
Analyzing Dyadic Sequence Data
Comparing Different Statistical Models with Respect

to their Applicability and Interpretation

Peter Fuchs

A thesis presented for the degree of
Doctor of Natural Sciences

Department of Psychology
Bielefeld University

Germany
May 2, 2018

Contents

Preface 12

1. Introduction to Dyadic Sequence Data 17
1.1. Sequences . 17

1.1.1. Definition of Sequences and States 17
1.1.2. Transitions . 19
1.1.3. Metric of Time . 20
1.1.4. Representation of Sequences and States 23
1.1.5. Transition-Plots and Properties of States 24

1.2. Dyadic Data . 27
1.2.1. Classification of Dyads . 27
1.2.2. Interdependency . 29
1.2.3. Within and Between Variables 30
1.2.4. Conceptual Models for Dyadic Data 31

1.3. Combining Dyadic and Sequence Data 32
1.3.1. Conceptual Models for Dyadic Sequence Data 34
1.3.2. Dyadic Sequence Data in Psychology and Related Fields 35

2. Example Data Sets 38
2.1. Couples-Cope . 38

2.1.1. The Couples-Cope sample . 38
2.1.2. Stress Communication and Dyadic Coping 39

2.2. Give-Some . 41
2.2.1. The Give-Some Sample . 41
2.2.2. Cooperation in a Give-Some-Dilemma 42
2.2.3. The Give-Some Experiment . 43
2.2.4. The Pre-Programmed Player . 44

2

Contents

3. Research Questions and Corresponding Data Analyses 46
3.1. Getting an Overview (Visualization and Descriptives) 46
3.2. Duration of Behavior (Time-to-Event) 47
3.3. Assuming a Latent Dyadic Process (Common Fate) 48
3.4. Analyzing Promptness of Interaction (APIM) 49
3.5. Latent Groups or Clusters (Unobserved Heterogeneity) 51

4. First Steps in Analyzing Dyadic Sequence Data 55
4.1. Graphical Analysis . 55
4.2. Association Between Behaviors . 59
4.3. Inspecting Individual Cases . 60
4.4. Finding Typical Subsequences . 61
4.5. A Contrasting Example (Give-Some) 64

5. Dyadic Sequences in Time-to-Event Analysis 67
5.1. Time-to-Event Data . 68

5.1.1. Transforming Sequences into Time-to-Event Data 70
5.1.2. Survival, Hazard, and Cumulative Hazard 72

5.2. Analyzing the Influence of Covariates 74
5.2.1. Time-Independent Covariates . 74
5.2.2. Second Sequence as a Time-Dependent Covariate 76

5.3. Shared Frailty Model: A Bivariate Survival Model 77
5.4. Assumptions, Needed Sample Sizes, Practical Issues 79

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM) 82
6.1. State-Transition Tables . 83
6.2. A Single Logit-Model for Single Case Analysis 84
6.3. Aggregating Results for Group Analysis 85
6.4. Actor-Partner-Interaction Model . 87
6.5. Alternative Example (Give-Some) . 87
6.6. Assumptions, Needed Sample Sizes, Practical Issues 89

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM) 91
7.1. The General Idea of Multilevel-Modeling 91
7.2. Repeated Measures as Multilevel-Model 95
7.3. Generalized Multilevel Models . 96
7.4. A Multilevel Model APIM . 97

3

Contents

7.5. Alternative Example (Give-some) . 101
7.6. Assumptions, Practical Issues, and Required Sample Size 102
7.7. Alternative Multilevel Modeling Strategies 104

8. Modelling Dyadic Sequences Using Markov Models 105
8.1. Basic Markov Models . 107

8.1.1. Transition Matrix . 109
8.2. APIM as a basic MarkovModel . 111

8.2.1. Fitting a basic Markov model on the couples-cope data 111
8.2.2. Converting Transitions into Actor and Partner Effects 112

8.3. Hidden Markov Model . 118
8.3.1. Latent Hazard Model (Restricted Hidden Markov Model) . . . 119
8.3.2. Unrestricted HMM (Common Fate Like) 121
8.3.3. Multi-Channel Approach (Pure Common Fate) 123
8.3.4. Using the same Number of Latent States and Indicators 124

8.4. Latent Groups: Mixture Markov Models 125
8.5. Mixture Hidden Markov Models . 129
8.6. Which Markov Model is the Best? . 131
8.7. Practical Issues and Required Sample Size 133

9. A Cluster Analytical Approach: OM-Distances 138
9.1. OM-Distances for Sequence Data . 140
9.2. Algorithm . 143

9.2.1. k-Means Algorithm . 143
9.2.2. Ward’s Method (agglomerative hierarchical clustering) 145
9.2.3. How to Choose a Cluster Solution 146

9.3. Applying OM-Distances on the Couples-Cope DataSet 149
9.4. Comparing Groups or Clusters of Sequences 150

9.4.1. An ANOVA-Like Method for Sequence-Data 153
9.5. Practical Issues and Required Sample Sizes 156

10. Simulation studies 158
10.1. Cox Regression . 159
10.2. Shared Frailty . 163
10.3. Aggregated Logit APIM . 166
10.4. Multilevel APIM . 171
10.5. Basic Markov APIM . 175

4

Contents

10.6. Restricted Hidden Markov (Latent Hazard) 178
10.7. Unrestricted Hidden Markov . 184
10.8. Mixture Markov . 191
10.9. OM-Distances . 197
10.10. ANOVA-like Approach for Comparing Subgroups 208

11. Summary and Concluding Comments 210
11.1. Findings on Dyadic Coping . 211
11.2. Findings on Approaching Dyadic Sequence Data 213
11.3. Limitations and Outlook . 217

A. Vignettes for R 219
A.1. Prerequisite Steps . 219
A.2. Getting and Visualizing the Data . 219
A.3. Analyzing Duration . 221

A.3.1. Cox-Regression with Time-Independent Covariate 222
A.3.2. Cox-Regression with Time-Dependent Covariate 223
A.3.3. Shared Frailty Model . 225

A.4. Aggregated Logit Model . 226
A.5. Multilevel Model APIM . 226
A.6. Markov Models . 230

A.6.1. Basic Markov Model (MM) . 230
A.6.2. Restricted Hidden Markov Model 231
A.6.3. Unrestricted HMM (common fate) 232
A.6.4. Multi-Channel Approach ("Pure Common Fate") 234

A.7. Mixture Markov . 235
A.8. OM-Distances . 235

B. R-Code for Simulation Studies 238
B.1. Cox-Regression:PowerAnalysis . 238
B.2. Frailty Model . 241
B.3. Power Simulation for Aggregated Logit Models 243
B.4. Interaction Delta and L on Type-IError 246
B.5. Multilevel APIM . 246
B.6. Basic Markov Model APIM . 248
B.7. Latent Hazard Model(Restricted Hidden Markov) 253
B.8. Hidden Markov (Correct Number of Latent States) 256

5

Contents

B.9. Mixture Markov (Correct Number of Latent States) 264
B.10. OM-Distances (Correct Number of Latent States) 278

C. The R-Package ’DySeq’ 298

6

Formulary

Formel 5.1. Survival Function . 72
Formel 5.2. Hazard Function . 73
Formel 5.3. Cox-Regression in the Logit Notation 75
Formel 5.4. Cox-Regression in the Hazard-Ratio Notation 75
Formel 5.5. Cox-Regression for Time-Dependent Variables 77
Formel 5.6. Shared Frailty Model for Paired Observations 78

Formel 6.1. Predicted Logits of Showing DC . 84
Formel 6.2. Predicted Odds of Showing DC . 84

Formel 7.1. Generic Two-Level Multilevel Model 94
Formel 7.2. Multilevel Baseline Model (ICC) . 95
Formel 7.3. Generic Logistic Multilevel Model 96
Formel 7.4. APIM as Logistic Multilevel Model 98
Formel 7.5. Conditional Level-1 Equations for MLM-APIM 98

Formel 8.1. Basic Markov Model . 110
Formel 8.2. Basic Markov Model to APIM Conversion 117
Formel 8.3. Hidden Markov Model . 118
Formel 8.4. Mixture Markov Model . 126
Formel 8.5. Mixture Hidden Markov Model . 131

Formel 9.1. TRATE-Formula . 141
Formel 9.2. Silhouette Coefficient . 149
Formel 9.3. Sum of Squares for ANOVA-like Group Comparison 155

Formel 10.1. Cohens Kappa . 196

7

List of Tables

3.1. Overview Research Questions and Related Models (Part A) 53
3.2. Overview Research Questions and Related Models (Part B) 54

4.1. State-Expand for SC and DC . 56

6.1. State-Transition Table for Couple ID 129 83
6.2. Results of the Logit-Model for Couple ID 129 85
6.3. Predicted Logits, Odds, and Probabilities for couple ID 129 86
6.4. Averaged Logit Parameters Over all 64 Couples 86
6.5. Averaged Logit Parameters for the Give-Some Example 88

7.1. Fixed Effects for MLM-APIM (Couples-Cope Example) 100
7.2. Random Effects for MLM-APIM (Couples-Cope Example) 100
7.3. Multilevel Model Comparisons (Give-Some Example) 102
7.4. Fixed Effects for MLM-APIM (Give-Some Example) 102

8.1. Transition Matrix for the modified Give-Some Example 109
8.2. Transition Matrix for the Give-Some Example 111
8.3. Transition Matrix for the Couples-Cope Example 113
8.4. Predicted Logits, Odds and Probabilities for DC by the Markov model 115
8.5. Actor and Partner Effects for Marcov-APIM (Couples-Cope) 115
8.6. Hidden Markov Model for Modelling Latent Hazard 119
8.7. Hidden Markov Model With 3 Latent States 123
8.8. Two-Channel HMM With 3 Latent States 125
8.9. Mixture Markov Model with 3 Latent Classes (MMM) 128
8.10. Mixture Hidden Markov Model . 132

9.1. Distances Between German Cities . 139
9.2. Substitution-Cost Matrix for the Couples-Cope Data 142
9.3. Averaged Logit Parameters for Showing DC by Clusters 152

8

List of Tables

9.4. Transition Matrices for OM-Clusters . 153

10.1. Results for the Simulated Cox-Regressions (Part A) 161
10.2. Results for the Simulated Cox-Regressions (Part B) 162
10.3. Results for the Simulated Cox-Regressions (Part C) 164
10.4. Simulated Frailty Models . 165
10.5. Aggregated Logit: Type-I Error Rates for Actor Effect 167
10.6. MLM-APIM: Power-Analysis for Actor und Partner 174
10.7. Basic Markov APIM: Power-Analysis for Actor und Partner 177
10.8. Hidden Markov: Bias and SE for High Emissions 180
10.9. Hidden Markov: Bias and SE for Low Emissions 181
10.10. True Basic Markov Model . 184
10.11. True Hidden Markov Model with Two Latent States 186
10.12. True Hidden Markov Model with Three Latent States 187
10.13. Model Selection for Hidden Markov Simulation 189
10.14. True Mixture Markov Model with 2 Latent Classes 198
10.15. True Mixture Markov Model with 3 Latent Classes 199
10.16. Model Selection for Mixture Markov Simulation 200
10.17. Precisions of Estimates for Mixture Markov Simulation 201
10.18. Post-Hoc Simulations for 3 laten classes 202
10.19. Results for Simulation of OM-Distances (Part A) 205
10.20. Results for Simulation of OM-Distances (Part B) 206

11.1. Summary of Sample Size and Sequence Length Recommendations . . 216

9

List of Figures

1.1. Examples for transition plots . 25
1.2. Comparison of APIM vs common fate model 33
1.3. Example for interval sampling . 34

4.1. Entropy and State-Transitions for Couples-Cope Dataset 56
4.2. State Distribution Plot of the Couples-Cope Example Data 57
4.3. Multi-Channel State Distribution Plot (Couples-Cope) 58
4.4. Entropy and State-Transitions for Couples-Cope 59
4.5. Scatterplot Frequencies of DC vs SC (Couples-Cope) 60
4.6. Individual Sequence Plots . 62
4.7. Most Common Subsequences for the Couples-Cope Dataset 63
4.8. Visualization of Couples-Cope vs. Give-Some (A) 65
4.9. Visualization of Couples-Cope vs. Give-Some (B) 66

5.1. Transforming Sequences into Time-to-Event Variables 70
5.2. Survival, Hazard, and Cumulated Hazard (Couples-Cope) 73
5.3. Predicted Hazard for Different Values on a Covariate 76
5.4. Frailty Model for Paired Observations 79
5.5. Simulated Power and Type-I-Error for the Cox Model 80

6.1. APIM Estimated From Aggregated Logit-Models 87

7.1. Example of a Nested Data Structure . 92

8.1. Comparison of MM, HMM, MHMM and MMM. 106
8.2. Basic Markov Model for the Modified Give-Some Example. 108
8.3. Basic Markov Model for the Couples-Cope Example. 111
8.4. Transition plot for the three states hidden Markov model 122
8.5. State Distribution for Three Latent Classes 129

9.1. Illustration of k-means algorithm . 144

10

List of Figures

9.2. Illustration of Ward’s method . 146
9.3. Dendrogram for German Cities . 147
9.4. Scree Plot for German Cities . 148
9.5. Scree Plot for the Couples-Cope Dataset 150
9.6. State-Distribution Plot for the two Couples-Cope Clusters 151

10.1. Bias and Type-I Error (Aggregated Logit Model) 168
10.2. Bias for Actor Effect (Aggregated Logit Model) 170
10.3. Power Simulation for Aggregated Logit Model 171
10.4. Bias for Hazard and Emissions (Latent Hazard Model) 182
10.5. Distribution of latent Hazard-Estimates 183
10.6. Biases for the 2-latent-state Model . 192
10.7. Biases for the 3-latent-state Model . 193
10.8. Detailed Bias for Emissions (3 Latent States) 194
10.9. Simulated Scree Plots . 207
10.10. Power Analyis for ANOVA-like Group Comparison 209

11

Preface

The investigation of social dynamics is one of the most fascinating aspects of empirical
psychological research. The smallest unit, in which such social interactions can occur,
is a group of two persons, a so-called dyad. This monograph explores and compares
several statistical modeling techniques for dyadic interactions in which the dependent
variable is categorical. This is done by linking each presented model to prototypical
research question that might arise in psychological research, applying it to an example
datasets, and then translating the results back into a psychological context. Finally,
simulations studies are conducted so that recommendations on sample size can be
given.

Dyadic social dynamics can be found in almost any aspect of life; merchant and
customer must interact with each other to make a deal; coworker may need to interact
with each other for problem-solving; or parents must interact with their children so
that they feel loved and learn about the world. Another example which is used as the
main example in this monograph is, how romantically involved couples react toward
each other after one of them encountered a stressful event.

For this example, an empirical dataset is provided that describes whether and when
the stressed partner communicated his or her stress, and also whether and when the
other partner reacts with a dyadic coping response. That is, the unstressed partner
responds with either positive or negative coping strategies in an attempt to alleviate
his or her partner’s feelings of stress.

Several behavior-patterns are conceivable: the stressed partner might communi-
cate stress directly after stress was induced or only after some time. Each behavior
might have different consequences, e.g., the former might be more likely to trigger a
quick and continued response by the other partner. Which again might encourage the
stressed partner to talk about the stressful event. However, if the partner shows de-
layed stress communication, it might be misinterpreted as an indicator that the stress
is not very strong or important. Therefore, the partner may show dyadic coping only
intermittently, which again discourages the stressed partner from talking about the
event.

12

As this example shows, social dynamics are not static but rather evolve over time.
Using such data allows for an understanding of the evolution of a certain behavior
across time. Because of that, statistical models for analyzing longitudinal dyadic data
are needed for investigating dyadic dynamics. Kenny, Kashy and Cook (2006) provide
an extensive overview for models in which the dependent variable is at least interval
scaled. However, the case for a categorically dependent variable, such as “was stress
communication shown or not at a certain time interval?” is covered only briefly in
their monograph. Screening through methodological papers and textbooks revealed
an absence of such models, at least in the field of psychology.

Therefore, this monograph aims to close this gap by providing an overview for re-
searchers who encounter data about dyadic interactions with categorically dependent
variables – so-called dyadic sequence data. To this end, an introduction to sequences,
dyads, and dyadic sequences (see Chapter 1) are provided. The main part of this
monograph, however, presents and compares different statistical models which can be
applied to dyadic sequence data. Some of which stem from within but the majority
stems from outside of the traditional field of psychology. For example, OM-Distances
are mainly used in sociology, but a few studies in the field of psychology were found
that use OM-Distances (some of the few are Wuerker, 1996a and Wuerker, 1996b).
Another example is Hidden Markov Models which are not often used in psychology
but for which many textbooks in the fields of biostatistics and econometrics exist.
Thus, Hidden Markov Modes are often presented in the context and language of those
fields. Because psychology researchers are often unfamiliar with those fields, they
might overlook whether those models fit their research questions, and stick to other,
more familiar but also less adequate models. Hence, the monograph focuses on show-
ing how the presented models might be integrated into psychological research. This
is done by linking a prototypical research question to each presented model, and by
then translating the results for the example datasets back into a psychological context.

For some research questions, more than one model can be applied adequately to
answer it, and researchers might want to know which one to choose for their research
question. The answer to that question depends on the sample size, the number of
observed time intervals, and the expected effect size. Yet, one obstacle for comparing
the models is that models come in different notations and produce different kinds of
estimates as output. For example, aggregated Logit-Models estimate beta-coefficients,
whereas Markov Models produce transition probabilities. Because of that, it is difficult
to compare those models based only on existing simulation studies. Hence, models
will be presented in a unified notation, which also allows one to introduce a conversion

13

formula for those estimates. Moreover, simulations are done for all presented models
so that recommendation for sample size and number of time intervals are comparable
across models that are used for answering the same research questions.

All R-code for using the presented models in practice and for reproducing the sim-
ulations is provided in the Appendix. Yet some models were not implemented in R
before this monograph was written, so an R-Package, called DySeq, was created and
is now provided via CRAN. The original code of the package, as it was used in this
monograph, is also included in the appendix as well.

Due to the pace of development and breadth of research, a truly comprehensive
collection and comparison of all models, which can be applied to dyadic sequence
data, is certainly beyond the scope of this monograph. For example, hundreds of time-
to-event models exist, and most of them can be adapted to dyadic sequence data, but
this monograph illustrates only two of them. The selection might be influenced by the
authors’ personal research interests and expertise to some degree, but tally far more, so
those models were chosen which seem – to the author’s best knowledge and judgment
– most useful for psychology research and at the same time most prototypical for their
type of application.

An additional limitation is that for most parts of this monograph only examples
with dichotomous dependent variables are used, yet it is indicated whether and how
a certain model can be generalized for dependent variables with more than two levels.

This monograph does not introduce new models, but rather re-frames or modifies
existing models in a new way so that they can be used for investigating dyadic se-
quence data. For example, hidden Markov Models have existed for a relatively long
time. But restricting them in a certain way allows one to interpret them as a time-
to-event model for dyadic sequence data. Hence, the novelty of this monograph lies
not in the presented models themselves, but rather how they are put into context: this
monograph translates statistical models in research questions, allowing a researcher
who engages dyadic sequence data to select potential statistical models guided by her
or his research questions. Another novelty is that some of the models are compared
for the first time. For example, Markov-Models and aggregated Logit-Models have
existed for a relatively long time now, and both can be used for answering the same
research question. However, to this monograph’s author’s knowledge, those two mod-
els have were never been compared before. By introducing a conversion formula (see
Equation 8.2, it is also possible to translate those models’ estimates into each other,
which makes recommendations for statistical power comparable.

14

Finally, the author hopes that this monograph will encourage other researchers in
the field of psychology to engage research questions about social dynamics more of-
ten and to not shy away from using statistical models from outside of their primary
domain.

15

Overview

This monograph consists mainly of two parts. The first part provides the background
for the rest of this monograph. That includes Chapter 1, which provides an intro-
duction to sequences, dyadic data, and dyadic sequence data. Chapter 2 shows and
discusses two example datasets of dyadic sequence data. These example datasets are
then used in Chapter 3 for deriving research questions that often arise in the analysis
of dyadic interactions and for linking those to the corresponding statistical models.
Chapter 3 also includes a table that shows which model can be used for which re-
search question, and where to find the description, the simulations, and the R-code
for that model.

The second part of this monograph describes statistical models and routines. Chap-
ter 4 provides basic descriptive statistics and an overview of data-visualization meth-
ods for dyadic sequence data. The approaches shown in this chapter are especially
useful for getting a first inside look into a dataset or for exploratory research. In the
following sections statistical models are presented according to each chapters name.
Each model is introduced in light of the research questions of Chapter 3. After that,
the models are applied on the example data for showing how to interpret the results
in a given research context. Finally, recommendations on sample size and the number
of observation intervals are given. Those recommendations are based on simulation
studies, which can be found at Chapter 10.

The R-code for reproducing the simulations can be found at Appendix B. An R-
Package, called DySeq, exists as part of this monograph (see Appendix C), which
includes the example data and the implementations of all presented models that were
not implemented before this monograph was started. For all models that were already
implemented, Vignettes can be found in Appendix A.

16

1. Introduction to Dyadic Sequence Data

Many research questions in psychology concern social interactions, which take place
between two or more persons. If data is collected about the interaction of two individ-
uals, the data is said to be dyadic data. Most social interactions cannot be observed
at a single point in time, but rather develop over a given period of time. Hence,
observations of social interaction often produce longitudinal or so-called time-series
data. Moreover, if the observed variable is also categorical, the data is often referred
to as sequence data. Dyadic sequence data is the combination of all three of the above,
and therefore describes categorically coded social interactions of pairs over time. This
chapter provides definitions, special terms, and examples of sequence data, dyadic
data, and the combination of both.

1.1. Sequences

Generally speaking, the term sequence can refer to any arrangement of items that fol-
lows a certain order. For example, a series of scenes in a movie is often called a
sequence because there is a number of items (scenes) that are arranged in a certain or-
der (e.g., chronologically). However, this contribution focuses on applications to social
sciences, in which the majority of sequences describe transitions between states over
time. To this end, the general definition has to be narrowed down correspondingly.

1.1.1. De�nition of Sequences and States

Throughout this monograph, the following definition by Helske and Helske (2016)
will be used: "By the term sequence we refer to an ordered set of categorical states"
(p.3). The relevant terms of their definition are states, ordered set, and categorical, all of
which will be elaborated on the following.

A state is a "particular condition that someone or something is in at a specific time"
(State, 2016), which implies that states are temporary. For example, a person can be
in a state of being ill, yet the state might change in the future, and the person will

17

1. Introduction to Dyadic Sequence Data

hopefully get well again. The term ordered set implies that these states are arranged
in a certain order (e.g., chronologically). This order determines the interpretation of
so-called transitions, which are discussed in the following chapter.

Furthermore, the definition by Helske and Helske (2016) states that the measure-
ment level is categorical. Agresti (2002) defines a categorical variable by the following:

"A categorical variable has a measurement scale consisting of a set of cat-
egories. For instance, political philosophy is often measured as liberal,
moderate, or conservative. Diagnoses regarding breast cancer based on a
mammogram use the categories normal, benign, probably benign, suspi-
cious, and malignant." (p.1)

Moreover, Agresti (2002) distinguishes between nominal categorical variables (vari-
ables without natural ordering), such as religious affiliation (Catholic, Protestant, Jew-
ish, Muslim, other), favorite type of music (e.g., classical, country, folk, jazz, rock),
and ordinal categorical variables (variables with natural ordering) such as social class
(upper, middle, lower) or patient political philosophy (liberal, moderate, conservative).

All models presented in this monograph can handle both nominal and ordinal vari-
ables as long as the number of categories is small. A negative example would be
recording subjects’ employment with hundreds of possible categories (e.g., cook, jan-
itor, mechanic, and the like). By contrast, a positive example would be a type of
employment measured by the following categories: unemployment, employee, con-
tractor, or self-employed. The line between an appropriate number and too many
categories may depend on the actual statistical model. Therefore, each introduction to
a statistical model in this monograph will include a recommendation on this matter.

A special case that is often used in psychological research is the use of single rating
items with only a few categories, such as strongly disagree, disagree, neither agree nor
disagree, agree, or strongly agree. Such items are often treated as metric variables in
social sciences even though they are clearly categorical according to Agresti’s defini-
tion. The reason for this is that these items can be used as both categorical and scaled
(metric) variables if the distance between each category value is the same (equidis-
tance assumption), and if categories are symmetrically ordered around a neutral value
(symmetry assumption). Items that meet these assumptions are called Likert items
(Burns and Bush, 2007). However, even if those preconditions cannot be assumed, the
induced bias will be small as long as the variables’ distribution is at least symmetri-
cal and five or more categories are used (Johnson and Creech, 1983; Bollen and Barb,
1981). Because of that, rating items are often treated solely as metric variables. Yet it

18

1. Introduction to Dyadic Sequence Data

is important to remember that these items share the characteristics of both scaled and
categorical items, and therefore can be used as states in a sequence.

If states are measured on an interval scale or higher, sequence analysis is not the
recommended analytical strategy, and other methods might be more appropriate. For
example, Cockerill et al. (1991) used multiple regression for modeling states on a con-
tinuous scale; Steyer et al. (1999) used structural equation modeling for decomposing
continuous scores’ variances into variances of states, trait, and measurement error.

1.1.2. Transitions

Transitions are considered crucial in sequence analysis. Kenny et al. (2006) define them
as the following:

"A transition is an observation of two temporally separated observations in
a system over time. In time-sampling designs, it is usually the observation
from one epoch to the next." (p. 386)

For clarification, Epoch is a synonym for a time interval. For instance, if time is
measured in 10-second intervals, the observation from the first 10-second interval to
the second interval is a transition. The important part of this definition is "observation
[...] over time". Thus, sequences should represent states and time. Bringing this
together with the former definition of sequences as an "ordered set of [...] states"
shows that the order of a sequence should represent time.

In the following example, health states of a person are coded once a week. The
person is healthy in the first week, then transitions to a state of being ill in the sec-
ond, and after that, transitions into being healthy again in the third week. Ordering
the states chronologically results in the following sequence healthy-ill-healthy, which
describes a total of two transitions. The order represents time because each element
of the sequence refers to one particular time interval, and transitions describe whether
and when states have changed over time. Hence, two sequences with equal states but
different order may describe different processes. For example, the sequence healthy-
healthy-ill indicates that someone is healthy at the beginning and gets ill at the end,
whereas the sequence ill-healthy-healthy indicates that someone is ill in the beginning
and becomes well again in the second week.

Chronological ordering is very common in social sciences; thus, sequence data is
often referred to as longitudinal categorical data or categorical time-series. Both terms are
often used synonymously. However, the former is more frequently used in the case of

19

1. Introduction to Dyadic Sequence Data

many short sequences, and the latter is more often used in the case of few, but long
sequences (Bartolucci et al., 2012). This differentiation will be adapted throughout this
monograph because it is useful for model selection. One and the same model might
require different estimation approaches, and therefore different R-Packages, depend-
ing on whether the sequences represent longitudinal categorical data or categorical
time-series data. The former may consist of any number of time intervals greater
than one, but needs many observations, and the latter may consist of any number of
observational units (including one), but needs many time intervals.

In contrast to the previous definition by Kenny et al. (2006), states can be ordered by
principles other than time. For example, genes within a gene-sequence are ordered by
locus. Or, as investigated by Levitt and Nass (1989), subjects in textbooks are ordered
by chapters. Because chronological order is the most common - and for the sake of
simplicity - this monograph assumes that all sequences are ordered by time unless
noted otherwise.

1.1.3. Metric of Time

Time can be conceptualized in different ways, and most textbooks (Hosmer and
Lemeshow, 1999; Mills, 2011; Aalen et al., 2008) distinguish between continuous time
and discrete time. Some statistical models in this monograph assume the former (Cox-
Regression; Clayton-Oak Model), most assume the latter (Optimal Matching; Markov
Model; Hidden Markov Model; Mixture Markov Models). Yet the distinction between
those two metrics is not always easy, and sometimes arbitrary.

A common form of collecting observational data in psychology is interval sampling
(Kenny et al., 2006), which measures time in a discrete form. This means that the
observation is sliced into time intervals of equal lengths, and for each interval, it is
coded if a person shows a certain behavior. This kind of sampling naturally results
in sequences with chronological order. Each state refers to a certain interval of time
in ascending order: the first state describes whether the behavior was shown in the
first time interval, the second state describes the same for the second time interval and
so on. This type of time metric is often considered to be discrete because each of a
sequence’s elements refers to an interval rather than continuously recorded points in
time.

The problem about measuring time continuously is that even the smallest time unit
represents a time interval. And even if we knew the excact milisecond, one milisecond
again would be a time interval of 1000 microseconds. If something happens in the

20

1. Introduction to Dyadic Sequence Data

3rd second of an observation, we only know that the event happened somewhere
between the 2001th millisecond and the 3000th millisecond. And even if we would
know the exact millisecond, one millisecond would again be a time interval of 1000
microseconds. This can be continued endlessly because time units can be split into
smaller units infinitely. Singer and Willett (2003) provided a definition that takes this
fact into account, and defined the metric of time as follows:

"We distinguish between data recorded in thin precise units and those
recorded in thicker intervals by calling the former continuous time and the
latter discrete time." (p.313)

Therefore, whether a sequence represents a continuous or a discrete metric of time
depends on the interval’s length and the context. Consider the following example:
treated alcoholics are being observed, and it is coded whether someone is in a state of
craving alcohol, in a state without craving, or in a state of an actual relapse. Coding
the state for every second would fit Singer and Willett’s (2003) definition of continuous
time. However, coding it only once a month would be considered discrete, whereas
coding every day might be considered a continuous measurement by most but not
all researchers. Because of that, the decision whether a certain sequence represents
continuous time or discrete time is often a subjective one. Hence, the metric of time
itself should be seen as a continuum: a certain sequence might represent time as more
discrete or as more continuous, or as something in-between, but it is never either
completely discrete or continuous.

Most statistical models that are presented in this monograph assume either discrete
or continuous time. However, most of them can deal with both in practice. Hence,
the main question should not be whether time is measured discretely or continuously,
but whether it is measured appropriately. Regarding the previous example, it would
be impractical to code the alcoholics’ state every second; conversely, if their state was
coded only once a month, it would be very likely for the researcher to miss important
information. This is particularly the case if she or he is interested in finding covariates
that can predict craving and relapse. Too many things can happen and change multiple
times within one month that may affect relapse and craving. Because of that, inference
would be impossible. In this case, a daily or weekly coding might be more appropriate.
But again, this depends on the study’s purpose: if, for example, a researcher just wants
to compare long-term craving-relapse patterns, monthly coding might be the right
choice.

21

1. Introduction to Dyadic Sequence Data

Some attention must be paid to the fact that if time is measured in intervals, these
intervals can be regular or irregular (Crowder, 2012). The previous example described
regular time intervals, which means that at some point in time the coding starts and
each following time interval has a fixed length (e.g., every day at a certain time the
actual state will be coded). An example of irregular intervals are trials in a visual
attention experiment, in which correct answers and different types of errors are coded
as states. Typically, the length of one trial is determined by the participant’s reaction
time. For example, participant A’s second time interval may refer to seconds 3 to 7
because he or she needed three seconds for the first trial and four seconds for the
second trial. However, participant B’s second time interval may refer to seconds 10
to 12 because he or she needed ten seconds for the first trial and two for the second.
The trials are still ordered in a chronological way because the first trial will take place
before the second and so on. Yet, contrary to regular intervals, trials may refer to
time intervals of different lengths via starting and ending points. If time intervals are
irregular, interpretation of statistical analysis should reflect this fact. For example, if a
trend can be found in this example, it should not be interpreted as a function of time,
but as a function of trials.

Another requirement is that the sequence’s indices should be synchronous. That is,
the first element of a sequence should describe the same ordering unit (e.g., time unit,
trials) for all observational units. For example, if time units are trials, the first element
of each sequence should refer to the first trial, the second element to the second trial,
and so on. Otherwise, interpretation might be compromised. This requirement seems
obvious at first glance, yet it becomes important when missing data is involved. If for
any reason the first time interval or trial was not observed, the first sequence element
should be marked as missing. The same applies for all following intervals. Hence, the
length of sequences remains the same no matter whether observations are missing or
not. Let us consider health states as an example again: at the beginning of the study,
one person does not show up in week one. In week two, the person is healthy, and
after that, in week three, the person is healthy again. The resulting sequence should
be Missing Observation - Healthy - Healthy. It still contains three elements, even though
one observation is missing. The majority of models in this monograph can be applied
to sequences without a synchronous index, but results will often not be interpretable.
Thus, the focus of this monograph is on sequences with regular intervals and a syn-
chronous index. As a consequence, all example datasets that are used throughout this
contribution have a synchronous index.

22

1. Introduction to Dyadic Sequence Data

1.1.4. Representation of Sequences and States

According to Gabadinho et al. (2009), the most common and intuitive representation is
the state-sequence format. That is, states are hyphenated, and each hyphen symbolizes
a transition. Take the following example 1-2-2-1: an observational unit starts in a
state of 1, then transits into a state of 2, stays in a state of 2 for one unit of the
ordering variable (e.g., time interval), and then transits back to a state of 1. This
representation will be used for illustrating examples in this contribution. Alternatively,
sequences can be represented by a vector e.g., (1, 2, 2, 1) allowing for representing
multiple sequences as one data matrix. The latter representation will be used for
introducing model equations.

Throughout this monograph, the state variable is denoted S when used as a random
variable. Specific singular states and their realizations are usually denoted as s. Their
order is indexed by t. If states are ordered by time, t denotes the actual time interval
(realization of time), and T is the corresponding random variable. Indexing starts
with t = 1 for the first observed time interval. Thus, t = 0 refers to the immediate
time interval before the observation started. The maximum number of observations
is denoted m. Consequently, the former sequence (1, 2, 2, 1) can be rewritten as s1 =

1, s2 = 2, s3 = 2, s4 = 1. The general notation for a single sequence is (st)m
t=1 =

(s1, s2, s3, ...sm). If all sequences have the same length, this length will be denoted L.
The transition from one state to another state is indicated by an arrow. The following

denotes the transition that takes place by increasing the ordering unit by one (e.g., the
transition from one-time interval to another time interval): st → st+1. For example, the
probability of transitioning from a state of 1 to a state of 2 between two time intervals
is denoted P(1t → 2t+1).

In psychology research, typically more than one observational unit is observed;
hence, an additional index i is used that refers to observational units. In the case of
several observational units, sequences are denoted (sit)

m
t=1. Thus, referring to the first

observational unit can be denoted as (s11, s12, s13, ...s1m). The number of observational
units is denoted with N.

Furthermore, it is possible that several sequences are nested within one observa-
tional unit. This is sometimes referred to as multi channel sequences. In this case, the
sequences within an observational unit are indexed with j. For example, (sijt)

m
t=1 =

(s211, s212, s213, ...s21m) denotes the first sequence (j = 1) within the second observational
unit (i = 2). The number of sequences nested in one observational unit is denoted k.

23

1. Introduction to Dyadic Sequence Data

Hence, in a dataset with an equal number of sequences nested per observational unit
N ∗ k is the number of sequences in that dataset.

Nested sequences occur in particular when more than one variable of interest is
coded per observational unit. For example, 1 indicates the state of being single and 2
of being in a relationship. At the same time, the same person might be in a state of
having a job (state A) or not having a job (state B). Thus, the sequence for having a job
could be A-A-B-B and the sequence for the relationship could be 1-2-2-1. These are
two different sequences because they describe different properties. But they are nested
together because they belong to the same observational unit, and they share the same
time index.

Such sequences, which contain variables for the same observational unit and follow
the same order, but differ regarding the states of interest, can be combined into one by
a procedure referred to as state-expand (Vermunt, 1997). State-expand means that for
every possible combination of states, a new state is defined. If the possible states for
the relationship sequence are 1 and 2, and for the employment sequence are A and B,
the four possible combinations are 1A, 2A, 1B, 2B. For example, 1A represents a state
of being single and having a job, whereas 2B describes a state of being in a relationship
and having no job. Thus, the combined sequence for the two sequences A-A-B-B and
1-2-2-1 is 1A-2A-2B-1B. Combining sequences is especially useful for plotting nested
sequence data in one plot, or for applying statistical models or procedures that do not
assume a nested data structure.

Further representations include graphical representations, which range from using
colored blocks instead of hyphenated strings over state-distribution plots to transition-
plots. The first two are especially useful for screening sequence data, and therefore will
be discussed further in Chapter 4. Transition-plots will be explained in detail later in
Chapter 8 because they are often used for plotting the results of a fitted Markov model.

However, transition-plots can also be used to visualize which transitions are in gen-
eral possible and which are not. Depending on that, states can have different proper-
ties. Because of that, simplified versions of transition-plots will be used for demon-
strating different properties of states in the following chapter.

1.1.5. Transition-Plots and Properties of States

Figure 1.1 shows five example models which feature states with different properties.
Every square represents one distinct state. An arrow from one state A to another
state B indicates that transitions from A to B are possible. If the probability for a

24

1. Introduction to Dyadic Sequence Data

e) Model with a Communicating Class and an Absorbing State

a) Model with an Absorbing State B

b) Model with a Closed Communicating Class

State A State B

State A State B State C

State A State B State C

d) Model with a Single Communicating Class

State A State B

c) Model with two Competing States

State A

State B

State C

Figure 1.1.: Examples for transition plots featuring states and sequences with different
properties

25

1. Introduction to Dyadic Sequence Data

transition is known (or estimated), it is often attached to the corresponding arrow in
the same way as in path analysis or structural equation modeling. However, for this
chapter, an arrow simply means that the probability is greater than zero. Thus, if a
transition from state B to state A is not possible, as seen in 1.1.a, no arrow is drawn
from B to A. In other terms, an absent arrow means that the corresponding transition
probability is zero. For example, it is possible to change from a state of being alive to
a state of being dead, but not vice versa. Thus, an arrow should be drawn from being
alive to being dead but not from being dead to being alive.

A state B is said to be accessible from another state A if it is possible to transition
from state A to state B directly or indirectly. In 1.1.b, the state C is indirectly accessible
from state A: an observational unit cannot transit within one time interval from A to
C; yet it can transition from A to B first, and then transition to C in the next step. 1.1.a
is an example where the State B is directly accessible from state A, but State A is not
accessible from state B at all.

For example, an observational unit such as a human can be alive and then die. If
this happens, it is said that the observational unit leaves the state of being alive and
transitions to a state of being dead. Thus, the state of being dead is accessible from a
state of being alive. However, if a human dies, he or she cannot become alive again.
Therefore the state of being alive is not accessible from a state of being dead.

In fact, being dead is an absorbing state, meaning that once an observational unit
enters this state, it cannot leave it. Therefore, the event of a transition from one state to
an absorbing state can only happen once per observational unit (e.g., a person can die
only once). Because of that, sequences with absorbing states can easily be transformed
into time-to-event data, also known as survival data, by coding whether and when an
observational unit has transited to the absorbing state (see 5.1).

1.1.c also describes sequences that can be transformed into time-to-event data, but in
this case, into another subtype of so-called competing events (or competing risk). That
is, more than one possible event can happen, but only one of them can happen per
observational unit. For example, patients with a terminal illness may be alive (state A),
but two different causes of death exist. For instance, a person can die because of the
illness (state B) or because of liver failure due to the medication (state C). Thus, the
competing events would be "death from disease" and "death from liver failure".

1.1.d shows a model in which state A is accessible from state B, and vice versa. If a
set of states can access each other, it is called a communicating class. If a model consists
only of one communicating class, it is called irreducible. In event-to-time analysis,

26

1. Introduction to Dyadic Sequence Data

such sequences are often referred to as recurrent events (Mills, 2011). For example,
someone can be healthy (state A), then ill (state B), and then get well again (state A).

1.1.b shows a model where it is possible to start in a state A, but once someone
transitions to state B, it is not possible to leave the communicating class consisting
of state B and C. That is, it is possible to change from state B to state C, and vice
versa, but it is not possible to get back to A. A communicating class that cannot be
left once entered is called a closed communicating class. An example of this could be the
following: the Alcoholics Anonymous believe that someone can be in a state of "being
not an alcoholic" (state A). But, once a person becomes an "alcoholic" (state B), a cure
(transition to A) is impossible (Alcoholics Anonymous, 2002, pp. 30-33). However, it
is possible to become an abstinent alcoholic (state C), which is a person that does not
drink alcohol, but is always in danger of relapsing. The relapse, in this case, would be
a transition from C to B (the alcoholic stops being abstinent).

1.1.e shows a communicating class that is not closed. In this example, it is possible
to transition from A to B, and then back to A. Therefore, they form a communicating
class. The difference regarding the previous example is that it is possible to leave this
communicating class by transitioning either from state A or B to state C. An example
for such a model in real life could be that a person is healthy (A) and might become
ill (transition to B). An ill person can get well again (transition to A) or die (transition
to C). If she or he dies, she or he cannot become healthy or ill again. Less likely, but
also possible is that a person is in a healthy state (A) and dies from one time interval
to the next (transit to C).

1.2. Dyadic Data

In psychology, many research questions and theories concern the psychological mecha-
nisms or dynamics in social interactions. The smallest unit in which social interactions
are observable is a dyad. A dyad is "[s]omething that consists of two elements or
parts." (State, 2016). For instance, a married couple is a dyad because it consists of two
partners. Other examples are siblings, best friends, roommates, two trading partners,
or opponents in a game of chess.

1.2.1. Classi�cation of Dyads

Dyads can be categorized by type, distinguishability, and linkage. The specification of the
type of dyad depends on the roles of the two dyad members (e.g., mother-child dyads,

27

1. Introduction to Dyadic Sequence Data

heterosexual or homosexual couples). Thus, this classification’s purpose is solely a
descriptive one.

Moreover, dyads can be considered distinguishable or indistinguishable. In dis-
tinguishable dyads, there is at least one relevant quality (role) of the two members,
which allows for a clear distinction between the two (e.g., mothers and daughters).
In indistinguishable dyads, there is no such quality (role) that may differentiate be-
tween the two members (e.g., monozygotic twins). The choice of the statistical model
for the analysis of dyadic data strongly depends on the distinguishability of the two
partners (for an overview, see Kenny et al., 2006). In this contribution, we focus on
distinguishable dyads (e.g., heterosexual couples).

The distinction between distinguishable and indistinguishable dyads is not always
easy. A dyad of two mutual best friends can be "made" distinguishable if any vari-
able can be found that allows for an unambiguous distinction. For example, mutual
best friends can be distinguished by "the older one" or "the younger one". Or else in
the case of coworkers, the variable can be "the one with longer working experience"
and "the one with shorter working experience". But as a result, the focus of possible
interpretations will be shifted. Hence, a researcher should refrain from such practices
unless they serve the intended research question (e.g., "does work experience account
for differences within coworker-dyads?").

Kenny et al. (2006) point out that dyads can be distinguished even further by their
type of linkage. Whereas this classification is often irrelevant for statistical model
selection, it is useful for their interpretation. Linkage describes how two individuals
originally became dyads. Thus, it gives the first indication of why members of a dyad
are similar (or dissimilar). Four types of linkage exist: voluntary, kinship, experimental,
and yoke.

Voluntary linkage means that both members of the dyad freely chose to be paired.
For instance, mutual best friends, married couples (at least in most cultures), or a
language tandem. Typically, members of such dyads share traits or interests because
something must have brought them together. For example, mutual best friends often
share similar hobbies, personality traits, or moral concepts even before they knew each
other; or for instance, members of a language tandem share the interest in learning or
improving a language.

Linkage by kinship means dyad members are paired by lineage (e.g., siblings). Mem-
bers of such dyads may be similar due to genetic factors and shared environment as
well. However, it is also possible to assume the opposite in some cases. Especially in

28

1. Introduction to Dyadic Sequence Data

adolescence children often oppose their parents’ beliefs and habits, and try to become
different.

Experimental linkage refers to dyads that are paired artificially for the sake of re-
search. This is often done by randomization. However, a researcher could also be
interested in knowing whether similar persons cooperate more than dissimilar, and
choose to manipulate similarity between dyad members (e.g., putting only very simi-
lar or very dissimilar persons together). This type of linkage gives the researcher a lot
of experimental control. It is also the most artificial one because dyads are analyzed
that would possibly never have existed otherwise. Therefore, generalization on real
world dyads should be done only with caution.

Finally, yoked linkage means that two observational units are linked to each other in
a way that they receive the same stimuli, but do not interact with each other. prob-
ably the most prominent example for yoked linkage stems from Seligman’s early re-
search on learned helplessness (Seligman, 1972). Dogs of one group were given electric
shocks at random times. The shock could be avoided by pressing a lever. Each dog of
this group was paired with another dog from a second group that was given a shock at
the same time. Intensity and duration were also matched. However, the second dog’s
lever did not affect the shock at all. Thus, both dogs of one pair received the same
environmental stimuli, but nether interacted with each other. The only difference be-
tween two linked dogs was that one dog could escape the shock by his own actions,
while the other dog could only wait until the shock ended.

1.2.2. Interdependency

The most important characteristic of dyads in social sciences is interdependency. For
example, a mother and her child are clearly interdependent: if the mood of the child
changes, it will affect the mood of the mother and vice versa. Because of that, and
akin effects, members of a dyad are often more similar toward each other than other
persons. Or, although not as often as the previous case, they are more dissimilar than
other people (see the previous example on linkage by kinship from Chapter 1.2.1).
However, most standard statistical tests lean heavily on the assumption of indepen-
dence. Ignoring the interdependency between dyad members may lead to a loss of
statistical power and increased Type-I-error rates. Hence, "spurious significant" results
become more likely (Kenny and Judd, 1986).

A frequently used method for avoiding that problem is to collect data only from one
individual in the dyad (Gonzalez and Griffin, 2012). However, by doing so, that part of

29

1. Introduction to Dyadic Sequence Data

the data which is of key interest for dyadic research is lost. This is particularly the case
for all kinds of social interactions. Consider the following example: a researcher might
be interested in mother-son interactions, promptly after the mother has told her son
that she ate all his Halloween candy. The specific interaction will depend on the son’s
characteristics, the mother’s characteristics, and their unique relationship and history.
The boy might be angry at first, and insulting his mother, but he might start laughing
the moment he realizes she is joking. However, it is also possible that the mother
becomes angry over her son’s insults. Then starts scolding him, after which he reacts
with truculence. Collecting only the boys’ data would only reveal that some boys
laugh about it, and other will become defiant. The most important part - the mother-
son interaction which causes the outcome - is completely ignored. Information is
lost about how the boy’s initial reaction influences the mother’s reaction, which again
influences the boy’s final reaction.

The better option is choosing statistical analyses that account for interdependence.
For example, the analysis of variance (ANOVA) allows to model factors as either be-
tween (independent) or within (dependent) factors for scaled (metric) dependent vari-
ables. Furthermore, ordinary regression can be extended to multilevel models, which
can also handle interdependency (Hox et al., 2010). Both models assume that the de-
pendent variable is measured on an interval or higher scale. However, the multilevel
approach can be combined with generalized linear modeling (Gill, 2000) for approach-
ing the analysis of categorical data, as shown in Chapter 7. Another approach is to
analyze each dyad separately and then to summarize the results (see Chapter 6). More-
over, Markov models, which are genuinely made for sequence data, can be applied to
dyadic data by different approaches (see Chapter 8).

1.2.3. Within and Between Variables

Often in dyadic data analysis both, dyads and individuals, are treated as observational
units. Therefore, it is important to differentiate between within-dyad variables and
between-dyad variables. A between variable has always the same value for both members
of a dyad but might vary across dyads. A within variable varies within dyads.

For example, a researcher might be interested in knowing whether couples’ satis-
faction with their partnership depends on their income. Using only between variables
means taking the total partnership satisfaction and total income of each couple and,
for instance, running a regression. So, the total income of a couple might explain why
some couples are more satisfied than others. For instance, a higher income might re-

30

1. Introduction to Dyadic Sequence Data

duce money related problems. And because of that, the total partnership satisfaction
might increase. By contrast, within variables would be the individual partnership sat-
isfaction and income of each member. So, income of one partner may account for his
or her own satisfaction (a so-called actor effect, see Chapter 1.2.4) and for his or her
partner’s satisfaction (a so-called partner effect).

This example shows that some variables can be both. Income can be a between vari-
able if the total income of a dyad is calculated, and income can be a within variable
if the individual income of the members is used. However, other variables are exclu-
sively within or between variables. For example, the number of years in marriage of
a couple is always the same for both members, and therefore is considered to be a
between variable. An exclusive within variable is, for example, eye color, because each
member has his or her own color.

1.2.4. Conceptual Models for Dyadic Data

Kenny (1996) introduced three common conceptual models that describe how mem-
bers of a dyad affect each other: the Actor-Partner Interdependence Model (APIM), the
mutual influence model, and the common fate model. These three models are originally
designed for scaled cross-sectional data, yet two of which can be adapted for sequence
data: the APIM and the common fate model. Therefore, only these two will be de-
scribed in this chapter. Their longitudinal adaptions are discussed in 1.3.1.

The APIM, in its cross-sectional form (see Figure 1.2A), assumes that characteristics
of one member of the dyad can affect either the self (actor effect) or the partner (partner
effect). Taking a heterosexual couple, for example, men’s stress coping ability might
affect the amount of which he is willing to communicate his stress (actor effect of the
man). The same might also be true for the woman (actor effect of the woman). However,
it is also possible that men’s willingness to communicate stress also depends on the
woman’s coping ability (partner effect of the man). The opposite might also be true;
the woman’s willingness might depend on man’s coping ability (partner effect of the
woman). If the dependent variables are scaled, residuals can be allowed to correlate
(not shown in Figure 1.2A). Positively correlated residuals might indicate that they
have a common cause. For example, one couple has higher than average values on
both of their stress coping ability. If all coefficients are positive, the model would
assume that their willingness to communicate their stress is also above average for
both. However, maybe the couple had an argument right before the measurement and
thus both rates lower on the scale. Hence, the residuals for both would be negative.

31

1. Introduction to Dyadic Sequence Data

The opposite might be true if the couple is in an execptionally good mood, which
results in positive residuals. Therefore, it is possible to think of correlated residuals
as a latent variable that describes a common influence. The APIM, according to Cook
and Kenny (2005), is the most favored model by dyadic researchers.

According to Ledermann and Kenny (2012) the common fate model (see Figure
1.2.B) is a theoretically important but underutilized model. The model assumes that
for each variable, a construct exists at the level of the dyad rather than at the indi-
vidual level. The corresponding within variables are considered to be indicators of
this particular construct. For example, a husband and wife might have scored differ-
ent values of dyadic coping ability on a partnership test. According to the common
fate model, these scores are an expression of their combined coping ability. The same
applies for stress communication abilities. Moreover, the model suggests that corre-
lations between individual coping and stress communication abilities are produced
solely through a correlation on the latent (common) level.

1.3. Combining Dyadic and Sequence Data

As in many other fields of psychology, research on dyadic interactions relies mainly
on self- and partner reports. Typically, these reports describe an overall evaluation of
a psychological mechanism (e.g., evaluation of the joint efforts to cope with stress), or
they describe typical patterns of behaviors, which the two dyad members experience
when together (e.g., how they jointly deal with the stress of one partner). However,
self (and partner) reports potentially suffer from different biases: they may integrate
an evaluative perspective about past behaviors, but also social comparisons, with other
couples, which may be top-down biased by overarching constructs, such as relation-
ship satisfaction, for example. They may also be biased due to self-deception, exag-
geration, social desirability, mood dependency, or oblivion (Lucas and Baird, 2006).

Hence, in many contributions authors call for multimethod measurements (e.g., Eid
and Diener, 2006) including behavioral coding and the analysis of behavioral interac-
tions. According to Kenny et al. (2006) interval sampling (sequential coding) is the
preferred method when different behaviors can be observed in interaction sequences.

Interval sampling in the context of dyadic observations implies that the observation
period is divided into time intervals of the same length (e.g., 8 minutes may be divided
into 48 intervals of ten seconds each). For each interval, whether a particular behavior
occurred (0 = no; 1 = yes) is coded. Hence, if one behavior is coded for each dyad
member, two sequences are recorded per dyad.

32

1. Introduction to Dyadic Sequence Data

Figure 1.2.: A) shows the conceptual Actor-Partner-Interdependence Model (APIM), B)
the longitudinal version both stem from Cook and Kenny (2005). DV and
IV in the cross-sectional model typically represent different constructs, and
X and Y represent different partners, whereas in the longitudinal version,
the same variable is measured for each partner at two times (t replacing
the DV and t − 1 replacing the IV). ax is the actor effect for variable x,
ay is the actor effect for variable y, px is the partner effect for variable
x, py y is the partner effect for variable y. B) shows the common fate
model adapted from Kenny et al. (2006), correlations between DV an IV
and between partners are solely explained by a latent common variable φ.
Model D) shows the longitudinal adaptation presented in this monograph:
auto-correlations and correlations between partners are explained solely by
a latent common variable.

33

1. Introduction to Dyadic Sequence Data

Figure 1.3 depicts an example of interval sampling for two behaviors: stress com-
munication (SC) by one partner and coping reaction (dyadic coping: DC) by the other
partner. The entries in the data matrix indicate whether the behavior occurred within
a given sequence (interval); 1-1-0 for stress communication (SC), for example, indicates
that the first partner communicated her or his stress in the first interval, did so in the
second, but did not communicate her or his stress in the 3rd interval. By contrast, a se-
quence of 0-1-1 for dyadic coping (DC) indicates that the 2nd partner showed dyadic
coping in the second and the third interval, but not in the first. The sequences are
dyadic because they allow for studying interdependence. For example, stress commu-
nication (SC) might trigger dyadic coping (DC) responses, or vice versa, as indicated
by the arrows. However, it is also possible that both behaviors are only indicators of
an underlying dyadic coping process.

Figure 1.3.: Interval sampling for the example dataset. Displayed are the first three
ten-seconds intervals of observation after stress was induced. Horizon-
tal arrows between the boxes refer to actor effects. Crossed arrows refer
to partner effects. SC: did stress communication occur? DC: did dyadic
coping occur?

1.3.1. Conceptual Models for Dyadic Sequence Data

The APIM has been adapted for the analysis of longitudinal metric data (Cook and
Kenny, 2005) and sequence data (Kenny et al., 2006). In the adapted version for metric
data (see also Figure 1.2.C), the same constructs are repeatedly measured over time
(e.g., her SC and his DC). Effects between two time intervals within one partner (female
partners’ SC at time t− 1 to SC at time t) are called actor effects, which correspond to

34

1. Introduction to Dyadic Sequence Data

autoregressive effects in time-series analysis. Effects from one partner at t− 1 to the
other partner at t are called partner effects (female partners’ SC at time t− 1 to male
partners’ DC at time t). These effects correspond to cross-lagged effects in time-series
analysis. The adaptation of the APIM for binary categorical sequence data is depicted
in Figure 1.3. In this adaptation, the occurrence of male partners’ behavior (here DC)
at time t is predicted by their immediate previous behavior at t− 1 (men’s actor effect),
and by the behavior of their partners at t− 1 (men’s partner effect). The occurrence
of female partners’ behavior (here SC) at time t is predicted by their behavior at t− 1
(women’s actor effect), and by the behavior of their partners at t− 1 (women’s partner
effect).

In the common fate model, it is assumed that there is a property of the couple which
influences both partners’ behaviors. Consider a conflict between partners, where the
conflict describes the couple as a whole and will likely lead to stress communication.
In the same vein, female partners’ stress may be seen as a property of the couple. Her
stress will likely lead to stress communication by her and coping reactions by him. In
sequential data and according to the common fate model, her stress communication
and his coping reaction may be indicators of a latent status (female partners’ stress),
which can change over time (see Figure 1.2.D). Hence, changes in the two behaviors
are modeled as indicators of one latent variable. Depending on the research question
and the underlying assumptions, researchers may choose between the models. In the
remainder of this contribution, we will outline possible adaptations, applicability, and
interpretation of the different models relying on prototypical research questions.

1.3.2. Dyadic Sequence Data in Psychology and Related Fields

Dyadic sequence data can occur in all fields of psychological research when behavior of
dyads is coded over time. This is the case in developmental psychology when parent-
child dyads are observed, or in couples research. The same is true for investigating
the interaction between a therapist and her or his client. However, there are two
psychological research branches that commonly produce dyadic sequence data. The
first one is research about cooperation in social dilemmas, and the second one is joint
action.

Dyadic sequences often occur in studies about cooperation, especially if social dilemma
games are used for measuring the amount of cooperation. Dawes (1980) characterizes
social dilemmas by the two properties "(a) the social payoff to each individual for de-
fecting behavior is higher than the payoff for cooperative behavior, regardless of what

35

1. Introduction to Dyadic Sequence Data

the other society members do, yet (b) all individuals in the society receive a lower
payoff if all defect than if all cooperate."

Several dilemmas have been established for simulating social dilemmas in experi-
mental settings, most of which consist of several rounds. Each turn all players, usually
two players, have to decide whether they want to cooperate or to deceive the other.
Thus, time is measured as a discrete variable (game turns) and a player transitions
through states of cooperation or deception (which is categorical). Furthermore, pre-
vious decisions of both players may affect actual decisions (interdependency). Thus,
dyadic sequences are obtained.

Outside of psychology research, this kind of data is often analyzed by models made
for sequence data (see Rapoport, 1963; Luce and Raiffa, 1957; Shubik, 1964). In math-
ematics (or gaming theory), the focus is often on research questions, such as ’What
is the best strategy in this game?’, whereas in the context of psychology, it is more
common to aggregate the data and report means of cooperation (for a meta-analysis
see Sally, 1995). Therefore, psychological studies focus more on research questions
such as: ’Does the psychological construct A increase/decrease the amount of coop-
eration?’ Using statistical models that can be applied directly to sequence data would
enable new research question, such as: ’Does the psychological construct A affect
cooperation patterns?’ or ’How does cooperation develop over time and does this
development depend on other psychological constructs?’

Another field where dyadic sequence data is common is joint action. Sebanz et al.
(2006) defined joint action as the following: "[joint action] can be regarded as any form
of social interaction whereby two or more individuals coordinate their actions in space
and time to bring about a change in the environment." Researchers investigating joint
actions often link two observational units together (experimental linkage) and code the
behavior of those two. Examples are, two people must carry a table from one room
into another, and their communication is coded; or two people have to react the same
time in a visual attention experiment. If behavior is coded categorically and time is
measured in time intervals, the resulting data would also be in the form of dyadic
sequences.

This kind of research finds many real-world applications in the field of daily work
and work security. For example, two air-traffic controllers often have to do identical
jobs, such as observing the same area on a radar. This is called the redundancy prin-
ciple. The idea is that each air-traffic controller has a small probability of making a
mistake, yet the probability that both controllers are making the same mistake at the
same time is extremely small. For instance, if the probability to make a mistake was

36

1. Introduction to Dyadic Sequence Data

.001 for one controller in one time interval, then the probability that both will make the
same mistake in the same interval would be .000001 (.001*.001). However, this holds
true only as long as both probabilities are independent. Yet air-traffic controllers have
to communicate with each other, and that may influence their error rates. Therefore,
a researcher might be interested in screening for partner effects. For example, a panic
reaction by one controller might increase the probability for the second to produce an
error.

In neighboring disciplines the analysis of sequences is more common. Abbott (1995)
propagated sequence analysis in quantitative sociology, and since then the number of
applications has increased rapidly (Abbott and Tsay, 2000). For example, Casper and
Wilson (2015) analyzed prominent actors’ behavior in a national crisis via sequences.
To give another example, Fuller and Stecy-Hildebrandt (2015) analyzed career path-
ways for temporary workers.

37

2. Example Data Sets

Typical statistical models will be exemplified throughout this contribution by using
two different example datasets: Couple-Cope, which stems from a study of Bodenmann
et al. (2015), serves as the primary example, and Give-Some, which originated from
the bachelor thesis of Halstenberg (2016), as a supplementary example, in which the
behavior of one member is pre-programmed.

2.1. Couples-Cope

This empirical dataset will be used for introducing typical sequence-data structures
and for showing how to apply the presented statistical models of this contribution to
them. The dataset is included in the R-Package "DySeq" (see Appendix C). The R
code in Appendix A describes how to retrieve the example data and how to run the
presented statistical procedures and models on it.

2.1.1. The Couples-Cope sample

The sample contains voluntarily linked dyads (see 1.2.1), which stem from a study of
Bodenmann et al. (2015). In this sample, 198 heterosexual couples living in Switzerland
participated. The couples had to have been in their current romantic relationship for
at least a year and use the German language as their primary language. About 56%
of the women and 40% of the men were students, and their age ranged from 20 to 45
years. During the study, either the woman, the man, or both partners were stressed
using the Trier Social Stress Test (TSST; Kirschbaum et al., 1993).

Directly after the stress induction, both partners joined each other again, and the
couple was left alone for eight minutes without any further instruction. During this
period, which was introduced as time the experimenters would need for some adjust-
ment of the experimental installations (a "fake" waiting condition), the two partners
were filmed. In fact, the eight minutes of the waiting situation were the core interest
of the study because this situation was supposed to reveal how partners interact after

38

2. Example Data Sets

one or both of them have been stressed. In the remainder of this monograph, this
waiting condition will be called the interaction sequence.

For the sake of simplicity, only those 64 couples are considered where only the
female partner was stressed. Thus, the analyses are restricted to her stress communi-
cation (sequence 1) and the male partner’s support reaction (sequence 2; supportive
dyadic coping). Stress communication (SC) includes all verbal and non-verbal behav-
iors signaling stress. Supportive dyadic coping (DC) includes all verbal and non-verbal
behaviors aiming to support the partner’s coping efforts in a positive way. Both behav-
iors were coded relying on the SEDC (Bodenmann, 1995) in 48 intervals, ten seconds
in length. The data structure hence consists of two interdependent sequences with
48 entries. The sampling method was already shown in Figure 1.3. The presented
statistical models throughout this monograph can be applied to any comparable data
situation.

2.1.2. Stress Communication and Dyadic Coping

Whereas other conceptualizations and definitions exist for both stress and coping,
this contribution focuses on Bodenmann’s (2005) approach and the taxonomy, which
can be seen as an expansion of the transactional stress model by Lazarus (Lazarus,
1966; Lazarus and Launier, 1978). Lazarus describes stress as a person-environment
transaction. The person’s appraisal mediates the impact of an external stressor. In
a first step, a person evaluates the situation regarding its ambiguity, relevance, and
controllability (primary appraisal). In a second step, the person evaluates his or her
coping ability and resources. Depending on the outcome of both steps, a stress reaction
might be triggered, and the person tries to overcome the stress by applying coping
strategies. That step is followed by the phase of reappraisal, in which the person
reevaluates the situation and resources, adapts his or her coping reactions if necessary,
and finally ends the coping reaction if the stress was reduced successfully.

Bodenmann (2005) defines dyadic stress as the following: "Dyadic stress represents
a distinct form of social stress. It involves common concerns, emotional intimacy
between two people, and the continuity of a social system (i.e., the maintenance of
the marriage)." In dyads, stress communication becomes important because it allows
the unstressed partner to perceive the stress of the other partner. He or she might
then appraise the stress and then initiate coping responses, too. Because one partner’s
well-being and satisfaction depend on the other’s welfare and satisfaction, both make

39

2. Example Data Sets

efforts to restore a state without stress. The actual form of this coping might depend
on the couple’s characteristics, but also on the type of stress.

Furthermore, Bodenmann (2005) classifies dyadic stress by the following: the origin of
stress, whether it is direct or indirect, and whether it is simultaneous or sequential. The
origin of stress describes whether the stress originated from inside or from outside the
couple. Examples of an internal stressor would be different goals or marital conflict.
Whereas an example for an external stressor would be that one partner is a victim of
mobbing at his or her workplace. Direct dyadic stress means that a couple encoun-
ters the same stressor, whereas indirect implies that one partner faces stress and then
"brings the stress home." That is, the stressed partner did not cope successfully with
a stressful event before he or she met his or her partner. That might be due to a lack
of coping abilities, the impact of the stressor, or simply a lack of time. Simultaneous
stress means that both partners experience the stress at the same time; for example,
political unrest affects both partners simultaneously. Sequential means that one part-
ner encounters stress first and then, after some time, the other partner is introduced
to the stressor, too.

Applying this classification to the sample data shows that the induced dyadic stress
is external, indirect, and sequential: the female is stressed initially by the experi-
menters (outside source), after which the couple comes together (sequential), and then
the man is introduced to her stress via her verbal or non-verbal stress communication
(indirect). According to Bodenmann (2005), stress communication can be problem-
focused, which is typically verbally expressed, or emotion-focused, which is commu-
nicated verbally or non-verbally. In the present study, all these forms were coded
simply as stress communication (SC). However, future research might also investigate
patterns of different forms of stress communication with the presented model.

Bodenmann (2005) also distinguishes different forms of dyadic coping activity, such
as positive dyadic coping, which includes all forms of coping efforts that aim to reduce
common stress. Exemplary forms of positive dyadic coping are: helping the partner
to reframe the situation, expressing solidarity, engaging in joint problem solving, or
taking over responsibilities of the other. Negative dyadic coping includes all forms of
coping efforts that are performed in a negative way, such as mocking, sarcasm, or the
like.

Both positive and negative dyadic coping can be classified further. In the present
dataset, it was coded whether supportive dyadic coping was shown. This is a form of
positive dyadic coping that is characterized by one partner’s efforts to support the
other partner’s coping efforts (emotionally or problem-focused). The other forms are

40

2. Example Data Sets

common dyadic coping, which means that both partners engage stress in a symmetrical
way, and delegated dyadic coping, which means that the partner steps into the breach.
For example, one partner is stressed because of an important meeting and the other
partner takes over.

2.2. Give-Some

As mentioned before (see 1.3.2), social dilemma games that are used for measuring
cooperation produce dyadic sequential data. Several dilemma games have been estab-
lished for simulating social dilemmas in experimental settings. Whereas the previous
dataset was about the interaction of two humans, this dataset is about the interaction
of a human and a pre-programmed algorithm. The computer in this setting is pro-
grammed to ignore the humans behavior; thus, patterns should become less coherent
than those of the last example. Therefore, this example will be used as a contrasting
example.

2.2.1. The Give-Some Sample

The dataset contains sequences of 42 subjects (28 females, 14 males) that engaged in
a so-called four-coin dilemma. All participants were students at Bielefeld University
and received course credit plus the chance to win one of three 10e vouchers. The age
of participants ranged from 18 to 38 years, with a mean age of 21.91 years (SD = 3.78).
Two persons were aware that the other player was pre-programmed, and one person
was later identified as an outlier. As a consequence, these three were excluded from
the original dataset.

A brief outline of the history of social dilemma games and the specific setup of
this experiment will be presented in the following two sections. Up to this point, it
is sufficient to know that participants had to exchange coins with a pre-programmed
algorithm within each of the 32 game turns. The number of given coins indicates
cooperative behavior. Thus, the more coins were given, the more cooperative behavior
was shown. On average, participants gave less coins (M = 1.83, SD = 0.37) than the
algorithm (M = 2.00, SD = .71). Giving more coins than did the opponent in the last
turn was classified as cooperation. Overall, human players cooperated in 63.98% of all
turns, whereas the computer cooperated in 70.35% of all turns.

41

2. Example Data Sets

2.2.2. Cooperation in a Give-Some-Dilemma

The core idea of dilemma games can be explained by the prisoner’s dilemma, which
is probably the best-known dilemma paradigm in psychology. In its original form
(Poundstone, 2011), two accomplices of one crime are arrested. The problem is that the
prosecutors can charge both culprits only with minor offenses. Thus, if both criminals
stick together (cooperate with each other), both will receive a prison sentence of only
one year. Because of that, the prosecutors offer a deal: if one of the criminals testifies
against the other, the defector will be set free and the other criminal will be sentenced
to three years in prison. The clue to this dilemma is that if both betray each other, both
will be in prison for two years.

Examining the dilemma on the group level reveals the following: if both kept silent
(cooperate), the combined time of imprisonment would be two years; if only one
cooperates but the other defects, the combined sentence will be three years; and if
both betray each other, the combined punishment will be four years. Thus, the best
course of action for minimizing the combined sentence is to cooperate.

However, on an individual level, the best course is always to betray the other. If the
other cooperates, the betrayer will be set free. If the other betrayes too, the betrayer
has only to serve two years instead of three. According to classical gaming theory,
the criminals or, in terms of gaming theory, players, will behave rationally, on an
individual level. That is, both will betray each other (Milovsky, 2016). Despite that
prediction, Messick and McClintock (1968) found that people differ in their tendency
to cooperate.

The original prisoner’s dilemma was modified many times, and the give-some
dilemma is one descendant of this process. The first extension, the iterated prisoner’s
dilemma, introduced the idea that players can engage the dilemma repeatedly. Because
of that, they remember previous actions of their opponent and might change their
strategy accordingly. This development led to the take-some dilemma, in which play-
ers could grade their betrayal. In this version, each person starts with an amount of
money and each turn the players can choose how strongly they want to blacken the
other player. The stronger the betrayal, the higher the penalty for the other. The clue
is that the betrayer could keep half of the opponent’s fine for him or herself. Again,
it would be best to cooperate on the group level, because to total on the group level
will be highest if they do not betray each other at all. However, on the individual
level, it is best to defect because the individual will always get more money the more
she or he betrays the other. Finally, the give-some dilemma emerged and changed the

42

2. Example Data Sets

perspective from grading the betrayal to grading the cooperation. Players start each
round with a certain number of coins. Each turn, both players decide secretly and
simultaneously on how many coins they want to exchange with each other. Each coin
that a player keeps for himself is worth one victory point (VP). Yet every coin which
was received by the other player is worth two VPs. Each VP is worth real money (e.g.,
both players get 1e per VP). In this scenario, the group wealth will be maximized if
both players give all their coins to the other player (the total money would be dou-
bled). However, on an individual level, it would be best to keep all coins for oneself
(for an actual example with four coins, see Chapter 2.2.3).

Axelrod and Hamilton (1981) found that algorithms that used only an individually
rational strategy performed poorly in simulations. Instead, altruistic strategies worked
better in the long run. The best-performing, yet most simple, was the tit-for-tat algo-
rithm. The idea of the tit-for-tat strategy is to copy the opponent’s behavior from the
last round. Therefore, if the other cooperated during the last round, the algorithm
would do so, too. In other words, the algorithm rewards cooperation and punishes
betrayal.

Messick and McClintock (1968) found that human players use three different types
of strategies: 1) individualistic, 2) competitive and 3) pro-social. The individualistic
strategy focuses only on maximizing their outcomes: persons who follow this plan
will always betray the other person in the prisoner’s dilemma game. If there is more
than one round, these individuals will only cooperate if it benefits their individual
outcome. On the other hand, people who use a competitive strategy will maximize the
difference between both players. Competitive players tend to defect, yet they might
cooperate a little for "luring" the other player into cooperation. They aim for being
better than the other player, even if that will decrease their individual outcome. The
last strategy, pro-social, tries to maximize the outcome of both players. Players of this
style will try to cooperate most of the time, yet might deploy a tit-for-tat strategy if
the other player defects. They aim for increasing the group outcome.

2.2.3. The Give-Some Experiment

In the bachelor thesis of Halstenberg (2016), which was overseen by the author of this
monograph, students participated in a four-coin give-some dilemma: each player starts
with four coins that are worth one point for oneself and two points for the opponent.
Both players have to submit zero to four of them to the other player. The decision is
made secretly and simultaneously.

43

2. Example Data Sets

For example, player A submits zero coins and receives one coin in turn one, meaning
that Player B keeps three coins and submits one. Player A gains a total of six points (4
own coins * 1 = 4 VP; 1 coin from the other player * 2 = 2 VP; adding up 4 + 2 = 6).
Player B, on the other hand, gains a total of three points (3 own coins * 1 = 3 VP; zero
coins from the other player * 2 = 0 VP; adding up 3 + 0 = 3). Clearly, it would be
best for both if they always submitted all their coins so that they would always receive
eight victory points (0 ∗ 1 + 4 ∗ 2 = 8). However, on an individual level, it is always
best to keep all coins because giving them away would not result in victory points for
oneself.

The game consisted of 32 rounds. Yet the experimenters did not tell the players
how long the game was because, otherwise, it is always most profitable to give zero
coins during the last turn (the opponent cannot react anymore after that). It was
also concealed that they would play against an algorithm (a pre-programmed player).
Instead, they assumed that they would play against a person in the adjacent room. In
fact, this person was only an assistant of the experimenter and did not participate in
the experiment. Nevertheless, during the entire experimental session, the confidant
was treated like a participant in order to keep up the deception.

For both the human player and the artificial player, how many coins they gave each
turn resulting in two time-series was recorded. These time-series were transformed
into two dichotomous sequences by the following rule: if a player gives more or equal
coins than the other did in the previous turn, it is coded as cooperation. Otherwise it
is coded as defection. Because this transformation is not applicable to the first turn of
the dilemma, the resulting sequence consists of 31 entries. For one demonstration in
this monograph, a slightly different transformation was used. In Chapter 8, the data
is used for demonstrating Markov models with more than two states. Therefore, three
states were created by the following transformation: if a player gives more coins than
the other in the previous turn, it is coded as cooperation. If the player gives fewer
coins than the other did in the previous turn, it is giving less, for an equal amount is
coded giving equal, and if more, it is coded giving more.

2.2.4. The Pre-Programmed Player

The algorithm was not programmed to react or adapt to the human players actions;
instead, it followed a semi-random program. The 32 rounds were divided into eight
blocks. Within each block, the computer gave 1x1, 2x2, and 1x3 coins in randomized
order. The only exception was the very first turn, in which the algorithm always gave

44

2. Example Data Sets

two coins followed by one, two and three coins in randomized order. The algorithm
was originally designed that way for several reasons: on average, the algorithm gave
two coins, which is also the center of the event space. Moreover, it was always possi-
ble for the human player to give more or fewer coins than the algorithm did before.
Finally, a random behavior should not induce a certain type of behavior for the hu-
man player. Hence, a human player would be more likely to show his or her natural
behavior in a dilemma-type-situation. However, the algorithm has another benefit for
its use in this monograph, the random behavior of the algorithm gives an example for
patterns that are extremely erratic. Therefore, it is a good contrast to the couples-cope
example, which will show a more consistent pattern.

45

3. Research Questions and

Corresponding Data Analyses

Several potential research questions may motivate researchers to collect sequential
behavioral data. These may range from more general issues about the associations be-
tween observed behaviors of partners to more detailed questions about the processes
during social interactions or interactions between partners. In this chapter, general
research questions will be introduced and exemplified using the example datasets.
Furthermore, recommendations are given for choosing the statistical model that fits
a certain research question best. Some research questions can be answered by more
than one statistical model. For these models, advantages and disadvantages are briefly
sketched in this chapter, yet will be explained in more detail in the corresponding
chapters. Tables 3.1 and 3.2 give an overview of the research question, the approaches
that can be used for answering these questions, the corresponding chapter, and pro-
vides further notes.

3.1. Getting an Overview About Dyadic Sequences

(Visualization and Descriptives)

For scaled (metric) and categorical data, a consensus exists on how a researcher can
give an overview. Typically, when the outcomes of a study are scaled (metric) vari-
ables, then means and standard deviations are reported. Furthermore, data is often
visualized via histograms or density plots. If the data is categorical, frequencies are
reported. Additionally, data can be visualized via (clustered) bar plots. However, most
researchers in psychology are not used to sequence data. Thus, there is no consensus
on how to present or to visualize sequence data. Descriptive questions about sequence
data might include: "How often do states change?", "Are there regions of time in which
states change more often?", or "How to visualize the distribution of states over time?"
Moreover, "Are there distinct subpatterns of behavior that occur more often?" Chap-
ter 4 will answer to these fundamental questions. Finally, a preliminary analysis could

46

3. Research Questions and Corresponding Data Analyses

also ask, "Is there an association between the states of one sequence and the other
sequence?" Linking this to couples-cope example, "Do men show dyadic coping (DC)
more frequently if their partners communicate their stress (SC) more frequently?" (See
Chapter 4.2).

3.2. Duration of Behavior (Time-to-Event)

Another question is: what is the typical duration of a particular behavior? That is, how
long does it take until the response was coded the last time (cavalierly presuming that
this was really the last time the behavior was shown and was not repeated after the
observation period). Taking the coples-cope data for example, how long does stress
communication last? Or, whether and when does stress communication stop? These
kind of questions can generally be answered by time-to-event analysis.

Yet what might be even more interesting to know is "What influences those dura-
tions?" Or, more statistically speaking, which covariates influence the time to an event.
For example, the goal of dyadic coping is to support the partner’s efforts in dealing
with stress. Therefore, it is reasonable to assume that a better dyadic coping ability
of one partner should shorten the other partner’s duration of stress communication.
Thus, the natural questions arise as to "how long does SC last? And does it depend on
covariates, as men’s self-assessed dyadic coping ability for example?" Time-to-event
analysis can answer these questions (see Chapter 5) by estimating a so-called survival
rate and a hazard curve. The former shows how the probability that a behavior is still
shown up to a time interval is distributed over time, and the latter shows how the
probability that a behavior ends within a time interval is distributed.

Furthermore, a researcher might be interested in investigating whether two behav-
iors of dyads end in temporal proximity. For example, if stress communication and
dyadic coping responses of the partner are solely indicators of an underlying dyadic
coping process, both behaviors should end right after the couple successfully solved
the coping process. The Clayton-Oak model (see Chapter 5.3) can be used for inves-
tigating how close the temporal proximity is: the model is similar to a multi-level
model, yet built for time-to-event variables. By building one cluster per couple, it can
be used for investigating whether time-to-event variables of partners are highly cor-
related (close temporal proximity) or not, and whether the correlation is significantly
greater than zero.

