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Abstract

The lepton asymmetry of the universe is just weakly constraint and might
be orders of magnitude larger than the baryon asymmetry. In this thesis, we
investigate how a lepton asymmetry influences the cosmic trajectory through
the phase diagram of Quantum Chromodynamics (QCD). Therefore, we de-
velop a technique to determine the temperature evolution of chemical poten-
tials during the QCD epoch of the early universe at arbitrary lepton flavor
asymmetries. We will rely on an ideal quark gas approximation at high tem-
peratures, T > 150 MeV, and a hadron resonance gas model at low temper-
atures, T < 250 MeV. Higher-order perturbative corrections are (partially)
included in the ideal quark gas approximation. To interpolate between these
approximations, we will for the first time use lattice QCD susceptibilities
to properly account for strong interaction effects close to the QCD transi-
tion temperature TQCD. We therefore use a Taylor series ansatz of the QCD
pressure up to second order in the chemical potentials. With this technique
we investigate the impact of equally and unequally distributed lepton flavor
asymmetries on the cosmic trajectory. We conclude with an estimate on the
reliability of our technique via using a Taylor series of the QCD pressure.



Gedruckt auf alterungsbeständigem Papier °° ISO 9706



Published work

Parts of the methods and results discussed in Chapters 6 and 7 of this thesis have
been published under [1]:

M. M. Wygas, I. M. Oldengott, D. Bödeker and D. J. Schwarz,
“Cosmic QCD Epoch at Nonvanishing Lepton Asymmetry,”
Phys. Rev. Lett. 121 (2018) 201302,
arXiv:1807.10815 [hep-ph].

The main work of this publication was done by myself. The results are based on a
code first developed by [2], which has been corrected by Dr. Isabel Oldengott and
myself. I updated and corrected the particle properties and enlarged the number of
included hadron resonances according to the summary tables of the Particle Data
Group [3] (see also App. A.4 for a list of the included hadron resonances and their
properties). I implemented the possibility of using lattice QCD results in the code
and furthermore extended the calculation of the entropy density to nonvanishing
chemical potentials. The text was written by myself and afterwards edited by my
collaborators.





Contents
1 Introduction 3

2 Cosmological Motivation 6
2.1 The Universe today . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Evolution of the Universe . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Interaction Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Thermodynamics 13
3.1 Grand Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Thermodynamic Variables . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Particle Asymmetries in the Early Universe . . . . . . . . . . . . . . 19
3.4 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Large Lepton Asymmetries 23
4.1 Cosmological Constraints on Lepton Asymmetries . . . . . . . . . . . 24

4.1.1 Big Bang Nucleosynthesis . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Cosmic Microwave Background . . . . . . . . . . . . . . . . . 27

4.2 Production Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Quantum Chromodynamics 29
5.1 Lattice QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 QCD Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Perturbative QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Hadron Resonance Gas Model . . . . . . . . . . . . . . . . . . . . . . 34

6 Taylor Series Method 36
6.1 Charge and Quark Number Susceptibilities . . . . . . . . . . . . . . . 37
6.2 Lattice QCD Susceptibilities . . . . . . . . . . . . . . . . . . . . . . . 40

7 Evolution of Chemical Potentials 43
7.1 System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Ideal Quark Gas Approximation . . . . . . . . . . . . . . . . 44
7.1.2 QCD Susceptibilities . . . . . . . . . . . . . . . . . . . . . . . 45
7.1.3 HRG Approximation . . . . . . . . . . . . . . . . . . . . . . . 46
7.1.4 Calculational Details . . . . . . . . . . . . . . . . . . . . . . . 47

7.2 Cosmic Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.2.1 Baryon Chemical Potential . . . . . . . . . . . . . . . . . . . 48
7.2.2 Electric Charge Chemical Potential . . . . . . . . . . . . . . . 51



2 CONTENTS

7.2.3 Lepton Flavor Chemical Potentials . . . . . . . . . . . . . . . 53
7.2.4 Comparison of Different HRG Approximations . . . . . . . . . 56
7.2.5 Unequal Lepton Flavor Asymmetries . . . . . . . . . . . . . . 58

7.3 Pion condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4 Evolution of Entropy, Energy and Pressure . . . . . . . . . . . . . . . 62

8 Convergence Properties 66
8.1 Convergence Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Critical Point Location . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Reliability of Cosmic Trajectory Determination . . . . . . . . . . . . 71

8.3.1 Constraints on Chemical Potentials . . . . . . . . . . . . . . . 73
8.3.2 Constraints on Lepton Flavor Asymmetries . . . . . . . . . . 77

9 Conclusion 79

A Appendix 82
A.1 Useful Relations and Integrals . . . . . . . . . . . . . . . . . . . . . . 82
A.2 2+1+1 Flavor Lattice QCD Susceptibilities . . . . . . . . . . . . . . 83
A.3 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.4 Particle and Hadron Resonance Properties . . . . . . . . . . . . . . . 86

References 95



3

I think physicists are the
Peter Pans of the human race.
They never grow up,
and they keep their curiosity.

— Isidor Isaac Rabi

1 Introduction

One of the basic pillars of modern physics is the Standard Model of particle physics
(SM) which describes all elementary particles and their fundamental interactions,
i.e., the electromagnetic, weak and strong interaction. Only the gravitational inter-
action is not described within the SM. Even though the SM is remarkably complete
and consistent with a tremendous amount of experimental findings, the SM fails
to describe one fundamental interaction and there are still some phenomena which
cannot be explained within the SM.

The existence and the origin of the matter-antimatter asymmetry in the present
universe is one of the biggest unresolved puzzles of particle physics and cosmology.
Without the existence of a matter-antimatter asymmetry no matter structures could
have formed and the universe would have ended in an annihilation catastrophe re-
sulting in nothing but radiation. However, we experience in our daily life that there
is more matter than antimatter, because everything around us is made of matter.
The baryon asymmetry, defined as the baryon net number density per entropy den-
sity, b = (nB − nB̄)/s, of the universe is well known and tightly constrained to be
b = (8.71±0.04)×10−11 [3]. Nevertheless, the SM fails to explain the baryon asym-
metry by many orders of magnitude [4] and physics beyond the SM is needed. The
lepton asymmetry l = nL/s is the key parameter to better understand the origin of
the matter-antimatter asymmetry. The idea of leptogenesis [5] is to create a lepton
asymmetry which due to efficient electroweak sphaleron processes is partially con-
verted to a baryon asymmetry yielding l = −(51/28)b [6]. However, there also exist
models that predict a lepton asymmetry today, which is orders of magnitude larger
than the baryon asymmetry [7–16].

Observationally, the total lepton asymmetry of the universe l =
∑

α lα, α ∈
{e, µ, τ}, is only weakly constrained. The charge neutrality of the universe [17]
links the asymmetry in the charged leptons to the tiny baryon asymmetry. Thus, a
large lepton asymmetry would be manifested in the neutrino asymmetries nowadays.
However, neutrinos cannot be detected directly due to their weakly interacting na-
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ture.1 Constraints on the neutrino asymmetry can only be inferred indirectly by
measurements and analyses of big bang nucleosynthesis and the cosmic microwave
background. They yield |l| ≲ 0.012 [18, 19]. These analyses are, however, blind
to individual lepton flavor asymmetries, which are likely to be equilibrated at the
times of those cosmological epochs [19–21].

Another important, yet not well understood event in the early universe is the
cosmic quantum chromodynamics (QCD) transition2 from freely propagating quarks
and gluons to in hadrons confined ones at TQCD = 156.5 ± 1.5 MeV at vanishing
baryon chemical potential µB [22]. For vanishing temperature and large baryon
chemical potential effective models of QCD predict a first-order phase transition
[23]. This first-order phase transition [24] has to end in a second-order critical
endpoint [25, 26] as for high temperatures and low baryon chemical potential it has
been shown by lattice QCD calculations that the QCD transition for the SM is an
analytic crossover [27, 28]. But due to the infamous sign problem in lattice QCD,
calculations for nonvanishing chemical potentials are very difficult [26, 29–31].

The standard cosmic trajectory, i.e., the evolution of the chemical potentials in
the early universe through the phase diagram of strongly interacting matter, is com-
monly assumed to pass TQCD at vanishing baryon chemical potential and to proceed
to the order of the nucleon mass at lower temperatures, whereby standard means
l ≃ O(b). For large lepton asymmetries |l| ≫ b it has been shown that the baryon
and electric charge chemical potential become on the order of the lepton asym-
metry µB ∼ µQ ∼ lT at T ≳ TQCD [2, 32]. Assuming an overall electric charge
neutrality and a fixed baryon asymmetry, a lepton asymmetry in the electrically
charged leptons induces an electric charge asymmetry in the quark sector and thus
quark chemical potentials. Quark chemical potentials induce nonvanishing baryon
and electric charge chemical potentials, as quarks carry baryon number and elec-
tric charge. Thus, large primordial lepton asymmetries shift the cosmic trajectory
to higher electric charge and baryon chemical potential and thus the order of the
QCD transition in the early universe might be changed. This could have observable
consequences via the production of relics [33–37]. Understanding the impact of a
lepton asymmetry on the evolution of the universe at various epochs is therefore of

1Additionally, neutrinos represent another example for the incompleteness of the SM. Neutrino
masses and oscillations cannot be explained within the SM. Furthermore, it is still unknown if
neutrinos are Dirac or Majorana particles. In this thesis, we will assume Dirac neutrinos, such
that neutrinos and antineutrinos are distinct particles and a neutrino asymmetry can be defined.

2Throughout this thesis, we will refer to a transition as a change from one state of matter to
another state of matter irrespective from its kind, i.e., whether it is a true first- or second-order
phase transition or an analytic crossover.
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crucial importance.

In this thesis we will discuss how the cosmic trajectory through the QCD phase di-
agram is influenced by the presence of nonvanishing lepton asymmetries. The effect
of lepton asymmetries on the evolution of chemical potentials has been first consid-
ered for massless particles by [32]. First calculations of the cosmic trajectory in the
QCD phase diagram have been performed in [38]. In [2] the evolution of chemical
potentials at large lepton asymmetries has been studied in the approximations of an
ideal quark gas and of a hadron resonance gas. We extend and advance the approach
of [2] in the following way: We will present a novel technique of determining the
cosmic trajectory by using lattice QCD results for conserved charge susceptibilities
[1]. Thus, for the first time, we are able to properly take into account strong in-
teraction effects close to TQCD. Approximate relations between lepton asymmetries
and chemical potentials in terms of susceptibilities have been studied in the context
of sterile neutrinos production by [39, 40]. Furthermore, we enlarged the number of
hadron resonances used in [2] and we improved the calculation by self-consistently
including the effect of nonvanishing particle chemical potentials also in the entropy
density.

The thesis is structured as follows: In Chapter 2 we will review some general
aspects of cosmological evolution that are important for our work. The thermody-
namical basics needed for our technique, i.e., the grand canonical ensemble, thermo-
dynamic variables, particle asymmetries and phase transitions, will be introduced in
Chapter 3. Constraints and possible production mechanisms of large lepton asym-
metries will be discussed in Chapter 4. Aspects of QCD and in particular the QCD
phase diagram will be explained in Chapter 5. The basic of our novel technique, i.e.,
the Taylor series ansatz of the QCD pressure, will be discussed in Chapter 6. The
main idea of our technique and results for the cosmic trajectory at nonvanishing
lepton flavor asymmetries will be elaborated on in Chapter 7. In Chapter 8 the ap-
plicability range of our technique using a Taylor series ansatz of the QCD pressure
is examined in detail.

Throughout the whole thesis natural units and Einstein summation convention are
used, i.e., c = ℏ = kB = 1 and repeated indices are summed over, unless otherwise
stated.
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2 Cosmological Motivation

In this Chapter we will give an overview on aspects of the cosmological evolution that
are important for the thematic classification of the work performed in this thesis.
We first give a brief overview on the properties of the universe today in Sec. 2.1
and continue with the evolution of the universe in Sec. 2.2. We will conclude with a
discussion on interaction rates and maintaining of thermal equilibrium in the early
universe in Sec. 2.3 which is a prerequisite for our technique of determining the
cosmic trajectory.

2.1 The Universe today

The most convenient model to describe the evolution of the universe is the ΛCDM
(Lambda Cold Dark Matter) model of cosmology. It describes the evolution of
an expanding universe with cold dark matter (CDM), i.e., particles which were
nonrelativistic at the time of decoupling and at most interact weakly with the SM
particles, a cosmological constant Λ which is associated with dark energy (DE), and
zero spatial curvature k = 0.3 The present universe is homogeneous and isotropic at
large spatial scales, which forms the cosmological principle. This principle guarantees
that observations from Earth are representative for the whole universe and thus can
be used to test cosmological models.

The expansion rate of the universe is described by the Hubble parameter H, which
is defined through the Friedmann equation

H2(t) ≡
(
ȧ(t)

a(t)

)2

=
8π

3
Gρ− k

a2
, (2.1)

with the gravitational constant G, which is related to the Planck mass via MPl =

G−1/2 = 1.2 × 1019 GeV [3]. The distance between two far away objects is pro-
portional to the scale factor a(t) and ȧ(t) = da(t)/dt denotes the derivative with
respect to time. The total energy density of the universe can be parametrized by
ρ = ρm + ρrad + ρΛ, with the energy densities of nonrelativistic matter, relativistic
matter (radiation), and cosmological constant (dark energy), respectively. The con-
tribution due to spatial curvature k = 0,±1 can be defined as −k/a2 = (8πG/3)ρk.

3There exists of course a variety of different other models like, e.g., modified gravity models to
describe the evolution of the universe or Massive Compact Halo Objects (MACHOs) to describe
DM. However, they seem to be disfavored by observations of the Bullet Cluster [41].
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With the Planck mission the present values of the cosmological parameters can
be determined by measurements of the cosmic microwave background (CMB) tem-
perature and polarization anisotropies. The present value of the Hubble parameter
is H0 = 100h km

s·Mpc = (67.4 ± 0.5) km
s·Mpc [42], with the scale factor for the Hubble

expansion rate h and the subscript 0 of a quantity indicating its present value.
The age of the universe can be estimated by the inverse of the Hubble parame-
ter: H−1

0 ≈ 1.38 × 1010 yrs. The present energy density, also called critical energy
density, is given by [3]

ρc =
3H2

0

8πG
≈ 4.8× 10−6GeV

cm3
. (2.2)

The relative contributions of the different constituents to the energy density are
parametrized by the density parameters Ωi = ρi/ρc. Observations yield the present
numerical values [42]:

Ωm = 0.3153± 0.0073 ,

Ωrad = (5.38± 0.15)× 10−5 ,

ΩΛ = 0.6847± 0.0073 ,

Ωk = 0.001± 0.002 .

(2.3)

Thus, the impact of relativistic particles and the spatial curvature is negligible today
and we will set k = 0 in the following. The nonrelativistic matter can be subdivided
into the sum of baryons, i.e., ordinary matter, and dark matter, Ωm = Ωb + ΩDM.
The numerical values today are given by [42]

Ωbh
2 = 0.00224± 0.0001, ΩDMh

2 = 0.120± 0.001 . (2.4)

The origin and content of dark energy and dark matter, which constitute the main
part of the energy content of the universe today, is one of the major puzzles in
cosmology and particle physics. As they cannot be described within the framework
of the SM and general relativity, this requires physics beyond the SM. Several models
have been developed to describe dark energy and dark matter (cf. e.g. the reviews
in [3]).

The baryon density parameter can be related to the baryon abundance, i.e., the
ratio of baryon net number density to photon number density [43]:

ηB ≡
nB

nγ

= 273.8× 10−10Ωbh
2

= (6.133± 0.027)× 10−10 .
(2.5)
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The specific baryon asymmetry, i.e., the ratio of the baryon asymmetry to the en-
tropy density s, can be obtained as (cf. Sec. 3.3)4

b =
nB

s
= ηB

nγ

s
= (8.71± 0.04)× 10−11 . (2.6)

In absence of baryon number violating interactions, the baryon asymmetry b in
the early universe was of the same order of magnitude as now. Thus, models of
cosmological evolution can be tested by their predictions of b. Additionally, even
though the size of the baryon asymmetry cannot be explained within the SM, it is
one of the most important parameters of cosmology. Without any baryon asymmetry
in the early universe no structure formation would have been possible as all particles
and antiparticle would have annihilated.

2.2 Evolution of the Universe

The evolution of the expanding universe can be described within the Hot Big Bang
Theory which is depicted in Fig. 2.1. If we extrapolate back the observed properties
of the universe, there was a singularity, which is referred to as Big Bang. However,
Hot Big Bang Theory has its problems. Some are due to the very special initial
conditions which are needed. They are: why is the universe as large, warm, spa-
tially flat, homogeneous and isotropic as it is and why is the entropy that large?
One elegant solution is the inflationary scenario. The idea is that the Big Bang is
followed by an epoch of exponential expansion (inflation). So, initially small and
causally disconnected regions inflated to very large size, which also may be orders
of magnitude larger than the size of the observable part of the universe. This epoch
would then be followed by post-inflationary reheating, where the energy of the infla-
ton field is transferred to energy of conventional matter. Then the universe heated
up and the radiation dominated era of cosmological expansion started, which can be
probed directly.

If Grand Unification, i.e., the unification of electromagnetic, weak, and strong
force, is realized in nature and if such temperatures existed in the early universe,
then there was the corresponding phase transition at TGUT ∼ 1016 GeV. But it
could also be possible that the maximum temperature of the universe was below
TGUT and the Grand Unification phase did not exist. This is in fact the case in some
models of inflation, where the reheating temperature is below TGUT (cf. e.g. [44]).

4As a standard scenario and for simplicity here the contribution of chemical potentials to the en-
tropy density is neglected and s ∼= 7.04nγ after electron-positron annihilation is used (cf. Sec. 3.3).
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Fig. 2.1: Stages of the evolution of the universe (inspired by [44]).

At about TEW ∼ 100 GeV the electroweak transition takes place and results in the
present phase of broken electroweak symmetry, Higgs condensate and massive W-
and Z-bosons. Lattice results show that the electroweak transition in the SM is an
analytic crossover and no real phase transition [45–48]. At these temperatures all
particles propagate freely in the cosmic plasma. The subsequent QCD transition
(or smooth crossover) is the transition from freely propagating quarks and gluons to
hadronic matter, where they are confined in colorless bound states. The transition
temperature is determined by the energy scale of strong interactions and is about
TQCD ∼ 150 MeV. A very important consequence of this confinement is the huge
change in the effective relativistic degrees of freedom g∗s(T ), (cf. Sec. 7.4 and [49]).
As g∗s(T ) enters the equation of state, i.e., the fundamental relationship among
thermodynamic parameters of a system in thermal equilibrium, it influences the
expansion rate of the universe by changing the energy density. The nature of this
transition, whether it is of first or second order or if it is a smooth crossover, is
of great cosmological interest, as local inhomogeneities might be produced and be
detectable today.
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Matter effects suppress neutrino flavor oscillations in the early universe until Tosc ∼
10 MeV. At T ∼ 1 MeV neutrinos decouple from the cosmic plasma and propagate
freely through the universe (cf. Sec. 2.3). After decoupling the neutrinos are not in
thermal contact with the surrounding plasma. When the temperature drops below
the mass of the electron, electrons and positrons annihilate and their energy density
is transferred to the photons and the effective relativistic degrees of freedom change.
This yields the neutrino temperature today Tν = (4/11)1/3Tγ. Thus, there also
exists a Cosmic Neutrino Background (CνB) with Tν = 1.9 K, which in principle
could be measured today, but is out of reach with current experimental possibilities.

The neutrino density, or to be more specific, the effective number of neutrino
species Neff in the early universe affects the expansion rate through its contribution
to the total energy density and also affects the proton-to-neutron ratio (cf. Sec. 4.1).
Thus, Neff is an important parameter for the following phase of Big Bang Nucleosyn-
thesis (BBN). The onset of BBN is roughly determined by the scale of the binding
energies in nuclei (1− 10 MeV) but is delayed by high energetic photon interactions
to T ∼ 0.1 MeV. Before BBN protons and neutrons were free in the cosmic plasma,
during BBN neutrons and protons were captured into nuclei. As a result, light nu-
clei up to lithium-7 were formed in the primordial plasma. Heavier elements were
not synthesized until stellar evolution. The BBN epoch lasted from temperatures
TBBN ∼ 50 keV− 100 keV and it is the earliest epoch studied directly so far [50].

Going down in temperature, shortly before recombination at about Trm ∼ 0.8

eV is the transition from the radiation to matter dominated era of cosmological
expansion. During Recombination at Tr ∼ 0.3 eV free electrons and nuclei combined
to form neutral atoms, mainly hydrogen. Before recombination photons scattered
off free electrons in the baryon-electron-photon plasma and afterwards the ordinary
matter was in the state of a neutral gas, which was transparent to photons and
they decoupled. The relic photons provide a snapshot – the cosmic microwave
background – of the universe at this time. The CMB shows a very high degree of
isotropy besides small temperature fluctuations, which mirrors that the universe
was highly homogeneous at recombination. These small CMB perturbations are a
result from quantum fluctuations of the inflaton. These inflaton perturbations led
to structure formation: first stars, then galaxies and clusters of galaxies.

The effect of lepton asymmetries on BBN and the CMB and the resulting con-
straints on primordial lepton asymmetries will be discussed in detail in Sec. 4.1.

At about T ∼ 0.38 meV the transition from the matter to dark energy dominated
era, i.e., to the accelerated expansion of the universe, occurred.



2.3 Interaction Rates 11

� �� ��� ���� ��
�

��
�

��
-�

�

��
�

��
�

��
��

��
��

��
��

��
��

� [���]

Γ
[�
/�
]

Fig. 2.2: Hubble rate H and weak (Γw), electromagnetic (Γem), and strong (Γs)
interaction rates for relativistic particles as functions of the temperature of the early
universe. Γs is plotted for the relativistic quark-gluon plasma at constant nf = 4.
Also shown are the neutrino oscillation frequencies f21 and f32. Adapted from [33].

2.3 Interaction Rates

For this thesis, it is of great interest at which times or temperatures during the
evolution of the universe different particle interactions are in thermal, i.e., in kinetic
and chemical equilibrium (cf. Sec. 3.2), and when they fall out of equilibrium. As
long as particle interactions occur faster than the Hubble time tH = 1/H they stay in
equilibrium. We will show, in general thermal equilibrium is a good approximation
for particle interactions in the early universe.

