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Abstract
Ageneral analytical theory of temporal relaxation processes in isolated quantum systemswithmany
degrees of freedom is elaborated, which unifies and substantially amends several previous
approximations. Specifically, the Fourier transformof the initial energy distribution is found to play a
key role, which is furthermore equivalent to the so-called survival probability in case of a pure initial
state. Themain prerequisite is the absence of any notable transport currents, caused for instance by
some initially unbalanced local densities of particles, energy, and so on. In particular, such a
transportless relaxation scenario naturally arises when both the systemHamiltonian and the initial
non-equilibrium state do not exhibit any spatial inhomogeneities onmacroscopic scales. A further
requirement is that the relaxationmust not be notably influenced by any approximate (but not exact)
constant ofmotion ormetastable state. The theoretical predictions are comparedwith various
experimental and numerical results from the literature.

1. Introduction and overview

Relaxation processes in systemswithmany degrees of freedomplay a key role in a large variety of different
physical contexts [1–7]. Quite often, an essential feature of the pertinent non-equilibrium initial states are some
unbalanced local densities of particles, energy, etc, giving rise to transport currents during the relaxation towards
equilibrium. Paradigmatic examples are compound systems, parts of which are initially hotter than others, or a
simple gas in a box, streaming through a little hole into an empty second box. As a consequence, the temporal
relaxation crucially depends on the system size, andmay become arbitrarily slow for sufficiently large systems.

In the present work, the focus is on the complementary class of equilibration processes, which do not entail
any such transport currents. In the simplest case, onemay think of systemswithout any spatial inhomogeneities
on themacroscopic scale, for instance afluid or solidwith spatially constant densities of all particle species,
energy, and so on. (Inhomogeneities on themicroscopic (atomic) scale are obviously still admitted; they are
outside the realm towhich concepts like ‘densities’ and associated ‘transport currents’ are applicable, see also
section 5.)The non-equilibrium character of an initial state could then for instancemanifest itself in a non-
thermal velocity distribution. Another concrete experimental example, towhichwewill actually apply our
theory in section 6, is the excitation of an ‘electron gas’ by a laser pulse, resulting in a system state, which is
spatially homogeneous but exhibits strong deviations from the usual Fermi–Dirac statistics at equilibrium.
Further pertinent examples, which are often considered in numerical investigations, andwhichwill also be
comparedwith our present theory later on, are so-called quantumquenches, where the initial state is given by
the ground state (or some other eigenstate or thermal equilibrium state) of aHamiltonian, which is different
from theHamiltonian that governs the actual relaxation dynamics. Still focusing on spatially homogeneous
Hamiltonians and states, also other types of ‘handmade’ non-equilibrium initial conditions are commonly
explored in the literature, e.g. so-calledNéel states (antiferromagnetic order) in the context of various spin
models. In all these cases of transportless equilibration, it is reasonable to expect (andwill be confirmed later on)
that the temporal relaxation is practically independent of the system size, and that the typical time scales will be
much faster than for transport governed equilibration. As yet another striking feature, wewill find that
transportless relaxation is usually not exponential in time.
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The general issues of equilibration and thermalization in isolatedmany-body quantum systems have
stimulated during recent years a steadily growing amount of analytical, numerical, as well as experimental
activity, reviewed, e.g. in [1–7]. (In doing so, also open systems (interacting and possibly entangledwith an
environment) can be treated by considering the environment (thermal bath, particle reservoir etc) and the actual
systemof interest as an isolated compound system.) Strictly speaking, the relaxation of such an isolated system
towards a steady long-time limit is immediately ruled out by the unitary time evolution and, in particular, by the
well-knowquantum revival effects [8]. Nevertheless, ‘practical equilibration’ (almost steady expectation values
for the vastmajority of all sufficiently large times)has been rigorously established in [9–13] under quite general
conditions.

In section 2, the essential points of those previous results on equilibrationwill bemade plausible once again
bymeans of a new, less rigorous, butmuch simpler and intuitive reasoning. It should be emphasized that the
issue of equilibration is related to, but different from the issue of thermalization, i.e. the questionwhether or not
the abovementioned (almost) steady expectation values in the long-time limit agreewith the textbook
predictions of equilibrium statisticalmechanics. The latter issue of thermalization does not play any role
throughout this paper: all results are valid independently of whether or not the considered system thermalizes.

In section 3, the previous rigorous approach to transportless equilibration from [14, 15] is revisited in terms
of an alternative, non-rigorous but physicallymuch simpler line of reasoning, while in sections 4 and 5 itsmain
preconditions areworked out in considerablemore detail than before. A representative comparison of this
theorywith experimental observations is provided by section 6.

Section 7 represents the actual core of the paper, and the formal approach adopted in this section is
substantiallymore elaborate than in the previous sections 2 and 3. Technically speaking, the crucial idea is to
skillfully ‘rearrange’ the systems’s very dense energy eigenvalues and to ‘redistribute’ the possibly quite
heterogeneous populations of the corresponding eigenstates, yielding an effective description in terms of an
auxiliaryHamiltonianwith approximately equally populated eigenstates. Themain result is a unification and
substantial amendment of the earlier findings in [14–17], formally summarized by the compactfinal
equation (74). The decisive quantity, which governs the temporal relaxation via the last term in equation (74),
will furthermore be identified in section 7with the Fourier transformof the system’s initial energy distribution,
and in case the system is in a pure state, alsowith the so-called survival probability of the initial state. These
analytical predictions are comparedwith previously published numerical simulations in section 8.

Evenwhen focusing solely on analytical investigations, previous studies related to relaxation time scales and
the like are still quite numerous, and pointing out in each case the similarities and differences to our present
approach goes beyond the scope of this paper. Afirstmajor issue in this context, addressed e.g. in [11, 18], is the
derivation of general upper bounds for some suitably defined relaxation time.While in some specifically tailored
examples, the relaxationmay indeed become extremely slow [19], those upper bounds are still not quantitatively
comparable to the actually observed time scales inmore realistic situations.On the other hand, extremely fast
time scales have been predicted, e.g. in [19, 20]. Finally, investigations of particular classes ofmodels,
observables, or initial conditions are provided, among others, in [21, 22]. One important step forward of our
present work is that not only an estimate of some characteristic time scale, but also a detailed description of the
entire temporal relaxation behavior is provided and quantitatively verified against experimental and
numerical data.

2. Equilibration and thermalization

Weconsider an isolated system,modeled by aHamiltonian

H E n n 1
n

nå= ñá∣ ∣ ( )

and an initial state ρ(0) (pure ormixed and in general far from equilibrium), which evolves in time according to

t 0 2t t r r=( ) ( ) ( )†

with propagator

e . 3t
Hti -≔ ( )

Hence, the expectation value

A ATr 4rá ñr ≔ { } ( )
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of any given observableA in the time evolved state ρ(t) follows as

A Ae 0 , 5t
m n

E E t
mn nm

,

i n m å rá ñ =r
- ( ) ( )( )

[ ]

where t m t nmnr rá ñ( ) ≔ ∣ ( )∣ , A n A mnm á ñ≔ ∣ ∣ , andwhere, depending on the specific problemunder considera-
tion, the indices n andm run from1 to infinity or to some finite upper limit. In particular,

p n n0 0 6n nnr rá ñ =≔ ∣ ( )∣ ( ) ( )

represents the population of the nth energy level, i.e. the probability that the system is found in the energy
eigenstate nñ∣ when averaging overmany repetitions of themeasurement and—in the case of amixed state—
over the statistical ensemble described by ρ(0).

Themain examples we have inmind aremacroscopic systemswith, say, f≈1023 degrees of freedom.While
suchmany-body quantum systems are generically non-integrable, so-called integrable systems are still admitted
inmost of what follows. Likewise, compound systems, consisting of a subsystemof actual interest and amuch
larger environmental bath, are also included as special cases.

Equation (5) represents the completely general and formally exact solution of the dynamics, exhibiting the
usual symmetry properties of quantummechanics under time inversion.Moreover, the right hand side is a
quasi-periodic function of t, giving rise to thewell-known quantum revival effects [8]: A tá ñr ( ) must return very
close to A 0á ñr ( ) for certain, very rare times t.

The problemof equilibration amounts to the questionwhether, inwhich sense, and underwhat conditions
the expectation value (5) approaches some constant (time-independent) value for large t. Unless this expectation
value is constant right from the beginning, which is not the case under generic (non-equilibrium) circumstances,
the abovementioned revivals immediately exclude equilibration in the strict sense that (5) converges towards
somewell defined limit for t  ¥.On the other hand, ‘practical equilibration’ in the sense that (5) becomes
virtually indistinguishable from a constant value for the overwhelmingmajority of all sufficiently large thas been
demonstrated, for instance, in [9–13] under quite weak conditions onH, ρ(0), andA. In particular, equilibration
in this sense still admits transient initial relaxation processes and is compatible with the abovementioned time
inversion symmetry and quantum revival properties.

For the rigorous derivation of these results and the detailed requirements onH, ρ(0), andA, we refer to the
abovementioned literature. Here, we confine ourselves to a complementary, predominantly heuristic
discussion of the essential points:

Averaging (5) over all times t�0 yields the result A
dia

á ñr , where the so-called diagonal ensemble is defined as

p n n n n0 , 7
n

n
n

nndia å år rñá = ñá≔ ∣ ∣ ( )∣ ∣ ( )

andwherewe exploited (6) in the last step1. Given the system equilibrates at all (in the above specified sense), it
follows that (5)must remain extremely close to A

dia
á ñr for the vastmajority of all sufficiently large times t.

Intuitively, the essentialmechanism is expected to be a ‘dephasing’ [9, 23, 24] of the oscillating summands on
the right hand side of (5): theremust be sufficientlymany different ‘frequencies’ E En m -[ ] which notably
contribute to the sum, resulting in an approximate cancellation formost sufficiently large t, providedH, ρ(0),
andA satisfy certain ‘minimal’ conditions:

To beginwith, some of the oscillating summands in (5)may assume arbitrary large amplitudes by suitably
tailoring theAnmʼs, even for otherwise quite harmless ρ(0) andH, thus prohibiting equilibration in any
meaningful sense. To exclude such pathologies, a convenientminimal requirement onA turns out to be that it
must represent an experimental device with afinite range AD of possiblemeasurement outcomes, where AD is
given by the difference between the largest and smallest eigenvalues ofA. Furthermore, the resolution limit Ad of
the considered devicemust be limited to experimentally reasonable values compared to its working range AD .
Quantitatively, allmeasurements known to the present author yield less than 20 significant figures, implying that
the resolution limit Ad must be lower bounded by 10 A

20D- .Maybe some day 100 or 1000 significantfigures will
become feasible, but it seems reasonable that a theory which does not go verymuch beyond this will do. Note
that similar restrictions also apply to numerical experiments by computer simulations.Wefinally remark that
the same or some equivalent assumption onA is, at least implicitly, taken for granted in all pertinent works in
this context, and it is obvious that considering only such observables will be sufficient for all practical purposes.

Similarly, with respect to ρ(0) it is quite plausible that if two (ormore) level populations pn in (6)with non-
degenerate energies En are not very small (compared to p 1n nå = ) then non-negligible Rabi oscillationsmay
arise in (5), which prohibit equilibration in any reasonable sense2, even for otherwise quite harmlessA andH. In

1
IfH exhibits degeneracies, we tacitly choose the eigenvectors nñ∣ so that ρmn(0) is diagonal within every eigenspace. Regarding the existence

of the time average for infinite dimensionalHilbert spaces see [12].
2
This is particularly obvious if ρ(0) is a pure state and hence 0 0 0mn mm nn

2r r r=∣ ( )∣ ( ) ( ).
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otherwords, all level populationsmust satisfy the condition pn=1 apart frompossibly one exception.More
generally, ifH exhibits degenerate eigenvaluesEn, then analogous conditionsmust be fulfilled by the populations
of the energy eigenspaces in order to rule out any non-negligible ‘coherent oscillations’ on the right hand side of
(5). For similar reasons, not toomany of the ‘energy gaps’En−Em in (5)may coincide, or if they coincide, they
must contribute with sufficiently small weights. In view of the usually very dense and irregular energy spectra,
the above (or some equivalent) requirements are commonly taken for granted under all experimentally relevant
conditions.

GivenH, ρ(0), andA satisfy the above ‘minimal requirements’, there are no further obvious reasonswhich
may prevent equilibration via a ‘dephasing’ of the summands on the right hand side of (5). One thus expects that,
after initial transients have died out, the systembehaves practically indistinguishable from the steady state (7);
deviations are either unresolvably small (below the resolution limit Ad ) or unimaginably rare in time. All this has
been rigorously confirmed, e.g. in [9–13].

As an asidewe note that the preparation of an initial condition ρ(0)with a distinct non-equilibrium
expectation value ofA at time t=0must actually amount to a quite special selection of the terms ρmn(0)Anm (in
particular of their complex phases) on the right hand side of (5) [23]. This issue is in fact also quite closely related
to a variety of so-called typicality concepts and results, see [25–27].

