
Lineage-Based Subclonal
Reconstruction of Cancer

Samples

Ph. D. Thesis
submitted to the

Faculty of Technology,
Bielefeld University, Germany

for the degree of Dr. rer. nat.

by

Linda Katharina Sundermann

January, 2019

Lineage-Based Subclonal
Reconstruction of Cancer

Samples

Ph. D. Thesis
submitted to the

Faculty of Technology,
Bielefeld University, Germany

for the degree of Dr. rer. nat.

by

Linda Katharina Sundermann

January, 2019

Supervisors:
Prof. Dr. Jens Stoye, Bielefeld University
Prof. Dr. Gunnar Rätsch, ETH Zurich
Prof. Quaid Morris, Ph. D., University of Toronto

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706.
Printed on non-aging paper according to DIN-ISO 9706.

Zusammenfassung

Krebs wird durch die Anhäufung von Mutationen verursacht und kann dadurch zu ge-
netisch heterogenen Zellpopulationen führen. Es ist notwenig, eine Krebsprobe in Be-
zug auf ihre subklonare Rekonstruktion zu untersuchen. Die subklonare Rekonstruk-
tion gibt Aufschluss darüber, welche Mutationen in welcher Population zusammen
auftreten, welcher Zellanteil zu welcher Population gehört und in welcher Verwandt-
schaftsbeziehung die Populationen zueinander stehen. Mutationen, die typischerweise
zur Inferenz einer subklonaren Rekonstruktion benutzt werden, sind einfache somati-
sche Mutationen (englisch: simple somatic mutations (SSMs)) und Kopienanzahlaberra-
tionen (englisch: copy number aberrations (CNAs)).

Methoden, die zur Bildung einer subklonaren Rekonstruktion ausschließlich SSMs
verwenden, benutzen das Konzept von Lineages anstatt Populationen. Im Unterschied
zu einer Population, die alle Zellen des gleichen Genotyps enthält, besteht eine Li-
neage aus allen Zellen, die aus der gleichen Ursprungszelle hervorgegangen sind. In
einer Lineage-basierten subklonaren Rekonstruktion werden Mutationen den Linea-
ges zugeordnet, in denen sie entstanden sind. Die Lineagehäufigkeit gibt den Anteil
an Zellen an, in denen Mutationen, die der Lineage zugeordnet sind, auftreten.

Methoden, die eine subklonare Rekonstruktion mit CNAs erstellen, basieren auf
Populationen. Im Unterschied zum Lineage-basierten Ansatz werden Mutationen allen
Populationen zugeordnet, in denen sie auftreten. Um die Häufigkeit von Mutationen
berechnen zu können, müssen die Beziehungen zwischen allen Populationen inferiert
werden. Deshalb sind mehrere subklonare Rekonstruktionen nötig, um mehrdeutige
Populationsbeziehungen darstellen zu können.

Zwei Populations-basierte subklonare Rekonstruktionsmethoden, die mit SSMs and
CNAs arbeiten, sind PhyloWGS and Canopy. Im Vergleich zu Canopy inferiert Phy-
loWGS die CNAs nicht selber, sondern benötigt sie als Eingabe.

i

In dieser Doktorarbeit wird die erste Lineage-basierte Methode vorgestellt, die sub-
klonare Rekonstruktionen mithilfe von SSMs und CNAs von massensequenzierten
Tumorproben erstellt. Durch die Modellierung von CNAs als relative Kopienanzahl,
also Kopienanzahlveränderungen, anstatt absolute Kopienanzahl wird es möglich sie
Lineages zuzuordnen. Ein anderes Merkmal unserer Methode ist die Inferenz von vor-
handenen oder fehlenden Lineagebeziehungen nur in Fällen, in denen Beziehungen in
den Eingabedaten beobachtet werden können. Anderenfalls werden die Beziehungen
als mehrdeutig modelliert. Dies erlaubt die Kombination von mehreren mehrdeutigen
subklonaren Rekonstruktionen zu einer einzigen subklonaren Rekonstruktion.

Als Eingabe nutzt unsere Methode SSM-Allelehäufigkeiten und die durchschnitt-
liche Allel-spezifische Kopienanzahl von Genomsegmenten. Darüberhinaus wird die
Anzahl an Lineages als Eingabe benötigt. Die gemeinsame Wahrscheinlichkeitsfunkti-
on für SSMs und CNAs wird präsentiert und die lineare Relaxation unseres Models
als gemischt ganzzahliges lineares Programm veranschaulicht. Um die subklonare Re-
konstruktion mit der besten Anzahl an Lineages aus einer Menge von subklonaren Re-
konstruktionen zu bestimmen, die auf dem gleichen Datensatz mit unterschiedlicher
Lineageanzahl inferiert wurden, wird das Prinzip der minimalen Beschreibungslän-
ge benutzt. Eine ausführliche Analyse der ausgewählten subklonaren Rekonstruktion
erlaubt die Klassifizierung von Beziehungen zwischen jedem Paar von Lineages als
entweder vorhanden, fehlend oder mehrdeutig.

Unsere Methode ist in einer Software namens Onctopus implementiert. Onctopus
wird ausführlich auf simulierten Daten evaluiert. Dabei wird die Laufzeit und der
Speicherplatzverbrauch untersucht sowie auch die Performenz, wenn die mathema-
tisch optimale Lösung nicht in gegebener Zeit und gegebenem Speicherplatz bewiesen
werden kann. Es werden unterschiedliche Ansätze vorgestellt, um die Performenz von
Onctopus zu verbessern. Diese umfassen das Clustern von Mutationen, das Fixieren
von CNAs wie auch das Fixieren von Lineagehäufigkeiten.

Abschließend wird die Performenz von Onctopus gegen die Performenz von Phy-
loWGS and Canopy auf simulierten Datensätzen und einem tief sequenzierten Brust-
krebsdatensatz verglichen. Auf dem simulierten Datensatz werden verschiedene Aspek-
te der inferierten subklonaren Rekonstruktionen verglichen. Es zeigt sich, dass Oncto-
pus im Inferieren der Lineageanzahl und der Lineagebeziehungen überlegen ist. Für
den Brustkrebsdatensatz wird einer Analyse von Deshwar et al. gefolgt, bei der die
Zuordnung der inferierten Mutationen mit einer Goldstandardzuordnung verglichen
wird. Onctopus und PhyloWGS erreichen hier eine vergleichbare Performanz.

Abstract

Cancer is caused by the accumulation of mutations, leading to genetically heteroge-
neous cell populations. The characterization of a cancer sample in terms of a sub-
clonal reconstruction is essential. The subclonal reconstruction informs about the co-
occurrence of mutations per population, as well as the proportion of cells belonging
to each population, and the ancestral relationships among populations. Typical mu-
tations used to infer a subclonal reconstruction are simple somatic mutations (SSMs)
and copy number aberrations (CNAs).

Methods building subclonal reconstructions only with SSMs use the concept of lin-
eages instead of populations. In contrast to a population, which comprises only cells
with the same genotype, a lineage comprises all cells that are descendant from the
same founder cell. In a lineage-based subclonal reconstruction, mutations are assigned
to the lineage in which they arose. The lineage frequency indicates the proportion of
cells in which mutations assigned to this lineage can be found.

Methods building subclonal reconstructions with CNAs are population-based. In
contrast to the lineage-based approach, mutations are assigned to all populations in
which they occur, not just to the one in which they arose. In order to calculate the
mutation frequencies, the ancestor-descendant relationships between all populations
have to be inferred. Hence, multiple subclonal reconstructions are needed to model
ambiguous population relationships.

Two population-based subclonal reconstruction methods working with SSMs and
CNAs are PhyloWGS and Canopy. In contrast to Canopy, PhyloWGS does not infer
CNAs but needs them as input.

In this thesis, we present the first lineage-based model that builds subclonal recon-
structions from SSMs and CNAs of bulk-sequenced tumor samples. Modeling CNAs
as relative copy numbers, so copy number changes, instead of absolute copy num-

iii

bers allows us to assign them to lineages. Another special feature of our method is
that we infer present or absent ancestor-descendant relationships between lineages
only if they can be observed in the data, modeling them as ambiguous relationships
otherwise. This enables us to combine multiple ambiguous subclonal reconstructions
within a single subclonal reconstruction.

As input, our method uses the variant allele frequencies of SSMs, as well as the
average allele-specific major and minor copy numbers of genome segments where the
genome is segmented in a way that consecutive regions with the same copy number
profile belong to the same segment. Furthermore, the number of lineages needs to
be given as input. We present a joint likelihood function for SSMs and CNAs and
show a linear relaxation of our model as a mixed integer linear program that can
be solved with state-of-the-art solvers. Given subclonal reconstructions of the same
dataset inferred with different lineage numbers, we use the minimum description
length principle to choose the subclonal reconstruction with the best lineage num-
ber. An extensive analysis of the chosen subclonal reconstruction allows us to classify
the ancestor-descendant relationships between each pair of lineages as either present,
absent or ambiguous.

We implemented our method in a software called Onctopus. We evaluate Onctopus
extensively on simulated data, analyzing its run time and memory usage as well as its
performance when the mathematically optimal solution cannot be proved in the given
time and space. We present different approaches to improve Onctopus’ performance,
such as by clustering mutations, fixing CNAs or fixing lineage frequencies.

Finally, we compare the performance of Onctopus against the performance of Phy-
loWGS and Canopy on simulated datasets and a deep sequenced breast cancer dataset.
On the simulated datasets, we evaluate different aspects of the inferred subclonal re-
constructions and show that Onctopus is superior in inferring the number of lineages
and the lineage relationships. For the breast cancer dataset, we follow an analysis
by Deshwar et al., comparing the inferred mutation assignment to a gold standard
assignment. Here, Onctopus and PhyloWGS reach a comparable performance.

Acknowledgments

Now after finishing the last chapter of this thesis, it’s time for me to thank those people
who made this work possible.

First, I want to thank Jens Stoye for giving me the chance to join your group after
finishing my Bachelor studies and for giving me the time I needed to finish my Master
studies. Thank you for giving me time to learn for myself and never telling me what
to do but always being there when I had questions. Second, I want to thank Gunnar
Rätsch for letting me visit your group at Memorial Sloan Kettering Cancer Center and
keeping me attached to your group afterwards. Thank you for inviting me to join your
group at ETH Zurich for half a year and for always asking detailed questions about
my research, challenging me with further improvements. Third, I want to thank Quaid
Morris for having the idea that led to this PhD thesis. Thank you for having time in
the last half of a year to meet once a week and to discuss my progress, as well as for
always being encouraging and excited.

Also, I want to thank the whole Genome Informatics group and all the students
of the DiDy graduate school. Thank you for making this time on U-10 a wonderful
time and thanks for all the cakes. I also want to thank Roland Wittler for always
having five minutes and good answers, and for always asking critical questions. Thank
you Dany Dörr, Elói Soares de Araújo and Tizian Schulz for being great office mates,
never complaining about me shutting the door and banning the distracting life outside
from the office, especially in the last half of a year. And thank you Nina Luhmann,
Guillaume Holley, Jan Kölling, Tina Zekić and Markus Lux, without you it wouldn’t
have been half as much fun. Furthermore, I want to thank the whole Rätsch lab for
“adopting” me twice, making me feel like a member and not just a visitor. Especially,
I want to thank André Kahles and Kjong Lehmann for providing me with critical
feedback and always good advice.

v

I also want to thank Nina Luhmann, Panos Papavasileiou, Markus Lux, Kai Stader-
mann and Roland Wittler for proof reading parts and looong parts of this thesis.

I want to thank my whole family for always being supportive, especially my parents
and my tall little brother for always believing in me. My biggest thanks go to Panos,
without you this work would not have been possible at all. Thank you for patiently
listening to all my talking about optimizations and ambiguity, for cooking for me
when I was too busy leaving my desk, and for looking as much as me forward to the
exiting time starting now. But most of all, thank you for making me smile, for making
me laugh and for making me happy every day.

Finally, I thank the German Academic Exchange Service (DAAD) for providing me
with a “FIT weltweit” scholarship, enabling me to visit Memorial Sloan Kettering Can-
cer Center. I also thank the German Research Foundation (DFG) for partially funding
me via the International DFG Research Training Group GRK 1906, and the Young
Researchers’ Fund of Bielefeld University for funding six months of my final year.

Contents

List of Abbreviations xi

Notation Tables xiii

1. Introduction 1

2. Background 3
2.1. Probabilistic Models and Optimization 3

2.1.1. Mixed Integer Linear Programming 4

2.1.2. Markov Chain Monte Carlo . 8

2.1.3. Model Selection . 8

2.2. Biological and Technical Background . 10

2.2.1. Cancer and Genetic Mutations . 10

2.2.2. Next-Generation Sequencing Techniques 12

2.2.3. Detecting Somatic Mutations . 13

2.3. Subclonal Reconstruction of Cancer Samples 14

2.3.1. Clonal Evolution Theory and Intratumor Heterogeneity 14

2.3.2. Formalized Problem Description 17

2.3.3. Subclonal Reconstruction Concepts and Methods 20

3. A New Lineage-Based Subclonal Reconstruction Model 29
3.1. The Likelihood Function . 30

3.2. Model Components and Rules . 31

3.2.1. Inferred Lineage Frequencies . 32

3.2.2. Inferred Lineage Relationships . 32

3.2.3. Copy Number Aberration Assignment 34

vii

3.2.4. Simple Somatic Mutation Assignment 36

3.3. Optimization with Mixed Integer Linear Programming 40

3.3.1. Objective Function and Basic Mixed Integer Linear Program . . 40

3.3.2. Variables and Constraints for Lineage Frequencies 43

3.3.3. Variables and Constraints for Lineage Relationships 44

3.3.4. Variables and Constraints for Copy Number Aberrations 45

3.3.5. Variables and Constraints for Simple Somatic Mutations 48

3.3.6. Reducing the Number of Variables and Constraints 51

3.4. Optimization Complexity . 53

3.5. Determining the Number of Lineages . 54

4. Dealing with Ambiguity 59
4.1. Defining Ambiguity . 59

4.2. Handling Ambiguity . 61

4.2.1. Finding Present Ancestor-Descendant Relationships Necessary
because of Likelihood Influence 66

4.2.2. Updating Lineage Relationships 67

4.2.3. Unphasing Simple Somatic Mutations 72

4.2.4. Identifying Absent Ancestor-Descendant Relationships Necessary
because of Crossing Rule and Mutation Assignment 74

4.2.5. Identifying Present Ancestor-Descendant Relationships Necessary
because of Sum Rule . 83

4.2.6. Identifying Absent Ancestor-Descendant Relationships Necessary
because of Sum Rule . 87

4.3. Lineage-Based versus Population-Based Subclonal Reconstruction . . . 89

5. Analyzing Onctopus’ Performance 91
5.1. Implementation . 91

5.2. Data Simulation . 92

5.3. Evaluation Metrics . 97

5.4. Optimality, Run Time and Memory Usage 97

5.4.1. General Experiment . 98

5.4.2. Increasing Run Time . 103

5.4.3. Conclusion . 105

5.5. Clustering Simple Somatic Mutations . 105

5.5.1. Clustering Algorithms and Cluster Numbers 105

5.5.2. Building Subclonal Reconstructions with Clustered Simple So-
matic Mutations . 108

5.6. Fixing Copy Number Aberrations . 114

5.7. Fixing Lineage Frequencies . 116

5.7.1. Performance with Correct Lineage Frequencies 116

5.7.2. Inference of Lineage Frequencies Depending on the Number of
Simple Somatic Mutations . 118

5.7.3. Performance with Inferred Lineage Frequencies 121

5.8. Approximating Variant Allele Frequencies in Mixed Integer Linear Pro-
gram . 123

6. Results and Evaluation 127
6.1. Evaluation Metrics . 127

6.2. Results on Simulated Data . 128

6.2.1. Data Simulation . 129

6.2.2. Inferring Subclonal Reconstructions 129

6.2.3. Results . 131

6.2.4. Discussion . 135

6.3. Results on a Breast Cancer Dataset . 137

6.3.1. Data Description . 137

6.3.2. Inferring Subclonal Reconstructions 138

6.3.3. Results and Discussion . 139

7. Conclusion and Outlook 141

Bibliography 147

A. Onctopus Software 157

B. Data Simulation 159
B.1. Data Simulation . 159

B.2. Simulated Datasets for Analyzing Optimality, Run Time and Memory
Usage . 159

B.3. Simulated Datasets for Simple Somatic Mutation Clustering Analysis . 159

B.3.1. Clustering Algorithms and Cluster Numbers 159

B.3.2. Building Subclonal Reconstructions with Clustered Simple So-
matic Mutations . 162

B.4. Simulated Datasets for Fixing Copy Number Aberration Analysis 163
B.5. Simulated Datasets for Fixing Lineage Frequencies Analysis 164

B.5.1. Simulated Datasets for Inference of Lineage Frequencies Depend-
ing on the Number of Simple Somatic Mutations 164

B.5.2. Simulated Datasets for Analysis of Performance with Inferred
Lineage Frequencies . 164

B.6. Simulated Datasets for Analysis of Approximating Variant Allele Fre-
quencies in Mixed Integer Linear Program 165

B.7. Simulated Datasets for Comparison between Onctopus, PhyloWGS and
Canopy . 166

List of Abbreviations

AIC Akaike information criterion
AUPRC area under the precision-recall curve
BIC Bayesian information criterion
CNA copy number aberration
CNV copy number variation
ILP integer linear program
LOH loss of heterozygosity
LP linear program
MCMC Markov Chain Monte Carlo
MDL minimum description length
MILP mixed integer linear program
NGS next-generation sequencing
SNP single nucleotide polymorphism
SNV single nucleotide variant
SOS2 special ordered set of type 2
SSM single somatic mutation
VAF variant allele frequency

xi

Notation Tables

General Notation
θ parameter set
Beta-Bin probability mass function of the beta binomial distribution
Beta-Bin’ logarithmic probability mass function of the beta binomial distri-

bution
C a code function, encodes the input into a binary string
D data
L a likelihood function
L′ a log-likelihood function
LC description or code length function
M a model
m sample size of data
N probability density function of the normal distribution
N ′ simplified logarithmic probability density function of the normal

distribution
P a probability distribution
xm input data, observations
ym output data, target values

Numbers and Indices for Subclonal Reconstructions
α allele index, α ∈ {A, B}
I number of genome segments
I′ number of segments without CNAs
I′′ number of segments with CNAs

xiii

Numbers and Indices for Subclonal Reconstructions
I◦ number of CNAs
I• number of CNAs that are assigned to a segment that already

contains at least one CNA
I∗ number of CNAs and CNA-free segments
i segment index, i ∈ {0, . . . , I − 1}
J number of SSMs
J′ number of SSMs on segments with CNAs
J′′ number of SSMs that are assigned to lineage segments which

also contain copy number duplications of the same phases than
the SSMs

j SSM index with 0 ≤ j < J
K number of lineages or populations
k lineage or population index, k ∈ {0, . . . , K− 1}
M number of mutations
N number of tumor samples
n tumor sample index, n ∈ {0, . . . , N − 1}
r a subclonal reconstruction

Variables for Subclonal Reconstructions
φk,n frequency of lineage k in sample n
ηk,n frequency of population k in sample n
χk set of children of lineage or population k
Ak set of ancestors of lineage or population k
c_num_max maximal number of copy number changes per segment i
ci,n average copy number of segment i in sample n
ĉi,n inferred average copy number of segment i in sample n
cαi,n average allele-specific copy number of allele α of segment i in

sample n
ĉαi,n inferred average allele-specific copy number of allele α of seg-

ment i in sample n
Ck total integer copy number of population k
Cαi,n total integer allele-specific copy number of allele α of segment i

in sample n
∆Cαi,k inferred copy number change on allele α in segment i of lineage k

Variables for Subclonal Reconstructions
∆Cgain

αi,k whether a copy number gain is assigned to allele α in segment i
of lineage k

∆Closs
αi,k

whether allele α in segment i of lineage k gets lost

∆C_Aloss
αi,k,k′

whether lineage k is an ancestor of lineage k′ and whether a copy
number loss is assigned to allele α of lineage k

∆C_Dgain
αi,k,k′

whether lineage k′ is a descendant of lineage k and whether a
copy number gain is assigned to allele α in segment i of lineage ′k

∆C_Dloss
αi,k,k′

whether lineage k′ is a descendant of lineage k and whether a
copy number loss is assigned to allele α in segment i of lineage ′k

∆C_ f reqgain
αi,k,n φk,n if a copy number gain is assigned to allele α in segment i of

lineage k, 0 otherwise
∆C_ f reqloss

αi,k,n
φk,n if a copy number loss is assigned to allele α in segment i of
lineage k, 0 otherwise

child_ f reqn,k,k′ φk′,n if lineage k′ is a child of lineage k, otherwise 0
Dk set of descendants of lineage or population k
Dj,n total read count of SSM j in sample n
∆Fαj,k whether SSM j is assigned to allele α of lineage k and whether its

average copy number ŝj,n is influenced by a copy number gain
assigned to α in the same segment of k

nknots number of knots in an interval to compute a piecewise linear
function

pj,n variant allele frequency of SSM j in sample n
p̂j,n inferred variant allele frequency of SSM j in sample n

˜pj,n approximated inferred variant allele frequency of SSM j in sam-
ple n

Rj,n reference read count of SSM j in sample n
Sk set of mutations belonging to lineage k
S ′k set of mutations belonging to population k
sj,n average copy number of SSM j in sample n
ŝj,n inferred average copy number of SSM j in sample n
∆Sj,k whether SSM j is assigned unphased to lineage k
∆Sαj,k whether SSM j is assigned to allele α of lineage k
∆S_ f reqj,k,n φk,n if SSM j is assigned to lineage k, 0 otherwise

Variables for Subclonal Reconstructions
∆S_ f reqαj,k,n φk,n if SSM j is assigned to allele α of lineage k and if its average

copy number ŝj,n is influenced by a copy number gain assigned
to α in the same segment of k, 0 otherwise

∆S_ f reqgain
αj,k,k′ ,n

φk′,n if lineage k′ is a descendant of lineage k, if SSM j is assigned
to allele α of k and if in the same segment a copy number gain is
assigned to allele α of k′

∆S_ f reqloss
αj,k,k′ ,n

φk′,n if lineage k′ is a descendant of lineage k, if SSM j is assigned
to allele α of k and if in the same segment a copy number loss is
assigned to allele α of k′

Vj,n variant read count of SSM j in sample n
wj,n,j′ weight of knot j′ in interval of piecewise linear function of VAF

of SSM j in sample n
wαi,n,i′ weight for knot i′ in interval of piecewise linear function of aver-

age copy number cαi,n

Zk,k′ ancestor-descendant relationship between lineages k and k′

Z_tree_1k,k′,k′′ whether lineage k is an ancestor of lineage k′ and whether lin-
eage k′ is an ancestor of lineage k′′

Z_tree_2k,k′,k′′ whether lineage k is an ancestor of lineage k′′ and whether lin-
eage k′ is an ancestor of lineage k′′

Chapter 1
Introduction

Worldwide, cancer is one of the leading causes of death [5]. It is caused by the accu-
mulation of genetic mutations [84], which leads to heterogeneous cell populations [74].
This intratumor heterogeneity can cause cancer therapies to fail, e. g. by positively se-
lecting cells that harbor resistances against the drug applied [35]. Thus, a characteriza-
tion of the tumor in terms of a subclonal reconstruction is essential.

The subclonal reconstruction describes the co-occurrence of mutations per popula-
tion, the proportion of cells belonging to each population, and the ancestral relation-
ships among them. The current standard practice for this analysis of cancer samples is
based on bulk-sequencing data. Working with single-cell sequencing data is also pos-
sible but not well established yet, among other reasons due to its high noise levels [31].

Mutations typically used to infer a subclonal reconstruction are simple somatic mu-
tations (SSMs) and copy number aberrations (CNAs). SSMs comprise substitutions of
single DNA base pairs and insertions and deletions of a couple of DNA base pairs.
CNAs are structural variations that change the copy number of a genome segment.

Methods working only with SSMs infer subclonal reconstructions in terms of lin-
eages. In contrast to a population, which comprises all cells of the same genotype,
a lineage comprises all cells that descend from the same founder cell. In a lineage-
based subclonal reconstruction, mutations are assigned to the lineage in which they
occur first. The lineage frequency indicates the proportion of cells which contain the
mutations that are assigned to this lineage.

Methods working with CNAs assign mutations to all populations containing the
mutation. All ancestral relationships need to be inferred in order to compute the fre-
quency of a mutation. Thus, ambiguity caused by relationships between populations
can be detected only through different subclonal reconstructions.

1

Chapter 1. Introduction

Subclonal reconstruction methods working only with SSMs [24, 64] are restricted to
copy number neutral regions of the genome. Other methods utilize CNA information
as well [47,78] but make the simplified assumption that all cells containing an SSM are
either influenced by a copy number change or not. Only recent methods model cells
with SSMs to be differently influenced by copy number changes [21, 25, 46]. However,
since these methods model the subclonal reconstruction in terms of populations, they
need to sample multiple subclonal reconstructions to be able to capture ambiguity in
the input data.

In this thesis, we present the first method utilizing SSMs and CNAs to build a
lineage-based subclonal reconstruction. Our method is based on a probabilistic model
with a joint likelihood function for SSMs and CNAs. We formulate the linear relax-
ation of our model as a mixed integer linear program (MILP) that can be solved with
state-of-the-art solvers. Thanks to an extensive analysis of all lineage relationships of
a subclonal reconstruction, we can classify all relationships either as present, absent
or ambiguous ancestor-descendant relationships. This allows us to combine ambigu-
ous subclonal reconstructions algorithmically within a single subclonal reconstruction
without having to sample over the whole solution space. Our method is implemented
in a software called Onctopus.

After giving a short introduction into the topic of this thesis and the current state of
the field, we provide more information about probabilistic models and optimization,
biological and technical details, and subclonal reconstructions of cancer samples in
Chapter 2. In Chapter 3, we present our new lineage-based subclonal reconstruction
model and explain how we deal with ambiguity in lineage relationships in Chapter 4.
We analyze Onctopus’ performance on simulated data and show how we improve it
in Chapter 5 before evaluating Onctopus against the two methods PhyloWGS [21] and
Canopy [46] on simulated data as well as on a deep sequenced breast cancer dataset
in Chapter 6. At the end of this thesis in Chapter 7, we summarize our findings and
give an outlook over interesting extensions of Onctopus.

2

Chapter 2
Background

In this chapter, we give information about probabilistic models and optimization in
Section 2.1, about the biological and technical background of cancer, sequencing and
mutation calling in Section 2.2, and about subclonal reconstructions of cancer samples
in Section 2.3.

2.1. Probabilistic Models and Optimization

Given some data D = (xm, ym), a probabilistic model M = P(ym | θ, xm) defines a
probability P that the observations xm are mapped to the target values ym. The used
parameter set θ is usually unknown at the time of data observation and needs to
be estimated. A popular method to estimate θ is the maximum likelihood principle [7],
which finds an estimate θ̂ that maximizes Pθ(ym | xm) for θ ∈ Θ, the parameter space.
For some model classes, the maximum likelihood estimator θ̂ can be derived with a
closed formula. For other model classes, global optimization methods or sampling
approaches are needed in order to find or approximate θ̂.

In Subsection 2.1.1, we explain the global optimization method mixed integer lin-
ear programming, which can be used to derive a maximum likelihood estimator and
with which we work in our developed subclonal reconstruction method. Afterwards
in Subsection 2.1.2, the sampling approach Markov Chain Monte Carlo (MCMC) is
described briefly because our method is compared against two other methods that use
MCMCs. Finally, in Subsection 2.1.3, we introduce different concepts of model selec-
tion, emphasizing the minimum description length principle since it is applied in our
method.

3

Chapter 2. Background

2.1.1. Mixed Integer Linear Programming

To understand mixed integer linear programming, we will first introduce linear pro-
gramming and integer linear programming based on the book of Cormen et al. [17].
Linear programming is a class of convex optimization with a linear objective function
and linear equations and non-strict inequalities as constraints. The following is an
example of a simple linear program (LP):

max
M−1

∑
j=1

cj · xj

s. t.
M−1

∑
j=0

ai,j · xj ≤ bi for i = 1, . . . , N − 1,

xj ≥ 0 for j = 1, . . . , M− 1,

where xj are the real-valued variables, and cj, ai,j and bi are real numbers as well.

Canonical forms to express LPs are the standard and the slack form, both use a
maximization. To describe constraints, the standard form uses linear inequalities and
the slack form linear equalities. Each LP can be converted to both forms. 1

A setting of the variables x0, . . . , xM−1 that satisfies all constraints is called a feasible
solution. In contrast, the variable setting of an infeasible solution does not satisfy all
constraints. If no feasible solution exists for a linear program, it is infeasible. The goal
of linear programming is to find the optimal solution, that is the feasible solution that
maximizes (or minimizes) the objective function.

A classical linear programming algorithm is the simplex algorithm, which runs fast
in practice but exponentially in the worst-case. Polynomial time algorithms are the
ellipsoid algorithm as well as interior-point methods.

When all variables of an LP are required to take integer values, we have an integer
linear program (ILP). When only some variables are required to take integer values,
we have a mixed integer linear program (MILP). Finding a feasible solution for an ILP
or MILP is NP-hard.

A commonly used approach to solve ILPs and MILPs are branch-and-cut algorithms.
These exact algorithms use an enumeration tree to check variable settings for feasibility
and to find the optimal solution. The following explanation of the general concept of
branch-and-cut algorithms is based on the description of Johnson et al. [48].

1In this thesis, we will not use a canonical form but will present our linear constraints in what ever form
is most intuitive in the given setting.

4

2.1. Probabilistic Models and Optimization

Branch-and-Cut Algorithm. The root node of the enumeration tree is the original
ILP or MILP formulation2. While searching and proving the optimal solution, more
nodes are added to the tree, which is called branching. Here, children to the current
node are created, which extend the MILP formulation of the current node by adding
constraints that explore different values of the integer variables. For example, when a
variable is restricted to binary values, the constraint in one child would fix it to 0 and
in the other child to 1.

The best feasible solution found so far, when processing some node in the tree, is
f ∗M and provides a lower bound for the MILP. Now for each node ν in the tree we
define PM(ν) as the MILP present at ν and fM(ν) as its optimal solution that we
want to find. The linear programming relaxation of PM(ν), which removes all integer
constraints, is defined as PL(ν). Its optimal solution is defined as fL(ν) and can be
found in polynomial time. The following relations between fM(ν) and fL(ν), as well
as between PM(ν) and PL(ν) hold:

• If fL(ν) fulfills all integer constraints of PM(ν), then fM(ν) = fL(ν).

• If fL(ν) does not fulfill all integer constraints of PM(ν), it is an upper bound of
fM(ν).

• If PL(ν) is infeasible, then PM(ν) is infeasible as well.

Now for each node ν in the tree, we solve PL(ν). If PL(ν) is infeasible, we can
discard ν. If PL(ν) is feasible but fL(ν) does not fulfill all integer constraints, the
way of proceeding depends on the value of fL(ν). If fL(ν) ≤ f ∗M, we can discard ν.
Otherwise, if fL(ν) > f ∗M, we have to branch the node and investigate whether integer
solutions exists on this branch. If fL(ν) = fM(ν) and if fM(ν) > f ∗M, we update f ∗M
and discard ν. If fM(ν) ≤ f ∗M, we discard ν directly.

To avoid frequent branching, cuts can be applied to the node. Cuts are special con-
straints that permit only solutions to PL(ν) that fulfill all integer constraints. Also, a
high value for f ∗M can prevent further branching. To find a high value of f ∗M at the
beginning, fast heuristics can be used. Finally, the bounds provided by the linear pro-
gramming relaxation depend on the concrete formulation of the MILP. Useful bounds
are the results of a good initial formulation.

Optimality of f ∗M is only proved when the complete enumeration tree is processed.
However, the optimal value of f ∗M can be found before the complete tree is processed.

2For simplicity, we will only talk about MILPs in the context of the branch-and-cut algorithm from now
on.

5

Chapter 2. Background

Linear programming only allows the use of linear constraints. There are, however,
some tricks how non-linear constraints or functions can be modeled. In the following,
we present two such tricks.

Multiplying a Real-Valued and a Binary Variable. In order to model the multipli-
cation of a real-valued variable xr, with 0 ≤ xr ≤ 1, and a binary variable xb, we
introduce a real-valued variable xa that fulfills the following three constraints:

xa ≤ xb (2.1)

xa ≤ xr (2.2)

xa ≥ xr − (1− xb) (2.3)

The above equations can also be used to model the following statement based on two
conditions:

xa =

1 if xb = 1 and xr = 1,

0 otherwise.
(2.4)

Approximating Non-Linear Functions. A concave non-linear function f can
be approximated with a piecewise linear function f ′. Therefore, in an inter-
val [a, b], the piecewise linear function f ′ is interpolated through n points P =

(x0, y0), (x1, y1), . . . , (xn−1, yn−1), where a ≤ xi ≤ b for 0 ≤ i < n and where yi = f (xi).
The positions xi within the interval, which are used for the interpolation, are called
knots. Now, for each position x in the interval, the approximated value y = f ′(x) can
be derived as follows:

x = ∑
i

wi · xi

y = ∑
i

wi · yi

∑
i

wi = 1, (2.5)

for i = 0, . . . , n − 1 and wi is a weight associated with point (xi, yi). All weights
~w = (w0, w1, . . . , wn−1) are between 0 and 1 and are in a special ordered set of type 2
(SOS2). This means that at most two weights can have non-zero values and when two
weights have non-zero values, these weights have to be adjacent.

6

2.1. Probabilistic Models and Optimization

x xjxi+1xk xi ba

yi+1

yk

yi

yj

y

Figure 2.1.: Strictly concave piecewise linear function f′ in the interval [a, b]. Knots
are shown by ticks on the x-axis, their corresponding function values are shown with
ticks on the y-axis. The position x lies between the two knots xi and xi+1. We want to
find its maximal value y that lies in the convex hull of f ′.

If f ′ is a strictly concave piecewise linear function and f is a part of the objective func-
tion that is maximized, the weights ~w are automatically in an SOS2 and no additional
SOS2 constraints are necessary. The reason for this can easily be seen in Figure 2.1.
Given x, which lies between the two knots xi and xi+1, the only way to derive at a
maximal value of y is to set the weights wi and wi+1 to a non-zero value and all other
weights to 0. Like this, y lies on the line between (xi, yi) and (xi+1, yi+1). All other
convex combinations of ~w lie within the convex hull of the piecewise linear function f ′

but not on f ′ itself, thus they will result in a lower value of y. If x = xi, it is obvious
that wi = 1 to maximize y. Thus, the weights ~w are in a SOS2.

To solve LPs, ILPs and MILPs different academic and commercial software packages
exist, such as the GNU Linear Programming Kit (GLPK) [33], lp_solve [62], Gurobi [37]
and IBM ILOG CPLEX Optimization Studio (CPLEX) [18]. Since we use CPLEX to
implement our MILP, the software package is briefly introduced.

CPLEX. CPLEX provides libraries for solving linear programming and variations
of it, such as mixed integer linear programming. To solve MILPs, CPLEX uses a
branch-and-cut algorithm with preprocessing and different heuristics. It terminates
when the optimal solution is proved or when user-specified run time or memory limits
are reached. When it terminates because these limits are reached, it reports the best
variable setting that was found up to this point.

7

Chapter 2. Background

2.1.2. Markov Chain Monte Carlo

The following explanation of MCMC methods is based on the book by Bishop [7].
MCMCs are a type of numerical sampling methods designed to draw samples from
a posterior distribution P . Therefore, L samples, z0, z1, . . . , zL−1, are drawn from a
proposal distribution P ′ based on a Markov chain, which converges towards P for
L→ ∞.

A specific class of MCMC algorithms are the Metropolis [68] and the Metropolis-
Hastings algorithms [43]. In each iteration of these algorithms, a candidate sample
z∗ is drawn from the proposal distribution P ′, with P ′(z∗ | zt). A specific criterion
defines the rate with which z∗ is accepted. If z∗ is accepted, it becomes the next
sample in the sample set, zt+1 = z∗, and drawing the next sample depends on z∗. If z∗

is rejected, the previous sample zt is used again for zt+1.

Since samples are drawn with a Markov chain, successive samples are highly corre-
lated and not independent as required by numerical sampling methods. To acquire an
independent set of samples, it is sufficient to keep only every Mth sample and discard
the others.

In practice, only a finite number of iterations can be made. Thus, instead of reach-
ing the stationary distribution P , it is possible that the MCMC gets stuck in a local
optimum. To prevent this, multiple chains from independent starting points can be
used.

Because samples drawn at the beginning do not have to reflect the stationary distri-
bution P , a common approach is to discard the first samples. This process is called
burn-in [42].

2.1.3. Model Selection

Given a model class M∗ and some data zm = (xm, ym), the problem of model selec-
tion is to choose the best model M ∈ M∗. Generally, a model M′ that uses more
parameters than a model M′′ will have a higher likelihood LM′ than M′′ because it
provides a better fit for the data. However, simply choosingM′ overM′′ often results
in overfitting, which has to be avoided. To choose a model that balances between data
fit and model complexity, different methods such as the Akaike information criterion,
the Bayesian information criterion, or the minimum description length principle exist.

8

2.1. Probabilistic Models and Optimization

Akaike Information Criterion. The Akaike information criterion (AIC) [2] penalizes
models relatively to the number of parameters |θ| they use. It states to choose the
modelM which minimizes

−2 log(LM) + 2|θM|.

Hence, it weights the log likelihood and model complexity by equal parts.

Bayesian Information Criterion. Similarly to AIC, the Bayesian information crite-
rion (BIC) [81] uses a penalty term to penalize complex models, containing a high
number of parameters. It states to choose the modelM which maximizes

log(LM)− 1
2
· |θM| · log(m),

where |θM| is the number of parameters of M and m is the sample size. In addition
to AIC, BIC weights the model complexity with the data size.

Minimum Description Length Principle. The minimum description length (MDL)
principle [76] is based upon the theory of Kolmogorov complexity, which defines the
length of a sequence as the length of the shortest computer program that outputs this
sequence [14, 53, 83]. The motivation of the MDL principle comes from data compres-
sion: If a model describes some data containing regularities well, it can be compressed
and hence, its description length is small [42].

The following content about the MDL principle is based on the book of Grün-
wald et al. [36]. In order to compute the description length of a model and some
data, we need a code C that encodes an input x into a binary string b, C(x) = b. The
code length or description length of x is LC(x) = |b|, which corresponds to the length
of the binary string b, i. e. the number of bits in b. The code C needs to fulfill two
properties: First, it has to be lossless, meaning that x can always be decoded from b
and that there is only one unique x for which holds C(x) = b. Second, it has to be
a prefix code, meaning that no code word is a prefix of another code word. Given a
code C which fulfills these properties, it is now possible to encode x and send it to a
receiver who can then decode it with the help of C.

For building a prefix code, Huffman coding [44] can be used. Alternatively, it is
possible to use a fixed-length code, in which all code words have the same fixed length,
which is known to the receiver. To send an integer i to the receiver, dlog(i)e bits are
necessary. If, however, the receiver does not know the number of bits because it is
intrinsic to the input x, the simple standard code for the integers can be used to encode i.

9

Chapter 2. Background

Here, the number of bits that is needed to encode i is communicated to the receiver by
sending as many 0s, followed by a 1. Afterwards, the actual number i is encoded with
dlog(i)e bits.

