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Abstract

Mathematical models based on systems of reaction-diffusion equations provide fundamental
tools for the description and investigation of various processes in biology, biochemistry, and
chemistry; in specific situations, an appealing characteristic of the arising nonlinear partial
differential equations is the formation of patterns, reminiscent of those found in nature. The
deterministic Gray–Scott equations constitute an elementary two-component system that de-
scribes autocatalytic reaction processes; depending on the choice of the specific parameters,
complex patterns of spirals, waves, stripes, or spots appear.

In the derivation of a macroscopic model such as the deterministic Gray–Scott equations
from basic physical principles, certain aspects of microscopic dynamics, e.g. fluctuations of
molecules, are disregarded; an expedient mathematical approach that accounts for significant
microscopic effects relies on the incorporation of stochastic processes and the consideration of
stochastic partial differential equations.

The present work is concerned with a theoretical and numerical study of the stochastic Gray–
Scott equations driven by independent spatially time-homogeneous Wiener processes. Under
suitable regularity assumptions on the prescribed initial states, existence, as well as the unique-
ness of the solution processes, is proven. Numerical simulations based on the application of
a time-adaptive first-order operator splitting method and the fast Fourier transform illustrate
the formation of patterns in the deterministic case and their variation under the influence of
stochastic noise.
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1. Introduction

This work is concerned with the theoretical study and numerical simulation of the stochastic
Gray–Scott equations, which constitute a two-component system of reaction-diffusion equations
driven by a spatial time homogenous Wiener process. Despite its comparatively simple structure,
the underlying system of deterministic nonlinear partial differential equations exhibits a large
variety of complex patterns for different choices of the specific parameters.

Biochemical and chemical kinetics reactions have been a rich source for the observation of
spatial-temporal patterns; the derivation and investigation of suitable mathematical models for
such phenomena remain a challenging question.

A famous example of non-equilibrium thermodynamics is the Belousov–Zhabotinsky reac-
tion, discovered by Boris Belousov at the beginning of the 1950s; he succeeded in stimulating
a reaction of chemical substances that led to periodic changes of their concentrations, visible as
oscillations in color.

An elementary mathematical model for this kind of nonlinear chemical oscillators is the
Brusselator, a system of reaction-diffusion equations proposed by Prigogine, Lefever [28,
Eq. (3.6)]; in a dimensionless formulation, the considered system of nonlinear partial differential
equations has the structure{

∂tu(x, t) = ru ∆u(x, t) + hu
(
u(x, t), v(x, t)

)
,

∂tv(x, t) = rv ∆v(x, t) + hv
(
u(x, t), v(x, t)

)
,

(1.1a)

where the real-valued space-time-dependent functions u, v : I × [0, T ] ⊂ Rd × R → R are
associated with the concentrations of the chemical substances, ∆ represents the Laplacian with
respect to the spatial variables, the constants ru, rv > 0 denote the diffusion coefficients, and
the nonlinear functions hu, hv : R2 → R describe the reactions.

Alan Turing suggested that the main mechanisms of morphogenesis are captured by math-
ematical models for systems of chemical substances, which react together and diffuse through
tissue. In a seminal work [49], he studies reaction-diffusion equations that have a similar form
as (1.1a) on different geometries of the domain, amongst others on spheres and rings, and
explains the development of patterns from almost uniform initial states by instabilities of ho-
mogeneous equilibria; we refer to such patterns as Turing patterns.

In the present work, we focus on a classical mathematical model for isothermal autocatalytic
reaction processes that goes back to Gray, Scott [18, 19, 20, 21]; depending on the choice
of the feed and removal rates of the reactants, Turing patterns of spirals, waves, stripes, or
spots appear. The deterministic Gray–Scott equations are cast into the form (1.1a) with cubic
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reaction terms

hu(u, v) = βu (1− u)− g(u, v) , hv(u, v) = − βv v + g(u, v) ,

g(u, v) = u v2 ,
(1.1b)

involving certain constants βu, βv > 0.
Related systems of reaction-diffusion equations are also studied in other contexts. Kier-

stead, Slobodkin [25] describe the survival of phytoplankton populations in body of water.
Segel, Jackson [42] consider predator-prey interaction models with diffusion; based on a
linear stability analysis, they demonstrate that spatially uniform equilibria which are stable
for homogeneously distributed populations become unstable through dispersal effects. Levin,
Segel [29] study the dynamics of plankton populations. Klausmeier [26] discusses a model
for semi-arid ecosystems on sloped terrains. Murray [35, 36] describes coat patterns in animal
tails; numerical simulations on surfaces with periodic and homogeneous Neumann boundary
conditions, respectively, show patterns of stripes and spots that are similar to the markings
observed on the tails of felines.

Reaction-diffusion systems like (1.1a) constitute prevalent macroscopic models for micro-
scopic phenomena; however, as their derivation relies on fundamental balance laws and Fick’s
law of diffusion, significant aspects of microscopic dynamics such as fluctuations of molecules
are disregarded. An appropriate mathematical approach to establish more realistic models is
the incorporation of a random noise mimicking these fluctuations.

Biancalani et al. [9] introduce a microscopic model of the Brusselator that includes stochas-
tic fluctuations. Compartment-based approaches use a division of the domain into certain com-
partments and a simulation of the number of molecules in each compartment; Cao, Erban [10]
investigate the dependence of stochastic Turing patterns on the compartment size. In McK-
ane et al. [34], it is shown how a stochastic amplification of a Turing instability gives rise to
spatial-temporal patterns. Treatments of the stochastic Brusselator in different respects are
found in [2, 41, 48].

The main theoretical contribution of this paper is to show (or derive) the existence and
uniqueness of a solution for the Gray–Scott equations driven by independent spatially time-
homogeneous Wiener processes. Besides, some numerical simulations are presented as an illus-
tration. Here, the employed numerical approximation is based on a first-order operator splitting
method and the fast Fourier transform; in order to enhance the reliability of the computations,
we adapt the time stepsizes accordingly to the sizes of the nonlinear terms for particular reali-
sations.

The theory of stochastic partial differential equations provides the basis of our investigations;
for a comprehensive treatment of the fundamentals as well as an extensive bibliography, we refer
to the monographs [12, 14, 30, 15].

This manuscript has the following structure. In Section 2, we introduce compact reformula-
tions of the deterministic and stochastic Gray–Scott equations as well as the needed hypotheses
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on the driving Wiener processes and the initial states, subsequently, we state the main result
ensuring the existence and uniqueness of the non–negative solution processes. In Section 3,
to complement our theoretical analysis, we present numerical simulations for the Gray–Scott
equations in two space dimensions that illustrate the formation of patterns in the deterministic
case and their variation under the influence of stochastic noise. Finally, in the Appendix we
define the multiplication operator and summary the most important inequality.

2. Stochastic Gray–Scott equations

In this section, we state the mathematical formulation of the stochastic Gray–Scott equa-
tions, introduce the underlying spaces, review basic auxiliary results on spatially time homo-
geneous Wiener processes as well as associated stochastic integrals, and specify the hypotheses
under which a solution exists.We begin with the mathematical formulation of the stochastic
Gray–Scott equations. In the system, u and v are concentrations of two reactants U and V ,
normalized as dimensionless units. The parameters f and k represent the feed rate and removal
rate of the reactants. We recall that the parameters ru, rv > 0 correspond to the diffusion
coefficients. These parameters have a significant effect at the form of the observed patterns.
The equation is given as follows

du(t, x) = (ru∆u(t, x)− u(t, x)v2(t, x) + f(1− u(t, x))) dt

+ σuu(t, x) ◦ dW1(t, x), x ∈ I, t > 0,

dv(t, x) = (rv∆v(t, x) + u(t, x)v2(t, x)− (f + k)v(t, x)) dt

+ σvv(t, x) ◦ dW2(t, x), x ∈ I, t > 0,

(2.1)

where I = [0, 1]d be a bounded domain, d = 1, 2, A = ∆ be the Laplace operator with periodic,
or Dirichlet boundary conditions. The initial conditions are given by u0 and v0. Since the
white noise is an approximation of a continuously fluctuating noise with finite memory being
much shorter than the dynamical timescales, the representation of the stochastic integral as a
Stratonovich stochastic integral is appropriate.

For suitable initial conditions and choices of the parameters, the formation of patterns is
observed in the Gray–Scott equations. For convenience, we suppose that the constants that
determine the strength of the multiplicative stochastic noise are positive, i.e. σu, σv ≥ 0; evi-
dently, the deterministic Gray–Scott equations (1.1) are retained from (2.1) for the special case
(σu, σv) = (0, 0).

In this work, we focus on situations where the Gray–Scott equations (2.1) are driven by
independent spatially time-homogeneous Wiener processes; as relevant concrete examples, we
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study the Gray Scott system driven by fractional Gaussian field. Let

A =
(

Ω,A,
(
A(t)

)
t∈[0,T ],P

)
be a complete probability space with associated filtration satisfying the standard assumptions;
for our purposes, it suffices to consider a finite time interval. Let {βk : k ∈ Zd} be a family of
one–dimensional standard Brownian motions defined over A. Here, we consider our equation
on the d dimensional torus. In the case of a single dimension, a complete orthonormal system
of the underlying Lebesgue space L2(I) := L2(I,R) is given by sine and cosine functions

ψm(x) =


√

2 sin
(
2πmx

)
if m ≥ 1 ,√

2 if m = 0 ,√
2 cos

(
π 2mx

)
if m ≤ −1 ,

(2.2)

The extension to higher space dimensions relies on tensor products, i.e., for a multiindex m =
(m1, . . . ,md) ∈ Zd we have

φm(x) =
d∏
j=1

φmj(xj) , x ∈ I. (2.3)

The corresponding eigenvalues are given by

λm = − 4π2

d∑
j=1

m2
j , m = (m1, . . . ,md) ∈ Zd . (2.4)

The spatially time–homogenous Wiener process can be expressed in terms of the orthogonal
system, i.e.,

W (t, x) =
∑
k∈Zd

δkψk(x)βk(t).

where the family {βk : k ∈ Zd} is a family of independent and identically distributed standard
Brownian motions. For simplicity, we assume in our work that δk = (α−Dλk)−γ, k ∈ Zd,
with certain positive constants adjusted in the numerical examples. Going back to our equation
(2.1), we impose the following hypothesis.

Hypothesis 2.1. The Wiener processes W1 and W2 are spatially time–homogenous Wiener
processes such that

Wj(t, x) =
∑
k∈Zd

(α−Dλk)−γjψk(x)βk(t), j = 1, 2,

with γj >
d
2
.
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In our case, Hypothesis 2.1 means that the sum defined by

S(γ) :=
∑
k∈Zd

(α−Dλk)−2γ (2.5)

is bounded for γ1 and γ2. For simplicity we assume that γ1 = γ2 = γ. Since the solutions u and
v of the Gray Scott system have to be non-negative, the initial conditions u0 and v0 have to be
non-negative. Besides, we have to impose some regularity assumptions on the initial condition
to get existence and uniqueness of the solution.

Hypothesis 2.2. Let u0, v0 ∈ L2(I) such that

1. u0 ≥ 0 and v0 ≥ 0;

2. u0 and v0 belong to L6(I), in particular we have E|u0|6L6 <∞ and E|v0|6L6 <∞.