In the rest of the paperwe always tacitly focus on systems, for which the above ‘minimal conditions’ are
fulfilled, and hence equilibration can be taken for granted. For the sake of simplicity, wewill further restrict
ourselves to the generic case that the energy differences Em−En are non-zero andmutually different for all
pairs m n¹ , and that

p 1 8n  ( )

is fulfilled for all level populations in (6), i.e. we neglect the abovementioned generalization that theremay be
one exceptional index nwhich violates (8). Similarly, also our above restriction on the energy differences
Em−En could in principle still be lifted to some degree, as shown in [11, 12].

The natural next question is whether the system exhibits thermalization, that is, whether the long-time
average A

dia
á ñr (see above (7)) is well approximated by the pertinentmicrocanonical expectation value, as

predicted by equilibrium statisticalmechanics. Throughout the present paper, this issue ofwhether the system
thermalizes or not will be largely irrelevant. In particular, so-called integrable systems and systems exhibiting
many-body localization, which are commonly expected to exhibit equilibration but not thermalization
[1–3, 6, 28], are still admitted.

3. Typical temporal relaxation

Taking for granted equilibration as specified above, themain focus of this section is on the detailed temporal
relaxation of the expectation value (5) from its initial value at time t=0 towards the (apparent) long-time limit
A

dia
á ñr (see above (7)).

Similarly as in section 2, while amathematically rigorous derivation of the subsequent results is provided in
[14, 15], the following line of reasoning amounts to amuch shorter, less rigorous, but physicallymore instructive
alternative derivation.

To beginwith, we assume that only some large butfinite numberD of the energy levelsEn exhibit non-
negligible populations pn=ρnn(0) (see (6)) and, without loss of generality, we label them so that nä{1,K,D}
for all those En. Accordingly, all other ρnn(0)ʼs are approximated as being strictly zero. For amore detailed,
quantitative justification of this approximationwe refer to appendix A. TheCauchy–Schwarz inequality

mn mm nn
2 r r r∣ ∣ then implies that onlym, n�D actuallymatter in (1), (5), (7), i.e.

H E n n , 9
n

D

n
1

å= ñá
=

∣ ∣ ( )

A Ae 0 , 10t
m n

D
E E t

mn nm
, 1

i n m å rá ñ =r
=

- ( ) ( )( )
[ ]

p n n n n0 . 11
n

D

n
n

D

nndia
1 1

å år r= ñá = ñá
= =

∣ ∣ ( )∣ ∣ ( )

Note that if the numberD of non-negligible level populationswere not large, then equilibration as discussed in
section 2may not be expected in thefirst place. On the other hand, (10) can be shown to approximate (5) very
well under quite general conditions (see also appendix A).

The examples of foremost interest are isolatedmany-body systemswith amacroscopically well defined
energy, i.e. all relevant energies E1, K,ED are confined to somemicrocanonical energywindow [E−ΔE,E] of

4
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microscopically large butmacroscopically small widthΔE. Henceforth it is taken for granted that the considered
system is of this type.

The summandswithm=n in (10) can be readily rewritten bymeans of the diagonal ensemble from (11) as
A

dia
á ñr , yielding

A A e a , 12t mn mndia åá ñ = á ñ + ¢r r ( )( )

e e , 13mn
E E ti n m -≔ ( )[ ]

a A0 , 14mn mn nmr≔ ( ) ( )

where the symbol å¢ indicates a sumover allm, nä{1,K,D}with m n¹ . SinceD is large, the number
D(D−1) of those summands is evenmuch larger.

For any given t, those very numerous emnʼs are distributed on the complex unit circle according to (13). All of
them start out from emn=1 for t=0, and subsequently spread out along the unit circle as t increases. Hence,
their distribution on the unit circle will be highly non-uniform (strongly peaked around unity) for small t, while
they are expected to become roughly speaking uniformly distributed as t  ¥.More precisely, since the
number of emnʼs is large butfinite, their collectivemotion on the unit circlemust be quasi-periodic, i.e.
occasional ‘recurrences’ and other appreciable deviations from a uniformdistribution necessarilymust occur
for certain, arbitrary large times t, but they are expected to be extremely rare and thus safely negligible for all
practical purposes.

Turning to (14), one readily concludes from theCauchy–Schwarz inequality that A Anm   ∣ ∣ , where
A  indicates the operator normofA (largest eigenvalue inmodulus). Likewise, one sees that 0mn r∣ ( )∣

0 1r ( ) , i.e. all the amnʼs are distributed inside a circle of radius A  in the complex plane.
Note that thematrix elements A n A mnm = á ñ∣ ∣ in (14) are independent of the energy eigenvaluesEn, while

the emnʼs in (13) are independent of the corresponding energy eigenvectors nñ∣ . Furthermore, only indicesm and
nwithmacroscopically small differences En−Em (see below (11)) andwith m n¹ actuallymatter in (12). In
the absence of any a priori reasons to the contrary, one thus expects that the quantitative values of thematrix
elementsAnmwill not be ‘correlated’ in any specific waywith the emnʼs, see also [3, 21, 29]. Put differently, how
should the observableA ‘feel’ for examplewhether or not a given pair of eigenvectors nñ∣ and mñ∣ belongs to a
small energy differences En−Em in (13)without any a priori knowledge about theHamiltonianH in (9)? After
all, without such extra knowledge, the nñ∣ ʼs are orthogonal to each other but for the restmay be arranged in any
waywithin the high dimensionalHilbert space under consideration.

Similar considerations as for theAnm apply to thematrix elements ρmn(0) in (14).
All these arguments suggest that both the emnʼs and the amnʼsmay be roughly speaking viewed as two large

sets of pseudorandomnumbers, which are essentially independent of each other, implying the approximation

e a

D D

e

D D

a

D D1 1 1
. 15mn mn mn mnå¢

-
= å¢

-
å¢

-( ) ( ) ( )
( )

Indeed, sinceD(D−1) is the number of summands in each of the three sums in (15), the left hand side amounts
to the correlation of the emnʼs and the amnʼs, which, for statistically independent randomnumbers and D  ¥,
is known to converge (with probability→ 1) towards the product of the twomean values on the right hand side.
Qualitatively, somewhat similar ideas have also been developed in [24], but the quantitative details were quite
different.

Concerning the above justification of (15), ourfirst side remark is that the emnʼs and the amnʼs are actually
only required to be uncorrelated, which is strictly speaking aweaker condition than being independent. Second,
we note that the emnʼs need not be uniformly distributed on the unit circle3. Third, focusing on the amnʼs alone, it
is not necessary that they are uncorrelated or independent from each other, and likewise for the emnʼs.

This heuristic approximation in (15)will be the key ingredient of our subsequent line of reasoning. Further
arguments in support of it are: (i) it amounts to an exact identity for t=0. (ii) Likewise, upon averaging over all
times t�0 and taking for granted that all energies En are non-degenerate (see above (8)), one can show that (15)
becomes an exact identity.

Thefirst sumon the right hand side of (15) can be rewritten bymeans of (13) as

e e

D t D

e

, 16

mn
m n

D
E E t

n

D

, 1

i

1

0

2

n m å å å

f

¢ = -

= -
=

-

=

∣ ( )∣ ( )

[ ]

3
Also in probability theory, two randomvariablesmaywell be statistically independent (or uncorrelated), nomatter how each of the two

single variables is distributed. One (or both) of themmay even be non-random (corresponding to a delta-distribution), inwhich case the
independence property is always trivially fulfilled.
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D
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Likewise, the last sum in (15) can be rewritten bymeans of (14) as

a A A0 0 18mn
m n

D

mn nm
n

D

nn nn
, 1 1

å å år r¢ = -
= =

( ) ( ) ( )

andwith (10), (11) it follows that

a A A . 19mn 0 diaå¢ = á ñ - á ñr r ( )( )

Upon introducing (15)–(19) into (12), wefinally obtain as ourfirstmain result the approximation

A A F t A A , 20t 0dia dia
á ñ = á ñ + á ñ - á ñr r r r( )[ ] ( )( ) ( )

where F t D t D1 12f - -( ) ≔ ( ∣ ( )∣ ) ( ). SinceD?1 this yields the very accurate approximation

F t t , 212f=( ) ∣ ( )∣ ( )

wheref(t) is given by (17) and thereforemay be interpreted as the Fourier transformof the spectral density ofH.
The key ingredient for the derivation of (20)was the heuristic approximation (15).While itmakes the

derivation short and physically instructive, amore rigorous justification of (15) seems very difficult. On the other
hand, the very same formula (20) can also be rigorously obtained bymeans of a technically very different,more
arduous and less instructive approach, see [14, 15], using averages over unitary transformations, under which
the locality properties of a givenHamiltonian are in general not preserved (see also sections 4 and 5).

Upon comparisonwith (17)we see that F(t) in (21) quantifies the above discussed distribution of the emnʼs on
the complex unit circle. In particular, one readilyfinds that F(0)=1 and 0�F(t)�1 for all t.Moreover, the
following properties of F(t)were derived previously in [14]: (i) F(t) remains negligibly small for the vastmajority
of all sufficiently large times t, provided themaximal degeneracy of the energiesE1,K,ED ismuch smaller than
D (see also above (8)). The extremely rare exceptional tʼs are inherited from the abovementioned quasi-periodic
motion of the emnʼs on the unit circle. Ourmain result (20) thus captures at least qualitatively correctly the decay
from the initial expectation value A 0á ñr ( ) towards the long-time average A

dia
á ñr , and also thewell-known

quantum revivals at arbitrarily large but exceedingly rare times [8]. (ii)Denoting byΩ(E) the number of energies
En belowE, by kB and S E k ElnB W( ) ≔ ( )Boltzmann’s constant and entropy, respectively, and byT S E1 ¢≔ ( )
the corresponding formal temperature, one can often approximate the sum in (15) by an integral over a suitably
smoothened level density, yielding the approximation

F t t k T1 1 . 22B
2= +( ) [ ( ) ] ( )

Asmay have been expected, the abovementioned quasi-periodicities of F(t) and the concomitant quantum
revivals get lost within such a continuum approximation.We also note thatT and S(E) can be identifiedwith the
usual temperature and entropy of the thermalized system (at energyE), provided the systemdoes approach
thermal equilibrium for large times (see end of section 2).

In the opposite case of a non-thermal long-time limit,T and S(E) are usually still well defined formal
quantities, but without an immediate physicalmeaning. Rather, theymay be viewed as the equilibrium
temperature and entropy of some auxiliary initial state 0auxr ( ), which does exhibit thermalization, andwhose
energy expectation value HTr 0auxr{ ( ) } is identical to the ‘true’ system energy E HTr 0r≔ { ( ) }. In particular,
such a 0auxr ( ) always exists (for instance themicrocanonical ensemble), and hence (22) remains valid even for
non-thermalizing initial states ρ(0). The only prerequisite is that the thermal equilibriumproperties ofH are ‘as
usual’, i.e. the density of states is very high and grows very fast withE.

A further implication of (17) and (21) is that F t F t- =( ) ( ) for all t. Hence, the fundamental symmetry
properties of quantummechanics under time inversionmentioned below (5) are still maintained by (20).
Remarkably, the time inversion symmetry of (20) even persists in cases where it is broken in themicroscopic
quantumdynamics, e.g. due to an externalmagnetic field. This is reminiscent of the second law of
thermodynamics, which also remains valid for systemswith amagnetic field and thuswith brokenmicroscopic
time inversion symmetry.

4. Exceptional cases

In this section, we collect themain a priori reasons announced above (15), whichmay invalidate the
approximation (15) and hence ourmain result (20).

To beginwith, we note that n H A m E E A, n m nmá ñ = -∣[ ]∣ ( ) , where [H,A] is the commutator between the
Hamiltonian (9) and the observableA. IfA is a conserved quantity it satisfies [H,A]=0, implying thatAnm=0
whenever E En m¹ . If we now slightly perturb theHamiltonian under consideration, one can infer from

6
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ordinary perturbation theory (for extremely small perturbations) ormore sophisticated non-perturbative
methods [30] (formoderately small perturbations) that the newmatrix elementsAnm in the basis of the
perturbedHamiltonian are non-negligible only for relatively smallEn−Em.With reference to the new, slightly
perturbed system, the observableAmay thus be called ‘almost conserved’, still exhibiting a significant
correlation between the energy differences En−Em and themagnitude of thematrix elementsAnm. Hence, also
the emnʼs in (13) and the amnʼs in (14)will be correlated and the argument below (15) breaks down.One thus
expects that the temporal relaxation of such an almost conserved quantity will be slower than predicted by (20).

