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Abstract

In the research field of heavy-ion collisions there are a bunch of interesting questions to be
answered. Here we address two of them.

The first is about the transition from a hydrodynamical modelling to a particle-based
approach. This transition is a crucial element of the description of ultra-relativistic heavy-
ion collisions. By employing kinetic theory within polar Milne coordinates and anisotropic
hydrodynamical tools, we show that an anisotropic local phase-space distribution of the
emitted particles can smooth such a transition. In addition we derive the so called anisotropy
parameter from a kinetic description. We discuss how final state observables – within this
new freeze out procedure – depend less on system’s quantities at the freeze out surface.

Further we present a way how our procedure of the kinetic freeze out can be further
improved, via incorporating the effect of interparticle interactions. Therefore we present the
arising equations of motion which were obtained by the computation of the various moments.

The second question we are addressing is dealing with the investigation of two-particle dis-
tributions. We present studies which are essential for investigating the azimuthally dependent
two-particle distributions. Therefore we continued the concept of one-particle azimuthally
distributions to the case of two-particle observables. Afterward we present a model to in-
corporate the fluctuations of one-particle distributions, in order to not mix up the effect of
one-particle fluctuations and two-particle correlations.
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1
Heavy-Ion Collisions

Ultra relativistic heavy-ion collisions (HIC) are an interesting research subject by its own.
The key motivation for studying this subject is to investigate matter in a state where the
strong interaction is the dominant interaction for the system’s dynamics. Whereas in our
daily life gravitational and electromagnetic interactions are prevailing, although the strong
and the weak force are at play in the background as well. Over the time there were written
many reviews and even whole books about all the aspects of the research subject HIC. The
introduction is mostly influenced by the books [1], [2] and the reviews [3], [4] and [5].

1.1. What are heavy-ion collisions

In principle the research of ultra relativistic heavy-ion collisions deals with the outcome of
the collision of two very high energetic heavy-ions. In order to perform such an experiment
fully ionized atoms like gold or lead are accelerated to very high energies and afterwards
forced to collide, nowadays most often head on inside a detector. This detector records the
resulting particles flowing out of the collision center. The label ultra relativistic refers to the
fact that the ions are so highly accelerated, that their kinetic energy is much larger than the
energy stored in their rest mass. A first arising characteristic physical parameter is of course
the collision energy. In order to compare the collisions of different nuclei in a proper way the
collision energies are characterized by

√
sNN , which is the total collision energy of the pair

of two nucleons1 in the center of mass frame. Up to now there were experiments carried out
with a

√
sNN up to 2.76 TeV, 5.02 TeV (Lead-Lead) and 5.44 TeV (Xenon-Xenon). Realizing

that the nucleon’s mass is of order 1 GeV, it is clear that an ultra relativistic approach is
valid. Just to get an impression of the huge achieved energy scales, reference [5] points out
that a collision energy

√
sNN = 2.76 TeV corresponds to a γ = 1400, where γ is the Lorentz

factor. Since this factor is so large, the spherical ions are highly contracted in the center of
momentum frame – where the detector is working. Therefore often the ions are referred to
have the shape of pancakes.

1.2. Why are heavy-ion collisions done

One of the initial key motivations for performing ultra relativistic heavy-ion collisions is to
test nuclear matter under extreme conditions i.e. high temperatures and/or high densities.

1Located in two different nuclei.
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1.2 Why are heavy-ion collisions done

In fact there is clear evidence that during heavy-ion collisions the hottest man made matter
is created, whose temperature exceeds even the temperature in the core of our sun by a factor
of more than 105 [4]. As a remark let us mention that in the above statement there is an as-
sumption hidden. Namely that one identifies the hydrodynamised fields as thermodynamical
fields. This assumption is currently under debate.

Under these conditions and the for the experiment relevant time scales, the strong force is
maintaining the systems evolution. Explaining the strong force and the underlying quantum
field gauge theory, called Quantum-Chromo-Dynamics (QCD), goes beyond the scope of this
thesis. This is why here only some main features – which are essential for the HIC research
– are very briefly discussed.

Within QCD one can compute the propagation and the probability of interaction between
strong interacting particles. From a historical point of view the first step for a systematical
investigation of the strong interaction was done by Gell-Mann in 1961 within a procedure
called the eight-fold way. In this work all the – up to that time – known hadrons where
systematically organized. Applying the mathematical framework of group theory Gell-Mann
was able to reproduce the confusing high number of hadrons out of a comparable small
number of partons. These partons, which were at that time just group theoretical objects
were called quarks. It is assumed that they are the elementary matter particles undergoing
strong interactions. The different quarks do have different flavors. At those times there were
three different quark flavors known, from which one could build up the group theoretical
SU(3)f flavor group. The known flavors at that time were named up, down and strange.
Today it is known and measured that there exist also charm and bottom quarks which build
up further hadrons. In addition the top quark is established as well, which results all in all
in six flavors.

Since they reproduce the physical measured hadrons, quarks need to have a spin of 1/2.
Therefore they are fermions. Further since they are elementary these objects have to follow
the rules of quantum mechanics. The existence of hadrons like the Ω−, which is build
up by three strange valence quarks and has a spin of 3/2, indicates that quarks have to
have an additional quantum number, since otherwise three half-spin objects would share the
same quantum mechanical state, which is forbidden by the Pauli principle. This additional
quantum number is the color, which is the charge of the QCD. While Quantum-Electro-
Dynamics (QED) is generated by one electric charge, in QCD there are three color charge
states. A charge neutral and non trivial state – comparable to an electron proton pair in the
case of QED – can be built up in QCD by a triplet of three quarks carrying three different
colors, which makes the resulting object colorless. Due to the strong interaction it is only
possible to observe such colorless states in nature. Such a state of three coupled quarks is
called baryon. The most ’prominent’ baryons in daily life are the proton and the neutron,
which build up the nuclei of atoms. But moreover there exist also anti-quarks, which carry
an anti-color. This makes it possible to bound together a quark and an anti-quark in a
colorless state. This states are the Meson states. The fact that in nature only colorless
states are present is referred to confinement. At the end of the sixties, particle accelerators
were able to reach such high energies, that within deep inelastic scattering on protons the
mathematical objects became physically measured objects.

For the pioneering work of developing the QCD Gross, Politzer and Wilczek were awarded
with the Nobel prize. The QCD describes as mentioned the interaction between quarks,
which are the matter particles. Since it is a quantized gauge theory the interactions are
transmitted by the strong interaction gauge bosons, the gluons. From a mathematical point
of view the QCD is a non abelian gauge theory. This has the physical consequence that the

2



1.3 What is seen in such experiments

gluons, which transmit interactions between colored particles, carry color charges as well.
Together with the fact that the coupling of the strong force can be very large, this comes
along with a bunch of interesting physical consequences.

One consequence and also a key motivation for performing ultra relativistic heavy-ion
collisions, is the running coupling of the QCD denoted by αs. In fact this QCD coupling
depends on the energy scale Q at which QCD is tested. Figure 1.1 shows a collection
of measurements of the coupling αs extracted from different experiments, testing different
energy scales Q.

9. Quantum chromodynamics 39

They are well within the uncertainty of the overall world average quoted above. Note,
however, that the average excluding the lattice result is no longer as close to the value
obtained from lattice alone as was the case in the 2013 Review, but is now smaller by
almost one standard deviation of its assigned uncertainty.

Notwithstanding the many open issues still present within each of the sub-fields
summarised in this Review, the wealth of available results provides a rather precise and
reasonably stable world average value of αs(M

2
Z), as well as a clear signature and proof of

the energy dependence of αs, in full agreement with the QCD prediction of Asymptotic
Freedom. This is demonstrated in Fig. 9.3, where results of αs(Q

2) obtained at discrete
energy scales Q, now also including those based just on NLO QCD, are summarized.
Thanks to the results from the Tevatron and from the LHC, the energy scales at which
αs is determined now extend up to more than 1 TeV♦.

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  

0.1

0.2

0.3

αs (Q2)

1 10 100Q [GeV]

Heavy Quarkonia (NLO)
e+e–   jets & shapes (res. NNLO)

DIS jets (NLO)

April 2016

τ decays (N3LO)

1000

 (NLO
pp –> tt (NNLO)

)(–)

Figure 9.3: Summary of measurements of αs as a function of the energy scale Q.
The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading
order; res. NNLO: NNLO matched with resummed next-to-leading logs; N3LO:
next-to-NNLO).

♦ We note, however, that in many such studies, like those based on exclusive states of
jet multiplicities, the relevant energy scale of the measurement is not uniquely defined.
For instance, in studies of the ratio of 3- to 2-jet cross sections at the LHC, the relevant
scale was taken to be the average of the transverse momenta of the two leading jets [434],
but could alternatively have been chosen to be the transverse momentum of the 3rd jet.

June 5, 2018 19:47

Figure 1.1.: Summary of running coupling measurements plotted over a logarithmic energy
scale Q axis. Taken from [6].

As one can see, this coupling is very large for small energy scales. In this regime the quarks
are confined. But with increasing energy scale the coupling constant decreases, one can
imagine that quarks are asymptotically (Q → ∞) free. Precisely this asymptotic behavior
impelled scientists to create systems with very high energy densities in order to investigate
the small αs regime of QCD. One experimental way to investigate such systems of nearly
liberated quarks and gluons is the heavy-ion collision.

The basic idea behind the experiment is that due to the high collision energies one creates
a hot and dense system right after the collision in which the quarks and gluons can move
nearly freely. This system is called Quark Gluon Plasma (QGP).

1.3. What is seen in such experiments

One characteristic and challenging feature of heavy-ion collisions is that scientists are only
able to get information about the ions before they are accelerated, about their collision energy
and about particles that reach the detector long time2 after the collision. However in the field
of heavy-ion research scientists were very active in extracting various information out of the
particle spectrum in order to build models for the different theoretical stages of the evolution

2in terms of QCD time scales

3



1.3 What is seen in such experiments

of the system, which is called fireball as well. In the following we will shortly present the
current state of the understanding of the fireball’s evolution, with all the established stages.

Figure 1.2 shows the established spacetime diagram, including the main stages the system
runs through during an ultra relativistic heavy-ion collision.

z

t Hadrons
→ kinetic theory

Hadrons
→ Hydro

QGP
→ ideal Hydro

QGP
→ aniso. / dissipative Hydro

early stages
→ pre-equilibrium

← kinetic freeze out here →

Figure 1.2.: Spacetime diagram of a central element in an ultra relativistic heavy-ion collision
in its local rest frame. The lines indicate surfaces of constant proper time.

Starting from the bottom of figure 1.2 and following the time axis the collision process be-
gins with two highly Lorentz contracted nuclei approaching each other. After they traversed
each other a high amount of entropy is produced. In fact at this stage most of the fireball’s
entropy is produced right after the collision. The produced entropy is highly related to the
number of particles in the very end of the collision process. Since in the experiment one can
not adjust the impact parameter at which the nuclei collide – and therefore the overlap size
– in different collisions there is a different amount of total entropy produced, which in turn
results in different numbers of produced particles. The participants, which are nucleons that
undergo at least one collision with another nucleon, lose in the LHC setup about 85 % of
their energy. During the first3 1 fm≈ 10−23 s this deposited energy and quantum numbers
are following the pre-equilibrium evolution in such a way, that afterwards a hydrodynamical
description is applicable.

At the end of the blue shaded area in figure 1.2 the system is hydrodynamized, which means
that all the gradients are smooth enough in order to apply either anisotropic hydrodynam-
ics, dissipative hydrodynamics or viscous anisotropic hydrodynamics. These hydrodynamical
tools will be introduced and discussed in section 2.6. During the hydrodynamical expansion
the gradients will be furthermore smoothed out in such a way that the system asymptotically
approaches the ideal hydrodynamical stage. At least at this time the system is thought to
be thermalized. Due to this fact heavy-ion collisions are said to test the thermodynami-
cal phase diagram of QCD at relatively small baryon chemical potential. This phase, where
color charged degrees of freedom are evolving in a collective expansion, is called Quark Gluon
Plasma. Throughout the system’s expansion, while all the relevant quantum numbers are
preserved, it has to dilute further. At a temperature of around 156 MeV [7] lattice compu-
tations for a static equilibrium QCD system indicate a cross over, where the hadronization
of the deconfined medium takes place. From this point on the effective degrees of freedom

3As the keen reader notices, we will use the natural units in which c = ~ = kB = 1 throughout this thesis.
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1.3 What is seen in such experiments

are color neutral charged. In a local rest frame the lifetime of the QGP is roughly about 10
fm in modern facilities.

In the theoretical description of the ongoing expansion the system cools down to a tem-
perature region where the particle yields freeze out. This region is called the chemical freeze
out. Later on the particle’ s momenta freeze out as well, which results in a free streaming of
the hadrons after the kinetic freeze out. From now on the hadrons are assumed to fly freely
towards the detector. To model the process of kinetic freeze out in a better way than it is
usually done, is the subject of chapter 2. Therefore the physical models will be discussed in
detail in that chapter. The typical duration of the nontrivial evolution lasts about 100 fm
in a local rest frame.

Please note that labels like cross over temperature or chemical freeze out temperature have
to be taken with a huge grain of salt, since first the fireball’s expansion is highly non static
and secondly the processes do not take place at a sharp temperature but is lasting over a
temperature intervall. Further the freeze out processes, especially the chemical ones, depend
on the particle species. In addition the chemical freeze out will cause non equilibriumness
in the corresponding chemical potentials. There are also coming up approaches to describe
several observables of heavy-ion collisions without the assumption that the system reaches
an equilibrium state at all, but stays ”far from equilibrium”. A review can be found in [8].

z

r

z=0

colliding nuclei

Fireball

Figure 1.3.: Cartoon of the system’s expansion symmetry in the lab frame’s position space.

Figure 1.3 shows the geometry of the fireball’s expansion in the lab frame’s position space.
Since initially the nuclei are flying through each other, the medium has a symmetry around
the collision point z = η = 0. Further, since the highly Lorentz contracted nuclei have no real
longitudinal structure, the resulting medium is assumed to have no nontrivial structure with
respect to the beam line as well. Therefore the system can be modeled via a one dimensional
Hubble flow in beam direction, which is called two dimensional Bjorken flow [9], since it
relates the time component and the longitudinal direction by the following ansatz.

vz =
z

t
(1.3.1)

Basically the medium is thought to move freely along the beam axis in a boost invariant
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1.3 What is seen in such experiments

manner. As a remark let us mention that in this epoch not the particles are moving freely,
but the fluid cells are assumed to move without further interaction along the beam line.
How this flow profile is mathematical implemented is discussed in detail in section 2.2. One
important remark is that around the point z = 0 the flow profile is approximately invariant
under shifts in z.

In the plane transverse to the beam line the system is almond shaped. The exact form
depends of course on the impact parameter. Figure 1.3 is a sketch of the polar Milne
position space geometry of the created fireball. Note that in chapter 2.9.3 we will discuss
the transverse plane and its influence on observables in detail.

In contrast to the medium’s expansion, often the evolution of partons is investigated, which
originate from an initial hard nucleon-nucleon scattering process. The outcome of such a
process can be very massive particles like quarkonia, or very high momentum partons, which
are by themselves the origin of medium traversing jets. The symmetry of such events does
not exhibit the above discussed characteristics.

Figure 1.4.: Cartoon of the origin of some HIC observables. Taken from [10].

Of course the above sketch of the heavy-ion collision process is based on several observables.
Figure 1.4 illustrates roughly the origin of the most important observables, which we will
discuss in the following, starting from the center. The already mentioned jets, which are
produced at the very beginning of the collision and afterward traversing the medium are
color charged. Due to their path through the entire expansion, they give rise to a time
integrated information about the medium. The same holds for heavy flavor partons. Since
the quarks carry an electric charge as well, over the entire lifetime of the fireball there are
photons produced either from the partons, or from the hadrons. Therefore in the photon
spectrum there is much information about the fireball encoded. However it is experimental
very challenging to detect these photons.

One of the most interesting observables for the studies done in the following is the flow.
Therefore this observable is discussed in one of the following chapters 2.9.3 in detail. In
principle a non vanishing anisotropic flow vn can be a signature of interactions between
the effective degrees of freedom in the collective phase. In chapter 4 the concept of this
observable will be further developed.

The last main observable is governed by the femtoscopy. One is able to measure the size
of the kinetic freeze out volume with this observable.

6



1.4 Where are heavy-ion collisions performed

1.4. Where are heavy-ion collisions performed

At the moment there are two acceleration facilities, which frequently inject heavy-ions in
order to perform ultra relativistic heavy-ion collisions.

• The RHIC (Relativistic Heavy Ion Collider) is operating since the year 2000. Most often
the injected ions are gold, but there where also measurements with several other ions
as well, like uranium or copper. It is located at the Brookhaven National Laboratory
(BNL) in New York. Around the 3.8 km large circular accelerator, which is able
to accelerate gold ions up to

√
sNN = 200 GeV, there are right now two operating

experiments/detectors. One is PHENIX (Pioneering High Energy Nuclear Interactions
eXperiment) and the other one is STAR (Solenoidal Tracker At RHIC). Nowadays
RHIC concentrates on the Beam Energy Scan (BES) I and BES II, where collisions at
lower energies are performed in order to feed in baryons from the ions, which could
result in a higher baryon chemical potential of the system.

• The LHC (Large Hadron Collider) is the most powerful accelerator. It is operating
since 2010 on the border between France and Switzerland, near Geneva. Mainly it is
concentrating on particle physics, i.e. search for ”new” particles and measuring param-
eters of the standard model to highest precision. However frequently lead ions (Pb) are
injected into the 27 km long circular accelerator in order to perform collisions at ener-
gies up to

√
sNN = 5.02 TeV. Around the LHC there are four experiments, which are

investigating several aspects of the QGP. The experiments are ATLAS (A Toroidal LHC
ApparatuS), ALICE (A Large Ion Collider Experiment), which is by design in both
detector and employees a designated heavy-ion experiment, CMS (Compact-Muon-
Solenoid-Experiment) and LHCb (Large Hadron Collider beauty). Due to the fact
that in this collider one can collide ions on ions (A + A collisions) as well as lead on
proton (p + A collision) and proton on proton (p + p collision) at the same energies,
one can study in detail whether an A + A collision is ”more” than just a bunch of p
+ p collisions.

For the completeness it has to be mentioned that there are further facilities constructed
or planned right now. Here are two of these projects, which are expected to influence
the future heavy-ion collision research field.

• At GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt the construction of
FAIR (Facility for Antiproton and Ion Research) is running. At this experiment, which
will also deal with nuclear physics, it will be possible to work in a region with a high
net baryon number in the system. This baryon numbers will be even higher than the
achieved density in the BES II program.

• There is a project in the USA planned, which is called EIC (Electron Ion Collider). As
indicated by the name it is planned to collide point-like electrons with protons or ions.
With this experiment people want to investigate the initial shape and the structure of
protons and nuclei. Up to today it is not clear whether this experiment will be built
at BNL, where already an ion and proton accelerator exists, or at the Jefferson Labs
in Virginia, where an electron accelerator is operating.

7



1.5 What are the recent questions

1.5. What are the recent questions

In September 2012 scientists performed collisions of lead ions and protons at LHC. After
analyzing the gathered data of this collisions 2014 people realized that although the system
is small, several observables indicate a signal which is believed to reflect collective behavior.
Against this background some scientists looked at the even smaller colliding system of two
protons for ”collectivity signals”. They found that in an extremely tiny fraction of p-p
collisions – namely highest multiplicity events – some signals could indicate a collective
behavior as well. Since then people are more interested in the theories, which they before
just used as tools. Two typical questions are how small must a system be in order to
be not describable by hydrodynamics or does a working hydrodynamical description imply
thermodynamical equilibrium.

These and several more questions are investigated in the field of collectivity in small
systems. The observable and the corresponding studies presented in chapter 4 can hopefully
at some point contribute to further systematical investigations of the small systems. In
addition the in chapter 2 elaborated free streaming – which can be understood to be the
opposite of collective behavior – solution can be used to perform studies which sets a lower
bound. In such studies, which are currently performed by our group it is investigated how
much interactions are needed in order to create signals which are understood to indicate
collectivity. The presented studies in chapter 3 can be used to ”turn on” a small number of
interactions.

A second upcoming field is the study of systems with non vanishing chemical potential.
Creating such systems is the aim of the above mentioned beam energy scan at RHIC. In order
to describe the transport in such systems properly one needs to establish hydrodynamical
theories including baryon sources.

The crucial question which was motivating the studies presented in chapter 2 and 3 is,
how can the transitions between the different above sketched and well established stages of a
heavy-ion collision be improved in order to achieve a smooth overlap of the different jigsaw
pieces.

8



2
Relativistic Boltzmann equation in polar Milne coordinates for

modeling kinetic freeze out

2.1. Motivation

In chapter 2 we will present the investigations we did on the search for a smoother kinetic
freeze out procedure for the description of heavy-ion collisions. Basically we started this
studies already during my Masters project. In the first publication [11] we examined the
question if anisotropic hydrodynamics (see [12] and [13] for a very detailed derivation of the
formalism) can be able to smoothen the transition between a fluid and particles.

At that time the anisotropic hydrodynamic formalism was just established by two groups
[14], [12]. Figure 2.1 shows their main physical motivation. In the heavy-ion community’s
”traditional picture” it was/is assumed, that the hydro-stage starts at the latest after a proper
time of about 1 fm/c. As we can see in the sketch at τhydro there still exists a huge pressure
anisotropy, which means that the longitudinal1 pressure is much smaller than the transverse
pressure. This is due to the fact that the colliding nucleons travel along the z-axis with
almost the speed of light away from the collision region. To start viscous hydrodynamics,
which is an expansion around an isotropic equilibrium state is a too drastic assumption
on the system. Therefore they treat the longitudinal pressure and the transverse pressure
as two different quantities, which eventually will converge. Actually the group of Michael
Strickland has built up a code from that idea, within which many observables measured in
the experiment are reproduced [15].

The implementation of the kinetic freeze out is necessary, because as the medium created
after the nucleons collision expands in spacetime, while all its quantum-numbers which are
relevant on that time scales are conserved, it has to dilute. The hydrodynamical description
of the fireball works well, if the effective degrees of freedom are interacting very often, so
that they can achieve a local equilibrium state. A well established quantity measuring the
interaction strength is the Knudsen number Kn. This is defined as the ratio of the mean free
path (lmfp) and a typical length scale L, which is the relevant scale where the description
shall work, i.e. Kn = lmfp/L. Here the lmfp can be understood as two particle’s average
distance in the system. As the lmfp increases, due to the system dilution, the effective
degrees will undergo fewer interactions. So the application of hydrodynamics becomes at
some point improper, since the small number of microscopical collisions is not able to keep
the system in local equilibrium. Let us emphasize that the Knudsen number is a transport

1Pressure pointing along the beam axis, which is traditionally chosen to be the z-axis.
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2.1 Motivation
6 strickland printed on November 5, 2014

Fig. 2. (Color online) A cartoon depicting the temporal evolution of the

momentum-space anisotropy evolution expected to be generated in a heavy ion

collision at LHC energies. The inset yellow ellipses indicate the shape of the

momentum-space distribution with the horizontal direction corresponding to the

longitudinal (beamline) direction. The inset in the lower right shows a snapshot of

the receding nuclei, with the red wave indicating the stretching of a longitudinal

mode and the blue wave indicating a pseudo-static transverse mode.

During this period, the expansion and cooling of the QGP can be described
using the equations of linearized viscous hydrodynamics. At late times,
however, the system goes through a transition to hadronic degrees of free-
dom and eventually becomes too dilute to be reliably described by linearized
viscous hydrodynamics once again. The system subsequently “freezes-out,”
first chemically and then kinetically, and finally, the produced hadrons free
stream to the detectors, with an imprint of their former existence as a near-
equilibrium QGP left on their spatial/momentum distributions and relative
abundances.

Having discussed the general space-time picture of a heavy-ion colli-
sion, let’s now discuss, in some more detail, the evolution of the level of
pressure anisotropy expected. In order to illustrate the pressure anisotropy
expected at various stages of QGP evolution, in Fig. 2, I show a sketch of
the proper-time evolution of the level of momentum-space anisotropy mea-
sured by the ratio of the longitudinal pressure, PL, and transverse pressures,
PT . The blue band shows a range for the possible level of momentum-
space anisotropy. At early times, the lower bound of this band illustrates

Figure 2.1.: Cartoon that shows the evolution of the pressure anisotropy as a function of τ
in a LHC heavy-ion collision scenario. The blue shaded area represents the path
of different initializations of the system. As one can see at the starting time
of hydrodynamics τhydro the system is still not isotropic, since the ratio of the
pressures is not equal to one. Picture taken from [13].

theoretical number, strictly speaking it is no hydrodynamical quantity. However sometimes
people refer to the Knudsen number while working in a hydrodynamical framework. What
is meant by such a statement is that the underlying kinetic system has a proper – which
means small – Knudsen number in order to perform hydrodynamics.

At the very end of a heavy-ion collision particles are detected by a detector, which is
≈ 1014 times larger than the initial system size. It is clear that the detected particles can
not interact with themselves any more, since they are that much diluted. In this high Kn-
regime there exists a proper description as well, which is kinetic theory. In the limit of
no interactions it is often called free streaming. Therefore physicists who want to describe
the evolution of the medium have to switch their tools during the expansion. This is done
via the Cooper-Frye freeze out formula [16]. The basic idea is that the medium description
changes suddenly from a fluid-dynamical to a kinetic one as the medium is passing through
a hypersurface Σ. From this point on, the particles decouple from the fluid and, assuming
the emitted particles are then free, their momenta are frozen. The hypersurface Σ has to be
a closed three-dimensional surface in spacetime in order to eventually transform the whole
fluid.

This transition seems – not only to us – as a crucial point in the description of the fireball
created in a heavy-ion collision. For the appropriate application of the Cooper Frye formula
one needs to specify what is the criterion of switching from hydrodynamics to kinetic theory.
In other words one needs first to pin down a special dynamical quantity like Kn, temperature,
energy density, particle density or proper time and second one needs to specify a critical value
for the chosen parameter, which I will label as freeze out parameter from now on. This has
to be done in order to define Σ, which is just the surface made out of the points where the
hydrodynamical fields reach the critical value. The main motivation to improve this freeze
out formalism is the fact that computed final state observables depend on the initially chosen
freeze out parameter. Since this parameter is not associated with a phase transition, there
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2.2 Geometry

is no reason why a final state observable should depend on the point where a theoretical
physicist did change her/his ”tool ” to describe the medium. Accordingly, one should rather
expect that nature performs a smooth transition between the two asymptotic models valid
at small or large Knudsen numbers Kn.

However in the mentioned publication we showed that one is able to almost suppress
completely the dependence of physical final state observables on the freeze out parameter,
by dealing with anisotropic hydrodynamics [11], [17]. One of the innovative aspects of this
work was, that we used an anisotropy pointing along the radial direction, in which the
particles will fly freely after kinetic freeze out. As mentioned above, up to that time people
used anisotropic hydrodynamics only with the anisotropy displaying the global, longitudinal
direction. Whereas our direction of anisotropy is locally changing, since the radial direction
points in different directions at different regions in the fireball. But while doing so, we had
to introduce an anisotropy parameter ξ, which was up to that point a free parameter, which
adjusts our degree of local anisotropy.

In the present study we searched for a physical interpretation of the anisotropy parameter
ξ. To fill this object with a physical meaning we looked at the freeze out process ”from the
outside”. Which means that we approach the transition from the kinetic regime. In other
words we approached the kinetic freeze out ”backwards” in order to justify the anisotropy
parameter ξ in the hydro stage, via the later free streaming stage.

This chapter 2 is organized as follows: In section 2.3.1 we will present how one translates
the geometry of the assumed Bjorken flow into Christoffel symbols, which are needed for
the derivatives of the Boltzmann equation. Subsequent we present shortly how the inte-
gration measure is affected by the geometry. In the following section 2.4.1 we present the
Boltzmann equation with respect to the Milne coordinates. This equation is important for
the whole part 2. Afterwards in section 2.4.5 we will show, how this equation acts on the
Jüttner distribution, which is the relativistic equivalent to the classical Maxwell-Boltzmann
distribution.

2.2. Geometry

As a first step for describing transport phenomena in heavy-ion collisions we have to incor-
porate the geometry of the system and introduce proper variables. To realize the latter it
will be very helpful to work with expressions for the velocity which are additive. It is clear
that in special relativity’s high energy regime the usual velocities are not additive since one
needs to multiply them by a γ-factor. Due to the fact that we want to describe a medium
which is created by two ultra relativistic nucleons we have to work with the rapidity instead
of the classical velocity. It is common to chose the direction of the nucleon beams as z- or
longitudinal axis2. The (longitudinal) rapidity y in momentum space is defined as follows.

y =
1

2
ln

(
E + pz
E − pz

)
(2.2.1)

In the above definition pz is denoting the longitudinal momentum and E the relativistic
energy which contains also the rest mass. Using this definition one can easily build the
following expression.