3. u0 and v0 belong to H1
4 (I), in particular E|u0|4H1

4
<∞ and E|v0|4H1

4
<∞.

In system (2.1) we interpreted the stochastic integral as a Stratonovich integral. White
noise is an idealisation; real fluctuating forcing has a finite amplitude and a finite timescale;
white noise is an idealisation of delta-function-correlated noise. If now the white noise is ap-
proximated by a continuously fluctuating noise with finite memory (much shorter than dynam-
ical timescales), i.e., by noise with a finite correlation time τ , and then the limit is taken for
τ → 0, the Wong-Zakai Theorem gives as the appropriate representation of the white noise
the Stratonovich integral. In this sense, the Startonovich integral models the natural one, the
drawback is that the Stratonovich integral is not a martingale, and, therefore, the Itô isometry
and Burkholder–Davis–Gundy inequality cannot be applied to the Stratonovich integral. Al-
though here in the article we analyse a more general system, where the integral is interpreted
as an Itô integral. To show that the system (2.1) has a unique solution, we first transform the
system (2.1) into a system, where the integral can be interpreted in the Itô sense by adding a
correction term, and, then, we show that the correction term behaves nicely. One can find a
survey of some facts about the Stratonovich integral in Chapter 4.5.2 in [15]. In this way, it can
be shown that the solution to (2.1) and the solution to



du(t, x) = (ru∆u(t, x)− u(t, x)v2(t, x) + f − (f − σuS(γ1))u(t, x)) dt

+ σuu(t, x)dW1(t, x), x ∈ I, t > 0,

dv(t, x) = (rv∆v(t, x) + u(t, x)v2(t, x)− (f + k − σvS(γ2))v(t, x)) dt

+ σvv(t, x)dW2(t, x), x ∈ I, t > 0,

(2.6)
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are equivalent. For simplicity we will combine the coefficient and consider the following system

du(t, x) = (ru∆u(t, x)− u(t, x)v2(t, x) + ρ+ αuu(t, x))) dt

+ σuu(t, x)dW1(t, x), x ∈ I, t > 0,

dv(t, x) = (rv∆v(t, x) + u(t, x)v2(t, x) + αvv(t, x)) dt

+ σvv(t, x)dW2(t, x), x ∈ I, t > 0

(2.7)

where ρ, αu and αv are real–valued number, not necessarily positive and the stochastic integral
is interpreted in the sense of Itô. For this system we can show the following Theorem.

Theorem 2.1. Let us assume that u0, v0 are satisfying the Hypothesis 2.2 and the Wiener
processes W1 and W2 the Hypothesis 2.1. Then there exists a couple of progressively measurable
processes (u, v) solving the system of equations (2.7) and for all δ < 1 P(u ∈ C(0, T ;Hδ

2(I))) = 1.
In addition, we have

1. for p = 2, 4, or 6, and for all T > 0, there exists a constant C > 0 such that

E sup
0≤t≤T

|u(t)|pLp ≤ C and E sup
0≤t≤T

|v(t)|pLp ≤ C.

2. for p = 4, there exists a constant C > 0 such that for all T > 0,

E sup
0≤t≤T

|u(t)|2H1
p
≤ C and E sup

0≤t≤T
|v(t)|2H1

p
≤ C.

From Theorem 2.1 and the assumption on the Wiener processes we can prove the existence
of a unique solution to the original equation.

Corollary 2.2. If Hypothesis 2.1 and Hypothesis 2.2 are satisfied, then there exists a couple of
progressively measurable processes (u, v) solving the system of equations (2.1). In addition, we
have

1. for p = 2, 4, or 6, and for all T > 0, there exists a constant C > 0 such that

E sup
0≤t≤T

|u(t)|pLp ≤ C and E sup
0≤t≤T

|v(t)|pLp ≤ C.

2. for p = 4, there exists a constant C > 0 such that for all T > 0,

E sup
0≤t≤T

|u(t)|2H1
p
≤ C and E sup

0≤t≤T
|v(t)|2H1

p
≤ C.
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Proof of Corollary 2.2: In particular, assuming, for the time being, that the correction term is
finite, we get as a new system

du(t, x) = (ru∆u(t, x)− u(t, x)v2(t, x) + f(1− u(t, x))) dt

+ σuu(t, x)dW1(t, x) + σuS(γ1)u(t, x) dt, x ∈ I, t > 0,

dv(t, x) = (rv∆v(t, x) + u(t, x)v2(t, x)− (f + k)v(t, x)) dt

+ σvv(t, x)dW2(t, x) + σvS(γ2)v(t, x) dt, x ∈ I, t > 0.

(2.8)

Replacing f by f − σuS(γ1) and (f + k) by (f + k) − σvS(γ2) an application of Theorem 2.1
gives that there is a solution (u, v) to (2.8) both processes being P–a.s. continuous in Hδ

2(I) and
satisfying (1) and (2). Now, if the process arising by the correction term given by (A.27), i.e.,

ξj(t) =
1

2

∫ t

0

∑
i,k∈Z

(
u(s)

∣∣φk)H∑
k∈Z

(α−Dλk)−2γj ds

is continuous in Hδ
2(I) and satisfies the properties (1) and (2), then we are done. However, this

follows by the properties of u and v.

Proof. The proof of Theorem 2.1 consists of several steps. First, we show that the system with a
truncated nonlinearity can be uniquely solved. In a second step, we show that the solution is a.s.
non–negative. In the third step, we give an uniform estimate of u+ v in H1

4 (I). From Sobolev
embeddings we get uniform bounds with the L∞-norm. Finally, by these uniform bounds we
can globalize the solution in the last step.

Step (i) Fix m ∈ N. Since we would like to relax the condition on the initial conditions,
we first approximate the nonlinear term uv2 as follows. Let us define

gm(x) :=


x if 0 <x ≤ m,

∈ (m, (m+ 1)) if m < x < m+ 1,

(m+ 1) if m+ 1 ≤ x.

Between the interval (m,m + 1) we interpolate the function by a polynomial function, such
that gm is twice continuously differentiable. In particular,

g′m(x) |x=x0= 1, for x0 = m, g′m(x) |x=x0= 0, for x0 = m+ 1,

and
g′′m(x) |x=x0= 0, for x0 = m,m+ 1.
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Let us define the mapping Fm by

Fm : L2(I)× L4(I) −→ L1(I),

(u, v) 7−→ Fm(u, v);

by
Fm(u, v)(x) := gm(u(x))g2m(v(x)), x ∈ I.

The mapping Fm is Lipschitz with Lipschitz constant 2(m + 1)2. By Theorem 6.24 [14, p.
178] the following system{
dum(t, x) = [ru∆um(t, x)− Fm(um(t, x), vm(t, x)) + ρ+ αuum(t, x)] dt+ σu um(t, x)dW1(t, x),

um(0, x) = u0(x), x ∈ I,
(2.9)

and{
dvm(t, x) = [rv∆vm(t, x) + Fm(um(t, x), vm(t, x)) + αvvm(t, x)] dt+ σvvm(t, x)dW2(t, x),

vm(0, x) = v0(x), x ∈ I,
(2.10)

has a unique pair of solution {um, vm}, each component belonging to C([0, T ];L2(I)) ∩
L2([0, T ];H1

2 (I)).

Step (ii) As the next step, we show that each component of the pair of the solution
{um, vm} are non–negative. To show this, we can follow e.g. Theorem 2.3 in [45], or [3,
Theorem 2.6.2, p. 42]. Here, we summarize only the idea. In fact it remains to approximate
the operator ∆ by, e.g., its Yosida approximation to be able to apply the Itô formula. Let

gδ(r) =
r2

δ + r
, r ∈ (−δ,∞),

and
Gδ(r) := gδ((r

−)2), r ∈ R.

Then, Gδ belongs to C2 and Gδ(r) = G′δ(r) = G′′δ(r) = 0 for all r ∈ [0,∞), |G′δ(r)| ≤ 2r−,
and 0 ≤ G′′δ(r) ≤ 8. Now, define φδ : L2(I)→ R by

φδ(w) =

∫
I

Gδ(w(ξ)) dξ, w ∈ L2(I).

Observe, φδ is twice uniformly continuous on bounded subsets, and such that the Itô formula
can be applied (see Theorem 4.32 [14, p. 107]. Applying the Itô formula to φδ(um(t)) where
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um(t) solves (2.9), we get

Eφδ(um(t)) + ruE
∫ t

0

〈∆um(s), Dφδ(um(s))〉 ds = φδ(u0)− E
∫ t

0

〈um(s)vm(s)2, Dφδ(um(s))〉 ds

+αuE
∫ t

0

〈um(s), Dφδ(um(s))〉 ds+
σ2
u

2
E
∫ t

0

Tr
(
D2Gδ(um(s))[M(um(s))Q

1
2 ][M(um(s))Q

1
2 ]∗
)
ds,

Note, that

〈∆um(s), Dφδ(um(s))〉 =

∫
I

(∇um(s, x))2φ′′δ(um(s, x)) dx ≥ 0.

Due to (A.19), we know

E
∫ t

0

Tr
(
D2Gδ(um(s))[M(um(s))][M(um(s))]

)
ds ≤ 8E

∫ t

0

|u−m(s)|2L2 ds.

A similar arguments works for vm.

〈um(s)vm(s)2, Dφδ(um(s))〉 =

∫
I

(um(s, x)−)2v2m(s, x) dx ≤ (m+ 1)2
∫
I

|um(s)−|2L2 ,

and
〈um(s), Dφδ(um(s))〉 ≤ |u−m(s)|2L2 .

Collecting all together and applying the Grownwall Lemma give Eφδ(um(t)) = 0. Taking the
limit δ → 0 gives the assertion. Similarly, one can proof that vm is P–a.s. non–negative.

Step (iii) In this step we will show that there exists some bounds on E|um|pLp , which are
uniform in m ∈ N.

Claim 2.1. For any even integer 2 ≤ p <∞ and initial condition satisfying E|u0|pLp ,E|v0|
p
Lp <

∞, there exist constants C1, C2, C3 > 0 such that

E sup
0≤s≤T

|um(s)|pLp ≤ C(T )(C0 + E|u0|pLp), ∀m ∈ N.

For any even integer 2 ≤ p <∞, there exist constants C1, C2, C3 > 0 such that

E
∫ T

0

∫
I

up−2m (s, x)(∇um(s, x))2 dx ds ≤ C(T )(C0 + E|u0|pLp), ∀m ∈ N.

Proof. Let us put first p = 2. The calculations are straight forward using the variational
approach. Let us remind that we have equation (2.9) and the definition of the multiplication
operator M defined in (A.9)

dum(t) = ruAum(t) dt− Fm(um, vm)(t) + αuum(t) + σuM(um(t))dW1(t),
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respectively,

dum(t) = ruAum(t) dt− Fm(um, vm)(t) + αuum(t) +
∑
k,l∈Z

〈um(t), ψl〉ψlhkβk(t),

with hk = (α−Dλk)−
β
2ψk and βk are i.i.d. mutually independent standard Brownian motion.

