
1 
 

Mapping-based genome size estimation 1 

Boas Pucker1,2* 2 

1 Genetics and Genomics of Plants, Bielefeld University, Bielefeld, Germany 3 

2 Center for Biotechnology (CeBiTec); Bielefeld University, Bielefeld, Germany 4 

 5 

Email: bpucker@cebitec.uni-bielefeld.de 6 

 7 

ORCID: 0000-0002-3321-7471 8 

 9 

* corresponding author: Boas Pucker, bpucker@cebitec.uni-bielefeld.de 10 

 11 

Key words: NGS, genome sequencing, k-mer profile, comparative genomics, Arabidopsis 12 

thaliana, Beta vulgaris, Solanum lycopersicum, Brachypodium distachyon,Vitis vinifera, Zea 13 

mays 14 

 15 

Abstract 16 

While the size of chromosomes can be measured under a microscope, the size of genomes 17 

cannot be measured precisely. Biochemical methods and k-mer distribution-based approaches 18 

allow only estimations. An alternative approach to predict the genome size based on high 19 

contiguity assemblies and short read mappings is presented here and optimized on Arabidopsis 20 

thaliana and Beta vulgaris. Brachypodium distachyon, Solanum lycopersicum, Vitis vinifera, and 21 

Zea mays were also analyzed to demonstrate the broad applicability of this approach. Mapping-22 

based Genome Size Estimation (MGSE) and additional scripts are available on github: 23 

https://github.com/bpucker/MGSE. 24 

 25 
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Introduction 26 

Nearly all parts of the plant are now tractable to measure, but assessing the size of a plant 27 

genome is still challenging. Although chromosome sizes can be measured under a microscope 28 

[1], the combined length of all DNA molecules in a single cell is still unknown. Almost 20 years 29 

after the release of the first Arabidopsis thaliana genome sequence, this holds even true for one 30 

of the most important model species. Initially, biochemical methods like reassociation kinetics 31 

[2], Feulgen photometry [3], quantitative gel blot hybridization [4], southern blotting [5], and flow 32 

cytometry [6, 7] were applied. Unfortunately, these experimental methods rely on a reference 33 

genome [8]. The rise of next generation sequencing technologies [9] enabled new approaches 34 

based on k-mer profiles or the counting of unique k-mers [10, 11]. JellyFish [11], Kmergenie 35 

[12], Tallymer [13], Kmerlight [14], and genomic character estimator (gce) [15] are dedicated 36 

tools to analyze k-mers in reads. Next, genome sizes can be estimated based on unique k-mers 37 

or a complete k-mer profile. Many assemblers like SOAPdenovo [16] and ALLPATHS-LG [17] 38 

perform an internal estimation of the genome size to infer an expected assembly size. Recently, 39 

dedicated tools for the genome size estimation like GenomeScope [18] and findGSE [19] were 40 

developed. Although the authors considered and addressed a plethora of issues with real data 41 

[18], results from different sequencing data sets for the same species can vary. While some 42 

proportion of this variation can be attributed to accession-specific differences as described e.g. 43 

for A. thaliana [19, 20], specific properties of a sequencing library might have an impact on the 44 

estimated genome size. For example, high levels of bacterial or fungal contamination could bias 45 

the result if not removed prior to the estimation process. Due to high accuracy requirements, k-46 

mer-based approaches are usually restricted to high quality short reads and cannot be applied 47 

to long reads of third generation sequencing technologies. The rapid development of long read 48 

sequencing technologies enables high contiguity assemblies for almost any species and is 49 

therefore becoming the standard for genome sequencing projects [21, 22]. Nevertheless, some 50 

highly repetitive regions of plant genomes like nucleolus organizing region (NOR) and 51 

centromeres remain usually unassembled [20, 23, 24]. Therefore, the genome size cannot be 52 

inferred directly from the assembly size, but the assembly size can be considered a lower 53 

boundary when estimating genome sizes. 54 

Extreme genome size estimates of A. thaliana for example 70 Mbp [2] or 211 Mbp [25] have 55 

been proven to be inaccurate based on insights from recent assemblies [20, 24, 26–28]. 56 

