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Abstract
Natural scenes are not as random as they might appear, but are constrained in both space and time. The 2-dimensional spatial 
constraints can be described by quantifying the image statistics of photographs. Human observers perceive images with 
naturalistic image statistics as more pleasant to view, and both fly and vertebrate peripheral and higher order visual neurons 
are tuned to naturalistic image statistics. However, for a given animal, what is natural differs depending on the behavior, and 
even if we have a broad understanding of image statistics, we know less about the scenes relevant for particular behaviors. 
To mitigate this, we here investigate the image statistics surrounding Episyrphus balteatus hoverflies, where the males hover 
in sun shafts created by surrounding trees, producing a rich and dense background texture and also intricate shadow patterns 
on the ground. We quantified the image statistics of photographs of the ground and the surrounding panorama, as the ventral 
and lateral visual field is particularly important for visual flight control, and found differences in spatial statistics in photos 
where the hoverflies were hovering compared to where they were flying. Our results can, in the future, be used to create more 
naturalistic stimuli for experimenter-controlled experiments in the laboratory.
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Introduction

At a glance, natural scenes appear to be extremely complex 
and to provide more information than biological visual sys-
tems could possibly deal with appropriately. Already, von 
Helmholtz (1867) therefore suggested that animal visual 
systems could code for such immense information by sim-
plifying the input. About 100 years later it was shown that 
natural input is more constrained than it appears, in both 
space and time, and that early visual processing appears to 
utilize the expected redundancy (e.g., Barlow 1961): Ani-
mals with eyes optimize visual information transmission 
using evolutionary and developmental adaptations to their 
natural environments.

To understand the behavioral relevance of such coding 
adaptations it is important to consider the relevant natural 
environments in which the animals behave. For this purpose, 
we can use image statistics, which is a method for quanti-
fying the two-dimensional information in a picture. Some 
image statistics, such as image color, contrast, skewness 
(Bex and Makous 2002; Kumar and Gupta 2012; Pouli et al. 
2011) and entropy, are based on the luminance and color 
values of a picture’s individual pixels. Entropy can be used 
to describe the complexity of an image (Redies et al. 2017), 
where homogenous images with uniform backgrounds and 
uniform objects have low entropy. When human observers 
view natural scenes, they tend to shift their gaze to regions 
with higher entropy (Reinagel and Zador 1999; Renninger 
et al. 2007; Itti and Baldi 2009). In addition, human reac-
tion time when categorizing images increases with entropy 
(Mirzaei et al. 2013). Note that high entropy does not imply 
that an image is more naturalistic, as white noise images, 
where all adjacent pixels are uncorrelated, have high entropy 
(Ruderman and Bialek 1994).

Image statistics that take the relationships between the 
pixels’ positions into account (van der Schaaf and van 
Hateren 1996) is a valuable and important measure as 
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neighboring spatial locations have highly correlated inten-
sity values in natural input (Simoncelli and Olshausen 2001). 
A widely used and well-investigated image statistic is the 
slope constant of the amplitude spectrum, which can be 
extracted after doing a Fourier transform of the image (Field 
1987). On a log–log scale, the rotational average of the 
amplitude spectra of natural scenes has a 1

f �
 shape, with slope 

constants (alpha) around 1–1.2 (Tolhurst et al. 1992; Bex 
and Makous 2002; Schwegmann et al. 2014b). When alpha 
is exactly one, the scene is scale-invariant.

A large body of work suggests that both human and fly 
peripheral visual systems have evolved to encode natural 
scenes optimally. For example, Atick and Redlich (1992) 
showed that the vertebrate retina works as a ‘whitening’ fil-
ter of natural input by transforming the 1/f amplitude spec-
trum into a flat spectrum. Similar ‘whitening’ takes place in 
the fly retina (Laughlin 1981). In more central processing, it 
has been suggested that orientation tuning, bandwidth tun-
ing and the receptive field structure of the cortical cells in 
V1 optimally encode natural stimuli with 1/f characteristics 
(Field 1987; Field and Brady 1997). In hoverflies, the inhibi-
tion of a higher order visual neuron in the brain is strongest 
when alpha is close to one (Dyakova et al. 2015) and optic 
flow-sensitive neurons in the descending nerve cord are also 
tuned to naturalistic alpha values (Nicholas et al. 2018).

However, even if we can define typical image statistics, 
there are important differences between scene categories. 
For example, the amount of man-made structures, the dis-
tance between the observer and the scene being depicted, 
and the level of scene “openness” all have different image 
statistics, including slope constants (alpha) (Torralba and 
Oliva 2003; McCotter et al. 2005). Furthermore, within a 
given scene local image statistics may vary dramatically 
(Frazor and Geisler 2006; Schwegmann et al. 2014b). To 
understand the visual coding of natural scenes, we thus need 
to define natural for a particular animal performing a specific 
behavior. This is important as most animals perform dif-
ferent behaviors against different backdrops, creating many 
different “natural” scenes.

Hoverflies are arising as emerging models in insect 
vision, and it is therefore becoming pertinent to understand 
their natural environment in more detail. Compared to many 
other insects, we have a detailed understanding of, e.g., the 
neural encoding of visual stimuli by single higher order neu-
rons in the dronefly Eristalis tenax (Dyakova et al. 2015; 
Nordström and O’Carroll 2009), of target pursuit behavior in 
several hoverflies (Collett and Land 1978; Collett and King 
1975), and of the optomotor response in Episyrphus baltea-
tus (Goulard et al. 2015). Here we focus on the marmalade 
fly Episyrphus balteatus, which is an important commercial 
pollinator and aphid controller (Sutherland et al. 1999; Mar-
tinez-Una et al. 2013) commonly found in gardens, parks 

or fields across Europe (Gilbert and Owen 1990). In these 
open environments, they inspect flowers for feeding, seek 
moisture, and search for oviposition sites and for potential 
mates (Primante and Dötterl 2010; Verheggen et al. 2008; 
Goulson and Wright 1998).