Finally, if dyadic sequences are believed to be best explained by a common fate
model, another question could be "How long does it take until the latent process ends?"

47

3. Research Questions and Corresponding Data Analyses

or "How long does it take until couples solve the stress?" These kind of questions
can be tackled by restricting hidden-Markov models (see 8.) Because this approach
combines time-to-event modeling with the common-fate model, it is explained at the
end of the following chapter (Common Fate).

3.3. Assuming a Latent Dyadic Process (Common Fate)

As shown in Chapter 1.3.1, the common fate model assumes that the coded behaviors
of two dyad members are only indicators of a latent process. Thus for the couples-
cope dataset, the assumption is that there is a dyadic coping process and that SC
and DC are indicators of this process. By contrast, it is safe to assume that there is
no common latent process for the give-some example because the algorithm was not
programmed in that way. However, there might be a latent process for only one of the
dyad members. For example, at first, the human player might be in a state in which he
or she believes that it is possible to cooperate with the other player. However, over time
the player might register that the other player acts more or less randomly. Thus, the
human player might change his intentions and accordingly adapt his or her strategy.
These kind of questions can be analyzed by hidden Markov models (see Chapter 8).

The core idea of hidden Markov models is that the latent process is modeled as a
Markov chain. That is, the probability of the dyad transitioning from or staying in a
latent state at t depends only on the previous state at t− 1. The corresponding states
in the observed sequences are only seen as indicators of the latent state. For example,
a couple which is in a state of active stress solving might have a higher likelihood of
showing stress communication (SC) and dyadic responses (DC), whereas in a stress-
free state, the occurrence might be less likely. These probabilities are called emissions
and can be interpreted as a measurement error or reliability of the indicators: If the
woman’s SC were a perfect indicator for the couple being in a state of stress, it should
be 1.00. Meaning, if the woman shows SC, the couple is in a state of stress. However,
an emission of 0.50 would mean that the woman will show SC only in half of the
intervals in which she and her partner are in a common state of stress.

Several questions can be asked for such models: How many latent states exist? What
are the transition probabilities? And how can the latent states be described using the
associated emission probabilities?

Moreover, Markov models can be restricted so that they estimate a latent hazard
for the latent process. This answers the question of "how long does it take until the
latent process ends?" This approach can be useful when the latent state is assumed to

48

3. Research Questions and Corresponding Data Analyses

be finite. For example, stress is induced, and at some point in time the stress should
end. Thus, two states can be assumed: stress and no stress. Furthermore, because stress
is induced initially, all dyads should start in a state with stress. Finally, the model is
restricted so that no stess is an absorbing state (dyads can only leave the state of stress,
but not enter it again, see Chapter 1.1.5). Thus, the only transition-probability that is
estimated is the latent-hazard, which is the probability for the latent process to end
from one time interval to the next (see Chapter 8). The hazard can also be used for
calculating the estimated survival time. This approach combines the previous research
question about duration with the common-fate model.

3.4. Analyzing Promptness of Interaction (APIM)

Does the behavior of one member trigger an immediate reaction by the other, and vice
versa? And furthermore, how stable is a behavior? Or in other words, what is the
probability that a behavior at time interval t− 1 is immediately followed by the same
behavior at t? These questions are equivalent to partner and actor effects of the APIM
presented in Chapter 1.3.1.

For the couples-cope data, this questions would be translated into: "Does SC by one
partner evoke a prompt DC reaction by the other and vice versa?" (partner effects);
"What is the stability of DC/SC?" (actor effects). Or for the give-some example, the
question can be translated into: "Does cooperation, which only occurs by chance,
trigger cooperation of the human player in the following turn?" For that example,
interest lies only at the partner effect for the algorithm because we already know that
there is no effect from the human behavior toward the algorithm.

This kind of research question is especially important because it gives an indica-
tion regarding causality. For example, if stress communication is promptly followed
by dyadic coping responses, but not vice versa, it could be because stress commu-
nication causes dyadic coping responses. One partner perceives the stress and helps
the stressed partner to solve the stress. Or, maybe both behaviors trigger a response
from each other. That could be because one partner reacts to the induced stress by
communicating stress and the other partner responds to it by applying dyadic coping
behavior, which might encourage the other to keep the stress communication up, thus
the other will also keep up the dyadic coping behavior. Even though statistical mod-
els exist which explore the promptness of these reactions, causality should never be
based on statistical models alone. For example, a common-fate model might produce
the same behavior patterns as an APIM with bidirectional effects. Thus, causation

49

3. Research Questions and Corresponding Data Analyses

should always be based on deduction, yet statistical models can add support for those
kind of theses. Or at least show that one important pre-requirement for causation, the
temporal precedence, is fulfilled.

This monograph provides three strategies for applying APIMs on dyadic sequence
data: (A) The aggregated logit models approach by Bakeman Gottman (1997; see
Chapter 6), (B) multi-level logistic regression (see Chapter 7), and (C) Basic Markov
Models (see Chapter 8).

(A) Analyzes each dyad (e.g., couple) separately for each dependent variable using
logit models. After that, the estimates are aggregated and post-hoc tests can be con-
ducted to test whether estimates are significantly different from zero or differ between
groups. The main advantages of this approach is that it is computationally fast and
that it can be used for single case (single dyads) analysis. Moreover, effects can be
interpreted directly as actor or as partner effects. Thus, questions such as "is there a
significant partner effect of dyadic coping on stress communication?" can be answered
directly.

(B) The multi-level approach is used to model the dependencies between partners:
dyads are handled as level-2-units, where the individuals (level-1-units) are nested
within couples. The behavior at t serves as the dependent variable and the behavior at
t− 1 as the independent variable. Interaction-terms are used to represent the fact that
variables might represent behavior of one partner or the other. The categorical nature
of the dependent variable is accounted for by using the logistic function for dichoto-
mous sequences. In theory, other link functions, such as the multi-logit function, could
be used for sequences with more than two categories. This model provides estimates
similar to (A), but also provides variances for the estimates (random effects) as an in-
dicator of how much these estimates differ between couples. Again estimates can be
interpreted as actor and partner effects. Standard errors are provided so that inferen-
tial statistics are available for each effect. Thus, the same questions as in (A), plus the
question of whether couples are similar (low random effects) or heterogeneous (high
random effects) regarding their promptness, can be answered. One limitation of this
model is that it cannot be used for single case analysis.

(C) The APIM is directly translated into a Markov chain, a model assuming that the
probability that a dyad is in a certain state at t depends only on the previous state at
t− 1. The output of the Markov model comes as transition probabilities, whereas the
previous two models give results as beta-coefficients in a logit-metric. Therefore, the
output can be interpreted relatively intuitively. For example, the following question
can be addressed directly by the model without transforming the output: "what is

50

3. Research Questions and Corresponding Data Analyses

the probability of a couple that shows stress communication (SC) and dyadic coping
(DC) at one time interval (t − 1) to show none of those behaviors at the next time
interval (t)?" or "what is the probability that stress communication is shown after an
interval in which no stress communication or dyadic coping was shown?". However,
one drawback is that these probabilities cannot be interpreted directly as actor or a
partner effects. Instead, the output must be transformed into beta-coefficients that
are comparable to the actor and partner effects of the previous models. Hence, this
approach is to choose when transition probabilities, rather than actor and partner
effects, are at interest. Yet for comparability to other studies, transition probabilities
can be transformed after that, and p-values can be simulated using a Monte-Carlo
approach.

3.5. Latent Groups or Clusters (Unobserved Heterogeneity)

Are the mechanisms producing the behavioral patterns the same for all couples, or is
there unobserved heterogeneity such that there are different typical response patterns?
Applying those question to the couples-cope dataset: Are there different types of
couples regarding their response patterns to the induction of stress? For example,
does the experience of stress lead to very prompt and adequate SC and DC behaviors
in all couples, resulting in a quick solution to the problem, or are there also couples
struggling with the stressor for a long time? Or, for the give-some dilemma: Are there
typical joint patterns of human-computer interaction?

Detecting these subgroups accounts for so-called unobserved heterogeneity in the
population. Dealing with sequence data, the notion of unobserved heterogeneity im-
plies that subgroups differ regarding their specific transition matrices. This mono-
graph provides two strategies for tackling this research question: (A) Mixture Markov
models can be used to address this question (see Chapter 8); (B) clustering via the
OM-procedure (see Chapter 9).

(A) Mixture Markov models assume that all dyads follow a basic Markov model
(APIM), yet the transition probabilities differ between latent classes. For example,
some couples (latent class 1) might show low probabilities of change from non-stress-
related behavior to stress-related behavior, whereas other couples (latent class 2) bounce
between time intervals in which they show stress-related behavior and those in which
the do not. Thus, a more specific question could be how many latent classes exist?
How can they be described using the transition probabilities?

51

3. Research Questions and Corresponding Data Analyses

The approach can also be applied to hidden Markov models (Common-Fate), in
which case the emissions and transition probabilities may vary between different
classes. Therefore, emissions must be taken into account for interpreting different
classes, too. For example, it is possible to assume a case in which two classes have
the exact same transitions probabilities, yet one class contains silent couples, who are
less likely to communicate their stress, and talkative couples, who are very likely to
communicate their stress. Assuming that both classes communicate stress only if they
are in a state of common stress would result in low emissions for the former class and
high emissions for the latter.

Using Mixture Markov models is useful in that several latent classes might exist,
especially when the researcher has a strong assumption of whether the sequences are
produced by an APIM or a common-fate model. Another feature of this model is
that membership to an latent class is probabilistic. Therefore, each sequence has one
probability for each class that expresses how likely it is that the sequence belongs to
that particular class. These so-called posterior probabilities can be used for assessing
uncertainty. For example, a sequence might belong with a probability of .51 to latent
class one and is therefore assigned to that class. However, it is uncertain whether this
assignment is correct. Whereas, a posterior probability of .98 suggest that the amount
of uncertainty is very small.

(B) The OM-procedure clusters dyads according to their similarity. Sequences of
dyads are considered similar if the number of computational steps to transform one
sequence into the other are small. The main question of the OM-procedure is "How
many clusters exist?" and "How can they be interpreted?" For the latter, clusters are
analyzed separately using visualization, descriptive statistics, and other models such
as Markov models. Then the results are compared between the clusters and used to
characterize the clusters. Cluster analysis does not claim that these clusters represent
real latent classes. A cluster is just a collection of dyads that are relatively similar to
each other. Thus, a researcher should be careful to interpret clusters found by the
OM-procedure as differences caused by real existing types of dyads. This approach is
useful for data reduction or in early research as explorative analysis. Moreover, it can
be an alternative for the mixture Markov models if sample sizes are small.

52

Table 3.1.: Overview Research Questions and Related Models (Part A)

Research Question Approach Chapter Further Notes

Mean time 4.1 mean time spend in states.
State-Distribution-Plot 4.1 frequencies over time.

Getting an Overview Entropy and Transitions 4.1 measures for variability.
(Visualization and Descriptives) Correlations 4.1 - 4.2 across time in 4.1,

across dyads in 4.2.
Subsequence-Analysis 4.4 frequencies of subsequences;

most frequent subsequences.
Sequence-Plot 4.3 single-case analysis; outliers.

Cox-Regression 5.1 - 5.2.1 for non-dyadic sequences.
Duration of Behavior Cox + time-dependent cov. 5.2.2 for dyadic sequences.
(Time-to-Event) Shared Frailty Model 5.3 latent common variable.

Latent-Hazard Model 8.3.1 time-to-event as a latent process;
latent process leads into an absorb-
ing state.

Hidden-Markov 8.3 behavior is caused by a latent pro-
cess, indicators might influence
each other.

Assuming a Latent Dyadic
Process (Common Fate)

Multi-Channel Hidden-Markov 8.3.3 behavior is only caused by a la-
tent process, indicators are inde-
pendent of each other.

Latent-Hazard 8.3.1 time-to-event as a latent process;
latent process leads into an absorb-
ing state.

53

Table 3.2.: Overview Research Questions and Related Models (Part B)

Research Question Approach Chapter Further Notes

Aggregated Logit Model 6 computational fast; single case analy-
sis possible

Analyzing Promptness of
Interaction (APIM)

Multilevel Model 7 estimates and tests random effects; no
single case analysis possible

Basic Markov Model 8 single case analysis possible; focus
on transition probabilities; only boot-
strapped p-values

Mixture Markov Model 8.4 assumes separate Markov chains for
each latent group, a sequence belong
to a latent group with a certain prob-
ability.

Latent Groups or Clusters
(Unobserved Heterogeneity)

OM-Clustering 9 Sequences are groups using OM-
distances, so that distances within a
cluster are minimized.

Comparing Groups or Cluster 9.4 Clusters or Groups are compared us-
ing data visualization, applying dif-
ferent models, and by an ANOVA-
like approach using OM-distances.

54

4. First Steps in Analyzing Dyadic

Sequence Data

Before estimating statistical models, analysts should principally plot their data to gain
initial insight into their data. Despite the fact that graphical analysis is always subjec-
tive to some degree, Anscombe (1973) demonstrated that visualization is also essential
to a good statistical analysis. He presented four datasets, which seemed identical
when only summary statistics (e.g., Pearson correlation; p-value) were inspected, yet
revealed completely different forms of statistical association when plotted (e.g., lin-
ear relationship, squared relationship, perfect linear relationship with one outlier).
Following his advice, this chapter will discuss several methods for plotting sequence
data, all of which were originally introduced by Gabadinho et al. (2009). However, this
chapter discusses them in light of dyadic sequence data. Additionally, some summary
statistics will be shown which cover the research questions from Chapter 3.1. How-
ever, these statistics should be complemented by their corresponding graphics (e.g.,
scatter plot, histogram).

4.1. Graphical Analysis

Figure 4.1 depicts the mean time spent in the four states aggregated across all couples.
The plot clearly shows that the state of showing SC and DC is the most dominant,
followed by a state of showing no stress related behavior at all. States of showing only
one stress-related behavior ("SC only" or "DC only") are rare. However, we do not
know how these states developed over time, or how different the trajectories are.

The distribution of states over time is seen in Figure 4.2 and allows for a first graph-
ical examination of the paired sequences. To this end, the two sequences have been
joined via the state expand procedure (Vermunt, 1997). For each time interval, the joint
occurrence / non-occurrence of the two behaviors (see Table 4.1) is depicted, which
results in four possible states per time interval for the couples-cope example.

55

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.1.: Mean time spend in the four states.

The distribution plot shows that in the beginning, the simultaneous display of stress
communication (SC) by women and dyadic coping (DC) reaction by men (SC+DC) is
the most frequently displayed behavior (almost 100%). After roughly ten intervals (1
minute and 40 seconds), frequencies for the combination of no SC and no DC reaction
(no reaction), a stress communication but no DC response (SC only), and no SC but a
DC reaction (DC only) increase. In the following minutes, the frequencies of SC only
and DC only remain rather stable, but frequencies for no reaction increase further
whereas frequencies for both reactions decrease. One possible explanation could be
that couples intensively discuss the stressful event in the beginning, and thereon some
of the couples manage to be less stressed. Hence, no SC nor DC reaction is necessary
for them, whereas other couples still discuss the stressful event until the end of the
interaction sequence.

Figure 4.3 shows the distribution of both sequences separately. The disadvantage of
this graphic is that we cannot see whether states occur together or not. However, the
advantage is that we can see that occurrence of both SC and DC declines almost in par-

Table 4.1.: State-Expand for SC and DC

DC (Dyadic coping)
No Yes

SC (Stress No none DC only
communication) Yes SC only SC+DC

56

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.2.: State distribution plot of the couples-cope dataset (N = 64); Y-axis: relative
frequency of shown behavior; X-Axis: observation period sliced into 48
time intervals; SC: stress communication; DC: dyadic coping; none: No SC
or DC was shown; SC+DC: SC and DC was shown.

allel. The frequencies of both time-series reveals a strong and significant relationship
(r = .97; p < .001). Therefore, we might assume that there is an association between
these behaviors. However, as Granger and Newbold (1974) pointed out, one should
be careful interpreting Pearson correlation for time-series. The correlation might be
biased due to autoregressive effects or the existence of a third time dependent variable.

The Shannon entropy (Shannon, 2001) as a measure of dispersion (Figure 4.4.A)
depicts that couples show very homogeneous behavioral patterns in the first sequences
(simultaneous display of SC and DC) and that the couples become more dissimilar at
sequence 20. That is, they show all different combinations of SC and DC behavior.

An additional initial insight can be gained by inspecting the number of state-transitions
as a measure of stability. The number of state-transitions (Figure 4.4.B) depicts how
often couples change from one state to another. A high number indicates frequent
changes in a couple’s behavior. Hence, the number of state-transitions allows for
differentiating between volatile couples who frequently change their behavior (high
scores) from those who tend not to change their behaviors often (low scores). The his-
togram shows that the majority of couples change their behavior about 10 to 20 times

57

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.3.: Multi-channel state distribution plot of the couples-cope example data
(N = 64); Y-axis: relative frequency of shown behavior; X-Axis: obser-
vation period sliced into 48 time intervals; SC: stress communication; DC:
dyadic coping; none: No SC or DC was shown; SC+DC: SC and DC was
shown.

58

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.4.: (A) Shannon entropy plot and (B) histogram of state-transitions for the
example data.

out of 47 possible changes during the 48 intervals, which is roughly about one to two
times within a minute.

4.2. Association Between Behaviors

Knowing that the number of transitions varies across couples, one might also ask
if DC and SC not only correlate over time, but also across observational units. Or,
more specifically asking, do men show DC more frequently if their partners show SC
more often? This question can be answered by calculating the Pearson correlation
between the frequencies of the behavior of interest shown by the first partner and the
frequencies of the interesting response by the other partner. For the sample dataset, we
find a high Pearson correlation of r = .86 (p < .001) between the frequencies of stress
communication and DC responses. Which, overall, implies that in couples where
women show high rates of SC, men tend to show more DC reactions. And vice versa,
if women show low rates of SC, men show low rates of DC as well. However, due
to the aggregation of the data, information about the direction and the contingency
(i.e., promptness) of this association are lost. Hence, it remains an open question
whether SC leads to prompt DC responses, if DC leads to prompt SC reactions, or if
the association is bidirectional. The last question can be answered using aggregated
logit models (see Chapter 6), multilevel models (see Chapter 7), or Markov models
(see Chapter 8).

59

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.5.: Frequency of SC is plotted against DC; each point represents one couple.

4.3. Inspecting Individual Cases

Most research questions in psychology concern individual differences. Those differ-
ences are often investigated by comparing groups or by drawing samples and testing
whether individual differences in one variable can explain differences in another vari-
able. Although single case analysis is less often conducted, single case analysis is very
important for sequence data for a number of reasons. The first one is that sequences
that are completely different than the majority of the sample might influence future
analysis (outliers). The second argument for single case analysis is that outliers can
provide further insight. For example, imagine: 98% of the couple cope sample had
shown a reaction to the initial stress induction, whereas 2% had shown no stress reac-
tion at all. In that case, one could conclude that the stress induction failed and, thus,
exclude those samples from future analysis. Instead, it could be promising to investi-
gate why the stress induction failed: Maybe the couples saw through the experiment.
Asking them how they did that could be useful for designing future experiments. Or
perhaps the couples are especially stress resistant. Analyzing the traits of these cou-
ples could give insight for research about stress resilience. Finally, single case analysis
could be used to get a picture of typical state patterns that exist in the data.

60

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.6.A shows a visual representation of individual states. Each row depicts
the patterns of one dyad from the couples-cope example, and their corresponding row
number in the dataset are shown on the y-axis. The x-axis shows the time intervals.
The shading distinguishes between the different states. Figure 4.6B presents a close-up
of the sequences first (ID = 1), thirty-third (ID = 102), and the forty-seventh (ID = 144).

The second couple shows a state of SC and DC for at least three and a half minutes.
Then the stress communication stops, and one-time interval later, the partner stops
his dyadic coping efforts as well. There is a short flickering of SC later on, yet the
partner does not react, and no further stress communication is shown. One possible
interpretation is that this couple successfully coped with the stress.

The second couple shows signs of stress-related behavior, yet there are time gap, in
which no such behavior is shown. The first gap is only one time interval (10 seconds).
This can be caused by nearly anything. However, the second gap is more interesting
because SC ends one time interval before DC stopped. This constellation looks nearly
the same as the previous example. However, roughly one minute later, the female
starts to communicate her stress again, yet in this case, the male responses with dyadic
coping. After that, a new phase of combined SC and DC is triggered which lasts for
about one and a half minute.

Inspecting 4.6.A again suggests that almost all sequences show these prototypical
patterns. Few sequences exist that show a delayed response to the stress induction,
but besides that, no digressive sequences exist. Virtually all sequences begin with a
long phase of stress communication and dyadic coping, which ends at some point.
Some couples show stress-related behavior up until the end of the observation period,
and some couples take some breakes (gaps without stress-related behavior). However,
the duration, until the last stress response is shown, differs a lot. Thus, future analysis,
such as shown in Chapter 5, might investigate whether covariates can explain these
differences or if couples can be grouped according to their fastness (see Chapter 8.4).
For example, are there fast copers, who quickly reduce the perceived stress, but also
stress-prone couples (i.e., slow copers), who do not find a way to reduce the stress?

4.4. Finding Typical Subsequences

A researcher might also be interested in knowing what the most common subse-
quences are. That is, which patterns occur in most sequences. For example, Figure
4.7 shows the seven most common subsequences. The first bar (SC + DC > SC only)
shows that 88% of couples experience a transition from a state of SC and DC to a state

61

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.6.: A) Shows all individual sequences in one plot, each row represents one
sequence, each colored block is one state. B) compares only three individ-
ual sequences (couples with the ID 1, 144, and 179 from the couples-cope
example, represented by row numbers 1, 47, 59 from A).

62

4. First Steps in Analyzing Dyadic Sequence Data

of SC only at least once. The second bar (SC only > SC + DC) depicts that 81% of
dyads transition from a state of SC only to a state of showing both at least once. The
next bars follow the same principle. For example, the state of showing no SC and
no DC is most likely preceded by a state of showing DC only, or by demonstrating
DC and SC. Thus, one might infer that dyadic coping is often shown until the cou-
ple stops showing any stress-related behavior at all. Finally, the seventh bar shows
a more complex, yet frequent, sequence. The subpattern (SC + DC > SC only)-(SC
only > SC + DC) means that a couple shows a state of combined SC and DC at some
point in time, then transitions to a state of SC only. The hyphen indicates that the
couple stays in that particular state for some time until it transitions back to a state
of showing both SC and DC. At least 75% of couples experience this subpattern at
least once. Therefore, it seems quite common that dyadic coping accompanies stress
communication. However, the men stop their dyadic coping for some time, whereas
the stress communication of the woman goes on.

The analysis of subsequences can be used to compare different groups of dyads.
For example, if there are slow and fast copers, as suggested in the previous chapter, it
could be interesting to compare those clusters. That will be shown in Chapter 9.4.

Figure 4.7.: The seven most common subsequences for the Couples-Cope dataset. SC:
stress communication, DC: dyadic coping.

63

4. First Steps in Analyzing Dyadic Sequence Data

4.5. A Contrasting Example (Give-Some)

Figures 4.8 and 4.9 show most of the previously introduced visualizations for the
couples-cope example side-by-side with the corresponding plot for the give-some
dilemma. By contrast, there is no clear trend in the state distribution (see Figure
4.8.A2) for the give-some example. Moreover, Figure 4.8.B2 shows no distinct phases
of particular behavior. Instead, dyads change quickly from one state to another. Both
together result in high values of the Shannon entropy (see Figure 4.8.C2), meaning
there are no game turns, in which certain states are dominant. The next figure (4.9.D2)
shows again that there are many more transitions for the give-some dataset than for
the couples-cope dataset (4.9.D1), even though the maximum number of possible tran-
sitions is less (31 for the give-some example as opposed to 47 in the couples-cope
dataset).

This plot reveals that there is a sequence with only a few transitions. The sequence
is marked in Figure 4.8.B2 by an arrow. Inspecting this sequence reveals that the
algorithm shows cooperative behavior during almost all of the game turns (except
one), whereas the human player does only cooperate in three game turns. Therefore,
this sequence can be seen as an outlier because it behaves completely differently than
the rest of the sequences, which change quickly from one state into another. Finally,
the scatter plot for the give-some example (see Figure 4.9.E2) reveals a negative linear
relationship (r = .73, p < .001), as opposed to the positive relationship in the couples-
cope example (see Figure 4.9.E1). The negative correlation can be explained by the
following: If a human player tends to give less coins, the likelihood of the algorithm
for cooperation increases because it always gives 2 coins on average. Vice versa, if a
human player tends to give more coins on average, the probability for the algorithm
to cooperate by chance decreases.

64

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.8.: Visualization of the couples-cope (1) example vs. the give-some example(2): A) shows
the state distribution for couples-cope (A1) and give-aome (A2); B) shows individual se-
quencesfor couples-cope (B1) and give-some (B2), the arrow marks an outlier; C) Shannon
entropy for couples-cope (C1) and give-gome (C2)

65

4. First Steps in Analyzing Dyadic Sequence Data

Figure 4.9.: Visualization of the couples-cope (1) example vs. the give-some example(2): D) number
of transitions for couples-cope (D1) and give-some (D2); E) linear relationship between SC
and DC (E1) and between human cooperation and cooperation by the algorithm (E2)

66

5. Dyadic Sequences in Time-to-Event

Analysis

In principle, time-to-event analysis is used to answer the general questions of "whether
and when" an event happens for a single observation unit, and if its occurrence de-
pends on covariates (Singer and Willett, 2003). Hence, it directly relates to the re-
search question of Chapter 3.2 (Duration of Behavior). Sequence data with only one
final absorbing state can be transformed into time-to-event data without loss of in-
formation (see 1.1.5). Sequences are replaced by two variables: the first variables
represent whether an observational unit entered the absorbing state within the obser-
vation period or not (e.g., 0 = no; 1 = yes); the second variables is the time interval t, at
which the observational unit entered the absorbing state. If the observational unit did
not enter the absorbing state, the second variable is the last observed time interval.

Additionally, other types of sequences can be transformed in a similar way (see
5.1.1) by asking whether and when a particular state is shown for the first/last time.
Considering the couples-cope example (see 2.1), the question can refer to whether
and when stress communication was shown for the last time. Under the assumption
that the end of stress communication also indicates the end of stress, that question
can be translated into "What is the typical duration of stress? Furthermore, does it
depend on time-independent covariates?" In this chapter, men’s self-assessed dyadic
coping ability (mDCa) will serve as such a time-independent covariate; that is, it varies
between observational units, but it is constant over time. The same question can be
asked for the dyadic coping (DC) reactions by the men. However, the dyadic coping
responses are time-dependent. At some points, DC is shown, and at others, it is not.
Both questions will be answered by applying the Cox-regression (see 5.2).

Moreover, one might be interested in knowing if the duration of stress communi-
cation and dyadic coping responses might be caused by an underlying latent variable
similar to the common fate model (see 1.2). The latter can be modeled by so-called
frailty models; one of which, the shared frailty model, will be used in this chapter as
an illustrating example (see 5.3).

67

5. Dyadic Sequences in Time-to-Event Analysis

An alternative approach for modeling an underlying latent process is to use hidden
Markov chains. However, even though similar research questions can be ask to those
models, they belong to another class of statistical model. Therefore, they are covered
in Chapter 8.3.1.

5.1. Time-to-Event Data

According to Singer and Willett (2003), the most important aspects of time-to-event
analysis include the definition of an event, time, and the beginning of time.

In biology, one of the most common events that is analyzed is death. For example,
researchers investigate the questions: "How long does it take until caterpillars die?"
and "Does it depend on covariates, such as the caterpillars’ nutrition?" The good thing
about death as an event is that it is an unambiguous event: a caterpillar is either dead
or not. By contrast, events in the social sciences are harder to define because they often
have more than one definition.

For example, in psychology, a possible event might be alcohol relapse after with-
drawal therapy. Fuller (1997) provides a summary of the most frequently used defini-
tion. It ranges from the one-time consumption of any amount of alcohol, over more
than two or three alcoholic drinks per day, to cut-off values of alcohol breakdown
residuals in blood tests. Other definitions treat one-time consumption of alcohol as
a slip and define actual relapse as a change in behavioral patterns (e.g., loss of con-
trol). Thus, time-to-event data about alcohol-relapse might reflect different aspects of
relapse, depending on the definition.

Moreover, the definition of an event can affect the measured time of occurrence. For
instance, alcohol relapse is often defined as addictive behavior patterns operational-
ized by drinking several days in a row (e.g., five days). The problem with that is that it
is unclear whether the actual relapse started on the first day of drinking because that
was the moment the relapse was initiated, or on the last day (e.g., the fifth) because
that was the moment the pattern was completed. There is no general answer to that
question because it depends on the actual research question. However, it is safe to say
that events should be defined as accurately as possible before collecting data, in order
to avoid ambiguity.

Singer and Willett’s (2003) second aspect is the definition of time: As discussed
in Chapter 1.1.3, time can be defined as continuous or discrete. Data that measures
time in thin intervals is regarded as continuous, whereas data with wide intervals is
regarded as discrete. The time-to-event analyses that are shown in this monograph

68

5. Dyadic Sequences in Time-to-Event Analysis

(Cox-regression and shared frailty model) assume a continuous definition of time.
The problem with applying these models to discrete time data is that so-called ties can
occur, which can induce a bias in the model’s estimates. A tie means that two or more
events happen within the same time interval.

Cox-regression is used in this chapter, among other reasons, because several cor-
rections for handling ties in Cox-regression exist. The most prominent ones are the
Breslow correction (Breslow,1974), the Kalbfleisch-Prentice correction (Kalbfleisch and
Prentice,1973), and the Efron approximation (Efron,1977). Hertz-Picciotto and Rockhill
(1997) conducted a simulation in which a Cox-regression was fitted to discrete time
data. The Efron-approximation worked best under all conditions. The bias in point
estimates and standard errors were small. The only exception was in the most extreme
condition (n = 25 and 10 ties per interval), which means that about 40% of the sample
had the event at the exact same time interval. However, for the second most extreme
conditions (n = 25, and 5 ties per interval, as well as n = 50 and 10 ties per interval),
the bias was below 1%. Therefore, as a rule of thumb, one can say that the number of
tiesper interval should be less than 20% of the sample size if the Efron-approximation
is used.

Singer and Willett’s (2003) third aspect is the definition of the beginning of time, which
means one has to determine when the observation starts. In the relapse example, that
could be right after subjects commit to abstinence, after the last day of detoxication, or
after subjects are released from withdrawal therapy. Thus, the date at which the ob-
servation starts might be different for each participant. Alternatively, the observation
can start for all persons at the same time. For instance, a researcher could measure
whether and when employees become ill for the first time in a year. Hence, the obser-
vation starts for all employees on the first of January. Finally, a less obvious example
for the beginning of time can be birth; that is, asking whether and when something
happened for the first time in life. This definition is especially interesting for fields
such as epidemiology ("Whether and when does an illness strike for the first time in a
humans life?") or developmental psychology ("Whether and when does a child acquire
a skill, such as walking only on foot, for the first time?").

If the event is not observed, it is said to be censored. Three main forms of censoring
exist: right, left, and interval censored. The first one is the most common one and
means a data point is above a certain value (or time), but it is unknown by how
much. This type often occurs when the event has not happened until the end of
the observation period (also known as type-I censoring). Therefore, it is not known
whether and when the event will occur after the observation. Left censored means that

69

5. Dyadic Sequences in Time-to-Event Analysis

it is only known that the event occurred before a certain time but not exactly when.
Finally, interval censored means that the event occurred somewhere between two time
points.

5.1.1. Transforming Sequences into Time-to-Event Data

The transformation of sequence data into time-to-event data is straight forward. Both
sequence data and time-to-event data share the same definition for the beginning of time.
Thus, the beginning of time is whatever the first entry of sequence refers to. In the cou-
ples cope example, the beginning of time is the moment right after the stress induction
and right before the fake-waiting condition started.

Figure 5.1.: The state of interest are the black colored states in the graphical represen-
tation of the sequences A, B, and C, and is denoted as X in the formulas.
A and B are sequences with recurrent states, and their transformations are
time-to-event data. The first transformation answers the question "How
long until the black state is shown for the last time?", and the second the
question "How long until the black state is entered for the first time?"; C
shows a sequence with one absorbing state. The first transformation is not
applicable because of an absorbing state (e.g., death) does not end.

The event can be defined as the following: "When is a state shown for the last time?"
or "When is a state shown for the first time since the beginning?" Both transformations
are depicted in Figure 5.1 and can both be applied to sequences with recurrent states,
but information might be lost by the transformation because whole sequences are
reduced to two pieces of information: first, whether the event occurred within the
observation period, and second, when it occurred.

70

5. Dyadic Sequences in Time-to-Event Analysis

Applying the second transformation ("When is a state shown for the first time since
the beginning?") on sequences with only two states will not result in a loss of infor-
mation if one of those states is an absorbing state. An observational unit will enter
the absorbing state or not (first information). Furthermore, a unit can only enter the
absorbing state at one time interval (second information).

Therefore, the second transformation is especially useful for research questions with
absorbing states (e.g., "How long until a caterpillar dies?"), but also, for research about
relapses (e.g., "Whether and when does the first relapse after therapy occur?"). The first
transformation is useful if the duration of behavior patterns is investigated, especially
if these patterns consist of sporadic behavior. For example, a researcher might be
interested in knowing what the typical duration of relapse is ("How long till the relapse
ends?"). In that case, the researcher might define the beginning of time as the first day
of relapse, and record when the patient drinks alcohol after that.

Defining the first day without drinking as the event is not a good strategy because
the alcoholic might show isolated times of abstinence. However, designating the last
day of drinking is a better way to determine the end of relapse, yet there is still one
problem with defining the event in that way. Near the end of the observation pe-
riod, an alcoholic might show drinking behavior for the last time only because the
observation period has ended. Thus, if the behavior of interest is shown until the last
time interval, it should be treated as right-censored (meaning, the event did not occur
within the observation period (see Chapter 5.1.2). Additionally, a definition of the
event may also include that the person must be sober for at least a number of days
before the observation period ends.

Regarding the couples-cope data, the beginning of time is defined as the first time
interval of the observation right after the stress induction. The event is defined as the
last coded communication of stress. For the sake of demonstration, it is presumed that
this is the time when the stress reaction stops. However, it is undebatable whether
any other reason, for example, an uncooperative partner, may also lead to the last
stress communication. About 28.13% of the data was right censored because stress
communication did not stop until the 48th interval.

Time was measured discretely in sequences, yet most time-to-event analyses assume
continuous time. As demonstrated in Chapter 1.1.3 and the previous chapter, apply-
ing these models on discrete time data is relatively safe as long as there are not too
many ties. Ties can be avoided by measuring time with a large number of thin-graded
intervals. For the couples-cope example, time was measured by intervals of ten sec-
onds, and the observation period was 8 minutes, so each sequence is 48 intervals long.

71

5. Dyadic Sequences in Time-to-Event Analysis

Because there are only 64 couples, ties should be relatively rare. Analyzing the fre-
quencies reveals only a small number of ties: The maximum number of ties is in the
47th interval, which has six ties. That is still below 20% of the sample size; and thus
bias should be negligible (see Chapter 5.1).

5.1.2. Survival, Hazard, and Cumulative Hazard

Common functions that describe event occurrence over time are the survival func-
tion (S), the hazard function (H), and the cumulated hazard function. Changes in all
three functions can be quite small, especially when the first events occur, and thereby,
rounding can conceal small differences between intervals and/or functions. Because
of that, and for demonstration purposes, example results of the first intervals with
actual events will be presented with four digits in the following.

The survival function (see Equation 5.1) is the probability that an event has not
happened to an individual until the end of a given time interval. It starts at time zero,
presuming no observation unit has already experienced the event before the start of
the observation. Therefore, by definition, the survival for time zero must be one. The
survival indicates how many survivors (women who still communicate their stress)
remain in the sample until a particular time interval:

Survival f or intervalj =
n who have not experienced the event by the end to the interval

n in the data
(5.1)

The survival for the sample data can be seen in Figure 5.2.A: It starts with a value
of 1 and holds steady until interval 19, indicating that 100% of couples maintain their
SC until the beginning of this interval. Then it drops by 0.0156 (1/64); the first one
out of 64 couples ends SC before the end of time interval 19. In interval 20, it drops
again by 0.0156 (another couple ends SC). Still, 96.88% (62/64 ∗ 100) of couples remain
in the sample at the end of the 20th interval. Next, the decrease accelerates over time
(St=25 = .91; St=30 = .89; St=35 = .83; St=40 = .69), and at interval 45, the number of
couples with ongoing SC has halved (median lifetime, ML). At the last interval, it
drops to .30, indicating that 30% of the sample has not ended their SC until the end of
the observation period.

The hazard function is the conditional probability that an individual (or in this case,
a couple) will experience the event (last SC) in a specified time interval; given that it
has not experienced it in any preceding period. The hazard for a given time interval

72

5. Dyadic Sequences in Time-to-Event Analysis

Figure 5.2.: A) shows the survival probability, B) the hazard, C) cumulated hazard for
the couples-cope example; the event is defined as showing stress commu-
nication for the last time; the dotted line in A) indicates the median life
time (ML)

(see Equation 5.2) can be estimated by dividing the number of female partners who
communicate their stress (SC) for the last time (n events) by the number of female
partners who did not end their SC until that particular interval. Thus, the denomi-
nator includes those female partners who communicate their stress for the last time
and those who continue communicating their stress (n at risk). If couples cannot be
observed for any reason, they are not at risk and are referred to as censored data.
Censoring can occur because observational units leave the experiment unexpectedly
or because they did not show the event until the last time interval.

Hazard f or intervalj =
n events in time interval j

n at risk in interval j
(5.2)

The hazard for the sample data can be seen in Figure 5.2.B: the hazard is 0 at the
beginning and stays this way until interval 19, indicating that none of the couples have
ended their SC before. At interval 19, the first couple ends their SC; therefore, the
hazard rises from zero to .0156 (1 event, 64 at risk). At interval 20, the hazard slightly
increases to .0159 (1 event, 63 at risk: one out of the 64 couples has experienced the
event before!). Over time, intervals with a hazard greater than zero become more
frequent, yet the hazard itself is still low (ht=21=.02; ht=23=.02; ht=25=.03; ht=30=.02;

73

5. Dyadic Sequences in Time-to-Event Analysis

ht=31=.04; ht=34=.02; ht=35=.02; ht=36=.08). Starting from interval 38, the hazard is
constantly present (at every interval, at least one couple ends their SC) and increases
dramatically over time (ht=38=.02; ht=39=.02; ht=40=.06; ht=41=.07; ht=42=.05; ht=43=.08;
ht=44=.08; ht=45=.15; ht=46=.14); it peeks at time interval 47, with a value of .25 (6
events, 24 at risk). Plotting the hazard shows if and how it depends on time. In this
example, it seems that a minimum amount of time is needed to end SC (no events
before interval 19). Furthermore, the longer SC has been maintained, the more likely
it will end.

The cumulated hazard function is the sum of all interval-specific hazards preceding
a particular interval. It is shown in Figure 5.2.C. The cumulated hazard is zero until
interval 19 because it is also zero until that interval. At interval 19, the hazard is .0156,
and the cumulated hazard also becomes .0156 (0 + .0156). At interval 20, the hazard is
.0159 and the cumulated hazard becomes .0315 (0 + .0156 + .0169). At the last interval,
it reaches 1.19, which is the sum of all hazards over all intervals. The cumulated
hazard cannot be easily interpreted, and its boundaries are zero and positive infinity.
However, most statistical software, such as SPSS or Stata, use the cumulated hazard
alongside the survival function for visualization of time-to-event data. Hence, it is
shown in this chapter.

5.2. Analyzing the In�uence of Covariates

Predicting interindividual differences (or differences between couples) in hazard can
be done by using Cox’s proportional hazard model (Cox regression; Cox, 1972). In Cox
regression, the time-specific hazard of an observational unit (i.e., couple) is compared
to the time-specific baseline hazard. The time-specific baseline hazard is defined as
the hazard for all units, with all covariates equal to zero. The baseline hazard can
vary freely between all intervals and is not restricted in any way. Covariates can be
time-independent (e.g., sex or traits) or time-dependent (e.g., states).

5.2.1. Time-Independent Covariates

If time-independent covariates are mean centered, the time-specific baseline hazard
becomes the mean hazard, as shown in Figure 5.2.B for the couples-cope data. For
the following analyses, all covariates are assumed to be mean centered. The different
parameterizations of the Cox regression are shown in Equations 5.3 (logit notation)
and 5.4 (hazard-ratio notation).

74

5. Dyadic Sequences in Time-to-Event Analysis

ln

(
hi(t)
h0(t)

)
= β1x1i + ... + βkxki (5.3)

⇔ hi(t)
h0(t)

= exp(β1)
x1i ∗ ... ∗ exp(βk)

xki (5.4)

For the couples-cope example, men’s self-assessed ability of dyadic coping is added
as a mean centered covariate. Fitting the model on the data results in a positive, but
non-significant effect (exp(β1) = 1.16, p = .216); therefore, inferring that a true effect
exists is not allowed. Nevertheless, the exp(β1) can be interpreted descriptively for
exemplification purposes: for an individual with a value of zero on the covariate (0 =
average self-assessed ability), the predicted hazard ratio becomes one; meaning that
the individual hazard is equal the baseline hazard shown in Figure 5.2.B. However,
if a person rates her- or himself one point higher than the average, the hazard ratio
becomes 1.16

(
exp(β1)

1) indicating that the predicted hazard for this individual is 1.16
times higher than the mean hazard for all time intervals. Conversely, if an individual
rates him- or herself one point lower than the average mean, the predicted hazard is
0.86

(
exp(β1)

−1) times the mean hazard. Because of that relationship between hazard
and exp(β1), it is sometimes referred to as a hazard ratio (HR).

The higher the hazard, the more likely it is that stress communication will not be
shown after that time interval. Thus, the higher the men’s self-assessed ability of
dyadic coping, the more likely it is that a couple ends their SC at any given time inter-
val, resulting in a shorter duration of SC. Hence, the direction of the effect points in
the expected direction. Dyadic coping should support the partner’s efforts in dealing
with stress. Therefore, a better dyadic coping ability of one partner should shorten the
duration of stress, and thereby the duration of stress communication as well. How-
ever, the effect is not significant, and therefore, inference on a wider population is not
allowed.

Figure 5.3 shows the predicted hazards for the example data. The straight line
shows the baseline hazard, the hyphenated line shows the hazard for couples with
a value of five points above average on the covariate (HR = 1.165 = 2.07), and the
dotted line shows the hazard for couples with a value of five points below the average
on the covariate (HR = 1.16(−5) = 0.48). The values of plus (+) and minus (-) 5 were
chosen solely for demonstration purposes so that the HRs became close to 2 and to 0.5.
Hence, for couples in which the men’s mean centered self-assessed ability of dyadic
coping is 5, the hazard is doubled across all time intervals. If the men’s mean centered

75

5. Dyadic Sequences in Time-to-Event Analysis

Figure 5.3.: The y-axis shows the predicted hazard for the couples-cope data. The
straight line depicts the baseline hazard; the dotted line shows the hazard
for couples with a value of 5 on the covariate, and the hyphenated line
presents the hazard for couples with a value of minus 5 on the covariate.

self-assessed ability of dyadic coping is minus 5, the hazard is halved. Therefore, the
hazard function form does not change due to the covariate. That is important to note
because it reflects the only parametric assumption of the Cox regression, the so-called
proportional hazards assumption.

5.2.2. Second Sequence as a Time-Dependent Covariate

The previous chapter showed how to transform one sequence into time-to-event data
and how to add a time-independent covariate. However, time-dependent covariates
can also be added, and categories can be added via dummy- or effect-coding. There-
fore, it is possible to apply time-to-event analysis on dyadic sequence data. However,
one limitation is that the researcher has to choose one sequence as the dependent
variable and the other sequence as the independent variable.

Equation 5.5 shows the Cox regression for time-dependent variables. Covariates are
now indexed with t as well. However, the effect of the variable (β) is not indexed with
t. That means that the covariate might change over time, yet the effect of the covariate
on the hazard is constant. The effect of dyadic coping, for example, is assumed to be
the same at all time intervals (assumption of constant covariate effects). The covariate
itself - for example, whether dyadic coping was shown or not - changes over time.

76

5. Dyadic Sequences in Time-to-Event Analysis

hi(t)
h0(t)

= exp(β1)
x1ti ∗ ... ∗ exp(βk)

xkti (5.5)

In order to estimate the model, time is sliced into chunks in which the covariate is
constant. Considering the following sequence where "S" stands for Stress, "C" for cop-
ing, and "0" for no behavior: "S0− S0− SC− SC− 0C− 0C," if coping is the covariate,
the sequence is sliced into the following two: "S0− S0" and "SC− SC− 0C− 0C." These
sequences are now transformed into the SPELL format; that is, each line of the data
matrix corresponds to the start and the end times of the covariate. Additionally, one
column provides the information regarding whether the event occurred, and another
provides the ID of the original sequence. Thus, the primary challenge of applying this
model is not in specifying it, but rather structuring the data carefully (see Appendix
A.3).

For the couples-cope example, a significant effect is estimated for dyadic coping
(DC) on stress communication (SC) exp(β) = 1.72, p = .003. Therefore, if DC is present,
the risk for stopping SC is 1.72 times higher than without DC. This indicates that DC is
beneficial for ultimately ending SC, probably because dyadic coping reduces or even
solves stress.

5.3. Shared Frailty Model: A Bivariate Survival Model

Frailty models address the unobserved heterogeneity of multivariate time-to-event
data (Crowder, 2012). They can be used for modeling paired observations of time-
to-event variables. Hence, a researcher does not need to specify one sequence as
dependent and the other as an independent variable. Instead both serve as dependent
variables, and hence both members of a dyad can be analyzed simultaneously. Ad-
ditionally, a frailty coefficient it estimated that stands for temporal proximity of the
time-to-event variables.

The shared frailty model, a special case of frailty models, will be presented in this
chapter because it is a direct extension to Cox-regression. Thus, the core idea of frailty
models can be illustrated as an extension to the models already shown. Another
feature is that as the Cox-regression so does the shared frailty model not assume a
certain distribution for the hazard.

Equation 5.6 shows the model equation for a log-normal shared frailty model (Ron-
deau et al., 2012). The original notation was adapted for this monograph to fit the

77

5. Dyadic Sequences in Time-to-Event Analysis

previous models for time-to-event analysis. Hazards are now specific for the individu-
als (i), which are nested in dyads (j). Hazards are supposed to be similar within dyads,
but dissimilar between dyads. This dissimilarity is expressed by η, the so-called frailty.
That is a latent variable following a normal distribution. The variance of η, σ2 can be
estimated and tested. High and significant values indicate that differences between
hazards can be explained by dyad membership rather than the type of behavior that
is observed (e.g., whether the hazard of SC or DC is analyzed). By contrast, low vari-
ances indicate that a dyad membership does not explain differences between hazards
very well. In other words, high and significant values of σ2 indicate that there is a
latent variable that is shared by members of one dyad.

hij(t)
h0(t)

= exp(ηi) ∗ (β1)
x1tij ∗ ... ∗ exp(βk)

xktij

ηi ∼ N(0, σ2)

(5.6)

For the interpretation of σ, it is useful to note that ηi has the same metric as a
hazard ratio. For example, if ηi is zero, the hazard is taken by one (exp(0) = 1).
Thus, the hazard stays the same as the baseline hazard. If ηi is 1, for example, for
an observational unit, then both hazards (SC and DC hazard) would be 2.72 times
as high as the baseline hazard. Keeping that in mind and combining it with the fact
that the latent variable is normally distributed allows for a rough interpretation. For
example, σ = 1 means that about 16% of the sample will score 1 or higher. Therefore,
about 16% will have atleast 2.72 times the hazard as a dyad with ηi = 0. The same
goes for the lower 16% that will have taken their hazard by at least 1/2.72 (or an even
smaller value). By contrast, σ = 3 would mean that the hazard for the upper 16% is
taken by 20 (exp(3) = 20.09) and for the lower by 1/20. Thus, the higher σ, the more
heterogeneous the dyads.

The model was fitted to the couples-cope data. Events were defined as showing SC
and DC for the last time, and men’s self-assessed ability of dyadic coping was used
as an additional time-independent covariate. The estimated frailty was relatively high
and significant σ2 = 12.69, p < .001, indicating that the hazard of the upper 16% of
the sample is 35.25 times bigger than the baseline hazard

(
exp(
√

12.69)
)
. The effect

of men’s self-assessed ability is still positive and becomes significant for this model
β = 1.3713, p < .001, indicating that the higher the self-assessed ability, the higher the
hazard, and thus, the shorter the duration of SC and DC. One possible explanation for
the significant effect of the dyadic coping ability is that power was increased because

78

5. Dyadic Sequences in Time-to-Event Analysis

Figure 5.4.: depicts a frailty model for paired observations. Each time-to-event variable
is interpreted as an indicator for an underlying latent variable η.

the number of observations was increased. By adding the time-to-event variables for
both SC and DC, the number of observations was doubled.

5.4. Assumptions, Needed Sample Sizes, Practical Issues

The Cox regression is commonly referred to as Cox’s proportional hazard model be-
cause it is based on the assumption of proportional hazards, as depicted in Figure 5.3.
Otherwise, the Cox regression comes without any further parametric assumptions;
hence, it is often said to be a semi-parametric model. It does not assume any distribu-
tion for the baseline hazard. One further assumption which was mentioned earlier in
this chapter is that no ties exist. Nevertheless, Cox regression can be applied to data
with ties when the Efron approximation (Efron, 1977) is used, and the sample size is
greater than 50, or the maximum number of ties per time interval does not exceed 20%
of the sample size (Hertz-Picciotto and Rockhill, 1997). The final assumption is that
the effect is constant at all time intervals. These assumptions apply to all three of the
above in the case of time-independent or time-dependent variables. The frailty is also
assumed to have a constant effect on the hazard (across time and observational units).

A rule of thumb for the needed sample size for the Cox regression is that at least ten
events per covariate are needed (Peduzzi et al., 1995), or else estimates might become
unstable. In some cases, that rule can be relaxed down to 5-9 observations per covariate
(Vittinghoff and McCulloch, 2007). However, minimum sample size recommendations
regarding Type-II errors are rare. Because of that, a simulations study was conducted

79

5. Dyadic Sequences in Time-to-Event Analysis

(see 10.1), investigating how the true β affects the needed sample size. Figure 5.5
shows the main results of the study. For example, if a researcher aims for a power of
.80 and believes that the true effect is relatively strong (β = 1 or β = 2), small sample
sizes, such as N = 20, seem to be sufficient. For β = 0.80, the sample size should be
N = 30, for β = 0.60 it is N = 40, for β = .40 it is N = 80, and finally for small effects,
such as β = .20, it should be between N=200 and N=500 (outside of Figure 5.5).

The recommended length of the observation period is 30 time intervals if N is at
least 20 and if the baseline hazard is at least .05 or higher. However, biases can still
occur if the true effect size is extremely high (see 10.1). In general, the observation
period needs to be longer the lower the baseline hazard and the bigger the effect size.

Figure 5.5.: The red line shows the nominal Type-I error rate for different sample sizes;
the line interrupted by dots (β = 0.0) show the simulated Type-I error rate;
the other lines are depicting statistical power dependent on sample and
effect sizes.

As for the frailty model, the simulation revealed a strong bias for small samples sizes
regarding the frailty coefficient, which also leads to a highly inflated Type-I error. In all
cases with true zero frailty, the inferential tests became significant (see 10.2). However,

80

5. Dyadic Sequences in Time-to-Event Analysis

the idea that the hazard of nested data depends on a latent variable perfectly fits the
needs of dyadic sequence analysis. Therefore, future research might investigate why
the model performed badly in the simulation and improve its estimation.

81

6. Analyzing Dyadic Sequences Using

Aggregated Logit Models (APIM)

In Chapter 3.4, several research questions that can arise in light of dyadic sequence
data. One of these questions was "Does a particular behavior by one partner evoke
a specific, prompt reaction by the other?", another one was "What is the stability of
DC/SC?" (actor effects)?" Bakeman and Gottman (1997) used logit models to answer
these questions. Logit models can be seen as an ANOVA for dichotomous dependent
variables (Eid et al., 2010). That is, one or more factors (independent variables) influ-
ence the frequencies of the dependent variable. Hence, the data to be analyzed takes
the form of frequency tables.

Therefore, in a first step, the sequences have to be transformed into so-called state−
transition tables. The behavior of interest (e.g., dyadic coping) in interval t is mapped
against the combination of the observed behaviors in the preceding interval t - 1 (e.g.,
stress communication by women and dyadic coping by men). This is done separately
for every pair of sequences (e.g., there are as many state-transition tables as couples.)
In the second step, logit models are estimated separately for each of the couples (single
case analysis). The odds of showing the behavior of interest versus not showing the
behavior are predicted by the preceding states of both sequences (e.g., behaviors of the
two partners). In a final step, the parameters of a single case analysis are aggregated
across all couples and tested to be unequal to zero.

Additionally, it is possible to compare the aggregated parameters of certain groups.
Thereby, it is possible to test questions such as "Is the probability that a partner will re-
spond with dyadic coping promptly if his or her partner shows stress communication
higher in the group in which women were stressed compared to the group in which
men were stressed?"

82

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

6.1. State-Transition Tables

The data, as mentioned above, must be transformed into state-transition tables before
logit models can be applied. Therefore, one sequence must be declared to be the
dependent variable. Ideally, the sequence describes the states that are assumed to be
triggered by certain states of the other sequence. Taking the Couples-Cope dataset as
an example, it is possible to consider that stress communication by one partner could
trigger dyadic coping responses by the other partner.

An example of a corresponding state-transition table is shown in Table 6.1 for the
couple with the ID number 129. On the right side, the frequencies of the depen-
dent variable (dyadic coping at time t) can be seen. The table displays that the
male partner of couple 129 showed dyadic coping responses in 30 time intervals
(23 + 1 + 3 + 3), whereas he did not show any dyadic coping response in 17 time
intervals (4 + 1 + 1 + 11). The first row shows that 27 (23 + 4) time intervals exist in
which the female partner showed stress communication (SC) and the male partner
showed dyadic coping reactions (DC). In 23 of those time intervals, the DC was kept
up until the next interval (first column) and not in four (second column). The second
row shows that intervals with SC, but without DC, are rare for couple 129. Such inter-
vals occurred only two times: one time followed by DC and one time not. The third
row shows that time intervals without SC, but with DC are also relatively rare. They
occurred only four times, three times followed by DC and one time without being fol-
lowed by DC. The last row shows that intervals without SC or DC occurred 14 times,
three of which were followed by DC and 11 which were not.

Overall, the state-transition table for couple 129 displays that dyadic coping reac-
tions clearly depend on the previous behavior. It becomes more likely when it is
preceded by stress-related behavior (SC and DC) than if it is not preceded by SC or
DC.

Table 6.1.: State-Transition Table for Couple ID 129

Prior behavior (t-1) Dyadic coping (t)
SC DC Yes No

yes yes 23 4
yes no 1 1
no yes 3 1
no no 3 11

Notes: SC: Stress Communication; DC: Dyadic Coping

83

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

6.2. A Single Logit-Model for Single Case Analysis

Equation 6.1 shows a logit model for our example data. The left side (dependent vari-
able; criterion) of the equation shows the logarithmized odds of showing DC against
not showing DC for the male partner in a given interval (t), the so-called logit. It is
predicted by the SC of the female partner in the preceding interval (t − 1), the DC
behavior by the male partner in the preceding interval (t − 1) and the interaction of
the SC and DC in the previous interval.

ln

(
P(DCt)

1− P(DCt)

)
= β0 + β1 ∗ SCt−1 + β2 ∗ DCt−1 + β3 ∗ SCt−1 ∗ DCt−1 (6.1)

This notation has numerous advantages, for example, the computation of predicted
values is exactly the same as in a two-way ANOVA and the estimates for the betas
are approximately t-distributed (Kenny et al., 2006). However, the metric of the logits
makes the direct interpretation of the coefficients difficult. Therefore, the exponential
function exp() is typically applied to both sides of the equation, resulting in Equation
6.2, and the following interpretation for the exponented βs: exp(β0) represents the base
odds of the probability for showing the behavior of interest against the probability for
not showing the behavior (grand mean). This base rate is influenced by the preceding
SC
(
exp(β1)

)
, the preceding DC

(
exp(β2)

)
, and their interaction

(
exp(β3)

)
.

If a certain behavior, for example, stress communication, was shown (SC = 1), the
exponent of exp(β1) becomes one, and the base rate is taken times exp(β1). Conversely,
if stress communication was not shown (SC = -1) the exponent of exp(β1) becomes
minus one, and the base rate is taken times 1

exp(β1)
. It is the same for DC and exp(β2).

However, interpretation is more complex for the interaction term. The latter is the
product of SC and DC; and therefore becomes one if SC and DC are both shown or if
both are not shown; but becomes minus one if only one of the two is shown. Therefore,
if DC and SC are congruent, the base rate is taken by exp(β3), and if not, it is taken by
the inverse of exp(β3).

P(DCt)

1− P(DCt)
= exp(β0) ∗ exp(β1)

SCt−1 ∗ exp(β2)
DCt−1 ∗ exp(β3)

SCt−1∗DCt−1 (6.2)

84

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

For the couples-cope example, the estimated βs and exp(β)s of the logit model of the
couple with the ID 129 are shown in Table 6.2. The grand mean (β0) is 0.33, suggesting
that dyadic coping occurs more often than no dyadic coping within this couple; to be
precise, 1.39 times more often

(
exp(β0)

)
. The main effect for previous SC is significant

and positive (β1 = .92), indicating that if DC was shown in the previous time interval,
the chance that it will be shown again is 2.52

(
exp(β1)

)
times higher than the grand

mean suggests (Partner Effect; Kenny et al., 2006). The main effect of previous DC
is also significant and positive (β2 = .50), where the chance that DC is shown is 1.65(
exp(β2)

)
times higher when DC was also shown in the previous interval (Actor Effect).

Table 6.2.: Results of the Logit-Model for Couple ID 129

β exp(β)

Grand mean 0.33 1.39
SC at t-1 (Actor Effect) 0.92∗∗∗ 2.52
DC at t-1 (Partner Effect) 0.50∗∗∗ 1.65
Interaction Effect −0.10 0.91

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Finally, the interaction effect shows a negative estimate: if one effect is present, it
weakens the other effect. Even though the interaction is not statistically significant, it
is still part of the equation for predicting the odds. For example, the predicted odds
for couple 129 showing DC if SC and DC were shown in the previous interval are 5.26(
≈ 1.39 ∗ 2.52 ∗ 1.65 ∗ 0.91 = exp(β0) ∗ exp(β1) ∗ exp(β2) ∗ exp(β3)

)
. Or, for example,

if SC, but not, DC were not shown in the previous interval, the odds would be 2.33(
≈ 1.39 ∗ 2.52 ∗ 1

1.65 ∗
1

0.91 = exp(β0) ∗ exp(β1) ∗ 1
exp(β2)

∗ 1
exp(β3)

)
.

An overview for all predicted odds is displayed in Table 6.3. The table also shows
predicted logits and probabilities. The transformation from logits into odds is odds =
exp(logit) and from odds into logit is logit = ln(odds). The transformation from
odds into probabilities is P = Odds/(Odds + 1) and from probabilities into odds is
Odds = P/(1− P).

6.3. Aggregating Results for Group Analysis

In the second step, the N logit models (one for each couple) are aggregated to examine
the overall pattern in the sample. Since the estimates for the β-parameters are t-
distributed over the 64 tables (Kenny et al., 2006), they may be aggregated by taking

85

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

Table 6.3.: Predicted Logits, Odds, and Probabilities for couple ID 129

Logit Odds Probabilities

DCt−1 DCt−1 DCt−1
Yes No Yes No Yes No

SCt−1 Yes 1.65 0.85 5.26 2.33 .84 .70
No < 0.01 −1.19 1.01 0.30 .50 .23

Notes: SCt−1: Stress Communication at t-1; DCt−1: Dyadic Coping at t-1

their mean value and allowing for standard hypothesis testing with N (couples) as a
number of observations.

Table 6.4 (first part: "DC as Dependent Variable") depicts the aggregated estimates
for the 64 couples of the sample data. Overall, the baseline parameter, the partner
effect that SC at t-1 leads to DC at t, and the actor effect that DC at t-1 leads to DC
at t are positive and significant. Therefore, it is principally more probable to observe
DC than no DC, and the probability increases with preceding stress-related behaviors
(either SC and/or DC), yet there is no significant interaction effect.

Table 6.4.: Averaged Logit Parameters Over all 64 Couples

β exp(β)
DC as Dependent Variable

grand mean 0.25∗∗ 1.28
SC at t-1 (actor effect) 0.79∗∗∗ 2.21
DC at t-1 (partner effect) 0.70∗∗∗ 2.01
interaction effect 0.04 1.04

SC as Dependent Variable
grand mean 0.28∗∗ 1.32
actor effect 1.05∗∗∗ 2.85
partner effect 0.52∗∗∗ 1.68
interaction effect 0.10 1.11

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001; SC is stress communication shown at t − 1 (-1="no";
1="yes"); DC is dyadic coping shown at t− 1 (-1="no"; 1="yes")

86

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

6.4. Actor-Partner-Interaction Model

In dyadic data analysis, the Actor-Partner-Interdependence model (APIM; Kenny et al.,
2006, see Chapter 1.3.1) plays a major role. Estimating a second aggregated logistic
model with women’s SC as the dependent variable would lead to an analogous APIM
analysis regarding aggregated logit models. The estimates for that model can be seen
in the second part of Table 6.4 ("SC as Dependent Variable").

Figure 6.1 presents the estimates as a graphical representation of the APIM. The
actor effect of DC is smaller than the actor effect of SC, indicating that stress commu-
nication is less volatile than dyadic coping responses. In addition to the results for DC,
the model shows that a preceding SC leads to the following SC, and that preceding
DC also leads to SC. That indicates a bidirectional relationship. However, the partner
effect from SC to DC is bigger than the partner effect from DC to SC. Overall, the
APIM shows that stress communication seems to be the driving force of the dyadic
coping process.

SCt-1

DCt-1

SCt-1

DCt-1

2.85

2.21

Figure 6.1.: Estimates are odds ratios for showing SC/DC predicted by previous
SC/DC at t-1. The odds ratios from SC and DC at t − 1 to DC at t are
the same odds ratios as in table 6.4. The other odds ratios are obtained by
the same procedure, but with SC as the dependent variable instead of DC.

6.5. Alternative Example (Give-Some)

Table 6.5 displays the results for the give-some dataset. The grand mean is bigger for
the cooperation of the algorithm than for the cooperation by the human player, reflect-
ing the fact that the algorithm cooperated more often than the human player (see 2.2).

87

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

There is a strong, negative partner effect for the algorithm. Therefore, if the human
player cooperated at t− 1, it is more likely that the algorithm will not cooperate in the
next turn. Furthermore, there is also a negative partner effect for the human player;
thus, if the algorithm did cooperate the last turn, cooperation by the human player
becomes less likely.

Both negative partner effects can be explained best by the following: the algorithm
always gives the same amount. Humans might learn that the algorithm does not
change its behavior whatever they do. Still, players differ regarding there mean num-
ber of given coins. Some give more, some give less than the algorithm. Thus, if a
human tends to give more coins than the algorithm, he or she will cooperate, which is
followed by uncooperative behavior most of the time (the algorithm gives less). And,
vice versa, if the human tends to give less, she or he will produce uncooperative be-
havior, which is most likely followed by cooperative behavior because the algorithm
tends to give more coins.

Furthermore, a positive actor effect for the algorithm is revealed. The effect is, how-
ever, relatively small. Surprisingly, there is only a very weak and not significant actor
effect by the human player, indicating that previous cooperative behavior is not predic-
tive for future cooperation in that specific setting. Moreover, there are no interaction
effects for both models. Thus, actor and partner effects are independent of each other.

Table 6.5.: Averaged Logit Parameters for the Give-Some Example

β exp(β)
DV: cooperation by human player

grand mean 0.67∗∗∗ 1.96
actor effect −0.07 0.93
partner effect −0.24∗∗∗ 0.79
interaction effect 0.02 0.98

DV: cooperation by algorithm
grand mean 0.98∗∗∗ 2.66
actor effect 0.11∗ 1.12
partner effect −0.64∗∗∗ 0.53
interaction effect −0.02 0.98

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001; actor effect: was cooperation shown at t− 1 by the
same player (-1="no", 1="yes"); partner effect: was cooperation shown at t− 1 by the
other player (-1="no", 1="yes").

88

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

6.6. Assumptions, Needed Sample Sizes, Practical Issues

The aggregated logit model assumes a time-homogeneous autoregressive process.
That is, the probability of showing a certain behavior in one time interval depends
only on the previous time interval. Thus, for all possible value of t, the following
should be true: P(st)|st−1. However, according to Helske and Helske (2016), such
models can still be useful for describing data, even if stationary cannot be assumed.
Alternatively, semi-Markov models can be used (an extension of Markov models) be-
cause they do not rely on this assumption (Yu, 2010).

Moreover, some behavior may be shown rarely or never. However, one assumption
of the logit models is that all state-transition tables show no zero frequencies. One way
of dealing with that is to exclude all observational units that show zero frequencies.
The problem with that approach is that if zero frequencies occur systematically, it may
lead to biased estimations. An alternative is adding a constant, typically 0.5, to all cells
(Everitt, 1992), to make the model estimable at the cost of a weak bias toward lower
effects. It is, therefore, a conservative approach for handling zero frequencies.

Furthermore, it is advised that the predicted cell frequency in a logit model should
be at least five for every cell. That is especially important for single case analysis. In
this case, Hope’s (1968) Monte Carlo test should be used for statistical inferences. The
accompanying R-Package ’DySeq’ provides two functions (EstFreq and EstTime) that
address the issue of low and zero frequencies. EstFreq simulates the estimated number
of cells with low or zero frequencies, depending on the expected mean state-transition-
table. The other function, EstTime, computes the minimum number of time intervals
that result in as many cases with low or zero frequencies as considered tolerable by
the researcher. Both functions are only implemented for cases with two dichotomous
coded behaviors of interest.

Regarding the sample size and optimal sequence length, a simulation study was
conducted (see Chapter 10.3). There is a small bias in estimated actor effects that
decreases with longer sequences. For example, the mean bias on β is -.08 for sequences
with ten time intervals, and β is -.02 for sequences with a hundred time intervals.
Thus, longer sequences should be preferred. Moreover, the combination of very small
sequences and very big samples sizes will results in increased Type-I errors. Thus, this
combination should be avoided.

All other effects behave normally, however only one effect was tested per time. Us-
ing the downward biased actor effect as a lower bound approximation, and aiming for
a power of at least .80, reveals that effects with low effects sizes (β = 0.2; OR= 1.22)

89

6. Analyzing Dyadic Sequences Using Aggregated Logit Models (APIM)

should at least include 50 or more time intervals with N = 30. If sample sizes are bigger
(80 or more), 30 time intervals are sufficient. For medium effect sizes (β = 0.4; OR = 1.49),
even very small samples (N = 10) can be estimated as long as the sequences include
at least 70 intervals. Vice versa, extremely short sequences can be estimated so long
as the sample size is big (N = 80 or more). However, as stated above, that particular
combination should be avoided due to the increased Type-I error for actor effects. For
bigger effect sizes (β = 0.6 and 0.8; OR = 22.3 and 1.82), thirty observational units with
thirty observations each are sufficient.

These results are limited to cases in which positive actor effects are assumed. That
is, it is assumed that behavior is more or less stable. For instance, SC and DC are sup-
posed to shown over consecutive time intervals. The opposite would be that behavior
oscillates, yet most behavior in psychological research is not assumed to oscillate.

Please note that the categorization of small, medium, and big effect sizes are based
solely on the results of the simulation study and reflect their impact on the power.
An evaluation of effect sizes in terms of practical significance, however, should always
depend on the subject.

90

7. Modelling Dyadic Sequences Using

Multilevel-Models (APIM)

Another way for answering the research questions "Does a particular behavior by one
partner evoke a specific, prompt reaction by the other?" and "What is the stability of
DC/SC?" (actor effects)?" (the research questions from Chapter 3.4 is to specify an
APIM via multilevel models. Instead of running multiple logit models per dyad and
dependent variable, a single multilevel model can be used for estimating an APIM. To
this end, the multilevel model has to address three challenges: the longitudinal aspect
of sequence data, the fact that sequences are categorical, and the dyadic data structure.
The longitudinal aspect can be addressed by the multilevel modeling approach itself
because it accounts for dependencies within nested observation. Repeated measures
can be seen as multiple observations that are nested within individuals (see Chapter
7.1). Multilevel models can be extended to generalized multilevel models (Hox et al.,
2010), allowing for categorical dependent variables (see Section 7.3). Finally, the dyadic
data structure can be addressed by incorporating a dummy coded moderator variable
(e.g., sex), which distinguishes between the two members of a dyad (see Section 7.4).

7.1. The General Idea of Multilevel-Modeling

Multilevel models (also referred to as hierarchical linear models, mixed-effects models,
random-effects models, random coefficient regression models, and covariance compo-
nents models) deal with the analysis of hierarchical data structures; that is, obser-
vations are nested within groups. An often used example is educational research,
where students are grouped in classes, classes are grouped in schools, and schools
are grouped into districts. Therefore, variables describe individuals, but the individ-
uals may be grouped into larger or so-called higher-order units. However, in the case
of repeated measurement data, the individual is the higher order unit (replaces the
group), and multiple measurements (observations of the individual) are nested within
the individual.

91

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

Before multilevel models were common, linear regression models were used for
the analysis of hierarchical data. Several strategies were used to handle the nested
data structure: A) Ignoring the structure, B) aggregation of data, C) running multiple
within-group analyses, and D) modeling level membership by interaction terms. Each
strategy comes with certain problems.

(A) Inference statistics of linear regression are based on the assumptions of linearity,
normality, homoscedasticity, and independence. If characteristics of higher levels (e.g.,
class and school) are attributed to the individuals (e.g., students), the assumption of
independence is violated (Aitkin and Longford, 1986). That can lead to biased stan-
dard errors and an inflated Type-I error rate. Moreover, contextual effects of upper
levels can overshadow individual effects as demonstrated in Figure 8.1. In that exam-
ple, all groups show small positive correlations when regression is fitted separately,
yet correlation becomes negative when one regression is fitted for the whole sample.

Figure 7.1.: Example of a nested data structure; hyphenated lines are regression lines
estimated separately for all three groups (j = 1, upwards triangles; j = 2,
diamonds; j = 3, downward triangles.) The straight line shows the re-
gression line that is estimated for all individual data points, ignoring the
nested data structure.

(B) Aggregating data and ignoring individual differences leads to a loss of informa-
tion. Moreover, analysis results reflect only associations on their particular aggregation

92

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

level. Interpretation on a lower level is forbidden and may lead to an ecological fallacy
(Ess and Sudweeks, 2001). Consider the following example: the aggressive behavior of
students and parental income of students are aggregated (e.g., averaged) over schools.
The analysis reveals that aggressive behavior is more frequent in lower income schools.
We do not know whether or not low-income students are more aggressive than other
students (loss of information), yet one might infer so nevertheless. That interpretation
of the results leads to an ecological fallacy because the association can be different on
an individual level (e.g., schools with students with a low average parental income
may be located more often in urban areas, whereas those with high average parental
income might more often live in the countryside). Aggressive behavior might differ
between schools from different areas, which alone might account for the correlation on
the school level. However, correlation of parental income and aggressive behavior of
students within schools can still be correlated in any way including zero correlations
or even positive ones.

(C) Running multiple within group analyses is not practical if dozens of schools are
analyzed. Using this approach will result in as many correlations as there are higher
level units. Moreover, if sample sizes are small within higher level units (e.g., only
three students per class), power will be low. Therefore, the majority of regressions
might show only non-significant results, even if true effects are present and even if the
overall survey includes hundreds of students. Thus, that approach is not practical.

(D) Using interaction terms is the way to go when the number of higher-level units
is small. For example, if data is gathered from students of three different classes, the
class can be used as a moderator. Therefore, association coefficients may vary between
classes, and all data is used at once (higher power). However, using this approach will
still result in as many group-specific correlations (simple slopes/effects) as there are
higher-level units. Thus, if the number of higher level units is big, multilevel models
should be used instead.

Aitkin and Longford (1986) not only demonstrated the need for statistical analysis
that can account for nested data, but they also propagated the use of multilevel mod-
els for this purpose. Multilevel equations are extended linear regression equations. In
the first line, Equation 7.1 shows the level-1 equation for a generic two-level multilevel
model. yij is the dependent variable (criterion), xij is the independent variable (predic-
tor). Both are indexed with i for level-1, and j for level-2. Thus, if observational units
at level-1 are students, i refers to a certain student and j may refer to her or his class.
β0j is the intercept, which is the value that is predicted if x is zero. β1j is the slope for
the predictor x, which is interpreted as "per unit increase of x, the predicted value of

93

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

y is increased by β1j units of y." That is the same as in ordinary regression, yet both βs
can vary over j. Hence, even though they both have a value of zero on x, the predicted
value of yij might differ between two students because the students belong to different
classes with different intercepts. Moreover, the increase in y per unit increase of x can
be different between classes.

Level − 1

yij =β0j + β1j ∗ xij + eij

Level − 2

β0j =γ00 + γ01 ∗ zj + u0j

β1j =γ10 + γ11 ∗ zj + u1j

(7.1)

The second line of the equation depicts that the group-specific intercept depends
on the grand intercept (γ00), a random deviation (u0j; level-2 intercept residual), and
moreover can further depend on a level-2 predictor (zj). A level-2 predictor is the same
for all individuals (i) that belong to the same group (j). For example, the experience
of the class teacher in years is the same for all her or his students. Thus, more years of
experience might increase the values for all students in y (e.g., test-score).

The third line refers to the slope of the level-1 equation. Similar to the second
line, the slope is predicted by the grand mean slope (γ10), a random deviation (u1j;
level-2 residual for the slope), and can again depend on the previous level-2 predictor
zj. Therefore, higher values of zj can strengthen or weaken the effect of the level-1
predictor the same way a moderator variable would do. That type of moderation is
called cross-level interaction; zj is a level-2 variable that influences a level-1 effect, and
hence the name.

In multilevel analysis, only the fixed effects and the variances of the random effects are
estimated and interpreted. Fixed effects include all parameters that are not allowed
to vary between observational units of any level. Random effects are the residuals
of lower order effects. High variances of random effects indicate that effects are very
dissimilar between groups, whereas little variances mean that they are very similar.

The multilevel model presented in Equation 7.1 is a minimal example for intro-
ducing the core ideas of multilevel modeling. By practice, more predictors can be
included, and more than two levels can be modeled. In contrast, not all multilevel

94

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

models must include cross-level interactions or predictors on all levels. In fact, one
particular model without any predictors, the intercept-only model, is often estimated
to decide whether a multilevel model is useful or not.

The intercept-only model (Hox et al., 2010) can be seen in Equation 7.2. It includes
no predictors at all. The value of yij for an individual i is only predicted by group
mean β0j. Therefore, the variance of the individual residual eij is the variance within
groups. The level-2 part of the equations shows that group means are predicted by
the grand mean γ00. Thus, the variance of u0j is the between-group variance. The
sum of both variances is equal the total variance of yij. Thereby, the proportion of
variance that stems from the nested data structure, the intra-class correlation (ICC),
can be calculated by the following: var(u0j)/[var(u0j) + var(eij)] (Hox et al., 2010).

Level − 1

yij =β0j + eij

Level − 2

β0j =γ00 + u0j

(7.2)

Multilevel models are difficult to estimate by ordinary least squares (OLS) because
more than one type of residual has to be minimized at the same time. Instead, iterative
numerical procedures are often applied to obtain the estimates. Standard estimation
methods in most statistical software (SPSS, Stata, lme4) are full maximum likelihood
(Longford, 1987) and restricted maximum likelihood estimations (Searle et al., 2009).
Maximum likelihood estimation bears the benefit that nested models can be compared
via a likelihood ratio test. Restricted maximum likelihood can be used to this end, too,
as long as the fixed effect model is the same for all compared models. Alternative
procedures include Bayes estimation (Browne et al., 2006) and iteratively reweighted
generalized least squares (Goldstein, 1989).

7.2. Repeated Measures as Multilevel-Model

In the case of repeated measurement, the individual serves as the group j, with multi-
ple measurements (i) nested within the individual. That leads to a 2-level model. The
benefit of using multilevel models for repeated measure compared to other methods,

95

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

such as repeated measure ANOVA, is that the number of measurements must not be
the same for all persons. Most important for the application shown in Chapter 7.4,
multilevel models allow the inclusion of time-dependent covariates quite easily.

In Equation 7.1, if i represents a single data point measured over time, xij can also
vary over time. Thus, time-dependent covariates can be included by adding them to
the level-1 equation. By contrast, zj cannot vary over time but only between individu-
als (j). Therefore, covariates that are included on level-2 are time-independent.

Another merit of longitudinal multilevel models is that time itself can be added
as a level-1 predictor for modeling trends (e.g., linear, quadratic). If these trends are
allowed to vary between persons (j), the multilevel model becomes a growth model
(Hox and Stoel, 2005).

7.3. Generalized Multilevel Models

Multilevel models assume scaled (metric) dependent variables. However, generalized
multilevel models can handle binary outcomes, ordered categorical outcomes, and
multi-category, nominal scale outcomes. The topic is vast and is discussed by Gill
(2000) in detail. This chapter, however, focuses only on those aspects that are important
for Chapter 7.4, which demonstrates generalized multilevel models for dichotomous
sequence data. Therefore, the adaptation of conventional multilevel models for binary
outcomes (logistic multilevel) will be introduced briefly in this chapter.

