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Abstract 

Membrane separation provides an energy-efficient technology for molecular separation. 

Conventional filtration systems are constrained by a trade-off between permeance and 

selectivity that results from broad pore size distribution. Recent developments on 

nanotechnology have demonstrated the potential to overcome this limitation by utilizing 

well-defined nanoconduits that allow a coordinated passage of water molecules. 

Fabrication of these materials is still very challenging, but their performance inspires 

research toward nanofabricated membranes.  

Carbon nanomembranes (CNMs) are a special class of 2D materials made by 

crosslinking of self-assembled monolayers. This work will present the rapid and 

selective water permeation through a ~1.2 nm thin CNM fabricated from terphenylthiol 

(TPT) precursors. Molecular transport through TPT CNMs is investigated by mass-loss 

measurements and gas permeation in vacuum system. TPT CNMs block the passage of 

most gases and liquids, while permitting water and helium to pass through. In particular, 

water transits with a remarkably high permeance of ~1.1×10−4 mol·m−2·s−1·Pa−1, 2,500 

times faster than helium. Scanning probe microscopy reveals that the membrane 

consists of sub-nanometer channels with a high areal density of 1018 m−2. Assuming all 

channels in a TPT CNM are active in mass transport, we find a single-channel 

permeation of ∼66 water molecules·s−1·Pa−1. This suggests that water molecules 

translocate fast and cooperatively through the sub-nanometer channels, similar to 

carbon nanotubes and membrane proteins (aquaporins).  

Furthermore, ion transport across these membranes are investigated by conductance 

measurements using both DC and AC methods. The results show that freestanding TPT 

CNMs act as ionic insulators, preventing the penetration of ionic species including 

protons. The specific membrane resistance reaches ~104 Ω·cm2, comparable to the 

typical high resistance of planar lipid bilayers. The single-channel conductance yields 

2×10−18 S in 1 M KCl solution, ~107 lower than that of biological porins. This again 

confirms the existing of sub-nm channels within TPT CNMs.  
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Unlike other nanostructured membranes, CNMs are built in a versatile and scalable 

fabrication process, thus these 2D sieves will inspire the development of various 

advanced filtration systems that require highly efficient and precise separations.   
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Chapter 1 

Introduction 

1.1 Membrane Separation 

Beginning in the early 1960s, the commercialization of membrane separation in the 

modern industry came out with the Loeb-Sourirajan technique for making high-

performance reverse osmosis membranes (Figure 1.1).1-2 Since then, membrane 

technology has received increased worldwide attention as global industries strive for 

higher energy efficiency and lower environmental impact. In comparison with 

traditional separation processes such as distillation, membrane-based separation has the 

potential to achieve more than 90% energy savings.3 Up to the present, membrane 

separation spans a broad range of applications, e.g., water purification, gas separation, 

food processing, pharmaceutical industries, etc., playing an essential role in our daily 

life. The pore size of the membranes varies from several angstrom to micrometer 

dimension depending on the purpose of usage.  

 

Figure 1.1. First demonstration of reverse osmosis membranes.4 
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1.2 Molecular Transport Mechanisms 

Membranes separate targeted products from impurities can be distinguished basically 

in two categories: (i) transport in dense polymeric membranes without defined pores, 

e.g., reverse osmosis membranes, most gas separation membranes, described by a 

solution-diffusion model, in which the separation is achieved by the differences in the 

solubility and mobility of permeants in membranes; and (ii) transport in porous 

membranes, in which permeants are separated by transport through small pores,2,5 

commonly interpreted by transport mechanisms such as molecular sieving, Knudsen 

diffusion and Poiseuille flow.6 The transition between the solution-diffusion and pore-

flow mechanisms seems to occur with membranes having pores in the diameter range 

of 0.5–1 nm.7  

 

Figure 1.2. Mechanisms of molecular transport through dense membranes and porous 

membranes.2,5 Reprinted with permission from ref. 5, Springer Nature. 
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1.2.1 Solution-Diffusion Model 

Molecular transport in dense polymeric membrane is described by a solution-diffusion 

mechanism, which is generally accepted as a three-step process: (i) molecules in the 

bulk feed diffuse to the membrane surface and dissolve in a membrane; (ii) diffuse 

through the membrane; and (iii) desorb from the membrane and diffuse to the bulk 

permeate. A basic assumption of transport through membranes is that the fluid at the 

interface of the membrane material are in an equilibrium with the bulk phases of the 

feed and permeate sides.2,8 This assumption implies that the second diffusion step is the 

rate-limiting step, which seems to be true for most membrane processes, but may fail in 

some cases, such as facilitated and directed transport.  

On the basis of this assumption, the solution-diffusion model additionally assumes that 

the pressure is uniform within the membrane, and the transport of permeants is only 

driven by a concentration gradient across the membrane. Thus, the diffusion process 

inside the membrane can be described by Fick’s law of diffusion.6 

𝐽 = −𝐷
𝑑𝑐

𝑑𝑥
 (Equation 1.1) 

where J is the mass flux (kg·m−2·s−1), D is the diffusion coefficient (m2·s−1), c is the 

concentration of the component (kg·m−3), and x is the thickness of the membrane (m).  

In liquid systems, the diffusivity of spherical species in a dilute bulk solution can be 

expressed by the Stokes-Einstein equation:9 

𝐷𝑏𝑢𝑙𝑘 =
𝑘𝑇

6𝜋𝜇𝛾
 (Equation 1.2) 

where k is Boltzmann constant, T is the temperature (K), µ is the solvent viscosity (Pa·s), 

and r is the radius of the solute (m). 

Traditional polymeric membranes usually give a thickness of several µm, thus diffusion 

through these materials is quite slow. According to Fick’s law, in practical diffusion-

governed processes, a sufficient flux through the membrane is realizable by means of 

reducing the membrane thickness and creating large concentration gradients across the 

membrane.2 
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1.2.2 Molecular Sieving 

When the pore dimensions are similar in size to those of target molecules, the separation 

of molecules is described by molecular sieving. The theoretical study of hindered 

transport in the fine pores of molecular dimensions dates back to early 1900s.10-11 These 

studies considered many aspects of the pore–molecule interaction, including steric 

hindrance, hydrodynamic interaction, and electrostatic screening due to the Debye-layer 

repulsion.11-12 In the case of steric hindrance, smaller molecules are more likely to find 

the pore compared with larger molecules, due to a faster Brownian motion of the 

molecules with smaller size. The hydrodynamic hindrance occurs especially in a 

pressure-driven transport. The motion of a particle within the pore is hindered by 

hydrodynamic drag forces. These hindrance effects are primarily a function of 𝜆, where 

𝜆 is a ratio of molecule radius rm to pore radius rp.  

 

Figure 1.3. Spherical particle flow in a cylindrical pore.11 

In liquid systems, when a steady state is reached along a pore between the two sides, 

the effective solute flux of a diffusion-dominated process can be quantified by:11,13 

𝐽 =
∅𝐾𝑑𝐷𝑏𝑢𝑙𝑘

𝑙
(𝐶0 − 𝐶𝑙) (Equation 1.3) 

where Φ is the equilibrium partitioning or distribution coefficient determined from the 

ratio of the average intrapore concentration to that in bulk solution, Kd is the hindrance 

factor for diffusive transport, Dbulk is the diffusion coefficient of solute in dilute bulk 

solution determined from Equation 1.2, the quantity KdDbulk represents an averaged 

intrapore diffusion coefficient, based on solute concentrations averaged over the pore 

cross section, l is the pore length, C0 and Cl are the solute concentration at the upstream 

and downstream surfaces of the pore, respectively. 
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The transport phenomena in molecular-dimension pores is not only important for 

fundamental studies, but also useful in many industrial applications. For example, the 

flow rate of water molecules through sub-nanometer sized channels, exceeds the 

predictions from a continuum flow in macroscopic channels by several orders of 

magnitude. This encourages the design of highly efficient water filters. Recent 

developments on fabricating nanopores with regular size and shape, e.g., carbon 

nanotubes, track-etched pores, provide new opportunities for further understanding the 

molecular sieving phenomena.  

1.2.3 Knudsen Diffusion 

For cylindrical pores, if the pore diameter is much larger than the molecular size but 

smaller than the mean free path, the molecules will collide with pore walls more 

frequently than with other molecules.6 This transport process is governed by Knudsen 

diffusion, which usually occurs at low pressure and with small pores.  

 

Figure 1.4. Permeation properties of Knudsen and Poiseuille flow as a function of the 

pore radius (r) divided by the mean pore path (λ) of the gas.2,14 

The Knudsen number Kn, defined as the ratio of the molecular mean free path 𝜆 to the 

pore diameter dp, is an important dimensionless quantity which can be used to 
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distinguish the flow regimes. 

𝐾𝑛 =
𝜆

𝑑𝑝
 (Equation 1.4) 

If the Knudsen number is large, i.e., Kn >> 1, the transport will be dominated by 

Knudsen diffusion (Figure 1.4). If the Knudsen number is small, diffusion in the pore 

has the same characteristics as it does in the bulk phase, then the transport is treated as 

a Poiseuille flow (see Section 1.2.4).  

 

Figure 1.5. Illustration of estimating mean free path from kinetic theory.15-16  

As the mean free path of liquids is only several angstrom, the Knudsen number is very 

small. Therefore, Knudsen diffusion is almost negligible for liquids. The mean free path 

of gases can be estimated from the kinetic theory. For the molecule with a diameter of 

dm, the effective collision area is considered to be A = πdm
2. The mean free path, i.e., the 

average distance that a molecule needs to travel to make a collision with another 

molecule, then can be estimated from dividing the length of molecular path by number 

of collisions occurred (Figure 1.5).15-16 

𝜆 =
𝑣𝑡

𝜋𝑑𝑚
2 ∙ √2𝑣𝑡 ∙ 𝑁𝑉

=
1

√2𝜋𝑑𝑚
2 ∙ 𝑁𝑉

 (Equation 1.5) 

where v is the velocity of diffusing molecules (m·s−1), t is the time (s), 𝜋𝑑𝑚
2 ∙ √2𝑣𝑡 

defines the effective interaction volume (m3) by taking into account that the velocities 

of the particles have a Maxwell distribution,17 NV is the number of molecules per unit 

volume (m−3).  

 

2dm 
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NV can be determined from the ideal gas law, pV = nRT:  

𝑁𝑉 =
𝑝

𝑅𝑇
∙ 𝑁𝐴 (Equation 1.6) 

Accordingly,  

λ =
𝑘𝑇

√2𝜋𝑑𝑚
2𝑝

 (Equation 1.7) 

where k is Boltzmann constant, p is the pressure. 

The Knudsen diffusion coefficient can then be derived from the kinetic theory.6,18-19 

𝐷𝐾 =
1

3
𝑑𝑝�̅� (Equation 1.8) 

where �̅� is the average velocity of the particles, equal to 
2

√𝜋
𝑣.  

According to the kinetic molecular theory, the kinetic energy of gas particles is 

proportional to the absolute temperature.18 

1

2
𝑚𝑣2 = 𝑘𝑇 (Equation 1.9) 

the Knudsen diffusion coefficient can thus be expressed as follows: 

𝐷𝐾 =
𝑑𝑝

3
√

8𝑘𝑇

𝜋𝑚
=

𝑑𝑝

3
√

8𝑅𝑇

𝜋𝑀
 (Equation 1.10) 

Following the equation for Fick’s law of diffusion, the flow rate of Knudsen diffusion 

through a cylindrical pore can be expressed as: 

𝑄 = 𝐷𝐾 ×
∆𝑐

𝑙
×

𝜋𝑑𝑝
2

4
= 𝐷𝐾 ×

∆𝑝

𝑅𝑇𝑙
×

𝜋𝑑𝑝
2

4
=

𝑑𝑝
3∆𝑝

6𝑙
√

2𝜋

𝑀𝑅𝑇
 (Equation 1.11) 

where Q is the molar flow rate (mol·s−1), l is the pore length (m), M is the molar mass 

(kg·mol−1), ∆𝑝 is the pressure drop across the pore (Pa). 
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Accordingly, if the fluid flow fits to the Knudsen diffusion regime, the selectivity αi,j of 

species i to j is only dependent of the square root of the molecular mass. 

𝛼𝑖,𝑗 =
𝑃𝑖

𝑃𝑗
= √

𝑚𝑗

𝑚𝑖
 (Equation 1.12) 

where Pi and Pj are permeance of species i and j. Permeance is defined as the ratio of 

flux to pressure difference. This relation can be used to readily determine whether the 

flow is within the Knudsen regime from the measured permeances. 

1.2.4 Poiseuille Flow 

Poiseuille flow describes a laminar flow of Newtonian fluids through a long cylindrical 

pore where the pore diameter is larger than the mean free path and the flow 

characteristics are determined mainly by the molecule–molecule collisions. This 

transport process is expressed by the Hagen-Poiseuille law, which can be derived from 

the Navier-Stokes equations.20-21 

𝑣 =
𝑑2∆𝑝

32𝜇𝑙
 (Equation 1.13) 

where v is the flow velocity of fluids through the pore (m·s−1), d is the pore diameter 

(m), ∆𝑝 is the pressure drop across the pore (Pa), µ is the fluid viscosity (Pa·s), l is the 

pore length (m). 