2As it is also done in Figure 1.3.

11



2.2 Geometry

cosh(y) =
ey + e−y

2
=

E√
E2 − p2

z

(2.2.2)

Taking the advantage of the transverse mass’ definition m2
t = m2 + ~pt

2, where ~pt denotes
the momentum in the plane transverse to the beam axis, we are able to reformulate the
energy in dependence of the rapidity y.

E = mt cosh(y) (2.2.3)

In the same way one can construct sinh(y). This gives an expression for the longitudinal
momentum.

pz = mt sinh(y) (2.2.4)

While introducing polar coordinates in the transverse plane, we are able to formulate the
momentum 4-vector.

p′ =




E
px
py
pz


 =




mt cosh(y)
pt cos(Φ)
pt sin(Φ)
mt sinh(y)


 (2.2.5)

Here pt denotes the modulus of the momentum pointing in the transverse plane. However
in experiments it is hard to measure the particle’s energy and the momentum at once.
Therefore it is common to use the concept of the pseudorapidity η which is defined in the
next expression.

η =
1

2
ln

( |~p|+ pz
|~p| − pz

)
= − ln

(
tan

(
θ

2

))
(2.2.6)

In this formula θ is denoting the angle between the emitted particle and the beam axis.
Figure 2.2 shows a sketch of the geometrical meaning of the quantities introduced in equation
(2.2.6). Similar to the above mentioned procedure one can deduce the subsequent two
expressions.

|~p| = pt cosh(η) (2.2.7)

pz = pt sinh(η) (2.2.8)

Note that one can relate the two momentum variables y and η to each other. This is
for example done in [1]. For the particle spectra3 in the midrapidity region the following
statement holds.

3Number of particles per momentum bin.
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2.2 Geometry

dN

dη d2pt

∣∣∣∣
η=0

=
pt
mt

dN

dy d2pt

∣∣∣∣
y=0

(2.2.9)

Now we have established all variables describing the momentum space, but since we want
to describe transport of matter we have to deal with the position space as well. Based on
the above calculation it is common to introduce a rapidity like variable in the position space
as well. This variable is called spatial rapidity ηs.

ηs =
1

2
ln

(
t+ z

t− z

)
(2.2.10)

Again one can extract from formula (2.2.10) expressions for the t- and the z-component
of the position space by building cosh(ηs) and sinh(ηs). In addition we want to implement a
circular symmetry in the transverse plane. All in all we get for the position space 4-vector
the following formula.

x′ =




t
x
y
z


 =




τ cosh(ηs)
r cos(φ)
r sin(φ)
τ sinh(ηs)


 (2.2.11)

The angle φ is denoting the polar angle in the x-y-plane and r is the modulus of the
transverse vector. In addition one needs to remember that in one-dimensional expansion the
proper time follows the subsequent dependence.

τ =
√
t2 − z2 (2.2.12)

All in all the relevant variables in the position space are therefore

τ, ηs, r, φ (2.2.13)

We shall refer to these set as polar Milne coordinates. From now on the Greek indices, as
µ or ν denote the components of the 4-vector in polar Milne curved space i.e.

µ ∈ {τ, ηs, r, φ} (2.2.14)

Furthermore we will denote 4-vectors in this curved basis without the prime. In general
we indicate the partial derivation as follows.

∂µ :=
∂

∂xµ
(2.2.15)

For the unit vectors in momentum space which are associated with the curved position
space basis, one needs to employ the following formula.
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2.2 GeometryMultiplicities at midrapidity

• Number of charged particles found in detector as a function of 
pseudorapidity eta. Approximately independent of eta 

• Not all particles charged: 

• Total charged: 

•  RHIC: ~5000, LHC: ~25000

Ntot ⇡ 1.6⇥Nch

Figure 2.2.: Sketch which shows the meaning of the pseudorapidity η and the angle θ. Taken
from [18].

p′µ =
∂x′µ

∂xν
pν (2.2.16)

Inserting the appropriate vectors, one can relate the components of the momentum vector
to the spacetime components in the following manner.

pr = pt cos(Φ− φ) (2.2.17)

pφ =
pt
r

sin(Φ− φ) (2.2.18)

pηs =
mt

τ
sinh(y − ηs) (2.2.19)

pτ = mt cosh(y − ηs) (2.2.20)

where the momentum space variables, as mentioned before are:

mt, y, pt,Φ (2.2.21)

Note that we choose the ”offset” of the two polar angles origin φ and Φ to be zero. So we
can forget about the φ-expression in the cos, respective sin-term.

For the case of massless particles one can simplify further.

mt =
√
m2 + p2

t = pt (2.2.22)

Please note that we will often work just in two dimensions in position and momentum
space. This is due to the fact that for ultra relativistic heavy-ion collisions the created
system is nearly independent of the longitudinal direction4 as we can see in the sketch of
figure 2.3.

4At least in the most central region
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Basic picture

z z

Flow

• Most particles and energy continue along beam pipe !
• Those that undergo a large angle scattering form a medium and eventually reach  

detector
• Large Lorentz contraction of the nuclei indicate lack on longitudinal structure:  

Boost invariance in mid rapidity region

Figure 2.3.: Cartoon of the collision process from outside the system. Taken from [18].

Of course it is more reliable to have a justification by a measurement, than just a sketch.
Therefore figure 2.4 shows data taken from LHC and RHIC heavy-ion collisions at various
collision energies, which justify the already above mentioned geometry. As one can see the
number of detected (charged) particles shows a plateau at mid-rapidity around η = 0. Hence
the two dimensional approach is convenient as long as we are not aiming at physics ”in the
tail”. As a remark let us mention that one can extract the total number of detected particles
from 2.4 as well, which shows to be5 ≈ 25000.Multiplicities at midrapidity

• Number of charged particles found in detector as a function of 
pseudorapidity eta. Approximately independent of eta 

• Not all particles charged: 

• Total charged: 

•  RHIC: ~5000, LHC: ~25000

Ntot ⇡ 1.6⇥Nch

Figure 2.4.: Plot of the detected charged particle number over pseudorapidity η. Taken
from [18].

2.3. Preparation

2.3.1. Christoffel symbols for Milne coordinates

In this section we need to elaborate how the choice of the spacetime components (2.2.13)
affects the dynamics. Since we want to employ the above mentioned spacetime symmetry,
which features a curvature, we have to rewrite several derivatives in order to work out a
dynamical evolution equation. In order to do so we need to start with computing Christoffel
symbols.

The general definition for the Christoffel symbols is the following.

5Number taken from [18] as well.

15



2.3 Preparation

Γρµν =
1

2
gρα(∂µgνα + ∂νgµα − ∂αgµν) (2.3.1)

While taking a short look at formula (2.3.1) the following statement can be checked.

Γρµν = Γρνµ (2.3.2)

The metric we will use from now on, due to the mentioned Milne coordinates and polar
symmetry has the following structure.

gµν =




τ ηs r φ

τ 1 0 0 0
ηs 0 −τ2 0 0
r 0 0 −1 0
φ 0 0 0 −r2


 (2.3.3)

As can be seen easily we work in the mostly minus signature throughout this thesis. Based
on the fact that the following statement holds, where δµσ denotes the Kronecker-Delta symbol,
we can construct the inverse metric.

gµνgνσ = gµ σ
!

= δµ σ (2.3.4)

The inverse metric has the below form.

gµν =




τ ηs r φ

τ 1 0 0 0
ηs 0 − 1

τ2 0 0
r 0 0 −1 0
φ 0 0 0 − 1

r2


 (2.3.5)

To calculate the non-vanishing Christoffel symbols, it is time saving to recognize that there
are only the following two non-vanishing derivatives of gµν .

∂τ gηsηs (2.3.6)

as well as

∂r gφφ (2.3.7)

This gives us for the terms in the bracket of the sum in (2.3.1) the following non-vanishing
contributions.

1st term of the sum:

∂τ gηsηs =̂ ΓXτηs (2.3.8)

∂r gφφ =̂ ΓXrφ (2.3.9)
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2.3.1 Christoffel symbols for Milne coordinates

2nd term of the sum:

∂τ gηsηs =̂ ΓXηsτ (2.3.10)

∂r gφφ =̂ ΓXφr (2.3.11)

This summand reflects the symmetric behavior shown in equation (2.3.2).

3rd term of the sum:

∂τ gηsηs =̂ ΓXηsηs (2.3.12)

∂r gφφ =̂ ΓXφφ (2.3.13)

The next step is to determine the still indetermined index, which is up to here labeled
with the capital X in the above formulas (2.3.8) – (2.3.13). Benefiting from the diagonality
of both gµν and gµν , which have to be multiplied due to definition (2.3.1), one can deduce
the only non-vanishing parts of the different terms. These are presented in the following.

1st term of the sum:

gρηs ∂τ gηsηs 6= 0 ⇔ ρ = ηs ⇒ Γηsτηs (2.3.14)

gρφ ∂r gφφ 6= 0 ⇔ ρ = φ⇒ Γφrφ (2.3.15)

2nd term of the sum:

gρηs ∂τ gηsηs 6= 0 ⇔ ρ = ηs ⇒ Γηsηsτ (2.3.16)

gρφ ∂r gφφ 6= 0 ⇔ ρ = φ⇒ Γφφr (2.3.17)

3rd term of the sum:

gρτ ∂τ gηsηs 6= 0 ⇔ ρ = τ ⇒ Γτηsηs (2.3.18)

gρr ∂r gφφ 6= 0 ⇔ ρ = r ⇒ Γrφφ (2.3.19)

All in all we get the following expressions for the non-vanishing Christoffel symbols.

1st term of the sum:

Γηsτηs =
1

2
gηsηs(∂τgηsηs + 0− 0) =

1

τ
(2.3.20)

Γφrφ =
1

2
gφφ(∂rgφφ + 0− 0) =

1

r
(2.3.21)

2nd term of the sum:

Γηsηsτ =
1

2
gηsηs(0 + ∂τgηsηs − 0) =

1

τ
(2.3.22)

Γφφr =
1

2
gφφ(0 + ∂rgφφ − 0) =

1

r
(2.3.23)

3rd term of the sum:

Γτηsηs =
1

2
gττ (0 + 0− ∂τgηsηs) = τ (2.3.24)

Γrφφ =
1

2
grr(0 + 0− ∂rgφφ) = −r (2.3.25)
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With the above equations (2.3.20) up to (2.3.25) we computed all non-vanishing Christof-
fel symbols for the Milne-coordinates. As a cross-check one can realize that they are in
accordance with the symmetry presented in equation (2.3.2).

2.3.2. The integration measure for the Milne geometry

First it is our task, to translate the integration measure, which can be found for example
in [19]6 into our symmetry. In general the integration measure is constructed as follows.

∫
d4p Θ(p0)

δ(p2 −m2)√
−det(g)

Here δ is the one-dimensional Dirac-Delta distribution. This Delta distribution is assuring
the mass-shell condition, which has to be fulfilled by physically measurable particles. The
denominator is build up by the square root of the metric’s determinant.

∫
d4p Θ(p0)

δ(p2 −m2)√
−det(g)

=

∫
d4p√
−det(g)

Θ(pτ ) δ
(

(pτ )2 − (pr)2 − τ2(pηs)2 − r2(pφ)2 −m2
)

For the Dirac-Delta distribution depending on a function f(x) it is known one can refor-
mulate the distribution with respect to the function’s argument.

δ(f(x)) =

N∑

i=1

δ(x− xi)
|f ′(xi)|

In the upper formula the sum runs over all zeroes of f(x), which are denoted by xi. The
prime indicates the first derivative of the function with respect to x. We use this relation in
order to solve the pτ integral.

Θ(pτ ) δ
(

(pτ )2 − (pr)2 − τ2(pηs)2 − r2(pφ)2 −m2
)

= Θ(pτ )(
δ(pτ −

√
(pr)2 + τ2(pηs)2 + r2(pφ)2 +m2)

2|pτ |

+
δ(pτ +

√
(pr)2 + τ2(pηs)2 + r2(pφ)2 +m2)

2|pτ |

)

= Θ(pτ )

(
δ(pτ −

√
(pr)2 + τ2(pηs)2 + r2(pφ)2 +m2)

2|pτ |

)

Because of the stepfunction Θ(pτ ) the second Delta-distribution will never give a contri-
bution. Now we are able to perform the pτ -integral. Finally we end up with an expression
for the integration measure.

6Section A.3
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2.4 Relativistic Boltzmann equation in polar Milne coordinates

∫
d4p√
−det(g)

Θ(p0) δ(p2 −m2) =

∫
d3p

2
√
−det(g) pτ

, (2.3.26)

where pτ is given by the corresponding mass-shell condition.

pτ = gττp
τ = gττ

√
(pr)2 + τ2(pηs)2 + r2(pφ)2 +m2.

At this point we have to insert the determinant of the metric (2.3.3) in order to have the
translated momentum integral measure for our spacetime symmetry.

d3p

2pτ
√
−det(g)

=
d3p

2(τr)pτ

Note that in the above metric (2.3.3) the ττ -component is equal to 1. Therefore we will
be sloppy and write pτ instead of pτ . With the unit-vectors (2.2.17) up to (2.2.20) one can
modify the integration measure to the final expression.

∫
d3p

2(τr)pτ
=

∫ ∞

−∞
dpr

∫ ∞

−∞
r dpφ

∫ ∞

−∞
τ dpηs

1

2(τr)pτ

=

∫ ∞

−∞
dpr

∫ ∞

−∞
dpφ

∫ ∞

−∞
dpηs

1

2pτ
(2.3.27)

2.4. Relativistic Boltzmann equation in polar Milne coordinates

In this section we want to derive the relativistic Boltzmann equation in polar Milne coordi-
nates (2.2.13) for one particle species. Please note that we are presenting more a phenomeno-
logical motivated approach instead of a strict mathematical derivation. We are only looking
for the effect of the curved spacetime on the resulting dynamics of the system. Therefore we
will not include external forces, which could for example arise from an electric field.

The Boltzmann equation in general is the classical evolution equation of the on-shell single
particle distribution function in phase space f(xµ, pi). Since we want to work in a setup where
the particle number is fixed, we can normalize the single-particle phase space distribution to
the total particle number in the system N , as it is usually done, i.e.

∫
d3p d3x

(2π)3
f(xµ, pi) = N(t) = N

With this normalization for f(xµ, pi), we can interpret the distribution function to be a
number density of particles in the phase space around the point (xµ, pi). This function is
contravariant in momentum-space as pointed out in [19] and [20]. It depends only on seven
fields, because of the mass-shell condition7 for the particles which are described by f(xµ, pi).
Note that we have to work within this statistical approach – dealing with densities – since
the number of effective degrees of freedom is too high8 in order to apply a deterministic

7see chapter 2.3.2
8See for example figure 2.4.
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2.4 Relativistic Boltzmann equation in polar Milne coordinates

framework.

2.4.1. Relativistic drift term in polar Milne coordinates

The purely streaming behavior of a many-particle system is described by the left hand side
of the Boltzmann equation, which is called drift term. Within this section we are deriving
an expression for the drift term respecting our phase space symmetries. The beginning of
the following derivation of the drift term is inspired by [21] (page 331 et sqq.)9.

For particles with rest mass m their 4-momentum is defined by the following formula.

pµ = m
dxµ

dτ̃
(2.4.1)

Whereas the proper time τ in the Milne coordinates is with respect to momentum along
the beam axis pz, here the proper time τ̃ is with respect to the whole three-dimensional
momentum ~p. Furthermore for the derivative of the momentum components pi with respect
to the proper time τ̃ holds the statement.

dpi

dτ̃
= m

d2xi

dτ̃2
(2.4.2)

The motion on a geodesic line – which is the motion of a free particle through a curved
space – is given by the following formula.

0 =
duµ

dτ̃
=
d2xµ

dτ̃2
+ Γµσν

dxσ

dτ̃

dxν

dτ̃

⇔ dpi

dτ̃
= −m Γiµν

dxµ

dτ̃

dxν

dτ̃
(2.4.3)

With the above, we elaborated all ingredients to derive the Boltzmann equation’s drift
term. We just need to take the total derivative of the distribution function f(xµ, pi) with
respect to proper time. After performing the chain rule one has to insert the expressions
(2.4.1) and (2.4.3) in order to gain an expression for the drift term.

m
df(xµ, pi)

dτ̃
= m

∂f

∂xµ
dxµ

dτ̃
+m

∂f

∂pi
dpi

dτ̃

= pµ
∂f

∂xµ
−m2 Γiµν

dxµ

dτ̃

dxν

dτ̃

∂f

∂pi

= pµ
∂f

∂xµ
− Γiµν p

µpν
∂f

∂pi
(2.4.4)

Note that here we did an important assumption. Namely we assumed the absence of
external forces in the system. In general such forces could be existent for example via
external gravitational, electric or magnetic fields. If they are present, they would contribute
via Newton’s second axiom to a change in the momentum space. In our setup a ”change in

9Please note that this book is written in order
”
to present the theory and applications of the relativis-

tic Boltzmann equation in a self-containing manner “(Preface). If the reader prefers to read original
publications, as for example [22] one can search for the cited articles within the book [21].
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2.4.2 Free streaming

momentum space” just happens due to the curvature, but particles do not get accelerated
as one can already see in the first line of (2.4.3).

Equation (2.4.4) builds the left-hand side of the Boltzmann equation and is often called
drift term. It describes the phase space densities – and therefore the system – dynamics in
position and momentum space over time due to the corresponding gradients. As one can see
the non trivial evolution will stop, when all the gradients are vanishing.

For the proper symmetries of our system we have to insert the computed Christoffel
symbols for the polar Milne coordinates from chapter 2.3.1 into equation (2.4.4). Therefore
the drift term for our spacetime symmetries finally reads.

[
pτ∂τ + pηs∂ηs + pφ∂φ + pr∂r −

2

τ
pτpηs

∂

∂pηs
− 2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f(xµ, pi) (2.4.5)

2.4.2. Free streaming

Up to now we only implemented a more or less trivial setup, where the effective degrees
of freedom just move on a geodesic line. Figure 2.5 is a sketch to illustrate the emerging
dynamics. In fact it shows the particle’s trajectories projected on the position space (left)
and the velocity space (right) as a function of time. Note that the velocity space and the
momentum space for particles with finite mass m are up to a factor m equivalent.

t t

x u

f(t,x) f(t,u)

Figure 2.5.: Sketch of the dynamics of the system in position (left) space and in momen-
tum (right) space. Inspired by [23]. Please note that this picture sketches the
Cartesian case.

As one can see on the right hand side, there is no change in particle momentum or velocity
over time. The background shade displays the density, the more paths are present in a
region, the higher the density is. The crucial point is displayed on the left hand side of the
figure. When two particle trajectories are crossing in position space, nothing happens, due
to the fact that no interparticle interactions are implemented so far. So as long as particle
trajectories are not crossing, the system’s evolution is just driven by the drift term. This
is for example the case in a system, where the microscopic mean free path or the Knudsen
number Kn is infinite. In the heavy-ion collision process this is the case, as mentioned in
the chapter 2.1, in the very last stage before the particle’s detection.
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2.4 Relativistic Boltzmann equation in polar Milne coordinates

For investigating the multiparticle system’s evolution at the very end of the fireball’s
expansion we can assume that the system’s dynamics is described by the drift term only.
Therefore in this epoch we can describe the system via the relativistic, free streaming Boltz-
mann equation.

[
pτ∂τ + pηs∂ηs + pφ∂φ + pr∂r

−2

τ
pτpηs

∂

∂pηs
− 2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f(xµ, pi) = 0 (2.4.6)

From a mathematical point of view, equation (2.4.6) is a homogeneous partial differential
equation.

2.4.3. Balance equations or Collision integrals

As the system’s Knudsen number Kn becomes finite instead of infinite one can not ignore the
interaction of the degrees of freedom anymore, because the microscopic interactions will play
an increasing role for the systems evolution. For implementing, at least in a phenomenological
way, the effect of collisions, there are some well established models. In the present and
following sections two of these models are presented shortly. Basically these approximations
are implemented at the right hand side of the Boltzmann equation.

[
pτ∂τ + pηs∂ηs + pφ∂φ + pr∂r

−2

τ
pτpηs

∂

∂pηs
− 2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f(xµ, pi) = Ep

(
df

dt

)

Coll

(2.4.7)

From a microscopical point of view the best justified Ansatz for the right hand side of the
Boltzmann equation is based on a balance approach. The basic idea is that microscopical
collisions can in principle induce two consequences: either a collision can scatter a particle
inside a certain phase space element (gain-term), or it can scatter a particle out of a certain
phase space element (loss-term). Under the assumption that a collision happens only local

and instantaneous one can model the so called collision term
(
df
dt

)
Coll

. Note that here another

scale separation is hidden, since we demand the local scatterings to act on such small scales,
that they are – compared to the phase space elements under investigation (xµ, pi) – point
like. Therefore one has to coarse grain the phase space in order to circumvent the quantum
mechanical scattering procedure.

The collision term
(
df
dt

)
Coll

is modeled as follows.

(
df

dt

)

Coll

=
∑

k

gk

(
1− δik

2

)

(2π)3

∫
d3 ~pk dΘ vrelik

[
f(xµ, ~pi

′)fk(x
µ, ~pk

′)− f(xµ, ~pi)fk(x
µ, ~pk)

] dσik
dΘ

(2.4.8)

Here the sum is running over all the relevant particle species in the system. The factor gk is
the corresponding degeneracy factor and fk is the respective distribution function for particles
of kind k. The integral runs over all the momenta of the participating particles in a collision
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2.4.3 Balance equations or Collision integrals

where one particle with momentum ~pi is entering/leaving the phase space element under
investigation. Due to this fact one term is positive in order to gain a particle, whereas the
other term involving f(t, x, ~pi) comes with a negative sign. This justifies the denomination
balance equation. The angle Θ is the solid scattering angle and vrelik is the relative velocity
between the two colliding particles. An important ingredient is the differential cross section
dσik
dΘ for processes involving particle species i and k. In principle here one can incorporate

computed differential cross sections for example from quantum field theory or one can extract
the measured total cross sections from [6]10. Since in our setup there is only one particle
species at play, the sum running over particle species k can be omitted.

An often used extension in order to describe the particles quantum statistics well, is to
incorporate Pauli-blocking or Bose-enhancement via involving the densities of the states
after/before the collision.

(
df

dt

)

Coll

=
∑

k

gk

(
1− δik

2

)

(2π)3

∫
d3 ~pk dΘ vrelik

[
f(xµ, ~pi

′)fk(x
µ, ~pk

′)(1± f(xµ, ~pi))(1± fk(xµ, ~pk))

−f(xµ, ~pi)fk(x
µ, ~pk)(1± f(xµ, ~pi

′
))(1± fk(xµ, ~pk

′
))
] dσik
dΘ

In the above formula the minus sign generates the fermionic repulsion in case the phase
space element is already occupied and the plus resembles the attractive force for bosons in
case of an occupied phase space element.

Another feature which is used sometimes is a phenomenological extension to two-to-three
particle collisions or decays.

Compared to the free streaming case described in section 2.4.2, figure 2.6 illustrates the

change in the system’s dynamics induced by the collision term
(
df
dt

)
Coll

.

t t

u

f(t,x) f(t,u)f(t,u)

x

Figure 2.6.: Sketch of the dynamic of the system in position (left) space and in momen-
tum (right) space. Inspired by [23]. Please note that this picture sketches the
Cartesian case.

10Note that especially for heavy-ion transport there is often an additional ’in-medium rescaling’ used, which
takes the effect of the surrounding medium into account.
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2.4 Relativistic Boltzmann equation in polar Milne coordinates

Again on the left hand side the particle’s trajectories projected on the position space are
sketched, whereas on the right hand side one can see the projection on the velocity space.
Whenever two paths in position space are crossing, a collision takes place. This collision
induces a non trivial behavior in the velocity or momentum space, since after a collision the
particle velocity changes. As it is indicated by the shaded area the result is a non trivial
evolution of the density function in both, position and momentum spaces. This can be seen
by comparing the shaded areas of figure (2.6) to the shaded areas in figure (2.5).

As a mathematical remark it is very important to know, that while inserting (2.4.8) into
the Boltzmann equation 2.4.7, one needs to solve an integro-differential equation, which is
quadratic in the desired distribution function f(xµ, pi). To solve such an equation is very
complex and challenging mathematicians since a long time. In addition one should keep in
mind, that these equations in general are in addition coupled through the different particle
species i and k.

Nevertheless the ansatz for describing a system of many interacting particles is commonly
used, although it is quite expensive in terms of computation time. Often the system described
by the Boltzmann equation is rather simulated, than actually solving the mathematical
integro-differetial equation by computer codes. For a recent overview of state of the art
computer codes working with this collision integral see for example all the so-called BUU11

codes in [24].

Studies with this ansatz for the collision term – really computing the Collision integral,
instead of just simulating the underlying particle dynamics – done by our group are [25]
and [26].

The last remark of this section is on the cases where the collision integral
(
df
dt

)
Coll

is

vanishing. This can be the case in two situations, which are from a physical point of view
very far away from each other12. Either the collision integral can vanish due to the fact that
all distribution functions are the local equilibrium functions. If this is the case, the difference
in the brackets of equation (2.4.8) is zero. Physically this is interpreted in such a way that
the microscopical interactions drive the system to a local equilibrium state feq(x

µ, pi) on
a rather small time scale. Once such a state is achieved, the effect of further interactions
do not contribute to the system’s dynamics anymore. To say it in other words, there exist
distribution functions feq(x

µ, pi), which can cancel the collision integral. These solutions are
called local equilibrium solutions. Please keep in mind, that they are not automatically a
solution to the whole Boltzmann equation, since it could be the case that they are not a
solution to the drift term or left hand side of the Boltzmann equation.

The collision integral is also vanishing in the case of vanishing cross sections σik. This
is referred as the free streaming limit and was already mentioned above. In that setup
interactions play no role in the system’s dynamics. Therefore the system is not able to evolve
to an equilibrium state. This is why this limit is sometimes called far from equilibrium limit.

So please keep in mind that in the case of infinitely many and in the case of no interactions
the evolution equations look the same, although the microscopical situation is completely
different.

2.4.4. Relaxation time approximation

The relaxation time approximation (RTA) is an approximation, which tries to phenomeno-
logically mimic the effect of the collision integral in the proximity of a local equilibrium state

11BUU stands for Boltzmann-Uehling-Uhlenbeck.
12In principle they are as far away from each other as possible.
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2.4.4 Relaxation time approximation

feq(x
µ, pi). Since in the subsequent parts we will work on the relaxation time approximation,

here we will just shortly present the main idea. As already mentioned this ansatz is valid
in the vicinity of a local equilibrium state. The basic idea is that the distribution function
f(xµ, pi) will locally relax to such an equilibrium distribution over a time scale τrel, which
is called the relaxation time. It is obvious that this timescale has to be longer than the time
between two microscopical collisions. With this model one circumvents the computationally
challenging part of the individual collisions and distribution functions. In addition one lin-
earizes the right hand side of the Boltzmann equation in the distribution function f(xµ, pi).
With this ansatz one circumvents two mathematical challenging features of the Boltzmann
equation (2.4.7). Namely one only has to deal with a partial differential equation instead
of an intergro-differential one, and secondly one bypasses the nonlinearity of the collision
kernel, which can be seen in equation (2.4.8).

In equation form the RTA ansatz for the Boltzmann equation’s right hand side looks like
the following.

−p
µuµ
τrel

(
f(xµ, pi)− feq(xµ, pi)

)
(2.4.9)

In expression (2.4.9) τrel has no dependence on the momentum, which means that the
distribution function is relaxing on all momentum scales in the same way. Of course one
can also deal with a momentum dependent relaxation time, this would reflect that particles
with different momenta relax on different time scales to equilibrium. Often this ansatz is
also called 1st - linearization.

This model for the right hand side of the Boltzmann equation is often used, for example
by [27], [28] or by another group [29].

If one further assumes that the system is locally near to a local equilibrium state feq(x
µ, pi)

– which will be approached during the system’s evolution, due to the first linearization – one
can linearize a second time. This time one linearizes the distribution function f(xµ, pi) with
respect to its displacement δf(xµ, pi) to the local equilibrium state. Written in a formula
the second linearization reads like the subsequent formula.

f(xµ, pi) = feq(x
µ, pi) + δf(xµ, pi) (2.4.10)

Plugging (2.4.10) into (2.4.9) leads to the – compared to the full collision integral expression
– handy expression for the right hand side of the Boltzmann equation after two linearizations.

