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ABSTRACT

In order to establish long-term relationships with users, social
companion robots and their behaviors need to be comprehensible.
Purely reactive behavior such as answering questions or following
commands can be readily interpreted by users. However, the robot’s
proactive behaviors, included in order to increase liveliness and
improve the user experience, often raise a need for explanation.
In this paper, we provide a concept to produce accessible “why-
explanations” for the goal-directed behavior an autonomous, lively
robot might produce. To this end we present an architecture that
provides reasons for behaviors in terms of comprehensible needs
and strategies of the robot, and we propose a model for generating
different kinds of explanations.
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1 INTRODUCTION

Enabling intuitive interaction between humans and robots is a pri-
mary objective in research on human-robot interaction and social
robotics. Part of this is to provide users with an appropriate under-
standing of the robot’s behavior as needed, e.g., to personalize or
teach the robot through direct feedback or instructions (cf. fig. 1).
Recent work has started to look at how users interpret and under-
stand the behavior of autonomous social robots. One increasingly
adopted view is that, from the perspective of the user, a robot’s
behavior needs to be grounded in some form of intents [31] that
provide comprehensible reasons [25] for it. Users, however, often
build interpretations of robot behavior that are prone to uncer-
tainty, misunderstandings, or unwarranted attribution (e.g., due to
anthropomorphization of the robot). A suitable understanding thus
often requires additional information provided through some form
of explanation (cf. fig. 1). Here we ask how a social robot itself can
be enabled to provide understandable explanations of its behavior,
and how those should be tailored for the different kinds of behavior
it can exhibit.

Social companion robots have often been designed based on con-
cepts of internal drives or needs. Especially animal-like social robots
such as Sony’s ‘AIBO’ dog [8] evoke close social relationships [13]
and are designed to have qualities such as emotions, personality, or
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Figure 1: Explanations are an integral part of a comprehen-
sible interaction and its coordination between robot (right)
and human user (left).

attachment in order to become more similar to pet companions [16].
In this view, robots should not be perfectly obedient and without
fault - a certain level of unpredictability and imperfectness would
make robots more alive. However, while reactive behaviors may
be intuitively interpreted by users in terms of stimulus-response
patterns, the proactive behavior of a robot, initiated to, e.g., increase
liveliness or propel self-driven learning, is often less transparent.
We adopt the view that a robot needs to be capable of explaining
its behavior in terms of reasons, in order for the user to understand
origin and relevance of a behavior and to evaluate it accordingly.
This self-explanation ability must render the robot’s behavior trans-
parent to the user, reducing her uncertainty and thus increasing
trust towards the robot [19, 21, 28]. Further, behavior explanations
should enable the user to evaluate the appropriateness of the ro-
bot’s behavior under given circumstances and to provide feedback
that allows for personalizing the human-robot interaction [20]. To
that end, the user must be able to give informative feedback that
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can be linked back to the robot-internal causal history of the action
in order to adjust behavior generation mechanisms.

The research presented here aims at developing a lively social
companion robot that is in “social resonance” [17, 27] with its user
and elevates the user’s well-being. In order to increase user trust
in the robot and to enable learning from user feedback, our goal
is to generate verbal explanations of robot behavior that are un-
derstandable by humans and give them the opportunity to make
informed behavior evaluations, with the long-term objective of
enabling users to teach the robot about their individual preferences
and thus personalize the robot’s behavior. The main question ad-
dressed in this paper, as a first step in this direction, is how the
robot’s action architecture needs to be structured to become “ex-
plainable”, and how verbal explanations can be generated in this
architecture to make the companion robot’s behavior sufficiently
transparent.

The paper is organized as follows: In section 2, background
information and related work on models of behavior explanations in
humans and robots are discussed. In section 3, a generic needs-based
architecture for action selection in a social robot is outlined. Based
on this architecture, section 4 proposes a model for generating
different kinds of explanations, along with a discussion of concrete
examples in a scenario for the environment of this social companion
robot. Finally, in section 5, advances for refining explanations are
put up for discussion and an outlook on future work is given.

