ζk
G(O)(s).

Rossmann proved independently in [38, Corollary 4.10 and Theorem 4.15],
via specialisation of the ask zeta function—cf. [38, Definition 1.3]—, rationality
and functional equations for local factors of class number zeta functions of such
groups under mild assumptions on the group G(o) and the characteristic p
of o/p.

1.2.2 Examples: Groups of type F , G, and H

We provide explicit formulae for the bivariate representation and the bi-
variate conjugacy class zeta functions of three infinite families of T2-groups.
Consequently, we obtain explicit formulae for their twist representation and
class number zeta functions. The local factors of these zeta functions are also
expressed in terms of sums over finite hyperoctahedral groups, which provides
formulae for joint distributions of three statistics on such groups.
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Definition 1.2.1. For n ∈ N and δ ∈ {0, 1}, consider the nilpotent Z-Lie
lattices

Fn,δ = 〈xk, yij | [xi, xj ]− yij , 1 ≤ k ≤ 2n+ δ, 1 ≤ i < j ≤ 2n+ δ〉,
Gn = 〈xk, yij | [xi, xn+j ]− yij , 1 ≤ k ≤ 2n, 1 ≤ i, j ≤ n〉,
Hn = 〈xk, yij | [xi, xn+j ]− yij , [xj , xn+i]− yij , 1 ≤ k ≤ 2n, 1 ≤ i ≤ j ≤ n〉.

By convention, relations that do not follow from the given ones are trivial.

Let Λ be one of the Z-Lie lattices of Definition 1.2.1. We consider the
unipotent group scheme GΛ associated to Λ obtained by the construction of [48,
Section 2.4], see Section 2.1. Following [48], these unipotent group schemes are
denoted by Fn,δ, Gn, and Hn, and groups of the form Fn,δ(O), Gn(O), and
Hn(O) are called groups of type F , G, and H, respectively.

The unipotent group schemes Fn,δ, Gn, and Hn provide different generalisa-
tions of the Heisenberg group scheme H = 〈x1, x2, y | [x1, x2]− z〉. The interest
in such Z-Lie lattices arises from their very construction. Roughly speaking,
their defining relations reflect the reduced, irreducible, prehomogeneous vector
spaces of complex n × n antisymmetric matrices, complex n × n-matrices and
complex n × n symmetric matrices, respectively,—here, the relative invariants
are given respectively by Pf, det and det, where Pf(X) denotes the Pfaffian of
an antisymmetric matrix X. We refer the reader to [48, Section 6] for details.

Bivariate conjugacy class and class number zeta functions

Theorem 2. Let n ∈ N, and δ ∈ {0, 1}. Then, for each nonzero prime ideal p
of O with q = |O : p|,

Zcc
Fn,δ(o)(s1, s2) =

1− q(
2n+δ−1

2 )−(2n+δ−1)s1−s2

(1− q(
2n+δ

2 )−s2)(1− q(
2n+δ

2 )+1−(2n+δ−1)s1−s2)
.

Write q−s1 = T1 and q−s2 = T2. For n ≥ 2,

Zcc
Gn(o)(s1, s2) =

(1− q2(n2)Tn1 T2)(1− q2(n2)+1T 2n−1
1 T2) + qn

2

Tn1 T2(1− q−n)(1− q−(n−1)Tn−1
1 )

(1− qn2T2)(1− qn2Tn1 T2)(1− qn2+1T 2n−1
1 T2)

,

Zcc
Hn(o)(s1, s2) =

(1− q(
n
2)Tn1 T2)(1− q(

n
2)+2T 2n−1

1 T2) + q(
n+1

2 )Tn1 T2(1− q−n+1)(1− q−(n−1)Tn−1
1 )

(1− q(
n+1

2 )T2)(1− q(
n+1

2 )+1Tn1 T2)(1− q(
n+1

2 )+1T 2n−1
1 T2)

.

Denote by Spec(O) the set of prime ideals of O. Specialisation (1.1.8) yields
the following.

Corollary 1.2.2. For all n ≥ 1 and δ ∈ {0, 1},

ζk
Fn,δ(O)(s) =

ζK(s−
(

2n+δ
2

)
− 1)ζK(s−

(
2n+δ

2

)
)

ζK(s−
(

2n+δ−1
2

)
)

, (1.2.1)

where ζK(s) is the Dedekind zeta function of the number field K = Frac(O).
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Furthermore, for n ≥ 2,

ζk
Gn(O)(s) =

∏
p∈Spec(O)\{(0)}

(1− q2(n2)−s
p )(1− q2(n2)+1−s

p ) + qn
2−s

p (1− q−np )(1− q−n+1
p )

(1− qn2−s
p )2(1− qn2+1−s

p )
,

ζk
Hn(O)(s) =

∏
p∈Spec(O)\{(0)}

(1− q(
n
2)−s

p )(1− q(
n
2)+2−s

p ) + q
(n+1

2 )−s
p (1− q−n+1

p )2

(1− q(
n+1

2 )−s
p )(1− q(

n+1
2 )+1−s

p )2

,

where qp = |O : p|, for all p ∈ Spec(O) \ {(0)}.

In particular, all local factors of the bivariate conjugacy class zeta functions
of groups of type F , G, and H are rational in qp, q−s1p , and q−s2p , whilst all local
factors of their class number zeta functions are rational in qp and q−sp . Moreover,
all local factors of both types of zeta functions satisfy functional equations. This
(slightly) generalises Theorem 1 for these groups.

Formula (1.2.1) was shown independently in [38]; it is a consequence of [38,
Proposition 5.11 and Proposition 6.4]; see Remarks 3.2.13 and 5.1.4.

Bivariate representation and twist representation zeta functions

To state our next result, we introduce some notation.
Let X,Y denote indeterminates in the field Q(X,Y ). Given n ∈ N, set

(n)X = 1 − Xn and (n)X ! = (n)X(n− 1)X . . . (1)X . For a, b ∈ N0 such that
a ≥ b, the X-binomial coefficient of a over b is(

a

b

)
X

=
(a)X

(b)X(a− b)X
∈ Z[X].

Given n ∈ N, write [n] = {1, . . . , n} and [n]0 = [n] ∪ {0}. Given a subset
{i1, . . . , il} ⊂ N, we write {i1, . . . , il}< meaning that i1 < i2 < · · · < il. For
I = {i1, . . . , il}< ⊆ [n − 1]0, set µj := ij+1 − ij for all j ∈ [l]0, where i0 = 0,
il+1 = n, and define (

n

I

)
X

=

(
n

il

)
X

(
il
il−1

)
X

. . .

(
i2
i1

)
X

.

The Y -Pochhammer symbol is defined as

(X;Y )n =

n−1∏
i=0

(1−XY i).

Theorem 3. Let G ∈ {Fn,δ, Gn, Hn} for some n ∈ N and δ ∈ {0, 1}. Then,
for each nonzero prime ideal p of O with q = |O : p|,

Z irr
G(o)(s1, s2) =

1

1− qā(G,n)−s2

∑
I⊆[n−1]0

fG,I(q
−1)

∏
i∈I

qā(G,i)−(n−i)s1−s2

1− qā(G,i)−(n−i)s1−s2
,

where fG,I(X) and ā(G, i), for all I = {i1, . . . , il}< ⊆ [n − 1]0 and for all
i ∈ [n]0, are defined as in Table 1.1.

The numbers ā(G, i) are slight modifications of the numbers a(G, i) given in
[48, Theorem C], namely ā(Fn,δ, i) = a(Fn,δ, i)+2i+δ and ā(G, i) = a(G, i)+2i,
for G(O) of type G and H.

Since groups of type F , G, and H are T2-groups, we may obtain formulae for
their twist zeta functions via (1.1.4). The constant r appearing in (1.1.4) in this



1. Introduction and summary of main results 12

G fG,I(X) ā(G, i)

Fn,δ
(
n
I

)
X2(X2(i1+δ)+1;X2)n−i1

(
2n+δ

2

)
−
(

2i+δ
2

)
+ 2i+ δ

Gn
(
n
I

)
X

(Xi1+1;X)n−i1 n2 − i2 + 2i

Hn

(∏l
j=1(X2;X2)−1

bµj/2c

)
(Xi1+1;X)n−i1

(
n+1

2

)
−
(
i+1
2

)
+ 2i

Table 1.1: Numerical data associated to Z irr
G(O) for G ∈ {Fn,δ,Gn,Hn}

case is r = ā(G, n), that is, r = 2n+ δ if Λ = Fn,δ and r = 2n if Λ ∈ {Gn,Hn}.
Then

ζ ĩrr
G(o)(s) =

∑
I⊆[n−1]0

fG,I(q
−1)

∏
i∈I

qā(G,i)−(n−i)(s−2)−r

1− qā(G,i)−(n−i)(s−2)−r

=
∑

I⊆[n−1]0

fG,I(q
−1)

∏
i∈I

qa(G,i)−(n−i)s

1− qa(G,i)−(n−i)s ,

which agrees with [48, Theorem C].
Formulae for the twist representation zeta functions of groups of type F , G,

and H are given in [48, Theorem B] in terms of Dedekind zeta functions. We
remark that the bivariate representation zeta functions of these groups cannot
be written in terms of Dedekind zeta functions. For instance, using Theorem 3
one can calculate the bivariate representation zeta function of F2,0(o). Write
T1 = q−s1 and T2 = q−s2 . Then, Z irr

F2,0(o)(s1, s2) equals

−q
7T 3

1 T
2
2 − q5T 2

1 T2 + q5T1T2 − q4T1T2 − q3T 2
1 T2 + q2T 2

1 T2 − q2T1T2 + 1

(1− q7T1T2)(1− q6T 2
1 T2)(1− q4T2)

.

However, it follows from specialisation 1.1.4 and Corollary 1.2.2 that setting
T1 = 1 in this formula will produce a function on q and T2 which can be written
in terms of Dedekind zeta functions.

Sums over finite hyperoctahedral groups

The polynomials fG,I(X) appearing in Table 1.1 can be expressed in terms of
distributions of statistics on Weyl groups of type B, also called hyperoctahedral
groups Bn; see Section 5.3.1. These are the groups of permutations w of the set
[±n]0 = {−n, . . . , n} such that w(−i) = −w(i) for all i ∈ [±n]0.

In Section 5.3.2, we describe the local bivariate representation zeta func-
tions of G(O) as sums over Bn in terms of statistics on such groups. As the
local factors of the bivariate representation and the bivariate conjugacy class
zeta functions of G(O) specialise to the local factors of its class number zeta
function, the formulae in terms of statistics on hyperoctahedral groups Bn can
be compared with the formulae of Corollary 1.2.2, which leads to formulae for
the joint distribution of three functions on Weyl groups of type B; see Proposi-
tions 5.3.5 and 5.3.6.

More precisely, the formulae of bivariate representation zeta functions in
terms of statistics on hyperoctahedral groups under specialisation (1.1.8) pro-
vide a formula of the following form for the class number zeta function of G(o):

ζk
G(o)(s) =

∑
w∈Bn χG(w)q−hG(w)−des(w)s∏n

i=0(1− qā(G,i)−s)
; (1.2.2)
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see Lemma 5.3.4. Here, χG is one of the linear characters (−1)neg or (−1)` of
Bn, where neg(w) denotes the number of negative entries of w, and ` is the
standard Coxeter length function of Bn. Moreover, the functions hG are sums
of statistics on Bn for each G and des(w) is the cardinality of the descent set
of w ∈ Bn; see Section 5.3.1 for definitions.

The formulae for the bivariate zeta functions given in Theorems 2 and 3
allow us to strengthen Theorem 1 for groups of type F , G, and H by showing
that its conclusion holds for all local factors:

Theorem 4. Let G ∈ {Fn,δ, Gn, Hn} and ∗ ∈ {irr, cc}. Then, for every
nonzero prime ideal p of O with |O : p| = q, the local bivariate zeta function
Z∗G(o)(s1, s2) satisfies the functional equation

Z∗G(o)(s1, s2) |q→q−1= −qh−s2Z∗G(o)(s1, s2),

where h is the torsion free rank of Λ(o) = Λ ⊗o o; see the exact value of h in
Table 5.1.

In fact, Theorem 1 states that almost all local factors satisfy functional
equations of such form, whilst Theorems 2 and 3 state that all local factors are
given by the same rational functions. We give an alternative proof of Theo-
rem 4 for bivariate representation zeta functions using the descriptions (1.2.2)
in Section 5.3.3.

1.2.3 Analytic properties

Having defined and worked with the bivariate zeta functions, it is natural to
ask for their domains of convergence. As mentioned in Sections 1.1.1 and 1.1.2,
bivariate representation and bivariate conjugacy class zeta functions of groups
G(O), where G is a unipotent group scheme, converge for s1, s2 ∈ C with
sufficiently large real parts. In contrast with the one-variable case, however,
the maximal domain of convergence may not be of the form {(s1, s2) ∈ C2 |
Re(s1) > α1, Re(s1) > α2}.

In fact, the formulae of Theorems 2 and 3 show that the domains of con-
vergence of the bivariate zeta functions of groups of type F , G and H are as
follows; see Section 2.6.

• Zcc
Fn,δ(O)(s1, s2) converges for

Re((2n+ δ − 1)s1 + s2) > 2 +
(

2n+δ
2

)
and Re(s2) > 1 +

(
2n+δ

2

)
,

• Zcc
Gn(O)(s1, s2) converges for

Re((2n−1)s1 +s2) > 2+n2, Re(ns1 +s2) > 1+n2 and Re(s2) > 1+n2,

• Zcc
Hn(O)(s1, s2) converges for

Re((2n− 1)s1 + s2) > 2 +
(
n+1

2

)
, Re(ns1 + s2) > 2 +

(
n+1

2

)
and

Re(s2) > 1 +
(
n+1

2

)
,

• Z irr
G(O)(s1, s2) for G ∈ {Fn,δ, Gn, Hn} converges for

Re((n− i)s1 + s2) > 1 + a(G, i),∀i ∈ [n]0.
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These domains are all independent of the ring of integers O considered. More-
over, it follows easily from the formulae of Theorem 2 that Zcc

Fn,δ(O)(s1, s2)

admits meromorphic continuation to the whole C2, and that Zcc
Gn(O)(s1, s2) and

Zcc
Hn(O)(s1, s2) admit meromorphic continuations to open domains which are

independent of the ring of integers O. It follows from the formulae of Theo-
rem 3 that bivariate representation zeta functions of groups of type F , G, and
H admit meromorphic continuation to{

(s1, s2) ∈ C2 | Re((n− i)s1 + s2) > a(G, i),∀i ∈ [n]0
}

;

see Section 2.6.

These examples raise the question of whether the domains of convergence
and meromorphic continuation being independent of O is a general phenomenon
for these bivariate zeta functions. It was previously showed by Dung and Voll in
[11, Theorem A] that, for groups of the form GΛ(O), where GΛ is a unipotent
group scheme associated to a O-Lie lattice Λ, the twist representation zeta

functions ζ ĩrr
GΛ(O)(s) converge on some open domain which is independent of O

and admit meromorphic continuations to a larger open domain which is also
independent of O.

However, zeta functions of group of the form G(O), where G is a unipotent
group scheme overO, are not expected in general to have domains of convergence
and meromorphy which are independent of O . In fact, the normal zeta function
of the Heisenberg Group H(O) has abscissa of convergence depending on the
degree of the extension |K : Q|, see [43, Theorem 1.2] and [44, Theorems 3.2
and 3.8].

Our next main result concerns these properties for the bivariate zeta func-
tions of groups of the form GΛ(O); we show that for each ∗ ∈ {irr, cc} there
exists a finite set Q∗ of prime ideals of O such that the domains of convergence
and meromorphic continuation of the bivariate function

Z∗,Q
∗

G(O)(s1, s2) =
∏

p/∈Q∗
Z∗G(Op)(s1, s2), (1.2.3)

are independent of the ring of integers O. This means that, for each finite
extension L/K with ring of integers OL, the domains of convergence and mero-
morphic continuation of Z∗G(OL)(s1, s2), up to finitely many local factors, are

the same as the ones of Z∗,Q
∗

G(O)(s1, s2).

Let L/K be a finite extension with ring of integers OL. In the following, we
denote by OL,P the completion of OL at the prime ideal P of OL.

Theorem 5. Denote by D∗G(O) the domain of convergence of Z∗,Q
∗

G(O)(s1, s2).

This function admits meromorphic continuation to an open domain M ∗
G(O) )

D∗G(O). Moreover, for each finite extension L/K with ring of integers OL, there

exists a finite subset QL ⊂ Spec(OL) such that the bivariate function

Z∗,QLG(OL)(s1, s2) =
∏

P/∈QL

Z∗G(OL,P)(s1, s2)

satisfies:

1. The domain of convergence of Z∗,QG(OL)(s1, s2) coincides with D∗G(O) and

2. Z∗,QG(OL)(s1, s2) admits meromorphic continuation to M ∗
G(O).
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In particular, the domains D∗G(O) and M ∗
G(O) are independent of O. We hence

write D∗G = D∗G(O) and M ∗
G = M ∗

G(O).

1.3 Organisation of chapters

This thesis is composed of the three articles [27, 28, 26]. In the introductory
Chapter 2, we give notations and recall results that will be needed. In particular,
we explain how to obtain a unipotent group scheme GΛ from a nilpotent O-
Lie lattice Λ, calculate and recall some properties of p-adic integrals, and recall
definitions and analytic properties of complex functions on two variables and
double Dirichlet series.

Chapter 3 corresponds to the article [27], which is dedicated to algebraic
properties of the bivariate zeta functions of Definitions 1.1.3 and 1.1.5. We start
by showing the Euler decompositions presented in (1.1.2) and (1.1.6). Next, we
show that almost all local factors of these decompositions can be written as p-
adic integrals. The main tools used are the Kirillov orbit method in the context
of bivariate representation zeta functions, and the Lazard correspondence in the
context of bivariate conjugacy class zeta functions. These integrals are used in
Section 3.3 to prove the specialisation (1.1.4) of local bivariate zeta functions of
T2-groups GΛ(O) to their twist representation zeta functions, and in Section 3.4
to prove Theorem 1. The latter is proved using the methods of [3, 48, 51], which
essentially consist of writing the obtained p-adic integrals in terms of formulae
of Denef type which are uniform under base extensions.

Chapter 4 corresponds to the article [26], which deals with analytic prop-
erties of these bivariate zeta functions. In Section 4.1, we use the formulae of
local factors in terms of formulae of Denef type given in Chapter 3 to read off
their domains of convergence, proving Theorem 5(1). In Section 4.2, we extend
these zeta functions meromorphically to open domains which are independent
of O, proving Theorem 5(2).

Chapter 5 corresponds to the article [28]; we provide results related to the
bivariate zeta functions of groups of type F , G, and H. We calculate in Sec-
tion 5.1 their bivariate conjugacy class zeta functions and in Section 5.2 their
bivariate representation zeta functions. That is, we prove Theorems 2 and 3 in
these sections. As an application of these results, we obtain in Section 5.3 for-
mulae for joint distributions of three statistics on finite hyperoctahedral groups
and and give an alternative proof for the fact that the bivariate representation
zeta functions of these groups satisfy functional equations for all local factors.





Chapter 2

Preliminaries

2.1 Group schemes obtained from nilpotent Lie
lattices

Here, we recall from [48, Section 2.1.2] the construction of unipotent group
schemes G associated to nilpotent O-Lie lattices. An O-Lie lattice is a free
and finitely generated O-module Λ together with an antisymmetric bi-additive
form [ , ] which satisfies the Jacobi identity.

Let Λ be a nilpotent O-Lie lattice of class c. Fix an O-basis (x1, . . . , xh)
for Λ. For each O-algebra R, denote by Λ(R) the R-module Λ⊗O R which has
basis (x1, . . . ,xh), where xi = xi ⊗O 1.

Suppose that Λ′ ⊆ c!Λ, where Λ′ = [Λ,Λ] is the derived Lie sublattice. Define
a group operation ∗ in Λ(R) in terms of Hausdorff series. The obtained group
(Λ(R), ∗) is nilpotent of class c and the group operation ∗ is given in terms of
polynomials over O which are independent of the algebra R, when considering
coordinates on the basis (x1, . . . ,xh). This process defines a unipotent group
scheme GΛ over O isomorphic as a scheme to affine h-space over O which
represents the group functor R 7→ (Λ(R), ∗). The group scheme GΛ is called
the unipotent group scheme associated to the O-Lie lattice Λ.

The group GΛ(O) is a T -group of same nilpotency class c as Λ. If R is
a finitely generated pro-p ring, then GΛ(R) is a finitely generated nilpotent
p-group of class c.

For Lie lattices Λ of nilpotency class 2, a different construction of such unipo-
tent group schemes is given in [48, Section 2.4], in which case the hypothesis
Λ′ ⊆ 2Λ is not needed. However, if this condition holds, the unipotent group
schemes obtained via such construction coincides with the latter ones. We recall
briefly this construction.

Assume c = 2. Every element ν of Λ(R) can be uniquely expressed as

ν =
∑h
i=1 aixi. Following [48], we adopt multiplicative notation and identify ν

with xa = xa1
1 . . .xahh , where x = (x1, . . . ,xh) and a = (a1, . . . , ah). The group

multiplication ∗ in this case is given as follows: for 1 ≤ i < j ≤ h,

xaii ∗ x
aj
j = xaii x

aj
j , x

aj
j ∗ xaii = xaii x

aj
j xaiajλij ,

where λij = (λ1
ij , . . . , λ

h
ij) is given by [xi,xj ] =

∑h
k=1 λ

k
ijxk. We then extend

this operation to the set of all monomials. For each i ∈ [h], we obtain poly-

17
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nomials Mi(X, X̃) = Mi(X1, . . . , Xh, X̃1, . . . , X̃h) and Ii(X) = Ii(X1, . . . , Xh)
such that

xa ∗ xa
′

= xa+a′+(Mi(a,a
′))i and (xa)−1 = x−a+(Ii(a))i .

This process defines a unipotent group scheme GΛ over O isomorphic as a
scheme to the group functor R 7→ ({xa | a ∈ Rh}, ∗).
Example 2.1.1. Let Λ be the Heisenberg Lie lattice given by 〈x1, x2, y | [x1, x2]−
y〉. Given an O-algebra R, set x1 = x1 ⊗O 1, x2 = x2 ⊗O 1, and x3 = y ⊗O 1.

The structure constants λkij are such that λ12 = (0, 0, 1) and λ13 = λ23 =
(0, 0, 0). The group operation ∗ is then given by xa2

2 ∗ xa1
1 = xa1

1 xa2
2 xa1a2

3 , and
x
aj
j ∗xaii = xaii x

aj
j , for all (i, j) ∈ {(1, 3), (2, 3)}. It follows that the polynomials

Mi(X, X̃) and Ii(X) vanish everywhere for i = 1, 2, and M3(X) = X̃1X2,
I3(X) = X1X2. That is

xa1
1 xa2

2 xa3
3 ∗ x

a′1
1 x

a′2
2 x

a′3
3 = x

a1+a′1
1 x

a2+a′2
2 x

a3+a′3+a′1a2

3 ,

(xa1
1 xa2

2 xa3
3 )−1 = x−a1

1 x−a2
2 x−a3+a1a2

3 .

Denote by H the unipotent group scheme associated to Λ.
We observe that we cannot define ∗ by means of Hausdorff series, since

H′ 6⊂ 2H. In fact, we would have

x1 ∗ x2 = x1 + x2 + 1
2 [x1,x2] = x1 + x2 + x3

2 ,

which may not be an element of H(R). For instance, x3

2 /∈ H(Z). 4
Remark 2.1.2. Let G be a T -group of nilpotency class c and Hirsch length h.
Then there exist a Q-Lie algebra LG(Q) of Q-dimension h and an injective map
log : G → LG(Q) such that log(G) spans LG(Q) over Q; see [45, Section 6.A].
Moreover, there exists a subgroup H of finite index in G such that log(H) is a
Z-Lie lattice inside the algebra LG(Q) such that log(H)′ ⊆ c! log(H), so that H
may be regarded as a group of the form G(Z), where G is the group scheme
obtained from the Z-Lie lattice log(H).

We may define the bivariate representation and the bivariate conjugacy class
zeta functions of G to be the respective bivariate zeta functions of H = G(Z):

Z∗G(s1, s2) = Z∗G,H(s1, s2) := Z∗G(Z)(s1, s2), ∗ ∈ {irr, cc}.
If G is such a T -group and H1 = G1(Z) and H2 = G2(Z) are subgroups of G

of finite index, then H1 and H2 are commensurable and, therefore, they have
the same pro-p completion for all but finitely many prime integers p; see [34,
Lemma 1.8]. In particular, Z∗G1(Zp)(s1, s2) = Z∗G2(Zp)(s1, s2), for all but finitely

many primes p, that is, although Z∗G,H1
(s1, s2) and Z∗G,H2

(s1, s2) may not coin-
cide, they are almost the same in the sense that they coincide except for finitely
many local factors.

2.2 Some p-adic integrals

In this section we calculate some p-adic integrals which will be used. For the
rest this section, we fix a nonzero prime ideal p of O and write o = Op. Let q
be the cardinality of O/p and p its characteristic.

Given an element z ∈ o satisfying z ∈ pe \ pe+1 for some e ∈ N0, its p-adic
valuation is vp(z) = e, and its p-adic norm is |z|p = q−vp(z) = q−e. Denote
by ‖.‖p the maximum norm with respect to |.|p. For N ∈ N, we also denote



2. Preliminaries 19

by vp the function on o/pN given as follows: let z be the image of z ∈ o under
o → o/pN and assume that z ∈ pe \ pe+1. Then vp(z) = e if 0 ≤ e < N and,
otherwise, vp(z) =∞. We write pm for the mth ideal power p · · · p and p(m) is
the m-fold Cartesian power p× · · · × p. The valuation vp of o can be extended
to on by mapping each z ∈ on to vp(z) = e whenever z ∈ peon \ pe+1on. The
p-adic norm is |z|p = q−vp(z), which coincides with ‖z‖p. Given k ∈ N, set

W o
k := (ok)∗ = {x ∈ ok | vp(x) = 0}.

From now on, µ denotes the additive Haar measure on o, normalised so that
µ(o) = 1. We also denote by µ the product measure on on, for n ∈ N.

Lemma 2.2.1. For r ∈ C with sufficiently large real part, and for each k ∈ N,∫
w∈pk

|w|rpdµ =
q−k(r+1)(1− q−1)

1− q−k(r+1)
.

