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Introduction

X-ray Diffraction and Aperiodic Order

The landmark discovery of X-ray diffraction by von Laue and his collaborators in 1912 [FKvL12]

revolutionised the state of non-contact characterisation methods of materials. In that work,

it was confirmed that X-rays have wavelengths which are compatible with atomic spacing in

solids which allows one to consider solids as diffraction gratings—something that with visible

light is not possible due to its longer wavelength. It has long been believed that only materials

possessing translational symmetry exhibit regularity in the Fourier regime, i.e., a diffraction

pattern with isolated points of high intensity signifying a certain degree of order in the material.

Such rigidity imposes limitations on allowable geometries, namely only structures with rotational

symmetry of order d ∈ {1, 2, 3, 4, 6} are compatible with having a lattice structure; see [Cox61,

Sec. 4.5]. Hence, only these structures are expected to exhibit sharp peaks (known as Bragg

peaks) when subjected to a diffraction experiment. For a long time, this has been accepted as

an equivalence.

On the mathematical side, a first paradigm shift from purely periodic structures stemmed from

works of Bohl [Boh93] and Esclangon [Esc04], which initiated further work towards a reasonable

generalisation of Fourier theory. The notion of an almost periodic function is usually attributed

to Bohr for pioneering a systematic approach towards an extension of periodic concepts within

the realm of uniformly continuous functions [Boh47]. His ideas were further extended by various

mathematicians to accommodate larger classes; see [Bes54].

In the periodic case, the far-field Fraunhofer picture of the diffraction is known to be the

Fourier transform of a finite obstacle, which can be modelled as a finite measure. Once one

leaves the periodic setting, working with infinite/unbounded objects is inevitable. Notions of

Fourier transformability for unbounded measures had already seen reasonable progress by the

early ’70s; see [AdL74, BF75]. Moreover, in [Mey72], some connections to number theory were

pointed out and the cut-and-project scheme as a method of generating point sets with nice

properties was introduced.

Alongside these developments in harmonic analysis was a proliferation of important results

on non-periodic tilings. The undecidability of the domino problem was established by Berger

in 1966 [Ber66], which meant a tiling of the plane via a finite set of decorated tiles need not be

periodic. Within a decade, Penrose solved a related but geometrically different problem in his

monumental discovery of tilings of R2 by six prototiles having no translational symmetry (and

hence are non-crystallographic) [Pen74].

Finding connections between these directions of mathematical research received a huge mo-

tivational boost from Schechtman’s ground-breaking discovery of a real-world quasicrystal in

1982 [SBGC84]. He found that a particular phase of a quenched Al86Mn14 alloy which has icosa-

hedral symmetry (and hence is non-crystallographic) displayed sharp Bragg peaks, signifying
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long-range order, which was exclusively attributed to crystals. This, along with the develop-

ments that came after, proved that there is indeed a regime between perfectly ordered structures

and totally random ones that merits further investigation (hence the term “aperiodic order”). In

particular, this justified the quest for an appropriate generalisation of the mathematical theory

of diffraction.

Although there were lots of works which already applied Fourier analysis on aperiodic tilings,

it was the work of Dworkin and Hof that set the stage for mathematical diffraction. Dworkin

provided a first link between diffraction theory and spectral theory of operators [Dwo93], while it

was Hof [Hof95] who rigorously established notions of diffraction theory specific to the aperiodic

setting.

Under this formalism, one normally views a vertex set Λ of an aperiodic tiling T as a model

for a quasicrystal. One distinguishes different atoms by placing different weights signifying

distinct scattering strengths. The non-periodicity of such tilings imply that one must deal with

(weighted) unbounded measures to describe atomic positions. A subclass of such tilings can

be generated via iterated rules on the corresponding building blocks to obtain bigger blocks

consisting of unions of the smaller units. This thesis will revolve around such tilings, which are

called inflation tilings.

Figure 0.1.: A patch of the Godrèche–Lançon–Billard (GLB) tiling generated by applying the

inflation rule in Section 5.3 twice on the shaded vertex star; taken from [BG13]

with kind permission.

The main object in diffraction theory is a positive measure on a locally compact Abelian

group G (usually taken to be Rd for explicit examples) called the diffraction measure γ̂, which

has the Lebesgue decomposition

γ̂ = (γ̂)pp + (γ̂)ac + (γ̂)sc,

where (γ̂)pp is the pure point component and is the analytic analogue of Bragg peaks in a

diffraction experiment, (γ̂)ac is the absolutely continuous component represented by a locally-

integrable function whose non-triviality is usually attributed to a certain level of disorder, and
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in particular, represents what is called diffuse diffraction, and (γ̂)sc is the singular continuous

component, which lives on an uncountable set of measure zero and is difficult to detect in

experiments.

0 5 10 15 20
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0.4
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Figure 0.2.: Illustration of the pure point diffraction measure γ̂ of the Fibonacci inflation %F;

taken from [BG13] with kind permission.

One of the main objectives of mathematical diffraction is to relate the algebraic and geometric

properties of the object in question (tiling) to the properties of γ̂ (diffraction). This can be

summarised into the following questions

(1) Given that the configuration of atoms Λ satisfies a certain condition (C), what does it

imply for γ̂?

(2) Given that the rule % that generates Λ satisfies a certain condition (C), what does it mean

for γ̂?

Pure Point Diffraction

Being the fingerprint of long-range order, it is expected that more results are known on the pure

point part and on structures which are pure point diffractive, i.e., those for which γ̂ = (γ̂)pp.

There is a rich literature on the connection of having pure point diffraction to cut-and-project

sets (CPS), and to vertex sets being Meyer sets. Moody proved in [Moo02] that a CPS with

window having zero-measure boundary has pure point diffraction. It is known from [Mey72]

that a tiling vertex set Λ is a Meyer set if and only if its a subset of a CPS with compact

window. Strungaru showed that weighted Meyer sets with non-trivial pure point diffraction

must have relatively dense support for the Bragg peaks [Str05]. For primitive inflation tilings,

Sing showed in one dimension [Sin06], which was extended to higher dimensions by Lee and

Solomyak [LS08], that pure point diffraction implies that the underlying vertex set is Meyer.

Number-theoretic results are also abundant. For point sets having inflation symmetry, i.e.,

λΛ ⊆ Λ, Lagarias pointed out that if such a set is Meyer, then λ is either Pisot or Salem [Lag99].
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It is also well known that for inflation tilings to have non-trivial Bragg peaks, the inflation

multiplier λ has to be Pisot; see [BT86, BT87, GK97, GL92]. To further this dependence on

λ, Gähler and Klitzing showed that for self-similar tilings, the Bragg spectrum is completely

determined by the translation module of the tiling and the inflation factor λ [GK97].

Dynamical Spectrum vs Diffraction Spectrum

Another type of spectrum associated to tilings is the dynamical spectrum which is the spectrum

of the unitary Koopman operator associated to the shift S on the hull X; see Appendix A for

a brief introduction.

It follows from [Dwo93] that the diffraction spectrum is contained in the dynamical spectrum.

In particular, (γ̂)pp is non-trivial if and only if US has non-trivial eigenfunctions, which has been

immortalised in the literature as the “Dworkin argument”, a precise interpretation of which can

be found in [BL04] . This further implies that elements of a dynamical system with pure point

dynamical spectrum must have pure point diffraction.

Amidst these known results, there are still some standing open questions, one of the biggest

of which is the Pisot substitution conjecture.

Conjecture 0.0.1 (Pisot Substitution Conjecture). A one-dimensional irreducible substitution

% has pure point dynamical spectrum if and only if the eigenvalue λ of the substitution matrix

is a Pisot (PV) number.

A few results suggesting the truth of this conjecture include the case with two letters proved

by Holander and Solomyak [HS03], and an algorithmic way of deciding whether a given self-

affine tiling is pure point via overlap coincidences, which is due to Solomyak [Sol97], and was

generalised by Akiyama and Lee [AL11].

A series of independent works also showed the converse of Dworkin’s argument, i.e., that

under reasonable assumptions, pure point diffraction is equivalent to having pure point dynam-

ical spectrum; see [LMS02, BL04, Gou05]. The question of pure pointedness of the dynamical

spectrum for regular CPS was settled by Schlottmann [Sch00].

This equivalence allows one to use techniques in both formalisms to prove specific results. In

particular, the Pisot conjecture is proved if one can show that all such systems have pure point

diffraction.

In the case where the spectrum contains other types, one does not have this convenient

equivalence. However, it was shown in [BLvE15] that, for systems with finite local complexity,

one can recover the full dynamical spectrum via the diffraction of suitable factors.

For one-dimensional substitution tilings of constant length, Bartlett has developed an al-

gorithm to determine the corresponding dynamical spectral type [Bar16], continuing previous

works of Queffélec in [Que10]. Another classic result is due to Dekking [Dek78], stating that a

constant-length substitution of height one is pure point if it admits a coincidence and is partly

continuous otherwise, which also holds in higher dimensions; see [Sol97,Fra05].

Absolutely Continuous Diffraction

Compared to its pure point counterpart, the nature of the continuous component of the diffrac-

tion measure remains more mysterious. The Cantor-type structure of the singular continuous
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component forces one to use multifractal techniques for its description, which is why it is only

beginning to be understood in full generality; see [GL90,BG14,BGKS18].

On the other hand, since absolutely continuous diffraction is prevalent in amorphous solids

and is seen as a signature of stochasticity, one does not expect to obtain it from deterministic

systems. Unfortunately, this is not the case, as there exist completely deterministic systems

with absolutely continuous diffraction; see [CGS18,Fra03].

Examples of such systems are rare. In fact, all known deterministic substitutive examples

could be derived from the constructions provided in the mentioned references. This strongly

suggests that systems with absolutely continuous spectrum satisfy rather restrictive conditions.

It is then natural to ask what these necessary conditions exactly are for (γ̂)ac to be non-

trivial and whether, on the contrary, there is a generic sufficient criterion which rules out its

existence. Of course, those that imply pure pointedness of the spectrum belong to this set of

rules. When one has spectral purity, the Riemann–Lebesgue lemma is useful to detect measures

that are not absolutely continuous. For systems which are known a priori to have mixed spectra,

fewer conditions are known. Recently, Berlinkov and Solomyak provided a necessary criterion

in [BS17] for a constant-length substitution to have an absolutely continuous dynamical spectral

component. This thesis aims to supplement known criteria, and provide criteria for systems

which are not covered by existing ones.

Main results of this thesis

In this work, we deal primarily with primitive inflation rules seen as generators of tilings,

and subsequently, of point sets deemed adequate for diffraction analysis. We harvest the

combinatorial-geometric properties of these rules to obtain renormalisation equations satis-

fied by pair correlation functions, which we then transfer to the Fourier picture. This enables

one to dissect each component of the diffraction measure under an appropriate renormalisa-

tion scheme. Using tools from the theory of Lyapunov exponents, we make explicit statements

regarding (γ̂)ac. In particular, we have the following main results:

(1) A sufficient criterion that excludes absolutely continuous diffraction, which can be carried

out algorithmically for any primitive example (Theorem 2.5.3, Proposition 2.7.7, Theo-

rem 5.1.5)

(2) A necessary criterion for general primitive inflation systems to have non-trivial absolutely

continuous component (Corollary 2.7.10, Corollary 5.1.6)

(3) Spectral analysis of some non-Pisot inflations, which are conjectured to all have purely

singular continuous spectra. (Section 4.2.1, Section 5.3).

Moreover, we present the recovery of known singularity results via the method presented in

this work, and further point out connections to number-theoretic quantities arising from these

objects, such as logarithmic Mahler measures (Proposition 3.2.8, Proposition 5.2.4).
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1. Prerequisites

1.1. Point sets in Rd

Below, we largely follow the monograph [BG13] for notation. For general sets S1, S2 ⊂ Rd, the

Minkowski sum (difference) is defined as

S1 ± S2 := {x± y | x ∈ S1, y ∈ S2} .

A singleton {x} is a set in Rd comprised of a unique point x, and any set Λ of the form
⋃
i∈J {xi}

where J is countable is called a point set. A point set Λ is called discrete if, for all x ∈ Λ, there

exists an open neighbourhood U(x) of x such that Λ ∩ U(x) = {x}. From this point on, most

point sets we deal with are infinite. Assuming the discreteness of Λ, we get that, for every x ∈ Λ,

there is an R(x) > 0 such that BR(x)(x) ∩ Λ = {x}, where BR(x) denotes the ball of radius R

centred at x. If there is a uniform lower bound Rp on R(x), we call Λ uniformly discrete. If

there exists 0 < Rc <∞ such that Λ+BRc
(0) = Rd, one calls Λ relatively dense. The constants

Rp and Rc are called the packing radius and the covering radius of Λ, respectively.

Definition 1.1.1. Point sets that are both uniformly discrete and relatively dense are called

Delone sets . If Λ is relatively dense and Λ− Λ is uniformly discrete, then Λ is called a Meyer

set.

Every Meyer set is automatically Delone. We refer to [Lag96, Moo97a, Sin06, Str17] for con-

ditions equivalent to the Meyer property.

Consider a discrete point set Λ ⊂ Rd. It is called locally finite whenever K ∩ Λ is at most a

finite set, for any compact K ⊂ Rd. For x ∈ Rd and R > 0, we call P := BR(x) ∩ Λ a patch

of Λ. Repetitivity of Λ means that, for every patch P and for any y ∈ Rd, there is some R > 0

such that BR(y) contains at least one translate of P. We say that Λ has finite local complexity

or is an FLC set if
{

(t+ BR(x)) ∩ Λ | t ∈ Rd
}

contains at most finitely many patches up to

translation, for any x ∈ Rd, R > 0.

1.2. Symbolic dynamics and inflation rules

1.2.1. Substitutions

We begin with a finite set Ana =
{
a1, . . . , ana

}
which we call an alphabet, whose elements are

called letters. Denote by Fna the free group generated by elements of Ana . A general substitution

rule % is an endomorphism on Fna , i.e., %(uv) = %(u)%(v) and %(u−1) =
(
%(u)

)−1
hold for

u, v ∈ Fna . To this rule, one can associate a substitution matrix M% via the Abelianisation map

ϑ : Fna 7→ Zna which sends an arbitrary element w of Fna to a vector containing the powers of

generators ai in w, if elements of Fna are assumed to commute.
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In this thesis, we will solely consider such endomorphisms whose images on ai only contain

positive powers, which we will simply call a substitution. A finite concatenation of letters

w = α0α1 . . . α`−1, where αi ∈ Ana , is called a word, whose length |w| is simply the number of

letters comprising it. A word v of length R is called a subword of w, which we denote by vCw,

if there is a 0 6 k 6 ` − R such that v = αkαk+1 . . . αk+R−1. We denote by A`na the set of

finite words of length ` over Ana , and the set of all finite words (with the empty word ε) to be

A∗na :=
⋃
`>0A`na .

Definition 1.2.1. A substitution is a map from a finite alphabet to the set of finite words over

it, i.e., % : Ana → A∗na , with %(ai) 6= ε for all i.

In this work, we formally write a substitution as % : ai 7→ wi, where we call the image wi the

substituted word of ai. We also adapt the notation % = (w1, w2, . . . , wna) whenever necessary.

Note that the endomorphism property of % allows one to extend this to a map from A∗na to itself

via concatenation of substituted words, i.e., %(ab) = %(a)%(b). This further extends to a map

that sends (bi-)infinite words to (bi-)infinite words, which yields a well-defined map on AN
na or

AZ
na . Powers of %, denoted by %k, for some k ∈ N, are also well defined, and are obtained by

applying the rule iteratively on the resulting substituted words.

Through the Abelianisation map ϑ, one constructs the substitution matrix M% by counting

the number of letters ai present in wj and setting it to be the ijth entry of M%. More explicitly,(
M%

)
ij

:= cardai(%(aj)).

Definition 1.2.2. A substitution is called primitive if there exists k ∈ N such that, for all

1 6 i, j 6 na, ai appears in %k(aj).

Definition 1.2.3. A non-negative matrix M is primitive if there exists k ∈ N such that Mk is

a strictly positive matrix, i.e., (Mk)ij > 0 for all i, j.

It is easy to see that % is primitive if and only if M% is a primitive matrix. Unless stated

otherwise, our general framework will only concern primitive substitutions.

A finite word w ∈ A∗na is legal with respect to %, or %-legal, if w is a subword of a substituted

word, i.e., w C %k(ai), for some k ∈ N, ai ∈ Ana . Let w(0) = ai|aj ∈ A2
na be a %-legal two-letter

subword, where | designates the location of the origin. Fix a power %` of the substitution, and

consider

lim
k→∞

(%`)k(w(0)) := %∞
(
w(0)

)
= w = %`(w).

If such a limit exists, we call w ∈ AZ
na a bi-infinite fixed point of %` corresponding to the legal

seed w(0). For primitive substitutions, the existence of such fixed points is guaranteed by the

following result.

Proposition 1.2.4 ( [BG13, Lem. 4.3]). Let % be a primitive substitution over Ana , na > 2.

Then, there exists ` ∈ N and w ∈ AZ
na, such that w is a bi-infinite fixed point of %`, i.e.,

%`(w) = w, derived from some legal seed ai|aj.
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1.2.2. Perron–Frobenius theory

Theorem 1.2.5 ( [Que10, Thm. 5.4]). Let M be a primitive matrix. Then, it has a simple

real eigenvalue λPF ∈ R+ of maximum modulus. Furthermore, the corresponding left and right

eigenvectors, which we denote by L,R consist only of positive entries.

We call λPF the Perron–Frobenius (PF) eigenvalue, and L and R the left and right PF

eigenvectors of M , respectively. Several number-theoretic properties of λPF have remarkable

implications to spectral, dynamical, and topological properties of objects derived from %. An

algebraic integer λ > 1 is called a Pisot–Vijayaraghavan (PV) number if all of its algebraic

conjugates λ1, . . . , λr−1 are less than 1 in modulus, i.e., |λi| < 1, for 1 6 i 6 r − 1.

An irreducible substitution is one whose matrix M% has irreducible characteristic polynomial,

which is equivalent to having all eigenvalues of M% to be the algebraic conjugates of λPF. A

substitution is Pisot whenever λPF of M% is a PV number, and is non-Pisot otherwise. An

important class of non-Pisot numbers is the set of Salem numbers. An algebraic integer λ > 1

of degree at least 4 is said to be Salem if all but one of its algebraic conjugates lie on the unit

circle.

Due to primitivity, one deduces that each letter appears infinitely often in any infinite sub-

stituted word %∞(ai) = limn→∞ %
n(ai), ai ∈ Ana . The following result provides a quantitative

version of the previous statement and how it relates to the right PF eigenvector R.

Proposition 1.2.6 ( [Que10, Prop. 5.8]). Let ai ∈ Ana. Then,

lim
n→∞

cardaj (%
n(ai))

|%n(ai)|
= R̃j

where R̃ = R/‖R‖1.

This limit can be interpreted as the letter frequency of aj in w = %∞(ai), which can be ex-

tended to bi-infinite words since it is independent of the starting seed ai. Note that this depends

solely on M%, and substitutions sharing the same substitution matrix thus yield identical letter

frequencies.

Remark 1.2.7 (Word frequencies via induced substitutions). One can also compute for the

frequencies of arbitrary finite m-letter legal words of % by working on induced substitutions %(m).

Such a substitution treats a length-m legal word av as a right-collared word a|v and maps it

to a concatenation of right-collared words which can be obtained from overlapping length-m

subwords of %(av). When % is primitive, it is guaranteed that %(m) is also primitive, for any

finite m; see [BG13, Prop. 4.14]. One can then apply the usual Perron–Frobenius theory to the

substitution matrix of %(m) to obtain the frequencies of all m-letter legal words, as an analogue

of Proposition 1.2.6; see [BG13, Sec. 4.8.3]. ♦

We now give examples of substitution rules, enumerating some of their properties, based on

what we have so far. We will encounter these substitutions again in the following chapters.

Example 1.2.8.
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(1) The Fibonacci substitution %F : a 7→ ab, b 7→ a has the substitution matrix M% = ( 1 1
1 0 ),

with λPF = 1+
√

5
2 , which is a PV number of degree 2. This makes %F an irreducible Pisot

substitution. Note that, if one considers %2
Fib, the bi-infinite word generated by the seeds

a|a and b|a are both fixed points. In particular,

w = (%2
Fib)∞(a|a) = . . . abaababa|abaababa . . . = %2

Fib(w).

(2) The Thue–Morse substitution is given by %TM : a 7→ ab, b 7→ ba. Its substitution matrix

has {2, 0} as eigenvalues, which makes %TM a Pisot substitution that is not irreducible.

Note that
∣∣wa∣∣ = 2 =

∣∣wb∣∣, which makes it a constant-length substitution. One can also

check that L = (1, 1)T.

(3) The substitution %BNP : a 7→ abbb, b 7→ a has the substitution matrix M% = ( 1 1
3 0 ), where

λPF = 1+
√

13
2 and the second eigenvalue satisfies

∣∣1−√13
2

∣∣ ≈ 1.303 > 1, which makes

%BNP an irreducible non-Pisot substitution. This substitution is systematically treated

in [BFGR19].

(4) The Rudin–Shapiro substitution %RS : a 7→ ac, b 7→ dc, c 7→ ab, d 7→ db is another example

of a constant-length substitution. For %RS, R̃ = (1
4 ,

1
4 ,

1
4 ,

1
4)T, which means that every

letter is equally frequent in any (bi-)infinite word arising from %. ♦

1.2.3. The symbolic hull

From Proposition 1.2.4, we know that any primitive substitution gives rise to at least one

bi-infinite fixed point w. Using w, the goal is to construct a subset of AZ
na satisfying some

invariance properties.

Let v ∈ AZ
na , with vi signifying the letter at i ∈ Z. The (left) shift operator S on AZ

na acts

via (Sv)i := vi+1. By choosing the sequences we handle to be bi-infinite, we automatically get

that S is a homeomorphism and thus invertible. Any closed subset of AZ
na that is S−invariant

is called a shift space.

Now choose any bi-infinite fixed point w of (possibly of a power of) % and construct the space

X(w) = {Si(w) | i ∈ Z},

where the closure is taken in the natural product (or local) topology. Note that X(w) is both S

and %-invariant; the first follows directly by definition and the second is due to w being a fixed

point with a dense orbit in X(w). We call this shift space the symbolic hull of w.

From [BG13, Lem. 4.2 and Prop. 4.2], if % is primitive, X(w) neither depends on the chosen bi-

infinite fixed point nor on the power of the substitution that produces such fixed point. Hence,

% admits a unique symbolic hull X = X% := X(w); compare [BG13, Thm. 4.1].

An element w ∈ AZ
na is called periodic if there exists an r ∈ Z \ {0} such that Srw = w

and is non-periodic otherwise. We call a substitution aperiodic if the hull X it defines contains

no periodic points. We have the following sufficient criterion for aperiodicity for primitive

substitutions.

Theorem 1.2.9 ( [BG13, Thm. 4.6]). Let % be a primitive substitution whose corresponding

PF eigenvalue λPF is irrational. Then, the corresponding hull (and hence %) is aperiodic.
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A substitution % is locally recognisable or has the unique composition property if, for every

w ∈ X%, one can find a unique w′ such that %(w′) = w. This means that every letter in w′ is

situated in a unique level-1 substituted word in w.

It is well known from a result by Mossé in [Mos92] that aperiodicity is equivalent to local

recognisability for primitive substitutions. Balchin and Rust provided an algorithm that deter-

mines whether a substitution is locally recognisable, which takes care of the case when λPF ∈ Z;

see [BR17].

Since we will be more interested in the geometric counterpart Y of X(w), we delay discussing

further properties of X and present the corresponding analogues for Y.

1.2.4. Inflation systems and the geometric hull

The primitivity of % allows one to associate to it a corresponding inflation rule, which we will,

by an abuse of notation, also refer to as %. Such a rule is constructed by assigning a tile t of

a certain length to each letter ai ∈ Ana . A natural choice for the tile lengths is given by the

left PF eigenvector L of M%. This means the tile ti of length Li is assigned to ai . Usually,

we carry out the assignment such that L is normalised so that the smallest tile has length 1.

With this choice, one can construct the inflation rule as follows: under %, the associated tile tj

to a letter aj is inflated by a factor of λPF, and is subdivided as a concatenation of constituent

tiles according to the arrangement of letters in %(aj). The image of a tile tj , which we denote

by %(tj), is called a supertile, which is the geometric realisation of a substituted word defined

in Section 1.2.1.

The geometric realisation of a bi-infinite fixed point w is then a one-dimensional tiling of

R, which we denote by T . Tilings arising from such construction are also called self-similar ,

which mainly alludes to the consistency of the expansion-subdivision scheme with the chosen

tile lengths. As an example, the associated inflation rule for the Fibonacci substitution is given

in Figure 1.1.

a %F a b

b %F a

Figure 1.1.: The Fibonacci substitution %F viewed as an inflation rule.

We then create the geometric analogue of X(w) as follows: pick a bi-infinite symbolic fixed

point w of % and consider its geometric realisation T . To this tiling, we then construct a point

set Λ ⊂ R by choosing the left endpoints of tiles as their markers and colouring these markers

depending on the tile type. This coloured point set Λ is a suitable object for our diffraction

analysis, representing positions of an infinite assembly of na types of scatterers.

Fact 1.2.10. Any point set Λ arising from a primitive substitution is Delone.

Theorem 1.2.11 ( [Lag99, Thm. 4.1]). Let Λ be a Meyer set in Rd such that, λΛ ⊆ Λ, for

some λ > 0. Then, λ is either Pisot or Salem.

The following one-dimensional result follows from Theorem 1.2.11 and [Sin06, Sec. 6.3].
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Corollary 1.2.12. A point set Λ arising from a primitive substitution is Meyer if and only if

λPF is Pisot or Salem.

Assuming that one deals with FLC point sets, one can work with the local topology. Here,

two sets Λ and Λ′ are called ε-close if, for some t ∈ Bε(0),

Λ ∩B1/ε(0) = (−t+ Λ′) ∩B1/ε(0), (1.1)

which roughly means that these point sets almost agree around a large region containing the

origin. From a single point set, we then generate a collection of point sets which satisfy certain

dynamical properties. The geometric hull Y(Λ) is defined as

Y(Λ) = {t+ Λ | t ∈ R},

where the closure is taken with respect to the local topology. This, equipped with the continuous

R-action via translations, comprises a topological dynamical system (Y(Λ),R).

