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Abstract

This paper analyzes how the transferability of production capacities from an es-
tablished to a new product influences the incentives of a firm to invest in R&D. A
dynamic duopoly model is considered, where initially both firms offer a homogeneous
product. The firms invest in production capacities and simultaneously in R&D which
determines their innovation rate. The firm that innovates first extends its product line
and obtains a patent for the new product that prevents the other firm from catching
up. Upon the launch of the new product, the innovator then has the option to trans-
fer part of the capacity for the established product to the production process of the
new product. If capacities can be rolled over to the new product, a trade-off can be
detected in that this rollover option gives the larger firm more incentive to innovate,
whereas the cannibalization effect gives the smaller firm a higher innovation incentive.
As a logical consequence we find that the larger firm is expected to innovate first when
the capacity transfer does not involve a too high capacity loss. However, if the losses
of capacity transfer are considerable, the cannibalization effect starts to dominate and
the smaller firm’s incentive to innovate is larger.

Keywords: dynamic duopoly, product innovation, capital accumulation, differential games,
Markov perfect equilibrium, capacity rollover

1 Introduction
This paper paper analyzes the product innovation incentives of an incumbent firm under
dynamic competition. When an incumbent introduces a new product on the market, it
essentially has a choice between single and dual rollover (Liang et al. (2014)). Single
rollover means that, when a new product is introduced, the established (or old) product
is phased out from the market. With dual rollover, the old product remains in the market
along with the new product.

We consider a duopoly model with two incumbents. Initially this market is homoge-
nous. Both firms hold production capacity which they can adjust by (dis)investing. In
addition, both firms have an option to carry out a product innovation. To do so, they have
to invest in R&D. The larger the investment, the greater the breakthrough probability of
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achieving the innovation. We suppose that, once one firm innovates, it holds a patent that
prevents the other firm from catching up in the innovation process. In other words, once
the competitor innovates, the innovation option of the focal firm expires.

At the moment of innovation, the firm that innovates can determine its rollover strat-
egy. More precisely, it can choose how much of the established production capacity it
wants to roll over to the production process of the new innovative product. Transferring
the full amount corresponds to the single rollover strategy.

After the time of innovation at which the innovator has decided about the capacity
transfer, a heterogenous product market arises. Besides investing in the capacity for the
established product, the innovator is able to further build up the capacity for the new
product by undertaking the corresponding investments. The other firm just produces the
established product and can (dis)invest to extend or reduce the corresponding capacity.

Studying this setting builds on earlier work on strategic capital accumulation (Reynolds
(1987), Fershtman and Muller (1991), Dockner and Wagener (2014), see also the recent
survey by Colombo and Labrecciosa (2017)). A seminal paper in this respect is Dock-
ner (1992), in which the framework is a duopoly model where the firms operate on a
homogenous product market. A main result of this paper is that firms invest more in
a Markov-perfect equilibrium compared to open-loop Nash. Our paper also applies the
Markov-perfect equilibrium approach and we also start out from a homogenous product
market in duopoly where in addition both firms have the option to innovate. Another
capital accumulation approach to innovation, but then in an optimal control setting, is
Dockner et al. (2006). One of the main research questions treated in that paper is how
much venture capital should be acquired to help finance the development of the firm in
the innovation process.

We apply the multi-mode approach of differential games to capture the discrete change
in the product market at the moment the new product is launched. These types of games
are described in Dockner et al. (2000) under the heading piecewise deterministic games.
The multi-mode approach used to capture changing product markets caused by product in-
novation breakthroughs, is also applied by Dawid et al. (2010, 2013, 2017b)). The present
paper extends these works by giving the innovator the possibility to transfer production
capacity from the established product to the new product.

In our previous work (Dawid et al. (2010, 2013, 2017b)) we have found that R&D
investments of the firm that is weaker on the established market are always larger. The
point is that the cannibalization effect of the larger firm is stronger, which gives the larger
firm less incentive to innovate. The present paper shows that, when giving the innovator
the option to (partially) transfer the capacity of the old product to the new product, this
result is changed provided that the firm does not loose too much of the capacity when
transferring it to the production process of the new product. The reason is that, since the
larger firm is able to transfer a large production capacity to the new product, it can make
a head-start on the new product market and earn high revenues. This enlarges the value of
the option to innovate for the large firm, which stimulates R&D investments. We also show
that, before the product innovation has been realized, the option to transfer capacity gives
the firm an additional incentive to invest in the established product market capacity. The
possibility of capacity rollover stimulates growth, because the firm anticipates the capacity
transfer from the old to the new product associated with launching the new product when
the product innovation is realized.