The volumetric flow rate is then given by: 

𝑄 =
𝜋𝑑4∆𝑝

128𝜇𝑙
 (Equation 1.14) 

The flux for a membrane with a certain number of pores can be calculated as follows:2 

𝐽 =
𝑄 ∙ 𝑁

𝐴
=

𝜋𝑑4∆𝑝

128𝜇𝑙
×

𝑁

𝐴
 (Equation 1.15) 

where N is number of pores per square meter of the membrane, A is the membrane area. 
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For membranes with a given porosity ε, 

𝜀 = 𝑁 ×
𝜋𝑑2

4
×

1

𝐴
 (Equation 1.16) 

The membrane flux can be expressed by combining Equations 1.14 and 1.15: 

𝐽 =
𝜀𝑑2∆𝑝

32𝜇𝑙
 (Equation 1.17) 

Unlike the transport in Knudsen regime, the flow in Poiseuille regime relies on the 

viscosity of the fluids. The fluid with a low viscosity travels faster in the pore.  

1.3 Transport Characteristics: Permeance and Selectivity 

The performance of a membrane is characterized by two main properties:  

(i) Permeance P, which describes how fast the molecules can move through a membrane 

per unit area per unit pressure. 

𝑃 =
𝑄 

𝐴 ∙ ∆𝑝
 (Equation 1.18) 

where Q is the flow rate across the membrane, A is the membrane area, ∆𝑝 is the 

pressure difference. 

and (ii) Selectivity αi,j, defining the degree to which a membrane separates the targeted 

molecule i from the rest j.  

𝛼𝑖,𝑗 =
𝑃𝑖

𝑃𝑗
 (Equation 1.19) 

Membranes with both high permeance and high selectivity are considered as ideal filters, 

which is in principle realizable by designing a material with an ultrathin selective layer 

with uniform pore diameters. Polymeric membranes are the most successful example in 

commercialization, however, accomplishing a precise control over the structure of these 

membranes remains a bottleneck. Recent developments in nanotechnology advocates 

meeting the challenge by constructing a membrane with molecular-level design 

approaches.22-24 
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1.4. Recent Developments on Membrane Materials 

1.4.1 Conventional Polymeric Membranes 

Commercially available membranes are mainly polymeric, since polymer membranes 

are more versatile, less expensive and less brittle than inorganic membranes, and can be 

readily up-scaled for commercial use. However, the development of these membranes 

are constrained by a major drawback that the polymer chains are usually arranged in a 

random order, which leads to a wide distribution of free volume or pore size in the bulk 

membrane material. As a result, polymer membranes in general exhibit a trade-off 

between permeance and selectivity (Figure 1.6).22,24  

 

Figure 1.6. Properties of conventional polymer membranes. (a) Scanning electron 

microscopy images of porous membranes made by phase inversion: the upper panel is 

a cross-section of a polysulfone membrane with finger-like macrovoids,25 and the lower 

panel is a top view of a commercial polyvinylidene fluoride membrane (EMD Millipore, 

Billerica, MA, USA).22 (b–c), Permeance and selectivity trade-off relations in polymer 

membranes: b, O2/N2 separation;26 c, Water/salt separation.27 The upper panel of part 

a is reprinted with permission from ref. 25, Elsevier, and the lower panel is reprinted 

with permission from ref. 22, Springer Nature. Part b is adapted with permission from 

ref. 26, Elsevier. Part c is reprinted with permission from ref. 27, Elsevier. 

Moreover, the synthesis of polymer membranes by phase inversion or interfacial 

polymerization22 usually results in a selective layer with thickness of 100 nm to several 

µm, which generates a high membrane resistance and hence a need for high pressure to 
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achieve a sufficient flux. This further gives rise to high energy consumption and 

requires high mechanical stability.28 To address this issue, several attempts have been 

made in order to reduce the thickness of the selective layer of polymer membranes, and 

significant progresses have been achieved by reforming the synthesis process of thin-

film composite (TFC) membranes with interfacial polymerization (Figure 1.7). A 

conventional way to fabricate TFC membrane is preparing a dense polyamide film on a 

porous membrane support through interfacial polymerization of a diamine with a triacyl 

chloride.2 The polyamide film serves as the selective layer and dominates the membrane 

resistance. In the polymerization process, the porous support is first brought into contact 

with the aqueous solution containing diamine, then immersed into an organic solution 

containing triacyl chloride which is immiscible with water. The diamine reacts with 

triacyl chloride at the water/organic interface to form a polyamide film. As the 

underlying support has a very rough surface, the polyamide layer must keep a sufficient 

thickness, usually of 100–500 nm,22 to assure that the formed film is free of defects.  

To overcome this obstacle, Livingston group succeeded in fabricating a sub-10-nm thin 

polyamide film by using a sacrificial layer of cadmium hydroxide nanostrands.29 The 

nanostrand layer is formed on top of a porous support and have a thickness of ~120 nm. 

The advantage of the nanostrand layer is that this thin film can reduce the surface 

roughness of the underlying support and produces a very smooth surface for interfacial 

polymerization, which can eventually generate a thin and defect-free polyamide film. 

Another pronounced progress is made by McCutcheon and his colleagues by using an 

electrospraying technique, in which the monomers are deposited directly onto a 

substrate, where they react to form polyamide.30 The small droplet size of the monomer 

solution combined with the low monomer concentrations lead to smoother and thinner 

polyamide films. The approach allows for control of polyamide thickness down to 4 nm 

increments and roughness as low as 2 nm.  

The aforementioned accomplishments provide possibilities to tailor the thickness of 

polyamide films in a nanometer scale range. However, the monomers are still arranged 

in a random order on the support, which inevitably results in an uncontrollable 

polymerization. Thus the resulting pore size is still not well defined and a trade-off 

between permeance and selectivity may still exist. To address this issue, materials with 

controllable molecular architectures which give defined microporosity, are needed. 



Chapter 1 Introduction 

22 

 

Figure 1.7. Thin-film composite membranes made by interfacial polymerization. (a) 

Polyamide fabricated in a conventional way.22 (b) Sub-10-nm thin polyamide fabricated 

with a sacrificial layer of nanostrands.29 (c) Polyamide fabricated by electrospraying.30 

Panel a is reprinted with permission from ref. 22, Springer Nature. Panel b is reprinted 

with permission from ref. 29, The American Association for the Advancement of Science. 

Panel c is reprinted with permission from ref. 30, The American Association for the 

Advancement of Science. 

1.4.2 Next-Generation Molecularly Selective Membranes 

Recent nanotechnology breakthroughs have led to novel approaches for tailoring of 

membrane thickness and pore size at a sub-nanometer level, with the precision and 

flexibility that are not achievable with polymer-based randomized fabrication. Although 

these nanoconduit devices are still in their infancy and a mass fabrication seems remote, 

the emerging field of carbon nanofluidics31 already provides fascinating insights on 
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materials separation. There are basically two avenues for making membranes with 

molecular dimensions: bottom-up approach by embedding membrane proteins32, carbon 

nanotubes33-34 or molecular-sieving fillers (zeolite, metal organic framework)24,35-36 into 

supports, and top-down approach by creating artificial pores/channels5,37-38 with two-

dimensional materials.  

 

Figure 1.8. Bottom-up approach for fabricating molecularly selective membranes. (a) 

Top, illustration view of water passage through aquaporin;39 bottom, schematic of 

aquaporin-based biomimetic membranes.40 (b) Top, illustration view of CNT structure; 

bottom, schematic and SEM cross-section view of CNT-embedded membranes.33(c) Top, 

crystal structure of ZIF-90;41 bottom, SEM cross-section view of mixed-matrix 

membranes containing ZIF-90 crystals.42 Part a is reprinted with permission from ref. 

40, Elsevier. Part b is adapted with permission from ref. 33, The American Association 

for the Advancement of Science. Part c is adapted with permission from ref. 41, 

American Chemical Society, and ref. 42, John Wiley and Sons. 

Aquaporin proteins, with a channel size of only ~0.3 nm, just wide enough for one 

molecule,43 are one of nature’s most intelligent inventions, which allow a coordinated 

transport of water molecules but block all ionic species. Aquaporins have been utilized 

in water desalination through incorporation into polymer matrices.40 These nanofilters 

not only accelerate water flow through polymer-based membranes, but also serve as a 

barrier that prevents penetration of ions due to interactions of their inner amino groups 

with ionic species. Inspired by biological channels, carbon nanotubes (CNTs) with 
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atomically smooth walls are created and promise a frictionless water flow, through 

which the molecular transport was studied theoretically44-45 and experimentally.33-34,46 

Like biological channels, CNTs show extraordinary high water flow-rates owing to their 

smooth interfaces and single-file motions.33,44-46 The nanotube properties depend on the 

atomic arrangement of the graphite sheets, and defined by chiral vector and angle.47 

CNTs thus enables a better control over the nanopore geometry. Arrangements of these 

nanotubes in an optimized manner will gain further unique functionalities. Over the past 

decades, these artificial nanochannels have encouraged rapid progress in nanopore 

fabrication,33,46 however, the challenge has been finding a productive way for vertically 

aligning the nanotubes to a film over macroscopic scales. Porous solids, such as 

inorganic zeolites and organic-inorganic hybrid metal organic frameworks (MOFs), are 

also one of the most intense areas due to their well-defined pore size and shape. These 

particles are incorporated into polymers as molecular fillers for fabricating mixed 

matrix membranes. Compared to zeolites, MOFs have a higher degree of tunability in 

the structures.48 One of the challenges in pursuing a desired membrane performance has 

been exploring a highly compatible integration of these additives into polymer matrix 

with homogeneous dispersions at high loading levels.24,48 

 

Figure 1.9. Top-down approach for fabricating molecularly selective membranes. (a) 

perforated graphene.49 (b) graphene oxide membranes.50 (c) 2D capillary devices made 

from bulk crystals with graphene as spacers.51 Part a is reprinted with permission from 

ref. 49, American Chemical Society. Part b is reprinted with permission from ref. 50, 

The American Association for the Advancement of Science. Part c is reprinted with 

permission from ref. 51, The American Association for the Advancement of Science. 

 



Chapter 1 Introduction 

25 

In addition to the above nanoporous structures, another significant development is the 

emergence of two-dimensional (2D) materials which can offer unique electrical, 

mechanical, optical and thermal properties. A typical example is the thinnest material—

single atom thick graphene. Because of the high electron density of its aromatic rings, 

pristine graphene are impermeable to all molecules.52 Therefore, graphene sheets have 

been perforated by ion bombardment with nanometer-size holes in producing a 

molecular sieve that permits water/ion separation with high selectivity and flow-

rate.5,38,53 However, the stability of the produced nanopores and the scalability of this 

fabrication technique remains a debate when developing porous graphene. Graphene 

oxide (GO) is another form of graphene-based membranes. GO also shows low-friction 

water flow through the confined 2D space between adjacent GO sheets.54 GO stacks are 

easily fabricated, but GO membranes swell in water leading to a reduced selectivity.55 

In addition, 2D capillary devices have been created from bulk crystals (such as graphite 

or hexagonal boron nitride) with graphene stripes as spacers.51,56 The resulting slit-like 

channels have atomically smooth surface and little surface charge, which permit 

frictionless rapid water flow but reject small ionic species such as Na+ and Cl−. The 

channel size can be tailored at an atomic level with the spacers. These devices promise 

certainly exciting opportunities for fundamental studies but it seems extremely difficult 

to produce them for real applications. 

Overall, these artificial molecular filters provide ultra-fine pores that is controllable at 

nanometer-dimensions with relatively high throughput. These membranes have been 

fabricated and tested for various applications, confirming that a better control over the 

membrane geometry by the nanofabrication techniques can provide extraordinary 

functionality and performance. However, the aforementioned techniques are complex 

and unlikely to be easily engineered at a very large scale. Thus, a simple approach for 

producing scalable thin films with a high density of sub-nanometer channels, still needs 

to be developed.  

1.4.3 Carbon Nanomembranes (CNMs) 

In addition to graphene, CNMs are another type of 2D materials fabricated by 

irradiation induced crosslinking of self-assembled monolayers, thus giving the 

thickness of only single molecule.57 CNMs are mechanically stable due to the 

characteristic of crosslinked structures. Figure 1.10 shows a helium ion micrograph of 
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a 1-nm-thick CNM freely suspended over a 400 µm wide hexagonal opening. The 

mechanical properties of membranes are quantified by bulge tests. CNMs made from 

different molecular precursors exhibit Young’s moduli of 10−20 GPa.58 

 

Figure 1.10. Helium ion micrograph of a 1-nm-thick freestanding CNM suspended over 

a 400 µm wide hexagonal opening of a copper grid.57 Reprinted with permission from 

ref. 57, John Wiley and Sons. 

CNMs mainly comprise carbon, so possess high thermal stability,59 which allows 

transformation of the membrane to graphene by pyrolysis.60 The structural conversion 

to graphene begins after annealing CNMs at approximately 800 K, which is evidenced 

by appearance of the characteristic D-, G-, and 2D peaks in the Raman spectra.61-62 

Another special advantage of CNMs is that the membrane structure may be tuned by 

selection of precursor molecules with varied length and shape (Figure 1.11).63 The 

membrane thickness is associated with the precursor length and the molecular packing 

density. “Linear” shaped precursors tend to build a relatively “dense” film, while “bulky” 

precursors likely form a nanoporous CNM. Moreover, both surfaces of the membrane 

can be functionalized by selecting precursors with designed chemical groups.64 The 

potential tunability integrating with the ease fabrication would grant CNMs a privilege 

in membrane engineering and upscaling compared with other existing 2D materials. 
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Figure 1.11. Fabrication of CNMs from different precursor molecules.63 The graph is 

adapted with permission from ref. 63, American Chemical Society.  