One notion of equivalence for tilings and point sets is given by mutual local derivability

(MLD). For our purposes, we only present here the relevant definitions for point sets in R, but

the notions for tilings are completely analogous. A point set Λ is locally derivable from Λ′ if

there exists a radius R such that whenever

(−x+ Λ) ∩BR(0) = (−y + Λ) ∩BR(0)

holds for x, y ∈ R, one also has

(−x+ Λ′) ∩ {0} = (−y + Λ′) ∩ {0} .

In other words, local derivability allows one to construct a patch of Λ′ centred at x0 from

the structure of a certain patch of Λ at the same point. We say that Λ and Λ′ are mutually

locally derivable, if they are locally derivable from each other. This notion extends to the

geometric hulls Y(Λ) and Y(Λ′). If Λ and Λ′ are MLD it follows that their hulls are also MLD.

A topological conjugacy is a homeomorphism between dynamical systems that commutes with

the action, which in our case is the translation action by R. Two hulls are MLD if there exists

a topological conjugacy between them that is defined locally. We refer to [BG13, Sec. 5.2] for

further details.

The hull Y(Λ) (resp. (Y(Λ),R)) is called minimal if every element Λ′ ∈ Y(Λ) has a dense

R-orbit, i.e.,
{
t+ Λ′ | t ∈ R

}
= Y(Λ). Recall that a probability measure µ on a dynamical

system (X,T ) is ergodic if µ(D) = 0 or µ(D) = 1 holds for every T−invariant Borel set D.

Alternatively, we call T an ergodic transformation with respect to µ. A system is uniquely

ergodic if it admits a unique ergodic measure. Further, if it is also minimal, it is called strictly

ergodic.

Strict ergodicity is known for symbolic hulls arising from primitive substitutions, which is an

implication of linear repetitivity; see [Dur00,Len02]. For their geometric counterparts, we have

the following result.

Theorem 1.2.13. Let Λ ⊂ R be a point set which consists of markers from a geometric re-

alisation of a primitive substitution %. Then, the geometric hull Y(Λ) it generates is strictly

ergodic.
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Sketch of proof. The minimality result follows from Λ being linearly repetitive; compare [BG13,

Prop. 5.3], and the fact that repetitive point sets produce minimal hulls [BG13, Prop. 5.4].

Unique ergodicity follows from Soloymak’s result in [Sol97], which generally holds for self-similar

tilings T in Rd, and is transferred to point sets MLD to T .

Remark 1.2.14 (Strict ergodicity and patch frequencies). In the symbolic setting, strict ergod-

icity implies uniform existence and positivity of word frequencies, a result primarily attributed

to Oxtoby; see [BG13, Prop. 4.4]. For tilings (also in higher dimensions), uniform existence of

patch frequencies under the assumption of unique ergodicity follows from [Sol97, Thm. 3.3]. ♦

Remark 1.2.15 (Aperiodicity of Y). One can extend the notion of aperiodicity given in Section

1.2.3 to the the geometric hull Y(Λ) by considering R-translates instead of Z-translates. In

particular, if Λ does not have a non-trivial period t ∈ R, then the hull it generates is aperiodic;

compare [BG13, Prop. 5.5]. ♦

1.3. Harmonic analysis and diffraction

1.3.1. Fourier transformation of functions

Let the Schwartz space S(Rd) be the space of rapidly decaying C∞−functions on Rd. For

f ∈ S(Rd), the Fourier transform F : S(Rd)→ S(Rd) is given by

F [f ](k) = f̂(k) :=

∫
Rd

e−2π ikxf(x)dx. (1.2)

A similar definition holds for f ∈ L1(Rd), with a slight variation that f̂ is no longer necessarily

integrable. Continuous (complex) linear functionals T on S(Rd) are called tempered distri-

butions. The Fourier transform of T ∈ S′(Rd) is given by T̂(f) := T(f̂), for test functions

f ∈ S(Rd).

Example 1.3.1 (Dirac distribution). For a fixed x ∈ Rd, the corresponding Dirac distribution

δx : S(Rd)→ C, with f 7→ δx(f) := f(x), is tempered. Its Fourier transform is defined via

δ̂x(f) = δx(f̂) = f̂(x) =

∫
Rd

e−2π ixyf(y)dy := Thx(f),

which justifies the convention δ̂x = hx = e−2π ixy. Here, one identifies g with the functional Tg

via Tg(f) =
∫
Rd g(y)f(y)dy. ♦

1.3.2. Measures

A (complex) Radon measure µ is a continuous linear functional on the space of continuous,

compactly supported functions Cc(G), where G is a locally compact Abelian group. By the

Riesz–Markov representation theorem, we identify the set of all Radon measures µ with the

set of regular Borel measures on G. In this work, we only deal with cases where G = Rd. We

denote the set of all measures on Rd as M(Rd).
Given µ, we can construct other measures such as µ̃ and µ, called its twist and conjugate,

which are defined via their valuation on test functions, i.e., µ̃(g) = µ(g̃) and µ(g) = µ(g), where

g̃(x) := g(−x), with · denoting complex conjugation.
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For any two functions f, g ∈ L1(Rd), their convolution is defined as

(f ∗ g)(x) =

∫
Rd
f(x− y)g(y)dy.

This definition also works when f, g ∈ Cc(Rd).
A measure µ is called real if µ = µ, and a real measure is called positive if µ(g) > 0 for all

g ∈ Cc(Rd), g > 0. Let us denote the collection of all positive measures on Rd by M+(Rd). For

general measures, we say that µ is positive definite if µ(g ∗ g̃) > 0, for all g ∈ Cc(Rd).
To a measure µ, one can also associate its total variation |µ|, which is the smallest measure

that satisfies |µ(g)| 6 |µ| (g) for all g ∈ Cc(Rd), g > 0. A measure µ is called finite or bounded

if |µ|(Rd) <∞. Otherwise, it is called unbounded.

Remark 1.3.2. The Dirac distribution δx from Example 1.3.1 also defines a measure, with

δx(D) =

1, if x ∈ D,

0, otherwise

for a chosen Borel set D ⊂ Rd. When D is countable or finite, the characteristic function 1D

decomposes into 1D =
∑

x∈D δx, which coincides with the measure δD, and is usually called the

Dirac comb on D. ♦

Most measures we deal with in the diffraction theory of inflation systems are unbounded, but

still satisfy a certain level of regularity called translation boundedness, which will be crucial to

our analysis via forbidden growth rates.

Definition 1.3.3. A measure µ ∈ M(Rd) is called translation bounded if, for every compact

subset K ⊂ Rd, one has supx∈Rd |µ| (x + K) < CK , i.e., there exists a constant CK depending

only on K for which |µ| (x+K) < CK holds for all translation vectors x.

For a given finite measure µ, we define its Fourier transform µ̂ to be

µ̂(k) =

∫
Rd

e−2π ikxdµ(x), (1.3)

which coincides with the Fourier transform in the distributional sense.

The following lemma can directly be verified using this definition of the Fourier transform

and by viewing µ̂ as a distribution, i.e., µ̂(g) = µ(ĝ).

Lemma 1.3.4. For any finite measure µ, the equality µ̂ = ̂̃µ holds.

Fourier transformability of unbounded measures is a delicate issue, as there are examples

of measures that are transformable as distributions but not as measures; see [Str19, AdL74].

Nevertheless, this is guaranteed for the class of measures we will be working with, which is due

to the following results.

Theorem 1.3.5 (Bochner–Schwartz, [RS80, Thm. IX.10]). Let µ be a measure that is also

a tempered distribution. If µ is positive definite (or of positive type) on S(Rd), its Fourier

transform as a distribution, µ̂, is a positive measure.
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We have the following generalisation, which is mostly due to results in [BF75, Ch. I.4]

Proposition 1.3.6 ( [BG13, Prop. 8.6]). If µ ∈M(Rd) is positive definite, its Fourier transform

exists, and is a positive, translation bounded measure on Rd.

It will be evident in the following sections that the objects we will be looking at are positive

measures, and so we study further characterisations of measures of this type.

1.3.3. Decomposition of positive measures

In the ensuing discussion, let µ ∈ M+(Rd) and D an arbitrary Borel set in Rd. The set

Pµ = {x : µ({x}) 6= 0} is called the set of pure points of µ. One defines the pure point component

of µ to be

µpp(D) :=
∑

x∈D∩Pµ

µ({x}) = µ(D ∩ Pµ).

We say that µ is atomic or pure point if µ(D) =
∑

x∈D µ({x}), for all D.

Next, define µc := µ− µpp to be the continuous component of µ. A measure µ is absolutely

continuous with respect to another measure ν, i.e., µ � ν, if ν(D) = 0 implies µ(D) = 0. In

particular, when one chooses ν = µL to be Lebesgue measure, we have that µ is absolutely

continuous to µL if there exists h ∈ L1
loc(Rd) such that, µ = hµL, i.e.,

µ(g) =

∫
Rd
gdµ =

∫
Rd
g(y)h(y)dy.

The locally integrable function h is called the Radon–Nikodym density of µ with respect to µL.

On the contrary, µ is said to be singular with respect to µL if there is a measurable set D

with µL(D) = 0 and µ(Rd \D) = 0. This allows one to write µ as µ = µac + µsing, where µac
and µsing = µ|D are its absolutely continuous and singular components, respectively. A singular

measure µ with no pure points is called singular continuous, which we denote by µ = µsc.

The mentioned characterisations imply the following result; see [RS80, Thms. 1.13 and 1.14]

and [BG13, Thm. 8.3].

Theorem 1.3.7 (Lebesgue decomposition theorem). Let µ ∈M+(Rd). Then, it has a unique

decomposition

µ = µpp + µac + µsc

with respect to Lebesgue measure µL in Rd.

1.3.4. Autocorrelation and diffraction measure

Given two finite measures µ, ν, we define their convolution to be

(µ ∗ ν)(g) =

∫
Rd×Rd

g(x+ y)dµ(x)dν(y). (1.4)

Moreover, we have that µ ∗ ν is Fourier transformable, with Fourier transform µ̂ ∗ ν = µ̂ν̂

computable via Eq. (1.3). It turns out that one gets a similar result if one of the measures, say

ν, is translation bounded.
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Proposition 1.3.8. Let µ be finite and ν be translation-bounded and Fourier transformable.

Then, µ ∗ ν is a translation-bounded, Fourier transformable measure. If ν̂ is also a measure,

then µ̂ ∗ ν = µ̂ν̂, which is seen as a measure absolutely continuous to ν̂, with Radon–Nikodym

density µ̂.

We will mostly be dealing with unbounded measures, and hence we will be needing an ap-

propriate extension of Proposition 1.3.8 in this setting. To this end, we define the analogue of

Eq. (1.4) for unbounded measures.

Definition 1.3.9. Let µ and ν be unbounded measures in Rd. Their Eberlein or volume-

averaged convolution is defined as

µ~ ν := lim
R→∞

µR ∗ νR
vol(BR(0))

, (1.5)

where µR (resp. νR) is the measure µ (resp. ν) restricted to BR(0), provided the limit exists.

Remark 1.3.10. Under some mild assumptions on µ and ν, the sequence of open balls {BR(0)}
can be replaced by another nested averaging sequence R = {Rn} so long as it satisfies the van

Hove property; compare with [BG13, Def. 2.9]. ♦

In general, the limit in Eq. (1.5) need not exist, but more can be said when µ and ν are both

translation bounded. To be more specific, we consider ν = µ̃, and the finite approximants of

µ~ µ̃ given by

γ(R)
µ :=

µR ∗ µ̃R
vol(BR(0))

which is well defined and positive definite for every R > 0. An accumulation point of the

sequence
{
γ

(R)
µ

}
is called an autocorrelation of µ. If the limit exists, the limit measure γµ is

called the natural autocorrelation.

Proposition 1.3.11 ( [BG13, Prop. 9.1]). Let µ be a translation bounded measure and let

E =
{
γ

(R)
µ

}
its family of approximating autocorrelations. Then, E is precompact in the vague

topology. Moreover, any accumulation point of this family, of which there is at least one, is

translation bounded.

We now apply this framework to FLC point sets, which include point sets derived from

inflation rules as defined in Section 1.2.4; compare with [BG13, Ex. 9.1] or [Mol13, Rem. 6.3].

Example 1.3.12. Let Λ ⊂ Rd be an FLC point set and consider the weighted Dirac comb

ωΛ constructed on Λ by choosing a bounded (generally complex) weight function W (x), i.e.,

ωΛ :=
∑

x∈ΛW (x)δx. This measure is a translation bounded, pure point measure. To see this,

let Cω := sup
{
|W (x)| : x ∈ Λ

}
<∞. Direct computation then gives∣∣δΛ∣∣(y +K) 6 Cω

∑
x∈Λ

δx(y +K) 6 CωN(K),

where N(K) := sup
{

card(Λ ∩ (y +K)) | y ∈ Rd
}

. Since Λ is FLC, it is also locally finite, and

hence N(K) < ∞, for any compact K ⊂ Rd, which implies that CωN(K) < ∞, implying our

claim via Definition 1.3.3.
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The autocorrelation resulting from ωΛ ~ ω̃Λ is of the form γω =
∑

z∈Λ−Λ ηω(z)δz, where the

autocorrelation coefficients ηω(z) can explicitly be written as

ηω(z) = lim
R→∞

1

vol
(
BR(0)

) ∑
x∈Λ(R)

x−z∈Λ

W (x)W (x− z), (1.6)

with Λ(R) := Λ ∩BR(0). ♦

Going back to the general picture, we are now ready to define one of the main objects in this

work, which is the diffraction measure.

Definition 1.3.13. Let µ be translation bounded with a well-defined autocorrelation γµ. The

Fourier transform γ̂µ is called the diffraction measure of µ.

The measure γµ is positive definite by construction, and hence Fourier transformable by

Proposition 1.3.6. Moreover, γ̂µ ∈M+(Rd). Invoking Theorem 1.3.7, we get that the diffraction

measure splits into

γ̂µ =
(
γ̂µ
)
pp

+
(
γ̂µ
)
ac

+
(
γ̂µ
)
sc
.

One of the major objectives of mathematical diffraction is to understand fundamental impli-

cations of properties of µ to the three components of γ̂µ.

Remark 1.3.14. In an actual X-ray diffraction experiment, the support of the measure
(
γ̂µ
)
pp

corresponds to points of high intensities in the diffraction image, which are called Bragg peaks.

The continuous component describes the diffuse diffraction characterised by a noisy background

superimposed with the peaks, which usually suggests a certain level of disorder. ♦

1.4. Lyapunov exponents

1.4.1. Lyapunov exponents for sequences of matrices

In this section, we follow the introduction of general notions and results in the monographs

[BP07,Via13].

Definition 1.4.1. Given a sequence {Mj}j>0 of matrices in Mat(d,C), satisfying the condition

supj ‖Mj‖ <∞, one can consider its Lyapunov exponent χ : Cd → R ∪ {−∞} defined by

χ(v) = lim sup
n→∞

1

n
log ‖M (n)v‖, (1.7)

where we have set M (n) := Mn−1Mn−2 · · ·M1M0.

Here, we follow the convention that log(0) = −∞. We also note that χ(v) does not depend on

the norm ‖ · ‖ chosen as they are all equivalent. It follows from standard dimension arguments

that χ(v) takes at most d different values: χ1 > . . . > χd′ , where d′ 6 d.

From these, one can construct a filtration of Cd, i.e., a sequence of subspaces
{
V i
}d′
i=1

Cd = V1 ) V2 ) . . . ) Vd′ 6= {0} (1.8)

such that χ(v) = χi, for all v ∈ V i \ V i+1.
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Remark 1.4.2. In the case where {Mj}j>0 is made up of a single matrix M , the Lyapunov

exponents χi are given by log |λi|, where λi are the eigenvalues of M and, V i \ V i+1 are the

corresponding (possibly generalised) eigenspaces. When {Mj}j>0 is a convergent sequence with

limit M , the values of the exponents are also determined by the eigenvalues of M . ♦

A sequence {Mj}j>0 is said to be forward regular if

lim
n→∞

1

n
log
∣∣ det

(
M (n)

)∣∣ =

d∑
i=1

χ′i, (1.9)

provided that the limit exists. Here, χ′1 > . . . > χ′d are the values attained by χ, counted with

their multiplicities. Mere existence of the limit does not guarantee forward regularity.

The numbers χi are also related to the singular values of M (n); see [BV17]. Denote by

sing(M (n)) the set of singular values σ1(n) > . . . > σd(n) > 0 of M (n), i.e., the set of eigenvalues

of the positive definite matrix
((
M (n)

)†
M (n)

)1/2
. Then, the exponents satisfy

lim sup
n→∞

1

n
log σi(n) 6 χi, for 1 < i 6 d and lim sup

n→∞

1

n
log σ1(n) = χ1.

1.4.2. Matrix cocycles

One way to generate sequences of matrices is via cocycles. Consider a measure-preserving

dynamical system (X, f, µ) and a measurable matrix-valued map A : X → Mat(d,C).

Definition 1.4.3. A skew linear map F : X ×Cd → X ×Cd defined by (x, v) 7→
(
f(x), A(x)v

)
is called a linear cocycle over f , where f is the base dynamics of the cocycle.

We call F ergodic over (X, f, µ) if f is ergodic. An iteration of this function yields the pair

Fn(x, v) = (fn(x), A(n)(x)v), where the induced fibre action on Cd is determined by the matrix

product

A(n)(x) = A(fn−1(x)) · . . . ·A(f(x))A(x).

Unless otherwise stated, we assume the base dynamics to be fixed, and we refer to A(n)(k) as

the matrix cocycle.

Example 1.4.4.

(1) Let Ω ⊂ Mat(d,C) be compact. Let X = ΩZ with the (left-sided) shift operator S on

X, with (Sx)k = xk+1, for {xk}k∈Z ∈ ΩZ, and µ a probability measure on Ω. Consider

the locally constant map A : x 7→ A(x0). Then, (S,A) defines a cocycle over X × Cd.
Furthermore, S is ergodic with respect to the product measure µZ.

(2) Let X = Td := Rd/Zd, A : Td → Mat(d,C), and M̃ be a toral endomorphism given

by M̃ : x 7→ (Mx) mod 1, where M ∈ Mat(d,Z). It is well known that M̃ is ergodic

with respect to Lebesgue measure whenever detM 6= 0 and M does not have eigenvalues

which are roots of unity [EW11, Cor. 2.20], and is invertible whenever M ∈ GL(d,Z), i.e.,

detM = ±1. As in the first example, (M̃,A) defines a matrix cocycle. ♦

12



For sequences arising from cocycles, more specific versions of Eq. (1.7) and Eq. (1.8) for the

Lyapunov exponent χ : Cd ×X → R ∪ {−∞} and the x-dependent filtration it defines read

χ(v, x) = lim sup
n→∞

1

n
log ‖A(n)(x)v‖ and Cd = V1

x ) V2
x ) . . . ) Vd′(x)

x 6= {0} ,

with χ(v, x) = χi(x), for all v ∈ V ix \ V i+1
x . We say that A(n)(x) at a given point x is forward

regular if the sequence {A(fn(x))}n>0 is forward regular.

Lemma 1.4.5. Let v ∈ Cd \ {0} , x ∈ X. Assuming A(n)(x)−1 exists, one has,

χmin(x) 6 χ(x, v) 6 χmax(x),

where

χmax(x) = lim sup
n→∞

1

n
log ‖A(n)(x)‖ and χmin(x) = lim inf

n→∞

1

n
log ‖A(n)(x)−1‖−1.

Proof. Note that the following holds for all non-zero v,

‖A(n)(x)−1‖−1‖v‖ 6 ‖A(n)(x)v‖ 6 ‖A(n)(x)‖‖v‖.

The claim then directly follows by taking the logarithm, and the lim sup and the lim inf of the

upper and the lower bound, respectively.

Define φ+(x) := max {0, φ(x)}. The following result on the extremal exponents is due to

Furstenberg and Kesten [FK60]; see also [Via13, Thm. 3.12].

Theorem 1.4.6 (Furstenberg–Kesten). Let F : X × Rd → X × Rd be a matrix cocycle defined

by F (x, v) = (f(x), A(x)v), where A : X → GL(d,R) is measurable, and X is compact. If

log+ ‖A±1‖ ∈ L1(µ), the extremal exponents χmin(x) and χmax(x) exist as limits for a.e. x ∈ X.

Moreover, these functions are f -invariant and are µ-integrable.

Note that since we assume compactness ofX in Theorem 1.4.6, local integrability of log+ ‖A±1‖
is equivalent to integrability; see [Din74, Sec. 15] .

1.4.3. Ergodic theorems

The following generalisation of Birkhoff’s ergodic theorem for subadditive functions is due to

Kingman [Kin73]; compare [Via13, Thm. 3.3].

Theorem 1.4.7 (Kingman’s subadditive ergodic theorem). Assume f : X → X to be ergodic

with respect to µ. Let {φn} be a sequence of functions such that φ+
1 is µ-integrable and

φm+n 6 φm + φn ◦ fm holds for all m,n > 1.

Then,

lim
n→∞

1

n
φn(x) = c = inf

n

∫
X
φn(ξ)dµ(ξ).

for µ-a.e. x ∈ X.
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For ergodic real-valued cocycles, one has the following central result in the theory of Lyapunov

exponents, which is due to Oseledec [Ose68]; see [Via13, Thm. 4.1] and [BP07, Thm. 3.4.3].

Theorem 1.4.8 (Oseledec’s multiplicative ergodic theorem). Let f be an ergodic transformation

of the probability space (X,µ). Let A : X → GL(d,R) be measurable, such that the condition

log+ ‖A‖ ∈ L1(µ) holds. Then, for µ-a.e. x ∈ X, the cocycle A(n)(x) is forward regular.

Moreover, for these x, the Lyapunov exponents χi(x) are constant, i.e., there exist real numbers

χ1, . . . , χd′, and a filtration

Rd = V1
x ) V2

x ) . . . ) Vd′x 6= {0}

such that

lim
n→∞

1

n
log ‖A(n)(x)vi‖ = χi

for all vi ∈ V ix \ V i+1
x .

Remark 1.4.9 (Exponents from singular values). In the case where Oseledec’s theorem holds,

the exponents can also be expressed in terms of the singular values σ1(n) > . . . > σd(n) > 0 of

A(n)(x), i.e.,

χi(x) =
1

n
lim
n→∞

log σi(n),

for a.e. x ∈ X. ♦

Remark 1.4.10 (cocycles with invertible dynamics). There exists an even stronger notion of

regularity, also known as Lyapunov–Perron regularity. This requires both the matrix-valued

function A and the map f to be invertible so that one can define A(n)(x), for n < 0. Under

these invertibility assumptions, and that log+ ‖A−1‖ ∈ L1(µ), one gets a two-sided version of

Theorem 1.4.8. ♦

Theorem 1.4.6 and Theorem 1.4.8 can easily be extended to complex-valued cocycles since

complex matrices could be realised as real maps. The following “realification” scheme is used

in [DK14, Sec. 8] and [BHJ03, Sec. 5]. Let f(x) := f1(x) + if2(x), where f1(x) and f2(x) are

real-valued functions. We associate to f the matrix

fR :=

(
f1 f2

−f2 f1

)
∈ Mat(2,R), for all x ∈ X. (1.10)

The realification R : Mat(d,C) → Mat(2d,R) is the map that sends A(x) to a real-valued

cocycle by sending each entry A`j(x) to a 2× 2-block via Eq. (1.10). In other words

A(x) = A1(x) + iA2(x) 7→

(
A1 A2

−A2 A1

)
.

We denote the realification of A(x) as AR(x) := R(A(x)). The following results highlight some

properties of AR(x).

Proposition 1.4.11 ( [DK14, Prop. 8.1]). Let A be a complex matrix cocycle and AR its

realification. Then, the following hold

(1) det(AR) =
∣∣ det(A)

∣∣2
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(2) sing(AR) = sing(A), with each singular value of A appearing twice in sing(AR)

(3) ‖AR‖ = ‖A‖.

Proposition 1.4.12 ( [DK14, Prop. 8.2]). Any integrable cocycle A : T → Mat(d,C) has the

same Lyapunov exponents as AR.

Proof. This follows from Proposition 1.4.11 and Remark 1.4.9.

For the entirety of this work, when we mention that Theorem 1.4.6 or Theorem 1.4.8 holds for

specific cocycles, we mean that it holds for their realifications and that the (complex) filtration

is derived from the real one.

1.5. Polynomials and Mahler measures

Definition 1.5.1. Let p(z) ∈ C[z] \ {0}. Its logarithmic Mahler measure m(p) is given by its

geometric mean over the unit circle, which formally reads

m(p) =

∫ 1

0
log
∣∣p( e2π it)

∣∣ dt. (1.11)

This interpretation as a mean allows one to extend this definition to polynomials in several

variables via

m(p(z1, . . . , zd)) =

∫
Td

log
∣∣p( e2π it1 , . . . , e2π itd)

∣∣ dt1 . . . dtd.

The logarithmic Mahler measure m(α) of an algebraic number α is m(pα), where pα is the monic

minimal polynomial of α. This notion can also be extended to Laurent polynomials f ∈ C[z±1],

where we identify f with a polynomial in p ∈ C[z], where the two differ by a (multiplied)

monomial factor. In the one-dimensional case, Jensen’s formula relates this mean to the zeros

of p(z) = cs
∏
i(z − αi) outside the unit circle; see [Sch95, Prop. 16.1]. This relation explicitly

reads

m(p) = log |cs|+
s∑
j=1

log(max {|αj | , 1}). (1.12)

In most references, one usually deals with M(p) := exp(m(p)), which is what is referred to

as the Mahler measure of p. We refer the reader to [Smy08] for a general survey on Mahler

measures.

Lemma 1.5.2. Let p(z) = c0 + c1z + . . .+ csz
s ∈ C[z], where p is not a monomial. Then,

0 6 m(p) < log

√∑
i

|ci|2.

Proof. Since the exponential function is strictly convex, Jensen’s inequality is applicable and so

we have

1 6M(p) <

∫ 1

0

∣∣p( e2π it
)∣∣ dt = ‖p‖1 < ‖p‖2,

where both inequalities are strict because p is not a monomial and hence
∣∣p( e2π it

)∣∣ is not

constant; see [LL01, Ch. 2.2]. Invoking Parseval’s equality, i.e., ‖p‖22 =
∑

i |ci|
2, and taking the

logarithm of the nested inequality implies the claim.
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When one restricts to polynomials with integer coefficients, one has the following result due

to Kronecker.

Theorem 1.5.3 ( [Kro57]). Let p ∈ Z[z]. Then, m(p) = 0 if and only if p is a product of a

monomial and a cyclotomic polynomial.