As the name implies, hoverflies are characterized by their 
ability to remain near-stationary mid-air for prolonged peri-
ods of time (Collett and Land 1978). Episyrphus males set 
up their hovering territories in sun shafts created by tree 
branches (Alderman 2008). The resulting ground shade pat-
tern produced by the foliage is often quite striking, espe-
cially when compared with the more open fields that the 
hoverflies may cross in their search for flowers or partners. 
To understand more about the image statistics that may be 
relevant to hoverflies we took photos where E. balteatus 
were observed to be freely hovering in the field. As com-
parison we identified locations where E. balteatus hoverflies 
were flying, as this behavior is performed at a similar eleva-
tion. We took photos of the ground over which the hoverfly 
was performing its behavior and panoramic photographs of 
the surrounding. We focused on images from the ventral 
and lateral parts of the visual field as these appear to be par-
ticularly important for insect flight control (Linander et al. 
2017; 2018; Portelli et al. 2011; Straw et al. 2010). In addi-
tion, panoramic images have been used extensively to under-
stand motion vision coding in the insect brain (for hoverfly 
examples, see e.g., O’Carroll et al. 2011, 2012; Barnett et al. 
2010; Straw et al. 2008). From the photos we extracted the 
slope constant of the amplitude spectrum, as this has been 
shown to affect the response properties of visual neurons in 
the hoverfly brain (Dyakova et al. 2015) and ventral nerve 
cord (Nicholas et al. 2018). In addition, we extracted image 
entropy, as the intricate shadows created by the sun shafts 
suggested that the two behaviors could be associated with 
different levels of image complexity. We found that both the 
slope constant (alpha) and the entropy were significantly 
different between photos taken where hoverflies were per-
forming the two behaviors. Our findings highlight that to 
determine what is natural, one needs to take the relevant 
behavior into account.

Materials and methods

Behavior

We focused on two behaviors of the marmalade hoverfly 
Episyrphus balteatus: hovering and flying. The two differ-
ent behaviors were manually scored in the field, in Ger-
many close to Freiburg, in the Baden-Württemberg region 
(red, Fig. 5c), in July when marmalade hoverflies are out in 
abundance.
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A hoverfly was scored as hovering if it was observed to 
be near-stationary mid-air, often more than 1 m over the 
ground, for 60 s. Male Episyrphus balteatus are excellent 
hoverers and often remain stationary for longer than this 
(Ellington and Lighthill 1984). Hoverflies can be flying in 
many different places and for many different reasons (e.g., 
for foraging, pursuing territorial intruders or mates; Alder-
man 2008; Almohamad et al. 2009), and here, in contrast to 
hovering behavior, the fly was scored as flying if it appeared 
to be flying from point to point, without stopping or return-
ing to a given starting position. As all hoverflies were identi-
fied manually, there is a possibility that our own perceptual 
bias affected the locations chosen. As hovering is a male-
specific behavior, it is likely that all hovering hoverflies were 
male, whereas the flying hoverflies could have been either 
male or female.

Photographs

We took RAW (NEF) format photos of the surrounding 
panorama and of the ground using a 12 bit full-frame digi-
tal single-lens reflex Nikon D700 camera with a resolution 
of 4256 × 2832 pixels. We manually controlled the focus of 
the camera to reduce the artificial blurriness which other-
wise increases the slope constant (Field and Brady 1997). 
Photos of the ground were obtained facing the ground from 
approximately 1 m height, from the location where the hov-
erfly was observed to be either hovering or flying. The size 
of these photos corresponded to approximately 1 × 1.5 m, 
which from 1 m height corresponds to ca. 53° × 80° of the 
visual field of view.

Panoramic photos were centered on the location where 
the hoverfly was originally observed to be hovering or fly-
ing. The camera was placed on a tripod with a panoramic 
head, ca 1 m above the ground, using a level. We took 
11–13 evenly spaced photos (2832 pixels width × 4256 
pixels height) to get the full 360° coverage. The resulting 
panorama was created with Adobe Photoshop’s photomerge 
function had an average final size of 14,148 × 3924 pixels, 
corresponding to 70° × 360° of the visual field of view.

Image statistics

For image statistics each RAW (NEF) format photo was con-
verted to grayscale in Matlab (http://www.mathw orks.com) 
using the green channel of the RGB photo, since there are 
more fly photoreceptors sensitive to this part of the spec-
trum, with some additional sensitivity of the shorter wave-
length photoreceptors (Horridge et al. 1975; Salcedo et al. 
1999; Srinivasan and Guy 1990). These images were then 
converted to double format and gamma corrected (Reinhard 
et al. 2010). For ground photos, we cropped the images to 
the central 2832 × 2832 pixel square, which were analyzed 

separately, corresponding to 53 × 53° of the visual field of 
view. For the panorama photos we cropped three overlapping 
2832 × 2832 pixel squares corresponding to the top, middle 
and bottom elevations. Each square of these panoramic seg-
ments corresponded to 70 × 70° of the visual field of view, 
with the top segment covering ca 50° over the equator to 
20° under it, the middle to ± 35° around the equator, and the 
bottom to ca 20° degrees over the equator to 50° under it.

