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Abstract

Telomere length (TL) predicts health and survival across taxa. Variation in TL between indi-

viduals is thought to be largely of genetic origin, but telomere inheritance is unusual,

because zygotes already express a TL phenotype, the TL of the parental gametes. Off-

spring TL changes with paternal age in many species including humans, presumably

through age-related TL changes in sperm, suggesting an epigenetic inheritance mecha-

nism. However, present evidence is based on cross-sectional analyses, and age at repro-

duction is confounded with between-father variation in TL. Furthermore, the quantitative

importance of epigenetic TL inheritance is unknown. Using longitudinal data of free-living

jackdaws Corvus monedula, we show that erythrocyte TL of subsequent offspring

decreases with parental age within individual fathers, but not mothers. By cross-fostering

eggs, we confirmed the paternal age effect to be independent of paternal age dependent

care. Epigenetic inheritance accounted for a minimum of 34% of the variance in offspring TL

that was explained by paternal TL. This is a minimum estimate, because it ignores the epi-

genetic component in paternal TL variation and sperm TL heterogeneity within ejaculates.

Our results indicate an important epigenetic component in the heritability of TL with potential

consequences for offspring fitness prospects.

Author summary

Telomeres are DNA-protein structures at chromosome ends and a short telomere length

predicts reduced survival in humans, birds and other organisms. Variation in telomere

length between individuals is thought to be largely of genetic origin, but telomere inheri-

tance may be unusual because not only genes regulating telomere length are inherited, but

a fertilised cell already has a telomere length (from the parental gametes). Using long-

term individual-based data of jackdaw families (a small corvid species), we found that as

fathers aged, they produced chicks with shorter telomeres. This suggests that telomere

length inheritance has an epigenetic component. To investigate to what extent telomere

length in the fertilised cell affects telomere length after birth, we compared telomere

length over years within fathers with the telomere length of their consecutive offspring.

This epigenetic component explained a substantial part (� one third) of the telomere
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length inheritance; whereas there was no such effect of maternal telomere length. The sex

difference fits the idea that lifelong sperm formation leads to change in telomere length of

the sperm cells, whereas female gametes are all formed before birth and their telomere

length does not change over time.

Introduction

Telomeres are evolutionarily conserved DNA sequence repeats, which form the ends of chro-

mosomes together with associated proteins and contribute to genome stability [1]. Telomeres

shorten due to incomplete replication during cell division, which can be accelerated by DNA

and protein damaging factors and attenuated or counter-acted by maintenance processes,

mainly based on telomerase activity, a telomere-elongating ribonucleoprotein [2]. On the

organismal level, telomere length (TL) generally declines with age and short TL relates to age-

ing-associated disorders and reduced survival in humans [3,4] and other organisms [5,6].

Given this relationship of telomeres with health and lifespan it is of importance to understand

how variation in TL among individuals arises, which is already present early in life [7–9].

TL has a genetic basis, but heritability estimates for TL are highly variable [10]. Compared

with other traits, inheritance of TL is also unusual in that the TL phenotype is directly

expressed in the zygote without any effect of its own genome. This is because the zygote’s set of

chromosomes carries the telomeres of the two parental gametes. Subsequently, during devel-

opment of the embryo, different telomere maintenance and restoration mechanisms, under

the control of multiple genes, potentially regulate TL, but this process is poorly understood

[11]. In the course of early development, such mechanisms can potentially compensate fully

for gamete derived differences in TL (as suggested by e.g. [12,13]), in which case the effect of

gamete TL is transient (Fig 1A). Alternatively, differences in gamete TL are carried over to

later life (as suggested by e.g. [14]; Fig 1B). The latter case would imply the inheritance of

parental TL, which is independent of DNA sequence variation (in vertebrates (TTAGGG)n

[15]), but a change in telomere sequence length (n). We interpret this as a form of epigenetic

inheritance component on TL [16,17]. Note that this epigenetic inheritance mechanism differs

from better known epigenetic mechanisms such as DNA methylation in that it does not affect

the phenotype (TL) by modulating gene expression, but instead through direct inheritance of

the phenotype itself and therefore has also been referred to as “epigenetic-like” [17].

