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Chapter 1

Introduction

Innovations have played a major role since the industrial revolution and nowadays,

they play an even more important role. Innovations, in particular product innova-

tions are accompanied with changing industrial structures and hence, they affect

economic decisions. An important question then is how product innovations affect

decisions made by firms. For instance, how are capacities of products adjusted

if in the future a new substitute product is expected to be developed which will

enlarge the market but at the same time cannibalize existing demand? In other

words, how do firms react to an expected lower value of its installed capacity in the

future? Such questions have been addressed in multi-stage models where the num-

ber of products offered by firms depends on the stage of the game (cf. Dawid et al.

(2010b), Dawid et al. (2013a)). Unfortunately, in such models, neglecting the dy-

namic structure of industries might lead to wrong conclusions (cf. Cabral (2012)

and Dawid et al. (2010a)). Hence, in this thesis, time is modeled continuously

and optimal control and differential game models are used to analyze rigorously

dynamic variables such as capacities, quantities, prices, investments etc.

Typically, dynamic programming, i.e. the Hamilton-Jacobi-Bellman Equation

is employed in order to derive Markov-perfect Nash equilibria of differential games.

There, smoothness assumptions are made, in particular continuously differentiable

value functions are assumed in order to employ the HJB-equation and its smooth-

ness is verified ex-post. However, sufficiency conditions might not be fulfilled e.g.

if the value functions have kinks which might lead to multiple equilibria. In partic-

1



Chapter 1. Introduction 2

ular, the decision maker might be indifferent between approaching different steady

states. Such indifference points are called Skiba or DNSS points, respectively, giv-

ing credit to the researchers Dechert, Nishimura, Skiba and Sethi who have started

studying such points in the 70’s. A standard example is the shallow lake model

which involves multiple equilibria with ‘clean’ and ‘dirty’ steady states (see e.g.

Wagener (2003)). We encounter Skiba points as well leading either to staying with

an established product or to a new product’s introduction.

By the introduction of new products the market structure changes substan-

tially. In dynamic models, such a change is incorporated by considering different

modes, e.g. a mode with one product and another mode with two products. Tran-

sition between different modes has been considered in games as well. Such games

are called ‘piecewise deterministic’ or ‘multi-mode’ differential games in the lit-

erature (see e.g. Dockner et al. (2000)). There the transition between modes is

stochastic but all other components are deterministic. In Chapters 2 and 3 of this

thesis, there is no stochastic component but firms, to be more precise an innovator

can decide on the time when to switch to another mode, here by introducing a

new product. Hence, we focus on optimal timing of product introductions. In

Chapter 2, we find a situation where initial capacities have only an indirect effect

on the timing decision. More precisely, we find an optimal threshold for the firm’s

established capacity where the new product is introduced, hence timing is affected

indirectly by initial capacities since it just takes longer for the state to arrive at

the threshold if the state is further away or vice versa. However in Chapter 3, we

consider a different situation. There, optimal timing is affected directly by initial

conditions, and the switch to other modes might take place at different values

instead of at a certain threshold point or curve in a two-dimensional state space,

respectively.

While in Chapters 2 and 3, an implicit utility function of a representative

consumer leads to an inverse demand function which is stationary, demand is con-

sidered explicitly in a durable goods model in Chapter 4. In Chapters 2 and 3,

the inverse demand function is considered to be stationary even though examples

of products given there are also rather durable than non-durable. In Chapter 4,
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modeling demand explicitly by considering consumers with different valuations for

quality allows to analyze waiting effects. Here, again a similar setting is considered

where a monopolist introduces a new product, but here at an exogenously given

instant of time. Here, we focus on optimal pricing of the established and the new

product in the presence of rational consumers. Rational consumers might delay

their purchases. In general, there are two drivers of delay. First, in the standard

durable goods literature, waiting occurs due to consumers’ expectation of lower

prices in the future, for the same product. Second, consumers might delay their

purchase in order to buy the new product when it is introduced. We could have

assumed a flexible price for the established product and hence have considered

both drivers of delay but foregoing this option allows us to analyze the waiting

effect only due to innovation and makes the problem analytically more tractable.

However, not modeling the selling period of the established product dynamically

and assuming a static setting would not allow to characterize changing willingness

to pay of the consumers and its effect on pricing decisions. In other words, con-

sumers’ preferences are dynamic which adds pressure on firms price setting. What

makes this Chapter special is that the firm cannot commit to its future price and

hence the firm’s price setting is restricted to be credible. More precisely, consumers

restrict the firm’s action by forming a rational expectation for the future product’s

price which affects prices in a rational expectations equilibrium crucially.



Chapter 2

Delaying Product Introduction:

A Dynamic Analysis with

Endogenous Time Horizon

2.1 Introduction

For many firms, especially those operating in the high-tech sector, whenever a new

technology is available, they have to decide whether to adjust the product range

by incorporating the new technology and if yes, when to do so.

Wang and Hui (2012) provide examples of firms hesitating to incorporate new

available technologies and choosing to stay with the old technology for a while.

Examples include the technology of DVD that has been developed much earlier

than vendors started promoting DVDs. Another example is the MP3 standard.

In an empirical investigation, Chandy and Tellis (2000) have found that a large

fraction of product innovations has been achieved by incumbents. Indeed, we face

such a situation described above often in real-world markets and in many indus-

tries, submarkets evolve and coexist with the established product. An example is

the TV Industry where CRT televisions and flatscreens were sold simultaneously

for a long time (cf. Dawid et al. (2015)).

We consider an incumbent firm which has the option to introduce a horizontally

4
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and vertically differentiated substitute product which has a higher quality than the

established one. For realizing this option, it incurs one-time adoption costs. Thus,

the firm has to determine if the product introduction is profitable and if yes, when

the optimal time of product introduction is. After introduction, we assume that

the firm sells both products.

The firm faces the following trade-off: At the one hand, by launching the

new product it cannibalizes demand for the established product and at the other

hand, it benefits from the new product with higher quality by exploiting higher

willingness to pay of the consumers. We find that the cannibalization effect alone

cannot cause a delay. Delay is optimal if and only if there are adoption costs as

well e.g. coming from adjustment costs of the plant, advertisement activities or

fees paid to developers for using their technologies.

In particular, we find that if the firm is strong at the established market, i.e.

its capacities are at a high level, then the firm decides to wait and hence to intro-

duce the improved product later. By delaying, the firm benefits from discounting

adoption costs while it decreases the capacity of the established product before

the new product is introduced. This reduction of capacity increases the marginal

values of the capacities of the established and the new product at the time of

product introduction. Amongst others, this enables the incumbent to build-up ca-

pacities for the new product faster when it is introduced, compared to immediate

introduction.

There is a large literature on capital accumulating firms which has been ex-

tended by Dawid et al. (2015) who analyzed the optimal R&D effort for product

innovation and capital accumulation of established and new products, where the

breakthrough probability of developing a new product depends on both, a knowl-

edge stock and current R&D efforts via a hazard rate. Hence, in that paper

innovation time is stochastic and it is assumed that the new product is intro-

duced immediately once it is available. We focus on the optimal timing of product

introduction and optimal investment in capacities and differ from Dawid et al.

(2015) in not considering R&D efforts to develop a new product and not linking

successful development to market introduction but considering the time of market
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introduction as a choice variable. The classical literature on optimal timing of

technology adoption (see. e.g. Kamien and Schwartz (1972) for a single firm and

Reinganum (1981) and Fudenberg and Tirole (1985) for a duopoly) assumes that

quality increases due to technological progress and the only decision variable is the

time of technology adoption. Farzin et al. (1998) and Doraszelski (2004) extend

this stream of literature by considering the quality improvement as a stochastic

process. In contrast, in our model, the quality of the new product is fixed and

the firm cannot gain additional quality by delaying. Thus, our analysis focuses

on the dependence on initial characteristics whose importance has been addressed

a lot, e.g. in Hinloopen et al. (2013) where initial marginal costs determine if a

technology is developed further or not. Real options models (see e.g. Dixit and

Pindyck (1994)) have focussed on optimal timing in continuous time where de-

mand is stochastic e.g. evolving according to a Brownian motion. A simultaneous

analysis of optimal timing and optimal investment in capacities in the real op-

tions literature has been provided by Huisman and Kort (2015) where the price of

the good is stochastic. We differ from that stream of literature by considering a

deterministic environment and continuous adjustments of capacities.

The problem of an incumbent delaying product introduction has been addressed

in Wang and Hui (2012). They apply a discrete three-period time framework where

they do not take into account capacity adjustments. In contrast to Wang and Hui

(2012), in our model, delaying cannot be optimal if there are no adoption costs.

From a technical perspective, we employ Pontryagin’s Maximum Principle for

free end time (see. e.g. Grass et al. (2008)) to obtain analytical results concerning

the optimal investments and the optimal time of market introduction.

Moreover, in this optimal control problem, due to the non-concave structure

of the value function, the Arrow-Mangasarian sufficiency conditions are not met

which for certain states lead to the presence of multiple optimal investment paths.

In particular, we characterize situations in which the firm is indifferent between

approaching different steady states (see Skiba (1978)). In such models, qualitative

properties of solutions depend very much on parameters (cf. Hinloopen et al.

(2013)). Therefore, we use a bifurcation analysis to assess industry dynamics
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for different values of adoption costs where we encounter a deformed pitchfork

bifurcation.

The analysis in this paper is carried out for a monopoly setting. Even though

the real-world examples we have raised stem from competitive environments, we

believe that it is important to consider the monopoly as it is interesting in its own

right. Indeed, timing of product introduction is not only influenced by competing

firms but from competing substitute products as well even if there is only a sin-

gle firm. As the established and new product are substitutes, there is ‘internal’

competition between those two products. In order to disentangle rivalry between

products and between firms, it is reasonable to analyze the monopoly case before

proceeding to the competition case.

The paper is organized as follows. We introduce the model in Sect. 2.2. Sect.

2.3 is devoted to the technical analysis. In Sect. 2.4, we provide an economic inter-

pretation, conduct a bifurcation analysis and present optimal timing curves. Sect.

2.5 analyzes welfare effects of delaying product introduction. Model assumptions

are discussed in Sect. 2.6 and Sect. 2.7 concludes.

2.2 Model

We consider an incumbent firm which has initial capacityKini
1 to produce an estab-

lished product. A new substitute product with higher quality has been developed

and is ready for market introduction. Product introduction comes with lump-sum

adoption costs F . An important assumption is that the incumbent cannot invest

in capacities of the new product before introducing it, i.e. there are no capacities

at the time of introduction for the new product.

We follow the literature on optimal capital accumulation by relying on a stan-

dard linear model (see e.g. Dockner et al. (2000)). Thus, the firm faces a linear

inverse demand function which is given by

p1(t) = 1−K1(t). (2.1)



Chapter 2. A Dynamic Analysis with Endogenous Time Horizon 8

After product introduction, the inverse linear demand system1 is given by

p1(t) = 1−K1(t)− ηK2(t), (2.2)

and

p2(t) = 1 + θ − ηK1(t)−K2(t), (2.3)

where η with 0 < η < 1 measures the degree of horizontal and θ > 0 the degree of

vertical differentiation of the substitutes.

The firm wants to determine the optimal time of product introduction T and

the optimal investment strategies before and after product introduction. There is

no inventory, i.e. capacities equal sales2. The capacity dynamics are

K̇i(t) = Ii(t)− δKi(t), i = 1, 2, (2.4)

K1(0) = Kini
1 , K2(t) = Kini

2 = 0 ∀ t ≤ T, (2.5)

where δ > 0 measures the depreciation rate. As has been done in Dawid et al.

(2015), we allow the firm to intentionally scrap capacities, i.e. Ii ∈ R while

capacities have to remain non-negative:

Ki(t) ≥ 0 ∀ t ≥ 0, i = 1, 2. (2.6)

Adjusting capacities is costly, in particular it comes with quadratic costs

C
(
Ii(t)

)
= γ

2 I
2
i (t), i = 1, 2. (2.7)

Normalizing production costs to zero, the objective function of the firm is given

by the following expression:

max
T,I1(t),I2(t)

J =
∫ T

0
e−rt

(
p1(t)K1(t)− C(I1)

)
dt

+
∫ ∞
T

e−rt
(
p1(t)K1(t) + p2(t)K2(t)− C(I1)− C(I2)

)
dt− e−rTF.

(2.8)

We refer to this problem as P(Kini
1 ).

1This demand system is motivated by the fact that the two products are substitutes and

competing with each other. According to the seminal result of Kreps and Scheinkman (1983),

setting prices optimally subject to ex-ante capacity commitments reduces to a Cournot setting

which we adopt here.
2This assumption has been used in large parts of the literature on dynamic capacity invest-

ment, see e.g. Goyal and Netessine (2007). See Section 2.6 for a discussion of this assumption.
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2.3 Analysis

In case that the firm wants to introduce the improved product at some finite time

T , there will be a structural change of the model. Therefore, we denote by mode 1

(m1) the optimal control problem up to time T and by mode 2 (m2) the problem

after T . Denote by V m1(K1) and V m2(K1, K2) the corresponding value functions

of the infinite horizon control problems where the mode is fixed and hence does not

change3. The optimal control problem at hand where the mode m might change

is denoted by V (K1, K2, t,m) and we refer to this problem as the optimal control

problem with introduction option.

The subproblem in m2 is linear-quadratic with infinite time horizon which can

be solved easily, as has been done in Dawid et al. (2015). The optimal strategy and

the value function are stationary for this problem, i.e. V (K1, K2, t,m2)=V m2(K1, K2)−

F . There is a unique globally asymptotically stable steady state under the optimal

strategy and the value function is given by4

V m2(K1, K2) = a+ bK1 + cK2
1 + dK2 + eK2

2 + fK1K2. (2.9)

The typical shape of the value function of m2 is depicted in Figure 2.1.

Figure 2.1: Value function of m2 at T , i.e. for K2 = 0. Parameters: r = 0.04, δ =

0.1, η = 0.9, θ = 0.1, γ = 0.15.

By regarding the value function of the subproblem as the salvage value of the
3We suppress the argument t wherever it is possible and does not cause confusion.
4Equations for coefficients are given in Dawid et al. (2015).
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optimal control problem with introduction option, we can rewrite (2.8) by

max
T,I1(t)

J =
∫ T

0
e−rt

(
p1(t)K1(t)− C(I1(t))

)
dt+ e−rTS

(
K1(T )

)
, (2.10)

where S
(
K1(T )

)
= V m2(K1(T ), 0)− F .5 This problem can be solved analytically

by Pontryagin’s Maximum Principle for variable terminal time. The Hamiltonian

is

H(K1, I1, λ, t) = (1−K1)K1 −
γ

2 I
2
1 + λ(I1 − δK1), (2.11)

where λ is the co-state variable and the optimal investment is given by

I1 = λ

γ
. (2.12)

The co-state equation reads

λ̇ = (r + δ)λ− (1− 2K1), (2.13)

and the transversality condition is given by6

λ(T ) = SK1 = V m2
K1 (K1, 0). (2.14)

For nonzero finite T ∗, let
(
K∗1(·), I∗1 (·)

)
be an optimal solution to (2.10) on the

optimal time interval [0, T ∗]. Pontryagin’s Maximum Principle for variable end

time implies an additional constraint for the terminal time, which is given by

H(K∗1(T ∗), I∗1 (T ∗), λ(T ∗), T ∗) = rS
(
K∗1(T ∗)

)
− ST

(
K∗1(T ∗)

)
. (2.15)

Note that the salvage value does not depend explicitly on T ∗ and hence,

ST
(
K∗1(T ∗)

)
= 0. (2.16)

So, equation (2.15) requires that at the optimal time T ∗, the instantaneous revenue

from staying in m1 plus the assessment of the change of the state variable on the

one hand (which is given by the current-value Hamiltonian, abbr. by H) and the

interest on the salvage value (abbr. by rS) on the other hand are equal. This is
5K2(T ) = 0 since there are no capacities for the new product at T , yet.
6The canonical system, isoclines, the steady state for staying inm1 and its stability properties

are given in Appendix 2.A.1.
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quite intuitive since otherwise it would be optimal to stay longer in m1 if H is

higher than rS or to have introduced earlier if rS is higher than H.

In Lemma 2.2 in Appendix 2.A.2, we state that there are two solutions for

equation (2.15). By that lemma and Proposition 2.1 below, we show that for

F = 0, both solutions coincide and H ≤ rS for all values of established capacity,

i.e. immediate introduction is optimal and hence T ∗ = 0. For F > 0, there are

two distinct points satisfying the terminal condition. In the corresponding interval,

where the boundaries are given by the two points satisfying (2.15), there is H ≥ rS

(cf. Figure 2.12 in Appendix 2.A.2), i.e. for initial capacities in the interval, it is

optimal to reduce capacities down to the lower bound and to introduce the new

product, we say to jump to m2. We denote the two solutions of (2.15) by K lb
1

and Kub
1 , respectively for lower and upper bound of the interval with K lb

1 ≤ Kub
1 .

As mentioned above, for F = 0, both solutions coincide7, i.e. K lb
1 = Kub

1 (see

Appendix 2.A.2), which we denote by KF=0
1 .