2 BACKGROUND AND RELATED WORK

The question of how to explain the decisions or actions taken by au-
tonomous Al systems has received tremendous attention in recent
years. Besold and Uckelman [3] provide desiderata and guidelines
for generating what they call practical explanations for decisions of
artificial system: communicative effectiveness, accuracy sufficiency,
truth sufficiency, and epistemic satisfaction (of the addressee). Their
main focus lies on the epistemic dimension, strongly emphasizing
that explanations vary by context and specifically the knowledge
of the person requesting the explanation [3]. For the most part, this
work on ‘explainable AT’ is aimed at increasing the transparency of
hardly interpretable (black-box) models based on machine learn-
ing techniques, whereas we are concerned here with explaining
the behavior of a social companions robot that rests on a complex
perception—action architecture.

A large body of work has been directed to developing lively
social robots. Animal behavior and cognition can be a source of
inspiration for robots that embody individual characteristics and
display varied, not completely transparent and predictable behavior.
Both, the social robot ‘Kismet’ [4] as well as the aforementioned
robot ‘AIBO’ [1], for example, employ control architectures that are
loosely based on ethological principles and theories. Central to these
architectures are components simulating a motivational system
that models the robot’s needs [26] as a set of internal variables
that dynamically change, given the robot’s actions and external
stimuli. Depending on whether a certain need is fulfilled or not, the
robot develops a corresponding drive [12] (e.g., social, stimulation,
security, and fatigue in ‘Kismet’ [4]) that steers its behavior.

The motivational systems in ‘Kismet’ and ‘AIBO’ were designed
specifically for these social robots with the goal to enable learning or
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increase entertainment-capabilities, respectively. More general cog-
nitive computational models with motivational systems have been
developed as well. The computational cognitive architecture ‘CLAR-
ION’ has recently been extended with a motivational representa-
tion [29] and the ‘PSI’-model [7] specifically models motivation,
emotion, and cognition. When combined with motivation-based
action-selection mechanisms, as discussed in, e.g., [30], these cogni-
tive architectures could - in principle - serve as a rich foundation
for needs-based behavior-generation models for social robots.

It is generally acknowledged that a social robot should be per-
ceived as intentional for users to establish a social connection with
it [5, 31]. That is, humans should be able and willing to attribute
beliefs, desires, or intentions to the robot. Yet, this attribution is not
obvious if the behavior, e.g., derives from dynamic internal needs
designed to simulate vivid, natural behavior. Many researchers have
thus argued that such a robot should be equipped with the ability
to explain its behavior in order to reduce the user’s uncertainty and
allow for a transparent and trusting interaction [14, 22, 28].

However, previous work on self-explaining intentional agents
has mostly addressed training sessions, in which explanations are
given primarily to enable more accurate task imitation [10, 11]
or to educate the users [14, 15]. Harbers et al. [11] conducted a
study revealing that users’ explanations of an agent’s behavior
can be mapped to mental categories such as beliefs, desires/goals,
and intentions (BDI). This suggests that in order to be explainable
similar to human behavior, the agents should be designed according
to BDI principles [10]. Further, they discovered that users prefer
short (one to two elements), yet detailed explanations consisting of
higher mental concepts. Kaptein et al. [14, 15] support the idea of
BDI-based behavior explanation, but also emphasize the importance
of personalizing explanations to the user.

An approach to explain agent behavior in terms of BDI principles
is roughly in line with folk psychological studies on how humans
come up with explanations for an observed behavior [23, 24]. Ac-
cording to the framework proposed by Malle et al. (cf. fig. 3A), one
first differentiates between unintentional and intentional behav-
ior. Intentional behavior is further explained in terms of reasons,
concerning the agent’s desires for an outcome (also referred to as
goals or aims) as well as its beliefs that this specific action leads
to a desired outcome based on a set of broad knowledge, hunches,
and assessments. Further, there are various causal factors that can
lead to the agent’s reasons, such as its personality, culture, or the
immediate context. Those are grouped under the term causal his-
tory of reasons, constituting a third type of explanation. These three
factors lead to an agent’s intention to perform a specific action,
which is in turn contingent on personal (e.g., skill) and situational
enabling factors. Such enabling factors are, for instance, used to
explain unsuccessful attempts at an intended action or successful
performance of an unlikely action [24].