Level − 1

Lij = ln

(
P(yij = 1)

1− P(yij = 1)

)
Lij =β0j + β1j ∗ xij + eij

Level − 2

β0j =γ00 + γ01 ∗ zj + u0j

β1j =γ10 + γ11 ∗ zj + u1j

(7.3)

Equation 7.3 depicts a logistic, multilevel model. Instead of predicting the outcome
(yij) directly, a link variable (Lij) is predicted by the multilevel model. On the right
side of the equation, everything functions in the same way as in ordinary multilevel

96

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

modeling. There is one exception and that is the error distribution. Because Lij is not
assumed to follow a normal distribution anymore, the error terms have to be adapted.
In the case of logistic regression, the error distribution is assumed to follow a binomial
distribution. Finally, Lij is linked via a logit transformation with the probability that
the outcome becomes one (first line). The last principle is exactly the same as in
Chapter 6.

7.4. A Multilevel Model APIM

As mentioned in this chapter’s introduction, an APIM multilevel model for sequence
data has to address three challenges: the longitudinal aspect of sequence data, the fact
that sequences are categorical, and the dyadic data structure.

The longitudinal aspect can be addressed by modeling observed behavior as re-
peated measures on level-1 that are nested within couples at level-2. Each behavior
should be predicted by the previous behavior at t− 1. Therefore, all but the first in-
terval can be included as a level-1 observation. Thus, the example dataset provides 94
observations (two variables each measured at 47 time intervals) for each dyad.

The dependent variable for each interval is the occurrence of the behavior at time
interval t (occurrence = 1; non-occurrence = 0), which can be handled by generalized
multilevel models, as explained. The independent variables are effect coded; thus,
the occurrence of the same behavior at t − 1 (actor effect) is coded with AE=1 for
occurrence and with AE=-1 for non-occurrence. The same is true for partner effects,
which are coded PE = 1 when the other behavior occurred at t − 1, and PE = -1
otherwise.

Finally, the dyadic data structure can be addressed by incorporating a dummy coded
moderator variable (e.g., sex coded with male = 0 and female =v1), which distinguishes
between the two members of a dyad. At first glance, it may seem inconsistent that the
behavior is effect coded and that the moderator is dummy coded. However, that com-
bination of coding strategies leads to relatively easy interpretations for an otherwise
complex model. Equation 7.4 presents the corresponding model equations in logit
parameterization:

97

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

Level − 1

Lij = ln

(
P(DV = 1)

1− P(DV = 1)

)
Lij =β0j + β1j ∗ AEij + β2j ∗ PEij + β3j ∗ AEij ∗ PEij

+β4j ∗ Sex + β5j ∗ AEij ∗ Sex + β6j ∗ PEij ∗ Sex

+β7j ∗ AEij ∗ PEij ∗ Sex + eij

Level − 2

β0j =γ00 + u0j; β1j = γ10 + u1j ; ... ; β7j = γ70 + u7j

(7.4)

Contitional Level − 1 Equations f or the Male Partners (sex = 0) :

Lij = ln

(
P(DC = 1)

1− P(DC = 1)

)
Lij =β0j + β1j ∗ AEij + β2j ∗ PEij + β3j ∗ AEij ∗ PEij + eij

Contitional Level − 1 Equations f or the Female Partners (sex = 1) :

Lij = ln

(
P(SC = 1)

1− P(SC = 1)

)
Lij =(β0j + β5j) + (β1j + β6j) ∗ AEij + (β2j + β6j) ∗ PEij

+(β3j + β7j) ∗ AEij ∗ PEij + eij

(7.5)

In equations 7.4 and 7.5, the dependent variable (DV) changes from male to female
partners. If the males’ behavior is to be predicted, DV represents dyadic coping (DC).
If the females’ behavior is to be predicted, DV represent stress communication (SC).
In the same vein, AE represents male DC and PE represents female SC at t− 1 if the
occurrence of male DC is predicted; AE represents female SC and PE male DC at the
previous interval if the occurrence of female SC is predicted.

Equation 7.5 shows the conditional equations for men and women if the variable
sex = 0 (upper conditional equation for male partners) or if sex = 1 (lower equation

98

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

for female partners). Hence, predicting DC behavior by male partners, the upper
equation has to be interpreted; predicting female SC, the lower equation has to be
interpreted. The partner with sex = 0 (male partners) represents the reference category.
The corresponding average logit, actor, partner, and interaction effects can be obtained
directly from the equation. For the non-reference category (sex = 1; female partners),
the average logit, actor, partner, and interaction effects differ from the ones for the
reference category by the logit parameters associated with the variable sex.

For example, β1j is the actor effect for the reference category (male partners), and
β5j shows if the actor effect for the non-reference group (female partners) is larger
(positive value) or smaller (negative value). The actor effect for female partners is,
hence, depicted by (β1j and β5j). The same is true for partner effects (β2j and β6j) and
the actor ∗partner interaction (β3j and β7j) considering female partners. The intercept
(β0j) represents the average logit for the reference group (male partners), and the main
effect of sex (β4j) shows the difference of female partners’ intercept from the male
partners’ intercept.

Each level-1 β may differ between couples (j). The level-2 equations show that each
couple’s regression parameters depend on the average effect over all couples (β•j; fixed
effects) and a couple-specific residual (u•j; random effect). The fixed effects at level-2
represent the average effects across all couples and conceptually correspond to the av-
erage parameters of the aggregated means approach. Additionally, the variances of the
random effects indicate how much the regression effects differ between couples. For
example, the variance of the level-2 random component associated with the intercept(
var(u0j)

)
describes differences in the mean logits (for the reference group) between

couples.
Moreover, correlations between random effects can be investigated. For example, a

positive cor(u1j, u2j) indicates that larger (couple-specific) actor effects are associated
with larger partner effects in the reference group. In another example, cor(u5j, u6j) is
the correlation of the level-2 random effects associated with the differences between
the female regression parameters and the corresponding male regression parameters.
Also, a positive estimate of cor(u5j, u6j) indicates that differences in partner effects are
larger for couples with larger than average differences in female actor effects. Thus,
couples with higher female actor effects tend to produce higher female partner effects,
and vice versa.

Models with different subsets of random effects can be tested against each other
for finding a parsimonious model (Hox et al., 2010). For the example data, the com-
parative fit index BIC (Schwarz et al., 1978) was used. In the best fitting model, in-

99

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

tercept var(e0j), actor var(e1j), and partner effects var(e2j) were specified as random
variables. Table 7.1 provides the fixed effects estimates of the generalized multilevel
model. Overall, the fixed effects are very similar to the results of the aggregated logit
approach. Direction and level of significance are the same for both methods. The
multilevel approach tends to estimate slightly greater actor and partner effects, yet
they are practically equivalent. The biggest difference is the actor effect for DC (.70
for aggregated logit models vs. .97 for multilevel approach), the smallest difference
is between the partner effects for SC (.52 for the aggregated models vs. .49 for the
multilevel model).

Table 7.1.: Fixed Effects for MLM-APIM (Couples-Cope Example)

β for SC β for DC SC - DC

Mean Logit 0.25∗∗ 0.22∗ 0.03
SC at t-1 (Actor Effect) 1.26∗∗∗ 0.97∗∗∗ −0.29∗∗∗

DC at t-1 (Partner Effect) 0.49∗∗∗ 0.69∗∗∗ 0.21∗

Actor*Partner Interaction 0.03 0.01 −0.02

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001

Table 7.2 shows the random effects of the generalized multilevel model. The vari-
ances of the random effects can be found on the main diagonal. More interestingly, we
find that the random intercept correlates negatively with the random parts of the actor
and partner effects (r = -.71 and r = -.66), indicating that in couples with high base rates
of SC and DC behaviors, the occurrence of these behaviors is less strongly associated
with prior behavior than for couples with lower base rates. Random components of
actor and partner effects correlate positively (r = .77), indicating that in couples with
larger influences from SC at t− 1 on DC (or DC at t− 1 on SC), we also find larger
influences from DC at t− 1 on DC (or SC at t− 1 on SC).

Table 7.2.: Random Effects for MLM-APIM (Couples-Cope Example)

Mean Logit Actor Effect Partner Effect

Mean Logit 0.27
Actor Effect −.71 0.06
Partner Effect −.66 .77 0.17

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001; Variances of level-2 residuals are on the principal
diagonal; their correlations are shown in the other cells.

100

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

7.5. Alternative Example (Give-some)

Table 7.3 displays the model comparisons for the give-some example. The variable
"Mod" serves the same purpose as sex did in the last chapter. Thus, a random effect of
Mod means that differences between humans’ and the algorithm’s mean cooperation
varies between players. Two models achieved the lowest AIC, both including a random
intercept and a random effect of Mod. One of the two models also includes a random
partner effect.

The model without the random partner effect was chosen for the following reasons:
1) If several models explain data equally, the parsimony principle requires to choose
the simplest one. 2) BIC is smaller for the model with only a random intercept and the
random effect of Mod. 3) plus, the model was the only one that converged beside the
most basic multilevel model. Further models were tested, which included all kinds of
interactions pairings, yet all those models failed to converge, too.

Regarding the random effects of the final model, variance of the intercept is rel-
atively small (var(u0j = .06)), whereas the variance for Mod is comparatively big
(var(uMod,j = .89)), indicating that differences between human player’s and the al-
gorithm’s cooperative reaction vary a lot between pairings. Both random effects show
a strong negative correlation (r = -.83). Therefore, the higher the human’s baseline
probability that cooperation is shown, the more the difference between both base-
line probabilities decreases. That makes perfect sense because the mean cooperation
of the algorithm was higher (70.35%) for the algorithm than for the human players
(63, 98%). However, participants also showed variance in their mean number of given
coins (SD = .37); therefore, some players might cooperate more often than others, and
by doing so, decrease the difference between themselves and the algorithm.

The results of the fixed effects are presented in Table 7.4. Overall, the results are very
similar to the results obtained by the aggregated logit models. Estimated effects of the
multilevel model are all bigger than those of the aggregated logit models. However,
all algebraic signs are the same except for the actor effect of the algorithm that was
estimated to be positive and significant previously, but now is estimated to be negative
and not significant.

101

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

Table 7.3.: Multilevel Model Comparisons (Give-Some Example)

Random Effects AIC BIC Failed to
converge?

Interc., AE, PE, AE*PE., Mod. 2957 3213 yes
Interc., AE, PE, and AE*PE 2970 3075 yes
Intercept, AE, PE, and Mod. 2935 3040 yes
Intercept, AE, and PE 2969 3050 yes
Intercept, AE, Mod. 2933 3015 yes
Intercept, PE, Mod. 2928 3010 yes
Intercept, Mod. 2928 2992 no
Intercept 2975 3027 no

Notes: Intercept is abbreviated as interc.; AE = actor effect; PE = partner effect; Mod.
(moderator): is the dependent variable coded as 0 = human player’s cooperation and
1 = algorithm’s cooperation; boldface: lowest values of AIC and BIC, lower values
indicate better model fit.

Table 7.4.: Fixed Effects for MLM-APIM (Give-Some Example)

β (human) β (algorithm) human - algorithm

Mean Logit 0.81∗∗∗ 1.39∗∗∗ 0.58∗∗

Actor Effect −0.17∗ −0.09 −0.08∗

Partner Effect −0.34∗∗∗ −1.03∗∗∗ −0.69∗∗∗

Actor*Partner 0.06 0.17 0.11

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001; DV is cooperation either for the human player or
the algorithm

7.6. Assumptions, Practical Issues, and Required Sample

Size

The multilevel adaptation assumes a time-homogeneous autoregressive process. Thus,
for all possible values of t, the following should be true: P(st)|st−1. Moreover, the error
distribution must be specified correctly. If further (scaled) variables are added as co-
variates, linearity and homoscedasticity of logits are added. Linearity of logits means
that an increase by one unit should increase the predicted logits by the same unit re-
gardless of the actual value of the predictor. That assumption is broken, for example,
when quadratic effects are added. Homoscedasticity of logits means that the accuracy
of prediction should be independent of the predictors value. That assumption is bro-

102

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

ken if, for instance, the variance of predicted logits is higher for bigger values of the
predictor.

The generalized multilevel model bears the advantage that one single model obtains
all estimates. Furthermore, random effects and their correlations can be modeled,
tested and interpreted. Additionally, the model tests whether the effects differ between
the depended variables. Moreover, time-dependent and time-independent variables
can be added.

However, the generalized multilevel model bears the disadvantage that the data set
has to be prepared in an unusual way with one entry representing one observation
of only one behavior, the two preceding behaviors of both partners and the dummy
coded variable. That procedure results in twice as many entries as there are intervals
minus 2 (e.g. 2 * 47 entries for one couple).

Furthermore, multilevel-models require large sample sizes for estimating the coef-
ficient variances accurately. A simulation study conducted by Maas and Hox (2005)
showed that standard errors at level-2 are biased downward if level-2 sample sizes
(e.g. couples) are comparably small (less than 50). Unbiased standard errors could
be found for a sample size of 100 at level-2. Furthermore, if random effect variances
are small, the estimation of model parameters can become erroneous with negative
variances, for example.

However, the simulation study of Maas and Hox (2005) investigated multilevel mod-
els in are very general way; therefore, a simulation study was conducted for exploring
type-I error rates, power issues and potential biases for the presented multilevel adap-
tation.

The detailed results can be found at Chapter 10.4. There seems to be a very small
bias for small samples (N=10) with short sequences (length=10). The effect size was
underestimated for β = 0.2 and β = 0.4 and overestimated for β = 1.00. The Bias ranged
from -.04 for β = 0.2 to .11 for β = 1.00. However, no noticeable bias was observed for
samples with an least N = 50 or length = 50. Moreover, the bias affected only the
effects sizes, whereas Type-I-error rates were nominal for all conditions.

The multilevel APIM performed better regarding power than the aggregated logit-
model. For small effects (β = 0.2; odds ratio of 1.22) and medium effects (β = 0.4;
odds ratio of 1.49) a good power (above .80) can be achieved even with small sample
sizes (N = 10) if the sequences are very long (length > 100). Vice versa short sequences
(length = 10) achieve the same power if sample sizes are big (N > 100). Same goes for
medium sized samples (N = 50) with sequences of length = 50. If effects are really big

103

7. Modelling Dyadic Sequences Using Multilevel-Models (APIM)

(β = 0.8; odds ratio of 2.23) even small sample sizes (N = 10) with small sequences
(length = 10) will achieve a high power (> .95).

7.7. Alternative Multilevel Modeling Strategies

A disadvantage of the presented multilevel adaptation is that the model cannot es-
timate random effects for both members of a dyad separately. It can, however, esti-
mate random effects for the differences between dyad members. Kenny et al. (2006)
proposed an alternative approach using the double entry strategy from (Raudenbush
et al., 1995) in order to obtain separate random effects for both members. However,
common R packages cannot handle this kind of analysis, whereas the presented adap-
tion in this monograph can be estimated by common R packages for multilevel mod-
eling, such as lme4 (Bates et al., 2014).

104

8. Modelling Dyadic Sequences Using

Markov Models

In principle, basic Markov Models (MMs; Figure 8.1a) can be used to address the
same research questions as aggregated logit-models, yet there is no need to define a
dependent variable. Instead, the focus is on transition probabilities, which are the
probabilities for changing from one state into another state if time advances by one
unit (see 1.1.5). Another feature is that MMs allow for simultaneous estimation of
mean transition rates for all observation units at once. Furthermore, MMs can be
extended to hidden (or latent) Markov models (HMMs; Figure 8.1b).

HMMs treat observed states as indicators of latent states, which explain transition
rates of observed variables by an underlying, not directly observable process. For ex-
ample, stress communication (SC) and dyadic coping reaction (DC) may be seen as
observable indicators of a couple’s coping process, and thereby modeled as a com-
mon fate model (see 1.2.4). As this process is going on, a couple might transition
through different latent states, such as being stressed or not being stressed. A state of
being stressed could be characterized by a higher probability of observing SC and/or
DC than when not in a state of stress. Therefore, observed states are regarded as
probabilistic functions of hidden states, resulting in so-called emission probabilities.
Because HMMs take latent states into account, research questions such as "How many
latent states are there? And how do they affect the observable states?" can be asked.

MMs can be extended also to mixture Markov models (MMMs; Figure 8.1d). MMMS
allow explaining unobserved heterogeneity by a categorical, time-independent latent
variable, often called the latent class. In other words, MMMs assume that groups (la-
tent classes) exist and that observation units are similar within and dissimilar between
these groups. Similarity in this context means two things: first, that observation units
of one group share similar transition-probabilities, and second that latent states affect
observed states in a similar way.

A special feature of mixture models is that class membership is probabilistic in
nature. That means each observational unit belongs to a latent class with a certain

105

8. Modelling Dyadic Sequences Using Markov Models

a) Basic Markov Model (MM)

Statet-2 Statet-1 Statet

b) Hidden Markov Model (HMM)

Obs.
Statet-2

Obs.
Statet-1

Obs.
Statet

Latent
Statet-2

Latent
Statet-1

Latent
Statet-1

c) Mixture Hidden Markov Model (MHMM)

Obs.
Statet-2

Obs.
Statet-1

Obs.
Statet

Latent
Statet-2

Latent
Statet-1

Latent Class

Latent
Statet-1

d) Mixture Markov Model (MMM)

Latent Class

Statet-2 Statet-1 Statet

Figure 8.1.: Comparison of MM, HMM, MHMM and MMM denoted as path diagrams.

106

8. Modelling Dyadic Sequences Using Markov Models

probability. Possible research questions that can be tackled with MMMs are: How
many latent classes exist? Do they differ regarding their number of latent states? Are
there similar latent states across the latent classes? If so, do transition rates of the
latent states differ between latent classes?

Finally, MMMs can be extended even further to mixture hidden Markov models
(MHMMs), which are Markov models assuming latent states and latent classes (MH-
MMs; Figure 8.1.c). Possible research questions are: How many latent classes exist?
DO their latent classes differ regarding the emission probabilities? And what are the
differences regarding the transition rates of observed states?

8.1. Basic Markov Models

A modified version of the give-some data (see Chapter 2.2) will be used for illustrat-
ing the core idea of basic Markov models (MMs). The give-some data contains 42
sequences of participants’ behavior in a social dilemma game in which they had to
divide coins between themselves and an artificial opponent for 32 turns. In the pre-
viously shown example was coded whether cooperation was shown or not. However,
more than two categories are needed for introducing Markov Models properly. Thus,
for this application, it is coded whether a person gave less, equal, or more coins than
his or her opponent in the last turn. Thus, three states exist. For the sake of simplicity,
only the behavior of the human player is used for now, yet the original example (see
Chapter 2.2) will be used later for demonstration of dyadic sequences. Converting a
basic Markov model into an APIM will be shown using the couples-cope dataset.

A basic Markov model assumes that all sequences follow the form of one Markov
chain. That is, the probability for being in a certain state at time t only depends on the
immediate previous state at t− 1, but not on the states before t− 1. This is called the
Markov property and can be denoted as P(st|st−1). Hence, for the give-some example,
the assumption is that the probability of a person being in a state of giving less, equal,
or more depends only on the state of the immediate previous turn. For example,
a participant was in a state of giving less in time interval one. The probabilities of
giving less, equal, or more coins in time interval three depend only on the fact that
she or he gave less in time interval two, whereas her or his behavior at the first time
interval does not affect the probabilities at all. This assumption is often referred to by
saying that MMs describe a Type 1 autoregressive processes (AR1). Moreover, most
MMs assume that the process is time-homogeneous, that is, transition probabilities are
time-independent. Thus, P(st|st−1) should be the same for all values of t. Therefore,

107

8. Modelling Dyadic Sequences Using Markov Models

MMs assume exactly the same as the previous modeling strategies for APIMs, namely,
the multilevel model and the aggregated logit models.

Time homogeneous transition probabilities can be plotted in the form of a transition
diagram; Figure 8.2 displays the best fitting MM for the modified give-some exam-
ple. Each of the three boxes represents one of the following states, e.g., giving less,
equal, or more coins than the opponent. Circled arrows show the probability of stay-
ing in the attached state. Hence, in Figure 8.2 the probability that a participant gives
less coins than the opponent is .40 if he or she had also given less coins in the previ-
ous turn (State 1), .48 for giving equal again (State 2), and .22 for giving more again
(State 3). High probabilities indicate that the behavior is stable over time, and thus, it
is relatively likely that someone gives the same amount of coins in consecutive turns.
Whereas low probabilities indicate that a behavior is not stable, and thus, it is very
unlikely that a player gives more coins than the other consecutively.

State 1
'less'

State 3
'more'

.40 .22

.42

.25

State 2
'equal'

.30

.48

.35

.22

.36

Figure 8.2.: Basic Markov Model for the Modified Give-Some Example.

The straight arrows describe how likely it is to transit from one state, from which
the arrows start, into another state, to which the arrows point. For example, the
probability that a person changes from a state of giving fewer coins to a state of giving
more coins is .25, whereas the probability is .42 that a participant that gave more in
the last turn gives fewer coins in the actual turn.

Overall, Figure 8.2 shows that the state of giving an equal number of coins is the
most stable behavior, followed by giving fewer coins. Giving more coins is not only
the least stable state, but it is also the least likely state to enter from any other state.
Thus, participants are repeatedly switching between giving less or equal coins, while
giving more coins happens only occasionally.

108

8. Modelling Dyadic Sequences Using Markov Models

8.1.1. Transition Matrix

The transition matrix contains the same information as Figure 8.2 and is shown in
Table 8.1. Cells display the probability for transitioning from the states displayed in
the rows (t − 1) to the states shown in the columns (t). Hence, the main diagonal’s
probabilities correspond to the circled arrows (stability) from Figure 8.2, whereas the
other cells are equivalent to the straight arrows (probabilities for changing a state).

For example, the first cell (row: Less; column: Less) shows that the probability
of a state of giving less is followed by a state of also giving less is .40 (P(Statet =

Less|Statet−1 = Less) = .40), whereas the second cell in the same row shows that the
transition from a state of giving less to a state of giving equal has a probability of
.35 (P(Statet = Equal|Statet−1 = Less) = .35). The final cell in that row shows that
the probability of transitioning from less to more is .25 (P(Statet = More|Statet−1 =

Less) = .25). The same logic applies to the other two rows.

Table 8.1.: Transition Matrix for the modified Give-Some Example

→ Less → Equal → More

Less→ .40 .35 .25
Equal→ .30 .48 .22
More→ .42 .36 .22

Notes: X→ transition from X;→X transition to X; cells display transition probabilities;
less = giving less; equal = giving equal; more = giving more.

The transition matrix can be used to calculate how the distribution of states will
change from one time interval to another. For example, suppose at the beginning
(t = 0) of the give-some example, all persons were in a state of giving more coins.
Therefore, the state distribution would be (0/0/1), that is: 0% are in a state of giving
less, 0% are in a state of giving an equal number of coins, and 100% are in a state
of giving more. The expectation is that 42% will change over to a state of giving
less (first column, third row), 36% will change over to a state of giving equal (second
column, third row), and 22% will stay in the state of giving more. That would result in
p(less)t=1 = .42; p(equal)t=1 = .36; p(more)t=1 = .22 for the state distribution at t = 1.
For t = 2, of the 22% percent that still give more than they received, only 22% (third
row, third column) will stay in that state, which is 4.84% of the total. However, 25%
(first row, third column) of that 42%, who gave less at t = 1, will transit to a state of
giving more (10.5% of total). Same goes for 22% (second row, third column) of that 36%
who gave an equal amount of coins (7.92% of total). Thus, the total portion of persons

109

8. Modelling Dyadic Sequences Using Markov Models

who give more at t = 2 are 23.26% (4.84% + 10.5% + 7.92%). Same applies to the other
states. Thus, the expected state distribution for p(less)t=2 = 3684; p(equal)t=2 = .399;
p(more)t=2 = .2326.

The calculation can be written in a very compact form when it is denoted in matrix
algebra (see Equation 8.1). St=0 is a vector with as many entries as there are states
containing the relative frequencies of each state for a given interval t. The transition
matrix M is a square matrix with as many rows and columns as there are states.
Multiplying St=0 with M once for every time unit (t) that passed since t = 0 results in
the predicted state distribution for that particular time interval.

St = St=0 ∗Mt (8.1)

t : time interval

St : state distribution at time interval t

M : transition matrix

Dyadic sequences have to be combined via the state expand procedure (see Chap-
ter 4.1) before applying a basic Markov model. The results for the couples-cope exam-
ple are presented in Table 8.2. Cooperation by the algorithm has the highest stability
of all states, yet the probability of staying in this state is only .43. There is also a
high probability of transitioning from that state to a state in which both players co-
operate. The transition rates are similar from a state in which only the human player
cooperates. Switching to a state where both cooperate is the most probable transition.
However, this state is also not very stable, the combined probability to fall back into a
state where only the human or the algorithm cooperates is .50.

This transition matrix shows why the individual sequence plot of Chapter 4 (Fig-
ure 4.8) showed very volatile behavior. Players are frequently transitioning between
the three states with cooperation. Because of that, the plot shows a wild mix of black
(both cooperate), darkgrey (algorithm cooperates), and lightgrey(human cooperates)
blocks. Moreover, white spots seem to be rare, which can be explained by the transi-
tion matrix again. Transition rates toward a state of no cooperation are very low.

110

8. Modelling Dyadic Sequences Using Markov Models

Table 8.2.: Transition Matrix for the Give-Some Example

Cooperation by → None → Human → Algorithm → Both

None→ .02 .05 .22 .71
Human→ .12 .33 .11 .43
Algorithm→ .03 .07 .43 .47
Both→ .15 .25 .25 .36

Notes: Cooperation means giving a larger or equal number of coins than the other
did at t− 1; X→ transition from X;→X transition to X.

8.2. APIM as a basic MarkovModel

As shown above, a Markov chain describes a process over discrete time (Briggs and
Sculpher, 1998), where the state at time t (e.g., showing DC) depends only on the
previous state at t− 1. Thus, the assumption is the same as for the aggregated logit
and the multilevel adaptation of the APIM. Dyadic sequences can be combined via the
state expand procedure (see Chapter 4.1). After that, a basic Markov model (MM) can
be fitted. However, the MM will not provide single values for each actor and partner
effect directly. Instead transitions probabilities are estimated. Results for the couples-
cope data are displayed in Table 8.3 and Figure 8.3. For the latter, arrows brightness
is used to indicate how likely transition are: the more likely the transition the darker
the arrow.

8.2.1. Fitting a basic Markov model on the couples-cope data

None

SC
only

SC+
DC+

DC
only

.79

.33 .80

.31

.19 .06 .06 .32

.08

.40

.32

.06

Figure 8.3.: Basic Markov Model for the Couples-Cope Example.

111

8. Modelling Dyadic Sequences Using Markov Models

In Table 8.3, the first cell shows that a couple showing no SC or DC at a given
interval (t− 1) will very likely (with a probability of .79) show no SC or DC at the next
interval (t). Keeping in mind that at the beginning of the interaction sequence almost
all couples showed SC and DC, we can derive that once a couple attained the status
of no stress reaction and no support over the course of time, they most likely finished
their coping process. The remainder of the 1st row shows that it is very unlikely that a
state without SC or DC will be followed by a state of only SC (p(SCt|nonet−1) = .06),
or only DC (p(DCt|nonet−1) = .06). However, a small but substantial probability of
p(SCt + DC|nonet−1) = .10 depicts that a state with SC and DC will occur after a state
without any of the two behaviors.

Furthermore, showing only SC or only DC at a time is not a very stable state. Cou-
ples that are in a state of showing only SC or DC are very likely to switch back into
a state of showing SC and DC at the same time (.40 for SC→ SC+DC and .32 for
DC→ SC+DC). However, those two states have the highest probability for transition-
ing into a state of showing no SC or DC, whereas switching from SC+DC into no stress
related behavior at all has a very low probability of only .05. Therefore, it is more likely
to leave a state of SC+DC by transitioning to SC only or DC only (p(SCt|SC+ DCt−1)+

p(DCt|SC + DCt−1) = .14 vs. p(none|SC + DCt−1) = .05. Yet, these states have rel-
atively high probabilities for transitioning back to SC+DC. Therefore, it is very likely
for couples to change forth and back between SC+DC and a state of SC or DC a couple
of times before they enter a state without SC or DC. It is also very likely to even return
from a state without SC and DC to a state with SC+DC p(SC + DCt|nonet−1) = .10
or showing SC or DC only p(SCt|nonet−1) + p(DCt|nonet−1) = .12. This indicates that
entering a state without stress related communication does not necessarily mean that
the stress itself ended. Couples might take a short break from stress communication
or communicate for a short period of time in a way that it is not observable. Especially
the last reason can be seen as a form of measurement error that can be estimated by
hidden Markov models (see Chapter 8.3). However, before tackling this issue, transi-
tion probabilities must be transformed into actor and partner effects for so that it can
be interpreted as an APIM.

8.2.2. Converting Transitions into Actor and Partner E�ects

The interpretation of transition probabilities as actor and partner effects is straightfor-
ward, yet the interaction effect is directly incorporated into the transition probabilities.

112

8. Modelling Dyadic Sequences Using Markov Models

Table 8.3.: Transition Matrix for the Couples-Cope Example

→ None → SC → DC → SC+DC

None→ .79 .06 .06 .10
SC→ .19 .33 .08 .40
DC→ .32 .05 .31 .32
SC+DC→ .05 .08 .06 .80

Notes: Cells show transition probabilities between states; None: no stress communi-
cation and no dyadic coping; SC: only stress communication, but no dyadic coping;
DC: only dyadic coping, but not stress communication; SC+DC: stress communica-
tion and dyadic coping; X→ transition from X;→X transition to X.

Thus, there are two conditional actor effects and two conditional partner effects for
both dyad members each.

The female actor effects is the probability that SC is shown at t after SC was shown
at t − 1 regardless of whether DC is also shown at t. One of the two possible actor
effects has the condition that DC is not shown at t− 1. It can be denoted as (p((SCt ∪
SCt + DCt)|SCt−1)). Because all probabilities within a row of the transition matrix
are mutually exclusive, it is simply the sum of the transition probabilities from the
state with SC and no DC (SC→) to any states with SC (→ SC and → SC+DC). For
the example data, this effect is p(SCt|SCt−1) + p(SCt + DCt|SCt−1) = .33 + .40 = .73
(2nd; 2nd and 4th column). The second conditional female actor effect is the actor
effect when DC was shown at t− 1, and hence, is calculated as p(SCt|SCt−1 + DCt−1)

+ p(SCt + DCt|SCt−1 + DCt−1) = .08 + .80 = .88 (4th row; 2nd and 4th column).
Two partner effects exist for the women: one without additional display of SC at t− 1

and one with additional display. The former is .37, which is the sum of p(SCt|DCt−1)

and p(SCt + DCt|DCt−1). The second partner effect is always equivalent to the con-
ditional actor effect with additional display of DC: p(SCt|SCt−1 + DCt−1) + p(SCt +

DCt|SCt−1 + DCt−1). Thus, one way to interpret these conditional effects is, that the
actor effect without additional display of DC is the pure actor effect for women. The
same is true for the partner effects without SC. Hence, the third probability can be in-
terpreted as the combined effect (probability to show SC when SC and DC are shown
in t− 1). Deviation from the expected combined effect based on the pure actor and
pure partner hints that an interaction effect might exist (inference on that will be
shown at the end of this chapter).

Actor and partner effects for men are calculated in the same way. However, men’s
behavior is showing DC rather than SC, and thus, probabilities for transitioning to

113

8. Modelling Dyadic Sequences Using Markov Models

a state of DC or SC+DC are added up. The role of conditions is also switched: the
pure actor effect for men is now p(DCt|DCt−1) + p(SCt +DCt|DCt−1), the pure partner
effect is p(DCt|SCt−1) + p(SCt +DCt|SCt−1), and the combined effect is p(DCt|SCt−1 +

DCt−1) + p(SCt + DCt|SCt−1 + DCt−1). The results are .63 for the pure actor effect
(31+.32; 3rd row; 3rd and 4th column), .48 for the pure partner effect (.08+.40; second
row; 3rd and 4th column), and the combined effect is .86 (.06+.80; 4th row; 3rd and
4th column).

Effects can be transformed into actor and partner effects that are more comparable
to the β effects of the aggregated logit and the multilevel models. The core idea is that
a fourfold tables can be produced for every partner that shows the same predicted
probabilities as a logit model would do. Then the probabilities are transformed into
logits. Finally, the logits are put into the logit model’s formula and the formula is
solved for the βs.

Table 8.4 shows the probability to show DC regardless of whether SC is shown at
the same time (p(DCt ∪ DC + SCt)), and therefore, shows the previously calculated
effects for the men. Thus, within the "Probabilities" subtable, the first cell refers to the
combined effect (1st row; 1st column), the second cell to the partner effect (1st row;
2nd column), the third cell to the actor effect (2nd row; 1st column), and the last cell
refers to the probability for showing DC if no SC and no DC was shown at t − t1
(2nd row; 2nd column). It can be seen as a baseline probability for showing DC and
is calculated as p(DCt|nonet−1) + p(SCt + DCt|nonet−1). The predicted probabilities
can be transformed into odds [p/(1− p)] and logits [logit = ln(p/(1− p))]. Table 8.4
shows DC as a dependent variable as shown in the middle (Odds) and the left-side
(Logit) of Table 8.4.

Estimates for the βs can be calculated by using the logits: intercept is the mean of
all logits (0.17 = (1.88+ 0.54− 0.09− 1.67)/4); actor effect is the mean of the logits for
showing the same behavior at t− 1 minus the intercept (1.05 = (0.54+ 1.88)/2− 0.17);
partner effect is the mean of the logits for the partner’s acting minus the intercept
(0.73 = ((−0.9) + 1.88)/2− 0.17); because effects are additive in their logit form, the
actor*partner interaction is the logit of the combined effect minus the sum of intercept,
actor, and partner effect (−0.07 = 1.88− (0.17+ 0.73+ 1.05)). The results are displayed
in Table 8.5, but differ slightly from the previously calculated values (by .01) because
results were computed in R without intermediate rounding, and therefore are less
prone to rounding errors.

Equation 8.2 shows the generic calculation for the βs. However, the equation as-
sumes a certain structure for the transition matrix: two partners are assumed (A and

114

8. Modelling Dyadic Sequences Using Markov Models

B), the first state refers to a state where both partners show no reaction, the second
state is that A shows a reaction but not B, third one is that B shows a reaction and A
does not, and the fourth is that both show a reaction. Thus, the equation is limited
to a maximum of two partners and to cases in which only one behavior is coded per
partner.

Table 8.4.: Predicted Logits, Odds and Probabilities for DC by the
Markov model

Logit Odds Probabilities

DCt−1 DCt−1 DCt−1
Yes No Yes No Yes No

SCt−1 Yes 1.88 −0.09 6.58 0.92 .87 .48
No 0.54 −1.67 1.71 0.19 .63 .16

Notes: SCt−1: Stress Communication at t− 1; DCt−1: Dyadic Coping at t− 1

The estimates are consistent with the previous analysis of aggregated logit and mul-
tilevel models. The actor effects are stronger than partner effects. However, actor
effects are bigger for women than for men, whereas men show stronger partner ef-
fects. Interaction effects are near zero. All the above were also true for the aggregated
logit and the multilevel model; moreover, differences between the male and the female
effects are nearly identical to the estimates of the multilevel approach.

Table 8.5.: Actor and Partner Effects for Marcov-APIM
(Couples-Cope)

β for SC β for DC SC - DC

Mean Logit 0.19∗∗ 0.17∗∗ 0.02
Actor Effect 1.31∗∗∗ 1.05∗∗∗ 0.26
Partner Effect 0.55∗∗∗ 0.73∗∗∗ 0.21
Actor*Partner Interaction −0.04 −0.06∗ 0.02

Notes: ∗p<.05; ∗∗p<.01; ∗∗∗p<.001; p-values are based on non-parametric bootstrap-
ping with 10.000 bootstrap samples.

One advantage of basic Markov models as an APIM is that effects can easily be inter-
preted in terms of probabilities. This is especially useful for partner*actor interactions
effects because they are directly displayed as conditional probabilities.

A disadvantage of basic Markov models is that they come without p-values for sig-
nificance testing. However, it is always possible to bootstrap confidence intervals for

115

8. Modelling Dyadic Sequences Using Markov Models

all kind of statistics (Efron and Tibshirani, 1994) and confidence intervals can be used
for approximating p-values (Davison and Hinkley, 1997). Non-parametric bootstrap-
ping (ordinary non-parametric; Canty and Ripley, 2012), based on 10,000 samples, was
used for approximating the p-values shown in Table 8.5. The inference statistic seems,
overall, to be consistent with the previous approaches, but seems to be more progres-
sive (smaller p-values). For example, the interaction effect for DC was never significant
when the previous approaches were applied.

Another practical disadvantage is that results must be converted into βs if they
should be compared directly with other models, such as multilevel APIM or aggre-
gated logit APIM. Fortunately, the R-package DySeq provides a function that trans-
forms transition matrices into β-coefficients (TransToAPIM) and a second function that
transforms β-coefficients into a transition matrix (APIMtoTrans).

A practical merit of the Markov model is that most software packages for Markov
modeling, such as the R-Packages TraMineR (Gabadinho et al., 2009) or seqHMM
(Helske and Helske, 2016), can read the sequence data directly without the need for
transforming the data into another format. Therefore, the data pre-processing for
Markov models is easier than for the other models, which also decreases the risk of
spoiling an analysis by improper data preparation.

116

8. Modelling Dyadic Sequences Using Markov Models

InterceptA =
(

ln
(M1,2 + M1,4

1−M1,2 + M1,4

)
+ ln

(M2,2 + M2,4

1−M2,2 + M2,4

)
(8.2)

+ ln
(M3,2 + M3,4

1−M3,2 + M3,4

)
+ ln

(M4,2 + M4,4

1−M4,2 + M4,4

))
/4

ActorA = ln
(M2,2 + M2,4

1−M2,2 + M2,4

)
+ ln

(M4,2 + M4,4

1−M4,2 + M4,4

)
− InterceptA

PartnerA = ln
(M3,2 + M3,4

1−M3,2 + M3,4

)
+ ln

(M4,2 + M4,4

1−M4,2 + M4,4

)
− InterceptA

InteractionA = ln
(M4,2 + M4,4

1−M4,2 + M4,4

)
− (InterceptA + ActorA + PartnerA)

InterceptB =
(

ln
(M1,3 + M1,4

1−M1,3 + M1,4

)
+ ln

(M2,3 + M2,4

1−M2,3 + M2,4

)
+ ln

(M3,3 + M3,4

1−M3,3 + M3,4

)
+ ln

(M4,3 + M4,3

1−M4,3 + M4,4

))
/4

ActorB = ln
(M3,3 + M3,4

1−M3,3 + M3,4

)
+ ln

(M4,3 + M4,4

1−M4,3 + M4,4

)
− InterceptB

PartnerB = ln
(M2,3 + M2,4

1−M2,3 + M2,4

)
+ ln

(M4,3 + M4,4

1−M4,3 + M4,4

)
− InterceptB

InteractionB = ln
(M4,3 + M4,4

1−M4,3 + M4,4

)
− (InterceptB + ActorB + PartnerB)

Mn,m : transition matrix

n : transition from state s to another state

m : transition from state s to another state

A : Sequence A

B : Sequence B

s1 : transition from a state where A and B are 0

s2 : transition from a state of A is 1 and B is 0

s3 : transition from a state of A is 0 and B is 1

s4 : transition from a state of A and B are 1

117

8. Modelling Dyadic Sequences Using Markov Models

8.3. Hidden Markov Model

HMMs treat observed states as indicators for latent states. The probability that a
particular state is observed depends on the latent state. For example, the probability
for showing states of stress-related behavior might be bigger when the latent state is
stress, whereas a couple that is in a latent state of no stress might show that kind of
behavior also, but less likely and thereby less frequent. These probabilities are called
emissions.

The transitions between the latent states are assumed to follow a Markov chain,
which explains transition-rates of observed variables by an underlying, not directly
observable process. Therefore, two matrices are estimated, one transition matrix (M)
and an emission matrix (E) containing all emissions. Additionally, the initial state
distribution must be estimated, too, because it is also not observed directly, and the
Markov chain needs a starting point.

Equation 8.3 shows the hidden Markov model. The state distribution (S) at t is now
predicted by the corresponding latent state distribution Z times the emission matrix
(E). The emission matrix has the same number of rows, yet the number of columns
is equal the number of observed states. The latent state distribution is supposed to
follow a Markov chain and is predicted by the latent initial state distribution times the
transition matrix, which now has as many rows and columns as latent states exist.

Zt = Zt=0 ∗Mt (8.3)

St = Zt ∗ E

t : time interval

Zt : hidden state distribution at time interval t

St : observed state distribution at time interval t

M : transition matrix

E : emission matrix

118

8. Modelling Dyadic Sequences Using Markov Models

In the following, three HMMs are shown a latent hazard model featuring absorbing
states, a common fate like model with implicit interactions, and a pure common fate
model.

8.3.1. Latent Hazard Model (Restricted Hidden Markov Model)

The Markov chain can be restricted to model theoretical assumptions. For example,
one may assume that two latent states exist: one that corresponds to a state on which
couples tries to solve the stress (stress) and a second one of having successfully coped
with it (solved stress. A plausible assumption would be that couples who left a state of
stress will not enter it again. In terms of Markov modeling, such a state, which cannot
be left once entered, is called an absorbing state. That restriction lets the latent process
become similar to a hazard for time-to-event analysis (see Chapter 5.1.2). Another
assumption of time-to-event analysis is that at t = 0, all observational units are alive,
which translate into Markov models that they are not in the absorbing state. Thus the
initial state probability for the absorbing state is set to zero. Applying those restrictions
creates a model that assumes a latent hazard and treats the observed sequences only as
indicators for an underlying process. The only difference is that the hazard is constant
in this model, whereas it can vary freely in a Cox-regression.

Table 8.6.: Hidden Markov Model for Modelling Latent Hazard

Initial State State 1 State 2
Probabilities 1.00 .00

Transitions →State 1 →State 2

State1→ .97 .03
State2→ .00 1.00

Emissions None SC DC SC+DC

State1→ .07 .09 .07 .77
State2→ .65 .09 .12 .14

Notes:None: no stress communication and no dyadic coping; SC: only stress commu-
nication, but no dyadic coping; DC: only dyadic coping, but not stress communica-
tion; SC+DC: stress communication and dyadic coping; X→ transition from X; →X
transition to X; State2 was modeled as an absorbing state.

The results for the latent states model are presented in Table 8.6. The emissions
show that state 1 can be interpreted as being in stress because it goes with high proba-

119

8. Modelling Dyadic Sequences Using Markov Models

bilities of showing stress-related behavior: p(SC+DC|State1 = .77; p(DC|State1) = .09;
p(SC|State1) = .07. Whereas state 2 can be described as a state of solved or reduced
stress because it goes with a relatively high probability of showing no stress-related
behavior (p(none|State2) = .66). The initial state probabilities show that all couples
are initially in a state of stress and the transitions matrix shows that the probabilities
for leaving this state (solving the stress) is .03. Returning to a state of being in stress
is not possible due to the model restriction. So over time, more and more couples will
cope with the stress and enter state 2.

The latent state assumes that stress is a latent variable that will end at some point.
There is a certain probability for each time interval that the state of stress will end,
which is the hazard, except that the hazard affects a latent variable. Thus, the hazard
for latent stress is .03 in this particular case. However, this model is limited by the
fact that the hazard is assumed to be constant over time. This may not be a realistic
assumption for all cases, yet it makes the calculation of the survival rate relatively easy:
Survial = 1 ∗ (1− h)t]. The median lifetime is between the 22nd (St=22 = .5117) and
the 23rd interval (St=23 = .4963), which gives an answer to the research question about
duration (see Chapter 4.2). However, this approach addresses the question "What is
the typical duration of being in stress?" rather than "What is the typical duration of
stress communication?" It is worth mentioning that according to this model, stress
communication, or at least behavior that is perceived as such, can occur even after the
state of stress has ended.

Expected frequencies for observed variables can be derived by first calculating the
expected frequency for each hidden state given a certain value for t, and then multiply
it with the emissions, and finally summing the frequencies across the latent states. For
example, the model would estimate that at the end of the observation period t = 48
23% of the sample are still in a state of stress (Survial = 1 ∗ (1− .03)48). Those 23% of
the have a 7% probability for showing no stress related behavior (emission: state 1 →
None). 77% left that state of stress and have a probability of 65% for showing no stress
related behavior (emission: state 2 → None). Thus, 51.66% of couples are expected
to show no SC, DC , or SC+DC at t = 48 (.23 * .07 + .77 * .65 *100%). In fact, 64.06%
of couples showed no stress related behavior at t = 48. Therefore, at least regarding
this category and time interval, the model seems not to fit very well on the observed
data. Another way for assessing the model is by comparing the model with a suited
baseline model, such as a basic Markov model. This approach will be shown in the
following chapter for the unrestricted hidden Markov model.

120

8. Modelling Dyadic Sequences Using Markov Models

The disadvantages of this model are the assumption of a constant hazard, and the
fact that it is only applicable to cases in which a latent process is supposed to end at
some point in time. However, the merit of the model is that it does not need to define
a minimum number of intervals that have to pass after the last shown behavior, which
created a problem in the previous time-to-event analysis: dyads that showed stress
until time interval 47, but not in the last interval, may have stopped there, but they
might also just have taken a brake from communicating stress. Thus, it was unclear
whether and when their stress really stopped (see Chapter 5.2).

8.3.2. Unrestricted HMM (Common Fate Like)

First step for estimating an unrestricted HMM is to determine the number of hidden
states. This can be derived from theoretical assumption or by model comparisons.
The latter can be done by comparing the AIC (Aitkin and Longford, 1986) or the
BIC (Schwarz et al., 1978) between models with different latent structures. The basic
Markov model without any latent states can be seen as a special case of latent Markov
models. If E in Equation 8.3 is an identity matrix, the equation becomes identical with
Equation 8.1. Therefore, the basic Markov model can be used as a baseline model.

For the couples-cope, the MM had an AIC of 5048 and a BIC of 5138, whereas the
model with two latent states had and AIC of 5694 and a BIC of 5742. The model with
three latent states had an AIC of 5035 and a BIC of 5137. Finally, the model with four
latent states did not fit better than the model with three latent states (AIC = 5062; BIC
= 5207).

The results for the model with three latent states is presented in Table 8.7 and sup-
plemented by Figure 8.4. Emissions can be displayed in a transition plot by replacing
each state by a subplot, Figure 8.4 shows a transition plot where the states are replaced
by pie charts, showing the state dependent distribution for the hidden Markov model.

State 2 can be identified as a state of combined stress reactions, and it is also
the most prominent state in the beginning. Furthermore, it is nearly impossible
(P(State 2→ State 3) = 0.00018) to transition directly from state 2 to state 3, which
shows very low emissions for stress-related behavior. State 1 seems to be the con-
nection between those two. It is relatively accessible by the other two states and it
is relatively likely to transition from State 1 to State 3 (P(State 1 → State 3) = 0.16).
Therefore state 1 seems the be the in-between state, which is reflected by its emissions:
it is the only state in which showing only SC or DC is relatively likely.

121

8. Modelling Dyadic Sequences Using Markov Models

Figure 8.4.: Transition plot for the three states hidden Markov model created with
the seqHMM (Helske and Helske, 2016) package. Pie charts show the
emissions as the distribution of observed states for a hidden state, whereas
arrows indicate transition probabilities. Thicker arrows indicate a stronger
transition. Circled arrows (stability) are omitted to avoid crowding.

122

8. Modelling Dyadic Sequences Using Markov Models

One interpretation is that state 2 is a state of highly frequent SC and DC interactions.
Therefore, both appear often in the same time interval. Over time, the interaction
might slow down a bit (state 1 is entered). Therefore, SC and DC are still shown
together in .42 of the time intervals, yet intervals with only SC or DC are more often
observed. Finally, the stress is solved completely (state 3 is entered). Relapsing one
stage (from 3 to 1 or from 1 to 2) of the stress solving process is always possible (P(State
3→ State 1) = .081; P(State 1→ State 2) = .079), however falling back two stages (from
3 to 2) is very unlikely (P(State 3→ State 1) = .028).

Overall, the results are similar to the latent hazard Markov model. Both show that
most couples start in a state associated with stress-related behavior, which is left over
time. The difference is that the latent hazard was restricted that way by theoretical
assumptions, yet the unrestricted model shows a similar structure. Further differences
are that an in-between state seems to exist and low probabilities exist for regressing
into a previous state.

Table 8.7.: Hidden Markov Model With 3 Latent States

Initial State State 1 State 2 State 3
Probabilities 0 .90 .10

Transitions →State 1 →State 2 → State 3

State 1→ .79 .05 .16
State 2→ .08 .92 .00
State 3→ .08 .03 .89

Emissions None SC DC SC+DC

State 1→ .07 .29 .22 .42
State 2→ .02 .03 .04 .92
State 3→ .93 .01 .05 .00

Notes:None: no stress communication and no dyadic coping; SC: only stress commu-
nication, but no dyadic coping; DC: only dyadic coping, but not stress communica-
tion; SC+DC: stress communication and dyadic coping; X→ transition from X; →X
transition to X; State2 was modeled as an absorbing state.

8.3.3. Multi-Channel Approach (Pure Common Fate)

In the previous model, SC and DC still interact or at least correlate on an implicit
level with each over. For example, in state 1, SC had a probability .29 for occurring

123

8. Modelling Dyadic Sequences Using Markov Models

without DC, yet the probability was .42 when DC was also present a time t. The multi-
channel approach allows treating both sequences as independent indicators. That
means probabilities for showing SC or DC depend only on the latent state, but not on
the other sequence.

The results for a model with three latent states that treat both sequences as indepen-
dent indicators is presented in Table 8.8. It seems very similar to the previous model.
However, the state’s assignment seems to have changed (the assignment is done more
or less randomly in the estimation process): State 1 is now the most dominant at the
beginning and has the highest probabilities of showing SC (.96) and DC (.95). State 2
is now the in-between state, with lower probabilities of showing SC (.62) and DC(.69).
State 3 is a state with high probabilities of showing no SC (.95) and no DC (.99). How-
ever, the model’s AIC is 5102, and the BIC is 5174. Therefore, it does not fit better than
a model that allows implicit interactions. According to the AIC, it does not even fit
better than a model without latent process at all. Hence, the three latent states model
with implicit interactions is the most preferable.

One merit of the multi-channel approach is that it is more parsimonious than a
normal hidden Markov model. Each row of the latter’s emission matrix must sum up
to 1. Therefore, three time three probabilities could vary freely for the last example’s
emissions matrix. Whereas for the multi-channel model the emissions for SC and DC
must each some up to 1. Hence, only two probabilities can vary freely per row of the
emission matrix, making it two times three parameters.

Another advantage arises when missings are present on paired sequences. Combin-
ing sequences into one will result in missings whenever there is one missing in either
sequence. For example, the sequences "0-0-0-NA" and "NA-0-NA-NA" will result in
the combined sequence "NA-0-NA-NA". Thus, information for the first two states
in the first sequence exist, yet they are not used. Therefore, handling the sequences
as independent allows one to use the information of both sequences more efficiently
because sequences do not have to be combined into one sequence anymore.

8.3.4. Using the same Number of Latent States and Indicators

If the number of latent states and observed states are equal, and if all latent states
can be matched with one observed state, the emissions are often interpreted as a
measurement error (Bartolucci et al., 2012). The idea is that observation (manifest
states) might simply misinterpret the true (latent) states, which causes erroneous data.
However, applying the hidden Markov models with four states to both datasets did not

124

8. Modelling Dyadic Sequences Using Markov Models

Table 8.8.: Two-Channel HMM With 3 Latent States

Initial State State 1 State 2 State 3
Probabilities 1.00 .00 .00

Transitions →State 1 →State 2 → State 3

State 1→ .91 .08 .01
State 2→ .04 .82 .13
State 3→ .03 .08 .90

Emissions SC=1 SC=0 DC=1 DC=0

State 1→ .96 .04 .95 .05
State 2→ .62 .38 .69 .31
State 3→ .05 .95 .01 .99

Notes:None: no stress communication and no dyadic coping; SC = 1: stress com-
munication, SC = 0: no stress communication; DC = 1: dyadic coping, DC = 0: no
dyadic coping; X→ transition from X; →X transition to X; State2 was modeled as an
absorbing state.

reveal such a relationship. Yet this type of application might be useful for sequences
in which each recorded state serves clearly as surrogate for one not directly observable
state.

8.4. Latent Groups: Mixture Markov Models

As described in the introduction of this chapter, mixture Markov models (MMMs)
can be used to identify latent classes, and thereby answer the research question about
unobserved heterogeneity (see Chapter 4.5). The question "can dyads be grouped ac-
cording to their typical pattern of displaying SC and DC behaviors?" can be translated
into MMMs by asking "can dyads be grouped according to their transition matrix?"

Equation 8.4 displays the model. Both the initial state distribution and the transition
matrix depend on the latent class; thereby each latent class is defined by its Markov
chain. Thus, the observed state distribution for the whole sample is the weighted sum
of all class dependent state distributions. A feature of this model is that membership
to an latent class is probabilistic. Therefore, each sequence has one probability for
each class that expresses how likely it is that the sequence belongs to that particular
class. These so-called posterior probabilities can be used for assessing uncertainty. For

125

8. Modelling Dyadic Sequences Using Markov Models

example, a sequence might belong with a probability of .51 to latent class one and is
therefore assigned to that class. However, it is uncertain whether this assignment is
correct. Whereas, a posterior probability of .98 suggest that the amount of uncertainty
is very small.

St|cj = (St=0|cj) ∗ (M|cj)
t (8.4)

St =
J

∑
j=1

[
(St|cj) ∗ P(cj)

]
cj : the latent class j

J : number of latent classes

P(cj) : probability for belonging to the latent class j

t : time interval

St : observed state distribution at time interval t

M : transition matrix

t : time interval

As before, model comparisons can be used to decide on the number of latent classes.
AIC Aitkin and Longford (1986) and BIC (Schwarz et al., 1978) were used for model
comparison. The basic Markov model (MM; AIC=5048; BIC=5138) can be used again
as the baseline model because it is a special case of a mixture Markov model with
only one latent class. Fitting a model with more than three latent classes resulted
in convergence problems. Therefore, only models with one class (the basic Markov
model), two, or three classes were fitted. A model with two latent classes fit better
than the MM, according to the AIC (5018), but not to the BIC (5205). Adding a third
class improved the AIC further (5006), but the BIC got even worse (5289).

BIC typically weights parsimony higher than the AIC. The latter has a penalty of
2 for every parameter estimated, whereas the BIC uses the natural logrithm of the
sample size increases as penalty. Thus, as long as the sample size is bigger than 9, the
BIC weights parsimony much higher than the AIC. According to Tofighi and Enders
(2008), the BIC is consistent, meaning that it tends to select the correct model more
frequently as sample size increases, whereas the AIC does not. Deciding in favor
of model simplicity and estimator consistency results in a model without any latent

126

8. Modelling Dyadic Sequences Using Markov Models

classes. However, for the sake of demonstration a model with three classes is estimated
and presented in Table 8.9. The dependent state distributions are shown in Figure 8.5.

Class 1 is the biggest one, an estimated 54% of dyads belong to that class. Only 72%
of this class start in a state of showing SC+DC. The most stable are SC+DC and show
no stress-related behavior. This class shows the highest transition rates toward a state
of showing no stress-related behavior. A Figure 8.5 shows, couples within this class
solve stress relatively fast.

An estimated 26% of the dyads belong to the second class, which is quite the oppo-
site of the first one. Nearly all dyads start in a state of DC+SC. SC+DC is less stable
than in the previous class, meaning couples leave this state more quickly. However,
probabilities for returning to this state are much higher than in all other classes. Also,
the state of showing no stress-related behavior is not very stable (.46) and on top of
that, the transition rates for entering this state are also the lowest of all classes. How-
ever, stabilities for states of showing either SC or DC are higher than in the other
groups. That might indicate that those couples alternate between stress communica-
tion and dyadic coping. Figure 8.5 shows that most couples in this class do not leave
the stress-related states within the observations duration.

The rest of the dyads, 21%, belong to the third class, which has a low stability for DC
and low transition rate toward DC, yet relatively high rates for entering and sustaining
a state of showing only SC. Therefore, DC is rarely shown alone. However, transition
rates toward a state without stress-related behavior are the second highest, and the
stability for this state is also somewhere in the middle. Figure 8.5 shows that this
group seems to solve the stress faster than the second group but not as fast as the first
one.

127

8. Modelling Dyadic Sequences Using Markov Models

Table 8.9.: Mixture Markov Model with 3 Latent Classes (MMM)

Class Class 1 Class 2 Class 3
Probabilities .54 .26 .21

Initial State
Probabilities None SC DC SC+DC

Class 1 .12 .00 .17 .72
Class 2 .00 .00 .00 .94
Class 3 .15 .00 .47 .38

Transitions: Class 1 → None → SC → DC → SC+DC

None→ .86 .03 .04 .06
SC→ .28 .22 .10 .40
DC→ .43 .06 .33 .18
SC+DC→ .04 .07 .05 .84

Transitions: Class 2 → None → SC → DC → SC+DC

None→ .46 .03 .20 .30
SC→ .04 .41 .03 .52
DC→ .22 .02 .40 .36
SC+DC→ .05 .08 .08 .79

Transitions: Class 3 → None → SC → DC → SC+DC

None→ .64 .17 .06 .13
SC→ .21 .39 .10 .31
DC→ .25 .09 .11 .55
SC+DC→ .08 .10 .08 .74

Notes:None: no stress communication and no dyadic coping; SC=1: stress communica-
tion, SC=0: no stress communication; DC=1: dyadic coping, DC=0: no dyadic coping; X→
transition from X;→X transition to X

128

8. Modelling Dyadic Sequences Using Markov Models

a) b)

c)

Figure 8.5.: State Distribution for Three Latent Classes (here labeled Clusters); SC: only
stress communication is shown; DC: only dyadic coping is shown; SC+DC
both are shown; none: none are shown.

8.5. Mixture Hidden Markov Models

As described in the introduction of this chapter, mixture Markov model (MMMs) and
hidden Markov models (HMMs) can be combined into mixture hidden Markov models
(see Equation 8.5). These models assume that the observed state distribution (St)
depends on latent states (zt) that follow a Markov chain (Zt=0 ∗ Mt). Latent states

129

8. Modelling Dyadic Sequences Using Markov Models

and observed states are linked again with an emission matrix (E). However, initial
distribution, transition rates, and emission matrix depend on the latent class (c).

Therefore, MHMMs have a lot of free parameters to estimate. For each initial state
distribution (St=0), the number of probabilities that can vary freely equals #Z − 1,
where #Z is the number of latent states. For each transition matrix #Z ∗ (#Z + 1)/2
parameters can vary freely. Finally, for each emission matrix the number is Z ∗ (#S−
1), where #S is the number of observed states. The latter might be reduced if the
multi-channel approach is used (see Chapter 8.3.3). All this applies to the hidden
Markov model as well; however, the mixture model has as many initial distributions,
transitions, and emission matrices as there are classes. Therefore, mixture Markov
models can become very difficult to estimate, especially with small sample sizes.

Combining the previous two models into one did not work with the couples-cope
data at all, yet a much smaller model with only two latent states and two latent classes
was possible. Fit indices were bad (AIC = 5224, BIC = 5339). Therefore, the model is
only presented for the sake of demonstration, and interpretation should be made with
care.

Both groups show balanced transition probabilities. That is, leaving or switching
the states has the same probability for both latent states. The chance of transitioning
from state one to two is slightly bigger in class one. Thus, over time, the proportion of
couples with that state should increase. That is not very intuitive because the emissions
show that state one is associated with stress-related behavior, whereas the second state
is associated with showing no SC or DC. Hence, couples in the first class should show
combined states of SC and DC more often in the end. However, such couples could
not be identified via visual inspection (see Figure 4.7).

The second class shows transition probabilities that match the expectations better:
the chance of transitioning from state two to one is slightly bigger in class one. More-
over, transition probabilities are lower than in class 1 meaning that couples will stay
longer in one of the two latent states and transition only slowly. The emissions are also
different. State one is still associated with stress-related behavior, yet the second one
is different. Showing no stress-related behavior at all is most probable in this state,
too, yet observing any other behavior is still more likely. Inspection the individual
sequence plot (see Figure 4.7), reveals that such sequences exist: couples show initially
SC+DC and at some time interval they start to transition between all for states often.

Overall, the mixture hidden Markov model fits bad. The second class seems to
describe some of the data well, but the majority of the data (67%) is supposed to be in
class 1, which does not describe the data well. This was already indicated by the initial

130

8. Modelling Dyadic Sequences Using Markov Models

model comparisons. Thus, the mixture hidden Markov model should not be used for
the couples-cope data.

St|cj = (Zt=0|cj) ∗ (M|cj)
t ∗ (E|cj) (8.5)

St =
J

∑
j=1

[
(St|cj) ∗ P(cj)

]
cj : the latent class j

J : number of latent states

P(cj) : probability for belonging to the latent class j

t : time interval

St : observed state distribution at time interval t

Zt : hidden state distribution at time interval t

M : transition matrix

E : emission matrix

t : time interval

8.6. Which Markov Model is the Best?

When deciding for the best model, three aspects should be considered: the research
question, the interpretability, and the model fit.

Overall, the results of the MHMM are difficult to interpret, and it did not fit well
with the data. Therefore, it should not be used for the example data. However, it might
be well suited for other research topics and datasets. For the couples-cope data, the
best fitting model regarding the BIC was the HMM, with three latent states. Moreover,
the results indicate that stress coping is a process with at least three consecutive states,
each of which can easily be interpreted by the emissions. One shows a state of stress
that goes with a high likelihood of showing stress-related behavior; one state is quite
the opposite and therefore can be interpreted as solved stress; and finally, another state
exists that is a in-between state in which stress-related behavior is less likely than in
a state of stress, but more likely than in a state of solved stress. Interestingly, it is
quite possible to relapse into a previous stage of stress solving, yet is very unlikely

131

8. Modelling Dyadic Sequences Using Markov Models

Table 8.10.: Mixture Hidden Markov Model

Class 1 (P=.67)
State 1 State 2

Initial States .89 .11

Transitions →State 1 →State 2

State1→ .939 .071
State2→ .074 .926

Emissions None SC DC SC+DC

State1→ .03 .11 .10 .78
State2→ .87 .03 .10 .01

Class 2 (P=.33)
State 1 State 2

Initial States 1.00 .00

Transitions →State 1 →State 2

State1→ .956 .044
State2→ .040 .960

Emissions None SC DC SC+DC

State1→ .01 .04 .03 .91
State2→ .39 .28 .15 .17

Notes:None: no stress communication and no dyadic coping; SC: only stress commu-
nication, but no dyadic coping; DC: only dyadic coping, but not stress communica-
tion; SC+DC: stress communication and dyadic coping; X→ transition from X; →X
transition to X; State2 was modeled as an absorbing state; transitions are displayed
with three digits because two digits would conceal differences.

132

8. Modelling Dyadic Sequences Using Markov Models

to fall back two stages at once. The model is interpretable and fits also well with the
data. However, even this model will not be a good model if it does not answer the
researcher’s questions. For example, if one wants to assumes a latent process with only
two states and wants to know when one of them ends completely, the restricted HMM
might be better suited. Moreover, if different types of couples should be identified a
mixture Markov model should be used.

Therefore, the research question should be considered as the most important aspect
for initial model selection. Interpretability can often be improved by using visualiza-
tions such as those presented in Chapter 4.1. Moreover, comparing model results with
those visualizations also shows whether the model makes "sense" or not. Comparing
models using the model fit is a good way for deciding on the number of latent states
or latent classes. However, it is always recommended to test always against a reason-
able baseline model. In this monograph a basic Markov model was used because it
assumes no latent structure at all, while allowing the state distribution to change over
time.

8.7. Practical Issues and Required Sample Size

Hidden Markov models are designed for sequences with many time intervals, yet the
number of observational units can be very small. Even single case analysis (sample
size of N = 1) is possible with hidden Markov models (for implementation, see Visser
et al., 2010). Alternatively, Bartolucci et al. (2012) provided implementations for la-
tent Markov models, which can be applied to short sequences (typically three to five
time intervals) but need big sample sizes. The sample size of example studies varies
between N = 237 (Vermunt and Hagenaars, 2004) and N = 11, 400 (Bartolucci et al.,
2012).

Because of that, simulations studies were conducted to give recommendations on the
basic Markov APIM, the latent hazard, the hidden Markov, and the mixture Markov
model. The simulation studies can be found in Chapters 10.8 to 10.5, yet the most
important results are discussed here.

Simulating the optimal sample size and sequence length for the APIM is difficult
regarding the Type-I error or statistical power because Markov models usually do
not provide p-values at all. However as stated above, Chapter 8.5 provides approxi-
mated p-values via bootstrapping. Thus, the same simulations were conducted for the
Markov model APIM as for the multilevel model. The transition probabilities were
translated into logits so that the results can be compared. P-values were obtained via

133

8. Modelling Dyadic Sequences Using Markov Models

non-parametric bootstrapping with 1000 bootstrap samples. In practice, more boot-
strap samples should be used (10.000 to 100.000), yet the computation time for the
simulation increases exponentially the more bootstrap samples were used. Therefore,
the precision of estimates might be slightly higher in a non-simulation application.

For the simulation, 1000 samples were drawn per simulation condition. First of
all, no bias for the Type-I error was detected. However, effect sizes were slightly
underestimated when samples sizes were small, or sequences were relatively short
(N = 10; L = 10). Also, stronger effect sizes were less affected by the bias than small
effect sizes. Regarding the power, the basic Markov APIM performs similarly as the
multilevel APIM. For small effects (β = 0.2; odds ratio of 1.22) and medium effects
(β = 0.4; odds ratio of 1.49), a good power (above .80) can be achieved even with
small sample sizes (N = 10) if the sequences are very long (L > 100). Vice versa short
sequences (L = 10) achieve the same power if sample sizes are big (N > 100). The same
goes for medium sized samples (N = 50) with sequences of L = 50. If effects are really
big (β = 0.8; odds ratio of 2.23) even small sample sizes (N = 10) with small sequences
(L = 10) will achieve a very high power (> .95).

For the restricted hidden Markov model, (latent hazard) 1000 simulation samples
were used per condition. Only the bias of estimates and the simulated standard errors
are provided in Chapter 10.6 because rather than testing whether a hazard or an emis-
sion is significant from zero it is more important to know how precise the estimation
is. The recommendation on sample size and sequence length were based on the ratio-
nale that the bias for both hazard and mean absolute bias across the emissions should
be less than .01. Based on that, a sample size of N = 15 requires a length of at least
40 time intervals; a sample size of N = 20 requires 25 time intervals per sequence. If
the sample size is at least N = 30, a length of L = 20 is sufficient, and for N > 45
even a length of L = 15 gives good results. Standard error was also below .01 for these
conditions.

However, these recommendations are only accurate for high emissions, meaning
that good indicators must be chosen. If only weak indicators are used, the sample
size or the sequence length should be increased. Also, the lowest hazard that was
simulated was .01. A lower value for the true hazard might need longer sequences
because it takes longer for observational units for transitioning into the absorbing
state. However, if a higher hazard is expected, shorter sequences might be sufficient.
Because of the above, these recommendations should only be treated as an orientation.

For the hidden Markov 500 simulation samples were used per condition. For deter-
mining the number of latent states in an unrestricted hidden Markov model, the AIC

134

8. Modelling Dyadic Sequences Using Markov Models

can be recommended as a fit index if sample sizes small (N = 10) and sequences are
relatively long (L = 50). The BIC, on the other hand, performs well if sample sizes are
high and sequences are long enough: The correct classification rate got near 100% if
the sample size was at least 30 and sequence length was 50, or vice versa, if the sample
size was 50 and sequence length was 30. As a minimum recommendation should be
N >= 30 and L >= 30, which gives 91% correct classification rate if three or less
latent states are expected. This finding is limited by the fact that very distinct latent
states were simulated. That is, each latent state had one or two exclusively correspond-
ing indicators with relatively high emissions (the sum of the corresponding emissions
were .90). These indicators had low emissions for the other latent states (below .10).
Therefore, latent states were easy to distinguish, which was necessary for estimating
the bias of transition probabilities. However, it also limits the recommended sample
sizes to cases in which the good and unambiguous indicators are used.

The simulation results are not very clear for the estimates of the unrestricted hidden
Markov model. If only two latent states exist, bias and SE for transition rates and
emissions are below .01 for N > 10 and L > 10. However, for the model with three
latent states showed a heavy bias, even with N = 100; L = 100. However, bias and
SE converged at N > 50; L > 30, and hence, precision will not improve with bigger
sample sizes. The bias was towards less extreme probabilities. Therefore, it was still
possible to interpret latent states by their emissions. Hence, if the exact probabilities
are not the focus of the research, the bias is not problematic. One finding was that
different optimizers had a huge impact on the model performance. Therefore, it might
be possible avoiding this bias with better optimiziers in the future.

For the mixture Markov mode, it was simulated whether AIC or BIC finds the cor-
rect number of latent classes and if it depends on the sample size and sequence length.
Additionally, the inter-rater agreement between true class membership and most prob-
able membership was used as a measure of goodness of classification. 500 simulation
samples were used per condition. The precision of transition rates was evaluated via
mean absolute bias across all transition matrices and mean SE. If only one class or two
classes exist, correct model selection works very well with small samples and short
sequences. AIC had above 90% correct model selections for N > 10 with L > 10, BIC
needed at least N > 30 with L > 10 or N = 10 with L > 30. However, with bigger
sample sizes and longer sequences, BIC performed better and showed more consistent
results across the simulated conditions. If three latent classes exist, worked well for be-
tween N >= 30 and N <= 100 with sequence length between L >= 30 and L <= 30
and could achieve correct classification rates close to or above 90%. BIC could reach

135

8. Modelling Dyadic Sequences Using Markov Models

80% correct selection rate for N = 50 with L = 50 and N = 100 with L = 30 or L = 50.
Therefore, AIC seemed to work overall better.

The correct classification of sequences worked well with N = 10 and L = 10 when
only two latent classes existed (Cohen’s κ =.98), if three latent classes exist N >= 30
with L >= 30 is recommended (Cohen’s κ showed >.90 in most of those conditions)
or N >= 10 with L >= 50 is recommended (Cohen’s κ showed >.90 in most of those
conditions).

Bias was good for N >= 30 with L = 10 or L >= 30 with N = 10 if only one or
two classes existed. A Markov model with three latent classes did not perform well
regarding the bias of transition probabilities. It was also revealed during this simu-
lation that the Markov model has problems handling absorbing states and transition
probabilities that are close to 1 or 0. Transition rates are biased toward less extreme
values. The bias is stronger the closer the true transition probabilities are to 1 or 0.
The mean absolute bias across all transition probabilities was between .33 (N = 10 and
L = 10) and .21 (N = 100 and L = 100). However, excluding bias of the absorbing
states from the calculation showed a weaker than before still noticeable (.08 for N = 10
with L = 10; .03 N = 100 with L = 100). However, a cautious recommendation can
be given, but only by making a very strong assumption. The bias of .03 for N = 100
with L = 100 might be caused by the model adjusting the remaining transition rates
to compensate for the bias of the transition rates from the absorbing state. An in-
dication that this might be true is the fact that all conditions high sample size and
long sequences showed the same mean absolute bias of .03. Hence, sample sizes and
sequence lengths that resulted in a bias of .03 should be sufficient when no extreme
transition probabilities exist. Applying this logic shows that sequences should have a
length of at least 50. N = 10 with L = 30 and N = 30 with L = 10 showed a value of
.04 and might also be sufficient.

Overall, all models performed well as long as the latent structure has only two states
or classes. Even small sample size of N = 10 performed well as long as sequences
were L >= 30, and vice versa, short sequences such as L = 10 worked overall well
if N was >= 30. For the model with three latent classes or states, model selection
seems still to work, but estimates for transition matrices and emissions become quite
biased. However, as long as the point estimates are only seen as tendencies for the
interpretation, the bias should not result in wrong interpretations. For example, the
true indicator with the highest emissions for a latent state has a very probability for
showing a high emission in the results of the fitted model. Another finding was
that optimizers have a very high impact on how well the models performed. A lot

136

8. Modelling Dyadic Sequences Using Markov Models

of R packages use only an EM-algorithm for fitting Markov models on sequences.
However, the EM-algorithm alone performed very bad (except for the basic Markov
model). Therefore, a researcher should choose packages that make use of advanced
optimizers such as the seqHMM package ((Helske and Helske, 2016)).

137

9. A Cluster Analytical Approach:

OM-Distances

Cluster analyses have been around in psychological research for a relatively long time,
formerly known under the term profile similarity in the 1950’s (see Cronbach and
Gleser, 1953), they became prominent in the behavioral sciences in the 1970’s (see
Cooley and Lohnes, 1971).

Cluster analysis is not a single modeling technique rather than a vast collection of
classification algorithms. All these algorithms have in common that they divide data
into homogeneous subsets. The most common use in psychological research is form-
ing homogeneous groups of persons regarding a set of variables (e.g., dividing persons
into progressive, conservative, or liberal thinking based on several items about their
political opinions). However, cluster analysis can be used on many other targets, such
as items, ratings, or behavior patterns, among other things. Outside of the psycholog-
ical context, cluster analysis is often used for finding groups of similar customers or
products.

Most clustering algorithms follow a three-step procedure: in a first step, a distance
matrix is created that describes the (dis-)similarity of the observational units; in a
second step, the algorithm creates one or more suggestion of how the data might be
split into homogeneous subgroups; if more than one suggestion is generated, a third
step is needed for choosing the best cluster solution.

Steps two and three are independent of the data-type, which is used. However,
step one differs by what type of data is used and by what exactly is considered
(dis-)similarity in a certain application case. As a very basic-example for interval-
scaled data, consider the following case: German cities should be clustered by their
location. To keep it simple, only four cities are considered with the following coor-
dinates: Essen (51◦27′N 7◦0′E), Bochum (51◦28′N 07◦12′E), Berlin (52◦31′N 13◦23′E),
and Potsdam (52◦24′N 13◦4′E). Calculating the distance between all four cities results
in the following: Berlin-Potsdam (27.74 km), Berlin-Essen (453.95 km), Berlin-Bochum

138

9. A Cluster Analytical Approach: OM-Distances

(439.37 km), Essen-Bochum (14.69 km), Potsdam-Bochum (413.51 km), and Potsdam-
Essen (428.13). The corresponding distance matrix is shown in Table 9.1.

Summarizing the results, Essen and Bochum seem to be in close proximity to each
other and therefore might be in the same region (cluster). However, both are distant
from Berlin and Potsdam, and thus might not be in the same cluster as they are. In-
specting Berlin and Potsdam shows that they are close to each other so they might
belong together, and therefore form a second cluster. This intuition works in this
example because only two variables (longitude and latitude) were used, so that the
problem was two-dimensional. However, if more variables are used, as is often done
in psychological research, the problems become high dimensional. For example, clus-
tering persons regarding their scores on 9 items from a questionnaire, results in a 9
dimensional problem. Thus, it cannot be solved by human intuition anymore; instead,
an algorithm is used that imitates this intuition for high dimensional data.

If sequence data is used, another problem occurs: Euclidean distance is only mean-
ingful for metric or interval data. Moreover, it is not even clear how to calculate
Euclidean distance for sequence data. What is the Euclidean distance between A-B-
B-C and B-C-A-A? Distance measure for categorical data exist, yet they only check
whether categories are equal or not. This is not useful because, for a sequence with
length 48 and 4 states, such as in the couples-cope data, the number of possible levels
is 5,308,416. Therefore, it is very unlikely that any sequences will match. Moreover,
treating each time interval as a separate variable might solve that problem, but still
result in a distance measure that is not meaningful. Therefore, a special distance mea-
sure must be used.

Table 9.1.: Distances Between German Cities

Essen Bochum Berlin Potsdam

Essen 0.00 14.69 453.95 428.13
Bochum 14.69 0.00 439.37 413.51
Berlin 453.95 439.37 0.00 27.74
Potsdam 428.13 413.51 27.74 0.00

Notes: Euclidean distance in km (kilometer).

139

9. A Cluster Analytical Approach: OM-Distances

9.1. OM-Distances for Sequence Data

Abbott and Tsay (2000) propagated the use of Optimal Matching Distances (OM-
Distances) as a distance measure for sequence data. The metric of (dis-)similarity
between sequences is defined by Levenshtein-distances (Levenshtein, 1966): two se-
quences are similar if they show essentially the same pattern of behavior. They differ
in the extent to which some elements of one sequence have to be changed in order to
perfectly match the other sequence. This is called the cost.

Consider a first case, where the sequence of two couples are compared. Couple 1
perfectly fits the sequence of couple 2, but with a shift of one interval (that is, the
couples show exactly the same behavioral pattern, yet couple 1 is one time interval
behind). For example: the first sequence is ”0-1-1-1” and second sequence is “1-1-1”.
In this case, the two sequences can be made identical by removing the first element in
the first sequence and shifting the remainder of the sequence to the left (deletion), or
by copying the first element of couple 1 and paste it at the beginning of the second
sequence (insertion). Therefore, the minimal cost for transforming both sequences into
each other is one operation.