So, for higher capacities than Kub
1 , the unique solution is to introduce the new

product immediately again. In particular at Kub
1 , the firm is indifferent between

both options. However, higher capacities than Kub
1 will not be analyzed further

as there the firm switches immediately to m2 which has been analyzed in Dawid

et al. (2015).

As the optimal introduction time depends on the size of capacity, we consider

it as a correspondence depending on Kini
1 and denote it by T ∗(Kini

1 )8. It is a

correspondence since there are situations with multiple optimal values as we will

discuss in the following. We start by characterizing finite solutions.

Proposition 2.1. If T ∗(K1) is finite for all K1, then for all K1 ≤ K lb
1 , it is

optimal to innovate immediately. For all K lb
1 < K1 ≤ Kub

1 , it is optimal to reduce

capacities and to innovate when the capacity reaches K lb
1 , i.e. T ∗(K1) > 0.

7Technically, in case of no adoption costs, H and rS are tangential at KF=0
1 :

∂

∂K1
H(KF=0

1 , I∗
1 (T ∗), λ(T ∗), T ∗) = ∂

∂K1
rV m2(KF=0

1 , 0). (2.17)

8An alternative would have been to define a function which gives the remaining time in m1

not depending on the initial but current capacity (cf. Long et al. (2017)).
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Proof. See Appendix 2.A.3

Proposition 2.1 states that immediate introduction is optimal if capacity for

the established product is lower than a certain threshold (given byK lb
1 ) whereas for

capacities above, it is optimal to wait and to decrease capacities on the established

market before product introduction. Note, that there are infinite solutions where it

is not optimal to innovate immediately even though Kini
1 ≤ K lb

1 as we will discuss

at the end of this section.

In the next lemma we focus on the dependence of K lb
1 on F and find that K lb

1

is decreasing in F , i.e. as adoption costs increase, it takes longer to arrive at K lb
1

for a fixed starting point Kini
1 > K lb

1 .

Lemma 2.1. K lb
1 is decreasing in F .9

Proof. See Appendix 2.A.4.

In Figure 2.2, we illustrate how the value function evolves as F increases. For

K lb
1 < K1 < Kub

1 , the value function of the problem with introduction option is

higher than the value function of m2. As F increases and discounting adoption

costs become more important, the difference of the value function with introduction

option and the scrap value function gets larger. Furthermore, as the products are

vertically differentiated, the value of the problem of m2 is higher than of m1 for

no adoption costs. Thus, the value of the problem with introduction option is

higher than the value of the infinite problem of m1. Obviously, for large enough

F , the value function of the problem with introduction option will hit the value

function of the infinite horizon problem of m1 and infinite solutions will occur,

i.e. product introduction will not be sufficiently attractive anymore. We show in

Appendix 2.A.5 in Lemma 2.3 that there exists a unique value of adoption costs F̃

where this happens for the first time (see Figure 2.3). Thus, F̃ is the lowest value

of adoption costs for which it exists some initial value of capacity where the firm

abstains from product introduction. This result leads to the following corollary.
9Moreover, Kub

1 is increasing in F . Thus, for increasing F , the interval [Klb
1 ,K

ub
1 ] expands

around KF=0
1 .
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(a) F = 0.5 (b) F = 1

(c) F = 1.2 (d) F = 1.27

Figure 2.2: Value functions for different values of F . Parameters: r = 0.04, δ =

0.1, η = 0.9, θ = 0.1, γ = 0.15.

Corollary 2.1. For F < F̃ , T ∗(K1) is finite for all initial capacities and Propo-

sition 2.1 applies.

Proof. Follows directly from Lemma 2.3 in Appendix 2.A.5.

To sum up the results so far, for F = 0, the firm wants to launch the new

product immediately. For increasing F , there arises an interval given by [K lb
1 , K

ub
1 ]

wherein the higher Kini
1 the longer it takes to arrive at K lb

1 where the firm wants

to launch the new product, i.e. the stronger the firm on the established market,

the more the firm delays. Moreover, due to Lemma 2.1, the higher the adoption

costs, the lower is the switching capacity, i.e. the firm wants to reduce capacities

more in advance before switching to m2.

Denote by K̃1 the lowest value of initial capacity where an infinite solution

exists for P(K̃1):

K̃1 = min{K1 | T ∗(K1) =∞}. (2.18)



Chapter 2. A Dynamic Analysis with Endogenous Time Horizon 14

Figure 2.3: Value function for F = F̃ = 1.27437. Parameters: r = 0.04, δ =

0.1, η = 0.9, θ = 0.1, γ = 0.15.

Note that K̃1 exists for F ≥ F̃ . The following proposition and corollary charac-

terize the situation at F̃ .

Proposition 2.2. At F = F̃ ,

K̃1 = Kss,m1
1

10 (2.19)

and the free end-time problem P(K̃1) has a unique solution with T ∗ =∞.

Proof. See Appendix 2.A.7.

Corollary 2.2. At F̃ , for K1 < K̃1,

T ∗(K1) <∞, (2.20)

and for K̃1 ≤ K1 < K̄1,

T ∗(K1) =∞. (2.21)

Proof. Due to the definition of K̃1, for K1 < K̃1 only finite solutions are optimal.

According to the proof of Proposition 2.2, for K̃1 ≤ K1 < Kub
1 , only infinite

solutions are optimal.
10Kss,m1

1 is the unique steady state for staying infinitely in m1 given in Appendix 2.A.1.
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Proposition 2.2 and Corollary 2.2 state that at F̃ , Kss,m1
1 is a threshold sepa-

rating finite and infinite solutions. That is, for K1 ≥ Kss,m1
1 the firm prefers not

innovating and stays in m1, whereas for K < Kss,m1
1 the firm decreases11 capacities

to K lb
1 and hence introduces the new product eventually.

For characterizing the evolution of K̃1, we denote by F̄ the value of adoption

costs for which

V m1(K lb) = V m2(K lb)− F (= S(K lb)) (2.22)

holds, i.e. where the firm is indifferent between introducing immediately and

delaying infinitely at K lb
1 .

Proposition 2.3. K̃1 is decreasing in F and for all F̃ < F < F̄ , the free end-time

problem P(K̃1) has two different solutions with optimal terminal times 0 < T f <∞

and T∞ = ∞, i.e. K̃1 is a Skiba point where the firm is indifferent between

introducing the product after some delay and not at all.

Proof. See Appendix 2.A.8.

A consequence of Proposition 2.3 is that as F increases, the range of capacities

where the firm stays with only one product enlarges as K̃1 decreases. Moreover,

there is a finite and infinite solution at K̃1
12. As before, the timing for capacities

lower than K̃1 is finite. So there exist three different ranges of capacities where

optimal time of product introduction is either 0, infinite or in-between. We refer

to [F̃ , F̄ ) as the intermediate range of F and for F ∈ [F̃ , F̄ ) we refer to (K lb
1 , K̃1)

as the waiting region.

Denote by ¯̄F the value of adoption costs where thereafter finite solutions dis-

appear for the first time13, i.e.

T ∗(0) =∞ . (2.23)

Now, we show that at F̄ the waiting region vanishes and only immediate or infinite

solutions for T remain.
11In Appendix 2.A.6 in Lemma 2.4, we show that at F̃ , Klb

1 ≤ Kss,m1 holds.
12There is no other value of capacity where both solutions are optimal.
13As K̃1 is decreasing in F , at ¯̄F , K1 = 0 is the only remaining value for capacity such that

the firm is indifferent between immediate and no product introduction.
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Corollary 2.3. For F̄ ≤ F < ¯̄F , there exists a K̃1 > 0 such that for all K1 < K̃1

the firm introduces the new product immediately whereas for all K1 > K̃1 the firm

never introduces the new product. At K̃1, the incumbent is indifferent, in particular

the free end-time problem P(K̃1) has two different solutions with 0 = T f < T∞ =

∞. Moreover, at F̄ , K̃1 = K lb
1 .

Proof. By definition of F̄ , the firm is indifferent between immediate and infinite

product introduction. By Proposition 2.3, K̃1 is decreasing and hits K lb
1 at F̄

where solutions with 0 < T <∞ vanish.

Thus, for all F , K̃1 is separating finite and infinite solutions for T . Note that

for F < F̄ , the value function of m2 and the value function of the problem with

introduction option paste smoothly at K lb
1 , i.e.14

∂V (K lb
1 , 0,m1)
∂K1

= ∂V m2(K lb
1 )

∂K1
. (2.24)

Furthermore, at F̃ , the value function of the problem with introduction option

and the value function of m1 paste smoothly at K̃1 (see Figure 2.3) whereas for

F > F̃ the value function has a kink at K̃1 (cf. Figure 2.4).

Figure 2.4: Value function for high F . Parameters: r = 0.04, δ = 0.1, η = 0.9, θ =

0.1, γ = 0.15, F = 1.3.

2.3.1 Summary of Results

In total, as long as F is intermediate (i.e. F̃ ≤ F < F̄ ), we can split the state

space in three parts:
14Note that the value function is time-invariant and hence the time argument can be omitted,

i.e. V (Klb
1 ,K

lb
1 , t,m) = V (Klb

1 ,K
lb
1 ,m).
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i) ‘Immediate introduction’: K1 ≤ K lb
1 : Firm innovates immediately, T ∗ = 0.

ii) ‘Delayed product introduction’: K lb
1 < K1 ≤ K̃1: Firm delays introduction

and introduces product later at 0 < T ∗ <∞.

iii) ‘No introduction’: K1 ≥ K̃1: Firm delays introduction infinitely, i.e. there

is no product introduction.

For increasing F the indifference point K̃1 shifts to the left and eventually the

waiting region vanishes where K̃1 and K lb
1 coincide and only two possibilities re-

main: Either the firm innovates immediately (for low capacities) or never (for high

capacities). Hence, for F ≥ F̄ , the value function is given by the upper curve of

the value functions V m1 and V m2 (see Figure 2.4).

We call F low if 0 < F < F̃ , intermediate if F̃ ≤ F < F̄ , high if F̄ ≤ F ≤ ¯̄F

and very high if F > ¯̄F .

• If there are no adoption costs, only scenario i) is prevalent.

• For low adoption costs, scenarios i) and ii) are possible depending on the

initial capacity level.

• If F is intermediate, all three scenarios are possible.

• For high adoption costs, only scenarios i) and iii) are possible.

• For very high adoption costs, only scenario iii) is prevalent.

2.4 Dynamics

In Section 2.4.1, we give an economic interpretation of the optimal capacity in-

vestments and the timing decision. A bifurcation analysis is presented in Section

2.4.2. Optimal timing curves and its dependence on parameters of horizontal and

vertical differentiation are given in Section 2.4.3.

In order to derive dynamics, we consider the following default parameter set-

ting taken from Dawid et al. (2015):
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r = 0.04, δ = 0.1, η = 0.9, θ = 0.1, γ = 0.15. (2.25)

2.4.1 Economic Interpretation

The intuition for the ‘Immediate Introduction’ and ‘No Introduction’ scenario is

straight forward. The benefit from the new product is either so high that the firm

does not want to wait or the benefit is too low such that the firm stays with the

established product. Thus, we focus on the interpretation of the interesting case

of delay. Note that for finite T ∗, before T ∗, the Hamiltonian H is greater than the

interest on the salvage value rS and at T ∗, they are equal15. In a sense the firm

exploits profits in m1 before moving to m2. By choosing T ∗ > 0, the Hamiltonian

is affected16 via the co-state λ(t). In economic terms, the following mechanisms

can be identified.

First, the delay in time leads to stronger discounting of the scrap value V m2−F .

The firm saves adoption costs as F is paid as a lump-sum, but gets V m2 later as

well. The latter is smoothed by the concave structure of the value function ofm2 as

the firm reduces capacities of the established product and hence V m2 increases17.

Second, in the proof of Lemma 2.2 in Appendix 2.A.2, we find that

∂V m2

∂K2
(KF=0

1 , 0) = 0, (2.26)

which has an interesting economic intuition. In contrast to m1, in m2, the firm

is able to invest in K2. For F = 0 at KF=0
1 and elsewhere, there is no reason for

waiting. But for higher F > 0, waiting yields discounting of adoption costs while at

KF=0
1 , (2.26) still holds and thus there is no gain from immediate switching to m2

and investing inK2. Thus, by postponing the product introduction, the incumbent

can decrease the capacity of K1 before switching such that ∂V m2
∂K2

(K lb
1 , 0) > 0, i.e.

when switching, the marginal value of the new product’s capacity is higher and
15Note that this is not necessarily true for the infinite case since if T ∗ is infinite, the transver-

sality condition for the co-state variable and hence the Hamiltonian would be altered.
16Note that the investment in established capacity depends on the co-state as well.
17This holds as long as the switching capacity Klb

1 is greater than the maximal argument of

V m2 which is true for the considered parameter setting.



Chapter 2. A Dynamic Analysis with Endogenous Time Horizon 19

hence there is an immediate gain from investment in K2. Hence, the investment

pattern in m2 is affected, where due to the reduced capacity of the established

product, the firm has stronger incentives to build-up capacities for the new product

and the disinvestment in the established product is weaker18 than it would be

without delay. Hence, in m2, profits drop and are initially lower than in m1 as

there is a strong investment in capacities of the new product but sales increase

only gradually for the new product. By delaying, the firm can postpone this drop

in profits and enjoy ’high’ profits in m1. However, the drop in profits is stronger

compared to immediate introduction.

2.4.2 Bifurcation Analysis

We have a situation in mind where a new improved version of a product is launched

which is a close substitute to the established product. This is reflected by a rela-

tively high η and low θ. We do robustness checks with respect to those parameters

in Section 2.4.3. The other parameter choices are very standard.

From Figure 2.3, it is clear that the value function is not concave in K1 and

hence does not satisfy the Arrow-Mangasarian sufficiency conditions. Thus, as

mentioned earlier, in this section we examine the qualitative properties of the

steady states of the control problem with introduction option with respect to the

parameter F . We start by drawing a bifurcation diagram of m1 (Figure 2.5).

Figure 2.5: Bifurcation diagram of m1.
18This is due to the increased marginal value of the established capacity.
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The gray area is not present in m1 since if the firm starts in that area or arrives

there, it introduces the new product and hence is no more in m1 but in m2. As

we are interested in characterizing dynamics in m1 and in m2 together, we draw

a superimposed bifurcation diagram of both modes (cf. Hinloopen et al. (2017))

in Figure 2.6. For F < F̃ , we have a unique stable steady state. No matter if

Figure 2.6: Superimposed diagram.

the firm delays product introduction or not, it will eventually arrive at the steady

state level of K1 in m2 denoted by Kss,m2
1 . As analyzed before, at F̃ there arises a

second steady state where for initial capacities K̃1 ≤ K1 ≤ Kub
1 (which are in the

red area in Figure 2.6) the firm stays in m1 and eventually arrives at Kss,m1
1 .

At ¯̄F the equilibrium point Kss,m2
1 vanishes and it remains only Kss,m1

1 for

F > ¯̄F (see Figure 2.7).

Figure 2.7: Dynamics around ¯̄F .

Besides, we have a deformed pitchfork bifurcation which exhibits a hysteresis
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phenomenon where initially only one stable steady state exists and for higher F a

second equilibrium arises ’out of the blue sky’, where a repelling curve separates

the two basins of attraction (red and blue area) where for very high F only the

second equilibrium remains. The black dashed curve is the Skiba curve (which is

repelling except at the two steady states where it is semi-stable). Note that for

capacities on the Skiba curve in between the two steady states, optimal paths are

moving in opposite directions but for capacities on the Skiba curve below Kss,m2
1

both optimal paths move in same direction (see Figure 2.7). Note that this is a

superimposed diagram and not a bifurcation diagram in the classical sense and

the latter is possible since there the firm either jumps immediately to m2 or never,

which means that we actually consider two disjoint optimal control problems where

the mode can be interpreted as a further state variable.

2.4.3 Characterization of Optimal Timing Curves

As discussed in Section 2.3, for F ≥ F̃ , K̃1 separates finite and infinite solutions

for the optimal introduction time. Thus, it jumps at K̃1 to infinity. Hence, for

K̃1 ≤ K1 ≤ Kub
1 , the value function of the problem with introduction option is

equal to the value function of the problem without introduction option.

We now investigate in detail what happens when F approaches F̃ . The graphs

of the optimal introduction time are depicted in Figure 2.8. For low adoption costs,

F = 1 F = 1.274 F = F̃ ≈ 1.27437
Figure 2.8: Optimal time of switching for increasing F .
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the correspondence is concave for K1 ≥ K lb
1 . As analyzed in Section 2.3, it is finite

for low adoption costs whereas it becomes infinite at F̃ for K1 ≥ K̃1 = Kss,m1
1 .

For F approaching F̃ , T ∗(K1) becomes convex-concave and very steep at Kss,m1
1 ,

i.e Kss,m1
1 becomes an inflection point (see Figure 2.8) which means that the firm

decreases higher capacities and "stays around" Kss,m1
1 for a while until it starts

decreasing again down to K lb
1 . Note that for F < F̃ , T ∗(K1) is finite everywhere,

whereas at F̃ , T ∗(K1) is infinite for K1 ≥ Kss,m1
1 .