To calculate the slope constant, we used our previously 
described method (Dyakova et al. 2015). Briefly, each gray-
scale image was first transformed to a Fourier matrix using 
the Matlab function fft2, the zero-frequency component was 
shifted to the center using the Matlab function fftshift, and 
the amplitude spectrum extracted using the Matlab func-
tion abs. We next converted the amplitude spectrum to 
polar coordinates using the Matlab function cart2pol, and 
calculated the rotationally averaged amplitude. The slope 
constant (alpha) was identified using the Matlab function 
polyfit between 0.1 and 1 cycles per degree (cpd), which cor-
responded to 5 and 53 cycles per image (cpi) for the ground 
photos and 4 and 101 cpi for the panoramic segments, simi-
lar to previous work (Field and Brady 1997; Dyakova et al. 
2015).

To calculate the entropy each photo was first low-pass fil-
tered with a cutoff frequency of 1 cpd to take the hoverfly’s 
optics into account (Dyakova et al. 2015; Straw et al. 2006), 
which corresponded to 53 cpi for the ground photos and 
101 cpi for the panoramic segments. Entropy was calculated 
using Matlab’s function entropy, which gives the entropy as 
a scalar value representing the randomness as a quantifica-
tion of the image texture (Gonzalez et al. 2009):

where E is the entropy, k is the number of grey levels, and pk 
is the probability associated with grey level k. The entropy 
is maximal in the case of a uniform probability distribution 
(for more details see Annadurai 2007; Eichkitz et al. 2013; 
Petroni 2014):

Average skyline vector (ASV) computation

To find the average skyline vector (ASV, Müller et al. 2018), 
we used the alpha or entropy values calculated from the top, 
middle or bottom elevation segments for the 11–13 photos 
contributing to each panoramic surround. Each value was 
assigned a direction based on the total number of photos 
contributing to each panorama, so that they together covered 
the entire 360° azimuthal field of view, e.g., if there were 12 
photos, these were placed 30° apart with assigned directions 

E = −
∑

k

pklog2
(

pk
)

pk =
1

L − 1
, for k = 0, 1, 2,… , L − 1.

http://www.mathworks.com
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of 0°, 30°, 60° etc., such that the order of directions matched 
the order of image segments from which the alpha or entropy 
values were derived (see e.g., the flying example, Fig. 4c). 
This means that each set of image segments that formed a 
horizontal (top, middle or bottom) slice of the panorama was 
represented by a set of 2D-vectors, evenly spaced around a 
cylinder. The magnitude of each of these vectors was defined 
by their respective alpha or entropy values, while their direc-
tion was based on the position of the image segment from 
which the alpha or entropy value was derived.

Next, we calculated the absolute sum of these vectors to 
get one average skyline vector (||ASV||) for each elevation 
(top, middle, and bottom) for each panorama. If the alpha or 
entropy values were perfectly balanced in all directions, the 
magnitude of the summed vector would be 0, thereby indi-
cating perfect symmetry. The larger the variation in alpha 
or entropy, the more unbalanced the values are in the dif-
ferent directions, creating a larger magnitude of the result-
ing summed vector (and thus the asymmetry value). For 
comparison between hovering and flying, we quantified the 
magnitude of the resulting ASV, irrespective of direction.

Logistic‑regression model

A logistic-regression equation provides the predicted logit of 
the outcome, which in our case was given as 1 for hovering 
and 0 for flying, using:

where P is the probability of hovering occurring, x is the 
dependent variable (in our case either alpha or entropy), 
and the coefficients a and b were obtained using the Matlab 
function fitglm. The distribution of the dependent variables 
was set to binominal. To get the x and y coordinates for the 
receiver operating characteristic (ROC) curve and its area 
under the curve (AUC) the Matlab function perfcurve was 
used. X coordinate relates to sensitivity, which is the propor-
tion of true positives, i.e., in our case the proportion of cases 
correctly identified by the test as hovering behavior, and y 
coordinate relates to (1—specificity), where specificity is the 
proportion of true negatives, i.e., in our case the proportion 
of cases correctly identified by the test as not hovering, i.e., 
flying (Fawcett 2004):

ln
(

P

P − 1

)

= a + bx

True positive rate =
positives correctly classified

total positives

False positive rate =
negatives incorrectly classified

total negatives

To test the model’s ability to predict hoverfly behavior we 
obtained an independent set of photos from different loca-
tions (blue, Fig. 5c), including Sweden (August, September), 
Germany (May–August) and Croatia (June). The probability 
(P) of observing a particular behavior in a new photo was 
extracted from the output of the logistic-regression model 
using:

where x is the image variable (in our case alpha) and a and 
b are given by the equation above. Note, that the probability 
(P) here gives “hovering”. Thus, if the investigated photo 
came from a hovering position, then the probability (P) of 
the correct prediction comes directly. If the photo came from 
a flying position, we have to subtract the outcome from 1 
(i.e., use 1 − P) to get the probability that the hoverfly was 
“flying”.

Statistics

All statistical analyses were done with Prism version 7.0d 
(GraphPad Software, USA). Before rejecting the null 
hypothesis (p < 0.05) the data were checked for normality 
using D’Agostino and Pearson normality test. Where the data 
were normally distributed we did unpaired t tests when the 
standard deviation was similar, or Welch’s t test where it was 
not. Where the data were not normally distributed we did 
a Mann–Whitney test. In all cases, this was followed with 
Bonferroni correction for multiple comparisons (two for the 
ground photos, 12 for the panoramic photos).