The paper is organized as follows. Section 2 presents the model, while Section 3
develops the different modes of the game. Section 4 presents the economic results and
Section 5 concludes.
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2 The Model
We consider the (continuous-time) interaction of two firms producing a homogenous es-
tablished product based on an old technology. At each point in time, each firm has an
installed production capacity Kfo(t), f = 1, 2 for the old product and, assuming firms
always fully utilize their capacities in production, the inverse demand function for the
established product is given by

po(t) = αo − (K1o(t) +K2o(t)),

Firms can adjust their capacities according to

K̇fo = Ifo − δoKfo, f = 1, 2

with Ifo ∈ IR and δo as depreciation rate. Investment costs are Co(Ifo) = co
2 I

2
fo.

At the same time, both firms engage in R&D investments Ifr ≥ 0, f = 1, 2, in order
to develop a new vertically and horizontally differentiated product. For simplicity, it is
assumed that the firm which develops the new product first, will be able to prevent the
competing firm from entering the (sub)market for the new product due to patent protection
or other technological reasons. The hazard rate of firm f is given by

h(Ifr) = γIfr, γ > 0,

where the R&D investment costs are given by Cr(Ifr) = cr
2 I

2
fr.

Once one of the firms has reached the innovation breakthrough, it is able to offer a new
product, which is horizontally differentiated from the old product and has a reservation
price αn > αo. The inverse demand system now reads

po = αo − (K1o +K2o)− ηKfn

pn = αn − η(K1o +K2o)−Kfn,
(1)

where it is assumed that firm f ∈ {1, 2} is the innovator, Kfn denotes the production
capacity for the new product and η ∈ (−1, 1) is the horizontal differentiation parameter.
For positive (negative) values of η the established and the new product are substitutes
(complements).

At the point in time τ when the innovator introduces the new product, it reorganizes
its production process and can transfer parts of its capacity for the established product
to the production of the new product. Formally, the innovator f chooses an amount
Kf,on ∈ [0,Kfo(τ)] of capacity for the old product, which is rolled over to the production
of the new product. We assume that a share κ, where κ ∈ [0, 1], of a unit of capacity
for the established product can be productively used for producing the new product. It
follows that the capacity for the new product at time τ is given by

Kfn(τ) = κKf,on, κ ∈ [0, 1].

The capacity transfer process exchanges part of the established product capacity for the
innovative product capacity and in this process the established production capacity is
reduced, i.e.

Kfo

(
τ+
)

= K−fo
(
τ−
)
−Kf,on,

where Kfo

(
τ+) (K−fo (τ−)) is the established product capacity right after (before) an

amount Kf,on is transferred to the capacity of the new product.
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Furthermore, costs of Con(Kf,on) = conKf,on result from the rollover of the production
capacity to the new product. After the introduction of the new product, its capacity can
be adjusted in an analogous way to the capacity of the established product, i.e.

K̇fn = Ifn − δnKfn,

with Ifn ∈ IR, depreciation rate δn, and investment costs Cn(Ifn) = cn
2 I

2
fn.

We model the interaction between the firms as a multi-mode differential game, also
labeled as piece-wise deterministic game in the literature (see e.g. Dockner et al. (2000) or
Dawid et al. (2013)). The initial mode m1 denotes the time period before the new product
is introduced. The mode m2 corresponds to the phase where firm 1 has innovated (and
firm 2 therefore will stick to the old product forever) while modem3 refers to the analogous
case with firm 2 as the innovator. The mode process m(t) is a Markov process on the set
of modes M := {m1,m2,m3} in continuous time with m(0) = m1. The transition rate
from m1 to m2 is given by h(I1r), that from m1 to m3 by h(I2r) and all other transition
rates are zero. Furthermore, at each transition from m1 to m2 (or m3), the innovator has
instantaneous costs of Con(Kf,on).