K1
lb K1

˜0.1 0.2 0.3 0.4 0.5
K1

-0.2

-0.1

0.1

I1

Figure 2.9: Capacity-investment dynamics for F = 1.275.

Figure 2.9 depicts optimal curves in the (K1, I1) space for the interesting case

of intermediate adoption costs where K̃1 separates the two basins of attraction.

For K lb
1 < K1 < K̃1, the firm decreases capacities down to K lb and introduces the

new product. In m2, it continues decreasing capacities of K1 down to Kss,m2
1 while

it builds up capacities for the new product up to Kss,m2
2 .

Effect of Horizontal and Vertical Differentiation

For decreasing degree of horizontal differentiation η, the products become more

differentiated and thus the firm is expected to benefit from this. As both markets

get more independent we expect that the firm is willing to introduce the new

product earlier. Numerical experiments are in line with this intuition (see Figure

2.10). Analogously, for increasing θ we get similar results.
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Figure 2.10: Optimal time of switching for different parameterizations of η and θ.

2.5 Welfare Implications

For analyzing welfare implications, note that the inverse demand functions stem

from the following utility function of the consumers where M is the initial endow-

ment:

CS(t) = u(K1, K2) = K1 +(1+θ)K2−
1
2(K2

1 +K2
2)−ηK1K2 +(M−p1K1−p2K2).

(2.27)

The welfare depends on the interpretation of adoption costs. If it is paid to the

developer of the technology, then it is considered as a transfer and it is always

profitable to introduce the new product immediately. But if it is considered as

‘real’ costs, then it has to be taken into account. In that case, the social planner

maximizes the difference of consumer surplus and costs of investment and adoption:

max
T,I1(t),I2(t)

J =
∫ T

0
e−rt

(
u(K1, 0)− γ

2 I
2
1

)
dt+

∫ ∞
T

e−rt
(
u(K1, K2)− γ

2 (I2
1 + I2

2 )
)
dt−e−rTF.

(2.28)

We expect that product introduction is favorable from a social point of view as in

m2, there is a new product of higher quality which affects the consumer only posi-

tively. For the given parameter setting, we find that delaying product introduction

occurs only for very large F , in particular for F > 2.4492 19. So, as expected, from
19Note that for the profit maximizing firm delay occurs even for F = ε, ε > 0, which is

substantially lower than 2.4492.
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the perspective of a social planner, it is optimal to introduce immediately for a

wide range of F .

For the case of ’real’ costs, the welfare difference of the situation of a profit

maximizing firm and the situation where the firm is controlled by a social planner

is depicted in Figure 2.11 for Kini
1 = Kss,m1

1 . The welfare loss is initially constant

(a) (b)

Figure 2.11: Welfare gain for K1 = Kss,m1
1 . Parameters: r = 0.04, δ = 0.1, η =

0.9, θ = 0.1, γ = 0.15.

as in both situations, immediate introduction is optimal (as long as Kss,m1
1 < K lb

1 )

but at some critical F (where K lb
1 < Kss,m1

1 ), the firm starts delaying the product

introduction which increases the welfare loss. However, for F ≥ F̃ , the welfare

loss decreases (see Figure 2.11(b)) as the firm stays in m1 where F does not have

an effect whereas the welfare for the social planner decreases as costs of switching

to m2 increase.

2.6 Discussion of Results and Assumptions

Somewhat surprising is that the first appearance of solutions where the firm stays

with the established product is accompanied by a threshold point separating finite

and infinite solutions for the terminal time. One might think that the rationale

behind is thatm1 andm2 are endogenously linked as inm2 the number of products

increases. But the phase-plane analysis (given in Appendix 2.A.7) shows that this

situation might occur even for a switch to an exogenously given mode, in particular

whenever the terminal pair is on the unstable manifold.



Chapter 2. A Dynamic Analysis with Endogenous Time Horizon 25

From an economic perspective, delay was expected in order to discount adop-

tion costs and increase the scrap value at the time of introduction. Our analy-

sis shows that the decrease of established capacities is accompanied by a larger

marginal value for the new product in m2, i.e. investing in the capacities of the

new product is stronger than it would be with immediate introduction.

In our analysis, we abstract from competition. However, a monopoly could

turn into a competing environment if entry is possible. Thus, if there is a threat

of possible entrants, we expect that this would accelerate product introductions.

Another issue is that we do not consider the phase of development of the

new product. For the interpretation that the new product is developed by the

incumbent himself, it is clear that the firm is not going to engage in R&D activities

if the product is not introduced eventually. In the case where the product is

introduced with some delay, we expect that R&D efforts would be less in the

development phase which would have a similar impact on the introduction time.

For the interpretation of external developers generating a new technology where

adoption costs mainly consist of buying the patent for the new technology, an

alternative option to adoption costs which has to be paid once when the product

is introduced, would be to consider fees per unit which has to be paid to the

owner of the patent. There, as long as the fee per unit is constant and less than θ,

introduction would occur immediately since fees are paid continuously, so adoption

costs are ‘spread over time’.

We made the assumption that capacities are fully used, i.e. production equals

sales. We believe that this assumption is of minor consequence to our results since

in our model, there are no capacities for the new product in T and investment in

capacities has quadratic costs such that capacities are not build up as a ‘lump-

sum’ but slowly while the capacity of the established product is reduced slowly.

Moreover, in the case of delay, the incumbent starts reducing capacities even in

m1. A rigorous analysis of the full usage of capacity assumption yields that it is

optimal to exploit full capacity if the following conditions hold:

2K1 + ηK2 ≤ 1, (2.29)
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ηK1 + 2K2 ≤ 1 + θ. (2.30)

Numerical experiments suggest that conditions (2.29) and (2.30) seem to be satis-

fied for reasonable values of K1 (≤ Kss,m1
1 )20.

Furthermore, e.g. for decreasing demand, it is argued that in practice firms

reduce prices in order to maintain production rather than reducing production

due to contracts with employees and suppliers, even though such contracts are

not modeled here (cf. Goyal and Netessine (2007)). However, counterexamples

exist as well where firms have excess capacity e.g. for deterring entry (see Chicu

(2012)).

This analysis focuses on the effect of adoption costs. However, for some prod-

ucts, not adoption costs but differences in production costs may be the main reason

for firms to abstain from product introduction, in particular if the old and new

product’s production costs differ a lot. Apple had developed a mouse in 1979

whose production costs were too much such that Apple abstained from further

development of this mouse and hence from introducing it (cf. Hinloopen et al.

(2013)).
20In the case of no horizontal and vertical differentiation, i.e. η = 1 and θ = 0, conditions

(2.29) and (2.30) are satisfied if

K1 ≥
1
3 ∧K2 ≤

1
3 , (2.31)

or

K1 ≤
1
3 ∧K2 ≥

1
3 . (2.32)

For our default parameter setting with F = 1.275, (2.31) and (2.32) are satisfied. In the case of

horizontal and vertical differentiation, (2.29) and (2.30) are weakened. For higher θ, the incum-

bent wants to build up capacities for the new product faster, but also to decrease capacities of

the established product faster. For lower η, as products are more differentiated and competition

of the established and the new product is weakened, investment in the new product’s and disin-

vestment of the established product’s capacities are slower. Thus, in both cases, we expect that

(2.29) and (2.30) are not affected much.
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2.7 Conclusion

Using a fully dynamic framework we identify different scenarios where the firm’s

behavior depends crucially on the capacity of the established product and on the

level of adoption costs. There is an interesting case where it is not optimal for the

firm to introduce the new product immediately but to delay product introduction.

By delay in time, adoption costs are discounted while the firm prepares for prod-

uct introduction by reducing capacities on the established market which increases

the marginal value of the established and new products’ capacities. Moreover, the

incumbent postpones investment in new capacity and hence benefits longer from

high profits before product introduction. Noteworthy is the occurrence of Skiba

points where the firm is indifferent in approaching different steady states which

affects the number of products produced by the firm. We assumed that firms can-

not invest in capacities beforehand. Allowing for investment before introduction

might have an effect on the time of introduction, in particular we expect that this

would accelerate product introduction while we think that qualitative results will

be the same. Furthermore, we abstained from competition which is analyzed in

Chapter 3.

2.A Appendix

2.A.1

The canonical system is given by

K̇1 = λ

γ
− δK1,

λ̇ = (r + δ)λ− (1− 2K1),
(2.33)

and the isoclines are

K̇1 = 0 ⇔ λ = δγK1,

λ̇ = 0 ⇔ λ = 1− 2K1

r + δ
.

(2.34)
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If the firm does not introduce the new product, i.e. for staying in m1 infinitely,

there is a unique steady state

Kss,m1
1 = 1

δγ(r + δ) + 2 , λss,m1 = δγ

δγ(r + δ) + 2 . (2.35)

The steady state is a saddle point as the Jacobian is

−δ 1
γ

2 r + δ

 (2.36)

with

det J = −δ(r + δ)− 2
γ
< 0. (2.37)

The eigenvalues are given by

µ1,2 = r

2 ±
√(

r

2

)2
+ δ(r + δ), (2.38)

so eigenvalues have different sign and the steady state is indeed a saddle point.

2.A.2

Lemma 2.2. Condition (2.15) holds for(
K∗1
)

1,2
= −d

f
±
√

2γrF
f 2 . (2.39)

Proof.

Consider the terminal condition21 (2.15):

H(K∗1 , I∗1 , λ(T ∗), T ∗) = rS
(
K∗1
)

(2.40)

⇔

(1−K∗1)K∗1 −
γ

2 I
∗
1

2 + λ(T ∗)(I∗1 − δK∗1) = r(V m2(K∗1)− F ) (2.41)

⇔

(1−K∗1)K∗1 −
γ

2 I
∗
1

2 + ∂V m2

∂K1
(I∗1 − δK∗1) = r(V m2(K∗1)− F ). (2.42)

21For convenience, we henceforth omit the dependence of state and control variables on T ∗.
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The HJB-equation in m2 at T ∗ is given by22

(1−K∗1)K∗1 −
γ

2 (I∗1
2 + I∗2

2) + ∂V m2

∂K1
(I∗1 − δK∗1) + ∂V m2

∂K2
I∗2 = rV m2(K∗1). (2.43)

For I∗2 = V
m2

K2
γ

, we have:

(1−K∗1)K∗1 −
γ

2 I
∗
1

2 + ∂V m2

∂K1
(I∗1 − δK∗1) + 1

2γ

(
∂V m2

∂K2

)2
= rV m2(K∗1). (2.44)

Using (2.44) and (2.42) yields

rF = 1
2γ

(
∂V m2

∂K2

)2
, (2.45)

which under consideration of K2 = 0 yields the two solutions

K lb
1 := −d

f
−
√

2γrF
f 2 , (2.46)

and

Kub
1 := −d

f
+
√

2γrF
f 2 . (2.47)

2.A.3

Proof of Proposition 2.1. By Lemma 2.2 in Appendix 2.A.2, we know that for

F = 0 the terminal condition of the Maximum Principle holds for KF=0
1 and

H < rS for other values of capacity23. For F > 0, F occurs negatively on the

right hand side of the terminal condition and only there. Thus, there arises an

interval whose bounds are given by (2.46) and (2.47) wherein H > rS (see Figure

2.12). For Kini
1 outside the interval, the opposite holds. Hence, for Kini

1 ≤ K lb
1 , the

interest on the salvage value is higher than the current value Hamiltonian. Thus,

immediate introduction is optimal.
22Note that F is paid for switching to m2 and does not occur in m2 anymore.
23Cf. Appendix 2.A.2. For F = 0, the square root in (2.39) vanishes and both solutions

coincide. Moreover, note that for F = 0, the only extra term in (2.44) in comparison to (2.42) is
1

2γ

(
∂V m2

∂K2

)2
which is non-negative. Hence for all K1, H is less or equal than rS (it is equal for

Klb
1 (= Kub

1 ) as 1
2γ

(
∂V m2

∂K2

)2
= 0).
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(a) F = 0 (b) F = 1.2

Figure 2.12: Left hand side (H) and right hand side (rS) of terminal condition.

For K lb
1 < K1 ≤ Kub

1 the optimal switching capacity K lb
1 has to be reached by

the transversality condition. Thus the firm reduces capacities down to K lb
1 and

innovates.

2.A.4

Proof of Lemma 2.1. Taking the derivative of K lb
1 with respect to F yields

∂K lb
1

∂F
= − 2γr

2f 2
√

2γrF
f2

= −
√

γr

2Ff 2 < 0 . (2.48)

2.A.5

Lemma 2.3. ∃! F̃ > 0 such that ∀F ≥ F̃ , ∃ K1 with T ∗(K1) =∞, i.e. V (K1) =

V m1(K1) and ∀F < F̃ , @ K1 with T ∗(K1) =∞.

Proof. The value function of m1 without the option to switch to m2 is independent

of F whereas the value function of the control problem with introduction option is

decreasing in F due to the decreasing salvage value. Thus, there is some F̃ where

the value function of the control problem with introduction option hits the value

function of m1 for the first time which is greater than 0 since for F = 0, switching

is costless and in m2, there is the option of producing the new product which has

a higher quality (θ > 0)24.
24Even for no vertical differentiation, introducing the new product is beneficial as the market
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2.A.6

Lemma 2.4. At F = F̃ ,

K lb
1 ≤ K̃1 (2.49)

holds.

Proof. Let F = F̃ . Assume K̃1 < K lb
1 . Then, for K̃1, H < rS, which yields that

the unique solution is to switch to m2 which contradicts F = F̃ .

2.A.7

We first state the following lemma which is necessary for the proof of Proposition

2.2.

Lemma 2.5. The dynamics at the terminal pair
(
K lb

1 , λ(T )
)
are not K̇1 > 0 and

λ̇ > 0 simultaneously.

Proof. The terminal pair is determined by H = rS and λ(T ) = SK1 . The line

λ(T ) = SK1 = b + cK1 has a positive ordinate (b > 0) as K1’s marginal value is

positive if there are no capacities installed. One might think that this line could

pass through the area to the right-upper of the intersection point of K̇1 = 0 and

λ̇ = 0 where K̇1 > 0 and λ̇ > 0 hold. This would yield different dynamics than

studied so far. However, one can easily show that for terminal pairs in that area,

there is no candidate for an optimal solution with 0 < T ∗ < ∞. In particular,

for Kini
1 > K lb

1 , there are either no candidate paths or only non-monotone paths

arriving at the terminal pair which cannot be optimal25. Converging to the steady

state of m1 along the stable manifold is not optimal as well as time consistency

is violated since for K1 < K lb
1 , H < rS holds. Thus, there are no optimal paths

for Kini
1 > K lb

1 which yields a contradiction and proves that this situation cannot

is expanded and the firm is able to split the total quantity among the two products which yields

a higher price (cf. Dawid et al. (2015)).
25Non-monotone paths imply a set of Skiba points which generates fluctuating paths for

T ∗ =∞, which contradicts to the uniqueness property of the steady state of the infinite horizon

problem.
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Figure 2.13: Vector plot for F = 1.275 (> F̃ ).

occur. Moreover, the slope of the λ(T ) line is necessarily negative (c < 0), i.e. the

marginal value of K1 is decreasing as ∂2V m2
∂K2

1
= c.

Proof of Proposition 2.2. As the steady state of m1 is a saddle-point, there is a

stable and unstable manifold. If T ∗ is finite but not zero, then the switching pair(
K1(T ), λ(T )

)
in the (K1, λ) space is derived from the condition H = rS and the

transversality condition λ(T ) = SK1 . As F increases and K lb
1 decreases, there is

an F , where
(
K lb

1 , λ(T )
)
is on the unstable manifold with K̇1 < 0 and λ̇ < 026.

Denote that F by F uns. For arriving at that pair, the initial pair has to be on

the unstable manifold. Thus, for all K1 ≥ Kss,m1
1 , there is no optimal path which

leads to (K lb
1 , λ(T )), i.e. for all K1 ≥ Kss,m1

1 , T ∗(K1) =∞.

Next, we prove that F̃ = F uns. Obviously, F̃ ≤ F uns 27. Assume F̃ < F uns.

Then, by Lemma 2.1, at F̃ , the terminal pair is right to the unstable manifold.

Denote for all possible terminal values K1(T ) the value of the path which leads
26As shown in Lemma 2.5, the dynamics at the terminal pair are not K̇1 > 0 and λ̇ > 0

simultaneously. Hence, the line passes through the area where K̇1 < 0 and λ̇ < 0 holds as it has

a positive ordinate and negative slope.
27Note that for Funs infinite solutions for T exist. As F̃ is the minimal value of adoption costs

for which infinite solutions exist, F̃ ≤ Funs holds.
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to the terminal pair by V term(K1(t), K1(T ), F ) which in this case exists for all

K1 ≥ K1(T ) and for all F < F uns and is continuous in F .

In order to avoid confusion, for an F , we denote the corresponding K lb
1 by

K lb
1 (F ). For Kini

1 > K̃1,

V term(Kini
1 , K lb

1 (F̃ ), F̃ ) < V m1(Kini
1 ), (2.50)

holds28. Hence, ∃ F l < F̃ with

V term(Kini
1 , K lb

1 (F l), F l) = V m1(Kini
1 ), (2.51)

which contradicts the minimality of F̃ . Hence, the assumption F̃ < F uns was

wrong and F̃ = F uns holds.