For a rough estimation of the order of the typical interaction rates and the sake of
simplicity, we consider only massless, relativistic particles in the early universe. The
Hubble rate in the relativistic matter dominated epoch (T ≳ 0.8 eV) is according to
the Friedmann equation given by

H =
T 2

MPl∗
≃ 1.66

√
g∗s

T 2

MPl
∼ T 2

MPl
, (2.7)

with the effective Planck mass MPl∗ =
√

90
8π3g∗s

MPl ≈ 0.6√
g∗s
MPl.

Approximating weak interactions by Fermi theory, which is a good approximation
at low temperatures and breaks down at T ≳ mW/3, with the W-boson mass mW ,
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we get for the order of the weak interaction rate

Γw ∼ G2
FT

5 , (2.8)

with the Fermi coupling constant GF = 1.1663787(6)× 10−5 GeV−2 [3].

The order of the electromagnetic interaction rate is given by

Γem ∼ α2
emT , (2.9)

with αem = e2/(4π) the fine-structure constant, while the strong interaction rate is
roughly given by

Γs ∼ α2
s(T )T . (2.10)

The running strong coupling constant αs(T ) in perturbative QCD (pQCD), i.e., con-
sidering a quark-gluon plasma, can be determined according to the renormalization
group equation (RGE)

µ2
R

dαs

dµR

= β(αs) = −
(
b0α

2
s + b1α

3
s + . . .

)
, (2.11)

with µR the unphysical renormalization scale. b0 = (33 − 2nf )/(12π), with nf the
number of light quark flavors with mq ≪ µR, is referred to as the 1-loop β-function
coefficient, b1 is the 2-loop β-function coefficient, and so on (for more details see
the review on Quantum Chromodynamics in [3]). At 1-loop the RGE can be solved
analytically:

αs(Q
2) =

αs(µ
2
R)

1 + b0αs(µ2
R) ln

(
Q2

µ2
R

) . (2.12)

Experimentally the strong coupling constant is determined at fixed energy scale,
usually the Z-boson massmZ . The current world average value is αs(m

2
Z) = 0.1181±

0.0011 [3]. We used this value and Eq. (2.12) to get a rough estimate for the behavior
of the strong interaction rate.

In Fig. 2.2 the evolution of these interaction rates is depicted. We see that thermal
equilibrium holds for relativistic SM particles until T ∼ 1 MeV when the weak
interaction rate drops below the Hubble rate and neutrinos decouple.

For comparison, in Fig. 2.2 we also show the neutrino oscillation frequencies

fij ∼
∆m2

ij

4πT
, (2.13)

with ∆m2
ij ≡ (m2

i −m2
j) and the numerical values ∆m2

21 = (7.53± 0.18)× 10−5 eV2

and ∆m2
32 = (2.51± 0.01)× 10−3 eV2 (normal mass ordering) [3]. We see that neu-

trino oscillations are suppressed until Tosc ∼ 10 MeV due to faster weak interactions.
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3 Thermodynamics

Thermodynamics addresses macroscopic properties of macroscopic systems and tran-
sitions between equilibrium states. The work demonstrated in this thesis is build
on thermodynamic principles. For this reason, we will elaborate on the significant
thermodynamic concepts used throughout this thesis and their application to the
physics of the early universe. We will introduce the grand canonical ensemble and
its applicability to the early universe in Sec. 3.1. In Sec. 3.2 we will discuss thermo-
dynamic variables and their dependence on chemical potentials in detail. We will
give definitions on the particle asymmetries in the early universe in Sec. 3.3. Then
in Sec. 3.4 we will shortly introduce the basic behavior of thermodynamic variables
at phase transitions, which will be important for this thesis.

3.1 Grand Canonical Ensemble

Statistical mechanics describes physical properties of systems which consist of nu-
merous particles, like gases, fluids, and solids. It relates microscopic particle proper-
ties to the macroscopic description of a system, i.e., averaged characteristics: tem-
perature, pressure, total energy, heat capacity, conductivity, susceptibilities, etc.
The grand canonical ensemble is used to describe an ensemble of particles which are
in thermal equilibrium with a large reservoir or itself if the system is large enough.
The thermodynamic variables of the grand canonical potential are chemical poten-
tial µ, temperature T , and volume V . The chemical potential is the energy needed
for adding a particle to the equilibrated system.

As already mentioned, thermal equilibrium is a good approximation for particles
in the early universe until T ≃ 1 MeV, see Fig. 2.2. Therefore, we can use the grand
canonical ensemble to describe conserved charges and their fluctuations in the early
universe. The corresponding partition function reads

Z = exp
(
−Ω

T

)
= Tr

{
exp

[
β

(∑
a

µaNa −H

)]}
, (3.1)

with Ω the grand canonical potential, Na the conserved net charges with correspond-
ing chemical potentials µa, H the Hamiltonian describing the SM particles and their
interactions conserving Na, and β = 1/T . For temperatures below the electroweak
transition TEW ∼ 100 GeV and above neutrino oscillations Tosc ∼ 10 MeV no B and
L violating processes in the SM have been observed so far. Thus, the Hamiltonian
H in the partition function is the full SM Hamiltonian HSM.
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3.2 Thermodynamic Variables

Particle Number, Energy, and Pressure

The distribution function of an ideal gas is defined as a density function in the phase
space of the corresponding particle. Because of the homogeneity and isotropy of the
universe, the distribution function of a particle in the universe cannot be a function
of space r or the direction of the momentum p. Thus, it is of the form

f = f(|p|, t) . (3.2)

Considering particle massesm and degrees of freedom g, one can derive the following
quantities:

number density n = g

∫ d3p
(2π)3

f(|p|, t) , (3.3)

energy density ϵ = g

∫ d3p
(2π)3

√
|p|2 +m2f(|p|, t) , (3.4)

pressure p =
1

3
g

∫ d3p
(2π)3

|p|2√
|p|2 +m2

f(|p|, t) , (3.5)

with the energy of a particle E =
√
|p|2 +m2 according to special relativity. The

particle degrees of freedom g are for example, g = 2 for massive leptons, g = 1 for
neutrinos and g = 6 for quarks, counting particles and antiparticles separately.5

In kinetic equilibrium the distribution function of a particle is given by

f(E, µ, T ) = nF,B(E − µ) =
1

e(E−µ)/T ± 1
, (3.6)

where + corresponds to fermions (Fermi-Dirac distribution) and − corresponds to
bosons (Bose-Einstein distribution). These distribution functions depend on the en-
ergy of the particle E, the temperature T and the chemical potential of the particle
µ. If a particle does not carry any conserved charge, the corresponding chemical po-
tential vanishes, µ = 0. Since photons and gluons carry no conserved charges, their
chemical potentials are zero, µγ = µg = 0. Thus, with the additional substitution

5We would like to emphasize that our notation for the degrees of freedom gi differs from the one
often used in textbooks gi, like in [51]. We count particles and antiparticles separately, whereas
textbooks often combine them. Thus there is a factor of 2 difference between our counting gi and
the other one gi = 2gi (i.e. gi = 4 for massive leptons, gi = 2 for neutrinos and gi = 12 for quarks).
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|p| =
√
E2 −m2, Eqs. (3.3)–(3.5) become:

n(E, µ, T ) = g

2π2

∫ ∞

m

dEE
√
E2 −m2

e(E−µ)/T ± 1
, (3.7)

ϵ(E, µ, T ) =
g

2π2

∫ ∞

m

dEE
2
√
E2 −m2

e(E−µ)/T ± 1
, (3.8)

p(E, µ, T ) =
1

3

g

2π2

∫ ∞

m

dE (E2 −m2)
3
2

e(E−µ)/T ± 1
. (3.9)

In general, these integrals cannot be solved analytically. But for relativistic parti-
cles, i.e., T ≫ m, and nonrelativistic particles, i.e., T ≪ m, the formulas can be
simplified.6 For the relativistic case, i.e., T ≫ m, we can set the mass to zero and
expand in µ/T :

n =

{
1
π2 ζ(3)gT

3 + 1
6
gT 2µ+O(Tµ2) , bosons

3
4π2 ζ(3)gT

3 + 1
12
gT 2µ+O(Tµ2) , fermions

, (3.10)

ϵ =

{
π2

30
gT 4 + 3

π2 ζ(3)gT
3µ+ 1

4
gT 2µ2 +O(µ3) , bosons

7
8
π2

30
gT 4 + 9

4π2 ζ(3)gT
3µ+ 1

8
gT 2µ2 +O(µ3) , fermions

, (3.11)

p = ϵ/3 , (3.12)

where ζ(3) =
∑∞

n=1(1/n
3) ≈ 1.202 is the Riemann zeta function. In the case of

vanishing chemical potential µ = 0 we get for the average particle energy in kinetic
equilibrium

⟨E⟩ = ϵ

n =

{
π4

30ζ(3)
T ≈ 2.701T , bosons

7π4

180ζ(3)
T ≈ 3.151T , fermions

. (3.13)

In the nonrelativistic limit T ≪ m and T ≪ m− µ, the second condition leads to a
dilute system, i.e. occupation numbers ≪ 1, which is usually satisfied in cosmology
when the first condition is satisfied, disregarding systems of high density like, e.g.,
white dwarfs, neutron stars or other hypothetical compact stars like pion stars [52].
In this limit one can approximate

e
E−µ
T ± 1 ≈ e

E−µ
T , (3.14)

6For bosons the chemical potential cannot be greater than the particle mass, as the distribution
function given by Eq. (3.6) should be positive definite for all energies. Thus the formulas for
relativistic bosons only apply for µi ≪ mi ≪ T ⇒ µi

T ≪ 1 and in the case that no Bose-Einstein
condensate forms.
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which leads to Maxwell-Boltzmann statistics for the distribution function f which
is the same for bosons and fermions. With E ≈ m + p2

2m
the distribution function

looks like

f(p, µ, T ) ≈ exp
(
−m
T

+
µ

T
− p2

2mT

)
. (3.15)

Thus, the thermodynamic variables read in the nonrelativistic limit T ≪ m:

n = g

(
mT

2π

) 3
2

e−
m−µ
T , (3.16)

ϵ = n
(
m+

3T

2

)
, (3.17)

p = nT (≪ ϵ) , (3.18)

⇒ ⟨E⟩ = m+
3T

2
. (3.19)

For a system in chemical equilibrium we can find relations between the chemical
potentials of different particle species according to the reaction formulas, as

a+ b↔ c+ d (3.20)
⇒ µa + µb = µc + µd . (3.21)

In particular, in chemical equilibrium annihilation and pair production processes are
in equilibrium. This means that the chemical potentials of particles and antiparticles
are equal in magnitude and opposite in sign, i.e., µī = −µi due to µi + µī =

2µγ = 0. All chemical potentials can be expressed in terms of chemical potentials
of conserved charges and there are as many independent chemical potentials as
independent conserved charges in a system (cf. Sec. 7.1).

The net number density of a particle species, i.e., the particle asymmetry, is given
by the number density of a particle i minus the density of its antiparticle ī:

ni = ni − nī

=
gi
2π2

∫ ∞

mi

dEE
√
E2 −m2

i (fi − fī)

=
gi
2π2

∫ ∞

mi

dEE
√
E2 −m2

i

(
1

e(E−µi)/T ± 1
− 1

e(E+µi)/T ± 1

)
.

(3.22)

We obtain exact, analytic results in the relativistic (cf. Eqs. (A.11), (A.12)) and
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nonrelativistic limit (according to Eq. (3.16)):

ni(T, µi)
(T≫mi)
=


gi
6π2T

3
[
2π2 µi

T
−
(
µi

T

)3]
, bosons

gi
6π2T

3
[
π2 µi

T
+
(
µi

T

)3]
, fermions

(3.23)

(T≪mi)
= 2gi

(
miT

2π

) 3
2

sinh
(µi

T

)
exp

(
−mi

T

)
. (3.24)

The total energy density and total pressure of a particle species,

ϵtot,i = ϵi + ϵī

=
gi
2π2

∫ ∞

mi

dEE2
√
E2 −m2

i

(
1

e(E−µi)/T ± 1
+

1

e(E+µi)/T ± 1

)
,

(3.25)

ptot,i = pi + pī

=
1

3

gi
2π2

∫ ∞

mi

dE
(
E2 −m2

i

) 3
2

(
1

e(E−µi)/T ± 1
+

1

e(E+µi)/T ± 1

)
,

(3.26)

can also be solved analytically in the relativistic limit using Eqs. (A.11) and (A.12)
and in the nonrelativistic limit using Eqs. (3.17) and (3.18):

ϵtot,i
(T≫mi)
=

giT
4
[
π2

15
+ 1

2

(
µi

T

)2 − 1
8π2

(
µi

T

)4]
, bosons

giT
4
[
7π2

120
+ 1

4

(
µi

T

)2
+ 1

8π2

(
µi

T

)4]
, fermions

(3.27)

(T≪mi)
= 2gi

(
miT

2π

) 3
2

cosh
(µi

T

)
exp

(
−mi

T

)(
mi +

3

2
T

)
, (3.28)

ptot,i
(T≫mi)
= ϵtot,i/3 , (3.29)

(T≪mi)
= 2gi

(
miT

2π

) 3
2

cosh
(µi

T

)
exp

(
−mi

T

)
T , (3.30)

If we have a closer look at the behavior of the particle net number density n, en-
ergy density ϵ and pressure p, we see that they fall exponentially as the temperature
drops below the mass of the particle for small chemical potentials. As the universe
expands and cools down, particles and antiparticles annihilate and cannot be pro-
duced in pairs again. The annihilation temperature is roughly Tann ≃ mi/3 and the
annihilation process is not instantaneous but takes several Hubble times (cf. [51]).
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Entropy and Effective Relativistic Degrees of Freedom

We can derive an expression for the entropy S in co-moving volume with the first
law of thermodynamics,

TdS = d(ϵV ) + pdV − µdN . (3.31)

Hence, we get for the entropy density

s =
ϵ+ p− µn

T
, (3.32)

with n = N/V and where we implicitly sum over particles, antiparticles and different
particle species, i.e., (using µī = −µi)

s =
∑
i

ϵi + ϵī + pi + pī − µi(ni − nī)

T
(3.33)

=
∑
i

ϵtot,i + ptot,i − µini

T
. (3.34)

Thus, we can determine the entropy density of a system with the help of the formulas
for ni, ϵtot,i and ptot,i using Eqs. (3.22), (3.25), and (3.26), respectively.

Considering now nonvanishing chemical potentials in the early universe in the
relativistic limit, T ≫ m, leads to the analytic result for the total entropy density

s(T )
(T≫mi)
=

2π2

45
T 3g∗s(T, µ) =

2π2

45
T 3 (g∗s +∆g∗s) , (3.35)

where g∗s(T, µ) counts the effective relativistic degrees of freedom, for which we sum
over all relativistic bosonic and fermionic degrees of freedom

g∗s =
∑

i=bosons
2gi

(
Ti
T

)3

+
7

8

∑
i=fermions

2gi

(
Ti
T

)3

,

∆g∗s =
15

4π2

∑
i=bosons

2gi

(
Ti
T

)3(
µi

Ti

)2

+
15

8π2

∑
i=fermions

2gi

(
Ti
T

)3(
µi

Ti

)2

.

(3.36)

∆g∗s denotes a shift in the entropy density due to nonvanishing chemical potentials.
The number of effective relativistic degrees of freedom itself depends on the tempera-
ture, since particle species annihilate with decreasing temperature and thus g∗s(T, µ)
becomes smaller. At early times in the evolution of the universe all particles have a
common temperature, but for temperatures T ≲ 1 MeV the neutrinos decouple from
the plasma and after electron-positron annihilation this leads to Tν = (4/11)1/3Tγ.
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Analogously, we can derive the effective relativistic degrees of freedom according
to the total energy density, where we sum over all relativistic bosonic and fermionic
particles and antiparticles:

ϵtot =
∑
i=b,f

ϵtot,i (3.37)

(T≫mi)
=

π2

30
T 4 (g∗ϵ +∆g∗ϵ) , (3.38)

with the effective relativistic degrees of freedom according to Eq. (3.27),

g∗ϵ =
∑

i=bosons
2gi

(
Ti
T

)4

+
7

8

∑
i=fermions

2gi

(
Ti
T

)4

,

∆g∗ϵ =
15

4π2

∑
i=bosons

2gi

(
Ti
T

)4
[
2

(
µi

Ti

)2

− 1

2π2

(
µi

Ti

)4
]

+
15

8π2

∑
i=fermions

2gi

(
Ti
T

)4
[
2

(
µi

Ti

)2

+
1

π2

(
µi

Ti

)4
]
.

(3.39)

Note that in general ∆g∗ϵ ̸= ∆g∗s and thus g∗ϵ(T, µ) ̸= g∗s(T, µ). For small
chemical potentials and when all particles have a common temperature, g∗ϵ(T, µ) ≃
g∗s(T, µ) for a wide range of temperatures (cf. [49]). In total, nonvanishing chemical
potentials will enhance the number of effective relativistic degrees of freedom. This
will be discussed in detail in Sec. 7.4.

3.3 Particle Asymmetries in the Early Universe

As the entropy density s is conserved in co-moving volume during the expansion
of the universe, it is important for describing conserved quantities like conserved
number densities, i.e., charges, during the evolution of the universe. The entropy
density and the number densities scale as a−3. Thus, if a quantity or charge X is
conserved, the specific asymmetry,

x ≡ nX

s
, (3.40)

remains constant during the evolution of the universe.

Very often asymmetries, like the baryon asymmetry, are referred to in terms of
the number-to-photon ratio

ηX ≡
nX

nγ

=
nX − nX̄

nγ

. (3.41)
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The total photon density is according to Eq. (3.10) given by nγ = 2ζ(3)
π2 T 3. Then

with Eq. (3.35) we can express the entropy density in terms of the photon density:

nγ =
45ζ(3)

π4g∗s(T, µ)
s ≃ 1

1.80g∗s(T, µ)
s . (3.42)

Thus, the number-to-photon ratio can be related to the specific asymmetry,

ηX =
nX

nγ

= 1.80g∗s(T, µ)
nX

s
. (3.43)

For a conserved quantity its number-to-photon ratio does not remain constant be-
cause g∗s changes with temperature. After electron-positron annihilation (T ∼
0.5 MeV) g∗s = 3.909 is constant, which yields s ∼= 7.04 nγ at vanishing chemi-
cal potentials.

After the electroweak crossover TEW ∼ 100 GeV and before neutrino oscillations
start at Tosc ∼ 10 MeV, the baryon number B and individual lepton flavor numbers
Lα are conserved, since so far no processes violating lepton or baryon number have
been observed. Moreover, the electric charge is conserved and we assume charge
neutrality of the universe, i.e., Q = 0, which seems to be reasonable due to the
lack of currents on large scales (see [17] for an upper limit). With the particle net
number density ni, which is in thermal and chemical equilibrium given by Eq. (3.22),
we obtain five local conservation laws for the specific lepton flavor asymmetries lα,
specific baryon asymmetry b and electric charge density q:

lα =
nLα

s
=
nα + nνα

s
, α ∈ {e, µ, τ} , (3.44)

b =
nB

s
=
∑
i

Bini

s
, Bi = baryon number of species i , (3.45)

q = 0 =
nQ

s
=
∑
i

Qini

s
, Qi = electric charge of species i . (3.46)

3.4 Phase Transitions

Phase transitions occur in various physical systems. In general, a system, e.g.,
matter, exhibits different phases which can be distinguished by their symmetries and
by their thermal, mechanical, and electromagnetic properties. External conditions,
like pressure, temperature, or electric and magnetic fields, determine which phase
is existent. Changing the external conditions can lead to a phase transition in the
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Fig. 3.1: Sketch of the behavior of the chemical potential µ, the entropy S and the
heat capacity CP for constant pressure at a first- and second-order phase transition,
respectively.

physical system. At a phase transition an applicable thermodynamic potential, e.g.,
the Gibbs free energy G, is not an analytic function of an order parameter.

Paul Ehrenfest classified phase transition in the following way: A transition for
which the n-th derivative of the thermodynamic potential is discontinuous is a n-th
order phase transition, all lower derivatives are continuous. Thus, at a first-order
phase transition the first derivative of the thermodynamic potential is discontinuous.
At a second-order phase transition the first derivative is continuous but the second
derivative is discontinuous or possesses a singularity. Another possibility to classify
phase transitions is by latent heat. A first-order phase transition is a transition
which involves a jump in the entropy. The entropy difference between the two
phases corresponds to a thermal energy Q = T (S2 − S1), the so called latent heat.
In contrast, phase transitions which do not involve latent heat are called continuous
or of second or higher order.
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At an equilibrium phase transition, the distinct phases of a homogeneous, physical
system have to be in thermodynamic equilibrium with each other. This means,
equality in the temperature T1 = T2, the pressure p1 = p2, and the chemical potential
µ1 = µ2 for the two phases. For simplicity, let us consider a one-component system.
In this case, the chemical potential is the same as the partial Gibbs free energy:
dG = V dp − SdT +

∑
i µidNi with µi = ∂G/∂Ni|p,T,Nj ̸=i

at constant pressure and
temperature. Here µi and Ni with i = 1, 2 are the chemical potential and number
of particles in phase 1 or 2, respectively. The chemical potential features the same
behavior at a phase transition as the thermodynamic potential, i.e., the Gibbs free
energy. Accordingly, the entropy is given by the first derivative

S = −∂G
∂T

∣∣∣∣
p,N

= −N ∂µ

∂T

∣∣∣∣
p,N

. (3.47)

The second derivative can be described by the heat capacity

Cp = T
∂S

∂T

∣∣∣∣
p,N

= −T ∂
2G

∂T 2

∣∣∣∣
p,N

. (3.48)

Figure 3.1 shows a sketch of the behavior of the chemical potential, entropy, and
heat capacity for a first- and a second-order phase transition, respectively. For a
first-order phase transition the chemical potential is continuous but exhibits a kink
at the transition temperature Tc. The entropy exhibits a jump, which involves the
release or need of latent heat, and the heat capacity diverges. A second-order phase
transition is reflected by a kink in the entropy and a jump in the heat capacity.
However, more often a second-order phase transition does not exhibit a kink in the
entropy but a vertical tangent at Tc. The specific heat then diverges at Tc with a
characteristic λ-shaped form, which is why these transitions are called λ-transitions
(see Fig. 3.1). For λ-transitions, the phase transition can already be anticipated by
the behavior of Cp in the vicinity of Tc. For these cases a critical exponent can be
defined which describes the divergence behavior.7

In the early universe the external parameter, which changes and drives phase
transitions, is the expansion, or rather the decreasing temperature. In Chapter 5
the QCD transition will be discussed in some more detail. For a more detailed
discussion about phase transitions in general see, e.g., Ref. [53].

