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ABSTRACT

This research asks how humans connect spatial language to physical
space. To investigate this question, the present dissertation focuses on
the task of verifying sentences containing a projective spatial preposi-
tion (e.g., above, below) against a depicted spatial relation (e.g., a circle
above a rectangle). Linguistically, the two components of a spatial rela-
tion are distinguished from each other: “The [located object (LO)] is
above the [reference object (RO)].” That is, a spatial preposition speci-
fies the location of an LO with respect to an RO. Typically, semantics
do not allow to interchange RO and LO (although syntactically this is
not a problem). For instance, compare the sentence “The bike (LO) is
in front of the house (RO)” with “The house (LO) is behind the bike
(RO)” (cf. Talmy, 2000, p. 183).

For the processing of spatial relations, shifts of visual attention have
been identified as an important mechanism (Franconeri, Scimeca, Roth,
Helseth, & Kahn, 2012; Logan & Sadler, 1996; see Chapters 1 and 2).
While Logan (1995) and Logan and Sadler (1996) claimed that attention
should shift from the RO to the LO during the processing of spatial
relations, recent empirical evidence suggests that the shift of attention
might also take place in the same order as the sentence unfolds – from
the LO to the RO (Burigo & Knoeferle, 2015; Roth & Franconeri, 2012).
A computational cognitive model of spatial language verification

is the ‘Attentional Vector Sum’ (AVS) model proposed by Regier and
Carlson (2001). This model (implicitly) implements a shift of attention
from the RO to the LO (see Chapter 1). It accommodates empirical
data from a range of different spatial RO-LO configurations (Regier
& Carlson, 2001). To what extent does this good model performance
originate from the directionality of the implemented shift (from the RO
to the LO)? Considering the recent empirical evidence that attention
might move in the reversed direction (from the LO to the RO) – would
a model implementing such a reversed shift perform better or worse
on the empirical data? These are the main questions that motivated the
present thesis.

To answer these questions, I developed several variations of the AVS
model (taking into account the two important geometric properties
‘proximal orientation’ and ‘center-of-mass orientation’; Regier, 1996;
Regier & Carlson, 2001). In all these variations, the shift of attention
goes from the LO to the RO (instead of from the RO to the LO). This
is why they are called ‘reversed AVS’ (rAVS) models. In Chapter 3, I
assess the rAVS variations using empirical data (acceptability ratings for
spatial prepositions) from Hayward and Tarr (1995), Logan and Sadler
(1996), and Regier and Carlson (2001). More specifically, I fitted the
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models to the empirical data (separately for each experiment and for
the whole data set from Regier & Carlson, 2001). That is, I minimized
the ‘normalized Root Mean Square Error’ (nRMSE) and thus obtained
a ‘goodness-of-fit’ (GOF) measure. Moreover, I evaluated the ability
of the models to generalize to unseen data (cf. Pitt & Myung, 2002) by
applying the ‘simple hold-out’ method (SHO; Schultheis, Singhaniya,
& Chaplot, 2013). The SHO is a cross-fitting method that accounts
for potential over-fitting of empirical data. Considering these model
benchmarks, one rAVS variation – the rAVSw-comb model – performs as
well as the AVS model on the tested empirical data. The rAVSw-comb
model implements a mechanism in which ‘relative distance’ (roughly:
absolute distance from LO to RO divided by the dimensions of the
RO) weights the influence of the two important geometric features
proximal orientation and center-of-mass orientation. Based on these
results, neither implementation of directionality of attention is able to
accommodate the empirical findings better than the other.
This is why I analyzed the AVS and rAVSw-comb models in terms

of their predictions (Chapter 4). The idea was to identify stimuli for
which the two contrasting shift-implementations (i.e., the two models)
predict different outcomes. Data collected with these stimuli could then
potentially tell apart the two models (e.g., if humans follow predictions
from one model but not from the other). I created two types of test
cases for which the two models seemed to generate somewhat different
outcomes: a relative distance test case and an asymmetrical ROs test
case.

In the relative distance test case, the critical manipulation is the height
of the rectangular ROs. The absolute placements of the LOs remain
equal in these stimuli. This test case is the first to investigate a potential
influence of relative distance on human spatial language acceptability
ratings. The predictions for the relative distance test case were that
across different RO heights, acceptability ratings should differ (de-
spite equal absolute LO placements). This prediction was clear for the
rAVSw-comb model. However, due to the averaging vector sum mecha-
nism in the AVS model, the prediction from the AVS model remained
unclear.
The second test case (asymmetrical ROs) challenges the role of the

vector sum in the AVSmodel. For this test case, I designed asymmetrical
ROs. LOs are placed either above the cavity of these ROs or above the
mass. (The RO-side that faces the LO is flat.) For these ROs, the center-
of-mass does not coincide with the center-of-object (the center of the
bounding box of the RO). Based on intuitive reasoning, the AVS model
predicts different acceptability ratings for LOs placed (i) with equal
distance to the center-of-mass but (ii) either above the cavity or the
mass of the RO: the AVS model seems to predict higher ratings for
LOs placed above the mass compared to LOs above the cavity. The
rAVSw-comb model predicts no difference for this test case.
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I systematically simulated the models on the created stimuli using
the ‘Parameter Space Partitioning’ method (PSP; Pitt, Kim, Navarro,
& Myung, 2006). This method enumerates all qualitatively different
data patterns a model is able to generate – based on evaluating the
whole parameter space of the model. Surprisingly, the PSP analysis
revealed that both models share some of their predictions (but the
models do not generate equal outcomes for all stimuli and parameter
settings). Empirical data collected with these stimuli still might help
to distinguish between the two models in terms of performance (e.g.,
based on different quantitative model fits).

This is why I conducted an empirical study that tested the model pre-
dictions for both developed test cases (relative distance and asymmet-
rical ROs). The empirical study was designed to be as close as possible
to the experimental setup reported in Regier and Carlson (2001). That
is, 34 participants read the German sentence “Der Punkt ist über dem
Objekt” (“The dot is above the object”) and afterwards had to rate its
acceptability given a depicted spatial relation (e.g., an image of a dot
and a rectangle) on a scale from 1 to 9. In addition to über (above), I also
tested the German preposition unter (below). In total, the study tested
448 RO-LO configurations. Moreover, I tracked the eye-movements of
participants during inspection of the depicted spatial relation. These
data are a measure of overt attention during spatial relation processing.

The empirical study could generalize effects on spatial language veri-
fication from English to German (‘grazing line’ effect and lower ratings
for unter, below, compared to über, above). Furthermore, the empirical
study revealed an effect of relative distance on spatial language accept-
ability ratings, although different than predicted by the rAVSw-comb
model. The empirical data from the rectangular ROs suggest that lower
relative distance weakens (i) the effect of proximal orientation and (ii)
– for high values of proximal orientation – weakens a reversed effect
of center-of-mass orientation. Neither the rAVSw-comb model nor the
AVS model can fully accommodate this finding. Future research should
more closely investigate the effect of relative distance.

For the asymmetrical ROs, analyses of the empirical data suggest that
people rely on the center-of-object instead of on the center-of-mass for
their acceptability ratings. This challenges earlier findings about the
importance of the center-of-mass orientation. However, given that in
earlier studies, the center-of-mass and the center-of-object most often
coincided, the data presented in this dissertation provide additional
information on how humans process geometry in the context of spatial
language verification.

In terms of eye movements, the empirical data provide evidence for
the horizontal component of the attentional focus as defined in the AVS
model. This focus is also an important point in the rAVSw-comb model.
The empirical results do not contradict the vertical component of the
hypothesized attentional focus. However, due to the design of the study,



xiv abstract

it remains unclear whether the vertical fixation locations were caused
by the used preposition or by the vertical location of the LO. In addition,
people inspected the two types of asymmetrical ROs slightly differently.
For the more open asymmetrical shapes (L-shaped), fixations were
influenced by the asymmetrical distribution of mass. In contrast, for the
less open but still asymmetrical shapes (C-shaped), fixation patterns
could not be distinguished from fixation patterns to rectangular ROs.
Note that for all asymmetrical ROs, the center-of-object orientation
could predict the rating data better than the center-of-mass orientation
– despite distinct fixation patterns.

To further analyze the claim that peoplemight use the center-of-object
instead of the center-of-mass for their ratings, I developed modifica-
tions for the two cognitive models. While the AVS and rAVSw-comb
models rely on the center-of-mass, the two new models ‘AVS bounding
box’ (AVS-BB) and ‘rAVS center-of-object’ (rAVS-CoO) consider the
center-of-object instead (the rest of the models remains unchanged). To
thoroughly analyze all four cognitive models, I applied several model
comparison techniques (Chapter 5). Based on the stimuli and data
from the empirical study, the goal of the model simulations was to
distinguish between models that implement a shift from the RO to
the LO (AVS, AVS-BB) and models that implement a shift from the
LO to the RO (rAVSw-comb, rAVS-CoO). Apart from fitting the models
to the data (per GOF and SHO), I analyzed them using the ‘Model
Flexibility Analysis’ (MFA, Veksler, Myers, & Gluck, 2015) and the
‘landscaping’ method (Navarro, Pitt, & Myung, 2004). The latter two
methods provide information on how flexible the models are. A highly
flexible model is able to generate a vast amount of distinct output. A
model with low flexibility generates only few distinct data patterns.
In comparing model performances, one should consider the model
flexibility (Roberts & Pashler, 2000). This is because a more flexible
model might even fit empirically implausible data well – due to its
high flexibility. This renders a close fit to empirical data a necessary
but not sufficient criteria for a “good” model. In addition to providing
a different perspective on model flexibility, landscaping measures to
what extent two models are mimicking each other (in which case it is
more difficult to distinguish between them).

Considering all model simulations, the two newly proposed models
rAVS-CoO and AVS-BB (accounting for the center-of-object instead of
for the center-of-mass) perform substantially better than their predeces-
sors rAVSw-comb and AVS. In contrast to the center-of-mass models, the
two center-of-object models better fit the empirical data (GOF, SHO)
while they are less flexible (MFA, landscaping) and generate rating
patterns closer to the empirical patterns (PSP). This supports the hy-
pothesis that people rely on the center-of-object orientation instead
of on the center-of-mass orientation. In terms of the main research
question, however, the model simulations do not favor any of the two
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implemented directionalities of attention over the other. That is, based
on the existing empirical data and the cognitive models, both direction-
alities of attention are equally likely. The thesis closes with a model
extension that allows cognitive modelers to analyze the models more
fine-grained in the future. More specifically, extended models generate
full rating distributions instead of mean ratings. This makes it possible
to use all information available in the empirical data for future model
assessments.
Finally, Chapter 6 summarizes the results of this Ph.D. project. Fol-

lowing the seminal three-level framework proposed by Marr (1982), I
discuss the findings and relate them to other relevant research. I sketch
several promising possibilities to enhance the models in order to create
a more comprehensive model of spatial language processing. Such
a model would allow cognitive scientists to further investigate how
humans ground their spatial language in the visual world.





ZUSAMMENFASSUNG

Diese Dissertation beschäftigt sich mit der Frage, wie Menschen räumli-
che Sprache mit der äußeren Welt in Beziehung setzen. Um diese Frage
zu beantworten, habe ich untersucht, wie Menschen Sätze mit lokativen
räumlichen Präpositionen (z. B. über) angesichts einer abgebildeten
räumlichen Relation (z. B. ein Punkt über einem Rechteck) verifizieren.
Die lokative räumliche Präposition ordnet den beiden Objekten der
räumlichen Relation verschiedene Rollen zu: „Das [zu-lokalisierende-
Objekt (LO)] ist über dem [Referenzobjekt (RO)]“. Die räumliche
Präposition beschreibt also den Ort des LOs in Relation zum RO. Ob-
wohl die Syntax es zulässt, schränkt die Semantik normalerweise das
Vertauschen von RO und LO ein: Während der Satz „Das Fahrrad (LO)
befindet sich vor dem Haus (RO)“ nicht unüblich ist, wirkt der Satz
„Das Haus (LO) befindet sich hinter dem Fahrrad (RO)“ ungewöhnlich
(vgl. Talmy, 2000, S. 183).

Wissenschaftler haben Verschiebungen von visueller Aufmerksam-
keit als einen wichtigen Mechanismus zur Verarbeitung von räumli-
chen Relationen identifiziert (Franconeri, Scimeca, Roth, Helseth, &
Kahn, 2012; Logan & Sadler, 1996; s. Kapitel 1 und 2). Die Richtung
der Aufmerksamkeitsverschiebung ist allerdings umstritten. Während
in älteren Arbeiten eine Aufmerksamkeitsverschiebung vom RO zum
LO angenommen wurde (Logan, 1995; Logan & Sadler, 1996) haben
jüngere empirische Befunde gezeigt, dass sich Aufmerksamkeit mögli-
cherweise eher in der Reihenfolge des Satzes verschiebt – d. h. vom LO
zum RO (Burigo & Knoeferle, 2015; Roth & Franconeri, 2012).

Das ‚Attentional Vector Sum‘-Modell (AVS, Aufmerksamkeitsvekto-
rensumme, Regier & Carlson, 2001) ist ein komputationales, kognitives
Modell der Verifizierung räumlicher Sprache. Dieses Modell nimmt
(implizit) an, dass sich Aufmerksamkeit vom RO zum LO verschiebt
(s. Kapitel 1). Das Modell kann die empirischen Daten einer Reihe
von verschiedenen räumlichen RO-LO Konfigurationen gut abbilden
(Regier & Carlson, 2001). Inwieweit hängt dieser Modellerfolg von der
implementierten Richtung (vomRO zum LO) der Aufmerksamkeitsver-
schiebung ab?Wennman die jüngsten empirischen Befunde in Betracht
zieht, die stattdessen eine Aufmerksamkeitsverschiebung vom LO zum
RO nahelegen: Würde ein Modell, welches eine Aufmerksamkeitsver-
schiebung vom LO zum RO implementiert, die empirischen Daten
besser oder schlechter abbilden? Dies sind die Hauptforschungsfragen,
die dieser Dissertation zu Grunde liegen.

Um diese Fragen zu beantworten, habe ich mehrere Variationen des
AVS Modells entwickelt. In allen Variationen ist eine Aufmerksamkeits-
verschiebung vom LO zum RO implementiert – unter Berücksichtigung

xvii
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der geometrischen Faktoren ‚proximal orientation‘ und ‚center-of-mass
orientation‘, von denen bekannt ist, dass sie die Akzeptanz von räumli-
chen Präpositionen beeinflussen (Regier, 1996; Regier & Carlson, 2001).
Das Umkehren der Richtung der Aufmerksamkeitsverschiebung spie-
gelt sich im Namen der neuen Modellvariationen wider: Ich habe sie
‚reversed AVS‘-Modelle (rAVS, umgekehrte AVS-Modelle) genannt. In
Kapitel 3 habe ich alle rAVS-Variationen daraufhin untersucht, ob sie
bereits existierende empirische Daten nachbilden können (Daten von
Hayward & Tarr, 1995; Logan & Sadler, 1996; Regier & Carlson, 2001).
Diese Daten sind Akzeptanzbewertungen von räumlichen Präpositio-
nen angesichts abgebildeter räumlicher Relationen.
Ich habe alle Modelle simuliert, um zu analysieren, wie gut die Mo-

delle ihre künstlichenDaten an die empirischenDaten anpassen können
(Daten von jedem Experiment einzeln sowie den gesamten Datensatz
von Regier & Carlson, 2001). Das heißt, dass ich die Abweichung zwi-
schen den empirischen und den modellgenerierten Daten minimiert
habe (genauer: den ‚normalized Root Mean Square Error‘, nRMSE, also
die normalisierteWurzel aus dermittleren quadratischenAbweichung).
Dies liefert eine Güte der Modellanpassung (‚goodness-of-fit‘, GOF).
Darüber hinaus habe ich untersucht, wie gut die Modelle angesichts un-
gesehener Daten in der Lage sind, zu generalisieren (vgl. Pitt & Myung,
2002). Dazu habe ich die ‚simple hold-out‘-Methode genutzt (SHO,
einfaches Weglassen; Schultheis, Singhaniya, & Chaplot, 2013). Die
SHO-Methode ist eine Kreuzvalidierungsmethode, die eine mögliche
Überanpassung (‚over-fitting‘) berücksichtigt. Die Modellevaluation
mithilfe dieser Methoden hat gezeigt, dass eine rAVS-Variation – das
rAVSw-comb-Modell – die getesteten Daten genauso gut abbilden kann
wie das AVS-Modell. Das rAVSw-comb-Modell benutzt dazu ‚relative
Distanz‘ (grob: absolute Distanz zwischen LO und RO dividiert durch
die Abmessungen des ROs), um den Einfluss der beiden geometrischen
Faktoren ‚center-of-mass orientation‘ und ‚proximal orientation‘ zu
gewichten. Diese Ergebnisse bedeuten, dass keine der beiden Richtun-
gen der Aufmerksamkeitsverschiebung die empirischen Daten besser
erklären kann als die andere.
Deshalb habe ich die AVS- und rAVSw-comb-Modelle daraufhin un-

tersucht, ob sie eventuell unterschiedliche Datenmuster für noch nicht
getestete RO-LO Konfigurationen vorhersagen (Kapitel 4). Wenn das
der Fall wäre, könnten empirische Daten für diese Stimuli dabei helfen,
zwischen den beiden Modellen – Implementierungen gegensätzlicher
Richtungen derAufmerksamkeitsverschiebung – zu unterscheiden (z. B.
indem die Vorhersage des einen Modells aber nicht die des anderen
Modells erfüllt wird). Ich habe zwei Testfälle entwickelt, für die die
beiden Modelle den Anschein machten, unterschiedliche Datenmuster
vorherzusagen. Der eine Testfall betrifft die relative Distanz, der zweite
Testfall untersucht die Rolle von asymmetrischen RO.
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Im Testfall zur relativen Distanz ist die kritische Manipulation, dass
ich Rechtecke mit verschiedenen Höhen als RO genutzt habe. Die abso-
lute Platzierung der LO bleibt konstant für alle Rechtecke. Die in dieser
Arbeit präsentierte Studie ist die erste, die einenmöglichen Einfluss von
relativer Distanz auf Akzeptanzbewertungen von räumlichen Präposi-
tionen untersucht. Das rAVSw-comb-Modell sagt klar voraus, dass sich
die Akzeptanzbewertungen zwischen den verschieden hohen Recht-
ecken unterscheiden sollten (trotz gleicher absoluter Platzierung der
LO). Die Vorhersage des AVS-Modells bleibt unklar. Ein Hauptgrund
für diese Unklarheit ist die Vektorensumme, die über die Geometrie
des ROs mittelt.

Der zweite Testfall untersucht den Einfluss von asymmetrischen RO.
Hier steht insbesondere die Vektorensumme des AVS-Modells im Fo-
kus, die dafür verantwortlich ist, die Geometrie des ROs abzubilden. Ich
habe die asymmetrischen RO so entwickelt, dass LO, die über den asym-
metrischenROplatziertwerden, entweder über demHohlraumdes ROs
oder über Masse des ROs liegen. (Die Seite des ROs, die zum LO zeigt,
ist flach.) Der Schwerpunkt des ROs (‚center-of-mass‘) stimmt nicht mit
dem Mittelpunkt des ROs (‚center-of-object‘) überein. Der Mittelpunkt
ist die Mitte des kleinsten Rechtecks, das alle Punkte des ROs beinhal-
tet (der sogenannten ‚bounding box‘). Intuitiv sagt das AVS-Modell
voraus, dass zwei LOs, die mit gleicher Distanz zum Schwerpunkt aber
entweder über dem Hohlraum oder über der Masse des asymmetri-
schen ROs platziert werden, unterschiedlich bewertet werden sollten.
Konkreter sagt das AVS-Modell voraus, dass das LO, welches sich über
der Masse befindet, höher bewertet werden sollte als das LO, welches
sich über dem Hohlraum befindet. Das rAVSw-comb-Modell sagt keinen
Unterschied in Bewertungen für diesen Testfall voraus.

Mithilfe der ‚Parameter Space Partitioning‘-Methode (PSP, Parameter-
Raum-Aufteilung, Pitt, Kim, Navarro, & Myung, 2006) habe ich die Mo-
delle systematisch untersucht. Diese Methode identifiziert alle vorher-
gesagten Datenmuster eines Modells, die sich qualitativ unterscheiden.
Dazu durchsucht die PSP-Methode den gesamten Parameterraum des
Modells. Überraschenderweise stellte sich durch diese Methode heraus,
dass beide Modelle (AVS und rAVSw-comb) überlappende Vorhersagen
treffen. (Das heißt nicht, dass beide Modelle mit allen Parametersätzen
und für alle Stimuli genau die gleichen Vorhersagen treffen.) Trotz der
teilweise überlappenden Vorhersagen könnten empirische Daten für
diese Stimuli dabei helfen, die beiden Modelle voneinander zu unter-
scheiden (z. B. durch quantitativ unterschiedliche Modellanpassungen
an die Daten).

Deshalb habe ich eine empirische Studie mit diesen Stimuli durchge-
führt, um die Vorhersagen der Modelle hinsichtlich der beiden vorge-
stellten Testfälle (relative Distanz und asymmetrische RO) zu überprü-
fen. Die Studie wurde so gestaltet, dass sie möglichst gut vergleichbar
mit früheren Studien ist (insbesondere mit den Experimenten von Re-
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gier & Carlson, 2001). 34 Studienteilnehmer sollten den Satz „Der Punkt
ist über demObjekt“ lesen und danach die Akzeptanz dieses Satzes hin-
sichtlich einer abgebildeten räumlichen Relation (also eines Bildes mit
einem Punkt und einem Objekt) auf einer Skala von 1 bis 9 bewerten.
Zusätzlich zur Präposition über habe ich die Präposition unter getestet.
Die Studie beinhaltete insgesamt 448 verschiedene räumliche RO-LO
Konfigurationen. Darüber hinaus habe ich die Augenbewegungen der
Teilnehmer während der Präsentation der Raumrelationen aufgenom-
men. Diese stellen eine interessante Messgröße von offener visueller
Aufmerksamkeit dar.

Die Studie generalisiert Effekte vomEnglischen insDeutsche (‚grazing-
line‘-Effekt und niedrigere Bewertungen für unter im Vergleich zu über).
Für den Testfall der relativen Distanz zeigen die Ergebnisse der empiri-
schen Studie, dass relative Distanz Akzeptanzbewertungen räumlicher
Sprache beeinflusst. Dieses Ergebnis bestätigt die generelle Vorhersage
des rAVSw-comb-Modells. Allerdings unterscheidet sich die empirisch
gefundene Art und Weise des Effekts der relativen Distanz von dem
konkreten Mechanismus des rAVSw-comb-Modells. Analysen der Daten
legen nahe, dass niedrige relative Distanz (i) den Effekt der ‚proxi-
mal orientation‘ schwächt und dass niedrige relative Distanz (ii) – bei
hohen Werten der ‚proximal orientation‘ – einen umgekehrten Effekt
der ‚center-of-mass orientation‘ schwächt. Da weder das AVS-Modell
noch das rAVSw-comb-Modell diesen Mechanismus erklären kann, sollte
zukünftige Forschung diesen Effekt genauer untersuchen.

Für den Testfall der asymmetrischen RO legen die Daten nahe, dass
Menschen statt des Schwerpunkts des ROs (‚center-of-mass‘) eher den
Mittelpunkt des ROs (‚center-of-object‘) als Basis für ihre linguistischen
Akzeptanzbewertungen nehmen. Dieses Ergebnis stellt die Bedeutung
der ‚center-of-mass orientation‘ in Frage und lässt es wahrscheinlicher
erscheinen, dass Menschen sich auf die ‚center-of-object orientation‘
stützen. Da allerdings in den meisten vorherigen Studien Schwer- und
Mittelpunkt zusammenfielen, geben die hier vorgestellten Daten inter-
essante neue Einblicke in die Art und Weise, wie Menschen asymmetri-
sche Objekte zur Verifizierung von räumlichen Ausdrücken verarbeiten.

Die gesammelten Augenbewegungsdaten bestätigen die horizontale
Komponente des im AVS-Modell definierten Aufmerksamkeitsfokus’
(dieser Punkt spielt auch im rAVSw-comb-Modell eine wichtige Rolle).
Obwohl dieDaten nicht der vertikalenKomponente dieses Fokus’wider-
sprechen, lässt sich durch das Studiendesign nicht zweifelsfrei klären,
ob die Präposition oder die Platzierung der LO die vertikalen Fixatio-
nen beeinflusst hat. Darüber hinaus haben die Augenbewegungsdaten
gezeigt, dass die Studienteilnehmer die beiden unterschiedlichen Ty-
pen der asymmetrischen RO unterschiedlich inspiziert haben. Während
die Augenbewegungen durch die asymmetrische Massenverteilung
der offeneren asymmetrischen RO (L-förmig) beeinflusst wurden, ha-
ben die Studienteilnehmer die geschlosseneren asymmetrischen RO
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(C-förmig) so fixiert, als wenn diese RO rechteckig wären. Trotz dieser
unterschiedlichen Fixationsmuster kann die ‚center-of-object orienta-
tion‘ die empirischen Akzeptanzbewertungen besser erklären als die
‚center-of-mass orientation‘.

Um die Hypothese, dass Menschen sich zur Verifizierung von räum-
lichen Präpositionen eher auf den Mittel- statt auf den Schwerpunkt
des ROs beziehen, näher zu untersuchen, habe ich die beiden Modelle
AVS und rAVSw-comb leicht modifiziert. Daraus sind die neuen Modelle
‘AVS bounding box’ (AVS-BB) und ‘rAVS center-of-object’ (rAVS-CoO)
entstanden. Anstatt den Schwerpunkt des ROs in ihren Berechnun-
gen zu berücksichtigen (wie AVS und rAVSw-comb), nutzen die neuen
Modelle AVS-BB und rAVS-CoO den Mittelpunkt des ROs. Die übri-
gen Bestandteile der Modelle sind unverändert geblieben. Um alle vier
Modelle gründlich zu analysieren, habe ich eine Reihe weiterer Modell-
simulationen durchgeführt (Kapitel 5). Mithilfe der Daten und Stimuli
der Studie aus Kapitel 4 habe ich versucht, die Modelle, die eine Auf-
merksamkeitsverschiebung vom RO zum LO implementieren (AVS,
AVS-BB), von denModellen, die eine umgekehrte Aufmerksamkeitsver-
schiebung (vom LO zum RO, rAVSw-comb, rAVS-CoO) implementieren,
zu unterscheiden. Dazu habe ich alle Modelle an die gesammelten em-
pirischen Daten angepasst (GOF, SHO). Darüber hinaus habe ich zwei
weitere Modellanalysen durchgeführt: Die ‚Model Flexibility Analysis‘
(MFA, Modelflexibilitätsanalyse, Veksler, Myers, & Gluck, 2015) und
die ‚landscaping‘-Methode (Navarro, Pitt, & Myung, 2004). Beide Me-
thoden liefern Messgrößen, die die Flexibilität der Modelle beschreiben.

Wenn man herausfinden möchte, welches Modell einen modellierten
Prozess besser beschreibt, sollte man sich nicht nur auf eine möglichst
gute Anpassung der Modelle an die empirischen Daten verlassen (z. B.
per GOF; Roberts & Pashler, 2000). Vielmehr ist es auch wichtig zu
untersuchen, wie flexibel die Modelle sind. Ein sehr flexibles Modell
kann neben den empirischen Daten auch viele weitere Datenmuster ge-
nerieren, die möglicherweise empirisch nicht plausibel sind. Ein wenig
flexiblesModell generiert nur eine geringeMenge anDatenmustern (im
Idealfall die empirischen). Diese Überlegungen führen dazu, dass eine
guteModellanpassung an empirischeDaten zwar ein notwendiges, aber
kein hinreichendes Maß von Modellgüte ist. Zusätzlich zur Messung
der Modellflexibilität, misst die ‚landscaping‘ Methode noch, inwieweit
sich zwei Modelle nachahmen (in welchem Fall eine Unterscheidung
der Modelle erschwert ist).
Über alle Modellsimulationen hinweg lässt sich feststellen, dass die

Modelle, die den Mittelpunkt in ihren Berechnungen nutzen (AVS-BB
und rAVS-CoO), deutlich besser abschneiden als die Ursprungsmodel-
le, die auf den Schwerpunkt setzen (AVS, rAVSw-comb). Im Vergleich
mit den Schwerpunktsmodellen passen sich die Mittelpunktsmodelle
besser an die empirischen Daten an (GOF, SHO), sind weniger flexibel
(MFA, landscaping) und generieren Datenmuster, die näher an den
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empirischen Mustern liegen (PSP). Dies unterstützt die Hypothese,
dass für die Verifizierung von räumlichen Präpositionen die Mittel-
punktsorientierung (‚center-of-object orientation‘) wichtiger ist als die
Schwerpunktsorientierung (‚center-of-mass orientation‘). Die Haupt-
forschungsfrage – welche Richtung der Aufmerksamkeitsverschiebung
(vom RO zum LO oder vom LO zum RO) den Prozess der Verifizierung
von räumlichen Präpositionen besser erklärt – lässt sich jedoch durch
die Modellsimulationen nicht abschließend beantworten. Unabhängig
von der implementierten Aufmerksamkeitsverschiebung lassen sich die
vorliegenden Modelle anhand der existierenden Daten nicht verläss-
lich voneinander unterscheiden (im Sinne einer besseren Modellierung
des kognitiven Prozesses). Beide Richtungen der Aufmerksamkeitsver-
schiebung sind gleich wahrscheinlich. Um die Modelle präziser mit
empirischen Daten vergleichen zu können, stelle ich zum Schluss eine
Modellerweiterung vor, die es erlaubt, dass die Modelle statt einem
einzelnen Akzeptanz-Mittelwert eine komplette Verteilung von Akzep-
tanzbewertungen generieren können. Zukünftige Modellevaluationen
können somit alle verfügbaren Informationen aus den empirischen
Daten nutzen.
Die Dissertation schließt mit einer zusammenfassenden Diskussi-

on der erreichten Ergebnisse. Basierend auf dem einflussreichen Drei-
Ebenen-Konzept von Marr (1982) ordne ich die Befunde in weitere rele-
vante Forschung ein. Außerdem skizziere ich einige vielversprechende
Modellerweiterungen, die sich zur Entwicklung eines umfassenderen
Modells von räumlicher Sprache als nützlich erweisen könnten. Solch
ein Modell würde es ermöglichen, die Art und Weise, wie Menschen
räumliche Sprache in der externen Welt verankern, noch präziser zu
untersuchen.



Part I

MOTIVAT ION





1INTRODUCT ION

Humans live, move, and act everyday in the physical three-dimensional
space. This makes referencing spatial properties of the world an impor-
tant aspect of language. This type of language is called ‘spatial language’
and it has attracted much attention during the last decades (e.g., Bloom,
Peterson, Nadel, & Garret, 1996; Coventry & Garrod, 2004; Landau,
2017; Landau & Jackendoff, 1993; Levelt, 1984; Levinson, 2003; Talmy,
1983). In particular, spatial language is a fruitful area for research on
how language is linked to the external world as spatial language natu-
rally describes the outerworld. This grounding of language in theworld
seems to be quite strong, as humans even use spatial metaphors when
speaking about time (e.g., “We are moving the date of our meeting
forward”; Boroditsky, 2000; Moore, 2014).

It has been proposed that spatial language might be grounded in the
world via a non-linguistic ‘visual attention’ mechanism (e.g., Carlson &
Logan, 2005; Coventry et al., 2010; Regier & Carlson, 2001; Roth & Fran-
coneri, 2012). Broadly speaking, visual attention is a mechanism that
enables the human visual system to selectively process relevant details
of the visual world (see Section 2.1 for a more fine grained introduction
to visual attention). In particular, shifts of attention have been associ-
ated with the processing of spatial relations (e.g., Franconeri, Scimeca,
Roth, Helseth, & Kahn, 2012; Logan & Sadler, 1996). Linguistically,
spatial relations are described with spatial prepositions, such as in “The
bike is in front of the house” (cf. Talmy, 2000, p. 183). Linguistic re-
search on the semantics of spatial relations distinguishes the two objects
in a spatial relation based on the role they play in the relation (Talmy, The located object

(LO) is above the
reference object
(RO).

2000). More precisely, in a spatial relation, a ‘located object’ (LO) is
placed relative to a ‘reference object’ (RO; Logan & Sadler, 1996).1
For instance, in “The bike is in front of the house”, the bike is the LO
because it is located with respect to the house (the RO).

Given an image of a bike in front of a house, some researchers assume
that people’s attention shifts from the house (the RO) to the bike (the
LO) in order to verify the description (e.g., Logan & Sadler, 1996; Regier
& Carlson, 2001). In contrast, empirical evidence suggests that humans
shift their attention in the reversed direction – from the bike (the LO) to
the house (the RO; Burigo & Knoeferle, 2015; Roth & Franconeri, 2012).
Themain research question for this Ph.D. project is to investigate the role
of the directionality of the shift of visual attention for the verification
of spatial language.

1 There exist several other taxonomies for this distinction, e.g., ground/figure, land-
mark/trajector, reference/target, or relatum/locatum. The present thesis uses the
RO/LO nomenclature.

3
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The present research lies at the cross-sections of many research fields.
First of all, spatial language naturally concerns linguistic research. In
particular, this research asks how linguistic and non-linguistic pro-
cesses and representations interact with each other. This makes it part
of a greater psycholinguistic endeavor of investigating language use
with respect to human perceptual prerequisites and the environment
in which natural language occurs. This has been dubbed ‘grounding
language’ (e.g., Regier &Carlson, 2001; Roy&Mukherjee, 2005; Samuel-
son, Smith, Perry, & Spencer, 2011) or ‘situated language processing’
(e.g., Arbib, 2017; Gorniak & Roy, 2007; Knoeferle &Guerra, 2016; Knoe-
ferle, Pyykkönen-Klauck, & Crocker, 2016). Broadening the view to
general cognitive science, this research program can be framed in terms
of ‘embodied’ or ‘grounded cognition’ (e.g., Barsalou, 2008; Caligiore &
Fischer, 2013; Cangelosi, 2010; Coello & Fischer, 2015; Fischer & Coello,
2015; Harnad, 1990; Pecher & Zwaan, 2005; Pezzulo et al., 2013).
In terms of non-linguistic processes, I focused on visual attention,

a research topic also investigated by cognitive psychologists (for re-
views see Carrasco, 2011; Kowler, 2011). In addition, research on spatial
language is part of spatial cognition research. More specifically, I in-
vestigated projective spatial prepositions (such as above and below), a
sub-class of “relational prepositions [that] describe the location of one
object in relation to another” (Coventry & Garrod, 2004, p. 8). Thus,
research on the processing of spatial relations is a relevant subfield of
spatial cognition for the present research.

Methodologically, this project mainly resides in the domain of compu-
tational cognitive modeling (Sun, 2008). Generally speaking, cognitive
modelers explicate (parts of) theories about cognitive processes as
mathematical models, simulate these models on empirical data, and
draw conclusions about cognition based on the performances of the
models. Cognitive modeling is a tool of cognitive scientists since the
establishment of cognitive science and remains important until today
(e.g., Fum, Del Missier, & Stocco, 2007; McClelland, 2009; Shiffrin, 2010;
Sun, 2009).2
The remainder of this introductory chapter provides an overview

of research on spatial language processing relevant for this thesis –
starting from general aspects of spatial language use and highlighting
the role of (shifts of) visual attention for spatial language processing.
In Section 1.1.4, I introduce the ‘Attentional Vector Sum’ (AVS) model
proposed by Regier and Carlson (2001). The AVS model is a cognitive
computational model that grounds spatial language verification in
visual attention. To do so, it assumes a shift of attention from the RO to

2 In addition, cognitive modeling has influenced real-world technical solutions such
as the technology of ‘deep learning’, which is a component of many “artificial intel-
ligence” products. This technology originates from neural networks – i.e., cognitive
models developed in the so-called ‘Parallel Distributed Processing’ or ‘Connectionist’
Framework (Mayor, Gomez, Chang, & Lupyan, 2014; McClelland, Rumelhart, & PDP
Research Group, 1986; Rumelhart, McClelland, & PDP Research Group, 1986).
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the LO. By modifying this assumption – i.e., reversing the directionality
of the shift –, the AVS model serves as basis for my own computational
and empirical studies presented in Part II. In Section 1.2, the first chapter
closes with an outline of the remainder of this thesis.

1.1 spatial language

1.1.1 Spatial Prepositions

Spatial language consists of more than spatial prepositions but espe-
cially prepositions were studied extensively (see Coventry & Garrod,
2004; Landau, 2017, for reviews) – the present research also concerns
spatial prepositions. One major outcome of research on spatial preposi-
tions is that their use is affected by two different forces: world knowl-
edge and geometry. The latter should be no surprise for spatial preposi-
tions. However, it is an interesting finding that world knowledge affects
the use of spatial prepositions, too.

world knowledge People produce different spatial prepositions
dependent on the assumed functional interaction of the RO and the LO.
For instance, Feist and Gentner (2003) showed that their participants
more frequently used the preposition in than onwhen the ROwas called
a bowl. In contrast, they used onmore often than inwhen the very same
RO was called a plate (see also Coventry, Carmichael, & Garrod, 1994;
Vandeloise, 1991).

People also comprehend spatial prepositions with respect to how the
described objects typically interact in the world. For instance, in their
first experiment, Carlson-Radvansky, Covey, and Lattanzi (1999) asked
their participants to place pictures of objects above/below each other.
Crucially, the objects were either in a typical functional relation (e.g., a
toothpaste tube and a toothbrush), or they were functionally unrelated
(e.g., a tube of oil paint and a toothbrush). In contrast towhat onewould
expect if the spatial prepositions above/below only code for geometric
properties of the scene, Carlson-Radvansky et al. (1999) found that their
participants did not place the LO (e.g., the toothpaste tube) centrally
above the RO (e.g., the toothbrush). Rather, the placement of the LO
deviated towards the part of the RO that functionally interacted with
the LO (e.g., the bristles of the toothbrush). In a second experiment,
Carlson-Radvansky et al. (1999) found higher acceptability judgments
for LOs located in positions that enabled functional interaction (a coin
directly above the slot of a piggy bank) vs. positions that did not enable
this interaction (a coin slightly to the left or right of the slot) – despite
equal geometric properties of the RO (apart from the location of the
slot for different piggy banks). Hörberg (2008) conducted similar
experiments using Swedish prepositions and found the same empirical
pattern (see also Coventry, Prat Sala, & Richards, 2001).
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Carlson, Regier, Lopez, and Corrigan (2006) proposed a modification
of the AVS model to account for acceptability judgments influenced by
world knowledge. In my master thesis, I developed and tested furtherVisual attention is

hypothesized to unite
effects of world
knowledge and

geometry on spatial
language use.

extensions to integrate world knowledge into the AVS model (Kluth,
2014; Kluth & Schultheis, 2014). All these model extensions are based
on the assumed role of visual spatial attention for spatial language
processing. In particular, Carlson et al. (2006) argue that visual spatial
attention is the mechanism that reconciles geometric and functional
aspects in spatial language use.
Further evidence for the importance of visual attention for world

knowledge aspects of spatial language comes from Coventry et al.
(2010). In one of their experiments, they tracked participants’ eye move-
ments (i.e., overt visual attention; see Section 2.1 for an introduction
into visual attention research) during a spatial language acceptability
rating task. The experiment was designed to gradually manipulate
the strength of the functional interaction between the RO and the LO.
For instance, Coventry et al. (2010) showed images of a cornflakes box
above a bowl. In the “functional” condition, the (static) image depicted
cornflakes falling out of the box “at such a trajectory that they would
land in the container below” (Coventry et al., 2010, p. 207). In the
“non-functional” condition, the trajectory of the cornflakes indicated
that they would miss the bowl. Finally, in the “control” condition, no
falling cornflakes were depicted. Participants were shown a sentence
like “The box is above the bowl” (not mentioning the cornflakes) and
afterwards the image. The task was to rate the acceptability of the
sentence with respect to the image. During inspection of the image,
Coventry et al. (2010) tracked the eye movements of their participants.
Images in the functional condition were rated higher than images in
the non-functional or control condition. Regarding the role of visual
attention for capturing functional interaction aspects, Coventry et al.
(2010) compared eyemovements in functional vs. non-functional scenes.
In particular, they analyzed the region where the falling objects (e.g.,
cornflakes) would end up. In non-functional scenes, Coventry et al.
(2010) found longer dwell times and more first fixations to the miss-
region outside the bowl (where the cornflakes were expected to land in
non-functional scenes) compared to functional scenes.

geometry Geometric properties of both, the RO and the LO, affect
the comprehension and production of spatial relations. One line of re-
search investigated the effects of different ‘reference frames’ on spatial
language use. Following the influential theoretical framework by Logan
and Sadler (1996, p. 499), a “reference frame is a three-dimensional
coordinate system” (see Section 2.2.1 for more details on the frame-
work). Levinson (2003, in particular Chapter 2) identified three types
of reference frames (see also e.g., Levelt, 1984; Levinson, 1996; Logan
& Sadler, 1996; Pederson, 2003; Tenbrink & Kuhn, 2011): an absolute
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reference frame, a relative reference frame, and an intrinsic reference
frame. The absolute reference frame is defined with respect to environ-
mental influences (e.g., gravity), the relative reference frame is relative
to an observer describing a scene, and the intrinsic reference frame
takes an oriented object as base for parsing space (e.g., a chair). If
these reference frames conflict with each other, people’s use of spatial
language is affected.
Imagine for example, a person lying on a couch and looking at a

fallen over trashcan (with its upward side pointing to the feet of the
person, Carlson-Radvansky & Irwin, 1993). There are three locations
of a fly around the trashcan that might be described as “above the
trashcan”: above with respect to gravity (absolute reference frame),
above with respect to the viewer reclining on the sofa (relative reference
frame), or above with respect to the up-side of the trashcan (intrinsic
reference frame). Using different comprehension and production tasks,
Carlson-Radvansky and Irwin (1993) found that all three reference
frames were used to define above. However, participants preferred the
absolute and relative reference frames over the intrinsic reference frame
(see also Carlson, 1999). For the selection of a single reference frame, Choice of reference

frame affects use of
spatial prepositions.

Carlson Radvansky and Jiang (1998) showed that conflicting reference
frames are inhibited – amechanism also discussed in the visual attention
literature. More recently, Schultheis and Carlson (2017) presented
evidence suggesting that not whole reference frames but rather single
parameters of reference frames (i.e., origin, direction, orientation, scale;
cf. Logan & Sadler, 1996, summarized in Section 2.2.1) compete for
selection.
Carlson-Radvansky and Logan (1997) showed that conflicting ref-

erence frames affect the regions of acceptability of spatial terms (i.e.,
spatial templates, cf. framework by Logan & Sadler, 1996). Modeling
these data, Schultheis and Carlson (2018) present a combination of the
AVS model (that computes acceptability ratings of spatial terms, see
Section 1.1.4) and the ‘leaky, competing accumulator’ model (Usher &
McClelland, 2001) proposed for reference frame selection by Schultheis
and Carlson (2017). Assessing different variations of model combi-
nations, Schultheis and Carlson (2018) suggest that the selection of a
reference frame and the computation of the acceptability of a spatial
term interact with each other.
Most research on spatial language investigated the properties of

the RO. In contrast, Burigo, Coventry, Cangelosi, and Lynott (2016),
Burigo and Sacchi (2013), and Burigo and Schultheis (2018) focused
on the role of the LO, in particular the reference frame aligned on the
LO. They found that the direction of the LO affects spatial language
understanding (Burigo & Sacchi, 2013; Burigo & Schultheis, 2018).
Burigo et al. (2016) argue that people consider the logical property
of ‘converseness’ when using spatial relations (see also Levelt, 1984).
The property of converseness is fulfilled, if both statements “A is above



8 introduction

B” and its converse “B is below A” are true. One way to manipulate
this property is by rotating the LO by 180 degrees (e.g., “dog A is
behind dog B” with two dogs looking in the same direction vs. two
dogs looking at each other). When converseness was violated, Burigo
et al. (2016) found lower linguistic acceptability ratings compared to
when converseness was not violated.

Manipulating geometrical properties of the RO and testing different
locations of the LO, Gapp (1995) found that people’s acceptability rat-
ingsweremostly affected by the angle between the RO and the LO.More
precisely, the angular deviation from a reference direction was a good
predictor of the ratings. Regier (1996) proposed that the orientations ofAngular deviation

from a reference
direction predicts

acceptability ratings
for spatial

prepositions.

two imaginary lines are important for the applicability of spatial prepo-
sitions: the ‘center-of-mass orientation’ (connecting the centers-of-mass
of the LO and the RO) and the ‘proximal orientation’ (connecting the
two objects where they are closest). Both observations are considered
in the AVS model (Regier & Carlson, 2001, see Section 1.1.4) and are
discussed in more detail in Part II, the main part of the present thesis.
Before presenting the AVS model, however, I introduce two further
aspects of spatial language research. In Section 1.1.2, I review research
that investigates whether linguistic and non-linguistic representations
of space interact with each other. In particular, I summarize the work by
Hayward and Tarr (1995), who used stimuli and an experimental task
comparable to the work reported in Part II. In Section 1.1.3, I review
work considering the role of shifts of attention for the processing of
spatial prepositions.

1.1.2 Language and Perception: The Case for Space

How does language relate to the physical world? This question has
attracted many researchers. The domain of space is a particular fruitful
area to investigate this question, because we act everyday in a physically
perceivable space and, in addition, we speak effortlessly about space.
Moreover, the interaction of spatial perception and spatial language is
important for children’s development. It has been shown that spatial
language enhances children’s spatial skills (e.g., Dessalegn & Landau,
2008, 2013; Farran & O’Leary, 2016; Gentner, Özyürek, Gürcanli, &
Goldin-Meadow, 2013; Loewenstein & Gentner, 2005; Miller, Patterson,
& Simmering, 2016; Miller, Vlach, & Simmering, 2017). Vice versa, it
has been shown that spatial perception helps children to learn language
(e.g., Carlson, 2007; Samuelson et al., 2011; Shusterman & Li, 2016;
Smith, Maouene, & Hidaka, 2007).
In research with adults, non-linguistic spatial processing is affected

by so-called ‘image schemas’ of verbs. Image schemas are graphical
depictions of the meaning of verbs using abstract icons. Among other
things, image schemas contain direction and orientation relating the
agent with the patient of the verb (Richardson, Spivey, Edelman, &
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Naples, 2001). For example, the verb push would be depicted with
a horizontal image schema while the verb respect rather has a verti-
cal image schema. Using a visual discrimination task (similar to Pos-
ner’s cueing paradigm, an influential experimental paradigm in the
research on visual attention, see Section 2.1) and a picture memory
task, Richardson, Spivey, Barsalou, andMcRae (2003) provide evidence
that the orientation of the image schema of both concrete and abstract
verbs affects non-linguistic spatial processing. In related research with
nouns (e.g., Dudschig, Souman, Lachmair, de la Vega, & Kaup, 2013;
Dunn, Kamide, & Scheepers, 2014), eye movements were facilitated
when their direction was congruent with typically associated spatial
locations of previously presented nouns (e.g., sun: up, worm: down). In
summary, a more detailed sub-question of the language-world relation
is whether humans’ spatial processing abilities are based on shared
representations for both linguistic and non-linguistic tasks.
To investigate this question, Hayward and Tarr (1995) conducted a

series of experiments. Their first two experiments focused on linguistic
categorization of space. In the first experiment, participants should
freely describe depicted spatial relations. The two-dimensional spa-
tial relations consisted of an RO in the center of a display and an LO
placed at 48 different locations around the RO. For each RO-LO pair,
participants were instructed to formulate a sentence that best described
the spatial relation of the LO to the RO. The sentence should contain
one or more spatial prepositions. However, they should “avoid using
compass directions, a clock face, or the degree of angle” (Hayward &
Tarr, 1995, p. 50). Hayward and Tarr (1995) found that participants
most often used vertical prepositions (such as above and below) when
the LO lay on the vertical axis from the RO (i.e., directly above or be-
low the RO). Similarly, participants used horizontal prepositions for
LOs on the horizontal axis of the RO. The use of vertical/horizontal
prepositions declined for LOs that were not directly located on the
vertical/horizontal axes (respectively).

In their second experiment, Hayward and Tarr (1995) asked different
participants to rate the acceptability of the four prepositions that were
most used in their first experiment (above, below, left, right) – using
the same stimuli. The acceptability judgments confirmed the general
pattern from the first experiment: LOs located on axes corresponding
to the to-be-rated preposition were rated higher than LOs placed at
other locations. The farther away the LOs were placed from the re-
spective axes, the lower became the ratings. In addition, Hayward and
Tarr (1995) found that distance from the LO to the RO affected ratings,
which they interpreted as angular effects: “[The observed] pattern [...]
suggests that the appropriateness of a given spatial term to a perceived
spatial relationship is determined in part by the angle between the ref-
erence object and figure object [LO].” (Hayward & Tarr, 1995, p. 58, see
also Gapp, 1995; Regier, 1996; Regier & Carlson, 2001). In Section 3.2.2,
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I present an evaluation of computational models using the above data
and the stimuli from the second experiment reported by Hayward and
Tarr (1995).

The third and fourth experiment reported by Hayward and Tarr
(1995) aimed at analyzing the non-linguistic spatial processing of the
same stimuli. To this end, participants had to remember the depicted
spatial relation in the third experiment. After a short interval with a
distractor task, they should replicate the location of the LO based on
the location of the RO. Again, Hayward and Tarr (1995) found that
the axes of the RO affected participants’ behavior: The closer the LO
was located to the axes, the lower were the errors participants made
when replicating the locations from their memory. The final experiment
confirmed this finding with yet another experimental task. This time,
participants had to detect whether a depicted spatial relation changed
from the first brief display to the second brief display. A changed
relation consisted of a small change of the location of the LO. Again,
participants’ performance was better, the closer the LO was placed to
the axes of the RO.
In discussing their experiments, Hayward and Tarr (1995) argue

that the axes of the RO define linguistic prototypes for spatial relations.
Moreover, these prototypes also underlie non-linguistic categorization
of space, explaining the enhanced performance close to the axes. In
addition to these prototypical relations, Hayward and Tarr (1995) pro-
pose that both linguistic and non-linguistic relations encode qualitative
and quantitative aspects. They justify this thought with the graded
response pattern in all their experiments: While the axes of the RO
clearly stood out in all tasks, the distance to the axes affected behavior
in a quantitative way. Interestingly, to support their view they already
point to early work in the neurological distinction of categorical vs. co-
ordinate relation processing (namely Kosslyn et al., 1989). I summarize
this neurological distinction and its relation to linguistic processing of
spatial relations in Section 2.2.2. The important role of the axes of the
RO (or: reference frames) for linguistic and non-linguistic processing
of space is further addressed in Section 6.2.3. For now, let us focus on
the main research topic of this thesis: the role of shifts of attention for
spatial language processing.

1.1.3 Spatial Prepositions and Attentional Shifts

It has been shown that attention is necessary to process spatial relations
(e.g., Franconeri et al., 2012; Logan, 1994) and that attention and spatial
language are closely related with each other (e.g., Conder et al., 2017;
Coventry et al., 2010; Roth & Franconeri, 2012, see Carlson & Logan,
2005, for a review). In particular, spatial relation processing has been
associated with shifts of attention (see Section 2.2.3 for more details).
Relating such serial movements of attention to the linguistic distinction
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between an RO and an LO, Gordon Logan’s influential research claimed
that “the viewer’s attention should move from the reference object to the
located object” (Logan& Sadler, 1996, p. 499, emphasis in the original).3

This claim has certainly affected the direction of attention as modeled Claim about
directionality of
attentional shift from
RO to LO is
challenged by recent
empirical evidence
suggesting a shift
from LO to RO.

in the AVS model (from the RO to the LO, see Section 1.1.4) and it
holds true for specific task demands (e.g., research in the conceptual
cueing paradigm from Gibson and colleagues, where participants shift
their attention from a central cue, an RO, to a peripheral target, an
LO, see Section 2.2.3). However, other empirical studies challenge
the importance of the directionality of the attentional shift (Burigo &
Knoeferle, 2015; Coventry et al., 2010; Roth & Franconeri, 2012; see also
Chambers, Tanenhaus, Eberhard, Filip, & Carlson, 2002).