Important examples are the energies of twoweakly coupled subsystems (of an isolated compound system),
or the totalmomentumof an isolated system, such as a simple gas in a box, which is not conserved due to
momentum exchangewith the systemboundaries (and similarly for the total angularmomentum). All these
observables then amount to almost conserved quantities since they represent ‘volume’ properties (extensive
quantities), which only can change through ‘surface’ effects (exchange of energy,momentum etc via ‘particle-
wall interactions’). Our present theory only applies if such quantities assume their equilibrium value right from
the beginning (e.g. the totalmomentummust be zero), or if they can be approximated as being strictly conserved
(e.g. theweak coupling between subsystems is ‘switched off’). Put differently, this is afirst instancewherewe see
thatmacroscopic transport in the sense of section 1must be excluded.

An analogous breakdown of (15) and hence of (20) is expected if ρ(0) is an ‘almost conserved’ quantity.
Next, let us replace the originalH from (9) by the transformedHamiltonian

H U H U , 23U ≔ ( )†

whereU is an arbitrary but fixed unitary transformation. In otherwords, the eigenvalues ofHU are still given by
En, while the eigenvectors are nowU nñ∣ instead of nñ∣ . Accordingly, the original definition m n0 0mnr rá ñ( ) ≔ ∣ ( )∣
in (10)–(19)must be replaced by m U U n0 0mnr rá ñ( ) ≔ ∣ ( ) ∣† , and analogously for the definitions ofAnm and of

diar in (11). In thefinal result (20), the initial value A 0á ñr ( ) as well as the function F(t) are not affected by such a
unitary transformation, while the quantitative value of the long-time average A

dia
á ñr may in general change.

Similarly, the emnʼs in (13) are independent ofU, while the amnʼs in (14) are typically ‘redistributed’ in a very
complicatedway. Therefore, (15) is expected to be satisfied in very good approximation formostUʼs. Amore
detailed verification of this expectation is provided in [14, 15]. The key point is that thisfinding is independent of
whether (15)was satisfied by the original HamiltonianH in (9) or not.

In conclusion, (20) cannot be correct if the temporal relaxation, encapsulated by theU independent function
F(t), is notably different for the ‘true’HamiltonianH than formost otherHamiltoniansHU.

One readily sees that the latter criterion, in particular, also excludes the previously discussed cases whenA or
ρ(0) is an almost conserved quantity.

5. Restriction to transportless relaxation

Apivotal feature of almost all physical systems of interest is that they can be verywell described in terms of some
‘elementary constituents’ (atoms,molecules, quasiparticles etc), which are reasonably localized in space and
whose interaction is of short range. Formally, themodelHamiltonianH is thus composed solely of so-called
local operators. Only in such cases itmakes sense to ask for the amount of energy, charge, particles etc within
some subdomain of the system: if the considered volume is not too small then the interactionwith the rest of the
system isweak and can be approximately ignored (surface effects are small compared to volume contributions).
In otherwords, local densities are reasonably well defined concepts. Since they are usually ‘local descendants’ of
some globally conserved quantities (energy, charge, particle numbers etc) their content within a given volume
can only change via transport currents through the boundaries of that volume.

As discussed in section 2, all those local densities will equilibrate towards certain (approximately) steady
values after sufficiently long times. If all local densities for a given initial state ρ(0) agree (at every point in space
and in sufficiently good approximation)with the corresponding equilibrium values, then ρ(0) is called a
macroscopically homogeneous initial state. Theword ‘homogeneous’ refers to the fact that the densities after
equilibration are indeed spatially homogeneous inmany examples of interest. For simplicity, we tacitly focus on
such situations in the following discussion.However, analogous conclusions remain valid evenwhen the
equilibrated densities are actually inhomogeneous. (It is only the namingwhich becomes ‘wrong’, not the
argument.)Theword ‘macroscopic’ refers to the fact that the very concept of a density or a transport current
breaks down onmicroscopic length scales. (For instance, the number of atomswithin a small volume should be
well approximated by the corresponding particle density times the volume. If the volume is so small that it only
contains a few atoms, this is no longer true. Put differently, themicroscopically discrete particles are no longer
well described by a continuum approximation in terms of densities and concomitant currents.)

In real systems, the equilibration of initial inhomogeneities via the abovementioned transport currents takes
an increasingly long-time over increasingly large distances. On the other hand, the function F(t) from (17) and
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(21), which governs the temporal relaxation in (20), is independent of the initial state and thus of the distance
between possible inhomogeneities.Moreover, the characteristic time scale, predicted, e.g. by (22) is very short
( k T 26B  fs at room temperature). In other words, (20)must be invalid for initial conditionswhich give
rise to significant spatial inhomogeneities onmacroscopic scales.

The underlying a priori reason (see section 4) is as follows. In contrast toH (see above), most transformed
HamiltoniansHU in (23) can no longer be interpreted as a description of certain basic constituents (atoms etc)
which are spatially well localized and exhibit short range interactions, nor can they any longer be rewritten as
(sums of) local operators. Hence, local densities and transport currents are not anymorewell defined, and the
very same initial conditions ρ(0), which entailed spatial inhomogeneities when dealingwithH, are no longer
expected to equilibrate particularly slowlywhenHU governs the dynamics. Hence the ‘exclusion criterion’ at the
end of section 4 applies to such a systemHamiltonianH.

It is interesting to consider the same thing from yet another viewpoint. Namely, one readily sees from the
discussion below (23) that instead of replacingH byHU (while leaving ρ(0) andA unchanged), one could aswell
keepH unchanged and replace ρ(0) andA by U U0 0Ur r( ) ≔ ( )† and A U AUU ≔ † , respectively. In other
words, only the initial state and the specific observable under consideration are changed, whereas local densities
etc are represented by the same operators before and after the transformation, and, in particular, still remain
perfectly well defined concepts even in the transformed setup. For any given such invariant operatorB, one can
show along the lines of [26] that the initial expectation value B 0U

á ñr ( ) is practically indistinguishable from the
pertinent equilibrium value B

dia
á ñr formostUʼs. In particular,Bmay quantify the amount of energy (or charge

etc)within amacroscopically small butmicroscopically still not too small volumeV, and thusB/V accounts for
the corresponding density at the location of that volume. The same remains true simultaneously for several
different observablesB1, ..,BK, whereKmay be sufficiently large to specify the entire spatial dependence of the
densities within any experimentally resolvable resolution. As a consequence,most ρU(0)ʼsmust be
(approximately) homogeneous and hence their relaxation (underH) is not expected to be particularly slow.

In conclusion, systemswith short range interactions in combinationwith initial conditions, which give rise
to non-negligible spatial inhomogeneities onmacroscopic scales,must be excluded in (20). Put differently, the
total energy, (angular)momentum, particle numbers etc within anymacroscopic part of the systemmust
remain constant during the entire relaxation process. Accordingly, the relaxation processmust not entail any
significant transport currents, caused by some unbalanced local densities.

For instance, such a transportless relaxation scenario often arises quite naturally when the system
Hamiltonian and the initial non-equilibrium state do not exhibit any spatial inhomogeneities onmacroscopic
scales. Strictly speaking, one also has to exclude the possibility of spontaneous symmetry breaking during
relaxation, initial states with non-vanishing totalmomentum (resulting in transport through system
boundaries), etc, see also section 4.

In case of notable spatial inhomogeneities, itmay still be possible to approximately partition the system into
sufficiently small, non-interacting subsystems and then describe the relaxationwithin each of themby (20).
Essentially, this is tantamount to thewell established concept of local equilibration. Usually, this local
equilibration ismuch faster than the subsequent, global equilibration of the small subsystems relatively to each
other. The latter, slow processes are no longer covered by our theory (20). In turn, the clear-cut separation of the
two time scales usually admits someMarkovian approximation for the slow processes, resulting in an
exponential decay, whose timescale still depends onmany details of the system. For similar reasons, also
correlation and entanglement properties of spatially well separated regions are beyond the realmof our present
theory; very roughly speaking, theymay be viewed as being governed by transport of information, whose
propagation speed is limited, e.g. by Lieb-Robinson bounds [2, 31].

Closely related further generalizations of the above local equilibration paradigm are the concepts of hindered
equilibrium, quasi-equilibrium,metastability, and, above all, prethermalization [1, 32–36]. Thefirst three
concepts play a crucial role for instance in chemical reactions with long-lived intermediates, or in quantum
systems exhibiting ‘glassy behavior’ [37, 38], while the concept of prethermalization refers, e.g. to a fast but only
partial thermalization of a certain subset ofmodes, (quasi-) particles4, or other generalized degrees of
freedom [14].

More formally, the latter cases have their origin in certain almost conserved quantities of the pertinent
HamiltonianH, which significantly slow down some intermediate steps of the temporal relaxation, while the
same is no longer true formost of the transformedHamiltoniansHUwithin the framework discussed at the end
of section 4.

As alreadymentioned, analogous conclusions remain valid evenwhen the equilibrated densities are actually
inhomogeneous, provided all of them are (approximately) equal to the initial densities. The only indispensable
prerequisite is the absence of transport during relaxation. This case is of particular interest when the system is

4
In general, quasiparticles are expected to become ameaningful concept only after prethermalization [33].

8

New J. Phys. 21 (2019) 053014 PReimann



composed of a small subsystem of actual interest and a bath. Usually the bath can be considered as equilibrated
right from the beginning, hence the decisive question is whether all densities in the small subsystem remain
(practically) unchanged during the equilibration process. In particular, if the subsystem is so small that no
meaningful local densities can be defined, then the above considerations no longer imply that some initial
conditionsmust be excluded a priori. In turn, if the subsystem is not small and all transport currents are still
excluded, one expects a largely similar relaxation behavior in the presence and in the absence of the bath.

6. Comparisonwith experiments

As recognized in the preceding section 5, an indispensable prerequisite of our present theory is that the initial
non-equilibrium statemust be spatially homogeneous. Thoughmost published experiments on equilibration
and thermalization admittedly do not fulfill this requirement, there still exists a considerable number which do
fulfill it.

A variety of such experimental (as well as numerical) data from the literature have been demonstrated
already in [14, 15] to agree remarkablywell with the theoretical predictions in (20) and (22). It is worth
mentioning thatmost of those data have not been quantitatively explained by any other analytical theory so far.

Note that the relevant time scale k TB in (22) is approximately 26 fs at room temperature. Inmany cases,
such extremely fast processesmay be experimentally difficult to observe, or they have simply not been looked for
until now. In particular, spatially inhomogeneous initial conditions usually exhibit amuch slower relaxation,
but they are not covered by our present theory.On the other hand, for systems at extremely low temperatures,
such as atomic Bose gases, the relevant time scale k TB will bemore easily accessible, hence these are
promising candidates for a comparisonwith our present theory [14, 15]. Finally, the relaxation dynamics near a
quantum critical point is known to be governed by the very same time scale k TB under very general
conditions, i.e. independently of any furthermicroscopic details of the system [39].

For a concrete experimental (or numerical) setup at hand, the value of A 0á ñr ( ) in (20) is sometimes quite
obvious, butmore often its quantitative determination is very difficult by purely theoreticalmeans, and likewise
for the long-time average A

dia
á ñr in (20). On the one hand, to analytically determine those values is not amain

issue of our present work.On the other hand, even the experimental data themselves are often reported in
arbitrary units. Therefore, the quantitative values of A 0á ñr ( ) and A

dia
á ñr in (20) usuallymust be taken over from

the experiment (or the numerics), hence the only remaining parameter of the theory is the temperatureT in (22).
Once again, the relevant temperature value, as discussed below (22), is often not available as an experimentally
determined quantity, and hencemust be estimated indirectly or treated as yet another fit parameter [14, 15].

In the remainder of this section, we focus on one of the rare examples, for which the pertinent temperature
in (22) is experimentally available. Namely, we consider the pump-probe experiment from [40], where the
electron gas in a graphenemonolayer is excited by an ultrashort ‘pump’ laser pulse, and then its re-
thermalization ismonitored by a second ‘probe’ pulse, yielding the number of electrons in the conduction band
NCB, see alsofigure 1. In other words, the observableA in (20) is chosen so that A N tt CBá ñ =r ( )( ) . Amore
detailedmodeling of the actual observableA corresponding to the experimentalmeasurement procedure would
be quite difficult, but fortunately is not needed!

Prior to the pumppulse, the system is at room temperature and A N tt CBá ñ =r ( )( ) is known to be negligibly
small [40]; i.e.NCB(t)=0 for t<0. At time t=0, the pump pulse suddenly excites a certain number
A N 0CB0á ñ =r ( )( ) of electrons into the conduction band (hence the discontinuity of the dotted line infigure 1).
Subsequently, these excited electrons generate secondary electron–hole pairs via impact ionization (inverse
Auger scattering) so that A N tt CBá ñ =r ( )( ) further increases [40]. If the electron gaswere strictly isolated from
the rest of theworld (as assumed in our theory), it would approach a new thermal equilibriumwith some
temperatureT. Identifying the corresponding long-time average ofNCB(t)with A

dia
á ñr in (20), one can deduce

fromfigure 6(a) in [41] the estimate

A A 1.5. 240dia
á ñ á ñr r  ( )( )

In particular, the corresponding electron gas temperature infigure 6(e) of [41] is comparable to the
experimentally relevant value (see below). However, in the actual experiment, there is—besides the dominating
electron–electron interactions—also a relatively weak interaction via electron–phonon scatteringwith the
atomic ‘background-lattice’ of the graphene layer, resulting in a relatively slow relaxation of the electron-lattice
compound towards a thermal equilibrium state of the total system,which is different from the abovementioned
hypothetical equilibriumof the electron gas alone, andwhich is not covered by our present theory (the energy of
the electron gas is an almost conserved quantity, see section 4). Experimentally, one observes that the phonon
effects are still approximately negligible for times up to about t=25 fs, while the electron gas already
approximately thermalizes. Therefore, only times up to t=25 fs have been included infigure 1. In turn, one can
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deduce from figure 4 in the SupplementalMaterial of [40] that the corresponding electron temperatureT in (22)
is approximately 2000 K.