Despite being only one nanometer thick, CNMs are transferrable to almost any surface 

with the assistance of PMMA coatings.62 The membrane forms a tight adhesion to new 

surfaces by van der Waal forces.65 The membrane is flexible enough to follow the 

morphology of the underlying substrate. This allows us to test the performance of 

CNMs on another supporting substrate, or even in a freestanding manner. So far, the 

charge transport through CNMs66 and the mechanical properties58 have been studied. 

As the membrane also holds great potential as a candidate for energy-efficient 

molecular separations, unraveling the permeation properties of CNMs has become 

especially important. Ai et al. first attempted to investigate the permeation behaviour of 

CNMs by transferring the membrane onto polymer substrates. They found that polymer-

supported CNMs could separate small molecules (He, H2) from larger ones (O2, N2).
67 
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A resistance model was employed to extract the permeation properties of bare CNMs, 

however, the presence of the polymer support still hampered an uncovering of 

mechanisms.  

 

Figure 1.12. Transfer CNMs to another substrate.68 Reprinted with permission from ref. 

68, Elsevier. 
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1.5 Motivation and Organization of the Thesis  

This work aims to investigate mass transport through freestanding CNMs, eliminating 

the interference from underneath supports, so as to explore the fundamental permeation 

properties of CNMs. 

Chapter 2 will introduce the basic knowledge of creating CNMs from self-assembled 

monolayers (SAMs), as well as principles of main methodologies that are employed for 

characterizing membrane structures and properties.  

Chapter 3 will present firstly fabrication of CNMs from a new molecular precursor. This 

part will introduce the experimental steps involved in developing a protocol, including 

how to prepare a well-organized SAM, as well as determining a successful conversion 

of SAMs into CNMs. Afterwards, this new type of membrane will be compared with 

another CNM made from a linear precursor TPT with an already established fabrication 

procedure. Finally, the possibility of making stable micrometer-scale freestanding 

CNMs from the two precursors will be discussed.  

Chapter 4 will investigate the single gas and liquid transport through freestanding TPT 

CNMs by two different permeation experiments. The acquired permeance is compared 

with the state-of-the-art values. The architecture of TPT CNMs is re-investigated with 

a high-resolution atomic force microscopy operated in ultrahigh vacuum system. 

Single-channel permeation coefficient is estimated from the microscopy imaging and 

the permeance values. The mechanism of molecular transport through CNMs will be 

discussed. 

In Chapter 5, ion transport across TPT CNMs is investigated by electrochemical 

techniques using both DC and AC methods. The ion diffusion resistance through CNMs 

and the single-channel ion conductance is extracted from the measured values and 

compared with that of biological systems. The ion exclusion mechanism by CNMs will 

be discussed. 

Chapter 6 draws final conclusions of the thesis and gives outlooks for future work.  
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Chapter 2 

Basics and Methodology  

2.1 Fabrication of CNMs from SAMs 

2.1.1 SAM Formation 

The preparation of CNMs starts from a well-ordered and densely-packed self-assembled 

monolayer (SAM). The thickness, architecture and surface properties of the membranes 

are determined from the characteristics of the precursor molecules and their packing 

density on the surface. SAMs are created by chemisorption of organic molecules with 

specific “head groups” onto a substrate (Figure 2.1). The commonly used head groups 

include –SH, –OH, –SiCH3, etc., and substrates are Au, Ag, Si, etc.68-69 In this thesis, 

gold is employed as the substrate and aromatic thiols as precursors for SAM synthesis. 

 

Figure 2.1. Schematic illustration of a self-assembled monolayer (SAM) formed from 

alkanethiolates on an Au(111) surface.69 Reprinted with permission from ref. 69, 

American Chemical Society. 
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Selection of gold as substrates is due to its unique advantages.69 First, gold is the noblest 

and the least reactive metal towards atoms or molecules at the interface with a gas or a 

liquid;70 Second, a thin gold film can be readily produced by techniques, such as 

physical vapor deposition, sputtering, electrodeposition, etc.; Third, gold are common 

substrates used for spectroscopies and other analytical techniques. 

The gold substrate tends to adsorb aromatic thiols RS−H because the adsorbates lower 

the interfacial free energy.71 But how the thiols bind to gold surfaces to form a SAM 

remains an open question so far. One of the proposed reaction pathways is that the 

RS−H thiols are converted, via a dissociative adsorption, to RS−Au thiolates.72 The 

adsorption comprises three main steps:  

(i) cleavage of the RS−H bond (the bond dissociation energy ΔH = 87 kcal·mol−1),73 

RS– H → RS ∙ +H ∙ (Equation 2.1) 

(ii) formation of the RS−Au bond (ΔH = 40 kcal·mol−1),74 

RS ∙ +Au → RS– Au (Equation 2.2) 

and (iii) recombination of free hydrogen radicals as H2 (ΔH = 104 kcal·mol−1),73 

H ∙ +H ∙→ H2 (Equation 2.3) 

According to these bond dissociation energies, the overall enthalpy change of the 

reaction is calculated to be −5 kcal·mol−1, which suggests an exothermic adsorption 

process.  

RS– H + Au → RS– Au +
1

2
H2 

(Equation 2.4) 

In addition to enthalpic contributions to the reaction, the entropy also plays a non-

negligible part and is necessarily to be considered. The thermodynamics of the self-

assembling process can be presented by a Gibbs free energy ΔG:  

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (Equation 2.5) 

where ΔH is the enthalpy change of the process, ΔS is the change in entropy associated 

with the arrangement of randomly distributed molecules into a well-defined and 

organized structure, which thus leads to a decrease in entropy. 
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An in-situ detection of a alkanethiol monolayer formation on gold surface reveals that 

the ΔGads of the process is around −5.5 kcal·mol−1, ΔHads is −20 kcal·mol−1, and ΔSads 

is −48 cal·mol−1·K−1.72 Hence, a spontaneous SAM formation results from a 

compromise achieved between the enthalpic and entropic contribution to the adsorption 

process.69,72 The Au–S interaction drives the molecular assembly to the limiting status, 

and the lateral interaction between the adjacent molecules promotes a secondary 

organization of the molecules which establishes the fine details of the final superlattice 

structure.69 

2.1.2 Crosslinking of SAMs  

Exposure of aromatic SAMs to electrons75 or UV light76 could induce the cleavage of 

C–H bonds and consequently creation of new C–C bonds, which eventually leads to a 

lateral cross-linking of the monolayer into a 2D film. In this thesis, conversion of SAMs 

into CNMs is achieved by using an electron flood-gun in a high vacuum (<3×10−7 mbar) 

and employing 100 eV electrons and a dose of 50 mC/cm2. 

 

Figure 2.2. The secondary electron yield as a function of the primary energy for a 

hexadecanethiol (HDT) monolayer on a gold substrate.77 Reprinted with permission 

from ref. 77, AIP Publishing.  

The electron emission source is a thermionic emitter, which utilizes a thermal energy to 

overcome the work function of a metal filament, and induce an electron flow from the 

metal surface. When the electron beam impinges upon a sample surface, electrons 
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within the material may acquire sufficient kinetic energy to be emitted from the surface. 

The bombarding electrons are called primary, and the emitted electrons are named 

secondary. The secondary electron yield δ is defined as follows:  

δ = Is/Ip (Equation 2.6) 

where Is and Ip are the currents of the emitted secondary electrons and the primary beam, 

respectively. A relationship between δ and the primary energy was acquired by 

measuring the primary and the sample currents.77 In the primary energy region of 

100 eV, δ reaches up to 1.0 for a hexadecanethiol monolayer on a gold substrate 

(Figure 2.2). Spectroscopic studies suggest that the primary and secondary electrons 

both contribute to the electron-induced crosslinking in aromatic SAMs.78 The basic 

steps involved in crosslinking of a biphenylthiol SAM is schematically shown in 

Figure 2.3, which includes irradiation, emission of secondary electrons, cleavage of C–

H bonds, and lateral linking of adjacent molecules.78  

 

Figure 2.3. Schematic representation of four main steps involved in the cross-linking of 

biphenylthiol SAMs.78 Reprinted with permission from ref. 78, American Chemical 

Society.  

2.2 Characterization of SAMs and CNMs 

The chemical composition and thickness of CNMs are characterized with X-ray 

photoelectron spectroscopy. The intermolecular distance and packing density of the 

molecules, as well as the membrane architecture are investigated with scanning 

tunneling microscopy and atomic force microscopy. The membrane intactness is  
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examined by Helium ion microscopy to exclude defects larger than 1.5 nm. Ion transport 

through CNMs are characterized by electrochemical impedance spectroscopy. 

2.2.1 X-ray Photoelectron Spectroscopy (XPS) 

XPS was performed using an Omicron Multiprobe system with a base pressure of 

~10−10 mbar. The system consists of a monochromatic X-ray source (Al Kα) and a 

hemispherical electron analyzer (SPHERA). XPS were measured with a photoelectron 

emission angle of ~13°. The spectra were analyzed using the CasaXPS program.  

 

Figure 2.4. Schematic illustration of X-ray photoemission process. 

When a X-ray beam with photon energies of hv impinges on a surface, electrons can be 

ejected from the atoms within the material.79 By measuring the kinetic energy (KE) of 

the emitted electrons, the binding energy (BE) of the electron can be determined. 

𝐵𝐸 = ℎ𝑣 − 𝐾𝐸 − ∅ (Equation 2.7) 

where h is Plank’s constant, v is the frequency, Φ is the work function of the 

spectrometer and the material. The obtained BE is related to the elements and their 

chemical states. The intensity of photoelectron peak relies on the elemental 
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concentration on the surface. Thus, XPS allows a quantitative determination of the 

chemical composition of the material surface. 

The thickness d of the monolayer can be determined from the attenuation of the 

substrate Au4f7/2 signal according to:79  

𝐼𝑑 = 𝐼0𝑒−
𝑑

𝜆𝑐𝑜𝑠𝜃 
(Equation 2.8) 

where I0 and Id are XPS signals from the clean and film-covered substrate, respectively, 

λ is the attenuation length of Au4f7/2 photoelectrons, which was taken to be 36 Å,76 θ is 

the emission angle. 

2.2.2 Scanning Tunneling Microscopy (STM) 

The STM image was obtained in a constant current mode by using a multi-chamber 

UHV system (Omicron) with a base pressure of 5 × 10−11 mbar. The measurement was 

operated at room temperature. The tunneling tip was prepared by electrochemical 

etching (3 mol·l−1 NaOH solution) of a tungsten wire and further processed in situ by 

sputtering with Ar+ ions (pAr = 3 × 10−10 mbar, E = 1 keV, t = 1–2 min). 

 

Figure 2.5. Schematic illustration of scanning a metallofullerene and alkanethiol SAM 

on Au(111) by STM in a constant-current mode.80 Reprinted from Ref. 80. 

The atomic resolution of STM is based on a quantum tunneling mechanism. When an 

atomically sharp tip moves sufficiently close to a surface with a distance of 3–10 Å, 
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applying a bias voltage Vt between the tip and the surface can generate a tunneling 

current through the vacuum.81-82 The current results from an overlap between electronic 

wave functions of the tip and the surface, which decays exponentially with the increase 

of the gap. 

When the applied voltage Vt is compared to the work function φ of the two surfaces, the 

tunneling current It can be expressed in a following relationship:83 

𝐼𝑡 = 𝐼0𝑒−2𝑘𝑑 (Equation 2.9) 

where I0 is a function of the applied voltage and density of states in both tip and sample, 

d is the distance between two surfaces, k =(2mφ)0.5/ħ, where m is the mass of the electron, 

and ħ is the reduced Planck’s constant. 

2.2.3 Atomic Force Microscopy (AFM) 

The AFM images of TPT SAM and CNM were acquired using a RHK UHV 7500 

system (5 × 10−11 mbar) with R9 controller. The measurements were conducted at 93 K 

using a liquid nitrogen flow cryostat. The AFM tips were sputtered with Ar+ ions at 

680 eV for 90 s. For the AFM images, Tap300Al-G force sensors (~40 N·m−1, 

~280 kHz, Q ~ 10000, Budget Sensors) were used.  

 

Figure 2.6. Schematic view of the principle of AFM.84 Reprinted with permission from 

ref. 84, Springer Nature. 
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The principle of AFM is schematically shown in Figure 2.6. A sharp tip attached to a 

cantilever is utilized to scan over a surface. When the tip approaches the surface to a 

close proximity, the tip–sample interaction force leads to a deflection of the cantilever. 

In a typical beam-deflection AFM, a laser beam is used to track the bending of the 

cantilever, and the changes on the reflected beam is detected by a position-sensitive 

photodetector. 

According to Hooke’s law, the interaction force F can be determined from the cantilever 

deflection x: 

𝐹 = −𝑘𝑥 (Equation 2.10) 

where k is the spring constant of the cantilever. 

In addition, the interaction force as a function of the separation distance d between the 

tip and the sample can be described by a Lennard-Jones potential VLJ(d) function.85 

VLJ(d) is commonly interpreted as a sum contribution of the Pauli repulsion and the 

attractive Van der Waals force. 

𝑉𝐿𝐽(𝑑) = 4ε[(
𝜎

𝑑
)12 − (

𝜎

𝑑
)6] (Equation 2.11) 

where ε is the depth of the potential well, σ is the finite distance at which the inter-

atomic potential is zero, d is the tip–sample separation distance. The net force F(d) can 

be determine from VLJ(d): 𝐹(𝑑) = ∂𝑉𝐿𝐽(𝑑)/ ∂𝑑. 