In 1933, D.H. Lehmer asked whether for every ε > 0, there exists a polynomial p ∈ Z[z] such

that 0 < m(p) 6 ε [Leh33]. What is currently known as Lehmer’s problem, conjectures the

opposite, i.e., there is a constant c such that, for all p ∈ Z[z] with m(p) 6= 0, one has m(p) > c.

Evading a general proof, this is a famous long-standing open problem in number theory.

1.6. Almost periodic functions and discrepancy analysis

A continuous function f is said to be Bohr-almost periodic if for every ε > 0, the set of ε-almost

periods

APε(f) := {t ∈ R : ‖f − Ttf‖∞ < ε}

is relatively dense in R. Here, Tt(f) = f(x− t) are the translates of f . Bohr-almost periodicity

implies boundedness and uniform continuity of f .

Define the Stepanov norm on L1
loc(R) to be

‖f‖S := sup
x∈R

1

L

∫ x+L

x
|f(y)|dy.

These norms are equivalent for different L, which allows one to fix L = 1 unambiguously. A

function f is called Stepanov-almost periodic if for every ε > 0, the set of ε-almost periods of

f , this time with respect to ‖ · ‖S, is relatively dense in R. The set of Bohr-almost periodic

functions is contained in this class. We refer to [BG13, Sec. 8.2] for a concise introduction

on almost periodic functions and to [MS17] for a comprehensive review in relation to almost

periodic measures.

For a (Bohr or Stepanov) almost periodic function f , its mean M(f) is defined as

M(f) := lim
T→∞

1

2T

∫ r+T

r−T
f(x)dx,

which exists and is independent of r; see [Bes54].

A sequence (xn)n∈N of real numbers is said to be uniformly distributed modulo 1 if, for all

a, b ∈ R, with 0 6 a < b 6 1 we have

lim
N→∞

1

N
card

(
[a, b) ∩ {〈x1〉 , . . . , 〈xn〉}

)
= b− a,

where 〈x〉 denotes the fractional part of x.

Fact 1.6.1 ( [BHL17, Fact 6.2.3]). Consider (αnx)n∈N. For a fixed α ∈ R, |α| > 1, this sequence

is uniformly distributed mod 1, for a.e. x ∈ R.

Given a sequence (xn)n∈N, its discrepancy is defined as

DN = sup
06a<61

∣∣∣∣ 1

N
card

(
[a, b) ∩ {〈x1〉 , . . . , 〈xn〉}

)
− (b− a)

∣∣∣∣.
Note that being uniformly distributed mod 1 is equivalent to DN → 0, as N →∞.
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Fact 1.6.2 ( [BHL17, Fact 6.2.5]). Let α ∈ R, |α| > 1. For any fixed ε > 0, the asymptotic

behaviour of DN for (αnx)n∈N is given by

DN = O
(

(log(N))
3
2

+ε

√
N

)
(1.13)

for a.e. x ∈ R.

The following generalisations of a theorem by Sobol on averages of (possibly) unbounded

functions sampled along uniformly distributed sequences [Sob73] are due to Baake, Haynes, and

Lenz; see [BHL17].

Theorem 1.6.3 ( [BHL17, Thm. 6.4.4]). Let α ∈ R with |α| > 1 be given, and let f be Bohr-

almost periodic on R. Then, for a.e. x ∈ R, one has

lim
N→∞

1

N

N−1∑
n=0

f(αnx) = M(f),

where M(f) is the mean of f .

Theorem 1.6.4 ( [BHL17, Thm. 6.4.8]). Let α ∈ R with |α| > 1 be given, and let f ∈ L1
loc(R)

be Stepanov almost periodic. Assume that there is a uniformly discrete set Y ⊂ R such that

f , for every δ > 0, is locally Riemann integrable on the complement of Y + (−δ, δ). Assume

further that there is a δ′ > 0 such that, for any z ∈ Y , f is differentiable on the punctured

interval (z − δ′, z + δ′) \ {z} and that, for any s > 0,

VN (s) := sup
z∈Y

(∫ z− 1
Ns

z−δ′
|f ′(x)|dx+

∫ z+δ′

z+ 1
Ns

|f ′(x)|dx
)

= O
(
N

s
2
−r) (1.14)

holds for some r > 0 as N →∞. Then, one has

lim
N→∞

1

N

N−1∑
n=0

f(αnx) = M(f)

for a.e. x ∈ R.
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2. Renormalisation for Pair Correlations and

Absence of Absolutely Continuous Diffraction

In this chapter, we develop a renormalisation scheme satisfied by some ergodic quantities aris-

ing from an inflation %. We show that this extends to renormalisation schemes satisfied by

constituent measures of the autocorrelation γ and the diffraction γ̂, respectively. The last three

sections are dedicated to the main results of this thesis, which are quantitative results relating

Lyapunov exponents and absolutely continuous diffraction.

Here, we assume % to be primitive, aperiodic and one-dimensional. A brief remark will be

made on how some arguments extend to periodic tilings. Higher-dimensional analogues will be

treated in Chapter 5. As described in Section 1.2.4, one can build an inflation dynamical system

(Y,R) from % that is invariant with respect to % regarded as an inflation, and where elements

of Y are translates of geometric realisations of elements of the symbolic hull X.

2.1. Fourier matrix and inflation displacement algebra

We now define the main object of study, which is the Fourier matrix associated to %. Given an

inflation % with inflation multiplier λ = λPF, we specify the left-most position of a prototile t

to be its control point. Define the displacement matrix T = (Tij) by

Tij := {relative positions of ti in the supertile %(tj)} . (2.1)

Entries of this matrix are called displacement sets , whose elements are contained in αZ[λ], for

some α ∈ Q[λ]. We also define the total set ST to be the union of all displacement sets, i.e.,

ST =
⋃
ij Tij .

Definition 2.1.1. The Fourier matrix B(k) is entrywise defined to be

Bij(k) :=
∑
t∈Tij

e2π itk. (2.2)

In a measure-theoretic sense, one can also define it using the Fourier transform for Dirac combs

on finite sets, i.e., B(k)ij := δ̂Tij (k) = δ̂Tij (−k).

This matrix is composed of trigonometric polynomials. Moreover, the number of distinct

frequencies present in the constituent polynomials is the algebraic degree of λ. Evaluation at

k = 0 gives the substitution matrix, i.e., B(0) = M%. Furthermore, it satisfies the symmetry

relation B(k) = B(−k), which enables us to restrict our analysis to R+. Another way of writing

it would be B(k) =
∑

t∈ST e2π itkDt, where the Dt are 0-1 matrices given by

(Dt)ij =

1, if %(aj) contains a tile of type ai at position t,

0, otherwise ,
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which we call digit matrices, to be consistent with the notation for constant-length substitutions,

but are also referred to as instruction matrices in [Bar16,Que10].

Example 2.1.2 (Square of the Fibonacci). Let %2
F be the square of the Fibonacci substitution,

which reads %2
F : a 7→ aba, b 7→ a. Its realisation as an inflation rule, together with the markers

of the tile positions, is given in Figure 2.1.

a %2
F a b a

b %2
F a b

0 0 τ τ + 1

0 0 τ

Figure 2.1.: The square of %F viewed as an inflation rule.

For %2
F, the displacement matrix T and the Fourier matrix B(k) respectively read

T =

(
{0, τ + 1} {0}
{τ} {τ}

)
and B(k) =

(
1 + e2π i(τ+1)k 1

e2π iτk e2π iτk

)
.

Here, the set of digit matrices that constitute B(k) is given by {Dt} = {( 1 1
0 0 ) , ( 0 0

1 1 ) , ( 1 0
0 0 )}. ♦

For a given %, we define its inflation displacement algebra (IDA) B to be the C-algebra

generated by the family {B(k) | k ∈ R}, which is a finite-dimensional complex algebra.

Fact 2.1.3. The IDA B is the same as the C-algebra BD generated by the collection of all digit

matrices {Dx | x ∈ ST }.

An algebra is irreducible if the only invariant subspaces with respect to the entire set are {0}
and the full space Cna . The equivalence B = BD turns out to be very useful when determining

the IDA explicitly or when analysing whether it is irreducible or not, because these translate to

analogous questions on a finitely-generated algebra.

We also have the following inclusion result between the IDA B of % and the IDA B(n) of one

of its powers %n.

Fact 2.1.4. Let B(k) be the Fourier matrix of % as defined in Eq. (2.2). Then, for any n ∈ N,

the Fourier matrix of %n is given by B(n)(k) = B(k)B(n)(λk) = B(k)B(λk) · . . . ·B(λn−1k).

Lemma 2.1.5. Let % be a primitive substitution over a finite alphabet with na letters and

corresponding inflation rule with (fixed) natural tile lengths. If m,n ∈ N with m|n, one has

B(n) ⊆ B(m). In particular, B(n) ⊆ B(1) = B.

From Burnside’s theorem, it follows that an IDA B of dimension d is irreducible if and only if

B = Mat(d,C). The following criterion guarantees that the IDA of % is irreducible. We provide

a sketch of the proof here and refer to [BGäM18, Prop. 3.8] for the full proof.

Proposition 2.1.6 ( [BGäM18, Prop. 3.8]). Let % be a primitive substitution over a finite

alphabet with na > 2 letters. If the natural prototile lengths are distinct, the IDA of % is

B = Mat(d,C) and hence irreducible.
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Sketch of proof. Primitivity of % implies that every element of the hull is linearly repetitive,

and so every legal patch of length ` > `r contains at least one copy of each prototile, for

some `r > 0. In particular, for some N ∈ N, all n-level supertiles satisfy this property for

n > N . When one orders the tiles in descending length, this allows one to recover all elementary

matrices Ei,1, where 1 6 i 6 na, as digit matrices. One then proceeds to the second longest

supertile, from which one gets Ei,2 via digit matrices corresponding to %n(a2) and, possibly, their

linear combinations with the matrices Ei,1. Continuing this process yields B(n) = Mat(na,C).

Lemma 2.1.5 then implies B = Mat(na,C), and hence irreducible by Burnside’s theorem.

Example 2.1.7.

(1) For a bijective constant-length substitution (see Section 3.3 for the definition), the digit

matrices Dt are all permutation matrices. It follows from standard representation theory

that if the group G generated by the corresponding permutations is the full symmetric

group Σna , the resulting IDA B ∼= Mat(na − 1,C)⊕C. One gets the same algebra if one

instead has the alternating group Ana because the standard representation Ust remains

irreducible when restricted to Ana .

When G is Abelian, the matrices B(k) are simultaneously diagonalisable, which yields

B ∼= C⊕ · · · ⊕ C︸ ︷︷ ︸
n terms

.

(2) The period-doubling substitution %pd : 0 7→ 01, 1 7→ 00 is also constant-length but is

not bijective. The digit matrices given by {Dt} = {( 1 1
0 0 ) , ( 0 1

1 0 )} generate the three-

dimensional algebra

Bpd =

{(
c1 + c2 c1

c3 c2 + c3

)
: c1, c2, c3 ∈ C

}
.

(3) Let %2
F be as in Example 2.1.2. The IDA B = Mat(2,C) by Proposition 2.1.6. In general,

this is true for all irreducible substitutions. ♦

A case wherein the inclusion in Lemma 2.1.5 is strict is given in the next example.

Example 2.1.8. Consider the alphabet A4 = {a, b, c, d}, and the constant-length substitution

%, whose first two iterates are given by[
a
b
c
d

]
%7−→

[
ad
bc
da
cb

]
%7−→

[
adcb
bcda
cbad
dabc

]
.

The corresponding IDA is generated by permutation matrices determined by the columns.

In the first iteration, the columns viewed as elements of symmetric group Σ4 are (cd) and

(adbc), which generate a subgroup isomorphic to the dihedral group D4. This means B(1) is

6-dimensional, and is isomorphic to C ⊕ C ⊕ Mat(2,C). Here the restriction of Ust splits as

a sum of two irreducible representations, of dimension 2 and 1, respectively. For %2, however,

the associated group is isomorphic to Klein’s 4-group C2 × C2, which is Abelian and hence

generates a 4-dimensional, commutative algebra. Here, one generally has that B(2n) = B(2) and

B(2n+1) = B(1) for all n ∈ N. ♦
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The converse of Proposition 2.1.6 does not hold in general, as we shall see next.

Example 2.1.9. We consider the return word encoding of a reordered variant of %RS given by

%
RS′

: 0 7→ 02, 1 7→ 32, 2 7→ 01, 3 7→ 31; see [Dur98] for general background on return words

and [BR17] for applications to local recognisability. Running the algorithm for the letter 0

yields eight distinct right-collared return words, namely

01|0, 02|0, 0131|0, 013132|0, 01313231|0, 02323132|0, 0232313231|0,

which one can use as letters to build an eight-letter substitution on A′ = {a, b, . . . , h} defining

a hull MLD to that of %RS′ . This is given by %ret = (d, ba, g, bca, ha, he, bcfa, bcfe), whose

substitution matrix M% reads

M =



0 1 0 1 1 0 1 0

0 1 0 1 0 0 1 1

0 0 0 1 0 0 1 1

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0


.

It has eigenvalues 2,±
√

2,−1, 0, where the eigenvalue 0 corresponds to a size-4 Jordan block.

One can choose the left PF eigenvector to be L = (2, 2, 4, 4, 6, 8, 8, 10) to match the symbolic

lengths of the identified return words.

For this substitution, one can algorithmically show the irreducibility of the IDA B via

Lemma 2.1.5 and Fact 2.1.3. The digit matrices of % can be flattened into elements of C64.

One proceeds by investigating whether, for some n > 1, the span of the digit matrices for B(n)

is of dimension 64. Indeed, this is the case for n = 6. By Lemma 2.1.5,

span
{
D(6)
x

}
= Mat(8,C) ⊆ B(6)

D = B(6) ⊆ B(1) = B.

♦

2.2. Pair correlation functions

As a starting point for diffraction analysis, we consider a fixed point Λ ∈ Y generated by a

primitive inflation rule %, or one of its powers, if necessary. Alternatively, one can view this as

choosing a fixed point %∞(ai|aj) of the substitution and constructing its geometric realisation.

As always, we consider the left endpoints of prototiles to be their markers, possibly coloured.

Next, we define the pair correlations νij(z) to be the relative frequency that a tile of type i is

at a distance z to the left of a tile of type j in Λ, which can formally be expressed as

νij(z) =
dens(Λi ∩ (Λj − z))

dens(Λ)
= lim

R→∞

card
(
Λ

(R)
i ∩ (Λ

(R)
j − z)

)
card

(
Λ(R)

) . (2.3)

21



Here, the density of a generic point set Λ′ is given by

dens(Λ′) = lim
R→∞

1

2R
card(Λ′ ∩ [−R,R]).

These frequencies exist uniformly due to the unique ergodicity of (Y,R), and are the same for

any element Λ ∈ Y due to minimality.

These correlation functions are non-negative and satisfy νij(z) = νji(−z). Aside from that,

νij(z) > 0 only whenever z ∈ Λj − Λi. Note that this Minkowski difference is the same for any

element of the hull, primarily due to minimality, which is equivalent to repetitivity. Seeing νii(0)

as the relative frequency of the occurrence of a tile of type i in Λ, we also have
∑na

i=1 νii(0) = 1.

For one-dimensional tilings, we have the additional constraint that νij(0) = 0 for all i 6= j,

which is clear from the choice of the markers. In higher dimensions, this might not be true

in general, for example, when the choice of markers does not prohibit two different tiles to be

determined by the same point.

These pair correlations and their properties are dealt with for several examples in [BG16], and

are extended to the general case in [BGäM18]. In what follows, we state the renormalisation

relations satisfied by νij(z).

Proposition 2.2.1. Let Λ ∈ Y where Y arises from a primitive, aperiodic substitution over

na letters, and let the pair correlation functions be defined as in Eq. (2.3). Then, the functions

νmn(z) exist and are independent of Λ. Furthermore, they satisfy the system of renormalisation

equations given by

νmn(z) =
1

λ

na∑
i,j=1

∑
x∈Tmi

∑
y∈Tnj

νij

(
z + x− y

λ

)
, (2.4)

where λ is the inflation multiplier.

Proof. For Λ ∈ Y, fix R and z0 such that, within (−R+ z0, R+ z0), one finds two tiles tm and

tn at a distance z. Aperiodicity implies local recognisability, which means that every tile is

situated in a unique level-1 supertile. For the point set Λ, this means that markers of type m

and n being at a distance z apart correspond to unique markers of type i and j (in another point

set Λ′) inside a window of radius R
λ being separated by a distance z+x−y

λ . Here, x and y are

elements of the displacement sets Tmi and Tnj encoding the location of tm and tn in the respective

supertiles %(ti) and %(tj); see Figure 2.2. Since the functions νmn(z) are independent of Λ, one

can compare relative frequencies through this renormalisation even if they are associated to

different elements of Y. Summing over all supertiles that contain tm and tn, all possible relative

displacements within each supertile, and renormalising with respect to the averaging diameter

given in Eq. (2.3) implies the claim.

Remark 2.2.2 (Periodic case). Aperiodicity plays a vital role here since it implies local recog-

nisability. When the hull Y is periodic, one loses this unique decomposition of Λ into supertiles.

This could easily be remedied by choosing a fixed decomposition and working out the correlation

functions from there. ♦
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m n

i j

z

x y

λz + y − x

%

Figure 2.2.: Illustration of the “desubstitution” property which enables the correspondence of

pair correlations of supertiles in %(Λ) to pair correlations of tiles in Λ.

Example 2.2.3 (Fibonacci). One of the examples treated in [BG16] is the Fibonacci substitu-

tion %F as in Example 1.2.8, for which Eq. (2.4) explicitly reads

νaa(z) = 1
τ

(
νaa(

z
τ ) + νab(

z
τ ) + νba(

z
τ ) + νbb(

z
τ )
)
,

νab(z) = 1
τ

(
νaa(

z
τ − 1) + νba(

z
τ − 1)

)
,

νba(z) = 1
τ

(
νaa(

z
τ + 1) + νab(

z
τ + 1)

)
,

νbb(z) = 1
τ

(
νaa(

z
τ )
)
,

where z ∈ Z[τ ] and νij(z) 6= 0 if and only if z ∈ Λj − Λi. Here, τ = λPF is the golden ratio. ♦

Remark 2.2.4. Given any set of complex weights w = {Wi}, one can rewrite the autocorrela-

tion coefficients ηω(z) in Eq. (1.6) as

ηω(z) = dens(Λ)

na∑
i,j=1

Wi νij(z)Wj ,

where νij(z) are the pair correlation functions. ♦

2.3. Pair correlation measures and diffraction

From the pair correlation functions νmn in the previous section, we can build pair correlation

measures Υmn by treating νmn(z) as weights of a Dirac comb on Λ−Λ. We then get pure point

measures of the form

Υmn =
∑

z∈Λ−Λ
νmn(z)δz.

From the non-negativity of the pair correlations, we get that Υmn > 0. Moreover, one has

Υ̃mn = Υnm. In particular, Υmm is both positive and positive definite.

Lemma 2.3.1. Each pair correlation measure emerges from an Eberlein convolution via

Υmn =
δ̃Λm ~ δΛn
dens(Λ)

.
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Proof. It is easy to confirm via test functions that δ̃Λi = δ−Λi . The Eberlein convolution can be

written as a limit which reads δ̃Λm~δΛn = limR→∞(2R)−1
(
δ−Λ(R)

m
∗δ
Λ
(R)
n

)
, where the convolution

of the finite approximants can be simplified to

δ−Λ(R)
m
∗ δ

Λ
(R)
n

=
∑

x∈−Λ(R)
m ,y∈Λ(R)

n

δx+y =
∑

z∈Λ(R)
n −Λ

(R)
m

card
(
Λ(R)
m ∩ (Λ(R)

n − z)
)
δz,

where the coefficient of δz gives the number of times z is realised as a sum of elements x ∈ −Λ(R)
m

and y ∈ Λ(R)
n . Expressing dens(Λ) as a limit, and incorporating this to this simplified version

of the numerator, proves the claim.

On the basis of Theorem 1.3.5 and Proposition 1.3.6, one finds the following result.

Lemma 2.3.2 ( [BGäM18, Lem. 2.3]). Let µ, ν be translation bounded measures such that µ~ ν̃

as well as µ~ µ̃ and ν~ ν̃ exist, all with respect to the same averaging sequence R. Then, µ~ ν̃

is a translation bounded and transformable measure, and so is µ̃~ ν.

Proposition 2.3.3. The pair correlation measures satisfy

Υmn =
1

λ

∑
i,j

∑
r∈Tmi

∑
s∈Tnj

δs−r ∗
(
f.Υij

)
, (2.5)

where f(x) = λx and (f.µ)(D) = µ(f−1(D)), for any Borel set D ⊂ R.

Proof. By definition, one can easily verify that f.δz = δλz, from which we obtain

f.Υij =
∑

z∈Λj−Λi

νij(z)δλz =
∑

z∈λ(Λj−Λi)

νij
(
z
λ

)
δz,

where the last equality follows from an appropriate change of variable. Taking its convolution

with δs−r, we get

δs−r ∗
(
f.Υij

)
=

∑
z∈λ(Λj−Λi)

νij
(
z
λ

)
δz+s−r =

∑
z∈λ(Λj−Λi)+s−r

νij
(
z+r−s
λ

)
δz.

Now, we note that the following holds due to the compatibility of the supertile positions, tile

displacements and the inflation structure; see Fig. 2.2,⋃
16i,j6na

r∈Tmi,s∈Tnj

λ(Λj − Λi) + (s− r) = Λn − Λm.

With this and Eq. (2.4), the right hand-side of Eq. (2.5) becomes

1

λ

∑
i,j

∑
r∈Tmi

∑
s∈Tnj

∑
z∈λ(Λj−Λi)+(s−r)

νij
(
z+r−s
λ

)
δz =

∑
z∈Λn−Λm

νmn(z)δz = Υmn,

which completes the argument.

Now, let us consider Λ =
⋃
Λi as a weighted point set by choosing a complex weight vector

w = (W1, . . . ,Wna), and putting the weight Wi to any position in R which is a control point of

a tile of type ti. The resulting weighted comb reads ωΛ =
∑

16i6naWi δΛi . To this, we associate
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the natural autocorrelation as γω = ωΛ ~ ω̃Λ. As explained in Section 1.3.4, for any complex

weight vector w, γω exists and is the same for every element Λ ∈ Y. Invoking Lemma 2.3.1, we

can rewrite γω in terms of the measures Υij as

γω = dens(Λ)

na∑
i,j=1

W i ΥijWj . (2.6)

The Fourier transform of each Υij exists due to Lemma 2.3.2. The linearity of the Fourier

transform enables us to recover the diffraction measure from Eq. (2.6) as

γ̂ω = dens(Λ)

na∑
i,j=1

W i Υ̂ijWj . (2.7)

Due to an appropriate variant of Lemma 1.3.4 for translation bounded measures, the respective

Fourier transforms Υ̂ij satisfy

Υ̂mn =
̂̃
Υmn = Υ̂nm. (2.8)

In particular, the measures Υ̂mm are positive and positive definite. The action f.µ under Fourier

transform satisfies

f̂.µ =
1

λ
f−1.µ̂, (2.9)

see [BG18, Lem. 2.5]. This, together with the convolution theorem, provides the counterpart of

Eq. (2.5), after Fourier transformation, to be

Υ̂mn =
1

λ2

∑
i,j

∑
r∈Tmi

∑
s∈Tnj

e−2π i(s−r)(.)(f−1.Υ̂ij
)
. (2.10)

Now, if we list these measures in lexicographic order, one can deduce from Eq. (2.10) that

the resulting vector given by

Υ̂ =
(
Υ̂11, Υ̂12, . . . , Υ̂1na , Υ̂21, Υ̂22, . . . , Υ̂nana

)
satisfies the vector-valued equation

Υ̂ =
1

λ2
A(.)(f−1.Υ̂ ) (2.11)

with A(k) = B(k)⊗B(k), where B(k) is the Fourier matrix defined in Section 2.1. This scaling

relation, together with the decomposition of the diffraction spectrum provided in Eq. (2.7),

enables us to analyse the structure of γ̂ω by analysing Υ̂ .

To continue, consider the decomposition of Υ̂ij into its pure point and continuous parts, i.e.,

Υ̂ij = (Υ̂ij)pp + (Υ̂ij)cont. Let Epp be the union of all the supporting sets of (Υ̂ij)pp, for all i, j.

This is (at most) a countable set, being a finite union of (at most) countable sets. One then

obtains a decomposition of the measure vector Υ̂ = (Υ̂ )pp + (Υ̂ )cont, where (Υ̂ )pp is supported

on Epp and (Υ̂ )cont on Econt = R \ Epp.

One also has the freedom to choose these supporting sets to be f -invariant, which will be

crucial for our analysis. To this end, note that the set E ′pp :=
⋃
m∈Z f

m
(
Epp
)

remains a countable

set, and hence is still a null set for (Υ̂ )cont. This set is f−invariant and contains the true support

of (Υ̂ )pp. Likewise, its f -invariant complement E ′cont = R \ E ′pp contains a full supporting set
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of the continuous part, which is immediate since its construction entailed the removal of an at

most countable set from E ′cont. This yields a decomposition of R into the respective supporting

sets given by R = E ′pp ∪̇ E ′cont such that,(
Υ̂
)
pp

= Υ̂
∣∣
E ′pp

and
(
Υ̂
)
cont

= Υ̂
∣∣
E ′cont

.

The continuous component can then be broken down into
(
Υ̂
)
cont

=
(
Υ̂
)
ac

+
(
Υ̂
)
sc

, and a

similar construction can be employed to ensure that the supports of the respective parts are

disjoint and f -invariant, which leads to the decomposition

R = E ′pp ∪̇ E ′ac ∪̇ E ′sc

with
(
Υ̂
)
α

= Υ̂
∣∣
E ′α

and f
(
E ′α
)

= E ′α for all α ∈ {pp, ac, sc}.
We take advantage of this decomposition in the next lemma to show that we can carry out

the analysis on each spectral component given in Theorem 1.3.7 independently.

Lemma 2.3.4. The renormalisation equation for the vector of measures Υ̂ in Eq. (2.11) holds

individually for each spectral type, i.e.,

(Υ̂ )α =
1

λ2
A(.)(f−1.Υ̂ )α (2.12)

where α ∈ {pp, ac, sc}.

Proof. Any given measure vector µ shares the same spectral type withA(.)µ due to the analytic

dependence of A(k) on k. In particular, one has
(
A(.)µ

)
α

= A(.)(µ)α holds for each spectral

type α ∈ {pp, ac, sc} . Aside from this, the dilation f−1 neither affects the support nor the null

sets of the measure as well. The claim then follows by considering restrictions of the measures

to their pairwise disjoint f -invariant supports.