The resulting theoretical prediction is indicated as dotted line infigure 1 and does not agree verywell with
the experimental data. The quite obvious reason is that while both laser pulses are extremely short in the
experiment, their duration is still not negligible compared to the relaxation time scale of the electron gas.
Theoretically, we roughly take into account the finite widths of both pulses by convoluting our above prediction
with aGaussian of standard deviation 5.5 fs. The latter value for the combinedwidths of both pulses has been
experimentally determined, as detailed in the SupplementalMaterial of [40] (see last paragraph of page 3
therein). The so obtained solid line infigure 1 agrees verywell with the experimental findings, especially in view
of the fact that, apart from the unknownunits of the experimental data, there remains no free fit parameter in the
underlying theory.

With respect to the probe pulse, the above convolutionwith aGaussian seems an intuitively quite plausible
modeling of the ‘smeared out’ time point t of the experimentalmeasurement.With respect to the pumppulse, it
represents a rather poor ‘effective description’ since our entire theoretical approach becomes strictly speaking
invalidwhen the duration of the initial perturbation becomes comparable to the relaxation time [14]. One the
other hand, it still seems reasonable to expect that the finite widths of the pump and of the probe pulses will have
roughly comparable effects on themeasurement outcome. Alternatively, onemay imagine that the probe pulse
is indeed very sharply peaked in time, but the location of the delta-peak is slightly different for spatially different
regions on the graphenemonolayer, and that those regions interact only veryweakly with each other.

7. Amended theory of transportless relaxation

As alreadymentioned in section 2, genericmany-body systems exhibit an extremely dense energy spectrum: for
amacroscopic systemwith f?1 degrees of freedom, the distance between neighboring energy levels is
exponentially small in f. Hence, even for an initial state ρ(0)with amacroscopically well defined energy, there is
still an exponentially large number of energy levels Enwhich a priorimay possibly be populatedwith a non-
negligible probability pn in (6).Moreover, it seems reasonable to assume that it is impossible to experimentally
realize initial states ρ(0)with appreciable populations pn of only a few energy levels. (The opposite case essentially
amounts to a Schrödinger cat and usually rules out equilibration in the sense of section 2 right from the
beginning). In view of p 1n nå = it follows that every single pnmust be extremely small (usually exponentially
small in f ), see also (8). All these assumptions are tacitly taken for granted in textbook statistical physics and also
in all what follows.

Evenwhen every single level population pn is very small, some of themmay still be evenmuch smaller than
others (for instance thosewith energies En far outside themicrocanonical energy window E E E,- D[ ]
mentioned below (11)). An important implicit assumption of the approach from section 3 is that some of them
are actually negligible (can be approximated as being strictly zero), while all the others can be treated on an equal
footing. But in practice, the quantitative choice of the threshold between negligible and non-negligible pnʼs is
often somewhat ambiguous.Moreover, all the remaining non-negligible pnʼs are usually still far frombeing
approximately equally large, hence it is not obvious why the larger ones should not play in some sense amore
important role than the smaller ones. Themain objective of this section is to amend the approach from section 3

Figure 1. Symbols: experimental pump-probe data fromfigure 3 in [40], representing the number of electronsNCB(t) in the
conduction band of a graphenemonolayer (in arbitrary units). Dotted: theoretical prediction (20), (22) for the observable A tá ñ =r ( )
N tCB ( )withT=2000 K, complemented by A 0tá ñ =r ( ) for t<0, A 200á ñ =r ( ) , and A 30

dia
á ñ =r (see (24) andmain text). Solid:

convolution of the dotted linewith aGaussian of standard deviation 5.5 fs, accounting for thefinite widths of the pump andprobe
laser pulses.
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along these lines. Accordingly, we no longer workwith (9)–(11) but rather return to the original
equations (1)–(7).

7.1. Setting the stage
Our starting point is the following property of the dynamics (5), which is intuitively quite plausible and
rigorously derived in appendix A: consider an arbitrary butfixed ρ(0)with level populations pn as defined in (6).
Nextwe choose a set of ‘auxiliary populations’ pñ, which satisfy p 0n ˜ and p 1n nå =˜ , but otherwisemay still be
arbitrary. Then there exists a corresponding ‘auxiliary density operator’ 0r̃( )with level populations

p0 25nn nr =˜ ( ) ˜ ( )

andwith the property that

A A 26t tá ñ = á ñr r ( )( ) ˜( )

is satisfied in very good approximation for arbitrary t andA on condition that

p p 1. 27
n

n nå - ∣ ˜ ∣ ( )

Taking for granted (27), we thus can andwill workwith tr̃( ) instead of ρ(t) in the following. In particular,
sufficiently small pnʼs can nowbe safely replaced by strictly vanishing pñʼs.Moreover, also the remaining non-
negligible pnʼsmay be ‘redistributed’ among the pñʼs within the limits imposed by (27). Since every single pn is
usually still extremely small (see above), quite significant changes ofmany level populations are still admissible
along these lines. (However, choosing all the non-vanishing pñʼs equally large is usually still impossible without
violating (27).)The explicit formof tr̃( ) is provided in appendix A, showing that tr̃( ) still closely resembles ρ(t)
if (27) is fulfilled.Moreover, whenever ρ(t) is a pure state, also tr̃( )will be pure.

Incidentally, the above approximation (or themore precise version in (A.1)) seems to be a quite interesting
new result on its own, thatmay also be of use for instance in the context of quantum information.

In a second stepwe assume that theHamiltonianwhich governs the time evolution of tr̃( ) is not anymore
given by (1) but rather by

H E n n . 28
n

nå ñá˜ ≔ ˜ ∣ ∣ ( )

As a result, one again finds that (26) remains a very good approximation on condition that

t t
E Emax

, 29

n I
n n

max

-

Î

 ≔
∣ ˜ ∣

( )

where I denotes the set of indices nwith non-vanishing level populations pñ,

I n p 0 . 30n >≔ { ∣ ˜ } ( )

Intuitively, thisfinding appears quite plausible upon a closer look at the time evolution of ρ(t) in (5) and the
analogous formula for tr̃( ). Amore detailed derivation is provided in appendix B.

7.2.Main idea and assumptions
Very roughly speaking, the key idea is to tailor suitable degeneracies of themodified energies En˜ ʼs in (28) so that
the probabilities pñ are equally distributed among the different eigenspaces.More precisely, the set I in (30)must

be partitioned intoM disjoint subsets I1,K, IMwith the property that all energies En˜ with näIμ are equal, say
E E n I: for all , 31n = Îm m

¢˜ ( )

and the concomitant ‘eigenspace populations’

p p: 32
n I

nå=m
¢

Î m

˜ ( )

are equal for allμ=1,K,M. Since p 1n I nå =Î ˜ we can conclude that

p 1 33
M

1
å ¢ =
m

m
=

( )

and thus

p M1 34¢ =m ( )

for allμ=1,K,M.
In the above described construction, two further constraints have to be taken into account for reasons that

will become clear shortly: (a) the number of subsetsMmust be large,
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M 1. 35 ( )

(b)The energy shifts E En n-˜ must remain so small that tmax in (29) is stillmuch larger than the actual relaxation
time scale of the systemunder consideration.

Since generic level populations pn and energy level distances are extremely small (see beginning of this
section) and in view of the possibility to ‘redistribute’ the pnʼs among the pñʼs (see below (27)) and to ‘rearrange’
the energy levels (see (29)), it seems reasonable to expect that the above described construction can be
successfully implemented inmany cases of interest. One particularly simple possibility is as follows:

Assuming that the system exhibits amacroscopically well defined energy (see above equation (12) and
beginning of this section), there exists amicrocanonical energy windowW E E E,- D≔ [ ], whosewidthΔE is
small on themacroscopic scale, but still so large that we can set p 0n =˜ for all nwith E WnÎ (see below
equation (27)). In otherwords, the set I in (30) only contains nʼs with EnäW. Similarly as above (9), we can and
will temporally redefine the corresponding indices so that nä{1,K,D} for all those Enʼs contained inW, and
thus I={1,K,D}.Moreover, we can assumewithout loss of generality that those Enʼs are ordered by
magnitude (i.e.En+1�En for all nä{1,K,D−1}). In a second step, we define M̃ as the smallest integer
with the property that M p1 max˜ ˜ , where p pmaxn nmax

˜ ≔ ˜ . According to the discussion at the beginning of
this section, pmax

˜ will usually be exponentially small in f for a systemwith f degrees of freedom, hence M̃ will be
exponentially large in f. Next, we choose I1≔{1,K,D1}, whereD1 is the smallest integer with the property that

p M1n
D

n1
1 å = ˜ ˜ . Finally, the latter inequality can be turned into an equality, i.e. p M1n

D
n1

1å == ˜ ˜ , by slightly
reducing some of the pñʼs with n�D1 (and at the same time slightly increasing somewith n>D1). By
modifying the pñʼs along this line, one readily sees that the original sumon the left hand side of (27)may
increases atmost by p2 max

˜ . Likewise, I2≔ {D1+1,K,D2}, whereD2 is the smallest integer with

p M1 ;n D
D

n11
2 å = + ˜ ˜ then the pñʼs are again slightly adjusted so that p M1 ;n D

D
n11

2å == + ˜ ˜ and so on for

I I, , M3 ¼ ˜ . Altogether, the original sumon the left hand side of (27) thusmay increases atmost by p M2 max
˜ ˜ ,

which is still exponentially small in f. In a third step, we defineD0≔ 1 and E E ED D 1
d -m m m-≔ for

M1, ,m = ¼ ˜ , i.e. δEμ quantifies the energy variationswithin the subset Iμ. Let us now focus on the set S of all

μʼs with the property that E E Md > Dm ˜ . Observing that D DM =˜ and E E E EM
D1 1 då = - Dm m=

˜
, the

number of elements contained in S, henceforth denoted as S∣ ∣, must satisfy S M∣ ∣ ˜ . In turn, the complement
S M S1, ,¼¯ ≔ { ˜ }⧹ contains M M S-≔ ˜ ∣ ∣elements. It readily follows thatM is still exponentially large in f.
The last step consist in redistributing the populations pñ of all subsets IμwithμäSuniformly among thosewith

Sm Î ¯. By construction, after this redistribution of the pñʼs, the ‘new’ value of pn I nå Î m
˜ is thus equal to 1/M if

Sm Î ¯ and zero otherwise. Furthermore, the contribution of thisfinal redistribution of the pñʼs to the left hand
side in (27) can be upper bounded by S M2∣ ∣ ˜ , which is still exponentially small in f. If we now change the labelsμ
so that S M1, ,= ¼¯ { }and define E ED¢m m≔ , then all requirements of our above described construction are
fulfilled. In particular, tmax in (29)will be exponentially large in f.