Now, since Φ(x) = |x|2L2 , DΦ(x)[h] = 〈x, h〉, D2Φ(x)[h1, h2] = 〈h1, h2〉, applying the Itô
formula (see Theorem 4.17, [14, p. 105]) to Φ(x) = |x|2L2 and integration by parts give

dΦ(u(t)) = d

∫
I

u2m(t, x) dx = 2

∫
I

um(t, x)∆um(t, x) dx dt

− 2

∫
I

um(t, x)gm(um(t, x))g2m(vm(t, x)) dx dt+ 2

∫
I

um(t, x)(ρ+ αuum(t, x)) dx dt

+ 2
∑
k∈Z

〈um(t),M(um(t))hk〉dβk(t) + Tr
[
D2Φ(um(t))[M(um(t))Q

1
2 ][M(um(t))Q

1
2 ]∗
]
dt

= −2

∫
I

(∇um(t, x))2 dx dt− 2

∫
I

um(t, x)gm(um(t, x))g2m(vm(t, x)) dx dt

+ 2

∫
I

um(t, x)(ρ+ αuum(t, x)) dx dt

+ 2
∑
k∈Z

〈um(t),M(um(t))hk〉dβk(t) + Tr
[
D2Φ(um(t))[M(um(t))Q

1
2 [M(um(t))Q

1
2 ]∗
]
dt.

Taking the expectation, integrating, and taking into account that the stochastic integral
vanishes, we get

1

2
E
∫ t

0

∫
I

u2m(s, x) dx ds+ 2

∫ t

0

∫
I

(∇um(s, x))2 dx ds

≤ E|u0|2L2 + 2

∫ t

0

∫
I

um(s, x)f(1− um(s, x)) dx ds+ σu

∫ t

0

∑
k∈Z

|M(um(s))hk|2L2 ds.

By estimate (A.19) and Hypothesis 2.1 we have∫ t

0

Tr
[
D2Φ(um(t))[M(um(s))Q

1
2 [M(um(s))Q

1
2 ]∗
]
ds ≤ S(γ1)

∫ t

0

|um(s)|2L2 ds,

and therefore, by the Young inequality, we get

1

2
E|um(t)|2L2 + 2

∫ t

0

E|um(s)|2H1
2
ds+ 2E

∫ t

0

∫
I

um(s, x)gm(um(s, x))g2m(vm(s, x)) dx ds

≤ E|u0|2L2 + C(ε) (2ρ)2 +

∫ t

0

E|um(s)|2L2 ds+ (αu + CS(γ))

∫ t

0

E|um(s)|2L2 ds.
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Grownwall’s Lemma gives that there exists a constant C = C(T ) > 0 such that

1

2
E|um(t)|2L2 + 2

∫ t

0

E|um(s)|2H1
2
ds ≤ E|u0|2L2 + C(T ), ∀t ∈ [0, T ]. (2.11)

To estimate the supremum over the time, i.e. E sup0≤t≤T |um(t)|2L2 , we have to apply the
Burkholder–Davis–Gundy inequality to estimate the stochastic integral∑

k∈Z

〈um(t),M(um(t))(α−Dλk)−γhk〉dβk(t).

Thus, inequality (A.19) gives

E sup
0≤s≤t

∣∣∣ ∫ s

0

∑
k∈Z

〈um(r), um(r)hk〉dβk(r)
∣∣∣
L2
≤ C E

(∫ t

0

|um(s)|4L2 ds

) 1
2

≤ C E sup
0≤s≤t

|um(s)|2L2t
1
2 .

Again, we have by (A.19)∫ t

0

Tr
(
D2Φ(um(s))[M(um(s))Q

1
2 [M(um(s))Q

1
2 ]∗
)
ds ≤ S(γ1)

∫ t

0

|um(s)|2L2 ds,

Fix T ∗ > 0. Integrating up to time T ∗, taking expectation, rearranging, using the Hölder and
Young inequality, and taking into account the positivity of um(t, x), lead to

E sup
0≤t≤T ∗

∫
I

u2m(t, x) dx+ 2ru

∫ T ∗

0

E
∫
I

(∇um(t, x))2 dx dt (2.12)

+ 2

∫ T ∗

0

E
∫
I

um(t, x)gm(um(t, x))g2m(um(t, x)) dx dt

≤ E|u0|2L2 + 2ρ

∫ T ∗

0

E
∫
I

um(t, x) dx dt

+ 2αu

∫ T ∗

0

E
∫
I

u2m(t, x) dx dt+ 2CQ
1 σuE

∫ T ∗

0

|um(t)|2L2 dt+ C E sup
0≤s≤T ∗

|um(s)|2L2T ∗
1
2 .

Rearranging we get

E sup
0≤t≤T ∗

∫
I

u2m(t, x) dx+ 2ru

∫ T ∗

0

E
∫
I

(∇um(t, x))2 dx dt

+ 2

∫ T ∗

0

E
∫
I

um(t, x)gm(um(t, x))g2m(um(t, x)) dx dt

≤ E|u0|2L2 + C (2ρ)2 +

∫ T ∗

0

E|um(t)|2L2 dt

+ 2αu

∫ T ∗

0

E|um(t)|2L2 dt+ 2CQ
1 E
∫ T ∗

0

|um(t)|2L2 dt+ C E sup
0≤s≤T ∗

|um(s)|2L2T ∗
1
2 .
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In case
√
T ∗C ≤ 1

2
, we get by subtracting E sup0≤s≤T ∗ |um(s)|2L2 on both sides

1

2
E sup

0≤t≤T ∗

∫
I

u2m(t, x) dx+ 2ru

∫ T ∗

0

E
∫
I

(∇um(t, x))2 dx dt (2.13)

+ 2

∫ T ∗

0

E
∫
I

um(t, x)gm(um(t, x))g2m(um(t, x)) dx dt

≤ E|u0|2L2 + C1 + C2

∫ T ∗

0

E|um(t)|2L2 dt.

Taking into account (2.11) we get

1

2
E sup

0≤t≤T ∗

∫
I

u2m(t, x) dx+ 2ru

∫ T ∗

0

E
∫
I

(∇um(t, x))2 dx dt (2.14)

+ 2

∫ T ∗

0

E
∫
I

um(t, x)gm(um(t, x))g2m(um(t, x)) dx dt+ 2f

∫ T ∗

0

E|um(t)|2L2 dt

≤ E|u0|2L2 + C1E|u0|2L2 + C2 + C(T ∗).

Given T , we can decompose [0, T ] as ∪0≤k≤N−1[kT ∗, (k + 1)T ∗], and apply inequality (2.14)
to each interval [kT ∗, (k + 1)T ∗], k = 0, . . . , N − 1. In this way, we extend the estimate to
the whole interval [0, T ] to prove that the family {um : m ∈ N} can be bounded uniformly
for all m ∈ N in the supremums norm over time. In particular, we proved the assertion (1)
of Theorem 2.1 for the family {um : m ∈ N}.

Let p = 4 and Φ(u) =
∫
I
up(x) dx. Then DΦ(u)[h] = p

∫
I
u3(x)h(x) dx and D2Φ(u)[h1, h2] =

12
∫
I
u2(x)h1(x)h2(x) dx. Recalling that um is non–negative, we obtain by the Itô formula

applied to Φ(x) = |x|pLp

Φ(u(T ))− Φ(u0) =

∫
I

u4m(T, x) dx−
∫
I

u4m(0, x) dx =

∫ T

0

∫
I

[
ru4u

3
m(t, x)∇2um(t, x)

− 4u3m(t, x)gm(um(t, x))g2m(vm(t, x)) + 4(ρ− αuum(t, x))u3m(t, x)
]
dx dt

+

∫ T

0

4σuu
4
m(t, x)dW1(t, x) +

∫ T

0

Tr
(
D2Φ(um(t))[M(um(t))Q

1
2 [M(um(t))Q

1
2 ]∗
)
dt.
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Continuing gives

Φ(u(t)) − Φ(u0) + ru12

∫ t

0

∫
I

u2m(s, x)(∇um(s, x))2 dx ds

+ p

∫ t

0

∫
I

u3m(t, x)gm(um(t, x))g2m(vm(t, x)) dx ds

= Φ(u(T ))− Φ(u0) + 4

∫ t

0

∫
I

(ρ− αuum(t, x))u3m(s, x) dx ds+ pσu

∫ t

0

∫
I

u4m(s, x)dW1(s, x)

+

∫ t

0

Tr
(
D2Φ(um(s))[M(um(s))Q

1
2 [M(um(s))Q

1
2 ]∗
)
ds.

Taking expectation and using integration by parts give

E|um(t)|4L4
+ ru12

∫ t

0

E
∫
I

u2m(s, x)(∇um(s, x))2 dx ds

+ 4E
∫ t

0

∫
I

Fm(um, vm)u3m(s, x) dx ds ≤ E|u0|4L4

+ C1E
∫ t

0

∫
I

u3m(s, x) dx ds+ C3E
∫ t

0

|um(s)|4L4 ds.

We get by some rearrangements and Gronwall’s Lemma

E|um(t)|4L4
+ ru12

∫ t

0

E
∫
I

u2m(s, x)(∇um(s, x))2 dx ds ≤ E|u0|4L4 + C(T ). (2.15)

To estimate the supremum, we apply again A.21 and get

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

u4m(s, x)dW1(s, x)

∣∣∣∣ ≤ S(γ1)E
(∫ T

0

|u4m(s)|2L2 ds

) 1
2

.

Applying the Hölder inequality, Sobolev embedding, and then the Young inequality gives for
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ε, ε̃ > 0

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

u4m(s, x)dW1(s, x)

∣∣∣∣ ≤ S(γ1)E
(∫ T

0

|u2m(s)|2L∞ |u2m(s)|2L2ds

) 1
2

≤ S(γ1)E
(∫ T

0

|u2m(s)|2H1
2
|um(s)|2L4ds

) 1
2

≤ S(γ1)E
(∫ T

0

(∫
I

u2m(s, x)(∇um(s, x))2 dx

)
ds sup

0≤s≤T
|um(s)|2L4

) 1
2

≤ εS(γ1)E
∫ T

0

(∫
I

u2m(s, x)(∇um(s, x))2 dx

)
ds+ C(ε)E sup

0≤s≤T
|um(s)|2L4

≤ εS(γ1)E
∫ T

0

∫
I

u2m(s, x)(∇um(s, x))2 dx ds+ ε̃E sup
0≤s≤T

|um(s)|4L4 + C(ε, ε̃).

Again, the trace is given by

1

2
Tr
(
D2Φ(um(s))[M(um(s))Q

1
2 ][M(u(s))Q

1
2 ]∗
)

= S(γ) |um(s)|4L4 .

Therefore, taking ε and ε̃ sufficiently small

1

2
E sup

0≤t≤T
|um(t)|4L4

+ ruE
∫ T

0

∫
I

u2m(s, x)[∇um(s, x)]2 dx ds

+ 4E
∫ T

0

∫
I

Fm(um, vm)(s)u3m(s, x) dx ds ≤ E|u0|4L4

+4E
∫ T

0

∫
I

(ρ+ αuum(s, x))u3m(s, x) dx ds+ C E
∫ T

0

∫
I

u4m(s, x) dx ds+ C(ε, ε̃).

Due to (2.15) the terms in the RHS are bounded and there exists a constant C = C(T ) > 0
such that

E sup
0≤t≤T

|um(t)|4L4
≤ C(T )E|u0|4L4 .