−p
µuµ
τrel

δf(xµ, pi) (2.4.11)

Inserting these two linearizations one ends up with the phenomenological Boltzmann equa-
tion in Minkowski space.

pµ∂µ
(
feq(x

µ, pi) + δf(xµ, pi)
)

= −p
µuµ
τrel

δf(xµ, pi) (2.4.12)
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2.4 Relativistic Boltzmann equation in polar Milne coordinates

2.4.5. Role of the Jüttner distribution

In this section we want to investigate how the free streaming Boltzmann equation (2.4.6),
which we elaborated above, acts on the Jüttner-distribution13 in the case of vanishing chem-
ical potential, which is defined as the following.

fJüt ≡ C e−
pµuµ
T

LRF
= C e−

pτ

T (2.4.13)

Where C is a normalization constant. This Jüttner distribution is the relativistic equiva-
lent to the Maxwell-Boltzmann distribution, which is a solution to the classical Boltzmann
equation when there are no quantum statistical effects. From a thermodynamical point of
view this distribution function is describing a thermalized ideal gas. We boosted the distri-
bution function into the local rest frame (LRF), where the only non vanishing component
of the flow velocity field is the τ -component. As a first step we assume the temperature T
to be constant in position space. We make this assumption in order to check whether this
Jüttner distribution can solve the free streaming Boltzmann equation, which we elaborated
above. Thus

pµ
∂
(
e−

pτ

T

)

∂xµ
− Γiµν p

µpν
∂
(
e−

pτ

T

)

∂pi
?
= 0 (2.4.14)

After a short look at equation (2.4.14) one realizes immediately that if pτ would be inde-
pendent of all the other pi and xµ components, the equation would be solved.

But of course this is not the case, since we need to implement the mass-shell condition.

m2 = pµpµ = gµν p
µpν

⇔ pτpτ
(2.3.3)

= m2 + τ2 pηspηs + prpr + r2 pφpφ

⇔ pτ =
√
m2 + τ2 pηspηs + prpr + r2 pφpφ (2.4.15)

If we do so and use in addition the following.

(
∂

∂pµ

)
p2 = 2pµ

With all the above, we are able to rewrite the exponent of the Jüttner distribution in
terms of the phase space components xµ and pi. Thus inserting expression (2.4.15) into the
distribution (2.4.13) and further inserting this into the free streaming Boltzmann equation
(2.4.6), while making use of the above shown rule for derivatives, we work out the following
computation.

13Sometimes this distribution function is called Jüttner-Maxwell-Boltzmann distribution.
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2.4.5 Role of the Jüttner distribution

0
?
=

[
pµ

∂

∂xµ
− Γiµν p

µpν
∂

∂pi

]
Ce−

pτ

T

(2.4.15)
= C

[
pµ

∂

∂xµ
− Γiµν p

µpν
∂

∂pi

]
e−

1
T

√
m2+τ2pηspηs+prpr+r2pφpφ

= C

[
pτ∂τ + pηs∂ηs + pφ∂φ + pr∂r −

2

τ
pτpηs

∂

∂pηs
− 2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]

e−
1
T

√
m2+τ2pηspηs+prpr+r2pφpφ

= −C
T

[
pτ

1

2pτ
2 τpηspηs + pr

1

2pτ
2 r pφpφ

]
e−

1
T

√
m2+τ2pηspηs+prpr+r2pφpφ

+
C

T

[
2

τ

pτpηs

2pτ
τ2 2 pηs +

2

r

prpφ

2pτ
r2 2 pφ − rp

φpφ

2pτ
2pr
]

e−
1
T

√
m2+τ2pηspηs+prpr+r2pφpφ

=
−C
T pτ

[
τ pτpηspηs + r prpφpφ − 2 τ pτpηspηs − 2 r prpφpφ + r prpφpφ

]

e−
1
T

√
m2+τ2pηspηs+prpr+r2pφpφ

(2.4.15)
=

C

T pτ
[τ pτpηspηs ] e−

pτ

T

⇔ 0 =
C

T
[τ pηspηs ] e−

pτ

T (2.4.16)

Equation (2.4.16) shows how the free streaming Boltzmann equation in our curved basis
acts on the Jüttner distribution fJüt. After taking a short glimpse at this expression it
seems that the Jüttner distribution (2.4.13) is no solution to our free streaming Boltzmann
equation.

What we found so long, is the fact that the expansion in the ηs-direction pulls the system
away from equilibrium. In a spacetime setup where a component expands with time, it is
impossible to find a solution which is time independent. The system, which is initially a
thermodynamic one, is not able to reach equilibrium, in the sence of a time independent
state, when the space is always changing.14 This is comparable with a statement made
in [21](page 336). Also from a physical point of view the above result is reasonable. Since we
implemented the Bjorken flow in the longitudinal component, this component has to exhibit
such a non trivial flow, which is reflected by the non vanishing drift term in equation (2.4.16).

But one has to mention that the mid-rapidity constraint pηs = 0 is often used while
analyzing heavy-ion collision geometries. If we assume the mid rapidity assumption here as
well, the Jüttner distribution, which is describing thermal equilibrium, is a solution to our
setup. But of course one should keep in mind that we are only able to make statements for
the dynamics of the mid rapidity region. Therefore our computations will not be valid ”at the
longitudinal edges” of the fireball. Comparing with figure 2.4 the mid rapidity description
is valid roughly up to the region |η| = 1.5 for the green data set and up to |η| = 3 for the
top RHIC energies (red data set). For LHC data one can not make a trustworthy statement
from this plot.

Therefore we can assume that a system initialized in a state, which is described by the
Jüttner distribution, will stay – at least in the mid rapidity region – in such a thermodynamic

14For an interesting discussion see [30] where they found, ”for a particular initial condition this set can be
solved exactly, yielding the first analytical solution of the Boltzmann equation for an expanding system.”
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2.4 Relativistic Boltzmann equation in polar Milne coordinates

equilibrium state during the whole free streaming evolution, because neither the expansion
nor interactions are able to remove the system from equilibrium.

Note that the Jüttner-distribution is also in the cylindrical symmetric (with additional
mid-rapidity: pηs = 0 assumption) case an equilibrium distribution, since the ∂φ and ∂ηs
derivatives give no additional contribution.

2.4.6. Closing remark

At this point one should ask what is left to do. Since we know a solution – namely – the
Jüttner solution, which is solving the drift term and – what I did not present explicitly but
should be clear – the collision integral (2.4.8).

First I can imagine that some people would be very disappointed, if the thesis would
be already over at this point, but an even more important second reason for our further
investigations can be seen if we take a look at the microscopic scales that are involved in the
description.

As we mentioned at the beginning for applying kinetic theory it is good to have a separation
of the microscopic scale to the macroscopic scale. The characteristic quantity for such a scale
separation is the Knudsen number Kn. Therefore let us take a look at the Knudsen number
in the setup. It is clear that the microscopic scale is hidden in the collision term (2.4.8). To
see this let us divide the collision integral by a typical scale fc for the distribution function.

1

fc

(
df

dt

)

Coll

=
∑

k

gk

(
1− δik

2

)

(2π)3

∫
d3pk

︸ ︷︷ ︸
∝p3

vrelik︸ ︷︷ ︸
∝ r
τ

dσik
dΘ

dΘ
︸ ︷︷ ︸
∝r2

1

fc︸︷︷︸
∝r3p3

[f(t, x, pi′)fk(t, x, pk′)− f(t, x, pi)fk(t, x, pk)]︸ ︷︷ ︸
∝(r−3p−3)2

∝ 1

τ

Let us denote the characteristic time scale of the collision term by τ = τcoll. This is the
typical time scale on which the microscopical interactions influence the systems dynamics.
With the degree of freedom’s typical velocity vs one can relate τcoll and lmfp via

lmfp ≈ vs τcoll. (2.4.17)

The macroscopic length L, is basically characterized by the inverse of the typical size of
the gradients in position space of the drift term (2.4.4).

When we look at the ideal hydrodynamical limit, where many particle interactions are at
play,15 the Knudsen number Kn is very small, if the gradients in the drift term are small
enough. In the Kn = 0 limit there are very many interactions, but the collision term does
not contribute to the dynamics, since it lives on too small time scales. Starting from this
small Kn-setup one can perform a systematic expansion in the small Kn in order to get
corrections due to the finiteness of τcoll. This was done in an extremly systematic way,
including another expansion parameter called Reynolds number, which basically is a number
characterizing hydrodynamical flow, in the so-called DNMR-formalism16 [31].

15Be aware that the Boltzmann ansatz is pushed to a limit where one should get trouble with the concept,
since interactions are not rare anymore.

16DNMR stands for Denicol, Niemi, Molnar and Rischke, who are the authors of the cited publication.
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2.5 The steady state free streaming solution

Another ansatz which tries somehow to re-sum the corrections in the Knudsen number
arising from anisotropies is the anisotropic hydrodynamics. Within this formalism we per-
formed our previous studies [11], as mentioned in section 2.1.

At the other limit, where particles are free streaming, the mean free path is infinite.
To expand in a meaningful way in a small parameter, it is advised to expand in inverse
Knudsen number Kn−1. But up to now we are not aware of such a procedure carried out in
the systematics of the DNMR-formalism. Although [26] can be understood as being a first
step into this direction. Due to the lack of such a formalism, we come back to the formalism
of the anisotropic hydrodynamics and look how this formalism is translated throughout the
evolution from small to infinite Knudsen number.

1

1
!"#$

!"

viscous
hydrodynamics

ideal
hydrodynamics

DNMR

free
streaming

0

0

Figure 2.7.: Sketch of the approaches for describing transport in the different Knudsen num-
ber regimes Kn.

Figure 2.7 illustrates the different Knudsen number regimes and the corresponding suitable
theoretical tools for describing transport in the regimes. It is important to note that right
now there exists no systematic expansion for the Kn−1 ' 0 regime. That is why the dark
green arrow is not labeled.

2.5. The steady state free streaming solution

In this section we are presenting the free streaming solution to the steady version of the free
streaming Boltzmann equation (2.4.6), which features anisotropies. Therefore our setup is
a system whose evolution is not affected by particle interaction and in addition that has no
time dependence. In some sense we are approaching the freeze out process from the infinite
Knudsen number side with a tool that worked well in the ”not small anymore”– Kn regime.

2.5.1. Derivation

In principle we describe a gas of non-interacting particles, which are permanently emitted
by a ”source” sitting at r = 0 in order to guarantee the time independence of the system’s
evolution. Figure 2.8 illustrates the flow pattern. The blue dot represents a continuously

29



2.5 The steady state free streaming solution

Figure 2.8.: Sketch of the dynamical set up.

particle emitting source. Of course one has to improve this simplification if one thinks of the
freeze out process. But leaving aside ’turn on’ and ’turn off’ effects of the freeze out process,
due to the non stationary nature of the experiment, we can study the kinetic freezeout’s
main time interval.

To do so we need the central element of the anisotropic hydrodynamic formalism, which is
namely the Romatschke-Strickland distribution [32]. The most general mid-rapidity ansatz
for this distribution reads as the following.

fRS(xµ, pi) = Ce
−
√
m2

Λ2 + prpr

Λ2 (1+ξr)+ r2pφpφ

Λ2 (1+ξφ)+ τ2pηspηs

Λ2 (1+ξηs )

pηs=0
= Ce

−
√
m2

Λ2 + prpr

Λ2 (1+ξr)+ r2pφpφ

Λ2 (1+ξφ)
(2.5.1)

Where C is a constant, Λ is the anisotropic temperature, m represents the particle’s mass
and the ξr and ξφ are anisotropy parameters. They ensure that the different momentum
components are weighted in a different way. With their inclusion one is able to tune the
anisotropy in momentum space.

strickland printed on November 5, 2014 19

Fig. 5. (Color online) Equal occupation number surface for the spheroidal

anisotropic hydrodynamics distribution function.

Stokes solution is inherently momentum-space anisotropic, one can interpret
⌧⇡ as the “anisotropization” time scale. In the strong-coupling limit of
N = 4 SYM one finds ⌧⇡ = (2 � log 2)/2⇡T [10, 112] which gives ⌧⇡ ⇠ 0.1
fm/c and ⌧⇡ ⇠ 0.07 fm/c for the RHIC- and LHC-like initial conditions
stated in Lecture 1, respectively. Therefore, one expects to see very rapid
anisotropization of the QGP generated in a heavy-ion collision.

3.2. Leading-order anisotropic hydrodynamics

Since one expects to see rapid anisotropization of the QGP generated in
heavy-ion collisions, it might be e�cacious to take into account the existence
of these momentum-space anisotropies from the outset. As discussed in the
introduction, this can be accomplished by generalizing the leading-order
term in the expansion of the one-particle distribution function to

f(x, p) = fiso

 p
pµ⌅µ⌫(x)p⌫

⇤(x)
,
µ(x)

⇤(x)

!
. (3.17)

The original formulation of anisotropic hydrodynamics was based on an
azimuthally symmetric (spheroidal) ansatz for the local rest frame (LRF)
anisotropy tensor ⌅µ⌫(x) [88, 89]. In this case, the anisotropy tensor only
involves a single anisotropy parameter ⇠ with ⌅µ⌫

LRF(x) = diag(1, 0, 0, ⇠(x))
and, therefore, for a system of massless particles, pµ⌅µ⌫(x)p⌫ reduces to
p2 + ⇠(x)p2

L in the LRF. In the spheroidal formulation, ⇠ = 0 gives an
isotropic distribution, �1 < ⇠ < 0 gives a prolate distribution, and 0 < ⇠ <
1 gives an oblate distribution (see Fig. 5). We will take this as the definition
of leading-order (LO) anisotropic hydrodynamics for the remainder of this
lecture. In the next lecture, we will discuss possible generalizations of the
leading-order anisotropy tensor.

In order to motivate why a spheroidal form might be a good starting
point, in Fig. 6, I present a plot made by Huichao Song in her PhD disser-

Figure 2.9.: Sketch of the effect of the anisotropy Parameter ξ. The shaded area indicates
the surface of equal density in momentum space. Taken from [13].

Figure 2.9 is a plot, which indicates the impact of one anisotropy parameter ξ through
plotting the surface of equal density in momentum space. As one can see for ξ equal to
zero the system is isotropic in momentum space. In this case the distribution function
(2.5.1) has the same form as the Jüttner distribution (2.4.13). Further one can identify the
”anisotropic temperature” to be the thermodynamical temperature T . This fact clarifies the
label anisotropic temperature for Λ, since the parameter plays in the presence of anisotropy
the role that a temperature plays in case of a thermalized (isotropic) medium.

For ξ > 0 the associated direction becomes compressed compared to the other momen-
tum components, whereas for −1 < ξ < 0 the anisotropic momentum component becomes
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2.5.1 Derivation

elongated. After a short glimpse at formula (2.5.1) it is clear that ξi can not be less than
−1, since the distribution function would become a complex number. But in order to be a
distribution function it has to be a real function for all (physical) momenta.

Note that we do not incorporate quantum statistic effects like Bose enhancement or Pauli
blocking into the distribution function (2.5.1). Further we assume the anisotropy parameter
to be spacetime dependent (ξi = ξi(xµ)).

In principle one can now compute the moments of the distribution function (2.5.1) in order
to compute the consequential hydrodynamic evolution. As well one can insert this ansatz in
the Cooper-Frye integral and compute particle spectra. This – and a little bit more – was
all done in [11]. But for all these computations ξ was just a free parameter. We are now
applying the – in the heavy-ion process – subsequent kinetic evolution in order to fill this
parameter with a kinetic meaning. Eventually this procedure will govern a much smoother
transition of both theories and in addition it diminishes the number of free parameters in
the description.

In order to achieve this, we insert the Romatschke-Strickland distribution (2.5.1) into
the free streaming Boltzmann equation (2.4.6) for mid-rapidity under the assumption of
time independence. Performing the derivatives – under the assumption that the anisotropic
temperature Λ is constant – leads to the following computation17.

0
!

=

[
pr∂r + pφ∂φ −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
Ce
−
√
m2

Λ2 +
prpr(1+ξr)

Λ2 +
r2pφpφ(1+ξφ)

Λ2

Performing the derivatives leads to the following.

=


pr


−2rpφpφ(1 + ξφ) + r2pφpφ(∂rξ

φ) + prpr(∂rξ
r)

2Λ2

√
m2

Λ2 + prpr(1+ξr)
Λ2 + r2pφpφ(1+ξφ)

Λ2




+pφ


− r2pφpφ(∂φξ

φ) + prpr(∂φξ
r)

2Λ2

√
m2

Λ2 + prpr(1+ξr)
Λ2 + r2pφpφ(1+ξφ)

Λ2




−2

r
prpφ


− 2r2pφ(1 + ξφ)

2Λ2

√
m2

Λ2 + prpr(1+ξr)
Λ2 + 2r2pφpφ(1+ξφ)

Λ2




+rpφpφ


− 2pr(1 + ξr)

2Λ2

√
m2

Λ2 + prpr(1+ξr)
Λ2 + r2pφpφ(1+ξφ)

Λ2




 fRS(xµ, pi)

Under the assumption that the distribution function fRS does not vanish we have to deal
with the expression:

fRS 6=0⇔ 0 =
[
−2rprpφpφ(1 + ξφ)− r2prpφpφ(∂rξ

φ)− prprpr(∂rξr)− r2pφpφpφ(∂φξ
φ)

−prprpφ(∂φξ
r) + 4rprpφpφ(1 + ξφ)− 2rprpφpφ(1 + ξr)

]

17The author apologizes for interchanging the traditional left hand side and the right hand side.
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2.5 The steady state free streaming solution

Here we can reorganize the terms in the following manner.

⇔ 0 = −
[
rprpφpφ

(
r(∂rξ

φ) + 2(ξr − ξφ)
)

+ prprpr(∂rξ
r)

+r2pφpφpφ(∂φξ
φ) + prprpφ(∂φξ

r)
]

(2.5.2)

Since we want to identify the ”radial temperature” as the temperature of the radial particle
spectrum, we choose ξr = 0. In addition we simplify the equation (2.5.2) by demanding
ξφ = ξφ(r). Which means that the anisotropy parameter depends only on the radial distance,
not on the polar angle φ. We do this since we want to keep the symmetry with respect to
the polar angle. Implementing the two above assumptions equation (2.5.2) converts into the
following differential equation.

0 = −rprpφpφ
(
r(∂rξ

φ)− 2ξφ
)

⇔ r∂rξ
φ = 2ξφ

⇔ ξφ = αr2 (2.5.3)

This is the solution for the anisotropy parameter under the above assumptions. Where
α denotes a constant, due to the fact that we solved a differential equation. For physical
reasons let us choose α in equation (2.5.3) to be proportional to the inverse value of a typical
length R squared, therefore the anisotropy parameter ξφ is a dimensionless parameter. With
this we get a final expression for the anisotropy parameter ξφ.

ξφ =
r2

R2
(2.5.4)

2.5.2. Phenomenology of the anisotropic free streaming solution

Now we insert the computed anisotropy parameter (2.5.4) and ξr = 0 into the Romatschke-
Strickland ansatz of the distribution function (2.5.1). Further we rename the parameter Λ
by T , but we have to keep in mind that this is only a thermodynamical temperature in the
case of isotropy. All in all our elaborated free streaming solution in the transverse plane at
mid rapidity looks as follows.

Ffs(x
µ, pi) = Ce

−
√
m2

T2 + prpr

T2 +
(

1+ r2

R2

)
r2pφpφ

T2
(2.5.5)

In equation (2.5.5) one can identify the so called ”effective anisotropic temperature” for
the φ-direction Tφ as:

T√
1 + r2

R2

= Tφ (2.5.6)

This is motivated by the fact that Tφ is the factor multiplying the pφ-component in the
same way as the ”normal temperature” does in an isotropic system. Therefore one can
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2.5.2 Phenomenology of the anisotropic free streaming solution

deduce that in the heavy-ion collision scenario the radial temperature freezes out and can
be measured as the temperature of the particle spectrum18. Typically this temperature
can be extracted from the inverse slope parameter of measured particle spectra. But as r/R
increases along the radial expansion, the effective temperature for the φ-component decreases
with distance to the starting point of this kinetic model in a smooth way.

Please keep in mind, that up to now our scenario is the following: First we assume the
system to be in equilibrium, so that the right hand side of the Boltzmann equation vanishes.
As one can see in the case where r � R the distribution function is the (isotropic) Jüttner
distribution. Then - more or less suddenly - we want the system to expand in a way, that the
drift term (left hand side) of the Boltzmann equation is solved. We are now able to perform
a transition from the equilibrium Jüttner solution to a radially free streaming solution under
the condition that the collision term keeps vanishing during this transition. This transition
is realized in a smooth way during the radial expansion.

Of course it would be interesting to see how the free streaming solution Ffs would be
affected by a collision term. But we do this later. First we are going to investigate physical
observables that emerge from the solution Ffs (2.5.5).

18This is due to the assumption on ξr we did between equation (2.5.2) and equation (2.5.3).
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2.6 Interlude Hydrodynamics

2.6. Interlude Hydrodynamics

Hydrodynamics is already for a long time a central element in the modeling of heavy-ion
collisions. Over the years there were plenty of new concepts included to optimize the de-
scription of heavy-ion collisions via hydrodynamics. Hydrodynamics by itself is an effective
field theory, which describes the system evolution on the basis of a few effective fields, in-
stead of tracing all particles trajectories. Therefore this theory is still applicable, when a
microscopical theory is no longer appropriate. This is due to the fact that one does not
need to know the effective degrees of freedom nor the too high amount of particles. In this
short summary we will concentrate on the relativistic formulation of hydrodynamics. For
an almost complete classical hydrodynamical textbook the reader is referred to [33]. For
a detailed introduction in relativistic hydrodynamics we recommend [34]. For a review for
applying hydrodynamics in heavy-ion collisions we refer to [35].

Basically hydrodynamics consists of a field formulation of particle and energy-momentum
conservation. Thus it has a very wide range of applicability ranging from geotectonics up to
the movement of a bacteria. In order to work within the framework of hydrodynamics one
has first to define a volume – called the fluid cell –, which sets the smallest scale limit of the
description. This has to be chosen in a way that the element is big enough in order that
the quantity’s value inside the volume, like particle number, does not fluctuate too much.
But the scale can not be chosen too big since one wants the gradients over several fluid cells
to be smooth. This smallest scale sets the limit of the description and has to be of course
much bigger than the microscopical mean free path lmfp. From now on all local quantities
like for example the particle number density n(t, ~x) are meant to be the quantity in the fluid
cell located at ~x. In addition the derivatives do have to respect this smallest scales, which
means that they are comparing the adjacent fluid cells.

As already mentioned above hydrodynamics is a field theory, therefore throughout this
chapter every variable has a dependence on the position space and time. However for the
sake of clarity we will leave aside the notation of the spacetime dependence. The central equa-
tions of motion, which reflect the particle number conservation and the energy-momentum
conservation are listed in the following five formulas19.

dµN
µ
i = 0 (2.6.1)

dµT
µν = 0ν (2.6.2)

In the above equations the vector Nµ
i denotes the particle four-current for particles of type

i, whereas Tµν symbolizes the energy momentum tensor, which is symmetric in the indexes
µ and ν. By the notation of the second equation it is stressed, that – if only one particle sort
is present – these are five equations. In the case that there are b kinds of conserved particles
in a system, one has to deal with 4+ b equations. After counting the number of components,
which have to be determined in (2.6.1) and (2.6.2) one realizes that this number is high.
Namely there are 4 · b - components from the particle currents and 10 components from the
symmetric energy momentum tensor. Since it is impossible to solve a system of five equations
for 14 variables, we have to search for further justifiable assumptions and equations.

A common way to decompose the hydrodynamical objects is shown in detail in the fol-
lowing.

19Note that formula (2.6.1) is one equation and expression (2.6.2) are four equations, since ν runs from 0 to
3.
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2.6 Interlude Hydrodynamics

Nµ
i = niu

µ + νµi (2.6.3)

Tµν = εuµuν − (P + Π) ∆µν + qµuν + qνuµ +$µν (2.6.4)

These equations have to be supplemented by the following equations for the various fields.

uµu
µ = 1 (2.6.5)

∆µν = (uµuν + gµν) (2.6.6)

uµνµ = 0 (2.6.7)

uµqµ = 0 (2.6.8)

$µν = $νµ (2.6.9)

gµν$
µν = 0 (2.6.10)

Here a lot of new objects are arising, which can be attached to physical quantities. To
do so we restrict the description of the system to the assumption that the fluid element is
described in its local rest frame (LRF). This LRF is a reference frame, where the fluid cell
under investigation is at rest. Due to the fact that in relativistic hydrodynamics all (vector)-
fields are constructed in such a way, that they transform properly under Lorentz boosts,
equations are formulated in the LRF and afterwards boosted into the experimental relevant
reference frame. The same procedure is applied the other way round, when one wants to
solve the hydrodynamical equations. In this case its local velocity field reads due to (2.6.5)
like:

uLRF =




1
0
0
0


 (2.6.11)

In this frame one can identify a couple of thermodynamical quantities in the system. The
ni in formula (2.6.3) is meant to be the particle density in the fluid element, whereas the
four-vector νµi is the so called particle flux, which is the number of particles escaping in that
instant from the considered fluid cell. The vector uµ, which is normalized due to (2.6.5),
is denoting the fluid four velocity. This vector field indicates the local fluid cell’s velocity
with respect to some reference frame. For simplicity let us from now on assume that there
is at most only one particle species in the system, like we did already while dealing with the
Boltzmann equation.

Let us count the number of independent components in this case. For the flow velocity
there are only 3 independent components due to the normalization. The same holds for the
flux field νµ. In addition we have to consider the orthogonality between the flow velocity
and the particle flux, which is denoted in formula (2.6.7).

The scalar field ε in equation (2.6.4) is the local energy density. P can be interpreted
as the thermodynamic pressure, which is imposed by the fluid cell to its neighboring cells.
The second term in the brackets, namely the Π is the dissipative pressure, which is a scalar
dissipative quantity. In contrast qµ is a rank 1 dissipative quantity. It can be interpreted
as the dissipating energy flowing out from the local fluid cell. Therefore qµ is called the
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2.6 Interlude Hydrodynamics

energy flux. The rank 2 dissipative tensor $µν mimics dissipative effects, which for example
contains the – in heavy-ion research highly investigated – shear viscous term. This term
models the effect of flow in a direction becomes dissipated in another direction. The second
rank tensor $µν has to be symmetric in it’s indices, since the energy momentum tensor
is symmetric. Throughout the introduction of Π, this tensor can be constructed with a
vanishing trace as well (2.6.10). In addition the product of $µν with the flow velocity uµ

gives the energy flux. All in all there are 5 independent components in $µν and qµ. Adding
the other independent components for ε, P + Π and uµ one ends up with 5 + 1 + 1 + 3 =
10 independent components again.

It can be checked that ∆µν is a projector, which projects onto the ’volume’ orthogonal to
the flow velocity uµ. Therefore the above decompositions (2.6.3) and (2.6.4) did not change
the number of components, which have to be determined.

Note that equations (2.6.7) to (2.6.10) are requirements on the dissipative fields. In the
case that there are no dissipative effects in the system, the fields νµ, Π, qµ and $µν vanish.

A crucial point is the choice of the reference frame. There are two choices which simplify
the hydrodynamical formulas. One option is to demand that uµ describes the flow of particles.
In this case the rank 1 dissipative tensor νµ in (2.6.3) is vanishing by definition. This reference
frame is called Eckart–frame [36]. Written in a formula the flow velocity in the Eckart–frame
has the following definition.

uµEckart =
Nµ

√
NαNα

The other choice for the fluid velocity is the flow of energy. Consequently in this case,
called Landau–frame, the qµ factors vanish [33]. Since the flow velocity follows the flow of
energy, it is the eigenvector of the energy momentum tensor Tµν :

ε uµLandau = Tµνu
ν
Landau

Note that these two frames differ, due to the fact that in a relativistic theory energy can
be transported for example via heat, but also via particles. In the case of no dissipative
effects the frames are equivalent.

2.6.1. Moments of the distribution function

Assuming that one knows the microscopical degrees of freedom, their phase space distri-
bution f(xµ, pi) as well as all relevant cross sections, or in other words one has a kinetic
microscopical model at hand, it is possible to construct all the above mentioned objects
out of this. In principle this should be possible since the hydrodynamical description is per
definition an averaging theory. Technically this is done by computing the so called moments
of the Boltzmann equation. In the absence of external fields this construction works like the
following.

For the particle conservation one forms the so called 0th -moment of the Boltzmann equa-
tion via integrating the Boltzmann equation over the on shell momentum space measure,
which we elaborated in formula (2.3.26).
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2.6.2 Ideal Hydrodynamics

∫
d3~p

2τrpτ
pµ∂µf(xµ, pi) =

∫
d3~p

2τrpτ

(
df

dt

)

Coll∫
dprrdpφτdpηs

2τrpτ
pµ∂µf(xµ, pi) = 0

⇔ ∂µ

∫
d3~p

2τrpτ
pµf(xµ, pi) = 0

⇔ ∂µN
µ = 0 (2.6.12)

Note that we used the fact, that the collision term should conserve the particle number.
Out of formula (2.6.12) one can extract the particle four current Nµ to be:

Nµ =

∫
d3~p

2τrpτ
pµf(xµ, pi) (2.6.13)

Similarly one computes the 1st-moment of the Boltzmann equation in order to obtain the
energy momentum conservation:

(∫
d3~p

2τrpτ
pν
)
pµ∂µf(xµ, pi) =

∫
d3~p

2τrpτ
pν
(
df

dt

)

Coll(∫
dprrdpφτdpηs

2τrpτ
pν
)
pµ∂µf(xµ, pi) =

∫
d3~p

2τrpτ
pν
(
df

dt

)

Coll

⇔ ∂µ

∫
d3~p

2τrpτ
pµpνf(xµ, pi) = 0

⇔ ∂µT
µν = 0 (2.6.14)

In this case the integral over the collision term vanishes, due to the fact that the microscopic
collisions have to conserve energy and momentum. Again one can read out the definition of
the hydrodynamical object Tµν , which turns out to be the following expression.