 

Figure 2.7. The tip–sample interaction force as a function of the distance.86 
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At relatively large distances, the attractive Van der Waals force dominates the 

interaction. When the distance decreases, short-range repulsive forces arise due to the 

overlap of electron orbitals. According to the force–distance curves shown in 

Figure 2.7, the AFM can be principally classified into two operation modes: static mode 

(contact mode) and dynamic mode (non-contact and intermittent contact mode).  

2.2.4 Helium Ion Microscopy (HIM) 

The HIM images were acquired in secondary electron or bright-field ion transmission 

mode with a Zeiss ORION Plus Helium Ion Microscope. The microscope was operated 

at a beam energy of 35 keV and an ion beam current of 1 pA. Charges on the sample 

were neutralized by using a build-in electron floodgun for avoiding charge-induced 

ruptures.  

 

Figure 2.8. Schematic representation of HIM.87 Reprinted with permission from ref. 87, 

AIP Publishing. 
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The ion source in HIM consists of a very sharp needle with a tip ending with only three 

atoms referred as a trimer. Applying a high voltage of 5–30 kV on the tip in a helium 

atmosphere leads to a field ionization of the He atoms. The He ions are instantly 

accelerated away from the tip and focused on a sample surface. Upon interactions with 

the sample, secondary electrons are ejected from the sample and are collected by a 

detector. A raster scan across the sample with the ion beam builds an image of the 

surface. 

Compared to traditional Scanning Electron Microscope (SEM), HIM have several 

advantages.87-88 First, helium ions have a ~100 times shorter wavelength than electrons, 

thus HIM can provide a smaller spot size than SEM. Second, achieving a similar 

contrast, a helium ion beam have a smaller interaction volume in the sample than an 

electron beam. These two specific properties promise a higher resolution and higher 

surface sensitivity by HIM than SEM. Moreover, HIM allows a high resolution imaging 

of insulating surfaces without additional modification with gold particles. The positive 

charge built up on the surface can be neutralized with an electron gun.  

2.2.5 Electrochemical Impedance Spectroscopy (EIS) 

2.2.5.1 Concept of EIS 

The electrical resistance R of an ideal resistor is interpreted by the Ohm’s law: 

𝑅 =
𝑉

𝐼
 

(Equation 2.12) 

where V and I is the voltage and current across the object.  

However, the real system contains more complex electrical elements and behaviors. 

Impedance extends the simple concept of resistance to AC circuits and measures the 

ability of a circuit to resist the flow of electrical current.89 The EIS experiments are 

conducted by applying a small amplitude of sinusoidal signal, e.g., potential Vt, and 

measuring the response current It. 

𝑉𝑡 = 𝑉0𝑠𝑖𝑛(𝜔𝑡) (Equation 2.13) 

where Vt is the voltage at time t, V0 is the amplitude of the signal, and ω is the radial 

frequency (rad/s), ω = 2πf, f is frequency expressed in Hz. 



Chapter 2 Basics and Methodology 

41 

𝐼𝑡 = 𝐼0𝑠𝑖𝑛(𝜔𝑡 + 𝜑) (Equation 2.14) 

where φ is the phase shift between the voltage and the current.  

Accordingly, the impedance can be expressed in an Ohm’s law-like relationship: 

𝑍 =
𝑉𝑡

𝐼𝑡
=

𝑉0𝑠𝑖𝑛(𝜔𝑡)

𝐼0𝑠𝑖𝑛(𝜔𝑡 + 𝜑)
= 𝑍0

𝑠𝑖𝑛(𝜔𝑡)

𝑠𝑖𝑛(𝜔𝑡 + 𝜑)
 

(Equation 2.15) 

Thus, the impedance spectrum describes not only the magnitude Z0, but also the phase 

shift φ. 

 

Figure 2.9. Sinusoidal Current Response in a Linear System. 

In addition, using Euler’s formula,  

𝑒𝑗𝜑 = cosφ + j𝑠𝑖𝑛𝜑 (Equation 2.16) 

the impedance can also be expressed in a complex function: 

𝑍 =
𝑉𝑡

𝐼𝑡
=

𝑉0𝑒𝑗𝜔𝑡

𝐼0𝑒𝑗𝜔𝑡−𝜑
= 𝑍0𝑒𝑗𝜑 = 𝑍0(cosφ + j𝑠𝑖𝑛𝜑) (Equation 2.17) 

The impedance Z can now be resolved into two components: |Z| = Zreal + jZimag, the real 

component: Zreal = |Z|cosφ, and the imaginary component: Zimag = |Z|sinφ. The 

relationship between Zimag and Zreal can be described by a Nyquist plot. Another 

representation of the EIS data is Bode plot, which displays the phase shift φ and the 
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logarithm of absolute value of impedance |Z| as a function of the logarithm of the 

frequency f.  

2.2.5.2 Interpretation of EIS  

The EIS data can be interpreted by fitting to equivalent circuit models. Commonly used 

electrical elements are resistor, capacitor and inductor. A certain connection of these 

elements can form various types of circuits. Figure 2.10 shows Nyquist plots of four 

common types of equivalent circuit models. 

 

Figure 2.10. Nyquist plots for (a) a capacitor, (b) a capacitor in series with a resistor, 

(c) a capacitor in parallel with a resistor, and (d) a resistor in series with a parallel 

RC-circuit.90 Reprinted with permission from ref. 90, Royal Society of Chemistry. 

For an ideal resistor, the phase shift is zero, thus |Z| = Zreal = R. The impedance of a 

resistor is independent of frequency.  

The capacitance C of a capacitor can be determined from the following equation: 

𝐼𝑡 = C
𝑑𝑉𝑡

𝑑𝑡
= 𝐶

𝑑(𝑉0𝑒𝑗𝜔𝑡)

𝑑𝑡
= 𝑗𝜔𝐶𝑉0𝑒𝑗𝜔𝑡 = 𝑗𝜔𝐶𝑉𝑡 (Equation 2.18) 
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Hence, 

𝑍𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 =
𝑉𝑡

𝐼𝑡
=

1

𝑗𝜔𝐶
 (Equation 2.19) 

Deduced from Equation 2.19, the impedance of a capacitor decreases when the 

frequency is increased. The current through a capacitor is phase shifted 90° with respect 

to the voltage. 

In contrast, the inductance L of an inductor can be determined from the following 

relationship: 

𝑉𝑡 = 𝐿
𝑑𝐼𝑡

𝑑𝑡
= 𝐿

𝑑(𝐼0𝑒𝑗𝜔𝑡)

𝑑𝑡
= 𝑗𝜔𝐿𝐼0𝑒𝑗𝜔𝑡 = 𝑗𝜔𝐿𝐼𝑡 (Equation 2.20) 

Thus, 

𝑍𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 =
𝑉𝑡

𝐼𝑡
= 𝑗𝜔𝐿 (Equation 2.21) 

Accordingly, the impedance of a inductor increases when the frequency is increased. 

The current through an inductor is phase shifted −90° with respect to the voltage. 

For an inhomogeneous material, of which the physical properties, such as the charge 

mobilities, are different everywhere, a constant phase element (CPE) is commonly used 

to describe the capacitive behavior and interpreted as an imperfect capacitor.89,91 The 

presence of CPE results in a depressed semicircle in Nyquist plot. The capacitance of a 

CPE component can be calculated from the following equation:92 

𝐶 =
(𝑌0 ∙ 𝑅)1/𝑛

𝑅
 (Equation 2.22) 

where Y0 is the CPE parameter (S·sn), R is the resistance of the resistor in parallel to the 

CPE (Ω). 
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Chapter 3 

Fabrication of Micrometer-Scale Freestanding CNMs 

3.1 Fabrication of CNMs on Au(111)/Mica 

3.1.1 CNMs from a New “Bulky” Precursor HPB Derivative 1 

The motivation of this work is to seek more available precursors for synthesizing CNMs, 

which would enrich our understanding on molecular mechanisms of crosslinking in 

aromatic SAMs, and also build up the precursor systems in exploring the possibility of 

tailoring the CNM properties. The objective is to develop a protocol for fabricating 

mechanically stable CNMs from the new precursor HPB derivative 1. The molecule is 

synthesized by Max Planck Institute for Polymer Research through a project 

collaboration. 

 

Figure 3.1. Structure of hexaphenylbenzene (HPB) based derivative 1: 4,4'-(4,4''''-

bis(methylthio)-3'',6''-diphenyl-[1,1':4',1'':2'',1''':4''',1''''-quinquephenyl]-4'',5''-

diyl)dipyridine. 

2

New Molecule from Mainz

molecular formula:   C54H40N2S2     

molecular length:      15 Å 
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The structure of the new molecule HPB derivative 1 is shown in Figure 3.1. It is a 

“bulky” molecule containing two pyridine-N in the phenyl rings. Instead of commonly 

used thiol groups, two thioether groups function as the head groups, which is specially 

designed to protect sulfur from being oxidized. The procedure for fabricating SAM is 

illustrated in Figure 3.2. First, the molecule is dissolved in a solvent, then a clean 

Au(111)/mica substrate (G. Albert PVD, Silz, Germany) is immersed in the solution. 

After a specific reaction time, a SAM is formed and the SAM/Au/mica is taken out from 

the solution. Optical microscopy, XPS and helium ion microscopy are employed to 

examine the quality of the formed SAMs and resulting CNMs. 

 

Figure 3.2. Schematic illustration of the SAM preparation from HPB derivative 1. 

In order to obtain a well-ordered and densely-packed monolayer, a variety of 

preparation conditions are investigated as listed in Table 3.1. As a starting step, several 

common solvents, such as DMF, DMSO, CHCl3 and CH2Cl2, are tested. It turns out that 

the molecule can well dissolve in CHCl3 and CH2Cl2. Subsequently, the concentration 

of molecules in the solution was tuned. The monolayer thickness appears to be highly 

related to the molecule concentration. The thickness of SAMs prepared in CHCl3 is 

reduced when the concentration decreases. As the molecules assemble on the surface 

usually with a tilted angle, the thickness of a densely packed monolayer is supposed to 

be slightly smaller than the length of the molecule, in this case, ~1.5 nm. In addition, 

when the monolayer is prepared with a high molecular concentration, the obtained 

sample surface is largely covered with the particles which is even visible to naked eyes. 

These particles are most likely the physisorbed molecules, as a result of the big mass of 

the bulky molecules. In contrast, a low concentration results in a low coverage of 

molecules on the surface, which can be observed from the C1s intensity of XPS spectra, 
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associated to the monolayer thickness described in Table 3.1. Thus, the “monolayer” 

with thickness larger than 1.5 nm is ascribed to the physisorbed molecules on the 

monolayer surface. This is also supported by the observation of a substantial reduction 

in C1s intensity after exposing these thick “monolayers” to electron beams. The smallest 

reduction of carbon is achieved with 0.1 mM solution in CHCl3.  

Table 3.1. Varied conditions for preparing CNMs from HPB derivative 1. 

Solvent 
c* 

(mM) 

t* 

(days) 

Thickness 

(Å)** Reduction 

of carbon 

Position of 

substrates 
Comments 

SAM CNM 

CH2Cl2 0.3 

1 18 12 16% 

 

Physisorbed 

molecules 

on the 

surface 

6 14 11 8% 

CHCl3 

0.6 1 16 11 10% 

0.1 1 11 8 2% 

0.01 

1 7 5 9% 

3 6 - - 

CH2Cl2 

0.1 1 

11 - - 

 

Broader S2p 

signal 

CHCl3 10 8 2%  

*c: concentration, t: immersion time. **The monolayer thickness is calculated 

from Equation 2.8. 

Immersing the substrate in the solution for one day seems to be sufficient for forming a 

dense monolayer. Preparation with a longer immersion time did not make a substantial 

change on the monolayer quality. Moreover, the physisorption of molecules on the 

surface can be prevented by placing the substrate in a standing-up position instead of 

lying down. At the same conditions, the monolayer prepared in CHCl3 exhibits a narrow 

S2p signal and a high C1s intensity compared to that prepared in CH2Cl2, indicating a 

high purity of chemisorbed monolayer on the substrate. Finally, a ~1 nm thin SAM from 
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HPB derivative 1 is created by immersing the Au/mica substrate in 0.1 mM solution 

CHCl3 by a standing-up position for one day at room temperature. After electron 

irradiation, the monolayer is converted to a ~0.8 nm thin CNM.  

 

Figure 3.3. X-ray photoelectron spectra of the bulk sample, SAM and crosslinked SAM 

prepared from HPB derivative 1. 

Figure 3.3 shows the XPS spectra of a bulk sample, SAM and crosslinked SAM made 

from HPB derivative 1. The bulk sample was prepared by drop casting a diluted solution 

of the molecule on the gold surface. Measurements with the bulk sample would be 

useful in determining the binding energy (BE) of the thiolether group on gold in an 

unbound state. The sulfur signal for the bulk sample consists of a doublet with a S2p3/2 

BE of ∼163.8 eV, which is assigned to unbound thiol species on gold.93 Note that the 
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BE of the C1s signal for the bulk sample are shifted to higher values compared to that 

for the monolayer, which is possibly due to a weak electrical coupling of the thick film 

to the substrate.94-95 The BE of sulfur signal for the SAM sample shifts to ∼162.0 eV, 

attributing to chemisorbed thiol species on gold via RS–Au bonds.96 The presence of 

single doublet in the S2p spectra suggests that the two thioether groups in the precursor 

both chemisorbed on the gold substrate. N1s peaks with BE of 398.6 eV is assigned to 

pyridinic nitrogen.97 In the S2p spectrum of the irradiated SAM, in addition to the 

thiolate species with a Sp3/2 BE of 161.9 eV, another new sulfur species with a Sp3/2 

BE of 163.7 eV is observed, which is assigned to organosulfides (R–S–R or R–S–S–R) 

formed during the crosslinking process.78,98 The XPS analyses demonstrate that the 

HPB derivative 1 precursors are successfully bound to the gold substrate and well 

assembled into a dense monolayer. Irradiation of the monolayer induces successfully a 

crosslinking of the adjacent molecules. 