Step (iv) Let us define wm = um+vm and w0 = u0 +v0. Here, we will prove the following
claim:

Claim 2.2. Under the Hypothesis 2.2-(ii), the following estimates are valid:
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1. There exists a constant C = C(T ) > 0 such that

E sup
0≤t≤T

|wm(t)|2L2 ,

∫ T

0

E|∇um(s)|2L2 ds, E
∫ T

0

|∇vm(s)|2L2 ds ≤ C, m ∈ N.

2. for any even integer p ≥ 2, there exists a constant C = C(T, p) > 0 such that

E sup
0≤t≤T

|wm(t)|pLp ≤ C, m ∈ N,

and

E
∫ t

0

∫
I

|uk−1m (s, x)vp−1−km (s, x)(∇um(s, x))2| dx ds ≤ C, k = 1 . . . , p− 1, m ∈ N,

E
∫ t

0

∫
I

|ukm(s, x)vp−2−km (s, x)(∇vm(s, x))2| dx ds ≤ C, k = 0, . . . , p− 2, m ∈ N.

3. In addition, there exists a constant C = C(T ) > 0 such that

E
∫ t

0

∫
I

∣∣uk−1m (s, x)vp−1−km (s, x)∇um(s, x)∇vm(s, x)
∣∣ dx ds ≤ C, k = 0, . . . , p− 2, m ∈ N.

Proof of Claim 2.2: To show (1) and (2) first note that wm solves
dwm(t, x) = (ru∆um(t, x) + rv∆vm(t, x) + αuwm(t, x)− (αu − αv)vm(t, x) + ρ) dt

+σuum(t, x) dW1(t, x) + σvvm(t, x) dW2(t, x),

wm(0, x) = u0(x) + v0(x),

(2.16)

We denote the inner product in L2(I) by 〈·, ·〉. Now, an application of the Itô formula with
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k = −(αu − αv) gives

|wm(t)|2L2 +

∫ t

0

(
ru|∇um(s)|2L2 + rv|∇vm(s)|2L2

)
ds

+

∫ t

0

αu〈wm(s), wm(s)〉 ds

≤ |w0|2L2 +

∫ t

0

(ru + rv)〈∇um(s),∇vm(s)〉 ds+

∫ t

0

〈wm(s), αu〉 ds

+ k

∫ t

0

〈wm(s), vm(s)〉 ds+

∫ t

0

〈wm(s), σuum(s)dW1(s)〉+

∫ t

0

〈wm(s), σuvm(s)dW2(s)〉

+ 2σu
∑
k∈Z

λk
γ1〈wm(t),M(um(t))hk〉dβ1

k(t) + 2σv
∑
k∈Z

λk
γ2〈wm(t),M(vm(t))hk〉dβ2

k(t)

+σu

∫ t

0

Tr
(
D2Φ(wm(s))[M(um(s))Q

1
2
2 [M(um(s))Q

1
2
2 ]∗
)
ds

+σv

∫ t

0

Tr
(
D2Φ(wm(s))[M(vm(s))[M(vm(s))]

)
ds.

Since vm(s) ≥ 0 and um(s) ≥ 0 P × Leb–a.e., it follows that P–a.e. 〈wm(s), vm(s)〉 ≥ 0. The
Young inequality and taking expectation give

E |wm(t)|2L2 + E
∫ t

0

(
ru|∇um(s)|2L2 +

rv
4
|∇vm(s)|2L2

)
ds

+
r

2

∫ t

0

E|wm(s)|2L2 ds ≤
rv

2(ru + rv)
E
∫ t

0

|∇um(s)|2L2 ds+ k

∫ t

0

E〈wm(s), vm(s)〉 ds

+ C

∫ t

0

E|wm(s)|2L2 ds+ C αu t+ E|w0|2L2 .

In addition, ∣∣∣∣∫ t

0

E〈wm(s), vm(s)〉 ds
∣∣∣∣ ≤ ∫ t

0

E|wm(s)|2L2 ds+

∫ t

0

E|vm(s)|2L2 ds.

Applying Claim 2.1 and Grownwall’s Lemma give

E |wm(t)|2L2 + E
∫ t

0

(
ru|∇um(s)|2L2 +

rv
4
|∇vm(s)|2L2

)
ds ≤ C1(T )E|w0|2L2 + C2(T ).

Note, that we took into account that |um|L2 , |vm|L2 ≤ |wm|L2 .
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Again, to estimate the supremum, we have to apply the Burkholder–Davis–Gundy inequality
(A.21) inequality and get

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

wm(s, x)um(s, x)dW1(s, x)

∣∣∣∣ ≤ C1E
(∫ T

0

|wm(s)um(s)|2L2 ds

) 1
2

≤ C1E
(∫ T

0

|wm(s)|2L2 |um(s)|2L∞ ds

) 1
2

≤ C1E
∫ T

0

|wm(s)|2L2 ds+ E sup
0≤s≤T

|um(s)|2H1
2
.

To estimate the supremum in the second stochastic integral, we apply the Burkholder–Davis–
Gundy and the Young inequality, but taking into account that the term containing vm have
to be cancelled with the LHS, we obtain

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

wm(s, x)σvvm(s, x)dW1(s, x)

∣∣∣∣
L2

≤ rv
4
E sup

0≤s≤T
|vm(s)|2H1

2
+ C(T )C2E

∫ T

0

|wm(s)|2L2 ds.

The Young inequality and taking expectation give

E sup
0≤t≤T

|wm(t)|2L2 + E
∫ T

0

(
ru|∇um(s)|2L2 +

rv
4
|∇vm(s)|2L2

)
ds+ k

∫ T

0

E〈wm(s), vm(s)〉 ds

+
r

2

∫ T

0

E|wm(s)|2L2 ds ≤
rv

2(ru + rv)
E
∫ T

0

|∇um(s)|2L2 ds

+ C1

∫ T

0

E|wm(s)|2L2 ds+ C2 T + E|w0|2L2 .

Applying Claim 2.1 and the Grownwall Lemma give

E sup
0≤t≤T

|wm(t)|2L2 + E
∫ T

0

(
ru|∇um(s)|2L2 +

rv
4
|∇vm(s)|2L2

)
ds ≤ C1(T )E|w0|2L2 + C2(T ).

It remains to show Claim 2.2-(2) and (3). For simplicity, we omit in the following the depen-
dence on x and t. To show (ii) observe first, that we have for any u, v ∈ H2

2 (I) by integration
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by parts ∫
I

(u+ v)p−1 (ru∆u+ rv∆v) dx

=

p−1∑
k=0

(
p− 1
k

)∫
I

ukvp−1−k (ru∆u+ rv∆v) dx

= −
p−1∑
k=0

(
p− 1
k

)∫
I

∇(ukvp−1−k) (ru∇u+ rv∇v) dx.

We rewrite the inner part of the sum as follows∫
I

∇(ukvp−1−k) (ru∇u+ rv∇v) dx

=

∫
I

(
kuk−1vp−1−k∇u+ (p− 1− k)ukvp−2−k∇v

)
(ru∇u+ rv∇v) dx

=

∫
I

(
ruku

k−1vp−1−k(∇u)2 + rv(p− 1− k)ukvp−2−k(∇v)2
)
dx

+

∫
I

(
rvku

k−1vp−1−k∇u∇v + ru(p− 1− k)ukvp−2−k∇v∇u
)
dx.

Hence,∫
I

(u+ v)p−1 (ru∆u+ rv∆v) dx

+

p−1∑
k=0

(
p− 1
k

)∫
I

(
ruku

k−1vp−1−k(∇u)2 + rv(p− 1− k)ukvp−2−k(∇v)2
)
dx

= −
p−1∑
k=0

(
p− 1
k

)∫
I

(
rvku

k−1vp−1−k∇u∇v + ru(p− 1− k)ukvp−2−k∇v∇u
)
dx.
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Renumbering gives∫
I

(u+ v)p−1 (ru∆u+ rv∆v) dx

+

p−1∑
k=0

(
p− 1
k

)∫
I

(
ruku

k−1vp−1−k(∇u)2 + rv(p− 1− k)ukvp−2−k(∇v)2
)
dx

= −
p−1∑
k=0

(
p− 1
k

)∫
I

ru(p− 1− k)ukvp−2−k∇v∇u dx

−
p−2∑
k=0

(
p− 1
k + 1

)∫
I

(
rv(k + 1)ukvp−2−k∇u∇v

)
dx.

We now estimate the RHS. We get for any ε > 0∫
I

∣∣ruukvp−2−k∇v∇u∣∣ dx ≤ ru

(∫
I

∣∣ukvp−2−k(∇u)2
∣∣ dx) 1

2
(∫

I

∣∣ukvp−2−k(∇v)2
∣∣ dx) 1

2

≤ ruCε

∫
I

∣∣ukvp−2−k(∇u)2
∣∣ dx+ εru

∫
I

∣∣ukvp−2−k(∇v)2
∣∣ dx.

Taking into account that (
p− 1
k + 1

)
=
p− 1− k
k + 1

(
p− 1
k

)
,

and choosing ε = rv
4ru

we get∫
I

(u+ v)p−1 (ru∆u+ rv∆v) dx

+

p−1∑
k=0

(
p− 1
k

)∫
I

(
ruku

k−1vp−1−k(∇u)2 + rv(p− 1− k)ukvp−2−k(∇v)2
)
dx

≤
p−1∑
k=0

(
p− 1
k

){
rvCγk

∫
I

∣∣uk−1vp−1−k(∇u)2
∣∣ dx+ ruCε(p− 1− k)

∫
I

∣∣ukvp−2−k(∇u)2
∣∣ dx}

+

p−1∑
k=1

(
p− 1
k

)
rv
4

(p− 1− k)

∫
I

∣∣uk−1vp−1−k(∇v)2
∣∣ dx

+

p−1∑
k=0

(
p− 1
k

)
rv
4

(p− 1− k)

∫
I

∣∣ukvp−2−k(∇v)2
∣∣ dx.
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Subtracting the last two terms in the inequality, the terms containing ∇u are remaining on
the RHS. In particular, we have∫
I

(u+ v)p−1 (ru∆u+ rv∆v) dx

+

p−1∑
k=0

(
p− 1
k

)∫
I

(
ruku

k−1vp−1−k(∇u)2 +
rv
2

(p− 1− k)ukvp−2−k(∇v)2
)
dx

≤
p−1∑
k=0

(
p− 1
k

){
rvCγk

∫
I

∣∣uk−1vp−1−k(∇u)2
∣∣ dx+ ruCε(p− 1− k)

∫
I

∣∣ukvp−2−k(∇u)2
∣∣ dx}.

Here, applying the Hölder inequality and Young inequality with q = p−2
p−1−k and q′ = p−2

k−1 , we

get for γ = 1
q ∫

I

∣∣uk−1vp−1−k(∇u)2
∣∣ dx ≤ ∫

I

∣∣vp−1−k(∇u)2γuk−1(∇u)2(1−γ)
∣∣ dx

≤ ε

∫
I

∣∣vp−2(∇u)2
∣∣ dx + C(ε)

∫
I

∣∣∣u(p−2) k−1
k (∇u)2

∣∣∣ dx.
Again, the first term can be cancelled (by taking ε > 0 sufficiently small) with the term

rvv
p−2(∇v)2

appearing in the sum (for k = 0)

p−1∑
k=0

(
ruku

k−1vp−1−k(∇u)2 + rv(p− 1− k)ukvp−2−k(∇v)2
)
.