Strongest evidence for an epigenetic mechanism of TL inheritance comes from studies that

show a relationship between parental (usually paternal) age and offspring TL [18–23] with a

particularly interesting example showing a cumulative effect over generations in humans [24].

In humans, where offspring TL increases with paternal age, this trend parallels a qualitatively

similar change in sperm TL with age, which is generally assumed to underlie the TL increase

in offspring [25]. However, studies of parental age effects in other species show mixed results

and trends differ in direction between and within taxa [20,26]. More importantly, some critical

uncertainties remain unresolved in any species. Firstly, studies to date are all cross-sectional

[18–23], thus, comparing offspring of different parents that reproduced at different ages. Such

cross-sectional trends may differ from age related changes within individual parents if, for

example, individuals with long TL are more likely to reproduce at older ages, which is not

unlikely given the positive correlation between human TL and reproductive lifespan [27,28].

Secondly, parental age effects on offspring TL may arise from effects of parental age on pre-

and postnatal conditions prior to sampling. Because telomere attrition is highest early in life

e.g. [29,30], these effects can be substantial, as illustrated by parental age effects on TL
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dynamics during the nestling phase in European shags Phalacrocorax aristotelis [31] and

Alpine swifts Apus melba [21]. Lastly, due to their cross-sectional character, studies to date

could not test whether changes in TL within parents over their lifetimes are predictive of

changes in TL of the offspring in relation to parental age at conception. These points need to

be resolved to establish whether the correlations between parental age and offspring TL can be

attributed to epigenetic inheritance of TL, and before we can begin to understand why parental

age effects on offspring TL appear to differ between and within taxa [20,26].

To investigate whether offspring TL changes with parental age at conception over the life-

time of individual parents we used our long-term, individual-based dataset of free-living jack-

daws Corvus monedula. Telomere length was measured in nucleated erythrocytes using

terminal telomere restriction fragment analysis [32] from multiple chicks of the same parents

that hatched up to 9 years apart. As telomere attrition is highest early in life, we took blood

samples for telomere analysis shortly after hatching, when the oldest chick in a brood was 4

days old. To test if TL was influenced by age-dependent parental care prior to sampling, we

cross-fostered clutches between nests immediately after laying and tested whether foster parent

age affected offspring TL. To investigate if the rate of telomere attrition within parents predicts

the change in TL of the offspring they produce over consecutive years, we measured TL of the

parents repeatedly over their lifetimes.

For the first time, we here show that offspring TL declines as individual fathers age and that

the change in TL over time in fathers is reflected in the TL of their offspring, which explains a

substantial part of the telomere resemblance between fathers and offspring and can be inter-

preted as an epigenetic component in the inheritance of TL. Mother offspring resemblance on

Fig 1. Schematic representation of inheritance of telomere length (TL). Shown is the TL of two individuals that differ in TL at conception due to a TL difference

received via the gametes. Such a difference can arise through chance processes during gamete formation. Subsequently, cell division related shortening and telomerase-

based restoration processes act on TL [2]. In our example this results in a net loss, but the essence is that initial differences in TL become smaller during development.

Variation in genes regulating these processes contributes to the genetic inheritance of TL. If full compensation were achieved, this would result in a transient effect (A) in

the sense that TL at birth is independent of variation in gamete TL. However, if variation in gamete TL persist in later life, e.g. is still present at birth independent of genes

that regulate TL during development, this leads to an epigenetic carry-over effect (B).

https://doi.org/10.1371/journal.pgen.1007827.g001
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the other hand was independent of maternal age and within mother variation in TL was not

associated with variation in the TL of her offspring.

Results

Descriptive data of the study population are summarised in Table 1.

Parental age and offspring telomere length

To be able to separately evaluate between- and within-individual patterns of parental age, we

used within-subject centering [33]. Instead of using age in our models, we used the mean age

per individual over multiple years as one variable, and delta age, the deviation from that mean

as a second variable. Thus, the coefficient of mean age estimates the parental age effect com-

pared between individual parents, while the coefficient of delta age estimates the age effect on

offspring TL within parents. As fathers aged, they produced offspring with 56±20 bp shorter

TL for each additional year (variable ‘delta age father’ in Table 2A, Fig 2A), showing that off-

spring TL declined with paternal age at conception within individual males. This effect was

not apparent when comparing offspring of different fathers reproducing at different ages

