
L E C T U R E N O T E S

A P P L I E D O P T I M I Z AT I O N

Compiled on April 21, 2019

B E N J A M I N PA A S S E N,
A N D R É A RT E LT,
P R O F. B A R B A R A H A M M E R

Faculty of Technology,
Bielefeld University

Copyright c© 2019 Benjamin Paassen, André Artelt, Prof. Barbara Ham-
mer

This script is licensed under the Creative Commons Attribution Share-
Alike License Version CC-BY-SA 3.0 (or later). The detailed license text is
available at https://creativecommons.org/licenses/by-sa/3.0/de.
This script is based on the brilliant “smart-thesis” template by Andreas
Stöckel und Jan Göpfert; usage according to Creative Commons Zero
license.

https://creativecommons.org/licenses/by-sa/3.0/de

acknowledgements

Special thanks go to André Artelt, whose supplementary notes on “Introduction
to Machine Learning” formed a firm basis and starting point for this document.
Thanks for helpful feedback and comments to Arne Kramer-Sunderbrink and André
Artelt.

Change log:

2019-03-26: Adjusted Definitions 15 and 22 slightly to make handling of continuous
cases more intuitive. Also made overall notation more consistent.

2019-03-29: Adjusted Definition 22 once more.

2019-04-21: Added Section 2.5 on heuristics. Revised the entire script and sorted out
many minor mistakes.

iii

contents

C O N T E N T S

Contents iv

Introduction vii

1 Theory 1
1.1 Basic Concepts of Optimization . 1

1.1.1 Optimization Problems and Formalization 1
1.1.2 Standard Form . 5
1.1.3 Global and Local Optima . 7
1.1.4 Continuous versus Discrete Optimization Problems 10

1.2 Differentiable Optimization . 11
1.2.1 Gradient, Hessian, and Taylor Expansion 11
1.2.2 Searching for Optima with Gradient and Hessian 13
1.2.3 Eigenvalue analysis . 15

1.3 Convex Optimization . 17
1.3.1 Definition and Convex Optimization Theorem 17
1.3.2 Engineering Convex Problems . 19

1.4 Duality . 24
1.4.1 Lagrange Dual Form . 24
1.4.2 Duality Gaps . 25
1.4.3 Karush-Kuhn-Tucker conditions . 28
1.4.4 Wolfe Dual Form . 31

2 Algorithms 35
2.1 Analytical Methods . 35

2.1.1 Unconstrained Optimization . 35
2.1.2 Equality-Constrained Optimization 38
2.1.3 Inequality-Constrained Optimization 41

2.2 Numeric Methods . 43
2.2.1 Unconstrained Optimization . 43

Gradient Descent . 43
Stochastic Gradient Descent / Adam 45
Optimizing the Step Size . 46
Conjugate Gradient . 49
Newton’s Method . 50
(L-)BFGS . 52
Trust Region Method . 54

2.2.2 Constrained Optimization . 57
The Log-Barrier Method . 57
Penalty Method . 59
Projection Methods . 60

2.3 Probabilistic Optimization . 65
2.3.1 Maximum Likelihood . 65
2.3.2 Maximum a posteriori . 66
2.3.3 Expectation Maximization . 67

iv

contents

2.3.4 Belief Propagation and Max-Product-Algorithm 73
2.4 Convex Programming . 77

2.4.1 Linear Programming . 77
2.4.2 Quadratic Programming . 77

2.5 Heuristics . 80
2.5.1 Gradient-free Optimization . 80

Downhill-Simplex / Nelder-Mead algorithm 80
CMA-ES . 82
Bayesian Optimization . 83

2.5.2 Discrete Optimization . 88
Hill Climbing . 88
Simulated Annealing . 89
Tabu Search . 89
Branch and Cut . 90
Ant Colony Optimization . 91

Bibliography 95

Acronyms 97

Glossary 99

Rules for Derivatives and Gradients 101

v

I N T R O D U C T I O N

This document is meant to accompany the lecture Applied Optimization at Bielefeld
University. It has been first drafted in summer term 2019 and is based on the excellent
supplementary notes on “Introduction to Machine Learning” by André Artelt.

Note that this document deviates slightly from the structure of the lecture in that
these notes are structured into two chapters, one on theory and one on algorithms.
Further, this preliminary version of the lecture notes does not yet contain meta-heuristics
or discrete optimization techniques. Further, the algorithmic chapter covers heuristics –
namely the the Downhill-Simplex algorithm, Bayesian Optimization, and CMA-ES – in
the same chapter as meta-heuristics.

We emphasize that reading this document is no replacement for visiting the lecture
and should rather be regarded as an additional learning resource. Further, this document
is likely to contain (hopefully minor) errors and mistakes. If you find any of those, please
write to apopt@techfak.uni-bielefeld.de.

vii

mailto:apopt@techfak.uni-bielefeld.de

1T H E O RY

This chapter covers excerpts of the theory of optimization. Due to the theoretical topics,
the structure is more akin to a math textbook, meaning that we feature a series of defini-
tions, examples, remarks, and theorems. Still, we will try to add intuitive explanations to
all concepts. Therefore, if you are uncertain what a definition or a theorem mean, best
look for the explanation or example right after it which hopefully makes it more clear.

1 .1 B A S I C C O N C E P T S O F O P T I M I Z AT I O N

In this section, we first introduce what an optimization problem is, how any optimization
problem can be re-written into a certain standard form, and how we can solve some
continuous optimization problems analytically by relying on first- and second-order
conditions.

1 .1 .1 Optimization Problems and Formalization

Definition 1 (Minimization problem, maximization problem, optimization problem). We
define a minimization problem as a quartuple consisting of the following elements.

1. a list X1, . . . ,XK of arbitrary sets, which we call domains,

2. a function f : X1 ˆ . . .ˆXK Ñ R, which we call objective function,

3. a list of tuples pgl
1, gr

1q, . . . , pgl
m, gr

mq, where for all i both gl
i : X1 ˆ . . .ˆ XK Ñ R

and gr
i : X1 ˆ . . . ˆ XK Ñ R are functions which we call the left-hand-side and

right-hand-side of the ith inequality constraint respectively, and

4. a list of tuples phl
1, hr

1q, . . . , phl
n, hr

nq where for all j both hl
j : X1 ˆ . . . ˆ XK Ñ R

and hr
j : X1 ˆ . . . ˆ XK Ñ R are functions which we call the left-hand-side and

right-hand-side of the j equality constraint respectively.

We denote a minimization problem as follows.

min
x1PX1,...,xKPXK

f px1, . . . , xKq (1.1)

s.t. gl
ipx1, . . . , xKq ě gr

i px1, . . . , xKq @i P t1, . . . , mu

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq @j P t1, . . . , nu

We define a maximization problem the same way but denote it as follows.

max
x1PX1,...,xKPXK

f px1, . . . , xKq (1.2)

s.t. gl
ipx1, . . . , xKq ě gr

i px1, . . . , xKq @i P t1, . . . , mu

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq @j P t1, . . . , nu

Both minimization problems and maximization problems are called optimization
problems.

If m “ n “ 0, we call an optimization problem unconstrained.

1

theory

Intuitively, a minimization problem is concerned with finding values x1 P X1, . . . , xK P

XK, such that all equality constraints and inequality constraints are fulfilled and such that
f px1, . . . , xKq is as small as possible. Conversely, a maximization problem is concerned
with finding values x1 P X1, . . . , xK P XK, such that all equality constraints and inequality
constraints are fulfilled and such that f px1, . . . , xKq is as large as possible.

Remark 2 (Formalization, modelling). Note that it is not always easy to translate an
intuitive optimization problem from natural language into the terms of Definition 1. We
call this translation process formalization or modelling. Usually, we may lose information
in that translation, because we can not incorporate all the details of real life into our
optimization problem. We obtain, instead, a simplified model of our actual problem. Then,
we obtain a solution for our model, and have to translate this solution back to real life.

To formalize an optimization problem, you can take the following questions as a
guideline.

1. How many variables do I have? How do I denote them?

2. What is the domain for each of those variables?

3. What is the objective function, based on these variables?

4. Do I wish to maximize or minimize the objective function?

5. What are inequality constraints for my problem?

6. What are equality constraints for my problem?

Example 3 (Optimized tin can). Say you made 1.5 liters of home-made vegan soup for a
party and want to transport it to the venue in a can. However, because you are aware
of ecological issues you wish to use a can that needs the least amount of material. How
does this can need to be shaped?

To model this problem, we follow our recipe above.

1. We first decide to approximate the can with a cylinder. A cylinder can be described
by two variables, namely the radius and the height (in centimeters). Let’s denote
the radius as r and the height as h.

2. The domain for both our variables are the real numbers R.

3. Our objective function is the ’material need’, which scales with the surface area
of the cylinder, including the top and bottom lid. Accordingly, we obtain f pr, hq “
2π ¨ r ¨ h` 2π ¨ r2.

4. We wish to minimize the surface area.

5. As inequality constraints, we should restrict both variables to be non-negative
because a negative radius or height does not make sense. Further, we should ensure
that the can has a volume of at least 1.5 liters. The volume of a cylinder is described
by the formula gl

1pr, hq “ π ¨ r2 ¨ h. Accordingly, we obtain:

gl
1pr, hq “ π ¨ r2 ¨ h gr

1pr, hq “ 1500

gl
2pr, hq “ r gr

2pr, hq “ 0

gl
3pr, hq “ h gr

3pr, hq “ 0

2

1 .1 basic concepts of optimization

6. We have no equality constraints, i.e. n “ 0.

Our overall minimization problem is thus given as follows.

min
pr,hqPR2

2π ¨ r ¨ h` 2π ¨ r2 (1.3)

s.t. π ¨ r2 ¨ h ě 1500
r ě 0
h ě 0

Example 4 (Minimum cost assignment). Say that we organize a children’s birthday party
for K children and have packed K bags of sweets with different content. We also have a
rough idea about how much each child would like each of the bags and have quantified
these preference ratings in a KˆK matrix R, where rk,l indicates how much child k would
like bag l. Now we want to find a one-to-one assignment of bags to children, such that
the overall enjoyment is maximized.

1. We can frame our variable as a matrix X where xk,l “ 1 if and only if we give bag l
to child k.

2. The domain for our variable is the space of Kˆ K matrices with binary entries, i.e.
X “ t0, 1uKˆK.

3. Our objective function is the ’overall enjoyment’, which we can quantify as follows:
f pXq “

řK
k“1

řK
l“1 xk,l ¨ rk,l .

4. We wish to maximize the overall enjoyment.

5. We have no inequality constraints, i.e. m “ 0.

6. As equality constraints, we wish that every child gets exactly one bag and every
bag goes to exactly one child, i.e. we obtain:

hl
1pXq “

K
ÿ

k“1

xk,1 hr
1pXq “ 1

...

hl
KpXq “

K
ÿ

k“1

xk,K hr
KpXq “ 1

hl
K`1pXq “

K
ÿ

k“1

x1,k hr
K`1pXq “ 1

...

hl
2¨KpXq “

K
ÿ

k“1

xK,k hr
2¨KpXq “ 1

Our overall maximization problem is given as follows.

max
XPt0,1uKˆK

K
ÿ

k“1

K
ÿ

l“1

xk,l ¨ rk,l (1.4)

3

theory

Rathaus

Jahnplatz

Alter Markt

Sparrenburg

4m5m

13m
13m

17m

2m

Figure 1.1: An instance of the traveling salesperson problem with an optimal round tour, indicated
by connecting lines with the travel time in minutes. The travel time for unused connections is
annotated with dashed lines

s.t.
K
ÿ

k“1

xk,l “ 1 @l P t1, . . . , Ku

K
ÿ

l“1

xk,l “ 1 @k P t1, . . . , Ku

Example 5 (Traveling salesperson problem). Say that we wish to see all the beautiful
sights of Bielefeld downtown, like the Sparrenburg, the old market, the old city hall, the
Leineweber memorial, and so on. Overall, there are m sights we wish to visit. However,
we also wish to walk as little as possible. Using the internet, we have researched the time
we need to walk from each location to each other location and have recorded these times
in a mˆm matrix D where di,j is the time we need from location i to location j. Now we
wish to find the shortest round trip. Also refer to Figure 1.1.

1. Our variable should be an array ~x with m elements, where xt “ i indicates that we
visit location i in the tth step of our journey.

2. The domain for our variable is the set of all possible permutations over the set
t1, . . . , mu, which we denote as X “ Πpt1, . . . , muq.

3. Our objective function is the overall time we need for our round trip, which we can
quantify as f p~xq “

řm´1
t“1 dxt,xt`1 ` dxm,x1 .

4. We wish to minimize the time we need.

5. We have no inequality constraints.

6. We have no equality constraints.

Our overall minimization problem is given as follows.

min
~xPΠpt1,...,muq

m´1
ÿ

t“1

dxt,xt`1 ` dxm,x1 (1.5)

4

1 .1 basic concepts of optimization

Note that we could also have formalized this problem differently, e.g. with a matrix
variable like in Example 4.

Remark 6 (Domain and constraints). Note that adding constraints to the problem is
equivalent to restricting the domain (also refer to the notion of a feasible set later on).
As such, one could argue that constraints are superfluous and we should just specify
the domain as a precise set. However, for many practical problems, solutions become
much more obvious if we permit a domain that is as general as possible and consider
only special kinds of constraints which are easy to handle.

1 .1 .2 Standard Form

For our subsequent theory it would be increasingly unwieldy to always distinguish be-
tween minimization and maximization problems and consider left- and right-hand sides
of constraints separately. Therefore, we introduce the standard form, which is considerably
simpler but is still expressive enough to capture all possible optimization problems.

Definition 7 (Standard form). We define an optimization problem in standard form as a
quartuple with the following ingredients.

1. a single set X , which we call domain,

2. a function f : X Ñ R, which we call objective function,

3. a list g1, . . . , gm of functions gi : X Ñ R, which we call inequality constraint functions,
and

4. a list h1, . . . , hn of functions hj : X Ñ R, which we call equality constraint functions.

We denote an optimization problem in standard form as follows.

min
xPX

f pxq (1.6)

s.t. gipxq ě 0 @i P t1, . . . , mu
hjpxq “ 0 @j P t1, . . . , nu

Now, let

min
x1PX1,...,xKPXK

f px1, . . . , xKq (1.7)

s.t. gl
ipx1, . . . , xKq ě gr

i px1, . . . , xKq @i P t1, . . . , mu

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq @j P t1, . . . , nu

be a minimization problem and let

min
px1,...,xKqPX1ˆ...ˆXK

f̃ pxq (1.8)

s.t. g̃ipxq ě 0 @i P t1, . . . , mu

h̃jpxq “ 0 @j P t1, . . . , nu

be an optimization problem in standard form. We call 1.7 and 1.8 equivalent if the
following conditions hold for all px1, . . . , xKq, py1, . . . , yKq P X1 ˆ . . .ˆXK.

f px1, . . . , xKq ě f py1, . . . , yKq ðñ f̃ px1, . . . , xKq ě f̃ py1, . . . , yKq (1.9)

5

theory

gl
ipx1, . . . , xKq “ gr

i px1, . . . , xKq ðñ g̃ipx1, . . . , xKq “ 0 (1.10)

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq ðñ h̃jpx1, . . . , xKq “ 0 (1.11)

Now, let

max
x1PX1,...,xKPXK

f px1, . . . , xKq (1.12)

s.t. gl
ipx1, . . . , xKq ě gr

i px1, . . . , xKq @i P t1, . . . , mu

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq @j P t1, . . . , nu

be a maximization problem. We call 1.12 and 1.8 equivalent if the following conditions
hold for all px1, . . . , xKq, py1, . . . , yKq P X1 ˆ . . .ˆXK.

f px1, . . . , xKq ě f py1, . . . , yKq ðñ f̃ px1, . . . , xKq ď f̃ py1, . . . , yKq (1.13)

gl
ipx1, . . . , xKq “ gr

i px1, . . . , xKq ðñ g̃ipx1, . . . , xKq “ 0 (1.14)

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq ðñ h̃jpx1, . . . , xKq “ 0 (1.15)

Theorem 8 (Universality of standard form). Let

min {maxx1PX1,...,xKPXK
f px1, . . . , xKq (1.16)

s.t. gl
ipx1, . . . , xKq ě gr

i px1, . . . , xKq @i P t1, . . . , mu

hl
jpx1, . . . , xKq “ hr

jpx1, . . . , xKq @j P t1, . . . , nu

be an optimization problem. Then, the following optimization problem in standard form is equiv-
alent.

min
px1,...,xKqPX1ˆ...ˆXK

˘ f pxq (1.17)

s.t. gl
ipxq ´ gr

i pxq ě 0 @i P t1, . . . , mu

hl
jpxq ´ hr

jpxq “ 0 @j P t1, . . . , nu

where the objective function is just f pxq if the original problem was a minimization problem and
´ f pxq if the original problem was a maximization problem.

Proof. First, consider the case where the original problem was a minimization problem.
Then, Condition 1.9 is obvious because the objective functions are the same. Condi-
tions 1.10 and 1.11 are obvious by simply subtracting the right-hand side from the
inequality/equation.

Second, consider the case where the original problem was a maximization problem.
Then, Condition 1.13 follows by multiplying the inequality f pxq ě f pyq with ´1. Con-
ditions 1.14 and 1.15 are obvious by simply subtracting the right-hand side from the
inequality/equation.

Remark 9 (Using the standard form). We have motivated the standard form because
it makes theoretical arguments easier – whatever we can prove for the standard form
automatically applies to all optimization problems. However, the standard form is also
useful in practice because most programming libraries for optimization use this standard
form or a related form as an input interface. Therefore, being able to convert from any
model to the standard form is a useful skill to have.

6

1 .1 basic concepts of optimization

Example 10 (Standard forms). The standard form for the tin can problem from Equa-
tion 1.3 is as follows.

min
pr,hqPR2

2π ¨ r ¨ h` 2π ¨ r2

s.t. π ¨ r2 ¨ h´ 1500 ě 0
r ě 0
h ě 0

The standard form for the minimum cost assignment problem from Equation 1.4 is
as follows.

min
XPt0,1uKˆK

K
ÿ

k“1

K
ÿ

l“1

xk,l ¨ p´rk,lq

s.t.
K
ÿ

k“1

xk,l ´ 1 “ 0 @l P t1, . . . , Ku

K
ÿ

l“1

xk,l ´ 1 “ 0 @k P t1, . . . , Ku

The traveling Salesperson problem 1.5 is already in standard form.

1 .1 .3 Global and Local Optima

Until now we have defined what an optimization problem is, but we have not yet defined
what it means to solve an optimization problem. We introduce the concept of a solution
now.

Definition 11 (Feasible set, global minimum, solution). We define the feasible set X ˚ of
an optimization problem in standard form as the set

X ˚ :“
!

x P X
ˇ

ˇ

ˇ
@i P t1, . . . mu : gipxq ě 0,@j P t1, . . . , nu : hjpxq “ 0

)

(1.18)

We define a global minimum or solution of an optimization problem in standard form
as an element x˚ P X ˚ such that for all x P X ˚ it holds:

f px˚q ď f pxq (1.19)

Example 12 (Logical and). Consider the following optimization problem:

min
px,yqPt0,1u2

´x ¨ y (1.20)

The feasible set of this problem is the entire domain, i.e. X ˚ “ tp0, 0q, p0, 1q, p1, 0q, p1, 1qu.
The former three values have an objective function value of 0, the last one a value of ´1.
Accordingly, px, yq “ p1, 1q is the global minimum or solution of this problem because
there is no other point in the feasible set with a smaller objective function value.

Remark 13 (Equivalence of solutions). It is straightforward to extend Definition 11 to
general optimization problems and to show that any solution of a general optimization
problem is also the solution of its equivalent optimization problem in standard form
according to Theorem 8 and vice versa. For brevity, we omit this here.

7

theory

Remark 14 (Multiple solutions). Note that Definition 11 does permit multiple solutions.
As an example, consider the trivial optimization problem

min
xPR

0

All x P R are global minima of this problem.

Definition 15 (Neighborhoods and local minima). Let X be the domain and X ˚ be the
feasible set of an optimization problem in standard form. We call a function N : X Ñ
PpX q a neighborhood function and we call N pxq the neighborhood of x according to N .

We define a local minimum of an optimization problem in standard form with respect
to the neighborhood function N as an element x˚ P X ˚ such that it holds:

f px˚q ď f pxq @x P N px˚q XX ˚ (1.21)

Example 16 (Bit-flip neighborhood). Consider the following optimization problem:

min
px,yqPt0,1u2

´x ¨ y

And consider the neighborhood function N px, yq :“ tp1´ x, yq, px, 1´ yqu, i.e. the x/y
combinations that result by flipping one bit.

According to that neighborhood function, the global minimum p1, 1q has the neigh-
borhood N p1, 1q “ tp0, 1q, p1, 0qu. Both entries have a larger objective function value, such
that the global minimum is also a local minimum according to N .

Now, consider the point p0, 0q. The neighborhood is N p0, 0q “ tp0, 1q, p1, 0qu. Both
entries have an objective function value of 0, which is the same as the objective function
value of p0, 0q. Therefore, p0, 0q is also a local minimum according to N , even though it is
not a global minimum.

Example 17 (Swap neighborhood). Consider the Traveling Salesperson-Problem from
Equation 1.5 for the distances in Figure 1.1. For this problem, we can define the neigh-
borhood function

N px1, x2, x3, x4q “ tpx2, x1, x3, x4q, px1, x3, x2, x4q, px1, x2, x4, x3q, px4, x2, x3, x1qu

i.e. we swap a neighboring location in the tour.
According to that neighborhood function, the tour (Jahnplatz, Sparrenburg, Alter

Markt, Rathaus) is not a local minimum, because we can improve it by swapping Spar-
renburg and Alter Markt, which yields a global minimum. This global minimum is also
a local minimum because any swap will increase our travel time.

Example 18 (Continuous neighborhood). Consider the optimization problem

min
xPR

x4 ´ x2 `
1
4

x

for which the objective function is shown in Figure 1.2.
We define the neighborhood function

Nεpxq “

y P R
ˇ

ˇ ‖x´ y‖ ď ε
(

(1.22)

i.e. the ε-ball around x.
For ε “ 0.5, x « 0.63 is a local minimum but not a global minimum and x « ´0.76 is

both a local minimum and a global minimum.

8

1 .1 basic concepts of optimization

´1 ´0.5 0 0.5 1
´0.5

0

0.5

1

local minima

global minimum

Figure 1.2: A plot of the function f pxq “ x4 ´ x2 ` 1
4 x with two local minima at x « ´0.76 and

x « 0.63, the former one also being a global minimum.

Remark 19 (Optimization via neighborhood search). Neighborhood functions directly
give us a straightforward tool to solve optimization problems. We simply start at a
random point in the feasible set, evaluate the objective function for that point, then
compute the neighborhood for the point and evaluate the objective function for all points
within the neighborhood. If any of these points has a lower objective function value,
we switch to that point. If no neighbor has a better objective function value, we stop.
Note that we stop only if we have found a local minimum. Also refer to the optimization
method of hill climbing (Section 2.5.2).

Consider Example 16 again. If we start off with x “ p1, 0q, the neighborhood is
N p1, 0q “ tp0, 0q, p1, 1qu. We obtain the objective function values f p1, 0q “ 0, f p0, 0q “ 0
and f p1, 1q “ ´1. Therefore, we switch to x “ p1, 1q. All neighbors of x “ p1, 1q have a
higher objective function value, therefore we stop.

Theorem 20 (Relationship of local and global optima). A global minimum is also a local
minimum according to every neighborhood function N .

Conversely, not every local minimum is a global minimum.

Proof. Regarding the first claim, recall the definition of a global minimum. A global
minimum is a point x˚ P X ˚ such that f px˚q ď f pxq for all x P X ˚. Then, in particular,
f px˚q ď f pxq for all x in any subset of X ˚. Therefore, irrespective of the neighborhood
function, x˚ is a local minimum.

The second claim holds because we have provided counterexamples above.

Remark 21 (Intuition behind local minima). When we use the term local minima, we
typically refer to local minima that are not at the same time global minima. These “nasty”
local minima are particularly interesting because they can easily mislead an optimization
algorithm that is based on neighborhoods. For example, if we apply neighborhood search
on Example 16 starting from point x “ p0, 0q, then we immediately stop, even though we
have not found a global minimum yet.

Therefore, solving problems with many local minima that are not global minima is
more difficult than solving problems with only a single local minimum which is also the
global minimum.

9

theory

1 .1 .4 Continuous versus Discrete Optimization Problems

A fundamental distinction in optimization is between continuous and discrete opti-
mization. Intuitively, continuous optimization is about smooth objective functions and
gap-free feasible sets, whereas discrete optimization is concerned with feasible sets with
gaps and non-differentiable objective functions with sudden jumps.

Due to these fundamental differences, the optimization strategies we have to em-
ploy are fundamentally different as well. In continuous optimization, we can smoothly
move through space and observe a continuous change in the objective function value
corresponding to our movement. In discrete optimization, we have to perform “jumps”
through the feasible set, which we have to control by means of some heuristic.

More formally, we provide the following definition.

Definition 22 (Continuous function, continuous optimization problem, discrete optimiza-
tion problem). Let f be a function f : RK Ñ R for some K P N. We call f a continuous
function if for all ~x P X and all ε ą 0 there exists a δ ą 0 such that for all ~y P Nδp~xq it
holds | f p~yq ´ f p~xq| ă ε, where Nδ refers to the neighborhood in Equation 1.22.

We call an optimization problem continuous if

1. the domain is X “ RK for some K P N,

2. the objective function f is a continuous function on the feasible set X ˚,

3. the feasible set is path-connected, i.e. for any two points ~x,~y P X ˚ there exists a
continuous function φ : r0, 1s Ñ X ˚, such that φp0q “ ~x and φp1q “ ~y.

We call an optimization problem discrete if the domain X is countable, i.e. there exists
a surjective mapping π : N Ñ X .

Example 23 (Continuous and discrete problems). From our previous examples, the
tin can problem (Example 3) and Example 18 are continuous and the minimum cost
assignment problem (Example 4), the traveling salesperson problem (Example 5), and
the logical and problem (Example 1.20) are discrete.

Remark 24 (Beyond continuous and discrete). Note that there exist optimization prob-
lems which are neither continuous nor discrete according to Definition 22. Consider the
following example.

min
xPR

x2

s.t. |x| ě 1

The feasible set is p´8,´1s Y r1,8q, which is neither path-connected - because there is a
gap between ´1 and 1 - nor is it countable. Therefore, this problem is neither continuous
nor discrete.

Some of these more exotic cases can still be addressed with the methods of this course,
but we will generally assume that our problems are either discrete or continuous in the
sense above.

10

1 .2 differentiable optimization

1 .2 D I F F E R E N T I A B L E O P T I M I Z AT I O N

If the objective function of an optimization problem is continuous and differentiable, but
even we can apply the usual optimization machinery that we know from school: Setting
the first derivative to zero and checking the second derivative. In this section, we will try
to explain why this machinery works and generalize it to multiple dimensions.

1 .2 .1 Gradient, Hessian, and Taylor Expansion

The first thing we introduce is a generalization of the first and second derivative to higher
dimensions by means of the gradient and the Hessian respectively.

Definition 25 (Gradient and Hessian). Let f be a function f : RK Ñ R for some K P N.
Then, we define the gradient of f at position ~x P Rk as follows:

∇~x f p~xq “

¨

˚

˝

B
Bx1

f p~xq
...

B
BxK

f p~xq

˛

‹

‚

(1.23)

We define the Hessian of f at position ~x P Rk as follows:

∇2
~x f p~xq “

¨

˚

˚

˝

B2

B2x1
f p~xq . . . B2

Bx1BxK
f p~xq

...
. . .

...
B2

BxKBx1
f p~xq . . . B2

B2xK
f p~xq

˛

‹

‹

‚

(1.24)

The reason why gradient and Hessian are so useful for optimization is because they
allow us to indirectly characterize how a objective function behaves without having to
regard the precise shape of the objective function. Our central tool in that regard is the
Taylor expansion.

Definition 26 (Taylor expansion). Let f : RK Ñ R be a twice-differentiable function.
We define the first-order Taylor expansion of f around some point ~x˚ P RK as the

function f̃ 1
~x˚ : RK Ñ R with the following form.

f̃ 1
~x˚p~xq :“ f p~x˚q ` p~x´~x˚qT ¨∇~x f p~x˚q (1.25)

We define the second-order Taylor expansion of f around some point ~x˚ P RK as the
function f̃ 2

~x˚ : RK Ñ R with the following form.

f̃ 2
~x˚p~xq :“ f̃ 1

~x˚p~xq `
1
2
p~x´~x˚qT ¨∇2

~x f p~x˚q ¨ p~x´~x˚q (1.26)

Theorem 27 (Taylor’s theorem (excerpt)). Let f : RK Ñ R be a twice-differentiable function.
For every ~x˚ P RK and every ε ą 0 there exists a δ ą 0 such that for all ~x P Nδp~x˚q it holds:

| f̃ 2
~x˚p~xq ´ f p~xq| ă | f̃ 1

~x˚p~xq ´ f p~xq| ă ε

Proof. We omit this proof for space constraints.

11

theory

0 1 2
´1

0

1

x
´2 ´1 0

x
´1 0 1

x

f
f̃ 2

Figure 1.3: The second-order Taylor approximation of the functions f pxq “ sinpπ ¨ xq, f pxq “
x ¨ exppxq, and f pxq “ x3 at positions 1.5, ´1 and 0 respectively. The original function is shown as
a dashed blue line and the second-order approximation is shown in orange.

Remark 28 (Intuition behind the Taylor expansion). The previous theorem tells us that
the Taylor expansion is a good approximation if we stay in a small δ-neighborhood
around our point ~x˚ and that the second-order approximation is better than the first-
order approximation. Why is that? Intuitively, if a function is continuous, then it changes
only a little if we change the input a little, and we can approximate this small change
by approximating the function with a tangent. This tangent is described exactly by the
first-order Taylor expansion.

The first-order approximation is only inaccurate if the slope changes, i.e. if the first
derivative is not constant. However, the first derivative is also a continuous function,
which means that the slope changes only slightly if we change the input slightly, such
that the approximation is accurate if we stay close enough to ~x˚.