Consider a second case with two totally identical sequences, which only differ at
the element in the fourth interval. For example, the first sequence is “0-0-0-1” and
the second is “0-0-0-0”. The two sequences can be made identical by substituting the
fourth interval in the first sequence with 0, or by substituting the fourth interval in the
second sequence with 1. Again only one operation is needed. However, substitution
is weighted differently than insertion or deletion, and the cost for this transformation
would be 1 times a weight (weighting).

The weighting depends on the two elements that should be substituted and repre-
sents the dissimilarity between these two. A higher weighting stands for more dis-
similarity. For exemplification, the previous example is extended by a third sequence:
“0-0-0-3”. Once again, it would take only one operation to transform it into one of the
other two.

However, the similarity between these three sequences may still differ, because an
entry of 3 may be very dissimilar to 1, yet similar to 0. For example, 0 might stand for
a behavior in which both partners interact non-verbally in positive way, 1 stands for a
behavior in which both partners interact verbally in a negative way, and 3 might refer
to a behavior in which interact verbally in a positive way. Thus, 0 and 3 show positive
behavior and for that are considered more similar toward each other than 3 and 1.

140

9. A Cluster Analytical Approach: OM-Distances

This could be expressed by differently weighting a substitution of 3 with 1, for ex-
ample, by 1.5. Thus, the cost for obtaining the first sequence would be 1.5 (1 operation
times 1.5). Whereas the weighting for substituting 3 by 0 might be 0.5, resulting in
a cost of 1*0.5 for obtaining the second sequence. The boundaries are 0 (both entry
are completely exchangeable) and 2 (they are completely different; deleting one of the
entries for a cost of 1 and inserting the other entry for a cost of 1 would result in the
same cost).

The specific weighting is often derived from theoretical assumptions. However,
the weighting can also be derived by applying the “TRATE”-formula of Gabadinho
et al. (2009), seen in Equation 9.1. It exploits the fact that the sequences represent
longitudinal data, and it assumes that states are more similar the more often they
follow each other promptly. This is done by subtracting the transition rates of two
entries/states from 2: transition rates are the probability that one state will be observed
at time t+1 given that the other state has been observed at time t. Every pair of
entries/states has two transition probabilities, for example, A can follow B, or B can
follow A. The “TRATE”-formula’s boundaries are zero and two. Zero if A is always
followed by B and vice versa, and two if A is never followed by B and vice versa. Two
is the natural upper bound because circumventing one substitution by deleting one
entry and inserting another would also have a combined cost of two.

Cost f or i 6= j : 2− p(i|j)− p(j|i) (9.1)

f or i = j : 0

i = state observed at time interval t

j = state observed at t + 1

Table 8.3 shows the transitions-matrix from which the substitution-cost-matrix is
computed. The same technique as in Chapter 8.2 for combining the sequences of
both dyads is used here. Cells display the probability that the state depicted in the
row is directly followed by the state in the column. The main diagonal can be inter-
preted as stability (probability to stay in a certain state). For example, the first cell
shows that a state without SC nor DC is most likely to be followed by the same state

141

9. A Cluster Analytical Approach: OM-Distances

(p(none|none) = .79), indicating that once this state is attained, it will remain rather
stable. The second cell in that row shows that it is very unlikely that a state without
SC nor DC will be followed by a state of only SC (p(SC|none) = .06), or only DC
(p(DC|none) = .06), yet a small but substantial probability of p(SC + DC|none) = .10
exists that SC and DC will be shown simultaneously after a state without both re-
sponses. The forth row shows that the opposite transition, both responses stopping
within the same interval, is even more unlikely (p(none|SC + DC) = .05).

Applying the TRADE-Formula on the states SC+DC and none results in a weighting
of 1.85 (=2-.10-.05) for substituting the states SC+DC and none into each other; that is,
replacing none with SC+DC, or replacing SC+DC with none. The complete weighting
for the sample analysis is stored in the so-called substitution-cost matrix, which is
presented in Table 9.2. Rows represent the entry/state that should be substituted and
the columns represent the entry/state to be replaced with. For example, the first row
shows that substituting a state without SC nor DC (none) with a state of SC is weighted
with 1.75, and substituting it with DC is weighted by 1.62. Yet, substituting it with a
state/entry that shows both responses (SC+DC) at the interval is weighted with 1.85.
Therefore, according the TRADE-formula, a state with only DC is most similar to a
state with no response at all, SC is more dissimilar, and showing both responses at the
same time is the most dissimilar state to no response.

Table 9.2.: Substitution-Cost Matrix for the Couples-Cope Data

→ None → SC → DC → SC+DC

None→ 0.00 1.75 1.62 1.85
SC→ 1.75 0.00 1.87 1.52
DC→ 1.62 1.87 0.00 1.61
SC+DC→ 1.85 1.52 1.61 0.00

Notes: None: no stress communication and no dyadic coping; SC: only stress com-
munication, but no dyadic coping; DC: only dyadic coping, but not stress communi-
cation; SC+DC: stress communication and dyadic coping; X→ transition from X;→X
transition to X.

For every two observation units (couples), the minimum cost is computed for trans-
forming their sequences into each other. The results are stored in a distances matrix
with as many rows and columns as number of observations, and cells representing
the minimal cost between the associated observation units. This dissimilarity matrix
corresponds to other distance measures, such as the Euclidian distance in the previous
German city example, except that it assumes sequence data rather than metric data.

142

9. A Cluster Analytical Approach: OM-Distances

9.2. Algorithm

In a second step, clusters of similar sequences can be identified via clustering algo-
rithms. To date, the two most prominent methods seem to be k-means and agglom-
erative hierarchical clustering, with k-means being far more leading. This observation
is backed up by Google Trends (Google Trends, 2018). An analysis of the last 5 years
showed that only those two methods occurred in the 25 related queries and the mean
interest for the topic "k-mean clustering" was 27%, whereas for "hierarchical cluster-
ing" it was 5% (100% interest was defined in this analysis as the peak interest in the
topic "Cluster Analysis" within the last 5 years).

9.2.1. k-Means Algorithm

What the algorithm does is representing the observational units as objects in a M-
dimensional space, where M is the number of clustering variables. The researcher
specifies a certain number of cluster (K) she or he wants to obtain. After that, in
an initial step, the algorithm creates one seed per cluster. Those seeds are created
randomly, so they represent nothing else than a random location. In a second step,
the euclidean (in some implementations the squared euclidean) distance is calculated
between each seed and each object. And each object is allocated to the seed with the
smallest distance. All objects that are allocated to one seed built one cluster. In a
third step, centroids are calculated for each cluster. Centroids represent a cluster’s
center and replace the initials seeds. In a fourth step, the (squared) euclidean distance
between each object and each centroid is calculated. Each object is then assigned to its
nearest centroid (smallest distance). Thus cluster memberships of objects may change.
In the fifth step, the centroids are updated as the new mean/center based on the
new cluster memberships. After that, step four and five are repeated until objects do
not change their belonging cluster anymore. After that, centroids will represent their
cluster’s center.

The k-means algorithm is illustrated based on the German city example in Figure 9.1.
The German cities are clustered by longitude and latitude, thus the space is two-
dimensional and can be imagined as a map of Germany. Each city is one point on
this map. (A) If K is equal to two, then one would drop two different colored pins,
for example, grey and black, on this map randomly. By accident the black pin will
fall somewhere between Berlin, Potsdam, and Bochum and the grey pin will fall in
the most western part of Germany. (B) Berlin, Potsdam, and Bochum are nearer to
the black pin than to the grey pin. Thus they are allocated to the black cluster. Essen

143

9. A Cluster Analytical Approach: OM-Distances

Figure 9.1.: Illustration of k-means algorithm. Dots represent the location of German
cities Berlin, Potsdam, Bochum, Essen. Triangles in A represent initial
seeds, and in B to D cluster centroids.

is closest to the grey pin. (C) After that, the black pin would be put in the center
between Berlin, Potsdam, and Bochum, whereas the grey pin will be located directly
in Essen. (D) Now the grey pin is still closest to Essen, but it is also now closer to
Bochum, than is the black pin. Thus, Bochum is re-allocated to the grey cluster now.
The black pin is still closer to Berlin and Potsdam than the grey pin. Hence, they still
belong to the black cluster. After that, the black pin is moved into a new center, which
is now between Berlin and Potsdam. The same goes for the grey pin, which is placed
between Essen and Bochum. There are no further re-allocations needed, and a final
cluster solution is found.

144

9. A Cluster Analytical Approach: OM-Distances

This algorithm works efficiently for high dimensional data, and it is fast and well-
proven. However, drawbacks are that different starting points for the centroids (seeds)
can lead to different outcomes (Bradley and Fayyad, 1998). Moreover, the algorithm
generally provides solutions that are only locally optimal for a given dataset (Stein-
ley, 2003). Furthermore, the observational units must be represented directly as a
euclidean vector so that means/centers can actually be calculated. The problem with
that is, that sequence data cannot be represented as an directly euclidean vector. One
might argue that any distance matrix can be transformed into euclidean distances via
multidimensional scaling (MDS). However, applying MDS will result in a loss of infor-
mation (loss of variance). Applying MDS to the example dataset resulted in a loss of
.52% of variance if the distances were projected onto two dimensions. Using a higher
number of dimensions such as 10, still resulted in a loss of 29% of the original vari-
ance. For these reasons, k-means is not considered as a useful clustering algorithm for
sequence data.

9.2.2. Ward's Method (agglomerative hierarchical clustering)

A valid alternative is agglomerative hierarchical clustering. The most prominent ver-
sion is Ward’s method (Ward, 1963). It is commonly used (Willett, 1988), it yields
a unique and exact hierarchy of cluster solutions (i.e., for every specified number of
clusters only one solution exists), and it is comparable to most methods for identify-
ing the number of clusters. Yet the main advantage for sequence data is that it can be
applied directly on a distance matrix, and thus no information about variance is lost.

Ward’s method does not re-allocate objects to clusters; instead it only joins two
clusters with each iteration, producing a new solution with one less cluster than the
previous solution. At every iteration, the sum of errors (Se) is computed and those
two clusters are joined, which increases the SE the least. Depending on the implemen-
tation, the SSe is based on the euclidean (Se) or the squared euclidean distance to the
cluster’s centroid (SSe), yet it can be replaced with any other function. The SE for each
solution can be investigated by the researcher for choosing the best solution.

The Ward’s method is illustrated based on the German cities example in Figure 9.2.
(A) All cities start as their own cluster; thus there is no variance in each cluster and
therefore the SSe becomes zero. (B) Bochum and Essen are closest to each other, so
fusing them into on cluster would increase the Se the least. The Se becomes 14.69,
which is the distance between Essen and Bochum. (C) The next pair that creates the
least increase of SSe is Berlin and Potsdam, which increases the SSe further by 27.74

145

9. A Cluster Analytical Approach: OM-Distances

to 42.43. (D) Finally, only two clusters are left which can be joined into one, which
results in an Se of 613.36.

Figure 9.2.: Illustration of Ward’s method. Dots represent the location of German cities
Berlin, Potsdam, Bochum, and Essen. Dotted circles represent clusters.
Cities without cluster are treated as a cluster with only one object.

9.2.3. How to Choose a Cluster Solution

As described in the previous chapter, Ward’s method generates multiple cluster solu-
tion, from which a Researcher has to choose. The three most common methods will
be presented: The dendrogram, the scree plot and the silhouette test.

Figure 9.3 shows the dendrogram for the German cities example. The graphic must
be read upwards. The objects are shown at the bottom. Each line represents one
cluster with only one object in it. Then objects are merged into one cluster, and the

146

9. A Cluster Analytical Approach: OM-Distances

lines connect. Therefore, all vertical lines show the point at which clusters where
joined. The corresponding point on the y-axis shows the corresponding Se. Big jumps
in the Se, as here from the second to the third join are bad. Therefore, the last solution
before that jump should be used. In this case, after the second joined cluster, so the
two-cluster solution should be used.

Figure 9.3.: Shows the dendrogram for the German cities example. Y-axis represents
the Se; Observations correspond as the following: 1 = Bochum; 2 = Essen;
3 = Berlin; 4 = Potsdam

Figure 9.4 shows the scree plot for the German cities example. This graphic shows
basically less information than the dendrogram. Instead of observations, only the
solutions identified by their number of clusters are plotted on the x-axis. However,
even if the plot provides less information, it is easier to see if there are big jumps
in the Se. The big increase in Se is seen between the one-cluster solution and the
two-cluster solution, and the solution before the increase (right-side) should be used.
Therefore, the two-cluster solution fits our example best. In fact, dendrogram and
scree plot will always indicate the same solution.

The silhouette test by Rousseeuw (1987) is based on the tightness and separation
of clusters. If objects within a cluster are tight, the silhouette coefficient will be
higher than for loose clusters. The coefficient is bound between minus and plus one.
As a rule of thumb, values greater .75 indicate a strong structure, if it is at least greater

147

9. A Cluster Analytical Approach: OM-Distances

Figure 9.4.: Shows the screeplot for the German Cities example. The y-axis represents
the within error sum (Se). The x-axis shows the cluster solution, identified
by its number of clusters.

.50 a medium structure can be assumed, at least greater .25 indicates only a weak struc-
ture and below that no structure should be assumed (Struyf et al., 1997; Rousseeuw
and Kaufman, 1990).

The silhouette coefficient can be calculated for each cluster separately, yet an overall
coefficient for the whole cluster solution is available which is simply the mean of all
silhouette coefficients of all clusters. The calculation for each cluster is the following:
First the average dissimilarity between all objects within a cluster are calculated. Dis-
similarity is operationalized as the euclidean distance, yet any other function can be
used instead. This within-dissimilarity is denoted a(i) by Rousseeuw (1987), where i
is the cluster for which the coefficient should be calculated. After that, the dissimilar-
ity between the cluster to all objects within another cluster are calculated as the mean

148

9. A Cluster Analytical Approach: OM-Distances

distance. This is denoted d(i, C), where C is the other cluster. There are as many val-
ues for d(i, C) as there are other clusters. However, only the d(i, C) with the smallest
values, which is in most cases the nearest cluster, will be used and denoted b(i). If a(i)
is bigger than b(i), the silhouette coefficient b(i)/a(i)− 1; ifb(i) is bigger than a(i), the
silhouette coefficient is 1− a(i)/b(i); if a(i) equals b(i), the silhouette coefficient is 0.
The complete formula is depicted in Equation 9.2.

Overall, the silhouette coefficient for the German city example is .95 for the two-
cluster solution, and .48 for the three-cluster solution. It cannot be computed for cases
in which all objects are in one cluster or in which every object is its own cluster. The
best coefficient was achieved for the two-cluster solution. Hence, all three tests indicate
that the two-factor solution fits best.

s(i) =
b(i)− a(i)

max(a(i), b(i))
(9.2)

where b(i) = min(d(i, C)

s(i) : silhouette coe f f icient f or target cluster

a(i) : within− dissimilarity o f target cluster

d(i, C) : mean dissimilarity within another cluster C toward the target cluster.

9.3. Applying OM-Distances on the Couples-Cope DataSet

Using the Ward method on the couples-cope dataset yielded less conclusive results
for the silhouette coefficient. The best value was achieved for a two-cluster solution.
Yet, the average coefficient was only 0.5. Hence, a scree plot was used in addition
for evaluating the optimal number of clusters. The result is shown in Figure 9.5 and
clearly indicates a two-cluster solution.

The last step is to interpret or to describe the clusters, which can be achieved by
comparing the sequences of each cluster. That includes plotting the clusters for com-
paring the state-distributions; using the cluster membership as a dummy variable, and
testing whether it is correlating with other variables, which might explain differences

149

9. A Cluster Analytical Approach: OM-Distances

Figure 9.5.: Shows the scree plot for the couples-cope dataset. The y-axis represents
the within error sum (Se). The x-axis shows the cluster solution, identified
by its number of clusters.

in the state distributions; applying models for dyadic sequence data separately on
each cluster. All of which is shown in the next chapter.

9.4. Comparing Groups or Clusters of Sequences

Comparing clusters of sequences is essential for interpreting results of cluster analy-
sis. What exactly makes them different? Is it possible to give the cluster meaningful
names? The same questions may also arise with groups, which were known before the
OM-procedure was applied. Therefore, several ways of comparing groups or clusters
are shown in the following, using the identified clusters of the previous Chapter 9.3
for comparison.

150

9. A Cluster Analytical Approach: OM-Distances

Figure 9.6.: State-distribution plot for the two couples-cope clusters

One way for comparing groups or clusters is to plot them. Figure 9.6 shows the
state-distribution plots (see Chapter 4.1) for both clusters. The obvious difference is
that couples in Cluster 1 leave the state of stress communication and dyadic coping
faster than those in Cluster 2.

Alternatively, the cluster membership can be used as a dummy variable for post-
hoc correlation analysis or used as a covariate for one of the previous approaches. For
example, a researcher might want to test whether the difference in leaving a state of
stress communication is also statistically significant between both clusters.

That finding can be confirmed by using the cluster membership as a dummy coded
second covariate for the Cox regression from Chapter 5.2. The analysis reveals a neg-
ative effect on the hazard (exp(B) = 0.39, p = .004), meaning that the duration of

151

9. A Cluster Analytical Approach: OM-Distances

stress communication is longer in the second cluster. Therefore, the first cluster will
be referred to as the quick coper and the second as the slow coper.

Using the cluster membership for a post-hoc correlation analysis reveals a correla-
tion between the cluster membership, and men’s self-assessed dyadic coping ability
reveals a weak negative correlation (r = −.21), indicating that the men in the slow
coper cluster tend to evaluate their dyadic coping ability lower than men in the fast
coper cluster – this association, however, is not significant (ptwo−tailed = .095).

Table 9.3.: Averaged Logit Parameters for Showing DC by Clusters

Cluster 1 Cluster 2 pa

grand mean −0.07 0.67∗∗∗ <.001
SC at t-1 (actor effect) 0.84∗∗∗ 0.73∗∗∗ .347
DC at t-1 (partner effect) 0.83∗∗∗ 0.52∗∗∗ .023
interaction effect −0.11∗ 0.24∗ .001

Notes: pa p-value for difference between clusters; p-values for difference from zero are
indicated via asterisks ∗p < .05; ∗∗p < .01; ∗∗∗p < .001; SC is stress communication shown
at t− 1 (-1 = no; 1 = yes); DC is dyadic coping shown at t− 1 (-1 = no; 1 = yes); dependent
variable is showing DC at t.

Another way for comparing the groups is to compare their actor and partner effects.
In this example, the aggregated logit model is used to compare the actor and partner
effects on stress communication. Table 9.3 provides the results as mean logits for both
clusters. Because the individual logits of the couples are t-distributed, a simple t-test
can be used for comparing the effects between groups. The results show that the
actor effect is significantly lower within the slow coper group, indicating that stress
communication might be less continuous in this group (e.g., the female partners may
be more often interrupted while communicating stress). The partner effect is also
lower in the slow coper group, and although not significant, this finding indicates that
for this group, the DC response is less likely (or not as prompt). Another finding is
that the interaction effect was not significant in the overall sample, yet considering
the two clusters, it shows that for the quick coper, the interaction effect is negative:
If stress communication is accompanied by dyadic coping, the probability that the
stress reaction will be kept up is less than expected by the main effects. For the slow
coper, it is the opposite: If stress communication is accompanied by dyadic coping, it
is more likely that it will be kept up. These findings indicate that at least two separate
styles of dyadic coping might exist. Identifying the exact nature of these separate
styles might be the subject of further research. However, possible explanations could

152

9. A Cluster Analytical Approach: OM-Distances

be that, for instance, the slow coper encourages their partners to communicate their
stress through active listening, whereas fast copers tend to appease their partners.
Or, another possibility, stressed partners within the slow coping couples like to be
comforted and keep their SC up so that their partners will keep up their DC.

Cluster 1 resembles latent class one of the mixture Markov model with three latent
classes that was applied in Chapter 10.8). Moreover, the number of sequences that are
assigned to this cluster is also close to the estimated size of the first latent class (58% vs
54% for the mixture Markov model.) Therefore, the cluster analysis seems to identify
the same latent group. Cluster 2 seems to be a mix of the latent classes two and three.
All transition rates for the first two rows are between the transition rates of those two
latent classes. Row four shows a higher stability for SC+DC though.

Table 9.4.: Transition Matrices for OM-Clusters

Cluster Cluster 1 Cluster 2
Probabilities .58 .42

Transitions: Cluster 1 → None → SC → DC → SC+DC

None→ .83 .05 .05 .07
SC→ .26 .30 .10 .35
DC→ .39 .05 .34 .22
SC+DC→ .08 .09 .06 .76

Transitions: Cluster 2 → None → SC → DC → SC+DC

None→ .55 .11 .10 .24
SC→ .11 .37 .06 .46
DC→ .22 .05 .27 .47
SC+DC→ .03 .07 .07 .83

Notes:None: no stress communication and no dyadic coping; SC=1: stress communica-
tion, SC=0: no stress communication; DC=1: dyadic coping, DC=0: no dyadic coping; X→
transition from X;→X transition to X

9.4.1. An ANOVA-Like Method for Sequence-Data

The ANOVA-like method for comparing groups of sequences is especially useful for
known groups, if a researcher wants simply to know if two or more sets of sequences

153

9. A Cluster Analytical Approach: OM-Distances

differ significantly. However, for the sake of demonstration, the previously found
clusters will be used as groups for the comparison.

Studer et al. (2011) proposed an ANOVA-like method for sequence data. The core
idea is to analyze how much dissimilarities can be explained by the groups. In clas-
sical ANOVA, sum of squares (SS) are calculated within each group (within-SS) and
between groups (between-SS). Within-SS is produced by taking the deviation from
each observation from its group mean, squaring it, and summing it up. The between-
SS is calculated by taking each group’s mean minus the grand mean (mean over all
groups), squaring it, weighting it by the group’s size, and summing it up.

Therefore, in order to construct an ANOVA-like method for sequence data one needs
something equivalent to a mean and to a deviation. The deviation of an univariate
observation from its mean is the same as the distance from that mean. Hence, OM-
Distances can be used for creating a distance matrix. The problem is that the distance
matrix shows only the distance or deviation between observational units. This problem
can be solved after choosing a surrogate for the mean.

For a distance matrix created out of metric variables, the centroid is the most equiv-
alent to the mean, however, according to Studer et al. (2011), it is not suitable for
complex non-numeric objects such as sequences. Instead the medoid is used, which is
the most central sequence. Or, in other words, out of a set of data points in space, the
medoid is the data point with the lowest average dissimilarity to all other the other
points. The most important part is that the medoid is an actual data point, whereas
the centroid can be any point outside of the dataset.

Just for making the difference more clear, consider cities on a map again: calculating
the medoid answers the question: "What is the most central city?". Doing this for
Germanies top 100 largest cities might result in "Hannover", because this city has the
closest average distance to all other cities. Whereas calculating the centroid answers
the question "What is the most central location between those cities?". Therefore, the
answer might be "longitude:51.9064911, latitude: 9.9212109", which refers to an empty
field.

Summarizing the above, the medoid it is very similar to a median rather than a
mean. However, the main advantage is that the medoid is actually a data point. That
means, it is always possible to identify one observation as the mediod of a dataset or
a subgroup.

Because of that, the distance between a groups’s medoid and the sequences that
belong to the same group can be derived directly from the distance matrix. The same
goes for distances between the medoid for the whole dataset and the medoids of sep-

154

9. A Cluster Analytical Approach: OM-Distances

arate groups. Thus the within-SS is simply the sum of the squared distances between
all sequences and the medoid-sequence of their group. The between-SS is the sum of
the squared distance between the group-medoid sequences and the overall medoid-
sequence, weighed by their group size.

According to Studer et al. (2011), using this method, the Equation 9.3 of classic
ANOVA holds true. Therefore, the percentage of dissimilarity that is explained by the
groups can be calculated as SSbetween/(SSbetween + SSwithin). Furthermore, they suggest
a pseudo-F statistics that is created the same way as Fisher’s F in classic ANOVA:
FPseudo = SSbetween/(m− 1)/SSwithin/(W −m), where W is the number of groups and
m is the number of sequences. It is important to note that this F-statistic does not
follow Fisher’s F-distribution. Hence, permutation tests are used instead (Chernick
et al., 2011).

SStotal = SSbetween + SSwithin (9.3)

SStotal : The total amount o f dissimilarity

SSbetween : The amount o f dissimilarity which

can be explained by the groups

SSwithin : The amount o f dissimilarity which

cannot be explained by the groups

Using this ANOVA-like test for sequences on the couples-cope data results in a
Pseudo R2 of .22, indicating that 22% of dissimilarities can be explained by the clus-
ters. The FPseudo was 17.13 with a corresponding ppermut < .001, indicating a significant
difference between both clusters. However, the clusters were found by explorative
analysis, and post-hoc significance tests should therefore always be validated by a
cross-validation. Nevertheless, this ANOVA-like test for sequences can be used with-
out cross-validation if it is used with known groups, and if the hypotheses are made
a-priori.

155

9. A Cluster Analytical Approach: OM-Distances

9.5. Practical Issues and Required Sample Sizes

The clustering with OM-distances has three advantages: 1) it is computationally fast,
which might be a crucial factor if sequences should be grouped in real-time. However,
within the field of science and research, the slower computation of mixture Markov
model should not be a major drawback for the latter. 2) As discussed below, simulation
studies indicate that OM-clustering seems to be more robust than mixture Markov
models. 3) OM-clustering can be applied to datasets that contain sequences with
different lengths. Differences between longer and shorter sequences can be weighted
by adjusting the insertion and deletion cost.

For OM-distances, no power analysis or rules of thumb exist, but OM-distances have
been applied successfully in studies with even relatively small sample sizes (N < 50;
Wuerker, 1996a and 1996b; Blair-Loy, 1999). However, studies with many expected
clusters often show bigger sample sizes, e.g., N = 578 for 9 clusters in Aassve et al.
(2007).

Two simulation studies were conducted for recommending sample sizes and se-
quence length: one for the OM-clustering (see Chapter 10.9) and a second one for (see
Chapter 10.10), each with 1000 samples per condition. For the clustering: one, two
and three cluster solutions were tested on the same true models that were used for the
mixture Markov simulations. Several methods for determining the correct number of
clusters were used. The silhouette coefficient performed best. However, the coefficient
can only distinguish between cluster solutions with more than one cluster. Therefore,
if no cluster solution could achieve a silhouette coefficient of above .40, a one cluster
solution was selected (cut-off values of .25 and .50 were tried, but .40 performed best).
Visual selection criteria, at least, the scree plot cannot be recommended.

Clustering using OM-distances performed worse than the mixture Markov model
for small samples sizes and short sequences. However, it performed better than the
mixture Markov model, when big sample sizes and long sequences were simulated.
Especially the length of sequences had a huge effect on the bias. Model selection
worked well (> 80% correct model selection) for N >= 30 with L >= 100 or N >=

100 with L => 50, when the silhouette coefficient was used. A small bias was detected,
yet for the recommended sample sizes and sequence lengths it was only .01 and S.E.
was .03 which seems acceptable.

Using OM-distances for group comparisons achieves a power of above .80 for two-
group comparisons and three-group comparisons if the sample size is N = 10 and
sequence length is L >= 20. If L is 10, N should be 20 for two-group comparisons

156

9. A Cluster Analytical Approach: OM-Distances

and 30 three-group comparisons. Hence, a general rule might be 10 per group. If a
power of above .95 is targeted L should be >= 30 or N should be >= 40 for two or
three-group comparisons.

157

10. Simulation studies

Simulation studies were conducted for the Cox regression, the frailty model, aggre-
gated logit APIM, multilevel APIM, basic Markov APIM, restricted hidden Markov
model, mixture Markov model, OM-clustering and the ANOVA-like approach from
Chapter 9.4.1. The goal of each simulation was to get recommendations on sample
size and sequence lengths. While each simulation might vary regarding sample sizes,
sequence lengths, effects sizes, and other aspects, the core principle that was used is
the same for all simulations.

Different methods for conducting simulation studies exist, in this case, distribution-
based simulations were used. The general principle will be exemplified using the
simulations for the Cox regression: The first step was to determine which parameters,
which sample sizes, and which lengths should be manipulated. These are referred to
as the simulation conditions analogously to experimental conditions.

In the second step, one true model was specified from which sequences can be
generated. Parameters that should be manipulated in the simulation were set to be
variable between each simulation condition. All other parameters were set to a con-
stant value. For example, for the Cox regression, the initial state for the non-absorbing
state was set to 1.00, the baseline hazard was set to a constant hazard of .05 and the
length of sequences was set to L = 30. The covariate was drawn from a standard nor-
mal distribution. The effect of the covariate on the hazard was linked the same way as
it is linked in the Cox regression. The true value of β was set to be variable between
simulation conditions because effect size should influence the needed sample size.

The third step was to loop through all combination of simulation conditions and
to generate a certain number of samples for each combination. These samples are
referred to as simulation samples. For example, for the condition β = 0.2 with N = 10,
ten sequences were generated by the model described above with β = 0.2. This was
repeated 1000 times resulting in 1000 samples for this condition.

The fourth step, still part of the loop, was to fit a Cox regression on each sample.
After that, each sample was dropped (but they are still replicable when the SEED is
known; the SEEDs are noted in Appendix B).

158

10. Simulation studies

The fifth step was to aggregate all results of interest, in this case, the βs of each
model that was fitted on the simulation samples: standard deviation of the βs is the
simulated standard error and typically decreases with higher sample sizes, the mean
of the βs can be compared with the true β. Differences between the mean of the
estimated βs and the true β indicate a systematic bias. However, such differences can
also occur by chance, yet differences that are caused by chance should become less
likely or at least smaller the more simulation samples are drawn.

The distribution-based approach was used for increasing the processing speed of
the simulations. Processing power is important because many of the presented models
need a long time for estimation. Therefore, higher processing power enables to draw
more simulation samples, test more conditions, and finally conduct post-hoc analysis
faster. Performance of different strategies depends on technical factors such as what
programming language was used.

Alternative approaches, such as population-based simulations that simulate a whole
population from which samples are drawn, perform slower when R is used. R can be
a very fast programming language as long as certain bottlenecks are avoided. R is
slow when it comes to indexing, drawing subsamples from a dataset becomes very
slow when the dataset is very big because this process needs a lot of indexing. So
drawing subsamples from a population with millions of rows would be one bottleneck.
Moreover, R works in memory only. Therefore, if the memory size of the workspace
exceeds the RAM, chunks of data must be swapped between RAM and disk drive,
slowing down the process even more. Finally, R is prone to RAM fragmentation,
which can be avoided by freeing RAM as fast as possible. The latter is the reason
for dropping the datasets in step four. Overall, the distribution-based approach was
chosen due to technical factor, but also with the intention to generate more simulation
samples, and thereby, increasing the precision of the simulations.

10.1. Cox Regression

A simulation study was conducted for determining the optimal sample size for Cox
regression dependent on the expected effect size. However, planned simulations re-
vealed also biases in some cases. Follow-up simulations were conducted for investi-
gating the effect of the observation period’s length on these biases.

The first simulation assumed a constant hazard of .05 and an observation period
of 30 time intervals (discrete time). A total of 84 conditions were simulated, each a
thousand times. The following sample sizes were iterated: N = 10, N = 20, N = 20,

159

10. Simulation studies

N = 30, N = 40, N = 50, N = 60, N = 70, N = 80, N = 90, N = 100, N = 200, and
N = 400. The first ten values were chosen because small sample sizes are common
in psychology research. The last two conditions investigate the power develops with
relatively big sample sizes. The following effect sizes were simulated for each sample
size condition: β=0, β=0.2, β=0.4, β=0.6, β=0.8, β=1, and β=2. Values for the covariate
were drawn from a standard normal distribution. Thus, β’s can be translated as "per
standard deviation above the mean, the hazard is increased by (1− exp(b)) ∗ 100%".
Applying that to the selected β’s results in 0%, 22%, 45%, 82%, 123%, 172%, and 739%
increment above the baseline hazard per standard deviation.

The results are presented in Table 10.1 to 10.3. The Type-I error (H0 rejections when
β=0) varies closely around the expected value of .05 indicating that Cox-regression is
robust even if time is measured discrete. The power behaves as expected: the power
goes up when N increases. For a true β of 0.2 (hazard increase of 22%) the samples
need to be very big for achieving a good power (somewhere between N = 200 and
N = 400), whereas for a true β of .4 (hazard increase of 45%), the needed sample
sizes become more realistic for psychology research (N = 80). However, if the hazard
is expected to be doubled per SD increase in the covariate, even small sample sizes
(Between N = 30 and N = 40) will be sufficient.

For the majority of cases, bias is relatively small and conservative. Only very small
sample sizes tend to induce a progressive bias. Both biases go up with increasing true
values of beta. These findings are partially consistent with the study of Hertz-Picciotto
and Rockhill (1997) that showed the same effect for the sample size. The effect of the
true beta on the bias of point estimation is new. Because of that, follow-up simulations
were conducted to investigate if this might be caused by an interaction between true
effect size and baseline hazard, the observation period, or both.

The lower part of Table 10.3 shows the results of the follow-up simulations and
reveals that bias depends on hazard and length of the observation period

(
max(t)

)
.

That makes sense actually because the lower the hazard, the more likely it is that
units will not show the event within the observational period. Thus, if the baseline
hazard is small, only units with extreme values on the covariate will show the event.
For example, the probability of not showing the event within ten time intervals for
the average person is 0.90

(
(1 − 0.01)10). If the true β is two, the probability for

not showing the event, for a person that is one sd above average, is .46
(
(1− 0.01 ∗

exp(2)1)10) and for one SD under the average it is .99
(
(1− 0.01 ∗ exp(2)−1)10). Thus,

units with lower values on the covariate have a larger probability to become censored.
The problem can be tackled by increasing the observation period and by this reducing

160

10. Simulation studies

Table 10.1.: Results for the Simulated Cox-Regressions (Part A)

Simulation conditions Mean Bias S.E. H0 Rejections

N=10; β=0 0.02 0.56 .043
N=20; β=0 −0.00 0.30 .051
N=30; β=0 −0.00 0.24 .065
N=40; β=0 −0.00 0.20 .060
N=50; β=0 −0.00 0.16 .050
N=60; β=0 +0.00 0.15 .048
N=70; β=0 +0.00 0.15 .061
N=80; β=0 +0.00 0.13 .057
N=90; β=0 +0.00 0.13 .076
N=100; β=0 −0.01 0.11 .052
N=200; β=0 −0.00 0.08 .055
N=400; β=0 −0.00 0.05 .047

N=10; β=0.2 0.02 0.58 .055
N=20; β=0.2 +0.00 0.30 .098
N=30; β=0.2 −0.00 0.25 .149
N=40; β=0.2 0.01 0.20 .196
N=50; β=0.2 −0.01 0.17 .202
N=60; β=0.2 −0.01 0.15 .229
N=70; β=0.2 −0.00 0.14 .279
N=80; β=0.2 −0.01 0.13 .314
N=90; β=0.2 −0.00 0.12 .331
N=100; β=0.2 −0.01 0.11 .372
N=200; β=0.2 −0.01 0.08 .645
N=400; β=0.2 −0.01 0.05 .963

N=10; β=0.4 0.06 0.57 .107
N=20; β=0.4 −0.01 0.33 .257
N=30; β=0.4 −0.01 0.25 .403
N=40; β=0.4 −0.01 0.21 .526
N=50; β=0.4 −0.02 0.18 .610
N=60; β=0.4 −0.01 0.17 .687
N=70; β=0.4 −0.01 0.15 .768
N=80; β=0.4 −0.01 0.14 .831
N=90; β=0.4 −0.02 0.13 .863
N=100; β=0.4 −0.02 0.12 .901
N=200; β=0.4 −0.02 0.08 .993
N=400; β=0.4 −0.02 0.05 1.000

Notes: Mean bias is calculated as the mean deviation from the estimates (β̂) from
true β; S.E.: is the simulated standard error (standard deviation of estimates); H0
Rejections represent Type-I error rates in all conditions with β = 0 and power (1 -
Type-II error rate) for the other conditions; for each condition 1000 samples were
drawn; baseline hazard h0 = .05.

161

10. Simulation studies

Table 10.2.: Results for the Simulated Cox-Regressions (Part B)

Simulation conditions Mean Bias S.E. H0 Rejections

N=10; b=0.6 0.10 .70 .193
N=20; b=0.6 0.01 .33 .499
N=30; b=0.6 −0.02 .26 .699
N=40; b=0.6 −0.02 .22 .805
N=50; b=0.6 −0.02 .19 .906
N=60; b=0.6 −0.02 .18 .952
N=70; b=0.6 −0.02 .16 .973
N=80; b=0.6 −0.02 .15 .989
N=90; b=0.6 −0.03 .14 .991
N=100; b=0.6 −0.03 .13 .996
N=200; b=0.6 −0.03 .10 1.000
N=400; b=0.6 −0.03 .06 1.000

N=10; b=0.8 0.19 3.45 .295
N=20; b=0.8 0.02 .37 .708
N=30; b=0.8 −0.00 .28 .898
N=40; b=0.8 −0.01 .23 .954
N=50; b=0.8 −0.00 .21 .988
N=60; b=0.8 −0.02 .22 .993
N=70; b=0.8 −0.03 .17 1.000
N=80; b=0.8 −0.04 .16 1.000
N=90; b=0.8 −0.03 .15 1.000
N=100; b=0.8 −0.04 .13 1.000
N=200; b=0.8 −0.03 .10 1.000
N=400; b=0.8 −0.04 .06 1.000

N=10; b=1 0.17 .78 .433
N=20; b=1 0.01 .42 .837
N=30; b=1 −0.02 .30 .959
N=40; b=1 −0.01 .25 .995
N=50; b=1 −0.02 .22 .999
N=60; b=1 −0.03 .19 1.000
N=70; b=1 −0.04 .18 .999
N=80; b=1 −0.04 .16 1.000
N=90; b=1 −0.03 .16 1.000
N=100; b=1 −0.04 .15 1.000
N=200; b=1 −0.03 .10 1.000
N=400; b=1 −0.04 .06 1.000

Notes: Mean bias is calculated as the mean deviation from the estimates (β̂) from
true β; S.E.: is the simulated standard error (standard deviation of estimates); H0
Rejections represent Type-I error rates in all conditions with β = 0 and power (1 -
Type-II error rate) for the other conditions; for each condition 1000 samples were
drawn; baseline hazard h0 = .05; zero values with - indicate that the actual value is
below zero, but so small that it is rounded to zero.

162

10. Simulation studies

the overall probability for censoring. The effect of that can also be seen in Table 10.3;
the bias decreases with longer observation periods even under extreme conditions
(very small N and extremely high hazard). Overall, a length of 30 intervals seemed to
sufficient when N was at least 20, when β was one or lower, and when baseline hazard
was at least .05.

The interpretation of this simulation is limited to cases with constant hazards and
the presented conditions, yet the script (see Appendix B.1) for the simulation can easily
be modified for conducting similar simulations studies. If the baseline hazard should
not be constant, the function simSeq() has to be replaced with another function that
assumes another baseline hazard.

10.2. Shared Frailty

Simulation-based power analysis was conducted for the shared frailty model. A total
of 25 (5*5) conditions were simulated. The simulated frailty parameters were 0, 0.25,
0.50, 0.75, and 1. The sample size was also varied starting from 20 to 100 in steps of
twenty. For each condition, only 100 samples were drawn because computation for
one frailty model took very long.

The results are displayed in Table 10.4. The model performs badly in this simulation.
First of all, the Type-I-error is incredible high; in 100% cases, in which the model
converged, all models were significant. Same is true for all condition that includes a
frailty parameter greater zero. Thus, the p-value is not trustworthy at all.

Additionally, the estimated σ̂ are way off the expectable deviation from the true
score. On top of that, it increases only slightly with the true σ. Strangely, the estimated
σ̂ seems to become greater the bigger the sample size. Sample size and effect size,
however, should be independent.

Many things can cause the results. The code for the simulation was doubled checked
because the results seemed odd, yet no error was found. The implementation might
be erogenous. Future research could test that by running the same simulation using
another package or software. However, the package is in its 85th release; therefore,
it is very likely that the program works correctly. Finally, some parts of the simula-
tion might violate implicit assumptions of the model. For example, the model or the
implementation might not expect ties, which occur because the times are estimated
in discrete space. Future research might test these by re-running the simulation (see
Appendix B.2) with ties and without ties. Furthermore, estimating the baseline haz-

163

10. Simulation studies

Table 10.3.: Results for the Simulated Cox-Regressions (Part C)

Simulation conditions Mean Bias S.E. H0 Rejections

N=10; b=2a 1.19 28.29 .704
N=20; b=2 −0.24 0.57 .988
N=30; b=2 −0.28 0.44 1.000
N=40; b=2 −0.30 0.34 1.000
N=50; b=2 −0.32 0.32 1.000
N=60; b=2 −0.31 0.30 1.000
N=70; b=2 −0.32 0.27 1.000
N=80; b=2 −0.33 0.25 1.000
N=90; b=2 −0.33 0.23 1.000
N=100; b=2 −0.35 0.21 1.000
N=200; b=2 −0.37 0.16 1.000
N=400; b=2 −0.37 0.11 1.000

Follow-Up Simulationsb Mean Bias S.E. H0 Rejections

N=10; b=2; h0=0.01; max(t)=10 14.33 58.13 -c

N=10; b=2; h0=0.01; max(t)=50 2.73 19.35 -c

N=10; b=2; h0=0.01; max(t)=100 1.25 2.39 .407
N=10; b=2; h0=0.05; max(t)=10 3.36 20.90 -c

N=10; b=2; h0=0.05; max(t)=50 1.97 4.33 .703
N=10; b=2 ; h0=0.05; max(t)=100 1.85 1.16 .711
N=10; b=2; h0=0.10; max(t)=10 1.70 3.12 .688
N=10; b=2; h0=0.10; max(t)=50 1.63 0.88 .692
N=10; b=2; h0=0.10; max(t)=100 1.64 0.86 .735

Notes: Mean bias is calculated as the mean deviation from the estimates (β̂) from
true β; S.E.: is the simulated standard error (standard deviation of estimates); H0
Rejections represent Type-I error rates in all conditions with β = 0 and power (1
- Type-II error rate) for the other conditions; for each condition 1000 samples were
drawn; a not all models did converge in this simulation;b the number of simulations
was increased to 10.000 per condition because of the extreme high S.E.; c p-value
could not be calculated for all samples because no events were observed, and thus
relative frequency of H0 rejections would be misleading.

164

10. Simulation studies

ard non-parametrically might give the optimizer too much freedom for estimating σ̂.
Future research might test these by rerunning the simulation and running parametric
models.

Table 10.4.: Simulated Frailty Models

Simulation conditions σ̂ non-convergence H0 Rejections correcteda

N=20; σ=0.00 2.72 .02 1.000 .980
N=20; σ=0.25 2.71 .03 .959 .930
N=20; σ=0.50 2.76 .00 .970
N=20; σ=0.75 2.75 .00 .980
N=20; σ=1.00 2.81 .00 .950

N=40; σ=0.00 2.87 .00 1.000
N=40; σ=0.25 2.87 .00 1.000
N=40; σ=0.50 2.86 .00 1.000
N=40; σ=0.75 2.86 .00 1.000
N=40; σ=1.00 2.90 .00 1.000

N=60; σ=0.00 2.89 .00 1.000
N=60; σ=0.25 2.91 .00 1.000
N=60; σ=0.50 2.97 .00 1.000
N=60; σ=0.75 2.96 .00 1.000
N=60; σ=1.00 3.01 .00 1.000

N=80; σ=0.00 2.91 .00 1.000
N=80; σ=0.25 2.95 .00 1.000
N=80; σ=0.50 2.98 .00 1.000
N=80; σ=0.75 2.93 .00 1.000
N=80; σ=1.00 3.02 .00 1.000

N=100; σ=0.00 2.96 .00 1.000
N=100; σ=0.25 2.98 .00 1.000
N=100; σ=0.50 2.96 .00 1.000
N=100; σ=0.75 2.97 .00 1.000
N=100; σ=1.00 2.98 .00 1.000

Notes: σ̂ is the estimated value of σ; non-convergence is the relative frequency of models
that did not converge; H0 Rejections represent Type-I error rates in all conditions with
σ=0 and power (1 - Type-II error rate) for the other conditions; a H0 rejections were based
only on models that converged, the column "corrected" shows the frequency of rejected
H0 based on all samples; for each condition 100 samples were drawn.

165

10. Simulation studies

10.3. Aggregated Logit APIM

Preliminary simulations showed that the error was always higher for the actor effect.
Even in simulations without true effect, the Type-I error rate was often higher than ex-
pected for the actor effect. Moreover, the actor effect was negatively biased. Therefore,
a systematic simulation was conducted for investigating if the bias depends on the
sample size or the length of the sequences, see Table 10.5. Results for each simulated
condition are based on 1000 samples. The initial states were equally distributed.

The table shows clearly that the bias for the actor effect depends on the length of
sequences. The shorter the sequence, the more negative the bias. At the same time,
while the sample size is increased, the Type-I error increases. That can be explained
by the increased power, which makes it more likely that the bias is mistaken as a true
effect.

Interestingly, the effect can be regulated by delta, the constant which is added to
every cell (0.05 per default; see Figure 10.1). Increasing delta suppresses the bias. The
most extreme condition (β = 0; N = 100, L = 10) was simulated with Delta = 1. Both
biases were reduced to -.05 (from originally -0.08), and Type-I error was reduced to
.220 and .280 (previously .333, and .336). A delta of 5 reduced the bias to near zero
and Type-I was reduced further to .090 and .100. However, increasing delta will always
lead to lower power for all effects because the higher the constant, the more equal the
relative frequencies of the cells become.

Preliminary power analyses showed that the power is always the lowest for the actor
effect. One explanation is that the bias decreases the estimated β even though a true
effect exists. Figure 10.2 shows that the bias for the actor effect is independent of the
sample size but tends to increase when true effect sizes are big, and sequences are
short. Therefore, the sequence length was included in the simulation as a condition.
Moreover, the true actor effect size starting at β = 0.2 was increased by 0.2 until a
maximum of 1 was reached. For each condition, 1000 samples were drawn. The initial
state distributions were randomly drawn from a uniform distribution. The results are
presented in Figure 10.3. The graphs show that the effect of sample size on the power
depends on the length of the sequences. Longer sequences produce higher power, and
thereby increase the chance to reveal true effects.

166

10. Simulation studies

Table 10.5.: Aggregated Logit: Type-I Error Rates for Actor Effect

Actor1 Actor2

Simulation conditions β̂ Type-I error β̂ Type-I error

β=0; N=10; L=10 −0.08 .062 −0.08 .061
β=0; N=10; L=30 −0.06 .080 −0.06 .073
β=0; N=10; L=50 −0.04 .058 −0.04 .063
β=0; N=10; L=70 −0.03 .060 −0.03 .059
β=0; N=10; L=100 −0.02 .060 −0.02 .060

β=0; N=30; L=10 −0.08 .142 −0.08 .124
β=0; N=30; L=30 −0.06 .126 −0.06 .141
β=0; N=30; L=50 −0.04 .114 −0.04 .099
β=0; N=30; L=70 −0.03 .103 −0.03 .088
β=0; N=30; L=100 −0.02 .068 −0.02 .082

β=0; N=50; L=10 −0.08 .192 −0.08 .178
β=0; N=50; L=30 −0.06 .204 −0.07 .223
β=0; N=50; L=50 −0.04 .169 −0.04 .160
β=0; N=50; L=70 −0.03 .139 −0.03 .146
β=0; N=50; L=100 −0.02 .106 −0.02 .089

β=0; N=70; L=10 −0.08 .233 −0.08 .242
β=0; N=70; L=30 −0.07 .302 −0.06 .256
β=0; N=70; L=50 −0.04 .212 −0.04 .198
β=0; N=70; L=70 −0.03 .155 −0.30 .151
β=0; N=70; L=100 −0.02 .146 −0.20 .131

β=0; N=100; L=10 −0.08 .333 −0.08 .336
β=0; N=100; L=30 −0.07 .415 −0.06 .369
β=0; N=100; L=50 −0.04 .279 −0.04 .276
β=0; N=100; L=70 −0.03 .236 −0.03 .220
β=0; N=100; L=100 −0.02 .147 −0.02 .165

Notes: β̂ is estimated mean effect; β is true effect; N is sample size; L is length of
sequence; 1000 samples were drawn per simulation condition. H0 rejections are the
power (1 - Type-II error).

167

10. Simulation studies

30 40 50 60 70 80 90

-0
.2

0
-0

.1
0

0.
00

Length of Sequences

B
ia

s

delta=0.5
delta=1
delta=2
delta=3
delta=4
delta=5

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

Length of Sequences

T
yp

e-
I E

rr
or

delta=0.5
delta=1
delta=2
delta=3
delta=4
delta=5

Figure 10.1.: Bias and Type-I Error in Relation to Length and Delta

168

10. Simulation studies

For small effects (Figure 10.3.a; β = 0.2; odds ratio of 1.22), the sequences length is
more important. For example, sequences with 30 intervals need about 80 observational
units to achieve a power of .80, whereas sequences with 50 intervals need only about
30 units to achieve the same power. For medium sizes such as (Figure 10.3.b; β =
0.4; odds ratio of 1.49) sequences of with a length of 50 will be sufficient even with
small sample sizes. If effects are really big (Figure 10.3.d; β = 0.8; odds ratio of 2.23)
even small sample sizes with small sequences will be sufficient. Please note that to the
knowledge of this monograph’s author, no benchmarks for estimates of logit models
exist concerning what is small, medium, and big. The categorization here was chosen
as a rough orientation for the power analysis. In practice, the evaluation of effect size
should depend on the subject.

The power simulation is limited in three ways. The first limitation is that only the
actor effect was increased. However, the actor effect was the only effect that showed a
bias in the preliminary simulations; therefore, this simulation serves as a lower bound
estimation for the other effects as well. The second limitation is that the actor effect
was only increased, but the bias would increase the power if negative actor effect
is analyzed. Moreover, the bias would overestimate the negative effect. A negative
actor effect means that showing a behavior at t− 1 decreases the probability at t. That
would lead to an oscillating behavior. However, for all cases, in which the actor effect is
expected to be more or less stable (positive values), the results can be applied. Finally,
the third limitation is that combinations of actor, partner and especially interaction
effects might lead to further biases which are not revealed yet.

One feature of the aggregated logit model is its computation time. For example,
running one model with N = 1000 and L = 1000 on an Intel(R) Core(TM) i7-3770 CPU
with one 3.40Ghz core reserved only for R took 1 min. and 9 sec. (recoding inclusive).

169

10. Simulation studies

Figure 10.2.: Bias for Actor Effect

170

10. Simulation studies

Figure 10.3.: Power Simulation for Aggregated Logit Model

10.4. Multilevel APIM

Estimation of generalized multilevel models takes a lot of computation time especially
when many random effects are modeled. Thus, for the first simulation, only a random
intercept model was used as a minimal example. However, computation takes still
a lot of time using lme4 (several minutes per iteration). Because of that, the default
optimizer (a combination of Nelder-Mead and bobyqa; Nelder and Mead, 1965) was
replaced with the "bobyqa" optimizer (Powell, 2009), which computes faster. However,

171

10. Simulation studies

in some cases the optimizer may stop prematurely giving suboptimal results. Nine
combinations of sample size and sequence length were simulated (N = 10, N = 50,
N = 100; L = 10, L = 50, L = 100). For each combination, the effect size was either
b = 0, b = 0.2, b = 0.4, or b = 1.00. Finally, it was varied whether the effect was an
actor effect or a partner effect except for the zero effect condition. Therefore, a total of
63 conditions were simulated, each based on 500 simulated samples. The initial state
distributions were chosen to be randomly drawn from a uniform distribution.

Estimates for Type-I error and bias varied only slightly across the simulation condi-
tions. Hence, they are reported in aggregated form. The nominal error rate was .05;
the mean estimated Type-I error for both intercepts was .0478, the bias was -0.0003; for
the actor effects the error was .0522 and the bias -0.008; for the partner effect it was
error .0522 and bias -.0056; finally partner*actor interaction showed an error of .0527.
Overall, deviation of the true values was very small. Moreover, no correlations were
found between the conditions and error-rate or bias.

For the power simulations, increasing the actor or partner effect above zero did not
affect the Type-I error (they were always close to .05) and did not induce bias on the
other effect (estimates varied closely around zero). Therefore, only the power and the
bias of the effect that was increased are displayed in Table 10.6.

The multilevel approach performs overall well. Actor and partner effects are esti-
mated unbiased. The multilevel model performs also better in terms of power than
the aggregated logit model did. For example, the condition N = 10, b = 0.2 with
L = 100 achieved a power of .858 for the multilevel approach, while the aggregated
logit model achieved only a power of .701. If sequences are short but sample size
is big, the difference becomes smaller .842 for the multilevel model vs. .800 for the
aggregated logit model. Comparing the conditions closely reveals that the multilevel
model’s power seems to depend only on the number of observed transition regardless
if they stem from long sequences or a bigger sample size. For example, comparing the
condition N = 100 with L = 10 with the condition N = 10 with L = 100 results in
very similar power estimates. Moreover, the multilevel model had only few problems
with zero frequencies which occurred by chance. One exception though is condition
β = 1; N = 10; L = 10. The big effect size combined with few small sequences re-
sulted in resulted in many empty cells. This was also the only condition in which the
optimizer produced many warning (for over 90% of the samples).

For small effects (β = 0.2; odds ratio of 1.22) and medium effects (β = 0.4; odds
ratio of 1.49) a good power (above .80) can be achieved even with small sample sizes
(N = 10) if the sequences are very long (L > 100). Vice versa short sequences (L = 10)

172

10. Simulation studies

achieve the same power if sample sizes are big (N > 100). The same goes for medium
sized samples (N = 50) with sequences of L = 50. If effects are big (β = 0.8; odds ratio
of 2.23) even small sample sizes (N = 10) with small sequences (L = 10) will achieve
a very high power (> .95).

The biggest disadvantage with the multilevel model is the computation time, which
increases exponentially with increasing sample size and sequences length. For exam-
ple, running one multilevel model with N=1000 and L=1000 on an Intel(R) Core(TM)
i7-3770 CPU with one 3.40Ghz core reserved only for R took 43 min. and 30 sec. (with
bobyqa optimizer, recoding inclusive).

173

10. Simulation studies

Table 10.6.: MLM-APIM: Power-Analysis for Actor und Partner

Actor Partner

Simulation conditions β̂ H0 rejections β̂ H0 rejections

β=0.2; N=10; L=10 0.16 .088 0.19 .094
β=0.2; N=10; L=50 0.20 .574 0.20 .598
β=0.2; N=10; L=100 0.20 .858 0.20 .870

β=0.2; N=50; L=10 0.19 .480 0.20 .512
β=0.2; N=50; L=50 0.20 1.000 0.20 1.000
β=0.2; N=50; L=100 0.20 1.000 0.20 1.000

β=0.2; N=100; L=10 0.20 .842 0.20 .860
β=0.2; N=100; L=50 0.20 1.000 0.20 1.000
β=0.2; N=100; L=100 0.20 1.000 0.20 1.000

β=0.4; N=10; L=10 0.37 .350 0.40 .402
β=0.4; N=10; L=50 0.40 .988 0.40 .988
β=0.4; N=10; L=100 0.40 1.000 0.41 1.000

β=0.4; N=50; L=10 0.39 .982 0.40 .986
β=0.4; N=50; L=50 0.40 1.000 0.40 1.000
β=0.4; N=50; L=100 0.40 1.000 0.40 1.000

β=0.4; N=100; L=10 0.39 1.000 0.40 1.000
β=0.4; N=100; L=50 0.40 1.000 0.40 1.000
β=0.4; N=100; L=100 0.40 1.000 0.40 1.000

β=1; N=10; L=10∗ 1.05 .978 1.11 .988
β=1; N=10; L=50 1.00 1.000 1.01 1.000
β=1; N=10; L=100 1.00 1.000 1.00 1.000

β=1; N=50; L=10 1.00 1.000 1.00 1.000
β=1; N=50; L=50 1.00 1.000 1.00 1.000
β=1; N=50; L=100 1.00 1.000 1.00 1.000

β=1; N=100; L=10 1.00 1.000 1.00 1.000
β=1; N=100; L=50 0.99 1.000 1.00 1.000
β=1; N=100; L=100 1.00 1.000 1.00 1.000

Notes: β̂ is estimated effect; β is true effect; N is sample size; L is length of sequence;
∗ over 90% of models had thrown optimizer warning, which might be caused by the
fact that the big effect size combined with small sample size and short sequences
resulted in samples in which many sequences had only a constant state; 500 samples
were drawn per simulation condition; H0 rejections are the power (1 - Type-II error).

174

10. Simulation studies

10.5. Basic Markov APIM

The same combinations of sample size and sequence length were simulated as in Chap-
ter 10.4 (N = 10, N = 50, N = 100; L = 10, L = 50, L = 100). For each combination,
the effect size was either b = 0, b = 0.2, b = 0.4, and b = 1.00. Finally, it was ma-
nipulated whether the effect was an actor effect or a partner effect except for the zero
effect condition. Therefore, a total of 63 conditions were simulated. The initial state
distributions were randomly drawn from a uniform distribution. Simulations for de-
termining Type-I error rate were based on 1000 sample, while each other condition in
this simulation is based only on 100 simulated samples.

The reason for that is the following: because of bootstrapping, the function took
quite long for simulation. With K = 1000 bootstrap-samples a condition with many
observations like N = 100 and L = 100 took several weeks. The reason for that is that
bootstrapping itself is a simulation technique. So if 1.000 bootstrapping samples are
drawn per bootstrapping, and 1.000 simulations-samples are created, the total number
of samples becomes 1.000.000. Therefore, K was set to 100 for all 54 power-simulations,
leading to a less precise simulation. However, no one would run a bootstrap with less
then 1000 bootstrap-samples nowadays, and thus, creating more simulation samples
with less bootstrap samples would create less realistic results. Hence, precision was
treated for a more realistic simulation. Because Type-I error is often considered more
important than Type-II, the 9 Type-I error simulations were run with 1000 simulation-
samples.

The simulation was conducted via Amazon Web Services (cloud computing) be-
cause the simulations were very time demanding. However, the simulation server
crashed several times, caused by the bootstrap function. Logs were inconclusive, and
timing was not predictable. Temporal files were created so that a simulation condition
could be restarted at the point where the server crashed. Rerunning the bootstrap at
exact the same point where the server crashed previously did not provoke another im-
mediate crash. Therefore, results were obtained for every simulation condition. This
might affect the simulated results. The crashes occurred more often for small samples
with short sequences yet high βs. However, the maximum number of crashes were
two in one simulation condition. There is one exception which is the condition with
β = 1, N = 10, and L = 10. Simulations within that conditions crashed nearly every
time, those that did not crash return NaNs (not a number) and Inf (Infinity) often. This
condition also had a lot of cells with zero frequencies which might be one explanation.

175

10. Simulation studies

Estimates for Type-I error and bias varied only slightly across all conditions. Hence,
they are reported in aggregated form. Nominal error rate was .05; the mean estimated
Type-I error for both intercepts was .051, the bias was .00002; for the actor effects the
error was .048 and the bias −0.002; for the partner effect it was error .064 and bias
−0.003; finally partner*actor interaction showed an error of .046 and bias was −0.001.
Overall, deviation of the true values was very small, and the Type-I error rate seems
to be even closer to the nominal error rate than the previous models. Moreover, no
correlations were found between the conditions and error-rate or bias. Hence, ordi-
nary non-parametric bootstrap with 1000 bootstrapping-samples is a valid method for
generating p-values for actor- and partner-effects that were computed from transition
probabilities. That is, at least regarding the Type-I-error.

The basic Markov APIM performs similarly as the multilevel APIM regarding power.
For small effects (β = 0.2; odds ratio of 1.22) and medium effects (β = 0.4; odds ratio of
1.49) a good power (above .80) can be achieved even with small sample sizes (N = 10)
if the sequences are very long (L > 100). Vice versa short sequences (L = 10) achieve
the same power if sample sizes are big (N > 100). Same goes for medium sized
samples (N = 50) with sequences of length=50. If effects are really big (β = 0.8;
odds ratio of 2.23) even small sample sizes (N=10) with small sequences (L = 10) will
achieve a very high power (>.95).

As with the multilevel model, computation can take a long time. For example,
running one multilevel model with N=1000 and L=1000 with 1000 bootstrap-samples
on an Intel(R) Core(TM) i7-3770 CPU with one 3.40Ghz core reserved only for R took
34 min. and 26 sec. Overall, there is not much of a difference between the multilevel
APIM and the basic Markov APIM. Both take very long for extreme sample sizes
and long sequences; power estimates are similar, the same goes for Type-I error. The
multilevel APIM seems to be more robust regarding extreme conditions that cause
many empty cells. However, the basic Markov APIM is nearly as fast as the aggregated
logit model, when bootstrapping is not performed. Therefore, in cases in which p-
values are not needed, and empty cells are not likely, the basic Markov model should
be superior to aggregated logit models, yet faster than the multilevel model.

176

10. Simulation studies

Table 10.7.: Basic Markov APIM: Power-Analysis for Actor und Partner

Actor Partner

Simulation conditions β̂ H0 rejections β̂ H0 rejections

β=0.2; N=10; L=10 0.19 .06 0.21 .03
β=0.2; N=10; L=50 0.18 .55 0.19 .61
β=0.2; N=10; L=100 0.19 .85 0.19 .86

β=0.2; N=50; L=10 0.19 .49 0.19 .50
β=0.2; N=50; L=50 0.20 1.00 0.20 1.00
β=0.2; N=50; L=100 0.20 1.00 0.20 1.00

β=0.2; N=100; L=10 0.21 .90 0.21 .90
β=0.2; N=100; L=50 0.20 1.00 0.20 1.00
β=0.2; N=100; L=100 0.20 1.00 0.20 1.00

β=0.4; N=10; L=10 0.40 .21 0.41 .01
β=0.4; N=10; L=50 0.39 .99 0.39 .99
β=0.4; N=10; L=100 0.39 1.00 0.41 1.00

β=0.4; N=50; L=10 0.39 .99 0.39 .99
β=0.4; N=50; L=50 0.40 1.00 0.40 1.00
β=0.4; N=50; L=100 0.40 1.00 0.40 1.00

β=0.4; N=100; L=10 0.40 1.00 0.42 1.00
β=0.4; N=100; L=50 0.40 1.00 0.40 1.00
β=0.4; N=100; L=100 0.40 1.00 0.40 1.00

β=1; N=10; L=10 ∗ ∗ ∗ ∗
β=1; N=10; L=50 1.00 1.00 1.02 1.00
β=1; N=10; L=100 1.00 1.00 1.00 1.00

β=1; N=50; L=10 0.98 1.00 1.02 1.00
β=1; N=50; L=50 1.00 1.00 1.00 1.00
β=1; N=50; L=100 1.00 1.00 1.00 1.00

β=1; N=100; L=10 1.00 1.00 1.00 1.00
β=1; N=100; L=50 0.99 1.00 1.00 1.00
β=1; N=100; L=100 1.00 1.00 1.00 1.00

Notes: β̂ is estimated mean effect; β is true effect; N is sample size; L is length of
sequence; 1000 samples were drawn per simulation condition.; * more than 90% of
estimates resulted in infinite values or "Not a Number", which might be caused by
the big effect size combined with the small sample size and short sequences. Many
sequences had only a constant state; H0 rejections are the power (1 - Type-II error).

177

10. Simulation studies

10.6. Restricted Hidden Markov (Latent Hazard)

Four simulation studies were conducted for the latent Markov Model. All four studies
investigated bias and simulated standard error for hazard and emissions. The first
two studies differed only regarding their emissions (high vs. low), and both used the
same conditions for hazard (hazard = .01, hazard = .05, hazard = .10), sample size
(N = 10, N = 50, N = 100) and sequence length (number of time intervals; L = 10,
L = 50, L = 100). The third and fourth simulations are post-hoc simulations that
were conducted for investigating the results of the former simulation further. The
fourth simulation investigated whether the bias induced on small samples by a very
low hazard is the same for very high hazards. The fourth simulation investigated the
effect of sample size and length in smaller steps, using a small hazard (hazard = .01
and high emissions).

High emissions were operationalized as the following: emissions are high when if
states are strongly connected to one of the observed states. Therefore emissions in the
first simulation were constructed as the following: If the hidden state was the initial
state the probability for showing state 1 was .90, for showing state 2 it was .03, for the
third state .03, and for the fourth .04. As for the absorbing state the emissions were
.03, .03, .04 and .90. Thus, the first observed state is a strong indicator for being in the
initial state, and the fourth state is a strong indicator of being in the absorbing state.

For low emissions the probabilities were the following: If the hidden state was the
initial state the probability for showing state 1 was .70, and for each of the other states
it was .10. For the absorbing state, the probability of showing the fourth observable
state was .70 and .10 for the other states.

Table 10.8 displays the results for the high emissions, while Table 10.9 shows the
results for low emissions. The overall finding is that the latent hazard model performs
well if sequences are longer than 50 time intervals or if the sample size is bigger than
50. The bias is only big if the sample size is 10 and sequence length is 10 and if the
hazard is very small (h = .01). Low emissions seem to add further bias.

The simulation also shows that a higher hazard will result in a lower bias. Three
follow-up simulations were conducted to see if this is also true for extremely high
values for the hazard. The conditions were N = 10, L = 10. Hazard was manipulated
as being .90, .95 and 99. The bias for the hazard of .90 was essentially the same as for
.10, for .95 the same as for .05 and for .99 the same as for .01. The biases differed only
slightly on the second digit, which indicates that the bias is especially high the closer
the true hazard is to either one or zero.

178

10. Simulation studies

Another finding was that the estimates with low values for N and L tend to be not
normally distributed. As shown in Figure 10.5 the distribution becomes normal if
the samples have a size of N = 40 and L = 40 or greater. Therefore, the simulated
standard errors of the simulations should not be used for estimating confidence inter-
vals if sample sizes and sequence length is small. If confidence intervals are created
via resampling-techniques such as bootstrapping or permutation tests, one should
use non-parametric estimation methods that do not assume normally distributed esti-
mates.

The fourth simulation investigated the effect of sample size and length in smaller
steps, using a small hazard (hazard = .01) and high emissions. N stated at 15 and
was increased by 5 observational units per simulations step, and L started at 5 and
was also increased per 5 intervals. 500 samples were drawn per iteration. The results
can be seen in Figure 10.4. The plot shows that the bias for smaller samples sizes can
be reduced if longer sequences are used. So for a sample size of N = 15, a sequence
length of at least 40 time intervals is recommended. If the sample size is N = 20, a
length of L = 25 is sufficient, and if the sample size is at least N = 30, a length of
L = 20 is sufficient, and for N > 45 even a length of L = 15 seems fine.

However, these recommendations are only true for high emissions, meaning that
good indicators must be chosen. If only weak indicators are used, the sample size
or the sequence length should be increased. On the other hand, a low hazard of
h = .01 was chosen which should induce a bigger bias as for example h = .05. Hence,
if a higher hazard is expected, lower samples sizes and shorter sequences might be
sufficient. Because of the above, these recommendations should only be treated as an
orientation.

The corresponding R-script (see Appendix B.7) was written in a way that it could
be adapted easily for any other constellation of emissions and hazard. Therefore, it
can be used to get the optimal sample size and sequence length tailored to a specific
application. Similar as it is done with a power-analysis before sampling.

179

10. Simulation studies

Table 10.8.: Hidden Markov: Bias and SE for High Emissions

Hazard Emissions

Simulation conditions bias SE bias max bias SE

hazard=.01; N=10; L=10 .22 .18 .22 .44 .04
hazard=.01; N=10; L=50 <.01 .01 <.01 <.01 <.01
hazard=.01; N=10; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.01; N=50; L=10 .02 .01 .03 .06 .01
hazard=.01; N=50; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.01; N=50; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.01; N=100; L=10 <.01 <.01 <.01 .01 <.01
hazard=.01; N=100; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.01; N=100; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.05; N=10; L=10 0.01 .01 .02 .05 .01
hazard=.05; N=10; L=50 <.01 <.01 .01 .01 <.01
hazard=.05; N=10; L=100 0.01 <.01 0.01 <.01 <.01

hazard=.05; N=50; L=10 <.01 <.01 <.01 .01 <.01
hazard=.05; N=50; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.05; N=50; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.05; N=100; L=10 <.01 <.01 <.01 <.01 <.01
hazard=.05; N=100; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.05; N=100; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.10; N=10; L=10 .01 <.01 .01 .03 <.01
hazard=.10; N=10; L=50 .01 <.01 .01 .03 <.01
hazard=.10; N=10; L=100 .01 <.01 .01 .02 <.01

hazard=.10; N=50; L=10 <.01 <.01 .01 <.01 <.01
hazard=.10; N=50; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=50; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.10; N=100; L=10 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=100; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=100; L=100 <.01 <.01 <.01 <.01 <.01

Notes: hazard is latent hazard; N is sample size; L is length of sequence; bias is the
mean of absolute deviations from the true hazard; SE is simulated standard error;
mean and SE of emissions are absolute meas over all 8 emissions; max bias is the
highest mean absolute bias of the 8 emissions; 1000 samples were drawn per simula-
tion condition.; Emissions were .90/.03/.03/.04 for the first state and .03/.03/.04/.90
for the absorbing state.

180

10. Simulation studies

Table 10.9.: Hidden Markov: Bias and SE for Low Emissions

Hazard Emissions

Simulation conditions bias SE bias max bias SE

hazard=.01; N=10; L=10 .32 .14 .10 .38 .03
hazard=.01; N=10; L=50 .01 <.01 <.01 .01 <.01
hazard=.01; N=10; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.01; N=50; L=10 .05 .03 .02 .10 .02
hazard=.01; N=50; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.01; N=50; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.01; N=100; L=10 .01 .01 .01 .02 .01
hazard=.01; N=100; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.01; N=100; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.05; N=10; L=10 0.06 .03 .02 .08 .02
hazard=.05; N=10; L=50 <.01 <.01 <.01 .01 <.01
hazard=.05; N=10; L=100 0.01 <.01 <.01 .01 <.01

hazard=.05; N=50; L=10 <.01 <.01 <.01 .01 <.01
hazard=.05; N=50; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.05; N=50; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.05; N=100; L=10 <.01 <.01 <.01 <.01 <.01
hazard=.05; N=100; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.05; N=100; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.10; N=10; L=10 .03 .01 .01 .03 .01
hazard=.10; N=10; L=50 .01 <.01 <.01 .01 <.01
hazard=.10; N=10; L=100 .01 <.01 <.01 .01 <.01

hazard=.10; N=50; L=10 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=50; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=50; L=100 <.01 <.01 <.01 <.01 <.01

hazard=.10; N=100; L=10 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=100; L=50 <.01 <.01 <.01 <.01 <.01
hazard=.10; N=100; L=100 <.01 <.01 <.01 <.01 <.01

Notes: hazard is latent hazard; N is sample size; L is length of sequence; bias is the
mean of absolute deviations from the true hazard; SE is simulated standard error;
mean and SE of emissions are absolute meas over all 8 emissions; max bias is the
highest mean absolute bias of the 8 emissions; 1000 samples were drawn per simula-
tion condition.; Emissions were .70/.10/.10/.10 for the first state and .10/.10/.10/.70
for the absorbing state.

181

10. Simulation studies

15 20 25 30 35 40 45

0.
00

0.
02

0.
04

0.
06

number of time-intervals

bi
as

 o
f e

st
im

at
ed

 h
az

ar
d

N= 15
N= 20
N= 25
N= 30
N= 35
N= 40
N= 45

15 20 25 30 35 40 45

0.
00

0.
02

0.
04

number of time-intervals

bi
as

 o
f e

st
im

at
ed

 e
m

is
si

on
s

N= 15
N= 20
N= 25
N= 30
N= 35
N= 40
N= 45

Figure 10.4.: Bias for Latent Hazard (top) and its Emissions (bottom)

182

10. Simulation studies

Figure 10.5.: Distribution of Hazard-Estimates

183

10. Simulation studies

10.7. Unrestricted Hidden Markov

Several simulation studies were conducted for the hidden Markov model. A first
simulation was conducted for investigating the effect of sample size and sequence
length on AIC and BIC, and how this might lead to a correct or incorrect number
of latent states. Three models were simulated: one basic Markov model (serves as
comparison model without latent structure; see Table 10.10), a hidden Markov model
with two latent states (see Table 10.11), and one with three latent states (see Table
10.12). Each model was simulated to have four indicators. Emissions, transitions and
initial state distribution were chosen arbitrarily in the first simulation. However, all
three models had to be changed for creating meaningful results; the tables show the
models that were used in the last run of simulations. The results are shown in Tables
10.13 (correct Model selection) and Figures 10.6 (biases for estimates of the two latent
state model) and 10.7 (biases for estimates of the three latent state model) and a closer
look on bias patterns for the model with three latent states (Figure 10.8). The basic
Markov model was also used in the following Chapter 10.8, and biases for transition
probabilities can be found there in more detail (see Chapter 10.17).

Table 10.10.: True Basic Markov Model

Initial State State 1 State 2 State 3 State 4
Probabilities 1.00 0.00 0.00 0.00

Transitions →State 1 →State 2 → State 3 → State 4

State 1→ .80 .10 .10 .00
State 2→ .10 .70 .10 .10
State 3→ .10 .10 .70 .10
State 4→ .00 .10 .10 .80

Notes: States refer to observed states. No hidden states are assumed for the basic
Markov model. left hand of→ transition from; right hand of→ transition to.

The first test runs showed that identifying which of the estimated hidden states cor-
responded to which true hidden state was too difficult with initial simulation values,
at least for an automated process. Therefore, emission probabilities were modified in a
way that each hidden state should show a distinct emission pattern. Taking the model
with three latent classes as an example, hidden state 1 goes 90% of the time with
observed state 1, whereas hidden state 2 goes 90% with observed state 2 or 3, and

184

10. Simulation studies

hidden state 3 goes 80% with observed state 4. Therefore, emission patterns should be
distinguishable even with statistical noise.

The next problem was that the first batch of simulations always favored a model
with two latent classes regardless of sample size and sequence length. The reason for
that was similar to a phenomenon called the problem of equivalent models. The original
problem of equivalent models was formalized by Stelzl (1986). She pointed out that
different statistical models can be fitted on the same data resulting in the same model
fit, even if they imply completely different causation models. For example, the role
of dependent and independent variables in regression can be switched, but R2 will
always be the same.

The problem in this simulation was similar: taking the basic Markov model, for
example, applying all three models on the data generated by the basic Markov model
resulted in equally good fit (concerning likelihood). Hence, the data can be explained
by all three models equally good, even though the basic Markov model is the true
model. The parsimony principle demands that the least complex model should be
chosen in such a situation. Because of that, AIC and BIC penalize models for their
number of free parameters (also referred to as degrees of freedom, d f). Thus, if three
models have a similar likelihood, they will always point to the model with the lowest
number of free parameters. In this case, the model with the lowest number of free
parameters is actually the model with two latent states (d f = 9), followed by the basic
Markov model (d f = 15), and the most complex model is the hidden Markov model
with three latent states (d f = 17).

The model with two latent states has 9 parameters that can very freely: two latent
states exist, and thus, two the initial states have had to be estimated. However, the
initial states have to sum up to one, and therefore, only one can vary freely. Each row
of the transition table has to sum up to one, too, and thus two parameters can vary
freely; for the emissions, each row has to sum up to one, too. The emissions matrix
has two rows and four columns, and thus, six free parameters. Whereas the basic
Markov has 15 parameters that can vary freely: There are four states, and thus three
free parameters for the initial state distribution; and three free parameters per row of
the transition matrix, so for four rows a total of 12 free parameters must be estimated.
There are no free parameters for the emissions. Finally, the model with three latent
states has 17 free parameters: Two for the initial state distribution, six for the transition
probability and nine for the emissions.

However, all three model generated sequences with very similar distributions. The
distribution plots became somewhat dissimilar after adjusting the emissions for the

185

10. Simulation studies

Table 10.11.: True Hidden Markov Model with Two Latent States

Initial State State 1 State 2
Probabilities 1.00 .00

Transitions →State 1 →State 2

State 1→ .90 .10
State 2→ .05 .95

Emissions X=1 X=2 X=3 X=4

State 1→ .90 .03 .03 .04
State 2→ .03 .03 .04 .90

Notes: State refers to the latent state, while X refers to the observes states; left hand
of→ transition from; right hand of→ transition to.

reasons mentioned above, but the initial stability rates were so low that observations
would switch very fast from one state to another. Hence, the stability was increased
so observations would stay for a longer period within a certain state. Finally, the first
initial state was set to one and transitions were set so that observations would move
slowly from state one to state two, from state two to state three (if it exists), and - for
the basic Markov model - from state 3 to state 4. This was done because sequences
entered their equilibrium states very fast if a uniform distribution was used. However,
especially in Experimental Psychology, it is more plausible that observational units
are manipulated to be in the same states at the beginning of the experiment and then
transition into other states while the experiment is running. However, this setup for the
simulation increases the importance of sequence length, because observational units
are very similar at the beginning of all three models and need several time intervals
for forming distinct patterns.

Table 10.13 shows the results of the final simulation regarding model selection. A
basic Markov model, a model with two latent states, and a model with three latent
states, were fitted on each dataset. AIC and BIC were used to determine the correct
model. Correct classification is written in boldface.