Both firms maximize their expected discounted payoff stream and hence their objective
is given by

Jf = IE
{∫∞

0 e−rt
[
poKfo + pnKfn − Co(Ifo)− Cn(Ifn)− Cr(Ifr)

]
dt− e−rτfCon(Kf,on)

}
,

(2)
where τf denotes the innovation time of firm f , which might be infinite if the other firm
innovates first, and the expectation is taken with respect to the realization of the transition
(time) between the modes of the game.

3 Markov Perfect Equilibria of the Game
We consider stationary Markov Perfect Equilibria of the game. A stationary Markovian
strategy of firm f ∈ 1, 2 is given by a quadruple (φfo, φfr, φfn,K∗f,on), where the feedback
strategies φfo and φfn describe the optimal dynamic investment to accumulate produc-
tion capacity for the old and the new product, respectively, and φfr denotes the optimal
dynamic investment rate in R&D. For φfo, φfr and φfn it holds that they are a func-
tion of the states and the current mode of the game. So, we have that each of these
feedback strategies has the form φfi : [0, αo]2 × [0, αn]2 × M → R for i ∈ {o, n}, and
φfr : [0, αo]2 × [0, αn]2 ×M → R+

0 . From the definitions of the modes in the model sec-
tion it follows that φfn = 0 in mode m1 since no investment in production capacity of
the new product is possible before the product innovation has been accomplished. For
the non-innovator, the same holds in mode m2 or m3. Furthermore, we have φfr = 0 in
modes m2,m3 because the innovator has already innovated and for the non-innovator it is
either impossible to innovate as second due to technological reasons, or useless to innovate
since the innovator has patented its innovation. The firm’s feedback strategy is completed
by the capital transfer function K∗f,on : [0, αo]2 → R+ determining, as a function of both
firms’ capacities on the old market, how much capacity the firm, in case it is the innovator,
transfers from the old to the new product.

In what follows we present the game in a backward fashion. Section 3.1 deals with
modes m2,m3, which arise after the innovation of the innovator took place. Section 3.2
treats the problem the innovator faces in determining how much of its production capacity
to transfer from the production process of the old product to the new product at the
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time the product innovation process has been completed. Finally, Section 3.3 is about the
initial mode m1, where the firms are active producers on the old product market and at
the same time compete to be the innovator of the new product.

3.1 Modes after innovation

The game in modes m2,m3 is linear-quadratic and corresponds directly to the game ana-
lyzed in Dawid et al. (2010). Proposition 1 in that paper characterizes the linear feedback
strategies of an MPE of this game and shows that it has a pair of value functions for the
two players of the form (assuming that firm 1 is the innovator)

V m2
f (K1o,K2o,K1n) = Cf +DfK1o + EfK

2
1o + FfK2o +GfK

2
2o +HfK1n + JfK

2
1n

+ LfK1oK2o +MfK1oK1n +NfK1nK2o, f = 1, 2. (3)

Inserting these forms of the value functions and the corresponding feedback functions
into the Hamilton-Jacobi-Bellman (HJB) equations for both players and applying the
standard procedure of comparing coefficients of all terms up to second order of the state
variables on both sides of the HJB yields a system of 20 algebraic equations for the 20
unknown coefficients in the value functions. In combination with the requirement that the
state dynamics should have a stable steady state under the equilibrium feedback functions
(which follows from the firm’s transversality conditions) this system of equations yields
a unique pair of equilibrium value functions for the two firms for all parametrizations
considered in this paper.1

3.2 Transfer of Capacity

At the (stochastic) time τ , at which the new product is introduced the innovator (again,
we assume this is firm 1) solves the following problem to determine the amount of rollover
capacity:

max
0≤K1,on≤K1o(τ)

[
V m2

1 (K1o(τ)−K1,on,K2o(τ), κK1,on)− conK1,on
]
.

Using (3), the solution to this problem can be easily determined. Inserting expression (3)
gives

max
0≤K1,on≤K1o(τ)

[Cf +Df (K1o(τ)−K1,on) + Ef (K1o(τ)−K1,on)2 + FfK2o (τ) +GfK
2
2o (τ)

+HfκK1,on + Jfκ
2K2

1,on + Lf (K1o(τ)−K1,on)K2o (τ) +Mf (K1o(τ)−K1,on)κK1,on

+NfκK1,onK2o(τ)− conK1,on].