When we work with the MDL principle, we are only interested in the code length,
not in the actual code itself. Allowing non-integer code lengths, the simple standard
code for the integers needs 2 log(i) + 1 bits. Given a probability distribution P , there
always exists a code C with LC(P(x)) bits = − log(P(x)) bits.

The earliest version of the MDL principle is the two-part version. Given multiple
models, the MDL principle states to chose the model M which minimizes the total
description length

LC1(y
m | θ,M, xm) + LC2(θ | M) (2.6)

The first part of the term is simply − log(P(ym|θ, xm)). For the definition of the second
part no clear rules exist. However, arbitrary codes are dangerous as they will perform
differently well with different models. Thus, it is important to choose a code LC2

that is identical for all concrete models with the same input sample size n. Still, it is
difficult to design codes that work well on small sample sizes. A reasonable method
to build LC2 is to exploit the natural structures of the models under consideration by
using a fixed-length code that encodes the parameters θ. Different extensions and
modifications of the two-part version of the MDL principle exist that lead to a non-
arbitrary model selection criterion.

2.2. Biological and Technical Background

This section gives information about the biological and technical background of can-
cer and genetic mutations in Subsection 2.2.1, about next-generation sequencing tech-
niques in Subsection 2.2.2, and about the subclonal reconstruction of cancer samples
in Section 2.3.

2.2.1. Cancer and Genetic Mutations

Cancer is a set of genetic diseases that are caused by the accumulation of genetic muta-
tions [84]. It is characterized by uncontrolled proliferating cells, which eventually gain
the ability to metastasize and invade other tissues [58]. Malignant tumors are masses
of cancerous cells, whereas benign tumors harbor non-cancerous and non-invasive
cells. More than 100 different tissues can form cancers, each of which has a typical
appearance and biological behavior.

10

2.2. Biological and Technical Background

Mutations arise due to different internal and external mutagenic factors. If not
being repaired or destroyed by cell internal mechanisms, a mutation can lead to the
formation of cancer if it activates an oncogene, which drives the growth and division
of cells, or if it inactivates a tumor suppressor gene, which inhibits cell growth and
division. Such a mutation is called a driver mutation. Mutations that do not bring
growth or division advantages are called passenger mutations. It has been estimated
that to lead to the formation of a cancer, four to six driver mutations are necessary [58].

Heterozygous mutations are present on one copy of a chromosome pair, whereas
homozygous mutations are present on both copies. Whether mutations are heterozy-
gous or homozygous plays an important role in the inactivation of tumor suppressor
genes [58]. The process of determining whether heterozygous mutations within one
chromosome belong to the same or different copies is called phasing [9]. When genetic
information of the parents of an individual is present, it is possible to phase the in-
dividual’s mutations to the maternal and paternal chromosome copy. When genetic
information of many unrelated individuals is present, it is possible to phase mutations
to different haplotypes or alleles, i. e. stretches of alternative forms of genetic loci. A
single individual has two alleles at a heterozygous locus. Without knowing which
allele is inherited from the mother and which from the father, we refer to alleles A and
B in order to differentiate them.

Mutations that are inherited from the parents of an individual are called germline
mutations and are present in all cells of the individual. Mutations that arise during the
lifetime of an individual are called somatic mutations and are present only in a subset
of cells. They are responsible for the development of a tumor. However, germline
mutations can promote this process as well [51].

Based on their size, mutations can be divided into different classes. Single nu-
cleotide variations (SNVs), the smallest type of mutations, substitute a single base
pair of the DNA. Germline SNVs that can be found in at least 1% of a population
are called single nucleotide polymorphisms (SNPs) [82]. In this thesis, we summa-
rize somatic SNVs and small somatic insertions and deletions (indels) of a couple of
base pairs as simple somatic mutations (SSMs). Mutations influencing DNA segments
larger than 1 kb are called structural variations [29]. They include sequence inversions,
translocations, insertions and copy number changes. Copy number variations (CNVs)
are germline copy number changes, and copy number aberrations (CNAs) are somatic
copy number changes. Different kinds of copy number changes exist. A copy number
gain duplicates a segment of a chromosome copy, thus increases the copy number of
the affected genome segment. A copy number loss deletes a segment of a chromo-

11

Chapter 2. Background

some copy, thus decreases the copy number. A loss of heterozygosity (LOH) event
duplicates a segment of one chromosome copy and deletes this segment on the other
copy of the chromosome pair [58]. Thus, an LOH event changes only the allele-specific
copy numbers; globally, it is copy number neutral.

2.2.2. Next-Generation Sequencing Techniques

Around 2005, the field of DNA sequencing was revolutionized by the introduction of
next-generation sequencing (NGS) sequencing machines [34]. In comparison to Sanger
sequencing platforms, these techniques, also called second-generation sequencing, en-
abled genome sequencing at large scale with high throughput, low costs and a decent
error rate. While the produced DNA sequencing reads were only 35 to 50 bases long
in the beginning [60], nowadays it is possible to sequence genome fragments of up
to 250 and 400 bases length [34]. Recently, sequencing long DNA fragments of 8 to
20 kb and even up to 200 kb has become available with the advent of third-generation
sequencing machines.

During sequencing, substitution and indel errors can occur. Also, certain regions,
such as GC- or AT-rich regions, can be underrepresented. Different sequencing plat-
forms are prone to different error types [34].

Bulk-Sequencing. In bulk-sequencing, all cells of a sample are processed together,
thus their DNA fragments, that are to be sequenced, mix. Given the sequence of two
reads, we do not know whether they were derived from the same cell or not. This is
not problematic when genetic differences between cells are not of interest, e. g. when
the goal is to create a reference genome of a specific species [23]. However, when
genetic differences between cells are important, e. g. when investigating intratumor he-
terogeneity in cancer, bioinformatic approaches are needed to decompose the genetic
information.

Single-Cell Sequencing. In contrast to bulk-sequencing, single-cell sequencing al-
lows to sequence the genome of a single cell. Thus, it is a useful approach to inves-
tigate intratumor heterogeneity in cancer but can also be applied in other contexts
where the difference between cells of a sample is of interest, e. g. in metagenomics [65].
Single-cell sequencing is a young technique, with the first report of sequencing single
human cancer cells being published in 2011 [70, 71]. The technique still suffers from
significant challenges [31], such as the unbiased isolation of single cells. Another chal-

12

2.2. Biological and Technical Background

lenge poses the amplification of DNA, where common errors include loss of coverage
or non-uniform coverage, biases towards one allele as well as sequence errors by incor-
porating wrong bases during amplification. An additional disadvantage of single-cell
sequencing compared to bulk-sequencing is its high cost.

2.2.3. Detecting Somatic Mutations

To differentiate somatic from germline mutations of an individual, a cancer sample
as well as a normal sample, which contains healthy cells, need to be sequenced and
compared. For comparison and detection, the reads of both samples are mapped onto
a reference genome and analyzed by bioinformatic software. In the following, we give
a short overview how CNAs and SSMs can be identified.

Detecting Copy Number Aberrations. Methods detecting CNAs consist of the three
main steps raw copy number inference, segmentation and copy number classifica-
tion [4]. In the first step, the raw copy numbers are inferred, either based on the read
counts or the coverage ratio between the mapped reads of the tumor and the normal
sample. To account for sequencing and mappability biases, that could influence the
copy number estimation, some methods perform GC-content normalization as well as
mappability bias correction [8, 40]. Other methods rely on the assumption that both
the tumor and the normal sample are influenced equally by such biases and thus their
direct comparison corrects for these biases [52, 86]. In the second step, adjacent loci of
similar raw copy number are combined into segments and the final copy number for
each segment is calculated. Finally, segments are classified into copy number gains or
losses.

When relying only on the coverage, copy number neutral LOH events cannot be
detected. To detect them, the allele frequencies of heterozygous SNPs are used. Two
methods that infer allele-specific copy numbers on NGS data are Sequenza [28] and
Falcon [15]. For each segment, they calculate the major and the minor copy number.

Detecting CNAs in cancer samples is complicated by the presence of normal cells as
well as cancer cells of other lineages that do not contain CNAs in a certain segment.
Methods that consider intratumor heterogeneity are presented in Subsection 2.3.3 on
page 24.

Detecting Simple Somatic Mutations. The general procedure to detect SSMs from
matched tumor-normal samples consist of the four steps read processing, read map-

13

Chapter 2. Background

ping, variant calling and post-filtering [87]. First, low quality reads from the sequenc-
ing are removed as they often contain errors, which could later lead to false positives.
Then the reads are mapped onto a reference genome. Based on the mapping, the num-
ber of reference and variant reads, Rj and Vj, can be derived for each site j. The variant
allele frequency (VAF) pj can then be computed as follows:

pj =
Vj

Rj + Vj
. (2.7)

Theoretically, given enough reads, each SSM can be observed via its VAF. In practice,
however, low variant mutations, that are present only in a subset of cells, are hard
to detect. Distinguishing them from artifacts caused by sequencing noise or mapping
errors is difficult. Methods, such as VarScan 2 [52], SAMtools [59], Strelka [80], Mu-
Tect [16], decide based on statistical tests, simple decision rules, or probabilistic models
whether a variant is present at a site or whether the changed VAF is an artifact. In the
last step of SSM detection, the found variants between tumor and normal sample are
compared and only the variants unique to the tumor sample are kept.

2.3. Subclonal Reconstruction of Cancer Samples

This section provides important information about subclonal reconstructions of cancer
samples. In Subsection 2.3.1, the clonal evolution theory and research in the field of
intratumor heterogeneity are presented. In Subsection 2.3.2, we formalize the problem
description of lineage-based and population-based subclonal reconstructions. At the
end, in Subsection 2.3.3, important subclonal reconstruction concepts and different
methods are introduced.

2.3.1. Clonal Evolution Theory and Intratumor Heterogeneity

In 1976, Nowell [74] presented one of the first models for the evolution of tumor cells
originating from a single cell of origin (see Figure 2.2). According to the model, a
tumor is initiated when a normal, healthy cell acquires mutations that give growth
advantages over adjacent cells, the neoplastic proliferation begins. Because the neo-
plastic cells are genetically instable, more mutations arise and accumulate with time.
This leads to new genetic variants of which most do not survive because of fitness dis-
advantages. However some cells are favored by clonal selection and can become the

14

2.3. Subclonal Reconstruction of Cancer Samples

Figure 2.2.: Clonal evolution over time. Before tumor initiation, all cells are healthy and
their DNA does not have mutations (gray areas and first shown cell). Then one cell
acquires a mutation (blue dot) that gives growth advantages over healthy cells. With
time, more mutations accumulate of which some (red and yellow dots) are favored by
clonal selection, leading to new lineages and intratumor heterogeneity.

ancestors of new lineages, leading to tumor progression and resulting in intratumor
heterogeneity.

In 1999, Cahill et al. [10] described tumor evolution as a Darwinian process, similar
to Nowell. They emphasized the role of genetic instability as a driving force of tumor
progression. When cells have no or only little genetic instability, they are not able to
adapt to a changing environment. In contrast, when the genetic instability is too high,
damaging mutations accumulate, resulting in cell death. However, the “just right”
level of genetic instability leads to a variety of mutated cells of which some are able to
adapt to selective pressures, giving adapted proliferating cells the ability to expand in
clonal waves.

Mutations in the DNA of tumor cells can be classified based on their appearance
in tumor evolution. Mutations that occur early before subclonal diversification are
present in all tumor cells and are called clonal or trunk mutations. Mutations that
appear after subclonal diversification are only present in a subset of tumor cells and
are called subclonal or branch mutations. Subclonal mutations can be shared by differ-
ent subclonal populations (subpopulations) or can be unique to a single one. Based
on their appearance in tumor evolution, lineages and populations can be clonal or
subclonal as well.

Advances in sequencing technologies enabled researchers to investigate genomic in-
tratumor heterogeneity in many different cancer types and with different approaches,
using bulk-sequencing or single-cell sequencing data, investigating a single sample or
temporarily and/or spatially distinct samples of the same patient [66]. By studying

15

Chapter 2. Background

different tumor samples, Campell et al. [12] discovered parallel and convergent evolu-
tion in different pancreatic cancer metastases and genetic heterogeneity of metastasis-
initiating cells. They also observed that the amount of clonal and subclonal mutations
was considerably different across patients. Ding et al. [22] investigated tumor evolu-
tion over time in acute myeloid leukemia of eight patients by comparing mutations of
primary tumors and relapse samples. They found two major relapse patterns of clonal
evolution: One in which the clonal population of the primary tumor accumulated
more mutations and became the population responsible for relapse, and a second one
in which a subpopulation survived the initial therapy and became the dominant popu-
lation after relapse. Nik-Zainal et al. [72] analyzed the clonal evolution of breast cancer
based on single samples of 21 patients and found that all tumors harbored a dominant
subclonal lineage which contains more than 50 % of the tumor cells. Another finding
was that the last common ancestor of all cancer cells appeared early in molecular time
and that much time is spent on diversification of subclonal lineages. One of the first
studies to investigate tumor heterogeneity by means of single-cell sequencing was per-
formed in 2011 by Navin et al. [70] and observed punctuated clonal expansions of two
breast cancers by comparing multiple samples.

Intratumor heterogeneity of tumors cannot always be explained by positive selection
and clonal expansion in waves. For some tumors, growth patterns of neutral evolution
instead of positive selection were observed [19,66]. Also, mutations do not accumulate
sequentially over time in all tumors. In some tumors, mutations arise in form of
punctuated bursts [19,66,70]. Within the lifetime of a tumor, it is possible that different
evolutionary models are active: Studies on breast cancers have shown that CNAs
are punctually gained at the beginning of the neoplastic proliferation while SSMs
accumulate sequentially during tumor progression [19].

Intratumor heterogeneity challenges the success of cancer therapies. Subclones that
harbor drug resistances are positively selected when the drug is applied to the patient
and can expand in clonal waves to become dominant and result in a failure of ther-
apy [35]. To prevent this, different drugs can be combined [3]. Knowledge about the
composition of subclones and their mutations can help to identify drugs that target
relevant clonal and/or subclonal mutations and thus to develop a personalized treat-
ment [19]. Further, intratumor heterogeneity can be used as a predictive biomarker
informing about therapy outcome, since it was shown in different studies that a high
level of intratumor heterogeneity correlates with poor outcome of therapy [19].

16

2.3. Subclonal Reconstruction of Cancer Samples

(a) (b) (c)

Figure 2.3.: Clonal evolution over time showing lineages and populations. (a) Clonal
evolution over time with three mutations. At a certain time point, a sample is taken.
(b)/(c) Four lineages and four populations are present in the sample. The colorful
bars show the amount and genotype of cells that belong to the lineage or population.
(b) Lineage 0 is the normal lineage without any mutations to which all cells in the
sample belong. The blue, the red and the yellow mutations lead to the formation of
lineages 1, 2 and 3. (c) Each population has a unique genotype that is distinct from
the genotype of the other populations. Population 0 is the normal population, which
does not contain any mutations.

2.3.2. Formalized Problem Description

While we have used the terms lineage, population and subclonal reconstruction before,
we now formally define them in this subsection as well as the subclonal reconstruction
problem.

Definition 1. A lineage k comprises all cells that descended from the same founder cell. It
is defined by a set Sk of (possibly phased) mutations, a frequency φk,n and the relationships to
other lineages. Mutations in Sk arose in lineage k and either lie on the maternal or paternal
chromosome copy. The lineage frequency φk,n is the frequency of cells belonging to lineage k
at the time point a sample n was taken. Lineage k can be ancestor or descendant of another
lineage k′ or it can be in no ancestor-descendant relationship to it.

A lineage can also be described as a subtree in a phylogenetic tree and is sometimes
referred to as a clade. When a lineage k′ is a descendant of a lineage k, it is also part of
lineage k.

All cancerous cells can be traced back to a healthy cell. The healthy or normal
lineage is ancestor of all other lineages, which we call non-normal or cancerous lineages.
It has a frequency of 1 across all samples and does not contain somatic mutations.

17

Chapter 2. Background

φ0 φ1

φ2

φ3

(a)

η0

η2

η3
η1

(b)

Figure 2.4.: Lineage-based and population-based subclonal reconstructions. Cir-
cles show lineages or populations. Arrows show relationships between lineages and
populations, pointing from the ancestor to the descendant. (a) Lineage-based sub-
clonal reconstruction with four lineages and inferred frequencies φ0, . . . , φ3. Unphased
mutations are assigned to the lineage in which they arose. The genotype of the lin-
eages is not shown. (b) Population-based subclonal reconstruction with four popula-
tions and inferred frequencies η0, . . . , η3. The genotype based on the mutation assign-
ment is shown for each population.

Figures 2.3a and 2.3b show an example of clonal evolution over time with lineages of
a taken sample.

Given M mutations from N bulk-sequencing tumor samples of the same patient and
the number of lineages K, we define a lineage-based subclonal reconstruction as follows:

Definition 2. A lineage-based subclonal reconstruction contains M (possibly phased) mu-
tations that are assigned to K lineages, inferred frequencies φ of the K lineages across N samples
and inferred relationships between the lineages.

The inferred relationships between the lineages describe a phylogenetic tree. Mu-
tations that are assigned to a lineage k are inherited by its descendants. The normal
lineage is included in the reconstruction. A lineage-based subclonal reconstruction is
shown in Figure 2.4a.

Definition 3. A population k comprises all cells that have the same genotype. It is defined
by a set S ′k of (possibly phased) mutations, a frequency ηk,n and the relationships to other
populations. All mutations that can be found in the cells of population k are in the set S ′k and
lie either on the maternal or on the paternal chromosome copy. The population frequency ηk,n is
the frequency of these cells at the time point a sample n is taken. Population k can be ancestor
or descendant of another population k′, or it can be in no ancestor-descendant relationship to
it.

The normal population, which does not contain any mutations, is ancestor of all
cancerous. A vestigial population is a population with a frequency of 0 [21]. Such a
population is not present anymore at the time point of tumor sampling but gave rise to
mutations which were inherited by other populations that are still present. Figure 2.3c
shows populations of a tumor sample.

18

2.3. Subclonal Reconstruction of Cancer Samples

Definition 4. A population-based subclonal reconstruction contains M (possibly phased)
mutations assigned to K populations, inferred frequencies η of K populations across N samples
and inferred relationships between the populations.

The inferred population frequencies describe a phylogenetic tree. Mutations that are
assigned to a population k are inherited by its descendants. Population frequencies
sum up to 1 per sample. The normal population is included in the reconstruction. A
population-based subclonal reconstruction is shown in Figure 2.4b.

Lineage-based subclonal reconstructions with K lineages can be converted to pop-
ulation-based subclonal reconstructions with K populations and vice versa. Here,
we explain only the conversion from a lineage-based subclonal reconstruction to
a population-based one. Relationships that are inferred for lineage k, with k ∈
{0, . . . , K − 1}, are used for population k. Mutations that are assigned to lineage k
are assigned to population k and its descendants. To compute the population fre-
quency ηk,n for all n ∈ {0, . . . , N − 1}, the following relation between lineage and
population frequencies is used:

φk,n = ηk,n + ∑
k′∈Dk

ηk′,n,

where Dk comprises all descendants of population k.

Mutations that are often used for subclonal reconstructions are SSMs and CNAs [54].
SSMs can immediately be assigned to the lineages. CNAs can either be given directly
and immediately be assigned to the lineages as well, or they can be given indirectly via
copy number information of genome segments and have to be inferred before lineage
assignment. When no CNAs are used for the subclonal reconstructions, all mutations
are unphased.

For a subclonal reconstruction r, a likelihood L can be computed.

Problem 1. Given M mutations and N bulk-sequencing tumor samples of the same patient, the
lineage-based subclonal reconstruction problem is to find the correct number of lineages K
and the lineage-based subclonal reconstruction with K lineages that maximizes the likelihood L.

Problem 2. Given I genome segments with copy number information, J SSMs and N bulk-
sequencing tumor samples of the same patient, the lineage-based subclonal reconstruction
problem with copy number inference is to infer CNAs and solve the lineage-based subclonal
reconstruction problem.

19

Chapter 2. Background

The population-based subclonal reconstruction problem and the population-based subclonal
reconstruction problem with copy number inference are defined analogously.

2.3.3. Subclonal Reconstruction Concepts and Methods

Given K lineages, it is possible to build KK−1 different rooted trees3, in which each
lineage is represented by a node. However, not all of these trees represent valid sub-
clonal reconstructions. When the lineage frequencies across N samples are inferred,
trees can be excluded from the solution space of subclonal reconstructions with the
lineage precedence rule [73], the sum rule [47] and the crossing rule [47].

Lineage Precedence Rule. The lineage precedence rule imposes a partial ordering
on the lineages given their frequencies. It states that a lineage k that is an ancestor
of a lineage k′ has a greater or equal frequency than k′ across all samples. Thus, a
lineage k′′ with a lower frequency than lineage k in at least one sample cannot be the
ancestor of k.

Sum Rule. The sum rule relates the frequency of a lineage k with the frequencies
of its direct descendants or children in each sample. It states that the frequency of
lineage k is higher or equal than the sum over the lineage frequencies of its children. If
the frequency of lineage k is equal to the frequency sum of its children, the correspond-
ing population k is a vestigial population. For a single sample, a linear phylogeny is
always consistent with the sum rule. The sum rule is also known as children sum to
parents condition [41], sum condition [24], lineage divergence rule [73] or described
as following the pigeon hole principle [72].

Crossing Rule. The crossing rule can exclude ancestor-descendant relationships be-
tween lineages when multiple samples are used. When lineage k has a higher fre-
quency than lineage k′ in one sample n and lineage k′ has a higher frequency than
lineage k in another sample n′, an ancestor-descendant relationship between the two is
not possible. Using more samples increases the chance of observing a “crossing” of lin-
eage frequencies and thus the evidence to rule out an ancestor-descendant relationship
between lineages that lie on different branches of the true underlying phylogenetic tree.
The crossing rule follows directly from the lineage precedence rule. It is also called
fork rule [54].

3The number of labeled trees with K nodes is KK−2 [13]. Thus, the number of rooted trees is KK−1.

20

2.3. Subclonal Reconstruction of Cancer Samples

In most cases, applying the lineage precedence, the sum and the crossing rule will
not result in a single possible tree. To further reduce the tree solution space, the strong
parsimony assumption [21] is made by [41, 85].

Strong Parsimony Assumption. The strong parsimony assumption leads to recon-
structions with a maximal number of vestigial populations. In these reconstructions,
only a small number of populations is inferred to be present at the time point where
the tumor samples are taken. Hence, subclonal reconstruction methods using the
strong parsimony assumption favor branching trees over linear trees.

When M mutations should be assigned to K− 1 cancerous lineages and each muta-
tion can be assigned to as many lineages as given, (2K−1 − 1)M different assignments
exist. To reduce this number of possible assignments, the weak parsimony assump-
tion [21] and the infinite sites assumption are commonly made.

Weak Parsimony Assumption. The weak parsimony assumption expects two SSMs
to have similar VAFs when they arise in the same lineage. Thus, SSMs with similar
VAFs are assigned to the same lineage. However, it is possible that two or more distinct
lineages have similar frequencies and hence, following the weak parsimony assump-
tion, their SSMs are falsely assigned to the same lineage. Using multiple samples can
help to reduce this problem because the lineages can have different frequencies in the
separate samples, which leads to different VAFs across samples. It is also possible
to not combine SSMs based on their VAFs as done in Strino et al. [85]. However, this
approach increases the complexity of the subclonal reconstruction problem and is only
feasible with a small number of SSMs.

Infinite Sites Assumption. The infinite sites assumption is used to reduce the num-
ber of possible mutation assignments to (K− 1)M. It was originally presented in 1969
by Kimura [50] for Mendelian populations. It assumes that the genome consists of
many (practically infinite) sites, so that each site is hit by a mutation at most once,
and once it is hit, the mutation will not revert back to the original state. Applied to
cancer genomics, the infinite sites assumption implies that no position in the genome
is influenced by more than one mutation. Each mutation arises only once during tu-
mor evolution and does not get lost, it is inherited to all descendant lineages. When
building a subclonal reconstruction, a mutation can only be assigned to one lineage.

21

Chapter 2. Background

Using the infinite sites assumption for SSMs seems reasonable: The human genome
consists of 3 billion nucleotides and cancers can contain tens of thousands of SSMs [49].
The chance that one nucleotide is hit by a mutation is rather small and the chance that
a mutated site is hit by a mutation a second time is even smaller. Thus, the infinite
sites assumption is used by many subclonal reconstruction methods [21, 24, 46, 47, 64].

However, the validity of the infinite sites assumption for tumor sequencing data was
not investigated until 2017, when Kuipers et al. [55] developed a statistical framework
for single-cell sequencing data. The authors found violations of the infinite sites as-
sumption in eleven of twelve datasets, which included parallel mutations of the same
site, back mutations to the original state and losses of mutation containing alleles.
They conclude that the infinite sites assumption has to be used with caution.

A modified version of the infinite sites assumption has been developed that allows
the loss of SSMs when they lie on alleles that get deleted [21,46,67]. In the supplemen-
tary material to their paper, McPherson et al. [67] write that their model can be under-
stood as “a simplified version of the stochastic Dollo process” and Kuipers et al. [55]
describe this approach as “Dollo parsimony with loss”. This concept of Dollo parsi-
mony states that the evolution of a trait is a rare event that happens only once during
evolution and is based on an interpretation of Le Quesne [27, 56]. In contrast, the loss
of such a trait is not as rare and can happen multiple times on different branches of
the phylogenetic tree.

For CNAs, the infinite sites assumption is too restrictive. Unlike for SSMs where
only the two states “mutation present” and “mutation absent” exist, multiple copy
number states exist for CNAs. Moreover, CNAs can influence up to 85 Mb [6], thereby
increasing the chance of a CNA overlap, and thus of nucleotides that are influenced
multiple times. To overcome the multi-state problem, El-Kebir et al. [25] use the infinite
alleles assumption. In this assumption, a site is allowed to mutate to multiple states
but each mutation to a state is allowed only once. This leads to the construction
of a multi-state perfect phylogeny [38]. In contrast, Jiang et al. [46] use a different
interpretation of CNA events when they apply the infinite sites assumption: If CNAs
have the same copy number state and the exact breakpoints across all samples, they
are treated as a single event, that can be present or absent. Overlapping CNAs for
which this is not the case, are treated as separate events that cannot conflict with the
infinite sites assumption.

The first automated subclonal reconstruction methods infer the genotype and the
proportions of populations or lineages but not their relationships. They work either

22

2.3. Subclonal Reconstruction of Cancer Samples

Table 2.1.: Methods Table. The input and output of different subclonal reconstruction
methods are shown, as well as the rules they use.
N: no, Y: yes, n/a: not applicable
mult.: multiple, freqs.: frequencies, lin. prec. rule: lineage precedence rule, pars.:
parsimony, ISA: infinite sites assumption, IAA: infinite alleles assumption

SS
M

s

C
N

A
in

fo

m
ul

t.
sa

m
pl

es

in
fe

rs
C

N
A

s

in
fe

rs
fr

eq
s.

bu
ild

s
tr

ee
s

lin
.p

re
c.

ru
le

su
m

ru
le

cr
os

si
ng

ru
le

st
ro

ng
pa

rs
.

w
ea

k
pa

rs
.

IS
A

THetA [75] N Y N Y Y N n/a n/a n/a n/a Y n/a
TITAN [39] N Y N Y Y N n/a n/a n/a n/a Y n/a
Clomial [88] Y N Y N Y N n/a n/a n/a n/a Y N
SciClone [69] Y Y Y N Y N n/a n/a n/a n/a Y Y
PyClone [78] Y Y Y N Y N n/a n/a n/a n/a Y Y
CloneHD [30] Y Y Y Y Y N n/a n/a n/a n/a Y N

rec-BTP [41] Y N N N N Y Y Y n/a Y n/a Y
SCHISM [73] Y Y Y N N Y Y Y Y N n/a Y
TrAp [85] Y Y N N N Y Y Y n/a Y no N
PyDollo [67] Y Y Y Y1 N Y n/a2 n/a2 n/a2 N n/a3 Y4

AncesTree [24] Y N Y N Y Y Y Y Y N Y Y
CITUP [64] Y N Y N Y Y Y Y Y N Y Y
PhyloSub [47] Y Y Y N Y Y Y Y Y N Y Y

PhyloWGS [21] Y Y Y N Y Y Y Y Y N Y Y4

Spruce [25] Y Y Y N Y Y Y Y Y N N IAA
Canopy [46] Y Y Y Y Y Y Y Y Y N Y Y4

1: CNAs are inferred only at the inner nodes of the tree, 2: PyDollo does not work
with frequencies, 3: clusters are already given, 4: Dollo parsimony with loss

only with CNAs [39, 75], or only with SSMs [88], or with both [30, 69, 78]. With the
availability of population and lineage genotypes and proportions, methods were real-
ized that infer phylogenetic trees. These methods are either based on SSMs alone [41],
or combine information of CNAs and SSMs [67, 73, 85]. Recently, complete subclonal
reconstruction methods were established that jointly infer the genotype and the pro-
portions of populations or lineages and arrange them in a phylogenetic tree. These
methods use either only SSMs [24, 64] or SSMs and CNAs [21, 25, 46, 47]. An overview
of all these methods can be found in Table 2.1.

23

Chapter 2. Background

In the following, we will explain how population and lineage frequencies can be
inferred from CNA and SSM information.

Inferring Population Frequencies From CNA Information. Current methods that
work with CNA information infer non-negative integer copy numbers and assign them
to populations. The observed CNA information, e. g. the total average copy number c,
results from the combination of a) the integer copy numbers of populations without
the CNA and their frequency, and b) the integer copy numbers of populations with
the CNA and their frequency. A CNA that arises in population k is inherited to its
descendants. Thus, all population relationships need to be known in order to compute
the frequency of all populations that contain the CNA, which equals the frequency φk

of lineage k. Given only the observed CNA information, the two unknown variables
φk and Ck, which is the copy number of population k and its descendants, have to be
inferred simultaneously:

c = 2 · (1− φk) + Ck · φk . (2.8)

When CNAs are inferred, three different observations can be used as input. First,
a comparison between the coverage of the tumor and the normal genome, or a com-
parison between the total and the haploid coverage of the tumor genome allow to
compute the total average copy number c. This information allows the detection only
of CNAs that change the copy number of the genome. To find copy number neutral
LOH events, the allele frequencies of heterozygous SNP loci can be used as second
input together with the coverage differences [39]. A third observation, which can be
used as input, are average allele-specific copy numbers of genome segments, which
allow the detection of copy number neutral LOH events as well [46].

Using a probabilistic model, the coverage can be modeled with a Poisson or negative
binomial distribution and the allele frequencies with a binomial or beta-binomial dis-
tribution [30]. The average allele-specific copy numbers can be modeled with a normal
distribution [46].

Inferring Lineage Frequencies From SSMs. Current methods that work with SSMs
assign them to lineages and infer the frequencies of these lineages. As input informa-
tion, the variant and reference counts, V and R, of the SSMs are given, which allow
to compute their VAFs p (Equation 2.7). When an SSM j lies within a copy number

24

2.3. Subclonal Reconstruction of Cancer Samples

neutral genome segment i, the frequency φk of the lineage k in which j arose, can be
computed as

pj =
sj

ci
=

φk

2
,

where sj is the copy number of the SSM and ci the total average copy number of
segment i, which equals 2.

Since SSM data contain noise, the observed VAFs cluster around the true VAFs.
The uncertainty in the read counts can be expressed with a probabilistic model, by
modeling the read counts with a binomial distribution [30,47]. To allow more variance
in read count, some methods use a beta-binomial distribution [30, 78].

When an SSM j does not lie in a copy number neutral segment, the CNA in the
segment i of the SSM influences the VAF pj. The CNA changes the copy number ci

of the segment and potentially also the copy number sj of the SSM. Thus, in presence
of CNAs, computing the lineage frequencies requires knowing the influence of CNAs
on the SSMs. This is why some methods exclude regions with CNAs [24, 41]. Other
methods make the simplified assumption that all cells containing the SSM are equally
influenced by CNAs [47, 69, 78]. Only recent methods model cells with SSMs to be
differently influenced by CNAs [21, 25, 46].

Influence of CNAs on SSMs. When an SSM j lies in a genome segment i with a
CNA, this CNA influences its VAF pj by changing the copy number ci (Equation 2.8)
and potentially also the copy number sj of the SSM. The influence on sj depends on
the ancestral relationship between the CNA and the SSM and their phase. Only when
the CNA is descendant to the SSM and belongs to the same chromosome copy, it
changes sj. Assuming a) that the SSM j arises in lineage k∗ and belongs to phase A,
b) that the CNA arises in population k, leading to a copy number of CAi and a copy
number CBi , c) that all cells containing the CNA belong to lineage k, and that d)
lineage k∗ is an ancestor of lineage k, the copy number sj can be computed as

sj = (φk∗ − φk) + CAi · φk . (2.9)

If the CNA is not phased to allele A, CAi is 1, and sj is simply φk∗ , so it is not influenced.
Equation 2.9 can be extended to allow the influence of multiple CNAs on sj. When
CNAs are ancestral to SSMs or appear on different branches of the phylogeny, they
cannot influence their copy numbers.

25

Chapter 2. Background

Incorporating the influence of CNAs on SSMs in a probabilistic model allows to
detect ancestor-descendant relationships between populations in cases, in which the
likelihood can be increased by modeling an ancestor-descendant relationship between
populations and allowing a CNA to change the copy number of an SSM.

Now, we will introduce PhyloWGS and Canopy, two methods that we will compare
Onctopus to.

PhyloWGS. PhyloWGS [21] was the first fully automated method to build a com-
plete subclonal reconstruction based on SSMs and CNAs, without making the unre-
alistic assumption that all cells containing an SSM are equally influenced by CNAs.
As input, it requires the variant and total read counts of SSMs, as well as major and
minor copy numbers of CNAs with their population frequencies. Thus, it does not
infer CNAs.

PhyloWGS uses an MCMC procedure that samples phylogenetic trees from the
model posterior. It is parameter free and runs in one MCMC chain. The first 1000 it-
erations are burned-in. Then, the resulting subclonal reconstructions with different
numbers of populations of the next 2500 iterations are reported. If a single subclonal
reconstruction is needed, the authors suggest using the reconstruction that maximizes
the likelihood.

Canopy. Canopy [46] is the first subclonal reconstruction method that works with
SSMs and infers CNAs. As input, it needs the variant and total read counts of SSMs,
as well as the average allele-specific copy numbers of genome segments. Canopy
applies an MCMC procedure and computes the posterior distribution over configura-
tions. A configuration summarizes all subclonal reconstructions that have the same
relationships between populations and the same mutation assignment. The popula-
tion frequencies can be different. The number of chains of the MCMC, the number of
burn-ins and total iterations can be adjusted via parameters.

Canopy constructs binary trees and assigns mutations to the inner nodes and leaves.
Not all nodes have to receive mutations. Nodes with mutations represent populations,
nodes without mutations do not represent populations and can be collapsed to their
parent node. An exception is the leftmost leaf, which represents the normal population
and thus does not contain any mutations. Populations at the inner nodes to which no
leaf is collapsed are vestigial populations. The number of non-vestigial populations,
i. e. the number of leaves, is specified via a parameter. Since the MCMC sampling can

26

2.3. Subclonal Reconstruction of Cancer Samples

lead to nodes that do not represent populations, the total number of populations can
differ for the same number of non-vestigial populations. To determine the underlying
number of non-vestigial populations, Canopy compares reconstructions with different
population numbers using BIC.

27

Chapter 3
A New Lineage-Based Subclonal
Reconstruction Model

In this chapter, we present our probabilistic model that solves the lineage-based sub-
clonal reconstruction problem with copy number inference.

As input, our model takes average allele-specific copy numbers of I genome seg-
ments and the variant read counts as well as the reference read counts of J SSMs in
N bulk-sequenced tumor samples of the same patient. Furthermore, the number of
lineages K is given as input.

We apply the lineage precedence rule, the sum rule and the crossing rule to exclude
invalid subclonal reconstructions from the solution space of subclonal reconstructions
(compare Subsection 2.3.3). To reduce the number of possible mutation assignments,
we apply a version of the infinite sites assumption that permits loss of SSMs through
copy number losses. We do not use the infinite sites assumption for CNAs. Our
probabilistic model makes implicit use of the weak parsimony assumption but we also
offer the possibility of using the weak parsimony assumption explicitly by clustering
SSMs based on their VAFs.

Our model solves the lineage-based subclonal reconstruction problem with copy
number inference and thus outputs inferred CNAs, that are phased to allele A or
B and assigned to the given lineages. SSMs are phased relatively to CNAs and are
assigned to the lineages as well. Also, the lineage frequencies across all samples and
the lineage relationships are inferred.

Unique features of our model compared to other models that solve the subclonal
reconstruction problem are the modeling of CNAs and the way we deal with ambigu-
ity in the input data. Instead of modeling absolute copy numbers of populations, we

29

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

model relative copy numbers, so copy number changes, of lineages. This enables us
to combine CNAs and SSMs in a lineage-based model and improves the handling of
ambiguity: Instead of inferring the relationships between all lineages and having to de-
cide for all ancestor-descendant relationships whether they are present or absent, we
infer only the relationships that can be observed in the data. The other relationships
are modeled as ambiguous relationships.

In Section 3.1, we present the likelihood function of our model. Then, in Section 3.2,
we explain the different model components, the lineage frequencies, the lineage rela-
tionships, and the assignment of CNAs and SSMs. We also detail the rules that define
our model. In Section 3.3, we present an MILP formulation of our model. Afterwards,
in Section 3.4, we analyze the complexity of the optimization. Finally, in Section 3.5,
we show how we determine the underlying lineage number of the input data.

If not stated otherwise, the following indices have the following ranges and mean-
ings:

• i ∈ {0, . . . , I − 1} indexes segments,

• j ∈ {0, . . . , J − 1} indexes SSMs,

• n ∈ {0, . . . , N − 1} indexes tumor samples,

• α ∈ {A, B} indexes alleles.

3.1. The Likelihood Function

Our likelihood function L for a subclonal reconstruction r is composed of two main
parts that consider the likelihood values for CNAs and SSMs.

As done in Canopy, we assume that average allele-specific copy numbers follow a
normal distribution with mean cαi,n and standard deviation σαi,n for allele α of segment i
in sample n. Thereby, cαi,n is the observed average allele-specific copy number and σαi,n

is the standard error, which is either given by the copy number detection method or
calculated as shown in Section 5.2 on page 94. Our model infers the average allele-
specific copy number ĉαi,n from the input data (later shown in Equation 3.18) with
which we compute the likelihood of observing cαi,n with σαi,n as

N (ĉαi,n | cαi,n , σαi,n) =
1√

2πσ2
αi,n

e
−

(ĉαi,n−cαi,n)2

2σ2
αi,n . (3.1)

30

3.2. Model Components and Rules

As done in PyClone and CloneHD, we assume that the variant read counts of SSMs
follow a beta-binomial distribution with Dj,n trials and Vj,n successes, and parameters
α̂j,n and β̂ j,n, as defined in the following, for SSM j in sample n. Thereby, Vj,n is the
observed variant and Rj,n the observed reference read count, with Dj,n = Vj,n + Rj,n.
Our model infers the VAF p̂j,n from the input data (later shown in Equation 3.26), from
which we compute

α̂j,n = p̂j,n · sSSM (3.2)

and
β̂ j,n = (1− p̂j,n) · sSSM, (3.3)

where sSSM is the overdispersion parameter of the beta-binomial distribution. Given
the inferred VAF p̂j,n, we compute the likelihood of observing Vj,n variant reads with
Dj,n total reads as

Beta-Bin(α̂j,n , β̂ j,n | Dj,n , Vj,n) =

(
Dj,n

Vj,n

)
Beta(Vj,n + α̂j,n , Dj,n −Vj,n + β̂ j,n)

Beta(α̂j,n , β̂ j,n)
, (3.4)

where Beta is the beta function.