Tµν =

∫
d3~p

2τrpτ
pµpνf(xµ, pi) (2.6.15)

2.6.2. Ideal Hydrodynamics

With the definitions (2.6.13) and (2.6.15) one can now compute the hydrodynamics emerg-
ing from the Jüttner distribution (2.4.13). Since this is the equilibrium distribution, one
assumes the described fluid to be in equilibrium. Note that the factor in the exponent of
the first expression in (2.4.13) guarantees the right reference frame transformation behavior.
Computing the fields provides the ideal hydrodynamics, where Nµ and Tµν reads as the
following.

Nµ = nuµ (2.6.16)

Tµν = εuµuν −∆µνP (2.6.17)
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2.6 Interlude Hydrodynamics

As one can see while comparing equations (2.6.16) and (2.6.17) with (2.6.3) and (2.6.4),
all the above dissipative elements are not present in the ideal hydrodynamical fields. This
is the reason why these additional fields are called dissipative contributions. As a remark
let us mention that in the ideal hydrodynamical case the number of fields that have to
be determinded in the above tensors is 1(n) + 3(uµ) + 1(ε) + 1(P) = 6. Even in ideal
hydrodynamics there is one field more to be detemined than there are equations on hand.
But one is able to close the system of equations with an additional equation of state, which
relates the (thermodynamic) energy density ε and the thermodynamic pressure P. Such an
equation of state can be gained by assuming the system to be built up by an ultrarelativistic
ideal gas, which gives ε = 3P. It is much more realistic – but also it is much more complicated
– to gain such an equation of state via Lattice-QCD [37]. Figure 2.10 shows the outcome for
a QCD based equation of state from the Hot-QCD-collaboration.
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fixing cn = cd = 0 gives an excellent parametrization of
all our numerical data and is in good agreement with the
HRG estimate, at least down to T = 100 MeV. Further-
more, this parametrization agrees with the N⌧ = 8 data
well beyond T = 400 MeV.

The values of the parameters in our ansatz for the pres-
sure, Eq. (16), are summarized in Table II. The results
of this ansatz for the speed of sound, energy density, and
specific heat are compared with our continuum extrapo-
lated error bands in Figs. 7 and 8.

V. SPECIFIC HEAT, THE SPEED OF SOUND
AND DECONFINEMENT

All thermodynamic quantities, for fixed light and
strange quark masses, depend on a single parameter—
the temperature. In Section IV, we derived the basic
thermodynamic observables (✏, p, s) from the contin-
uum extrapolated trace anomaly ⇥µµ(T ). We now dis-
cuss two closely related observables that involve second
order derivatives of the QCD partition function with re-
spect to the temperature, i.e., the specific heat,

CV =
@✏

@T

����
V

⌘
✓

4
✏

T 4
+ T

@(✏/T 4)

@T

����
V

◆
T 3 , (17)

and the speed of sound,

c2
s =

@p

@✏
=
@p/@T

@✏/@T
=

s

CV
. (18)

The quantity Td(✏/T 4)/dT can be calculated directly
from the trace anomaly and its derivative with respect
to temperature,

T
d✏/T 4

dT
= 3

⇥µµ

T 4
+ T

d⇥µµ/T 4

dT
. (19)

These identities show that the estimates for the specific
heat and the speed of sound should be of a quality similar
to ✏/T 4 or p/T 4. In Figs. 7 and 8, we show the agree-
ment between the bootstrap error bands for these quan-
tities and the estimates obtained by taking second or-
der derivatives of the analytic parameterization for p/T 4

given in Eq. 16. The latter are shown as dark lines inside
the bootstrap error bands.

Figure 2.10.: Temperature dependent plot which relates energy density ε and pressure P,
while plotting the dimensionless so-called ”trace anomaly” of the energy mo-
mentum tensor. Taken from [37].

With such an equation of state the system of equations is completely solvable, since the
number of equations equals the number of to be determined fields.

In the local rest frame the components of the energy momentum tensor reads as follows.

TµνLRF =




ε 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


 (2.6.18)

In addition the particle flow four vector in the LRF has the following form.

Nµ
LRF =




n
0
0
0


 (2.6.19)
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2.6.3. Viscous Hydrodynamics

As we saw in chapter 2.4.2 there are several formalisms to model a deviation from local or
global equilibrium. At the end of the chapter the concept of linearization was introduced.
To construct the hydrodynamical fields for a system, which is not already in equilibrium the
easiest ansatz is the linearization (2.4.10). Since the correction is additive, the integral for
computing (2.6.12) and (2.6.14) will lead to additive contributions.

Nµ = Nµ
eq + δNµ (2.6.20)

Tµν = Tµνeq + δTµν (2.6.21)

Through a comparison with the decomposition (2.6.3) and (2.6.4) one can identify:

δNµ = νµ (2.6.22)

δTµν = qµuν + qνuµ +$µν := πµν (2.6.23)

In addition one can compute the various dissipative contributions via various projections,
which reads:

Π = −1

3
∆µνT

µν − P (2.6.24)

νµ = ∆µ
ρN

ρ (2.6.25)

qµ = ∆µ
ρT

ρνuν (2.6.26)

$µν =

(
1

2

(
∆µ
ρ∆ν

γ + ∆ν
ρ∆µ

γ

)
− 1

3
∆µν∆ργ

)
T ργ := T 〈µν〉 (2.6.27)

If one chooses the Landau frame for the flow velocity one can get rid of expression (2.6.26).
While inserting the above expressions for Nµ and Tµν one can show that only the additive
corrections δNµ and δTµν will contribute to the dissipation, since the ideal hydrodynamical
components vanish due to the projection. Nevertheless as already mentioned above there
are still 9 more dissipative contributions arising.

Since there are more terms that need to be determined, it is important to gain more
equations in order to close the system of equations again. A way how this can be achieved is
presented for example in the lectures [34]. If the reader prefers to read the original publication
we refer to the DNMR paper [31]. Hereafter we will only sketch the main concepts. The
basic idea is to employ microscopic dynamics in order to work out more equations. As in
the 1st linerarization case one models a generalized force, which generates the dissipative
flows (2.6.24) to (2.6.27). For symmetry reasons – since there has to exist such a force
for every dissipative effect – there have to be various ”generalized forces”, namely one for
every tensorial rank at play. Phenomenologically these generalized forces have to arise from
gradients of hydrodynamical fields between neighboring fluid cells. Written in formulas these
forces look like the following expressions.
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2.6 Interlude Hydrodynamics

Θ = ∂µu
µ (2.6.28)

Iµ = ∇µ
(µ
T

)
(2.6.29)

σµν = ∇〈µuν〉 (2.6.30)

ωµν =
1

2
(∇µuν −∇νuµ) (2.6.31)

The quite extensive work to do now is to relate how the dissipative flows emerge as an
answer to the forces, which are themselves originated by gradients of the hydrodynamical
fields again. The crucial point to realize is that we did not introduce new fields, but used
just gradients of already ”established” fields. Which means that we have more equations
(and more boundary conditions), but the same number of fields as before.

Please note that we are now implicitly dealing with at least two, in general independent,
numbers. One was – due to it’s importance in kinetic theory – already mentioned several
times, namely the Knudsen number. This is ”hidden” in the dynamics for the dissipative
currents. Since we linearized several times in our model we would be able to compute linear
contributions in Kn. The other transport number(s) is (are) the inverse Reynolds number,
defined as

R−1
Π =

|Π|
P , R−1

ν =
|νµ|
n
, R−1

π =
|π|
P (2.6.32)

These numbers are a measure for the deviation from the local equilibrium state and can
be in general different from each others.

With the above ingredients one can now start computations. In the DNMR formalism
the authors developed a way to treat the systems evolution in a systematic expansion in
Kn and Re−1 [31]. Here let us just mention that in a specific limit, namely the relativistic
Navier-Stokes formulation, one can identify the dissipative fields as a response for the forces
to look like the following.

Π = −ξ Θ (2.6.33)

νµ = κ Iµ (2.6.34)

πµν = 2 η σµν (2.6.35)

Here the (transport)-coefficients ξ, κ and η are the bulk viscosity, the heat conductivity
and the shear viscosity. They are general properties of the medium. The most investigated
transport coefficient is η. To be precise people look for values of the dimensionless ratio η/s.

Like the equation of state, in principle it would be useful to compute these coefficients
from a microscopical theory, like Lattice-QCD. However it turns out, that this is a hard
task to do. Therefore physicists often use this parameter η/s as a fit parameter in order to
reproduce experimental data [38].

Another way to compute a value for η/s is the AdS/CFT-correspondence. This correspon-
dence gives a value in the case that QCD would be described by an infinite-strongly coupled
theory with an infinite number of colors, which is 1/4π. This value is often argued to set the
overall lower bound for the shear viscosity over entropy ratio.

Indeed values extracted from the mentioned fit procedure of dissipative hydrodynamics
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tend to be near this lower bound. This is why the QGP is referred to be the most perfect
fluid. Please keep in mind that the fact of a small η/s-value does not imply a small value for
the shear viscosity. Due to the fact that the entropy density in the QGP is extremely high,
the value for the shear viscosity is rather large.

2.6.4. Anisotropic Hydrodynamics

The formalism of anisotropic hydrodynamics is rather new and still in development. Since
we explained the motivations for this formalism already in section 2.1, we just give a brief
mathematical derivation here. One derives the hydrodynamical fields for anisotropic hydro-
dynamics by computing the moments of the Romatschke-Strickland distribution (2.5.1). In
the original formulation to mimic the anisotropy at the very beginning of the hydrodynamical
regime the anisotropy is chosen to point in the direction of the beam. Thus the distribution
is written down in the following expression.

fanhy = Ce
1
Λ

√
p2+ξ(pz)2

(2.6.36)

Here the ξ denotes the anisotropy parameter, which we already saw before. Let us em-
phasize at this point again that Λ acts like a temperature in the case of isotropy, therefore
it is called anisotropic temperature. Computing the moments of this distribution function
fanhy one ends up with the following energy momentum tensor in the local rest frame.

Tµνlrf =




ε 0 0 0
0 Pt 0 0
0 0 Pt 0
0 0 0 Pz


 (2.6.37)

In the above energy momentum tensor Pt denotes the transversal pressure component
and Pz denotes the longitudinal component. Since we are not in an isotropic state, strictly
speaking we can not apply thermodynamics anymore. Due to this fact one has no equation
of state at hand. It is important as well to realize, that we introduced a new field, which has
to be determined, namely ξ. In order to close the system of equations again, we refer the
reader to [39].

The advantage of the anisotropic hydrodynamical framework is that it is claimed to treat
the largest dissipative correction as resumed in the exponential function. Due to this fact it
is already applicable in a region, where viscous hydrodynamics is not valid since there the
δf -term in (2.4.10) would be too large. The last point we want to remark here is, that one
can proceed further and take into account linear perturbations δf̃ as well. But since the
z-components are already taken into account in the zeroth order, this δf̃ is not the same
as the δf in (2.4.10). This makes the whole formalism a lot more complicated, but it was
carried out, for example in [40].

Be aware that typical values for η/s arising from anisotropic hydrodynamical-fits to data
are in general larger than those from viscous hydrodynamics [15]. Which means that they
are not that near to the values extracted from an infinitely strongly coupled theory anymore.
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2.7 Moments of the anisotropic free streaming solution for massless particles

2.6.5. Hydrodynamics including sources

A very recent development in the framework of hydrodynamics is the hydrodynamical frame-
work including dynamical sources which is presented in [41] or in proceedings form [42] or [43].
This development is necessary due to the fact that – in order to describe the BES data prop-
erly – one needs to take into account the dynamical feeding-in of baryon-number as well
as their energy and momentum. Such a feeding-in is necessary since the nucleons can be
stopped, because their initial kinetic energy is much smaller than in ultra relativistic heavy-
ion collisions. After being stopped their Baryon number and their energy and momentum
contribute to the medium content. This can be modeled via the following formulas.

dµN
µ
fluid = ρsource = −dµNµ

Bary (2.6.38)

dµT
µν
fluid = Jνsource = −dµTµνBary (2.6.39)

Here the particle fields – indicated by the index ”Bary” – are simulated dynamical via an
initial stage kinetic model, like for example URQMD20.

2.7. Moments of the anisotropic free streaming solution for
massless particles

In this section we are going to compute the hydrodynamic fields which arise from our new free-
streaming distribution Ffs. Traditionally equation (2.6.13) is called the first moment of the
distribution function. Whereas (2.6.15) is the second moment of the distribution function.
The labeling refers to the powers of pµ as weight. Of course one could build up higher
moments as well. These higher moments are key-ingredients in the DNMR formalism21.
For us this is not necessesary, since these higher moments are not directly related to a
hydrodynamical field. But these higher moments are very promissing in order to get a closed
system of equations in the formalism of anisotropic hydrodynamics, as it is done in [39] or
in the proceedings [45].

2.7.1. Useful substitutions

In order to keep the computations as well-arranged as possible we want to list a few substi-
tutions. This will enable us to keep the computation of the afterwards following integrals
more compact.

The first substitution merges the temperature, the momentum component and the possible
metric contribution in one variable in order to create a clean exponent.

qηs ≡ τ

T
pηs ⇒ dpηs =

T

τ
dqηs (2.7.1)

qφ ≡
r
√

1 + r2

R2

T
pφ ⇒ dpφ =

T

r
√

1 + r2

R2

dqφ (2.7.2)

qr ≡ 1

T
pr ⇒ dpr = Tdqr (2.7.3)

20URQMD stands for ultra relativistic quantum molecular dynamics [44].
21Although they are employing a secondary weight in energy as well.
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2.7.2 Moments of the massless anisotropic free streaming distribution Ffs

The second substitution which we will frequently use, is a transformation in spherical
coordinates in order to further simplify the exponent.

qφ ≡ |qr| cos(θq) (2.7.4)

qr ≡ |qr| sin(θq) cos(φq) (2.7.5)

qηs ≡ |qr| sin(θq) sin(φq) (2.7.6)

Since we perform a transformation into spherical coordinates we have to transform the
measures in the usual manner as well.

∫ ∞

−∞
dqr

∫ ∞

−∞
dqφ

∫ ∞

−∞
dqηs ⇒

∫ ∞

0
d|qr|

∫ 2π

0
dφq

∫ π

0
dθq| qr|2 sin(θq) (2.7.7)

2.7.2. Moments of the massless anisotropic free streaming distribution Ffs

In this subsection we present the different moments of the anisotropic free streaming distri-
bution function (2.5.5), which results in components of the hydrodynamical fields (2.6.13)
and (2.6.15). We are first dealing with massless particles, because in that case the integrals
are analytically solvable.

2.7.3. 0th-moment of the free streaming distribution Ffs(x
µ, pi)

In the following we will present the computation for the zeroth component in detail. For the
presented integrals afterwards we will not explain the same steps again, but rather denote
them during the computation.

I0 ≡
∫

d3p

2τrpτ
Ffs(x

µ, pi)

Inserting the distribution function (2.5.5) leads to the following.

I0 =
C

2

∫
dprdpφdpηs

e
−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

√
prpr + r2pφpφ + τ2pηspηs

In order to simplify the exponent we employ the substitutions (2.7.1) - (2.7.3) for the
momentum components.

I0 =
CT 3

2τr
√

1 + r2

R2

∫
dqrdqηsdqφ

e−
√
qrqr+qφqφ+qηsqηs

T
√
qrqr + qφqφ

(1+ r2

R2 )
+ qηsqηs

Now we can switch to the spherical coordinates (2.7.4) - (2.7.6), in order to simplify the
integral further.
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2.7 Moments of the anisotropic free streaming solution for massless particles

I0 =
CT 2

2τr
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ 2π

0
dφq

∫ π

0
dθq

|qr|2 sin(θq)e
−|qr|

|qr|
√

sin2(θq) +
cos2(θq)

(1+ r2

R2 )

At this point we can solve the |qr|- and the φq-integral.

I0 =
πCT 2

τr
√

1 + r2

R2

∫ π

0
dθq

sin(θq)√
(1+ r2

R2 ) sin2(θq)+cos2(θq)

(1+ r2

R2 )

Now one can perform the θq integral as well.

I0 =
πCT 2

τr

∫ π

0
dθq

sin(θq)√
1 + r2

R2 sin2(θq)
=
πCT 2

τr

2 arctan( rR)
r
R

=
2πCT 2R

τr2
arctan

( r
R

)
(2.7.8)

Formula (2.7.8) is the zeroth moment of the free streaming solution (2.5.5). Unfortunately,
this zeroth moment can not be related to a hydrodynamical field. However, since this is the
easiest integral one can follow the individual steps to solve the integrals best in this case. In
addition one can show, via using L’Hôpital’s rule, that in the limit of vanishing anisotropy
r/R the above moment coincides with the zeroth moment computed from a massless Jüttner
distribution. This behavior guarantees a smooth transition of an isotropic system to an
anisotropic free streaming system.

In the following the arising integrals will be computed in the same way as in the above
case. In addition one can extract physical phenomena from all the following integrals in the
sense that we can relate them to hydrodynamical field components.
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2.7.4. 1st-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pτ

n = N τ =

∫
d3p

2τrpτ
pτFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηse

−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

(2.7.1)−(2.7.3)
=

CT 3

2τr
√

1 + r2

R2

∫
dqrdqφdqηse−

√
qrqr+qφqφ+qηsqηs

(2.7.4)−(2.7.6)
=

2πCT 3

τr
√

1 + r2

R2

∫ ∞

0
d|qr||qr|2e−|qr|

=
4πCT 3

τr
√

1 + r2

R2

(2.7.9)

=
1√

1 + r2

R2

niso

As one can see, the particle density grows with T 3, which should due to dimensional
reasons be the case. Further it is guaranteed that the particle density is vanishing in the
limit of r → ∞. This should be the case in our setup, where a central source is emitting
particles in the radial direction. Due to the longitudinal expansion in ηs-direction the density
is also decreasing with time τ .

The effect of the anisotropy is a dilution of the particle density, with increasing value of
r/R. In order to emphasize this fact, we did the last step of the computation, where niso
is the particle density which would arise from computing the pτ -moment from a massless
Jüttner distribution (2.4.13) in the proper symmetry.

Figure 2.11.: Plot of the ratio n/niso over the anisotropy parameter r/R.

Figure 2.11 shows the effect of the anisotropy parameter r/R on the ratio of the computed
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2.7 Moments of the anisotropic free streaming solution for massless particles

particle density over the isotropic particle density. As one can see the ratio is rapidly de-
creasing with increasing r/R. For an anisotropy parameter of around ten, the density already
dropped one order of magnitude, compared to the isotropic system. Though at vanishing
anisotropy the two densities are equivalent.

2.7.5. 1st-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pr

N r =

∫
d3p

2τrpτ
prFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηs

pr e
−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

√
prpr + r2pφpφ + τ2pηspηs

(2.7.1)−(2.7.3)
=

CT 3

2τr
√

1 + r2

R2

∫
dqrdqφdqηs

Tqre−
√
qrqr+qφqφ+qηsqηs

T
√
qrqr + qφqφ

1+ r2

R2

+ qηsqηs

(2.7.4)−(2.7.6)
=

CT 3

2τr
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ π

0
dθq

∫ 2π

0
dφq
|qr|2 sin2(θq)cos(φq) e

−|qr|
√

sin2(θq) +
cos2(θq)

1+ r2

R2

= 0 (2.7.10)

The last step is due to the fact that the φq-integral vanishes22. All the spatial components
of the particle current vanish. This is due to the fact that the free streaming distribution
function Ffs(x

µ, pi) is even in the p components. Thus integrating an even function multi-
plied by an odd one – namely pi – over a symmetric interval for symmetry reasons ends up
in a contribution which is zero. Of course this statement holds for the other moments with
respect to pφ and pηs as well. Therefore we find analog to the above computation that the
other spacial components of the four current are vanishing.

N r = Nφ = Nηs = 0 (2.7.11)

Comparing this findings of equation (2.7.11) to the discussion about dissipative hydrody-
namics in chapter 2.6 one can deduce that there are no particle fluxes at play. In other words
there are no particles entering from outside the fluid cell.

2.7.6. 2nd-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pτ

Now that we have computed all the fields contributing to the particle four current, we can
start to compute the second moments, which are contributing to the energy momentum
tensor (2.6.15).

22As it is indicated by the underline.
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ε = T ττ =

∫
d3p

2τrpτ
pτpτFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηs

√
prpr + r2pφpφ + τ2pηspηs

e
−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

(2.7.1)−(2.7.3)
=

CT 3

2τr
√

1 + r2

R2

∫
dqrdqφdqηsT

√
qrqr +

qφqφ

1 + r2

R2

+ qηsqηs

e−
√
qrqr+qφqφ+qηsqηs

(2.7.4)−(2.7.6)
=

CT 4

2τr
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ π

0
dθq

∫ 2π

0
dφq|qr|3 sin(θq)

√
sin2(θq) +

cos2(θq)

1 + r2

R2

e−|q
r|

=
πCT 4

τr
√

1 + r2

R2

∫ ∞

0
d|qr||qr|3e−|qr|

∫ π

0
dθq sin(θq)

√
sin2(θq) +

cos2(θq)

1 + r2

R2

=
6πCT 4

τr
√

1 + r2

R2

∫ π

0
dθq sin(θq)

√
sin2(θq) +

cos2(θq)

1 + r2

R2

=
6πCT 4

τr
(

1 + r2

R2

)
(

1 +
R

r

[
1 +

r2

R2

]
arctan

( r
R

))
(2.7.12)

=
εiso(

1 + r2

R2

)
(

1 +
R

r

[
1 +

r2

R2

]
arctan

( r
R

))

As before we illustrate the gained expression for the energy density (2.7.12) by plotting
the ratio over with respect to the isotropic density over the anisotropy.

Figure 2.12 displays the dependence of the ratio of local energy density over the isotropic
local energy density on the ratio r/R. As one can see the ratio is decreasing with increasing
anisotropy, which means that the free streaming energy density is decreasing faster due to
the increasing anisotropy in the system.

Looking at equation (2.7.12) one sees that in addition the energy density decreases with
time due to the system’s expansion along the beam line. The energy density also decreases
with increasing radius r, which is reasonable for a cylindrical symmetric system.

2.7.7. 2nd-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pr

Next we compute the rr-component of the energy momentum tensor. Afterwards we plot
the functional dependence on the anisotropy parameter r/R.
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Figure 2.12.: Plot of the ratio ε/εiso over r/R.

Pr = T rr =

∫
d3p

2τrpτ
prprFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηs

prpre
−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

√
prpr + r2pφpφ + τ2pηspηs

(2.7.1)−(2.7.3)
=

CT 3

2τr
√

1 + r2

R2

∫
dqrdqφdqηs

T 2qrqre−
√
qrqr+qφqφ+qηsqηs

T
√
qrqr + qφqφ

1+ r2

R2

(2.7.4)−(2.7.6)
=

CT 4

2τr
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ π

0
dθq

∫ 2π

0
dφq
|qr|4 sin3(θq) cos2(φq)e

−|qr|

|qr|
√

sin2(θq) +
cos2(θq)

1+ r2

R2

=
3πCT 4

τr

∫ π

0
dθq

sin3(θq)√
1 + r2

R2 sin2(θq)

=
3πCT 4

τr

R2

r2

[
1 +

R

r

(
r2

R2
− 1

)
arctan

( r
R

)]
(2.7.13)

= α
R2

r2

[
1 +

R

r

(
r2

R2
− 1

)
arctan

( r
R

)]

In the last step we defined the first ratio of equation (2.7.13) to be α in order to plot the
functional dependence of the radial pressure component on the ratio r/R, which is shown in
the following figure 2.13.

2.7.8. 2nd-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pφ

This brings us to compute the φφ- component of the energy momentum tensor Tµν .
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2.7.8 2nd-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pφ

Figure 2.13.: Plot of the ratio Pr/α over r/R.

Pφ
r2

= T φφ =

∫
d3p

2τrpτ
pφpφFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηs

pφpφe
−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

√
prpr + r2pφpφ + τ2pηspηs

(2.7.1)−(2.7.3)
=

CT 3

2τr
√

1 + r2

R2

∫
dqrdqφdqηs

T 2qφqφe−
√
qrqr+qφqφ+qηsqηs

Tr2
(

1 + r2

R2

)√
qrqr + qφqφ

1+ r2

R2

(2.7.4)−(2.7.6)
=

CT 4

2τr3
(

1 + r2

R2

) 3
2

∫ ∞

0
d|qr|

∫ π

0
dθq

∫ 2π

0
dφq
|qr|4 sin(θq) cos2(θq)e

−|qr|

|qr|
√

sin2(θq) +
cos2(θq)

1+ r2

R2

=
6πCT 4

τr3
(

1 + r2

R2

)
∫ π

0
dθq

sin(θq) cos2(θq)√
1 + r2

R2 sin2(θq)

=
6πCT 4

τr3
(

1 + r2

R2

)R
3

r3

[
− r
R

+

(
1 +

r2

R2

)
arctan

( r
R

)]
(2.7.14)

=
2α

r2
(

1 + r2

R2

)R
3

r3

[
− r
R

+

(
1 +

r2

R2

)
arctan

( r
R

)]

To deal with a physical anisotropic pressure, we have to take care of the metrics contribu-
tion r2. Multiplying formula (2.7.14) with this factor enables us to plot the Pφ-component’s
dependence on r/R of the energy momentum tensor.
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2.7 Moments of the anisotropic free streaming solution for massless particles

Figure 2.14.: Plot of Pφ/α over r/R

2.7.9. 2nd-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pηs

Here we present the last diagonal component of the energy momentum tensor, which is the
ηsηs component.

Pηs
τ2

= T ηsηs =

∫
d3p

2τrpτ
pηspηsFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηs

pηspηse
−

√
prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

√
prpr + r2pφpφ + τ2pηspηs

(2.7.1)−(2.7.3)
=

CT 3

2τ3r
√

1 + r2

R2

∫
dqrdqφdqηs

T 2qηsqηse−
√
qrqr+qφqφ+qηsqηs

T
√
qrqr + qφqφ

1+ r2

R2

(2.7.4)−(2.7.6)
=

CT 4

2τ3r
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ π

0
dθq

∫ 2π

0
dφq
|qr|4 sin3(θq) sin2(φq)e

−|qr|

|qr|
√

sin2(θq) +
cos2(θq)

1+ r2

R2

=
3πCT 4

τ3r

∫ π

0
dθq

sin3(θq)√
1 + r2

R2 sin2(θq)

=
3πCT 4

τ3r

R2

r2

[
1 +

R

r

(
r2

R2
− 1

)
arctan

( r
R

)]
(2.7.15)

=
α

τ2

R2

r2

[
1 +

R

r

(
r2

R2
− 1

)
arctan

( r
R

)]

Again we have to take care of the metrics contribution in order to deal with a physical
anisotropic pressure component. The factor is in this case τ2.
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2.7.10 Comments

Figure 2.15.: Plot of the ratio Pηs/α over r/R

2.7.10. Comments

As a first remark let us mention that all off-diagonal elements of the energy momentum tensor
T ij are vanishing, since they consist of an integral of an odd function in pµ or pν , a symmetric
integration interval – with respect to zero – and the in momentum components even function
Ffs

23. As expected we have no ” new-dissipative” contributions to the hydrodynamic fields,
since particle fluxes N i = 0 or energy fluxes Tµν = 0 – where ν 6= µ – are vanishing. In this
sense we are still dealing with a look alike ideal hydrodynamical framework. But since the
pressure components are not all the same, we capture at least the most important dissipative
effect arising from the anisotropy.

The second remark is about the trace of the computed energy-momentum tensor. To check
this let us introduce the following abbreviations24.

6πCT 4

τr
= 2α

and

r

R
= x

With this we can compute the trace of the energy momentum tensor clearly represented.

23This is the same argument as for the space-components of the current N i.
24The attentive reader recognizes, that we used the definition of α already in the last steps of the second

moment computations.