Results

To quantify image statistics in locations where the marma-
lade hoverfly Episyrphus balteatus performs different behav-
iors, we took photos of the ground and the surrounding pan-
orama after identifying freely behaving animals in the field. 
We first identified locations where male Episyrphus were 
hovering, and as comparison, took photos where Episyrphus 
were observed to be flying without apparently stopping for 
feeding or hovering. Since image statistics depend on the 
distance to the scene (Torralba and Oliva 2003) we took 
all photos of the ground from 1 m height to get compara-
ble measures (hovering examples, Fig. 1a; flying examples, 
Fig. 1b). The panoramic surrounds were created by taking 
11–13 evenly spaced photos centered on the hoverfly’s posi-
tion at the time of observation (hovering examples in Fig. 1c, 
flying examples in Fig. 1d), also from 1 m height. Using 
2-dimensional photographs, we focus our analysis on the 
spatial information.

P =
e(ax+b)

1 + e(ax+b)
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The ground under hovering hoverflies has higher 
slope constant and entropy

A qualitative comparison between the example photos of 
the ground over which Episyrphus was hovering (Fig. 1a) or 
flying (Fig. 1b) suggests that there might be some interesting 
differences in image statistics. To investigate this, we took 
each original RAW (NEF) format photo and converted the 
RGB-image to greyscale by extracting the green channel, 
performed an inverse gamma correction, and cropped the 
rectangular photo to its central square (Fig. 2a).

We calculated the rotationally averaged amplitude spec-
tra (Dyakova and Nordström 2017) of all the photos of the 
ground over which the hoverflies were hovering (N = 100, 
blue, Fig. 2b) and all the photos of the ground over which 
the hoverflies were flying (N = 67, red, Fig. 2b). If the 
amplitude spectrum of an individual image follows a 

perfect power law, with a slope constant of 1, it will follow 
the fat lines (Fig. 2b). We calculated the slope constant 
(alpha) for each image, and found that this was signifi-
cantly higher in photos of the ground over which hover-
flies were hovering (blue data, p < 0.0001, Mann–Whitney 
test, with Bonferroni correction for multiple comparisons, 
Fig. 2c) compared with where they were flying (red data, 
Fig. 2b). In addition, we found that whereas the alpha val-
ues of the ground over which hoverflies were hovering 
(blue data, Fig. 2c) were similar to reported values for 
natural scenes (Tolhurst et al. 1992; Dyakova and Nord-
ström 2017), the alpha values of the ground over which 
hoverflies were flying (red data, Fig. 2c) were consider-
ably lower.

We next compared the entropy in the same photos and 
found that the photos of the ground over which the hover-
flies were hovering (blue data, Fig. 2d) had significantly 
higher entropy (p = 0.0076, Welch’s t test, with Bonferroni 

Fig. 1  Photos taken where hov-
erflies were hovering or flying. 
a Example photos of the ground 
over which Episyrphus were 
hovering. Each photo was taken 
approximately 1 m above the 
ground. b Example photos of 
the ground over which Episyr-
phus were flying. c Example 
panoramic photos taken from 
the viewpoint of hovering 
Episyrphus. The panorama has 
been merged in Photoshop for 
display purposes. d Example 
panoramic photos seen from the 
viewpoint of a flying Episyr-
phus. The panorama has been 
merged in Photoshop for display 
purposes. All photos have been 
scaled for printing purposes
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correction for multiple comparisons) than the photos of 
the ground over which the hoverflies were flying (red data, 
Fig. 2d). Lower entropy means that a photo contains more 
uniform textures (Ruderman and Bialek 1994; Mirzaei 
et al. 2013).

The panoramas surrounding hovering hoverflies 
have lower slope constant

The image statistics of the ground (Fig. 2) can be highly 
affected by the surrounding area, where trees and foliage 
may cast shadows on the ground, or create sun shafts, in 
which Episyrphus hoverflies are known to hover (Alderman 
2008). We therefore next quantified the same two image 
statistics of the surrounding panoramas (hovering and fly-
ing examples, Fig. 3a). For this purpose, we extracted three 
overlapping segments from each of the individual photos 
(Fig. 3b) that were taken to create a 360° view around each 
freely behaving hoverfly. We extracted the green channel 
and did a gamma correction of the top, middle and bottom 
elevation segments (Fig. 3c). We calculated the rotation-
ally averaged amplitude spectrum for the hovering (green 
data, Fig. 3d) and flying (gold data, Fig. 3c) surrounds. We 
found that the alpha was significantly lower (p = 0.0102, 
Mann–Whitney test, followed by Bonferroni correction for 
multiple comparisons) in the top segments of the panoramas 

surrounding hovering hoverflies (green data, Fig. 3ei) com-
pared with flying hoverflies, but there were no significant 
differences in the middle and lower parts of the panoramas 
(Fig. 3eii, iii). Note that for the ground photos we saw the 
opposite effect, where flying was associated with a lower 
alpha (red data, Fig. 2c). The alpha values of the panoramas 
surrounding both hovering and flying hoverflies were within 
the range typically described for natural scenes (e.g., Tol-
hurst et al. 1992; Dyakova and Nordström 2017).

We next quantified the entropy for the top, middle and 
bottom elevations of the panoramas, and found that the top 
part of the hovering panoramas had higher entropy (green 
data, Fig. 3fi) than panoramas surrounding flying hoverflies 
(gold data, Fig. 3fi, Welch’s t test, with Bonferroni correc-
tion for multiple comparisons). However, there were no sig-
nificant differences when comparing the middle and bottom 
elevations of the panoramas (Fig. 3fii, iii). As entropy is a 
measure of variability (Ruderman and Bialek 1994; Mirzaei 
et al. 2013), this suggests that panoramas surrounding flying 
hoverflies contain areas with more uniform texture.