We assume that CNAs and SSMs are independent, conditioned on the true lineage
frequencies. Thus, we compute the combined log-likelihood L′ for a subclonal recon-
struction r as

L′(r) = L′(ĉA, ĉB, α̂, β̂ | cA, cB, σA, σB, D, V) = ∑
n

∑
i

log(N (ĉAi,n | cAi,n , σ2
Ai,n

))

+ ∑
n

∑
i

log(N (ĉBi,n | cBi,n , σ2
Bi,n

))

+ ∑
n

∑
j

log(Beta-Bin(α̂j,n , β̂ j,n | Dj,n , Vj,n)).

(3.5)

3.2. Model Components and Rules

In this section, we explain the different model components. These are the inferred
lineage frequencies (see Subsection 3.2.1), the inferred lineage relationships (see Sub-
section 3.2.2), and the mutation assignments of CNAs (see Subsection 3.2.3) and SSMs
(see Subsection 3.2.4). For the variables of each model component, we specify their
allowed values and indicate which rules ensure a valid reconstruction.

31

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

3.2.1. Inferred Lineage Frequencies

Given K lineages and N samples, we store their lineage frequencies in the
matrix φ ∈ RK×N , with 0 ≤ φk,n ≤ 1. The first row of φ contains the frequencies
of the normal lineage:

φ0,n = 1 ∀ n, 0 ≤ n < N. (3.6)

The first column of φ is sorted in decreasing order of frequencies, such that

φk,0 ≥ φk′,0 ∀ 0 ≤ k < k′ < K. (3.7)

Thus, the first column defines an order of the lineages, such that the lineages can then
be indexed by row indices. The frequencies in the other columns are not forced to be
sorted.

Sum Rule. We model the sum rule as

∑
k′∈χk

φk′,n ≤ φk,n , (3.8)

where χk is the set of children of lineage k and later formally defined in Equation 3.11.

3.2.2. Inferred Lineage Relationships

The inferred relationships between the K lineages are stored in the lineage relationship
matrix Z ∈ {1, 0, ?}K×K. Zk,k′ = 1 indicates that lineage k is an ancestor of lineage k′,
hence an ancestor-descendant relationship between the two lineages is present. If
Zk,k′ = 0, lineage k is not an ancestor of lineage k′, thus the ancestor-descendant re-
lationship between the lineages is absent. Zk,k′ = ? shows that lineage k could be an
ancestor of lineage k′, consequently the ancestor-descendant relationship is ambigu-
ous.

With the help of the lineage relationship matrix Z, we define the set of all ances-
tors Ak of lineage k as

Ak = {k∗ | Zk∗,k = 1, k∗ < k}. (3.9)

We define Dk as the set of all descendants of lineage k:

Dk = {k′ | Zk,k′ = 1, k′ > k}. (3.10)

32

3.2. Model Components and Rules

Further, we define the set of all children χk of lineage k as

χk = {k′ | Zk,k′ = 1, Zk◦,k′ ∈ {0, ?} ∀ k◦ ∈ Dk , k◦ < k′}. (3.11)

A trivial property of the lineage relationship matrix Z is that a lineage cannot be its
own ancestor or descendant:

Zk,k = 0. (3.12)

Following the properties of subclonal reconstructions, the normal lineage 0 is the an-
cestor of all other lineages:

Z0,k = 1 ∀ k, 1 ≤ k < K. (3.13)

Lineage Precedence Rule and Crossing Rule. We model the lineage precedence
rule and the crossing rule jointly. As the lineages are ordered by their frequencies
in the first sample, we know that in the first sample, lineage k′ cannot have a higher
frequency than lineage k, with k < k′. Thus, we do not allow lineage k′ to be an
ancestor of lineage k, leading to the lower left triangle of Z being filled with 0s:

Zk′,k = 0 ∀ k < k′. (3.14)

Further, we do not allow lineage k to be an ancestor of lineage k′ if lineage k′ has a
higher frequency than lineage k in at least one sample n:

Zk,k′ ∈

{0} if φk′,n > φk,n for some n, 1 ≤ n < N,

{0, 1, ?} otherwise.
(3.15)

Phylogenetic Tree Rules. The lineage relationships describe an underlying phylo-
genetic tree, from which the following two rules for lineages k, k′ and k′′, 0 ≤ k < k′ <
k′′ < K, follow directly:

1. If lineage k is an ancestor of lineage k′ and lineage k′ is an ancestor of lineage k′′,
then lineage k is also an ancestor of lineage k′′:

Zk,k′′ ∈

{1} if Zk,k′ = 1∧ Zk′,k′′ = 1,

{0, 1, ?} otherwise.
(3.16)

33

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

2. If both lineages k and k′ are ancestors of lineage k′′, then lineage k is also an
ancestor of lineage k′:

Zk,k′ ∈

{1} if Zk,k′′ = 1∧ Zk′,k′′ = 1,

{0, 1, ?} otherwise.
(3.17)

We can summarize that a 0 is placed in the lineage relationship matrix Z to not allow
that a lineage is its own ancestor or descendant. Also, a 0 is placed when otherwise the
lineage precedence rule or the crossing rule would be violated. A 1 is placed to make
all cancerous lineages descendants of the normal lineage and to fulfill the phylogenetic
tree rules. For all entries Zk,k′ for which none of the above applies, the three values
0, 1 and ? are possible. We will explain later in Subsection 3.2.4 on page 37 how
these possible values can influence the likelihood of our model. Also, we will show in
Chapter 4 how to deal with ambiguity and how to build a single reconstruction that
represents ambiguity of the input data.

3.2.3. Copy Number Aberration Assignment

We model CNAs as relative copy numbers, i. e. allele-specific copy number changes
per lineage. These changes are stored in the two matrices ∆CA and ∆CB ∈ ZI×K. The
values in ∆Cαi,k have the following meaning: ∆Cαi,k = 0 indicates that no copy number
change is assigned to allele α in segment i of lineage k. When a copy number gain is
assigned to allele α in segment i of lineage k, then ∆Cαi,k > 0. A copy number loss
assigned to allele α in segment i of lineage k is indicated by ∆Cαi,k < 0.

The inferred average allele-specific copy number ĉαi,n is computed by adding the
normal copy number of the allele, which is 1, to the average copy number change of
the allele over all lineages:

ĉαi,n = 1 + ∑
k

φk,n · ∆Cαi,k . (3.18)

We can then compute the inferred average copy number ĉi,n of both alleles as

ĉi,n = ĉAi,n + ĉBi,n . (3.19)

34

3.2. Model Components and Rules

We assign each major copy number to allele A and each minor copy number to allele B.
Thus, we also ensure in our model that ĉAi,n is larger than or equal to ĉBi,n :

ĉAi,n ≥ ĉBi,n . (3.20)

While modeling CNAs, we do not allow copy number changes to be assigned to the
normal lineage:

∆Cαi,0 = 0. (3.21)

Allowed Copy Number Changes. We do not use the infinite sites assumption for
CNAs, which means that we allow multiple copy number changes in different lineages
in the same segment i. However, if multiple copy number changes appear in segment i,
we restrict them to be either a) all copy number gains, b) all copy number losses, or c)
an LOH event in a single lineage:

∆CAi,· ∪ ∆CBi,· ∈
{(

Z+
0

2K

)
,
(

Z−0
2K

)
,

{ {
∆CAi,k , ∆CBi,k , 0

}
| ∆CAi,k · ∆CBi,k = −1, k ∈ {1, . . . , K− 1}

}}
.

(3.22)

As a consequence of these copy number change restrictions and because each allele
can be lost only once on a branch of the phylogeny, the minimum value for ∆Cαi,k

is −1.

If multiple copy number losses appear in a segment i, we do not allow an allele to
get lost multiple times on the same branch of the underlying phylogenetic tree:

∆Cαi,k ∈

{0} if for any k∗ ∈ Ak : ∆Cαi,k∗ < 0,

Z otherwise.
(3.23)

35

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

Also, we ensure that if we observe a copy number gain for allele α, the model does not
infer copy number losses, and if we observe a copy number loss, the model does not
infer copy number gains:

∆Cαi,· ∈



(
Z+

0
K

) if cαi,n∗ > 1 for some n∗ ∈ {0, . . . , N − 1}∧
cαi,n′ ≥ 1 ∀ n′ ∈ {0, . . . , N − 1}, n′ 6= n∗,(

Z−0
K

) if cαi,n∗ < 1 for some n∗ ∈ {0, . . . , N − 1}∧
cαi,n′ ≤ 1 ∀ n′ ∈ {0, . . . , N − 1}, n′ 6= n∗,(

Z

K

)
otherwise.

(3.24)

Unobservable Lineage. When a lineage k has an inferred frequency of ≈ 0 across
all samples, no copy number change is allowed to be assigned to this lineage:

∆Cα·,k ∈


{0} if ∑

n
φk,n ≤ φε,

Z otherwise.
(3.25)

As default, we set φε to be 0.00001.

3.2.4. Simple Somatic Mutation Assignment

We model the VAF p̂j,n of SSM j in sample n as

p̂j,n =
ŝj,n

ĉi,n
, (3.26)

where ŝj,n is the inferred average copy number of SSM j in sample n (see Equation 3.27)
and ĉi,n the average inferred copy number of segment i (see Equation 3.19) in which
SSM j appears. The average copy number ŝj,n of SSM j depends on a) the lineage and
phase it is assigned to and whether it is influenced by copy number changes in b) its
own lineage or c) descendant lineages:

36

3.2. Model Components and Rules

ŝj,n = ∑
k

((
∆Sj,k + ∆SAj,k + ∆SBj,k

)
· φk,n

)
(a)

+ ∑
k

((
∆FAj,k + ∆FBj,k

)
· φk,n

)
(b)

+ ∑
k

(
∑

k′∈Dk

(
∆SAj,k · ∆CAi,k′

+ ∆SBj,k · ∆CBi,k′

)
· φk′,n

)
. (c) (3.27)

The three matrices ∆S, ∆SA and ∆SB ∈ {0, 1}J×K model the lineage and phase assign-
ments of SSMs, and the two matrices ∆FA and ∆FB ∈ {0, 1}J×K model whether SSMs
are influenced by copy number changes in their own lineage.

If SSM j is assigned to lineage k and if a copy number change in the same segment
and on the same allele as j is assigned to lineage k′, with k < k′, the average copy
number ŝj,n of j depends on the ancestor-descendant relationship between lineages k
and k′. If a present relationship increases the likelihood compared to an absent or
ambiguous relationship, we say that we can observe the presence of the relationship
in the input data. Note that the same likelihood is computed for Zk,k′ = 0 and Zk,k′ = ?
because both values lead to the same the set of descendants Dk (see Equation 3.10).

∆SA models the assignment to allele A, ∆SB the assignment to allele B and ∆S the
unphased assignment. An entry at position (j, k) in any of the three matrices is 1 if
SSM j is assigned to lineage k with the corresponding phase, otherwise the entry is 0.

∆FA models the influence of a copy number change on allele A, ∆FB on allele B,
respectively. A copy number change that arises in the same lineage as the SSM is
able to influence ŝn,j only if it is a gain. If it was a loss, an SSM phased to the same
allele would also be lost and thus could not have been detected. ∆Fαj,k is 1 if SSM j is
assigned to allele α of lineage k and if ŝj,n is influenced by a gain of allele α in lineage k,
otherwise the entry is 0. We model ∆Fαj,k as follows:

∆Fαj,k ∈

{0} if ∆Sαj,k = 0 or ∆Cαi,k ≤ 0,

{0, 1} otherwise.
(3.28)

37

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

While modeling the lineage and phase assignments of SSMs, we do not allow an
SSM j to be assigned to the normal lineage:

∆Sj,0 = 0, (3.29)

∆SAj,0 = 0, (3.30)

∆SBj,0 = 0. (3.31)

Infinite Sites Assumption. We use the infinite sites assumption to model SSM as-
signments, hence each SSM j can be assigned only to a single lineage and phase:

∑
k

(
∆Sj,k + ∆SAj,k + ∆SBj,k

)
= 1. (3.32)

Unobservable Lineage. When a lineage k has an inferred frequency of ≈ 0 across
all samples, no SSM is allowed to be assigned to this lineage:

∆S·,k ∪ ∆SA·,k ∪ ∆SB·,k ∈


{0} if ∑

n
φk,n ≤ φε,

{0, 1} otherwise,
(3.33)

with φε being the default minimal frequency as presented in Subsection 3.2.3 on
page 36.

Removing Phasing Ambiguity. When the assigned phase of an SSM j does not have
an influence on its average copy number ŝj,n, different phase assignments of j lead
to the same likelihood, and therefore ambiguous subclonal reconstructions exist (see
Section 4.1). To remove this phasing ambiguity, we apply Equations 3.34 – 3.36.

An SSM j in segment i of lineage k is modeled as unphased if its average copy
number ŝj,n is not influenced by copy number changes. This means that a) no copy
number changes are assigned to descendant lineages, that no copy number losses are

38

3.2. Model Components and Rules

assigned to b) ancestral lineages and c) k itself, and that d) j is not influenced by copy
number gains of k:

∆SAj,k + ∆SBj,k ≤ ∑
k′∈Dk

(
|∆CAi,k′

|+ |∆CBi,k′ |
)

(a)

+ ∑
k∗∈Ak

(
∆Closs

Ai,k∗
+ ∆Closs

Bi,k∗

)
(b)

+ ∆Closs
Ai,k

+ ∆Closs
Bi,k

(c)

+ ∆FAj,k + ∆FBj,k , (d) (3.34)

with

∆Closs
αi,k

=

1 if ∆Cαi,k < 0,

0 otherwise.

An SSM j in segment i of lineage k is modeled as phased if a copy number change
happens in a descendant lineage:

∆Sj,k ∈


{0} if for any α ∈ {A, B} : ∑

k′∈Dk

∆Cαi,k′ 6= 0,

{0, 1} otherwise.
(3.35)

An SSM j in segment i of lineage k is not allowed to be phased to allele α or to be
unphased if α got lost in an ancestral lineage or k itself:

∆Sj,k + ∆Sαj,k ≤ − ∑
k∗∈Ak

∆Closs
αi,k∗
− ∆Closs

αi,k
+ 1. (3.36)

Clustering SSMs: Weak Parsimony Assumption. We explicitly use the weak parsi-
mony assumption by offering the possibility to cluster SSMs based on their VAFs. In
a preprocessing step, the SSMs of each segment are clustered with a clustering algo-
rithm within their segments. Then, for each cluster κ, we receive a list Λκ of indices
of the SSMs that are assigned to that cluster. We implemented two versions of how
to proceed from here. In the first version, we assign all SSMs of the same cluster to
the same lineage. In the second version, we combine SSMs of the same cluster to
so called superSSMs and perform the optimization on these superSSMs. We evaluate
the performance of different clustering algorithms and compare the two versions in
Section 5.5.

39

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

Clustering SSMs: Version 1. In version 1, we assign all SSMs of the same cluster κ

to the same lineage and phase:

∆Sαj∗ ,k = ∆Sαj′ ,k , for j∗ = Λκ[0], ∀ j′ ∈ Λκ, j′ 6= j∗. (3.37)

Also, we ensure that SSMs of the same cluster are equally influenced by copy num-
ber gains in their lineage:

∆Fαj∗ ,k = ∆Fαj′ ,k , for j∗ = Λκ[0], ∀ j′ ∈ Λκ, j′ 6= j∗. (3.38)

Clustering SSMs: Version 2. In version 2, we reduce the number of SSMs by com-
bining all SSMs of one cluster κ to a superSSM jκ with:

Vjκ ,n = ∑
j′∈Λκ

Vj′,n

and
Rjκ ,n = ∑

j′∈Λκ

Rj′,n .

3.3. Optimization with Mixed Integer Linear Programming

Since we could not find a closed formula from which we could derive the maximum
likelihood estimator θ̂ of our model and since we are not aware that a closed formula
exists for any related subclonal reconstruction problem, we decided to develop a MILP
to find θ̂. This MILP is explained in this section.

In Subsection 3.3.1, we show how we build the objective function and how a basic
version of our MILP looks like. Afterwards, in Subsections 3.3.2 – 3.3.5, we present
all variables needed to create the model components and we explain how we translate
the equations of Section 3.2, that define the rules of our model, into linear constraints.
At the end, we show in Subsection 3.3.6 how the number of variables and constraints
of our MILP can be reduced.

3.3.1. Objective Function and Basic Mixed Integer Linear Program

An objective function for an MILP needs to be linear, however, the single terms (see
Equations 3.1 and 3.4) of our combined log-likelihood function L′ are not linear, thus
L′ is not linear either. Hence, we approximate the non-linear terms with piecewise

40

3.3. Optimization with Mixed Integer Linear Programming

0 cαi,n + 5c_maxαi,n

lc1 lc2lc3

(a)

0 + ε 1− εp_maxj,n

lp1 lp2

(b)

Figure 3.1.: Placement of knots in (a) copy number and (b) VAF intervals. (a) On
each side of the knot at position c_maxαi,n , nknots knots with equal distance are inserted
in an interval of length lc1. Afterwards, nknots knots with equal distance are placed in
an interval around that with length lc2 to both sides. Finally, knots with distance lc3 are
inserted in the remaining interval [0, cαi,n + 5], starting from the beginning and from the
end. (b) On each side of the knot at position p_maxj,n, nknots knots with equal distance
are inserted in an interval of length lp1. The remaining interval [0 + ε, 1− ε] is filled
with knots having distance lp2 to adjacent knots.

linear functions in order to build the objective function as explained in Subsection 2.1.1
on page 6. For both observed average allele-specific copy numbers cAi,n and cBi,n of each
segment i and for the observed VAF pj,n of each SSM j in each sample n, we choose
an interval that is large enough for the optimization. The size of the interval is crucial
since a too small interval leads to an infeasible solution.

In each of the intervals, we place knots at specific positions, compute their cor-
responding log-likelihood and interpolate a piecewise linear function through these
points. Our goal is to approximate each term of the log-likelihood function L′ as well
as possible, especially around the maximum. The more points are used to interpolate
the piecewise linear function through, the better the approximation. However, the run
time of the optimization increases with increasing number of points. Thus, we choose
a placement of knots that has the highest density around the maximum and a lower
density elsewhere.

Piecewise Linear Functions for Average Allele-Specific Copy Numbers. For the
observed average allele-specific copy number cαi,n , we build the piecewise linear func-
tion in the interval [0, cαi,n + 5] of possibly inferred copy numbers. Here, 0 is the natural
start of the interval since the copy number cannot be smaller than 0. We chose cαi,n + 5
as the right end of the interval because we assume that the inferred copy number is
close to the observed one and that by allowing an offset of 5, a feasible solution can be
found.

At the beginning, we compute the position c_maxαi,n that maximizes the simplified
log-likelihood N ′ (see Equation 3.39). Then, we insert knots with different distances
into the interval (see Figure 3.1a). The first knot is inserted at position c_maxαi,n . After-

41

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

wards, nknots knots with equal distance are inserted left and right of position c_maxαi,n

in an area of length lc1. Then, we insert nknots knots with equal distance to the left of po-
sition c_maxαi,n − lc1 and to the right of position c_maxαi,n + lc1 in an area of length lc2.
We do not insert knots to the left of position c_maxαi,n that exceed the interval begin
of 0. At the end, we insert knots with distance of lc3 at the beginning of the interval
until they reach the position c_maxαi,n − (lc1 + lc2) and at the end of the interval until
they reach the position c_maxαi,n + lc1 + lc2. Per default, we set lc1 = 0.1, lc2 = 0.9,
lc3 = 1, and nknots = 50. Like this, we achieve a high density of knots around the
maximum and a lower density elsewhere.

After inserting all knots into the interval, we compute the simplified log-likelihood

N ′(cαi,n,i′ | cαi,n , σ2
αi,n

) = −
(cαi,n,i′ − cαi,n)

2

2 · σ2
αi,n

(3.39)

for each knot i′ in the interval and interpolate a piecewise linear function through
all points. We can neglect the first factor, 1√

2πσ2
αi,n

, of the probability density function

of the normal distribution since it does not depend on cαi,n,i′ and becomes a constant
summand, that does not influence the optimization when we apply the logarithm.

Piecewise Linear Functions for SSMs. For the observed VAF of SSM j in sample n,
we construct the piecewise linear function in the interval [0 + ε, 1 − ε] of possibly
inferred VAFs. We need to shift the borders of the interval by ε > 0 because the
logarithm of the beta-binomial probability mass function that we use for the VAFs is
undefined for p̂j,n = 0 and p̂j,n = 1.

At the beginning, we compute the position p_maxj,n that maximizes the log-
likelihood Beta-Bin′ (see Equation 3.40). Afterwards, we insert knots with different
distances into the interval (see Figure 3.1b). The first knot is inserted at position
p_maxj,n. Then, nknots knots with equal distance are inserted left and right of posi-
tion p_maxj,n in an area of length lp1. Next, we insert knots at the beginning of the
interval in equal distance of lp2 until the position p_maxj,n − lp1 is reached and at the
end of the interval until the position p_maxj,n + lp1 is reached. Per default, we set
lp1 = 0.1, lp2 = 0.02, and ε = 0.0000001.

After we inserted all knots, we compute the log-likelihood

Beta-Bin′(αj,n,j′ , β j,n,j′ | Dj,n , Vj,n) = log(Beta-Bin(αj,n,j′ , β j,n,j′ | Dj,n , Vj,n)), (3.40)

42

3.3. Optimization with Mixed Integer Linear Programming

where αj,n,j′ and β j,n,j′ are derived from pj,n,j′ (see Equations 3.2 and 3.3), for each knot j′

in the interval. Then, we interpolate a piecewise linear function through all points.

Note that for a future improvement, we plan to insert the knots not with predefined
distances but for different percentiles of the log-likelihood functions. This way, the
coverage of knots adapts to the shape of the log-likelihood functions.

After computing all piecewise linear functions, we can build the MILP. A basic
version of it is shown here:

max ∑
n

∑
i

∑
i′

wAi,n,i′
· N ′(cAi,n,i′

| cAi,n , σ2
Ai,n

)

+ ∑
n

∑
i

∑
i′

wBi,n,i′ · N
′(cBi,n,i′ | cBi,n , σ2

Bi,n
)

+ ∑
n

∑
j

∑
j′

wj,n,j′ · Beta-Bin′(αj,n,j′ , β j,n,j′ | Dj,n , Vj,n)

s. t. ∑
i′

wAi,n,i′
· cAi,n,i′

= ĉAi,n ∀ i, n

∑
i′

wBi,n,i′ · cAi,n,i′
= ĉBi,n ∀ i, n

∑
j′

wj,n,j′ · pj,n,j′ = ˜pj,n ∀ j, n

∑
i′

wAi,n,i′
= 1 ∀ i, n

∑
i′

wBi,n,i′ = 1 ∀ i, n

∑
j′

wj,n,j′ = 1 ∀ j, n

The indices i′ and j′ iterate over all knots in the intervals of the corresponding piece-
wise linear functions. The variables wAi,n,i′

, wBi,n,i′ and wj,n,j′ are real-valued between
0 and 1. The variables ĉAi,n , ĉBi,n and ˜pj,n are real-valued as well and defined in the
following subsections by Constraints 3.43 and 3.53.

3.3.2. Variables and Constraints for Lineage Frequencies

We represent the lineage frequencies with K · N real-valued variables φk,n, 0 ≤ k < K,
0 ≤ n < N, with 0 ≤ φk,n ≤ 1. Equation 3.6 for the frequency of the normal lineage
and Equation 3.7 for sorting the lineages according to their frequencies in the first
sample are already linear constraints.

43

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

Sum Rule. To model the sum rule (see Equation 3.8), we construct N · K2 auxiliary
real-valued variables child_ f reqn,k,k′ , 0 ≤ n < N, 0 ≤ k < K, 0 ≤ k′ < K, with
0 ≤ child_ f reqn,k,k′ ≤ 1. If lineage k′ is a child of lineage k, child_ f reqn,k,k′ equals φk′,n ,
otherwise it is 0. We create the variables with the trick to multiply real-valued and
binary variables shown in Subsection 2.1.1 on page 6. Now, we can model the sum
rule as linear constraint:

∑
k′|k′<k

child_ f reqn,k,k′ ≤ φk,n .

Fixing Lineage Frequencies. When the lineage frequencies are known, e. g. from
previous experiments, they can be fixed for the optimization:

φk,n = Φk,n ,

where Φk,n is the known frequency. Fixing the lineage frequencies removes a lot of
ambiguity (see Section 4.1). The benefits of fixing the lineage frequencies are shown
in Subsection 5.7.3.

3.3.3. Variables and Constraints for Lineage Relationships

As Zk,k′ = ? leads to the same likelihood as Zk,k′ = 0 (see Subsection 3.2.4, page 37),
and thus to the same objective value, we remove ambiguity in the optimization by not
using the value ?. After the optimization, we analyze which of the lineage relationships
inferred as absent are actually ambiguous (see Section 4.2). Not using the value ?
allows us to model the lineage relationships in the MILP with Z2 binary variables Zk,k′ ,
0 ≤ k < K, 0 ≤ k′ < K.

We do not need to create variables for the set of ancestors Ak of lineage k (Equa-
tion 3.9), the set of descendants Dk (Equation 3.10) and the set of children χk (Equa-
tion 3.11) since we will model the membership in these sets with individual variables
as done with the variables child_ f reqn,k,k′ in Subsection 3.3.2.

The trivial property that a lineage cannot be its own ancestor or descendant (Equa-
tion 3.12), and the condition that the normal lineage 0 is ancestor of all other lin-
eages (Equation 3.13) are already linear constraints.

Lineage Precedence Rule and Crossing Rule. Equation 3.14, that fills the lower
left triangle of the lineage relationship matrix Z with 0s, is already a linear constraint.
We model the linear constraint that lineage k cannot be an ancestor of lineage k′ if

44

3.3. Optimization with Mixed Integer Linear Programming

lineage k′ has a higher frequency φk′,n than lineage k in at least one sample n (Equa-
tion 3.15) as

φk,n − φk′,n ≥ Zk,k′ − 1.

Phylogenetic Tree Rules. To model the two tree rules of Equations 3.16 and 3.17,
we create O(K3) auxiliary binary variables Z_tree_1k,k′,k′′ and Z_tree_2k,k′,k′′ , with 1 ≤
k < k′ < k′′ < K. Variable Z_tree_1k,k′,k′′ is 1 if Zk,k′ = 1 and Zk′,k′′ = 1, otherwise it is
0. Variable Z_tree_2k,k′,k′′ is 1 if Zk,k′′ = 1 and Zk′,k′′ = 1, otherwise it is 0. We construct
the variables as show in Section 2.1.1 on page 6. Given these auxiliary variables, we
create linear constraints that model Equations 3.16 and 3.17 as follows:

Zk,k′′ ≥ Z_tree_1k,k′,k′′ ∀ k′, k < k′ < k′′, (3.41)

and
Zk,k′ ≥ Z_tree_2k,k′,k′′ ∀ k′′, k′ < k′′ < K. (3.42)

In Subsection 3.3.6, we show how we can model Equations 3.16 and 3.17 without
having to create O(K3) auxiliary binary variables.

Fixing Lineage Relationships. When lineage relationships are known, e. g. from
previous experiments, they can be fixed for the optimization:

Zk,k′ = Zk,k′ ,

where Zk,k′ is the known relationship.

3.3.4. Variables and Constraints for Copy Number Aberrations

In order to model the multiplication in Equation 3.18 to compute inferred average
allele-specific copy numbers, we first need to model the matrices ∆CA and ∆CB as
binary matrices. To differentiate between different copy number changes, we use the
matrices ∆Cgain

A and ∆Cgain
B to model copy number gains and the matrices ∆Closs

A and
∆Closs

B to model copy number losses. Because our current implementation allows copy
number changes of only +1 or −1, differentiating between gains and losses is suffi-
cient. Thus, we create O(I · K) binary variables to model copy number changes per
allele, segment and lineage.

With the help of the binary matrices ∆Cgain
A , ∆Cgain

B , ∆Closs
A and ∆Closs

B and the trick
to multiply real-valued and binary variables shown in Subsection 2.1.1 on page 6, we

45

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

create O(I · K · N) real-valued variables ∆C_ f reqgain
Ai,k,n

, ∆C_ f reqgain
Bi,k,n

, ∆C_ f reqloss
Ai,k,n

and
∆C_ f reqloss

Bi,k,n
with a lower bound of 0 and an upper bound of 1. An entry (i, k, n)

equals the lineage frequency φk,n if in segment i the specific copy number change
is assigned to lineage k. Now we can formulate Equation 3.18 to compute inferred
average allele-specific copy numbers as the following linear constraint:

ĉαi,n = 1 + ∑
k

∆C_ f reqgain
αi,k,n −∑

k
∆C_ f reqloss

αi,k,n
. (3.43)

Equation 3.20, which ensures that ĉAi,n is larger than or equal to ĉBi,n , can be modeled
as a straight-forward linear constraint with the help of Constraint 3.43.

Equation 3.21, which does not allow the normal lineage to have copy number
changes, is already a linear constraint.

Allowed Copy Number Changes. To model Equation 3.22, that ensures that each
segment i contains only copy number gains, losses or one LOH event, we need to
apply the following four linear constraints for all lineages k and k′, with 1 ≤ k < K,
1 ≤ k′ < K, and k 6= k′:

∆Cgain
Ai,k

+ ∆Closs
Ai,k′
≤ 1, (3.44)

∆Cgain
Ai,k

+ ∆Closs
Bi,k′
≤ 1, (3.45)

∆Cgain
Bi,k

+ ∆Closs
Ai,k′
≤ 1, (3.46)

∆Cgain
Bi,k

+ ∆Closs
Bi,k′
≤ 1. (3.47)

Like this, gains and losses are allowed to appear together in a segment only if they are
assigned to the same lineage. Further, we need to exclude the case that the same allele
is duplicated and lost in the same lineage:

∆Cgain
αi,k + ∆Closs

αi,k
≤ 1. (3.48)

To model Equation 3.23, that does not allow alleles of a segment to get lost multiple
times on the same branch of the phylogeny, we first need to create O(I · K2) binary
variables ∆C_Aloss

Ai,k,k′
and ∆C_Aloss

Bi,k,k′
, with 1 ≤ k < k′ < K. A variable ∆C_Aloss

αi,k,k′
is 1 if

lineage k is an ancestor of lineage k′ and if k loses allele α in segment i, otherwise it

46

3.3. Optimization with Mixed Integer Linear Programming

is 0. We create the variables with the trick to multiply real-valued and binary variables
(see Subsection 2.1.1 on page 6). Now we can formulate the following constraint:

∑
k|k<k′

(
∆C_Aloss

αi,k,k′
+ ∆Closs

αi,k′
+ ∆Cgain

αi,k′

)
≤ 1, (3.49)

for 0 < k < k′ < K and 2 ≤ k′. In addition to not allowing the loss of an already lost
allele, this constraint does not allow the gain of an already lost allele. We discuss in
Subsection 3.3.6, how we can model Equations 3.22 and 3.23 with less constraints in
the MILP.

To model Equation 3.24, we use Constraints 3.50 and 3.51. Constraint 3.50 does not
allow copy number losses and is used if at least one copy number gain and no copy
number loss is observed for segment i in all samples. Constraint 3.51 is applied if at
least one copy number loss and no copy number gain is observed for segment i in all
samples and does not allow copy number gains:

∆Closs
αi,k

= 0 (3.50)

and
∆Cgain

αi,k = 0. (3.51)

Unobservable Lineage. To not allow the assignments of copy number changes to
lineages with an inferred frequency ≈ 0 (see Equation 3.25), we use the following
linear constraints:

∑
n

φk,n − ∆Cgain
αi,k ≥ φε − 1 ∀ i ∈ {0, . . . , I − 1}, ∀ α ∈ {A, B}

and

∑
n

φk,n − ∆Closs
αi,k
≥ φε − 1 ∀ i ∈ {0, . . . , I − 1}, ∀ α ∈ {A, B}.

Maximal Number of Copy Number Changes. The maximal number of copy num-
ber changes per segment is 2 · (K − 1). Because enumerating over all these possible
copy number change assignments in the branch-and-cut algorithm is time-consuming,
we offer the possibility to restrict the number of allowed copy number changes per
segment to c_num_max:

∑
k

(
∆Cgain

Ai,k
+ ∆Cgain

Bi,k
+ ∆Closs

Ai,k
+ ∆Closs

Bi,k

)
≤ c_num_max. (3.52)

47

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

Fixing CNA Assignments. When copy number changes are known, e. g. from previ-
ous experiments or because we do not want to infer copy number changes in CNA-free
segments with neutral allele-specific copy numbers, we can fix them for the optimiza-
tion:

∆Cgain
Ai,k

= f ixed_Cgain
Ai,k

,

∆Closs
Ai,k

= f ixed_Closs
Ai,k

,

∆Cgain
Bi,k

= f ixed_Cgain
Bi,k

,

∆Closs
Bi,k

= f ixed_Closs
Bi,k

,

where f ixed_Cgain
Ai,k

, f ixed_Closs
Ai,k

, f ixed_Cgain
Bi,k

and f ixed_Closs
Bi,k
∈ {0, 1} are the known

values.

Combining CNA-Free Segments. To reduce the number of segments and thus the
number of binary variables, we offer the possibility to combine all CNA-free segments
to one super segment, which we fix to have no copy number changes. We treat all
SSMs of these CNA-free segments as belonging to this super segment. When using
superSSMs as well, this has the clear advantage that SSMs of multiple segments can
be summarized in one superSSM which reduces the number of SSM variables as well.

3.3.5. Variables and Constraints for Simple Somatic Mutations

We create O(J · K) binary variables for the two binary matrices ∆SA and ∆SB, that
model the lineage and phase assignments of SSMs, and the two binary matrices ∆FA

and ∆FB, that model whether SSMs are influenced by copy number changes in their
own lineage. Note that, in our MILP, we do not represent the binary matrix ∆S, that
models whether SSMs are unphased, because we can determine after the optimization
whether an SSM is unphased without changing the likelihood. Hence, we need less
binary variables, as well as less constraints to remove phasing ambiguity (see page 50).

In a MILP, we cannot model the inferred VAF p̂j,n of SSM j in sample n with Equa-
tion 3.26 because the division of the inferred average copy number ŝj,n by the inferred
average copy number ĉi,n of segment i cannot be formulated as linear constraint. Thus,
we approximate p̂j,n by using the observed average copy number ci,n = cAi,n + cBi,n .

48

3.3. Optimization with Mixed Integer Linear Programming

Since ci,n is not a variable but a coefficient of our MILP, we can build the linear con-
straint:

˜pj,n =
ŝj,n

ci,n
. (3.53)

In Section 5.8, we evaluate the impact of this approximation. Note that we use the ap-
proximation only in our MILP; when we compute the likelihood of a reconstruction r,
we use the exact Equation 3.26.

To model the average copy number ŝj,n of SSM j (see Equation 3.27) as linear con-
straint, we first need to create auxiliary real-valued variables to model the multiplica-
tion of (a) lineage and phase assignments with lineage frequencies, (b) copy number
change influences in the same lineage with lineage frequencies and (c) copy number
change influences in descendant lineages with lineage frequencies. We apply the trick
shown in Subsection 2.1.1 on page 6 to create the following real-valued variables with
lower bound 0 and upper bound 1:

a) ∆S_ f reqj,k,n,

b) ∆S_ f reqαj,k,n ,

c) ∆S_ f reqgain
αj,k,k′ ,n

, ∆S_ f reqloss
αj,k,k′ ,n

,

for 0 ≤ j < J, 0 ≤ k < K, 0 ≤ k′ < K and 0 ≤ n < N.

Given the real-valued variables, we can model ŝj,n as follows:

ŝj,n = ∑
k

∆S_ f reqj,k,n (a)

+ ∑
k

(
∆S_ f reqAj,k,n + ∆S_ f reqBj,k,n

)
(b)

+ ∑
k

∑
k′

(
∆S_ f reqgain

Aj,k,k′ ,n
+ ∆S_ f reqgain

Bj,k,k′ ,n
+ ∆S_ f reqloss

Aj,k,k′ ,n
+ ∆S_ f reqloss

Bj,k,k′ ,n

)
. (c)

(3.54)

We model Equation 3.28, that defines the values of ∆Fαj,k , with the two following
constraints:

∆Fαj,k ≤ ∆Sαj,k

and
∆Fαj,k ≤ ∆Cαi,k .

49

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

Equations 3.30 and 3.31, that do not allow to assign an SSM to the normal lineage,
are already linear constraints. Equation 3.29 that considers the unphased assignment
is not modeled in our MILP.

Infinite Sites Assumption. Equation 3.32, that models the infinite sites assumption,
is already a linear constraint.

Unobservable Lineage. To not allow the assignments of SSMs to lineages with an
inferred frequency ≈ 0 (see Equation 3.33), we use the following linear constraint:

∑
n

φk,n − ∆Sαj,k ≥ φε − 1 ∀ j ∈ {0, . . . , J − 1}, ∀ α ∈ {A, B}.

Removing Phasing Ambiguity. Equation 3.34 models that an SSM j is unphased if
its average copy number ŝj,n is not influenced by copy number changes. Since we do
not use a variable for unphased SSMs in our MILP, we simply assign these SSMs to
allele A:

∆SBj,k ≤ ∑
k′|k′>k

(
∆C_Dgain

Ai,k,k′
+ ∆C_Dgain

Bi,k,k′
+ ∆C_Dloss

Ai,k,k′
+ ∆C_Dloss

Bi,k,k′

)
+ ∑

k∗|k∗<k

(
∆C_Aloss

Ai,k∗ ,k
+ ∆C_Aloss

Bi,k∗ ,k

)
+ ∆Closs

Ai,k
+ ∆Closs

Bi,k

+ ∆FAj,k + ∆FBj,k ,

where ∆C_Dgain
Ai,k,k′

, ∆C_Dgain
Bi,k,k′

, ∆C_Dloss
Ai,k,k′

and ∆C_Dloss
Bi,k,k′

, with 1 ≤ k < k′ < K, are
O(I · K2) binary variables created with the trick shown in Subsection 2.1.1 on page 6.
They equal 1 if the corresponding copy number change is assigned to lineage k′ and if
k′ is a descendant of lineage k. Otherwise they are 0.

After the optimization, we check for all SSMs whether they are influenced by copy
number changes or not. If they are not influenced, we represent them as unphased
SSMs.

We do not need to model Equation 3.35 in our MILP because during the optimiza-
tion, we model all SSMs as phased.

50

3.3. Optimization with Mixed Integer Linear Programming

We build the linear constraint for Equation 3.36, that ensures that an SSM cannot be
assigned to an allele that got already lost in an ancestral lineage, as:

∆Sαj,k ≤− ∑
k∗|k∗<k

∆C_Aloss
αi,k∗ ,k

− ∆Closs
αi,k

+ 1.

