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We present the modular framework SNABSuite (Spiking Neural Architecture Benchmark Suite) for
“black-box” benchmarking of neuromorphic hardware systems and spiking neural network software
simulators. The motivation for having a coherent collection of benchmarks is twofold: first, benchmarks
evaluated on different platforms provide measures for direct comparison of performance indicators (e.g.
resource efficiency, quality of the result, robustness ...). By using the platforms as they are provided for
possible end-users and evaluating selected performance indicators, benchmarks support the decision
for or against a system based on use-case requirements. Second, benchmarks may reveal opportunities
for effective improvements of a system and can contribute to future development. Systems like the
Heidelberg BrainScaleS-project [2], IBM TrueNorth [3], the Manchester SpiNNaker chip [4] or the Intel
Loihi platform [5] drive the evolution of neuromorphic hardware implementations, while comparable
benchmarks and corresponding measures are still rare. The problem of “comparable” measures can
be addressed in two ways: concerning application driven measures like classification accuracy it may
be advantageous to implement these algorithms in a highly specialized manner to get the best result
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Figure 1: Flow chart of the benchmark framework SNABSuite. Blue arrows represent information flow of the
Cypress framework (introduced in [1]), green arrows depict the flow of benchmark results and configuration data.
The diagram distinguishes between platform-specific, benchmark-specific and fully reusable parts to highlight,
which software components have to be provided when extending the suite.
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on every hardware (see e.g. [6, 7, 8, 9]). This approach reveals what can be achieved on a specific
backend, but will not necessarily uncover differences or deficiencies, as these are worked around in
the specialization process. In addition, most of these benchmarks are published by the hardware
maintainers themselves, and thus are meant to promote a certain platform, which in some cases, has
been adapted to this specific task. In this case, results might not reflect the state of the platform that is
visible to possible end-users. Despite these problems, most of these citations compare a single hardware
platform to a software simulator, which renders platform-overarching comparisons complicated. One
alternative is a “black-box” approach, where benchmark networks are developed independent of the
hardware on which they will be executed.

Our benchmark framework, which is shown in Fig. 1, supports the second approach. Target plat-
forms vary quite significantly in their implementation with the only commonality being the execution
of spiking (event-based) neural networks. For this reason, SNABSuite only uses spiking networks for
performance estimation. These networks are specified as an abstract network description, which is
automatically converted to a backend specific implementation at runtime. Nevertheless, individual
backend constraints need to be considered (like supported neuron models, neuron parameter restrictions
and chip sizes). Hence, these benchmark parameters are factored out into external configuration files,
which are consulted during the benchmark setup (compare Fig. 2). All benchmarks share a common in-
terface, which allows embedding the benchmarks into different evaluation strategies (for e.g. parameter
space exploration). This modular approach for providing a benchmark framework simplifies adding
new benchmarks: the struggle of utilizing different backends with different interfaces is completely
abstracted away while network description is handled in a declarative and intuitive way. Detailed
information about the backends is only necessary for creating configuration files. Furthermore, new
simulation platforms can be added without altering existing benchmarks or the core of the framework
itself.

List of
Parameters +

Measures

SNAB
Implementation

Building
Network

Valid

Config File Initialization

Consistency
Check

Building
Network

Evaluation

Execution on
Backend

Convert Results to
JSON

Missing Parameters/
Marked as Invalid

Figure 2: Flow chart for the execution of a single benchmark: after an initialization phase that checks the validity of
configuration files, the network is constructed by the abstract Cypress framework. The network is executed and
evaluated, before results are stored in a JSON-based database.

Benchmarks are partitioned in three different categories with the aim to cover a broad range of
measures and to avoid too strong specialization of the benchmark suite (see Fig. 3). Thus, the application
level is only one part of the suite: results from applications alone do not allow to extrapolate. Instead,
we also go for sub-tasks and low-level benchmarks, which characterize the hardware/software platform
and, as a result, allow to estimate the performance of an application, which is not (yet) part of the
suite, on the platform under consideration. As discussed above, low-level benchmarks are referring to
simulations based on a network description. For example, we measure the output/readout bandwidth
by using a set of steadily spiking neurons. If the output rates of the network are varying largely between
neurons it is most likely that a bandwidth bottleneck has been reached. This performance indicator
provides an upper limit for the spike rates that can be expected on the target platform. For application
inspired sub-tasks (compare Fig. 3), we use networks that perform elementary tasks to benchmark
general performance of an archetypical network architecture on a given system. For example, the
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Winner-Takes-All architecture is a commonly used paradigm for spiking network architectures (e.g. [10,
11]). A simple Winner-Takes-All network consisting of at least two competing populations (group of
neurons), with only one population being active at a time, can be used to benchmark how good this
architecture can be realized on the hardware. It requires sub-task specific quality measures to evaluate
the performance. At last, the application level is for instance represented by an application from the
domain of constraint-satisfaction problems: solving Sudokus. Here, we apply the Winner-Takes-All
architecture and record, how many of 100 assorted Sudokus of varying difficulty were solved. These
three proposed benchmarks are connected: the maximal output rate of neurons may be restricted,
limiting the maximal activity of a winning population of neurons. This restrains the activity level
difference of populations and thus might impede the detection of a winner. Furthermore, if the Winner-
Takes-All network is imperfectly realized by e.g. dead or overly active neurons, winning probability is
influenced, and hence a solution to the Sudoku problem might not be found. Without seeing the results
for the Sudoku problem, we can already infer that Winner-Takes-All networks will yield a reduced
performance on these particular backends.
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Figure 3: Benchmarks are separated into 3 categories.

The proposed approach provides the right level of configurability while still using the same net-
work architecture and sets us in position to compare systems of very different nature, as e.g. the
SpiNNaker and BrainScaleS systems. While the SpiNNaker system, which is a digital neuromorphic
processor compound, provides some flexibility in models and architectures, the BrainScaleS system is a
mixed-signal architecture with a single parameterized analog neuron and synapse model and a digital
communication fabric. The behavior of these analog parts is affected by different sources of variations
and noise [2], which have to be accounted for in the network design and/or parameter choice. Yet,
benchmark measures have to be comparable across platforms, and thus the architecture of the network
has to be fixed. This may result in some benchmarks not being applicable on certain platforms, or the
implementation has to be adapted to the platform, which is then considered a different benchmark.
Consequently, it is infeasible to provide one unified benchmark score covering all applications, instead
benchmark results consist of a list of different measures which are interpreted individually.

Currently, our framework supports the above mentioned BrainScaleS system, the Spikey [12] and the
SpiNNaker chip through their PyNN [13] interfaces. On the software simulator side, NEST [14] is sup-
ported and accessed via its PyNN [15] interface or more directly via its SLI interface [14]. Furthermore,
an initial set of characterizations and benchmarks is ready for use and we will present first results.

The overall goal of this work is to provide a set of measures, which helps external users (including
researchers from outside of neuromorphic computing) to select their target platform for a specific
application. Our framework renders development, execution and reuse of benchmarks comparably
simple, as well as extending of the benchmark suite. The application domain is not yet completely
covered, but the set of benchmarks will be extended constantly, while we also add backends for new
platforms as e.g. Loihi [5] and the GPU-accelerated GeNN [16] platforms.
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