 

Figure 3.4. Optical micrograph of CNMs from HPB derivative 1 transferred on SiO2/Si. 

The irradiated monolayer, i.e., CNM, is then transferred onto SiO2/Si substrates with 

the assistance of PMMA coatings. The transfer procedure is described elsewhere in 

detail.63 The membrane appears as a transparent, homogeneous and dense film on the 

silicon substrate (Figure 3.4). The film is free of nanoscopic holes, according to the 

HIM imaging of the CNMs that are transferred onto Lacey carbon films/copper grids 

and quantifoil TEM grids (Figure 3.5a–b). The membrane is also mechanically stable 

enough to be suspended freely over a 40 µm-sized hexagonal opening on copper TEM 

grids without any supporting films (Figure 3.5c). 
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a 

    

b 

   

c 

   

Figure 3.5. Helium ion micrograph of the CNMs made from HPB derivative 1 and 

transferred onto (a) Lacey carbon films on Cu grids, (b) Quantifoil TEM grids, and (c) 

Cu 400 mesh grids. 

 

9 
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3.1.2 CNMs from an Established “Linear” Precursor TPT 

Fabrication of SAMs from terphenylthiol (TPT) precursors follows a procedure 

described elsewhere.63 The length of the TPT molecule is ~1.5 nm. Determined from 

XPS analysis, the carbon content of the monolayer was only reduced by 2% after 

electron irradiation with 50 eV electrons at a dose of 50 mC/cm2. The resulting CNMs 

has a thickness of ~1.2 nm, calculated from the exponential attenuation of the Au 

substrate Au4f7/2 signal (see Equation 2.8). 

 

Figure 3.6. Structure of the precursor terphenyl-4-thiol (TPT). 

The sulfur spectrum of TPT SAM shows a single doublet with a S2p3/2 BE of 162.0 eV 

that is attributed to thiolates on gold (R–S–Au).78 The presence of the single doublet 

indicates a high quality thiol-derived SAM.99 After exposing the monolayer to 

irradiation, a new sulfur species with a S2p3/2 BE of 163.5 eV is detected which is 

assigned to organosulfides,98 suggesting that some sulfur groups no longer bond to gold 

but form sulfides (R–S–R) or disulfides (R–S–S–R) by linking adjacent molecules.78,98 

The membrane stability was also tested by transferring the CNM from the original gold 

substrate to a new gold surface. In the C1s spectrum of the transferred sample, the 

carbon intensity seems to be mostly preserved. Shoulders at 286.5 and 288.7 eV were 

detected, which may occur as a result of the adsorbed CO2 and H2O during the transfer 

process. Another possibility is ascribed to the existence of the residue of carbon radicals 

generated in the crosslinking process. These carbon radicals might get oxidized and 

converted to oxygen-containing functional groups like carboxyl, after CNMs are taken 
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out from the vacuum system and exposed to atmospheric condition. The interpretations 

are supported by the observing of oxygen species on the transferred sample. In addition, 

the sulfur species of thiolates on gold (S2p3/2 binding energy of 162 eV) disappeared on 

the S2p spectrum of the transferred sample. This likely occurs due to the fact that the 

original gold substrate is etched away during the transfer process.  

 

Figure 3.7. X-ray Photoelectron Spectra. (a) TPT SAM on Au(111)/mica. (b) TPT CNM 

on Au(111)/mica. (c) TPT-CNM transferred onto a new Au(111)/mica substrate.  

3.2 Micrometer-Scale Freestanding CNMs on Si3N4/Si Chips  

The target substrate employed for holding CNMs in permeation measurements is a 

Si3N4/Si chip which consists of a 500 nm thick silicon nitride membrane on top of a 

200 µm thick silicon supporting frame (Silson Ltd, UK); a circular opening with 

diameter of 5–50 µm is made in the silicon nitride membrane (Figure 3.8). The size of 
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the opening defines the effective membrane area for permeation experiments. CNMs 

made from HPB derivative 1 and TPT precursors are transferred onto Si3N4/Si chips 

respectively, with the assistance of PMMA coatings as described elsewhere.58  

 

Figure 3.8. Schematic illustration of transferring the CNM onto a Si3N4/Si chip device 

with a single microhole.  

The intactness of the transferred CNMs is first examined with optical microscopy, from 

which the micrometer-sized defects can be readily detected. The yield of intact samples 

prepared from HPB derivative 1 is found to be only ~30%. Most of the membranes get 

ruptured during the transfer process (Figure 3.9). In comparison, the yield of intact 

membranes made from TPT precursors is nearly 100%. The freestanding TPT CNMs 

are further checked with HIM to exclude the existence of nanoscopic defects larger than 

~1.5 nm (resolution of HIM). Figure 3.10 shows optical and helium-ion micrographs 

of a freestanding TPT CNM that is suspended over a 18 µm circular hole on a Si3N4/Si 

chip. The membrane appears as a dense film on the substrate and is free of defects/holes 

visible in the resolution limit of HIM.  

The higher yield of intact samples from TPT precursors is possibly due to the fact that 

CNMs made from TPT are ~0.4 nm thicker than CNMs from HPB derivative 1 and are 

hence more mechanically stable. The “bulky” shape determines that HPB derivative 1 

might not assemble in a monolayer structure as dense as the “linear” precursor TPT 

does, thus tending to form a thinner membrane, even though the molecular length of the 

two precursors are similar. On the other hand, the membrane thickness may also be 

related to the preparation conditions, as indicated in a previous work;63 for those 

molecules of which the intermolecular interactions relies on factors, such as temperature 
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and solvent, the monolayer thickness can be tailored by varying these preparation 

conditions. As tailoring of the CNM properties is not the focus of this work, optimizing 

the membrane structures from HPB derivative 1 will not be proceeded here. The CNMs 

prepared from TPT precursors seem to be sufficiently qualified for further permeation 

experiments.  

 

Figure 3.9. Optical micrograph of two ruptured CNMs from HPB derivative 1 

suspended over a microhole on Si3N4/Si chip. 

 

Figure 3.10. Optical and helium ion micrographs of a freestanding TPT CNM 

suspended over a microhole on Si3N4/Si chip. The sample was tilted by ~75° for HIM 

imaging. 
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3.3 Summary  

Two precursor molecules were employed to fabricate micrometer-scale freestanding 

CNMs. Firstly, a ~0.8 nm thick CNM is fabricated from a new bulky precursor HPB 

derivative 1, of which the molecular length is 1.5 nm. The membrane is free of 

nanoscopic holes, and are mechanically stable enough to be suspended over ~40 µm 

sized hexagonal openings. In contrast, a linear shape TPT precursor with similar 

molecular length forms a 1.2 nm thick CNM.  

As the first preparing step for permeation experiments, both membranes are transferred 

from the original gold surface to the target substrate of Si3N4/Si device with a single 

15–20 µm sized aperture. The yield of intact samples made from HPB derivative 1 is 

only ~30%, substantially lower than 100% yield from TPT. We attribute this to the fact 

that CNMs made from TPT are ~0.4 nm thicker than that from HPB derivative 1 and 

thus more mechanically stable. A possible way to enhance the yield of intact membranes 

from HPB derivative 1 would be reducing the freestanding membrane dimension. 

However, this will also bring down the signal-to-noise ratio in the subsequent 

permeation experiments. Considering that CNMs are only ~1 nm thick, performing 

measurements with these thin films is very challenging. Thus, as a starting point, this 

work will only focus on the transport properties of TPT CNMs, so as to keep a relatively 

high desired signal in the permeation measurements, as well as minimizing the influence 

of membrane fractures. 
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Chapter 4 

Rapid and Selective Water Permeation Through TPT CNMs 

4.1 Introduction 

In this chapter, molecular transport through freestanding TPT CNMs will be quantified 

by two different permeation experiments: mass-loss measurements and gas permeation 

measurements in vacuum system. To understand the permeation behavior, the 

architecture of TPT CNMs will be re-investigated by high-resolution scanning probe 

microscopy operated in ultrahigh vacuum system. The transport mechanism through 

CNMs will also be discussed. The main results of this chapter have been published in a 

peer-reviewed journal (ACS Nano 2018, 12, 4695-4701).100 

4.2 Mass Loss Methods 

4.2.1 Basics and Setup 

The permeation of water and organic liquids through CNMs is studied with a mass loss 

measurement.101 The setup is schematically shown in Figure 4.1. The CNM covered Si 

chips are sealed by epoxy on top of a container which is filled with 400 µl of Milli-Q 

water. The experiment starts in ~15 h to make sure that the relative humidity (RH) inside 

the container achieves up to 100% and the mass loss change of the system reaches a 

steady state. The container is then placed into an enclosed oven with a constant 

temperature of 30 ± 0.1 °C and the RH inside the oven (i.e., outside the container) is 

controlled around 15% ± 2% by using saturated LiCl solution.102 Due to a differential 

water vapour pressure inside and outside the container, water will evaporate inside the 

container and permeate across the membrane. The mass loss of the container is recorded 

with a microbalance (Sartorius ME36S, sensitivity: 1 µg).  
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The water permeance of the CNM can be calculated by the following equation: 

ptA

Mm
P






/
 (Equation 4.1) 

where Δm is the mass change of the container (kg), M is the molar mass of water 

(kg·mol−1), A is the membrane area (m2), t is the time interval for an experiment (s), Δp 

is the vapor pressure difference (Pa). In this study, Δp is around 3,600 Pa. 

 

Figure 4.1. (a) Schematic view and (b) photograph of the mass loss experiments.  

4.2.2 Control Measurements 

To confirm the reliability of the method, we first investigated the water flow through an 

uncovered open aperture. The diffusion of water molecules through a thin orifice can 

be predicted from the following equation:56,103-104 

𝑄 = 𝐷 ∙
𝑚

𝐾𝐵𝑇
∙ 𝑑 ∙ ∆𝑝 (Equation 4.2) 

where Q is the mass flow rate (kg·s−1), D is the diffusion coefficient of water in air at 

30 °C (26 ×10−6 m2·s−1),105 m is the molecular mass of water (kg), KB is the Boltzmann 

constant (m2·kg·s−2·K−1), T is the temperature (K), d is the diameter of the aperture (m), 

Δp is the vapor pressure difference (Pa). 



Chapter 4 Rapid and Selective Water Permeation Through TPT CNMs 

59 

As control measurements, two subsequent experiments are performed respectively as 

follows. First, the diameter of the aperture is kept constant, the mass loss is recorded as 

a function of the operating time. Figure 4.2 shows a linear relationship of the mass loss 

through a 20 µm sized aperture with the running time, which confirms that the 

measurement is operated at a steady state of the mass change. The experimental data 

also fit well with the theoretical values estimated from Equation 4.2. The second 

experiment is carried out by keeping the operation time constant, and recording the mass 

loss as a function of the aperture size. As shown in Figure 4.3, a linear dependence of 

the water flow rate Q is obtained with the diameter D of apertures: Q = 6.6 × 10−10 

g·s−1·µm−1 × D, which achieves a ~90% fit to the experimental data. The above 

experiments demonstrate the reliability of the mass loss measurements. In addition, 

leakage tests are performed with sealed silicon chips when the container is filled with 

water and organic liquids, respectively. No mass loss (<1 µg) is detected within a week 

for the chips, confirming a fine sealing of the setup. 

 

Figure 4.2. Mass loss through a 20 µm sized aperture as a function of time. The blue 

square is the experimental data, and the red curve is plotted with the theoretical values 

calculated from Equation 4.2. 
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Figure 4.3. Dependence of the mass loss rate on the diameter of open apertures. The 

blue dashed line is a curve derived from a linear fit of the experimental data, and the 

red line is plotted with the theoretical values predicted from Equation 4.2. 

4.2.3 Vapor Permeation Through TPT CNMs 

Water permeation through TPT CNMs was studied with silicon chips with a 18 µm 

sized hole. As a reference, we first measured the water flow rate through a same sized 

aperture without CNMs, observing a mass loss rate of 48.1 µg/h (Figure 4.4a). When 

the aperture is covered with CNMs, the mass loss is only reduced to 6.6 µg/h, 

corresponding to a water permeance of 1.1 × 10−4 mol·m−2·s−1·Pa−1. Compared with 

other reported literature values measured by the similar method, the water permeance 

achieved by TPT CNMs seems to be the highest so far. This value is more than 10 times 

higher than the reported permeances of other nanomembranes (aquaporin biomimetic 

membranes,106 graphene based membranes38,54 and CNT-parylene composite films34), 

and about 2–3 orders of magnitude higher than that of commercial breathable polymer 

membranes (Figure 4.5).107  

With the same method, other (polar and non-polar) liquids like acetonitrile, n-hexane, 

ethanol and 2-propanol were also tested. Strikingly, no mass loss was detected, despite 

that the organic vapors generate a higher vapor pressure difference, i.e., a larger driving 

force, than water vapor. Considering that kinetic diameters of these liquids are larger 
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than 0.265 nm of water,108 this indicates that TPT CNMs act as molecular sieves, which 

only permit the passing of molecules below a certain size.  