Clustering SSMs: Version 1. Equations 3.37 and 3.38, that ensure that all SSMs
belonging to one cluster are assigned to the same lineage and phase and are equally
influenced by copy number gains in their lineage, are already linear constraints.

Clustering SSMs: Version 2. Optimizing with superSSMs does not need additional
constraints. However, since using superSSMs can lead to slightly differently inferred
lineage frequencies, we perform a second optimization with the original SSMs. Here,
the mutation assignments and the lineage relationships are fixed to the solution of the
first optimization and only the lineage frequencies get inferred.

Fixing SSM assignments. When lineage and phase assignments of SSMs are known,
e. g. from clustering with superSSMs, we can fix the SSMs for the next optimization:

∆SAj,k = f ixed_SAj,k ,

∆SBj,k = f ixed_SBj,k ,

where f ixed_SAj,k and f ixed_SBj,k ∈ {0, 1} are the known values.

3.3.6. Reducing the Number of Variables and Constraints

In the current version of our MILP, we create variables that are always fixed to the
same values in each possible reconstruction These variables include all variables that
concern the normal lineage 0: the frequency of the normal lineage φ0,n, each relation-
ship Z0,k of the normal lineage to the cancerous lineages, 0 < k < K − 1, and all
variables that model the assignment of CNAs and SSMs to the normal lineage, their
influence and the frequency of the normal lineage (∆C and ∆S variables). Also, each
lineage relationship Zk,k and Zk′,k, k < k′, is fixed, and as a consequence also each
variable child_ f reqn,k′,k. Thus, we could reduce the number of variables by sparing
these variables, which always have the same value, and adapt the constraints accord-
ingly. However, as we remove only variables that concern the normal lineage and the

51

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

variables of the lower left triangle of the lineage relationship matrix Z, the asymptotic
number of variables stays the same.

Less Variables: Phylogenetic Tree Rules. We can reduce the asymptotic number of
variables by removing the binary variables Z_tree_1k,k′,k′′ and Z_tree_2k,k′,k′′ and mod-
eling the phylogenetic tree rules (Equation 3.16 and 3.17) directly with the variables of
the lineage relationship matrix Z.

For Equation 3.16, we need the following three constraints for all k′ with k < k′ < k′′:

Zk,k′′ ≤ Zk,k′ ,

Zk,k′′ ≤ Zk′,k′′

and
Zk,k′′ ≥ Zk,k′ + Zk′,k′′ − 1.

For Equation 3.17, we formulate the following three constraints for all k′′ with k′ <
k′′ < K:

Zk,k′ ≤ Zk,k′′ ,

Zk,k′ ≤ Zk′,k′′

and
Zk,k′ ≥ Zk,k′′ + Zk′,k′′ − 1.

Thus, we can remove O(K3) binary variables from our MILP.

Less Constraints: Allowed Copy Number Changes. We use the linear con-
straints 3.44 – 3.51 to model allowed copy number changes. Thereby, Constraints 3.48
and 3.49 both do not allow that a copy number gain and loss are assigned to the same
allele of the same lineage. We can decrease the number of used constraints by using
Constraint 3.48 only for k = 1 since this case is not covered by Constraint 3.49.

Whether decreasing the number of constraints decreases the run time and memory
requirements of the optimization is uncertain because CPLEX [18], which we use in our
implementation, preprocesses the MILP before starting the optimization and might
remove the redundant constraints. Anyhow, reducing the constraints leads to a clearer
and simpler MILP.

52

3.4. Optimization Complexity

3.4. Optimization Complexity

Optimizing a MILP is NP-hard. Given nb binary variables, the branch-and-cut algo-
rithm has to process 2nb nodes in the worst case. Thus, the number of binary variables
has a high influence on the run time and memory requirements of the optimization.

Given I segments, J SSMs, N samples, K lineages, and O(nknots) knots to approxi-
mate each piecewise linear function of our objective function, our MILP consists of

O
(
(I · N · nknots) + (J · N · nknots) + (N · K2) + (I · K · N) + (J · K2 · N)

)
real-valued variables and

O
(
K3 + (I · K2) + (J · K)

)
binary variables. In Subsection 3.3.6, we show how these numbers can be reduced.
However, all reductions, except the one where we can reduce O(K3) to O(K2) by
removing the variables Z_tree_1k,k′,k′′ and Z_tree_2k,k′,k′′ , do not change the asymptotic
number of variables.

Given the number of variables, we make three main observations:

1. Only real-valued variables depend on the number of samples N, not the binary
ones.

2. The number of real-valued and binary variables grows linearly with the number
of segments I and SSMs J.

3. The number of real-valued variables grows quadratically and the number of
binary variables grows cubicly (after improvements quadratically) with the num-
ber of lineages K.

Thus, the number of lineages K is the most critical parameter when it comes to finding
an optimal solution in reasonable time and space, as we show in Section 5.4. Note
that K is the only parameter that we have to set externally for the optimization. The
other parameters are intrinsic to the input data and can be reduced only if CNA-free
segments are combined to a super segment or if SSMs are combined to superSSMs
through clustering.

To find an optimal or good solution in reasonable time and space, exploiting the
structure of our model can help as we explain in the following.

We classify the variables into two classes: main and auxiliary variables. Main
variables are the variables that directly influence the likelihood of the reconstruction.

53

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

These are the lineage frequencies φk,n, the lineage relationships Zk,k′ , the CNA assign-
ments ∆CAi,k and ∆CBi,k , and the SSM assignments ∆SAj,k and ∆SBj,k with copy number
influence ∆FAj,k and ∆FBj,k in the same lineage. All other variables are auxiliary vari-
ables. They are either needed to ensure the correct calculation of the piecewise linear
functions or to model the multiplication of real-valued with binary variables. We will
focus only on the main variables as the auxiliary variables follow from these.

Of the main variables, the lineage frequencies φk,n and relationships Zk,k′ are global
variables, the CNA and SSM assignments ∆CAi,k , ∆CBi,k , ∆SAj,k and ∆SBj,k , and copy
number influences ∆FAj,k and ∆FBj,k in the same lineages are local variables. This
means that the lineage frequencies and relationships influence the calculations of each
inferred average allele-specific copy number ĉαi,n (see Equation 3.18) and each inferred
average copy number ŝj,n (see Equation 3.27), independent of to which segment they
belong. In contrast, local variables of different segments influence each other only
indirectly via the global variables.

If the global variables were known, they could be fixed for the optimization. Thus,
the large optimization problem would decompose to I independent smaller problems
and each segment with its local variables could be solved on its own. A good esti-
mate for the lineage frequencies can be derived by optimizing input data of CNA-free
segments first (see Subsection 5.7.2). However, inferring representative lineage relation-
ships without the complete input data is not possible and iterating over all possible
structures of the lineage relationship matrix Z is unreasonable for K >= 5 since too
many different structures exist. But even fixing only the lineage frequencies decreases
the practical run time and memory requirements considerably, as shown in Subsec-
tion 5.7.3.

3.5. Determining the Number of Lineages

When we want to compute the lineage-based subclonal reconstruction based on the
allele-specific copy numbers of I genome segments and J SSMs of N samples, we also
need to provide the number of lineages K. To determine the underlying lineage num-
ber of the input data, our method needs to be invoked multiple times with different
values of K. The resulting subclonal reconstructions are then compared using the two-
part version of the MDL principle (see Subsection 2.1.3). The lineage number of the
subclonal reconstruction r that minimizes Equation 2.6 is then chosen as underlying
lineage number and r as final reconstruction.

54

3.5. Determining the Number of Lineages

The description length of the first part of Equation 2.6, LC1(y
m | θ,M, xm), is sim-

ply the computed log-likelihood L′(r). The description length of the second part,
LC2(θ | M), is the description length of our subclonal reconstruction r. We use a fixed-
length code, which exploits the natural structure of the subclonal reconstruction, to
send this length to the receiver. First, we need to encode the number of lineages K (1).
Afterwards, we encode the complete mutation assignment. Because we infer CNAs
in terms of copy number changes, a segment without CNA is the result of inferring
no copy number change. Thus, in addition to encoding CNAs in the subclonal recon-
struction, we also encode which segments are CNA-free. Thus, we need to encode
the number of CNAs and CNA-free segments (2). Then, we encode CNA lineage as-
signment (3), mapping to segment indices (4), and the specific copy number change
of CNAs (5) and their phase (6). To encode SSMs in the subclonal reconstruction, we
encode their lineage assignment (7), phase (8) and whether they are influenced by a
copy number gain in the same lineage segment (9). Finally, we need to encode the
lineage frequencies (10) and the lineage relationships (11). The number of genome
segments I, SSMs J and samples N are known to the receiver.

(1) We only need to send the number of cancerous lineages K − 1 because the re-
ceiver knows that the normal lineage is always present in our subclonal recon-
structions. To encode this number, we use the simple standard code for the
integers (see Subsection 2.1.3):

2 · log(K− 1) + 1 bits.

(2) To send the number I∗ of CNAs and CNA-free segments, we first define the
following: Let I◦ be the number of CNAs and I′ be the number of CNA-free
segments, with I◦ + I′ = I∗. Also, let I′′ be the number of segments with CNAs,
with I′ + I′′ = I being the number of segments. Then I• = I◦ − I′′ is the number
of CNAs that are assigned to a segment that already contains at least one CNA.
Because I∗ = I + I• and because the receiver knows the number of segments I,
it is sufficient to send I• with the simple standard code for integers:

2 · log(I•) + 1 bits.

55

Chapter 3. A New Lineage-Based Subclonal Reconstruction Model

(3) We use the lineage assignment to differentiate between CNAs and CNA-free
segments. CNAs are assigned to a cancerous lineage k ∈ {1, . . . , K− 1}, whereas
CNA-free segments are assigned to the normal lineage 0:

I∗ · log(K) bits.

(4) Since a segment can contain multiple CNAs, we need to send the segment index i
for each CNA and CNA-free segment. We encode this information in a binary
string, where a 1 indicates using the next segment index i + 1 for the current
CNA or CNA-free segment and a 0 indicates using the current segment index i
again:

I∗ · log(2) bits.

(5) The current implementation of our model allows copy number gains of +1
and copy number losses of −1. These two changes need to be encoded for all
I◦ CNAs. The receiver calculates the value of I◦ from the lineage assignment (3)
which was already sent:

I◦ · log(2) bits.

(6) For each CNA, we indicate whether it is phased to allele A or B by encoding the
information in a binary string:

I◦ · log(2) bits.

(7) Each SSM is assigned to a cancerous lineage k ∈ 1, . . . , K− 1, which we encode
in

J · log(K− 1) bits.

(8) Only the J′ SSMs that lie in segments with CNAs can be phased to allele A or B or
can be unphased, the other SSMs are always unphased. The information which
J′ SSMs lie in segments with CNAs can be derived from the segment assignment
of SSMs given with the input data and the sent segment assignment of CNAs (4).
Thus, we have to send only

J′ · log(3) bits.

(9) The J′′ SSMs that are assigned to lineage segments that also contain copy number
gains of the same phases as the SSMs can be influenced by these gains. Which J′′

56

3.5. Determining the Number of Lineages

SSMs could be influenced by gains can be derived from the segment assignment
of SSMs, their lineage assignment (7) and their phase (8), and the segment as-
signment of CNAs (4), their copy number change (5) and their phase (6). Hence,
we encode this information in a binary string with

J′′ · log(2) bits.

(10) We encode the frequency of each cancerous lineage with a precision of 1
1000 , start-

ing with all cancerous lineages of the first sample and then continuing with the
other samples:

(K− 1) · N · log(1000) bits.

(11) To send the lineage relationships, it is sufficient to encode only the parent of
each lineage. Since the receiver knows that the lineage relationships describe a
phylogenetic tree, all other present or absent ancestor-descendant relationships
can be derived from this parental information. The information which absent
ancestor-descendant relationships are ambiguous is computed after subclonal
reconstruction (see Section 4.2) and does not need to be sent. Because the normal
lineage has no parent and the parent of lineage 1 is always the normal lineage,
we need to send the parental information only for lineages 2, . . . , K − 1. Also,
since the receiver knows that only a lineage k∗, with k∗ < k, can be the parent of
a lineage k, we encode the parent information only for lineages with index lower
than k:

K−1

∑
k=2

log(k) bits.

Summarized, for a subclonal reconstruction r, we compute the description length
LC2(θ | M) = LC2(r) as

LC2(r) = 2 · log(K− 1) + 1 + 2 · log(I•) + 1 + I∗ · log(K) + I∗ · log(2) + I◦ · log(2)
+ I◦ · log(2) + J · log(K− 1) + J′ · log(3) + J′′ · log(2)

+ (K− 1) · N · log(1000) +
K−1

∑
k=2

log(k) bits.

(3.55)
Because we compute LC1(y

m | θ,M, xm) = L′(r) with the natural logarithm, we also
use the natural logarithm to compute the description length LC2(r).

57

Chapter 4
Dealing with Ambiguity

Given a dataset, we are interested in the subclonal reconstruction r with the high-
est likelihood. However, it is possible that r is ambiguous, which means that there
are other subclonal reconstructions that have the same likelihood as r. To not draw
wrong conclusions from a single subclonal reconstruction, we are interested in other
subclonal reconstructions with the same likelihood.

In Section 4.1, we define ambiguity in the context of subclonal reconstructions and
explain how it arises. In Section 4.2, we explain how we are able to combine multiple
subclonal reconstructions with the same likelihood in a single subclonal reconstruction.
Finally in Section 4.3, we argue why our lineage-based subclonal reconstructions can
deal better with ambiguity caused by lineage relationship inference than population-
based subclonal reconstruction methods.

4.1. Defining Ambiguity

In this section, we define ambiguity for subclonal reconstructions and show different
reasons for it.

Definition 5 (Ambiguous Subclonal Reconstructions). A subclonal reconstruction r is
ambiguous if another subclonal reconstruction r′ on the same dataset exists that has the same
likelihood as r.

Observation 1. Two subclonal reconstructions r and r′ on the same dataset have the same
likelihood if the same average allele-specific copy numbers ĉAi,n and ĉBi,n as well as VAFs p̂j,n

are inferred for each segment i and each SSM j in each sample n for both r and r′.

59

Chapter 4. Dealing with Ambiguity

1

0.6

0.4

0.2
dupl.

ˆpj,0 = 0.6
2.2

1

0.6

0.4

0.2
dupl.

ˆpj,0 = 0.6
2.2

(a)

1

0.6
ˆpj,0 = 0.6

2.0

1

0.6
ˆpj,0 = 0.6

2.0

1

0.6
ˆpj,0 = 0.6

2.0

(b)

1

0.6

0.4

0.2

dupl.

ˆpj,0 = 0.2
2.6

1

0.6

0.4

0.2
dupl.

ˆpj,0 = 0.2
2.6

dupl.

ˆcAi,0 = 1.6 ˆcAi,0 = 1.6

(c)

1

0.7

ˆpj,0 = 0.4
2.9

dupl.

dupl.

ˆcAi,0 = 1.9

1

0.7

ˆpj,0 = 0.4
2.9

dupl.

ˆcAi,0 = 1.9

dupl.
0.2 0.5

0.4

0.2 0.5

0.4

(d)

1

0.8

0.5

0.1
ˆpj,0 = 0.8

2.6

1

0.8

0.4

0.2
dupl.

ˆpj,0 = 0.8
2.6

dupl.

ˆcAi,0 = 1.6 ˆcAi,0 = 1.6

dupl.

dupl.

(e)

1

0.6

0.4
ˆpj,0 = 0.6

2.4
ˆcAi,0 = 1.4

dupl.

ˆpj,0 = 0.6
2.4

ˆcAi,0 = 1.4

1
dupl.

0.6 0.4

(f)

Figure 4.1.: Different ambiguous subclonal reconstructions.
Ambiguous subclonal reconstructions are shown for (a) SSM assignment, (b) SSM
phasing, (c) different numbers of CNAs, (d) CNA assignment, (e) lineage frequency
inference, and (f) lineage relationship inference.
Phylogenetic trees with lineage frequencies are shown. Cross indicates SSM j, as-
signed to lineage below, background color indicates phasing: no color: no phasing,
blue: phased to allele A, gray: phased to allele B. Copy number gain in segment i,
assigned to allele A of following lineage is shown as duplication of allele A with a blue
bar.
dupl.: duplication

60

4.2. Handling Ambiguity

Observation 1 follows directly from Equation 3.5.
Ambiguity can be caused by all components of a subclonal reconstruction:

1. SSM assignment and phasing:
An SSM j can be assigned to different lineages (see Figure 4.1a) or can have
different phases (see Figure 4.1b) without changing the VAF p̂j,n.

2. CNA inference and assignment:
In a segment i different numbers of CNAs can be inferred (see Figure 4.1c) or the
CNAs can be assigned to different lineages (see Figure 4.1d) without changing
the average allele-specific copy numbers ĉAi,n and ĉBi,n , and without changing the
VAF p̂′ of all SSMs in segment i.

3. Lineage frequency inference:
Lineages can have different frequencies without changing the average allele-
specific copy numbers ĉA and ĉB and VAFs p̂ (see Figure 4.1e).

4. Lineage relationship inference:
Lineage relationships can be different without changing the average allele-
specific copy numbers ĉA and ĉB and VAFs p̂ (see Figure 4.1f).

4.2. Handling Ambiguity

To reduce the number of ambiguous subclonal reconstructions, we remove phasing
ambiguity (see Subsection 3.2.4, page 38). Also, if an ancestor-descendant relationship
between two lineages has no influence on the likelihood and is not crucial for a sub-
clonal reconstruction to be valid, we model it as ambiguous relationship. This allows
us to combine ambiguous subclonal reconstructions in a single one.

In our MILP, we work only with present and absent ancestor-descendant relation-
ships but not with ambiguous ones (see Subsection 3.3.3). Thus, after the optimization,
we need to identify which present and absent relationships are really necessary and
which are actually ambiguous.

Definition 6 (Necessary Present and Absent Ancestor-Descendant Relationships).
Present or absent relationships are necessary if they either have an influence on the likelihood
or if they are crucial in order for a subclonal reconstruction to be valid.

Definition 7 (Present Ancestor-Descendant Relationships Influencing the Likelihood).
A present ancestor-descendant relationship between two lineages k and k′, with k < k′, has an

61

Chapter 4. Dealing with Ambiguity

influence on the likelihood if a copy number change of lineage k′ influences the average copy
number of an SSM of lineage k in the same segment.

A copy number change of lineage k′ influences the average copy number of an SSM
of lineage k in the same segment if the copy number change and the SSM are phased
to the same allele.

Definition 8 (Present Ancestor-Descendant Relationships Crucial for Subclonal Recon-
struction). A present ancestor-descendant relationship Zk,k′ between two lineages k and k′ is
crucial for the validity of a subclonal reconstruction if

a) k is the normal lineage (see Equation 3.13),

b) the phylogenetic tree rules (see Equations 3.16 and 3.17) were violated if the relationship
was not present, or

c) the sum rule (see Equation 3.8) was violated if the relationship was not present.

Definition 9 (Absent Ancestor-Descendant Relationships Influencing the Likelihood).
An absent ancestor-descendant relationship between two lineages k and k′, with k < k′, has
an influence on the likelihood if a copy number change of lineage k′ changed the average copy
number of an SSM of lineage k in the same segment if lineage k was an ancestor of lineage k′.

If an SSM of lineage k is phased, a copy number change of lineage k′ can have
an influence on its average copy number only if it is phased to the same allele (see
Figure 4.2a). If an SSM is unphased, copy number changes on both alleles can influence
its average copy number as well. This is because the SSM is actually present on one
of the two alleles, we just cannot say on which one. Thus, if lineage k′ has copy
number changes on both alleles, one copy number change can influence the average
copy number of the unphased SSM (see Figure 4.2b). If lineage k′ has only one copy
number change on allele α but is in an ancestor-descendant relationship with another
lineage k•, with k < k•, that has a copy number change on allele β, with α 6= β, in the
same segment, the average copy number of the unphased SSM can also be influenced
(see Figure 4.2c). Even if k• < k, the average copy number of the SSM can be influenced
if the copy number changes are copy number losses. The reason is that if lineage k′

was a descendant of lineage k, lineage k would be a descendant of lineage k•, following
Equation 3.17. Thus, the unphased SSM would have to be phased to allele α, following
Equation 3.36. Hence, its average copy number would be changed by the copy number
loss in lineage k′ (see Figure 4.2d). Note that if in this case the copy number changes

62

4.2. Handling Ambiguity

dupl.
k′k

(a)

dupl.
k′k

dupl.

(b)

dupl.
k′k

dupl.
k•

(c)

?

loss

loss
k•

k′k

(d)

Figure 4.2.: Different scenarios with absent ancestor-descendant relationships in-
fluencing the likelihood.
Mutation assignments within a single segment are shown for lineages k, k′ and k•, with
k < k′. Absent ancestor-descendant relationships are shown by black arrows with red
cross. Arrows without circle on top indicate ancestor-descendant relationships to lin-
eages not shown in the figure. (a) Lineage k contains an SSM that is phased to the
same allele as the copy number change of lineage k′. (b) Lineage k contains an un-
phased SSM whose average copy number can be influenced by the two copy number
changes on both alleles of lineage k′. (c) The average copy number of the unphased
SSM of lineage k can be influenced by the copy number changes on different alleles
of lineages k′ and k•. As long as k < k•, it does not matter whether k′ < k• or k′ > k•.
(d) If k• < k < k′, copy number changes on different alleles of lineages k• and k′ can
influence an unphased SSM in lineage k if they are copy number losses. Note that the
ancestor-descendant relationship between lineages k• and k alone does not change
the average copy number of the SSM.
dupl.: duplication

are copy number gains, the average copy number of the SSM cannot be influenced
since a gain in an ancestral lineage does not influence the phasing of an SSM.

Definition 10 (Absent Ancestor-Descendant Relationships Crucial for Subclonal Re-
construction). An absent ancestor-descendant relationship Zk,k◦ between two lineages k and
k◦ is crucial for the validity of a subclonal reconstruction if

a) k = k◦ (see Equation 3.12),

b) k◦ < k (see Equation 3.14),

c) the sum rule (see Equation 3.8) was violated if lineage k was the parent of lineage k◦ and
lineage k does not have any other descendant that are allowed to be a parent of lineage k◦,

d) the crossing rule (see Equation 3.15) was violated if the relationship was present,

e) the same allele in the same segment is deleted in lineages k and k◦ (see Equation 3.23), or

f) an SSM of lineage k◦ would be assigned to an allele already lost in lineage k (see Equa-
tion 3.36) if the relationship was present.

63

Chapter 4. Dealing with Ambiguity

loss
k◦k

(a)

k◦k
lossloss

(b)

?

loss

loss
k∗

k k◦

(c)

Figure 4.3.: Different scenarios with absent ancestor-descendant relationships cru-
cial for subclonal reconstructions.
Mutation assignments within a single segment is shown for lineages k∗, k and k◦, with
k∗ < k < k◦. (a) The SSM of lineage k◦ is assigned to the same phase as the copy
number loss of lineage k. (b) Since lineage k loses both alleles, the unphased SSM
of lineage k◦ could not be assigned to any allele if lineage k◦ was a descendant if lin-
eage k. (c) If lineage k◦ was an ancestor of lineage k, its SSM could not be assigned
to any allele since both allele got lost. Note that lineage k∗ is allowed to be an ancestor
of lineage k◦. Then the SSM would be phased to the present allele.

Considering case f) of Definition 10, whether an SSM of lineage k◦ would be assigned
to an allele already lost in lineage k if the relationship was present depends on the
phasing of the SSM, the copy number change assignment of lineage k and the present
ancestor-descendant relationships lineage k has to other lineages. If the SSM is phased
to allele α, α has to get lost in lineage k (see Figure 4.3a). If the SSM is unphased, either
both alleles have to get lost in lineage k (see Figure 4.3b), or one allele has to get lost
in lineage k and the other in an ancestral lineage k∗, with k∗ < k < k◦ (see Figure 4.3c).
Note that if the SSM is unphased and lineage k does not have an ancestor with a copy
number loss in the same segment assigned to the different allele β, lineage k could be
an ancestor of lineage k◦. Then, the SSM would simply be phased to allele β following
Equation 3.36.

Note that there are cases in which a present ancestor-descendant relationship be-
tween lineages k and k′ is necessary to fulfill the sum rule, and cases in which an
absent ancestor-descendant relationship is necessary to fulfill the sum rule. Whether
one of the two relationships is necessary depends on whether lineage k is currently
the parent of lineage k′ and which other lineages can be parents of lineage k′ as well.
If lineage k is currently the parent of lineage k′, and lineage k′ cannot be the child
of any other lineage k◦, with k◦ < k, the ancestor-descendant relationship between
lineages k and k′ needs to be present (see Figure 4.4a). If lineage k′ is already the
child of other lineage k◦, if the sum rule was violated if lineage k was a parent of
lineage k′, and lineage k does not have any descendants that are allowed to be parents
of lineage k′, the ancestor-descendant relationship between lineages k and k′ needs to
be absent (see Figure 4.4b). If lineage k has descendants that are allowed to be parents

64

4.2. Handling Ambiguity

1

0.5

0.8

2

0.33

1

0

?

(a)

1

0.3

0.40.5

3

21

0

(b)

?

1

0.7

0.2

0.8

2

3

1

0

?

(c)

Figure 4.4.: Different scenarios in which the ancestor-descendant relationship be-
tween two lineages needs to be (a) present or (b) absent, or (c) can be ambigu-
ous in order to fulfill the sum rule.
Lineages are shown together with indices and frequencies. Solid black arrows
between lineages indicate parent-child relationships, dotted black arrows indicate
ancestor-descendant relationships, gray dashed arrows with a question mark indi-
cate ambiguous relationships. If two lineages are not connected via an arrow or path
of arrows, they are not in an ancestor-descendant relationship. (a) The ancestor-
descendant relationship between lineages 1 and 3 needs to be present because
the sum rule was violated if lineage 3 was a child of lineage 0. (b) The ancestor-
descendant relationship between lineages 1 and 2 needs to be absent since the sum
rule was violated if lineage 2 was a child of lineage 1 and it is not possible that lineage 2
becomes a child of lineage 3. (c) The ancestor-descendant relationship between lin-
eages 1 and 3 can be ambiguous. Although lineage 3 is not allowed to be a child of
lineage 1 as it would violate the sum rule, lineage 3 can become a child of lineage 2,
thus making lineage 1 one of its ancestors.

of lineage k′, lineage k can be an ancestor of lineage k′. Thus, the two lineages can be
in an ambiguous ancestor-descendant relationship (see Figure 4.4c).

Finding Ambiguous Ancestor-Descendant Relationships. We developed an algo-
rithm that finds ambiguous ancestor-descendant relationships after the optimization
(called ambiguity algorithm from now on). It investigates each relationship Zk,k′ , for
0 < k < k′ < K, since these relationships can be ambiguous. The ambiguity algorithm
consists of seven main steps:

1. Present ancestor-descendant relationships between cancerous lineages that do
not have an influence on the likelihood are transformed into ambiguous relation-
ships.

2. Absent ancestor-descendant relationships are transformed into ambiguous rela-
tionships.

65

Chapter 4. Dealing with Ambiguity

3. All relationships of each combination of three lineages k, k′ and k′′, with 0 ≤ k <

k′ < k′′ < K, are checked to fulfill the phylogenetic tree rules and updated if
required.

4. SSMs that do not need to be phased are unphased.

5. Absent ancestor-descendant relationships that are necessary because of the cross-
ing rule or mutation assignments are identified and the corresponding ambigu-
ous relationships are transformed back into absent ones.

6. Present ancestor-descendant relationships that are necessary because of the sum
rule are identified and the corresponding ambiguous relationships are trans-
formed into present ones.

7. Absent ancestor-descendant relationships that are necessary because of the sum
rule are identified and the corresponding ambiguous relationships are trans-
formed into absent ones.

After step 7, the ambiguous ancestor-descendant relationships left are true ambiguous
relationships that can be updated to present or absent relationships without changing
the likelihood or leading to an invalid subclonal reconstruction.

Step 2 is implemented straight-forward. The other steps are more complex and are
presented and explained in detail in Subsections 4.2.1 to 4.2.6.

4.2.1. Finding Present Ancestor-Descendant Relationships Necessary
because of Likelihood Influence

All ancestor-descendant relationships that are necessary because they have an influ-
ence on the likelihood (see Definition 7) are found with Algorithm 1. First, it is
checked for all present pairwise ancestor-descendant relationships between cancer-
ous lineages whether the descendant lineage contains a copy number change in any
segment i that is phased to the same allele as any SSM in segment i of the ances-
tral lineage (lines 1 – 7). If this is the case, the present ancestor-descendant relation-
ship is kept, otherwise it is transformed into an ambiguous relationship (lines 7 – 13).
Ancestor-descendant relationships that need to be present because they are crutial for
the subclonal reconstruction are found in later steps of the ambiguity algorithm.

66

4.2. Handling Ambiguity

Algorithm 1 Finding all necessary ancestor-descendant relationships influencing the
likelihood
Input: subclonal reconstruction r with lineage number K, lineage relationship ma-

trix Z, CNA assignment with phasing, and SSM assignment with phasing
Output: subclonal reconstruction r, containing present ancestor-descendant relation-

ships only if they influence the likelihood
1: for k← 1, . . . , K− 2 do
2: for k′ ← k + 1, . . . , K− 1 do
3: if Zk,k′ = 1 then
4: relationship_present← false
5: for each segment i that has at least one copy number change in lineage k′

do
6: for each copy number change i′ of lineage k′ in segment i do
7: if lineage k has SSMs in segment i that are phased to the same allele as

copy number change i′ then
8: relationship_present← true
9: break

10: if relationship_present is true then
11: break
12: if relationship_present is false then
13: Zk,k′ = ?
14: return r

4.2.2. Updating Lineage Relationships

To describe a proper phylogenetic tree, the ancestor-descendant relationships of all
combinations of three lineages k, k′ and k′′ have to be consistent with Equations 3.16
and 3.17. Given that an entry in the lineage relationship matrix Z can take three possi-
ble values, there are 33 = 27 relationship combinations. In Table 4.1, we show all 27 re-
lationship combinations and indicate, whether they are consistent with Equations 3.16
and 3.17 and whether they lead to an update of ambiguous ancestor-descendant rela-
tionships into present or absent ones.

67

Chapter 4. Dealing with Ambiguity

Table 4.1.: All 27 lineage relationship combinations for three lineages. Relationships
for lineages k, k′ and k′′, with 0 ≤ k < k′ < k′′ < K, are shown in an excerpt of the lin-
eage relationship matrix Z and with a graphical representation. For each combination
it is indicated whether it is consistent with the phylogenetic tree rules.
Eq.: Equations

lineage
relationships

graphical
representation

consistent with Eq. 3.16 and 3.17

1.

1 1
1

k
k′

k′ k′′
k

k′

k′′ yes

2.

0 0
0

k
k′

k′ k′′

k k′ k′′ yes

3.

? ?
?

k
k′

k′ k′′
k

k′

k′′

?

?

?

yes

4.

0 1
1

k
k′

k′ k′′
k

k′

k′′ no, violates Equation 3.17

5.

1 0
1

k
k′

k′ k′′
k

k′

k′′ no, violates Equation 3.16

6.

1 1
0

k
k′

k′ k′′ k

k′ k′′ yes

7.

? 1
1

k
k′

k′ k′′ ?
k

k′

k′′

yes
Zk,k′ can be updated to 1 because
Zk,k′ = 0 would violate Equa-
tion 3.17

68

4.2. Handling Ambiguity

Table 4.1.: All 27 lineage relationship combinations for three lineages. Continued.

lineage
relationships

graphical
representation

consistent with Eq. 3.16 and 3.17

8.

1 ?
1

k
k′

k′ k′′
?

k

k′

k′′

yes
Zk,k′′ can be updated to 1 because
Zk,k′′ = 0 would violate Equa-
tion 3.16

9.

1 1
?

k
k′

k′ k′′ k

k′ k′′
?

yes

10.

1 0
0

k
k′

k′ k′′ k

k′ k′′ yes

11.

0 1
0

k
k′

k′ k′′ k

k′ k′′ yes

12.

0 0
1

k
k′

k′ k′′ k

k′′

k′

yes

13.

? 0
0

k
k′

k′ k′′
?
k

k′ k′′ yes

14.

0 ?
0

k
k′

k′ k′′ k

k′ k′′

?

yes

15.

0 0
?

k
k′

k′ k′′ k

k′′

k′
?

yes

16.

1 ?
?

k
k′

k′ k′′
k

k′

k′′

?

?

yes

69

Chapter 4. Dealing with Ambiguity

Table 4.1.: All 27 lineage relationship combinations for three lineages. Continued.

lineage
relationships

graphical
representation

consistent with Eq. 3.16 and 3.17

17.

? 1
?

k
k′

k′ k′′
k

k′

k′′

?

?

yes

18.

? ?
1

k
k′

k′ k′′
k

k′

k′′

?

?

yes

19.

0 ?
?

k
k′

k′ k′′
k

k′

k′′

?

?

yes

20.

? 0
?

k
k′

k′ k′′
k

k′

k′′

?

?

yes

21.

? ?
0

k
k′

k′ k′′
k

k′

k′′

?

?

yes

22.

1 ?
0

k
k′

k′ k′′ k

k′ k′′

?

yes

23.

1 0
?

k
k′

k′ k′′
k

k′

k′′
?

yes
Zk′,k′′ can be updated to 0 because
Zk′,k′′ = 1 would violate Equa-
tion 3.16

24.

0 1
?

k
k′

k′ k′′

?

k

k′

k′′

yes
Zk′,k′′ can be updated to 0 because
Zk′,k′′ = 1 would violate Equa-
tion 3.17

70

4.2. Handling Ambiguity

Table 4.1.: All 27 lineage relationship combinations for three lineages. Continued.

lineage
relationships

graphical
representation

consistent with Eq. 3.16 and 3.17

25.

0 ?
1

k
k′

k′ k′′
k

k′

k′′

?

yes
Zk,k′′ can be updated to 0 because
Zk,k′′ = 1 would violate Equa-
tion 3.17

26.

? 1
0

k
k′

k′ k′′ k

k′ k′′

?

yes

27.

? 0
1

k
k′

k′ k′′
k

k′

k′′

?

yes
Zk,k′′ can be updated to 0 because
Zk,k′′ = 1 would violate Equa-
tion 3.16

In step 1 of the ambiguity algorithm, present ancestor-descendant relationships that
do not have an influence on the likelihood are transformed into ambiguous relation-
ships (see Subsection 4.2.1). In step 2, absent ancestor-descendant relationships are
transformed into ambiguous relationships as well. Thus, at the beginning of step 3,
the upper right triangle of the lineage relationship matrix Z consists only of 1s and ?s.
Now in step 3, it is investigated for each combination of three lineages in this triangle
whether they are updated by the phylogenetic tree rules, meaning that an ambigu-
ous relationship is transformed back into a present one. Whenever relationships are
updated, it is checked whether this update has an impact on already processed rela-
tionships. At the end of step 3, the subclonal reconstruction fulfills the phylogenetic
tree rules again.

Note that in step 3, only ambiguous ancestor-descendant relationships that were
inferred as present are updated to present relationships. Ambiguous relationships that
were inferred as absent cannot be updated to absent relationships at this stage since for
this update one of the three lineage relationships would have to be absent already (see
combinations 23, 24, 25 and 27). Also, it is not possible here that a relationship that was
inferred as absent is updated to a present relationship. This is because if a relationship
inferred as absent has to be a present relationship to fulfill the phylogenetic tree rules,

71

Chapter 4. Dealing with Ambiguity

it would have been already inferred as present during the optimization. Otherwise,
the found subclonal reconstruction would have violated the phylogenetic tree rules.

Since in step 3 only ambiguous relationships are updated to present relationships
that were present before, no update can lead to incompatibilities with the phylogenetic
tree rules and also the phasing of SSMs is correct. However, if ancestor-descendant re-
lationships should be updated at later stages of the ambiguity algorithm, it is possible
that such an update is not possible or that the SSM phasing has to be changed. Al-
gorithm 2 shows how the relationship between two lineages k and k′ is updated to v,
with v ∈ {0, 1, ?}. If v equals the current relationship of lineages k and k′, or if v is the
ambiguous relationship, nothing needs to be updated (lines 1 – 2). If lineages k and k′

are already in a non-ambiguous relationship that is different from v, the update is not
compatible with the subclonal reconstruction and hence not possible (lines 3 – 4). If
the relationship between lineages k and k′ should be updated to a present relationship
but the SSM phasing does not allow this, the update is not possible as well (lines 5 – 9).
If the current phasing of SSMs allows the update to a present relationship, unphased
SSMs of lineages k and k′ are phased in all segments in which the other lineage con-
tains copy number changes that would influence the SSMs if they were phased to the
other allele (lines 12 – 15). Afterwards, the relationship can be updated (line 18). All
other ancestor-descendant relationships that are affected by the relationship change
are tried to be updated as well (lines 19 – 20). If all updates were successful, the up-
dated subclonal reconstruction is returned (line 21).

Note that Algorithm 2 allows in theory an update to a present relationship if one
lineage has unphased SSMs in a segment in which the other lineage has copy number
changes on both alleles. Thus, an ambiguous relationship that is required to be an
absent one could be updated to a present one. In practice, however, this case does
not arise since we identify all necessary absent ancestor-descendant relationships be-
fore updating to present relationships which were not inferred as present during the
optimization.

4.2.3. Unphasing Simple Somatic Mutations

In our optimization, SSMs get phased only if in the same segment a copy number
change happens in a descendant lineage (see Equation 3.35), a copy number loss is
assigned to an ancestral lineage or the lineage with the SSMs itself (see Equation 3.36),
or the SSMs are influenced by copy number gains of their own lineage (compare Equa-
tion 3.34). Since present ancestor-descendant relationships between lineages got re-

72

4.2. Handling Ambiguity

Algorithm 2 Updating lineage relationship matrix and SSM phasing

Input: subclonal reconstruction r with lineage number K, lineage relationship ma-
trix Z, CNA assignment with phasing, and SSM assignment with phasing,
lineage indices k, k′, with k < k′,
relationship value v ∈ {0, 1, ?}

Output: subclonal reconstruction r with Zk,k′ = v
1: if v = ? or Zk,k′ = v then
2: return r
3: else if Zk,k′ 6= v and Zk,k′ 6= ? then
4: raise update not possible
5: else if v = 1 then
6: for each segment i that has at least one copy number change in lineages k or k′

do
7: for each copy number change i′ in segment i of lineage k◦, with k◦ ∈ {k, k′},

do
8: if k◦ = k′ and lineage k has SSMs in segment i phased to allele of i′ then
9: raise update not possible B see Definition 9

10: if k◦ = k and i′ is copy number loss and lineage k′ has SSMs in segment i
phased to allele of i′ then

11: raise update not possible B see Definition 10
12: for each segment i that has at least one copy number change in lineages k or k′

do
13: for each copy number change i′ in segment i of lineage k◦, with k◦ ∈ {k, k′},

do
14: if k◦ = k′ and lineage k has unphased SSMs in segment i then
15: move unphased SSMs to allele not affected by i′

16: if k◦ = k and i’ is copy number loss and lineage k′ has unphased SSMs in
segment i then

17: move unphased SSMs to allele not affected by i′

18: Zk,k′ = v
19: for each entry Zi,i′ , with either i or i′ ∈ {k, k′}, that should get updated to

v′ ∈ {0, 1} because of Zk,k′ = v B see Table 4.1 do
20: update Z and SSM phasing for r, i, i′, and v′ B see Algorithm 2
21: return r

73

Chapter 4. Dealing with Ambiguity

dupl.

dupl.
0

2

1 21

0

after step 3

(a)

loss loss
0

2

1 21

0

after step 3

(b)

Figure 4.5.: Subclonal reconstructions with unnecessary SSM phasing. Left side of
subfigures shows subclonal reconstruction after optimization, right side after step 3 of
ambiguity algorithm. (a) SSM phasing is necessary if lineage with at least one SSM
is ancestor of lineage with copy number change in the same segment. The phasing
is not necessary if the two lineages are not in an ancestor-descendant relationship.
(Note that if the SSM was phased to the same allele as the copy number change, the
ancestor-descendant relationship would not have been removed in step 1 of the algo-
rithm.) (b) SSM phasing is necessary if lineage with at least one SSM is descendant
of lineage with copy number loss in the same segment. The phasing is not necessary
if the two lineages are not in an ancestor-descendant relationship.
dupl.: duplication

moved in step 1 of the ambiguity algorithm, it is possible that SSMs are phased after
step 3 although relationships that caused the phasing are absent (see Figure 4.5).