A hovering hoverfly is surrounded by a more 
symmetrical scenery

To investigate whether the apparently more uniform tex-
ture associated with flying hoverflies (Fig. 3fi), means that 

Fig. 2  Ground photos from the viewpoint of hovering hoverflies have 
higher slope constant and entropy. a Example photo of the ground 
over which a male Episyrphus was hovering. The photo was taken 
approximately 1 m above the ground, using the camera’s RAW (NEF) 
format setting. Using Matlab, we extracted the green channel of the 
photo, performed an inverse gamma correction, and cropped the 
image to its central square before further analysis of the slope con-
stant (alpha) and the entropy. b The rotationally averaged amplitude 
spectrum of photos of the ground over which hoverflies were hov-
ering (blue, N = 67) or flying (red, N = 100). The fat lines indicate a 
slope constant of 1, i.e., a perfect power law. The dashed lines show 

the part of the spectrum used for calculation of the slope constant 
(alpha). c The average slope constant (alpha) of photos of the ground 
was significantly higher from the viewpoint of hovering hoverflies 
(blue, N = 67) than the viewpoint of flying hoverflies (red, N = 100; 
Mann–Whitney test, p < 0.0001). d The average entropy of photos of 
the ground was significantly higher from the viewpoint of hovering 
hoverflies (blue) than the viewpoint of flying (red) hoverflies (Welch’s 
t test, with Bonferroni correction, p = 0.0076). In panels c and d the 
central mark of each boxplot shows the median, the edges of the box 
the 25th to 75th percentiles, and the whiskers extend from the mini-
mum to maximum of the data
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the surround is also more symmetrical, we used a variant 
of the average landmark vector (ALV) model (Lambri-
nos et al. 2000), called the Average Skyline Vector model 
(Hafner 2001; Müller et al. 2018). For this, we used the 
same image preparation (Fig. 4a, b), but we now placed the 
extracted values (alpha or entropy) from each segment at 
each elevation (top, middle or bottom) evenly distributed 
within a virtual cylinder (Fig. 4c). This gave us vectors 
with directions evenly distributed across the 360° field of 
view, and magnitudes given by the corresponding alpha or 
entropy value (Fig. 4c). We next summed all of the vectors to 
form the Average Skyline Vector (ASV). Doing this means 
that if all the individual vectors (faded colors, Fig. 4c) are 
identical, the corresponding Average Skyline Vector (solid 
colors, Fig. 4c) will be zero. This therefore allows us to use 
the length of the ASV as a measure of how symmetrical a 
panorama is.

In our hovering and flying examples we found that the 
length of the alpha ASV was lower for the top panoramas 
surrounding a hovering hoverfly than those surrounding a 
flying hoverfly (Fig. 4di, Mann–Whitney test, with Bonfer-
roni correction for multiple comparisons, p = 0.0444), sug-
gesting that the alpha values are more symmetrically dis-
tributed. However, there was no significant difference for 
the middle and lower parts of the panoramas (Fig. 4dii, iii), 
nor for the entropy values (Fig. 4e).

Hoverfly behavior can be predicted from ground 
photos

We found the biggest difference between photos taken where 
hoverflies were hovering and flying in the photos of the 
ground (Fig. 2). Can these differences be used to predict 
Episyrphus behavior? To investigate this, we created two 

Fig. 3  Panoramas surrounding hovering hoverflies have lower slope 
constant and higher entropy. a Example: merged panoramas sur-
rounding a hovering (green frame) or flying (gold) male Episyrphus. 
The panoramas were merged in Photoshop for display purposes only. 
b An example of the photos taken surrounding freely behaving hov-
erflies. The outlines indicate the top, middle, and bottom segments. 
c The (i) top, (ii) middle and (iii) bottom segments after the green 
channel were extracted and the picture gamma corrected. d The 
rotationally averaged amplitude spectrum of photos of the ground 
over which hoverflies were hovering (green, N = 24) or flying (gold, 
N = 13). The fat lines indicate a slope constant of 1, and the dashed 
lines the part of the spectrum used for calculation of the slope con-
stant (alpha). e The average slope constant (alpha) of the panoramas 
surrounding hovering hoverflies (green) compared with the slope 

constant surrounding flying hoverflies (gold). The top part of the pho-
tos showed a significant difference (Mann–Whitney test, with Bonfer-
roni correction, p = 0.0102), but the middle and the bottom segments 
showed no significant differences (both unpaired t test, with Bonfer-
roni correction). f The average entropy of the panoramas surround-
ing hovering hoverflies (green,) compared with the entropy sur-
rounding flying hoverflies (gold). The top part of the photos showed 
a significant difference (Welch’s t test, with Bonferroni correction, 
p = 0.0302), but the middle (Welch’s t test) and the bottom segments 
showed no significant differences (unpaired t test). In d and e the cen-
tral mark of each boxplot shows the median, the edges of the box the 
25th–75th percentiles, and the whiskers extend from the minimum to 
maximum of the data
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logistic-regression models based on image alpha and entropy 
(i.e., using the data in Fig. 2c, d). Logistic-regression models 
are used when the dependent parameters are categorical (in 

this case hovering vs flying) rather than continuous (Tolles 
and Meurer 2016). We created one model based on the alpha 
(black, Fig. 5a), and one based on the entropy (grey, Fig. 5a), 