7An example for a material which features a λ-transition is 4He.
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4 Large Lepton Asymmetries

In this Chapter we will elaborate on some aspects of lepton asymmetries: constraints
due to BBN and CMB (Sec. 4.1) and possible production mechanisms of large pri-
mordial lepton asymmetries (Sec. 4.2).

The matter-antimatter asymmetry in the universe is an important aspect of cos-
mological evolution. One big problem in cosmology and particle physics is to explain
the very existence of the matter-antimatter asymmetry as well as its value. It is not
intuitive that the initial condition of the universe is not baryon-symmetric. In the
SM particle asymmetries would have been diluted away by the inflationary expan-
sion and washed out during the following reheating phase by the increasing entropy
density in the universe. Thus primordial particle asymmetries have to be produced
after the inflationary phase of the universe. The requirements for generating baryon
asymmetry are given by the three Sakharov conditions [54]:

• Baryon number B violation,

• C- and CP -symmetry violation and

• interactions out of equilibrium.

If we start with a matter symmetric phase at high temperatures, the baryon asym-
metry generated through C and CP violating processes and deviations from thermal
equilibrium in the SM fails to explain the observed value and is about eigth orders
of magnitude to small [4]. However, there are many possible mechanisms of baryon
asymmetry generation. One is baryogenesis via leptogenesis [5].

The lepton asymmetry l, defined in analogy to the baryon asymmetry b, is a key
parameter to better understand the origin of the matter-antimatter asymmetry. One
can imagine scenarios in which asymmetries in baryons, leptons or both are gener-
ated in the first place. The idea of leptogenesis is to create a lepton asymmetry (cf.
[55, 56]). Before the electroweak transition at TEW ∼ 100 GeV sphaleron processes,
which violate baryon and lepton number such that B − L is conserved, partly con-
vert a primordial lepton asymmetry to a baryon asymmetry. In the SM this leads
to l = −(51/28)b [6], which is the reason for suggesting l ≃ O(b). However, there
might be an (almost) cancellation in the sum of different flavor asymmetries due
to different signs, which does not necessarily imply lα ≃ O(b). The specific lepton
flavor asymmetries might be orders of magnitude larger while their sum, the total
specific lepton asymmetry l, is on the order of the specific baryon asymmetry. Fur-
thermore, there exist also models that predict a large lepton asymmetry nowadays,
i.e., |l| ≫ b, and there is no preference for either sign of l (see Sec. 4.2).
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4.1 Cosmological Constraints on Lepton Asymmetries

Observationally, the lepton asymmetry is only weakly constrained. The charge neu-
trality of the universe (see [17] for an upper limit) links the asymmetry in the charged
leptons to the tiny baryon asymmetry∑

α

nα − nᾱ

s
∼ nB − nB̄

s
, α ∈ {e, µ, τ} . (4.1)

As taus and muons annihilated during the evolution of the universe, nowadays,
the asymmetry between electrons and positrons is on the same order as the baryon
asymmetry. Nevertheless, a much larger lepton asymmetry could reside in the cosmic
neutrino background today, which cannot be detected directly. Constraints on the
neutrino asymmetry can only be inferred indirectly by measurements and analyses
of BBN and CMB.

As the asymmetry in charged leptons is negligible today, the total lepton asym-
metry is mainly given by the sum of the neutrino flavor asymmetries nνα , most
frequently expressed via the number-to-photon ratio

ηl ≈
∑
α

nνα

nγ

. (4.2)

For the specific neutrino asymmetries, assuming massless neutrinos, we obtain with
Eqs. (3.23) and (3.35) the following relations:

ηνα =
nνα

nγ

=
1

12ζ(3)

(
Tνα
Tγ

)3 [
π2ξνα + ξ3να

]
, (4.3)

lνα =
nνα

s
=

45

12π4g∗s(T, µ)

(
Tνα
Tγ

)3 [
π2ξνα + ξ3να

]
, (4.4)

lνα =
45ζ(3)

π4g∗s(T, µ)
ηνα ≈

1

1.80g∗s(T, µ)
ηνα , (4.5)

with the chemical potentials expressed through the dimensionless variable ξi = µi

Ti
.

In the last step in Eq. (4.5) we used Tνα/Tγ ≡ Tν/Tγ = (4/11)1/3 for all neutrino
flavors after electron-positron annihilation and ζ(3) ≈ 1.20206.

For calculating the specific lepton asymmetry from observational bounds of BBN
and CMB, we take the value of g∗s(T, µ) after electron-positron annihilation at
T ≲ 0.5 MeV according to Eq. (3.36):

g∗s(µ) = 2 +
7

8
6

(
Tν
Tγ

)3

+
15

8π2

∑
α

2

(
Tν
Tγ

)3

ξ2να

=
43

11
+

15

11π2

∑
α

ξ2να .

(4.6)



4.1 Cosmological Constraints on Lepton Asymmetries 25

This is a good approximation for obtaining the upper bound on the asymmetries as
for higher temperatures g∗s(T, µ) is larger.

Strong constraints on neutrino flavor asymmetries in the early universe stem from
BBN and the CMB due to the change of the effective number of neutrino species,
i.e., the number of relativistic species in the universe, called Neff. In the SM there
are three light active neutrinos. A deviation from this value is parametrized by
∆Neff = Neff − 3 and can be due to, e.g., light additional neutrinos or other addi-
tional relativistic particles which thermalized during the evolution of the universe.
Additional relativistic species increase the energy density of radiation through an
increase of the effective relativistic degrees of freedom ∆g∗ = 7/4∆Neff. In fact,
neutrinos are not completely decoupled at electron-positron annihilation. This and
finite-temperature effects raise the SM-value to ∆NSM

eff = 0.046 [57]. Considering
also neutrino oscillations yields ∆NSM

eff = 0.045 [58]. In addition, neutrino chemical
potentials increase the energy density of neutrinos according to Eq. (3.27):

ϵtot,να =
7

4

π2

30
T 4
να

[
1 +

30

7

(
ξνα
π

)2

+
15

7

(
ξνα
π

)4
]
. (4.7)

Comparing this to the total energy density, given in Eq. (3.38), the contribution of
neutrino chemical potentials to ∆Neff is

∆N ξ
eff =

∑
α

30

7

[(
ξνα
π

)2

+
1

2

(
ξνα
π

)4
]
. (4.8)

Irrespective of the sign, neutrino chemical potentials always induce an increase in
Neff.

In principle, the individual neutrino flavor asymmetries might be very different
in the first place. However, it has been shown that neutrino oscillations equilibrate
neutrino flavor asymmetries, which implies that they are approximately equal after
decoupling [19–21, 59]. As neutrino flavor oscillations are effective before BBN
and CMB, these analyses are blind to former, potentially unequal individual flavor
asymmetries. Nonetheless, recent analyses showed that flavor equilibrium may not
be reached, depending on the neutrino mixing angles and the size of the initial
neutrino flavor asymmetries, causing sizeable flavor asymmetries surviving neutrino
oscillations and thus lα ̸= l/3 [60–62].

We will use the concepts introduced here to calculate constraints on the lepton
flavor asymmetries in the following. A detailed pedagogical introduction to this
topic can also be found in [63].
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4.1.1 Big Bang Nucleosynthesis

The standard BBN scenario is in good agreement with astrophysical observations.
Thus, modifications due to neutrino asymmetries must be small enough to not
change the predictions of light element abundances too much. BBN is affected
by lepton asymmetries in two ways: On the one hand, the chemical potential of the
electron neutrino changes the neutron-to-proton ratio at the onset of BBN [64, 65]
(cf. Eq. (3.24)):

nn

np

≃ exp
[
−mn −mp − (µn − µp)

T

]
≃ exp

[
−mn −mp

T
− ξνe

]
, (4.9)

according to the equilibrium reaction p + e ⇌ n + νe ⇒ µp + µe = µn + µνe and
vanishingly small electron chemical potential.8 Thus, the neutron-to-proton ratio
will decrease for a positive chemical potential of the electron neutrino, which results
in a smaller primordial abundance of 4He, and vice versa. The change in the 4He-
abundance can be related to the change in the effective number of neutrino species
∆N

ξνe
eff ≃ −20ξνe [63]. On the other hand, lepton asymmetries lead to a faster

expansion of the universe which can be expressed by ∆N ξ
eff, given by Eq. (4.8). This

leads to an enhanced neutron-to-proton ratio during BBN and thus to a larger 4He-
abundance, as weak processes freeze out earlier. The first effect depends on ξνe and
its sign, whereas the second effect depends only on the absolute value of all neutrino
chemical potentials. Hence, a positive ξνe might lead to (partial) cancellation in the
total ∆Neff = ∆N ξ

eff +∆N
ξνe
eff .

In the absence of neutrino flavor oscillations the chemical potential of the elec-
tron neutrino can be constrained to −0.018 ≤ ξνe ≤ 0.008 (68% C.L.) [19]. This
leads, according to Eq. (4.4), to constraints on the specific electron neutrino lep-
ton asymmetry −0.002 ≤ lνe ≤ 0.001. Assuming full equilibration of three initially
different flavor asymmetries, i.e., ηνα ≃ ην/3, due to oscillations (with a mixing
angle sin2 θ13 = 0.04), the most stringent bound on the total neutrino asymmetry
is given by |ην | ≲ 0.1 (95% C.L.) [19] and thus |l| ≲ 0.01. A similar analysis leads
to −0.071 ≲ ην ≲ 0.054 (95% C.L.) and thus −0.010 ≲ l ≲ 0.008 [66]. Considering
only partial equilibration weakens the bounds for ξµ and ξτ and thus for the total
lepton asymmetry [62]. Furthermore, one should bear in mind that direct measure-
ments of light element abundances are subject to sizeable systematic uncertainties
as are constraints on lepton asymmetries derived thereby [18].

8Due to electric charge neutrality of the universe and the small baryon asymmetry we get
ne/s = np/s ∼ b ∼ 10−10 and thus, according to Eq. (3.23), the electron chemical potential is
small, µe/T ∼ 10−10.
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4.1.2 Cosmic Microwave Background

The CMB is influenced by large lepton asymmetries through modifications of the
temperature anisotropies by a change of Neff. Its value is constrained by observations
to be Neff = 2.99+0.34

−0.33 (95% C.L.) [42]. Thus, we have −0.34 ≲ ∆Neff ≲ 0.33 and
after subtracting ∆NSM

eff we get −0.385 ≲ ∆N ξ
eff ≲ 0.285. According to Eq. (4.8)

and assuming ξνα = ξν for all flavors, the constraint on the chemical potential
is |ξν | ≲ 0.465 and for the total lepton asymmetry |l| ≲ 0.049.9 Considering a not
equilibrated system, i.e., ξνµ = ξντ ̸= ξνe , and the BBN constraint on ξνe mentioned in
the previous Section, we get the constraints |ξνµ,τ | ≲ 0.568⇒ |lνµ,τ | ≲ 0.021 and for
the total lepton asymmetry |l| ≲ 0.041. Even though this bound is more stringent on
the total lepton asymmetry compared to the case of equal lepton flavor asymmetries,
we get some more freedom in fine-tuning the lepton flavor asymmetries such that we
can choose, e.g., lνµ = −lντ . This might lead to an impact on cosmological evolution
and possibly other observable consequences while keeping with the constraints on
the total lepton asymmetry and thus on the observed Neff (cf. Chapter 7).

A more sophisticated model fitting to Planck 2015 data [68] incorporates the
effect of neutrino chemical potentials on ∆Neff and on the 4He-abundance which
also influences the CMB [18]. Their constraints for equal lepton flavor asymmetries
are ξν = −0.002+0.114

−0.111 (95% C.L.) which imply |l| ≲ 0.012. This represents the
strongest constraints on the lepton asymmetry obtained from CMB data analysis so
far and we will consider this constraint for our calculations.

4.2 Production Mechanisms

A possible scenario of leptogenesis can be obtained via an extension of the SM by two
additional generations of massive right-handed neutrinos with degenerated masses
at the GeV-scale [5]. These right-handed neutrinos are coupled to the left-handed
lepton doublet whereby the active, i.e., SM, lepton number is transferred to right-
handed neutrino number.10 If one right-handed neutrino is out of equilibrium one
can generate an asymmetry in the active leptons.11

9Just recently, a study appeared where the same effect was investigated but with Planck 2013
data on Neff [67].

10Note, that the total number of active lepton number plus right-handed neutrino number is
conserved in the absence of further lepton number violating processes.

11Additionally, the mass differences and mixing of active neutrinos can be explained within this
model. If one also wants to explain DM by this model, one has to add a third right-handed (also
called sterile) neutrino, with a much lighter mass in the keV-range (cf. [69] for a review).
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One method to generate remnant lepton asymmetries which are larger than the
baryon asymmetry, is the production of lepton asymmetries after sphaleron processes
cease to be efficient [9, 10], i.e., at T < Tsph ∼ 130 GeV [70]. In a recent study
[10], it has been shown that late-time lepton asymmetry generation requires highly
degenerate right-handed neutrinos masses, ∆M/M ∼ 10−11, and small neutrino
Yukawa couplings |h| ∼ 10−8. An interesting observation is that all lepton flavor
asymmetries apparently reach the same constant value for T ≲ 15GeV. The remnant
lepton asymmetries are on the order lα > 10−7 ≫ b. At very low temperatures
T ≪ M/π an additional contribution to the lepton asymmetries can be generated
through the non-equilibrium decay of right-handed neutrinos [7, 8].

Another method is that large lepton asymmetries |l| ≳ 10−2 are produced well
above the electroweak scale, i.e., at T ≫ TEW. The electroweak symmetry breaking
occurs at much higher temperatures due to preexisting large lepton asymmetries and
sphaleron processes are suppressed. This results in a baryon asymmetry consistent
with observational bounds and an orders of magnitude larger lepton asymmetry [11–
16]. Large lepton asymmetries at very early times can, for example, be generated
through the Affleck-Dine mechanism via decaying supersymmetric partners of the
SM particles [71], or in Grand Unified Theories [14].
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5 Quantum Chromodynamics

Besides the generation of the matter-antimatter asymmetry, another important, yet
not well understood event in the early universe is the transition from freely propa-
gating quarks and gluons to hadrons. The cosmic QCD transition at approximately
10 µs after the Big Bang. This transition is accompanied with the most drastic
change in the effective relativistic degrees of freedom g∗s during the evolution of the
universe. The true kind of this transition is therefore of outermost interest for the
thermodynamics of the early universe.

The cosmic QCD transition, depending on its nature, might create observable
consequences. A first-order phase transition would result in a separation of cosmic
phases [34]. Bubbles of hadron gas are nucleated in the quark-gluon plasma, grow
and collide which produces gravitational waves [72, 73]. Furthermore, shrinking
quark droplets could remain at the end of the phase transition forming (strange)
quark nuggets [34] which could account for DM. Various other possible relics due
to a first- or second-order cosmic QCD transition have been studied in the past
like, e.g., magnetic fields, inhomogeneous BBN, black hole formation, QCD balls
as CDM, or CDM clumps generated by the QCD transition itself. However, all
have been ruled out to survive until today or are inconsistent with observational
bounds. For a detailed review on the cosmic QCD transition and possible relics see,
e.g., Ref. [33]. Independent of the nature of the transition, the specific behavior of
the universe at this transition, i.e., the change of the effective relativistic degrees
of freedom, modifies the primordial gravitational wave background. This could be
measured by pulsar timing arrays [37]. Furthermore, for a large electric charge
chemical potential, |µQ| ≥ mπ, pion condensation might occur in the early universe
[35, 36].

However, the calculation of many quantities in QCD turns out to be very difficult
owing to the intrinsic property of QCD, i.e., the running of the strong coupling
constant αs. The asymptotic freedom causes interactions between quarks and gluons
to become asymptotically weaker at higher energy densities and vice versa [74, 75].
This is the underlying reason for the cosmic QCD transition from the quark-gluon
plasma at high temperatures to the hadron gas at low temperatures.
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5.1 Lattice QCD

Due to the highly non-perturbative behavior of QCD (αs is close to unity at relatively
low temperatures), the only first-principle method to perform calculations at T ∼
TQCD is based on lattice QCD today. The other possibility is to rely on predictions
of effective models of QCD. The aim of lattice QCD is to understand the nature
of the QCD transition and to be able to determine the EoS, i.e., the fundamental
thermodynamic relation of QCD. Thus, one goal is to understand the QCD phase
diagram in the (µB, T ) plane.12

The idea of lattice QCD is to discretize the space-time on a four-dimensional
lattice and then going to finer and finer lattice spacings to perform a vanishing
lattice spacing, i.e., continuum limit, extrapolation. First lattice QCD studies of
strongly interacting matter at nonvanishing temperature have been performed in
the early 1980s [76–78]. It has been shown that for vanishing and small chemical
potentials the QCD transition of the SM is a crossover [27, 28] (see, e.g., [79] for a
review). The crossover or a potential phase transition should be related to chiral
symmetry restoration. Thus, one can determine the crossover temperature TQCD
(also often called pseudo-critical temperature) studying chiral observables, e.g., by
determining the inflection point of the chiral condensate ⟨ψ̄ψ⟩f = T

V
∂ lnZ
∂mf

, with ψ the
Dirac-spinor fields, or the peak of the chiral susceptibility χfg

m = ∂
∂mg
⟨ψ̄ψ⟩f , where

the quark flavors are denoted by f and g. For details on the determination of TQCD
see, e.g., Ref. [80, 81]. At vanishing chemical potential and physical quark masses
TQCD is according to the HotQCD collaboration given by [22]

TQCD(0) = (156.5± 1.5) MeV , (5.1)

and respectively TQCD(0) ≃ 147(2) − 165(5) MeV by the Wuppertal-Budapest col-
laboration [80].

The region of nonvanishing baryon chemical potential is however not accessible
with first principle lattice Monte Carlo calculations of the QCD partition function.
Present lattice QCD methods require taking a path integral with a measure which
includes a complex fermion determinant for finite baryon chemical potential, leading
to the infamous sign problem in lattice QCD [26, 29–31]. To access the region of
nonvanishing chemical potentials in order to better understand the QCD phase
diagram different extrapolation methods have been developed: The Taylor series

12In fact this is just a two-dimensional projection of the n + 1-dimensional diagram, where n

is the number of conserved charges and 1 is the temperature dimension. Considering only strong
interactions the conserved charges are baryon number B, electric charge Q, and strangeness S.
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Fig. 5.1: Sketch of the QCD phase diagram in the (µB, T ) plane. Solid lines denote
first-order phase transitions, the dotted line a crossover transition.

method [82, 83], the reweighting method [84], analytic continuation of imaginary
chemical potential for which no sign problem exists [85, 86], complexification of
the gauge fields and then using a complex Langevin algorithm [87, 88] or Lefschetz
thimbles [89] (see, e.g., [90] for a short review on different methods). In this thesis
we will restrict ourselves to the discussion of lattice QCD results obtained by the
Taylor series method, which is the state-of-the-art method and will be explained in
detail in Chapter 6. With this method it has been shown that the curvature of the
transition line TQCD(µB), separating confined from deconfined phase in the QCD
phase diagram, is negative and surprisingly small [22, 91]. Recently, the application
of lattice QCD for cosmology has been studied, regarding the change of the effective
degrees of freedom and the topological susceptibility which can be used to predict
the dark matter axion’s mass [92].

For a pedagogical review on lattice QCD at finite temperatures and densities see,
e.g., Ref. [93].

5.2 QCD Phase Diagram

In Fig. 5.1 the state-of-the-art conception of the QCD phase diagram in the (µB, T )

plane is sketched. At high temperatures and/or densities, i.e., chemical potentials,
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there is the phase of freely propagating quarks and gluons, the quark-gluon plasma.
At low temperatures and/or densities quarks and gluons are confined into hadrons
and we have a hadron gas. Effective models of QCD, like the Nambu–Jona-Lasinio
model [23], predict a first-order chiral transition for vanishing temperatures and
large baryon chemical potential µB > mN , with mN the nucleon mass. For this
reason, it is speculated that there might exist a critical line in the (µB, T ) plane of
the QCD phase diagram, which describes a first-order phase transition between the
two phases [24]. This line is expected to end in a second-order critical endpoint, as
for large temperatures and vanishing chemical potentials the transition is a smooth
crossover, which is known by lattice simulations [25, 26]. Lattice calculations at finite
densities aim to find the location of the critical endpoint or at least determine the
region, for which the critical endpoint is disfavored by not seeing any hints of a phase
transition behavior in the studied chiral observables. Roughly speaking a critical
endpoint is disfavored for µB/T ≲ 2 [94]. More details on the search for the location
of a possible critical endpoint are given in Chapter 8. Also pictured in Fig. 5.1 is the
first-order liquid-gas transition of nuclear matter [95, 96]. At very large chemical
potentials, i.e., baryon densities, there is the phase of color superconductivity (not
shown in Fig. 5.1), which might be present in compact stars as, e.g., neutron stars
and its existence might be tested by their observations (see, e.g., [97] for a review).

In the sketch of the QCD phase diagram in Fig. 5.1, one can also trace how
the baryon chemical potential varied during the evolution of the universe, i.e., the
cosmic trajectory in the (µB, T ) plane. Actually, the cosmic trajectory lies in a
5 + 1-dimensional space of chemical potentials for the conserved charges B, Q, Lα,
and temperature. It is commonly assumed that the cosmic trajectory passes TQCD
at vanishing chemical potentials and proceeds to µB = mN , and µQ ≈ µLα ≈ 0 at
me ≪ T ≲ mN (cf., e.g., [2]). As at low temperatures adding a baryon to the particle
content of the universe requires the energy of the rest mass of the nucleus, i.e., proton
or neutron assuming mp ≈ mn. However, it has been shown that for |l| ≫ b the
baryon and charge chemical potentials become on the order of µB ∼ µQ ∼ lTQCD
[2]. Thus, for large lepton asymmetries the cosmic trajectory will be shifted towards
larger chemical potentials and maybe into the region of a possible first-order QCD
transition.