However, various methods still predict genome sizes between 125 Mbp and 165 Mbp for diploid 57 

A. thaliana accessions [26, 29–31]. Substantial technical variation is observed not only between 58 
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methods, but also between different labs or instruments [32]. As described above, extreme 59 

examples for A. thaliana display 3 fold differences with respect to the estimated genome size. 60 

Since no assembly is representing the complete genome, the true genome size remains 61 

unknown. An empirical approach, i.e. running different tools and comparing the results, might be 62 

a suitable strategy. 63 

This work presents a method for the estimation of genome sizes based on the mapping of reads 64 

to a high contiguity assembly. Mapping-based Genome Size Estimation (MGSE) is a Python 65 

script which processes the coverage information of a read mapping and predicts the size of the 66 

underlying genome. MGSE is an orthogonal approach to the existing tools for genome size 67 

estimation with different challenges and advantages. 68 

 69 

 70 

Methods 71 

Data sets 72 

Sequencing data sets of the A. thaliana accessions Columbia-0 (Col-0) [33–38] and 73 

Niederzenz-1 (Nd-1) [31] as well as several Beta vulgaris accessions [39–41] were retrieved 74 

from the Sequence Read Archive (AdditionalFile 1). Only the paired-end fraction of the two 75 

included Nd-1 mate pair libraries was included in this analysis. Genome assembly versions 76 

TAIR9 [42], AthNd-1_v1 [31], AthNd-1_v2 [24], and RefBeet v1.5 [39, 43] served as references 77 

in the read mapping process. The A. thaliana assemblies, TAIR9 and Ath-Nd-1_v2, already 78 

included plastome and chondrome sequences. These subgenome sequences of Ath-Nd-1_v2 79 

were added to Ath-Nd-1_v1 as this assembly was previously cleaned of such sequences. 80 

Plastome (KR230391.1, [44]) and chondrome (BA000009.3, [45]) sequences were added to 81 

RefBeet v1.5 to allow proper placement of respective reads. 82 

Genome sequences of Brachypodium distachyon strain Bd21 (GCF_000005505.3 [46]), 83 

Solanum lycopersicum (GCA_002954035.1 [47]), Vitis vinifera cultivar Chardonnay 84 

(QGNW01000001.1  [48]), and Zea mays cultivar DK105 (GCA_003709335.1 [49]) were 85 

retrieved from the NCBI. Corresponding read data sets were retrieved from the Sequence Read 86 

Archive (AdditionalFile1). 87 
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 88 

Genome size estimation 89 

JellyFish2 v2.2.4 [11] was applied for the generation of k-mer profiles which were subjected to 90 

GenomeScope [18]. Selected k-mer sizes ranged from 19 to 25. Results of different sequencing 91 

data sets and different k-mer sizes per accession were compared. Genomic character estimator 92 

(gce) [15] and findGSE [19] were applied to infer genome sizes from the k-mer histograms. If 93 

tools failed to predict a value or if the prediction was extremely unlikely, values were masked to 94 

allow meaningful comparison and accommodation in one figure. The number of displayed data 95 

points is consequently a quality indicator. 96 

 97 

Mapping-based genome size estimation 98 

Despite some known biases [50–52], the underlying assumption of MGSE is a nearly random 99 

fragmentation of the DNA and thus an equal distribution of sequencing reads over the complete 100 

sequence. If the sequencing coverage per position (C) is known, the genome size (N) can be 101 

calculated by dividing the total amount of sequenced bases (L) by the average coverage value: 102 

N = L / C. Underrepresented repeats and other regions display a higher coverage, because 103 

reads originating from different genomic positions are mapped to the same sequence. The 104 

accurate identification of the average coverage is crucial for a precise genome size calculation. 105 