Proof. For each i ∈ N, we see that pi = {x ∈ o | vp(x) ≥ i} and pi \pi+1 = {x ∈
o | vp(x) = i}. Thus, the ideal pk is the disjoint union pk =

⋃∞
i=k p

i \ pi+1. It
follows that∫

w∈pk
|w|rpdµ =

∞∑
i=k

∫
w∈pi\pi+1

q−irdµ =

∞∑
i=k

µ(pi \ pi+1)q−ir

=

∞∑
i=k

q−i(r+1)(1− q−1) =
q−k(r+1)(1− q−1)

1− q−k(r+1)
.

Let A ⊆ o and B ⊆ on. In the following, we write

KA,B(r, t) :=

∫
(y,x)∈A×B

|y|rp‖x1, . . . , xn, y‖tpdµ,

where r and t are complex variables.
The following lemma is a direct consequence of [38, Lemma 5.8], which

assures in particular that, for r, t ∈ C with sufficiently large real parts, one has

Ko×on(r, t) =
(1− q−1)(1− q−r−n−1)

(1− q−r−t−n−1)(1− q−t−1)
. (2.2.1)

Lemma 2.2.2. For r, t ∈ C with sufficiently large real parts, and for each
n ∈ N0, the following holds.

Kp×on(r, t) =
(1− q−1)(1− q−n + q−s−n − q−r−t−n−1)q−r−1

(1− q−r−t−n−1)(1− q−r−1)
,

Kp×p(n)(r, t) =
(1− q−1)(1− q−r−n−1)q−r−t−n−1

(1− q−r−t−n−1)(1− q−r−1)
.

Proof. Since p× on = o× on \W o
1 × on and y ∈ W o

1 implies both |y|p = 1 and
‖x1, . . . , xn, y‖p = 1, it follows that

Kp×on(r, t) = Ko×on(r, t)−KWo
1 ×on(r, t) = Ko×on(r, t)− µ(W o

1 × on).

The first claim then follows from (2.2.1) and the fact that µ(W o
1 ×on) = 1−q−1.

Analogously, since p× p(n) = p× on \ p×W o
n ,

Kp×p(n)(r, t) = Kp×on(r, t)−Kp×Wo
n

(r, t) = Kp×on(r, t)− (1− q−n)

∫
y∈p
|y|rpdµ.

The second claim then follows from the first part and Lemma 2.2.1.
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For the next lemma, consider the vector of variables X = (X11, . . . , X2n)
and the matrix

M(X) =

[
X11 X12 . . . X1n

X21 X22 . . . X2n

]
∈ Mat2×n(o[X]).

The minors ofM(X) are given byMij(X) := X1iX2j−X1jX2i for 1 ≤ i < j ≤ n.
Set M(X) := {Mij(X) | 1 ≤ i < j ≤ n}.
Lemma 2.2.3. For s, r ∈ C with sufficiently large real parts, the following
holds.∫

(y,x)∈p×Wo
2n

|y|rp‖M(x) ∪ {y}‖spdµ =

(qn − 1)(1− q−1)q−r−2n−1

(1− q−1−r)(1− q−r−s−n)

(
(q + 1)(1− q−r−n)q−s + (qn − q)(1− q−r−s−n)

)
.

Proof. Let A1, . . . , Ak be representatives of the classes of o2n/p(2n) which are
different of p(2n), that is,

o2n =
(
∪km=1Am + Mat2×n(p)

)
∪Mat2×n(p),

where Mat2×n(p) is the set of all 2 × n-matrices over p. In the following, we
determine the integrals

IAm(s, r) :=

∫
(y,x)∈p×(Am+Mat2×n(p))

|y|rp‖M(x) ∪ {y}‖spdµ,

because ∫
(y,x)∈p×Wo

2n

|y|rp‖M(x) ∪ {y}‖spdµ =

k∑
m=1

IAm(s, r)

If x ∈ Mat2×n(o) and Am determine the same class modulo Mat2×n(p),
then rk(x) = rk(Am) modulo p. We consider the two cases rk(Am) = 1 and
rk(Am) = 2 modulo p separately. For simplicity, assume that rk(Am) = 1 for
1 ≤ m ≤ t, and that rk(Am) = 2 for t+ 1 ≤ m ≤ k, for some t ∈ [k]0.

Case 1: Suppose that m ∈ [t], that is, rk(Am) = 1. Then, in particular,
vp(Mij(x)) ≥ 1 for all 1 ≤ i < j ≤ n. By making a suitable change of variables,
we can consider Am to be the matrix with (1, 1)-coordinate 1 and 0 elsewhere.
Hence, each x = (xij) ∈ Am+Mat2×n(p) is given by x11 = 1+Q11 and xij = Qij
for (i, j) 6= (1, 1), where Qij are suitable elements of p for (i, j) ∈ [2] × [n].
Consequently,

Mij(x) =

{
(1 +Q11)Q2i −Q21Q1i, for i = 1 and j = 2, . . . , n,

Q1iQ2j −Q2iQ1j , for 1 < i < j ≤ n,
so that ‖M(x)‖p = ‖M12(x), . . . ,M1n(x)‖p. Therefore

IAm(s, r) =

∫
(y,x)∈p×Mat2×n(p)

|y|rp‖M12(x), . . . ,M1n, y‖spdµ

= µ(p(n+1))

∫
(y,x1,...,xn−1)∈p×p(n−1)

|y|rp‖x1, . . . , xn−1, y‖spdµ

= q−n−1 (1− q−1)(1− q−r−n)q−r−s−n

(1− q−r−s−n)(1− q−r−1)
,

where the domain of integration of the integral in the first equality is justified
by the translation invariance of the Haar measure and the last equality is due
Lemma 2.2.2.
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Case 2: We now assume that m ∈ {t + 1, . . . , k}, that is, rk(Am) = 2. In
this case, each x ∈ Am + Mat2×n(p) has rank two modulo p, which means that
at least one of the Mij(x) has valuation zero. Consequently,

IAm(s, r) =

∫
(y,x)∈p×p2n

|y|rpdµ =
q−2n−r−1(1− q−1)

1− q−r−1
.

There are (q+1)(qn−1) matrices of rank 1 and q(qn−1)(qn−1−1) matrices
of rank 2 in Mat2×n(Fq) and, consequently,∫

(y,x)∈p×Wo
2n

|y|rp‖M(x) ∪ y‖spdµ =

k∑
m=1

IAm(s, r)

= (q + 1)(qn − 1)IAt(s, r) + q(qn − 1)(qn−1 − 1)IAk(s, r)

=
(qn − 1)(1− q−1)q−r−2n−1

(1− q−1−r)(1− q−r−s−n)

(
(q + 1)(1− q−r−n)q−s + (qn − q)(1− q−r−s−n)

)
,

as desired.

In the following lemma, we show how to write certain p-adic integrals with
domains of integration of the form o × on in terms of p-adic integrals with
domains of integration of the form p×W o

n .
In the following lemma we adopt the following notation: n ∈ N and

R(Y ) = R(Y1, . . . , Yn) is a matrix of polynomials R(Y )ij ∈ o[Y ] with uR =
max{rkFrac(o)R(z) | z ∈ on}. Let Fi(R(y)) be the set of i× i-minors of R(Y ).

Lemma 2.2.4. Let r and t be complex variables. Define

I(r, t) :=

∫
(x,y)∈o×on

|x|rp
u∏
i=1

‖Fi(R(y)) ∪ xFi−1(R(y))‖tp
‖Fi−1(R(y))‖tp

dµ

and

J (r, t) :=

∫
(x,y)∈p×Wo

n

|x|rp
u∏
i=1

‖Fi(R(y)) ∪ xFi−1(R(y))‖tp
‖Fi−1(R(y))‖tp

dµ.

If both I(r, t) and J (r, t) converge, then

I(r, t) =
1

1− q−r−ut−n−1

(
(1− q−1) + J (r, t)

)
. (2.2.2)

Proof. Since o = W o
1 ∪ p and on = W o

n ∪ p(n), the integral I(r, t) equals∫
(x,y)∈Wo

1 ×on
1 dµ+

∫
(x,y)∈p×on

|x|rp
u∏
i=1

‖Fi(R(y)) ∪ xFi−1(R(y))‖tp
‖Fi−1(R(y))‖tp

dµ

= (1− q−1) + J (r, t) +

∫
(x,y)∈p×p(n)

|x|rp
u∏
i=1

‖Fi(R(y)) ∪ xFi−1(R(y))‖tp
‖Fi−1(R(y))‖tp

dµ.

Equality (2.2.2) follows from the change of coordinates p(n) → on given by
x = (x1, . . . , xn) 7→ (x1/q, . . . , xn/q) and from p→ o given by y 7→ y/q:∫

(x,y)∈p×p(n)

|x|rp
u∏
i=1

‖Fi(R(y)) ∪ xFi−1(R(y))‖tp
‖Fi−1(R(y))‖tp

dµ = q−r−ut−n−1I(r, t).

2.3 Principalisation of ideals

We follow [51, Section 2] here.
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Theorem 2.3.1. [53, Theorem 1.0.1] Let I be a sheaf of ideals on a smooth
algebraic variety defined over a ground field of characteristic zero. There is a
principalisation (Y, h) of I, that is, a sequence

X = X0
h1←− X1

h2←− . . . hi←− Xi
hi+1←−−− · · · ← Xr = Y

of blow-ups hi : Xi → Xi−1 with smooth centres Ci−1 ⊆ Xi−1 satisfying:

1. The exceptional divisor Ei of the induced morphism hi = h1 ◦h2 ◦ · · · ◦hi :
Xi → X has only simple normal crossings and Ci has simple normal
crossings with Ei.

2. Setting h = h1 ◦ h2 ◦ · · · ◦ hr, the total transform h∗(I) is the ideal of a

simple normal crossing divisor Ẽ which is a natural linear combination of
the irreducible components of the divisor Er.

Let R be the valuation ring of a finite extension K of Qp, the field of p-adic
numbers, and let P be the maximal ideal of R. A principalisation (Y, h) is said
to have good reduction modulo if I and (Y, h) are defined over a p-adic field K.
By [10, Theorem 2.4], if (Y, h) is a principalisation defined over a number field K
with ring of integers O, then (Y, h) has good reduction modulo P for all but
finitely many maximal ideals P of O.

Let l, n,m ∈ N and fix I ⊆ [n− 1] and a finite index set Jκ for each k ∈ [l].
For each κ ∈ [l] and ι ∈ Jκ, let fκι be a finite set of polynomials f(Y ) =
f(Y1, . . . , Ym) over a number field K, and let (Y, h) with h : Y → Am be a
principalisation of the ideal I given by

I =

k∏
κ=1

∏
ι∈Jκ

(fκι),

where (fκι) is the ideal generated by the set fκι.
Set also V = Spec(K[Y ]/I) and Vκι = Spec(K[Y ]/(fκι)). Let T be a finite

set indexing the irreducible components Eu of the pre-image h−1(V). Then
there are nonnegative integers Nu and Nuκι such that

h−1(V) =
∑
u∈T

NuEu h−1(Vκι) =

l∑
k=1

NuκιNuκιEu.

Similarly, νu − 1 denotes the multiplicity of Eu in the divisor h∗(dY1 ∧ · · · ∧
dYd). One calls (Nuκι, νu)u∈U,κ∈[l],ι∈Jκ the numerical data of (Y, h).

2.4 Two complex variables

In this section, we recall briefly the meaning of holomorphy and meromorphy
for complex functions on two variables. We refer the reader to [13, 14] for further
information about functions on several complex variables. We call domain a
connected open subset of C2 (with the usual topology).

Definition 2.4.1. Let U ⊆ C2 be an open set. A continuous function f : U → C

is holomorphic if it is holomorphic in each variable. Equivalently, the function f
is holomorphic if it satisfies the system of homogeneous equations ∂f

∂zj
= 0, for

j = 1, 2, where for Re(zj) = xj and Im(zj) = yj,

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
.
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Example 2.4.2. Let a and b be nonzero real numbers and c ∈ R. The function
f : C2 → C given by f(z1, z2) = az1 + bz2 + c is holomorphic on the whole C2.
Its zero set is

V (f) = {(z1, z2) ∈ C2 | az1 + bz2 = −c}.

In particular, the function g = 1
f has set of poles V (f). 4

In the one variable case, a function is meromorphic on a certain domain if it
is locally the quotient of two holomorphic functions such that the denominator
is nonzero. In particular, a meromorphic function may only have finite-order
isolated poles. In Example 2.4.2, we see that the rational function g has infinitely
many poles and none of them is isolated. However, we shall see that g is a
meromorphic function on the whole C2. This is because meromorphy on several
complex variables allows for set of (non-isolated) poles, as long as this set is
sufficiently “small”. More precisely, we call a subset M of a domain Ω ⊂ C2

thin if it is relatively closed on Ω, that is, an intersection of a closed subset with
any set, and if for each z = (z1, z2) ∈ C2 there is a neighbourhood Uz of z and
a holomorphic function fz such that M ∩ Uz ⊂ V (fz) = {x ∈ C2 | fz(x) = 0}.
Particularly, if f : Ω→ C is a nonzero holomorphic function, then V (f) := {z ∈
C2 | f(z) = 0} is a thin set.

Definition 2.4.3. [13, Definition 2.1 of Chap. VI] A meromorphic function
on a domain Ω ⊂ C2 is a function f : Ω → C such that there exists a thin
set M ⊂ Ω for which f is holomorphic on Ω \M and, for each z0 ∈ Ω, there
exist a neighbourhood Uz0

of z0 in Ω and holomorphic functions g, h : Uz0
→ C

with g 6≡ 0 such that V (h) ⊂M and

f(z) =
g(z)

h(z)
, for z ∈ U \M.

In particular, we see that if f(z) = g(z)
h(z) with g, h : Ω→ C holomorphic and

h 6≡ 0, then, since V (h) is thin, f is meromorphic on Ω.
The following result states that the complement of a thin set in a domain is

also a domain.

Proposition 2.4.4. [13, Proposition 1.3 of Chap. VI] Let M be a thin subset
of a domain Ω ⊆ C2. Then Ω \M is connected.

2.5 Double series

In this section, we recall some properties of double series. We refer the
reader to [15, Section 7] for further results and definitions on double sequences
and double series. For simplicity we write (am,n) = (am,n)m,n∈N.

We observe that a (single) series (an)n∈N can be regarded as a double series
(am,n) by defining a1,n = an, and am,n = 0, for all n ∈ N and m ∈ N>1. In
particular, the results on double series also hold for (single) series. The converse
does not hold. For instance, in contrast with single sequences, a convergent
double sequence need not be bounded. An example in which this property fails
is the double sequence of terms an,1 = n and an,m = 1, for n ∈ N and m ∈ N>1.

However, a double series
∑∑

(m,n) am,n with nonnegative coefficients is

convergent if and only if the double sequence (An,m) of its partial sums
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Am,n :=
∑m
k=1

∑n
l=1 ak,l is bounded above; [15, Proposition 7.14]. A dou-

ble sequence (am,n) is monotonically nondecreasing if am,n ≤ am+1,n and
am,n ≤ am,n+1. One defined monotonically increasing, monotonically nonin-
creasing, and monotonically decreasing similarly. A monotonic double sequence
is convergent if and only if it is bounded; see [15, Proposition 7.4].

For the sake of completeness, we show the following Lemmata, which are
analogous to similar results on single series.

Lemma 2.5.1. Let (am,n) be a bounded double sequence and let
∑∑

(m,n) bm,n
be an absolutely convergent double series. Then

∑∑
(m,n) am,nbm,n converges

absolutely.

Proof. There exists M > 0 such that |am,n| < M for all m,n ∈ N. Since the
monotonically non-decreasing double sequence (

∑m
k=1

∑n
l=1 |bk,l|)m,n converges,

it is bounded by a positive real number N . Therefore,
m∑
k=1

n∑
l=1

|ak,lbk,l| < M

m∑
k=1

n∑
l=1

|bk,l| < MN.

Lemma 2.5.2. A double series
∑∑

(m,n) am,n converges absolutely if and only

if the product
∏∏

(m,n)(1 + am,n) converges absolutely.

Proof. Denote by Pm,n the partial product
∏m
k=1

∏n
l=1(1 + |ak,l|) and by Sm,n

the partial sum
∑m
k=1

∑n
l=1 |ak,l|. The double sequences (Pm,n) and (Sm,n) are

positive non-decreasing double sequences and hence they converge if and only
if they are bounded. One the one hand, since 1 + x ≤ ex for all x ∈ R≥0, it
follows that

Pm,n =

m∏
k=1

n∏
l=1

(1 + |ak,l|) <
m∏
k=1

n∏
l=1

e|ak,l| = esm,n .

On the other hand, it is easy to see that Pm,n ≥ 1 + Sm,n. Therefore, (Pm,n) is
bounded if and only if (Sm,n) is bounded.

2.5.1 Polynomial growth

It is well known that if a complex sequence (an)n∈N grows at most polyno-
mially, the Dirichlet series D((an)n∈N, s) :=

∑∞
n=1 ann

−s converges for s ∈ C
with sufficiently large real part. We now show that an analogous result holds
for double Dirichlet series. We remark that the converse also holds for Dirichlet
series.

Definition 2.5.3. A double sequence (an,m)n,m∈N of complex numbers is said
to have polynomial growth if there exist positive real numbers α1 and α2 and a
constant C > 0 such that |an,m| < Cnα1mα2 for all n,m ∈ N.

Proposition 2.5.4. If the double sequence (an,m)n,m∈N has polynomial growth,
then there exist α1, α2 ∈ R such that the double Dirichlet series

D((an,m)n,m∈N, s1, s2) :=

∞∑
n=1

∞∑
m=1

an,mn
−s1m−s2

converges absolutely for (s1, s2) ∈ C2 satisfying Re(s1) > α1 and Re(s2) > α2.
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Proof. Let β1, β2 ∈ N and C > 0 be such that |an,m| < Cnβ1mβ2 , for all
n,m ∈ N. Then∑

n

∑
m

∣∣∣ an,m
ns1ms2

∣∣∣ ≤ C∑
n

∑
m

1

nRe(s1)−β1mRe(s2)−β2
.

The relevant statement of Proposition 2.5.4 then follows from the fact that, for
p, q ∈ R, the harmonic double series

∞∑
k=1

∞∑
l=1

1

kplq

converges if and only if p > 1 and q > 1; see [15, Example 7.10(iii)].

For G a unipotent group scheme over O and m, n positive integers, write

rn,m(G(O)) =
∑
IEO
|O:I|=m

rn(G(O/I)) and cn,m(G(O)) =
∑
IEO
|O:I|=m

cn(G(O/I)).

The bivariate representation and the bivariate conjugacy class zeta functions
of G(O) are given by the following double Dirichlet series with nonnegative
coefficients:

Z irr
G(O)(s1, s2) =

∞∑
n=1

∞∑
m=1

rn,m(G(O))n−s1m−s2 ,

Zcc
G(O)(s1, s2) =

∞∑
n=1

∞∑
m=1

cn,m(G(O))n−s1m−s2 .

Proposition 2.5.5. The bivariate zeta functions Z irr
G(O)(s1, s2) and

Zcc
G(O)(s1, s2) converge (at least) on some domain of the form

{(s1, s2) ∈ C2 | Re(s1) > α1, Re(s2) > α2},
for some real constants α1 and α2.

Proof. Let γm(O) := |{IEO | |O : I| = m}|. The Dedekind zeta function of the
number field K is given by ζK(s) =

∑∞
m=1 γmm

−s, and is known to converge

for Re(s) > 1. In particular, the partial sums
∑M
m=1 γm are bounded by P(M),

where P(X) is a polynomial in Z[X].

Given I EO, the finite group G(O/I) is a congruence quotient of a torsion-
free nilpotent and finitely generated group. Then there exists Q(X) ∈ Z[X]
such that, for all I EO, |G(O/I)| < Q(m), where m = |O : I|.

Given I E O, the finite group G(O/I) has at most |G(O/I)| conjugacy
classes. Consequently, for each (n,m) ∈ N2,

cn,m(G(O)) =
∑

(0) 6=IEO
|O:I|=m

cn(G(O/I)) < P(m)Q(m).

Analogously, rn,m(G(O)) < P(m)Q(m), since rn(G(O/I)) ≤ |G(O/I)|.

When finite, the abscissa of convergence of a Dirichlet series
∑∞
n=1 ann

−s

gives the precise degree of polynomial growth of the sequence (
∑n
i=1 ai)n. How-

ever, for double Dirichlet series
∑∞
m=1

∑∞
n=1 am,nm

−s1n−s2 , this might not be
the case. For instance, in Example 3.2.15, we show that the bivariate represen-
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tation zeta function of the Heisenberg group H(O) is given by

Z irr
H(o)(s1, s2) =

1− q−s1−s2
(1− q1−s1−s2)(1− q2−s2)

.

We see that the maximal domain of convergence of Z irr
H(o)(s1, s2) is

DH(O) := {(s1, s2) ∈ C2 | Re(s1 + s2) > 2 and Re(s2) > 3}.
Then this zeta function converges on

Dα1,α2
:= {(s1, s2) ∈ C2 | Re(s1) > α1, Re(s2) > α2},

for many choices of (α1, α2) ∈ R2, for instance (−1, 3) and (−2, 4). However, we
cannot choose the minimum of such pairs, as they are not always comparable.

2.6 Convergence of bivariate Euler products

In this section we recall from [9, Theorem 2.7] the domains of convergence
and meromorphy of the Euler products on several variables. In that article,
Delabarre deals with Euler products of the form

(s1, . . . , sn) 7→
∏

p prime

h(p−s1 , . . . , p−sn , p−c),

for n > 1 and a nonzero integral constant c, where h(X1, . . . , Xn, Xn+1) ∈
Z[X1, . . . , Xn, Xn+1]. We observe that Delabarre’s main results admit straight-
forward generalisations to products over prime ideals of O, but we illustrate this
just for the case n = 2.

For simplicity, denote by P the set of nonzero prime ideals of O. For each
p ∈ P , denote by qp the cardinality of the residue field O/p. We are interested
in the domains of convergence and meromorphy of the Euler products

Zc(s1, s2) =
∏
p∈P

h(q−s1p , q−s2p , q−cp ),

where c is a fixed nonzero integer and h(X1, X2, X3) ∈ Z[X1, X2, X3] is a poly-
nomial

h(X1, X2, X3) = 1 +

r∑
j=1

ajX
α1,j

1 X
α2,j

2 X
α3,j

3 ,

with aj 6= 0 and α̂j = (α1,j , α2,j , α2,j) ∈ Z3 \ {0}, for each j ∈ [r], where for
each n ∈ N, we write [n] = {1, . . . , n}. Set αj = (α1,j , α2,j).

The polynomial h(X1, X2, X3) is called cyclotomic if there exists a finite set
I ⊂ Nn+1 \ {0} such that

h(X1, X2, X3) =
∏

λ=(λ1,λ2,λ3)∈I

(1−Xλ1
1 Xλ2

2 Xλ3
3 )γ(λ),

where the γ(λ) are nonzero positive integers. If h is cyclotomic, then Zc(s1, s2)
can be meromorphically continued to the whole C2. For this reason, from now
on, we assume that h is not constant and does not contain cyclotomic factors.

For each δ ≥ 0, set

Wc(δ) = {(s1, s2) ∈ C2 | Re(α1,js1 + α2,js2) > δ − cαj,3, j ∈ [r]}.
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Proposition 2.6.1. [9, Theorem 2.7] The product (s1, s2) 7→ Zc(s1, s2) con-
verges absolutely in the domain Wc(1) and admits meromorphic continuation to
Wc(0).

Set ĥ(X1, X2, X3) =
∑r
j=1 ajX

α1,j

1 X
α2,j

2 X
α3,j

3 = h(X1, X2, X3) − 1.
Lemma 2.5.2 then yields that the sum

Sc(s1, s2) =
∑
p∈P

ĥ(q−s1p , q−s2 , q−c)

converges absolutely in the domain Wc(1).

Remark 2.6.2. Let Q ⊆ P be a finite set of prime ideals of O. Since

qc(s1, s2) :=
∏
p∈Q

h(q−s1p , q−s2p , q−cp )

is analytic, the infinite product

pc(s1, s2) :=
∏

p∈P\Q

h(q−s1p , q−s2p , q−cp ) =
Zc(s1, s2)∏

p∈P h(q−s1p , q−s2p , q−cp )

also admits meromorphic continuation to Wc(0). It converges on Wc(1) if the set
of zeros V (p) of qc(s1, s2) is not contained in this domain. It follows that Propo-
sition 2.6.1 holds if we consider Zc(s1, s2) as a product over almost all nonzero
prime ideals of O, as long as the zeros of the corresponding h(q−s1p , q−s2p , q−cp )
do not lie in Wc(1).





Chapter 3

Arithmetic properties
of Z∗

G(O)

This chapter comprises the results of [27], which concerns arithmetic prop-
erties of the bivariate zeta functions Z irr

G(O) and Zcc
G(O).

Firstly, we prove in Section 3.1 that they satisfy Euler decompositions, so
that we can relate local and global results. We then write almost all local terms
of these bivariate zeta functions in terms of p-adic integrals in Section 3.2. In
particular, this shows that these local factors are rational functions.

In Section 3.3 we prove specialisation (1.1.4), that is, we prove that in case
of nilpotency class 2 bivariate representation zeta functions specialise to twist
representation zeta functions.

In Section 3.4 we prove Theorem 1.

3.1 Euler decomposition

Most of our main results concern local properties of bivariate representation
and bivariate conjugacy class zeta functions. In this section, we show that the
corresponding global zeta functions admit Euler decompositions in terms of such
local factors, allowing us to relate local and global results.

In the following, G is a unipotent group scheme defined over O (not neces-
sarily associated to a nilpotent Lie lattice).

Proposition 3.1.1. For s1, s2 ∈ C with sufficiently large real parts,

Z irr
G(O)(s1, s2) =

∏
p

Z irr
G(Op)(s1, s2),

where p ranges over all nonzero prime ideals of O.

Proof. For each prime ideal p of O, set qp = |O : p|. Given a nonzero ideal I
of O with prime factorization I = pe11 · · · perr , with pi 6= pj if i 6= j, we show that

ζ irr
G(O/I)(s) =

r∏
i=1

ζ irr
G(O/peii )

(s),

29



3. Arithmetic properties of Z∗G(O) 30

so that

Z irr
G(O)(s1, s2) =

∑
(0) 6=ICO

ζ irr
G(O/I)(s1)|O : I|−s2

=
∑

(0) 6=ICO

ζ irr
G(O/pe11 )

(s1) · · · ζ irr
G(O/perr )(s1)q−e1s2p1

· · · q−ers2pr

=
∏
p

∞∑
N=0

ζ irr
G(O/pN )(s1)q−Ns2p =

∏
p

Z irr
G(Op)(s1, s2).