7.3.Derivation of themain result
In order to explain themain ideas, we temporarily focus on pure states ρ(t) (formixed states see section 7.6).
Hence, also tr̃( ) is pure (see below (27)), i.e. there exist certain (normalized) vectors ty ñ∣ ( ) and ty ñ∣ ˜ ( ) so that

t t t , 36r y y= ñá( ) ∣ ( ) ( )∣ ( )

t t t . 37r y y= ñá˜( ) ∣ ˜ ( ) ˜ ( )∣ ( )

Since the dynamics of ρ(t) is governed by theHamiltonianH from (1) and that of tr̃( ) by H̃ from (28), it follows
that

t e 0 , 38Hti y yñ = ñ-∣ ( ) ∣ ( ) ( )

t e 0 , 39Hti y yñ = ñ-∣ ˜ ( ) ∣ ˜ ( ) ( )˜

see also (2) and (3). Exploiting (37), the level populations in (25) can be rewritten as

p c , 40n n
2=˜ ∣ ∣ ( )

where c n 0n yá ñ≔ ∣ ˜ ( ) . Since p 0n =˜ unless näI (see (30)) it follows that
c n0 . 41

n I
nåy ñ = ñ

Î

∣ ˜ ( ) ∣ ( )

In passingwe note that a pure state like in (36)may still exhibit a small population pn of every single energy
level, as required throughout our present approach. In particular, the diagonal ensemble in (7), which governs
the long-time behavior (after equilibration)will then exhibit a small purity Tr dia

2r{ }notwithstanding the fact
that we are dealingwith a pure state, i.e. Tr 0 12r ={[ ( )] } .
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Taking for granted that the construction from the previous subsection has been successfully implemented,
the approximation

A t A t 42t y yá ñ = á ñr ˜ ( )∣ ∣ ˜ ( ) ( )( )

will thus be fulfilled verywell for all t tmax . Furthermore, it follows from (32) and (40) that the vectors

p
c n

1
43

n I
nåy¢ ñ

¢
ñm

m Î m

∣ ≔ ∣ ( )

satisfy

44y y dá ¢ ¢ ñ =m n mn∣ ( )

and that (41) can be rewritten as

p0 . 45
M

1
åy yñ = ¢ ¢ ñ
m

m m
=

∣ ˜ ( ) ∣ ( )

Moreover, we can infer from (28) and (31) that

H E 46y y¢ ñ = ¢ ¢ ñm m m˜ ∣ ∣ ( )

andwith (39) and (45) that

t p e . 47
M

iE t

1

åy yñ = ¢ ¢ ñ
m

m m
=

- ¢m∣ ˜ ( ) ∣ ( )

Exploiting (42), wefinally arrive at

A Ae 0 , 48t

M
E E t

, 1

i å r= ¢ ¢r
m n

mn nm
=

-n m
¢ ¢⟨ ⟩ ( ) ( )( )

( ) /

A A , 49y y¢ á ¢ ¢ ñnm n m≔ ∣ ∣ ( )

p p0 0 , 50r y r y¢ á ¢ ¢ ñ = ¢ ¢
mn m n m n( ) ≔ ∣˜( )∣ ( )

where the last relation follows from (37) and (45). In particular, 0r¢mn ( ) is a well definedM×M densitymatrix
(Hermitian, positive, of unit trace).

The right hand side of (48) is formally identical to that of (10). But now all level populations are equal (see
(34)), i.e. we got rid of the shortcomingsmentioned at the beginning of section 7.

At this point, the assumption (a) from (35) is needed. Namely, due to this assumption and the formal
equivalence of (48)with (10), the heuristic considerations from section 3 or themore rigorous treatment in
[14, 15] can be adopted to arrive at the counterpart of (20), namely

A A G t A A , 51t 0dia dia
á ñ = á ñ + á ñ - á ñr r r r¢ ¢ ¢( )[ ] ( )( ) ( )

G t M t M1 1 , 522c - -( ) ≔ ( ∣ ( )∣ ) ( ) ( )

t
M

1
e , 53

M
E t

1

i åc
m=

¢m( ) ≔ ( )

p p0 , 54
M

, 1
år y y¢ ¢ ¢ ¢ ñá ¢

m n
m n m n

=

( ) ≔ ∣ ∣ ( )

p . 55
M

dia
1

år y y¢ ¢ ¢ ñá ¢
m

m m m
=

≔ ∣ ∣ ( )

Exploiting (35) oncemore, one can infer from (52), similarly as in (21), the very accurate approximation

G t t . 562c=( ) ∣ ( )∣ ( )

Upon comparison ofχ(t) in (53)withf(t) in (17), themain properties ofG(t) in (56) readily follow from
those of F(t) in (21), see above (22): (i)G(0)=1. (ii) 0�G(t)�1 for all t. (iii)G(t) remains negligibly small for
the vastmajority of all sufficiently large times t. In the latter statement we took (35) for granted andwe assumed
without loss of generality that the E¢m in (31)were chosen so that E E¢ ¹ ¢m n for all m n¹ .

Setting t=0 in (51), the above property (i) implies that

A A . 570 0á ñ = á ñr r¢ ( )( ) ( )

More precisely, (57) is an approximation of the same quality as (51) itself. Next wemake use of the assumption
(b) below (35) that A tá ñr ( ) approaches its approximately constant long-time limit already for times tmuch
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smaller than tmax in (29). On the one hand, for (most of) those times t the result (51) is still valid and the function
G(t) thereinmust assume values close to zero.On the other hand, we know from section 2 that A tá ñr ( ) stays very
close to A

dia
á ñr formost tʼs beyond the initial relaxation time span.We thus can conclude that in very good

approximation

A A . 58
dia dia

á ñ = á ñr r¢ ( )

By introducing (57) and (58) into (51)we arrive at themain new result of our paper, namely

A A G t A A . 59t 0dia dia
á ñ = á ñ + á ñ - á ñr r r r( )[ ] ( )( ) ( )

7.4.Discussion ofG(t)
Afirst set of basic qualitative features ofG(t) are the properties (i)–(iii)mentioned below (56). The remainder of
this subsection is devoted to recastingG(t) from (56) and (53) into physicallymore illuminating and practically
more convenient forms.

By utilizing the approximation (34) and the definition (32)we can concludewith (53) that

t p e . 60
M

n I
n

E t

1

i å åc =
m= Î

¢

m

m( ) ˜ ( )

Observing (31) and that the set I is the disjoint union of the subsets I1, .., IM (see above (31)) implies

t p e . 61
n I

n
E ti n åc =

Î

( ) ˜ ( )˜

Since p 0n =˜ for n IÎ (see (30))we arrive at

t p e , 62
n

n
E ti n åc d= +( ) ( )˜

p p e . 63
n

n n
E ti n åd -≔ ( ˜ ) ( )˜

By similar (but simpler) calculations as in appendix B (especially around (B.26)) in combinationwith our
assumption (29) onefinds that the En˜ ʼs in (62) can be verywell approximated by the Enʼs. Furthermore, δ from
(63) can be safely neglected in (62) due to our assumption (27). Exploiting (25), we thus obtain as afirstmain
result of this subsection

t 0 e Tr 0 e . 64
n

nn
E t Hti in  åc r r= =( ) ( ) { ( ) } ( )

This is the announced amendment of (17), quantitatively accounting for our previous expectation that larger
level populations ρnn(0) should somehowplay amore important role than smaller ones.

Next we rewrite (64) in the equivalent form

t E Ed e , 65Eti òc r=( ) ( ) ( )

E E E0 . 66
n

nn når r d -( ) ≔ ( ) ( ) ( )

The function ρ(E) thus quantifies the detailed population of all the energy levels, andχ(t) is its Fourier
transform5.Usually, the energies En are extremely dense and the sumof delta functions in (66) can be replaced by
a reasonably smoothened approximationwithout any notable change ofχ(t) in (65) during the entire initial
relaxation time period, see also appendices A andB. In otherwords, ρ(E)may be viewed as the smoothened
(coarse grained) energy distribution of the system.While this distribution is hardly ever available in experiments,
it often is in numerical simulations, as exemplified in section 8.

The same approximation as for F(t) in (22) is readily recovered forG(t) via (56) and (65) if the ρnn(0) in (66)
are (approximately) equally large for allEn below some threshold energyE and (practically)negligible for all
En>E, and provided that theHamiltonianH exhibits reasonable thermodynamic properties (well defined
entropy S(E) and (positive, intensive) temperatureT S E1 ¢≔ ( )). The same result

G t t k T1 1 67B
2= +( ) [ ( ) ] ( )

still applies if only energies Enwithin amicrocanonical energywindow E E E,- D[ ] contribute, as long as its
widthΔE ismuch larger than the thermal energy k TB , as it is usually the case.More precisely, it is only the coarse
grained ρ(E) (see below (66)) thatmust closely resemble the onewhichwould be obtained for strictly equally
large ρnn(0)ʼs for all E E E E,n Î - D[ ]. The actual ρnn(0)ʼs (before coarse graining)may thus still exhibit quite

5
Likewise,G(t) in (56)may be viewed as the Fourier transformof E E E E Ed2 òr r r¢ - ¢ ¢( ) ≔ ( ) ( ) (self-convolution of ρ(E)).
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considerable ‘fine grained’ variations. In otherwords, the approximation (67) is found to remain valid under
substantially weaker premises than its predecessor in (22).

Instead of such amicrocanonical distribution, onemight also consider a canonical distribution, i.e. the
ρnn(0)ʼs are (approximately) proportional to E k Texp n B-{ }. Similarly as in (22), a straightforward calculation
then yields

G t t k T E T k Texp d d . 68B
2

B= -( ) { ( ) ( ) ( )} ( )

Note that dE(T)/dT is the system’s specific heat and dE(T)/d(kBT) is a dimensionless numberwhich is typically
comparable in order ofmagnitude to the number f of the system’s degrees of freedom.However, itmust be
emphasized that there is no reasonable argument of why the far from equilibrium initial state ρ(0) at time t=0
should exhibit a canonical energy distribution in the basis of theHamiltonianHwhich governs the relaxation
dynamics of the isolated system for t>0.

For systems at thermal equilibrium, the so-called equivalence of ensembles is often taken for granted under
quite general conditions. However, no such equivalence is to be expected for the temporal relaxation of far from
equilibrium initial states, as exemplified by the very different findings (67) and (68).

More generally speaking, the above examples illustrate the fact that the functionG(t)depends on the details
of the initial energy distribution, but does not depends on any further properties of the initial condition.

Taking into account (1), (36), and (38), one can rewrite (64) as

t t 0 , 69c y y= á ñ( ) ( )∣ ( ) ( )

i.e.χ(t) represents the overlap between the time evolved state and the initial state. Similarly, (56) takes the form

G t t 0 , 702y y= á ñ( ) ∣ ( )∣ ( ) ∣ ( )

i.e.G(t)may be viewed as a survival probability (of the initial state) or return probability (of the time evolved
state), sometimes also denoted as (quantum)fidelity.

Mathematically speaking, (38) and (69) immediately imply that

t t s s 71c y y= á + ñ( ) ( )∣ ( ) ( )

for any, arbitrary butfixed reference time point s Î . Physically speaking, this observation is quite remarkable:
the crucial functionG(t) in (59) can be recovered from the overlap decay in (71)with respect to any time evolved
state sy ñ∣ ( ) of the system, even if the reference time s is chosen very ‘late’ and thus onemight have expected that
the systemhas already equilibrated in anymeaningful sense, and, in particular, has ‘forgotten’ the initial
disequilibrium conditions.

7.5. Summary anddiscussion
Themain result of this section consists in the approximation (59) for the temporal relaxation, whereG(t) in (56)
follows from either of the equivalent forms (64), (65), or (69). They encapsulate the details of how the function
G(t) in (59) decays from its initial valueG(0)=1 towardsG(t);0 for (most) sufficiently large t. In particular,
upon rewriting (59) as

A A

A A
G t , 72

t

0

dia

dia

á ñ - á ñ

á ñ - á ñ
=

r r

r r
( ) ( )( )

( )

taking for granted the assumptions underlying this result (see below), and observing thatG(t) in (70) is
independent ofA, we can conclude that, for any given ρ(0), the left hand side in (72) exhibits for all observablesA
the same temporal relaxation behavior.

Provided that the additional information required in (64), (65), or (69) is available, this result (59) represents
a significant step beyond the previously known approximation (20), wherein F(t) follows from (17) and (21).

In particular, to determine F(t) one usually needs to explicitly specify some appropriate energy window (see
above equation (12)). In addition, in order to evaluate (17) and (21), onemust determine the eigenvalues of the
Hamiltonian. In contrast,G(t) can be determined via (70)without explicitly specifying some energy window and
without diagonalizing theHamiltonian.

The underlying key idea andmain requirements essentially amount to the following three steps: to begin
with, all extremely small level populations pn are neglected. The remaining, non-negligible pnʼs are then
distributed into subsets Iμwith approximately equal net populations pn I nå Î m

.Moreover, all energies En
belonging to the same subsetmust be very close to each other. In the end, the initially neglected pnʼs are
redistributed among the subsets, and also the non-negligible pnʼsmay still be slightly adjusted, themain aim
being to further equalize the subset populations.

Once such a rearrangement of the energy eigenvalues and redistribution of the level populations is
accomplished, the same arguments as in section 3 or in [14, 15] can be adopted to arrive at (59). In so far as these
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arguments are non-rigorous (no error bounds or systematic improvements or are available), the result (59)may
be viewed as an approximative proposition of the same character.

The remaining requirements are largely the same as in sections 4 and 5. The basic reason is that the
prediction (59) is essentially amodification of (20), it is not expected to cover previously excluded cases.

In passingwe note thatwhen focusing for a given pure state (36) on the particular observable
A 0 0y y= ñá∣ ( ) ( )∣, then the expectation value on the left hand side of (59) coincides exactly with the
survival probability in (70). On the right hand side of (59), one readilyfind that A 10á ñ =r ( ) and A

dia
á ñ =r

p pmaxn n n n
2 å . Since pn=1 for all n (see (8) and beginning of section 7), our result (59) thus reproduces the

exact result verywell in this special case. The latter exact result apparently goes back to Torres-Herrera, Vyas,
and Santos (see [16, 17] and further references therein), hence our present workmay be viewed as a
generalization of theirs.