(cross-sectional component of the statistical model, variable ‘mean age father’ in Table 2A). In

contrast, there was no effect of maternal age on offspring TL (Table 2B), neither when com-

pared cross-sectionally, between offspring of different mothers over age (mean age mother,

Table 2B), nor within mothers as they age (delta age mother). The negative, non-significant

effect of maternal age on offspring telomere length we observed (Table 2B) we attribute to the

age of their mates, because pair bonds in jackdaws are maintained over many years (pers. obs.)

and hence maternal and paternal age are correlated. This interpretation is confirmed by the

finding that the observed maternal age estimate (delta age mother) is close to what would be

expected based on the estimate found in fathers and the observed correlation of r = 0.75

(n = 298) between maternal and paternal age (i.e. 0.75 � 56 bp = 42 bp, which is very close to

the estimate ± s.e. for delta mother age, which was 38±23 bp; Table 2; see also [23]). Thus, we

conclude a maternal age effect on offspring TL other than through the age of the females’

mates to be unlikely. The decline in offspring TL with fathers’ age was lower than the rate of

TL attrition in the fathers themselves (-56±20 versus -87±15 bp/year, respectively). Individual

Table 1. Descriptive statistics for our dataset of studied jackdaws.

offspring:

n individuals 715

n nests 298

n cross-fostered (individuals/nests) 61/31

age in days (range; mean±SD) 2–4; 3.7±0.6

fathers:

n individuals 197

n individuals � 2 years 66

n individuals� 2 female partners 32

age in years (range; mean±SD) 1–13; 3.5±2.0

mothers:

n individuals 194

n individuals � 2 years 62

n individuals� 2 male partners 32

age in years (range; mean±SD) 1–11; 3.6±2.2

https://doi.org/10.1371/journal.pgen.1007827.t001

Epigenetic inheritance of telomere length

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007827 February 14, 2019 4 / 15

https://doi.org/10.1371/journal.pgen.1007827.t001
https://doi.org/10.1371/journal.pgen.1007827


Table 2. Linear mixed effects model to test the effect of father (A) or mother (B) age (years) on offspring telomere length (bp). Parental age was split into two compo-

nents: the mean age per parent (‘mean age father or mother’), and the deviation from that mean (‘delta age father or mother’), providing information on the effect of

between parent variation or within parent variation over years, respectively. See also Fig 2A.

offspring TL terms in model estimate s.e. df t p
(A) (intercept) 7228.3 132.1 667.9 54.74 <0.001

n = 715 offspring age -31.8 29.3 590.6 -1.09 0.278

mean age father -26.4 19.0 189.3 -1.39 0.165

delta age father -55.5 20.2 80.5 -2.75 0.007

Variance explained by random intercepts: father ID 25.3%, nest ID 11.6%, gel ID 19.7%; random slopes: delta age father 0.3%. Model fit: R2

= 0.578.

(B) (intercept) 7259.0 129.0 668.1 56.26 <0.001

n = 715 offspring age -32.9 29.0 592.9 -1.14 0.257

mean age mother -31.0 17.5 193.4 -1.77 0.078

delta age mother -38.4 23.5 27.5 -1.64 0.113

Variance explained by random intercepts: mother ID 31.7%, nest ID 4.4%, gel ID 18.8%.; random slopes: delta age mother: 2.6%. Model fit:

R2 = 0.585.

https://doi.org/10.1371/journal.pgen.1007827.t002

Fig 2. Offspring TL in relation to the age of the genetic father. (A) Delta offspring TL versus delta age of the father. Data on both axes are expressed as delta, i.e. the

difference relative to the mean, for age of fathers (X-axis) or TL per brood (Y-axis) over the different sampling years. Closed symbols and solid regression line for

offspring from non-cross-fostered clutches, open symbols and dotted regression line for TL of offspring from cross-fostered clutches. As cross-fostering has been

performed only in recent years, open symbols are not equally distributed over the x-axis. (B) Slope values (±SE) from Table 3. Decline of early life TL of offspring

produced by the same fathers over years when raised by either genetic or foster parents. Similarity of the slopes indicates that the paternal age effect on offspring TL was

established prior to cross-fostering, presumably at conception.

https://doi.org/10.1371/journal.pgen.1007827.g002
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variation in telomere attrition slopes was negligible both between individual fathers (additional

variance explained by random slopes 1%) and in their offspring produced across the fathers’

lifetimes as well (variance explained by random slopes 0.3%).