The second-order approximation is better because it can even approximate constant
changes in slope, i.e. a constant second derivative. If the second derivative is not constant,
its change will also only change a little if we stay close to to ~x˚ and our second-order
approximation is good if we stay close enough.

An illustration of the second-order Taylor expansion is also visible in Figure 1.3.

To prove that we can find local minima via the gradient and the Hessian, we only
require one final piece of the puzzle, namely the notion of positive definiteness, which will
tell us that the curvature around a point is positive.

Definition 29 (Positive (semi-)definiteness). A symmetric square matrix A P RKˆK is
called positive definite if for all vectors ~x P RK with ~x ‰~0 it holds:

~xT ¨ A ¨~x ą 0 (1.27)

A symmetric square matrix A P RKˆK is called positive semi-definite of for all vectors
~x P RK it holds:

~xT ¨ A ¨~x ě 0 (1.28)

Remark 30 (Positive definiteness versus positiveness). Importantly, positive definiteness
is not the same as having positive entries. Consider the matrices

A1 “

ˆ

1 2
2 1

˙

and A2 “

ˆ

5 ´1
´1 1.25

˙

.

12

1 .2 differentiable optimization

A1 has only positive entries. However, the vector ~x “ p´1, 1qT yields

p´1, 1q ¨
ˆ

1 2
2 1

˙

¨

ˆ

´1
1

˙

“ p´1` 2,´2` 1q ¨
ˆ

´1
1

˙

“ ´2 ă 0,

which means that A1 is neither positive semi-definite nor positive definite.
Conversely, A2 is indeed positive definite (and positive semi-definite) even though

it contains negative entries. We will show later in Theorem 35 how to check positive
definiteness in practice.

1 .2 .2 Searching for Optima with Gradient and Hessian

We now go on to show that we can find local minima by searching for locations with
zero gradient and positive definite Hessian.

Theorem 31 (First- and second-order conditions for local minima). Let f : RK Ñ R be
a twice differentiable function and consider the unconstrained optimization problem in standard
form:

min
~xPRK

f p~xq

Then it holds for any ~x˚ P RK:

1. If ∇~x f p~x˚q ‰ 0, then ~x˚ is not a local minimum.

2. If ∇~x f p~x˚q “~0 and ∇2
~x f p~x˚q is positive definite, then ~x˚ is a local minimum.

3. If∇~x f p~x˚q “~0 and∇2
~x f p~x˚q is not positive semi-definite, then~x˚ is not a local minimum.

4. If ~x˚ is a local minimum, then ∇~x f p~x˚q “~0 and ∇2
~x f p~x˚q is positive semi-definite.

Proof. Note that we only provide a sketch of the proof here. The precise version would
require to ensure that the approximation error of the Taylor expansions stays within
certain bounds, which we omit here.

We consider each claim in turn.

1. This follows from the first-order Taylor approximation, i.e. f̃ 1
~x˚p~xq “ f p~x˚q `

p~x´~x˚qT ¨∇~x f p~x˚q. If the gradient is nonzero, consider the point ~x “ ~x˚ ´ ε ¨
∇~x f p~x˚q for a sufficiently small ε such that the first-order Taylor approximation is
accurate. Then it holds

f p~xq “ f̃ 1
~x˚p~xq “ f p~x˚q ´ ε ¨∇~x f p~x˚qT ¨∇~x f p~x˚q ă f p~x˚q.

Therefore, for any δ ą 0, there is at least one point ~x P Nδp~x˚q with f p~xq ă f p~x˚q.
This, in turn, implies that ~x˚ is not a local minimum.

2. This follows from the second-order Taylor approximation, i.e. f̃ 2
~x˚p~xq “ f p~x˚q `

1
2p~x´~x˚qT ¨∇2

~x f p~x˚q ¨ p~x´~x˚q. Note that the gradient term is removed because the
gradient is zero in this case. Now, consider an ε ą 0 sufficiently small such that this
approximation is accurate. Then, because the Hessian is positive definite, it holds
for any ~x P Nεp~x˚q with ~x ‰ ~x˚:

f p~xq “ f̃ 2
~x˚p~xq “ f p~x˚q `

1
2
p~x´~x˚qT ¨∇2

~x f p~x˚q ¨ p~x´~x˚q ą f p~x˚q,

such that ~x˚ is a local minimum.

13

theory

3. This follows again from the second-order Taylor approximation. Because the Hes-
sian is not positive semi-definite, there must exist a vector ~y P RK such that
~yT ¨∇2

~x f p~x˚q ¨~y ă 0. Then, consider the vector ~x :“ ~x˚ ` ε ¨
~y
‖~y‖ . Note that this

vector is guaranteed to lie in the ε-neighborhood of ~x˚ because

‖~x´~x˚‖ “ ‖ε ¨ ~y
‖~y‖‖ “

ε

‖~y‖ ¨ ‖~y‖ “ ε

Further it holds:

p~x´~x˚qT ¨∇2
~x f p~x˚q ¨ p~x´~x˚q “ pε ¨

~y
‖~y‖ q

T

¨∇2
~x f p~x˚q ¨ pε ¨

~y
‖~y‖ q “

ε2

‖~y‖2 ¨~y
T ¨∇2

~x f p~x˚q ¨~y ă 0

Accordingly, for any sufficiently small ε such that the second-order Taylor ap-
proximation is accurate it holds: There exists a point ~x :“ ~x˚ ` ε ¨

~y
‖~y‖ in the

ε-neighborhood of ~x˚ such that

f p~xq “ f̃ 2
~x˚p~xq “ f p~x˚q `

1
2
p~x´~x˚qT ¨∇2

~x f p~x˚q ¨ p~x´~x˚q ă f p~x˚q

which implies that ~x˚ is not a local minimum.

4. Follows from the negation of 1. and 3.

Remark 32 (Searching for local minima via Theorem 31). Theorem 31 gives us a way to
hunt for local minima by setting the gradient to zero and inspecting the Hessian for the
resulting solutions – just as we learned in school. It is valuable to inspect the pitfalls of
this method, though.

First, we can only apply this method if our optimization problem is unconstrained.
Second, it is not sufficient that the Hessian is positive semi-definite. We need strict

positive definiteness. Otherwise, our point could be either a local minimum, a local
maximum, or a saddle point because the function may still be “curved”, albeit in higher-
order terms which our second-order Taylor expansion can not “see”. Also refer to the
following examples.

Third, we need to check positive definiteness instead of just positive entries. The
effective way of doing so is via the eigenvalues, as we will see in Theorem 35.

Example 33 (Local minima and Taylor approximation). Consider the examples shown in
Figure 1.3.

1. Consider f pxq “ sinpπ ¨ xq. Then, we obtain ∇x f pxq “ cospπ ¨ xq ¨ π and ∇2
x f pxq “

´ sinpπ ¨ xq ¨ π2. The gradient is zero for any x˚ P t0.5` k | k P Zu. First, consider
x˚ P t0.5` 2k | k P Zu. For these points, we obtain ∇2

x f px˚q “ ´ sinpπ ¨ r0.5` 2ksq ¨
π2 “ ´π2 ă 0, i.e. our Hessian is not positive semi-definite and these points are
definitely not local minima. Next, consider x˚ P t1.5` 2k | k P Zu. For these points,
we obtain ∇2

x f px˚q “ ´ sinpπ ¨ r1.5` 2ksq ¨ π2 “ π2 ą 0, i.e. our Hessian is positive
definite and these points are definitely local minima (as visible in Figure 1.3, left).

2. Consider f pxq “ x ¨ exppxq. Then, we obtain∇x f pxq “ exppxq ¨ p1` xq and∇2
x f pxq “

exppxq ¨ p2` xq. The gradient is zero for x˚ “ ´1. We obtain the Hessian ∇2
x f px˚q “

expp´1q ¨ p2´ 1q “ expp´1q ą 0, i.e. our Hessian is positive definite and this point
is definitely a local minimum (as visible in Figure 1.3, center).

14

1 .2 differentiable optimization

3. Consider f pxq “ x3. Then, we obtain ∇x f pxq “ 3 ¨ x2 and ∇2
x f pxq “ 6 ¨ x. The

gradient is zero for x˚ “ 0. We obtain the Hessian ∇2
x f px˚q “ 0, i.e. our Hessian is

positive semi-definite. Still, this point is clearly not a local minimum (as visible in
Figure 1.3, right).

In addition, consider the following examples.

1. Consider f pxq “ x4. Then, we obtain ∇x f pxq “ 4 ¨ x3 and ∇2
x f pxq “ 12 ¨ x2. The

gradient is zero for x˚ “ 0. We obtain the Hessian ∇2
x f px˚q “ 0, i.e. our Hessian is

positive semi-definite. Still, this point is a global minimum because for any x P R

we have f pxq “ x4 ě 0 “ f p~x˚q.

2. Consider f pxq “ ´x4. Then, we obtain ∇x f pxq “ ´4 ¨ x3 and ∇2
x f pxq “ ´12 ¨ x2.

The gradient is zero for x˚ “ 0. We obtain the Hessian ∇2
x f px˚q “ 0, i.e. our Hessian

is positive semi-definite. However, out point is indeed a global maximum because
for any x P R we have f pxq “ ´x4 ď 0 “ f px˚q.

Finally, consider the two-dimensional function f px, yq “ x2 ´ y2. In this case, we
obtain

∇px,yq f px, yq “
ˆ

2x
´2y

˙

and ∇2
px,yq f px, yq “

ˆ

2 0
0 ´2

˙

.

The gradient is zero for ~x˚ “ p0, 0qT. The Hessian is not positive semi-definite because
we find that for ~y “ p0, 1qT we obtain

p0, 1q ¨
ˆ

2 0
0 ´2

˙

¨

ˆ

0
1

˙

“ p0,´2q ¨
ˆ

0
1

˙

“ ´2 ă 0

Therefore, ~x˚ is not a local minimum.

1 .2 .3 Eigenvalue analysis

Until now we are missing an efficient way to check whether a matrix is positive definite
or positive semi-definite. As it turns out, the key to such a method are eigenvalues.

Remark 34 (Refresher: Eigenvalues). As a refresher: An eigenvector of a matrix A is
defined as a vector ~v ‰~0, such that

A ¨~v “ λ ¨~v (1.29)

where λ P R is called the eigenvalue corresponding to the eigenvector ~v. Note that if ~v is
an eigenvalue of A, then α ¨~v for any α ‰ 0 is also an eigenvector of A with the same
eigenvalue.

Further, we can re-write any symmetric square matrix A P RKˆK as follows.

A “ V ¨Λ ¨V T (1.30)

where V contains eigenvectors of A as columns and Λ is a diagonal matrix containing
the corresponding eigenvalues. This form is also called the eigendecomposition of A and
can be computed in OpK3q. A special property of this eigenvalue decomposition is
that the eigenvectors are orthogonal, that is: V ¨ V T “ V T ¨ V “ IK, where IK is the
Kˆ K-dimensional identity matrix.

With this knowledge in mind, we can now go on to prove that knowing the eigenvalues
of A is sufficient to know its definiteness.

15

theory

Theorem 35 (Positive definiteness and eigenvalues). A symmetric square matrix A P RKˆK

is positive definite if and only if all of its eigenvalues are positive.
A symmetric square matrix A P RKˆK is positive semi-definite if and only if all of its

eigenvalues are non-negative.

Proof. Since A is symmetric and square, the eigenvalue decomposition of A has the form
A “ V ¨Λ ¨V T with V ¨V T “ V T ¨V “ IK.

We first prove the second claim.
If all eigenvalues are non-negative, we can re-write Λ as

?
Λ

T
¨
?

Λ where
?
¨ denotes

the element-wise square root. Accordingly, we can re-write for all ~x P RK:

~xT ¨ A ¨~x “ ~xT ¨V ¨
?

Λ
T
¨
?

Λ ¨V T ¨~x “ p
?

Λ ¨V T ¨~xq
T
¨ p
?

Λ ¨V T ¨~xq ě 0,

which means that A is positive semi-definite.
Conversely, if there exists a negative eigenvalue of A, say λk ă 0, then we can consider

the kth eigenvector ~vk and the product

~vT
k ¨ A ¨~vk “ ~vT

k ¨ λk ¨~vk “ λk ă 0

which means that A is not positive semi-definite.
Now, consider the first claim. If all eigenvalues are positive, then

?
Λ ¨V T ¨~x is nonzero

if ~x is nonzero. Therefore, for any nonzero ~x we obtain

~xT ¨ A ¨~x “ p
?

Λ ¨V T ¨~xq
T
¨ p
?

Λ ¨V T ¨~xq ą 0,

which means that A is positive definite.
Conversely, consider the case of a non-positive eigenvalue λk. If λk ă 0, then A is not

even positive semi-definite, which means that it is also not positive definite (see above).
if λk “ 0 then consider the product

~vT
k ¨ A ¨~vk “ ~vT

k ¨ λk ¨~vk “ 0

which means that A is not positive definite.

Remark 36 (Eigenvalues of the Hessian and curvature). Intuitively, the eigenvalues of
the Hessian specify the curvature of the function along the direction of the corresponding
eigenvectors. Positive eigenvalues correspond to upwards curvature, negative eigenvalues
to downwareds curvature.

If the curvature along all directions is upwards - that is, if all eigenvalues of the
Hessian are positive - we can only increase the objective function if we move. However, if
even one eigenvalue is negative (or zero), we can move into that direction and decrease
the objective function (refer to Figure 1.4).

Note that this interpretation only applies for points where the gradient is zero. In other
points, the eigenvalues do not correspond to curvature. Also note that this interpretation
only holds for quadratic curvature. Higher-order curvatures are not included.

In this section, we have demonstrated how we can find local minima in continuous
optimization. This begs the question: Under which circumstances can we guarantee that
local minima are also global minima? In this regard, a subclass of continuous optimization
problems comes into play, namely the class of convex optimization problems.

16

1 .3 convex optimization

´1
´0.5 0 0.5 1 ´1

0

1
0

2

x
y

fp
x,

yq

Figure 1.4: An illustration of curvature at a point with zero gradient. The function here is
f px, yq “ 2x2 ´ 3

2 x ¨ y´ y2, indicated by the surface plot. The arrows indicate the eigenvectors of
the Hessian at point p0, 0q, where the z coordinate indicates the (square root of) the corresponding
eigenvalue. Note that the eigenvalues correspond to the curvature around this point, being
positive for upward and negative for downward curvature.

1 .3 C O N V E X O P T I M I Z AT I O N

Convex Optimization is concerned with problems that adhere to certain geometric con-
straints (namely convexity). Why do we care about such geometric constraints? Because
they guarantee a very useful property for optimization, namely that all local minima are
global minima. Since finding local minima is usually easy in continuous optimization
(see previous section), having this property makes optimization easy. Accordingly, it is
very desirable to re-phrase optimization problems in convex form.

1 .3 .1 Definition and Convex Optimization Theorem

In this section, we will define precisely what convexity means and then prove that local
minima are global minima for convex problems.

Definition 37 (Convex set, convex function, convex optimization problem). Let X Ď RK

for some K P N. We call X a convex set if for all ~x,~y P X and all α P r0, 1s it holds:

α ¨~y` p1´ αq ¨~x P X . (1.31)

Let f be a function f : X Ñ R. We call f a convex function if X is convex and for all
~x,~y P X and all α P r0, 1s it holds:

f
`

α ¨~y` p1´ αq ¨~x
˘

ď α ¨ f p~yq ` p1´ αq ¨ f p~xq. (1.32)

Finally, consider a optimization problem in standard form. We call this problem
convex if its objective function is a convex function and its feasible set is a convex set.

17

theory

convex set non-convex set

´1 0 1

2

4

x

fp
xq

convex function

´1 0 1
´1

´0.5

0

x

fp
xq

non-convex function

Figure 1.5: Top left: A convex set where every connecting line lies in the set; top right: a non-
convex set due to two points for which the connecting line does not lie in the set; bottom left: A
convex function where every connecting line lies above the graph; bottom right: A non-convex
function where for at least two points the connecting line is not above the graph.

Remark 38 (Geometric intuition of convexity). In plain English, a set is convex if the
connecting line between any two points in the set is also in the set. The points on the
connecting line are precisely described by Equation 1.31. Also refer to Figure 1.5 (top).

Similarly, a function is convex if the connecting line between two points on its graph
is above (or at least not below) the graph itself. This condition is made precise by
Equation 1.32. Also refer to Figure 1.5 (bottom).

Example 39 (Convex sets, convex functions). The following sets are known to be convex

• the K-dimensional vector space RK for any K P N,

• all triangles and all rectangles,

• all n-dimensional balls, and

• all platonic solids.

The following multivariate functions are known to be convex.

• Linear (actually affine) functions, i.e. f p~xq “~cT ¨~x` b for some vector ~c and some
scalar b, and

• Positive semi-definite quadratic functions, i.e. f p~xq “ 1
2~x

T ¨P ¨~x`~qT ¨~x` r for some
positive semi-definite matrix P, some vector ~q and some scalar r

The following univariate functions are known to be convex.

18

1 .3 convex optimization

• Linear (actually affine) functions, i.e. f pxq “ c ¨ x` b for some c, b P R,

• Polynomials of even degree, i.e. f pxq “ x2¨k for every k P N,

• The exponential function f pxq “ exppxq,

• The negative logarithm f pxq “ ´ logpxq, and

• The absolute value function f pxq “ |x|.

If we know that an optimization problem is convex, we can show that optimization is
simple.

Theorem 40 (Convex optimization theorem). For a convex optimization problem, all local
minima are global minima.

Proof. Assume the claim is not true. Then, there exists a ~x˚ P X ˚ which is a local
minimum but not a global minimum. Accordingly, there exists at least one ~y P X ˚ for
which f p~yq ă f p~x˚q. Now, consider the point ~xα :“ α ¨~y` p1´ αq ¨~x˚ which lies on the
connecting line between ~x˚ and ~y. Because X ˚ is convex, ~xα P X ˚ for all α P r0, 1s. Now,
consider the distance between ~xα and ~x˚, which is

‖~xα ´~x˚‖ “ ‖α ¨~y´ α ¨~x˚‖ “ α ¨ ‖~y´~x˚‖

Note that ‖~y´~x˚‖ is a constant. Thus, by reducing α, we can bring ~xα arbitrarily close
to ~x˚. In particular, by setting α “ ε{‖~y´~x˚‖, we can ensure that ~xα P Nεp~x˚q for any
ε ą 0. Because ~x˚ is a local minimum, there exists an ε such that for all ~x P Nεp~x˚q XX ˚
it holds f p~x˚q ď f p~xq. Therefore, for α “ ε{‖~y´~x˚‖, we obtain f p~x˚q ď f p~xαq. However,
because f is a convex function, we also know that

f p~x˚q ď f p~xαq ď α ¨ f p~yq ` p1´ αq ¨ f p~x˚q ă α ¨ f p~x˚q ` p1´ αq ¨ f p~x˚q “ f p~x˚q,

which is a contradiction. Therefore, ~x˚ must be a global minimum.

1 .3 .2 Engineering Convex Problems

Now that we know that convexity is useful, the immediate question is how we can make
an optimization problem convex. In a first step, we will provide tools by which we
can show that a function is convex. After that, we will show how to construct a convex
optimization problem from convex functions.

Theorem 41 (First- and second-order conditions of convex functions). Let X Ď RK be a
convex set and let f be a function f : X Ñ R. Then it holds:

1. f is convex if and only if for all ~x,~y P X with ~x ‰ ~y it holds:

f p~yq ą f̃ 1
~x p~yq “ f p~xq ` p~y´~xqT ¨∇~x f p~xq. (1.33)

2. f is convex if and only if for all ~x P X it holds: ∇2
~x f p~xq is positive semi-definite.

19

theory

Proof. Our proof of the first claim is inspired by Boyd and Vandenberghe (2004, p. 70).
We first introduce two auxiliary concepts. Let ~x,~y P X and α P r0, 1s. Then, we

define ~zα :“ α ¨~y` p1´ αq ¨~x. Further, we define the function ` : r0, 1s Ñ R as the one-
dimensional line along the function f which connects f p~xq and f p~yq, i.e. `pαq :“ f p~zαq.
Note that we obtain for the derivative

B

Bα
`pαq “

`

∇~zα
f p~zαq

˘T
¨
B

Bα
~zα “

`

∇~zα
f p~zαq

˘T
¨ p~y´~xq

Assume first that f is convex, i.e. Equation 1.32 holds. Then, ` is convex as well.
Consider now α, β, ∆ P r0, 1s. Then, because ` is convex, we obtain:

`
`

∆ ¨ β` p1´ ∆q ¨ α
˘

ď ∆ ¨ `pβq ` p1´ ∆q ¨ `pαq

ðñ
`
`

∆ ¨ β` α´ ∆ ¨ α
˘

∆
ď `pβq `

`pαq

∆
´ `pαq

ðñ `pαq `
`
`

α` ∆ ¨ pβ´ αq
˘

´ `pαq

∆
ď `pβq

Since this inequality holds for all ∆ P r0, 1s, we can consider the limes towards zero, i.e.:

`pβq ě `pαq ` lim
∆Ñ0

`
`

α` ∆ ¨ pβ´ αq
˘

´ `pαq

∆
“ `pαq `

B

Bα
`pαq ¨ pβ´ αq

where the last equality holds due to the definition of a derivative and the chain rule. Since
this result holds for any two α, β P r0, 1s, it also holds for the special case pβ, αq “ p1, 0q,
i.e.:

`p1q ě `p0q `
B

Bα
`p0q ¨ p1´ 0q

ðñ f p~z1q ě f p~z0q `
`

∇~z0 f p~z0q
˘T
¨ p~y´~xq

ðñ f p~yq ě f p~xq `
`

∇~x f p~xq
˘T
¨ p~y´~xq,

which is exactly Inequality 1.33.
Now, assume that Inequality 1.33 holds. Because X is convex, ~zα,~zβ P X for any two

α, β P r0, 1s. Further, we obtain:

~zβ´~zα “ β ¨~y`p1´ βq ¨~x´α ¨~y´p1´αq ¨~x “ β ¨ p~y´~xq`~x´α ¨ p~y´~xq´~x “ p~y´~xq ¨ pβ´αq

From Inequality 1.33 we obtain:

f p~zβq ě f p~zαq `
`

∇~x f p~zαqq
T
¨ p~zβ ´~zαq

ðñ `pβq ě `pαq `
`

∇~x f p~zαqq
T
¨ p~y´~xq ¨ pβ´ αq

ðñ `pβq ě `pαq `
B

Bα
`pαq ¨ pβ´ αq (1.34)

Now, let ∆ P r0, 1s and consider two instances of Inequality 1.34, first with pβ, αq “
p1, ∆q, and second with pβ, αq “ p0, ∆q. This yields:

`p1q ě `p∆q `
B

B∆
`p∆q ¨ p1´ ∆q and

`p0q ě `p∆q `
B

B∆
`p∆q ¨ p0´ ∆q

20

1 .3 convex optimization

If we multiply the first inequality with ∆, the second inequality with p1´ ∆q and add
both, we obtain:

∆ ¨ `p1q ` p1´ ∆q ¨ `p0q ě ∆ ¨ `p∆q `
B

B∆
`p∆q ¨ p1´ ∆q ¨ ∆

` p1´ ∆q ¨ `p∆q ´
B

B∆
`p∆q ¨ ∆ ¨ p1´ ∆q

ðñ ∆ ¨ f p~z1q ` p1´ ∆q ¨ f p~z0q ě f p~z∆q

ðñ ∆ ¨ f p~yq ` p1´ ∆q ¨ f p~xq ě f
`

∆ ¨~y` p1´ ∆q ¨~x
˘

,

which is exactly Inequality 1.32.
Now, consider the second claim. First, assume that there exists some ~x P X such

that ∇2
~x f p~xq is not positive semi-definite. Then, there exists some ~y P RK such that

~yT ¨∇2
~x f p~xq ¨~y ă 0. Now, consider ~zα :“ α ¨~y`~x. For sufficiently small α P p0, 1s, ~zα P X

and the second-order Taylor approximation is precise, i.e.:

f p~zαq “ f p~xq `∇~x f p~xqT ¨ p~zα ´~xq `
1
2
p~zα ´~xqT ¨∇2

~x f p~xq ¨ p~zα ´~xq

“ f p~xq `∇~x f p~xqT ¨ p~zα ´~xq `
1
2

α2~yT ¨∇2
~x f p~xq ¨~y

ă f p~xq `∇~x f p~xqT ¨ p~zα ´~xq

Now, if f were convex, we would obtain:

f p~xq `∇~x f p~xqT ¨ p~zα ´~xq ď f p~zαq

due to the first claim. However, this is a contradiction because then f p~zαq ă f p~zαq.
Therefore, f cannot be convex.

Finally, consider the case that for all ~x P X ∇2
~x f p~xq is positive semi-definite. Note

that for any two ~x,~y P X there exists some α P r0, 1s, such that the second-order Taylor
approximation is precise for the Hessian taken at α ¨~y` p1´ αq ¨~x, i.e.:

f p~yq “ f p~xq `∇~x f p~xqT ¨ p~y´~xq `
1
2
p~y´~xqT ¨∇2

~x f pα ¨~y` p1´ αq ¨~xq ¨ p~y´~xq

Because ∇2
~x f p~xq is positive semi-definite, the quadratic term is guaranteed to be non-

negative. Therefore, we obtain:

f p~yq ě f p~xq `∇~x f p~xqT ¨ p~y´~xq,

which implies convexity by virtue of the first claim.

Now that we know how to prove that a function is convex, we next show how to
construct convex optimization problems from convex functions.

Theorem 42 (Convex constraints yield a convex set). Consider a continuous optimiza-
tion problem with inequality constraint functions g1, . . . , gm and equality constraint functions
h1, . . . , hn. Then, if the two following conditions hold, the feasible set of this problem is convex.

1. For all i P t1, . . . , mu, ´gi is convex and

2. for all j P t1, . . . , nu, hj is affine, i.e. there exists some vector ~aj and some scalar bj such
that hjp~xq “~aT

j ¨~x` bj.

21

theory

Proof. We will first consider the ith inequality constraint. In particular, consider the set

Fi :“ t~x P RK|gip~xq ě 0u “ t~x P RK| ´ gip~xq ď 0u

For any two ~x,~y P Fi it holds: ´gip~xq ď 0 and ´gip~yq ď 0. Accordingly, for any α P r0, 1s
it also holds:

´α ¨ gip~yq ´ p1´ αq ¨ gip~xq ď 0

Further, because ´gi is convex, we obtain:

0 ě ´α ¨ gip~yq ´ p1´ αq ¨ gip~xq ě ´gi
`

α ¨~y` p1´ αq ¨~x
˘

,

which in turn implies that α ¨~y` p1´ αq ¨~x P Fi. Therefore, Fi is a convex set for every i.
Next, note that the intersection of any two convex sets A and B is also convex.

Consider two points ~x,~y P AX B. Then both ~x and ~y lie in both A and B due to the
definition of an intersection. Further it holds: For any α P r0, 1s α ¨~x` p1´ αq P ~y lies both
in A and in B because both A and B are convex. Therefore, α ¨~x` p1´ αq P ~y P AX B.

Now, consider the jth equality constraint. In particular, consider the set

Gj :“ t~x P RK|hjp~xq “ 0u “ t~x P RK|hjp~xq ď 0u X t~x P RK| ´ hjp~xq ď 0u

Because hj is affine, both hj and ´hj are convex and therefore the left and right set in the
equation above are both convex by the same reasoning as above. Further, because the
intersection of two convex sets is convex, Gj is convex for every j.

Now, note that the entire feasible set can be re-written as:

X ˚ “
´

m
č

i“1

Fi

¯

X

´

n
č

j“1

Gj

¯

Since the intersection of convex sets is convex, X ˚ is convex.

Sometimes, we may be unable to construct our problem from convex functions right
away. In these cases, however, it may still be possible to transform our objective function,
inequality constraint functions, and equality constraint functions to become convex.

Theorem 43 (Transformer theorem). Let

min
~xPRK

f p~xq

s.t. gip~xq ě 0 @i P t1, . . . , mu
hjp~xq “ 0 @j P t1, . . . , nu

be an optimization problem in standard form. Further, let φ, ρ1, . . . , ρm and ψ1, . . . , ψn be strictly
montonously increasing functions from R to R. Then, the following optimization problems is
equivalent (in the sense of Definition 7).

min
~xPRK

φ
`

f p~xq
˘

(1.35)

s.t. ρi
`

gip~xq
˘

´ ρip0q ě 0 @i P t1, . . . , mu
ψj
`

hjp~xq
˘

´ ψjp0q “ 0 @j P t1, . . . , nu

22

1 .3 convex optimization

0

0.1

0.2

fp
xq

210 ¨ x4 ¨ p1´ xq6

0

0.2

0.4

1?
2π
¨ expp´1

2 x2q

0

0.1

0.2

0.3

0.4

´ exppxq ¨ x

0 0.5 1
0

20

40

x

´
lo

gr
fp

xq
s

´2 0 2

2

4

x
´6 ´4 ´2 0

2

4

6

8

x

Figure 1.6: Three non-convex functions (top) with convex negative logarithms (bottom).

Proof. To show equivalence, we need to show that Equations 1.9, 1.10, and 1.11 hold.
Equation 1.9 holds trivially because φ is strictly monotonously increasing.

Regarding Equation 1.10 note that strictly monotonously increasing functions are
injective and thus invertible (if restricted to their image). Therefore, we obtain:

gip~xq ě 0 ðñ ρi
`

gip~xq
˘

ě ρip0q ðñ ρi
`

gip~xq
˘

´ ρip0q ě 0

Using the same invertibility reasoning, we also know for all j that

hjp~xq “ 0 ðñ ψj
`

hjp~xq
˘

“ ψjp0q ðñ ψj
`

hjp~xq
˘

´ ψjp0q “ 0

Example 44 (Log-convex functions). The following functions are not convex but become
convex by applying a negative logarithm:

• binomial density functions: f pxq “
ˆ

n
k

˙

xk ¨ p1 ´ xqn´k for x P r0, 1s, with the

negative logarithm ´ logr f pxqs “ ´ logr
ˆ

n
k

˙

s ´ k ¨ logrxs ´ pn´ kq ¨ logr1´ xs.

• Gaussian density functions: f pxq “ 1?
2π

expp´1
2 x2q, with the negative logarithm

´ logr f pxqs “ 1
2 logr2πs ` 1

2 x2.