51



2.7 Moments of the anisotropic free streaming solution for massless particles

Tµ µ = ε−
(
T rr + r2T φφ + τ2T ηsηs

)

(2.7.12)−(2.7.15)
= 2α

[
1

1 + x2
+

arctan(x)

x
− 1

2x2

(
1 +

1

x

(
x2 − 1

)
arctan(x)

)

− 1

1 + x2

1

x3

(
−x+ (1 + x2)

)
arctan(x)

]

− α

2x2

[
1 +

1

x
(x2 − 1) arctan(x)

]

= 2α

[
1

1 + x2
+

arctan(x)

x
− 1

2x2
− arctan(x)

2x
+

arctan(x)

2x3

+
1

x2(1 + x2)
− arctan(x)

x3
− 1

2x2
− arctan(x)

2x
+

arctan(x)

2x3

]

= 2α

[
1

1 + x2
− 1

x2
+

1

x2(1 + x2)

]

= 0 (2.7.16)

This trace is vanishing for all positions and temperatures of the system. Although the
simple equation of state in the isotropic case, which reads for massless non interacting parti-
cles like ε = 3P is not valid anymore, since the pressure components differ in the anisotropic
case, we can still make the statement ε =

∑
i P i. Due to the fact that regarding formula

(2.7.16) the energy momentum tensor arising from Ffs has a vanishing trace.

This characteristic can be found in the ideal hydrodynamical case as well.

2.7.11. Evolution of the pressure components

In this section we present a graph of the two relevant pressure’s ratio Pφ/Pr to check how
the anisotropy in the system is evolving in the steady state setup25.

Figure 2.16.: Plot of the ratio Pφ/Pr over r/R.

25We already saw a conceptually similar ratio of pressures as a measure of anisotropy in Figure 2.1.
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2.8 Computing the moments of the anisotropic equilibrium distribution for massive
particles

As one can see in figure 2.16, the system is at r = 0 isotropic and all relevant pressure
components are the same since we start our system from a Jüttner distribution. With
increasing ”distance” r/R the ratio Pφ/Pr decreases. Therefore the polar pressure component
decreases faster than radial counterpart. After approximately a value of r/R = 4 the pressure
ratio decayed already to a value of approximately 0.1. In other words at this point the
orthoradial pressure component Pφ is already one order of magnitude less than the radial
pressure component Pr. This effect is due to the computed anisotropy parameter (2.5.3).

A second remark is about the scale R at which the anisotropy develops. While setting
this scale to a higher value, the anisotropy’s effect can be delayed. Figure 2.17 shows this
behavior for three different values of the anisotropy scale R.

Figure 2.17.: Plot of the ratio Pφ/Pr over r for different values of R .

Let us emphasize that the hydrodynamical fields computed from the derived massless free
streaming solution interpolate in a smooth way between the isotropic equilibrium state and
the free streaming scenario. Therefore one can make the statement that our aim to smoothen
this transition is fulfilled in the case of massless degrees of freedom.

2.8. Computing the moments of the anisotropic equilibrium
distribution for massive particles

In this section we are going to present the relevant moments of the free streaming solution
Ffs for massive particles. Due to the mass in the distribution’s exponent the corresponding
integrals yield more complicated expressions compared to the ones in the previous section.

2.8.1. Useful substitution and useful functions

In order to compute the moments of the massive free streaming distribution – as far as
possible analytically – it is very helpful to deal with a further substitution, namely

|qr| ≡
√
m2

T 2
sinh(u)⇔ d|qr| = m

T
cosh(u) du (2.8.1)

Furthermore we will employ the definition of the modified Bessel functions of second kind.
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2.8 Computing the moments of the anisotropic equilibrium distribution for massive
particles

Kα(x) ≡
∫ ∞

0
dt cosh(αt) e−x cosh(t) (2.8.2)

In addition there exist some useful recurrence identities for ”consecutive neighbors” for
modified Bessel functions. These relate the n-th modified Bessel function of second kind to
the (n+ 1)th and the (n− 1)th in the following way.

Kn+1(x) = Kn−1(x) +
2n

x
Kn(x) (2.8.3)

These identities can be found for example in [23]26.

2.8.2. 1st-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pτ

Since the 0st-moment of the distribution function has no hydrodynamical meaning we start
with the computation of the 1st-moment with respect to pτ for massive particles. Note that
this coincides to the particle density in the limit of ur � uτ , which corresponds to a small
perpendicular expansion. Like in the case before the first computation of this kind will
be presented in detail, all the others, which employ the same steps are presented without
comments.

N τ =

∫
d3p

2τrpτ
pτFfs(x

µ, pi)

Inserting the massive version of the free streaming distribution function leads to the fol-
lowing equation.

N τ =
C

2

∫
dprdpφdpηse

−
√
m2

T2 + prpr

T2 +
(

1+ r2

R2

)
r2pφpφ

T2 + τ2pηspηs

T2

At this point we can employ the substitutions (2.7.1) - (2.7.3) for the momentum compo-
nents.

N τ =
CT 3

2τr
√

1 + r2

R2

∫
dqrdqφdqηse

−
√
m2

T2 +qrqr+qφqφ+qηsqηs

Now we can simplify the exponent while switching to spherical coordinates.

N τ (2.7.4)−(2.7.6)
=

2πCT 3

τr
√

1 + r2

R2

∫ ∞

0
d|qr||qr|2e−

√
m2

T2 +|qr|2

At this point we need to perform the above presented substitution (2.8.1), in order to
simplify the exponent further.

26Chapter 2.4.2 page 111
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2.8.2 1st-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pτ

N τ (2.8.1)
=

2πCm3

τr
√

1 + r2

R2

∫ ∞

0
du cosh(u) sinh2(u)e

−
√
m2

T2 (1+sinh2(u)) (2.8.4)

For the hyperbolic functions sinh and cosh, there exist useful relations. We will employ(
1 + sinh2(u)

)
= cosh2(u) for the exponent and cosh(u) sinh2(u) = 1/2 cosh(u)(cosh(2u) −

1) = 1/4 (cosh(3u)− cosh(u)) for the product of hyperbolic functions in equation (2.8.4).
Inserting these expressions results in the following sum of integrals.

N τ =
πCm3

2τr
√

1 + r2

R2

[∫ ∞

0
du cosh(3u)e−

m
T

cosh(u) −
∫ ∞

0
du cosh(u)e−

m
T

cosh(u)

]

Here we can make use of the definitions of the modified Bessel function (2.8.2).

N τ (2.8.2)
=

πCm3

2τr
√

1 + r2

R2

[
K3

(m
T

)
−K1

(m
T

)]

As a last step we can simplify the gained expression further by making use of the ”con-
secutive neighbors” identities (2.8.3).

N τ (2.8.3)
=

2πTCm2

τr
√

1 + r2

R2

K2

(m
T

)
(2.8.5)

Expression (2.8.5) is the final result for the 1st-moment with respect to pτ of the massive
free streaming solution. Please note that the dependence of the particle density n on the
position space is the same as in the massless case. To illustrate the dependence of n on
the (dimensionless) ratio m/T we show figure 2.18. As one can see the density has a finite
value in the limit of m → 0 and is vanishing for m/T → ∞, since for small arguments z,

K2(z)
limz→0−→ 2/z2. Note that this limit also guarantees the T 3 dependence of N τ , which we

found in the massless case as well.

The expression (2.8.5) for the massive particle density is comparable to expression (25)
in [46], although they dealt with the above mentioned concept of a longitudinal anisotropy
in momentum space.
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2.8 Computing the moments of the anisotropic equilibrium distribution for massive
particles

Figure 2.18.: Plot of the density n over the mass to temperature ratio m/T .

To be consistent with the plots shown before, we also plotted the particle density over the
anisotropy parameter. We set the particle’s mass m = 140 MeV, which is comparable to the
pion mass. Please note that we choose this mass for all the following plots as well.

Figure 2.19.: Plot of the density n over r/R for m = 140 MeV and T = 150 MeV

2.8.3. 1st-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pi

For the same parity reasons as in the case of the massless first moments N i shown in section
2.7.5 and massless second moments Tµν with µ 6= ν shown in section 2.7.10 the integrals
weighted by a factor of pi are vanishing.

In the case of massive particles there is still no particle flux or dissipation at work in the
first moment of the distribution function.

2.8.4. 2nd-moment of the free streaming distribution Ffs(x
µ, pi) wrt. pτ

At this point we can start to compute the second moment of Ffs(x
µ, pi) with respect to pτ ,

which gives the energy density field.
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2.8.5 Numerical computation of the 2nd-moments of the free streaming distribution
Ffs(x

µ, pi)

ε = T ττ =

∫
d3p

2τrpτ
pτpτFfs(x

µ, pi)

=
C

2

∫
dprdpφdpηs

√
m2 + prpr + r2pφpφ + τ2pηspηs

e
−

√
m2

T2 + prpr

T2 +
r2
(

1+ r2

R2

)
pφpφ

T2 + τ2pηspηs

T2

(2.7.1)−(2.7.3)
=

CT 4

2τr
√

1 + r2

R2

∫
dqrdqφdqηs

√
m2

T 2
+ qrqr +

qφqφ

1 + r2

R2

+ qηsqηs

e
−
√
m2

T2 +qrqr+qφqφ+qηsqηs

(2.7.4)−(2.7.6)
=

CT 4

2τr
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ 2π

0
dφq

∫ π

0
dθq|qr|2 sin(θq)

√√√√m2

T 2
+ |qr|2

(
sin2(θq) +

cos2(θq)

1 + r2

R2

)
e
−
√
m2

T2 +|qr|2

(2.8.1)
=

πm4C

τr
√

1 + r2

R2

∫ ∞

0
du

∫ π

0
dθq sin(θq)

√√√√1 + sinh2(u)

(
sin2(θq) +

cos2(θq)

1 + r2

R2

)

cosh(u) sinh2(u)︸ ︷︷ ︸
= 1

2
(cosh(2u)−1)

︸ ︷︷ ︸
= 1

4
(cosh(3u)−cosh(u))

e−
m
T

cosh(u)

=
πm4C

4τr
√

1 + r2

R2

∫ ∞

0
du

∫ π

0
dθq sin(θq)

√
1 +

r2

R2
sinh2(u) sin2(θq)

[cosh(3u)− cosh(u)] e−
m
T

cosh(u) (2.8.6)

Unfortunately, one can not compute all integrals in formula (2.8.6) analytically. Of course
the integral over the angle θq is possible to compute. This problem is the same for the pressure
components T rr, T φφ and T ηsηs . In order to get shorter expressions, in [46] they defined
functions H and H̃ in their Appendix, which basically contain the two leftover integrals over
an angle and a radial component. Nevertheless it is still possible to compute the integrals for
the energy density and the pressure components for massive particles numerically in order
to get an insight in their functional behavior.

2.8.5. Numerical computation of the 2nd-moments of the free streaming
distribution Ffs(x

µ, pi)

Therefore we present in this subsection the numerical computed components of the energy
momentum tensor for particles which have a pion mass of 140 MeV and a temperature of 150
MeV. As one can see in figure 2.20, both the energy density and the pressure components
are decreasing due to increasing anisotropy. Note that the components Pr and Pηs are lying
on top of each other. In addition, this plot shows that after 10 times of the characteristic
scale R the energy density and the pressure components already dropped over one order of
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2.8 Computing the moments of the anisotropic equilibrium distribution for massive
particles

magnitude.

Figure 2.20.: Plot of the diagonal components of the massive energy momentum tensor over
r/R for m = 140 MeV and T = 150 MeV.

Figure 2.21 shows the so called trace anomaly T ττ − T rr − T φφ − T ηsηs of the numerical
computed energy momentum tensor. As a short reminder for the massless case we found the
trace to be vanishing. In the numerical computed, massive case we get a contribution for
the trace. But this contribution is small and decays with increasing anisotropy.

Figure 2.21.: Plot of the massive energy momentum tensor ’s trace over r/R for m = 140
MeV and T = 150 MeV.

2.8.6. Remarks

Within the two last sections 2.7 and 2.8 we computed the hydrodynamical fields, which
emerge from the free streaming distribution function Ffs for massless particles as well as in
the case of massive particles. In addition we showed various plots of the arising fields. As
a conclusion we should mention that all fields follow a continuous evolution with respect to
r/R. Furthermore, all fields are negligible at least after 10 times of the scale R.
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2.9 Physical observables for the distribution Ffs(x
µ, pi)

2.9. Physical observables for the distribution Ffs(x
µ, pi)

Since we computed up to now the hydrodynamical fields, we will now turn to compute ”real”
heavy-ion observables, in the sense of observables which are measured in the experiment. The
most intuitive observable is the particle spectrum. It is the (Lorentz invariant) number of
detected particles per momentum bin. One can compute this particle spectrum via the
already mentioned Cooper-Frye formula, since in this formalism the fliud emits right at
the hypersurface particles which are not interacting anymore. Therefore their momenta
are frozen from that hypersurface on. Please note that this is not valid anymore if one
incorporates interactions after the hypersurface throughout an afterburner [47].

2.9.1. Particle spectrum from an isotropic fluid

In order to compute the particle spectrum we follow the well known idea of [16] established
in 1974. The publication basically deals with the question how to convert a fluiddynamical
field into a particle spectrum, while conserving energy and momentum. The starting point
is the single-particle phase space density f . In order to present the basic ingredients of the
Cooper-Frye formula in a compact way, we will follow the argumentation of [1]27. If the
distribution function is normalized in the right way, its integral over phase space gives the
total number of particles N in the system. Therefrom we can deduce the following.

N =

∫
d3~x d3~p

(2π)3
f

⇔ dN = dV

∫
d3~p

(2π)3
f

The desired observable is the Lorentz invariant particle number per momentum bin, which
looks as follows.

Ep
d3N

d3~p
(2.9.1)

Note that the factor pτ or Ep guarantees the particle spectrum to be a Lorentz invariant
number and therefore a proper observable. In order to gain such an expression (2.9.1) we
have to integrate out the position space dependence of the distribution function.

This is not that trivial. Since we want to describe the transformation of a whole fluid
flowing through a surface Σ, we have to change the reference frame from a local one to a
global one, where the surface Σ is at rest. At some point we have to specify the hypersurface
by a model. With all these ingredients one can gather the Cooper-Frye formula which is
written in the next expression.

Ep
d3N

d3p
=

1

(2π)3

∫

Σ
pµdΣµ(x) f([pαuα(x)]) (2.9.2)

In formula (2.9.2) Σµ denotes the normal surface vector of the hypersurface Σ over which
one has to integrate. The factor pµ · dΣµ(x) guarantees that the fluid element is comoving.

27Chapter 15.3
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2.9 Physical observables for the distribution Ffs(x
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The hydrodynamicla evolution prior to the kinetic freeze out enters this formula via the flow
velocity field uα(x). Since we are not running a numerical hydro code, we are implementing
for the velocity field a blast wave ansatz [48,49]. This ansatz just reads:

uτ =
√

1 + (ur)2 (2.9.3)

ur = umax
r

RBW

(
1 + 2

∑

n=2

Vn cos(nφ)

)
Θ(RBW − r) (2.9.4)

uφ = uηs = 0 (2.9.5)

This flow profile mimics a radial hydrodynamical expansion, whose acceleration is stopped
at the blast wave radius RBW . Consistently we choose the hypersurface’s radial extent to
have a radius of RBW in the transverse plane. The factors Vn are implementing a possi-
ble polar 2π/n structure, which will be important for the next sections. Throughout non
vanishing Vn of course the Radius RBW is slightly varying with the azimuthal angle φ.

Note that while running a real hydro code one has to model the freeze out surface Σ with
an underlying physical model. As mentioned already in the motivation 2.1, here one can
choose the hypersurface to be the collection of points where either temperature, particle
density, energy density or mean free path reaches some critical value.

Another problem arises from surface regions, where the factor pµ · dΣµ(x) gives negative
contributions. It was taken care of this problem in [50] at the expence of discontinuities in
the evolution and in [51] within a transport approach and interpreting negative contributions
as fluid reentering particles.

Within our computations we perform a freeze out at a specific proper time τ0 on a cylinder
of radius RBW as done e.g. by Teaney [52]. Written in a formula it reads as the following.

pµ · dΣµ = mt cosh(y − ηs) τ0 dηs rdr dφ

In order to compute the spectrum for an ideal fluid of classical particles within the blast
wave ansatz one has to compute the following steps.

pt
d2N

d2pt
=

C

(2π)3

∫

Σ
pµdΣµ e

− p
µuµ
T

=
C

(2π)3

∫ 2π

0
dφ

∫ RBW

0
dr r

∫ ∞

−∞
dηs τ0 mt cosh(ηs) e

−mt cosh(ηs)
T

=
C mt τ0

(2π)2

R2
BW

2

∫ ∞

−∞
dηs cosh(ηs) e

−mt
T

cosh(ηs)

(2.8.2)
=

C mt τ0 R
2
BW

(2π)2
K1

(mt

T

)
(2.9.6)

This result can be found to agree with the expression in the Appendix of [52] as well.

Figure 2.22 shows a plot of three pion spectra computed from a local Jüttner distribution
(2.4.13), within the above mentioned assumptions for different freeze out temperatures T .
As one can see the spectra differ very much in the low pt regime. In numbers the difference is
over two hundred particles in the lowest momentum bin, although the temperature difference
is about 25 MeV.
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2.9.1 Particle spectrum from an isotropic fluid

This figure is a first example that physical observables have a strong dependence on quan-
tities chosen at the freeze out surface. So this plot is reflecting our main motivation for the
anisotropic freeze out formalism.

Figure 2.22.: Plot of the particle spectra at different temperatures. For the mass m we used
the pion mass.

Figure 2.23 shows the same spectra on a logarithmic scale. As one can see the pion spectra
are nearly linear on a logarithmic scale.

Figure 2.23.: Logarithmic plot of the particle spectra at different temperatures. For the mass
m we used the pion mass.

Figure 2.24 shows particle spectra for the same temperature T , but for different particle
masses. The masses are the corresponding pion, kaon and proton masses, which build up
the majority of detected particles in heavy-ion collisions. As one can see in general, heavier
particles are emitted in a smaller number. This has to be the case, since the Cooper-Frye
formula is constructed to conserve energy. As a second observation one can recognize that
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2.9 Physical observables for the distribution Ffs(x
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the higher particle masses result in a more pronounced curvature starting right below the
particle mass.

Figure 2.24.: Logarithmic plot of the particle spectra for different particle masses. For the
temperature T we choose 130 MeV.

Figure 2.25.: Linear plot of the particle spectra for different particle masses. For the tem-
perature T we chose 130 MeV.

Now that we introduced the basic features of the particle momentum spectra let us take a
look at experimental data of the spectrum in recent measurements presented in the ALICE
publication [53].
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2.9.2 Particle spectrum from Ffs(x
µ, pi)

Deuteron spectra and elliptic flow in Pb–Pb collisions ALICE Collaboration
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Fig. 7: Combined Blast-Wave fit to pT and v2(pT) distributions using equations 8 and 10. The six upper panels
show the pT spectra and the ratio between data and fit, while the six panels in the bottom part shows the v2(pT)
and the ratio between data and fit. In each panel, p± (empty circles), K± (diamonds), p+p (filled squares) and
d+d (filled circles) are shown. For p±, K± and p+p the long dashed curves represent the combined pT and v2

Blast-Wave fit. Deuteron curves (dash dotted lines) are predictions from lighter particles Blast-Wave combined fit.
Each column shows a different centrality intervals (0-10% left, 10-20% middle and 20-40% right).

expected [46]:

v2,d(pT) =
2v2,p(pT/2)

1+2v2
2,p(pT/2)

. (13)

It is then possible to obtain the expected deuteron elliptic flow starting from the one measured for
protons [35]. The results for different centrality intervals are shown in the right part of Figure 8, where
the measured elliptic flow (markers) is compared with simple coalescence predictions (shaded bands)
from equation 13 for the three different centrality intervals presented in the paper. Also here the simple
coalescence is not able to reproduce the measured elliptic flow of deuterons. This behaviour is different
with respect to what has been observed at lower energies, where an atomic mass number scaling was
observed in the 0.3 < pT < 3 GeV/c interval [5]. Improved versions of the coalescence model, for

15

Figure 2.26.: Logarithmic plot of the particle spectra over transverse momentum pt for two
different energies in Pb-Pb collisions. Taken from ALICE measurements [53].

The upper plots show the particle spectra plotted over transversal momentum pt. There-
fore let us concentrate on the upper part of the figure. There the spectra for pions, kaons,
protons and deuterion are plotted over the transverse momentum pt. From the left panel to
the right panel the collisions are more noncentral. One can see the effect of the bending of
the curves due to increasing masses, since the deuterium mass is more than ten times higher
than the pion mass.

A comparison to figure (2.24) shows that already this simple model reproduces the shape
of the spectra quite well.

2.9.2. Particle spectrum from Ffs(x
µ, pi)

Since we want to investigate the freeze out from the elaborated local anisotropic distribution
function Ffs the computations become more difficult, because the anisotropy builds up with
radius. Therefore the integrals over the position space become harder to solve. Nevertheless
we computed them numerically. To show that the freeze out procedure is smoothed by the
anisotropy we chose an isotropic freeze out process as reference state. For this we chose a
kinetic freeze out temperature of 130 MeV. In order to perform the integrals over the freeze
out hypersurface we have to boost the locally formulated distribution function in a global
reference frame. For the blast wave coefficients we chose again for the radius RBW = 10 fm,
for the proper time τ0 = 7.5 fm and for the velocity field umax = 1. As a last remark let me
mention again that we denoted – as it is common – the ”anisotropic temperatures” by the
letter Λ in order to emphasize that this is not the isotopic temperature anymore. Written
in a formula we have to solve the following integral:

pτ
d2N

d2pt
=

C

2π

∫

Σ
pµ dΣµe

− 1
Λ

√
(p·u)2+ r4

R2 (uτpφ−uφpτ)2

=
C

2π

∫ ∞

−∞
dηs

∫ 2π

0
dφ

∫ RBW

0
dr r τ0 mt cosh(ηs)

e
− 1

Λ

√
(pτuτ−prur)2+ r4

R2 (uτpφ−uφpτ)2

(2.9.7)

Since we have no anisotropic hydro solver at work, we had to deal with a crucial point,
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which I will describe here. If we perform a kinetic freeze out at some specific point in one
case and perform a kinetic freeze out for another scenario later, we are not able to mimic the
”in between time” hydrodynamically. This is due to the lack of a suitable code. Therefore
we performed the computations in the ”backwards direction”, since we fitted the anisotropy
parameter scale R in such a way that the particle spectra for different temperatures are
matching. Of course this has to be optimized within a dynamical framework at some point.
But here as a proof of principle of the formalism’s advantages it works out well as we will
see in the following.

Particle spectra28 computed via formula (2.9.7) are shown in figure 2.27 for different
anisotropic temperatures Λ at the freeze out surface. The fitted values for the scale R
are listed on the right hand side. As one can see within the anisotropic freeze out we are
able to get rid of the strong dependence of the spectra on the freeze out temperature. Please
note that for temperatures that are smaller than the isotropic reference temperature we had
to chose the anisotropy contribution to have a negative sign. Looking at the computed mo-
ments one realizes that phenomenological a negative sign of the anisotropy parameter leads
to larger pressure components, energy densities and particle densities in the anisotropic
hydrodynamics.

Figure 2.28 shows the same data as 2.27 plotted on a linear scale. If one compares these
two plots with the above shown plots 2.22 and 2.23 over the whole plotted pt region, one
realizes the achieved insensitivity of the observable on the temperature at freeze out.

Figure 2.27.: Logarithmic plot of the particle spectra at different temperatures and
anisotropy scales. For the mass m we used the pion mass of 140 MeV.

28Of course including after the insertion of the definitions for the relevant pµ and uµ components, which leads
to a daunting expression.
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2.9.2 Particle spectrum from Ffs(x
µ, pi)

Figure 2.28.: Linear plot of the particle spectra at different temperatures and anisotropies.
For the mass m we used the pion mass.

The next figure (2.29) shows a plot of the relative differences of the particle’s spectra
in dependence of the transverse momentum. As one can see for very low temperatures it
gets harder to fit the anisotropic spectrum to an isotropic one. But leaving aside the blue
curve this plot shows that the anisotropic freeze out works within 20 % over a temperature
interval of 20 MeV over the whole collective momentum scale. Note that the optimization
of the parameter R was done by eye. There were no algorithm at work, which means there
would be space for further optimization as well.

Figure 2.29.: Plot of the relative differences of the anisotropic particle spectra to the isotropic
spectra. For the mass m we used the pion mass.

Before closing the section about the particle spectra we present plot 2.30 with the deter-
mined values for the anisotropy parameter R in dependence of the temperature Λ.
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Figure 2.30.: Plot of the determined values for R over the temperature Λ.

As one can see the ”backwards determined value” of R shows a rather smooth dependence
of the temperature at the freeze out surface. Note that the data point at 130 MeV is ill
defined, since this is the isotropic reference state, which exhibit per definition no anisotropy
scale.

2.9.3. Anisotropic flow coefficients vn

In the last section we dealt with the particle spectrum, which is basically counting particles
in dependence of their momenta. But there is of course a bunch of other observables. A
commonly used observable is governed by the anisotropic flow coefficients. The first inves-
tigations of anisotropies in the transverse flow – in the regime of highly Lorentz contracted
nuclei collisions – can be found in [54]. The common formulation of this observable was
established a bit later in [55].

The basic idea behind this observable from a mathematical point of view is a Fourier
expansion in the momentum polar angle29 φp of the particle momentum spectrum. Due to
the fact that one expects an even symmetry with respect to the symmetry axis ψn, whose
geometrical meanings are illustrated in figure 2.32, one only has to deal with cos contributions
in the expansion30. In general this reads like the next formula31.

dN

d2~pt dη
=

1

2π

d3N

pt dpt dη

[
1 + 2

∞∑

n=2

vn(pt) cos(n(φp − ψn))

]
(2.9.8)

Here the vn(pt) are the anisotropic flow coefficients of nth-order, which can be computed
via the following expression.

vn(pt) =

∫ 2π
0 dφp

d3N
d2~ptdη

cos(nφp)
∫ 2π

0 dφp
d3N
d2~ptdη

(2.9.9)

Since these coefficients are a measure for the amplitude of the 2π/n-periodicity of the
momentum space spectra they are very often attached to geometrical objects. In figure 2.31
the resulting symmetries for the first coefficients are sketched.

29Which has per definition a periodicity, which is needed for applying the concept of Fourier expansions.
30See [56] for a detailed derivation.
31Note that we implicitly assumed the coordinate system to be centralized, so the sum starts at n = 2.
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2.9.3 Anisotropic flow coefficients vn

(a) v2 (b) v3 (c) v4 (d) v5 (e) v6

Figure 2.31.: Sketch of the symmetries which are characterized by harmonic flow coefficients
v2, v3, v4, v5 and v6.

For example v2 is referred to the elliptic flow, v3 to the triangular flow and so forth.
The angle ψn is called nth-harmonic symmetry plane. It indicates the symmetry plane of
the spectrum’s 2π/n-symmetry. As a remark let us mention that as of mid 2018 the flow
coefficients are experimentally measured up to the sixth order. Especially in the collective
dynamic pt-regime, these vn(pt) coefficients are built up due to eccentricities in the initial
position space distribution. Figure 2.32 shows the standard picture of the origin of non
vanishing anisotropic flow coefficients.
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( 1), elliptic ( 2), and triangular flow ( 3) in relation to the initial distribution of

participant nucleons in a single event from a Glauber Monte Carlo [19].

approximation in lumpy, event-by-event hydrodynamic calculations [9, 10, 11]. In this

context, one can see that the expression is just the first term in a controlled expansion,

with corrections coming from terms higher order in m ("4,2 / {r4e2i�}), or in the Taylor

series ("3
PP ).

As an aside, it should by now be clear that v2 can not depend on a term that is

linear in "3,3, as proposed in Ref. [10], because it does not have the correct symmetries.

It would have to depend on combinations like "3,3"
⇤
3,1 or "2

3,3"
⇤2
2,2, etc.

Similar approximate proportionality relations have been found to reasonably well

describe the results for v3 [10, 11] and v1 [12], while v4 and v5 are more complicated [11].

In retrospect, this is unsurprising since the possible v4 terms "4,4 and "2
2,2 are typically

of the same size, with the former being more important in central collisions and the

latter more important in peripheral collisions, in agreement with results from Ref. [11].

Explicitly this could read something like:

hei4�i = v4e
in 4 = C1

{r2e2i�}2

{r2}2
+ C2

{r4e4i�}
{r4} (9)

A similar statement can be made about the dependence of v5 on "5,5 and "3,3"2,2.

The hydrodynamic response has been confirmed to significantly damp higher

harmonics [18], in agreement with data [2]. Thus, once the hydrodynamic response is

mapped out for the first ⇠6 flow harmonics to the order desired, for each centrality and

each set of parameter values, all useful information about the hydrodynamic model is

known. This makes it clear exactly what properties of the initial geometry are important,

and allows one to quickly calculate correlations arising from an arbitrary set of initial

conditions.

4. Flow vs. data

Now that we have a picture of flow, one can look in detail at the long-range two-particle

correlation data to see whether they quantitatively agree with this picture, or if one

should instead conclude that other correlations are likely to be present.

Figure 2.32.: Sketch of the initial state in position space of a heavy-ion collision. Taken
from [57].