To handle the second term on the RHS we observe∫
I

∣∣∣u(p−2) k−1
k (∇u)2

∣∣∣ dx ≤ ∫
I

∣∣up−2(∇u)2
∣∣ dx+

∫
I

∣∣(∇u)2
∣∣ dx.

The term on the right hand side can be estimated by Claim 2.1. Going back to problem the
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original problem and applying the Itô formula to Φ(u) =
∫
I
up(x) dx, we obtain

|wm(t)|pLp +

p−1∑
k=0

(
p+ 1
k

)∫ t

0

∫
I

(
ruk u

k−1
m (s, x) vp−1−km (s, x) (∇um(s, x))2

+ rv(p− 1− k)ukm(s, x) vp−2−km (s, x) (∇vm(s, x))2
)
dx ds

≤ |w0|pLp +

p−1∑
k=0

(
p− 1
k

){
rvCγk

∫ t

0

∫
I

∣∣uk−1m (s)vp−1−km (s)(∇um(s))2
∣∣ dx

+ ruCε(p− 1− k)

∫ t

0

∫
I

∣∣ukm(s)vp−2−km (s)(∇um(s))2
∣∣ dx}

+

∫
I

∣∣up−2m (s)(∇um(s))2
∣∣ dx+

∫
I

∣∣(∇um(s))2
∣∣ dx

+kp

∫ t

0

∫
I

wp−1m (s, x)vm(s, x)dx ds+ αup

∫ t

0

|wpm(s)|Lp ds

+pσu

∫ t

0

∫
I

wp−1m (s, x)um(s, x) dW1(s, x) +

∫ t

0

Tr
(
D2Φ(wm(t))M(um(s))Q

1
2 [M(um(s))Q

1
2 ]∗
)
ds

+pσv

∫ t

0

∫
I

wp−1m (s, x)um(s, x) dW2(s, x) +

∫ t

0

Tr
(
D2Φ(wm(t))M(vm(s))Q

1
2 [M(vm(s))Q

1
2 ]∗
)
ds.

Estimating the trace (A.19) we obtain

Tr
(
D2Φ(wm(t))[M(um(s))Q

1
2 [M(um(s))Q

1
2 ]∗
)
≤ S(γ)|wm(s)|pLp ,

and Tr
(
D2Φ(wm(t))M(vm(s))Q

1
2 [M(vm(s))Q

1
2 ]∗
)
≤ S(γ)|wm(s)|pLp

Taking expectation, Gronwall’s Lemma, and Claim 2.2, we verify that there exists a C > 0
such that

sup
0≤t≤T

E|wm(t)|pLp ≤ C.

Step (v) In the next step, in order to control the L∞–norm, we will give an estimate of
the Hγ

p (I) norm for γ > d
p
. In particular, we will proof the following Claim.

Claim 2.3. There exists a constant C > 0 such that

1. for u0 ∈ H1
4 (I) there exists a constant C > 0 such that

E sup
0≤t≤T

∫
I

|∇um(t, x)|4 dx ≤ C(T )
(
1 + E|∇u0|4L4

)
, m ∈ N.
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2. for v0 ∈ H1
4 (I) there exists a constant C = C(T ) > 0 such that

E sup
0≤t≤T

∫
I

|∇vm(t, x)|4 dx ≤ C(T )
(
1 + E|∇v0|4L4

)
, m ∈ N.

Proof. Since to show the uniform bounds for um and vm are quite similar, we will only tackle
the proof of the uniform bound for vm. Before showing the assertion, we have to show that
there exists a constant C > 0 such that

E
∫
I

|∇vm(t, x)|2 dx ≤ C
(
1 + E|∇v0|2L2

)
, m ∈ N. (2.17)

Here, first, note that by the Itô formula we have p = 2

|∇vm(t)|2L2 + 2

∫ t

0

∫
I

(∆vm(s, x))2 dx ds ≤ |∇v0|2L2 (2.18)

+

∫ t

0

∫
I

∇vm(s, x)∇
(
um(s, x) v2m(s, x)

)
dx ds− 2(f + k)

∫ t

0

∫
I

(∇vm(s, x))2 dx ds

+

∫ t

0

∫
I

σv(∇vm(s, x))∇vm(s, x)dW2(s, x)

+ σu

∫ t

0

Tr
(
DΦ(∇vm(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]∗
)
ds.

The Cauchy–Schwarz and Young inequality give∫
I

∆vm(s, x)um(s, x)v2m(s, x) dx ≤ ε

∫
I

(∆vm(s, x))2dx+ C(ε)

∫
I

u2m(s, x)v4m(s, x) dx

≤ ε

∫
I

(∆vm(s, x))2dx+ C(ε)

∫
I

w6
m(s, x) dx.

Due to Claim 2.2-(ii), the second term is bounded uniformly in m ∈ N, the first term can be
cancelled. Next, we have by the Burkholder–Davis–Gundy inequality

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

σv(∇vm(s, x))∇vm(s, x)dW2(s, x)

∣∣∣∣ ≤ ∫ t

0

|(∇vm(s))2|2L2 ds.

The Hölder inequality, Sobolev embedding, and the Young inequality for convolution give

. . . ≤ εE sup
0≤s≤t

|∇vm(s)|2L2 + C(ε)E
(∫ t

0

|∆vm(s)|2L2 ds

)
.
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If ε > 0 is chosen sufficiently small, the first term can be cancelled with the left hand side.
Finally, we use Hypothesis 2.1 and inequality (A.19) to get

E
∫ t

0

Tr
(
DΦ(∇vm(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]∗
)
ds ≤ E

∫ t

0

|∇vm(s)|2L2 ds

In this way we have shown (2.17).

Let p = 4 and Φ(x) = |x|pLp . Note, that by the Itô formula we have

|∇vm(t)|pLp + p(p− 1)

∫ t

0

∫
I

(∇vm)p−2(s, x)(∆vm(s, x))2 dx ds (2.19)

≤ |∇v(0)|pLp +

∫ t

0

∫
I

(∇v(s, x))p−2∆vm(s, x)um(s, x) v2m(s, x) dx ds

− p(f + k)

∫ t

0

∫
I

(∇vm(s, x))p−1∇vm(s, x) dx ds

+ p

∫ t

0

∫
I

σv(∇vm(s, x))p−1∇vm(s, x)dW2(s, x)

+ σv

∫ t

0

Tr[Φ(vm)[M(vm(s))Q
1
2 ][M(vm(s))Q

1
2 ]∗ ds.

The Cauchy–Schwarz inequality gives∫
I

(∇v(s, x))p−2∆vm(s, x)um(s, x)vm(s, x)2 dx

≤
(∫

I

((∇v(s, x))p−2∆vm(s, x))2dx

) 1
2
(∫

I

((∇v(s, x))p−2u2m(s, x)v4m(s, x) dx

) 1
2

.

The Young inequality gives∫
I

(∇v(s, x))p−2∆vm(s, x)um(s, x)vm(s, x)2 dx

≤ ε

∫
I

[(∇v(s, x)]p−2∆vm(s, x))2dx+ C(ε)

∫
I

((∇v(s, x))p−2u2m(s, x)v4m(s, x) dx.

In addition, the Burkholder–Davis–Gundy inequality and Hypothesis 2.1 give

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

σv(∇vm(s, x))p−1∇vm(s, x)dW2(s, x)

∣∣∣∣2
≤ σvS(γ2)E

(∫ t

0

∣∣(∇vm(s))p−1∇vm(s)
∣∣2
L2 ds

) 1
2

.
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The Hölder inequality, Sobolev embedding, and the Young inequality give

. . . ≤ C(ε)σ2
vS

2(γ2)E
(∫ t

0

|∇vm(s)|pLp ds
)

+ εσ2
vS

2(γ2)E
(

sup
0≤s≤t

|∇vm(s)|pLp
)
.

Taking ε small enough, the second term can be cancelled with the left hand side of equation
(2.19). Finally, estimate (A.19) gives

E
∫ t

0

Tr[Φ(vm)[M(vm(s))Q
1
2 ][M(vm(s))Q

1
2 ]∗ ds ≤ S(γ)CE

∫ t

0

|∇vm(s)|pLp ds.

Going back to equation (2.19), we obtain

C1E sup
0≤s≤t

|∇vm(s)|pLp + C2p(p− 1)E
∫ t

0

∫
I

∣∣(∇vm)p−2(s)(∆vm(s, x))2
∣∣ dx ds

≤ E |∇v0|pLp + C(ε)E
∫ t

0

∫
I

((∇vm(s, x))p−2u2m(s, x)v4m(s, x) dx ds

− p(f + k)E
∫ t

0

∫
I

(∇vm(s, x))p−1∇vm(s, x) dx ds

+ σvC(ε)E
∫ t

0

∫
I

∣∣(∇vm(s, x))p−2u2m(s, x)v4m(s, x)
∣∣2 dxds

+ (C(ε) + S(γ))E
∫ t

0

∫
I

|∇vm(s, x)|p dx ds.

Observe that the terms ∫ t

0

∫
I

((∇v(s, x))p−2u2m(s, x)v4m(s, x) dx ds

and

E
∫ t

0

∫
I

∣∣(∇vm(s, x))p−2v2m(s, x)
∣∣2 dx ds

can be estimated by Claim 2.2-(iii). Gronwall’s Lemma gives the assertion.

Step (vi) In the next step we will define the stopping time depending on the Cb(I)–norm
of the solutions process. However, in order that these stopping times are well defined we have
to verify that the solutions processes (um, vm) are P–a.s. continuous in Cb(I). This is done
by showing that (um, vm) are P–a.s. continuous in Hδ

4(I), where δ < 1. Since d < 3, the
continuity in Cb(I) follows by embedding Theorems.
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Claim 2.4. For any δ < 1, there exists a function C : R+
0 → R+

0 such that C(h) → 0 as
h→ 0 and

E sup
t≤s≤(t+h)∧T

|um(s)− um(t)|4L4 ≤ C(h)
(
1 + E|∇um(t)|4L4

)
, m ∈ N, t ∈ [0, T ].

For any δ < 1, there exists a function C : R+
0 → R+

0 such that C(h)→ 0 as h→ 0 and

E sup
t≤s≤(t+h)∧T

|vm(s)− vm(t)|4L4 ≤ C(h)
(
1 + E|vm(t)|4L4

)
, m ∈ N, t ∈ [0, T ].

Let us assume by the time being that Claim 2.4 is true. Fist, we have by interpolation of
Hδ

4(I) for every s ∈ [t, (t+ h) ∧ T

|um(s)− um(t)|Hδ
4
≤ |um(s)− um(t)|1−δL4 |∇um(s)−∇um(t)|δL4

≤ |um(s)− um(t)|1−δL4

(
|∇um(s)|L4 + |∇um(t)|δL4

)
.