To provide a subclonal reconstruction with unambiguous SSM phasing, SSMs that
are not required to be phased anymore get unphased in step 4, shown in Algo-
rithm 3. For each segment with phased SSMs, separately for all cancerous lineages,
the phasing is analyzed (lines 1 – 4). If SSMs are not influenced by copy number
changes (lines 7 – 17), they are unphased (lines 18 – 21).

4.2.4. Identifying Absent Ancestor-Descendant Relationships Necessary
because of Crossing Rule and Mutation Assignment

After step 4 of the ambiguity algorithm, ancestor-descendant relationships between
lineages of the subclonal reconstruction r are either present or ambiguous. Now, in
step 5, absent ancestor-descendant relationships that are necessary because of the cross-
ing rule or mutation assignment are found with Algorithm 6. First, it is checked for
each ambiguous lineage relationship Zk,k′ , with 0 < k < k′ < K, whether the cross-
ing rule was violated if lineages k and k′ were in a present ancestor-descendant rela-
tionship (lines 1 – 7). If it was violated, the relationship is transformed to an absent
relationship. If the change of the relationship has an influence on other ambiguous
relationships (see Table 4.1), they are updated as well. Now the algorithm iterates over
each segment i with copy number changes and each lineage k, having at least one copy

74

4.2. Handling Ambiguity

Algorithm 3 Unphasing SSMs that do not need to be phased

Input: subclonal reconstruction r with lineage number K, lineage relationship ma-
trix Z, CNA assignment with phasing, and SSM assignment with phasing

Output: subclonal reconstruction r whose SSMs are phased only if needed
1: for k← 1, . . . , K− 1 do
2: Ak ← indices of ancestors of lineage k according to Z B see Algorithm 4
3: Dk ← indices of descendants of lineage k according to Z B see Algorithm 5
4: for each segment i that has phased SSMs assigned to lineage k do
5: keep_phased_A← false
6: keep_phased_B← false
7: if any lineage k◦, with k◦ ∈ Ak, or lineage k have at least one copy number

loss in segment i then
8: keep_phased_A← true
9: keep_phased_B← true

10: else if any lineage k′, with k′ ∈ Dk, has at least one copy number change in
segment i then

11: keep_phased_A← true
12: keep_phased_B← true
13: else if lineage k has at least one copy number gain in segment i then
14: if one copy number gain is phased to allele A and at least one SSM in

lineage k is influenced by it then
15: keep_phased_A← true
16: if one copy number gain is phased to allele B and at least one SSM in

lineage k is influenced by it then
17: keep_phased_B← true
18: if keep_phased_A is false then
19: unphase SSMs of lineage k in segment i that are phased to allele A
20: if keep_phased_B is false then
21: unphase SSMs of lineage k in segment i that are phased to allele B
22: return r

Algorithm 4 Getting all ancestors

Input: lineage relationship matrix Z,
lineage index k

Output: stack A which contains indices of all ancestors of lineage k
1: create empty stack A
2: for k◦ ← 0, . . . , k− 1 do
3: if Zk◦,k = 1 then
4: A.push(k◦)
5: return A

75

Chapter 4. Dealing with Ambiguity

Algorithm 5 Getting all descendants

Input: lineage relationship matrix Z,
lineage index k,
number of lineages K

Output: stack D which contains indices of all descendants of lineage k
1: create empty stack D
2: for k′ ← k + 1, . . . , K− 1 do
3: if Zk,k′ = 1 then
4: D.push(k′)
5: return D

Algorithm 6 Finding all necessary absent ancestor-descendant relationships

Input: subclonal reconstruction r with lineage number K, lineage relationship ma-
trix Z, CNA assignment with phasing, and SSM assignment with phasing

Output: subclonal reconstruction r with necessary absent ancestor-descendant rela-
tionships

1: for k← 1, . . . , K− 2 do
2: for k′ ← k + 1, . . . , K− 1 do
3: if Zk,k′ = ? then
4: if crossing rule was violated for Zk,k′ = 1 then
5: Zk,k′ = 0
6: for each entry Zi,i′ , with either i or i′ ∈ {k, k′}, that should get updated to

v′ = 0 because of Zk,k′ = 0 B see Table 4.1 do
7: update Z and SSM phasing for r, i, i′, and v′ B see Algorithm 2
8: for each segment i with at least one copy number change do
9: for each lineage k containing at least one copy number change in segment i do

10: for k∗ ← 1, . . . , k− 1 do
11: if Zk∗,k = ? then
12: if ancestor-descendant relationship between lineages k∗ and k influences

the likelihood B see Definition 9 then
13: Zk∗,k = 0
14: for each entry Zi,i′ , with either i or i′ ∈ {k∗, k}, that should get updated

to v′ = 0 because of Zk∗,k = 0 B see Table 4.1 do
15: update Z and SSM phasing for r, i, i′, and v′ B see Algorithm 2
16: for k′ ← k + 1, . . . , K− 1 do
17: if Zk,k′ = ? then
18: if absent ancestor-descendant relationship between lineages k and k′ is

crucial for validity of subclonal reconstruction B see Definition 10 then
19: Zk,k′ = 0
20: for each entry Zi,i′ , with either i or i′ ∈ {k, k′}, that should get updated

to v′ = 0 because of Zk,k′ = 0 B see Table 4.1 do
21: update Z and SSM phasing for r, i, i′, and v′ B see Algorithm 2
22: return r

76

4.2. Handling Ambiguity

number change in segment i. Necessary absent ancestor-descendant relationships be-
tween lineage k and lineages with lower and higher index, with which lineage k is
in an ambiguous relationship, are found by checking the criteria of Definitions 9 and
10 (lines 8 – 21). If an absent ancestor-descendant relationship is found, the relation-
ship is updated and if needed, other relationships are updated as well as. After all
segments are processed, r is returned (line 22).

Note that relationships Zk,k◦ that need to be absent because k = k◦ or k◦ < k do not
have to be found because they were not transformed into ambiguous relationships in
step 2 of the ambiguity algorithm. Relationships that need to be absent because of the
sum rule are found later in step 7 (see Subsection 4.2.6), after relationships that need
to be present because of the sum rule were found in step 6 (see Subsection 4.2.5).

If after Algorithm 6 ambiguous ancestor-descendant relationships are still present,
we check whether the lineage relationship matrix Z contains necessary unfolding absent
relationships.

Definition 11 (Necessary Unfolding Absent Ancestor-Descendant Relationships). Nec-
essary unfolding absent ancestor-descendant relationships are ambiguous relationships be-
tween three lineages k, k′ and k′′, with 0 < k < k′ < k′′ < K, that are not allowed to be
present at the same time because either the likelihood would change (see Definition 9) or the
subclonal reconstruction would be invalid since an SSM would be assigned to an allele already
deleted (see case f) in Definition 10).

Observation 2. Necessary unfolding absent ancestor-descendant relationships arise from three
cases:

1. Lineage k contains an unphased SSM in the same segment in which lineages k′ and k′′

have copy number changes on different alleles. Either, all relationships are ambiguous,
or the relationship between lineages k′ and k′′ is absent and the other two are ambiguous
(see Figure 4.6a).

2. Lineage k′ contains an unphased SSM in the same segment, in which lineages k and
k′′ have copy number losses on different alleles. All relationships are ambiguous (see
Figure 4.6b).

3. Lineage k′′ contains an unphased SSM in the same segment, in which lineages k and
k′ have copy number losses on different alleles. All relationships are ambiguous (see
Figure 4.6c).

77

Chapter 4. Dealing with Ambiguity

k′′
?

k k′
?

?

dupl. dupl.

(a)

k′′
?

k k′
?

?

lossloss

(b)

k′′
?

k k′
?

?

loss loss

(c)

Figure 4.6.: Three different cases from which necessary unfolding absent ancestor-
descendant relationships arise.
Lineages k, k′ and k′′, with 0 < k < k′ < k′′ < K, are shown with different copy num-
ber change and unphased SSM assignment. (a) A scenario with copy number losses
leads to necessary unfolding absent ancestor-descendant relationships as well. The
relationship between lineages k′ and k′′ can also be absent. (b,c) In these scenarios,
copy number gains do not lead to necessary unfolding absent ancestor-descendant
relationships since copy number gains of ancestral lineages do not influence the phas-
ing of an SSM.
dupl.: duplication

The ambiguous relationships between the lineages are not allowed to be present at
the same time. The reasons are the following for the three cases:

1. If lineage k was an ancestor of both lineages k′ and k′′, the SSM had to be phased.
Thus, its average copy number would be influenced by one copy number change
and the likelihood would change. It does not matter whether lineages k′ and k′′

are in an ancestor-descendant relationship or not.

2. If lineage k was an ancestor of lineage k′ and if lineage k′′ was a descendant
of lineage k′, the SSM had to be phased to the allele not deleted in lineage k.
Hence, its average copy number would be influenced by the copy number loss
of lineage k′′ and the likelihood would change.

3. If lineages k and k′ were ancestors of lineage k′′, both alleles were deleted. How-
ever, the SSM is not allowed to be assigned to a lost allele.

78

4.2. Handling Ambiguity

The three cases arise only if the SSM is unphased and if all three relationships are
ambiguous, with exception of case 1 where the relationship between lineages k′ and
k′′ can also be absent. If the SSM was phased, the phasing would have been consid-
ered in the likelihood and in the subclonal reconstruction during the optimization. All
absent ancestor-descendant relationships necessary because of mutation assignment
would have been found already with Algorithm 6. If the two lineages with copy num-
ber changes were in a present ancestor-descendant relationship before Algorithm 6,
necessary absent ancestor-descendant relationships to the lineage with the unphased
SSM would have been already found (compare Figures 4.2c, 4.2d and 4.3c). If the
lineage with the SSM was in a present ancestor-descendant relationship with one of
the lineages with copy number changes before, the SSM would have been phased al-
ready. If one relationship was absent, except the one of case 1, the SSM could only
be influenced by the copy number change of one lineage, and hence can be phased to
the allele not affected. This would not change the likelihood nor would it lead to an
invalid subclonal reconstruction.

To prevent that all necessary unfolding absent ancestor-descendant relationships be-
tween three lineages are transformed to present relationships in step 6 of the ambiguity
algorithm (see Subsection 4.2.5), we fork the lineage relationship matrix Z to multiple
matrices. Each new matrix contains one valid relationship setting between the three
lineages.

Definition 12 (Relationship Setting). A relationship setting f contains three relationship
values f [0], f [1], f [2] ∈ {0, 1, ?} to which the ancestor-descendant relationships Zk,k′ , Zk,k′′

and Zk′,k′′ of the three lineages k, k′ and k′′ should get updated.

We derive the different settings by separately transforming each ambiguous relation-
ship to a present relationship, while transforming only the other ambiguous relation-
ships to absent ones that would change the likelihood or would lead to an invalid
subclonal reconstruction if they were present. The last possible valid setting is the
one in which all ambiguous relationships are transformed to absent relationships (see
Figure 4.7).

Algorithm 7 shows how we fork the lineage relationship matrix Z to multiple ma-
trices if necessary unfolding absent ancestor-descendant relationships exist. First, an
empty stack R is created into which a duplicate of the subclonal reconstruction r,
which is going to be investigated, is inserted (lines 1 – 2). Like that, all following
operations are performed on the duplicate and the original subclonal reconstruction
including the lineage relationship matrix Z are not changed. Necessary unfolding

79

Chapter 4. Dealing with Ambiguity

k

k′ k′′

dupl. dupl.
k

k′′

dupl.dupl.

k′

k

k′′

k′

dupl.

dupl.

1) 2) 3)

k′′k k′

dupl. dupl.

4)

(a)

k

k′ k′′

?
loss

loss

k

k′′k′

? loss

loss

k

k′′

k′
loss

loss

1) 2) 3)

k′′k k′

lossloss

4)

(b)

Figure 4.7.: Different relationship settings for necessary unfolding ancestor-
descendant relationships.
Full caption see next page.

80

4.2. Handling Ambiguity

k

k′ k′′

?

loss

loss
k

k′′k′

?

loss

loss
k

k′′

k′

loss loss

1) 2) 3)

k′′k k′

loss loss

4)

(c)

Figure 4.7.: Different relationship settings for necessary unfolding ancestor-
descendant relationships.
Lineages k, k′ and k′′, with 0 < k < k′ < k′′ < K, are shown with different copy number
change and SSM assignment. The four relationship settings are shown for the three
different cases of necessary unfolding absent ancestor-descendant relationships of
Observation 2: (a) case 1, (b) case 2, and (c) case 3.
dupl.: duplication

absent ancestor-descendant relationships that exist in r are processed segment-wise
(lines 3 – 4). All necessary unfolding absent ancestor-descendant relationships are
found because we are looking for them in the lineage relationship matrix Z of r which
stays unchanged during the algorithm. For each occurrence of necessary unfolding ab-
sent ancestor-descendant relationships between three lineages k, k′ and k′′, a new stack
Rnew is created (line 5), which will receive all forked lineage relationship matrices with
their corresponding subclonal reconstructions. Each subclonal reconstruction r′ in the
stack R is processed and its lineage relationship matrix is forked with all valid rela-
tionship settings (lines 6 – 15). Each update with a relationship setting f is done on a
duplicate r′′ of r′ with lineage relationship matrix Z′′. The three entries Z′′k,k′ , Z′′k,k′′ and
Z′′k′,k′′ are updated to the values f [0], f [1] and f [2] with Algorithm 2. Since the lineage
relationship matrices are forked iteratively, it is possible that different forking scenar-

81

Chapter 4. Dealing with Ambiguity

Algorithm 7 Transforming necessary unfolding absent ancestor-descendant relation-
ships

Input: subclonal reconstruction r with lineage number K, lineage relationship ma-
trix Z, CNA assignment with phasing, and SSM assignment with phasing

Output: stack R of subclonal reconstructions without necessary unfolding absent
ancestor-descendant relationships

1: create empty stack R
2: R.push(duplicate of r)
3: for each segment i with at least two copy number changes on different alleles in

different lineages do
4: for all lineages k, k′ and k′′, with 0 < k < k′ < k′′ < K, with necessary unfold-

ing absent ancestor-descendant relationships in segment i according to Z B see
Observation 2 do

5: create empty stack Rnew
6: while R is not empty do
7: r′ ← R.pop()
8: F ← all relationship settings for lineages k, k′ and k′′ according to Z
9: for each relationship setting f ∈ F do

10: r′′ ← duplicate of r′

11: Z′′ ← lineage relationship matrix of r′′

12: try
13: update Z′′ and SSM phasing for r′′, k, k′, and f [0] B see Algorithm 2
14: update Z′′ and SSM phasing for r′′, k, k′′, and f [1] B see Algorithm 2
15: update Z′′ and SSM phasing for r′′, k′, k′′, and f [2] B see Algorithm 2
16: if r′′ is not contained in Rnew
17: Rnew.push(r′′)
18: catch update not possible
19: pass
20: R← Rnew
21: return R

ios of different lineage relationship matrices lead to the same subclonal reconstructions.
Thus, if updating Z′′ was successful, the updated subclonal reconstruction r′′ is added
to the stack Rnew only if it is not contained already (lines 16 – 17). If updating Z′′ was
not possible, r′′ is not used further (lines 18 – 19). Reasons why updating the lineage
relationship matrix with a relationship setting f can fail, are explained below. After
processing all subclonal reconstructions in the stack R, Rnew becomes R for the next
round (line 20) and further forking is performed on the updated subclonal reconstruc-
tions in R. At the end, the stack R is returned (line 21), which now contains all possible

82

4.2. Handling Ambiguity

subclonal reconstructions without necessary unfolding absent ancestor-descendant re-
lationships.

Updating the lineage relationship matrix Z′′ with a relationship setting fails if an
entry Z′′k◦,k• that should be updated to v 6= ? is not ambiguous anymore and unequal v,
or if SSMs phased to alleles A or B of lineages k◦ or k• in r′′ do not allow to update
the relationship to a present one (see Algorithm 2). Although necessary unfolding ab-
sent ancestor-descendant relationships arise between three lineages with ambiguous
ancestor-descendant relationships and unphased SSMs, it is possible that two relation-
ship settings are not compatible with each other. This is because applying Algorithm 7
combines multiple relationship settings, which update relationships and SSM phasing.

Definition 13 (Relationship Setting Compatibility). Two relationship settings f1 and f2

are compatible if one of the following is true:

1. They are equal.

2. The lineages involved in relationship updates because of f1 are different from the ones
because of f2.

3. Lineage relationships updated by both f1 and f2 are either equal or ambiguous in either
f1 or f2, and all SSMs that are phased in the same segments because of f1 and f2 are
phased to the same alleles.

From Definition 13 we directly see that if two relationship settings are compatible,
the order in which they are applied does not change the result. Also, if two relation-
ship settings are not compatible, they will not become compatible if their order is
reverted. Thus, the order in which the relationship matrices are forked in Algorithm 7,
does not change the subclonal reconstructions of the final result.

If an incompatible relationship setting is applied, the forked subclonal reconstruc-
tion will not be used further. One subclonal reconstruction that is always a valid result
is the one in which all necessary unfolding absent ancestor-descendant relationships
are updated to absent relationships. Hence, the stack of final subclonal reconstructions
is never empty.

4.2.5. Identifying Present Ancestor-Descendant Relationships Necessary
because of Sum Rule

After step 5 of the ambiguity algorithm, we have a stack of subclonal reconstructions.
Since they were created from a single subclonal reconstruction r, all have the same

83

Chapter 4. Dealing with Ambiguity

lineage frequencies, CNA assignment and phasing, and SSM assignment. As their
lineage relationship matrices were forked from the original matrix Z of r with Algo-
rithm 7, the lineage relationship matrices as well as the SSM phasing differ. However,
all lineage relationship matrices have in common that they contain all necessary absent
and present ancestor-descendant relationships, except the ones necessary because of
the sum rule.

Algorithm 8 processes each subclonal reconstruction of the stack R and transforms
ambiguous ancestor-descendant relationships that need to be present because of the
sum rule into present ones. The algorithm works in a top-down approach and iter-
atively checks for any lineage k, with 0 ≤ k < K − 2, whether the sum rule holds
(line 1). Lineages K− 1 and K− 2 do not have to be checked as they have at most one
child and the sum rule can be violated only if a lineage has at least two children. For
each processed lineage k, a new stack Rnew is created that will receive the subclonal
reconstructions that fulfill the sum rule for lineage k (line 2). Now each subclonal re-
construction r with lineage relationship matrix Z and children set χk is removed from
R and processed (lines 3 – 6). If lineage k has at most one child, the sum rule is fulfilled.
Since updating ambiguous ancestor-descendant relationships of different subclonal re-
constructions can lead to equal subclonal reconstructions, we add r to the stack Rnew

only if it is not already contained in it (lines 7 – 9). If r has at least two children and the
sum rule is fulfilled for each sample, r is added to Rnew if it is not already contained
in it (lines 10 – 12). Otherwise, the sum rule is tried to be fulfilled by removing chil-
dren of lineage k and making them its grandchildren. Therefore, all possible pairwise
children combinations are received (line 14). Each combination consists of two lineage
indices k′ and k′′, with lineages k′ and k′′ both being children of lineage k and being in
an ambiguous ancestor-descendant relationship. If no such combination exists, the cur-
rent subclonal reconstruction r is not able to fulfill the sum rule. If combinations exist,
the subclonal reconstruction r is duplicated to r′ with lineage relationship matrix Z′

for each combination l (lines 15 – 18), so that following updates do not change r. Now
lineage k′′ is made a child of lineage k′ by updating Z′ with Algorithm 2 (lines 19 – 21).
Note that this update always works since absent ancestor-descendant relationships for
the original lineage relationship matrix Z that are necessary because of the crossing
rule or mutation assignment are already found. Afterwards, it is checked whether the
sum rule is fulfilled for lineage k that is not a parent of lineage k′′ anymore. If this
is the case and the new subclonal reconstruction r′ is not yet in the stack Rnew, it is
added to it (lines 22 – 24). Otherwise, lineage k has to be processed again, which is
achieved by adding r′ to the stack R if it is not already contained in it (lines 25 – 26).

84

4.2. Handling Ambiguity

Algorithm 8 Finding ancestor-descendant relationships that need to be present be-
cause of the sum rule
Input: stack R with subclonal reconstructions with lineage number K, lineage relation-

ship matrix, CNA assignment with phasing, SSM assignment with phasing, and
lineage frequencies φ
sample number N

Output: stack R with subclonal reconstructions that fulfill sum rule
1: for k← 0, . . . , K− 3 do
2: create empty stack Rnew
3: while R is not empty do
4: r ← R.pop()
5: Z ← lineage relationship matrix of r
6: χk ← indices of children of lineage k according to Z B see Algorithm 9
7: if |χk| ≤ 1 then
8: if r is not contained in Rnew then
9: Rnew.push(r)

10: else if φk,n ≥ ∑
k′∈χk

φk′,n for each n ∈ {0, . . . , N − 1} then

11: if r is not contained in Rnew then
12: Rnew.push(r)
13: else
14: L← all possible combinations of χk according to Z B see Algorithm 10
15: if L is not empty then
16: for each l in L do
17: r′ ← duplicate of r
18: Z′ ← lineage relationship matrix of r′

19: k′ ← l[0]
20: k′′ ← l[1]
21: update Z′ and SSM phasing for r′, k′, k′′, and 1 B see Algorithm 2
22: if φk,n ≥ ∑

k′∈χk

φk′,n − φk′′,n for each n ∈ {0, . . . , N − 1} then

23: if r′ is not contained in Rnew then
24: Rnew.push(r′)
25: else if r′ is not contained in R then
26: R.push(r′)
27: R← Rnew
28: return R

85

Chapter 4. Dealing with Ambiguity

Algorithm 9 Getting all children

Input: lineage relationship matrix Z,
lineage index k,
number of lineages K

Output: stack χ which contains indices of all children of lineage k
1: create empty stack χ
2: for k′′ ← k + 1, . . . , K− 1 do
3: if Zk,k′′ = 1 then
4: parent = true
5: for k′ ← k + 1, . . . , k′′ − 1 do
6: if Zk′,k′′ = 1 then
7: parent = false
8: break
9: if parent = true then

10: χ.push(k′′)
11: return χ

Algorithm 10 Getting all possible children combinations

Input: lineage relationship matrix Z,
stack χk which contains ordered indices of all children of a lineage k,
number of children nχ

Output: stack L which contains all possible pairwise children combinations
1: create empty stack L
2: for c← 0, . . . , nχ − 2 do
3: k′ ← χk[c]
4: for c′ ← c + 1, . . . , nχ − 1 do
5: k′′ ← χk[c′]
6: if Zk′,k′′ = ? then
7: L.push((k′, k′′))
8: return L

86

4.2. Handling Ambiguity

After all subclonal reconstructions of stack R are processed, R receives the subclonal
reconstructions of Rnew, which are now going to be checked for lineage k + 1 (line 27).
After all lineages for all subclonal reconstructions are checked, the final stack, which
contains all present ancestor-descendant relationships that are necessary because of
the sum rule, is returned (line 28).

We chose a top-down approach for Algorithm 8 because in order to fulfill a violated
sum rule for lineage k, we have to make some of its children its grandchildren. Thus,
we move some lineages to its descendants with indices higher than k. Following the
top-down approach, these lineages will be checked later to fulfill the sum rule. Hence,
if assigning more children to them leads to a violation of the sum rule, the violation
is either solved by making some children to grandchildren again, or if solving the
violation is not possible, by not working with the subclonal reconstruction any longer.

Note that Algorithm 8 is greedy in a way that it may create too many subclonal
reconstructions. It is possible that the lineage relationship matrix Z of one subclonal
reconstruction r can be transformed to the lineage relationship matrix Z′ of another
subclonal reconstruction r′ by updating ambiguous relationships. Thus, Z′ actually
contains present or absent ancestor-descendant relationships that are not necessary.
Developing a bottom-up algorithm that removes subclonal reconstructions as r′ is part
of future work.

4.2.6. Identifying Absent Ancestor-Descendant Relationships Necessary
because of Sum Rule

After step 6 of the ambiguity algorithm, a subclonal reconstruction r could still contain
ambiguous ancestor-descendant relationships that need to be absent because of the
sum rule. These necessary absent relationships are found with Algorithm 11. For each
subclonal reconstruction r in the stack with subclonal reconstructions, each ambigu-
ous relationship Zk,k′ , with 0 ≤ k < k′ < K− 1 is checked (lines 1 – 5). If the sum rule
was violated if lineage k was a parent of lineage k′ (lines 6 – 8), it is checked whether
a subclonal reconstruction exists in which lineage k is an ancestor of lineage k′ and
the sum rule is fulfilled (lines 9 – 15). This is done by duplicating the subclonal recon-
struction r to r′ and making lineage k a parent of lineage k′. Afterwards, Algorithm 8,
which finds ancestor-descendant relationships that need to be present because of the
sum rule, is applied onto r′, started by trying to solve the sum rule conflict for lin-
eage k. If such a valid subclonal reconstruction can be found, the relationship between
lineages k and k′ stays ambiguous. Otherwise, it is transformed into an absent relation-

87

Chapter 4. Dealing with Ambiguity

ship and the lineage relationship matrix Z is updated (lines 16 – 19). Each ambiguous
ancestor-descendant relationship in the subclonal reconstruction of the returned stack
(line 20) is truly ambiguous and can be updated to present or absent relationships
without changing the likelihood or leading to an invalid subclonal reconstruction.

Algorithm 11 Finding absent ancestor-descendant relationships necessary because of
sum rule
Input: stack R with subclonal reconstructions with lineage number K, lineage relation-

ship matrix, CNA assignment with phasing, SSM assignment with phasing, and
lineage frequencies φ
sample number N

Output: stack R with subclonal reconstructions whose ambiguous ancestor-
descendant relationships are truly ambiguous

1: for each r ∈ R do
2: Z ← lineage relationship matrix of r
3: for k← 0, . . . , K− 3 do
4: for k′ ← k + 1, . . . , K− 2 do
5: if Zk,k′ = ? then
6: Dk ← indices of descendants of lineage k according to Z B see Algorithm 5
7: χk ← indices of children of lineage k according to Z B see Algorithm 9
8: if φk,n < ∑

k◦∈χk

φk◦,n + φk′,n for any n ∈ {0, . . . , N − 1} then

9: r′ ← duplicate of r
10: Z′ ←lineage relationship matrix of r′

11: Z′k,k′ = 1
12: update Z′ and SSM phasing for r′, k, k′, and 1 B see Algorithm 2
13: create empty stack R′

14: R′.push(r′)
15: find all ancestor-descendant relationships for r′ in R′, starting with k,

that need to be present because of the sum rule B compare Algorithm 8
16: if R′ is empty then
17: Zk,k′ = 0
18: for each entry Zi,i′ , with either i or i′ ∈ {k, k′}, that should get up-

dated to v′ = 0 because of Zk,k′ = 0 B see Table 4.1 do
19: update Z and SSM phasing for r, i, i′, and v′ B see Algorithm 2
20: return R

Note that given the number of ambiguous ancestor-descendant relationships namb

of a subclonal reconstruction r, 2namb is the upper bound of valid lineage relationship
matrices for r and not necessarily the actual number. The reason is that if an am-
biguous relationship is transformed into a present or absent one, other ambiguous
relationships can get updated as well.

88

4.3. Lineage-Based versus Population-Based Subclonal Reconstruction

0.
45

0.
150.
2

SSMs

VA
F

0.1

0.4 0.3

0.2

0.1

0.5

0.3

0.1

population-based

1

0.4
0.3

0.9

?

lineage-based

(a)

0.1

0.4 0.3

0.2

0.1

0.5

0.3

0.1

population-based

1

0.4
0.3

0.9

?

lineage-based

φ = (1, 0.9, 0.4, 0.3)

dupl.dupl.
cAi,0 = 1.7
cBi,0 = 1.0

(b)

Figure 4.8.: Population-based and lineage-based subclonal reconstructions based
on (a) SSM and (b) copy number information.
White circles with numbers show populations with population frequencies, gray circles
with numbers show lineages with lineage frequencies. Colored dots indicate different
SSMs, assigned to populations or lineages. Blue and gray bars represent alleles A
and B, which can be duplicated.
VAF: variant allele frequency, SSMs: simple somatic mutations, dupl.: duplication

4.3. Lineage-Based versus Population-Based Subclonal
Reconstruction

Since we model CNAs as copy number changes per lineage, we can combine CNAs
and SSMs in a lineage-based model which allows us to handle ambiguity better than
population-based models. The reason is that population-based models have to infer
the relationships between all populations to model SSMs and CNAs, while we can
work with ambiguous lineage relationships. Hence, we can model ambiguity caused
by lineage relationships in a single subclonal reconstruction and its forked lineage
relationship matrices.

An example how ambiguous lineage relationships can be represented in a single
lineage-based subclonal reconstruction is shown in Figure 4.8a. Given three SSMs
with their measured VAFs, two population-based subclonal reconstructions with dif-
ferent frequencies and relationships exist that explain the VAFs equally well. It is

89

Chapter 4. Dealing with Ambiguity

not possible to decide which of the two subclonal reconstructions is better. However,
using a lineage-based subclonal reconstruction with ambiguous relationships allows
to explain the VAFs in a single subclonal reconstruction without having to decide for
all relationships whether they are present or absent. A similar example for CNAs is
shown in Figure 4.8b. Here, average allele-specific copy numbers of a segment i and
lineage frequencies φ are given. Two population-based subclonal reconstructions with
different CNAs explain the input data equally well, as does also a single lineage-based
subclonal reconstruction.

Thus, lineage-based subclonal reconstructions with ambiguous lineage relationships
allow us to model uncertainty within a single subclonal reconstruction and its forked
lineage relationship matrices.

90

Chapter 5
Analyzing Onctopus’ Performance

In this chapter, we describe how we implemented our subclonal reconstruction method
in the software Onctopus, analyze its performance and investigate how the perfor-
mance can be improved.

In Section 5.1, we briefly explain the implementation. Afterwards, in Section 5.2,
we describe our data simulation with which we created all simulated datasets in this
thesis. In Sections 5.3, we shortly explain different metrics used in the chapter, before
analyzing the optimality, run time and memory usage of Onctopus in Section 5.4. In
Section 5.5, 5.6 and 5.7, we show how Onctopus’ performance can be improved by
clustering SSMs, fixing CNAs and fixing lineage frequencies. Finally, in Section 5.8,
we investigate how approximating the VAFs in the MILP influences the performance
of Onctopus.

5.1. Implementation

Onctopus is implemented in Python 21. The MILP is solved with CPLEX 12.6.1 [18],
which is used through its Python API.

Currently, Onctopus takes average allele-specific copy numbers of I genome seg-
ments and the variant and reference read counts of J SSMs of a single tumor sample
as input. Future work will include extending the implementation to work with copy
number and SSM information of multiple tumor samples of the same patient.

In its standard setting, Onctopus optimizes the variables of a subclonal reconstruc-
tion, which are the lineage frequencies, the lineage relationships, the CNA assignments

1https://www.python.org/

91

https://www.python.org/

Chapter 5. Analyzing Onctopus’ Performance

including phasing, and the SSM assignments with phasing and with copy number in-
fluence in the same lineage. It is also possible to fix the values of some of these
variables for the optimization. Another possibility is to use specific values as start
values of the optimization.

Input parameters of Onctopus, together with a short explanation and default values,
are shown in Table A.1. The source code of Onctopus is available at https://github.
com/ratschlab/onctopus.

5.2. Data Simulation

In this section, we describe our approach to simulate input data for Onctopus, namely
average allele-specific copy numbers of I genome segments and the variant as well as
the reference read counts of J SSMs of one heterogeneous tumor sample.

The lineage frequencies φ as well as the ancestor-descendant relationships between
K lineages are given as input to the simulation. Then, CNAs and SSMs are assigned to
the lineages. Afterwards, we compute the length of all genome segments, their copy
number standard errors and the copy numbers themselves, the read coverage of all
segments and the variant and reference read counts of all SSMs.

CNA Assignment. Each CNA is assigned to one allele of a segment of a cancerous
lineage, where each allele contains at most one CNA.

The CNA assignment can either be given as input to the simulation or it can be
sampled. If the assignment should get sampled, the number of all segments I and the
number of segments with CNAs I′′ need to be given as input. CNAs are assigned to
the first I′′ segments, the cancerous lineages to which CNAs are assigned are chosen
following a uniform distribution. For each of the I′′ segments, one of six copy number
change possibilities is sampled:

1. copy number gain assignment to allele A,

2. copy number gain assignment to alleles A and B,

3. copy number loss assignment to allele B,

4. copy number loss assignment to alleles A and B,

5. LOH, copy number gain assignment to allele A and copy number loss assign-
ment to allele B,

92

https://github.com/ratschlab/onctopus
https://github.com/ratschlab/onctopus

5.2. Data Simulation

6. copy number gain or loss assignment to allele A or B of cancerous lineage k,
same copy number change assignment to allele A or B of cancerous lineage k′,
k 6= k′, where gain or loss, as well as both alleles and lineage k′ are sampled from
a uniform distribution. Copy number change assignments to an allele that got
already lost in an ancestral lineage are not possible.

The probabilities of the six copy number change possibilities can be specified.
We do not allow copy number change assignments in which both alleles of all seg-

ments of lineage 1 get lost since if lineage 1 is the clonal lineage, no alleles are left to
assign SSMs to.

SSM Assignment. Each SSM is assigned to one allele of a segment of a cancerous
lineage, where we do not allow the assignment to an allele that got already lost.

We assign SSMs following one of three strategies. First, the SSM assignment can be
given as input to the simulation. Second, the same number of SSMs can be assigned to
all alleles of all segments of all cancerous lineages where the alleles are not lost. Third,
the SSM assignment can be sampled.

If the SSM assignment is sampled, the lineages of the assignments are chosen accord-
ing to one of two possibilities. Either a cancerous lineage is sampled from a uniform
distribution, or a lineage is chosen depending on the overall lineage frequencies. For
the second possibility, we first construct an array f req_tab of length K − 1 with the
following properties:

f req_tab[0] = φ1,0

and
f req_tab[k] = f req_tab[k− 1] + φk,0 for 1 < k < K.

Then, we uniformly draw a number x between 0 and f req_tab[K− 2], and choose the
lineage k + 1 for which holds f req_tab[k − 1] < x ≤ f req_tab[k] if 1 < k < K or
f req_tab[k] ≤ x if k = 0. The segment and allele to which the SSM is assigned are
chosen using a uniform distribution.

Segment Length Computation. We compute the length of each segment i depend-
ing on the number of SSMs that are assigned to it:

|segment i| = max(seg_min_length, number of SSMs on segment i · 1000 + 1000),

where seg_min_length is the minimal segment length. Per default, it is 1, 000, 000.

93

Chapter 5. Analyzing Onctopus’ Performance

Copy Number Standard Error Computation. In order to compute the copy number
standard error σαi,0 of allele α in segment i, we simulate heterogeneous SNP counts of
a tumor and a matched-normal sample and calculate the resulting mean copy num-
ber ¯cαi,0 .

First, we compute the number of heterogeneous SNPs nSNPsi in segment i by assum-
ing that seven heterogeneous SNPs appear within 10.000 bp2 of a segment:

nSNPsi = max
(

1, round
(

7
10, 000

· |segment i|
))

.

Then, we draw nSNPsi read counts for the simulated tumor and the simulated matched-
normal sample using a negative binomial distribution. To create the two parameters
f _tumorαi,0 and p_tumorαi,0 of the negative binomial distribution, we need the cov-
erage overdispersion parameter sCOV, and the allele-specific coverage of segment i
coverageαi,0

= haploid coverage · cαi,0 , where both sCOV and the haploid coverage are
given as input to the simulation:

p_tumorαi,0 =
sCOV

sCOV + coverageαi,0

,

f _tumorαi,0 =
coverageαi,0

· p_tumorαi,0

1− p_tumorαi,0

.

Now we can draw each tumor read count rc_tumorαi,0,i′ , with 0 ≤ i′ < nSNPsi , as:

rc_tumorαi,0,i′ ∼ Negative Binomial(f _tumorαi,0 , p_tumorαi,0).

To draw read counts for the matched-normal sample, we create the two parameters
f _normalαi and p_normalαi as

p_normalαi =
sCOV

sCOV + haploid coverage

and
f _normalαi =

haploid coverage · p_normalαi

1− p_normalαi

.

2This number is derived from the 1000 Genomes Project [1], stating that a typical genome contains
4.1 million to 5 million differences to the human reference genome, with more than 99.9% of them
being SNPs.

94

5.2. Data Simulation

Then, each read count rc_normalαi,i′ is drawn as

rc_normalαi,i′ ∼ Negative Binomial(f _normalαi , p_normalαi).

After drawing all read counts, we calculate the mean copy number ¯cαi,0 as

¯cαi,0 =

∑
i′

rc_tumorαi,0,i′

rc_normalαi,i′

nSNPsi

.

Finally, we calculate the standard error σαi,0 as

σαi,0 =

√√√√√√∑
i′

(
rc_tumorαi,0,i′

rc_normalαi,i′

)2

− nSNPsi · ¯cαi,0
2

nSNPsi · (nSNPsi − 1)
.

Copy Number Computation. For each allele α of each segment i, we compute the
average allele-specific copy number cαi,0 based on the assignment of CNAs:

cαi,0 = 1 + ∑
k

φk,0 · dαi,k ,

where dαi,k is the copy number change of allele α in segment i of lineage k:

dαi,k =


1 if copy number gain is assigned,

−1 if copy number loss is assigned,

0 if no CNA is assigned.

If noise should be added to the true copy number cαi,0 , we draw the new allele-specific
copy number c′αi,0

from a normal distribution with mean cαi,0 and standard devia-
tion σαi,0 . Since the copy number cannot be negative, we restrict c′αi,0

to be at least 0:

c′αi,0
= max(0,N (cαi,0 , σ2

αi,0
)).

Coverage and Read Count Computation. For each segment i, its read coverage is
computed based on its copy number and the haploid coverage:

coveragei,0 = (cAi,0 + cBi,0) · haploid coverage.