Recall that Irr(G) denotes the set of complex irreducible characters of a
group G. For an ideal I as above, since unipotent groups satisfy the strong
approximation property—cf. [35, Lemma 5.5]—there is an isomorphism

G(O/I) ∼= G(O/pe11 )× · · · ×G(O/perr ). (3.1.1)

Hence

Irr(G(O/I)) ∼= Irr(G(O/pe11 ))× · · · × Irr(G(O/perr )).

For simplicity, write Irri = Irr(G(O/peii )). Since rn(G(O/I)) = |{χ ∈
Irr(G(O/I)) : χ(1) = n}|, it follows that

ζ irr
G(O/I)(s) =

∑
χ∈Irr(G(O/I))

χ(1)−s =
∑

(χ1,...,χr)∈Irr1×···×Irrr

χ1(1)−s · · ·χr(1)−s

=

r∏
i=1

∑
χi∈Irri

χi(1)−s =

r∏
i=1

ζ irr
G(O/peii )

(s).

Proposition 3.1.2. For s1, s2 ∈ C with sufficiently large real parts,

Zcc
G(O)(s1, s2) =

∏
p

Zcc
G(Op)(s1, s2),

where p ranges over all nonzero prime ideals of O.

Proof. As explained in Proposition 3.1.1, it suffices to show the identity

ζcc
G(O/I)(s) =

r∏
i=1

ζcc
G(O/pei )(s),

for each nonzero ideal I of O with prime factorization I = pe11 · · · perr , with
pi 6= pj if i 6= j. Because of (3.1.1), each conjugacy class C of G(O/I) =
G(O/pe11 ) × · · · ×G(O/perr ) is of the form C = C1 × · · · × Cr, where Ci is a
conjugacy class of G(O/peii ), for each i ∈ [r]. Thus

cn(G(O/I)) =
∑

n1,...,nr∈N0
n1···nr=n

cn1
(G(O/pe11 )) · · · cnr (G(O/perr )).

Again, set qp = |O : p| for each nonzero prime ideal p of O. We shall see in
Remark 3.2.6 that all conjugacy classes of G(O/peii ) have size a power of qpi .
Consequently

ζcc
G(O/I)(s) =

∞∑
n=1

∑
n1,...,nr∈N0

q
n1
1 ...qnrr =n

cqn1
p1

(G(O/pe11 )) · · · cqnrpr
(G(O/perr ))(qn1

p1
. . . qnrpr )−s

=

r∏
k=1

( ∞∑
nk=0

cqnkk
(G(O/pekk ))q−nksk

)
=

r∏
k=1

ζcc
G(O/pekk )

(s).
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3.2 Bivariate zeta functions in terms of p-adic
integrals

Our results rely on the fact that local bivariate representation and local
bivariate conjugacy class zeta functions of groups associated to unipotent group
schemes can be written in terms of p-adic integrals. The main goal of this section
is to obtain formulae for these local factors in terms of p-adic integrals. This is
done using the methods of [51, Section 2.2], in which Voll shows how Poincaré
series encoding elementary divisor types of certain matrices can be written in
terms of p-adic integrals. We recall in Section 3.2.1 these methods and some
definitions needed.

Throughout Section 3.2, denote by G = GΛ a unipotent group scheme asso-
ciated to a nilpotent O-Lie lattice Λ. In Section 3.2.2, we show how to rewrite
the coefficients of the bivariate representation and the bivariate conjugacy class
zeta functions of groups of the form G(O) in terms of elementary divisor types
of certain matrices and use this in Section 3.2.3 to rewrite the mentioned bi-
variate zeta functions in terms of Poincaré series as the ones of [51, Section 2.2]
and hence obtain descriptions of these functions in terms of p-adic integrals.

For the rest of Section 3.2, fix a nonzero prime ideal p of O, and o = Op.
Denote by q the cardinality of O/p and by p its characteristic.

3.2.1 Poincaré series and p-adic integrals

Denote by π ∈ o a uniformiser of o. A matrix M ∈ Matm×n(o/pN ) is
said to have elementary divisor type (m1, . . . ,mε) ∈ Nε0 if it is equivalent (by
elementary row and column operations) to the to the matrix

πm1

πm2

. . .

πmε


,

where ε is the rank of M , and 0 ≤ m1 ≤ m2 ≤ · · · ≤ mε ≤ N . Write ν(M) =
(m1, . . . ,mε) to indicate the elementary divisor type of M .

Given k,N ∈ N, set

W o
k,N := ((o/pN )k)∗ = {x ∈ (o/pN )k | vp(x) = 0}.

For each k ∈ N, let also Wk,0 = (0)k, and recall from Section 2.2 the notation
W o
k := {x ∈ ok | vp(x) = 0}.
Given n ∈ N and a matrix R(Y ) = R(Y1, . . . , Yn) of polynomials R(Y )ij ∈

o[Y ] with uR = max{rkFrac(o)R(z) | z ∈ on}, define for each m ∈ NuR0

No
N,R,m := {y ∈W o

n,N | ν(R(y)) = m} and (3.2.1)

N o
N,R,m := |No

N,R,m|.

The number N o
N,R,m is zero unless m = (m1, . . . ,muR) satisfies

0 = m1 ≤ · · · ≤ muR ≤ N.
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Let r = (r1, . . . , ruR) be a vector of variables. Consider the Poincaré series

Po,R(r, t) =
∑
N∈N

m∈NuR0

N o
N,R,mq

−tN−
∑uR
i=1 rimi . (3.2.2)

In [51, Section 2.2] it is shown that the series (3.2.2) are given in terms of
p-adic integrals of the form:

Zo,R(r, t) =
1

1− q−1

∫
(x,y)∈p×Wo

n

|x|tp
uR∏
k=1

‖Fk(R(y)) ∪ xFk−1(R(y))‖rkp
‖Fk−1(R(y))‖rkp

dµ,

(3.2.3)
where µ is the additive Haar measure on on+1 normalised so that µ(on+1) = 1,
and Fj(R(y)) is the set of nonzero j × j-minors of R(y).

This is done by decomposing the domain of the integral Zo,R in subdomains
where the integrands are constant, as we now explain. Set

ΘN,R,m := {(x, y) ∈ p×W o
n | vp(x) = N, ν(R(y)) = m}.

Then, for (x, y) ∈ ΘN,R,m,

|x|tp
uR∏
k=1

‖Fk(R(y)) ∪ xFk−1(R(y))‖rkp
‖Fk−1(R(y))‖rkp

= q−Nt−
∑uR
k=1 rkmk ,

and consequently

Zo,R(r, t) =
1

1− q−1

∑
N∈N

m∈NuR0

|ΘN,R,m|q−Nt−
∑uR
i=1 rimi .

According to [48, Lemma 2.2]

N o
N,R,m = (1− q−1)−1qN(n+1)ΘN,R,m,

so that

Po,R(r, t) = Zo,R(r, t− n− 1). (3.2.4)

Suppose now that M ∈ Matn×n(o/pN ) is an antisymmetric matrix. Then
its elementary divisor type is of the form:

ν(M) = (m1,m1,m2,m2, . . . ,mξ,mξ),

where 2ξ is the rank of M . For simplicity, we write ν̃(M) = (m1,m2, . . . ,mξ)
for the elementary divisor type of the antisymmetric matrix M .

Assume now that R(Y ) is antisymmetric, in which case uR is even. For each

m ∈ N
uR
2

0 , we write

Ño
N,R,m := {y ∈W o

n,N | ν̃(R(y)) = m},

and N o
N,R,m = |Ño

N,R,m|. For R(Y ) antisymmetric, we assume that the vector
of variables r is of the form r = (r1, r1, . . . , ruR

2
, ruR

2
) so that

Po,R(r, t) =
∑

N∈N, m∈N
uR
2

0

N o
N,R,mq

−tN−2
∑uR

2
i=1 rimi . (3.2.5)

Given x ∈ o with vp(x) = N , y ∈ on with ν̃(R(y)) = m, and k ∈ [uR], we
obtain from [38, Lemma 4.6(i) and (ii)] the following for the antisymmetric
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matrix R(y):

‖F2k(R(y)) ∪ xF2k−1(R(y))‖p
‖F2k−1(R(y))‖p

=
‖F2k−1(R(y)) ∪ xF2(k−1)(R(y))‖p

‖F2(k−1)(R(y))‖p
= q−min(mk,N)

and

‖F2k(R(y)) ∪ x2F2(k−1)(R(y))‖p
‖F2(k−1)(R(y))‖p

= q−2 min(mk,N).

Therefore, if R(Y ) is an antisymmetric matrix, the series (3.2.5) can be
described by the p-adic integral

Po,R(r, t) = Zo,R(r, t− n− 1) =

1

1− q−1

∫
(x,y)∈p×Wo

n

|x|t−n−1
p

uR
2∏

k=1

‖F2k(R(y)) ∪ x2F2(k−1)(R(y))‖rkp
‖F2(k−1)(R(y))‖rkp

dµ.

(3.2.6)

3.2.2 The numbers rn(GN) and cn(GN)

Recall the notation GN = G(o/pN ). We now write the local bivariate zeta
functions at p in terms of sums encoding the elementary divisor types of certain
matrices associated to Λ. This is done by rewriting the numbers rn(GN ) and
cn(GN ), for n ∈ N and N ∈ N0, in terms of the cardinalities N o

N,R,m of the sets
No
N,R,m defined in Section 3.2.1. In each case, R is one of the two commutator

matrices of Λ which we now define.

Let R be either O or o. Let N be an R-submodule of some R-module M .
The isolator of N is the smallest submodule ι(N) of M containing N such
that the R-module quotient M/ι(N) is torsion-free. The submodule N is said
isolated if ι(N) = N or, equivalently, if M/N is torsion free.

Set g = Λ(o) = Λ⊗O o. Let g′ be the derived Lie sublattice of g, and let z be
its centre. According to [48, Lemma 2.5], the centre z of g is isolated. Consider
the following torsion-free O-ranks:

h = rk(g), a = rk(g/z), b = rk(g′), r = rk(g/g′), z = rk(z).

Also k = rk(ι(g′)/ι(g′ ∩ z)) = rk(ι(g′ + z)/z).

The commutator matrices are defined with respect to a fixed o-basis B =
(e1, . . . , eh) of the o-Lie lattice g, satisfying the conditions

(ea−k+1, . . . , ea) is an o-basis for ι(g′ + z),

(ea+1, . . . , ea−k+b) is an o-basis for ι(g′ ∩ z), and

(ea+1, . . . , eh) is an o-basis for z.

Denote by the natural surjection g → g/z. Let e = (e1, . . . , ea). Then
e = (e1, . . . , ea) is an o-basis of g/z. The ei can be chosen so that there are
nonnegative integers c1, . . . , cb with the property that

(πc1ea−k+1, . . . , πckea) is an o-basis of g′ + z and

(πck+1ea+1, . . . , π
cbea−k+b) is an o-basis of g′ ∩ z,

by the elementary divisor theorem. Fix an o-basis f = (f1, . . . , fb) for g′ satis-
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fying

(f1, . . . , fk) = (πc1ea−k+1, . . . , πckea) is an o-basis of g′ + z and

(fk+1, . . . , fb) = (πck+1ea+1, . . . , π
cbea−k+b) is an o-basis of g′ ∩ z.

For i, j ∈ [a] and k ∈ [b], let λkij ∈ o be the structure constants satisfying

[ei, ej ] =

b∑
k=1

λkijfk. (3.2.7)

The following matrices were previously defined in [33, Definition 2.1].

Definition 3.2.1. The A-commutator and the B-commutator matrices of g =
Λ(o) with respect to e and f are, respectively,

A(X1, . . . , Xa) =

 a∑
j=1

λkijXj


ik

∈ Mata×b(o[X]), and

B(Y1, . . . , Yb) =

(
b∑

k=1

λkijYk

)
ij

∈ Mata×a(o[Y ]),

where X = (X1, . . . , Xa) and Y = (Y1, . . . , Yb) are independent variables.

Since λkij = −λkji for all i, j ∈ [a] and k ∈ [b], the matrix B(y) is antisym-

metric for each y ∈ ob.

First, we rewrite the numbers rn(GN ) in terms of numbers N o
N,B,m, and

then we describe the numbers cn(GN ) in terms of numbers N o
N,A,m, where A

and B denote the A-commutator and the B-commutator matrices of g with
respect to e and f defined above.

rn(GN ) and elementary divisor types of the B-commutator matrix

Given a compact abelian group a, write â = Homcont
Z (a,C×). Set gN :=

Λ⊗O o/pN , and let g′N = [gN , gN ] and zN = z⊗o o/p
N .

Given an element w of ĝN = HomZ(gN ,C
×), define the form

BNω : gN × gN → C×, (u, v) 7→ w([u, v]).

The radical of BNω is

Rad(BNω ) = {u ∈ gN | ∀v ∈ gN : BNω (u, v) = 1}.
If the nilpotency class c of Λ is smaller than the characteristic p of the residue

field o/p, then the Kirillov orbit method reduces the problem of enumerating the
characters of GN to the problem of determining the indices in gN of Rad(BNω )
for w ∈ g′N . In particular, the statement of the Kirillov orbit method given
in [33, Theorem 3.1(1)] asserts that if ω is an element of the coadjoint orbit Ω
of ĝN , then the size of this orbit coincides with the index |g : Rad(BNω )|.

The principal congruence quotient GN is a finite p-group of nilpotency
class c, so that the dimensions of the irreducible complex representations of GN

are powers of p. Using the Kirillov orbit method [33, Theorem 3.1], O’Brien
and Voll show in [33, Section 3.2] that, if p > c, then

rpi(GN ) =
∣∣∣{ω ∈ ĝ′N

∣∣ |Rad(BNω ) : zN | = p−2i|gN/zN |
}∣∣∣ |gN/g′N | p−2i. (3.2.8)
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Remark 3.2.2. In [48, Section 2.4.2], a Kirillov orbit method formalism is devel-
oped for group schemes of nilpotency class c = 2 which is valid for all primes p.
This means that, in case of nilpotency class 2, equation (3.2.8) of rn(GN ) holds
for all prime ideals p.

We now relate (3.2.8) to the B-commutator matrix of g.

Tensoring the o-bases e and f with o/pN yields ordered sets eN =
(e1,N , . . . , ea,N ) and fN = (f1,N , . . . , fb,N ) such that (e1,N , . . . , ea,N ) is an o/pN -
basis for zN and fN is an o/pN -basis for g′N as o/pN -modules.

Using similar arguments as the ones of [33, Section 2], we define the following
coordinate systems:

φN : gN/zN → (o/pN )a, x =

a∑
j=1

xjej,N 7→ x = (x1, . . . , xa),

ψN : ĝ′N → (o/pN )b, ω =

b∑
j=1

yjf
∨
j,N 7→ y = (y1, . . . , yb),

where, for N ∈ N0, f∨N = (f∨1,N , . . . , f
∨
b,N ) is the o/p-dual lattice for ĝ′N =

Homo(g′N ,C
×). We notice that g1/z1 and g′1 are regarded as o/p-vector spaces

in the construction of [33, Section 2]. In the coordinate systems above, we
regard gN/zN and g′N as o/pN -modules for all N ∈ N.

Lemma 3.2.3. Given x ∈ gN/zN and ω ∈ ĝ′N with φN (x) = x = (x1, . . . , xa)
and ψN (ω) = y = (y1, . . . , yb), it holds that

x ∈ Rad(BNω )/zN if and only if B(y)xtr = 0,

where xtr is the transpose of x, regarded as a 1× a-matrix.

Proof. Here, denote by the natural surjection gN → gN/zN . An element
x ∈ gN/zN belongs to Rad(BNω )/z exactly when ω[x, v] = 1, for all v ∈ gN . Fix
x ∈ gN such that φN (x) = x = (x1, . . . , xa) ∈ (o/pN )a. Then

[ei,N , x] =

ei,N , a∑
j=1

xjej,N

 =

a∑
j=1

xj [ei,N , ej,N ] =

a∑
j=1

b∑
l=1

λlijxjfl,N . (3.2.9)

Since ψ(ω) = y = (y1, . . . , yb), for each i ∈ [a]

ω([ei, x]) =

b∏
k=1

f∨k,N
 a∑
j=1

b∑
l=1

λlijxjfl,N

yk

=

b∏
k=1

(
f∨k,N (fk,N )

)yk∑a
j=1 λ

k
ijxj .

This expression equals 1 exactly when
∑b
k=1

∑a
j=1 λ

k
ijxjyk = 0. Now, by defi-

nition,
∑b
k=1 λ

k
ijyk = B(y)ij , where B(y) is the A-commutator matrix of Def-

inition 3.2.1 evaluated at y. Consequently, x ∈ Rad(BNω )/zN if and only if∑a
j=1B(y)ijxj = 0, for all j ∈ [a], that is, B(y)xtr = 0.

Fix an elementary divisor type ν̃(B(y)) = (m1, . . . ,muB ) ∈ [N ]uB0 , where

2uB = max{rkFrac(o)B(z) | z ∈ ob}.
Since B(y) is similar to the matrix Diag(πm1 , πm1 , . . . , πmuB , πmuB ,0a−2uB ),
where 0a−2uB = (0, . . . , 0) ∈ Za−2uB , the system B(y)xtr = 0 in o/pN is
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equivalent to 
x1 ≡ x2 ≡ 0 mod pN−m1 ,

x3 ≡ x4 ≡ 0 mod pN−m2 ,
...

x2uB−1 ≡ x2uB ≡ 0 mod pN−muB .

In particular, for 2uB < a, the elements x2uB+1, . . . , xa are arbitrary elements
of o/pN . Moreover

|{x ∈ o/pN | x ≡ 0 mod pN−mj}| = qmj .

Hence, the number of solutions of B(y)xtr = 0 in o/pN is
q2(m1+···+muB )+(a−2uB)N . In other words, Lemma 3.2.3 assures that

|Rad(BNω )/zN | = q2(m1+···+muB )+(a−2uB)N ,

when B(y) has elementary divisor type (m1, . . . ,muB ). In particular,
Rad(BNω )/zN satisfies

|Rad(BNω ) : zN | = q−2i|gN/zN | = qaN−2i

exactly when B(y) has elementary divisor type (m1, . . .muB ) satisfying∑uB
j=1mj = uBN − i. Consequently, expression (3.2.8) can be rewritten as

follows, for r = rk(g/g′) = h− b.
rqi(GN ) =

∑
m∈DNB

|{y ∈ (o/pN )b | ν̃(B(y)) = m}|qrN−2i, (3.2.10)

where

DNB :=

{
m = (m1, . . . ,muB ) ∈ NuB0

∣∣ m1 ≤ · · · ≤ muB ≤ N,
uB∑
i=1

mi = uBN − i

}
.

Remark 3.2.4. The numbers rn(GN ) are zero whenever n is not a power of q.

In fact, as explained above, for each w ∈ ĝ′N with ψN (w) = y and ν̃(B(y)) =
(m1, . . . ,muB ), one has that

|Rad(BNω )/zN | = q2M+(a−2uB)N , where M = m1 + · · ·+muB .

Moreover, |gN/zN | = qaN , so that equality |Rad(BNω ) : zN | = p−2i|gN/zN | is
satisfied if and only if pi = quB−M .

For a matrix R(Y ) = R(Y1, . . . , Yn) of polynomials as the one at the begin-
ning of Section 3.2 and for m = (m1, . . . ,mε) ∈ Nε0, define

Wo
N,R,m := {y ∈ (o/pN )n | ν(R(y)) = m}.

Expression (3.2.10) is written in terms of cardinalities of such sets, which are
related to the cardinalitiesN o

N,R,m of the sets No
N,R,m as follows. Write m−m =

(m1 −m, . . . ,mε −m), for all m ∈ N0. If R(y) is such that vp(y) = vp(R(y)),
for all y ∈ on, then

|Wo
N,R,m| = N o

N−m1,R,m−m1
. (3.2.11)

Indeed, the map No
N−m1,R,m−m1

→Wo
N,R,m given by ỹ 7→ πm1 ỹ is a bijection.

Equality (3.2.11) applied to (3.2.10) yields the following result.

Lemma 3.2.5. Suppose that either c = 2 or c < p. For each i ∈ N0 and
N ∈ N0,

rqi(GN ) =
∑

(m1,...,muB )∈DNB

N o
N−m1,B,(0,m2−m1,...,muB−m1)q

rN−2i.
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cn(GN ) and elementary divisor types of the A-commutator matrix

We now show an analogous result to Lemma 3.2.5 for the numbers cn(GN ).
For x ∈ gN/zN , the adjoint homomorphism adx : gN/zN → ĝN is given

by adx(z) = [z, x], for all z ∈ gN/zN . Let ad?x : ĝ′N → ĝN/zN be the map
ω 7→ ω ◦ adx. Since the principal congruence quotient GN is a finite p-group,
the sizes of its conjugacy classes are powers of p and, according to [33, Section 3],
for c < p,

cpi(GN ) =
∣∣∣{x ∈ gN/zN

∣∣ |Ker(ad?x)| = p−i|ĝ′N |
}∣∣∣ |zN | p−i. (3.2.12)

This formula reflects the fact that the Lazard correspondence induces an order-
preserving correspondence between subgroups of GN and sublattices of gN ,
and maps normal subgroups to ideals. Moreover, centralizers of elements of GN

correspond to centralizers of elements of gN under the Lazard correspondence.

Remark 3.2.6. The cardinalities of g′N and gN/zN are powers of q, and hence so

is the cardinality of Ker(ad?x). In particular, the equality |Ker(ad?x)| = p−i|ĝ′N |
can only be satisfied if pi is a power of q. That is, the number cn(GN ) is zero
unless n is a power of q.

Lemma 3.2.7. Given x ∈ gN/zN and w ∈ ĝ′N with φN (x) = x = (x1, . . . , xa)
and ψN (w) = y = (y1, . . . , yb),

w ∈ Ker(ad?x) if and only if A(x)ytr = 0.

Proof. An element w ∈ ĝ′N belongs to Ker(ad?x) exactly when w[x, v] = 1 for all
v ∈ gN/zN . Expressing these conditions in coordinates, just as in Lemma 3.2.3,
we see that the expression on the statement of this lemma holds.

Fix an elementary divisor type ν(A(x)) = (m1, . . . ,muA), where

uA := max{rkFrac(o)A(z) | z ∈ oa}.
As in the representation case, we show that the system A(x)ytr = 0 in o/pN has
qm1+m2+···+muA+(b−uA)N solutions in o/pN . For z = rk(z) = h− a, this yields

cqi(GN ) =
∑

m∈DNA

|{x ∈ (o/pN )a | ν(A(x)) = m}|qzN−i, (3.2.13)

where

DNA :=

{
m = (m1, . . . ,muA) ∈ NuA0

∣∣ m1 ≤ · · · ≤ muA ≤ N,
uA∑
i=1

mi = uAN − i

}
.

Equality (3.2.11) applied to (3.2.13) gives the following lemma.

Lemma 3.2.8. Suppose that p > c. For each i ∈ N0 and N ∈ N0,

cqi(GN ) =
∑

(m1,...,muA )∈DNA

N o
N−m1,A,(0,m2−m1,...,muA−m1)q

zN−i.

3.2.3 Bivariate zeta functions as p-adic integrals

We now write almost all local factors of the bivariate zeta functions of G(O)
in terms of Poincaré series such as (3.2.2) and hence obtain formulae for them
in terms of p-adic integrals. This is done using the descriptions of the num-
bers rn(GN ) of Lemma 3.2.5 and the descriptions of the numbers cn(GN ) of
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Lemma 3.2.8. Therefore, the finitely many local terms which are not written in
terms of p-adic integrals are the ones whose corresponding prime ideals do not
satisfy the assumptions of these Lemmata. That is, for the bivariate represen-
tation zeta functions, we write all local factors in terms of p-adic integrals in
case of nilpotency class c = 2 and, in case of nilpotency class c > 2, we exclude
the local terms at prime ideals p with residue field cardinality p ≤ c. For the
bivariate conjugacy class zeta functions the exception is given by local factors
at prime ideals p with residue field cardinality p ≤ c.

Recall from Section 3.2.2 that the dimensions of irreducible complex repre-
sentations as well as the sizes of the conjugacy classes of GN are powers of q,
allowing us to write the local terms of the (univariate) representation and con-
jugacy class zeta functions of the principal congruence quotient GN as

ζ irr
GN

(s) =

∞∑
i=0

rqi(GN )q−is and ζcc
GN

(s) =

∞∑
i=0

cqi(GN )q−is.

These sums are finite, since GN is a finite group. Consequently, the local factors
of the bivariate zeta functions are given by

Z irr
G(o)(s1, s2) =

∞∑
N=0

∞∑
i=0

rqi(GN )q−is1−Ns2 and

Zcc
G(o)(s1, s2) =

∞∑
N=0

∞∑
i=0

cqi(GN )q−is1−Ns2 .

The expressions for rn(GN ) and cn(GN ) given in Lemmata 3.2.5 and 3.2.8 yield,
respectively,

Z irr
G(o)(s1, s2) = (3.2.14)
∞∑
N=0

∞∑
i=0

∑
(m1,...,muB )∈DNB

N o
N−m1,B,(0,m2−m1,...,muB−m1)q

(r−s2)N−(2+s1)i,

Zcc
G(o)(s1, s2) = (3.2.15)
∞∑
N=0

∞∑
i=0

∑
(m1,...,muA )∈DNA

N o
N−m1,A,(0,m2−m1,...,muA−m1)q

(z−s2)N−(1+s1)i.

We now show how to rewrite these sums as Poincaré series of the form (3.2.2).
In preparation for this, we need two lemmata.

Lemma 3.2.9. Let s be a complex variable, (am)m∈N0
a sequence of real num-

bers, and let q ∈ Z≥2. The following holds, provided both series converge.

∞∑
N=1

N−1∑
m=0

amq
−sN =

q−s

1− q−s

( ∞∑
N=0

aNq
−sN

)
.

Proof. In fact,

(1− q−s)
∞∑
N=1

N−1∑
m=0

amq
−sN =

∞∑
N=1

N−1∑
m=0

amq
−sN −

∞∑
N=1

N−1∑
m=0

amq
−s(N+1)

= a0q
−s +

∞∑
N=1

N∑
m=0

amq
−s(N+1) −

∞∑
N=1

N−1∑
m=0

amq
−s(N+1)
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= a0q
−s +

∞∑
N=1

aNq
−s(N+1) = q−s

∞∑
N=0

aNq
−sN .