Remark 2.3.5 (Renormalisation of (Υ̂ )pp). It is known from [BG13, Cor. 9.1] that the diffrac-

tion γ̂ of a locally finite point set Λ always possesses a non-trivial Bragg peak at zero. This

value is given by

γ̂
(
{0}

)
=
(
dens(Λ)

)2
.

From Eq. (2.7), one has (
Υ̂ij
)
pp

= dens(Λ)
∑
k∈E ′pp

Iij(k)δk,

consistent with the definition of the intensities Iij(k) as dimensionless quantities, which at

zero satisfy
∑na

i,j=1 Iij(0) = 1. Lexicographically ordering Iij yields the intensity vector I(k)

associated to Υ̂ . It follows from Lemma 2.3.4 that this vector satisfies the renormalisation

I(k) = λ−2A(k)I(λk),

which describes the behaviour of intensities along orbits of the map k 7→ k
λ . For values of k

where A(k) is invertible, one also has access to the outward orbit k 7→ λk. In particular, one

can derive a variant of a hypothesis by Bombieri and Taylor regarding intensities and how they

arise from exponential sums. We refer to [BGäM18, Sec. 3.4] for a complete analysis. ♦

The validity of the central arguments invoked in the remainder of this text relies on the

precise implications of Lemma 2.3.4 for the absolutely continuous component (Υ̂ )ac, which we

deal with in the next section.
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2.4. Renormalisation of the Radon–Nikodym density

By definition, the absolutely continuous part (Υ̂ij)ac of each measure Υ̂ij is represented by a

locally integrable density function, which we denote by hij(k) ∈ L1
loc(R). Following our previous

notation, (Υ̂ )ac is to be viewed as a vector of these densities, which we call the Radon–Nikodym

vector given by h(k). Since our vector entries are now functions, Eq. (2.12) has a simpler

formulation.

Lemma 2.4.1. Let h(k) be the Radon–Nikodym vector that defines (Υ̂ )ac. Then, it satisfies

h(k) =
1

λ
A(k)h(λk), (2.13)

where this equality holds for Lebesgue-a.e. k ∈ R.

Proof. For convenience, let us denote (Υ̂ )ac := ξ. Pick an arbitrary test function g ∈ Cc(R).

Evaluating ξ(g) yields

ξ(g) =

∫
R
g(k)dξ(k) =

∫
R
g(k)h(k)dk,

where the equality is to be seen as an equivalence between a vector and a vector of integrals

involving the same function g. On the other hand, given f(x) = λx, we have

1

λ2
(A(.)(f−1.ξ))(g) =

1

λ2

∫
R
g(f−1(k))A(f−1(k))dξ(k)

=
1

λ2

∫
R
g
(
k
λ

)
A
(
k
λ

)
h(k)dk =

1

λ

∫
R
g(k)A(k)h(λk)dk,

where the last equality follows from a change of variable that induced the cancellation of λ

from the denominator. The claim then follows by comparing the associated densities of ξ and

λ−2(A(.)(f−1.ξ)), which we know to be identical from Eq. (2.12) when α = ac.

At this point, one can already work with Eq. (2.13) and proceed with a growth analysis of

the vector h(k) of length n2
a. However, one can still benefit from a dimension reduction that

can be harvested from the symmetry properties of the measures Υ̂ij , which obviously also hold

for each hij(k). To be more precise, the relations for Υ̂ij in Eq. (2.8) and the positivity of Υ̂ii

imply

hij(−k) = hji(k) = hij(k) and hii(k) > 0 (2.14)

for a.e. k ∈ R, and all 1 6 i, j 6 na.

We proceed by constructing the Radon–Nikodym matrix H(k) = (hij(k))16i,j6na , which due

to Eq. (2.14) is a positive semi-definite Hermitian matrix for a.e. k. One can then rewrite

Eq. (2.13) as a two-sided renormalisation given by

H(k) =
1

λ
B(k)H(λk)B†(k). (2.15)

By Sylvester’s criterion, this matrix decomposes into a sum of positive semi-definite matrices

each of rank 1, i.e.,

H(k) =

s∑
`=1

H`(k), where H`(k) = v`(k)v†`(k), (2.16)
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where each v`(k) is a function in L2
loc(R). With this, the right-hand side of Eq. (2.15) becomes

λ−1B(k)H(λk)B†(k) = λ−1
s∑
`=1

B(k)v`(λk)v†`(λk)B†(k), (2.17)

which allows us to investigate the na-dimensional iteration

v(k) =
1√
λ
B(k)v(λk) (2.18)

instead. Whenever B(k) is invertible, we get the outward analogue given by

v(λk) =
√
λB−1(k)v(k) (2.19)

which, when iterated, reads

v(λnk) = λn/2B−1(λn−1k) · . . . ·B−1(λk)B−1(k)v(k). (2.20)

This equation reveals that the behaviour of v(k) along the sequence {λnk}n>0 as k → ∞ is

completely determined by
∏
iB
−1(λik). The invertibility of B(k) for a.e. k ∈ R is guaranteed

whenever detB(k) 6≡ 0, since detB(k) is analytic and hence can at most have isolated zeros.

Remark 2.4.2. Note that the v(k) we refer to in Eq. (2.20) represents any of the constituent

vectors v`(k) in Eq. (2.17). This means that the growth rate of entries ofH(k) under the outward

iteration analogue for Eq. (2.15) is bounded from below by the smallest possible growth rate

exhibited by v`(k). Roughly speaking, if each v`(k) grows exponentially, so does hij(k) for all

1 6 i, j 6 na—something we will explain in more detail in the next section. ♦

We now focus our attention on Eq. (2.20) and explicitly define signatures of exponential

growth or decay, which are the corresponding Lyapunov exponents.

2.5. Absence of absolutely continuous diffraction

Consider the outward iteration

v(λnk) = λn/2B−1(λn−1k) · . . . ·B−1(λk)B−1(k)v(k).

By Lemma 1.4.5, bounds on the exponential asymptotic behaviour of v(k) are determined by

the extremal exponents given by

χmax = log
√
λ+ lim sup

n→∞

1

n
log ‖B−1(λn−1k) · · ·B−1(k)︸ ︷︷ ︸

(B(n)(k))−1

‖, (2.21)

χmin = log
√
λ+ lim inf

n→∞

1

n
log ‖B(k) · · ·B(λn−1k)︸ ︷︷ ︸

B(n)(k)

‖−1, (2.22)

where one immediately sees that the additional log
√
λ term is a simple consequence of the

pre-factor λn/2 in the n-th level of the iteration. As we will mainly be interested in the minimal

growth rate, we look at χmin, which can be written as

χmin = log
√
λ− χB(k),
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where

χB(k) := lim sup
n→∞

1

n
log ‖B(n)(k)‖

is the maximal exponent of the matrix cocycle generated by B(k). We refer to n-th iterate

B(n)(k) of B(k) (which is the Fourier matrix of %n as stated in Fact 2.1.4) to be the Fourier

cocycle of %. Throughout the text, we refer to χB as the exponent of B(n) and χmin to be

adjusted exponent with corrective term log
√
λ.

Remark 2.5.1 (Exponents for the inward iteration). From Remark 1.4.2, the Lyapunov expo-

nents for the inward iteration derived from Eq. (2.18) are given by

χi = log
∣∣λi∣∣− log

√
λPF

where {λi} are the eigenvalues of M%. The existence and the general structure of the filtration

of Cd is however rather subtle; see [BFGR19, Sec. 6.5] for an illustrative example. ♦

Lemma 2.5.2 ( [BFGR19, Lem. 9.3]). Let g ∈ L1
loc(R+) be a non-negative function and let

λ > 1 be fixed. Assume further that there is an interval [0, a], a constant δ > 1, and a measurable

function C with C(x) > 0 for a.e. x ∈ [0, a] such that g(λmx) > C(x)δmg(x) holds for a.e.

x ∈ [0, a]. Then, the absolutely continuous positive measure gµL is translation bounded if and

only if g = 0 on [0, a] in the Lebesgue sense.

Proof. Suppose g(x) > 0 on a subset of [0, a] of positive measure. Due to the almost everywhere

positivity of C(x), which implies that {x ∈ [0, a] | C(x) = 0 or g(x) = 0} is not of full measure,

we get

cg :=

∫ a

0
C(x)g(x)dx > 0.

Integrating g on a dilated interval, the inequality involving g(λmx) results in the following

estimate: ∫ aλm

0
g(x)dx > δmλm

∫ a

0
C(x)g(x)dx = cg(δλ)m. (2.23)

Since gµL is translation bounded and g > 0, one has∫ L

0
g(x)dx = O(L) as L→∞.

This in particular implies that the integral on the left hand-side of Eq. (2.23) is only allowed

to grow up to order O(λm). This contradicts the previous asymptotic estimate that the growth

rate of the integral is at least O((δλ)m), and hence implies the claim.

Theorem 2.5.3 (Absence of absolutely continuous diffraction). Let % be a primitive inflation

rule, with inflation multiplier λ, and corresponding Fourier matrix B(k). Assume further that

detB(k) 6= 0 for some k. If there exists ε > 0 such that χB(k) 6 log
√
λ − ε for a.e. k, the

diffraction measure of Y does not have an absolutely continuous component, i.e., (γ̂ω)ac = 0,

for any choice of weight vector w.

Proof. The assumption on χB(k) implies that there exists a δ > 0 such that ‖v(λnk)‖ ≈ Ck eδnk

for some positive Ck that depends on k. By Lemma 2.5.2, this means ‖v‖2 cannot be a Radon–

Nikodym density of a translation bounded measure unless v ≡ 0 in the Lebesgue sense.
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For any choice of weight vector w ∈ Cna , the absolutely continuous portion (γ̂ω)ac of the

resulting diffraction is a translation bounded measure by Proposition 1.3.6. If Wj = δj,m,

the Radon–Nikodym density of γ̂ac is the locally integrable function hmm > 0. Note that the

densities hmm(k) are the diagonal entries of H(k). Since a finite sum of translation bounded

measures remains translation bounded, tr(H) =
∑na

m=1 hmm represents a translation bounded

measure.

Due to the Hermiticity of H(k) and Eq. (2.16), we have

tr(H)(k) =

na∑
m=1

s∑
`=1

∣∣(v`)m(k)
∣∣2.

Here, each summand is non-negative, and so cancellation is not possible. Furthermore, if at

least one term grows exponentially as k →∞, the entire sum grows exponentially as well, which

violates translation boundedness as explained above. This means v`(k) = 0 for Lebesgue-a.e. k

and for all 1 6 ` 6 s, and Υ̂ac = 0. This and Eq. (2.7) imply the claim.

It was shown in [BFGR19] that this ε−condition can be weakened into having χB(k) < log
√
λ

for some subset of an interval
[
ε
λ , ε
]

of full measure. From this, we obtain the following necessary

criterion to have an absolutely continuous component in the diffraction.

Corollary 2.5.4. Let % be a primitive inflation rule, with inflation multiplier λ, whose Fourier

matrix satisfies the non-vanishing determinant condition. If the corresponding diffraction mea-

sure γ̂ac is non-trivial, one has χmin 6 0.

Negative Lyapunov exponents signify that the zero vector is an attractor of the cocycle, which

has a strong implication on substitutions which generate Meyer point sets Λ ∈ Y as follows. We

omit the proof here and refer to [BGäM18, Prop. 3.26] instead.

Proposition 2.5.5. Assume that the elements of Y are Meyer sets, and assume γ̂ac 6= 0.

Then, the Radon–Nikodym density h(k) of γ̂ac does not decay at infinity.

Corollary 2.5.6. Assume that the hull Y contains only Meyer sets and that the diffraction

measure γ̂ac is non-trivial. Then, χ(v`, k) = log
√
λ holds for a subset of positive measure in R

and for all v` that constitute H(k). In particular, this applies whenever the inflation multiplier

λ of % is a PV-number.

As we have seen in Section 1.4, most of the existence results for Lyapunov exponents require

that the matrix cocycle takes arguments from a compact manifold, which we do not have here

since B(k) is sampled along an orbit in R. In the next section, we will discuss how to remedy

this problem by considering a higher-dimensional periodic representation of B(k). With this

representation, we will also provide a sufficient criterion to rule out the presence of absolutely

continuous components that is verifiable in finite time.

2.6. Periodic representations of quasiperiodic functions

Let p(k) be a trigonometric polynomial with finitely many fundamental frequencies, i.e., p is of

the form

p(k) =
∑
j∈Z

cj e2π i
(
a
(j)
1 α1k+a

(j)
2 α2k+···+a(j)d αdk

)
with a

(j)
i ∈ Z,
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where {α1, α2, . . . , αd} consists of rationally independent real numbers. Such a polynomial an

example of a quasiperiodic function. This class was first dealt with in [Boh93,Esc04]. It is also

the simplest subclass of almost periodic functions. The following fact is mainly due to Bohr,

who pointed out that the properties of such polynomials are closer to purely periodic functions

than to almost periodic functions; see [Boh47].

Fact 2.6.1. Any quasiperiodic function can be represented as a section of a function on Td,
which is 1−periodic in each argument. More explicitly, we have

p(k) = p̃(x1, . . . , xd)|x1=α1k, x2=α2k, ..., xd=αdk
,

where p̃ : Td → C.

Lemma 2.6.2. Let B(k) be the Fourier matrix of a primitive irreducible inflation %, with

inflation multiplier λ of algebraic degree d > 1. Then, B(k) is a quasiperiodic matrix-valued

function satisfying

B(k) = B̃(x1, . . . , xd)|x1=k, x2=α1k, ..., xd=αd−1k
,

where the numbers
{

1, α1, . . . , αd−1

}
represent the (renormalised) tile lengths given by the left

PF eigenvector L of M%. Moreover,

B(λk) = B̃((x1, . . . , xd)M%)|x1=k, x2=α1k, ..., xd=αd−1k
.

Proof. The frequencies derived from L are all distinct since M% has an irreducible characteristic

polynomial. By construction, every displacement set satisfies Tij ⊂ Z[1, α1, . . . , αd−1], which

together with Fact 2.6.1 implies the first claim. The second claim follows from (1, α1, . . . , αd−1)

being a left eigenvector of M% to the eigenvalue λ.

From this, we get a representation of the cocycle B(n)(k) as a section of a cocycle over Td

given by

B(n)(k) = B̃(n)(x) := B̃(x)B̃(xM) · · · B̃(xMn−1)|x1=k, x2=α1k, ..., xd=αd−1k
.

Remark 2.6.3. One can obtain a different representation by choosing the frequencies to be

powers of λ instead of entries of L. Here, the base dynamics on Td will be given by the

companion matrix C(p) of the minimal polynomial pλ(z) of λ instead of M%, whose ergodicity

is assured when λ is irrational. This is convenient for higher-dimensional examples where the

notion of a tile length is no longer available; see Section 5.3. ♦

Working with the new cocycle B̃(n)(x) has obvious advantages, as is apparent in the next

result.

Proposition 2.6.4. Let % be primitive, aperiodic and irreducible. Then, for a.e. x ∈ Td,
all Lyapunov exponents for B̃(x) exist as limits and are constant. In particular, the exponent

χB̃ := limn→∞
1
n log ‖B̃(n)(x)‖ is constant for a.e. x.

Proof. The irreducibility of M% implies that the PF eigenvalue is irrational. Since λPF > 1, we

know that none of its conjugates are roots of unity. By [EW11, Cor. 2.20], M% defines an ergodic

toral endomorphism. The claim then directly follows by an application of Theorem 1.4.8.
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2.7. Uniform upper bounds for χB

Let ψn(k) := log ‖B(n)(k)‖. If the norm considered is submultiplicative, this sequence satisfies

the following subadditivity relation

ψm+n(k) 6 ψm(k) + ψn(λmk).

Our next goal is the following estimate for a generic cocycle B(n)(k).

Lemma 2.7.1. For any N ∈ N, and for a.e. k ∈ R, one has

χB(k) = lim sup
n→∞

1

n
ψn(k) 6

1

N
M(ψN ),

where M(ψN ) :=
∫
Td log ‖B̃(N)(x)‖dx and B̃(n)(x) is the d−dimensional, 1−periodic represen-

tation of B(n)(k).

This was proved in particular for a binary non-Pisot substitution in [BFGR19], where one

of the crucial elements of the proof is the Bohr almost periodicity of ψn, which they were able

to show by proving that ‖B(n)(k)‖ is uniformly bounded away from zero for every n. The rest

of the proof, which we will briefly explain below, relies on some version of Fekete’s lemma and

the fact that
{
λjk
}
j>0

is uniformly distributed modulo 1 for a.e. k ∈ R. Fix N ∈ N and let

n = mN + r, with 0 6 r < N . By inductively invoking the above subadditivity relation, we get

1

n
ψn(k) 6

1

mN + r
ψr(λ

mNk) +
1

mN + r

m−1∑
`=0

ψN (λ`Nk). (2.24)

The second summand on the right hand-side converges to 1
NM(ψN ) due to Theorem 1.6.3, while

the first converges to zero under the assumption of Bohr almost periodicity.

Here, we relax the Bohr almost periodicity condition on ψn by showing that it suffices for ψr
to be uniformly bounded on almost all orbits

{
λjk
}
j>0

, k ∈ R, for any fixed r > 0. Moreover, we

show that this holds whenever B(k) is the Fourier matrix of a primitive %, for which det(B(k))

does not vanish for all k.

Before we continue, we mention the following well-known bounds for norms of matrices.

Fact 2.7.2. Assuming that A is invertible, ‖AB‖ > ‖B‖/‖A−1‖. In particular, ‖A‖ > C/‖A−1‖
for some constant C.

Fact 2.7.3. Let B(k) be the Fourier matrix of % with inflation factor λ. Then, ‖B(k)‖F < ∞
for all k, where ‖ · ‖F is the Frobenius norm. Furthermore, if one considers the adjugate matrix

Bad, we have ‖Bad(k)‖F < D < ∞ for all k, where D is a suitable constant. This follows

from the fact that entries of Bad are minors of B, and hence are trigonometric polynomials as

well.

We also obtain a trivial global upper bound for ‖B(n)(k)‖F as follows.

Lemma 2.7.4. Let B(k) be a Fourier matrix of %, M% = B(0). Then,

‖B(n)(k)‖F 6 ‖M%‖nF.
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Proof. From the submultiplicativity of ‖ · ‖F, we get ‖B(n)(k)‖F 6
∏n−1
i=0 ‖B(λik)‖F, for all

k ∈ R. For any entry of B(λik), we have
∣∣B(λik)`j

∣∣2 6 (M`j)
2, which is clear from the fact that

|B(k)`j |2 attains its maximum when k = 0. We then have

n−1∏
i=0

‖B(λik)‖F 6 ‖M%‖nF,

from which the claim directly follows.

The points of singularities of our cocycle, i.e., where B(n)(k) is non-invertible, satisfy a certain

regularity because the entries of B(k) are all trigonometric polynomials. More formally, we have

the following.

Fact 2.7.5. If detB(k) is not identically zero, the zero set Z of detB(k) is an at most

countable set. Moreover, from the analyticity and quasi-periodicity of detB(k), we know that

Z is finite or is uniformly discrete. In particular, this holds whenever % is irreducible.

From the structure of the cocycle B(n)(k), the zero set of detB(n)(k) is given by
⋃n−1
`=0 λ

−`Z,

which obviously is still a null set. Now, let Z ′ =
⋃∞
`=0 λ

−`Z. We are then interested in

the uniform boundedness of the norm of any n-th level cocycle on subsets of R \ Z ′ of full

measure. We will outline how lower bounds of the norm of B(n)(k) depend on the bounds of

the determinant detB(k) along orbits.

When B(k) is invertible, its inverse is B(k)−1 = (detB(k))−1Bad(k), which gives the upper

bound ‖B(k)−1‖ 6 |detB(k)|−1D, where D is the constant from Fact 2.7.3. This yields

1

‖B(k)−1‖
>
|detB(k)|

D
. (2.25)

Since we have B(n+1)(k) = B(k)B(n)(λk), we obtain the following lower bound

‖B(n+1)(k)‖ > ‖B
(n)(k)‖

‖B(k)−1‖
>
|detB(k)| ‖B(n)(λk)‖

D
.

Iterating this process, we get

‖B(n+1)(k)‖ >
C
∏n
i=0

∣∣detB(λik)
∣∣

Dn+1
>
C̃(n+ 1; k)n+1C

Dn+1
:= δn+1(k), (2.26)

where C̃(n+ 1; k) := min0≤i≤n
{∣∣detB(λik)

∣∣}.

If we can show that, for a generic substitution %, δn+1(k) > 0 for all n for a.e. k, then the

first summand in Eq (2.24) really does converge to zero and hence Lemma 2.7.1 holds for %.

This condition is equivalent to requiring the set
{
k ∈ R : inf

i∈N

∣∣ detB(λik)
∣∣ = 0

}
to be a null set.

A sufficient condition would be for the Birkhoff-type averages of detB(k) to satisfy

lim
n→∞

1

n
log
∣∣detB(n)(k)

∣∣ = lim
n→∞

1

n

n−1∑
i=0

log |detB(λik)| > −∞, (2.27)

for a.e. k ∈ R.
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Proposition 2.7.6. Let % be a primitive inflation rule, with Fourier matrix B(k) and multiplier

λ. Assume det(B(k)) 6≡ 0. Then, for a.e. k ∈ R, one has

lim
n→∞

1

n

n−1∑
i=0

log | detB(λik)| = M(log |detB(k)|).

In particular, Eq. (2.27) holds for a.e. k ∈ R.

Proof. Since detB(k) is a trigonometric polynomial, f(k) = log | detB(k)| is, at the very least,

Stepanov almost periodic. From Fact 2.7.5, the set of zeros Z is uniformly discrete, which

means that for every δ > 0, f(k) is locally Riemmann-integrable outside Z + (−δ, δ) and that

there is a δ′ such that f is differentiable on (z − δ′, z + δ′) \ {z} with z ∈ Z. Here, one can

choose δ′ to be any number 0 < δ′ < Rp(Z), where Rp(Z) is the packing radius of Z. In view of

Theorem 1.6.3, it suffices to check that Eq. (1.14) holds, i.e., for all s > 0, and for some r > 0,

VN (s) = sup
z∈Y

(∫ z− 1
Ns

z−δ′
|f ′(x)|dx+

∫ z+δ′

z+ 1
Ns

|f ′(x)|dx
)

= O
(
N

s
2
−r)

as N → ∞. Because the singularities of f are logarithmic in nature, we know that the sum of

these integrals grows like O(log(N s)), which is much less than O
(
N

s
2
−r). In conjunction with

the formula for the discrepancy given in Eq. (1.13), by choosing s = 1 + ε one obtains

DNVN = O
(

(log(N))
5
2

+ε

√
N

)
N→∞−−−−→ 0,

which describes the deviation of the partial averages from the mean, which is induced by the

singularities; compare [BFGR19, Prop. 6.7]. When λ ∈ Z, one has

M(log |detB(k)|) = m(p) > 0,

for some p(z) ∈ Z[z], where p( e2π ik) = detB(k). Otherwise, M(log |detB(k)|) can be written

as an na−dimensional logarithmic Mahler measure; compare Remark 2.7.8, which is still non-

negative, thus completing the proof.

As a corollary, we get the following result.

Proposition 2.7.7. Let % be primitive with det(B(k)) 6≡ 0. Then, the Lyapunov exponent

χB(k) satisfies the bound given in Lemma 2.7.1 for a.e. k ∈ R.

Remark 2.7.8. One can choose the norm used for M(ψN ) to be ‖·‖F, from which one gets that

the upper bound satisfies 1
NM(ψN ) = 1

2m(p(N)), for some p(N) ∈ Z[x1, . . . , xd]. In particular,

one has
1

N
M(log ‖B(N)(.)‖2F) =

1

N

∫
Td

log
( na∑
i,j=1

∣∣p(N)
ij (x)

∣∣2)dx, (2.28)

with x = (x1, . . . , xd) ∈ Td, and where each p
(N)
ij is a 1-periodic trigonometric polynomial. ♦

One would expect that χmin > 0 holds in more generality other than the cases covered by

Proposition 2.5.5. With the global upper bound provided in Lemma 2.7.1, we get the following

general non-negativity result.
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Theorem 2.7.9. Let % be a primitive inflation rule, with multiplier λ and Fourier matrix

B(k) satisfying det(B(k)) 6≡ 0. Then, for a.e. k ∈ R, one has χmin > 0 or, equivalently,

χB(k) 6 log
√
λ.

Proof. Working with the Frobenius norm, it follows that Eq. (2.28) holds. Applying Jensen’s

inequality to M(log ‖B(N)(.)‖2F) yields

exp
(
M(log ‖B(N)(.)‖2F)

)
6
∫
Td

na∑
i,j=1

∣∣p(N)
ij (x)

∣∣2dx =
∑
i,j

∥∥p(N)
ij

∥∥2

2
=
∑
i,j

(MN
% )ij ,

where M% is the substitution matrix of %. The last equality follows from Parseval’s equality,

and from the fact that the coefficients of p
(N)
ij are either 0 or 1. The latter holds because of

the nature of the control points, i.e., only a single tile can occupy a given tile position for each

supertile. One then gets from
∥∥p(N)

ij

∥∥2

2
to
(
MN
%

)
ij

via B(N)(0) = MN
% .

From the primitivity of %, one is assured of the asymptotic behaviour
(
MN
%

)
ij
∼ CλNLiRj

for all i, j as N → ∞, where L and R are the left and right PF eigenvectors of M%, and for

some constant C > 0. Here, L and R are normalised such that
∑

iRi =
∑

iLiRi = 1. This

gives
1

N
M(log ‖B(N)(.)‖2F) 6

1

N
log(C ′λN ) = log(λ) +

1

N
log(C ′)

for some C ′ > 0 and for large enough N . Together with Proposition 2.7.7, this implies

χB(k) 6 lim inf
N→∞

1

2N
M(log ‖B(N)(.)‖2F) 6

1

2
log(λ) = log

√
λ

for a.e. k ∈ R.

In accordance with Corollary 2.5.4, we obtain the following generalisation of Corollary 2.5.6.

Corollary 2.7.10 (Necessary criterion for absolutely continuous diffraction). Let % be a prim-

itive inflation rule with multiplier λ and Fourier matrix B(k), where one has det(B(k)) 6≡ 0. If

the diffraction measure of Y comprises a non-trivial absolutely continuous component, one has

χB(k) = log
√
λ, or equivalently, χmin(k) = 0, for a set of k ∈ R of positive measure.