Chloroplastic and mitochondrial sequences account for a substantial proportion of reads in 106 

sequencing data sets, while contributing very little size compared to the nucleome. Therefore, 107 

sequences with very high coverage values i.e. plastome and chondrome sequences are 108 

included during the mapping phase to allow correct placement of reads, but are excluded from 109 

MGSE. A user provided list of reference regions is used to calculate the median or mean 110 

coverage based on all positions in these specified regions. Benchmarking Universal Single 111 

Copy Orthologs (BUSCO) [53] can be deployed to identify such a set of bona fide single copy 112 

genes which should serve as suitable regions for the average coverage calculation. Since 113 

BUSCO is frequently applied to assess the completeness of a genome assembly, these files 114 

might be already available to users. GFF files generated by BUSCO can be concatenated and 115 

subjected to MGSE. As some BUSCOs might occur with more than one copy, MGSE provides 116 

an option to reduce the predicted gene set to the actual single copy genes among all identified 117 

BUSCOs. 118 
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BWA MEM v0.7 [54] was applied for the read mapping and MarkDuplicates (Picard tools v2.14) 119 

[55] was used to filter out reads originating from PCR duplicates. Next, a previously described 120 

Python script [56] was deployed to generate coverage files, which provide information about the 121 

number of aligned sequencing reads covering each position of the reference sequence. Finally, 122 

MGSE (https://github.com/bpucker/MGSE) was run on these coverage files to predict genome 123 

sizes independently for each data set. 124 

 125 

 126 

Results & Discussion 127 

Arabidopsis thaliana genome size 128 

MGSE was deployed to calculate the genome size of the two A. thaliana accessions Col-0 and 129 

Nd-1 (Fig. 1). In order to identify the best reference region set for the average coverage 130 

calculation, different reference region sets were tested. Manually selected single copy genes, all 131 

protein encoding genes, all protein encoding genes without transposable element related genes, 132 

only exons of these gene groups, and BUSCOs were evaluated (AdditionalFile2). The results 133 

were compared against predictions from GenomeScope, gce, and findGSE for k-mer sizes 19, 134 

21, 23, and 25. 135 

Many estimations of the Col-0 genome size are below the assembly size of 120 Mbp [26] and 136 

display substantial variation between samples (Fig. 1a). Due to low variation between different 137 

samples and a likely average genome size the BUSCO-based approaches appeared promising. 138 

GenomeScope predicted a similar genome size, while gce reported consistently much smaller 139 

values. findGSE predicted on average a substantially larger genome size. Final sample sizes 140 

below six indicated that prediction processes failed e.g. due to insufficient read numbers. 141 

The variation among the estimated genome sizes of Nd-1 was smaller than the variation 142 

between the Col-0 samples (Fig. 1). BUSCO-based estimations differed substantially between 143 

mean and median with respect to the variation between samples (Fig. 1b). Therefore, the 144 

average coverage is probably more reliably calculated via mean than via median. While gce 145 

predicted as reasonable genome size for Nd-1, the average predictions by GenomeScope and 146 

findGSE are very unlikely, as they contradict most estimations of A. thaliana genome sizes [6, 147 

19, 24, 31]. 148 
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 149 

 150 

Fig. 1: Comparison of Arabidopsis thaliana genome size estimations. 151 

Genome sizes of the A. thaliana accessions Col-0 (a) and Nd-1 (b) were predicted by MGSE, 152 

GenomeScope, gce, and findGSE. Different MGSE approaches were evaluated differing by the set of 153 
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regions for the average coverage calculation (e.g. all genes) and the methods for the calculation of this 154 

value (mean/median). Multiple read data sets (n) were analyzed by each tool/approach to infer an average 155 

genome size given as median (m, yellow line) and mean (green triangles). transposable elements = TE, 156 

without = wo. 157 

 158 

The genome size estimation of about 139 Mbp inferred for Nd-1 through integration of all 159 

analyses is slightly below previous estimations of about 146 Mbp [31]. Approximately 123.5 Mbp 160 

are assembled into pseudochromosomes which do not contain complete NORs or centromeric 161 

regions [24]. Based on the read coverage of the assembled 45S rDNA units, the NORs of Nd-1 162 

are expected to account for approximately 2-4 Mbp [31]. Centrometric repeats which are only 163 

partially represented in the genome assembly [24] account for up to 11 Mbp [31]. In summary, 164 

the Nd-1 genome size is expected to be around 138-140 Mbp. The BUSCOs which occur 165 

actually with a single copy in Ath-Nd1_v2 emerged as the best set of reference regions for 166 