Lemma 3.2.10. Let s and t be complex variables and q ∈ Z. Let also
R(Y ) = R(Y1, . . . , Yn) be a matrix of polynomials R(Y )ij ∈ o[Y ] with u =
max{rkFrac(o)R(z) | z ∈ on}. The following holds, provided both series con-
verge.
∞∑
N=0

∞∑
i=0

∑
0≤m1≤···≤mu≤N∑u

j=1 mj=uN−i

N o
N−m1,R,(0,m2−m1,...,mu−m1)q

−sN−ti (3.2.16)

=
1

1− q−s

1 +

∞∑
N=1

∑
(m1,...,mu)∈Nu0

N o
N,R,(m1,m2,...,mu)q

−(s+ut)N+t
∑u
j=1 mj

 .

Proof. Let m = (m1, . . . ,mu) and recall the notation m − m = (m1 −
m, . . . ,mu −m), for m ∈ N0.

As N o
N,R,m = 0 unless 0 = m1 ≤ m2 ≤ · · · ≤ mu ≤ N , in which case

0 ≤
∑u
j=1mj ≤ uN , the condition

∑u
j=1mj = uN − i implies that the only

values of i which are relevant for the sum (3.2.16) are 0 ≤ i ≤ uN . Hence, the
expression on the left-hand side of (3.2.16) can be rewritten as

1 +

∞∑
N=1

uN∑
i=0

∑
0≤m1≤···≤mu≤N∑u

j=1 mj=uN−i

N o
N−m1,R,m−m1

q−sN−ti. (3.2.17)

Restricting the summation in (3.2.17) to m1 = 0 leads to
∞∑
N=1

∑
0≤m2≤···≤mu≤N∑u
j=2 mj≤(u−1)N

N o
N,R,(0,m2,...,mu)q

−sN−t(uN−
∑u
j=2 mj).

The fact that N o
N,R,m = 0 unless 0 = m1 ≤ m2 ≤ · · · ≤ mu ≤ N allows us to

rewrite this as
∞∑
N=1

∑
m∈Nu0

N o
N,R,mq

−(s+ut)N+t
∑u
j=1 mj =: S(s, t).

Our goal now is to write the part of the summation in (3.2.17) with m1 > 0 in
terms of S(s, t). Set m′ = (0,m′2, . . . ,m

′
u).

∞∑
N=1

uN∑
i=0

∑
0<m1≤···≤mu≤N∑u

j=1 mj=uN−i

N o
N−m1,R,m−m1

q−sN−ti

=

∞∑
N=1

N∑
m1=1

∑
m1≤m2≤···≤mu≤N∑u

j=2 mj≤uN−m1

N o
N−m1,R,m−m1

q−sN−t(uN−
∑u
j=1 mj)

=

∞∑
N=1

N∑
m1=1

∑
0≤m′2≤···≤m

′
u≤N−m1∑u

j=2 m
′
j≤u(N−m1)

N o
N−m1,R,m′q

−(s+ut)N+t((
∑u
j=2 m

′
j)+um1)

(3.2.18)
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=

∞∑
N=1

q−sN
N−1∑
m=0

∑
0≤m′2≤···≤m

′
u≤m∑u

j=2 m
′
j≤um

N o
m,R,m′q

t((
∑u
j=2 m

′
j)−um)

=

∞∑
N=1

q−sN
N−1∑
m=0

∑
m∈Nu0

N o
m,R,mq

t((
∑u
j=1 mj)−um). (3.2.19)

Apply Lemma 3.2.9 to (3.2.19) by setting

am :=
∑

m∈Nu0

N o
m,R,mq

t((
∑u
j=1 mj)−um).

This gives
∞∑
N=1

uN∑
i=1

∑
0<m1≤···≤mu≤N∑u

j=1 mj=uN−i

N o
N−m1,R,m−m1

q−sN−ti

=
q−s

1− q−s

1 +

∞∑
N=1

∑
m∈Nu0

N o
N,R,mq

−(s+ut)N+t
∑u
j=1 mj


=

q−s

1− q−s
(1 + S(s, t)) .

Combining the expressions for the parts of the sum with m1 = 0 and m1 > 0
yields

∞∑
N=0

∞∑
i=0

∑
0≤m1≤···≤mu≤N∑u

j=1 mj=uN−i

N o
N,R,(m1,m2,...,mu)q

−sN−ti

= 1 + S(s, t) +
q−s

1− q−s
(1 + S(s, t)) =

1

1− q−s
(1 + S(s, t)) .

By applying Lemma 3.2.10 to (3.2.14) and (3.2.15), we obtain the following.

Proposition 3.2.11. The bivariate zeta functions of G(o) can be described by

Z irr
G(o)(s1, s2) = (3.2.20)

1

1− qr−s2

1 +

∞∑
N=1

∑
(m1,...,muB )∈NuB0

N o
N,B,mq

−N(uBs1+s2+2uB−r)−2
∑uB
j=1 mj

(−s1−2)
2

 ,

Zcc
G(o)(s1, s2) = (3.2.21)

1

1− qz−s2

1 +

∞∑
N=1

∑
(m1,...,muA )∈NuA0

N o
N,A,mq

−N(uAs1+s2+uA−z)−
∑uA
j=1 mj(−s1−1)

 .

Expression (3.2.20) is of the form (3.2.5) with t = uBs1 + s2 + 2uB − r and
rk = −s1−2

2 for each k ∈ [uB ], whilst (3.2.21) is (3.2.2) with t = uAs1+s2+uA−z
and rk = −s1 − 1 for each k ∈ [uA]. Therefore these choices of t and r applied
to (3.2.6) and to (3.2.4) yields the following. Recall that a+z = rk(g/z)+rk(z) =
rk(g) = h and that b + r = rk(g′) + rk(g/g′) = h. In the following, we write
Zo,R(r, t) meaning Zo,R(r, t1uR), where 1uR = (1, . . . , 1) ∈ NuR0 and R is
either the A-commutator matrix or the B-commutator matrix of g.
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Proposition 3.2.12. The bivariate zeta functions of G(o) can be described by

Z irr
G(o)(s1, s2) =

1

1− qr−s2
(
1 + Zo,B

(−s1−2
2 , uBs1 + s2 + 2uB − h− 1

))
,

(3.2.22)

Zcc
G(o)(s1, s2) =

1

1− qz−s2
(1 + Zo,A (−s1 − 1, uAs1 + s2 + uA − h− 1)) ,

(3.2.23)

as long as either c = 2 or p > c for (3.2.22), and as long as p > c for (3.2.23).

In particular, specialisation (1.1.8) provides the following formulae for the
class number zeta function of G(o):

ζk
G(o)(s) =

1

1− qz−s
(1 + Zo,A (−1, s+ uA − h− 1)) , (3.2.24)

=
1

1− qr−s
(1 + Zo,B (−1, s+ 2uB − h− 1)) . (3.2.25)

Remark 3.2.13. Recall the Z-Lie lattice Fn,δ of Definition 1.2.1, and that for g =
Fn,δ ⊗O o with centre z it holds that a = rk(g/z) = 2n+ δ. The B-commutator
matrix of Fn,δ is the generic a× a-antisymmetric matrix. In particular, we see
that soa(o) = {BFn,δ(x) | x ∈ ob}, where soa(o) is the orthogonal Lie algebra of
a× a-matrices M over o satisfying M +MTr = 0.

In particular, formula (1.2.1) for the class number zeta function of Fn,δ(o)
also follows from [38, Proposition 5.11], which gives a formula for the ask zeta
function Zask

sod(o)(T ) of the orthogonal Lie algebra sod(o), d ∈ N; see [38, Defini-
tion 1.3].

In fact, when comparing the p-adic integral [38, (4.3)] with (3.2.25),

we see that ζk
Fn,δ(o)(s) = Zask

soa(o)(q
−s+(a2)), and hence [38, Proposition 5.11]

shows (1.2.1).

Remark 3.2.14. Formula (3.2.24) coincides with the p-adic integral obtained
from the p-adic integral [38, (4.3)] together with the specialisation given in [38,
Theorem 1.7].

In fact, for each x ∈ g, let adx : g → g′ be the adjoint homomorphism
adx(z) = [z, x], for all z ∈ g. As in Section 3.2.2, let B = (e1, . . . , eh) be a
basis of g with the properties described there; we use the notation that was
set up in this context. For each x ∈ g, we can write x =

∑h
i=1 xiei, for some

xi ∈ o. Let x = (x1, . . . , xh) ∈ oh. The b × h-matrix representing adx is such
that its submatrix composed of its first a columns is the transpose A(x)tr of the
A-commutator matrix of Λ and the remaining columns have only zero entries.

The integrals there are taken over o × oa instead of p ×W o
a as in (3.2.24).

The fact that they coincide is due Lemma 2.2.4.

We conclude this section with an example.

Example 3.2.15. Let H(O) be the Heisenberg group over O. The unipotent
group scheme H is obtained from the Z-Lie lattice

Λ = 〈x1, x2, y | [x1, x2]− y〉.
The commutator matrices of g = Λ(o) with respect to the ordered sets e =
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(x1, x2) and f = (y) are

A(X1, X2) =

[
X2

−X1

]
and B(Y ) =

[
0 Y

−Y 0

]
.

The A-commutator matrix has rank 1 and the B-commutator matrix has rank 2
over the respective fields of rational functions, that is, uA = uB = 1. Moreover,
h = rk(g) = 3, and

F1(A(X1, X2)) = {−X1, X2}, F2(B(Y )) = {Y 2}.
Thus, if (x1, x2) ∈W o

2 , that is, vp(x1, x2) = 0, then ‖F1(A(x1, x2))‖p = 1. Also,
if y ∈W o

1 , then vp(y2) = 0, which gives ‖F2(B(y))‖p = 1.
It follows from Proposition 3.2.12 and Lemma 2.2.1 that

Z irr
H(o)(s1, s2) =

1

1− q2−s2

(
1 + (1− q−1)−1

∫
(w,y)∈p×Wo

1

|w|s1+s2−2
p dµ

)

=
1− q−s1−s2

(1− q1−s1−s2)(1− q2−s2)
,

Zcc
H(o)(s1, s2) =

1

1− q1−s2

(
1 + (1− q−1)−1

∫
(w,x1,x2)∈p×Wo

2

|w|s1+s2−3
p dµ

)

=
1− q−s1−s2

(1− q1−s2)(1− q2−s1−s2)
. 4

3.3 Twist representation zeta functions

In this section, we assume that G is a unipotent group scheme of nilpo-
tency class 2 associated to a O-Lie lattice Λ without the assumption Λ′ ⊆ 2Λ,
constructed as explained in Section 2.1. We provide a univariate specialisation
of the bivariate representation zeta function of G(o) which results in the twist
representation zeta function of this group.

According to [48, Corollary 2.11 and Proposition 2.18], the twist represen-
tation zeta function of G(o) may be written as

ζ ĩrr
G(o)(s) = 1 + Zo,B(−s/2, uBs− b− 1),

where b = rk(g′), 2uB = max{rkFrac(o)B(z) | z ∈ ob} and Zo,B(r, t) is the
integral Zo,R(r, t) given in (3.2.6) when R(Y ) is the B-commutator matrix
B(Y ). Recall that r = rk(g/g′) = h − b. We have shown in Proposition 3.2.12
that

(1− qr−s2)Z irr
G(o)(s1, s2) = 1 + Zo,B ((−2− s1)/2, uBs1 + s2 + 2uB − h− 1) .

Comparing the expressions for ζ ĩrr
G(o)(s) and (1− qr−s2)Z irr

G(o)(s1, s2), we obtain
the desired specialisation.

Proposition 3.3.1. If G(o) has nilpotency class 2 and s1, s2 ∈ C have suffi-
ciently large real parts, then

(1− qr−s2)Z irr
G(o)(s1, s2) |s1→s−2

s2→r
= ζ ĩrr

G(o)(s).

As mentioned in Section 1.1.1, no such specialisation is expected to hold
for G(O) with nilpotency class c ≥ 3. In fact, when counting isomorphism
classes instead of twist-isoclasses of irreducible complex representations of G(o),
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we overcount the ones which are twist-equivalent. As explained in [48, Sec-
tion 2.2.1], one may count the representations belonging to coadjoint orbits of g
to obtain the number of representations of G(o) up to twist. However, by doing
so, for each co-adjoint orbit Ω ⊂ ĝ and ψ ∈ Ω, one overcounts the number of
representations which are twist equivalent to ψ. This number is given by the
index of Gψ,2 = {ω ∈ g | ψ([ω, g]) = 1} in g. It is clear that this index is 1 in
nilpotency class c = 2, but might be larger otherwise.

In the following example, we exhibit a group G(O) of nilpotency class c =
3 whose bivariate representation zeta function does not specialise to its twist
representation zeta function.

Example 3.3.2. Consider the free nilpotent Z-Lie lattice on 2 generators of
class 3:

f3,2 = 〈x1, x2, y, z1, z2 | [x1, x2]− y, [y, x1]− z1, [y, x2]− z2〉,
and relations that do not follow from the given ones are trivial. Let F3,2 be the
unipotent group scheme obtained from f3,2, and denote by z3,2 and by f′3,2 the
centre and the derived Lie lattice of f3,2, respectively.

The B-commutator matrix of f3,2 with respect to e = (y, x1, x2) and f =
(z1, z2, y) is

B(Y1, Y2, Y3) =


0 Y1 Y2

−Y1 0 Y3

−Y2 −Y3 0

 .
Thus, uB = 1, F0(B(Y )) = {1}, and F2(B(Y )) ⊇ {Y 2

1 , Y
2
2 , Y

2
3 }. By Proposi-

tion 3.2.12 and Lemma 2.2.1,

Z irr
F2,3(o)(s1, s2) =

1

1− q2−s2

(
1 + (1− q−1)−1

∫
(w,y1,y2,y3)∈p×Wo

3

|w|s1+s2−4
p dµ

)

=
1− q−s1−s2

(1− q2−s2)(1− q3−s1−s2)
. (3.3.1)

In [37, Table 1], Rossmann provides the following formula for the twist represen-
tation zeta function of f3,2—denoted by L5,9 in [37]—, provided q is sufficiently
large, by implementing his methods in Zeta [40]:

ζ ĩrr
F3,2(o)(s) =

(1− q−s)2

(1− q1−s)(1− q2−s)
. (3.3.2)

Comparing (3.3.1) and (3.3.2), we see that there is no specialisation of the
form (1.1.4) for the bivariate representation zeta function of F3,2(o) in terms of
its twist representation zeta function.

For completeness, we now calculate the bivariate conjugacy class and the
class number zeta functions of F3,2(o). The A-commutator matrix of f3,2 with
respect to e and f is

A(X1, X2, X3) =


X2 X3 0

−X1 0 X3

0 −X1 −X2

 .
Thus, uA = 2, F0(A(X)) = {1}, F1(A(X)) = {−X1,±X2, X3}, and
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F2(A(X)) ⊇ {X2
1 ,−X2

2 , X
2
3}. Hence

Zcc
F2,3(o)(s1, s2) =

1

1− q2−s2

(
1 + (1− q−1)−1

∫
(w,x1,x2,x3)∈p×Wo

3

|w|2s1+s2−4
p dµ

)

=
1− q−2s1−s2

(1− q2−s2)(1− q3−2s1−s2)
.

Specialisation (1.1.8) yields

ζk
F2,3(o)(s) =

1− q−s

(1− q2−s)(1− q3−s)
.

This formula agrees with the one given in [38, Section 9.3, Table 1]. 4

3.4 Local functional equations—proof of Theo-
rem 1

In this section, we prove Theorem 1.

A formula of Denef type is a finite sum of the form
m∑
i=1

|Vi(o/p)|Wi(q, q
−s1 , q−s2), (3.4.1)

where |Vi(o/p)| denotes the number o/p-rational points of reductions modulo p
of a suitable algebraic variety Vi defined over O and Wi(X,Y, Z) is a rational
function.

Formulae of Denef type are used in [51, Section 2] to show that functions
defined in terms of certain p-adic integrals are rational functions and satisfy
functional equations. The expressions given in [51, Section 2] are generalised
in [3, Section 4].

As we shall see in Section 3.4.3, the integrals describing the bivariate rep-
resentation and the bivariate conjugacy class zeta functions of groups of the
form G(O) appearing in Proposition 3.2.12 are special cases of the integrals
studied in [51], and hence they fit the framework of [3, 51]. We apply in Sec-
tion 3.4.3 the methods used in these papers to prove Theorem 1. Firstly, how-
ever, we recall from [51] the mentioned family of p-adic integrals in Section 3.4.1,
and then recall from [3, 51] how to write them in terms of formulae of Denef type
in Section 3.4.2. In Section 3.4.4, we recall briefly their methods for showing
functional equations.

3.4.1 A family of p-adic integrals

Fix n, d, l ∈ N, and let I ⊆ [n− 1]. Define further:

1. Jκ a finite index set, for each κ ∈ [l],

2. eiκι ∈ Z≥0, for each i ∈ I, κ ∈ [l] and ι ∈ Jκ,

3. Fκι(Y ) = Fκι(Y1, . . . , Yd) a finite set of polynomials over O, for each κ ∈ [l]
and ι ∈ Jk.
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Let also W(o) ⊆ od be a union of cosets modulo p(d). The following integral is
defined and investigated in [51, Section 2]:

ZW(o),I(s) =

∫
p|I|×W(o)

l∏
κ=1

∣∣∣∣∣
∣∣∣∣∣ ⋃
ι∈Jκ

(∏
i∈I

Xeiκι
i

)
Fκι(Y )

∣∣∣∣∣
∣∣∣∣∣
sκ

p

dµ, (3.4.2)

where s = (s1, . . . , sl) is a vector of complex variables and X = (Xi)i∈I
and Y = (Y1, . . . , Yd) are independent integration variables. The notation(∏

i∈I X
eiκι
i

)
Fκι(Y ) means the set {

(∏
i∈I X

eiκι
i

)
f(Y ) | f(Y ) ∈ Fκι(Y )}.

The term dµ denotes the additive Haar measure on o|I|+d, normalised so that
dµ(o|I|+d) = 1.

The numbers d, l, n as well as the data I, Jκ, eiκι, and Fκι(Y ) will be
referred to as the data associated to the integral ZW(o),I(s).

3.4.2 Formulae of Denef type

We now recall from [51, Section 2] how to write the p-adic integrals (3.4.2)
in terms of formulae of Denef type.

We make the further assumptions on the data associated to the inte-
gral ZW(o),I(s): firstly, d = n2, so that we can identify od with the set Matn×n(o)
and, secondly, W(o) = GLn(o). Thirdly, the ideals (Fκι) are assumed to be in-
variant under the natural action of the standard Borel subgroup B ⊆ GLn
of upper triangular matrices in GLn, acting on K[Y1, . . . , Yn2 ] by right matrix
multiplication.

Consider the O-ideal

I =

l∏
κ=1

∏
ι∈Jκ

(Fκι(Y )),

and fix a principalisation (Y, h) of I—cf. Section 2.3—with h : Y → GLd/B.
Let T be the finite set indexing the irreducible components Eu of the pre-

image of h of the subvariety V of GLd/B defined by I. Set |T | = t. The
numerical data associated to (Y, h) is (Nuκι, νu)uκι, where Nuκι denotes the
multiplicity of the irreducible component Eu in the pre-image under h of the
variety defined by the ideal (Fκι) and νu − 1 denotes the multiplicity of Eu in
the divisor h∗(dµ(y)); see Section 2.3.

Definition 3.4.1. Let N ∈ N, U ⊆ T , (dκι) ∈ N
∏l
κ=1 Jκ

0 , and write m =
(mu)u∈U ∈ NU and n = (ni)i∈I ∈ NI . Define

L(m,n) =
∑
i∈I

ni +
∑
u∈U

νumu,

Lκι(m,n) =
∑
i∈I

eiκιni +
∑
u∈U

Nuκιmu, for κ ∈ [l], ι ∈ Jκ,

and

ΞNU,I,(dκι)(q, s) =
∑

(m,n)∈NU≥N×NI
q−L(m,n)−

∑l
κ=1 sκ min{Lκι(m)−dκι|ι∈Jκ}.

For the special case N = 1 and (dκι) = (0), write ΞU,I(q, s) := Ξ1
U,I,(0)(q, s).

We remark that (Y, h) has good reduction modulo p for all but finitely many
prime ideals p ofO. In case of good reduction, we consider the following numbers
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of o/p-rational points of reductions modulo p of algebraic varieties over O: for
each U ⊆ T ,

cU (o/p) = |{a ∈ Y (o/p) | (a ∈ Eu(o/p)⇔ u ∈ U) and h(a) ∈ W(o)}|,
where denotes reduction modulo p.

Proposition 3.4.2. [51, Theorem 2.2] If (Y, h) has good reduction modulo p,
then

ZW(o),I(s) =
(1− q−1)n+|I|

q(
n
2)

∑
U⊆T

cU,I(o/p)(q − 1)|U |ΞU,I(q, s).

We denote by Q1 the finite set of prime ideals p such that (Y, h) has bad
reduction modulo p. The local factors given by the prime ideals p ∈ Q1 are the
ones excluded in the statement of Theorem 1 (together with the prime ideals
p satisfying p ≤ c when considering Zcc

G(O), and the prime ideals p satisfying

p ≤ c for c 6= 2 when considering Z irr
G(O)). However, the integrals ZW(o),I(s)

with p ∈ Q1 can also be written in terms of formulae of Denef type, as follows.
Given N ∈ N and a ∈ Y (o/pN ), set

Y Na = {y ∈ Y (o) | y ≡ a mod pN}.
As explained in [3, Section 4.3], for each p ∈ Q1, there exists N ∈ N such that
the following holds: on the cosets Y Na , there exist U(a) ⊆ T , j(a) ∈ N0 and

(dκι(a)) ∈ N
∏l
κ=1 Jκ

0 such that

‖Fκι ◦ h‖ = q−dκι(a)
∏

u∈U(a)

|γu|Nuκιp and

h∗(dµ(y)) = q−j(a)
∏

u∈U(a)

|γu|νu−1
p dµ(γ),

where γu are the coordinate functions of γ for each u ∈ U(a). Denote by (Yk, hk)
the principalisation over the field of fractions k = Frac(o) of o obtained from
(Y, h) by base extension.

Given U ⊆ T , j ∈ N0 and (dκι) ∈ N
∏l
κ=1 Jκ

0 , consider the following number
of o/p-rational points of reductions modulo p of an algebraic variety over O:

cU,j,(dκι)(o/p
N ) := |{a ∈ Y (o/pN ) |U(a) = U, j(a) = j, (dκι(a)) = (dκι)

and hk(a) ∈ GLn(o/pN )}|.

Proposition 3.4.3. [3, Corollary 4.2] If (Y, h) has bad reduction modulo p,

there exist N ∈ N, finite sets J ⊂ N0, and ∆ ⊂ N
∏l
κ=1 Jκ

0 such that

ZW(o),I(s) =
(1− q−1)|I|

qNn2

∑
U⊆T,j∈J
(dκι)∈∆

cU,j,(dκι)(o/p)(qN−qN−1)|U |q−jΞNU,I,(dκι)(q, s).

3.4.3 Proof of Theorem 1

Let L be a finite extension of the field of fractions K = Frac(O) of O. For a
fixed prime ideal P of OL dividing p, write O for the completion OL,P. Denote
by f = f(O, o) the relative degree of inertia, hence |O/P| = qf . Set gL = Λ(O),
and let zL be its centre and g′L its derived Lie sublattice. Since OL is a ring of
integers of a number field L, we can choose ordered sets e and f as the ones of
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Section 3.2.2 such that e and f are bases of gL/zL and g′L, respectively. Define
the commutator matrices A(X) and B(Y ) of gL with respect to e and f as
in Definition 3.2.1. Recall the p-adic integrals ZO,B(r, t) and ZO,A(r, t) given
in (3.2.6) and (3.2.3), respectively. Consider the following functions:

Z̃ irr
G(O)(s1, s2) = 1 + ZO,B

(−s1−2
2 , uBs1 + s2 + 2uB − h− 1

)
, (3.4.3)

Z̃cc
G(O)(s1, s2) = 1 + ZO,A(−1− s1, uAs1 + s2 + uA − h− 1). (3.4.4)

We call the functions (3.4.3) and (3.4.4) the main terms of the bivariate repre-
sentation, respectively, of the bivariate conjugacy class zeta functions of G(O).

We have shown in Proposition 3.2.12 that

Z irr
G(O)(s1, s2) =

1

1− qf(r−s2)
Z̃ irr

G(O)(s1, s2) and

Zcc
G(O)(s1, s2) =

1

1− qf(z−s2)
Z̃cc

G(O)(s1, s2).

It thus suffices to show the relevant statement of Theorem 1 for the bivariate
zeta functions’ main terms. In fact, for x = f(z − s2) and x = f(r − s2), the
term (1− qx)−1 is rational and

1

1− qx
|q→q−1= −qx 1

1− qx
.

Therefore, we only need to show that the p-adic integrals appearing in (3.4.3)
and (3.4.4) fit the framework of [48, Section 2.3] and [3, Section 4]. In other
words, we must show that their integrands are defined over O—hence only their
domains of integration vary with the ring O—and that these p-adic integrals
can be expressed in terms of the integrals given in [51, Section 2.1].

The condition that the integrands of the integrals appearing in (3.4.3)
and (3.4.4) are defined over O is needed since the O-bases defined in Sec-
tion 3.2.2 are only defined locally, so that the matrices A(X) and B(Y ) are
also defined locally. We must assure that there exist O-bases e and f as the
ones of Section 3.2.2 such that the commutator matrices A(X) and B(Y ), de-
fined with respect with these e and f are defined over O, and hence so are the
sets of polynomials Fj(A(X)) and F2j(B(Y )).

Since the matrix B(Y ) is the same as the one appearing in the integrands
of [48, (2.8)] and A(X) is obtained in an analogous way, the argument of [48,
Section 2.3] also holds in this case. Namely, we choose an O-basis f for a free
finite-index O-submodule of the isolator i(Λ′) of the derived O-Lie sublattice
of Λ; see Section 3.2.2. By [48, Lemma 2.5], f can be extended to an O-basis e
for a free finite-index O-submodule M of Λ. If the residue characteristic p of p
does not divide |Λ : M | or |i(Λ′) : Λ′|, this basis e may be used to obtain an
O-basis for Λ(O), by tensoring the elements of e with O.