In the following, the scenario of l = −(51/28)b and equally distributed asymme-
tries between the lepton flavors will be referred to as the standard scenario. In
Chapter 7 we will present the first precise calculation of the standard cosmic tra-
jectory and the effect of large lepton asymmetries accounting for strong interaction
effects around TQCD [1].
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The QCD phase diagram is not only tested by theoretical attempts but also by
experiments. Heavy ion experiments have been built up with the goal to explore the
transition to the quark-gluon plasma. The Large Hadron Collider (LHC) at CERN,
and previously its precursors, investigates high energy heavy ion collisions which
are probed with the ALICE experiment. The conditions at the LHC (µB ≈ 0) are
close to the standard scenario in the early universe. However, the main difference
between heavy ion collisions and cosmology is the time scale of the QCD transition.
In cosmology the QCD transition lasts 10−5 s whereas in the laboratory it lasts only
10−23 s [33]. At the Relativistic Heavy Ion Collider (RHIC) the Beam Energy Scan
program is dedicated to explore the phase diagram at different values of the baryon
chemical potential and to find evidence for a second-order critical endpoint and a
first-order transition line. For a recent review on experimental tests of the QCD
phase diagram see, e.g., Ref. [98].

5.3 Perturbative QCD

At very high energies, the strong coupling constant αs becomes small and the tech-
niques of perturbation theory, i.e., an expansion in small αs, can be applied to
compute different observables of QCD and in particular the thermodynamic poten-
tial. However, a simple weak coupling expansion for finite-temperature field theories
suffers from poor convergence behavior at T ∼ TQCD. This is due to the fact that at
high temperatures one has to consider plasma effects and cannot just consider mass-
less particle states (see, e.g., [99] for a review). Thus improved perturbative theories
have been applied. One approach is Hard Thermal Loop (HTL) perturbation theory
which is known up to next-to-next-to-leading order in the massless limit [100] and
recently the quark mass dependence has been studied up to next-to-leading order
[101] (for an overview see, e.g., [102]). Another method is dimensional reduction
(DR) [103]. For massless particles, the perturbative expansion has been calculated
up to O(g6 ln(1/g)) [104], where g is the renormalized strong coupling αs ≡ g2/(4π),
which has been extended to finite temperature and chemical potentials [105–107].
The effect of finite quark masses up to O(g2), while considering gluonic contributions
up to O(g6 ln(1/g)), has been studied in [49]. Results obtained by both improved
pQCD methods are in agreement with lattice QCD results down to temperatures of
about a few TQCD. A recent comparison of lattice QCD results with HTL and DR
results obtained agreement even down to T ∼ 250 MeV [108].

At very high temperatures, T ≫ TQCD, strong interactions should be negligible and
the QCD part of the SM, i.e., quarks and gluons, should adequately be described
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by an ideal gas of noninteracting particles. Due to considerably strong gluonic
interactions up to very high temperatures [105, 109], the ideal gas limit is however
not reached until T ∼ 1 GeV (see Sec. 7.4).

In the following Chapters we will use the results for some thermodynamic quanti-
ties (pressure, entropy denstiy and energy density) for vanishing chemical potential
obtained by [49]13 in the QCD temperature regime and to account for strong in-
teractions between gluons at higher temperatures. They provide an interpolation
for the SM equation of state over a wide temperature range, matching perturbative
QCD (pQCD) results at low temperatures to lattice QCD results and at even lower
temperatures to the HRG. The “weakly interacting” sector has been considered at
1-loop level. These present the to date most precise results including the effect of
finite physical quark masses, even though the quark mass correction is small (about
5% on top to the total correction at O(g2) of 20 − 30%). For a comparison of the
parametrization of the EoS obtained by lattice QCD calculations and this pQCD
approach see App. A.3.

5.4 Hadron Resonance Gas Model

Well below TQCD, i.e., at T ≲ 130 MeV, all studied observables of lattice QCD
are remarkably well described by the ideal Hadron Resonance Gas (HRG) model
[108, 110–113]. The HRG is based on assumptions of thermal equilibrium of a system
composed of free hadrons and their resonances. Strong interactions of hadrons
can effectively be approximated by this model because resonances represent the
dominant part of the interactions among hadrons [114–116]. Thermodynamically
the HRG can be described by the sum of the thermodynamic variables given by
Eqs. (3.7)–(3.9) over hadron resonances up to a specified mass.

However, the success of the HRG is quite surprising and it is very likely that the
HRG is not able to describe all strong interaction aspects of fluctuations in QCD
thermodynamics. The highest temperature of agreement of HRG and lattice QCD
varies in different observables, which may be a hint to the limitations of the HRG
[108]. Furthermore, comparing lattice QCD with HRG results, deviations in the
strangeness sector have been observed. These might be explained by additional
strange resonances [117–119] which have not been observed experimentally yet, but
have been predicted in lattice QCD [120] and quark model calculations [121, 122].
There exist attempts to improve the validitity range of the ideal HRG by the inclu-

13Their tabulated results can be found at http://www.laine.itp.unibe.ch/eos15/ .
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sion of attractive and repulsive van der Waals interactions [123] or by accounting
for the finite width of the resonances [124], which however do not succeed.

Due to the great success of the HRG in describing lattice QCD and experimental
results below TQCD, we will use it as an approximation for the low temperature
regime T ≲ TQCD for our calculations of the evolution of the chemical potentials in
Chapters 7 and 8.
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6 Taylor Series Method

In this Chapter we will elaborate on the Taylor series method, which is at the
moment the state-of-the-art first principle method to obtain access to the region of
nonvanishing chemical potentials via lattice QCD calculations. Moreover, we will
use this method to be able to use lattice QCD results for determining the cosmic
trajectory accounting properly for strong interaction effects close to TQCD in the
following Chapter 7. For an overview of the Taylor series method applied to QCD
see also Ref. [125].

We expand the QCD pressure, defined via the grand canonical potential p = −Ω/V
(cf. Sec. 3.1), in a Taylor series in the chemical potentials up to second order,

pQCD(T, µ) = pQCD(T, 0) +
1

2!
µaχabµb +O(µ4) , (6.1)

with an implicit sum over a, b ∈ {B,Q} here and in the following. The second order
susceptibilities are defined by14

χab(T ) ≡
1

TV
⟨NaNb⟩gc

∣∣∣∣
µ=0

=
∂2pQCD(T, µ)

∂µa∂µb

∣∣∣∣
µ=0

= χba(T ) , (6.2)

with ⟨. . .⟩gc the grand canonical expectation value. Due to CP-symmetry, the pres-
sure is symmetric under the exchange of particles and antiparticles, i.e., µi ←→ −µi

(cf. Eq. (3.26)). Thus, expansion coefficients, i.e., susceptibilities, of odd powers van-
ish. The quadratic fluctuations of charges can be obtained by evaluating Eq. (6.2)
at nonvanishing chemical potentials.

The conserved charge densities as functions of the chemical potentials follow as

nQCD
a (T, µ) =

∂pQCD(T, µ)

∂µa

= χabµb +O(µ3) . (6.3)

Thus, the susceptibilities can also be written as derivatives of the charge densities,

χab(T, µ) =
∂nQCD

a (T, µ)

∂µb

∣∣∣∣
µ=0

. (6.4)

We use the Taylor series ansatz of the pressure to account for contributions to the
entropy and energy density due to nonvanishing chemical potentials (cf. [94]).15 The

14Our notation for the susceptibilities differ from the one often used in lattice QCD papers:
χBB ≡ χB

2 , χQQ ≡ χQ
2 , and χBQ ≡ χBQ

11 .
15The basic thermodynamic quantity conveniently calculated on the lattice is ∆ ≡ (ϵ−3p)/T 4 =

T (∂(p/T 4)/∂T )ξ, which is often called “trace anomaly” (cf. [126]). All other thermodynamic
variables are then deduced from it. In the ideal gas limit it vanishes and thus is a measure for the
impact of masses and the strength of interactions.
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entropy can be obtained according to the relation for the grand canonical potential,
dΩ = −pdV − SdT − Ndµ thus S = −(∂Ω/∂T )µ,V . Hence, with p = −Ω/V the
entropy density of strongly interacting matter is given by

sQCD(T, µ) =

(
∂pQCD

∂T

)
µ,V

. (6.5)

Inserting the Taylor series of the pressure given by Eq. (6.1) up to second order in
µ we get:

sQCD(T, µ)− sQCD(T, 0) =
1

2

dχab

dT µaµb . (6.6)

The energy density is according to Eq. (3.34) given by

ϵQCD(T, µ) = TsQCD − pQCD +
∑
a

µan
QCD
a . (6.7)

Inserting Eqs. (6.1), (6.3), and (6.6) we get

ϵQCD(T, µ)− ϵQCD(T, 0) =
1

2

(
T
dχab

dT + χab

)
µaµb . (6.8)

Thus, in order to determine the dependence of entropy and energy density on the
chemical potentials, we need to determine the temperature derivatives of the lattice
QCD susceptibilities dχab/dT .

6.1 Charge and Quark Number Susceptibilities

The conserved charge susceptibilities or fluctuations can be expressed through quark
number susceptibilities or fluctuations by a change of basis. We can express the total
electric charge and baryon asymmetry in QCD by the sum over the net numbers of
strongly interacting particles:

NQCD
B =

∑
i

BiNi , (6.9)

NQCD
Q =

∑
i

QiNi , (6.10)

with Bi the baryon number and Qi the electric charge of particle species i. Thus,
as only quarks are strongly interacting and contribute, we get16

NQCD
B =

1

3
(Nu +Nd +Ns +Nc +Nb +Nt) , (6.11)

NQCD
Q =

2

3
(Nu +Nc +Nt)−

1

3
(Nd +Ns +Nb) . (6.12)

16In fact, the contributions of bottom and top quarks are negligible at T ∼ TQCD.
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Inserting these equations in Eq. (6.2) yields relations between the conserved charge
and quark number susceptibilities or fluctuations, respectively. The quark number
susceptibilities are defined analogously to the conserved charge number susceptibil-
ities,

χqq′ ≡
1

TV
⟨NqNq′⟩gc

∣∣∣∣
µ=0

=
∂nq(T, µ)

∂µq′

∣∣∣∣
µ=0

(6.13)

with q, q′ ∈ {u, d, s, c, b, t}.

For convenience, let us have a closer look at the 2+1+1 flavor system, i.e., con-
sidering up, down, strange, and charm quark.17 The equations just become lengthy
for considering all quark flavors without providing new insights. For this system,
the relations between the susceptibilities are (suppressing the index gc)

χBB =
1

9

1

TV
⟨(Nu +Nd +Ns +Nc)

2⟩
∣∣∣∣
µ=0

=
1

9

1

TV

(
⟨N2

u⟩+ ⟨N2
d ⟩+ ⟨N2

s ⟩+ ⟨N2
c ⟩+ 2 ⟨NuNd⟩+ 2 ⟨NuNs⟩

+ 2 ⟨NuNc⟩+ 2 ⟨NdNs⟩+ 2 ⟨NdNc⟩+ 2 ⟨NsNc⟩
)∣∣∣∣

µ=0

=
1

9
(χuu + χdd + χss + χcc + 2χud + 2χus + 2χuc + 2χds + 2χdc + 2χsc) ,

(6.14)
and analogously

χQQ =
1

9
(4χuu + χdd + χss + 4χcc − 4χud − 4χus + 8χuc + 2χds − 4χdc − 4χsc) ,

(6.15)

χBQ =
1

9
(2χuu − χdd − χss + 2χcc + χud + χus + 4χuc − 2χds + χdc + χsc) . (6.16)

To get an intuition on the quark flavor dependence of the conserved charge sus-
ceptibilities we can evaluate Eqs. (6.14)–(6.16) in the ideal quark gas approximation
and vary the numbers of considered quark flavors. We refer to a noninteracting
gas of massive quarks in thermal equilibrium, whose particle densities are given
by Eq. (3.22), as the ideal quark gas approximation. In this approximation all

17Lattice QCD calculations are performed at degenerate light quark masses, i.e., mu = md.
Thus up and down quarks are referred to as “2” in their notation of how many quark flavor are
considered in a calculation. We will adopt this notation, even though in calculations we perform
directly we will consider mu ̸= md.
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Fig. 6.1: Conserved charge susceptibilities in the ideal quark gas approximation for
varying quark flavor content.

off-diagonal quark number susceptibilities, q ̸= q′, vanish and the diagonal quark
number susceptibilities, q = q′, are given by

χqq =
∂nq

∂µq

∣∣∣∣
µq=0

= − gq
π2

∫ ∞

mq

dEE
√
E2 −m2

q

(
− 1

T

)[
1− nF (E)

]
nF (E)︸ ︷︷ ︸

=n′
F (E)= d

dEnF (E)

.
(6.17)

For vanishing mass this integral evaluates to χqq = gqT
2/6, whereas for massive

particles this integral is given by

∂ni

∂µi

∣∣∣∣
µi=0

=
m2

i

π2

∞∑
k=1

(−1)k+1K2

(
kmi

T

)
, (6.18)

where K2 is a modified Bessel function.

In Fig. 6.1 the numerical evaluation of the conserved charge susceptibilities in the
ideal quark gas approximation for the temperature range 10 MeV ≤ T ≤ 100 GeV is
shown. It is important to mention that the displayed behavior of the susceptibilities
for T ≲ 200 MeV is most likely not realistic, as for temperatures around TQCD and
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below we cannot neglect strong interactions and use the ideal quark gas approxi-
mation anymore. We just want to reveal the dependence on the quark flavors with
this approach. The temperature, at which a quark flavor q starts to contribute to
the conserved charge susceptibilities in the ideal quark gas approximation is about
T ≳ mq/12, see Fig. 6.1. This is quite surprising, as the quark number susceptibility
is exponentially suppressed for a large mass mq ≫ T (cf. Eq. (3.24)),

χqq ∼
(
m3

qT
) 1

2 exp
(
−mq

T

)
. (6.19)

We particularly want to stress that the charm quark starts to contribute to the
conserved charge susceptibilities at around T ∼ 180 MeV despite its large mass of
mc = 1275 MeV. Even though, this is in the temperature regime of the QCD transi-
tion, at which the approximation of an ideal quark gas does not hold any longer, this
is an important observation. Considering only u, d, s quarks results in vanishing χBQ

for temperatures at which the strange quark is effectively massless, because their
total electric charge adds up to zero (cf. Fig. 6.1). This is a significantly different
behavior compared to considering u, d, s, c quarks. It raises the question whether
lattice QCD simulations should better also consider charm quarks to describe na-
ture around the QCD transition more accurately. Recently, it has also been pointed
out by lattice QCD studies that charm quarks start to contribute to the EoS above
T ∼ 300MeV [92]. In Sec. 7 we will study the effect of charm quarks on the evolution
of chemical potentials.

6.2 Lattice QCD Susceptibilities

Quark number and conserved charge susceptibilities and fluctuations for 2+1 flavor
QCD are available up to fourth order from lattice QCD methods [108, 127, 128] and
selected higher-order susceptibilities and fluctuations are available [94, 129]. We
restrict our analyses in the following Chapters to a Taylor series up to second order.
Thus, in this Section we compare the to date newest available continuum extrap-
olated second order conserved charge susceptibilities obtained by the two leading
lattice QCD collaborations: the HotQCD collaboration [117] and the Wuppertal-
Budapest collaboration [130].

Continuum extrapolated second-order susceptibilities of the Wuppertal-Budapest
collaboration are obtained using a stout-improved staggered fermionic action and
are available in the temperature range 125 ≤ T ≤ 400 MeV [130]. For temperatures
larger than T = 190 MeV the step size is 10 − 20 MeV. Whereas for the HotQCD
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results, obtained by using the highly improved staggered quark action, the step size
is 5 MeV throughout the whole temperature range 150 ≤ T ≤ 250 MeV.18

Comparing the results of both collaborations in Fig. 6.2, we can see that they
approximately agree within errors, with the general tendency of slightly larger sus-
ceptibilities obtained by the HotQCD collaboration. Differences can be seen in χBQ.
However, χBQ is not directly reported by [130] and has to be determined from the
reported quark number susceptibilities via (cf. Eqs. (6.14)–(6.16) and [108])

χBQ = −1

2
(χBB + χQQ − χuu) . (6.20)

As the errors, obtained via error propagation, are quite large, this yields agreement
with the susceptibilities reported by the HotQCD collaboration within errors.

The problem of lattice QCD simulations in going to larger quark numbers, i.e.,
including additional heavy quarks (charm, bottom, top) at physical masses, is of
computational type as the lattice spacing is inversely proportional to the quark
mass. In addition, it is difficult to deal with very different mass scales, e.g., the
charm quark is about three orders of magnitude heavier compared to the up and
down quark.

In the following Chapters we want to compare results obtained by using 2+1 to
2+1+1 flavor lattice QCD susceptibilities. As we only have access to 2+1+1 flavor
susceptibilities of the HotQCD collaboration, we will use their susceptibilities for
our calculations. Nevertheless, the presented procedure is universal and also other
susceptibilities can be used.

18Quark number susceptibilities up to T = 400 MeV have been studied in [127].
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Fig. 6.2: Comparison of second order conserved charge susceptibilities obtained by
the HotQCD collaboration [117] and the Wuppertal-Budapest (WB) collaboration
[130], with χBQ of the last-mentioned determined according to Eq. (6.20).
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7 Evolution of Chemical Potentials

In this Chapter we present our novel technique of determining the evolution of
chemical potentials for arbitrary lepton asymmetries throughout the QCD epoch by
using lattice QCD results for conserved charge susceptibilities [1]. Thus, we are able
to properly take into account strong interaction effects close to TQCD. In Sec. 7.1 we
will discuss the basics of our technique. The evolution of the cosmic trajectory for
different lepton asymmetries and in particular the standard cosmic trajectory will be
shown in Sec. 7.2. In this Section, we will also discuss different HRG approximations
and the effect of unequal lepton flavor asymmetries on the cosmic trajectory. We will
comment on a possible consequence of large lepton asymmetries and resulting large
electric charge chemical potential, i.e., pion condensation, in Sec. 7.3. In Sec. 7.4
we conclude with the influence of lepton asymmetries on the entropy, energy, and
pressure, i.e., on the effective relativistic degrees of freedom in the early universe.

7.1 System of Equations

After the electroweak crossover at TEW ∼ 100 GeV and before the onset of neutrino
oscillations at Tosc ∼ 10 MeV, there are five conserved charges in the early universe:
B, Q, and the three lepton flavor numbers Lα, with corresponding chemical poten-
tials µB, µQ, and µLα , respectively. In contrast to heavy ion collisions and lattice
QCD calculations, individual quark flavors like strangeness are not conserved due to
weak processes until T ∼ 1 MeV, which are in thermal equilibrium in the early uni-
verse (cf. Fig. 2.2). We divide our calculations for the determination of the cosmic
trajectory in three temperature regimes for which we use different approximations
to determine the conserved charges, i.e., define our system of equations:

(i) ideal quark gas approximation (T ≥ 100 MeV),

(ii) lattice QCD susceptibilities (250 ≥ T ≥ 150 MeV for the 2+1 flavor system
and 330 ≳ T ≳ 150 MeV for the 2+1+1 flavor system), and

(iii) HRG approximation (250 ≥ T ≥ 10 MeV).

We chose a quite large overlap region for the ideal quark gas and the HRG approxi-
mation, down or up to temperatures, where these approximations definitively should
fail to describe nature, in order to be able to better estimate the impact of consider-
ing strong interactions around TQCD. For all temperatures, we fix b = 8.71× 10−11

according to [68] and q = 0 in agreement with observations. Leptons are considered
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in the approximation of free particles, i.e., as an ideal gas of massive leptons, at all
temperatures.

Let us describe those three temperature regimes in some more detail in the fol-
lowing.

7.1.1 Ideal Quark Gas Approximation

In kinetic and chemical equilibrium we can calculate the net number densities for
an ideal gas of massive particles according to Eq. (3.22). We neglect contributions
of the W±, Z0, and Higgs bosons, because their contributions are suppressed at the
temperature range we are considering in more detail in the following, i.e., T ≤ 400

MeV. Thus, the five conservation laws for the specific lepton flavor asymmetries lα,
α ∈ {e, µ, τ}, specific baryon asymmetry b, and electric charge density q can be
written in terms of the lepton and quark number densities,

lαs = nLα = nα + nνα , (7.1a)

bs = nB =
1

3

∑
q=u,d,s,c,b,t

nq , (7.1b)

qs = nQ =
2

3

∑
q=u,c,t

nq −
1

3

∑
q=d,s,b

nq −
∑

α=e,µ,τ

nα . (7.1c)

The chemical potentials of all quarks and leptons can be associated with the
chemical potentials of the conserved charges in the context of the grand canonical
partition function (cf. Eq. (3.1)):

µBnB + µQnQ +
∑
α

µLαnLα =
∑
q

µqnq +
∑
l

µlnl , (7.2)

with on the r.h.s. the sum over all quarks q and leptons l ∈ {α, να}. Inserting
the charge densities in terms of the particle net number densities according to
Eqs. (7.1a)–(7.1c) and comparing the coefficients in front of the particle net number
densities we get

µu = µc = µt =
2

3
µQ +

1

3
µB , (7.3)

µd = µs = µb = −
1

3
µQ +

1

3
µB , (7.4)

µα = µLα − µQ , (7.5)
µνα = µLα . (7.6)
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The chemical potentials for quarks of up-type (u, c, t) and down-type (d, s, b) are
each the same. Thus, we just have to distinguish between chemical potentials of up-
type quarks µu and down-type quarks µd. Vice versa, we can express the conserved
charge chemical potentials in terms of the particle chemical potentials,

µLα = µνα , (7.7)
µB = µu + 2µd , (7.8)
µQ = µu − µd = µνα − µα . (7.9)

The entropy density s = s(T, µ) in our system of equations, Eqs. (7.1a)–(7.1c), can
be determined according to Eq. (3.34) evaluating the integrals for the net number
density, energy density, and pressure for particles in thermal equilibrium given by
Eqs. (3.22), (3.25), and (3.26), respectively. We can also use the interpolated pQCD
entropy density s(T, 0) for the SM provided by [49], to be able to account for the
considerably strong gluonic interactions and add the contribution for nonvanishing
chemical potentials calculated as explained before (cf. Sec. 7.4).

7.1.2 QCD Susceptibilities

In order to account for strong interactions, we have to adjust our system of equa-
tions, i.e., the calculation of the baryon asymmetry and electric charge density.
Only quarks contribute to the baryon asymmetry bs = nQCD

B . And as we neglect
interactions between quarks and leptons, the contribution to the electric charge den-
sity can be divided into a part arising from the quarks nQCD

Q and one by leptons
nlep
Q : nQ = nQCD

Q + nlep
Q .19 With the QCD net number densities given according to

Eq. (6.3), our system of equations reads

lαs = nα + nνα , (7.10a)
bs = µBχBB + µQχBQ , (7.10b)
qs = µQχQQ + µBχBQ −

∑
α

nα . (7.10c)

The chemical potentials of the leptons are still given by Eqs. (7.5) and (7.6).