In addition, let q and q′ be integers such that 2 ≤ q, q′ < ∞ and 1
q

+ 1
q′

= 1. We take the

supremum for every s ∈ [t, (t+ h) ∧ T , the expectation, and we use the Hölder inequality on
the RHS to get

E sup
t≤s≤(t+h)∧T

|um(s)− um(t)|γ
Hδ

4
≤

(
E sup
t≤s≤(t+h)∧T

|um(s)− um(t)|γ(1−δ)qL4

) 1
q

×

(
E sup
t≤s≤(t+h)∧T

(
|∇um(s)|δL4 + |∇um(t)|δL4

)γq′) 1
q′

.

In the last line we used the identity (a+ b)n ≤ C(n)(an + bn), n ∈ N. Now we fix γ, q, and q′,
such that q(1− δ)γ ≤ 4 and γq′δ ≤ 4. Under these conditions the RHS can be estimated by
Claim 2.4 and Claim 2.3. In particular, if γ = q = q′ = 2 we have

E sup
t≤s≤(t+h)∧T

|um(s)− um(t)|2Hδ
4
≤ C(h)

(
1 + E|∇um(t)|4H1

4

)
, m ∈ N, t ∈ [0, T ],

and

E sup
t≤s≤(t+h)∧T

|vm(s)− vm(t)|2Hδ
4
≤ C(h)

(
1 + E|∇vm(t)|4H1

4

)
, m ∈ N, t ∈ [0, T ]

Proof. The proof is similar to the proof of the Claim 2.4. Without restriction to the general
case we consider the time interval [0, h ∧ T ].
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Again an application of the Itô formula to Φ(x) = |x|4L4 gives

|vm(t)− v0|pLp + p(p− 2)

∫ t

0

∫
I

(vm(s)− v0)p−2(s, x)(∆vm(s, x)−∆v(0, x))2 dx ds

≤ p(p− 2)

∫ t

0

∫
I

(vm(s)− v0)p−2(s, x)[∆v(0, x)]2 dx ds

+ p

∫ t

0

∫
I

(vm(s, x)− v0(0, x))p−1[um(s, x) v2m(s, x)] dx ds

− p(f + k)

∫ t

0

∫
I

(vm(s, x)− v0(0, x))p−1vm(s, x) dx ds

+ p

∫ t

0

∫
I

σv(vm(s, x)− v0(0, x))p−1vm(s, x)dW2(s, x)

+ σv

∫ t

0

Tr
(
D2Φ(vm(s)− v0(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]∗
)
ds.

The Young inequality gives for p = 4∣∣∣∣∫ t

0

∫
I

(vm(t)− v0)p−2(s, x)[∆v0(0, x)]2 dx ds

∣∣∣∣ ≤ ∫ t

0

|vm(s)− v0|4L4 ds+ t |∆v0|4L4

Next, ∫
I

(vm(s, x)− v0(0, x))p−1[um(s, x) v2m(s, x)] dx

≤ C1|vm(s)− v0]|pLp + C2

(
1 + |∇um(s)|2L2

)
+ C3

(
1 + |vm(s)|4L4

)
,

and ∣∣∣∣∫
I

(vm(s, x)− v(0, x))p−1vm(s, x) dx

∣∣∣∣ ≤ |vm(s)− v0|pLp + |vm(s)|pLp .

By Claim 2.3 it follows that there exists a t > 0 such that E
∫ t
0
|∇um(s)|pLp ds ≤ CE|∇u0|2L2 t.

Besides, by Claim 2.2 E
∫ t
0
|vm(s)|4L4 ds ≤ C|v0 + u0|4L4 t. In addition, the Burkholder–Davis–

Gundy inequality and Hypothesis 2.1 give

E sup
0≤t≤T

∣∣∣∣∫ t

0

∫
I

σv(vm(s, x)− v0(0, x))p−1vm(s, x)dW2(s, x)

∣∣∣∣2
≤ σvS(γ)E

(∫ t

0

∣∣(vm(s)− v0)p−1vm(s)
∣∣2
L2 ds

) 1
2

.
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By similar calculation as in the step before we get

. . . ≤ σvS(γ)E
(∫ t

0

∣∣vm(s)− v0|2L4|vm − v0|2L4 |∇vm(s)
∣∣2
L2 ds

) 1
2

The Young inequality gives

. . . ≤
√
t

4
E sup

0≤s≤t
|vm(s)− v0|2L4 + C

√
t

(
E
∫ t

0

|∇vm(s)|2L2 ds

) 1
2

≤
√
t

4
E
(

sup
0≤s≤T

|vm(s)− v0|4L4

)
+ C t (1 + sup

0≤s≤t
E |∇vm(s)|2L2 .

Observe, the first term can be cancelled with the left hand side of equation (2.19). Due to
Claim 2.3, the second term is controlled by C t. Finally, we obtain by estimate (A.19)∫ t

0

ETr
(
D2Φ(vm(s)− v0(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]∗
)
ds

≤ C

∫ t

0

E|vm(s, x)− v0(x)|p−2v2m(s, x) dx ds.

Applying the Hölder inequality gives∫ t

0

ETr
(
D2Φ(vm(s)− v0(s))[M(vm(s))Q

1
2 ][M(vm(s))Q

1
2 ]∗
)
ds

≤ C

∫ t

0

E|vm(s)− v0|4L4 ds+

∫ t

0

E|vm(s)|4L4 ds.

Collecting all together and analysing term by term, the assertion is shown.

Step (vii) Let τum := {t ∈ (0, T ] : |u(t)m|Cb ≥ m}, τ vm := {t ∈ (0, T ] : |v(t)m|Cb ≥ m}
and τm := min(τum, τ

v
m). In this step we will show that for m→∞ we have P (τm < T )→ 0.

Observe, that for δ < 1 the trajectories [0, T ] 3 t 7→ (u(t), v(t)) ∈ Hδ
4(I) × Hδ

4(I) are
continuous. Besides, due to the fact that Hδ

4(I) ↪→ Cb(I) for 1
2
< δ < 1, the trajectories

[0, T ] 3 t 7→ (u(t), v(t)) ∈ Cb(I) × Cb(I) are continuous and the stopping times are well
defined. In addition, the estimate on um and vm in Claim 2.3 were independent of m. Hence,
for all δ ∈ R with 1

2
< δ < 1 there exists a constant C > 0 such that

E sup
0≤t≤T

|um(t)|4Hδ
4
,E sup

0≤t≤T
|vm(t)|p

Hδ
4
≤ C, m ∈ N.

Due to the embedding Hδ
p(I) ↪→ Cb(I), there exists a constant C > 0 such that

E sup
0≤t≤T

|um(t)|pCb ,E sup
0≤t≤T

|vm(t)|pCb ≤ C, m ∈ N.
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Let us define the stopping time

τum := inf
t≥0
{|um|Hδ

4
≥ m} and τ vm := inf

t≥0
{|vm|Hδ

4
≥ m}.

By the definition of gm it follows that for s ≤ τm := min(τum, τ
v
m) we get

Fm(u(s), v(s)) = Fm+1(u(s), v(s)) = F (u(s), v(s))

where F : L2(I)× L∞(I)→ L2(I) is the Nemityski operator defined by

F (u, v)(x) := f(u(x), v(x)) = u(x)v2(x).

Hence, on [0, τm) the processes (um, vm) and (um+1, vm+1) are identical and τm ≤ τm+1, for all
m ∈ N. Fix m ∈ N and put

Am := {ω ∈ Ω : |u(s)|Cb ≤ m and |v(s)|Cb ≤ m} .

It is straightforward that there exists a progressively measurable process (um, vm) over A =
(Ω,F , (Ft)t∈[0,T ],P) such that (um, vm) solves P–a.s. the integral equation given by (2.8) up
to time τm. In particular, we have for the conditioned probability

P ({a solution u to (2.8) exists} | Am) = 1.

Hence, for any m ∈ N we can glue together the solution to one process (u, v) with

u(t) = um(t) and v(t) = vm(t) when t ∈ [τm−1 ∧ T, τm ∧ T ).

Then, it is straightforward to verify, that

P ({there exists solution to (2.8)})
= lim

m→∞
P ({a solution u to (2.8) exists} | Am)P (Am) .

Since P ({a solution u to (2.8) exists} | Am) = 1, it remains to show that limm→∞ P(Am) = 1.
Then, as Am ⊃ Am+1, it follows automatically that

P ({there exists solution to (2.8)}) = 1.

However, since there exists a constant C(T ) > 0 such that

E sup
0≤t≤T

|um(t)|4Cb ,E sup
0≤t≤T

|um(t)|4Cb ≤ C(T ), m ∈ N,

and, hence,

P (Ω \ Am) ≤ C(T )

m4
→ 0.

The solution process is well defined on A = limm→∞Am, where P(A) = 1. In addition, by
Claim 2.2 and the non-negativity of the solution item (i), (ii), and (iii) follow.
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3. Numerical simulations

The approach of operator splitting may lead to favourable discretisations for various classes of
deterministic evolution equations, see Hairer, Wanner [22] and references given therein. We
mention the works [46, 47], which illustrate the use of operator splitting methods in the context
of nonlinear Schrödinger equations and confirm that time-adaptivity enhances reliability and
efficiency of the numerical simulations; in [47], it is also demonstrated that Fourier spectral space
approximations, although constrained to uniform meshes, are superior to locally adaptive finite
element space discretisations, due to the retained spectral convergence rate and the applicability
of fast Fourier transform techniques. We expect similar conclusions to hold for reaction–diffusion
equations with pattern formation, requiring, as well, high resolution in space and time, and hence
favour the Fourier spectral method over the finite difference and finite element methods; we point
out once again that the simple structure of the space domain and the imposed periodic boundary
conditions permit solution representations by Fourier series expansion. Schemes similar to this
were considered for the deterministic case in Hochbruck, Ostermann [23]. In the context
of stochastic evolution equations, operator splitting methods have been studied in Barbu,
Röckner [4], Bauzet et al. [5], Bauzet [6], Bessaih et al. [7], Bréhier, Goudenége [8],
Carelli et al. [11], Sango [40], and Karlsen, Storrøsten [24].

For our purposes, it is convenient to cast the stochastic Gray–Scott equations in Itô or
Stratonovich formulation, respectively, into the form of an evolutionary system

Au = ru ∆− α̃u , Av = rv ∆− α̃v , g(u, v) = u v2 ,
du(t) =

(
Au u(t) + αu − g

(
u(t), v(t)

))
dt+ σu u(t) dWu(t) ,

dv(t) =
(
Av v(t) + g

(
u(t), v(t)

))
dt+ σv v(t) dWv(t) ,

u(0) = u0 , v(0) = v0 , t ∈ (0, T ) ;

(3.1a)

the choice α̃u = αu, α̃v = αv corresponds to (2.1), and the modification

α̃u = αu − σuS(γ) , α̃v = αv − σvS(γ) , S(γ) =
∑
k∈Zd

(α−Dλk)−2γ , (3.1b)
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to (2.6). Moreover, we set

U(t) =

(
u(t)
v(t)

)
, U0 =

(
u0
v0

)
,

AU =

(
Au 0
0 Av

)
, G

(
U(t)

)
=

(
αu − g

(
u(t), v(t)

)
g
(
u(t), v(t)

) )
,

Σ
(
U(t)

)
=

(
σu u(t) 0

0 σv v(t)

)
, WU(t) =

(
Wu(t)
Wv(t)

)
, t ∈ [0, T ] ,{

dU(t) =
(
AU U(t) +G

(
U(t)

))
dt+ Σ

(
U(t)

)
dWU(t) , t ∈ (0, T ) ,

U(0) = U0 .