Test for early-life paternal age effects on offspring TL

The paternal age effect on offspring TL could potentially be caused by age-dependent paternal

care (e.g. age-related feeding of the incubating partner, or the chicks prior to sampling), if this

affects telomere dynamics between conception and the sampling age of 4 days. We tested this

hypothesis by exchanging clutches between pairs shortly after clutch completion. Our analysis

is based on telomere data of 61 chicks that hatched from 31 cross-fostered clutches. In a first

test, we added the age of foster father or mother to the model in Table 2A, and neither parental

age significantly affected offspring TL (age foster father: 5.6±28.5, p = 0.85; age foster mother:

-9.7±17.4, p = 0.58). To avoid basing a conclusion solely on a negative statistical result, in a sec-

ond analysis we compared the estimate of the age of the caring father (i.e. the genetic father if

not cross-fostered) on offspring TL with the estimate of the age difference between genetic and

foster father (which is 0 in case of no cross-fostering or matching ages between genetic and fos-

ter father) on offspring TL. Both estimates were negative and very similar (Table 3, Fig 2B).

Because the age of the caring father and the age difference between the caring father and the

genetic father add up to the age of the genetic father for the cross-fostered offspring, the simi-

larity of the estimates implies that there was no effect of age-related care between conception

and sampling on offspring TL. While the estimate of the age difference did not quite reach sta-

tistical significance in a two-tailed test (p<0.09), we consider the similarity of the estimates

(10% difference) the more salient result. Thus, the older the father, the shorter the TL of his

offspring, independent of the age of the male that cares for the eggs and offspring up to sam-

pling. These results show that the paternal age effect on offspring TL is explained by the age of

the genetic father and that the influence of the age of the foster fathers on offspring TL at age 4

days is negligible.

Parental and offspring telomere length

The paternal age effect on offspring TL raises the question whether changes in paternal TL

with age predict the change in early life TL of the offspring produced over the fathers’ lifetimes.

We tested this by replacing the two age terms in the model in Table 2 by TL at conception (i.e.

mean and delta TL) of the father in the year the offspring hatched. Fathers’ mean TL as well as

delta TL were strongly and positively correlated with offspring TL (Table 4A, Fig 3). The effect

of father’s mean TL on offspring TL can be attributed to additive genetic inheritance, possibly

Table 3. Linear mixed effects model to test for early-life paternal care effects associated with father age (years) on offspring telomere length (bp). Comparison of

the effect of the age of the caring father (either the genetic father or the foster father when the clutch was cross-fostered) and the difference of genetic father age and foster

father age (difference father ages). Note that the age of the male caring for the clutch, and the age difference between the genetic and the caring father add up to the age of

the genetic father.

offspring TL terms in model estimate s.e. df t p
n = 715 (intercept) 7265.2 136.0 95.5 53.41 <0.001

offspring age -34.9 29.4 581.1 -1.19 0.236

genetic or foster father age -43.4 15.2 299.1 -2.85 0.005

difference father ages -47.9 28.0 216.3 -1.71 0.089

Variance explained by random intercepts: genetic father ID 21.5%, nest ID 13.2%, gel ID 17.8%, analysis year 5.2%.

Model fit: R2 = 0.578

https://doi.org/10.1371/journal.pgen.1007827.t003
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augmented by effects of a shared environment [10]. The effect of fathers’ delta TL on offspring

TL cannot be attributed to a genetic effect, because delta TL refers to variation of TL within

fathers over their lifetime. We therefore consider an epigenetic effect the most likely explana-

tion for the effect of fathers’ delta TL on offspring TL. The variance in offspring TL explained

by mean and delta TL of the father was 1.87 and 0.96 respectively. This indicates that 34%

(0.96 / 2.83) of the variance in offspring TL that was explained by paternal TL can be attributed

to the paternal-age related epigenetic effect. In agreement with our finding that maternal age

did not affect offspring TL, when we performed the same analysis for mother TL, we found

that maternal TL shortening (delta TL mother) was not related to the TL of her subsequent off-

spring, with a slope of the variable delta maternal age that was more than 90% lower than the

comparable slope in males (Table 4B). However, mean maternal TL, reflecting a similarity

between maternal and offspring TL per se (independent of a maternal TL change over time),

based on a combination of additive genetic and age-independent maternal effects, was highly

significant (Table 4B).