Now, we prove that K̃1 is not less than Kss,m1
1 again by contradiction. Assume

that K̃1 < Kss,m1
1 . Then, consider Kint

1 for which K̃1 < Kint
1 < Kss,m1

1 holds. For

F = F̃ , we have29

V term(Kint
1 , K lb

1 (F̃ ), F̃ ) < V m1(Kint
1 ). (2.52)

Again, by continuity of V term in F , there exists an F l < F̃ with

V term(Kint
1 , K lb

1 (F l), F l) = V m1(Kint
1 ), (2.53)

which contradicts the minimality of F̃ . Thus, K̃1 = Kss,m1
1 and it is a threshold

point30 where the firm is not indifferent.
28It can not be V term(Kini

1 ,Klb
1 (F ), F ) = V m1(Kini

1 ) since forKini
1 ≥ K̃1, trajectories of the fi-

nite and infinite solution move in the same direction (as due to Lemma 2.4,Klb
1 ≤ K̃1) and accord-

ing to Proposition 1 in Caulkins et al. (2015), in that case, the trajectories have to coincide for all

t ∈ [0, T ∗(Kini
1 )] which is apparently not true. Moreover, V term(Kini

1 ,Klb
1 (F ), F ) > V m1(Kini

1 )

cannot hold either since this leads to another solution for the problem without introduction op-

tion via moving to K̃1 along the path corresponding to the finite solution of T and switching at

K̃1 to the solution of the problem without introduction option.
29Note that in this case, V term exists for K1 < K̃1. Moreover, as this problem is time invariant

and trajectories of the finite and infinite solution move in opposite directions and due to the

monotonicity of the trajectory of the infinite solution
(
see Hartl (1987)

)
, the trajectory of the

finite solution is monotone as well and there can not be an overlap region, i.e. there is no interval

of Skiba points (cf. Caulkins et al. (2015)). Thus, at F̃ forKint
1 , the infinite solution is the unique

optimal solution.
30Here, a threshold point is characterized by having finite and infinite solutions for T in every

neighborhood (cf. Caulkins et al. (2015)).
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2.A.8

Proof of Proposition 2.3. As K lb
1 decreases with F , for F̃ < F < F̄ , the terminal

pair
(
K1(T ), λ(T )

)
=
(
K lb

1 , λ(T )
)
is left to the unstable manifold (cf. proof of

Proposition 2.2 in 2.A.7). There, the dynamics are given by K̇1 < 0 and λ̇ < 0.

Starting at the terminal pair
(
K lb

1 , λ(T )
)
and moving backwards along the arc

leading to it, i.e. considering V term introduced in 2.A.7 (cf. Figure 2.13), we can

identify candidates for the optimal starting point for different Kini
1 ’s. This arc hits

the K̇1 = 0 line at some Kh
1 . This is the highest K1 for which a finite candidate T

exists since following the arc further gives further candidates for K lb
1 ≤ K1 < Kh

1

as there is K̇1 > 0, which implies non-monotone paths for K1 which can not be

optimal (cf. Appendix 2.A.7). Hence, V term is well defined. For any K1 < Kss,m1
1 ,

it is also possible to converge to the steady state ofm1 by following the stable arc of

the steady state. Comparing values of both candidates by taking the upper curve

of the value functions corresponding to both options we obtain the value function

and the optimal strategies of the control problem with introduction option. Hence,

there is an indifference point 0 < K̃1 ≤ Kh
1 where the firm is indifferent moving

to the steady state along the stable manifold and moving to K lb
1 . Thus, K̃1 is

a Skiba point. As F increases, K lb
1 and Kh

1 decreases. Next, we prove that K̃1

decreases as well by contradiction. For F a, F b ∈ (F̃ , F̄ ), with F a < F b, denote the

corresponding indifference points by K̃1
a and K̃1

b and assume that K̃1
a ≤ K̃1

b, i.e.

K̃1 is nondecreasing in F . Then,

V m1(K̃1
b) = V term(K̃1

b
, K lb

1 (F b), F b) < V term(K̃1
b
, K lb

1 (F a), F a) ≤ V m1(K̃1
b)

(2.54)

which yields a contradiction31 . Hence, K̃1 is decreasing in F .

31The last inequality is due to the following: K̃1
a ≤ K̃1

b and for K1 ≥ K̃1
a, infinite solutions

are optimal.



Chapter 3

Delaying Product Introduction in

a Duopoly: A Strategic Dynamic

Analysis

3.1 Introduction

Technological change is a crucial driver of industrial dynamics. Improved versions

of products appear regularly. Furthermore, product innovations lead to differenti-

ated products and new submarkets arise. According to an empirical investigation

by Chandy and Tellis (2000), most of the product innovations has been achieved

by established incumbents. Typical examples include Asus which has been active

on the notebook market and has introduced netbooks in 2007 or Apple’s introduc-

tion of the iPad in 2010 which generated a huge submarket for tablet computers.

For a firm competing with others on a homogeneous market, a product innovation

can be very valuable. Given that a product innovation has been made, we examine

whether there are incentives for an innovator not to introduce a new product im-

mediately but to delay the product introduction strategically or not to introduce

at all1. Wang and Hui (2012) provide examples where the market introduction

of products has been delayed, e.g. DVD players and MP3-related products which
1Several studies (Mansfield (1977), Åstebro (2003) and Åstebro and Simons (2003)) have

found out that a large fraction of product innovations is not brought to the market.

35
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could have been introduced earlier.

Given that two firms are competing on an established homogeneous market, we

assume that one of the firms has the option to introduce a new product whereas

his rival sticks with producing the established product. Moreover, we assume that

the new product is horizontally and vertically differentiated, in particular that

it has a higher quality than the established product. Both firms are restricted

by production capacities which they adjust over time. The setting after product

introduction has been analyzed in Dawid et al. (2010a). They find that not only

the innovator benefits but the non-innovator is better off as well in most cases,

in particular if the products are not too differentiated. The innovator strongly

reduces capacities on the established market in order to increase demand for the

established product.

Adjustments of capacities of established products prior to a product innova-

tion has been studied in a stochastic setting in Dawid et al. (2017) who consider a

duopoly where both firms can also invest in R&D in order to increase the probabil-

ity of product innovation (see Dawid et al. (2013b) for an exogenous hazard rate).

In contrast to those approaches, we assume that the innovation has been made

already and the time of product introduction is an additional choice variable and

hence is not directly linked to the time of the successful completion of an R&D

project. The separation of innovation and introduction has been employed by

Dawid et al. (2009), however only in a three-stage model where continuous capac-

ity adjustments are not taken into account and the timing of product introduction

could not be addressed.

The game we are considering is a multi-mode differential game where one of

the firms can induce a regime switch (in our context adding a second differentiated

product to its product range) at any time in contrast to models where a regime

switch occurs when the state variable hits some critical threshold (see e.g. Reddy

et al. (2015) and Masoudi and Zaccour (2013)).

Optimal timing of innovation has been analyzed extensively in the optimal stop-

ping and real options literature (see e.g. Dutta et al. (1995), Hoppe and Lehmann-

Grube (2005) and Dixit and Pindyck (1994)). Recent contributions consider for
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stochastic demand, both, optimal timing and capacity choice simultaneously (see

e.g. Huberts et al. (2015) and Huisman and Kort (2015)). The latter finds in

a setting with two firms who have the option to enter a new market that firms

invest earlier compared to the monopoly setting. In particular, the first investor

overinvests in order to delay market entry of the second investor. The innovation

of the present paper relative to this literature is that it considers the dynamic

adjustment of capacities before and after the innovation, whereas mostly one-time

investments have been treated in the real options literature.

The monopoly version of this paper has been analyzed in Chapter 2 where a

deterministic setting is considered where a monopolist has the option to introduce

a substitute product. Even in a monopoly, where competition effects are excluded,

the firm might delay product introduction if it incurs adoption costs. By delaying

the product introduction, the monopolist benefits from discounted adoption costs,

which has to be paid as a lump sum at the time of product introduction. Fur-

thermore, the monopolist can increase the marginal value of the new product by

decreasing established capacities. Similar effects are also present in the duopoly

here, however strategic interaction adds substantial new effects.

Optimal timing has not been considered a lot in differential game models.

Yeung (2000) derives feedback Nash equilibria for games with endogenous time

horizon by restricting terminal values for state variables. Recently, Gromov and

Gromova (2017) formalize the class of hybrid differential games and characterize

a switching manifold in the time-state space which is determined by a switching

condition. They argue that deriving feedback Nash equilibria for state-dependent

switching is complicated and resort to open-loop Nash equilibria, which in certain

games, parametrized by initial conditions yields feedback Nash equilibria.

In terms of timing, the most related contribution is Long et al. (2017) where in

a differential game model with multiple regimes, the concept of piecewise-closed

loop Nash equilibria (PCNE) is introduced. They derive necessary conditions for

the optimal switching time in a two player setting, where both players can induce

a change of the regime of the game. The timing decision is given implicitly by the

state variable arriving at a certain state which is derived by optimality conditions.
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However, in their setting, it is assumed that firms commit to their switching time

in the sense, that they would not alter that time even if the other firm would

deviate from its equilibrium control path. Hence, the considered equilibrium is

not fully Markov perfect with respect to the timing decision.

In our approach, we consider a case where the innovator can fully commit to

its product introduction time. Hence, the competitor cannot influence the timing

of the product introduction. An equilibrium is given if the choice of the product

introduction time, T , maximizes the value of the game for the innovator while

given this T , the investment strategies played by both players constitute a Markov-

perfect Nash equilibrium in the classical sense. Note that the timing decision is

made in the beginning of the game for given initial capacities and hence it is an

open-loop strategy whereas the continuous control variables constitute a Markov

perfect equilibrium using closed-loop strategies. Characterizing a fully closed-loop

equilibrium in which the introduction of the new product is triggered if the state

variable hits a switching manifold (to be optimally determined by the innovator)

is technically challenging and might lead to non-existence of equilibria (see Long

et al. (2017) for details).

From an economic perspective, the commitment to the product introduction

time might be due to a preannouncement. There is a huge literature on prean-

nouncements considering its effects on various interest groups such as consumers,

competitors and others. Preannouncements are made for various purposes (cf.

Lilly and Walters (1997)). They are used e.g. for building interest for the new

product before the market launch (Bao et al. (2005)), in order to stimulate con-

sumers to delay purchases, in particular to wait for a better product (Su and Rao

(2010) or to deter entry of potential entrants or to induce a competitor to adjust

capacities or to reposition (see Farrell and Saloner (1986) and Heil and Robertson

(1991)).

We use dynamic programming for solving for the optimal capacity investment

strategies and derive an optimality condition for the optimal timing which depends

on the time-derivative of the corresponding value function at the outset of the

game. This game might be interpreted as a two stage game where in the first
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stage only the innovator decides on the introduction time and in the second stage

both firms play simultaneously either starting with only the established product

or with both products in case that the innovator introduces immediately.

We find that whenever it is optimal to delay the product introduction, the

optimal introduction time is increasing in adoption costs. Furthermore, we find

that the optimal introduction time increases in both initial capacities, i.e. the

stronger the innovator or the non-innovator on the established market, the later

the product introduction. The latter is in accordance with results of Dawid et al.

(2017) where R&D investments are negatively affected by both firms’ capacities.

Additionally, we find that in a duopoly, the innovator introduces the product

less often compared to a monopoly scenario. In case of product introduction, he

introduces earlier compared to the monopoly. Thus, this paper contributes to the

debate initiated by Schumpeter and Arrow where we see a connection between

both views where market concentration facilitates innovation but slows down its

arrival.

In section 3.2, we provide the model and in section 3.3, we derive a general

sufficient condition for delaying the product introduction. Furthermore, we derive

general necessary conditions for optimal timing which has to hold at the outset

of the game. A particular parameter setting is discussed in Section 3.4. Welfare

implications are characterized in Section 3.5. A discussion is given in Section 3.6.

Section 3.7 concludes.

3.2 Model

We consider a duopoly where both firms, denoted by firm A and B, produce a

homogeneous established product, denoted as product 1. Due to product innova-

tion, firm A has the option to introduce a horizontally and vertically differentiated

substitute product with higher quality, denoted as product 2. We call this firm the

innovator whereas the other firm, firm B is called the non-innovator. The innova-

tor incurs a lumpy cost F at the time of introduction. For simplicity, we assume

that the innovator can only start to invest in the capacity of the new product after
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introduction, i.e. there are no capacities at the time of introduction for the new

product, yet.

Before product introduction, i.e. for all t ≤ T , the linear inverse demand

function for the established product is given by

pm1
1 (K1A(t), K1B(t)) = 1−K1A(t)−K1B(t), (3.1)

whereas after product introduction, i.e. for all t ≥ T , the inverse demand system

is given by

pm2
1 (K1A(t), K1B(t), K2A(t)) = 1−

(
K1A(t) +K1B(t)

)
− ηK2A(t), (3.2)

and

pm2
2 (K1A(t), K1B(t), K2A(t)) = 1 + θ −K2A(t)− η

(
K1A(t) +K1B(t)

)
, (3.3)

where η with 0 < η < 1 measures the degree of horizontal and θ > 0, the degree

of vertical differentiation of the strategic substitutes.

The innovator wants to determine the optimal time of product introduction T

and the optimal strategies for investment in capacities before and after product

introduction whereas the non-innovator only determines the optimal investment

strategies in its capacity of the established product. For simplicity, it is assumed

that capacities are always fully used (see Section 2.6 for a discussion of this assump-

tion). Adjustment of capacities is costly but production costs for given capacities

are normalized to zero. There is no inventory, i.e. production equals sales.

In total, there are 2 modes in this capital accumulation game:

• mode 1 (m1): New product is developed by the innovator and is ready for

market introduction which is common knowledge. Only the established prod-

uct is sold.

• mode 2 (m2): New product is introduced to the market. Both products are

sold.

Investment in capacities is costly, in particular comes with quadratic costs

C1(I1f (t)) = γ1

2 I
2
1f (t), f = A,B, (3.4)
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and

C2(I2A(t)) = γ2

2 I
2
2A(t). (3.5)

The capacity dynamics in m1 are

K̇1f = I1f − δK1f , f = A,B, (3.6)

for initial capacities

K1f (0) = Kini
1f , f = A,B, (3.7)

where δ > 0 measures the depreciation rate of the capacities. In m2, there is an

additional state for the capacity of the new product which evolves in the same way

according to

K̇2A = I2A − δK2A, (3.8)

K2A(t) = 0 ∀t ≤ T. (3.9)

As in Dawid et al. (2010a), we allow the firms to intentionally scrap capacities (i.e.

investments might be negative) while capacities have to remain non-negative, i.e.

K1f ≥ 0 ∀ t, f = A,B, and K2A ≥ 0 ∀ t.

The discounted stream of profits of the innovator is given by

JA =
∫ T

0
e−rt

(
pm1

1 (·)K1A − C1(I1A)
)
dt

+
∫ ∞
T

e−rt
(
pm2

1 (·)K1A + p2K2A − C1(I1A)− C2(I2A)
)
dt− e−rTF,

(3.10)

which is maximized with respect to T , I1A and I2A. For the non-innovator, it is

given by

JB =
∫ T

0
e−rt

(
pm1

1 (·)K1B − C1(I1B)
)
dt+

∫ ∞
T

e−rt
(
pm2

1 (·)K1B − C1(I1B)
)
dt,

(3.11)

where the control variable of firm B is I1B.

3.3 Optimality Conditions

In this section, we will derive some sufficient and necessary conditions for the

optimal timing of the product introduction. It should be noted that those condi-

tions hold generally for models where two firms’ controls affect the dynamics of
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a continuously evolving state variable and one of the firms can induce a regime

switch.

For the sake of brevity, denote the capacity pair (K1A, K1B) by K. Let

φ1,f (K,K2A, t,m), f = A,B

be the Markovian investment strategies2 of both firms in mode m and T = τ(K)

the timing strategy of the innovator. Then, a strategy vector of the innovator

is a pair ψA = (φ1A, τ) whereas the strategy of the non-innovator is given by

ψB = φB. A strategy profile (ψA, ψB) is called an equilibrium if given τ , (φ1A, φ1B)

constitutes a Markov perfect equilibrium and τ maximizes the objective functional

of the innovator.

In the case that the innovator introduces the improved product at some finite

time T , there will be a structural change of the model. Denote by V opt
f (K1A, K1B, K2A, t,m)

the value function of firm f in mode m where the switching time from m1 to m2 is

selected optimally by the innovator. Furthermore, denote by V m1
f (K1A, K1B) and

V m2
f (K1A, K1B, K2A), f = A,B, the value functions of the corresponding infinite

horizon games where the mode is fixed and hence does not change. This immedi-

ately gives V opt
f (K1A(t), K1B(t), K2A(t), t,m2) = V m2

f (K1A(t), K1B(t), K2A(t))−F ,

f = A,B since in m2, the mode does not change anymore. Since the infinite hori-

zon games are time-autonomous, we consider stationary strategies and hence the

value functions of those infinite horizon games do not depend on time, explicitly.