The next section describes a concept for a needs-based architec-
ture that makes similar explanations possible by opening up the
behavior generation process to the user. Section 4 then describes
how the robot can explain its behavior originating in this architec-
ture, by using the four Mallean explanation types for intentional
behavior (causal history of reasons, desire reasons, belief reasons,
and enabling factors) [24].
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Figure 2: Architecture for a social companion robot that sup-
ports behavior explanation.

3 ARCHITECTURE

As stated before, our social robot has three requirements we like to
see realized:

(1) liveliness through intrinsically motivated behavior,

(2) adaptivity through learning from user feedback, and

(3) explainability through verbalization of behavior motivating
factors.

To achieve natural and lively behavior for our social companion
robot, we base it on an architecture (cf. fig. 2) that integrates the
necessary components for social robots to interact autonomously
with their physical and social environment, and mechanisms en-
abling a robot to explain this behavior. The architecture is organized
into three horizontal layers: reactive, intuitive, and deliberative.
This allows modeling a closed body-mind loop via feedback loops
that operate at different speed and cognitive complexity across the
different layers. Such feedback loops can also be used to realize
behavioral adaptation communicated via a social feedback loop
with the user (requirement 2).

The Reactive Layer currently contains a base component for mul-
timodal perception providing auditory and visual input from the
robot’s environment. A complementing Motor Planner and Con-
trol component synchronizes and executes low-level multimodal
behaviors (gaze, facial expression, locomotion, speech), which we
refer to as Acts. The Acts are considered voluntary if triggered by
deliberative decisions (Deliberative Layer) or involuntary if they
are the result of automated reactive behavior patterns in response
to events from Perception. The Acts can currently be seen as repre-
sented by the elements defined in the Behavior Markup Language
(BML) specification [2, 18].

The Intuitive Layer is in charge of creating behaviors that consist
of learned or automatized reactions to higher-level perceived events.
It is closely connected to a Deliberative Layer, which is responsible
for strategic, goal-based behavior. One central component of the
architecture at the interface of both levels is the Needs Engine, which
models active Needs the robot is considered to have (compare, e.g.,
Dérner and Giiss [7] or Maslow [26]). That is, besides reacting to
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its environment or user requests, the robot would have own needs
that fluctuate depending on internal and external events. The Needs
Engine component manages all active Needs, which we consider
to create a physiological state — perceived as unpleasant — when
unsatisfied [7]. Such valenced affect motivates the robot to act,
although the agent can decide to suppress this urge, if necessary
(see requirement 2). For a starting point, we identified two basic
needs from our use cases: a need for physical integrity (relaxation)
and a social need for affiliation (social contact with the user).

The Decision Engine examines the instantaneous Needs-State to
identify the most pressing Needs. A Strategy is planned or chosen
from a Strategy Library to satisfy the identified Needs, or a combi-
nation thereof. Selection criteria include the expected utility and
the applicability of a strategy — verified with the help of Perception
and Memory. The Needs can change over time, also depending on
the results of executed Strategies. Robot Needs may be suppressed
or have their impact adjusted to comply with user instructions.
The Needs Engine integrates these updates received from different
sources and regulates the Needs-State.

The Action Planner details and executes the selected Strategy.
This component uses a dynamic planning approach to form a plan
of Actions, to execute the selected Strategy. The goal of a plan is to
perform activity that satisfies the activity-motivating need. For ex-
ample, the need for relaxation is satisfied by performing the ‘Battery
Charging’ Action for a sufficient amount of time; a need for social-
ization, on the contrary, is satisfied by any activity that involves
interaction with the user. The Action Planner also reports progress
updates to the Needs module to communicate Needs-based rewards
from successfully performed Actions. Finally, Actions are mapped
to Acts by the Motor Planner and Control component and communi-
cated to the Motor Layer on the embodiment for execution. This of
course is only applied if an Action has a physical manifestation or
requires direct interaction with the environment.