The overlap region of the two colliding nuclei varies from event to event, because a nu-
cleus is built up by nucleons which are distributed with a certain distribution, namely the
Woods-Saxon distribution for large nuclei. For such an overlap region one can compute the
eccentricity ε2 as well as higher eccentricities εn, with n ≥ 3. During the expansion, which
can be described for example hydrodynamically, these eccentricities in position space are
transferred into the anisotropic flow coefficients in the momentum space.

Before 2010 people always averaged over many initial conditions, which leads to vanishing
odd flow coefficients in collisions of identical nuclei. Consequently the initial condition looked
like the overlap region in figure 2.33. Afterwards they built the averaged initial condition into
hydro codes in order to compute for example the flow coefficients. However hydrodynamics
is non linear, which means averaging over initial stage plus evolving hydrodynamically32

gives other values than evolving every initial condition and average over the – so called –
event-by-event hydrodynamical observables33. Please note, that not only hydrodynamics is
able to ”translate” initial stage excentricities into non vanishing flow coefficients, but also
kinetic theory shows such a behavior, although the efficiency is smaller [25–27,29]. But all in

32,as was done by the theorists.
33,as happens in the experiment.
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all interactions are needed to transform the eccentricities to non-vanishing flow coefficients,
therefore the flow coefficients are often held to be observables of collectivity.

Collision geometry and 
impact parameter

B 

A b 

b 

participants 
spectators 

A 

B 

sB

• Centrality class: percentage of the minimum bias cross section
• Multiplicity distribution explained by collision geometry 

-> Impact parameter b ~ multiplicity

• For precise connection modelling necessary

Figure 2.33.: Sketch of an idealized/averaged initial state of a heavy-ion collision. Taken
from [18].

As a next remark let us mention that the values of the flow coefficients will in reality also
depend on the impact parameter b of the collision, as can be seen in figure 2.33. Figure 2.34
shows experimental data of the pt-integrated flow coefficients plotted over centrality classes
to show the above mentioned dependence. Centrality classes are roughly related to the
impact parameter and, compared to b, experimentally measurable. Note that the centrality
class of 0 − 5% correspond to most central collisions, whereas higher classes do arise from
higher impact parameters.

Figure 2.34.: Centrality dependence of v1, v2 and v3. Taken from [58].

As one can see for most central collisions all anisotropic flow coefficients are of equal size.
In this regime the coefficients origin is mostly fluctuations, which are equal for all orders. As
the centrality rises –and therefore b as well – the v2 coefficient starts to dominate due to the
situation plotted in figure 2.33, where the ellipticity is the most prominent asymmetry. For
more peripheral collisions the v2 coefficients decrease again, due to the fact that the overlap
region decreases and becomes fluctuation-dominated again.

Since we do not simulate the whole collision process from the initial overlap of the nuclei
until the detection, we are not reproducing plots like 2.34. We are rather interested in the
pt dependence of the flow coefficients. Experimental measurements taken from lead lead
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2.9.3 Anisotropic flow coefficients vn

collisions for such dependence are shown in figure 2.35.

Figure 2.35.: Tranverse momentum dependence of v2 and v3. Taken from [58].

As one can see the flow coefficients are increasing with the modulus of the transverse
momentum up to roughly 3 GeV. At a momentum scale of roughly 2 GeV they start to
saturate until they even decrease. At this point the upper limit of the collective or soft pt
scale is reached. Of course the pt scale depends on the initially deposed energy and therefore
on the collision energy as well. Within our framework we should be able to mimic the flow
coefficients collective behavior up to 2 GeV for such high collision energies shown in figure
2.35.

Figure 2.36.: Dependence of the pt integrated v2 on collision energy. Taken from [59].
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As a last remark we want to mention that the pt-integrated anisotropic flow also depends
on the collision energy. Figure 2.36 shows the value of the integrated v2 over a large interval
of collision energies. In this plot one can see that the dependence of v2 on the collision energy
is non trivial. The negative values at small energies are arising, since for such small energies
the spectators are shielding the medium from expanding into the direction φp − ψ2 = 0.

2.9.4. Anisotropic flow coefficients vn from an isotropic fluid

In order to compute the anisotropic flow coefficients we calculated formula (2.9.9) for the
Jüttner distribution. Since we already performed the particle momentum spectra determi-
nation, here we just need to compute the convolution with the cos(nφ) terms. Note that our
blast wave model factors Vn given in formulas (2.9.3)-(2.9.5) mimic now a nontrivial flow
profile in φp-direction in order to gain a non vanishing signal for the observable vn. For the
computations we choose the coefficients V2 = V3 = 0.1 and Vn≥4 = 0, since again we just
want to test the applicability of our elaborated anisotropic kinetic freeze out procedure. A
fine-tuning of these parameters in order to fit experimental data is not our aim at this point.
But in general one could relate these parameters for example to centrality classes.

If we now compute the pion flow coefficients starting from v2 up to v5 emitted from an
Jüttner distributed fluid element for different temperatures at the freeze out hypersurface
we get the following diagrams.

(a) v2 (b) v3

(c) v4 (d) v5

Figure 2.37.: Plot of the harmonic flow coefficients v2, v3, v4, v5 for different temperatures
at the freeze out hypersurface Σ, emitted from a Jüttner distribution for pions.

As the reader can see the value for the flow coefficients depends very much on the tem-
perature at freeze out. In addition if one compares the plots with the experimental data
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2.9.5 Anisotropic flow coefficients vn from Ffs(x
µ, pi)

one sees that we do not mimic the saturation. This is due to our simple model, which just
describes the physics below the saturation sets in.

2.9.5. Anisotropic flow coefficients vn from Ffs(x
µ, pi)

In order to further investigate the effect of the anisotropic freeze out procedure we present
in this section the same harmonic flow coefficients v2, v3, v4 and v5, but now under the
assumption that the particles are emitted from the anisotropic Ffs(x

µ, pi) distribution. After
implementing the distribution function but keeping the blast wave parameters fixed at the
above chosen values, we computed the plots shown in figures 2.38 - 2.40.

Figure 2.38.: Plot of the harmonic flow coefficient v2 for different anisotropic temperatures
at the freeze out hypersurface Σ, emitted from Ffs(x

µ, pi) pion distribution.

Figure 2.39.: Plot of the harmonic flow coefficient v3 for different anisotropic temperatures
at the freeze out hypersurface Σ, emitted from Ffs(x

µ, pi) pion distribution.
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Figure 2.40.: Plot of the harmonic flow coefficient v4 for different anisotropic temperatures
at the freeze out hypersurface Σ, emitted from Ffs(x

µ, pi) pion distribution.

Figure 2.41.: Plot of the harmonic flow coefficient v5 for different anisotropic temperatures
at the freeze out hypersurface Σ, emitted from Ffs(x

µ, pi) pion distribution.

The black curve in figures 2.38 - 2.40 indicates again the isotropic reference state. Note that
we did not optimize the value of R, but just took the values obtained from the momentum
spectra ”fitting”. As we can see the values for the observable vn have a less strong dependence
on the freeze out temperature than in figure 2.37. This is, beside the particle spectrum,
another example for the smoothness of our anisotropic freeze out formalism.

2.10. Discussion and outlook

In the previous sections we discussed several main experimental observables. In addition we
computed this observables arising from the derived distribution function Ffs(x

µ, pi). As we
saw both, particle spectrum and various anisotropic flow coefficients are rather insensitive
to the anisotropic temperature at freeze out. In our view, this is preferable to approaches
that necessitate a very specific freeze-out temperature that corresponds to no know feature
in the phase diagram of strong interacting matter. At the risk of repeating ourselves, the
Cooper-Frye formula is introduced for switching from one description to another one. But
it does not reflect a sharp physical transition.
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In addition we saw that in order to make a stronger statement about our freeze out
model, instead of fitting the characteristic scale of the parameter R, we should simulate
the expansion on a spacetime grid and let r/R emerge from the simulation. This would in
addition even more emphasize the smoothness of our freeze out procedure.

After this is achieved one can investigate the observables to see if not only the trend, but
also the amplitudes of the observables agree with measurements from the experiments.
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3
Era of last rescatterings

3.1. Computing the different moments of the massless Boltzmann
equation within 1st linearization

This part is inspired by the article ”Steady Expansion of a Gas into a Vacuum” of R. H.
Edwards and H. K. Cheng [60]. Although they did studies on classical flow of particles in
cylindrical symmetries, whereas we are interested in a relativistic formulation in order to
apply the resulting formalism to high energy physics.

We are now searching for the evolution of a cylindrical (Bjorken-flow) symmetric, steady
expanding system in the case of weakly interacting particles.

Whereas in the prior sections we only calculated the steady state dynamics of non-
interacting particles in the case of a source sitting in the origin, we now want to go ”back-
wards” in the evolution and investigate the era of ”last interactions”, which is also called
”eremitic expansion” [29] by other authors. We achieve this by implementing the relaxation
time approximation ansatz (2.4.9) for the collision term of the Boltzmann equation. We get
the corresponding – less trivial – dynamics by computing various moments of the following
Boltzmann equation in relaxation time approximation.

[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f(xµ, pi) =

1

τrel

(
Ffs(x

µ, pi)− f(xµ, pi)
)

(3.1.1)

Here Ffs(x
µ, pi) is the already discussed free streaming solution, τrel represents the relax-

ation time, which is assumed to be momentum independent. Of course, since we construct
everything to be time independent, here the parameter τrel can be thought of being propor-
tional to a relaxation length scale rrel, via rrel/c = τrel. Additionally the system is assumed
to be cylindrical symmetric and settled in the mid-rapidity region, which can be seen by the
non-appearance of the corresponding gradients in formula (3.1.1).

Note that in equation (3.1.1) the right hand side is taken to be linear in f(xµ, pi). In other
words we are working within the first linearization of the collision integral.

It is important to notice, that we do not linearize around the equilibrium state, like it
is usually done, but we linearize around the free streaming solution Ffs(x

µ, pi). This is an
attempt to approach the area of non zero inverse Knudsen number Kn−1.

For dealing with the moments please keep the definitions (2.6.13) and (2.6.15) in mind.

Since we want to elaborate a hydrodynamic like theory, which describes the flow of energy
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3.1 Computing the different moments of the massless Boltzmann equation within
1st linearization

we will match the second moments, namely the energy-momentum tensor components instead
of the first moments, which would lead to Eckart-frame description. Whenever we use this
fact throughout the computations we will denote this by the label matching. The physical
energy density and the pressures components are again defined as follows.

ε =

∫
d3p

2τrpτ
pτpτf(xµ, pi) (3.1.2)

Pr =

∫
d3p

2τrpτ
prprf(xµ, pi) (3.1.3)

Pφ = r2

∫
d3p

2τrpτ
pφpφf(xµ, pi) (3.1.4)

Pηs = τ2

∫
d3p

2τrpτ
pηspηsf(xµ, pi) (3.1.5)

The corresponding fields of the first moment, namely the particle four current, are defined
as follows.

n =

∫
d3p

2τrpτ
pτf(xµ, pi) (3.1.6)

N r = νr =

∫
d3p

2τrpτ
prf(xµ, pi) (3.1.7)

Nφ = νφ =

∫
d3p

2τrpτ
pφf(xµ, pi) (3.1.8)

Nηs = νηs =

∫
d3p

2τrpτ
pηsf(xµ, pi) (3.1.9)

Note that we will from now on omit the notation of the distribution function’s dependence
on the position and momentum variables in order to obtain shorter formulas.

In the following sections we will present the computations for the zeroth, first and second
moments. As we already did above we will present the first computation in a detailed way,
while presenting the following, similar ones shorter.

3.1.1. 0th-moment of the Boltzmann-equation in RTA

The zeroth moment of the whole Boltzmann equation (3.1.1) with the proper symmetries
and a relaxation ansatz for the right hand side provides the evolution equation of the first
moment of the distribution function. It reads as written in the next formula.

∫
d3p

2τrpτ

[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫ ∞

−∞

d3p

2τrpτ
(Ffs − f)

Assuming that the distribution function f is continuous, we can exchange the derivatives
and the integrals, while taking care that we do not exchange derivatives with respect to r
and factors of r. Be aware that also in the pτ there are r and pi dependencies hidden. In
addition we multiply the equation by a factor of two.
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3.1.2 1st-moment wrt pτ of the Boltzmann-equation in RTA

⇔ 1

r
∂r

∫
d3p

τrpτ
rprf +

1

r

∫
d3p

τr

r2pφpφpr

(pτ )3
f − 2

r

∫
d3p

τrpτ
∂

∂pφ

(
prpφf

)

+
2

r

∫
d3p

τrpτ
(prf) + r

∫
d3p

τr

∂

∂pr
pφpφ

pτ
f + r

∫
d3p

τr

prpφpφ

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
(Ffs − f)

After performing parts of the r-derivative, this expression can be simplified, since some
summands are canceling each other.

⇔ 3

r

∫
d3p

τrpτ
prf + ∂r

∫
d3p

τrpτ
prf +

∫
d3p

τr

rprpφpφ

(pτ )3
f − 2

r

∫
d3p

τr

∂

∂pφ
prpφ

pτ
f

−2

∫
d3p

τr

rprpφpφ

(pτ )3
f + r

∫
d3p

τr

∂

∂pr
pφpφ

pτ
f + r

∫
d3p

τr

prpφpφ

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
(Ffs − f)

⇔ 3

r

∫
d3p

τrpτ
prf + ∂r

∫
d3p

τrpτ
prf − 2

r

∫
d3p

τr

∂

∂pφ
prpφ

pτ
f + r

∫
d3p

τr

∂

∂pr
pφpφ

pτ
f

=
1

τrel

∫
d3p

τrpτ
(Ffs − f)

Since the distribution function f is assumed to be normalized, the two last terms on the
left hand side, built up by an integral and a derivative of the same variable, are vanishing.

⇔ ∂r

∫
d3p

τrpτ
prf +

1

r

∫
d3p

τrpτ
prf =

1

τrel

∫
d3p

τrpτ
(Ffs − f)

Now one can make use of the definition of the particle four current components (3.1.7) in
order to gain an evolution equation which governs the dynamics of the corresponding field.

⇔ ∂rN
r +

1

r
N r =

1

τrel

∫
d3p

2τrpτ
(Ffs − f)

(2.7.8)⇔ ∂rN
r +

1

r
N r =

1

τrel

[
2πCT 2R

τr2
arctan

( r
R

)
−
∫

d3p

2τrpτ
f

]
(3.1.10)

3.1.2. 1st-moment wrt pτ of the Boltzmann-equation in RTA

In this subsection we will compute the first moment of the Boltzmann equation with respect
to pτ . This will contribute to the spacial evolution of the particle density n.
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3.1 Computing the different moments of the massless Boltzmann equation within
1st linearization

∫
d3p

2τrpτ
pτ
[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
pτ (Ffs − f)

⇔ 1

r
∂r

∫
d3p

τr
rprf − 2

r

∫
d3p

τr

∂

∂pφ
prpφf +

2

r

∫
d3p

τr
prf + r

∫
d3p

τr

∂

∂pr
pφpφf

=
1

τrel

∫
d3p

τr
(Ffs − f)

(2.7.9)⇔ ∂r

∫
d3p

τr
prf +

1

r

∫
d3p

τr
prf =

1

τrel


 4πCT 3

τr
√

1 + r2

R2

− n




P.I.+(3.1.6)⇔ ∂rn+
n

r
=
−1

τrel


 4πCT 3

τr
√

1 + r2

R2

− n


 (3.1.11)

Note that in the last step we employ the integration by parts with respect to pr. With
this we can get rid of the factor of pr in front of the distribution function f .

3.1.3. 1st-moment wrt pφ of the Boltzmann-equation in RTA

For computing the next three moments it it useful to remember that the integral over the
free streaming solution Ffs vanishes due to the same symmetry reasons as in all the above
computations.

∫
d3p

2τrpτ
pφ
[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

2τrel

∫
d3p

τrpτ
pφ(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprpφf +

1

r

∫
d3p

τr

r2prpφpφpφ

(pτ )3
f − 2

r

∫
d3p

τrpτ
∂

∂pφ

(
prpφpφf

)

+
4

r

∫
d3p

τrpτ
prpφf + r

∫
d3p

τr

∂

∂pr
pφpφpφ

pτ
f + r

∫
d3p

τr

prpφpφpφ

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
pφ(Ffs − f)

⇔ ∂r

∫
d3p

τrpτ
prpφf +

5

r

∫
d3p

τrpτ
prpφf + 2r

∫
d3p

τr

prpφpφpφ

(pτ )3
f

−2

r

∫
d3p

τr

∂

∂pφ
prpφpφ

pτ
f − 2

r

∫
d3p

τr

r2prpφpφpφ

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
pφ(−f)

(3.1.8)⇔ ∂r

∫
d3p

2τrpτ
prpφf +

1

r

∫
d3p

2τrpτ
prpφf = −N

φ

τrel
(3.1.12)

3.1.4. 1st-moment wrt pηs of the Boltzmann-equation in RTA

In this subsection we compute the first moment of the Boltzmann equation with respect to
pηs .
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3.1.5 1st-moment wrt pr of the Boltzmann-equation in RTA

∫
d3p

2τrpτ
pηs
[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
pηs(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprpηsf +

1

r

∫
d3p

τr

r2prpφpφpηs

(pτ )3
f − 2

r

∫
d3p

τrpτ
∂

∂pφ

(
prpφpηsf

)

+
2

r

∫
d3p

τrpτ
prpηsf + r

∫
d3p

τr

∂

∂pr
pφpφpηs

pτ
f + r

∫
d3p

τr

prpφpφpηs

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
pηs(Ffs − f)

⇔ ∂r

∫
d3p

τrpτ
prpηsf +

3

r

∫
d3p

τrpτ
prpηsf +

2

r

∫
d3p

τr

r2prpφpφpηs

(pτ )3
f

−2

r

∫
d3p

τr

∂

∂pφ
prpφpηs

pτ
f − 2

r

∫
d3p

τr

r2prpφpφpηs

(pτ )3
f

= − 1

τrel

∫
d3p

τrpτ
pηsf

(3.1.9)⇔ ∂r

∫
d3p

2τrpτ
prpηsf +

1

r

∫
d3p

2τrpτ
prpηsf = −N

ηs

τrel
(3.1.13)

3.1.5. 1st-moment wrt pr of the Boltzmann-equation in RTA

∫
d3p

2τrpτ
pr
[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
pr(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprprf +

∫
d3p

τr

rprprpφpφ

(pτ )3
f − 2

r

∫
d3p

τr

∂

∂pφ
prprpφ

pτ
f

−2

∫
d3p

τr

rprprpφpφ

(pτ )3
f +

2

r

∫
d3p

τrpτ
prprf + r

∫
d3p

τrpτ
∂

∂pr
prpφpφf

−r
∫

d3p

τrpτ
pφpφf =

1

τrel

∫
d3p

τrpτ
pr(Ffs − f)

⇔ ∂rPr +
Pr
r
− Pφ

r
=
−1

τrel

∫
d3p

τrpτ
prf

⇔ ∂rPr −
Pφ − Pr

r
= −N

r

τrel
(3.1.14)

Note that in the above evolution equation (3.1.14) we have the first equation coupling
second moments of the distribution function f to first moments of the distribution function
f , while the second moments are diagonal elements of the energy momentum tensor. This
coupling arises due to the non vanishing right hand side of the Boltzmann equation.

79



3.1 Computing the different moments of the massless Boltzmann equation within
1st linearization

3.1.6. 2nd-moment wrt pτ of the Boltzmann-equation in RTA

∫
d3p

2τrpτ
pτpτ

[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
pτpτ (Ffs − f)

⇔
∫
d3p

τr
pτpr∂rf −

2

r

∫
d3p

τr
pτ

∂

∂pφ
(prpφf) +

2

r

∫
d3p

τr
pτprf

+r

∫
d3p

τr

∂

∂pr
pτpφpφf −

∫
d3p

τr

rprpφpφ

pτ
f =

1

τrel

∫
d3p

τr
pτ (Ffs − f)

⇔ 1

r
∂r

∫
d3p

τr
rpτprf −

∫
d3p

τr

rprpφpφ

pτ
f − 2

r

∫
d3p

τr

∂

∂pφ
pτprpφf

+
2

r

∫
d3p

τr
pτprf + 2

∫
d3p

τr

rprpφpφ

pτ
f −

∫
d3p

τr

rprpφpφ

pτ
f

=
1

τrel

∫
d3p

τrpτ
pτpτ (Ffs − f)

⇔ ∂r

∫
d3p

τr
pτprf +

1

r

∫
d3p

τr
pτprf

matching
= 0 (3.1.15)

In the last step we employed for the first time the concept of matching. The basic idea is
that we choose the departure state f to have the same pressure components and the same
energy density as the state the system is approaching through collisions. This guarantees
that we are moving along these quantities. Another possible matching would be to move
along the particles, which would result in vanishing first moment collisional contributions
in equations (3.1.11)-(3.1.14). Of course one could also perform no matching, which would
result in more cumbersome equations, which do not have any further information.

3.1.7. 2nd-moment wrt pφ of the Boltzmann-equation in RTA

∫
d3p

2τrpτ
pφpφ

[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
pφpφ(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τr

rprpφpφ

pτ
f +

∫
d3p

τr

rprpφpφpφpφ

(pτ )3
f − 2

r

∫
d3p

τrpτ
∂

∂pφ

(
prpφpφpφ

)
f

+
2

r

∫
d3p

τrpτ
3prpφpφf + r

∫
d3p

τr

∂

∂pr
pφpφpφpφ

pτ
f + r

∫
d3p

τr

prpφpφpφpφ

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
pφpφ(Ffs − f)

⇔ ∂r

∫
d3p

τrpτ
prpφpφf +

1

r

∫
d3p

τrpτ
prpφpφf +

1

r

∫
d3p

τr

rprpφpφpφpφ

(pτ )3
f

−2

r

∫
d3p

τr

∂

∂pφ
prpφpφpφ

pτ
f − 2

∫
d3p

τr

rprpφpφpφpφ

(pτ )3
f +

6

r

∫
d3p

τrpτ
prpφpφf

+r

∫
d3p

τr

∂

∂pr
pφpφpφpφ

pτ
f + r

∫
d3p

τr

prpφpφpφpφ

(pτ )3
f =

1

τrel

∫
d3p

τrpτ
pφpφ(Ffs − f)

⇔ ∂r

∫
d3p

τrpτ
prpφpφf +

1

r

∫
d3p

τrpτ
prpφpφf

matching
= 0 (3.1.16)
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3.1.8 2nd-moment wrt pηs of the Boltzmann-equation in RTA

3.1.8. 2nd-moment wrt pηs of the Boltzmann-equation in RTA

∫
d3p

2τrpτ
pηspηs

[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
pηspηs(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprpηspηsf +

∫
d3p

τr

rprpφpφpηspηs

(pηs)3
f − 2

r

∫
d3p

τrpτ
∂

∂pφ
prpφpηspηsf

+
2

r

∫
d3p

τrpτ
prpηspηsf + r

∫
d3p

τr

∂

∂pr
pφpφpηspηs

pτ
f + r

∫
d3p

τr

prpφpφpηspηs

(pτ )3
f

=
1

τrel

∫
d3p

τrpτ
pηspηs(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprpηspηsf +

∫
d3p

τr

rprpφpφpηspηs

(pτ )3
f − 2

r

∫
d3p

τr

∂

∂pφ
prpφpηspηs

pτ
f

−2

∫
d3p

τr

rprpφpφpηspηs

(pτ )3
f +

2

r

∫
d3p

τrpτ
prpηspηsf + r

∫
d3p

τr

∂

∂pr
pφpφpηspηs

pτ
f

+r

∫
d3p

τr

prpφpφpηspηs

(pτ )3
f =

1

τrel

∫
d3p

τrpτ
pηspηs(Ffs − f)

⇔ ∂r

∫
d3p

τrpτ
prpηspηsf +

1

r

∫
d3p

τrpτ
prpηspηsf

matching
= 0 (3.1.17)

3.1.9. 2nd-moment wrt pr of the Boltzmann-equation in RTA

∫
d3p

2τrpτ
prpr

[
pr∂r −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
f =

1

τrel

∫
d3p

2τrpτ
prpr(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprprpr

pτ
f +

∫
d3p

τr

rprprprpφpφ

(pτ )3
f − 2

r

∫
d3p

τr

prprpr

pτ
∂

∂pφ
(pφf)

+
2

r

∫
d3p

τrpτ
prprprf +

∫
d3p

τrpτ
∂

∂pr
rprprpφpφf +

∫
d3p

τr

prprprpφpφ

(pτ )3
f

−2

∫
d3p

τrpτ
rprpφpφ

pτ
f =

1

τrel

∫
d3p

τrpτ
prpr(Ffs − f)

⇔ 1

r
∂r

∫
d3p

τrpτ
rprprpr

pτ
f +

∫
d3p

τr

rprprprpφpφ

(pτ )3
f − 2

r

∫
d3p

τr

∂

∂pφ
prprprpφ

pτ
f

−2

r

∫
d3p

τr

r2prprprpφpφ

(pτ )3
f +

2

r

∫
d3p

τrpτ
prprprf +

∫
d3p

τr

∂

∂pr
rprprpφpφ

pτ
f

+

∫
d3p

τr

rprprprpφpφ

(pτ )3
f − 2

∫
d3p

τrpτ
rprpφpφf

=
1

τrel

∫
d3p

τrpτ
prpr(Ffs − f)

⇔ ∂r

∫
d3p

τrpτ
prprprf +

1

r

∫
d3p

τrpτ
prprprf − 2r

∫
d3p

τrpτ
prpφpφf

matching
= 0 (3.1.18)
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3.2 Closing the equations via 2nd-linearization

3.1.10. Remarks

With the computed equations (3.1.10) up to (3.1.18) we have expressions for the system
dynamics in the case of non vanishing particle interactions. One possibility is now to solve the
system of coupled equations for f in order to get insights into the evolution of the particles.
After elaborating the solution one could compute all the moments of the distribution function
like we did this in the last chapter 2 in the case of the collisionless solution Ffs. However to
solve the system of equations is nontrivial.

Therefore we will simplify our equations further with the help of phenomenological argu-
ments and tools, in order to circumvent the mathematical challenging task to solve the above
dynamics.

3.2. Closing the equations via 2nd-linearization

In order to work out the equations of motion for the different moments of the Boltzmann
equation in the relaxation time approximation in a closed form, we have to linearize our
problem a second time. In section 2.4.11 we already sketched how such a second linearization
is usually implemented. In this section we will linearize the distribution function f around
the free streaming solution Ffs.

f = Ffs + δf (3.2.1)

Further we demand the deviation δf to be small, via making the following statement.

Ffs � δf (3.2.2)

In order to summarize the linearizations let us mention that the first linearization was a
linearization of the collision kernel in f , while the second is a linearization of f itself. It
is important to notice that we expand the distribution function around the free streaming
solution Ffs, whereas most often people use the RTA to linearize around a Jüttner distribu-
tion fJüt (2.4.13). This is indeed the reason, why our equations are only valid in the era of
”last interactions”, near the free streaming stage, where the deviations are small. Note that
equation (3.2.2) quantifies the statement about the smallness of the deviation δf . In addi-
tion we demand that a similar statement (3.2.2) is true for the derivatives of the distribution
functions.

Next we are going to insert the ansatz (3.2.1) into the relaxation time approximated
Boltzmann equation, using the elaborated free streaming solution. In addition we neglect
the pηs component in the exponent, which results in a description for the transverse plane
in the mid-rapidity region. The resulting equation reads as follows.

[
pτ∂τ + pr∂r + pφ∂φ −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
(Ffs + δf) = m

Ffs − (Ffs + δf)

τrel
(3.2.3)

Due to equation (3.2.2) we neglect all derivatives of the deviation δf . Therefore we can
simplify equation (3.2.3) to the following expression.
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3.2 Closing the equations via 2nd-linearization

[
pτ∂τ + pr∂r + pφ∂φ −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
Ffs = −m δf

τrel

From the above formula we can easily extract an expression for the deviation δf .

δf = −τrel
m

[
pτ∂τ + pr∂r + pφ∂φ −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]
Ffs (3.2.4)

Please note that in equation (3.2.4) the Knudsen numberKn is hidden. Since τrel is a (more
or less) microscopical scale and the derivatives in τ are of macroscopic size the correction
δf is proportional to Kn. In this regime, shortly before free streaming the Knudsen number
is huge. In order to define a meaningful small parameter, one should utilize the inverse
Knudsen number as the small parameter. With the help of equation (3.2.4) we can compute
the linear perturbation as a function of the free streaming solution Ffs. As the origin of the
”non-equilibriumness”1 of the distribution function, we implement a temperature profile2,
which varies in position space T = T (r, φ). This ansatz is comparable to the computation
we did in the viscous hydrodynamical section 2.6.3, where the gradients were introduced in
order to generate a force.

In the following we will compute the resulting expression for the deviation of the free
streaming distribution function in the above mentioned scenario.

δf = −τrel
m

[
pτ∂τ + pr∂r + pφ∂φ −

2

r
prpφ

∂

∂pφ
+ rpφpφ

∂

∂pr

]

e
−

√
m2+prpr+r2

(
1+ r2

R2

)
pφpφ

T (r,φ)

Performing the derivatives leads to the following lengthy expression.