An optimal K1,on ∈ (0,K1o(τ)) thus has to satisfy

−Df − 2Ef (K1o(τ)−K1,on) +Hfκ+ 2Jfκ2K1,on − LfK2o (τ) + κMf (K1o(τ)− 2K1,on)
+NfκK2o(τ)− con = 0,

from which we obtain that

K∗1,on = max
[
0,min

[
K1o(τ), (2Ef − κMf )K1o(τ) + (Lf − κNf )K2o(τ) +Df − κHf + con

2 (κ2Jf − κMf + Ef )

]]
.

1This does not imply that the MPE in modes m2 and m3 are necessarily unique, since our method only
considers MPE with linear feedback function. In general one should expect that also MPE with non-linear
strategies exist.
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3.3 Innovation Race

Initially both firms are active producers of the established product and try to become
the innovator by pursuing their R&D project. We are in mode m1 of the game, the HJB
equations of both firms are symmetric, and for firm 1 it is given by

rV m1
1 (K1o,K2o) = max

I1o,I1r

[(αo − (K1o +K2o))K1o −
co
2 I

2
1o −

cr
2 I

2
1r (4)

+ ∂V m1
1

∂K1o
(I1o − δoK1o) + ∂V m1

1
∂K2o

(φ2o − δoK2o)

+ γI1r
(
V m2

1

(
K1o −K∗1,on (K1o,K2o) ,K2o, κK

∗
1,on (K1o,K2o)

)
− V m1

1 (K1o,K2o)
)

+ γφ2r
(
V m3

1

(
K1o,K2o −K∗2,on (K1o,K2o) , κK∗2,on (K1o,K2o)

)
− V m1

1 (K1o,K2o)
)
].

The first term on the right-hand side stands for the revenue obtained from selling
the established product. The second and the third term are the investment costs of the
capacity investment and the R&D investment, respectively. On the second line we depict
the effects of the changes in the capital stocks of firm 1 and firm 2 on the value of firm 1.
The third line stands for the probability of changing the mode from m1 to m2 times the
corresponding value change, which relates to firm 1 being the innovator. The last line is
analogous, but then with firm 2 being the innovator with mode change from m1 to m3.

Maximization of the right hand side of this HJB equation yields the following repre-
sentation of the equilibrium feedback functions for firm 1 in mode m1 (analogous for firm
2):

φ1o(K1o,K2o,m1) = 1
co

∂V m1
1 (K1o,K2o)
∂K1o

φ1r(K1o,K2o,m1) = γ

cr

(
V m2

1

(
K1o −K∗1,on (K1o,K2o) ,K2o, κK

∗
1,on (K1o,K2o)

)
− V m1

1 (K1o,K2o)
)
.

The interpretation of these terms is straight forward. While investment in old market
capacity is proportional to the marginal value of an additional unit of capacity, the R&D
investment is driven by the firm’s gain from innovation, which already takes into account
the optimal capacity transfer in case the firm innovates first.

Substituting these expressions into (4), yields a partial differential equation, which
is not linear-quadratic. Hence, closed form representations of the value and feedback
functions are not available in this mode. To determine value and feedback functions which
(approximately) solve the HJB equation, we rely on a numerical method. In particular, we
use a collocation approach employing Chebychev polynomials on the 2-dimensional state
space in order to find value and feedback functions corresponding to a MPE of the game
in this mode. For details of our numerical approach we refer to Dawid et al. (2017a).

4 Results
Our analysis of the effect of a change in the capacity transferability parameter κ is based
on the following benchmark parameter setting

αo = 1, αn = 1.25, η = 0.5, δo = δn = 0.2, co = cn = 10, cr = 1, γ = 0.3, r = 0.05.

Whereas these values have not been calibrated based on a particular industry, we have
checked the robustness of our qualitative insights with respect to variations in these pa-
rameters.
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Figure 1: Equilibrium strategies for (a) investment in production capacity, and (b) invest-
ment in R&D, in mode m1 and (c) transferred capacity to the new product for κ = 1.