• f pxq “ ´x ¨ exppxq with the negative logarithm ´ logr f pxqs “ ´ logr´xs ´ x.

Also refer to Figure 1.6.

23

theory

1 .4 D UA L I T Y

While differentiable optimization gives us a tool to solve unconstrained, continuous
optimization problems, we are still missing an equivalent tool for constrained optimization
problems. The main trick to address such problems is to re-write them as unconstrained
problems or at least less severely constrained problems. We call such a re-written form
of an optimization problem its dual form. In this section, we will cover two kinds of
dual forms, namely the Lagrange and the Wolfe dual, and we will also establish the
equivalence of primal and dual form under certain conditions.

1 .4 .1 Lagrange Dual Form

Definition 45 (Lagrange dual). Let

min
~xPRK

f p~xq

s.t. gip~xq ě 0 @i P t1, . . . , mu
hjp~xq “ 0 @j P t1, . . . , nu

be an optimization problem in standard form. Then, we define the Lagrange dual of the
problem as follows.

sup
~λPRm,~µPRn

inf
~xPRK

f p~xq ´
m
ÿ

i“1

λi ¨ gip~xq ´
n
ÿ

j“1

µj ¨ hjp~xq (1.36)

s.t. λi ě 0 @i P t1, . . . , mu

Whenever we consider a Lagrange dual, we call the original problem the primal
problem.

We call the function

L :RK ˆRm ˆRn Ñ R where

Lp~x,~λ,~µq :“ f p~xq ´
m
ÿ

i“1

λi ¨ gip~xq ´
n
ÿ

j“1

µj ¨ hjp~xq (1.37)

the Lagrangian of the problem.
We call the variables λi and µj the Lagrange multipliers of the Lagrange dual.

Remark 46 (Infimum and supremum). We introduced supremum and infimum notation
here, which is necessary for mathematical reasons. Broadly speaking, however, sup is
the same as max and inf the same as min, just that sup and inf can also obtain infinity
values.

Example 47 (Lagrange dual). Consider the following optimization problem.

min
x,yPR

x´ y

s.t. x2 ` y2 “ 1

The Lagrange dual for this problem is given as:

sup
µPR

inf
x,yPR

x´ y´ µ ¨ px2 ` y2 ´ 1q

24

1 .4 duality

Instead of solving the original problem, we can now solve this simpler version, which
is unconstrained.

In a first step, we compute the gradient and Hessian:

∇x,yLpµ, x, yq “
ˆ

1´ 2µ ¨ x
´1´ 2µ ¨ y

˙

and

∇2
x,yLpµ, x, yq “

ˆ

´2µ 0
0 ´2µ

˙

By solving the equation ∇x,yLpµ, x, yq “~0 for x and y we obtain x “ 1
2µ and y “ ´ 1

2µ . By
plugging this result in turn into our original side constraints x2 ` y2 “ 1 we obtain

` 1
2µ

˘2
`
`

´
1

2µ

˘2
“ 1 ðñ µ2 “

2
22 ðñ µ “ ˘

1
?

2

By inspecting the Hessian we see that only the solution µ “ ´ 1?
2

yields a local minimum.

Accordingly, we obtain the solution x “ ´ 1?
2

and y “ 1?
2

with objective function value

x´ y “ ´
?

2.

Remark 48 (Interpretation as two-player game). The intuition behind the Lagrange dual
can be phrased as a game of yourself against a malicious opponent. In this game, you
want that Lp~x,~λ,~µq gets as small as possible and your opponent wants that it gets as big
as possible. You have control over the variable ~x and your opponent over the variables ~λ
and ~µ. If you violate any of the constraints, your opponent can punish you by setting the
corresponding Lagrange multipliers to large values such that you do not achieve the low
optimization value you hoped for. Therefore, to achieve the least possible value, you are
not allowed to violate the constraints and thus the primal and duel problem correspond
to each other.

However, as we will see in the next section, the Lagrange dual and the original
problem are not strictly the same, although the difference is subtle.

1 .4 .2 Duality Gaps

Remark 49 (Duality gaps in terms of the game metaphor). To understand the subtle
difference between dual and primal, let’s return to the two-player game metaphor from
Remark 48. We said that the Lagrange dual can be understood as a game where you
control the variable ~x and wish to minimize the Lagrangian Lp~x,~λ,~µq whereas your
opponent controls the vairables~λ and ~µ and wants to maximize the Lagrangian Lp~x,~λ,~µq.

The subtle problem in this game is that the Lagrange dual assumes that your opponent
must move first, whereas you can then choose ~x in perfect knowledge of your opponents
choices. In this scenario, your opponent must try to forsee what you will choose and
select their variables conservatively, thus potentially giving you more points than they’d
like. In the primal problem, though, you must choose first and your opponent can punish
you for wrong variable choices.

The difference in the outcome values of both versions of the game is called the duality
gap.

Definition 50 (Duality gap, weak duality, strong duality). The difference f ˚´L˚ between
the optimal value of a primal problem f ˚ and its Lagrange dual L˚ is called duality gap.

25

theory

We say that weak duality holds for an optimization problem if the duality gap is
non-negative.

We say that strong duality holds for an optimization problem if the duality gap is zero.

Theorem 51 (Weak duality theorem). For every optimization problem, weak duality holds.

Proof. We first prove a much more general result, namely the max-min inequality.
Let X , Y be two arbitrary sets and let L be some function L : X ˆY Ñ R. Further,

let φ be the function φ : X Ñ R with φpxq :“ infyPY Lpx, yq. Now, for any x P X , Lpx, yq
must be at least as big as φpxq, otherwise φpxq would not be the infimum over all y. In
other words, we obtain:

Lpx, yq ě φpxq @x P X , y P Y

Further, if we now maximize over x, supxPX Lpx, yq is at least as large as supxPX φpxq.
Otherwise φpxq would, again, not be the infimum. Formally, we obtain:

sup
xPX

Lpx, yq ě sup
xPX

φpxq y P Y

Finally, because this inequality holds for all y P Y , it also holds for the infimum, which
yields the max-min inequality:

inf
yPY

sup
xPX

Lpx, yq ě sup
xPX

inf
yPY

Lpx, yq (1.38)

Next, let

min
~xPRK

f p~xq

s.t. gip~xq ě 0 @i P t1, . . . , mu
hjp~xq “ 0 @j P t1, . . . , nu

be an optimization problem in standard form. Then we can define the following problem:

min
~xPRK

φp~xq where

φp~xq “ sup
~λPRm

`,~µPRn

Lp~x,~λ,~µq

and where L is the Lagrangian of the original problem (refer to Equation 1.37).
This problem is equivalent because for any ~x that is not in the feasible set, φp~xq obtains

the value 8, and for any ~x in the feasible set, φp~xq “ f p~xq. Therefore, the duality gap is
exactly the difference between the optimal objective function values for our equivalent
problem and the solution of the Lagrange dual. The optimal value of the equivalent
problem is per definition above:

inf
~xPRK

sup
~λPRm

`,~µPRn

Lp~x,~λ,~µq

whereas the optimal value of the Lagrange dual is per definition:

sup
~λPRm

`,~µPRn

inf
~xPRK

Lp~x,~λ,~µq

Therefore, due to the max-min inequality 1.38, weak duality holds.

26

1 .4 duality

Example 52 (Strong duality counterexamples). There exist optimization problems, even
convex ones, where strong duality does not hold.

First, consider a simple non-convex example.

min
x,yPR,yą0

x2

s.t. x ¨ y´ y ě 0

Note that this is equivalent to minimizing x2 such that x ě 1. The solution to this problem
is thus obviously x “ 1 with f p1q “ 12 “ 1. Now, consider the Lagrange dual.

sup
λPR

inf
x,yPR,yą0

x2 ´ λ ¨ px ¨ y´ yq

s.t. λ ě 0

Because the inner optimization problem receives λ as input, we can set y “ ε
λ for

arbitrarily ε ą 0, resulting in the Lagrangian Lpx, ε
λ , λq “ x2´ ε ¨ px´ 1q. This Lagrangian

has the derivative B
BxLpx, ε

λ , λq “ 2x ´ ε and the second derivative B2

B2xLpx, ε
λ , λq “ 2.

Therefore, we obtain a minimum for x “ ε
2 . Because we can set ε to arbitrarily small values

larger than zero, we obtain an infimum of zero. Note that this infimum is independent
of λ, such that our overall solution is 0 as well. Therefore, we obtain a duality gap of
1´ 0 “ 1 ą 0.

Our next example is due to Tan (2015). Consider the problem

min
x,yPR,yą0

expp´xq

s.t. ´
x2

y
ě 0,

which is convex. Note that the only possible feasible value for x is 0 because otherwise
the inequality constraint would be violated. Therefore, the minimal objective function
value is 1.

Now, consider the Lagrange dual of this problem:

sup
λPR

inf
x,yPR,yą0

expp´xq ` λ ¨
x2

y

s.t. λ ě 0

Because the inner minimization problem has access to the value of λ, we can simply
set y “ x3 ¨ λ and thus obtain the alternative objective function expp´xq ` 1

x , which is is
minimized by setting x to arbitrarily large values, thus achieving an infimum of zero.
Note that this infimum is independent of λ, such that our overall solution is zero as well,
yielding a duality gap of 1´ 0 “ 1 ą 0.

The last example begs the question when strong duality is guaranteed. As it turns
out, it is hard to characterize necessary conditions for strong duality. But we do now
sufficient conditions, the broadest of which is Slater’s condition.

Definition 53 (Slater’s condition). Let

min
~xPRK

f p~xq

s.t. gip~xq ě 0 @i P t1, . . . , mu

27

https://www.ece.nus.edu.sg/stfpage/vtan/ee5138/strong_duality_fails.pdf

theory

A ¨~x “~b

be a convex optimization problem. We say that this problem conforms to Slater’s condition
if there exists at least one ~x P X ˚ such that gip~xq ą 0 for all i P t1, . . . , mu.

Theorem 54 (Strong duality under Slater’s condition). If an optimization problem fulfills
Slater’s condition, strong duality holds.

Proof. This proof is, unfortunately, a little too involved to present here in full. We en-
courage the reader to inspect Boyd and Vandenberghe (2004, pp. 232-236) for a full
proof.

1 .4 .3 Karush-Kuhn-Tucker conditions

Strong duality tells us that we can solve the Lagrange dual instead of the primal problem
to achieve a local minimum. The remaining question is how do we solve the Lagrange dual
in general? In unconstrained optimization, we only had to care about the gradient being
zero and the Hessian being positive definite. Now we also have to take constraints into
account. The overall set of necessary constraints we need to fulfill for a local minimum
of the Lagrange dual that may also be a local minimum of the primal problem are called
the Karush-Kuhn-Tucker conditions.

Definition 55 (Karush-Kuhn-Tucker conditions). Let

sup
~λPRm,~µPRn

inf
~xPRK

f p~xq ´
m
ÿ

i“1

λi ¨ gip~xq ´
n
ÿ

j“1

µj ¨ hjp~xq

s.t. λi ě 0 @i P t1, . . . , mu

be the Lagrange dual of an optimization problem. Then, the Karush-Kuhn-Tucker condi-
tions (KKTs) are defined as the following Equations.

gip~xq ě 0 @i P t1, . . . , mu (1.39)
hjp~xq “ 0 @j P t1, . . . , nu (1.40)

λi ě 0 @i P t1, . . . , mu (1.41)
λi ¨ gip~xq “ 0 @i P t1, . . . , mu (1.42)

∇~x f p~xq “
m
ÿ

i“1

λi ¨∇~xgip~xq `
n
ÿ

j“1

µj ¨∇~xhjp~xq (1.43)

We call the set of inequality constraint for which λi ą 0 the active inequality con-
straints.

Remark 56 (Intuition behind the KKT conditions). The first two KKT conditions ensure
that ~x is still feasible point for the primal problem and the third condition ensures that ~λ
is feasible for the Lagrange dual.

Regarding the fourth condition, consider the game metaphor again. If you manage
to find a point where gip~xq ą 0, i.e. the ith inequality constraint is strictly fulfilled, your
opponent would only give you points if λi ą 0. Therefore, they will set λi “ 0 if gip~xq ą 0.
If gip~xq ď 0 then we know that gip~xq “ 0 because the first condition forbids gip~xq ă 0. In
conjunction, these two cases ensure that λi ¨ gip~xq “ 0 for all i.

28

1 .4 duality

px˚, y˚q

´∇x,y f px˚, y˚q

λ ¨∇x,ygpx˚, y˚q

´2 ´1 0 1 2
´2

´1

0

1

2

x

y

Figure 1.7: A geometric illustration for the fifth Karush-Kuhn-Tucker condition for the opti-
mization problem minx,y x ´ y such that x2 ` y2 ď 1 from Example 58. The mesh plot in the
background illustrates the objective function f px, yq “ x´ y and the circle encloses the feasible
set where x2 ` y2 ď 1. The only point which fulfills the fifth Karush-Kuhn-Tucker condition is
px, yq “ p´ 1?

2
, 1?

2
q which is also the global minimum of the problem. At this point, the negative

gradient of the objective function and the gradient of the (λ-weighted) inequality constraint
function are exactly equally strong and thus cancel out.

The last condition is equivalent to saying that the gradient of the Lagrangian with
respect to ~x should vanish. This requirement makes sense because we expect that ~x
minimizes the Lagrangian due to the inner optimization problem of the Lagrange dual.

However, the last Karush-Kuhn-Tucker condition also has a nice and intuitive geo-
metric interpretation: A local minimum of the problem must be at a point where the
negative gradient of the objective function and the gradient of the constraints exactly
cancel out (when weighted with the Lagrange multipliers). Figure 1.7 illustrates this
geometric interpretation.

Theorem 57 (Optimality under KKT conditions). The following claims hold:

1. If strong duality holds, then every point p~x,~λ,~µq that is a solution of the Lagrange dual
where ~x P X ˚ fulfills the Karush-Kuhn-Tucker conditions.

2. Let p~x,~λ,~µq be a point which fulfills the Karush-Kuhn-Tucker conditions and let Sp~x,~λq
be the set of vectors which are orthogonal to gradients of the active inequality constraint
and the gradients of all equality constraint, i.e.:

Sp~x,~λq :“

~y P RKˇ
ˇ@i P t1, . . . , mu : λi ¨ p∇~xgip~xqq

T
¨~y “ 0,

@j P t1, . . . , nu : p∇~xhjp~xqq
T
¨~y “ 0

(

If strong duality holds, then every point p~x,~λ,~µq which fulfills the Karush-Kuhn-Tucker
conditions and where ~yT ¨∇2

~xLp~x,~λ,~µq ¨~y ě 0 for all ~y P Sp~x,~λq is a local optimum of
the Lagrange dual and ~x is a local minimum of the primal problem.

3. Let p~x,~λ,~µq be a point which fulfills the Karush-Kuhn-Tucker conditions. If the problem
fulfills Slater’s condition, then p~x,~λ,~µq is a global optimum of the Lagrange dual and ~x is
a global minimum for the primal problem.

29

theory

Proof. Again, the full proof is too involved to present here. However, we can at least
provide a proof for the first claim.

Let p~x,~λ,~µq be a solution of the Lagrange dual where ~x P X ˚. Because ~x P X ˚, the
first two Karush-Kuhn-Tucker conditions are fulfilled. The third condition holds because
~λ ě 0 is a side constraint of the Lagrange dual. For the fourth and fifth condition, we
need to go into more detail, though.

Assume that strong duality holds. Then, we know that

f p~xq “ inf
~x1
Lp~x1,~λ,~µq

Further, because we consider the infimum here, we also obtain

inf
~x1
Lp~x1,~λ,~µq ď Lp~x,~λ,~µq

Finally, because ~x P X ˚ and ~λ ě 0 we know that it holds:

´λi ¨ gip~xq ď 0 @i P t1, . . . , mu
´µj ¨ hjp~xq “ 0 @j P t1, . . . , nu

Accordingly, we obtain:

f p~xq ě f p~xq ´
m
ÿ

i“1

λi ¨ gip~xq ´
n
ÿ

j“1

µj ¨ hjp~xq “ Lp~x,~λ,~µq

which in turn implies that

f p~xq ď Lp~x,~λ,~µq ď f p~xq ðñ f p~xq “ Lp~x,~λ,~µq.

Using this equality we can show the fourth and fifth Karush-Kuhn-Tucker conditions.
In particular, because

f p~xq “ Lp~x,~λ,~µq “ f p~xq ´
m
ÿ

i“1

λi ¨ gip~xq

we know that
řm

i“1 λi ¨ gip~xq “ 0. However, we also know that λi ě 0 and gip~xq ě 0 for
all i P t1, . . . , mu. Therefore, it must hold that λi ¨ gip~xq “ 0 for all i P t1, . . . , mu, which is
precisely the fourth Karush-Kuhn-Tucker condition.

Further, because
inf
~x1
Lp~x1,~λ,~µq “ Lp~x,~λ,~µq

we know that~x is a minimum of the Lagrangian. Therefore, the gradient of the Lagrangian
with respect to ~x must vanish, i.e.

∇~xLp~x,~λ,~µq “ ∇~x f p~xq ´
m
ÿ

i“1

λi ¨∇~xgip~xq ´
n
ÿ

j“1

µj ¨∇~xhjp~xq “~0

which yields the final Karush-Kuhn-Tucker condition.

Example 58 (Solving a problem with the KKT conditions). Consider the following
problem.

min
x,yPR

x´ y

30

1 .4 duality

s.t. x2 ` y2 ď 1 ðñ 1´ x2 ´ y2 ě 0

Note that this problem is convex and has no equality constraints. Further, consider
the point x “ y “ 0. For this point, 02 ` 02 “ 0 ă 1, i.e. there exists a point where
the inequality constraint is strictly fulfilled, which means that Slater’s condition holds.
Therefore, strong duality holds as well.

We obtain the following Karush-Kuhn-Tucker conditions.

1´ x2 ´ y2 ě 0
λ ě 0

λ ¨ p1´ x2 ´ y2q “ 0

∇x,ypx´ yq “ λ ¨∇x,yp1´ x2 ´ y2q

Consider the last equation, which we can re-write as follows.
ˆ

1
´1

˙

“ λ ¨

ˆ

´2x
´2y

˙

ðñ x “ ´
1

2λ
^ y “

1
2λ

Plugging this result into the first equation we obtain:

1´ p´
1

2λ
q2 ´ p

1
2λ
q2 “ 1´

1
2λ2 ě 0 ðñ λ2 ě

1
2

ðñ λ ě
1
?

2
_ λ ď ´

1
?

2

The latter option is impossible due to the condition λ ě 0. Therefore, we obtain: λ ě 1?
2
.

Because λ ą 0, the third equation implies that 1´ x2 ´ y2 “ 0, which in turn implies that
λ “ 1?

2
and x “ ´ 1?

2
as well as y “ 1?

2
. Because Slater’s condition holds, Theorem 57

implies that this is a global minimum of our problem.

1 .4 .4 Wolfe Dual Form

Until now, we have first re-framed a problem in its Lagrange dual and then applied the
Karush-Kuhn-Tucker conditions to solve it (provided that strong duality holds). It is also
possible to plug in the key Karush-Kuhn-Tucker conditions directly into the Lagrange
dual, which is then called the Wolfe dual.

Definition 59 (Wolfe dual). Let

min
~xPRK

f p~xq

s.t. gip~xq ě 0 @i P t1, . . . , mu
hjp~xq “ 0 @j P t1, . . . , nu

be an optimization problem in standard form. Then, we define the Wolfe dual of the
problem as follows.

sup
~xPRK ,~λPRK ,~µPRK

Lp~x,~λ,~µq

s.t. ~λ ě 0

∇~x f p~xq “
m
ÿ

i“1

λi ¨∇~xgip~xq `
n
ÿ

j“1

µj ¨∇~xhjp~xq

31

theory

Remark 60 (Intuition of the Wolfe dual). At first glance, it may be confusing that the
Wolfe dual states that we maximize over ~x event though we minimized over ~x before.
This works because the Wolfe dual is specifically intended for convex problems and we
only consider points where the gradient of the Lagrangian with respect to ~x vanishes. In
convex problems, those points are necessarily global minima, even if we try to maximize.

Another explanation is that the side constraint for the vanishing gradient implicitly
couples ~x with ~λ and ~µ. Indeed, in many practical cases, we can provide an analytical
expression for ~x in terms of ~λ and ~µ, such that we can remove ~x from our optimization
problem entirely. In these cases, it is directly apparent that the maximization over ~x does
not matter.

Why do we still maximize though, even if it does not matter? Because we can avoid
the nested min/max structure of the Lagrange dual, which makes our problem easier.

Theorem 61 (Weak duality of the Wolfe dual). For any convex optimization problem, the
solution of the Wolfe dual is at most as large as the solution of the original problem.

Proof. This proof is due to the original paper of Wolfe (1961). Let ~x˚ be a solution of the
original problem and let p~x,~λ,~µq be a solution of the Wolfe dual. Recall that we wish to
prove that f p~x˚q ě Lp~x,~λ,~µq.

Now, because the objective function f is convex we can use the first-order convexity
condition from Theorem 41 to provide a lower bound for f p~x˚q, namely:

f p~x˚q ´ f p~xq ě f p~xq ` p~x˚ ´~xqT ¨∇~x f p~xq ´ f p~xq “ p~x˚ ´~xqT ¨∇~x f p~xq

Due to the side constraint of the Wolfe dual we know that ∇~x f p~xq must be equal to
řm

i“1 λi ¨∇~xgip~xq `
řn

j“1 µj ¨∇~xhjp~xq. Accordingly, we obtain:

p~x˚ ´~xqT ¨∇~x f p~xq “
m
ÿ

i“1

λi ¨ p~x˚ ´~xqT ¨∇~xgip~xq `
n
ÿ

j“1

µj ¨ p~x˚ ´~xqT ¨∇~xhjp~xq

Because ´gi is convex for all i and ´hj is convex for all j, we also obtain:

´gip~x˚q ě ´gip~xq ´ p~x˚ ´~xq ¨∇~xgip~xq ðñ p~x˚ ´~xq ¨∇~xgip~xq ě gip~x˚q ´ gip~xq and
´hjp~x˚q ě ´hjp~xq ´ p~x˚ ´~xq ¨∇~xhjp~xq ðñ p~x˚ ´~xq ¨∇~xhjp~xq ě hjp~x˚q ´ hjp~xq

for all i P t1, . . . , mu and all j P t1, . . . , nu.
Therefore, we can conclude:

m
ÿ

i“1

λi ¨ p~x˚ ´~xqT ¨∇~xgip~xq `
n
ÿ

j“1

µj ¨ p~x˚ ´~xqT ¨∇~xhjp~xq

ě

m
ÿ

i“1

λi ¨
`

gip~x˚q ´ gip~xq
˘

`

n
ÿ

j“1

µj ¨
`

hjp~x˚q ´ hjp~xq
˘

Because ~x˚ is a feasible point of the primal problem, it must hold that gip~x˚q ě 0 and
that hjp~x˚q “ 0. Further, because p~x,~λ,~µq is a feasible point for the Wolfe dual, it must
hold that λi ě 0 for all i. Therefore, we can conclude:

m
ÿ

i“1

λi ¨
`

gip~x˚q ´ gip~xq
˘

`

n
ÿ

j“1

µj ¨
`

hjp~x˚q ´ hjp~xq
˘

ě ´

m
ÿ

i“1

λi ¨ gip~xq ´
n
ÿ

j“1

µj ¨ hjp~xq

32

1 .4 duality

Therefore, we obtain overall:

f p~x˚q ´ f p~xq ě ´
m
ÿ

i“1

λi ¨ gip~xq ´
n
ÿ

j“1

µj ¨ hjp~xq ðñ f p~x˚q ě Lp~x,~λ,~µq,

which concludes the proof.

Theorem 62 (Strong duality of the Wolfe dual). If an optimization problem fulfills Slater’s
condition then the duality gap between the primal and the Wolfe dual is zero.

Proof. Refer to Wolfe (1961) for the forward direction. The backward direction holds
because any point~x where the gradient of the Lagrangian vanishes is a global minimum in
case of convexity. Therefore, p~x,~λ,~µq is a solution of the Lagrange dual, which according
to Theorem 54 implies a solution of the primal problem.

Example 63 (Wolfe dual). Consider again the problem from Example 58

min
x,yPR

x´ y

s.t. x2 ` y2 ď 1 ðñ 1´ x2 ´ y2 ě 0

As stated above, this problem fulfills Slater’s condition.
We obtain the following Wolfe dual.

sup
x,y,λPR

x´ y´ λ ¨ p1´ x2 ´ y2q

s.t. λ ě 0

∇x,ypx´ yq “ λ ¨∇x,yp1´ x2 ´ y2q

As before, the last equation yields x “ ´ 1
2λ and y “ 1

2λ . If we plug this into our objective
function we obtain:

Lp´ 1
2λ

,
1

2λ
, λq “ ´

1
λ
´ λ ¨

`

1´ p´
1

2λ
q2 ´ p

1
2λ
q2
˘

“ ´
1
λ
´ λ` λ ¨

1
2λ2

“ ´
1

2λ
´ λ

Accordingly, we can re-write our Wolfe dual as follows.

inf
λPR

1
2λ
` λ

s.t. λ ě 0

Note that our original variables x and y have vanished from this problem. This is a
typical phenomenon in the Wolfe dual.

By setting the derivative of the new objective function to zero we obtain:

B

Bλ
p

1
2λ
` λq “ ´

1
2λ2 ` 1 “ 0 ðñ λ2 “

1
2

ðñ λ “ ˘
1
?

2

We can exclude the possibility of λ being negative due to our side constraint λ ě 0.
Accordingly, we obtain λ “ 1?

2
, x “ ´ 1?

2
and y “ 1?

2
. This is a global minimum due to

Slater’s condition.

33

2A L G O R I T H M S

In this chapter, we cover methods to solve optimization problems. These methods come
in three distinct flavors. First, we consider analytical methods, which employ your brain,
pencil, paper, and symbols in order to derive a closed-form expression for a solution
– basically, what you learned in school, but a bit cooler. Second, we consider numerical
methods, which can get arbitrarily close to a local minimum in a differentiable optimization
problem by means of some iterative, numeric algorithm. Finally, we consider heuristics
which we have to use whenever the first two approaches fail. These heuristics can
seldomly guarantee convergence but work even if no gradient information is available or
when the problem is discrete.

In addition to these three general classes, we consider two important special cases
of numeric optimization, namely probabilistic optimization and convex programming.
In both cases, we can utilize special properties of the domain at hand to facilitate faster
solutions than would be possible with generic numeric approaches.

2 .1 A N A LY T I C A L M E T H O D S

If we intend to solve an optimization problem analytically, we always follow the same
basic scheme: First, write down the problem in a way that facilitates analytic optimization.
Second, set the gradient to zero and solve for the variables of interest. Third, inspect the
Hessian to ensure that we actually found a local minimum or even an global minimum.
Note that this general scheme always requires that our problem is continuous and that
our objective function and our constraint functions are twice differentiable. However,
there are important differences depending on whether our problem is unconstrained,
equality-constrained, or inequality-constrained. We will now cover these three settings in
turn, providing a detailed recipe for optimization and an example in each case.

2 .1 .1 Unconstrained Optimization

Assume a problem of the form

min
~xPRK

f p~xq

where f is twice-differentiable. Then, we can employ the following recipe for optimiza-
tion.

1. Compute the gradient ∇~x f p~xq.

2. Solve the equation ∇~x f p~xq “~0 for ~x. Let’s call the solution ~x˚.

3. If you already know that f is convex, you are finished, because in this case Theo-
rem 41 implies that the Hessian at every location is positive semi-definite, which
implies that ~x˚ is a local minimum (also refer to Theorem 31), and according to
Theorem 40 every local minimum in a convex problem is a global minimum.

4. If you do not know that f is convex, compute the Hessian ∇2
~x f p~x˚q.

35

algorithms

5. Then compute the eigenvalues of ∇2
~x f p~x˚q.

6. If all eigenvalues are positive, you obtained a local minimum, because then Theo-
rem 35 implies that the Hessian is positive definite and Theorem 31 implies that ~x˚

is a local minimum. If at least one eigenvalue is negative, you did definitely not find
a local minimum and need to find another solution ~x˚ (also refer to Theorem 31).
If no eigenvalue is negative but at least one is zero, you may have found an local
minimum, but you can’t be sure (also refer to Theorem 31).

7. To verify whether your solution is also a global minimum, there are multiple options.
If all eigenvalues of the Hessian are positive independent of ~x˚, then Theorem 41
implies that f is convex in which case ~x˚ is a global minimum according to
Theorem 40. Otherwise, you can inspect all other solutions where the gradient is
zero and all boundaries of the feasible set and compare your objective function
value f p~x˚q against the objective function values in these cases.

Example 64 (Clear global minimum). First, consider the problem

min
x,yPR

y ¨ p3x` 3y´ 9q ` x ¨ p2x´ 7q ` 8

1. We obtain the gradient

∇px,yq f px, yq “
ˆ

3y` 4x´ 7
3x` 6y´ 9

˙

2. Setting the gradient to zero yields:

3y˚ ` 4x˚ ´ 7 “ 0 ðñ 3y˚ “ 7´ 4x˚

ñ3x˚ ` 2 ¨ p7´ 4x˚q ´ 9 “ 0 ðñ ´5x˚ ` 5 “ 0 ðñ x˚ “ 1

Plugging this result into the first equation yields: 3y˚ “ 7´ 4 ðñ y˚ “ 1.

3. We do not yet know whether f is convex.

4. We obtain the Hessian:

∇2
px,yq f px˚, y˚q “

ˆ

4 3
3 6

˙

5. The eigenvalues of the Hessian are λ1 “ 5`
?

10 and λ2 “ 5´
?

10.

6. Both eigenvalues are positive. Therefore, the Hessian is positive definite and
px˚, y˚q “ p1, 1q is a local minimum.

7. Further note that our Hessian is a constant that is independent of our solution
px˚, y˚q. Therefore, f is convex and px˚, y˚q “ p1, 1q is even a global minimum.

Example 65 (Global minimum by convexity). Next, consider the problem

min
x,yPR

px` y´ 1q2

1. We obtain the gradient

∇px,yq f px, yq “
`

2 ¨ px` y´ 1q2 ¨ px` y´ 1q
˘

36

2 .1 analytical methods

2. Setting the gradient to zero yields:

2 ¨ px˚ ` y˚ ´ 1q “ 0 ðñ y˚ “ 1´ x˚

So we have infinitely many solutions px˚, y˚q.