(3.2)

Deterministic Gray-Scott equations. Let us first discuss the deterministic formulation.
A natural approach for the numerical solution of the deterministic Gray-Scott equations or, more
generally, of a deterministic evolution equation of the form{

U ′(t) = F
(
U(t)

)
= F1

(
U(t)

)
+ F2

(
U(t)

)
, t ∈ (0, T ) ,

U(0) = U0 ,

is based on operator splitting, i.e. the defining operator is decomposed into two parts; for each
subinterval, defined by a suitably chosen time stepsize hn > 0, the associated subproblems are
solved separately, potentially with specific numerical solvers. More specifically, for the Lie–
Trotter splitting method of classical order one, the linear subproblem{

V ′1(t) = F1

(
V1(t)

)
, t ∈ (tn, tn + hn) ,

V1(tn) = Un ≈ U(tn) ,

is resolved; starting from the resulting approximation V1(tn+hn), the resolution of the nonlinear
subproblem {

V ′2(t) = F2

(
V2(t)

)
, t ∈ (tn, tn + hn) ,

V2(tn) = V1(tn + hn) ,

then yields an approximation to the exact solution value

Un+1 = V2(tn + hn) ≈ U(tn + hn) .

The compact formulation of the deterministic Gray–Scott equations makes the natural de-
composition of the right-hand side into two parts evident, see (3.2). Let hn be the time-step
size. The solution of the linear subproblem

V ′1(t) = AU V1(t) , t ∈ (tn, tn + hn) ,
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comprising two decoupled diffusion equations, is formally given by

V1(tn + hn) = ehAU V1(tn) ;

for each component, an explicit solution representation based on a Fourier series expansion
is available. Our numerical approximation relies on a truncation of the infinite series and an
application of the trapezoidal rule on an equidistant space grid; we use the fast Fourier transform
and its inverse for an efficient implementation. Similar techniques in the stochastic setting has
been used e.g. by Lord and Rougemont [32].

For the numerical solution of the second subproblem

V ′2(t) = G
(
V2(t)

)
, t ∈ (tn, tn + hn) ,

comprising the nonlinear reaction terms, we employ a standard explicit solver. More precisely,
we retain the equidistant space grid used for the discretisation of the linear subproblem; point-
wise evaluation at each grid point yields a system of ordinary differential equations, which we
resolve by an explicit Runge–Kutta method.

Stochastic Gray-Scott equations. For the stochastic Gray–Scott equations, we propose
to employ the following natural modification of the Lie–Trotter splitting method. We consider
instead the linear subproblem

dV1(t) = AU V1(t) dt+ Σ
(
V1(t)

)
dWU(t) , t ∈ (tn, tn + hn) ;

in view of the formal representation for the mild solution

V1(tn + hn) = ehnAU V1(tn) +

∫ hn

0

e(hn−s)AU Σ
(
V1(tn + s)

)
dWU(tn + s) ,

we employ the approximation

V1(tn + hn) ≈ ehnAU
(
V1(tn) + Σ

(
V1(tn)

) (
WU(tn + hn)−WU(tn)

))
.

For the realisation of the increment WU(tn + hn) −WU(tn), we generate normally distributed
numbers and apply the inverse Laplacian (1−∆)−γ; this, as well as the action of the evolution
operator ehnAU , is implemented by fast Fourier transforms. The modification of the nonlinear
subproblem is straightforward

dV2(t) = G
(
V2(t)

)
dt , t ∈ (tn, tn + hn) ;

for its approximate solution, we again apply an explicit solver.
Due to the fact that the solution is a stochastic process, avoidance of blow-up by a suitable

reduction of the time stepsizes is slightly more delicate compared to the deterministic Gray-
Scott equations. Even though the probability for such cases is low, large realisations of WU
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may lead to large values. To prevent failure of the code, we follow the simple strategy which we
point out shortly in the following paragraph. Fix tn. Since we are evaluating pointwise at each
grid point xm, m = (m1,m2), the nonlinearity given by g(u, v) = uv2, we can associate to each
grid point a couple process (ûm, v̂m) following the two coupled differential equations:{

˙̂um(t) = −ûm(t) v̂2m(t) + αU ,
˙̂vm(t) = ûm(t) v̂2m(t),

with initial condition ûm(0) := ûm and v̂m(0) := v̂m, where Ûm = (û, v̂) is the approximation of
U(tn) gained in the step before. To prevent these ODEs from blowing up in a finite time, we
fix our step size by

hn ≤ h0 max
m=(m1,m2)

is a grid point

ûm(0)v̂m(0), (3.3)

where, again, Ûn = (û, v̂) and Ûn is the approximation of U . To motivate this choice, let us
focus on the second component solving the nonlinear ODE and fix a constant η0 > 0. The first
component will not be a problem since the nonlinear term has a negative sign and the positive
term is a constant. Therefore there will be no blow up in finite time for the first component. Let
us consider the solution ξ = {ξ(t) : t ≥ 0} where ξ solves, for a given initial condition ξ0 > 0,
the following nonlinear ODE

ξ̇(t) = η0 ξ
2(t), t ≥ 0, ξ(0) = ξ0.

The solution ξ solving this ODE is given by

ξ(t) =
ξ0

1− ξ0η0t
, 0 ≤ t <

1

ξ0η0
.

In particular, if t ↑ 1
ξ0η0

then ξ(t)→∞. By the choice of (3.3), we know that

1 + h0 =
1

1− η0ξ0hn

and we get a time-step hn, such that the solution ξ at time t = hn with constant η0 will not
exceed (1 + h0)ξ0. In this way, we get our condition for the choice of the adapted time step and
we prevent the failure of the time integration due to large realisations of the Wiener processes.

Numerical results. In Figure 1, we display the initial states prescribed for the two-
dimensional deterministic and stochastic Gray–Scott equations (3.1)-(3.2). For two exponents
γ > 0, the effect of the inverse Laplacian (1−∆)−γ on a set of normally distributed numbers is
illustrated in Figure 2. Realisations of the numerical solution processes are shown in Figure 3 for
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Figure 1: Deterministic and stochastic Gray–Scott equations. Prescribed initial states.

a certain choice of the parameters ru, rv, α̃u, α̃v, σu, σv, γ. The first row corresponds to the first
solution component and the deterministic case, the second row to the Stratonovich formulation

α̃u = αu−σuS(γ) , α̃v = αv−σvS(γ) , S(γ) =
∑
k∈Zd

(α−Dλk)−2γ , α = 5 , D = 1 , (3.4)

and the third row to the Itô formulation. In the captions of the figures, we provide links to
movies that visualise the creation of patterns and their variation under the influence of stochastic
noise.

Appendix A. The stochastic integral, the multiplication operator and some in-
equalities

Provided that a stochastic process (Y (t))t∈[0,T ] with values in the space of Hilbert–Schmidt

operators from H to another Hilbert space K̃ is progressively measurable on the underlying
probability space and fulfills a certain integrability condition

Y : Ω× [0, T ] −→ LHS(H, K̃) , E
∥∥Y ∥∥2

L2([0,T ],LHS(H,K̃))
<∞ , (A.1a)

the stochastic integral, denoted by

J : Ω× [0, T ] −→ K̃ : (ω, t) 7−→
∫ t

0

Y (ω, s) dW (ω, s) , (A.1b)
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Figure 2: Two realisations of stochastic noise and regularisations by powers of inverse Laplacian (1 − ∆)−γ ,
γ ∈ {0.5, 2}.
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Figure 3: Stochastic Gray–Scott equations with parameters (ru, rv, α̃u, α̃v, σu, σv, γ).
First component of numerical solution at two times. Movies avail-
able at http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieMyCase3.mov
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieMyCase31.mov
http://techmath.uibk.ac.at/mecht/MyHomepage/Research/MovieMyCase32.mov
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is given as the limit of the infinite series∑
m∈Nd

∫ t

0

Y (ω, s)hm d
(
W (ω, s)

∣∣hm)H
in L2(Ω, K̃) and leads to a well-defined continuous square-integrable martingale in K̃. In addi-
tion, fundamental results such as the Itô isometry

E
∥∥J(T )

∥∥2
K̃ = E

∥∥Y ∥∥2
L2([0,T ],LHS(H,K̃))

, (A.1c)

and the Burkholder–Davis–Gundy inequality for any p ≥ 1

E sup
t∈[0,T ]

∥∥J(t)
∥∥p
K̃ ≤ Cp E

∥∥Y ∥∥p
L2([0,T ],LHS(H,K̃))

, p ∈ [1,∞) , (A.1d)

are valid; in the context of bounded space domains, further auxiliary calculations concerning
the Hilbert–Schmidt norm are given below.

In our application we are working on a bounded interval given by [0, 1]d, we consider our
equation on the d dimensional torus. In the case of a single dimension, a complete orthonormal
system of the underlying Lebesgue space L2(I) := L2(I,R) is given by sine and cosine functions

ψm(x) =


√

2 sin
(
2πmx

)
if m ≥ 1 ,√

2 if m = 0 ,√
2 cos

(
π 2mx

)
if m ≤ −1 ,

(A.2)

The extension to higher space dimensions relies on tensor products, i.e., for a multiindex m =
(m1, . . . ,md) ∈ Zd we have

φm(x) =
d∏
j=1

φmj(xj) , x ∈ I. (A.3)

The corresponding eigenvalues are given by

λm = − 4π2

d∑
j=1

m2
j , m = (m1, . . . ,md) ∈ Zd . (A.4)

The Wiener process W has the following representation

W (t, x) =
∑
k∈Zd

(α−Dλk)−γψk(x)βk(t), j = 1, 2,
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with γ > d
2

and where {βk : k ∈ Zd} is a family of one–dimensional Brownian motions. Let
H := L2(I) and let Q be defined by

Q(ψk, ψl) = δk,l (α−Dλk)−γ, k, l ∈ Z.

The covariance operator Q can be expressed by the norm in Sobolev spaces. To do this, we
relate the inner product and the associated norm to fractional Laplace operators(

φ1

∣∣φ2

)
Wκ

2 (I)
=
(
(α−D∆)κ φ1

∣∣φ2

)
L2 ,∥∥φ∥∥

Wκ
2

=
∥∥(α−D∆)

κ
2 φ
∥∥
L2 ,

φ, φ1, φ2 ∈ W κ
2 (I) , α > 0 , D > 0 , κ ∈ R .

(A.5)

Due to the fact that different choices of α > 0 and D > 0 lead to equivalent norms, we only
indicate the dependence on the decisive exponent κ ∈ R. For scaled Fourier functions, we
henceforth employ the abbreviation

ψ(κ)
m = (α−Dλm)−

κ
2 ψm , m ∈ Zd , (A.6)

which permits to significantly reduce the length of formulas; here, we again suppress the depen-
dence on α > 0 and D > 0. The eigenvalue relation

(α−D∆)
κ
2 ψm = (α−Dλm)

κ
2 ψm , m ∈ Zd , (A.7)

implies that (ψ
(κ)
m )m∈Zd forms a complete orthonormal system of the fractional Sobolev space

Hκ
2 (I), that is (

ψ
(κ)
`

∣∣ψ(κ)
m

)
Wκ

2 (I)
= δ`m , `,m ∈ Zd . (A.8)

The operator Q is given as
Qψm(ψk = δk,m(α−Dλm)−γ.