7.6.Mixed states
So far, ourmain result (59) has only be justified for pure states (see section 7.3). Turning tomixed states, we
recall that any given density operator ρ can bewritten in the form

w 73
j

J

j j j
1

år y y= ñá
=

∣ ∣ ( )

for some suitably chosen set of pure (normalized) states jy ñ∣ andweightswj�0with w 1j
J

j1å == . In general,

the vectors jy ñ∣ need not be pairwise orthogonal and not even linearly independent, hence there usually exist
many different ‘representations’ (73) of the same density operator ρ. The same properties remain truewhen the
density operator and the pure states in (73) acquire a time dependence via the pertinent Liouville-vonNeumann
and Schrödinger equations, respectively. Such a time dependence is henceforth tacitly assumed in (73), while
arguments t are still omitted.

Taking for granted that every pure state jy ñ∣ in (73) satisfies the requirements from section 7.5, the
approximation (59)will be valid for each of them.Next we observe that all expectation values appearing in (59)
are linear functionals of ρ. But in general, alsoG(t) on the right hand side is a non-trivial (nonlinear) functional
of ρ according to (56) and (64). It follows that (59) cannot be valid in full generality (the left hand side is linear
and the right hand side nonlinear in ρ). However, under the extra assumption thatG(t) is (approximately)
identical for all jy ñ∣ with non-negligible weightswj in (73), one readily concludes that also their linear
combination in (73)will satisfy (59), where the symbols ρ and diar in (59)now refer to the actual density operator
ρ on the left hand side of (73), and likewise for the ρʼs appearing in (64)–(66). It seems reasonable to expect that
such approximately identicalG(t)ʼsmay arise—at least for one of themany possible representations (73) of the
same ρ—inmany cases of interest.

In fact, if the initial state ρ(0) is of low purity (‘stronglymixed’), i.e. Tr 0 12r {[ ( )] } , it is rigorously shown
in appendix C that ourmain result (59) still amounts to a very good approximation, whereG(t) is again given by
(56) and (64). In otherwords, (59) is known to apply both for pure and stronglymixed states. Once again, it is
therefore quite plausible that the same result will remain (approximately) correct also in the intermediate case,
i.e. when the purity Tr 0 2r{[ ( )] } is neither unity nor close to zero, see also end of appendix C.However,
providing amore rigorous demonstration or criterion appears to be a very daunting task.

8. Comparisonwith numerics

As alreadymentioned at the beginning of section 6, the spatial homogeneity requirement of our present theory
considerably restricts the number of suitable experimental and numerical examples in the literature, withwhich
itmight be compared.Moreover, our amended theoretical prediction (59) requires information about the
functionG(t) in (56) and thus either about the level populations in (64)–(66) or about the overlaps in (69), which
is not available inmost experiments up to now.However, it is noteworthy that the overlap of two quantum
many-body states has recently been successfullymeasured for ultra-cold bosonic atoms in optical lattices [42],
hence a direct comparison of our theorywith experimentsmay become feasible in the future.With respect to
numerical results, the latter information should in principle be accessible quite often, but in practice it is
provided as published data in a relatively small number of cases. In the following, we compare our theorywith
two such examples, for which all the necessary data are available.

Our first example is the extendedHubbardmodel for 8 strongly correlated fermions on a one-dimensional
lattice with 24 sites, whose thermalization after a quantumquench has been numerically explored byRigol in
[43]. Figure 2 exemplifies a representative non-integrable casewith nearest-neighbor hopping and interaction
parameters τ=V=1 and next-nearest-neighbor hopping and interaction parameters V 0.32t¢ = ¢ = ,
corresponding to the data from figures 2(g) and 7(a) in [43]. The numerical findings are compared infigure 2
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with the amended theory from (56), (59), and (64), as well as with its predecessor from (20) and (22), or,
equivalently, the approximation from (59) and (67). In view of the still quite notable numericalfinite size
fluctuations (8Bosons on 24 sites), whosemagnitude can be estimated from the non-stationarity of the
numerical data beyond the actual relaxation time span in figure 2 (see alsofigure 2(g) in [43]), it is impossible to
decidewhich of the two theoretical curves exhibit a better agreement.Within these numerical finite size effects
(which are beyond the theory) both curves agree reasonably well with the data.We alsomay recall that the only
fit parameters of the theory are the initial value A 0á ñr ( ) and the long-time average A

dia
á ñr . As alreadymentioned in

section 6, the quantitative determination of those two values for the quite elaborate observable at hand (a
dimensionless descendant of the density-density structure factor [43]) is not amain objective of our
present work.

Our second example is the spin-chainmodel, numerically explored byTorres-Herrera, Vyas, and Santos in
[16], see figure 3. Specifically, the relaxation of an initial state, consisting of 8 alternating pairs of parallel spins is
observed via the correlationCz(t) of two neighboring spins in themiddle of the chain [16], for which the initial
expectation value is known to beCz(0)=0.25. The two examples infigure 3withλ=0 correspond to
integrable systems, which are in general not expected to thermalize in the long-time limit, while the three
examples with 0l ¹ are non-integrable, henceCz(t) should approach the thermal long-time limit zero. This

Figure 2. Symbols: numerical data fromfigure 2(g) in [43] for the density-density structure factor δNk(t) of a one-dimensional
fermionicmodel system (formore details seemain text and [43]). Solid: theoretical prediction from (59), whereG(t)was evaluated
according to (56) and (64) by employing the numerically determined values ofEn and ρnn(0) from [43], seefigure 7(a) therein (the
original data were kindly provided byMarcos Rigol). Dashed: theoretical prediction from (20) and (22) (or from (59) and (67)),
adopting the estimateT=3 provided by [43]. Both in (20) and (56), the quantitative values of A 0á ñr ( ) and A

dia
á ñr have beenfitted to

the numerical data. Following [43], the units have been chosen so that kB=ÿ=1.

Figure 3. (a)Numerical results for the spin–spin correlationCz(t), adopted from the top right plot in figure 8 of [16]. The considered
system is a one-dimensional spin-1/2model with 16 spins, coupling J, anisotropy parameterΔ, ratio between nearest-neighbor and
next-nearest-neighbor couplingλ, and ÿ=1. The system is isotropic forΔ=1 and anisotropic otherwise. The case 0, 0lD ¹ =
corresponds to the integrableXXZmodel, while themodel is non-integrable for 0, 0lD ¹ ¹ . (b)The corresponding numerical
results for the survival probabilityG(t) in (70), adopted from the top right plot in figure 5 of [16].
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expected long-time behavior is reasonably but not extremely well fulfilled by the numerical results for the two
integrable and the three non-integrable cases infigure 3(a). In fact, temporal ‘oscillations’ comparable to those of
the cross- and star-symbols infigure 3(a) for tä[1, 2] are found to persist in allfive cases up to (practically)
arbitrarily large times t (not shown). Similarly as in the previous example infigure 2, these persistent oscillations
are probably due to the still relatively small system size (16 spins). In otherwords, it seems reasonable to expect
that the behavior ofCz(t) formuch larger systemsmay still deviate by 0.05 (or evenmore) from the
corresponding results infigure 3(a). Analogously, the numerically obtained results from [16] for the survival
probabilityG(t) in (70) are reproduced infigure 3(b). Apparently, the numerical finite size effects for this
quantityG(t) are considerably weaker than for the quantityCz(t) depicted infigure 3(a).

To connect these numerical results with our present theory,Cz(t) infigure 3(a)must identifiedwith A tá ñr ( )
in equation (59), whileG(t) infigure 3(b) coincides withG(t) in (59). Still, the theory does not imply any
prediction regarding either of these two quantities themselves. Rather, it predicts that the two quantities should
be related to each other according to (59). In doing so, the initial value A 0á ñr ( ) appearing in (59) is known to be
Cz(0)=0.25 (see above).Moreover, the long-time limit A

dia
á ñr appearing in (59)must be estimated from the

long-time behavior ofCz(t) infigure 3(a). In view of the abovementionedfinite size effects of the numerical data
forCz(t) infigure 3(a), the agreement between this theoretical prediction of equation (59) and the numerical
findings infigure 3 is quite satisfying.

9. Conclusions

Themain result of this paper is the following approximation for the temporal relaxation of a (pure ormixed)
state ρ(t), whose dynamics is governed by aHamiltonianwith energy eigenvaluesEn and eigenstates nñ∣ :

t A A n nTr Tr 0 0 e , 74
n

tiE

2

n år r r= á ñ{ ( ) } { ( ) } ∣ ( )∣ ( )

where the observableA has been tacitly ‘rescaled’ so that the long-time average of the left hand side is zero.
Thefirstmain prerequisite for (74) is that the systemmust equilibrate at all, i.e. the left hand side of (74)must

remain very close to a constant value (here assumed to be zero) for the vastmajority of all sufficiently large times
t, where ‘very close’ ismeant in comparisonwith the full range of possiblemeasurement outcomes ofA. To
guarantee the latter equilibration property, we have taken for granted a set of sufficient conditions, which are
already rather weak, andwhich could still be considerably weakened in principle.Most importantly, it is
required that there are no degenerate energies and energy gaps (i.e. the energy differences Em−En are non-zero
andmutually different for all pairs m n¹ ), and that all level populations n n0rá ñ∣ ( )∣ are small (cf (6) and (8)). On
the other hand, it is not required that the system exhibits thermalization, i.e. the long-time average in (74)may
still be different from the pertinent thermal equilibrium value.

The secondmain prerequisite for (74) is the absence of any notablemacroscopic transport currents, caused,
e.g. by some initially unbalanced local densities. Such a transportless relaxation can usually be taken for granted
if both the systemHamiltonian and the initial state are spatially homogeneous onmacroscopic scales. Amore
detailed discussion of further possible prerequisites for (74) is provided by sections 4 and 5 (see also sections 7.2
and 7.6). In fact, formulating conditions, which are strictly sufficient for (74) but not too restrictive for practical
purposes, remains an open problem. In this respect, the situation is somewhat similar as in density functional
theory, randommatrix theory, and other ‘non-systematic’, but practically very successful approximations.

Themost striking property of (74) is that the considered observableA does notmatter in the last factor,
which encapsulates the entire time dependence of the relaxation. Generically, this factor is unity for t=0 and
very close to zero for practically all sufficiently late times. Specifically for a pure initial state 0y ñ∣ ( ) , the last factor
in (74) can be identifiedwith t 0 2y yá ñ∣ ( )∣ ( ) ∣ (survival probability). On the one hand, (74)may thus be viewed as
a (very substantial) generalization of previous results by Torres-Herrera, Vyas, and Santos [16, 17]. On the other
hand, also the earlier results from [14, 15] are recovered as a special case, namelywhen all level populations
n n0rá ñ∣ ( )∣ can be approximated as being either strictly zero, or equal to some (small butfinite) constant value.

Inmany cases of practical interest, the last factor in (74) can be further approximated as t k T1 1 B
2+[ ( ) ],

whereT is the temperature after thermalization, or, if the systemdoes not thermalize, the temperature of a
thermalized auxiliary systemwith the same (macroscopic) energy as the true system. In general, transportless
relaxation is thuspredicted to benon-exponential in time, and the relevant time scale k TB to be very small.

In principle, all these predictionsmay be viewed as approximative propositions due to the non-rigorous line
of reasoning adopted in section 3 or in [14, 15]. On the other hand, they have been validated by showing that they
compare very favorably with various previously published experimental and numerical results for systems,
which satisfy the abovementionedmain prerequisites of the theory reasonably well.
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AppendixA

Afirstmain goal of this appendix is to justify the approximation at the beginning of section 3 and the closely
related approximation (26)under the condition (27).More precisely, we consider an arbitrary butfixed density
operator ρ(0)with level populations pn=ρnn(0) (see (6)) and an arbitrary butfixed set of ‘auxiliary populations’
pñ, satisfying p 0n ˜ and p 1n nå =˜ . The abovementionedmain goal now consist in demonstrating that there
exists an ‘auxiliary density operator’ 0r̃( )with level populations p0nn nr =˜ ( ) ˜ andwith the property that

A A p p A.1t t A
n

n n åá ñ - á ñ D -r r∣ ∣ ∣ ˜ ∣ ( )( ) ˜( )

for arbitrary t andA, where the time evolution of both ρ(0) and 0r̃( ) is governed by theHamiltonian (1), and
where AD is the range of the observableA, i.e. the difference between its largest and smallest eigenvalues. Since
any realmeasurement device corresponding to the observableA has a finite range AD as well as afinite
resolution Ad (see also section 2), it follows that the two expectation values on the left hand side of (A.1) are
experimentally indistinguishable if the sumon the right hand side is smaller than A A

2d D( ) . Altogether, this
amounts to the precise quantitative justification of the two abovementioned approximations.