The AIC performs better than the BIC, especially for small sample sizes. For exam-
ple, the AIC correctly classified 71% of basic Markov models correctly in the "basic
Markov; N = 10; L = 10" condition, whereas the BIC classified only 5% correctly.
There is one exception to this trend: the BIC performs better for the simulations of the

186

10. Simulation studies

Table 10.12.: True Hidden Markov Model with Three Latent States

Initial State State 1 State 2 State 3
Probabilities 1.00 0.00 0.00

Transitions → State 1 → State 2 → State 3

State 1→ .70 .20 .10
State 2→ .10 .70 .20
State 3→ .05 .05 .90

Emissions X=1 X=2 X=3 X=4

State 1→ .90 .03 .03 .04
State 2→ .05 .45 .45 .05
State 3→ .05 .05 .10 .80

Notes: State refers to the latent state, while X refers to the observes states; left hand
of→ transition from; right hand of→ transition to.

hidden Markov model with two latent states. However, inspecting the misclassification
rate of BIC for the other simulations reveals that it seems to have a bias towards the
most simple model, in this case, the hidden Markov model with two latent states. That
might explain why the BIC performs so well even with a small number of observations
for that particular model.

However, the behavior of the AIC for the two latent states model is different than for
the other models as well. The rate of correct classifications increases with increasing
number of observations and longer sequences for the basic Markov model and the
three latent states model, whereas it decreases for the model with two latent states. A
single simulation with N = 100, L = 100, and 500 samples confirmed that this trend
continued (down to .89 for that simulation). This indicates that AIC might not be a
good choice for a model with low degrees of freedom mixed with extreme sample
sizes or sequence lengths. However, for the typical sample sizes used in Psychology,
the correct classification rate is still good, and the AIC can be recommended as a fit
index if sample sizes small (N = 10) and sequences are relatively long (L = 50). The
BIC, on the other hand, performs well if the sample sizes are high and sequences
are long enough: The correct classification rate got near 100% if the sample size was
at least 30 and sequence length was 50, or vice versa, if the sample size was 50 and
sequence length was 30. As a minimum recommendation should be N >= 30 and

187

10. Simulation studies

L >= 30, which gives 91% correct classification rate if three or less latent states are
expected.

However, this view covers only the correct model selection, but the estimates were
also investigated regarding potential biases. Figures 10.6 and 10.7 show the mean
absolute bias for the transitions and the estimation of both hidden Markov models.
There is a very small bias for the transition probabilities for the 2 latent states model.
However, the bias is so small that even in the N = 10; L = 10 condition it rounds
only up to .01. There seems to be an anomaly for the transition probabilities when the
sample size is 30. This might be caused by random fluctuation due to the very small
values.

The model with three latent models shows a bigger, yet not concerning bias for the
transition rates. The bias seems to converge against a minimum of .03 when N >= 50
and L >= 30. Inspecting the bias for each transition rate separately revealed that the
bias is stronger for extreme transition rates. For example, the transition rates from
state 1 were stronger affected as the transition rates from state 2 for the two latent
state model. The bias is also towards a uniform distribution. Hence, in case of the toe
latent states mode, towards transition probabilities of .50.

The bias for the emissions of the three latent state model is huge. They seem to
converge at .28 if N >= 50 and L >= 30. The same phenomenon occurred before for
the transition probabilities but stronger. This is shown in Figure 10.8 for the condition
N = 10, L = 10; N = 10, L = 100; N = 100, L = 10; and N = 100, L = 100. Grey bars
show the estimated emissions for each observed state stacked by hidden states. The
black reference lines indicate the true emissions, and thus, are the same for each of
the for conditions. All emissions were heavily biased towards a uniform distribution
(towards .25). However, the pattern of emissions is overall the same. Therefore, hid-
den states can still be interpreted via the emissions with care. Emissions can still be
compared in terms like "relatively strong compared to the other" vs. "relatively weak
to the other". However, the order of magnitude can change. For example, the N = 100,
L = 10 shows that the true emission from the hidden state 3 to the observed state 4
is highest, followed by the third observed state, and the observed states 1 and 2 share
the same rank. Hence the Order is 4 > 3 > (2 & 1) for the true emission. However,
inspecting the estimated emissions shows that the observed state 4 has still the highest
emission, yet observed state 1 follows in the second place. The complete order is 4 > 1
> 3 >2. Therefore, ranking emissions should not be used for interpretation of hidden
states, especially when differences are small.

188

10. Simulation studies

Table 10.13.: Model Selection for Hidden Markov Simulation

AIC BIC

Simulation conditions B 2S 3S B 2S 3S
basic Markov; N=10; L=10 .71 .25 .04 .05 .95 .00
basic Markov; N=10; L=30 .95 .01 .04 .42 .58 .00
basic Markov; N=10; L=50 .99 .00 .01 .81 .19 .00
basic Markov; N=30; L=10 .97 .01 .02 .55 .45 .00
basic Markov; N=30; L=30 1.00 .00 .00 .99 .01 .00
basic Markov; N=30; L=50 1.00 .00 .00 1.00 .00 .00
basic Markov; N=50; L=10 .99 .00 .01 .90 .10 .00
basic Markov; N=50; L=30 1.00 .00 .00 1.00 .00 .00
basic Markov; N=50; L=50 1.00 .00 .00 1.00 .00 .00
2 latent states; N=10; L=10 .05 .94 .01 .00 1.00 .00
2 latent states; N=10; L=30 .00 .97 .03 .00 1.00 .00
2 latent states; N=10; L=50 .00 .98 .02 .00 1.00 .00
2 latent states; N=30; L=10 .00 .96 .04 .00 1.00 .00
2 latent states; N=30; L=30 .00 .94 .06 .00 1.00 .00
2 latent states; N=30; L=50 .00 .93 .07 .00 1.00 .00
2 latent states; N=50; L=10 .00 .95 .05 .00 1.00 .00
2 latent states; N=50; L=30 .00 .94 .06 .00 1.00 .00
2 latent states; N=50; L=50 .00 .92 .08 .00 1.00 .00
3 latent states; N=10; L=10 .19 .60 .21 .01 .99 .00
3 latent states; N=10; L=30 .10 .07 .83 .04 .89 .07
3 latent states; N=10; L=50 .01 .00 .99 .04 .62 .34
3 latent states; N=30; L=10 .14 .04 .82 .10 .83 .07
3 latent states; N=30; L=30 .00 .00 1.00 .01 .08 .91
3 latent states; N=30; L=50 .00 .00 1.00 .00 .00 1.00
3 latent states; N=50; L=10 .06 .00 .94 .15 .44 .41
3 latent states; N=50; L=30 .00 .00 1.00 .00 .00 1.00
3 latent states; N=50; L=50 .00 .00 1.00 .00 .00 1.00

Notes: Simulation conditions show the true model, basic Markov model (Abbr. B; see
Table 10.10), 2 latent states (Abbr. S2; see Table 10.11) or 3 latent states (Abbr. S3; see
Table 10.12), N = samples size, L = length of sequences; 500 samples were drawn per
simulation condition; Columns show classification based on AIC (Akaike information
criterion) or BIC (Bayesian information criterion) for B (basic Markov Model).

189

10. Simulation studies

This simulation is limited by the following: 1) it covers only the case of very dis-
tinctive latent states; 2) it covers only the case in which all observational units start in
the same latent state; 3) it covers only models with four indicators; 4) it covers only a
maximum of thee latent states; 5) even after running several post-hoc simulations with
alternative initial states, transition matrices, and emissions, it remains unclear why the
bias is relatively small for the model with two latent states, but relatively big for three
latent states; 6) optimizer settings had a huge impact on model selection and overall
performance. Other optimizers and settings might result in better estimates.

Some practical recommendations: Initial states, transition matrices, and emissions
can be easily changed for simulating alternative scenarios using the R-code in Chap-
ter B.8. This might be useful for estimating the needed sample size and sequence
length for cases that are not covered in this chapter. As mentioned before, the opti-
mizer and its settings had a huge impact on the overall performance. Initially, only
the EM-algorithm was used, which converged fast, but it performed not good for the
hidden Markov models. As recommended by Helske and Helske (2016), MSLS-LDS
(Kucherenko and Sytsko, 2005) was used as a global optimizer, and low-storage BFGS
(Liu and Nocedal, 1989) was used as a local optimizer. This resulted in better model
selections and reduced bias. The price for that is longer computation time. Running
the EM-algorithm with 1000 different starting values needed only a few seconds for
estimating a three latent class model with N = 100 and L = 100, whereas the com-
bination of MSLS-LDS and low-storage BFGS took several minutes. However, it is
highly recommended to use these or other sophisticated algorithms rather than the
EM-algorithm.

The following recommendation for sample size and sequence length can be made: A
hidden Markov model with only two latent states can be estimated with small sample
sizes such as 10, the potential bias is very small. However, if the number of latent states
is not known, but assumed to be three or less, N should be at last 30 if sequences are
short (L = 10), or vice versa, if the sample size is small (N = 10) the sequences should
have a length of at least 30. Moreover, sequences should always be long enough so that
all possible latent states can be reached by many of the observational units. Hence, if
hidden states are believed to be more stable than in this simulation, sequences should
be longer. Moreover, if more than three latent states are assumed, sample sizes and
sequence length should be increased. The same goes for the case that hidden states
should be detected that are relatively similar opposed to the very distinct states that
were used in these simulations.

190

10. Simulation studies

Overall, AIC and BIC can be recommended for model selection. AIC might a good
choice if the true model has a high number of degrees of freedom and the sample sizes
are relatively small. BIC performs overall good as long as sample size and sequence
length are high. Therefore, the best strategy might be to strife for the highest possible
number of observations with a reasonable sequence length and then to use the BIC for
model selection.

10.8. Mixture Markov

Several simulation studies were conducted for the mixture Markov model. A basic
Markov model, a mixture Markov model with 2 latent classes, and a mixture Markov
model with 3 latent classes were used as true models. The true values for the simula-
tions can be found in the following tables: Simulated Models: Basic Markov Model is
seen in Table 10.10, two latent classes in Table 10.14, three latent classes in Table 10.15.

As an additional condition, sample size and the lengths of sequences were iterated
across the values 10, 20, 30, 40, 50. Therefore, a total of 75 combinations were simulated
(5 conditions for N, 5 conditions for L, and 3 different true models: 5 ∗ 5 ∗ 3 = 75). 500
samples were drawn per simulation.

For each condition of the simulation, a Basic Markov Model, a mixture Model with
2 latent classes and one with 3 latent classes was fitted on the dataset. AIC and BIC
were separately used for model selection: that model was selected which had the
lowest AIC or BIC. The results of this selection can be seen in Table 10.16. The fraction
of correct model selections is written in boldface. Not all conditions are shown, yet
the displayed results should show a clear trend.

BIC performs well for the true basic Markov model and the model with two latent
classes. For all conditions with none or 2 latent classes, the number of correct model
selections is 1.00, except for N = 10; L = 10. If 3 latent classes should be detected,
the BIC needs a higher sample size. The correct selection rate is zero for all N = 10
conditions, and all originally planned L = 10 conditions. Even with N = 50 and L =

50, the correct selection rate was only .88. Therefore, four additional simulations were
conducted with N = 100 and L = 10; 30; 50; 100. The increased sample size lifted the
correct selection rate to .36 for the L = 10 condition. Therefore, the sample size seems
to compensate for a low L. However, the correct selection rate for longer sequences
did not improve further and even dropped for the N = 100 and L = 100 condition. At
first glance, this might indicate that there is an upper limit to the selection rate.

191

10. Simulation studies

Figure 10.6.: Biases for the 2-latent-state Model

192

10. Simulation studies

0.
03

0
0.

04
5

bias for transition probabilities (3−latent−states model)

Sample Size

ab
so

lu
te

 m
ea

n
bi

as

10 30 50 100

L=10
L=30
L=50
L=100

0.
25

0.
30

0.
35

0.
40

bias for emissions (3−latent−states model)

Sample Size

ab
so

lu
te

 m
ea

n
bi

as

10 30 50 100

L=10
L=30
L=50
L=100

Figure 10.7.: Biases for the 3-latent-state Model

193

10. Simulation studies

Figure 10.8.: Detailed Bias for Emissions (3 Latent States).

194

10. Simulation studies

The modification to the transition probabilities of those post-hoc simulation were
the following: for class 1 the row State 1→ was changed to .85, .05, .05, .05; for class
2 the row State 3→ was changed to .05, .05, .85, .05; and for class 1 the row State 4→
was changed to .05, .05, .05, .85.

The AIC behaves strangely for the basic Markov model and the 2 latent states model:
on the one hand, the correct selection rate is relatively high with a rate of equal or
above .95 for all conditions except for the basic Markov model with N = 50 and
L = 10. On the other hand, the correct selection rate tends to decrease with higher
values of N. This trend was the same for the post-hoc simulation, while the selection
did not improve for conditions with low sample size or short sequences. Hence, BIC
is recommended over AIC.

The Table 10.17 shows bias, SE for the transition probabilities in the first two columns
for all simulation conditions. A modified calculation for avoiding bias induced by ab-
sorbing states was used for the model with 3 latent classes in column four and five.
Cohen’s κ was used for assessing how well observational units are assigned to their
true class.

Because the order in which the latent classes are estimated is arbitrary, true latent
classes and estimated classes had to be matched. This was done by using squared
Euclidean distance. For example, for the model with two latent states, the Euclidean
distance between the transition matrix of the first estimated class and the true first was
calculated, then between the second estimated and the first true class. The estimated
transition matrix with the lower distance was then matched with the first true class. As
for the three latent class model, the procedure was similar: the distance between the
transition matrix of the true first class was compared with all three estimated transition
matrices regarding the squared Euclidean distance. The one with the lowest distance
was matched with the first true class. The remaining two matrices were compared the
matrix of the second true class, again the one with the closest distance was matched
with the second true class. The last remaining class was matched with the true third
class.

After that Bias and SE were computed across all transition probabilities assuming
that the correct model was always selected. However, a close inspection of the biases
revealed that the bias for the 3 latent class model was systematic in the way that all
rows that belonged to an absorbing state had a stronger bias than the other. Therefore,
those rows were excluded in the second calculation of bias and SE found in columns
four and five. Cohen’s κ is a measurement for rater agreement and, in this case,
used for assessing how well sequences are classified regarding their true latent class.

195

10. Simulation studies

Cohen’s κ is basically the correct classification rate but corrected for the probability
of correct classification by chance (see Equation 10.1). The benefit over the correct
classification rate is that magnitude guidelines for Cohen’s Kappa exist: according to
(Landis and Koch, 1977), a κ of 0.41 – 0.60 can be seen as moderate, 0.61 - 0.80 as
substantial, and 0.81 – 1 as almost perfect agreement. Sequences were assigned to the
latent class with the highest posterior probability. Then κ was calculated between this
posterior grouping and the true latent class.

κ =

(
P(DCt)

1− P(DCt)

)
(10.1)

The SE for the basic Markov seems to be relatively constant at about .08, dropping
slightly with increasing sample size and sequence length to .07. There is a relatively
strong bias for N = 10, which decreases with longer sequences. The bias gets accept-
able small with N = 50 and L = 30 or with N = 30 and L = 50. Cohen’s κ cannot be
calculated because all sequences belong to the same class.

The model with 2 latent classes has a very similar SE as the basic Markov model,
and the bias is even smaller across all conditions. Therefore, if only two latent classes
are expected, sample sizes if N = 30 with L = 10 or N = 10 with L = 30 might be
sufficient. Cohen’s κ is very high. Thus, differing sequences between the two latent
classes works very well.

The model with 3 latent classes has very high bias and SE. However, after excluding
all transition probabilities with a true value of 0 or 1, the bias and SE was heavily
reduced, indicating that the bias is mainly caused by the absorbing states. Aiming for
a κ of at least .80 shows that, overall, N = 30 with L = 30 or more should be sufficient.
However, for N = 30 with L = 50, κ is only .68. Therefore, N > 50 with L > 50 might
be a safer recommendation.

The overall recommendation is to have at least N = 50 with L = 50 or greater and to
use the BIC for model selection when three or less latent classes are expected. More-
over, advanced optimizers should be used instead of using only the EM-algorithm.
Also, a researcher should keep in mind that transition rates might be biased if absorb-
ing states exist.

However, this recommendation is limited by the following facts: 1) the simulation
covers only the case of one sample of transition matrices per model. If transition matri-
ces between latent classes very only slightly, bigger sample sizes or longer sequences
might be needed. 2) Only a maximum of three latent classes was tested. If more than

196

10. Simulation studies

three latent classes are assumed, the sample size should be bigger. Each latent class
splits the sequences into subgroups, which makes the estimation of transition prob-
abilities for each latent class more difficult. Therefore, having at least 30 sequences
in each latent class might be a good starting point for conducting further simulation
studies on that topic. 3) A similar limitation is that only balanced datasets were tested.
If the data is unbalanced, e.g., .75 belong to the latent class 1 and .25 to class 2, tran-
sition matrices are more difficult to estimate for the smaller group. Therefore, the
sample size should be increased. For the given example, the sample size might be
doubled so that the frequency in the smallest group fits the frequency that would be
expected if the data was balanced. 4) All three simulated models have exactly four
states. A higher number of states might need a bigger sample size and longer se-
quences because the more states exist, the less likely it might become to observe all
possible transitions in a given dataset. 5) Performance of the models depended heav-
ily on the chosen optimizers. Using other optimizers or other settings might increase
performance further. In this simulation, optimizers were restricted in a way that they
would not take longer than 5 Minutes for fitting a model. Preliminary simulations
revealed that the EM-algorithm alone is a bad choice for an optimizer. Therefore, the
same optimizers were used as in the hidden Markov simulation, which increased the
percentage of correct model selection. Therefore these optimizers were used. How-
ever, the MSLS-LDS optimizer stopped quite often because it reached its time limit (60
seconds per default). The simulations took about a week per condition, and therefore,
the second run with a higher time limit was not conducted.

10.9. OM-Distances

One, two and three cluster solutions were tested on the same true models that were
used for the mixture Markov simulations, respectively the basic Markov model (see
Table 10.10), the mixture Markov model with two latent classes (see Table 10.14), and
the mixture Markov model with three latent classes (see Table 10.15).

Different strategies were tested for choosing the correct number of clusters. The
standard strategy is to use the silhouette coefficient and choose the cluster solution
with the best coefficient. However, if only one class exists, no silhouette coefficient
will be computed. If a cluster achieves only a silhouette coefficient of below .25, it
is often considered to be no real cluster (Struyf et al., 1997). Therefore, the following
two rules were initially used: If the two- and the three-cluster solution achieved only

197

10. Simulation studies

Table 10.14.: True Mixture Markov Model with 2 Latent Classes

Cluster Class 1 Class 2
Probabilities .50 .50

Initial State
Probabilities State 1 State 2 State 3 State 4

Class 1 .25 .25 .25 .25
Class 2 .25 .25 .25 .25

Transitions: Class 1 → State 1 → State 2 → State 3 → State 4

State 1→ .05 .05 .05 .85
State 2→ .05 .05 .85 .05
State 3→ .05 .85 .05 .05
State 4→ .85 .05 .05 .05

Transitions: Class 2 → State 1 → State 2 → State 3 → State 4

State 1→ .70 .20 .05 .05
State 2→ .05 .70 .20 .05
State 3→ .05 .05 .70 .20
State 4→ .01 .01 .01 .97

Notes: left hand of→ transition from; right hand of→ transition to.

198

10. Simulation studies

Table 10.15.: True Mixture Markov Model with 3 Latent Classes

Cluster Class 1 Class 2 Class 3
Probabilities .34 .33 .33

Initial State
Probabilities State 1 State 2 State 3 State 4

Class 1 .25 .25 .25 .25
Class 2 .25 .25 .25 .25
Class 3 .25 .25 .25 .25

Transitions: Class 1 → State 1 → State 2 → State 3 → State 4

State 1→ 1.00 .00 .00 .00
State 2→ .20 .70 .05 .05
State 3→ .05 .25 .65 .05
State 4→ .05 .05 .25 .65

Transitions: Class 2 → State 1 → State 2 → State 3 → State 4

State 1→ .10 .05 .05 .80
State 2→ .10 .05 .05 .80
State 3→ .00 .00 1.00 .00
State 4→ .10 .05 .05 .80

Transitions: Class 3 → State 1 → State 2 → State 3 → State 4

State 1→ .70 .10 .10 .10
State 2→ .70 .00 .30 .00
State 3→ .70 .30 .00 .00
State 4→ .00 .00 .00 1.00

Notes: left hand of→ transition from; right hand of→ transition to.

199

10. Simulation studies

Table 10.16.: Model Selection for Mixture Markov Simulation

AIC BIC

Simulation conditions B 2S 3S B 2S 3S
basic Markov; N=10; L=10 .99 .01 .00 1.00 .00 .00
basic Markov; N=10; L=30 .98 .02 .00 1.00 .00 .00
basic Markov; N=10; L=50 .97 .03 .00 1.00 .00 .00
basic Markov; N=30; L=10 .97 .03 .00 1.00 .00 .00
basic Markov; N=30; L=30 .96 .04 .00 1.00 .00 .00
basic Markov; N=30; L=50 .98 .02 .00 1.00 .00 .00
basic Markov; N=50; L=10 .91 .09 .00 1.00 .00 .00
basic Markov; N=50; L=30 .95 .05 .00 1.00 .00 .00
basic Markov; N=50; L=50 .98 .02 .00 1.00 .00 .00
2 latent classes; N=10; L=10 .00 1.00 .00 .83 .17 .00
2 latent classes; N=10; L=30 .00 .99 .01 .00 1.00 .00
2 latent classes; N=10; L=50 .00 .99 .01 .00 1.00 .00
2 latent classes; N=30; L=10 .00 1.00 .00 .00 1.00 .00
2 latent classes; N=30; L=30 .00 .97 .03 .00 1.00 .00
2 latent classes; N=30; L=50 .00 .99 .01 .00 1.00 .00
2 latent classes; N=50; L=10 .00 .98 .02 .00 1.00 .00
2 latent classes; N=50; L=30 .00 .97 .03 .00 1.00 .00
2 latent classes; N=50; L=50 .00 .98 .02 .00 1.00 .00
3 latent classes; N=10; L=10 .54 .46 .00 1.00 .00 .00
3 latent classes; N=10; L=30 .01 .59 .40 .90 .10 .00
3 latent classes; N=10; L=50 .00 .40 .59 .64 .36 .00
3 latent classes; N=30; L=10 .00 .79 .21 .94 .06 .00
3 latent classes; N=30; L=30 .00 .12 .88 .01 .67 .32
3 latent classes; N=30; L=50 .00 .08 .92 .00 .40 .60
3 latent classes; N=50; L=10 .00 .37 .63 .50 .50 .00
3 latent classes; N=50; L=30 .00 .07 .93 .00 .21 .79
3 latent classes; N=50; L=50 .00 .06 .94 .00 .12 .88
3 latent classes; N=100; L=10 .00 .11 .89 .00 .64 .36
3 latent classes; N=100; L=30 .00 .07 .93 .00 .14 .86
3 latent classes; N=100; L=50 .00 .12 .88 .00 .17 .83
3 latent classes; N=100; L=100 .00 .20 .80 .00 .27 .73

Notes: Simulation conditions show the true model, basic Markov model (Abbr. B; see Table
10.10), 2 latent classes (Abbr. S2; see Table 10.11) or 3 latent classes (Abbr. S3; see Table
10.12), N = samples size, L = length of sequences; 500 samples were drawn per simulation
condition; Columns show classification based on AIC (Akaike information criterion) or BIC
(Bayesian information criterion); a single dot indicates that this statistic was not computed.

200

10. Simulation studies

Table 10.17.: Precisions of Estimates for Mixture Markov Simulation

incl. all States excl. absorbing States

Simulation conditions Bias SE κ Bias SE
basic Markov; N=10; L=10 .11 .08 . . .
basic Markov; N=10; L=30 .06 .08 . . .
basic Markov; N=10; L=50 .04 .08 . . .
basic Markov; N=30; L=10 .03 .08 . . .
basic Markov; N=30; L=30 .02 .08 . . .
basic Markov; N=30; L=50 .01 .07 . . .
basic Markov; N=50; L=10 .02 .08 . . .
basic Markov; N=50; L=30 .01 .07 . . .
basic Markov; N=50; L=50 .01 .07 . . .
2 latent classes; N=10; L=10 .02 .10 .98 . .
2 latent classes; N=10; L=30 .00 .08 >.99 . .
2 latent classes; N=10; L=50 .00 .08 >.99 . .
2 latent classes; N=30; L=10 .00 .08 >.99 . .
2 latent classes; N=30; L=30 .00 .08 >.99 . .
2 latent classes; N=30; L=50 .00 .08 >.99 . .
2 latent classes; N=50; L=10 .00 .08 >.99 . .
2 latent classes; N=50; L=30 .00 .08 >.99 . .
2 latent classes; N=50; L=50 .00 .08 >.99 . .
3 latent classes; N=10; L=10 .33 .14 .43 .08 .12
3 latent classes; N=10; L=30 .24 .11 .82 .04 .09
3 latent classes; N=10; L=50 .22 .10 .89 .03 .09
3 latent classes; N=30; L=10 .28 .10 .58 .04 .09
3 latent classes; N=30; L=30 .26 .09 .90 .03 .07
3 latent classes; N=30; L=50 .23 .07 .93 .03 .47
3 latent classes; N=50; L=10 .25 .08 .92 .03 .07
3 latent classes; N=50; L=30 .31 .09 .68 .04 .08
3 latent classes; N=50; L=50 .25 .08 .92 .03 .07
3 latent classes; N=100; L=10 .30 .09 .79 .04 .08
3 latent classes; N=100; L=30 .25 .07 .93 .03 .06
3 latent classes; N=100; L=50 .17 .06 .91 .03 .05
3 latent classes; N=100; L=100 .21 .07 .86 .03 .06

Notes: Simulation conditions show the true model, basic Markov model (Abbr. B; see Table
10.10), 2 latent classes (Abbr. S2; see Table 10.11) or 3 latent classes (Abbr. S3; see Table
10.12), N=samples size, L=length of sequences; 500 samples were drawn per simulation
condition; Columns show classification based on AIC (Akaike information criterion) or BIC
(Bayesian information criterion).

201

10. Simulation studies

Table 10.18.: Post-Hoc Simulations for 3 laten classes

Precision Correct Model Selection

Simulation conditions Bias SE κ AIC BIC
3 latent classes; N=10; L=30 .11 .10 .70 .48 .00
3 latent classes; N=10; L=50 .10 .09 .76 .62 .00
3 latent classes; N=10; L=100 .07 .09 .77 .57 .52
3 latent classes; N=30; L=30 .08 .09 .75 .59 .31
3 latent classes; N=30; L=50 .09 .09 .68 .42 .38
3 latent classes; N=30; L=100 .11 .09 .65 .34 .30
3 latent classes; N=50; L=10 .08 .09 .75 .59 .31
3 latent classes; N=50; L=30 .09 .09 .72 .46 .44
3 latent classes; N=50; L=50 .11 .09 .66 .38 .35
3 latent classes; N=100; L=30 .06 .09 .81 .71 .62
3 latent classes; N=100; L=50 .08 .09 .72 .53 .46
3 latent classes; N=100; L=100 .11 .09 .57 .50 .37
3 latent classes; N=300; L=30 .07 .10 .80 .75 .66
3 latent classes; N=300; L=50 .08 .09 .69 .57 .51
3 latent classes; N=300; L=100 .14 .09 .51 .50 .42

Notes: ; 100 samples were drawn per simulation condition; Columns show classification
based on AIC (Akaike information criterion) or BIC (Bayesian information criterion).

202

10. Simulation studies

an average silhouette coefficient of below .25. the one-cluster solution was chosen.
Otherwise, the higher average silhouette coefficient was used. This rule performed
badly when only one cluster exists (above .50 misclassification rate even with sample
size = 100 and sequence length = 100).

Alternatively, the following rule was tested: choose the highest number of clusters
where the minimum silhouette coefficient is above .25. This rules performed even
worse. The next approach was to stick to the first rule but to increase the cut-off. The
next benchmark value provided by Struyf et al. (1997) is .50 for a medium structure.
Thus, the cut-off was set to .50. If the silhouette coefficient is below that, the cluster
structure is considered to be weak. So the third rule was: If two and three cluster
solution achieved only an average silhouette coefficient of below .50. the one-cluster
solution was chosen. Otherwise, the higher average silhouette coefficient was used.
This rule resulted in a heavy bias for the one-cluster solution. Finally, a cut-off of .40
was used, which resulted in overall consistent results and performed well for both
cases in which only one true cluster existed. As for the conditions with two or three
clusters, it performed still well, but only with increased sample size. The results can
be seen in Table 10.19.

Dendrogram and scree plot must be interpreted by humans, and therefore, could
not be tested directly. However, the author of this monograph tried to program an
algorithm that mimics his intuition about scree plots. The algorithm performed badly.
However, inspecting 500 random sample scree plot manually resulted also in only
15% correct classifications. Plotting all 1000 scree plots into an overlay plot (see Figure
10.9) revealed that the scree plot should not be used for model selection of sequence
clusters. Small sample sizes (N = 10) with short sequences (L = 10) seem to indicate
two classes most of the time when only one latent class exist, and vice versa, indicate a
one-cluster solution when two latent classes exist. The scree plot seems to work better
with big sample sizes (N = 100) and long sequences (L = 100). However, the scree
plots that were generated by three true classes show a very ambiguous picture. There
is a big drop from a one-class solution to a second class solution, yet only a small drop
to a solution with three clusters. Hence, many researchers would choose two clusters;
some might take three. The scree plot is not recommended as model selection tool
based on this observation.

Overall, clustering using OM-distances performed worse than the mixture Markov
model when samples sizes are small, and sequences are short. However, it performed
better than the mixture Markov model when sample sizes are big, and sequences are
long. Especially the length of sequences had a huge effect on the bias. Model selection

203

10. Simulation studies

worked well (>80% correct model selection) for N >= 30 with L >= 100 or N >= 100
with L => 50, when the silhouette coefficient was used. Mean absolute bias for these
conditions was .01, and the SE was around .02 to .03. Cohen’s κ was about .98 for
these conditions. Unlike the mixture Markov model, no instabilities were detected for
a model with three latent groups, even though the same true models were used for
the simulation. Therefore, OM-clustering seems to be more robust than the mixture
Markov model. Overall it is recommended to use OM-clustering when sample size
and sequence length is N >= 30 with L >= 100 or N >= 100 with L => 50. If a
Cohen’s κ of around .90, a bias of .03, and bigger SE of .04 is acceptable, OM-clustering
can also be used for sample sizes of N >= 30 with sequence lengths of L >= 50.

The clustering with OM-distances has three advantages: 1) it is computationally
fast, which might be a crucial factor if sequences should be grouped in real-time.
However, within the field of science and research, the slower computation of mixture
Markov model should not be a major drawback for the latter. 2) As discussed above,
simulation studies indicate that OM-clustering seems to be more robust than mixture
Markov models if sample sizes are big and sequences are long. 3) OM-clustering
can be applied to datasets that contain sequences with different lengths. Differences
between longer and shorter sequences can be weighted by adjusting the insertion and
deletion cost.

204

10. Simulation studies

Table 10.19.: Results for Simulation of OM-Distances (Part A)

Model Selection Precision

Simulation conditions B 2S 3S Bias SE κ
basic Markov; N=10; L=10 .50 .40 .10 .10 .01 1.00
basic Markov; N=10; L=30 .79 .20 .01 .05 .00 1.00
basic Markov; N=10; L=50 .89 .10 .00 .03 .00 1.00
basic Markov; N=10; L=100 .97 .03 .00 .02 .00 1.00
basic Markov; N=30; L=10 .35 .62 .02 .03 .00 1.00
basic Markov; N=30; L=30 .74 .25 .01 .01 .00 1.00
basic Markov; N=30; L=50 .88 .12 .00 .01 .00 1.00
basic Markov; N=30; L=100 .95 .05 .00 .01 .00 1.00
basic Markov; N=50; L=10 .27 .72 .01 .02 .00 1.00
basic Markov; N=50; L=30 .80 .19 .01 .01 .00 1.00
basic Markov; N=50; L=50 .91 .09 .00 .01 .00 1.00
basic Markov; N=50; L=100 .97 .03 .00 .00 .00 1.00
basic Markov; N=100; L=10 .20 .80 .20 .01 .00 1.00
basic Markov; N=100; L=30 .80 .20 .01 .00 .00 1.00
basic Markov; N=100; L=50 .94 .06 .00 .00 .00 1.00
basic Markov; N=100; L=100 .98 .02 .00 .00 .00 1.00
2 latent classes; N=10; L=10 .46 .47 .07 .15 .10 .23
2 latent classes; N=10; L=30 .59 .37 .05 .09 .04 .57
2 latent classes; N=10; L=50 .58 .38 .05 .04 .02 .77
2 latent classes; N=10; L=100 .28 .70 .01 .01 .00 .95
2 latent classes; N=30; L=10 .20 .76 .04 .20 .08 .16
2 latent classes; N=30; L=30 .50 .48 .02 .11 .03 .55
2 latent classes; N=30; L=50 .37 .62 .01 .05 .01 .79
2 latent classes; N=30; L=100 .02 .98 .00 .01 .00 .96
2 latent classes; N=50; L=10 .12 .86 .01 .21 .08 .16
2 latent classes; N=50; L=30 .49 .50 .01 .11 .03 .55
2 latent classes; N=50; L=50 .28 .72 .00 .05 .01 .81
2 latent classes; N=50; L=100 .00 1.00 .00 .01 .00 .97
2 latent classes; N=100; L=10 .03 .97 .00 .23 .07 .15
2 latent classes; N=100; L=30 .42 .58 .00 .11 .03 .56
2 latent classes; N=100; L=50 .18 .82 .00 .05 .01 .85
2 latent classes; N=100; L=100 .00 1.00 .00 .01 .00 .98

Notes: Simulation conditions show the true model, basic Markov model (Abbr. B; see Table
10.10), 2 latent classes (Abbr. S2; see Table 10.11) or 3 latent classes (Abbr. S3; see Table
10.12), N=samples size, L=length of sequences; 500 samples were drawn per simulation
condition; Columns show classification based on AIC (Akaike information criterion) or BIC
(Bayesian information criterion).

205

10. Simulation studies

Table 10.20.: Results for Simulation of OM-Distances (Part B)

Model Selection Precision

Simulation conditions B 2S 3S Bias SE κ
3 latent classes; N=10; L=10 .40 .23 .37 .56 .16 .32
3 latent classes; N=10; L=30 .13 .18 .69 .16 .09 .65
3 latent classes; N=10; L=50 .05 .07 .88 .06 .07 .84
3 latent classes; N=10; L=100 .00 .00 .99 .01 .06 .96
3 latent classes; N=30; L=10 .12 .07 .82 .53 .13 .27
3 latent classes; N=30; L=30 .00 .01 .99 .13 .06 .66
3 latent classes; N=30; L=50 .00 .00 1.00 .03 .04 .89
3 latent classes; N=30; L=100 .00 .00 1.00 .00 .03 .98
3 latent classes; N=50; L=10 .07 .03 .90 .52 .12 .25
3 latent classes; N=50; L=30 .00 .00 1.00 .07 .05 .72
3 latent classes; N=50; L=50 .00 .00 1.00 .02 .03 .89
3 latent classes; N=50; L=100 .00 .00 1.00 .00 .03 .98
3 latent classes; N=100; L=10 .02 .00 .99 .48 .11 .25
3 latent classes; N=100; L=30 .00 .00 1.00 .06 .04 .74
3 latent classes; N=100; L=50 .00 .00 1.00 .01 .03 .89
3 latent classes; N=100; L=100 .00 .00 1.00 .00 .02 .98

Notes: Simulation conditions show the true model, basic Markov model (Abbr. B; see Table
10.10), 2 latent classes (Abbr. S2; see Table 10.11) or 3 latent classes (Abbr. S3; see Table
10.12), N = samples size, L = length of sequences; 500 samples were drawn per simulation
condition; Columns show classification based on AIC (Akaike information criterion) or BIC
(Bayesian information criterion).

206

10. Simulation studies

Figure 10.9.: Simulated scree plots. Each scree plot is one line, thus 1000 lines per
simulation condition are plotted. Each line has a transparancy of 98%,
and thus, darker areas show higher concentrations scree plot lines.

207

10. Simulation studies

10.10. ANOVA-like Approach for Comparing Subgroups

A simulation-based power analysis was conducted for the ANOVA-like approach us-
ing OM-distances for model comparison. Two and three groups were generated based
on the same true models that were used for the mixture Markov simulations and the
OM-clustering simulations (see Table 10.14) for two groups and Table 10.15 for three
groups.

The following conditions were manipulated: N was iterated to be 10, 20, 30, 40, or
50: L was initially iterated to be 10, 20, 30, 40, or 50. However, after inspecting the
results, L = 5 was added because power was already above .99 for N = 10 and L = 40,
and thus the condition of L = 50 would not add further information. The results are
displayed in Figure 10.10. The upper graph shows the power analysis for two groups,
and the lower chart the results for three groups.

Using OM-distances for group comparisons achieves a power of above .80 for two-
group comparisons and three-group comparisons if the sample size is N = 10 and
sequence length is L >= 20. If L is 10, N should be 20 for two-group comparisons
and 30 three-group comparisons. Hence, a general rule might be 10 per group. If a
power of above .95 is targeted L should be >= 30 or N should be >= 40 for two or
three-group comparisons.

The results are limited by the fact that each group described fairly different tran-
sition probabilities. Smaller differences might be more difficult to detect. Therefore,
future simulation studies should investigate how different measures of dissimilarity
between transition matrices affect the power of this approach. However, a practical
solution to this problem might be to run the simulation from Chapter B with other
transition probabilities. Therefore, a researcher can try different expectations for the
transition probabilities that match her or his research topic. Thereby, a rough estima-
tion of the needed sample size can be obtained.

208

10. Simulation studies

Figure 10.10.: Power Analyis for ANOVA-like Group Comparison Using OM-
Distances.

209

11. Summary and Concluding Comments

This thesis aimed to explore possible statistical models and approaches that can an-
swer typical research questions that might arise in psychological research. To this
end, several statistical models and approaches have been presented for answering
the research question of Chapter 3, some of which were not exclusive to dyadic se-
quence data alone. Chapter 4.1, for example, introduced the state-expand procedure
that transforms two sequences into one and thereby allows for visualizations that are
originally made for non-dyadic sequences. Using data visualization techniques and a
diverse set of descriptive statistics allows getting an overview of a dataset of dyadic
sequences, which answers the research question from Chapter 3.1 (Getting an Overview
About Dyadic Sequences).

Moreover, it was shown that dyadic sequences could also be transformed into time-
to-event data, especially if an absorbing state exists. By doing so, all kind of time-to-
event models can be applied to sequence data (see Chapter 5.1). Time-to-event models
ask the question "whether and when" does something happen (Singer and Willett,
2003)? Hence, they can give answers to the research question of Chapter 3.2 (Duration
of Behavior). A special type of time-to-event models, the so-called frailty models (see
Chapter 5.3), can also answer the questions of Chapter 3.3: Is there a latent dyadic
process? Or, in other words, can the observed sequences of both couple members be
explained by an unobserved latent process, a so-called common fate. However, they
still estimate whether and when an event happens, or a behavior ends. Hence, they
are limited to analyzing the latent process regarding the duration of behavior.

Alternatively, hidden Markov models can be used for modeling a latent process (see
Chapter 8.3). However, hidden Markov models are more flexible: they can be restricted
for estimating the duration of a latent state or behavior from observed indicators as
was demonstrated in Chapter 8.3.1. However, other kinds of processes and dynamics
are possible. Hidden Markov models can be applied to dyadic sequence data via
the state-expand procedure which allows for correlation between indicators (observed
states), or via the multi-channel approach (see Chapter 8.3.3).

210

11. Summary and Concluding Comments

Markov models that do not assume a latent process are referred to as basic Markov
models and can be used for modeling an APIM, which answers the research ques-
tion of Chapter 3.4 (Analyzing Promptness of Interaction (APIM). An APIM is typically
described in terms of actor and partner effects as shown in Chapter 1.2.4. However,
Markov models do only provide transition probabilities. A conversion formula for
transforming these probabilities into actor and partner effects was provided in Chap-
ter 8.2.2.

Other models that were presented estimate actor and partner effects directly, namely
the aggregated logit model (see Chapter 6)) and a multilevel model (see Chapter 7).
Establishing the conversion formula allowed for comparing all three models with each
other. Each model showed its own advantages and disadvantages. The aggregated
logit model computes fast, the multilevel model produces very precise estimates, the
basic Markov model also performs well, yet its estimates must be transformed, and
p-values must be bootstrapped.

However, one advantage of the basic Markov model is that it can be extended to
a mixture Markov model (see Chapter 8.4), which accounts for unobserved hetero-
geneity and thereby answers the final research question from Chapter 3.5 (Are there
latent groups or clusters? An alternative procedure for identifying latent groups, OM-
clustering, was also introduced (see Chapter 9), which performed worse for smaller
samples, but better for samples with long sequences and big datasets. Finally, an
ANOVA-like approach was introduced for testing groups of sequences against each
other (see Chapter 9.4.1).

Applying all these models and techniques showed how to apply and to interpret
these models. Moreover, it gave inside into the couples-cope dataset. Additional
simulation studies were conducted, which revealed strengths and weaknesses of the
presented models (see Chapter 10). The code for running those simulations with other
parameters is provided in Appendix B, and R vignettes for all presented applications
are provided in Appendix A. All models that were not previously implemented in R
(aggregated logit Model; multilevel APIM), and the conversion formula between basic
Markov model and APIM is provided via the R package DySeq.

11.1. Findings on Dyadic Coping

Applying all the models mentioned above on couples-cope example revealed many in-
sides. In the beginning, nearly all couples begin in a state of showing frequent stress
communication and dyadic coping. This indicates that the experimental stress induc-

211

11. Summary and Concluding Comments

tion via the Trier Social Stress Test (TSST; Kirschbaum et al., 1993) was successful.
Therefore, couples behave very similarly at the beginning of the observation period.
However, over time, couples become more dissimilar, which might be caused by differ-
ent dyadic coping skills or methods. Thus, sequence length and a long observational
period seem to be important for detecting such differences. Unfortunately, 28.13% of
the couples showed stress-related behavior until the end, and therefore a longer obser-
vation period might have given additional insides. Nevertheless, it was long enough
to get other insides about the promptness of reactions, and possible latent structures.
All three APIM models (aggregated logit, multilevel, and basic Markov) show that
partner effects for dyadic coping responses are higher than for stress communication.
This indicates that dyadic coping is a reaction to stress communication. The actor
effect for stress communication is higher than for dyadic coping. Therefore, stress
communication is a more stable behavior, than dyadic coping. That the induced stress
leads to continues stress communication, which in response triggers dyadic coping
responses. However, when stress communication ends, dyadic coping will also end.
These findings are consistent with the works of Bodenmann (2005).

However, the best fitting Markov model was a Markov model featuring three latent
states. The latent states could be interpreted as three stages of stress solving based
on their emissions. The first stage, in which nearly all couples begin, show combined
states of stress communication and dyadic coping responses. This might be caused
by frequent stress communication and dyadic coping responses, therefore, they occur
together within one time interval. The second stage is a state in which the communi-
cation slows down, so that time intervals with only stress communication or dyadic
coping occur more often than in the first stage. Finally, they enter a state in which
stress communication and dyadic coping do occur only sporadically. However, cou-
ples might relapse into a previous state of stress solving, yet according to the model’s
estimates, it is nearly impossible to relapse from the final stage back to the stage of
high frequent stress communication and dyadic coping. This model performed a lot
better without using the multi-channel approach. This indicates that occurrence of
stress communication and dyadic coping cannot be explained solely by the latent pro-
cess alone, rather than that, stress communication and dyadic coping correlate with
each other even after controlling for a latent process. This correlation can be explained
by the finding of the APIMs. Hence, the hidden Markov model does not discount the
previous finding. Instead, it adds another component to the existing findings.

According to the Markov mixture model, couples can be separated into three differ-
ent latent classes (slow, medium and fast copers). However, combining this mixture

212

11. Summary and Concluding Comments

model with the three latent states model was not possible. Therefore, this finding
should be interpreted with cause. OM-Clustering does not assume to find real latent
groups, even though it can be used to this end. However, it just groups sequences into
groups of similar sequences. Thereby, it can always be used to simplify data without
assuming true latent groups. It indicates only two clusters (slow coper and fast coper).
Testing those two clusters against each other using the ANONA-like approach reveals
that those clusters are significantly different from each other.

Separating the clusters shows an partner actor interaction effect with opposite signs
for each cluster: If dyadic coping accompanies stress communication, the probabil-
ity that the stress reaction will be kept up is less than expected by the main effects
when the couples belong to the fast coper. For the slow coper, it is the opposite: If
dyadic coping accompanies stress communication, it is more likely that it will be kept
up. These findings indicate that at least two separate styles of dyadic coping might
exist. Identifying the exact nature of these separate styles might be the subject of fur-
ther research. However, possible explanations could be that, for instance, the slow
coper encourages their partners to communicate their stress through active listening,
whereas fast copers tend to appease their partners. Or, another possibility, stressed
partners within the slow coping couples like to be comforted and keep their stress
communication up so that their partners will keep up their dyadic coping.

11.2. Findings on Approaching Dyadic Sequence Data

What model should be used? - That depends on the research question, but for most
research questions more than one model is possible. Therefore, one criterion can be
the requirements for the data. Bigger samples, longer observation periods, and thinner
time intervals will cost time and many. Therefore, a researcher might want to stick to
models with low requirements. On the other hand, if a big dataset with long sequences
already exists, the model that can utilize this data best should be used. Table X shows
the research questions from Chapter 3, which models can be used to answering these
questions, and the recommendations regarding sample size and length of sequences.

However, requirements on sample size and sequence length are not the only aspects
that should be considered. Of all presented models, Markov models are the most
versatile: The basic Markov model can be used to estimate an APIM. Therefore, it is
an alternative to aggregated logit APIM and the multilevel APIM. However, a Markov
chain’s transition matrix can also be restricted in a way that it assumes an absorbing
state. By doing so, it can be used to analyze event-to-time data, and thereby is an

213

11. Summary and Concluding Comments

alternative for the Cox regression. Moreover, using hidden Markov models with a
restricted transition matrix analyze the duration of unobserved states. Thus, it is an
alternative to frailty models. Moreover, unrestricted Markov models can be used for
estimating common-fate models. Finally, mixture Markov models allow to account for
unobserved latent groups, so it is an alternative for OM-clustering.

However, this flexibility comes at a price: estimation of complex Markov models can
become challenging. Hidden Markov models with three latent states or three latent
classes provided only unstable results in the simulation studies. Moreover, absorbing
states as long as they are not anticipated as a restriction, seem to induce a heavy bias.
Other optimizers might solve this problem. However, the most common optimizer,
the EM-algorithm, provided even worse results. Hence, Markov models might be the
most flexible model, but the biggest challenge is to find the correct specification for
the model that should be fitted and to choose the correct optimizer. The model that
provided the best "overall" default optimizers was the seqHMM package (Helske and
Helske, 2016). However, it is recommended to give the global estimation step more
time than the default 60 seconds.

The benefit of most other model is that they work out of the box: a researcher can
run a Cox regression without worrying whether he is choosing the correct optimizer.
Other model such as the aggregated logit APIM and the multilevel APIM needed a lot
of data preparation, but this can now be handled by the DySeq Package.

There are more advantages to the specialized models. The Cox regression, for exam-
ple, does not assume a certain distribution of the baseline hazard, whereas the latent
hazard model (restricted hidden Markov) assumes a constant baseline model. Or an-
other example, OM-clustering computes way faster than mixture Markov models are
estimated, and the results for big datasets are more precise and more consistent than
whose of the mixture Markov model. Therefore, OM-clustering is recommended over
mixture Markov modeling, when sample sizes are big (N > 100 and L > 100), when
more than two latent groups are expected, or when the aim is just data reduction.

Regarding the APIMs, the multilevel APIM and the basic Markov model performed
similarly, yet both better than the aggregated logit model. The multilevel APIM allows
to specify and to test random effects. Moreover, actor and partner effects are directly
obtainable with SE and p-values. Therefore, it is recommended over the basic Markov
model. However, if transition probabilities are of interest instead of actor and partner
effects, the basic Markov APIM is recommended in such cases. The same goes for
cases in which the APIM model should be compared to a common-fate like model,
or other Markov models. The aggregated logit model may still be useful for really

214

11. Summary and Concluding Comments

big datasets, where the bias for this model is small, or in real-time analytics where
processing speed might be more important than absolute bias.

However, one model was presented that performed so bad in the simulations that it
is not recommended at all. This does not mean that frailty model is not useful overall,
or that the used implementation of the shared frailty model is not useful. However, it
should not be used, at least not in its current form, for dyadic sequence data. Other
implementations or other frailty models might better with dyadic sequence data.

Finally, it is recommended to always plot dyadic sequence data before starting any
analysis. Getting a general overview of the data first allows for plausibility-checks
while interpreting later model results. For example, the mixture hidden Markov
model was be discarded because its results did not match what the data visualizations
showed. This finding was supported by the fact that this model had a very bad model
fit. However, data visualization adds a lot more to an analysis: It shows general trends
like that stress-related communication often occurs in the beginning but occurs less of-
ten at the end of the observation period. It also showed for the couple-cope dataset
that this trend might have kept on after the observation period. Moreover, anomalies
can be detected such as the human player of the give-some dataset, who defected in
all but three game turns. Finally, data visualization is a great way for communicating
insights derived from the data analysis outside of the scientific community.

215

Table 11.1.: Summary of Sample Size and Sequence Length Recommendations

Research Question Approach Recommendations

Duration of Behavior Cox regression N = 80 for β = 0.4; N = 80 for β = 0.6;
N = 20 for β = 1; L > 30 if hazard < 0.05;
L must be long enough that the majority can
transition into the absorbing state.

Common Fate Hidden-Markov For 2-3 hidden states: N > 30 for L = 10;
L > 30 for N = 10; advanced optimizers,
e.g., MSLS-LDS + BFGS, should be used.

Common Fate + Duration Shared Frailty Model not recommended.
Latent-Hazard Model N > 10 & L > 10 for hazard = .05; L > 50

for hazard = .01 .

Analyzing Promptness of
Interaction (APIM)

Aggregated Logit Model N > 100 & L > 100; Delta must be adjusted
if sequences are short (see Chapter 10.3).

Multilevel Model for β = .02 to 0.4: L > 100 for N = 10;
N > 100 for L = 10; N > 50 if also N > 50;
for β > .08: N = 10 for L = 10.

Basic Markov Model same as for multilevel model.

Latent Groups or Clusters
(Unobserved Heterogeneity)

Mixture Markov Model For 2 latent classes: N > 30 for L = 10;
L > 30 for N = 10; For 2 latent classes:
N > 50 and L > 50; advanced optimizers
recommended; >2 classes might result in un-
stable estimates.

OM-Clustering For two latent classes: N > 100 for L = 50;
L > 100 for N = 30; very robust; Scree Plot
is not recommended.

ANOVA-like Approach long sequences (L > 20): N = 10 is sufficient
for 2-3 groups; short sequences (L = 10): n =
10 per group.

216

11. Summary and Concluding Comments

11.3. Limitations and Outlook

A truly comprehensive collection and comparison of all models, which can be applied
to dyadic sequence data, is beyond the scope of this monograph. This monograph tried
to incorporate at least one model per class of models that can be applied to dyadic
sequence data. The selection of these models was based on how useful this model
is for psychology research and at the same time how prototypical it is for their type
model class. One example is the shared frailty model that perfectly fitted one of the
initial research questions and was a prototypical frailty model. However, it performed
badly in the simulations, but the shared frailty model is only one frailty model out
of hundreds, which might perform better. The same goes for multilevel models, that
can be "tricked" into modeling dyadic sequence data in numerous ways. The shown
modeling approach was used, because the recommended strategy by Kenny et al.
(2006) could not be applied using the standard R packages for multilevel modeling,
such as lme4 (Bates et al., 2014). Hence, the possibility cannot be ruled out that other
models or approaches might perform better.

Furthermore, it did not show how to add covariates to one of the APIMs or the
Markov models, and how this might influence recommendations on sample size and
the optimal length for sequences. Additionally, simulations studies were limited to a
few selection simulation models with a maximum of three latent states or three latent
classes. Therefore, recommendations for more complex latent structures with more
classes, states or the combination of both, cannot be made. Also, many simulation
samples were small due to limited processing power. However, advances in technology
might increase future processing speed. Therefore, the R code in Appendix B might
be used in the future for more precise simulations.

In the experience of this monographs author, the performance of optimizers is not
often discussed in the community of psychology research. However, the simulations
revealed a big impact on the performance of Markov models as soon as latent structure
were introduced (mixture models or hidden states). This might be specific for Markov
models, but future investigations of complex model’s optimizers such as multilevel
models or structural equation models might increase the ability of these models to find
better solutions. Asparouhov and Muthen (2007) showed that this might be especially
true for categorical variables. Helske and Helske (2016) added the feature to estimate
Markov models in log-space, which should provide greater numerical stability at the
cost of additional computation time. However, this features was not tested in this

217

11. Summary and Concluding Comments

monograph, yet future simulation studies might find that this approach might lead to
better estimations.

As mentioned above, not all possible models for dyadic sequence data were pre-
sented, and it is impossible to show all. However, some models that were not covered
are worth to mention because they allow for special applications. Latent Markov mod-
els (Bartolucci et al., 2012) are basically hidden Markov models that were designed for
short sequences with only three to five time intervals, yet they need big sample sizes.
Semi-Markov models are models that are similar to Markov model, yet their transi-
tion matrix depends on the amount of that that has passed by since the entry into the
current state. Gabadinho et al. (2009) provided alternative distance measures for se-
quences, such as longest common prefix (LCP) or longest common subsequence (LCS)
that can be used instead of OM-distances. Studer et al. (2011) also presented a way for
running decision trees on sequence data using the ANOVA-like approach for group
comparison via OM-distances.

218

A. Vignettes for R

This R-vignette provides a hands-on-tutorial for all analyses covered in this mono-
graph. Please make sure to install all required packages, including the "DySeq"-
Package, which provides the sample data. (Note: A growing collection of vignettes
for DySeq is also avaible at Github: https://github.com/PeFox/DySeq_script.)

A.1. Prerequisite Steps

The f o l l o w i n g p a c k a g e s a r e ne ed ed :
"TraMineR " , " RColorBrewer " , " gmode l s " , "MASS" , " s u r v i v a l " , " f p c " ,
" c l u s t e r "

I n s t a l l DySeq from CRAN:
i n s t a l l . p a c k a g e s (" DySeq ")

For an Overview o f DySeq ’ s a b i l i t i e s :
help (DySeq)

A.2. Getting and Visualizing the Data

g e t t h e example d a t a :
mydata<−CouplesCope # GiveSome f o r t h e GiveSome Example

V a r i a b l e l a b e l s and c o d i n g f o r t h e example d a t a :
help (CouplesCope)

############################
5 . GRAPHICAL ANALYSIS
############################

219

A. Vignettes for R

###
s t a t e−d i s t r i b u t i o n p l o t (us ing TraMineR)
###

couple . l ab el s <−c (" time i n t e r v a l " , "SC only " , "DC only " , "SC+DC")

c r e a t e l a b e l s f o r p l o t
couple . seq <− seqdef (my. expand , l ab el s = couple . l ab el s)

c r e a t e a s e q u e n c e o b j e c t (t h e way TraMineR r e p r e s e n t s s e q u e n c e s)
seqdplot (couple . seq)

A l t e r n a t i v e l y a gr ey v e r s i o n (us ing RColorBrewer)
a t t r (couple . seq , " cpal ") <− brewer . pal (4 , " Greys ")
seqdplot (couple . seq , cex . legend = 0 . 8 , withlegend=" r i g h t ")

###
Entropy−p l o t and Histogramm o f "Number o f t r a n s i t i o n s "
###
p r e p a r i n g t h e g r a p h i c d e v i c e
t o show two g r a p h i c s in a row
par (mfrow = c (1 , 2))
{

Entropy−p l o t :
Entropy <− s e q s t a t d (couple . seq) $Entropy
plot (Entropy ,

main= " Entropy " ,
col=" black " ,
xlab = " Time in 10 sec . i n t e r v a l l " ,
type =" l ")

Histogramm o f "Number o f t r a n s i t i o n s " :
SeqL<−seqtransn (couple . seq)
h i s t (SeqL ,

main="Number of t r a n s i t i o n s " ,
x lab=" Sta te−t r a n s i t i o n s ")

}
s e t t i n g t h e g r a p h i c d e v i c e b a c k :
par (mfrow = c (1 , 1))

220

A. Vignettes for R

Number o f t r a n s i t i o n s :
summary (SeqL)

A.3. Analyzing Duration

############################
6 . ANALYSING DURATION
############################

O b j e c t s from p r e v i o u s s e c t i o n s ne ed ed :
− mydata

C a l c u l a t i n g t h e l a s t o c c u r r e n c e o f SC (l a s t . s t r e s s)
l a s t . s t r e s s<−LastOccur (mydata [, 2 : 4 9] , y=1)

###################################
Hazard , s u r v i v a l and cumhazard
###################################

F i r s t a v a r i a b l e i s ne ed ed t h a t i n d i c a t e s i f t h e e v e n t
was shown (1 ; o b s e r v e d) o r not (0 ; c e n s o r e d)

C o n v e r t i n g i n t o a more t ime−to−e v e n t " f r i e n d l y " f o r m a t
event<−c (rep (1 , length (l a s t . s t r e s s)))
event [l a s t . s t r e s s >=48]<−0

number o f t i e s p e r t ime i n t e r v a l :
table (l a s t . s t r e s s [event ==1])

r e l a t i v e f r e q u e n c y o f c e n s o r e d c a s e s :
1−mean (event)

The d u r a t i o n and t h e e v e n t v a r i a b l e a r e combined
in a Surv−o b j e c t
s t r e s s . surv<−Surv (l a s t . s t r e s s , event)

f i t t i n g t h e Cox r e g r e s s i o n
f i t 1 <− coxph (s t r e s s . surv~1 , t i e s =" efron ")

P r e p a r i n g R’ s g r a p h i c d e v i c e f o r t h r e e g r a p h i c s

221

A. Vignettes for R

par (mfrow = c (1 , 3))

S u r v i v a l and cumhazard a r e a l r e a d y c o n t a i n e d
in t h e o b j e c t " f i t 1 " !
plot (s u r v f i t (f i t 1) , conf . i n t =" none " , xlab=" Time " ,

ylab=" Surviva l P r o b a b i l i t y " , xlim=c (0 , 4 8))

O p t i o n a l : i f Median L i f e t i m e s h o u l d be added ,
run t h e f o l l o w i n g 9 l i n e s :
x <− 4 5 ; y<−s e q (0 , 0 . 5 , by = 0 . 0 1)
x<−r e p (x , l e n g t h (y)) ; l i n e s (x , y , l t y =2)
x<−s e q (0 , 45 , by = 0 . 1) ; y<−r e p (0 . 5 , l e n g t h (x))
l i n e s (x , y , l t y = 2) ; x<− l o c a t o r (1)
A f t e r t h i s l i n e :
c l i c k on t h e p o i n t w i t h i n t h e Graph i c where
t h e ML−L a b e l s h o u l d be d i s p l a y e d
t e x t (xx , xy , "ML" , c e x = 1 . 2)

plot (s u r v f i t (f i t 1) , conf . i n t =" none " , xlab=" Time " ,
ylab=" cumulated hazard " , fun=" cumhaz ")

t h e DySeq p a c k a g e p r o v i d e s a f u n c t i o n t o compute
t h e non−cumulated ha z ar d :
NonCumHaz(s u r v f i t (f i t 1) , plot=T) # F i g u r e 5

s e t t i n g t h e g r a p h i c s d e v i c e b a c k
par (mfrow = c (1 , 1))

A.3.1. Cox-Regression with Time-Independent Covariate

##
Cox r e g r e s s i o n :
time−i n d e p e n d e n t c o v a r i a t e
##

mean−c e n t e r i n g EDCm (men ’ s s e l f −a s s e s s e d
d y a d i c c o p i n g a b i l i t y)
EDCm. cent<−s c a l e (mydata$EDCm, TRUE, FALSE)

222

A. Vignettes for R

F i t t h e cox r e g r e s s i o n with
EDCm. c e n t used as c o v a r i a t e
f i t 2 <− coxph (s t r e s s . surv~EDCm. cent , t i e s =" efron ")
summary (f i t 2)

o b t a i n i n g t h e exp . b f o r pos t−hoc c a l c u l a t i o n s
exp . b<−unclass (summary (f i t 2)) $ c o e f f i c i e n t s [2]

P l o t t i n g t h e C o x r e g r e s s i o n with s i m p l e h a z a r d s

run :
plot (s u r v f i t (f i t 2) $time , NonCumHaz(s u r v f i t (f i t 2)) ,

xlim=c (1 9 , 4 6) , ylim=c (0 , 0 . 6) , type=" l " ,
x lab=" Time I n t e r v a l " , ylab=" Predic ted Hazard ")

l i n e s (s u r v f i t (f i t 2) $time , l t y =2 ,
NonCumHaz(s u r v f i t (f i t 2)) ∗exp . b^5)

l i n e s (s u r v f i t (f i t 2) $time , l t y =3 ,
NonCumHaz(s u r v f i t (f i t 2)) ∗exp . b^−5)

c l i c k i n t o t h e g r a p h i c s d e v i c e t o c h o o s e
t h e l o c a t i o n o f t h e l e g e n d :
x<− l o c a t o r (1)

legend (xx , xy , c ("Cov = 0 " , "Cov = +5 " , "Cov = −5") ,
l t y =c (1 , 4 , 2) , cex = 0 . 7)

A.3.2. Cox-Regression with Time-Dependent Covariate

##
Cox−r e g r e s s i o n :
time−d e p e n d e n t c o v a r i a t e
##

Make sure the " TraMineRextras "−package i s i n s t a l l e d !
i n s t a l l . p a c k a g e s (" TraMineRextras ")
l i b r a r y (TraMineRextras)

The f o l l o w i n g o b j e c t s a r e ne ed ed from t h e p r e v i o u s s u b s e c t i o n :

223

A. Vignettes for R

mydata
l a s t . s t r e s s

DC. seq <− seqdef (mydata [, 5 0 : 9 7] , l ab el s = c (" no DC" , "DC"))
DC. s p e l l<− STS_ to _SPELL (DC. seq , b i r t h d a t e =rep (1 , 6 4))
rowN<−length (DC. s p e l l [, 1])
event<−rep (0 , rowN)
DC. s p e l l<−cbind (DC. s p e l l , event)

B r i n g i ng d y a d i c c o p i n g r e s p o n s e s i n t o t h e SPELL−Format
DC. seq <− seqdef (mydata [, 5 0 : 9 7] , l ab el s = c (" no DC" , "DC"))
DC. s p e l l<− STS_ to _SPELL (DC. seq , b i r t h d a t e =rep (1 , 6 4))
rowN<−length (DC. s p e l l [, 1])
event<−rep (0 , rowN)
DC. s p e l l<−cbind (DC. s p e l l , event)

##
New f o r m a t i s a l s o SPELL−Format
##

for (i in 1 : 6 4) {
i<−1

pos<−which (DC. s p e l l $ id== i
& DC. s p e l l $ begin <= l a s t . s t r e s s [i]
& DC. s p e l l $end>= l a s t . s t r e s s [i])

x<−DC. s p e l l [pos ,]
i f (x$ begin==x$end) {

x$ event<−1
} e lse {

y<−x
x$end<− l a s t . s t r e s s [i]−1
x$ event<−0
y$ begin<− l a s t . s t r e s s [i]
y$ event<−1
DC. s p e l l<−rbind (DC. s p e l l , y)
}
DC. s p e l l [pos ,]<−x

224

A. Vignettes for R

pos<−which (DC. s p e l l $ id== i
& DC. s p e l l $ begin > l a s t . s t r e s s [i])

pos

i f (length (pos) ! =0) DC. s p e l l [pos ,] $ event<−rep (1 , length (pos))
}
DC. s p e l l $end<−DC. s p e l l $end +0.99

F i n a l l y , t h e Cox−r e g r e s s i o n can be f i t t e d :
f i t _ tp<−coxph (Surv (begin , end , event) ~ s t a t e s , DC. s p e l l)

p r i n t i n g t h e summary :
summary (f i t _ tp)

A.3.3. Shared Frailty Model

make s u r e t h a t t h e f r a i l t y p a c k i s i n s t a l l e d :
i n s t a l l . p a c k a g e s (" f r a i l t y p a c k ")
l i b r a r y (f r a i l t y p a c k)

Trans form SC and DC from s e q u e n c e s
i n t o t ime−to−e v e n t v a r i a b l e s :
l a s t . SC<−LastOccur (mydata [, 2 : 4 9] , y=1)
l a s t .DC<−LastOccur (mydata [, 5 0 : 9 7] , y=1)

p u t t i n g them t o g e t h e r i n t o one v e c t o r :
My. time<−c (l a s t . SC , l a s t .DC)

Censor ing :
event<−c (rep (1 , length (My. time))) ; event [My. time >=48]<−0

c r e a t i n g ID−V a r i a b l e
id<−rep (1 : 6 4 , length (l a s t . SC))

Combining t h e t ime , t h e e v e n t and
t h e i d v a r i a b l e s i n t o one d a t a . f r ame :
myFdata<−data . frame (My. time , event , id)

F i t t i n g t h e F r a i l t y model

225

A. Vignettes for R

f i t F 0<− f r a i l t y P e n a l (Surv (My. time , event) ~ c l u s t e r (id)+1 ,
data=myFdata , n . knots =24 ,
kappa=10000 , RandDist="LogN")

A.4. Aggregated Logit Model

The f o l l o w i n g p a c k a g e s a r e r e q u i r e d :
i n s t a l l . p a c k a g e s (" DySeq ")

Trans f o rming t h e s e q u e n c e s i n t o combined s e q u e n c e s
(s t a t e expand p r o c e d u r e)
my. s t a t e s<−StateExpand (CouplesCope , # t h e d a t a

2 : 4 9 , # f i r s t s e q u e n c e
5 0 : 9 7) # s e c o n d s e q u e n c e

C r e a t e s t a t e−t r a n s i t i o n t a b l e s :
my. t r a n s<−Sta teTrans (my. s t a t e s , FALSE)

A p p l i e s t h e Bakeman and Gottman a p p r o a c h
my. logseq<−LogSeq (my. t r a n s)

G e t t i n g t h e r e s u l t s
my. logseq

I n t e r a c t i o n p l o t
plot (my. logseq) # i n t e r a c t i o n can be p l o t t e d

f o r s i n g l e c a s e a n a l y s i s (41 r e f e r s t o t h e row
o f t h e o r i g i n a l d a t a s e t ! Not t o t h e ID v a r i a b l e !)
s ingle . LogSeq (my. logseq , 41)

A.5. Multilevel Model APIM

l i b r a r y (" DySeq ")
l i b r a r y (" lme4 ")
l i b r a r y (" lmerTest ")

###################
Data p r e p a r a t i o n
###################

226

A. Vignettes for R

Trans fo rms s e q u e n c e s i n t o m u l t i l e v e l d a t a :
ML_ data<−ML_ Trans (CouplesCope , 2 : 4 9 , 5 0 : 9 7)

Trans fo rms t r a n s i t i o n s i n t o l a g g e d a c t o r and
p a r t n e r e f f e c t s :
MLAP_ data<−MLAP_ Trans (ML_ data)

M u l t i l e v e l models ’ ou tpu t can become c o n f u s i n g q u i t e f a s t .
T h e r e f o r e , l a b e l s s h o u l d be used :
names (MLAP_ data) [1]<−" sex "
MLAP_ data $ sex<−as . f a c t o r (MLAP_ data $ sex)
l e v e l s (MLAP_ data $ sex)<−c (" female " , " male ")

A l l v a r i a b l e s a r e s t i l l dummy−c o d e d .
However , a c t o r and p a r t n e r e f f e c t s s h o u l d be
e f f e c t c o d e d f o r an e a s i e r i n t e r p r e t a t i o n .
MLAP_ data $ Partner [MLAP_ data $ Partner ==0]<−(−1)
MLAP_ data $ Actor [MLAP_ data $ Actor ==0]<−(−1)

###################
Comparing Models
###################

The most complex model
s e t . seed (1 2 3 4) ;
glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+sex∗Actor+sex∗Partner

+sex∗Actor∗Partner +(1+ sex+Actor+Partner+Actor∗Partner+
sex∗Actor+sex∗Partner+sex∗Actor∗Partner|ID) ,

data=MLAP_ data , family=binomial)
AIC 5 2 5 6 . 7 4 4 ; BIC 5551 .640
Warning o c c u r r e d : e s t i m a t e s a r e t o o c l o s e t o b o u n d a r i e s !

The most s i m p l e model (Random i n t e r c e p t on ly)
s e t . seed (1 2 3 4) # AIC 5 2 9 9 . 3 8 6 ; BIC 5359 .706
glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+sex∗Actor+sex∗Partner

+sex∗Actor∗Partner +(1|ID) , data=MLAP_ data , family=binomial)

227

A. Vignettes for R

Random e f f e c t f o r s e x
s e t . seed (1 2 3 4)
glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+sex∗Actor+sex∗Partner

+sex∗Actor∗Partner +(1+ sex|ID) , data=MLAP_ data , family=binomial)
AIC 5 2 9 9 . 3 8 6 ; BIC 5375 .723

Random a c t o r und p a r t n e r e f f e c t s
s e t . seed (1 2 3 4)
glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+sex∗Actor+sex∗Partner

+sex∗Actor∗Partner +(1+ Actor+Partner|ID) , data=MLAP_ data ,
family=binomial)

AIC 5 2 2 2 . 0 6 3 ; BIC 5315 .893

Random a c t o r , p a r t n e r , a c t o r ∗ p a r t n e r e f f e c t s
s e t . seed (1 2 3 4)
glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+sex∗Actor+sex∗Partner

+sex∗Actor∗Partner +(1+ Actor+Partner+Actor∗Partner|ID) ,
data=MLAP_ data , family=binomial)

AIC 5 2 2 5 . 1 2 9 ; BIC 5 3 4 5 . 7 6 8 ; p l u s t o l e r a n c e warning

Random a c t o r , p a r t n e r , a c t o r ∗ sex , p a r t n e r ∗ s e x e f f e c t s
s e t . seed (1 2 3 4)
glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+sex∗Actor+sex∗Partner

+sex∗Actor∗Partner +(1+ Actor+Partner+Actor∗ sex+Partner ∗ sex|ID) ,
data=MLAP_ data , family=binomial)

AIC 5 2 3 7 . 0 6 5 ; BIC 5 4 3 1 . 4 2 8 ; p l u s t o l e r a n c e warning

B e s t m o d e l f i t i s Random i n t e r c e p t + a c t o r and p a r t n e r e f f e c t s
s e t . seed (1 2 3 4)
f i t<−glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+

sex∗Actor+sex∗Partner+sex∗Actor∗Partner+
(1+ Actor+Partner|ID) ,

data=MLAP_ data ,
family=binomial)

AIC 5222 .063
BIC 5315 .893

228

A. Vignettes for R

Get e s t i m a t e s rounded :
round (f i x e f (f i t) [1] , 2) #SC mean
round (f i x e f (f i t) [3] , 2) #SC Actor
round (f i x e f (f i t) [4] , 2) #SC P a r t n e r
round (f i x e f (f i t) [5] , 2) #SC Actor ∗ P a r t n e r
round (f i x e f (f i t) [1] + f i x e f (f i t) [2] , 2) #DC mean
round (f i x e f (f i t) [3] + f i x e f (f i t) [6] , 2) #DC Actor
round (f i x e f (f i t) [4] + f i x e f (f i t) [7] , 2) #DC P a r t n e r
round (f i x e f (f i t) [5] + f i x e f (f i t) [8] , 2) #DC Actor ∗ P a r t n e r

summary (f i t)

###################################
DC as R e f e r e n c e−C a t e g o r y
###################################

S w i t c h i n g r e f e r e n c e c a t e g o r y :
MLAP_ data2<−MLAP_ data
c o n t r a s t s (MLAP_ data2 $ sex) [1]<−1
c o n t r a s t s (MLAP_ data2 $ sex) [2]<−0

s e t . seed (1 2 3 4)
f i t<−glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+

sex∗Actor+sex∗Partner+sex∗Actor∗Partner+
(1+ Actor+Partner|ID) ,

data=MLAP_ data2 ,
family=binomial)

AIC 5222 .063
BIC 5315 .893

round (f i x e f (f i t) [1] , 2) ; round (f i x e f (f i t) [3] , 2)
round (f i x e f (f i t) [4] , 2) ; round (f i x e f (f i t) [5] , 2)
round (f i x e f (f i t) [1] + f i x e f (f i t) [2] , 2) #DC mean
round (f i x e f (f i t) [3] + f i x e f (f i t) [6] , 2) #DC Actor
round (f i x e f (f i t) [4] + f i x e f (f i t) [7] , 2) #DC P a r t n e r
round (f i x e f (f i t) [5] + f i x e f (f i t) [8] , 2) #DC Actor ∗ P a r t n e r
summary (f i t)

229

A. Vignettes for R

A.6. Markov Models

A.6.1. Basic Markov Model (MM)

l i b r a r y (depmixS4)
l i b r a r y (DySeq)
l i b r a r y (seqHMM)
l i b r a r y (TraMineR)

Get t h e Example Data
mydata<−CouplesCope

S t a t e Expand :
my. expand<−StateExpand (CouplesCope , 2 : 4 9 , 5 0 : 9 7)

Trans form t h e S e q u e n c e s i n t o a s t s l i s t −o b j e c t
my_seq<−seqdef (my. expand [, 1 : 4 8] ,

s t a r t = 1 , l ab el s = c (" no SC /DC" ,
"SC only " , "DC only " , "SC+DC"))

The f a s t way :
s e q t r a t e (my_seq)

As h idd en Markov model :
S t a r t v a l u e s
sc _ i n i t <− c (. 2 5 , . 2 5 , . 2 5 , . 2 5) # i n i t i a l s t a t e d i s t r i b u t i o n

sc _ t r a n s <− matrix (
c (. 2 5) ,
nrow = 4 , ncol = 4 , byrow = TRUE) # t r a n s i t i o n mat r i x .

sc _ emiss <− matrix (c (1 , 0 , 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 1) , nrow = 4 , ncol = 4) # e m i s s i o n mat r i x

230

A. Vignettes for R

Now we put e v e r y t h i n g t o g e t h e r i n t o one model :
sc _ initmod <− bui ld _hmm(observat ions = my_seq ,

i n i t i a l _ probs = sc _ i n i t ,
t r a n s i t i o n _ probs = sc _ t rans ,
emission _ probs = sc _ emiss)

F i t t h e Model
sc _ f i t <− f i t _model (sc _ initmod , g loba l _ step=TRUE,

l o c a l _ step=TRUE)
sc _ f i t $model # I n s p e c t t h e Model

Get AIC and BIC
BIC (sc _ f i t $model) ; AIC (sc _ f i t $model)

A.6.2. Restricted Hidden Markov Model

2 L a t e n t S t a t e s

sc _ i n i t <− c (1 , 0) # R e s t r i c t i o n : a l l c o u p l e s in s t a t e 1

sc _ t r a n s <− matrix (
c (0 . 5 0 , 0 . 5 0 , # The p r o b a b i l i t y t o s t a y or l e a v e s t r e s s can vary

0 , 1) , # The s e c o n d s t a t e i s a b s o r b i n g (r e s t r i c t e d t o 1)
nrow = 2 , ncol = 2 , byrow = TRUE)

The t r a n s i t i o n Matrix i s a 2∗4 Matrix now ,
sc _ emiss <− matrix (0 . 2 5 , nrow = 2 , ncol = 4)

sc _ initmod <− bui ld _hmm(observat ions = my_seq , i n i t i a l _ probs = sc _ i n i t ,
t r a n s i t i o n _ probs = sc _ t rans ,
emission _ probs = sc _ emiss)

Use EM−Algor i thm 1000 t i m e s f o r o p t i m a l s t a r t i n g v a l u e s , th en
g l o b a l and l o c a l o p t i m i z e r a r e used :
sc _ f i t <− f i t _model (sc _ initmod ,

g loba l _ step=TRUE, l o c a l _ step=TRUE,
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0 0 0)))

AIC (sc _ f i t $model) ; BIC (sc _ f i t $model)

231

A. Vignettes for R

A.6.3. Unrestricted HMM (common fate)

##################
2 L a t e n t S t a t e s
##################

sc _ i n i t <− c (. 5 , . 5)

sc _ t r a n s <− matrix (
c (0 . 5 0 , 0 . 5 0 ,

0 . 5 0 , 0 . 5 0) ,
nrow = 2 , ncol = 2 , byrow = TRUE)

sc _ emiss <− matrix (0 . 2 5 , nrow = 2 , ncol = 4)

sc _ initmod <− bui ld _hmm(observat ions=my_seq , i n i t i a l _ probs=sc _ i n i t ,
t r a n s i t i o n _ probs = sc _ t rans ,
emission _ probs = sc _ emiss)

sc _ f i t <− f i t _model (sc _ initmod ,
g loba l _ step=TRUE, l o c a l _ step=TRUE,
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0 0 0)))

AIC (sc _ f i t $model) ; BIC (sc _ f i t $model)

##################
3 L a t e n t S t a t e s
##################

sc _ i n i t <− c (. 3 3 , . 3 4 , . 3 3)

sc _ t r a n s <− matrix (
c (0 . 3 3 , 0 . 3 3 , 0 . 3 4 ,

0 . 3 3 , 0 . 3 3 , 0 . 3 4 ,
0 . 3 3 , 0 . 3 3 , 0 . 3 4) ,

nrow = 3 , ncol = 3 , byrow = TRUE)

sc _ emiss <− matrix (0 . 2 5 , nrow = 3 , ncol = 4)

232

A. Vignettes for R

sc _ initmod <− bui ld _hmm(observat ions=my_seq , i n i t i a l _ probs=sc _ i n i t ,
t r a n s i t i o n _ probs = sc _ t rans ,
emission _ probs = sc _ emiss)

sc _ f i t <− f i t _model (sc _ initmod ,
g loba l _ step=TRUE, l o c a l _ step=TRUE,
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0 0 0)))

AIC (sc _ f i t $model) ; BIC (sc _ f i t $model)

###################
4 L a t e n t S t a t e s
###################

sc _ i n i t <− c (. 2 5 , . 2 5 , . 2 5 , . 2 5)

sc _ t r a n s <− matrix (
c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 ,

0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 ,
0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 ,
0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5) ,

nrow = 4 , ncol = 4 , byrow = TRUE)

sc _ emiss <− matrix (0 . 2 5 , nrow = 4 , ncol = 4)

sc _ initmod <− bui ld _hmm(observat ions = my_seq ,
i n i t i a l _ probs = sc _ i n i t ,
t r a n s i t i o n _ probs = sc _ t rans ,
emission _ probs = sc _ emiss)

sc _ f i t <− f i t _model (sc _ initmod ,
g loba l _ step=TRUE, l o c a l _ step=TRUE
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0 0 0)))

sc _ f i t $ logLik

BIC (sc _ f i t $model) ; AIC (sc _ f i t $model)

233

A. Vignettes for R

A.6.4. Multi-Channel Approach ("Pure Common Fate")

#################################
3 L a t e n t S t a t e s (Multi−Channel
#################################
my_seq<−couple . seq
sc _ i n i t <− c (. 3 3 , . 3 4 , . 3 3)

sc _ t r a n s <− matrix (
c (0 . 3 3 , 0 . 3 3 , 0 . 3 4 ,

0 . 3 3 , 0 . 3 3 , 0 . 3 4 ,
0 . 3 3 , 0 . 3 3 , 0 . 3 4) ,

nrow = 3 , ncol = 3 , byrow = TRUE)

sc _ emiss1 <− matrix (0 . 5 , nrow = 3 , ncol = 2)
sc _ emiss2 <− matrix (0 . 5 , nrow = 3 , ncol = 2)
sc _ emiss <− l i s t (sc _emiss1 , sc _ emiss2)

DC_seq <− seqdef (CouplesCope [, 2 : 4 9] ,
s t a r t = 1 , l ab el s = c (" no DC" , "DC"))

SC_seq <− seqdef (CouplesCope [, 5 0 : 9 7] ,
s t a r t = 1 , l ab el s = c (" no SC" , "SC"))

sc _obs <− l i s t (SC_seq , DC_seq)

sc _ initmod <− bui ld _hmm(observat ions = sc _obs ,
i n i t i a l _ probs = sc _ i n i t ,
t r a n s i t i o n _ probs = sc _ t rans ,
emission _ probs = sc _emiss ,
channel _names = c ("SC" , "DC"))

sc _ f i t <− f i t _model (sc _ initmod ,
g loba l _ step=TRUE,
l o c a l _ step=TRUE,
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))

AIC (sc _ f i t $model) ; BIC (sc _ f i t $model)

234

A. Vignettes for R

A.7. Mixture Markov

S p e c i f y s t a r t i n g v a l u e s f o r t r a n s i t i o n m a t r i c e s o f
b o t h l a t e n t groups
mytrans1<−matrix (c (. 2 5) , 4 , 4) ; mytrans2<−matrix (c (. 2 5) , 4 , 4)

The t r a n s i t i o n m a t r i c e s must be p l a c e d i n t o a l i s t ,
b e f o r e b u i l d i n g t h e model :
mymixtrans<− l i s t (mytrans1 , mytrans2)

S t a r t i n g v a l u e s f o r t h e i n i t i a l p r o b a b i l i t i e s , one f o r e a c h c h a i n :
myinit1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; myinit2<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
a g a i n b o t h must be p l a c e d i n s i d e a l i s t :
mymixinit<− l i s t (myinit1 , myinit2)

my_mmodel<−bui ld _mmm(couple . seq , # t h e d a t a
mymixtrans , # s t a r t i n g v a l u e s : t r a n s i t i o n s
mymixinit) # s t a r t i n g v a l u e s : i n i t i a l s t a t e s

f i t 3<− f i t _model (my_mmodel , g loba l _ step=TRUE, l o c a l _ step=TRUE,
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))

AIC (f i t 3) ; BIC (AIC)

A.8. OM-Distances

###################
OM−D i s t a n c e s
###################

S u b s t i t u t i o n−c o s t−ma tr ix (Gabad inhos TRATE−Formula)
submat <− seqsubm (couple . seq , method = "TRATE")

d i s t a n c e−ma tr ix :
d i s t . oml <− s e q d i s t (couple . seq , method = "OM" , sm = submat)

###
Determine o p t i m a l Number o f c l u s t e r s
###

235

A. Vignettes for R

o p t i m a l number o f c l u s t e r s :
plot (pam(d i s t . oml , pamk(d i s t . oml) $nc) , which . plot =1)

S c r e e p l o t : (I n d i c a t e s 1 or 2 c l u s t e r s)
wss <− (nrow (d i s t . oml)−1)∗sum(apply (mydata , 2 , var))
for (i in 2 : 1 5) wss [i] <− sum(kmeans (mydata , c e n t e r s = i) $ withinss)
plot (1 : 1 5 , wss , type=" b " ,

xlab="Number of C l u s t e r s " ,
ylab=" Within groups sum of squares ")

Dendrogramm : (I n d i c a t e s 2 , maybe 3 , C l u s t e r s o l u t i o n)
plot (agnes (d i s t . oml , d i s s =TRUE, method = " ward ") , which . p l o t s =2)

#####################
Ward−a l g o r i t h m
#####################

clusterward1 <− agnes (d i s t . oml , d i s s =TRUE, method = " ward ")

2 C l u s t e r s o l u t i o n
c l u s t e r 2 <− cut ree (clusterward1 , k=2)
c l u s t e r 2 f a c <− f a c t o r (c l u s t e r 2 , l ab el s = c (" c l u s t e r 1 ;

f a s t coper " , " c l u s t e r 2 ; slow coper "))

##
compar ing c l u s t e r s and f u r t h e r a n a l y s e s
##

s e p a r a t e s t a t e−d i s t r i b u t i o n p l o t s
seqdplot (couple . seq , group = c l u s t e r 2 f a c)

c o r r e l a t i o n be tween t h e c l u s t e r membership
and men ’ s s e l f −a s s e s s e d d y a d i c c o p i n g a b i l i t y
c l u s t 2 .dummy<−as . numeric (c l u s t e r 2 f a c)
c l u s t 2 .dummy[c l u s t 2 .dummy==1]<−0
c l u s t 2 .dummy[c l u s t 2 .dummy==2]<−1
cor . t e s t (mydata$EDCm, c l u s t 2 .dummy)

LogSeq (my. trans , d e l t a = 0 . 5 , subgroups= c l u s t e r 2)

236

A. Vignettes for R

LogSeq (my. t r a n s . SC , d e l t a = 0 . 5 , subgroups= c l u s t e r 2)

ANOVA− l i k e a p p r o a c h
da <− d i s s a s s o c (d i s t . oml , group = c l u s t e r 2 , R = 5000)
print (da$ s t a t)

237

B. R-Code for Simulation Studies

All scripts are compressed: Replace ";" with linebreaks for better readability. Each Script ends
in a loop, indicated by hashbox with the title "Simulation". Conditions have the same name as
in Chapter 10.