Coventry et al. (2010) combined eye-tracking with a sentence verifi-
cation study (see Section 1.1.1 for a more detailed study description).
Although Coventry et al. (2010) support Logan’s general claim (“This
is not to deny the importance of attention allocation from a RO to a
LO”, p. 211), they found somewhat contrary evidence: For superior
prepositions (e.g., “The box is over/above the bowl”), most first fixations
landed on the top object (the box) – the LO in the sentence. This gaze
pattern suggests that people shifted their attention from the LO to the
RO. However, Coventry et al. (2010) did not track eye movements dur-
ing the comprehension of the sentence (sentence was presented before
the visual scene). Thus, based on these data, one cannot time-lock the
eye movements to the unfolding interpretation of the spatial sentence
or to the processing of the spatial preposition.

Burigo and Knoeferle (2015) measured their participants’ eye move-
ments at the same time as the participants both saw a visual spatial
relation and listened to a spatial description (a study in the psycholin-
guistic ‘visual world paradigm’, see e.g., Huettig, Rommers, & Meyer,
2011; Knoeferle et al., 2016, for reviews of this paradigm). In line with
other research using the visual world paradigm, Burigo and Knoeferle
(2015) provide evidence that people look at objects as they are men-
tioned. For sentences with spatial relations (“The LO is above the RO”),
this means that first the LO should be inspected more than the RO –
followed by more inspections to the RO than the LO. Indeed, this is a
pattern found by Burigo and Knoeferle (2015) suggesting that people
shift their overt attention from the LO to the RO. In addition, Burigo
and Knoeferle (2015) showed that a shift from the RO to the LO also
matters for the verification of the spatial utterances.
The directionality of a linguistically triggered attentional shift from

the LO to the RO is further supported by research conducted within

3 See also Logan (1995, p. 115): “The linguistic distinction between located and reference
objects specifies a direction for attention to move—from the reference object to the
located object.”; Logan and Zbrodoff (1999, p. 72): “Implicit in this constraint on how
we speak [about spatial relations] is the idea that attention goes first to the reference
object and then to the located object. Thus, the contrast between located object and
reference object provides direction to movements of attention (Logan, 1995).”
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the theoretical shift-account proposed by Franconeri et al. (2012, intro-
duced in detail in Section 2.2.3). Roth and Franconeri (2012) displayed
spatial relations (two colored circles) and asked their participants to
verify statements (e.g., “Is red left of green?”) as quickly as possible.
The statements appeared before the display of the spatial relations. Cru-
cially, Roth and Franconeri (2012) manipulated the covert allocation of
attention by presenting one of the two objects slightly before the other
object (0–233 ms). Roth and Franconeri (2012) found that people were
quicker to verify the spatial relation, if the order of visual appearance
matched the order of the to-be-verified description. That is, given “Is
red left of green?”, people were faster to answer when the red circle
appeared before the green circle (LO first, RO second) than when the
green circle was displayed before the red circle (RO first, LO second).
Again, this challenges Logan’s claim about an attentional movement
from the RO to the LO and instead suggests that a reversed shift from
the LO to the RO might be more plausible.
This idea matches findings from Huttenlocher and Strauss (1968).

In their experiments, children had to place colored blocks according to
the instructions from the experimenters. If the to-be-moved block was
mentioned first (as an LO) in the instruction, children were faster and
more accurate in placing the block compared to when the to-be-moved
block was mentioned second (as an RO; see also Landau & Jackendoff,
1993, p. 225, for related studies with adults). This suggests that if a
spatial task violates the linguistic order (RO first, LO second), it is more
difficult than a task where the linguistic order is not violated (LO first,
RO second).
As final support for an ordered sequence of attending the LO first

and the RO second (i.e., in line with the order of mentioning), I point to
computationalmodels of spatial language use that are applied in robotic
research – among other fields. Many of these models start with select-
ing the LO prior to the RO (e.g., Lipinski, Schneegans, Sandamirskaya,
Spencer, & Schöner, 2012; Richter, Lins, Schneegans, Sandamirskaya, &
Schöner, 2014; Richter, Lins, & Schöner, 2016, 2017; Roy & Mukherjee,
2005). However, note that this order is not necessarily a strict require-
ment for the functioning of the models.
After having reviewed this converging evidence for an attentional

shift from the LO to the RO, I finally introduce the AVS model which
implements a shift from the RO to the LO. In Chapter 3, I then introduce
and assess a modification of the AVS model – the ‘reversed AVS’ (rAVS)
model – that implements a reversed shift of attention from the LO to the
RO – motivated by the experiments summarized in the present section.
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1.1.4 The AVS Model

The ‘Attentional Vector Sum’ (AVS) model was proposed by Regier and
Carlson (2001). It takes as input the locations of two “labeled”4 two-
dimensional objects (RO and LO), the shape of the RO, and a spatial
preposition (see Figure 1.1 for a visualization of the input as well as
schematized model mechanisms). As output, the model computes an
acceptability rating that represents how well the preposition describes
the given relation (cf. empirical studies from Hayward & Tarr, 1995;
Logan & Sadler, 1996).
The AVS model can be seen as consisting of two components: The

height component and the angular component. The height component
computes a value between 0 and 1 as a function of the vertical location
of the LO relative to the top of the RO (for above5). “Intuitively, the
top is the set of landmark points that are exposed from above: the
ones that would get wet in the rain.” (Regier & Carlson, 2001, p. 274).
The outcome of the height component is depicted in Figure 1.1a and
formally computed as follows:

height(y) =
sig(y− hightopy,highgain) + sig(y− lowtopy, 1)

2 (1.1)
The variable hightopy denotes the y-coordinate of the highest point

that is part of the top of the RO, the variable lowtopy denotes the y-
coordinate of the lowest point that is part of the top of the RO. The
variable highgain is a free parameter of the model (to be adjusted for
fitting the model to data). Finally, the sigmoid function sig() is defined
as:

sig(x,gain) =
1

1 + exp(−x · gain)
(1.2)

The angular component returns an acceptability rating as a function
of angular deviation from a reference direction (see Figure 1.1b for
a visualization). Let us first consider how the angular deviation is
computed. To do so, the AVS model defines an attentional distribution
(the shaded circular area in Figure 1.1b). This distribution consists of a
specific amount of attention for every point i of the RO:

ai = exp
(
−di
λ · σ

)
(1.3)

Here, di is the Euclidean distance of the RO point i to the attentional
focus point F, λ is another free model parameter, and σ is the Euclidean

4 The model does not decide which object is the RO and which is the LO; this is part of
the input.

5 For different prepositions, the respective edge of the RO matters; additionally, for
horizontal prepositions, the horizontal instead of the vertical location of the LO is
considered.
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RO
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lowtop

height(LOy) =
large

height(LOy) =
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height(LOy) =
small

(a) Schematic visualization of the height component
of the AVS model using an RO with non-flat
top. The height component divides the space in
three regions with large, intermediate, and small
height(LOy) values, respectively. Note that transi-
tions between the regions are gradual rather than
sharp.

LO

RO

F

attentional
distribution

vector sum

δ

(b) Schematic visualization of the mecha-
nisms from the angular component of the
AVS model. F: attentional focus. Image
copyright: See Section E.

Figure 1.1: Schematic representations of (a) the height component and (b) the angular
component of the AVS model.

distance between the attentional focus point F and the LO. The atten-
tional focus point F is defined to lie on top of the RO and vertically
aligned with the LO (for above; for different prepositions the corre-
sponding edges of the RO are used). If the LO does not lie in the direct
region above the RO, the attentional focus point is defined to be on the
top-left or top-right point of the RO, respectively.

The such defined attentional distribution is used to weight a popula-
tion of vectors. At every point i of the RO, a single vector #»vi =

#       »

i,LO is
rooted, pointing to the (point-like) LO. Every single vector vi is multi-
plied with the amount of attention ai from the attentional distribution.
All vectors are summed to obtain one final vector direction (see vector
labeled “vector sum” in Figure 1.1b). Formally, this process reads:

#                         »

vectorSum =
∑
i∈RO

ai ·
#       »

i,LO (1.4)

To obtain an angle from this direction, the vector sum direction is
compared to a reference direction (canonical upwards in the case of
above):

δ = ]
(
up,

#                         »

vectorSum
)

(1.5)
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The resulting angular deviation is used as input for a linear function
that returns an acceptability rating:

g(δ) = slope · δ+ intercept (1.6)
The variables slope and intercept are free model parameters. The

lower the deviation, the higher the rating and vice versa. The rating
from the angular component is multiplied with the outcome from the
height component to obtain the final rating. The following equation
describes the whole AVS model:

above(LO,RO) = g
(
]

(
up,

∑
i∈RO

ai ·
#       »

i,LO

))
· height(LOy) (1.7)

1.2 thesis outline

The remainder of this thesis is organized as follows: In Chapter 2, fur-
ther research on the processing of spatial relations is reviewed – primar-
ily concerning non-linguistic processing. To this end, Chapter 2 starts
with a summary of research on visual perception and attention (Sec-
tion 2.1). Thereafter, Section 2.2.1 introduces the seminal framework on
spatial relation processing by Logan and Sadler (1996). This is followed
by a review of the neurological distinction of categorical and coordinate
spatial relations in Section 2.2.2, highlighting the role of attention in
that research. In Section 2.2.3, I summarize further evidence for the
general importance of shifts of attention for spatial relation processing.
The background chapter closes by applying the introduced concepts
and paradigms to the conceptualization of attention in the AVS model
(Section 2.3) – effectively claiming that the AVS model implements an
attentional shift from the RO to the LO.
Part II contains the computational and empirical studies that I con-

ducted within this Ph.D. project. More specifically, Section 3.1 presents
several possibilities of reversing the shift of attention in theAVSmodel to
reflect recent empirical evidence. That is, while the AVSmodel assumes
a shift of attention from the RO to the LO, the presented alternative
models implement a shift of attention from the LO to the RO. In Sec-
tion 3.2, these model variations (the reversed AVS, rAVS, models) are
evaluated using data from some of the literature reviewed in Chapters 1
and 2. Although the existing empirical data are sufficient to distill one
rAVS variation as winner (as the others cannot accommodate all of the
empirical effects), they are not sufficient for distinguishing between the
winning rAVS model and the AVS model. The latter, however, concerns
the main research question of this project: Does a shift from the LO
to the RO (rAVS model) account better or worse for spatial language
verification than a shift from the RO to the LO (AVS model)?
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This is why Chapter 4 introduces an empirical acceptability rating
study designed to distinguish between the two models. The stimuli
for this study are based on the implications of the contrasting direc-
tionalities of the attentional shift as implemented in the two models
(Section 4.1). The study reveals twonovel effects on spatial language ver-
ification (relative distance and center-of-object orientation, Section 4.2).
Chapter 5 presents further model modifications addressing these new
effects (Section 5.1) as well as thorough computational analyses (per
a variety of methods) of all competing models using the stimuli of,
and the data collected in, the empirical study (Sections 5.2–5.6). In
Section 5.7, the main part closes with introducing an extension that
enables the models to simulate rating distributions instead of mean
ratings. This model extension makes it possible to analyze the models
more fine-grained in the future.

The main results of this project and their implications are discussed
in Chapter 6. In addition, ideas for further research – especially model
refinements – are presented.



2NON-L INGUI ST IC PROCESS ING OF SPAT IAL
RELAT IONS

In this chapter, I review research on non-linguistic processing of spatial
relations. To this end, Section 2.1 introduces relevant work in the more
general field of visual perception and attention. In particular, I highlight
different conceptualizations of visual attention and the “units” attention
is operating on (Section 2.1.1). These conceptualizations of attention
are reconsidered in Section 2.3, in which the attentional distribution
and the vector sum of the AVS model are discussed in terms of the
“units of attention” they resemble.

In addition to relating the AVS model to conceptualizations of atten-
tion, Section 2.3 interprets the AVS model in the context of research
explicitly asking how shifts of attention contribute to the processing of
spatial relations. These studies are summarized in Section 2.2.

2.1 visual perception and attention

Every day, the human visual system is accomplishing extra-ordinary
work. Seemingly without efforts and time-delay, humans make sense
of their visual environment, e.g., by recognizing and localizing objects.
While this seems like a trivial observation, it becomes fascinating con-
sidering the vast amount of visual information processed by the retina
(ca. 10

10 bits per second, more than 1 gigabyte, Anderson, Van Essen,
& Olshausen, 2005; Raichle, 2010). From this information, the visual
system must quickly select the currently most relevant information
given its limited resources (the visual cortex processes ca. 10

4 bits =
1.25 kilobytes per second, less than one percent compared to the retina).
This selection process has been called ‘visual attention’ and it is the
topic of decades of vision research (for a recent review see Carrasco,
2011).

In the following, I introduce two influential experimental paradigms
in research on visual attention: ‘visual search’ and ‘spatial cueing’.
Logan (1994) used the visual search paradigm to establish “that ap- Researchers used

visual search and
spatial cueing to
investigate the role of
attention for spatial
relation processing.

prehending spatial relations requires spatial attention” (p. 1015). The
spatial cueing paradigm was applied to investigate shifts of attention –
from a cue to a target. In particular, using a variant of this paradigm,
Logan (1995) asked how linguistic cues such as spatial prepositions
control attentional shifts. Gibson and Sztybel (2014) explicitly compare
linguistic with non-linguistic cues. These studies are summarized in
Section 2.2.3.

17
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visual search A prominent experimental paradigm to investigate
visual attention is the visual search paradigm (for review seeNakayama
& Martini, 2011; for a comparison to the related psycholinguistic visual
world paradigm see Hartsuiker, Huettig, & Olivers, 2011; Huettig, Oliv-
ers, & Hartsuiker, 2011). In the visual search paradigm, participants are
given a display with several objects and a definition of a target object
(e.g., its color or orientation). They have to decide as quickly as possible
whether the display contains the target object or not. Performance in
a visual search task is quantified via reaction time with respect to the
total number of objects in the set.
Researchers found that if the target object differs only by “simple”

single features from the distractor objects (e.g., a red line among green
lines or a horizontal line among vertical lines), the performance does
not depend on the total number of objects – the target pops-out. In
contrast, if the target object is defined as a conjunction of features (e.g., a
red vertical line among red horizontal and green vertical lines), reaction
time increases with the number of objects in the display. It has been
argued that this type of visual search (‘conjunction search’) requires
humans to serially process every single item with focused attention
whereas in the ‘pop-out’ or ‘feature search’, the visual scene is processed
in parallel and pre-attentively (Treisman & Gelade, 1980).
Logan (1994) used the visual search paradigm to investigate the

visual processing of spatial relations. The targets were defined by theirIdentifying spatial
relations in visual

search tasks
resembles slow

conjunction searches.

spatial relation. For instance, the target was a dash above a plus and
the distractors were pluses above dashes. Logan (1994) found that
using spatial relations as the defining target feature resulted in human
performance similar to slow conjunction searches. Accordingly, he
proposed “that apprehending spatial relations requires spatial attention”
(Logan, 1994, p. 1015).

An important distinction in visual spatial attention must be made
between overt and covert visual attention. Overt attention describes select-
ing visual features by moving the eyes while covert attention describes
selection without eye movements. “Many studies have investigated
the interaction of overt and covert attention, and the order in which
they are deployed. The consensus is that covert attention precedes eye
movements, and that although the effects of covert and overt attention
on perception are often similar, this is not always the case” (Carrasco,
2011, p. 1487).

spatial cueing paradigm A well known experimental paradigm
to investigate shifts of covert attention is the so-called spatial cueing
paradigm (Posner, 1980; Posner, Snyder, & Davidson, 1980). In this
paradigm, participants fixate a central fixation cross and are not allowed
to move their eyes. Then, a cue informs about the location of a visual
target that has to be recognized as quickly as possible. The cue is either
central (e.g., an arrow appearing near the fixation cross pointing to the
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target location) or peripheral (e.g., a dot flashing at the position where
the target will appear). Central cues are said to evoke goal-directed
(or endogenous, top-down) shifts of attention whereas peripheral cues
are said to evoke stimulus-driven (or exogenous, bottom-up) shifts of
attention (Carrasco, 2011; Corbetta & Shulman, 2002).
In the spatial cueing paradigm, the cues are valid in a majority of

the trials – but not always. This is done to create trials where the target
appears in a non-cued (presumably non-attended) location. In addition
to central and peripheral cues, neutral cues (i.e., trials without location
information) are tested – to constitute a baseline with undirected at-
tention against which the reaction time benefits of attended locations
are compared. Empirical results from the spatial cueing paradigm
show that people are faster to identify the target with a valid cue and
slower in trials with invalid cues – compared to trials with neutral cues,
respectively.
In interpreting their results, Posner et al. (1980) likened spatial at-

tention to a ‘spotlight’. That is, attention is seen as enhancing process-
ing in specific spatial areas (compared to un-attended areas) just like
spotlights brighten specific areas of an ongoing theater play. A related
metaphor of attention1 is the gradientmodel of attention (e.g., Downing
& Pinker, 1985; LaBerge & Brown, 1989). Different from the spotlight The spatial cueing

paradigm gave rise to
the attention-as-a-
gradient
metaphor.

model, in which the attentional strength is homogeneously distributed
in the whole “brightened” area, the gradient model proposes that the
attentional strength gradually decreases from its central point, the at-
tentional focus. It is this conceptualization of attention that Regier and
Carlson (2001) implemented in their AVS model (see Section 2.3).
In a paradigm similar to Posner’s spatial cueing paradigm, Logan

(1995) explicitly investigated how linguistic cues control attentional
shifts (see also Logan, 1994, exps. 3 and 4). More recently, Gibson and
colleagues used the same paradigm to continue this line of research
(for review see Gibson & Sztybel, 2014). I present these studies in more
detail in Section 2.2.3.

2.1.1 Units of Visual Attention

So far, I presented attention as filtering relevant information from the
vast amount of available perceptual input (e.g., in the visual search
paradigm) or as enhancing perception in specific spatial areas (e.g., in
the spatial cueing paradigm). In the visual search paradigm, attention
selects objects based on features. In contrast, the spatial cueing paradigm
shows that attention can be directed to spatial locations. This brings up
the question what attention selects or operates on. In other words, what
are the “units” of visual attention? The answers to this question inform

1 See Fernandez-Duque and Johnson (1999, 2002), for insightful discussions about the
role of metaphors in research on attention.
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the interpretation of the AVS model in terms of its representation of
attention (see Section 2.3).
There is evidence that attention operates on all three dimensions

italicized above. Researchers distinguish between feature-, space-, and
object-based attention (Carrasco, 2011; Yantis, 2000). Feature-based
attention describes the ability of the visual system to selectively attend
to visual features (e.g., color or orientation) regardless of their location.
A typical example is the feature search condition in the visual search
paradigm. Space-based (or spatial) attention is described viametaphors
like a spotlight or a gradient. It enhances visual processing for specific
locations, as revealed through the spatial cueing paradigm.
Object-based attention selects objects rather than locations. For ex-

ample, in a seminal study, Egly, Driver, and Rafal (1994) showed a
display with two vertical rectangles. Participants had to respond to a
target appearing at one of the four rectangle ends (i.e., left top, right
top, right bottom, or left bottom). One rectangle end was visually cued
beforehand. If the target appeared at the cued end, participants were
faster compared to a target appearing at an uncued location. More
interestingly, participants were faster to detect a target that appeared at
the same object (e.g., bottom of left rectangle when top of left rectangle
was cued) than a target appearing at the other object (e.g., top of right
rectangle). Crucially, the spatial distance of the two uncued locations
was exactly the same. Thus, these findings cannot be explained by a
purely space-based account of visual attention.

Nuthmann and Henderson (2010) assessed whether fixation pat-
terns to photographs of natural scenes could be better explained by the
location of natural objects or by ‘saliency’ (a bottom-up stimulus-based
approach used in computer vision models successfully predicting fixa-
tion locations). They found that people preferably fixate the center of
natural objects instead of the center of proto-objects based on saliency
computations. This is why they “suggest that saccade targeting and, by
inference, attentional selection in scenes is object-based” (Nuthmann &
Henderson, 2010, p. 1).

The finding that people preferably fixate the center of objects is in line
with research on saccadic and perceptual localization (investigating
how the visual system computes reference points on objects). MoreSpatial pooling (such

as the vector sum in
the AVS model) is an

important
mechanism for object

perception.

specifically, researchers found that the center-of-mass of objects seems
to be a preferred saccadic end point and suggest ‘spatial pooling’ as
a plausible relevant mechanism (e.g., Melcher & Kowler, 1999; Vish-
wanath & Kowler, 2003). The vector sum mechanism in the AVS model
can be interpreted as a spatial pooling approach.

A model that combines space-based and object-based attention is the
COntour DEtection Theory of Visual Attention (CODE TVA or CTVA)
model (Bundesen, 1998; Logan, 1996; Logan & Bundesen, 1996). It is
a combination of a theory of perceptual grouping by proximity (the
COntour DEtection model, van Oeffelen & Vos, 1982, 1983) with a
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biased-competition account of visual attention (Theory of Visual Atten-
tion, TVA, Bundesen, 1990; Bundesen, Vangkilde, & Petersen, 2015) and
accounts for a wide range of findings (Logan & Bundesen, 1996). How-
ever, as many other attentional theories and models, CTVA does not
account for relations between objects. The reason for mentioning the
CTVA here is that it is a promising candidate to more firmly connect the
AVS model with theories of visual attention (discussed in Section 6.2.3).
Among other things, this is because the CTVA refers to the influential
framework of spatial relation processing proposed by Logan and Sadler
(1996). Before presenting this framework in detail in Section 2.2.1, I
introduce another “unit of attention” – ‘spatial indices’ – that is referred
to by Logan and Sadler (1996).

spatial indices Spatial indices have been proposed by several dif-
ferent authors (e.g., Ballard, Hayhoe, Pook, & Rao, 1997; O’Regan, 1992;
O’Regan & Noë, 2001; Pylyshyn, 1989; Spivey, Richardson, & Fitneva,
2004; Ullman, 1984), although not all of them refer to them literally
as ‘spatial index’ and not all proposals are fully compatible with each
other (but the general idea is the same). I will refer to the spatial index-
ing theory proposed by Pylyshyn (1989, see also Pylyshyn, 1994, 2000,
2001, 2009) as this is the one cited by Logan and Sadler (1996) in their
framework of spatial relation processing (see Section 2.2.1).

First empirical support of Pylyshyn’s theory comes from the multiple-
object tracking paradigm (Pylyshyn & Storm, 1988) which serves here
as an intuitive example of what spatial indices are supposed to be. In
the multiple-object tracking paradigm, participants are presented with
a display consisting of several simple, identical-looking objects (e.g.,
circles). A subset of objects is cued, e.g., by flashing them. Afterwards,
all objects move randomly on the display. During the movement, the
continuous path of a single object is the only property that serves as an
identifying feature. That is, to track a single object one has to follow its
movement. After some time, one object is highlighted again and the
participant has to respond whether this object belongs to the previously
cued objects or not. Pylyshyn and Storm (1988) found that participants
could reliably track up to four objects.
As an explicit test against space-based accounts of visual attention,

Pylyshyn (1994, p. 363) notes that participants’ “ability to track these
targets and detect changes occurring on them does not generalize to
non-targets or to items lying inside the convex polygon that they form
(so that a zoom lens of attention does not fit the data).” Instead, he
proposes that the visual system indexes the to-be-tracked objects. Thus,
in the multiple-object paradigm, the visual system is hypothesized to
track the spatial indices (referring to the objects) instead of the objects
themselves.
In a nutshell, Pylyshyn’s indexing theory establishes spatial indices

(or, in his original term: FINgers of INStantations, FINSTs, Pylyshyn,



22 non-linguistic processing of spatial relations

1989, p. 69) as units of attention. A spatial index “points to” an object in
the visual world without encoding the properties of the object. Spatial
indices are deployed pre-attentively, pre-conceptually, and automatic.
Attention is then operating on these indices. If, for instance, the color of
an indexed object should be retrieved, attention selects the correspond-
ing index and the visual system is able to access the object and “query”
its color. Based on empirical findings, the visual system can deploy
around four to five spatial indices at one point in time (Pylyshyn, 2000).
Pylyshyn (2000, 2001) explicitly describes his spatial indexing the-

ory as a necessary component of “situated vision”. He argues that
“[i]ndexing visual objects is [. . . ] the primary means for grounding
visual concepts” (Pylyshyn, 2001, p. 127). More specifically, he pro-
poses spatial indices as necessary “direct, preconceptual connection[s]
between objects in the visual world (visual objects or proto-objects)
and their representations in the visual system” (Pylyshyn, 2000, p. 197).
This point of view makes spatial indexing a relevant theory in theSpatial indices

ground mental
representations in the

visual world.

research on how linguistic entities are grounded in the visual world
(see also Spivey et al., 2004). Moreover, Pylyshyn (1989, p. 70) writes:
“Being able to index particular features is especially important when
encoding relational properties involving several places.” Accordingly, I
review research on the processing of spatial relations in the following
section.

2.2 processing of spatial relations

The processing of relations between objects is fundamental for human
cognition. According to Gentner (2003, p. 196), “relational concepts
are critical to higher-order cognition” and are one of the reasons “why
we’re so smart” (title of Gentner, 2003). While Gentner’s research
highlights the role of abstract relations (e.g., for making analogies,
e.g., Gentner, 1983), other researchers also identified the importance of
concrete relations such as visual spatial relations. For instance, Ullman
(1984, p. 99) writes: “Spatial relations in three-dimensional space [. . . ]
play an important role in visual perception”; Hayward and Tarr (1995,
p. 40) note that “spatial relations are a basic (and essential) element
of several theories of object representation”; and Logan and Sadler
(1996, p. 493) start their article with: “Spatial relations are important in
many areas of cognitive science and cognitive neuroscience, including
linguistics, philosophy, anthropology, and psychology.”

Given this importance, Logan and Sadler (1996) propose a computa-
tional framework of visual spatial relation processing. This framework
continues to be important for research on spatial relations as diverse as
empirical and computational investigations of the interaction between
the proposed processes (Schultheis & Carlson, 2018), computational
modeling using a neuronally plausible framework (Richter et al., 2017),
control of spatial attention (Gibson & Sztybel, 2014), or transformations
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for geographic information systems (Scheider, Hahn, Weiser, & Kuhn,
2018).

2.2.1 Computational Framework by Logan and Sadler (1996)

Motivated by linguistic research on the semantics of spatial relations,
Logan and Sadler (1996) distinguish the two objects in a spatial relation
based on the role they play in the relation: a located object (LO) is
related to a reference object (RO, see Chapter 1). The computational
framework by Logan and Sadler (1996) assumes processes operating on
and with representations. Different “ordered combinations of represen-
tations and processes are interpreted as programs or routines” (Logan &
Sadler, 1996, p. 501, emphasis in the original). This allows for a flexible
use of the different components of the framework, e.g., to describe spa-
tial cueing tasks (see Section 2.2.3) or linguistic acceptability judgment
tasks (see Section 1.1.1).

Representations
The framework assumes that four different representations are neces-
sary to process spatial relations: a perceptual representation, a con-
ceptual representation, a reference frame, and a spatial template. The
reference frame and the spatial template link the perceptual and the
conceptual representation and, by extension, “map perception onto
cognition and vice versa” (Logan & Sadler, 1996, p. 497).

perceptual representation The perceptual representation is an
“analog array of objects and surfaces” (Logan & Sadler, 1996, p. 497)
and automatically created. It contains implicit perceptual information
about object identities and relations between objects. Given that the
information is only implicit, “further computation” (Logan & Sadler,
1996, p. 498) is necessary to extract it. The framework specifies this
further computation.

conceptual representation The conceptual representation con-
sists of a spatial predicate that explicates (i) the relation (e.g., above or
below), (ii) its arguments (i.e., the objects of the relation), (iii) what is
the RO and what is the LO, (iv) the reference frame, and (v) the spa-
tial template. The conceptual representation interfaces with language
such that spatial prepositions can be seen as lexicalized conceptual
representations. However, the (two-way) mapping between language
and conceptual representation is not assumed to be always simple and
straight-forward.

reference frame “The reference frame is a three-dimensional coor-
dinate system that defines an origin, orientation, direction, and scale”
(Logan & Sadler, 1996, p. 499). It links the perceptual representation
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with the conceptual representation. The location of the origin defines
which object is the RO. The orientation rotates the reference frame (e.g.,
according to the properties of the RO) to define where the above/below
or left/right axes are. The direction distinguishes above from below or
left from right. Finally, the scale sets the size of the reference frame.

spatial template A spatial template defines spatial regions of ac-
ceptability for a relation. A spatial template is associated to a conceptual
representation such that each conceptual representation has its own
spatial template.

Processes
The framework assumes four processes: spatial indexing, reference
frame adjustment, spatial template alignment, and computing goodness
of fit.

spatial indexing “Spatial indexing is required to bind the argu-
ments of the relation in the conceptual representation to objects in the
perceptual representation” (Logan & Sadler, 1996, p. 499). In particular,
Logan and Sadler (1996) refer to the spatial index theory by Pylyshyn
(1989) summarized in Section 2.1.1.

reference frame adjustment This process sets the four different
parameters of the reference frame (origin, orientation, direction, scale)
depending on the RO. This imposes the reference frame on the RO.

spatial template alignment This process aligns the spatial tem-
plate with the reference frame and imposes it on the RO.

computing goodness of fit Given the acceptability regions stored
in the spatial template and its alignment with the RO (which makes the
regions relative to the axes of the RO), this process determines whether
the location of the LO is a good, acceptable, or bad example of the
spatial relation in question.

After having introduced the framework by Logan and Sadler (1996),
I next present a dichotomy of visual spatial relations originating from
cognitive neuroscience research. One conclusion from this research
is that the size of the attentional scope affects the way how humans
process spatial relations, suggesting that serial movements (or: shifts)
of attention are necessary to process spatial relations.

2.2.2 Categorical and Coordinate Spatial Relations

Imagine, you are sitting in the library and writing your dissertation.
To the left of your laptop, you placed your bottle of water. This spatial
relation (bottle to the left of laptop) is called a ‘categorical spatial
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relation’. This type of relation does not specify the exact location of
the bottle, rather, it parses space into distinct categories (e.g., left or
right). In the same situation, however, you might want to have a sip of
water from the bottle. For this action, you (or your hand) needs precise
location information to grasp the bottle. This second type of spatial
relation (bottle relative to grasping hand) is called a ‘coordinate spatial
relation’.
In cognitive neuroscience, researchers found that these two kinds

of spatial relations (categorical and coordinate spatial relations) “are
processed by at least partially different underlying [neuronal] mech-
anisms, mainly located in the left and right hemisphere [side of the
brain], respectively” (van der Ham, Postma, & Laeng, 2014, p. 142).
In particular, the left hemisphere processes categorical relations better
than the right hemisphere, whereas the right hemisphere processes
coordinate relations better than the left hemisphere. However, this
lateralization pattern can be affected by the specific task (for a recent
review see van der Ham et al., 2014; see also Jager & Postma, 2003;
Kosslyn, 1987, 2006)

Given that the left hemisphere is predominant in language processing
and categorical spatial relations have linguistics counterparts (spatial
prepositions), researchers explored whether the verbalization of cate-
gorical relations is themain factor for the left lateralization of categorical
relation processing (e.g., Kemmerer & Tranel, 2000; Kranjec, Lupyan, &
Chatterjee, 2014; van der Ham & Postma, 2010; see also Amorapanth
et al., 2012; Kemmerer, 2006). While these studies found interactions
of language and spatial relation processing2, van der Ham et al. (2014,
p. 145) conclude in their review: “[G]iven the current evidence it seems
highly unlikely that language by itself is the determining factor in the
direction of lateralization.”

In a visualworkingmemory taskwith simple stimuli (colored squares,
Dent, 2009) as well as in a scene perception task with more complex
stimuli (Rosielle, Crabb, & Cooper, 2002), changes in categorical rela-
tions were detected faster andmore accurate than changes in coordinate
relations. Dent (2009, p. 2372) “suggest[s] that the categorical relations
are an intrinsic property of the representation of spatial configura-
tion” in visual-spatial short-termmemory (see also Olson &Marshuetz,
2005). Similarly, Rosielle et al. (2002, p. 319) “suggest that categorical
spatial relations are being coded in scene perception and that attention
is required in order to encode spatial relations.”

Visual attention was also found to affect the performance of categori- The size of the
attentional scope
affects categorical vs.
coordinate spatial
relation processing.

cal vs. coordinate spatial relation processing. In their review, van der
Ham et al. (2014) theorize that the size of the attentional scope is a
main factor for the observed categorical/coordinate distinction. For in-
stance, in the experiments conducted by Laeng, Okubo, Saneyoshi, and

2 See Section 1.1.2 for related research in the cognitive psychology tradition that asks
whether and to what extent linguistic and non-linguistic organization of space coincide.
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Michimata (2011), participants first saw a spatial relation of two objects
followed by a visual cue that triggered the deployment of visual atten-
tion (cf. Posner’s spatial cueing paradigm, Section 2.1). Subsequently,
the same objects re-appeared at the cued location and participants had
to decide whether the same relation was depicted or not. The relation
was either manipulated to reflect a categorical change (e.g., circle above
triangle changed to triangle above circle), a coordinate change (e.g.,
the circle was closer to the triangle), or no change. Crucially, the vi-
sual cue either enclosed only one object (small attention window) or
both objects (large attention window). Laeng et al. (2011) found that
if people were cued with a small attention window, their categorical
relation processing was enhanced (faster detection compared to coordi-
nate changes). On the other hand, when cued with a large attention
window, participants were quicker to detect coordinate relation changes
compared to categorical relation changes (see also Franciotti et al., 2013;
van der Ham et al., 2014).

Recently, Stocker and Laeng (2017) related these empirical findings
with Talmy’s linguistic analyses of the “windowing of attention in
language” (Talmy, 2000, Chapter 4). In a similar spirit, Laeng et al.
(2011, p. 322) write: “[R]esearch on the linguistic, top-down, control
of attention strongly suggests the existence of diversified ‘attention
routines’ (Ullman, 1984), which may be expressed with sequential
shifts of the attention window [. . . ]”. That is, the benefit of a small
attention window for processing categorical spatial relations suggests
that attention serially selects each object of the relation – attention
should shift from one object to the other. The idea that shifts of attention
are necessary for spatial relation processing was already put forward by
Kosslyn (1987, p. 170, Table 1). More recently, Franconeri et al. (2012)
proposed a theoretical framework of spatial relation processing that
also assumes shifts of attention.

2.2.3 Shifting Attention to Process Spatial Relations

Franconeri et al. (2012) discuss a variety of mechanisms that might
underlie the flexibility of the visual system to process visual spatial
relations. Common to all mechanisms is that the visual system needs
to select the two objects that make up the spatial relation. Franconeri
et al. (2012) group the mechanisms into two categories: Simultaneous
selection of both objects or sequential selection, i.e., only a single object
is selected at a time. Since according to Franconeri et al. (2012, p. 221),To process spatial

relations, humans
shift their visual

attention.

simultaneous selection “is known to bring processing difficulties asso-
ciated with both object identification and binding of those identities
to specific locations”, they instead propose that the visual system seri-
ally selects the two objects of a spatial relation. More specifically, they
suggest two mechanisms: Either, the attentional selection shifts from a
global focus (encompassing both objects) to a narrow focus (selecting
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a single object). Or, attention first selects one of the two objects and
shifts to the second object.
In support of the general hypothesis of sequential selection, Fran-

coneri et al. (2012) present electroencephalography (EEG) evidence
showing that their participants shifted spatial attention as they per-
formed simple spatial relationship judgments. Further evidence for
this ‘shift account’ of spatial relation processing is reported by Yuan,
Uttal, and Franconeri (2016) and Roth and Franconeri (2012, see also
Holcombe, Linares, & Vaziri-Pashkam, 2011). While Yuan et al. (2016,
p. 3) try to “minimize the role of language” to investigate potential
asymmetries in the perceptual representations of spatial relations (as
predicted by their shift account), Roth and Franconeri (2012) explicitly
investigate the role of spatial language in their framework. They claim
that the linguistic asymmetry of spatial relationships (i.e., the different
roles of the RO and the LO, cf. “The bike is in front of the house” vs.
“The house is behind the bike”)mirrors the perceptual representation of
spatial relations (see Section 1.1.3 for a summary of the experiments re-
ported in Roth & Franconeri, 2012, as well as more research connecting
linguistic and attentional processing of spatial relations).
Motivated by the same linguistic asymmetry (see Logan, 1995), Lo-

gan and Sadler (1996, p. 499, emphasis in the original) write: “The
distinction between reference and located objects gives a direction to
the conceptual representation; the viewer’s attention should move from
the reference object to the located object (Logan 1995).” Based on Logan Attention is theorized

to move from the RO
to the LO.

(1995) and Logan and Sadler (1996), Gibson and colleagues propose
“a theory of how spatial symbols control the orientation of attention in
space” (Gibson & Sztybel, 2014, p. 271; see Gibson & Sztybel, 2014, for
a review). The studies supporting their theory are variants of Posner’s
spatial cueing paradigm (see Section 2.1). For instance, Gibson and
Kingstone (2006) presented either spatial words (above/below/left/right)
or non-linguistic cues (e.g., arrows) in the center of a screen. Subjects
had to report the color of a target that appeared at the cued location.
This experimental paradigm presents a spatial relation (target, LO, is
defined relative to a cue, RO) and it is thought that participants shift
their attention from the cue to the target to perform the task (e.g., Davis
& Gibson, 2012; Gibson & Kingstone, 2006; Gibson & Sztybel, 2014).

Gibson and Kingstone (2006) showed that when words where used
as cues, participants were slower to respond compared to non-linguistic
cues. In addition, subjects were faster in detecting targets on the vertical
axis compared to the horizontal axis – but only when words where used
as cues and not with non-linguistic cues. Explicitly referencing Logan
(1995) and Logan and Sadler (1996), Gibson and Sztybel (2014) inter-
pret this as an effect of the spatial reference frame (cf. Section 2.2.1) that
needs to be imposed on the RO to process a linguistically described spa-
tial relation – in contrast to attentional shifts triggered by non-linguistic
cues.
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In a category learning task, Livins, Doumas, and Spivey (2016) showed
that priming people’s orientation of visual attention (with either hori-
zontally or vertically aligned flashing circles) affected how participants
categorized the stimuli (using ambiguous spatial relations – either a
horizontal or a vertical oriented relation). The same type of priming
also affected participants’ recognition of more complex relations and
analogical reasoning (i.e., mapping arguments of two depicted rela-
tions, e.g., mapping the boy to the cat in depictions of “The cat chases
the mouse” and “The boy chases the cat”, Livins et al., 2016). These
results support the claim that shifts of attention are an important part
of relational processing. The final section of this chapter interprets the
AVS model (introduced in Section 1.1.4) in terms of the summarized
research on spatial relation processing as well as the conceptualizations
of attention in the visual attention literature.

2.3 the type of attention in the avs model

As discussed in Section 2.1.1, the term ‘attention’ refers to a variety of
different concepts. In this section, I relate research on attention to the
conceptualization of attention in the AVSmodel. Given that the authors
of the AVS model unfortunately remained rather silent on this subject,
this interpretation is not an “official” part of the AVS model.

In interpreting, I followed reviews about the use and role ofmetaphors
of attention by Fernandez-Duque and Johnson (1999, 2002). Fernandez-
Duque and Johnson (1999, p. 97) identify the ‘attention-as-gradient’
metaphor – a variant of the space-based ‘spotlight of attention’metaphor
– by referring to works from Downing and Pinker (1985) and LaBerge
and Brown (1989, among others). These papers are also cited by RegierThe attentional

distribution in the
AVS model

conceptualizes
attention as a

gradient.

and Carlson (2001)when they introduce the exponential decay function
of the attentional distribution implemented in the AVS model. Thus,
the attentional distribution of the AVS model conceptualizes attention
as a space-based spotlight with a gradual decrease from the attentional
focus.
Further support for this claim comes from an AVS follow-up paper,

in which Carlson et al. (2006) extend the AVS model to account for
world-knowledge effects in spatial language (see Section 1.1.1). On the
one hand, Carlson et al. (2006) refer to the attentional distribution in the
AVS model as “an attentional spotlight” (p. 296) and as an “attentional
beam” (p. 297). On the other hand, the experimental paradigm used
by Carlson et al. (2006, p. 300) is perhaps even more supportive for
my claim: They conducted “a speeded sentence-picture verification
paradigm in which attention was cued to the left, center or right side
of a rectangle by means of an exogenous cue, an established means
for anchoring attention (e.g., Jonides, 1981; Posner, 1980)” – that is,
they conducted a variant of Posner’s spatial cueing paradigm (see
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Section 2.1) which is a prominent example of conceptualizing attention
as a spotlight.
The attention-as-gradient metaphor – as a variant of the spotlight

metaphor – primarily deals with issues of selecting specific locations. In
terms of the AVSmodel, thismeans that attention selects the RO, because
its focus is defined on the RO.3 Since the RO is an object, the attentional
distribution might also be seen as an instance of object-based attention.
This interpretation becomes particularly interesting, if one considers
the role of the attentional distribution for processing geometric object
properties.

Considering the importance of attentional shifts for spatial relation
processing (cf. Sections 2.2.3 and 1.1.3), the AVS model needs to do
more than selecting one of two objects. More to the point, the AVS
model needs to implement a shift of attention. In motivating their
choice of using attention in the model, Regier and Carlson (2001) cite
Logan (1994, 1995). Logan (1994, 1995) draw on the computational
framework from Logan and Sadler (1996, see Section 2.2.1). Recall that
this framework assumes that processing of a spatial relation starts with
“spatially indexing the arguments of the relation” (Logan, 1994, p. 1015;
Pylyshyn, 1989, 2001, theorize spatial indices to be pre-attentive, see
Section 2.1.1). Subsequently, the framework posits that “the viewer’s
attention should move from the reference object to the located object”
(Logan & Sadler, 1996, p. 499). Hence, staying in this framework, the The vector sum in the

AVS model
represents a directed
movement of
attention.

vector sum in the AVSmodel implements a directed movement of attention
from the RO to the LO. This interpretation is in line with the references
cited by Regier and Carlson (2001) in their motivation of the vector
sum (Georgopoulos, Schwartz, & Kettner, 1986; Lee, Rohrer, & Sparks,
1988; Wilson & Kim, 1994). In particular, Georgopoulos et al. (1986)
propose a vector sum representation for movements of (monkey) arms
and Lee et al. (1988) suggest a similar representation for saccadic eye
movements (i.e., shifts of overt attention).

Interpreting the vector sum as representing a directed shift of atten-
tion also fits well into the attentional-shift account from Franconeri et al.
(2012). Franconeri et al. (2012) ask about the role of shifts of attention
for spatially relating two objects. In contrast, Regier and Carlson (2001)
are primarily interested in how the geometric properties of one single
object (the RO) affect linguistic acceptability judgments – and how
these behavioral outcomes could be explained with attentional mecha-
nisms. My interpretation of the AVS model merges these two different
approaches by distinguishing the components of the AVS model: The
attentional distribution selects one object of the spatial relation while
the vector sum represents where the attentional selection should move
to next (cf. Fernandez-Duque & Johnson, 1999, p. 95f.; Logan, 1995).

3 In addition, the attentional distribution is only defined on the points of the RO – strictly
reading Regier and Carlson (2001, p. 277–278, Equation 10).
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Taken together, I claim that the attentional distribution in the AVS
model conceptualizes attention as a space-based spotlight with a grad-
ual decrease and the directed vector sum represents a shift of attention
from the RO to the LO. The direction of the attentional shift conflicts
with recent evidence suggesting a shift from the LO to the RO (see
Section 1.1.3). This is why I reversed the direction of the shift in the
AVS model, leading to the development of the reversed AVS (rAVS)
model. The following Part II of this thesis motivates and thoroughly
assesses the rAVS model. In particular, the performance of the rAVS
model is compared against the performance of the AVS model using
existing (Chapter 3) and newly collected data (Chapter 4) as well as a
variety of model comparison techniques (Chapter 5).



Part II

COMPUTAT IONAL AND EMP IR ICAL STUDIES





3THE REVERSED AVS MODEL

The ‘reversed AVS’ (rAVS) model is a variation of the AVS model. The
main change in the computations is the reversed direction of the vec-
tor(s). Furthermore, the attentional focus in the rAVS model always
lies on the LO. These changes reverse the directionality of the atten- In the rAVS models,

attention moves from
the LO to the RO.

tional shift: Instead of shifting from the RO to the LO (as in the AVS
model), attention shifts from the LO to the RO in the rAVS model. This
implements empirical findings suggesting the latter directionality of
the attentional shift (see Section 1.1.3). This chapter introduces four
variations of the rAVS model and evaluates them on the data from
Regier and Carlson (2001).
In all rAVS variations, the direction of the vectors in the attentional

vector sum is reversed as follows: Instead of being rooted at every point
in the RO and pointing to the LO, the vectors are rooted at every point
in the LO and point to one particular point in the RO. This particular
point in the RO must be defined. By defining different points, different
variations of the rAVS model emerge. In this chapter, I present and
evaluate four variations of the rAVSmodel that differ in their vector end
point. The direction of the reversed vector sum is finally compared to
canonical downwards instead of canonical upright (in the case of above).
“This flip [of reference direction] is counterintuitive, but certainly not
computationally difficult” (Roth & Franconeri, 2012, p. 7). The height
component of the AVS model is not changed in the rAVS model. As in
the AVS model, it takes the y-value of the LO as input and computes
the height according to the top of the RO (see Equation 1.1 on page 13
and Figure 1.1a). The following formulas describe the rAVS model
mathematically:

#                         »

vectorSum =
∑
i∈LO

ai ·
#   »

i,R (3.1)

δ = ](down,
#                         »

vectorSum) (3.2)
above(LO,RO) = g (δ) · height(LOy) (3.3)

The variables and functions here are the same as for the AVS model
(see Equations 1.1–1.7 on pages 13–15) – except for changes regarding
the reversal of the attentional shift: i denotes a single point of the LO,
ai denotes the amount of attention at LO’s point i, and #   »

i,R describes the

* Parts of thework presented in Chapter 3were published in Kluth, Burigo, andKnoeferle
(2015, 2016c, 2017). However, the published papers neither report any other rAVS
variation than the rAVSw-comb model nor do they present a detailed model evaluation
on the level of individual experiments.

33
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vectors pointing from all points i of the LO to one particular point R of
the RO – to which point exactly depends on the specific rAVS variation.
In contrast to the AVS model, the direction of #                         »

vectorSum (the final
vector) is compared to canonical downwards (denoted down) instead
of canonical upwards to obtain the deviation as argument for the g()
function.

attentional distribution In much spatial language literature, the
LO is simplified to consist of a single point only. To be able to compareThe LO is simplified

as a single point. the rAVS variations with the AVS model I stick to this convention in this
project. Thus, the LO remains a single point in the rAVSmodels and the
location of the focus is always well-defined: it is at the same location
as the LO. Due to the simplification of the LO as a single point, the
following implications regarding the role of the attentional distribution
emerge for all rAVS variations. The amount of attention at the single-
point LO always equals 1 (a0 = 1) because the single point of the
LO coincides with the attentional focus. Moreover, the attentionally
weighted vector sum consists of only one single vector. Even a different
amount of attention at the vector root (i.e., a0 6= 1) would not affect
the final rating (as long as a0 > 0). This is because neither the AVS
nor the rAVS models consider the length of the vector sum in their
angle computation. Thus, the attentional distribution (and hence the
parameter λ controlling it) does not have an impact on the outcome
of the rAVS models. This limitation is only valid for simplified LOs.
Future research should investigate the role of extended LOs for the
rAVS models.

3.1 motivating ravs variations

Previous research suggests that the angle between the RO and the LO is
an important factor in judging the acceptability of a spatial preposition
(Gapp, 1995; Hayward & Tarr, 1995; Regier, 1996; Regier & Carlson,
2001). More specifically, in empirically assessing the AVSmodel, RegierProximal orientation

and center-of-mass
orientation affect

human acceptability
ratings.

and Carlson (2001) found that the orientation of two imaginary lines
affected human acceptability ratings: the ‘proximal orientation’ and
the ‘center-of-mass orientation’ (see also Regier, 1996). The proximal
orientation is the orientation of the line that connects the LO with the
proximal point P on the RO (see loosely dashed line in Figure 3.1b). The
center-of-mass orientation is the orientation of the line that connects
the LO with the center-of-mass of the RO (see solid line in Figure 3.1b).
The AVS model is able to compute either of these orientations or

combinations of both using different magnitudes of its attentional
width (see Regier & Carlson, 2001, p. 278 and appendix). If the atten-
tional width is maximal (i.e., the attentional distribution is of uniform
strength), the whole RO receives the same amount of attention and the
AVS model computes the center-of-mass orientation. If the attentional
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L

(a) AVSmodel: Vectors pointing
to the LO L. (Dash-dotted
vectors: Sample vectors of
the vector sum, solid vector:
final direction vector.)

C

F

D

L

(b) rAVS models: Different vec-
tor end points. (F: atten-
tional focus from the AVS
model; D: vector end point
for the rAVSw-comb model; C:
center-of-mass of the RO.)

P1 P2

F1

F2

L1

L2

(c) Difference between proximal
points (P1,P2) and AVS’ at-
tentional foci (F1, F2).

Figure 3.1: Vector end points in (a) the AVS model and (b) the rAVS models (rAVSprox:
loosely dashed, rAVScomb: dotted, rAVSw-comb: densely dashed, rAVSc-o-m:
solid). The points F1 and F2 in (c) are AVS’ attentional focus points for LOs L1

and L2. These are used in the rAVSprox model (solid vectors) as well as in the
rAVScomb and rAVSw-comb models.

width is minimal1, only one point of the RO (the attentional focus F)
is attended. Given that F and the proximal point P often coincide, this
means that the AVS model computes the proximal orientation with
its minimal attentional width. Intermediate values of the attentional
width lead to different weighted averaging of the two orientations.

Accounting for the two orientations while reversing the direction
of the attentional shift has lead to four different rAVS variations. Two
of these variations use only one orientation: the rAVSc-o-m model uses
the center-of-mass orientation only and the rAVSprox model uses the
proximal orientation only. The other two rAVS variations combine
the two orientations in different ways: the rAVScomb model computes
the mean of the two orientations and the rAVSw-comb model weights
the influence of the two orientations using ‘relative distance’. Relative
distance is defined to be absolute distance divided by the dimensions
of the RO (more details below). Its definition was informed by the
empirical data from Regier and Carlson (2001, exp. 7).
All rAVS variations differ only with respect to how they compute

the vector end point R in Equation 3.1. In the AVS model, the vector
end point is unambiguous: It is the LO, simplified to be a single point
(shown as circle labeled with L in Figure 3.1a). The vector sum in the
rAVS variations, however, points to the RO which consists of more than
one point. This is why the vector end point Rmust be determined.