Explanation (see requirement 3) requires the capability to relate
internal motivational factors (Needs, Strategies, Action-Plans) with
externally observable user behavior, and memories of past Actions
and Acts performed and experienced by the robot. The latter aspect
requires the architecture to provide memorizing and memory re-
trieval capabilities. This is realized through the Memory component.
Percepts from the environment are stored in the Memory, which
integrates new information into different cognitive representations
that support spatial, semantic, episodic, and causal reasoning. The
Memory is also used to maintain a Theory of Mind about the user -
a mental User-Model.

Feedback from executed behaviors is stored in the memory as
incremental snapshots of a behavior episode. The episode, along
with the links to the initiating events and Needs-State, can be created
in a BML-like fashion from performed Acts. The links especially
allow the robot to identify whether a behavioral episode was just a
reactive response to a perceived stimulus or a result of a deliberative
decision to fulfill one of its own Needs (cf. requirement 3).

4 EXPLANATION MODEL

Explanations are highly complex and can be used with a lot of
different possible functions and goals. For example, explanations
could be produced to describe or clarify an action or event along
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Figure 3: Different kinds of explanations (bottom) that a robot can generate for behavior originating in its needs-based archi-
tecture (middle) and based on the domains of intentional behavior found in human explanation (top; [24, p. 91]).

with its features (‘what’-explanations). On the other hand, expla-
nations could be meant to convey the underlying, hidden reasons
for an action or event (‘why’-explanations), possibly also to justify
its occurrence. Further, explanations could aim at enabling the ad-
dressee to perform an action (‘how’-explanations, such as detailed
instructions). In all of these cases, explanations may even refer to a
state of affairs or an action that has not taken place (e.g., contrastive
or counterfactual explanations).

In the present work we concentrate on ‘why’-explanations for
‘social actions’ that a companion robot is currently performing
while being observed by a user. That is, we focus on the answers
that the robot should give to a question like “Why are you doing
this?”. To this end, we need an explanation model that builds on
the behavior production process in the needs-based architecture

described in section 3, and that links it to folk-conceptual expla-
nation strategies that humans are found to employ (cf. section 2).
The underlying assumption is that people will better understand
and prefer the explanations given by a social companion robot if
they are similar to the explanations humans would give or come
up with themselves [10].

4.1 Example Scenario

For the sake of clarity, we will use an example scenario to define
and discuss the different possible types of explanation the robot
should be able to give.

Imagine a mobile social companion robot, based on the previ-
ously described architecture, that is located in a private home. The
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robot has different internal needs, including one for social con-
tact and one for physical integrity (relaxation). Based on perceived
events and its current needs, the robot can autonomously decide on
which strategies may lead to a specific outcome and hence should be
pursued (cf. fig. 3B). In our case, the robot is equipped with different
strategies for satisfying its needs, e.g., for decreasing its loneliness
it can establish social contact by either talking to a human or by
establishing eye contact. Those general strategies comprise single
actions as determined by the Action Planner, like driving along a
particular path to avoid collisions with objects in the surrounding.
In the particular situation considered here, the robot is driving
along a peculiar path through the living room, while the user is
sitting on the couch. The user now asks the robot to explain: “Why
are you driving around here?”.