Moreover, to understand the fast water permeation through TPT CNMs, we carried out 

another mass loss experiment with containers upside down, which resulted in the same 

permeance as with containers in the upright position, which suggests that the observed 

fast water transport is likely attributed to a liquid water film on the membrane surface 

(Figure 4.4b). As TPT CNM has a hydrophilic surface with contact angle of ~49.9°,109 

water vapor in the saturation condition can readily adsorb on its surface and form a 

liquid layer even in the upright cup measurements. The high water permeance of TPT 

CNMs was also independently confirmed by another gas permeation measurement in 

vacuum system (see Section 4.3). 

 

Figure 4.4. Mass loss measurements. (a) Mass loss rates measured in upright position 

for a sealed Si3N4/Si chip (top), a 18-µm-sized hole without (middle) and covered with 

CNMs (bottom). (b) Water permeance of TPT CNMs measured by mass loss—upright 

cup (liquid water not in contact with CNMs) and inverted cup (liquid water in contact 

with CNMs). The error bars denote standard error of mean within 4–6 samples. 
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Figure 4.5. Water permeances of CNMs and other membranes (commercial breathable 

polymers,107 CNT-parylene composite films34, aquaporin-based membrane106, 

perforated graphene (PG) with pore diameter of ~0.5 nm and porosity of 0.6%38 and 

graphene oxide membrane54) as a function of pore diameters. The boundary for 

breathable polymers was plotted on the basis of the reported values in the literature.107 

4.3 Measurements in Vacuum System 

4.3.1 Basics and Setup 

In order to characterize gas permeation through freestanding CNMs, we adopted an 

approach used for ultrathin polymeric membranes.110 The principle scheme of the 

experiment is illustrated in Figure 4.6. A suspended CNM sample was sealed onto a 

2 mm thick copper disk compatible with a CF® flange. The assembled sample was 

further mounted in a homemade permeation cell representing a multiport CF® vessel. 

The cell was designed to have two ports for membranes and reference samples 

providing identical pathways for incoming molecules. The permeation cell was 

connected to a high vacuum chamber equipped with a quadrupole mass-spectrometer 

(Hal-1001 Hiden Analytical) and with a base pressure of ~2 × 10−9 mbar. The upstream 

side of the sample was exposed to variable amounts of anhydrous gases or water vapors 

as controlled by a capacitance manometer (MKS Baratron® Type 626).  
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Figure 4.6. (a) Schematic and photographs of the gas permeation setup. The permeance 

was detected by a quadrupole mass-spectrometer (QMS). (b) Exemplary mass-

spectrometry analysis: the signal intensity of instrumental background noise, a TPT 

CNM sample and the reference sample. 

 

Figure 4.7. Scanning transmission HIM image of a reference sample used for mass 

spectrometer measurements. The reference sample is produced by drilling a ~140 nm 

sized hole in a 100 nm thick Si3N4 membrane by using a focused helium ion beam.  

The membrane permeance was quantified by the mass-spectrometer with a help of the 

reference sample which can be separately fed by a gas of interest. As a reference, we 

employed a nanoaperture produced in a 100 nm thick Si3N4 membrane by a focused 

helium ion beam (Figure 4.7). A linear response of the spectrometer to the amount of 
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gas in the permeation cell is observed over the range of interest. To ensure that the mass 

spectrometer was not overwhelmed by large quantities of water vapor, Si3N4/Si chips 

with 5 µm sized holes were employed for preparing freestanding CNMs measured in 

the vacuum system.  

To start a gas permeation measurement, we first record the mass-spectrometer 

background signal corresponding to residual concentration of the species of interest in 

the detection chamber, then we feed the CNM sample with the gas of interest and 

measure the signal of the permeating molecules. When the chamber is evacuated and 

the background signal is recovered, we supply the gas of interest to a reference sample 

and detect the respective signal. The experimental data were evaluated as following: 

Asamplerefsample

refsampleref

NmkTAIp

AIp
P









2

1
 (Equation 4.3) 

where psample, pref are feed pressures applied to the membrane and reference samples 

respectively (Pa), Isample and Iref are mass spectrometer signals corresponding to the 

membrane and reference samples, Aref is area of the reference aperture (m2), Asample is 

membrane area (m2), m is molecular mass of the gas of interest (kg), k is the Boltzmann 

constant (m2·kg·s−2·K−1), T is temperature (K), and NA is the Avogadro constant (mol−1). 

The experiments were performed at room temperature. 

4.3.2 Gas Permeation Through TPT CNMs 

With the vacuum system, water permeation through TPT CNMs was first investigated. 

One side of the CNM was exposed to water vapor under the relative humidity (RH) 

which is controlled by the amount of water vapor supplied in the feed chamber and 

quantified by the partial pressure. The flow of permeating molecules was detected by 

the mass spectrometer placed behind the CNMs in the detection chamber. The measured 

water permeance as a function of the RH is plotted in Figure 4.8. Within the 

experimental accuracy, the water permeance at saturation conditions (100% RH) agrees 

well with the gravimetric results, confirming an extremely high water permeance of 

TPT CNMs. At lower humidity, the permeance dropped. That is likely because that at 

high humidity, more water molecules adsorbed on solid surfaces,111 facilitating the 

movement of water across the membranes. Unlike GO membranes that water 

permeation stopped at low humidity,54 the permeance of TPT CNMs did not vanish with 
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decreasing humidity but remained at ~2.0 × 10−5 mol·m−2·s−1·Pa−1 at RH below 20%. 

This seems related to a transition between different transport mechanisms.  

 

Figure 4.8. Water permeance of TPT CNMs as a function of the RH in the feed chamber 

measured in the vacuum apparatus. The red square is the value measured by the mass 

loss methods (upright cup). The error bars denote standard error of mean within 4–6 

samples. 

With the same methods, we also tested the transport of other gases, including He, Ne, 

CO2, Ar, O2, N2. Only permeation of helium through TPT CNMs was detected. 

Interestingly, the permeance of helium (~4.5 × 10−8 mol·m−2·s−1·Pa−1) is 2,500 times 

lower than that of water although they have similar kinetic diameters112 (0.265 nm for 

water and 0.26 nm for helium). No noticeable permeation was detected for other gas 

molecules with kinetic diameters larger than 0.275 nm. This is consistent with the mass 

loss measurements that the CNM is a “sieve” that only allows the passing of small 

molecules and atoms (Figure 4.9).  

After the permeation experiments, CNMs are examined by HIM to ascertain that they 

were not damaged during the permeation measurements. An example of the samples is 

shown in Figure 4.10. The membrane remains intact after measurements. The 

contamination on the surface likely results from the transmitting process from the 

vacuum system to the atmospheric condition.  
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Figure 4.9. Permeances of vapors and gases of TPT CNMs measured by two different 

experiments. The dashed lines indicate the respective detection limits of our 

measurements. The detection limit of vapor permeation measurements is related to the 

sensitivity of the balance and the duration of the experiment. The detection limit of gas 

permeation measurements depends on the instrumental background noise (a signal 

produced with a blank test) of the mass spectrometer. The error bars denote standard 

error of mean within 4–6 samples. 

Table 4.1. Kinetic diameters of gases and liquids.108,112 The values are taken from refs. 

108 and 112. 

 Kinetic diameter (Å) 

water 2.65 

acetonitrile 3.4 

n-hexane 4.3 

ethanol 4.3 

2-propanol 4.7 

He 2.6 

Ne 2.75 

CO
2
 3.3 

Ar 3.4 

O
2
 3.46 

N
2
 3.64 
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Figure 4.10. Scanning transmission HIM image. A TPT CNM covering a 5 µm hole in 

a Si3N4/Si chip is still intact after permeation experiments. 

4.4 Understanding the Permeation Behavior 

4.4.1 Structure of TPT SAMs and CNMs 

To understand the observed permeation behaviors, the structure of TPT CNMs was 

reinvestigated using high-resolution STM and AFM in ultra-high vacuum system. 

Conversion of TPT SAMs to CNMs is schematically illustrated in Figure 4.11a. The 

topography image of a TPT SAM acquired by STM shows that TPT molecules adsorb 

in different but highly oriented and densely packed monolayer domains on Au(111) 

surface, as shown in Figure 4.11b and Figure 4.12a.113-115 A boundary between two 

domains is marked by a yellow line in Figure 4.11b. The topography of TPT SAM 

investigated by AFM (Figure 4.12b) is similar to the one shown by the STM image. 

The molecular corrugations of 0.58 ± 0.01 nm and 1.03 ± 0.02 nm extracted from line 

profiles of the microscope imaging are in accordance with other reported values.114-115 

XPS measurements in Section 3.1.2 revealed that the TPT molecules were arranged in 

a densely packed monolayer of ~1.2 nm thickness, as determined from the attenuation 

of the Au4f7/2 photoelectrons.78-79 After electron irradiation, this monolayer structure 

is completely reorganized. Tapping mode AFM images show that the resulting CNM 

contains a dense network of sub-nanometer (sub-nm) channels (Figure 4.11c). 
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Figure 4.11. (a) Schematic illustration of transforming TPT SAMs to CNMs. (b) STM 

image of TPT SAM measured at room temperature in ultra-high vacuum (UHV) (UBias 

= 790 mV, IT = 40 pA). (c) AFM image of TPT CNM measured at 93 K in UHV via AFM 

tapping mode of operation (amplitude set point A = 8.9 nm, center frequency f0 = 274.9 

kHz). (d) Extracted line profiles in (b) (marked with red lines) and (c) (marked with 

green lines). All the STM and AFM images shown were drift corrected. 

 

Figure 4.12. Morphology of TPT SAM measured by STM and AFM in UHV. (a) STM 

image of TPT SAM measured at room temperature on a 300 nm × 300 nm scale (UBias 

= 330 mV, IT = 75 pA). (b) AFM image of TPT SAM measured at 93 K via non-contact 

mode of operation (amplitude set point A = 14.8 nm, center frequency f0 = −21.4 Hz, 

UBias = 400 mV).  
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The pore diameters dpore of CNMs is estimated manually by measuring the area of the 

pores (Apore) shown in AFM images using a mask drawing tool in Gwyddion program 

(see Figure 4.13 for example pores). The pore diameter is calculated by assuming that 

all pores are circular. 



pore

pore

A
d

4
  (Equation 4.4) 

In addition, by counting the number of pores N in a selected area A, the areal pore 

density σ can be estimated as follows (Figure 4.14).  

σ =
𝑁

𝐴
 (Equation 4.5) 

Based on these analyses, we obtain an average pore diameter of 0.7 ± 0.1 nm and an 

areal density of ~1018 channels m−2 for TPT CNMs.  

 

Figure 4.13. UHV-AFM image of TPT-CNMs measured at 93 K by AFM tapping mode 

of operation. (a) Pristine AFM image (amplitude set point A = 10.2 nm, center 

frequency f0 = 274.9 kHz). (b) The AFM image with exampled pores marked by the 

mask drawing tool of Gwyddion. (c) Extracted Line profiles marked with green lines in 

(b). (d) Estimated pore diameter distribution of (a). 
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Figure 4.14. Estimation of areal pore density from the UHV-AFM images of TPT 

CNMs. (a) 95 pores are marked and the areal pore density is ~0.7×1018 m−2. (b) 155 

pores are marked and the areal pore density is ~0.6×1018 m−2. (c) 330 pores are marked 

and the areal pore density is ~0.5×1018 m−2. (d) A large-scale AFM image which clearly 

shows that the TPT CNMs consist of a high density of sub-nm pores. 

Earlier spectroscopic and quantum chemical studies57,78 provided evidence of C–H bond 

cleavage during electron irradiation of aromatic SAMs, leading to a lateral cross-linking 

via the formation of C–C linked phenyl rings. A recent study with electron energy loss 

spectroscopy confirmed that the irradiation of TPT SAMs by 50 eV electrons mainly 

results in the loss of hydrogen content.116 In contrast, the content of carbon was 

conserved, either in aromatic carbon or aliphatic C=C as a result of ring opening,116 

which agrees with our XPS observation in Figure 3.7 that only a 2% reduction of carbon 

is detected after electron irradiation. The sulfur spectrum also suggests a transformation 

from chemisorbed thiolates (R–S–Au) in TPT SAMs to organosulfides (R–S–S–R or 

R–S–R) in TPT CNMs. The above analyses imply that the formation of sub-nm conduits 

within the CNMs develop in the occurrence of these cross-linking reactions.  
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The shape of the sub-nm channels within CNMs can be clearly observed from a high 

magnification view by AFM (Figure 4.15). To understand the pore forming process, 

we made a drawing of a triangle shaped channel by laterally crosslinking seven TPT 

molecules using Chemdraw program (PerkinElmer Informatics). The created channel 

has a similar shape to the one observed by AFM imaging. 

 

Figure 4.15. (a) AFM image of TPT CNM measured at 93 K in UHV via AFM tapping 

mode of operation (amplitude set point A = 7.6 nm, center frequency f0 = 274.8 kHz). 

(b) A drawing of the marked pore in (a) by Chemdraw program (PerkinElmer 

Informatics). (c) The estimated pore diameter distributions (0.7 ± 0.1 nm, the error bar 

denotes standard deviation) extracted from the acquired AFM images.  