1 but greater than zero
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ravsc-o-m model In the rAVSc-o-m model, the vector end point R is
defined to be the center-of-mass C of the RO. The orientation of the
vector sum equals the center-of-mass orientation (see solid arrow in
Figure 3.1b). Apart from research on spatial language highlighting the
importance of the center-of-mass orientation, the use of the center-of-
mass is also in line with findings from saccadic localization. If humans
are instructed to “look at a object as a whole” their first fixation (in most
cases) lands on the center-of-mass (Brouwer, Franz, & Gegenfurtner,
2009; Melcher & Kowler, 1999; Vishwanath & Kowler, 2003; see also
Section 2.1.1).

ravsprox model In the rAVSprox model, the vector sum points to the
proximal point F on the RO (see loosely dashed vector in Figure 3.1b).
This equals the proximal orientation, if the LO consists of a single point.
But where is the proximal point? The basic definition is: The point on
the RO that has the lowest distance to the RO. Applying this definition,
we obtain the following proximal points: If the LO is above the ‘grazing
line’2 of the RO, the proximal point is always on top of the RO. If the
LO, however, is, say, to the right of the RO, the proximal point is at
the right side of the RO. Considering an RO as depicted in Figure 3.1c,
the proximal orientations of the two LOs L1 and L2 (the dotted lines)
result in the same deviation. That is, for this example the rAVSprox
model would compute an equal rating for both LOs L1 and L2. Not
surprisingly, simulations of the rAVSprox model with this definition of
proximal points do not result in good fits to empirical data. This is
why I am not using the proximal point in the literal sense for the vector
end point of the rAVSprox model. Rather, the vector end point in the
rAVSprox model is always the same as the location of the attentional
focus F in the AVS model (in Figure 3.1c, points F1 and F2 for LOs L1

and L2, respectively). That is, the vector end point is determined by
letting fall a perpendicular from the LO to the RO or – if the LO is to
the left or right of the RO – choosing the closest point on top of the RO.
For Figure 3.1c, this results in the solid vectors. Accordingly, LO L1 now
gets a lower rating than LO L2.

ravscomb model Since there is evidence that both the center-of-mass
orientation and the proximal orientation are important for the com-
prehension of spatial language, both orientations are averaged in the
rAVScomb model (see dotted vector in Figure 3.1b). If both orientations
are averaged, both orientations must be computed first. For instance,
in Figure 3.1b, the loosely dashed vector (proximal orientation) and
the solid vector (center-of-mass orientation) must be computed to be
able to obtain the dotted vector. Thus, to account for both orientations
two vector sums must be calculated. Since every vector sum only con-

2 The grazing line is an imaginary horizontal line that touches the top-most point of the
RO, see Regier & Carlson, 2001, exps. 5 & 6, reviewed in detail in Section 3.2.5.
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sists of one vector (due to the single point LO) this should not lead to
much higher cognitive workload and is thus a plausible possibility. The
averaging in the rAVScomb model is done with the following formula:

anglecombined =
angleprox + anglec−o−m

2

(3.4)

Note that the angleprox is based on the modified definition of a prox-
imal point described above for the rAVSprox model (i.e., the rAVScomb
model follows the rAVSprox model and uses the location of the atten-
tional focus F in the AVS model instead of the literal proximal point).

ravsw-comb model The rAVScomb model always takes the average
deviation of the two deviations from the rAVSc-o-m and the rAVSprox
models. That is, both orientations are of equal importance and this
importance is the same for all LOs. Aswewill see later, there is evidence
that the relative importance of the two orientations is not fixed for all
possible locations of LOs (experiment 7 from Regier & Carlson, 2001,
see Section 3.2.6). This is why I have developed a fourth variation of
the rAVS model: the rAVSw-comb model.
In this model, the vector end point R lies on the imaginary line that

connects the center-of-mass C of the RO with the proximal point F (see
point D in Figure 3.1b). Again, the modified definition of proximity is
used, i.e., F is the same as the attentional focus in the AVS model (see
Figure 3.1c). The location of the vector end point D depends on the
‘relative distance’ of the LO to the RO: For distant LOs, D is closer to
C; for close LOs, D is closer to F. This means that for distant LOs the
center-of-mass orientation is more important than for close LOs. In
contrast, the proximal orientation is more important for close LOs than
for distant LOs. The distance of an LO is hereby considered in relative
terms. That is, even if the absolute distance between an RO and an LO
remains equal, the dimensions of the RO (i.e., width and height) affect
the relative distance. The relative distance between an LO and an RO is
computed as follows:

distrel.(LO,RO) =
|LO,P|x
ROwidth

+
|LO,P|y
ROheight

(3.5)

Here, |LO,P|x denotes the horizontal component of the absolute dis-
tance between the LO and the proximal point P on the RO while the
corresponding vertical component is denoted as |LO,P|y.
Note that P is the literal proximal point which is different from the

attentional focus F. P is the point on the RO that has the smallest abso-
lute distance to the LO, regardless of the shape of the RO. In contrast,
the attentional focus F is defined to lie on one specific side of the RO
only (e.g., on the top of the RO if the preposition is above). P and F
coincide if the proximal point happens to be on the same side as the
attentional focus (e.g., if P is on the top of the RO and the preposition
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is above; compare also the different locations of points P1,P2 with F1, F2

in Figure 3.1c).
The relative distance is combined with the additional free model

parameter α to compute the location of the vector end point D. More
specifically, this is realized with the following linear function:

D =

{
#         »

LO,C+ (−α · distrel. + 1) · #    »

C, F if (−α · distrel. + 1) > 0

C else
(3.6)

3.1.1 Comparison to PC(-BB) Models from Regier and Carlson (2001)

As competitor models to the AVS model, Regier and Carlson (2001)
suggested three other models: The BB model (bounding box model),
the PC model (proximal and center-of-mass model), and the PC-BB
model (a combination of the PC and the BB model). How are the
various rAVS models related to these other models? Before answering
this question, I briefly introduce the three models:

bb model Regier and Carlson (2001) define the BB model in the
following way:

“According to this [BB] model, a trajector object [LO] is
above a landmark object [RO] if it is higher than the high-
est point of the landmark and between its rightmost and
leftmost points.” (Regier & Carlson, 2001, p. 274)

To achieve this rating, the BB model consists of the same height com-
ponent as theAVSmodel for the vertical component (see Equation 1.1 on
page 13) and a combination of two sigmoid functions for the horizontal
component:

center(x) = sig(x− left, lrgain)lrexp · sig(right− x, lrgain)lrexp

(3.7)
The sig() function is defined in Equation 1.2 (see page 1.2), lrgain

and lrexp are free parameters of the BB model. Both components
(horizontal and vertical) are multiplied to obtain the final rating:

above(LOx,LOy) = height(LOy) · center(LOx) (3.8)

pc model In contrast to the BB model, the PC model uses angular
deviations, namely the center-of-mass and proximal orientations:

“Formally, the PCmodel characterizes above as a linear com-
bination of the degrees of alignment of the center-of-mass
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and proximal orientations with upright vertical (Regier,
1996, 1997) as in Equation [3.9]:

above = αf(com) + (1 −α)f(prox)” (3.9)

(Regier & Carlson, 2001, p. 276)

Here, com and prox describe the proximal and center-of-mass ori-
entations, α is a free parameter of the PC model that weights the im-
portance of each orientations and f() is a function that maps angular
deviation to rating:

f(angle) = (slope · angle+ y-intercept) · sig(90 − angle,gain)
(3.10)

The PC-model does not contain an explicit height component. The
sigmoid part in the f() function can be interpreted as a functionally
similar part, as it results in low ratings for angular deviations greater
than 90 degrees (see also Figure 3 in Regier & Carlson, 2001). However,
the grazing line is not explicitly formulated in the PCmodel (see Regier
& Carlson, 2001, exps. 5 & 6, reviewed in detail in Section 3.2.5).

pc-bb model The PC-BB model is a combination of the PC and the
BB model. Basically, it includes the missing height component in the
PC model. The height component from the BB model (which is also
the same in the AVS model, see Equation 1.1 on page 13), is multiplied
with the relative importance of center-of-mass and proximal orientation
(from the PC model):

above(LO) = height(LOy) · [α · g(com) + (1 −α) · g(prox)] (3.11)

Another difference to the PC model is the use of another function
that maps angular deviation to ratings. Instead of the function f() (see
Equation 3.10), the simpler function g() is used:

g(angle) = slope · angle+ y-intercept (3.12)
The same function is also used in the AVS model (see Equation 1.6).

The sigmoid part in function f() used by the PC model is now incorpo-
rated in the height component that comes from the BB model.

comparison The BB model underlies a different assumption com-
pared to the rAVS models. The rAVS models are using angular de-
viations, i.e., polar coordinates, whereas the BB model operates with
Cartesian coordinates (see also Regier & Carlson, 2001, p. 275). How-
ever, both the PC and PC-BBmodels use angular features, too. Themain
difference between these two models is that the PC-BB model explicitly
accounts for the grazing line with its height component, whereas the
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PC model does not. In fact, Regier and Carlson (2001) showed that the
PC model cannot accommodate effects of the grazing line, if the two
orientational features are held constant (experiments 5 and 6, Regier
& Carlson, 2001, see Section 3.2.5). All rAVS models contain the same
height component as the BB, the PC-BB, and the AVS model – thus, all
rAVS models should be able to accommodate effects of the grazing line.

The rAVSprox and the rAVSc-o-m model differ from the PC(-BB) mod-
els, because they consider only one orientation instead of both at the
same time. The rAVScomb model averages both orientations, but does
this with a fixed averaging formula, whereas the PC(-BB) models have
a free parameter α that can be adjusted to the data. However, this pa-
rameter is valid for all LOs at the same time. If, say, α = 0.3, then the
center-of-mass orientation only contributes with 30% to the final rating,
but the proximal orientation contributes with 70% – for all LOs.

The rAVSw-comb model, however, is able to apply different proportions
of importance within one set of parameter, depending on the relative
distance of the LO. This is the main crucial difference between the
rAVSw-comb model and the PC(-BB) model. Thus, in the rAVSw-comb
model, the proximal orientation ismore important for close LOs than for
distant LOs, whereas the center-of-mass orientation is more important
for distant LOs than for close LOs – with a fixed set of parameters.

The rAVSw-comb also uses two different interpretations of a proximal
point. For the computation of the relative distance, the closest point on
the RO is used. For the computation of the vector end point, however,
the modified definition of proximal point is used: This point always
lies on top of the RO and is the same as the attentional focus in the AVS
model.

The AVS model can be interpreted as combining the two orientations
via the vector sum. Since the vector sum is weighted by attention,
which in turn is influenced by the distance of the LO, the AVS model
also applies different importances of the two orientations to different
LOswithin one set of parameters. The vector summakes the AVSmodel
flexible (accounting for the geometry of objects and weighting center-
of-mass and proximal orientation) but also computationally expensive.
Due to the simplification of the LO, the rAVSmodel variations are using
only a single vector.3 Does any of the rAVS variations accommodate the
same empirical effects as the AVS model via its vector sum? To answer
this question, I have evaluated the four rAVS variations with the same
empirical data that Regier and Carlson (2001) used to evaluate the AVS
model (the data from Regier & Carlson, 2001).

3.2 model evaluation

The AVS model and the four rAVS model variations have either four
(AVS, rAVSprox, rAVSc-o-m, rAVScomb) or five (rAVSw-comb) free parame-

3 or only two vectors in the rAVScomb model
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ters. These free parameters allow the models to have a certain flexibility
in their output. To facilitate the comparison of the twomodels, the rAVS
variations were designed to be as close as possible to the AVS model.
This is why all four parameters of the rAVSprox, rAVSc-o-m, and rAVScomb
models and four out of five parameters of the rAVSw-comb model are the
same as in the AVS model. These four parameters are the highgain
parameter (used in the model component that adapts the score based
on the vertical location of the LO), the slope and intercept parameters
(slope and intercept of the linear function that maps angular deviations
to acceptability scores), and the parameter λ that controls the width
of the attentional distribution. However, note that the attentional dis-
tribution (and hence the parameter λ) does not affect the outcome of
the rAVS models with single-point LOs (see page 34). Additionally, the
rAVSw-comb model specifies the strength of the relative distance on the
vector sum direction with its parameter α. In the following, I assess Contrasting

implementations of
the attentional shift
are assessed by
measuring model
performance on
empirical data.

all models on the data from Logan and Sadler (1996), Hayward and
Tarr (1995), and Regier and Carlson (2001) by identifying appropriate
values of these free model parameters. The first model benchmark is
the ‘goodness-of-fit’ (GOF) value and the second model benchmark is
the ‘simple hold-out’ (SHO) value. The next section introduces these
two measures.

3.2.1 Goodness-of-Fit and Simple Hold-Out: Method

Goodness-of-Fit
To compute the GOF value, the ‘normalized Root Mean Square Error’
(nRMSE) is minimized, i.e., the values of all free model parameters are
estimated to get the tightest fit to the empirical data. The nRMSE is
defined as follows, with N being the number of data points:

RMSE =

√√√√ 1

N

N∑
i

(datai −modelOuti)2 (3.13)

nRMSE =
RMSE

ratingmax − ratingmin
(3.14)

The GOF provides information on how well a model can simulate
empirical data. If a model is not able to fit the data, there is no need
to further consider this model. The closest possible fit has an nRMSE
of zero – the output of the model equals the empirical data at every
data point. The worst possible fit has an nRMSE of 1.0 (the RMSE
normalized with the range of possible ratings).
To estimate the parameters of a model, I applied the ‘simulated an-

nealing’ method. Simulated annealing is a special case of the Metropo-
lis algorithm, named after Metropolis, Rosenbluth, Rosenbluth, Teller,
and Teller (1953). The Metropolis algorithm is a ‘Markov Chain Monte
Carlo’ approach (MCMC, for more theoretical background see Madras,
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2002). The simulated annealing algorithm samples new parameter
values in the vicinity of the current parameter values (using a Gaussian
distribution as proposal distribution) and evaluates the fit of the model
with these new parameters. Depending on whether the new fit is better
or worse (compared to the fit with the previous parameters), the algo-
rithm accepts the new parameters and uses them in the next iteration
as the mean of the Gaussian distribution to sample new parameters.
The algorithm reduces the standard deviation of the Gaussian proposal
distribution every fixed number of iterations, such that in the beginning,
the parameter search is broad – newly sampled parameter values have a
high chance to be relatively distant from the current values – and in the
end, the algorithm fine-tunes the parameter values – newly sampled
parameter values are close to the current ones. In comparison to simple
gradient descent methods, simulated annealing has the advantage to
not get stuck in local minima by temporarily accepting worse parameter
values. The procedure of simulated annealing in pseudo-code is given
in Algorithm 1. I tested a range of different values for the parame-
ters of the algorithm and found that the following values performed
best: temperature = 0.25, iterations = 500, cooling_period = 300. I
initialized the parameters accordingly.
If not stated otherwise the starting values of the model parameters

were set to the parameters reported by Regier and Carlson (2001, their
Table 1, Logan & Sadler, 1996, fit). The model parameters were con-
strained as follows:

−1/45 6 slope 6 0 (3.15)
0.7 6 intercept 6 1.3 (3.16)

0 6 highgain 6 10 (3.17)
0 < λ 6 5 (3.18)
0 < α 6 5 (3.19)

Comparing the quality of models solely on their ability to closely fit
data is problematic (Pitt & Myung, 2002; Roberts & Pashler, 2000). A
good fit to empirical data is necessary for a “good” model of cognitive
processes. However, it is not sufficient for a thorough model evaluation.
This is why I have applied the simple hold-out method (Schultheis et
al., 2013) as a complementary method to assess the models.

Simple Hold-Out
One specific problem of the GOF is that it is agnostic to the source of
variation in the empirical data (Pitt & Myung, 2002). I am interested in
the systematic variation in the data that I can attribute to the different
conditions of the task but not to the random variation of the data (i.e.,
noise in the data). If one model fits data better than another model, one
cannot know if this is due to a better approximation of the systematic
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Algorithm 1: Simulated annealing algorithm in pseudo-code.
for each parameter p do

p = starting value;
end
old_nRMSE = compute_nRMSE(data, parameters);
best_nRMSE = old_nRMSE;
for i = 1 to iterations do

for j = 1 to cooling_period do
for each parameter p do

// sample new parameter value close to actual

value

new_p = sample_Gaussian_distribution(µ = p,
σ = temperature);

end
new_nRMSE = compute_nRMSE(data,
new_parameters);
if new_nRMSE < old_nRMSE then

// better result, accept parameter values

for each parameter p do
p = new_p;

end
if new_nRMSE < best_nRMSE then

best_nRMSE = new_nRMSE;
end

else
// worse result but still accept with some

probability

accept = sample_uniform_distribution(0, 1);
if accept 6
exp(−(new_nRMSE− old_nRMSE)/temperature)
then

for each parameter p do
p = new_p;

end
end

end
old_nRMSE = new_nRMSE;

end
// cool down

temperature = 0.99 · temperature;
end

variation or due to a closer fit to the noise in the data (the latter is known
as ‘over-fitting’ data). Some models might fit noisy data better because
they are more flexible than other models. Model flexibility here means
the ability of a model to generate different data sets. The more different
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data sets a model can generate, the more flexible is the model. One way
to control for this flexibility is the evaluation of the generalizability of
the models’ output (Pitt & Myung, 2002). If the output of a model that
was fitted to one data set does not generalize well to a different data set
it was not fitted to, the model most probably over-fitted the data (i.e.,
obtained a better fit without explaining the systematic variation).
The simple hold-out (SHO) method controls for the generalizabil-

ity of models by evaluating their ability to generalize to unseen data
points. The SHO method performs well compared to other methods
of model comparison (Schultheis et al., 2013). The SHO is a cross-
validation method. Cross-validation is a widely used method (with
several variants) to avoid over-fitting for computational models (e.g.,
Arlot & Celisse, 2010). The key idea of cross-validation (and thus also
of SHO) is to use only a part of the data to estimate parameters (or: train
the model) and to use these parameters to “predict” the remaining data
(or: test themodel). This is done several times using different partitions
of the data. For each iteration, the nRMSE of the “prediction” (the GOF
to unseen data) is saved. In the end, themedian of all prediction errors is
used as an evaluation measure. The lower this median prediction error,
the better the model is able to generalize to unseen data. Algorithm 2
shows this procedure in pseudo-code. I have used the following param-
eter values: amount_of_training_data = 70%, iterations = 101.
The SHO method as proposed in Schultheis et al. (2013) does not

account for cases in which the medians of the prediction errors of two
competing models are almost similar – it always considers the model
with the lowest median prediction error as the better model. However,
the computation of the prediction errors contains random sampling
(splitting the data and estimating parameters). Thus, the prediction
errors are also subject to random variation. The magnitude of this
randomness can bemeasuredwith the confidence interval of themedian
prediction error. Accordingly, I also report 95% confidence intervals of
the median prediction errors (cf. Cumming, 2014). Specifically, I have
used the R package boot (Canty & Ripley, 2016; Davison & Hinkley,
1997) with 100,000 bootstrap samples to estimate the BCa confidence
intervals.
Although the SHO method gives good results without such confi-

dence intervals (as shown by Schultheis et al., 2013), these intervals will
prove useful if two models are virtually identical in their performance.
As a double check to see whether the median of the prediction error (as
used in Schultheis et al., 2013) is an appropriate evaluation measure, I
also computed the mean of the prediction errors with corresponding
BCa bootstrap confidence interval. In order to compare the AVS model
with the different rAVS model variations, I computed GOF and SHO
values for the data from Logan and Sadler (1996) and Hayward and
Tarr (1995, Section 3.2.2) as well as the data from Regier and Carlson
(2001, Sections 3.2.3–3.2.7).
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Algorithm 2: Simple hold-out algorithm in pseudo-code.
for i = 0 to iterations do

training_data =
pick_random(all_data,amount_of_training_data);
fitted_parameters =
parameter_estimation(training_data);
test_data = all_data− training_data;
prediction_errors[i] =
compute_nRMSE(test_data, fitted_parameters);

end
return median(prediction_errors)

3.2.2 Logan and Sadler (1996, Exp. 2, Above) and Hayward and Tarr (1995,
Exp. 2, Above)

I have fitted the acceptability rating data from Logan and Sadler (1996,
exp. 2, above) and Hayward and Tarr (1995, exp. 2, above) with the
AVS model and the different variations of the rAVS model.4 In these Notation: [Authors

(year, exp. X,
preposition)] codes
for acceptability
ratings for
[preposition]
presented as
[experiment X] in
[Authors (year)].

experiments, participants had to judge the acceptability of the spa-
tial preposition above given a two-dimensional spatial configuration of
one RO and one LO (similar to the experiments from Regier & Carl-
son, 2001). Figure 3.2 shows the positions of the RO and the LOs for
these experiments. In the background of Figures 3.2b and 3.2d, spa-
tial templates (cf. Section 2.2.1) are depicted (in which lighter colors
code higher ratings). These spatial templates were computed with
the rAVSw-comb model using its best-fitting parameter values for the
corresponding data set.

Results for Logan and Sadler (1996, Exp. 2, Above)
Figure 3.3a shows the results for fitting the data from Logan and Sadler
(1996, exp. 2, above). As evident from the small GOF values, all models
closely fit the data (remember that the worst nRMSE is 1.0). So, every
model passed the GOF test and none of the models fits the data con-
siderably better than any of the other models. But how do the models
generalize to unseen data? This question is addressed by the SHO re-
sults which are also shown in Figure 3.3a. The SHO values are all close
to the GOF values, indicating a neglectable influence of over-fitting.
More importantly, all SHO results are very similar to each other and all
95% confidence intervals overlap considerably. Thus, these results do
not favor any of the models.
Table 3.1 shows the parameters that gave the closest fit to the data

from Logan and Sadler (1996, exp. 2, above). The nRMSE as well as
correlation coefficients are displayed. The high correlation coefficients
(for all models higher than 0.975) support the conclusion that all models
closely fit the data.

4 The documented source code for all model simulations reported in this thesis is avail-
able from Kluth (2018).
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(a) Reconstruction of layout of experimental dis-
play of Logan and Sadler (1996, exp. 2). O:
RO, Xs: LOs. Only one LO was shown in
one trial. The gridwas invisible. Size of cells
in original display: width 1.25 cm, height
1.33 cm.

(b) Display used for simulating
the stimuli from Logan and
Sadler (1996, exp. 2, above).

(c) Sample experimental display of Hayward
and Tarr (1995, exp. 2). The circle (LO)
was shown on 48 positions around the com-
puter (RO) in an invisible grid. A second
set of RO and LO was used (floating raft
and bird/fish). Image copyright: See Ap-
pendix E.

(d) Display used for simulating
the stimuli from Hayward and
Tarr (1995, exp. 2, above).

Figure 3.2: Layout of experimental displays and displays used for model sim-
ulations for (a, b) Logan and Sadler (1996, exp. 2, above) and for (c,
d) Hayward and Tarr (1995, exp. 2, above). For (b, d): LOs are dis-
played as circles for visualization purposes. The simulations used
single point LOs (at the center of the circles). Backgrounds depict
rAVSw-comb’s spatial template (lighter color coding higher rating)
computed with best fitting parameters for the corresponding data
set. For (d): Nomeasurements were reported in Hayward and Tarr
(1995), so the same distances as for the Logan and Sadler (1996)
data were used. Only LO positions above the RO are considered,
because above ratings for positions below the LOwere not reported.
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(a) GOF and SHO results for data fromLogan and Sadler
(1996, exp. 2, above).
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(b) GOF and SHO results for data from Hayward and
Tarr (1995, exp. 2, above).

Figure 3.3: GOF and SHO results for data from (a) Logan and Sadler (1996, exp. 2, above) and (b)
Hayward and Tarr (1995, exp. 2, above). Note the different y-axes. Error bars depict
95% confidence intervals of SHO median or mean respectively.

Results for Hayward and Tarr (1995, Exp. 2, Above)
The results for the data from Hayward and Tarr (1995, exp. 2, above)
should be considered carefully because Hayward and Tarr (1995) did
not report the exactmeasurements of their experimental displays. Given
that their experiment is closely related to experiment 2 from Logan and
Sadler (1996), I have used the same measurements (see Figure 3.2d).
That said, Figure 3.3b shows the results for fitting the data from Hay-
ward and Tarr (1995, exp. 2, above). First of all, all models fit the
data even closer than the data from Logan and Sadler (1996, see lower
nRMSE-range compared to Figure 3.3a). This might be because the
above rating data from Hayward and Tarr (1995) consist only of LOs
placed above the RO and no LOs placed below the RO (see Figure 3.2d).
Participants judged all these LOs to be good examples of above (i.e.,
they gave high ratings). This has possibly reduced the variety of ratings
in the data set and accordingly enhances model fitting performance.
The AVS model gets the worst GOF among all models; the rAVS

models fit equally well. However, due to the overall small nRMSE, this
difference is not important. Considering the SHO values, the rAVScomb
model obtains the best result. All confidence intervals, however, overlap
with each other which renders this advantage inconclusive.

Interim Discussion
So far, the presented results show a comparable performance of the All rAVS variations

accommodate results
from Logan and
Sadler (1996) and
Hayward and Tarr
(1995).

AVS model and all rAVS variations. Accordingly, I conclude that the
direction of the attentional shift as implemented in the AVS model is
not essential to accommodate the results from Logan and Sadler (1996)
and Hayward and Tarr (1995). Whether attention shifts from the RO to
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Table 3.1: Parameter values, correlation coefficients, and nRMSE of best fits to data from Logan
and Sadler (1996, exp. 2, above). λ values for rAVS models are presented in parentheses
because they do not change the model outcome (see page 34).

Model λ slope intercept highgain R2 adj. R2 nRMSE
AVS (fit from
Regier & Carlson,
2001)

1.000 -0.006 1.007 0.131 0.977 0.977 0.066

AVS (my best fit) 0.264 -0.004 0.945 0.243 0.985 0.985 0.062
rAVSprox (1.221) -0.005 0.935 0.213 0.985 0.984 0.062
rAVSc-o-m (0.540) -0.005 0.955 0.338 0.986 0.986 0.062
rAVScomb (2.987) -0.005 0.943 8.882 0.987 0.987 0.062
rAVSw-comb (2.000) -0.005 0.952 0.274 0.986 0.985 0.062
rAVSw-comb α = 1.572

the LO (AVS model) or whether it shifts the from LO to the RO (rAVS
variations) – the ability of the models to fit the data is not impacted.

However, the different variations of the rAVS model also performed
equally well. Thus, with these results none of the four rAVS variations
can be favored over the others. That is, it cannot be answered where
the end point of the vector in the rAVS model should be. One reason
for this is that Hayward and Tarr (1995) and Logan and Sadler (1996)
used comparably small ROs. With small ROs the difference between the
proximal orientation and the center-of-mass orientation is small and
thus it does not strongly affect the output of the model. Using largerThe larger ROs by

Regier and Carlson
(2001) provide a
promising testbed.

ROs, Regier and Carlson (2001) explicitly tested the influence of these
two orientations. Given that the different rAVS variations are based on
these two orientations, the data from Regier and Carlson (2001) should
lead to a distinct performance of the model variations.
In the following sections, the GOF, SHO, and qualitative fit results

for the data from the seven experiments reported in Regier and Carlson
(2001) are presented.5 Regier andCarlson (2001) discussed their results
in four subsets, based on the tested effects. My simulations follow this
division. Apart from reporting the performances of the models on
the empirical data as measured by the GOF and SHO, I am following
Regier and Carlson (2001) and am also reporting the correlation of
empirical data and model-generated data. For generating these data
with the models, I have used the parameter values of the best fit to the
data from Logan and Sadler (1996, exp. 2, above, see Table 3.1) – again
following Regier and Carlson (2001). Thus, the correlations provide
information about howwell themodels account for the data fromRegier
and Carlson (2001) without being fitted to these data.

5 I thank Terry Regier and Laura Carlson for sharing their data.
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(a) Experiment 1, tall RO. (b) Experiment 1, wide RO.

(c) Experiment 2, tall RO. (d) Experiment 2, wide RO.

Figure 3.4: Displays used for simulating the stimuli from (a, b) exp. 1 and
(c, d) exp. 2 from Regier and Carlson (2001, reconstructed from
data provided by Regier & Carlson, 2001). LOs are displayed as
circles for visualization purposes. The simulations used single
point LOs (at the center of the circles). For critical manipulation
see Figure 3.5b. ROs are patterned for visualization purposes only.
Backgrounds depict rAVSw-comb’s spatial templates (lighter color
coding higher rating) computed with best fitting parameters for
data from Regier and Carlson (2001, exps. 1–3).

3.2.3 The Effect of Proximal and Center-of-Mass Orientation: Regier and
Carlson (2001, Exps. 1–3)

The first three experiments from Regier and Carlson (2001) were de-
signed to investigate the influence of proximal orientation and center-
of-mass-orientation. To this end, one of these orientations was held
constant while the other orientation was varied. In the first two experi-
ments, the same two ROs (tall and wide rectangle) were used but the
placements of the LOs were manipulated. This implies a manipulation
of center-of-mass or proximal orientation across the two experiments.
Figure 3.4 shows an overview of the experimental displays used in
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(a) Manipulations for Regier and Carl-
son (2001, exp. 1). Across the two
ROs: Keeping center-of-mass orienta-
tion (solid line) constant and varying
proximal orientation (dashed lines).

(b) Manipulations for Regier and Carlson
(2001, exp. 2). Across the two ROs:
Keeping proximal orientation (dashed
lines) constant and varying center-of-
mass orientation (solid lines).

Figure 3.5: Examples of one LO placement for (a) exp. 1 and (b) exp. 2 from
Regier andCarlson (2001). The two rectangular ROs thatwere used
in the experiments are overlayed (filled with different patterns) to
contrast the effect of the LO placement on the proximal (dashed
lines) vs. center-of-mass orientation (solid lines). The fill pattern
of the LO depicts with which RO the LO was shown.

these experiments. The aim of the third experiment was to explore the
influence of the center-of-mass orientation in the region directly above
the RO where the proximal orientation is constantly zero. Figure 3.9
depicts the two experimental displays for experiment 3, discussed in
detail after the first two experiments.

experiments 1 and 2 The way the LO positions were varied in
the first two experiments is depicted in Figure 3.5 (for one sample
LO). The figure shows both ROs at the same time (with different fill
patterns) The LO is filled in the same style as the corresponding RO it
was shown with. Center-of-mass orientations are depicted with solid
lines, proximal orientations with dashed lines. In experiment 1, the
LOs were placed at the same positions for both ROs and thus, the
center-of-mass orientation for LOs (at the same grid-location) was kept
constant across both ROs while the proximal orientation was different
(see Figure 3.5a). In experiment 2, the LOs had different placements
for both ROs (see Figure 3.5b). These placements allowed for the same
proximal orientations (dashed lines in Figure 3.5b) while varying the
center-of-mass orientations (solid lines).
For experiment 1, Regier and Carlson (2001) expected higher above

ratings for the wide RO compared to the tall RO, because the proximal
orientation is greater (i.e., it deviates more from canonical upright)
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for the tall RO than for the wide RO. In contrast, they expected higher
above ratings for the tall RO in experiment 2 compared to the wide RO,
because here the center-of-mass orientation is greater (i.e., it deviates
more from canonical upright) for the wide RO than for the tall RO.
Indeed, they found this expected pattern.
Following the analyses presented in Regier and Carlson (2001), Ta-

ble 3.2 shows the coefficients of linear regression models relating em-
pirical and model-generated data. Crucially, to generate data with the
cognitivemodels, I did not fit them to the experimental data fromRegier
and Carlson (2001) but used the parameters of the best model fits to the
data from Logan and Sadler (1996, exp. 2, see Table 3.1). As can be seen
from Table 3.2, all models account very well for the data (correlation
always greater than 0.99) without using the data to estimate the best
possible parameters. For comparison, I also provide the coefficients for
the parameters that Regier and Carlson (2001) used (see rows “AVS
(RC-LS fit)”). They also used the best parameters to fit the data from
Logan and Sadler (1996, exp. 2), but their fit was not as close as my best
fit (see Table 3.1). Nevertheless, using these parameters led to a slightly
higher correlation compared to my best parameters as can be seen in
Table 3.2. I will refer to the parameter set used by Regier and Carlson
(2001) from now on as the RC-LS fit (“RegierCarlson-LoganSadler” fit).

Table 3.2: Linear model fits relating the empirical data from exps. 1 and 2 from
Regier and Carlson (2001) with model-generated data for the same
stimuli. I computed model-generated data with parameter values
from the best fit to Logan and Sadler (1996, exp. 2, above) shown in
Table 3.1 – except for lines denoted with “RC-LS fit” where I used
parameter values from the AVS model fit to Logan and Sadler (1996,
exp. 2, above) as reported in Regier and Carlson (2001).

Model R2 adj. R2 y-intercept slope nRMSE
Experiment 1, tall rectangle
AVS (RC-LS fit) 0.996 0.996 -0.614 1.088 0.054
AVS (my fit) 0.993 0.992 -0.615 1.073 0.059
rAVSprox 0.994 0.994 -0.608 1.042 0.061
rAVSc-o-m 0.992 0.991 -0.627 1.091 0.061
rAVScomb 0.993 0.993 -0.623 1.064 0.061
rAVSw-comb 0.992 0.991 -0.622 1.087 0.060
Experiment 1, wide rectangle
AVS (RC-LS fit) 0.994 0.994 -0.323 1.060 0.040
AVS (my fit) 0.997 0.996 -0.348 1.057 0.036
rAVSprox 0.995 0.994 -0.340 1.059 0.040
rAVSc-o-m 0.997 0.997 -0.402 1.062 0.038
rAVScomb 0.995 0.994 -0.480 1.072 0.048
rAVSw-comb 0.997 0.997 -0.369 1.054 0.036
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Table 3.2: Continued: Linear models for exps. 1 and 2 from Regier and Carlson
(2001).

Model R2 adj. R2 y-intercept slope nRMSE

Experiment 1, both ROs
AVS (RC-LS fit) 0.994 0.994 -0.470 1.075 0.048
AVS (my fit) 0.994 0.994 -0.479 1.064 0.049
rAVSprox 0.992 0.992 -0.473 1.050 0.052
rAVSc-o-m 0.994 0.994 -0.512 1.076 0.051
rAVScomb 0.993 0.993 -0.551 1.068 0.055
rAVSw-comb 0.994 0.994 -0.493 1.070 0.050
Experiment 2, tall rectangle
AVS (RC-LS fit) 0.993 0.993 -0.637 1.098 0.060
AVS (my fit) 0.991 0.991 -0.643 1.075 0.063
rAVSprox 0.992 0.991 -0.633 1.046 0.066
rAVSc-o-m 0.991 0.990 -0.657 1.096 0.064
rAVScomb 0.991 0.991 -0.650 1.069 0.065
rAVSw-comb 0.991 0.990 -0.652 1.092 0.064
Experiment 2, wide rectangle
AVS (RC-LS fit) 0.995 0.994 -0.721 1.056 0.068
AVS (my fit) 0.996 0.996 -0.748 1.067 0.067
rAVSprox 0.995 0.994 -0.740 1.066 0.067
rAVSc-o-m 0.996 0.995 -0.802 1.069 0.072
rAVScomb 0.992 0.992 -0.881 1.078 0.081
rAVSw-comb 0.996 0.996 -0.766 1.061 0.069
Experiment 2, both ROs
AVS (RC-LS fit) 0.992 0.992 -0.681 1.077 0.064
AVS (my fit) 0.993 0.993 -0.695 1.071 0.065
rAVSprox 0.993 0.993 -0.684 1.056 0.067
rAVSc-o-m 0.992 0.992 -0.730 1.082 0.068
rAVScomb 0.991 0.991 -0.763 1.073 0.073
rAVSw-comb 0.992 0.992 -0.710 1.077 0.066

exp. 1, gof According to Table 3.2, all models closely account for the
data – without explicitly fitting the model parameters to the data. To
investigate the goodness of the models in more detail, I also fitted all
models directly to the data from experiments 1 and 2. The GOF values
for experiment 1 are shown in Figure 3.6, separately for the tall and the
wide rectangle. All models achieve lowGOFs (lower than 0.041), i.e., all
models closely fit the data. Evaluating models solely on their ability to
closely fit data is not sufficient (Pitt & Myung, 2002; Roberts & Pashler,
2000) which is why I applied the SHO method (see Section 3.2.1).
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(a) Model performance for data from exp. 1, tall rect-
angle.
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(b) Model performance for data from exp. 1, wide
rectangle.

Figure 3.6: GOF and SHO results for fitting data from Regier and Carlson (2001, exp. 1): (a)
tall rectangle, (b) wide rectangle. Error bars depict 95% confidence intervals of SHO
median or mean respectively.
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(a) Model performance for data from exp. 2, tall rect-
angle.
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(b) Model performance for data from exp. 2, wide
rectangle.

Figure 3.7: GOF and SHO results for fitting data from Regier and Carlson (2001, exp. 2): (a)
tall rectangle, (b) wide rectangle. Error bars depict 95% confidence intervals of SHO
median or mean respectively.

exp. 1, sho Figure 3.6 provides medians and means as outcome of
the SHOmethod. For the tall rectangle (Figure 3.6a), all rAVS variations
have quite similar SHO values, whereas the AVS model has a larger
SHO value. The difference, however, is not large. Considering the wide
rectangle (Figure 3.6b), the rAVSc-o-m and the rAVSw-comb models both
have similar SHO values that are a bit lower than the SHO values of the
other models.

exp. 2, gof & sho The GOF values for the second experiment are
displayed in Figure 3.7, separately for each RO. Again, all models fit
the data from both ROs equally well, except for the AVS model which
provides the worst GOF values for both ROs. However, this should not
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(a) Model performance for data from exp. 1, both ROs.
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(b) Model performance for data from exp. 2, both ROs.

Figure 3.8: GOF and SHO results for fitting data from Regier and Carlson (2001, exps. 1 & 2, both
ROs). Error bars depict 95% confidence intervals of SHOmedian or mean respectively.

be understood in the way that the AVS model cannot fit the data; its
nRMSE is still very low (lower than 0.07).

Figure 3.7 also shows the medians and means from the SHO method.
Considering these results, both ROs show a similar pattern. While
all rAVS variations achieve similar low SHO values, the AVS model
provides slightly worse (but still good) SHO values. It seems that these
results disfavor the AVS model.
However, Regier and Carlson (2001) varied either one of center-of-

mass orientation and proximal orientation throughout their first two
experiments. They did so by either changing only the RO (experiment 1)
or manipulating the locations of the LOs with respect to the used RO
(experiment 2). Thus, the manipulation was always applied across
both ROs. To capture the critical manipulations in the first experiment,
the models must be fitted to the whole data set, i.e., the data from both
ROs.

exp. 1, both ros GOF values for data from both ROs of the first
experiment are shown in Figure 3.8a. All models have similarly low
GOF values. Looking at the SHO results also plotted in Figure 3.8a,
the rAVSprox model now performs slightly worse than any of the other
models. The rest of the models perform almost equally well. This result
is especially interesting, since the crucial manipulation in the first ex-
periment was the variation of the proximal orientation (see Figure 3.5a).
It seems that only using the center-of-mass orientation while ignoring
the proximal orientation (as done by the rAVSc-o-m model) results in a
better model performance than the opposite (ignoring center-of-mass
orientation but using the proximal orientation, as done by the rAVSprox
model). Based on the critical manipulation of experiment 1 (proxi-
mal orientation, not center-of-mass orientation), one would expect a
contrary result here. Possibly the influence of the center-of-mass orien-
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Figure 3.9: Displays used for simulating the stimuli of exp. 3 from Regier
and Carlson (2001, reconstructed from data provided by Regier
& Carlson, 2001). LOs are displayed as circles for visualization
purposes. The simulations used single point LOs (at the center of
the circles). Critical manipulation: In the regions directly above
the ROs (marked with the dashed boxes), the proximal orientation
is constant while the center-of-mass orientation varies. ROs are
patterned for visualization purposes only. Backgrounds depict
rAVSw-comb’s spatial templates (lighter color coding higher rating)
computed with best fitting parameters for data from Regier and
Carlson (2001, exps. 1–3).

tation is stronger than the proximal orientation and thus shadowing the
effect of the proximal orientation found by Regier and Carlson (2001,
higher above ratings for the wide compared to the tall rectangle).

exp. 2, both ros The GOF and SHO results for the data combined
from both ROs for the second experiment can be found in Figure 3.8b.
The AVS model and the rAVSc-o-m model have worse GOF values than
the other models. The rAVScomb model has the best GOF. However, all
GOFs are lower than 0.07, showing that all models fit the data well.
Looking at the SHO results, the AVS model clearly obtains the worst
value, while all rAVS variations exhibit a similar performance.

exp. 3 The third experiment conducted by Regier and Carlson (2001)
also kept the proximal orientation constant while varying the center-of-
mass orientation, comparable to the second experiment. In the second
experiment, however, only two LOs were presented directly above the
RO, which also shared the same proximal and center-of-mass orienta-
tion, whereas in the third experiment several different LO positions
directly above the RO were tested. By doing so, the effect of the center-
of-mass orientation in the region directly above the RO can be explored
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Table 3.3: Linearmodel fits relating the empirical data from exp. 3 fromRegier andCarlson
(2001) with model-generated data for the same stimuli. I computed model-
generated data with parameter values from the best fit to Logan and Sadler
(1996, exp. 2, above) shown in Table 3.1 – except for lines denoted with “RC-LS
fit” where I used parameter values from the AVS model fit to Logan and Sadler
(1996, exp. 2, above) as reported in Regier and Carlson (2001).

Model R2 adj. R2 y-intercept slope nRMSE
Experiment 3, tall rectangle
AVS (RC-LS fit) 0.984 0.984 -0.596 1.060 0.070
AVS (my fit) 0.984 0.984 -0.585 1.018 0.075
rAVSprox 0.980 0.980 -0.615 1.022 0.080
rAVSc-o-m 0.980 0.979 -0.565 1.071 0.072
rAVScomb 0.983 0.983 -0.590 1.044 0.072
rAVSw-comb 0.981 0.980 -0.573 1.075 0.072
Experiment 3, wide rectangle
AVS (RC-LS fit) 0.993 0.993 -0.407 1.017 0.052
AVS (my fit) 0.993 0.993 -0.398 1.054 0.046
rAVSprox 0.990 0.990 -0.430 1.061 0.053
rAVSc-o-m 0.989 0.989 -0.329 0.934 0.077
rAVScomb 0.994 0.994 -0.380 0.996 0.054
rAVSw-comb 0.991 0.990 -0.339 0.937 0.076

– while holding the proximal orientation constant for all these points.
Figure 3.9 shows the experimental display used in the third experiment.

exp. 3, all data points All models are able to account for the data
from experiment 3, as is evident from the high correlation coefficients in
Table 3.3 (computed without fitting these data but the data from Logan
& Sadler, 1996) as well as the GOF values displayed in Figure 3.10 (all
lower than 0.07). The AVS model, however, has a rather large GOF for
the tall rectangle (Figure 3.10a) that is also reflected in a worse SHO
value compared to the other models. The rAVSprox and the rAVScomb
models obtain slightly better SHO values than the other two rAVS
variations for the tall rectangle. For the wide rectangle, all models
provide similar SHO values, except for the rAVSc-o-m model that has a
worse SHO value (Figure 3.10b).

The third experiment was designed to test for the effects of center-of-
mass orientation in the region directly above the ROwhile the proximal
orientation was kept constant. It is surprising that the rAVSc-o-m model
obtains the worst SHO value for the wide rectangle (Figure 3.10b).
Thus, to further explore the behavior of the models with respect to the
critical placements of the LOs, the next section presents GOF and SHO
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(a) Model performance for data from exp. 3, tall rect-
angle.
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(b) Model performance for data from exp. 3, wide
rectangle.

Figure 3.10: GOF and SHO results for fitting (Regier & Carlson, 2001, exp. 3). Error bars depict
95% confidence intervals of SHO median or mean respectively.

0

0.02

0.04

0.06

0.08

0.1

AVS rAVSprox rAVSc-o-mrAVScomb
rAVSw-comb

nR
M
SE

/p
re
di
cti

on
er
ro
r GOF

SHO median
SHO mean

(a) Model performance for critical data points from
exp. 3, tall rectangle.
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(b) Model performance for critical data points from
exp. 3, wide rectangle.

Figure 3.11: GOF and SHO results for fitting critical data points from Regier and Carlson (2001,
exp. 3). Error bars depict 95% confidence intervals of SHO median or mean respec-
tively.

results for data from these placements only. The critical LO positions
are those that are depicted inside the dashed boxes in Figure 3.9.

exp. 3, critical data points Figure 3.11 shows the GOF values
for the critical placements in experiment 3, separately for each RO.
For both ROs, all models fit the data well (GOF smaller than 0.06; see
Figure 3.11a and Figure 3.11b). The rAVSprox model, however, obtains
a comparably bad fit. This disadvantage is confirmed by the SHO
method: The rAVSprox model gets the worst SHO results for both ROs.
All other models perform similarly, as indicated by very close medians
and overlapping confidence intervals. Thus, the results for the critical
LO placements provide evidence that the rAVSprox model does not
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(a) Generated with RC-LS parameters.
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(b) Generated with best fitting parameters.

Figure 3.12: Qualitative comparison for Regier and Carlson (2001, exp. 3, wide rectangle, upper
row of LOs) computed with (a) parameter values used by Regier and Carlson (2001)
and (b) parameter values of my best fit to the critical data from the wide RO of exp. 3.

describe the data as well as the other models. Like Regier and Carlson
(2001), I discuss next the qualitative behavior of the models to see if
they can capture the qualitative empirical trends.

exp. 3, qualitative fit Figure 3.12 displays the empirical mean
ratings as well as the model-generated ratings for the upper row of the
critical LO placements from experiment 3, wide rectangle. Figure 3.12a
shows ratings as generated with model parameters from the RC-LS fit
(see Table 3.1 on page 48). For model-generated ratings in Figure 3.12b,
I fitted the models to all critical placements of experiment 3. The empir-
ical ratings shown in Figure 3.12 are peaking at the center (position 6)
which is directly above the center-of-mass of the RO. Thus, the empirical
ratings show an effect of center-of-mass orientation despite constant
proximal orientation.

Clearly, the rAVSprox model is not able to capture this pattern in the
empirical data. It gives the same rating throughout all positions. This
is not surprising since the rAVSprox model only considers the proximal
orientation which was kept constant by design. With these results
however, the rAVSprox model can definitively be disqualified from the
model competition. All other models approximate the data quite nicely.
When fitting these other models to the data sets (results illustrated in
Figure 3.12b), they generate almost indistinguishable rating patterns
close to the empirical pattern.

discussion exps. 1–3 Considering all results for the first three ex-
periments, the rAVSprox model can be disqualified because it does notThe rAVSprox model

is disconfirmed. capture the empirical pattern from the third experiment (Figure 3.12).
Interestingly, the AVS model performs worse (but still good) for the
second experiment compared to the rAVS variations (see Figure 3.8b).
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A B C

(a) Upright triangle.

A B C

(b) Inverted triangle.

Figure 3.13: Displays used for simulating the stimuli of exp. 4 from Regier
and Carlson (2001, reconstructed from data provided by Regier
& Carlson, 2001). LOs are displayed as circles for visualization
purposes. The simulations used single point LOs (at the center of
the circles). Critical manipulation: “Point A is above the center of
mass of the triangle, Point B is above the midpoint of the base of
the triangle, and Point C is placed so that its distance fromB equals
the distance between A and B” (Regier & Carlson, 2001, p. 285).
ROs are patterned for visualization purposes only. Backgrounds
depict rAVSw-comb’s spatial templates (lighter color coding higher
rating) computedwith best fitting parameters for data fromRegier
and Carlson (2001, exp. 4).

The performance of all other models, however, cannot be distinguished
from each other. This is interesting because the rAVS variations that
used either only the center-of-mass orientation or only the proximal
orientation (i.e., rAVSc-o-m and rAVSprox) did not perform better in any
of the first two experiments although these experiments explicitly tested
for the center-of-mass orientation and the proximal orientation.

3.2.4 Dissociate Center-of-Mass from Midpoint: Regier and Carlson (2001,
Exp. 4)

In the third experiment, the LOposition atwhich the ratings peakedwas
directly above the center-of-mass but also directly above the midpoint
of the base of the RO. Experiment 4 was designed to dissociate the
center-of-mass from the midpoint of the RO. To this end, Regier and
Carlson (2001) used two triangles that are depicted in Figure 3.13. Here,
the center-of-mass is at a different point than the midpoint of the base
of the triangle. The critical LO positions were the three points A, B,
and C above the triangle: “Point A is above the center of mass of the
triangle, Point B is above the midpoint of the base of the triangle, and
Point C is placed so that its distance from B equals the distance between
A and B” (Regier & Carlson, 2001, p. 285). For the upright triangle
(Figure 3.13a), the empirical mean rating was significantly lower for
point C than for points A and B. For the inverted triangle (Figure 3.13b),
themean rating for point Cwas significantly lower than themean rating
for point B but it was not significantly lower than the mean rating for
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Table 3.4: Linear model fits relating the empirical data from exp. 4 from Regier
and Carlson (2001) with model-generated data for the same stimuli. I
computed model-generated data with parameter values from the best
fit to Logan and Sadler (1996, exp. 2, above) shown in Table 3.1 – except
for lines denoted with “RC-LS fit” where I used parameter values from
the AVS model fit to Logan and Sadler (1996, exp. 2, above) as reported
in Regier and Carlson (2001).

Model R2 adj. R2 y-intercept slope nRMSE
Experiment 4, both ROs
AVS (RC-LS fit) 0.988 0.985 -1.050 1.164 0.057
AVS (my fit) 0.993 0.992 -1.063 1.187 0.060
rAVSprox 0.991 0.989 -1.045 1.192 0.066
rAVSc-o-m 0.933 0.922 -1.498 1.138 0.112
rAVScomb 0.980 0.976 -1.272 1.164 0.067
rAVSw-comb 0.952 0.944 -1.327 1.124 0.095
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Figure 3.14: GOF and SHO results for fitting Regier and Carlson (2001, exp. 4,
both ROs). Error bars depict 95% confidence intervals of SHO
median or mean respectively.

point A. For both ROs, the mean ratings for point A and point B did
not differ significantly (see also Figure 3.15 for a visualization of the
empirical findings).

The correlation for empirical andmodel-generated data for the fourth
experiment presented in Table 3.4 is very high. Again, all models
closely account for the data without being fit to it (remember that
I used model parameters for fitting the data from Logan & Sadler, 1996,
exp. 2, above, for these tables). The following GOF and SHO results
must be considered carefully, because the data set from experiment 4
consists of only four data points for each RO. This is especially crucial
for the SHOmethod, which splits the data in a training set of only three
data points and a test set of only one data point. This is why I have
combined the data from both ROs to one data set consisting of 8 data
points. The results for these data are presented in Figure 3.14.
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(a) Upright triangle, generated with RC-LS parameters.
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(b) Upright triangle, generated with best fitting parame-
ters.
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(c) Inverted triangle, generated with RC-LS parameters.
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(d) Inverted triangle, generated with best fitting parame-
ters.

Figure 3.15: Qualitative comparison for data from Regier and Carlson (2001, exp. 4): (a, b) upright
triangle, (c, d) inverted triangle. Computed with (a, c) parameter values used by Regier
and Carlson (2001) and (b, d) parameter values of my best fit to the corresponding
data. Error bars for the empirical data depict the ± 0.3 difference needed for significance
(based on 95% confidence intervals) as reported by Regier and Carlson (2001, p. 285).

Considering the GOF results, all models closely fit the data for both
ROs: all GOFs are lower than 0.04. The rAVSc-o-m model provides the
best SHO value although the confidence intervals overlap with the
rAVScomb model. The rAVSprox model has the worst SHO value, while
the AVS and the rAVSw-comb model provide in-between results. How-
ever, since the SHO results might be flawed due to the small number of
available data points, it is even more important to look at the qualitative
behavior of the models.

qualitative fit Figure 3.15 shows the empirical data and themodel-
generated data for the three critical LO positions, separately for each
RO. Figures 3.15a and 3.15c are displaying model-generated ratings
computed with the RC-LS parameters. Figures 3.15b and 3.15d show
model-generated ratings fitted to all four data points from the corre-
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sponding RO. Furthermore, the difference that was needed for two
ratings to be significantly different is plotted as error bars in Figure 3.15.
This difference is 0.3 and is based on 95% confidence intervals, as re-
ported by Regier and Carlson (2001, p. 285).

The already disconfirmed rAVSprox model again is not able to capture
the trend that can be seen in the empirical data. Again, this finding is
not surprising: The proximal orientation is the same for all three LOs
A, B, and C and thus, the rating that rAVSprox generates does not differ
between the positions. Accordingly, these qualitative results once more
disqualify the rAVSprox model.
The other models capture the empirical data quite well. For the

upright triangle, all models generate very similar data close to the
empirical data: all artificial ratings differ less from the corresponding
empirical ratings than the difference needed for significance (± 0.3;
Figure 3.15b). When fitted to the data from the inverted triangle (Fig-
ure 3.15d), the models show almost the same behavior as the rAVSprox
model: The same rating for every position (with the rAVSc-o-m model
providing the greatest exception from this straight line). This comes
as no surprise because the empirical data points are also very close to
each other: 8.0 (A), 8.1 (B), 7.8 (C). Using the parameters fitted on
the Logan and Sadler (1996) data, the models show higher ratings for
A than for C (Figure 3.15a). Note, however, that Regier and Carlson
(2001) did not find significantly different ratings for point A and point
C for the inverted triangle (only the difference between ratings for point
C and point B was significant).6 My empirical study with asymmetrical
ROs provides more pertinent data suggesting that for ROs with a flat
top (such as the inverted triangle), people consider the center-of-object
more than the center-of-mass (Section 4.2.1).

discussion exp. 4 Taken together, the low number of LOs in the
fourth experiment makes it difficult to use these data for quantitative
model assessment with the SHOmethod. Considering the SHO results,
the rAVSprox performs slightly worse than the other models. Indeed,
the comparably bad SHO value of the rAVSprox model is confirmed by
its bad qualitative behavior. This disqualifies the rAVSprox model once
more. All other models are able to reproduce the qualitative behavior.
Accordingly, none of the other models can be disfavored.