We first consider the scenario where the firms can fully transfer capacity from the
production process of the established product to the production process of the new product.
This occurs in the model when κ = 1. Figure 1 shows the effects of the capacity sizes in
the old product market on the different control variables of the firm in mode m1. Noting
that the steady states are given by K1o = K2o = 0.31, it can be concluded that the most
relevant capacity sizes are depicted. In Figure 1a we see that investments in capacity of
the old product decreases in the capacity size of the firm itself and of its competitor. This
is because the output price of the old product decreases in both these capacities, making
these investments less profitable. Most remarkable in Figure 1 is the result in Figure 1b
concerning the effect of the capacity of the old product on R&D investment. Where in
Dawid et al. (2017b), in a setting without capacity transfer, this relationship is negative
due to cannibalization and size effects, here it turns out to be positive. This is due to
the new model feature studied in this paper, namely the transferability of capacity from
the old to the new product. Then, if the capacity size on the old market is large, this
enables the firm to get a head start in the innovative product market by transferring a lot
of this capacity to the production process of the just innovated product. This raises the
profitability of innovating, which leads the firm to increase R&D investments.

Figure 1c is about the capacity amount to be transferred from the production process of
the old product to the one of the new product. In the case that transferring the capacity
without any loss to the new product is possible, it is almost always optimal to do so,
because the new product has a higher reservation price and competition on the output
market is lower because the new product is vertically differentiated from the old one.
Only in case of a very high old product capacity, not everything is transferred to the new
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Figure 2: Dynamics of (a) production capacities, (b) hazard rates, and (c) instantaneous
profits for firm 1 (red) and firm 2 (green) for full transfer of capacity, κ = 1.

production process. In particular, if innovation occurs for capacities close to the stable
steady state in mode m1 of K1o = K2o = 0.31 the innovator transfers the entire capacity
to the new product.

In Figure 2 we show the dynamics emerging under these equilibrium strategies. Since
we are interested in the comparison of behavior and success of firms of different size on
the established market, we consider the dynamics under asymmetric initial capacities on
the established market. In particular, in this figure (and all following figures) we assume
that the initial capacity of firm 1 is given by the steady state value (under equilibrium
investment strategies) of the capital accumulation game without the option to innovate
(i.e. the game for γ = 0), whereas firm 2 initially has half of this capacity. For the purpose
of illustration of the dynamics, we show in the figure a run in which firm 1 innovates before
firm 2 can do so and the innovation time τ is equal to the expected innovation time under
the equilibrium strategies.

Figure 2a shows that initially both firms increase capacity. Despite the fact that it
starts out from its steady state value for the model without the option to innovate, also firm
1 increases its capacity size. It does so, because it anticipates the innovation breakthrough
at which it will transfer all of its production capacity to the production process of the more
profitable new product. At time τ , firm 1 introduces the new product to the market and
indeed transfers all of its production capacity to the new product. From that moment on,
firm 1 builds up capacity for the old product from scratch and also invests to increase the
new product capacity size. Firm 2 solely produces the old product and keeps on increasing
its capacity all along. Initially, this is because the capacity size at time zero is only half
the steady state value. After the innovation breakthrough of firm 1, the product market
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Figure 3: Equilibrium strategies for (a) investment in production capacity, (b) investment
in R&D (b) in mode m1 and (c) transferred capacity to the new product for κ = 0.8

becomes heterogeneous. Then firm 1 only sells a small amount of the old product, which
enlarges the profitability of firm 2, giving the latter firm an additional incentive to grow.
Note that the steady state capacity size of the old product in mode m2 is larger for firm 2
than for firm 1. This is because more sales of the old product reduce the output price of
the new product, which is why firm 1 keeps the capacity size of the old product at a lower
level.