3. We do not yet know whether f is convex.

4. We obtain the Hessian:

∇2
px,yq f px˚, y˚q “

ˆ

2 2
2 2

˙

5. The eigenvalues of the Hessian are λ1 “ 4 and λ2 “ 0.

6. One eigenvalue is positive and one is zero, therefore our Hessian is positive semi-
definite but not positive definite and we do not know yet whether we have obtained
a local minimum

7. However, note that our Hessian is a constant that is independent of our solution
px˚, y˚q. Therefore, f is convex and every solution px˚, y˚q with y˚ “ 1´ x˚ is a
global minimum.

Example 66 (Local, but not global minimum). Finally, consider the problem

min
xPR

x` p1´ xq3

1. We obtain the gradient
∇x f pxq “ 1´ 3 ¨ p1´ xq2

2. Setting the gradient to zero yields:

1´ 3 ¨ p1´ x˚q2 “ 0 ðñ x˚1 “ 1`
1
?

3
_ x˚2 “ 1´

1
?

3

So we have two solutions for x˚.

3. We do not yet know whether f is convex.

4. We obtain the Hessian:
∇2

x f px˚q “ 6 ¨ p1´ x˚q

5. The eigenvalue of the Hessian for the first solution x˚1 “ 1` 1?
3

is 6 ¨ p1´ 1´ 1?
3
q “

´ 6?
3
ă 0. The eigenvalue of the Hessian for the second solution x˚2 “ 1´ 1?

3
is

6 ¨ p1´ 1` 1?
3
q “ 6?

3
ą 0.

6. Our first solution is not a local minimum, but our second solution is, because the
single eigenvalue is positive.

7. Our Hessian is not a constant. Therefore, we have to inspect the objective function
values at the boundaries and compare them with our solution. For our solution we
obtain f px˚2 q “ 1´ 1?

3
` 1
p
?

3q3
. Unfortunately, for any x ą 1` 2?

3
we obtain smaller

objective function values. So we found a local minimum but not a global minimum,
which instead lies at 8.

37

algorithms

2 .1 .2 Equality-Constrained Optimization

Assume a problem of the form:

min
~xPRK

f p~xq

s.t. hjp~xq “ 0 @j P t1, . . . , nu

where f and all hj are twice differentiable. Then, you can apply the following recipe.

1. Try to solve the equality constraints for as many variables xk as possible. Then,
remove these variables and equality constraints from the optimization problem.
If all equality constraints can be removed in this way, your optimization problem
becomes unconstrained and you can continue with the recipe for unconstrained
optimization. Otherwise, continue here.

2. For the remaining problem, construct the Lagrange dual:

sup
~µPRn

inf
~xPRk

Lp~x,~µq where

Lp~x,~µq “ f p~xq ´
n
ÿ

j“1

µj ¨ hjp~xq

Note that this problem is unconstrained.

3. Compute the gradient ∇~xLp~x,~µq.

4. Solve the equation ∇~xLp~x,~µq “~0 for ~x. Let’s call the solution ~x˚.

5. Consider the equations hjp~x˚q “ 0 for all j P t1, . . . , mu and solve for µ1, . . . , µm.
Let’s call the solution ~µ˚.

6. Plug ~µ˚ in your solution ~x˚.

7. If you know that your problem fulfills Slater’s condition, then you are finished
because then Theorem 57 implies that~x˚ is a global minimum of the primal problem.
If you do not yet know whether your problem fulfills Slater’s condition, check
whether all your equality constraints functions are affine and whether your objective
function is convex. If that is the case, Slater’s condition is fulfilled. Otherwise, it is
not.

8. Otherwise, compute the Hessian ∇2
~xLp~x˚,~µ˚q.

9. Compute the eigenvalues of ∇2
~xLp~x˚,~µ˚q.

10. If all eigenvalues are positive, then Theorem 41 implies that the Hessian is positive
definite and Theorem 57 implies that ~x˚ is a local minimum of the primal problem
- under the assumption of strict duality. In other cases you cannot be sure whether
you found a local minimum. You can, however, try to consider only vectors which
are orthogonal to the active constraint gradient directions and prove positive
definiteness of the Hessian for those, which is also a sufficient condition.

38

2 .1 analytical methods

11. To verify whether your solution is also a global minimum, you need to consider all
other possible solutions of your dual as well as infinity boundaries and compare
the objective function value f p~x˚q against the objective function values in these
cases.

12. Recover your full solution ~x˚ by plugging your solution for the reduced problem
into the equality constraints that you used to reduce the problem in the beginning.

Remark 67 (Usefulness of Slater’s condition). In analytical equality-constrained opti-
mization, Slater’s condition is highly useful, because it is relatively easy to prove and
frees you from steps 8-12 in the recipe above. So it is highly recommended to check
Slater’s condition first.

Example 68 (Solution by problem reduction). First, consider the problem

min
x,yPR

x2 `
1
2

y2

s.t. x` y “ 1

1. We can solve the equality constraint x` y “ 1 for y via y “ 1´ x. Accordingly, we
obtain the following alternative problem:

min
xPR

x2 `
1
2
p1´ xq2

Note that this problem is unconstrained. Therefore, we can continue with the recipe
for unconstrained optimization.

a) We obtain the gradient

∇xx2 `
1
2
p1´ xq2 “ 2x´ p1´ xq “ 3x´ 1

b) By setting the gradient to zero we obtain

3x˚ ´ 1 “ 0 ðñ x˚ “
1
3

c) We do not yet know whether our objective function is convex.

d) We obtain the Hessian

∇2
xx2 `

1
2
p1´ xq2 “ 3

e) The single eigenvalue is 3.

f) This eigenvalue is positive, therefore x˚ “ 1
3 is a local minimum.

g) Our Hessian is a positive definite constant, therefore f is convex and x˚ “ 1
3 is

a global minimum.

2. Via our equality constraint we recover y˚ “ 1´ x˚ “ 2
3 , implying that px˚, y˚q “

p 1
3 , 2

3q is a global minimum of the original problem.

39

algorithms

Example 69 (Quadratic Programming / Solution by Lagrange Dual). Consider a general,
linearly inequality-constrained quadratic program of the following form:

min
~xPRK

1
2
~xT ¨ P ¨~x`~qT ¨~x

s.t. A ¨~x “~b

where P is a symmetric and positive definite Kˆ K matrix, where ~q is a K-dimensional
vector, where A is a nˆ K matrix, and where~b is a n-dimensional vector.

1. Because A is generally not invertible, we can not solve for ~x. So we leave the
problem as is.

2. We obtain the following Lagrange dual.

sup
~µPRn

inf
~xPRK

Lp~x,~µq where

Lp~x,~µq “~xT ¨ P ¨~x`~qT ¨~x´~µT ¨ pA ¨~x´~bq

3. We obtain the following gradient of the Lagrangian:

∇~xLp~x,~µq “ P ¨~x`~q´ AT ¨~µ

4. By setting the gradient to zero, we obtain the following solution ~x˚:

∇~xLp~x,~µq “~0 ðñ P ¨~x “ AT ¨~µ´~q ðñ ~x “ P´1 ¨
`

AT ¨~µ´~q
˘

Note that the last step is valid because P is positive definite and therefore invertible.

5. By plugging this result into our equality constraints we obtain the following result
for ~µ˚:

A ¨ P´1 ¨
`

AT ¨~µ´~q
˘

“~b

ðñ A ¨ P´1 ¨ AT ¨~µ “~b` A ¨ P´1 ¨~q

ðñ ~µ “
`

A ¨ P´1 ¨ AT˘´1
¨
`

~b` A ¨ P´1 ¨~q
˘

Note that A ¨ P´1 ¨ AT is a symmetric square matrix which is either full rank or
can be made full-rank by removing redundant equality constraints. Therefore, this
matrix is invertible and the last step is valid.

6. By plugging this result into our solution ~x˚ we obtain:

~x˚ “ P´1 ¨

´

AT ¨
`

A ¨ P´1 ¨ AT˘´1
¨
`

~b` A ¨ P´1 ¨~q
˘

´~q
¯

7. We do not know yet if our problem fulfills Slater’s condition. But we notice that
all our equality constraints functions are affine. Further, we obtain the following
Hessian of our objective function:

∇2
~x f p~xq “ P

This is a positive definite constant. Therefore, our objective function is convex and
Slater’s condition is fulfilled. This further implies that ~x˚ is a global minimum.

40

2 .1 analytical methods

2 .1 .3 Inequality-Constrained Optimization

Assume a problem of the form:

min
~xPRK

f p~xq

s.t. gip~xq ě 0 @i P t1, . . . , mu
hjp~xq “ 0 @j P t1, . . . , nu

where f , all gi, and all hj are twice differentiable.
These problems are not generally feasible for analytic optimization. It is only possible

to ’trick’ by a simple observation: Either, inequality constraints are exactly fulfilled, in
which case they actually play the role of equality constraints, or they are strictly fulfilled,
in which case we can ignore them. Therefore, the trick to solve an inequality-constrained
problem analytically is to guess which constraints are ’relevant’ and to incorporate those
as equality constraints. Then, you can use the recipe above for this alternative problem.

Example 70 (Tin Can Solution). Consider the tin-can optimization problem from Exam-
ple 3.

min
pr,hqPR2

2π ¨ r ¨ h` 2π ¨ r2

s.t. π ¨ r2 ¨ h ě 1500
r ě 0
h ě 0

If we would ignore all of our inequality constraints, we could, for example, set
r “ 1 and h Ñ ´8 and achieve an arbitrarily good objective function value. However,
this would violate both our first and third inequality constraint. Therefore, we need to
incorporate at least one of those. Note, however, that if the first constraint is fulfilled, this
implies that the third constraint is also fulfilled, because π ¨ r2 is positive and if h ă 0
than π ¨ r2 ¨ h ă 0 ă 1500. Therefore, our guess is that we can ignore the second and third
constraint, but not the first. We obtain the following alternative problem:

min
pr,hqPR2

2π ¨ r ¨ h` 2π ¨ r2

s.t. π ¨ r2 ¨ h “ 1500

Now, we can employ equality-constrained optimization

1. We first note that we can solve our equality constraint for h, i.e.:

π ¨ r2 ¨ h “ 1500 ðñ h “
1500
π ¨ r2

Therefore, we obtain the reduced problem:

min
rPR

2π ¨ r ¨
1500
π ¨ r2 ` 2π ¨ r2 “

3000
r
` 2π ¨ r2

which is unconstrained. Therefore, we can continue with unconstrained optimiza-
tion.

41

algorithms

a) We obtain the gradient:

∇r
3000

r
` 2π ¨ r2 “ ´

3000
r2 ` 4πr

b) By setting the gradient to zero we obtain:

´
3000
pr˚q2

` 4πr˚ “ 0 ðñ 4πpr˚q3 “ 3000 ðñ r˚ “
3
c

750
π

c) We do not yet know whether f is convex.

d) We obtain the Hessian:

∇2
r

3000
r˚

` 2π ¨ pr˚q2 “
6000
pr˚q3

` 4π “ 8π` 4π “ 12π

e) The single eigenvalue 12π is positive. Therefore, r˚ is a local minimum.

f) To verify that we also obtained a global minimum, we need to inspect the
boundary cases. For r Ñ 0 we obtain:

lim
rÑ0

f prq “ lim
rÑ0

3000
r
` 2π ¨ r2 “ 8` 0

And for r Ñ8 we obtain:

lim
rÑ8

f prq “ lim
rÑ8

3000
r
` 2π ¨ r2 “ 0`8

In both cases, our objective function goes to infinity, which means that we did
indeed obtain a global minimum.

2. We recover

h˚ “
1500
π ¨ r2 “

1500
π

¨
3
c

π2

7502 “
3
c

6000
π

42

2 .2 numeric methods

2 .2 N U M E R I C M E T H O D S

In this section we cover numeric methods, by which we mean algorithms which can
be executed by a computer to find a point ~x˚ P X ˚ that is arbitrarily close to a local
minimum of the problem. We first consider methods for unconstrained optimization
and then continue to constrained optimization. Note that all methods in this section still
assume that we have a continuous optimization problem with differentiable, ideally even
convex objective function and constraint functions.

2 .2 .1 Unconstrained Optimization

In this section, we consider optimization problems of the form

min
~xPRK

f p~xq

where f is twice-differentiable.
The basic scheme of unconstrained numeric optimization is to start from some initial

point ~x0 P RK, then select some direction ~p1 P RK such that the objective function gets
smaller in that direction, then select some α1 P R` (the step size) and set ~x1 Ð ~x0` α1 ¨~p1.
This scheme is iterated until some stopping criterion is fulfilled, for example if the
objective function drops below a certain value or if the norm of the gradient gets small.

Gradient Descent

Gradient descent is the most basic version of the iterative optimization scheme sketched
above. We always select the negative gradient as our search direction, use a constant step
size α, and stop optimization as soon as the norm of our gradient drops below a threshold
ε ą 0. The algorithm is displayed in Algorithm 1.

Algorithm 1 Gradient descent for the objective function f : RK Ñ R, a starting value
~x0 P RK, a step size α ą 0, and a gradient threshold ε ą 0.

1: function gradient descent(objective function f : RK Ñ R, starting value ~x0 P

RK, step size α ą 0, threshold ε ą 0)
2: t Ð 0.
3: while ‖∇~x f p~xtq‖ ą ε do
4: ~xt`1 Ð ~xt ´ α ¨∇~x f p~xtq.
5: t Ð t` 1.
6: end while
7: return ~xt.
8: end function

This makes intuitive sense: The gradient tells us in which direction the objective
function increases the most, so the negative gradient tells us in which direction it decreases
the most. Further, if our gradient gets small then we are close either to a local minimum
or to a saddle point. If our problem is convex, we don’t even have saddle points, so
we are guaranteed to find a local minimum, which is in turn guaranteed to be a global
minimum. The worst thing that could happen is that we always ’jump over’ the actual
local minimum because our step size is too large. So we need to set our step size small
enough.

43

algorithms

0.4 0.6 0.8 1 1.2

´0.4

´0.2

0

0.2

0.4

x0

x1

x2

Figure 2.1: An illustration of gradient descent on the function f pxq “ x4 ´ x2 ` 1
4 x, starting at

position x0 “ 1 with step size α “ 0.1. The arrows indicate the direction vector, i.e. ´α ¨∇x f pxtq.

This intuitive explanation is good enough for all practical intents and purposes.
However, if we look deeper, we can also justify gradient descent from a theoretical point
of view. In particular, we can ask ourselves: What is the best next point ~xt`1 we could
go if we wish to reduce the first-order Taylor approximation of our objective function
around our current point ~xt the most? Recall that the first-order Taylor approximation of
our objective function around ~xt is given as follows.

f̃ 1
~xt
p~xt`1q “ f p~xtq ` p~xt`1 ´~xtq

T
¨∇~x f p~xtq

So minimizing this approximation corresponds to the following optimization problem.

min
~xt`1PRK

f p~xtq ` p~xt`1 ´~xtq
T
¨∇~x f p~xtq

The issue with this optimization problem is that it is unbounded (as long as ∇~x f p~xtq ‰~0).
To see this, imagine that we set ~xt`1 “ ~xt ´ α ¨∇~x f p~xtq. Our optimization problem then
reduces to:

min
αPR

f p~xtq ´ α ¨∇~x f p~xtq
T
¨∇~x f p~xtq

Note that ∇~x f p~xtq
T
¨∇~x f p~xtq ą 0 if ∇~x f p~xtq ‰ ~0. Therefore, we can achieve arbitrarily

low values by increasing α.
However, it is very unlikely that our first-order Taylor approximation is accurate if

we are far away from ~xt. Instead, we should stay reasonably close to ~xt to ensure that
our approximation is still valid. One way to ensure closeness is to punish the squared
distance between ~xt`1 and ~xt, i.e. ‖~xt`1 ´~xt‖2. Accordingly, we obtain the alternative
optimization problem

min
~xt`1PRK

f p~xtq ` p~xt`1 ´~xtq
T
¨∇~x f p~xtq `

1
2α
¨ ‖~xt`1 ´~xt‖2

where α ą 0 is a constant that regulates how much we wish to punish going away from
~xt. If α is small we nudge our solution to stay very close to ~xt, and if α is large we permit
~xt`1 to stray far away. So α can also be viewed as the trust we put in our first-order Taylor
approximation or how daring we are in our approximation.

44

2 .2 numeric methods

Now, let us solve this problem analytically. We first compute the gradient

∇~xt`1 f p~xtq ` p~xt`1 ´~xtq
T
¨∇~x f p~xtq `

1
2α
¨ ‖~xt`1 ´~xt‖2 “ ∇~x f p~xtq `

1
α
¨ p~xt`1 ´~xtq

By setting the gradient to zero we obtain:

∇~x f p~xtq `
1
α
¨ p~xt`1 ´~xtq “~0 ðñ ~xt`1 “ ~xt ´ α ¨∇~x f p~xtq

Note that this is exactly our step formula for gradient descent as seen in Algorithm 1,
line 4. Also note that α is exactly the step size.

Just to be sure, let us also check the Hessian:

∇2
~xt`1

f p~xtq ` p~xt`1 ´~xtq
T
¨∇~x f p~xtq `

1
2α
¨ ‖~xt`1 ´~xt‖2 “

1
α
¨ IK

So our Hessian is the Kˆ K-dimensional identity matrix, multiplied with 1
α . The eigen-

values of this matrix are all 1
α ą 0. Because this is a constant, our problem is convex and

our solution in Algorithm 1, line 4, is indeed a global minimum.
It is also possible to show that gradient descent is guaranteed to converge if we start

off close enough to a local minimum such that the second-order Taylor approximation is
accurate and if α is small enough. However, we will omit this proof here for reasons of
space.

Stochastic Gradient Descent / Adam

In cases where the objective function and its gradient are very expensive to compute, it
may be helpful to not compute the gradient on the entire objective function but only over
a subset of the data. More precisely, assume we can write the objective function as a sum,
i.e.

f p~xq “
L
ÿ

l“1

flp~xq

where fl are functions fl : RK Ñ R for all l P t1, . . . , Lu. Then, we can also write the
gradient as a sum, i.e.

∇~x f p~xq “
L
ÿ

l“1

∇~x flp~xq.

Accordingly, we can perform gradient descent by choosing, in each iteration, an l P
t1, . . . , Lu randomly and performing a gradient step of the form ~xt`1 Ð ~xt ´ α ¨∇~x flp~xq.
This is then called stochastic gradient descent.

A typical application example for stochastic gradient descent is machine learning,
especially deep learning, i.e. optimizing the parameters of large artificial neural networks.
In these cases, the objective function is a sum over a large number of data points.
Computing the gradient over the entire data set would be costly. Therefore, we choose only
a single data point, compute the gradient for this data point, and adjust the parameters
right away. As long as we choose the data uniformly at random and optimize long
enough, it can be shown that the resulting local minimum is very likely the same as
with regular gradient descent. However, even if this local minimum is found, stochastic
gradient will not converge because a local minimum for the entire objective function is
not necessarily a local minimum for every element of the sum. Therefore, our variable
values will fluctuate around the local minimum.

45

algorithms

To prevent such fluctuations and to make the approach more numerically robust,
we can choose a small set of the data instead of a single data point. This is then called
mini-batch gradient descent, as shown in Algorithm 2.

Algorithm 2 Minibatch gradient descent for the objective function f “
řL

l“1 fl , a starting
value ~x0 P RK, a step size α ą 0, a gradient threshold ε ą 0, and a minibatch size R P N.

1: function minibatch gradient descent(objective function f : RK Ñ R with
f p~xq “

řL
l“1 flp~xq, starting value ~x0 P RK, step size α ą 0, threshold ε ą 0, minibatch

size R P N)
2: t Ð 0.
3: while true do
4: Select tl1, . . . , lRu Ă t1, . . . , Lu at random.
5: ~pt`1 Ð ´ 1

R
řR

r“1∇~x flrp~xtq.
6: if ‖~pt`1‖ ă ε then
7: return ~xt.
8: end if
9: ~xt`1 Ð ~xt ` α ¨~pt`1.

10: t Ð t` 1.
11: end while
12: end function

In recent years, more advanced versions of the basic minibatch gradient descent
scheme have emerged to make deep learning more efficient. One of the most prominent
variations is adaptive moment estimation (Adam) (Kingma and Ba 2015), which makes two
key changes. First, it introduces a momentum term which ensures that our variables tend
to move into a consistent direction. Second, it adapts the step size such that the absolute
change for every parameter in each iteration is the same. The algorithm is shown in
Algorithm 3.

Optimizing the Step Size

A weak point in standard gradient descent is that the step size α is a hyper-parameter
which we have to choose. Ideally, we would like to choose an optimal α automatically, i.e.
given a search direction ~pt we wish to solve the optimization problem

min
αą0

f p~xt ` α ¨~ptq. (2.1)

Since this is a one-dimensional optimization problem (optimization along a line), solving
this problem is also called line search. Combining line search with gradient descent results
in the steepest descent method (refer to Algorithm 4).

The key question is how to solve Problem 2.1 efficiently. If f is convex, this is relatively
easy: We first consider the gradient of our objective function with respect to α:

B

Bα
f p~xt ` α ¨~ptq “ ∇xt f p~xt ` α ¨~ptq

T
¨~pt

Then, we increase α until the gradient becomes positive and then perform a binary search
until our gradient vanishes. This works because if our gradient is negative initially and
becomes positive at some point, it must cross zero somewhere in between. Also refer to
Algorithm 5.

46

2 .2 numeric methods

Algorithm 3 Adaptive moment estimation (Adam) for the objective function f “
řL

l“1 fl ,
a starting value ~x0 P RK, a step size α ą 0, a gradient threshold ε ą 0, memory parameters
β1, β2 P r0, 1q, and a minibatch size R P N.

1: function adam(objective function f : RK Ñ R with f p~xq “
řL

l“1 flp~xq, starting
value ~x0 P RK, step size α ą 0, threshold ε ą 0, memory parameters β1, β2 P r0, 1q,
minibatch size R P N)

2: t Ð 0. ~pt Ð~0.~σt Ð~0.
3: while true do
4: Select tl1, . . . , lRu Ă t1, . . . , Lu at random.
5: ~gt`1 Ð

1
R
řR

r“1∇~x flrp~xtq.
6: if ‖~gt`1‖ ă ε then
7: return ~xt.
8: end if
9: ~pt`1 Ð β1 ¨~pt ` p1´ β1q ¨ p´~gt`1q.

10: αt Ð α ¨
a

1´ pβ2qt{p1´ pβ1q
tq.

11: for k P t1, . . . , Ku do
12: σ2

t`1,k Ð β2 ¨ σ
2
t,k ` p1´ β2q ¨ g2

t`1,k.
13: xt`1,k Ð xt,k `

αt
σt`1,k

¨ pt`1,k.
14: end for
15: t Ð t` 1.
16: end while
17: end function

Algorithm 4 Steepest descent for the objective function f : RK Ñ R, a starting value
~x0 P RK, and a gradient threshold ε ą 0.

1: function steepest descent(objective function f : RK Ñ R, starting value ~x0 P RK,
threshold ε ą 0)

2: t Ð 0.
3: while ‖∇~x f p~xtq‖ ą ε do
4: ~pt`1 Ð ´∇~x f p~xtq{‖∇~x f p~xtq‖.
5: αt`1 Ð argminαą0 f p~xt ` α ¨~pt`1q.
6: ~xt`1 Ð ~xt ` αt`1 ¨~pt`1.
7: t Ð t` 1.
8: end while
9: return ~xt.

10: end function

47

algorithms

Algorithm 5 A binary search algorithm to realize a line search for for the objective
function f : RK Ñ R, a current value ~xt P RK, a search direction ~pt P RK, and a gradient
threshold ε ą 0.

1: function binary line search(objective function f : RK Ñ R, current point
~xt P RK, search direction ~pt P RK, threshold ε ą 0)

2: lo Ð 0.
3: hi Ð 1.
4: while ∇xt f p~xt ` hi ¨~ptq

T
¨~pt ă 0 do

5: lo Ð hi.
6: hi Ð hi ¨ 2.
7: end while
8: α Ð lo`hi

2 .
9: while ‖∇xt f p~xt ` α ¨~ptq

T
¨~pt‖ ą ε do

10: if ∇xt f p~xt ` α ¨~ptq
T
¨~pt ă 0 then

11: lo Ð α.
12: else
13: hi Ð α.
14: end if
15: α Ð lo`hi

2 .
16: end while
17: return α.
18: end function

In practice, however, such a binary search scheme is not used for multiple reasons.
First, because convexity is not always given, and second, because it still requires a lot of
gradient evaluations which may be expensive. Therefore, most approaches settle for a
step size that is “good enough”, where “good enough” is defined by the so-called Wolfe
conditions.

0.4 0.6 0.8 1 1.2

´0.4

´0.2

0

0.2

0.4

wolfe condition 2.2

w
ol

fe
co

nd
it

io
n

2.
3

x0

Figure 2.2: An illustration of the p0.3, 0.5q-Wolfe conditions when going from x0 “ 1 into direction
~p “ ´∇x f p1q “ ´2.25 on f pxq “ x4 ´ x2 ` 1

4 x. The purple striped region indicates where the
first Wolfe condition 2.2 is fulfilled and the red dashed region indicates where the second Wolfe
condition 2.3 is fulfilled.

48

2 .2 numeric methods

Definition 71 (Wolfe conditions). Let f be a differentiable function f : RK Ñ R, let
~xt P RK be some vector, let ~p P RK be another vector with ~pT ¨∇~x f p~xtq ă 0, which we call
direction, let c1, c2 P R be some constants with 0 ă c1 ă c2 ă 1, and let α P R with α ą 0.
We say that α conforms to the pc1, c2q-Wolfe conditions when going from ~xt into direction
~p on f if and only if:

f p~xt ` α ¨~pq ď f p~xtq ` c1 ¨ α ¨~pT ¨∇~x f p~xtq (2.2)

∇~x f p~xt ` α ¨~pqT ¨~p ě c2 ¨∇~x f p~xtq
T
¨~p (2.3)

Remark 72 (Interpretation of the Wolfe conditions). The first Wolfe condition 2.2 com-
pares the actual objective function value at position ~xt ` α ¨ ~p with the value of the
first-order Taylor approximation, where the slope of the approximation is multiplied by
c1. In other words, our first Wolfe condition is that our objective function value should
decrease at least as much as the first-order Taylor approximation would predict, relaxed
by a factor c1. This relaxation is necessary because, for (locally) convex functions, the
actual objective function value is always higher than the value predicted by the first-order
Taylor approximation (refer to Theorem 41), such that we would never be able to fulfill
this criterion without relaxation.

The second Wolfe condition 2.3 is related to the gradient of f with respect to α. In
particular, we can define the function g : R Ñ R with gpαq :“ f p~xt ` α ¨ ~pq with the
derivative

B

Bα
gpαq “ ∇~x f p~xt ` α ¨~pqT ¨

B

Bα
¨ p~xt ` α ¨~pq “ ∇~x f p~xt ` α ¨~pqT ¨~p

This yields the special case B
Bα gp0q “ ∇~x f p~xtq

T
¨~p. Accordingly, the second Wolfe condi-

tion 2.3 requires that our gradient should shrink by a factor of at least c2. Note that we
use ě because the right-hand side of condition 2.3 is guaranteed to be negative due to
~pT ¨∇~x f p~xtq ă 0 and c2 ą 0.

The Wolfe conditions are illustrated in Figure 2.2 for an example function.

Conjugate Gradient

A problem remaining with steepest descent is its convergence speed. If we are unlucky,
subsequent gradient directions may be highly correlated and only very small steps occur.
The idea of the conjugate gradient method is to use search directions which are, in some
sense, orthogonal to each other such that we discover directions in which improvement
is still possible.

The exact derivation of the conjugate gradient method is based on solving linear
equation systems, which confuses more than it helps. For the purpose of this document,
we simply define two direction vectors ~pt`1 P RK and ~pt P RK as conjugate with respect
to function f : RK Ñ R and position ~xt if it holds:

~pT
t`1 ¨∇2

~x f p~xtq ¨~pt “ 0. (2.4)

An unfortunate property of Definition 2.4 is that it relies on the Hessian of f , which is
quadratic in K. To approximate Equation 2.4, we can instead define the search direction
in step t` 1 as ~pt`1 :“ ´∇~x f p~xtq ` βt`1 ¨~pt with a correction factor βt`1 that is computed
via one of the following equations.

βt`1 “
∇~x f p~xtq

T
¨∇~x f p~xtq

∇~x f p~xt´1q
T
¨∇~x f p~xt´1q

(Fletcher-Reeves)

49

algorithms

βt`1 “
∇~x f p~xtq

T
¨
`

∇~x f p~xtq ´∇~x f p~xt´1q
˘

∇~x f p~xt´1q
T
¨∇~x f p~xt´1q

(Polak-Ribière)

βt`1 “
∇~x f p~xtq

T
¨
`

∇~x f p~xtq ´∇~x f p~xt´1q
˘

~pT
t ¨

`

∇~x f p~xtq ´∇~x f p~xt´1q
˘ (Hestenes-Stiefel)

The resulting conjugate gradient algorithm is shown in Algorithm 6. Figure 2.3
illustrates how gradient descent, steepest descent, and conjugate gradient compare in
minimizing a benchmark objective function.

Algorithm 6 The conjugate gradient method for the objective function f : RK Ñ R, a
starting value ~x0 P RK, and a gradient threshold ε ą 0.

1: function conjugate gradient(objective function f : RK Ñ R, starting value
~x0 P RK, threshold ε ą 0)

2: ~p1 Ð ´∇~x f p~x0q.
3: α1 Ð argminαą0 f p~x0 ` α ¨~p1q.
4: ~x1 Ð ~x0 ` α1 ¨~p1.
5: t Ð 1.
6: while ‖∇~x f p~xtq‖ ą ε do
7: Compute βt`1 according to Fletcher-Reeves, Polak-Ribière, or Hestenes-Stiefel.
8: ~pt`1 Ð ´∇~x f p~xtq ` βt`1 ¨~pt.
9: αt`1 Ð argminαą0 f p~xt ` α ¨~pt`1q.