3.2.5 The Effect of the Grazing Line: Regier and Carlson (2001, Exps. 5
& 6)

Experiments 5 and 6 tested for the effect of the ‘grazing line’ on the
acceptability of spatial terms. The grazing line is an imaginary horizon-

6 See also Lovett and Forbus (2009) who failed to replicate this effect with their compu-
tational model, too, and also point to the small effect size and the low number of data
points.
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(a) Experiment 5. Black dotted box
frames six critical LOs above and
six critical LOs below the grazing
line.

(b) Experiment 6. Critical LOs are two pairs of LOs that share both the
same proximal & center-of-mass orientations but are on different
sides of the grazing line. Each pair is connected with a dotted
line (center-of-mass orientation).

Figure 3.16: Displays used for simulating the stimuli of exps. 5 & 6 from Regier and Carlson (2001,
reconstructed from data provided by Regier & Carlson, 2001). LOs are displayed
as circles for visualization purposes. The simulations used single point LOs (at the
center of the circles). Critical manipulation: LOs placed above or below the grazing
line (horizontal white dashed line). ROs are patterned for visualization purposes
only. Backgrounds depict rAVSw-comb’s spatial templates (lighter color coding higher
rating) computed with best fitting parameters for data from Regier and Carlson (2001,
exps. 5 & 6).

tal line that touches the top-most point of the RO. The stimuli used in
experiments 5 and 6 and the grazing line are depicted in Figure 3.16.
In both experiments, Regier and Carlson (2001) found an influence of
the grazing line: Points that are above the grazing line are rated higher
than points that are below the grazing line. This remains true even if
the center-of-mass and proximal orientations were held constant (see
experiment 6).

exp. 5 The RO and all LO positions for the fifth experiment are de-
picted in Figure 3.16a. Critical LOs are the twelve points inside the
dashed box, fromwhich six are above the grazing line and six are below
the grazing line. Regier and Carlson (2001) found that the six LOs
above the grazing line were rated higher than the six LOs below the
grazing line. As a measure of the strength of this effect, they subtracted
the average rating for the lower LOs from the average rating for the
upper LOs. This measure is positive if the average rating for the upper
LOs is higher than the average rating for the lower LOs. Like Regier
and Carlson (2001), I also computed this measure for the models, using
the parameters for fitting the data from Logan and Sadler (1996). The
results can be found in Table 3.5. All models show a grazing line effect
with a similar strength as observed empirically.

Table 3.6 shows coefficients of linear model fits for the empirical data
from experiment 5 and model-generated data using the parameters for
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Table 3.5: The effect of the grazing line for exps. 5 and 6 using parameters for
fitting Logan and Sadler (1996, exp. 2, above, Table 3.1).

Model exp. 5 exp. 6
left pair right pair

empirical 3.528 1.730 3.885
AVS (RC-LS) 3.736 3.038 3.268
AVS (my fit) 3.952 3.549 3.339
rAVSprox 4.042 3.579 3.179
rAVSc-o-m 4.142 3.659 3.331
rAVScomb 4.177 3.892 3.246
rAVSw-comb 3.904 3.541 3.318

Table 3.6: Linear model fits relating the empirical data from exps. 5 and 6 from
Regier and Carlson (2001) with model-generated data for the same
stimuli. I computed model-generated data with parameter values
from the best fit to Logan and Sadler (1996, exp. 2, above) shown in
Table 3.1 – except for lines denoted with “RC-LS fit” where I used
parameter values from the AVS model fit to Logan and Sadler (1996,
exp. 2, above) as reported in Regier and Carlson (2001).

Model R2 adj. R2 y-intercept slope nRMSE
Experiment 5
AVS (RC-LS fit) 0.976 0.976 -0.461 0.944 0.094
AVS(my fit) 0.978 0.978 -0.526 0.972 0.088
rAVSprox 0.969 0.969 -0.614 0.995 0.095
rAVSc-o-m 0.959 0.958 -0.450 0.918 0.113
rAVScomb 0.976 0.976 -0.547 0.959 0.096
rAVSw-comb 0.974 0.973 -0.542 0.940 0.104
Experiment 6
AVS (RC-LS fit) 0.928 0.926 0.179 1.167 0.122
AVS (my fit) 0.928 0.926 0.142 1.153 0.115
rAVSprox 0.910 0.907 0.048 1.152 0.120
rAVSc-o-m 0.906 0.903 0.323 1.174 0.144
rAVScomb 0.932 0.930 0.164 1.180 0.124
rAVSw-comb 0.918 0.915 0.273 1.170 0.134

fitting the data from Logan and Sadler (1996). All correlations are high,
providing evidence that all models closely fit the data. This is confirmed
by the good GOFs for all models, presented in Figure 3.17. Considering
all LOs, all nRMSEs are lower than 0.09 (Figure 3.17a). Fitting only
the critical data points (six LOs above and six LOs below the grazing
line), the nRMSE is even lower than 0.04 for all models (Figure 3.17b).
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(a) Model performance for all data points from exp. 5.
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(b) Model performance for critical data points from
exp. 5.

Figure 3.17: GOF and SHO results for fitting Regier and Carlson (2001, exp. 5). Error bars depict
95% confidence intervals of SHO median or mean respectively.
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(a) Model performance for all data points from exp. 6.
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(b) Model performance for critical data points from
exp. 6.

Figure 3.18: GOF and SHO results for fitting Regier and Carlson (2001, exp. 6). Error bars depict
95% confidence intervals of SHO median or mean respectively.

Looking at the SHO results, all models are indistinguishable for the
critical data set (Figure 3.17b). Using the full data set (Figure 3.17a),
the rAVSw-comb model obtains a slightly better SHO value than all other
models, while the AVS model has a slightly worse SHO value than all
models – except for the rAVSc-o-m model which gets the worst SHO
value.

Taken together, the results for the fifth experiment slightly favor the
rAVSw-comb model and disfavor the rAVSc-o-m model. However, these
results only emerge for the whole data set and not for the critical subset
(six LOs above and six LOs below the grazing line). Furthermore, note
that all of the models show a comparable performance regarding the
strength of the effect of the grazing line, shown in Table 3.5. Thus,
qualitatively all models seem to be able to accommodate the results.
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(a) Generated with RC-LS parameters.
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(b) Generated with best fitting parameters.

Figure 3.19: Qualitative comparison for Regier and Carlson (2001, exp. 6, critical LOs) computed
with (a) parameter values used by Regier and Carlson (2001) and (b) parameter values
of my best fit to all data from exp. 6.

exp. 6 The sixth experiment again tested for the effect of the grazing
line but this time the proximal and the center-of-mass orientation were
also controlled. The used experimental display is shown in Figure 3.16b.
There were two pairs of critical LOs (connected with dotted lines in
Figure 3.16b) that shared the same center-of-mass orientation and prox-
imal orientation (in one pair), but one LO of each pair was placed above
the grazing line and the other one below the grazing line. Thus, any
different ratings for these LOs cannot be explained by differences in the
center-of-mass or proximal orientations, but by their locations relative
to the grazing line.
As in experiment 5, Regier and Carlson (2001) expected and found

higher ratings for LOs above the grazing line compared to LOs below
the grazing line. Table 3.5 shows the strength of this effect for each
model using the same measure as used in the fifth experiment (rating
for the upper LO subtracted by the rating for the lower LO) – computed
with parameters from fitting data from Logan and Sadler (1996, exp. 2,
above). Again, all models qualitatively replicate the grazing line effect
but the replication is quantitatively not as close as for experiment 5.
Using the same model parameters, Table 3.6 prints the correlation of
the model-generated data to the empirical data. The overall correlation
is worse than for the previous experiments (but still higher than 0.9),
with the correlation for the rAVSc-o-m model being the lowest.

Nonetheless, all models fit the data well, as is evident from the GOFs
plotted in Figure 3.18a: All GOFs are lower than 0.09. Considering
the SHO results, the rAVSprox model gets a slightly worse result than
all other models for all LO positions (Figure 3.18a). All other models
cannot be distinguished on these data. The SHO results for the critical
subset shown in Figure 3.18b are not very reliable, since the critical
subset consists of only four data points. Hence, the SHO medians,



3.2.6 effect of distance (exp. 7) 67

Figure 3.20: Displays used for simulating the stimuli of exp. 7 from Regier
and Carlson (2001, reconstructed from data provided by Regier
& Carlson, 2001). LOs are displayed as circles for visualization
purposes. The simulations used single point LOs (at the center
of the circles). Critical manipulation: distance of LOs to RO.
The dashed box frames the critical points. RO is patterned for
visualization purposes only. Background depicts rAVSw-comb’s
spatial templates (lighter color coding higher rating) computed
with best fitting parameters for data from Regier and Carlson
(2001, exp. 7).

means and their corresponding confidence intervals are relatively large
and cannot be taken as support for either model. Accordingly, I discuss
the qualitative fit to the data that is depicted in Figure 3.19.
Again, Figure 3.19a shows the model output with the parameters

used in Regier and Carlson (2001, “RC-LS fit”) and Figure 3.19b shows
the model output with the parameters that gave the closest fit to all
data from experiment 6. As is evident from both figures, all models
accommodate the trend in the empirical data. Based on this qualitative
comparison, no model can be disqualified for the four critical points of
experiment 6. Considering all data points for experiment 6, however,
the rAVSprox model still performs worst in terms of GOF and SHO
(Figure 3.18a), which further supports its disqualification.

3.2.6 The Effect of Distance: Regier and Carlson (2001, Exp. 7)

The last experiment in Regier and Carlson (2001) was designed to test
for the effect of distance between the RO and the LO on the acceptability
of spatial prepositions. To this end, Regier and Carlson (2001) used a
wide rectangle as RO and placed LOs at two distances above the RO
(see Figure 3.20). What Regier and Carlson (2001) expected and found
was that the upper row of LOs is more “sensitive to the centeredness of
the trajector [LO] above the landmark [RO]” (Regier & Carlson, 2001,
p. 289) than the lower row of LOs. Indeed, the ratings for the upper
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Table 3.7: Linear model fits relating the empirical data from exp. 7 from Regier
and Carlson (2001) with model-generated data for the same stimuli.
I computed model-generated data with parameter values from the
best fit to Logan and Sadler (1996, exp. 2, above) shown in Table 3.1
– except for lines denoted with “RC-LS fit” where I used parameter
values from the AVS model fit to Logan and Sadler (1996, exp. 2,
above) as reported in Regier and Carlson (2001).

Model R2 adj. R2 y-intercept slope nRMSE
Experiment 7
AVS (RC-LS fit) 0.965 0.963 -0.836 1.068 0.090
AVS (my fit) 0.965 0.963 -0.755 1.076 0.085
rAVSprox 0.955 0.953 -0.807 1.087 0.095
rAVSc-o-m 0.903 0.899 -0.612 0.960 0.145
rAVScomb 0.963 0.961 -0.726 1.071 0.086
rAVSw-comb 0.937 0.934 -0.675 0.984 0.124

row show a greater peak for the central positions, whereas the ratings
for the lower row are almost flat (see empirical data in Figure 3.21).

This pattern of result is also predicted by theAVSmodel. The rAVSprox
model does not predict such a rating pattern: It generates equal rat-
ings for LOs in one row. The rAVSc-o-m model, however, predicts the
opposite than the AVS model and thus also conflicts with the empirical
findings: LOs close to the RO have a higher center-of-mass orientation
than more distant LOs (keeping the horizontal component constant).
Thus, the rAVSc-o-m model predicts more sensitivity to the centered-
ness for the lower row instead of for the upper row. Consequently,
the rAVSc-o-m model-generated data (with best fitting parameters for
Logan & Sadler, 1996) provide the worst correlation to the data from
experiment 7 (though still high; see Table 3.7) – compared to the data
from the other models.

qualitative comparison Figure 3.21 shows the output of the mod-
els for the critical points in experiment 7, separately for each row and
computedwith the parameters of the RC-LS fit (Figures 3.21a and 3.21c)
or the parameters that gave the closest fit to all data from experiment 7
(Figures 3.21b and 3.21d). Note that Regier and Carlson (2001) also
fitted the whole data set from experiment 7 with the AVS model and
provided the model parameters of their fit. On the critical subset, the
parameters of their fit result in a similar nRMSE compared to mine but
a better correlation (R2: 0.89 > 0.73). I generated data with parameters
from both fits in Figures 3.21b and 3.21d with the fit reported by Regier
and Carlson (2001) labeled as AVS-RC.

As discussed, the empirical ratings for the upper row (Figures 3.21a
and 3.21b) peak in the middle, whereas the empirical ratings for the
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(a) Upper row, generated with RC-LS parameters.
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(b) Upper row, generated with best fitting parameters.

4

5

6

7

8

9

2 3 4 5 6 7 8

M
ea
n
ra
tin

g

LO position

emp
AVS

rAVS-prx
rAVS-c-o-m
rAVS-comb

rAVS-w-comb

(c) Lower row, generated with RC-LS parameters.
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(d) Lower row, generated with best fitting parameters.

Figure 3.21: Qualitative comparison for Regier and Carlson (2001, exp. 7): (a, b) upper row of LOs,
(c, d) lower row of LOs. Generated with (a, c) parameter values used by Regier and
Carlson (2001) and (b, d) parameter values of my best fit to all data from exp. 7.

lower row (Figure 3.21c and 3.21d) show aflat profile for the four central
LOs. The rAVSprox model gives the same rating for all LOs with the
same elevation7 and thus cannot accommodate the different empirical
trends in both rows. All other models show a peak for the upper row
(Figure 3.21a and 3.21b). For the lower row, however, both the rAVSc-o-m
model and the rAVScomb model cannot capture the flat rating profile
from the empirical trend (Figure 3.21d). The AVS model generates
data with a flat profile very close to the empirical data. Although the
rAVSw-comb model-generated data do not show a completely flat rating
profile, they closely fit the data.

gof and sho The wrong prediction of the rAVSc-o-m model is re-
flected in its GOF values for all data points (Figure 3.22a). Here, the
GOF value of the rAVSc-o-m model is worse than that of all other models.
For the critical subset, however, all models obtain very goodGOF results

7 The difference between the rows despite equal proximal orientation originates from
the height component.
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(all lower than 0.04, see Figure 3.22b). Looking at the SHO results, the
rAVSc-o-m model gets the worst result for all data points (Figure 3.22a).
Here, the AVS model, the rAVSprox model and the rAVSw-comb model
perform almost similar. The rAVScomb model provides a slightly worse
SHO result. For the critical subset, the AVS model has the best SHO
result but the rAVSw-comb model is only slightly worse (Figure 3.22b).
The other models have worse SHO results.

the same ro: experiment 3 and 7 Since the RO used in exper-
iment 7 was the same that was already used in experiment 3 (wide
rectangle), I have also fitted the models to the combined data from
both experiments. Using the data from both experiments provides a
more complete empirical spatial template – instead of only two rows
of LOs above the RO in each experiment, the combined data set con-
sists of ratings for four rows of LOs above the RO (cf. Figure 3.9 on
page 55 and Figure 3.20). In Figure 3.23, the GOF and SHO results for
the combined data set are plotted. For Figure 3.23a, I have used all LO
placements; for Figure 3.23b, I have only used the critical placements
for each experiment.
The pattern of the results for the combined data set (Figure 3.23a)

are very similar to the pattern for data from experiment 7 only (Fig-
ure 3.22a). Besides overall lower GOF and SHO values, the main differ-
ences in relative model performances are: The rAVSprox model obtains
better results and the rAVScomb model provides worse results. Note,
however, that the performance of the rAVSprox model on previous data
already disqualified it. The worse performance of the rAVScomb model
probably corresponds to its failure to accommodate the qualitative pat-
tern from experiment 7. The results for the critical positions from the
combined data set (Figure 3.23b) are also similar to the results for the
critical data from experiment 7 only (Figure 3.22b). For the combined
data, however, the rAVSw-comb model obtains slightly better results than
the AVS model.

discussion exp. 7 Both qualitative and quantitative simulation re-
sults for experiment 7 disconfirm the rAVSc-o-m and the rAVScomb mod-
els. In particular, the rAVSc-o-m model makes contradicting qualitativeThe rAVSc-o-m and

the rAVScomb models
are disconfirmed.

predictions compared to the empirical findings. The prediction from
the AVS model is in line with the empirical evidence. This prediction
stems from the attentional distribution implemented in the AVS model.
At lower elevations, the attentional beam is smaller and thus not the
whole RO is considered. This leads to a smaller effect of centeredness
compared to higher elevations where the attentional beam is bigger and
thus the RO gets more completely accounted for (cf. Regier & Carlson,
2001, p. 279).
The attentional distribution, however, is not of importance for the

rAVS models when only single-point LOs are used (see page 34). With
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(a) Model performance for all data points from exp. 7.
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(b) Model performance for critical data points from
exp. 7.

Figure 3.22: GOF and SHO results for fitting Regier and Carlson (2001, exp. 7). Error bars depict
95% confidence intervals of SHO median or mean respectively.
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(a) Model performance for all data points from
exps. 3 & 7.
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(b) Model performance for critical data points from
exps. 3 & 7.

Figure 3.23: GOF and SHO results for fitting Regier and Carlson (2001, exps. 3 & 7, same RO).
Error bars depict 95% confidence intervals of SHO median or mean respectively.

such simplified LOs, the rAVS models compute only one vector for each
rating. Since only the deviation but not the length of this single vector
is important, it does not matter with how much attention this single
vector is weighted (if the amount of attention is not zero). Thus, the
attentional distribution does not change the way the rAVS models are
generating their output for single-point LOs.

In fact, this last experiment motivated me to develop the rAVSw-comb
model. This rAVS variation has a mechanism that weights the impor-
tance of the proximal orientation and the center-of-mass orientation
according to the relative distance of the LO to the RO. As can be seen in
the results plot in the previous sections, the rAVSw-comb model obtains
very good results throughout all experiments. In particular, it performs
comparable to the AVS model for experiment 7. As we will see in the
next section, the rAVSw-comb model also works well for the combined
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Figure 3.24: GOF and SHO results for fitting the data from all experiments
from Regier and Carlson (2001). Error bars depict 95% confidence
intervals of SHO median or mean respectively.

data from all experiments. Thus, weighting the importance of center-The success of the
rAVSw-comb model is
based on its relative
distance mechanism.

of-mass orientation and proximal orientation via relative distance as
proposed by the rAVSw-comb model provides an equally well performing
mechanism compared to the attentional distribution of the AVS model.

3.2.7 All Experiments from Regier and Carlson (2001)

In Figure 3.24, the GOF and SHO results for the combined data from all
experiments by Regier and Carlson (2001) are plotted. Table 3.8 shows
themodel parameters of the best fit to this whole data set for eachmodel.
The rAVSc-o-m model clearly obtains the worst results. The rAVScomb
model gets a slightly worse result than the AVS, the rAVSprox and the
rAVSw-comb models. For comparison, I have also computed the results
for the three competitor models of the AVS model from Regier and
Carlson (2001): the BB, PC, and the PC-BB models (see Section 3.1.1).
All these models get worse results than most of the (r)AVS models (see
Figure 3.24).

To compare the results on all data with the experiment-wise results,
I have ranked each model: A model gets the rank 1, if it obtains the best
SHO result, the rank 2 if it obtains the second-best SHO result, and so
on. If two models are not distinguishable in terms of their SHO result,
they get the same rank. For example, the ranks for the results on all
data (Figure 3.24; excluding the PC(-BB) models) would be: rank 1:
AVS, rAVSprox, rAVSw-comb; rank 2: rAVScomb; rank 3: rAVSc-o-m.

Computing the mean rank of each model across all experiment-wise
results gives the following ranking: rAVSw-comb (1.26) > rAVScomb (1.63)
> rAVSc-o-m (1.84) > AVS (1.89) > rAVSprox (2). Although my ad-hoc
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Table 3.8: Model parameter values, nRMSE and correlation of the best fit to
all data from Regier and Carlson (2001). λ values for rAVS models
are presented in parentheses because they do not change the model
outcome (see page 34).

AVS rAVSprox rAVSc-o-m rAVScomb rAVSw-comb

λ 0.189 (2.295) (3.011) (1.948) (1.221)
slope -0.005 -0.003 -0.004 -0.005 -0.004
intercept 0.973 0.946 0.962 0.999 0.943
highgain 0.083 0.076 6.156 0.089 7.497
α – – – – 0.322
nRMSE 0.073 0.077 0.093 0.078 0.078
R2 0.972 0.965 0.951 0.966 0.970

ranking method clearly has some caveats (e.g., the number of data
points is not considered at all), it provides further support for the
rAVSw-comb model. It is interesting to note that despite being ranked as
the worst model, the rAVSprox model still obtains a good fit to the whole
data set (Figure 3.24). This shows that it is important to use multiple
methods to assess model performance.
The experiment-wise model assessments suggest that none of the

rAVS variations (except for the rAVSw-comb model) was able to quali-
tatively accommodate all empirical effects (rAVSprox could not accom-
modate data from exps. 3, 4, 7; rAVSc-o-m & rAVScomb could not ac-
commodate data from exp. 7). This leaves only two models that are
not distinguishable in terms of performance across all data: The AVS
model and the rAVSw-comb model. I contrasted the AVS model and the
rAVSw-comb model further by generating model predictions on novel
stimuli and conducting an empirical studywith these stimuli (see Chap-
ter 4).

3.3 discussion of evaluation of ravs variations

By comparing the performance of the successful rAVSw-comb model
with the performance of the AVS model, I showed that a fundamen-
tal (although implicit) assumption of the AVS model seems not to be
necessary to model spatial language verification: The direction of the Based on the existing

empirical rating data,
neither directionality
of the attentional
shift can be favored
over the other.

attentional shift from the RO to the LO. The rAVS models challenged
this assumption and indeed, the rAVSw-comb model replicates all em-
pirical effects found by Regier and Carlson (2001). Accordingly, the
reported results neither favor an attentional shift from the RO to the
LO – as assumed by the AVS model and its theoretical background
(Logan, 1995; Logan & Sadler, 1996; Logan & Zbrodoff, 1999; Regier &
Carlson, 2001) – nor a shift in the opposite direction – as assumed by
the rAVSw-comb model motivated by theoretical and empirical research
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(e.g., Burigo & Knoeferle, 2015; Chambers et al., 2002; Franconeri et al.,
2012; Roth & Franconeri, 2012). Rather, both directionalities of attention
are equally well supported by the simulation results.
The reported model simulations underline the importance of both

center-of-mass orientation and proximal orientation for the acceptability
of a spatial utterance while they add another factor into the equation:
relative distance. The parameter that controls the relative importance
of either orientation via relative distance in the rAVSw-comb model, α,
was robustly estimated to be around 0.3 when the rAVSw-comb model
was fitted to all data from Regier and Carlson (2001). This means that
the proximal orientation might become irrelevant for LOs placed with a
relative distance greater than 3. For closer LOs, the proximal orientation
gets more important the closer the LO is. In the results of the empirical
study presented in Section 4.2.1, we will see whether the proposed role
of relative distance holds true.



4EMP IR ICALLY ASSESS ING MODEL PRED ICT IONS

In the preceding chapter, I presented several variations of the rAVS
model. All these models are based on the AVS model but reversed
the directionality of the shift of attention: Instead of implementing
a shift of attention from the RO to the LO like the AVS model, the
rAVS models implement an attentional shift from the LO to the RO.
Assessing all models on the rating data from Logan and Sadler (1996),
Hayward and Tarr (1995), and Regier and Carlson (2001) revealed that
one rAVS variation – the rAVSw-comb model – accounts for the existing
empirical data as well as the AVS model (measured via GOF, SHO,
and replications of qualitative patterns). Given that the rAVSw-comb
model and the AVS model implement contrasting directionalities of the
attentional shift, the model simulations on the existing empirical data
do not favor one implemented directionality of attention over the other.

How could one further contrast the two implemented directionalities
in order to decide whether any of the directionalities better describes
human processing? My idea was to empirically test predictions that
the two models (AVS and rAVSw-comb) make. These predictions stem
from the different model mechanisms, which, in turn, are implications
of implementing the directionality of the attentional shift (from the RO
to the LO or vice versa). Hence, empirically testing model predictions
is a test whether any directionality of attention better describes human
data than the other. This chapter reports on the generation of the
model predictions and the empirical study that tested the generated
predictions.

More specifically, based on the different model mechanisms, I have
designed two types of stimuli for which the models predict somewhat
different outcomes. The stimuli test (i) rAVSw-comb’s mechanism of Two test cases

(relative distance &
asymmetrical ROs)
to compare model
predictions implied
by implementing
contrasting
directionalities of the
attentional shift.

relative distance between LO and RO and (ii) the influence of asymmet-
rical ROs. Section 4.1 introduces the two types of stimuli in detail. In
Section 4.2, I present the results of an empirical study asking whether
humans follow the model predictions for these stimuli. If so, the model
making the correct prediction would be supported by the empirical
outcome. Moreover, the two models might perform differently on the
newly collected empirical data, i.e., one model could be favored over

* Parts of thework presented in Chapter 4were published in Kluth, Burigo, andKnoeferle
(2016a, stimuli, PSP), Kluth, Burigo, andKnoeferle (2016b, PSP, empirical study), Kluth,
Burigo, Schultheis, and Knoeferle (2016b, asymmetrical ROs data), Kluth, Burigo,
Schultheis, and Knoeferle (2017, relative distance data), and Kluth, Burigo, Schultheis,
and Knoeferle (2019, PSP, empirical study). This text extends on the already published
details and presents a comprehensive overview of all analyses.
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the other. This is why Chapter 5 presents a thorough analysis of the
model performance on the stimuli and the collected data.

4.1 predictions

4.1.1 Relative Distance

The rAVSw-comb model explicitly uses the relative distance between LO
and RO in its mechanism of weighting the proximal orientation and
the center-of-mass orientation: The closer an LO is to an RO, the more
important the proximal orientation gets. On the other hand, the rating
for a more distant LO is more strongly influenced by the center-of-mass
orientation. In particular, rAVSw-comb’s weighting mechanism is sen-
sitive to relative and not absolute distance, where relative distance is
(roughly) defined as absolute distance divided by the size of the RO
(formulated more precisely in Equation 3.5 on page 37). Accordingly,
the rAVSw-comb model predicts different ratings for two spatial config-
uration where the LOs have the same absolute distance to the RO but
different relative distances. Such configurations can be seen in Figure 4.1.
For both LOs in Figure 4.1a and Figure 4.1b, the absolute distance to
the rectangular RO is equal. However, due to the different sizes of the
ROs, the relative distance of the LO to the RO is smaller in Figure 4.1b
(1.5/3.0 = 0.5) than it is in Figure 4.1a (1.5/1.5 = 1.0). With lower
relative distance, the proximal orientation gets more important. Thus,rAVSw-comb: the

lower the relative
distance, the higher

the rating.

rAVSw-comb’s vector points more towards the proximal point on top of
the RO which leads to a lower angular deviation and in turn to a higher
rating. Accordingly, the rAVSw-comb model computes a higher rating
for the LO with the lower relative distance (Figure 4.1b) compared to
the LO with the larger relative distance (Figure 4.1a).

TheAVSmodel, on the other hand, does not explicitly state an effect of
relative distance. The AVS model has four ways to account for distance
effects: The height component, the λ parameter, the σ variable and the
vector sum. Since the height component is shared with the rAVSw-comb
model, no conflicting predictions emerge from it. The parameter λ
controls the attentional width and is freely adjustable, but once λ is
fixed it is valid for all LOs. Based on a fixed λ, the two attentional
distributions for the two configurations in Figure 4.1 are exactly the
same. The variable σ stands for the absolute distance between the LO
and the focal point and also controls the attentional width: LOs farther
away result in a greater attentional width than LOs close to the RO.
However, because σ only codes absolute distance, it is the same for the
two configurations in Figure 4.1 (namely 1.5). Taken together, because
the attentional distribution that is controlled by λ and σ is the same for
both configurations, neither λ nor σ predict different ratings for the two
configurations in Figure 4.1.
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(c) All simulated LO positions
above “thin” and “thick” ROs.

Figure 4.1: Spatial configurations to test the effect of relative distance of the LO to the RO. ROs are
filled with different patterns for visualization purposes only.

The last possible source of different ratings is the vector sum: Due
to the different number of points in the two ROs, the vector sum in
Figure 4.1a consists of less vectors than the vector sum in Figure 4.1b.
In particular, the same vectors for the RO in Figure 4.1a also exist for
the RO in Figure 4.1b. In Figure 4.1b the number of vectors is twice the
number of vectors for Figure 4.1a (because the RO in Figure 4.1b is twice
the size than the RO in Figure 4.1a). However, the additional vectors
have a lower attentional weight. Due to this difference in the number of
vectors, the final direction vector that is compared to canonical upright
is different for Figure 4.1a than for Figure 4.1b. Thus, the vector sum
predicts different ratings for the two ROs. However, to what extent the
ratings should differ is not immediately clear. If the attentional width is
large, the additional vectors in Figure 4.1b get more attentional weight
and thus might change the final direction vector considerably. If, on
the other hand, the attentional width is small, the final direction vector
changes only marginally. The AVS model accordingly predicts higher
differences in ratings for distant LOs than for close LOs, because LOs
that are far away result in a greater attentional width (due to a greater
σ).
Since the computation of the vector sum is hard to grasp, it is also

difficult to state a clear prediction from the AVS model. Based on It is unclear whether
the AVS model
predicts an effect of
relative distance.

the above reasoning, I would expect a subtle difference in the two
ratings. But is this subtle difference distinguishable from the difference
that the rAVSw-comb model predicts? Are the configurations shown
in Figures 4.1a and 4.1b suitable for contrasting the two models? To
explore this, I have generated ratingswith eachmodel for the three rows
of LOs shown in Figure 4.1c. I have used a fixed set of parameters: The
parameters of the best fit to all data from Regier and Carlson (2001) for
the respectivemodel (see Table 3.8). The ratings are plotted in Figure 4.2.
The AVS model computes the same patterns of rating regardless of the
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(a) rAVSw-comb ratings for LOs above thin and thick rect-
angle (see Figure 4.1.)
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(b) AVS ratings for LOs above thin and thick rectangle
(see Figure 4.1).

Figure 4.2: Qualitative comparison of (a) rAVSw-comb-generated ratings and (b) AVS-generated rat-
ings for LOs above thin and thick rectangle (see Figure 4.1c). For data generation, I have
used model parameters from best fit to all data from Regier and Carlson (2001, Table 3.8).

RO, i.e., regardless of the relative distance of the LO (see Figure 4.2b).1
It seems that only the absolute distance matters for the AVS model –
at least for the model parameters used here. On the other hand and
as expected, the rAVSw-comb model predicts higher ratings for the LOs
above the thick RO compared to LOs above the thin RO, as can be seen
in Figure 4.2a: ratings for same rows are higher for the thick RO than
for the thin RO. Different than the AVS model, the rAVSw-comb model
predicts almost the same ratings for the upper two rows above the same
RO – at least with the parameters used to generate these ratings.

To investigate the whole space of predictions from each model, I have
applied the ‘Parameter Space Partitioning’ method (PSP, Kim, Navarro,
Pitt, &Myung, 2004; Pitt et al., 2006). This method generates qualitative
model predictions for each set of parameters and thus quantifies the
numbers of different model predictions across the whole parameter
space. Before I present the PSP results in Section 4.1.3, I introduce a
second set of stimuli that potentially elicits different model predictions,
too.

4.1.2 Asymmetrical ROs

The second source of model predictions are asymmetrical ROs with a
flat top. While the AVS model in principle is able to reflect arbitrary
RO shapes within its vector sum, the rAVSw-comb model simplifies the
geometry of the RO using two points only: one point on top of the RO
and the center-of-mass of the RO.While the center-of-mass incorporates

1 There are tiny rating differences across different ROs for corresponding LO placements
(i.e., LOs in the same row at the same position). However, these differences are smaller
than 0.01, and thus not visible in the plot.
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Figure 4.3: Spatial configurations to test the effect of asymmetrical ROs. (a, b): “L” RO, (c, d): “C”
RO. (a, c): two critical LO positions, (b, d): all simulated LO positions with critical
LO-pairs connected with a dashed line. × : center-of-mass of RO.

asymmetries of the object, it does so in a more condensed way than
the vector sum. I have developed two asymmetrical ROs with corre-
sponding LO positions, shown in Figures 4.3a and 4.3c, for which the
rAVSw-comb model predicts equal ratings. The symbol × in Figure 4.3
depicts the center-of-mass of each RO. As visualized with dashed lines,
the critical LOs in Figures 4.3a and 4.3c have the same horizontal and
vertical distance from the center-of-mass – that is, both LOs have the
same center-of-mass orientation. Nevertheless, both left LOs are di- The rAVSw-comb

model predicts no
difference in ratings
for LOs above
asymmetrical ROs,
placed with equal
distance to the
center-of-mass.

rectly above the part of the ROs that hasmoremass. In contrast the right
LOs are located above the “cavity” of the ROs. The rAVSw-comb model
cannot represent the asymmetry of the ROs (except that it is already
integrated in the center-of-mass which is shifted to the left compared to
symmetrical ROs). Accordingly, the rAVSw-comb model predicts exactly
the same rating for the two LOs in Figures 4.3a and 4.3c – despite the
asymmetrical distribution of mass directly below the LOs.

The AVS model, on the other hand, seems to predict different ratings
for these LOs. The AVS model represents the whole RO with its vectors.
In particular, the vertical bar of the RO in Figure 4.3a is represented in
detail. This should lead to higher rating for the left LO in Figure 4.3a
compared to the right LO. This is because for the left LO, more vectors
on the vertical bar are closer to canonical upright – compared to the
right LO, where the same vectors on the RO’s vertical bar have a greater
deviation from upright vertical. This effect is the same for the RO in
Figure 4.3c.
Furthermore, the attentional distribution changes for the two LOs.

While the attentional width stays the same for both LOs (σ is equal
across configurations with equal LO-RO distance), the attentional focus
is not the same. So, for the left LO in Figure 4.3a, the vertical bar of the
RO gets more attention and hence should have a greater impact on the
direction of the final vector and thus on the rating. For the computation
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(a) rAVSw-comb ratings for critical LOs above L and C RO
(see Figures 4.3b and 4.3d).
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(b) AVS ratings for critical LOs above L and C RO (see
Figures 4.3b and 4.3d).

Figure 4.4: Qualitative comparison of (a) rAVSw-comb-generated ratings and (b) AVS-generated rat-
ings for critical LOs above L and C RO (see Figures 4.3b and 4.3d). For data generation,
I have used model parameters from best fit to all data from Regier and Carlson (2001,
Table 3.8).

of the rating for the right LO, however, the vertical bar might receive
very little attention (depending on the attentional width) and thus
might play almost no role for the rating.
Again it is hard to come up with a prediction for the AVS model

because of the flexibility of the attentional vector sum. However, it
seems fair to say that the AVS model at least intuitively predicts dif-
ferent ratings for the two LOs in Figure 4.3a and 4.3c (based on the
asymmetrical distribution of mass directly below the LOs). In contrast,
the rAVSw-comb model predicts no differences by definition.
This also emerges in the qualitative comparison of both models on

these two ROs. Figure 4.4 shows the ratings for six critical pairs of LOs
above the ROs (see Figure 4.3b and 4.3d). For the plotted ratings, I
again used the parameters from the best fit to all data from Regier and
Carlson (2001), see Table 3.8. The rAVSw-comb model computes the exact
same rating for LOs in the same row at position 2 and 5 or at position
3 and 4, respectively (see Figure 4.4a). Moreover, all positions in the
upper and the middle row get virtually the same rating – the ROs do
not matter (at least for this parameter setting). This is also true for the
lower row, which gets an overall lower rating compared to the otherThe AVS model

seems to predict
different ratings for

LOs above
asymmetrical ROs,
placed with equal

distance to the
center-of-mass.

two rows, but almost the same ratings compared across ROs. The AVS
model computes a more complicated rating pattern (see Figure 4.4b).
First of all, the ratings in the upper two rows at positions 3 and 4 for
the C-shaped RO are different (but only to a very small amount). Next,
the ratings in the upper two rows for positions 2 and 5 are different for
the L shaped RO (but again it is a tiny difference). The ratings for the
lower row are all equal.
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This comparison has shown that the AVS model is able to compute
distinct ratings with an input for which the rAVSw-comb computes identi-
cal ratings (due to its definition). Whether the ratings computed by the
AVS model stay different for other sets of parameters, however, remains
unclear. It might well be that with a different parameter set the AVS
model predicts no difference at all – or a bigger difference than that of
Figure 4.4b. To properly investigate the full range of model predictions,
I have applied the PSP method for these stimuli, too. The next section
introduces this method and discusses its results on both sets of stimuli
(asymmetrical ROs and differently sized rectangles).

4.1.3 Parameter Space Partitioning

method Kim et al. (2004) and Pitt et al. (2006) introduced a method
called ‘Parameter Space Partitioning’ (PSP). The PSP method discov-
ers all qualitatively different output patterns a model can generate by
evaluating the model outcome throughout its parameter space. How-
ever, due to the size of the parameter space, simulating the model with
all possible parameter sets is a time-consuming process. In fact, it is
often not feasible (depending on models, stimuli, hard-, and software).
This is why Kim et al. (2004) and Pitt et al. (2006) developed the PSP
algorithm as a tool to explore the space of the free model parameters
in a matter of minutes or hours – in contrast to days or weeks that a
naïve complete enumeration of the parameter space would take. Inter-
nally, the PSP algorithm is a Markov Chain Monte Carlo algorithm that
searches through the parameter space of the models. I have constrained
the model parameters for the PSP (i.e., the boundaries of the parameter
space) in the same way as for the parameter estimation used for GOF
and SHO (see Equations 3.15–3.19 on page 42). I have used the MAT-
LAB implementation that Pitt et al. (2006) made available2 with GNU

octave (an open source MATLAB clone, Eaton, Bateman, Hauberg, &
Wehbring, 2015).

input for the psp method To use the PSP algorithm one must first
define what a qualitative pattern looks like. In my case, a qualitative
pattern describes the relationship of mean ratings for at least two differ-
ent spatial configurations. Given two different LO-RO pairs, there are “+”: first > second

“-”: first < second
“0”: first = second

three possible qualitative rating patterns: (i) The first configuration is
rated higher than the second configuration (coded as “+”), (ii) the first
configuration is rated lower than the second configuration (coded as
“-”) or (iii) both configurations get the same rating (coded as “0”). But
when should two mean ratings be considered to be equal? In empirical
rating studies, statistical analyses are used to investigate whether em-

2 http://faculty.psy.ohio-state.edu/myung/personal/psp.html. I slightly changed
the source code due to compatibility issues. The changed source code is available under
Kluth (2018).

http://faculty.psy.ohio-state.edu/myung/personal/psp.html
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pirical ratings for two different configurations are significantly different.
Since the cognitive models only compute mean ratings, we cannot use
such techniques (but see Section 5.7 for a model extension that allows
to generate individual data).
Previous spatial language acceptability rating studies provide valu-

able information regarding the magnitude of difference in mean ratings
necessary for statistically significant effects. Those studies investigated
different aspects of spatial language with varying effect sizes. This is
why I considered the studies’ significant differences only as approx-
imate benchmarks and distilled three different “equality of ratings”
thresholds (te) for the PSP algorithm. All following differences are
differences in mean ratings (but see Liddell & Kruschke, 2018, why it
is problematic to interpret ordinal data as metric). Regier and Carl-
son (2001) found that “a critical difference of [0.17, 0.2, 0.3, 0.7 was
required] for significance” (exps. 1 and 2, p. 282; exp. 4, p. 285; exp. 6,
p. 288). They used a rating scale from 0–9. Carlson-Radvansky et al.
(1999) used a scale from 1–7 and in their experiment a difference of 0.3
was significant. Hörberg (2008, p. 208) also used a rating scale from 1–7
and his experiment required a difference of 0.57 for significance. Burigo
et al. (2016) used a rating scale from 1–9 and found the following differ-
ences to be significant in their second experiment (p. 11): 0.32 and 0.39.
Following these benchmarks, I have used the following three thresholds
te for equality of ratings in the PSP algorithm: te ∈ [0.1, 0.5, 1.0].

In my PSP analysis, I included the following three comparisons (see
Figure 4.5): two LOs above the asymmetrical C (with equal center-
of-mass orientation), two LOs above the asymmetrical L (with equal
center-of-mass orientation), one LO above the thin rectangle versus
one LO above the tall rectangle. Before presenting the PSP results,
let us revisit the “intuitive” model predictions for these stimuli (see
Sections 4.1.1 and 4.1.2). For the asymmetrical ROs, the rAVSw-comb
model clearly predicts no difference for two LOs placed at the same
horizontal and vertical distance from the center-of-mass. Using the
coding explained above, the rAVSw-comb model predicts a “0” for the
first two comparisons. The AVS model, however, seems to predict a
higher rating for the left LOs above the asymmetrical ROs (compared
to the right LOs), i.e., higher ratings for the LOs that have more mass
of the ROs directly below it. Accordingly, the AVS models predicts a “+”
for the first two comparisons.
For the relative distance test case, the rAVSw-comb model predicts

lower ratings for ROs with less height (larger relative distance) com-
pared to ROs with greater height (lower relative distance). That is, for
the last comparison, the rAVSw-comb model predicts a “-”. The predic-
tion of the AVS model for the relative distance case is unclear. Taken
together, the rAVSw-comb model predicts the three-digit pattern “00-”
(no difference for LOs above the asymmetrical ROs and a lower rating
for the LO above the thin rectangle compared to the LO above the tall
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first comparison second comparison third comparison

Figure 4.5: ROs and LOs used as input for the PSP method. First comparison was between
the two LOs above the C RO, second comparison between the two LOs above
the L RO, third comparison between the two LOs above the thin vs. the tall
rectangle.

rectangle), whereas the AVS model predicts the pattern “++?” (higher
rating for LOs above the part of the asymmetrical ROs that has more
mass and an unclear prediction for the relative distance condition).

results The main outcome of one PSP run are estimates of volumes
in the parameter space for each qualitative pattern a model generates. I
ran the PSP algorithm three times for every model and equality thresh-
old te. The mean estimates of relative3 volumes from the three runs
are plotted in Figure 4.6, separately for each threshold te.

Throughout all thresholds te, the rAVSw-comb model only generates 2
out of 27 possible rating patterns: “000” and “00-”. The latter pattern The PSP analysis

confirms the
“intuitive” predictions
for the rAVSw-comb
model.

was “intuitively” predicted beforehand and also occupies the majority
of the parameter space for all equality thresholds. The reason that the
volume of pattern “000” increases with increasing threshold te is the
following: If two mean ratings differ by, say, 0.3 they are considered as
not equal with te = 0.1 but as equal with te = 0.5.
The AVS model generates 3 out of 27 patterns for te = 1.0 (Fig-

ure 4.6c): The same two patterns that the rAVSw-comb model gener-
ates (“000” and “00-”, with different proportions than the rAVSw-comb
model) and the additional pattern “0-0” with a small amount of es-
timated volume. The smaller the threshold te, the more patterns are
generated by the AVS model: For te = 0.1 and te = 0.5 (Figures 4.6a
and 4.6b), the AVS model generates 7 out of 27 possible patterns. For
te = 0.5 (Figure 4.6b), 4 of these patterns together occupy less than 15%
of the parameter space. The rest of the parameter space is occupied by
the same two patterns that the rAVSw-comb model generates (“000” and

3 The estimated parameter space volumes returned by the PSP implementation do not
sum to 100%. I extrapolated the estimated volumes to cover the full parameter space.
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(a) Threshold for equality of ratings te = 0.1.
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(b) Threshold for equality of ratings: te = 0.5.
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(c) Threshold for equality of ratings: te = 1.0.
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(d) Legend for subfigures (a) – (c).

Figure 4.6: PSP results: Estimations of relative volumes in parameter spaces of the models cov-
ered by distinct qualitative patterns for spatial configurations depicted in Figure 4.5.
Subfigure (d) shows legend for all plots (a)–(c). First symbol in pattern: rating
difference for LOs above C RO; second symbol: rating difference for LOs above L
RO; third symbol: rating difference for LOs above thin vs. tall rectangle. Two mean
ratings were considered to be different if they differed by more than (a) te = 0.1
(b) te = 0.5 or (c) te = 1.0. Mean estimates of three PSP runs are plotted.

“00-”). For te = 0.1 (Figure 4.6a), however, these 2 patterns occupy
only approximately 20% of the parameter space, whereas the 2 patterns
“+0-” and “+--” are generated throughout almost 70% of the parame-
ter space. Thus, changing the value of te obviously also changes the
qualitative predictions of the AVS model – despite the fact that all te
are reasonable in terms of previous research. More interestingly, theThe PSP analysis

does not confirm the
“intuitive” predictions

for the AVS model.

“intuitive” prediction stated above (“++?”) does not show up at all in
the PSP results for the AVS model. This suggests that it is difficult to
intuitively reason with the AVS model.
Taken together, the AVS and rAVSw-comb models generate the same

qualitative patterns for the two test cases (asymmetrical ROs, relative
distance). However, while the rAVSw-comb model generates only one
additional, closely related qualitative pattern, the AVS model generates
up to six more distinct qualitative patterns. This makes the AVS model
more flexible than the rAVSw-comb model (for a more thorough discus-
sion of model flexibility see Section 5.4). Although the models share



4.2 empirical study 85

some of their predictions, it is worth to gather empirical data in order to
investigate whether humans follow these predictions. Additionally, on
the newly collected data the two models could still perform differently
in terms of quantitative fits (PSP only computes qualitative patterns).
This could help to distinguish between both models. To this end, the
next section presents an empirical study with the same stimuli as used
in the PSP analysis.

4.2 empirical study

The AVS model and the rAVSw-comb model are not distinguishable on
the existing empirical data (Hayward & Tarr, 1995; Logan & Sadler,
1996; Regier & Carlson, 2001, see Chapter 3). However, the two models
are predicting somewhat different outcomes for particular displays (see
Section 4.1). This is why I conducted an empirical study in order to test
these predictions and to collect data that might help in distinguishing
the two models.4 The main goal of the study was to provide data on
which the AVS and the rAVSw-comb model would perform differently.
Besides specifically testing the model predictions for the relative dis-
tance and the asymmetrical ROs test cases, I also analyzed whether
the experiment replicated known effects from the literature (effect of
superior vs. inferior preposition on rating and reaction time; effect of
grazing line on rating). The remainder of this chapter introduces the
empirical study (materials, procedure, and statistical method: the next
pages) and the analyses of the data (ratings, eye movements, reaction
times: Sections 4.2.1–4.2.3). The following Chapter 5 applies a range of
model evaluation techniques on the data and stimuli from the study
with the goal of distinguishing the AVS model from the rAVSw-comb
model.
I designed the study as a rating study similar to Logan and Sadler

(1996) and Regier and Carlson (2001): First a spatial sentence is shown
(like “The dot is above the object”) and afterwards a spatial configu-
ration is shown for which the sentence acceptability should be rated.
Although this design does not allow to investigate visual attention
during the processing of the unfolding spatial language utterance, eye
tracking provides valuable data about the deployment of visual atten-
tion in spatial language rating tasks. This is why I tracked participants’
eye movements during the inspection of the spatial configuration.

materials In the empirical study, I have used the same spatial con-
figurations as for the PSP analysis and included some additional stimuli.
I added the mC and mL ROs as vertically flipped versions of the C and
L ROs to obtain a left-right balance. Furthermore, I added two more
rectangular ROs to test the influence of relative distance. Figure 4.7
depicts all ROs used in the study and also presents their code names.

4 Michele Burigo was a great help in setting up and conducting the reported experiment.
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C mC L mL

thin rect. thick rect. square tall rect.

Figure 4.7: All ROs and their code names used in the empirical rating study.

For two example ROs, Figure 4.8 shows all LO placements and the
respective row and column coding. I placed 28 LOs above each RO
(rows R1–R5) and 28 LOs below each RO (rows R6–R10). Out of these
2 × 28 LOs, I placed 2 × 4 LOs on or slightly below/above the grazing
line (rows R4–R7). For the 28 LOs above each RO (rows R1–R5), par-
ticipants had to rate the acceptability of the German description “Der
Punkt ist über dem Objekt” (“The dot is above the object”). For the
28 LOs below each RO (rows R6–R10), participants read the sentence
“Der Punkt ist unter dem Objekt” (“The dot is below the object”). I
horizontally flipped the asymmetrical L and mL ROs for the 28 LOs
below these ROs such that the RO was always facing the LO with a flat
surface on the bottom/top (see Figure 4.8).

Participants saw each RO-LO combination exactly once, i.e., only one
RO and only one LO were present at the same time. No additional
information was provided in the spatial configuration displays (no row
or column numbers, no center-of-mass, etc.). I placed each RO such
that its center-of-mass coincided with the center of the screen. The LOs
were then placed accordingly (relative to the borders of the RO). Taken
together, this rating study consisted of 8 ROs× 28 LOs× 2 prepositions
= 448 items. Due to the length of the experiment, no fillers were added.
Participants sat in front of a computer monitor (22 inches, 1680 ×

1050 pixel) with a distance of 80 cm. They had to use a chin rest. During
the display of the spatial configurations, participants’ right eye was
tracked with a desktop mounted eye tracking system (EyeLink 1000, SR
Research). I used the software “Experiment Builder” (version 1.10.125,
SR Research) to program the experiment. All files to recreate the exper-
iment, the raw result files, and source code with analyses are published
under Kluth (2018). This study was approved by the ethics committee
of the University of Bielefeld under the number 2015-126.
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Figure 4.8: LO placements with row and column coding for two example ROs. Rows R1–R5
were presented with über (above), rows R6–R10 were presented with unter (below).

procedure I recruited 34 participants (19 females), aged from 18–34
(mean age: 23.79). Most of the participants were either students at the
University of Bielefeld or the University of Applied Sciences Bielefeld.
They were paid 6 € for participation. The study took approximately
45 minutes. After participants completed a general questionnaire and
made themselves comfortable in front of the computer monitor, they
read an introductory text (see Appendix B). In the text, they were told
that they would see sentence-picture pairs and that they had to rate the
picture according to how well it is described by the preceding sentence.
To do so, they should use the number keys 1–9 above the letters on a
standard keyboard. Here, 1 means “The sentence does not describe the
picture at all” and 9 means “The sentence describes the picture very
well”. The text encouraged participants to use the whole rating range.
After the eye tracker was calibrated, participants rated four practice
trials (with different, non-critical ROs). Thereafter, participants rated all
448 items in pseudo-random order (with the possibility to make breaks
in between). Pseudo-randomization was done with the only constraint
that the same RO should not appear twice in a row. To rate a sentence-
picture pair (see also Figure 4.9), participants read the sentence “Der
Punkt ist über/unter demObjekt” (“The dot is above/below the object”,
only one preposition per sentence) and pressed space after reading
it. Thereafter, one RO and one LO appeared on the screen and were
visible until participants responded with their rating. Reaction time
was measured from the onset of the spatial configuration until the key
press of the rating. Eyes were tracked during the display of the spatial
configuration.
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Der Punkt ist über dem Objekt. participant presses space;

participant presses

next trial

time

eye tracking: ON

eye tracking: OFF
one number between 1 and 9;
RT measuring stops

RT measuring starts

Figure 4.9: Schematic visualization of a single experimental trial. Not to scale.

Method of Data Analysis
I conducted all following data analyses using the Bayesian framework.
I did this because there is growing consensus that the classical ‘NullThe NHST

framework is severely
flawed.