For the numerical evaluation of Eqs. (7.10a)–(7.10c) we use continuum extrapo-
lated lattice QCD susceptibilities for a 2+1 flavor system by [117] and for a 2+1+1

19The same holds for the entropy density s = sQCD + slep, energy density ϵ = ϵQCD + ϵlep, and
pressure p = pQCD + plep.
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flavor system (not continuum extrapolated, Nτ = 8) by [119, 131]. We deter-
mine numerical temperature derivatives of the susceptibilities for the calculation
of sQCD(T, µ) according to Eq. (6.6). The entropy density at vanishing chemical po-
tentials s(T, 0) is taken from [49]. The leptonic contribution to the entropy density
at nonvanishing chemical potentials is calculated in the ideal gas approximation as
for high temperatures.

The error of the results has been naively estimated by solving our system of
equations in Eqs. (7.10a)–(7.10c) for accounting for the error of the lattice QCD
susceptibilities, i.e., for χ+∆χ and χ−∆χ with the reported errors by [117, 119, 131]
(cf. App. A.2). These results then yield the estimated error for our evolution of the
chemical potentials obtained by using lattice QCD susceptibilities.

7.1.3 HRG Approximation

At relatively low temperatures we use the hadron resonance gas model to approx-
imate the QCD sector. Thus, now hadrons, i.e., baryons and mesons, and hadron
resonances contribute to the baryon asymmetry and electric charge densities. Our
system of equations becomes

lαs = nα + nνα , (7.11a)
bs =

∑
baryons

nb , (7.11b)

qs =
∑

baryons
Qbnb +

∑
mesons

Qmnm −
∑
α

nα , (7.11c)

with Qb and Qm the electric charge of a baryon and a meson, respectively.

The chemical potentials of baryons and mesons can be obtained in analogy to
Sec. 7.1.1:

µb = µB +QbµQ , (7.12)
µm = QmµQ . (7.13)

For instance, the chemical potential of the neutron is µn = µB, the chemical potential
of the proton is µp = µB + µQ, and the chemical potential of the charged pion is
µπ = µQ. The lepton chemical potentials are again given by Eqs. (7.5) and (7.6).
The conserved charge chemical potentials can then be expressed as

µLα = µνα , (7.14)
µB = µn , (7.15)
µQ = µπ = µp − µn = µνα − µα . (7.16)
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The entropy density s = s(T, µ) is determined according to Eq. (3.34) evaluating
the integrals for the net number density, energy density, and pressure for particles
in thermal equilibrium given by Eqs. (3.22), (3.25), and (3.26), respectively, and
summing over all particles and hadron resonances.

7.1.4 Calculational Details

For a given temperature the free variables in our systems of equations are the chem-
ical potentials in the particle net number densities ni(T, µi) or rather the five con-
served charge chemical potentials and the specific lepton flavor asymmetries lα. By
fixing lα we can determine the evolution of the chemical potentials. Integrations like
in the determination of the particle densities according to Eq. (3.22) are performed
using Gauss-Laguerre quadrature. The system of equations is solved by using Broy-
den’s method [132], which is a modification of Newton’s method to solve a nonlinear
system of equations. For solving our system of integral-equations, we are free to
choose arbitrarily five independent chemical potentials as free parameters according
to the relations between conserved charge and particle chemical potentials. How-
ever, one has to carefully choose them such that they are of different size to be able
to obtain all particle chemical potentials without running into numerical problems.
This is most important for the HRG at low temperatures where µQ = µp − µn and
µn ≈ µp. A good choice for all temperatures is {µQ, µB, µLe , µLµ , µLτ}. For the HRG
approximation we consider hadron resonances up tomΛ(2350) ≈ 2350MeV ∼ 15TQCD,
using particle properties according to the summary tables of the Particle Data Group
[3]. A detailed list of the properties of all hadrons and resonances included in our
numerical evaluation of Eqs. (7.11a)–(7.11c) can be found in App. A.4.

The numerical determination of the evolution of the charge chemical potentials
is based on the C code used in [2]. Mistakes in the determination of the particle
densities and entropy density in the original code have been corrected. The particle
properties were updated, corrected, and the number of included hadron resonances
has been enlarged from 54 to in total 239 hadron resonances (96 meson and 143
baryon resonances). Furthermore, we implemented the possibility of using lattice
QCD results in the code and self-consistently included chemical potentials in our
system of equations, i.e., in the particle net number densities and in the entropy
density.

Deviations of our results for the evolution of the chemical potentials from the
results in [2] are due to these improvements.
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7.2 Cosmic Trajectory

In this Section we present numerical solutions for our systems of equations discussed
before, i.e., the results for the temperature evolution of the chemical potentials of the
five conserved charges, µB, µQ, µLe , µLµ , and µLτ . One should keep in mind that the
cosmic trajectory follows a path in the 5+1-dimensional phase diagram of these five
chemical potentials and temperature. In the following, we will show two-dimensional
projections of this phase diagram. For l = −(51/28)b and lα = l/3 we obtain the
standard cosmic trajectory accounting properly for strong interaction effects around
TQCD. We will assume equal lepton flavor asymmetries, lα = l/3, except for Sec. 7.2.5
where we will discuss the effect of unequal lepton flavor asymmetries on the evolution
of the chemical potentials. But in all cases, we will consider a total lepton asymmetry
which is in agreement with observational bounds, |l| ≲ 0.012 [18].

7.2.1 Baryon Chemical Potential

The result for the temperature evolution of the baryon chemical potential for dif-
ferent negative values of the total lepton asymmetry is shown in Fig. 7.1 (top) and
a zoom on the standard cosmic trajectory in the (µB, T ) plane is shown (bottom).
Talking about absolute values, we can see in Fig. 7.1 that a larger total lepton asym-
metry induces a larger baryon chemical potential. In addition, we see that µB is
proportional to l. This is true as long as l > O(b). For lepton asymmetries l ≲ O(b)
the evolution of µB is determined by the baryon asymmetry b, and the influence of
l is negligible. In the following Sections we will see that this general dependence on
the total lepton asymmetry is the same for all conserved charge chemical potentials.

The chemical potentials obtained using lattice QCD susceptibilities connect the
ideal quark gas with the HRG approximation quite well for different orders of mag-
nitude of l. Without the lattice QCD results, there would be a nonphysical gap
between the ideal quark gas and HRG results for l > O(b). This reflects the need
of considering strong interactions via, e.g., including lattice QCD susceptibilities
to obtain the cosmic trajectory. However, the results with 2+1 flavor lattice QCD
susceptibilities do not connect the two approximations smoothly for l > O(b). At
low temperatures a small gap between the HRG and lattice QCD results exists. At
high temperatures the lattice QCD results do not smoothly converge to the ideal
quark gas, but they intersect in a single point for l ≳ 10−8. This might be a hint to
a first-order phase transition, which would be reflected in a kink in the temperature
evolution of the chemical potential (cf. Sec. 3.4). However, taking into account the
charm quark by using 2+1+1 flavor lattice QCD susceptibilities, the lattice QCD
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l=-(51/28)b l=-1.2⨯10-8 l=-1.2⨯10-6 l=-1.2⨯10-4 l=-1.2⨯10-2

��
-�

��
-�

��
-� ���� � ���

�

���

���

���

���

μ� [��	]

�
[�
�
�
]

�=-(��/��)�

��-� ���� ��
�

���

���

���

���

μ� [��	]

�
[�
�
�
]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

�×��-� ��
-�

���×��-� �×��-�
���

���

���

���

���

���

Fig. 7.1: Temperature evolution of baryon chemical potential for different negative
total lepton asymmetries l (top) and a zoom on the standard cosmic trajectory of the
early universe (bottom). Continuous lines for high temperatures are results for the
ideal quark gas, for low temperatures for the HRG. The symbols • and ▲ indicate
results obtained using 2+1 flavor and 2+1+1 flavor lattice QCD susceptibilities, re-
spectively. TQCD = 156.5 MeV is displayed by a horizontal dotted line. In the lower
diagram the error band of results obtained with 2+1 flavor lattice QCD susceptibil-
ities is shown. In the upper diagram and for the 2+1+1 flavor results in the lower
diagram the errors are approximately on the size of the symbols.
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Fig. 7.2: Standard cosmic trajectory in the (µB, T ) plane in the HRG approximation
and its extrapolation to T = 0. Also shown is the first-order liquid-gas transition of
nuclear matter (NM liquid-gas transition) and the critical endpoint of this transition
(NM CEP) in this plane according to [95].

results seem to converge to the ideal quark gas results at high temperatures without
a kink, see Fig. 7.1 (top). The estimated uncertainty of the lattice QCD results is on
the order of the point sizes in Fig. 7.1. The error band of the 2+1 flavor lattice QCD
results is shown for the standard cosmic trajectory in the zoom in Fig. 7.1 (bottom).
For the standard cosmic trajectory we see a good match of the lattice QCD and
HRG results within errors at low temperatures. At temperatures T ∼ TQCD we see
a gap between the lattice and ideal quark gas results, which reflects the importance
of strong interaction effects around TQCD. For high temperatures lattice QCD and
ideal quark gas results agree quite well within the errors .

An important feature in the evolution of µB is that for small temperatures T ≲
mπ/3 ≈ 46 MeV, after the annihilation of pions and muons, µB no longer depends
on the value of l but follows one trajectory (cf. Fig. 7.1(top)). At low temperatures
µB approaches the nucleon mass mN ∼ 1 GeV. In Fig. 7.2 a naive extrapolation
of the HRG to low temperatures T < 10 MeV is shown. In this extrapolation
µB(T = 0) ≈ 944 MeV. We also show the first-order liquid-gas transition of nuclear
matter according to [95] in the (µB, T ) plane in Fig. 7.2. In case of the naive
extrapolation of our HRG result, it looks as if the cosmic trajectory passes through
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this liquid-gas transition of nuclear matter and the matter in the early universe
underwent this first-order transition at T < 1 MeV. However, we cannot use our
technique for T ≲ 10 MeV. One has to consider neutrino flavor oscillations, which
become active at these temperatures, under which the individual lepton flavors are
not conserved anymore and our system of equations changes. The cosmic trajectory
then follows a path in the 3+1-dimensional phase diagram of the three conserved
charges, i.e., B, Q, total lepton number L, and temperature. Furthermore, for
T ≲ 1 MeV weak interactions are not in equilibrium any longer and we cannot
use our technique, for which thermal equilibrium of all particles is needed. Thus,
whether the universe passes the first-order liquid-gas transition of nuclear matter or
not, and what consequences this might have, has to be analyzed in a refined study.

7.2.2 Electric Charge Chemical Potential

In Fig. 7.3 the temperature evolution of the electric charge chemical potential −µQ

is shown for different negative total lepton asymmetries. As in the case of µB, a
larger total lepton asymmetry induces a larger absolute value of the electric charge
chemical potential and µQ ∝ l for l > O(b) and µQ ∝ b for l ≲ O(b). The chemi-
cal potentials obtained using lattice QCD susceptibilities (2+1 and 2+1+1 flavor)
almost smoothly connect the ideal quark gas with the HRG results. In the zoom
on the standard cosmic trajectory of µQ in Fig. 7.3 (bottom) we see a small gap
between the lattice QCD results and the ideal quark gas results at high tempera-
tures. However, estimating the error of s(T, 0) by pQCD, which we do not show but
which is quite large at relatively low temperatures (cf. e.g. [102]), and the error of
the lattice results, which is on the order of the point sizes in Fig. 7.3 (bottom), the
results should agree within errors. At low temperatures, the HRG and 2+1 flavor
lattice results do not match well in the standard scenario, whereas the 2+1+1 flavor
lattice results match better. At larger lepton asymmetries, however, the lattice re-
sults converge better to the HRG approximation. This might be due to limitations
of the HRG model. It would be helpful to have lattice QCD susceptibilities for lower
temperatures and continuum extrapolated 2+1+1 flavor susceptibilities available,
to see if these gaps then might be closed.

Figure 7.4 shows the effect of the sign of a lepton asymmetry. We can see, that the
sign of the total lepton asymmetry mainly changes the sign and not the absolute
value or the evolution of the chemical potentials. For negative l, µQ is negative
and µB is positive and vice versa for positive l. However, at low temperatures µB

proceeds to the nucleon mass irrespective of the sign of the lepton asymmetry.
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Fig. 7.3: Temperature evolution of electric charge chemical potential −µQ for dif-
ferent negative total lepton asymmetries l (top) and a zoom on the standard cosmic
trajectory of the early universe (bottom). Continuous lines for high temperatures are
results for the ideal quark gas, for low temperatures for the HRG. The symbols • and
▲ indicate results obtained using 2+1 flavor and 2+1+1 flavor lattice QCD suscepti-
bilities, respectively. TQCD = 156.5 MeV is displayed by a horizontal dotted line. The
errors of the results obtained with lattice QCD susceptibilities are approximately on
the size of the symbols in the lower diagram and half of the size of the symbols in the
upper diagram.
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Fig. 7.4: Temperature evolution of baryon chemical potential µB and electric charge
chemical potential µQ for both signs of a large lepton asymmetry |l| = 1.2 × 10−2.
Continuous and dashed lines for high temperatures are results for the ideal quark gas,
for low temperatures for the HRG.

Comparing Fig. 7.1 to Fig. 7.3, and looking at Fig. 7.4 it can be seen that, for
large lepton asymmetries l > O(b), the absolute value of µQ becomes larger than
µB at nonvanishing temperature. This can be understood in the following way. As
already discussed in Sec. 6.1, the electric charges of the three light quarks add up to
zero. In the case of only three mass degenerate quarks the susceptibility χBQ would
vanish, so that no µB is induced. Thus, µB remains small for T ≳ ms (cf. evolution
of χBQ in Fig. 6.1). As mentioned, this is why the charm quark is important for the
evolution of µB, despite its large mass.

A possible consequence of a large electric charge chemical potential in the early
universe, i.e., pion condensation, will be discussed in Sec. 7.3.

7.2.3 Lepton Flavor Chemical Potentials

Figures 7.5 and 7.6 show the temperature evolution of the lepton flavor chemical
potentials for different orders of magnitude of the total lepton asymmetry and a
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Fig. 7.5: Temperature evolution of electron (top) and muon (bottom) lepton flavor
chemical potential for different negative total lepton asymmetries l. Continuous lines
for high temperatures are results for the ideal quark gas, for low temperatures for the
HRG. The symbols • and ▲ indicate results obtained using 2+1 flavor and 2+1+1
flavor lattice QCD susceptibilities, respectively. TQCD = 156.5 MeV is displayed by a
horizontal dotted line. The errors of the results obtained with lattice QCD suscepti-
bilities are approximately half of the size of the symbols in both diagrams.
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Fig. 7.6: Temperature evolution of tau lepton flavor chemical potential for different
negative total lepton asymmetries l (top) and a zoom on the standard cosmic tra-
jectory of the early universe for all lepton flavor chemical potentials (bottom). The
errors of the results obtained with lattice QCD susceptibilities are approximately on
the size of the symbols in the lower diagram and half of the size of the symbols in the
upper diagram. Notations as before.
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zoom on the standard cosmic trajectory for all lepton flavors in Fig. 7.6 (bottom).
As before, in terms of absolute values, a larger lepton asymmetry induces larger
chemical potentials. The chemical potentials are proportional to l for l > O(b).
For all lepton flavor chemical potentials, the results obtained with lattice QCD
susceptibilities (2+1 and 2+1+1 flavor) match with the results obtained in the
HRG and ideal quark gas and interpolate between them. Gaps between the lattice
QCD results and ideal quark gas reported in [1] were closed by taking higher-order
perturbative corrections into account, using the interpolated pQCD entropy density
s(T, 0) by [49] in the temperature regime of the ideal quark gas approximation.

Notwithstanding equal lepton flavor asymmetries lα for all flavors, the different
lepton flavor chemical potentials evolve differently due to the different lepton masses.
However, µLe and µLµ evolve very similar, especially at high temperatures where
electrons and muons are both effectively massless. Having a closer look at the
zoom on the standard cosmic trajectory in Fig. 7.6 (bottom), we see that at low
temperatures µLµ evolves differently compared to µLe . This is due to the fact that
the muon is about 200 times as heavy as the electron and it becomes nonrelativistic
and, finally, annihilates at higher temperatures compared to the electron. The effect
of the heavy mass is also the reason why the evolution of µLτ is different compared to
µLe and µLµ . Tau leptons are nonrelativistic at all temperatures we are considering.
In particular, tau leptons annihilate well above TQCD at Tann,τ ∼ 600 MeV. This
leads to another interesting feature, namely the (partial) decoupling of the tau
lepton flavor conservation equation from the system of equations (it is still coupled
via s(T, µ)). Due to this (partial) decoupling, the trajectories of the ideal quark
gas and HRG match without the need of lattice susceptibilities, the perturbative
consideration of strong effects in s(T, 0) suffices in the case of µLτ (cf. Fig. 7.6).20

7.2.4 Comparison of Different HRG Approximations

In the code of [2] hadron resonances up to mK∗
0 (1410)

≈ 1421 MeV ∼ 9TQCD (38
meson and 16 baryon resonances) have been considered. We included additional
185 hadron resonances (58 meson and 127 baryon resonances). In Fig. 7.7 we show
the evolution of the baryon chemical potential for three different HRG approxima-
tions: (i) including only protons, neutrons, and pions, (ii) including resonances up to
mK∗

0 (1410)
, and (iii) the HRG used in this work including resonances up to mΛ(2350).

The changes in µQ and µLα due to different HRG approximations are visible but not
20However, for lepton (flavor) asymmetries orders of magnitude larger than we considered here

this might be different, as larger lepton asymmetries induce larger chemical potentials and, thus,
a larger change in the entropy density s(T, µ).
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Fig. 7.7: Temperature evolution of baryon chemical potential µB for different HRG
approximations at different negative total lepton asymmetries l. Continuous lines for
high temperatures are results for the ideal quark gas, for low temperatures for the HRG
including resonances up to mΛ(2350) ≈ 2350 MeV ∼ 15TQCD. Dashed lines are results
for the HRG including resonances up to mK∗

0 (1410)
≈ 1421 MeV ∼ 9TQCD. Dotted

lines are results for the HRG including only proton, neutrons, and pions. Further
notations as before.

as strong as in µB. At relatively low temperatures, the temperature evolution of µB

does not depend on the specific HRG approximation but follows one trajectory and
proceeds to the nucleon mass, as all heavier hadrons annihilated (cf. Sec. 7.2.1). For
temperatures T ≳ 80 MeV, we can strongly see the dependence of the temperature
evolution of µB on the particular HRG approximation. Especially the additional
baryon resonances in the HRG with masses up to mΛ(2350) change the evolution of
µB in the HRG approximation at these relatively high temperatures due to their
large spin degrees of freedom, despite their large masses. Regarding the standard
cosmic trajectory, the trajectory with the HRG we used in this work matches the
results obtained with lattice susceptibilities quite well (see also the zoom on the
standard cosmic trajectory in Fig. 7.1). The standard trajectories obtained with the
other HRG approximations, on the other hand, fail to match the results obtained
with lattice susceptibilities. The good agreement of an HRG with masses up to
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m ∼ 2 GeV with lattice QCD at vanishing chemical potentials is also expected by
comparative studies of lattice QCD and HRG (cf. Sec. 5.4) and it has been shown
that this agreement is insensitive to possible higher resonances [118].

7.2.5 Unequal Lepton Flavor Asymmetries

Until now, we just considered equal lepton flavor asymmetries for all flavors. In
this Section, we will consider different, i.e., unequal, lepton flavor asymmetries in
agreement with BBN and CMB limits discussed in Sec. 4.1: |l| ≲ 0.012 as before
and |le| ≲ 0.004 and |lµ,τ | ≲ 0.021. Additionally, we will have a look at an extreme
case of le = 0 and lµ = −0.1 = −lτ . In general, one could also assume very
large lepton flavor asymmetries, e.g., |le| = 0.1, while the total lepton asymmetry
is in agreement with the observational constraint |l| ≲ 0.012. Efficient neutrino
oscillations at T ≲ 10 MeV lead to lepton flavor chemical potentials in agreement
with constraints of BBN and the CMB.

In Fig. 7.8 we show the temperature evolution of the conserved charge chemical
potentials for different cases of unequal lepton flavor asymmetries. For comparison,
we also show the evolution for equal lepton flavor asymmetries with the maximal,
observationally permitted total lepton asymmetry l = −1.2 × 10−2, which we al-
ready discussed in the previous Sections. In general, with unequal lepton flavor
asymmetries larger conserved charge chemical potentials can be obtained. Further-
more, different lepton flavor asymmetries yield considerably different evolutions of
the three lepton flavor chemical potentials, concerning not only absolute value or
size [cf. Fig. 7.8 (middle & bottom left)]. This is especially true in the case of le = 0

and lµ = −0.1 = −lτ . There we can also see larger discrepancies between ideal quark
gas or HRG results and the lattice QCD results, respectively. These discrepancies
may be due to limitations of our technique at such large lepton flavor asymmetries,
especially limitations of the Taylor series ansatz for the QCD pressure (cf. Chapter 8
and especially Sec. 8.3).

In particular, with unequal lepton flavor asymmetries we can reach larger electric
charge and baryon chemical potentials, shifting the cosmic trajectory towards a
possible critical endpoint or first-order phase transition of QCD.

Large chemical potentials lead, according to Eq. (3.36), to a larger number of
effective relativistic degrees of freedom g∗s(T, µ). We can see in Fig. 7.8 that this
change is quite large for unequal lepton flavor asymmetries, as they induce larger
chemical potentials compared to equal lepton flavor asymmetries while being in
agreement with observational constraints. More details will be discussed in Sec. 7.4.
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Fig. 7.8: Temperature evolution of conserved charge chemical potentials for different
cases of unequal lepton flavor asymmetries. (Top left) Baryon chemical potential µB.
(Top right) Electric charge chemical potential −µQ. (Middle left) Electron lepton
flavor chemical potential µLe . (Middle right) Muon lepton flavor chemical potential
µLµ . (Bottom left) Tau lepton flavor chemical potential µLτ . (Bottom right) Effective
relativistic degrees of freedom g∗s(T, µ) for equal l = −1.2× 10−2 and unequal lepton
flavor asymmetries le = 0, lµ = −0.1 = −lτ . Notations as before.
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7.3 Pion condensation

We saw in Sec. 7.2.2 that the absolute value of the electric charge chemical potential
exceeds the baryon chemical potential at nonvanishing temperature and, thus, might
be (more) important for the evolution of the early universe. An example for the
importance of the electric charge chemical potential is that, for µQ larger than the
pion mass mπ ≈ 140 MeV a Bose-Einstein condensate of charged pions is formed.
This has been studied in the Nambu–Jona-Lasinio model in the presence of a dense
neutrino gas, i.e., at nonvanishing lepton asymmetries, at vanishing temperature
(with estimates for higher temperatures) in [35]. Using lattice QCD methods at
vanishing µB, pion condensation was observed for T ≲ 160 MeV [36]. In this study
nonvanishing isospin chemical potential was investigated.21 The isospin chemical
potential is the same as the pion chemical potential, µI = µπ, which is for a system
of conserved electric charge the same as the electric charge chemical potential, µQ =

µπ.22 A possible result of pion condensation might be pion stars, a new class of
compact stars in the universe [52]. Isospin chemical potential is also studied in
lattice QCD as lattice QCD calculations at pure isospin, i.e., µI ̸= 0 and µB = 0,
do not suffer from a sign problem but share some technical features with QCD at
finite baryon chemical potential (cf. [134, 135]).