10: ~xt`1 Ð ~xt ` αt`1 ¨~pt`1.
11: t Ð t` 1.
12: end while
13: return ~xt.
14: end function

Newton’s Method

The previous methods have in common that they rely on the first-order Taylor approxi-
mation, which is also why they are called first-order methods. However, we could also
try to use the second-order Taylor approximation as basis for our optimization algorithm.
Indeed, repeating the same derivation as for gradient descent with the second-order
Taylor approximation yields Newton’s method, as we will see now.

Assume we wish to minimize the objective function f : RK Ñ R, using the second-
order Taylor approximation around point ~xt P RK. As before, we need to ensure that we
stay close to ~xt to ensure that our approximation remains valid1. Therefore, we consider
the optimization problem

min
~xt`1PRk

f̃ 2
~xt
p~xt`1q `

1
2α
‖~xt`1 ´~xt‖2

where f̃ 2
~xt
p~xt`1q is given as in Equation 1.26, i.e.

min
~xt`1PRk

f p~xtq`p~xt`1 ´~xtq
T
¨∇~x f p~xtq`

1
2
p~xt`1 ´~xtq

T
¨∇2

~x f p~xtq ¨ p~xt`1´~xtq`
1

2α
‖~xt`1´~xt‖2

(2.5)

1 Note that this argument is usually not given in derivations for Newton’s method. The “classic” version of
Newton’s method can be recovered by setting α to a very large value.

50

2 .2 numeric methods

´2 ´1 0 1 2

´1

0

1

2

3

0

2,000

x

y

gradient descent
steepest descent
conjugate gradient
BFGS

Figure 2.3: A comparison of 20 iterations of gradient descent, steepest descent, conjugate gradient,
and BFGS on Rosenbrock’s function f px, yq “ p 3

2 ´ xq2 ` 100 ¨ py ´ x2q2, starting from ~x0 “

p´ 1
2 , 2q and using the binary line search algorithm 5. Gradient descent achieves an objective

value f px˚, y˚q « 7.22, steepest descent achieves f px˚, y˚q « 6.01, conjugate gradient achieves
f px˚, y˚q « 0.17, and BFGS achieves f px˚, y˚q « 0.06.

To solve this problem, we first consider the gradient.

∇~xt`1 f̃ 2
~xt
p~xt`1q `

1
2α
‖~xt`1 ´~xt‖2 “ ∇~x f p~xtq `∇2

~x f p~xtq ¨ p~xt`1 ´~xtq `
1
α
¨ p~xt`1 ´~xtq

By setting the gradient to zero we obtain:

∇~x f p~xtq `∇2
~x f p~xtq ¨ p~x˚t`1 ´~xtq `

1
α
¨ p~x˚t`1 ´~xtq “ 0

`

∇2
~x f p~xtq `

1
α
¨ IK˘ ¨ p~x˚t`1 ´~xtq “ ´∇~x f p~xtq

~x˚t`1 “ ~xt ´
`

∇2
~x f p~xtq `

1
α
¨ IK˘´1

¨∇~x f p~xtq

Now, consider the Hessian of our problem.

∇2
~xt`1

f̃ 2
~xt
p~xt`1q `

1
2α
‖~xt`1 ´~xt‖2 “ ∇2

~x f p~xtq `
1
α
¨ IK

Note that the matrix 1
α ¨ IK is definitely positive definite because all eigenvalues are 1

α ą 0.
The eigenvalues of our matrix sum are exactly the eigenvalues of ∇2

~x f p~xtq plus the term
1
α . Therefore, we obtain a local minimum of the second-order Taylor approximation if all
eigenvalues of the objective function Hessian ∇2

~x f p~xtq are above ´ 1
α .

Also note that we can ensure convexity of the second-order Taylor approximation by
setting α small enough, because this will ensure overall positive eigenvalues. So for small
enough α, ~x˚t`1 is indeed a global minimum of the second-order Taylor approximation.

51

algorithms

Beyond the issues of convexity and numerical stability, though, we can set α pretty
much arbitrary, which means that we do not require a step width optimization for
Newton’s method.

The final version of Newton’s method is shown in Algorithm 7.

Algorithm 7 Newton’s method for the objective function f : RK Ñ R, a starting value
~x0 P RK, a regularization constant α ą 0, and a gradient threshold ε ą 0.

1: function newton(objective function f : RK Ñ R, starting value ~x0 P RK, regulariza-
tion α ą 0, threshold ε ą 0)

2: t Ð 0.
3: while ‖∇~x f p~xtq‖ ą ε do
4: ~xt`1 Ð ~xt ´

`

∇2
~x f p~xtq `

1
α ¨ IK

˘´1
¨∇~x f p~xtq.

5: t Ð t` 1.
6: end while
7: return ~xt.
8: end function

(L-)BFGS

A key advantage compared to first-order methods is that Newton’s method typically
requires far less iterations to arrive at a local minimum because the second-order Taylor
approximation captures the local behavior better. Unfortunately, though, the Newton’s
method requires us to compute the inverse of the Hessian matrix which takes OpK3q

operations, such that the method becomes practically unusable if we have many variables.
To alleviate this problem and still exploit second-order information, so-called quasi-
Newton methods have emerged which approximate the inverse of the Hessian using
gradient information, the best-known of which is the Broyden-Fletcher-Goldfarb-Shanno
algorithm (BFGS).

The derivation for BFGS is, unfortunately, quite involved. We do show it here in full
for interested readers, though. The derivation has two parts. First, we obtain a recursive
update formula for an approximation of the Hessian. Second, we use this update formula
and the matrix inversion Lemma to achieve instead an update formula for the inverse of
the Hessian.

Our starting point is that we wish to find a matrix Ht at iteration t which is not the
Hessian but is “Hessian-like”. One way to formalize “Hessian-likeness” is the secant-
equation which states that the Hessian is precisely the matrix that maps differences
between the inputs of a function to differences between the gradient at those points, i.e.:

Ht ¨ p~xt ´~xt´1q “ ∇~x f p~xtq ´∇~x f p~xt´1q (2.6)

To make our notation a bit less cluttered, let’s define ~∆t :“ ~xt ´~xt´1 and ~δt :“ ∇~x f p~xtq ´

∇~x f p~xt´1q, such that we can re-write Equation 2.6 as Ht ¨~∆t “ ~δt.
Next, we apply a clever trick impose a pre-defined form on our update formula. In

particular, we would like to obtain an update of the following shape.

Ht “ Ht´1 ` α ¨~δt ¨~δ
T
t ` β ¨ Ht´1 ¨~∆t ¨~∆T

t ¨ Ht´1
T (2.7)

for some numbers α, β P R. Now, we can plug in our update formula 2.7 into Equation 2.6.
´

Ht´1 ` α ¨~δt ¨~δ
T
t ` β ¨ Ht´1 ¨~∆t ¨~∆T

t ¨ Ht´1
T
¯

¨~∆t “ ~δt

52

2 .2 numeric methods

ðñ ~δt ¨
`

α ¨~δT
t ¨

~∆t
˘

` Ht´1 ¨~∆t ¨
`

1` β ¨~∆T
t ¨ Ht´1

T ¨~∆t
˘

“ ~δt

By inspecting this equation we see that one solution could be obtained if α ¨~δT
t ¨

~∆t “ 1
and 1` β ¨~∆T

t ¨ Ht´1
T ¨~∆t “ 0. We can use these two equations to solve for α and β:

α ¨~δT
t ¨

~∆t “ 1 ðñ α “
1

~δT
t ¨

~∆t

1` β ¨~∆T
t ¨ Ht´1

T ¨~∆t “ 0 ðñ β “ ´
1

~∆T
t ¨ Ht´1

T ¨~∆t

By plugging these results into Equation 2.7 we obtain:

Ht “ Ht´1 `
~δt ¨~δT

t
~δT

t ¨
~∆t
´

Ht´1 ¨~∆t ¨~∆T
t ¨ Ht´1

T

~∆T
t ¨ Ht´1

T ¨~∆t

So we now have an iterative update formula for an approximation of the Hessian
using only gradient information. So far, so good. However, this does not yet solve our
time efficiency problem because we still would need to invert Ht in each time step, which
would take cubic time. Fortunately, though, because we have our update formula, we
can express the inverse of Ht in a more efficient way using the Woodbury matrix identity,
also called the matrix inversion lemma.

In particular, the Woodbury matrix identity states that for any four matrices A P RKˆK,
U P RKˆn, C P Rnˆn, and V P RnˆK it holds:

pA`U ¨C ¨Vq´1 “ A´1 ´ A´1 ¨U ¨
`

C´1 `V ¨ A´1 ¨U
˘´1

¨V ¨ A´1

We can re-write the right-hand-side of our update formula 2.7 in terms of the left-hand
side of the Woodbury matrix identity by setting:

A “ Ht´1, U “

´

Ht´1 ¨~∆t ~δt

¯

, C “
ˆ

β 0
0 α

˙

, and V “

˜

~∆T
t ¨ Ht´1

T

~δt

¸

,

which yields:

A`U ¨C ¨V “ Ht´1 `

´

Ht´1 ¨~∆t ~δt

¯

¨

ˆ

β 0
0 α

˙

¨

˜

~∆T
t ¨ Ht´1

T

~δT
t

¸

“ Ht´1 ` Ht´1 ¨~∆t ¨ β ¨~∆T
t ¨ Ht´1

T `~δt ¨ α ¨~δ
T
t “ Ht

as desired.
Plugging this into the Woodbury matrix identity we obtain:

H´1
t “H´1

t´1 ´ H´1
t´1 ¨

´

Ht´1 ¨~∆t ~δt

¯

¨

´

ˆ

β 0
0 α

˙´1

`

˜

~∆T
t ¨ Ht´1

T

~δT
t

¸

¨ H´1
t´1 ¨

´

Ht´1 ¨~∆t ~δt

¯¯´1
¨

˜

~∆T
t ¨ Ht´1

T

~δT
t

¸

¨ H´1
t´1

“H´1
t´1 ´

´

~∆t H´1
t´1 ¨

~δt

¯

¨

´

˜

1
β 0
0 1

α

¸

`

˜

~∆T
t ¨ Ht´1

T

~δT
t

¸

¨

´

~∆t H´1
t´1 ¨

~δt

¯¯´1
¨

˜

~∆T
t

~δT
t ¨ H´1

t´1

¸

53

algorithms

“H´1
t´1 ´

´

~∆t H´1
t´1 ¨

~δt

¯

¨

˜

1
β `

~∆T
t ¨ Ht´1

T ¨~∆t ~∆T
t ¨

~δt

~δT
t ¨

~∆t
1
α `

~δT
t ¨ H´1

t´1 ¨
~δt

¸´1

¨

˜

~∆T
t

~δT
t ¨ H´1

t´1

¸

Now, recall that 1
β “ ´

~∆T
t ¨ Ht´1

T ¨~∆t and 1
α “

~δT
t ¨

~∆t. Accordingly, we can re-write our
expression as follows.

H´1
t “H´1

t´1 ´

´

~∆t H´1
t´1 ¨

~δt

¯

¨

ˆ

0 1
α

1
α

1
α `

~δT
t ¨ H´1

t´1 ¨
~δt

˙´1

¨

˜

~∆T
t

~δT
t ¨ H´1

t´1

¸

“H´1
t´1 ´

´

~∆t H´1
t´1 ¨

~δt

¯

¨

ˆ

´α2 ¨ p 1
α `

~δT
t ¨ H´1

t´1 ¨
~δtq α

α 0

˙

¨

˜

~∆T
t

~δT
t ¨ H´1

t´1

¸

“H´1
t´1 ´

´

~∆t H´1
t´1 ¨

~δt

¯

¨

˜

´α2 ¨ p 1
α `

~δT
t ¨ H´1

t´1 ¨
~δtq ¨~∆T

t ` α ¨~δT
t ¨ H´1

t´1
α ¨~∆T

t

¸

“H´1
t´1 ` α2 ¨~∆t ¨

´1
α
`~δT

t ¨ H´1
t´1 ¨

~δt

¯

¨~∆T
t ´ α ¨~∆t ¨~δ

T
t ¨ H´1

t´1 ´ α ¨ H´1
t´1 ¨

~δt ¨~∆T
t

“pIK ´ α ¨~∆t ¨~δ
T
t q ¨ H´1

t´1 ¨ pI
K ´ α ¨~δt ¨~∆T

t q ` α ¨~∆t ¨~∆T
t

By plugging in our expression for α we obtain the final BFGS update formula.

H´1
t “

´

IK ´
~∆t ¨~δT

t
~∆T

t ¨
~δt

¯

¨ H´1
t´1 ¨

´

IK ´
~δt ¨~∆T

t
~δT

t ¨
~∆t

¯

`
~∆t ¨~∆T

t
~∆T

t ¨
~δt

(2.8)

The resulting BFGS algorithm is shown in Algorithm 8.

Algorithm 8 The Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) for the objective
function f : RK Ñ R, a starting value ~x0 P RK, and a gradient threshold ε ą 0.

1: function BFGS(objective function f : RK Ñ R, starting value ~x0 P RK, threshold
ε ą 0)

2: t Ð 0.
3: H´1

0 Ð Equation 2.8 with H´1
t´1 “ IK.

4: while ‖∇~x f p~xtq‖ ą ε do
5: ~pt`1 Ð ´H´1

t ¨∇~x f p~xtq.
6: αt`1 Ð argminαą0 f p~xt ` α ¨~pt`1q.
7: ~xt`1 Ð ~xt ` αt`1 ¨~pt`1.
8: t Ð t` 1.
9: H´1

t Ð Equation 2.8.
10: end while
11: return ~xt.
12: end function

Note that our BFGS update formula still has quadratic complexity due to the multipli-
cations involved. We achieve a linear-time (and linear-memory) version by observing that
we do not even need the inverted Hessian as such, but only the product H´1

t ¨∇~x f p~xtq.
This product can be computed based on more efficient formulae, which then yield the
so-called limited-memory BFGS algorithm (L-BFGS Nocedal and Wright 1999).

Trust Region Method

In all our methods up until now we prevented a too large distance between our current
point ~xt and our next point ~xt`1 by adding a punishment term to our objective function.

54

2 .2 numeric methods

Alternatively, we could also decide to introduce a fixed constraint which ensures that
we stay in a pre-defined radius – the so-called trust region. More specifically, for a twice
differentiable objective function f : RK Ñ R, a current point ~xt, and a radius ∆ we obtain
the following optimization problem.

min
~xt`1PRK

f p~xtq ` p~xt`1 ´~xtq ¨∇~x f p~xtq `
1
2
p~xt`1 ´~xtq

T
¨∇2

~x f p~xtq ¨ p~xt`1 ´~xtq (2.9)

s.t. ‖~xt`1 ´~xt‖ ď ∆

Note the similarity to the Newton-method problem in Equation 2.5.
If we try to solve this problem analytically, we obtain the following Lagrange dual.

sup
λPR

inf
~xt`1PRK

f p~xtq ` p~xt`1 ´~xtq ¨∇~x f p~xtq `
1
2
p~xt`1 ´~xtq

T
¨∇2

~x f p~xtq ¨ p~xt`1 ´~xtq

´ λ ¨
`

∆2 ´ ‖~xt`1 ´~xt‖2˘

s.t. λ ě 0

By comparing this problem to Equation 2.5, it becomes obvious that our solution will be:

~x˚t`1 “ ~xt ´ p∇2
~x f p~xtq ` 2λ ¨ IK˘´1

¨∇~x f p~xtq

subject to the KKT:

λ ě 0, ‖~xt`1 ´~xt‖2 ď ∆2, and λ ¨
`

∆2 ´ ‖~xt`1 ´~xt‖2˘ “ 0.

Note that we do not know which value λ takes, precisely. Either the classic Newton step
of ~x˚t`1 “ ~xt ´ p∇2

~x f p~xtq
˘´1

¨∇~x f p~xtq for λ “ 0 is feasible, or we have λ ą 0 such that

‖~xt`1 ´~xt‖2 “ ∆2 ðñ ‖p∇2
~x f p~xtq ` 2λ ¨ IK˘´1

¨∇~x f p~xtq‖2 “ ∆2,

This is a global minimum if the Hessian of the Lagrangian ∇2
~x f p~xtq ` 2λ ¨ IK is positive

definite.
An unfortunate drawback of this solution is that the equation ‖p∇2

~x f p~xtq ` 2λ ¨ IK
˘´1

¨

∇~x f p~xtq‖2 “ ∆2 has no analytical solution for λ. Neither can we optimize λ efficiently
because for any example value of λ we would have to perform a matrix inversion.

So, what can we do instead? The simplest possible approach is to take the classic
Newton step as direction vector, i.e. ~pt`1 “ ´p∇2

~x f p~xtq
˘´1

¨∇~x f p~xtq, and to set the step
size αt`1 as either 1 if ‖~pt`1‖ ď ∆ or as αt`1 “ ∆{‖~pt`1‖ otherwise, which overall results
in αt`1 “ mint1, ∆{‖~pt`1‖u.

Note that we can combine this scheme with approximation schemes for the Hessian,
such as BFGS.

An alternative route would be to not use the Newton step as direction vector but
instead the negative gradient, which results in the so-called Cauchy point. In more detail,
the Cauchy point is the optimal next point if we take the negative gradient as direction
vector and optimize the step size to minimize the second-order Taylor approximation,
i.e.:

min
αt`1PR

f p~xtq ´ αt`1∇~x f p~xtq
T
¨∇~x f p~xtq `

1
2

α2
t`1 ¨∇~x f p~xtq

T
¨∇2

~x f p~xtq ¨∇~x f p~xtq

s.t. αt`1 ¨ ‖∇~x f p~xtq‖ ď ∆

55

algorithms

First, let’s ignore the side constraint and consider the unconstrained version of this
optimization problem. Then, we obtain the gradient:

B

Bαt`1
f̃ 2
~xt

`

~xt ´ αt`1∇~x f p~xtq
˘

“ ´∇~x f p~xtq
T
¨∇~x f p~xtq ` αt`1 ¨∇~x f p~xtq

T
¨∇2

~x f p~xtq ¨∇~x f p~xtq

By setting the gradient to zero we obtain:

´∇~x f p~xtq
T
¨∇~x f p~xtq ` αt`1 ¨∇~x f p~xtq

T
¨∇2

~x f p~xtq ¨∇~x f p~xtq “~0

αt`1 “
∇~x f p~xtq

T
¨∇~x f p~xtq

∇~x f p~xtq
T
¨∇2

~x f p~xtq ¨∇~x f p~xtq

To verify that this is an optimum, consider the second derivative:

B2

B2αt`1
f̃ 2
~xt

`

~xt ´ αt`1∇~x f p~xtq
˘

“ ∇~x f p~xtq
T
¨∇2

~x f p~xtq ¨∇~x f p~xtq

Note that, if this term is negative, we can arbitrarily decrease the second-order Taylor
approximation by increasing αt`1. Our only limit is our side constraint, for which we
obtain:

αt`1 ¨ ‖∇~x f p~xtq‖ ď ∆ ðñ αt`1 ď
∆

‖∇~x f p~xtq‖
Therefore, we obtain as the overall Cauchy point:

αt`1 “

$

&

%

∆
‖∇~x f p~xtq‖ if ∇~x f p~xtq

T
¨∇2

~x f p~xtq ¨∇~x f p~xtq ă 0

mint ∆
‖∇~x f p~xtq‖ ,

∇~x f p~xtq
T
¨∇~x f p~xtq

∇~x f p~xtq
T
¨∇2

~x f p~xtq¨∇~x f p~xtq
u otherwise

As a final alternative, one can combine both options, using the negative gradient
as direction vector close to ~xt where the first-order Taylor approximation is still good
and interpolating to the Newton step for larger step size αt`1. This is called the dogleg
approach. In particular, let

~p1
t`1 :“ ´

∇~x f p~xtq
T
¨∇~x f p~xtq

∇~x f p~xtq
T
¨∇2

~x f p~xtq ¨∇~x f p~xtq
¨∇~x f p~xtq and

~p2
t`1 :“ ´

`

∇2
~x f p~xtq

˘´1
¨∇~x f p~xtq

Then, we define the dogleg vector ~pt`1 as follows.

~pt`1 “

$

&

%

αt`1 ¨~p1
t`1 if αt`1 ď mint1, ∆

‖~p1
t`1‖
u

~p1
t`1 ` pαt`1 ´ 1q ¨ p~p2

t`1 ´~p1
t`1q if 1 ă αt`1 ď mint2, ∆

‖~p2
t`1‖
u

(2.10)

The final question regarding the trust region method is how to set the radius of the
trust region, ∆. The brilliant idea of the trust region approach is to choose ∆ depending
on how well our Taylor approximation works. If our approximation is bad, we shrink
∆ and thus ensure that our approximation will work better in the next step. If our
approximation is good, we increase ∆ and thus can make larger jumps.

We evaluate the quality of our approximation by considering the quotient of the
actual improvement in objective function value and the expected improvement according
to the Taylor approximation.

qt`1 :“
f p~xtq ´ f p~xt`1q

f̃ 2
~xt
p~xtq ´ f̃ 2

~xt
p~xt`1q

(2.11)

56

2 .2 numeric methods

If qt is negative, our objective function value got worse and we should reject our step and
shrink ∆. If qt is small (i.e. qt ă

1
4), then our approximation is bad and we should shrink

∆. If qt is large (i.e. qt ą
3
4), we can grow more confident and increase ∆. Otherwise, we

leave ∆ unchanged.
The overall trust region algorithm is shown in Algorithm 9.

Algorithm 9 A generic trust-region method for the objective function f : RK Ñ R, a
starting value ~x0 P RK, and a gradient threshold ε ą 0.

1: function trust region(objective function f : RK Ñ R, starting value ~x0 P RK,
threshold ε ą 0)

2: t Ð 0.
3: ∆ Ð 1.
4: while ‖∇~x f p~xtq‖ ą ε do
5: Select change vector ~pt`1 via some method (e.g. Equation 2.10).
6: ~xt`1 Ð ~xt `~pt`1.
7: qt`1 Ð Equation 2.11.
8: if qt`1 ă 0 then
9: ~xt`1 Ð ~xt.

10: ∆ Ð ‖~pt`1‖{4.
11: else if qt`1 ă

1
4 then

12: ∆ Ð ‖~pt`1‖{4.
13: else if qt`1 ą

3
4 and ‖~pt`1‖ “ ∆ then

14: ∆ Ð ∆ ¨ 2.
15: end if
16: t Ð t` 1.
17: end while
18: return ~xt.
19: end function

2 .2 .2 Constrained Optimization

Until now we have focused on methods for unconstrained optimization. However, what
can we do in case of constrained problems? We consider three approaches here, namely
the barrier, the penalty, and the projection approach, all of which use an unconstrained
optimizer implicitly but tweak it in order not to violate constraints.

The Log-Barrier Method

We consider problems which are inequality constrained, i.e. problems of the following
form.

min
~xPRK

f p~xq (2.12)

s.t. gip~xq ě 0 @i P t1, . . . , mu

The log-barrier form of such a problem is the unconstrained optimization problem.

min
~xPRK

f p~xq ´ µ ¨
m
ÿ

i“1

log
“

gip~xq
‰

(2.13)

57

algorithms

´1.5 ´1 ´0.5 0 0.5 1 1.5
´2

0

2

4

6

8

x˚µ“1

x˚µ“0.5 x˚µ“0.1

f pxq “ ´x
´x´ 1 ¨ logr1´ x2s

´x´ 0.5 ¨ logr1´ x2s

´x´ 0.1 ¨ logr1´ x2s

Figure 2.4: An illustration of the log-barrier method for Example 73. The blue, solid line shows
the original objective function f pxq “ ´x, and the orange, dashed lines show the log-barrier
objective function f pxq ´ µ logr1´ x2s for multiple values of µ. The respective local minima are
highlighted via circles.

where µ ą 0 is a hyper-parameter that pushes us away from the boundaries of the feasible
region.

Example 73 (Log-Barrier). Consider the example problem

min
xPR

´ x

s.t. 1´ x2 ě 0.

The according log-barrier form 2.13 is given as follows.

min
xPR

´x´ µ ¨ logr1´ x2s

Figure 2.4 shows a visualization of the original objective function and the log-barrier
objective function for multiple values of µ.

The idea of the log-barrier method is that any violation of the inequality constraints
yields an objective function value of infinity, such that any unconstrained optimizer will
be forced to stay in the feasible set. Another key advantage of the log-barrier method
is that it maintains convexity, i.e. if the original problem is convex, then its log-barrier
version is as well.

This does not answer a key question, though: Are the local minima of the log-barrier
problem 2.13 actually the same local minima as in the primal problem 2.12? If the local
minima we are far away from the boundaries of the feasible set, this is obviously the case,
because then the logarithmic barrier terms have a negligible influence on the objective
function. The interesting case occurs when an unconstrained local minimum is not the
same as a constrained local minimum, i.e. if the local minimum is exactly on the boundary
of the feasible set.

In more detail, assume that for our local minimum ~x˚, the ith inequality constraint
is active, i.e. gip~x˚q “ 0. In that case, the corresponding log-barrier term ´ logrgip~x˚qs
would be infinite, such that ~x˚ is definitely not a local minimum of the log-barrier version
of the problem. However, depending on the value of µ, we will find a local minimum ~x˚µ

58

2 .2 numeric methods

which is close to ~x˚, where the distance between ~x˚µ and ~x˚ is smaller if µ is smaller (also
refer to Figure 2.4 for an example). If we choose a very small µ, then our local minima
of problem 2.13 are almost the same as the local minima of problem 2.12, with an error
that is bunded by µ ¨m (Boyd and Vandenberghe 2004). For example, in Figure 2.4, our
log-barrier local minimum gets closer to the true local minimum at x˚ “ 1 if we decrease
µ.

This analysis would tell us that we should, ideally, set µ to a very small value and then
perform unconstrained optimization. Unfortunately, though, for smaller µ problem 2.13
also gets numerically much harder to solve because the gradient of the objective function
close to the boundary rises very sharply. Therefore, we actually start with a reasonably
large value of µ (e.g. µ “ 1) and then decrase µ in multiple iterations until our found
local minimum of 2.12 is very close to a local minimum of 2.12. The path of local minima
~x˚µ for various values of µ is also called the central path (also refer to Figure 2.4 for a
visualization). The final log-barrier algorithm is shown in Algorithm 10.

Algorithm 10 The log-barrier method for the objective function f : RK Ñ R, inequality
constraint functions gi : RK Ñ R, a starting value ~x0 P RK, and a number of iterations
T P N.

1: function log -barrier(objective function f : RK Ñ R, inequality constraints
g1, . . . , gm : RK Ñ R, starting value ~x0 P RK, iteration number T P N)

2: µ Ð 1.
3: for t P t1, . . . , Tu do
4: ~xt Ð argmin~x f p~xq ´ µ ¨

řm
i“1 log

“

gip~xq
‰

Ź Unconstrained Optimization
5: µ Ð µ{10.
6: end for
7: return ~xT.
8: end function

Penalty Method

Similar to the log-barrier method, the penalty method transforms a primal problem of
the form 2.12 into an unconstrained problem of the following form:

min
~xPRK

f p~xq ` µ ¨
m
ÿ

i“1

φ
“

gip~xq
‰

, (2.14)

with the key difference that φ : R Ñ R is now not the log function but instead any function
which is 0 for positive inputs and strictly monotonously increasing with negative inputs,
i.e.: c ą 0 ñ φpcq “ 0 and c ă c1 ă 0 ñ φpcq ą φpc1q ą 0. Examples of such functions φ
are φpcq “ maxt0,´cu or φpcq “ maxt0,´cu2.

Example 74 (Penalty Method). Consider the example problem

min
xPR

´ x

s.t. 1´ x2 ě 0

The according penalty form 2.14 with quadratic penalty is given as follows.

min
xPR

´x` µ ¨maxt0, x2 ´ 1u2

Figure 2.5 shows a visualization of the original objective function and the penalty
objective function for multiple values of µ.

59

algorithms

0.6 0.8 1 1.2 1.4
´2

0

2

4

6

x˚µ“1x˚µ“2

x˚µ“5

f pxq “ ´x
´x` 1 ¨maxt0, x2 ´ 1u2

´x` 2 ¨maxt0, x2 ´ 1u2

´x` 5 ¨maxt0, x2 ´ 1u2

Figure 2.5: An illustration of the penalty method for Example 74. The blue, solid line shows the
original objective function f pxq “ ´x, and the orange, dashed lines show the penalty objective
function f pxq ` µ ¨maxt0, 1´ x2u2 for multiple values of µ. The respective local minima are
highlighted via circles.

Note that the penalty method approximates the actual optimal solution similarly to
the log-barrier method, but “from the other side”, i.e. the solution given by the penalty
method will typically be infeasible, but close to feasible. The higher the value of µ, the
closer we get to the feasible set, until we are approximately on the boundary. Accordingly,
we obtain an algorithm 11 quite similar to the log-barrier algorithm, but increasing µ
instead of decreasing it.

Algorithm 11 The penalty method for the objective function f : RK Ñ R, inequality
constraint functions gi : RK Ñ R, a starting value ~x0 P RK, a penalty function φ : R Ñ R,
such as φpcq “ maxt0,´cu2, and a number of iterations T P N.

1: function penalty(objective function f : RK Ñ R, inequality constraints g1, . . . , gm :
RK Ñ R, starting value ~x0 P RK, penalty function φ : R Ñ R, iteration number
T P N)

2: µ Ð 1.
3: for t P t1, . . . , Tu do
4: ~xt Ð argmin~x f p~xq ` µ ¨

řm
i“1 φ

“

gip~xq
‰

Ź Unconstrained Optimization
5: µ Ð µ ¨ 10.
6: end for
7: return ~xT.
8: end function

The key advantage of the penalty method is that it yields non-infinite values across the
entire domain, which makes it possible to start the optimization at any point. Accordingly,
we can also use the penalty method to first find a point in the feasible set by ignoring the
original objective function in our optimization entirely, and then using the log-barrier
method to find the actual optimum.

Projection Methods

Both the log-barrier method and the penalty method can handle inequality constraints,
but fail to treat equality constraints appropriately because we always deviate slightly

60

2 .2 numeric methods

from the boundary of the feasible set, while we require exactness on the boundary for
equality constraints. Fortunately, equality constraints can be addressed in other ways. In
more detail, let us consider problems of the following form:

min
~xPRK

f p~xq

s.t. hjp~xq “ 0 @j P t1, . . . , nu

A first approach is to use the equality constraints hjp~xq to solve for some of the
variables xk, such that we can re-write our problem in a form without equality constraints
and with less variables, as we did in Example 68. This is the most elegant variant because
we reduce the complexity of the problem and get rid of all equality constraints.