MGSE. 167 

The relevance of very high assembly contiguity was assessed by comparing results of 168 

AthNd-1_v1 (AdditionalFile3), which is based on short Illumina reads, to results of AthNd-1_v2 169 

(AdditionalFile2), which is based on long Single Molecule Real Time sequencing (PacBio) 170 

reads. The genome size predictions based on AthNd-1_v2 were substantially more accurate. 171 

Reads are not mapped to the ends of contigs or scaffolds. This has only a minor influence on 172 

large contigs, because a few small regions at the ends with lower coverage can be neglected. 173 

However, the average coverage of smaller contigs might be biased as the relative contribution 174 

of contig ends weights stronger. In addition, the representation of centrometric repeats and 175 

transposable elements increases with higher assembly size and contiguity [24]. 176 

The feasibility of MGSE was further demonstrated by estimating the genome sizes of 1,028 177 

A. thaliana accessions (Fig. 2, AdditionalFile4) which were analyzed by re-sequencing as part of 178 

the 1001 genome project [57]. Most predictions by MGSE are between 120 Mbp and 160 Mbp, 179 

while all other tools predict most genome sizes between 120 Mbp and 200 Mbp with some 180 

outliers showing very small or very large genome sizes. MGSE differs from all three tools when 181 

it comes to the number of failed or extremely low genome size predictions. All k-mer-based 182 

approaches predicted genome sizes below 50 Mbp, which are most likely artifacts. This 183 

comparison revealed systematic differences between findGSE, gce, and GenomeScope with 184 

respect to the average predicted genome size. findGSE tends to predict larger genome sizes 185 
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than gce and GenomeScope. Very large genome sizes could have biological explanations like 186 

polyploidization events. 187 

 188 

 189 

 190 

Fig. 2: Genome size estimations of Arabidopsis thaliana accessions. 191 

MGSE, findGSE, gce, and GenomeScope were deployed to predict the genome sizes of 1,028 A. thaliana 192 

accessions based on sequence read data sets (AdditionalFile4). Extreme outliers above 200 Mbp (MGSE) 193 

or 300 Mbp (other tools) are displayed at the plot edge to allow accommodation of all data points with 194 

sufficient resolution in the center. 195 

 196 

 197 
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 198 

Beta vulgaris genome size 199 

Different sequencing data sets of Beta vulgaris were analyzed via MGSE, GenomeScope, gce, 200 

and findGSE to assess the applicability to larger and more complex genomes (Fig. 3, 201 

AdditionalFile5). Different cultivars served as material source for the generation of the analyzed 202 

read data sets. Therefore, minor differences in the true genome size are expected. Moreover, 203 

sequence differences like single nucleotide variants, small insertions and deletions, as well as 204 

larger rearrangements could influence the outcome of this analysis. Since the current RefBeet 205 

v1.5 assembly represents 567 Mbp [39, 43] of the genome, all estimations below this value can 206 

be discarded as erroneous. Therefore, the mean-based approaches relying on all genes or just 207 

the BUSCOs as reference region for the sequencing coverage estimation outperformed all other 208 

approaches (Fig. 3). When comparing the A. thaliana and B. vulgaris analyses, the calculation 209 

of an average coverage in all BUSCOs, which are actually present as a single copy in the 210 

investigated genome, appears to be the most promising approach. While GenomeScope and 211 

gce underestimate the genome size, the predictions by findGSE are extremely variable but 212 

mostly around the previously estimated genome sizes [39, 43]. Based on results from the 213 