4.2 Explanation Strategies

The answers to this question are plentiful and can vary broadly in
range of quantity and quality. The presented architecture, however,
offers a structured repertoire of possible explanations for the robot’s
behavior. Imagine the robot’s behavior was generated as follows:
The robot perceived the user sitting on the couch. Since its need
for social contact was high and it believed that driving closer to
the user may lead to the user talking to it, it chose the strategy of
moving towards the user. In order to explain this action to the user,
the robot can now choose from four different explanation strategies
shown in fig. 3C:

o A perception-based explanation would inform the user on the
input stimuli: “Because I saw you sitting there”

o Another simple, but rather obvious and thus unsatisfying
explanation could be the action explanation: “I am moving
closer to you”.

o A strategy-based explanation would convey the currently
pursued strategy, e.g.: “I wanted to get in contact with you”.

o Finally, a needs-based explanation would be generated based
on the robot’s needs status that led to this strategy/action,
e.g.: “I was lonely”.

These explanations can either be used separately or combined
in a more complex explanation strategy that links two (or possi-
bly more) components to increase the traceability of the behavior
generation process. The latter means to reveal the robot’s decision-
making process along with its beliefs about the relation between
needs (and thus its desire to satisfy the most pressing needs) and
the strategy that best addresses this needs distribution.

The necessity for this sort of complex behavior explanations can
best be seen when looking at the following example: As before, the
robot is driving through the apartment while the user is sitting on
the couch. This time, however, the robot’s behavior originates in
its perception that outside the sun is shining, and that the strategy
of seeking the sun may enable it to recharge its battery using solar
energy (belief), which would satisfy its need of energy. It thus
performs the action of driving to the balcony. Note that our concept
of belief is broadly formulated, also entailing all the knowledge
the robot has about the connections between different parts of its
reasoning process.

In this scenario, basic explanations like “I want to recharge” or
“T am seeking the sunlight” can be given as in the previous example.
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Yet, supposing that the user does not know that its robot is also
rechargeable with solar energy (since it is a new robot or a new
feature), a needs-based explanation would be rather irritating, since
the user would not share the robot’s belief about the sun leading
to an increase in the energy level. A more elaborate and useful
explanation would thus be: “I am seeking the sunlight, because
I know that I can charge my battery with solar energy’ (need +
strategy selection belief), or “I am driving to the balcony, because I
know that I only can get sunlight outside” (action + action selection
belief).

5 DISCUSSION AND OUTLOOK

In this paper we have presented first steps towards a concept of
how verbal explanations for behavior created in a needs-based
architecture could be automatically generated, with the goal of
elevating the transparency and thus reducing users’ uncertainty
when interacting with a social companion robot. In the long term,
this should enable the user to give feedback and instructions that
are in turn comprehensible to the robot, i.e., designed to target
the same categories the robot uses in structuring and explaining
its behavior and thus leading to concrete adjustments to actions,
strategies, or needs at the different levels of the decision process.

Obviously, giving understandable and helpful verbal explana-
tions in dialogue with a user goes beyond the conceptualization of
behavior explanations such as the model laid out here. The style
of verbal explanations needs to be chosen wisely and dynamically
adapted to the explanation receiver’s ‘epistemic longing’ [3] and
personal attributes, such as their age or cultural background [14].
Malle [24] identifies three psychological determinants of explana-
tory choices, referring to the agent’s behavior attributes, pragmatic
goals, and information resources. Furthermore, explanations can be
adapted linguistically, e.g., in their degree of politeness [6], which
implies that they should change over the course of the human-robot
relationship and depending on how ‘delicate’ the behavior to be
explained is. Domain influences, such as expert vs. non-expert, also
play arole in users’ preferred explanation styles [9]. Different expla-
nation types — such as belief-based (communicating the information
on why the actor chose a certain action over another) or goal-based
(communicating the actor’s desired outcome) — are, for example,
preferred for different actions [9] and by different age groups [14].
Similiarly, explanations enriched by simulated emotions could be
beneficial for specific user groups [15].

Finally, appropriateness of the timing and complexity of expla-
nations will need to be addressed: while many and highly elaborate
behavior explanations might be preferred and needed at the onset
of a human-robot relationship, choices need to be reconsidered
when familiarity evolves, eventually limiting the necessity for be-
havior explanations to only a few occasions, for instance, when
salient or unexpected behavior occurs.
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