Hypothesis Significance Testing’ (NHST) framework focusing on the
significance of an effect given a corresponding p < 0.05 is severely
flawed (e.g., Dienes, 2011; Gigerenzer, 2004; Kruschke, 2013; Lindley,
1993; Wagenmakers, 2007; Wagenmakers et al., 2018). The proposal to
use confidence intervals instead of p values (so called “new statistics”
by Cumming, 2014) shows that psychologists have become aware of the
problems of p values. Confidence intervals, however, are still operating
within the same NHST framework as p values and accordingly suffer
from similar problems (e.g., Hoekstra, Morey, Rouder, &Wagenmakers,
2014; Kruschke, 2013). Kruschke and Liddell (2018) claim that the goals
of the “new statistics” can better be reached by using Bayesian methods.
Furthermore, NHST can only be used to answer questions like “HowBayesian data

analysis provides
practical and

theoretical benefits
over NHST.

probable are the data given theory T?”. Bayesian data analysis, in
addition, allows to answer questions like “How probable is theory T
given the data?” – presumably, this is what most researchers are more
interested in (Dienes, 2011).
This is why I used the Bayesian framework for my data analyses. It

provides a coherent framework that can be used for hypothesis test-
ing (including eventually accepting the null hypothesis), as well as
parameter estimation (in order to know the size of the effect). More-
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over, I can integrate prior knowledge (from previous research or model
simulations) into the statistical models of the data.5
A very brief introduction to Bayesian data analysis is the following:

First, we identify the nature of our data. Then, we formulate a statistical
model of these data that specifies which probability distribution the
data should follow. Moreover, the statistical model tries to predict the
data as a function of the experimental conditions. Thus, the model
has parameters describing the relationship of predictor variables to
predicted variables (e.g., a positive slope parameter means a rise of the
outcome variable) and provides a likelihood function (how likely are
the data given the model with specific parameter values). Incorporated
in this statistical model is our prior knowledge about the effect via prior
probability distributions over the parameter space. If there is no such
knowledge, the prior probabilities can be specified to be vague.

Using Bayes rule and computing power, we can estimate the posterior
probability distribution for the model parameters which consists of
the most probable values for the parameters given the data. Since
the model and its parameter distributions describe our theory about
the data, the posterior distributions of the parameters give an answer
to the question “How probable is theory T given the data?”. For an
accessible introduction to Bayesian data analysis see the annotated
reading list by Etz, Gronau, Dablander, Edelsbrunner, and Baribault
(2018). The textbook by Kruschke (2015) provides a comprehensive
hands-on tutorial on Bayesian data analysis.
In the Bayesian framework, I used generalized linear multilevel re-

gression models to describe the data, “of which ANOVA, t-tests, linear
and logistic regression, χ2, and hierarchical loglinear models are ex-
amples (with likelihood based inference lying at the heart of all of
these)” (Altmann, 2007, p. 4). Accordingly, all following results can be
interpreted much like results from one of these more traditional NHST
analyses. Since I have designed the study using a repeated measure-
ment design, I included subjects in the group-level of the multilevel
regression models to account for inter-subject variability.

To model acceptability ratings (an ordinal outcome variable, i.e., dis-
crete and ordered), I used an ordinal regression model (e.g., Kruschke,
2015, Chapter 23; Liddell & Kruschke, 2018). This type of regression
assumes a latent metric distribution and predicts the outcome variable
as follows (cf. Figure 5.9c and 5.9d on page 141): On the latent metric
distribution, r − 1 thresholds are estimated (where r is the number

5 However, I could inform my analyses only with rather uncertain prior distributions.
This is because the predicted variable (rating) in my study is an ordinal outcome.
Accordingly, I applied ordinal regression. In contrast, regression coefficients from
the literature are derived from interpreting acceptability ratings as a metric variable
(a suboptimal analysis of ordinal data, Liddell & Kruschke, 2018). These regression
coefficients are not directly compatible with the coefficients of an ordinal regression.
This is why I could only use the qualitative trends from earlier regressions but not the
exact quantitative results.
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of ratings; in my study r = 9) “cutting” the latent distribution into r
intervals. The cumulative probability density in each interval of the
latent distribution is the probability that the corresponding rating is
the outcome. In the statistical models presented here, the latent metric
distribution is the logistic distribution since I used the logit link function
(Kruschke, 2015, p. 435 ff.). For the analysis of the spatial distribution
of fixations, I used (multivariate) Gaussian distributions. To model
reaction times, I used the exponentially modified Gaussian distribution,
a common choice for reaction time analysis (Dawson, 1988; Van Zandt,
2000).
When comparing two different statistical models fitted to the same

data, I applied the leave-one-out cross-validation method (LOO) pro-
posed by Vehtari, Gelman, and Gabry (2017, see also Gelman, Hwang,
& Vehtari, 2014). The LOO method measures how well a statistical
model fits a data set while it considers the effective number of model
parameters to control for over-fitting. Like the SHO method, the LOO
method is a cross-validation approach. However, different from the
SHO method that was primarily designed to assess cognitive models,
the LOO method especially focuses on the evaluation of Bayesian sta-
tistical models – including readily available implementations in the
statistical software R (R Core Team, 2016, package loo, Vehtari, Gelman,
& Gabry, 2016).

As a measure of uncertainty of the statistical model, I report 95%
credible intervals (CI) of regression parameters. In these CIs, 95% of
the mass of the posterior density is located. That is, there is a 95%
probability that the posterior value of the regression parameter lies
in this interval. In the following analyses (contrasting experimental
conditions), I mostly discuss whether the regression parameter ‘slope’
is credibly different from zero (and how large it is). For ordinal re-
gression models (used for the analysis of the rating data), the slope
parameter denotes changes of the latent metric distributionwith respect
to experimental conditions (i.e., the values of the predictor variables). If
the slope is credibly different from zero, there is a high probability that
the empirical ratings from two experimental conditions are credibly
different from each other. The larger the slope, the higher the difference
in ratings. However, although the slope seems to be tied to the rating
scale (1–9), one cannot directly interpret it on the scale of the ratings.
For such interpretations one needs to consider the cumulative proba-
bilities which allow to make statements like “In condition X, ratings
7–9 had a 70% probability whereas in condition Y they only had a 30%
probability”. Where appropriate, I discuss the analyses in this way.

In terms of software, I extracted a trial report (containing acceptability
ratings) and a fixation report (containing fixations) with the software
“Data Viewer” (version 1.11.900, SR Research). With these reports,
I used R (R Core Team, 2016) for all further analyses. Specifically, I
used the R package brms (Bürkner, 2017), a convenient frontend for
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the R package rstan (Stan Development Team, 2016) that is in turn
an interface for Stan. Stan provides computational methods to sample
from posterior parameter distributions. All source code for the analyses
and plots is available from Kluth (2018).

overview of results I present the data and corresponding analyses
in the following order: First, I analyze the human-derived acceptability
ratings, asking whether I could replicate known effects. I move on with Rating analyses:

pages 91–104
Eye-movement
analyses:
pages 104–110
RT analyses:
pages 110–111

detailed analyses of ratings for the two specific test cases that moti-
vated this study: asymmetrical ROs and relative distance. Thereafter, I
present two analyses of the eye-movement data: investigating the role
of AVS’s assumed attentional focus point F and exploring gaze patterns
for processing the asymmetrical ROs. Finally, I analyze the reaction
time data mostly for the sake of completeness.

4.2.1 Results: Acceptability Ratings

This section reports analyses of the acceptability ratings in three parts.
First, I analyzed whether the study replicated known effects. Next, the
asymmetrical ROs test case is analyzed. This is followed by an analysis
of the relative distance test case.

Acceptability Ratings: Replications
To gain further support for the overall validity of the study, I analyzed
whether the collected data replicate effects already established in the
literature. Researchers found that people rate superior prepositions
(like über, above) higher than inferior prepositions (like unter, below; e.g.,
Burigo & Coventry, 2005; Burigo et al., 2016; Carlson & Logan, 2001;
somewhat mirroring the faster response times for superior prepositions
compared to inferior prepositions, see page 110). In order to test this
finding on the data presented here, I computed an ordinal regression
model that predicts rating from preposition. Based on the data from
exps. 2 and 3 from Burigo et al. (2016), I estimated the mean of the
Gaussian prior distribution of the slope regression parameter as µ =

−0.11. Given that Burigo et al. (2016) conducted their study in English
and I conducted my study in German, I set the standard deviation of
the slope’s prior distribution to a relatively large value of σ = 0.2. This
prior distribution favors the effect of lower ratings for unter than for
über while it also puts considerable probability density to a potential
null or reversed effect.
Running the regression model with this prior confirmed the effect:

People credibly gave lower ratings for unter than for über (βunter =

−0.0581, 95%CI [−0.1152,−0.0006]). As already evident from the small Higher ratings for
über than for unter.value of the regression parameter, this is a small effect (see Figure 4.10a):

For über, participants chose the highest rating 9 with 1% more prob-
ability than for unter. Recomputing the same regression model with
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(b) Contrasting LOs on both sides of the grazing line.

Figure 4.10: Empirical rating distributions and fits of Bayesian ordinal regres-
sion models (computed with 100 samples from the posterior dis-
tribution) visualizing the effect of (a) the preposition and (b) the
grazing line. Both Bayesian models were instantiated with prior
information from earlier research.

brms’s default prior (implemented to be non-informative) gives the
same probability for choosing rating 9, although the regression pa-
rameter is estimated slightly differently (βunter = −0.0574, 95% CI
[−0.1162,−0.0002]). If not noted otherwise, I collapsed data from über
and unter trials in all following analyses.
I could also replicate a second finding from the literature: LOs that

are located on the side of the grazing line that corresponds to the to-be-
rated preposition are rated higher than LOs that are located on the non-
corresponding side of the grazing line (Regier & Carlson, 2001, exps. 5
& 6). The grazing line is the imaginary horizontal line that touches the
top points of the RO (for superior prepositions; for inferior prepositions,
the grazing line touches the bottom of the RO). I contrasted two subsets
of the rating data to test for the effect of the grazing line (see Figure 4.8):
Ratings for LOs on the corresponding side of the grazing line (i.e., above
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the grazing line for über, above, rows R1–R3, and below the grazing line
for unter, below, rows R8–R10) against ratings for LOs on the grazing
line or on the non-corresponding side of the grazing line (rows R4–
R7). I specified an ordinal regression model that predicts rating from
this two-level predictor (corresponding vs. non-corresponding side of
grazing line).

To integrate the quantitative findings from Regier and Carlson (2001,
exps. 5 & 6), I set the mean of the Gaussian prior distribution of the
slope parameter to µ = 3.7 (see also Table 3.5 on page 64). I chose a
relatively large standard deviation σ = 3.0 to account for methodolog-
ical differences (Regier & Carlson, 2001, treated their ordinal data as Higher ratings for

LOs on the side of the
grazing line that
corresponds to the
used preposition (vs.
LOs on the
non-corresponding
side).

metric and conducted their experiments in English). The posterior dis-
tribution for this regression model confirms the grazing line effect for
the data presented here: Participants rated LOs on the corresponding
side of the grazing line (rows R1–R3 & rows R8–R10) credibly higher
than LOs on the non-corresponding side of the grazing line (rows R4–
R7; βcorresponding = 3.49, 95% CI [3.34, 3.65]). Figure 4.10b depicts
this effect: For roughly 80% of LOs on the non-corresponding side,
participants picked ratings 1 or 2.

The grazing line effect is also clearly visible in the data visualization
that I created separately for each RO (Figures 4.11, 4.12, 4.14, and 4.15).
In these visualizations, all individual ratings are plotted as color-coded
rhombi on top of each other close to the location of the rated LO. The
brighter the rhombus, the smaller the rating. Ratings for LOs in rows
R4–R7 stand out as being bright (i.e., low) in comparison to all other
LOs.

Acceptability Ratings: Asymmetrical ROs
The analysis of the ratings for LOs around the asymmetrical ROs (see
Figures 4.11 and 4.12 for a visualization) could also be interpreted
as an attempt to replicate the effect of the center-of-mass orientation.
Regier andCarlson (2001, exps. 1–3) provide evidence that the center-of-
mass orientation affects acceptability ratings. However, apart from their
fourth experiment, they only used symmetrical, rectangular ROs. While
their fourth experiment was explicitly designed to contrast the center-
of-mass with the midpoint of an asymmetrical, triangular RO, it tested
only 4 LOs around 2 ROs (8 LOs in total, see Section 3.2.4 for stimuli
and data). My stimuli extend the number of LOs around asymmetrical
ROs to 224 LOs (28 LOs × 4 ROs × 2 prepositions). However, different
than the upright triangle in Regier and Carlson’s experiment 4, my ROs
faced the LOs only with a flat surface (see flipped versions of the L and
mL ROs in Figure 4.12).
To test for the effect of the center-of-mass orientation, I contrasted

ratings for LOs with equal average center-of-mass orientation. To do so,
I created two data subsets (corresponding to the contrast sets in the PSP
analysis): A “mass” subset with ratings for LOs that are located directly
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Figure 4.11: Individual über (above) and unter (below) acceptability ratings
for LOs (not depicted) around the asymmetrical C and mC ROs.
Individual acceptability ratings are color-coded (the darker the
color, the higher the rating) and plotted near the location of the
corresponding LO (to avoid overplotting). LOs (not shown in
the visualization) were black circles with a 10-pixel diameter and
placed at the intersection of the grid lines. LOs in rowsR1–R5were
presented with über (above), LOs in rows R6–R10 were presented
with unter (below). Only one RO and one LO was visible at a time.
For each RO: Dashed line is the bounding box, × is the center-
of-mass, ◦ is the center-of-object. Neither of the centers nor the
bounding box were visible to the participants. Image copyright:
See Appendix E.

above the mass side of the asymmetrical ROs (columns C2 & C3 for
ROs C and L; columns C6 & C7 for ROs mC and mL, see Figures 4.11
and 4.12) and a “cavity” subset with ratings for LOs above the cavity
of the asymmetrical ROs (columns C4 & C5 for all asymmetrical ROs).
Based on center-of-mass orientation only, I would expect no difference
in ratings for these two subsets. This is because, on average, the center-
of-mass orientation is equal for both subsets. In addition, the proximal
orientation is constant for these LOs.

I specified a Bayesian regression model predicting rating from mem-
bership in either subset. I explicated the prior expectation of finding no
effect as the following prior distribution for the slope parameter: a Gaus-
sian distribution centered at µ = 0.0 with a narrow spread of σ = 0.1.
Despite this prior, the regression model reveals credibly lower ratings
for LOs in the “mass” subset compared to LOs in the “cavity” subset
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Figure 4.12: Individual über (above) and unter (below) acceptability ratings
for LOs (not depicted) around the asymmetrical L and mL ROs.
Individual acceptability ratings are color-coded (the darker the
color, the higher the rating) and plotted near the location of the
corresponding LO (to avoid overplotting). LOs (not shown in
the visualization) were black circles with a 10-pixel diameter and
placed at the intersection of the grid lines. LOs in rowsR1–R5were
presented with über (above), LOs in rows R6–R10 were presented
with unter (below). Only one RO and one LO was visible at a time.
For each RO: Dashed line is the bounding box, × is the center-
of-mass, ◦ is the center-of-object. Neither of the centers nor the
bounding box were visible to the participants. Image copyright:
See Appendix E.

(βmass = −0.84, 95% CI [−0.97,−0.71]). I recomputed the same model Higher ratings for
LOs in the “cavity”
subset (compared to
LOs in the “mass”
subset).

with the uninformative default prior provided by the brms package.
This model shows the same qualitative effect. Quantitatively, it even
reveals a greater effect size (βmass = −1.46, 95% CI [−1.63,−1.29]).
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To assess which of the two models better fits the data, I computed
the LOO criterion (Vehtari et al., 2017). The LOO measure favored
the model with the uninformative prior over the model with the infor-
mative prior (lower LOO value for the default-prior-model, 5 631.44,
compared to the null-effect-prior model, 5 680.88). Figure 4.13 plots the
prediction of the model with the default prior alongside the empirical
rating distribution. The plots show that the regression model accounts
well for the data. Moreover, it is visible that participants chose rating
9 more often for LOs in the “cavity” subset than for LOs in the “mass”
subset. In contrast, for LOs in the “mass” subset they picked rating
7 & 8 more often than for LOs in the “cavity” subset.
One possible explanation for this rating pattern is that people do

not base their acceptability judgment on the center-of-mass of the RO
(marked with × in Figures 4.11 and 4.12) but rather use the center-of-
object (depicted as ◦ in Figures 4.11 and 4.12). Here, the center-of-object
is the center of the ‘bounding box’ (BB) of the RO. The BB of an RO is theThe center-of-object

is the center of the
bounding box of the

RO.

smallest rectangle containing all points of the RO. For the rectangular
ROs, the BB coincides with the RO. For the asymmetrical ROs, the
BB also includes the cavities of the objects (see dashed rectangles in
Figures 4.11 and 4.12). More precisely, the center-of-object is defined as

CoO(x,y) =
(
ROx0 +

ROwidth
2

,ROy0 +
ROheight

2

)
(4.1)

Here, ROx0 is the leftmost point of RO’s BB and ROy0 is the point
with the lowest y-coordinate (y-axis increasing from bottom to top). For
rectangular ROs, the center-of-mass and the center-of-object coincide.
Given that LOs in the “cavity” subset are more central with respect to
the center-of-object than LOs in the “mass” subset, the lower ratings
for LOs in the “mass” subset could be explained in terms of higher
center-of-object orientations.
I computed four further Bayesian regression models to test this hy-

pothesis. The first two models predict rating as a function of the RO-
side at which the LO was located. First, I split the LOs in two sub-
sets that were either left (columns C1–C4) or right (C5–C8) from the
center-of-object. On average, the LOs in these subsets have the same
center-of-object orientation. Thus, if participants consider the center-of-
object orientation, then I would expect no credible rating differences
in these subsets. This prediction is confirmed by the statistical model
(βright = 0.05, 95% CI [−0.03, 0.13]).

The second regression model applied another subsetting of the data
to investigate the influence of the asymmetrical mass distribution. To
this end, each LO was classified as either being on the side where
the center-of-mass of the RO was located or on the other side. For
example, the center-of-mass-side-subset for the L RO consists of LOs
in columns C1–C4 whereas the center-of-mass-side-subset for the mL
RO consists of LOs in columns C5–C8 (see Figure 4.12). This model
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Figure 4.13: Empirical rating distributions and fit of Bayesian ordinal regression
model (computed with 100 samples from the posterior distribution)
contrasting ratings for the two subsets “cavity” (columns C4 & C5, all
asymmetrical ROs) and “mass” (columns C2 & C3 for ROs C and L;
columns C6 & C7 for ROs mC and mL). Bayesian regression model was
computed with brms’s default prior. Image copyright: See Appendix E.

reveals a small but credible effect of the asymmetrical mass distribution.
LOs that were located on the same side as the center-of-mass of the
RO received a higher rating compared to LOs on the cavity side of the
RO (βCoMSide = 0.10, 95% CI [0.02, 0.18]). In terms of ratings, this
model estimates a 2% higher probability for ratings 8 and 9 for LOs
on the center-of-mass side compared to LOs on the cavity side. Thus,
the location of the center-of-mass seems to affect acceptability ratings.
However, the effect is smaller than expected if one assumes that people
only consider the center-of-mass orientation.

To directly contrast the center-of-mass and the center-of-object orien-
tation, I specified two Bayesian regression models that predicted rating
as a function of either the center-of-mass orientation or the center-
of-object orientation (in radian notation and centered). Both models
reveal a credible influence of each orientation (βCoM = −4.58, 95%
CI [−4.73,−4.42]; βCoO = −7.24, 95% CI [−7.46,−7.02]). Crucially,
however, the center-of-mass effect is smaller than the center-of-object
effect. Moreover, the center-of-object model fits the data better than the People seem to base

their ratings on the
center-of-object
instead of on the
center-of-mass.

center-of-mass model (as measured via the LOO criterion: 23 235.51
for the center-of-mass model, 21 175.10 for the center-of-object model;
lower LOO is better). In addition, a pairwise model comparison using
the Bayes factor (see e.g., Mulder & Wagenmakers, 2016) favored the
center-of-object model over the center-of-mass model.

In summary, my analyses suggest that the center-of-object orientation
has a greater influence on acceptability ratings than the center-of-mass
orientation. This conflicts with the assumption of the importance of the
center-of-mass orientation in the AVS and the rAVSw-comb model. There-
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fore, I present two model modifications in Section 5.1 that integrate the
center-of-object orientation instead of the center-of-mass orientation in
their computations.

Acceptability Ratings: Relative Distance
So far, I only analyzed one half of the collected rating data. The second
half of the rating data comes from LOs around four rectangular ROs. I
designed these stimuli to test for a potential effect of relative distance
on acceptability judgments. Roughly, relative distance is defined as
absolute distance divided by the dimensions of the RO (see Equation 3.5
on page 37). Thus, keeping the LO position constant but increasing the
height of the RO reduces the relative distance of the LO to the RO. This
is why I used four rectangular ROs with different heights. Figures 4.14
and 4.15 visualize the individual ratings for these stimuli.
To analyze these data, I started with asking whether the acceptabil-

ity ratings differ for the four ROs. To this end, I specified a Bayesian
regression model that predicts rating from RO (thin, thick, square, or
tall rectangle). Since both the AVS and the rAVSw-comb model partly
predicted higher ratings for LOs above taller rectangles compared to
LOs above thinner rectangles (see PSP results, Section 4.1.3), I specified
Gaussian prior distributions with µ = 0.5 for each RO’s regression
parameter. These prior distributions tendentially support the existence
of the predicted effect. However, given that this is the first study testing
for the effect of relative distance, I chose relatively broad prior distri-
butions with σ = 1.5. These distributions also allow for a null or a
reversed effect. Indeed, despite the supporting prior, the regressionRating patterns are

not affected by
rectangle height.

model reveals no credible difference in rating distributions between
the different ROs (see Figure 4.16 for empirical rating distributions and
model fits; βthick = 0.01, 95% CI [−0.11, 0.12]; βsquare = 0.02, 95%
CI [−0.09, 0.14]; βtall = 0.04, 95% CI [−0.08, 0.15]; thin rectangle was
the intercept of the regression model). The same regression model
with brms’s uninformative default prior results in almost the same es-
timates (βthick = 0.00, 95% CI [−0.11, 0.12]; βsquare = 0.02, 95% CI
[−0.10, 0.14]; βtall = 0.04, 95% CI [−0.08, 0.15]).

This finding goes against the qualitative model predictions from both
the AVS and the rAVSw-comb model that LOs above taller rectangles
should receiver higher ratings compared to LOs above thinner rect-
angles. However, both cognitive models also allow the no-difference
case that exists in the empirical data (see PSP results in Figure 4.6 on
page 84). Considering the proposed relative distance mechanism of the
rAVSw-comb model, the empirical data are even more interesting. The
rAVSw-comb model proposes that relative distance affects the way people
weight the influences of the proximal orientation and the center-of-mass
orientation on their acceptability judgment: With low relative distance,
the rAVSw-comb model considers the proximal orientation as more im-
portant than the center-of-mass orientation whereas with high relative
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Figure 4.14: Individual über (above) acceptability ratings for LOs (not depicted)
above the thin, the thick, the square, and the tall rectangle. Indi-
vidual acceptability ratings are color-coded (the darker the color,
the higher the rating) and plotted near the location of the cor-
responding LO (to avoid overplotting). LOs (not shown in the
visualization) were black circles with a 10-pixel diameter and
placed at the intersection of the grid lines. Only one RO and one
LO was visible at a time. Image copyright: See Appendix E.

distance the center-of-mass orientation becomes more important than
the proximal orientation. For the tested stimuli, the proximal orienta-
tion does not change across the different rectangular ROs. However, the
center-of-mass orientation decreases with increasing RO height. This is The height of an RO

seems to interact
with the effect of the
center-of-mass
orientation.

because the center-of-mass of a taller rectangle is located lower than the
center-of-mass of a thinner rectangle (if both rectangles are aligned at
their tops). Thus, according to the known influence of center-of-mass
orientation, one would expect higher ratings for taller rectangles – with-
out considering the factor relative distance at all. Apparently, relative
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Figure 4.15: Individual unter (below) acceptability ratings for LOs (not de-
picted) below the thin, the thick, the square, and the tall rectangle.
Individual acceptability ratings are color-coded (the darker the
color, the higher the rating) and plotted near the location of the
corresponding LO (to avoid overplotting). LOs (not shown in
the visualization) were black circles with a 10-pixel diameter and
placed at the intersection of the grid lines. Only one RO and one
LO was visible at a time. Image copyright: See Appendix E.

distance somehow affects the processing of center-of-mass orientation
as part of generating an acceptability judgment.

Generally speaking, this hypothesis (relative distance affects center-
of-mass and proximal orientation) is in line with the rAVSw-comb model.
With the following analysis, I investigated whether the empirical data
speak to rAVSw-comb’s particular mechanism. To this end, I specified a
Bayesian regression model that uses the predictors relative distance,
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Figure 4.16: Empirical rating distributions and fit of Bayesian ordinal regression
model (computed with 100 samples from the posterior distribution)
contrasting ratings for the four rectangular ROs. Bayesian regression
model was computed with prior distributions supporting higher ratings
for taller rectangles. Image copyright: See Appendix E.

center-of-mass orientation6, and proximal orientation to predict the
outcome rating. I centered all predictors and used radian notation for
the two orientational predictors. For computing the predictor relative
distance for each LO, I applied rAVSw-comb’s definition (see Equation 3.5
on page 37). Furthermore, I allowed full interactions between all pre-
dictors. For comparison, I computed all simpler competitor models
by removing interactions or predictors from the model. As revealed
by the LOO method, the most complex model (presented here) fits
the data best (lowest LOO). In addition, pairwise model comparisons
using Bayes factors (see e.g., Mulder & Wagenmakers, 2016) favored
the most complex model over all simpler models.
Figure 4.17 shows two perspectives on this complex model. Fig-

ure 4.17a plots the estimated effect of proximal orientation on accept-
ability rating and Figure 4.17b plots the effect of center-of-mass orien-
tation on acceptability rating. Note that for ease of visualization the
plots treat the outcome variable as metric which is an incorrect assump-

6 Note that for rectangular ROs the center-of-mass orientation coincides with the center-
of-object orientation.
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tion. This is not how the outcome variable is actually handled by the
ordinal regression model. Also for ease of visualization, I had to keep
two of the three predictors at constant values for the plots. I kept the
predictor relative distance constant at its mean values for LOs around
each rectangle (subplots in Figure 4.17a, colored lines in Figure 4.17b).
In Figure 4.17a, the predictor center-of-mass orientation is constant on
its mean value for LOs around the thin or the tall rectangle (colored
lines). In Figure 4.17b, the predictor proximal orientation is constant
on non-deviating orientation (LOs directly above the RO, left subplot)
and the mean of all deviating proximal orientations (right subplot).
What do these plots tell us about how relative distance influences

the effect of either center-of-mass orientation or proximal orientation
on acceptabiliy rating? Considering the proximal orientation effect
first (Figure 4.17a), the model shows that higher proximal orientation
correlates with lower acceptability ratings (negative slopes in all sub-
plots). This is in line with the known effect of proximal orientation.
Interestingly, however, relative distance modulates this effect: With
smaller relative distance (i.e., for larger rectangles) the strength of theThe lower the relative

distance, the less
pronounced is the
effect of proximal

orientation.

proximal orientation effect shrinks. This is evident from comparing
the steepnesses of the slopes in the four subplots of Figure 4.17a: The
smaller the relative distance, the less steep is the slope. Different val-
ues of center-of-mass orientation also affect the steepness of the slope,
although to a different degree. For high values of center-of-mass orien-
tation (i.e., for thinner rectangles; black lines in Figure 4.17a), the effect
of proximal orientation is slightly less pronounced (i.e., the slope is less
steep) than for low values of center-of-mass orientation (i.e., for taller
rectangles; yellow lines in Figure 4.17a). However, this modulation
should be treated as a small trend, given that the 95% CIs of the black
and yellow lines overlap considerably almost everywhere.

How is the effect of the center-of-mass orientation modulated by dif-
ferent values of relative distance? Figure 4.17b plots the center-of-mass
orientation effect on acceptability rating. For non-deviating proximal
orientation (i.e., for LOs directly above the RO, columns C2–C7, left
subplot in Figure 4.17b), center-of-mass orientation affects acceptabil-
ity ratings as expected: The higher the center-of-mass orientation, the
lower the rating (negative slope). The four different values of relative
distance do not change this observation: the 95% CIs of all colored lines
overlap almost entirely. The right subplot of Figure 4.17b (depicting
the model estimates for higher values of proximal orientation) surpris-
ingly shows a reversed effect: Here, higher center-of-mass orientationRelative distance

modulates a reversed
effect of

center-of-mass
orientation.

correlates with higher ratings (positive slopes). In addition, relative
distance modulates this reversed effect: For high relative distance (for
thinner rectangles, black and yellow lines in Figure 4.17b), the reversed
effect is more pronounced (the slopes are steeper) than for low relative
distance (for taller rectangles, blue and green lines).
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(a) Effect of proximal orientation on acceptability rating with constant values for
predictors relative distance (subplots) and center-of-mass orientation (colored
lines).

(b) Effect of center-of-mass orientation on acceptability rating with constant values for
predictors proximal orientation (subplots) and relative distance (colored lines).

Figure 4.17: Visualization of effects of (a) proximal orientation and (b) center-
of-mass orientation on acceptability rating as estimated by a
Bayesian regression model with these two predictors plus relative
distance. Plots treat outcome variable as metric (for visualization
purposes) which is not how the ordinal regression model deals
with the data. Predictors not on the x-axis were kept constant
on meaningful values: Relative distance is constant on its mean
values for LOs around each of the four ROs, center-of-mass ori-
entation is constant on mean values for LOs around the thin or
tall rectangle, proximal orientation is constant on non-deviating
orientation (columns C2–C7) and the mean value of deviating
proximal orientation (columns C1 & C8). Little black bars on the
x-axis denote actually tested data points. Shaded areas denote
95% CIs. Image copyright: See Appendix E.
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Taken together, my analysis confirms the general proposal from the
rAVSw-comb model that relative distance affects the influence of center-
of-mass orientation and proximal orientation on acceptability ratings.
However, the specific rAVSw-comb mechanism is not confirmed. The
rAVSw-comb model assumes that (i) higher relative distance leads to
a higher influence of the center-of-mass orientation compared to the
proximal orientation and correspondingly that (ii) lower relative dis-
tance leads to a higher influence of proximal orientation compared to
center-of-mass orientation. In contrast, the empirical data suggest that
(i) higher relative distance strengthens a reversed effect of center-of-mass
orientation and that (ii) lower relative distance weakens the effect of
proximal orientation.

4.2.2 Results: Eye Movements

Due to my study design that presented written sentences before the
spatial configurations (in order to stay close to earlier studies, e.g.,
Hayward & Tarr, 1995; Logan & Sadler, 1996; Regier & Carlson, 2001),
I cannot interpret the recorded eye movements in terms of time-locked
linguistic processing of the unfolding spatial utterance. However, the
gaze patterns still reflect deployment of overt visual attention during
spatial relation processing. This is why they are still interesting for my
research question. More specifically, I analyzed the fixation data in order
to answer two main questions: First, do people preferably look at the
attentional focus point as defined by the AVS model (also an important
point in the rAVSw-comb model)? Second, do the gaze patterns reflect
the mass distribution of the asymmetrical ROs – although participants
rated LOs around these ROs as if they had no cavities?

Before I answer these questions, I introduce the data set more closely.
The center-of-mass of every RO was located at the center of the screen.
The spatial prepositionwas approximately in themiddle of the sentence,
which was also close to the center of the screen (see Figure 4.9 on
page 88). Some participants reported that after a few trials they did not
attend to the whole sentence anymore, because they figured out that
the experiment consisted of only two sentences and only the spatial
preposition was relevant for the task. Since I did not use a fixation
cross elsewhere on the screen, it is very likely that many participants
fixated near the center of the screen after they confirmed the sentence,
i.e., when the RO appeared. Indeed, more than 46% of the fixations
that started in the first 150 ms after the ROwas shown were inside a 100
pixel (ca. 2.02 degrees of visual angle) wide square around the center
of the screen (i.e., these fixations had at most 50 pixel, ca. 1.01 degree
of visual angle, distance in either direction to the center of the screen).
Given that the center-of-mass of the RO is a point I am especially

interested in and the planning of a saccade takes approximately 200 ms
(Matin, Shao, & Boff, 1993, cited in Tanenhaus, Spivey Knowlton, Eber-
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hard, & Sedivy, 1995), I only analyzed fixations that started more than
150 ms after the onset of the spatial configuration. Of these 53 718
fixations (mean number of fixations per subject: 1 579.94, standard
deviation: 688.76; mean number of fixations per subject and trial: 3.53,
standard deviation 2.82) roughly half (ca. 46%) landed close to the LO
(no more than 45 pixels in x or y direction) and ca. 21% landed inside
the bounding box of the RO. The bounding box (BB) of an RO is the
smallest rectangle containing all points of the RO. For the rectangular
ROs, the BB coincides with the RO. For the asymmetrical ROs, the BB
also includes the cavities of the objects (see dashed rectangles in Fig-
ures 4.11 and 4.12). Given that the LOs in rows R3–R8 were close to
the RO (15 pixels) and the accuracy of the eye tracker is of the same
magnitude, some fixations in these trials were counted as both: close to
the LO and inside the bounding box of the RO.

Eye Movements: Fixations to Hypothetical Focus Point
Using the fixations inside the BB, I answer the first question whether
people preferably fixate AVS’s attentional focus F. The attentional focus
F in the AVS model is defined to be the point on top of the RO that is
vertically aligned with the LO (for superior prepositions; for inferior
prepositions it is the corresponding point on the bottom of the RO).
If the LO is not in the region directly above the RO, AVS’s focal point
is the closest point on top of the RO (i.e., either the top-right or the
top-left corner of the RO). This point F plays also an important role in
the rAVSw-comb model. However, apart from Carlson et al. (2006), I am
not aware of any eye tracking study that explicitly assessed whether
this point F is actually a point that people preferably fixate.
To investigate this issue, I first plotted all fixations in the BBs of the

ROs as heatmaps in Figures 4.18 and 4.19. Figure 4.18 plots the number
of fixations in absolute coordinates (pixels), Figure 4.19 plots the same
fixations in relative coordinates, i.e., normalized with respect to the
dimensions of the BB of the RO. These heatmaps show that participants
primarily fixated the top of the RO for über (above) and the bottom of
the RO for unter (below). This partly confirms the vertical location of the
assumed point F. However, since I did not include trials that tested über
(above) with LOs that were located below the RO (nor unter, below, trials
with LOs above the RO), it remains unclear whether people fixated
the top/bottom because of the location of the LO or because of the
preposition they had to rate. Future studies should untangle the visual
influence (LO placement) from the linguistic influence (preposition)
by testing clear mismatches of LO placement and preposition.

While the vertical component of point F remains to be tested, there is
evidence that fixations correlate with the horizontal component of point
F. In Figure 4.20, I plotted a heatmap of relative fixation locations in the
BB by the column of the used LO (C1–C8). These heatmaps show that
the horizontal location of the LO affects the horizontal fixation location
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Figure 4.18: Heatmap visualizations depicting the number of fixations inside BBs of ROs, separated
by RO and preposition. Coordinates are in pixels, starting to count from top left of
each RO. Computed with 50× 50 bins.

on the RO: LOs placed above-left of the RO (C1–C3) correlate withThe horizontal
location of the LO

predicts the
horizontal location of
fixations in the BB of

the RO.

more fixations on the left part of the RO while LOs placed above-right
of the RO (C6–C8) correlate with more fixations on the right part of
the RO. Finally, centrally placed LOs (C4 & C5) result in more fixations
on the central part of the RO. This is true for both prepositions.

As a further test of this visual evidence, I specified a Bayesian regres-
sion model that predicted horizontal relative fixation inside the BB (i.e.,
relative x coordinate as plotted in Figure 4.20) from the x-coordinate of
the LO (in pixels). This model shows a credible influence of horizontal
LO location on horizontal fixation location: The more right the LO was
placed, the more right landed the fixation inside the BB (βLOx = 0.241,
95% CI[0.237, 0.245]). To make sure that fixations aimed for the RO
and not the LO, I excluded data from trials with LOs very close to the
RO (rows R3–R8). This regression model with a smaller data subset
provides the same qualitative results with a slightly different regression
coefficient (βLOx = 0.203, 95% CI [0.196, 0.210]). Taken together, the
data support the importance of the point F (as assumed in the AVS
and the rAVSw-comb models) by showing that it is indeed a point that
attracts fixations.
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Figure 4.19: Heatmap visualizations depicting the number of fixations inside BBs of ROs, separated
by RO and preposition. Coordinates are normalized by the dimensions of each BB
such that they are relative to each BB. Computed with 50× 50 bins.

Eye Movements: Asymmetrical ROs
The second question I wanted to answer with the eye movement data
concerns the processing of the asymmetrical ROs. The rating pattern for
the asymmetrical ROs (center-of-object appears to be more important
than center-of-mass) suggests that participants processed the asymmet-
rical ROs as if they were rectangular ROs. I was interested whether the
gaze patterns mirror this finding or whether they potentially reflect the
asymmetrical mass distributions of the ROs.
A first answer to this question is the number of looks to either the

center-of-mass or the center-of-object. The right part of Table 4.1 pro-
vides the number of fixations close to either center (i.e., no more than
25 pixel in x or y direction from a center). Note that for the rectangular
ROs, the center-of-mass and center-of-object coincide. Here, Table 4.1
provides the overall number of fixations to the single center of the RO
in both columns. Considering the looks to the centers, it is evident that
no center served as an attractor for people’s fixations: Out of all 11 335
fixations that landed inside the BBs (see first column of Table 4.1 for
RO-wise counts), only 315 fixations (ca. 2.8%) landed close to a center
(rectangular ROs: 115 fixations, ca. 2.2%; asymmetrical ROs: 200 fixa-
tions, ca. 3.2%). Interestingly, though, is the fact that the centers of the
asymmetrical ROs attracted more fixations than most of the centers of
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Figure 4.20: Heatmap visualizations depicting the number of fixations inside BBs of ROs, sepa-
rated by the column of the LO and preposition. Coordinates are normalized by the
dimensions of each BB such that they are relative to each BB. Computed with 50× 50

bins. Image copyright: See Appendix E.

the rectangular ROs. Another interesting trend is that taller rectangles
have more total fixations than thinner rectangles.7

In terms of asymmetrical gaze patterns, the counts in Table 4.1 suggest
that participants fixated the center-of-mass more than the center-of-
object for the L and mL RO, while they slightly preferred the center-
of-object for the C and mC ROs. However, at least for the L and mL
ROs, this conclusion is flawed because their centers are not on the same
vertical level (see Figure 4.12): The center-of-mass is shifted in the
direction of the top or bottom of the RO. Given that earlier analyses
suggested that participants preferred to fixate the top/bottom of the
RO, a higher number of fixations on the closer center-of-mass compared

7 To test a potential linking hypothesis that maps number of fixations to processing
difficulty (as measured via reaction time), I specified a Bayesian regression model
that predicts reaction time from RO (for more RT analyses, see page 110). Partly
supporting my hypothesis, this model reveals credibly longer reaction times for the tall
rectangle and the C and mC ROs (compared to the thin rectangle; βtall = 37.14, 95%
CI [11.98, 62.64]; βC = 25.76, 95% CI [0.66, 51.13]; βmC = 38.76, 95% CI [13.63, 64.46]).
Crucially, these ROs also received considerably more fixations than the thin rectangle
(Table 4.1). The comparison of the other ROs to the thin rectangle reveals no credible
difference in RT (βthick = −8.85, 95% CI [−33.99, 16.85]; βsquare = 1.02, 95% CI
[−24.40, 26.75]; βL = 17.52, 95% CI [−8.36, 43.29]; βmL = 20.88, 95% CI [−4.14, 46.32]).
Accordingly, the higher number of fixations close to the centers of the asymmetrical
ROs could be caused by a higher processing load.
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Table 4.1: Absolute and relative number of fixations (a) inside the bounding boxes of the
ROs (leftmost column), (b) split by left or right landing positions (left part
of table), and (b) close to the center-of-mass or center-of-object of the RO (no
more than 25 pixel in x or y direction, right part of table). * = For rectangular
ROs, center-of-mass and center-of-object coincide. For these ROs, the numbers
are the total number of fixations to their center.

total left right center-of-mass center-of-object
thin 979 508 51.9% 471 48.1% 63 * 63 *
thick 1197 618 51.7% 577 48.3% 25 * 25 *
square 1404 699 49.8% 705 50.2% 14 * 14 *
tall 1562 785 50.3% 777 49.7% 13 * 13 *
C 1690 810 48.0% 879 52.0% 15 34.1% 29 65.9%
mC 1665 814 48.9% 851 51.1% 27 47.4% 30 52.6%
L 1455 876 60.2% 579 39.8% 53 86.9% 8 13.1%
mL 1383 573 41.4 % 810 58.6% 34 89.5% 4 10.5%

to the more distant center-of-object comes as no surprise. To overcome
this problem and to draw on a larger data set, I analyzed whether
participants overall preferred to inspect the left versus the right side
of the BB of each RO. A fixation landed on the left part of a BB, if its
relative x coordinate was smaller than 0.5. Correspondingly, a fixation
on the right part of a BB had a relative x coordinate greater than 0.5. I
removed fixations where the relative x coordinate equals 0.5 (only 3
fixations). On the left part of Table 4.1, the number of fixations on each
side of the BBs of the ROs are given. Here, the rectangular ROs serve as
a baseline: For these symmetrical ROs, an asymmetrical gaze pattern
would suggest that participants had a general left-right bias in looking
behavior. This did not seem to be the case.
Considering the left-right bias for the asymmetrical ROs suggests

a bias in the direction of where the mass is located for the L and mL
ROs (more fixations on the side where the vertical leg of the L-shaped
ROs is located) – but not for C and mC ROs which were inspected as if
they were rectangular ROs. I specified a Bayesian regression model to
test this observation. This model predicts the relative x coordinate of
fixations (inside the BB) as a function of the RO. The fixations to the thin
rectangle served as the intercept of the model, i.e., the model compared
the fixations to each RO with the fixations to the thin rectangle. The
outcome of the model supports my interpretation:
For the thin rectangle (the model’s intercept), the predicted aver-

age relative x coordinate of fixation is not credibly different from 0.5
(βthin = 0.49, 95% CI [0.47, 0.51]). Compared to the thin rectangle, the
regressionmodel estimates no credible differences in average horizontal
fixation locations for any of the other rectangles (βthick = −0.01, 95%
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CI [−0.04, 0.01], βsquare = 0.01, 95% CI [−0.02, 0.03], βtall = 0.00, 95%
CI [−0.02, 0.03]). This indicates no general left-right bias in participants’
looking behaviors. More interestingly and despite the asymmetrical
distribution of mass, the regression model does neither estimate a cred-The gaze pattern for

the C-shaped ROs
cannot be

distinguished from
the gaze pattern for

the rectangular ROs.
The gaze pattern for
the L-shaped ROs

reflects their
asymmetrical mass

distribution.

ible difference in horizontal fixation locations for the C and mC ROs
(βC = 0.01, 95% CI [−0.01, 0.04], βmC = 0.01, 95% CI [−0.01, 0.03]).
This means that participants fixated the C and mC ROs as if they were
rectangular. On the other hand, the model indicates that people in-
spected the L and mL ROs differently compared to the C and mC ROs.
For these ROs, credibly more fixations landed on the side on which the
vertical leg of the RO was located (left for L, right for mL, βL = −0.05,
95% CI [−0.07,−0.02], βmL = 0.06, 95% CI [0.03, 0.08]).
In summary, for the L and mL ROs, the center-of-mass side was

preferably fixated (compared to the cavity side) – contrasting the rating
pattern for which I could not find an influence of the asymmetrical mass
distribution. For the C and mC objects, a preference for the center-of-
object is reflected in the gaze patterns (mirroring the rating patterns):
Despite the asymmetry, participants fixated the C and mC ROs as if
they were rectangular.

4.2.3 Results: Reaction Times

Reaction times are more a side product than the main outcome of the
study. I neither told participants that they had to be as quick as possible
nor did I tell them that their reaction time was measured. Nevertheless,
the collected reaction times are interesting as an additional measure
of task difficulty. Furthermore, I replicated the established finding
(e.g., Carlson & Logan, 2001, note 1) that superior prepositions (like
über, above) are processed faster than inferior prepositions (like unter,
below) and generalized it to German prepositions. To do so, I specified
a regression model predicting reaction time from used preposition
(über, above vs. unter, below). This model showed a small but credibleParticipants were

faster to judge über
than unter.

influence of preposition: If über (above) was used, participants were
quicker (meanüber = 1857.73 ms) compared to unter (below, meanunter
= 1873.34 ms; βunter = 17.40, 95% CI [4.76, 29.61]). This replication
supports the overall validity of the study.

In the next two analyses, I was interested in whether the placements
of the LOs in rows and columns affected the reaction time. In particular,Participants took

longer to judge LOs
on the

non-corresponding
side of the grazing
line (compared to

LOs on the
corresponding side).

participantsmight have taken longer for the LOs in rows R4–R7 (located
on the non-corresponding side of the grazing line or on the grazing line)
or for the LOs in columns C1 & C8 (not directly located above the RO,
i.e., with deviating proximal orientation). The regression model that
predicts reaction time from row number confirms the first hypothesis.
Compared to row R1 (meanR1 = 1821.72 ms), reaction times were
credibly longer for rows R4–R7 (meanR4 = 2360.34 ms,βR4 = 192.28,
95% CI [149.25, 234.71]; meanR5 = 2100.58 ms,βR5 = 57.42, 95% CI
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[16.65, 98.44]; meanR6 = 1953.16 ms,βR6 = 48.55, 95% CI [6.65, 89.32];
meanR7 = 2325.54 ms,βR7 = 158.88, 95% CI [115.89, 200.74]). No other
row had credibly different reaction times, except for row R2 for which
people were slightly faster (meanR2 = 1800.72 ms,βR2 = −24.59, 95%
CI [−48.91,−0.06]).
The second hypothesis that LOs in columns C1 & C8 might take

longer to process was confirmed by a regression model that predicts
reaction time from column. Compared to the first column C1 (meanC1

= 2260.64 ms), participants took about the same time for LOs in col-
umn C8 (meanC8 = 2228.42 ms, βC8 = −4.09, 95% CI [−26.52, 18.21])
but were credibly faster for columns C2–C7 (meanC2 = 1762.72 ms,
βC2 = −220.85, 95% CI [−247.56,−194.37]; meanC3 = 1646.78 ms,
βC3 = −242.25, 95% CI [−269.58,−215.79]; meanC4 = 1559.70 ms,
βC4 = −283.33, 95% CI [−309.96,−257.15]; meanC5 = 1547.57 ms,
βC5 = −286.06, 95% CI [−313.23,−259.60]; meanC6 = 1653.74 ms,
βC6 = −261.47, 95% CI [−288.38,−234.76]; meanC7 = 1759.41 ms,
βC7 = −202.07, 95% CI [−228.11,−175.59]).

Taken together, participants were quicker for LOs with non-deviating
proximal orientation (columns C2–C7) on the side of the grazing line
that corresponds to the to-be-rated preposition (rows R1–R3 & rows R8–
R10) compared to LOs with deviating proximal orientation (columns
C1 & C8) or LOs on the non-corresponding side of the grazing line or
on the grazing line (rows R4–R7).

4.2.4 Discussion of the Empirical Study

In summary, the presented empirical study replicated known effects on
spatial language understanding (different performance for über, above,
vs. unter, below; grazing line effect; proximal orientation and center-of-
mass orientation effects). More precisely, the study generalized these
effects from English to German. These replications/generalizations
provide evidence for a successfully conducted study that seamlessly
integrates with earlier research (e.g., Hayward & Tarr, 1995; Logan,
1995; Regier & Carlson, 2001).

In addition, the study revealed two new empirical effects of the ge-
ometry of the RO on spatial language acceptability ratings. The first
effect is the seemingly greater influence of the center-of-object orien-
tation compared to the center-of-mass orientation – as observed with
the asymmetrical ROs. In the next chapter, I present modifications to
the AVS and the rAVSw-comb models that integrate this finding. We will
see that these models perform better on the empirical data. The second Two novel effects of

geometry on
acceptability ratings:
center-ob-object
orientation and
relative distance.

effect is that relative distance modulates the two effects of proximal
orientation and center-of-mass orientation. The empirical data from
the rectangular ROs suggest that lower relative distance weakens (i)
the effect of proximal orientation and (ii) – for high values of proximal
orientation – weakens a reversed effect of center-of-mass orientation.
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Although this confirms the general prediction by the rAVSw-comb model
(that relative distance should modulate the effects of proximal and
center-of-mass orientation), the observed mechanism is different from
the specific mechanism proposed in the rAVSw-comb model. Neverthe-
less this constitutes an interesting, novel finding.
In terms of eye movements as a measure of attentional deployment

during spatial relation processing, the data provide evidence support-
ing the location of AVS’s attentional focus point F (also playing an
important role in the rAVSw-comb model): The horizontal component
of participants’ fixations was close to the horizontal component of the
hypothesized focus point F. Although the hypothesized vertical com-
ponent also matched the empirical vertical fixation locations, it remains
unclearwhether the preposition or the LO location triggered the fixation
locations.

The eye-gaze patterns on the asymmetrical ROs revealed interesting
insights into the perceptual processing of these ROs. In line with being
rated almost as if they were rectangles, participants’ fixations did not
reflect the asymmetrical mass distribution of the C-shaped ROs. How-
ever, for the L-shaped ROs, the eye movements somewhat reflected
the asymmetry with more fixations to areas that contained more RO
mass. These results contribute to findings in saccadic and perceptual
localization of abstract geometric shapes (e.g., Desanghere & Marotta,
2015; Melcher & Kowler, 1999; Nuthmann & Henderson, 2010; Vish-
wanath & Kowler, 2003). In these studies, researchers found that the
center-of-mass of asymmetrical objects seems to be a preferred saccadic
end point. This is consistent with the gaze pattern for the L-shaped
ROs. On the other hand, the eye movements for the less-open C-shaped
ROs highlight the importance of the task on eye movements in general.
Here, the discussion in Vishwanath and Kowler (2003) is particularly
interesting. They speculate that reference frames and spatial pooling
processes similar to the weighted vector sum in AVS-like models might
be important for “programming” the saccadic end point with respect
to the task (see also the discussion in Melcher & Kowler, 1999).

Implications for the Directionality of the Attentional Shift
How do the empirical results help to reach the over-arching goal of my
work? That is, do the data support an attentional shift from the RO
to the LO as assumed by the AVS model or do they support an shift
from the LO to the RO as implemented in the rAVSw-comb model? In
terms of qualitative predictions, the findings from the asymmetrical
ROs disconfirm both models. Instead of relying on the center-of-mass
orientation (as implemented in both models), people seem to rely on
the center-of-object orientation. I address this issue by modifying both
models in the next chapter.
Considering the relative distance test case, generally speaking, the

data support rAVSw-comb’s a priori assumption that relative distance
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modulates both the proximal orientation effect and the center-of-mass
orientation effect. However, the specific mechanism implemented in
the rAVSw-comb model is disconfirmed. This mechanism was inspired
by the mechanism of the AVS model to accommodate the results from
experiment 7 from Regier and Carlson (2001, see Section 3.2.6). The
AVS model makes use of its attentional distribution to account for dis-
tance effects: Close LOs result in narrow attentional distributions and
therefore, the proximal orientation is approximated. On the other hand,
distant LOs evoke a broad attentional distribution that in turn approx-
imates the center-of-mass orientation. Even though the AVS model
does not explicitly mention relative distance, this mechanism fails to
qualitatively accommodate the complex relationship of the predictors
relative distance, center-of-mass orientation, and proximal orientation
as observable in the empirical data.

Taken together, this brief qualitative analysis does not seem to prefer
any of the two contrasting implementations of the directionality of the
attentional shift – i.e., either the AVS or the rAVSw-comb model – over the
other. In order to quantitatively assess the two models in more detail,
I conducted several model simulations using the collected data and
the stimuli from the study presented in this chapter. The next chapter
presents these simulations with the aim to distinguish the two models
in terms of their ability to accommodate the empirical results.





5MODEL S IMULAT IONS

The main goal of this chapter is to provide computational evidence for
or against one of the two contrasting implementations of the direction
of the attentional shift during spatial language verification (from RO
to LO, AVS, or from LO to RO, rAVSw-comb). To this end, this chapter
reports the outcomes of several model comparison techniques applied
to the cognitive models using the data and stimuli from the study pre-
sented in Chapter 4. Furthermore, this chapter introduces and assesses
of two further model modifications that implement the surprising find-
ing of seemingly greater importance of center-of-object orientation than
center-of-mass orientation (see Section 4.2.1). In order to later on com-
pare these two new center-of-object models to their center-of-mass
predecessors, the chapter starts in Section 5.1 with introducing the two
new modifications: the AVS bounding box (AVS-BB) model and the
rAVS center-of-object (rAVS-CoO) model.