Remark 3.4.4. The condition “p does not divide |i(Λ′) : Λ′|” is missing in [48],
but this omission does not affect the proof of [48, Theorem A], since this condi-
tion only excludes a finite number of prime ideals p. This was first pointed out
in [11, Section 3.3].

We now relate Z̃ irr
G(O)(s1, s2) and Z̃cc

G(O)(s1, s2) with the general inte-

gral (3.4.2).

Set I = {1} and write x1 = x. Set also n = b = rk(g′), hence d = b2. In
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addition, we set l = 2uB + 1, and Jk = {1, 2} for k ∈ [uB ], and Jk = {1} for
uB < k ≤ 2uB + 1. Moreover,

k j Fkj e1kj

≤ uB 1 F2k(B(y)) 0
uB < k ≤ 2uB 1 F2(k−1−uB)(B(y)) 0

2uB + 1 1 {1} 1
≤ uB 2 F2(k−1)(B(y)) 2

.

Table 3.1: Data associated to the integral ZGLb(O),{1}

We see that, with this set-up, the integral (3.4.2) is given by

ZGLb(O),{1}(s) =

∫
P×GLb(O)

‖x‖s2uB+1

P · (3.4.5)

uB∏
k=1

‖F2k(B(Y )) ∪ x2F2(k−1)(B(Y ))‖skP
2uB∏

k=uB+1

‖F2(k−1−uB)(B(Y ))‖skP dµ.

Although the domain of integration of the integral (3.4.5) involves GLb(O),
the integrand only depends on the entries of the first column, say, since the B-
commutator matrix is defined in b variables. Consequently, we can interpret WO

b

as the “space of first columns” of GLb(O) and we may consider the domain of
integration of (3.4.5) to be WO

b as long as we correct the integral by multiplying
it by the measure of the remaining entries of matrices of GLb(O). That is,
ZGLb(O),{1}(s) is equal to(

b−1∏
θ=1

(1− q−fθ)

)−1 ∫
P×WO

b

‖x‖s2uB+1

P

uB∏
k=1

‖F2k(B(Y )) ∪ x2F2(k−1)(B(Y ))‖skP ·

2uB∏
k=uB+1

‖F2(k−1−uB)(B(Y ))‖skP dµ.

Let 1uB = (1, . . . , 1) ∈ ZuB , 0uB = (0, . . . , 0) ∈ ZuB , and write

airr
1 = (−1

2
1uB ,

1

2
1uB , uB), airr

2 = (0uB ,0uB , 1),

birr = (−1uB ,1uB , 2uB − h− 1),

It follows that

Z̃ irr
G(O)(s1, s2) = 1 +

(1− q−f )−1∏b−1
θ=1(1− q−fθ)

ZGLb(O),{1}
(
airr

1 s1 + airr
2 s2 + birr

)
.

Analogously, for n = a, d = a2, and l = 2uA + 1, one can find appropriate
data Jk, e1jk, and Fkj(X) such that

Z̃cc
G(O)(s1, s2) = 1 +

(1− q−f )−1∏a−1
θ=1(1− q−fθ)

ZGLa(O),{1}(a
cc
1 s1 + acc

2 s2 + bcc),

for

acc
1 = (−1uA ,1uA , uA), acc

2 = (0uA ,0uA , 1),

bcc = (−1uA ,1uA , uA − h− 1).

Therefore, the bivariate zeta functions fit the framework of [51, Section 2.1]
and [3, Section 4], which concludes the proof of Theorem 1; see Section 3.4.4.
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3.4.4 Functional equations

We now recall the methods of [3, 51] for showing the existence of functional
equations for the integrals (3.4.2). Here, we make the additional assumption
that p is such that the principalisation (Y, h) given in Section 3.4.2 has good
reduction modulo p.

Consider the normalised integral

Z̃W(o),I(s) =

(
(1− q−1)|I|

n∏
k=1

(1− q−k)

)−1

ZW(o),I(s). (3.4.6)

Let bU (o/p) denote the number of o/p-rational points of the reduction modulo p
of the smooth projective variety EU =

⋂
u∈U Eu. These numbers are related to

the numbers cU (o/p) defined in Section 3.4.2:

cV (o/p) =
∑

V⊆U⊆T

(−1)|U\V |bU (o/p).

According to [51, Corollary 2.1], one may write

Z̃W(o),I(s) =

(
n∏
i=1

(q − 1)

qi − 1

) ∑
U⊆T

bU (o/p)
∑
V⊆U

(−1)|U\V |(q − 1)|V |ΞV (q, s).

(3.4.7)

Let L be a finite extension of K = Frac(O), and let P be a prime ideal
of OL. Denote by O the completion of the ring of integers OL at P. Let also
K = Frac(O). By base extension, we obtain a principalisation (YK, hK). All such
principalisations have good reduction modulo P; cf. [10, Proposition 2.3 and
Theorem 2.4]. If O|o has degree of inertia f = f(O, o)—and hence |O/P| = qf—
then

˜ZW(O),I(s) =

(
(1− q−f )|I|

n∏
k=1

(1− q−kf )

)−1

ZW(O),I(s).

According to [51, Section 2.1] and [3, (4.10)], the numbers bU (O/P) are given
by alternating sums of powers of Frobenius eigenvalues:

bU (O/P) =

2((n2)−|U |)∑
i=0

(−1)i
tU,i∑
j=1

αfU,i,j ,

where tU,i are nonnegative integers and αU,i,j are nonzero complex numbers
satisfying

b−1
U (O/P) := q−f((n2)−|U |)bU (O/P) =

2((n2)−|U |)∑
i=0

(−1)i
tU,i∑
j=1

α−fU,i,j ;

see [51, (13)] and [3, (4.11)].

Remark 3.4.5. The numbers αU,i,j are algebraic integers which will be denoted
by λ1(p), . . . , λt(p). As we have seen in Section 3.4.3, the bivariate zeta functions

may be written in terms of integrals ˜ZW(O),I(s). The algebraic numbers λ∗k(p),
appearing in the statement of Theorem 1 are given by such λk(p).

The effect of inverting q and q−sκ in ΞU (q, s) is clear, since these are rational
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functions in these parameters. It then follows that, for each i ∈ [n](
Z̃W(o),∅(s) + (1− q−fn) ˜ZW(o),{i}(s)

)
| q→q−1

λj→λ−jj

= (3.4.8)

q−fn
(
Z̃W(o),∅(s) + (1− q−fn) ˜ZW(o),{i}(s)

)
.

In Section 3.4.3, we have shown that for each ∗ ∈ {irr, cc} there exist vectors
a∗1, a∗2, and b∗ and suitable n ∈ Z such that

Z̃∗G(O)(s1, s2) = 1 +

(
(1− q−f )

n−1∏
k=1

(1− q−fk)

)−1

ZGLn(O),{1}(a
∗
1s1 + a∗2s2 + b∗)

= 1 + (1− q−nf ) ˜ZGLn(O),{1}(a
∗
1s1 + a∗2s2 + b∗).

Moreover, it is not difficult to see that

ZGLn(O),∅(a∗1s1 + a∗2s2 + b∗) = 1,

so that

Z̃∗G(O)(s1, s2) = ˜ZGLn(O),∅(a∗1s1 + a∗2s2 + b∗)

+ (1− q−nf ) ˜ZGLn(O),{1}(a
∗
1s1 + a∗2s2 + b∗).

Thus, the functional equations for the bivariate zeta function Z∗G(O)(s1, s2)

follows from (3.4.8).



Chapter 4

Analytic properties of Z∗
G(O)

This chapter comprises the results of [26], which concerns analytic properties
of the bivariate zeta functions Z irr

G(O) and Zcc
G(O). The main goal here is to prove

Theorem 5.
Let G be the unipotent group scheme obtained from the nilpotent O-Lie

lattice Λ. In Proposition 2.5.5, we have shown that the bivariate zeta functions
Z irr

G(O)(s1, s2) and Zcc
G(O)(s1, s2) converge at least on some domains of the form

{(s1, s2) ∈ C2 | Re(s1) > α1, Re(s2) > α2},
for some real constants α1 and α2. Recall from Section 2.4 that a domain is a
connected open subset of C2 with the usual topology.

In this chapter, we show that the maximal domains of convergence of these
zeta functions are independent of the ring of integers O and that they admit
meromorphic continuations to domains which are also independent of O, all this
possibly with exception of finitely many local factors. This is done using the
formulae of Denef type describing these zeta functions obtained in Section 3.4.

Throughout this chapter, we adopt the notation introduced in Sec-
tion 3.4.2. In particular, (Y, h) is the principalisation of the O-ideal I =∏l
κ=1

∏
ι∈Jκ(Fκι(Y )) given in that section.

Recall that Q1 is the finite set of all nonzero prime ideals p such that (Y, h)
has bad reduction modulo p. Let Qirr

2 be the finite set of all nonzero prime
ideals p of O with residue field of characteristic p satisfying:

1. p divides |Λ : M ||ι(Λ′) : Λ′|, or

2. for c 6= 2, all p ≤ c.

where ι(Λ′) is the isolator of the derived Lie sublattice Λ′ and M is the free O-
submodule of Λ of finite index described in Section 3.4.3. Moreover, we denote
by Qcc

2 the finite set of all nonzero prime ideals p of O with residue field of
characteristic p satisfying:

1. p divides |Λ : M ||ι(Λ′) : Λ′|, or

2. p ≤ c.

For ∗ ∈ {irr, cc}, denote by Q∗ the finite set Q1 ∪Q∗2 of “bad primes”.

51
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Recall that Z̃ irr
G(o)(s1, s2) and Z̃cc

G(o)(s1, s2) are the main terms (3.4.3)

and (3.4.4) of the bivariate representation, respectively, of the bivariate con-
jugacy class zeta functions of G(o). When determining the domains of conver-
gence and meromorphic continuation of the global bivariate zeta functions, it
suffices to determine the respective domains of convergence of the products of
the main terms of their local factors. In fact, the products

∏
p(1− qr−s1)−1 and∏

p(1− qz−s1)−1 converge for Re(s2) > 1− r and Re(s2) > 1− z, respectively,

and both admit meromorphic continuation to the whole C2; cf. Section 2.6.
In Section 4.1, we prove Theorem 5(1): for ∗ ∈ {irr, cc}, we determine in

Section 4.1.1 the domain of convergence D∗G(O) of the infinite product

G ∗G(O)(s1, s2) :=
∏

p/∈Q∗
Z̃∗G(o)(s1, s2), (4.0.1)

and show that D∗G(O) is independent of O, that is D∗G(O) = D∗G. In Section 4.1.2,

we determine the domains of convergence C ∗p of the local factors Z̃∗G(o)(s1, s2)

for p ∈ Q1 and show that they strictly contain the domain D∗G. Denote by C ∗Q1

the intersection of all C ∗p with p ∈ Q1. Since Q1 is finite, this means that the
domain of convergence of the infinite product

B∗G(O)(s1, s2) :=
∏

p/∈Q∗2

Z̃∗G(o)(s1, s2) (4.0.2)

is D∗G, since D∗G ∩ C ∗Q1
= D∗G. The primes belonging to Q∗2 are the primes

excluded in Theorem 5.
In Section 4.2 we prove Theorem 5(2): we show in Sections 4.2.2 and 4.2.1

that the product G ∗G(O)(s1, s2) admits meromorphic continuation to a do-
main MG ∗ which is independent of O. We then show in Section 4.2.3 that
M ∗

G = MG ∗ ∩ C ∗Q1
is a domain strictly containing D∗G, and then conclude

that B∗G(O)(s1, s2) admits meromorphic continuation to M ∗
G.

4.1 Convergence

4.1.1 Good reduction

Let ∗ ∈ {irr, cc}. The goal of this section is to determine the maximal
domain of convergence D∗G(O) of G ∗G(O)(s1, s2), given in (4.0.1)

Recall the integrals ZW(o),I(s) defined in (3.4.2), and that for p /∈ Q∗ this
integral may be written in terms of the functions ΞU,I(q, s) for U ⊆ T ; see
Definition 3.4.1 and Proposition 3.4.2. In this chapter, we only consider the
case I = {1} and thus we write simply ZW(o)(s) for ZW(o),{1}(s) and drop the
subscripts I and i appearing in the data associated to ZW(o)(s). Recall that for
each ∗ ∈ {irr, cc} there are integral vectors a∗1, a∗2, b∗, a positive integer n = n∗

and suitable data associated to the integral ZGLn(o)(s) such that

Z̃∗G(o)(s1, s2) = 1 + (1− q−1)−1Z̃GLn(o)(a
∗
1s1 + a∗2s2 + b∗)

= 1 +
(1− q−1)−1∏n−1
θ=1 (1− q−θ)

ZGLn(o)(a
∗
1s1 + a∗2s2 + b∗). (4.1.1)

The functions ΞU (q, s) are rewritten in [11, Section 3.1] in terms of zeta
functions of polyhedral cones in a fan. This allows the deduction of formulae for
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the integrals ZW(o)(s) from which one can read off the domain of convergence. In
analogy to [11], we apply this formula to the integrals ZGLn(o)(a

∗
1s1 +a∗2s2 +b∗)

with p /∈ Q∗ to determine the domain of convergence of G ∗G(O)(s1, s2). We recall

from [11, Section 3.1] the notation needed.
Let t be the cardinality of the set T defined in Section 3.4.2. Let {Ri}i∈[w]0

be a finite triangulation of Rt+1
≥0 consisting of pairwise disjoint cones Ri such

that each of them is a relatively open simple rational polyhedral cone with
the property of eliminating the “min-terms” in the exponent of q in ΞU (q, s).
Assume that R0 = {0} and that R1, . . . , Rz are the one-dimensional cones in
this triangulation. For each j ∈ [z] let rj ∈ Nt+1

0 denote the shortest integral
vector on the cone Rj . Then Rj = R>0rj .

All cones Ri are generated (as semigroups) by one-dimensional cones, so
that for each i ∈ [w] there exists a set Mi ⊆ [z] such that Ri is the direct sum
of monoids

Ri =
⊕
j∈Mi

R>0rj .

Since Ri = R>0ri exactly when i ∈ [z], it follows that |Mi| = 1 if and only if
i ∈ [z]. Because the Rj are simple,

Ri ∩Nt+1
0 =

⊕
j∈Mi

Nrj .

For U ⊆ T , the domain of summation of ΞU (q, s) is

CU = {m ∈ Nt0 ×N | mu = 0 if and only if u ∈ T\U}.
Denote by W ′U the (unique) subset of [w] such that CU is the disjoint union

CU =
⋃
i∈W ′U

Ri ∩Nt+1
0 ,

and by W ′ the union of all W ′U , that is, W ′ ⊆ [w] is the set of index of cones
which do not lie in the boundary component R≥0 × {0} of Rt+1

≥0 .
Given i ∈W ′, denote by Ui the unique subset U ⊆ T such that i ∈W ′U , and

ci(o/p) := cUi(o/p).

Proposition 4.1.1. [11, Proposition 3.2] For p /∈ Q∗, there exist Ajκ ∈ N and
Bj ∈ N0 for each j ∈ [z] and κ ∈ [l] such that

ZGLn(o)(s) =
(1− q−1)n+1

q(
n
2)

∑
i∈W ′

ci(o/p)(q − 1)|Ui|
∏
j∈Mi

q−(
∑l
κ=1 Ajκsk+Bj)

1− q−(
∑l
κ=1 Ajκsκ+Bj)

.

Proposition 4.1.1 applied to (4.1.1) gives the following result.

Proposition 4.1.2. For p /∈ Q∗, there exist A∗1j, A
∗
2j, B

∗
j ∈ Q, for each j ∈ [z],

such that Z̃∗G(o)(s1, s2) is given by

1 +
(1− q−1)nq−(n2)∏n−1

θ=1 (1− q−θ)

∑
i∈W ′

ci(o/p)(q − 1)|Ui|
∏
j∈Mi

q−A
∗
1js1−A

∗
2js2−B

∗
j

1− q−A∗1js1−A∗2js2−B∗j
.

Remark 4.1.3. The numbers Ajκ of Proposition 4.1.1 are constructed so that∑
j∈Mi

Ajκ = 0 if and only if the cone Ri lies in the boundary component
R≥0 × {0}, that is, if and only if i /∈ W ′. Similar arguments show that A∗1j ,
A∗2j of Proposition 4.1.2 are such that

∑
j∈Mi

A1j and
∑
j∈Mi

A2j are zero if
and only if i /∈W ′. Moreover, all the B∗j ’s of Proposition 4.1.2 are nonnegative,
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this follows from similar arguments as for the Bj ; see their construction in [11,
Section 3.1] and [11, Remark 3.6].

The numbers ci(o/p) are all divisible by

q(
n−1

2 )(1− q−1)−(n−1)
n−1∏
θ=1

(1− q−θ),

because of the way of construction of the relevant integrals; see [11, Remark 3.5].

Proposition 4.1.2 shows that the poles of the main terms of the bivariate
zeta functions are the ones occurring in the terms

(1− qA
∗
1js1−A

∗
2js2−B

∗
)−1,

for j ∈ Mi and i ∈ W ′ such that (A∗1j , A
∗
2j) 6= (0, 0). Since (A∗1j , A

∗
2j) 6= (0, 0)

exactly when j ∈W ′, it follows that the poles of Z̃∗G(o)(s1, s2) are unions of sets

P∗j = {(s1, s2) | A∗1js1 +A∗2js2 = B∗j }, j ∈ [z] ∩W ′.

Consequently, the domain of convergence of Z̃∗G(o)(s1, s2) is a finite intersec-

tion of sets of the following form.

Definition 4.1.4. For each δ ≥ 0 and each i ∈W ′ ∩ [z], set

Di,δ = {(s1, s2) ∈ C2 | Re(A∗1is1 +A∗2is2) > 1−B∗i − δ}.

Proposition 4.1.2 shows that the generating function Z̃∗G(o)(s1, s2) converges

at least on the domain
⋂
j∈[z]∩W ′ Dj,1.

We now want to investigate the domain of convergence of the infinite product
G ∗G(O)(s1, s2). For each i ∈W , let

Z̃∗i,p(s1, s2) =
(1− q−1)nq−(n2)∏n−1

θ=1 (1− q−θ)
ci(o/p)(q − 1)|Ui|

∏
j∈Mi

q−A
∗
1js1−A

∗
2js2−B

∗
j

1− q−A∗1js1−A∗2js2−B∗j
.

(4.1.2)
By Proposition 4.1.2,

Z̃∗G(o)(s1, s2) = 1 +
∑
i∈W ′

Z̃∗i,p(s1, s2).

Thus,

G ∗G(O)(s1, s2) =
∏

p/∈Q∗

(
1 +

∑
i∈W ′

Z̃∗i,p(s1, s2)

)
. (4.1.3)

We now determine the domain of absolute convergence Di of the product∏
p/∈Q∗(1+Z̃∗i,p(s1, s2)), that is, of the sum

∑
p/∈Q∗ Z̃∗i,p(s1, s2); cf. Lemma 2.5.2.

Since W ′ is a finite set, G ∗G(O)(s1, s2) converges absolutely on
⋂
i∈W ′ Di.

In preparation for that, we need some notation. In the set-up of Section 3.4.2,
T is the finite set of irreducible components Eu of the pre-image under h of the
variety defined by I, and EU :=

⋂
u∈U Eu. Denote by dU the dimension of EU .

For each U ⊆ T , it holds that dU =
(
n
2

)
− |U |; see [42, Proposition 4.13]. The

family of the irreducible components over K of EU of maximal dimension dU is
denoted by {FU,b}b∈IU , where IU is a finite set of indices. For b ∈ IU , denote
by lp(FU,b) the number of irreducible components of FU,b over o/pN which are
absolutely irreducible over an algebraic closure of o/pN .

We now record a useful consequence of the Lang-Weil estimate.
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Lemma 4.1.5. [42, Proposition 4.9] There exists C > 0 such that for all U ⊆ T
and p /∈ Q∗, ∣∣∣∣∣cU (o/p)−

∑
b∈IU

lp(FU,b)q
dU

∣∣∣∣∣ < CqdU−
1
2 ,

and lp(FU,b) > 0 for a set of prime ideals with positive density. This means
in particular that, for any sequence (rp)p/∈Q∗ of rational numbers, a sum of the
form

∑
p/∈Q∗ cU (o/p)rp converges absolutely if and only if

∑
p/∈Q∗ q

dU rp con-
verges absolutely.

In [42, Proposition 4.9], it is shown that, for each b ∈ IU , the number lp(FU,b)
is positive for a set of prime ideals of positive density. We remark that the
finitely many prime ideals excluded are elements of Q∗; see the proof of [42,
Lemma 4.7].

Proposition 4.1.6. For each i ∈ W ′, the domain of absolute convergence of
the product

∏
p/∈Q∗(1 + Z̃∗i,p(s1, s2)) is

Di :=
⋂
j∈Mi

Dj,1 ∩

(s1, s2) ∈ C2
∣∣ ∑
j∈Mi

Re
(
A∗1js1 +A∗2js2

)
> 1−

∑
j∈Mi

Bj

 .

Proof. If j ∈Mi ∩W ′, then each term q
−A∗1js1−A

∗
2js2−B

∗
j

1−q−A
∗
1j
s1−A∗2js2−B

∗
j

converges absolutely

if and only if (s1, s2) ∈ Dj,1, for each j ∈Mi. If j ∈Mi \W ′, the corresponding

term q
−A∗1js1−A

∗
2js2−B

∗
j

1−q−A
∗
1j
s1−A∗2js2−B

∗
j

has no poles and converges on the whole C2.

For (s1, s2) ∈ Dj,1, the convergent sequence ((1− q−A
∗
1js1−A

∗
2js2−B

∗
j )−1) is a

decreasing sequence when q increases, and hence it is bounded. The sequence(∏n−1
θ=1 (1− q−θ)−1

)
is also bounded when q increases. Therefore, to determine

where the series
∑

p/∈Q∗ Z̃∗i,p(s1, s2) converges absolutely, it suffices to determine
the domain of absolute convergence of the series∑

p/∈Q∗
(1− q−1)nq−(n2)ci(o/p)(q − 1)|Ui|q−

∑
j∈Mi

(A∗1js1+A∗2js2+B∗j ).

The Lang-Weil estimate of Lemma 4.1.5 guarantees that the series above con-
verges absolutely if and only if so does the following series:∑

p/∈Q∗
(1− q−1)nq−(n2)+dU (q − 1)|Ui|q−

∑
j∈Mi

(A∗1js1+A∗2js2+B∗j ),

which in turn converges absolutely for (s1, s2) ∈ C2 satisfying

Re

∑
j∈Mi

A∗1js1 +A∗2js2

 > 1−
∑
j∈Mi

Bj + |Ui| −
(
n

2

)
+ dUi = 1−

∑
j∈Mi

B∗j ,

because of the identity dUi =
(
n
2

)
− |Ui| and Proposition 2.6.1. It follows that

the domain of absolute convergence of the series
∑

p/∈Q∗ Z̃∗i,p(s1, s2), and hence

of the product
∏

p/∈Q∗(1 + Z̃∗i,p(s1, s2)) is Di, as desired.

If i ∈W ′ ∩ [z], since Mi = {i}, the set Di is given simply by

Di = {(s1, s2) ∈ C2 | Re(A∗1is1 +A∗2is2) > 1−B∗i } = Di,0. (4.1.4)
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We now show that the domain of absolute convergence of G ∗G(O)(s1, s2) is
given by an intersection of such sets.

Corollary 4.1.7. The product G ∗G(O)(s1, s2) converges on the domain

D∗G(O) = D∗G :=
⋂

i∈[z]∩W ′
Di, (4.1.5)

which is independent of the ring of integers O.

Proof. It is clear that D∗G is independent of O, since so are the sets Di. Proposi-
tion 4.1.6 shows that G ∗G(O)(s1, s2) converges absolutely on

⋂
i∈W ′ Di. We claim

that
⋂
i∈W ′ Di =

⋂
i∈[z]∩W ′ Di.

Let (s1, s2) ∈
⋂
i∈W ′∩[z] Di. Given k ∈W ′∑

j∈Mk

Re(A∗1js1 +A∗2js2) =
∑

j∈Mk∩W ′
Re(A∗1js1 +A∗2js2)

>
∑

j∈Mk∩W ′
(1−B∗j ) ≥ 1−

∑
j∈Mk

B∗j .

The equality is justified by the fact that (A∗1j , A
∗
2j) = (0, 0) if and only if j /∈W ′,

and the second inequality follows from the fact that B∗j ≥ 0 for all j ∈W ′. We
have shown that (s1, s2) ∈ Dk for each k ∈ W ′. Therefore,

⋂
i∈[z]∩W ′ Di ⊆⋂

k∈W ′ Dk.

4.1.2 Bad reduction

For each p ∈ Q1, denote by C ∗p the domain of convergence of the local factor
Z∗G(o)(s1, s2). We now show that C ∗p ) D∗G. A consequence is that

B∗G(O)(s1, s2) =
∏

p/∈Q∗2

Z̃∗G(o)(s1, s2)

converges absolutely on D∗G because Q1 is a finite set.
Recall that the main terms of the bivariate zeta functions are given in (4.1.1)

in terms of the p-adic integrals ZGLn(o)(a
∗
1s1 + a∗2s2 + b∗) of (3.4.2), where

a∗1, a∗2 and b∗ are the integral vectors defined in Section 3.4.3. The poles of
Z(a∗1s1+a∗2s2+b∗), in turn, are the poles of functions ΞNU,(dκι)(q,a1s1+a2s2+b)
of Definition 3.4.1, by Proposition 3.4.3.

The next proposition is analogous to [3, Proposition 4.5] and is proven in
the same way.

Proposition 4.1.8. Given q, N ∈ N, a family of integers (dκι) for κ ∈ [l] and
ι ∈ Jκ, and a1, a2, b ∈ Zl, the set of poles of ΞNU,(dκι)(q,a1s1 + a2s2 + b) is

independent of q, N and (dκι), for all U ⊆ T .

Since the function ΞNU,(dκι)(q,a1s1 + a2s2 + b) may be rewritten as

q
∑
u∈U (N−1)νuΞU,(d1

κι+
∑
u∈U Nuκι(N−1))(q,a1s1 + a2s2 + b),

it follows from Proposition 4.1.8 that the functions ΞNU,(dκι)(q,a1s1 + a2s2 + b)

and Ξ1
U,(0)(q,a1s1 + a2s2 + b) = ΞU (q,a1s1 + a2s2 + b) have the same poles.