Remark 2.7.11. The insufficiency of the criterion provided in Corollary 2.7.10 is clear since

χmin only measures the minimum possible exponential growth rate of a vector in Rna after

being subjected to λn/2B(n)(k). It could happen that χmin = 0 and some component v(`) of

H(k) is in some subspace V i with χi > 0, which implies that h(k) = 0; compare the proof of

Theorem 2.5.3. Moreover, these exponents do not detect sub-exponential growth, which may

still be present, and which may still impede h(k) from being translation bounded. ♦
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3. Constant-Length Case

In this chapter, we restrict our attention to the constant-length case, where the symbolic and the

geometric pictures coincide. This leads us to tacitly use “substitution” instead of “inflation”

since both formalisms lead to the same combinatorial and dynamical quantities—something

that is not true outside this class. Under some extra assumptions, one has explicit bounds for

the Lyapunov exponents discussed in the previous chapter for this subclass. We begin with

the summary of the case when λPF ∈ N before discussing general properties of constant-length

substitutions.

3.1. Integer inflation multiplier: arguments in common

We begin with a primitive substitution % over na letters with λPF ∈ N. It follows directly that

L ∈ Qna , which can be normalised so that
∣∣tj∣∣ ∈ N for all tj . The position of prototiles ti in

the supertiles %(tj) are then all integers, which means that every entry Tij of the displacement

matrix defined in Eq. (2.1) is a finite subset of Z. This implies 1-periodicity of B(k). Recall

that we are interested in a matrix cocycle sampled along the orbit {λnk}n>0, with k ∈ R.

Fact 3.1.1 ( [Rén57]). Consider the map f : [0, 1) 7→ [0, 1) defined by k 7→ λk mod 1. Then,

whenever λ ∈ Z, f is ergodic with respect to Lebesgue measure µL.

Let 〈k〉 := k mod 1 ∈ [0, 1), bkc := k − 〈k〉 denote the fractional and integral part of k ∈ R,

respectively.

Lemma 3.1.2. For λ ∈ Z, k ∈ R, n ∈ N, fn 〈k〉 = 〈λnk〉, where fn(k) = (f ◦ . . . ◦ f
n times

)(k).

Proof. Multiplying k by λ, and taking the fractional parts, we get

〈λk〉 = 〈λbkc〉︸ ︷︷ ︸
0

+ 〈λ 〈k〉〉 , (3.1)

where the first term vanishes since such a product always lies in Z. This yields f(〈k〉) = 〈λk〉.
Iterating this process proves the claim for any n ∈ N.

Due to the periodicity of B(k) and Lemma 3.1.2, we then have B(λnk) = B(fn(〈k〉)), which

with Fact 3.1.1 means our matrix cocycle B(n)(k) defined in Fact 2.1.4 is a product of matrices

sampled along an orbit of an ergodic transformation f on T = R/Z, which is a compact manifold.

Invoking Theorem 1.4.8, we obtain an existence result for the Lyapunov exponents of B(n)(k).

Proposition 3.1.3. Let % be primitive, with λPF ∈ N. Then, all Lyapunov exponents associated

to B(n)(k) almost surely exist as limits and are constant for a.e. k ∈ R. In particular, χmin(k)

and χmax(k) are constant for a.e. k ∈ R.
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In this setting, we simply refer to the a.e. values of χmin(k) and χmax(k) as χmin and χmax.

Equivalently, χB(k) = χB ∈ R for a.e. k. From the ergodicity of f , we get the following sharper

version of Lemma 2.7.1 via Theorem 1.4.7.

Lemma 3.1.4. Let % be primitive, with Fourier matrix B(k) and multiplier λPF ∈ N. Assume

that det(B(k)) 6≡ 0. Then, for a.e. k ∈ R, one has

χB(k) = lim
n→∞

1

n
ψn(k) = inf

N

1

N
M(ψN ) = χB,

where ψN = log ‖B(N)(k)‖.

Remark 3.1.5. This almost everywhere constancy result in Proposition 3.1.3 also strengthens

the requirement for the presence of absolutely continuous diffraction in Corollary 2.7.10, that

is, χB(k) = log
√
λ for a.e. k ∈ R. ♦

Definition 3.1.6. A primitive substitution % with
∣∣wi∣∣ = λPF := L ∈ N, for all substituted

words wi is called a constant-length substitution. Equivalently, this means L = (1, 1, . . . , 1).

Let Ana = {a1, . . . , ana} and % be a constant-length substitution on Ana . We denote the mth

column of % by

Cm :=


(w1)m

...

(wna)m

 , (3.2)

where (wi)m is the mth letter of the word wi = %(ai). We follow the convention of indexing the

columns starting with 0; compare [BG13, Ch. 4]. If at m ∈ {0, 1, . . . , L− 1} the column Cm is

constant, i.e., (wi)m = wj for all 1 6 i 6 na, % is said to have a coincidence at m. Similarly, %

is bijective at m if the map κm : ai 7→ (wi)m is a bijection on Ana . A bijective substitution is

that for which κm is bijective for all m ∈ {0, 1, . . . , L− 1}.

Definition 3.1.7. Let w be an infinite fixed point of a constant-length substitution % of length

L. The height h(%) of % is defined as

h(%) := max {n > 1 : (n,L) = 1, n divides gcd {` : w` = w0}} .

When h(%) > 2, one can obtain a substitution %′ on legal words of the form w0v, with

|w0v| = h(%). This new substitution satisfies h(%′) = 1 and is called the pure base of %. If % has

coincidence, it is already its own pure base. Further details can be found in [Dek78,Que10].

Example 3.1.8 ( [Que10, Ex. 6.2]). Consider the substitution % : 0 7→ 010, 1 7→ 102, 2 7→ 201,

and the infinite fixed point arising from 0 given by

w = %∞(0) = 010102010102010201 . . . .

It is easy to see that w` = w0 = 0, for all ` ∈ 2N0, and hence h(%) = 2. The two-letter words

appearing on these positions are {01, 02}, from which one gets %′ : a 7→ aab, b 7→ aba via the

identification a =̂ 01 and b =̂ 02. ♦

A simple criterion that describes the dynamical spectral type of constant-length substitutions

is given by the following result due to Dekking.
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Theorem 3.1.9 ( [Dek78, Thm. 7]). A substitution dynamical system (X,Z) of constant length

has pure point dynamical spectrum if and only if the pure base of the substitution % that generates

it has a coincidence. Otherwise, its spectrum is partly continuous.

3.2. Binary constant-length case

For a constant-length substitution % on a binary alphabet A2 = {0, 1}, coincidences are of the

form [ 0
0 ] or [ 1

1 ]. A binary substitution is bijective if there are no coincidences.

Example 3.2.1. For the substitution

% :=

 0 7→ 0 1 0 1 0

1 7→ 0 0 1 1 0

one has C0 = [ 0
0 ] and C3 = [ 1

1 ], which are both coincidences. ♦

Since there are only four possible column types in the binary case, it is possible to express

the entries of the Fourier matrices in terms of trigonometric polynomials associated to these

column types. First, we construct the sets

C0 = {i | Ci = [ 0
0 ]} , C1 = {i | Ci = [ 1

1 ]} ,

P0 = {i | Ci = [ 0
1 ]} , P1 = {i | Ci = [ 1

0 ]} ,

where C0, C1 are the positions corresponding to coincidences and P0, P1 are the bijective posi-

tions. These sets are disjoint, and their union is ST = {0, 1, . . . , L− 1}. From these, we define

the polynomials

s0(z) =
∑
t∈C0

zt, s1(z) =
∑
t∈C1

zt, q(z) =
∑
t∈P0

zt, r(z) =
∑
t∈P1

zt, (3.3)

where s0 + s1 + q + r = ΦL = 1 + z + . . .+ zL−1 with z = e2π ik.

3.2.1. Positivity of Lyapunov exponents

Lemma 3.2.2. The Fourier matrix of % can be constructed from the polynomials s0, s1, q and

r as

B (k) =

(
(s0 + q)(z) (s0 + r)(z)

(s1 + r)(z) (s1 + q)(z)

)
, with detB(k) = ΦL · (q − r) .

Proof. This is immediate from how the polynomials are constructed.

Bearing in mind that Eq. (1.9) holds for a.e. k, one gets an expression for χmin(k) + χmax(k)

as

log(L)− 1

n

n−1∑
m=0

log |detB (Lmk)| n→∞−−−→
a.e. k

log(L)−
∫ 1

0
log |ΦL| dk︸ ︷︷ ︸

=0

−
∫ 1

0
log |q − r| dk︸ ︷︷ ︸
=m(q−r)

, (3.4)

where m (q − r) is the logarithmic Mahler measure of the polynomial q − r. This convergence

follows from Birkhoff’s ergodic theorem, as log |detB(k)| ∈ L1
loc(T) = L1(T). An alternative
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route to show convergence would be via a version of Theorem 1.6.3 for 1-periodic locally inte-

grable functions, see [BHL17]. Theorem 1.5.3 implies that the first integral is zero since ΦL is

cyclotomic.

Using this knowledge about the sum, we now compute both exponents in the following result.

Proposition 3.2.3. The pointwise Lyapunov exponents of an aperiodic, binary constant-length

substitution %, for a.e. k ∈ R, are given by

χmax = log
√
L and

χmin = log
√
L−m (q − r) .

In particular, if q− r is non-reciprocal (i.e. w0 is neither palindromic nor antipalidromic), then

χmin 6 log
√
L− log(λp), where λp is the plastic number, i.e., the real root of q(z) = z3− z− 1.

Proof. In the constant-length case, all exponents a.s. exist as limits and hence, one can rewrite

χmax in Eq. (2.21) as

log
√
L− lim

n→∞

1

n
log
∥∥Bad(Ln−1k) · . . . ·Bad(k)

∥∥− 1

n

n−1∑
m=0

log |det (B (Lmk))| ,

where the last term converges as n→∞ for a.e. k to m (q − r) by Birkhoff’s ergodic theorem.

The extremal exponents then read

χmin(k) = log
√
L− lim

n→∞

1

n
log
∥∥B(n)(k)

∥∥
χmax(k) = log(L)− χmin(k)−m (q − r) ,

where we have used that, for 2× 2 matrices, ‖A‖F = ‖Aad‖F.

One can easily check that C
(
(1,−1)T

)
is invariant with respect to B(k). Comparing χmin

with the value we have for the iteration on this subspace, we get, for a.e. k,

χmin (k) 6 log
√
L− lim

n→∞

1

n

n−1∑
m=0

log
(
|q − r|

(
zL

m))
= log

√
L−m (q − r) 6 log

√
L,

noting that log
√
L−m (q − r) is the value of one of the exponents. From the previous inequality,

this cannot be χmax when m (q − r) > 0 since χmax (k) > log
√
L. Hence, in general, it must

be the smaller of the two. The first claim then follows Eq. (3.4) from forward regularity; see

Theorem 1.4.8 and Eq. (1.9). Equality of the two exponents holds when q − r satisfies the

conditions of Theorem 1.5.3, which will be tackled in detail in Theorem 3.4.9 for the bijective

case.

The upper bound for χmin is due to a result by Smyth; see [Smy08, Sec. 5].

Corollary 3.2.4. Let % be as in the previous proposition. Then, the Lyapunov exponents χmin

and χmax are both positive.

Proof. When q− r is a monomial, m(q− r) = 0 < log
√
L, for all L > 2. Assume now that q− r

is not a monomial. From the disjointness and the completeness of the columns, we get

‖q − r‖2 =
√
L− card (C0 ∪ C1) 6

√
L,
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where equality holds when % is bijective. Lemma 1.5.2 then implies that m(q − r) < log
√
λ,

from which the claim follows.

Corollary 3.2.5. Any aperiodic, binary constant-length substitution % has a diffraction γ̂ which

is singular relative to Lebesgue measure.

Example 3.2.6. For %TM and %pd, we have that

(q − r)TM = 1− e2π ik and (q − r)pd = − e2π ik,

and hence m (q − r) = 0 for both cases, implying that χmin = χmax = log
√

2. ♦

Remark 3.2.7. We point out that the Lyapunov spectrum is not an IDA invariant. Consider

the substitution % : a 7→ abbab, b 7→ baaba, with corresponding Fourier matrix

B(k) =

(
e6π ik e2π ik + e4π ik + e8π ik

e2π ik + e4π ik + e8π ik e6π ik

)
.

Here, (q − r) (z) = z
(
−1− z + z2 − z3

)
, where z = e2π ik. Note that its IDA is isomorphic to

that of the Thue–Morse substitution since it is bijective. One can explicitly compute that the

Lyapunov exponents for the outward iteration for this substitution are

χmax = log
√

5 ≈ 0.8047 and

χmin = log
√

5− 2 log (1.3562) ≈ 0.1953,

with m(−1− z + z2 − z3) = 2 log (1.3562...). ♦

3.2.2. From polynomials to substitutions

A Borwein polynomial p(z) ∈ Z[z] is a polynomial whose coefficients lie inside {−1, 0, 1}.
Note that, due to the substitutive structure of %, the polynomial q − r that determines χB in

Proposition 3.2.3 is always Borwein.

It is known that any integer polynomial with m(p) < log(2) must divide a height-1 polynomial;

see [Pat72, Boy80]. This makes the set of Borwein polynomials an interesting subclass for

Lehmer’s problem in Z[z]; see [Smy08].

In what follows, we show that, indeed, given a polynomial p, one can construct % having m(p)

as its Lyapunov exponent.

Proposition 3.2.8. Let p(z) =
∑L−1

m=0 cmz
m ∈ Z[z] be a Borwein polynomial of degree L − 1

and c0 6= 0. Then, there exists at least one primitive binary constant-length substitution % of

length L such that, for a.e. k ∈ R,

χB(k) = m(p),

where χB is the Lyapunov exponent of the Fourier cocycle B(n) and m(p) is the logarithmic

Mahler measure of p.

Sketch of proof. Since the construction is best dealt with in concrete cases, we only layout the

general technique here and defer the discussion of some subtleties to the examples.
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Note that only the bijective columns figure in χB(k) = m(q − r), where q, r are determined

by positions of columns of type [ 0
1 ] and [ 1

0 ], respectively. If there are any coincidences, their

positions correspond to zero coefficients in q−r. Starting with a polynomial p(z) =
∑L−1

m=0 cmz
m,

the construction of % can then be governed by the column-wise rule

Cm =


[ 0

1 ] , if cm = 1,

[ 1
0 ] , if cm = −1,

[ 0
0 ] or [ 1

1 ] , if cm = 0.

(3.5)

Via this assignment, one can construct the substituted words %(ai) by looking at the column

concatenation C0C1 . . . CL−1.

The substitutions arising from this scheme need not be unique when one factors in the identity

m(p) = m(−p). (3.6)

Moreover, some of them might even be non-primitive. We comment on this plurality and

illustrate how to circumvent non-primitivity via some examples.

Example 3.2.9 (Littlewood polynomials). Polynomials for which cm ∈ {−1, 1} are called

Littlewood polynomials. In this case, the substitutions % one gets are all bijective. Due to

the identity in Eq. (3.6), inversion of columns of a substitution % yields another substitution

that admits the same logarithmic Mahler measure as χB. As an example, the polynomial

p(z) = −1− z + z2 − z3 + z4 gives rise to the primitive substitutions

%p :

0 7→ 11010,

1 7→ 00101,
and %−p :

0 7→ 00101,

1 7→ 11010,

with associated Fourier matrices

Bp(k) =

(
e4π ik + e8π ik 1 + e2π ik e6π ik

1 + e2π ik e6π ik e4π ik + e8π ik

)
and B−p(k) =

(
0 1

1 0

)
Bp(k).

Both generated cocycles have the exponent χB = m(p) ≈ 0.656256. ♦

Example 3.2.10 (Newman polynomials). We next deal with the class of {0, 1}-polynomials,

known as Newman polynomials. For this class, one has r = 0 in the formula for B(k) given in

Lemma 3.2.2, which yields

B(k) =

(
s0 + q s0

s1 s1 + q

)
.

If either s0 or s1 is zero, i.e., there are no columns of type [ 0
0 ] or [ 1

1 ], the resulting substitution

fails to be primitive due to the triangular structure of B(k) (and hence of M% = B(0)). Suppose

only one coincidence type is present. One can still obtain a primitive substitution by invoking

Eq. (3.6), which induces an inversion of bijective columns from [ 0
1 ] to [ 1

0 ]. Concretely, given

p(z) = 1 + z2, the construction in Proposition 3.2.8 gives

%p :

0 7→ 000,

1 7→ 101,
and %p′ :

0 7→ 010,

1 7→ 111,
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which are both non-primitive. However,

%−p :

0 7→ 101,

1 7→ 000,
and %−p′ :

0 7→ 111,

1 7→ 010,

are both primitive and aperiodic, and have exponents χB = m(p). ♦

Example 3.2.11 (Borwein polynomials). When all coefficients {−1, 0, 1} are present in p(z),

all standard choices for % via Eq. 3.5 are primitive. Moreover, since there are two column

choices for each zero coefficient, one gets 2n distinct substitutions, where n is the number of

zero coefficients. One still has, on top of this freedom, Eq. (3.6), which allows one to work with

p or −p.
As a fitting example, we consider Lehmer’s polynomial `L(z) from [Leh33] given by

`L(z) = 1 + z − z3 − z4 − z5 − z6 − z7 + z9 + z10,

which is irreducible and whose root λ of maximum modulus is a Salem number. So far, this

is known to have the smallest positive logarithmic Mahler measure among integer polynomials,

which is given by m(`L) ≈ log(1.176281). Here,

%`L :

0 7→ 00111111000,

1 7→ 11100000011,

is one of the substitutions that correspond to `L(z). ♦

Remark 3.2.12. For all polynomial subtypes, one obviously can add arbitrary number of coin-

cidences at the tail end of the column expansion C0C1 . . . CL−1 and still get the same polynomial

q − r. This results into substitutions of length greater than L. ♦

Proposition 3.2.8 leads to the following dynamical analogue of Lehmer’s problem in Sec-

tion 1.5.

Question 3.2.13 (Lehmer’s problem for substitutions). Does there exist a primitive, binary

constant-length substitution % with Lyapunov exponent 0 < χB < m
(
`L
)
≈ log(1.17628)?

Remark 3.2.14. Cases when the resulting substitution is periodic are dealt with in [BCM17].

There, it was shown [BCM17, Thm. 3] that for all periodic cases, χB(k) = 0 for a.e. k ∈ R. ♦

3.3. Abelian bijective case

It is natural to ask whether the conditions in Theorem 2.5.3 can be confirmed on a larger scale.

This is the case for a specific class, which we elaborate here. In this section, we assume % to be

an aperiodic, primitive, bijective substitution of length L on Ana , with corresponding Fourier

matrix B(k) and associated IDA B.

Due to Fact 2.1.3, we make no distinction between B and the algebra generated by the digit

matrices {Dt | t ∈ ST }. In this setting, this is exactly the algebra generated by the matrix
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representation of the permutations {g0, g1, . . . , gL−1}, where g` is the `-th column C` of % given

in Eq. (3.2) viewed as an element of the symmetric group Σna on na letters. In other words,

B =
〈
{Dt | t ∈ ST }

〉
=
〈
Φ(G)

〉
,

where G = 〈g0, g1, . . . , gL−1〉 and Φ is the canonical representation via permutation matrices.

From PT = P−1 one has Dt =
(
Φ(gt)

)T
= Φ(g−1

t ).

We call G a generating subgroup for the algebra B, where it is understood that G is a subgroup

of Σna . The primitivity condition on % translates to a condition on its generating subgroup as

follows; compare [Que10, Lem. 8.1].

Lemma 3.3.1. Any generating subgroup G for B must be a transitive subgroup of Σna.

Proof. Assume to the contrary that G is not transitive. Then, there are ai, aj ∈ Ana such that

σ(ai) = aj cannot hold for any σ ∈ G. Consequently, the representation matrices will be 0 in

position i, j, as well as all of their linear combinations, and hence all elements of B by Fact 2.1.3.

Now, this implies that aj can never appear in any substituted word %n(ai) with n ∈ N. This

contradicts the primitivity of %, and our claim follows.

The following property of Abelian subgroups of Σna is well known; see [Sco64, Cor. 10.3.3

and Thm. 10.3.4].

Fact 3.3.2. Any transitive Abelian subgroup of Σna must be of order na. So, if G is an Abelian

subgroup of Σna that is generating for the IDA B of %, it must be of order na.

Bijective substitutions have a rich structure due to the algebraic properties of their columns.

These can be exploited to shed light on the spectral measures of the associated dynamical

system; see [Bar16,Que10]. When the generating group is Abelian, the measures generating the

spectral measure of maximal type σmax can be represented as Riesz products of polynomials

arising from the characters ρ ∈ Ĝ, evaluated on the columns of %; see Appendix A.

The following important result (actually also its higher-dimensional analogue) was outlined

in [Que10], and was formally proved in [Bar16]. For binary block substitutions, it also follows

from [Fra05,Fra18], and it was shown in [BG14] by a different method.

Theorem 3.3.3 ( [Bar16, Thm. 4.19]). Any primitive, bijective constant-length substitution

that is aperiodic and Abelian has purely singular dynamical spectrum.

In what follows, we prove that Theorem 2.5.3 holds for this class. Note that we impose no

assumptions on the length or the height of %.

Theorem 3.3.4. Let % be a primitive, aperiodic, bijective substitution whose IDA B is Abelian.

Then, for a.e. k ∈ R, all Lyapunov exponents of % are positive. Moreover, the corresponding

diffraction γ̂ is singular relative to Lebesgue measure.

Proof. By assumption, the generating subgroup G is Abelian, and all digit matrices Dt commute

with one another. Being permutation matrices, they are simultaneously diagonalisable by a

unitary matrix U . In this case, the diagonal entries of UDt U
−1 are values of characters of G,

written as ρi(g). Note that the ρi coincide with the irreducible representations of G since the

latter is Abelian.
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In the diagonal form of Φ(g), all possible values that occur are roots of unity, so |ρi(g)| = 1

for all 1 6 i 6 na and g ∈ G. If % has length L, the eigenvalues of B(k) are then of the form

βj(k) =

L−1∑
m=0

ρj (gm)um, (3.7)

which is a polynomial in u = e2πik of degree L− 1, whose coefficients all lie on the unit circle.

From Proposition 3.1.3, we know that the Lyapunov exponents exist and are constant for

a.e. k, which we are able to explicitly compute from Eq. (3.7). They can be computed for each

invariant subspace, where one obtains

χj = log
√
L− lim

n→∞

1

n

n∑
`=1

log
∣∣∣βj (L`k)∣∣∣ a.e.

=
k∈R

log
√
L−

∫ 1

0
log |βj (k)| dk > 0, (3.8)

where the integral is strictly less than log
√
L since

exp

(∫ 1

0
log |βj (k)| dk

)
<

∫ 1

0
|βj (k)| dk < ‖βj (k)‖2 =

√
L.

Here, the first estimate follows from Jensen’s inequality and is strict, as is the second since

βj (k) is not a monomial. The last step follows from Parseval’s identity, compare with the

proof of Lemma 1.5.2, which completes the requirements of Theorem 2.5.3 and thus finishes the

proof.

Remark 3.3.5. It is known that the diffraction spectrum is related to the dynamical spectrum

of (X,Z, µ); see Appendix A. In particular, for substitutions of constant length, the spectral

measure of maximal type σmax is absolutely continuous to the diffraction measure γ̂; see Propo-

sition A.0.6. This extends the singularity result in Theorem 3.3.4 to the entire dynamical

spectrum, thus giving yet another proof of Theorem 3.3.3. ♦

Example 3.3.6. Consider %2 in Example 2.1.8, which is a substitution on A4, with associated

generating subgroup G = C2 × C2. The Fourier matrix reads

B(k) =


1 u3 u2 u

u3 1 u u2

u2 u 1 u3

u u2 u3 1


where u = e2πik, while its corresponding eigenvalues are given by

β1 = 1− u− u2 + u3, β3 = 1− u+ u2 − u3,

β2 = 1 + u− u2 − u3, β4 = 1 + u+ u2 + u3,

with corresponding eigenvectors that are k-independent. These four polynomials are products

of cyclotomic polynomials, and hence m(βj) = 0 for 1 6 j 6 4. This results in a degenerate

Lyapunov spectrum for a.e. k ∈ R, and hence χB = 0 < log
√
L = log(2). ♦

Determining which substitutions have the same Lyapunov exponents is generally a difficult

task, especially since the equality of logarithmic Mahler measures, which only depend on roots

outside the unit circle, does not imply that they come from the same polynomial. However, as

we shall see in the next result, a certain dichotomy gives rise to families of substitutions that

share the same Lyapunov spectrum, prior to adding log
√
L.
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Corollary 3.3.7. Consider the constant-length substitution % = (w1, w2, . . . , wna), where one

has |wi| = L for all i, and assume that the columns are either bijective or constant. Suppose

further that the group G′ generated by the bijective columns is Abelian (but not necessarily

transitive in Σna). Then, the Lyapunov exponents associated to % are strictly positive.

Proof. From the premise, the Fourier matrix of % can be decomposed into

B (k) = Bb (k) +Bc (k) ,

where Bb (k) , Bc (k) are generated by the bijective and coincident columns, respectively. This

gives a partition of the positions {0, . . . , L− 1} = Sb ∪ Sc. The idea of the proof now is to

show that all but one eigenvalue of Bb(k) (and their corresponding eigenvectors) are essentially

inherited by B(k). We begin by illustrating how this works for cases when G′ is transitive and

describe what changes in the case when it is not.

It follows from the proof of Theorem 3.3.4 that Bb(k) has na eigenvectors that do not depend

on k. Moreover, (na − 1) of these eigenvectors have a component sum equal to zero, being

generators of the invariant subspace corresponding to Ust. The remaining eigenvector is given

by vna = (1, 1, . . . , 1)T.

Consider any eigenvector v of Bb(k), with eigenvalue β(k), with zero component sum. Observe

that we can write Bc (k) as

Bc (k) =
∑
z∈Sc

e2πikzRa(z), 1 6 a(z) 6 na

where the matrix Rm is 1 in the m-th row and zero elsewhere. Consequently, Rmv = 0 for all

1 6 m 6 na, which implies Bc (k) v = 0 and that v is also an eigenvector of B (k), with the

same eigenvalue β(k).

As in Theorem 3.3.4, the eigenvalues of Bb could be written in terms of the characters of G′

as follows,

βj(u) =
∑
m∈Sb

ρj (gm)um

which is always a polynomial in u = e2πik of degree at most L − 1. All of its coefficients

have modulus either 0 or 1. Parseval’s equation then once again guarantees that the Lyapunov

exponents which arise from these eigenvalues are bounded away from log
√
L. The maximal

Lyapunov exponent is then achieved for some j, which in turn satisfies

χB = χj = m (βj) < log
√
L.