Subsequently, Sections 5.2–5.5 present the methodology and results
of four different model assessment techniques (GOF/SHO, PSP, MFA, Section 5.2:

GOF/SHO
Section 5.3: PSP
Section 5.4: MFA
Section 5.5:
landscaping

landscaping). In Section 5.2, I tested whether the models quantita-
tively account for the empirical data presented in Chapter 4. To do so, I
computed goodness-of-fit (GOF) and simple hold-out (SHO) values
(cf. evaluation of rAVS variations in Chapter 3). Following these “lo-
cal” model analyses, the subsequent sections present the results from
“global” model analyses (taxonomy from Pitt et al., 2006).

A “local” model analysis assesses model performance given an em-
pirical data set. In contrast, a “global” model analysis considers the
full range of model parameters – not considering empirical data. In
Section 4.1.3, I already presented a “global” model analysis: the PSP
method for the AVS and the rAVSw-comb models. Remember that this
method takes stimuli as input and computes all possible model pre-
dictions. Such information is valuable as it provides details on how
to falsify a model (e.g., because the model predicted a specific data
pattern but later collected empirical data show a pattern that conflicts
with the model prediction). Section 5.3 presents another PSP analysis
for the two new model modifications introduced in Section 5.1.

The PSP method provides a qualitative measure of model flexibility:
A more flexible model is able to compute more distinct patterns than a

* Parts of the work presented in Chapter 5 were published in Kluth, Burigo, Schultheis,
and Knoeferle (2016a, landscaping, MFA), Kluth, Burigo, Schultheis, and Knoeferle
(2016b, center-of-object models, GOF and SHO for asymmetrical ROs data), Kluth
et al. (2019, center-of-object models, GOF, SHO, MFA, landscaping), and Kluth and
Schultheis (2018, rating distributions, Bayesian inference). This text extends on the
already published details and presents a comprehensive overview of all analyses.
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less flexible model. The ‘Model Flexibility Analysis‘ (MFA, Veksler et
al., 2015) is another “global” model analysis that provides a quantitative
measure of model flexibility – how diverse model outcomes can be –
given a set of stimuli. Section 5.4 presents an MFA based on the stimuli
from the empirical study discussed in Chapter 4.
Finally, I conducted ‘landscaping‘ (Navarro, Myung, Pitt, & Kim,

2003; Navarro et al., 2004) as another “global” model analysis. Land-
scaping asks whether a set of stimuli is informative enough to dis-
tinguish two models – i.e., whether the models in principle generate
distinguishable data for the stimuli – by contrasting their fits to self-
and other-model-generated data. In Section 5.5, the landscaping com-
parisons of several model-stimuli pairs are presented – in particular
comparing the implementations of the two contrasting directionalities
of the attentional shift.
After summarizing and discussing all model simulations in Sec-

tion 5.6, the chapter closes with proposing a model extension in Sec-
tion 5.7. This extension enables models to simulate full rating dis-
tributions instead of mean ratings and might prove useful for future
research.

5.1 implementing the preference for the center-of-object

This section introducesmodifications to theAVS and rAVSw-comb models
that implement the finding that people seem to prefer the center-of-
object orientation over the center-of-mass orientation for spatial lan-
guage verification (see Section 4.2.1). Note that the empirical study
disconfirmed the specific details of the relative distance mechanism
implemented in the rAVSw-comb model as well. The AVS model also
cannot accommodate for the qualitative interactions in the empirical
data. However, relative distance affects the predictors center-of-mass
orientation and proximal orientation which are both central to the AVS
and the rAVSw-comb model. Accordingly, core-parts of themodels would
need to be considerably changed in order to accommodate the relative
distance effect. I did not pursue this path but hope that future modeling
research will accommodate the effect of relative distance. For now, let
us focus on implementing the center-of-object orientation.

5.1.1 The AVS-BB Model

The AVS model computes the center-of-mass orientation with its maxi-
mal attentional width, i.e., when all points on the RO receive the same
amount of attention (see Appendix A in Regier & Carlson, 2001). I
propose the followingmodification to the AVSmodel: the AVS-BB (AVS
bounding box) model.1 Instead of just considering all points of the
RO, the AVS-BB model computes its vector sum using all points of the

1 I thank Holger Schultheis for the first idea of the AVS-BB model.
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bounding box (BB) of the RO. The BB of an RO is the smallest rectangle
containing all points of the RO. For the rectangular ROs, the BB coin-
cides with the RO. For the asymmetrical ROs, the BB also includes the
cavities of the objects (see dashed rectangles in Figures 4.11 and 4.12,
pages 94 and 95). With a uniform attentional distribution, the AVS-
BB model computes the center-of-object orientation. Apart from that
change, the AVS-BB model stays exactly the same as the AVS model.
This specification of the AVS-BB model might be problematic given

available evidence from asymmetrical ROs with non-flat tops/bottoms
facing the LO. This is because the AVS-BB model treats any asymmetric
RO exactly as if it was rectangular (because the computation is based
on the rectangular BB). However, this might not hold true for human
processing. For instance, using an upright L-shaped asymmetrical
RO for which the top that faces the LO is not flat (see Figure 3.16a
on page 63), Regier and Carlson (2001, exp. 5) collected above rating
data suggesting that people process asymmetrical ROs differently than
rectangular ROs (however, the focus of the fifth experiment of Regier
& Carlson, 2001, was to investigate the effect of the grazing line and not
asymmetrical ROs).
It is very likely that the location of the cavity in asymmetrical ROs

(i.e., whether the RO faces the LO with a flat top/bottom or not) influ-
ences spatial language evaluation in non-trivial ways. One could think
of introducing another free model parameter that additionally weights
the importance of vectors depending on their location inside the BB
(inside or outside the RO). During the development of the predictions,
however, the vector sum already showed its considerable flexibility
which was confirmed by the PSP analysis. Accordingly, I will not intro-
duce another free parameter here and leave the contrasting of different
types of asymmetrical ROs for future work.

5.1.2 The rAVS-CoO Model

The rAVSw-comb model explicitly refers to the center-of-mass C in its
computation (see Equation 3.6 on page 38). The implementation of a
preference for the center-of-object orientation is straightforward: In-
stead of considering the center-of-mass C, the modified model uses
the center-of-object CoO (as defined in Equation 4.1 on page 96) for its
computation. I label this model the rAVS-CoO (rAVS center-of-object)
model.
I note that the rAVS-CoO model has the same issue as the AVS-BB

model with asymmetrical ROs where the top/bottom facing the LO is
not flat (e.g., the upright L-shaped RO from Regier & Carlson, 2001,
exp. 5). Similar to the AVS-BB model, this is because the rAVS-CoO
model treats any asymmetrical RO as being rectangular. This might
be a problematic assumption. However, for the current purpose, both
the AVS-BB and the rAVS-CoO model are well suited because the data
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in this project was collected with asymmetrical ROs for which the LO-
facing top/bottom was flat. These rating data suggest that for such
stimuli people seem to ignore the cavity of the RO. Future research
should investigate the influence of flat vs. non-flat tops/bottoms of ROs
facing the LO more closely.

5.2 fitting models to data: gof and sho

As a first test of model performance, I computed how well the models
accommodate the collected empirical results. To this end, I computed
the GOF and SHO values for the AVS model and the rAVSw-comb model.
In addition, I also computed these values for the two newly proposed
models (AVS-BB and rAVS-CoO). I applied the same method as before
(see Section 3.2.1), except for a small change in the lower bounds of the
parameters λ and α:

0.001 6 λ 6 5 (5.1)
0.001 6 α 6 5 (5.2)

Figure 5.1 presents the GOF and SHO values for different subsets of
the empirical data. For Figure 5.1a, I fitted the models to the whole data
set fromChapter 4. I used only half of this data set for Figures 5.1b (only
ratings for LOs around rectangular ROs) and 5.1c (only ratings for LOs
around the asymmetrical ROs). This subsetting provides the opportu-
nity to separately assess the models on data from the two different test
cases: relative distance and asymmetrical ROs. As a further test of the
newmodifications, I fitted the AVS-BB and the rAVS-CoOmodels to the
whole data set from Regier and Carlson (2001). Figure 5.1d plots these
fits alongside the already known fits of the AVS and the rAVSw-comb
model.
The performance of the two new model modifications on the data

from Regier and Carlson (2001) establish their overall validity. Despite
their known issue to qualitatively accommodate the data from Regier
and Carlson (2001, exp. 5), the two newmodels perform virtually equiv-
alent compared to the AVS and the rAVSw-comb model. Considering
only data from the asymmetrical ROs (Figure 5.1c), however, the two
new models clearly outperform their predecessors – both in GOF and
in SHO. This is further evidence supporting the hypothesis that people
rely more on the center-of-object orientation than on the center-of-mass
orientation. Importantly, the rAVS-CoO model cannot be distinguished
in terms of SHO values from the AVS-BB model for the data subset
from the asymmetrical ROs.
For data from the rectangular ROs (relative distance test case, Fig-

ure 5.1b), the AVS model fits the data considerably better than the
rAVSw-comb model (GOF and SHO). Because center-of-mass and center-
of-object coincide for these ROs, the AVS-BB model acts exactly like the
AVS model and the rAVS-CoO model acts exactly like the rAVSw-comb
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(a) GOF and SHO results for thewhole data set from
Chapter 4.
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(b) GOF and SHO results for data from the rectan-
gular ROs only. For these ROs, the rAVS-CoO
model behaves like the rAVSw-comb model and
the AVS-BB model behaves like the AVS model.
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(c) GOF and SHO results for data from the asym-
metrical ROs only.
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(d) GOF and SHO results for the whole data set
from Regier and Carlson (2001)

Figure 5.1: Goodness-of-fit (GOF) and simple hold-out (SHO) results for (a)–(c) the data
from the study presented in Chapter 4 (collapsing across über, above, and unter,
below) and (d) data from Regier and Carlson (2001). Error bars show boot-
strapped 95% confidence intervals of the SHO medians. Image copyright: See
Appendix E.

model. The better performance of the AVS model comes as no surprise
considering that the specific relative distance mechanism as imple-
mented in the rAVSw-comb model was not confirmed by the empirical
data (see Section 4.2.1). However, note that despite this quantitatively
better fit, the AVS model does not qualitatively spell out how the pre-
dictors center-of-mass orientation, proximal orientation, and relative
distance should interact with each other. Rather, the mechanism of
the AVS model suggests a similar interaction compared with the dis-
confirmed mechanism in the rAVSw-comb model: a close LO leads to a
smaller attentional width which in turn favors the proximal orientation
over the center-of-mass orientation.
The disconfirmation of the relative distance mechanism from the

rAVSw-comb model is also likely the reason for its worse performance
(compared to the AVS model) for the whole data set (Figure 5.1a). The
rAVS-CoO model inherits the relative distance mechanism from the
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rAVSw-comb model, explaining why it is also performing considerably
worse than the AVS-BB model for the whole data set.

Taken together, all models fit the data closely (all GOFs are below
0.10). The new models AVS-BB and rAVS-CoO outperform their prede-The center-of-object

models outperform
the center-of-mass

models.

cessors for the asymmetrical ROs. The disconfirmed relative distance
mechanism presumably causes the rAVSw-comb and the rAVS-CoOmod-
els to perform worse than the AVS and the AVS-BB models for data
from the rectangular ROs and all ROs.

5.2.1 Motivation for Global Model Analyses

GOF and SHO values assess model performance given a particular data
set. While this is a valuable and important measurement to judge the
quality of a model, it is not sufficient for a thorough model evaluation
(e.g., Roberts & Pashler, 2000). Regardless of an empirical data set, it
is of interest what a model can and what it cannot compute, as this
gives information about how the models constrain future empirical
data. Even more, “[w]ithout knowing howmuch a theory [model] con-
strains possible outcomes, you cannot know how impressed to be when
observation and theory [model] are consistent” (Roberts & Pashler,
2000, p. 359). In particular, the constraints of a model (what it cannot
compute) are informative for the falsification of the model.

A model that computes a wide range of data patterns (a highly flex-
ible model) is hard to falsify because it can account for a wide range
of future empirical data. Crucially, a model that performs well on a
given data set (as revealed by good GOF and SHO results) might still
generate such wide range of data patterns. This is because by design
both the GOF and the SHO method try to restrict the ranges of the
model parameters: they estimate the values of the parameters in order
to provide a close fit to particular empirical data. While the GOF stops
here, the SHO uses such a parameter set to compare the model output
with data that are new to the model and reports this difference as re-
sult. This provides a measure of one important part of model flexibility
(model generalizability; how good are the estimated parameter values
for a “new” data set?) but it does not measure another important part
of model flexibility: can the model generate data patterns different from
the empirically observed patterns?

This is because the SHO method is a valuable “local” model analysis
(how does a model perform on given data) but it cannot be used for a
“global” model analysis that considers the full range of model parame-
ters (how does the model perform in general; taxonomy from Pitt et
al., 2006). For the AVS and the rAVSw-comb model, I already applied
a “global” model analysis to see what data patterns the models can
generate: the PSP method (see Section 4.1.3). Given that the AVS-BB
and the rAVS-CoO model better account for the empirical data than
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the AVS and the rAVSw-comb model, I was interested to analyze their
possible output using the PSP algorithm.

After presenting these PSP results in Section 5.3, I report the results
of two further global model analyses: MFA and landscaping. In Sec-
tion 5.4, the MFA helps to quantitatively investigate the flexibility of
the cognitive models, answering questions such as to what extent the
models generate data patterns different from the empirically observed
patterns. Ideally, a model should be as flexible as needed to accommo-
date empirical data – but not more. Section 5.4 reports whether any of
the two implemented directionalities of the attentional shift is superior
in terms of model flexibility. To preview the outcomes of the MFA, the
two implemented directionalities of attention cannot be reliably distin-
guished from each other with this additional information. This is why I
conducted landscaping as the final “global” model analysis. Given a set
of stimuli, this method asks whether two competing models generate
data that allow a modeler to distinguish the models. The results from
the landscaping method are presented in Section 5.5.

5.3 parameter space partitioning: center-of-object models

method Compared to the first PSP analysis in Section 4.1.3, I used
different input and a slightly different coding for this PSP analysis.
This was done to better reflect the two test cases (relative distance and
asymmetrical ROs; by making two instead of three rating comparisons).
Furthermore, this PSP analysis draws on a greater set of LO placements
compared to the first one.
More specifically, I made two comparisons (corresponding to the

relative distance test case and the asymmetrical ROs test case): First, I
contrasted the mean über (above) rating for the 28 LOs above the thin
rectangle against the mean über (above) rating for the 28 LOs above the
tall rectangle (see Figure 4.14 on page 99). A lower mean rating for LOs
above the thin rectangle (vs. tall rectangle) is coded as “-”, a higher
mean rating for LOs above the thin rectangle (vs. tall rectangle) is coded
as “+”. Equal mean ratings are coded as “0”. Second, I contrasted two “+”: first > second

“-”: first < second
“0”: first = second

mean über (above) ratings for 12 LOs above the L-shaped RO: 6 LOs to
the left of the center-of-mass of the RO (columns C2–C3, Figure 4.12,
page 95) against 6 LOs to the right of the center-of-mass of the RO
(columns C4–C5). Here, a “-” codes for a lower mean rating for the left
LO-set compared to the right LO-set and a “+” codes for a higher mean
rating for the left LO-set compared to the right LO-set. A “0” denotes
no difference in mean ratings. To define equality of mean ratings, I
used the two equality thresholds te ∈ {0.1, 0.5}. The full PSP pattern
is thus a two-digit code: The first digit codes the difference in mean
ratings for LOs above the thin vs. tall rectangle, the second digit codes
the difference in mean ratings for LOs to the left of the center-of-mass
vs. to the right of the center-of-mass of the L RO.
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results Figure 5.2 plots the mean relative volume estimates from
three PSP runs for the two different thresholds (Figure 5.2a: te = 0.1;
Figure 5.2b: te = 0.5). Due to the slightly different pattern coding and
to ease comparison, I computed this PSP analysis for both: the two new
models and their predecessors.
Considering the motivation of the two new models (implementing

a preference for the center-of-object orientation), their developmentAcross a substantial
number of parameter

settings, the
center-of-object

models generate the
empirical pattern for

the asymmetrical
ROs.

was successful. This can be seen from the second PSP digit (coding
for LOs above the asymmetrical L RO). Here, the empirical pattern
is a “-” because participants rated LOs more central with respect to
the center-of-object (the right LO-set in the PSP input) considerably
higher than less central LOs (the left LO-set). The two new models
confirm this pattern: For both thresholds te and for both new models,
the vast majority of the parameter space is covered by patterns where
the second digit is a “-” (i.e., patterns “--” and “0-”).

In contrast, the AVS and the rAVSw-comb models cannot accommodate
the empirical pattern from LOs around the asymmetrical ROs. Given
that the center-of-object orientation effect was relatively large (see Sec-
tion 4.2.1), the threshold te = 0.1 appears to be too small.2 However,
for the threshold te = 0.5 (Figure 5.2b), only the AVS model computes
the empirical pattern for the asymmetrical ROs – albeit, with a small
volume (< 4%), clearly not being a central outcome of the AVS model.

For the relative distance test case, the empirical pattern is “0”: no
difference in ratings across rectangles with different heights. While
all models generate this sub-pattern (i.e., patterns “0-” and “00”) to
some extent for all thresholds te, only the AVS and the AVS-BB models
generate it with te = 0.5 in a majority in their parameter space (>
50%, Figure 5.2b). However, the complete empirical pattern is “0-”:
no difference in ratings across rectangles and lower ratings for LOs
less central with respect to the center-of-object. This pattern is only
generated by the AVS and the AVS-BB model. For the AVS model it isNeither model fully

accommodates the
relative distance test

case. Future
modeling research
should address this

more closely.

obviously not a main prediction: For te = 0.1 (Figure 5.2a), it occupies
less than 4% of its parameter space, and for te = 0.5 (Figure 5.2b),
its virtually non-existent (< 0.3%). The AVS-BB model generates the
empirical pattern with a greater set of parameters. Nevertheless, the
volumes covered in its parameter space are still comparably small. For
te = 0.1, the AVS-BB model generates the pattern “0-” for < 5% of its
parameter space, and for te = 0.5, the volume is < 16%.

These results again demand more modeling efforts for the relative
distance effect – a task that goes beyond this Ph.D. project, as central

2 It is difficult to compare the outcome of ordinal regressionmodels to differences inmean
ratings. This is because ordinal data should not be treated as metric data. However,
since all cognitive models considered in this thesis make this “mistake”, I kept it for
the PSP analysis. Future research should run PSP analyses with extended models that
consider ratings as ordinal data. See Section 5.7 for first steps in this direction.
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(a) PSP results for equality of rating te = 0.1.
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(b) PSP results for equality of rating te = 0.5.

Figure 5.2: Results of the second PSP analysis: Estimations of relative volumes in parameter
spaces of the models covered by distinct qualitative patterns (averaged over
three PSP runs). First digit codes for difference in mean über (above) ratings for
28 LOs above the thin rectangle vs. the tall rectangle. Second digit codes for
difference in mean über (above) ratings for 6 LOs to the left vs. to the right of the
center-of-mass of the L-shaped RO. Mean ratings were considered equal if they
differed less than (a) te = 0.1 or (b) te = 0.5. Image copyright: See Appendix E.

parts of the models have to be changed to properly address the effect.
Within this Ph.D. project, however, I thoroughly analyzed the present
models further. In the next section, I report the results of the recently
proposed MFA – another global model analysis.

5.4 model flexibility analysis

The ‘Model Flexibility Analysis’ (MFA, Veksler et al., 2015 provides
a quantitative measure of the flexibility of a model. The flexibility of
a model is defined as its ability to produce arbitrary data. The more
flexible a model is, the greater is its range of possible output. A model A model needs to

have some flexibility
but it should not be
too flexible.

needs to have some flexibility but it should not be too flexible. High flex-
ibility may result in (i) predicting more qualitatively different patterns
(see PSP analyses), (ii) over-fitting empirical data (see SHO results),
or (iii) mimicking other models (see forthcoming landscaping analysis,
Section 5.5).

These problems can be (at least) measured by applying the methods
just mentioned in parentheses. However, each method accounts for
a single potential problem of model flexibility only. Moreover, each
method considers model flexibility only indirectly by measuring symp-
toms. For instance, a more flexible model tends to over-fit data, so
SHO checks for over-fitting instead of measuring model flexibility. One
reason for this indirect approach to model flexibility is the fact that
several measures of model flexibility exist (see Veksler et al., 2015, for
an overview including relations to the MFA).
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I chose the MFA as it directly relates the actual model output to the
theoretically possible output, i.e., the MFA actually implements the very
definition of model flexibility in a straightforward way. However, this
comes with a cost. To do an MFA, one must enumerate all possible
model predictions which is often virtually impossible or at least very
time-consuming (one reason why the PSP analysis was developed is
the huge amount of computations needed to enumerate the whole
parameter space).

5.4.1 Model Flexibility Analysis: Method

The outcome of the MFA is the value φwhich denotes the model flex-
ibility on a scale from 0 (low flexibility) to 1 (high flexibility). More
precisely, φ is the number of all outputs a model is able to generate
divided by all theoretically possible patterns:

φ =
number of data patterns the model can generate
number of all theoretically possible data patterns (5.3)

A high value ofφmeans that themodel is highly flexible (it generates
almost all theoretically possible data). A low value of φ means the
opposite: the model has a low flexibility (it generates only a small
subset of all possible data).

To make things concrete, consider an RO with two LOs placed above
it. The number of theoretically possible data patterns is 9

2 = 81 (range
of rating scale, 9, to the power of the dimension of one data pattern,
2 ratings). That is, there are 81 possible data patterns for this simple
example: (1,1), (1,2), (1,3), etc. For almost all tasks, the space of all
possible data is larger than the space of empirically plausible data. In
our example, the two LOs are placed, say, very central above the RO.
Human rating data then would mostly consist of high ratings, say, 7
or higher (7, 8, 9: 3 plausible ratings). This makes the number of
empirically plausible data 3

2 = 9. A model that predicts ratings between
4 and 9 (6 possible ratings) is then able to compute all plausible ratings
but also non-plausible ratings (lower than 7). For this model, the
number of distinct model outputs is 6

2 = 36 and accordingly MFA’s
φ = 36

81
≈ 0.44. This means that the model is able to generate ~44% of

all possible data patterns. This model is more flexible than a model that
only predicts ratings between 7 and 9 (φ = 3

2

81
≈ 0.11). Crucially, both

exemplary models could fit the empirical data equally well (they both
generate the empirical data) – but the lower model flexibility of the
second model would favor it over the first. This is because the second
model does not predict empirically implausible data (ratings lower
than 7).

The MFA computes the ratio φ by enumerating the whole parameter
space of a model, (i.e., all possible parameter settings) and generating
a data pattern for each parameter setting. However, both the model
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parameters and the data patterns are continuous variables.3 This is
why I need to specify two granularities: one for the parameter space
(denoted with j) and one for the data space. All models discussed here
have four free parameters. I split every parameter range into j = 50

intervals which leads to a total of 50
4 data patterns generated by each

model. Each of these data patterns consists of “mean” ratings for all
LO locations used as input. Since I considered different subsets of the
data presented in Chapter 4, these data patterns have different lengths.
For the entire data set, the number of mean ratings (i.e., the dimension)
of every data pattern is 28 LOs × 8 ROs × 2 prepositions = 448.
After generating 50

4 data patterns (each with the length 448), the
MFA compares how similar the data patterns are. In other words,
the MFA determines the area of the data space covered by these data
patterns. To this end, the second granularity comes into play: a “grid”
that splits the data space into cells. Here, Veksler et al. (2015) suggest to
use n

√
jk cells for each dimension in the data space (n is the dimension

of one data pattern; j is the granularity of the parameter space; k is the
number of parameters; for my case: 448

√
50

4 cells). All model-generated
data patterns that fall into the same cells across all data dimensions
are considered equal, i.e., they are counted only once. Data patterns
that are falling into different cells in the data space are considered
unequal. The number of such unequal data patterns is the total number
of distinct data patterns amodel generates. This number (the numerator
of Equation 5.3) is finally divided by the number of all cells in the data-
space-grid (the denominator of Equation 5.3). Using the n

√
jk grid for

all n dimensions as suggested by Veksler et al. (2015), the total number
of grid cells equals the total number of generated model outcomes:(
n
√
jk
)n

= jk.
If every parameter setting produces a distinct model output (i.e.,

each model output falls into a different cell than all other outputs), the
number of unique model outputs is equal to the number of all cells
resulting in φ = 50

4

50
4 = 1. Such a model is maximally flexible. The

more model outputs are considered equal, the smaller becomes the
area covered by the model outcomes. The lowest possible value4 for
φ for the whole data set would be φ = 1

50
4 = 1.6× 10−7. This lowest

possible value would be produced by a model that generates the same
output regardless of its parameter setting. Such a model is maximally
inflexible.

3 For the data patterns the same caveat as before is valid: Rating data should be treated
as ordinal (i.e., discrete) data, not as metric (i.e., continuous) data. However, all
considered models compute continuous “mean” ratings. This is why I also had to
conduct the MFA with continuous data patterns.

4 There can be no value φ = 0 because this would mean that the model produces no
output at all.
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The Curse of Dimensionality
After having introduced the MFA as proposed by Veksler et al. (2015),
I note problems with the suggestion to split every dimension of the
data space into n

√
50

4 cells. Applied to the data from Chapter 4 with
n = 448 dimensions, this results in ca. 1.04 cells per dimension. Every
dimension consists of a mean rating (for a single LO) on a rating scale
from 1 to 9. Splitting this rating scale into 1.04 cells means that two
unequally sized intervals emerge: The first interval ranges from rating
1 to rating 8.64, the second interval ranges from 8.64 to 9. Crucially,
only mean ratings that fall into different intervals are considered to
be different. For the data from Chapter 4 this means that all mean
ratings between 1 and 8.64 are treated as being equal. This is obviously
a problematic assumption.
There are two possibilities to enlarge the number of intervals per

dimension in the data space while still keeping the suggestion of n
√
j4

cells per dimension: First, increase j (i.e., compute more model outputs
by using a finer granularity for every model parameter) and second,
decrease n (i.e., choose a smaller data set). Unfortunately, the first
option is infeasible. To obtain a reasonable number of intervals in every
dimension of the data space, say 3, I would need to split every parame-
ter range into j = 4

√
3

448 ≈ 2.74× 1053 intervals, which is magnitudes
greater than what is currently possible. The computation with j = 50

already takes several days and consumes large amounts of computing
resources (and I would like to compute several models on several sub-
sets). An attempt to tackle the problem by choosing the second option –
reducing the number of dimensions in the data set by aggregating data
– failed, too.5

There is a third possibility to enlarge the number of cells in the data
space without aggregating data, though. This third possibility, however,
does not follow the n

√
j4 suggestion by Veksler et al. (2015). In contrast

to this rather arbitrary partition of the data space in terms of the domain-
specific meaning of the data space dimensions6, the third possibility
applies a partition that is sensible with respect to the domain of the
data. More specifically, it uses a domain-specific value as the number
of cells per dimension: the range of the rating scale. This provides a

5 I did this by aggregating model predictions as mean ratings for distinct ROs (i.e., only
one mean rating per RO, collapsing across several mean ratings for single LOs). I have
n = 10 ROs (four rectangles, two C-shaped objects and four L-shaped objects) which
results then in 10

√
50

4 ≈ 4.78 cells per dimension of the data space. Running the MFA
on these summarized data (one mean rating per RO), however, resulted in different
relative rankings of model flexibility compared to using mean ratings for single LOs
placed around the ROs. Possibly, this is due to the caveats of the MFA mentioned by
Evans, Howard, Heathcote, and Brown (2017) who reported that using different data
summary statistics changes the results of the MFA. Since the models were developed
to account for the mean rating of a single LO and not the mean rating collapsing across
several LOs, I neither report nor discuss the MFA on this condensed data set further.

6 The suggestion from Veksler et al. (2015) makes sense with respect to obtaining an
easily interpretable φ value.
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more fine-grained partition of the data compared to the problematic
suggestion from Veksler et al. (2015): Instead of treating ratings from 1
to 8.46 as equal (see above), the domain-specific partition distinguishes
all 9 ratings from each other.

However, this approach has the side effect that the data space is split
in more cells (9

448) than the number of generated model outcomes
(50

4). This means that φ = 1.0 can never happen: Even if all model
outputs are different from each other, the maximum value for φ is
φmax = 50

4

9
448
≈ 6.25× 106
3.17× 10427 = 1

3.17× 10421 = 3.17× 10−421. This makes
interpreting the absolute value ofφ difficult, because its possible values
are not ranging from 0.0 to 1.0 anymore. In order to account for this,
I report below all maximal possible values φmax of φ as well as the
normalized φn = φ

φmax
.

Taken together, I report three different MFA ratios: φ1,φ2, and φn2.
φ1 was computed with n

√
50

4 cells in every dimension of the data space.
For φ2, I chose the range of the rating scale as number of cells per
dimension of the data space (i.e., 9 cells for the data from Chapter 4).
φn2 = φ2

φ2max
is the normalized version of φ2. The flexibility of a model

is always defined with respect to the stimuli used as input. I used four
different stimuli sets to compute the MFA φs: the whole stimuli set
from Chapter 4, the rectangular ROs only, the asymmetrical ROs only,
and the whole stimuli set from Regier and Carlson (2001).

I used the same parameter ranges as for the other simulationmethods,
see Equations 3.15–3.17 (page 42) and 5.1–5.2 (page 118). Evans et al.
(2017) recently criticized the MFA for producing invariant model flexi-
bilities with different parameter ranges. Therefore, I also re-computed
all MFA results using smaller but still plausible parameter ranges for
some parameters:

0.0005 6 λ 6 3.0 (5.4)
0.0005 6 α 6 3.0 (5.5)

0.0 6 highgain 6 2.0 (5.6)

Surprisingly, I found higher flexibilities for these smaller parameter
ranges than for the larger parameter ranges (see below). This confirms
parts of the critique by Evans et al. (2017). Accordingly, I do not discuss
the absolute values of theφ values. However, given that the relative rank-
ings of the computed flexibilities did not change (with one exception
that I discuss below), I still think that at least MFA’s relative flexibili-
ties are an interesting and valuable measure of model flexibility. Since
Evans et al. (2017) report other problems of the MFA, the MFA results
should be interpreted with caution and related to the outcomes of other
methods measuring model flexibility (e.g., PSP or landscaping).
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5.4.2 Model Flexibility Analysis: Results

Tables C.1 and C.2 in the appendix list all MFA φ values. Figure 5.3
plots most of these numbers. I plotted the φ1 and φn2 values, i.e., the
results computedwith the number of cells per data space dimensions as
suggested by Veksler et al. (2015, φ1, Figure 5.3a) and the results where
the number of cells per data space dimension equals the range of the
rating scale, normalized with the respective φ2max (φn2, Figure 5.3b;
see Tables C.1 and C.2 for the φ2max values). In addition, I also plotted
the correspondingMFA results that I computed with smaller parameter
ranges (Equations 5.4–5.6) as a double-check for the critique by Evans
et al. (2017, Figures 5.3c and 5.3d).

Validity of MFA Results
Before I discuss the MFA results in terms of model flexibility, I relate
φn2 to φ1 in order to test the validity of my approach circumventing
the problem of sparse data space cells for φ1. Moreover, I address one
particular critique point raised by Evans et al. (2017).

Comparing φ1 with φn2 (i.e., Figure 5.3a vs. 5.3b) yields the same
relative flexibilities for all models and stimuli sets.7 There is only oneUsing a

domain-specific data
space grid and

normalizing φ leads
to comparable relative
flexibility estimates.

exception: While rAVSw-comb’s φ1 for the subset consisting of the asym-
metrical ROs is lower than all φ1s for the stimuli from Regier and
Carlson (2001, see Figure 5.3a), rAVSw-comb’s φn2 for the asymmetrical
ROs is higher than the φn2s for the stimuli from Regier and Carlson
(2001, see Figure 5.3b). However, the difference is only small and arises
only across stimuli sets, probably rendering it not important.

Evans et al. (2017) reported that the MFA computes invariant model
flexibilities with different parameter ranges. To analyze whether this
is a problem for the models and stimuli investigated here, I computed
the MFA results with narrower parameter ranges for the same model-
stimuli pairs. These results are plotted in Figures 5.3c and 5.3d. First of
all, the absolute values of φ1 and φn2 are larger than their counterparts
computed with a greater range of parameters. This is unexpected if not
to say “unambiguously incorrect [. . . ], as a wider range of parameter
values allows for a greater range of predictions” (Evans et al., 2017,
p. 342) and hence a smaller range should lead to lower flexibility esti-
mates. For most φn2, the MFA result is more than double in size for the
smaller range compared to the larger range (cf. y-axes of Figures 5.3b
vs. 5.3d). For φ1, the difference is not that exaggerated, though (Fig-
ures 5.3a vs. 5.3c). This calls the validity of the absolute values of φ
into question.

7 If one looks at the non-normalized values of φ2 (not plotted, see Tables C.1 and C.2),
however, the relative flexibilities across stimuli sets are not preserved: a higher dimen-
sionality of the data space automatically leads to lower results for φ2. This illustrates
the need for normalizing the φ2 value which basically relates the dimensionality of
the data space to the absolute outcome of φ2.
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Figure 5.3: Results of the Model Flexibility Analysis (MFA). The lower φ, the less flexible
is the model. Note the different y-axes. Panels (a) and (c) show φ1, i.e., results
computed with the number of data space cells as suggested by Veksler et al.
(2015). Panels (b) and (d) show φn2, i.e., results computed with as many cells
for every data-space dimension as there were rating intervals (i.e., 9 for the
stimuli from Chapter 4, 10 for stimuli from Regier & Carlson, 2001, which are
abbreviated as R&C stimuli in the plots) and normalized by dividing with the
corresponding φ2max. See Tables C.1 and C.2 for more results. For panels (c)
and (d), I used smaller parameter ranges (see Equations 5.4–5.6) to address
parts the MFA-critique by Evans et al. (2017).

However, in terms of relative model flexibilities, the computations
with smaller parameter ranges replicate the first computations almost
entirely: Although across stimuli sets the computed relative flexibilities While the absolute

values of φ should
not be interpreted,
the relative model
flexibilities appear to
be sound.

are not always stable (e.g., rectangular ROs vs. stimuli from Regier
& Carlson, 2001, in Figures 5.3a vs. 5.3c), the relative model rankings
within stimuli sets are reproduced with a single exception only. This
provides support for the validity of relative model flexibilities as com-
puted by the MFA. The exception concerns the φn2 flexibilities of the
AVS vs. the rAVSw-comb model for the whole stimuli set from Chapter 4
(cf. Figures 5.3b vs. 5.3d).
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Relative Model Flexibilities
Considering this exception (flipped relative φn2 flexibilities for AVS
and rAVSw-comb for the whole stimuli set) together with (i) varyingIn terms of model

flexibility, the AVS
and the rAVSw-comb

model cannot be
distinguished

reliably.

relative flexibilities of the AVS and the rAVSw-comb models for other
stimuli sets (rAVSw-comb is more flexible than AVS for rectangular ROs
but less flexible for other stimuli) and (ii) the general caution one
should exercise when interpreting MFA results (Evans et al., 2017), the
MFA results cannot be used to reliably distinguish the AVS and the
rAVSw-comb models in terms of their flexibility.

More interestingwith respect to the finding that people seem to prefer
the center-of-object orientation over the center-of-mass orientation is
the fact that the two center-of-object models AVS-BB and rAVS-CoO
are less flexible for all stimuli sets than their predecessors. This further
supports the two new models: Despite their lower flexibility, they fit
the empirical data equally well or even better than the AVS and the
rAVSw-comb models (cf. GOF and SHO results in Figure 5.1 on page 119).
In particular for the asymmetrical ROs for which the center-of-object
effect originated, the two center-of-object models are considerably less
flexible than the center-of-mass models. For the whole stimuli set, this
difference is weaker but still pronounced.
However, unfortunately, the current MFA results do not shed much

light on potential answers to my main research question (whether
attention shifts from the RO to the LO, AVS-BB, or from the LO to the
RO, rAVS-CoO). This is because in terms of model flexibility neither the
AVS-BB nor the rAVS-CoO model performs substantially better than
the other model: the rAVS-CoO model is less flexible than the AVS-
BB model for the asymmetrical ROs and the stimuli from Regier and
Carlson (2001); the AVS-BB model is less flexible than the rAVS-CoO
model for the whole stimuli set8. While the corresponding benefit isIn terms of model

flexibility, the
AVS-BB and the
rAVS-CoO model

cannot be
distinguished

reliably.

greater for the AVS-BBmodel than for the rAVS-CoOmodel, the general
issues with the MFA and specifically the flipped rankings do not allow
to announce a “winning” model. The PSP results (see Figure 5.2 on
page 123) support this conclusion as they – in contrast to lower φ’s for
AVS-BB – slightly favor the rAVS-CoO model as less flexible (3 patterns
vs. 4 patterns). Accordingly, the MFA results do not speak for or against
any of the implemented conflicting assumptions about the directionality
of the attentional shift.
After all, are the models distinguishable on the existing stimuli? To

answer this question and to provide a final perspective on the models,
I present several model comparisons using the landscaping method
(Navarro et al., 2003, 2004) in the next section. Given a specific set
of stimuli, landscaping reveals information about the potential to dis-

8 and the rectangular ROs – but for these ROs, the center-of-mass and center-of-object
coincide, i.e., the AVS-BB model behaves like the AVS model and the rAVS-CoO model
behaves like the rAVSw-comb model.
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tinguish two models by contrasting their fits to self- and other-model-
generated data.

5.5 landscaping

Landscaping (Navarro et al., 2003, 2004) shows the relative perfor-
mances of two models given an experimental design. If two models
generate similar data given this design, one cannot distinguish the two
models from each other. In terms of GOF and SHO results, the AVS
model fits the whole data set better than the rAVSw-comb model and
the AVS-BB model and the rAVS-CoO model perform better on the
data for the asymmetrical ROs than the unmodified models (see Fig-
ure 5.1 on page 119). Why then do I apply a tool intended to help with
distinguishing two models?
I do this for two reasons: First, landscaping provides a qualitative

measure of model flexibility. Together with the PSP results, this is
complimentary evidence for the model flexibilities as computed with
the criticized MFA. Second, I found equal performance of the follow-
ing models on some data sets that disappear on other data sets: the
rAVSw-comb model and the rAVS-CoO model for the whole data set
from Chapter 4, the AVS-BB model and the rAVS-CoO model for the
asymmetrical ROs, and all models for the data from Regier and Carlson
(2001). A global model analysis such as landscaping might provide
insights into the nature of these equal performances. These insights
are specified as “the informativeness of a data set in deciding between
[competing models]” (Navarro et al., 2004, p. 48). In particular the
non-distinguishable performances of the rAVS-CoO and the AVS-BB
model are crucial to provide an answer for my main research question
(directionality of attention): Given that the rAVS-CoO and the AVS-BB
model implement contrasting assumptions about the directionality of
the attentional shift, investigating why they perform comparable on
some data sets sheds light on the mechanisms of both shift implemen-
tations.

5.5.1 Landscaping: Method

What is landscaping then? A landscape consists of model fits (GOFs) to
several artificial data sets generated by two models given a constant set
of stimuli. For the generation of one artificial data set, model parameters
are randomly sampled from a uniformdistribution across the parameter
ranges (Equations 3.15–3.17, page 42, and 5.1–5.2, page 118). This
random parameter set is used to generate an artificial data set to which
a small amount of noise is added. I used Gaussian noise with a standard
deviation of 0.3, based on the magnitude of the standard error of the
mean for the whole empirical data set from Chapter 4. I conducted the
landscaping method with 1000 artificial data sets per model (i.e., 2000
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artificial data sets per stimuli set). Each of the two models is fitted to
each artificial data set – both self-generated data sets as well as the data
sets generated by the other model.
Given that a model naturally fits self-generated data well, its ability

of fitting data generated by a different model can be interpreted as
what Wagenmakers, Ratcliff, Gomez, and Iverson (2004) call model
mimicry: the ability of a model to mimic a different model. Consider
two hypotheticalmodels A and B. Further suppose thatmodel Amimics
model B but model B does not mimicmodel A. This means that model A
ismore flexible thanmodel B becausemodelA (i) fits the data generated
from model B (suggesting that model A is able to generate data similar
to model-B-generated data) and (ii) generates a wider range of data
than model B (because model B cannot fit model-A-generated data).

Wagenmakers et al. (2004) proposed to use the ‘Parametric Bootstrap
Cross-Fitting Method’ (PBCM) to measure model mimicry. The data-
uninformed version of the PBCM is the same as the landscapingmethod
with two exceptions: In the PBCM no noise is added to the artificial
data sets and the results of the two methods are plotted differently
(histograms of fit-differences for PBCM; model fits against each other in
so-called landscape plots for landscaping). I followed the landscaping
procedure9 (i.e., I added noise to the artificial data) but plotted the
results using both types of plots, as this provides valuable additional
perspectives on the outcomes of the simulations.

5.5.2 Landscaping: Results

In total, I conducted five landscaping analyses: In light of equal perfor-
mance on the corresponding data sets, I contrasted the rAVS-CoO andrAVS-CoO vs.

AVS-BB:
• asym. ROs
• R & C ROs
rAVSw-comb vs.

rAVS-CoO:
• all ROs
• asym. ROs

rAVSw-comb vs. AVS:
• R & C ROs

AVS-BB models (i) on the asymmetrical ROs and (ii) the stimuli from
Regier and Carlson (2001). The rAVSw-comb model and the rAVS-CoO
model performed comparable on the whole data set from Chapter 4
– despite the better performance of the rAVS-CoO model on the data
from the asymmetrical ROs. This is why I ran two landscaping analyses
with the rAVSw-comb model and the rAVS-CoO model using these two
stimuli sets. Finally, I computed a landscaping analysis with the rAVS
and the AVS model for the stimuli from Regier and Carlson (2001).

ravs-coo vs. avs-bb The results of the two landscaping analyses
contrasting the rAVS-CoO and AVS-BBmodels are plotted in Figures 5.4
(asymmetrical ROs) and 5.5 (stimuli from Regier & Carlson, 2001). In

9 Navarro et al. (2004) developed landscaping for statistical models, i.e., models that
work with probability functions and not necessarily produce the same output with the
same set of parameters. This allows to compute an index across all model fits to artificial
data that gives information about the extent to which one model fits the data better
than the other. However, since all models in this thesis are deterministic models (they
produce the same output for the same set of parameters), it is not possible to compute
this index (see Section 5.7 for an extension that makes the models probabilistic).
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both Figures 5.4 and 5.5, panels (b) and (c) show the landscape plots
(Navarro et al., 2004). Panels 5.4b & 5.5b show fits to data generated
by the rAVS-CoO model, Panels 5.4c & 5.5c visualize fits to AVS-BB-
generated data. The dashed line in the landscape plots is the line of
equal fit, the asterisks depict the GOF results to the empirical data (see
Figure 5.1 on page 119). The data from each landscape in Panels 5.4b,
5.4c, 5.5b, or 5.5c appear as one histogram of GOF-differences in Pan-
els 5.4a and 5.5a – the plot type for the PBCM (Wagenmakers et al.,
2004). For these histograms, all corresponding fits (i.e., two fits to the
same data set) were subtracted from each other (GOF rAVS-CoO −

GOF AVS-BB) and binned into a histogram (with black or white his-
togram bars; the legends in the plots relate the color to the identity of
the data-generating model).
Inspecting the landscape plots in Panels 5.4b, 5.4c, 5.5b, and 5.5c

reveals that the two models rAVS-CoO and AVS-BB are mimicking each
other only to a small extent: Almost all model fits lie in the region of
the data-generating model. That is, if the rAVS-CoO model generates
data, it mostly fits these data better than the AVS-BB model (fits are to
the upper left of the line of equal fit in Panels 5.4b & 5.5b). In contrast,
if the AVS-BB model generates data, it mostly fits these data better than
the rAVS-CoO model (fits are to the lower bottom of the line of equal
fit in Panels 5.4c & 5.5c).
Nevertheless, both models fit the not-self-generated data well, as

is evident from the overall low nRMSE values in the landscape plots.
Moreover, all histograms in Panels 5.4a and 5.5a peak around 0.0. This
corresponds to the higher density of points close to the line of equal fit
(vs. farther away) in the landscape plots. This result indicates that for
some generated data the models do mimic each other: Despite being
generated by a different model, both models provide a comparable
fit. However, this is only true for a subset of the generated data: The
histograms are only extended into the direction that corresponds to
better fits for the data-generating model (mirroring the direction of the
“tails” in the landscape plots).

Comparing the landscaping analyses for the two different stimuli
sets with each other reveals that for the stimuli from Regier and Carlson The rAVS-CoO and

the AVS-BB model
mimic each other
only to a small extent.
The AVS-BB model
mimics the
rAVS-CoO model
stronger than vice
versa.

(2001) the models are mimicking each other even less than for the
asymmetrical ROs (smaller histogram peaks around 0.0 and longer
landscape tails in Figure 5.5 vs. Figure 5.4). Although the model
mimicry is limited, for both stimuli sets, the AVS-BB model shows a
higher degree of model mimicry compared to the rAVS-CoO model.
That is, the AVS-BB model fits rAVS-CoO-generated data slightly better
than the rAVS-CoO model fits AVS-BB-generated data. This is reflected
in shorter histogram and landscape tails for rAVS-CoO-generated data
(Panels 5.4b & 5.5b or black histograms in Panels 5.4a & 5.5a) compared
to the AVS-BB-generated data (Panels 5.4c & 5.5c or white histograms
in Panels 5.4a & 5.5a). Given that model mimicry is a measure of model
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Figure 5.4: Landscaping results contrasting the rAVS-CoO model with the AVS-BB model on the
asymmetrical ROs (collapsing across über, above, and unter, below). The asterisks in (b)
and (c) depict the fit to the empirical data (cf. GOFs in Figure 5.1c). Image copyright:
See Appendix E.
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Figure 5.5: Landscaping results contrasting the rAVS-CoO model with the AVS-BB model on the
stimuli from Regier and Carlson (2001). The asterisks in (b) and (c) depict the fit to
the empirical data (cf. GOFs in Figure 5.1d). Image copyright: See Appendix E.

flexibility, this finding confirms the same relative ranking of model
flexibility for these stimuli as computed by the MFA (AVS-BB slightly
more flexible than rAVS-CoO, cf. Figure 5.3 on page 129).

ravsw-comb vs. ravs-coo The two landscaping analyses that con-The contrast
center-of-object vs.

center-of-mass
orientation affects

model output
stronger than the

contrasting
directionalities of the

attentional shift.

trast the rAVSw-comb model and the rAVS-CoO model are plotted in
Figures 5.6 (whole stimuli set) and 5.7 (asymmetrical ROs). The first
thing to notice for these results is the overall larger magnitude of model
fits compared to the landscaping analyses contrasting the rAVS-CoO
and the AVS-BB models (compare axes of Figures 5.6 & 5.7 with Fig-
ures 5.4 & 5.5). Apparently, the rAVSw-comb and the rAVS-CoO model
mimic each other less than the rAVS-CoO and the AVS-BB model. This
is surprising given that conceptually (i.e., in terms of directionality of
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Figure 5.6: Landscaping results contrasting the rAVSw-comb model with the rAVS-CoO model on
the whole stimuli set (collapsing across über, above, and unter, below). The asterisks
in (b) and (c) depict the fit to the empirical data (cf. GOFs in Figure 5.1a). Image
copyright: See Appendix E.

0

50

100

150

200

250

-0
.20

-0
.15

-0
.10

-0
.05 0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

De
ns

ity

∆ GOFs = GOF rAVSw-comb − GOF rAVS-CoO

data generator
rAVSw-comb
rAVS-CoO

(a) Histograms of differences in fits to artificial
data.

0.00

0.05

0.10

0.15

0.20

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

rA
VS

-C
oO

-fi
t(

nR
M
SE

)

rAVSw-comb-fit (nRMSE)

(b) Model fits to artificial data gener-
ated by the rAVSw-comb model.

0.00

0.05

0.10

0.15

0.20

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

rA
VS

-C
oO

-fi
t(

nR
M
SE

)

rAVSw-comb-fit (nRMSE)

(c) Model fits to artificial data gener-
ated by the rAVS-CoO model.

Figure 5.7: Landscaping results contrasting the rAVSw-comb model with the rAVS-CoO model
on the asymmetrical ROs only (collapsing across über, above, and unter, below). The
asterisks in (b) and (c) depict the fit to the empirical data (cf. GOFs in Figure 5.1c).
Image copyright: See Appendix E.

attention), the rAVSw-comb and the rAVS-CoO model are more similar
to each other than the rAVS-CoO and the AVS-BB model. This suggests
that geometric properties such as the center-of-object orientation are
reflected more strongly in acceptability ratings than directionalities of
attention.

The reason for comparing the rAVSw-comb model with the rAVS-CoO
was the equal model fitting performance of both models for the data
from the whole stimuli set from Chapter 4 (cf. asterisks in Panels 5.6b
and 5.6c) – despite the superior fit of the rAVS-CoO model to the data
from the asymmetrical ROs (cf. asterisks in Panels 5.7b and 5.7c). The
landscape results provide evidence that the nature of this equal per-
formance is not due to model mimicry: For both stimuli sets, the two
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models mimic each other only for a small subset of data sets (compare
histogram peaks close to zero with long histogram and landscape tails).
However, the rAVSw-comb model accounts slightly better for not-self-The rAVSw-comb and

the rAVS-CoO model
mimic each other only
to a very small extent.

generated data than the rAVS-CoO model. This is evident from smaller
histogram and landscape tails for data generated by the rAVS-CoO
model (Panels 5.6c & 5.7c or white histograms in Panels 5.6a & 5.7a)
compared to the performance of the rAVS-CoO model for rAVSw-comb-
generated data (panels Panels 5.6b & 5.7b and black histograms in Pan-
els 5.6a & 5.7a). This confirms the higher flexibility of the rAVSw-comb
model compared to the rAVS-CoO model as computed by the MFA
(cf. Figure 5.3 on page 129). The relatively bad performance of the
rAVS-CoO model on the whole data set from Chapter 4 seems to be
best explained by its missing flexibility to accommodate the effect of
relative distance contained in the data from the rectangular ROs.

ravsw-comb vs. avs The last landscaping analysis contrasted the AVS
and the rAVSw-comb model on the stimuli from Regier and Carlson
(2001). The results are plotted in Figure 5.8. Compared to the previ-The rAVSw-comb and

the AVS model do not
mimic each other.

ous landscaping analyses, these results provide evidence for an even
weaker amount of model mimicry (compare height of histogram peaks
in Figure 5.8a with the peaks for the other analyses). The landscape
plots in Panels 5.8b and 5.8c confirm this finding: The fits are orthogo-
nal to the axis of the data-generating model (i.e., the data-generating
model provides relatively constant fits to its own data while the other
model varies in its GOF). The landscaping results again confirm the
slightly higher flexibility of the AVS vs. the rAVSw-comb model for these
stimuli as computed by the MFA results (cf. Figure 5.3 on page 129):
Even though the models do not mimic each other, the AVS model fits
the rAVSw-comb-generated data slightly better than vice versa (compare
length of histogram or landscape tails in Figure 5.8).

Discussion of Landscaping Analyses
Taken together, the landscaping analyses confirmed the relative flexi-
bilities as computed by the MFA. That is, for all model pairs compared
with landscaping, the model with the higher MFA-flexibility could fit
the not-self-generated data slightly better than the other model (with
lower MFA-flexibility). This provides support for the validity of the
relative flexibilities computed by the MFA.

In terms of model distinguishability, the landscaping results provide
evidence that each model generates data that are different from the
data generated by the other model in the respective model pair. This
difference is less exaggerated for the rAVS-CoO vs. the AVS-BB model
(in particular on the asymmetrical ROs), and relatively strong for the
rAVSw-comb vs. the rAVS-CoOmodel and for the rAVSw-comb vs. the AVS
model. Thus, in principle, the models could be distinguished with data
collected using these stimuli (in terms of fitting performance).
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Figure 5.8: Landscaping results contrasting the rAVSw-comb model with the AVS model on the
stimuli from Regier and Carlson (2001). The asterisks in (b) and (c) depict the fit to
the empirical data (cf. GOFs in Figure 5.1d). Image copyright: See Appendix E.