1,or as a force driving the system away from equilibrium,
2Strictly speaking this is an anisotropic temperature like profile. Nevertheless we will label this field by the

letter T instead of Λ.
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3.2 Closing the equations via 2nd-linearization

δf = −τrel
m

[
−pτ

√
m2 + prpr + r2

(
1 +
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R2

)
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(
∂τ

1
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)

−pr
√
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R2

)
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(
∂r

1

T

)

−pr rpφpφ
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√
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(
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R2

)
pφpφ

−pr 2r3pφpφ

R2T

√
m2 + prpr + r2

(
1 + r2

R2

)
pφpφ

−pφ
√
m2 + prpr + r2

(
1 +
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R2

)
pφpφ

(
∂φ

1

T

)

−2prpφ

rT


−

r2
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1 + r2

R2

)
pφ

√
m2 + prpr + r2

(
1 + r2

R2

)
pφpφ




+
rpφpφ

T


−

pr√
m2 + prpr + r2

(
1 + r2

R2

)
pφpφ







e
−

√
m2+prpr+r2

(
1+ r2

R2

)
pφpφ

T (r,φ)

The above formula can be simplified, since some summands are canceling each other.

δf = −τrel
m

√
m2 + prpr + r2

(
1 +

r2

R2

)
pφpφ

[
−pτ

(
∂τ

1

T

)
− pr

(
∂r

1

T

)
− pφ

(
∂φ

1

T

)]
Ffs

Furthermore one can partly perform the derivative of the inverse temperature T .

δf = −τrel
m

√
m2 + prpr + r2

(
1 + r2

R2

)
pφpφ

T 2

[
pτ (∂τT ) + pr (∂rT ) + pφ (∂φT )

]
Ffs (3.2.5)

With equation (3.2.5) we have an expression for the perturbation δf arising from gradients
in the temperature field T . With this formula we can compute the moments of the Boltzmann
equation again. In contrast to the previous approach in section 3.1 we obtained a closed
expression, since we related the perturbation to the distribution, which was the starting
point of the expansion (3.2.2).
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3.3 Computing the moments of the dissipative, massless correction to the
free-streaming solution

3.3. Computing the moments of the dissipative, massless
correction to the free-streaming solution

In this section we will further assume a φ-symmetry, massless particles and work only in the
pr and the pφ-direction in momentum space. In other words we are working in the transverse
plane. This results in a slightly changed integral measure.

Basically we compute the various moments of the deviation δf , similar to the computations
worked out for the free streaming solution (2.5.5). Since we assumed in (3.2.1) the correction
to be additive, the corresponding correction for the fields will be additive as well.

The resulting equations are describing the collisional contributions to the system’s expan-
sion in the regime shortly before free streaming which is the era of last rescatterings.

3.3.1. 0th-moment of δf

Since we neglect the ηs-direction, the integral measure slightly changes. The zeroth moment
becomes

I0 =

∫
d2p

2rpτ
δf

Inserting the elaborated expression for the perturbation’s evolution (3.2.5) leads to the
subsequent expression.

I0 = −τrel
2r

∫
d2p√

prpr + r2pφpφ

√
prpr + r2

(
1 + r2

R2

)
pφpφ

T 2
[pτ (∂τT ) + pr (∂rT )]Ffs

In order to compute the momentum integrals we use the substitutions (2.7.1)-(2.7.3) and
insert the functional form of the two dimensional free streaming solution.

I0 = − TCτrel

2r
√

1 + r2

R2

∫
dqrdqφ

√
qrqr + qφqφ√
qrqr + qφqφ

1+ r2

R2[√
qrqr +

qφqφ

1 + r2

R2

(∂τT ) + (qr∂rT )

]
e−
√
qrqr+qφqφ

In order to simplify the exponent further we perform the substitutions (2.7.4)-(2.7.6).

I0 = − TCτrel

2r
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ 2π

0
dφq

|qr|2e−|qr|

|qr|
√

cos2(φq) +
sin2(φq)

1+ r2

R2[
|qr|
√

cos2(φq) +
sin2(φq)

1 + r2

R2

(∂τT ) + |qr| cos(φq)(∂rT )

]

At this point the |qr|-integral can be calculated.
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3.3 Computing the moments of the dissipative, massless correction to the
free-streaming solution

I0 = −2TCτrel
2r

∫ 2π

0
dφq

1
r
R cos(φq)



r
R cos(φq)√

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )




In a last step we perform the φq-integral, which is indeed trivial.

I0 = −2πTCτrel
r


 (∂τT )√

1 + r2

R2

+
R

r
(∂rT )


 (3.3.1)

Like in all the above sections we compute and present the following moments of δf in
a compact way, since all the employed steps are already discussed in the zeroth moment
computation.

3.3.2. 1st-moment of δf wrt pτ

δN τ =

∫
d2p

2rpτ
pτδf

= − τrel
2T 2r

∫
d2p

√
prpr + r2

(
1 +

r2

R2

)
pφpφ

[√
prpr + r2pφpφ(∂τT ) + pr(∂rT )

]
Ffs

(2.7.1)−(2.7.6)
= − CT 2τrel

2r
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ 2π

0
dφq|qr|3e−|q

r|

[√
cos2(φq) +

sin2(φq)

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )

]

= − 6CT 2τrel

2r
√

1 + r2

R2

∫ 2π

0
dφq cos(φq)






r
R√

1 + r2

R2


 (∂τT ) + (∂rT )


 = 0 (3.3.2)

Note that the last step is due to the fact that the integral over cos is vanishing. This
argument is employed in the computations for the following 1st-moments as well.
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3.3.3 1st-moment of δf wrt pr

3.3.3. 1st-moment of δf wrt pr

δN r =

∫
d2p

2rpτ
prδf

= − τrel
2T 2r

∫
d2p

√
prpr + r2

(
1 + r2

R2

)
pφpφ

√
prpr + r2pφpφ

pr
[√

prpr + r2pφpφ(∂τT ) + pr(∂rT )
]
Ffs

(2.7.1)−(2.7.3)
= − CT 2τrel

2r
√

1 + r2

R2

∫
dqrdqφ

qr
√
qrqr + qφqφ√
qrqr + qφqφ

1+ r2

R2[√
qrqr +

qφqφ

1 + r2

R2

(∂τT ) + qr(∂rT )

]
e−
√
qrqr+qφqφ

(2.7.4)−(2.7.6)
= − CT 2τrel

2r
√

1 + r2

R2

∫ ∞

0
d|qr|

∫ 2π

0
dφq

|qr|3e−|qr| cos(φq)√
cos2(φq) +

sin2(φq)

1+ r2

R2[√
cos2(φq) +

sin2(φq)

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )

]

= −3CT 2τrel
r

∫ 2π

0
dφq


cos(φq)(∂τT )√

1 + r2

R2

+
R

r
cos(φq)(∂rT )




= 0 (3.3.3)
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3.3 Computing the moments of the dissipative, massless correction to the
free-streaming solution

3.3.4. 1st-moment of δf wrt pφ

δNφ

r
=

∫
d2p

2rpτ
pφδf

= − τrel
2T 2r

∫
d2p

√
prpr + r2

(
1 + r2

R2

)
pφpφ

√
prpr + r2pφpφ

pφ
[√

prpr + r2pφpφ(∂τT ) + pr(∂rT )
]
Ffs

(2.7.1)−(2.7.3)
= − CT 2τrel

2r2
(

1 + r2

R2

)
∫
dqrdqφ

qφ
√
qrqr + qφqφ√

qrqr + qφqφ

1+ r2

R2[√
qrqr +

qφqφ

1 + r2

R2

(∂τT ) + qr(∂rT )

]
e−
√
qrqr+qφqφ

= − CT 2τrel

2r2
(

1 + r2

R2

)
∫ ∞

0
d|qr||qr|3e−|qr|

∫ 2π

0
dφq

sin(φq)
r
R cos(φq)

√
1 +

r2

R2



r
R cos(φq)√

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )




= − 3CT 2τrel

r2
√

1 + r2

R2

∫ 2π

0
dφq sin(φq)


 (∂τT )√

1 + r2

R2

+
R

r
(∂rT )




= 0 (3.3.4)

Since we work only in two space dimensions we are left with computing the second moments
of the perturbation δf .
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3.3.5 2nd-moment of δf wrt pτ

3.3.5. 2nd-moment of δf wrt pτ

δT ττ =

∫
d2p

2rpτ
pτpτδf

= − τrel
2T 2r

∫
d2p

√
prpr + r2

(
1 +

r2

R2

)
pφpφ

√
prpr + r2pφpφ

[√
prpr + r2pφpφ(∂τT ) + pr(∂rT )

]
Ffs

(2.7.1)−(2.7.3)
= − CT 3τrel

2r
√

1 + r2

R2

∫
dqrdqφ

√
qrqr + qφqφ

√
qrqr +

qφqφ

1 + r2

R2

[√
qrqr +

qφqφ

1 + r2

R2

(∂τT ) + qr(∂rT )

]
e−
√
qrqr+qφqφ

(2.7.4)−(2.7.6)
= − CT 3τrel

2r
√

1 + r2

R2

∫ ∞

0
d|qr||qr|4e−|qr|

∫ 2π

0
dφq

√
cos2(φq) +

sin2(φq)

1 + r2

R2

[√
cos2(φq) +

sin2(φq)

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )

]

= −12CT 3τrel

r
√

1 + r2

R2

∫ 2π

0
dφq

r

R

cos(φq)√
1 + r2

R2


 r
R

cos(φq)√
1 + r2

R2

(∂τT ) + cos(φq)(∂rT )




= − 24πCT 3τrel

τr2
(

1 + r2

R2

)


 r

2

R2

1√
1 + r2

R2

(∂τT ) +
r

R
(∂rT )


 (3.3.5)
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3.3 Computing the moments of the dissipative, massless correction to the
free-streaming solution

3.3.6. 2nd-moment of δf wrt pr

δT rr =

∫
d2p

2rpτ
prprδf

= − τrel
2T 2r

∫
d2p

√
prpr + r2

(
1 +

r2

R2

)
pφpφ

prpr√
prpr + r2pφpφ[√

prpr + r2pφpφ(∂τT ) + pr(∂rT )
]
Ffs

(2.7.1)−(2.7.3)
= − CT 3τrel

2r
√

1 + r2

R2

∫
dqrdqφ

qrqr
√
qrqr + qφqφ√

qrqr + qφqφ

1+ r2

R2[√
qrqr +

qφqφ

1 + r2

R2

(∂τT ) + qr(∂rT )

]
e−
√
qrqr+qφqφ

(2.7.4)−(2.7.6)
= − CT 3τrel

2r
√

1 + r2

R2

∫ ∞

0
d|qr||qr|4e−|qr|

∫ 2π

0
dφq

cos2(φq)√
cos2(φq) +

sin2(φq)

1+ r2

R2[√
cos2(φq) +

sin2(φq)

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )

]

= −12CT 3τrel

r
√

1 + r2

R2

∫ 2π

0
dφq

R

r
cos(φq)


 r
R

cos(φq)√
1 + r2

R2

(∂τT ) + cos(φq)(∂rT )




= −12πCT 3τrel

r
√

1 + r2

R2


 (∂τT )√

1 + r2

R2

+
R

r
(∂rT )


 (3.3.6)
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3.3.7 2nd-moment of δf wrt pφ

3.3.7. 2nd-moment of δf wrt pφ

δT φφ

r2
=

∫
d2p

2rpτ
pφpφδf

= − τrel
2T 2r

∫
d2p

√
prpr + r2

(
1 +

r2

R2

)
pφpφ

pφpφ√
prpr + r2pφpφ[√

prpr + r2pφpφ(∂τT ) + pr(∂rT )
]
Ffs

(2.7.1)−(2.7.3)
= − CT 3τrel

2r
√

1 + r2

R2

∫
dqrdqφ

√
qrqr + qφqφ

qφqφ

r2
(

1 + r2

R2

)√
qrqr + qφqφ

1+ r2

R2[√
qrqr +

qφqφ

1 + r2

R2

(∂τT ) + qr(∂rT )

]
e−
√
qrqr+qφqφ

(2.7.4)−(2.7.6)
= − CT 3τrel

2r3
(

1 + r2

R2

) 3
2

∫ ∞

0
d|qr||qr|4e−|qr|

∫ 2π

0
dφq

sin2(φq)√
cos2(φq) +

sin2(φq)

1+ r2

R2[√
cos2(φq) +

sin2(φq)

1 + r2

R2

(∂τT ) + cos(φq)(∂rT )

]

= − 12CT 3τrel

r3
(

1 + r2

R2

)
∫ 2π

0
dφq sin2(φq)


 (∂τT )√

1 + r2

R2

+
R

r
(∂rT )




= − 12πCT 3τrel

r3
(

1 + r2

R2

)


 (∂τT )√

1 + r2

R2

+
R

r
(∂rT )


 (3.3.7)

3.4. Discussion and outlook

With the expressions (3.3.1) up to (3.3.7) we have the resulting – so to say dissipative – fields,
that arise from the 2nd-linearization around the massless, anisotropic free streaming solution
(2.5.5). As it was shown, the dissipative corrections to the particle flow are all vanishing,
only the second and the zeroth moments are present in this two dimensional setup.

In order to compute the arising observables like anisotropic flow coefficients vn from this
setup – as we did for the collision-less case in section 2.9 – one needs to solve the equations
(3.3.1) up to (3.3.7) on a discretized position space grid, incorporating a realistic anisotropic
temperature gradient. If this is achieved, an interesting question is whether the anisotropic
freeze-out including dissipative corrections due to last interactions could also reproduce mea-
sured HBT-Radii3. These radii are an observable arising from the femtoscopy and measure
roughly speaking the size and the shape of the spacial volume, where the freeze out takes
place. A computation of these radii could be done in the collision-less approach as well, but
it would be somehow ill-defined.

However the above elaborated approach can be seen as a first step for developing a tool
that describes the area of the green arrow in figure 2.7.

3HBT is an abbreviation for Hanbury-Brown and Twiss. In order to read more about this observable we
refer to [61].
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3.4 Discussion and outlook

For the future it would be interesting to investigate whether the choice of linearizing the
collision term and the distribution function, describes the system’s evolution as good as a
full treatment of the collision term, as it was used in [25] and in [26].
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4
Azimuthally dependent two-particle correlations

4.1. Introduction

The investigation of correlations between particles is a crucial point in the heavy-ion collision
research field. Correlations give a measure of the particle’s ”relationship” to each other. For
example it could be that all particles in a created medium do not interact with others and
are totally uncorrelated. The other extreme would be that all particles know at all time
about all the other particles in the system1 and evolve with respect to this ”knowledge” as
for example in a Bose-Einstein condensate. To investigate whether particles in the fireball
behave like the former or the latter or somehow in between correlations are the central object
of research. Of course one can exclude the two limiting cases of no and infinite correlation.

In contrast to for example pure e+−e−– collisions, where one knows about the initial state
and can from this on compute cross sections, in heavy-ion collisions the initial stage and its
degrees of freedom are not exactly known. Therefore one can not compute the transition
elements connecting initial state and final state. The only statement one can make is about
how the particles in the final state are correlated to each other2. This is the reason why
correlations are investigated intensively.

The single-particle distribution, which can be characterized by the already mentioned
anisotropic flow coefficients, is in this context the simplest correlation one can think of.
From the experimental side the final state degrees of freedom’s correlations are expressed by
the Lorentz invariant M-particle-momentum distribution.

E~p1
· ... · E~pM

d3MN

d3~p1 · ... · d3~pM
(4.1.1)

This Lorentz invariant observable gives the number of particles in the corresponding mo-
mentum space element. Note that for the above formula M ≤ N must hold, where N is the
total number of particles. Such an observable can be modeled from a mathematical point of
view by a M particle probability density distribution.

p(M)(~p1, ...~pM ) (4.1.2)

1Of course the physics of the special relativity sets for this case a causal limit in reality.
2,or to certain symmetry planes, as discussed later.
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4.1 Introduction

It gives the probability for a system that there is one particle with momentum ~p1 +d~p and
one particle with momentum ~p2 + d~p and so on. Note that in contrast to the distribution
functions f in former chapters – which are normalized to particle number,– the probability
distributions p are normalized to 1. Leaving aside problems of normalization in the case of
fluctuating particle number, let us turn to the physical content of the probability (4.1.2).

In the case M = 1 we saw the usual treatment already in the introduction of this thesis.
In this case one deals with a single-particle momentum spectrum. Since for high energetic
collisions one mostly detects the mid rapidity region, one can get rid of the ηs-dimension. If
one uses in addition the fact that the symmetry of the transverse plane is polar, one can per-
form a Fourier expansion in the azimuthal angle φp. This justifies the name of the chapter,
since we are just investigating the azimuthal dependence of correlations. While perform-
ing the above listed assumptions, for the one particle case we end up with the anisotropic
flow coefficients, which we already discussed. This expansion in flow coefficients builds the
basis of all statistical descriptions of the fireball expansion. Every further signal develops
on the background of this(these) correlation(s) to the symmetry plane(s). Therefore a care-
ful investigation of this observable is essential for making statements about more detailed
correlations.

As a quite natural extension of the concept we consider the case M = 2. In the case that
two particles in the system are completely independent the two-particle distribution function
factorizes in the following way.

p(2)(~p1, ~p2) = p(1)(~p1) · p(1)(~p2) (4.1.3)

However luckily for all physicists dealing with interactions, this will never be the case in
a heavy-ion description, due to the fact that there have to be correlations at play. Potential
and important sources of two – or even more – particle correlations that are worth being
investigated are listed here.

• Decays of particles during the way to the detector in the hadronic phase. Because in
a decay the original particle’s momentum and energy has to be conserved. For example
due to the process ∆++ → p + π+ one should get a correlation signal for pions and
protons.

• Quantum correlations like Bose enhancement or Fermi suppression for identical par-
ticles settled in the same phase space region. Here for example the Bose enhancement is
easily measurable in π−π–correlations. A repulsion of protons3 should be in principle
also present, but it is harder to detect such a process due to the next point.

• Final state particles interacting via a the strong interaction or via electroweak
gauge bosons. A simple example are particles emitted by a β−-decay, which attract
each other, whereas final state particles from a β+-decay are pushed apart, due to their
same charge.

• The last source is the global transverse momentum conservation of the whole
system, which has been analyzed in [62]. In fact all the transverse momenta of the
particles have to add up to zero.

3,since neutrons are harder to detect since they do not carry an electric charge.
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4.2 On the way to two-particle distributions

All these listed sources are rich of – in principle known – physics. In order to discover
”new physics” or anomalous effects, one has to understand first how the above effects are
reflected in the correlations. Due to the listed effects in principle the two-particle distribution
contains, in addition to expression (4.1.3), a two-particle correlation part

p(2)(~p1, ~p2) = p(1)(~p1) · p(1)(~p2) + p(2)
c (~p1, ~p2) (4.1.4)

Of course this concept can be extended to three or more particle correlations, although
some of the above listed origins are not able to generate correlations between many particles.
For three particles the above expression generalizes to the following sum.

p(3)(~p1, ~p2, ~p3) = p(1)(~p1) · p(1)(~p2) · p(1)(~p3)

+p(2)
c (~p1, ~p2) · p(1)(~p3) + p(2)

c (~p2, ~p3) · p(1)(~p1) + p(2)
c (~p1, ~p3) · p(1)(~p2)

+p(3)
c (~p1, ~p2, ~p3) (4.1.5)

At this point let us emphasize that the real particle correlations are labeled by the index c.
It is important to notice that a three-particle distribution p(3) can also be non vanishing in

the case of vanishing three-particle correlations p
(3)
c , which are also called cumulants . This

expression can be visualized in pictures as in the following figure 4.1.
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+
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Figure 4.1.: Cartoon of three-particle correlations.

In figure 4.1 the two-particle bubbles, which symbolize p
(2)
c could be realized for example

by a decay of a particle in two final state particles, whereas the three-particle triangle, which
is the last summand, could be realized by a particle decaying in three final state particles.

4.2. On the way to two-particle distributions

After investigating the anisotropic flow and therefore clarifying how particle emission with
respect to symmetry planes looks like, one should proceed and generalize the concept in order
to investigate two-particle flow coefficients. This generalization is creating an observable

which is sensitive to the correlation of two particles p
(2)
c . The first step in this direction was

done in [56].
Such two-particle flow coefficients can in principle be used in order to determine the flow

of unstable particles like K0
s , φ or Λ, which decayed outside the fireball but already before

reaching the detector. Such a flow analysis can be achieved through a study of the flows of the
decay products. After removing all ”simple” sources of correlation, the remaining correlation

95



4.3 Controlling the background

of the daughter particles has to be due to the flow of the decayed particle. Another possible
subject which should be analyzed by two-particle flow coefficients is jet quenching. Since a jet
builds up a more or less conical structure as boundary, the fireball’s shape can be deposited
in jet structures, which are measurable. In order to quantify such deposited shapes due to
azimuthal dependent medium pathlength, two-particle correlations are a good observable.

In the following we will construct observables for such two-particle flow studies as was
done in [56]. The single-particle probability distribution after Fourier expansion looks like
the following.

p(1)(φp|{ψn}) ∝
1

2π

[
1 + 2

∞∑

n=1

vn(pt) cos(n(φp − ψn))

]
(4.2.1)

In comparison the formula (2.9.8), which is normalized to the particle number, the above
expression should be normalized to one. Therefore the expression can be interpreted as a
distribution function. Formula (4.2.1) gives the probability of an emitted particle with mo-
mentum pt in direction of φp under a given set of plane angles ψn. Similar to the above, the vn
coefficients can be computed by the integral of p(1) over φp convoluted with the correspond-
ing cos(nφp). This single-particle probability distribution p(1) is so to say the background
of all further signals, since M -particle distributions will always contain contributions from
it4. As we already saw, the pt-dependent flow coefficients vn are precisely measured and
investigated in the context of heavy-ion collisions.

4.3. Controlling the background

Before we calculate the two-particle correlation observables, we should again take a detailed
look at formula (4.1.4). Two-particle correlations of physical interest would be hidden in the

p
(2)
c contribution. But this signal will be on top of the background of the two single-particle

contribution’s product. In other words one will measure a contribution to the two-particle
distribution since a pair of particles is already correlated due to the fact that both are
correlated to the symmetry planes {ψn}. Such a correlation has to be taken into account,
but is not built up by one of the above mentioned motivations for studying several particle
correlations. In order to do so let us first concentrate on the following idealized case, where
there are no ”true” correlations. In addition we will restrict our investigations to particles
in the same rapidity-bin, since we are – as the title of this chapter indicates – interested in
azimuthally correlations, but not in longitudinal correlations.

p
(2)
trivi(~pa, ~pb|{ψn}) = p(1)(φa|{ψn}) · p(1)(φb|{ψn}) +((((((((

p(2)
c (~pa, ~pb|{ψn}) (4.3.1)

In this case we are just dealing with the already known. Before we compute the product of
the two single-particle probability densities we want to combine the two angles φp of particle
a – denoted by φa – and φp of particle b – denoted by φb – into a pair angle φpair and a
relative angle ∆φ. This transformation and its inverse look as follows.

4See for example formula (4.1.4) and (4.1.5).
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4.3 Controlling the background

φa, φb ⇒
φa + φb

2
= φpair,

φa − φb
2

= ∆φ (4.3.2)

⇔ φa = φpair + ∆φ, φb = φpair −∆φ (4.3.3)

Figure (4.2) displays the geometrical meaning of transformation (4.3.2).

!"

"pair"a

"b

px

py

Figure 4.2.: Cartoon of the angles φpair and ∆φ.

In addition we will employ the usual cos and sin transformations. Please notice that both
angles run over an interval from 0 to 2π.

cos(a) + cos(b) = 2 cos

(
a+ b

2

)
cos

(
a− b

2

)
(4.3.4)

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b) (4.3.5)

sin(a± b) = cos(a) sin(b)± sin(a) cos(b) (4.3.6)

This can be combined to the following transformation.

cos(nφa − nψn) = cos(n(φpair − ψn) + n∆φ)

(4.3.5)
= cos(n(φpair − ψn)) cos(n∆φ)− sin(n(φpair − ψn) sin(n∆φ) (4.3.7)

The analogous expression for particle b is consequently:

cos(n(φb − ψn)) = cos(n(φpair − ψn)− n∆φ)

(4.3.5)
= cos(n(φpair − ψn)) cos(n∆φ) + sin(n(φpair − ψn)) sin(n∆φ) (4.3.8)

Note that we work within the assumption of identical ψn for particle a and b, since they
are emerging out of the same medium. Since in the following computations we also have to
deal with products of the above expressions let us take a look how these can be transformed.
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4.3 Controlling the background

cos(n(φa − ψn)) cos(m(φb − ψm))

=
1

2

[
cos((n+m)φpair − nψn −mψm) cos((n−m)∆φ)

− sin((n+m)φpair − nψn −mψm) sin((n−m)∆φ)

+ cos((n−m)φpair − nψn +mψm) cos((n+m)∆φ)

− sin((n−m)φpair − nψn +mψm) sin((n+m)∆φ)

]
(4.3.9)

With these three transformations (4.3.7), (4.3.8) and (4.3.9), we can now compute expression
(4.3.1) while inserting the product of expression (4.2.1). In doing so we neglect all anisotropic
single-particle flow coefficients vn>4 and the measure of non-centrality v1. But in principle
one could go beyond v4 at the cost of longer expressions. In addition we label the flow
coefficients of particle b with wn in order to distinguish them from the flow coefficients of
particle a. The latter guarantees that we are later able to compute the two-particle density

p
(2)
trivi(φa, φb) for different particles, which may have a different flow pattern due to different

masses or charges. However we treat the orientation of the planes {ψn} to be the same for
both particles, since the planes have their origin in the initial state of the collision, which is
for one collision of course unique. Performing the product under the above assumptions we
end up with the following expression for the two-particle probability distribution.

p
(2)
trivi(φa, φb|{ψn}) = p(1)(φa|{ψn}) · p(1)(φb|{ψn}) (4.3.10)
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p
(2)
trivi(φa, φb|{ψn}) = 1

4π2

[
1 + 2

(
v2 cos(2φa − 2ψ2) + v3 cos(3φa − 3ψ3) + v4 cos(4φa − 4ψ4)

)]

[
1 + 2

(
w2 cos(2φb − 2ψ2) + w3 cos(3φb − 3ψ3) + w4 cos(4φb − 4ψ4)

)]

= 1
4π2

[
1 + 2

(
v2

{
cos(2(φpair − ψ2)) cos(2∆φ)− sin(2(φpair − ψ2)) sin(2∆φ)

}

+w2

{
cos(2(φpair − ψ2)) cos(2∆φ) + sin(2(φpair − ψ2)) sin(2∆φ)

}

v3

{
cos(3(φpair − ψ3)) cos(3∆φ)− sin(3(φpair − ψ3)) sin(3∆φ)

}

w3

{
cos(3(φpair − ψ3)) cos(3∆φ) + sin(3(φpair − ψ3)) sin(3∆φ)

}

v4

{
cos(4(φpair − ψ4)) cos(4∆φ)− sin(4(φpair − ψ4)) sin(4∆φ)

}

w4

{
cos(4(φpair − ψ4)) cos(4∆φ) + sin(4(φpair − ψ4)) sin(4∆φ)

}

+2v2w2

{
cos(4(φpair − ψ2)) + cos(4∆φ)

}
+ 2v3w3

{
cos(6(φpair − ψ3)) + cos(6∆φ)

}

+2v4w4

{
cos(8(φpair − ψ4)) + cos(8∆φ)

}

+2v2w3

{
cos(5φpair − 2ψ2 − 3ψ3) cos(∆φ) + sin(5φpair − 2ψ2 − 3ψ3) sin(∆φ)

+ cos(φpair + 2ψ2 − 3ψ3)) cos(5∆φ) + sin(φpair + 2ψ2 − 3ψ3) sin(5∆φ)

}

+2v3w2

{
cos(5φpair − 3ψ3 − 2ψ2) cos(∆φ)− sin(5φpair − 3ψ3 − 2ψ2) sin(∆φ)

+ cos(φpair − 2ψ2 + 3ψ3) cos(5∆φ)− sin(φpair − 3ψ3 + 2ψ2) sin(5∆φ)

}

+2v2w4

{
cos(6φpair − 2ψ2 − 4ψ4) cos(2∆φ) + sin(6φpair − 2ψ2 − 4ψ4) sin(2∆φ)

+ cos(2φpair + 2ψ2 − 4ψ4) cos(6∆φ) + sin(2φpair + 2ψ2 − 4ψ4) sin(6∆φ)

}

+2v4w2

{
cos(6φpair − 4ψ4 − 2ψ2) cos(2∆φ)− sin(6φpair − 4ψ4 − 2ψ2) sin(2∆φ)

+ cos(2φpair − 4ψ4 + 2ψ2) cos(6∆φ)− sin(2φpair − 4ψ4 + 2ψ2) sin(6∆φ)

}

+2v3w4

{
cos(7φpair − 3ψ3 − 4ψ4) cos(∆φ) + sin(7φpair − 3ψ3 − 4ψ4) sin(∆φ)

+ cos(φpair + 3ψ3 − 4ψ4) cos(7∆φ) + sin(φpair + 3ψ3 − 4ψ4) sin(7∆φ)

}

+2v4w3

{
cos(7φpair − 4ψ4 − 3ψ3) cos(∆φ)− sin(7φpair − 4ψ4 − 3ψ3) sin(∆φ)

+ cos(φpair + 3ψ3 − 4ψ4) cos(7∆φ)− sin(φpair − 4ψ4 + 3ψ3) sin(7∆φ)

})]
(4.3.11)
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4.3 Controlling the background

Please keep in mind that both single-particle flow coefficients vn, wn depend on the mod-
ulus of their particle momentum, consequently the two-particle probability exhibits this
dependence as well. With this expression at hand one can compute flow coefficients just like
the way it is done in the single-particle case (2.9.9) via

vpairn,c (∆φ, |pa|, |pb|) =

∫ 2π
0 dφpair p

(2)
trivi(φ

pair,∆φ|{ψn}) cos(n(φpair − ψn))
∫ 2π

0 dφpair p
(2)
trivi(φ

pair,∆φ|{ψn})
(4.3.12)

as well as

v∆φ
n,c (φpair, |pa|, |pb|) =

∫ 2π
0 d∆φ p

(2)
trivi(φ

pair,∆φ|{ψn}) cos(n(∆φ))
∫ 2π

0 d∆φ p
(2)
trivi(φ

pair,∆φ|{ψn})
. (4.3.13)

But since there exist sin(φpair) and sin(∆φ) –terms as well in expression (4.3.11), addi-
tionally we have to deal with vn,s coefficients, which are defined as follows

vpairn,s (∆φ, |pa|, |pb|) =

∫ 2π
0 dφpair p

(2)
trivi(φ

pair,∆φ|{ψn}) sin(n(φpair − ψn))
∫ 2π

0 dφpair p
(2)
trivi(φ

pair,∆φ|{ψn})
(4.3.14)

and

v∆φ
n,s (φpair, |pa|, |pb|) =

∫ 2π
0 d∆φ p

(2)
trivi(φ

pair,∆φ|{ψn}) sin(n(∆φ))
∫ 2π

0 d∆φ p
(2)
trivi(φ

pair,∆φ|{ψn})
(4.3.15)

In the above definitions for the pair-flow coefficients it is governed that they are inde-
pendent of a reference angle throughout the subtraction of the corresponding ψn. This
subtraction preserves the invariance of the particle spectrum. For the relative angle this
is of course not needed, since an offset of the angle does not contribute in a difference of
two angles. Of course one could have started from a two-particle probability distribution

p
(2)
trivi(φ

pair,∆φ|{ψn}) and perform from this on a Fourier expansion in either φpair or ∆φ,
ending up in a series which looks like the following expression.

p
(2)
trivi(φ

pair,∆φ|{ψn}) ∝
1

2π

[
1 + 2

∞∑

n=1

{
vpairn,c (∆φ) cos(n(φpair − ψn)) + vpairn,s (∆φ) sin(n(φpair − ψn))

}
]

or

p
(2)
trivi(φ

pair,∆φ|{ψn}) ∝
1

2π

[
1 + 2

∞∑

n=1

{
v∆φ
n,c (φpair − ψn) cos(n(∆φ)) + v∆φ

n,s (φpair − ψn) sin(n(∆φ))
}]

However, with our lengthy computation (4.3.11) we are able to express the ”new” two-
particle coefficients as a function of the known single-particle coefficients5. Computing

5At least in the case of no true correlation.
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4.3 Controlling the background

the two-particle flow coefficient, for example for the contribution arising from integrating
while weighting with cos(4(φpair −ψ4)) is – after a addition with 0, namely the replacement
4φpair → 4φpair − 4ψ4 + 4ψ4 for the corresponding angles in equation (4.3.11) – the next
step, we have to work out. While doing so, one ends up with the following contribution for
vpair4,c

vpair4,c (∆φ, |pa|, |pb|) ∝
v4

2
cos(4∆φ) +

w4

2
cos(4∆φ) + v2w2 cos(4(ψ2 − ψ4)). (4.3.16)

For computing all the vpairc,s and v∆φ
c,s coefficients one should use the orthogonality of the

sin and cos functions6 in order to save time.