Figure 2b confirms that the larger firm 1 has more incentive to innovate, because we see
here that firm 1’s hazard rate is larger throughout the innovation race time window (mode
m1). The hazard rate of firm 2 grows significantly over time though. This is because, as
we know from Figure 2a, firm 2’s productive capacity grows significantly as well. This
gives firm 2 the opportunity to transfer more capacity of the old to the new production
process, which enlarges the value of the product innovation. Figure 2c shows that the
change from a homogeneous to a heterogeneous product market at the time of firm 1’s
product innovation, turns the loss-making situation in a profitable one for both firms. The
initial high investments, inducing losses in mode m1 are still optimal because the firms
anticipate the potential gains from product innovation and from the future transfer of the
production capacity to the production process of the more profitable new product. The
reasons why also the non-innovator becomes profitable after t = τ are twofold. First, the
innovator moves its capacities out of the old market, which increases the price on this
market and, second, the firm stops investing in product innovation since there is no more
chance to introduce the new product.

If the capacity is not fully transferable from the old to the new product (κ < 1),
the feedback strategies and the resulting dynamics change substantially. In Figure 3,
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Figure 4: Dynamics of (a) production capacities, (b) hazard rates, and (c) instantaneous
profits for firm 1 (red) and firm 2 (green) and partially transferable capacity, κ = 0.8.

the investment strategies and the amount of transferable capacity is shown for κ = 0.8,
corresponding to a case where only a relatively small loss in overall capacity occurs if
production equipment is re-used for the production of the new product. Most notably,
one can see from panel (b) of the figure that the investment in R&D is no longer strictly
increasing with respect to the firm’s own production capacity on the old market, but
rather is U-shaped. This reflects the trade-off between two effects, the first effect being
the cannibalization effect which highlights that if the capacity of the old product becomes
larger, introducing the new product induces a larger reduction of the revenue of the old
product. This reduces the incentive to innovate (Dawid et al. (2017b)). The second effect
is that a larger old product capacity enlarges the value of the product innovation, because
the firm is able to transfer a larger production capacity to the new product. The fact that
now there is some leakage in the transfer of the production capacity makes that, unlike
in the situation of Figure 1, the second effect not always dominates the first effect. In
particular, it holds that the first effect is more dominant for smaller production capacity
levels. Considering the optimal capacity transfer policy shown in Figure 3c, it can be
clearly seen that the part of the state space in which the innovator transfers its entire
capacity to the new product is substantially smaller than in the case of full transferability
(κ = 1). In particular, close to the steady state capacity levels the innovator now leaves
some capacity for the production of the old product when entering the new market.

These properties are also reflected in the dynamics shown in Figure 4. Compared to
Figure 2 we observe a smaller hazard rate of firm 1 in Figure 4b, since the fact that now
not all production capacity is transferable reduces the profitability of innovation. The
change in the dynamics of the production capacities on the old market (Figure 4a) also
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Figure 5: Equilibrium strategies for (a) investment in production capacity, (b) investment
in R&D (b) in mode m1, and (c) transferred capacity to the new product for κ = 0.3

follows directly from our discussion above.
If the loss of capacity upon transfer from the old to the new product is even stronger

(κ = 0.3), the firm essentially stops to use this option, as is illustrated in Figure 5c. Since
in a large part of the state space, including the steady state in mode m1, it is not optimal
for the firm to transfer any capacity, we are in fact back in the situation without the
possibility of capacity transfer studied in Dawid et al. (2017b). This implies that R&D
investments are decreasing in its old product capacity size due to the cannibalization effect,
which is bigger for larger firms (Figure 5b). Figure 6 confirms this conclusion by showing
that the hazard rate of the smaller firm is now above the hazard rate of the larger firm for
all t.Whereas the hazard rate of the larger firm 1 is substantially lower than in the cases of
κ = 1 and κ = 0.8, the hazard rate of the smaller firm 2 at least initially is larger than it is
for κ = 0.8. At first sight this might be surprising, since also for the small firm the reduced
transferability of capacities reduces the profit from innovating. However, it also has to be
taken into account that the profit of firm 2, if firm firm 1 innovates, is smaller under
κ = 0.3 than under κ = 0.8 (compare panels (c) in Figures 6 and 4). Overall, winning
rather than loosing the innovation rate is more important for the small firm under lower
transferability of capacities than for large values of κ. Finally, the increase of capacities
on the old market now make that the hazard rates are decreasing over time.