A. thaliana investigation, the mean calculation among all single copy BUSCOs should be the 214 

best approach. The prediction of slightly less than 600 Mbp is probably an underestimation, but 215 

still the highest reliable estimate. When assuming centromere sizes of only 2-3 Mbp per 216 

chromosome, this number could be in a plausible range. However, a previous investigation of 217 

the repeat content indicates a larger genome size due to a high number of repeats which are 218 

not represented in the assembly [58]. 219 

 220 

 221 
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 222 

Fig. 3: Comparison of Beta vulgaris genome size estimations. 223 

The genome size of B. vulgaris was predicted by MGSE, GenomeScope, gce, and findGSE. Different 224 

MGSE approaches were evaluated differing by the set of regions for the average coverage calculation 225 

(e.g. all genes) and the methods for the calculation of this value (mean/median). Multiple read data sets 226 

(n) were analyzed by each tool and approach to infer an average genome size given as median (m, yellow 227 

line) and mean (green triangles). 228 

 229 

Application to broad taxonomic range of species 230 

After optimization of MGSE on A. thaliana (Rosids) and B. vulgaris (Caryophyllales), the tool 231 

was deployed to analyze data sets of different taxonomic groups thus demonstrating broad 232 

applicability. Brachypodium distachyon was selected as representative of grasses. Solanum 233 

lycopersicum represents the Asterids, Zea mays was included as monocot species with high 234 

transposable element content in the genome, and Vitis vinifera was selected due to a very high 235 

heterozigosity. The predictions of MGSE are generally in the same range as the predictions 236 

generated by GenomeScope, gce, and findGSE (AdditionalFile5, AdditionalFile6, 237 

AdditionalFile7, AdditionalFile8, and AdditionalFile9). With an average prediction of 290 Mbp as 238 
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genome size of B. distachyon, the MGSE prediction is slightly exceeding the assembly size. 239 

GenomeScope and gce predict genome sizes below the assembly size, while the prediction of 240 

303 Mbp by findGSE is more reasonable. The Z. mays genome size is underestimated by all 241 

four tools. However, MGSE outperforms GenomeScope and gce on the analyzed data set. The 242 

S. lycopersicum genome size is underestimated by MGSE on most data sets. However, the 243 

compared tools failed to predict a genome size for multiple read data sets. The highest MGSE 244 

predictions are in the range of the expected genome size. MGSE failed for V. vinifera by 245 

predicting only 50 Mbp. The high heterozigosity of this species could contribute to this by 246 

causing lower mapping rates outside of important protein encoding genes i.e. BUSCO genes. 247 

 248 

Considerations about performance and outlook 249 

MGSE performs best on a high contiguity assembly and requires a (short) read mapping to this 250 

assembly. Accurate coverage calculation for each position in the assembly is important and 251 

contigs display artificially low coverage values towards the ends. This is caused by a reduction 252 

in the number of possible ways reads can cover contig ends. The shorter a contig, the more is 253 

the apparent coverage of this contig reduced. Since a read mapping is required as input, MGSE 254 

might appear less convenient than classical k-mer-based approaches at first look. However, 255 

these input files are already available for many plant species, because such mappings are part 256 

of the assembly process [23, 24, 59, 60]. Future genome projects are likely to generate high 257 

continuity assemblies and short read mappings in the polishing process. 258 

One advantage of MGSE is the possibility to exclude reads originating from contaminating DNA 259 

even if the proportion of such DNA is high. Unless reads from bacterial or fungal contaminations 260 

were assembled and included in the reference sequence, the approach can handle such reads 261 

without identifying them explicitly. This is achieved by discarding unmapped reads from the 262 

genome size estimation. MGSE expects a high contiguity assembly and assumes all single copy 263 

regions of the genome are resolved and all repeats are represented by at least one copy. 264 

Although the amount of contamination reads is usually small, such reads are frequently 265 

observed due to the high sensitivity of next generation sequencing [31, 61–64]. 266 