The subproblem of m2 is of linear-quadratic type which can be solved easily by

the dynamic programming approach. Due to the linear quadratic structure of the

game, the value functions have the following form

V m2
f =Cm2

f +Dm2
f K1A + Em2

f K2
1A + Fm2

f K1B +Gm2
f K2

1B +Hm2
f K2A + Jm2

f K2
2A

+ Lm2
f K1AK1B +Mm2

f K1AK2A +Nm2
f K1BK2A, f = A,B.

(3.12)

2Note that we do not have to consider the investment strategy of firm A for product 2’s

capacity, explicitly, since below, we will use the value function of m2 as a salvage value for the

game.
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(a) (b)

Figure 3.1: Value functions ofm2 forK2A = 0. Parameters: r = 0.04, δ = 0.2, η =

0.5, θ = 0.1, γ = 0.1 .

Using this functional form, the HJB-equations can be reduced to a set of alge-

braic equations which has to be satisfied by the coefficients of the quadratic value

functions. Coefficients can be found by standard numerical methods for a given

parameter setting (cf. Dawid et al. (2010a) for a similar model with slightly dif-

ferent inverse demand functions). Figure 3.1 illustrates the shape of the value

functions in m2. By regarding the value of the subproblem (minus adoption costs)

as the salvage value of the finite time horizon problem in mode m1, i.e.

S(K1A(T ), K1B(T )) = V m2
A (K1A(T ), K1B(T ), 0)− F , (3.13)

we can write the optimization problems of both firms in m1 as

max
T,I1A

∫ T

0
e−rt

(
p1K1A − C1(I1A)

)
dt

+e−rT
(
V m2
A

(
K1A(T ), K1B(T ), 0

)
− F

)
,

(3.14)

and

max
I1B

∫ T

0
e−rt

(
p1K1B − C1(I1B)

)
dt+ e−rTV m2

B

(
K1A(T ), K1B(T ), 0

)
. (3.15)

If an infinite time horizon is optimal, then the salvage value disappears and the

value of the game is simply given by V m1
f (·) for f = A,B and there is a unique

stable steady state (see Reynolds (1987) and Jun and Vives (2004)).
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As discussed above, we assume that the innovator announces the date of prod-

uct introduction and has commitment power such that he cannot deviate from the

announced date even though ex post it would be better to do so. Thus, the non-

innovator takes T as given by the preannouncement and chooses his investment

strategy in order to maximize the value of the game. Technically speaking, we em-

ploy Markov (feedback) strategies for the investment in capacities and open-loop

strategies for the introduction time T .

Note that for any fixed T , the game in m1 is still of linear quadratic structure.

Since the problem in m1 has a finite time horizon the coefficients in the value

function depend on time and from the HJB-equations a set of Riccati equations

for those coefficients is obtained. We solve this system using standard numerical

solvers. The corresponding HJB-equations to be fulfilled are given in Appendix

3.A.2. Denote the value function of the game starting in m1 and switching to m2

at a fixed T by Vf (K, t;T ), f = A,B, and the corresponding profile of Markovian

strategies in equilibrium by φf (K, t;T ), f = A,B.

Note that the solution is time-invariant since the game is time-autonomous,

i.e. t appears explicitly only in the discounting term e−rt. Hence,

Vf (K, t;T ) = Vf (K, 0;T − t), f = A,B, (3.16)

∀ K and t ≤ T (cf. Caulkins et al. (2015)). In order to endogenize the time

horizon of the game, we proceed as follows. We consider a sufficiently large fixed

time horizon and compute the optimal distance to the terminal time where the

firm wants the game to start. For this, we use a large T , which is defined below.

Standard turnpike arguments (see Grüne et al. (2015) and McKenzie (1986))

yield that for T → ∞, the change in the value function becomes small since it is

converging to the (time-independent) value function of the infinite horizon game

in mode m1, V m1
f . For an ε with 0 < ε � |V m2

A (Kini, 0)− V m1
A (Kini)|3 and an

initial capacity Kini, a large T satisfies
∣∣∣Vf (Kini, 0;T )− V m1

f (Kini)
∣∣∣ ≤ ε. (3.17)

3Note that for higher choices of ε, inequality (3.17) might be satisfied for all T and hence

would not yield a large T .
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We denote by T l(ε,Kini) the minimal T for which inequality (3.17) holds for all

T ≥ T l. Among all capacities which yield positive prices, we select the max-

imal T l which we denote by TL(ε), i.e. TL(ε) := T l(ε,Kmax) where Kmax =

arg maxK(T l(ε,K)).

For finite T , we denote the right hand side of the HJB-equation of firm A

(equation (3.44) in Appendix 3.A.2) by4

H(K) = pm1
1 (·)K1A − C(φ1A(K, t;T )) + V m2

A,K1A
(·)(φ1A(K, t;T )− δK1A)

+ V m2
A,K1B

(·)(φ1B(K, t;T )− δK1B).
(3.18)

Note that the optimal strategies φ1A and φ1B stem from m1 whereas derivatives of

the value function of m2 are considered. We assume that V (K, t;T ) is sufficiently

smooth, i.e. let V (K, t;T ) be continuously differentiable in K and t for all T .

Then, the following lemma gives a sufficient condition for delaying the product

introduction.

Lemma 3.1. For a Kini, if

H(Kini) > r(V m2
A − F ) (3.19)

holds, then for Kini, the optimal time of product introduction T ∗ is positive, possibly

infinite.

Proof. Consider the value for the innovator to stay for the duration of ε in m1 and

afterwards to switch to m2 under the equilibrium strategy φ = (φ1A, φ1B):

VA(K(0), 0; ε) =
∫ ε

0
e−rsFm1

A (K(s), φ(K(s), s; ε)ds+ e−rε(V m2
A (K(ε))−F ). (3.20)

where Fm1
A (·) is the instantaneous profit function of the innovator in m1. For a

finite time horizon, since we consider non-stationary strategies, altering the termi-

nal time would yield different investments in m1 and hence different values for the

terminal capacities. Thus, for the sake of clarity, here we denote the capacity at t
4Actually, H(K) is the Hamiltonian where the co-state variable is replaced by the state

derivatives of the scrap value (cf. Pontryagin’s maximum principle with finite time horizon e.g.

in Dockner et al. (2000)).
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for terminal time T by K1f (t, T ), f = A,B. K1A(ε, ε) can then be derived via the

initial value K1A(0, ε) and the investments from 0 until ε:

K1A(ε, ε) = K1A(0, ε) +
∫ ε

0
(φ1A(K(τ, ε), τ ; ε)− δK1A(τ, ε))dτ. (3.21)

Its derivative with respect to ε is then given by

∂K1A(ε, ε)
∂t

+ ∂K1A(ε, ε)
∂T

(3.22)

= φ1A(K(·), τ ; ε)− δK1A(·) +
∫ ε

0

∂φ1A(K(τ, ε), τ, ε)− δK1A(τ, ε)
∂T

dτ. (3.23)

In equation (3.20), subtracting VA(K(0), 0; 0) on both sides, dividing by ε and

considering the limit ε→ 0 yields

∂V (K, 0, 0)
∂T

= pm1
1 (·)K1A(·)− C(φ1A(K(·), 0, 0))

+ V m2
A,K1A

(·)
(
K̇1A(0, 0) + ∂K1A(0, 0)

∂T

)

+ V m2
A,K1B

(·)
(
K̇1B(0, 0) + ∂K1B(0, 0)

∂T

)
+ V m2

A,t (·)

− r (V m2
A (K1A(0, 0), K1B(0, 0))− F )

(3.24)

However,
∂K1f (0, 0)

∂T
= 0, f = A,B. (3.25)

Moreover, as we consider stationary strategies in m2, VA,t(·,m2) = 0. Then, due

to inequality (3.19),
∂VA(K, 0, 0)

∂T
> 0, (3.26)

which proves that delaying the product introduction marginally is better than

introducing immediately.

From optimal control theory, it is known that for H(Kini) > r(V m2
A (Kini)−F ),

the innovator prefers not introducing the product immediately but introducing

whenever H = r(V m2
A −F ) holds. Here, H = r(V m2

A −F ) is satisfied on a switching

line (see Appendix 3.A.1). In an optimal control setting, the firm exerts control

such that the state arrives at the switching line and the switch occurs. But in

a game, due to the other player who influences the dynamics of its own and its

competitors capacity, this might not be possible in an equilibrium, i.e. there might
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not exist a terminal time T , where the state arrives at that line. In mathematical

terms, the existence of such a terminal time requires that

H(K(T )) = rS(K(T ) and H(K(t)) > rS(K(t) ∀ t < T, (3.27)

whereK(t) is the induced trajectory by the announcement of T . For the parameter

setting considered in section 3.4, a terminal time satisfying conditions (3.27) could

not be found.

Note that it is not possible to derive a (local) sufficient condition for immediate

introduction since marginally being worse-off does not imply necessarily that im-

mediate introduction is optimal. For some T > 0, the corresponding value might

still outweigh immediate introduction’s value.

Our main result is given in the following proposition.

Proposition 3.1. Let Vf (K, t;TL) be the value function of the game for a fixed

large end time TL(ε) for f = A,B. Let t∗ be the time argument maximizing VA
for an initial pair Kini = (Kini

1A , K
ini
1B ), i.e.

t∗(Kini) = arg max
t∈[0,TL]

VA(Kini, t;TL). (3.28)

If t∗(Kini) > 0, then

T ∗(Kini) = TL − t∗(Kini), (3.29)

is the optimal time of product introduction for K(0) = Kini and the value function

in m1 for f = A,B and for initial capacities Kini is given by

V opt
f (K, 0, t,m1) = Vf (K, t;T ∗(Kini)). (3.30)

Furthermore, if t∗(Kini) = 0 for all T ≥ TL(ε) (i.e. for all TL(ε̃) with ε̃ ≤ ε),

then

T ∗(Kini) =∞, (3.31)

is the optimal time of product introduction for K(0) = Kini and the value function

is given by

V opt
f (K, 0, t,m1) = V m1

f (K), f = A,B. (3.32)
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Proof. Due to time invariance, the current value of the initial game defined on the

time interval [0, TL] at t∗ is equal to the current value at 0 of the game defined over

[0, T ∗] where T ∗ = TL − t∗. Hence, it is sufficient to derive the optimal distance

to a fixed terminal time where the innovator wants the game to start.

If t∗(Kini) > 0, i.e. t∗(Kini) is interior in [0, TL], then for all T ≥ TL, according

to inequality (3.17), t∗(Kini) (shifted by T − TL) is still an interior maximum.

Hence, TL − t∗(Kini) is the optimal distance to the terminal time TL.

If t∗(Kini) = 0 for all T ≥ TL(ε), then the maximizing argument is at the

left boundary. More precisely, for reducing ε and thereby increasing TL, t∗ = 0

remains optimal. Thus, VA(Kini, t, T ) is monotonously increasing in T . Hence,

T ∗ =∞ is optimal.

Note that for a finite T ∗, the choice of ε is not unique. More precisely, ε can be

any number from the interval (0, ε̄) where ε̄ is V (Kini, 0, T ∗(Kini),m1)−V m1(Kini).

Essentially, from a family of value functions of the game for different T’s, i.e.

for varying terminal times, the innovator has to select that one which maximizes

his profits for the initial capacity. So, the optimal time of product introduction

can be found via considering the value function for a fixed initial pair Kini and

a fixed sufficiently large terminal time and determining the optimal distance to

the terminal time5. In the next corollary, we provide necessary conditions for the

slope of the time derivative of the value function at the outset of the game.

Corollary 3.1. i) If immediate product introduction, i.e. a corner solution

T ∗ = 0 is optimal, then

lim
T→0

(
lim
t→T−

VA,t(Kini, t;T )
)
≥ 0, (3.33)

and

H ≤ rS. (3.34)
5The idea of considering large values for the terminal time has been employed by several

works, e.g. in Grass (2012).
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ii) If no product introduction, i.e. T ∗ =∞ is optimal, then

lim
T→∞

Vt(Kini, 0;T ) ≤ 0, (3.35)

iii) For an interior solution, i.e. 0 < T ∗ <∞ to be optimal we must have

Vt(Kini, 0;T ∗) = 0. (3.36)

Proof. i) For a corner solution T ∗ = 0, the maximizing argument of (3.10) is

on the right boundary, i.e. t∗ = TL. Thus,

lim
T→0

(
lim
t→T−

VA,t(Kini, t;T )
)
≥ 0,

for T ∗ = 0. The HJB-equation for T ∗ = 0 yields

rS − Vt = H. (3.37)

As the limit of Vt stays positive,

rS ≥ H. (3.38)

ii) For a corner solution T ∗ =∞, the maximizing argument is on the left bound-

ary, i.e. t∗ = 0 which corresponds to T ∗ = TL 6. Thus, limT→∞ Vt(Kini, 0;T ) ≤

0 for T ∗ =∞.

iii) For an interior solution 0 < T ∗ <∞, the first-order condition for a maximum

is given by

Vt(Kini, 0;T ∗) = 0. (3.39)

Note that Corollary 3.1 yields necessary conditions only. In particular, condi-

tion (3.39) might be satisfied for local maximums which are not globally maximal.

In the derivation of the HJB-equation (see e.g. Dockner et al. (2000)), when

time proceeds from t to t+ ∆, the value of the game is altered due to the change

in the state variable and due to the change of the time which affects investment
6Note that TL is selected such that it can reproduce the infinite solution.
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patterns7. The effect on the state, i.e. the transition from K(t) to K(t + ∆) is

evaluated via VK and K̇ while the pure effect of time is taken into account via

the derivative with respect to the second argument of the value function, i.e. Vt.

Consider the difference of the value of the game for a fixed state variable vector

when time moves from t to t+ ∆, ∆ > 0:

V (Kini, t+ ∆;TL)− V (Kini, t;TL). (3.40)

As we are free to choose between t + ∆ and t, (3.40) measures the change in the

value function in current-value terms. If (3.40) is positive, it is (locally) optimal

for the firm to choose a later starting point than t, and an earlier starting point,

else. As Kini is not affected by the choice of T ∗, maximizing with respect to the

second argument of the value function yields for fixed TL the (globally) optimal

time of product introduction of the free end time game.

3.4 Dynamics

In this section, we first examine the behavior of the firms for an exogenously given

product introduction time T . We then explore optimal timing and its dependence

on adoption costs and initial capacities. In case of delay, we analyze how capacities

evolve before introduction.

3.4.1 Exogenous Time Horizon

In order to depict optimal time and investment paths, we use the following fixed

parameter setting (similar to the parameter setting of Dawid et al. (2010a)):

r = 0.04, δ = 0.2, η = 0.5, θ = 0.1, γA = γB = 0.1 (3.41)

We start by analyzing the equilibrium investment strategies φf (K, t;T ), f =

A,B, for a large fixed time horizon TL = 3, and fixed initial capacity Kini =
7Note that investment strategies in m1 are non-stationary.
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(0.35, 0.35), which is depicted in Figure 3.2 8. The dashed line corresponds to the

infinite horizon case in m1. Obviously, TL is large enough to resemble the infinite

horizon investment strategy at t = 0. In panel (a), we see that the innovator

T

0.5 1.0 1.5 2.0 2.5 3.0
t

-0.2

-0.1

0.1

I1A

I1A
inf

(a)

T
0.5 1.0 1.5 2.0 2.5 3.0

t
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0.20

I1B

I1B
inf

(b)

Figure 3.2: Optimal Investments of both firms at a fixed pair of capacity Kini =

(0.35, 0.35) for F = 1.

reduces his investments as time approaches TL which is due to the decreased

marginal value of the established capacity when the innovator introduces the new

product. For the non-innovator, we have an interesting investment strategy which

is non-monotone in t. Note that the marginal value of its capacity is decreased in

m2 as well. Hence, eventually investments decline. The initial increase is due to the

innovator’s decreasing willingness to invest. Moreover, there is an intertemporal

strategic effect, i.e. by increasing investment, via a higher capacity and lower price

in the future, a firm can even further reduce the future investment of its competitor.

As the innovator is affected on both markets by the established capacity while the

non-innovator is affected only at the established market (since it is not producing

product 2), the non-innovator has more influence on its competitor than the other

way around.

Figure 3.2 is also suitable to assess the changes in investment incentives if

there is an unexpected product innovation and immediate preannouncement by

the innovator, given that capacities are at (0.35, 0.35). For the innovator, this

yields a downward jump of its investment in established capacities. For the non-

innovator, it depends on the length of T . For T / 0.15, there is a downward jump
8Note that in Figure 3.2, the investment strategy for a fixed capacity pair is depicted. Hence,

it is not an investment trajectory.
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whereas for higher T , there is an upward jump.

3.4.2 Endogenous Time Horizon

As described in Proposition 3.1, for each Kini, we are able to derive the optimal T

to be preannounced by the innovator. Note that due to time invariance, instead

of calculating value functions for different terminal times, it suffices to calculate

the value functions for a single TL and then to determine the optimal distance to

the terminal time (see section 3.6). An example is depicted in Figure 3.3.

t*
97.5 98.0 98.5 99.0 99.5 100.0

t

2.4030

2.4035

2.4040

2.4045
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Figure 3.3: Value function for the innovator for F = 2.94, Kini = (0.35, 0.35) and

for TL = 100.
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(a) F = 2.94 .
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(b) F = 2.945 .