95

Chapter 5. Analyzing Onctopus’ Performance

To compute the variant and reference read counts of an SSM j, which is assigned to
allele α of lineage k, we first need to compute its average copy number sj,0. If a copy
number gain is assigned to allele α in the segment i of the lineage k as well, j happens
before the copy number change with a user defined probability that is given as input
to the simulation. If j is sampled to happen before the copy number change, fαj,k is 1,
otherwise 0. We then compute the average copy number sj,0 as

sj,0 = φk + fαj,k · φk + ∑
k′∈Dk

dαi,k · φk′ .

Given the average copy number sj,0 and the copy number ci,0 = cAi,0 + cBi,0 of segment i,
we compute the VAF pj,0 as

pj,0 =
sj,0

ci,0
.

We draw the total read count Dj,0 from a negative binomial distribution:

Dj,0 ∼ Negative Binomial(f _tumori,0, p_tumori,0),

where
p_tumori,0 =

sCOV

sCOV + coveragei,0

and
f _tumori,0 =

coveragei,0 · p_tumori,0

1− p_tumori,0
.

We use Dj,0 to draw the variant count Vj,0 from a beta-binomial distribution:

Vj,0 ∼ Beta-Binomial(Dj,0, αj,0, β j,0),

with αj,0 = pj,0 · sSSM and β j,0 = (1− pj,0) · sSSM, where sSSM is the beta-binomial overdis-
persion parameter which is provided as input. Finally, we compute the reference read
count Rj,0 as

Rj,0 = max(0, Dj,0 −Vj,0).

Important parameters of the simulation, their explanation and default values can be
found in Table B.1.

96

5.3. Evaluation Metrics

5.3. Evaluation Metrics

In the following analyses, we use the SMC-Het 1C score and the area under the
precision-recall curve (AUPRC) of SSM co-clustering to measure and compare per-
formances of different subclonal reconstructions.

SMC-Het 1C Score. The SMC-Het 1C score was developed for the crowd-sourced
benchmarking challenge ICGC-TCGA DREAM Somatic Mutation Calling Tumour Hetero-
geneity (SMC-Het) [79]. The motivation of this challenge is to provide benchmarking
datasets and evaluation metrics for subclonal reconstruction methods. Thus, the chal-
lenge organizers simulated realistic tumor genomes and developed mathematically
sound quantitative metrics that evaluate different aspects of subclonal reconstructions.

The SMC-Het 1C score evaluates the inference of lineage frequencies and the num-
ber of SSMs assigned to each lineage, while being independent of the number of
lineages. The score ranges from 0 and 1, where 0 indicates a poor and 1 a perfect
performance, in which the lineage frequencies are inferred correctly and the correct
number of SSMs is assigned to each lineage.

Area Under the Precision-Recall Curve of SSM Co-Clustering. The co-clustering
of SSMs indicates which SSMs are assigned to the same lineage [21]. The AUPRC
of SSM co-clustering is a measure of how accurate the SSMs that belong to the same
lineage in the ground truth dataset are assigned to the same lineage in the inferred
subclonal reconstruction. It is also possible to compute the average SSM co-clustering
of multiple sampled subclonal reconstructions and compare it against the ground truth
co-clustering with the AUPRC.

5.4. Optimality, Run Time and Memory Usage

For some datasets, the branch-and-cut algorithm finds and proves the optimal sub-
clonal reconstruction in reasonable time and space. For other datasets, this is not
possible. The reason for this is that the number of binary variables of the MILP is
too high because the datasets consist of too many genome segments or SSMs, or are
reconstructed with too many lineages. Still, it is possible that a good solution can be
found even when the optimality of this solution cannot be proved.

97

Chapter 5. Analyzing Onctopus’ Performance

Table 5.1.: Parameters for simulating datasets of general experiment to analyze
optimality, run time and memory usage of Onctopus runs.
Twenty different parameter sets are created by iterating over the different parameter
values. At least two parameters have to have the values shown in bold.

parameter parameter values
lineage number 2 3 4 5 6 7
SSM number 50 51 52 53 54 64 74 84
segment number 1 2 3 4 5 15 25 35

In this subsection, we analyze the optimality, the run time and the memory usage
of Onctopus runs on different datasets. Also, we investigate the accuracy of found
subclonal reconstructions.

In Subsection 5.4.1, we present a general experiment over a large number of datasets
with different parameter settings. In Subsection 5.4.2, we analyze the effect of increas-
ing the run time of the optimization. At the end, in Subsection 5.4.3, we summarize
our findings.

5.4.1. General Experiment

We simulated 1000 different datasets to evaluate the optimality status, run time and
memory usage of Onctopus runs. We used different numbers of lineages, SSMs and
segments, where each segment contains one or two copy number changes in only one
lineage. We created 20 different parameter combinations, starting with three lineages,
50 SSMs and one segment, and then changing only one of the parameters (see Ta-
ble 5.1). Then, for each lineage number, we created five different phylogenetic trees
with different lineage frequencies (see Figure B.1). For each parameter combination
and each phylogenetic tree, we simulated ten datasets, resulting in 50 datasets per
parameter combination and 1000 datasets in total. The simulation setup can be found
in Section B.2.

We ran Onctopus on each of the simulated datasets with a single thread, a maximal
run time of ten hours and without memory restrictions. As lineage numbers, we used
only the ground truth numbers. The other parameters had default values.

Optimization Statuses. For 705 of the 1000 datasets, the optimal result could be
proved. For the other 295 datasets, the time limit of ten hours was reached.

98

5.4. Optimality, Run Time and Memory Usage

2 3 4 5 6 7
lineage number

0

20

40

ru

ns

optimum proved
time limit reached

(a)

50 51 52 53 54 64 74 84
SSM number

0

20

40

ru

ns
(b)

1 2 3 4 5 15 25 35
segment number

0

20

40

ru

ns

(c)

Figure 5.1.: Optimization statuses of Onctopus runs of general experiment to ana-
lyze optimality, run time and memory usage.
(a) Results for datasets with 50 SSMs, one segment and increasing lineage number.
(b) Results for datasets with three lineages, one segment and increasing SSM num-
ber. (c) Results for datasets with three lineages, 50 SSMs and increasing segment
number.

With increasing lineage number, more runs reach the run time limit before the op-
timal solution can be proved (see Figure 5.1a). For seven lineages, all 50 runs reach
the run time limit. In general, for an increasing SSM number, the number of runs that
reach the run time limit increases as well (see Figure 5.1b). However, the increase is not
monotone. For 64 SSMs, for example, less runs reach the time limit than for 52, 53 and
54 SSMs. So although the MILPs for the datasets with 64 SSMs contain more variables,
the branch-and-cut algorithm is able to prove the optimal solution in more cases. This

99

Chapter 5. Analyzing Onctopus’ Performance

could be because a good solution is found earlier and the search tree does not have
to be branched so often. Interestingly, for an increasing segment number from 1 to 35,
the optimal solution can be proved for more runs (see Figure 5.1c). For 25 segments,
the optimal solution can even be proved for all 50 runs. The reason could be that the
copy number changes were simulated without noise and thus could compensate the
noise in the VAFs of the SSMs, which could allow the branch-and-cut algorithm to find
the optimal solution more quickly. To observe that an increasing number of SSMs and
segments makes the finding and proving of an optimal solution more difficult, higher
numbers with larger differences to the previous datasets have to be used.

Run Time Until Optimal Solution Is Proved. We investigate the run time behavior
for Onctopus runs in which the optimality of the solution could be proved.

For increasing lineage numbers from two to five lineages, the run time increases
faster than linear (see Figure 5.2a). For six lineages, the optimal solution could only
be proved for one run and for seven lineages, no optimal solution could be proved.
Thus, the run times on the datasets with six and seven lineages cannot be compared
properly with the other ones. For an increasing SSM number, the run time increases
(see Figure 5.2b) but not as quickly as for an increasing lineage number. With an
increasing number of segments the overall run time increases as well, however the
median run times show more fluctuation than for an increasing SSM number (see
Figure 5.2c).

Memory Usage. The memory usage of the Onctopus runs increases with the run
time of the optimization (see Figure 5.3). The highest variation for runs is present
for runs for which the solution could not be proved to be optimal and which were
terminated due to the run time restriction of ten hours. Here, the smallest memory
usage is 0.25 GB and the largest 141 GB.

Accuracy of Found Subclonal Reconstructions. We measure the accuracy of the
found subclonal reconstructions with the SMC-Het 1C score. Runs for which the
optimal solution was proved have a higher SMC-Het 1C score than runs for which the
optimality of the solution could not be proved (p-value= 2.75 · 10−30, Mann-Whitney
U test; see Figure 5.4). Nearly all reconstructions that could be proved to be optimal
reach a SMC-Het 1C higher than 0.9. Some reconstructions with proved optimality,
however, have an SMC-Het 1C score lower than 0.5. The reason is that due to the
ambiguity in the datasets, there might exist different subclonal reconstructions with

100

5.4. Optimality, Run Time and Memory Usage

2 3 4 5 6 7
lineage number

100

102

104
tim

e
(s

ec
)

(a)

50 51 52 53 54 64 74 84
SSM number

100

101

102

103

104

tim
e

(s
ec

)

(b)

1 2 3 4 5 15 25 35
segment number

100

101

102

103

104

tim
e

(s
ec

)

(c)

Figure 5.2.: Run time of Onctopus runs, for which optimal solution was proved, of
general experiment to analyze optimality, run time and memory usage.
(a) Results for datasets with 50 SSMs, one segment and increasing lineage number.
(b) Results for datasets with three lineages, one segment and increasing SSM number.
(c) Results for datasets with three lineages, 50 SSMs and increasing segment number.

101

Chapter 5. Analyzing Onctopus’ Performance

0 5000 10000 15000 20000 25000 30000 35000
time (sec)

10 1

100

101

102
m

em
or

y
(G

B)

Figure 5.3.: Memory usage of Onctopus runs of general experiment to analyze op-
timality, run time and memory usage. Runs are sorted according to their run time.

Figure 5.4.: SMC-Het 1C scores for different optimization statuses of Onctopus
runs of general experiment to analyze optimality, run time and memory usage.
The p-value was computed with a Mann-Whitney U test.

102

5.4. Optimality, Run Time and Memory Usage

0 1

1

0.85

1

0.85 0.15

LOH

LOH

Simulated Inferred

p2,0 = 0.075
p0,0 = 0.85

p1,0 = 0.425

p̂2,0 = 0.075

p̂1,0 = 0.425

p̂0,0 = 0.85

p̂0,0 = 0.85

2

121

0

Figure 5.5.: Example of a simulated and its inferred subclonal reconstruction that
are ambiguous.
The underlying dataset consists of three lineages, one segment and 84 SSMs, of
which only a subset is shown. The VAFs presented in the figure are shown without
noise to easily visualize the ambiguity in the subclonal reconstructions.
In the simulated subclonal reconstruction, an LOH event is assigned to lineage 1, so
that allele A is duplicated and allele B is lost. Thus, SSMs arising on allele A before
the duplication have a higher VAF as SSMs arising afterwards. SSMs assigned to
lineage 2 are not directly affected by the copy number changes. In the subclonal re-
construction inferred by Onctopus, an LOH event is assigned to lineage 2. Because
it has a similar frequency as lineage 1 in the simulated subclonal reconstruction, the
average allele-specific copy numbers are similar as well. Since lineage 2 is a child
of lineage 1, the LOH event influences the average copy numbers of the SSMs as-
signed to lineage 1 and similar VAFs as in the simulated subclonal reconstruction are
inferred. SSMs with a VAF of 0.85 can be assigned to lineage 1 if they are phased to
allele A or to lineage 2 if they are phased to allele A and arise before the copy number
changes. The inferred subclonal reconstruction of Onctopus has a slightly higher log-
likelihood of −235.65 compared to −237.71 of the simulated subclonal reconstruction.
The achieved SMC-Het 1C score is only 0.37.
LOH: loss of heterozygosity

equal or higher likelihood than the simulated ground truth subclonal reconstruction.
If Onctopus finds a subclonal reconstruction that differs strongly in lineage frequencies
and SSM assignment, the SMC-Het 1C is low (see Figure 5.5 for an example).

5.4.2. Increasing Run Time

We now investigate the effect of the run time on the accuracy of subclonal recon-
structions that could not be proved to be optimal. For this purpose, we simulated
50 datasets with four lineages, where each ten datasets were simulated based on
the five phylogenetic trees also used for the previous experiment (see Figure B.1).
Each dataset contains 35 segments, where each segment has one or two copy number
changes in only one lineage, and 2940 SSMs across all segments. The simulation setup
can be found in Section B.2.

103

Chapter 5. Analyzing Onctopus’ Performance

10 30 60 120 240 6006000
optimization time (mins)

0.4

0.6

0.8
SM

C-
He

t 1
C

sc
or

e

(a)

10 30 60 120 240 6006000
optimization time (mins)

106

105

ob
je

ct
iv

e
va

lu
e

(b)

Figure 5.6.: (a) SMC-Het 1C scores and (b) objective values on 50 datasets for in-
creasing optimization time.

We ran Onctopus on the simulated datasets with the following run time restrictions:

10, 30, 60, 120, 240, 600, 6000 minutes.

All runs but the ones with 6000 minutes were run with a single thread, the ones with
6000 minutes were run with ten threads for ten hours. We used no memory restrictions
and standard values for the other parameters. We set the number of lineages to be four.

Optimization Statuses. For none of the 50 Onctopus runs the optimal solution could
be proved.

Improvements of Subclonal Reconstructions with Increasing Run Time. The
SMC-Het 1C score of the 50 subclonal reconstructions improves with increasing run
time (see Figure 5.6a). Also, the objective value of the subclonal reconstructions in-
creases in the same pattern as the SMC-Het 1C score (see Figure 5.6b). Thus, we can
conclude that our MILP models a subclonal reconstruction correctly and that the ob-
jective function works well but that the optimization itself is very hard. Hence, a good
solution might not be found within a low run time. A higher run time can help to find
a better subclonal reconstruction even though its optimality might still not be proved.

104

5.5. Clustering Simple Somatic Mutations

5.4.3. Conclusion

The run time to prove the optimality of a solution increases with the number of used
lineages, the number of SSMs and in general also with the number of segments. The
larger the dataset, the more time is needed to prove the optimality of the subclonal
reconstruction. A high run time can help finding a better solution even though it is
possible that its optimality still cannot be proved. The memory usage increases with
the run time.

A trivial approach to improve the accuracy of a subclonal reconstruction is to use
more run time for the optimization. However, a practical run time limit can be reached
quickly. Thus, in the next subsections, we present other approaches to improve the
solution that save run time and thus also memory usage of the optimization.

5.5. Clustering Simple Somatic Mutations

In this section, we investigate the effect on the accuracy of found subclonal recon-
structions when built with clustered SSMs according to the weak parsimony assump-
tion. First, in Subsection 5.5.1, we analyze the ability of different clustering algorithms
and numbers of clusters to cluster SSMs based on their VAFs. Afterwards, in Sub-
section 5.5.2, we present the performance of Onctopus on simulated data when exe-
cuted without SSM clustering and with clustered SSMs of version 1 and 2 (see Subsec-
tion 3.2.4 on page 39).

5.5.1. Clustering Algorithms and Cluster Numbers

To investigate the ability of different clustering algorithms and numbers of clusters to
cluster SSMs based on their VAFs, we created 480 datasets. The datasets were simu-
lated with one segment and with different numbers of lineages, copy number changes
and SSMs. The SSMs were assigned following two different strategies (see Table 5.2).
According to the first strategy, the same number of SSMs is assigned to each allele,
which is not deleted because of a copy number loss, of each cancerous lineage. Hence,
all cancerous lineages that do not contain copy number losses get the same number
of SSMs assigned. Following the second strategy, the SSM assignment is sampled and
we chose cancerous lineages depending on the overall lineage frequencies. Thus, dif-
ferent lineages do contain different numbers of SSMs. For each lineage number, we
created one phylogenetic tree and for each copy number change number, we created a

105

Chapter 5. Analyzing Onctopus’ Performance

Table 5.2.: Parameters for simulating datasets to analyze ability of different cluster-
ing algorithms and numbers of clusters to cluster SSMs based on their VAFs.

parameter parameter values
lineage number 4 6
segment number 1
copy number change number 0 1 2 3

SSM assignment strategy SSM number
same number per non-lost allele of each
cancerous lineage

5 500 500

sampled assignment, average number
per lineage

10 100 1000

specific copy number change assignment per tree (see Figure B.2). For each combina-
tion of lineage, copy number change and SSM number, and for each of the two SSM
assignment strategies, we simulated ten datasets. The simulation setup can be found
in Subsection B.3.1.

As clustering algorithms we used k-means [61] and agglomerative clustering, which
are implemented in the python package scikit learn3. For agglomerative clustering,
we use three different linkage options, defining which distance is minimized when
merging clusters. The first option ward linkage minimizes the variance of each cluster.
The second option complete linkage minimizes the largest distance between all items of
two clusters. The third option average linkage minimizes the average distance between
clusters. We call these three approaches agglomerative-ward, agglomerative-complete
and agglomerative-average clustering from now on. We used different cluster numbers
depending on the number of lineages K of a dataset:

nc · (K− 1) ∀ nc ∈ {1, 2, 3, 4}.

We then applied each clustering algorithm with each number of clusters on the VAFs
of the SSMs of the 480 simulated datasets.

Using clustered SSMs for our optimization makes sense only if clusters contain
mostly SSMs of the same lineage that are equally influenced by copy number changes.
It is okay for us if SSMs of the same lineage with equal copy number change influence

3https://scikit-learn.org

106

https://scikit-learn.org

5.5. Clustering Simple Somatic Mutations

km a-w a-c a-a

clustering alg.

0.4

0.6

0.8

1.0

ho
m

og
en

ei
ty

 sc
or

e

(a)

km a-w a-c a-a

clustering alg.

0.4

0.6

0.8

1.0

ho
m

og
en

ei
ty

 sc
or

e

Uniform SSM
assignment

km a-w a-c a-a

clustering alg.

Sampled SSM
assignment

(b)

Figure 5.7.: Homogeneity score of the four clustering algorithms.
Results are shown for all cluster numbers for (a) all datasets and (b) datasets sepa-
rated by SSM assignment strategy. ‘Uniform SSMs’ refers to first strategy, in which
the same SSM number is assigned to all alleles of all cancerous lineages and ‘uneven
SSMs’ refers to the second strategy, in which the SSM assignment is sampled.
alg.: algorithm, km: k-means, a-w: agglomerative-ward, a-c: agglomerative-complete,
a-a: agglomerative-average

are distributed over several clusters, as long as each of these clusters is homogeneous.
To evaluate this property, we use the homogeneity score [77].

Overall Performance. The four clustering algorithms achieve a similar performance
with homogeneity scores ranging between 0.3 and 1 on the simulated datasets with dif-
ferent numbers of clusters (see Figure 5.7a). The k-means and the agglomerative-ward
clustering algorithm achieve a higher median score than the agglomerative-complete
and agglomerative-average clustering algorithms.

Performance Based on SSM Assignment Strategy. The homogeneity scores of the
four clustering algorithms are higher on the datasets in which the SSM assignment was
sampled than on the datasets in which the same number of SSMs was assigned to each
allele of each cancerous lineage (see Figure 5.7b). For both SSM assignment strategies,
the median homogeneity scores of the k-means and the agglomerative-ward clustering

107

Chapter 5. Analyzing Onctopus’ Performance

algorithm are again slightly higher than the ones of the agglomerative-complete and
agglomerative-average clustering algorithm.

Performance Based on Number of Clusters. Increasing the number of clusters
increases the homogeneity scores for all of the four clustering algorithms (see Fig-
ure 5.8a). The largest improvement happens from (K − 1) clusters to (K − 1) · 2 clus-
ters. For datasets without copy number changes, the homogeneity scores increase
with increasing clustering number in the same way as for all datasets (see Figure 5.8b).
This is interesting because without copy number changes, SSMs should easily cluster
to K− 1 clusters. However, due to noise in the VAFs, K− 1 clusters are not enough to
separate SSMs of different lineages. Thus, increasing the number of clusters improves
the clustering performance.

A homogeneity score of 1 could be achieved for all datasets if we set the number of
clusters to be equal to the number of SSMs. However, then we would not cluster the
SSMs anymore.

Since the k-means and the agglomerative-ward algorithm showed the best perfor-
mance, we chose them for further testing. The performance of the algorithms im-
proves with increasing number of clusters. However, the higher the cluster number,
the more complex does the optimization get again and we do not gain an advantage
by clustering SSMs. Thus, we chose 2 · (K− 1) and 3 · (K− 1) clusters for further tests.

5.5.2. Building Subclonal Reconstructions with Clustered Simple
Somatic Mutations

Now we present Onctopus’ performance when run on simulated data without SSM
clustering and with clustered SSMs of versions 1 and 2.

We created 120 datasets with four lineages, and different numbers of SSMs and
segments, where half of the segments contain one or two copy number changes in
one lineage (see Table 5.3). As in the previous experiment, we used two strategies to
assign SSMs. Either the same number of SSMs is assigned to each allele, that is not
lost, in each segment of each cancerous lineage, or the SSM assignment is sampled
and SSMs are assigned to cancerous lineages according to the overall lineage frequen-
cies. We created one phylogenetic tree (see Figure B.3) and simulated ten datasets for
each combination of segment and SSM numbers and SSM assignment strategies (see
Subsection B.3.2).

108

5.5. Clustering Simple Somatic Mutations

km a-w a-c a-a

clustering alg.

0.2

0.4

0.6

0.8

1.0

ho
m

og
en

ei
ty

 sc
or

e

(K 1) 1

km a-w a-c a-a

clustering alg.

(K 1) 2

km a-w a-c a-a

clustering alg.

(K 1) 3

km a-w a-c a-a

clustering alg.

(K 1) 4

(a)

km a-w a-c a-a

clustering alg.

0.2

0.4

0.6

0.8

1.0

ho
m

og
en

ei
ty

 sc
or

e

(K 1) 1

km a-w a-c a-a

clustering alg.

(K 1) 2

km a-w a-c a-a

clustering alg.

(K 1) 3

km a-w a-c a-a

clustering alg.

(K 1) 4

(b)

Figure 5.8.: Homogeneity score of the four clustering algorithms.
Results are shown for increasing number of clusters. (a) Results for all datasets are
shown, separated by cluster number. (b) Only results of datasets without copy number
changes are shown, separated by cluster number.
K: number of lineages, alg.: algorithm, km: k-means, a-w: agglomerative-ward, a-c:
agglomerative-complete, a-a: agglomerative-average

109

Chapter 5. Analyzing Onctopus’ Performance

Table 5.3.: Parameters for data simulation to analyze Onctopus’ performance with
and without clustered SSMs.

parameter parameter values
lineage number 4
segment number I 2 10
segments with copy number changes 0.5 · I

SSM assignment strategy SSM number
same number per non-lost allele of each
segment of each cancerous lineage

5 500 5000

sampled assignment, average number
per cancerous lineage per segment

10 100 1000

Table 5.4.: Clustering parameters of Onctopus.
parameter parameter values
clustering algorithm k-means agglomerative-ward
cluster number 2 · (K− 1) 3 · (K− 1)
using superSSMs yes no

K: number of lineages

We ran Onctopus on the datasets without SSM clustering and with eight combina-
tions of different clustering algorithms, number of clusters and clustering versions (see
Table 5.4). For all runs, we used a single thread, a maximal run time of two hours, no
memory restrictions, four lineages and standard values for the other parameters.

Optimization Statuses. Without SSM clustering, for only 18 of the 120 runs the op-
timal solution could be proved (see Figure 5.9a). For 138 of the 480 runs that clustered
the SSMs according to version 1, without using superSSMs, no solution could be found
at all within the two hours of run time. This is caused by the additional clustering con-
straints, allowing only solutions in which the SSMs that belong to the same cluster
are assigned to the same lineage and the same phase. When the run time restrictions
are too tight, no solution can be found that fulfills these constraints. Of the runs in
which a solution was found, optimality could be proved for 25 runs for each of the
four clustering combinations. When clustering version 2, with superSSMs, was used,
optimality could be proved for nearly all runs with 2 · (K − 1) clusters per segment
and for more than half of the runs with 3 · (K − 1) clusters per segment. The reason
for this is that less variables exist in the MILP, thus the optimization is less complex.

110

5.5. Clustering Simple Somatic Mutations

no
 cl

us
te

rin
g

a-w
, 2

, y
es

a-w
, 2

, n
o

a-w
, 3

, y
es

a-w
, 3

, n
o

km
, 2

, y
es

km
, 2

, n
o

km
, 3

, y
es

km
, 3

, n
o

0

25

50

75

100

ru

ns

optimum proved
time limit reached

(a)
no

 cl
us

te
rin

g
a-

w,
 2

, y
es

a-
w,

 2
, n

o
a-

w,
 3

, y
es

a-
w,

 3
, n

o
km

, 2
, y

es
km

, 2
, n

o
km

, 3
, y

es
km

, 3
, n

o

0

2000

4000

6000

8000

tim
e

(s
ec

)

(b)

Figure 5.9.: (a) Optimization statuses and (b) run time of experiment to analyze
Onctopus’ performance with and without clustered SSMs.
For 138 runs clustering without superSSMs, no subclonal reconstruction could be built
in the given time. No results are shown for these runs in the corresponding four
columns of optimization statuses and run time.
clustering parameters: clustering algorithm, cluster number variable (with number of
clusters = cluster number variable ·(K− 1)), whether superSSMs were used
km: k-means, a-w: agglomerative-ward, K: number of lineages

Run Time. We executed Onctopus with a maximal optimization time of two hours.
The complete run time of Onctopus, however, which includes creating variables and
constraints for the second optimization when using superSSMs, can exceed this run
time restriction.

The run time for runs without SSM clustering and with SSM clustering according
to version 1 is very similar, with most of the runs needing the maximum optimization
time of two hours (see Figure 5.9b). The run times of runs using superSSMs and 2 ·
(K− 1) clusters are the fastest, their medians are at around 270 sec. When superSSMs
and 3 · (K − 1) clusters are used, the run times are higher but still significantly faster
than without superSSMs.

111

Chapter 5. Analyzing Onctopus’ Performance

no
clu

st
er

in
g

a-
w,

 2
, y

es
a-

w,
 2

, n
o

a-
w,

 3
, y

es
a-

w,
 3

, n
o

km
, 2

, y
es

km
, 2

, n
o

km
, 3

, y
es

km
, 3

, n
o

0.4

0.6

0.8

1.0
SM

C-
He

t 1
C

sc
or

e

(a)

a-
w,

 2
, y

es
a-

w,
 3

, y
es

km
, 2

, y
es

km
, 3

, y
es

0.90

0.92

0.94

0.96

0.98

1.00

SM
C-

He
t 1

C
sc

or
e

(b)

Figure 5.10.: SMC-Het 1C scores of experiment to analyze Onctopus’ performance
with and without clustered SSMs.
(a) All optimizations and all datasets. No results are shown for the optimizations with
clustering without superSSMs on the datasets on which no solution could be found
within time. Note that these are the datasets that led to the worst performance in the
other optimizations. (b) Only optimizations with clustering using superSSMs, zoomed
in view.
clustering parameters: clustering algorithm, cluster number variable (with number of
clusters = cluster number variable ·(K− 1)), whether superSSMs were used
a-w: agglomerative-ward, km: k-means, K: number of lineages

Comparison of Found Subclonal Reconstructions. We use the SMC-Het 1C score
to compare the accuracy of found subclonal reconstructions of the nine different Onc-
topus clustering settings.

Interestingly, runs with SSM clustering of version 1 do not perform better in terms
of SMC-Het 1C score than the runs without SSM clustering (see Figure 5.10a). Using
superSSMs in the optimization leads to significantly better SMC-Het 1C scores.

To investigate which clustering setting of the Onctopus runs with superSSMs
achieved the best performance, we took a closer look at the SMC-Het 1C scores
higher than 0.9 (see Figure 5.10b). The scores of runs in which k-means clustering
and 3 · (K − 1) clusters were used are the highest, while the scores of runs with
agglomerative-ward clustering and 2 · (K − 1) are the lowest. Significant differences
can be found only for these two settings (see Figure 5.11), not for the other two.

In this subsection, we compared the performance of Onctopus when run on the
same datasets with different clustering settings. Using clustering without superSSMs

112

5.5. Clustering Simple Somatic Mutations

a-
w,

 2
, y

es
a-

w,
 3

, y
es

km
, 2

, y
es

km
, 3

, y
es

a-w, 2, yes

a-w, 3, yes

km, 2, yes

km, 3, yes

0.5 0.21 0.18 0.03

0.21 0.5 0.49 0.18

0.18 0.49 0.5 0.15

0.03 0.18 0.15 0.5

Figure 5.11.: P-values of Mann-Whitney-U test of SMC-Het 1C scores of runs with
superSSMs.
clustering parameters: cluster algorithm, number of clusters ·(K − 1), whether super-
SSMs were used
a-w: agglomerative-ward, km: k-means, K: number of lineages

did not improve the performance compared to the setting without clustering. In some
cases, this clustering option even prevented Onctopus to find any subclonal reconstruc-
tion within the given run time restriction. This is due to the additional constraints be-
ing used. When reducing the number of variables by using clustering with superSSMs,
the performance increases significantly. We tested four different settings with super-
SSMs. Clustering with k-means and 3 · (K− 1) clusters led to the highest SMC-Het 1C
scores, whereas these scores were only significantly different to one of the other three
clustering settings.

We did not test the performance for more than 3 · (K− 1) clusters. It is possible that
the performance for superSSMs would further increase. However, at some point the
higher number of clusters leads to so many variables that the positive effect of needing
less variables when using superSSMs is diminished and no better result can be found
within a restricted run time compared to not clustering SSMs.

Here, we tested the performance of clustering with only k-means and agglomerative
clustering. Other clustering algorithms, such as binomial mixture clustering, which is
applied by Canopy, could be tested as well.

113

Chapter 5. Analyzing Onctopus’ Performance

Table 5.5.: Parameters for data simulation to investigate effect of CNA fixation.
parameter parameter values
lineage number 4
segment number I 10 50 100
segments with copy number changes 0 0.5 · I
SSM number 40 · I

5.6. Fixing Copy Number Aberrations

In this section, we investigate the effect on the optimization when segments without
copy number changes are restricted to contain zero copy number changes (see Equa-
tion 3.52). For this purpose, we created 300 datasets. We simulated datasets with four
lineages, different numbers of segments, different numbers of segments with copy
number changes, and on average 40 SSMs per segment (see Table 5.5). We created five
different phylogenetic trees with different lineage frequencies (see Figure B.4) and sim-
ulated ten different datasets for each tree, segment number and number of segments
with copy number changes combination. Other parameters of the simulation can be
found in Section B.4.

We ran Onctopus on the datasets with a maximal optimization time of four hours
on a single thread, a memory restriction of 100 GB and four lineages. We used three
different copy number fixation settings. First, we did not use any copy number fixa-
tion. Then, we restricted all CNA-free segments to contain zero copy number changes.
Finally, as third setting, we combined all CNA-free segments to one super segment and
restricted it to contain zero copy number changes. Other parameters used have default
values.

Optimization Statuses. For none of the 300 datasets with the three different copy
number fixation settings, the optimal solution can be proved. All runs are terminated
due to the optimization time restriction.

Comparison of Found Subclonal Reconstructions. To compare the accuracy of
found subclonal reconstructions of the three different copy number fixation settings,
we use the SMC-Het 1C score. In general, we observe that optimizations in which the
CNA-free segments are restricted to contain zero copy numbers perform better than
optimizations in which no copy number change fixation is applied (see Figure 5.12).
This effect is strongest for 50 segments, and for 100 segments when no copy number

114

5.6. Fixing Copy Number Aberrations

no yes yes
sup. seg.

CNAs fixed

0.4

0.6

0.8

1.0

no
 C

N
ch

an
ge

s

SM
C-

He
t 1

C
sc

or
e 10 segments

no yes yes
sup. seg.

CNAs fixed

50 segments

no yes yes
sup. seg.

CNAs fixed

100 segments

no yes yes
sup. seg.

CNAs fixed

0.4

0.6

0.8

1.0

ha
lf

of
 se

gm
en

ts
co

nt
ai

n
CN

 c
ha

ng
es

SM
C-

He
t 1

C
sc

or
e

no yes yes
sup. seg.

CNAs fixed

no yes yes
sup. seg.

CNAs fixed

Figure 5.12.: SMC-Het 1C scores of experiment to analyze effect of CNA fixation.
Datasets are separated by number of segments and number of segments without
CNAs.
CN: copy number, sup. seg.: super segment

changes exist. For ten segments and no copy number changes, the SMC-Het 1C scores
of the Onctopus runs without fixation have a median score of 0.93, thus cannot be
improved a lot. Interestingly, for ten segments and copy number changes in five seg-
ments, the SMC-Het 1C scores without fixation are nearly as good as the ones with
fixation. For 100 segments and copy number changes in 50 segments, restricting CNA-
free segments to contain zero copy number changes improves the scores of only a few
runs. The optimization is so difficult that fixing CNAs in only half of the segments
does not facilitate the problem in the given time.

Between the optimizations with individually fixed CNA-free segments and fixed
super segment, no clear differences exist.

We have shown in this section that restricting CNA-free segments to contain zero
copy number changes can improve the performance of Onctopus. The improvement

115

Chapter 5. Analyzing Onctopus’ Performance

depends on the number of segments in total and on the number of segments that are
not fixed. If the total number is low, using fixed copy number changes does not bring a
high performance increase. If the number of segments without fixation is still high, the
optimization can still be very hard. As restricting CNA-free segments to contain zero
copy number changes does not worsen the performance, we recommend to always use
this option. Furthermore, the information which segments are CNA-free is given by
the copy number calling tools that provide the average allele-specific copy numbers,
which are needed as input.

In this experiment, we did not observe an advantage of optimizing with a fixed super
segment. This is because we did not use SSM clustering with superSSMs, which would
allow to combine SSMs of different CNA-free segments to one superSSMs, and thus
further reduce the number of MILP variables.

5.7. Fixing Lineage Frequencies

Different possible lineage frequencies lead to ambiguous subclonal reconstructions
(see Section 4.1) which makes it harder for the optimization to find and prove an
optimal solution. If the lineage frequencies were given, less ambiguous subclonal
reconstructions existed, thus the optimization got easier.

In this section, we investigate the effect of fixed lineage frequencies on the per-
formance of Onctopus. First, we analyze in Subsection 5.7.1 how the run time and
performance improves if the correct lineages frequencies are given. Then, in Subsec-
tion 5.7.2, we evaluate how many SSMs are necessary to infer the lineage frequencies
sufficiently. Finally, in Subsection 5.7.3, we study how run time and performance of
Onctopus behave if lineage frequencies are fixed to inferred values.

5.7.1. Performance with Correct Lineage Frequencies

To investigate Onctopus’ performance when the lineage frequencies are fixed to the
correct values, we used the 250 simulated datasets of the general experiment to analyze
optimality, run time and memory usage (see Subsection 5.4.1) with three to seven
lineages, one segment and 50 SSMs.

We ran Onctopus with a run time restriction of one hour on a single thread with
no memory restriction and correct lineage numbers. In one set of runs we fixed the
lineage frequencies φ to the correct values, in the other set we did not fix lineage
frequencies. The other parameters are set to standard values.

116

5.7. Fixing Lineage Frequencies

yes no
lineage frequencies

fixed to correct values

0

100

200

ru

ns

optimum proved
time limit reached

(a)

yes no
lineage frequencies

fixed to correct values

100

101

102

103

tim
e

(s
ec

)

(b)

a
a
a

0.2

0.0

0.2

0.4

AU
PR

C
di

ffe
re

nc
e

(c)

Figure 5.13.: (a) Optimization statuses, (b) optimization time and (c) difference in
AUPRC of SSM co-clustering for first clustering experiment.
(a),(b) Values shown for optimizations where lineage frequencies were fixed to the
correct values and without fixing the lineage frequencies. (c) AUPRC difference is
calculated as taking the AUPRC of the SSM co-clustering of the optimizations where
the lineage frequencies were fixed to the correct values and subtracting the AUPRC
of the optimizations without lineage frequency fixation. When the difference is larger
than 0, the AUPRC of the optimization with fixed lineage frequencies is better.

Optimization Statuses. When lineage frequencies were fixed to correct values, the
optimal solution could be proved in four times more runs within the given time than
when the lineage frequencies were not fixed (see Figure 5.13a).

Optimization Time. When the lineage frequencies were fixed to correct values, the
optimization was done in less than 100 seconds for three quarters of the datasets (see
Figure 5.13b). When the lineage frequencies were not fixed, the optimizations were
terminated by the run time restriction of one hour for more than three quarters of the
datasets.

Comparison of Found Subclonal Reconstructions. We compare accuracy of the
subclonal reconstructions of the two lineage frequency fixation settings with the
AUPRC of SSM co-clustering. When the lineage frequencies were fixed to correct
values, more than half of the runs achieve a better AUPRC. For about a quarter of
runs, fixing the lineage frequency to their correct values does not change the AUPRC.

117

Chapter 5. Analyzing Onctopus’ Performance

Table 5.6.: Parameters for data simulation for second lineage frequency fixation
experiment.

parameter parameter values
lineage number K 3 4 5 6 7
SSM number ·(K− 1) 10 50 100 500 1000
segment number 1

That about one quarter of runs reach a lower AUPRC when the lineage frequencies
are fixed to the correct values can be explained through VAF noise and potentially
different CNA inference.

We saw in this subsection that the optimization is faster and leads to better results
when the lineage frequencies are fixed to the correct values.

In the next subsection, we will investigate how we can infer lineage frequencies
which we can use as fixation values in the optimization.

5.7.2. Inference of Lineage Frequencies Depending on the Number of
Simple Somatic Mutations

Ambiguous subclonal reconstructions can arise through the interplay of lineage fre-
quencies and CNAs. In CNA-free regions, lineage frequency ambiguity plays a smaller
role. Thus, our idea is to build subclonal reconstructions only with SSMs of CNA-free
segments and use the inferred lineage frequencies as fixation values of a second opti-
mization on the complete input data.

In this subsection, we investigate how many SSMs are needed to infer the lineage
frequencies sufficiently.

We created 1250 datasets that consist of a single segment without copy number
changes, different numbers of lineages and different numbers of SSMs per lineage (see
Table 5.6). For each lineage number, we used five phylogenetic trees with different
lineage frequencies and simulated ten datasets for each combination of tree, lineage
and SSM number. The simulation setup can be found in Subsection B.5.1.

We ran Onctopus with an optimization time restriction of two hours on one thread
without memory restriction and the correct lineage number K. The single segment
was fixed to contain no copy number change, and SSMs were combined to superSSMs
with k-means clustering and 3 · (K − 1) clusters. The other parameters of Onctopus
have standard values.

118

5.7. Fixing Lineage Frequencies

0

100

200

300

tim
e

(s
ec

)
Figure 5.14.: Optimization time for all runs of second lineage frequency fixation

experiment.

Optimization Statuses. For all runs the optimal solution could be proved in the
given time.

Run Time. The optimal solution for three quarters of the runs is proved in less than
100 seconds (see Figure 5.14). All other runs except one are finished in less than
200 seconds.