The (na − 1) exponents shared by B and Bb clearly satisfy this bound. The idea is to then

invoke forward regularity to show that the last exponent is zero, which is done prior to adding

log
√
L. This will confirm that B and Bb indeed share the same set of exponents.

To this end, we note that the na-th eigenvalue of B(k) is β′na(u) =
∑L−1

m=0 u
m, which easily

follows from the trace formula. By forward regularity, the sum of the exponents under the

outward iteration can be derived from Eq. (1.9) as

na∑
m=1

χ′m = −
∫ 1

0
log |detB(k)| dk = −

na∑
m=1

∫ 1

0
log
∣∣β′m (u)

∣∣ dk

= χ′1 + χ′2 + · · ·+ χ′n−1 −m(β′na(u)),
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from which it is clear that χ′n = −m(β′na(u)) = 0, since β′na is cyclotomic. This completes the

proof for the transitive case.

When G′ fails to be transitive, we can still use the decomposition B = Bb + Bc, where

Bb now has to be put into block diagonal form via some elementary matrix operations that

partition Ana = {a1, . . . , ana} into orbits of G′. A particularly useful decomposition of G′

is G′ ' G′1 × · · · × G′s, wherein each subgroup G′` (which can be the trivial subgroup) acts

transitively on the s orbits in Ana . Further, each nontrivial G′` can be written as a finite

product of cyclic groups by the fundamental theorem of finite Abelian groups. This also means

that the digit matrices afford the splitting

Dm = Φ
(
g−1
m

)
=

s⊕
`=1

Φ`
(
g

(`)
m

)
with gm =

⊕s
`=1 g

(`)
m , where Φ` is the permutation representation on G′`.

With this, we recover the eigenvalues of Bb from each block as

β
(`)
j (k) =

∑
m∈Sb

ρ
(`)
j

(
g

(`)
m

)
um,

where ρ
(`)
j is an irreducible character of G′`. An immediate consequence is that

∑
m∈Sb

um

has multiplicity s as an eigenvalue of Bb (corresponding to different eigenvectors), since all

blocks naturally admit the trivial representation. Note that non-transitivity in conjunction

with primitivity of the substitution implies that at least one coincidence must be present, which

implies card(Sb) < L.

Similar to the transitive case, any eigenvector of Bb with zero component sum remains an

eigenvector of B, with the same eigenvalue. All but one copy of the polynomial
∑

m∈Sb
um also

remain eigenvalues, but this time with the corresponding eigenvectors being linear combinations

of eigenvectors from different blocks. Finally, the uninherited eigenvalue (the one with a k-

dependent eigenvector) is the cyclotomic polynomial
∑L−1

m=0 u
m, as can be computed from the

trace. It is easy to see that the same arguments unambiguously apply as in the transitive case,

since the eigenvalues are polynomials in u with coefficients of either zero or unit modulus.

Remark 3.3.8. We stress that the set of constant-length substitutions satisfying the conditions

of Corollary 3.3.7 is a subset of substitutions with coincidences. These, by Dekking’s criterion

given in Theorem 3.1.9, all have pure point spectrum (both diffraction and dynamical). What

we have confirmed here using our independent method via Lyapunov exponents is the singularity

of the spectrum (which is slightly weaker) for this specific subset. ♦

Example 3.3.9 (A3, transitive, G′ ' C3). Consider the substitution %3, with Fourier matrix

B3(k) given by

%3 :


0 7→ 0022,

1 7→ 1002,

2 7→ 2012,

B3(k) =

 1 + u u+ u2 u

0 1 u2

u2 + u3 u3 1 + u3

 ,
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where u = e2πik as usual. The eigenvalues (and eigenvectors) of B3, which originate from the

digit matrices generating the Abelian IDA, are given by

β1(u) = 1 + ξ2
3u

2 with v1 = (ξ2
3 , ξ3, 1)T and

β2(u) = 1 + ξ3u
2 with v2 = (ξ3, ξ

2
3 , 1)T,

where ξ3 = e
2πi
3 . The third eigenvalue is given by β3(u) = 1 + u + u2 + u3. All logarithmic

Mahler measures of β1, β2, β3 are zero since their respective roots all lie on the unit circle. ♦

Example 3.3.10 (A4, non-transitive, G′ ' C2×C2). The converse of Fact 3.3.2 does not hold

in general. There are Abelian subgroups of Σna of order na which fail to be transitive. In

Σ4, there are seven subgroups isomorphic to the Klein–4 group C2 × C2, only three of which

are transitive. Here, we consider a substitution when G′ has two disjoint orbits. Consider the

substitution %V , alongside with its corresponding Fourier matrix:

%V :



0 7→ 0112,

1 7→ 1012,

2 7→ 3212,

3 7→ 2312,

B(k) =


1 u 0 0

u 1 0 0

0 0 u 1

0 0 1 u


︸ ︷︷ ︸

Bb

+


0 0 0 0

u2 u2 u2 u2

u3 u3 u3 u3

0 0 0 0


︸ ︷︷ ︸

Bc

.

The eigenvalues of B corresponding to the three k−independent eigenvectors of Bb are

β1(u) = 1− u, v1 = (−1, 1, 0, 0)T,

β2(u) = −1 + u, v2 = (0, 0,−1, 1)T,

β3(u) = 1 + u, v3 = (−1,−1, 1, 1)T,

with the last eigenvalue being β4 = 1+u+u2 +u3. Here, one sees that v3 is a linear combination

of the eigenvectors from the two separate blocks of Bb corresponding to the same eigenvalue β3.

The positivity of the Lyapunov exponents follows from the same arguments as in our previous

examples. ♦

The following necessary criterion for a primitive substitution of constant length to have an

absolutely continuous component in its dynamical spectrum is due to Berlinkov and Solomyak.

Theorem 3.3.11 ( [BS17, Thm. 1.1]). Let % be a primitive substitution of constant length.

Then, if its dynamical spectrum contains an absolutely continuous component, its substitution

matrix M must have an eigenvalue of modulus
√
λPF.

One can easily check that the substitution matrix M% = B(0) of %V in Example 3.3.10 has

eigenvalues {4, 2, 0, 0}. However, %V contains coincidences, and hence has pure point spec-

trum by Dekking’s criterion. The absence of absolutely continuous spectral components is also

rederived here via the positivity of the Lyapunov exponents.

We provide another example to demonstrate the abundance of such substitutions and com-

ment on how one can systematically construct examples that satisfy the criterion given in

Theorem 3.3.11, but do not have absolutely continuous spectrum.
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Example 3.3.12 (A5, Length 9, G′ ' C4). Let %5 and its substitution matrix be given by

%5 :



0 7→ 031422300,

1 7→ 102422300,

2 7→ 213422300,

3 7→ 320422300,

4 7→ 444422300,

M%5
=


1 1 0 1 0

1 1 1 0 0

0 1 1 1 0

1 0 1 1 0

0 0 0 0 3


︸ ︷︷ ︸

Bb(0)

+


2 2 2 2 2

0 0 0 0 0

2 2 2 2 2

1 1 1 1 1

1 1 1 1 1


︸ ︷︷ ︸

Bc(0)

.

The eigenvalues of M are {9, 3,−1, 1, 1}, with 3 again coming from the inherited eigenvalue

1 + u+ u2 of Bab. ♦

In general, one can begin with a (non-primitive) substitution of length L on na letters, whose

columns are bijective, and with its generating subgroup G′ being a non-transitive subgroup of

Σna . From the proof of Corollary 3.3.7, β(k) = 1 +u+ . . .+uL−1 is always an eigenvalue of Bb,

and at least one copy of it survives to be an eigenvalue of B, which means that β(0) = L is an

eigenvalue of M = B(0) of the new substitution formed by adding coincidences. One can then

choose to add appropriate columns, so that the resulting substitution is primitive, and enough

columns, so that it is of length L2. All substitutions emerging from this construction satisfy

Theorem 3.3.11, but have pure point spectrum.

Remark 3.3.13 (Outward and inward filtration are usually unrelated). From Remark 2.5.1,

the Lyapunov exponents for the inward iteration are given by

χi = log |λi| − log
√
λPF,

where {λi} are the eigenvalues of M%. Furthermore, for Abelian cocycles, V ik \ V
i+1
k = Ei,

where Ei corresponds to the eigenspace of λi, for all k ∈ R. In general, the arrangement of

the subspaces in the inward filtration does not seem to have any implication on the outward

filtration. To see this, consider the substitution

% :

a 7→ abb, c 7→ cdd,

b 7→ bcc, d 7→ daa,

with respective inward and outward exponents

Subspace χ
(in)
i χ

(out)
i

〈v1〉 ; v1 = (1, 1, 1, 1)T log(
√

3) log(
√

3)

〈v2〉 ; v2 = (−1, 1,−1, 1)T − log(
√

3) log(
√

3)

〈v3〉 ; v3 = (−i,−1, i, 1)T log
(√

5
3

)
log(
√

3)− log(1.44)

〈v4〉 ; v4 = (i,−1,−i, 1)T log
(√

5
3

)
log(
√

3)− log(1.44)

where one notices that the slowest growing subspace 〈v2〉 with respect to the inward iteration

is a subspace of V1
out \ V2

out for the outward one. On the contrary, for the substitution

% :


a 7→ abbb,

b 7→ bccc,

c 7→ caaa,
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the subspace V = 〈v1, v2〉, with v1 = (ξ2
3 , ξ3, 1)T and v2 = (ξ3, ξ

2
3 , 1)T exhibits the smallest

exponential growth both for the outward and inward iterations.

♦

3.4. Mixed substitutions

Definition 3.4.1. A substitution % is called a global mixture of %1 and %2 (or is a globally-mixed

substitution) if %(ai) = %2(%1(ai)) for all ai ∈ Ana . Here we write, % := %2 ◦ %1.

We emphasise that the mixing of the substitutions here is global, as opposed to local mixing

where for every letter of a finite or infinite word, one has the freedom to choose the substitution

rule to apply. Such mixtures are more known as random substitutions; see [RS18] and references

therein for a general exposition.

Proposition 3.4.2. Let %1, %2 be two primitive constant-length substitutions on na letters, with

corresponding inflation factors λ1, λ2 and Fourier matrices B1(k), B2(k). Consider the (globally)

mixed substitution given by %M := %2 ◦ %1. Then, the Fourier matrix of %M is given by

BM(k) = B2(k)B1(λ2k).

Proof. Let T 1, T 2, TM be the displacement matrices of the substitutions %1, %2, %M, respectively.

The Fourier matrix BM(k) can be computed from TM by BM(k) = δ̂TM . Proving the claim is

then equivalent to showing that

δTM = δT 2 ∗ δλ2T 1 . (3.9)

Consider a specific entry (δT 2 ∗ δλ2T 1)ij . This can explicitly be written as

(
δT 2 ∗ δλ2T 1

)
ij

=

na∑
`=1

(
δT 2
i`

)
∗
(
δλ2T 1

`j

)
=

na∑
`=1

δT 2
i`+λ2T

1
`j

= δ⋃
` T

2
i`+λ2T

1
`j
,

where we have used the property δX ∗ δY = δX+Y , with X + Y being the Minkowski sum of

the two sets, and where it is clear that T 2
i` + λ2T

1
`j = ∅ whenever any of the summands is the

empty set. Now fix i, j, `0 and assume that T 2
i`0
, T 1

`0j
6= ∅. The point measure δλ2T 1

`0j
encodes

the positions of the inflated tiles of type `0 in
(
%2 ◦ %1

)
(j) prior to subdivision into union of

prototiles. The other measure δT 2
i`0

specifies the location of tiles of type i within this `0−tile

after subdivision. This means that δT 2
i`0

+λ2T 1
`0j

collects all positions of prototiles of type i which

live in level-2 supertiles of type %2(`0). It is then clear that, when one takes the union of all of

these positions over all possible tile type 1 6 `0 6 na, one gets all positions of the i−tiles in the

supertile (%2 ◦ %1)(j), which proves Eq. (3.9).

To summarise, there is a tile of type i in
(
%2 ◦ %1

)
(j) at exactly t = λ2x+ y whenever there

is a tile of type ` at t = x in %1(j) and a tile of type i at %2(`) at t = y. This is illustrated in

Figure 3.1. The claim now follows from a direct application of the convolution theorem.

The following corollary is immediate from an inductive argument.
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j

%1

`

%1(j)

%2

%2(`)

i

x λ2x+ yλ2x

Figure 3.1.: Structure of displacement sets for mixed inflations

Corollary 3.4.3. Let %1, . . . , %r be primitive constant-length substitutions on n letters, with

corresponding inflation factors λ1, . . . , λr. Then,

B(k) = Br(k)Br−1(λrk) · . . . ·B2(λ3 · . . . · λrk)B1(λ2 · . . . · λrk)

is the Fourier matrix of % := %r ◦ %r−1 ◦ · · · ◦ %2 ◦ %1.

When the tile lengths are consistent for each substitution, the expand-subdivide scheme

proceeds as is, only with a possibly different labelling rule at every step. From this, we get the

following generalisation.

Corollary 3.4.4. Corollary 3.4.3 also holds whenever %1, . . . , %r are primitive substitutions

which share the same left PF eigenvector L.

Remark 3.4.5. The main motivation for Corollary 3.4.4 is a possible extension of the diffraction

formalism to infinite mixtures of substitutions % =
∏
i>1 %i, which are also known as S-adic

systems. The symbolic hulls of some of these systems are known to be strictly ergodic, which

is a good starting point in view of pair correlations. We refer to [BD14] for a comprehensive

survey of S-adic systems. ♦

Remark 3.4.6. One cannot expect the same result to hold for all mixed substitutions in

general. When mixing substitutions that do not have the same L, the natural tile lengths that

one gets from the eigenvector of the substitution matrix are totally different from the lengths

of the individual substitutions. Aside from this, one also does not expect that the new inflation

factor is a simple product of the individual inflation factors. As an example, when one mixes

%F and %TM, one gets

% := %TM ◦ %F :

0 7→ 0110,

1 7→ 01,

whose inflation factor and natural tile lengths are λ = 3 and L0 = 2, L1 = 1. ♦

In what follows, we state known results from number theory about Littlewood polynomials

and show how to profit from these and from Corollary 3.4.3 in the bijective binary case.

Theorem 3.4.7 ( [BC99, Thm. 3.4]). Let q(z) be a cyclotomic Littlewood polynomial of even

degree L− 1. Then, q(z) can be written as

q(z) = ±Φp1(±z)Φp2(±zp1) · . . . · Φpr(±zp1p2···pr−1)

with L = p1p2 · · · pr, where all pi are prime (not necessarily distinct), and Φpi = zpi−1
z−1 .
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Conjecture 3.4.8 ( [BC99, Conj. 4.1]). Let q(z) be a cyclotomic Littlewood polynomial of odd

degree L− 1. Then, q(z) affords the same decomposition as in the even case.

Thangadurai proved Conjecture 3.4.8 in [Tha02] for separable polynomials of degree 2rp`−1.

Akhtari and Choi extended this result in [AC08] to all separable polynomials of odd degree and

all polynomials of degree 2rp` − 1, where p is a prime number.

In Proposition 3.2.8, it was shown that m(q) with q ∈ {−1, 1} [z] can be recovered as χB of

a bijective, binary constant-length substitution %. This together with Corollary 3.4.3, Theo-

rem 3.4.7, and Conjecture 3.4.8 gives the following partial classification result.

Proposition 3.4.9. Let % be a bijective, binary constant-length substitution of even length L, or

of odd length of the form L = 2αpβ − 1, where p is an odd prime. Then, the Lyapunov spectrum

of B(k) associated to % is degenerate if and only if % can be written as a mixed substitution

given by

% := %` ◦ %`−1 ◦ · · · ◦ %2 ◦ %1,

where each %i is also bijective, of prime length pi (not necessarily distinct), with L = p1 · · · p`,
such that the corresponding Lyapunov exponent χB for each %i is also 0.

Proof. Suppose we have a bijective binary substitution % of length L, where L satisfies the

conditions of the theorem. The corresponding Fourier matrix is of the form

B(k) =

(
q(u) r(u)

r(u) q(u)

)
,

where u = e2πik, and with associated Littlewood polynomial (q − r). Suppose further that

the Lyapunov spectrum of % is degenerate, i.e., χB = 0. Clearly, q − r must essentially be

cyclotomic from Theorem 1.5.3. It follows then from Theorem 3.4.7 and partially proven results

on Conjecture 3.4.8 that q − r decomposes into

(q − r)(k) = ±(q − r)p1(u)(q − r)p2(up1) · . . . · · · (q − r)p`(u
p1p2···p`−1).

One can then choose a corresponding substitution %i of length Li = pi with corresponding

polynomial (q − r)pi via Proposition 3.2.8. This extends to the corresponding Fourier matrices

satisfying

B(k) = B1(k)B2(p1k) · . . . ·B`(p1p2 · · · p`−1k),

which from Corollary 3.4.3 holds whenever % = %1 ◦ %2 ◦ . . . ◦ %`.

Remark 3.4.10. It is possible that some %i are not primitive, which occurs exactly when

%i : 0 7→ 000 . . . 0︸ ︷︷ ︸
Li

, 1 7→ 111 . . . 1︸ ︷︷ ︸
Li

, hence q − r = q = zL−1
z−1 . Aside from this, due to the structure

of the constituent polynomials in the decomposition, we know that the corresponding first level

substituted words w0, w1 of %i are either constant (as in the example above) or alternating. ♦

Remark 3.4.11. All bijective binary substitutions in the balanced-weight case (i.e., where

weights are chosen to be W0 = 1 and W1 = −1) are suspected to have a singular continuous

diffraction measure γ̂; see [BGG12, BG14]. For the Thue–Morse measure, an investigation of

this measure under the thermodynamic formalism was done in [BGKS18], where the exponent

χB is related to the value of the scaling exponent of γ̂ on a set of full measure. ♦
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3.5. Examples with absolutely continuous spectrum

3.5.1. Rudin–Shapiro

Example 3.5.1. The Rudin–Shapiro substitution first mentioned in Example 1.2.8 is arguably

the simplest example of a classical substitution that admits an absolutely continuous component

in its diffraction and dynamical spectra. Here, we consider an equivalent substitution on a four-

letter alphabet with two letters and their barred counterparts.

Let %RS : a 7→ ab, b 7→ ab̄, b̄ 7→ āb, ā 7→ āb̄ be the Rudin–Shapiro substitution, whose Fourier

matrix is given by

B(k) =


1 1 0 0

e2π ik 0 e2π ik 0

0 e2π ik 0 e2π ik

0 0 1 1

 .

Since 0 is an eigenvalue of B(k), the matrix fails to be invertible for any k, and hence we cannot

directly define a cocycle corresponding to the outward iteration from B and test Corollary 2.5.4.

However, there exists a k−independent matrix that transforms B(k) into block diagonal form,

compare with [BG16, Sec. 4.2], which is explicitly given by

B′(k) =


1 + e2π ik 0

− e2π ik 0
O

O
1 1

e2π ik − e2π ik

 ,

with the matrix Z1(k) in the upper block getting the zero eigenvalue and the lower block matrix

Z2(k) now being invertible for all k (detZ2(k) = −2 e2π ik). It is also worth noting that this

decomposition into invariant subspaces is induced by the bar swap symmetry of the substitution,

which is given by a←→ ā, b←→ b̄, which will be tackled in full generality in Section 5.2.3.

Since Z−1
2 (k) exists for all k, we can consider the cocycle defined by iterating this matrix and

compute its corresponding Lyapunov exponent.

Due to the irreducibility of Z2(k), our technique of computing the exponent for each invariant

subspace does not work. However, one notices that 1√
2
Z2 (k) is unitary and so, for any starting

vector, v(k) ends up having the same norm as its n-th iterate v (2nk) under the cocycle Z
(n)
2 (k)

defined by Z2(k), which means that both Lyapunov exponents vanish, χ1 = χ2 = 0. ♦

Remark 3.5.2. The dynamical system defined by the return word encoding %ret of %
RS′

is topo-

logically conjugate to that of the latter, which implies that it also has an absolutely continuous

component in its spectrum. Due to B(k) being singular for all k, one cannot use the usual tools

to compute exponent bounds. The exponents still exists though, due to Theorem 1.4.7, which

this time are allowed to be −∞. The irreducibility of B(k) and the presence of a non-trivial

k-dependent kernel introduce obstructions in computing the actual exponents. ♦

In what follows, we show that this k-independent reducibility is satisfied by other families of

substitutive examples that emerge from similar constructions.
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3.5.2. A nine-letter example

Frank introduced a scheme in [Fra03] by which, given a Hadamard matrix H, one can construct

substitutions with Lebesgue component in their dynamical spectrum. Subsequently, these sys-

tems also display non-trivial absolutely continuous diffraction. Chan, Grimm, and Short gener-

alised this construction to complex Hadamard matrices arising from discrete Fourier transform

(DFT) matrices via a modification of Rudin’s argument; see [CGS18,Cha18].

One of their examples is on a nine-letter alphabet A9 is given by %9 defined by the rules

0 7→ 012, 0̄ 7→ 0̄1̄2̄, ¯̄0 7→ ¯̄0¯̄1¯̄2,

1 7→ 01̄¯̄2, 1̄ 7→ 0̄¯̄12, ¯̄1 7→ ¯̄012̄, (3.10)

2 7→ 0¯̄12̄, 2̄ 7→ 0̄1¯̄2, ¯̄2 7→ ¯̄01̄2,

with 3-cyclic bar symmetry that commutes with %9. This comes from the matrix

H3 =

1 1 1

1 ξ3 ξ2
3

1 ξ2
3 ξ3

 ,

where ξ3 = e
2π i
3 . This matrix satisfies H3H

†
3 = 3I3. One immediately sees that the entries of

H3 determine the bar labelling of the images of 0, 1, and 2. The images of the barred letters

can then be obtained as barred substituted words, with ¯̄̄ai = ai for all ai ∈ A9.

For the next result, let C3 = 〈σ〉, with σ = (123), and Φ be the permutation representation.

Moreover, let the matrices Z1, Z2, Z3 be given by

Z1 =

 1 1 1

z 0 0

z2 0 0

 , Z2 =

0 0 0

0 0 z

0 z2 0

 , Z3 =

0 0 0

0 z 0

0 0 z2

 .

where z = e2π ik for k ∈ R.

Proposition 3.5.3. Let B(k) be the Fourier matrix of %9 given in Eq. (3.10). One has

(1) B(k) = Φ(e)⊗ Z1 + Φ(σ)⊗ Z2 + Φ(σ2)⊗ Z3.

(2) For all k ∈ R, B(k) is simultaneously block diagonalisable into

B′(k) =

 Z ′1 O O

O Z ′2 O

O O Z ′3.

 ,

where Z ′2 and Z ′3 are constant multiples of unitary matrices, with multiplier c =
√

3.

(3) The cocycles defined by the blocks Z ′2 and Z ′3 have degenerate Lyapunov spectrum

χZ
′
2 = χZ

′
3 = log(

√
3) = log

√
λ.

In particular, there is a 6-dimensional subspace of C, with χ = log
√
λ − χB = 0, where the

absolutely continuous component lives.

We omit the proof here and refer to Section 5.2.3 where we provide a sketch of the general proof

for substitutions coming from Frank’s construction, which also cover those coming from [CGS18].
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3.5.3. Globally-mixed examples

Example 3.5.4. Consider the following substitutions

%+ :



a 7→ ab,

b 7→ ab̄,

ā 7→ āb̄,

b̄ 7→ āb,

%− :



a 7→ ab̄,

b 7→ ab,

ā 7→ āb,

b̄ 7→ āb̄,

%−+ = %− ◦ %+ :



a 7→ ab̄ab,

b 7→ ab̄āb̄,

ā 7→ ābāb̄,

b̄ 7→ ābab,

where %−, %+ are variants of the Rudin–Shapiro substitution, whose composition %−+ was shown

in [CGS18] to have absolutely continuous spectrum. To these substitutions correspond the

following set matrices

T− =

 {0} {0} ∅ ∅
∅ {1} {1} ∅
∅ ∅ {0} {0}
{1} ∅ ∅ {1}

 , T+ =

 {0} {0} ∅ ∅
{1} ∅ ∅ {1}
∅ ∅ {0} {0}
∅ {1} {1} ∅

 , T−+ =

 {0,2} {0} ∅ {2}
{3} ∅ {1} {1,3}
∅ {2} {0,2} {0}
{1} {1,3} {3} ∅

 ,

whose corresponding measure-valued matrices satisfy the convolution equation
δ0 δ0 0 0

0 δ1 δ1 0

0 0 δ0 δ0

δ1 0 0 δ1


︸ ︷︷ ︸

δT−

∗


δ0 δ0 0 0

δ2 0 0 δ2

0 0 δ0 δ0

0 δ2 δ2 0


︸ ︷︷ ︸

f ·δT+

=


δ0 + δ2 δ0 0 δ2

δ3 0 δ1 δ1 + δ3

0 δ2 δ0 + δ2 δ0

δ1 δ1 + δ3 δ3 0


︸ ︷︷ ︸

δT−+

,

where f is the dilation f(x) = 2x. From this, one obtains the relation between the corresponding

Fourier matrices, which explicitly reads
1 1 0 0

0 u u 0

0 0 1 1

u 0 0 u


︸ ︷︷ ︸

B(k)−

·


1 1 0 0

u2 0 0 u2

0 0 1 1

0 u2 u2 0


︸ ︷︷ ︸

B(2k)+

=


1 + u2 1 0 u2

u3 0 u u+ u3

0 u2 1 + u2 1

u u+ u3 u3 0


︸ ︷︷ ︸

B(k)−+

.

This decomposition and the fact that the invariant sectors pair up nicely allow one to show

that any finite composition of these two substitutions has at least one Lyapunov exponent

χ = log
√
λ, which is necessary for the presence of an absolutely continuous spectrum. ♦

Remark 3.5.5. Note that absolutely continuous spectrum is not always compatible with global

mixing. For instance, consider two versions of %RS and their composition given by

%1 =



a 7→ ab,

b 7→ ac,

c 7→ db,

d 7→ dc

%2 =



a 7→ ab,

b 7→ ad,

c 7→ cd,

d 7→ cb

%12 := %2 ◦ %1 =



a 7→ abad,

b 7→ abcd,

c 7→ cbad,

d 7→ cbcd.