In particular, the function ZGLn(o)(a
∗
1s1 +a∗2s2 +b∗) converges absolutely on

the domain
⋂
i∈[z]∩W ′ Dj,1 ) D∗G as in the good reduction case. This concludes

the proof of Theorem 5(1).
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4.2 Meromorphic continuation

We start by showing that the bivariate function G ∗G(O)(s1, s2) admits mero-
morphic continuation to a domain MG ∗ ) D∗G; recall the concept of meromor-
phy in two complex variables in Definition 2.4.3.

For each i ∈ W ′, set Ri = {j ∈ W ′ | Dj = Di}, where Di is the set defined
in (4.1.4). Set also

R =

i ∈W ′ ∩ [z]
∣∣ ⋂
j∈W ′\Ri

Dj 6= D∗G

 .

In other words, R is the set of indices i such that the boundary ∂Di of Di shares
infinitely many points with the boundary ∂D∗G of D∗G.

For each ∗ ∈ {irr, cc} and p /∈ Q∗, define

V ∗p (s1, s2) =
∏
i∈R

(1− ci(o/p)q−dUi q−A
∗
1is1−A

∗
2is2−B

∗
i ).

Observe that
∏

p/∈Q∗ Vp is convergent on D∗G, since for each i ∈ R the sum∑
p/∈Q∗ ci(o/p)q−dUi q−A

∗
1is1−A

∗
2is2−B

∗
i converges on Di. Recall from (4.1.3) that

G ∗G(O)(s1, s2) =
∏

p/∈Q∗(1 +
∑
i∈W ′ Z̃∗i,p(s1, s2)). Then, for (s1, s2) ∈ D∗G,

G ∗G(O)(s1, s2) =

∏
p/∈Q∗(1 +

∑
i∈W ′ Z̃∗i,p(s1, s2))V ∗p (s1, s2)∏
p/∈Q∗ V

∗
p (s1, s2)

,

provided that the numerator on the right-hand side converges. In the following,
we show that

(i) The product
∏

p/∈Q∗(1 +
∑
i∈W ′ Z̃∗i,p(s1, s2))V ∗p (s1, s2) is meromorphic on

a domain M 1
G ∗ ) D∗G which is independent of O, and

(ii) The product
∏

p/∈Q∗ V
∗
p (s1, s2) is meromorphic on a domain M 2

G ∗ ) D∗G,
which is independent of O.

4.2.1 Proof of (i)

We now introduce some convenient notation. The following is a modification
of the relations ≡ of [42, Section 4] and ≡∆ of [11, Definition 4.4].

Definition 4.2.1. Given families (fp(s1, s2))p/∈Q∗ and (gp(s1, s2))p/∈Q∗ of bi-
variate complex functions and a domain D, we write∏

p/∈Q∗
fp ≡D

∏
p/∈Q∗

gp

to indicate that
∑

p/∈Q∗(fp(s1, s2)− gp(s1, s2)) is absolutely convergent on D.

The following Lemmata establish convenient properties of ≡D.

Lemma 4.2.2. Let (fp(s1, s2)), (gp(s1, s2)), and (hp(s1, s2)) be families of bi-
variate complex functions indexed by p /∈ Q∗, and let D and D′ be domains
of C2. If

∏
p/∈Q∗ fp ≡D

∏
p/∈Q∗ gp and

∏
p/∈Q∗ gp ≡D′

∏
p/∈Q∗ hp, then∏

p/∈Q∗
fp ≡D∩D′

∏
p/∈Q∗

hp.
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In particular, if
∏

p/∈Q∗ gp(s1, s2) converges absolutely on the domain D′ and∏
p/∈Q∗ fp ≡D

∏
p/∈Q∗ gp, then

∏
p/∈Q∗ fp(s1, s2) converges absolutely on the do-

main D ∩D′.

Proof. The first claim follows from the fact that∑
p/∈Q∗

|fp(s1, s2)−hp(s1, s2)| ≤
∑
p/∈Q∗

(|fp(s1, s2)−gp(s1, s2)|+|gp(s1, s2)−hp(s1, s2)|).

By definition,
∏

p/∈Q∗ gp(s1, s2) being absolutely convergent on D′ is equiva-
lent to

∏
p/∈Q∗ gp ≡D′ 1. The second claim then follows from the first part of

Lemma 4.2.2.

Lemma 4.2.3. Let (fp(s1, s2)), (gp(s1, s2)), and (Xp(s1, s2)) be families of
bivariate complex functions indexed by p /∈ Q∗, and let D and D′ be domains
of C2. If

∏
p/∈Q∗ fp ≡D

∏
p/∈Q∗ gp and (Xp(s1, s2)) is bounded on D′, then∏
p/∈Q∗

fpXp ≡D∩D′
∏

p/∈Q∗
gpXp.

Proof. This is clear, as the partial sums
∑
|fp(s1, s2) − gp(s1, s2)||Xp(s1, s2)|

are bounded on D ∩D′.

In the following, we write DR,δ =
⋂
i∈R Di,δ for each δ > 0.

Proposition 4.2.4. There exists a domain D1 which is independent of O sat-
isfying the following condition: for each δ > 0 the intersection D1 ∩ DR,δ is a
domain strictly containing D∗G and such that∏

p/∈Q∗

(
1 +

∑
i∈W ′

Z̃∗i,p

)
V ∗p ≡D1

∏
p/∈Q∗

(
1 +

∑
i∈R

Z̃∗i,p

)
V ∗p . (4.2.1)

Proof. The domain D′1 :=
⋂
i∈W ′\R Di strictly contains D∗G, by choice of R,

and is independent of O, since so are the domains Di, for all i ∈W ′.
The domain D′1 has the property that, for each δ > 0, the intersection

D′1 ∩ DR,δ is a domain strictly containing D∗G. In fact, if D′1 ∩ DR,δ = D∗G,
then since DR,δ is a translation of D∗G which strictly contains it, we must have
D′1 = D∗G.

The definition of ≡D1 yields∏
p/∈Q∗

(
1 +

∑
i∈W ′

Z̃∗i,p

)
≡D1

∏
p/∈Q∗

(
1 +

∑
i∈R

Z̃∗i,p

)
.

Since the sequence (V ∗p (s1, s2))p/∈Q∗ is positive monotonically non-increasing
on DVp

:=
⋂
i∈R Di,(dUi+1), Lemma 4.2.3 assures that (4.2.1) holds for D1 :=

D′1 ∩DVp
.

Clearly, given γ, γ′ > 0, the intersection DR,γ ∩DR,γ′ is Di,min{γ,γ′}. Thus,
for each δ > 0, and for γ := min{dUi | i ∈ R},

D1 ∩DR,δ ⊇ D′1 ∩DR,min{δ,γ+1} ) D∗G.

We now use Lemma 4.2.2 to show that there exists δ > 0 such that∏
p/∈Q∗

(
1 +

∑
i∈R

Z̃∗i,p

)
V ∗p ≡DR,δ 1. (4.2.2)
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Then (4.2.2) and Proposition 4.2.4 together imply∏
p/∈Q∗

(
1 +

∑
i∈W ′

Z̃∗i,p

)
V ∗p ≡M1

G∗
1,

where M 1
G ∗ := D1 ∩ DR,δ, which is independent of the ring of integers O. In

preparation for this, we need three lemmata. In following, consider the auxiliary
functions

Z∗i,p(s1, s2) = ci(o/p)q−dUi q−A
∗
1is1−A

∗
2is2−B

∗
i , i ∈ R.

Lemma 4.2.5. There exist δ2 > 0 and a domain D2 ⊇ DR,δ2 such that∏
p/∈Q∗

V ∗p ≡D2

∏
p/∈Q∗

(
1−

∑
i∈R

Z∗i,p

)
.

Proof. We first notice that∑
p/∈Q∗

|V ∗p (s1, s2)− (1−
∑
i∈R

Z∗i,p(s1, s2))|

=
∑
p/∈Q∗

∣∣∣∣∣∏
i∈R

(
1−Z∗i,p(s1, s2)

)
−

(
1−

∑
i∈R

Z∗i,p(s1, s2)

)∣∣∣∣∣
=
∑
p/∈Q∗

∣∣∣∣∣∣∣∣
|R|∑
l=2

∑
I⊆R
|I|=l

(−1)l
∏
i∈I
Z∗i,p(s1, s2)

∣∣∣∣∣∣∣∣ . (4.2.3)

By applying successively the Lang-Weil estimate of Lemma 4.1.5 to (4.2.3), we
obtain that

∑
p/∈Q∗ |V ∗p (s1, s2) − (1 −

∑
i∈R Z∗i,p(s1, s2))| converges if and only

if the series ∑
p/∈Q∗

∣∣∣∣∣∣∣∣
|R|∑
l=2

∑
I⊆R
|I|=l

(−1)lq−
∑
i∈I(A∗1is1+A∗2is2+B∗i )

∣∣∣∣∣∣∣∣
converges, which in turn converges on the domain D2 defined by{

(s1, s2) ∈ C2
∣∣ ∑
i∈I

Re(A∗1is1 +A∗2is2) > 1−
∑
i∈I

Bi, I ⊆ R with |I| ≥ 2

}
.

Finally, if (s1, s2) ∈ DR, 12
, then for each I ⊆ R with |I| ≥ 2,∑

i∈I
Re(A∗1is1 +A∗2is2) >

∑
i∈I

(
1

2
−B∗i

)
≥ 1−

∑
i∈I

B∗i ,

that is, DR, 12
⊆ D2.

Lemma 4.2.6. There exist δ3 > 0 and a domain D3 ⊇ DR,δ3 such that∏
p/∈Q∗

(
1 +

∑
i∈R

Z̃∗i,p

)
≡D3

∏
p/∈Q∗

(
1 +

∑
i∈R

Z∗i,p

)
.

Proof. For each p /∈ Q∗ and i ∈ R, set

Sp,i(s1, s2) = (1−q−1)nq−(n2)(q−1)|Ui|qdUi−(1−q−A
∗
1is1−A

∗
2is2−B

∗
i )

n−1∏
θ=1

(1−q−θ).
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For each i ∈ R the sequences(
n−1∏
θ=1

(1− q−θ)−1

)
and ((1− q−A

∗
1is1−A

∗
2is2−B

∗
i )−1)

are positive and monotonically non-increasing for Re(A∗1is1 + A∗2is2) > −B∗i
when q increases. Thus, if the series∑

p/∈Q∗

∑
i∈R

∣∣∣Sp,i(s1, s2)ci(o/p)q−dUi q−A
∗
1is1−A

∗
2is2−B

∗
i

∣∣∣
converges absolutely on D3, then the series∑

p/∈Q∗

∑
i∈R

∣∣∣Z̃∗i,p(s1, s2)−Z∗i,p(s1, s2)
∣∣∣

=
∑
p/∈Q∗

∑
i∈R

|Sp,i(s1, s2)ci(o/p)q−dUi q−A
∗
1is1−A

∗
2is2−B

∗
i |

|(
∏n−1
θ=1 (1− q−θ))(1− q−A∗1is1−A∗2is2−B∗i )|

also converges absolutely on D3 ∩DR,1.

The claim of Lemma 4.2.6 then follows from the fact that the series∑
p/∈Q∗

∑
i∈R

(
ci(o/p)q−2A∗1is1−2A∗2is2−2B∗i

n−1∏
θ=1

(1− q−θ)

)
converges absolutely on DR, 12

, because of the Lang-Weil estimate of
Lemma 4.1.5 and Proposition 2.6.1.

Lemma 4.2.7. The product∏
p/∈Q∗

((
1 +

∑
i∈R

Z∗i,p(s1, s2)

)(
1−

∑
i∈R

Z∗i,p(s1, s2)

))
converges absolutely on the domain DR, 12

.

Proof. Let us show that∏
p/∈Q∗

(
1 +

∑
i∈R

Z∗i,p(s1, s2)

)(
1−

∑
i∈R

Z∗i,p(s1, s2)

)
≡D

R, 1
2

1.

In fact,∑
p/∈Q∗

∣∣∣∣∣1− (1 +
∑
i∈R

Z∗i,p(s1, s2))(1−
∑
i∈R

Z∗i,p(s1, s2))

∣∣∣∣∣
=
∑
p/∈Q∗

∑
i∈R

∑
j∈R

∣∣Z∗i,p(s1, s2)Z∗j,p(s1, s2)
∣∣

=
∑
p/∈Q∗

∑
i∈R

∑
j∈R

∣∣∣ci(o/p)cj(o/p)q−dUi−dUj q−(A∗1i+A
∗
1j)s1−(A∗2i+A

∗
2j)s2−(B∗i +B∗j )

∣∣∣ ,
which, by Lemma 4.1.5, converges if and only if the following series converges:∑

p/∈Q∗

∑
i∈R

∑
j∈R

∣∣∣q−(A∗1i+A
∗
1j)s1−(A∗2i+A

∗
2j)s2−(B∗i +B∗j )

∣∣∣ .
Proposition 2.6.1 assures that the latter series converges on

D4 := {(s1, s2) ∈ C2 | Re((A∗1i+A
∗
1j)s1+(A∗2i+A

∗
2j)s2) > 1−B∗i −B∗j , i, j ∈ R}.
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In particular, if we choose i = j in R, we see that for each (s1, s2) ∈ D4,

Re(A∗1is1 +A∗2is2) >
1− 2B∗i

2
= 1−B∗i −

1

2
.

In other words, D4 ⊆ DR, 12
. The equality D4 = DR, 12

holds, since (s1, s2) ∈
DR, 12

implies

Re((A∗1i +A∗1j)s1 + (A∗2i +A∗2j)s2) >
1− 2B∗i

2
+

1− 2B∗j
2

= 1−Bi −Bj .

There is δ > 0 such that the domains D2 and D3 of Lemmata 4.2.5 and 4.2.6
satisfy

D2 ∩ D3 ∩DR, 12
⊇ DR,δ2 ∩DR,δ3 ∩DR, 12

= DR,δ.

It then follows from Lemmata 4.2.2, 4.2.5, 4.2.6, and 4.2.7 that∏
p/∈Q∗

(1 +
∑
i∈R

Z̃∗i,p)V ∗p ≡DR,δ

∏
p/∈Q∗

(1 +
∑
i∈R

Z̃∗i,p)(1−
∑
i∈R

Z∗i,p)

≡DR,δ

∏
p/∈Q∗

(1 +
∑
i∈R

Z∗i,p)(1−
∑
i∈R

Z∗i,p) ≡DR,δ 1,

which confirms (4.2.2).

4.2.2 Proof of (ii)

For i ∈ R, we define the following functions, which are analogous to the Vi(s)
of [11, Section 4.2].

V ∗i (s1, s2) :=
∏

p/∈Q∗
(1− ci(o/p)q−dUi q−A

∗
1is1−A

∗
2is2−B

∗
i ).

It suffices to show that each V ∗i (s1, s2) admits meromorphic continuation to
Di,∆, for some ∆ > 0. Then, since R is finite, it will follow that∏

i∈R

V ∗i (s1, s2) =
∏

p/∈Q∗
V ∗p (s1, s2)

admits meromorphic continuation to M 2
G ∗ :=

⋂
i∈R Di,∆.

The following proposition is analogous to [42, Lemma 4.6].

Proposition 4.2.8. For each i ∈W and b ∈ IUi , the function

Vb,i(s1, s2) =
∏

p/∈Q∗
(1− lp(FUi,b)q

−A∗1is1−A
∗
2is2−B

∗
i )

converges absolutely on Di. Moreover, there exists δi > 0 such that Vb,i(s1, s2)
admits meromorphic continuation to Di,δi .

Proof. For each i ∈ R and b ∈ IUi , the convergence of Vb,i(s1, s2) follows from
the fact pointed out in the proof of [42, Lemma 4.6] that lp(FUi,b) is bounded
by the number of absolutely irreducible components of FUi,b. Then, for a suf-
ficiently large C > 0, the sum

∑
p/∈Q∗ lp(FU,b)q

−A∗1is1−A
∗
2is2−B

∗
i is majored by

C
∑

p/∈Q∗ q
−A∗1is1−A

∗
2is2−B

∗
i , which converges for Re(A∗1is1 +A∗2is2) > 1−B∗i .

Let L|K be a finite Galois extension and S the finite set of prime ideals p
of O which are unramified and of the prime ideals p such that the reduction of
FUi,b mod p is smooth. Denote by Frobp (p unramified) the conjugacy class in
the Galois group of L|K consisting of Frobenius elements. Given a1, a2, b ∈ R
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with (a1, a2) 6= (0, 0) and a representation ρ of the Galois Group of L|K, one
can show that the Artin L-function

LFU,b(a1s1 + a2s2 + b) =
∏
p

det(1− ρ(Frob)pq
−a1s1−a2s2−b)−1

converges for Re(a1s1 + a2s2) > 1− b and admits meromorphic continuation to
the whole C2, the same way that LFU,b(s) does; see [32, Section 10 of Chap.VII].
This is due essentially to the facts that, although we are considering two vari-
ables, the function LFU ,b(a1s1 + a2s2 + b) is being taken over values on C given
by the entire function ω : C2 → C defined by ω(s1, s2) = a1s1 + a2s2 + b.

In particular, the second part of this proposition follows from similar argu-
ments as the ones of [42, Lemma 4.6].

Proposition 4.2.8 assures that
∑

p/∈Q∗ lp(FUi,b)q
−A∗1is1−A

∗
2is2−B

∗
i converges

absolutely on Di and admits meromorphic continuation to Di,δi for some δi > 0
and, hence, the sum

∑
b∈IUi

∑
p/∈Q∗ lp(FUi,b)q

−A∗1is1−A
∗
2is2−B

∗
i also does, because

IUi is finite.
For each i ∈ R, define

Ṽ ∗i (s1, s2) =
∏
b∈IUi

∏
p/∈Q∗

(1− lp(FUi,b)q
−A∗1is1−A

∗
2is2−B

∗
i ) =

∏
b∈IUi

Vb,i(s1, s2).

(4.2.4)

Since IUi is finite, Proposition 4.2.8 assures that Ṽ ∗i (s1, s2) converges on Di and
admits meromorphic continuation to Di,δi for some δi > 0.

The Lang-Weil estimate of Lemma 4.1.5 gives a positive constant ∆i

such that V ∗i (s1, s2) ≡Di,∆i
Ṽ ∗i (s1, s2) for each i ∈ R. It follows from

Lemma 4.2.2 that V ∗i (s1, s2) is a meromorphic function on Di,min{δi,∆i}, and
therefore

∏
p/∈Q∗ V

∗
i (s1, s2)(s1, s2) is meromorphic on DR,∆ =

⋂
i∈R Di,∆, for

∆ = min{δi,∆i | i ∈ R}.

4.2.3 Proof of Theorem 5(2)

It follows from the results of Sections 4.2.1 and 4.2.2 that G ∗G(O)(s1, s2) is

meromorphic on the domain M 1
G ∗∩M 2

G ∗ , which is independent of O. Moreover,
M 2

G ∗ = DR,∆ for some ∆ > 0 and the intersection of M 1
G ∗ with a domain of

the form DR,δ with δ > 0 is a domain strictly containing D∗G.
In Section 4.1.2, we have shown that, for p ∈ Q1, the domain of convergence

C ∗p of Z̃∗G(o)(s1, s2) is a domain of the form
⋂
i∈[z]∩W ′ Di,δ. Denote by C ∗Q1

the

intersection of all C ∗p with p ∈ Q1.
Since the function ∏

p/∈Q∗2

Z̃∗G(o)(s1, s2)

is meromorphic on M ∗
G = M ∗

G(O) := M 1
G ∗ ∩M 2

G ∗ ∩ C ∗Q1
, it is left to show

that M ∗
G is a domain strictly containing D∗G.

In fact, for each i ∈ [z]∩W ′ the domain Di,δ is a translation of the domain Di.
Thus, R is also the set of all indices i ∈ [z] ∩ W ′ such that the boundary

∂Di,δ shares infinitely many points with the boundary ∂
(⋂

i∈[z]∩W ′ Di,δ

)
. In

other words,
⋂
i∈[z]∩W ′ Di,δ =

⋂
i∈R Di,δ = DR,δ. Therefore, the domains of

convergence C ∗p for p ∈ Q1 are domains of the form DR,δ with δ > 0, and hence
C ∗Q1

= DR,γ for some γ > 0, which concludes the proof of Theorem 5(2).



Chapter 5

Groups of type F , G, and H

This chapter comprises the results of [28], which concerns bivariate zeta
functions of groups of type F , G, and H.

Fix n ∈ N and δ ∈ {0, 1}. Recall the nilpotent Z-Lie lattices of Defini-
tion 1.2.1:

Fn,δ = 〈xk, yij | [xi, xj ]− yij , 1 ≤ k ≤ 2n+ δ, 1 ≤ i < j ≤ 2n+ δ〉,
Gn = 〈xk, yij | [xi, xn+j ]− yij , 1 ≤ k ≤ 2n, 1 ≤ i, j ≤ n〉,
Hn = 〈xk, yij | [xi, xn+j ]− yij , [xj , xn+i]− yij , 1 ≤ k ≤ 2n, 1 ≤ i ≤ j ≤ n〉.

By convention, relations that do not follow from the given ones are trivial.

In this chapter, we consider the unipotent group scheme G = GΛ associated
to one of the Z-Lie lattices Fn,δ, Gn, or Hn given above, that is, Λ is one of the
Z-Lie lattices Fn,δ, Gn, or Hn.

In this chapter, we prove Theorems 2 and 3, in Sections 5.1 and 5.2, respec-
tively. We also give an alternative prove to Theorem 4 for the representation
case in Section 5.3.3. In Section 5.3.2, formulae for the joint distribution of
three functions on Weyl groups of type B are obtained by writing the local class
number zeta functions of G(O) as sums over finite hyperoctahedral groups in
terms of statistics on such groups and then comparing these formulae with the
ones given in Corollary 1.2.2.

Fix a prime ideal p of O. As in Section 3.2.2, set g = Λ(o) = Λ ⊗O o and
let g′ and z be the derived Lie sublattice and the centre of g, respectively. We
observe that the numbers h, a, b, r, and z defined in Section 3.2.2 are given as
follows in the current context.

Λ h = rk(g) a = rk(g/z) b = rk(g′) = rk(z) = z

Fn,δ
(

2n+δ+1
2

)
2n+ δ

(
2n+δ

2

)
Gn n2 + 2n 2n n2

Hn
(
n+1

2

)
+ 2n 2n

(
n+1

2

)
Table 5.1: Constants associated to Fn,δ, Gn, and Hn

63
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5.1 Bivariate conjugacy class zeta functions—
Proof of Theorem 2

5.1.1 Commutator matrices

Proposition 3.2.12 describes bivariate zeta functions in terms of p-adic in-
tegrals whose integrand is given in terms of minors of commutator matrices.
In order to explicitly calculate these integrals, we describe the A-commutator
matrix of groups of type F , G, and H. In this chapter we write AΛ(X) instead
of A(X) for the commutator matrix of g = Λ(o).

We determine the ordered sets e and f defined in Section 3.2.2 in the con-
text of the Lie lattice Λ ∈ {Fn,δ,Gn,Hn}. The ordered set e is given by
e = (x1, . . . , xa), where the xi are the elements appearing in the presenta-
tion of Λ of Definition 1.2.1 and the ordering is xi > xi+1 for each i ∈ [a − 1].
Then e = (e1, . . . , ea) is an o-basis of g/z, where denotes the natural surjection
g→ g/z.

To determine f , define

DΛ =


{(i, j) ∈ [2n+ δ]2 | 1 ≤ i < j ≤ 2n+ δ}, if Λ = Fn,δ,
[n]2, if Λ = Gn,
{(i, j) ∈ [n]2 | 1 ≤ i ≤ j ≤ n}, if Λ = Hn,

and let yij be the elements appearing in the relations of the presentation of Λ
of Definition 1.2.1. Then f = (yij)(i,j)∈DΛ

, with ordering given by yij > ykl,
whenever either i < k or i = k and j < l. For simplicity, we write f =
(yij)(i,j)∈DΛ

= (f1, . . . , fb) so that f1 > · · · > fb. The following lemma relates
the notations f = (f1, . . . , fb) and f = (yij)(i,j)∈DΛ

.

Lemma 5.1.1. Let ωΛ : DΛ → [b] be the map satisfying yij = fω(i,j). Then

ωΛ(i, j) =


(i− 1)a−

(
i+1
2

)
+ j, if Λ = Fn,δ,

(i− 1)n+ j, if Λ = Gn,
(i− 1)n−

(
i
2

)
+ j, if Λ = Hn.

Proof. For Λ = Fn,δ, the ordering of the yij is given by the following identities:

ωFn,δ(i, j + 1) = ω(i, j) + 1, 1 ≤ i < j < a,

ωFn,δ(i, i+ 1) = ωFn,δ(i− 1, a) + 1, 1 ≤ i < a,

In particular, for 1 ≤ i < j < a,

ωFn,δ(i, j) = ωFn,δ(i, j − 1) + 1 = · · · = ωFn,δ(i, i+ 1) + j − i− 1

= ωFn,δ(i− 1, a) + j − i.
Since ωFn,δ(1, j) = j − 1, we see that ωFn,δ(2, j) = (a− 1) + j − 2, and thus

ωFn,δ(3, j) = (a− 1) + (a− 2) + j − 3. Inductively,

ωFn,δ(i, j) =

i−1∑
k=1

(a− k) + j − i = (i− 1)a−
(
i
2

)
+ j − i = (i− 1)a+

(
i+1
2

)
+ j.

The other cases follow from similar arguments.

Let X = (X1, . . . , Xa) be a vector of variables and, for m ∈ [a], set

CΛ,m = {ωΛ(m, j) | (m, j) ∈ DΛ}.
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We want to determine the submatrix A
(m)
Λ (X) of AΛ(X) composed by the

columns of index in CΛ,m so that

AFn,δ(X) =
[
A

(1)
Fn,δ(X) A

(2)
Fn,δ(X) . . . A

(a−1)
Fn,δ (X)

]
,

AΛ(X) =
[
A

(1)
Λ (X) A

(2)
Λ (X) . . . A

(n)
Λ (X)

]
,

for Λ ∈ {Gn,Hn}. For Λ ∈ {Fn,δ,Gn,Hn}, the matrices AΛ(X) all have size
a× b. Set

νΛ,m =


(m− 1)a−

(
m+1

2

)
+m, if Λ = Fn,δ

(m− 1)n, if Λ = Gn
(m− 1)n−

(
m
2

)
+m− 1, if Λ = Hn,

so that CΛ,m = {νΛ,m + 1, . . . , νΛ,m + kΛ,m}, where

kΛ,m =


a−m, if Λ = Fn,δ,
n, if Λ = Gn,
n−m+ 1, if Λ = Hn,

that is, the jth column of A
(m)
Λ (X) is the (νΛ,m + j)th column of AΛ(X).