Discussion

Resemblance of TL between parents and offspring is potentially due to a dual inheritance

mechanism, with on the one hand a ‘classic’ additive genetic effect and on the other hand an

epigenetic effect of variation in TL in the gametes that at least in part carries through to later

life (Fig 1). Suggestive evidence for an epigenetic contribution to the inheritance of TL comes

from studies showing a paternal age effect on offspring TL, but available results are based on

cross-sectional analyses [18–23]. Using a unique longitudinal dataset on free-living birds, and

a high precision TL measurement technique (CV within individuals <3%), we show for the

first time that offspring TL changes with age within individual fathers (i.e. longitudinally). We

used a cross-foster experiment to test whether the paternal age effect may be due to paternal

age-dependent parental care prior to offspring sampling. This showed that the paternal age

effect is already present at laying. Mother age was not significantly associated with offspring

TL, and the non-significant estimate of the maternal age effect matched almost exactly the

expected estimate based on the observed paternal age effect in combination with the correla-

tion between the ages of pair members. Thus, we conclude that offspring TL declined with

parental age within individual fathers, but not mothers.

Table 4. Linear mixed effects model to test the effects of father (A) or mother (B) telomere length (bp) on their offspring telomere length (bp). Note that parental

TL variation was split in two components: the mean TL over all measurements per parent (‘mean TL father or mother’), and the deviation from that mean in each of the

years he/she produced offspring sampled that year (‘delta TL father or mother’). The coefficient of mean TL provides information on the effect of between parent variation,

while the coefficient of delta TL provides information on variation over the years within parent. See also Fig 3.

offspring TL terms in model estimate s.e. df t p
(A) (intercept) 5587.1 484.0 115.78 11.54 <0.001

n = 337 offspring age -18.3 46.5 285.94 -0.39 0.695

mean TL father 258.0 77.7 87.82 3.32 0.001

delta TL father 827.2 347.3 26.47 2.38 0.025

Variance explained by: random intercepts: father ID 6.0%, nest ID 0%, gel ID 3.3%; random slopes: delta father TL: 80.7%. Model fit: R2 =

0.541.

(B) (intercept) 4485.5 538.9 73.75 8.32 <0.001

n = 249 offspring age -13.9 47.0 189.13 -0.30 0.767

mean TL mother 463.9 90.8 57.97 5.11 <0.001

delta TL mother 64.9 249.8 188.45 0.26 0.795

Variance explained by: random intercepts: mother ID 35.7%, nest ID 0%, gel ID 26.1%; random slopes: delta mother TL: 0.2%. Model fit:

R2 = 0.680

https://doi.org/10.1371/journal.pgen.1007827.t004
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The parental sex dependent age effect on offspring TL is in agreement with most other stud-

ies [18–23,25,34], and is usually attributed to the different replicative history of the gametes of

the two sexes. Male gametes are newly formed throughout reproductive life, while a female’s

complete stock of gametes is formed before birth [35,36]. Hence TL of female gametes is less

prone to changes with female age compared to TL of male gametes [37–39, but 40]. This is not

to say that there is no epigenetic inheritance of TL through the female line, but only that its

contribution to offspring TL does not depend on mothers’ age.

While we consider epigenetic inheritance of TL via a carry-over effect from paternal gamete

TL the most parsimonious explanation of our findings, we acknowledge that we cannot yet

fully exclude other mechanisms. There is some scope for females to modulate the contents of

their eggs, which may affect TL dynamics [41]. Thus, it remains a possibility that females

adjusted the content of their eggs in response to the age of their partner in a way that causes

the paternal age effect on the TL of their offspring. However, if there were such an effect, one

would perhaps also expect it to be expressed in egg volume (which varies considerably in jack-

daws), but there was no evidence that females adjusted the volume of their eggs to the age of

their partner (p = 0.35, n = 683 clutches, model including female identity and year as random

effects). Another mechanism we cannot rule out is paternal age dependent expression of genes

that control telomere dynamics of offspring. However, genetic influences on telomere dynam-

ics are modest compared to environmental influences or heritability of TL itself [42], making

it unlikely that this hypothetical mechanism explains a substantial part of the paternal age

effect.