We can use our technique for determining the lepton asymmetry which is needed
to reach |µQ| ≥ mπ at T ≲ 160 MeV. As we obtained quite good agreement of
lattice results with HRG results in µQ for T ≲ TQCD (cf. Fig. 7.3), we use the HRG
approximation to study the evolution of the electric charge chemical potential for
pion condensation. Considering equal lepton flavor asymmetries lα = l/3, we find
that for |l| ≳ 0.12 we get |µQ| ≳ mπ at nonvanishing temperatures (see Fig. 7.9).
Such a large total lepton asymmetry, however, exceeds the observational constraints
by an order of magnitude. Assuming unequal lepton flavor asymmetries, we can
reach the region of pion condensation, while satisfying |l| ≲ 0.012. One example is
le = 0 and lµ = −0.1 = −lτ which we already studied in Sec. 7.2.5. In this case we
get |µQ| ≥ mπ for temperatures T ≳ 125MeV (see Fig. 7.9). For small temperatures,
µQ tends to vanish for this example due to assumed charge neutrality, since le = 0

and muons annihilate at low temperatures, thus, lµ = lνµ and lτ = lντ .

21Due to the unusual definition of the isospin in this study, i.e., nI = nu − nd, the pion con-
densation forms at |µI | ≥ mπ/2. The common definition of isospin is, however, nI = (nu − nd)/2,
which exactly yield the factor 1/2 difference to other studies.

22A nice discussion about relations between susceptibilities and chemical potentials in ensembles
of different conserved charges can be found in [133].
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Fig. 7.9: Temperature evolution of electric charge chemical potential −µQ in the
HRG approximation for different lepton flavor asymmetries. For equal lepton flavor
asymmetries consistent with observational constraints, l = −1.2 × 10−2, the region
of pion condensation cannot be reached. For a total lepton asymmetry which is one
order of magnitude larger, |µQ| ≥ mπ for nonvanishing temperatures so that pion con-
densation might occur (cf. [36]). Considering unequal lepton flavor asymmetries, the
region of pion condensation can be reached in keeping with observational constraints
on the total lepton asymmetry.

We considered pion condensation in the (µQ, T ) plane, hence neglected the size of
µB and other chemical potentials, so far. However, nonvanishing chemical potentials
influence the possibility of pion condensation. In general, for finite µB and other
chemical potentials, due to plasma interactions, a larger electric charge chemical
potential is needed to form a pion condensate. Additionally, the temperature at
which pion condensation occurs may be decreased leading to a shrinking region of
pion condensation (cf. [36, 136]). Furthermore, in [27] it is discussed that a pion
condensate would form for |µQ| ≥ mπ only in the case of |µB| < mp − mπ. For
−µQ ∼ mπ and µB ≳ mp a negatively charged kaon condensate turns out to be
more likely to occur in dense nuclear matter, as the kaon mass is decreased by an
attractive interaction [137, 138]. For lepton (flavor) asymmetries required for pion
condensation, µB is not vanishingly small (cf. Fig. 7.8) and proceeds to the nucleon
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mass for T ≲ mπ/3. Thus, our results reflect a lower limit on the lepton asymmetries
needed for pion condensation. A refined lattice QCD study at nonvanishing isospin
(or electric charge) and baryon chemical potentials is needed, to be able to discuss
the possibility of pion condensation in the early universe more appropriately.

7.4 Evolution of Entropy, Energy and Pressure

Large lepton asymmetries change the entropy density, energy density, and pressure
due to nonvanishing chemical potentials (cf. Sec. 3.2). The change in s(T, µ), ϵ(T, µ),
and p(T, µ) can numerically be determined according to Eqs. (3.34), (3.25), and
(3.26), respectively. In Fig. 7.10 their temperature evolution for different negative
total lepton asymmetries l and equal lepton flavor asymmetries lα = l/3 is shown.
We can see that the change in the entropy density, energy density and pressure
due to nonvanishing lepton asymmetries is rather small in the case of equal lepton
flavor asymmetries and a total lepton asymmetry in agreement with observational
bounds, |l| ≲ 0.012. One can only distinguish the results for l = −1.2 × 10−2 from
the standard scenario l = −(51/28)b at high temperatures. Numerically the change
amounts to at most 0.5% at high temperatures and vanishes to good approximation
for low temperatures in the HRG.23 The change in the energy density and pressure
is slightly larger than in the entropy density. This is due to the fact that chemical
potentials have a larger contribution to the energy density and pressure compared to
the entropy density. In the massless limit, this can be seen by comparing the effective
relativistic degrees of freedom for the entropy and energy density in Eqs. (3.36) and
(3.39), respectively (see also Fig. 7.11). There the contribution proportional to µ2

is twice as large in the energy density compared to the entropy density.

In the high temperature regime we show results obtained by the true ideal quark
gas approximation without any perturbative corrections (dashed lines) and results
obtained by using the interpolated pQCD results according to [49] for s(T, 0), ϵ(T, 0),
and p(T, 0) and adding the contribution of nonvanishing chemical potentials ob-
tained in the ideal quark gas limit (continuous line). The perfect agreement of the
latter with the results obtained with lattice susceptibilities (2+1 and 2+1+1 flavor)
are due to the fact that around TQCD we used these interpolated pQCD results for
s(T, 0), ϵ(T, 0), and p(T, 0). The smooth connections to the HRG results at low
temperatures are based on the fact of the matching of the pQCD results to the

23The change of the effective relativistic degrees of freedom due to nonvanishing chemical po-
tentials has also been studied by [139] and found to be small for equal lepton asymmetries and
l ∼ 10−2.
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Fig. 7.10: Temperature evolution of entropy density, energy density, and pressure
for different negative total lepton asymmetries l and lα = l/3. Continuous lines at
low temperatures are results for the HRG. The symbols • and ▲ indicate results
obtained using 2+1 flavor and 2+1+1 flavor lattice QCD susceptibilities, respectively.
The dashed lines are the true ideal quark gas results without perturbative corrections.
Continuous lines for high temperatures are ideal quark gas results with s(T, 0), ϵ(T, 0),
and p(T, 0) according to [49] including strong interaction effects.
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Fig. 7.11: Temperature evolution of efective relativistic degrees of freedom
g∗s(T, µ) = (45/2π2T 3)s(T, µ) and g∗ϵ(T, µ) = (30/π2T 4)ϵ(T, µ) for different nega-
tive total lepton asymmetries l and lα = l/3. Notations as before.



7.4 Evolution of Entropy, Energy and Pressure 65

HRG at relatively low temperatures in [49]. In Fig. 7.10 we see, that the ideal quark
gas approximation overestimates entropy density, energy density and pressure when
not using the interpolated pQCD results, which take into account the considerably
large interactions between gluons. Figure 7.11 shows in terms of the effective rela-
tivistic degrees of freedom (defined via the entropy and energy density, respectively)
that the ideal gas limit is not reached until very high temperatures of about T ∼ 1

GeV.24 Thus, in our case, for the determination of the temperature evolution of the
chemical potentials around the QCD transition, it is more appropriate to take the
strong gluonic interactions into account via using interpolated pQCD results for the
entropy density.

For unequal lepton flavor asymmetries the chemical potentials can be larger and
thus is the change in the effective relativistic degrees of freedom (cf. Sec. 7.2.5). This
can be seen in Fig. 7.8 (bottom right), where we show the evolution of g∗s(T, µ) in
the case of equal lepton flavor asymmetries with l = −1.2 × 10−2 and an extreme
case of unequal lepton flavor asymmetries le = 0 and lµ = −0.1 = −lτ . In the latter
case we get approximately 34 additional effective degrees of freedom at T ∼ 500

MeV, 14 at T ∼ TQCD, and 4 at T ∼ 10 MeV compared to the standard scenario
[cf. Fig. 7.8 (bottom right)]. Efficient neutrino oscillations will equilibrate these
lepton flavor asymmetries for T ≲ 10 MeV. Thus, g∗s(T, µ) will be as small as
in the standard scenario at BBN and for the CMB and these findings are not in
contradiction with observational constraints Nevertheless, the increased g∗s(T, µ) for
unequal lepton flavor asymmetries lead to an even more drastic change of effective
relativistic degrees of freedom during the QCD transition than in the standard case.
This would, e.g., lead to a change in the gravitational wave background in frequencies
of several nHz today, which might be detectable by pulsar timing arrays [37].

24At temperatures T > 500 MeV we also included W±, Z0, and Higgs bosons in our calculations.
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8 Convergence Properties

First principle lattice QCD calculations aim at determining or at least restricting
the location of a possible second-order critical endpoint (CEP) of a first-order phase
transition line in the QCD phase diagram (µCEP, TCEP). With the Taylor series
method, introduced in Chapter 6, the calculation of several thermodynamic variables
can be extended to nonvanishing chemical potentials. Techniques on estimating the
radius of convergence of the Taylor series method and using this method to estimate
the location of a possible CEP in the QCD phase diagram have been developed.
Our technique of tracing the evolution of chemical potentials at nonvanishing lepton
asymmetry also makes use of a Taylor series of the QCD pressure around vanishing
chemical potentials for temperatures close to TQCD. However, as we are considering
possibly large chemical potentials due to large lepton (flavor) asymmetries, we have
to check if the Taylor series ansatz can be used for our purpose. In this Chapter
the applicability and constraints of our technique using a Taylor series ansatz of
the QCD pressure up to O(µ2) are studied. Therefore, we will comment on the
convergence behavior of the Taylor series method in general and in lattice QCD,
and the possibility to determine the location of a possible CEP of QCD with this
method.

8.1 Convergence Criterion

In general, the convergence of a (power) series,
∞∑
n=1

an =
∞∑
n=1

cnx
n , (8.1)

can be tested with the ratio test: for

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 (8.2)

the series converges absolutely. The radius of convergence r is a nonnegative real
number or ∞ such that for |x| < r the series given in Eq. (8.1) converges. It can be
obtained from the behavior of the expansion coefficients cn:

r = lim
n→∞

rn = lim
n→∞

∣∣∣∣ cncn+1

∣∣∣∣ . (8.3)

The radius of convergence of a Taylor series is determined by the distance from the
series’ origin to the nearest nonanalytic point, i.e., singularity, in the complex plane.
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It is not given that the radius of convergence r > 0. Furthermore, if a Taylor series
of a function converges, it is not given that it converges to the function itself. This
is true only for points x for which the remainder converges to zero.

However, in practice one typically only knows a finite number of terms of a series
and the limit n → ∞ cannot be performed. Thus, one has to rely on approximate
methods to estimate the radius of convergence from a finite number of expansion
coefficients. This can be done by a Domb–Sykes plot [140], i.e., plotting the estimates
for the radius of convergence 1/rn versus 1/n and graphically extrapolate to 1/n = 0

via a linear fit. This works for expansion coefficients of a common or alternating sign.
A more advanced estimator, which also works in case of an irregular sign pattern of
the expansion coefficients, is given by the Mercer–Roberts estimator [141]

rn =

∣∣∣∣cn+1cn−1 − c2n
cn+2cn − c2n+1

∣∣∣∣ 14 . (8.4)

Subsequently, the radius of convergence according to this estimator can be estimated
in a Domb–Sykes plot. In contrast to the ratio estimator, more expansion coefficients
are needed for the Mercer-Roberts estimator and it works best for singularities
away from the real axis [141]. Trying to estimate the radius of convergence by
only a small number of expansion coefficients might be affected by some unphysical
behavior of these first expansion coefficients. Thus, in general estimating the radius
of convergence works better the more expansion coefficients are known.

In lattice QCD estimates for the radius of convergence of the Taylor series of
the QCD pressure are studied. Therefore, the Taylor series of pQCD around vanish-
ing chemical potentials is considered in the (µB, T ) plane, i.e., for vanishing other
chemical potentials,25

pQCD(T, µB) =
∞∑
n=0

cnµ
n
B =

∞∑
n=0

1

n!
χB
n µ

n
B , χB

n =
∂npQCD

∂µn
B

∣∣∣∣
µ=0

. (8.5)

As all odd expansion coefficients vanish, the radius of convergence according to the
Taylor expansion coefficients of the pressure can theoretically be obtained by

rp = lim
n→∞

rp2n , (8.6)

with the estimator for the radius of convergence rp2n according to Eq. (8.3) given by(
µcrit
B

T

)p

≡ rp2n =
1

T

√∣∣∣∣ c2nc2n+2

∣∣∣∣ = 1

T

√∣∣∣∣(2n+ 2)(2n+ 1)χB
2n

χB
2n+2

∣∣∣∣ . (8.7)

25For notational simplicity and the sake of easier comparison, in this Section we will rely on the
notation for the susceptibilities often used in the context of lattice QCD.
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This definition is widely used in the context of lattice QCD to estimate the radius
of convergence of the Taylor series method, cf. e.g. [94, 125, 142–144]. While the
pressure stays finite and continuous at a possible CEP in the QCD phase diagram,
which is associated with a nonanalyticity, its derivatives, the susceptibilities, are
expected to diverge at this point (cf. Fig. 3.1). Thus, their Taylor series will behave
differently near the phase boundary. For the susceptibility series

χB
2 =

∂2p

∂µ2
B

=
∞∑
n=2

n(n− 1)cnµ
n−2
B

=
∞∑
n=2

n(n− 1)

n!
χB
n µ

n−2
B =

∞∑
n=2

cχn−2µ
n−2
B ,

(8.8)

the estimator for the radius of convergence rχ2n is given by(
µcrit
B

T

)χ

≡ rχ2n =
1

T

√∣∣∣∣cχ2n−2

cχ2n

∣∣∣∣ = 1

T

√∣∣∣∣2n(2n− 1)χB
2n

χB
2n+2

∣∣∣∣
= rp2n

√∣∣∣∣ 2n(2n− 1)

(2n+ 2)(2n+ 1)

∣∣∣∣ .
(8.9)

It is reported that this estimator for the radius of convergences converges faster
and, thus, might be more suitable than the corresponding one for the pressure
series [125, 142]. At finite n the two estimators yield different results with rχ2n <

rp2n as can be seen in Eq. (8.9). In the limit n → ∞ both estimators for the
radius of convergence will reach the same value r. Other definitions of the radius
of convergence and their application for QCD have been discussed in the literature,
see, e.g., [83, 125, 145, 146].

One has to keep in mind that the singularity closest to µ = 0 will determine the
radius of convergence of the Taylor series in lattice QCD and it not necessarily has
to lie on the real axis. Only if all expansion coefficients, i.e., the susceptibilities
are positive, then the singularity lies on the real axis [141]26 and the radius of
convergence of the Taylor series determines the location of the singularity on the
real axis, i.e., the location of a possible CEP.

In general, the exact radius of convergence may provide a valuable estimate for
the location of a possible CEP. However, the region of reliability of the Taylor series
and the radius of convergence are a priori unknown. One possibility for obtaining
an estimate for the radius of convergence is to use the expected asymptotic behavior

26In fact, for a singularity to lie on the real axis a few negative expansion coefficients are not
excluded. The expansion coefficients asymptotically have to be positive.
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Fig. 8.1: Estimators for the radius of convergence of the Taylor series of the suscep-
tibility rχ4 for vanishing µQ and µS obtained by lattice QCD calculations (Nτ = 8)
[94] (■). Also shown are results from analytic continuation of imaginary chemical
potential [148] (▲) and rescaled estimates for the location of the critical point from
[143] (◦) and [150] (•). The plot is taken from [94].

of the r2n, if known. Another is to assume that r has been reached when subsequent
estimators r2n do not change within errors anymore (cf. [142]). The applicability of
this method to lattice QCD will be discussed in the following Section.

8.2 Critical Point Location

A possible CEP of a first-order phase transition line in the QCD phase diagram
(µB, T ) plane should be located somewhere at the transition line TQCD(µB) which
separates confined from deconfined phase in the QCD phase diagram. It has been
shown that the curvature of the transition line is negative and surprisingly small
[22, 147–149]. Thus a possible CEP is disfavored for T > TQCD(0).

In Fig. 8.1 [94] we can see different estimates for the radius of convergence, i.e.,
the critical baryon chemical potential µcrit

B /T , according to the susceptibility series
given in Eq. (8.9) which yield a smaller radius of convergence for finite n compared
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to Eq. (8.7). The results are obtained from lattice QCD calculations via a Taylor
series around vanishing baryon chemical potential [94] (■), analytic continuation
of imaginary chemical potential [148] (▲), and estimates on the CEP location are
obtained by [143] (◦) and [150] (•). However, the different analyses come to different
and to some extent even contradictory results.

According to Eq. (8.9) the ratio of susceptibilities asymptotically needs to decrease
as |χB

2n/χ
B
2n+2| ∼ 1/n2 to yield a finite radius of convergence for n → ∞. For the

HRG the ratio of susceptibilities is constant |χB
2n/χ

B
2n+2|HRG = 1, thus yield an infi-

nite radius of convergence. For comparison estimators for the radius of convergence
of the HRG are shown in Fig. 8.1. Up to sixth order all susceptibility ratios do
not differ much from the HRG results within errors for T ≲ TQCD [94, 144, 148],
see Fig. 8.1. Thus, one cannot finally rule out an infinite radius of convergence at
the moment. However, there are indications that ratios of susceptibilities at non-
vanishing chemical potentials become smaller compared to the corresponding HRG
ratios [113]. According to Ref. [94], using sixth order expansion coefficients, at
temperatures T > 135 MeV a CEP is disfavored for µB ≤ 2T , see Fig. 8.1.

A huge drawback of the determination of the radius of convergence in lattice
QCD is that there only exists a (small) finite number of expansion coefficients,
currently 2n ≤ 8, and the limit n → ∞ cannot be performed. Estimates for the
radius of convergence based on just the first few expansion coefficients might be
affected by unknown systematic errors and there exists the possibility that, even
if a CEP exists in QCD, lattice QCD may not be sensitive to it at the current
level of statistical uncertainty. Studies suggest that higher-order Taylor expansion
coefficients are needed for a meaningful application to lattice QCD, cf., e.g., [125,
142, 144].

The applicability of the Taylor series method has been investigated in various
studies. In the Ising Model the Taylor series method can successfully be applied
to estimate the radius of convergence. However, higher-order (n ≥ 8 nonvanishing)
expansion coefficients and small uncertainties are needed for an accurate determi-
nation [151]. More recently, in the case of nonvanishing isospin chemical potential
the reliability of the Taylor series method has been studied and compared to lattice
QCD results for nonvanishing isospin chemical potential [152]. QCD at nonvanish-
ing isospin is directly accessible by lattice QCD calculations and the QCD phase
diagram in the (µI , T ) plane exhibits a second-order phase transition [36]. Thus,
the reliability of the Taylor series for nonvanishing isospin may give hints to the
reliability of the Taylor series for nonvanishing baryon chemical potentials and the
reliability of the estimates for the radius of convergence. In this study [152], it was
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shown that the estimate for the radius of convergence via the susceptibility series
rχ2 is surprisingly close to the phase boundary of the second-order phase transi-
tion. Whether higher-order estimators exhibit the same behavior still needs to be
investigated.

However, another question is whether a finite estimate for the radius of convergence
can be interpreted as estimates on the location of a possible CEP. One can find
models reproducing lattice QCD results on baryon number fluctuations, i.e., the
same behavior of the estimates rχ2n, without having a CEP [144, 146, 153]. Thus,
apparent convergence in a finite number of ratio estimators does not imply the
existence of a CEP and we have to be careful with this interpretation of the estimates
for the radius of convergence. Additionally, the Taylor series of pQCD was simplified
to an expansion in only one chemical potential, i.e., µB, and the other chemical
potentials were assumed to vanish. The other chemical potentials may also influence
the radius of convergence of the Taylor series as the nearest singularity may be
determined by them rather than µB.

There exist possible improvements on the reliability of the Taylor series in general
and on the estimator of the radius of convergence. The convergence of a Taylor series
can be improved further by a resummation of the expansion coefficients based on a
Padé approximation, which often shows better convergence behavior, especially in
the presence of singularities (cf. [142, 146]). The estimates for the radius of conver-
gence might be improved by using other estimators which show a better convergence
behavior like, e.g., the Mercer–Roberts estimator given in Eq. (8.4) (cf. [146]).

Anyway, estimating the radius of convergence from a finite number of expansion
coefficients in combination with other lattice QCD results is at the moment the only
option to make statements about the location of a possible CEP of a first-order
transition line in the QCD phase diagram. For being able to provide a well-founded,
rigorous statement on the location of a possible CEP, further studies have to be
performed, either via the determination of higher-order lattice QCD susceptibilities
or studies of a totally new kind.

8.3 Reliability of Cosmic Trajectory Determination

In this Section, we want to study the reliability of our technique to account for strong
interaction effects in the determination of the evolution of chemical potentials. For
our calculations in Chapter 7 we considered the Taylor series of the QCD pressure up
toO(µ2) and used lattice QCD susceptibilities. We will now, according to our system
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of equations for the temperature regime around TQCD given in Eqs. (7.10a)–(7.10c),
determine the combination of chemical potentials and lepton (flavor) asymmetries
for which our technique is applicable.