However, if looking at the kinetic diameters of the non-permeating molecules (Table 

4.1), the AFM based estimation of ~0.7 nm for the average channel diameter appears to 

be too large. This is possibly because that the AFM images were obtained from tapping 

mode operation which are governed by short-range repulsive interaction forces,117 

whereas the permeation through ~1.2 nm long channels in TPT CNMs may also be 

affected by (attractive) long-range forces. In addition, the channels may possess inner 

structures inaccessible by AFM imaging. Assuming that the channels are narrower in 

the middle and wider at their ends, similar like the channels in aquaporin proteins, this 

would reduce the active pore diameter in permeation. This view is further supported by 

an estimation of pore sizes from the classical models. Sampson’s formula is a typical 

model that can be used for evaluating a viscous flow through an orifice of zero 

thickness.118 Using this model, Celebi et al. well predicted the gas flow through 

perforated graphene.37 However, considering that TPT CNMs are not infinitely thin and 
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their thickness is still larger than the average pore diameter, another modified model for 

assessing the viscous flow through a finitely-thin orifice is employed here:119  
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 (Equation 4.6) 

where r is the pore radius (m), Q is the volumetric flow rate (m3·s−1), µ is the dynamic 

viscosity (Pa·s), Δp is the pressure drop across the pore (Pa), L is the pore length (m), 

R is the gas constant (J·K−1·mol−1).  

As TPT CNMs only permit the passage of helium and water, the effective pore diameter 

is supposed to be around 0.3 nm. For a given pore density and water permeance, the 

pore diameter estimated from Equation 4.6 is 0.56 nm, which is within the reasonable 

range of the expectation, yet slightly smaller than the one detected by AFM. Note that 

this model is ideally suited for viscous flow, whereas the assumed pore size of CNMs 

is too narrow to fit, thus a deviation may still exist between the actual pore size and the 

estimated value from the formula. Overall, the ~0.7 nm diameter determined from AFM 

images must be considered as an upper limit for the active pore diameters.  

4.4.2 Molecular Transport Mechanism Through TPT CNMs 

To further understand the distinct differences between water and helium, the molecular 

transport through TPT CNMs with sub-nm channels is hereby discussed. The 

permeation process basically involves three steps: (i) molecules adsorb on the 

membrane surface and diffuses to the channel; (ii) move across the channel; and (iii) 

dissociates from the channel and desorbs from the surface.  

For the first step, we compare water and helium by calculating their molar densities on 

the surface.120 As indicated in the mass-loss measurements, at saturation conditions, 

water readily forms a liquid film on the membrane surface. Thus, the density of liquid 

water can be considered as the molar density on the surface, which is 5.6 × 104 mol·m−3. 

In comparison, the density of helium is only 5.3 mol·m−3 at the applied pressure of 

130 mbar in the permeation experiments. Therefore, the probability that a water 

molecule in a water film reaches the channel is much higher than that of a helium atom 

in the gas phase.  
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Assuming that all sub-nm channels in CNMs are active in mass transport, a single-

channel permeation coefficient Π can be calculated as follows:  

Π = P·NA/σ (Equation 4.7) 

where P is the permeance (mol·m−2·s−1·Pa−1), NA is the Avogadro number (mol−1), and 

σ is the areal pore density (m−2).  

The permeation coefficient is calculated to be ~66 water molecules·s−1·Pa−1 per channel 

for TPT CNMs. To understand this value, we looked into other extensively studied 

nanochannel systems, like CNTs and aquaporin proteins. Researches on flow through 

CNTs have demonstrated both experimentally and theoretically that there exists a 

transition from continuum to subcontinuum transport for liquid flow in nanoscale 

systems.121-123 As predicted from the continuum Poiseuille flow (see Equation 1.13), the 

flow velocity would decrease monotonically with decreasing pore diameter. However, 

according to molecular dynamic simulations, when pore diameter is smaller than 1.25 

nm, an increase in water flow velocity is observed when the CNT diameter decrease 

from 1.10 nm to 0.83 nm (Figure 4.16).122  

 

Figure 4.16. Molecular dynamic simulations on water flow in CNTs.122 (a) Relationship 

between average flow velocity and applied pressure gradient for the 75 nm long CNTs. 

(b) Flow enhancement factor as a function of the CNT diameter. The enhancement 

factor is defined as the ratio of observed flow rate to the estimations from the Poiseuille 

law. Ref. 3 in the graph refers to ref. 123 in this thesis. (c) Molecular dynamics 

simulation snapshots of water structures inside the 0.83–1.66 nm diameter CNTs. 

Adapted with permission from ref. 122, American Physical Society. 
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For 0.81 nm wide CNTs, over 3 orders of magnitude enhancement over the estimations 

from the Poiseuille law has been observed, which is attributed to a single-file 

coordinated water transport. An abrupt change in enhancement between 1.39 and 1.25 

nm suggests a transition to subcontinuum transport, which likely results from the 

structural variation of hydrogen bonding network of water.121-122 Although the mass 

transport mechanisms are not yet clear, it has been suggested that water molecules 

become less interacted with the CNT surface in sub-nm sized channels, which may 

reduce the flow friction and increase the velocity.122-123 

We found that the obtained value of ~66 water molecules·s−1·Pa−1 per CNM channel 

compares well with the values obtained for CNTs with diameters of 0.66 nm ((5,5)CNT) 

and 0.81 nm ((6,6)CNT), and aquaporin proteins with diameter of ~0.3 nm (Figure 

4.17).45,124-125 It implies that water molecules confined in these sub-nm channels form 

water chains attributed to the strong and short time hydrogen-bonding character 

between neighboring molecules,126 which allows water to rapidly rush through as a 

single file. The cooperative effect in TPT CNMs is also well supported by the 

permeation data shown in Figure 4.4. In comparison, helium exhibits no directed and 

comparatively strong interactions at room temperature, thus lacking a concerted and 

cooperative transport. Hence, water passes through the channel apparently faster than 

helium in the second step (see also Figure 4.18).  

 

Figure 4.17. A comparison of single-channel water permeation coefficients between 

different membranes. Molecular dynamics simulation was used to study the permeation 

coefficients of CNTs ((5,5)CNT,45 (6,6)CNT45), and a stopped-flow apparatus was 

employed to characterize aquaporins (AQP1,124 AqpZ125).  
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Figure 4.18. Schematic of gas and water transport path through the nanochannels in 

CNMs. Water molecules permeate cooperatively through the channel as a single file. In 

comparison, helium exhibits no strong interactions at room temperature. Besides, the 

steric hindrance could also impede the helium permeation, but has no effect on water 

permeation. 

4.5 Summary  

In summary, we found that TPT CNMs are perforated by a high density of sub-nm 

channels that filter water with very high permeance and high molecular selectivity. The 

water permeance determined from the mass-loss method is in good agreement with the 

permeance detected by mass spectrometry. The rapid water permeation through CNMs 

is ascribed to a high areal density of sub-nm channels of 1018 channels per m2 within 

the membrane, and a cooperative water transport across these channels, similar to the 

mechanisms responsible for the rapid water flow through aquaporin and carbon 

nanotubes. Unlike other carbon materials, CNMs are built in a versatile and scalable 

fabrication process, allowing membranes to be customized with nanometer thickness 

and chemistry.57,63 Especially the possibility to modify CNMs by different functional 

groups57 at the surface will allow further pathways to tailor and optimize the selectivity 

of the translocation process in future applications. These advantages make CNMs a 

highly promising material for efficient separations, such as dehydration of organics, 

dehumidification of gases, and purification of water. 
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Chapter 5 

Ion Exclusion by TPT CNMs 

5.1 Introduction 

Chapter 4 presented molecular transport through TPT CNMs and demonstrated that the 

membrane is impermeable to most of gases and liquids, but permits the rapid passage 

of water. With this finding, a question arises that whether the membrane can still act as 

a molecular sieve in a liquid mixture composed of water and other substances. To give 

the answer, this chapter will study the motion of ionic species by employing ion 

conductance measurements. These experiments can test the sieving properties of TPT 

CNMs in a real mixture system. 

5.2 Basics and Setup 

The principle and setup of ion conductance measurements is schematically shown in 

Figure 5.1. The homemade permeation cell consists of two identical compartments 

made by polycarbonate. On each part two channels are created, in order to build a 

connection to the membrane and fix the distance between electrodes as well. CNM 

covered Si chips are assembled between the two compartments and sealed with two 600 

µm thick PDMS sheets. A 3 mm sized hole is punched in the middle of the PDMS sheet. 

To avoid the occurrence of air bubbles in the liquid filling process, the cell is first wetted 

with isopropanol, and then rinsed with sufficient amount of degassed salt solutions for 

exchanging the isopropanol.  

The ion conductance measurements are performed using both DC and AC methods. To 

investigate the ion transport properties, the conductance is measured in five types of 

1 M of chloride solutions, including HCl, LiCl, KCl, NaCl and MgCl2. Before real 

experiment, we firstly performed a control measurement to test the reliability of the 

whole system. For this purpose, 20 mM of KCl solution are employed as the electrolyte 

because most theories only applies to dilute solutions when describing the ion activities; 
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when the concentration increases, the ionic interactions start to be involved, which is 

not accounted for in the theory.127  

 

Figure 5.1. Ionic conductance measurements. (a) Photograph of the permeation cell. 

(b) Schematic of the experimental principle. (c) Exclusion of large air bubbles in the 

permeation cell after mounting the samples: photograph view through the window of 

the permeation cell (left), and optical microscope image of Si chips from the top view 

(middle) and bottom view (right). 

In the experiments using DC method, the conductance is acquired by collecting I-V 

characteristics using a pair of Ag/AgCl electrodes. The electrodes are re-chlorided and 

calibrated regularly to ensure the stability and repeatability of the measurements. The 

current is recorded by using an Axopatch 200B amplifier (Axon Instruments) with a 

low-pass Bessel filter. The data is collected in 50 mV increments between −300 mV 

and 300 mV. To facilitate the data processing and analysis, the collected current is 

further compressed by averaging the current values so as to reduce the number of data 

points. An analysis of the raw data and filtered data is plotted in Figure 5.2 and Table 

5.1. The average current obtained from the filtered data are in accordance with that 

extracted from the raw data.  
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Figure 5.2. Data acquisition and analysis using DC method. (a) The raw data collected 

from the Electrical Patch device and the filtered data used for analyzing. Histogram of 

current distribution of (b) raw data and (c) filtered data. The bin size is taken as 1.  

Table 5.1. Analysis of data extracted from the Gaussian fit in Figure 5.2. 

 Raw Filtered 

Number of data points 941,213 9,412 

Average current (pA) −2.070 −2.128 

Standard error of mean (pA) 0.025 0.022 

 

Measurements of ion transport with AC method is performed by using electrochemical 

impedance spectroscopy (EIS). The experiments are carried out with the same 

permeation cell as employed in the DC method, but with a four-electrode system to 

reduce the undesired artifacts arising in the two-electrode systems. The data are 

recorded in potentiostatic mode by Reference 600 Potentiostat/Galvanostat (Gamry 

Instruments, Inc.). The AC amplitude was set at 1 mV. The EIS data are fitted to 

equivalent circuits by Echem Analyst program.  

Ion conductance through a neutral pore can be estimated as folows:5,128 

𝐺 = 𝜎(
𝐿

𝜋𝑅2
+

1

2𝑅
)−1 (Equation 5.1) 
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where σ is the bulk ionic conductivity (S·m−1), L is the pore length (m), R is the pore 

radius (m). The first part of the equation is associated with the process of ion moving 

through a pore, and the second part is related to the occurrence of ion entering and 

leaving a pore. 

5.3 Ion Conductance Measurements 

5.3.1 Measurements Using DC Method 

As a control measurement, the ionic conductance through a 15 µm sized aperture in 

Si3N4/Si chip was first quantified by using 20 mM KCl solution (Figure 5.3). The 

current flow is found to be linearly proportional to the applied voltage across the open 

hole. The experimentally determined conductance of ~3 µS fits well with the theoretical 

predictions from Equation 5.1. In contrast, when the aperture is covered with TPT 

CNMs, the current flow is nearly undetectable, sharing a similar tendency with a sealed 

silicon chip.  

 

Figure 5.3. Ion conductance measurements with 20 mM KCl solution. (a) I–V curves of 

a 15 µm aperture without TPT CNMs covered. The dashed line is a linear fit of the 

experimental data. The red curve is a plot of theoretical values obtained from Equation 

5.1. (b) I–V curves of a sealed Si chip and a 15 µm aperture with TPT CNMs covered. 

The error bar denotes the accuracy of determining current by the measurement.  
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The subsequent measurements in a variety of 1 M chloride solutions show that the 

current flow through CNMs only fluctuates in a range of −5 pA to 5 pA at applied 

voltages between –0.3 V to 0.3 V. Some I–V curves show a negative slope, which is 

most likely due to a slight drift of the baseline current during the measurements.129 For 

the sealed silicon chip, a pA level current is also detected, which can be attributed to a 

tiny leakage. Accordingly, the small fluctuation observed for TPT CNMs is considered 

to be a perturbation combining the drift effects and leakage currents, which however is 

negligible compared to the µA level current detected for the same sized aperture without 

membrane covered (Figure 5.4). If taking the fluctuating range as detection limits of 

the measurement, a rough estimation could be made that ions cross over TPT CNMs 

with at least 106 times lower flux than through the aperture. The GΩ level 

transmembrane resistance detected for CNMs, is also found to be comparable to the 

values measured for planar lipid bilayers which is known to have a typical high 

resistance. This suggests that TPT CNMs can repel the penetration of ionic species as 

the lipid does. The reproducibility of the experiments is examined with up to five 

membrane samples, which all exhibit an ion exclusion behavior (Figure 5.5). This 

finding is also supported by the measurement of a defective membrane. When a few 

nanometer sized defects are present on a CNM, the resistance instantly drops to 10 MΩ 

(Figure 5.6).  