Influence of Increasing SSM Number. We use the SMC-Het 1C score to investigate
the influence of an increasing SSM number on the accuracy of lineage frequency infer-
ence. In general, we observe that the SMC-Het 1C score is higher than 0.96 for more
than half of all datasets (see Figure 5.15). The lowest achieved SMC-Het 1C score is
still higher than 0.93. For three lineages, the SMC-Het 1C scores improve with an
increasing number of SSMs per lineage. For four and five lineages, the SMC-Het 1C
scores increase from ten to 50 SSMs and then do not improve much. For six and seven
lineages, the number of SSMs per lineage does not seem to have an influence on the
SMC-Het 1C scores. This could be the case because with six or more lineages, the
average frequency distance between lineages k and k + 1 is smaller than 0.167. Thus,
VAF clusters overlap on average more than for a smaller number of lineages, raising
the chance that SSMs are assigned to the wrong lineages. Increasing the SSM number
also increases the number of SSMs that are assigned to wrong lineages, which does
not improve the lineage frequency inference.

Note that the SMC-Het 1C scores between datasets with the same lineage number
but different SSM numbers cannot be compared directly because we simulated 50
datasets for each SSM number. To enable a direct comparison, we should have simu-
lated 50 datasets for the highest number of SSMs and then create datasets with fewer

119

Chapter 5. Analyzing Onctopus’ Performance

10 50 100 500 1000
SSM number per lineage

0.94

0.96

0.98

1.00
3

lin
ea

ge
s

SM
C-

He
t 1

C
sc

or
e

10 50 100 500 1000
SSM number per lineage

0.94

0.96

0.98

1.00

4
lin

ea
ge

s
SM

C-
He

t 1
C

sc
or

e

10 50 100 500 1000
SSM number per lineage

0.94

0.96

0.98

1.00

5
lin

ea
ge

s
SM

C-
He

t 1
C

sc
or

e

10 50 100 500 1000
SSM number per lineage

0.94

0.96

0.98

1.00

6
lin

ea
ge

s
SM

C-
He

t 1
C

sc
or

e

10 50 100 500 1000
SSM number per lineage

0.94

0.96

0.98

1.00

7
lin

ea
ge

s
SM

C-
He

t 1
C

sc
or

e

Figure 5.15.: SMC-Het 1C scores for second lineage frequency fixation experiment.
SMC-Het 1C scores are shown for different lineage numbers for increasing number of
SSMs.120

5.7. Fixing Lineage Frequencies

Table 5.7.: Parameters for data simulation for third lineage frequency fixation exper-
iment.

parameter parameter values
lineage number K 4 6
segment number I 10 50 100
SSM number 10 · (K− 1) · I
segments with copy number changes 0.5 · I

SSMs by downsampling. However, since we did not sample CNAs, the VAFs between
datasets with different SSM numbers should not differ too much, still enabling a valid
comparison.

In this subsection, we showed that by combining SSMs in CNA-free regions to super-
SSMs, the optimization can find and prove the optimal solution in a short time. The
SMC-Het 1C scores, which reflect the correctness of the inferred lineage frequencies,
are higher than 0.93 for all datasets. This leads to the conclusion that the inferred lin-
eage frequencies are close to the correct ones if at least ten SSMs per lineage are present
in the dataset. We did not test whether this is also the case for fewer SSMs. However,
with more SSMs, the inference of lineage frequencies can be improved. Thus, if the
input data consists of multiple CNA-free segments, we recommend combining these
segments to one super segment, so that SSMs across these segments can be clustered
together.

5.7.3. Performance with Inferred Lineage Frequencies

In this subsection, we analyze how Onctopus performs when the lineage frequencies
are fixed to values that were inferred from a previous optimization only with SSMs of
CNA-free segments.

We created 300 simulated datasets with different numbers of lineages and segments
(see Table 5.7). The number of sampled SSMs depends on the number of lineages and
segments. We sampled one or two copy number changes in one lineage for half of
the segments. We used five different phylogenetic trees with different lineage frequen-
cies for each lineage number and simulated ten datasets for each combination of tree,
lineage and segment number. The simulation setup can be found in Subsection B.5.2.

To infer lineage frequencies, which can be fixed in a second optimization, we built
subclonal reconstructions based on all SSMs on CNA-free segments. We combined
these SSMs to superSSMs using k-means clustering with 3 · (K− 1) clusters. The CNA-

121

Chapter 5. Analyzing Onctopus’ Performance

yes no
lineage frequencies

fixed to
inferred values

0

100

200

300

ru

ns
optimum proved
time limit reached

(a)

yes no
lineage frequencies

fixed to
inferred values

0.4

0.6

0.8

1.0

SM
C-

He
t 1

C
sc

or
e

(b)

c
b
b
b

0.2

0.0

0.2

0.4

0.6

AU
PR

C
di

ffe
re

nc
e

(c)

Figure 5.16.: (a) Optimization statuses, (b) SMC-Het 1C scores and (c) AUPRCs of
SSM co-clustering for third lineage frequency fixation experiment.
(c) AUPRC difference is calculated as taking the AUPRC of the SSM co-clustering of
the optimizations where the lineage frequencies were fixed to the correct values and
subtracting the AUPRC of the optimizations without lineage frequency fixation.

free, combined super segment was restricted to have zero copy number changes. We
ran Onctopus with an optimization time restriction of ten minutes on one thread and
without memory restriction.

For the optimization on the complete datasets, we used a run time restriction of two
hours on a single thread and no memory restriction. Segments without copy num-
ber changes were restricted to contain zero copy number changes. We ran Onctopus
once without lineage frequency fixation and once with lineage frequencies fixed to the
inferred values.

Optimization Statuses. When the lineage frequencies were fixed to the inferred val-
ues, the optimal solution could be proved for 57 of the 300 runs (see Figure 5.16a).
When the lineage frequencies were not fixed, no optimal solution could be proved.

Comparison of Found Subclonal Reconstructions. To compare Onctopus’ perfor-
mance when run without and with lineage frequency fixation, we use the SMC-Het 1C
score and the AUPRC of the SSM co-clustering. The SMC-Het 1C scores of the sub-

122

5.8. Approximating Variant Allele Frequencies in Mixed Integer Linear Program

clonal reconstructions built with fixed lineage frequencies mainly reflect the accuracy
of the lineage frequencies, which we inferred in the first optimization. The AUPRC
also allows an evaluation of Onctopus’ performance in the second optimization with
the complete input data.

The SMC-Het 1C scores of the optimization with fixed lineage frequencies are sig-
nificantly higher than the ones of the optimizations without lineage frequency fixation
(p-value < 2.2 · 10−16, Mann-Whitney U test, see Figure 5.16b).

When the lineage frequencies are fixed to the inferred values, the AUPRC of the
SSM co-clustering can be significantly improved for nearly all optimizations (p-value
< 2.2 · 10−16, Mann-Whitney U test, see Figure 5.16c).

In this subsection, we showed on the given datasets that the performance of Onc-
topus can be significantly improved if the lineage frequencies are fixed to values that
were inferred with SSMs on CNA-free segments. Thus, fixing the lineage frequencies
in this way can be a good approach to faster arrive at a better solution.

5.8. Approximating Variant Allele Frequencies in Mixed
Integer Linear Program

To compute the VAF p̂j,n (see Equation 3.26) of an SSM j in sample n with our MILP,
we have to approximate p̂j,n with ˜pj,n (see Equation 3.53 on page 49) by substituting
the inferred average copy number ĉi,n with the observed average copy number ci,n. If
ĉi,n 6= ci,n for a segment i in sample n, the optimal found subclonal reconstruction r
does not maximize the log-likelihood L′ defined by our model (see Equation 3.5) but is

an approximation of it. Assume that p̂∗j,n is the VAF that maximizes L′, with p̂∗j,n =
ŝ∗j,n
ĉi,n

.
If ci,n < ĉi,n, then the inferred average copy number ŝj,n of SSM j needs to be smaller
than ŝ∗j,n, in order to compute p̂∗j,n. If ci,n > ĉi,n, then ŝj,n needs to be larger than ŝ∗j,n.
Thus, the lineage frequencies could be inferred differently or SSMs could be assigned
to a different lineage than in the correct subclonal reconstruction.

In this section, we investigate the impact of approximating VAFs on the performance
of Onctopus. Therefore, we analyze the difference between the inferred average copy
number ĉi,n and the observed average copy number ci,n. We evaluate differences in
Onctopus’ performance when the VAFs are not approximated.

If a solution is not proved to be optimal, it can change when the optimization is done
for a longer time. Since we wanted to analyze the effect of approximating VAFs on

123

Chapter 5. Analyzing Onctopus’ Performance

Table 5.8.: Parameters for data simulation for investigating impact of approximating
VAFs.

parameter parameter values
lineage number K 3 4
segment number I 2 3
segments with copy number changes 1 2
SSM number per non-lost allele of each
segment of each cancerous lineage

(K− 1) · I 2 · (K− 1) · I

optimal subclonal reconstructions, we created datasets for which the optimal solution
could be proved.

We created 320 datasets with different numbers of lineages, segments, segments
with copy number changes and SSMs (see Table 5.8). We sampled one or two copy
number changes in one lineage in each segment that should contain copy number
changes. The average copy numbers of the segments were simulated with noise. Each
allele, which was not deleted by a copy number loss, in each segment of each cancerous
lineage, got the same number of SSMs assigned. We created two phylogenetic trees
with different lineage frequencies for each lineage number (see Figure B.5) and simu-
lated ten datasets for each combination of tree, lineage, segment, segments with copy
number changes and SSM number. The simulation setup can be found in Section B.6.

We ran Onctopus with an optimization time restriction of five hours on a single
thread without memory restriction with standard parameters and for three different
fixation settings. In the first fixation setting, we did not fix anything. In the second
fixation setting, we fixed each average allele-specific copy number ĉαi,n to the true av-
erage allele-specific copy number c∗αi,n

, while at the same time changing Equation 3.53
to divide by the true average copy number c∗i,n, with c∗i,n = c∗Ai,n

+ c∗Bi,n
. Thus, the MILP

computes the VAFs exactly and does not approximate it. In the third fixation setting,
we fixed ĉαi,n to the inferred value ĉ′αi,n

of the optimization without fixation, while
changing Equation 3.53 to divide by the previously inferred average copy number ĉ′i,n,
with ĉ′i,n = ĉ′Ai,n

+ ĉ′Bi,n
. In this setting the VAFs are also computed exactly. For all runs

in all settings, we used the correct lineage numbers.

Optimization Statuses. The optimal solution could be proved for all 320 runs in all
three fixation settings.

124

5.8. Approximating Variant Allele Frequencies in Mixed Integer Linear Program

b
b

0.000

0.005

0.010

av
. a

bs
. d

iff
er

en
ce

of
 c

i,0
 a

nd
 c

i,0

(a)

scorenone
 - scoretrue

scorenone
 - scoreinf.

0.05

0.00

0.05

SM
C-

He
t 1

C
sc

or
e

di
ffe

re
nc

e

p-value: 0.12
p-value: 0.43

(b)

Figure 5.17.: (a) Copy number differences and (b) performance differences of ex-
periment to investigate VAF approximation.
(a) Average absolute copy number differences between the observed and the inferred
copy numbers of all segments are computed for the subclonal reconstructions of the
optimization without fixation. (b) Performance differences between the SMC-Het 1C
scores of the subclonal reconstructions without and with fixation in the optimization are
shown. Differences are computed by taking the SMC-Het 1C scores of the subclonal
reconstructions without fixation in the optimization (scorenone) and subtracting the
scores of the subclonal reconstructions with fixation to true copy numbers (scoretrue),
or previously inferred copy numbers (scorein f .), respectively. The p-values were com-
puted with a Mann-Whitney U test.
av. abs.: average absolute, inf.: inferred

Copy Number Difference. For each subclonal reconstruction found in the optimiza-
tion without fixation, we computed the average absolute difference of the observed
copy number ci,0 and the inferred copy number ĉi,0 over all I segments. For more than
three quarters of the subclonal reconstructions, the difference is smaller than 0.005 (see
Figure 5.17a).

Performance Differences with Exact VAF Computation. Differences between the
SMC-Het 1C scores of the subclonal reconstructions of the two optimizations without
fixation and with fixation to the true copy numbers are very small and not significant
(p-value = 0.12, Mann-Whitney U test; see Figure 5.17b). Between the SMC-Het 1C
scores of the subclonal reconstructions of the two optimizations without fixation and
with fixation to the previously inferred copy numbers, the differences are even smaller
and less significant (p-value = 0.43, Mann-Whitney U test).

125

Chapter 5. Analyzing Onctopus’ Performance

For the given datasets, the differences between the inferred and observed copy num-
bers were small, and thus, approximating the VAFs did not influence the optimization
significantly. Differences in inferred and observed copy numbers could be analyzed
for larger datasets, for which the optimal solution could not be proven. It is possible
that approximating the VAFs has an effect on the performance in these cases.

126

Chapter 6
Results and Evaluation

In this chapter, we compare the performance of Onctopus against the performance
of PhyloWGS [21] and Canopy [46]. To our knowledge, these are the only methods
reconstructing consistent phylogenies along the genome with all provided CNA and
SSM information from bulk-sequencing data. Compared to Onctopus and Canopy,
PhyloWGS does not infer CNAs but need them as input.

We start in Section 6.1 by introducing three metrics that we use in this chapter. Af-
terwards, we evaluate the general performance of Onctopus, PhyloWGS and Canopy
in simulated datasets on Section 6.2. At the end in Section 6.3, we present results on a
breast cancer dataset.

6.1. Evaluation Metrics

Next to the SMC-Het 1C score, which we used in Chapter 5 as a measure of general
performance, we use the SMC-Het 2B and the SMC-Het 3B score in this chapter to
evaluate different aspects of the inferred subclonal reconstructions. Also, we evaluate
the ability to infer CNAs.

SMC-Het 2B Score. Like the SMC-Het 1C score, the SMC-Het 2B score was devel-
oped for the SMC-Het challenge. It evaluates the lineage assignment of SSMs based on
their co-clustering. When multiple subclonal reconstructions are given, the evaluation
is based on the average co-clustering. Unlike simply calculating the AUPRC between
the true and the inferred SSM co-clustering (see Section 5.3), the SMC-Het 2B score
calculates the mean of the three normalized correlation measures Pearson correlation

127

Chapter 6. Results and Evaluation

coefficient, Matthews correlation coefficient and average Jensen-Shannon divergence.
A score of 0 shows the worst performance and a score of 1 the best performance.

SMC-Het 3B Score. The SMC-Het 3B score was also developed for the SMC-Het
challenge. It assesses the inferred lineage relationships between lineages and is based
on the lineage assignment of SSMs. Given one or multiple subclonal reconstructions,
it processes the probabilities of the four relationships in which two lineages, to which
SSM j and j′ are assigned, can be: The lineages can be identical, one lineage can be
an ancestor or a descendant of the other lineage, or both lineages can lie on different
branches of the phylogeny. The poorest possible performance is indicated by a score
of 0, while 1 shows the best performance of a subclonal reconstruction, in which all
relationships between lineages containing SSMs are inferred as in the ground truth
reconstruction.

Given a subclonal reconstruction built by Onctopus with two lineages being in an
ambiguous relationship, we weight both probabilities that one lineage is an ancestor
of the other and that both lineages are on different branches of the phylogeny to be
0.5.

Evaluation of Copy Number Aberration Inference. We evaluate the CNA inference
by comparing the inferred copy number gains and losses with the correct ones of the
ground truth dataset. For all segments of a dataset, we count the exact copy number
change of gains and losses that got over- or underestimated and normalize these values
by the number of segments.

6.2. Results on Simulated Data

To compare the general performance of Onctopus, PhyloWGS and Canopy, we sim-
ulated 300 datasets with different parameters which we describe in Subsection 6.2.1.
Afterwards, in Subsection 6.2.2, we explain the setting the three methods were run
with. In Subsection 6.2.3, we present results on the number of inferred lineages, the
performance in terms of SMC-Het scores and the inferrence of CNAs, which we then
discuss in Subsection 6.2.4.

128

6.2. Results on Simulated Data

Table 6.1.: Parameters for data simulation. Bold values represent the parameter set
that was used to generate reference datasets. Additional nine parameter sets were
created by changing one parameter at a time to one of the neighboring values.

parameter parameter values
lineage number 2 4 6
segment number I 2 20 200
SSM number 10 · I 100 · I 1000 · I
coverage 50 100 500
number of lineages with copy
number changes per segment

1 2

6.2.1. Data Simulation

We simulated 300 datasets with different parameters. The reference datasets consist of
four lineages, 20 segments and 2000 SSMs. For half of the segments, one or two copy
number changes were simulated and assigned to one lineage per segment. We simu-
lated the reference datasets with a coverage of 100. Then, we created further datasets
by changing only one parameter (see Table 6.1), resulting in ten different parameter
combinations. For each lineage number, we created three different phylogenetic trees
with lineage frequencies and simulated ten datasets for each tree and parameter com-
bination. The simulation set up can be found in Section B.7.

6.2.2. Inferring Subclonal Reconstructions

In this subsection, we describe the settings we used to run the three methods Onctopus,
PhyloWGS and Canopy.

Onctopus. We ran Onctopus on all datasets for two to nine lineages. We used three
main optimizations, where the memory usage of each optimization was restricted to
50 GB. First, we combined all CNA-free segments of a dataset to one super segment and
clustered SSMs in this segment to superSSMs using k-means and 3 · (K − 1) clusters,
with K being the number of lineages. We ran Onctopus with an optimization time of
ten minutes with five threads. Afterwards, we fixed the lineage frequencies φk,0 of the
second optimization to the inferred lineage frequencies of the first optimization, and
clustered SSMs to superSSMs using again k-means and 3 · (K− 1) clusters per segment.
We used an optimization time of four hours on five threads. Then, we used the inferred
lineage frequencies φk,0, the inferred lineage relationships Zk,k′ , the inferred CNA as-
signments ∆CAi,k and ∆CBi,k , and the inferred SSM assignments ∆SAj,k and ∆SBj,k as

129

Chapter 6. Results and Evaluation

start values for the third optimization. Again, we optimized for four hours on five
threads. All optimization parameters not mentioned have standard values.

At the end, we determined the lineage number (see Section 3.5) for each dataset and
used the corresponding subclonal reconstruction for the following evaluation.

PhyloWGS. For each dataset, we ran the parameter-free PhyloWGS three times and
selected the run with the best overall log-likelihood.

PhyloWGS runs only on a single thread and does not allow to cluster SSMs. Thus, it
can take considerable of run time when applied to a large dataset. On the 60 datasets
with 20,000 SSMs, we let it run between 14.5 to 16.5 days. Afterwards, the highest
reached sampling iteration number after burn-in was only 1130 instead of 2500. The
lowest reached iteration number was 90, and the median 410.

To evaluate the number of lineages, we chose the subclonal reconstruction with the
highest log-likelihood. The measuring of the other metrics was done over all 2500 (or
less) sampled subclonal reconstructions and with the subclonal reconstruction having
the highest log-likelihood of the chosen run for each dataset.

Canopy. For all datasets but the ones with 20,000 SSMs, we ran Canopy with three
chains, 5000 burn-in iterations and 50,000 iterations in total per chain. For the
60 datasets with 20,000 SSMs, we only used two chains and 25,000 iterations to save
run time and memory. We ran all datasets with SSM clustering and with two to seven
non-vestigial populations. We used BIC implemented in Canopy to infer the popula-
tion number for each dataset and used the corresponding subclonal reconstructions
for the following evaluation.

For 15 of the 300 datasets, Canopy was not able to build a subclonal reconstruction
and terminated with an unexplained error message. Of these datasets, 13 were created
with the parameter set with two segments and two with the one with two lineages. We
will not present results of Canopy on these datasets.

For evaluating the number of lineages, we chose the configuration with the highest
posterior probability. The measuring of the other metrics is done over all subclonal
reconstructions of the chosen population number.

130

6.2. Results on Simulated Data

2 3 4 5 6 7 8 9
inferred lin. num.

2
4
6

tru
e

lin
. n

um
.

1

0.02 0.98

0.2 0.73 0.07

Onctopus

(a)

2 3 4 5 6 7 8 9 10
inferred lin. num.

2
4
6

tru
e

lin
. n

um
.

0.97 0.03

0.02 0.44 0.22 0.21 0.08 0.01 0.01

0.03 0.53 0.37 0.03 0.03

PhyloWGS

(b)

2 3 4 5 6 7 8 9 10 11 12
inferred lin. num.

2
4
6

tru
e

lin
. n

um
.

0.04 0.18 0.39 0.32 0.07

0.09 0.02 0.16 0.26 0.2 0.12 0.09 0.01 0.04

0.03 0.2 0.37 0.13 0.2 0.03 0.03

Canopy

(c)

Figure 6.1.: Inferred lineage numbers of (a) Onctopus, (b) PhyloWGS and
(c) Canopy.
Numbers of inferred lineages are normalized by numbers of datasets with true lineage
numbers. There are 30 datasets with a true lineage number of two and six, and 240
datasets with a true lineage number of four. For Canopy, there are only 28 datasets
with a true lineage number of two and 227 datasets with a true lineage number of four
since Canopy could not build subclonal reconstructions for all datasets.
lin. num.: lineage number

6.2.3. Results

We evaluate the performance of Onctopus, PhyloWGS and Canopy by comparing the
lineage numbers they inferred on the simulated datasets, their SMC-Het scores and
their CNA inference.

Lineage Number Inference. Onctopus perfectly infers the lineage numbers of the
30 datasets with a true lineage number of two (see Figure 6.1a), and nearly perfectly
infers the lineage numbers of the 240 datasets with a true lineage number of four. For
93% of the 30 datasets with a true lineage number of six, Onctopus infers a too low
lineage number of four or five. PhyloWGS nearly perfectly infers the lineage num-

131

Chapter 6. Results and Evaluation

bers for the datasets with two (see Figure 6.1b) lineages but overestimates the lineage
numbers for the datasets with four lineages. The lineage numbers of the datasets with
six lineages are mostly underestimated. Canopy highly overestimates the number of
lineages for all datasets (see Figure 6.1c), with in some cases even eight more lineages.
Hence, Onctopus infers the lineage numbers best, while Canopy infers them worst.

Evaluating Subclonal Reconstructions. The performances of Onctopus, Phy-
loWGS and Canopy in terms of the SMC-Het 1C, SMC-Het 2B and SMC-Het 3B scores
can be found in Figure 6.2. On all datasets and with all metrics, Canopy has the
worst performance of the three methods. Depending on the datasets and the metric,
Onctopus performs better, equally well or worse than PhyloWGS.

For the SMC-Het 1C score, Onctopus performs significantly better than PhyloWGS
averaged over all sampled subclonal reconstructions on the datasets with ten SSMs
on average per segment, two segments, two lineages, a coverage of 500 and two lin-
eages with copy number changes in one segment (see Figure 6.2a). For these datasets
with ten SSMs and two segments, Onctopus’ performance does not differ significantly
from PhyloWGS’ when evaluated on the single best subclonal reconstruction. Phy-
loWGS outperforms Onctopus on the reference datasets and the datasets with 200 seg-
ments and a coverage of 50. On the datasets with 1000 SSMs on average per segment,
PhyloWGS outperforms Onctopus only when evaluated on the single best subclonal
reconstruction. PhyloWGS averaged over all sampled subclonal reconstructions has
significantly higher SMC-Het 2B scores on all datasets but the ones with two seg-
ments, two lineages, a coverage of 500 and two lineages with copy number changes in
one segment, where PhyloWGS and Onctopus perform equally well (see Figure 6.2b).
However, compared to the single best subclonal reconstruction of PhyloWGS, Oncto-
pus shows equally well or even significantly better performance over all datasets. The
SMC-Het 3B scores of Onctopus are significantly better than the ones of PhyloWGS
averaged over all sampled subclonal reconstructions for all datasets except for the
ones with six lineages, where PhyloWGS performs significantly better than Onctopus,
and the ones with two lineages and a coverage of 50, where no significant differ-
ence between the two methods can be measured (see Figure 6.2c). In comparison to
PhyloWGS’ single best subclonal reconstruction, Onctopus performs also significantly
better on the datasets with six lineages and a coverage of 50.

CNA Inference. Since PhyloWGS gets the correct CNAs as input, it infers them per-
fectly on all datasets. Onctopus overestimates the number of copy number gains in

132

6.2. Results on Simulated Data

a
ref. ds.

0.75

0.80

0.85

0.90

0.95

1.00

SM
C-

He
t 1

C
sc

or
e

*
*

10 1000
SSMs

n.s.
*

*
n.s.

2 200
seg.'s

n.s.
*

*
*

2 6
lin.'s

*
*

n.s.
n.s.

50 500
cov.

*

2
CNCs

Onctopus PhyloWGS, all PhyloWGS, single Canopy

(a)

a
ref. ds.

0.0

0.2

0.4

0.6

0.8

1.0

SM
C-

He
t 2

B
sc

or
e

n.s.
**

10 1000
SSMs

n.s.
**

*

2 200
seg.'s

n.s.
n.s. *

2 6
lin.'s

n.s.
n.s.

*

50 500
cov.

*

*
n.s.

2
CNCs

n.s.

(b)

Figure 6.2.: (a) SMC-Het 1C, (b) SMC-Het 2B and (c) SMC-Het 3B scores for Oncto-
pus, PhyloWGS and Canopy.
Full caption see next page.

133

Chapter 6. Results and Evaluation

a
ref. ds.

0.0

0.2

0.4

0.6

0.8

1.0

SM
C-

He
t 3

B
sc

or
e

*
*

10 1000
SSMs

*
*

*

2 200
seg.'s

**

2 6
lin.'s

n.s.
n.s.

**

50 500
cov.

**
n.s.

2
CNCs

Onctopus PhyloWGS, all PhyloWGS, single Canopy

(c)

Figure 6.2.: (a) SMC-Het 1C, (b) SMC-Het 2B and (c) SMC-Het 3B scores for Oncto-
pus, PhyloWGS and Canopy.
Leftmost frame shows performance on reference datasets with on average 100 SSMs
per segment, 20 segments, four lineages, a coverage of 100 and one lineage with
copy number changes in one segment. Other frames show performance on datasets
with changed parameters. Between Onctopus and PhyloWGS p-values are computed
with a Mann-Whitney U test: n.s.: p-value ≥ 0.05, *: 0.05 < p-value ≤ 0.001, **:
0.001 < p-value < 0.0001, ***: p-value ≤ 0.0001. No results of Canopy are shown for
the datasets on which it could not build subclonal reconstructions.
PhyloWGS, all: evaluation over all sampled subclonal reconstructions; PhyloWGS, sin-
gle: evaluation of subclonal reconstruction with highest log-likelihood
n. s.: not significant, ref. ds.: reference datasets, seg.’s: segments, lin.’s: lineages,
cov.: coverage, CNCs: lineages with copy number changes in one segment

134

6.2. Results on Simulated Data

a
0.0

0.1

0.2

0.3

0.4

0.5

ga
in

 o
ve

re
st

im
at

io
n

a
0.0

0.1

0.2

0.3

0.4

0.5

ga
in

 u
nd

er
es

tim
at

io
n

a
0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

 o
ve

re
st

im
at

io
n

**

a
0.0

0.1

0.2

0.3

0.4

0.5

lo
ss

 u
nd

er
es

tim
at

io
n

Onctopus Canopy

Figure 6.3.: CNA inference of Onctopus and Canopy.
The p-values are computed with a Mann-Whitney U test: **: 0.001 < p-value < 0.0001,
***: p-value ≤ 0.0001. No results of Canopy are shown for the datasets on which it
could not build subclonal reconstructions.

24 and the number of losses in 14 of 300 cases (see Figure 6.3) but infers them sig-
nificantly better than Canopy on average. Canopy overestimates the number of copy
number gains for all but 26 datasets and it underestimates the number of copy num-
ber gains and losses for half of the datasets. Note that the over- and underestimation
of copy number gains or losses on the same dataset is possible since we measure the
normalized over- and underestimation per segment.

6.2.4. Discussion

In this section, we compared Onctopus’ performance against PhyloWGS’ and
Canopy’s in terms of lineage number inference, SMC-Het scores and CNA inference.

Onctopus underestimates the number of lineages in datasets with a true lineage
number of six. This could be explained by the description length LC2(r) being too
large. One way to decrease the description length is to not encode the SSM assignment
(parts (7), (8) and in (9) in Section 3.5). Neglecting it can be justified because the
computation of the SSM assignment that maximizes the likelihood is straight-forward
when all other parts of the subclonal reconstruction r are given. It needs to be tested

135

Chapter 6. Results and Evaluation

whether this change in the description length leads to a better inference of the lineage
number or to an overestimation of the number of inferred lineages in the datasets with
less than six lineages.

For PhyloWGS and Canopy, we evaluated only the lineage number inference of the
best subclonal reconstruction. The lineage numbers of the other sampled subclonal
reconstructions remain to be evaluated in the future.

Canopy has the worst performance of all three used methods. One reason for the
bad performance could be that Canopy highly overestimates the number of lineages
and thus assigns SSMs that belong to a single lineage to multiple lineages, which leads
to low scores. On the other hand, this does not explain Canopy’s poor performance on
the SMC-Het 1C score since it is independent of the number of lineages. Furthermore,
Canopy also has problems inferring CNAs. This leads to the conclusion that Canopy’s
poor performance is not only the result of a lineage number overestimation but rather
of Canopy’s general difficulty to build subclonal reconstructions from our simulated
datasets. A potential problem for Canopy could be the providing of a single sample
instead of multiple ones that could have helped in resolving ambiguity.

The SMC-Het 2B score considers the average SSM assignment over the given sub-
clonal reconstructions, which reflects ambiguity. When evaluated over all sampled
subclonal reconstructions, PhyloWGS obtains significantly higher SMC-Het 2B scores
than Onctopus on nearly all datasets. A reason could be that the VAFs of the SSMs are
noisy and that VAFs of SSMs assigned to different lineages overlap, especially when
influenced by copy number changes. Thus, the SSM assignment is highly ambiguous.
On the datasets with two lineages, where only one lineage assignment of SSMs exists,
or on the ones with a coverage of 500, where the VAFs do not overlap as much, Onc-
topus performs as well as PhyloWGS. On the datasets with six lineages or a coverage
of 50 where the VAFs overlap potentially highly, PhyloWGS outperforms Onctopus.
However, when evaluating only the single best subclonal reconstruction inferred by
PhyloWGS, Onctopus assigns the SSMs better. Thus, one of PhyloWGS’ advantages
comes from averaging over multiple subclonal reconstructions that together represent
the ambiguity in SSM assignments better than a single subclonal reconstruction. An-
other advantage of PhyloWGS can be explained by the fact that PhyloWGS does not
have to infer the CNAs but receives them as input. On the evaluated datasets it even
receives the true underlying CNAs, thus has an advantage over Onctopus. To com-
pare PhyloWGS and Onctopus performance without this CNA advantage, the two
methods should be compared on datasets where PhyloWGS does not receive the true

136

6.3. Results on a Breast Cancer Dataset

underlying CNAs but the copy number calls of a method that also provides the input
for Onctopus. However, we did not simulate our data in a way that copy number
calling tools can be applied to it, thus another data simulation would have to be used
for this purpose. Another idea to compare the two methods without PhyloWGS’ CNA
advantage is to start the Onctopus runs with the lineage frequencies, relationships and
CNA assignments from a subclonal reconstruction built by PhyloWGS.

In terms of inferring ancestor-descendant relationships between lineages, Onctopus
outperforms PhyloWGS, measured over all sampled subclonal reconstructions and on
the single best subclonal reconstruction, significantly on nearly all datasets. Thus, our
approach of inferring necessary present and absent lineage relationships as well as
ambiguous relationships in a single subclonal reconstruction works better on the pre-
sented datasets than trying to capture ambiguity by averaging over multiple subclonal
reconstructions as done by PhyloWGS.

6.3. Results on a Breast Cancer Dataset

In this section, we evaluate Onctopus, PhyloWGS and Canopy on the whole genome
sequenced breast cancer dataset PD4120a by Nik-Zainal et al. [72] by following the anal-
ysis of Deshwar et al. [21]. In Subsection 6.3.1, we briefly describe the dataset, followed
by the settings we used to run the three methods in Subsection 6.3.2. Afterwards, in
Subsection 6.3.3, we present and discuss the results.

6.3.1. Data Description

In their paper, Deshwar et al. [21] show that PhyloWGS outperforms PyClone and
SciClone when building subclonal reconstructions on a subset of the whole genome
sequenced breast cancer dataset PD4120a by Nik-Zainal et al. [72]. As subset, Desh-
war et al. chose genomic regions for which the same CNAs were called in the original
analysis by Nik-Zainal et al. and in a later analysis by Oesper et al. [75]. These re-
gions are the full length chromosomes 3, 4q, 5, 10, 13, 16p, 17, 19 and 20, with a total
of 24,109 SSMs. Chromosomes 3, 5, 10, 16p, 17, 19 and 20 are CNA-free, whereas
chromosomes 4q and 13 are affected by a copy number loss.

For their paper, Nik-Zainal et al. performed a semi-manual SSM clustering on the
PD4120a dataset, which results in three main clusters. Deshwar et al. used this cluster-
ing as a gold standard to which they compared the co-clustering of the SSMs in their
analysis in terms of AUPRC. In this work, we use the SMC-Het 2B score to evaluate

137

Chapter 6. Results and Evaluation

the SSM co-clustering on an updated SSM clustering (unpublished data provided by
David Wedge, used in [20]) which contains the cluster assignment confidence for each
SSM.

To get the average allele-specific copy numbers of the two genome segments affected
by the heterozygous copy number losses, we used the purity values provided by Nik-
Zainal et al. We computed the standard error of all segments as described in Section 5.2
on page 94, where we do not let the number of heterogeneous SNPs nSNPsi in segment i
exceed the larger of the two values number of SSMs in segment i or 3000. As haploid
coverage, we used half of the median SSM count and standard values for all other
parameters.

6.3.2. Inferring Subclonal Reconstructions

We describe in this subsection the settings we used to run the three methods Onctopus,
PhyloWGS and Canopy.

Onctopus. We ran Onctopus with three main optimizations on the chosen chromo-
somes of the PD4120a dataset with two to nine lineages and a memory restriction of
50 GB. First, we combined all CNA-free segments to one super segment and clustered
the SSMs in this segment with k-means and 3 · (K− 1) clusters, where K is the lineage
number. We optimized for ten minutes on five threads to get a first estimate of the
lineage frequencies. Again, we combined all CNA-free segments to one super segment
and clustered all SSMs with k-means and 3 · (K− 1) clusters. We then fixed the lineage
frequencies in a second optimization and optimized for two hours on ten threads. We
used the results of the second optimization as start values for the third optimization
where we restricted the run time again to two hours on ten threads. All optimiza-
tion parameters not mentioned have standard values. The subclonal reconstruction
with four lineages is the one that minimizes our MDL criterion and which we use for
further evaluation.

PhyloWGS. We ran PhyloWGS three times on the chosen chromosomes of the
PD4120a dataset and chose the run with the overall highest log-likelihood.

Canopy. We ran Canopy with three chains, a total of 15,000 iterations per chain
of which 5000 iterations were burned-in. We used SSM clustering and ran Canopy
with three to six non-vestigial populations. For the evaluation, we use the subclonal

138

6.3. Results on a Breast Cancer Dataset

Figure 6.4.: SMC-Het 2B scores for Onctopus, PhyloWGS and Canopy.
Scores are shown for decreasing number of SSMs with increasing confidence to be
assigned to one of the three main clusters identified by Nik-Zainal et al.
PhyloWGS, all: evaluation over all 2500 sampled subclonal reconstructions; Phy-
loWGS, single: evaluation of subclonal reconstruction with highest likelihood

reconstructions with six non-vestigial populations as they were chosen by Canopy’s
provided BIC criterion.

6.3.3. Results and Discussion

We evaluate the performance of Onctopus, PhyloWGS and Canopy against the SSM
clustering of Nik-Zainal et al. in terms of the SMC-Het 2B score (see Figure 6.4).
PhyloWGS, when averaging over all 2500 sampled subclonal reconstructions, already
achieves an SMC-Het 2B score of 0.94 on SSMs with a cluster assignment confidence
of at least 0.9. The SMC-Het 2B score slowly increases to 0.98 when only SSMs are
considered that are assigned to one of the main clusters with a confidence of 1.0. Onc-
topus starts with a lower SMC-Het 2B score of 0.77 that reaches PhyloWGS’ score
when considering only SSMs with a cluster assignment of at least 0.99 or 1.0. Like in
Subsection 6.2.3, where we evaluated the methods on simulated datasets, we see that
PhyloWGS, when averaging over all subclonal reconstructions, clusters SSMs with am-
biguous assignments better than Onctopus. However, the less ambiguous the cluster
assignment of SSMs gets, the smaller the difference between the two methods gets
until Onctopus performs equally well with a single subclonal reconstruction. When
evaluating only the best subclonal reconstruction built by PhyloWGS, Onctopus al-
ready performs better for SSMs with a cluster assignment confidence of at least 0.95.

139

Chapter 6. Results and Evaluation

Compared to Onctopus and PhyloWGS, the SMC-Het 2B score for Canopy decreases
for increasing cluster assigment confidence of SSMs. The built subclonal reconstruc-
tions of Canopy seem to not represent the clustering by Nik-Zainal et al.

140

Chapter 7
Conclusion and Outlook

In this thesis, we presented the first lineage-based subclonal reconstruction method
working with SSM and CNA information of bulk-sequenced tumor samples. Model-
ing SSMs and CNAs in a lineage-based approach as well as an extensive analysis of
lineage relationships in a subclonal reconstruction allow us to combine multiple sub-
clonal reconstructions with ambiguous lineage relationships within a single subclonal
reconstruction.

After giving background information in Chapter 2, we introduced our new lineage-
based subclonal reconstruction model in Chapter 3. We presented a joint likelihood
function for SSMs and CNAs and explained the different model components and rules
that apply to them. By modeling CNAs not as absolute copy numbers but as copy
number changes, we are able to assign them to lineages. Another key feature of our
method is that we model ancestor-descendant relationships between lineages as either
present, absent or ambiguous. We showed how we derive a linear relaxation of our
model and explained the variables and constraints of our MILP. After analyzing the
complexity of our MILP, we described how we determine the number of lineages with
the two-part version of the MDL principle.

In Chapter 4, we defined the concept of ambiguity and presented an algorithm that
finds ambiguous ancestor-descendant relationships after the optimization. The algo-
rithm consists of seven main steps in which necessary present and absent ancestor-
descendant relationships that either influence the likelihood or are crucial for the va-
lidity of the subclonal reconstruction are found. We finished Chapter 4 by showing
that our lineage-based method can model ambiguous subclonal reconstructions within
a single subclonal reconstruction while population-based methods cannot.

141

Chapter 7. Conclusion and Outlook

In Chapter 5, we briefly talked about the implementation of Onctopus and explained
how we simulated datasets. We extensively evaluated Onctopus on simulated datasets
and showed that a good subclonal reconstruction can be found even if its optimality
cannot be proved in the given time and space. We showed that Onctopus’ performance
can be improved by clustering mutations, fixing CNAs or fixing lineage frequencies.