Keep in mind that the total pressure is additive, p(T, µ) = plep(T, µ)+pQCD(T, µ).
The leptonic contribution to the pressure plep(T, µ) can be determined exactly. Thus,
for estimating the reliability bound of our technique we apply

pQCD
2 (T, µ) ≤ pQCD(T, 0)

⇒ 1

2
µaχabµb ≤ pQCD(T, 0)

(8.10)

as an estimator for convergence in our calculations according to Eq. (8.2), consid-
ering all conserved charge chemical potentials as nonvanishing.27 In the following
we will denote pQCD

2 (T, µ) ≡ pQCD
2 and pQCD(T, 0) ≡ pQCD

0 . For pQCD
2 > pQCD

0 a
truncation of the Taylor series at O(µ2) is not appropriate anymore and the size of
higher-order expansion coefficients should be considered. This constraint may pro-
vide a good estimator for the convergence because known higher-order lattice QCD
susceptibilities tend to be of the same size or smaller compared to the second order
ones within errors (cf. [94, 129, 143]). However, refined analyses of higher-order ex-
pansion coefficients with smaller errors have to be awaited to be able to profoundly
judge about their impact.

Even though it is not needed, we also could make use of a Taylor series of plep(T, µ)

around vanishing chemical potentials. Naively, one could assume that this Taylor
series should converge with an infinite radius of convergence, as no critical behavior
for the leptons is known at the temperatures we are considering. However, the
pressure of the leptons is determined by an integral over the Fermi-Dirac distribution
(cf. Eqs. (3.6) and (3.26)) which has singularities for complex values of the chemical
potential at µ/T = iπ + 2iπk + E/T with k ∈ Z. The singularity nearest to
zero determines the radius of convergence of the Taylor series of the pressure, i.e.,
r = µc =

√
π2T 2 +m2.28 Thus, even though no critical behavior of plep(T, µ) at real

µ is observed and we are able to determine it analytically, using a Taylor series
we get a finite radius of convergence. Moreover, we found that using the Taylor
series ansatz also for plep(T, µ) can limit the convergence of the total pressure even
more than using the Taylor series ansatz only for pQCD(T, µ). This demonstrates

27Actually, also the contribution of nonvanishing chemical potentials to sQCD(T, µ) is determined
via a Taylor series ansatz. However, as sQCD(T, µ) is determined via the Taylor series of the pressure
(cf. Sec. 6), as an approximation, we assume the same estimator for convergence to hold.

28Keep in mind, that we are performing the integral of the Fermi-Dirac distribution over the
interval [m,∞], cf. Eq. (3.26).
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the limitations of the Taylor series method and shows how important it is to treat
plep(T, µ) exactly.

For the numerical determination of the chemical potentials of the conserved charges
and the lepton flavor asymmetries for which pQCD

2 ≤ pQCD we add this constraint as
an additional equation to our system of equations given in Eqs. (7.10a)–(7.10c). As
before, we used pQCD(T, 0) by [49]. Having now a system of six equations, we can
choose six free parameters. As before, we will choose the five chemical potentials of
the conserved charges and additionally we will choose one lepton flavor asymmetry
as free parameter. The other two lepton flavor asymmetries will be determined by a
fixed relation to the free lepton flavor asymmetry. We will also consider the case of
not equally distributed lepton flavor asymmetries in this Section. We will consider
2+1 flavor lattice QCD susceptibilities in this study, as for them a finer tempera-
ture grid is available and thus the numerical derivatives of the susceptibilities are
assumed to be more accurate. Furthermore, for T ≲ 250 MeV the results obtained
with 2+1 and 2+1+1 flavor lattice QCD susceptibilities do not differ substantially
for most temperatures. In the following Sections we show results for the chemical
potentials and lepton (flavor) asymmetries under the constraints pQCD

2 /pQCD
0 = 1

and pQCD
2 /pQCD

0 = 0.1 for comparison with a linear interpolation between calculated
points.

8.3.1 Constraints on Chemical Potentials

Let us first discuss some general behavior of the chemical potentials under the pres-
sure constraints. Using the constraint on the pressure, given in Eq. (8.10), together
with baryon number conservation, given in Eq. (7.10b), we get relations for µB and
µQ which partly decouple from the system of equations:

|µc
Q| ≤

√
2pQCD(T, 0)χBB − b2s2(T, µ)

χQQχBB − χ2
BQ

, (8.11)

µc
B =

bs(T, µ)

χBB

− µc
Q

χBQ

χBB

, (8.12)

where the superscript c denotes the solution obtained under the pressure constraint.
These relations are coupled to the system of equations given by Eqs. (7.10a)–(7.10c)
only via the entropy density s(T, µ), to which the chemical potentials of all con-
served charges contribute. However, the term proportional to the entropy density
in Eq. (8.11) is suppressed by the small baryon asymmetry b ∼ 10−10 and negligible
compared to the term proportional to the pressure. Even quite large lepton (flavor)
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asymmetries lead to s(T, µ) on the order of s(T, 0) at T ∼ TQCD (cf. Sec. 7.4). Thus,
we can estimate s(T, µ) ≡ s ∼ 100T 3 as an upper bound. Together with the baryon
asymmetry we get bs ∼ 10−8T 3. The pressure can be estimated as pQCD(T, 0) ∼ T 4

(cf. Sec. 7.4) and χBB ∼ 10−1T 2 (cf. Sec. 6.2). Thus, 2pQCD(T, 0)χBB ∼ 10−1T 6 and
b2s2 ∼ 10−16T 6. We clearly see, that the term proportional to s is negligible for the
determination of µc

Q and µc
B according to Eqs. (8.11) and (8.12) and, hence, they

decouple from the system of equations to good approximation. For this reason we
obtain to a very good approximation always the same values for µc

Q and µc
B, respec-

tively, irrespective of the different possibilities of unequal lepton flavor asymmetries
we will study in the following.

In Fig. 8.2 (top) the temperature evolution of µc
Q and µc

B corresponding to the
constraint pQCD

2 = pQCD
0 is shown, which separates the values of the chemical po-

tentials for which we assume our approximation of a Taylor series of pQCD up to
O(µ2) to be applicable and for which not (shaded regions). To guide the eye, we
also show the line pQCD

2 = 0.1pQCD
0 (dashed lines). In Fig. 8.2 (bottom) we also

show the (µB, µQ) plane. In this diagram the temperature evolution is shown by
the varying color of the line for pQCD

2 = pQCD
0 . For this diagram a counterpart with

opposite signs of µB and µQ exists. To be in agreement with the pressure constraint,
we see, that quite large electric charge chemical potentials are allowed, whereas at
the same time the baryon chemical potential has to be much smaller. The allowed
values of µB and µQ evolve opposite to each other. While for large temperatures,
T ∼ 250 MeV, larger µQ are allowed to fulfill the pressure constraint compared to
low temperatures, T ∼ 150 MeV, µB at the same time has to be smaller compared
to low temperatures.

The evolution of µc
Le

and µc
Lτ

corresponding to the pressure constraint in the case
of equal lepton flavor asymmetries is shown in Fig. 8.3. The evolution of µc

Lµ
is

not shown as it is similar to µc
Le
. The corresponding evolution of the total lepton

asymmetry lc will be discussed in the following Section (cf. Fig. 8.4). In contrast
to µc

Q and µc
B the evolution of the µc

Lα
is not independent of the case of (equal

or unequal) lepton flavor asymmetries we are considering. In the case of unequal
lepton flavor asymmetries, the lepton flavor chemical potentials corresponding to a
large lepton flavor asymmetry are larger whereas the ones corresponding to a small
lepton flavor asymmetry are smaller compared to µc

Lα
in the case of equal lepton

asymmetries.
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Fig. 8.2: (µB, T ) plane (top left), (µQ, T ) plane (top right), and (µB, µQ) plane (bot-
tom). The lines divide the planes in values of the chemical potentials in agreement
with the pressure constraint pQCD

2 (T, µ) ≤ pQCD(T, 0) and for which this constraint
is not fulfilled (shaded regions). To good approximation these classifications do not
depend on the lepton flavor asymmetry. For the lower diagram a counterpart with
opposite signs of the chemical potentials exists. Dashed and light colored lines corre-
spond to the constraint pQCD

2 (T, µ) ≤ 0.1pQCD(T, 0).
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Fig. 8.3: (µLe , T ) plane (left) and (µLτ , T ) plane (right) for equal lepton flavor
asymmetries lα = l/3. The lines divide the planes in values of the chemical potentials
in agreement with the pressure constraint pQCD

2 (T, µ) ≤ pQCD(T, 0) and for which this
constraint is not fulfilled (shaded regions). Dashed lines correspond to the constraint
pQCD
2 (T, µ) ≤ 0.1pQCD(T, 0). The (µLµ , T ) plane is not shown as it is similar to the

other planes.
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Fig. 8.4: (l, T ) plane (left) and (µB, l) plane (right) for equal lepton flavor asymme-
tries lα = l/3. The lines divide the planes in values of the total lepton asymmetry l or,
respectively, µB in agreement with the pressure constraint pQCD

2 (T, µ) ≤ pQCD(T, 0)

and for which this constraint is not fulfilled (shaded regions). Dashed lines corre-
spond to the constraint pQCD

2 (T, µ) ≤ 0.1pQCD(T, 0). In the (µB, l) plane (right) the
corresponding line is at very small values and does not lie in the region shown.
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Fig. 8.5: (l, T ) plane at different combinations of unequal lepton flavor asymmetries.
The lines divide the planes in values of the total lepton asymmetry l in agreement
with the pressure constraint pQCD

2 (T, µ) ≤ pQCD(T, 0) and for which this constraint is
not fulfilled (shaded regions). Dashed lines correspond to the constraint pQCD

2 (T, µ) ≤
0.1pQCD(T, 0).
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8.3.2 Constraints on Lepton Flavor Asymmetries

In Fig. 8.4 the temperature evolution of the total lepton asymmetry lc for equal
lepton flavor asymmetries for which the pressure constraint pQCD

2 ≤ pQCD
0 is fulfilled

is shown (continuous line). For the shaded regions the pressure constraint is not
fulfilled. In the (l, T ) plane we can see that for equal lepton flavor asymmetries
a total lepton asymmetry as large as |l| ≲ 0.2 is in agreement with the pressure
constraint for all temperatures 150 ≤ T ≤ 250 MeV. We also provide the (µB, l)

plane in Fig. 8.4 (right).

In Fig. 8.5 we show the (l, T ) plane for a selection of different combinations of
unequal lepton flavor asymmetries. Depending on the case of unequal lepton flavor
asymmetries we are considering, the region in agreement with the pressure constraint
varies. The temperature evolution of lc in the case of lτ = l and le = lµ = 0, shown in
Fig. 8.5 (bottom left), differs from the other cases. In this case at low temperatures
a larger lepton asymmetry is in agreement with the pressure constraint compared to
higher temperatures. For the other cases the opposite is true. The case of the non-
vanishing tau lepton flavor asymmetry is special, as already discussed in Sec. 7.2.3,
as at low temperatures all tau leptons annihilated and the asymmetry remains in
the tau neutrinos and thus tau lepton flavor conservation approximately decouples
from the system of equations. This leads to larger freedom on the value of the tau
lepton flavor asymmetry at low temperatures in agreement with pQCD

2 ≤ pQCD
0 . For

other combinations of unequal lepton flavor asymmetries, which we are not showing
in Fig. 8.5, the regions of the (l, T ) plane of the phase diagram in agreement and not
in agreement with the pressure constraint do not feature a different behavior than
the ones which are shown.29 For the temperature regime we considered, roughly a
total lepton asymmetry |l| ≲ 0.1 is in agreement with pQCD

2 ≤ pQCD
0 for unequal

lepton flavor asymmetries and our technique should be applicable.

Hence, all equal and unequal lepton flavor asymmetries we investigated in Chap-
ter 7 are in agreement with the constraint pQCD

2 ≤ pQCD
0 . This can also be seen by

comparing the evolution of the cosmic trajectories given in Chapter 7 to Figs. 8.2
and 8.3. For all investigated lepton flavor asymmetries the trajectories lie in the
region of pQCD

2 ≤ pQCD
0 . A total lepton asymmetry in agreement with observational

constraints, i.e., |l| ≲ 0.012, is in fact in agreement with the even stronger constraint
pQCD
2 ≤ 0.1pQCD

0 as can be seen by looking at the dashed lines in Figs. 8.4 and 8.5.

29This also includes the cases of vanishing total lepton asymmetry, e.g., le = 0 and lµ = −lτ , for
which we can study the phase diagram in the (lα, T ) plane.



78 8 CONVERGENCE PROPERTIES

If desired, one could estimate the location of a possible CEP of the QCD phase
diagram by the estimate for the radius of convergence given by the pressure con-
straint pQCD

2 ≤ pQCD
0 . Thus, for the first time, we are able to estimate the location

of a possible CEP not only in the (µB, T ) plane but also at nonvanishing electric
charge chemical potential, lepton flavor chemical potentials, and lepton asymmetry.
That is to say, we can estimate the location of a possible CEP for the cosmic QCD
transition. We would, however, like the reader to keep in mind the limitations of
this estimation which we discussed in Sec. 8.2. In fact, this interpretation of the es-
timate for the convergence of our technique depends on the possibility to determine
the radius of convergence of the Taylor series of the QCD pressure within lattice
QCD. This is due to the fact that the pressure constraint and baryon number con-
servation to a good approximation decouple from the system of equations, as we
discussed at the beginning of Sec. 8.3.1, and thus the pressure constraint is to a
good approximation determined by the lattice QCD susceptibilities.
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Still more mysteries of the universe
remain hidden. Their discovery
awaits the adventurous scientists of
the future. I like it this way.

— Vera Rubin

9 Conclusion

In this thesis we developed and studied a new technique of determining the evolu-
tion of chemical potentials in the early universe in the presence of arbitrary lepton
flavor asymmetries. The novelty is that we used lattice QCD susceptibilities for the
determination of the cosmic trajectory to properly account for strong interaction
effects close to TQCD. Thus, we were able to connect the approximation of an ideal
quark gas with the HRG. Additionally, for high temperatures T ≳ TQCD we also
partially included higher-order perturbative corrections in our calculations by using
results for the entropy density, energy density and pressure at vanishing chemical
potentials obtained with pQCD methods [49].

In Chapter 7 we explained in detail the three approximations we are considering for
the determination of the cosmic trajectory: (i) the ideal quark gas approximation for
which we also included perturbative corrections via using s(T, 0) by [49], (ii) using
2+1 and 2+1+1 flavor lattice QCD susceptibilities and the Taylor series of the QCD
pressure up toO(µ2), and (iii) the HRG approximation which we extended from 54 to
239 hadron resonances compared to [2]. We also self-consistently included chemical
potentials in our calculations, i.e., for the particle net number densities, entropy
density, energy density, and pressure. Thus, we determined the standard cosmic
trajectory in the 5+1 dimensional QCD phase diagram of chemical potentials of
conserved charges and temperature for l = −(51/28)b and, furthermore, the cosmic
trajectory for different large lepton flavor asymmetries.

The 2+1+1 flavor lattice QCD susceptibilities allow us to interpolate between
the trajectories of the ideal quark gas and HRG. We would like to emphasize the
importance of the charm quark contribution at T ≳ 200 MeV, to obtain a smooth
trajectory. This is especially important for the baryon chemical potential, for which
the results obtained by 2+1 flavor lattice QCD susceptibilities intersect with the
ideal quark gas results in a single point for |l| ≳ 10−8. Unfortunately, no continuum
extrapolated 2+1+1 flavor lattice QCD susceptibilities were available to date.

In general, gaps between the different approximations in our results for the cosmic
trajectory, discussed in Section 7.2, are artifacts of our approximations. We were
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able to close or at least reduce the gaps between the lattice QCD results and ideal
quark gas reported in [1] by partially taking higher-order perturbative corrections of
the entropy density s(T, 0) [49] into account in the ideal quark gas approximation.
We assume that the remaining gaps might be closed by considering higher-order
perturbative corrections also for the determination of the conserved charge densities
in our system of equations.

In Fig. 7.1 we observed small gaps for µB at low temperature between lattice QCD
results and the HRG, which might be closed by lattice QCD susceptibilities for lower
temperatures. Nevertheless, these gaps might also be due to limitations of the HRG
approximation to describe all thermodynamical aspects of QCD (cf. Sec. 5.4).

In Sec. 7.2.5 we investigated the impact of unequal lepton flavor asymmetries on
the cosmic trajectory. Assuming unequal lepton flavor asymmetries larger conserved
charge chemical potentials can be obtained while satisfying observational constraints
on the total lepton asymmetry. Additionally, for different individual lepton flavor
asymmetries lα, the evolution of the lepton flavor chemical potentials can be con-
siderably different. Especially for very large lα of opposite sign we can see larger
gaps between the HRG and lattice QCD results which might be due to limitations
of the HRG approximation (cf. Fig. 7.8). Here it would be likewise desirable to have
lattice QCD susceptibilities for lower temperatures available.

For equally and not equally distributed lepton flavor asymmetries we find that the
absolute value of the electric charge chemical potential exceeds the baryon chemical
potential before pion annihilation (except in the standard scenario). Thus, µQ might
be more important for the thermal history of the early universe than µB. In the
case of equal lepton flavor asymmetries |l| ≳ 0.12 yield |µQ| ≳ mπ which might
enable pion condensation in the early universe. However, this lepton asymmetry is
an order of magnitude larger than the observational constraint on l. For unequal
lepton flavor asymmetries, we found that the region of pion condensation might be
reached while satisfying observational constraints, see Fig. 7.9.

In Sec. 7.4 we studied the change of the entropy density, energy density and
pressure according to nonvanishing chemical potentials. For equal lepton flavor
asymmetries in agreement with observational constraints, the change amounts to
at most 0.5% at high temperatures. While efficient neutrino flavor oscillations will
equilibrate different lepton flavor asymmetries, such that the effective relativistic
degrees of freedom g∗s at BBN and the CMB are in agreement with observational
constraints, at high temperatures g∗s for large unequal lepton flavor asymmetries can
be much larger compared to the standard case. A change in g∗s might be detectable
in the gravitational wave background with pulsar timing arrays [37].
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In Chapter 8 we studied the convergence properties of the Taylor series method
for the QCD pressure up to O(µ2) which we use in our technique for determining
the cosmic trajectory close to TQCD. We used the ratio test to determine chemical
potentials and lepton asymmetries for which we estimate the pressure series to be
reliable, i.e., pQCD

2 (T, µ) ≤ pQCD
0 (T, 0). In general, we found that all chemical poten-

tials and lepton flavor asymmetries investigated in Chapter 7 are in agreement with
this pressure constraint. Simplifying the results for unequal lepton flavor asymme-
tries, a total lepton asymmetry |l| ≲ 0.1 is in agreement with the pressure constraint
and our technique should be applicable (cf. Sec. 8.3). An interesting feature is, that
we obtained constraints on µB and µQ in Eqs. (8.11) and (8.12) which were to good
approximation independent of the lepton flavor asymmetries. Thus, the convergence
of our technique is totally determined by lattice QCD results.

We also commented on the possibility to estimate the radius of convergence and
the location of a possible critical endpoint by a small finite number of expansion
coefficients in Chapter 8. There are many reasons, why this might not be a good
idea, see Secs. 8.1 and 8.2. However, if one would be able to estimate the location of
a possible CEP with estimates on the radius of convergence, our technique presents
an improvement compared to just considering lattice QCD results, as we are also
able to consider the effect of nonvanishing chemical potentials of other conserved
charges and lepton flavor asymmetries. Thus, we might be able to estimate the
location of a possible CEP of the cosmic QCD transition with our technique. As
in lattice QCD, it will be absolutely necessary to consider numerous higher-order
expansion coefficients of the Taylor series of the pressure to be able to provide a
well-founded statement for the radius of convergence of the Taylor series and the
location of a possible CEP in the QCD phase diagram.

The current precision of lattice susceptibilities and the ideal quark gas and HRG
approximations used in this thesis do not allow us to make any statement on the
nature of the cosmic QCD transition.

A possible further application of the technique we presented in this thesis is the
determination of the evolution of chemical potentials in heavy ion collisions assuming
thermal equilibrium. Therefore, the system of equations needs to be adjusted. In
contrast to the early universe, due to the short timescale of relativistic heavy ion
collisions weak processes are not in equilibrium and individual quark flavors like
strangeness are conserved. This yields additional conservation equations for our
system of equations. Moreover, the values for the conserved charges have to be
tuned to the conditions present in heavy ion collisions.
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A Appendix

A.1 Useful Relations and Integrals

For the study of particle density, energy density and pressure in Chapter 3, it is useful
to know the following relations while dealing with Fermi-Dirac and Bose-Einstein
distributions:

• Relations for the Riemann zeta function:

ζ(s) =
∞∑
k=1

k−s , (A.1)

ζ(2) =
π2

6
, ζ(3) ≃ 1.2020569032 , ζ(4) =

π4

90
, (A.2)

∞∑
k=1

(−1)k−1k−n =
(
1− 21−n

)
ζ(n) . (A.3)

• Further relations and series: (
n

k

)
=

n!

k!(n− k)!
, (A.4)

(x+ y)n =
n∑

k=0

(
n

k

)
xn−kyk , (A.5)

∞∑
k=0

xk = (1− x)−1 , x < 1 . (A.6)

• Useful relations for Fermi-Dirac and Bose-Einstein distributions:

(ex ± 1)−1 +
(
e−x ± 1

)−1
= ±1 , (A.7)

(ex ± 1)−1 (A.6)
=

∞∑
k=1

(−1)k−1 e−kx . (A.8)

• Integrals: ∫ ∞

0

dx xn

ex − 1
= n!ζ(n+ 1) , (A.9)∫ ∞

0

dx xn

ex + 1
= n!

(
1− 2−n

)
ζ(n+ 1) . (A.10)
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• The following relation yield the solution of the fermionic particle asymmetry
ni − nī in the relativistic limit (mi ≪ T ) for n = 2 and for n = 3 for the total
energy density ϵtot,i [154]:

∑
s=±1

∫ ∞

0

dx sn+1xn

ex−sξ + 1
=

ξn+1

n+ 1
+

n−1∑
k=0

[
1 + (−1)n+k+1

] (
1− 2k−n

) n!
k!
ζ (n− k + 1) ξk ,

(A.11)

• The following relation yield the solution of the bosonic particle asymmetry
ni − nī in the relativistic limit (mi ≪ T ) for n = 2 and for n = 3 for the total
energy density ϵtot,i:

∑
s=±1

∫ ∞

0

dx sn+1xn

ex−sξ − 1
=

− ξn+1

n+ 1
+

n−1∑
k=0

[
1 + (−1)n+k+1

] n!
k!
ζ (n− k + 1) ξk .