A secondary goal of this appendix is to show that whenever ρ(t) is a pure state then tr̃( )will be pure as well.
To beginwith, we recall from the beginning of section 2 the relations

A t ATr , A.2t rá ñ =r { ( ) } ( )( )

t 0 , A.3t t r r=( ) ( ) ( )†

e . A.4t
Hti -≔ ( )

The left hand side of (A.4) is understood as usual:

n ne e . A.5Ht

n

E ti i n å ñá- -≔ ∣ ∣ ( )

Exploiting the cyclic invariance of the trace in (A.2), we can conclude that

A BTr 0 , A.6t rá ñ =r { ( ) } ( )( )

B A . A.7t t ≔ ( )†

For notational simplicity, the dependence ofB in (A.7) on thas been omitted.
Focusing temporarily on the case that p 0 0n nnr >≔ ( ) for all nwedefine

g p p , A.8n n n≔ ˜ ( )

P g n n , A.9
n

nå ñá≔ ∣ ∣ ( )

Q P g n n1 , A.10
n

n å- = - ñá≔ ( )∣ ∣ ( )

P P0 0 . A.11r r˜( ) ≔ ( ) ( )

From these definitions it follows that

n P P n g p0 0 0 . A.12nn n nn n
2r r r= á ñ = =˜ ( ) ∣ ( ) ∣ ( ) ˜ ( )

In otherwords, 0r̃( ) indeed exhibits the given level populations pñ.Moreover, one readily verifies that 0r̃( ) is a
non-negative, Hermitian operator of unit trace, i.e. a well-defined density operator.

If ρ(0) is a pure state, it can bewritten in the form j jñá∣ ∣ for some jñ∣ of the form c nnå ñ∣ . Bymeans of (A.9)
and (A.11) it follows that 0r̃( ) can be rewritten as j jñá∣ ˜ ˜ ∣with g c nn njñ å ñ∣ ˜ ≔ ∣ , i.e. also 0r̃( ) is a pure state.

Since the dynamics of 0r̃( ) and of ρ(0) are governed by the sameHamiltonianH, it follows exactly as in
(A.2)–(A.7) that
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A BTr 0 . A.13t rá ñ =r {˜( ) } ( )˜( )

According to (A.10)wehave Q P + = and hence

B Q B P BTr 0 Tr 0 Tr 0 , A.14r r r= +{ ( ) } { ( ) } { ( ) } ( )

P B P QB P PBTr 0 Tr 0 Tr 0 . A.15r r r= +{ ( ) } { ( ) } { ( ) } ( )

Due to (A.11), the last term in (A.15) is equal to BTr 0r{˜( ) }. Togetherwith (A.6) and (A.13)we thus can conclude that

A A R R , A.16t t 1 2D á ñ - á ñ = +r r≔ ( )( ) ˜( )

R Q BTr 0 , A.171 r≔ { ( ) } ( )

R P QBTr 0 . A.182 r≔ { ( ) } ( )

Since ρ(0) is a non-negativeHermitian operator, there exists aHermitian operatorσwith the property that
σ2=ρ(0). Considering C CTr 1 2{ }† as a scalar product between two arbitrary linear (but not necessarily
Hermitian) operatorsC1,2, the Cauchy–Schwarz inequality takes the form C CTr 1 2

2 ∣ { }∣†

C C C CTr Tr1 1 2 2{ } { }† † . Choosing C Q1 s= ( )† andC2=σBwe can infer from (A.17) that

R Q Q B BTr Tr . A.191
2  ss s s∣ ∣ { } { } ( )† † † †

Observing that all operators on the right hand side of (A.19) areHermitian and exploiting the cyclic invariance of
the trace yields

R Q BTr 0 Tr 0 . A.201
2 2 2 r r∣ ∣ { ( ) } { ( ) } ( )

Evaluating the trace bymeans of the eigenbasis ofB results in

B B BTr 0 Tr 0 , A.212 2 2r r =   { ( ) } { ( )} ( )

where C  indicates the operator normof an arbitraryHermitian operatorC (largest eigenvalue inmodulus).
From (A.7)we can infer that the eigenvalues and hence the operator normofA andB are equal. Altogether, we
thus can rewrite (A.20) as

R A S , A.221   ∣ ∣ ( )

S QTr 0 . A.232r≔ { ( ) } ( )

Evaluating the trace in (A.23) bymeans of the energy basis nñ∣ and exploiting (A.10) yields

S n Q n g0 0 1 . A.24
n

nn n
2 2å år r= á ñ = -∣ ( ) ∣ ( )( ) ( )

One readily verifies that x x1 12 2- -( ) ∣ ∣ for any x�0. Recalling that ρnn(0)=pn>0 thus implies

g p g p p g0 1 1 . A.25nn n n n n n n
2 2 2r - - = -( )( ) ∣ ∣ ∣ ∣ ( )

Since p g pn n n
2 = ˜ , see (A.8), we finally can rewrite (A.24) as

S p p . A.26
n

n n å -∣ ˜ ∣ ( )

The treatment ofR2 in (A.16) is similar and thus only briefly sketched:

R BP Q
BP PB Q Q

B Q A S

Tr
Tr 0 Tr 0

Tr 0 Tr 0 . A.27

2
2 2

2 2 2




s s
r r
r r

=

=  

∣ ∣ ∣ {( )( )}∣
{ ( ) } { ( ) }
{ ˜( )} { ( )} ( )

Introducing (A.22), (A.26), and (A.27) into (A.16) yields

R R A p p2 . A.28
n

n n1 2  åD + - ∣ ∣ ∣ ∣ ∣ ∣ ∣ ˜ ∣ ( )

Obviously,Δ in (A.16) remains unchangedwhen adding an arbitrary real constant c toA. Hence, the inequality
(A.28)with A c+  instead of A on the right hand side remains valid for arbitrary c. Theminimumover all c is
assumedwhen the largest and smallest eigenvalues ofA+c are of opposite sign and equalmodulus, yielding

p p , A.29A
n

n n åD D -∣ ∣ ∣ ˜ ∣ ( )

where AD is the difference between the largest and smallest eigenvalues ofA. Recalling the definition ofΔ in
(A.16), we recover the announced result (A.1).
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So farwe have assumed that ρnn(0)>0 for all n, see above (A.8).More generally, wemay define

b n
n n0

1

1
0

1
, A.30

n
2

 år r
+

+ ñá
⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( ) ∣ ∣ ( )

b
n

1
. A.31

n
2å≔ ( )

One readily confirms that b k0 6k 1
2 2 p< å ==

¥ - and that ρ ò(0) isHermitian, non-negative, and of unit
trace, i.e. a well defined density operator for any ò�0. Analogously, all quantities deriving from ρ(0)now
become ò dependent and acquire an additional index ò, in particular p 0n nn

 r≔ ( ) and p 0n nn
 r˜ ≔ ˜ ( ), while the

preset pñ (without index ò) are kept fixed. The case of actual interest is thus recovered in the limit ò→ 0.
Moreover, one can show that the off-diagonalmatrix elements 0mn

r̃ ( ) identically vanish if either pm=0 or pn=0
and that all othermatrix elements 0mn

r̃ ( ) converge towards afinite limit for ò→ 0. In particular, pn
˜ approaches

pñ. As a consequence, also 0r̃ ( ) itself approaches awell defined limit, which exhibits the preset level
populations pñ.

For any ò>0 one can infer from (A.30) that p 0 0n nn
 r >≔ ( ) for all n, i.e. the result (A.1) is valid. For

continuity reasons, the same resultmust still remain valid in the limit ò→ 0, inwhichwe are actually interested.

Appendix B

This appendix substantiates the statement above (29) in themain text. Before actually recalling this statement
itself, it is necessary to recall the setup and the notation: we consider two arbitrary density operators ρ(t) and tr̃( )
with identical initial conditions,

0 0 , B.1r r=( ) ˜( ) ( )
butwhose time evolution is governed by differentHamiltonians, namelyH from (1) and H̃ from (28),
respectively. In otherwords, the eigenvectors nñ∣ ofH and H̃ must be identical, while the eigenvalues En and En˜
may be different. Themain goal of this appendix is to show that

A A t E Emax B.2t t A
n I

n n á ñ - á ñ D -r r
Î

∣ ∣ ∣ ∣ ∣ ˜ ∣ ( )( ) ˜( )

for arbitrary t andA, where AD is the difference between the largest and smallest eigenvalues ofA, and I is
defined in (30). Similarly as below (A.1) one sees that this amounts to a detailed quantitative justification of the
statement above (29) in themain text.

Note that there is a slight notational difference between themain text and this appendix: in themain text, one
starts outwith tr̃( ), whose dynamics is governed byH, andwhose level populations p 0n nnr˜ ≔ ˜ ( ) define the set I
via (30). Then theHamiltonianH is replaced by H̃ , but for notational convenience themodified density
operator is still named tr̃( ). In the present appendix, the two density operators carry the two different names ρ(t)
and tr̃( ), respectively. Due to (B.1), their initial level populations are identical, i.e. we have

p p0 0 B.3n nn n nnr r=≔ ( ) ˜ ≔ ˜ ( ) ( )

throughout this appendix (but not in themain text). Accordingly, (30) can be rewritten as

I n p 0 . B.4n= >{ ∣ } ( )

Similarly as in (A.2)–(A.5) onefinds for tr̃( ) as specified below (B.1) that

A t ATr , B.5t rá ñ =r {˜( ) } ( )˜( )

t 0 , B.6t t r r=˜( ) ˜ ( ) ˜ ( )†

e , B.7t
Ht

t t
i   = ¢-˜ ≔ ( )˜

e . B.8t
H H ti ¢ -≔ ( )( ˜ )

The last identity in (B.7) relies on the fact thatH and H̃ commute. Together with (A.2)–(A.5) it follows that
t tt t r r= ¢ ¢˜( ) ( )( )† and due the cyclic invariance of the trace that

A A t BTr , B.9t t rD á ñ - á ñ =r r≔ { ( ) } ( )( ) ˜( )

B A A . B.10t t - ¢ ¢≔ ( ) ( )†

Evaluating the trace in (B.9) bymeans of the eigenbasis of ρ(t) yields

max , B.11
1

D D
y

y
= 

∣ ∣ ∣ ∣ ( )
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B , B.12y yD á ñy ≔ ∣ ∣ ( )

where themaximization in (B.11) is over all normalized vectors yñ∣ .
For an arbitrary butfixed vector yñ∣ of unit normwe can rewrite (B.12)with (B.10) as

A A , B.13y y y yD = á ñ - á ¢ ¢ñy ∣ ∣ ∣ ∣ ( )

. B.14ty y¢ñ ¢ ñ∣ ≔ ∣ ( )

With the definition

B.15c y yñ ¢ñ - ñ∣ ≔ ∣ ∣ ( )

we can conclude that

A A d , B.161y y y yá ¢ ¢ñ = á ¢ ñ +∣ ∣ ∣ ∣ ( )

d A , B.171 y cá ¢ ñ≔ ∣ ∣ ( )

A A d , B.182y y y yá ¢ ñ = á ñ +∣ ∣ ∣ ∣ ( )

d A . B.192 c yá ñ≔ ∣ ∣ ( )

Bymeans of (B.16) and (B.18)we can concludewith (B.13) that

d d . B.201 2D +y∣ ∣ ∣ ∣ ∣ ∣ ( )

From the definition (B.17) and theCauchy–Schwarz inequality it follows that

d A A . B.211
2 2 2c y c c y y= á ¢ñ á ñá ¢ ¢ñ∣ ∣ ∣ ∣( ∣ )∣ ∣ ∣ ∣ ( )

Sincewe assumed that yñ∣ is normalized, also y¢ñ∣ in (B.14)will be normalized and the last factor in (B.21) can be
upper bounded by A A2 2=    , where A  is the operator normofA (see also below (A.21)). Exactly the same
upper bound can be obtained for d2 in (B.19).With (B.20)we thus arrive at

A2 . B.22 c cD á ñy  ∣ ∣ ∣ ( )

Obviously,Δ in (B.9) remains unchangedwhen adding an arbitrary real constant c toA. Exactly as below (A.28)
one thus can conclude that

. B.23A c cD D á ñy∣ ∣ ∣ ( )

Rewriting yñ∣ as c nn nå ñ∣ with c nn yá ñ≔ ∣ , the normalization takes the form c 1n n
2å =∣ ∣ . Furthermore, we

can infer from (1), (28), (B.8), and (B.14) that

c ne , B.24
n

a
n

i nåy¢ñ = ñ∣ ∣ ( )

a E E t B.25n n n -≔ ( ˜ ) ( )

and from (B.15) that

c c ce 1 e . B.26
n

n
a

n
n

n
ai 2 2 i 2n nå åc cá ñ = - = -∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

One readily verifies that a a1 e 2 sin 2ai - =∣ ∣ ∣ ( )∣ ∣ ∣ for arbitrary a Î , yielding

c a amax . B.27n n
n

n
2 2 2 åc cá ñ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

By introducing (B.27) into (B.23)we can conclude

amax . B.28A
n

nD Dy∣ ∣ ∣ ∣ ( )

Since this bound is independent of yñ∣ , onefinds bymeans of (B.25), (B.11), and (B.9) that

A A t E Emax . B.29t t A
n

n n á ñ - á ñ D -r r∣ ∣ ∣ ∣ ∣ ˜ ∣ ( )( ) ˜( )

Exploiting the definition m n0 0mnr rá ñ( ) ≔ ∣ ( )∣ (see below (5)) and theCauchy–Schwarz inequality one can
readily show that p p0 0 0mn mm nn m n

2 r r r =∣ ( )∣ ( ) ( ) (see also (B.3)). It follows that only those summands in (5)
are non-zero forwhich bothm and n are contained in the set I from (B.4).Without loss of generality we thus can
focus on the case that E En n=˜ for all n IÎ . As a consequence, it is sufficient tomaximize in (B.29) over all n IÎ ,
i.e. we recover the announced final result (B.2).