Appendix A.1. The multiplication operator

In our equation, the diffusion coefficient in front of the stochastic perturbation is given by
the multiplication operator defined by a function φ, which is interpreted as a mapping from the
Hilbert space H to the other Hilbert space L2(I). To be more precise,

M(φ) : H −→ K : χ 7−→ φχ , (A.9)

which complies with [38, Eq. (1.4)]; within the article, however, we often wrote

φ = M(φ)
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for short. Let γ > d
2

and H = Hγ
2 (I). Besides, let us denote the orthonormal basis in H by

{ψ(γ)
m : m ∈ Z}, which is given by

ψ(γ)
m = (α−Dλm)−

γ
2 ψm , m ∈ Zd , (A.10)

Then arguments detailed below show that for the particular case

M(φ) : H −→ L2(I) : χ 7−→ φχ , φ ∈ L2(I) , γ > d
2
, (A.11)

the associated Hilbert–Schmidt norm is finite, since the estimate

∥∥M(φ)
∥∥
LHS(H,L2)

=

(∑
m∈Zd

∥∥φψ(γ)
m

∥∥2
L2

) 1
2

≤ C
√
S(γ)

∥∥φ∥∥
L2 , γ > d

2
, (A.12)

holds. Indeed, the stated bound is obtained from a representation of the defining real-valued
function with respect to the complex-valued Fourier functions

φ =
∑
`∈Zd

(
φ
∣∣ψ`)L2 ψ` .

Let γ > d
2

and H = Hγ
2 (I). Besides, let us denote the orthonormal basis in H by {ψ(γ)

m :
m ∈ Z}, which is given by

ψ(γ)
m = (α−Dλm)−

γ
2 ψm , m ∈ Zd , (A.13)

The associated Hilbert–Schmidt norm is finite. To be more precise, since the estimate

∥∥M(φ)
∥∥
LHS(H,L2)

=

(∑
m∈Zd

∥∥φQ 1
2ψm

∥∥2
L2

) 1
2

≤ C
√
S(γ)

∥∥φ∥∥
L2 , γ > d

2
, (A.14)

holds. What happens if the underlying Hilbert space is Hρ
2 (I) instead of L2(I).

We can write φ in terms of the orthonormal basis, i.e.

φ =
∑
`∈Zd

(
φ
∣∣ψ`)L2 ψ` .

In case, the underlying space is Hδ
2(I), we get

∥∥M(φ)
∥∥
LHS(H,L2)

=

(∑
m∈Zd

∥∥φQ 1
2ψm

∥∥2
L2

) 1
2

≤ C
√
S(γ)

∥∥φ∥∥
L2 , γ > d

2
, (A.15)
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By simple calculations, the following identity can be show:

(A.16)

ψmψk =
1

2


= (ψ−|k−m| − ψ−(k+m)) = (ψ−|k−m| − ψ−|k+m|) for m, k ≥ 1,

(ψ|m|+|k| − ψ||k|−|m||) for k ≥ 1,m ≤ −1, or, m ≥ 1, k ≤ −1,

(ψ−|k−m| − ψ−|k+m|) = (ψ−|k−m| − ψ−(k+m)) for m, k ≤ −1,

2ψm for m ∈ Z, k = 0,

Using this identity, we obtain for m ≥ 1 and d = 1

φψm (A.17)

=
(
φ
∣∣ψ0

)
L2 +

∑
k∈N

(ψ−|k−m| − ψ−|k+m|)
(
φ
∣∣ψk)L2 +

∑
k∈N

(ψ|k|+|m| − ψ||m|−|k||)
(
φ
∣∣ψ−k)L2 .

Similarly, we get for m ≤ −1 and d = 1

φψ−|m| (A.18)

=
(
φ
∣∣ψ0

)
L2 +

∑
k∈N

(ψ−|k−m| − ψ−|k+m|)
(
φ
∣∣ψ−k)L2 +

∑
k∈N

(ψ|k|+|m| − ψ||m|−|k||)
(
φ
∣∣ψk)L2

=
(
φ
∣∣ψ0

)
L2 +

∑
k∈N

(ψ−|k+|m|| − ψ−|k−|m||)
(
φ
∣∣ψ−k)L2 +

∑
k∈N

(ψ|k|+|m| − ψ||m|−|k||)
(
φ
∣∣ψk)L2 .

Evaluating carefully the L2(I)–norm, we get for any m ∈ Zd

|φψm|2L2 ≤ 4
∑
k∈Zd

(
φ
∣∣ψk)L2 .

Hence, we get for the trace

∥∥M(φ)
∥∥
LHS(H,L2)

=

(∑
m∈Zd

∥∥φψ(γ)
m

∥∥2
L2

) 1
2

≤ C
√
S(γ)

∥∥φ∥∥
L2 , γ > d

2
, (A.19)

ψ` ψm = (2 a)−
d
2 ψ`+m, we have

φψ(γ)
m =

∑
`∈Zd

(
φ
∣∣ψ`)L2 ψ` ψ

(γ)
m

= (2 a)−
d
2

∑
`∈Zd

(α−Dλm)−
γ
2

(
φ
∣∣ψ`)L2 ψ`+m , m ∈ Zd .
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Parseval’s identity, summation, and an integrability criterium for infinite series confirms the
given result ∥∥M(φ)

∥∥2
LHS(H,L2)

=
∑
m∈Zd

∥∥φψ(γ)
m

∥∥2
L2

= (2 a)−d
(∑
`∈Zd

∣∣(φ∣∣ψ`)L2

∣∣2)( ∑
m∈Zd

(α−Dλm)−γ
)

≤ C S(γ)
∥∥φ∥∥2

L2 .

By the very same calculation, one can show that we have∥∥M(φ)
∥∥
LHS(H,H1

2 (I))
≤ C

√
S(γ)

∥∥φ∥∥
H1

2 (I)
, γ > d

2
, (A.20)

Let us denote for a Hilbert space H the space of progressively measurable processes

Y : Ω× [0, T ]→ LHS(H, H)

such that
E|Y |L2([0,T ];LHS(H,H)) <∞,

by M2
H(0, T ;H). Having a process Y ∈M2

H(0, T ;L2(R)) we get

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

M(Y (s)) dW (s)

∣∣∣∣p
L2

≤ Cp S(γ)E
(∫ T

0

∥∥Y (t)
∥∥2
L2 dt

) p
2

, p ∈ [1,∞) , (A.21)

Similarly, we have

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

M(Y (s)) dW (s)

∣∣∣∣p
H1

2

≤ Cp S(γ)E
(∫ T

0

∥∥Y (t)
∥∥2
H1

2
dt

) p
2

, p ∈ [1,∞) , (A.22)

The Itô formula. Within the proof we apply the Itô formula for the function Φ(x) = |x|pLp ,
p ≥ 2 to a given process driven by a Wiener process. The diffusion operator will be the
multiplication operator defined in (A.9). To be precise, let us put Φ(u) =

∫
I
up(x) dx. Then

DΦ(u)[h] = p
∫
I
up−1(x)h(x) dx and D2Φ(u)[h1, h2] = p(p − 1)

∫
I
up−2(x)h1(x)h2(x) dx. The

correction term in the Itô formula is now defined by

Tr
[
D2φ(ξ(s))[M(u(s))Q

1
2 ][M(u(s)Q

1
2 ]∗
]

=
p(p− 1)

2

∑
k∈Z

∫
I

ξ(s, x)p−2(x) [M(u)hk](x)[M(u)hk](x) dx.
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The definition of the multiplication operator gives

Tr
[
D2φ(ξ(s))[M(u(s))Q

1
2 ][M(u(s)Q

1
2 ]∗
]
≤ p(p− 1)

2

∑
k∈Z

∫
I

|ξ(s, x)|p−2(x)u2(x)h2k(x) dx

The Hölder inequality gives

Tr
[
D2φ(ξ(s))[M(u(s))Q

1
2 ][M(u(s)Q

1
2 ]∗
]
≤ p(p− 1)

2
S(γ)

∫
I

|ξ(s, x)|p−2(x)u2(x) dx.

In the case ξ = u we get

Tr
[
D2φ(ξ(s))[M(u(s))Q

1
2 ][M(u(s)Q

1
2 ]∗
]
≤ p(p− 1)

2
S(γ)|u|pLp .

In the case, Φ(u) =
∫
I
(∇u)p(x) dx. Then

DΦ(u)[h] = p

∫
I

(∇u)p−1(x)∇h(x) dx and

D2Φ(u)[h1, h2] = p(p− 1)

∫
I

(∇u)p−2(x) (∇h1)(x)(∇h2)(x) dx,

we obtain

Tr
[
D2φ(ξ)[M(u(s))Q

1
2 ][M(u(s)Q

1
2 ]∗
]
≤ p(p− 1)

2

∑
k∈Z

∫
I

|∇ξ(s)|p−2(x)[∇(uhk)]
2(x) dx

Again, the Hölder inequality gives

Tr
[
D2φ(ξ)[M(u(s))Q

1
2 ][M(u(s)Q

1
2 ]∗
]

≤ p(p− 1)

2

(
S(γ)

∫
I

|∇ξ(s)|p−2(x)[∇u]2(x) + S(γ + 1)λk, dx

)
(A.23)

≤ p(p− 1)

2

∑
k∈Z

(α−Dλk)−2γ
∫
I

|up(x)| dx ≤ p(p− 1)

2
S(γ)|u|pLp . (A.24)
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The Itô-Correction Term. Let us assume that the process X solves an infinite dimensional
differential equation driven given as follows:

dX(t) = ∆X(t) dt+ Σ(X(t)) ◦ dW (t), X(0) = X0, (A.25)

where ∆ denotes the Laplacian operator with periodic boundary conditions. As before, {ψm :
m ∈ Zd} denotes the eigenfunctions of ∆ and {λm : m ∈ Zd} denotes the corresponding
eigenvalues. In this way, the solution process ξ of equation (A.25) can be described by the
SPDE given in terms of the Itô–integral by adding a correction term. The correction term can
be calculated explicitly (see [15, p. 65, Section 4.5.1]), i.e., the equivalent Itô equation of (A.25)
is given by

dξ(t) = Aξ(t) dt+
1

2
Dξσ(ξ(t))σ(ξ(t)) dt+ σ(ξ(t))dW(t), ξ(0) = ξ0. (A.26)

Here, Dξ(σ(ξ)) denotes the Frechet derivative of σ with respect to ξ. In our case, the Wiener
process is infinite dimensional, but can be written as a sum of infinitely many scalar Wiener pro-
cesses with

∑
k∈Z σkdβk(t), where {βk : k ∈ Z} is a family of independent scalar valued Wiener

processes, and σk is the multiplication operator given by ξψkλk. Straightforward calculations
reveal ∑

k∈Z

Dξσk(ξ)σk(ξ) =
∑
k∈Z

ξψ2
kλk

2.

Taking into account that λk = λ−k and ψ2
k + ψ2

−k = 2, we have∑
k∈Z

Dξ(σk(ξ))σk(ξ) = γ ξ, (A.27)

where γ =
∑

k∈Z λk
2.
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