B.1. Cox-Regression:PowerAnalysis

S i m u l a t e S e q u e n c e
simSeq<−function (MyHaz, k) {
MySeq<−0
W100<−seq (0 , 1 , by = 0 . 0 1)
for (i in 1 : k) {
i f (MySeq[i] = = 0) {
i f (sample (W100,1) <=MyHaz) {
MySeq<−c (MySeq , 1)
} e lse {
MySeq<−c (MySeq , 0)
}
} e lse {
MySeq<−c (MySeq , 1)
}
}
return (MySeq)
}
S i m u l a t i n g d a t a s e t s
SimCoxDat<−function (N, Basehaz , B , k) {
MyB<−B ; cov0<−rnorm (N, 0 , 1)
IndHaz<−Basehaz∗exp (MyB)^ cov0
MyDat<−data . frame ()
for (i in IndHaz) {
MyDat<−rbind (MyDat , simSeq (i , k))
}
colnames (MyDat)<−paste ("T" , 0 : k , sep=" ")
out<−cbind (IndHaz , cov0 , MyDat) ; return (out)

238

B. R-Code for Simulation Studies

}
T r a n s f o r m i n g i n t o e v e n t t o t i m e
l i b r a r y (DySeq) ; l i b r a r y (s u r v i v a l)
K<−1000 # n u m b e r o f s i m u l a t i o n s ; k<−30# s e q u e n c e s l e n g t h
N<−30# s a m p l e s i z e ; Bas ehaz<−0 .05# b a s e l i n e h a z a r d
B<−0# e f f e c t

SimCox<−function (N, Basehaz , B , k , K, plot=FALSE ,
d i g i t s =3 ,raw=FALSE) {
require (DySeq) ; require (s u r v i v a l)
out<− l i s t () ; pb<−t x t P r o g r e s s B a r (min=0 ,max=K, i n i t i a l =0 ,
char="=" , width =40 , t i t l e = ,
l a b e l , s t y l e =3 , f i l e =" ")
for (i in 1 :K) {
se tTxtProgressBar (pb , i , t i t l e =NULL, l a b e l =NULL)
x<−SimCoxDat (N, Basehaz , B , k) # ######
E<−LastOccur (x [, 3 : length (x [1 ,])] , y=0)
Event<−rep (1 ,N) ; Event [E==k+1]<−0
out [[i]]<−coxph (Surv (E , Event) ~cov0 , data=x)
}
myCoeff<−c ()
for (i in 1 : length (out)) {
myCoeff [i]<−summary (out [[i]]) $ c o e f f i c i e n t s [1]
}
b i a s<−mean (myCoeff) ; se<−sd (myCoeff)
i f (plot==TRUE) { h i s t (myCoeff) }
myP<−c ()
for (i in 1 : length (out)) {
myP[i]<−summary (out [[i]]) $ c o e f f i c i e n t s [5]
}
p . value<−mean (myP< . 0 5)
i f (raw==TRUE) {
out2<−out
} e lse {
out2<−c (bias , se , p . value)
names (out2)<−c (" b i a s " , " se " , " s ign ")
round (out2 , d i g i t s)
}
}

239

B. R-Code for Simulation Studies

########################
S i m u l a t i o n c o n d i t i o n s
########################

Simul iereN10 , 2 0 , 3 0 , 4 0 , 5 0 , 6 0 , 7 0 , 8 0 , 9 0 , 1 0 0 , 2 0 0
FuerB = 0 . 2 ,B= 0 . 4 ,B= 0 . 6 ,B= 0 . 8 ,B=1 ,B=2
P r e p a r e L i s t f o r c o m p l e t e S i m u l a t i o n
simT<− l i s t ()
P r e p a r e d a t a . f r a m e f o r P o w e r a n a l y i s−r e s u l t s
r e s u l t s<−data . frame () ; count<−1 ; out<−c ()
K<−1000 ; k<−3 0 ; Basehaz =0.05

#SEEDis643952
s e t . seed (6 4 3 9 5 2)

for (N in c (seq (1 0 , 1 0 0 , by = 1 0) , 2 0 0 , 5 0 0)) {
out<−c ()
for (B in c (seq (0 , 1 , by = 0 . 2) , 2)) {

MZ<−SimCox (N, Basehaz , B , k , K, plot=FALSE ,
d i g i t s =3 ,raw=FALSE)

simT [[count]]<−MZ; out<−c (out ,MZ[3])

c a t (paste ("\nSimulation " , count , " outof84 :\n"))
count<−count+1
}
r e s u l t s<−rbind (r e s u l t s , out) ; print (r e s u l t s)
}

colnames (r e s u l t s)<−paste ("B=" ,
c (seq (0 , 1 , by = 0 . 2) , 2) , sep=" ")

rownames (r e s u l t s)<−paste ("N=" , c (seq (1 0 , 1 0 0 , by=10)
, 2 0 0 , 5 0 0) , sep=" ") ; simT [seq (7 , 8 4 , by = 7)]

##########################
Fol low−UpSimula t i ons
##########################

240

B. R-Code for Simulation Studies

#SEEDis281217
s e t . seed (2 8 1 2 1 7)

MyLSim<− l i s t () ; count2<−1
for (BASE i nc (0 . 0 1 , 0 . 1 , 0 . 2 5)) {
for (MyL in c (1 0 , 5 0 , 1 0 0)) {
MyLSim [[count2]]<−SimCox (N=10 ,
Basehaz=BASE , B=2 ,k=MyL,K=10000 ,
plot=FALSE , d i g i t s =3 ,raw=FALSE)
print (count2) ; count2<−count2+1
}
}

SimCox (N=10 , Basehaz=BASE , B= ,k=MyL,K=10000 ,
plot=FALSE , d i g i t s =3 ,raw=FALSE)

B.2. Frailty Model

l i b r a r y (DySeq) ; l i b r a r y (f r a i l t y p a c k)
FRAIL<−c () ; Ps<−c ()

s i m u l a t i n g f r a i l t y
s e t . seed (1 3 2 8 7 0)

C o n d i t i o n s :
SIM<−1 0 0 ; Est<−0 ;NonCov<−0 ; Rej<−0
F r e s u l t<−data . frame (Est , NonCov , Rej)
counter<−1
for (N in c (2 0 , 4 0 , 6 0 , 8 0 , 1 0 0)) {
for (SIG in c (0 , 0 . 2 5 , 0 . 5 , 0 . 7 5 , 1)) {
for (k in 1 : SIM) {
print (c (N, SIG , k))
i f (SIG ==0){
MyFrail<−rep (0 ,N)
} e lse {
MyFrail<−rnorm (N, 0 , SIG)
}
FHaz<−0 . 0 5 ∗exp (MyFrail)
P r e p a r i n g d a t a . f r a m e s
myDat1<−data . frame ()
myDat1<−rbind (myDat1 , simSeq (FHaz [1] , 3 0))

241

B. R-Code for Simulation Studies

myDat2<−data . frame ()
myDat2<−rbind (myDat2 , simSeq (FHaz [1] , 3 0))
for (i in FHaz [2 :N]) { # G e n e r a t i n g S a m p l e s
myDat1<−rbind (myDat2 , simSeq (i , 3 0))
myDat2<−rbind (myDat2 , simSeq (i , 3 0))
}
T r a n s f o r m i n g i n t o t i m e−to−e v e n t v a r i a b l e s
l a s t 1<−LastOccur (myDat1 , y=0)
l a s t 2<−LastOccur (myDat2 , y=0)

My. time<−c (l a s t 1 , l a s t 2)

event<−c (rep (1 , length (My. time)))
event [My. time >=31]<−0

id<−rep (1 :N, t imes =2)

myFdata<−data . frame (My. time , event , id)

f i t F 0<−NULL
F i t t i n g f r a i l t y M o d e l
f i t F 0<−tryCatch (f r a i l t y P e n a l (Surv (My. time , event) ~
c l u s t e r (id)+1 , data=myFdata ,
n . knots =6 ,kappa=1000 ,
RandDist="LogN") , e r r o r =function (e)NULL)

C a l c u l a t i n g f r a i l t y p a r a m e t e r a n d p−v a l u e
i f (! i s . null (f i t F 0)) { seH<−sqr t (f i t F 0 $ varTheta [1])
f r a i l<− f i t F 0 $sigma2
MyPValue<−s i g n i f (1−pnorm (f r a i l / seH))
FRAIL [k]<− f r a i l ; Ps [k]<−MyPValue
}
}
F r e s u l t [counter ,]<−c (mean (FRAIL ^ 0 . 5 , na . rm=TRUE) ,
mean (i s . na (FRAIL)) ,
mean (Ps < . 0 5 , na . rm=TRUE))
counter<−counter +1;FRAIL<−c () ; Ps<−c ()
}
}
round (Fresu l t , 3)

242

B. R-Code for Simulation Studies

B.3. Power Simulation for Aggregated Logit Models

#######################
C r e a t i n g S e q u e n c e s
#######################
F u n c t i o n f o r g e n e r a t i n g s e q u e n c e s
simSeq<−function (t rans , i n i t i a l , length) {
i n i t<−sample (c (1 , 2 , 3 , 4) , 1 , prob= i n i t i a l)
for (i in 2 : length) {
i f (i n i t [i −1]==1){
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [1 ,])
} e lse i f (i n i t [i −1]==2){
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [2 ,])
} e lse i f (i n i t [i −1]==3){
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [3 ,])
} e lse {
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [4 ,])
}
}
return (i n i t)
}
###
S i m u l a t e a c o m p l e t e s a m p l e o f d y a d i c s e q u e n c e s
###
simSeqSample<−function (t rans , i n i t i a l , length ,N) {
comb<−simSeq (trans , i n i t i a l , length)
seq1<−c () ; seq1 [comb==1|comb==3]<−0
seq1 [comb==2|comb==4]<−1 ; seq2<−c ()
seq2 [comb==1|comb==2]<−0 ; seq2 [comb==3|comb==4]<−1
out<−c (seq1 , seq2) ; for (i in 2 :N) {
comb<−simSeq (trans , i n i t i a l , length)
seq1 [comb==1|comb==3]<−0 ; seq1 [comb==2|comb==4]<−1
seq2 [comb==1|comb==2]<−0 ; seq2 [comb==3|comb==4]<−1
out<−rbind (out , c (seq1 , seq2))
} ; return (out) ; }

###
T r a n s f o r m A P I M L o g i t s i n t o T r a n s i t i o n M a t r i x
###

243

B. R-Code for Simulation Studies

APIMtoTrans<−function (B0_ 1 ,AE_ 1 ,PE_ 1 , I n t _ 1 ,
B0_ 2 ,AE_ 2 ,PE_ 2 , I n t _ 2) {
myTrans<−matrix (NA, 4 , 4)
odds1<−exp (B0_ 1) ∗exp (AE_ 2)^(−1)∗exp (PE_ 2)^(−1)∗exp (I n t _ 2) ^ (1)
prob1<−odds1 / (odds1 +1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1)^(−1)∗exp (PE_ 1)^(−1)∗exp (I n t _ 1) ^ (1)
prob2<−odds2 / (odds2 +1)
myTrans [1 , 1]<−(1−prob1) ∗(1−prob2)
myTrans [1 , 2]<−(1−prob1) ∗prob2
myTrans [1 , 3]<−prob1∗(1−prob2) ; myTrans [1 , 4]<−prob1∗prob2
odds1<−exp (B0_ 1) ∗exp (AE_ 2)^(−1)∗exp (PE_ 2) ^ (1) ∗exp (I n t _ 2)^(−1)
prob1<−odds1 / (odds1 +1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1) ^ (1) ∗exp (PE_ 1)^(−1)∗exp (I n t _ 1)^(−1)
prob2<−odds2 / (odds2 +1)
myTrans [2 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [2 , 2]<−(1−prob1) ∗prob2
myTrans [2 , 3]<−prob1∗(1−prob2) ; myTrans [2 , 4]<−prob1∗prob2
odds1<−exp (B0_ 1) ∗exp (AE_ 2) ^ (1) ∗exp (PE_ 2)^(−1)∗exp (I n t _ 2)^(−1)
prob1<−odds1 / (odds1 +1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1)^(−1)∗exp (PE_ 1) ^ (1) ∗exp (I n t _ 1)^(−1)
prob2<−odds2 / (odds2 +1)
myTrans [3 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [3 , 2]<−(1−prob1) ∗prob2
myTrans [3 , 3]<−prob1∗(1−prob2) ; myTrans [3 , 4]<−prob1∗prob2
odds1<−exp (B0_ 1) ∗exp (AE_ 2) ^ (1) ∗exp (PE_ 2) ^ (1) ∗exp (I n t _ 2) ^ (1)
prob1<−odds1 / (odds1 +1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1) ^ (1) ∗exp (PE_ 1) ^ (1) ∗exp (I n t _ 1) ^ (1)
prob2<−odds2 / (odds2 +1)
myTrans [4 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [4 , 2]<−(1−prob1) ∗prob2
myTrans [4 , 3]<−prob1∗(1−prob2) ; myTrans [4 , 4]<−prob1∗prob2
return (myTrans)
}
###############
S i m u l a t i o n
###############
S e e d i s 1 8 0 3
SimAggLogit<−function (N=30 ,L=30 ,K=100 ,
B0_ 1=0 ,AE_ 1=0 ,PE_ 1=0 , I n t _ 1=0 ,
B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 , I n t _ 2=0 ,
i n i t =c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5) ,
d e l t a = 0 . 0 5) {

244

B. R-Code for Simulation Studies

require (DySeq)
Trans1<−APIMtoTrans (B0_ 1 ,AE_ 1 ,PE_ 1 , I n t _ 1 ,
B0_ 2 ,AE_ 2 ,PE_ 2 , I n t _ 2)
i n t e r c e p t 1<−c () ; a c t o r 1<−c () ; partner1<−c ()
i n t e r a c 1<−c () ; i n t e r c e p t 2<−c () ; a c t o r 2<−c ()
partner2<−c () ; i n t e r a c 2<−c () ; L i n t e r c e p t 1<−c () ;
Lactor1<−c () ; Lpartner1<−c () ; L i n t e r a c 1<−c ()
L i n t e r c e p t 2<−c () ; Lactor2<−c () ; Lpartner2<−c ()
L i n t e r a c 2<−c ()
for (count in 1 :K) {
Msample<−simSeqSample (Trans1 , i n i t , L ,N)
my. s t a t e s<−StateExpand (Msample , 1 : L , L+1:L)
my. t r a n s<−Sta teTrans (my. s t a t e s ,TRUE)
my. logseq<−LogSeq (my. trans , d e l t a = d e l t a)
lambdas<−my. logseq [[1]]
i n t e r c e p t 1 [count]<− s t a t s : : t . t e s t (lambdas [, 1]) $p . value
a c t o r 1 [count]<− s t a t s : : t . t e s t (lambdas [, 2]) $p . value
partner1 [count]<− s t a t s : : t . t e s t (lambdas [, 3]) $p . value
i n t e r a c 1 [count]<− s t a t s : : t . t e s t (lambdas [, 4]) $p . value
L i n t e r c e p t 1 [count]<−mean (lambdas [, 1])
Lactor1 [count]<−mean (lambdas [, 2])
Lpartner1 [count]<−mean (lambdas [, 3])
L i n t e r a c 1 [count]<−mean (lambdas [, 4])
my. s t a t e s<−StateExpand (Msample , 1 : L , L+1:L)
my. t r a n s<−Sta teTrans (my. s t a t e s , FALSE)
my. logseq<−LogSeq (my. trans , d e l t a = d e l t a)
lambdas<−my. logseq [[1]]
i n t e r c e p t 2 [count]<− s t a t s : : t . t e s t (lambdas [, 1]) $p . value
a c t o r 2 [count]<− s t a t s : : t . t e s t (lambdas [, 2]) $p . value
partner2 [count]<− s t a t s : : t . t e s t (lambdas [, 3]) $p . value
i n t e r a c 2 [count]<− s t a t s : : t . t e s t (lambdas [, 4]) $p . value
L i n t e r c e p t 2 [count]<−mean (lambdas [, 1])
Lactor2 [count]<−mean (lambdas [, 2])
Lpartner2 [count]<−mean (lambdas [, 3])
L i n t e r a c 2 [count]<−mean (lambdas [, 4])
} out<−c () ; out<−c (out , mean (i n t e r c e p t 1 < . 0 5))
out<−c (out , mean (actor1 < . 0 5)) ; out<−c (out , mean (partner1 < . 0 5))
out<−c (out , mean (i n t e r a c 1 < . 0 5)) ; out<−c (out , mean (i n t e r c e p t 2 < . 0 5))
out<−c (out , mean (partner2 < . 0 5)) ; out<−c (out , mean (actor2 < . 0 5))
out<−c (out , mean (i n t e r a c 2 < . 0 5)) ; out<−c (out , mean (L i n t e r c e p t 1))

245

B. R-Code for Simulation Studies

out<−c (out , mean (Lactor1)) ; out<−c (out , mean (Lpartner1))
out<−c (out , mean (L i n t e r a c 1)) ; out<−c (out , mean (L i n t e r c e p t 2))
out<−c (out , mean (Lpartner2)) ; out<−c (out , mean (Lactor2))
out<−c (out , mean (L i n t e r a c 2)) ; out<−t (out)
colnames (out)<−c (" Rej . I n t e r 1 " , " Rej . AE1" , " Rej . PE1 " , " Rej .AE∗PE1 " ,
" Rej . I n t e r 2 " , " Rej . Actor2 " , " Rej . Partner2 " , " Rej .AE∗PE2 " ,
" E s t I n t e r 1 " , " EstAE1 " , " EstPE1 " , " EstAE∗PE1 " ,
" E s t I n t e r 2 " , " EstActor2 " , " Es tPar tner2 " , " EstAE∗PE2 ")
out<−t (out)
return (out)
}

B.4. Interaction Delta and L on Type-IError

MyNames<−c () ; out<−c () ; K<−1000
count<−0
for (EFF in c (0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1)) {
for (N in c (1 0 , 3 0 , 5 0 , 7 0 , 1 0 0)) {
for (L in c (1 0 , 3 0 , 5 0 , 7 0 , 1 0 0)) {
SimOut<−SimAggLogit (N, L , K,
B0_ 1=0 ,AE_1=EFF , PE_ 1=0 , I n t _ 1=0 ,
B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 , I n t _ 2=0 ,
i n i t =c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5) , d e l t a = . 0 5)

out<−cbind (out , SimOut) ; count<−count+1
print (paste (count , " von " ,5 ∗5∗ 6))
MyNames<−c (MyNames, paste (" b=" , EFF , "N=" ,N, "L=" ,L , sep=" "))
}
}
}
colnames (out)<−MyNames

B.5. Multilevel APIM

SimMLM<−function (N=30 ,L=30 ,K=100 ,B0_ 1=0 ,AE_ 1=0 ,PE_ 1=0 ,
I n t _ 1=0 ,B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 ,

I n t _ 2=0 , i n i t =c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5)) {

require (DySeq) ; require (lme4) ; require (lmerTest)
Bedingung :
Trans1<−APIMtoTrans (B0_ 1 ,AE_ 1 ,PE_ 1 , I n t _ 1 ,

246

B. R-Code for Simulation Studies

B0_ 2 ,AE_ 2 ,PE_ 2 , I n t _ 2)

pb<−t x t P r o g r e s s B a r (min=0 ,max=K, i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")
i n t e r c e p t 1<−c () ; a c t o r 1<−c () ; partner1<−c () ; i n t e r a c 1<−c ()
i n t e r c e p t 2<−c () ; a c t o r 2<−c () ; partner2<−c () ; i n t e r a c 2<−c ()
L i n t e r c e p t 1<−c () ; Lactor1<−c () ; Lpartner1<−c ()
L i n t e r a c 1<−c () ; L i n t e r c e p t 2<−c () ; Lactor2<−c ()
Lpartner2<−c () ; L i n t e r a c 2<−c ()

for (count in 1 :K) { se tTxtProgressBar (pb , count)
Msample<−simSeqSample (Trans1 , i n i t , L ,N)
ML_ data<−ML_ Trans (Msample , 1 : L , L+1:L)
MLAP_ data<−MLAP_ Trans (ML_ data)
names (MLAP_ data) [1]<−" sex "
MLAP_ data $ sex<−as . f a c t o r (MLAP_ data $ sex)
l e v e l s (MLAP_ data $ sex)<−c (" female " , " male ")
MLAP_ data $ Partner [MLAP_ data $ Partner ==0]<−(−1)
MLAP_ data $ Actor [MLAP_ data $ Actor ==0]<−(−1)
f i t<−glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+
sex∗Actor+sex∗Partner+sex∗Actor∗Partner+
(1|ID) , data=MLAP_ data ,
family=binomial ,
contro l=glmerControl (opt imizer=" bobyqa " ,
o pt C t r l= l i s t (maxfun=5e6)))
r es<−summary (f i t) $ c o e f f i c i e n t s
i n t e r c e p t 1 [count]<−r es [1 , 4] ; a c t o r 1 [count]<−re s [3 , 4]
partner1 [count]<−r es [4 , 4] ; i n t e r a c 1 [count]<−re s [5 , 4]
L i n t e r c e p t 1 [count]<−r es [1 , 1] ; Lactor1 [count]<−r es [3 , 1]
Lpartner1 [count]<−re s [4 , 1] ; L i n t e r a c 1 [count]<−r es [5 , 1]
c o n t r a s t s (MLAP_ data $ sex)<−c (1 , 0)
f i t 2<−glmer (DV~1+ sex+Actor+Partner+Actor∗Partner+
sex∗Actor+sex∗Partner+sex∗Actor∗Partner+
(1|ID) , data=MLAP_ data ,
family=binomial , contro l=glmerControl (

opt imizer=" bobyqa " , o p tC t r l= l i s t (maxfun=5e6)))
res2<−summary (f i t 2) $ c o e f f i c i e n t s ; i n t e r c e p t 2 [count]<−res2 [1 , 4]
a c t o r 2 [count]<−res2 [3 , 4] ; partner2 [count]<−res2 [4 , 4]
i n t e r a c 2 [count]<−res2 [5 , 4] ; L i n t e r c e p t 2 [count]<−res2 [1 , 1]
Lactor2 [count]<−res2 [3 , 1] ; Lpartner2 [count]<−res2 [4 , 1]

247

B. R-Code for Simulation Studies

L i n t e r a c 2 [count]<−res2 [5 , 1] } ; out<−c ()
out<−c (out , mean (i n t e r c e p t 1 < . 0 5)) ; out<−c (out , mean (actor1 < . 0 5))
out<−c (out , mean (partner1 < . 0 5)) ; out<−c (out , mean (i n t e r a c 1 < . 0 5))
out<−c (out , mean (i n t e r c e p t 2 < . 0 5)) ; out<−c (out , mean (actor2 < . 0 5))
out<−c (out , mean (partner2 < . 0 5)) ; out<−c (out , mean (i n t e r a c 2 < . 0 5))
out<−c (out , mean (L i n t e r c e p t 1)) ; out<−c (out , mean (Lactor1))
out<−c (out , mean (Lpartner1)) ; out<−c (out , mean (L i n t e r a c 1))
out<−c (out , mean (L i n t e r c e p t 2)) ; out<−c (out , mean (Lpartner2))
out<−c (out , mean (Lactor2)) ; out<−c (out , mean (L i n t e r a c 2))
out<−t (out) ; colnames (out)<−c (" Rej . I n t e r 1 " , " Rej . AE1" , " Rej . PE1 " ,
" Rej .AE∗PE1 " , " Rej . I n t e r 2 " , " Rej . Actor2 " , " Rej . Partner2 " ,
" Rej .AE∗PE2 " , " E s t I n t e r 1 " , " EstAE1 " , " EstPE1 " ,
" EstAE∗PE1 " , " E s t I n t e r 2 " , " EstActor2 " , " Es tPar tner2 " ,
" EstAE∗PE2 ") ; out<−t (out) ; return (out) }

############################
E f f e c t o f l e n g t h o n P o w e r
############################
S e e d i s 2 8 6 0
s e t . seed (2 8 6 0)

MyNames<−c () ; out<−c () ; K<−5 0 0 ; count<−0
for (EFF in c (0 , 0 . 2 , 0 . 4 , 1)) {
for (N in c (1 0 , 5 0 , 1 0 0)) {
for (L in c (1 0 , 5 0 , 1 0 0)) {
SimOut<−SimMLM(N, L , K,
B0_ 1=0 ,AE_1=EFF , PE_ 1=0 , I n t _ 1=0 ,
B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 , I n t _ 2=0 ,
i n i t =c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5))
out<−cbind (out , SimOut) ; count<−count+1
print (paste (count , " von " ,6 ∗5∗ 5))
MyNames<−c (MyNames, paste (" b=" , EFF , "N=" ,N, "L=" ,L , sep=" ")) } } }
colnames (out)<−MyNames

B.6. Basic Markov Model APIM

l i b r a r y (DySeq) ; l i b r a r y (seqHMM) ; l i b r a r y (TraMineR) ; l i b r a r y (p a r a l l e l)

####################
C r e a t i n g S e q u e n c e s
####################

248

B. R-Code for Simulation Studies

simSeq<−function (t rans , i n i t i a l , length) {

i n i t<−sample (c (1 , 2 , 3 , 4) , 1 , prob= i n i t i a l)

for (i in 2 : length) { i f (i n i t [i −1]==1){ i n i t [i]<−sample (
c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [1 ,]) } e lse i f (i n i t [i −1]==2){
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [2 ,]) } e lse
i f (i n i t [i −1]==3){ i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 ,
prob= t r a n s [3 ,]) } e lse { i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 ,
prob= t r a n s [4 ,]) } }
return (i n i t) }

###
S i m u l a t e a c o m p l e t e s a m p l e o f d y a d i c s e q u e n c e s
###
simSeqSample<−function (t rans , i n i t i a l , length ,N) {
comb<−simSeq (trans , i n i t i a l , length)
seq1<−c () ; seq1 [comb==1|comb==3]<−0
seq1 [comb==2|comb==4]<−1 ; seq2<−c ()
seq2 [comb==1|comb==2]<−0 ; seq2 [comb==3|comb==4]<−1
out<−c (seq1 , seq2) ; for (i in 2 :N) {
comb<−simSeq (trans , i n i t i a l , length)
seq1 [comb==1|comb==3]<−0 ; seq1 [comb==2|comb==4]<−1
seq2 [comb==1|comb==2]<−0 ; seq2 [comb==3|comb==4]<−1
out<−rbind (out , c (seq1 , seq2))
} return (out) }
###
T r a n s f o r m A P I M L o g i t s i n t o T r a n s i t i o n M a t r i x
###
APIMtoTrans<−function (B0_ 1 ,AE_ 1 ,PE_ 1 , I n t _ 1 ,
B0_ 2 ,AE_ 2 ,PE_ 2 , I n t _ 2) {
myTrans<−matrix (NA, 4 , 4)
odds1<−exp (B0_ 1) ∗exp (AE_ 2)^(−1)∗exp (PE_ 2)^(−1)∗exp (I n t _ 2) ^ (1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1)^(−1)∗exp (PE_ 1)^(−1)∗exp (I n t _ 1) ^ (1)
prob1<−odds1 / (odds1 + 1) ; prob2<−odds2 / (odds2 +1)
myTrans [1 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [1 , 2]<−(1−prob1) ∗prob2
myTrans [1 , 3]<−prob1∗(1−prob2) ; myTrans [1 , 4]<−prob1∗prob2
odds1<−exp (B0_ 1) ∗exp (AE_ 2)^(−1)∗exp (PE_ 2) ^ (1) ∗exp (I n t _ 2)^(−1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1) ^ (1) ∗exp (PE_ 1)^(−1)∗exp (I n t _ 1)^(−1)
prob1<−odds1 / (odds1 + 1) ; prob2<−odds2 / (odds2 +1)

249

B. R-Code for Simulation Studies

myTrans [2 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [2 , 2]<−(1−prob1) ∗prob2
myTrans [2 , 3]<−prob1∗(1−prob2) ; myTrans [2 , 4]<−prob1∗prob2
odds1<−exp (B0_ 1) ∗exp (AE_ 2) ^ (1) ∗exp (PE_ 2)^(−1)∗exp (I n t _ 2)^(−1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1)^(−1)∗exp (PE_ 1) ^ (1) ∗exp (I n t _ 1)^(−1)
prob2<−odds2 / (odds2 + 1) ; prob1<−odds1 / (odds1 +1)
myTrans [3 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [3 , 2]<−(1−prob1) ∗prob2
myTrans [3 , 3]<−prob1∗(1−prob2) ; myTrans [3 , 4]<−prob1∗prob2
odds1<−exp (B0_ 1) ∗exp (AE_ 2) ^ (1) ∗exp (PE_ 2) ^ (1) ∗exp (I n t _ 2) ^ (1)
odds2<−exp (B0_ 2) ∗exp (AE_ 1) ^ (1) ∗exp (PE_ 1) ^ (1) ∗exp (I n t _ 1) ^ (1)
prob1<−odds1 / (odds1 + 1) ; prob2<−odds2 / (odds2 +1)
myTrans [4 , 1]<−(1−prob1) ∗(1−prob2) ; myTrans [4 , 2]<−(1−prob1) ∗prob2
myTrans [4 , 3]<−prob1∗(1−prob2) ; myTrans [4 , 4]<−prob1∗prob2
return (myTrans)
}

########################
Trans i t i on in toAPIM
########################
TransToAPIM<−function (M) {
DC_none_L<−log (DC_none / (1−DC_none))
DC_SC_L<−log (DC_SC / (1−DC_SC))
DC_DC_L<−log (DC_DC/ (1−DC_DC))
DC_SC_DC_L<−log (DC_SC_DC/ (1−DC_SC_DC))
DCb0<−sum(DC_none_L ,DC_SC_L ,DC_DC_L ,DC_SC_DC_L) / 4
DCPart<−(DC_SC_L+DC_SC_DC_L) /2−DCb0
DCAct<−(DC_DC_L+DC_SC_DC_L) /2−DCb0
DCint<−DC_SC_DC_L−(DCb0+DCAct+DCPart)
SC_none<−sum(M[1 , c (2 , 4)]) ; SC_SC<−sum(M[2 , c (2 , 4)])
SC_DC<−sum(M[3 , c (2 , 4)]) ; SC_SC_DC<−sum(M[4 , c (2 , 4)])
SC_none_L<−log (SC_none / (1−SC_none))
SC_SC_L<−log (SC_SC / (1−SC_SC))
SC_DC_L<−log (SC_DC/ (1−SC_DC))
SC_SC_DC_L<−log (SC_SC_DC/ (1−SC_SC_DC))
SCb0<−sum(SC_none_L , SC_SC_L , SC_DC_L , SC_SC_DC_L) / 4
SCAct<−(SC_SC_L+SC_SC_DC_L) /2−SCb0
SCPart<−(SC_DC_L+SC_SC_DC_L) /2−SCb0
SCint<−SC_SC_DC_L−(SCb0+SCAct+SCPart)
r e s u l t s<−c (DCb0 , DCAct , DCPart , DCint ,
SCb0 , SCAct , SCPart , SCint)
names (r e s u l t s)<−c (" DCIntercept " , " DCActor " , " DCPartner " ,

250

B. R-Code for Simulation Studies

" DCInteract ion " , " SCIntercept " , " SCActor " , " SCPartner " ,
" S CI nt e ra c t io n ") ; return (r e s u l t s) }
#################
#MarkovasAPIM#
#################
t rans1<−APIMtoTrans (B0_ 1=0 ,AE_ 1=0 ,PE_ 1=0 , I n t _ 1=0 ,
B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 , I n t _ 2=0)
x<−simSeqSample (t r a n s =trans1 , i n i t i a l =rep (. 2 5 , 4) , length=L ,N=30)
MasAPIM<−function (x , f i r s t , second , boot =1000 ,SimOut=FALSE ,CPU=1 ,
sim=" ordinary " , p a r a l l e l =" mult icore ") {
out<−c () ; require (boot)
MyBetas<−function (data , i n d i c e s) {
a<−StateExpand (data [indices ,] , f i r s t , second)
b<−suppressWarnings (seqdef (a [, f i r s t] ,
s t a r t =1 ,
l ab el s=c ("0−0" , "1−0" , "0−1" , "1−1")))
z<−s e q t r a t e (b) ; return (TransToAPIM (z))
} r e s u l t s<−boot (data=x , s t a t i s t i c =MyBetas ,
R=boot , ncpus=CPU, sim=sim)
out [1]<− r e s u l t s $ t 0 [1] ;
DC_b0_H0_ Dist<− r e s u l t s $ t [,1]−mean (r e s u l t s $ t [, 1])
out [9]<−mean (DC_b0_H0_ Dist >abs (r e s u l t s $ t 0 [1]) |
DC_b0_H0_ Dist <(−abs (r e s u l t s $ t 0 [1])))
out [2]<− r e s u l t s $ t 0 [2] ;DC_Act_H0_ Dist<− r e s u l t s $ t [,2]−mean (r e s u l t s $ t [, 2])
out [1 0]<−mean (DC_Act_H0_ Dist >abs (r e s u l t s $ t 0 [2])
|DC_Act_H0_ Dist <(−abs (r e s u l t s $ t 0 [2])))
out [3]<− r e s u l t s $ t 0 [3] ;DC_ Par_H0_ Dist<− r e s u l t s $ t [,3]−mean (r e s u l t s $ t [, 3])
out [1 1]<−mean (DC_ Par_H0_ Dist >abs (r e s u l t s $ t 0 [3])
|DC_ Par_H0_ Dist <(−abs (r e s u l t s $ t 0 [3])))
out [4]<− r e s u l t s $ t 0 [4] ;DC_ I n t _H0_ Dist<− r e s u l t s $ t [,4]−mean (r e s u l t s $ t [, 4])
out [1 2]<−mean (DC_ I n t _H0_ Dist >abs (r e s u l t s $ t 0 [4])
|DC_ I n t _H0_ Dist <(−abs (r e s u l t s $ t 0 [4])))
out [5]<− r e s u l t s $ t 0 [5] ; SC_b0_H0_ Dist<− r e s u l t s $ t [,5]−mean (r e s u l t s $ t [, 5])
out [1 3]<−mean (SC_b0_H0_ Dist >abs (r e s u l t s $ t 0 [5])
|SC_b0_H0_ Dist <(−abs (r e s u l t s $ t 0 [5])))
out [6]<− r e s u l t s $ t 0 [6] ; SC_Act_H0_ Dist<− r e s u l t s $ t [,6]−mean (r e s u l t s $ t [, 6])
out [1 4]<−mean (SC_Act_H0_ Dist >abs (r e s u l t s $ t 0 [6])
|SC_Act_H0_ Dist <(−abs (r e s u l t s $ t 0 [6])))
out [7]<− r e s u l t s $ t 0 [7] ; SC_ Par_H0_ Dist<− r e s u l t s $ t [,7]−mean (r e s u l t s $ t [, 7])
out [1 5]<−mean (SC_ Par_H0_ Dist >abs (r e s u l t s $ t 0 [7])

251

B. R-Code for Simulation Studies

|SC_ Par _H0_ Dist <(−abs (r e s u l t s $ t 0 [7])))
out [8]<− r e s u l t s $ t 0 [8] ; SC_ I n t _H0_ Dist<− r e s u l t s $ t [,8]−mean (r e s u l t s $ t [, 8])
out [1 6]<−mean (SC_ I n t _H0_ Dist >abs (r e s u l t s $ t 0 [8])
|SC_ I n t _H0_ Dist <(−abs (r e s u l t s $ t 0 [8])))
i f (SimOut) {
names (out)<−c ("DC_b0 " , "DC_ Actor " , "DC_ Partner " , "DC_ I n t e r " ,
"SC_b0 " , "SC_ Actor " , "SC_ Partner " , "SC_ I n t e r " ,
"P_DC_b0 " , "P_DC_ Actor " , "P_DC_ Partner " , "P_DC_ I n t e r " ,
"P_SC_b0 " , "P_SC_ Actor " , "P_SC_ Partner " , "P_SC_ I n t e r ")
return (out) } e lse { out2<−data . frame (rep (NA, 8) , rep (NA, 8))
rownames (out2)<−c (" F i r s t I n t e r c e p t " , " F i r s t A c t o r " , " F i r s t P a r t n e r " ,
" F i r s t I n t e r a c t i o n " , " SecondIntercept " ,
" SecondActor " , " SecondPartner " , " SecondInterac t ion ")
colnames (out2)<−c (" Est imate " , "P_Value ")
out2 [1 : 4 , 1]<−out [1 : 4] ; out2 [5 : 8 , 1]<−out [5 : 8]
out2 [1 : 4 , 2]<−out [9 : 1 2] ; out2 [5 : 8 , 2]<−out [1 3 : 1 6] ; return (out2) } }
###############
S i m u l a t i o n
###############
s e t . seed (7 5 0 5)
SimAggLogit<−function (N=30 ,L=30 ,K=10 ,
B0_ 1=0 ,AE_ 1=0 ,PE_ 1=0 , I n t _ 1=0 ,
B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 , I n t _ 2=0 ,
i n i t =c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5) ,
boot =10 ,CPU=1 , sim=" ordinary ") {
count<−1 ; t rans1<−APIMtoTrans (B0_ 1 ,AE_ 1 ,PE_ 1 , I n t _ 1 ,
B0_ 2 ,AE_ 2 ,PE_ 2 , I n t _ 2)
i n t e r c e p t 1<−c () ; a c t o r 1<−c () ; partner1<−c () ; i n t e r a c 1<−c ()
i n t e r c e p t 2<−c () ; a c t o r 2<−c () ; partner2<−c () ; i n t e r a c 2<−c ()
P i n t e r c e p t 1<−c () ; Pactor1<−c () ; Ppartner1<−c () ; P i n t e r a c 1<−c ()
P i n t e r c e p t 2<−c () ; Pactor2<−c () ; Ppartner2<−c () ; P i n t e r a c 2<−c ()
for (i in 1 :K) { x<−simSeqSample (t r a n s =trans1 , i n i t i a l = i n i t , length=L ,
N=N) ; SimM<−MasAPIM(x , 1 : L , L+1:L , boot ,TRUE)
i n t e r c e p t 1<−c (i n t e r c e p t 1 , SimM [1]) ; a c t o r 1<−c (actor1 , SimM [2])
partner1<−c (partner1 , SimM [3]) ; i n t e r a c 1<−c (i n t e r a c 1 , SimM [4])
i n t e r c e p t 2<−c (i n t e r c e p t 2 , SimM [5]) ; a c t o r 2<−c (actor2 , SimM [6])
partner2<−c (partner2 , SimM [7]) ; i n t e r a c 2<−c (i n t e r a c 2 , SimM [8])
P i n t e r c e p t 1<−c (P intercept1 , SimM [9]) ; Pactor1<−c (Pactor1 , SimM[1 0])
Ppartner1<−c (Ppartner1 , SimM [1 1]) ; P i n t e r a c 1<−c (P interac1 , SimM[1 2])
P i n t e r c e p t 2<−c (P intercept2 , SimM [1 3]) ; Pactor2<−c (Pactor2 , SimM[1 4])

252

B. R-Code for Simulation Studies

Ppartner2<−c (Ppartner2 , SimM [1 5]) ; P i n t e r a c 2<−c (P interac2 , SimM[1 6])
c a t (paste ("\n" , count , "\n" , count , "\n" , count ,
"\n" , count , "\n" , count , "\n" , count ,
"\n" , count , "\n" , count , "\n" , count ,
"\n" , count , "\n" , count , "\n" , count))
save (i n t e r c e p t 1 , actor1 , partner1 , i n t e r a c 1 , i n t e r c e p t 2 , actor2 ,

partner2 , i n t e r a c 2 , P intercept1 , Pactor1 , Ppartner1 , P interac1 ,
P intercept2 , Pactor2 , Ppartner2 , P interac2 ,
f i l e =paste ("~ / temp / Sim " , count , " . R"))
count<−count +1} r es<−c () ; r e s<−c (res , mean (P intercept1 < . 0 5))
re s<−c (res , mean (Pactor1 < . 0 5)) ; r es<−c (res , mean (Ppartner1 < . 0 5))
re s<−c (res , mean (P interac1 < . 0 5)) ; r es<−c (res , mean (P intercept2 < . 0 5))
re s<−c (res , mean (Pactor2 < . 0 5)) ; r es<−c (res , mean (Ppartner2 < . 0 5))
re s<−c (res , mean (P interac2 < . 0 5)) ; r es<−c (res , mean (i n t e r c e p t 1))
r es<−c (res , mean (a c t o r 1)) ; r es<−c (res , mean (partner1))
r es<−c (res , mean (i n t e r a c 1)) ; r es<−c (res , mean (i n t e r c e p t 2))
r es<−c (res , mean (partner2)) ; r es<−c (res , mean (a c t o r 2))
r es<−c (res , mean (i n t e r a c 2)) ; names (r es)<−c (" Rej . I n t e r 1 " ,
" Rej . AE1" , " Rej . PE1 " , " Rej .AE∗PE1 " , " Rej . I n t e r 2 " ,
" Rej . Actor2 " , " Rej . Partner2 " , " Rej .AE∗PE2 " ,
" E s t I n t e r 1 " , " EstAE1 " , " EstPE1 " , " EstAE∗PE1 " ,
" E s t I n t e r 2 " , " EstActor2 " , " Es tPar tner2 " ,
" EstAE∗PE2 ") ; return (r es) }
Sim1<−SimAggLogit (N=30 ,L=30 ,K=100 ,
B0_ 1=0 ,AE_ 1=0 ,PE_ 1=0 , I n t _ 1=0 ,
B0_ 2=0 ,AE_ 2=0 ,PE_ 2=0 , I n t _ 2=0 ,
i n i t =c (0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5) ,
boot =1000 ,CPU=8 , sim=" ordinary ")
save (Sim1 , f i l e =" Sim1 . R")
for (i in 1 : 1 0 0 0) { f i l e . remove (paste (" temp / Sim " , i , " . R")) }

B.7. Latent Hazard Model(Restricted Hidden Markov)

l i b r a r y (DySeq) ; l i b r a r y (seqHMM) ; l i b r a r y (TraMineR) ; l i b r a r y (p a r a l l e l)
#######################
C r e a t i n g S e q u e n c e s
#######################
simSeq<−function (t rans , i n i t i a l , len) {
i n i t<−sample (c (0 , 1) , 1 , prob= i n i t i a l)
for (i in 2 : len) { i f (i n i t [i −1]==0){ i n i t [i]<−sample (c (0 , 1) ,
1 , prob=t r a n s [1 ,]) } e lse { i n i t [i]<−sample (c (0 , 1) , 1 ,

253

B. R-Code for Simulation Studies

prob= t r a n s [2 ,]) } } return (i n i t) }
#####################
S i m u l a t e E m i s s i o n s
#####################
genEmis<−function (MySeq , MyEmis_A, MyEmis_B) {
out<−numeric (length (MySeq)) for (i in 1 : length (MySeq))
{ i f (MySeq[i] = = 0) { out [i]<−sample (c (0 , 1 , 2 , 3) , 1 ,
prob=c (MyEmis_A)) } e lse { out [i]<−sample (c (0 , 1 , 2 , 3) , 1 ,
prob=c (MyEmis_B)) } } out }
######################
S imula t eSampl e
######################
Gen_LatentHaz_Sample<−function (t rans , i n i t i a l , len , Emission _A,
Emission _B , s i z e) { out<−matrix (NA, s ize , len) for (i in 1 : s i z e) {
out [i ,]<−genEmis (simSeq (t r a n s=trans , i n i t i a l = i n i t i a l , len=len) ,
Emission _A, Emission _B) } out [s ize , 1 : 4]<−c (0 , 1 , 2 , 3) ; out }
##############################
S i m u l a t i n g s i n g l e c o n d i t i o n
##############################
sim_ Latent _Hazard<−function (t r a n s =matrix (c (0 . 8 , 0 . 2 ,
0 , 1) , 2 , 2 , byrow=T) ,
i n i t i a l =c (1 , 0) , len =50 ,
Emission _A=c (0 . 9 0 , 0 . 0 3 , 0 . 0 3 , 0 . 0 4) ,
Emission _B=c (0 . 0 3 , 0 . 0 3 , 0 . 0 4 , 0 . 9 0) ,
s i z e =100 ,MySamples =100) {
require (seqHMM) ; require (TraMineR) ; require (DySeq)
pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")
myHazard<−numeric (MySamples) ;Em_ S t a t e 1 _0<−numeric (MySamples)
Em_ S t a t e 1 _1<−numeric (MySamples) ;Em_ S t a t e 1 _2<−numeric (MySamples)
Em_ S t a t e 1 _3<−numeric (MySamples) ;Em_ S t a t e 2 _0<−numeric (MySamples)
Em_ S t a t e 2 _1<−numeric (MySamples) ;Em_ S t a t e 2 _2<−numeric (MySamples)
Em_ S t a t e 2 _3<−numeric (MySamples) ; for (k in 1 : MySamples) {

x<−Gen_LatentHaz_Sample (t r a n s =trans , i n i t i a l = i n i t i a l , len=len ,
Emission _A=Emission _A, Emission _B=Emission _B , s i z e = s i z e)

suppressMessages (my_seq<−seqdef (x , s t a r t =1 , l ab el s
=c ("noSC /DC" , " SConly " , " DConly " , "SC+DC")))
sc _ i n i t<−c (1 , 0) ; sc _ t r a n s<−matrix (c (0 . 5 0 , 0 . 5 0 , 0 , 1) ,

nrow=2 , ncol =2 ,byrow=TRUE)
sc _ emiss<−matrix (0 . 2 5 , nrow=2 , ncol =4)

254

B. R-Code for Simulation Studies

sc _ initmod<−bui ld _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t ,
t r a n s i t i o n _ probs=sc _ t rans ,
emission _ probs=sc _ emiss)

sc _ f i t<− f i t _model (sc _ initmod , g loba l _ step=TRUE,
l o c a l _ step=TRUE, contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))
sc _ f i t $model$ t r a n s i t i o n _ probs ; sc _ f i t $model$ emission _ probs [1 , 2]
myHazard [k]<−sc _ f i t $model$ t r a n s i t i o n _ probs [1 , 2]
Em_ S t a t e 1 _ 0[k]<−sc _ f i t $model$ emission _ probs [1 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t $model$ emission _ probs [1 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t $model$ emission _ probs [1 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t $model$ emission _ probs [1 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t $model$ emission _ probs [2 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t $model$ emission _ probs [2 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t $model$ emission _ probs [2 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t $model$ emission _ probs [2 , 4]
se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL) }
out<−data . frame (myHazard ,Em_ S t a t e 1 _ 0 ,Em_ S t a t e 1 _ 1 ,Em_ S t a t e 1 _ 2 ,

Em_ S t a t e 1 _ 3 ,Em_ S t a t e 2 _ 0 ,Em_ S t a t e 2 _ 1 ,Em_ S t a t e 2 _ 2 ,Em_ S t a t e 2 _ 3) }
###############
S i m u l a t i o n
###############
s e t . seed (8 8 4 0)
Emission _A<−c (0 . 9 0 , 0 . 0 3 , 0 . 0 3 , 0 . 0 4)
Emission _B<−c (0 . 0 3 , 0 . 0 3 , 0 . 0 4 , 0 . 9 0)
Emi<−" High "
t r a n s<−matrix (c (0 . 9 , 0 . 1 ,
0 , 1) , 2 , 2 , byrow=T)
Haz<−"H10"
for (i in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
Sim1<−sim_ Latent _Hazard (t r a n s =trans ,
i n i t i a l =c (1 , 0) ,
len=k ,
Emission _A=Emission _A,
Emission _B=Emission _B ,
s i z e =i ,
MySamples=1000)
save (Sim1 , f i l e =paste (Emi , " _ " ,Haz , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")) } }

255

B. R-Code for Simulation Studies

B.8. Hidden Markov (Correct Number of Latent States)

sim_ Latent _Markov2<−function (t r a n s =matrix (c (0 . 8 , 0 . 2 ,
0 , 1) , 2 , 2 , byrow=T) ,
i n i t i a l =c (1 , 0) ,
len =50 ,
Emission _A=c (0 . 9 0 , 0 . 0 3 , 0 . 0 3 , 0 . 0 4) ,
Emission _B=c (0 . 0 3 , 0 . 0 3 , 0 . 0 4 , 0 . 9 0) ,
s i z e =10 ,
MySamples =10) {
require (seqHMM) ; require (TraMineR) ; require (DySeq)
pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")
df1<−numeric (MySamples) ; AIC1<−numeric (MySamples)
BIC1<−numeric (MySamples) ; df2<−numeric (MySamples)
AIC2<−numeric (MySamples) ; BIC2<−numeric (MySamples)
df3<−numeric (MySamples) ; AIC3<−numeric (MySamples)
BIC3<−numeric (MySamples) ; Trans2 _AA<−numeric (MySamples)
Trans2 _AB<−numeric (MySamples) ; Trans2 _BA<−numeric (MySamples)
Trans2 _BB<−numeric (MySamples) ;Em_ S t a t e 1 _0<−numeric (MySamples)
Em_ S t a t e 1 _1<−numeric (MySamples) ;Em_ S t a t e 1 _2<−numeric (MySamples)
Em_ S t a t e 1 _3<−numeric (MySamples) ;Em_ S t a t e 2 _0<−numeric (MySamples)
Em_ S t a t e 2 _1<−numeric (MySamples) ;Em_ S t a t e 2 _2<−numeric (MySamples)
Em_ S t a t e 2 _3<−numeric (MySamples)
for (k in 1 : MySamples) {
x<−Gen_LatentHaz_Sample (t r a n s =trans , i n i t i a l = i n i t i a l ,
len=len , Emission _A=Emission _A,
Emission _B=Emission _B ,
s i z e = s i z e)
suppressMessages (my_seq<−seqdef (x , s t a r t =1 ,
l ab el s=c ("noSC /DC" , " SConly " , " DConly " , "SC+DC")))
sc _ i n i t 1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
sc _ t rans1<−matrix (c (. 2 5) , nrow=4 , ncol =4 ,byrow=TRUE)
sc _ emiss1<−matrix (c (1 , 0 , 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 1) , nrow=4 , ncol =4)
sc _ initmod1<−bui ld _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 1 ,
t r a n s i t i o n _ probs=sc _ t rans1 ,

256

B. R-Code for Simulation Studies

emission _ probs=sc _ emiss1)
sc _ f i t 1<− f i t _model (sc _ initmod1 , g loba l _ step=TRUE,
l o c a l _ step=TRUE, control _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))
df1 [k]<−a t t r (sc _ f i t 1 $model , " df ") ; AIC1 [k]<−AIC (sc _ f i t 1 $model)
BIC1 [k]<−BIC (sc _ f i t 1 $model) ; sc _ i n i t 2<−c (. 5 0 , . 5 0)
sc _ t rans2<−matrix (c (0 . 5 0 , 0 . 5 0 ,
0 . 5 0 , . 5 0) ,
nrow=2 , ncol =2 ,byrow=TRUE)
sc _ emiss2<−matrix (0 . 2 5 , nrow=2 , ncol =4)
sc _ initmod2<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 2 ,
t r a n s i t i o n _ probs=sc _ t rans2 ,
emission _ probs=sc _ emiss2)
sc _ f i t 2<− f i t _model (sc _ initmod2 , g loba l _ step=TRUE,
l o c a l _ step=TRUE, contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))
df2 [k]<−a t t r (sc _ f i t 2 $model , " df ")
AIC2 [k]<−AIC (sc _ f i t 2 $model) BIC2 [k]<−BIC (sc _ f i t 2 $model)
t rans2 _A<−sc _ f i t 2 $model$ t r a n s i t i o n _ probs
t rans2 _B<−sc _ f i t 2 $model$ t r a n s i t i o n _ probs
t rans2 _B [2 ,]<−sc _ f i t 2 $model$ t r a n s i t i o n _ probs [1 ,]
t rans2 _B [1 ,]<−sc _ f i t 2 $model$ t r a n s i t i o n _ probs [2 ,]
t rans2 _B [, 2]<−t rans2 _B [, 1] ; t rans2 _B [, 1]<−t rans2 _B [, 2]
A<−sum(abs (matrix (c (Emission _A, Emission _B) , nrow=2 ,
ncol =4 ,byrow=T)− sc _ f i t 2 $model$ emission _ probs))
B<−sum(abs (matrix (c (Emission _B , Emission _A) , nrow=2 ,
ncol =4 ,byrow=T)− sc _ f i t 2 $model$ emission _ probs))
i f (B>A) { e s t _ t rans2<−as . numeric (t rans2 _A)

Em_ S t a t e 1 _ 0[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 4]
} e lse { e s t _ t rans2<−as . numeric (t rans2 _B)
Em_ S t a t e 1 _ 0[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 2 $model$ emission _ probs [2 , 4]

257

B. R-Code for Simulation Studies

Em_ S t a t e 2 _ 0[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 2 $model$ emission _ probs [1 , 4] }
Trans2 _AA[k]<−e s t _ t rans2 [1] ; Trans2 _AB[k]<−e s t _ t rans2 [2]
Trans2 _BA[k]<−e s t _ t rans2 [3] ; Trans2 _BB [k]<−e s t _ t rans2 [4]
sc _ i n i t 3<−c (. 3 3 , . 3 3 , . 3 4) ; sc _ t rans3<−matrix (c (0 . 3 3 ,
0 . 3 3 , 0 . 3 4 , 0 . 3 3 , . 3 3 , . 3 4 , 0 . 3 3 , . 3 3 , 0 . 3 4) ,
nrow=3 , ncol =3 ,byrow=TRUE)
sc _ emiss3<−matrix (c (. 2 5) , nrow=3 , ncol =4 ,byrow=T)
sc _ initmod3<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 3 ,
t r a n s i t i o n _ probs=sc _ t rans3 ,
emission _ probs=sc _ emiss3)
sc _ f i t 3<− f i t _model (sc _ initmod3 , g loba l _ step=TRUE,
l o c a l _ step=TRUE, contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))
df3 [k]<−a t t r (sc _ f i t 3 $model , " df ") ; AIC3 [k]<−AIC (sc _ f i t 3 $model)
BIC3 [k]<−BIC (sc _ f i t 3 $model) ; se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL) }
out<−data . frame (df1 , AIC1 , BIC1 , df2 , AIC2 , BIC2 , df3 , AIC3 , BIC3 , Trans2 _AA,
Trans2 _AB, Trans2 _BA, Trans2 _BB ,Em_ S t a t e 1 _ 0 ,Em_ S t a t e 1 _ 1 ,Em_ S t a t e 1 _ 2 ,
Em_ S t a t e 1 _ 3 ,Em_ S t a t e 2 _ 0 ,Em_ S t a t e 2 _ 1 ,Em_ S t a t e 2 _ 2 ,Em_ S t a t e 2 _ 3) }
###############
S i m u l a t i o n
###############
s e t . seed (4 3 4 1)
Emission _A<−c (0 . 9 0 , 0 . 0 3 , 0 . 0 3 , 0 . 0 4)
Emission _B<−c (0 . 0 3 , 0 . 0 3 , 0 . 0 4 , 0 . 9 0)
Emi<−" Scenar io _A"
t r a n s<−matrix (c (0 . 9 0 , 0 . 1 ,
0 . 0 5 , . 9 5) , 2 , 2 , byrow=T)
Class<−" 2 Classes "
for (i in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
myTitle<−paste (Emi , " _ " , Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")
c a t (paste ("\n\n"))
print (myTitle)
Sim1<−sim_ Latent _Markov2 (t r a n s =trans ,
i n i t i a l =c (1 , 0) ,
len=k ,
Emission _A=Emission _A,

258

B. R-Code for Simulation Studies

Emission _B=Emission _B ,
s i z e =i ,
MySamples=500)
save (Sim1 , f i l e =paste (Emi , " _ " , Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")) } }
##########################
SIM3HiddenStates
##########################
l i b r a r y (DySeq) ; l i b r a r y (seqHMM) ; l i b r a r y (TraMineR) ; l i b r a r y (p a r a l l e l)

##############################
S i m u l a t i n g s i n g l e c o n d i t i o n
##############################
sim_ Latent _Markov3<−function (t r a n s =
matrix (c (0 . 8 , 0 . 2 , 0 ,
0 . 2 , 0 . 2 , 0 . 6 ,
0 , 0 . 5 , 0 . 5) , 3 , 3 , byrow=T) ,
i n i t i a l =c (. 3 3 , . 3 3 , . 3 4) , len =50 ,

Emission _A=c (0 . 9 0 , 0 . 0 3 , 0 . 0 3 , 0 . 0 4) ,
Emission _B=c (0 . 0 3 , 0 . 0 3 , 0 . 0 4 , 0 . 9 0) ,
Emission _C=c (0 . 0 3 , 0 . 0 3 , 0 . 1 4 , 0 . 8 0) ,
s i z e =10 ,MySamples =10) { require (seqHMM)
require (TraMineR) ; require (DySeq)
pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")
df1<−numeric (MySamples) ; AIC1<−numeric (MySamples)
BIC1<−numeric (MySamples) ; df2<−numeric (MySamples)
AIC2<−numeric (MySamples) ; BIC2<−numeric (MySamples)
df3<−numeric (MySamples) ; AIC3<−numeric (MySamples)
BIC3<−numeric (MySamples) ; Trans3 _AA<−numeric (MySamples)
Trans3 _AB<−numeric (MySamples) ; Trans3 _AC<−numeric (MySamples)
Trans3 _BA<−numeric (MySamples) ; Trans3 _BB<−numeric (MySamples)
Trans3 _BC<−numeric (MySamples) ; Trans3 _CA<−numeric (MySamples)
Trans3 _CB<−numeric (MySamples) ; Trans3 _CC<−numeric (MySamples)
Em_ S t a t e 1 _0<−numeric (MySamples) ;Em_ S t a t e 1 _1<−numeric (MySamples)
Em_ S t a t e 1 _2<−numeric (MySamples) ;Em_ S t a t e 1 _3<−numeric (MySamples)
Em_ S t a t e 2 _0<−numeric (MySamples) ;Em_ S t a t e 2 _1<−numeric (MySamples)
Em_ S t a t e 2 _2<−numeric (MySamples) ;Em_ S t a t e 2 _3<−numeric (MySamples)
Em_ S t a t e 3 _0<−numeric (MySamples) ;Em_ S t a t e 3 _1<−numeric (MySamples)
Em_ S t a t e 3 _2<−numeric (MySamples) ;Em_ S t a t e 3 _3<−numeric (MySamples)
for (k in 1 : MySamples) {

259

B. R-Code for Simulation Studies

x<−Gen_Sample (t r a n s =trans , i n i t i a l = i n i t i a l , len=len ,
Emission _A=Emission _A, Emission _B=Emission _B ,
Emission _C=Emission _C , s i z e = s i z e)
suppressMessages (my_seq<−seqdef (x , s t a r t =1 , l ab el s=
c ("noSC /DC" , " SConly " , " DConly " , "SC+DC")))
sc _ i n i t 1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
sc _ t rans1<−matrix (c (. 2 5) , nrow=4 , ncol =4 ,byrow=TRUE)
sc _ emiss1<−matrix (c (1 , 0 , 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 1) , nrow=4 , ncol =4)
sc _ initmod1<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 1 ,
t r a n s i t i o n _ probs=sc _ t rans1 ,
emission _ probs=sc _ emiss1)
sc _ f i t 1<− f i t _model (sc _ initmod1 , g loba l _ step=TRUE, l o c a l _ step=TRUE,

contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))
df1 [k]<−a t t r (sc _ f i t 1 $model , " df ") ; AIC1 [k]<−AIC (sc _ f i t 1 $model)
BIC1 [k]<−BIC (sc _ f i t 1 $model) ; sc _ i n i t 2<−c (. 5 0 , . 5 0)
sc _ t rans2<−matrix (c (0 . 5 0 , 0 . 5 0 ,
0 . 5 0 , . 5 0) ,
nrow=2 , ncol =2 ,byrow=TRUE)
sc _ emiss2<−matrix (0 . 2 5 , nrow=2 , ncol =4)
sc _ initmod2<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 2 ,
t r a n s i t i o n _ probs=sc _ t rans2 ,
emission _ probs=sc _ emiss2)
sc _ f i t 2<− f i t _model (sc _ initmod2 , g loba l _ step=TRUE, l o c a l _ step=TRUE
, contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))
df2 [k]<−a t t r (sc _ f i t 2 $model , " df ") ; AIC2 [k]<−AIC (sc _ f i t 2 $model)
BIC2 [k]<−BIC (sc _ f i t 2 $model) ; sc _ i n i t 3<−c (. 3 3 , . 3 3 , . 3 4)
sc _ t rans3<−matrix (c (0 . 3 3 , 0 . 3 3 , 0 . 3 4 ,
0 . 3 3 , . 3 3 , . 3 4 ,
0 . 3 3 , . 3 3 , 0 . 3 4) ,
nrow=3 , ncol =3 ,byrow=TRUE)
sc _ emiss3<−matrix (c (. 2 5) , nrow=3 , ncol =4 ,byrow=T)
sc _ initmod3<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 3 ,
t r a n s i t i o n _ probs=sc _ t rans3 ,
emission _ probs=sc _ emiss3)

260

B. R-Code for Simulation Studies

sc _ f i t 3<− f i t _model (sc _ initmod3 , g loba l _ step=TRUE, l o c a l _ step=TRUE,
contro l _em= l i s t (r e s t a r t = l i s t (t imes = 1 0)))

df3 [k]<−a t t r (sc _ f i t 3 $model , " df ") ; AIC3 [k]<−AIC (sc _ f i t 3 $model)
BIC3 [k]<−BIC (sc _ f i t 3 $model)
se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL)
t rans3 _A<−sc _ f i t 3 $model$ t r a n s i t i o n _ probs
ABC<−sum(abs (matrix (c (Emission _A, Emission _B , Emission _C) ,

nrow=3 , ncol =4 ,byrow=T)− sc _ f i t 3 $model$ emission _ probs))
ACB<−sum(abs (matrix (c (Emission _A, Emission _C , Emission _B) ,

nrow=3 , ncol =4 ,byrow=T)− sc _ f i t 3 $model$ emission _ probs))
BAC<−sum(abs (matrix (c (Emission _B , Emission _A, Emission _C) ,

nrow=3 , ncol =4 ,byrow=T)− sc _ f i t 3 $model$ emission _ probs))
BCA<−sum(abs (matrix (c (Emission _B , Emission _C , Emission _A) ,

nrow=3 , ncol =4 ,byrow=T)− sc _ f i t 3 $model$ emission _ probs))
CAB<−sum(abs (matrix (c (Emission _C , Emission _A, Emission _B) ,

nrow=3 , ncol =4 ,byrow=T)− sc _ f i t 3 $model$ emission _ probs))
CBA<−sum(abs (matrix (c (Emission _C , Emission _B , Emission _A) ,

nrow=3 , ncol =4 ,byrow=T)− sc _ f i t 3 $model$ emission _ probs))
f a l l<−c (ABC,ACB,BAC,BCA,CAB,CBA)
myorder<−which (f a l l ==min (f a l l))
i f (myorder ==1){ e s t _ t rans3<−as . numeric (t rans3 _A)

Em_ S t a t e 1 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 4]
Em_ S t a t e 3 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 1]
Em_ S t a t e 3 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 2]
Em_ S t a t e 3 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 3]
Em_ S t a t e 3 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 4]
} i f (myorder==2)

{ e s t _ t rans3<−as . numeric (t rans3 _A) [c (1 , 3 , 2 , 7 , 9 , 8 , 4 , 6 , 5)]
Em_ S t a t e 1 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 1]

261

B. R-Code for Simulation Studies

Em_ S t a t e 2 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 4]
Em_ S t a t e 3 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 1]
Em_ S t a t e 3 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 2]
Em_ S t a t e 3 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 3]
Em_ S t a t e 3 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 4] }

i f (myorder ==3){
e s t _ t rans3<−as . numeric (t rans3 _A) [c (5 , 4 , 6 , 2 , 1 , 3 , 8 , 7 , 9)]
Em_ S t a t e 1 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 4]
Em_ S t a t e 3 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 1]
Em_ S t a t e 3 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 2]
Em_ S t a t e 3 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 3]
Em_ S t a t e 3 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 4] }

i f (myorder ==4){
e s t _ t rans3<−as . numeric (t rans3 _A) [c (5 , 6 , 4 , 8 , 9 , 7 , 2 , 3 , 1)]
Em_ S t a t e 1 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 4]
Em_ S t a t e 3 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 1]
Em_ S t a t e 3 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 2]
Em_ S t a t e 3 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 3]
Em_ S t a t e 3 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 4] }
i f (myorder ==5){
e s t _ t rans3<−as . numeric (t rans3 _A) [c (9 , 7 , 8 , 3 , 1 , 2 , 6 , 4 , 5)]
Em_ S t a t e 1 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 3]

262

B. R-Code for Simulation Studies

Em_ S t a t e 1 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 4]
Em_ S t a t e 3 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 1]
Em_ S t a t e 3 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 2]
Em_ S t a t e 3 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 3]
Em_ S t a t e 3 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 4] }
i f (myorder ==6){
e s t _ t rans3<−as . numeric (t rans3 _A) [c (9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1)]
Em_ S t a t e 1 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 1]
Em_ S t a t e 1 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 2]
Em_ S t a t e 1 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 3]
Em_ S t a t e 1 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [3 , 4]
Em_ S t a t e 2 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 1]
Em_ S t a t e 2 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 2]
Em_ S t a t e 2 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 3]
Em_ S t a t e 2 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [2 , 4]
Em_ S t a t e 3 _ 0[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 1]
Em_ S t a t e 3 _ 1[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 2]
Em_ S t a t e 3 _ 2[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 3]
Em_ S t a t e 3 _ 3[k]<−sc _ f i t 3 $model$ emission _ probs [1 , 4] }
Trans3 _AA[k]<−e s t _ t rans3 [1] ; Trans3 _AB[k]<−e s t _ t rans3 [4]
Trans3 _AC[k]<−e s t _ t rans3 [7] ; Trans3 _BA[k]<−e s t _ t rans3 [2]
Trans3 _BB [k]<−e s t _ t rans3 [5] ; Trans3 _BC[k]<−e s t _ t rans3 [8]
Trans3 _CA[k]<−e s t _ t rans3 [3] ; Trans3 _CB[k]<−e s t _ t rans3 [6]
Trans3 _CC[k]<−e s t _ t rans3 [9] }
out<−data . frame (df1 , AIC1 , BIC1 , df2 , AIC2 , BIC2 , df3 , AIC3 , BIC3 ,
Trans3 _AA, Trans3 _AB, Trans3 _AC, Trans3 _BA,
Trans3 _BB , Trans3 _BC, Trans3 _CA, Trans3 _CB,
Trans3 _CC,Em_ S t a t e 1 _ 0 ,Em_ S t a t e 1 _ 1 ,
Em_ S t a t e 1 _ 2 ,Em_ S t a t e 1 _ 3 ,Em_ S t a t e 2 _ 0 ,
Em_ S t a t e 2 _ 1 ,Em_ S t a t e 2 _ 2 ,Em_ S t a t e 2 _ 3 ,
Em_ S t a t e 3 _ 0 ,Em_ S t a t e 3 _ 1 ,Em_ S t a t e 3 _ 2 ,
Em_ S t a t e 3 _ 3) }
###############
S i m u l a t i o n
###############
Drawrandomseed

263

B. R-Code for Simulation Studies

sample (1 : 1 0 0 0 0 , 1)
s e t . seed (7 1 6 6)
Emission _A<−c (0 . 9 0 , 0 . 0 3 , 0 . 0 3 , 0 . 0 4)
Emission _B<−c (0 . 0 5 , 0 . 4 5 , 0 . 4 5 , 0 . 0 5)
Emission _C<−c (0 . 0 5 , 0 . 0 5 , 0 . 1 0 , 0 . 8 0)
Emi<−" Scenar io _A"
t r a n s<−matrix (c (0 . 7 , 0 . 2 , 0 . 1 ,
0 . 1 , . 7 0 , 0 . 2 ,
0 . 0 5 , 0 . 0 5 , 0 . 9 0) , 3 , 3 , byrow=T)
Class<−" 3 Classes "
for (i in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
myTitle<−paste (Emi , " _ " , Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")
c a t (paste ("\n\n"))
print (myTitle)
Sim1<−sim_ Latent _Markov3 (t r a n s =trans ,
i n i t i a l =c (0 . 3 3 , 0 . 3 3 , 0 . 3 4) ,
len=k ,
Emission _A=Emission _A,
Emission _B=Emission _B ,
Emission _C=Emission _C ,
s i z e =i ,
MySamples=500)
save (Sim1 , f i l e =paste (Emi , " _ " , Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")) } }
mean (Sim1$AIC3<Sim1$AIC1&Sim1$AIC3<Sim1$AIC2)

B.9. Mixture Markov (Correct Number of Latent States)

#######################
C r e a t i n g S e q u e n c e s
#######################
simSeq<−function (t rans , i n i t i a l , length) {
i n i t<−sample (c (1 , 2 , 3 , 4) , 1 , prob= i n i t i a l)
for (i in 2 : length) { i f (i n i t [i −1]==1){ i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 ,
prob= t r a n s [1 ,]) } e lse i f (i n i t [i −1]==2){ i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 ,
prob= t r a n s [2 ,]) } e lse i f (i n i t [i −1]==3){
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [3 ,])
} e lse { i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [4 ,]) } } return (i n i t) }
###############
SimFunct ion