The relations of Λ show that, for (i, j) ∈ DΛ and for k ∈ CΛ,m, the structure
constants involving (i, j) are the ones in the following table:

Λ structure constants involving (i, j)

Fn,δ λkij =

{
1, if k = ωFn,δ(i, j),

0, otherwise,

Gn λki(n+j) =

{
1, if k = ωGn(i, j),

0, otherwise,

Hn λki(n+j) = λkj(n+i) =

{
1, if k = ωHn(i, j),

0, otherwise.

Table 5.2: Structure constants for Fn,δ, Gn, and Hn

Since CΛ,m is composed of all ωΛ(m, j) with (m, j) ∈ DΛ, it is clear that the

indices k ∈ CΛ,m of the columns of A
(m)
Λ (X) cannot equal ωΛ(i, j) if i 6= m. In

particular, λkij = 0 if i, j 6= m. Every k ∈ CΛ,m is of the form k = νΛ,m + l, for

some l ∈ [kΛ,m]. Recall that the (i, l)th entry of A
(m)
Λ (X) is the (i, νΛ,m + l)th

entry of AΛ(X), that is,

A
(m)
Λ (X)il = AΛ(X)i(νΛ,m+l).

In the following, we determine A
(m)
Λ (X) of each type separately.

A-commutator matrices of groups of type F

For Λ = Fn,δ, the index k = νFn,δ,m + l coincides with ωFn,δ(m, j) =

νFn,δ,m + j − m if and only if j = l + m. It follows that λkij = 1 if and
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only if i = m and j = m+ l. Hence the (m, l)th entry of A
(m)
Fn,δ(X) is

A
(m)
Fn,δ(X)ml =

a∑
j=1

λ
νFn,δ,m+l

mj Xj = Xm+l,

and, for i 6= m, its (i, l)th entry is

A
(m)
Fn,δ(X)il = −

a∑
j=1

λ
νFn,δ,m+l

ji Xj =

{
−Xm, if i = m+ l,

0, otherwise.

Given s, r ∈ N, let 0s×r be the (s × r)-zero matrix and let 1s be the (s × s)-
identity matrix, both over o[X]. It follows that, for each m ∈ [a− 1],

A
(m)
Fn,δ(X) =


0(m−1)×(2n+δ−m)

Xm+1 Xm+2 . . . X2n+δ

−Xm 1(2n+δ−m)

 ∈ Mat(2n+δ)×(2n+δ−m)(o[X]).

A-commutator matrices of groups of type G

For Λ = Gn, the index k = νGn,m + l coincides with ωGn(m, j) = νGn,m + j
if and only if j = l. It follows that λki(n+j) = 1 if and only if i = m and j = l.

Hence the (m, l)th entry of A
(m)
Gn (X) is

A
(m)
Gn (X)ml =

a∑
j=1

λ
νGn,m+l
mj Xj = Xn+l,

and, for i 6= m, its (i, l)th entry is

A
(m)
Gn (X)il = −

a∑
j=1

λ
νGn,m+l
ji Xj =

{
−Xm, if i = n+ l,

0, otherwise.

Hence, for each m ∈ [n],

A
(m)
Gn (X) =



0(m−1)×n

Xn+1 Xn+2 . . . X2n

0(n−m)×n

−Xm1n


∈ Mat2n×n(o[X]). (5.1.1)

A-commutator matrices of groups of type H

For Λ = Hn, the index k = νHn,m + l coincides with ωHn(m, j) = νHn,m +
j−m+1 if and only if j = m+ l−1. If follows that λki(n+j) = λkj(n+i) = 1 if and
only if either i = m and j = m+ l − 1 or j = m and i = m+ l − 1. Therefore

A
(m)
Hn (X)ml =

a∑
j=1

λ
νHn,m+l
mj Xj = Xn+m+l−1,

A
(m)
Hn (X)(n+m)l = −

a∑
j=1

λ
νHn,m+l

j(n+m) Xj = −Xm+l−1.
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For i ∈ [n] \ {m}, the (i, l)th entry of A
(m)
Hn (X) is

A
(m)
Hn (X)il =

n∑
j=1

λ
νHn,m+l

j(n+i) Xn+j =

{
Xn+m, if i = m+ l − 1,

0, otherwise.

For i = n+ t with t ∈ [n] \ {m}, the (i, l)th entry of A
(m)
Hn (X) is

A
(m)
Hn (X)il = −

n∑
j=1

λ
νHn,m+l

j(n+t) Xj =

{
−Xm, if t = m+ l − 1,

0, otherwise.

Hence, for each m ∈ [n],

A
(m)
Hn (X) =



0(m−1)×(n−m+1)

Xn+m Xn+m+1 . . . X2n

Xn+m

. . .

Xn+m

0(m−1)×(n−m+1)

−Xm −Xm+1 . . . −Xn

−Xm

. . .

−Xm



∈ Mat2n×(n−m+1)(o[X]).

(5.1.2)

Example 5.1.2. We now illustrate the form of each commutator matrix.

AF2,0(X) =


X2 X3 X4

−X1 X3 X4

−X1 −X2 X4

−X1 −X2 −X3

 ,

AG3(X) =



X4 X5 X6

X4 X5 X6

X4 X5 X6

−X1 −X2 −X3

−X1 −X2 −X3

−X1 −X2 −X3


,

AH3(X) =



X4 X5 X6

X4 X5 X6

X4 X5 X6

−X1 −X2 −X3

−X1 −X2 −X3

−X1 −X2 −X3


,
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where the omitted entries equal zero. 4
It is not difficult to see that AΛ(X) has rank a − 1 in all cases, that is,

uA = a− 1.
We now proceed to a detailed analysis of the A-commutator matrix in each

individual type.

5.1.2 Conjugacy class zeta functions of groups of type F

Lemma 5.1.3. For w ∈ p and x ∈W o
a , that is, for x ∈ oa such that vp(x) = 0,

‖Fk(AFn,δ(x)) ∪ wFk−1(AFn,δ(x))‖p
‖Fk−1(AFn,δ(x))‖p

= 1, for all k ∈ [a− 1]. (5.1.3)

Proof. The columns of AFn,δ(X) are of the form

kth row
{

jth row
{


Xj

−Xk

 , for each j, k ∈ [a], (5.1.4)

where the nondisplayed entries equal 0. Denote column (5.1.4) by Cj,k. For
each i ∈ [a], consider the (a× (a− 1))-submatrix Ki(X) of AFn,δ(X) composed
of the columns Ci,1, . . . , Ci,i−1, Ci+1,i, Ci+2,i, . . . , Ca,i in this order. That is,

Ki(X) =



Ci,1︷︸︸︷
Xi

Ci,i−1︷︸︸︷ Ci+1,i︷︸︸︷ Ca,i︷︸︸︷
. . .

Xi

−X1 . . . −Xi−1 Xi+1 Xa

−Xi

. . .

−Xi


,

Given x ∈ W o
a , it is clear that, for at least one i0 ∈ [a], the matrix Ki0(x) has

rank a− 1. That is, for each k ∈ [a− 1], there exists a (k × k)-minor of Ki0(x)
which is a unit. Since the (k×k)-minors of Ki0(x) are elements of Fk(AFn,δ(x)),
expression (5.1.3) follows.

Lemma 5.1.3, Proposition 3.2.12, and Lemma 2.2.1 yield

Zcc
Fn,δ(o)(s1, s2)

=
1

1− q(
2n+δ

2 )−s2

(
1 + (1− q−1)−1

∫
(w,x)∈p×Wo

2n+δ

|w|(2n+δ−1)s1+s2−(2n+δ
2 )−2

p dµ

)

=
1− q(

2n+δ−1
2 )−(2n+δ−1)s1−s2

(1− q(
2n+δ

2 )−s2)(1− q(
2n+δ

2 )+1−(2n+δ−1)s1−s2)
,

proving Theorem 2 for groups of type F .

Remark 5.1.4. Formula (1.2.1) for the class number zeta function Fn,δ(O) re-
flects the K-minimality of Λ = Fn,δ; see [38, Lemma 6.2 and Definition 6.3]. In
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fact, the proof of Lemma 5.1.3 shows that

‖Fk(AFn,δ(x)) ∪ yFk−1(AFn,δ(x))‖p
‖Fk−1(AFn,δ(x))‖p

= ‖x, y‖p.

Thus, the formula for the local factors of the class number zeta function of
Fn,δ(O) given in Corollary 1.2.2 coincides with the formula of the class number
zeta function of Fn,δ(o) given by the specialisation of the formula given in [38,
Proposition 6.4]; see Remark 3.2.14.

5.1.3 Conjugacy class zeta functions of groups of type G

We first describe the determinant of a square matrix in terms of its 2 × 2-
minors, which will be used to describe the minors of AGn(X). Given a matrix

M = (mij), let M̃(i,j),(r,s) =

∣∣∣∣∣ mij mis

mrj mrs

∣∣∣∣∣.
Lemma 5.1.5. Given t ∈ N, let G = (gij)1≤i,j≤2t and U = (uij)1≤i,j≤2t+1

be matrices with gij = g(X)ij, uij = u(X)ij ∈ o[X]. Let i = {i1, . . . , it},
j = {j1, . . . , jt} ⊂ [2t]. Then, for suitable αi,j, βi,j ∈ {−1, 1},

det(G) =
∑

i∪j=[2t]
iq<jq, ∀q∈[t]

αi,jG̃(1,i1),(2,j1)G̃(3,i2),(4,j2) · · · G̃(2t−1,it),(2t,jt),

det(U) =

2t+1∑
i=1

∑
i∪j=[2t+1]\{i}
iq<jq, ∀q∈[t]

βi,ju1iŨ(1,i1),(2,j1)Ũ(3,i2),(4,j2) · · · Ũ(2t−1,it),(2t,jt).

Proof. Given two subsets I, J ⊆ [2t] of equal cardinality m, denote by ĜI,J the
determinant of the (2t −m) × (2t −m)-submatrix of G obtained by excluding
the rows of indices in I and columns of index in J . The entries of the submatrix
G{1},{k} = (g̃ij)ij obtained from G by excluding its first row and its kth column
are given by

g̃ij =

{
g(i+1)j , if j ∈ [k − 1],

g(i+1)(j+1), if j ∈ {k, . . . , 2t− 1}.

Consequently,

Ĝ{1},{k} =

k−1∑
j=1

(−1)1+jg2jĜ{1,2},{j,k} +

2t−1∑
j=k

(−1)1+jg2(j+1)Ĝ{1,2},{k,j+1}.

It follows that

det(G) =

2t∑
k=1

(−1)1+kg1kĜ{1},{k}

=

2t∑
k=1

k−1∑
j=1

(−1)k+jg1kg2jĜ{1,2},{j,k} −
2t∑

j=k+1

(−1)k+jg1kg2jĜ{1,2},{k,j}


=

2t−1∑
m=1

2t∑
i=m+1

(−1)i+m−1(g1mg2i − g1ig2m)Ĝ{1,2}{m,i}
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=

2t−1∑
m=2

2t∑
i=m+1

(−1)i+m−1G̃(1,m),(2,i)Ĝ{1,2},{m,i}.

The relevant claim of Lemma 5.1.5 for the matrix G follows by induction on t.

The claim for the matrix U follows by the first part, since its determinant is

det(U) =

2t+1∑
i=1

(−1)i+1u1iÛ{1},{i}.

Lemma 5.1.6. For each r ∈ [2n], the nonzero elements of Fr(AGn(X)) are
either of one of the following forms or a sum of these terms.

Xi1 · · ·XiωXn+j1 · · ·Xn+jλ or −Xi1 · · ·XiωXn+j1 · · ·Xn+jλ .

Proof. Lemma 5.1.5 describes each element of Fk(AGn(X)) in terms of sums of
products of (2×2)-minors of AGn(X). It then suffices to show that these minors
are all either 0 or of the forms XiXj or −XiXj , for some i, j ∈ [2n]. This can
be seen from the description of AGn(X) in terms of the blocks (5.1.1).

The proof of Theorem 2 for groups of type G follows from the following
Proposition.

Proposition 5.1.7. Let X = (X1, . . . , X2n) be a vector of variables. Given
λ, ω ∈ [n]0 such that 0 < ω + λ ≤ 2n− 1, for all choices of i1, . . . , iω, j1, . . . ,
jλ ∈ [n], one of

Xi1 · · ·XiωXn+j1 · · ·Xn+jλ or −Xi1 · · ·XiωXn+j1 · · ·Xn+jλ

is an element of Fω+λ(AGn(X)).

In fact, for x, y ∈ o, it holds that min{vp(x + y), vp(x), vp(y)} =
min{vp(x), vp(y)}. Thus, if some term of the form

Xi1Xi2 · · ·XiωXn+j1 · · ·Xn+jλ −Xk1
Xk2
· · ·XkωXn+l1 · · ·Xn+lλ

is a minor of the commutator matrix AGn(X), then, assuming the claim in
Proposition 5.1.7 holds, both

Xi1Xi2 · · ·XiωXn+j1 · · ·Xn+jλ and Xk1
Xk2
· · ·XkωXn+l1 · · ·Xn+lλ

are minors of this commutator matrix (up to sign), and hence, when consid-
ering these three terms, only the last two will be relevant in order to de-
termine ‖Fr(AGn(X))‖p. In this case, we may assume that all elements are
of the form given in Proposition 5.1.7 while computing ‖Fr(AGn(X))‖p and
‖Fr(AGn(X)) ∪ wFr−1(AGn(X))‖p.

Firstly we show Proposition 5.1.7 for the case where both {i1, . . . , iω} and
{j1, . . . , jλ} have cardinality smaller than n.

Lemma 5.1.8. Let ω, λ ∈ [n]0 not both zero and not both n. Given i1, . . . , iω,
j1, . . . , jλ ∈ [n] such that |{i1, . . . , iω}|, |{j1, . . . , jλ}| < n, either

Xi1 · · ·XiωXn+j1 · · ·Xn+jλ or −Xi1 · · ·XiωXn+j1 · · ·Xn+jλ

is an element of Fλ+ω(AGn(X)).

Proof. For each (i, j) = (i1, . . . , iω, j1, . . . , jλ) as in the assumption of
Lemma 5.1.8, we construct explicitly a submatrix of AGn(X) which is, up to
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reordering of rows and columns, of the form

Xn+j1

T (X). . .

Xn+jλ

W (X)
−Xi1

. . .

−Xiω


(5.1.5)

where T (X) = (t(X)ij) and W (X) = (w(X)ij) are such that t(X)ij = 0 and
w(X)ij = 0, if i ≤ j. It is clear that the determinant of this matrix is one of
±Xi1 · · ·XiωXn+j1 · · ·Xn+jλ .

The main fact we use is that the columns of AGn(X) are of the form

ith row
{

(n+ j)th row
{


Xn+j

−Xi

 , (5.1.6)

where the nondisplayed terms equal zero. For each i, j ∈ [n], there is exactly
one column of AGn(X) with Xn+j in the ith row, and exactly one column with
−Xj in the (n+ i)th row.

Fix l1 ∈ [n] \ {i1, . . . , iω} and let c1 denote the unique column of AGn(X)
with Xn+j1 in the l1th row. Inductively, fix lk ∈ [n] \ {l1, . . . , lk−1, ik, . . . , iω},
for each k ∈ [λ], and let ck be the unique column of AGn(X) with Xn+jk in the
lkth row.

Analogously, fix m1 ∈ [n]\{j1, . . . , jλ} and let C1 be the index of the unique
column of AGn(X) with −Xi1 in the (n+m1)th row, and, inductively, fix mq ∈
[n] \ {m1, . . . ,mq−1, jq, . . . , jλ}, for each q ∈ [ω], and let Cq be the index of the
unique column of AGn(X) with −Xiq in the (n+mq)th row.

From (5.1.6), one sees that the columns ck and Cq are given by

lkth row
{

(n+ jk) th row
{



ck︷︸︸︷
Xn+jk

−Xlk


iqth row

{
(n+mq) th row

{



Cq︷︸︸︷
Xn+mq

−Xiq

 . (5.1.7)

By construction, the indices ck are all distinct, and so are the indices Cq. If
ck = Cq for some k ∈ [λ] and some q ∈ [ω], then we would obtain lk = iq.
Analogously, the indices l1, . . . , lλ, n+m1, . . . , n+mω are all distinct.

Consider the matrix M(i,j)(X) composed of columns ck and Cq and of rows
lk and n + mq, for k ∈ [λ] and q ∈ [ω]. This matrix is of the form (5.1.5) for
some matrices T (X) ∈ Matλ×ω(o[X]) and W (X) ∈ Matω×λ(o[X]). Let us show
that, in fact, t(X)ij = 0 and w(X)ij = 0 for i ≤ j.

The only nonzero entries of Cq are the ones of indices iq and n + mq. We
chose each lk so that lk /∈ {i1, . . . , ik}. Since any of the rows l1, . . . , lq is the
iqth row of AGn(X), it follows that t(X)iq = 0, for all i ≤ q. Analogously, since
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the only nonzero entries of ck are lk and n+ jk and mq /∈ {j1, . . . , jq}, it follows
that w(X)ik = 0, for all i ≤ k.

Proof of Proposition 5.1.7. Lemma 5.1.8 shows the claim of Proposition 5.1.7
for all cases, except for ω = n and i1, . . . , in all distinct, and for λ = n and
j1, . . . , jn all distinct. Let us show the last case, the other one is analogous.

Assume that j1, . . . , jn are all distinct and ω ∈ [n − 1]0. For k ∈ [n], we
can define lk as in the proof of Lemma 5.1.8, since |{i1, . . . , iω}| < n. We also
set ck as in the proof of Lemma 5.1.8. As |{j1, . . . , jn}| = n, we cannot choose
m1 ∈ [n]\{j1, . . . , jn}. Instead, we consider the rows n+jk, for k ∈ [ω]. Denote
by Cq the column of AGn(X) with −Xiq in the (n+ jq)th row. By construction,
the indices ck, for k ∈ [n], are all distinct, and so are the indices Cq, for q ∈ [ω].
The indices ck and Cq coincide, for some k ∈ [n] and q ∈ [ω], if and only if
iq = lq. It follows that all ck and Cq are distinct. Let Mi,j(X) be the submatrix
of AGn(X) composed by columns ck and Cq and of rows lk and n+ jq, for each
k ∈ [n] and q ∈ [λ], where i = (i1, . . . , iλ) and j = (j1, . . . , jn).

Then, as in Lemma 5.1.8, B(X) is of the form (5.1.5), but the matrix W (T )
is such that w(X)ij = 0 if i 6= j.

In particular, Proposition 5.1.7 shows that, for each r ∈ [2n] and each k ∈ [n],
either Xk

r or −Xk
r is an element of Fk(AGn(X)). Hence, if x ∈ W o

2n, then at
least one (k × k)-minor of AGn(x) has valuation zero. This gives

‖Fk(AGn(x)) ∪ wFk−1(AGn(x))‖p
‖Fk−1(AGn(x))‖p

= 1, for all k ∈ [n]. (5.1.8)

For k ∈ {n+ 1, . . . , 2n− 1}, the elements of Fk(AGn(X)) can be assumed to be
of the form

Xi1 · · ·XiωXn+j1 · · ·Xn+jλ ,

where ω, λ ∈ [n]0 satisfy ω + λ = k, and i1, . . . , iω,j1, . . . , jλ ∈ [n].

Given x ∈W o
2n, let M = vp(x1, . . . , xn) and N = vp(xn+1, . . . , x2n). Then∥∥∥∥∥∥∥∥

⋃
ω+λ=k

0≤ω,λ≤n

{Xi1 · · ·XiωXn+j1 · · ·Xn+jλ | i1, . . . , iω, j1, . . . , jλ ∈ [n]}

∥∥∥∥∥∥∥∥
p

= q−nmin{M,N}−(k−n) max{M,N}.

Consequently, for w ∈ p,

‖Fk(AGn(x)) ∪ wFk−1(AGn(x))‖p
‖Fk−1(AGn(x))‖p

=

{
‖x1, . . . , xn, w‖p, if 0 = N ≤M,

‖xn+1, . . . , x2n, w‖p, if 0 = M ≤ N.
(5.1.9)

Combining (5.1.8) and (5.1.9) yields
2n−1∏
k=1

‖Fk(AGn(x)) ∪ wFk−1(AGn(x))‖p
‖Fk−1(AGn(x))‖p

={
‖x1, . . . , xn, w‖n−1

p , if 0 = M ≤ N,
‖xn+1, . . . , x2n, w‖n−1

p , if 0 = N ≤M.
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Consequently, the p-adic integral given in (3.2.23) in this case is∫
(w,x)∈p×Wo

2n

|w|(2n−1)s1+s2−n2−2
p

2n−1∏
k=1

‖Fk(AGn(x)) ∪ wFk−1(AGn(x))‖−1−s1
p

‖Fk−1(AGn(x))‖−1−s1
p

dµ

= 2

∫
(w,x1,...,x2n)∈p×pn×Wo

n

|w|(2n−1)s1+s2−n2−2
p ‖x1, . . . , xn, w‖−(n−1)(1+s1)

p dµ

+

∫
(w,x1,...,x2n)∈p×Wo

n×Wo
n

|w|(2n−1)s1+s2−n2−2
p dµ

=
(

1− q−n + 2q−1+(n−1)s1 − qn
2−ns1−s2 − qn

2−n−ns1−s2
)
·

(1− q−1)(1− q−n)qn
2+1−(2n−1)s1−s2

(1− qn2+1−(2n−1)s1−s2)(1− qn2−ns1−s2)
,

where the first and the second integrals of the second equality are calculated in
Lemmata 2.2.2 and 2.2.1, respectively.

It follows from Proposition 3.2.12 that

Zcc
Gn(o)(s1, s2) =

1

1− qn2−s2

(
1 + Zo,AGn

(
−s1 − 1, (2n− 1)s1 + s2 − n2 − 2

))
=

(1− q2(n2)Tn1 T2)(1− q2(n2)+1T 2n−1
1 T2) + qn

2

Tn1 T2(1− q−n)(1− q−(n−1)Tn−1
1 )

(1− qn2T2)(1− qn2Tn1 T2)(1− qn2+1T 2n−1
1 T2)

,

where T1 = q−s1 and T2 = q−s2 , proving Theorem 2 for groups of type G.

5.1.4 Conjugacy class zeta functions of groups of type H

In this section, we denote by A(X)ij the (i, j)th coordinate of the commu-
tator matrix AHn(X).

By (5.1.2), each column of AHn(X) is of one of the following forms:

sth row
{

(n+ s)th row
{



Xn+s

−Xs


,

(5.1.10)

sth row
{

rth row
{

(n+ s)th row
{

(n+ r)th row
{



Xn+r

Xn+s

−Xr

−Xs


,

(5.1.11)
where the nondisplayed entries equal zero. These columns have the following
symmetry:

A(X)(n+i)k =

{
−Xj , if and only if A(X)ik = Xn+j ,

0, if and only if A(X)ik = 0.
(5.1.12)

For each s ∈ [n], there is exactly one column of the form (5.1.10), and the
columns (5.1.11) occur exactly once for each pair s < r of elements of [n].

Lemma 5.1.9. For w ∈ p, x ∈W o
2n and k ∈ [n],

‖Fk(AHn(x)) ∪ wFk−1(AHn(x))‖p
‖Fk−1(AHn(x))‖p

= 1.
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Proof. Fix m ∈ [n]. For each q ∈ [m− 1], denote by Cq the index of the unique

column of AHn(X) which has Xn+m in the qth row. Recall that A
(m)
Hn (X) is

the submatrix of AHn(X) given in (5.1.2). The submatrix Um(X) of AHn(X)

composed of columns C1, . . . , Cm−1 and the columns of A
(m)
Hn (X) and rows

1, . . . , n is

Um(X) =



C1︷ ︸︸ ︷
Xn+m

C2︷︸︸︷ Cm−1︷︸︸︷ A
(m)
Hn (X)︷ ︸︸ ︷

Xn+m

. . .

Xn+m

Xn+1 Xn+2 . . . Xn+m−1 Xn+m Xn+m+1 . . . X2n

Xn+m

. . .

Xn+m


.

Symmetry (5.1.12) implies that the submatrix Lm(X) of AHn(X) composed

of columns C1, . . . , Cm−1 and the columns of A
(m)
Hn (X) and rows n+ 1, . . . , 2n is

Lm(X) =



C1︷ ︸︸ ︷
Xn+m

C2︷︸︸︷ Cm−1︷︸︸︷ A
(m)
Hn (X)︷ ︸︸ ︷

−Xm

. . .

−Xm

−X1 −X2 . . . −Xm−1 −Xm −Xm+1 . . . −Xn

−Xm

. . .

−Xm


.

If x = (x1, . . . , x2n) is such that (xn+1, . . . , x2n) ∈ W o
n , then there exists

m1 ∈ [n] such that the matrix Um1
(x) has maximal rank n, that is, for each

k ∈ [n], at least one of the (k × k)-minors of Um1
(x) is a unit. Analogously,

if (x1, . . . , xn) ∈ W o
n , then there exists m2 ∈ [n] such that the matrix Lm2(x)

has maximal rank n. Since the (k × k)-minors of Um1(x) and of Lm2(x) are
elements of Fk(AHn(x)), the result follows.

In the next lemma, we show that the sets Fn+l(AHn(X)), for l ∈ [n − 1],
are given in terms of linear combinations of products of (i, j)-minors Mij(X) :=
XiXn+j −XjXn+1 of the following matrix

M(X1, . . . , X2n) =

[
X1 X2 . . . Xn

Xn+1 Xn+2 . . . X2n

]
∈ Mat2×n(o[X1, . . . , X2n]).

Lemma 5.1.10. Let k = n+ l, for some l ∈ [n−1]. Then the nonzero elements
of Fk(AHn(X)) are sums of terms of the form

Xf1 . . . XfrMi1j1(X) . . .Misjs(X),

for i1, . . . , is, j1, . . . , js ∈ [n], and f1, . . . , fr ∈ [2n], where r + 2s = k and s ≥ l.

Proof. Lemma 5.1.5 describes each element G of Fk(AHn(X)) in terms of sums

of products of minors of the form G̃(m1,n1),(m2,n2). It then suffices to show that
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these minors are all either 0 or of the forms XuXv, −XuXv or Mij(X), for some
u, v ∈ [2n] and 1 ≤ i < j ≤ n.