Fig 3. Offspring TL in relation to within individual variation in TL of their fathers at conception. Data on both

axes are expressed as delta TL, the difference relative to the mean TL of fathers (X-axis) or their offspring (Y-axis) over

the different sampling years. See Table 4A for the statistics.

https://doi.org/10.1371/journal.pgen.1007827.g003
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We tentatively estimated the relative contributions of additive genetic and epigenetic effects

to the resemblance between males and their offspring using a statistical model in which we

separated between- and within-individual variation in parental TL as predictors of offspring

TL. In this model, the within-male component (‘delta TL father’, Table 4A) shows the strong

epigenetic effect over the years within males on their offspring, while the between male com-

ponent (‘mean TL father’) shows the putative additive genetic effect on offspring TL. When

comparing the relative contributions of the two inheritance mechanisms, it appeared that 34%

of the variance explained by paternal TL can be attributed to the epigenetic effect. Telomere

loss within mothers (‘delta TL mother’) was unrelated to the TL of offspring produced over

years (Table 4B). Estimates of the between-male effect (0.26±0.08, ‘mean TL father’, Table 4A)

and the between-female effect (0.46±0.09, ‘mean TL mother’, Table 4B) together equate to a

narrow sense heritability of jackdaw TL of 0.72, which is similar to results observed in humans

[43] and within the range observed in other vertebrates [10] and is in line with other studies

on birds estimating higher similarity between mothers and offspring [44,45]. We stress how-

ever that we measured telomere length in parental blood and not in sperm and that the esti-

mates for the additive genetic and the epigenetic effects are tentative. Firstly, with respect to

the additive genetic effect, it is of importance that shared environment effects are not con-

trolled for in the present analysis. We note however that a more extensive analysis using multi-

generational pedigree information and controlling for shared environmental effects [46]

yielded a very similar estimate of the narrow sense heritability of TL in our study population

(Bauch et al. in prep). Secondly, the variance in TL between males is not only of genetic origin,

given that in addition there appears to be an epigenetic contribution to the between-male vari-

ance. Thus, the effect of ‘mean TL father’ (Table 4A) will to an unknown extent contribute to

the epigenetic effect, as well as heterogeneity of sperm TL in ejaculates. Hence the epigenetic

contribution to the resemblance between father and offspring TL will be more than the 34%

we estimated based on parent-offspring regression over a single generation.

Narrow sense heritability of human TL has been estimated using monozygotic and dizy-

gotic twins [e.g. 47], assuming that a weaker resemblance between dizygotic twins compared

to monozygotic twins can be attributed to the difference in genetic relatedness. However, as

monozygotic twins develop from a single zygote, and hence from a single sperm cell and

oocyte, the difference in resemblance within a monozygotic versus a dizygotic twin pair may

in part be due to an epigenetic effect of having developed from the same or different gametes

[14]. This process would lead to an overestimation of the narrow sense heritability compared

to techniques that do not depend on twins.

The direction of the paternal age effect in jackdaws (decreasing) is opposite to the direction

of the paternal age effect in humans and chimpanzees (increasing) [20]. Assuming that pater-

nal age effects in humans and chimpanzees [20] on the one hand and several bird species

(including our study species) [20–23] and lab mice [34] on the other hand all reflect paternal

age effects on sperm TL, this raises the question why these age effects on sperm TL are in oppo-

site directions. Seasonality of reproduction may well play a role, with species that produce

sperm for a small part of the year having less need to maintain sperm TL than species with

year-round sperm production [20]. The lengthening of TL in human sperm with age has been

interpreted as the result of an overshoot in telomere maintenance [25] that can be viewed as a

safety margin in the maintenance process. Such a safety margin can be expected to be larger

when the rate of sperm production and hence telomere attrition is higher. This may explain

why chimpanzees, with a higher sperm production rate than humans, due to their promiscu-

ous mating system, show a steeper paternal age effect on offspring TL compared to humans

[48]. Information on the sign of the association between paternal age and offspring TL in
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strongly seasonal mammal species and / or continuously reproducing bird species would allow

a test of this hypothesis.