∫ 2π

0
dφ cos(aφ) cos(bφ) =

∫ 2π

0
dφ sin(aφ) sin(bφ) = πδab,

∫ 2π

0
dφ cos(aφ) sin(bφ) = 0

Another interesting question is of course the co-domain of the two-particle flow coefficients.
Since the single-particle coefficients can take values between -1 and 1, the pair flow coefficient
can take a value between -1 and 1.

vpairn,c/s(∆φ, |pa|, |pb|) ∈ [−1, 1]

Another interesting question is about the presence of the sin terms in the Fourier expansion
of the pair flow, since they are absent in the single-particle flow expansion. To answer this
question figure 4.3 shows for the pair flow what is happening under the transformation
φpair → −φpair. As one can see in definition (4.3.2) this is equivalent to map φa and φb
to their negative values. This transformation is sketched in figure 4.3, but as one can see
the blue indicated angle ∆φ is now pointing in the opposite direction (from the long vector
to the short one). In order to reestablish a symmetry one needs to transform ∆φ → −∆φ
as well. This anti-symmetry is reflected by the emergence of sin terms in the two-particle
Fourier expansions.

6, which one used already in order to perform the Fourier expansion.
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Figure 4.3.: Cartoon illustrating the antisymmetry of the function p
(2)
trivi(φ

pair,∆φ|{ψn}) with
respect to φpair → −φpair.

Of course one can generalize the contributions for the coefficients vpairc,s and v∆φ
c,s to the

case, where the expansion of the single-particle spectrum is not stopped after n = 4. The
most general contribution for the two-particle flow coefficients reads

vpairn,c ∝
(vn

2
+
wn
2

)
cos(n∆φ)

+
∑

i,j
i+j=n

(viwj)

[
cos ((i− j)∆φ) cos(iψi + jψj − (i+ j)ψi+j)

]

+
∑

i,j
i−j=n

(viwj)

[
cos ((i+ j)∆φ) cos(iψi − jψj − (i− j)ψi−j)

]
(4.3.17)

as well as
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vpairn,s ∝
(
−vn

2
+
wn
2

)
sin(n∆φ)

−
∑

i,j
i+j=n

(viwj)

[
sin ((i− j)∆φ) cos(iψi + jψj + (i+ j)ψi+j)

]

−
∑

i,j
i−j=n

(viwj)

[
sin ((i+ j)∆φ) cos(iψi − jψj − (i− j)ψi−j)

]
. (4.3.18)

Equivalently the Fourier expansion in ∆φ presented above comes along with the following
coefficients in the absence of two-particle cumulants.

v∆φ
n,c ∝

(vn
2

+
wn
2

)
cos
(
n(φpair − nψn)

)

+
∑

i,j
i+j=n

(viwj)

[
cos
(
(i− j)(φpair − ψi−j) + (i− j)ψi−j + iψi − jψj

) ]

+
∑

i,j
i−j=n

(viwj)

[
cos
(
(i+ j)(φpair − ψi+j) + (i+ j)ψi+j − iψi − jψj

) ]
(4.3.19)

and for the sin contributions:

v∆φ
n,s ∝

(
−vn

2
+
wn
2

)
sin
(
n(φpair − ψn)

)

−
∑

i,j
i+j=n

(viwj)

[
sin
(
(i− j)(φpair − ψi−j) + (i− j)ψi−j − iψi + jψj

) ]

−
∑

i,j
i−j=n

(viwj)

[
sin
(
(i+ j)(φpair − ψi+j) + (i+ j)ψi+j − iψi − jψj

) ]
(4.3.20)

The above listed n-th order two-particle flow coefficients (4.3.17), (4.3.18), (4.3.19) and
(4.3.20) are observables, which can be measured from experimental data as well. But the
expressions on the right hand side are just displaying the background built up from the
single-particle flow.

Since we know how to compute this background of the two-particle flow coefficients, that is
build up from the single-particle flow coefficients, we should be able to compare experimental
measured two-particle flow coefficients vpairn,c/s(∆φ, |pa|, |pb|) and v∆φ

n,c/s(φ
pair, |pa|, |pb|) with the

above computed ones. In principle a comparison of the measured and the computed ones
should give rise to the two-particle cumulants. Figure 4.4 displays this idea of sieving for
two-particle cumulants in a sketch.
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Figure 4.4.: Cartoon illustrating the subtraction of the computed background from the mea-
surement in order to gain two-particle cumulants.

However the comparison to the experiment comes along with a problem. Up to here we
dealt so to say in a ’theorists dream’. Because both, all flow coefficients vn from particle a
and wn from particle b and the orientation of the symmetry planes ψn were just variables
or parameters, whose influence on the two-particle observables we investigated. But in the
experiment these vn’s, wn’s and ψn’s are distributed with a certain probability distribution.
Which means that the measured values for the flow coefficients fluctuate although one selects
similar collision events – for example through a sorting of the collisions via their number of
produced particles or centrality of the collision. The fluctuations of the flow coefficient v2

are measured and can be found in [63].
Therefore we first have to have these fluctuations under control in order to be able to make

a reliable statement about two-particle cumulants and the physics hidden in them.
For the fluctuations of the symmetry planes we can assume the following. The different

symmetry planes are in general equally distributed. However in one event there is a possibility
that for example the planes ψ2 and ψ4 are correlated7. But we do not expect a correlation
between ψ2 and ψ3. Investigating these correlations would be an interesting subject for the
future, but in this computation we do not deal with them.

4.4. Fluctuations of {vn}
4.4.1. Physical origin of {vn} fluctuations

Figure 4.5 illustrates the physical mechanism thought to be the main origin of the vn’s fluc-
tuations. In the heavy-ion collision research, events are classified by their impact parameter,
which is experimantally not adjustable. In the upper half of figure 4.5 two such events with
the same impact parameter are sketched. Nonetheless, due to the fact that the nuclei are
built up by nucleons distributed in average by a certain distribution function, the effective
overlap region of the two nuclei is lumpy. The blue dots represent places where a nucleon-
nucleon collision took place in this specific event. As a consequence the overlap region’s
shape differs from event to event, as it is shown in the sketch. In theoretical approaches
these initial stages can be modeled by different models, like TRENTo [64] or Monte Carlo
Glauber [65, 66]. The overlap region, which lies in the position space, can be characterized
by eccentricities εn and symmetry plane vectors ψn. As it is indicated in figure 4.5, both
the amplitude of the anisotropy, basically the size of εn, and the direction of the symmetry
plane ψn will fluctuate event-by-event. The fluctuation in the symmetry plane angle is easy
to see, the fluctuation in the eccentricity ε2 is reflected in the fact that the left event has a
more elliptic shape, than the plane sketched on the right side. In other words for figure 4.5
one would find ε2 > ε′2.

If one elaborates the initial energy density8 ρ(r, φ) arising from nucleon-nucleon collisions,

7This is due to the fact that it seem ”easier” to built up a quadrangular structure, when there is already an
ellipsis.

8of course in the mid rapidity region
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4.4.1 Physical origin of {vn} fluctuations

in a coordinate system whose origin is setteled at the center of energy, one can compute the
eccentricities9 in the following manner [2] for n ≥ 2.

εne
inψn := −

∫
ρ(r, φ)rn+1ei nφdr dφ∫
ρ(r, φ)rn+1dr dφ

(4.4.1)

A very crucial point for later is the fact, that the eccentricities (4.4.1) are per definition all
lying in the interval between 0 6 εn 6 1. Usually the eccentricity εne

inψn can be decomposed
in the Cartesian contributions.

εne
inψn = εx + iεy

Assuming that these anisotropies are translated via a (deterministic)10 hydrodynamical era
in a linear way, as it was justified by computations presented in [67] for the case of n = 2, 3,
we can model the flow coefficients vn as the linear response to the initial eccentricities εn.
Further in the above publication they found that this linearity holds even for n = 4, which
is as the authors say ”surprising”.

vn = κnεn (4.4.2)

In equation (4.4.2) κn is the linear response coefficient, which depends on the order n.
As a matter of fact the anisotropic flow coefficients vn have to fluctuate in the case the
eccentricities εn fluctuate event by event. Please note that the statement of linear response
for ε2 and ε3 holds for kinetic transport as well as the reader can see in [26].

The absolute value of the coefficient κn has to be extracted from hydro (or transport) -
studies.

Note that the linear response assumption is limiting the range of applicability, since for
n > 3 the vn coefficients get multilinear contributions from products of εm as well, i.e.

v4 = κ4ε4 + κ4,22ε
2
2 (4.4.3)

In this regime the response is neither linear nor completely due to one eccentricity. However
the higher order factors κn,ji are measured and can be found in [68]11.

9Please note that we are refering to eccentricities for all n, although the name ”eccentricity” refers mathe-
matical only to ε2, whereas ε3 is the triangularity and so on.

10Deterministic is stressed, since we assume no further sources of fluctuations are at play during the transport
regime.

11Be aware that in the reference they use a different notation κn,ii → χn,ii.
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Figure 4.5.: Cartoon illustrating the origin of the fluctuations of v2.

4.4.2. Linearization of {vn} fluctuations

An often chosen – and rather simple – way to investigate the effect of fluctuations is to
investigate the impact of a linear fluctuation. A proper ansatz for such a setup is the
following:

vn → vn + δvn (4.4.4)

Here δvn is the linear fluctuation of the single-particle flow coefficient. In order to build
up a consistent formalism these fluctuations have to be small with respect to the ’mean
value’ vn. If one inserts the above ansatz into the expressions for the pair flow coefficients
vpairn,c/s or v∆φ

n,c/s and linearizes these expressions with respect to the small δvn, one gets the
single-particle flow coefficient fluctuation’s impact on the two-particle flow coefficients. For
example for vpair4,c this looks as follows.

vpair4,c (∆φ|{ψn}) ∝
(
v4 + δv4

2
+
w4 + δw4

2

)
cos(4∆φ) + [δv2 w2 + v2 δw2] cos(4(ψ2 − ψ4))

After subtracting equation (4.3.16) from equation (4.4.5), one finds the fluctuation δvpair4,c . In
principle with this mechanism we are able to describe small fluctuations. However demanding
δvn to be small comes along with some problems. First the flow coefficients are by themselves
between 0 and 1 so they are on the one hand in some sense already small and on the other
hand the fluctuations are limited ”at the edges” in order to guarantee the set of realization
for vn.

This problem becomes even bigger if one is interested in the most central collisions, where
the eccentricities12 are only built up due to fluctuations and the mean value for vn is already

12and therefore the flow coefficients.
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very small. In this scenario where the mean value of vn is only fluctuation driven the above
mentioned ansatz including a linearization is an ill defined tool.

But in the case of a larger expectation value for vn this ansatz can be useful within a limited
scope of application. A much more general tool to describe and model the fluctuations of vn
will be presented in the following section.

4.4.3. Power law like fluctuations

In order to describe the fluctuations of the vn in a better way than we did in section 4.4.2,
we follow the ideas and concepts presented in [69] and [70]. They studied basically how
initial stage eccentricities are fluctuating over many events and how these fluctuations are
transformed into fluctuations of the anisotropic flow coefficients in which we are interested.
In detail they elaborate two ways to model the fluctuations of the eccentricities. The more
intuitive way is built upon the assumption, that the vector εne

inψn is fluctuating in mag-
nitude and direction. They parametrize these fluctuations in the two components of the
eccentricity vector by a two dimensional Gaussian distribution function. After integrating
out the angle one ends up with a one dimensional Bessel-Gaussian distribution p(εn), which
has the following form13.

p(εn) =
εn
σ
I0

( ε̄0εn
σ2

)
e−

ε̄20+ε2n
2σ2 (4.4.5)

In the above formula ε̄0 is denoting the mean value of the eccentricity εn and I0 denotes
the modified Bessel function of first kind.

Iα(z) =
1

π

(∫ π

0
dθ cos(αθ)ex cos(θ)

)
− sin(απ)

π

∫ ∞

0
dt e−x cosh(t)−αt

The σ in equation (4.4.5) denotes the standard deviation, which sets the scale for the
fluctuations of the εn. At this point the authors stress that the parameter set ε0 and σ
has a dependence on the harmonic n. This distribution shows a good behavior, since it is
vanishing for εn = 0 This assures that the distribution gives no negative εn contributions,
which is important since εn has to be greater than 0, as above mentioned.

In the limiting case where the mean eccentricity is vanishing (ε̄0 = 0) the distribution
(4.4.5) is simplified to a (originally two dimensional) Gaussian distribution. In this scenario
the distribution function simplifies to the following form.

p(εn|ε̄0 = 0) =
εn
σ2
e−

ε2n
2σ2 (4.4.6)

A crucial remark regarding formulas (4.4.5) and (4.4.6) is that they both take into account
that the set of realizations of εn has to be greater than zero, but they do not take into account
that εn is also bounded from above, since the eccentricities have to be smaller than one. In
order to incorporate this fact properly, we need a distribution which in addition has the
following feature p(εn = 1) = 0.

A second functional form for the distribution function modelling the fluctuations of the

13One can find the computation in [55].
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eccentricities was elaborated by the authors in [69]. Namely this is the elliptic power distri-
bution, which reads as follows.

p(εn) =
2αεn
π

(
1− ε̄20

)α+ 1
2

∫ π

0

(
1− ε2n

)α−1

(1− ε̄0εn cos(φ))2α+1dφ (4.4.7)

This expression simplifies in the case of a vanishing mean eccentricity ε̄0 to the following
expression.

p(εn) = 2 α εn
(
1− ε2n

)α−1
(4.4.8)

This distribution function has the advantage that its support lies between 0 and 1. In
addition the distribution is already normalized with respect to this interval. After taking a
look at equation (4.4.8) one can realize that this distribution function depends only on the
parameter α, which has of course a dependence on n as well. In principle this parameter
can be fitted by analyzing histograms of eccentricity εn generated by a Monte Carlo Glauber
simulation.

Figure 4.6.: Plot of the power law distribution for different coefficients α.

Figure 4.6 is a plot of the power law distribution for different coefficients α. As one can
see the distribution is broad for small values of α. As one increases the parameter α, the
distribution becomes sharper and closer to zero. As already mentioned the distribution
approaches zero at both ends of the eccentricity’s interval.

If we expand the power law distribution (4.4.8) in the (per definition) small parameter ε2n
and assume in addition that α� 1 we can recover the Gaussian distribution.
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p(εn) = 2 α εn
(
1− ε2n

)α−1

⇔ p(εn)

2 α εn
=

(
1− ε2n

)α−1

= 1 + (1− α)ε2n +
1

2
(α− 2)(α− 1)ε4n −

1

6
(α− 3)(α− 2)(α− 1)ε6n +O(ε8n)

α>>1≈ 1− αε2n +
α2

2
ε4n −

α3

6
ε6n

≈ e−αε
2
n (4.4.9)

While comparing the above equation (4.4.9) with distribution (4.4.6) one can identify the
two parameters.

α ≈ 1

2σ2
(4.4.10)

So in the case of vanishing mean value ε0 and high α both distributions (4.4.6) and (4.4.8)
are converging against each other. As an example figure 4.7 shows the two distribution
functions for α = 30.

Figure 4.7.: Plot of the Gaussian distribution (red) and the power law distribution (green).

One can easily see that already for such a value of α the two distributions are nearly
equivalent. Only after a second look one can identify the power law distribution to be a
little bit sharper.

Figure 4.8 shows the difference between the Gaussian distribution and the power law
distribution for various values of α.
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Figure 4.8.: Plot of the difference of power law distribution minus the Gaussian distribution
for various α.

As one can see the differences grow with decreasing α, which is clear, since the approxi-
mation (4.4.9) works better for high values of α. However for the shown values the difference
is small compared to the absolute values of the distribution functions.

If we are now assuming the vn’s to emerge as linear response from the eccentricities like it is
written in formula (4.4.2), we are able to parametrize the fluctuations of the flow coefficients,
while maintaining the fitted parameter α in the case of power law parametrization or σ in
the case of Gaussian distribution.

The fluctuations of εn = vn/κn are transferred to fluctuations in vn, via the following
equation.

p(vn) =
1

κn
p

(
vn
κn

)
(4.4.11)

Here the above already mentioned problem of validity arises, since for higher harmonics
one needs to take more care, due to multilinear and additive contributions of eccentricities.
However for the case of n = 2, 3 and following [67] even n = 4 the above model is valid.

4.4.4. Extraction of fluctuations from a Glauber Monte Carlo

As already mentioned above one can extract the fluctuations of the eccentricities εn from an
initial stage model. We did this via the public available program ”TGlauberMC”14 version
3.1. A longer review on the ideas behind this initial stage modelling can be found in [65]. The
most recent report is [66]. A detailed description how the values for the εn where extracted
from the simulations can be found in the Master thesis of Hendrik Roch [71].

Basically he simulated 10000 events per impact parameter. In this context an event is a
nucleus-nucleus collision. After a conversion process of local number of collisions into local
energy density, he computed for every event the different eccentricities from ε2 up to ε6 in a
center of mass frame. Figure 4.9 shows a plot of the elaborated energy density distribution.

In order to systematically investigate the simulations for convergence of the averaged value
of εn, he repeated this procedure. Afterwards he compiled from the generated eccentricity
data histograms for the different impact parameters.

14https://tglaubermc.hepforge.org
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Figure 4.9.: Plot of the energy density distribution of one simulated event.

Figure 4.10 shows as an example such a generated histogram for ε2 and impact parameter
b = 0. The mean value extracted from this histogram – indicated by the green bar – is
〈ε2〉 = 0.198.
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Figure 4.10.: Glauber Monte Carlo generated histogram of ε2 for b = 0 with 10000 events.

As a next step he fitted the power law distribution (4.4.8) to the elaborated histograms
and extracted the values for the fit parameter α. Such a fit for the above shown histogram
is shown in figure 4.11.

As one can see the fit matches the generated data very well. Table 4.1 is the outcome of
his work. It shows the gathered values for α emerging for the eccentricities ε2 up to ε6 at
eight different impact parameter values. Note that the error intervals are estimated through
the fit procedure.
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Figure 4.11.: Fit of the histogram figure 4.10 with the power law distribution function.

b α for ε2

0 19.98± 0.20

3 18.48± 0.15

6 13.01± 0.12

8 8.30± 0.08

9 6.09± 0.08

11 2.71± 0.04

12 1.83± 0.04

14 1.84± 0.10

b α for ε3

0 24.95± 0.20

3 22.77± 0.23

6 16.36± 0.15

8 10.29± 0.10

9 7.85± 0.08

11 4.37± 0.05

12 3.33± 0.04

14 2.89± 0.29

b α for ε4

0 26.00± 0.22

3 23.21± 0.16

6 14.86± 0.13

8 8.80± 0.09

9 6.53± 0.07

11 3.20± 0.04

12 2.19± 0.03

14 1.89± 0.10

b α for ε5

0 27.70± 0.24

3 22.76± 0.21

6 13.36± 0.11

8 7.66± 0.09

9 5.67± 0.07

11 3.03± 0.04

12 2.28± 0.03

14 2.16± 0.18

b α for ε6

0 28.51± 0.22

3 22.66± 0.24

6 11.82± 0.12

8 6.85± 0.08

9 5.12± 0.06

11 2.84± 0.03

12 2.20± 0.04

14 2.48± 0.15

Table 4.1.: Tables with the values of α for the different eccentricities and impact parameters.

Investigating the entries of table 4.1 one sees that with increasing impact parameter b the
value for α decreases. This corresponds to a wider distribution function. So the fluctuations
of the corresponding eccentricity are bigger. The fitted value for α seems to have an ”offset”-
value around α ≈ 2. This value corresponds to the blue distribution function plotted in
figure 4.6. Another result of these Glauber studies is that the distribution functions for
higher eccentricities εn are sharper, since the values for α are bigger.

4.5. How do the fluctuations of vn influence fluctuations of vpairn,c/s

Now the important question is how the above discussed fluctuations of vn are transformed
into fluctuations of the two-particle flow coefficients vpairn,c/s and v∆φ

n,c/s. To answer this question
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here we present computations for the case of vpair3,c and vpair2,c .

For the case of n = 3 the distribution P (vpair3,c ), which describes the fluctuations of the
pair flow coefficient, looks as follows.

P (vpair3,c ) =

∫ 1

0
dv3

∫ 1

0
dw3P (v3)P (w3)δ

(
vpair3,c −

(v3

2
+
w3

2

)
cos(3∆φ)

)
(4.5.1)

Basically the probability distribution of the two-particle pair flow consists of the product
of the two single-particle distributions integrated over the whole support times a delta dis-
tribution, which guarantees the functional dependence of the single – and the two-particle
flow coefficients.

If we now insert the distribution function for the single-particle fluctuations, which we
discussed in the previous sections one can get access to the probability density of the pair
flow coefficients. In the case of the Bessel-Gaussian distribution for P (vn), which was defined
in equation (4.4.6) we get the following plot for the probability distribution of P (vpair3,c ):

(a)

(b)

Figure 4.12.: Plots of the distribution P (vpair3,c ) over vpair3,c in the case of Bessel-Gaussian

single-particle fluctuations for different values of the relative angle ∆φ.

As one can see in figure 4.12 the fluctuations of the pair flow coefficient vpair3,c gets smaller
for increasing relative angle ∆φ. However even for small relative angles the fluctuations of
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the pair flow are in some sense under control. Note that the horizontal axis is plotted only
up to 0.5. For the width σ we chose, according to table 4.1 σ ≈ 0.2, which is the extracted
value for most central collisions. Of course one could do the same analysis for various impact
parameters. Since the value for the coefficient α decreases with increasing impact parameter
b, the distributions become wider in this case. But in addition the power law distribution
also differs more from the Bessel-Gaussian distribution. Therefore it is more suitable to
work only with the power law distribution for small values of α , since the Bessel-Gaussian
distribution differs too much, as we saw in figure 4.8.

The distribution function P (vpair2,c ) for the case of the pair flow coefficient vpair2,c looks like
the following.

P (vpair2,c ) =

∫ 1

0
dv2

∫ 1

0
dw2P (v2)P (w2)δ

(
vpair2,c −

(v2

2
+
w2

2

)
cos(2∆φ)

)
(4.5.2)

With using formula (4.5.2) we elaborated the following figure 4.13.

Figure 4.13.: Plot of the distribution P (vpair2,c ) over vpair2,c in the case of Gaussian single-particle

fluctuations for different values of the relative angle ∆φ.

Here we used according to table 4.1 for the width σ ≈ 0.22, which results in a little
bit broader distribution P (vpair2,c ) compared to the case of P (vpair3,c ). In addition the strong
dependence on the relative angle ∆φ is less pronounced, since the peak of the distribution
does not vary that much while varying the angle.

In order to investigate the higher pair flow coefficients P (vpairn>3,c), we would have to diminish
our linear response ansatz 4.4.2, as already mentioned. Compared to formulas (4.5.1) and
(4.5.2), this would come along with more integrals to solve, since more eccentricities are
feeding in the higher flow coefficients. Besides the more complicated integrals the procedure
is the same.

4.6. Summary and Outlook

In chapter 4 we introduced a way to generalize the concept of the single-particle azimuthal
flow coefficients in order to gain information about two-particle cumulants. We started with
elaborating the observables vpairn,c,s as well as v∆φ

n,c,s. These observables are indicating two-

114



4.6 Summary and Outlook

particle correlations and are therefore a powerful tool to investigate heavy-ion collision data
in the future. In general we want to investigate the effect of the above listed phenomena,
like decays of hadrons, on these observables. Later we also presented how the known single-
particle correlations to the symmetry plane angles ψn are reflected in the pair flow coefficients.
This is important in order to be able to subtract these already known correlations, since
they do not carry new information. Afterwards we discussed the fact that measurements
of these observables is effected by fluctuations in the initial stage of the experiment. This
is crucial, since we do not want to misinterpret the effect of fluctuations as a correlation.
Therefore we elaborated models, which incorporate the effect of the initial state fluctuations
on the fluctuations of vpairn,c,s and v∆φ

n,c,s. One of these models was the linear fluctuation model,
which is limited in the application range. The much more suitable model is the power law
model, which we elaborated in detail. Here we needed in addition external parameters α,
which we extracted from Glauber-Monte-Carlo studies. With the power law model at hand
we presented two cases how the effect of single-particle flow coefficient fluctuations drives
fluctuations of the two-particle flow coefficients.

At this point one can now test the model with real measured data in order to measure
two-particle flow in the above mentioned scenarios. But of course the model by itself can
be improved further. The next step would be to elaborate the effects of fluctuations for the
pair flow coefficients for n ≥ 4. In the case of higher n the functional dependence of the pair
flow coefficients comes along with several additional integrals.

Another important step is to compute the theoretical expectation on the values of the pair
flow coefficients, arising from the different listed physical origins of correlations.
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