(3.11)

Both %1 and %2 have absolutely continuous spectrum, but %12 is pure point due to Theorem 3.1.9

since it has coincidences. The eigenvalues of M%12
are {4, 1, 0, 0}, which also implies singularity

by Theorem 3.3.11.
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Let B1(k) and B2(k) be the Fourier matrices of %1 and %2, respectively. It is important to

note that the individual eigenspaces of B1(k) and B2(k) which correspond to the eigenvalue
√

2

are not equal. On the contrary, the matrices B(k)− and B(k)+ in Example 3.5.4 share the same

eigenspace for
√

2, which makes the existence of an exponent equal to log
√

2 possible. The

resulting Fourier matrix B(k) for %12 is non-invertible for all k, and ker(B(k)) is k-dependent

as in Example 2.1.9, which hinders one in computing other exponents aside from −∞ and

log(2), the latter coming from a 1-dimensional invariant subspace. For these two examples with

negative infinite Lyapunov exponents, explicit statements on the a.e. rank of B(n) and on block

diagonal structures would be desirable; compare [SX17]. ♦
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4. Non-Constant-Length Case

Outside the case where λ ∈ N, the resulting Fourier matrix is no longer periodic, which means

that one does not automatically have forward regularity. In the first section, we show that this

is still true when % is irreducible Pisot. The next three sections are devoted to singularity results

that rely on numerical estimates which are guaranteed to hold by Proposition 2.7.7. The last

section deals solely with Fibonacci Fourier matrices and a stronger notion of irreducibility.

4.1. Existence of exponents for irreducible Pisot substitutions

Let % be a primitive Pisot substitution on na letters, with M% having an irreducible characteristic

polynomial. From the irreducibility of %, it follows that its inflation multiplier λ is of algebraic

degree deg(λ) = na. Recall from Section 2.6 that one can consider B(n)(k) as a section of a 1-

periodic, na-dimensional cocycle, with frequencies (1, α1, . . . , αna−1) given by the (normalised)

left PF eigenvector L. Denote by Eu = spanR {L} and Es to be the complement of Eu in

Rna , which is given by the R-span of the other (distinct) eigenvectors {v2, . . . , vna} of M% = M .

Together, these subspaces satisfy Rna = Eu ⊕ Es ' R× Rna−1.

The toral endomorphism M̃ : x̃ 7→ x̃.M mod 1 is ergodic with respect to the Haar measure

µH on Tna , see Example 1.4.4, and commutes with the quotient map π : Rna → Tna = Rna/Zna ,

i.e.,

π(x.M) = M̃(π(x)) = π(x).M mod 1, (4.1)

for any vector x ∈ Rna .

The usual metric ∆ in Rna induces a metric ∆̃ in Tna , see [AH94, Ch. 1], which is given by

∆̃(x̃, ỹ) = inf
a,b∈Zna

{∆(x̃+ a, ỹ + b)} = inf
a∈Zna

{∆(x, y + a)} .

Let Ξu := π(Eu) ' T and Ξs := π(Es) ' Tna−1. Note that both projections are invariant

with respect to M̃ , and hence are both null sets due to the ergodicity of M̃ .

Proposition 4.1.1. For a.e. x̃ ∈ Tna, the orbit
{
M̃n(x̃)

}
converges to a dense orbit

{
M̃n(ỹ)

}
,

for some ỹ ∈ Ξu.

Proof. Pick a coset representative x = x̃ + a = (x1, . . . , xna) for x̃ ∈ Tna , with a ∈ Zna . This

vector could be written as x = c1L + xs, where c1 ∈ R and xs ∈ Es. For x′ = c1L, one has

x̃′ = π(x′) ∈ Ξu. Moreover, the distance between the respective iterates of x and x′ satisfies

∆
(
x.Mn, x′.Mn

)
= ‖xs.Mn‖ n→∞−−−→ 0.

This follows from the Pisot property that all other eigenvalues of M have modulus less than 1,

which makes M a contracting map on Es. Note that c1 = 0 means x + a ∈ Es, implying that

x̃ ∈ Ξs and M̃n(x̃)→ 0 as n→∞. However, one need not worry as µH(Ξs) = 0.
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Since a is chosen arbitrarily, this implies

lim
n→∞

∆̃(M̃(x̃), M̃(x̃′)) = lim
n→∞

inf
a,b∈Zna

{
∆
(
(x+ a).Mn, (x′ + b).Mn

)}
= 0

for a.e. x̃ ∈ Tna .

To continue, define the induced Lebesgue measure µind
L of a subset V ⊂ Eu via

µ
(u)
L (V ) := µL(K)

whenever V = {k.L | k ∈ K ⊂ R}. Here, µL denotes the standard Lebesgue measure on R.

Analogously, for the contracting subspace Es, and for V = spanK {v2, . . . , vd} ⊂ Es, one has

µ
(s)
L (V ) := µL(K). We endow the subtori Ξs ' Tna−1 and Ξu ' T with the usual Haar measures

µ
(s)
H and µ

(u)
H , respectively. The next result is immediate.

Lemma 4.1.2. Let π(V ) ⊂ Ξu, where V = spanK {L}. Then, µ
(u)
H (π(V )) > 0 if and only if

µ
(u)
L (K) > 0. A similar equivalence holds for W = spanK {v2, . . . , vd} ⊂ Es.

Recall from Proposition 2.6.4 that the exponent χB̃(x̃) for the cocycle defined by B̃ with base

dynamics given by M exists for a.e. x̃ ∈ Tna and is equal to a constant χB̃. Our next goal is

to use this existence result and the convergence result in Proposition 4.1.1 to prove almost sure

existence of χB(k) for irreducible Pisot substitutions.

Lemma 4.1.3. For all y = k.L ∈ Es, one has χB(k) = χB̃(ỹ), where π(y) = ỹ ∈ Tna.

Proof. It follows from the definition of the cocycle B̃ from Lemma 2.6.2 and 1-periodicity of B̃

that

B(n)(k) = B̃(n)(y) = B̃(n)(ỹ).

The equality of the Lyapunov exponents then follows by considering 1
n log ‖B(n)(k)‖.

Next, denote the set of pathological points of χB(k) by X , i.e.,

X :=
{
k ∈ R | χB(k) does not exist as a limit or χB(k) 6= χB̃

}
.

We show that µL(X ) = 0. To this end, let Y be given as

Y := {y ∈ Rna | y = k.L, k ∈ X} ⊂ Eu.

Let Ỹ := π(Y) and consider the set Ỹ+Ξs. The next lemma states that the Lyapunov exponent

on points in Ỹ + Ξs are completely determined by the exponent of the component in Ỹ.

Lemma 4.1.4. For µH-a.e. x̃ ∈ Ỹ + Ξs, one has χB̃(x̃) = χB̃(ỹ), where x̃ = ỹ + x̃s, for some

ỹ ∈ Ỹ and x̃s ∈ Ξs.

Proof. By Proposition 4.1.1, for µH-a.e. x̃ ∈ Ỹ,(
M̃n(x̃)

) n→∞−−−→
(
M̃n(ỹ)

)
= π(λn.y),

with y ∈ Y, where the equality follows from Eq. (4.1). Since ‖B̃(n)(.)‖ displays the same growth

asymptotics when it is sampled on converging orbits, the exponential growth behaviour of

‖B̃(n)(ỹ)‖ is completely dictated by that of ‖B̃(n)(x̃)‖, from which the equality of the exponents

follow.
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We are now ready to prove our main result in this section; compare Lemma 3.1.4.

Theorem 4.1.5. Let % be a primitive one-dimensional irreducible Pisot substitution. Then, for

a.e. k ∈ R, χB(k) exists as a limit and is equal to the almost everywhere exponent χB̃ of B̃,

i.e.,

χB(k) = lim
n→∞

1

n
log ‖B(n)(k)‖ = inf

N

1

N
M(log ‖B̃(N)(·)‖) = χB̃.

Proof. Fix 0 < δ < 1 and k0 ∈ R, and consider the set Ỹ ′ = π(X ∩ Bδ(k0)) ⊂ Ỹ. Here,

Bδ(k0) is the open ball of radius δ around k0 ∈ R. Now choose an 0 < ε < 1 and consider the

ε-neighbourhood Uε(0) of 0 in Ξs, i.e.,

Uε(0) := π(spanBε(0) {v2, . . . , vd}).

From this, construct the ε-thickening of Ỹ ′ along Ξs given by Ỹ ′ + Uε(0); see Figure 4.1. Note

that, in general, Eu need not be orthogonal to Es, though it is always transversal.

Figure 4.1.: Illustration in T2 of the ε-thickening of an exceptional subset Ỹ ′ ⊂ Ξu.

Let Z be the set of exceptional points for χB̃(x̃), i.e.,

Z :=
{
x̃ ∈ Tna | χB̃(x̃) does not exist as a limit or χB̃(x̃) 6= χB̃

}
.

From Proposition 2.6.4, one has µH(Z) = 0.

From Lemma 4.1.3 and Lemma 4.1.4, for µH-a.e. x̃ ∈ Ỹ ′ + Uε(0), one has χB̃(x̃) = χB(k),

with k ∈ X . This means that there exists a full-measure subset Ỹ ′′ ⊂ Ỹ ′ + Uε(0), i.e.,

µH(Ỹ ′′) = µH(Ỹ ′ + Uε(0)),

which satisfies Ỹ ′′ ⊂ Z. Since Ỹ ′′ is a subset of a null set in Tna , one automatically gets

µH(Ỹ ′′) = µH(Ỹ ′ + Uε(0)) = 0.

Alternatively, one can write µH in Tna as a product measure, i.e.,

µH(X × Y ) = α · µ(u)
H (X) · µ(s)

H (Y ),

for X ⊂ Ξu and Y ⊂ Ξs, and for some α > 0; compare [Hal74, Sec. 35, Thm. B].

With this, one gets

0 = µH(Ỹ ′ + Uε(0)) = α · µ(u)
H (Ỹ ′) · µ(s)

H (Uε(0)).

Since µ
(s)
H (Uε(0)) > 0, this implies µ

(u)
H (Ỹ ′) = 0 and thus µL(X ∩Bδ(k0)) = 0 by Lemma 4.1.2.

This holds for any arbitrary open ball Bδ(k0) with 0 < δ < 1, and since R is locally compact,

one gets µL(X ) = 0.
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Remark 4.1.6. One can also prove the upper bound estimate in Proposition 2.7.7 for irreducible

Pisot substitutions without invoking results in discrepancy analysis using the same arguments

in Theorem 4.1.5 by showing that the Birkhoff averages of log | detB(k)| can only diverge on a

set of measure zero via an almost-everywhere result for log | det B̃(x)|. ♦

The following result is due to Fan, Saussol and Schmeling.

Theorem 4.1.7 ( [FSS04, Thm. 2.5]). Let {un} = {αn}n>0, for some Pisot α > 1, and {fn}n>0

be a sequence of subadditive Bohr almost periodic functions such that, for any n > 1, one has

supm
(
fm(unk)− fm(k)

)
<∞, for a.e. k ∈ R. Then,

lim
n→∞

1

n
fn(k) = inf

n

1

n
M(fn)

for a.e. k ∈ R.

Remark 4.1.8. For cocycles which do not have singularities, one can use Theorem 4.1.7 to

prove almost sure existence. Theorem 4.1.5 is an existence result for a specific class of cocycles

which are allowed to have (local) singularities. A numerical illustration of this convergence for

B̃ is given in Figure 4.2. ♦

(a) N = 10 (b) N = 30 (c) N = 1000

Figure 4.2.: Contour plot of 1
N log ‖B̃(N)(x, y)‖ over [0, 1)2 for the Fibonacci substitution.

4.2. Non-Pisot examples

4.2.1. A family of non-Pisot substitutions

In this section, we consider the family of substitutions on A2 = {0, 1} defined by

%m : 0 7→ 01m, 1 7→ 0, with m ∈ N. (4.2)

Its substitution matrix is Mm = ( 1 1
m 0 ), whose eigenvalues are λ±m = 1

2(1±
√

4m+ 1), with PF

eigenvalue λm = λ+
m. The left PF eigenvector L is given by (λm, 1), which means the associated

tiles have lengths |t0| = λm and |t1| = 1. One can easily check that a bi-infinite fixed point w

of %2
m can be obtained from the legal seed 0|0. This fixed point gives rise to the geometric hull

Ym.

The first member %1 of this family is the classic Fibonacci substitution %F.
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Fact 4.2.1. The PF eigenvalue satisfies λm ∈ N if and only if m = `(`+1), for some ` ∈ N. In

these cases, λm = `+ 1. The resulting geometric hull Ym is MLD to a hull Y′m of a constant-

length substitution given by

%̃m : a 7→ ab`, b 7→ a`+1.

Sketch of proof. The first statement follows from direct computation. For the second claim, we

assume |ta| = |tb| = λm. The proof relies on elements in Y′m being locally recognisable; compare

with [BGrM18, Prop. 2.3]. In particular, the symbol 1 appears in blocks of length `(` + 1) in

wm, which allows one to define local maps from wm = %∞m (0|0) to um = (%̃m)∞(a|a), and vice

versa. These maps extend to any element of the hull, which then implies the claim.

Proposition 4.2.2. For m = 1 and all m = `(` + 1), where ` ∈ N, the dynamical system

(Ym,R) has pure point spectrum, both in the diffraction and in the dynamical senses.

Proof. Since each %̃m is constant-length and has a coincidence, Theorem 3.1.9 implies that the

symbolic dynamical systems (X′m,Z) all have pure point dynamical spectra . One can then view

Y′m as a suspension of X′m with a constant roof function. Since the spectral type is preserved

under MLD-equivalence, we also get that (Ym,R) has pure point dynamical spectrum. From

this, the pure point nature of the diffraction measure γ̂m is guaranteed by [LMS02, Thm. 3.2].

Remark 4.2.3. An independent, although weaker result regarding the diffraction spectra of

the family of substitutions %̃m can be obtained by invoking Corollary 3.2.4, i.e., χmin > 0, for

each %m, which implies the singularity of γ̂m, see [BGrM18, Sec. 5.3] for details. ♦

When m 6= 1 and m 6= `(`+1), ` ∈ N, λm is a non-Pisot number (and not a unit), which makes

%m a non-Pisot substitution. This has immediate implications on Ym due to Corollary 1.2.12.

Fact 4.2.4. Let %m be given as in Eq. (4.2), with m 6= 1 and m 6= `(` + 1). Then, no point

set Λ ∈ Ym is a Meyer set. Furthermore, the diffraction γ̂m has no non-trivial pure point

component, i.e., γ̂m = I0δ0 + (γ̂m)cont.

The goal is then to prove that (γ̂m)cont is singular continuous, i.e., (γ̂m)ac = 0 by showing

χB(k) < log
√
λm, for a.e. k. For readability, we fix m and refer to the diffraction as γ̂, and to

the PF eigenvalue as λ.

For a chosen m ∈ N, the displacement matrix reads

T =

(
{0} {0}
Γ ∅

)
, with Γ := {λ, λ+ 1, . . . , λ+m− 1} .

From this, we get the Fourier matrix B(k) as

B(k) = D0 + p(k)Dλ, with p(k) = zλ(1 + z + . . .+ zm−1)
∣∣
z= e2π ik

and digit matrices D0 = ( 1 1
0 0 ) and Dλ = ( 0 0

1 0 ), which are independent of m. From Proposi-

tion 2.1.6, the IDA Bm is irreducible.

For m > 1, the cocycle B(n)(k) is invertible for k 6∈
⋃n−1
`=0 λ

−`Zm, where Zm = Z/m. For

m = 1, |detB(k)| ≡ 1, for all k ∈ R, which makes it everywhere invertible. Analogous to

forward regular cocycles, Proposition 2.7.6 yields the following result.
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Proposition 4.2.5. For a.e. k ∈ R, one has limn→∞
1
n log

∣∣detB(n)(k)
∣∣ = 0.

Proof. The claim is trivial for m = 1. For m > 2, Proposition 2.7.6 implies

1

n
log
∣∣detB(n)(k)

∣∣ =
1

n

n−1∑
`=0

log
∣∣detB(λ`k)

∣∣ n→∞−−−→ M(log |detB(·)|)

for a.e. k ∈ R. The mean M(log | detB(·)|) can easily be computed since log |detB(k)| is

periodic, and is given by∫ 1

0
log |detB(t)|dt =

∫ 1

0
log
∣∣1 + z + . . .+ zm−1

∣∣
z= e2π itdt = m(1 + z + . . .+ zm−1) = 0,

where the last equality follows from Kronecker’s lemma.

Lemma 4.2.6. For a.e. k ∈ R, one has χmax(k) + χmin(k) = log(λ).

Proof. For any invertible B, one has B−1 = 1
detBB

ad. The adjoint satisfies (AB)ad = BadAad.

Since we are dealing with 2×2-matrices, ‖Bad‖F = ‖B‖F. The claim then follows from a simple

computation involving Eqs. (2.21) and (2.22), and Proposition 4.2.5.

In view of Section 2.6, for λ 6∈ N, B(k) can be written as

B(k) = B̃(x, y)
∣∣
x=λk, y=k

with B̃(x, y) =
(

1 1
p̃(x,y) 0

)
and p̃(x, y) = e2π ix(1 + z + . . .+ zm−1)

∣∣
z= e2π iy .

This generates the cocycle B̃(n)(x, y), whose dynamics is given by (x, y) 7→ (x, y)Mm on T2.

When λ ∈ N, B(k) is periodic and B(n)(k) is an ergodic cocycle over the map k 7→ λk in [0, 1);

see Section 3.1.

Lemma 2.7.1 holds for this family of substitutions since no Fourier matrix B(k) is identically

singular. The upper bound

2χB(k) 6
1

N
M(log ‖B̃(N)(·)‖2F) (4.3)

holds for a.e. k ∈ R and for all N ∈ N. This brings us to a sufficient criterion for positivity of

χmin for %m. For the following result, let

q(z) = 2zm−1 + (1 + z + . . .+ zm−1)2.

Fact 4.2.7. If m(q) < log λ, then χB(k) < log
√
λ, for a.e. k ∈ R.

Proof. Substituting N = 1 to the upper bound from Eq. (4.3), we obtain

2χB(k) 6M
(

log ‖B̃(·)‖2F
)

=

∫ 1

0
log(2 + |p(t)|2)dt =

∫ 1

0
log |q(z)|z= e2π itdt = m(q) (4.4)

for a.e. k ∈ R. Here, the validity of z̄ = z−1 on the unit circle was used to get the second

equality.

Lemma 4.2.8. For any m ∈ N, the logarithmic Mahler measure of the polynomial q satisfies

the inequality m(q) < log
√

46 ≈ 1.914321.
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Proof. Here, we employ an argument from [Clu59, BCJ13] that was also used, in a similar

context, in Section 3.2.1. By a simple geometric series calculation, one finds that q(z) = r(z)
(z−1)2

with

r(z) = z2m + 2zm+1 − 6zm + 2zm−1 + 1 =
2m∑
`=0

c` z
`. (4.5)

Consequently, we have m(q) = m(r)−m
(
(z − 1)2

)
= m(r).

Assume that m > 2, so that the exponents of r(z) in Eq. (4.5) are distinct. Consequently,

‖r‖22 =

2m∑
`=0

|c`|2 = 46,

so that M(r) <
√

46, independently of m by Lemma 1.5.2 . This inequality also holds trivially

for m = 1, and we get m(q) = m(r) < log
√

46 for all m ∈ N as claimed.

With this bound, one has m(q) < log λm for all m > 40.

Remark 4.2.9. A better bound for m(q) can be obtained from Eq. (4.4) by noting that one

has p(t) = 1− e2π imt

1− e2π it , which transforms the first integral to be

m(q) =

∫ 1

0
log

(
2 +

(
sin(mπt)

sin(πt)

)2)
dt.

Here, one observes that sin(mπt)2 oscillates between 0 and 1 for small perturbations of t, while

sin(πt) remains almost constant. With this, under the integral, one can replace the second term

by sin(πt)2 = 1
2(1− cos(2πt)) to get the upper bound

m(q) 6
∫ 1

0
log

3− 2 cos(2πt)

1− cos(2πt)
dt = m(z2 − 3z + 1) + log(2) = log(3 +

√
5) ≈ 1.655571.

This universal bound is less that log(λm) for all m > 23. ♦

The following result is due to Boyd [Boy81] for polynomials in ` = 2 variables, and has been

generalised by Lawton [Law83, Thm. 2] to any ` > 2.

Theorem 4.2.10. Suppose r(z) ∈ Z[z] can be written as r(z) = r̃(z, zm), with r̃ ∈ Z[z1, z2].

Then,

lim
m→∞

m(r̃(z, zm)) = m(r̃(z1, z2)),

where m(r̃(z1, z2)) is a two-dimensional logarithmic Mahler measure.

Note that the polynomial r(z) from Eq. (4.5) is of the form required in Theorem 4.2.10, with

r̃(z1, z2) = −z2(6− 2(z1 + z−1
1 )− (z2 + z−1

2 )), and hence has the limit

m(r̃(z, w)) =

∫
T2

log(6− 2 cos(2πt1)− 2 cos(2πt2))dt1dt2

= 2

∫ 1

0
arsinh(

√
2 sin(πt2))dt2 ≈ 1.550675.

If one knows that m(q) is increasing in m, this result automatically implies m(q) < log(λ) for

all m > 18. Unfortunately, this is yet to be shown.
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Table 4.1.: Some relevant values for the quantities in the inequality of Eq. (4.6) for the family

%m. The numerical error is less than 10−3 in all cases listed.

m 1 2 3 4 5 6 7 8 9 10

log(λ) 0.481 0.693 0.834 0.941 1.027 1.099 1.161 1.216 1.265 1.309

N = N(m) 6 4 4 3 3 3 2 2 2 2

1
NM

(
log ‖B(N)(.)‖2F

)
0.439 0.677 0.770 0.924 0.949 0.964 1.144 1.152 1.157 1.161

m 11 12 13 14 15 16 17 18 19 20

log(λ) 1.349 1.386 1.421 1.453 1.483 1.511 1.538 1.563 1.587 1.609

N = N(m) 2 2 2 2 2 2 2 1 1 1

1
NM

(
log ‖B(N)(.)‖2F

)
1.164 1.166 1.168 1.169 1.170 1.171 1.172 1.546 1.547 1.547

Lemma 4.2.11. For any m > 18 and a.e. k, the χmin is strictly positive.

Proof. Lemma 4.2.8 and Remark 4.2.9 confirm that Fact 4.2.7 holds for m > 23, which directly

implies the claim. For the remaining m, one can use Jensen’s formula to compute m(q) numeri-

cally, which can be done up to some reasonable error bound, to check that, indeed, m(q) < log(λ)

for these cases; see Table 4.1 for some of the values.

In order to establish positivity for m < 18, it suffices to find the smallest N = N(m) for

which the right hand-side in Eq. (4.3) satisfies

1

N(m)
M(log ‖B̃(N(m))(·)‖2F) =

1

N(m)

∫
[0,1]2

log ‖B̃(N(m))(x, y)‖2F dx dy < log(λ). (4.6)

To this end, one can calculate the integral in Eq. (4.6) numerically up to a reasonable level of

precision, and without ambiguity. The minimal values of N(m) are given in Table 4.1.

Together with Lemma 4.2.11, one has the following result.

Proposition 4.2.12. For any m ∈ N, and for a.e. k ∈ R, χmin is strictly positive.

We summarise our results from Proposition 4.2.2, Fact 4.2.4, and Proposition 4.2.12, in

conjunction with Theorem 2.5.3 as follows.

Theorem 4.2.13. Consider the inflation tiling, with prototiles of natural length, defined by %m.

For m = 1 and m = `(` + 1) with ` ∈ N, the tiling has pure point diffraction, which can be

calculated with the projection method. The corresponding tiling dynamical system (Ym,R) has

pure point dynamical spectrum.

For all remaining cases, the pure point part of the diffraction consists of the trivial Bragg peak

at 0, while the remainder of the diffraction is of singular continuous type.

Remark 4.2.14. For the cases where λ is non-Pisot, the resulting tiling dynamical system

(Y,R) is weakly mixing due to [Sol97, Thm. 5.1], i.e., there are no non-trivial eigenfunctions. ♦
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4.2.2. Example with a Salem multiplier

Note that Lemma 2.7.1 also holds for Salem substitutions. Consider the substitution %S with

substitution matrix given by

%S :

a 7→ b, c 7→ cb,

b 7→ d, d 7→ acd.
M% =


0 0 0 1

1 0 1 0

0 0 1 1

0 1 0 1

 .

Here, M% is primitive, with characteristic polynomial p(z) = z4−2z3+z2−2z+1, and whose two

real eigenvalues are λ = λPF ≈ 1.8832 and λ2 = 1
λ , while the other two satisfy |λ3| = |λ4| = 1.

The PF eigenvalue λ is a Salem number of minimal degree.

Denote by `ai the length associated to ai and let L be the (normalised) left PF-eigenvector

of M% with `a = 1. From the resulting inflation rule, one gets the Fourier matrix B(k) as

B(k) =


0 0 0 1

1 0 e2π i`ck 0

0 0 1 e2π ik

0 1 0 e2π i(1+`c)k

 , B̃(x, y, z, w) =


0 0 0 1

1 0 e2π iz 0

0 0 1 e2π ix

0 1 0 e2π i(x+z)

 ,

whereB(k) = B̃(x, y, z, w)|x=k, y=`bk, z=`ck, w=`dk. As in Section 4.2.1, the cocycle B̃(n)(x, y, z, w)

is generated by the base dynamics (x, y, z, w) 7→ (x, y, z, w).M% on T4.

From Lemma 2.7.1, it suffices to find an N for which

1

2N
M(log ‖B̃(N)(x, y, z, w)‖2F) =

1

2N

∫
T4

log ‖B̃(N)(x, y, z, w)‖2F < log
√
λ ≈ 0.316487

to be able to confirm the absence of absolutely continuous diffraction, which we carry out

numerically as in the previous section. The estimates are given in Table 4.2.

N 14 15 16 17 18

1
NM

(
log ‖B(N)(.)‖F

)
0.321 0.316 0.312 0.308 0.305

Table 4.2.: Numerical upper bounds for χB for the Salem substitution %S. The numerical error

is less than 10−3 in all cases listed.

Proposition 4.2.15. The diffraction measure γ̂ of the hull associated to %S is essentially sin-

gular continuous, i.e.,

γ̂ = I0δ0 + γ̂sc.