 

Figure 5.4. Ionic conductance measurements. (a) I-V curves of TPT CNMs suspending 

over a 15 µm circular aperture in a Si3N4/Si chip in 1 M solutions of HCl, LiCl, KCl, 

NaCl and MgCl2. (b) I-V curves of a 15 µm circular aperture and a sealed Si3N4/Si chip 

in 1 M KCl solution. The error bar denotes the accuracy of determining current by the 

measurement.  
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Figure 5.5. Ionic conductance measurements: I–V curves of TPT CNMs measured in 

1M solutions of HCl (a), LiCl (b), KCl (c), NaCl (d), and MgCl2 (e). 1–5 corresponds to 

5 TPT CNM samples. The error bar denotes the accuracy of determining the current by 

the measurement. 

To assure that the measured high resistance is indeed the CNM properties and are not 

caused by an inappropriate mounting of the samples, we subsequently carry out a 

dielectric breakdown experiment as follows. A high electric field is applied across the 

insulated CNMs, which is supposed to induce an accumulation of charge traps in the 

bulk film, leading to an mechanical rupture on the membrane and creating leakage 

currents.130 In this way, the existence of the membrane in the system could be proved. 
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Figure 5.6. Ionic conductance and dielectric breakdown characterization in 1 M KCl. 

(a) Current probed at varied voltages as a function of time for TPT CNMs. (b) I–V 

curves for pristine TPT CNMs, measurements after applying 50 V across the membrane 

for 1 min, and after placing the permeation cell into an ultrasonic bath for 5 s. (c) 

Current as a function of time for a TPT CNM with ~0.6 μm2 defects. (d) I–V curves for 

the defective TPT CNMs. The current values shown in b and d is average values of the 

signal detected in a and c. The red dashed line is a linear fit of the experimental data. 

The error bar denotes the accuracy of determining current by the measurement.  

Unexpectedly, for an intact CNM that impedes a current flow, even applying a voltage 

of up to 50 V for one minute, the current follow is still not notable in 1 M KCl, that is, 

the membrane remains free of fractures (Figure 5.6a–b). Instead, the membrane is 

eventually damaged by assistance with ultrasonic waves and as a consequence, an ionic 

conductance of ~50 µS was detected. These results reveal that the intact CNM can 

withstand high electric potentials. The phenomena was further evidenced by a following 

experiment shown in Figure 5.6c–d. In the case of a defective CNM, a constant ionic 

conductance of ~100 nS was detected when the applied voltages is below 0.17 V. 
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According to Equation 5.1, the defects area is calculated to be ~0.6 μm2. When the 

voltage increases and reaches up to 0.18 V, the current flow is no longer constant at a 

constant voltage but starts to increase linearly over time, indicating that the defects are 

continuously growing. This is likely because that the defects on CNMs experience an 

increased electric field strength, which locally initiates the defect growth. Although the 

process through which the material is removed from the defective CNM remains unclear, 

the analysis implies that the intact CNMs comprise a dense crosslinked network and 

seem improbable to be easily destroyed by the electrical potentials.  

 

Figure 5.7. Helium ion micrograph of two TPT CNM samples after ion conductance 

measurements. (a) a pristine sample. (b) a sample rinsed with water after 

measurements.  



Chapter 5 Ion Exclusion by TPT CNMs 

85 

After conductance measurements, the intactness of CNMs was also examined by helium 

ion microscopy. As examples, two samples are shown in Figure 5.7, a pristine sample 

and another rinsed with water after the measurements. The pristine sample is fully 

covered with particles, most likely salt residues, as the measurements were performed 

in highly concentrated salt solutions. In contrast, another sample is relatively much 

cleaner, which suggests that these residues can be removed by rinsing with water. 

5.3.2 Measurements Using AC Method 

To probe more characteristics of ionic diffusion across TPT CNMs, an EIS 

measurement using DC method is employed in a frequency range of 10−2–106 Hz. The 

impedance spectrum confirms that ions flow through CNMs with an exceedingly high 

resistance. Depressed semicircles in Nyquist Plots are fitted to an equivalent electrical 

circuit model (Figure 5.8), which consists of three components: (i) R1—a total ohmic 

resistance of the system, including electrodes, solutions and electrical contacts, 

associated with the intercept at the Zreal axis at high frequency, only several Ω; (ii) R2—

ion diffusion resistance through CNMs, linked to the diameter of the semicircle, in a 

GΩ level; and (iii) C1, a constant phase element (CPE) representing a response of 

membrane capacitance related to the non-porous region of CNMs.  

 

Figure 5.8. Electrochemical impedance spectra characterization. (a) Nyquist plots of 

impedance spectra for TPT CNMs measured in 1 M solutions of HCl, LiCl, KCl, NaCl 

and MgCl2. (b) Equivalent circuit model for impedance spectra in a. 
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In comparison, salts pass through the same sized aperture without membrane covered 

with a ~106 lower resistance than through TPT CNMs (Figure 5.9). It seems that ions 

moving through CNMs obeys a mechanism that is different with that of the aperture. 

Especially, the diffusion resistance through TPT CNMs is found to be highly related to 

the hydration radius of cations in the chloride salts: H+ < K+ < Na+ < Li+ < Mg2+. The 

measurements in MgCl2 solution yields the highest resistance for TPT CNMs despite it 

contributing more ions than other solutions in same concentration.  

 

Figure 5.9. Comparison of ionic diffusion resistance through the aperture and TPT 

CNMs in a variety of 1 M chloride solutions.  

These phenomena reveal two interesting structural properties of TPT CNMs. Firstly, 

the limited passage of cations is mainly dominated by a size exclusion mechanism. This 

again confirms the existence of sub-nm channels within TPT CNMs. Secondly, the 

membrane can strongly impede the penetration of Cl− ions. This can be assigned to the 

presence of negatively charged groups on membrane surface, determined from a zeta 

potential measurement shown in Figure 5.10. TPT CNMs on two different substrates 

both show a negative surface charge property in the pH range of 3–9. The negatively 

charged properties of CNMs on gold is possibly caused by a small amount of carboxyl 

groups generated from the oxidation of carbon radical residues when CNMs are exposed 

to air after the crosslinking step. After being transferred onto PAN supports, TPT CNMs 

become more negatively charged, which may result from the occurrence of oxidized 

sulfur species produced in the membrane transfer process.  
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Figure 5.10. Zeta potential measurements of TPT CNMs on an Au/mica substrate 

(before transfer) and on a PAN support (after transfer).  

Table 5.2. Hydration radius of ionic species.131 Data is taken from ref. 131.  

Ionic species Hydration radius (Å) 

H+ 2.82 

K+ 3.31 

Na+ 3.58 

Li+ 3.82 

Mg2+ 4.28 

Cl− 3.32 

 

Compared with biological systems, the specific resistance of ~104 Ω·cm2 detected for 

TPT CNMs is in the same level as the typical high resistance of planar lipid bilayers 

(Figure 5.11). According to the areal pore density of 1018 m−2 determined from AFM 

imaging in Section 4.4.1, a single-channel conductance of 10−6 pS is obtained for TPT 

CNMs in 1 M KCl. This value is more than ~107 times lower than that of a single ion 

channel in lipid membranes acquired in similar measurement conditions. This implies 

that TPT CNMs present as a barrier against motion of ions like lipid bilayers. 
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The above explanation is also well supported by the phase shift of the EIS 

measurements. The bode plots in Figure 5.12 reflects that a sealed silicon chip shows 

a purely capacitive behavior that the impedance decreases as the frequency is raised, 

with a fairly constant phase angle of −90°. In contrast, CNMs present a highly resistive 

diffusion process in frequencies below 0.04 Hz, and a capacitive response in frequencies 

between 3 and 106 Hz. The phase angle also shows a gradual shift from 0° to −90° while 

moving from low to high frequency. The aperture exhibits a similar impedance pattern 

as TPT CNMs, but with ~106 lower diffusion resistance, and the transition from being 

resistive to capacitive also occurs at a much higher frequency of ~105 Hz. These results 

are consistent with the data acquired by DC methods in Figure 5.4.  

The electrochemical measurements revealed that TPT CNMs are able to impede the 

passage of ions including protons, which seems valid as the hydration diameter of ions 

exceeds the effective membrane channel size of ~3 Å.100 The limited passage of ions 

detected by EIS could be ascribed to a leakage current or interpreted by a transport in 

activated regime5 where the diffusion relies on bond stretching or flexing. However, we 

note that the transport of protons in water follows a Grotthuss mechanism, that is, 

protons can move along the channel by hopping from one water molecule to another. 

Accordingly, the rapid water permeation through TPT CNMs should also facilitate the 

proton transport. Therefore, excepting steric hindrance, other energetic barriers should 

also contribute to the observed ion exclusion. Aquaporin proteins, as biological water 

channels, can perfectly hinder the transport of protons. Several simulations have 

provided hints that the water/proton selectivity in aquaporin systems is attributed to an 

electrostatic barrier, but debates still remain on whether residual charges132 or low 

dielectric regions133 in proteins dominate the electrostatic origin. In addition, 

simulations in carbon nanotube systems indicate that the mobility of protons is very 

high in nonpolar 1D water wires but it can be interrupted if orientational defects are 

present in the hydrogen-bonded water chains134. Overall, it seems that proton transport 

in the sub-nm narrow channels is a complicated process. To fully elucidate the transport 

behavior, extensive experiments and dynamic simulations are still required. 
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Figure 5.11. A comparison of ion transport behaviors between TPT CNMs and 

biological systems. (a) Specific resistance of TPT CNMs, pure lipid bilayers (PI,135 

OxCh,135 BLM1136 and BLM2137) and bilayers with a single ion channel (PI+porin,135 

OxCh+porin,135 BLM1+gramicidin136 and BLM2+1channel137). The resistance of 

planar lipid bilayers differs in varied salt concentration and types, in a wide range of 

104–107 Ω·cm2, thus the literature values selected for comparison are acquired in 1–2 

M KCl solution. (b) Single-channel conductance of TPT CNMs and biological ion 

channels (NanC,138 Amylosin,139 chloroplast,140 OprP,141 protein P,142 C. crescentus,143 

Tsx,144 TolC,145 Y118 mutants146).  
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Figure 5.12. EIS measurements in 1M HCl solution. Nyquist plots (a), bode plots of 

impedance magnitude |Z| (b) and phase shift (c) as a function of frequency for the 

aperture, TPT CNMs and sealed Si chip.  
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5.4 Summary  

Ion transport through TPT CNMs was investigated using both DC and AC 

electrochemical measurements. The results demonstrate that TPT CNMs can filter out 

ions including protons. The DC method works well for the micrometer sized aperture 

as the data has a good signal-to-noise ratio, but it is very sensitive to a baseline drift and 

a tiny leak when measuring of TPT CNMs due to a very high membrane resistance. 

With an AC based EIS measurement, the ion diffusion resistance through the membrane 

could be extracted by fitting the data to equivalent electrical circuits. The obtained 

transmembrane resistance of ~104 Ω·cm2 is in the same level as that of the pure planar 

lipid bilayers. A single channel conductance is calculated to be 2 × 10−18 S in 1 M KCl 

solution, >107 times lower than that of a biological porin. This finding reveals a rigid 

structure of CNMs in liquid systems, and encourages their use as a new membrane 

platform for studying biological systems, as well as in separation processes like water 

purification.  
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Chapter 6 

Conclusions and Outlook 

This work investigated the permeation properties of freestanding TPT CNMs by several 

permeation experiments including mass loss measurements, gas permeation in vacuum 

system and ion conductance measurements. The results revealed that TPT CNMs act as 

molecular sieves, exhibiting high water selectivity and high permeance; they exclude 

most gases (Ne, CO2, Ar, O2, N2), liquids (acetonitrile, n-hexane, ethanol, 2-proponal), 

as well as ionic species including protons, but permit the passage of water and helium. 

Water transits with a remarkably high permeance of ~1.1×10−4 mol·m−2·s−1·Pa−1, 

~2,500 times faster than helium. The water permeance achieved by TPT CNMs is orders 

of magnitude higher than other existing membranes. The sieving behavior is attributed 

to a dense network of sub-nm channels within TPT CNMs. The rapid water flow is 

ascribed to a single-file transport of 66 water molecules s−1·Pa−1 per single channel, 

similar to the phenomenon observed for aquaporin proteins and carbon nanotubes, and 

a high areal channel density of 1018 m−2 within the membrane.  

In liquid solutions, TPT CNMs can also hinder the penetration of ionic species. Ions 

transmit through the membrane with a specific resistance as high as that of pure lipid 

bilayers. The obtained single-channel conductance is ~107 times lower than the value 

for a biological porin. The sieving properties suggest that TPT CNMs have an identical 

behavior as the protein channels—aquaporins, which only allow water to pass, but block 

all ionic species. With advances in nanofabrication, many efforts have been made to 

mimic these nature structures, but none is really successful. A more recent progress has 

been achieved by 2D slits made from stacking graphite or hBN crystals with graphene 

as spacers.51 These devices can block small ions such as Na+ and Cl−, but proton is still 

an exception. Although the mechanism of excluding protons by TPT CNMs remains 

unclear, the membrane can be considered as a potential platform for enriching the 

understanding of biological processes.  

The molecular sieving properties also inspire the use of TPT CNMs for a variety of 
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separation processes, such as water purification, dehydration of organics, etc. CNMs as 

2D filters that combines ease fabrication with tunable fabrication, provide enormous 

potentials in manipulating membrane architecture with precision in sub-nm dimensions. 

Careful design of these molecular filters could bring about new opportunities in 

molecular separation. Thus further work on exploring the tunability of CNMs would 

promote the developing of this 2D membrane system. In addition, temperature-

dependent transport experiments and molecular dynamic simulations might be useful in 

further understanding the transport mechanisms. 
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