Figure 3.4: Value function for K1B = Km1,ss
1B ≈ 0.3697.

Hence, we can obtain the value for each pair of initial states. For a fixed K1B,

more precisely for the steady state value of K1B for the infinite horizon game in

m1 which we denote by Km1,ss
1B , the value for the innovator for different initial

states K1A at t = 0 is depicted in Figure 3.4(a) where for low initial Kini
1A , the
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innovator introduces immediately whereas for higher initial capacity, there is a

gain by delaying the product introduction9.

For higher values of F , not introducing becomes optimal for high capacities and

hence infinite solutions for T occur. There arises an indifference point10, where

introducing after some delay and not introducing at all yield the same value for the

innovator. Moreover, in general, the value function has a kink at that point since

strategies depend on the derivative of the value function w.r.t. its own capacity and

strategies in the two equilibria are very different. Note that at the point where the

innovator is indifferent between introducing immediately and delaying marginally

(around 0.3 in Figure 3.4(a)) , the value function is smooth unless F becomes too

high such that either the firm introduces immediately or never (see Figure 3.4(b))

and cf. Chapter 2 for a rigorous treatment of these issues via bifurcation diagrams

in a monopoly).

For the non-innovator, in general, the value function is not smooth at that point

where the innovator is indifferent between marginally delaying and introducing.

The reason is that generically, if the non-innovator were the one who could decide

on when to switch tom2, then he might want to introduce earlier or later compared

to the innovator’s decision. Hence, for T > 0, at t = 0, the derivative of the

value function for the non-innovator left and right to the switching line might be

different. However, due to the transversality condition requiring value matching

at t = T , the investment path is smooth even though it depends on the derivative

of the value function. Hence, there will be no jump in the investment of the non-

innovator when the innovator introduces the new product. Intuitively, in a setting

with fixed switching time T firm B anticipates the marginal effect of investment

on profits in m2 even before T and therefore investment incentives do not change

at t = T .
9The value functions of immediate and no switching intersect at a point where the slopes

of the value functions are very different and hence there is a kink. We see that the option of

delaying ’smoothes’ the value functions.
10In the literature, indifference points are called Skiba points.
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3.4.3 Optimal Timing and Investment

Here we consider the effect of adoption costs on the timing choice of the innovator.

The optimal timing for the same fixed pair Kini = (Kini
1A , K

ini
1B ) = (0.35, 0.35) is

given in Figure 3.5 where we see that for low adoption costs the firm wants to

introduce the new product immediately. Above some threshold F̄(Kini
1A ,K

ini
1B ), the

T

∞

0.1

F
˜
Kini

2.75 2.80 2.85 2.90 2.95 3.00
F

Figure 3.5: Optimal time to switch to m2.

firm does not want to introduce the new product immediately but after some

delay. This delay is higher the higher F is. There is another threshold F̃(Kini
1A ,K

ini
1B )

where the innovator abstains totally from product introduction and stays with its

established product. Thus, there is a jump from some finite T to infinity at this

threshold. Note that the thresholds depend on initial capacities.

T=0

0<T<∞

T=∞

Kss,m1

0.30 0.32 0.34 0.36 0.38
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Figure 3.6: Optimal trajectories for different initial capacities.
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A qualitative description of optimal timing for different levels of capacities of

both firms is given in Figure 3.6. Here, the steady state of m1 lies in the interior

of the T = ∞ area, but still a trajectory might leave that area in the meantime

and return eventually which is clearly a feature of the open-loop strategy for the

timing choice. Moreover, there are parameter settings where the steady state of

m1 does not lie in the corresponding area such that every trajectory starting in

the T = ∞ area would end up in another [0 < T < ∞] area where ex-post, the

firm would like to introduce the product (possibly after some delay) if there were

no commitment.

Furthermore, we are interested in how the optimal time of product introduction

is influenced by the capacities of both firms. Regarding the capacity of the non-

innovator, one might expect that if the non-innovator is stronger on the established

market, the innovator has higher incentives to introduce the new product earlier

in order to escape competition. But there is another effect as well, namely higher

capacity of the non-innovator leads not only to a lower price of the established

product but also to a lower price of the new product inm2. In order to compensate

for that, the innovator has incentives to decrease its own capacity on the established

market in m1 in order to be ’more prepared’ when switching to m2. Figure 3.6

suggests that the latter effect is stronger such that the stronger the competitor,

the later the product introduction, i.e. T is increasing in K1B. Moreover, the

duration in m1 is increasing in the innovator’s capacity as well. Note that for

the parameters considered here, the switching line is never reached. No matter

how close to that line, the innovator cannot force the state in an equilibrium with

Markov-perfect investment strategies to hit that line.

Another interesting observation is that for the innovator, for every initial ca-

pacity in the delaying region, it is optimal to reduce capacity whereas for the

non-innovator, the dynamics of its capacity depends on initial capacities, in par-

ticular on K1B. If K1B is relatively low, then its capacity increases, otherwise it

decreases as well. Note that the steady state value of the non-innovators capac-

ity in m2 is higher than in m1. Thus, it is very natural, that the non-innovator

increases its capacity already in m1.
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In comparison to the monopoly case where the non-innovator does not exist

which has been analyzed in Chapter 2 we find the following interesting pattern:

The innovator introduces earlier, i.e. the delay in product innovation is shorter

but at the same time innovation occurs for a smaller range of costs of product

introduction, i.e. for some F the innovator would innovate in monopoly but not

in presence of a competitor even though the competitor is only active on the es-

tablished market. Thus, we see a connection between the Schumpeterian and

Arrowian perspective where market concentration facilitates innovation but de-

creases its speed.

3.5 Welfare Implications

T0.1 0.2 0.3 0.4
T

0.26

0.28

0.30

0.32

p1

0<T<∞

T=0

T=∞

Figure 3.7: Price trajectories for F = 2.9413 and Kini = (0.35, 0.35).

Here, we aim at describing welfare implications qualitatively only11. As in

Section 2.5, welfare depends on the interpretation of F . Interpreting it as a trans-

fer, obviously, due to the higher quality of the new product and the monopolist’s

freedom to introduce the product, welfare increases, compared to no product in-

troduction, whenever product introduction is profitable. However, for the case of

delay, in m1 the price for the established product evolves differently and hence

affects consumer surplus as well. In Figure 3.7, price trajectories belonging to
11See Section 2.5 for a rigorous treatment.
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immediate, optimal delayed and no product introduction are compared. We see

that for those parameters and initial capacities, in case of delayed product intro-

duction, the price for the established product is substantially higher compared to

immediate introduction. Thus, consumer surplus if affected negatively. However,

due to the reduced capacity of the innovator’s established product, investment in

capacities of the new product are typically slightly higher leading temporarily to

a slightly lower price of the new product, compared to the immediate introduction

case. Thus, the total effect of delay on consumer surplus depends on parameters

and initial capacities and hence might be ambiguous.

3.6 Discussion

Due to the time invariance property of the considered problem, the optimal strate-

gies in m1 depend only on the distance of the current time and the terminal time.

Hence, it is sufficient to calculate the optimal strategies for a large TL and then

to look for the optimal starting point, i.e. to go backwards in time. This facili-

tates the analysis in view of the fact that we have to compute optimal investment

strategies only once instead for all possible T .

As we assumed that the innovator’s timing choice is an open loop strategy and

hence he is committed to his decision of T , the optimal investment strategies are

subgame perfect given that T is fixed. But if the firm were allowed to make a new

choice of the time of introduction, then it might choose a different terminal time.

Technically speaking, we employ open-loop strategies for the decision of optimal

innovation time and closed-loop strategies for the decision of optimal investment in

capacities. At first sight, this might look like an apparent drawback of the solution

method since the innovator might not want to commit to its timing decision.

However, in this asymmetric setting, whenever the innovator fears to be worse off

in an equilibrium with closed-loop timing strategies, he could accomplish playing a

different equilibrium by preannouncing the time of the new product introduction,

thereby generating such strong commitment as considered in our setup.
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3.7 Conclusion

We identified different scenarios depending on the initial capacities and the value

of adoption costs. In the interesting case of delay of product introduction, the

innovator reduces capacities of the established product before the new product

is introduced whereas the dynamics of the non-innovator’s capacity depends on

initial capacities. Compared to the monopoly setting, the innovator abstains from

product introduction more often. We derived sufficient conditions for delaying the

product introduction and necessary conditions for the time derivative of the value

function which has to hold at the outset of the game. An interesting topic for

future research seems to be the investigation of the existence of a fully closed loop

equilibrium.

3.A Appendix

3.A.1

As derived in Lemma 3.1, the innovator is indifferent between waiting marginally

and introducing the new product if and only if H = rS, which reduces to

1
2γ2

(
∂V m2

A

K2A

)2
= rF. (3.42)

Rearranging equation (3.42) yields the switching line

K1B =
√

2rγ2F −Hm2
A −Mm2

A K1A

Nm2
A

. (3.43)

3.A.2

Given the terminal time T , the HJB-equations for non-stationary Markovian in-

vestment strategies are given by

rVA(K1A, K1B, t)−
∂VA(K1A, K1B, t)

∂t
= max

I1A

[
p1K1A − C1(I1A) + ∂VA

∂K1A
(I1A − δK1A)

+ ∂VA
∂K1B

(I∗1B − δK1B)
]

(3.44)
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and

rVB(K1A, K1B, t)−
∂VB(K1A, K1B, t)

∂t
= max

I1B

[
p1K1B − C1(I1B) + ∂VB

∂K1A
(I∗1A − δK1A)

+ ∂VB
∂K1B

(I1B − δK1B)
]

(3.45)

with the transversality conditions

Vf (K1A(T ), K1B(T ), T ) = V m2
f (K1A(T ), K1B(T ), T ), f = A,B. (3.46)

Maximizing the right hand side of the HJB-equations yields

I1f = 1
γ

∂Vf
∂K1f

, f = A,B. (3.47)

Additionally, firm A has to select the optimal value for T maximizing its dis-

counted stream of profits. Due to the linear-quadratic structure of the game, we

impose the following form for the value function:

Vf = Cf (t)+Df (t)K1A+Ef (t)K2
1A+Ff (t)K1B+Gf (t)K2

1B+Lf (t)K1AK1B, f = A,B.

(3.48)

Due to the finite time horizon, we consider non-stationary Markovian strategies

and hence coefficients depend on time. Comparison of coefficients yields the fol-

lowing system of 12 riccati differential equations which are solved by standard
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numerical methods:

rCA(t) = DA(t)2 + 2FA(t)FB(t) + 2γ1C
′
A(t)

2γ1

rDA(t) = γ1 +DA(t)(−γ1δ1 + 2EA(t)) + FB(t)LA(t) + FA(t)LB(t) + γ1D
′
A(t)

γ1

rEA(t) = 2EA(t)(−γ1δ1 + EA(t)) + LA(t)LB(t))
γ1

− 1 + E ′A(t)

rFA(t) = 2FB(t)GA(t) + FA(t)(−γ1δ1 + 2GB(t)) +DA(t)LA(t) + γ1F
′
A(t))

γ1

rGA(t) = GA(t)(−4γ1δ1 + 8GB(t)) + LA(t)2 + 2γ1G
′
A(t))

2γ1

rLA(t) = 2(−γ1δ1 + EA(t) +GB(t))LA(t) + 2GA(t)LB(t) + γ1(−1 + L′A(t))
γ1

rCB(t) = 2DA(t)DB(t) + FB(t)2 + 2γ1C
′
B(t)

2γ1

rDB(t) = DB(t)(−γ1δ1 + 2EA(t)) + 2DA(t)EB(t) + FB(t)LB(t) + γ1D
′
B(t)

γ1

rEB(t) = (−4γ1δ1 + 8EA(t))EB(t) + LB(t)2 + 2γ1E
′
B(t))

2γ1

rFB(t) = γ1 + FB(t)(−γ1δ1 + 2GB(t)) +DB(t)LA(t) +DA(t)LB(t) + γ1F
′
B(t)

γ1

rGB(t) = 2GB(t)(−γ1δ1 +GB(t)) + LA(t)LB(t))
γ1

− 1 +G′B(t)

rLB(t) = 2EB(t)LA(t) + 2(−γ1δ1 + EA(t) +GB(t))LB(t) + γ1(−1 + L′B(t))
γ1

(3.49)

with transversality conditions Cf (T ) = Cm2
f , Df (T ) = Dm2

f , Ef (T ) = Em2
f , Ff (T ) =

Fm2
f , Gf (T ) = Gm2

f , Lf (T ) = Lm2
f , f = A,B.



Chapter 4

Optimal Pricing of an Improving

Durable Good in the Presence of

Rational Consumers

4.1 Introduction

Nowadays, consumers care a lot about improvements of products, in particular

technological products. There, the question arises how those improvements, e.g.

built-in into new versions of products, affect the market. Potential buyers might

react by postponing the purchase and waiting for the market launch of the im-

proved product. Indeed, many products are refreshed in regular time intervals.

Examples include smartphones, processors and cars. Lobel et al. (2016) find that

there is a substantial difference in sales before and after new smartphone intro-

ductions by Apple. Another example is the announcement of Airbus in 2001 to

introduce the A380 in 2006 which has been assessed to have a negative impact on

sales of the predecessor aircraft (see Kristiansen (2006)).

Consider a consumer who has some valuation about some current product but

is aware of an improved version of that product which will be introduced at a

certain level of quality and at a certain point in time in the future. If he buys now,

he starts consuming immediately. Alternatively, he could wait for the improved

61
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version of that product and derive some higher utility per period with the drawback

of starting consuming later. The intuition is that if the market launch is far away,

only few care about future products but as time evolves and the introduction of

the improved product approaches, some consumers might decide to postpone the

purchase and to wait for the better product. For heterogeneous consumers, we

are interested in which consumer types are going to wait for the new product and

which are going to buy the established product and whether there are consumers

who do not care at all about product innovations.

By setting a relatively high price for the current product, the firm would de-

crease its sales but this would cause more accumulation of consumers and more

sales of the new product. In the extreme case, the monopolist could set a high price

which is above the willingness-to-pay of the consumer with highest valuation such

that no consumer buys the established product in order to sell only the improved

product when it is introduced. Contrary, setting a low price for the established

product would result in less consumer accumulation and hence a decrease of sales

of the new product.

One critical issue is that the price for the new product has to be optimal

at the time of product introduction, i.e. optimal ex-post. This complicates the

analysis as the price expectation of the new product influences demand of the

established product and hence the final distribution of consumers at the time of

product introduction. Hence, we aim at finding a rational expectations equilibrium

(cf. Stokey (1981)) which in this setting reduces to finding a solution to a fixed-

point problem. If the firm had commitment power, he could announce the price

of the new product at the beginning, thereby influencing sales and hence the

distribution of the consumers at the introduction time of the new product. Here,

the classical problem of intertemporal pricing arises that the firm announces a

price which maximizes overall profits but is not optimal ex-post since there might

be an incentive to deviate from that announced price.

We identify different cases, which depend on the pricing of the established

and new product, where the evolution of demand differs substantially. For the

equilibrium pricing, we find that in most cases, the pricing is such that the price
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of the new product is not commensurate with its quality, in particular it is cheaper

in per quality units. Consumers start earlier to wait and this leads to a relatively

high accumulation of consumers which enables the firm to charge a relatively low

price for the second product which increases sales of the new product. In particular,

sales stop before the introduction time of the new product. A real-world example

of a firm introducing regularly new versions and stopping sales early is OnePlus

which has announced in March 2018 that the current version of its smartphone

(OnePlus 5T) will no more be available even though the new version (OnePlus 6)

was not introduced, yet1.

The paper is organized as follows. In Sect. 4.1.1 we discuss related literature.

In Sect. 4.2, we introduce the model. The analysis of consumers’ and the mo-

nopolist’s behavior is given in Sect. 4.3. Firm Objectives and terminal consumer

distributions are presented in Sect. 4.4. A numerical example in provided in Sect.

4.5. Sect. 4.6 concludes.

4.1.1 Related Literature

In a durable goods setting, the Coase conjecture (Coase (1972)) states that due

to the lack of commitment of a monopolist to future prices, consumer expectation

of decreasing prices leads to delay of purchases and as price adjustments become

more frequent the monopolist profit converges to zero. This work has inspired

works in the intertemporal pricing literature by Stokey (1981), Bulow (1982), Gul

et al. (1986) and Besanko and Winston (1990) where the Coase conjecture has

been considered for particular settings.

In that literature, delay of purchase of a product is driven by the expectation

of declining prices. In our model, we would like to focus on the delay of purchase

caused by consumers awareness of a new improved product in the future. For

analytical tractability and in order to analyze only the effect of the product inno-

vation, we assume that the price of the current product is fixed and hence constant

over time.
1See e.g. https://www.androidcentral.com/oneplus-5t-no-longer-sale-north-america.
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Most of the durable goods literature assumed a simultaneous arrival of con-

sumers until Conlisk et al. (1984) and Sobel (1991) allowed for sequential arrival

of consumers which weakens the monopolist’s propensity to lower prices as time

passes. In the management literature, sequential consumer arrival is typically

modeled via a Poisson process (see e.g. Elmaghraby et al. (2009) and Yin et al.