Fig. 4  The surroundings around 
a hovering hoverfly are more 
symmetrical. a To calculate the 
symmetry of the alpha values 
surrounding hovering and flying 
hoverflies we started with the 
original RAW (NEF) photos. 
b We extracted the greyscale 
image, performed a gamma 
correction and cropped the top, 
middle, and bottom segment 
of each photo. c The alpha or 
entropy of these images was 
then placed in a virtual cylinder 
surrounding the hoverfly. We 
next calculated the symmetry 
vector (||ASV||) across the 
panorama, where a value of 0 
indicates that all values across 
the panorama are identical. The 
examples show the individual 
alpha and entropy values, and 
the resulting symmetry vec-
tors, for the top segments of 
the panoramas in b, hovering 
in green and flying in gold. d 
The length of the alpha ASV 
(||ASV||) of the top part of 
the panoramas surrounding 
hovering hoverflies is lower 
than the length of the ASV of 
panoramas surrounding flying 
hoverflies (unpaired nonpara-
metric Mann–Whitney test, with 
Bonferroni correction for mul-
tiple comparisons, p = 0.0444), 
but there was no significant 
difference for the middle or 
lower parts (both Welch’s t test, 
with Bonferroni correction for 
multiple comparisons). e The 
length of the entropy ASV 
(||ASV||) of the panoramas 
surrounding hovering hoverflies 
was not significantly different 
from the panoramas surround-
ing flying hoverflies (unpaired 
nonparametric Mann–Whitney 
test, with Bonferroni correction 
for multiple comparisons). In d 
and e the central mark of each 
boxplot shows the median, the 
edges of the box the 25th–75th 
percentiles, and the whiskers 
extend from the minimum to 
maximum of the data
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where the resulting receiver operating characteristic (ROC) 
curves show the true positive rate (also called sensitivity) 
as a function of the false positive rate (also called 1-speci-
ficity) and illustrate how well each model discriminates 
between the two outcomes. If a given model is no better 
than chance, its resulting ROC curve will follow the diago-
nal (dashed line, Fig. 5a), but the closer the ROC curve is 
to the upper, left-hand corner of the graph, the closer the 
logistic-regression model is to having perfect discrimination 
power (Hajian-Tilaki 2013; Sainani 2014). The area under 
the curve (AUC) can be used to summarize the ROC curves, 
suggesting that image alpha is a better predictor (Fig. 5b).

As the logistic-regression model based on alpha provided 
the better model (Fig. 5a, b), we used its output to predict 
the expected behavior in an independent set of photos. The 
photos that were used to create the model were taken in Ger-
many (red, Fig. 5c), whereas the photos used for validating 
the model were taken in different locations, in a different 
year (Germany, Croatia and Sweden, blue, Fig. 5c). There 
is thus no chance that there could be any overlap in the two 
data sets that could bias the prediction. If the prediction 
would be no better than chance, we would expect it to be 
0.5 (dashed line, Fig. 5d). However, we found that the model 
was able to predict the correct behavior significantly bet-
ter than chance (Wilcoxon signed-rank test, p = 0.0088 and 
p < 0.0001 for hovering and flying, respectively, Fig. 5d).

Discussion

The use of image statistics allows us to perform quantitative 
comparisons of photos of different scenes. Here, we show 
that photographs of the ground over which hoverflies were 
hovering have higher slope constant (alpha) of the amplitude 

spectrum and entropy than those taken where hoverflies were 
flying (Fig. 2). We also show that the surrounding panora-
mas have lower alpha (Fig. 3ei) and asymmetry (Fig. 4di), 
but higher entropy (Fig. 3fi), where hoverflies were hovering 
compared to where they were flying. Finally, we show that 
the alpha of the ground photos could be used to predict the 
behavior in an independent data set (Fig. 5d).

Image statistics

Image statistics are used to quantify images, and provide 
measures that allow comparisons (Pouli et al. 2011). There 
are many different image statistics available, filling entire 
textbooks, from the color and contrast of an image, to sec-
ond- and higher order correlations. To provide an initial 
understanding of the image statistics that may be impor-
tant for hoverflies, we chose to focus on two measures. The 
first one is the slope constant of the amplitude spectrum, 
as neurons in the hoverfly brain and descending nerve cord 
have been shown to be tuned to naturalistic spectra (Dyakova 
et al. 2015; Nicholas et al. 2018). In addition, we quantified 
entropy, as this provides a measure of variation (Daugman 
1989) and our initial impression was that this differed sub-
stantially between habitats. This is not to suggest that these 
are the only image parameters that may matter to a hoverfly, 
but they provide a starting point for understanding habitat 
differences.

The slope constant (alpha) of the rotationally averaged 
amplitude spectrum across a wide range of naturalistic 
scenes show a Gaussian distribution with a peak around 
1–1.2 (e.g., Tolhurst et al. 1992; Field 1993). In line with 
this, we found that the slope constant (alpha) of the sur-
rounding panoramas had a mean around 1.12 when the 
hoverflies were hovering and 1.16 when they were flying 

Fig. 5  A logistic-regression model based on the ground photos can be 
used to predict behavior. a The ROC curve shows the true positive 
rate as a function of the false positive rate for a logistic-regression 
model based on the alpha (black) or the entropy from the photos of 
the ground over which hoverflies were either flying or hovering (data 
from Fig. 2c, d). The dashed line indicates a model that performs no 
better than chance. b The area under the ROC curve (data in panel 
a). The dashed line indicates a model that performs no better than 

chance. c The red symbols denote where the photos were taken that 
were used to create the logistic-regression model. The blue symbols 
mark where we obtained the independent photos that were used to 
test the model. d The probability of predicting the correct behav-
ior based on image alpha of independent photos of the ground. The 
dashed line indicates a prediction that is no better than chance level 
(0.5, Wilcoxon signed-rank test)
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(Fig. 3e). Previous work found that the slope constant in 
panoramic surrounds depends on the elevation (Schweg-
mann et al. 2014a), which differs from our findings (Fig. 3e). 
However, our separation into different elevations (Fig. 3c) 
provided much larger areas of overlap than Schwegmann 
et al. (2014a), which may explain the disparity.