Reads originating from PCR duplicates could impact k-mer profiles and also predictions based 267 

on these profiles if not filtered out. After reads are mapped to a reference sequence, read pairs 268 

originating from PCR duplicates can be identified and removed based on identical start and end 269 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/607390doi: bioRxiv preprint first posted online Apr. 13, 2019; 

http://dx.doi.org/10.1101/607390
http://creativecommons.org/licenses/by/4.0/


12 
 

positions as well as identical sequences. This results in the genome size prediction by GMSE 270 

being independent of the library diversity. If the coverage is close to the read length or the 271 

length of sequenced fragments, reads originating from PCR duplicates cannot be distinguished 272 

from bona fide identical DNA fragments. Although MGSE results get more accurate with higher 273 

coverage, after exceeding an optimal coverage the removal of apparent PCR duplicates could 274 

become an issue. Thus, a substantially higher number of reads originating from PCR-free 275 

libraries could be used if duplicate removal is omitted. Depending on the sequencing library 276 

diversity completely skipping the PCR duplicate removal step might be an option for further 277 

improvement. As long as these PCR duplicates are mapped equally across the genome, MGSE 278 

can tolerate these artifacts. 279 

All methods are affected by DNA of the plastome and chondrome integrated into the nuclear 280 

chromosomes [65, 66]. K-mers originating from these sequences are probably ignored in many 281 

k-mer-based approaches, because they appear to originate from the chondrome or plastome 282 

i.e. k-mers occur with very high frequencies. The apparent coverage in the mapping-based 283 

calculation is biased due to high numbers of reads which are erroneously mapped to these 284 

sequences instead of the plastome or chondrome sequence. 285 

Differences in the GC content of genomic regions were previously reported to have an impact 286 

on the sequencing coverage [67, 68]. Both, extremely GC-rich and AT-rich fragments, 287 

respectively, are underrepresented in the sequencing output mainly due to biases introduced by 288 

PCR [69, 70]. Sophisticated methods were developed to correct coverage values based on the 289 

GC content of the underlying sequence [70–72]. The GC content of genes selected as reference 290 

regions for the coverage estimation is likely to be above the 36.3% average GC content of 291 

plants [56]. This becomes worse when only exons are selected due to the even higher 292 

proportion of coding sequence. Although a species specific codon usage can lead to some 293 

variation, constraints of the genetic code determine a GC content of approximately 50% in 294 

coding regions. The selection of a large set of reference regions with a GC content close to the 295 

expected overall GC content of a genome would be ideal. However, the overall GC content is 296 

unknown and cannot be inferred from the reads due to the above mentioned sequencing bias. 297 

As a result, the average sequencing coverage could be overestimated leading to an 298 

underestimation of the genome size. Future investigations are necessary to develop a 299 

correction factor for this GC bias of reads. 300 
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Many plant genomes pose an additional challenge due to recent polyploidy or high 301 

heterozygosity. Once high contiguity long read assemblies become available for these complex 302 

genomes, a mapping based approach is feasible. As long as the different haplophases are 303 

properly resolved, the assessment of coverage values should reveal a good estimation of the 304 

genome size. Even the genomes of species which have recently undergone polyploidization 305 

could be investigated with moderate adjustments to the workflow. Reference regions need to be 306 

selected to reflect the degree of ploidy in their copy number. 307 

The major issue when developing tools for the genome size prediction is the absence of a gold 308 

standard. Since as of yet there is no completely sequenced plant genome, benchmarking with 309 

real data cannot be perfect. As a result, how various estimation approaches will compare to the 310 

first completely sequenced and assembled genome remains speculative. Although not 311 

evaluated in this study, we envision that MGSE could be generally applied to all species and is 312 

not restricted to plants. 313 

 314 

Data availability 315 

Scripts developed as part of this work are freely available on github: 316 

https://github.com/bpucker/MGSE (https://doi.org/10.5281/zenodo.2636733). Underlying data 317 

sets are publicly available at the NCBI and SRA, respectively. 318 
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