However, if our equality constraints can not be solved analytically for fewer variables
or if the solutions are numerically unstable, we need to employ different means, such as
projection methods. A projection method performs step-wise unconstrained optimiza-
tion via one of our numeric methods above, but in each step ensures that the equality
constraints hold again. We introduce two variants of this approach here.

First, we consider the reset projection method, where we perform a single step of an
unconstrained numeric optimizer on f p~xq and then reset the current point ~xt such that
all equality constraints hold again. This is illustrated in Algorithm 12.

Algorithm 12 The reset projection method for the objective function f : RK Ñ R, equality
constraint functions hj : RK Ñ R, a starting value ~x0 P RK, and some numeric optimizer
ρ : RK Ñ RK, which returns a new point for each current point.

1: function reset -projection(objective function f : RK Ñ R, equality constraints
h1, . . . , gn : RK Ñ R, starting value ~x0 P RK, optimizer ρ : RK Ñ RK)

2: t Ð 0.
3: Reset ~xt such that h1p~xtq “ . . . “ hnp~xtq “ 0.
4: while optimization criterion is not fulfilled do
5: ~xt`1 Ð ρp~xtq. Ź Unconstrained Optimization
6: Reset ~xt`1 such that h1p~xt`1q “ . . . “ hnp~xt`1q “ 0.
7: t Ð t` 1.
8: end while
9: return ~xt.

10: end function

Example 75 (Reset projection method). Consider the following problem.

min
x,yPR

´ 3 ¨ x´ y

s.t. x2 ` y2 “ 1

If we are given any point px, yq P R2, we can ensure that our equality constraint holds
by dividing both x and y by

a

x2 ` y2.
Accordingly, if we apply Algorithm 12 with x0 “ p1, 0q and ρpx, yq “ px, yq ´ 0.1 ¨

∇px,yq f px, yq, we obtain the optimization in Figure 2.6.

A second projection method is to manipulate the search direction for optimization
such that it is orthogonal to the equality constraints, i.e. if we move along this search
direction, the equality constraints still hold. This variant only makes sense if the feasible

61

algorithms

0.6 0.8 1 1.2 1.4

0

0.2

0.4

px0, y0q

px˚, y˚q

x

y

Figure 2.6: A visualization of reset projected gradient descent for Example 75. We start at point
px0, y0q “ p1, 0q and after each gradient step on the objective function f pxt, ytq “ ´3 ¨ xt ´ yt we

ensure that x2
t ` y2

t “ 1 holds by dividing both xt and yt by
b

x2
t ` y2

t . Accordingly, we observe
a zig-zag line during optimization, where the point leaves the feasible set after each gradient
step and re-enters the feasible set after each reset step. The feasible set is visualized as an orange
circle, the points pxt, ytq as blue circles.

set of the equality constraints is a straight line, i.e. if the equality constraints are affine. In
that case, we can express our n equality constraints as a matrix-vector equation A ¨~x “~b
for some nˆ K matrix A and some vector~b P Rn.

Now, assume that A ¨~xt “~b holds for our current point ~xt and that our next point
~xt`1 is given as ~xt`1 “ ~xt ` αt`1 ¨~pt`1 for some search direction ~p and some step width
αt`1 as given by a numeric optimizer.

Then, our equality constraints hold for ~xt`1 if and only if:

A ¨~xt`1 “~b ðñ A ¨~xt ` αt`1 ¨ A ¨~p “~b ðñ A ¨~p “~0

Our challenge is that an unconstrained numeric optimizer does not necessarily return
a search direction ~p such that A ¨~p “~0. Therefore, we need to find a search direction that
is as similar as possible to ~p and for which this constraint holds, i.e. we need to solve the
following optimization problem.

min
p̃

1
2
‖~p´ p̃‖2

s.t. A ¨ p̃ “~0

We can solve this problem analytically via the Lagrange dual. In particular, we obtain
the Lagrangian Lpp̃,~λq “ 1

2‖~p´ p̃‖2 ´~λT ¨ A ¨ p̃ and the gradient:

∇ p̃Lpp̃,~λq “ pp̃´~pq ´ AT ¨~λ

Note that the Hessian is the identity matrix, which means that our problem is convex.
By setting this gradient to zero we obtain:

pp̃´~pq ´ AT ¨~λ “ 0 ðñ p̃ “ AT ¨~λ`~p

62

2 .2 numeric methods

By plugging this result into our equality constraints we obtain:

A ¨
`

AT ¨~λ`~p
˘

“~0 ðñ ~λ “ ´
`

A ¨ AT˘´1
¨ A ¨~p

This yields the result:
p̃ “

”

´ AT ¨
`

A ¨ AT˘´1
¨ A` IK

ı

¨~p (2.15)

Because our problem is convex, this result is a global minimum.
Using the same reasoning, we can also find an initial point which is feasible and is

closest to our intended initial point. We obtain the problem:

min
x̃0

1
2
‖~x0 ´ x̃0‖2

s.t. A ¨ x̃0 “~b

Here, we obtain the following Lagrangian and gradient:

Lpx̃0,~λq “
1
2
‖~x0 ´ x̃0‖2 ´~λT ¨

“

A ¨ x̃0 ´~b
‰

∇x̃0Lpx̃0,~λq “ px̃0 ´~x0q ´ AT ¨~λ

Note that the Hessian is the identity matrix, which means that our problem is convex.
By setting this gradient to zero we obtain:

px̃0 ´~x0q ´ AT ¨~λ “ 0 ðñ x̃0 “ AT ¨~λ`~x0

By plugging this result into our equality constraints we obtain:

A ¨
`

AT ¨~λ`~x0
˘

“~b ðñ ~λ “ ´
`

A ¨ AT˘´1
¨
`

~b´ A ¨~x0q

This yields the result:

x̃0 “ ´AT ¨
`

A ¨ AT˘´1
¨
`

~b´ A ¨~x0q `~x0 (2.16)

Because our problem is convex, this result is a global minimum.
Our two results yield the overall algorithm 13.

Example 76 (Direction projection method). Consider the following problem:

min
x,yPR

px´ 2q2 ` py´ 1q2

s.t. ´ 2x` y “ 1

We can re-write our problem in the form

min
px,yqPR2

1
2
‖px, yq ´ p2, 1q‖2

s.t. A ¨ px, yqT “~b where

A “ p´2, 1q ~b “ 1

Now, let’s apply Algorithm 13 to this problem with px0, y0q “ p0, 0q, ρpxt, ytq “

´∇pxt,ytq f pxt, ytq and a constant step width of αt “ 0.1.
Figure 2.7 illustrates the optimization procedure in this case.

This concludes our section on numeric methods for optimization.

63

algorithms

Algorithm 13 The direction projection method for the objective function f : RK Ñ R,
equality constraints A ¨~x “ ~b, a starting value ~x0 P RK, and some numeric optimizer
ρ : RK Ñ RK which returns a search direction for each current point.

1: function direction -projection(objective function f : RK Ñ R, equality con-
straint A P RnˆK,~b P RK, starting value ~x0 P RK, optimizer ρ : RK Ñ RK)

2: Φ Ð ´AT ¨
`

A ¨ AT
˘´1.

3: ~x0 Ð Φ ¨
`

~b´ A ¨~x0q `~x0.
4: Φ Ð Φ ¨ A` IK. Ź Equation 2.16
5: t Ð 0.
6: while optimization criterion is not fulfilled do
7: ~pt`1 Ð ρp~xtq. Ź Unconstrained Optimization
8: ~pt`1 Ð Φ ¨~pt`1. Ź Equation 2.15
9: αt`1 Ð argminα f p~xt ` α ¨~pt`1q.

10: ~xt`1 Ð ~xt ` αt`1 ¨~pt`1.
11: t Ð t` 1.
12: end while
13: return ~xt.
14: end function

´0.5 0 0.5 1 1.5 2 2.5

0

1

2

px0, y0q

px˚, y˚q

x

y

Figure 2.7: A visualization of direction projected gradient descent for Example 76. We start at
point px̃0, ỹ0q “ p´0.4, 0.2q and before each gradient step on the objective function f pxt, ytq “

pxt ´ 2q2 ` pyt ´ 1q2 we ensure that the step direction maintains feasibility by applying the
projection operator in Equation 2.15. Accordingly, we observe that the negative gradient directions
(shown in red) are changed to directions along the feasible set (shown in blue). The contours
of the objective function are shown as dotted orange lines, the feasible set is shown as dashed,
orange line.

64

2 .3 probabilistic optimization

2 .3 P R O B A B I L I S T I C O P T I M I Z AT I O N

Optimization over probabilities relies, unfortunately, on a lot of concepts from probability
theory and information theory, which we can not cover in detail in these lecture notes. If
you wish to learn more about this topic, a good reference is Barber (2010).

In these notes here, we will cover only two popular algorithms of probabilistic
optimization, namely expectation maximization and belief propagation.

First, however, we introduce our typical objective function, namely a probability over
data.

2 .3 .1 Maximum Likelihood

A typical problem of probabilistic optimization is to identify the probabilistic model
which assigns the highest probability to a given data set. More formally, let X be some
arbitrary set, and let x1, . . . , xm P X be a list of samples from that set, i.e. a data set.
Further, let P be a set of possible probability densities over X , that is, a set of functions
p : X Ñ R such that

ş

X ppxqdx “ 1. Then, we are looking for the density which assigns
the highest possible probability to our data, i.e.:

max
pPP

m
ź

i“1

ppxiq

This is also called a maximum likelihood problem and we call the objective function the
likelihood. Note that this formalization implicitly assumes that all samples are indepen-
dently drawn from the same ’true’ probability distribution. Otherwise, we would not be
allowed to write the likelihood as a product.

How to solve such a maximum likelihood problem? In most cases, we make the
problem tractable by expressing our set of probability densities P in a parametric form. In
particular, we consider a family of probability densities p~θ , where ~θ P RK are our param-
eters and p~θ is the probability density corresponding to the parameters ~θ. Accordingly,
our maximum likelihood problem becomes:

max
~θPRK

m
ź

i“1

p~θpxiq (2.17)

In other words, we now have a continuous optimization problem over parameters instead
of an optimization problem over some function set.

Example 77 (Exponential Distribution). For example, consider the exponential distribution,
which is defined over the positive real numbers and has the density

pλpxq “ λ ¨ expp´λ ¨ xq (2.18)

for a single parameter λ P R`.
For a data set x1, . . . , xm P R`, we obtain the following maximum likelihood problem.

max
λPR

m
ź

i“1

λ ¨ expp´λ ¨ xiq

s.t. λ ą 0

65

algorithms

To make a maximum likelihood problem analytically and numerically easier, we
oftentimes consider the negative log likelihood ` instead of the likelihood, i.e. we re-write
our maximum likelihood problem as follows.

min
~θPRK

`p~θq where `p~θq “ ´
m
ÿ

i“1

log
“

p~θpxiq
‰

, (2.19)

Example 78 (Minimum Negative Log-Likelihood for the Exponential Distribution). As-
sume the data set x1, . . . , xm P R` and consider the according minimum negative log-
likelihood problem 2.19 for the exponential distribution.

min
λPR

`pλq where `pλq “ ´
m
ÿ

i“1

logrλs ` logrexpp´λ ¨ xiqs “ ´m ¨ logrλs ` λ ¨
m
ÿ

i“1

xi

s.t. λ ą 0

The according gradient is given as follows.

∇λ`pλq “ ´
m
λ
`

m
ÿ

i“1

xi

By setting the gradient to zero, we obtain:

´
m
λ˚
`

m
ÿ

i“1

xi “ 0 ðñ λ˚ “
m

řm
i“1 xi

In other words, λ˚ is the inverse of the data mean.
The Hessian is given as follows.

∇2
λ`pλq “

m
λ2

Note that this is positive for any nonzero λ. Since our domain limits λ to strictly positive
numbers, our problem is convex. Therefore, λ˚ is a global minimum of the negative
log-likelihood problem.

2 .3 .2 Maximum a posteriori

The maximum likelihood problem has one decisive disadvantage, namely that it can lead
to models which are overly specific to our example dataset and thus do not generalize to
any new data. In our exponential distribution example above, it often happens that an
example data set does not contain any points that are large and thus our empiric mean
of the data underestimates the ’true’ mean of the ’true’ underlying distribution.

An alternative to maximum likelihood optimization is offered by maximum a posteri-
ori optimization, where we inject assumptions about our parameters. In this setting, we
often express our parametrized density p~θpxq as a conditional density ppx|~θq, such that
we can express our optimization problem in Bayesian terms. In particular, given a data
set X “ px1, . . . , xmq, we wish to optimize the posterior pp~θ|Xq, which, according to Bayes’
rule, can be re-written as follows.

pp~θ|Xq “
ppX|~θq ¨ pp~θq

ppXq

66

2 .3 probabilistic optimization

Since ppXq is not influenced by our parameter choice, we obtain the following maximum
a posteriori problem.

max
~θPRK

”

m
ź

i“1

ppxi|~θq
ı

¨ pp~θq (2.20)

In this setting, pp~θq is our so-called prior and expresses our initial assumptions regarding
the parameters.

Example 79 (Maximum a posteriori for the Exponential Distribution). Consider again
the exponential distribution example 78, but assume now a prior ppλq “ ρ ¨ expp´ρ ¨ λq,
i.e. the λ parameter is assumed to be itself exponentially distributed with rate parameter
ρ. Then, the negative log of our maximum a posteriori problem is given as follows.

min
λPR

`pλq where `pλq “ ´ log
“

m
ź

i“1

ppxi|λq ¨ ppλq
‰

“ ´m ¨ logrλs ` λ ¨
m
ÿ

i“1

xi ` ρ ¨ λ

s.t. λ ą 0

The according gradient is given as follows.

∇λ`pλq “ ´
m
λ
`

m
ÿ

i“1

xi ` ρ

By setting the gradient to zero, we obtain:

´
m
λ˚
`

m
ÿ

i“1

xi ` 1 “ 0 ðñ λ˚ “
m

ρ`
řm

i“1 xi

In other words, λ˚ is almost the inverse of the data mean, but is numerically more stable
due to ρ. More precisely, ρ ą 0 ensures that our parameter λ˚ will never degenerate to
infinity. The Hessian is the same as before, such that λ˚ is indeed a global minimum of
our problem.

Note that there are also more advanced Bayesian optimization schemes, which we
omit here.

2 .3 .3 Expectation Maximization

Until now we have only considered cases where a probabilistic optimization problem
can be solved analytically. What do we do if that is not the case? Either, we apply a
general numeric optimizer as before, or we exploit the special structure of probabilistic
optimization problems to be faster. One such fast algorithm is Expectation Maximization
(EM) (Dempster, Laird, and Rubin 1977; Barber 2010).

EM can be applied whenever we consider a mixture of distributions. In particular, we
assume the case where we can re-write our density ppxq as follows.

p~θpxq “
K
ÿ

k“1

p~θk
px|kq ¨ p~θk

pkq

where ppx|kq is called the density for the kth mixture component and ppkq is called the
prior for the kth mixture component.

67

algorithms

´6 ´4 ´2 0 2 4 6

´4

´2

0

2

4

x

y

Figure 2.8: An illustration of a Gaussian Mixture Model (GMM) with K “ 3 components, with
the priors π1 “ 0.3, π2 “ 0.2, and π3 “ 0.5, with the means ~µ1 “ p2, 2qT , ~µ2 “ p0,´2qT , and
~µ3 “ p´2, 2qT , and different covariance matrices Σk. The image shows 300 samples from the
probability density 2.21 and the ellipsoids indicate the area enclosed in one standard deviation of
each Gaussian component.

Example 80 (Gaussian Mixture Model (GMM)). Let X “ Rn be the n-dimensional real
number space and let K P N. Then, the K-component, n-dimensional GMM is defined as
follows.

pp~xq “
K
ÿ

k“1

pp~x|kq ¨ ppkq where (2.21)

pp~x|kq “
1

a

detp2π ¨ Σkq
¨ exp

´

´
1
2
p~x´~µkq

T
¨ Σ´1

k ¨ p~x´~µkq
¯

,

ppkq “ πk,

where πk P r0, 1s, ~µk P Rn, and Σk P Rnˆn for all k P t1, . . . , Ku are the parameters of the
model, with the side constraints that

řK
k“1 πk “ 1 and that Σk is positive definite.

We call πk the prior for the kth component, ~µk the mean for the kth component, and
Σk the covariance matrix for the kth component. Refer to Figure 2.8 for a two-dimensional
example of a GMM.

The advantage of mixture models compared to atomic models is that they can approx-
imate much more complicated distributions. For example, a GMM with sufficiently many
mixture components can approximate any density to an arbitrary precision (Barber 2010).
Unfortunately, most mixture models can not be optimized analytically. To demonstrate
this fact, consider the minimum negative log-likelihood problem for a data set x1, . . . , xm.

min
~θ1,...,~θKPRL

`p~θ1, . . . ,~θKq where `p~θ1, . . . ,~θKq “ ´

m
ÿ

i“1

log
”

K
ÿ

k“1

p~θk
pxi|kq ¨ p~θk

pkq
ı

(2.22)

Optimizing the log of a sum is generally not possible analytically. However, there is a
neat trick that we can still apply to address problem 2.22. In particular, we will attempt

68

2 .3 probabilistic optimization

to find an upper bound for our negative log likelihood ` in Equation 2.22 and minimize
the upper bound instead of ` itself. To find this upper bound, though, we first need to
re-arrange our objective function quite a bit.

In a first step, we observe that our negative log likelihood ` can be re-written as
follows, using the standard rules of probability theory:

`p~θ1, . . . ,~θKq “ ´

m
ÿ

i“1

logrppxiqs

“ ´

m
ÿ

i“1

log
“

p~θk
pxi, kq{p~θk

pk|xiq
‰

@k P t1, . . . , Ku

“

m
ÿ

i“1

´ log
“

p~θk
pxi, kq

‰

` log
“

p~θk
pk|xiq

‰

@k P t1, . . . , Ku

Because this equation holds for all k P t1, . . . , Ku, it also holds if we take a weighted
average over all k. In particular, we introduce a new Kˆm matrix of variables Γ with
entries γk,i for all k P t1, . . . , Ku and all i P t1, . . . , mu, which are required to be non-
negative and sum up to one for all i, i.e.:

řK
k“1 γk,i “ 1 for all i. A weighted average of

the equation above for these variables yields:

`p~θ1, . . . ,~θKq “

m
ÿ

i“1

K
ÿ

k“1

γk,i ¨
´

´ log
“

p~θk
pxi, kq

‰

` log
“

p~θk
pk|xiq

‰

¯

We can further re-write our equation as follows:

`p~θ1, . . . ,~θKq “ ´

m
ÿ

i“1

K
ÿ

k“1

γk,i ¨ log
“

p~θk
pxi, kq

‰

`

K
ÿ

k“1

γk,i log
“

p~θk
pk|xiq

‰

“

m
ÿ

i“1

´

K
ÿ

k“1

γk,i ¨ log
“

p~θk
pxi, kq

‰

`

K
ÿ

k“1

γk,i ¨
´

log
“

p~θk
pk|xiq

‰

´ logrγk,is ` logrγk,is
¯

“

m
ÿ

i“1

´

K
ÿ

k“1

γk,i ¨ log
“

p~θk
pxi, kq

‰

`

K
ÿ

k“1

γk,i ¨ log
“

p~θk
pk|xiq

γk,i

‰

`

K
ÿ

k“1

γk,i ¨ logrγk,is

We can interpret this equation in terms of known quantities from information theory. In
particular, the second term happens to be the Kullback-Leibler divergence between γk,i
and p~θk

pk|xiq, and the third term happens to be the entropy of ~γi. The first term is what
we call free energy Q. In more formal terms, we obtain:

`p~θ1, . . . ,~θKq “ Qp~θ1, . . . ,~θK, Γq ´
m
ÿ

i“1

DKL
`

p~θk
pk|xiq,~γi

˘

´m ¨Hp~γiq where (2.23)

Qp~θ1, . . . ,~θK, Γq “ ´
m
ÿ

i“1

K
ÿ

k“1

γk,i ¨ log
“

p~θk
pxi, kq

‰

,

DKL
`

p~θk
pk|xiq,~γi

˘

“ ´

K
ÿ

k“1

γk,i ¨ log
“

p~θk
pk|xiq

γk,i

‰

, and

Hp~γiq “ ´

K
ÿ

k“1

γk,i ¨ logrγk,is.

69

algorithms

An important fact regarding this decomposition is that both the Kullback-Leibler diver-
gence as well as the entropy are guaranteed to be non-negative. Therefore, we obtain our
upper bound as desired:

`p~θ1, . . . ,~θKq ď Qp~θ1, . . . ,~θK, Γq (2.24)

From our upper bound, the general EM algorithm follows almost immediately. It
consists of two steps. In the expectation step, we make our bound 2.24 as tight as
possible by minimizing the Kullback-Leibler divergence for all i. This divergence achieves
its global minimum exactly at γk,i “ p~θk

pk|xiq. In the maximization step, we set the

parameters ~θ1, . . . ,~θK such as to minimize Qp~θ1, . . . ,~θK, Γq while keeping all γk,i fixed.
This yields Algorithm 14.

Algorithm 14 EM for data x1, . . . , xm, K mixture components, initial mixture parameters
~θ1, . . . ,~θK, and an error threshold ε.

1: function EM(data x1, . . . , xm, parameters ~θ1, . . . ,~θK P RL, threshold ε)
2: γk,i Ð

1
K @k P t1, . . . , Ku,@i P t1, . . . , mu.

3: while Qp~θ1, . . . ,~θK, Γq ´ `p~θ1, . . . ,~θKq ą ε do
4: γk,i Ð p~θk

pk|xiq @k P t1, . . . , Ku,@i P t1, . . . , mu. Ź Expectation

5: ~θ1, . . . ,~θK Ð argmin~θ1,...,~θK
Qp~θ1, . . . ,~θK, Γq. Ź Maximization

6: end while
7: return ~θ1, . . . ,~θK.
8: end function

Note that this algorithm works for any kind of mixture model. It is particularly
popular for GMMs.

Example 81 (EM for GMMs). To apply EM to GMMs, we need two things. For the
expectation step, we need a closed-form expression for the conditional probability ppk|xiq.
For the maximization step, we need a solution of the optimization problem

min
pπ1,~µ1,Σ1q,...,pπK ,~µK ,ΣKq

Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

.

Let’s start with the expectation step. Using Bayes’ rule and the rule of total probability,
we can re-write our desired probability as follows:

ppk|~xiq “
pp~xi|kq ¨ ppkq

pp~xiq
“

pp~xi|kq ¨ ppkq
řK

l“1 pp~xi, lq
“

pp~xi|kq ¨ ppkq
řK

l“1 pp~xi|lq ¨ pplq
(2.25)

Therefore, we can compute our expectation step using the Equation above and the
definition of a GMM in Equation 2.21.

Regarding the expectation step, we obtain the following result for our free energy by
plugging in Equation 2.21.

Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

“ ´

m
ÿ

i“1

K
ÿ

k“1

γk,i ¨ log
“

pp~xi, kq
‰

“ ´

m
ÿ

i“1

K
ÿ

k“1

γk,i ¨
´

log
“

pp~xi|kq
‰

` log
“

ppkq
‰

¯

70

2 .3 probabilistic optimization

“

m
ÿ

i“1

K
ÿ

k“1

γk,i ¨
´n

2
logr2πs ´

1
2

log
“

detpΣ´1
k q

‰

`
1
2
p~xi ´~µkq

T
¨ Σ´1

k ¨ p~xi ´~µkq ´ log
“

πk
‰

¯

Now, let us attempt to minimize this quantity for our parameters πk, ~µk, and Σk. We
obtain the following gradient for ~µk using the rules in Appendix 2.5.2.

∇~µk
Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

“

m
ÿ

i“1

γk,i ¨ Σ
´1
k ¨ p~µk ´~xiq

By setting the gradient to zero we obtain:

0 “
m
ÿ

i“1

γk,i ¨ Σ
´1
k ¨ p~µk ´~xiq

Σ´1
k ¨~µk ¨

m
ÿ

j“1

γk,j “ Σ´1
k ¨

m
ÿ

i“1

γk,i ¨~xi

~µk “

řm
i“1 γk,i ¨~xi
řm

j“1 γk,j
(2.26)

Note that the last step is valid because Σ´1
k is positive definite and therefore invertible.

In other words, ~µk is the weighted average of all data points, where the weight
γk,i{

ř

j“1 γk,j indicates how important data point i is for the kth mixture component.
Now, let us inspect the Hessian:

∇2
~µk
Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

“ Σ´1
k ¨

m
ÿ

i“1

γk,i

Because Σ´1
k is positive definite and

řm
i“1 γk,i is a non-negative number, our problem is

convex with respect to ~µk, irrespective of the other parameters. Therefore, our solution
above yields a global minimum with respect to ~µk.

In a next step, let us minimize the free energy with respect to Σ´1
k . We obtain the

following matrix gradient.

∇
Σ´1

k
Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

“

m
ÿ

i“1

γk,i ¨
´

´
1
2

Σk `
1
2
p~xi ´~µkq ¨ p~xi ´~µkq

T
¯

Setting the gradient to zero yields:

0 “
m
ÿ

i“1

γk,i ¨
´

´
1
2

Σk `
1
2
p~xi ´~µkq ¨ p~xi ´~µkq

T
¯

Σk ¨

m
ÿ

j“1

γk,j “

m
ÿ

i“1

γk,i ¨ p~xi ´~µkq ¨ p~xi ´~µkq
T

Σk “

řm
i“1 γk,i ¨ p~xi ´~µkq ¨ p~xi ´~µkq

T
řm

j“1 γk,j
(2.27)

In other words, Σk is a weighted covariance matrix of the data, where the weights are the
same as above. Note that this matrix is guaranteed to be positive definite and symmetric,
assuming that at least n linearly independent data points are in the data set.

71

algorithms

The Hessian with respect to a matrix is not uniquely defined in the literature. But if
we consider the Hessian with respect to all entries of Σ´1

k in concatenated form, we can
compute the Hessian via the following Kronecker product (Fackler 2005):

∇2
Σ´1

k
Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

“
1
2
pΣk b Σkq

Without going into too much detail regarding the Kronecker product, we can state that
the Kronecker product of two positive definite matrices is also positive definite, such that
the energy is convex with respect to Σ´1

k and our solution is a global minimum.
Finally, consider the πk parameters. For these, we need to take the side constraints

řK
k“1 πk “ 1 and πk ě 0 into account. Note that the energy termQ decreases monotonously

with πk. Therefore, we can generally expect πk ě 0 to be fulfilled because unconstrained
optimization would yield πk Ñ8. This leaves only

řK
k“1 πk “ 1 as an active constraint.

We obtain the following Lagrange dual.

max
λPR

min
π1,...,πK

Lpπ1, . . . , πk, λq where

Lpπ1, . . . , πk, λq “ Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

´ λ ¨
´

K
ÿ

k“1

πk ´ 1
¯

As gradient, we obtain:

B

Bπk
Lpπ1, . . . , πk, λq “ ´

m
ÿ

i“1

γk,i ¨
1

πk
´ λ

Setting the gradient to zero yields:

0 “ ´
m
ÿ

i“1

γk,i ¨
1

πk
´ λ

λ ¨ πk “ ´

m
ÿ

i“1

γk,i

πk “ ´

řm
i“1 γk,i

λ

By plugging this result into our side constraint we obtain:

1 “
K
ÿ

k“1

´

řm
i“1 γk,i

λ

λ “ ´
m
ÿ

i“1

K
ÿ

k“1

γk,i “ ´m

This yields our solution:

πk “

řm
i“1 γk,i

m
(2.28)

Finally, consider the Hessian with respect to πk.

B2

B2πk
Lpπ1, . . . , πk, λq “

m
ÿ

i“1

γk,i ¨
1

π2
k

72

2 .3 probabilistic optimization

This is positive for any nonzero πk. Therefore, our problem is convex and our solution is
a global minimum.

The resulting algorithm is shown in Algorithm 15. Figure 2.9 shows the algorithm for
an example data set.

Algorithm 15 EM for a GMM with K mixture components for data ~x1, . . . ,~xm P Rn,
initial means ~µ1, . . . ,~µK P Rn, initial covariance matrices Σ1, . . . , ΣK P Rnˆn, initial priors
π1, . . . , πK P r0, 1s with

řK
k“1 πk “ 1, and an error threshold ε ą 0.

1: function GMM-EM(data ~x1, . . . ,~xm P Rn, means ~µ1, . . . ,~µK P Rn, covariances
Σ1, . . . , ΣK P Rnˆn, priors π1, . . . , πK P r0, 1s, threshold ε ą 0)

2: γk,i Ð
1
K @k P t1, . . . , Ku,@i P t1, . . . , mu.

3: while Q
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq, Γ
˘

´ `
`

pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq
˘

ą ε
do

4: γk,i Ð Equation 2.25 @k P t1, . . . , Ku,@i P t1, . . . , mu. Ź Expectation
5: ~µk Ð Equation 2.26 @k P t1, . . . , Ku. Ź Maximization
6: Σk Ð Equation 2.27 @k P t1, . . . , Ku. Ź Maximization
7: πk Ð Equation 2.28 @k P t1, . . . , Ku. Ź Maximization
8: end while
9: return pπ1,~µ1, Σ1q, . . . , pπK,~µK, ΣKq.

10: end function

2 .3 .4 Belief Propagation and Max-Product-Algorithm

Belief propagation is concerned with probabilistic inference over networks of discrete
random variables. In other words, we consider cases where we have many variables at
the same time, all of which can only take one of finitely many values, and where the
joint probability of all variables is fully specified. The reason why we consider those
variables to be connected in networks is that fully specifying a joint distribution over
many variables has exponential complexity in the number of variables. We can avoid this
exponential complexity by applying reasonable independence assumptions - and those
assumptions can be expressed intuitively in a graph model.

For simplicity, we will restrict ourselves here to belief networks (refer to Barber (2010)
for more general kinds of models). A belief network is, in general, a directed, acyclic graph
where each node is labelled with a variable and where an edge between variable x and y
indicates that y conditionally depends on x. Conversely, y is conditionally independent
from all variables that have no edge to y if conditioned on the variables that do have an
edge to y.