We compared the performance of Onctopus against the performance of Phy-
loWGS [21] and Canopy [46] in Chapter 6. First, we compared the three methods
on simulated datasets on which we could show that Onctopus is superior in inferring
the underlying lineage numbers as well as the lineage relationships. PhyloWGS when
evaluated over all sampled subclonal reconstructions outperformed Onctopus in terms
of mutation assignment. However, compared to PhyloWGS’ subclonal reconstruction
with the highest log-likelihood, Onctopus’ mutation assignments were better. Both
methods inferred lineage frequencies equally well, with either both methods perform-
ing comparably, or one method outperforming the other, or vice versa on different
groups of datasets. On all datasets, Canopy had the worst performance. Second, we
evaluated the three methods on a deep sequenced breast cancer dataset following an
analysis by Deshwar et al. [21]. Again, Canopy showed the worst performance. Oncto-
pus achieved a comparable performance when PhyloWGS’ results were evaluated over
all sampled subclonal reconstructions, and it even had a better performance when it
was compared to the single best subclonal reconstruction of PhyloWGS.

With our lineage-based subclonal reconstruction method implemented in Onctopus,
we introduced a new valuable subclonal reconstruction method. In the following, we
present different ideas which datasets are further interesting to apply Onctopus on and
how Onctopus can be extended to work with multiple samples, capture ambiguity in
SSM assignments and be used with single-cell sequencing data.

Comparison on Different Datasets. We compared Onctopus, PhyloWGS and
Canopy on datasets we simulated ourselves and on the deep sequenced breast cancer
dataset PD4120a [72]. Working with simulated datasets, one has to ask the question
how realistic the datasets are. Working with real datasets poses the question to what
extend the gold standard is correct.

Our presented data simulation is a straight-forward one. We did not simulate
genome sequences from which mutations can be called but directly created the mu-
tation information Onctopus needs as input. A drawback of this strategy is that we
had to provide PhyloWGS with true underlying CNAs which gave it a further advan-
tage over Onctopus. This advantage would diminish if we had simulated data from

142

which the mutations had to be called first, thus both methods were provided with
noisy input. An interesting software to simulate such data would be a version of
BAMSurgeon [26, 57] that was extended for the SMC-Het challenge with the attempt
to simulate realistic BAM files and to allow CNA errors through calling pipelines.
However, it is not available yet.

As for the correctness of the gold standard of the PD4120a dataset, we focused in
our analysis only on mutations that were assigned to a cluster with confidence of at
least 90%, hoping to receive an accurate ground truth dataset.

Another interesting dataset to evaluate Onctopus on is the Pan-Cancer Analysis
of Whole Genomes (PCAWG) [11] dataset which comprises more than 2600 cancer
genomes across 39 different cancer types. For these cancer genomes, subclonal recon-
structions have already been inferred [32] that we could use to compare Onctopus
to.

Extension to Multiple Samples. Our presented model and the ambiguity algorithm
can already work with multiple samples of the same patient. Just the implementation
of Onctopus needs to be adapted which will be our first step as a future extension.

An interesting question that has to be answered when dealing with multiple samples
is how to treat overlapping CNAs of different samples. A straight-forward solution
would be to start a new segment at each copy number change breakpoint of any
sample and use weights in the objective function to reward neighboring segments of
the same sample that have equal copy number states.

Currently, we improve Onctopus’ performance by fixing the lineage frequencies to
values previously inferred from CNA-free segments. Inferring the lineage frequencies
from CNA-free segments of multiple samples can become more difficult since a linear
phylogeny does not have to be consistent with the data but a special branching phy-
logeny might be needed. Thus, it needs to be evaluated to what extent this approach
is applicable.

Improving SSM Assignment through a Probabilistic Framework. We could show
on simulated datasets that PhyloWGS when evaluated over all sampled subclonal
reconstructions infers the SSM assignment better than Onctopus. By averaging over
different SSM assignments, PhyloWGS is able to model this ambiguity or uncertainty
in the input data. To capture the ambiguity in SSM assignment, Onctopus could be
extended with a probabilistic framework.

143

Chapter 7. Conclusion and Outlook

A straight-forward approach to derive probabilities with which an SSM is assigned
to different lineages and phases is to treat the inferred lineage relationships and fre-
quencies, as well as the copy number change assignments with phasing as given and
calculate the likelihood of the SSM being assigned to each lineage and phase. Once
the global variables of the lineage relationships and frequencies and the local variables
of the copy number change assignments are fixed, each SSM can be assigned individu-
ally to a lineage and phase without influencing the probabilities of the other SSMs. By
normalizing the different assignment likelihoods of an SSM, we derive its probabilities
of being assigned to a specific lineage and phase. Like this, we can capture ambiguity
in SSM assignment.

Sampling SSM assignments from the assignment probabilities could give us a
broader picture of subclonal reconstructions with different likelihoods. Still, these
subclonal reconstructions have the same lineage frequencies and copy number change
assignment as the subclonal reconstruction from which we calculated the SSM assign-
ment probabilities. Applying a broader sampling approach that starts from the prob-
abilities of our optimized subclonal reconstruction is another interesting extension for
Onctopus and open for further research.

Using the SSM assignment probabilities can be useful not only to build a proba-
bilistic framework for Onctopus, but also to improve subclonal reconstructions that
are not proved to be optimal. Given the assignment probabilities, each SSM should
be assigned to the lineage and phase leading to the highest probability. Afterwards,
the lineage frequencies can be optimized based on the new SSM assignments and the
subclonal reconstruction rules. An iterative approach is possible that finishes when
each SSM is assigned to the best lineage and the lineage frequencies do not change
anymore.

Combining Bulk and Single-Cell Sequencing Data. The current standard practice
to build subclonal reconstructions of cancer samples is based on bulk-sequencing data
where only the frequency of mutations is observed. Thus, by using the weak parsi-
mony assumption, mutations with similar frequencies get clustered together in one
lineage although they can belong to distinct lineages with similar frequencies. Fur-
thermore, the detection of low frequency variants is challenging to distinguish from
noise [16]. Using multiple samples and increasing the coverage can help to prevent
these problems. Another solution is to use single-cell sequencing data of cancer sam-
ples since mutation profiles are observed per cell. However, single-cell data contain

144

high noise levels [31]. Hence, approaches combining bulk and single-cell sequencing
data are promising.

The method B-SCITE [63] combines bulk and single-cell sequencing data to build
full subclonal reconstructions. B-SCITE is a probabilistic method and works with a
mutation tree, a special form of a phylogenetic tree where each mutation is represented
by its own node. As input data, it takes the variant and total read counts of SSMs, as
well as the mutation profiles of single cells. It computes a joint score of a mutation
tree measured for bulk and single-cell sequencing data.

Given a tree T, which already includes the mutation assignment, the bulk data
based tree score is computed by maximizing the log-likelihood of T by inferring the
cellular prevalence of the mutations, which equal Onctopus’ lineage frequencies. For
the maximization, a quadratic program based on CITUP [64] (see Table 2.1) is applied.
Given the tree T and an error profile of probabilities of observing false positive and
false negative mutations, the single-cell based tree score is computed as log-likelihood
of observing the mutation profiles. An MCMC variant introduced for the subclonal
reconstruction method SCITE [45], which works with single-cell sequencing data, is
used to sample new mutation trees and error profiles.

Since the computation of B-SCITE’s bulk data based tree score is based on the opti-
mization of CITUP, which works only with SSMs, B-SCITE is restricted to copy number
neutral regions of the genome. Using an optimization based on Onctopus would al-
low to model regions with copy number changes as well. The copy number changes
can be placed in the tree T like SSMs. We propose restricting the number of copy
number changes per segment and allele with CNA to one or two in order to decrease
the combinatorial space of placing copy number changes in the tree T. Because the
tree T, which also contains the mutation assignment, is given, we can fix the lineage
relationships in the optimization. Furthermore, we can fix the mutation assignments
to lineages. However, since the phasing still needs to be computed, we have to extend
our implementation to enable this fixation. Then, the optimization is done only over
the lineage frequencies and the phasing of mutations. It needs to be tested whether
using a MILP in each step of the MCMC where the tree T is updated is fast enough.
Setting a run time restriction for the optimization is probably necessary. Since the num-
ber of lineages corresponds to the number of mutations, we do not have to choose the
lineage number by comparing the MDL of different subclonal reconstructions. Thus,
the optimization needs to be done only once per MCMC step, saving valuable time.
We believe that extending B-SCITE to include regions with copy number changes by
using an optimization based on Onctopus is a valuable improvement.

145

Chapter 7. Conclusion and Outlook

The characterization of a tumor through a subclonal reconstruction is essential to un-
derstand the intratumor heterogeneity that influences the outcome of cancer therapies.
We believe that with the introduction of our new lineage-based model and our am-
biguity algorithm implemented in Onctopus, a new subclonal reconstruction method
was created that can provide valuable insides needed to understand this intratumor
heterogeneity.

146

Bibliography

[1] 1000 Genomes Project Consortium and others. A global reference for human
genetic variation. Nature, 526(7571):68–74, 2015.

[2] H. Akaike. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19(6):716–723, 1974.

[3] B. Al-Lazikani, U. Banerji, and P. Workman. Combinatorial drug therapy for
cancer in the post-genomic era. Nature Biotechnology, 30(7):679–692, 2012.

[4] A. Alkodsi, R. Louhimo, and S. Hautaniemi. Comparative analysis of methods for
identifying somatic copy number alterations from deep sequencing data. Briefings
in Bioinformatics, 16(2):242–254, 2014.

[5] American Cancer Society. Global cancer facts & figures 2nd edition. Atlanta:
American Cancer Society, 1–57, 2011.

[6] R. Beroukhim, C. H. Mermel, D. Porter, G. Wei, S. Raychaudhuri, J. Donovan,
J. Barretina, J. S. Boehm, J. Dobson, et al. The landscape of somatic copy-number
alteration across human cancers. Nature, 463(7283):899–905, 2010.

[7] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[8] V. Boeva, T. Popova, K. Bleakley, P. Chiche, J. Cappo, G. Schleiermacher,
I. Janoueix-Lerosey, O. Delattre, and E. Barillot. Control-FREEC: a tool for as-
sessing copy number and allelic content using next-generation sequencing data.
Bioinformatics, 28(3):423–425, 2011.

[9] S. R. Browning and B. L. Browning. Haplotype phasing: Existing methods and
new developments. Nature Reviews Genetics, 12(10):703–714, 2011.

147

Bibliography

[10] D. P. Cahill, K. W. Kinzler, B. Vogelstein, and C. Lengauer. Genetic instability and
darwinian selection in tumours. Trends in Cell Biology, 9(12):M57–M60, 1999.

[11] P. J. Campbell, G. Getz, J. M. Stuart, J. O. Korbel, L. D. Stein, and ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Net. Pan-cancer analysis of whole
genomes. BioRxiv, 2017.

[12] P. J. Campbell, S. Yachida, L. J. Mudie, P. J. Stephens, E. D. Pleasance, L. A. Steb-
bings, L. A. Morsberger, C. Latimer, S. McLaren, et al. The patterns and dynam-
ics of genomic instability in metastatic pancreatic cancer. Nature, 467(7319):1109,
2010.

[13] A. Cayley. A theorem on trees. Quarterly Journal of Pure and Applied Mathematics,
13:26–28, 1897.

[14] G. J. Chaitin. On the length of programs for computing finite binary sequences:
statistical considerations. Journal of the ACM, 16(1):145–159, 1969.

[15] H. Chen, J. M. Bell, N. A. Zavala, H. P. Ji, and N. R. Zhang. Allele-specific
copy number profiling by next-generation DNA sequencing. Nucleic acids research,
43(4):e23, 2014.

[16] K. Cibulskis, M. S. Lawrence, S. L. Carter, A. Sivachenko, D. Jaffe, C. Sougnez,
S. Gabriel, M. Meyerson, E. S. Lander, and G. Getz. Sensitive detection of somatic
point mutations in impure and heterogeneous cancer samples. Nature Biotechnol-
ogy, 31(3):213–219, 2013.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2009.

[18] IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/
ilog-cplex-optimization-studio?mhq=cplex&mhsrc=ibmsearch_a. Accessed: 2018-
11-11.

[19] A. Davis, R. Gao, and N. Navin. Tumor evolution: Linear, branching, neutral or
punctuated? Biochimica et Biophysica Acta – Reviews on Cancer, 1867(2):151–161,
2017.

[20] A. G. Deshwar. Reconstructing the evolutionary history of tumours. Ph.D. thesis,
University of Toronto, 2017.

148

https://www.ibm.com/products/ilog-cplex-optimization-studio?mhq=cplex&mhsrc=ibmsearch_a
https://www.ibm.com/products/ilog-cplex-optimization-studio?mhq=cplex&mhsrc=ibmsearch_a

Bibliography

[21] A. G. Deshwar, S. Vembu, C. K. Yung, G. H. Jang, L. Stein, and Q. Morris. Phy-
loWGS: reconstructing subclonal composition and evolution from whole-genome
sequencing of tumors. Genome Biology, 16(1):35–55, 2015.

[22] L. Ding, T. J. Ley, D. E. Larson, C. A. Miller, D. C. Koboldt, J. S. Welch, J. K.
Ritchey, M. A. Young, T. Lamprecht, et al. Clonal evolution in relapsed acute
myeloid leukaemia revealed by whole-genome sequencing. Nature, 481(7382):506,
2012.

[23] J. C. Dohm, A. E. Minoche, D. Holtgräwe, S. Capella-Gutiérrez, F. Zakrzewski,
H. Tafer, O. Rupp, T. R. Sörensen, R. Stracke, et al. The genome of the recently
domesticated crop plant sugar beet (beta vulgaris). Nature, 505(7484):546–549,
2014.

[24] M. El-Kebir, L. Oesper, H. Acheson-Field, and B. J. Raphael. Reconstruction of
clonal trees and tumor composition from multi-sample sequencing data. Bioinfor-
matics, 31(12):i62–i70, 2015.

[25] M. El-Kebir, G. Satas, L. Oesper, and B. J. Raphael. Inferring the mutational
history of a tumor using multi-state perfect phylogeny mixtures. Cell systems,
3(1):43–53, 2016.

[26] A. D. Ewing, K. E. Houlahan, Y. Hu, K. Ellrott, C. Caloian, T. N. Yamaguchi,
J. C. Bare, C. P’ng, D. Waggott, et al. Combining tumor genome simulation with
crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature
Methods, 12(7):623–630, 2015.

[27] J. S. Farris. Phylogenetic analysis under dollo’s law. Systematic Biology, 26(1):77–88,
1977.

[28] F. Favero, T. Joshi, A. M. Marquard, N. J. Birkbak, M. Krzystanek, Q. Li, Z. Szallasi,
and A. C. Eklund. Sequenza: Allele-specific copy number and mutation profiles
from tumor sequencing data. Annals of Oncology, 26(1):64–70, 2014.

[29] L. Feuk, A. R. Carson, and S. W. Scherer. Structural variation in the human
genome. Nature Reviews Genetics, 7(2):85–97, 2006.

[30] A. Fischer, I. Vázquez-García, C. J. Illingworth, and V. Mustonen. High-definition
reconstruction of clonal composition in cancer. Cell Reports, 7(5):1740–1752, 2014.

149

Bibliography

[31] C. Gawad, W. Koh, and S. R. Quake. Single-cell genome sequencing: Current
state of the science. Nature Reviews Genetics, 17(3):175–188, 2016.

[32] M. Gerstung, C. Jolly, I. Leshchiner, S. C. Dentro, S. Gonzalez, T. J. Mitchell,
Y. Rubanova, P. Anur, D. Rosebrock, et al. The evolutionary history of 2,658
cancers. bioRxiv, 2017.

[33] GLPK (GNU linear programming kit). https://www.gnu.org/software/glpk/,
2012. Accessed: 2018-11-11.

[34] S. Goodwin, J. D. McPherson, and W. R. McCombie. Coming of age: Ten years of
next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351,
2016.

[35] M. Greaves. Evolutionary determinants of cancer. Cancer discovery, 5(8):806–820,
2015.

[36] P. D. Grünwald, I. J. Myung, and M. A. Pitt. Advances in minimum description
length: Theory and applications. MIT Press, 2005.

[37] Gurobi optimization. http://www.gurobi.com/. Accessed: 2018-11-11.

[38] D. Gusfield. ReCombinatorics: The algorithmics of ancestral recombination graphs and
explicit phylogenetic networks. MIT Press, 2014.

[39] G. Ha, A. Roth, J. Khattra, J. Ho, D. Yap, L. M. Prentice, N. Melnyk, A. McPherson,
A. Bashashati, et al. TITAN: Inference of copy number architectures in clonal cell
populations from tumor whole-genome sequence data. Genome Research, 24:1881–
1893, 2014.

[40] G. Ha, A. Roth, D. Lai, A. Bashashati, J. Ding, R. Goya, R. Giuliany, J. Rosner,
A. Oloumi, et al. Integrative analysis of genome-wide loss of heterozygosity and
monoallelic expression at nucleotide resolution reveals disrupted pathways in
triple-negative breast cancer. Genome Research, 2012.

[41] I. Hajirasouliha, A. Mahmoody, and B. J. Raphael. A combinatorial approach
for analyzing intra-tumor heterogeneity from high-throughput sequencing data.
Bioinformatics, 30(12):i78–i86, 2014.

[42] T. Hastie, J. Friedman, and R. Tibshirani. The elements of statistical learning, vol. 2.
Springer Series in Statistics, 2008.

150

https://www.gnu.org/software/glpk/
http://www.gurobi.com/

Bibliography

[43] W. K. Hastings. Monte carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[44] D. A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[45] K. Jahn, J. Kuipers, and N. Beerenwinkel. Tree inference for single-cell data.
Genome Biology, 17(1):86, 2016.

[46] Y. Jiang, Y. Qiu, A. J. Minn, and N. R. Zhang. Assessing intratumor heteroge-
neity and tracking longitudinal and spatial clonal evolutionary history by next-
generation sequencing. Proceedings of the National Academy of Sciences of the U. S. A,
113(37):E5528–E5537, 2016.

[47] W. Jiao, S. Vembu, A. G. Deshwar, L. Stein, and Q. Morris. Inferring clonal evo-
lution of tumors from single nucleotide somatic mutations. BMC Bioinformatics,
15(1):35–51, 2014.

[48] E. L. Johnson, G. L. Nemhauser, and M. W. Savelsbergh. Progress in linear
programming-based algorithms for integer programming: An exposition. IN-
FORMS Journal on Computing, 12(1):2–23, 2000.

[49] C. Kandoth, M. D. McLellan, F. Vandin, K. Ye, B. Niu, C. Lu, M. Xie, Q. Zhang, J. F.
McMichael, et al. Mutational landscape and significance across 12 major cancer
types. Nature, 502(7471):333–339, 2013.

[50] M. Kimura. The number of heterozygous nucleotide sites maintained in a finite
population due to steady flux of mutations. Genetics, 61(4):893–903, 1969.

[51] A. G. Knudson. Cancer genetics. American Journal of Medical Genetics, 111(1):96–
102, 2002.

[52] D. C. Koboldt, Q. Zhang, D. E. Larson, D. Shen, M. D. McLellan, L. Lin, C. A.
Miller, E. R. Mardis, L. Ding, and R. K. Wilson. VarScan 2: somatic mutation
and copy number alteration discovery in cancer by exome sequencing. Genome
Research, 2012.

[53] A. N. Kolmogorov. Three approaches to the quantitative definition ofinformation’.
Problems of Information Transmission, 1(1):1–7, 1965.

151

Bibliography

[54] J. Kuipers, K. Jahn, and N. Beerenwinkel. Advances in understanding tumour
evolution through single-cell sequencing. Biochimica et Biophysica Acta – Reviews
on Cancer, 1867(2):127–138, 2017.

[55] J. Kuipers, K. Jahn, B. J. Raphael, and N. Beerenwinkel. Single-cell sequencing
data reveal widespread recurrence and loss of mutational hits in the life histories
of tumors. Genome Research, 27(1):1885–1894, 2017.

[56] W. J. Le Quesne. The uniquely evolved character concept and its cladistic appli-
cation. Systematic Biology, 23(4):513–517, 1974.

[57] A. Y. Lee, A. D. Ewing, K. Ellrott, Y. Hu, K. E. Houlahan, J. C. Bare, S. M. G.
Espiritu, V. Huang, K. Dang, et al. Combining accurate tumor genome simulation
with crowdsourcing to benchmark somatic structural variant detection. Genome
Biology, 19(1):188, 2018.

[58] B. Lewin, L. Cassimeris, V. R. Lingappa, and G. Plopper. Cells. Jones and Bartlett,
2007.

[59] H. Li. A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics, 27(21):2987–2993, 2011.

[60] L. Liu, Y. Li, S. Li, N. Hu, Y. He, R. Pong, D. Lin, L. Lu, and M. Law. Comparison
of next-generation sequencing systems. Journal of Biomedicine and Biotechnology,
2012, 2012.

[61] S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[62] Introduction to lp_solve 5.5.2.5. http://lpsolve.sourceforge.net/5.5/. Accessed:
2018-11-11.

[63] S. Malikic, K. Jahn, J. Kuipers, C. Sahinalp, and N. Beerenwinkel. Integrative
inference of subclonal tumour evolution from single-cell and bulk sequencing
data. bioRxiv, 2017.

[64] S. Malikic, A. W. McPherson, N. Donmez, and C. S. Sahinalp. Clonality inference
in multiple tumor samples using phylogeny. Bioinformatics, 31(9):1349–1356, 2015.

152

http://lpsolve.sourceforge.net/5.5/

Bibliography

[65] Y. Marcy, C. Ouverney, E. M. Bik, T. Lösekann, N. Ivanova, H. G. Martin, E. Szeto,
D. Platt, P. Hugenholtz, et al. Dissecting biological “dark matter” with single-cell
genetic analysis of rare and uncultivated TM7 microbes from the human mouth.
Proceedings of the National Academy of Sciences of the U. S. A, 104(29):11 889–11 894,
2007.

[66] N. McGranahan and C. Swanton. Clonal heterogeneity and tumor evolution: past,
present, and the future. Cell, 168(4):613–628, 2017.

[67] A. McPherson, A. Roth, E. Laks, T. Masud, A. Bashashati, A. W. Zhang, G. Ha,
J. Biele, D. Yap, et al. Divergent modes of clonal spread and intraperitoneal mixing
in high-grade serous ovarian cancer. Nature Genetics, 48(7):758–769, 2016.

[68] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6):1087–1092, 1953.

[69] C. A. Miller, B. S. White, N. D. Dees, M. Griffith, J. S. Welch, O. L. Griffith, R. Vij,
M. H. Tomasson, T. A. Graubert, et al. SciClone: Inferring clonal architecture and
tracking the spatial and temporal patterns of tumor evolution. PLOS Computa-
tional Biology, 10(8):e1003 665, 2014.

[70] N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook,
A. Stepansky, D. Levy, et al. Tumour evolution inferred by single-cell sequencing.
Nature, 472(7341):90, 2011.

[71] N. E. Navin. The first five years of single-cell cancer genomics and beyond.
Genome research, 25(10):1499–1507, 2015.

[72] S. Nik-Zainal, P. Van Loo, D. C. Wedge, L. B. Alexandrov, C. D. Greenman, K. W.
Lau, K. Raine, D. Jones, J. Marshall, et al. The life history of 21 breast cancers. Cell,
149(5):994–1007, 2012.

[73] N. Niknafs, V. Beleva-Guthrie, D. Q. Naiman, and R. Karchin. Subclonal hierar-
chy inference from somatic mutations: Automatic reconstruction of cancer evolu-
tionary trees from multi-region next generation sequencing. PLOS Computational
Biology, 11(10):e1004 416, 2015.

[74] P. C. Nowell. The clonal evolution of tumor cell populations. Science, 194(4260):23–
28, 1976.

153

Bibliography

[75] L. Oesper, A. Mahmoody, and B. J. Raphael. THetA: Inferring intra-tumor hetero-
geneity from high-throughput DNA sequencing data. Genome Biology, 14(7):R80,
2013.

[76] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471,
1978.

[77] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based exter-
nal cluster evaluation measure. In Proceedings of the 2007 joint conference on Em-
pirical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL). 2007.

[78] A. Roth, J. Khattra, D. Yap, A. Wan, E. Laks, J. Biele, G. Ha, S. Aparicio,
A. Bouchard-Côté, and S. P. Shah. PyClone: Statistical inference of clonal pop-
ulation structure in cancer. Nature Methods, 11(4):396–398, 2014.

[79] A. Salcedo, M. Tarabichi, S. M. G. Espiritu, A. G. Deshwar, M. David, N. M.
Wilson, S. Dentro, J. A. Wintersinger, L. Y. Liu, et al. Creating standards for
evaluating tumour subclonal reconstruction. BioRxiv, 2018.

[80] C. T. Saunders, W. S. Wong, S. Swamy, J. Becq, L. J. Murray, and R. K. Cheetham.
Strelka: Accurate somatic small-variant calling from sequenced tumor-normal
sample pairs. Bioinformatics, 28(14):1811–1817, 2012.

[81] G. Schwarz. Estimating the dimension of a model. The annals of statistics, 6(2):461–
464, 1978.

[82] Scitable by Nature Education. SNP. https://www.nature.com/scitable/
definition/single-nucleotide-polymorphism-snp-295, 2014. Accessed: 2018-11-11.

[83] R. J. Solomonoff. A formal theory of inductive inference, part 1 and part 2. Infor-
mation and Control, 7:1–22, 224–254, 1964.

[84] M. R. Stratton, P. J. Campbell, and P. A. Futreal. The cancer genome. Nature,
458(7239):719–724, 2009.

[85] F. Strino, F. Parisi, M. Micsinai, and Y. Kluger. TrAp: a tree approach for finger-
printing subclonal tumor composition. Nucleic Acids Research, 41(17):e165, 2013.

[86] R. Xi, A. G. Hadjipanayis, L. J. Luquette, T.-M. Kim, E. Lee, J. Zhang, M. D. John-
son, D. M. Muzny, D. A. Wheeler, et al. Copy number variation detection in

154

https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295
https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295

Bibliography

whole-genome sequencing data using the bayesian information criterion. Proceed-
ings of the National Academy of Sciences of the U. S. A, 108(46):E1128–E1136, 2011.

[87] C. Xu. A review of somatic single nucleotide variant calling algorithms for next-
generation sequencing data. Computational and Structural Biotechnology Journal,
16:15–24, 2018.

[88] H. Zare, J. Wang, A. Hu, K. Weber, J. Smith, D. Nickerson, C. Song, D. Witten,
C. A. Blau, and W. S. Noble. Inferring clonal composition from multiple sections
of a breast cancer. PLOS Computational Biology, 10(7):e1003 703, 2014.

155

Appendix A
Onctopus Software

Input parameters of Onctopus, together with a short explanation and default values
are shown in Table A.1.

Table A.1.: Input parameters of Onctopus.
parameter name explanation default value

lin_num lineage number K -
segments file with average allele-

specific copy numbers with
standard errors of I genome
segments

-

ssms file with variant and refer-
ence counts of J SSMs

-

time maximal optimization time,
in seconds

1075

threads number of threads used for
the optimization

1

treememory maximal memory for the op-
timization, in MB

1075

fixed_variables files with values of variables,
which should be fixed

-

start_variables files with values of variables,
which should be used as opti-
mization start

-

157

Appendix A. Onctopus Software

Table A.1.: Input parameters of Onctopus. Continued.

parameter name explanation default value

spline_points number of knots nknots used
to approximate piecewise lin-
ear functions of objective
functions

50

c_num_max maximal number of copy
number changes per segment

2

cluster_SSM whether SSMs should get
clustered

False

super_SSMs whether clustering version 2
should be used

False

cluster_algo clustering algorithm that
should be used

-

cluster_num_param number of clusters, gets mul-
tiplied with lineage number

-

normal_seg_ind indices of CNA-free seg-
ments, segments get re-
stricted to contain zero copy
number changes

-

combine_segments whether indicated CNA-free
segments should be com-
bined to a super segment

False

overdispersion overdispersion parameter for
beta-binomial distribution

1000

158

Appendix B
Data Simulation

B.1. Data Simulation

Table B.1 shows important parameters of the simulation, their explanation and default
values.

B.2. Simulated Datasets for Analyzing Optimality, Run Time
and Memory Usage

We created five different trees for each lineage number, linear and branching ones (see
Figure B.1).

Parameters used for the data simulation, others than the number of lineages, SSMs
and segments, can be found in Table B.2. Parameters that are not shown have default
values as indicated in Table B.1.

B.3. Simulated Datasets for Simple Somatic Mutation
Clustering Analysis

B.3.1. Clustering Algorithms and Cluster Numbers

We created one phylogenetic tree for each lineage number and for each copy number
change number, we created a specific copy number change assignment per tree (see
Figure B.2).

159

Appendix B. Data Simulation

Table B.1.: Simulation parameters.
parameter name explanation default value
coverage_overdispersion
(sCOV)

used to create the two
needed parameters for the
negative binomial distribu-
tion from the coverage

1000

frequency_overdispersion
(sSSM)

used to create the two
needed parameters for the
beta-binomial distribution
from the VAF

1000

p1_A_prop probability with which a
copy number gain is as-
signed to allele A

0.2

p1_A_B_prop probability with which a
copy number gain is as-
signed to allele A and allele B

0.2

m1_B_prop probability with which a
copy number loss is assigned
to allele B

0.2

m1_A_B_prop probability with which a
copy number loss is assigned
to allele A and allele B

0.2

p1_m1_prop probability with which a
copy number gain is as-
signed to allele A and a loss
to allele B

0.2

CNAs_mult_lin_prop probability with which two
copy number changes are
samples within a segment
and assigned to two lineages

0.0

SSM_before_CNV_LH probability with which an
SSM appears before a copy
number gain that is assigned
to the same allele, segment
and lineage than the SSM

0.5

seg_min_length minimal length of a segment 1, 000, 000

160

B.3. Simulated Datasets for Simple Somatic Mutation Clustering Analysis

Figure B.1.: Phylogenetic trees with lineage frequencies for simulating datasets to
analyze optimality, run time and memory usage of Onctopus runs.

Table B.2.: Parameters for simulating datasets to analyze optimality, run time and
memory usage of Onctopus runs.
K: lineage number

parameter parameter value
haploid coverage 100
CNA noise no
SSM lineage assignment probabilities all equal with 1

K−1
SSM noise yes

161

Appendix B. Data Simulation

Figure B.2.: Phylogenetic trees with lineage frequencies and with copy number
change assignments for data simulation of experiment to investigate the ability
of different clustering algorithms and numbers of clusters.
Three different copy number change assignments per phylogeny are shown, indicated
by the different colors of the alleles.
dupl.: duplication

Table B.3.: Parameters for data simulation of experiment to investigate the ability of
different clustering algorithms and numbers of clusters to cluster SSMs based
on their VAFs.

parameter parameter value
haploid coverage 100
CNA noise no
SSM noise yes

Parameters used for the data simulation, others than the number of lineages, copy
number changes and SSMs and different SSM assignment strategies, are shown in
Table B.3. Parameters not present in the table have default values as indicated in
Table B.1.

B.3.2. Building Subclonal Reconstructions with Clustered Simple
Somatic Mutations

We created one phylogenetic tree for four lineages (see Figure B.3).

Used parameters for the simulation, others than the numbers of lineages, segments,
copy number changes and SSMs, as well as different SSM assignment strategies, can be
found in Table B.4. Parameters not shown have default values as indicated in Table B.1.

162

B.4. Simulated Datasets for Fixing Copy Number Aberration Analysis

Figure B.3.: Phylogenetic tree with lineage frequencies for data simulation to ana-
lyze Onctopus’ performance with and without clustered SSMs.

Table B.4.: Parameters for dataset simulation to analyze Onctopus’ performance
with and without clustered SSMs.

parameter parameter value
haploid coverage 100
CNA noise no
SSM noise yes

B.4. Simulated Datasets for Fixing Copy Number Aberration
Analysis

We created five phylogenetic trees for four lineages (see Figure B.4).

Used parameters for the data simulation, others than numbers of lineages, segments,
segments with copy number changes and SSMs, can be found in Table B.5. Parameters
not shown have default values as indicated in Table B.1.

Figure B.4.: Phylogenetic trees with lineage frequencies for data simulation for
CNA fixation experiment.

163

Appendix B. Data Simulation

Table B.5.: Parameters for dataset simulation for CNA fixation experiment.
K: lineage number

parameter parameter value
haploid coverage 100
CNA noise no
SSM lineage assignment probabilities all equal with 1

K−1
SSM noise yes

Table B.6.: Further parameters for data simulation for inferring lineage frequencies
depending on the number of lineages.
K: lineage number

parameter parameter value
haploid coverage 100
SSM lineage assignment probabilities all equal with 1

K−1
SSM noise yes

B.5. Simulated Datasets for Fixing Lineage Frequencies
Analysis

B.5.1. Simulated Datasets for Inference of Lineage Frequencies
Depending on the Number of Simple Somatic Mutations

We used the phylogenetic trees of the general experiment to investigate optimality, run
time and memory usage (see Figure B.1) for this experiment.

Parameters for the data simulation, others than numbers of lineages, segments and
SSMs, are shown in Table B.6. Parameters not present have default values as indicated
in Table B.1.

B.5.2. Simulated Datasets for Analysis of Performance with Inferred
Lineage Frequencies

We used the phylogenetic trees for four and six lineages of the general experiment
to investigate optimality, run time and memory usage (see Figure B.1) for this experi-
ment.

The parameters of the data simulation, others than the numbers of lineages, seg-
ments, SSMs and copy number changes, are presented in Table B.7. Parameters not
shown have default values as indicated in Table B.1.

164

B.6. Simulated Datasets for Analysis of Approximating Variant Allele Frequencies in
Mixed Integer Linear Program

Table B.7.: Further parameters for data simulation for analysis of performance with
inferred lineage frequencies.
K: lineage number

parameter parameter value
haploid coverage 100
CNA noise no
SSM lineage assignment probabilities all equal with 1

K−1
SSM noise yes

Figure B.5.: Phylogenetic trees with lineage frequencies for data simulation for in-
vestigating impact of approximating VAFs..

B.6. Simulated Datasets for Analysis of Approximating
Variant Allele Frequencies in Mixed Integer Linear
Program

We created two phylogenetic trees for three and four lineages (see Figure B.4).

The parameters of the data simulation, beyond those described in Section 5.8, are
presented in Table B.8. Parameters not shown have default values as indicated in
Table B.1.

Table B.8.: Further parameters for data simulation for analyzing impact of approxi-
mating VAFs.

parameter parameter value
haploid coverage 100

SSM noise yes

165

Appendix B. Data Simulation

Table B.9.: CNA and SSM sampling parameters for data simulation for comparison
between Onctopus, PhyloWGS and Canopy.

parameter parameter value
CNA noise yes

SSM lineage assignment probabilities all equal with 1
K−1

SSM noise yes

B.7. Simulated Datasets for Comparison between Onctopus,
PhyloWGS and Canopy

To simulate the datasets, we used the first three phylogenetic trees for two, four and
six lineages of the general experiment where we investigated optimality, run time and
memory usage (see Figure B.1).

Parameters of the CNA and SSM sampling are shown in Table B.9. Parameters
not described in this section and Subsection 6.2.1 have default values as indicated in
Table B.1.

166

	List of Abbreviations
	Notation Tables
	1 Introduction
	2 Background
	2.1 Probabilistic Models and Optimization
	2.1.1 Mixed Integer Linear Programming
	2.1.2 Markov Chain Monte Carlo
	2.1.3 Model Selection

	2.2 Biological and Technical Background
	2.2.1 Cancer and Genetic Mutations
	2.2.2 Next-Generation Sequencing Techniques
	2.2.3 Detecting Somatic Mutations

	2.3 Subclonal Reconstruction of Cancer Samples
	2.3.1 Clonal Evolution Theory and Intratumor Heterogeneity
	2.3.2 Formalized Problem Description
	2.3.3 Subclonal Reconstruction Concepts and Methods

	3 A New Lineage-Based Subclonal Reconstruction Model
	3.1 The Likelihood Function
	3.2 Model Components and Rules
	3.2.1 Inferred Lineage Frequencies
	3.2.2 Inferred Lineage Relationships
	3.2.3 Copy Number Aberration Assignment
	3.2.4 Simple Somatic Mutation Assignment

	3.3 Optimization with Mixed Integer Linear Programming
	3.3.1 Objective Function and Basic Mixed Integer Linear Program
	3.3.2 Variables and Constraints for Lineage Frequencies
	3.3.3 Variables and Constraints for Lineage Relationships
	3.3.4 Variables and Constraints for Copy Number Aberrations
	3.3.5 Variables and Constraints for Simple Somatic Mutations
	3.3.6 Reducing the Number of Variables and Constraints

	3.4 Optimization Complexity
	3.5 Determining the Number of Lineages

	4 Dealing with Ambiguity
	4.1 Defining Ambiguity
	4.2 Handling Ambiguity
	4.2.1 Finding Present Ancestor-Descendant Relationships Necessary because of Likelihood Influence
	4.2.2 Updating Lineage Relationships
	4.2.3 Unphasing Simple Somatic Mutations
	4.2.4 Identifying Absent Ancestor-Descendant Relationships Necessary because of Crossing Rule and Mutation Assignment
	4.2.5 Identifying Present Ancestor-Descendant Relationships Necessary because of Sum Rule
	4.2.6 Identifying Absent Ancestor-Descendant Relationships Necessary because of Sum Rule

	4.3 Lineage-Based versus Population-Based Subclonal Reconstruction

	5 Analyzing Onctopus' Performance
	5.1 Implementation
	5.2 Data Simulation
	5.3 Evaluation Metrics
	5.4 Optimality, Run Time and Memory Usage
	5.4.1 General Experiment
	5.4.2 Increasing Run Time
	5.4.3 Conclusion

	5.5 Clustering Simple Somatic Mutations
	5.5.1 Clustering Algorithms and Cluster Numbers
	5.5.2 Building Subclonal Reconstructions with Clustered Simple Somatic Mutations

	5.6 Fixing Copy Number Aberrations
	5.7 Fixing Lineage Frequencies
	5.7.1 Performance with Correct Lineage Frequencies
	5.7.2 Inference of Lineage Frequencies Depending on the Number of Simple Somatic Mutations
	5.7.3 Performance with Inferred Lineage Frequencies

	5.8 Approximating Variant Allele Frequencies in Mixed Integer Linear Program

	6 Results and Evaluation
	6.1 Evaluation Metrics
	6.2 Results on Simulated Data
	6.2.1 Data Simulation
	6.2.2 Inferring Subclonal Reconstructions
	6.2.3 Results
	6.2.4 Discussion

	6.3 Results on a Breast Cancer Dataset
	6.3.1 Data Description
	6.3.2 Inferring Subclonal Reconstructions
	6.3.3 Results and Discussion

	7 Conclusion and Outlook
	Bibliography
	A Onctopus Software
	B Data Simulation
	B.1 Data Simulation
	B.2 Simulated Datasets for Analyzing Optimality, Run Time and Memory Usage
	B.3 Simulated Datasets for Simple Somatic Mutation Clustering Analysis
	B.3.1 Clustering Algorithms and Cluster Numbers
	B.3.2 Building Subclonal Reconstructions with Clustered Simple Somatic Mutations

	B.4 Simulated Datasets for Fixing Copy Number Aberration Analysis
	B.5 Simulated Datasets for Fixing Lineage Frequencies Analysis
	B.5.1 Simulated Datasets for Inference of Lineage Frequencies Depending on the Number of Simple Somatic Mutations
	B.5.2 Simulated Datasets for Analysis of Performance with Inferred Lineage Frequencies

	B.6 Simulated Datasets for Analysis of Approximating Variant Allele Frequencies in Mixed Integer Linear Program
	B.7 Simulated Datasets for Comparison between Onctopus, PhyloWGS and Canopy