(2009) and the survey by Gönsch et al. (2013)). Here, we assume a constant arrival

rate as has been done in Su (2007) in order to keep the model simple.

Following the literature on vertical differentiation (see e.g. the seminal work

by Mussa and Rosen (1978)), we assume that consumers’ taste for quality differs.

For two types of consumers, Moorthy and Png (1992) analyze differences between

simultaneous and sequential selling of different qualities. Assuming homogeneity

of consumers, Anton and Biglaiser (2013) consider optimal pricing of subsequent

products of different quality if consumers remain in the market and have the

opportunity to upgrade to a newer product. In Fudenberg and Tirole (1998),

upgrades are also considered. Additionally, secondhand markets are taken into

account in a two-period framework to analyze the impact of improving products for

heterogeneous consumers under different informational assumptions, in particular

anonymous, semianonymous and identified consumers (see Zhao and Jagpal (2006)

for a related work with entry of new consumers). Fishman and Rob (2000) consider

accumulated R&D costs for improving a product’s quality and implementation

costs of introducing new products to the market. However, they consider only a

homogeneous set of consumers.

Lobel et al. (2016) consider the optimal launch policy of a monopolist who

faces strategic consumers. At any time, the firm has the option to implement

the current technology, which is driven by a Brownian motion, to its product.

They consider a stock of consumers which do not leave the market after purchase

but can improve their utility by switching to the new product. However, the

price for consecutive versions of a product is assumed to be the same. This can

be interpreted as an announcement of prices. By relaxing this assumption and

allowing for different prices for consecutive versions of a product, we can take

into account the effect of different prices on consumer accumulation and whether
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it is consistent with consumers’ expectations. In particular, the prices has to be

selected such that given the resulting terminal distribution of consumers, the price

for the new product is optimal ex-post. Kristiansen (2006) is another paper which

considers in a three-stage model the effect of expected product innovations on

R&D and hence the timing of product introductions under competition.

Another important issue is how demand evolves over time. In diffusion models

(see e.g. the seminal work by Bass (1969)), consumer categories such as early

adopters and laggards are distinguished (see Krankel et al. (2006) for a recent

work). Here, demand varies as well, but not because of diffusion effects (we as-

sume that the product is well known directly from the scratch) but because of an

expectation of a future product.

Our paper is most related to Dhebar (1994) (see Kornish (2001) for some

related work) who has analyzed the impact of improving products on consumers

and firms optimal strategies within a two-period model. There, in the first period

consumers can buy the established product or wait for the second period in order

to buy the improved product. Banerjee and Soberman (2013) consider a similar

model with two types, i.e. high and low type consumers with different size and

derive differences between myopic and forward-looking buyers and differences when

quality is observable and not. Unfortunately, those frameworks are not able to

investigate dynamic issues such as consumers changing willingness-to pay during

the time interval where the improved product has not been introduced yet. Thus,

we employ a dynamic framework in continuous time and investigate changing

consumer behavior and optimal pricing strategies even before the new product

is introduced.

4.2 Model

We consider a monopolist who sells a durable product, denoted by 1, with quality

q1 in t = [0, T ) which is replaced by a new version, denoted by 2 with higher

quality q2 in t = T , i.e. q2 > q1. Hence, in every instant of time, there is only one

product sold, i.e. the older product is no more sold as soon as the new product
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is introduced2. For simplicity, production is costless and the problem ends at T .

Here, the time of product introduction is exogenously given by T and is common

knowledge. Resales are forbidden.

Consumers want to buy exactly one unit and are uniformly distributed in the

unit interval. Consumer’s valuation is denoted by θ, i.e. θ ∈ [0, 1]. θ = 0 is the

consumer with lowest and θ = 1 is the consumer with highest valuation. At the

outset of the problem, there are no consumers. Consumers are infinitesimally small

and arrive according to a deterministic flow of constant rate. Consumer arrival

rate is normalized to one (cf. Su 2007).

The durable good is infinitely durable and consumers who have bought leave

the market forever. Consumers who haven’t bought yet remain in the market. The

firm is free to choose the price of its products, but we assume that the price is kept

fixed over the selling period. The quality of the new product is common knowledge

and based on this and the price of the established product, consumers form a

price expectation for the new product3. Given the current price of the established

product p1 and the expected price of the improved product pe2 in t = T , consumers

in the market decide whether to buy the established or the new product.

The monopolist maximizes his discounted stream of profits by setting prices

optimally taking into account that consumers build rational expectations for the

price of the new product and can infer in an equilibrium the optimal price at T

for the new product from the distribution of consumers at T .

Either a consumer prefers buying the existing product immediately upon ar-

rival4 or prefers waiting for the new product which will be introduced at T . Either

way, consumers do not buy necessarily. They buy only if buying yields also posi-
2An implicit assumption is that the new product has been developed but not introduced, yet.

We assume that its quality is known.
3In Dhebar (1994), the quality of the new product is endogenous, determined via R&D efforts

of the firm. Hence, there consumers build an expectation for the quality as well.
4Note that as we have assumed that the price of the established product is fixed over [0, T ),

there is no gain of buying the established product later. In particular, for a positive discount

rate, there is a loss of buying product 1 later. This claim is formally proved below in Lemma

4.1.
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tive consumer surplus. If their valuation is below the price charged, they do not

buy at all even though they prefer buying the one product over the other.

How consumers behave depends on their individual valuation, i.e. its type

(speaking figuratively its location in the unit interval), the remaining time up to

the product introduction, the extent of quality improvement of the new product

and on prices, in particular the current price of the established product and the

expected future price of the new product.

4.3 Analysis

We start by analyzing the behavior of consumers and proceed then to the analysis

of the monopolist.

4.3.1 The Consumers’ Problem

Let uCV1 (θ) represent the current-value consumer utility if she purchases the estab-

lished product and uCV2 (θ) if she purchases the improved product in period T . For

a consumer θ, buying the established product with quality q1 for the fixed price

p1 yields utility

uCV1 (θ) = q1θ − p1. (4.1)

Buying the new product yields utility5

uCV2 (θ) = q2θ − pe2. (4.2)

Note that for consumers in the unit interval, p2 ≤ q2 holds necessarily since oth-

erwise, no consumer would buy at T which is not optimal, ex-post.
5We have assumed a linear correlation between the valuation of consumers and the importance

of technological improvement, i.e. the higher the valuation for the product, the higher is the

benefit of waiting. This seems to be reasonable since on the one hand a consumer who has very

low value for the product do not care much about its quality improvements. On the other hand,

if some consumer derives high utility of using a product, the new version has a higher influence

on her.



Chapter 4. Optimal Pricing of an Improving Durable Good 68

Let us denote the present-value of utility for a consumer arriving at s and

buying at t by

u1(θ, t; s) = e−r(t−s)uCV1 (θ) (4.3)

where r > 0 is the discount rate. Analogously, waiting for the new product yields

in present-value terms

u2(θ, T, s) = e−r(T−s)uCV2 (θ). (4.4)

As the price of the established product is assumed to be constant before the

introduction of the new product, there is no gain from waiting and buying the

established product later.

Lemma 4.1. If a consumer buys the established product, then he buys immediately

(upon arrival).

Proof. As the price is constant and does not change in [s, T ), buying immediately

upon arrival at s strictly dominates every purchasing time in (s, T ).

Thus, for buying the established product, we consider u1(θ, s; s) which does

not depend on s, however. Thus, we simply write u1(θ) and we henceforth omit

the time argument in u2(θ, T ; s) and simply write u2(θ; s).

A consumer θ prefers buying the established product immediately upon arrival

in s than in T if

u1(θ) ≥ u2(θ; s) (4.5)

⇔

q1θ − p1 ≥ (q2θ − pe2)e−r(T−s) (4.6)

(self-selection constraint) and if

u1(θ) ≥ 0 (4.7)

(market-participation constraint for the established product).

Let us rearrange the self-selection constraint in order to get more insight to the

relation of prices and qualities:

e−r(T−s)pe2 − p1 ≥ θ(e−r(T−s)q2 − q1). (4.8)
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From this inequality, we can infer that a consumer prefers buying the established

product if the increase in price in present-value terms exceeds the increase in

quality, again in present-value terms6. As we will see below, it is important to

distinguish the cases where the product is improving in present-value terms and

not. Hence, we denote by case A the situation where the product is not improving,

i.e.

e−r(T−s)q2 − q1 ≤ 0, (4.9)

and by case B, where it is improving, i.e.

e−r(T−s)q2 − q1 > 0. (4.10)

By the assumption of q2 > q1, we will certainly end up in case B before T . In

particular, for relatively high T , the problem starts in case A and switches to case

B as the time evolves or for relatively low T , the problem starts immediately in

case B.

Dhebar (1994) argues that in case B, a necessary condition for consumers buy-

ing the established product is that the price is expected to be increasing as well,

in particular the expected increase in price has to overweigh the increase in qual-

ity since otherwise, waiting and buying the new product in T would be better

whenever the market-participation constraint is satisfied.

In the next lemma, we characterize the situation for consumers with relatively

low valuation for the product.

Lemma 4.2. For all consumers θ < pe
2
q2
, the market-participation constraint for

the new product is not fulfilled, i.e. the value of the improved product is negative.

Proof. u2(θ; s) is negative for all θ < pe
2
q2

and for all s.

Lemma 4.2 leads directly to the following conclusion.

Conclusion 4.1. For all consumers θ < pe
T

q2 , if the market-participation constraint

for the established product is satisfied, consumers buy the established product.
6Note that the increase in quality is scaled by θ, i.e. the individual valuation.
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Proof. Due to Lemma 4.2, for those consumers the value of the improved prod-

uct and hence the right-hand side of inequality (4.6) is negative. If the market-

participation constraint holds, then the left-hand side of inequality (4.6) is positive

such that the inequality holds, i.e. buying the established product is optimal.

Thus, for all consumers θ < pe
T

q2,e , the market participation constraint is the

binding constraint only. Hence, setting u1(θ) = 0 and rearranging yields the

willingness-to-pay (henceforth wtp) function for consumers θ < pe
2
q2
,

wtp1(θ, t) = θq1, θ <
pe2
q2
, (4.11)

which actually does not depend on time.

According to inequality (4.6) , for all consumers θ ≥ pe
2
q2
, if the self-selection

constraint is fulfilled, then the market participation constraint holds necessarily,

i.e. u1(θ) ≥ 0. Thus, we can neglect the latter constraint and consider the self-

selection constraint for purchase timing. By rearranging inequality (4.6), we can

derive the wtp of a consumer, i.e. the highest price the firm could charge from

consumer θ such that she still buys:

wtp1(θ, t) = θq1 + e−r(T−t)(pe2 − θq2), θ ≥ pe2
q2
, (4.12)

where the second term is always negative, i.e. compared to the no innovation

setting, the awareness of the introduction of a better product in the future reduces

the wtp of consumers with relatively high valuation7. Note that the wtp functions

coincide for peT/q2, i.e. the wtp function is continuous in θ and has a kink at pe2/q2.

In contrast to (4.11), for θ > pe2/q2 the wtp depends explicitly on time. Let us

rearrange (4.12) in order to gain more insight:

wtp1(θ, t) = θ(q1 − q2e
−r(T−t)) + pe2e

−r(T−t). (4.13)

Neglecting the option of buying the established product, the price of the new

product discounted to the present time t is given by pe2e−r(T−t). Taking this option

into account, the comparison of the established and the new product is measured
7Note that in the no innovation case, only the market-participation constraint has to be

fulfilled.



Chapter 4. Optimal Pricing of an Improving Durable Good 71

via the first term which is positive in case A and negative in case B. In case A where

the product is not improving in present-value terms, it measures the mark-up a

consumer is willing to pay in order to consume now and avoid waiting. In Case

B where the product is expected to improve in present-value terms, it measures

the mark-down the consumer wants to save in order to consume the established

‘worse’ product now instead of waiting and consuming the better product.

For starting in case A, the switching time to case B can be easily derived and

is given by

τ := T − ln q2 − ln q1

r
, (4.14)

which is less than T as we have assumed that q2 > q1. If the problem starts in case

B, then we set τ := 0. The situation at τ for starting in case A is characterized in

the following Lemma.

Lemma 4.3. If τ > 0, i.e. for starting in case A, at the switching time τ , the wtp

of all consumers θ ≥ pe
2
q2

is the same, namely e−r(T−τ)pe2.

Proof. According to the definition of cases A and B, at τ , q1− q2e
−r(T−t) = 0 such

that the first term of the wtp function cancels out and it remains wtp1(θ, τ) =

e−r(T−τ)pe2 which is independent of θ.

Lemma 4.3 states that at τ there exists a threshold, namely pe
T

q2,e , above which

every consumer has exactly the same wtp.

In case B, for θ ≥ pe
T

q2,e , the higher the valuation, the lower is the willingness

to pay for the established product since there the product is improving. It shows

that high-valuation consumers’ attention is devoted to the new improved product

whereas low-valuation consumers do not care at all about product innovation.

Note that the wtp function for θ > pe
T

q2,e decreases in t whereas for θ ≤ pe
T

q2,e , the wtp

is constant.

In Figure 4.1a), we illustrate that initially the new product is not improving

in present-value terms. The wtp has a kink and follows intuition that the higher

the valuation for a product, the higher the wtp, i.e. the wtp is monotonously

increasing. In Figure 4.1b) however, the new product is improving in present-

value terms. Hence, there is a peak at θ = pe2/q2. A consumer located in the
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Figure 4.1: Willingness-to-pay functions in case A and B.

center has a higher wtp than a consumer located at the ends. For a price below

the kink, it can be directly observed that central consumers buy whereas low types

do not buy since it does not yield positive consumer surplus and high types do not

buy as well but for a different reason,they prefer to wait for the improved product.

4.3.2 The Monopolist’s Problem

Up to now, we have only characterized the demand structure. This section is

devoted to the analysis of the monopolist’s behavior. As mentioned above, we

consider a firm who wants to set prices p1 and p2 such that the discounted stream

of profits is maximized. A durable goods monopolist creates his own competition:

by selling today he decreases demand tomorrow. There are the following strategic

issues to take into account. Demand varies due to two reasons, first because of

the varying willingness to pay of the consumers and second due to the influx

of new consumers. In the language of dynamic optimal control problems, one

may interpret the prices as the control variables and the stock of consumers or

more specifically the distribution of consumers as the (infinitely dimensional) state

variable.

Let g(θ, t; p1, p
e
2) be the density function of consumers at time t describing the

stock of consumers and G(θ, t; p1, p
e
2) its cumulative distribution function. For

simplicity, the arrival rate is given by 1 and at the outset there are no consumers.

For instance, if prices are set such that consumers do not buy, then G(θ, t; p1, p
e
2)
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is given by tθ. Let I(θ, p1, p
e
2) be the time interval8 where consumer θ buys the

established product. Let πt(p1, p
e
2) be the profit of the firm for t < T . For t = T , we

have πT (p2, G(θ, T ; p1, p
e
2)), which depends on the final distribution of consumers

which is generated by the expected price of the new product and on the price p2

which is indeed set by the firm at T .

We are interested in finding prices p1 and p2 where consumers’ expectations

reveal to be true and no consumer regrets his purchase decision.

Definition 4.1. Prices (p1, p2) constitute a credible price pair, if given p1, con-

sumers expect p2, i.e. p2 is maximizing the terminal profit given the terminal

distribution of consumers G(θ, T ; p1, p2).

Hence, for a credible price pair, the monopolist’s choice of price at T is con-

sistent with the consumers’ expectations and no consumer regrets his purchase or

waiting decision. Then, the objective function of the firm is given by

max
p1,p2

∫ T

0
e−rtπt(p1, p

e
2)dt+ e−rTπT

(
p2, G(θ, t, p1, p

e
2)
)
dt (4.15)

subject to

pe2 = arg max
p2

πT (p2, G(θ, T, p1, p
e
2)) (4.16)

and

ġ(θ, t; p1, p
e
2) = 0 ∀ θ ∈ [0, 1] and ∀ t ∈ I(θ, p1, p

e
2),

ġ(θ, t; p1, p
e
2) = 1 ∀ θ ∈ [0, 1] and ∀ t /∈ I(θ, p1, p

e
2),

g(θ, 0; p1, p
e
2) = 0 ∀ θ ∈ [0, 1],

(4.17)

i.e. the firm maximizes among all credible price pairs which yields the rational ex-

pectations equilibrium. Technically, this is a fixed-point problem whose existence

is not guaranteed per se as we will discuss below.