Why then could I not distinguish the models using the collected
empirical data? First, it might be that the landscaping analysis needs
more fine-tuning (which in turn affects the interpretation of the results):
Potentially, I added too little noise to the artificial data such that the data-
generating model was able to fit its own data substantially closer than
the possibly more noisy empirical data. This reasoning is suggested by
the fact that the fits to the empirical data (asterisks in the landscape
plots) are somewhat apart from the fits to the artificial data sets.

Second, it might be that the empirical data are reliably different
from the model-generated data (but only to a small extent, see overall
magnitudes of model fits). This renders overlapping fits to artificial and
empirical data unlikely. In addition, it suggests that all models generate
data that are systematically distinct from the empirical data (albeit they
are still close, see GOF/SHO). A potential reason for this is the effect of
relative distance that neither model appropriately accommodates. Note
that this does not mean that the models cannot closely account for the
data – they can, see the GOF and SHO results in Figure 5.1. Rather, this
means that the not properly captured effect of relative distance might
be one reason of not being able to distinguish the models. In other
words, the relative distance effect might be a tiger and not a mouse as
famously stated by George E. P. Box (1976, p. 792): “Since all models
are wrong the scientist must be alert to what is importantly wrong.
It is inappropriate to be concerned about mice when there are tigers
abroad.”
Finally, comparing the rAVSw-comb and rAVS-CoO models, the com-

parably low model mimicry surprises. In particular, compared to the
other model comparison pairs, some fits of the rAVSw-comb and rAVS-
CoO models to artificial data are twice as high (i.e., worse). This is
surprising because the rAVSw-comb and rAVS-CoO model are conceptu-
ally close in terms of the implemented directionality of the attentional
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shift (from the LO to the RO). On the other hand, the other model
comparison pairs contrasted the two directionalities of the shift but
revealed closer fits to the generated artificial data. This suggests that
the contrast center-of-object orientation vs. center-of-mass orientation
– the dimension that differs between the rAVSw-comb and rAVS-CoO
model – affects the generated model output stronger than the different
directionalities of the attentional shift.

5.6 discussion of all model simulations

Considering all model simulations, the two newly proposed models
rAVS-CoO and AVS-BB (accounting for the center-of-object orientation
instead of the center-of-mass orientation) perform substantially better
than their predecessors rAVSw-comb and AVS. In contrast to the center-The center-of-object

models outperform
the center-of-mass

models on all
measures.

of-mass models, the two center-of-object models better fit the empirical
data (GOF, SHO) while they are less flexible (MFA, landscaping) and
generate rating patterns closer to the empirical patterns (PSP). This
supports the idea that people rely on the center-of-object orientation
instead of on the center-of-mass orientation.
While this is an interesting finding, it does not answer my main re-

search question whether attention shifts from the RO to the LO (AVS,
AVS-BB) or from the LO to the RO (rAVSw-comb, rAVS-CoO). This is be-
cause I still cannot reliably distinguish these two model classes in termsBased on simulating

contrasting
implementations, the
two directionalities of
attention cannot be
teased apart. Both
implementations

account equally well
for the empirical data.

of performance on empirical data. Both implemented directionalities
of attention account equally well for the empirical data. On the other
hand, the clearly superior performance of the center-of-object models
(AVS-BB, rAVS-CoO) vs. the center-of-mass models (AVS, rAVSw-comb)
suggests that geometric properties such as center-of-object vs. center-
of-mass orientation are more important for model performance than
the implemented directionality of the attentional shift.
A likely reason for a strong effect of geometry is the sole evaluation

of model goodness using acceptability ratings. This kind of empirical
data obviously does not measure shifts of attention. Ratings are only
indirectly influenced by attentional shifts via the perceptual processing
of geometric properties. Future research should extend the models to
more specifically implement visual attention, e.g., by directly modeling
eye movements (as a measure of shifts of overt attention) or integrat-
ing a temporal component (because attentional shifts are inherently
temporal). I present related ideas in more detail in Chapter 6. As a first
step toward enhancing the models to generate data that can be better
matched to human responses, the next and final section of the present
chapter introduces an extension that enables the models to simulate
rating distributions instead of mean ratings.
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5.7 outlook: rating distributions and bayesian inference

I developed the following model extension because the models are only
evaluated using mean ratings. However, by summarizing rating distri-
butions to a single mean rating, the richness of rating data is ignored. In
addition, one should not treat rating data as metric (e.g, by computing
a mean rating, Liddell & Kruschke, 2018). Accordingly, I extended
the models such that they are considering rating data properly as or-
dinal (discrete and ordered) data by simulating a rating distribution.
Section 5.7.1 presents this model extension in detail.
Apart from a more correct way of handling the data, the model

extension further allows to generate individual ratings by sampling
from the simulated rating distribution. Using the cross-match test
proposed by Rosenbaum (2005) as likelihood function, this allows to
apply Bayesian inference for the model parameters. In Section 5.7.2, I
introduce this method in detail and present an example application.

Due to time constraints, I could evaluate the model extension and the
application of the cross-match test only in a limited way (only for the
rAVSw-comb and rAVS-CoO model and the data from the asymmetrical
ROs). That said, I believe that the proposedmethods create awide range
of opportunities to further explicate and empirically test theoretical
claims of AVS-like models. I hope that this initial work inspires other
researchers to pursue this path.

5.7.1 Rating Distributions

The model extension to simulate rating distributions was inspired by
the method with which I analyzed the empirical rating data (see Sec-
tion 4.2.1), namely ordinal regression models (Kruschke, 2015, Chapter
23, Liddell & Kruschke, 2018). These regressionmodels assume a latent
metric distribution underlying the ordinal distribution. The probability
of a single rating is then defined as the cumulative probability between
two thresholds defined on the metric distribution.
As an example, consider Figures 5.9c and 5.9d. In these figures, the

two parts of the ordinal regression are plotted as dashed lines: The
latent metric distribution is a dashed curved line, the thresholds are
dash-dotted vertical lines. In addition, the cumulative probabilities
between two thresholds are plotted as crosses (computed with the ex-
tended rAVS-CoO model, Figure 5.9c) or asterisks (computed with the
extended rAVSw-comb model, Figure 5.9d). Based on ordinal regression
models, the proposed model extension works as follows:

* The work reported in Section 5.7 (published as Kluth & Schultheis, 2018) profited
from ideas and feedback from Holger Schultheis. In particular, the idea to use the
cross-match test originates from him.
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1. treat the outcome of an AVS-likemodel (mean rating) as themean
µ of a Gaussian distribution; add the standard deviation σ of the
Gaussian distribution as an additional model parameter

2. define K− 1 − 2 thresholds on the Gaussian distribution and add
them as additional model parameters; K is the number of ratings
on the ratings scale; the first and last threshold are fixed (half-
way between the values of the first and second rating or last and
second-last rating)

3. compute the probabilities of each rating as the cumulative prob-
ability between two thresholds (or between the first/last fixed
threshold and negative/positive infinity for the first/last rating)

In Figures 5.9c and 5.9d, two empirical rating distributions from
the empirical study presented in Chapter 4 are plotted as bars, exem-
plarily for the left and right LO above the asymmetrical RO shown in
Figure 5.9a. Clearly, the study participants rated the right LO (more
central with respect to the center-of-object) higher than the left LO
(less central). More precisely, they picked the rating 9 more often for
the right LO than for the left LO (cf. to greater empirical data set and
statistical model fits plotted in Figure 4.13 on page 97).
Compared to evaluating the cognitive models on mean ratings, the

model extension makes a more fine-grained model evaluation possible.
In Figures 5.9c and 5.9d, the probabilities for each rating as computed
with the extended rAVSw-comb and rAVS-CoO models are plotted (from
now on and in Figure 5.9, extended models are denoted with a trail-
ing +). While both models account relatively well for the empiricalSimulating full

rating distributions
allows for a more

fine-grained model
evaluation

(compared to using
mean ratings).

ratings for the right LO (Figure 5.9d), the rAVSw-comb+ model clearly
over-estimates the probability for rating 9 for the left LO (Figure 5.9c).
Due to equal center-of-mass orientation for both LOs, the rAVSw-comb+
produces exactly the same outcomes for both LOs. This comes as no
surprise (considering the mechanism of the rAVSw-comb model) but it
does not capture the empirical data.
Compare this model evaluation using rating distributions with a

model evaluation using mean ratings (for the left LO 7.38, for the right
LO 8.18). With the same parameter settings, this yields a model fit for
the left LO of 0.1326 (rAVSw-comb fit, nRMSE) or 0.0093 (rAVS-CoO fit,
nRMSE) and for the right LO 0.0333 (rAVSw-comb fit, nRMSE) or 0.1029
(rAVS-CoO fit, nRMSE). None of these numbers provides information
about the model properties as intuitive and informative as the fit of the
extended models using full rating distributions.

To more systematically assess the simulated rating distributions with
respect to empirical rating distributions (relative frequencies of ratings),
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×
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d d

(a) Exemplary spatial configuration from the asym-
metrical ROs test case. × = center-of-mass, ◦ =
center-of-object (of the asymmetrical object);
d = same horizontal distance from × for both
LOs.
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(b) GOF and SHO results for fitting extended mod-
els to the empirical rating distribution from the
asymmetrical ROs. Error bars show 95% confi-
dence intervals of SHO medians.
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(c) Empirical über (above) rating distribution and
model probabilities (rAVSw-comb+ and rAVS-
CoO+) for the left dot shown in Fig. 5.9a. Model
probabilities were computed using the parame-
ters from the best fit plotted in Fig. 5.9b. Partici-
pants never chose rating 1.
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(d) Empirical über (above) rating distribution and
model probabilities (rAVSw-comb+ and rAVS-
CoO+) for the right dot shown in Fig. 5.9a.
Model probabilities were computed using the
parameters from the best fit plotted in Fig. 5.9b.
Participants never chose ratings 1-4 or 6.

Figure 5.9: Example experimental display to illustrate the model extension that enables the
simulation of rating distributions, fits of extended models, and empirical rating
distributions. Image copyright: See Appendix E.

I propose to use the Kullback-Leibler (KL) divergence10 from the sim-
ulated rating distribution (Psim) to the empirical rating distribution
(Pemp). The KL divergence is defined as:

DKL(Pemp||Psim) = −

K∑
i=1

Pemp(i) log
Psim(i)

Pemp(i)
(5.7)

The KL divergence is computed for each RO-LO pair. To find the best
fitting parameters, I minimized the mean KL divergence (averaged over
all stimuli).

10 Solomun Kullback preferred the term “discrimination information” (Kullback, 1987).
Despite this, the measure is widely known as Kullback-Leibler divergence.
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To test the proposed extension, I used the data set from the asymmet-
rical ROs test case. That is, I implemented the model extension for theSimulating full

rating distributions
yields the same
relative model

performances as
considering mean

ratings only.

AVS, rAVSw-comb, AVS-BB, and rAVS-CoO models and fitted (GOF &
SHO) the extended models by minimizing the mean Kullback-Leibler
divergence. The results can be seen in Figure 5.9b. Comparing this
plot with Figure 5.1c (page 119), confirms the validity of the model
extension as the general pattern of relative model performance is repro-
duced (center-of-object models fit the data better than center-of-mass
models).
The model extension also allows the models to generate individual

data by sampling from the simulated rating distribution. Note that the
simulated rating distribution is completely determined by the model
parameters (i.e., it does not change without changing the model pa-
rameters) while the sampled individual ratings are subject to sampling
noise. Apart from modeling individual behavior (a task that goes well
beyondmywork, seeNavarro, Griffiths, Steyvers, & Lee, 2006, for useful
ideas), the individual ratings can be used as input for the next proposed
method that enables Bayesian inference for AVS-like models.

5.7.2 Bayesian Inference Using the Cross-Match Test

One strength of Bayesian data analysis is that it allows to reason about
the values of model parameters by using full probability distributions
(the posterior distributions; cf. my analyses of the empirical data in Sec-
tion 4.2). For regression analyses, this means to quantify the effect size
(mode of posterior distribution) as well as the uncertainty of the model
(spread of the posterior distribution). The same principle, Bayesian
inference, is also applicable to model parameters from cognitive models.
Different from statistical models, the parameters of cognitive models
are often linked to assumed cognitive representations or mechanisms
(e.g., λ in the AVS model as attentional width). The likely values of
these parameters are informative to further understand how a model
works and to inform cognitive theorizing.

Note that while Bayesian inference is natural for so-called Bayesian
models of cognition (e.g., Chater, Oaksford, Hahn, & Heit, 2010), these
models also assume that (parts of) cognition can be best described by
using probability theory (because, so the argument goes, humans have
to deal with uncertainty almost everywhere). It is debated whether this
assumption holds true (e.g., Jones & Love, 2011). Crucially, however, it
is technically not necessary to make this assumption for the application
of Bayesian inference for cognitive models.
What is necessary for Bayesian inference, though, is a likelihood

function. This function specifies how likely empirical data are given a
specific parameter set. All AVS-like models lack a likelihood function.
In the following, I propose to use the cross-match test by Rosenbaum
(2005) as an approximation of the likelihood function.
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Cross-Match Test
The cross-match test (Rosenbaum, 2005) is a statistical test that com-
putes the probability whether multivariate responses from two groups
come from the same distribution. In my case, a multivariate response
(rows in Table 5.1) consists of ratings to all stimuli. These responses
can stem from two groups: human participants or model simulations.
The cross-match test computes rank-based Mahalanobis distances be-
tween all responses andmatches the closest responses. If two responses
from different groups are matched, this is called a “cross-match”. The
more cross-matches exist, the more likely it is that the data in both
groups come from the same distribution (see Rosenbaum, 2005, for
more details).
I cannot change the empirical data but I can change the model-

generated data (by choosing different model parameters). This makes
the cross-match test a likelihood function measuring how likely the
model-generated data (dependent on model parameters) come from
the same distribution as the human data.

Method: Computing the Likelihood Function
The cross-match test requires that a model generates individual data.
The model extension that simulates rating distributions enables such
generation of individual data. To produce one “artificial participant”,
the model simulates the rating distributions for the corresponding stim-
uli and afterwards one can sample individual ratings from these rating
distributions. To compute the likelihood functions of the rAVSw-comb+
and the rAVS-CoO+ models, I generated as many artificial subjects as I
tested human participants (34). Then, I computed the cross-match test
comparing the 34 model-generated data sets with the 34 human data
sets.

The sampling from the rating distributions involves sampling noise,
i.e., the samemodel parameterswill lead to different data sets. However,
the likelihood function should be approximately stable for the same
parameters. This is why I had to follow a more sophisticated process:
For every artificial rating, I sampled s times from the corresponding
rating distribution and used the mean rating (rounded to be an integer)
as generated rating. To further stabilize the outcome of the cross-match
test, I computed an average of several iterations of data generation and
cross-match tests. More precisely, I computed the mean number of
cross-matches for c iterations and stored the resulting probability for
this number of cross-matches. I did this for b blocks with the final
likelihood value being the mean probability of the b single probabilities.
Taken together, the computation of a single likelihood value requires the
generation of 34× s× c× b individual data sets (with 34 human data
sets). I obtained a relatively stable likelihood value with s = 10, c =

4,b = 20 (standard error of averaged cross-match results < 0.05).
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Table 5.1: Example input for the cross-match test (Rosenbaum, 2005). Each
row describes the response of one subject (empirical or model-
generated), each column describes the response to a stimulus (e.g.,
the left or right LO from Fig. 5.9a). Table copyright: See Appendix E.

data type left LO right LO . . .
empirical 7 8 . . .
empirical 9 9 . . .
. . . . . . . . . . . .
model 8 9 . . .
model 5 8 . . .
. . . . . . . . . . . .

Method: Estimating the Posterior Distribution
The posterior distribution of the model parameters is determined by
empirical data (via the likelihood function) and the prior distribution
over the parameter ranges. These prior distributions should consider
previous knowledge about the likely values of the model parameters.
Since this is the first study with probabilistic AVS-like models, I decided
to use “uninformative” prior distributions defined as uniform distri-
butions over the ranges of the parameters (see Equations 3.15–3.17,
page 42, and 5.1–5.2, page 118).

To test the cross-match approach, I estimated the posterior distri-
bution of the rAVS-CoO+ model for the data from the asymmetrical
ROs. First, I estimated the posterior distribution also for the addi-
tional model parameters for the model extension (σ of latent Gaus-
sian distribution and thresholds). Due to the larger parameter space,
the additional model parameters complicated the convergence pro-
cess of the posterior estimation (taking more time and computational
resources), while – compared to keeping the extension parameters con-
stant – the qualitative results for the four original model parameters
(α,highgain, intercept, slope) were not affected. This is why I kept
the extension parameters constant on the values of the best rAVS-CoO+
fit to the data from the asymmetrical ROs.

Given a model with a likelihood function, prior distributions, and an
empirical data set, one can apply standard ‘Markov Chain Monte Carlo’
(MCMC) methods to estimate the posterior distribution. To do so, I
extended the Metropolis-Hastings algorithm (already implemented for
parameter fitting, see Algorithm 1 in Section 3.2.1). Instead of search-
ing for one best parameter set that minimizes the nRMSE or the mean
KL divergence, the MCMC algorithm estimates the posterior distribu-
tion by visiting parameter sets θ proportionally to the corresponding
posterior value (with posterior(θ) ∼ prior(θ) · likelihood(θ)). I es-
timated the posterior distributions with four MCMC chains (125,000
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samples each) and checked convergence with the potential scale re-
duction factor R̂ (Gelman & Rubin, 1992). To improve the convergence
of the MCMC algorithm, I implemented the adaption algorithm by
Garthwaite, Fan, and Sisson (2016). For the cross-match test, I used
the R package crossmatch (Heller, Small, & Rosenbaum, 2012) and re-
implemented parts of it using the C++ library Armadillo (Sanderson &
Curtin, 2016). The R package ggmcmc (Fernández-i-Marín, 2016) helped
in visualizing and analyzing the MCMC samples. All source code is
available from Kluth (2018).

Results: Bayesian Inference
The marginal posterior distributions are visualized in Figure 5.10. Each
chain is plottedwith a different color. The overlap of the different chains
confirms the convergence of all MCMC chains. At a first glance, the
marginal posterior distributions are surprising because they do not have
clear modes. Rather, almost all parameter values seem to be equally
likely with respect to the empirical data. In particular the highgain
parameter and the α parameter have relatively flat distributions, while
the profiles for the intercept and slope parameters are more diverse.
A high posterior density for a certain parameter range means that

these parameter values are more likely than other parameter values.
Since posterior distributions are based on empirical data one can con-
clude the following: Using such more likely parameter values, the
model performance in terms of fitting data should be better compared
to using less likely parameter values. Applying this conclusion to
double-check the validity of the unexpected posterior distributions, I
picked two parameter sets based on the maxima/minima of the distri-
butions. According to the posterior distributions, the first parameter set
is supposed to result in bad model performance (α = 0.2,highgain =

5.0, intercept = 1.25, slope = −0.05). In contrast, the second param-
eter set (α = 3.0,highgain = 5.0, intercept = 0.9, slope = −0.625)
should perform relatively well.

These expectations are confirmed by two independent goodness-of-
fit measures. Using the extended model, the first parameter set fits the
empirical data worse than the second (mean Kullback-Leibler diver-
gence: 0.484 against 0.266, respectively). Also, for the non-extended
rAVS-CoO model, the first parameter set is worse than the second
(nRMSE for worse parameters 0.301 against 0.145 for better parame-
ters). These GOFs provide support for the unexpected shape of the
marginal posterior distributions.

What do the marginal posterior distributions in Figure 5.10 now tell
us? First, the parameter highgain seems to be irrelevant for model
performance as its posterior distribution has a flat profile throughout
the parameter range – all values of highgain are equally likely. Next,
low values of the α parameter correlate with bad model performance
(the posterior density of α decreases on the left hand side). Given that
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Figure 5.10: Marginal posterior distributions for the rAVS-CoO+ model given
rating data from asymmetrical ROs and “uninformative” prior
distributions (uniform distributions). Image copyright: See Ap-
pendix E.

α weights the importance of the proximal vs. center-of-object orien-
tation in the rAVS-CoO+ model, this means that the center-of-object
orientation seems to be more important than the proximal orientation
for accommodating the asymmetrical RO data. This is because lower
values of α that favor the proximal orientation over the center-of-object
orientation result in a lower value of the posterior distribution – i.e.,
lower values of α (advantage of proximal orientation) are less likely
than higher values of α (advantage of center-of-object orientation).

The twoparametersα andhighgain are part of themodel component
that processes the spatial configuration and the geometry of the RO.
The outcome of this model component is an angular deviation from
a reference direction. A second model component maps this angular
deviation to an acceptability rating. This second model component
consists of a linear function and relies on the two parameters intercept
and slope. The marginal posterior distributions for intercept and
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slope showmore diverse profiles with relatively clear maxima/minima
compared to the α and highgain distributions. When comparing the
effects on model performance by changing the values of intercept and
slope to the same degree as α and highgain (relative to the allowed
parameter ranges), changing intercept or slope will most likely affect
model performance stronger than changing alpha or highgain. These
observations are somewhat qualified considering the decrease of the
posterior density of α for small values.

Nonetheless, an interesting conclusion from the posterior distribu-
tions is that the second component (mapping angular deviation to Mapping angular

deviation to a rating
seems to affect model
performance stronger
than computing the
angular deviation
from geometry.

ratings using the parameters intercept and slope) seems to have a
greater influence onmodel performance than the first component (deal-
ing with geometric processing using the parameters α and highgain).
This conclusion is contrary to the fact that most researchers using ex-
perimental paradigms similar to the study presented in Chapter 4 are
primarily interested in the question how the processing of geometric
properties of depicted spatial relations affects spatial language eval-
uation. In contrast, my results suggest that the question of how the
outcome of perceptual processes is mapped to linguistic judgments
deserves more attention than the perceptual processing itself. Note that
all conclusions are only valid for the tested model and data set. Future
research should investigate them more closely.
Moreover, Vishal Singh (Indian Institute of Technology) conducted

unpublished follow-up work11 to validate the approach of using the
cross-match test as a likelihood approximation. This follow-up work
casts serious doubt on the validity of the cross-match approach, as
the cross-match likelihood failed to estimate known posterior distri-
butions. In terms of the above conclusion (mapping component more
important than geometry processing component), this calls for further
investigations using different tools. Certainly a fruitful choice for this
is the ‘Approximate Bayesian Computation’ toolkit (ABC, see Palestro,
Sederberg, Osth, van Zandt, & Turner, 2018; Turner & Van Zandt, 2012,
for general introductions; Turner & Sederberg, 2014, for a promising
algorithm). The goal of ABC is to provide tools that enable cognitive
modelers to analyze non-probabilistic cognitive models with Bayesian
methods. Because many cognitive models lack a likelihood function,
ABC algorithms provide so-called “likelihood-free Bayesian analysis”.
Unfortunately, time did not allow to apply ABC methods for AVS-like
models in this Ph.D. project.

11 in the scope of an internship at the University of Bremen under the supervision of
Holger Schultheis
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6TOWARDS A COMPREHENS IVE MODEL OF SPAT IAL
LANGUAGE PROCESS ING

The computational and empirical studies conducted within this Ph.D.
project were motivated by the following question: In order to process
the description of a spatial relation, are humans shifting their attention
from the RO to the LO or from the LO to the RO? The main outcome of
this project is that one cannot reliably answer this research question –
given the existing empirical data and the implementations of directed
attentional shifts (AVS, AVS-BB, rAVSw-comb, and rAVS-CoO models).
This is why, in Section 6.2, I discuss future directions (based on the

findings from the present research) on how to enhance the cognitive
models in order to obtain a more comprehensive model of spatial lan-
guage processing. Such a model might provide more fine-grained
answers to the question of the directionality of the attentional shift. In
order to relate my findings to future model enhancements, I follow the
seminal three-level approach proposed by David Marr (1982). Doing
so, connects the currently binary question (shift fromRO to LO vs. LO to
RO; cf. Newell, 1973) to further relevant research. This allows cognitive
scientists to ask more subtle questions in the future and thus to more
fully understand spatial language processing. First, this chapter starts
in Section 6.1 with a summary of the results described in the previous
chapters. In Section 6.4, the thesis closes with a final conclusion.

6.1 summary of findings

In Chapters 1 and 2, this thesis started with a review of literature rele-
vant for understanding the contribution of visual attention to spatial
language verification. From this review, one important insight emerged:
While shifts of attention seem to be an inherent part of processing spa-
tial relations (Franconeri et al., 2012), the specific direction of such
shifts for the processing of spatial prepositions remains unclear. On
the one hand, influential theoretical research on spatial language pro-
cessing claims that people should shift their attention from the RO to
the LO (Logan, 1994, 1995; Logan & Sadler, 1996; Logan & Zbrodoff,
1999). On the other hand, more recent empirical studies suggest that
attention moves from the LO to the RO (Burigo & Knoeferle, 2015; Roth
& Franconeri, 2012). The AVS model (Regier & Carlson, 2001) can be
interpreted as an implementation of the “traditional” account of a shift
from the RO to the LO. Hence, this Ph.D. project set out to modify the
AVS model in order to implement a reversed shift from the LO to the
RO. I called this modification the reversed AVS (rAVS) model. If any of
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these two implementations (that differ in their directionality of atten-
tion) performs better on human data than the other, this would provide
evidence in favor of the superiority of the implemented directionality.
In Chapter 3, I developed several model variations that reverse the

attentional shift in the AVS model. These rAVS variations were based
on two geometrical properties known to affect acceptability ratings:
the proximal orientation and the center-of-mass orientation. I assessed
all rAVS variations on the empirical data collected by Regier and Carl-
son (2001, above acceptability rating data). One rAVS variation – the
rAVSw-comb model – performed equally well on these data as the AVS
model. Thus, both directionalities of attention seemed to be equally
likely to describe these human data.
Chapter 4 presented novel stimuli with the goal of contrasting the

two shift-implementations regarding their distinct predictions for these
stimuli. More specifically, I created two test cases: a relative distance
test case (consisting of rectangular ROs with different heights) and an
asymmetrical ROs test case (investigating the influence of asymmet-
rical mass distributions on ratings). I conducted an empirical rating
study that tested whether humans followed the model predictions. The
rating study revealed that the relative distance of the LO to the RO (i.e.,
absolute distance divided by width and height of the RO, see Equa-
tion 3.5 on page 37) affected acceptability ratings. Regression analyses
showed that relative distance modulated the effects of the proximal
orientation and the center-of-mass orientation: Higher relative distanceRelative distance

modulates the effects
of the proximal

orientation and the
center-of-mass

orientation.

strengthened a reversed effect of center-of-mass orientation and lower
relative distance weakened the effect of proximal orientation. While
this finding confirms the general prediction of the rAVSw-comb model
(relative distance should modulate the effect of the two orientations),
the rAVSw-comb model cannot account for the specific qualitative inter-
actions of the predictors relative distance, proximal orientation, and
center-of-mass orientation. The AVS model also fails to fully accom-
modate the empirical results. Future research should investigate the
relative distance effect more closely.

For the asymmetrical ROs, the empirical results suggest that people
rather rely on the center-of-object orientation than on the center-of-mass
orientation. This finding goes against the importance of the center-of-People seem to prefer

the center-of-object
orientation over the

center-of-mass
orientation.

mass orientation implemented in both the AVS and the rAVSw-comb
model. To account for the seemingly greater importance of the center-
of-object orientation, I developed modifications to both models (the
AVS-BB model and the rAVS-CoO model) and presented these in Chap-
ter 5. While these center-of-object models outperform their predeces-
sors, future research should analyze to what extent a flat vs. non-flat
top/bottom of the RO (facing the LO) qualifies the importance of the
center-of-object vs. center-of-mass orientation.

In terms of eye movements (overt attention), the empirical data con-
firmed the horizontal component of the attentional focus as defined in
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the AVS model. The rAVSw-comb model also uses this point. However,
the design of the study does not allow me to interpret the data as con-
firming the vertical component of the hypothesized focus. Although
the empirical gaze patterns do not contradict the theorized vertical
location of the focus, one cannot say whether this is due to the used
preposition or the vertical location of the LO. For the asymmetrical ROs,
the study revealed two different gaze patterns: While for the more open
asymmetrical ROs (L-shaped), participants’ fixations were influenced
by the asymmetrical mass distribution, the gaze patterns for the more
closed asymmetrical ROs (C-shaped) could not be distinguished from
fixation patterns to the rectangular ROs.

Chapter 5 presented the outcomes of several model evaluation tech-
niques using data and stimuli from the conducted empirical study.
These model simulations revealed that, in contrast to the center-of-mass The center-of-object

models outperform
the center-of-mass
models.

models AVS and rAVSw-comb, the two newly proposed center-of-object
models AVS-BB and rAVS-CoO better fit the empirical data (GOF and
SHO) while they are less flexible (MFA, landscaping) and generate
rating patterns closer to the empirical patterns (PSP). This supports
the idea that people rely on the center-of-object orientation instead of
on the center-of-mass orientation. However, in terms of distinguishing
between the two contrasting shifts of attention – from the RO to the LO,
AVS and AVS-BB, or from the LO to the RO, rAVSw-comb and rAVS-CoO
– the simulation results remain inconclusive. Neither implemented di- Neither directionality

of attention accounts
better for the
empirical data than
the other.

rectionality outperforms the other. One potential reason for this is the
failure of both models to capture the effect of relative distance. Taken
together, the simulation results highlight the relatively strong effects
of geometrical properties on spatial language verification (relative dis-
tance, center-of-object orientation). By contrast, the effect of reversing
the directionality of the attentional shift on acceptability ratings seems
to be too indirect to be reflected in distinct model performances.

In order to investigate the models with a greater level of detail, Chap-
ter 5 closed with presenting a model extension. This extension enables
AVS-like models to generate full rating distributions instead of mean
ratings. This allows to use all available information in the empirical
data to assess the models (because data aggregation such as averaging
is not needed). The remainder of the present chapter presents ideas
for further model refinements that could help to untangle the role of
the directionality of the attentional shift. To do so, I reconsider related
research from Chapters 1 and 2 as well as discuss the just summarized
findings from this Ph.D. project. The seminal three-level framework
proposed by Marr (1982) serves as a structuring guideline.

6.2 levels of analysis: marr’s three-level proposal

More than 30 years after its publication, Marr’s three-level suggestion re-
mains relevant for cognitive science (e.g., reflected by the re-publication
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of his bookVision, Marr, 2010, or the recent special issue in Topics in Cog-
nitive Science, Peebles & Cooper, 2015). Although originally proposed
for computational models of human vision, nowadays Marr’s three
levels are considered useful for all domains of cognitive modeling. Any
cognitive model can and should be analyzed on three interacting levels:
the computational level, the algorithmic/representational level, and
the implementational level. Each level is subject to different questionscomputational: what

and why?
algorithmic: how?

(algorithms &
representations)

implementational:
how? (neuronally)

regarding the modeled task. The computational level asks what the cog-
nitive system computes – and why. The algorithmic/representational
level specifies how the task is computed in terms of algorithms (or
processes) and representations. Finally, the implementational level
asks how the algorithms and representations might be implemented in
the brain. How could one interpret AVS-like models using these three
levels?

6.2.1 AVS-like Models and Marr’s Levels

computational level The answer to the “what is computed?”
question of the computational level is straight-forward: a linguistic
acceptability rating of a spatial preposition, given a depicted spatial
relation. Why would humans compute such a rating? The main mo-
tivation for the development of AVS-like models was to investigate
how people ground (spatial) language in the external world. That is,
despite the infinite number of possible spatial configurations, human
language parses space in few (relatively distinct) spatial categories and
uses spatial prepositions to describe these categories. A reason for this
categorization might be that a central purpose of language is efficient
communication. Typically, there is no need to know the exact location
of an object. Accordingly, language users can rely on broad but flexible
categories (via spatial relations) instead of having to negotiate more
detailed spatial aspects of their utterances. However, the membership
of a spatial relation to a linguistic spatial category must be somehow
computed. A linguistic acceptability ratingmeasures this membership.1

algorithmic/representational level I claim that AVS-likemod-
els are primarily specified on the algorithmic/representational level.
That is, they try to answer how (in terms of algorithms/processes and
representations) humans compute linguistic acceptability ratings of
spatial prepositions. More specifically, AVS-like models assume (i)
polygons as (perceptual) representations of the two objects that are
part of the relation, (ii) labels as (linguistic) representations that distin-
guish the RO from the LO, (iii) vectors as (perceptual) representations
of the spatial relation, and (iv) a canonical direction as (linguistic?)

1 It remains an interesting question whether humans actually compute such ratings
(or the like) during spatial language processing or whether the ratings are merely an
artifact of psycholinguistic experiments.
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representation of the prototypical meaning of the to-be-judged spatial
preposition.

In terms of algorithms or processes, AVS-like models implement (i)
an attentional selection of one of the two objects (with their attentional
distribution, see also Section 2.3), (ii) an attentional shift from one
object to the other that yields a direction, (iii) an angular comparison
of directions to obtain an angular deviation, and (iv) a mapping of
angular deviation to linguistic acceptability rating. Different variations
of the models further implement specific mechanisms that process
the spatial properties of the involved objects: In the AVS and AVS-BB
models, the weighted vector sum (a type of spatial pooling, see page 20)
translates the spatial relation into the attentional shift; in the rAVSw-comb
and rAVS-CoO models, relative distance, proximal orientation, and
center-of-mass/object orientation interact with each other to yield the
attentional shift.

implementational level On the implementational level (how
are the proposed mechanisms and representations from the algorith-
mic/representational level implemented in the brain), AVS-like models
are underspecified. Admittedly, Regier and Carlson (2001) motivate
the weighted vector sum with neuroscientific research on neuronal
population codes for movements (Georgopoulos et al., 1986; Lee et al.,
1988; Wilson & Kim, 1994). Additionally, the attentional distribution
certainly could be linked to respective neuroscientific research on spa-
tial attention. However, it seems more difficult to link other core model
parts to potential neurological substrates (e.g., comparison of angles or
mapping of angular deviation to linguistic rating).
Based on this interpretation of AVS-like models in terms of Marr’s

three levels and on the literature reviewed in Chapters 1 and 2, the
remainder of this chapter conceptualizes both the findings of this Ph.D.
project as well as potentially fruitful model extensions following Marr’s
framework.

6.2.2 Extending the Computational Level: The Role of Language in (Spatial)
Category Perception

To describe cognition on the computational level, researchers have used
Bayesian models of cognition that often describe a rational or optimal
solution to problems faced by cognitive systems (see e.g., Chater et al.,
2010; Griffiths, Kemp, & Tenenbaum, 2008, for reviews). Although this
general endeavor has been criticized (Jones & Love, 2011, in particular
for assuming that cognition aims for (mathematically) optimal solu-
tions using rational principles), I think it is a promising way to spell
out the computational level of AVS-like models in more detail.
In the domain of space, language applies spatial categories. One

important goal of language use is successful communicationwith others.
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More specifically, spatial language should help listeners to find objects.
Given a spatial sentence and a scene, the spatial description helps in
narrowing down the search space, i.e., where to look for the located
object. The more the LO position overlaps with the intended spatial
category, the higher the probability of efficiently finding the LO.

Phrased in Bayesian terms, spatial language processing should max-
imize the (posterior) probability of finding the LO based on a prior
known spatial category given the actual location. Relating a spatial
description to a depicted spatial relation then boils down to compute (a
graded) membership of the depicted relation to the linguistic category
(used in the spatial description). The acceptability rating computed
by AVS-like models can be interpreted as such a graded membership
value.

Interpreted in this way, the task of relating (categorical) spatial prepo-
sitions to (fine-grained) spatial relations reminds of the distinction
between categorical vs. coordinate spatial relation processing from cog-
nitive neuroscience research (see Section 2.2.2). This research revealed
that visual attention plays an important role for processing a spatial
relation as either categorical or coordinate. More specifically, categor-
ical processing of spatial relations is enhanced, if people use a small
attention window (only selecting one object of the relation at a time).
By contrast, with a large attention window, coordinate processing of
spatial relations improves. This supports the general claim that shifts
of visual attention are crucial for categorical spatial relations (see also
the discussion of this process in Section 6.2.3).
While missing the explicit link to the neuroscience literature, the

Category Adjustment (CA) model proposed by Huttenlocher, Hedges,
and Vevea (2000, see also Crawford, Huttenlocher, & Hedges, 2006)
distinguishes between prior categorical information and fine-grained
encoded stimuli, too. The CA model holds that for stimulus judgments
(not restricted to spatial judgments), humans apply Bayesian estima-
tion to maximize the average accuracy. More precisely, the CA model
assumes that prior categorical information affects the re-production of
fine-grained but inexact encoded stimuli. One prediction from the CA
model is that stimuli reproduction is biased towards the center of cate-
gories. Huttenlocher, Hedges, Corrigan, and Crawford (2004) tested
this prediction with spatial relations. The results from Huttenlocher
et al. (2004) are summarized in Section 6.2.3, as they highlight spatial
reference frames as important representations.
In summary, one could apply the CA model from Huttenlocher et

al. (2000) as a computational level description for computing spatialSpatial language
verification means

matching categorical
spatial prepositions

to fine-grained
locations.

term acceptabilities. The general claimwould be: On the computational
level, spatial prepositions are understood best, if they match their cor-
responding spatial categories. This explicates the goal of the overall
task for the cognitive system (maximizing probability for finding LOs)
– a discussion missing in Regier and Carlson (2001). Moreover, there is
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evidence supporting the general idea of language being optimal in cat-
egorizing real-world entities (Kemp & Regier, 2012; Khetarpal, Majid,
& Regier, 2009; Regier & Xu, 2017).

6.2.3 Explicating the Algorithmic and Representational Level: Reference
Frames and Attentional Shifts

The AVS-like models are already primarily specified on the algorith-
mic/representational level. This section aims to explicate existing rep-
resentations and processes and to link them to relevant research. First,
I review empirical findings based on predictions from the CA model
– the model identified to be a suitable fit for the computational level.
These findings highlight the important role of reference frames in spatial
cognition.
More than 20 years ago, Logan (1995, p. 103) proposed a “theory

[that] interprets [spatial] reference frames as mechanisms of attention,
similar to spatial indices but with more computational power.” More
precisely, the proposed “theory of voluntary, top-down control of visual
spatial attention [...] explains how linguistic cues like ‘above,’ ‘below,’
‘left,’ and ‘right’ are used to direct attention from one object to another”
(Logan, 1995, p. 103). More recently, Gibson and colleagues extended
this theory (Gibson & Sztybel, 2014, see Section 2.2.3). Reviewing Shifts of visual

attention operate on
spatial reference
frames.

several studies applying Posner’s spatial cueing paradigm to test their
theory (see Section 2.1.1), Gibson and Sztybel (2014) suggest that the
spatial reference frame (that needs to be imposed on the RO) controls
shifts of attention in response to linguistic cues. This makes reference
frames likely representations on which shifts of attention operate: Ref-
erence frames might structure space so that shifts of attention “know
where to go”.

Despite representing attentional shifts, AVS-like models lack a repre-
sentation of a reference frame. This is why I suggest to add an explicit
representation of a spatial reference frame. To this end, I review rele-
vant research on spatial reference frames and sketch potential reference
frame implementations in AVS-like models. Thereafter, in terms of
processes, I highlight the important role of shifts of visual attention
(operating on spatial reference frames). Throughout the section, I dis-
cuss the effects from the empirical study in Chapter 4 in light of the
proposed explications of the algorithmic/representational-level.

Reference Frames
In research on linguistic and non-linguistic categorization of space,
spatial reference frames – in the form of cardinal axes – were identified
as important representations. For instance, Huttenlocher et al. (2004)
investigated spatial categorization to test predictions from theCAmodel
(a potential model of spatial language verification on the computational
level). One prediction from the CA model is that stimuli reproduction
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is biased towards the center of categories. Huttenlocher et al. (2004,
see also Huttenlocher, Hedges, & Duncan, 1991) placed small dots in a
circle and presented this to their participants for one second (only one
dot visible per trial; see Figure 6.1).2 Thereafter, participants had to re-
create the location of the dot in an otherwise blank circle. Huttenlocher
et al. (2004, 1991) found that the estimated locationswere systematically
biased towards the centers of the four quadrants of the circle (i.e., top
right, bottom right, bottom left, top left; see Figure 6.1a). The closer a
dot was placed to a cardinal axis, the more participants mis-placed it
towards the center of the quadrant category. Thus, the cardinal axes
(interpretable as the circle’s intrinsic spatial reference frame) seem to
serve as boundaries of the categories, while the diagonal axes – located
at the centers of the quadrants – seem to be prototypes of the spatial
categories.
Crucially, Huttenlocher et al. (2004) found that this spatial catego-

rization did not change with a higher distribution of dots around the
cardinal axes (a manipulation to make the diagonal axes better cate-
gory boundaries; see Figure 6.1b): Even if participants were explicitly
instructed to use the diagonal axes as category boundaries, their estima-
tions remained biased to the center of the quadrants (but see Lipinski,
Simmering, Johnson, & Spencer, 20103). This suggests that the quad-
rants are strong a priori spatial categories (see also Crawford, Regier, &
Huttenlocher, 2000). With respect to the linguistic vs. non-linguistic
representation of space, Crawford et al. (2000, p. 209) state that their
“findings suggest that while linguistic and non-linguistic spatial organi-
zation rely on a common underlying structure, that structure may play
different roles in the two organizational systems”.

More to the point, the cardinal axes seem to serve as boundaries for non-
linguistic spatial categorization but as prototypical examples for linguisticCardinal axes are

important for
linguistic and
non-linguistic

categorization of
space.

categorization (cf., Hayward & Tarr, 1995, summarized in Section 1.1.2).
Munnich, Landau, and Dosher (2001) reason that linguistic success
relies on clearly specified categories (cf. Section 6.2.2). The cardinal
axes are salient geometric properties which might be a reason why
linguistic encoding of space makes use of them (compare this with
the use of salient intrinsic reference frames in spatial descriptions, e.g.,

2 See e.g., Kranjec et al. (2014) and van der Ham and Postma (2010) for studies with
similar stimuli in the cognitive neuroscience tradition of categorical vs. coordinate spa-
tial relations. See Franklin, Henkel, and Zangas (1995) for presenting related empirical
evidence that locations relative to an egocentric reference frame (‘surrounding space’)
follows a spatial structure similar to those found by Huttenlocher et al. (1991). Finally,
see Feist and Gentner (2007) for biases towards centers of linguistic categories in a
memory task with spatial relations.

3 While Huttenlocher et al. (2004) argue that the quadrants in a circle are robust spatial
categories – immune to changes in distributions of dots –, Lipinski, Simmering, et al.
(2010) consider longer time scales and show that different distributions can affect the
use of these categories. (See also Lipinski, Spencer, & Samuelson, 2010a, for findings
related to learning and Schutte & Spencer, 2009, for work that addresses developmental
changes in spatial categorization.)



6.2 explicating the algorithmic and representational level 159

(a) Schematized directions of biases in lo-
cation estimations as found by Hutten-
locher et al. (1991).

(b) Material from Huttenlocher et al. (2004,
exp. 3): Distribution of dots clustered
around cardinal axes as well as diago-
nal axes that participants should use as
category boundaries.

Figure 6.1: Visualization of stimuli and findings from location estimation stud-
ies by Huttenlocher et al. (2004, 1991); Lipinski, Simmering, et al.
(2010). Image copyright: See Appendix E.

“The tree is in front of the bike”). On the other hand, their saliency
also establishes the cardinal axes as very precise boundaries for spatial
categories. Precise boundaries help in avoiding mis-categorizations of
stimuli which could be the reason for a predominance of cardinal axes
as boundaries in non-linguistic spatial categorization.

A different explanation for the seemingly conflicting data from Craw-
ford et al. (2000) and Huttenlocher et al. (2004, cardinal axes as bound-
aries) vs. Hayward and Tarr (1995, cardinal axes as prototypes) is
provided by Lipinski, Spencer, and Samuelson (2009, 2010b). Lipinski,
Spencer, and Samuelson (2010b) show that while Crawford et al. (2000)
and Hayward and Tarr (1995) used similar tasks in their investigations
of (non-)linguistic representations of space, the tasks differed in an
important aspect: the delay after which participants had to rate or recall
a spatial relationship. Lipinski, Spencer, and Samuelson (2010b) argue
that this makes it difficult to compare the empirical data from the tasks.

Accordingly, aiming for better-comparable linguistic rating tasks and
non-linguistic spatial recall tasks, Lipinski, Spencer, and Samuelson
(2010b) manipulated the delay after which participants had to respond
– either immediately or after 10 seconds (see also Lipinski et al., 2009).
Interestingly, they found that both linguistic and non-linguistic tasks
were affected by the delay in the same direction. For the non-linguistic
spatial recall task, people showed greater bias and greater variability
in location estimation with an increasing delay. Correspondingly, for
the longer delay, people gave lower acceptability ratings with a higher
variability. Note that lower linguistic ratings correspond to a spatial
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drift away from the cardinal axes which is the same pattern as found
for the non-linguistic location estimations.
Lipinski, Spencer, and Samuelson (2010b) propose that linguistic

and non-linguistic organization of space is driven by shared represen-
tational states (following Hayward & Tarr, 1995). Lipinski et al. (2009)
support this claim by simulations of a computational model. Crucially,
the representational states (contrasting static representations) depend
on time – they are dynamic. This challenges the AVS and the CAmodelAVS-like models lack

a temporal
component.

(which Lipinski et al., 2009, explicitly mention), which both lack a tem-
poral component. The computational model proposed by Lipinski et al.
(2009) is formulated in the ‘Dynamic Field Theory’ (DFT) framework.
The DFT is a comprehensive framework to build neuronally plausible
cognitive models. This is why I present the model from Lipinski et
al. (2009) as a promising candidate for the implementational level in
Section 6.2.4. In particular, the DFT model provides an elegant and
neuronally plausible explanation of how reference frames might be
represented and processed in the brain.
Another line of research asks whether the cross-linguistically dif-

ferent use of spatial reference frames affects non-linguistic cognition
(e.g., Brown & Levinson, 1993; Levinson, 2003; Levinson, Kita, Haun,
& Rasch, 2002; Li & Gleitman, 2002; Majid, Bowerman, Kita, Haun, &
Levinson, 2004). For instance, Brown and Levinson (1993) tested speak-
ers of Dutch and Tzeltal (a Mayan language spoken in Mexico). While
Dutch (similar to English and German) uses a relative reference frame
to describe scenes like “The glass is to the left of the plate”, Tzeltal uses
an absolute reference frame: “The glass is north of the plate”.

Themain idea behind the experimental paradigm used by Brown and
Levinson (1993, and many others, see Levinson, 2003; Majid et al., 2004)
is to let participants perform a spatial task (e.g., to remember a spatial
relation like glass-left-of-plate) and thereafter to rotate participants
by 180 degrees and let them do another spatial task (e.g., to re-create
the remembered spatial relation). For Dutch speakers, the linguistic
reference frame rotates with their bodies while for Tzeltal speakers the
linguistic reference frame remains stable during the rotation. A solu-Different languages

use different reference
frames, affecting their

non-linguistic
categorization of

space.

tion to the task (e.g., remembering and re-creating a spatial relation)
that relies on an absolute reference frame should result in the same
absolute placement of the objects regardless of participants’ rotation
– the rotation does not change the “north-object”. In contrast, after a
180 degrees rotation, a relative solution should place the objects with
respect to the viewer – effectively reversing the absolute placement of
the objects. Indeed, Brown and Levinson (1993) found that Tzeltal
speakers predominantly solved the task with absolute solutions while
Dutch speakers provided relative solutions. Based on this type of stud-
ies, Majid et al. (2004, p. 108) “argue that language can play a significant
role in structuring, or restructuring, a domain as fundamental as spatial
cognition”.



6.2 explicating the algorithmic and representational level 161

adding reference frames to avs-like models Taken together,
spatial reference frames are important representations for spatial cog-
nition and spatial language. In particular, reference frames are crucial AVS-like models

should explicitly
contain a spatial
reference frame.

for the interaction of linguistic and non-linguistic spatial organization.
Despite this importance, AVS-like models lack an explicit reference
frame representation (but see Schultheis & Carlson, 2018, who combine
the AVS model with a model of reference frame selection).
Remember that a reference frame is theorized to consist of four pa-

rameters (Logan & Sadler, 1996, see Section 2.2.1): origin, orientation,
direction, and scale. Schultheis and Carlson (2017) provide evidence
that in case of conflicting reference frames (e.g., absolute reference
frame provided by gravity vs. relative reference frame provided by a
reclining observer), humans do not select between complete reference
frames but rather select single reference frame parameters based on the
available information. Thus, it seems appropriate to integrate each ref-
erence parameter independently from the others into AVS-like models
(instead of implementing complete reference frames).

However, the reference direction in AVS-like models (against which
the direction of the vector sum is compared to in order to obtain an an-
gular deviation) seems to encode both the orientation and the direction
of the axis corresponding to the modeled preposition. While the orien-
tation rotates the axes of a reference frame, the direction distinguishes
above from below or left from right. Both, the orientation and the di-
rection of the RO (e.g., Carlson-Radvansky & Logan, 1997) and the LO
(e.g., Burigo et al., 2016; Burigo & Sacchi, 2013; Burigo & Schultheis,
2018) affect spatial language acceptability judgments. However, Burigo
and Schultheis (2018) provide evidence that the orientation of the LO
seems to be irrelevant for spatial language use while the direction of
the LO has an effect. A future enhancement for AVS-like models should
discuss these different contributions of orientation vs. direction to spa-
tial language use by untangling the current intertwinement of both
reference frame parameters in the models.

The empirical findings presented in Chapter 4 could inform the role
of the two other reference frame parameters (origin and scale) in AVS-
like models. The origin parameter could be interpreted as a reference
point within the RO. Here, the rating data from the asymmetrical ROs
suggest that the center-of-object might be a more appropriate reference
point than the center-of-mass. In addition, the collected eye-tracking
data could prove useful for identifying a preferred reference point in the
RO (see also the discussion about spatial pooling in the next section).
Finally, the test case related to relative distance revealed interesting
details about the effect of the RO size. This could be an important
source of information for the scale parameter of the reference frame.
One idea to explicate the scale parameter is to encode it via the length
of the vector sum or the reference direction – currently, these lengths
do not matter for the model computations. After having discussed
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reference frames, the next section considers a fundamental process that
likely operates on spatial reference frames: shifts of visual attention.

Shifts of Visual Attention
Shifts of visual attention are important for processing spatial relations
(see Section 2.2.3). Likely, attentional shifts operate on spatial reference
frames (Gibson & Sztybel, 2014; Logan, 1995). Logan (1995, p. 103) in-
terprets “reference frames [as being] similar to spatial indices”. Spatial
indices are theorized to ground mental representations in the visual
world (Pylyshyn, 2000, 2001; Spivey et al., 2004, see Section 2.1.1). Taken
together, shifts of visual attention operating on reference frames are
most likely grounding spatial language in the visual world.
Here, a correspondingly enhanced AVS-like model could further

benefit from being combined with the CTVA model (Bundesen, 1998;
Logan, 1996; Logan & Bundesen, 1996, see Section 2.1.1). The CTVA
is rooted in visual attention research and thus could help to more
explicitly link the notion of attention in AVS-like models to relevant
research. On the other hand, the CTVA lacks an explicit account of
the selection between objects (Logan, 1996, p. 623 and 635). Here, the
AVS-like models are a useful addition, as their implementation of shifts
of attention represents such selection. Moreover, “[i]n principle, CTVA
should interface nicely with theories in which spatial indexing is an
important process” (Logan, 1996, p. 615). Thus, I reckon integrating
the CTVA with AVS-like models is a fruitful undertaking. This model
combination would foster our understanding of how visual attention
grounds spatial language in the visual world.

Particularly important for grounding spatial prepositions is the pro-
cess of shifting visual attention. This importance is also reflected within
the neuroscientific distinction of categorical vs. coordinate processing
of spatial relations.4 Here, researchers found that small attentional
windows enhance categorical processing while large attentional win-
dows enhance coordinate processing (e.g., Laeng et al., 2011, see also
Section 2.2.2). Crucially, with a small attentional window one cannot
select the two objects of a spatial relation simultaneously. This suggests
that categorical processing of spatial relations (e.g., processing spa-
tial prepositions) depends on serial movements (i.e., shifts) of visual
attention (see also Stocker & Laeng, 2017).