Since k = n+l, there are at least l pairs of rows ofG whose indices in AHn(X)
are of the form t and n+ t, for some t ∈ [n]. Denote by λ the exact number of
such pairs of rows occurring in G, and assume that, for m ∈ {1, 3, . . . , 2λ− 1},
the mth and the (m+1)th rows of G correspond, respectively, to rows of indices
of the form t and n+ t in AHn(X), for some t ∈ [n]. In this case,

A(X)ij = 0 if and only if A(X)(i+1)j = 0,

for all i ∈ {1, 3, . . . , 2λ− 1} and j ∈
[(
n+1

2

)]
, because of (5.1.12). Therefore, for

k1, k2 ∈
[(
n+1

2

)]
distinct and m ∈ {1, 3, . . . , 2λ− 1}, the minor G̃(m,k1),(m+1,k2)

is either 0 or Mij(X), for some 1 ≤ i < j ≤ n, as the columns of this minor are
either of the form (0, 0)T or (Xn+i,−Xi)

T, for some i ∈ [n].
For i, j ∈ [n] distinct, there is at most one column of AGn(X) whose nonzero

rows are the ones of indices in {i, j, n + i, n + j}, it follows that each of the
remaining minors of G are either equal to 0 or of one of the forms XiXj or
−XiXj , for some distinct i, j ∈ [2n].

Let x = (x1, . . . , x2n) ∈W o
2n with vp(xf0) = 0, say. Then

vp(xrf0
Mi1j1(x) · · ·Misjs(x)) ≤ vp(xf1 · · ·xfr′Mi1j1(x) · · ·Misjs(x)), (5.1.13)

for all r, r′ ∈ N, f1, . . . , fr′ ∈ [2n] and i1, . . . , is, j1, . . . , js ∈ [n].
Set M(x) = {Mij(x) | 1 ≤ i < j ≤ n}. If ‖M(x)‖p = ‖Mi0j0(x)‖p, for some

i0, j0, then

‖{Mi1j1(x) · · ·Miljl(x) | 1 ≤ im < jm ≤ n, m ∈ [k]}‖p
= ‖Mi0j0(x)‖lp = ‖M(x)‖lp. (5.1.14)

Expressions (5.1.13) and (5.1.14) then assure that, for m ∈ [n − 1]0 and for
i1, . . . , il, j1, . . . , jl ∈ [n], and f1, . . . , fm ∈ [2n],

vp(xmf0
Mi0j0(x)l) ≤ vp(xf1

. . . xfrMi1j1(x) · · ·Misjs(x)),

Lemma 5.1.10 states that the k × k-minors of AHn(X) are of the form

Xf1
· · ·XfrMi1j1(X) · · ·Misjs(X),

or sums of such terms, where r + 2s = k and s ≥ l. The maximal value for r
occurs when s = l.

We now show that, for all k = n + l with l ∈ [n − 1], all terms of the
form Xm

f Mij(X)l are elements of Fk(AHn(X)), for k = m+ 2l. This implies in

particular that, for x ∈ W o
2n as above, the term xmf0

Mi0j0(x)l is an element of
Fk(AHn(x)) and, therefore

‖Fk(AHn(x))‖p = ‖xmf0
Mi0j0(x)l‖p = ‖Mi0j0(x)‖lp = ‖M(x)‖lp.

Assuming this holds, the integrand of (3.2.23) can be simplified as follows.

‖Fn+l(AHn(x)) ∪ wFn+l−1(AHn(x))‖p
‖Fn+l−1(AHn(x))‖p

=
‖{Mij(x)l | 1 ≤ i < j ≤ n} ∪ w{Mij(x)l−1 | 1 ≤ i < j ≤ n}‖p

‖{Mij(x)l−1 | 1 ≤ i < j ≤ n}‖p
= ‖{Mij(x) | 1 ≤ i < j ≤ n} ∪ {w}‖p = ‖M(x) ∪ {w}‖p. (5.1.15)

Proposition 5.1.11. Given l ∈ [n − 1], let k = n + l and m = n − l. Then,
for all f ∈ [2n] and 1 ≤ i < j ≤ n, either Xm

f
Mij(X)l or −Xm

f
Mij(X)l is an

element of Fk(AHn(X)).
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Proof. Let f ∈ [n] and 1 ≤ i < j ≤ n. We show that, up to sign, both
Xm
f Mij(X)l and Xm

n+fMij(X)l lie in Fk(AHn(X)).

First, we show that Xm
n+fMij(X)l ∈ Fk(AHn(X)). We consider the cases

m ≥ 3, m = 2 and m = 1 separately. In most cases, we do the following: we
choose specific indices r1, . . . , rm, R1, . . . , Rl of rows of AHn(X), and then set
cs, Ciq, and Cjq to be indices of columns of AHn(X) as in the following table.

Index Unique column of AHn(X) satisfying
cs rsth entry is Xn+f

Ciq Rqth entry is Xn+i

Cjq Rqth entry is Xn+j

Table 5.3: Indices of columns—proof of Proposition 5.1.11

The choices of rs andRq are made such that the submatrix Ã(X) of AHn(X)
obtained by its rows of indices r1, . . . , rm, R1, n + R1, . . . , Rl, n + Rl and
columns c1, . . . , cm, Ci1, Cj1, . . . , Cil , C

j
l , in this order, is of the form

Xn+f Xn+r2 . . . Xn+rm

∗Xn+f

. . .

Xn+f

0
Xn+i Xn+j

−Xi −Xj

. . .

Xn+i Xn+j

−Xi −Xj


, (5.1.16)

which has determinant Xm
n+fMij(X)l.

Case 1. Assume that m ≥ 3. First, we consider f /∈ {i, j}. Set r1 = f , r2 = i,
r3 = j. Inductively, fix rs ∈ [n]\{r1, . . . , rs−1}, for each s ∈ {4, . . . ,m}. Fix also
R1 ∈ [n] \ {r1, . . . , rm} and, inductively, Rq ∈ [n] \ {r1, . . . , rm,R1, . . . ,Rq−1}.

The submatrix Ã(X) of AHn(X) described above is of the form (5.1.16).
In fact, column c1 is of the form (5.1.10) and, for s ∈ {2, . . . ,m}, cs is of the

form (5.1.11), so that the only nonzero entries of cs in AHn(X) are the ones of
index f , rs, n+ f , and n+ rs. Since r1 = f and rs /∈ {r1, . . . , rs−1}, it follows
that the nonzero entries of this column which appear in the submatrix Ã(X)
are Xn+rs in the row of index r1 = f , and Xn+f in the row of index rs.

Given q ∈ [l], the only nonzero entries of Ciq in AHn(X) are the ones of rows
whose index are elements of {i,Rq, n + i, n + Rq}. Since Rq 6= i, it follows
that the row n + i is not one of the rows of index n +Rit, t ∈ [l], that is, the
only nonzero rows of the form Rit or of the form n+Rit in Ciq which appear in

Ã(X) are the ones with t = q. The same argument shows that, the only nonzero
entries of Cjq of the form Rt or n+Rt in Ã(X) are the ones with t = q.

If f ∈ {i, j}, fix r1 = f , r2 ∈ {i, j} \ {f}, and set inductively rs ∈ [n] \
{r1, . . . , rs−1}, for each s ∈ {3, . . . ,m}. The indices Rt are chosen as in the
former case. The matrix Ã(X) is in this case of the form (5.1.16), by similar
arguments as the ones for the former case.

Case 2. Assume that m = 2, that is, we want to find a minor of the
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form X2
n+fMij(X). If f /∈ {i, j}, set r1 = f , r2 = i, and R1 = j. Then fix,

inductively, Rq ∈ [n] \ {r1, r2,R1, . . . ,Rq−1}.
If f ∈ {i, j}, we set r1 = f , r2 ∈ {i, j} \ {f} and Rq, for q ∈ [l], as in the

former cases.

These choices give matrices Ã(X) of the form (5.1.16).

Case 3. Assume that m = 1. If f ∈ {i, j}, set r1 = f , R1 ∈ {i, j} \ {f},
R2 ∈ [n]\{r1,R1}, and, inductively, Rt ∈ [n]\{r1,R1, . . . ,Rt−1}. The obtained
matrix Ã(X) is of the desired form.

For m = 1 and f /∈ {i, j}, we need a slightly different construction: we set
r1 = f , but, in this case, we consider ci1 and cj1, which are the indices of the
columns of AHn(X) containing, respectively, Xn+i and Xn+j in the r1th row.
Then set R1 = i and R2 = j and, inductively, Rq ∈ [n]\{r1,R1, . . . ,Rq−1}, for
all q ∈ {3, . . . , l}. Denote by Ciq and by Cjq the index of the columns of AHn(X)
containing, respectively, Xn+i and Xn+j in the Rqth row. There are only 2l−1

indices Cjq and Cjq in total, since Cj1 = Ci2.

Similar arguments as the ones of the former cases show that the matrix
composed of rows r1, R1, n +R1, . . . , Rl, n +Rl and columns ci1, cj1, Ci1, Cj1,

Cj2, . . . , Cil , C
j
l , in this order, is

Xn+i Xn+j 0 0 0 0
Xn+f 0 Xn+i Xn+j 0 Xn+R3 0 Xn+Rl 0
−Xf 0 −Xi −Xj −XR3

0 −XRl 0
0 Xn+f 0 Xn+i Xn+j 0 Xn+R3 0 Xn+Rl
0 −Xf 0 −Xi −Xj 0 −XR3 0 −XRl

0 0 0 Xn+i Xn+j 0−Xi −Xj

. . .

0 0 0 0 Xn+i Xn+j

−Xi −Xj


.

The determinant of such matrix is

Mij(X)l−2 det



Xn+i Xn+j 0 0 0
Xn+f 0 Xn+i Xn+j 0
−Xf 0 −Xi −Xj 0

0 Xn+f 0 Xn+i Xn+j

0 −Xf 0 −Xi −Xj


 = Xn+fMij(X)l.

The minors of the form Xm
f Mij(X)l (up to sign) are obtained by repeating

the constructions above for each case but considering rows n + rs instead of
rs, for all s ∈ [m]. The determinants of the matrices obtained in this way are
of the desired form because of the symmetry of the columns of AHn(X) given
by (5.1.12).

For each x ∈W o
2n, combining (5.1.15) with Lemma 5.1.9, we obtain

2n−1∏
k=1

‖Fk(AHn(x)) ∪ wFk−1(AHn(x))‖p
‖Fk−1(AHn(x))‖p

= ‖M(x) ∪ {w}‖n−1
p .
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Thus, for groups of the form Hn(o), the p-adic integral appearing in (3.2.23) is

JHn(s1, s2) :=∫
(w,x)∈p×Wo

2n

|w|(2n−1)s1+s2−(n+1
2 )−2

p ‖{M(x) ∪ {w}‖−(n−1)(1+s1)
p dµ,

which is a specialisation of the integral given in Lemma 2.2.3. Combining
Lemma 2.2.3 with Proposition 3.2.12 yields

Zcc
Hn(o)(s1, s2) =

1

1− q(
n+1

2 )−s2

(
1 + (1− q−1)−1JHn(s1, s2)

)
= ZFHn(q, q−s1 , q−s2),

where ZFHn(q, T1, T2) is given by

(1− q(
n
2)Tn1 T2)(1− q(

n
2)+2T 2n−1

1 T2) + q(
n+1

2 )Tn1 T2(1− q−n+1)(1− q−(n−1)Tn−1
1 )

(1− q(
n+1

2 )T2)(1− q(
n+1

2 )+1Tn1 T2)(1− q(
n+1

2 )+1T 2n−1
1 T2)

.

This proves Theorem 2 for groups of type H.

5.2 Bivariate representation zeta functions—
proof of Theorem 3

Recall that g := Λ(o), and the constants a, b, r and z associated to it
given in Table 5.1. Consider the B-commutator matrix BΛ(Y ) = B(Y ) of g of
Definition 3.2.1 with respect to the e and f given in Section 5.1.1.

Recall the numbers N o
N,B,m = |{y ∈W o

b,N | ν(B(y)) = m}| of Section 3.2.1.
Write m = (m1, . . . ,muB ). Recall from Section 3.2.3 that

Z irr
G(o)(s1, s2) = (3.2.20)

(1− qr−s2)

1 +

∞∑
N=1

∑
m∈NuB0

N o
N,B,mq

−N(uBs1+s2+2uB−r)−2
∑uB
j=1 mj

(−s1−2)
2

 .

Given a set I = {i1, . . . , il}< ⊆ [n − 1]0, recall that µj := ij+1 − ij for all
j ∈ [l]0, where i0 = 0, il+1 = n. Choose rI = (ri)i∈I ∈ NI and let N =

∑
i∈I ri.

Following [48, Section 3], define the following sets, which form a partition
of W o

b,N :

NI,rI (G) ={y ∈W o
b,N : ν(B(y))

=(0, . . . , 0︸ ︷︷ ︸
µl terms

, ril , . . . , ril︸ ︷︷ ︸
µl−1 terms

, ril + ril−1
, . . . , ril + ril−1︸ ︷︷ ︸

µl−2 terms

, . . . , N, . . . , N︸ ︷︷ ︸
µ0 terms

)}.

For Λ ∈ {Fn,δ,Gn,Hn}, it holds that z = g′, so that

r := rk(g/g′) = a := rk(g/z) =

{
2n+ δ, if G = Fn,δ,

2n, if G ∈ {Gn, Hn}.
For simplicity, consider δ = 0 when G ∈ {Gn, Hn}, so that we can write a =
2n+ δ uniformly.

Using these facts and the equality ā(G, n) = 2n + δ, as in Table 1.1, we
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rewrite Z irr
G(o) as follows.

(1− qā(G,n)−s2)Z irr
G(o)(s1, s2)

=
∑

I⊆[n−1]0

∑
rI∈NI

|NI,rI (G)|q−
∑
i∈I ri(ns1+s2+2n−r)−

∑
i∈I iri(−2−s1)

=
∑

I⊆[n−1]0

∑
rI∈NI

|NI,rI (G)|q
∑
i∈I ri(−(n−i)s1−s2+2i+δ). (5.2.1)

The cardinalities |NI,rI (G)| are described in [48, Proposition 3.4] in terms
of the polynomials fG,I and the numbers ā(G, i) defined in Table 1.1 as follows.

|NI,rI (G)| = fG,I(q
−1)q

∑
i∈I ri(ā(G,i)−2i−δ). (5.2.2)

Combining (5.2.1) with (5.2.2) yields

Z irr
G(o)(s1, s2) =

1

1− qā(G,n)−s2

∑
I⊆[n−1]0

∑
rI∈NI

fG,I(q
−1)q

∑
i∈I ri(ā(G,i)−(n−i)s1−s2)

=
1

1− qā(G,n)−s2

∑
I⊆[n−1]0

fG,I(q
−1)

∏
i∈I

qā(G,i)−(n−i)s1−s2

1− qā(G,i)−(n−i)s1−s2
.

This concludes the proof of Theorem 3.

5.3 Hyperoctahedral groups and functional
equations

In this section, we relate the formulae of Theorem 3 to statistics on Weyl
groups of type B, also called hyperoctahedral groups Bn. Specialisation (1.1.8)
then provides formulae for the class number zeta functions of groups of type F ,
G, and H in terms of such statistics. By comparing these formulae to the ones
of Corollary 1.2.2, we obtain formulae for joint distributions of three functions
on such Weyl groups.

We also use the descriptions of the bivariate representation zeta functions in
terms of Weyl group statistics in Section 5.3.3 in order to prove Theorem 4.

Some required notation regarding hyperoctahedral groups is given in Sec-
tion 5.3.1.

5.3.1 Hyperoctahedral groups Bn

We briefly recall the definition of the hyperoctahedral groups Bn and some
statistics associated to them. For further details about Coxeter groups and
hyperoctahedral groups we refer the reader to [6].

The Weyl groups of type B are the groups Bn, for n ∈ N, of all bijections
w : [±n] → [±n] with w(−a) = −w(a), for all a ∈ [±n], with operation given
by composition. Given an element w ∈ Bn write w = [a1, . . . , an] to denote
w(i) = ai.

Definition 5.3.1. For w ∈ Bn, the inversion number, the number of negative
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entries and the number of negative sum pairs of w are defined, respectively, by

inv(w) = |{(i, j) ∈ [n]2 | i < j, w(i) > w(j)}|,
neg(w) = |{i ∈ [n] | w(i) < 0}|,
nsp(w) = |{(i, j) ∈ [n]2 : i 6= j, w(i) + w(j) < 0}|.

Let si = [1, . . . , i− 1, i+ 1, i, . . . , n] for i ∈ [n− 1] and s0 = [−1, 2, . . . , n] be
elements of Bn. Then (Bn, SB) is a Coxeter system, where SB = {si}i∈[n−1]0 .

In [6, Proposition 8.1.1] it is shown that the Coxeter length on Bn with
respect to the generating set SB is given by

`(w) = inv(w) + neg(w) + nsp(w), for w ∈ Bn.

The right descent of w ∈ Bn is the set

D(w) = {si ∈ SB | w(i) > w(i+ 1)}.
For simplicity, we identify SB with [n− 1]0 in the obvious way, so that D(w) ⊆
[n− 1]0. Moreover, for I ⊆ SB , define

BIn = {w ∈ Bn | D(w) ⊆ Ic = SB \ I}.
Example 5.3.2. Let w0 = [−1, . . . ,−n] be the longest element of Bn. Then

inv(w0) =

(
n

2

)
, neg(w0) = n, `(w0) = n2, D(w0) = SB . 4

Consider w ∈ Bn. The following statistics are used in the present work.

L(w) =
1

2
|{(i, j) ∈ [±n]20 | i < j, w(i) > w(j), i 6≡ 0 mod 2}|, (5.3.1)

des(w) = |D(w)|,

σ(w) =
∑

i∈D(w)

n2 − i2,

maj(w) =
∑

i∈D(w)

i,

rmaj(w) =
∑

i∈D(w)

n− i.

The statistics des(w), maj(w), and rmaj(w) are called the descent number, the
major index, and the reverse major index of w, respectively.

5.3.2 Bivariate representation zeta functions and statis-
tics of Weyl groups

The following lemma describes the polynomials fG,I defined in Table 1.1 in
terms of statistics on the groups Bn, where G ∈ {Fn,δ, Gn, Hn}.

Lemma 5.3.3. Let n ∈ N, δ ∈ {0, 1} and I ⊆ [n− 1]0. Then

1. [48, Proposition 4.6]

fFn,δ,I(X) =
∑

w∈BIcn

(−1)neg(w)X(2`+(2δ−1) neg)(w),

fGn,I(X) =
∑

w∈BIcn

(−1)neg(w)X`(w),
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2. [7, Theorem 5.4]

fHn,I(X) =
∑

w∈BIcn

(−1)`(w)XL(w).

Lemma 5.3.4. Given n ∈ N, δ ∈ {0, 1}, and a prime ideal p of O,

Z irr
G(o)(s1, s2) =

∑
w∈Bn χG(w)q−hG(w)

∏
i∈D(w) q

ā(G,i)−(n−i)s1−s2∏n
i=0(1− qā(G,i)−(n−i)s1−s2)

,

where, for each w ∈ Bn,

G χG(w) hG(w)

Fn,δ (−1)neg(w) 2`(w) + (2δ − 1) neg(w)
Gn (−1)neg(w) `(w)
Hn (−1)`(w) L(w)

Table 5.4: Statistics associated to Z irr
G(o)(s1, s2) for G ∈ {Fn,δ,Gn,Hn}

Proof. Applying Lemma 5.3.3 to the formulae of Theorem 3, one obtains the
following expression for Z irr

G(o)(s1, s2):

1

1− qā(G,n)−s2

∑
I⊆[n−1]0

∑
w∈BIcn

χG(w)q−hG(w)
∏
i∈I

qā(G,i)−(n−i)s1−s2

1− qā(G,i)−(n−i)s1−s2
,

which can be rewritten as the claimed sum because of [48, Lemma 4.4].

Specialisation (1.1.8) applied to Lemma 5.3.4 yields that

ζk
G(o)(s1, s2) =

∑
w∈Bn χG(w)q−hG(w)

∏
i∈D(w) q

ā(G,i)−s∏n
i=0(1− qā(G,i)−s)

=

∑
w∈Bn χG(w)q−hG(w)q(

∑
i∈D(w) ā(G,i))−des(w)s∏n

i=0(1− qā(G,i)−s)
. (5.3.2)

Proposition 5.3.5. For n ∈ N and δ ∈ {0, 1}, the following holds in Q[X,Z].∑
w∈Bn

(−1)neg(w)X−(2(`−σ)+(2δ−1) neg−(2δ−3) rmaj−(2n+δ) des)(w)Zdes(w)

=
(

1−X(2n+δ−1
2 )Z

) n∏
i=2

(
1−X(2n+δ

2 )−(2i+δ
2 )+2i+δZ

)
Proof. On the one hand, since

ā(Fn,δ, i) =

(
2n+ δ

2

)
−
(

2i+ δ

2

)
+2i+δ = 2(n2− i2)+(2δ−3)(n− i)+2n+δ,

it follows that

q(
∑
i∈D(w) ā(Fn,δ,i))−des(w)s = q(2σ+(2δ−3) rmaj +(2n+δ−s) des)(w).

Hence

ζk
Fn,δ(o)(s) =

∑
w∈Bn(−1)neg(w)q−(2(`−σ)+(2δ−1) neg−(2δ−3) rmaj−(2n+δ−s) des)(w)∏n

i=0(1− qā(Fn,δ,i)−s)
.

On the other hand, Corollary 1.2.2 asserts that

ζk
Fn,δ(o)(s) =

1− q(
2n+δ−1

2 )−s

(1− q(
2n+δ

2 )+1−s)(1− q(
2n+δ

2 )−s)
=

1− q(
2n+δ−1

2 )−s∏1
i=0(1− qā(Fn,δ,i)−s)

.
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Therefore∑
w∈Bn

(−1)neg(w)q−(2(`−σ)+(2δ−1) neg−(2δ−3) rmaj−(2n+δ−s) des)(w)

=
(

1− q(
2n+δ−1

2 )−s
) n∏
i=2

(
1− qā(Fn,δ,i)q−s

)
=
(

1− q(
2n+δ−1

2 )−s
) n∏
i=2

(
1− q(

2n+δ
2 )−(2i+δ

2 )+2i+δq−s
)
.

The formal identity follows as these formulae hold for all prime powers q and
all s ∈ C with sufficiently large real part.

For a geometric interpretation of `−σ, we refer the reader to [50, Section 2].
It can be easily checked that, for n ≥ 2 and w ∈ Bn,∏

i∈D(w)

qā(Gn,i)−s = q(σ+2 maj−s des)(w), (5.3.3)

∏
i∈D(w)

qā(Hn,i)−s = q
1
2 (σ−3 rmaj)(w)+(2n−s) des(w). (5.3.4)

The following proposition follows from (5.3.2), Corollary 1.2.2, equalities (5.3.3)
and (5.3.4), and arguments analogous to those given in the proof of Proposi-
tion 5.3.5.

Proposition 5.3.6. For n ∈ N and i ∈ [n]0, set

f1(n, i) = n2 − i2 + 2i, and f2(n, i) =
(
n+1

2

)
−
(
i+1
2

)
+ 2i.

Then, the following identities hold in Q[X,Z].∑
w∈Bn

(−1)neg(w)X−(`−σ−2 maj)(w)Zdes(w) =

(
(1−X2(n2)Z)(1−X2(n2)+1Z) +Xn2

Z(1−X−n)(1−X−n+1)
) n∏
i=3

(Xf1(n,i)Z),

and∑
w∈Bn

(−1)`(w)X−
1
2 (2L−σ+3 rmaj +4n des)(w)Zdes(w) =

(
(1−X(n2)Z)(1−X(n2)+2Z) +X(n+1

2 )Z(1−X−n+1)2
) n∏
i=3

(Xf2(n,i)Z).

Remark 5.3.7. By setting X = 1 in the equations of Propositions 5.3.5 and 5.3.6,
we obtain the equalities∑

w∈Bn

(−1)neg(w)Zdes(w) =
∑
w∈Bn

(−1)`(w)Zdes(w) = (1− Z)n,

which were first proven in [36, Theorem 3.2].

5.3.3 Functional equations—proof of Theorem 4 (repre-
sentation case)

We recall that the formulae of Proposition 3.2.12 of the local factors of the
bivariate representation zeta function of groups of type F , G, and H hold for all
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nonzero prime ideals p, since we consider the construction of the unipotent group
schemes of class 2 given in [48, Section 2.4]. In particular, the descriptions of
the local terms of the bivariate representation zeta functions of groups of type
F , G, and H in terms of Weyl statistics given in Lemma 5.3.4 also hold for
all nonzero prime ideals. We use Lemma 5.3.4 to show that all local terms of
these bivariate zeta functions satisfy functional equations. Recall that, for each
n ∈ N, the longest element of Bn is w0 = [−1,−2, . . . ,−n].

Theorem 4 follows from the same arguments of the proof of [24, Theorem 2.6]
applied to the expressions of Lemma 5.3.4. In fact, although hG is not one of the
statistics b · lL or b · lR defined in [24, Theorem 2.6], it satisfies the equations
(2.6) of [24], that is,

hG(ww0) + hG(w) = hG(w0).

In fact, one can easily show that g ∈ {inv,neg, `} satisfies g(ww0) = g(w0) −
g(w), for all w ∈ Bn, and the equation L(ww0) = L(w0w) = L(w0) − L(w)
is [47, Corollary 7]. Therefore the conclusion of [24, Theorem 2.6] also holds for
the expressions given in Lemma 5.3.4.
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Group schemes and Lie lattices

Λ O-Lie lattice, pp. 17
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Fj(M) Set of all j × j-minors of the matrix M , pp. 32
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||.||p Maximum p-adic norm, pp. 18

Zo,R p-Adic integral defined in (3.2.3), pp. 32

Z̃∗i,p Function given in (4.1.2), pp. 54
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Zeta functions

ζ Riemann zeta function, pp. 1

ζK Dedekind zeta function of a number field K, pp. 2
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G Conjugacy class zeta function of a group G, pp. 6

ζk
G(O) Class number zeta function of G(O), pp. 7

Z irr
G(O) Bivariate representation zeta function of G(O), pp. 5

Zcc
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Other Symbols

rn(G) Number of isomorphism classes of n-dimensional representations
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r̃n(G) Number of twist-equivalent n-dimensional representations of a T -
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re(s) Real part of a complex number s
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(Nuκι, νu) Numerical data of a principalisation, pp. 22

ι(M) Isolator of the module M , pp. 33
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