4.4 Firm’s Objective and Consumer Distribution

We start at the terminal time T where the new product is introduced and the

established product is taken from the market. At the terminal date, we deal with
8The wtp is monotonously decreasing with respect to t, hence I(θ, p1, p

e
2) is indeed a connected

set, i.e. an interval.
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a particular demand structure. Since the problem ends at this point, this is a

static optimization problem and the wtp of the consumers is no more conditional

on the next improved product but depends merely on the valuation, i.e. the type

of the consumer and the product’s current quality which has increased at T . Thus,

the wtp of a consumer with valuation θ reads

wtp2(θ) = q2θ. (4.18)

Hence, the indifferent consumer is given by p2/q2. Thus, the objective functional

at T reads

max
p2

πT (p2, G(θ, T ; p1, p
e
2)) = max

p2

∫ 1

p2
q2

p2dg(θ, ·) = max
p2

p2

(
G(1, T ; p1, p

e
2)−G(p2

q2
, T ; p1, p

e
2)
)
,

s.t. (4.16). For t < T , we start with characterizing the indifferent consumer who

is indifferent between buying the established product upon arrival and the new

product at T (cf. Dhebar (1994)). In case A, she is characterized by

θ1A := min
{
θ : 0 ≤ θ ≤ 1, q1θ − p1 ≥ 0,

e−r(T−t)pe2 − p1 ≥ θ(e−r(T−t)q2 − q1)
}
.

(4.19)

In case B, she is given by

θ1B := max
{
θ : 0 ≤ θ ≤ 1, q1θ − p1 ≥ 0,

e−r(T−t)pe2 − p1 ≥ θ(e−r(T−t)q2 − q1)
}
.

(4.20)

Hence, in case A, all θ > θ1A prefer buying the established product whereas in

case B, it is the other way around, i.e. all θ < θ1B prefer buying the established

product over the new product. From

e−r(T−t)p2 − p1 = θ(e−r(T−t)q2 − q1) (4.21)

the consumer which is indifferent between buying the established and the new

product can be derived:

θ̃(t) := θ1A = θ1B = max[0,min[1, e
−r(T−t)pe2 − p1

e−r(T−t)q2 − q1
]].

If there were no new product, the market participation constraint would have

to be satisfied only, i.e. the consumer who is indifferent between buying and not
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buying would be given by

θ1 := min
{
θ : 0 ≤ θ ≤ 1, q1θ − p1 ≥ 0

}
.

The optimal price for the new product at T depends on the distribution of

consumers who have not bought the established product before. The distribution,

however, depends on both, p1 and pe2 . There are three cases of prices (p1, p
e
2) which

lead to structurally different distributions. More precisely, it depends on whether

p1 is above, equal to or below the price at the kink of the wtp, i.e. whether

p1 S pe2 · q1/q2, (4.22)

which is the price at the kink point θ = pe2/q2. As discussed earlier, note that the

kink is in the unit interval since pe2 ≤ q2.

Denote the time where the willingness to pay of a consumer θ equals p1 by t̂(θ),

if it exists (see Appendix 4.A.1 for its formula.). If not, set t̂(θ) = 0. The three

cases are characterized by

• Case I: p1 > pe2
q1

q2 (⇔ t̂(1) ≤ τ): For t ≤ t̂(1) (in case A), the set of buyers

is given by [θ1A, 1] and the indifferent consumer θ1A increases such that sales

stop eventually in case A and there are no sales anymore. If t̂(1) =0, then

there are no sales at all before T . The objective functional is then given by

max
p1,p2

∫ t̂(1)

0
e−rtp1(1− θ1A)dt+ e−rTπT (p2, G(θ, T ; p1, p

e
2)),

s.t. (4.16).

• Case II: p1 < pe2
q1

q2 (⇔ t̂(1) ≥ τ): For t ≤ t̂(1), the set of buyers is given

by [θ1, 1] and for t ≥ t̂(1), the demand is given by [θ1, θ1B]. 9 The objective

functional is then given by

max
p1,p2

∫ t̂(1)

0
e−rtp1(1−θ1)dt+

∫ T

t̂(1)
e−rtp1(θ1B−θ1)dt+e−rTπT (p2, G(θ, T ; p1, p

e
2)),

s.t. (4.16).
9Note that here, t̂(1) might not exist for two reasons, either if wtp of θ = 1 stays above p1

until T or is below p1 from the beginning. In the latter case t̂(1) must be set 0. In the first case,

both terms of the integral yield the same, i.e. t̂(1) = T is possible as well. For simplicity, we

have assumed that t̂(1) = 0, once it does not exist.
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• Case III: p1 = pe2
q1

q2 (⇔ t̂(1) = τ): In case A, demand is given by [θ1, 1] and

in case B, there are no sales at all10, i.e. demand vanishes abruptly when the

case switches form A to B. Thus, the objective functional is given by

max
p1,p2

∫ τ

0
e−rtp1(1− θ1)dt+ e−rTπT (p2, G(θ, T ; p1, p

e
2)).

s.t. (4.16).

Intuitively, in case I, the price of the established product is relatively high such

that only consumers with high valuation buy but as the introduction of the new

product gets closer, demand for the established product vanishes. In case II, the

price of the established good is relatively low such that until t̂(1), all consumers

for which the market participation constraint is fulfilled buy. After t̂(1), demand

decreases as the consumers at the ‘high-end’ start waiting for the new product.

Case III is the case in between where demand jumps to 0 at τ .

In an equilibrium, consumers form an expectation for p2 and the firm sets at

T the price which has been expected by consumers11. Here the problem arises

that the firm cannot commit to future prices, i.e. there is no commitment device

which guarantees that the firm is not going to set a different price. Hence, p2 has

to maximize the profit at T , ex-post. Thus, we are looking for price pairs (p1, p2)

which maximize the monopolist’s discounted stream of profits among all credible

price pairs.

We find that there are no credible price pairs in case II, i.e. there is no expec-

tation pe2 for p2 which is actually set by the firm at T .

Lemma 4.4. In case II, there is no credible price pair (p1, p2).

Proof. In case II, demand is given by [θ1, 1] for t < t̂(1) and by [θ1, θ1B] for t ≥

t̂(1). At T , θ1B is given by p1−pe
2

q1−q2
. Hence, there are no consumers in the interval

[θ1, θ1B]=[p1
q1
,
p1−pe

2
q1−q2

]. Consider the indifferent consumer at T which is given by

p2/q2. Rearranging the definition of case II yields
p1

q1
<
p2

q2
. (4.23)

10Note that in that case, θ1 = θ1A.
11Note that actually observing p1 and forming an expectation for p2 is much less costly for the

consumers than deriving the rational expectations equilibrium under all credible price pairs.
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Furthermore, again from the definition of case II, we can derive

pe2
q1

q2
> p1

⇔ p2q1 > q2p1

⇔ p2(q1 − q2) > (p1 − peT )q2

12 ⇔ p2

q2
<
p1 − peT
q1 − q2

,

i.e. p2/q2 is in that consumerless interval. Hence, this price cannot be optimal

ex-post since an optimal price has to be outside this interval.

Intuitively, this price cannot be optimal ex-post since the firm could increase

its price without loosing consumers or would prefer to decrease its price in order

to increase sales.

We show in Lemma 4.5 that if the problem starts in case A, then all candidates

for credible price pairs in case III are inferior. In other words, it is necessary that

the problem starts in case B (τ = 0) for having a credible price pair in case III.

Lemma 4.5. In case III, if τ > 0, there is no credible price pair.

Proof. At T , for a credible price pair, the price for the new product must be set

to p2 = p1
q2
q1

and the corresponding indifferent consumer is given by θ̃ = p2/q2. In

case III, the final distribution is given by

G(θ, T ; p1, p
e
2) =



Tθ for θ ≤ pe2/q2

(T − τ)θ + τ pe2/q2 for pe2/q2 ≤ θ ≤ 1

(T − τ) + τ pe2/q2 for θ ≥ 1

(4.24)

Maximizing the terminal profit with respect to p2 and requiring ex-post optimality

yields two candidates, in particular p2 = q2/2 and

p2 = T − τ
2T − τ q2. (4.25)

However, whenever τ > 0, there exists another p2 which yields a higher profit, i.e.

the candidate for a credible price is inferior and is not selected (details are given

in Appendix 4.A.3).
12Note that q1 − q2 < 0 holds by assumption.
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So rational expectations equilibria might be found in case I and additionally in

case III but only if the product is improving right from the beginning. However,

note that the latter scenario corresponds to a flat distribution13 at T and all other

choices of p1 which are higher and thus belong to case I yield the same outcome.

Hence, additionally, there will be infinitely many credible price pairs in case I.

Thus, for τ > 0, case III can be considered as a hairline case. The necessary

derivations for case I in order to obtain profits for a credible price pair are given

in Appendix 4.A.2.

4.5 Numerical Results

As the distribution structure changes for varying prices, the optimal prices are

calculated numerically. For the default parameter setting

q1 = 1, q2 = 1.1, T = 2, r = 0.1 (4.26)

the problem starts in case A where the product is not improving but switches to

case B where the product becomes improving at τ = 1.0469. We define a grid for

the price of the new product by P e,ini
2 = [0.4, 0.56] with nodes of equal distance

0.001 14. Note that there is a natural threshold for the price of the established

product since if it becomes too expensive such that no consumer buys anymore

the established product, there will be a uniform distribution of consumers at T

such that the ex-post optimal price will be q2/2 (cf. proof of Lemma 4.5 and

Appendix 4.A.3). Hence, for credible price pairs, p2 becomes constant as soon as

p1 is too high that no sales occur anymore in mode 1 and hence the distribution

of consumers does not change anymore. For finding the credible price pairs, we

proceed as follows. For a fixed pe2 from the grid, we maximize the profit at T with

respect to p2 which yields p∗2 which depends on p1. Then, we solve for p1 such

that p∗2 = pe2 holds. For the considered parameter setting, this yields a unique p1

13In this scenario, the optimal price is given by p2 = q2/2 and the indifferent consumer is at

the center, i.e. at θ = 1/2.
14The grid does not need to be widened since the distribution of consumers and hence the

profit does not change for higher or lower prices, respectively.
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for each pe2 from the grid. After having calculated all candidates for optimal price

pairs, i.e. all credible price pairs, by simple comparison of its corresponding total

profits, we determine the optimal choice of p1 and p2 among the credible price

pairs.

For the credible price pairs, we find that initially p2 is increasing in p1 but

becomes constant once p1 is so high such that no consumer buys before T and

hence the optimal p2 does not change anymore. We find that the optimal price

in equilibrium for p2 is around 0.509. Thus, we define a new more dense grid

(nodes of lower distance 0.0001) P e,fine
2 = [0.508, 0.51] and derive credible price

pairs which are depicted in Figure 4.2.

0.4815 0.4820 0.4825 0.4830 0.4835
p1

0.5080

0.5085

0.5090

0.5095

0.5100

p2

Figure 4.2: Credible price pairs.

0.4815 0.4820 0.4825 0.4830 0.4835
p1
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0.455808

0.455809

0.455810

Total Profits

Figure 4.3: Profits of credible price pairs.

Among those pairs, by comparing profits (see Figure 4.3) we find that it attains

its maximum at the price pair (p1, p2) = (0.4825, 0.5088) which corresponds to case
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I, i.e. the firm initially sells in mode 1 but as the time of innovation comes closer

demand decreases and sales stop in case A at t̂(1), even before τ . More specifically,

initially, consumers in [0.6633, 1] buy the established product but as time passes,

demand decreases and sales stop at t̂(1) = 0.6686. In particular, the indifferent

consumers shifts to the right. Figuratively speaking, the price of the established

product is too high and is perceived higher as time goes by such that more and

more consumers stop buying and start waiting for the new product.

The density of consumers at T is shown in Figure 4.4(a). At T , the indifferent
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0.5

1.0

1.5

2.0
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(a) T = 2
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(b) T = 4

Figure 4.4: Consumers’ density at T .

consumer is at 0.4625.

For an alternative parameter setting with T = 4, τ increases by 2 points to

τ = 3.0469 and qualitative results remain unaffected15. However, prices are much

lower compared to the shorter time horizon case, in particular the optimal price

pair is given by (0.4671, 0.4631). Here, initially, consumers in [0.5965, 1] buy and

sales stop at t̂(1) = 2.2172. The corresponding density function is depicted in

Figure 4.4(b). Here, the indifferent consumer at T is at θ = 0.421. Compared to

the default parameter setting with T = 2, consumer surplus is higher since prices

are lower and in addition, consumers in [0.421, 0.4625) who were neither buying the

established nor the new product are now buying the new product. In a setting with

a finite time horizon, increasing the time interval where the established product is

sold increases consumers’ wtp. Neglecting new consumer arrival, a natural guess
15Figures are given in Appendix 4.A.4.
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would be that the price for the established product in equilibrium increases as

well. However, increasing the length of the problem while keeping the inflow of

consumers constant at the rate 1 leads to a higher total accumulation of consumers

which increases the firm’s propensity to lower the price for the new product. Hence,

the latter is dominating and the equilibrium prices for T = 4 are lower.

4.6 Conclusion

We have developed a simple and tractable model and have characterized optimal

price pairs by modeling demand endogenously in a durable-goods setting. The

assumption of rational consumers led to the framework of rational expectations

equilibria where consumers perfectly predict the price of the new product. Em-

ploying a continuous time framework before product introduction was crucial to

characterize consumers’ changing willingness to pay for the established product.

While consumers’ and the monopolist’s behavior could be described analytically,

rational expectations equilibria have been found numerically proceeding along a

grid. More precisely, in our examples, an optimal credible price pair has to be

selected among a continuum of credible price pairs which can not be accomplished

analytically.

Accounting for consumer’s potential lack of computing ability, considering

bounded rational consumers might be an interesting topic for future research.

4.A Appendix

4.A.1

For
p1 − θq1

p2 − θq2
> 0, (4.27)

t̂(θ) is easily derived from

wtp1(θ, t̂(θ)) = p1 (4.28)
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⇔

t̂(θ) = T + 1
r

ln
(
p1 − θq1

p2 − θq2

)
. (4.29)

Note that for the existence of t̂(θ), i.e. to have 0 ≤ t̂(θ) ≤ T , p1−θq1
p2−θq2

is required to

be in the interval [e−rT , 1].

4.A.2

In case I, for a credible price pair (p1, p2), total profits are given by
∫ t̂(1)

0
e−rtp1(1− θ1A)dt+ e−rTπT (p2, G(θ, T ; p1, p2)).

For θ ∈ [0, 1], the final density function is given by

g(θ, T ; p1, p2) =


T for θ ≤ θ̃(0)

T − t̂(θ) for θ > θ̃(0).
(4.30)

G(·) is obtained by integrating g(·) with respect to θ

G(θ, T ; p1, p2) =


Tθ for θ ≤ θ̃(0)

T θ̃(0)− 1
r

∫
t̂(θ)dθ for θ > θ̃(0).

(4.31)

where
∫
t̂(θ)dθ = −p1

q1
ln (p1 − q1θ) + θ ln

(
p1 − q1θ

p2 − q2θ

)
+ p2

q2
ln (p2 − q2θ) , (4.32)

and the primitive of the integrand of the first integral is given by

e−r(T+t)p1(erT (p1−q1)q1−ert(p2q1−p1q2) ln(er(T −t)q1−q2))
rq2

1
, (4.33)

such that total profits can be calculated.

4.A.3

Note that for flat distributions, the optimal price at T is given by p2 = q2/2. For

non-flat distributions which emerge in case III whenever τ > 0, there might be at

most two candidates for the optimal price of the new product since the profit func-

tion consists of two concave functions which tied together is not quasiconcave. For
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credibility, the indifferent consumer at T has to be at the kink of the distribution

function. Assuming p2 ≥ pe2, the terminal profit is given by

πT (G(θ, T ; p1, p
e
2)) = p2

(
G(1, T ; p1, p

e
2)−G(p

e
2
q2
, T ; p1, p

e
2)
)

= p2

(
T − τ + pe2

q2
τ − (T − τ)p2

q2
− pe2
q2
τ
)

= p2

(
(T − τ)(1− p2

q2
)
)
.

The first-order condition yields16

p2 = q2

2 , (4.34)

whereas the profit for assuming p2 ≤ pe2 is given by

πT (G(θ, T ; p1, p
e
2)) = p2

(
G(1, T ; p1, p

e
2)−G(p

e
2
q2
, T ; p1, p

e
2)
)

= p2

(
T − τ + pe2

q2
τ − T p2

q2

)
= p2

(
T (1− p2

q2
)− τ(1− pe2

q2
)
)

Requiring the first order condition to be met and requiring credibility leads to

p2 = T − τ
2T − τ q2. (4.35)

In total, we have two candidates which satisfy local first order conditions and are

credible, i.e. q2/2 and q2(T − τ)/(2T − τ). However, we find that for pe2 = q2/2

there exists another candidate p2 (in the other part, i.e. in p2 < pe2), in particular
q2

2

(
1− τ

2T

)
(4.36)

which yields a higher payoff whenever τ 2/4 > 0, which is equivalent to τ > 0.

Analogously, for pe2 = q2(T − τ)/(2T − τ), there is another candidate (also from

the other part, i.e. in p2 > pe2), given by p2 = q2/2 which yields a higher payoff

whenever τ 2 > 0. Hence whenever τ > 0 holds, the credible price pairs are inferior.

4.A.4

For T = 4, figures of credible price pairs and its corresponding profits are given in

Figures 4.5 and 4.6.
16Note that in the case of q2/2 < pe2, credibility is not fullfilled and hence q2/2 is no candidate

for the optimal price.
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Figure 4.5: Credible price pairs for T = 4.
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Figure 4.6: Profits of credible price pairs for T = 4.
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