The epigenetic inheritance of TL potentially has more general implications. Parental age at

conception has previously been shown to have negative effects on offspring fitness prospects in

diverse taxa, a phenomenon known as the Lansing effect [22,49–52]. The underlying mecha-

nisms are likely to be diverse, but in taxa where the paternal age effect on offspring TL is nega-

tive, given that TL predicts survival in wild vertebrates [6], and TL early in life correlates

strongly with TL in adulthood in jackdaws [7], offspring born to older fathers may have a

shorter life expectancy due to their epigenetically inherited shorter TL. A further implication is

that there may be cumulative changes in TL over multiple generations [24]. This could lead to

population level changes in TL when the age structure of the population changes, as has for

example been observed in birds in response to urbanisation [53]. A population level change in

TL may in itself have further demographic consequences [54], providing a positive or negative

feedback, depending on whether increasing paternal age has a positive or negative effect on

offspring TL.

Materials and methods

Ethics statement

Data were collected under license of the animal experimentation committee of the University

of Groningen (Dierexperimenten Commissie, DEC, license numbers: 4071, 5871, 6832A).

License was awarded in accordance with the Dutch national law on animal experimentation

(“Wet op de dierproeven”) and research was carried out following the guidelines of the Associ-

ation for the Study of Animal Behaviour (ASAB) [55].

Data and blood sample collection

Life-history data and blood samples originate from an individual-based long-term project on

free-living jackdaws Corvus monedula breeding in nest boxes south of Groningen, the Nether-

lands (53.14˚ N, 6.64˚ E). Jackdaws produce one brood per year with mostly 4 or 5 chicks.

They are philopatric breeders and socially monogamous with close to zero extra-pair paternity

as shown in different populations [56,57]. Females incubate the eggs, while males feed their

female partners. Chick provisioning is shared by the sexes. Each year, during the breeding sea-

son around the hatching date nest boxes were checked daily for chicks. Freshly hatched chicks

were marked by clipping the tips of the toenails in specific combinations and therefore the

exact ages of offspring were known. Between 2005 and 2016, 715 jackdaw chicks were blood

sampled when the oldest chick(s) was (were) 4 days (note that chicks hatch asynchronously).

These chicks originated from 298 nests, of 197 different fathers, whereof 66 were blood sam-

pled repeatedly over years (max. difference of age between offspring 8 years) and 194 different

mothers, whereof 62 were blood sampled repeatedly over years (max. difference of age between

chicks 9 years; see Table 1 for more information). 61 chicks (that contributed telomere data)

hatched from 31 cross-fostered nests, i.e. eggs were exchanged between nest boxes (selected for

equal clutch sizes and laying dates (or up to one day difference), but otherwise randomly) soon

after clutch completion. 54 (89%) of those chicks were fostered by a father of different age.

Jackdaws in this project are marked with a unique colour ring combination and a metal ring.

Parents were identified by (camera) observation during incubation and also later during chick

rearing when caught for blood sampling (by puncturing the vena brachialis). Unringed adults

were caught, ringed and assigned a minimum age of 2 years, as this is the modal recruitment

age of breeders that fledged in our study colony. All jackdaws were of known sex (molecular

sexing [58]).
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Telomere analysis

Blood samples were first stored in 2% EDTA buffer at 4–7˚C and within 3 weeks snap frozen

in a 40% glycerol buffer for permanent storage at -80˚C. Terminally located telomere lengths

were measured in DNA from erythrocytes performing telomere restriction fragment analysis

under non-denaturing conditions [29]. In brief, we removed the glycerol buffer, washed the

cells and isolated DNA from 5 μl of erythrocytes using CHEF Genomic DNA Plug kit (Bio-

Rad, Hercules, CA, USA). Cells in the agarose plugs were digested overnight with Proteinase K

at 50˚C. Half of a plug per sample was restricted simultaneously with HindIII (60 U), HinfI (30

U) and MspI (60 U) for ~18 h in NEB2 buffer (New England Biolabs Inc., Beverly, MA, USA).