Potentially, visual attention actively controls whether humans process
a given spatial relation categorically or coordinately: For linguistic tasks,
attention might be more focused than for non-linguistic tasks, where
attention might be more broadly distributed. This idea might also be a
valuable perspective for research on linguistic vs. non-linguistic spatial
categorization (e.g., Hayward & Tarr, 1995; Huttenlocher et al., 2004,

4 See also Kosslyn (2006, p. 1523): “In fact, I would not be surprised if the distinction
between categorical and coordinate spatial relations provides insight into how linguistic
categories bridge to perceptual representations.”
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2000; Lipinski et al., 2009, see page 157f). This is because this type
of research also distinguishes between coarse spatial categories and
fine-grained encoded stimuli locations (e.g., in the Bayesian CA model,
Huttenlocher et al., 2000, see Section 6.2.2).

Considering the main outcome of this Ph.D. project, it seems that the
directionality of the attentional shift (from the RO to the LO vs. from
the LO to the RO) does not matter for spatial language verification.
However, the orientation of the attentional shift is important for spatial
language verification. In AVS-like models, the orientation of the atten-
tional shift is encoded in the orientation of the vector sum. The angular
deviation of this orientation to the reference direction (as implemented
in the models) is a major component affecting the model outcome. In
terms of reference frame parameters, this orientation-focused mech-
anism favors the orientation parameter over the direction parameter
(with respect to the importance for spatial language verification). This
interpretation contrasts the findings from Burigo and Schultheis (2018)
who found that the orientation of the LO seems to be irrelevant for
spatial language use while the direction of the LO has an effect. Future
research should specify how the reference frame parameters (with one
reference frame per object) interact with the orientation and direction
of the attentional shift (that moves from one object to the other).

the importance of the vector sum As a final point in discussing
the algorithmic/representational level, I want to highlight the role of
the weighted vector sum. There are two important components of the
weighted vector sum: averaging and directing.

In terms of averaging, the vector sum is related to studies in saccadic
and perceptual localization (e.g., Cohen, Schnitzer, Gersch, Singh, &
Kowler, 2007; Desanghere & Marotta, 2015; Melcher & Kowler, 1999;
Nuthmann & Henderson, 2010; Vishwanath & Kowler, 2003). In these
studies, researchers investigate how the visual system computes refer-
ence points on objects, e.g., preferred fixation landing positions when
participants are instructed to “look at the object as a whole”. Across
several different conditions, the center-of-mass of an object was identi-
fied as a preferred saccadic end point. The eye-gaze data presented in
Chapter 4 support this evidence by showing that participants’ fixations
were affected by the asymmetrical mass distribution of the L-shaped
objects: The more object mass an area contained, the more fixations
landed in this area (despite acceptability ratings not reflecting the asym-
metrical mass distribution). However, Vishwanath and Kowler (2003)
found that preferred reference points were also affected by the specific
task given to the participants.5 Such task-dependency could explain
why the gaze patterns for the less open C-shaped ROs from Chapter 4

5 Interestingly (with respect to the discussion of the importance of reference frames),
Vishwanath and Kowler (2003, p. 1652) mention “a reference frame effect” as a possible
explanation for biases in alignment judgments.
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did not reflect the asymmetrical mass distribution. Rather, participants
fixated the C-shaped ROs as if they were rectangular.

As a likely mechanism in the visual system for computing reference
points, researchers proposed ‘spatial pooling’ (e.g., Melcher & Kowler,
1999; Vishwanath & Kowler, 2003). This mechanism averages informa-
tion over a given spatial region. Given that the vector sum in AVS-like
models is spatially restricted (to a single object only), the averaging
component of the vector sum can be interpreted as spatial pooling.
Interestingly, Cohen et al. (2007) showed that spatial pooling interacts
with attention. Cohen et al. (2007) presented stimuli displays that con-
tained both target and distractor objects. Crucially, the distractor objects
were located within the same region as the target objects. However, for
the experimental task, only target objects should be considered (while
distractor objects should be ignored). The results from Cohen et al.
(2007) suggest that instead of pooling across an entire spatial region,
an attentional filter enables the visual system to selectively average
information from target objects only. As a consequence, Cohen et al.The attentional

vector sum is similar
to attentionally
weighted spatial

pooling.

(2007) suggest a spatial pooling mechanism that is weighted by atten-
tion. This reminds of the attentional weighting of the vector sum in
AVS-like models. Future research should combine these two lines of
research. AVS-like models would profit from being explicitly linked
to mechanisms of overt attention (i.e., saccades) that specify how the
visual system “selects” objects.

The second component of the vector sum is its direction which en-
codes the direction of the attentional shift. Apart from this interpre-
tation, the use of a vector sum aligns well with existing vector-based
approaches of spatial cognition in general and the semantics of spatial
prepositions in particular (e.g., O’Keefe, 1996, 2003; Zwarts, 1997, 2017;
Zwarts & Gärdenfors, 2016). In particular, the ‘vector grammar’ theory
put forward by O’Keefe (1996, 2003) could be a promising candidate
to extend AVS-like models (i) with further spatial prepositions and
(ii) with connections to neuroscientific literature. Connections to neu-
roscientific literature can be made because John O’Keefe is known for
discovering place cells in the hippocampus, a discovery for which he
was awarded the 2014 Nobel Price in Physiology and Medicine (Kiehn
& Forssberg, 2014). O’Keefe shares this award with May-Britt Moser
and Edvard I. Moser, who discovered grid cells. Together, place and
grid cells are thought to constitute the brain’s spatial representation
system: these cells might be the neuronal substrate of a ‘cognitive map’
(Moser, Kropff, & Moser, 2008; O’Keefe & Nadel, 1978, 1979; Tolman,
1948).

Developing a computational model of this hypothesized cognitive
map, O’Keefe (1990, p. 310) also writes about a “grand vector sum of a
large group of place cell fields”. Furthermore, it has been proposed that
in such a cognitive map, navigation is based on vectors – in particular,
based on the role of the grid cells (e.g., Bush, Barry, Manson, & Burgess,
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2015). Recently, this claim was supported by simulations of artificial
neural networks that were build to enable navigation for artificial agents
(Banino et al., 2018; Cueva &Wei, 2018; Savelli & Knierim, 2018). With-
out explicitly modeling grid cells, researchers found that these artificial
neural networks developed grid-like representations resembling the
firing pattern of natural grid cells. Taken together, this supports the
general importance of vector-based representations for human spatial
skills.

6.2.4 Extending the Implementational Level: Grounding Spatial Language

Marr’s implementational level asks how the proposed model repre-
sentations and mechanisms could be implemented in the brain. Apart
from the connections of the vector (sum) representation to the brain’s
navigational system as outlined above, there exist further possible ties
to specify AVS-like models on the implementational level. In particular,
I want to highlight the potential to explicitly link AVS-like models to
computational models formulated in the ‘Dynamic Field Theory’ (DFT)
framework. The DFT framework is based on principles of neuronal
dynamics (for introductions to the DFT see Schöner, 2008; Schöner,
Spencer, & the DFT Research Group, 2016). Thus, models built within
the DFT framework can be considered to be consistent with how (parts
of) the brain work.6

In particular, the DFT model of spatial recall proposed by Lipinski et
al. (2009) reveals interesting insights into how spatial reference frames
might be represented in the brain. Lipinski et al. (2009, see also Lipin-
ski, Spencer, & Samuelson, 2010b) were motivated by the seemingly
contrasting data from Hayward and Tarr (1995) – cardinal axes are
prototypes – vs. Crawford et al. (2000) – cardinal axes are category
boundaries (see also Huttenlocher et al., 2004, and Section 6.2.3). In
the DFT model from Lipinski et al. (2009), spatial working memory
encodes “perceived reference axes” (p. 114) – i.e., the cardinal axes.
These encoded reference axes affect the subsequent encoding of the LO
location (that human participants need to estimate after a short time
interval). More precisely, the neuronally plausible mechanisms from
the DFT framework provide the following interaction pattern: Two acti-
vation peaks (i.e., neuronal representations of the reference axis and

6 A different framework with overlapping goals to the DFT framework is the ‘Neural
Engineering Framework’ (or ‘Semantic Pointer Architecture’) proposed by Chris Elia-
smith and colleagues (Eliasmith, 2015; Eliasmith & Anderson, 2004). Within this
framework, Eliasmith et al. (2012) created a model of the brain (called Spaun) with
2.5 million simulated neurons. Using a robotic arm, this model can perform eight be-
havioral tasks (like copying digits, remembering lists, or answering simple questions).
However, there has not beenmuchwork trying to represent language in this framework.
Given that Eliasmith and Anderson (2004, Chapter 2.5) explicitly model the vector sum
coding proposed by Georgopoulos et al. (1986, and referred to by Regier & Carlson,
2001, to motivate the vector sum in the AVS model), modeling spatial prepositions
could be a valuable addition to the NEF “universe”.
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the LO location) either repel each other or, if close enough, attract each
other. On the one hand, the repulsion explains why human location
estimates are biased away7 from the cardinal axes. On the other hand,
the attraction explains increased memory accuracy found for locations
sufficiently close to cardinal axes (e.g., Hayward & Tarr, 1995). In sum-
mary, Lipinski et al. (2009) present a neuronally plausible model in
which the same representation of a reference frame accommodates two
empirical findings that were previously thought to be contradictory.
In other words: “Spatial Language and Spatial Memory Use the Same
Perceptual Reference Frames” (part of the title of Lipinski et al., 2009).

Lipinski et al. (2009) explicitly discuss the relationship of their DFT
model to the AVS model. While Lipinski et al. (2009, p. 129) state that
“there is conceptual overlap” between the two models, they also argue
that the two models differ in how they compute acceptability ratings. I
think that both models could profit from being analyzed using Marr’s
three-level framework. In particular, I propose to interpret DFT models
primarily as model on the implementational level and AVS-like models
primarily as models on the algorithmic/representational level.

Such an analysis could help to untangle to what extent the two mod-
els actually differ or whether they specify similar mechanisms and
representations on different levels of details. To the point, I believeIn DFT models,

spatial reference
frames emerge in a

neuronally plausible
manner.

that the DFT model from Lipinski et al. (2009) provides an elegant and
neuronally plausible explanation of how reference frames might be
represented and processed in the brain. AVS-like models can rely on
these mechanisms by specifying computations using reference frames
as more abstract representations. Such an approach would avoid that
two models compete that are vastly different in terms of mathematical
formulations. Rather, this analysis has the potential to consistently
explain the phenomenon on different levels of description and thus to
provide a more comprehensive account of spatial language processing
(see also Newell, 1973).

This should not prevent future research from comparing different
models of the process. Rather, I believe that such a comparison should
specify explicit links between representations and algorithms of models
on different levels instead of aiming for one single model to be “better”
than the other model. Within this spirit, Lipinski et al. (2012, p. 1508)
present a DFT model that is “highly compatible with the AVS model”
while it offers neuronally plausible formulations for representations
and mechanisms of AVS-like models (e.g., the vector sum; see Richter,
2018; Richter et al., 2014, 2016, 2017, for refined versions of this DFT
model). Future research should further pursue this path. Based on the
outcome of this Ph.D. project, it would be particularly interesting to

7 In contrast to Crawford et al. (2000) and Huttenlocher et al. (2004, 1991) who propose
a bias towards categorical prototypes at the diagonal axes, Lipinski et al. (2009) and
Lipinski, Spencer, and Samuelson (2010b) argue for a bias away from the cardinal axes.
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examine whether the directionality of the attentional shift also does not
affect model performance for DFT models.

6.3 summary of ideas for future model enhancements

Throughout this chapter, I proposed to refine AVS-like models in sev-
eral aspects. This section summarizes the proposed refinements. In
addition, I suggest further model extensions.

In terms of representations in AVS-like models, I highlighted the ab-
sence of spatial reference frames. Reference frames are important repre-
sentations in spatial cognition (e.g., Brown & Levinson, 1993; Crawford
et al., 2000; Hayward & Tarr, 1995; Huttenlocher et al., 2004; Levinson,
2003; Lipinski et al., 2009; Majid et al., 2004). This is why I argue that
AVS-like models should be extended with explicit representations of
reference frames – or, better, with independent parameters of reference
frames (Schultheis & Carlson, 2017). More precisely, the reference di-
rection of AVS-like models should distinguish between the reference
frame parameters orientation and direction. The implementation of the
reference frame parameters origin and scale could be informed by the
empirical findings presented in Chapter 4.
Following work by Logan (1995) and Gibson and Sztybel (2014),

reference frames are likely representations on which shifts of visual
attention operate. Future extensions to AVS-like models should con-
sider to what extent the direction and orientation of reference frames
interact with the direction and orientation of attentional shifts. In terms
of visual attention, the CTVA model proposed by Logan (1996) seems
to be a promising candidate to more tightly link the notion of attention
in AVS-like models to visual attention research. One role of visual at-
tention seems to be to control whether humans process spatial relations
categorically or coordinately. Evidence from cognitive neuroscience
suggests that for categorical processing, shifts of attention are necessary
(e.g., Laeng et al., 2011).

Themechanism that implements attentional shifts in AVS-likemodels
is the attentionally weighted vector sum. In terms of averaging, this
mechanism is compatible with findings from saccadic and perceptual lo-
calization (e.g, Cohen et al., 2007). Future modeling should strengthen
this connection to more explicitly link attentional shifts to saccadic eye
movements. In terms of providing a direction to space, the vector sum
as a vector-based representation is consistent with other vector-based
approaches to spatial cognition (e.g., O’Keefe, 2003). The close con-
nection of these approaches to what is thought to be the brain’s spatial
representation system (e.g., Moser et al., 2008; O’Keefe & Nadel, 1978)
further supports the use of vectors. In addition, taking advantage of this
connection could help to identify possible neuronal implementations
of mechanisms from AVS-like models.
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At this point, computational models specified in the DFT framework
(e.g, Lipinski et al., 2012, 2009) could become useful, as they are based
on neuronal dynamics. Due to their inherent dynamic properties, these
models highlight the dynamic nature of cognition. Hence, they could
serve as a useful information source for integrating a temporal com-
ponent into AVS-like models. This is in particular important as shifts
of attention are inherently temporal, too. A temporal component in
AVS-like models would allow to investigate the temporal dynamics of
attentional shifts in the context of spatial language verification. Such
temporal information could be more directly linked to studies from the
psycholinguistic visual world paradigm. Possible research questions
could be: At what point in time does a spatial preposition trigger a shift
of attention or how long does a linguistically-triggered shift of attention
take?
The main outcome of this Ph.D. project is that the directionality of

the shift does not matter for spatial language verification. Based on task
demands, it might be that the directionality of the attentional shift can
be flexibly adjusted. Thus, a fruitful next step for investigating shifts
of attention during spatial language verification would be to create a
model that flexibly allows for shifts in both directionalities (see also
Burigo & Knoeferle, 2015, who observed both directionalities). This
point of view fits with findings that visual attention affects categorical
vs. coordinate processing of spatial relations. Finally, an analysis of the
task of spatial language verification (affecting deployment of visual
attention) on Marr’s computational level certainly provides interesting
insights into what the cognitive system computes – and why. Here,
the CA model by Huttenlocher et al. (2000) seems to be a promising
starting point.

6.4 conclusion: does directionality of attention matter?

This Ph.D. project was primarily motivated by conflicting evidence
regarding the role of the directionality of attentional shifts for spatial
language verification. Shifts of attention are considered to be important
for the processing of spatial relations (e.g., Franconeri et al., 2012; Logan
& Sadler, 1996). Spatial language distinguishes the two objects of a
spatial relation from each other as a reference object and a located
object. The influential work by Gordon Logan claimed that attention
should shift from the reference object to the located object (Logan, 1995;
Logan&Sadler, 1996; Logan&Zbrodoff, 1999). Accordingly, Regier and
Carlson (2001) developed the Attentional Vector Sum (AVS)model that
(implicitly) realizes a shift of attention from the reference object to the
located object. However, recent evidence challenges the directionality
of this attentional shift. In contrast, attention might shift in the same
order as the spatial sentence unfolds – i.e., from the located object to the
reference object (Burigo & Knoeferle, 2015; Roth & Franconeri, 2012).
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This is why I developed the reversed AVS (rAVS) model, a modification
of the AVS model in which attention shifts from the located object to
the reference object.
After assessing both shift implementations with an empirical study

andmodel simulations, the main conclusion is that both directionalities
of attention accommodate the empirical data equally well. On the one
hand, this challenges the claim by Logan (1995), Logan and Sadler
(1996), and Logan and Zbrodoff (1999). On the other hand, it provides
support for the mechanisms shared by all models (in particular: spatial
averaging and vector-based approach). Furthermore, the empirical and
computational studies revealed two novel effects on spatial language
verification related to relative distance and asymmetrical reference ob-
jects. Although these two effects are not directly related to the question
about the directionality of the attentional shift, they motivated further
model refinements; the resulting models performed substantially better
on the empirical data than their predecessors.
In discussing the results, I provided several ideas for further model

extensions. In particular, I sketched an analysis using David Marr’s
seminal three-level framework (Marr, 1982). Doing so revealed several
promising connections to related research that could be exploited for
future model extensions. The main motivation for all these model ex-
tensions is to create a more comprehensive model of spatial language
verification. Such a model allows cognitive scientists to more closely
analyze the role of shifts of visual attention for spatial language veri-
fication – as part of a broader research agenda that asks how humans
ground their language to the visual world.
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AL I ST OF ABBREV IAT IONS

ABC Approximate Bayesian Computation (Palestro et al.,
2018), page 147

AVS-BB AVS bounding box (considering the center-of-object
instead of the center-of-mass), page 116

BB bounding box of an RO, smallest rectangle contain-
ing all points of the RO, page 96

CI credible interval, page 90

CoO center-of-object; center of the bounding box of an
RO, page 96

DFT Dynamic Field Theory (Schöner et al., 2016), page 165

GOF goodness-of-fit, page 41

KL divergence Kullback-Leibler divergence, page 141

LO located object (e.g., the bike in “The bike is in front
of the house”), page 3

LOO leave-one-out cross-validation method, a goodness-
of-fitmeasure for statisticalmodels adjusted for over-
fitting (Vehtari et al., 2017), page 90

MCMC Markov Chain Monte Carlo, page 42

MFA Model FlexibilityAnalysis (Veksler et al., 2015), page 123

NHST Null Hypothesis Significance Testing, page 88

nRMSE normalized Root Mean Square Error, page 41

PBCM Parametric Bootstrap Cross-fitting Method (Wagen-
makers et al., 2004), page 132

PSP Parameter Space Partitioning (Pitt et al., 2006), page 81

rAVS-CoO rAVS center-of-object (considering the center-of-object
instead of the center-of-mass), page 117

RC-LS parameter set reported in Regier and Carlson (2001)
as best fit to data from Logan and Sadler (1996,
exp. 2, above), see Table 3.1, page 48
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174 list of abbreviations

RO reference object (e.g., the house in “The bike is in
front of the house”), page 3

SHO simple hold-out, page 41



BEMP IR ICAL STUDY

The following German text is the introductory text every participant
read before the experiment began:

Hallo und vielen Dank, dass Du an meiner Studie teil-
nimmst!
In dieser Studie werden Dir Bilder zusammen mit ent-

sprechenden Sätzen gezeigt und Du musst bewerten, wie
gut ein Satz das jeweilige Bild beschreibt. Zur Bewertung
gibt es eine Skala von 1 bis 9, wobei 1 bedeutet, dass der Satz
das Bild überhaupt nicht beschreibt und 9 bedeutet, dass
der Satz das Bild perfekt beschreibt. Um Deine Bewertung
abzustufen, darfst und sollst Du gerne auch die Zahlen zwi-
schen 1 und 9 nutzen. Beachte bitte, dass es keine „richtige“
oder „falsche“ Bewertung gibt. Wähle die Bewertung, die
Deiner Meinung nach am Besten dazu passt, wie gut der
Satz das Bild beschreibt.

ZumAblauf: Es wird jeweils ein Satz auf dem Bildschirm
angezeigt, den Du bitte aufmerksam liest. Nachdem Du
den Satz gelesen und verstanden hast, drücke die Leertas-
te. Dann erscheint ein Bild, das Du mit den Ziffern 1 bis
9 daraufhin bewerten sollst, wie gut der vorher gelesene
Satz dieses Bild beschreibt. Benutze dafür bitte die Ziffern
auf der Tastatur über den Buchstaben. Wenn Du eine Zif-
fer gedrückt hast, erscheint der nächste Satz. Benutze bitte
während des ganzen Experiments nur eine Hand. Bevor es
richtig losgeht gibt es einige Durchgänge zum Ausprobie-
ren.

Wenn Du noch Fragen zur Bewertung oder zum Ablauf
hast, dann darfst Du diese jetzt gerne stellen.

Ansonsten folgt eine kurze Erläuterung zur Kalibrierung
der Augenbewegungskamera. Dazu drücke bitte die Leer-
taste.

[nächster Bildschirm]
Während Du die Bilder bewertest, werden Deine Augen-

bewegungen aufgenommen. Dazu ist es wichtig, dass Du
während des ganzen Experiments Deinen Kopf so still wie
möglich hältst. Deine Augen darfst Du bewegen, Deinen
Kopf bitte möglichst wenig. Um die Kamera zu kalibrieren,
erscheinen gleich nacheinander 10 kleine Kreise an verschie-
denen Stellen des Bildschirms (zu jedem Kreis gibt es auch
einen Ton). Deine Aufgabe ist es, auf jeden Kreis zu schau-
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en, indemDuDeine Augen dorthin bewegst (den Kopf aber
bitte still halten). Diese Prozedur wird mindestens noch
einmal wiederholt (also nochmals 10 Kreise), es könnte
aber auch nötig sein, dass die Prozedur öfter wiederholt
wird.

Bevor die Kamera kalibriert wird, muss die Kamera noch
eingestellt werden.

Wenn während des Experiments ein kleiner Kreis in der
Mitte erscheint, hast Du die Möglichkeit eine Pause zu ma-
chen. Du musst keine Pause machen, darfst das aber gerne
tun. Ich werde Dich an den Stellen fragen, ob Du eine Pause
machen möchtest.
Falls Du jetzt das Gefühl hast, irgendwie unbequem zu

sitzen, gibt es noch die Möglichkeit etwas zu verstellen. Ab
jetzt dauert das Experiment ca. 50 Minuten.

Falls Du sonst noch irgendwelche Fragen hast, darfst Du
diese gerne jetzt stellen.
Vielen Dank fürs Teilnehmen und viel Spaß.



CMODEL FLEX IB I L I TY ANALYS I S

Table C.1: Results of the Model Flexibility Analysis (MFA) computed using 50
4

model predictions and parameter ranges in Equations 3.15–3.17 (page 42) and 5.1–5.2
(page 118). The lower φ, the less flexible is the model. φ1 follows suggestion by
Veksler et al. (2015) to split each dimension of the data space into n

√
50

4 cells. φ2

uses the range of the rating scale as domain specific number of cells per data space
dimension. φn2 normalizes φ2 by dividing with maximal possible φ2max. φ1 and
φn2 are plotted in Figures 5.3a and 5.3b (page 129).
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Table C.2: Results of the Model Flexibility Analysis (MFA) computed using 50
4 model

predictions and smaller parameter ranges in Equations 5.4–5.6 (page 127). The lower
φ, the less flexible is the model. φ1 follows suggestion by Veksler et al. (2015) to split
each dimension of the data space into n

√
50

4 cells. φ2 uses the range of the rating
scale as domain specific number of cells per data space dimension. φn2 normalizes
φ2 by dividing with maximal possible φ2max. φ1 and φn2 are plotted in Figures 5.3c
and 5.3d (page 129).
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thesis 1: modeling the contribution of visual attention to spatial
language verification

This Ph.D. project focused on the contribution of visual attention to spatial
language verification. Consider the sentence “The circle is above the rectangle”
and imagine a corresponding spatial scene. It has been argued that humans
shift their visual attention from the rectangle to the circle during the processing
of such a sentence. However, recent empirical evidence suggests that attention
might shift in the reversed direction – from the circle to the rectangle. Thus,
this Ph.D. project addresses the following question: Does the direction of the
attentional shift matter? Using computational cognitive modeling as well as
empirical research, this Ph.D. project concludes that both directionalities of
attention accommodate the existing empirical data equally well.

thesis 2: early word learning: children rely on structural prop-
erties of lexical-semantic networks

In semantic processing tasks (e.g., free association or semantic categorization
tasks), adults respond faster to earlier-acquired words than to later-acquired
words (e.g., Brysbaert, Van Wijnendaele, & De Deyne, 2000). Using a natural
reading task, Dirix and Duyck (2017) recently provided evidence for shorter
fixations while reading earlier-learnedwords compared to later-learnedwords.
Importantly, the age-of-acquisition of a word predicts people’s latencies inde-
pendent of and “above other important (correlated) lexical variables, such as
word frequency and length” (Dirix & Duyck, 2017, p. 1915).

Thus, the order inwhich children learnwords lays an important foundation
for adult language processing. This relation of early word learning with
adult performance in semantic processing tasks can be explained by assuming
semantic networks (e.g., Steyvers & Tenenbaum, 2005). In these semantic
networks, earlier-learned words are better connected than later-learned words.
Thus, a semantic search (e.g., via spreading activation, Collins & Loftus, 1975)
starting from an earlier-learned word finishes faster than a search starting
from a later-learned word.

This semantic network approach is inspired by network theory (or graph
theory) – a mathematical method applied in a multitude of scientific disci-
plines (e.g., physics, theoretical computer science, biology, sociology, linguis-
tics) in order to analyze complex systems. In its simplest form, a network
consists of nodes (e.g, words) and edges connecting the nodes (e.g., associ-
ations between words). The degree of a node is the number of edges that
connect it with other nodes.

DDEFENSE THESES
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Watts and Strogatz (1998) identified interesting network properties found
in many natural networks (from neural networks to collaboration networks
of film actors to the world-wide-web, Adamic, 1999; Watts & Strogatz, 1998).
These networks have small average shortest path lengths (a global property
measuring the distance between any two nodes) and are highly clustered (a
local property: well connected neighborhoods of nodes). Based on sociolog-
ical research by Milgram (1967), Watts and Strogatz (1998) call networks
with these specific properties small-world networks. In addition to being a
small-world network, the world-wide-web also possesses another interesting
property: It is scale-free, i.e., it has a degree distribution that follows a power
law (Albert, Jeong, & Barabási, 1999; Barabási & Albert, 1999). Intuitively, a
scale-free network has a small amount of “hub-nodes” (connected to many
other nodes) and many nodes that have relatively few connections.

Based on these findings from network theory, Steyvers and Tenenbaum
(2005) could show that semantic networks created from linguistic data (word
associations, WordNet, and Roget’s Thesaurus) have a small-world structure
and are scale-free. Building on an algorithm that creates scale-free networks
proposed by Barabási and Albert (1999), Steyvers and Tenenbaum (2005)
suggest that a similar mechanism guides early word learning. This “model
of semantic growth” is called preferential attachment. Preferential attachment
assumes that words are more likely to be learned by children, if these words
link to already well-connected words in the semantic network of knownwords
(compared to learning words that connect to known words with less connec-
tions). That is, known words that have many connections to other known
words are more likely to receive even more connections from newly learned
words (compared to known words with less connections). Preferential at-
tachment is also known as “the rich gets richer” and it generates scale-free
networks (Barabási & Albert, 1999). A scale-free network would explain the
earlier described effect of age-of-acquisition in adult semantic performance:
Earlier-learned words (“hub-nodes”) are semantically better connected than
later-learned words.

While not denying that such a network structure explains age-of-acquisition
effects, Hills, Maouene, Maouene, Sheya, and Smith (2009) argue that there
might be more suitable mechanisms for how semantic networks could grow
(i.e., in which order children learn words). More specifically, they propose
two newmechanisms, called preferential acquisition and the lure-of-the-associates.
Both of these new mechanisms consider the learning environment of the chil-
dren (formalized as an external semantic network). Preferential acquisition
assumes that words are more likely to enter the lexicon, if they are well con-
nected within the learning environment (i.e., they are linked to many words
the children do not yet know). The lure-of-the-associates model lies between
preferential acquisition and preferential attachment: It assumes that what
matters are the number of connections from all known words to the words in
the learning environment.

Analyzing the growth of networks of nouns (typically known by 16–30
months-old children), Hills et al. (2009, see also Amatuni & Bergelson, 2017)
found that preferential acquisition and the lure-of-the-associates better de-
scribed early word learning compared to preferential attachment (but see
Sailor, 2013). These findings were corroborated by Hills, Maouene, Riordan,
and Smith (2010), who showed that the contextual diversity of a to-be-learned-
word (i.e., in howmany different contexts the word is used) predicts the order
of early word learning.
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Based on the above reviewed studies, I argue that preferential attachment –
despite its universal application throughout scientific disciplines (Barabási &
Albert, 1999) – is not an appropriate model for describing early word learn-
ing. I do this for the following two reasons: First, the statistical structure of
child-directed speech is important for early word learning (e.g., Romberg
& Saffran, 2010). However, preferential attachment ignores the statistical
structure of child-directed speech by only considering the internal seman-
tic network (words that are already known by the child). Second, although
preferential attachment as originally proposed by Barabási and Albert (1999)
was considered a universal growth principle for natural (scale-free) networks,
Keller (2005) convincingly argues that the scale-free property is less special
than thought. Furthermore, there exist many different growth models that
generate scale-free networks (Keller, 2005). Taken together, the mechanisms
of preferential acquisition or the lure-of-the-associates seem to better describe
early word learning than preferential attachment.
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thesis 3: language influences how we perceive colors: evidence
for probabilistic inference

While English has one color term for blue, Russian has two distinct color terms:
goluboy (light blue) and siniy (dark blue). Crucially, Russian does not have a
single term that describes both shades of blue at the same time. Given this
cross-linguistic difference, do native Russian speakers perceive blue colors
differently than English native speakers?

According to Winawer et al. (2007), the answer to this question is “yes”.
In a speeded color discrimination task, Winawer et al. (2007) presented three
blue-colored squares in a triangle configuration (one square at the top, two
squares at the bottom). The task of the participants (native Russian speakers
and native English speakers) was to determine which of the two bottom
squares was colored in the same way as the top square. One of the two bottom
squares always showed the same color as the top color, i.e., the task had an
objective solution. The second, distracting color was either from the same
Russian category as the target color (within-category trial) or from the other
color category (across-category trial).

Compared to within-category trials, Winawer et al. (2007) found that Rus-
sian speakers responded faster in across-category trials, i.e., if the distracting
color was from the different color category. Crucially, English native speakers
did not show this effect of categorical perception. While a spatial interference
task (remembering spatial patterns) did not change the pattern of results, a
verbal interference task (rehearsing digits) disrupted the categorical percep-
tion of Russian speakers. Taken together, Winawer et al. (2007) interpret their
findings as an influence of linguistic color categorization on color perception:
Russian speakers perceive blue differently than English speakers.

The study by Winawer et al. (2007) is part of a long and controversial
debate on the influence of language on perception and thought, also known
as the Sapir-Whorf hypothesis or the linguistic relativity hypothesis (e.g., Kay &
Kempton, 1984, for reviews see Boroditsky, 2006; Wolff & Holmes, 2011). The
domain of color perception is one of the mayor testbeds for this hypothesis
(Regier & Kay, 2009; Witzel, 2018): Given the diverse color naming patterns in
different languages, do they lead to different color perception in the respective
linguistic communities? If yes, to what extent?

With regard to color perception, Regier and Kay (2009) argue that the
Sapir-Whorf hypothesis conflates the following two, more fine-grained ques-
tions: “1. Do color terms affect color perception? 2. Are color categories
determined by largely arbitrary linguistic convention?” (p. 439). According
to Regier and Kay (2009), a universalist would answer “no” to both questions
and a relativist would answer “yes” to both questions. However, evidence
seems to suggest a more diverse pattern of answers, supporting both the
universalist and the relativist stances at the same time (Regier & Kay, 2009).
With respect to the second question, Zaslavsky, Kemp, Tishby, and Regier
(2019) note that “[l]anguages vary widely in the ways they partition colors
into categories” (p. 208). However, Zaslavsky et al. (2019) argue that these
linguistic variations are not based on arbitrary linguistic conventions. Using an
information-theoretic analysis, Zaslavsky et al. (2019) show that color naming
is shaped by two major forces: perceptual structure and communicative needs
(see also Gibson et al., 2017; Regier, Kay, & Khetarpal, 2007).

With respect to the first question, studies likeWinawer et al. (2007) suggest
that color terms indeed affect color perception (but see Brogaard & Gatzia,
2017; Firestone & Scholl, 2016; Raftopoulos, 2015, 2017, for general, theory-
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driven counter-arguments against any top-down influence of cognition on
perception). This claim from Winawer et al. (2007) is supported by several
other studies testing cross-linguistic differences (e.g., languages with “two
blues” against languages with “one blue”, Greek vs. English: Thierry, Athana-
sopoulos, Wiggett, Dering, & Kuipers, 2009; Spanish spoken in Uruguay vs.
Spanish spoken in Spain: González-Perilli, Rebollo, Maiche, & Arévalo, 2017).
In addition, neuroscientific studies provide electrophysiological and neuro-
imaging evidence for the claim that language affects perception (e.g., Tan et
al., 2008; Thierry et al., 2009, see also Maier & Rahman, 2019). With respect
to neurological mechanisms, it has been claimed that Whorfian effects are
stronger in the right visual field than in the left visual field (Gilbert, Regier,
Kay, & Ivry, 2006, 2008; Regier & Kay, 2009). Since the visual fields project
contralaterally to the brain, the right visual field projects to the left hemisphere,
which is known for being dominant in language processing. Hence, stronger
Whorfian effects in the left hemisphere support the notion that language affects
perception.

However, using carefully designed experiments, Witzel and Gegenfurtner
(2011) failed to replicate the claimed lateralization. Furthermore Wright,
Davies, and Franklin (2015) failed to replicate cross-linguistic Whorfian effects
on color memory. To reconcile this mixed evidence, Cibelli, Xu, Austerweil,
Griffiths, and Regier (2016) proposed a Bayesian model for Whorfian effects
(see also Regier & Xu, 2017). This probabilistic model implements a dual-code
representation for color perception: a fine-grained perceptual representation
and a coarse-grained linguistic representation. The model assumes that these
two representations interact with each other, successfully accommodating
observedWhorfian effects. Crucially, the model allows to weight the influence
of language, addressing the mixed evidence: The more certain the perceptual
information, the lower the effect of language (and vice versa).

The model by Cibelli et al. (2016) is based on the influential Category Ad-
justment model by Huttenlocher, Hedges, and Vevea (2000). Highly similar
models were proposed for color perception (Bae, Olkkonen, Allred, & Flom-
baum, 2015; Witzel, Olkkonen, & Gegenfurtner, 2018) and vowel perception
(Feldman, Griffiths, & Morgan, 2009). In addition, these probabilistic models
are compatible with the label-feedback hypothesis by Lupyan (2012), which in
turn is in line with the more general predictive coding approach in cognitive
science (Lupyan & Clark, 2015). Based on the above reviewed studies, I argue
that language affects color perception and that this effect likely operates via
probabilistic inference.
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FL I ST OF F IGURES

Figure 1.1 Schematic representations of (a) the height compo-
nent and (b) the angular component of theAVSmodel. 14

Figure 3.1 Vector end points in (a) the AVS model and (b) the
rAVS models (rAVSprox: loosely dashed, rAVScomb:
dotted, rAVSw-comb: densely dashed, rAVSc-o-m: solid).
The points F1 and F2 in (c) are AVS’ attentional fo-
cus points for LOs L1 and L2. These are used in the
rAVSproxmodel (solid vectors) aswell as in the rAVScomb
and rAVSw-comb models. 35

Figure 3.2 Layout of experimental displays and displays used for
model simulations for (a, b) Logan and Sadler (1996,
exp. 2, above) and for (c, d) Hayward and Tarr (1995,
exp. 2, above). For (b, d): LOs are displayed as cir-
cles for visualization purposes. The simulations used
single point LOs (at the center of the circles). Back-
grounds depict rAVSw-comb’s spatial template (lighter
color coding higher rating) computed with best fit-
ting parameters for the corresponding data set. For
(d): Nomeasurements were reported inHayward and
Tarr (1995), so the same distances as for the Logan
and Sadler (1996) data were used. Only LO positions
above the RO are considered, because above ratings for
positions below the LO were not reported. 46

Figure 3.3 GOF and SHO results for data from (a) Logan and
Sadler (1996, exp. 2, above) and (b) Hayward and Tarr
(1995, exp. 2, above). Note the different y-axes. Error
bars depict 95% confidence intervals of SHO median
or mean respectively. 47

Figure 3.4 Displays used for simulating the stimuli from (a, b)
exp. 1 and (c, d) exp. 2 from Regier and Carlson (2001,
reconstructed from data provided by Regier & Carl-
son, 2001). LOs are displayed as circles for visualiza-
tion purposes. The simulations used single point LOs
(at the center of the circles). For critical manipula-
tion see Figure 3.5b. ROs are patterned for visualiza-
tion purposes only. Backgrounds depict rAVSw-comb’s
spatial templates (lighter color coding higher rating)
computed with best fitting parameters for data from
Regier and Carlson (2001, exps. 1–3). 49
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Figure 3.5 Examples of one LO placement for (a) exp. 1 and
(b) exp. 2 from Regier and Carlson (2001). The two
rectangular ROs that were used in the experiments are
overlayed (filled with different patterns) to contrast
the effect of the LOplacement on the proximal (dashed
lines) vs. center-of-mass orientation (solid lines). The
fill pattern of the LO depicts with which RO the LO
was shown. 50

Figure 3.6 GOF and SHO results for fitting data from Regier and
Carlson (2001, exp. 1): (a) tall rectangle, (b) wide
rectangle. Error bars depict 95% confidence intervals
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Figure 3.7 GOF and SHO results for fitting data from Regier and
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ization purposes only. Backgrounds depict rAVSw-comb’s
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computed with best fitting parameters for data from
Regier and Carlson (2001, exps. 1–3). 55
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Figure 3.13 Displays used for simulating the stimuli of exp. 4 from
Regier and Carlson (2001, reconstructed from data
provided by Regier & Carlson, 2001). LOs are dis-
played as circles for visualization purposes. The sim-
ulations used single point LOs (at the center of the
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son (2001, exp. 4). 59
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from Regier and Carlson (2001, reconstructed from
data provided by Regier & Carlson, 2001). LOs are
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(2001, exp. 6). Error bars depict 95% confidence in-
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Figure 3.20 Displays used for simulating the stimuli of exp. 7 from
Regier and Carlson (2001, reconstructed from data
provided by Regier & Carlson, 2001). LOs are dis-
played as circles for visualization purposes. The sim-
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tance of the LO to the RO. ROs are filled with different
patterns for visualization purposes only. 77
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Figure 4.4 Qualitative comparison of (a) rAVSw-comb-generated
ratings and (b) AVS-generated ratings for critical LOs
above L and C RO (see Figures 4.3b and 4.3d). For
data generation, I have used model parameters from
best fit to all data from Regier and Carlson (2001, Ta-
ble 3.8). 80

Figure 4.5 ROs and LOs used as input for the PSP method. First
comparison was between the two LOs above the C RO,
second comparison between the two LOs above the L
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Figure 4.11 Individual über (above) and unter (below) acceptability
ratings for LOs (not depicted) around the asymmetri-
cal C andmCROs. Individual acceptability ratings are
color-coded (the darker the color, the higher the rat-
ing) andplotted near the location of the corresponding
LO (to avoid overplotting). LOs (not shown in the
visualization) were black circles with a 10-pixel diam-
eter and placed at the intersection of the grid lines.
LOs in rows R1–R5 were presented with über (above),
LOs in rows R6–R10 were presented with unter (be-
low). Only one RO and one LO was visible at a time.
For each RO: Dashed line is the bounding box,× is the
center-of-mass, ◦ is the center-of-object. Neither of the
centers nor the bounding box were visible to the par-
ticipants. Image copyright: See Appendix E. 94

Figure 4.12 Individual über (above) and unter (below) acceptability
ratings for LOs (not depicted) around the asymmetri-
cal L and mL ROs. Individual acceptability ratings are
color-coded (the darker the color, the higher the rat-
ing) andplotted near the location of the corresponding
LO (to avoid overplotting). LOs (not shown in the
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For each RO: Dashed line is the bounding box,× is the
center-of-mass, ◦ is the center-of-object. Neither of the
centers nor the bounding box were visible to the par-
ticipants. Image copyright: See Appendix E. 95

Figure 4.13 Empirical rating distributions and fit of Bayesian or-
dinal regression model (computed with 100 samples
from the posterior distribution) contrasting ratings
for the two subsets “cavity” (columns C4 & C5, all
asymmetrical ROs) and “mass” (columns C2 & C3 for
ROs C and L; columns C6 & C7 for ROs mC and mL).
Bayesian regression model was computed with brms’s
default prior. Image copyright: SeeAppendix E. 97
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Figure 4.14 Individual über (above) acceptability ratings for LOs
(not depicted) above the thin, the thick, the square,
and the tall rectangle. Individual acceptability rat-
ings are color-coded (the darker the color, the higher
the rating) and plotted near the location of the corre-
sponding LO (to avoid overplotting). LOs (not shown
in the visualization) were black circles with a 10-pixel
diameter and placed at the intersection of the grid
lines. Only one RO and one LO was visible at a time.
Image copyright: See Appendix E. 99

Figure 4.15 Individual unter (below) acceptability ratings for LOs
(not depicted) below the thin, the thick, the square,
and the tall rectangle. Individual acceptability rat-
ings are color-coded (the darker the color, the higher
the rating) and plotted near the location of the corre-
sponding LO (to avoid overplotting). LOs (not shown
in the visualization) were black circles with a 10-pixel
diameter and placed at the intersection of the grid
lines. Only one RO and one LO was visible at a time.
Image copyright: See Appendix E. 100

Figure 4.16 Empirical rating distributions and fit of Bayesian or-
dinal regression model (computed with 100 samples
from the posterior distribution) contrasting ratings for
the four rectangular ROs. Bayesian regression model
was computed with prior distributions supporting
higher ratings for taller rectangles. Image copyright:
See Appendix E. 101

Figure 4.17 Visualization of effects of (a) proximal orientation
and (b) center-of-mass orientation on acceptability
rating as estimated by a Bayesian regression model
with these two predictors plus relative distance. Plots
treat outcome variable asmetric (for visualization pur-
poses) which is not how the ordinal regression model
deals with the data. Predictors not on the x-axis were
kept constant on meaningful values: Relative distance
is constant on its mean values for LOs around each of
the four ROs, center-of-mass orientation is constant
on mean values for LOs around the thin or tall rectan-
gle, proximal orientation is constant on non-deviating
orientation (columns C2–C7) and the mean value of
deviating proximal orientation (columns C1 & C8).
Little black bars on the x-axis denote actually tested
data points. Shaded areas denote 95% CIs. Image
copyright: See Appendix E. 103
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Figure 4.18 Heatmap visualizations depicting the number of fixa-
tions inside BBs of ROs, separated by RO and prepo-
sition. Coordinates are in pixels, starting to count
from top left of each RO. Computed with 50 × 50

bins. 106
Figure 4.19 Heatmap visualizations depicting the number of fixa-

tions inside BBs of ROs, separated by RO and prepo-
sition. Coordinates are normalized by the dimensions
of each BB such that they are relative to each BB. Com-
puted with 50× 50 bins. 107

Figure 4.20 Heatmap visualizations depicting the number of fixa-
tions inside BBs of ROs, separated by the column of
the LO and preposition. Coordinates are normalized
by the dimensions of each BB such that they are rela-
tive to each BB. Computed with 50× 50 bins. Image
copyright: See Appendix E. 108

Figure 5.1 Goodness-of-fit (GOF) and simple hold-out (SHO)
results for (a)–(c) the data from the study presented
in Chapter 4 (collapsing across über, above, and unter,
below) and (d) data from Regier and Carlson (2001).
Error bars show bootstrapped 95% confidence inter-
vals of the SHO medians. Image copyright: See Ap-
pendix E. 119

Figure 5.2 Results of the second PSP analysis: Estimations of
relative volumes in parameter spaces of the models
covered by distinct qualitative patterns (averaged over
three PSP runs). First digit codes for difference in
mean über (above) ratings for 28 LOs above the thin
rectangle vs. the tall rectangle. Second digit codes for
difference in mean über (above) ratings for 6 LOs to
the left vs. to the right of the center-of-mass of the
L-shaped RO. Mean ratings were considered equal if
they differed less than (a) te = 0.1 or (b) te = 0.5.
Image copyright: See Appendix E. 123
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Figure 5.3 Results of the Model Flexibility Analysis (MFA). The
lower φ, the less flexible is the model. Note the dif-
ferent y-axes. Panels (a) and (c) show φ1, i.e., results
computed with the number of data space cells as sug-
gested by Veksler et al. (2015). Panels (b) and (d)
show φn2, i.e., results computed with as many cells
for every data-space dimension as there were rating
intervals (i.e., 9 for the stimuli from Chapter 4, 10
for stimuli from Regier & Carlson, 2001, which are
abbreviated as R&C stimuli in the plots) and normal-
ized by dividing with the corresponding φ2max. See
Tables C.1 and C.2 for more results. For panels (c)
and (d), I used smaller parameter ranges (see Equa-
tions 5.4–5.6) to address parts the MFA-critique by
Evans et al. (2017). 129

Figure 5.4 Landscaping results contrasting the rAVS-CoO model
with the AVS-BBmodel on the asymmetrical ROs (col-
lapsing across über, above, and unter, below). The as-
terisks in (b) and (c) depict the fit to the empirical
data (cf. GOFs in Figure 5.1c). Image copyright: See
Appendix E. 134

Figure 5.5 Landscaping results contrasting the rAVS-CoO model
with the AVS-BBmodel on the stimuli fromRegier and
Carlson (2001). The asterisks in (b) and (c) depict
the fit to the empirical data (cf. GOFs in Figure 5.1d).
Image copyright: See Appendix E. 134

Figure 5.6 Landscaping results contrasting the rAVSw-comb model
with the rAVS-CoO model on the whole stimuli set
(collapsing across über, above, and unter, below). The
asterisks in (b) and (c) depict the fit to the empirical
data (cf. GOFs in Figure 5.1a). Image copyright: See
Appendix E. 135

Figure 5.7 Landscaping results contrasting the rAVSw-comb model
with the rAVS-CoO model on the asymmetrical ROs
only (collapsing across über, above, and unter, below).
The asterisks in (b) and (c) depict the fit to the empir-
ical data (cf. GOFs in Figure 5.1c). Image copyright:
See Appendix E. 135

Figure 5.8 Landscaping results contrasting the rAVSw-comb model
with the AVS model on the stimuli from Regier and
Carlson (2001). The asterisks in (b) and (c) depict
the fit to the empirical data (cf. GOFs in Figure 5.1d).
Image copyright: See Appendix E. 137
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Figure 5.9 Example experimental display to illustrate the model
extension that enables the simulation of rating distri-
butions, fits of extended models, and empirical rating
distributions. Image copyright: SeeAppendix E. 141

Figure 5.10 Marginal posterior distributions for the rAVS-CoO+
model given rating data from asymmetrical ROs and
“uninformative” prior distributions (uniform distri-
butions). Image copyright: See Appendix E. 146

Figure 6.1 Visualization of stimuli and findings from location
estimation studies by Huttenlocher et al. (2004, 1991);
Lipinski, Simmering, et al. (2010). Image copyright:
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Table 3.1 Parameter values, correlation coefficients, and nRMSE
of best fits to data from Logan and Sadler (1996, exp. 2,
above). λ values for rAVS models are presented in
parentheses because they do not change the model
outcome (see page 34). 48

Table 3.2 Linear model fits relating the empirical data from
exps. 1 and 2 from Regier and Carlson (2001) with
model-generated data for the same stimuli. I com-
puted model-generated data with parameter values
from the best fit to Logan and Sadler (1996, exp. 2,
above) shown in Table 3.1 – except for lines denoted
with “RC-LS fit” where I used parameter values from
the AVS model fit to Logan and Sadler (1996, exp. 2,
above) as reported inRegier andCarlson (2001). 51

Table 3.2 Continued: Linear models for exps. 1 and 2 from
Regier and Carlson (2001). 52

Table 3.3 Linear model fits relating the empirical data from
exp. 3 from Regier and Carlson (2001) with model-
generated data for the same stimuli. I computedmodel-
generated data with parameter values from the best
fit to Logan and Sadler (1996, exp. 2, above) shown in
Table 3.1 – except for lines denoted with “RC-LS fit”
where I used parameter values from the AVSmodel fit
to Logan and Sadler (1996, exp. 2, above) as reported
in Regier and Carlson (2001). 56

Table 3.4 Linear model fits relating the empirical data from
exp. 4 from Regier and Carlson (2001) with model-
generated data for the same stimuli. I computedmodel-
generated data with parameter values from the best
fit to Logan and Sadler (1996, exp. 2, above) shown in
Table 3.1 – except for lines denoted with “RC-LS fit”
where I used parameter values from the AVSmodel fit
to Logan and Sadler (1996, exp. 2, above) as reported
in Regier and Carlson (2001). 60

Table 3.5 The effect of the grazing line for exps. 5 and 6 using
parameters for fitting Logan and Sadler (1996, exp. 2,
above, Table 3.1). 64
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Table 3.6 Linear model fits relating the empirical data from
exps. 5 and 6 from Regier and Carlson (2001) with
model-generated data for the same stimuli. I com-
puted model-generated data with parameter values
from the best fit to Logan and Sadler (1996, exp. 2,
above) shown in Table 3.1 – except for lines denoted
with “RC-LS fit” where I used parameter values from
the AVS model fit to Logan and Sadler (1996, exp. 2,
above) as reported inRegier andCarlson (2001). 64

Table 3.7 Linear model fits relating the empirical data from
exp. 7 from Regier and Carlson (2001) with model-
generated data for the same stimuli. I computedmodel-
generated data with parameter values from the best
fit to Logan and Sadler (1996, exp. 2, above) shown in
Table 3.1 – except for lines denoted with “RC-LS fit”
where I used parameter values from the AVSmodel fit
to Logan and Sadler (1996, exp. 2, above) as reported
in Regier and Carlson (2001). 68

Table 3.8 Model parameter values, nRMSE and correlation of
the best fit to all data from Regier and Carlson (2001).
λ values for rAVSmodels are presented in parentheses
because they do not change the model outcome (see
page 34). 73

Table 4.1 Absolute and relative number of fixations (a) inside
the bounding boxes of the ROs (leftmost column),
(b) split by left or right landing positions (left part of
table), and (b) close to the center-of-mass or center-
of-object of the RO (no more than 25 pixel in x or y
direction, right part of table). * = For rectangular ROs,
center-of-mass and center-of-object coincide. For these
ROs, the numbers are the total number of fixations to
their center. 109

Table 5.1 Example input for the cross-match test (Rosenbaum,
2005). Each row describes the response of one sub-
ject (empirical or model-generated), each column de-
scribes the response to a stimulus (e.g., the left or
right LO from Fig. 5.9a). Table copyright: See Ap-
pendix E. 144
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Table C.1 Results of the Model Flexibility Analysis (MFA) com-
puted using 50

4 model predictions and parameter
ranges in Equations 3.15–3.17 (page 42) and 5.1–5.2
(page 118). The lower φ, the less flexible is the model.
φ1 follows suggestion by Veksler et al. (2015) to split
each dimension of the data space into n

√
50

4 cells. φ2

uses the range of the rating scale as domain specific
number of cells per data space dimension. φn2 nor-
malizesφ2 by dividing with maximal possibleφ2max.
φ1 and φn2 are plotted in Figures 5.3a and 5.3b (page
129). 177

Table C.2 Results of the Model Flexibility Analysis (MFA) com-
puted using 50

4 model predictions and smaller pa-
rameter ranges in Equations 5.4–5.6 (page 127). The
lower φ, the less flexible is the model. φ1 follows sug-
gestion by Veksler et al. (2015) to split each dimension
of the data space into n

√
50

4 cells. φ2 uses the range of
the rating scale as domain specific number of cells per
data space dimension. φn2 normalizes φ2 by dividing
with maximal possibleφ2max. φ1 andφn2 are plotted
in Figures 5.3c and 5.3d (page 129). 178
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