Surprisingly, we found that the slope constant of the pho-
tos of the ground over which the hoverflies were flying was 
strikingly low, with a mean of 0.78 (Fig. 2c), much lower 
than what is normally reported for natural scenes (e.g., Tol-
hurst et al. 1992; Dyakova and Nordström 2017). Close-
up photos often have higher slope constants (Graham and 
Redies 2010), but this does not explain our finding as the 
photos of the ground over which hoverflies were hovering, 
taken from the same height, had more typical slope constants 
(mean of 1.06, blue data, Fig. 2c). Indeed, all ground photos 
(Fig. 1a, b) were taken from the same height and viewing 
angle. One notable difference is that the photos of the ground 
over which the hoverflies were flying contained less shadows 
and low-frequency luminance changes (Fig. 1b) compared 
with where they were hovering (Fig. 1a). In contrast, the 
ground over which the hoverflies were flying appears to 
contain more high spatial-frequency texture (Figs. 1b, 2b), 
which could decrease the slope constant.

Whereas the power law is a good collective description, 
not all individual images follow it, and extracting the slope 
constant may fail for individual images (Pouli et al. 2010). 
Extracting alpha may be particularly difficult at low frequen-
cies. We extracted alpha between 0.1 and 1 cpd, as this is 
most consistent with the literature and with the hoverfly 
optics (for justification, see Dyakova and Nordström 2017), 
thus avoiding the low-frequency part of the spectrum. How-
ever, a closer inspection of the amplitude spectra suggests 
that whereas the slope for the hovering photos remains simi-
lar up to about 6 cpd, the slopes for the flying images depend 
on the part of the spectrum examined (Figs. 2b, 3c). For 
example, the flying ground photos appear to have increased 
amplitude around 1 cpd compared with the hovering ground 
photos (Fig. 2b). Determining what part of the spectrum is 
most important to hoverfly vision thus needs to be elucidated 
in future electrophysiological and behavioral work.

In general, we found that the entropy was lower where 
the hoverflies were flying (Figs. 2d, 3e), indicating that the 
flying surrounds contained more areas of uniform texture. 
However, this does not imply that the flying surrounds were 
more symmetrical, as we found no significant differences 
in the ASV (Fig. 4e). To calculate entropy here we used the 
relative ratio of each greyscale value (Daugman 1989), how-
ever, there are other measures in the literature that take the 
relative orientation into account (Redies et al. 2017). While 
entropy has been used to understand human eye movements 
when viewing scenes (Hansen and Essock 2005; Renninger 

et al. 2007), it is largely understudied when it comes to fly 
vision.

Neural coding

Our findings are important as they describe some relevant 
image statistics of the natural environment for different 
behaviors in freely behaving animals. This has previously 
been done for human observers (Parraga et al. 2000; Fra-
zor and Geisler 2006), and for flying blowflies (Schweg-
mann et al. 2014b), but not for hoverflies. These results 
can in the future be used when designing naturalistic stim-
uli to understand the neural coding of visual neurons (Dya-
kova et al. 2015; Nicholas et al. 2018) or when quantify-
ing visual behaviors (Goulard et al. 2015; 2016). Indeed, 
both vertebrate and fly peripheral visual systems seem 
to be tuned to naturalistic contrast distributions and to 
slope constants around 1 (van der Schaaf and van Hateren 
1996; van Hateren 1993; Barlow 1961). More centrally, 
vertebrate cortical neurons appear to be optimal for cod-
ing naturalistic stimuli (Simoncelli and Olshausen 2001; 
Field 1987; Parraga et  al. 2000). Furthermore, human 
subjects are good at guessing the original slope constant 
of manipulated images (Field and Brady 1997; Dyakova 
et al. 2019) and artists appear to have implicit knowledge 
of the amplitude spectrum, as the slope constant of most 
artwork is close to 1 (Graham and Redies 2010). In addi-
tion, human observers find images with naturalistic alphas 
as more pleasant to view (O’Hare and Hibbard 2013).

In the hoverfly visual system, a higher order visual neu-
ron in the optic ganglion, the lobula plate, is inhibited by 
stationary images, which could serve a role in indicating 
perfect hovering (De Haan et al. 2013). Later work showed 
that the inhibition is strongest when the slope constant is 
close to 1 (Dyakova et al. 2015), which is also the alpha 
value that we found for scenery experienced during hover-
ing (Figs. 2c, 3d). Closer to the behavioral output, in the 
hoverfly descending nerve cord, neurons that are tuned to 
self-generated optic flow respond strongest to images with 
slope constants close to 1 (Nicholas et al. 2018). However, 
we found that the ground photos over which the hoverflies 
were flying had a much lower alpha value (Fig. 2c), some-
thing that will be of importance when designing stimuli 
for future work. Nevertheless, the surrounding panorama 
had a more naturalistic slope constant (Fig. 3e).