The restricted DNA was then separated by pulsed-field gel electrophoresis in a 0.8% agarose

gel (Pulsed Field Certified Agarose, Bio-Rad) at 14˚C for 24h, 3V/cm, initial switch time 0.5 s,

final switch time 7.0 s. For size calibration, we added 32P-labelled size ladders (1kb DNA lad-

der, New England Biolabs Inc., Ipswich, MA, USA; DNA Molecular Weight Marker XV,

Roche Diagnostics, Basel, Switzerland). Gels were dried (gel dryer, Bio-Rad, model 538) at

room temperature and hybridized overnight at 37˚C with a 32P-endlabelled oligonucleotide

(5’-CCCTAA-3’)4 that binds to the single-strand overhang of telomeres of non-denatured

DNA. Subsequently, unbound oligonucleotides were removed by washing the gel for 30 min at

37˚C with 0.25x saline-sodium citrate buffer. The radioactive signal of the sample specific TL

distribution was detected by a phosphor screen (MS, Perkin-Elmer Inc., Waltham, MA, USA),

exposed overnight, and visualized using a phosphor imager (Cyclone Storage Phosphor Sys-

tem, Perkin-Elmer Inc.). We calculated average TL using IMAGEJ (v. 1.38x) as described by Sal-

omons et al. [29]. In short, for each sample the limit at the side of the short telomeres of the

distribution was lane-specifically set at the point of the lowest signal (i.e. background inten-

sity). The limit on the side of the long telomeres of the distribution was set lane-specifically

where the signal dropped below Y, where Y is the sum of the background intensity plus 10% of

the difference between peak intensity and background intensity. We used the individual mean

of the TL distribution for further analyses. Samples were run on 92 gels. Repeated samples of

adults were run on the same gel, chicks were spread over different gels. The coefficient of varia-

tion of one control sample of a 30-day old jackdaw chick run on 26 gels was 6% and of one

control sample of a goose, with a TL distribution within a similar range, run on 31 other gels

was 7%. The within-individual coefficient of variation for samples run on the same gel was

<3% [7] and the within-individual repeatability of TL was estimated to be 97% [59].

Statistical analyses

The relationships between parental age or parental TL and early-life TL of offspring were

investigated in a linear mixed effects model framework using a restricted maximum-likelihood

method (testing specific predictions). To be able to separately evaluate between- and within-

individual patterns of parental age or parental TL, we used within-subject centering [33].

Thus, instead of father age, mother age or father TL, mother TL per se we introduced the

mean value per individual over (if available) multiple years and delta age or delta TL, the devia-

tion from that mean, respectively. To account for (genetic and potential other) similarities in

TL between offspring of the same father or mother, we included father ID or mother ID as ran-

dom effect in the model. As the dataset contains also siblings raised in the same nest, we addi-

tionally added a random effect of nest ID as a nested term in father ID or mother ID to the

models investigating paternal or maternal age effects on TL, respectively. The age of chicks at

sampling differed slightly (2–4 days) and as TL shortens with age [7], we included their age (in

days) as a covariate. Offspring sex was never significant and was therefore excluded from the
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final models. We added gel ID as random effect. Analyses were performed separately for

fathers and mothers as their ages are correlated.

The cross-foster experiment was designed to test for potential effects of parental age on

early-life telomere attrition between egg laying and sampling (age 2–4 days). First, we modified

the linear mixed effect model with offspring TL as dependent variable testing for paternal age

effects (see above) by adding the age of the foster father or mother as covariate. Second, in a

linear mixed model with offspring TL as dependent variable, we included both the age of the

father caring for the clutch after cross-fostering and the age difference between the genetic

father and foster father as covariates (age genetic father-age foster father). When the paternal

age effect is independent of age-dependent effects between conception and sampling, we pre-

dict the coefficients of the caring father’s age and the age difference between genetic father and

foster father to be indistinguishable. This is so because the age of the male caring for the clutch,

and the age difference between the genetic and the caring father add up to the age of the

genetic father. In contrast, when the paternal age effect is entirely due to age-dependent pater-

nal effects after laying, the coefficient will be the same, but opposite in sign. In case of a mix-

ture of the two effects, the coefficient will be intermediate. In this analysis we used all

offspring, i.e. also those that were not cross-fostered, and further included genetic father ID,

nest ID, gel ID and year of telomere analysis as random effects, and offspring age at sampling

as covariate.

Statistics were performed using packages lme4 [60], lmerTest [61], MuMIn [62] in R (ver-

sion 3.3.3) [63]. In the results mean ± standard error is given unless stated otherwise.
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