264

B. R-Code for Simulation Studies

###############
sim_ Mixture _Markov2<−function (t rans1=matrix (c (0 . 5 , 0 . 2 , 0 . 2 , 0 . 1 ,
0 . 8 , 0 . 0 5 , 0 . 0 5 , 0 . 1 , 0 . 5 , 0 . 1 , 0 . 2 , 0 . 2 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 7) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) , t rans2=matrix (c (0 . 1 , 0 . 1 , 0 . 1 , 0 . 7 ,
0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 7 , 0 . 1 , 0 . 1 , 0 . 1) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) , len =30 , s i z e =30 ,MySamples =10) {
options (warn=−1); require (seqHMM) ; require (TraMineR)
require (DySeq) ; require (psych)
pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")
df1<−numeric (MySamples) ; AIC1<−numeric (MySamples)
BIC1<−numeric (MySamples) ; df2<−numeric (MySamples)
AIC2<−numeric (MySamples) ; BIC2<−numeric (MySamples)
df3<−numeric (MySamples) ; AIC3<−numeric (MySamples)
BIC3<−numeric (MySamples) ; Trans1 _11<−numeric (MySamples)
Trans1 _12<−numeric (MySamples) ; Trans1 _13<−numeric (MySamples)
Trans1 _14<−numeric (MySamples) ; Trans1 _21<−numeric (MySamples)
Trans1 _22<−numeric (MySamples) ; Trans1 _23<−numeric (MySamples)
Trans1 _24<−numeric (MySamples) ; Trans1 _31<−numeric (MySamples)
Trans1 _32<−numeric (MySamples) ; Trans1 _33<−numeric (MySamples)
Trans1 _34<−numeric (MySamples) ; Trans1 _41<−numeric (MySamples)
Trans1 _42<−numeric (MySamples) ; Trans1 _43<−numeric (MySamples)
Trans1 _44<−numeric (MySamples) ; Trans2 _11<−numeric (MySamples)
Trans2 _12<−numeric (MySamples) ; Trans2 _13<−numeric (MySamples)
Trans2 _14<−numeric (MySamples) ; Trans2 _21<−numeric (MySamples)
Trans2 _22<−numeric (MySamples) ; Trans2 _23<−numeric (MySamples)
Trans2 _24<−numeric (MySamples) ; Trans2 _31<−numeric (MySamples)
Trans2 _32<−numeric (MySamples) ; Trans2 _33<−numeric (MySamples)
Trans2 _34<−numeric (MySamples) ; Trans2 _41<−numeric (MySamples)
Trans2 _42<−numeric (MySamples) ; Trans2 _43<−numeric (MySamples)
Trans2 _44<−numeric (MySamples) ; Kappa<−numeric (MySamples)
c o r r e c t _ c l a s s<−numeric (MySamples) ; c l u s t e r _ order<−numeric (MySamples)
t rue _ t rans1<−t rans1 ; t rue _ t rans2<−t rans2
for (k in 1 : MySamples) { x<−simSeqSample (t rue _ t rans1 ,
i n i t i a l = i n i t i a l , len ,N= s i z e / 2) ; x [1 , 1]<−1
x [2 , 1]<−2 ; x [3 , 1]<−3 ; x [4 , 1]<−4
y<−simSeqSample (t rue _ t rans2 , i n i t i a l = i n i t i a l 2 , len ,N= s i z e / 2)
x<−rbind (x , y)
suppressMessages (my_seq<−seqdef (x , s t a r t =1 , alphabet=c (1 , 2 , 3 , 4) ,
l ab el s=c ("noSC /DC" , " SConly " , " DConly " , "SC+DC")))

265

B. R-Code for Simulation Studies

sc _ i n i t 1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
sc _ t rans1<−matrix (c (. 2 5) , nrow=4 , ncol =4 ,byrow=TRUE)
sc _ emiss1<−matrix (c (1 , 0 , 0 , 0 ,
0 , 1 , 0 , 0 ,
0 , 0 , 1 , 0 ,
0 , 0 , 0 , 1) , nrow=4 , ncol =4)
sc _ initmod1<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 1 , t r a n s i t i o n _ probs=sc _ t rans1 ,
emission _ probs=sc _ emiss1) ; sc _ f i t 1<−suppressMessages (f i t _model (sc _ initmod1 ,
em_ step=TRUE, g loba l _ step=FALSE , l o c a l _ step=FALSE ,
contro l _em= l i s t (print _ l e v e l =0 , r e s t a r t = l i s t (t imes =0 , print _ l e v e l = 0)) ,
contro l _ globa l= l i s t (algorithm="NLOPT_GD_MLSL_LDS" , maxtime=10
, print _ l e v e l =0 ,
l o c a l _ opts= l i s t (algorithm="NLOPT_LD_LBFGS" , f t o l _ r e l =1e−6,
x t o l _ r e l =1e−4)) ,
contro l _ l o c a l = l i s t (algorithm="NLOPT_LD_LBFGS" , maxtime =10 , print _ l e v e l =0) ,
log _ space=FALSE , threads = 1)) ; df1 [k]<−a t t r (sc _ f i t 1 $model , " df ")
AIC1 [k]<−AIC (sc _ f i t 1 $model) ; BIC1 [k]<−BIC (sc _ f i t 1 $model)
mytrans1<−matrix (c (. 2 5) , 4 , 4) ; mytrans2<−matrix (c (. 2 5) , 4 , 4)
mymixtrans<− l i s t (mytrans1 , mytrans2) ; myinit1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
myinit2<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; mymixinit<− l i s t (myinit1 , myinit2)
my_mmodel<−bui ld _mmm(my_seq ,
n_ c l u s t e r s =2 , mymixtrans , mymixinit)
sc _ f i t 2<−suppressMessages (f i t _model (my_mmodel ,em_ step=FALSE ,
g loba l _ step=TRUE, l o c a l _ step=TRUE, contro l _em= l i s t (print _ l e v e l =0 ,
r e s t a r t = l i s t (t imes =60 , print _ l e v e l = 0)) ,
contro l _ globa l= l i s t (algorithm="NLOPT_GD_MLSL_LDS" , maxtime =10 ,
print _ l e v e l =0 , l o c a l _ opts= l i s t (algorithm="NLOPT_LD_LBFGS" ,
f t o l _ r e l =1e−6, x t o l _ r e l =1e−4)) ,
contro l _ l o c a l = l i s t (algorithm="NLOPT_LD_LBFGS" , maxtime =10 ,
print _ l e v e l =0) ,
log _ space=FALSE , threads =1))
t rans1<−sc _ f i t 2 $model$ t r a n s i t i o n _ probs $ ’ C lus ter1 ’
t rans2<−sc _ f i t 2 $model$ t r a n s i t i o n _ probs $ ’ C lus ter2 ’
i f (sum ((t rans1−t rue _ t rans1)^2) <=sum ((t rans2−t rue _ t rans1) ^ 2))
{ c l u s t e r _ order [k]<−"1−2" }
e lse { c l u s t e r _ order [k]<−"2−1" }
i f (sum ((t rans1−t rue _ t rans1)^2) <=sum ((t rans2−t rue _ t rans1) ^ 2)) {
Trans1 _ 11[k]<−t rans1 [1 , 1] ; Trans1 _ 12[k]<−t rans1 [1 , 2] ; Trans1 _ 13[k]<−t rans1 [1 , 3] ;
Trans1 _ 14[k]<−t rans1 [1 , 4] ; Trans1 _ 21[k]<−t rans1 [2 , 1] ; Trans1 _ 22[k]<−t rans1 [2 , 2]

266

B. R-Code for Simulation Studies

Trans1 _ 23[k]<−t rans1 [2 , 3] ; Trans1 _ 24[k]<−t rans1 [2 , 4] ; Trans1 _ 31[k]<−t rans1 [3 , 1]
Trans1 _ 32[k]<−t rans1 [3 , 2] ; Trans1 _ 33[k]<−t rans1 [3 , 3] ; Trans1 _ 34[k]<−t rans1 [3 , 4]
Trans1 _ 41[k]<−t rans1 [4 , 1] ; Trans1 _ 42[k]<−t rans1 [4 , 2] ; Trans1 _ 43[k]<−t rans1 [4 , 3]
Trans1 _ 44[k]<−t rans1 [4 , 4] ; Trans2 _ 11[k]<−t rans2 [1 , 1] ; Trans2 _ 12[k]<−t rans2 [1 , 2]
Trans2 _ 13[k]<−t rans2 [1 , 3] ; Trans2 _ 14[k]<−t rans2 [1 , 4] ; Trans2 _ 21[k]<−t rans2 [2 , 1]
Trans2 _ 22[k]<−t rans2 [2 , 2] ; Trans2 _ 23[k]<−t rans2 [2 , 3] ; Trans2 _ 24[k]<−t rans2 [2 , 4]
Trans2 _ 31[k]<−t rans2 [3 , 1] ; Trans2 _ 32[k]<−t rans2 [3 , 2] ; Trans2 _ 33[k]<−t rans2 [3 , 3]
Trans2 _ 34[k]<−t rans2 [3 , 4] ; Trans2 _ 41[k]<−t rans2 [4 , 1] ; Trans2 _ 42[k]<−t rans2 [4 , 2]
Trans2 _ 43[k]<−t rans2 [4 , 3] ; Trans2 _ 44[k]<−t rans2 [4 , 4]
post _ probs<−summary (sc _ f i t 2 $model) $ p o s t e r i o r _ c l u s t e r _ p r o b a b i l i t i e s
c l a s s i<−post _ probs [,1] > post _ probs [, 2] ; c l a s s i [c l a s s i ==0]<−2
true _ c l a s s<−c (rep (1 , s i z e / 2) , rep (2 , s i z e / 2))
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s) } e lse {
Trans1 _ 11[k]<−t rans2 [1 , 1] ; Trans1 _ 12[k]<−t rans2 [1 , 2] ; Trans1 _ 13[k]<−t rans2 [1 , 3]
Trans1 _ 14[k]<−t rans2 [1 , 4] ; Trans1 _ 21[k]<−t rans2 [2 , 1] ; Trans1 _ 22[k]<−t rans2 [2 , 2]
Trans1 _ 23[k]<−t rans2 [2 , 3] ; Trans1 _ 24[k]<−t rans2 [2 , 4] ; Trans1 _ 31[k]<−t rans2 [3 , 1]
Trans1 _ 32[k]<−t rans2 [3 , 2] ; Trans1 _ 33[k]<−t rans2 [3 , 3] ; Trans1 _ 34[k]<−t rans2 [3 , 4]
Trans1 _ 41[k]<−t rans2 [4 , 1] ; Trans1 _ 42[k]<−t rans2 [4 , 2] ; Trans1 _ 43[k]<−t rans2 [4 , 3]
Trans1 _ 44[k]<−t rans2 [4 , 4] ; Trans2 _ 11[k]<−t rans1 [1 , 1] ; Trans2 _ 12[k]<−t rans1 [1 , 2]
Trans2 _ 13[k]<−t rans1 [1 , 3] ; Trans2 _ 14[k]<−t rans1 [1 , 4] ; Trans2 _ 21[k]<−t rans1 [2 , 1]
Trans2 _ 22[k]<−t rans1 [2 , 2] ; Trans2 _ 23[k]<−t rans1 [2 , 3] ; Trans2 _ 24[k]<−t rans1 [2 , 4]
Trans2 _ 31[k]<−t rans1 [3 , 1] ; Trans2 _ 32[k]<−t rans1 [3 , 2] ; Trans2 _ 33[k]<−t rans1 [3 , 3]
Trans2 _ 34[k]<−t rans1 [3 , 4] ; Trans2 _ 41[k]<−t rans1 [4 , 1] ; Trans2 _ 42[k]<−t rans1 [4 , 2]
Trans2 _ 43[k]<−t rans1 [4 , 3] ; Trans2 _ 44[k]<−t rans1 [4 , 4] ;
post _ probs<−summary (sc _ f i t 2 $model) $ p o s t e r i o r _ c l u s t e r _ p r o b a b i l i t i e s
c l a s s i<−post _ probs [,1] < post _ probs [, 2] ; c l a s s i [c l a s s i ==0]<−2
true _ c l a s s<−c (rep (1 , s i z e / 2) , rep (2 , s i z e / 2))
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
} df2 [k]<−a t t r (sc _ f i t 2 $model , " df ") ; AIC2 [k]<−AIC (sc _ f i t 2 $model)
BIC2 [k]<−BIC (sc _ f i t 2 $model) ; mytrans1<−matrix (c (. 2 5) , 4 , 4)
mytrans2<−matrix (c (. 2 5) , 4 , 4) ; mytrans3<−matrix (c (. 2 5) , 4 , 4)
mymixtrans<− l i s t (mytrans1 , mytrans2 , mytrans3)
myinit1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; myinit2<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
myinit3<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; mymixinit<− l i s t (myinit1 , myinit2 , myinit3)
my_mmodel<−bui ld _mmm(my_seq , n_ c l u s t e r s =3 , mymixtrans , mymixinit)
sc _ f i t 3<−suppressMessages (f i t _model (my_mmodel ,em_ step=FALSE ,

267

B. R-Code for Simulation Studies

globa l _ step=TRUE, l o c a l _ step=TRUE, contro l _em= l i s t (print _ l e v e l =0 ,
r e s t a r t = l i s t (t imes =10 , print _ l e v e l = 0)) ,
contro l _ globa l= l i s t (algorithm="NLOPT_GD_MLSL_LDS" , maxtime =10 ,
print _ l e v e l =0 , l o c a l _ opts=
l i s t (algorithm="NLOPT_LD_LBFGS" , f t o l _ r e l =1e−6, x t o l _ r e l =1e−4)) ,
contro l _ l o c a l = l i s t (algorithm="NLOPT_LD_LBFGS" , maxtime=10
, print _ l e v e l =0) ,
log _ space=FALSE , threads = 1)) ; df3 [k]<−a t t r (sc _ f i t 3 $model , " df ")
AIC3 [k]<−AIC (sc _ f i t 3 $model) ; BIC3 [k]<−BIC (sc _ f i t 3 $model)
print (c a t (paste ("\nlen " , len))) ; print (c a t (paste (" s i z e " , s i z e)))
se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL) }
options (warn=0)
out<−data . frame (df1 , AIC1 , BIC1 , df2 , AIC2 , BIC2 , df3 , AIC3
, BIC3 , Trans1 _ 11 , Trans1 _ 12 ,
Trans1 _ 13 , Trans1 _ 14 , Trans1 _ 21 , Trans1 _ 22 , Trans1 _ 23 ,
Trans1 _ 24 , Trans1 _ 31 , Trans1 _ 32 , Trans1 _ 33 , Trans1 _ 34 ,
Trans1 _ 41 , Trans1 _ 42 , Trans1 _ 43 , Trans1 _ 44 ,
Trans2 _ 11 , Trans2 _ 12 , Trans2 _ 13 , Trans2 _ 14 , Trans2 _ 21 ,
Trans2 _ 22 , Trans2 _ 23 , Trans2 _ 24 , Trans2 _ 31 , Trans2 _ 32 ,
Trans2 _ 33 , Trans2 _ 34 , Trans2 _ 41 , Trans2 _ 42 , Trans2 _ 43 ,
Trans2 _ 44 ,Kappa , c o r r e c t _ class , c l u s t e r _ order) }
###############
S i m u l a t i o n
###############
s e t . seed (3 8 9 9)
Scenar i oA
Class<−" TwoClass_ Scenar io _A"
trans1<−matrix (c (0 . 0 5 , 0 . 0 5 , 0 . 0 5 , 0 . 8 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 8 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 8 5 , 0 . 0 5 , 0 . 0 5 ,
0 . 8 5 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5) , 4 , 4 , byrow=TRUE)
t rans2<−matrix (c (0 . 7 0 , 0 . 2 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 7 , 0 . 2 0 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 7 , 0 . 2 0 ,
0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 9 7) , 4 , 4 , byrow=TRUE)
for (i in c (1 0 , 2 0 , 3 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
myTitle<−paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")
c a t (paste ("\n\n"))
print (myTitle)

268

B. R-Code for Simulation Studies

Sim1<−sim_ Mixture _Markov2 (t rans1=trans1 ,
t rans2=trans2 ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
len=k ,
s i z e =i ,
MySamples=500)
save (Sim1 , f i l e =paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")) } }
#######################
###3 l a t e n t c l a s s e s ###
#######################
d i f f 3<−function (s i z e) { s i z e f<−f l o o r (s i z e / 3)
i f (s i z e%%3==0){ a<−s i z e f ; b<−s i z e f ; c<−s i z e f
} e lse i f (s i z e%%3==1){ a<−s i z e f +1
b<−s i z e f ; c<−s i z e f ; } e lse {
a<−s i z e f +1; b<−s i z e f +1; c<−s i z e f
} out<−c (a , b , c) }
sim_ Mixture _Markov3<−function (t rans1=matrix (c (0 . 5 , 0 . 2 , 0 . 2 , 0 . 1 ,
0 . 8 , 0 . 0 5 , 0 . 0 5 , 0 . 1 , 0 . 5 , 0 . 1 , 0 . 2 , 0 . 2 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 7) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) , t rans2=matrix (c (0 . 1 , 0 . 1 , 0 . 1 , 0 . 7 ,
0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 ,
0 . 7 , 0 . 1 , 0 . 1 , 0 . 1) , 4 , 4 , byrow=TRUE) , i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
t rans3=matrix (c (0 . 1 , 0 . 1 , 0 . 1 , 0 . 7 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 . 2 5 , 0 , 1 , 0 , 0 ,
0 . 7 , 0 . 1 , 0 . 1 , 0 . 1) , 4 , 4 , byrow=TRUE) , i n i t i a l 3 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
len =30 , s i z e =30 ,MySamples =10) {
options (warn=−1); require (seqHMM) ; require (TraMineR)
require (DySeq) ; require (psych)
pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")
df1<−rep (NA, MySamples) ; AIC1<−rep (NA, MySamples)
BIC1<−rep (NA, MySamples) ; df2<−rep (NA, MySamples)
AIC2<−rep (NA, MySamples) ; BIC2<−rep (NA, MySamples)
df3<−rep (NA, MySamples) ; AIC3<−rep (NA, MySamples)
BIC3<−rep (NA, MySamples) ; Trans1 _11<−rep (NA, MySamples)
Trans1 _12<−rep (NA, MySamples) ; Trans1 _13<−rep (NA, MySamples)
Trans1 _14<−rep (NA, MySamples) ; Trans1 _21<−rep (NA, MySamples)
Trans1 _22<−rep (NA, MySamples) ; Trans1 _23<−rep (NA, MySamples)
Trans1 _24<−rep (NA, MySamples) ; Trans1 _31<−rep (NA, MySamples)
Trans1 _32<−rep (NA, MySamples) ; Trans1 _33<−rep (NA, MySamples)
Trans1 _34<−rep (NA, MySamples) ; Trans1 _41<−rep (NA, MySamples)

269

B. R-Code for Simulation Studies

Trans1 _42<−rep (NA, MySamples) ; Trans1 _43<−rep (NA, MySamples)
Trans1 _44<−rep (NA, MySamples) ; Trans2 _11<−rep (NA, MySamples)
Trans2 _12<−rep (NA, MySamples) ; Trans2 _13<−rep (NA, MySamples)
Trans2 _14<−rep (NA, MySamples) ; Trans2 _21<−rep (NA, MySamples)
Trans2 _22<−rep (NA, MySamples) ; Trans2 _23<−rep (NA, MySamples)
Trans2 _24<−rep (NA, MySamples) ; Trans2 _31<−rep (NA, MySamples)
Trans2 _32<−rep (NA, MySamples) ; Trans2 _33<−rep (NA, MySamples)
Trans2 _34<−rep (NA, MySamples) ; Trans2 _41<−rep (NA, MySamples)
Trans2 _42<−rep (NA, MySamples) ; Trans2 _43<−rep (NA, MySamples)
Trans2 _44<−rep (NA, MySamples) ; Trans3 _11<−rep (NA, MySamples)
Trans3 _12<−rep (NA, MySamples) ; Trans3 _13<−rep (NA, MySamples)
Trans3 _14<−rep (NA, MySamples) ; Trans3 _21<−rep (NA, MySamples)
Trans3 _22<−rep (NA, MySamples) ; Trans3 _23<−rep (NA, MySamples)
Trans3 _24<−rep (NA, MySamples) ; Trans3 _31<−rep (NA, MySamples)
Trans3 _32<−rep (NA, MySamples) ; Trans3 _33<−rep (NA, MySamples)
Trans3 _34<−rep (NA, MySamples) ; Trans3 _41<−rep (NA, MySamples)
Trans3 _42<−rep (NA, MySamples) ; Trans3 _43<−rep (NA, MySamples)
Trans3 _44<−rep (NA, MySamples) ; c l u s t e r _ order<−numeric (MySamples)
Kappa<−numeric (MySamples) ; c o r r e c t _ c l a s s<−numeric (MySamples)
ErrorCatch1<−c h a r a c t e r (MySamples) ; ErrorCatch2<−c h a r a c t e r (MySamples)
ErrorCatch3<−c h a r a c t e r (MySamples) ; t rue _ t rans1<−t rans1
true _ t rans2<−t rans2 ; t rue _ t rans3<−t rans3
s i z e 3<−d i f f 3 (s i z e) ; for (k in 1 : MySamples) {
x<−simSeqSample (t rue _ t rans1 , i n i t i a l = i n i t i a l , len ,N= s i z e 3 [1])
x [1 , 1]<−1 ; x [2 , 1]<−2 ; x [3 , 1]<−3 ; x [4 , 1]<−4
y<−simSeqSample (t rue _ t rans2 , i n i t i a l = i n i t i a l 2 , len ,N= s i z e 3 [2])
w<−simSeqSample (t rue _ t rans3 , i n i t i a l = i n i t i a l 3 , len ,N= s i z e 3 [3])
x<−rbind (x , y ,w) ; suppressMessages (my_seq<−seqdef (x ,
s t a r t =1 , alphabet=c (1 , 2 , 3 , 4) , l ab el s=c ("noSC /DC" , " SConly " ,
" DConly " , "SC+DC")))
sc _ i n i t 1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
sc _ t rans1<−matrix (c (. 2 5) , nrow=4 , ncol =4 ,byrow=TRUE)
sc _ emiss1<−matrix (c (1 , 0 , 0 , 0 ,
0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1) , nrow=4 , ncol =4)
sc _ initmod1<−build _hmm(observat ions=my_seq ,
i n i t i a l _ probs=sc _ i n i t 1 , t r a n s i t i o n _ probs=sc _ t rans1 ,
emission _ probs=sc _ emiss1) ; tryCatch ({ suppressMessages (sc _ f i t 1<−
f i t _model (sc _ initmod1 ,em_ step=TRUE, g loba l _ step=FALSE ,
l o c a l _ step=FALSE , contro l _em= l i s t (print _ l e v e l =0 ,
r e s t a r t = l i s t (t imes =0 , print _ l e v e l = 0)) ,

270

B. R-Code for Simulation Studies

contro l _ globa l= l i s t (algorithm="NLOPT_GD_MLSL_LDS" ,
maxtime =10 , print _ l e v e l =0 ,
l o c a l _ opts= l i s t (algorithm="NLOPT_LD_LBFGS" ,
f t o l _ r e l =1e−6, x t o l _ r e l =1e−4)) ,
contro l _ l o c a l = l i s t (algorithm="NLOPT_LD_LBFGS" , maxtime =10 ,
print _ l e v e l =0) , log _ space=FALSE , threads = 1)) } , e r r o r =function (e)
{ ErrorCatch1 [k] <<−e }) i f (nchar (ErrorCatch1 [k]) = = 0)
{ df1 [k]<−a t t r (sc _ f i t 1 $model , " df ")
AIC1 [k]<−AIC (sc _ f i t 1 $model) ; BIC1 [k]<−BIC (sc _ f i t 1 $model) }
mytrans1<−matrix (c (. 2 5) , 4 , 4) ; mytrans2<−matrix (c (. 2 5) , 4 , 4)
mymixtrans<− l i s t (mytrans1 , mytrans2) ; myinit1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
myinit2<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; mymixinit<− l i s t (myinit1 , myinit2)
my_mmodel<−bui ld _mmm(my_seq , n_ c l u s t e r s =2 ,
mymixtrans , mymixinit)
tryCatch ({ suppressMessages (sc _ f i t 2<− f i t _model (my_mmodel ,
em_ step=FALSE , g loba l _ step=TRUE,
l o c a l _ step=TRUE, contro l _em=
l i s t (print _ l e v e l =0 , r e s t a r t = l i s t (t imes =10 ,
print _ l e v e l = 0)) , contro l _ globa l= l i s t (algorithm=
"NLOPT_GD_MLSL_LDS" , maxtime =10 , print _ l e v e l =0 ,
l o c a l _ opts= l i s t (algorithm="NLOPT_LD_LBFGS" ,
f t o l _ r e l =1e−6, x t o l _ r e l =1e−4)) ,
contro l _ l o c a l = l i s t (algorithm="NLOPT_LD_LBFGS" , maxtime =10 ,
print _ l e v e l =0) , log _ space=FALSE , threads = 1)) } ,
e r r o r =function (e) { ErrorCatch2 [k] <<−e })
i f (nchar (ErrorCatch2 [k]) = = 0) { df2 [k]<−a t t r (sc _ f i t 2 $model , " df ")
AIC2 [k]<−AIC (sc _ f i t 2 $model) ; BIC2 [k]<−BIC (sc _ f i t 2 $model) }
mytrans1<−matrix (c (. 2 5) , 4 , 4) ; mytrans2<−matrix (c (. 2 5) , 4 , 4)
mytrans3<−matrix (c (. 2 5) , 4 , 4) ; mymixtrans<− l i s t (mytrans1 , mytrans2 , mytrans3)
myinit1<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; myinit2<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)
myinit3<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ; mymixinit<− l i s t (myinit1 , myinit2 , myinit3)
my_mmodel<−bui ld _mmm(my_seq , n_ c l u s t e r s =3 , mymixtrans , mymixinit)
tryCatch ({ suppressMessages (sc _ f i t 3<− f i t _model (my_mmodel ,
em_ step=FALSE , g loba l _ step=TRUE, l o c a l _ step=TRUE,
contro l _em= l i s t (print _ l e v e l =0 , r e s t a r t = l i s t (t imes =10 , print _ l e v e l = 0)) ,
contro l _ globa l= l i s t (algorithm="NLOPT_GD_MLSL_LDS" , maxtime =10 , print _ l e v e l =0 ,
l o c a l _ opts= l i s t (algorithm="NLOPT_LD_LBFGS" , f t o l _ r e l =1e−6, x t o l _ r e l =1e−4)) ,
contro l _ l o c a l = l i s t (algorithm="NLOPT_LD_LBFGS" , maxtime =10 , print _ l e v e l =0) ,
log _ space=FALSE , threads = 1)) } , e r r o r =function (e) { ErrorCatch2 [k] <<−e })
i f (nchar (ErrorCatch3 [k]) = = 0) {

271

B. R-Code for Simulation Studies

df3 [k]<−a t t r (sc _ f i t 3 $model , " df ") ; AIC3 [k]<−AIC (sc _ f i t 3 $model)
BIC3 [k]<−BIC (sc _ f i t 3 $model)
t rans1<−sc _ f i t 3 $model$ t r a n s i t i o n _ probs $ ’ C lus ter1 ’
t rans2<−sc _ f i t 3 $model$ t r a n s i t i o n _ probs $ ’ C lus ter2 ’
t rans3<−sc _ f i t 3 $model$ t r a n s i t i o n _ probs $ ’ C lus ter3 ’
boundmatrix<−rbind (as . vector (t rans1) , as . vector (t rans2) ,
as . vector (t rans3))
ABC<−sum ((rbind (as . vector (t rue _ t rans1) , as . vector (t rue _ t rans2) ,
as . vector (t rue _ t rans3))−boundmatrix)^ 2)
ACB<−sum ((rbind (as . vector (t rue _ t rans1) , as . vector (t rue _ t rans3) ,
as . vector (t rue _ t rans2))−boundmatrix)^ 2)
BAC<−sum ((rbind (as . vector (t rue _ t rans2) , as . vector (t rue _ t rans1) ,
as . vector (t rue _ t rans3))−boundmatrix)^ 2)
BCA<−sum ((rbind (as . vector (t rue _ t rans2) , as . vector (t rue _ t rans3) ,
as . vector (t rue _ t rans1))−boundmatrix)^ 2)
CAB<−sum ((rbind (as . vector (t rue _ t rans3) , as . vector (t rue _ t rans1) ,
as . vector (t rue _ t rans2))−boundmatrix)^ 2)
CBA<−sum ((rbind (as . vector (t rue _ t rans3) , as . vector (t rue _ t rans2) ,
as . vector (t rue _ t rans1))−boundmatrix)^ 2)
f a l l<−c (ABC,ACB,BAC,BCA,CAB,CBA) ; myorder<−which (f a l l ==min (f a l l))
c l u s t e r _ order [k]<−myorder
post _ probs<−summary (sc _ f i t 3 $model) $ p o s t e r i o r _ c l u s t e r _ p r o b a b i l i t i e s
t rue _ c l a s s<−c (rep (1 , s i z e 3 [1]) , rep (2 , s i z e 3 [2]) , rep (3 , s i z e 3 [3]))
i f (myorder ==1){
Order :ABC
Trans1 _ 11[k]<−t rans1 [1 , 1] ; Trans1 _ 12[k]<−t rans1 [1 , 2] ; Trans1 _ 13[k]<−t rans1 [1 , 3]
Trans1 _ 14[k]<−t rans1 [1 , 4] ; Trans1 _ 21[k]<−t rans1 [2 , 1] ; Trans1 _ 22[k]<−t rans1 [2 , 2]
Trans1 _ 23[k]<−t rans1 [2 , 3] ; Trans1 _ 24[k]<−t rans1 [2 , 4] ; Trans1 _ 31[k]<−t rans1 [3 , 1]
Trans1 _ 32[k]<−t rans1 [3 , 2] ; Trans1 _ 33[k]<−t rans1 [3 , 3] ; Trans1 _ 34[k]<−t rans1 [3 , 4]
Trans1 _ 41[k]<−t rans1 [4 , 1] ; Trans1 _ 42[k]<−t rans1 [4 , 2] ; Trans1 _ 43[k]<−t rans1 [4 , 3]
Trans1 _ 44[k]<−t rans1 [4 , 4] ; Trans2 _ 11[k]<−t rans2 [1 , 1] ; Trans2 _ 12[k]<−t rans2 [1 , 2]
Trans2 _ 13[k]<−t rans2 [1 , 3] ; Trans2 _ 14[k]<−t rans2 [1 , 4] ; Trans2 _ 21[k]<−t rans2 [2 , 1]
Trans2 _ 22[k]<−t rans2 [2 , 2] ; Trans2 _ 23[k]<−t rans2 [2 , 3] ; Trans2 _ 24[k]<−t rans2 [2 , 4]
Trans2 _ 31[k]<−t rans2 [3 , 1] ; Trans2 _ 32[k]<−t rans2 [3 , 2] ; Trans2 _ 33[k]<−t rans2 [3 , 3]
Trans2 _ 34[k]<−t rans2 [3 , 4] ; Trans2 _ 41[k]<−t rans2 [4 , 1] ; Trans2 _ 42[k]<−t rans2 [4 , 2]
Trans2 _ 43[k]<−t rans2 [4 , 3] ; Trans2 _ 44[k]<−t rans2 [4 , 4] ; Trans3 _ 11[k]<−t rans3 [1 , 1]
Trans3 _ 12[k]<−t rans3 [1 , 2] ; Trans3 _ 13[k]<−t rans3 [1 , 3] ; Trans3 _ 14[k]<−t rans3 [1 , 4]
Trans3 _ 21[k]<−t rans3 [2 , 1] ; Trans3 _ 22[k]<−t rans3 [2 , 2] ; Trans3 _ 23[k]<−t rans3 [2 , 3]
Trans3 _ 24[k]<−t rans3 [2 , 4] ; Trans3 _ 31[k]<−t rans3 [3 , 1] ; Trans3 _ 32[k]<−t rans3 [3 , 2]
Trans3 _ 33[k]<−t rans3 [3 , 3] ; Trans3 _ 34[k]<−t rans3 [3 , 4] ; Trans3 _ 41[k]<−t rans3 [4 , 1]

272

B. R-Code for Simulation Studies

Trans3 _ 42[k]<−t rans3 [4 , 2] ; Trans3 _ 43[k]<−t rans3 [4 , 3] ; Trans3 _ 44[k]<−t rans3 [4 , 4]
c l a s s i<−numeric (s i z e)
c l u s t e r 1<−post _ probs [,1] > post _ probs [, 2]&post _ probs [,1] > post _ probs [, 3]
c l a s s i [c l u s t e r 1 ==1]<−1
c l u s t e r 2<−post _ probs [,2] > post _ probs [, 1]&post _ probs [,2] > post _ probs [, 3]
c l a s s i [c l u s t e r 2 ==1]<−2
c l u s t e r 3<−post _ probs [,3] > post _ probs [, 2]&post _ probs [,3] > post _ probs [, 1]
c l a s s i [c l u s t e r 3 ==1]<−3
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i
, t rue _ c l a s s)) $ conf id [3] , 2)) ; c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
} e lse i f (myorder ==2){
Trans1 _ 11[k]<−t rans1 [1 , 1] ; Trans1 _ 12[k]<−t rans1 [1 , 2] ; Trans1 _ 13[k]<−t rans1 [1 , 3]
Trans1 _ 14[k]<−t rans1 [1 , 4] ; Trans1 _ 21[k]<−t rans1 [2 , 1] ; Trans1 _ 22[k]<−t rans1 [2 , 2]
Trans1 _ 23[k]<−t rans1 [2 , 3] ; Trans1 _ 24[k]<−t rans1 [2 , 4] ; Trans1 _ 31[k]<−t rans1 [3 , 1]
Trans1 _ 32[k]<−t rans1 [3 , 2] ; Trans1 _ 33[k]<−t rans1 [3 , 3] ; Trans1 _ 34[k]<−t rans1 [3 , 4]
Trans1 _ 41[k]<−t rans1 [4 , 1] ; Trans1 _ 42[k]<−t rans1 [4 , 2] ; Trans1 _ 43[k]<−t rans1 [4 , 3]
Trans1 _ 44[k]<−t rans1 [4 , 4] ; Trans2 _ 11[k]<−t rans3 [1 , 1] ; Trans2 _ 12[k]<−t rans3 [1 , 2]
Trans2 _ 13[k]<−t rans3 [1 , 3] ; Trans2 _ 14[k]<−t rans3 [1 , 4] ; Trans2 _ 21[k]<−t rans3 [2 , 1]
Trans2 _ 22[k]<−t rans3 [2 , 2] ; Trans2 _ 23[k]<−t rans3 [2 , 3] ; Trans2 _ 24[k]<−t rans3 [2 , 4]
Trans2 _ 31[k]<−t rans3 [3 , 1] ; Trans2 _ 32[k]<−t rans3 [3 , 2] ; Trans2 _ 33[k]<−t rans3 [3 , 3]
Trans2 _ 34[k]<−t rans3 [3 , 4] ; Trans2 _ 41[k]<−t rans3 [4 , 1] ; Trans2 _ 42[k]<−t rans3 [4 , 2]
Trans2 _ 43[k]<−t rans3 [4 , 3] ; Trans2 _ 44[k]<−t rans3 [4 , 4] ; Trans3 _ 11[k]<−t rans2 [1 , 1]
Trans3 _ 12[k]<−t rans2 [1 , 2] ; Trans3 _ 13[k]<−t rans2 [1 , 3] ; Trans3 _ 14[k]<−t rans2 [1 , 4]
Trans3 _ 21[k]<−t rans2 [2 , 1] ; Trans3 _ 22[k]<−t rans2 [2 , 2] ; Trans3 _ 23[k]<−t rans2 [2 , 3]
Trans3 _ 24[k]<−t rans2 [2 , 4] ; Trans3 _ 31[k]<−t rans2 [3 , 1] ; Trans3 _ 32[k]<−t rans2 [3 , 2]
Trans3 _ 33[k]<−t rans2 [3 , 3] ; Trans3 _ 34[k]<−t rans2 [3 , 4] ; Trans3 _ 41[k]<−t rans2 [4 , 1]
Trans3 _ 42[k]<−t rans2 [4 , 2] ; Trans3 _ 43[k]<−t rans2 [4 , 3] ; Trans3 _ 44[k]<−t rans2 [4 , 4]
c l a s s i<−numeric (s i z e)
c l u s t e r 1<−post _ probs [,1] > post _ probs [, 2]&post _ probs [,1] > post _ probs [, 3]
c l u s t e r 3<−post _ probs [,2] > post _ probs [, 1]&post _ probs [,2] > post _ probs [, 3]
c l u s t e r 2<−post _ probs [,3] > post _ probs [, 2]&post _ probs [,3] > post _ probs [, 1]
c l a s s i [c l u s t e r 1 ==1]<−1 ; c l a s s i [c l u s t e r 2 ==1]<−2 ; c l a s s i [c l u s t e r 3 ==1]<−3
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2)) ; c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
} e lse i f (myorder ==3){
Trans2 _ 11[k]<−t rans1 [1 , 1] ; Trans2 _ 12[k]<−t rans1 [1 , 2] ; Trans2 _ 13[k]<−t rans1 [1 , 3]
Trans2 _ 14[k]<−t rans1 [1 , 4] ; Trans2 _ 21[k]<−t rans1 [2 , 1] ; Trans2 _ 22[k]<−t rans1 [2 , 2]
Trans2 _ 23[k]<−t rans1 [2 , 3] ; Trans2 _ 24[k]<−t rans1 [2 , 4] ; Trans2 _ 31[k]<−t rans1 [3 , 1]
Trans2 _ 32[k]<−t rans1 [3 , 2] ; Trans2 _ 33[k]<−t rans1 [3 , 3] ; Trans2 _ 34[k]<−t rans1 [3 , 4]
Trans2 _ 41[k]<−t rans1 [4 , 1] ; Trans2 _ 42[k]<−t rans1 [4 , 2] ; Trans2 _ 43[k]<−t rans1 [4 , 3]

273

B. R-Code for Simulation Studies

Trans2 _ 44[k]<−t rans1 [4 , 4] ; Trans1 _ 11[k]<−t rans2 [1 , 1] ; Trans1 _ 12[k]<−t rans2 [1 , 2]
Trans1 _ 13[k]<−t rans2 [1 , 3] ; Trans1 _ 14[k]<−t rans2 [1 , 4] ; Trans1 _ 21[k]<−t rans2 [2 , 1]
Trans1 _ 22[k]<−t rans2 [2 , 2] ; Trans1 _ 23[k]<−t rans2 [2 , 3] ; Trans1 _ 24[k]<−t rans2 [2 , 4]
Trans1 _ 31[k]<−t rans2 [3 , 1] ; Trans1 _ 32[k]<−t rans2 [3 , 2] ; Trans1 _ 33[k]<−t rans2 [3 , 3]
Trans1 _ 34[k]<−t rans2 [3 , 4] ; Trans1 _ 41[k]<−t rans2 [4 , 1] ; Trans1 _ 42[k]<−t rans2 [4 , 2]
Trans1 _ 43[k]<−t rans2 [4 , 3] ; Trans1 _ 44[k]<−t rans2 [4 , 4] ; Trans3 _ 11[k]<−t rans3 [1 , 1]
Trans3 _ 12[k]<−t rans3 [1 , 2] ; Trans3 _ 13[k]<−t rans3 [1 , 3] ; Trans3 _ 14[k]<−t rans3 [1 , 4]
Trans3 _ 21[k]<−t rans3 [2 , 1] ; Trans3 _ 22[k]<−t rans3 [2 , 2] ; Trans3 _ 23[k]<−t rans3 [2 , 3]
Trans3 _ 24[k]<−t rans3 [2 , 4] ; Trans3 _ 31[k]<−t rans3 [3 , 1] ; Trans3 _ 32[k]<−t rans3 [3 , 2]
Trans3 _ 33[k]<−t rans3 [3 , 3] ; Trans3 _ 34[k]<−t rans3 [3 , 4] ; Trans3 _ 41[k]<−t rans3 [4 , 1]
Trans3 _ 42[k]<−t rans3 [4 , 2] ; Trans3 _ 43[k]<−t rans3 [4 , 3] ; Trans3 _ 44[k]<−t rans3 [4 , 4]
c l a s s i<−numeric (s i z e)
c l u s t e r 2<−post _ probs [,1] > post _ probs [, 2]&post _ probs [,1] > post _ probs [, 3]
c l u s t e r 1<−post _ probs [,2] > post _ probs [, 1]&post _ probs [,2] > post _ probs [, 3]
c l u s t e r 3<−post _ probs [,3] > post _ probs [, 2]&post _ probs [,3] > post _ probs [, 1]
c l a s s i [c l u s t e r 1 ==1]<−1 ; c l a s s i [c l u s t e r 2 ==1]<−2 ; c l a s s i [c l u s t e r 3 ==1]<−3
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2)) ; c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
} e lse i f (myorder ==4){
Trans1 _ 11[k]<−t rans2 [1 , 1] ; Trans1 _ 12[k]<−t rans2 [1 , 2] ; Trans1 _ 13[k]<−t rans2 [1 , 3]
Trans1 _ 14[k]<−t rans2 [1 , 4] ; ; Trans1 _ 21[k]<−t rans2 [2 , 1] ; Trans1 _ 22[k]<−t rans2 [2 , 2]
Trans1 _ 23[k]<−t rans2 [2 , 3] ; Trans1 _ 24[k]<−t rans2 [2 , 4] ; ; Trans1 _ 31[k]<−t rans2 [3 , 1]
Trans1 _ 32[k]<−t rans2 [3 , 2] ; Trans1 _ 33[k]<−t rans2 [3 , 3] ; Trans1 _ 34[k]<−t rans2 [3 , 4]
Trans1 _ 41[k]<−t rans2 [4 , 1] ; Trans1 _ 42[k]<−t rans2 [4 , 2] ; Trans1 _ 43[k]<−t rans2 [4 , 3]
Trans1 _ 44[k]<−t rans2 [4 , 4] ; Trans2 _ 11[k]<−t rans3 [1 , 1] ; Trans2 _ 12[k]<−t rans3 [1 , 2]
Trans2 _ 13[k]<−t rans3 [1 , 3] ; Trans2 _ 14[k]<−t rans3 [1 , 4] ; Trans2 _ 21[k]<−t rans3 [2 , 1]
Trans2 _ 22[k]<−t rans3 [2 , 2] ; Trans2 _ 23[k]<−t rans3 [2 , 3] ; Trans2 _ 24[k]<−t rans3 [2 , 4]
Trans2 _ 31[k]<−t rans3 [3 , 1] ; Trans2 _ 32[k]<−t rans3 [3 , 2] ; Trans2 _ 33[k]<−t rans3 [3 , 3]
Trans2 _ 34[k]<−t rans3 [3 , 4] ; Trans2 _ 41[k]<−t rans3 [4 , 1] ; Trans2 _ 42[k]<−t rans3 [4 , 2]
Trans2 _ 43[k]<−t rans3 [4 , 3] ; Trans2 _ 44[k]<−t rans3 [4 , 4] ; Trans3 _ 11[k]<−t rans1 [1 , 1]
Trans3 _ 12[k]<−t rans1 [1 , 2] ; Trans3 _ 13[k]<−t rans1 [1 , 3] ; Trans3 _ 14[k]<−t rans1 [1 , 4]
Trans3 _ 21[k]<−t rans1 [2 , 1] ; Trans3 _ 22[k]<−t rans1 [2 , 2] ; Trans3 _ 23[k]<−t rans1 [2 , 3]
Trans3 _ 24[k]<−t rans1 [2 , 4] ; Trans3 _ 31[k]<−t rans1 [3 , 1] ; Trans3 _ 32[k]<−t rans1 [3 , 2]
Trans3 _ 33[k]<−t rans1 [3 , 3] ; Trans3 _ 34[k]<−t rans1 [3 , 4] ; Trans3 _ 41[k]<−t rans1 [4 , 1]
Trans3 _ 42[k]<−t rans1 [4 , 2] ; Trans3 _ 43[k]<−t rans1 [4 , 3] ; Trans3 _ 44[k]<−t rans1 [4 , 4]

c l a s s i<−numeric (s i z e)
c l u s t e r 2<−post _ probs [,1] > post _ probs [, 2]&post _ probs [,1] > post _ probs [, 3]
c l u s t e r 3<−post _ probs [,2] > post _ probs [, 1]&post _ probs [,2] > post _ probs [, 3]
c l u s t e r 1<−post _ probs [,3] > post _ probs [, 2]&post _ probs [,3] > post _ probs [, 1]

274

B. R-Code for Simulation Studies

c l a s s i [c l u s t e r 1 ==1]<−1 ; c l a s s i [c l u s t e r 2 ==1]<−2 ; c l a s s i [c l u s t e r 3 ==1]<−3
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
} e lse i f (myorder ==5){
Trans1 _ 11[k]<−t rans3 [1 , 1] ; Trans1 _ 12[k]<−t rans3 [1 , 2] ; Trans1 _ 13[k]<−t rans3 [1 , 3]
Trans1 _ 14[k]<−t rans3 [1 , 4] ; Trans1 _ 21[k]<−t rans3 [2 , 1] ; Trans1 _ 22[k]<−t rans3 [2 , 2]
Trans1 _ 23[k]<−t rans3 [2 , 3] ; Trans1 _ 24[k]<−t rans3 [2 , 4] ; ; Trans1 _ 31[k]<−t rans3 [3 , 1]
Trans1 _ 32[k]<−t rans3 [3 , 2] ; Trans1 _ 33[k]<−t rans3 [3 , 3] ; Trans1 _ 34[k]<−t rans3 [3 , 4]
Trans1 _ 41[k]<−t rans3 [4 , 1] ; Trans1 _ 42[k]<−t rans3 [4 , 2] ; Trans1 _ 43[k]<−t rans3 [4 , 3]
Trans1 _ 44[k]<−t rans3 [4 , 4] ; Trans2 _ 11[k]<−t rans1 [1 , 1] ; Trans2 _ 12[k]<−t rans1 [1 , 2]
Trans2 _ 13[k]<−t rans1 [1 , 3] ; Trans2 _ 14[k]<−t rans1 [1 , 4] ; Trans2 _ 21[k]<−t rans1 [2 , 1]
Trans2 _ 22[k]<−t rans1 [2 , 2] ; Trans2 _ 23[k]<−t rans1 [2 , 3] ; Trans2 _ 24[k]<−t rans1 [2 , 4]
Trans2 _ 31[k]<−t rans1 [3 , 1] ; Trans2 _ 32[k]<−t rans1 [3 , 2] ; Trans2 _ 33[k]<−t rans1 [3 , 3]
Trans2 _ 34[k]<−t rans1 [3 , 4] ; Trans2 _ 41[k]<−t rans1 [4 , 1] ; Trans2 _ 42[k]<−t rans1 [4 , 2]
Trans3 _ 12[k]<−t rans2 [1 , 2] ; Trans3 _ 13[k]<−t rans2 [1 , 3] ; Trans3 _ 14[k]<−t rans2 [1 , 4]
Trans3 _ 21[k]<−t rans2 [2 , 1] ; Trans3 _ 22[k]<−t rans2 [2 , 2] ; Trans3 _ 23[k]<−t rans2 [2 , 3]
Trans3 _ 24[k]<−t rans2 [2 , 4] ; Trans3 _ 31[k]<−t rans2 [3 , 1] ; Trans3 _ 32[k]<−t rans2 [3 , 2]
Trans3 _ 33[k]<−t rans2 [3 , 3] ; Trans3 _ 34[k]<−t rans2 [3 , 4] ; Trans3 _ 41[k]<−t rans2 [4 , 1]
Trans3 _ 42[k]<−t rans2 [4 , 2] ; Trans3 _ 43[k]<−t rans2 [4 , 3] ; Trans3 _ 44[k]<−t rans2 [4 , 4]
c l a s s i<−numeric (s i z e)
c l u s t e r 3<−post _ probs [,1] > post _ probs [, 2]&post _ probs [,1] > post _ probs [, 3]
c l u s t e r 1<−post _ probs [,2] > post _ probs [, 1]&post _ probs [,2] > post _ probs [, 3]
c l u s t e r 2<−post _ probs [,3] > post _ probs [, 2]&post _ probs [,3] > post _ probs [, 1]
c l a s s i [c l u s t e r 1 ==1]<−1 ; c l a s s i [c l u s t e r 2 ==1]<−2 ; c l a s s i [c l u s t e r 3 ==1]<−3
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2)) c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
} e lse {
Trans1 _ 11[k]<−t rans3 [1 , 1] ; Trans1 _ 12[k]<−t rans3 [1 , 2] ; Trans1 _ 13[k]<−t rans3 [1 , 3]
Trans1 _ 14[k]<−t rans3 [1 , 4] ; Trans1 _ 21[k]<−t rans3 [2 , 1] ; Trans1 _ 22[k]<−t rans3 [2 , 2]
Trans1 _ 23[k]<−t rans3 [2 , 3] ; Trans1 _ 24[k]<−t rans3 [2 , 4] ; Trans1 _ 31[k]<−t rans3 [3 , 1]
Trans1 _ 32[k]<−t rans3 [3 , 2] ; Trans1 _ 33[k]<−t rans3 [3 , 3] ; Trans1 _ 34[k]<−t rans3 [3 , 4]
Trans1 _ 41[k]<−t rans3 [4 , 1] ; Trans1 _ 42[k]<−t rans3 [4 , 2] ; Trans1 _ 43[k]<−t rans3 [4 , 3]
Trans1 _ 44[k]<−t rans3 [4 , 4] ; Trans2 _ 11[k]<−t rans2 [1 , 1] ; Trans2 _ 12[k]<−t rans2 [1 , 2]
Trans2 _ 13[k]<−t rans2 [1 , 3] ; Trans2 _ 14[k]<−t rans2 [1 , 4] ; Trans2 _ 21[k]<−t rans2 [2 , 1]
Trans2 _ 22[k]<−t rans2 [2 , 2] ; Trans2 _ 23[k]<−t rans2 [2 , 3] ; Trans2 _ 24[k]<−t rans2 [2 , 4]
Trans2 _ 31[k]<−t rans2 [3 , 1] ; Trans2 _ 32[k]<−t rans2 [3 , 2] ; Trans2 _ 33[k]<−t rans2 [3 , 3]
Trans2 _ 34[k]<−t rans2 [3 , 4] ; Trans2 _ 41[k]<−t rans2 [4 , 1] ; Trans2 _ 42[k]<−t rans2 [4 , 2]
Trans2 _ 43[k]<−t rans2 [4 , 3] ; Trans2 _ 44[k]<−t rans2 [4 , 4] ; Trans3 _ 11[k]<−t rans1 [1 , 1]
Trans3 _ 12[k]<−t rans1 [1 , 2] ; Trans3 _ 13[k]<−t rans1 [1 , 3] ; Trans3 _ 14[k]<−t rans1 [1 , 4]

275

B. R-Code for Simulation Studies

Trans3 _ 21[k]<−t rans1 [2 , 1] ; Trans3 _ 22[k]<−t rans1 [2 , 2] ; Trans3 _ 23[k]<−t rans1 [2 , 3]
Trans3 _ 24[k]<−t rans1 [2 , 4] ; Trans3 _ 31[k]<−t rans1 [3 , 1] ; Trans3 _ 32[k]<−t rans1 [3 , 2]
Trans3 _ 33[k]<−t rans1 [3 , 3] ; Trans3 _ 34[k]<−t rans1 [3 , 4] ; Trans3 _ 41[k]<−t rans1 [4 , 1]
Trans3 _ 42[k]<−t rans1 [4 , 2] ; Trans3 _ 43[k]<−t rans1 [4 , 3] ; Trans3 _ 44[k]<−t rans1 [4 , 4]
c l a s s i<−numeric (s i z e)
c l u s t e r 3<−post _ probs [,1] > post _ probs [, 2]&post _ probs [,1] > post _ probs [, 3]
c l u s t e r 2<−post _ probs [,2] > post _ probs [, 1]&post _ probs [,2] > post _ probs [, 3]
c l u s t e r 1<−post _ probs [,3] > post _ probs [, 2]&post _ probs [,3] > post _ probs [, 1]
c l a s s i [c l u s t e r 1 ==1]<−1 ; c l a s s i [c l u s t e r 2 ==1]<−2 ; c l a s s i [c l u s t e r 3 ==1]<−3

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))

c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)
}
}
se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL)
} options (warn = 0) ; out<−data . frame (df1 , AIC1 , BIC1 , df2 , AIC2 , BIC2 , df3 ,
AIC3 , BIC3 , Trans1 _ 11 , Trans1 _ 12 , Trans1 _ 13 , Trans1 _ 14 , Trans1 _ 21 ,
Trans1 _ 22 , Trans1 _ 23 , Trans1 _ 24 , Trans1 _ 31 , Trans1 _ 32 , Trans1 _ 33 ,
Trans1 _ 34 , Trans1 _ 41 , Trans1 _ 42 , Trans1 _ 43 , Trans1 _ 44 , Trans2 _ 11 , Trans2 _ 12 ,
Trans2 _ 13 , Trans2 _ 14 , Trans2 _ 21 , Trans2 _ 22 , Trans2 _ 23 , Trans2 _ 24 , Trans2 _ 31 ,
Trans2 _ 32 , Trans2 _ 33 , Trans2 _ 34 , Trans2 _ 41 , Trans2 _ 42 , Trans2 _ 43 , Trans2 _ 44 ,
Trans3 _ 11 , Trans3 _ 12 , Trans3 _ 13 , Trans3 _ 14 , Trans3 _ 21 , Trans3 _ 22 , Trans3 _ 23 ,
Trans3 _ 24 , Trans3 _ 31 , Trans3 _ 32 , Trans3 _ 33 , Trans3 _ 34 , Trans3 _ 41 , Trans3 _ 42 ,
Trans3 _ 43 , Trans3 _ 44 ,
Kappa , c o r r e c t _ class , c l u s t e r _ order
)
}

#######################################
T e s t d e r S i n g e l C o n d i t i o n S i m u l a t i o n
#######################################

t e s t _ out<−sim_ Mixture _Markov3 (MySamples=2 , len =5 , s i z e =20)
t e s t _ out

###############
S i m u l a t i o n
###############

276

B. R-Code for Simulation Studies

Drawrandomseed
sample (1 : 1 0 0 0 0 , 1)

s e t . seed (8 2 0 0)

Scenar i oA

Class<−" ThreeClass _ Scenar io _A"

trans1<−matrix (c (1 . 0 0 , 0 . 0 0 , 0 . 0 0 , 0 . 0 0 ,
0 . 2 0 , 0 . 7 0 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 2 5 , 0 . 6 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 2 5 , 0 . 6 5) , 4 , 4 , byrow=TRUE)

t rans2<−matrix (c (0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 0 0 , 0 . 0 0 , 1 . 0 0 , 0 . 0 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0) , 4 , 4 , byrow=TRUE)

t rans3=matrix (c (0 . 7 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 7 , 0 , 0 . 3 , 0 ,
0 . 7 , 0 . 3 , 0 , 0 ,
0 , 0 , 0 , 1) , 4 , 4 , byrow=TRUE)

for (i in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {

myTitle<−paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")
c a t (paste ("\n\n"))
print (myTitle)

i f (i ==10&k==10){
} e lse {

Sim1<−sim_ Mixture _Markov3 (t rans1=trans1 ,
t rans2=trans2 ,

t rans3=trans3 ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,

i n i t i a l 3 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,

277

B. R-Code for Simulation Studies

len=k ,
s i z e =i ,
MySamples=500)

save (Sim1 , f i l e =paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")) } } }

B.10. OM-Distances (Correct Number of Latent States)

sim_OM2<−function (t rans1=matrix (c (0 . 0 5 , 0 . 0 5 , 0 . 0 5 , 0 . 8 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 8 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 8 5 , 0 . 0 5 , 0 . 0 5 ,
0 . 8 5 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
t rans2=matrix (c (0 . 7 0 , 0 . 2 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 7 , 0 . 2 0 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 7 , 0 . 2 0 ,
0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 9 7) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
len =30 ,
s i z e =30 ,
MySamples =10) {

options (warn=−1)

require (seqHMM)
require (TraMineR)
require (DySeq)
require (psych)
require (c l u s t e r)
require (fpc)

pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")

S i l 2<−numeric (MySamples) ; S i l 3<−numeric (MySamples)
S i l 2 _min<−numeric (MySamples) ; S i l 3 _min<−numeric (MySamples)
wss1<−numeric (MySamples) ; wss2<−numeric (MySamples)
wss3<−numeric (MySamples) ; wss4<−numeric (MySamples)
wss5<−numeric (MySamples) ; Trans1 _11<−numeric (MySamples)
Trans1 _12<−numeric (MySamples) ; Trans1 _13<−numeric (MySamples)

278

B. R-Code for Simulation Studies

Trans1 _14<−numeric (MySamples) ; Trans1 _21<−numeric (MySamples)
Trans1 _22<−numeric (MySamples) ; Trans1 _23<−numeric (MySamples)
Trans1 _24<−numeric (MySamples) ; Trans1 _31<−numeric (MySamples)
Trans1 _32<−numeric (MySamples) ; Trans1 _33<−numeric (MySamples)
Trans1 _34<−numeric (MySamples) ; Trans1 _41<−numeric (MySamples)
Trans1 _42<−numeric (MySamples) ; Trans1 _43<−numeric (MySamples)
Trans1 _44<−numeric (MySamples) ; Trans2 _11<−numeric (MySamples)
Trans2 _12<−numeric (MySamples) ; Trans2 _13<−numeric (MySamples)
Trans2 _14<−numeric (MySamples) ; Trans2 _21<−numeric (MySamples)
Trans2 _22<−numeric (MySamples) ; Trans2 _23<−numeric (MySamples)
Trans2 _24<−numeric (MySamples) ; Trans2 _31<−numeric (MySamples)
Trans2 _32<−numeric (MySamples) ; Trans2 _33<−numeric (MySamples)
Trans2 _34<−numeric (MySamples) ; Trans2 _41<−numeric (MySamples)
Trans2 _42<−numeric (MySamples) ; Trans2 _43<−numeric (MySamples)
Trans2 _44<−numeric (MySamples) ; Kappa<−numeric (MySamples)
c o r r e c t _ c l a s s<−numeric (MySamples)
c l u s t e r _ order<−numeric (MySamples)
t rue _ t rans1<−t rans1 ; t rue _ t rans2<−t rans2

for (k in 1 : MySamples) {
x<−simSeqSample (t rue _ t rans1 , i n i t i a l = i n i t i a l , len ,N= s i z e / 2)

x [1 , 1]<−1 ; x [2 , 1]<−2 ; x [3 , 1]<−3 ; x [4 , 1]<−4

y<−simSeqSample (t rue _ t rans2 , i n i t i a l = i n i t i a l 2 , len ,N= s i z e / 2)

x<−rbind (x , y)

suppressMessages (my_seq<−seqdef (x , s t a r t =1 , alphabet=c (1 , 2 , 3 , 4) ,
l ab el s=c ("noSC /DC" , " SConly " , " DConly " , "SC+DC")))

Nu mb e ro fC l us t e r s

submat<−suppressMessages (seqsubm (my_seq , method="TRATE"))

d i s t . oml<−suppressMessages (s e q d i s t (my_seq , method="OM" ,sm=submat))

wss<−(nrow (d i s t . oml)−1)∗sum(apply (x , 2 , var))

279

B. R-Code for Simulation Studies

for (i in 2 : 5) wss [i]<−sum(kmeans (x , c e n t e r s = i) $ withinss)

c lusterward<−agnes (d i s t . oml , d i s s =TRUE, method=" ward ") # t h e a l g o r i t h m
c l u s t e r<−cut ree (clusterward , k=2)

#wss#

wss1 [k]<−wss [1]
wss2 [k]<−wss [2]
wss3 [k]<−wss [3]
wss4 [k]<−wss [4]
wss5 [k]<−wss [5]

###2 C l a s s e s : S i l

S i l 2 [k]<−pam(d i s t . oml , 2) $ s i l i n f o $avg . width
S i l 2 _min [k]<−min (pam(d i s t . oml , 2) $ s i l i n f o $ c l u s . avg . width)

###3 C l a s s e s : S i l

S i l 3 [k]<−pam(d i s t . oml , 3) $ s i l i n f o $avg . width
S i l 3 _min [k]<−min (pam(d i s t . oml , 3) $ s i l i n f o $ c l u s . avg . width)

###2 C l a s s e s

t rans1<−suppressMessages (s e q t r a t e (my_seq [c l u s t e r = = 1 ,]))
t rans2<−suppressMessages (s e q t r a t e (my_seq [c l u s t e r = = 2 ,]))

i f (sum ((t rans1−t rue _ t rans1)^2) <=sum ((t rans2−t rue _ t rans1) ^ 2))
{ c l u s t e r _ order [k]<−"1−2" } e lse { c l u s t e r _ order [k]<−"2−1" }

i f (sum ((t rans1−t rue _ t rans1)^2) <=sum ((t rans2−t rue _ t rans1) ^ 2)) {

Trans1 _ 11[k]<−t rans1 [1 , 1] ; Trans1 _ 12[k]<−t rans1 [1 , 2] ; Trans1 _ 13[k]<−t rans1 [1 , 3]
Trans1 _ 14[k]<−t rans1 [1 , 4] ; Trans1 _ 21[k]<−t rans1 [2 , 1] ; Trans1 _ 22[k]<−t rans1 [2 , 2]
Trans1 _ 23[k]<−t rans1 [2 , 3] ; Trans1 _ 24[k]<−t rans1 [2 , 4] ; Trans1 _ 31[k]<−t rans1 [3 , 1]

280

B. R-Code for Simulation Studies

Trans1 _ 32[k]<−t rans1 [3 , 2] ; Trans1 _ 33[k]<−t rans1 [3 , 3] ; Trans1 _ 34[k]<−t rans1 [3 , 4]
Trans1 _ 41[k]<−t rans1 [4 , 1] ; Trans1 _ 42[k]<−t rans1 [4 , 2] ; Trans1 _ 43[k]<−t rans1 [4 , 3]
Trans1 _ 44[k]<−t rans1 [4 , 4] ; Trans2 _ 11[k]<−t rans2 [1 , 1] ; Trans2 _ 12[k]<−t rans2 [1 , 2]
Trans2 _ 13[k]<−t rans2 [1 , 3] ; Trans2 _ 14[k]<−t rans2 [1 , 4] ; Trans2 _ 21[k]<−t rans2 [2 , 1]
Trans2 _ 22[k]<−t rans2 [2 , 2] ; Trans2 _ 23[k]<−t rans2 [2 , 3] ; Trans2 _ 24[k]<−t rans2 [2 , 4]
Trans2 _ 31[k]<−t rans2 [3 , 1] ; Trans2 _ 32[k]<−t rans2 [3 , 2] ; Trans2 _ 33[k]<−t rans2 [3 , 3]
Trans2 _ 34[k]<−t rans2 [3 , 4] ; Trans2 _ 41[k]<−t rans2 [4 , 1] ; Trans2 _ 42[k]<−t rans2 [4 , 2]
Trans2 _ 43[k]<−t rans2 [4 , 3] ; Trans2 _ 44[k]<−t rans2 [4 , 4]

c l a s s i<−c l u s t e r
t rue _ c l a s s<−c (rep (1 , s i z e / 2) , rep (2 , s i z e / 2))

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

} e lse {

Trans1 _ 11[k]<−t rans2 [1 , 1] ; Trans1 _ 12[k]<−t rans2 [1 , 2] ; Trans1 _ 13[k]<−t rans2 [1 , 3]
Trans1 _ 14[k]<−t rans2 [1 , 4] ; Trans1 _ 21[k]<−t rans2 [2 , 1] ; Trans1 _ 22[k]<−t rans2 [2 , 2]
Trans1 _ 23[k]<−t rans2 [2 , 3] ; Trans1 _ 24[k]<−t rans2 [2 , 4] ; Trans1 _ 31[k]<−t rans2 [3 , 1]
Trans1 _ 32[k]<−t rans2 [3 , 2] ; Trans1 _ 33[k]<−t rans2 [3 , 3] ; Trans1 _ 34[k]<−t rans2 [3 , 4]
Trans1 _ 41[k]<−t rans2 [4 , 1] ; Trans1 _ 42[k]<−t rans2 [4 , 2] ; Trans1 _ 43[k]<−t rans2 [4 , 3]
Trans1 _ 44[k]<−t rans2 [4 , 4] ; Trans2 _ 11[k]<−t rans1 [1 , 1] ; Trans2 _ 12[k]<−t rans1 [1 , 2]
Trans2 _ 13[k]<−t rans1 [1 , 3] ; Trans2 _ 14[k]<−t rans1 [1 , 4] ; Trans2 _ 21[k]<−t rans1 [2 , 1]
Trans2 _ 22[k]<−t rans1 [2 , 2] ; Trans2 _ 23[k]<−t rans1 [2 , 3] ; Trans2 _ 24[k]<−t rans1 [2 , 4]
Trans2 _ 31[k]<−t rans1 [3 , 1] ; Trans2 _ 32[k]<−t rans1 [3 , 2] ; Trans2 _ 33[k]<−t rans1 [3 , 3]
Trans2 _ 34[k]<−t rans1 [3 , 4] ; Trans2 _ 41[k]<−t rans1 [4 , 1] ; Trans2 _ 42[k]<−t rans1 [4 , 2]
Trans2 _ 43[k]<−t rans1 [4 , 3] ; Trans2 _ 44[k]<−t rans1 [4 , 4]

c l a s s i<−c ()
c l a s s i [c l u s t e r ==1]<−2
c l a s s i [c l u s t e r ==2]<−1
true _ c l a s s<−c (rep (1 , s i z e / 2) , rep (2 , s i z e / 2))

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

281

B. R-Code for Simulation Studies

}

se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL)

}

options (warn=0)

out<−data . frame (S i l 2 , S i l 3 , S i l 2 _min , S i l 3 _min , wss1 , wss2 ,
wss3 , wss4 , wss5 , Trans1 _ 11 , Trans1 _ 12 , Trans1 _ 13 , Trans1 _ 14 ,
Trans1 _ 21 , Trans1 _ 22 , Trans1 _ 23 , Trans1 _ 24 , Trans1 _ 31 , Trans1 _ 32 ,
Trans1 _ 33 , Trans1 _ 34 , Trans1 _ 41 , Trans1 _ 42 , Trans1 _ 43 , Trans1 _ 44 ,
Trans2 _ 11 , Trans2 _ 12 , Trans2 _ 13 , Trans2 _ 14 , Trans2 _ 21 , Trans2 _ 22 ,
Trans2 _ 23 , Trans2 _ 24 , Trans2 _ 31 , Trans2 _ 32 , Trans2 _ 33 , Trans2 _ 34 ,
Trans2 _ 41 , Trans2 _ 42 , Trans2 _ 43 , Trans2 _ 44 ,Kappa , c o r r e c t _ class ,
c l u s t e r _ order) }

###############
S i m u l a t i o n
###############

Drawrandomseed
sample (1 : 1 0 0 0 0 , 1)
Seedwas6906
s e t . seed (6 9 0 6)

Scenar i oA
Class<−" TwoClass_ Scenar io _OM_A"

trans1<−matrix (c (0 . 0 5 , 0 . 0 5 , 0 . 0 5 , 0 . 8 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 8 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 8 5 , 0 . 0 5 , 0 . 0 5 ,
0 . 8 5 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5) , 4 , 4 , byrow=TRUE)

282

B. R-Code for Simulation Studies

t rans2<−matrix (c (0 . 7 0 , 0 . 2 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 7 , 0 . 2 0 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 7 , 0 . 2 0 ,
0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 9 7) , 4 , 4 , byrow=TRUE)

D i s t a n c e b e t w e e n t w o m t r a n s i t i o n m a t r i c e s
sum(abs (t rans1−t rans2))
sum ((t rans1−t rans2) ^2)

for (i in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {

myTitle<−paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")
c a t (paste ("\n\n"))
print (myTitle)

Sim1<−sim_OM2(t rans1=trans1 ,
t rans2=trans2 ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
len=k ,
s i z e =i ,
MySamples=1000)

save (Sim1 , f i l e =paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" "))
}
}

#########################
T h r e e l a t e n t g r o u p s
#########################

###

283

B. R-Code for Simulation Studies

g e t s i z e s i f s i z e c a n n o t b e d e v i d e d b y t h r e e
###

d i f f 3<−function (s i z e) {
s i z e f<−f l o o r (s i z e / 3)
i f (s i z e%%3==0){
a<−s i z e f
b<−s i z e f
c<−s i z e f
} e lse i f (s i z e%%3==1){
a<−s i z e f +1
b<−s i z e f
c<−s i z e f
} e lse {
a<−s i z e f +1
b<−s i z e f +1
c<−s i z e f
}
out<−c (a , b , c)
}

sim_OM3<−function (t rans1=matrix (c (1 . 0 0 , 0 . 0 0 , 0 . 0 0 , 0 . 0 0 ,
0 . 2 0 , 0 . 7 0 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 2 5 , 0 . 6 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 2 5 , 0 . 6 5) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
t rans2=matrix (c (0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 0 0 , 0 . 0 0 , 1 . 0 0 , 0 . 0 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
t rans3=matrix (c (0 . 7 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 7 , 0 , 0 . 3 , 0 ,
0 . 7 , 0 . 3 , 0 , 0 ,
0 , 0 , 0 , 1) , 4 , 4 , byrow=TRUE) ,
i n i t i a l 3 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
len =30 ,
s i z e =30 ,
MySamples =10) {

284

B. R-Code for Simulation Studies

options (warn=−1)

require (seqHMM)
require (TraMineR)
require (DySeq)
require (psych)
require (c l u s t e r)
require (fpc)

pb<−t x t P r o g r e s s B a r (min=0 ,max=MySamples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")

S i l 2<−numeric (MySamples) ; S i l 3<−numeric (MySamples)
S i l 2 _min<−numeric (MySamples) ; S i l 3 _min<−numeric (MySamples)
wss1<−numeric (MySamples) ; wss2<−numeric (MySamples)
wss3<−numeric (MySamples) ; wss4<−numeric (MySamples)
wss5<−numeric (MySamples) ; Trans1 _11<−numeric (MySamples)
Trans1 _12<−numeric (MySamples) ; Trans1 _13<−numeric (MySamples)
Trans1 _14<−numeric (MySamples) ; Trans1 _21<−numeric (MySamples)
Trans1 _22<−numeric (MySamples) ; Trans1 _23<−numeric (MySamples)
Trans1 _24<−numeric (MySamples) ; Trans1 _31<−numeric (MySamples)
Trans1 _32<−numeric (MySamples) ; Trans1 _33<−numeric (MySamples)
Trans1 _34<−numeric (MySamples) ; Trans1 _41<−numeric (MySamples)
Trans1 _42<−numeric (MySamples) ; Trans1 _43<−numeric (MySamples)
Trans1 _44<−numeric (MySamples) ; Trans2 _11<−numeric (MySamples)
Trans2 _12<−numeric (MySamples) ; Trans2 _13<−numeric (MySamples)
Trans2 _14<−numeric (MySamples) ; Trans2 _21<−numeric (MySamples)
Trans2 _22<−numeric (MySamples) ; Trans2 _23<−numeric (MySamples)
Trans2 _24<−numeric (MySamples) ; Trans2 _31<−numeric (MySamples)
Trans2 _32<−numeric (MySamples) ; Trans2 _33<−numeric (MySamples)
Trans2 _34<−numeric (MySamples) ; Trans2 _41<−numeric (MySamples)
Trans2 _42<−numeric (MySamples) ; Trans2 _43<−numeric (MySamples)
Trans2 _44<−numeric (MySamples) ; Trans3 _11<−numeric (MySamples)
Trans3 _12<−numeric (MySamples) ; Trans3 _13<−numeric (MySamples)
Trans3 _14<−numeric (MySamples) ; Trans3 _21<−numeric (MySamples)
Trans3 _22<−numeric (MySamples) ; Trans3 _23<−numeric (MySamples)
Trans3 _24<−numeric (MySamples) ; Trans3 _31<−numeric (MySamples)
Trans3 _32<−numeric (MySamples) ; Trans3 _33<−numeric (MySamples)

285

B. R-Code for Simulation Studies

Trans3 _34<−numeric (MySamples) ; Trans3 _41<−numeric (MySamples)
Trans3 _42<−numeric (MySamples) ; Trans3 _43<−numeric (MySamples)
Trans3 _44<−numeric (MySamples) ; c l u s t e r _ order<−numeric (MySamples)
Kappa<−numeric (MySamples)
c o r r e c t _ c l a s s<−numeric (MySamples)
t rue _ t rans1<−t rans1 ; t rue _ t rans2<−t rans2
true _ t rans3<−t rans3 ; s i z e 3<−d i f f 3 (s i z e)
for (k in 1 : MySamples
) {
x<−simSeqSample (t rue _ t rans1 , i n i t i a l = i n i t i a l , len ,N= s i z e 3 [1])
x [1 , 1]<−1 ; x [2 , 1]<−2
x [3 , 1]<−3 ; x [4 , 1]<−4
y<−simSeqSample (t rue _ t rans2 , i n i t i a l = i n i t i a l 2 , len ,N= s i z e 3 [2])
w<−simSeqSample (t rue _ t rans3 , i n i t i a l = i n i t i a l 3 , len ,N= s i z e 3 [3])
x<−rbind (x , y ,w)
suppressMessages (my_seq<−seqdef (x , s t a r t =1 ,
alphabet=c (1 , 2 , 3 , 4) , l ab el s=c ("noSC /DC" , " SConly " , " DConly " , "SC+DC")))
Nu mb e ro fC l us t e r s
submat<−suppressMessages (seqsubm (my_seq , method="TRATE"))
d i s t . oml<−suppressMessages (s e q d i s t (my_seq , method="OM" ,sm=submat))
wss<−(nrow (d i s t . oml)−1)∗sum(apply (x , 2 , var))
for (i in 2 : 5) wss [i]<−sum(kmeans (x , c e n t e r s = i) $ withinss)
c lusterward<−agnes (d i s t . oml , d i s s =TRUE, method=" ward ") # t h e a l g o r i t h m
c l u s t e r<−cut ree (clusterward , k=3)

#wss#

wss1 [k]<−wss [1] ; wss2 [k]<−wss [2]
wss3 [k]<−wss [3] ; wss4 [k]<−wss [4]
wss5 [k]<−wss [5]

###2 C l a s s e s : S i l

S i l 2 [k]<−pam(d i s t . oml , 2) $ s i l i n f o $avg . width
S i l 2 _min [k]<−min (pam(d i s t . oml , 2) $ s i l i n f o $ c l u s . avg . width)

###3 C l a s s e s : S i l

S i l 3 [k]<−pam(d i s t . oml , 3) $ s i l i n f o $avg . width
S i l 3 _min [k]<−min (pam(d i s t . oml , 3) $ s i l i n f o $ c l u s . avg . width)

286

B. R-Code for Simulation Studies

###3 C l a s s e s

t rans1<−suppressMessages (s e q t r a t e (my_seq [c l u s t e r = = 1 ,]))
t rans2<−suppressMessages (s e q t r a t e (my_seq [c l u s t e r = = 2 ,]))
t rans3<−suppressMessages (s e q t r a t e (my_seq [c l u s t e r = = 3 ,]))

boundmatrix<−rbind (as . vector (t rans1) , as . vector (t rans2) , as . vector (t rans3))

ABC<−sum ((rbind (as . vector (t rue _ t rans1) , as . vector (t rue _ t rans2) ,
as . vector (t rue _ t rans3))−boundmatrix)^ 2)
ACB<−sum ((rbind (as . vector (t rue _ t rans1) , as . vector (t rue _ t rans3) ,
as . vector (t rue _ t rans2))−boundmatrix)^ 2)
BAC<−sum ((rbind (as . vector (t rue _ t rans2) , as . vector (t rue _ t rans1) ,
as . vector (t rue _ t rans3))−boundmatrix)^ 2)
BCA<−sum ((rbind (as . vector (t rue _ t rans2) , as . vector (t rue _ t rans3) ,
as . vector (t rue _ t rans1))−boundmatrix)^ 2)
CAB<−sum ((rbind (as . vector (t rue _ t rans3) , as . vector (t rue _ t rans1) ,
as . vector (t rue _ t rans2))−boundmatrix)^ 2)
CBA<−sum ((rbind (as . vector (t rue _ t rans3) , as . vector (t rue _ t rans2) ,
as . vector (t rue _ t rans1))−boundmatrix)^ 2)

f a l l<−c (ABC,ACB,BAC,BCA,CAB,CBA)
myorder<−which (f a l l ==min (f a l l))

c l u s t e r _ order [k]<−myorder

post _ c l a s s<−c l u s t e r
t rue _ c l a s s<−c (rep (1 , s i z e 3 [1]) , rep (2 , s i z e 3 [2]) , rep (3 , s i z e 3 [3]))

i f (myorder ==1){
Order :ABC
Trans1 _ 11[k]<−t rans1 [1 , 1] ; Trans1 _ 12[k]<−t rans1 [1 , 2] ; Trans1 _ 13[k]<−t rans1 [1 , 3]
Trans1 _ 14[k]<−t rans1 [1 , 4]
Trans1 _ 21[k]<−t rans1 [2 , 1] ; Trans1 _ 22[k]<−t rans1 [2 , 2] ; Trans1 _ 23[k]<−t rans1 [2 , 3]
Trans1 _ 24[k]<−t rans1 [2 , 4]
Trans1 _ 31[k]<−t rans1 [3 , 1] ; Trans1 _ 32[k]<−t rans1 [3 , 2] ; Trans1 _ 33[k]<−t rans1 [3 , 3]
Trans1 _ 34[k]<−t rans1 [3 , 4]
Trans1 _ 41[k]<−t rans1 [4 , 1] ; Trans1 _ 42[k]<−t rans1 [4 , 2] ; Trans1 _ 43[k]<−t rans1 [4 , 3]
Trans1 _ 44[k]<−t rans1 [4 , 4]