AppendixC

The purpose of this appendix is to show that (59)withG(t) from (56) and (64) is fulfilled in very good
approximation if ρ(0) is amixed state of lowpurity, that is, if
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P Tr 0 1. C.12r ≔ {[ ( )] } ( )

Conceptually, the subsequent considerations are somewhat similar to the explorations of dynamical
typicality in [44–47]. Technically, the calculations are particularly close to those in [47].

To beginwith, we denote the eigenvalues and eigenvectors of ρ(0) by rn and nj ñ∣ , respectively, implying

r0 , C.2
n

n n når j j= ñá( ) ∣ ∣ ( )

P r 1, C.3
n

n
2å=  ( )

where rn�0 and r 1n nå = . Next, we consider an ensemble of (not necessarily normalized) randomvectors
jñ∣ , defined via

c r , C.4
n

n n nåj jñ = ñ∣ ∣ ( )

where the real and imaginary parts of the cnʼs are independent, Gaussian distributed randomvariables ofmean
zero and variance 1/2. Indicating averages over the cnʼs by the symbol [...]c, one readily confirms that

c c , C.5m n c mn* d=[ ] ( )

c c c c C.6j k m n c jk mn jn km* * d d d d= +[ ] ( )

for arbitrary indicesm, n, j, k. Given anyHermitian operatorB, it then follows from (C.4)–(C.6) bymeans of a
straightforward calculation (see also [47]) that

B BTr 0 , C.7B cm j j rá ñ =≔ [ ∣ ∣ ] { ( ) } ( )

B BTr 0 . C.8B B c
2 2 2s j j m rá ñ - =≔ [( ∣ ∣ ) ] {[ ( ) ] } ( )

By analogous arguments as above (A.19), one can deduce from (C.8) that BTr 0B
2 2 2s r{ [ ( )] }. Evaluating the

trace bymeans of the eigenbasis ofB and exploiting the definition of the purity P in (C.1) then yields

B P. C.9B
2 2s   ( )

Choosing B = , it follows from (C.3), (C.7), and (C.9) that 1cj já ñ =[ ∣ ] and P1 c
2 j já ñ -[( ∣ ) ] .

Invoking theChebyshev inequality fromprobability theory, one thus can conclude that

P PProb 1 1 , C.10
1
3

1
3 j já ñ - -(∣ ∣ ∣ ) ( )

where the left hand side denotes the probability that P1
1
3j já ñ -∣ ∣ ∣ when randomly sampling vectors jñ∣

according to (C.4). Due to (C.1), the vastmajority of all vectors jñ∣ in (C.4) thus have norms very close to unity.
ChoosingB as in (A.7), it follows from (A.6) and (C.7) that

A A , C.11t c tá ñ = á ñj r[ ] ( )( ) ( )

wherewe have introduced

A t A t ATr , C.12t tj j rá ñ á ñ =j j≔ ( )∣ ∣ ( ) { } ( )( ) ( )

t t t , C.13r j jñáj ( ) ≔ ∣ ( ) ( )∣ ( )

t , C.14tj jñ ñ∣ ( ) ≔ ∣ ( )

andwhere the propagator t is defined in equation (3). Observing that the operator normofB in (A.7) is
identical to the operator normofA, we can infer from (C.9) and the above definitions that

A A A P. C.15t t c
2 á ñ - á ñj r  [{ } ] ( )( ) ( )

Similarly as below (A.28), the operator norm A on the right hand side of (C.15) can furthermore be replaced
by 2AD , where AD is themeasurement range of the observableA (largestminus smallest eigenvalue). Invoking
Chebyshev’s inequality oncemore, one thus arrives at

A A P PProb
2

1 . C.16t t
A 1

3
1
3 á ñ - á ñ

D
-j r⎜ ⎟⎛

⎝
⎞
⎠∣ ∣ ( )( ) ( )

In view of (C.1), the vastmajority of all vectors jñ∣ in (C.4) thus exhibit expectation values A tá ñj ( ), whose
deviations from the ensemble average A tá ñr ( ) are very small compared to full range AD over which those
expectation values in principle could vary.

Recalling the definition of diar in (7) and defining in the same vein the auxiliary observable

A A n n , C.17
n

nn
dia å ñá≔ ∣ ∣ ( )
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one can conclude that

A ATr 0 . C.18dia
dia

rá ñ =r { ( ) } ( )

The corresponding quantities for the pure state ρj(t) in (C.13) are defined as

A ATr C.19dia diará ñj j≔ { } ( )

n n n n0 . C.20
n

dia år rá ñ ñáj j≔ ∣ ( )∣ ∣ ∣ ( )

Similarly as in (C.18), it readily follows that

A A ATr 0 , C.21dia dia diar j já ñ = = á ñj j{ ( ) } ∣ ∣ ( )

wherewe exploited (C.13) and (C.14) in the last step. Upon choosing B Adia= one thenfinds along the very
same line of reasoning as in (C.11)–(C.15) that

A A A P, C.22c
dia 2 dia

dia
á ñ - á ñj r  [{ } ] ( )

and by observing that A Adia     it follows as in (C.16) that

A A P PProb
2

1 . C.23Adia
dia

1
3

1
3 á ñ - á ñ

D
-j r⎜ ⎟⎛

⎝
⎞
⎠∣ ∣ ( )

Similarly as in (69), we define for the pure state tj ñ∣ ( ) in (C.14) the overlap

t t 0 . C.24c j já ñj ( ) ≔ ( )∣ ( ) ( )

The corresponding quantity for themixed state 0r ( ) in (C.2) is defined as

t Tr 0 . C.25tc r( ) ≔ { ( ) } ( )†

In view of (3), this definition is equivalent to (64) in themain text. By exploiting (C.4) and (C.14) one can rewrite
(C.24) as

t c c r r , C.26
mn

m n m n m n*åc j j= á ñj ( ) ∣ ˜ ( )

. C.27n t nj jñ ñ∣ ˜ ≔ ∣ ( )†

Togetherwith (C.4), (C.5), and (C.24), a straightforward calculation then yields the result

t t . C.28cc c=j[ ( )] ( ) ( )

Likewise, the variance

t t C.29c
2 2s c c-c j≔ [∣ ( ) ( )∣ ] ( )

can be evaluatedwith the help of (C.6) to yield

r r . C.30
mn

m n m n
2 2ås j j= á ñc ∣ ∣ ˜ ∣ ( )

Rewriting the summands on the right hand side of (C.30) as vmnwmnwith v rmn m m nj já ñ≔ ∣ ∣ ˜ ∣, w rmn n m nj já ñ≔ ∣ ∣ ˜ ∣,
and invoking theCauchy–Schwarz inequality, one can conclude that

V W , C.312 2 sc( ) ( )

V v , C.32
mn

mn
2å≔ ( )

W w . C.33
mn

mn
2å≔ ( )

It follows that

V r

r r . C.34
mn

m m n

m
m

n
m n n m

m
m

2 2

2 2

å

å å å

j j

j j j j

= á ñ

= á ñá ñ =

∣ ∣ ˜ ∣

∣ ˜ ˜ ∣ ( )

The same result is readily recovered also forW from (C.33).With (C.3)we thus can conclude that P2 sc . Due
to (C.29) andChebyshev’s inequality it follows that

t t P PProb 1 . C.35
1
3

1
3 c c- -j(∣ ( ) ( )∣ ) ( )

Finally, by similar arguments as above one can also show that the purity of the diagonal ensemble from
(C.20),
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P Tr , C.36dia 2rj j≔ {( ) } ( )

satisfies the relation

P P2 . C.37c j[ ] ( )

Moreover, one readily infers from (C.20) that

n n Pmax 0 . C.38
n

rá ñj j∣ ( )∣ ( )

Since the left hand side of (C.38) is non-negative, one can applyMarkov’s inequality to conclude

n n P PProb max 0 1 2 . C.39
n

1
2

1
2 rá ñ -j( )∣ ( )∣ ( )

So far, the randomvectors jñ∣ in (C.4) are in general not normalized. But, asmentioned below (C.10), the
vastmajority among them is almost of unit length.Hence, if we replace every given jñ∣ in (C.4) by its strictly
normalized counterpart

, C.40y
j

j j
ñ

ñ

á ñ
∣ ≔ ∣

∣
( )

then the ‘new’ expectation values By yá ñ∣ ∣ willmostly remain very close to the ‘old’ ones, i.e. to Bj já ñ∣ ∣ for any
givenHermitian operatorB. Essentially, this is a consequence of the relation

B
B

, C.41y y
j j
j j

á ñ =
á ñ
á ñ

∣ ∣ ∣ ∣
∣

( )

which follows from (C.40), and of the fact that j já ñ∣ is very close to unity formost jñ∣ ʼs according to (C.1) and
(C.10). Defining quantities analogous to those in (C.12)–(C.14) forψ instead ofj, it followswith (C.1) and
(C.16) that the vastmajority of the normalized random vectors yñ∣ in (C.40) still satisfy in very good
approximation the relation

A A . C.42t tá ñ = á ñy r ( )( ) ( )

Likewise, with analogous definitions as in (C.19), (C.20) forψ instead ofj, one can conclude from (C.1) and
(C.23) thatmost yñ∣ ʼs will satisfy

A A C.43dia
dia

á ñ = á ñy r ( )

in very good approximation. Finally, definingχψ(t) analogously as in (C.24), one sees, similarly as in (C.41), that
χψ(t) is equal to tc j já ñj ( ) ∣ and that n n0rá ñy∣ ( )∣ is equal to n n0r j já ñ á ñj∣ ( )∣ ∣ . Togetherwith (C.1), (C.10),
(C.35), and (C.39), one thus can conclude as before that the relations

t t , C.44c c=y ( ) ( ) ( )

n nmax 0 1 C.45
n

rá ñy ∣ ( )∣ ( )

will be satisfied in very good approximation formost yñ∣ ʼs. Amore detailed quantitative demonstration that all
four approximations (C.42)–(C.45)will be simultaneously fulfilled verywell bymost yñ∣ ʼs can beworked out
analogously as in [47].

At this point, a subtle notational difference between themain text and this appendix comes into play: in the
main text, the result (59)withG(t) from (56)was derived under the condition that ρ(0) is a pure state, see (37),
and henceG(t) can bewritten in the form (70). In the present appendix, ρ(0) represents amixed state of low
purity according to (C.1). In turn, the abovementioned result for pure states in themain text should nowbe
rewritten for the pure states ty ñ∣ ( ) considered in this appendix as

A A t A A . C.46t
dia 2

0
diacá ñ = á ñ + á ñ - á ñy y y y y∣ ( )∣ [ ] ( )( ) ( )

One the other hand, since ρ(0) in this appendix is amixed state of low purity according to (C.1), we know that
most yñ∣ ʼs simultaneously fulfill (C.42)–(C.45) in very good approximation. If we choose one of those yñ∣ ʼs in
(C.46), we obtainwith (C.42)–(C.45) in very good approximation the result

A A t A A , C.47t
2

0dia dia
cá ñ = á ñ + á ñ - á ñr r r r∣ ( )∣ [ ] ( )( ) ( )

withχ(t) from (C.25). Since the latter equation is equivalent to (64), we thus have proven that (59) in themain
text in fact also holds true formixed states ρ(0) of low purity, as announced at the beginning of this appendix.

In the above conclusion, we have tacitly taken for granted onemore assumption, namely that there exists at
least one yñ∣ which satisfies (C.42)–(C.45) verywell, andwhich at the same time satisfies the preconditions for
(C.46), as discussed in sections 4 and 5.While a rigorous justification of this extra assumption seems to be a quite
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daunting task, it also seems quite reasonable to expect that the assumptionwill be fulfilled if (and only if) the
mixed state ρ(0) itself satisfies those preconditions from sections 4 and 5.

Finally, we turn to the case that themixed state ρ(0) is not of low purity (but still not a pure state). In such a
case, there is no reason to expect that (C.42)–(C.46)will be simultaneously fulfilled formost yñ∣ ʼs.However, one
may still expect that (C.42)–(C.46)will be simultaneously fulfilled for at least one yñ∣ , at least for some such
ρ(0)ʼs. If so, (C.47) and thus (59) in themain text still remain true evenwhen the purity of ρ(0) is not small.
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