To study the effect of a variation of κ more systematically, in Figure 7 we depict the
value function of the two firms, the probability of the larger firm (firm 1) to innovate
first, and the expected innovation time as a function of κ. The latter is in fact equal to
the expected value of the minimum of the innovation times of the two firms. All values
are based on the same initial conditions we have used throughout the analysis before,
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Figure 6: Dynamics of (a) production capacities, (b) hazard rates, and (c) instantaneous
profits for firm 1 (red) and firm 2 (green) and κ = 0.3.

which means that again firm 1 has a larger capacity on the old market than firm 2. For
a grid of 11 equally distanced κ values in [0, 1] the value functions have been calculated
via collocation. In order to determine the probability of firm 1 to innovate first and the
expected innovation time, we numerically determine the hazard rates of the two firms
along the trajectories using the feedback strategies derived from the value functions for
the corresponding value of κ.

Since the firm does not transfer any capacity as long as κ ≤ 0.3, all values are constant
for this range in Figure 7. For larger values of κ the value of both firms increases with κ.
This reflects that for the innovator transferring production capacity with lower capacity
loss always adds value in situations where firms actually use this option of transferring
capacity upon product innovation. It also reflects that, as discussed above, the non-
innovator is positively affected by a capacity transfer of the innovator as well. Panel (a)
of the figure also highlights that a smaller firm profits already from a relatively small level
of transferability compared to a larger firm, i.e. the minimal value of κ above which the
value function in mode m1 increases with respect to that parameter is smaller for firm 2
than for firm 1. The value of the larger firm is higher, because it owns a larger capacity
on the old market.

We have seen before that a larger value of κ enlarges the effect that, due to the fact
that more capacity can be transferred, the value of the product innovation increases with
old market capacity size. For κ sufficiently large this effect will outweigh the known canni-
balization effect that the value of innovation is reduced by a larger old market production
capacity because of a higher old product revenue loss when the new product is introduced
to the market. This explains why in Figure 7b the probability for the larger firm to win
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the patent race is higher than that of smaller firm for κ large enough.
One might expect that the incentive to innovate goes up, and thus the expected innova-

tion time goes down, if a capacity transfer from old to new production capacity involves a
smaller capacity loss. However, Figure 7c shows that for an intermediate range of κ−values
the expected time to innovate increases with κ. The reason for this non-monotonicity is
that, as can be seen from our comparison of κ = 0.3 with κ = 0.8 above, in a certain range
an increase of κ induces an increase of R&D investment only for the larger firm, whereas
the smaller firm, which for these κ values is more likely to win the race, actually reduces
its R&D investment. Since the overall innovation time is given by the minimum of the
innovation times of the two firms, this results in a non-monotonic effect of a change in κ
on the innovation time.
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Figure 7: Value functions of both firms (a), probability of Firm 1 to innovate first (b) and
expected innovation time (c) for κ ∈ [0, 1].

5 Conclusions
The literature contains a series of papers (Dawid et al. (2010), (2013), (2017b)) on product
innovation, in which the firm has to build up the production capacity for the new product
from scratch. In these papers the firms are active on an established product market,
where it is shown how this affects the incentive to innovate. The present paper extends
this literature by allowing the firm to rollover (part of) the production capacity from the
established production process to the new one. In this sense the paper is also related
to Liang et al. (2014), where the firm has the choice between single rollover, i.e. stop
producing the established product after the market launch of the new product, or dual
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rollover, meaning that the firm produces both products simultaneously after the new
product has been introduced.

The common denominator of the different Dawid et al. papers until now is that
the larger firm has less incentive to innovate. The reason is that introducing the new
product reduces the output price for the established product, and this effect is more
damaging in case of larger production quantities. In other words, the product innovation
cannibalizes revenue on the old market, where this effect increases with the firm’s capacity
size. However, this result is not always observed in reality. For instance, think about
the mobile phone market, where conglomerates like Apple and Samsung are very active in
introducing new generations of smartphones. The major result of the present paper is that
the option to transfer capacity to the production process of the new product in fact could
explain why, in spite of the larger cannibalization effect, larger firms can still have a large
incentive to innovate. The reason is that, when a firm owns a large production capacity on
the established market, it is able to rollover a large capacity to the new product market.
This increases revenue associated with the product innovation and thus increases the value
of the innovation. We show that this effect outweighs the cannibalization effect when the
capacity loss associated with the rollover transfer is limited.
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