287

B. R-Code for Simulation Studies

Trans2 _ 11[k]<−t rans2 [1 , 1] ; Trans2 _ 12[k]<−t rans2 [1 , 2] ; Trans2 _ 13[k]<−t rans2 [1 , 3]
Trans2 _ 14[k]<−t rans2 [1 , 4]
Trans2 _ 21[k]<−t rans2 [2 , 1] ; Trans2 _ 22[k]<−t rans2 [2 , 2] ; Trans2 _ 23[k]<−t rans2 [2 , 3]
Trans2 _ 24[k]<−t rans2 [2 , 4]
Trans2 _ 31[k]<−t rans2 [3 , 1] ; Trans2 _ 32[k]<−t rans2 [3 , 2] ; Trans2 _ 33[k]<−t rans2 [3 , 3]
Trans2 _ 34[k]<−t rans2 [3 , 4] ; Trans2 _ 41[k]<−t rans2 [4 , 1] ; Trans2 _ 42[k]<−t rans2 [4 , 2]
Trans2 _ 43[k]<−t rans2 [4 , 3] ; Trans2 _ 44[k]<−t rans2 [4 , 4] ; Trans3 _ 11[k]<−t rans3 [1 , 1]
Trans3 _ 12[k]<−t rans3 [1 , 2] ; Trans3 _ 13[k]<−t rans3 [1 , 3]
Trans3 _ 14[k]<−t rans3 [1 , 4] ; Trans3 _ 24[k]<−t rans3 [2 , 4]
Trans3 _ 21[k]<−t rans3 [2 , 1] ; Trans3 _ 22[k]<−t rans3 [2 , 2] ; Trans3 _ 23[k]<−t rans3 [2 , 3]
Trans3 _ 24[k]<−t rans3 [2 , 4]
Trans3 _ 31[k]<−t rans3 [3 , 1] ; Trans3 _ 32[k]<−t rans3 [3 , 2] ; Trans3 _ 33[k]<−t rans3 [3 , 3]
Trans3 _ 34[k]<−t rans3 [3 , 4] ; Trans3 _ 44[k]<−t rans3 [4 , 4] ; Trans3 _ 24[k]<−t rans3 [2 , 4]
Trans3 _ 41[k]<−t rans3 [4 , 1] ; Trans3 _ 42[k]<−t rans3 [4 , 2] ; Trans3 _ 43[k]<−t rans3 [4 , 3]
Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l u s t e r ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l u s t e r ==true _ c l a s s)

} e lse i f (myorder ==2){
Order :ACB
Trans1 _ 11[k]<−t rans1 [1 , 1] ; Trans1 _ 12[k]<−t rans1 [1 , 2] ; Trans1 _ 13[k]<−t rans1 [1 , 3]
Trans1 _ 14[k]<−t rans1 [1 , 4] ; Trans1 _ 21[k]<−t rans1 [2 , 1] ; Trans1 _ 22[k]<−t rans1 [2 , 2]
Trans1 _ 23[k]<−t rans1 [2 , 3] ; Trans1 _ 24[k]<−t rans1 [2 , 4] ; Trans1 _ 31[k]<−t rans1 [3 , 1]
Trans1 _ 32[k]<−t rans1 [3 , 2] ; Trans1 _ 33[k]<−t rans1 [3 , 3] ; Trans1 _ 34[k]<−t rans1 [3 , 4]
Trans1 _ 41[k]<−t rans1 [4 , 1] ; Trans1 _ 42[k]<−t rans1 [4 , 2] ; Trans1 _ 43[k]<−t rans1 [4 , 3]
Trans1 _ 44[k]<−t rans1 [4 , 4] ; Trans2 _ 11[k]<−t rans3 [1 , 1] ; Trans2 _ 12[k]<−t rans3 [1 , 2]
Trans2 _ 13[k]<−t rans3 [1 , 3] ; Trans2 _ 14[k]<−t rans3 [1 , 4] ; Trans2 _ 21[k]<−t rans3 [2 , 1]
Trans2 _ 22[k]<−t rans3 [2 , 2] ; Trans2 _ 23[k]<−t rans3 [2 , 3] ; Trans2 _ 24[k]<−t rans3 [2 , 4]
Trans2 _ 31[k]<−t rans3 [3 , 1] ; Trans2 _ 32[k]<−t rans3 [3 , 2] ; Trans2 _ 33[k]<−t rans3 [3 , 3]
Trans2 _ 34[k]<−t rans3 [3 , 4] ; Trans2 _ 41[k]<−t rans3 [4 , 1] ; Trans2 _ 42[k]<−t rans3 [4 , 2]
Trans2 _ 43[k]<−t rans3 [4 , 3] ; Trans2 _ 44[k]<−t rans3 [4 , 4] ; Trans3 _ 11[k]<−t rans2 [1 , 1]
Trans3 _ 12[k]<−t rans2 [1 , 2] ; Trans3 _ 13[k]<−t rans2 [1 , 3] ; Trans3 _ 14[k]<−t rans2 [1 , 4]
Trans3 _ 21[k]<−t rans2 [2 , 1] ; Trans3 _ 22[k]<−t rans2 [2 , 2] ; Trans3 _ 23[k]<−t rans2 [2 , 3]
Trans3 _ 24[k]<−t rans2 [2 , 4] ; Trans3 _ 31[k]<−t rans2 [3 , 1] ; Trans3 _ 32[k]<−t rans2 [3 , 2]
Trans3 _ 33[k]<−t rans2 [3 , 3] ; Trans3 _ 34[k]<−t rans2 [3 , 4] ; Trans3 _ 41[k]<−t rans2 [4 , 1]
Trans3 _ 42[k]<−t rans2 [4 , 2] ; Trans3 _ 43[k]<−t rans2 [4 , 3] ; Trans3 _ 44[k]<−t rans2 [4 , 4]

c l a s s i<−numeric (s i z e)
c l a s s i [c l u s t e r ==1]<−1

288

B. R-Code for Simulation Studies

c l a s s i [c l u s t e r ==2]<−3
c l a s s i [c l u s t e r ==3]<−2

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

} e lse i f (myorder ==3){
Order :BAC
Trans2 _ 11[k]<−t rans1 [1 , 1] ; Trans2 _ 12[k]<−t rans1 [1 , 2] ; Trans2 _ 13[k]<−t rans1 [1 , 3]
Trans2 _ 14[k]<−t rans1 [1 , 4] ; Trans2 _ 21[k]<−t rans1 [2 , 1] ; Trans2 _ 22[k]<−t rans1 [2 , 2]
Trans2 _ 23[k]<−t rans1 [2 , 3] ; Trans2 _ 24[k]<−t rans1 [2 , 4] ; Trans2 _ 31[k]<−t rans1 [3 , 1]
Trans2 _ 32[k]<−t rans1 [3 , 2] ; Trans2 _ 33[k]<−t rans1 [3 , 3] ; Trans2 _ 34[k]<−t rans1 [3 , 4]
Trans2 _ 41[k]<−t rans1 [4 , 1] ; Trans2 _ 42[k]<−t rans1 [4 , 2] ; Trans2 _ 43[k]<−t rans1 [4 , 3]
Trans2 _ 44[k]<−t rans1 [4 , 4] ; Trans1 _ 11[k]<−t rans2 [1 , 1] ; Trans1 _ 12[k]<−t rans2 [1 , 2]
Trans1 _ 13[k]<−t rans2 [1 , 3] ; Trans1 _ 14[k]<−t rans2 [1 , 4] ; Trans1 _ 21[k]<−t rans2 [2 , 1]
Trans1 _ 22[k]<−t rans2 [2 , 2] ; Trans1 _ 23[k]<−t rans2 [2 , 3] ; Trans1 _ 24[k]<−t rans2 [2 , 4]
Trans1 _ 31[k]<−t rans2 [3 , 1] ; Trans1 _ 32[k]<−t rans2 [3 , 2] ; Trans1 _ 33[k]<−t rans2 [3 , 3]
Trans1 _ 34[k]<−t rans2 [3 , 4] ; Trans1 _ 41[k]<−t rans2 [4 , 1] ; Trans1 _ 42[k]<−t rans2 [4 , 2]
Trans1 _ 43[k]<−t rans2 [4 , 3] ; Trans1 _ 44[k]<−t rans2 [4 , 4] ; Trans3 _ 11[k]<−t rans3 [1 , 1]
Trans3 _ 12[k]<−t rans3 [1 , 2] ; Trans3 _ 13[k]<−t rans3 [1 , 3] ; Trans3 _ 14[k]<−t rans3 [1 , 4]
Trans3 _ 21[k]<−t rans3 [2 , 1] ; Trans3 _ 22[k]<−t rans3 [2 , 2] ; Trans3 _ 23[k]<−t rans3 [2 , 3]
Trans3 _ 24[k]<−t rans3 [2 , 4] ; Trans3 _ 31[k]<−t rans3 [3 , 1] ; Trans3 _ 32[k]<−t rans3 [3 , 2]
Trans3 _ 33[k]<−t rans3 [3 , 3] ; Trans3 _ 34[k]<−t rans3 [3 , 4] ; Trans3 _ 41[k]<−t rans3 [4 , 1]
Trans3 _ 42[k]<−t rans3 [4 , 2] ; Trans3 _ 43[k]<−t rans3 [4 , 3] ; Trans3 _ 44[k]<−t rans3 [4 , 4]

c l a s s i<−numeric (s i z e)
c l a s s i [c l u s t e r ==1]<−2
c l a s s i [c l u s t e r ==2]<−1
c l a s s i [c l u s t e r ==3]<−3

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

} e lse i f (myorder ==4){
Order :BCA

Trans1 _ 11[k]<−t rans2 [1 , 1] ; Trans1 _ 12[k]<−t rans2 [1 , 2] ; Trans1 _ 13[k]<−t rans2 [1 , 3]

289

B. R-Code for Simulation Studies

Trans1 _ 14[k]<−t rans2 [1 , 4] ; Trans1 _ 21[k]<−t rans2 [2 , 1] ; Trans1 _ 22[k]<−t rans2 [2 , 2]
Trans1 _ 23[k]<−t rans2 [2 , 3] ; Trans1 _ 24[k]<−t rans2 [2 , 4] ; Trans1 _ 31[k]<−t rans2 [3 , 1]
Trans1 _ 32[k]<−t rans2 [3 , 2] ; Trans1 _ 33[k]<−t rans2 [3 , 3] ; Trans1 _ 34[k]<−t rans2 [3 , 4]
Trans1 _ 41[k]<−t rans2 [4 , 1] ; Trans1 _ 42[k]<−t rans2 [4 , 2] ; Trans1 _ 43[k]<−t rans2 [4 , 3]
Trans1 _ 44[k]<−t rans2 [4 , 4] ; Trans2 _ 11[k]<−t rans3 [1 , 1] ; Trans2 _ 12[k]<−t rans3 [1 , 2]
Trans2 _ 13[k]<−t rans3 [1 , 3] ; Trans2 _ 14[k]<−t rans3 [1 , 4] ; Trans2 _ 21[k]<−t rans3 [2 , 1]
Trans2 _ 22[k]<−t rans3 [2 , 2] ; Trans2 _ 23[k]<−t rans3 [2 , 3] ; Trans2 _ 24[k]<−t rans3 [2 , 4]
Trans2 _ 31[k]<−t rans3 [3 , 1] ; Trans2 _ 32[k]<−t rans3 [3 , 2] ; Trans2 _ 33[k]<−t rans3 [3 , 3]
Trans2 _ 34[k]<−t rans3 [3 , 4] ; Trans2 _ 41[k]<−t rans3 [4 , 1] ; Trans2 _ 42[k]<−t rans3 [4 , 2]
Trans2 _ 43[k]<−t rans3 [4 , 3] ; Trans2 _ 44[k]<−t rans3 [4 , 4] ; Trans3 _ 11[k]<−t rans1 [1 , 1]
Trans3 _ 12[k]<−t rans1 [1 , 2] ; Trans3 _ 13[k]<−t rans1 [1 , 3] ; Trans3 _ 14[k]<−t rans1 [1 , 4]
Trans3 _ 21[k]<−t rans1 [2 , 1] ; Trans3 _ 22[k]<−t rans1 [2 , 2] ; Trans3 _ 23[k]<−t rans1 [2 , 3]
Trans3 _ 24[k]<−t rans1 [2 , 4] ; Trans3 _ 31[k]<−t rans1 [3 , 1] ; Trans3 _ 32[k]<−t rans1 [3 , 2]
Trans3 _ 33[k]<−t rans1 [3 , 3] ; Trans3 _ 34[k]<−t rans1 [3 , 4] ; Trans3 _ 41[k]<−t rans1 [4 , 1]
Trans3 _ 42[k]<−t rans1 [4 , 2] ; Trans3 _ 43[k]<−t rans1 [4 , 3] ; Trans3 _ 44[k]<−t rans1 [4 , 4]
c l a s s i<−numeric (s i z e)
c l a s s i [c l u s t e r ==1]<−2
c l a s s i [c l u s t e r ==2]<−3
c l a s s i [c l u s t e r ==3]<−1

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i
, t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

} e lse i f (myorder ==5){
Order :CAB
Trans1 _ 11[k]<−t rans3 [1 , 1] ; Trans1 _ 12[k]<−t rans3 [1 , 2] ; Trans1 _ 13[k]<−t rans3 [1 , 3]
Trans1 _ 14[k]<−t rans3 [1 , 4] ; Trans1 _ 21[k]<−t rans3 [2 , 1] ; Trans1 _ 22[k]<−t rans3 [2 , 2]
Trans1 _ 23[k]<−t rans3 [2 , 3] ; Trans1 _ 24[k]<−t rans3 [2 , 4] ; Trans1 _ 31[k]<−t rans3 [3 , 1]
Trans1 _ 32[k]<−t rans3 [3 , 2] ; Trans1 _ 33[k]<−t rans3 [3 , 3] ; Trans1 _ 34[k]<−t rans3 [3 , 4]
Trans1 _ 41[k]<−t rans3 [4 , 1] ; Trans1 _ 42[k]<−t rans3 [4 , 2] ; Trans1 _ 43[k]<−t rans3 [4 , 3]
Trans1 _ 44[k]<−t rans3 [4 , 4] ; Trans2 _ 11[k]<−t rans1 [1 , 1] ; Trans2 _ 12[k]<−t rans1 [1 , 2]
Trans2 _ 13[k]<−t rans1 [1 , 3] ; Trans2 _ 14[k]<−t rans1 [1 , 4] ; Trans2 _ 21[k]<−t rans1 [2 , 1]
Trans2 _ 22[k]<−t rans1 [2 , 2] ; Trans2 _ 23[k]<−t rans1 [2 , 3] ; Trans2 _ 24[k]<−t rans1 [2 , 4]
Trans2 _ 31[k]<−t rans1 [3 , 1] ; Trans2 _ 32[k]<−t rans1 [3 , 2] ; Trans2 _ 33[k]<−t rans1 [3 , 3]
Trans2 _ 34[k]<−t rans1 [3 , 4] ; Trans2 _ 41[k]<−t rans1 [4 , 1] ; Trans2 _ 42[k]<−t rans1 [4 , 2]
Trans2 _ 43[k]<−t rans1 [4 , 3] ; Trans2 _ 44[k]<−t rans1 [4 , 4] ; Trans3 _ 11[k]<−t rans2 [1 , 1]
Trans3 _ 12[k]<−t rans2 [1 , 2] ; Trans3 _ 13[k]<−t rans2 [1 , 3] ; Trans3 _ 14[k]<−t rans2 [1 , 4]
Trans3 _ 21[k]<−t rans2 [2 , 1] ; Trans3 _ 22[k]<−t rans2 [2 , 2] ; Trans3 _ 23[k]<−t rans2 [2 , 3]
Trans3 _ 24[k]<−t rans2 [2 , 4] ; Trans3 _ 31[k]<−t rans2 [3 , 1] ; Trans3 _ 32[k]<−t rans2 [3 , 2]

290

B. R-Code for Simulation Studies

Trans3 _ 33[k]<−t rans2 [3 , 3] ; Trans3 _ 34[k]<−t rans2 [3 , 4] ; Trans3 _ 41[k]<−t rans2 [4 , 1]
Trans3 _ 42[k]<−t rans2 [4 , 2] ; Trans3 _ 43[k]<−t rans2 [4 , 3] ; Trans3 _ 44[k]<−t rans2 [4 , 4]
c l a s s i<−numeric (s i z e)
c l a s s i [c l u s t e r ==1]<−3
c l a s s i [c l u s t e r ==2]<−1
c l a s s i [c l u s t e r ==3]<−2

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))
c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

} e lse {
Order :CBA

Trans1 _ 11[k]<−t rans3 [1 , 1] ; Trans1 _ 12[k]<−t rans3 [1 , 2] ; Trans1 _ 13[k]<−t rans3 [1 , 3]
Trans1 _ 14[k]<−t rans3 [1 , 4] ; Trans1 _ 21[k]<−t rans3 [2 , 1] ; Trans1 _ 22[k]<−t rans3 [2 , 2]
Trans1 _ 23[k]<−t rans3 [2 , 3] ; Trans1 _ 24[k]<−t rans3 [2 , 4] ; Trans1 _ 31[k]<−t rans3 [3 , 1]
Trans1 _ 32[k]<−t rans3 [3 , 2] ; Trans1 _ 33[k]<−t rans3 [3 , 3] ; Trans1 _ 34[k]<−t rans3 [3 , 4]
Trans1 _ 41[k]<−t rans3 [4 , 1] ; Trans1 _ 42[k]<−t rans3 [4 , 2] ; Trans1 _ 43[k]<−t rans3 [4 , 3]
Trans1 _ 44[k]<−t rans3 [4 , 4] ; Trans2 _ 11[k]<−t rans2 [1 , 1] ; Trans2 _ 12[k]<−t rans2 [1 , 2]
Trans2 _ 13[k]<−t rans2 [1 , 3] ; Trans2 _ 14[k]<−t rans2 [1 , 4] ; Trans2 _ 21[k]<−t rans2 [2 , 1]
Trans2 _ 22[k]<−t rans2 [2 , 2] ; Trans2 _ 23[k]<−t rans2 [2 , 3] ; Trans2 _ 24[k]<−t rans2 [2 , 4]
Trans2 _ 31[k]<−t rans2 [3 , 1] ; Trans2 _ 32[k]<−t rans2 [3 , 2] ; Trans2 _ 33[k]<−t rans2 [3 , 3]
Trans2 _ 34[k]<−t rans2 [3 , 4] ; Trans2 _ 41[k]<−t rans2 [4 , 1] ; Trans2 _ 42[k]<−t rans2 [4 , 2]
Trans2 _ 43[k]<−t rans2 [4 , 3] ; Trans2 _ 44[k]<−t rans2 [4 , 4] ; Trans3 _ 11[k]<−t rans1 [1 , 1]
Trans3 _ 12[k]<−t rans1 [1 , 2] ; Trans3 _ 13[k]<−t rans1 [1 , 3] ; Trans3 _ 14[k]<−t rans1 [1 , 4]
Trans3 _ 21[k]<−t rans1 [2 , 1] ; Trans3 _ 22[k]<−t rans1 [2 , 2] ; Trans3 _ 23[k]<−t rans1 [2 , 3]
Trans3 _ 24[k]<−t rans1 [2 , 4] ; Trans3 _ 31[k]<−t rans1 [3 , 1] ; Trans3 _ 32[k]<−t rans1 [3 , 2]
Trans3 _ 33[k]<−t rans1 [3 , 3] ; Trans3 _ 34[k]<−t rans1 [3 , 4] ; Trans3 _ 41[k]<−t rans1 [4 , 1]
Trans3 _ 42[k]<−t rans1 [4 , 2] ; Trans3 _ 43[k]<−t rans1 [4 , 3] ; Trans3 _ 44[k]<−t rans1 [4 , 4]

c l a s s i<−numeric (s i z e)
c l a s s i [c l u s t e r ==1]<−3
c l a s s i [c l u s t e r ==2]<−2
c l a s s i [c l u s t e r ==3]<−1

Kappa [k]<−suppressMessages (round (cohen . kappa (data . frame (c l a s s i ,
t rue _ c l a s s)) $ conf id [3] , 2))

291

B. R-Code for Simulation Studies

c o r r e c t _ c l a s s [k]<−mean (c l a s s i ==true _ c l a s s)

}

se tTxtProgressBar (pb , k , t i t l e =NULL, l a b e l =NULL)

}

options (warn=0)
out<−data . frame (S i l 2 , S i l 3 , S i l 2 _min , S i l 3 _min ,
wss1 , wss2 , wss3 , wss4 , wss5 ,
Trans1 _ 11 , Trans1 _ 12 , Trans1 _ 13 , Trans1 _ 14 ,
Trans1 _ 21 , Trans1 _ 22 , Trans1 _ 23 , Trans1 _ 24 ,
Trans1 _ 31 , Trans1 _ 32 , Trans1 _ 33 , Trans1 _ 34 ,
Trans1 _ 41 , Trans1 _ 42 , Trans1 _ 43 , Trans1 _ 44 ,
Trans2 _ 11 , Trans2 _ 12 , Trans2 _ 13 , Trans2 _ 14 ,
Trans2 _ 21 , Trans2 _ 22 , Trans2 _ 23 , Trans2 _ 24 ,
Trans2 _ 31 , Trans2 _ 32 , Trans2 _ 33 , Trans2 _ 34 ,
Trans2 _ 41 , Trans2 _ 42 , Trans2 _ 43 , Trans2 _ 44 ,
Trans3 _ 11 , Trans3 _ 12 , Trans3 _ 13 , Trans3 _ 14 ,
Trans3 _ 21 , Trans3 _ 22 , Trans3 _ 23 , Trans3 _ 24 ,
Trans3 _ 31 , Trans3 _ 32 , Trans3 _ 33 , Trans3 _ 34 ,
Trans3 _ 41 , Trans3 _ 42 , Trans3 _ 43 , Trans3 _ 44 ,
Kappa , c o r r e c t _ class , c l u s t e r _ order) }

#######################################
T e s t d e r S i n g e l C o n d i t i o n S i m u l a t i o n
#######################################

t e s t _ out<−sim_ Mixture _Markov3 (MySamples=10 , len =100 , s i z e =100)
t e s t _ out

292

B. R-Code for Simulation Studies

###############
S i m u l a t i o n
###############

Drawrandomseed
sample (1 : 1 0 0 0 0 , 1)
Seedwas4331
s e t . seed (9 2 8 2)

Scenar i oA

Class<−" ThreeClass _ Scenar io _OM_A"

trans1<−matrix (c (1 . 0 0 , 0 . 0 0 , 0 . 0 0 , 0 . 0 0 ,
0 . 2 0 , 0 . 7 0 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 2 5 , 0 . 6 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 2 5 , 0 . 6 5) , 4 , 4 , byrow=TRUE)

t rans2<−matrix (c (0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 0 0 , 0 . 0 0 , 1 . 0 0 , 0 . 0 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0) , 4 , 4 , byrow=TRUE)

t rans3=matrix (c (0 . 7 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 7 , 0 , 0 . 3 , 0 ,
0 . 7 , 0 . 3 , 0 , 0 ,
0 , 0 , 0 , 1) , 4 , 4 , byrow=TRUE)

D i s t a n c e b e t w e e n t w o m t r a n s i t i o n m a t r i c e s
sum(abs (t rans1−t rans2))
sum ((t rans1−t rans2)^ 2)

293

B. R-Code for Simulation Studies

for (i in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {
for (k in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0 , 1 0 0)) {

myTitle<−paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" ")
c a t (paste ("\n\n"))
print (myTitle)

Sim1<−sim_OM3(t rans1=trans1 ,
t rans2=trans2 ,
t rans3=trans3 ,
i n i t i a l 1 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
i n i t i a l 2 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
i n i t i a l 3 =c (. 2 5 , . 2 5 , . 2 5 , . 2 5) ,
len=k ,
s i z e =i ,
MySamples=1000)

save (Sim1 , f i l e =paste (Class , " _N" , i , " _ t " , k , " _Sim . R" , sep=" "))
}
}

###################
##SIMANOVA− l i k e ##
###################

Sim_Seq_ANOVA<−function (N, len , samples , i n i t i a l 1 ,
i n i t i a l 2 , i n i t i a l 3 , t rans1 , trans2 , t rans3) {

pb<−t x t P r o g r e s s B a r (min=0 ,max=samples , i n i t i a l =0 , char="=" ,
width=NA, t i t l e , l a b e l , s t y l e =3 , f i l e =" ")

d i f f 3<−function (s i z e) {
s i z e f<−f l o o r (s i z e / 3)
i f (s i z e%%3==0){
a<−s i z e f

294

B. R-Code for Simulation Studies

b<−s i z e f
c<−s i z e f
} e lse i f (s i z e%%3==1){
a<−s i z e f +1
b<−s i z e f
c<−s i z e f
} e lse {
a<−s i z e f +1
b<−s i z e f +1
c<−s i z e f
}
out<−c (a , b , c)
}

i f (! (i s . null (t rans3))) { s i z e 3<−d i f f 3 (N) }
e lse { s i z e 3<−c () ; s i z e 3 [1]<−c e i l i n g (N/ 2) ; s i z e 3 [2]<−f l o o r (s i z e 3 [1]) }

out<−rep (NA, samples)

for (i in 1 : samples) {

x<−simSeqSample (trans1 , i n i t i a l = i n i t i a l , len=len ,N= s i z e 3 [1])
y<−simSeqSample (trans2 , i n i t i a l = i n i t i a l , len=len ,N= s i z e 3 [2])
i f (! (i s . null (t rans3))) {w<−simSeqSample (trans3 ,
i n i t i a l = i n i t i a l , len=len ,N= s i z e 3 [3]) }

i f (! (i s . null (t rans3))) { x<−rbind (x , y ,w)
} e lse { x<−rbind (x , y) }

mvad . alphabet<−c (1 , 2 , 3 , 4)
mvad . l ab el s<−c (" 1 " , " 2 " , " 3 " , " 4 ")
mvad . scodes<−c (" 1 " , " 2 " , " 3 " , " 4 ")
suppressMessages (mvad . seq<−seqdef (x , 1 : len ,
alphabet=mvad . alphabet , s t a t e s =mvad . scodes ,
l ab el s=mvad . labels , x t s t e p =6))

295

B. R-Code for Simulation Studies

suppressMessages (submat<−seqsubm (mvad . seq , method="TRATE"))
suppressMessages (d i s t . om1<−s e q d i s t (mvad . seq , method="OM" , inde l =1 ,
sm=submat))

i f (! (i s . null (t rans3))) { c l u s<−c (rep (1 , s i z e 3 [1]) , rep (2 , s i z e 3 [2]) ,
rep (3 , s i z e 3 [3]))
} e lse { c l u s<−c (rep (1 , s i z e 3 [1]) , rep (2 , s i z e 3 [2])) }

r s q<− f u n c t i o n (c l u s , data , i n d i c e s) {
#d<−d a t a [i n d i c e s ,]
da<−d i s s a s s o c (d , group=c l u s , R=1)
out<−da $ s t a t $ t0 [1]
r e t u r n (out)
}

r e s u l t s<−b o o t (d a t a = d i s t . om1 , s t a t i s t i c =rsq ,
#R=1000 , c l u s = c l u s)

p r i n t (b o o t . c i (r e s u l t s , t y p e =" bca "))
da<−d i s s a s s o c (d i s t . om1, group=clus ,R=1000)

out [i]<−da$ s t a t $p . value [1]
se tTxtProgressBar (pb , i , t i t l e =NULL, l a b e l =NULL)
}
out
}

t rans1<−matrix (c (. 8 5 , 0 . 0 5 , 0 . 0 5 , 0 . 0 5 ,
0 . 2 0 , 0 . 7 0 , 0 . 0 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 2 5 , 0 . 6 5 , 0 . 0 5 ,
0 . 0 5 , 0 . 0 5 , 0 . 2 5 , 0 . 6 5) , 4 , 4 , byrow=TRUE)

t rans2<−matrix (c (0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0 ,
0 . 0 5 , 0 . 0 5 , . 8 5 , 0 . 0 5 ,

296

B. R-Code for Simulation Studies

0 . 1 0 , 0 . 0 5 , 0 . 0 5 , 0 . 8 0) , 4 , 4 , byrow=TRUE)

t rans3=matrix (c (0 . 7 , 0 . 1 , 0 . 1 , 0 . 1 ,
0 . 7 , 0 , 0 . 3 , 0 ,
0 . 7 , 0 . 3 , 0 , 0 ,
0 . 0 5 , 0 . 0 5 , 0 . 0 5 , . 8 5) , 4 , 4 , byrow=TRUE)

i n i t i a l<−c (. 2 5 , . 2 5 , . 2 5 , . 2 5)

len<−30
N<−30
samples<−100

Aout<−c ()
A<−c ()
z2<−0
for (k in c (4 , 5 , 6 , 7 , 8 , 9 , 1 0)) {
for (z in c (1 0 , 2 0 , 3 0 , 4 0 , 5 0)) {
z2<−z2+1
print (paste ("N" , z , " len " , k))
A<−Sim_Seq_ANOVA(N=z ,
len=k ,
samples =1000 ,
i n i t i a l 1 = i n i t i a l ,
i n i t i a l 2 = i n i t i a l ,
i n i t i a l 3 = i n i t i a l ,
t rans1=trans1 ,
t rans2=trans2 ,
t rans3=NULL)
Aout [z2]<−mean (A< 0 . 0 5)
}
}

Aout

297

C. The R-Package 'DySeq'

The R-Package DySeq can be obtained from CRAN by using the commandinstall.packages("DySeq").
However, this will always give the newest version of DySeq. Future development of the DySeq-
Package might alter results. The original code that was used for this monograph can be fount
on the following pages.

APIMtoTrans<−function (B0_ 1 , AE_ 1 , PE_ 1 , I n t _ 1 ,
B0_ 2 , AE_ 2 , PE_ 2 , I n t _ 2) {

C o e f f i c i e n t s o f t h e f i r s t p a r t n e r
B0_1 I n t e r c e p t
AE_1 Actor E f f e c t
PE_1 P a r t n e r E f f e c t
I n t _1 I n t e r a c t i o n

C o e f f i c i e n t s o f t h e s e c o n d p a r t n e r
B0_2 I n t e r c e p t
AE_2 Actor E f f e c t
PE_2 P a r t n e r E f f e c t
I n t _2 I n t e r a c t i o n

P r e p a r i n g empty mat r i x o b j e c t
myTrans<−matrix (NA, 4 , 4)

S t a t e 1 : −1 on b o t h v a r i a b l e s a t t−1
S t a t e 2 : −1 on b o t h t h e f i r s t p a r t n e r s v a r i a b l e a t t−1
S t a t e 3 : −1 on b o t h t h e s e c o n d p a r t n e r s v a r i a b l e a t t−1
S t a t e 4 : +1 on b o t h v a r i a b l e s a t t−1

F i r s t row :
odds1<−exp (B0_ 2) ∗exp (AE_ 2)^(−1)∗exp (PE_ 2)^(−1)∗exp (I n t _ 2) ^ (1)
prob1<−odds1 / (odds1 +1)
prob1 # p r o b a b i l i t y t o go from s t a t e 1 t o e i t h e r s t a t e 3 or 4
1−prob1 # p r o b a b i l i t y t o go from s t a t e 1 t o e i t h e r 1 or 2

298

C. The R-Package ’DySeq’

odds2<−exp (B0_ 1) ∗exp (AE_ 1)^(−1)∗exp (PE_ 1)^(−1)∗exp (I n t _ 1) ^ (1)
prob2<−odds2 / (odds2 +1)
prob2 # p r o b a b i l i t y t o go from s t a t e 1 t o e i t h e r s t a t e 2 or 4
1−prob2 # p r o b a b i l i t y t o go from s t a t e 1 t o e i t h e r 3 or 4

myTrans [1 , 1]<−(1−prob1) ∗(1−prob2)
myTrans [1 , 2]<−(1−prob1) ∗prob2
myTrans [1 , 3]<−prob1∗(1−prob2)
myTrans [1 , 4]<−prob1∗prob2

Second row :
odds1<−exp (B0_ 2) ∗exp (AE_ 2)^(−1)∗exp (PE_ 2) ^ (1) ∗exp (I n t _ 2)^(−1)
prob1<−odds1 / (odds1 +1)

odds2<−exp (B0_ 1) ∗exp (AE_ 1) ^ (1) ∗exp (PE_ 1)^(−1)∗exp (I n t _ 1)^(−1)
prob2<−odds2 / (odds2 +1)

myTrans [2 , 1]<−(1−prob1) ∗(1−prob2)
myTrans [2 , 2]<−(1−prob1) ∗prob2
myTrans [2 , 3]<−prob1∗(1−prob2)
myTrans [2 , 4]<−prob1∗prob2

Thi rd row :
odds1<−exp (B0_ 2) ∗exp (AE_ 2) ^ (1) ∗exp (PE_ 2)^(−1)∗exp (I n t _ 2)^(−1)
prob1<−odds1 / (odds1 +1)

odds2<−exp (B0_ 1) ∗exp (AE_ 1)^(−1)∗exp (PE_ 1) ^ (1) ∗exp (I n t _ 1)^(−1)
prob2<−odds2 / (odds2 +1)

myTrans [3 , 1]<−(1−prob1) ∗(1−prob2)
myTrans [3 , 2]<−(1−prob1) ∗prob2
myTrans [3 , 3]<−prob1∗(1−prob2)
myTrans [3 , 4]<−prob1∗prob2

Fourth row :
odds1<−exp (B0_ 2) ∗exp (AE_ 2) ^ (1) ∗exp (PE_ 2) ^ (1) ∗exp (I n t _ 2) ^ (1)
prob1<−odds1 / (odds1 +1)

odds2<−exp (B0_ 1) ∗exp (AE_ 1) ^ (1) ∗exp (PE_ 1) ^ (1) ∗exp (I n t _ 1) ^ (1)
prob2<−odds2 / (odds2 +1)

299

C. The R-Package ’DySeq’

myTrans [4 , 1]<−(1−prob1) ∗(1−prob2)
myTrans [4 , 2]<−(1−prob1) ∗prob2
myTrans [4 , 3]<−prob1∗(1−prob2)
myTrans [4 , 4]<−prob1∗prob2

return (myTrans)
}

Bas ic _Markov_ as _APIM<−function (x , f i r s t , second , boot =1000 ,
SimOut=FALSE , CPU=1 , sim=" ordinary " , p a r a l l e l = " no ") {

out<−c ()

MyBetas<−function (data , i n d i c e s) {
a<−StateExpand (data [indices ,] , f i r s t , second)
b<−suppressMessages (TraMineR : : seqdef (a [, f i r s t] ,

s t a r t = 1 ,
l ab el s = c ("0−0" , "1−0" , "0−1" , "1−1")))

z<−suppressMessages (TraMineR : : s e q t r a t e (b))
return (TransToAPIM (z))

}

r e s u l t s<−boot : : boot (data=x ,
s t a t i s t i c =MyBetas ,

R=boot ,
ncpus=CPU,
sim=sim)

Approximat ing t h e p−v a l u e s f o r c o e f f i c i e n t + s a v i n g e s t i m a t e

DC
I n t e r c e p t
out [1]<− r e s u l t s $ t 0 [1]
DC_b0_H0_ Dist<− r e s u l t s $ t [,1]−mean (r e s u l t s $ t [, 1]) #H0 D i s t r i b u t i o n
out [9]<−mean (DC_b0_H0_ Dist >abs (r e s u l t s $ t 0 [1]) |
DC_b0_H0_ Dist <(−abs (r e s u l t s $ t 0 [1])))

300

C. The R-Package ’DySeq’

Actor
out [2]<− r e s u l t s $ t 0 [2]
DC_Act_H0_ Dist<− r e s u l t s $ t [,2]−mean (r e s u l t s $ t [, 2]) # H0 D i s t r i b u t i o n
out [1 0]<−mean (DC_Act_H0_ Dist >abs (r e s u l t s $ t 0 [2]) |
DC_Act_H0_ Dist <(−abs (r e s u l t s $ t 0 [2])))

P a r t n e r
out [3]<− r e s u l t s $ t 0 [3]
DC_ Par_H0_ Dist<− r e s u l t s $ t [,3]−mean (r e s u l t s $ t [, 3]) # H0 D i s t r i b u t i o n
out [1 1]<−mean (DC_ Par_H0_ Dist >abs (r e s u l t s $ t 0 [3]) |
DC_ Par_H0_ Dist <(−abs (r e s u l t s $ t 0 [3])))

I n t e r a c t i o n
out [4]<− r e s u l t s $ t 0 [4]
DC_ I n t _H0_ Dist<− r e s u l t s $ t [,4]−mean (r e s u l t s $ t [, 4]) # H0 D i s t r i b u t i o n
out [1 2]<−mean (DC_ I n t _H0_ Dist >abs (r e s u l t s $ t 0 [4]) |
DC_ I n t _H0_ Dist <(−abs (r e s u l t s $ t 0 [4])))

SC
I n t e r c e p t
I n t e r c e p t
out [5]<− r e s u l t s $ t 0 [5]
SC_b0_H0_ Dist<− r e s u l t s $ t [,5]−mean (r e s u l t s $ t [, 5]) #H0 D i s t r i b u t i o n
out [1 3]<−mean (SC_b0_H0_ Dist >abs (r e s u l t s $ t 0 [5]) |
SC_b0_H0_ Dist <(−abs (r e s u l t s $ t 0 [5])))

Actor
out [6]<− r e s u l t s $ t 0 [6]
SC_Act_H0_ Dist<− r e s u l t s $ t [,6]−mean (r e s u l t s $ t [, 6]) # H0 D i s t r i b u t i o n
out [1 4]<−mean (SC_Act_H0_ Dist >abs (r e s u l t s $ t 0 [6]) |
SC_Act_H0_ Dist <(−abs (r e s u l t s $ t 0 [6])))

P a r t n e r
out [7]<− r e s u l t s $ t 0 [7]
SC_ Par_H0_ Dist<− r e s u l t s $ t [,7]−mean (r e s u l t s $ t [, 7]) # H0 D i s t r i b u t i o n
out [1 5]<−mean (SC_ Par _H0_ Dist >abs (r e s u l t s $ t 0 [7]) |
SC_ Par _H0_ Dist <(−abs (r e s u l t s $ t 0 [7])))

I n t e r a c t i o n

301

C. The R-Package ’DySeq’

out [8]<− r e s u l t s $ t 0 [8]
SC_ I n t _H0_ Dist<− r e s u l t s $ t [,8]−mean (r e s u l t s $ t [, 8]) # H0 D i s t r i b u t i o n
out [1 6]<−mean (SC_ I n t _H0_ Dist >abs (r e s u l t s $ t 0 [8]) |
SC_ I n t _H0_ Dist <(−abs (r e s u l t s $ t 0 [8])))

i f (SimOut) {

names (out)<−c ("DC_b0 " ,
"DC_ Actor " ,
"DC_ Partner " ,
"DC_ I n t e r " ,
"SC_b0 " ,
"SC_ Actor " ,
"SC_ Partner " ,
"SC_ I n t e r " ,
"P_DC_b0 " ,
"P_DC_ Actor " ,
"P_DC_ Partner " ,
"P_DC_ I n t e r " ,
"P_SC_b0 " ,
"P_SC_ Actor " ,
"P_SC_ Partner " ,
"P_SC_ I n t e r ")

output<−out

} e lse {

out2<−data . frame (rep (NA, 8) , rep (NA, 8))
rownames (out2)<−c (" F i r s t I n t e r c e p t " ,

" F i r s t Actor " ,
" F i r s t Partner " ,
" F i r s t I n t e r a c t i o n " ,
" Second I n t e r c e p t " ,
" Second Actor " ,
" Second Partner " ,
" Second I n t e r a c t i o n ")

colnames (out2)<−c (" Est imate " , "P_Value ")
out2 [1 : 4 , 1]<−out [1 : 4]

302

C. The R-Package ’DySeq’

out2 [5 : 8 , 1]<−out [5 : 8]
out2 [1 : 4 , 2]<−out [9 : 1 2]
out2 [5 : 8 , 2]<−out [1 3 : 1 6]
As_APIM<−out2
a<−StateExpand (x , f i r s t , second)
b<−suppressMessages (TraMineR : : seqdef (a [, f i r s t] ,

s t a r t = 1 ,
l ab el s = c ("0−0" , "1−0" , "0−1" , "1−1")))

T r a n s i t i o n _ Matrix<−suppressMessages (TraMineR : : s e q t r a t e (b))

rownames (T r a n s i t i o n _ Matrix)<−c (" [0 : 0 −>]" , " [1 : 0 −>]" ,
" [0 : 1 −>]" , " [1 : 1 −>]")
colnames (T r a n s i t i o n _ Matrix)<−c (" [−> 0 : 0] " , " [−> 1 : 0] " ,

" [−> 0 : 1] " , " [−> 1 : 1] ")

output<− l i s t (T r a n s i t i o n _ Matrix , As_APIM)
names (output)<−c (" T r a n s i t i o n Matrix " ,

" T r a n s i t i o n s converted as APIM")
}

return (output)
}

LastOccur<−function (x , y) {
i f (! (i s . matrix (x)| i s . data . frame (x)))
warning (" x must be a matrix or dataframe ! ")

output<−numeric (length (x [, 1]))

for (k in 1 : length (x [, 1])) {
for (i in 1 : length (x [1 ,])) {

i f (x [k , i]==y) { output [k]<− i }
}

}
return (output)

}

LogSeq<−function (x , d e l t a = 0 . 5 , subgroups=NA, s ingle . case=FALSE) {

303

C. The R-Package ’DySeq’

i f (c l a s s (x) [2] ! = " s t a t e . t r a n s ")
warning (" x should be a s t a t e . t r a n s o b j e c t . See Help (S ta teTrans) ! ")

lambdas<−matrix (NA, length (x) , 4) # Empty t a b l e f o r lambdas

p . values<−matrix (NA, length (x) , 4)

for (i in 1 : length (x)) {

x . long<−c (x [[i]] [1 : 4 , 1] , x [[i]] [1 : 4 , 2])

casearray<−array (x . long , c (2 , 2 , 2) ,
l i s t (c (" seq2 _1 " , " seq2 _0 ") , c (" seq1 _1 " , " seq2 _0 ") , c (" dep1 " , " dep0 ")))

case log<−MASS : : loglm (~1+2+3+1∗2∗ 3 , data =(casearray+ d e l t a) , f i t =F)

i f (s ingle . case==TRUE) {
case log . b1<−MASS : : loglm (~1+2+3+2∗ 3 ,1 ∗ 2 ,
data =(casearray+ d e l t a) , f i t =F)
case log . b2<−MASS : : loglm (~1+2+3+1∗3+2∗ 3 ,
data =(casearray+ d e l t a) , f i t =F)
case log . b3<−MASS : : loglm (~1+2+3+2∗3+1∗3+1∗ 2 ,
data =(casearray+ d e l t a) , f i t =F)

p1<− s t a t s : : anova (case log . b1 , case log . b3) [2 , 5]
p2<− s t a t s : : anova (case log . b2 , case log . b3) [2 , 5]
p3<−unclass (summary (case log . b3)) $ t e s t s [2 , 3]

p . values [i , 1]<−NA
p . values [i , 3]<−u n l i s t (p1) # I s t P a r t n e r d a h e r Col==3
p . values [i , 2]<−u n l i s t (p2) # I s t Actor d a h e r Col==2
p . values [i , 4]<−u n l i s t (p3)

}

b0<− s t a t s : : coef (case log) $ " 3 " [1]−
s t a t s : : coef (case log) $ " 3 " [2] #mean
b1<− s t a t s : : coef (case log) $ " 1 . 3 " [1 ,1]−
s t a t s : : coef (case log) $ " 1 . 3 " [1 , 2] # p a r t n e r

304

C. The R-Package ’DySeq’

b2<− s t a t s : : coef (case log) $ " 2 . 3 " [1 ,1]−
s t a t s : : coef (case log) $ " 2 . 3 " [1 , 2] # a c t o r
b3<− s t a t s : : coef (case log) $ " 1 . 2 . 3 " [1 ,1 ,1]−
s t a t s : : coef (case log) $ " 1 . 2 . 3 " [1 , 1 , 2] # i n t e r a c t i o n

lambdas [i , 1]<−u n l i s t (b0)
lambdas [i , 3]<−u n l i s t (b1) # I s t P a r t n e r d a h e r Col==3
lambdas [i , 2]<−u n l i s t (b2) # I s t Actor d a h e r Col==2
lambdas [i , 4]<−u n l i s t (b3)

}

output<− l i s t ()

output [[1]]<−lambdas
output [[2]]<−x
output [[3]]<−subgroups
output [[4]]<−p . values

a t t r (output , " f i r s t S e q ")<−a t t r (x , " f i r s t S e q ")

c l a s s (output) [1]<−" LogSeq "

return (output)

}

MLAP_ Trans<−function (x) {

part1<−x [x$which . Dep==1 ,]

names (part1)<−c (" which . seq " ,
"DV" ,
" Actor " ,
" Partner " ,
" ID ")

part2<−x [x$which . Dep==2 , c (1 , 2 , 4 , 3 , 5)]

305

C. The R-Package ’DySeq’

names (part2)<−c (" which . seq " ,
"DV" ,
" Actor " ,
" Partner " ,
" ID ")

out<−rbind (part1 , part2)
}

ML_ Trans<−function (data , f i r s t , second) {

my. s<−StateExpand (data , f i r s t , second)

myTrans1<−Sta teTrans (my. s)
myTrans2<−Sta teTrans (my. s , f i r s t =FALSE)

myl is t<− l i s t ()

for (k in 1 : length (myTrans1)) {

which . Dep<−c (0)
Dep<−c (0)
V1<−c (0)
V2<−c (0)

ms<−data . frame (which . Dep , Dep , V1 , V2)

names (ms)<−c (" which . Dep" , "Dep" , " Var1 a t t−1" , " Var2 a t t−1")

ms

x<−as . numeric (myTrans1 [[k]])

i f (x [1] ! = 0) {
for (i in 1 : x [1]) {

ms<−rbind (ms , c (1 , 1 , 1 , 1))
}

}

306

C. The R-Package ’DySeq’

i f (x [2] ! = 0) {
for (i in 1 : x [2]) {

ms<−rbind (ms , c (1 , 1 , 1 , 0))
}

}

i f (x [3] ! = 0) {
for (i in 1 : x [3]) {

ms<−rbind (ms , c (1 , 1 , 0 , 1))
}

}

i f (x [4] ! = 0) {
for (i in 1 : x [4]) {

ms<−rbind (ms , c (1 , 1 , 0 , 0))
}

}

i f (x [5] ! = 0) {
for (i in 1 : x [5]) {

ms<−rbind (ms , c (1 , 0 , 1 , 1))
}

}

i f (x [6] ! = 0) {
for (i in 1 : x [6]) {

ms<−rbind (ms , c (1 , 0 , 1 , 0))
}

}

i f (x [7] ! = 0) {
for (i in 1 : x [7]) {

ms<−rbind (ms , c (1 , 0 , 0 , 1))
}

}

307

C. The R-Package ’DySeq’

i f (x [8] ! = 0) {
for (i in 1 : x [8]) {

ms<−rbind (ms , c (1 , 0 , 0 , 0))
}

}

ms<−ms[−1 ,]

Zwei t e V a r i a b l e
x<−as . numeric (myTrans2 [[k]])

i f (x [1] ! = 0) {
for (i in 1 : x [1]) {

ms<−rbind (ms , c (2 , 1 , 1 , 1))
}

}

i f (x [2] ! = 0) {
for (i in 1 : x [2]) {

ms<−rbind (ms , c (2 , 1 , 1 , 0))
}

}

i f (x [3] ! = 0) {
for (i in 1 : x [3]) {

ms<−rbind (ms , c (2 , 1 , 0 , 1))
}

}

i f (x [4] ! = 0) {
for (i in 1 : x [4]) {

ms<−rbind (ms , c (2 , 1 , 0 , 0))
}

}

i f (x [5] ! = 0) {
for (i in 1 : x [5]) {

ms<−rbind (ms , c (2 , 0 , 1 , 1))

308

C. The R-Package ’DySeq’

}
}

i f (x [6] ! = 0) {
for (i in 1 : x [6]) {

ms<−rbind (ms , c (2 , 0 , 1 , 0))
}

}

i f (x [7] ! = 0) {
for (i in 1 : x [7]) {

ms<−rbind (ms , c (2 , 0 , 0 , 1))
}

}

i f (x [8] ! = 0) {
for (i in 1 : x [8]) {

ms<−rbind (ms , c (2 , 0 , 0 , 0))
}

}

rownames (ms)<−as . c h a r a c t e r (1 : length (ms [, 1]))

myl i s t [[k]]<−ms
}

which . Dep<−c (0)
Dep<−c (0)
V1<−c (0)
V2<−c (0)

ms<−data . frame (which . Dep , Dep , V1 , V2)

names (ms)<−c (" which . Dep" , "Dep" , " Var1 a t t−1" , " Var2 a t t−1")

for (i in 1 : length (myl i s t)) {
ms<−rbind (ms , myl i s t [[i]])

309

C. The R-Package ’DySeq’

}
ms<−ms[−1 ,]

ID<−c ()
for (i in 1 : length (myl i s t)) {

x<−rep (i , length (myl i s t [[i]] [, 1]))
ID<−c (ID , x)

}
out<−cbind (ms , ID)
rownames (out)<−as . c h a r a c t e r (1 : length (out [, 1]))
out

}

NonCumHaz<−function (x , t =NA, plot=FALSE) {
i f (! (any (c l a s s (x)== " s u r v f i t ")|| i s . numeric (x)))

{ warning (" x needs to be a numeric vec tor or a s u r v f i t−o b j e c t ! ") }

i f (i s . na (t) && plot && (! any (c l a s s (x)== " s u r v f i t ")))
{ warning (" p l o t can not be produced ,
because time r e f e r r e n c e i s missing ! ") }

i f (i s . numeric (x)) {
output<−numeric (length (x))
for (i in 1 : (length (x)−1)) output [i] <− x [1+ i]−x [i]

i f (plot) { o1<−plot (output [1 : (length (output)−1)]~
t [1 : (length (output)−1)] ,
x lab=" Time " , ylab=" Hazard " , type =" l ") }

}

i f (any (c l a s s (x)== " s u r v f i t ")) {
my. cumhaz<−x$cumhaz
my. cumhaz<−c (0 ,my. cumhaz)
my. hazard<−c ()
for (i in 1 : (length (my. cumhaz)−1)) my. hazard [i] <−
my. cumhaz[1+ i]−my. cumhaz [i]

i f (plot) { o1<−plot (my. hazard [1 : (length (my. hazard)−1)]~

310

C. The R-Package ’DySeq’

x$time [1 : (length (my. hazard)−1)] , x lab=" Time "
, ylab=" Hazard " , type =" l ") }

output<−my. hazard
}

return (output)
}

NumbOccur<−function (x , y , t =NA, prop=TRUE) {
i f (! (i s . matrix (x)|| i s . data . frame (x)))
warning (" x must be a matrix or dataframe ! ")
i f (! (i s . numeric (t)|| i s . na (t)))
warning (" t must be NA or a vec tor with
number elements equal number sequences ")
i f (! i s . l o g i c a l (prop)) warning (" Argument prob must be l o g i c a l ")

output<−numeric (length (x [, 1]))
index<−numeric (length (x [, 1]))

i f (i s . na (t [1])) {
index<−rep (length (x [1 ,]) , length (x [, 1]))
for (k in 1 : length (x [, 1])) {

output [k] <− sum(x [k ,])
}

}

i f (i s . numeric (t)) { index<−t }

for (k in 1 : length (x [, 1])) {
output [k]<−sum(as . numeric (x [k , 1 : index [k]]) , na . rm=TRUE)

}
i f (prop) output<−output / index

return (output)
}

StateExpand<−function (x , pos1 , pos2 , replace . na=FALSE) {
l 1<−length (pos1)
l 2<−length (pos2)

311

C. The R-Package ’DySeq’

i f (l 1 ! = l 2) warning (" Both sequences must have the same length ! ")
x1<−as . matrix (x [, pos1])
x2<−as . matrix (x [, pos2])
output<−matrix (data=NA, nrow=length (x [, 1]) , ncol= l 1)
output [x1==0 & x2 ==0]<−0
output [x1==1 & x2 ==0]<−1
output [x1==0 & x2 ==1]<−2
output [x1==1 & x2 ==1]<−3
i f (i s . numeric (replace . na)) output [i s . na (output)]<−replace . na
c l a s s (output) [2]<−" s t a t e . expand "
return (output)

}

S ta teTrans<−function (x , f i r s t =TRUE, dep . lab=c (" 1 " , " 0 ") ,
indep . lab=c ("1−1" , "1−0" , "0−1" , "0−0")) {

output<− l i s t ()
comb<−x

for (case in 1 : length (x [, 1])) {

y<−matrix (rep (0 , 8) , 4 , 2)
colnames (y)<−dep . lab
rownames (y)<−indep . lab

i f (f i r s t) {
for (i in 2 : length (comb [case ,])) {

i f (comb [case , (i −1)]==0 &
(comb [case , i]==1 |comb [case , i] = = 3)) y [4 , 1]<−y [4 , 1] + 1
i f (comb [case , (i −1)]==1 &
(comb [case , i]==1 |comb [case , i] = = 3)) y [2 , 1]<−y [2 , 1] + 1
i f (comb [case , (i −1)]==2 &
(comb [case , i]==1 |comb [case , i] = = 3)) y [3 , 1]<−y [3 , 1] + 1
i f (comb [case , (i −1)]==3 &
(comb [case , i]==1 |comb [case , i] = = 3)) y [1 , 1]<−y [1 , 1] + 1
i f (comb [case , (i −1)]==0 &

(comb [case , i]==0 |comb [case , i] = = 2)) y [4 , 2]<−y [4 , 2] + 1
i f (comb [case , (i −1)]==1 &

(comb [case , i]==0 |comb [case , i] = = 2)) y [2 , 2]<−y [2 , 2] + 1

312

C. The R-Package ’DySeq’

i f (comb [case , (i −1)]==2 &
(comb [case , i]==0 |comb [case , i] = = 2)) y [3 , 2]<−y [3 , 2] + 1

i f (comb [case , (i −1)]==3 &
(comb [case , i]==0 |comb [case , i] = = 2)) y [1 , 2]<−y [1 , 2] + 1 } }

i f (! f i r s t) {
for (i in 2 : length (comb [case ,])) {

i f (comb [case , (i −1)]==0 &
(comb [case , i]==2 |comb [case , i] = = 3)) y [4 , 1]<−y [4 , 1] + 1
i f (comb [case , (i −1)]==1 &
(comb [case , i]==2 |comb [case , i] = = 3)) y [2 , 1]<−y [2 , 1] + 1
i f (comb [case , (i −1)]==2 &
(comb [case , i]==2 |comb [case , i] = = 3)) y [3 , 1]<−y [3 , 1] + 1
i f (comb [case , (i −1)]==3 &

(comb [case , i]==2 |comb [case , i] = = 3)) y [1 , 1]<−y [1 , 1] + 1
i f (comb [case , (i −1)]==0 &

(comb [case , i]==0 |comb [case , i] = = 1)) y [4 , 2]<−y [4 , 2] + 1
i f (comb [case , (i −1)]==1 &

(comb [case , i]==0 |comb [case , i] = = 1)) y [2 , 2]<−y [2 , 2] + 1
i f (comb [case , (i −1)]==2 &

(comb [case , i]==0 |comb [case , i] = = 1)) y [3 , 2]<−y [3 , 2] + 1
i f (comb [case , (i −1)]==3 &

(comb [case , i]==0 |comb [case , i] = = 1)) y [1 , 2]<−y [1 , 2] + 1 } }
output [[case]]<−y
c l a s s (output) [2]<−" s t a t e . t r a n s "

a t t r (output , " f i r s t S e q ")<− f i r s t }
return (output) }

S ta teTrans<−function (x , f i r s t =TRUE, dep . lab=c (" 1 " , " 0 ") ,
indep . lab=c ("1−1" , "1−0" , "0−1" , "0−0")) {

output<− l i s t ()
comb<−x
for (case in 1 : length (x [, 1])) {

y<−matrix (rep (0 , 8) , 4 , 2)
colnames (y)<−dep . lab
rownames (y)<−indep . lab

i f (f i r s t) {
for (i in 2 : length (comb [case ,])) {

i f (comb [case , (i −1)]==0 &
(comb [case , i]==1 |comb [case , i] = = 3)) y [4 , 1]<−y [4 , 1] + 1

313

C. The R-Package ’DySeq’

i f (comb [case , (i −1)]==1 &
(comb [case , i]==1 |comb [case , i] = = 3)) y [2 , 1]<−y [2 , 1] + 1
i f (comb [case , (i −1)]==2 &

(comb [case , i]==1 |comb [case , i] = = 3)) y [3 , 1]<−y [3 , 1] + 1
i f (comb [case , (i −1)]==3 &

(comb [case , i]==1 |comb [case , i] = = 3)) y [1 , 1]<−y [1 , 1] + 1

i f (comb [case , (i −1)]==0 &
(comb [case , i]==0 |comb [case , i] = = 2)) y [4 , 2]<−y [4 , 2] + 1

i f (comb [case , (i −1)]==1 &
(comb [case , i]==0 |comb [case , i] = = 2)) y [2 , 2]<−y [2 , 2] + 1
i f (comb [case , (i −1)]==2 &
(comb [case , i]==0 |comb [case , i] = = 2)) y [3 , 2]<−y [3 , 2] + 1
i f (comb [case , (i −1)]==3 &

(comb [case , i]==0 |comb [case , i] = = 2)) y [1 , 2]<−y [1 , 2] + 1
}

}

i f (! f i r s t) {
for (i in 2 : length (comb [case ,])) {

i f (comb [case , (i −1)]==0 &
(comb [case , i]==2 |comb [case , i] = = 3)) y [4 , 1]<−y [4 , 1] + 1
i f (comb [case , (i −1)]==1 &
(comb [case , i]==2 |comb [case , i] = = 3)) y [2 , 1]<−y [2 , 1] + 1
i f (comb [case , (i −1)]==2 &

(comb [case , i]==2 |comb [case , i] = = 3)) y [3 , 1]<−y [3 , 1] + 1
i f (comb [case , (i −1)]==3 &

(comb [case , i]==2 |comb [case , i] = = 3)) y [1 , 1]<−y [1 , 1] + 1

i f (comb [case , (i −1)]==0 &
(comb [case , i]==0 |comb [case , i] = = 1)) y [4 , 2]<−y [4 , 2] + 1

i f (comb [case , (i −1)]==1 &
(comb [case , i]==0 |comb [case , i] = = 1)) y [2 , 2]<−y [2 , 2] + 1

i f (comb [case , (i −1)]==2 &
(comb [case , i]==0 |comb [case , i] = = 1)) y [3 , 2]<−y [3 , 2] + 1

i f (comb [case , (i −1)]==3 &
(comb [case , i]==0 |comb [case , i] = = 1)) y [1 , 2]<−y [1 , 2] + 1 } }

output [[case]]<−y

314

C. The R-Package ’DySeq’

c l a s s (output) [2]<−" s t a t e . t r a n s "

a t t r (output , " f i r s t S e q ")<− f i r s t

}
return (output)

}

TransToAPIM<−function (M) {

t r a n s f o r m i n g t o a c t o r & p a r t n e r f o r t h e men
DC_none<−sum(M[1 , 3 : 4]) # P (DC|none)
DC_SC<−sum(M[2 , 3 : 4]) # P (DC|SC)
DC_DC<−sum(M[3 , 3 : 4]) # P (DC|DC)
DC_SC_DC<−sum(M[4 , 3 : 4]) # P (DC|SC+DC)

Trans f o rming p r o b a b i l i t i e s i n t o l o g i t s
DC_none_L<−log (DC_none / (1−DC_none))
DC_SC_L<−log (DC_SC / (1−DC_SC))
DC_DC_L<−log (DC_DC/ (1−DC_DC))
DC_SC_DC_L<−log (DC_SC_DC/ (1−DC_SC_DC))

Trans f o rming l o g i t s i n t o b e t a s
DCb0<−sum(DC_none_L , DC_SC_L , DC_DC_L , DC_SC_DC_L) / 4
DCPart<−(DC_SC_L+DC_SC_DC_L) /2−DCb0
DCAct<−(DC_DC_L+DC_SC_DC_L) /2−DCb0
DCint<−DC_SC_DC_L−(DCb0+DCAct+DCPart)

For DC:
B0_2<−DCb0 # Mean l o g i t
PE_2<−DCPart # P a r t n e r e f f e c t
AE_2<−DCAct # Actor e f f e c t
I n t _2<−DCint # I n t e r a c t i o n e f f e c t

t r a n s f o r m i n g t o a c t o r & p a r t n e r f o r t h e womens

SC_none<−sum(M[1 , c (2 , 4)]) # P (SC|none)
SC_SC<−sum(M[2 , c (2 , 4)]) # P (SC|SC)

315

C. The R-Package ’DySeq’

SC_DC<−sum(M[3 , c (2 , 4)]) # P (SC|DC)
SC_SC_DC<−sum(M[4 , c (2 , 4)]) # P (SC|SC+DC)

SC_none_L<−log (SC_none / (1−SC_none))
SC_SC_L<−log (SC_SC / (1−SC_SC))
SC_DC_L<−log (SC_DC/ (1−SC_DC))
SC_SC_DC_L<−log (SC_SC_DC/ (1−SC_SC_DC))

SCb0<−sum(SC_none_L , SC_SC_L , SC_DC_L , SC_SC_DC_L) / 4
SCAct<−(SC_SC_L+SC_SC_DC_L) /2−SCb0
SCPart<−(SC_DC_L+SC_SC_DC_L) /2−SCb0
SCint<−SC_SC_DC_L−(SCb0+SCAct+SCPart)

For DC:
B0_1<−SCb0 # Mean l o g i t
PE_1<−SCPart # P a r t n e r e f f e c t
AE_1<−SCAct # Actor e f f e c t
I n t _1<−SCint # I n t e r a c t i o n e f f e c t

r e s u l t s<−c (B0_ 1 , AE_ 1 , PE_ 1 , I n t _ 1 ,
B0_ 2 , AE_ 2 , PE_ 2 , I n t _ 2)

names (r e s u l t s)<−c (" Seq1 I n t e r c e p t " , " Seq1 Actor " ,
" Seq1 Partner " , " Seq1 I n t e r a c t i o n " ,

" Seq2 I n t e r c e p t " , " Seq2 Actor " ,
" Seq2 Partner " , " Seq2 I n t e r a c t i o n ")

return (r e s u l t s)
}

simSeq<−function (t rans , i n i t i a l , length) {

i n i t<−sample (c (1 , 2 , 3 , 4) , 1 , prob= i n i t i a l)

for (i in 2 : length) {
i f (i n i t [i −1]==1){

i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [1 ,])
} e lse i f (i n i t [i −1]==2){

i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [2 ,])

316

C. The R-Package ’DySeq’

} e lse i f (i n i t [i −1]==3){
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [3 ,])

} e lse {
i n i t [i]<−sample (c (1 , 2 , 3 , 4) , 1 , prob= t r a n s [4 ,])

}
}
return (i n i t)

}

simSeqSample<−function (t rans , i n i t i a l , length , N) {
comb<−simSeq (trans , i n i t i a l , length)
s p l i t
seq1<−c ()
seq1 [comb==1|comb==3]<−0
seq1 [comb==2|comb==4]<−1
seq2<−c ()
seq2 [comb==1|comb==2]<−0
seq2 [comb==3|comb==4]<−1
out<−c (seq1 , seq2)
for (i in 2 :N) {

comb<−simSeq (trans , i n i t i a l , length)
seq1 [comb==1|comb==3]<−0
seq1 [comb==2|comb==4]<−1
seq2 [comb==1|comb==2]<−0
seq2 [comb==3|comb==4]<−1
out<−rbind (out , c (seq1 , seq2))

}
return (out)

}

317

Bibliography

Aalen, O., Borgan, O., and Gjessing, H. (2008). Survival and event history analysis: a process point
of view. Springer Science & Business Media.

Aassve, A., Billari, F. C., and Piccarreta, R. (2007). Strings of adulthood: A sequence analy-
sis of young british women’s work-family trajectories. European Journal of Population/Revue
européenne de Démographie, 23(3-4):369–388.

Abbott, A. (1995). Sequence analysis: new methods for old ideas. Annual review of sociology,
pages 93–113.

Abbott, A. and Tsay, A. (2000). Sequence analysis and optimal matching methods in sociology
review and prospect. Sociological methods & research, 29(1):3–33.

Agresti (2002). Categorical Data Analysis, Second Edition. Wiley Online Library.

Aitkin, M. and Longford, N. (1986). Statistical modelling issues in school effectiveness studies.
Journal of the Royal Statistical Society. Series A (General), pages 1–43.

Alcoholics Anonymous (2002). Alcoholics Anonymous. Hazelden Publishing.

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27(1):17–21.

Asparouhov, T. and Muthen, B. (2007). Computationally efficient estimation of multilevel high-
dimensional latent variable models. In proceedings of the 2007 JSM meeting in Salt Lake City,
Utah, Section on Statistics in Epidemiology, pages 2531–2535.

Axelrod, R. and Hamilton, W. D. (1981). The evolution of cooperation. science, 211(4489):1390–
1396.

Bakeman, R. and Gottman, J. M. (1997). Observing interaction: An introduction to sequential
analysis. Cambridge university press.

Bartolucci, F., Farcomeni, A., and Pennoni, F. (2012). Latent Markov models for longitudinal data.
CRC Press.

Bates, D., Maechler, M., Bolker, B., Walker, S., et al. (2014). lme4: Linear mixed-effects models
using eigen and s4. R package version, 1(7).

318

Bibliography

Blair-Loy, M. (1999). Career patterns of executive women in finance: An optimal matching
analysis. American journal of sociology, 104(5):1346–1397.

Bodenmann, G. (2005). Dyadic coping and its significance for marital functioning. Couples
coping with stress: Emerging perspectives on dyadic coping, pages 33–50.

Bodenmann, G., Meuwly, N., Germann, J., Nussbeck, F. W., Heinrichs, M., and Bradbury, T. N.
(2015). Effects of stress on the social support provided by men and women in intimate
relationships. Psychological science, page 0956797615594616.

Bollen, K. A. and Barb, K. H. (1981). Pearson’s r and coarsely categorized measures. American
Sociological Review, pages 232–239.

Bradley, P. S. and Fayyad, U. M. (1998). Refining initial points for k-means clustering. In ICML,
volume 98, pages 91–99.

Breslow, N. (1974). Covariance analysis of censored survival data. Biometrics, pages 89–99.

Briggs, M. A. and Sculpher, M. (1998). An introduction to markov modelling for economic
evaluation. Pharmacoeconomics, 13(4):397–409.

Browne, W. J., Draper, D., et al. (2006). A comparison of bayesian and likelihood-based methods
for fitting multilevel models. Bayesian analysis, 1(3):473–514.

Burns, A. C. and Bush, R. F. (2007). Basic marketing research using Microsoft Excel data analysis.
Prentice Hall Press.

Canty, A. and Ripley, B. (2012). boot: Bootstrap r (s-plus) functions. R package version, 1(7).

Casper, G. and Wilson, M. (2015). Using sequences to model crises. Political Science Research
and Methods, 3(02):381–397.

Chernick, M. R., González-Manteiga, W., Crujeiras, R. M., and Barrios, E. B. (2011). Bootstrap
methods. In International Encyclopedia of Statistical Science, pages 169–174. Springer.

Cockerill, I. M., Nevill, A. M., and Lyons, N. (1991). Modelling mood states in athletic perfor-
mance. Journal of Sports Sciences, 9(2):205–212.

Cook, W. L. and Kenny, D. A. (2005). The actor–partner interdependence model: A model of
bidirectional effects in developmental studies. International Journal of Behavioral Development,
29(2):101–109.

Cooley, W. W. and Lohnes, P. R. (1971). Multivariate data analysis. J. Wiley.

Cox, D. R. (1972). Vregression models and life tables. V Journal of the Royal Statistical Society,
Series B, 34(2):187.

319

Bibliography

Cronbach, L. J. and Gleser, G. C. (1953). Assessing similarity between profiles. Psychological
bulletin, 50(6):456.

Crowder, M. J. (2012). Multivariate survival analysis and competing risks. CRC Press.

Davison, A. C. and Hinkley, D. V. (1997). Bootstrap methods and their applications, cambridge
series in statistical and probabilistic mathematics. Cambridge University Press, 32:10013–2473.

Dawes, R. M. (1980). Social dilemmas. Annual review of psychology, 31(1):169–193.

Efron, B. (1977). The efficiency of cox’s likelihood function for censored data. Journal of the
American statistical Association, 72(359):557–565.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Eid, M., Gollwitzer, M., and Schmitt, M. (2010). Statistik und Forschungsmethoden.

Eid, M. E. and Diener, E. E. (2006). Handbook of multimethod measurement in psychology. APA.

Ess, C. and Sudweeks, F. (2001). Culture, technology, communication: Towards an intercultural
global village. Suny Press.

Everitt, B. S. (1992). The analysis of contingency tables. CRC Press.

Fuller, R. K. (1997). Definition and diagnosis of relapse to drinking. Liver Transplantation and
surgery, 3(3):258–262.

Fuller, S. and Stecy-Hildebrandt, N. (2015). Career pathways for temporary workers: Exploring
heterogeneous mobility dynamics with sequence analysis. Social science research, 50:76–99.

Gabadinho, A., Ritschard, G., Studer, M., and Müller, N. S. (2009). Mining sequence data in r
with the traminer package: A users guide for version 1.2. Geneva: University of Geneva.

Gill, J. (2000). Generalized linear models: a unified approach, volume 134. Sage Publications.

Goldstein, H. (1989). Restricted unbiased iterative generalized least-squares estimation.
Biometrika, 76(3):622–623.

Gonzalez, R. and Griffin, D. (2012). Dyadic data analysis. APA handbook of research methods in
psychology, 3:439–450.

Google Trends (2018). Data source: Google trends (www.google.com/trends). Compare: hier-
archical clustering (topic); k-means clustering (topic); cluster analysis (topic); time range 5
years; retrieved at 2018-01-06T13:30:00.000+0100.

Granger, C. W. and Newbold, P. (1974). Spurious regressions in econometrics. Journal of
econometrics, 2(2):111–120.

320

Bibliography

Halstenberg, E. (2016). B.Sc. Thesis: The effect of Social Value Orientation on cooperation in a Four-
Coin Dilemma: a quasi-replication study using the SVO Slider Measure, University Bielefeld, 2016.

Helske, S. and Helske, J. (2016). Mixture hidden markov models for sequence data: the se-
qhmm package in r.

Hertz-Picciotto, I. and Rockhill, B. (1997). Validity and efficiency of approximation methods
for tied survival times in cox regression. Biometrics, pages 1151–1156.

Hope, A. C. (1968). A simplified monte carlo significance test procedure. Journal of the Royal
Statistical Society. Series B (Methodological), pages 582–598.

Hosmer, D. W. and Lemeshow, S. (1999). Applied survival analysis: Regression modelling of
time to event data (1999).

Hox, J. and Stoel, R. D. (2005). Multilevel and sem approaches to growth curve modeling.
Wiley StatsRef: Statistics Reference Online.

Hox, J. J., Moerbeek, M., and van de Schoot, R. (2010). Multilevel analysis: Techniques and
applications. Routledge.

Johnson, D. R. and Creech, J. C. (1983). Ordinal measures in multiple indicator models: A
simulation study of categorization error. American Sociological Review, pages 398–407.

Kalbfleisch, J. D. and Prentice, R. L. (1973). Marginal likelihoods based on cox’s regression and
life model. Biometrika, 60(2):267–278.

Kenny, D., Kashy, D., and Cook, W. (2006). The analysis of dyadic data. New York: Guilford.

Kenny, D. A. (1996). Models of non-independence in dyadic research. Journal of Social and
Personal Relationships, 13(2):279–294.

Kenny, D. A. and Judd, C. M. (1986). Consequences of violating the independence assumption
in analysis of variance. Psychological Bulletin, 99(3):422.

Kirschbaum, C., Pirke, K.-M., and Hellhammer, D. H. (1993). The ‘trier social stress test’–a tool
for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiol-
ogy, 28(1-2):76–81.

Kucherenko, S. and Sytsko, Y. (2005). Application of deterministic low-discrepancy sequences
in global optimization. Computational Optimization and Applications, 30(3):297–318.

Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical
data. biometrics, 33(1):159–174.

Lazarus, R. S. (1966). Psychological stress and the coping process.

321

Bibliography

Lazarus, R. S. and Launier, R. (1978). Stress-related transactions between person and environ-
ment. In Perspectives in interactional psychology, pages 287–327. Springer.

Ledermann, T. and Kenny, D. A. (2012). The common fate model for dyadic data: variations
of a theoretically important but underutilized model. Journal of Family Psychology, 26(1):140.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions and reversals.
In Soviet physics doklady, volume 10, page 707.

Levitt, B. and Nass, C. (1989). The lid on the garbage can: Institutional constraints on decision
making in the technical core of college-text publishers. Administrative Science Quarterly,
pages 190–207.

Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs method for large scale opti-
mization. Mathematical programming, 45(1-3):503–528.

Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbal-
anced mixed models with nested random effects. Biometrika, 74(4):817–827.

Lucas, R. E. and Baird, B. M. (2006). Global self-assessment. In Diener, M. E. . E., editor,
Handbook of Multimethod Measurement in Psychology, pages 29–42. Washington DC: APA.

Luce, R. D. and Raiffa, H. (1957). Games anddecisions. New York, JohnW iley Sons.

Maas, C. J. and Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology,
1(3):86–92.

Messick, D. M. and McClintock, C. G. (1968). Motivational bases of choice in experimental
games. Journal of experimental social psychology, 4(1):1–25.

Mills, M. (2011). Introducing survival and event history analysis. Sage Publications.

Milovsky, N. (2016). The Basics of Game Theory and Associated Games. Retrieved September 7,
2016, from https://issuu.com/johnsonnick895/docs/game_theory_paper.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The computer
journal, 7(4):308–313.

Peduzzi, P., Concato, J., Feinstein, A. R., and Holford, T. R. (1995). Importance of events per
independent variable in proportional hazards regression analysis ii. accuracy and precision
of regression estimates. Journal of clinical epidemiology, 48(12):1503–1510.

Poundstone, W. (2011). Prisoner’s dilemma. Anchor.

Powell, M. J. (2009). The bobyqa algorithm for bound constrained optimization without deriva-
tives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge.

322

Bibliography

Rapoport, A. (1963). Mathematical models of social interaction.

Raudenbush, S. W., Brennan, R. T., and Barnett, R. C. (1995). A multivariate hierarchical model
for studying psychological change within married couples. Journal of Family Psychology,
9(2):161.

Rondeau, V., Mazroui, Y., and Gonzalez, J. R. (2012). frailtypack: an r package for the analysis
of correlated survival data with frailty models using penalized likelihood estimation or
parametrical estimation. Journal of Statistical Software, 47(4):1–28.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65.

Rousseeuw, P. J. and Kaufman, L. (1990). Finding Groups in Data. Wiley Online Library.

Sally, D. (1995). Conversation and cooperation in social dilemmas a meta-analysis of experi-
ments from 1958 to 1992. Rationality and society, 7(1):58–92.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of statistics, 6(2):461–
464.

Searle, S. R., Casella, G., and McCulloch, C. E. (2009). Variance components, volume 391. John
Wiley & Sons.

Sebanz, N., Bekkering, H., and Knoblich, G. (2006). Joint action: bodies and minds moving
together. Trends in cognitive sciences, 10(2):70–76.

Seligman, M. E. (1972). Learned helplessness. Annual review of medicine, 23(1):407–412.

Shubik, M. (1964). Game Theory: And Related Approaches to Social Behavior. John Wiley & Sons.

Singer, J. D. and Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event
occurrence. Oxford university press.

State (2016). Oxford Dictionaries. Retrieved September 7, 2016, from
http://www.oxforddictionaries.com/definition/english/state.

Steinley, D. (2003). Local optima in k-means clustering: What you don’t know may hurt you.
Psychological Methods, 8(3):294 – 304.

Stelzl, I. (1986). Changing a causal hypothesis without changing the fit: Some rules for gener-
ating equivalent path models. Multivariate Behavioral Research, 21(3):309–331.

Steyer, R., Schmitt, M., and Eid, M. (1999). Latent state–trait theory and research in personality
and individual differences. European Journal of Personality.

323

Bibliography

Struyf, A., Hubert, M., Rousseeuw, P., et al. (1997). Clustering in an object-oriented environ-
ment. Journal of Statistical Software, 1(4):1–30.

Studer, M., Ritschard, G., Gabadinho, A., and Müller, N. S. (2011). Discrepancy analysis of
state sequences. Sociological Methods and Research, 40(3):471–510.

Tofighi, D. and Enders, C. K. (2008). Identifying the correct number of classes in growth
mixture models. Advances in latent variable mixture models, (Information Age Publishing,
Inc):317–341.

Vermunt, J. K. (1997). Lem: A general program for the analysis of categorical data. Department
of Methodology and Statistics, Tilburg University.

Vermunt, J. K. and Hagenaars, J. A. (2004). 15 ordinal longitudinal data analysis. Methods in
human growth research, 39:374.

Visser, I., Speekenbrink, M., et al. (2010). depmixs4: An r-package for hidden markov models.
Journal of Statistical Software, 36(7):1–21.

Vittinghoff, E. and McCulloch, C. E. (2007). Relaxing the rule of ten events per variable in
logistic and cox regression. American journal of epidemiology, 165(6):710–718.

Wuerker, A. K. (1996a). The changing careers of patients with chronic mental illness: a study
of sequential patterns in mental health service utilization. The Journal of Behavioral Health
Services and Research, 23(4):458–470.

Wuerker, A. M. (1996b). Communication patterns and expressed emotion in families of persons
with mental disorders. Schizophrenia bulletin, 22(4):671.

Yu, S.-Z. (2010). Hidden semi-markov models. Artificial Intelligence, 174(2):215–243.

324