More specifically, we consider belief networks which have a tree shape, i.e. each node
has precisely one child, except for the root, which has none.

Example 82 (Examn Network). Consider the example of a written examn in school. The
grade g of a student in that examn may depend on the skill s the student has acquired
over the semester and the effort ε the student invests to prepare for this specific examn.
Further, the skill may depend on the quality of teaching τ, the prior knowledge of the
student π, and the effort of the student during the semester e. This model is visualized
as a belief network in 2.10. According to our model, the joint probability distribution
over all these variables can be factorized as follows.

ppg, s, τ, π, e, εq “ ppg|s, εq ¨ pps|τ, π, eq ¨ ppτq ¨ ppπq ¨ ppeq ¨ ppεq

73

algorithms

´5

0

5
y

t “ 1 t “ 5

´5 0 5
´5

0

5

x

y

t “ 10

´5 0 5
x

t “ 30

Figure 2.9: An illustration of the EM algorithm 15 for a GMM with K “ 3 components on the
data from Figure 2.8. Top left: After one iteration. Top right: After five iterations. Bottom left:
After ten iterations. Bottom right: After thirty iterations.

g

s

ε

τ

π

e

Figure 2.10: An example belief network with six variables g, s, τ, π, e, and ε, where g depends
on s and ε and s depends on τ, π, and e.

74

2 .3 probabilistic optimization

Assume that all variables are in the range t1, 2, 3, 4, 5, 6u, i.e. school grades. In that
case, specifying the full joint probability would require 66 ´ 1 “ 46655 parameters. In
our belief network, we save a lot of these parameters due to independence assumptions.
In particular, the distribution ppg|s, εq requires only 180 parameters, the distribution
pps|τ, π, eq requires 1080 parameters, and the distributions ppτq, ppπq, ppeq, and ppεq each
require 5 parameters, yielding 1280 parameters overall, a saving of over 97%.

A key optimization question over such network models is to find the most likely
value for each of the variables, i.e.:

max
x1,...,xm

ppx1, . . . , xmq (2.29)

If we try to solve such a problem naively, we would have to try all possible combinations of
values for all variables, which is exponential in m. Instead, we can exploit our factorization
by means of the max-product algorithm. In this algorithm, we only consider all possible
combinations of values for the current variable in the tree and its parents, which is
typically much less than the combinations of all variables in the network.

Example 83 (Max-Product Decomposition for the Examn network). For the examn net-
work above, we can decompose the maximization problem 2.29 as follows.

max
g,s,τ,π,e,ε

ppg, s, τ, π, e, εq “ max
g,s,τ,π,e,ε

ppg|s, εq ¨ pps|τ, π, eq ¨ ppτq ¨ ppπq ¨ ppeq ¨ ppεq

“ max
g,s,ε

ppg|s, εq ¨ ppεq ¨ max
s,τ,π,e

pps|τ, π, eq ¨ ppτq ¨ ppπq ¨ ppeq

The general max-product algorithm for belief trees is shown in Algorithm 16. Note
that this algorithm can be extended to also return the optimal values by either storing
those values during computation or by means of backtracing. Further note that we can
also compute conditional maxima by restricting the domain of the variables we condition
on. Note that the returned probability in these cases is incorrect, but the variable values
are correct.

Example 84 (Max-Product Algorithm for the Examn Network). In our examn network,
the a priori most likely values are τ “ 2, π “ 5, e “ 3, s “ 3, ε “ 3, and g “ 3.

However, if we condition on τ P r4, 5, 6s, s and g change to 4 respectively, i.e. if the
teaching is worse, we also expect less skill and worse grades.

75

algorithms

Algorithm 16 The max-product algorithm for belief trees with variables x1, . . . , xm, each
of which has domain X pxiq with finite size and only depends on its respective parents
Ppxiq. Note that this version of the algorithm does not yet return the optimal variable
values. For that purpose, we need a backtracing scheme.

1: function max -product(random variables x1, . . . , xm, domains X px1q, . . . ,X pxmq,
and parents Ppx1q, . . . ,Ppxmq, start variable x)

2: if Ppxq is empty then
3: return maxvPX pxq ppvq.
4: end if
5: x1, . . . , xn Ð Ppxq.
6: pmax Ð 0.
7: for all value combinations pv1, . . . , vnq P X px1q ˆ . . .ˆX pxnq do
8: for i Ð 1, . . . , n do
9: Restrict X pxiq Ð tviu.

10: end for
11: p Ð 1.
12: for i Ð 1, . . . , n do
13: p Ð p¨ max -product(x1, . . . , xm, X px1q, . . . ,X pxmq, Ppx1q, . . . ,Ppxmq, xi)
14: end for
15: p Ð maxvPX pxq ppv|v1, . . . , vnq ¨ p.
16: if p ą pmax then
17: pmax Ð p.
18: end if
19: end for
20: return pmax.
21: end function

76

2 .4 convex programming

2 .4 C O N V E X P R O G R A M M I N G

In the previous section we have covered specialized algorithms if our optimization
problem is probabilistic. Another special case are convex optimization problems. Recall
from Section 1.3 that for convex problems we can easily find a local minimum via numeric
approaches and such an local minimum is guaranteed to be a global minimum. Therefore,
even our standard numeric approaches above will automatically be more efficient for
convex problems. Beyond this, there are specific algorithms which are even faster for
certain subclasses of convex optimization problems. Two of these interesting subclasses
are linear and quadratic programs, which we cover here.

Unfortunately, the many tricks involved to make such algorithms fast are too involved
to cover here. However, we will still discuss the specific form of these problems and how
to transform an optimization problem in a linear or quadratic form.

2 .4 .1 Linear Programming

A linear program is an optimization problem of the following form.

min
~xPRK

~cT ¨~x (2.30)

s.t. A ¨~x ď~b

Aeq ¨~x “~beq

~lb ď ~x ď ~ub,

where ~c P RK, A P RmˆK, ~b P Rm, Aeq P RnˆK, ~beq P Rn, ~lb P RK, and ~ub P RK.
Expressing the linear program in this form has the advantage that most libraries accept
the parameters as written here as input.

Example 85 (Nutritional Food). Assume you plan your meals for the following day and
want to ensure that you get all nutrients you need. Further assume that you consider m
different nutrients overall and that you have a cookbook with K recipes that describes
the amount ai,j of nutrient j per portion of dish i as well as the time ci needed to cook
one portion of dish i. Further, assume that you need a daily dose of at least bj of nutrient
j. Then, the problem of selecting what to cook such that you get all nutrients you need
but need the least amount of cooking time is the following linear problem:

min
~xPRK

~cT ¨~x (2.31)

s.t. A ¨~x ď~b
~0 ď ~x ď ~8,

2 .4 .2 Quadratic Programming

A quadratic program is an optimization problem of the following form.

min
~xPRK

1
2
~xT ¨ H ¨~x~cT ¨~x (2.32)

s.t. A ¨~x ď~b

77

algorithms

Aeq ¨~x “~beq

~lb ď ~x ď ~ub,

where H is a positive semi-definite matrix, ~c P RK, A P RmˆK, ~b P Rm, Aeq P RnˆK,
~beq P Rn, ~lb P RK, and ~ub P RK. Note that H is also the Hessian of this problem, such
that positive semi-definiteness is required for convexity.

Example 86 (Gaussian ε-likelihood problem). Assume we are given a set of data points
~x1, . . . ,~xm P RK and wish to find the Gaussian distribution with a pre-defined covariance
matrix Σ P RKˆK, such that even the least likely data point is still as likely as possible.
Accordingly, the only parameter left to find is the mean of the distribution, and we can
formalize this problem as follows.

max
~µPRK

min
iPt1,...,mu

pp~xi|~µ, Σq

where pp~xi|~µ, Σq is the density function for the Gaussian with mean ~µ and covariance
matrix Σ.

Using a helping variable ε, we can re-write this max-min problem alternatively as
follows.

max
~µPRK ,εPR

ε

s.t. pp~xi|~µ, Σq ě ε @i P t1, . . . , mu

In other words, we try to find a mean ~µ, such that every data point ~xi has a likelihood of
at least ε and ε is maximized.

Now, recall that pp~xi|~µ, Σq has the following form.

pp~xi|~µ, Σq “
1

a

detp2π ¨ Σq
¨ exp

´

´
1
2
p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq

¯

Accordingly, we can re-write our inequality constraints as follows.

pp~xi|~µ, Σq ě ε @i P t1, . . . , mu
ðñ log

“

pp~xi|~µ, Σq
‰

ě logrεs @i P t1, . . . , mu

ðñ ´
1
2

log
“

detp2π ¨ Σq
‰

´
1
2
p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq ě logrεs @i P t1, . . . , mu

Now, we define a new variable r as follows.

r2 :“ ´2 logrεs ´ log
“

detp2π ¨ Σq
‰

Accordingly, we can re-write our side constraints as follows.

1
2

r2 ´
1
2
p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq ě 0 @i P t1, . . . , mu

ðñ r2 ´ p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq ě 0 @i P t1, . . . , mu

Further note that r2 strictly monotonously decreases for rising ε (and vice versa), such
that we can re-write the entire problem as follows.

min
~µPRK ,rPR

r2

78

2 .4 convex programming

s.t. r2 ´ p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq ě 0 @i P t1, . . . , mu

Note that this is not yet a quadratic problem because our side constraints are nonlinear.
However, we can transform it into a quadratic problem by employing the Wolfe dual.

max
~λPRm,~µPRK ,rPR

r2 ´

m
ÿ

i“1

λi ¨
`

r2 ´ p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq
˘

s.t. ~λ ě 0

B

Br
r2 “

B

Br

m
ÿ

i“1

λi ¨
`

r2 ´ p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq
˘

∇µr2 “ ∇µ

m
ÿ

i“1

λi ¨
`

r2 ´ p~xi ´~µqT ¨ Σ´1 ¨ p~xi ´~µq
˘

The two equality constraints evaluate to the following equations.

2r “
m
ÿ

i“1

λi ¨ p2rq ðñ

m
ÿ

i“1

λi “ 1

~0 “
m
ÿ

i“1

λi ¨ 2Σ´1 ¨ p~µ´~xiq ðñ ~µ “
m
ÿ

i“1

λi ¨~xi “ X ¨~λ

where X “
`

~x1, . . . ,~xm
˘

.
Accordingly, we can incorporate our side-constraints into our objective function,

which yields:

f p~λ,~µ, r2q “ r2 ´

m
ÿ

i“1

λi ¨
`

r2 ´ p~xi ´ X ¨~λq
T
¨ Σ´1 ¨ p~xi ´ X ¨~λq

˘

“r2 ´ r2 ¨

´

m
ÿ

i“1

λi

¯

looomooon

“1

`

m
ÿ

i“1

λi ¨~xT
i ¨ Σ

´1 ¨~xi
looooomooooon

´ci :“

´2 ¨
´

m
ÿ

i“1

λi ¨~xT
i

¯

loooooomoooooon

“~λT ¨XT

¨Σ´1 ¨ X ¨~λ

`

´

m
ÿ

i“1

λi

¯

looomooon

“1

~̈λT ¨ XT ¨ Σ´1 ¨ X ¨~λ

“´ 2~λT ¨ XT ¨ Σ´1 ¨ X ¨~λ`~λT ¨ XT ¨ Σ´1 ¨ X ¨~λ´~cT ¨~λ

“´~λT ¨ XT ¨ Σ´1 ¨ X ¨~λ´~cT ¨~λ

This finally leaves us with the following quadratic program.

min
~λPRm

1
2
¨~λT ¨

´

2XT ¨ Σ´1 ¨ X
¯

¨~λ`~cT ¨~λ

s.t. ~λ ě 0

79

algorithms

reflect

~x1

~x2

~x3

~c~x13

expand

~x1

~x2

~x3

~c

~x13

contract

~x1

~x2

~x3

~c
~x13

contract 2

~x1

~x2

~x3

~c

~x13

shrink

~x1

~x2

~x3

~x12

~x13

Figure 2.11: An illustration of the possible moves in the Nelder-Mead algorithm in two dimen-
sions. We try the moves in the order from left to right, where the second move is tried if the first
succeeds and all successive moves are tried if the one before failed. ~x1 marks the currently best
vertex, ~x2 the medium one, and ~x3 the worst one. ~c is the average of ~x1 and ~x2.

2 .5 H E U R I S T I C S

An algorithm is called a heuristic if it comes with no or only weak correctness guarantees
but yields a reasonably good solution reasonably quick. In optimization, heuristics
are generally slower to converge and yield worse outcomes compared to the previous
techniques. However, they are also more flexible and can be applied as a last resort
whenever the other techniques fail, for example if no gradient information is available or
in case of discrete problems.

2 .5 .1 Gradient-free Optimization

The first class of heuristics we cover are gradient-free optimization techniques for prob-
lems where the objective function may technically be continuous, or at least somewhat
smooth, but computing the gradient is infeasible. An example is the selection of hyper-
parameters for optimization problems, e.g. in machine learning. To compute the gradient
with respect to hyper-parameters, we would need to compute a gradient of the entire
optimization process, which is generally hard to do.

Downhill-Simplex / Nelder-Mead algorithm

The algorithm of Nelder and Mead (1965), also known as the downhill-simplex algorithm,
optimizes a function by constructing a K ` 1 dimensional simplex (e.g. a triangle in
2D) and iteratively switches the position of the currently worst vertex until the simplex
reaches a local minimum. In more detail, we try to move our worst vertex such that

80

2 .5 heuristics

it becomes better than the second-worst vertex. Our first move is to reflect the worst
vertex at the center (see Figure 2.11, top left). If that improves our objective function even
beyond the currently best vertex, we grow more confident and try to move twice as far
in the same direction, i.e. we expand our simplex (see Figure 2.11, top center). Conversely,
if our reflection does not even improve the objective function beyond the second-worst
vertex, we try to move only half as far, i.e. we contract our simplex (see Figure 2.11, top
right). If even that does not improve the objective function beyond the second-worst
vertex, we try to locate our new vertex half-way between its old position and the center,
i.e. an alternative contraction move (see Figure 2.11, bottom left). If that fails as well, we
shrink our entire simplex toward the currently best vertex (see Figure 2.11, bottom right).
The resulting algorithm is shown in Algorithm 17.

Algorithm 17 The downhill-simplex a.k.a. Nelder-Mead algorithm for the objective
function f : RK Ñ R and an error threshold ε ą 0, starting from an initial simplex
~x1, . . . ,~xK`1 P RK.

1: function downhill -simplex(objective function f : RK Ñ R, initial simplex
~x1, . . . ,~xK`1 P RK, threshold ε ą 0.)

2: Sort ~x1, . . . ,~xK`1 ascendingly according to f p~xkq.
3: while f p~xK`1q ´ f p~x1q ą ε do
4: ~c Ð 1

K ¨
řK

k“1~xk Ź Mean of K best vertices
5: ~δ Ð~c´~xK`1.
6: if f p~c`~δq ă f p~xKq then
7: if f p~c`~δq ă f p~x1q and f p~c` 2~δq ă f p~x1q then
8: ~xK`1 Ð~c` 2~δ. Ź Expand
9: else

10: ~xK`1 Ð~c`~δ. Ź Reflect
11: end if
12: else if f p~c` 1

2
~δq ă f p~xKq then

13: ~xK`1 Ð~c` 1
2
~δ. Ź Contract

14: else if f p~c´ 1
2
~δq ă f p~xKq then

15: ~xK`1 Ð~c´ 1
2
~δ. Ź Contract 2

16: else
17: for k P t2, . . . , K` 1u do
18: ~xk Ð

1
2p~xk `~x1q. Ź Shrink

19: end for
20: end if
21: Sort ~x1, . . . ,~xK`1 ascendingly according to f p~xkq.
22: end while
23: return ~x1.
24: end function

A key challenge in applying the downhill-simplex algorithm is initialization. If we
choose the initial simplex too small, we may get stuck in a bad local optimum. If we
choose it too wide, it may need a long time to converge. In general, the initial simplex
must be chosen problem-dependent. If we have, for example, a good initial guess ~x0 and
know a standard deviation σk for each variable, we can sample the initial vertices of the
simplex from a Gaussian with mean ~x0 and covariance matrix diagpσ2

1 , . . . , σ2
Kq.

81

algorithms

CMA-ES

Whenever the number of dimensions is large, the downhill-simplex method is infeasible
because the number of vertices scale with the dimensionality and the number of necessary
vertex movements for optimization may thus rise dramatically. An alternative to downhill-
dimplex optimization is provided by evolutionary strategies (ES), which can be sketched
as follows.

First, generate a sample of λ P N random points from the search domain. Second,
select from these the µ ă λ points with the lowest objective function value. Third, adjust
your generative process according to these selected points and continue at step one. Note
that λ and µ are hyper-parameters of this method which the user has to set beforehand.

We can distinguish two kinds of evolutionary strategies based on their selection pool
in step two, namely λ, µ-strategies if we select only from newly generated points and
λ` µ-strategies if we select from the the union of the newly generated points and the
previous generation.

Further, we can distinguish evolutionary strategies according to the generative process
for step one and how this process is adapted in step three. The probably easiest generative
process is to sample our data from an isotropic Gaussian distribution with constant
variance σ2 P R in step one and to adjust the mean of that Gaussian in step three. The
resulting Algorithm is shown in Algorithm 18. Figure 2.12 (top) shows the first iterations
of this algorithm on the Rosenbrock function.

Algorithm 18 An isotropic Gaussian µ, λ-evolutionary strategy (ES) for the objective
function f : RK Ñ R, the initial mean ~m0 P RK, the variance σ2 ą 0, a number of samples
µ P N, a number of survivors λ ă µ, and a threshold ε ą 0.

1: function es(objective function f : RK Ñ R, initial mean ~m0 P RK, variance σ2 ą 0,
sample number µ P N, survivor number λ ă µ, threshold ε ą 0.)

2: t Ð 0.
3: while t ă 1 or f p~mtq ´ f p~xt´1q ą ε do
4: Sample ~x1, . . . ,~xµ from the Gaussian distribution with mean ~mt and covariance

matrix σ2 ¨ IK.
5: Sort ~x1, . . . ,~xµ ascendingly according to the objective function value f p~xiq.
6: ~mt`1 Ð

1
λ ¨

řλ
i“1~xi.

7: t Ð t` 1.
8: end while
9: return ~x1.

10: end function

An issue with Algorithm 18 is that it does not adapt its step size. This way it can
neither jump over long stretches with small changes in the objective function, nor can it
zoom in on small changes when it is close to the optimum. To adapt the step size, we
can choose to not only adapt the mean in each iteration, but also the covariance matrix,
which then yields covariance matrix adaptation evolutionary strategy (CMA-ES). In its
simplest form, CMA-ES would initialize the covariance matrix as σ2 ¨ IK as before, but
adapt it in each iteration as follows.

Σt`1 Ð
1
λ
¨

λ
ÿ

i“1

p~xi ´ ~mtq ¨ p~xi ´ ~mtq
T,

i.e. we estimate the covariance matrix in the next step using the empirical covariance
matrix of the data, as we did with the mean. Unfortunately, though, this estimate is

82

2 .5 heuristics

´1

0

1

2

3

y
iteration 1 iteration 4 iteration 7

´2 ´1 0 1 2
´1

0

1

2

3

x

y

´2 ´1 0 1 2
x

´2 ´1 0 1 2
x

Figure 2.12: The first iterations of an evolutionary strategy with an isotropic Gaussian (top) and
CMA-ES (bottom) with µ “ 30 and λ “ 5. The Gaussian distribution in the respective iteration is
indicated by the orange, dashed line at one standard deviation.

inaccurate in higher dimensions K because the number of parameters in the covariance
matrix scales quadratically with K but we have only λ points to estimate these parameters.
Therefore, CMA-ES employs two tricks to estimate Σ more reliably. First, it keeps infor-
mation from previous iterations and second, it adds a one-rank update which depends
on the difference between the means from the current iteration and the previous iteration.
In more detail, the covariance matrix representation is distributed into a scalar variance
σ2

t and an actual matrix Σ which are updated separately.
Another innovation in CMA-ES is that not all data points are included equally in

estimating mean and covariance, but rather weighted according to their objective function
value. The details of the entire approach are rather involved such that we avoid a detailed
discussion here. For interested readers, we point to the pseudocode in Algorithm 19.
Figure 2.12 (bottom) displays some iterations of CMA-ES on the Rosenbrock function.

Bayesian Optimization

For all optimization procedures up to this point we have assumed that we want to
converge fast but that we can, essentially, perform as many evaluations of our objective
function as we need. However, what if our objective function is costly to compute, e.g.
because it is the solution of a subsequent optimization problem, such as a deep learning

83

algorithms

Algorithm 19 CMA-ES for the objective function f : RK Ñ R, the initial mean ~m0 P RK,
the initial variance σ2

0 ą 0, a number of samples µ P N, a number of survivors λ ă µ,
and a threshold ε ą 0.

1: function cma -es(objective function f : RK Ñ R, initial mean ~m0 P RK, variance
σ2

0 ą 0, sample number µ P N, survivor number λ ă µ, threshold ε ą 0.)
2: ~Σ0 Ð IK.
3: ~w Ð 2pλ, λ´ 1, . . . , 1qT{ppλ` 1q ¨ λq. Ź descending weights
4: µ~w Ð 1{

řλ
i“1 w2

i .
5: cσ Ð 3{K. c̄σ Ð

a

1´ p1´ cσqq
2 ¨
?

µ~w.
6: cΣ Ð 4{K. c̄Σ Ð

a

1´ p1´ cΣqq
2 ¨
?

µ~w.
7: c1 Ð 2{K2. cµ Ð µ~w{K2.
8: E Ð

?
K ¨ p1´ 1

4¨K ´
1

21¨K2 q.
9: ~pσ Ð~0. ~pΣ Ð~0.

10: t Ð 0.
11: while t ă 1 or f p~mtq ´ f p~xt´1q ą ε do
12: Sample ~x1, . . . ,~xµ from the Gaussian distribution with mean ~mt and covariance

matrix σ2
t ¨

~Σt.
13: Sort ~x1, . . . ,~xµ ascendingly according to the objective function value f p~xiq.
14: ~mt`1 Ð

řλ
i“1 wi ¨~xi. Ź Update Mean

15: V ¨Λ ¨V T Ð eigpΣtq Ź eigenvalue decomposition
16: ~pσ Ð p1´ cσq ¨~pσ ` c̄σ ¨V ¨

?
Λ
´1
¨
~mt`1´~mt

σt
.

17: σt`1 Ð σt ¨ exppcσ ¨ r
‖~pσ‖

E
´ 1sq. Ź Update σt.

18: ~pΣ Ð p1´ cΣq ¨~pΣ.
19: if ‖~pσ‖ ă 1.5 ¨

?
K then

20: ~pΣ Ð ~pΣ ` c̄Σ ¨
~mt`1´~mt

σt
.

21: cs Ð 0.
22: else
23: cs Ð c1 ¨ cΣ ¨ p2´ cΣq.
24: end if
25: Σt`1 Ð p1´ c1 ´ cµ ` csq ¨ Σt ` c1 ¨~pΣ ¨ pΣ

T ` cµ ¨
řλ

i“1 wi ¨
~xi´~mt

σt
¨
~xi´~mt

σt

T
. Ź

Update Σt.
26: t Ð t` 1.
27: end while
28: return ~x1.
29: end function

84

2 .5 heuristics

procedure? In other words, how can we get as much information as possible from the
few function evaluations that we do have?

Bayesian optimization addresses this challenge by optimizing not the objective func-
tion directly, but a surrogate model of the function which we obtain by means of regression.
More precisely, Bayesian optimization approximates the objective function via a regres-
sion model with an uncertainty estimate and then chooses the next point such that it has
a high chance to decrease our currently lowest objective function value. Acccordingly,
we require two main ingredients for Bayesian optimization: First, a regression technique
which provides an uncertainty estimate and second, a measure of sample utility if we
have a regression model. We focus here on the most common regression technique for
Bayesian optiization - Gaussian Processes - and the most common utility measures - the
lower confidence bound and expected improvement. If you wish to get a deeper insight,
you may want to refer to the works of Jones, Schonlau, and Welch (1998), Brochu, Cora,
and Freitas (2010), and Frazier (2018).

Gaussian processes are a fascinating topic in their own right and we encourage
interested students to have a deeper look into the topic (Rasmussen and Williams 2005,
e.g.). For our intents and purposes, a Gaussian process model estimates the value of
the objective function f p~xq at position ~x P RK via a normal distribution with mean µp~xq
and variance σ2p~xq. Roughly speaking, we compute the mean based on the objective
function value of similar points that we have already sampled and the variance based
on how many similar points there are. More specifically, assume that we have already
sampled the points p~x1, y1q, . . . , p~xt, ytq where yt « f pxtq. Further, we define a measure of
similarity kψ : RK ˆRK Ñ R as

kψp~x,~x1q “ exp
´

´
1
2
‖~x´~x1‖2

ψ2

¯

, (2.33)

which we also call the radial basis function kernel. Note that kψ is maximal if ~x “ ~x1 and
drops off in a Gaussian fashion if the distance between ~x and ~x1 becomes larger. Based on
this kernel function, we also define the auxiliary function~k : RK Ñ Rt and the auxiliary
matrix K P Rtˆt where:

~kp~xq “
`

kp~x,~x1q, . . . , kp~x,~xtq
˘T and Ki,j “ kp~xi,~xjq

Finally, we define the auxiliary vector ~y “ py1, . . . , ytq
T
P Rt.

Then, the Gaussian process estimate function µ : RK Ñ R and the uncertainty
function σ2 : RK Ñ R are given as follows.

µp~xq “~kp~xq
T
¨
`

K` σ̃2 ¨ It˘´1
¨~y (2.34)

σ2p~xq “ 1´~kp~xq
T
¨
`

K` σ̃2 ¨ It˘´1
¨~kp~xq (2.35)

where σ̃ is the assumed level of noise for our objective function estimates, typically set to
small values such as σ̃ “ 10´5.

Note that both of these functions can be evaluated efficiently because they only
require a few matrix-vector multiplications after the matrix inversion is pre-computed
once. Figure 2.13 (left) illustrates what our function estimate µ looks like for an example
objective function and as few as six samples.

Once we have built a regression model like this, our next task is to select the best
possible next sample, where “best possible” means a sample which may still improve our
objective function value. The first approach to find such a value is to consider the standard

85

algorithms

´1 0 1 2 3
´2

0

2

new sample

x

fp
xq

6 samples

´1 0 1 2 3
x

7 samples

f pxq
µpxq
locbp~xq
eip~xq

Figure 2.13: An illustration of Bayesian optimization for a single-dimensional optimization
problem. Left: A Gaussian process approximation (shown in orange, fashed) of the true objective
function f (shown in blue), using the six samples shown as orange circles. We also show the lower
confidence bound (purple, dotted) and the expected improvement curve (red, dot-dashed). Right:
Another approximation for the same function after sampling one additional point (indicated by
an arrow).

deviation of our Gaussian process regression and choose the value with the lowest lower
confidence bound (locb), which is given as locbp~xq “ µpxq ´ κ ¨ σp~xq, where κ ą 0 is a
hyper-parameter that expresses our desire to explore new values. It is recommended to
reduce this value κ over time (Brochu, Cora, and Freitas 2010). A second approach is to
minimize the so-called expected improvement (ei), which is defined as follows.

eip~xq :“
ż f˚

´8

ppyq ¨ ry´ f ˚s´dy,

where rxs´ is defined as mint0, xu and f ˚ is the lowest objective function value we have
achieved up to this points. In other words, we consider the expected amount by which ~x
will reduce our currently best objective function value f ˚, assuming that p is a normal
distribution with mean µp~xq and variance σ2p~xq. This integral can be solved in closed
form and yields the following solution (Brochu, Cora, and Freitas 2010).

eip~xq “
`

µp~xq ´ f ˚
˘

¨ P
`

zp~xq
˘

´ σp~xq ¨ p
`

zp~xq
˘

where zp~xq :“
f ˚ ´ µp~xq

σp~xq
,

where p is the density function of the standard normal distribution and where P is the
cumulative density function of the standard normal distribution.

Note again that both locb and ei can be computed efficiently and thus also optimized
efficiently using other means. It is even possible to compute gradients of those functions
(although we omit this here) and thus apply gradient-based methods for optimization.
Figure 2.13 illustrates the lower confidence bound and the expected improvement for a
simple, one-dimensional problem. As next sample, we choose the point which minimizes
the lower confidence bound and thus obtain the new model on the right.

The overall Bayesian Optimization algorithm is illustrated in Algorithm 20.

86

2 .5 heuristics

Algorithm 20 Bayesian optimization for an objective function f : RK Ñ R, initial samples
p~x1, y1q, . . . , p~xt, ytq where yi « f p~xiq for all i P t1, . . . , tu, an assumed noise variance
σ̃2 ą 0, a kernel bandwidth ψ ą 0, and a maximum number of function evaluations T.

1: function bayes -opt(objective function f : RK Ñ R, initial samples
p~x1, y1q, . . . , p~xt, ytq P RK ˆR, noise variance σ̃2 ą 0, kernel bandwidth ψ ą 0, budget
T.)

2: while t ă T do
3: ~y Ð py1, . . . , ytq

T.

4: Compute K P Rtˆt with Ki,j “ exp
´

´ 1
2
‖~xi´~xj‖2

ψ2

¯

.

5: Compute
`

K` σ̃2 ¨ It
˘´1.

6: Define~k : RK Ñ R via kip~xq “ exp
´

´ 1
2
‖~x´~xi‖2

ψ2

¯

.

7: Define µ : RK Ñ R as in Equation 2.34
8: Define σ : RK Ñ R as in Equation 2.35
9: Select a utility function u : RK Ñ R, either locb or ei.

10: ~xt`1 Ð argmin~x up~xq.
11: yt`1 Ð f p~xq.
12: t Ð t` 1.
13: end while
14: t˚ Ð argmint yt.
15: return ~xt˚ , yt˚ .
16: end function

87

algorithms

p0, 0, 0q p1, 0, 0q

p0, 1, 0q p1, 1, 0q

p0, 0, 1q
0 ´2

´1.25 ´3.25

´3

Figure 2.14: The feasible set of the knapsack problem from Example 87. The bit-flip neighborhood
is indicated by arrows. The objective function value is indicated by the number above each binary
vector.