(A.12)

A.2 2+1+1 Flavor Lattice QCD Susceptibilities

2+1+1 flavor lattice QCD results (not continuum extrapolated, Nτ = 8) for χBC ,
χQC , χCC and χSC are reported by the HotQCD collaboration [119, 131]. For the
calculation of the cosmic trajectory, we do not need the last one, as strangeness is not
conserved in the early universe due to weak interactions. By the index C the charm
quantum number (charmness) is meant, and also the charm quark contribution to B
and Q is considered. As only the charm quark carries charmness, we can directly in-
terpret these susceptibilities as charm quark susceptibilities: χBc, χQc, and χcc. The
relations for the conserved charge susceptibilities χc

QQ, χc
QB, and χc

BB for the 2+1+1
flavor system (denoted by the superscript c to distinguish it from susceptibilities
of the 2+1 flavor system) can be obtained using the relations between conserved
charge susceptibilities and quark number susceptibilities, cf. Sec. 6.1. Then, we
can separate the quark number susceptibilities with the charm quark from the ones
without the charm quark (cf. Eqs. (6.2) and (6.11)–(6.16)). The quark susceptibili-
ties without the charm quark yield the conserved charge susceptibilities of the 2+1
flavor system. Thus, in total we get the following relations for the conserved charge
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susceptibilities of the 2+1+1 flavor system:

χc
QQ = χQQ +

4

3
χQC −

4

9
χCC , (A.13)

χc
QB = χQB +

2

3
χBC +

1

3
χQC −

2

9
χCC , (A.14)

χc
BB = χBB +

2

3
χBC −

1

9
χCC . (A.15)

The errors of these susceptibilities have been determined via error propagation.
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Fig. A.1: Entropy density, energy density and pressure given by interpolated pQCD
results [49, 155] (pQCD) and a 2+1 flavor lattice QCD parametrization [156] (2+1
lattice QCD) at vanishing chemical potentials with 5% and 10% error bands.

A.3 Equation of State

Throughout our numerical evaluation we used the interpolated pQCD results for
the entropy density, energy density and pressure at vanishing chemical potentials by
[49, 155]. Here we want to compare these results with the parametrization of the
EoS in 2+1 flavor QCD at vanishing chemical potentials for 130 ≤ T ≤ 400 MeV
[156].

In Fig. A.1 the entropy density, energy density and pressure of both methods
are shown. Additionally we show 5% and 10% error bands for the lattice QCD
parametrization. For our calculations we decided to rely on the interpolated pQCD
results as the discrepancy to the 2+1 flavor lattice QCD parametrization is rather
small, ≲ 10%. Furthermore, at temperatures T ≳ 180 MeV for which the charm
quark becomes important (cf. Sec. 6.1), it is more appropriate to use the interpolated
pQCD results for which all quark flavors have been considered and not only 2+1
flavors.
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A.4 Particle and Hadron Resonance Properties

In the following particle and hadron resonance properties (particle, antiparticle,
mass mi, electric charge qi, spin si, degrees of freedom gi) according to the summary
tables of the Particle Data Group 2018 [3] are listed. These properties have been
used for the calculations explained in this thesis. In our calculation of the HRG we
included resonances up to mΛ(2350) ≈ 2350 MeV ∼ 15TQCD, with TQCD ≈ 156.5± 1.5

MeV [22]. Mass uncertainties have been neglected in the calculations. As already
mentioned we separately count the degrees of freedom for particles and antiparticles.
Therefore our degrees of freedom may differ by a factor of two compared to other
references. Particles which are their own antiparticles are denoted by “−” in the
antiparticle column. For unknown spin si =? (see summary table Baryons in [3]) we
assumed the spin to be minimal for our calculation to not overestimate the influence
of a resonance, i.e. si ≥ 1/2 and thus gi ≥ 1. The particles are tabulated according
to their properties: strangeness S, charm C, and bottomness B.

Table A.1: Leptons, quarks and gauge bosons.

mi [MeV] qi [e] si gi

e− e+ 0.511 −1 1/2 2

µ− µ+ 105.658 −1 1/2 2

τ− τ+ 1776.86 −1 1/2 2

νe ν̄e 0 0 1/2 1

νµ ν̄µ 0 0 1/2 1

ντ ν̄τ 0 0 1/2 1

u ū 2.2 2/3 1/2 6

d d̄ 4.7 −1/3 1/2 6

s s̄ 95 −1/3 1/2 6

c c̄ 1275 2/3 1/2 6

b b̄ 4180 −1/3 1/2 6

t t̄ 173000 2/3 1/2 6

W− W+ 80379 −1 1 3

Z − 91187.6 0 1 3/2

γ − 0 0 1 1

g ḡ 0 0 1 8

H − 0 0 0 1/2
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Table A.2: Light unflavored mesons with S = C = B = 0. (π, b, ρ, a): ud̄, (uū−
dd̄)/
√
2, dū. (η, η′, h, h′, ω, ϕ, f, f ′): c1(uū+ dd̄) + c2ss̄.

mi [MeV] qi [e] si gi
π+ π− 139.571 +1 0 1

π0 − 134.977 0 0 1/2

η − 547.862 0 0 1/2

f0(500) − 500 0 0 1/2

ρ(770)0 − 775.26 0 1 3/2

ρ(770)+ ρ(770)− 775.11 +1 1 3

ω(782) − 782.65 0 1 3/2

η′ − 957.58 0 0 1/2

f0(980) − 990 0 0 1/2

a0(980)0 − 980 0 0 1/2

a0(980)+ a0(980)− 980 +1 0 1

ϕ(1020) − 1019.461 0 1 3/2

h1(1170) − 1170 0 1 3/2

b1(1235)+ b1(1235)− 1229.5 +1 1 3

b1(1235)0 − 1229.5 0 1 3/2

a1(1260)+ a1(1260)− 1230 +1 1 3

a1(1260)0 − 1230 0 1 3/2

f2(1270) − 1275.5 0 2 5/2

f1(1285) − 1281.9 0 1 3/2

η(1295) − 1294 0 0 1/2

π(1300)+ π(1300)− 1300 +1 0 1

π(1300)0 − 1300 0 0 1/2

a2(1320)+ a2(1320)− 1318.3 +1 2 5

a2(1320)0 − 1318.3 0 2 5/2

f0(1370) − 1370 0 0 1/2

π1(1400)+ π1(1400)+ 1354 +1 1 3

π1(1400)0 − 1354 0 1 3/2

η(1405) − 1408.8 0 0 1/2

f1(1420) − 1426.4 0 1 3/2

ω(1420) − 1420 0 1 3/2

a0(1450)+ a0(1450)− 1474 +1 0 1

a0(1450)0 − 1474 0 0 1/2

ρ(1450)+ ρ(1450)− 1465 +1 1 3

ρ(1450)0 − 1465 0 1 3/2

η(1475) − 1476 0 0 1/2

f0(1500) − 1504 0 0 1/2

f2′(1525) − 1525 0 2 5/2

π1(1600)+ π1(1600)− 1662 +1 1 3

π1(1600)0 − 1662 0 1 3/2

η2(1645) − 1617 0 2 5/2

ω(1650) − 1670 0 1 3/2

ω3(1670) − 1667 0 3 7/2

π2(1670)+ π2(1670)− 1672.2 +1 2 5

π2(1670)0 − 1672.2 0 2 5/2

ϕ(1680) − 1680 0 1 3/2

ρ3(1690)+ ρ3(1690)− 1688.8 +1 3 7

ρ3(1690)0 − 1688.8 0 3 7/2

ρ(1700)+ ρ(1700)− 1720 +1 1 3

ρ(1700)0 − 1720 0 1 3/2

f0(1710) − 1723 0 0 1/2

π(1800)+ π(1800)− 1812 +1 0 1

π(1800)0 − 1812 0 0 1/2

ϕ3(1850) − 1854 0 3 7/2

π2(1880)+ π2(1880)− 1895 +1 2 5

π2(1880)0 − 1895 0 2 5/2

f2(1950) − 1944 0 2 5/2

f2(2010) − 2011 0 2 5/2

a4(2040)+ a4(2040)− 1995 +1 4 9

a4(2040)0 − 1995 0 4 9/2

f4(2050) − 2018 0 4 9/2

ϕ(2170) − 2188 0 1 3/2

f2(2300) − 2297 0 2 5/2

f2(2340) − 2345 0 2 5/2
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Table A.3: Strange mesons with S = ±1, C = B = 0. K+ = us̄, K0 = ds̄,
K̄0 = d̄s, K− = ūs. K0 = 50%K0

s + 50%K0
l . K∗

0 (700) needs confirmation but is
included in the summary table and thus has been considered in the calculations. For
K∗(892)± hadron produced and τ–lepton-decay produced masses are quoted. The
hadron produced mass mK∗(892)± = 891.76 MeV has been used in the calculations.

mi [MeV] qi [e] si gi
K+ K− 493.677 +1 0 +1

K0 K̄0 497.611 0 0 1

K∗
0 (700)

+ K∗
0 (700)

− 700 +1 0 1

K∗
0 (700)

0 K̄∗
0 (700) 700 0 0 1

K∗(892)+ K∗(892)− 891.76 +1 1 3

895.5 +1 1 3

K∗(892)0 K̄∗(892)0 895.55 0 1 3

K1(1270)
+ K1(1270)

− 1272 +1 1 3

K1(1270)
0 K̄1(1270)

0 1272 0 1 3

K1(1400)
+ K1(1400)

− 1403 +1 1 3

K1(1400)
0 K̄1(1400)

0 1403 0 1 3

K∗(1410)+ K∗(1410)− 1421 +1 1 3

K∗(1410)0 K̄∗(1410)0 1421 0 1 3

K∗
0 (1430)

+ K∗
0 (1430)

− 1425 +1 0 1

K∗
0 (1430)

0 K̄∗
0 (1430)

0 1425 0 0 1

K∗
2 (1430)

+ K∗
2 (1430)

− 1425.6 +1 2 5

K∗
2 (1430)

0 K̄∗
2 (1430)

0 1432.4 0 2 5

K∗(1680)+ K∗(1680)− 1718 +1 1 3

K∗(1680)0 K̄∗(1680)0 1718 0 1 3

K2(1770)
+ K2(1770)

− 1773 +1 2 5

K2(1770)
0 K̄2(1770)

0 1773 0 2 5

K∗
3 (1780)

+ K∗
3 (1780)

− 1776 +1 3 7

K∗
3 (1780)

0 K̄∗
3 (1780)

0 1776 0 3 7

K2(1820)
+ K2(1820)

− 1819 +1 2 5

K2(1820)
0 K̄2(1820)

0 1819 0 2 5

K∗
4 (2045)

+ K∗
4 (2045)

− 2045 +1 4 9

K∗
4 (2045)

0 K̄∗
4 (2045)

0 2045 0 4 9

Table A.4: Charmed mesons with C = ±1, S = B = 0. D+ = cd̄, D0 = cū, D̄0 = c̄u,
D− = c̄d.

mi [MeV] qi [e] si gi
D+ D− 1869.65 +1 0 1

D0 D̄0 1864.83 0 0 1

D∗(2007)0 D̄∗(2007)0 2006.85 0 1 3

D∗(2010)+ D∗(2010)− 2010.26 +1 1 3

D∗
0(2400)

0 D̄∗
0(2400)

0 2318 0 0 1
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Table A.5: Charmed and strange mesons with C = S = ±1, B = 0. D+
s = cs̄,

D−
s = c̄s.

mi [MeV] qi [e] si gi
D+

s D−
s 1968.34 +1 0 1

D∗+
s D∗−

s 2112.2 +1 1 3

D∗
s0(2317)

+ D∗
s0(2317)

− 2317.7 +1 0 1
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Table A.6: p, n, N baryons and resonances with S = 0. (p, N+): uud. (n, N0):
udd. Breit–Wigner masses used for resonance masses.

mi [MeV] qi [e] si gi
p p̄ 938.272 +1 1/2 2

n n̄ 939.565 0 1/2 2

N(1440)+ N(1440)− 1440 +1 1/2 2

N(1440)0 N̄(1440)0 1440 0 1/2 2

N(1520)+ N(1520)− 1515 +1 3/2 4

N(1520)0 N̄(1520)0 1515 0 3/2 4

N(1535)+ N(1535)− 1530 +1 1/2 2

N(1535)0 N̄(1535)0 1530 0 1/2 2

N(1650)+ N(1650)− 1650 +1 1/2 2

N(1650)0 N̄(1650)0 1650 0 1/2 2

N(1675)+ N(1675)− 1675 +1 5/2 6

N(1675)0 N̄(1675)0 1675 0 5/2 6

N(1680)+ N(1680)− 1685 +1 5/2 6

N(1680)0 N̄(1680)0 1685 0 5/2 6

N(1700)+ N(1700)− 1720 +1 3/2 4

N(1700)0 N̄(1700)0 1720 0 3/2 4

N(1710)+ N(1710)− 1710 +1 1/2 2

N(1710)0 N̄(1710)0 1710 +1 1/2 2

N(1720)+ N(1720)− 1720 +1 3/2 4

N(1720)0 N̄(1720)0 1720 0 3/2 4

N(1875)+ N(1875)− 1875 +1 3/2 4

N(1875)0 N̄(1875)0 1875 0 3/2 4

N(1880)+ N(1880)− 1880 +1 1/2 2

N(1880)0 N̄(1880)0 1880 0 1/2 2

N(1895)+ N(1895)− 1895 +1 1/2 2

N(1895)0 N̄(1895)0 1895 0 1/2 2

N(1900)+ N(1900)− 1920 +1 3/2 4

N(1900)0 N̄(1900)0 1920 0 3/2 4

N(2060)+ N(2060)− 2100 +1 5/2 6

N(2060)0 N̄(2060)0 2100 0 5/2 6

N(2100)+ N(2100)− 2100 +1 1/2 2

N(2100)0 N̄(2100)0 2100 0 1/2 2

N(2120)+ N(2120)− 2120 +1 3/2 4

N(2120)0 N̄(2120)0 2120 0 3/2 4

N(2190)+ N(2190)− 2180 +1 7/2 8

N(2190)0 N̄(2190)0 2180 0 7/2 8

N(2220)+ N(2220)− 2250 +1 9/2 10

N(2220)0 N̄(2220)0 2250 0 9/2 10

N(2250)+ N(2250)− 2280 +1 9/2 10

N(2250)0 N̄(2250)0 2280 0 9/2 10
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Table A.7: ∆ baryons with S = 0. ∆++ = uuu, ∆+ = uud, ∆0 = udd, ∆− = ddd.
Breit–Wigner masses used for resonance masses.

mi [MeV] qi [e] si gi
∆(1232)++ ∆̄(1232)++ 1232 +2 3/2 4

∆(1232)+ ∆̄(1232)+ 1232 +1 3/2 4

∆(1232)0 ∆̄(1232)0 1232 0 3/2 4

∆(1232)− ∆̄(1232)− 1232 −1 3/2 4

∆(1600)++ ∆̄(1600)++ 1570 +2 3/2 4

∆(1600)+ ∆̄(1600)+ 1570 +1 3/2 4

∆(1600)0 ∆̄(1600)0 1570 0 3/2 4

∆(1600)− ∆̄(1600)− 1570 −1 3/2 4

∆(1620)++ ∆̄(1620)++ 1610 +2 1/2 2

∆(1620)+ ∆̄(1620)+ 1610 +1 1/2 2

∆(1620)0 ∆̄(1620)0 1610 0 1/2 2

∆(1620)− ∆̄(1620)− 1610 −1 1/2 2

∆(1700)++ ∆̄(1700)++ 1710 +2 3/2 4

∆(1700)+ ∆̄(1700)+ 1710 +1 3/2 4

∆(1700)0 ∆̄(1700)0 1710 0 3/2 4

∆(1700)− ∆̄(1700)− 1710 −1 3/2 4

∆(1900)++ ∆̄(1900)++ 1860 +2 1/2 2

∆(1900)+ ∆̄(1900)+ 1860 +1 1/2 2

∆(1900)0 ∆̄(1900)0 1860 0 1/2 2

∆(1900)− ∆̄(1900)− 1860 −1 1/2 2

∆(1905)++ ∆̄(1905)++ 1880 +2 5/2 6

∆(1905)+ ∆̄(1905)+ 1880 +1 5/2 6

∆(1905)0 ∆̄(1905)0 1880 0 5/2 6

∆(1905)− ∆̄(1905)− 1880 −1 5/2 6

∆(1910)++ ∆̄(1910)++ 1900 +2 1/2 2

∆(1910)+ ∆̄(1910)+ 1900 +1 1/2 2

∆(1910)0 ∆̄(1910)0 1900 0 1/2 2

∆(1910)− ∆̄(1910)− 1900 −1 1/2 2

∆(1920)++ ∆̄(1920)++ 1920 +2 3/2 4

∆(1920)+ ∆̄(1920)+ 1920 +1 3/2 4

∆(1920)0 ∆̄(1920)0 1920 0 3/2 4

∆(1920)− ∆̄(1920)− 1920 −1 3/2 4

∆(1930)++ ∆̄(1930)++ 1950 +2 5/2 6

∆(1930)+ ∆̄(1930)+ 1950 +1 5/2 6

∆(1930)0 ∆̄(1930)0 1950 0 5/2 6

∆(1930)− ∆̄(1930)− 1950 −1 5/2 6

∆(1950)++ ∆̄(1950)++ 1930 +2 7/2 8

∆(1950)+ ∆̄(1950)+ 1930 +1 7/2 8

∆(1950)0 ∆̄(1950)0 1930 0 7/2 8

∆(1950)− ∆̄(1950)− 1930 −1 7/2 8

∆(2200)++ ∆̄(2200)++ 2200 +2 7/2 8

∆(2200)+ ∆̄(2200)+ 2200 +1 7/2 8

∆(2200)0 ∆̄(2200)0 2200 0 7/2 8

∆(2200)− ∆̄(2200)− 2200 −1 7/2 8
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Table A.8: Λ baryons with S = −1. Λ0 = uds.

mi [MeV] qi [e] si gi
Λ Λ̄ 1115.683 0 1/2 2

Λ(1405) Λ̄(1405) 1405.1 0 1/2 2

Λ(1520) Λ̄(1520) 1519.5 0 3/2 4

Λ(1600) Λ̄(1600) 1600 0 1/2 2

Λ(1670) Λ̄(1670) 1670 0 1/2 2

Λ(1690) Λ̄(1690) 1690 0 3/2 4

Λ(1800) Λ̄(1800) 1800 0 1/2 2

Λ(1810) Λ̄(1810) 1810 0 1/2 2

Λ(1820) Λ̄(1820) 1820 0 5/2 6

Λ(1830) Λ̄(1830) 1830 0 5/2 6

Λ(1890) Λ̄(1890) 1890 0 3/2 4

Λ(2100) Λ̄(2100) 2100 0 7/2 8

Λ(2110) Λ̄(2110) 2110 0 5/2 6

Λ(2350) Λ̄(2350) 2350 0 9/2 10
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Table A.9: Σ baryons with S = −1. Σ+ = uus, Σ0 = uds, Σ− = dds.

mi [MeV] qi [e] si gi
Σ+ Σ̄+ 1189.37 +1 1/2 2

Σ0 Σ̄0 1192.642 0 1/2 2

Σ− Σ̄− 1197.449 −1 1/2 2

Σ(1385)+ Σ̄(1385)+ 1382.8 +1 3/2 4

Σ(1385)0 Σ̄(1385)0 1383.7 0 3/2 4

Σ(1385)− Σ̄(1385)− 1387.2 −1 3/2 4

Σ(1600)+ Σ̄(1600)+ 1660 +1 1/2 2

Σ(1600)0 Σ̄(1600)0 1660 0 1/2 2

Σ(1600)− Σ̄(1600)− 1660 −1 1/2 2

Σ(1670)+ Σ̄(1670)+ 1670 +1 3/2 4

Σ(1670)0 Σ̄(1670)0 1670 0 3/2 4

Σ(1670)− Σ̄(1670)− 1670 −1 3/2 4

Σ(1750)+ Σ̄(1750)+ 1750 +1 1/2 2

Σ(1750)0 Σ̄(1750)0 1750 0 1/2 2

Σ(1750)− Σ̄(1750)− 1750 −1 1/2 2

Σ(1775)+ Σ̄(1775)+ 1775 +1 5/2 6

Σ(1775)0 Σ̄(1775)0 1775 0 5/2 6

Σ(1775)− Σ̄(1775)− 1775 −1 5/2 6

Σ(1915)+ Σ̄(1915)+ 1915 +1 5/2 6

Σ(1915)0 Σ̄(1915)0 1915 0 5/2 6

Σ(1915)− Σ̄(1915)− 1915 −1 5/2 6

Σ(1940)+ Σ̄(1940)+ 1940 +1 3/2 4

Σ(1940)0 Σ̄(1940)0 1940 0 3/2 4

Σ(1940)− Σ̄(1940)− 1940 −1 3/2 4

Σ(2030)+ Σ̄(2030)+ 2030 +1 7/2 8

Σ(2030)0 Σ̄(2030)0 2030 0 7/2 8

Σ(2030)− Σ̄(2030)− 2030 −1 7/2 8

Σ(2250)+ Σ̄(2250)+ 2250 +1 ? ?

Σ(2250)0 Σ̄(2250)0 2250 0 ? ?

Σ(2250)− Σ̄(2250)− 2250 −1 ? ?
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Table A.10: Ξ baryons with S = −2. Ξ0 = uss, Ξ− = dss.

mi [MeV] qi [e] si gi
Ξ0 Ξ̄0 1314.86 0 1/2 2

Ξ− Ξ̄− 1321.71 −1 1/2 2

Ξ(1530)0 Ξ̄(1530)0 1531.8 0 3/2 4

Ξ(1530)− Ξ̄(1530)− 1535.0 −1 3/2 4

Ξ(1690)0 Ξ̄(1690)0 1690 0 ? ?

Ξ(1690)− Ξ̄(1690)− 1690 −1 ? ?

Ξ(1820)0 Ξ̄(1820)0 1823 0 3/2 4

Ξ(1820)− Ξ̄(1820)− 1823 −1 3/2 4

Ξ(1950)0 Ξ̄(1950)0 1950 0 ? ?

Ξ(1950)− Ξ̄(1950)− 1950 −1 ? ?

Ξ(2030)0 Ξ̄(2030)0 2025 0 ≥ 5/2 ≥ 6

Ξ(2030)− Ξ̄(2030)− 2025 −1 ≥ 5/2 ≥ 6

Table A.11: Ω baryons with S = −3. Ω− = sss.

mi [MeV] qi [e] si gi
Ω− Ω̄− 1672.45 −1 3/2 4

Ω(2250)− Ω̄(2250)− 2252 −1 ? ?

Table A.12: Charmed baryons with C = +1. Λ+
c = udc.

mi [MeV] qi [e] si gi
Λ+
c Λ̄+

c 2286.46 +1 1/2 2
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