Recent work on the neural computations involved in 
the generation of sensitivity to visual motion has sug-
gested the ON–OFF asymmetries in the peripheral path-
ways are optimized for naturalistic input (e.g., Leonhardt 
et al. 2016; Fitzgerald and Clark 2015). Understanding 
and quantifying the relevant natural environment, and how 
this may differ between behaviors, is thus fundamental for 
interpreting the response tuning of visual neurons. Our 
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results presented here provide such data, at least for hov-
erflies in the spatial domain.

Behavioral relevance

Importantly, our work only took spatial statistics into 
account, which is obviously a simplification, especially 
when analyzing the statistics surrounding flying hoverflies. 
Previous work investigating the temporal luminance changes 
a flying insect experiences, suggests that these follow a 
similar power law as the spatial luminance spectrum (van 
Hateren 1997). Furthermore, early vision appears to whiten 
the spectrum in time, just like it does in space (van Hateren 
1992). More recent work has shown that fly photoreceptors 
can extract more information from natural time series com-
pared with artificial, white noise stimuli (Song and Juusola 
2014; Juusola and Song 2017). In the future it will be inter-
esting to do a similar analysis of the time series experienced 
by hoverflies when they are hovering, compared with where 
they are flying, or performing other behaviors, and to record 
neural responses to these. As more hoverfly behavioral data 
becomes available, this aim will become more achievable 
(Thyselius et al. 2018; Goulard et al. 2015; Geurten et al. 
2010). Indeed, there is a strong correlation between the tem-
poral and spatial-frequency spectra (Dong and Atick 1995), 
and as a flying insect will be experiencing higher temporal 
frequencies than a hovering fly, this could affect the influ-
ence of the low alpha in the spatial-frequency spectrum.

Based on the photographs taken in different habitats, we 
discovered profound differences in the 2D image statistics 
at places where hoverflies were found to hover compared 
with those encountered during cruising flight. While this 
finding is of great functional relevance with respect to habi-
tat choice, the data set on which it is based does not allow 
us to draw conclusions with regard to the environmental 
information and, in particular, the temporal cues, nor the 
3 dimensional spatial cues that are computed by hoverflies 
from the retinal image flow during hovering and cruising 
flight, respectively. To address this complex and interesting 
issue, movie sequences (Schwegmann et al. 2014a, b), rather 
than photographs, would be required as these could reflect 
the peculiar flight dynamics of hoverflies in the different 
behavioral situations and habitats.

Previous work has shown that humans fixate at a given 
location within a natural scene for only 200–300 ms before 
shifting the gaze (Frazor and Geisler 2006), and that the 
local luminance and contrast of the part of the image project-
ing onto the fovea may change rapidly between these sac-
cades. In blowflies it has been shown that the slope constant 
does not change much during forward translation through 
open scenes, but may change more dramatically through 
forward translation through a forest scene, and much more 
during yaw rotations (Schwegmann et al. 2014b). As our 

definition of flying was a forward translating hoverfly, and as 
these were mostly observed in more open scenes (Fig. 1b, d), 
we find it likely that the alpha did not change much during 
this behavior (Schwegmann et al. 2014b).

Hoverflies tethered on a trackball set-up appear to per-
form the strongest optomotor response when stimulated with 
images with slope constants close to 1.2 (Dyakova et al. 
2015). Hoverflies have a wide field of view, and relatively 
good spatial resolution for insects (Collett and Land 1975; 
Straw et al. 2006). We thus find it likely that they would have 
a clear view of both the ground over which they were behav-
ing (Fig. 1a, b), and of the surrounding scenery (Fig. 1c, 
d). Indeed, the only part of the surround where their visual 
field of view is restricted is the part obscured by the body. 
Hovering behavior (Alderman 2008) is usually observed 
where the sunshine passes through the foliage of the sur-
rounding trees (Fig. 1c), which creates light shafts in the air 
and high-contrast shadow patterns on the ground (Fig. 1a). 
In contrast, the panoramas taken from the flying viewpoint 
display more open space (Fig. 1b, d). Such open scenes have 
previously been described to have higher alpha than forest 
scenes (Schwegmann et al. 2014b), which we also saw, at 
least at higher elevations (Fig. 3ei).

All our photos were taken at a similar time of the day, 
and tended to be taken in similar weather, as hoverflies are 
preferential to nice sunny days (Alderman 2008). Previous 
work suggests that at least the amplitude spectrum is rela-
tively robust against different weather conditions and time of 
day (van der Schaaf and van Hateren 1996). In future work 
it will be interesting to investigate the influence weather and 
time of day have on different image parameters. However, 
non-visual parameters, such as temperature and wind (Gil-
bert 1985; Ottenheim 2000), also play a strong role in habitat 
selection. It will additionally be interesting to extract image 
parameters from a much wider range of behaviors.

Concluding remarks

Previous work in different insects has shown that the texture 
presented in the ventral and lateral field of view is impor-
tant for flight control (Linander et al. 2017, 2018; Portelli 
et al. 2011; Straw et al. 2010). Our results suggest that it 
would be interesting to do similar experiments in Episyr-
phys hoverflies, by e.g. placing them in a flight tunnel and 
manipulating the slope constant of the texture presented on 
the walls and the ground. Will a low slope constant on the 
ground (Fig. 2c), together with a slightly increased (Fig. 3e), 
asymmetrical slope constant (Fig. 4d) and reduced entropy 
(Fig. 3f) on the walls induce the hoverflies to favor flying 
over hovering?
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