2 .5 .2 Discrete Optimization

Discrete Optimization deals with optimization problems where the domain is countable,
in the sense that there exists a surjective map from the natural numbers to the domain
(also refer to Definition 22). Examples of such countable domains are the natural numbers
themselves, but also integers, binary vectors, strings, graphs, and many more.

The difficulty of discrete optimization problems lies in the fact that we can not move
smoothly through the domain, which we implicitly or explicitly did in all our previous
methods. Instead, we need to make “jumps” from one point to the next. In many cases,
this implies that the problems are NP-hard, which is to say that there exists no known
algorithm which can solve them exactly in less than exponential time. Due to these
difficulties, we rely on heuristics, the most popular of which we cover in this section.

Example 87 (Knapsack Problem). Consider the problem of packing optimally for a trip.
You could pack anything in a set of K objects, each of which has a utility uk and a weight
wk. However, you can carry at most ŵ kilograms of weight. The problem of maximizing
the utility of the stuff you carry while keeping within the weight limit is then given as
follows.

min
~xPZK

´~uT ¨~x

s.t. ~wT ¨~x ď ŵ
~0 ď ~x ď~1

Such a problem is, in general, NP-hard and is only feasible to solve exactly for small
instances.

For example, consider the following three-item problem with the utilities ~u “

p2, 1.25, 3qT, the weights ~w “ p3, 2, 4qT, and the weight limit ŵ “ 5. The feasible set
of the problem and the respective objective function values are shown in Figure 2.14. Ac-
cordingly, the global minimum is x “ p1, 1, 0qT with objective function value f pxq “ ´3.25.

Hill Climbing

The simplest approach to perform discrete optimization is to start from some point
x0 P X ˚ and then move to a neighboring point that decreases the objective function value
the most. The resulting algorithm is shown in Algorithm 21.

Note that this algorithm relies on a neighborhood function, which may be problem-
specific and needs to be efficiently computable. In case the neighborhood is too large
for a problem, it is also possible to consider only a randomly sampled subset of the

88

2 .5 heuristics

Algorithm 21 Hill climbing for an objective function f : X Ñ R, an initial point x0 P X ,
a neighborhood function N : X Ñ PpX q, and a feasible set X ˚.

1: function hill -climb(objective function f : X Ñ R, initial point x0 P X , neighbor-
hood function N : X Ñ PpX q, feasible set X ˚)

2: t Ð 0.
3: while t “ 0 or f pxtq ă f pxt´1q do
4: xt`1 Ð argminxPN pxtqXX˚ f pxq.
5: t Ð t` 1.
6: end while
7: return xt´1.
8: end function

neighborhood. Also note that we assume that all constraint functions can be evaluated
quickly in order to restrict the considered neighborhood to the feasible set.

Another challenge lies in suboptimal local minima because hill climbing can intrinsi-
cally not escape such local minima. As an example, consider the knapsack example 87
from before. If we start from x0 “ p0, 0, 0q, hill climbing would move to x1 “ p0, 0, 1q with
objective function value f px1q “ ´3 and then get stuck.

More generally speaking, hill climbing puts too much emphasis on exploitation com-
pared to exploration, i.e. we ensure that we find the best value in our immediate neighbor-
hood but do not explore enough of the entire feasible set to find the best neighborhood.
We therefore require a strategy which strikes a better compromise between exploration
and exploitation.

Simulated Annealing

Simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983) is inspired by statistical
mechanics where systems settle in favourable energy states if they are first heated and
then slowly cooled. This occurs because a system fluctuates a lot at high temperature,
such that many possible configurations are explored in a short time period. While cooling,
the fluctuation reduces and the system is more likely to settle in a closeby state with
lower energy, i.e. exploitation is emphasized more over time.

In more detail, energy configurations at temperature T are distributed according to
the Boltzmann distribution, which assigns a probability proportional to expp´α ¨ f {Tq to
a state with energy f , where α is some conversion constant between temperature and
energy.

To transfer these ideas to optimization, we assign a probability Ppxq to all neighbors
of xt as follows.

Ppxq “
wpxq

ř

xPN pxtq
wpxq

where wpxq “

#

1 if f pxq ď f pxtq

exp
“

´
f pxq´ f pxtq

T

‰

otherwise
(2.36)

In other words, we move to all neighbors which improve the objective function value with
equal probability and move to all neighbors which would make the objective function
value worse with a probability according to the Boltzmann distribution. The temperature
T is then reduced over time. The resulting algorithm is shown in Algorithm 22.

Tabu Search

Tabu search (Glover 1986) is another variant of hill climbing to avoid getting stuck in
local minima. The first change to hill climbing is to permit to move to worse points if no

89

algorithms

Algorithm 22 Simulated Annealing for an objective function f : X Ñ R, an initial point
x0 P X , a neighborhood function N : X Ñ PpX q, a feasible set X ˚, an initial temperature
T0 ą 0, a cooling factor α P p0, 1q, and a minimum temperature 0 ă Tmin ă T0.

1: function simulated-annealing(objective function f : X Ñ R, initial point
x0 P X , neighborhood function N : X Ñ PpX q, feasible set X ˚, initial temperature
T0 ą 0, cooling factor α P p0, 1q, minimum temperature 0 ă Tmin ă T0.)

2: t Ð 0. T Ð T0.
3: while T ą Tmin or f pxtq ă f pxt´1q do
4: y1, . . . , ym Ð N pxtq XX ˚.
5: for i P t1, . . . , mu do
6: wi Ð maxt1, exp

“

´
f pyiq´ f pxtq

T

‰

u. Ź Boltzmann distribution
7: end for
8: for i P t1, . . . , mu do
9: pi Ð wi{

`
řm

i“1 wi
˘

.
10: end for
11: Sample i randomly according to probabilities pi.
12: xt`1 Ð yi.
13: T Ð T ¨ α. Ź anneal temperature
14: t Ð t` 1.
15: end while
16: return xt´1.
17: end function

better option is available in the neighborhood. The second change is to forbid moving to
points that have already been visited in the last T steps (these points are ’taboo’). This
way, tabu search prevents getting stuck in regions of the search space with an isolated
local minimum that has only a narrow basin of attraction.

Tabu search poses two implementation challenges. First, there is no immediately
obvious condition to stop the search because we could always keep moving as long as our
non-taboo neighborhood is not empty. Therefore, we need some new kind of stopping
criterion. In this case, we go for a certain number of moves τ, after which only accept
improvements in the objective function value.

Another challenge is that the tabu list may forbid the entire neighborhood of a point
such that we get stuck. Such a case can be avoided by making the oldest element in the
tabu list available again. The resulting algorithm is shown in Algorithm 23.

This concludes our short overview of local search approaches for discrete optimization.
However, it is also possible to perform discrete optimization - at least for certain cases
- without local search. Two famous options are branch & cut as well as ant colony
optimization, which we will cover next.

Branch and Cut

Branch and cut (Padberg and Rinaldi 1991) is an algorithm to solve integer linear programs
(ILPs). An ILP is a variation of the linear program in Equation 2.30, where we restrict the
domain to contain only integers. In other words, we consider problems of the following
form.

min
~xPZK

~cT ¨~x (2.37)

s.t. A ¨~x ď~b

90

2 .5 heuristics

Algorithm 23 Tabu search for an objective function f : X Ñ R, an initial point x0 P X ,
a neighborhood function N : X Ñ PpX ˚q, a tabu list length T P N, and a minimum
number of moves τ P N.

1: function tabu -search(objective function f : X Ñ R, initial point x0 P X , neighbor-
hood function N : X Ñ PpX ˚q, tabu list length T P N,minimum number of moves
τ P N.)

2: t Ð 0.
3: Φ ÐH.
4: while t ă τ or f pxtq ă f pxt´1q do
5: if N pxtqzΦ ‰ H then
6: xt`1 Ð argminxPN pxtqzΦ f pxq.
7: else
8: xt`1 Ð oldest element in Φ.
9: end if

10: Φ Ð ΦY txtu. Ź xt is now taboo
11: if |Φ| ą τ then
12: Remove oldest element from Φ.
13: end if
14: t Ð t` 1.
15: end while
16: return xt´1.
17: end function

Aeq ¨~x “~beq

~lb ď ~x ď ~ub,

Just as linear programs, ILPs occur quite frequently in computer science. Due to
their discrete nature, however, there are much harder to solve. More specifically, they are
NP-hard.

While we could employ local search heuristics as before, the intuitively most straight-
forward heuristic for an ILP is to solve instead the continuous linear program - which is
possible efficiently - and then round all values of the solution vector to the nearest integer.
Unfortunately, though, the rounding may worsen the objective function and, even worse,
violate side constraints.

A smarter alternative is offered by the branch and cut approach. In this method, we
first solve the continuous version of the ILP and if our solution vector is not yet an
integer vector, we construct two alternative linear programs for a non-integer entry
xk of our vector ~x, namely one program where xk is upper-bounded by txku, and one
program where xk is lower-bounded by rxks. Then we iterate the procedure. This yields
Algorithm 24. Figure 2.15 shows the algorithm applied to the knapsack example 87.

Note that branch-and-cut may need many branches to arrive at the optimal solution.
Therefore, using a reasonable strategy to decide on the best branch is key. However, a
nice property of branch-and-cut is that it requires no hyper-parameter choices, not even
an initial point, which makes it easier to apply.

Ant Colony Optimization

Ant colony optimization (ACO) (Dorigo and Di Caro 1999) is an optimization technique
for graph problems which is inspired by biological research. In particular, it has been

91

algorithms

Algorithm 24 Branch-and-Cut algorithm for an ILP with parameters ~c, A,~b, Aeq,~beq, ~lb,
and ~ub, assuming a solver for linear programs LP.

1: function branch -and -cut(parameters ~c, A,~b, Aeq,~beq, ~lb, and ~ub.)
2: Φ Ð tp~lb, ~ubqu.
3: f ˚ Ð8. ~x˚ Ð~0.
4: while Φ ‰ H do
5: Poll bounds p~lb, ~ubq from Φ.
6: ~x Ð LPp~c, A,~b, Aeq,~beq, ~lb, ~ubq Ź solve relaxed problem
7: if ~cT ¨~x ě f ˚ then
8: Continue.
9: end if

10: if ~x P ZK then
11: f ˚ Ð~cT ¨~x. ~x˚ Ð ~x.
12: Continue.
13: end if
14: Let k Ð argmaxkPt1,...,Ku |xk ´ roundp~xkq|. Ź Select non-integer variable

15: l̃b Ð ~lb. l̃bk Ð rxks. Ź Cut
16: ũb Ð ~ub. ũbk Ð txku. Ź Cut
17: Φ Ð ΦY tp~lb, ũbq, pl̃b, ~ubqu. Ź Branch
18: end while
19: return ~x˚, f ˚.
20: end function

p 1
3 , 0, 1q

p0, 1
2 , 0q p1, 0, 1

2q

x1 ď t 1
3 u x1 ě r 1

3 s

p0, 0, 1q
f “ ´3 p0, 1, 3

4q

x2 ď t 1
2 u x2 ě r 1

2 s

p0, 1, 0q
f “ ´1.25 infeasible

x3 ď t 3
4 u x3 ě r 3

4 s p1, 1, 0q
f “ ´3.25 infeasible

x3 ď t 1
2 u x3 ě r 1

2 s

Figure 2.15: An illustration of the branch-and-cut Algorithm 24 applied to Example 87. We start
off with the solution to the continuous version of the integer linear program at the top and then
solve two new linear programs where the value of x1 is restricted to ď 0 and ě 1 respectively.
This yields new solutions for which we repeat the procedure until we achieve an integer solution
(here: ~x “ p0, 0, 1q). Then we store the respective objective function value (here: f p~xq “ ´3) and
prune all subsequent computations with a worse value. The best solution is highlighted with a
dashed circle.

92

2 .5 heuristics

observed that groups of Argentinian ants are quite efficient in finding shortest paths to a
food source even though a single ant would not have the capacity to perform such an
optimization. A model that explains this behavior is as follows. First, every ant moves
at random, starting from the nest, until it finds a food source. Then it tracks back its
path and leaves a pheromone trail on it. Subsequent ants will now be biased to follow
the pheromone trail but may still break off and discover faster routes to the same food
source. Because ants that discover a shorter path will be quicker in leaving a pheromone
trail, such paths will be reinforced until the shortest path contains so much pheromone
that all ants move along this path.

To exploit such behavior in an algorithm, we require three ingredients. First, a function
ψ which constructs a feasible path of an ant through a given graph, based on the
pheromone that is already present. Second, an objective function f for the path. And
third, a function φ which controls the pheromone update along a path, given its objective
function value. The abstract pseudocode for ACO is shown in Algorithm 25.

Algorithm 25 Ant colony optimization (ACO) for a path construction function ψ :
Rmˆm Ñ Πpt1, . . . , muq, an objective function f : Πpt1, . . . , muq Ñ R, a pheromone
update function φ : R Ñ R, a number of iterations T P N, and a pheromone evaporation
rate α P r0, 1s, where Πpt1, . . . , muq is the set of all permutations of t1, . . . , mu, i.e. the set
of all possible paths in the graph.

1: function aco(path function ψ, objective function f , update function φ, number of
iterations T P N, evaporation rate α P r0, 1s)

2: Initialize an initial pheromone matrix Φ P Rmˆm.
3: c˚ Ð8.
4: for t P t1, . . . , Tu do
5: pi1, . . . , inq Ð ψpΦq. Ź Compute path
6: c Ð f pi1, . . . , inq. Ź Compute value of path
7: if c ă c˚ then
8: π˚ Ð pi1, . . . , inq. c˚ Ð c.
9: end if

10: for j P t1, . . . , n´ 1u do
11: Φij,ij`1 Ð Φij,ij`1 ` φpcq. Ź Update pheromone
12: end for
13: for i P t1, . . . , mu do
14: for h P t1, . . . , mu do
15: Φi,j Ð Φi,j ¨ p1´ αq. Ź Evaporate pheromone
16: end for
17: end for
18: end for
19: return π˚.
20: end function

To make ACO applicable in practice, we need to decide on useful forms of ψ, f , and
φ for our problem in question. The most straightforward application is the traveling
salesperson problem from Example 5. In the TSP, we are looking for a shortest round trip
between m cities, for which the pairwise distances are recorded in the matrix D P Rmˆm.
Accordingly, the functions ψ, f , and φ can be chosen as specified in Algorithm 26. A
visualization is shown in Figure 2.16.

93

algorithms

Algorithm 26 The path construction function ψ, the objective function f , and the update
function φ for ant colony optimization (ACO) for the traveling salesperson problem with
pairwise distance matrix D P Rmˆm.

1: function ψ(Pheromone matrix Φ P Rmˆm)
2: t Ð 1.
3: it Ð 1.
4: V Ð t2, . . . , mu. Ź Remaining nodes.
5: for t Ð t2, . . . , m´ 1u do
6: ~p Ð~0 P Rm.
7: for j P V do
8: pj Ð Φit,j{Dit,j.
9: end for

10: ~p Ð ~p{
`
řm

j“1 pj
˘

.
11: Sample j randomly with probability pj.
12: it`1 Ð j.
13: V Ð Vztju.
14: end for
15: return i1, . . . , im.
16: end function
17: function f (Path i1, . . . , im)
18: return Di1,i2 ` . . .`Dim´1,im `Dim,i1 .
19: end function
20: function φ(objective function value c)
21: return 1{c.
22: end function

Rathaus

Jahnplatz

Alter Markt

Sparrenburg

1{36

1{36

1{36

1{36

Rathaus

Jahnplatz

Alter Markt

Sparrenburg

α{36` 1{35

1{35

α{36` 1{35

1{35

α{36

α{36

Figure 2.16: A visualization of two iterations of the traveling salesperson version of ant colony
optimization (ACO). The solid lines show the path of the current ant and the numbers display the
pheromone value right after the pheromone update step. The pheromone put on the path grows
for shorter paths. Further, edges that are used by multiple ants accumulate more pheromone
while the pheromone on edges that ae used less often evaporates exponentially over time.

94

bibliography

B I B L I O G R A P H Y

Barber, David (2010). Bayesian Reasoning and Machine Learning. Cambridge, UK: Cam-
bridge University Press. url: www.cs.ucl.ac.uk/staff/D.Barber/brml.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge, UK:
Cambridge University Press. isbn: 9780521833783. url: http://web.stanford.edu/
~boyd/cvxbook/.

Brochu, Eric, Vlad Cora, and Nando de Freitas (2010). A Tutorial on Bayesian Optimization
of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. arXiv: 1012.2599 [cs.LG].

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical Society. Series
B 39.1, pp. 1–38. url: https://www.jstor.org/stable/2984875.

Dorigo, M. and G. Di Caro (1999). “Ant colony optimization: a new meta-heuristic”. In:
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
Vol. 2, pp. 1470–1477. doi: 10.1109/CEC.1999.782657.

Fackler, Paul L. (2005). Notes on Matrix Calculus. North Carolina State University. url:
http://www2.stat.duke.edu/~zo2/shared/resources/matrixc1.pdf.

Frazier, Peter I. (2018). A Tutorial on Bayesian Optimization. arXiv: 1807.02811 [stat.ML].
Glover, Fred (1986). “Future paths for integer programming and links to artificial intel-

ligence”. In: Computers & Operations Research 13.5. Applications of Integer Program-
ming, pp. 533–549. doi: 10.1016/0305-0548(86)90048-1.

Hillier, Frederick S. and Gerald J. Liebermann (2010). Introduction to Operations Research.
9th ed. New York City, NY, USA: McGraw-Hill. isbn: 9780073376295.

Jones, Donald R., Matthias Schonlau, and William J. Welch (1998). “Efficient Global
Optimization of Expensive Black-Box Functions”. In: Journal of Global Optimization
13.4, pp. 455–492. doi: 10.1023/A:1008306431147.

Kingma, Diederik P. and Jimmy Lei Ba (2015). “Adam: A Method for Stochastic Optimiza-
tion”. In: Proceedings of the Third International Conference on Learning Representations
(ICLR 2015). Ed. by Yoshua Bengio et al. url: https://arxiv.org/abs/1412.6980.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). “Optimization by Simulated An-
nealing”. In: Science 220.4598, pp. 671–680. doi: 10.1126/science.220.4598.671.

Nelder, J. A. and R. Mead (1965). “A Simplex Method for Function Minimization”. In:
The Computer Journal 7.4, pp. 308–313. doi: 10.1093/comjnl/7.4.308.

Nocedal, Jorge and Stephen J. Wright (1999). Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. New York: Springer. doi: 10.1007/
b98874.

Padberg, M. and G. Rinaldi (1991). “A Branch-and-Cut Algorithm for the Resolution of
Large-Scale Symmetric Traveling Salesman Problems”. In: SIAM Review 33.1, pp. 60–
100. doi: 10.1137/1033004.

Rasmussen, Carl Edward and Christopher K. I. Williams (2005). Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). Cambridge, MA, USA:
The MIT Press.

Simon, Dan (2013). Evolutionary Optimization Algorithms. Hoboken, NJ, USA: Wiley. isbn:
978-0-470-93741-9.

Wolfe, Philip (1961). “A duality theorem for non-linear programming”. In: Quarterly of
Applied Mathematics 19.3, pp. 239–244. doi: 10.1090/qam/135625.

95

www.cs.ucl.ac.uk/staff/D.Barber/brml
http://web.stanford.edu/~boyd/cvxbook/
http://web.stanford.edu/~boyd/cvxbook/
https://arxiv.org/abs/1012.2599
https://www.jstor.org/stable/2984875
https://doi.org/10.1109/CEC.1999.782657
http://www2.stat.duke.edu/~zo2/shared/resources/matrixc1.pdf
https://arxiv.org/abs/1807.02811
https://doi.org/10.1016/0305-0548(86)90048-1
https://doi.org/10.1023/A:1008306431147
https://arxiv.org/abs/1412.6980
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1007/b98874
https://doi.org/10.1007/b98874
https://doi.org/10.1137/1033004
https://doi.org/10.1090/qam/135625

acronyms

A C R O N Y M S

ACO ant colony optimization. 91, 93, 94
Adam adaptive moment estimation. 46, 47

BFGS Broyden-Fletcher-Goldfarb-Shanno algorithm. 51, 52, 54, 55

CMA-ES covariance matrix adaptation evolutionary strategy. 82–84

EM Expectation Maximization. 67, 70, 73, 74

GMM Gaussian Mixture Model. 68, 70, 73, 74

ILP integer linear program. 90–92

KKT Karush-Kuhn-Tucker condition. 28, 55

97

glossary

G L O S S A RY

convex A set is called convex if the connecting line between any two points in the set is
also in the set; a function is called convex if the connecting line between any two points
on the curve is above the curve; an optimization problem is called convex if both the
objective function and the feasible set are convex; refer to Definition 37. 17–23, 27, 28, 31,
32, 35–40, 42, 43, 45, 49, 58, 62, 63, 66, 71–73, 77, see objective function & feasible set

domain (X) The set of values for the variable in an optimization problem; refer to
Definition 1. 1, 2, 5, 7, 8, 10, see variable

equality constraint (hjp~xq “ 0) an equation that limits the possible values the variable of
an optimization problem; refer to Definition 1. 1, 2, 5, 21, 22, 29, 31, 38–41, 60–64, 79, see
variable

feasible set (X ˚) The subset of the domain for which all inequality and equality con-
straints are fulfilled. An element of the feasible set is called feasible point; refer to Defini-
tion 11. 5, 7–10, 17, 21, 22, 26, 29, 36, 58, 60–62, 64, 88–90, see domain, equality constraint
& inequality constraint

global minimum (x˚) An element x˚ from the feasible set X ˚ of a minimization problem,
such that for all x P X ˚ it holds f px˚q ď f pxq, where f is the objective function; refer to
Definition 11. 7–9, 15–17, 19, 29, 31–33, 35–40, 42, 43, 45, 51, 55, 63, 66, 67, 70–73, 77, 88,
see minimization problem, feasible set & objective function

inequality constraint (gip~xq ě 0) an inequality that limits the possible values the variable
of an optimization problem; refer to Definition 1. 1, 2, 5, 21, 22, 27–29, 31, 41, 58–60, 78,
see variable

Karush-Kuhn-Tucker condition A list of necessary conditions for the optimum of a
constrained optimization problem, using the Lagrange dual; refer to Definition 55. 28–31,
97, see Lagrange dual

Lagrange dual (L) The Lagrange dual of a problem is an alternative version of a problem
where inequality and equality constraints are incorporated as terms in the objective
function. L denotes this alternative objective function; refer to Definition 45. 24–33, 38,
40, 55, 62, 72, see inequality constraint & equality constraint
local minimum (x˚) An element x˚ from the feasible set X ˚ of a minimization problem,
such that for all x P X ˚ in a neighborhood around x˚ it holds f px˚q ď f pxq, where f is
the objective function; refer to Definition 15. 8, 9, 12–17, 19, 25, 28, 29, 35–39, 42, 43, 45,
51, 52, 58–60, 77, 80, 89, 90, see minimization problem, feasible set & objective function

maximization problem A problem given by a domain, an objective function, a list of
equality constraints, and a list of inequality constraints. We wish to find an element from
the feasible set which maximizes the output of the objective function; refer to Definition 1.
1, 6, see domain, objective function, inequality constraint, equality constraint & feasible
set
minimization problem A problem given by a domain, an objective function, a list of
equality constraints, and a list of inequality constraints. We wish to find an element
from the feasible set which minimizes the output of the objective function; refer to

99

glossary

Definition 1. 1, 2, 5, 6, see domain, objective function, inequality constraint, equality
constraint & feasible set

objective function (f) a function that maps from the domain to the real numbers. In a
minimization problem, we wish to find the input value which minimizes the output of
the objective function; refer to Definition 1. 1, 2, 5–11, 16, 17, 22, 26, 27, 29, 32, 33, 35–40,
42–52, 54–62, 64, 79–94, see domain
optimization problem Either a minimization problem or a maximization problem; can
be re-written into a standard minimization form; refer to Definition 1. 1, 2, 6–8, 10, 13,
14, 17, 19, 21, 22, 24, 26–29, 31–33, 35, 38, 43, 44, 46, 50, 55–57, 62, 65, 67, 70, 77, 88, see
minimization problem & maximization problem

positive definite A symmetric square matrix A is called positive definite if for all nonzero
~x it holds ~xT ¨ A ¨~x ą 0; equivalent to having only positive eigenvalues; refer to Defini-
tion 29 and Theorem 35. 12–16, 28, 36–40, 51, 55, 68, 71, 72
positive semi-definite A symmetric square matrix A is called positive definite if for all
~x it holds ~xT ¨ A ¨~x ě 0; equivalent to having only non-negative eigenvalues; refer to
Definition 29 and Theorem 35. 12–16, 18, 19, 21, 35, 37, 78

Slater’s condition Slater’s condition requires that an optimization problem is convex,
that all equality constraints are affine, and that at least one point exists for which all
inequality constraints are strictly fulfilled; this constraint guarantees strong duality; refer
to Definition 53 and Theorem 54. 27–29, 31, 33, 38–40, see convex, equality constraint &
inequality constraint

variable (~x) Also: parameter; a placeholder for the values we can change/vary in order
to minimize or maximize the objective function in an optimization problem; refer to
Definition 1. see domain & objective function

Wolfe dual The Wolfe dual of a problem is a version of the Lagrange dual where we
already plug in the Karush-Kuhn-Tucker conditions; refer to Definition 59. 31–33, 79, see
Lagrange dual & Karush-Kuhn-Tucker condition

100

R U L E S F O R D E R I VAT I V E S A N D G R A D I E N T S

G E N E R A L R U L E S

Let ~x P Rm, let f : Rm Ñ R, let g : Rm Ñ R, let h : R Ñ R, and let α, β P R be constants.

∇~x
`

α ¨ f p~xq ` β ¨ gp~xq
˘

“ α ¨∇~x f pxq ` β ¨∇~xgpxq (linearity rule)
∇~x

`

f p~xq ¨ gp~xq
˘

“
`

∇~x f p~xq
˘

¨ gp~xq ` f p~xq ¨
`

∇~xgp~xq
˘

(product rule)

∇~x
f p~xq
gp~xq

“

`

∇~x f p~xq
˘

¨ gp~xq ´ f p~xq ¨
`

∇~xgp~xq
˘

gp~xq2
(quotient rule)

∇~xhpgp~xqq “
` B

Bgp~xq
hpgp~xqq

˘

¨∇~xgp~xq (chain rule)

S C A L A R D E R I VAT I V E S

Let c, n be constants.

B

Bx
c ¨ x “ c,

B

Bx
xn “ n ¨ xn´1,

B

Bx
1
xn “ ´n ¨

1
xn`1 (polynom rules)

B

Bx
exppxq “ exppxq,

B

Bx
logpxq “

1
x

(exponential / log rule)

M AT R I X C A L C U L U S

Let ~x P Rm, let A P Rmˆm, and let ~y P Rm.

∇~x~y “ 0

∇~x~yT ¨~x “ ∇~x~xT ¨~y “ ~y

∇~x ~xT ¨ A ¨~x “ pAT ` Aq ¨~x

∇2~x~xT ¨ A ¨~x “ AT ` A

∇~xp~x´~yqT ¨ A ¨ p~x´~yq “ pAT ` Aq ¨ p~x´~yq

∇Ap~x´~yqT ¨ A ¨ p~x´~yq “ p~x´~yq ¨ p~x´~yqT

∇A logpdetpAqq “ pppA´1qT if A is invertible

R E V E R S E S W E E P

The “reverse sweep” is just an application of the chain rule. For any set of equations of
the form z “ f py1, . . . , ynq and y1 “ g1pxq, . . . , yn “ gnpxq it holds:

B

Bx
z “

n
ÿ

i“1

Bz
Byi

¨
Byi

Bx

101

rules for derivatives and gradients

Example:

x

y1

y2

a z

θ1

θ2

θ3

θ4

σ
`

where σpµq “ 1{p1` exppµqq. Thus, we obtain the following example derivatives, using
the reverse sweep rule:

Bz
Ba
“ z ¨ p1´ zq,

Bz
By2

“
Bz
Ba
¨
Ba
By2

“ z ¨ p1´ zq ¨ θ4,
Bz
By1

“
Bz
Ba
¨
Ba
By1

“ z ¨ p1´ zq ¨ θ3,

Bz
Bx
“
Bz
By1

¨
By1

Bx
`
Bz
By2

¨
By2

Bx
“ z ¨ p1´ zq ¨

´

θ3 ¨ θ1 ` θ4 ¨ θ2

¯

,
Bz
Bθ1

“
Bz
By1

¨
By1

Bθ1
“ z ¨ p1´ zq ¨ θ3 ¨ x

102

	Contents
	Introduction
	Theory
	Basic Concepts of Optimization
	Optimization Problems and Formalization
	Standard Form
	Global and Local Optima
	Continuous versus Discrete Optimization Problems

	Differentiable Optimization
	Gradient, Hessian, and Taylor Expansion
	Searching for Optima with Gradient and Hessian
	Eigenvalue analysis

	Convex Optimization
	Definition and Convex Optimization Theorem
	Engineering Convex Problems

	Duality
	Lagrange Dual Form
	Duality Gaps
	Karush-Kuhn-Tucker conditions
	Wolfe Dual Form

	Algorithms
	Analytical Methods
	Unconstrained Optimization
	Equality-Constrained Optimization
	Inequality-Constrained Optimization

	Numeric Methods
	Unconstrained Optimization
	Gradient Descent
	Stochastic Gradient Descent / Adam
	Optimizing the Step Size
	Conjugate Gradient
	Newton's Method
	(L-)BFGS
	Trust Region Method

	Constrained Optimization
	The Log-Barrier Method
	Penalty Method
	Projection Methods

	Probabilistic Optimization
	Maximum Likelihood
	Maximum a posteriori
	Expectation Maximization
	Belief Propagation and Max-Product-Algorithm

	Convex Programming
	Linear Programming
	Quadratic Programming

	Heuristics
	Gradient-free Optimization
	Downhill-Simplex / Nelder-Mead algorithm
	CMA-ES
	Bayesian Optimization

	Discrete Optimization
	Hill Climbing
	Simulated Annealing
	Tabu Search
	Branch and Cut
	Ant Colony Optimization

	Bibliography
	Acronyms
	Glossary
	Rules for Derivatives and Gradients