4.3. Noble means family

Consider the family of substitutions given by

%m,j :

a 7→ ajbam−j ,

b 7→ a,
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where 0 6 j 6 m, which are called noble means substitutions. For general notions, we refer

to [Mol13, Ch. 2]. For a given m, this substitution family has the substitution matrix (m 1
1 0 ), with

corresponding Perron–Frobenius eigenvalue λm = m+
√
m2+4
2 , both independent of j. Moreover,

this family falls under the unimodular Pisot class. Due to this special structure, the tiles a and

b have associated natural lengths λm and 1 when one considers its geometric realisation as an

inflation rule.

For a generic member %m,j , the displacement and Fourier matrices are given by

T =

(
Γm {0}
{jλm} ∅

)
and B(k) =

(
p(z) + wzjq(z) 1

zj 0

)
,

where w = e2πik and z = wλm , and the set Γm is given by

Γm = {0, λm, 2λm, . . . , (j − 1)λm, jλm + 1, (j + 1)λm + 1, . . . , (m− 1)λm + 1} .

From here, one essentially recovers the polynomials p and q which read

p(z) = 1 + z + · · ·+ zj−1 and

q(z) = 1 + · · ·+ zm−j−1.

Proposition 4.3.1. [BG13, Prop. 4.6 and Rem. 4.7] For a fixed m, the symbolic hull Xm,j
generated by %m,j is the same for all 0 6 j 6 m. The same is true for the corresponding

geometric hulls.

Since the diffraction is a property of the hull for strictly ergodic systems, it suffices to carry

out the cocycle analysis for j = m. Let %m := %m,m : a 7→ amb, b 7→ a, with the Fourier matrix

B(k) =

(
1 + z + . . .+ zm−1 1

zm 0

)
.

As in the non-Pisot case in Section 4.2.1, we have

M(log ‖B̃(x, y)‖2F) = m(r(z)) < log
√

46 < log(λ7),

where r(z) = z2m + 2zm+1 − 6zm + 2zm−1 + 1.

Proposition 4.3.2. Let %m,j be any of the noble means substitutions defined above. Then, both

Lyapunov exponents associated to %m,j are positive.

Table 4.3.: Numerical upper bounds for χB for the noble means substitutions %m. The numerical

error is less than 10−3 in all cases listed.

m 1 2 3 4 5 6

log(λm) 0.481 0.881 1.195 1.444 1.647 1.818

N = N(m) 6 3 2 2 1 1

1
NM

(
log ‖B(N)(.)‖2F

)
0.439 0.835 1.114 1.162 1.496 1.511
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Remark 4.3.3. It is known that the corresponding hull Y arises from a cut-and-project scheme,

and so it must be pure point diffractive. The complete description of the heights and locations

of the Bragg peaks are briefly treated in [Mol13, Sec. 6.2]. The pure point nature of γ̂ also

follows from a result that all irreducible Pisot substitutions on binary alphabets have pure

point dynamical spectrum [HS03], and hence are also pure point diffractive. The random version

which displays both pure point and absolutely continuous part is dealt with in [Mol13,Mol14].

♦

4.4. Strong irreducibility for Fibonacci Fourier matrices

Most computations for Lyapunov exponents in the constant-length case in Chapter 3 and for its

higher-dimensional counterparts in Section 5.2 rely on the presence of invariant subspaces, where

one can easily compute exponents for specific directions or spot unitarity of blocks. Outside

this regime, it is natural to ask whether one can profit from irreducibility.

This advantage is known for random matrix cocycles, which is given by Fursternberg’s repre-

sentation of χ, which requires a stronger notion of irreducibility. Let S be a set of matrices. Let

V = V1 ∪ · · · ∪Vs be a finite union of proper subspaces of Rd. We say that V is invariant under

S if Mv ∈ V , for all v ∈ V and M ∈ S. A collection S is called strongly irreducible if there

exists no such finite union V that is invariant under S. Under the assumption that supp(µ) is

strongly irreducible, where µ is the support of the random cocycle, one gets an integral formula

for χ; see Appendix B for some details.

For probability measures µ supported on invertible real matrices, one has the following result.

Proposition 4.4.1. [BL85, Prop. 4.3] Let µ be a probability measure on GL (2,R), Gµ be the

group generated by supp (µ). If |detM | = 1, for all M ∈ Gµ, and Gµ is non-compact, strong

irreducibility is equivalent to the following condition:

• For any v̄ ∈ RP1, the set Wv̄ = {M · v̄ |M ∈ Gµ} contains more than two elements.

Remark 4.4.2. Note that Proposition 4.4.1 can be extended to general subgroup G of GL (d,R)

whose elements are of determinant 1 or −1, i.e., if G is non-compact, G is strongly irreducible

if and only if card ({M · v̄ |M ∈ G}) > d, for every v̄ ∈ RPd−1, which is equivalent to |Q| > d,

where Q is the set of directions in RPd−1 which is invariant with respect to Gµ; see Appendix B.2

for the original proof for d = 2. ♦

For a moment, we intentionally forget the order defined by our deterministic orbit, and just

consider the constituent matrices. Since Furstenberg’s formula is stated for real cocycles, we

work with the corresponding realification BR(k). In what follows, we consider the Fibonacci

substitution % : a 7→ ab, b 7→ a, with Fourier matrix B(k) ∈ GL (2,C), which in turn implies

BR(k) ∈ GL (4,R) for all k. We suspect that, in general, this everywhere invertibility holds

when % is an automorphism of the free group Fna .

Proposition 4.4.3. The group Gk generated by the set of matrices {BR(τnk)}n∈N0
associated

to the Fibonacci substitution is strongly irreducible for a.e. k ∈ R.
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Proof. We employ a strategy similar to what was used in [DSS114] to show the positivity of

exponents for Bernoulli–Anderson transfer matrices. The realification BR(k) of B(k) is given

by

M1(k) =


1 0 1 0

0 1 0 1

cos(2πτk) sin(2πτk) 0 0

− sin(2πτk) cos(2πτk) 0 0

 ,

with detBR(k) = 1 for all k ∈ R. We build the corresponding cocycle B
(n)
R (k) analogously as in

the complex case, and we see that this real cocycle acts on the real projective space RP3, which

we identify with S3/ {−1, 1} and is parametrised by the triple (φ1, φ2, φ3), with 0 6 φ1, φ2 6 π

and 0 6 φ3 < 2π.

A generic element of the projective space has the representation

v(φ1, φ2, φ3) =
(

cos(φ1), sin(φ1) cos(φ2), sin(φ1) sin(φ2) cos(φ3), sin(φ1) sin(φ2) sin(φ3)
)
,

consistent with the usual spherical coordinates in four dimensions. For an arbitrary but fixed

k, we consider the group Gk generated by the set {BR(τnk)}n∈N. We note that the matrix

M3(n,m, k) = BR(τnk) ·BR(τmk)−1 =


1 0 0 0

0 1 0 0

0 0 cos(2π(τm − τn)k) sin(2π(τm − τn)k)

0 0 − sin(2π(τm − τn)k) cos(2π(τm − τn)k)

 ,

is in Gk for all n,m ∈ N.

In order to exploit the equivalent criterion of strong irreducibility given in Proposition 4.4.1,

we first need to show that Gk is non-compact, i.e., that there exists a sequence of matrices with

unbounded norms.

To do so, we consider a generic direction v0 ∈ RP3, and show that, for a.e chosen k, one can

find a sequence of matrices (An)n∈N0 ⊂ GN0
k such that ‖v0A0A1 . . . An−1An‖ → ∞ as n → ∞.

We first note that the matrix M3 changes only the third parameter of an element in RP3, i.e.,

v(φ1, φ2, φ3) ·M3(n,m, k) = v(φ1, φ2, φ3 + 2π(τn − τm)k).

Now we let v ∈ RP3. Explicit calculations give us

‖v(φ1, φ2, φ3) ·M3(n,m, k)‖2 = C +D + E,

with

C = 1 + cos(φ1)2 + cos(φ2)2 sin(φ1)2,

D = cos(2π(τn − τm)k + φ3)︸ ︷︷ ︸
D1

sin(2φ1) sin(φ2)︸ ︷︷ ︸
D2

,

E = sin(φ1)2 sin(2π(τn − τm)k + φ3)︸ ︷︷ ︸
E1

sin(2φ2)︸ ︷︷ ︸
E2

.

Case 1. φ1, φ2 /∈
{

0, π2 , π
}
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From the assumption, none of cos(φ1), sin(φ1), cos(φ2), or sin(φ2) 6= 0 are zero, which implies

C > 1. To show that for any such direction there is a matrix element that is norm-wise

expanding, it suffices to confirm that there exists n,m ∈ N for which D,E > 0, for any

φ3 ∈ [0, 2π]. This can be achieved by choosing n,m ∈ N such that

sgn(D1)sgn(D2) > 0 and sgn(E1)sgn(E2) > 0,

where sgn(x) := x
|x| , for x 6= 0, and 0 otherwise. This freedom of choice, which is independent

of φ3, follows from the fact that ((τn − τm)k) mod 1 is dense in [0, 1) for a.e. k ∈ R.

Case 2. φ1, φ2 ∈ {0, π}
When either φ1 or φ2 ∈ {0, π}, one has ‖v ·M3(n,m, k)‖2 = 2, for any m,n, φ3.

Case 3. φ1 = π
2 or φ2 = π

2

When exactly one of the two parameters is equal to π
2 , the norm simplifies to a form similar

to Case 1, where one can choose m,n so that sin(2φ1) or sin(2φ2) is consistent with the sign of

sin(2π(τn − τm)k + φ3).

When φ1 = φ2 = π
2 , the matrix M3 is norm preserving for any n,m, and φ3. However, we

note that

v

(
π

2
,
π

2
, φ3

)
M3(m,n,k)−−−−−−−→ v(2π(τn − τm)k + φ3, 0, 0),

which is already covered by Case 2. This completes our claim on the non-compactness of Gk.

Now, we can invoke Proposition 4.4.1 to show strong irreducibility. For this, we need, for

every v0 ∈ RP3, matrices A1, A2, A3, A4 such that

v0
A17−→ v1

A27−→ v2
A37−→ v3

A47−→ v4,

with vj being distinct, for 0 6 j 6 4. It is easy to see that the matrix M3 generates more than

four directions for any starting element v0 as it only changes φ3, and one can choose suitable

powers n,m so that this condition on |Wv̄| is satisfied.

Remark 4.4.4. Using the same techniques, one can prove that for a.e. x ∈ T2, the correspond-

ing lifted cocycle
{
B̃R(x.Mn)

}
n∈N0

is also strongly irreducible, where the crucial point is the

denseness of x.Mn in T2 for a.e. x ∈ T2, which is due to the base dynamics being ergodic. ♦

Whether one can use this property in our context to compute χB is still unclear. For one,

deterministic products constitute a null set in the set of realisations of Bernoulli systems.

Moreover, the program presented in Appendix B.3, which numerically estimates the exponent,

only works presuming one has a finitely-supported µ, which one forgoes when one considers

{BR(λnk)}n∈N0
. However, results like Theorem 4.1.5 suggest that a link between χB and the

random one given by Furstenberg’s formula might actually exist.
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5. Higher-Dimensional Examples

5.1. Formulation in higher dimensions

5.1.1. Inflation tilings in Rd

Let P = {t1, . . . , tna} be a finite set of prototiles (up to translation), where each ti ⊂ Rd is

compact and has non-empty interior, with t◦i = ti. A stone inflation % is a rule, together with

an expansive linear map Q, such that Q(ti) is mapped to a union of non-overlapping translates

of elements in P. This means

Q(ti) =

na⋃
j=1

tj + Fij ,

where Fij ⊂ Rd are finite sets. This union is the supertile associated to ti.

Once again, an incidence (substitution) matrix M% can be associated to %, and its primitivity

implies that % is primitive like in the one-dimensional case.

Before we proceed, let us introduce a generalised notion of a local topology, which is called the

local rubber topology. Under this topology, tilings or point sets are ε-close if they “almost agree”

within a large region around the origin. It generalises the local topology since the translation

vector t in Eq. 1.1 needed for large patches of two tilings or point sets Λ,Λ′ to coincide is allowed

to vary for different points x ∈ Λ′ ∩B1/ε(0), provided tx ∈ Bε(0) for all tx; see [BL04, Sec. 4]

for a precise formulation.

Fact 5.1.1. The hull of a primitive stone inflation is compact in the local rubber topology,

its elements are all locally indistinguishable, and the hull gives rise to a minimal topological

dynamical system (Y,Rd). The latter is strictly ergodic, which implies uniform existence of

patch frequencies for every tiling T ∈ Y.

Remark 5.1.2. When the tilings T we consider are FLC, the local rubber topology coincides

with the usual local topology in the spirit of Eq. (1.1). It is well known that primitivity implies

minimality both in the FLC and the non-FLC case; see [FS14a, Prop. 3.2] and [FS14b, Prop. 3.1].

Unique ergodicity in the non-FLC case requires extra care, but is nevertheless shown in different

settings which cover stone inflations; compare [FR14, Prop. 4.5] for almost repetitive Delone

sets, [FS14b, Thm. 4.5] for fusion tilings with infinite local complexity, and [LS19, Thm. 4.13]

for primitive substitution tilings on finitely many prototiles. ♦

Now, fix a control point for every element of P such that any tiling T ∈ Y is MLD to the

resulting collection of control points, which we call Λ. Unlike in one dimension, where the left

endpoint of tiles proves to be a canonical choice, there might be different possible choices in

higher dimensions. And since control points of different tiles might coincide, this time, it is

practical to colour each identification point to distinguish different occupants. The choice of
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the markers would not affect much of our arguments since Y and the derived set of (weighted)

point sets are topologically conjugate.

5.1.2. Displacement and Fourier matrix

We now construct the higher-dimensional analogues of notions introduced in Section 2.1.

Denote by Tij the set of control point positions of tiles of type i inside %(tj), relative to the

image of the control point of tj under %. We also get that M% = card(T ), where T = (Tij) is the

set-valued displacement matrix. Moreover, applying Q to T yields the positions of supertiles in

level-2 supertiles.

The displacement matrix T (n) for %n can then be recursively computed to be

T
(n)
ij =

na⋃
`=1

(Ti` +QT
(n−1)
`j ), (5.1)

where + denotes the Minkowski sum of two point sets; compare with Eq. (3.9). As in the

one-dimensional case, the Fourier matrix B(k) of % reads

B(k) := δ̂T (k) = δ̂T (−k),

with k ∈ Rd. For each k, B(k) ∈ Mat(na,C), with entries of B being trigonometric polynomials

in d variables.

Lemma 5.1.3. Let % be a stone inflation on finitely many prototiles in Rd, for the linear

expansion Q, with Fourier matrix B(k). Then, for n ∈ N, the Fourier matrix of B(n)(k) is

given by

B(n)(k) = B(k)B(QTk) . . . B((QT)n−1k).

Moreover, it satisfies B(1)(k) = B(k) and B(n+1)(k) = B(k)B(n)(QTk). Here QT is the trans-

pose of Q.

Proof. For n = 2, Eq. (5.1) and the convolution theorem for Fourier transforms yield

(
B(2)(k)

)
ij

= δ̂
T

(2)
ij

=
̂( na∑

`=1

δTi` ∗ δQT`j
)

=

na∑
`=1

∑
r∈Ti`
s∈T`j

e2π ik(r+Qs) =

na∑
`=1

∑
r∈Ti`
s∈T`j

e2π ikr e2π i(QT)k·s,

where the last equality follows from the identity QTk · x = k · Qx. It is then easy to see that

this is equal to
(
B(k)B(QTk)

)
ij

for 1 6 i, j 6 na. The validity of the general formula is then

obvious by an inductive argument.

5.1.3. Renormalisation relations

As in one dimension, the pair correlation function at z is the relative frequency that markers of

type i and j are separated by a vector z ∈ Rd from i to j, and is given by

νij(z) =
dens(Λi ∩ (Λj − z))

dens(Λ)
.

This is independent of the choice Λ from the hull given a fixed marking system.
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Figure 5.1.: If the two tiles (gray) at distance z have offsets r and s within their covering

supertiles, the latter are at a distance z + r − s apart. Here, the distances are

always defined via the control points of the tiles.

The higher-dimensional analogue of Eq. (2.4), which was first announced in [Man17b], reads

νij(z) =
1

|detQ|

na∑
m,n=1

∑
r∈Tim
s∈Tjn

νmn(Q−1(z + r − s)),

the proof of which proceeds in a manner similar to that of Prop. 2.2.1; see Figure 5.1 for a

higher-dimensional analogue of Figure 2.2.

Setting Υij =
∑

z∈Λ−Λ νij(z)δz, we get the corresponding version of Eq. (2.5) for the pair

correlation measures

Υij =
1

| detQ|

na∑
m,n=1

δ̃Tim ∗ δTjn ∗ (Q.Υmn). (5.2)

It is important to note that, in the non-FLC case, unique ergodicity of the tiling dynamical

system (Y,Rd) implies that the measures Υij are well defined and indeed constitutes a well-

defined autocorrelation measure γ [BL04, Thm. 5]. Moreover, the finiteness of the prototile set

guarantees that each measure Υij satisfies the renormalisation relation in Eq. (5.2).

Before we can proceed, we will need the following lemma.

Lemma 5.1.4 ( [BG18, Lem. 2.5]). Set Q∗ = (QT)−1 and let µ ∈ M(Rd). Then, one has

Q̂.µ = | detQ|−1Q∗.µ̂.

Proof. For g ∈ Cc(Rd), Q : Rd → Rd, one has Q̂.µ(g) = µ(ĝ◦Q), where ĝ is defined via Eq. (1.2).

Here, the right hand-side is given by

µ(ĝ ◦Q) =

∫
Rd

∫
Rd

e−2π iQk·xg(x)dx dµ(k).

On the other hand, we have Q∗.µ̂(g) = µ̂(g ◦Q∗) = µ(ĝ ◦Q∗) with

ĝ ◦Q∗(k) =

∫
Rd

e2π ik·xg(Q∗(x))dx =
∣∣detQT

∣∣ ∫
Rd

e−2π iQTy·kg(y)dy,

where the last equality follows via the change of variable y = Q∗x. The identity Qk ·x = k ·QTx

implies the claim, since g was chosen arbitrarily. Eq. (2.9) in one dimension follows as a special

case .
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Taking the Fourier transform of Eq. (5.2) yields the corresponding renormalisation for Υ̂ij ,

which by Lemma 5.1.4 reads

Υ̂ij = (detQ)−2
na∑

m,n=1

Bim(.)Bjn(.)(Q∗.Υ̂mn).

Via the exact arguments from Lemma 2.3.4, this equation also holds independently for each

spectral type α ∈ {pp, ac, sc}.
In particular, we recover Eq. (2.13) for the Radon–Nikodym vector h(k), which now reads

h(k) =
1

|detQ|
A(k)h(QTk).

5.1.4. Lyapunov exponents and absolutely continuous diffraction

The dimensional reduction arguments in Sec. 2.4 can also be applied here, which allows to study

the cocycle B(n)(k) and the relevant Lyapunov exponents

χB(k) := lim sup
n→∞

1

n
log
∥∥B(n)(k)

∥∥ and χmin(k) = log
√
|detQ| − χB(k). (5.3)

The following results are the analogues of Theorem 2.5.3 and Corollary 2.5.4 for higher-

dimensional stone inflations.

Theorem 5.1.5. Let % be a primitive stone inflation in Rd, with finite prototile set P and

expansive linear map Q. Let B(k) be the corresponding Fourier matrix, with detB(k) 6= 0 for

some k ∈ Rd. If there is an ε > 0 such that

χB(k) 6 log
√
|detQ| − ε

holds for a.e. k ∈ Rd, where χB(k) is the maximal exponent defined in Eq. (5.3), the diffraction

measure of the system cannot have an absolutely continuous component.

Corollary 5.1.6. Let % be a primitive stone inflation satisfying the conditions of Theorem 5.1.5.

Then, one has χmin(k) > 0 for a.e. k ∈ Rd. Moreover, if the system displays a non-trivial

diffraction of absolutely continuous type, one must have χmin(k) = 0, i.e., χB(k) = log
√
| detQ|,

for some subset of Rd of positive measure.

Employing the techniques used in Section 4.1, one can show the almost sure existence and

almost everywhere constancy of χB(k) for stone inflations whose inflation multiplier in each

direction is a PV-number.

Proposition 5.1.7. Let % be an d-dimensional primitive stone inflation with finitely many

prototiles and a diagonal expansion map Q. Assume further that all eigenvalues of Q are

Pisot (not necessarily irreducible). Then, the Lyapunov exponent χB(k) exists as a limit almost

surely and is equal to the constant χB̃, where B̃ is the appropriate higher-dimensional 1-periodic

representation of B.

Proof. Let λ1, . . . , λd be the eigenvalues of Q, with corresponding algebraic degrees ri. For each

λi, the corresponding companion matrix Ci of its minimal polynomial is an integer matrix that
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defines an ergodic toral endomorphism C̃i : x 7→ x.Ci mod 1 on Tri . The
∑

i ri-dimensional

block matrix

Q′ := diag(C1, . . . ,Cm)

then defines an ergodic toral endomorphism on Tr1 × · · · × Trm .

The almost sure existence of the exponent for the cocycle B̃ :
∏
i Tri → C with base dynamics

Q′ is again immediate from Oseledec’s theorem; compare Proposition 2.6.4.

For each 1 6 i 6 d, one can show that, for a.e. xi ∈ Tri , one has the orbit convergence

C̃i
n
(xi)

n→∞−−−→ πi
(
(ki, λiki, . . . , λ

ri−1
i ki).C

n
i

)
= πi(λ

n
i ki)

for some ki ∈ Rri . Here, πi is the quotient map on Tri . Exploiting the block diagonal structure of

C, and proceeding in a similar manner as in Theorem 4.1.5, one can deduce that the exceptional

set X =
∏
iXi of k ∈ Rd for which χB(k) either does not exist as a limit or is not equal to χB̃

satisfies µL(X ) = 0.

Remark 5.1.8 (Primitive inflations which are not stone inflations). There exist primitive in-

flations in Rd which are not stone inflations, i.e., the level-1 supertiles are not exact inflated

versions of the prototiles but are nevertheless finite unions of their translates. To some of these

inflations, one can associate stone inflations on prototiles with fractal boundaries (usually ob-

tained via variants of the von Koch curve construction), which generate tiling hulls that are

MLD to the original ones; see [BG13, Rem. 6.9 and Rem. 6.11] for examples. For this subclass

of inflations, the renormalisation relations in Section 5.1.3 and the consequent criteria involving

Lyapunov exponents in this section apply as in the stone inflation case. ♦

5.2. Substitutions in Zd

Generalisations of constant-length substitutions in higher dimensions are called block substitu-

tions, which map letters into sequences in Zd. The corresponding geometric rule is called a

block inflation, where % maps labelled or coloured unit cubes in Rd with support [0, 1)d into

d-dimensional rectangular union of such cubes, whose support is of the form

[0, L1 − 1)× [0, L2 − 1)× · · · × [0, Ld − 1) .

Here, L1, . . . , Ld are the respective inflation factors in each direction. The associated expansion

map is Q = diag(L1, . . . , Ld). The vertex set of the tiling arising from such a % can then be

viewed as a colouring of Zd . We refer to [Bar16,Fra03] for a formal exposition, and to [BG14]

for a complete treatment under the renormalisation scheme discussed in this work.

We choose the control points of tiles to be the origin, which in two and three-dimensional

examples are the lower left vertex of the cube. Due to this structure, the total set is given by

ST = {0, . . . , L1 − 1} × {0, . . . , L2 − 1} × . . .× {0, · · · , Ld − 1} ,

and the displacement sets Tij consist of elements in Zd. Employing arguments similar to those

used in Section 3.1, one can show that B(k) is periodic, from which the almost sure existence of
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the Lyapunov exponents is immediate. Notions of bijectivity and coincidences are also extended

once one fixes an order on the prototile set P = {t1, . . . , tna}. Define the map κm : P → P as

ti 7→ (%(ti))m with m ∈ ST . (5.4)

We say that % is a bijection at m if κm is bijective. If this holds for all m ∈ ST , one calls % a

bijective inflation. A coincidence at m ∈ ST means that the image of κm consists of a single

tile, i.e., (%(ti))m = tj for all 1 6 i 6 na, for some 1 6 j 6 na.

Example 5.2.1. The inflation % over a binary alphabet in Figure 5.2 has the Fourier matrix

B(k) =

(
1 + x2 + y2 + x2y2 (1 + x+ x2)(1 + y + y2)

x+ y + xy + xy2 + x2y 0

)

where k = (k1, k2) and x = e2π ik1 , y = e2π ik2 . ♦

Figure 5.2.: A block substitution in Z2 with coincidences at m ∈ {(0, 0), (2, 0), (0, 2), (2, 2)}.

5.2.1. Binary block substitutions

Most of the arguments in Section 3.2 can be extended to the higher-dimensional case, which

allows one to prove the following versions of Proposition 3.2.3 and Corollary 3.2.4; compare

[BG18, Sec. 7].

Proposition 5.2.2. The pointwise Lyapunov exponents of a primitive aperiodic binary block

inflation % on Zd, for a.e. k ∈ Rd, are given by

χmax = log
√
L1L2 . . . Ld and

χmin = log
√
L1L2 . . . Ld −m(q − r),

where the polynomials q(x1, . . . , xd) and r(x1, . . . , xd) are determined by the bijective positions,

and m(q − r) is a d-dimensional logarithmic Mahler measure.

Corollary 5.2.3. Let % be as in Proposition 5.2.2. Then, the Lyapunov exponents associated

with % are both positive. In particular, this means that the corresponding diffraction measure γ̂

is singular with respect to Lebesgue measure.

Corollary 5.2.3 provides an alternative proof for the same result in [BG14, Thm. 3].

The correspondence between substitutions and height-1 integer polynomials stated in Propo-

sition 3.2.8 can be extended to any dimension. Here, we adapt the definition of a Borwein

polynomial in Section 3.2.2 to the multivariate case.
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Proposition 5.2.4. Let p(x1, . . . , xd) ∈ Z[x1, . . . , xd] be a multivariate Borwein polynomial of

degree N 6 (L−1)d with nonzero constant term. Then, there exists at least one primitive binary

block inflation % with expansion map Q = diag(L, . . . , L) such that, for a.e. k ∈ Rd,

χB(k) = m(p),

where χB is the Lyapunov exponent of the Fourier cocycle B(n) and m(p) is the logarithmic

Mahler measure of the multivariate polynomial p.

This result yields some interesting examples. We refer to [BL12] for a succinct overview

and [Boy98] for an extensive survey on multivariate Mahler measures and their relations to

L-functions of elliptic curves.

Example 5.2.5. The exponent χB associated to the inflation rule in Example 5.2.1 is the

logarithmic Mahler measure

χB = m(x+ y + xy + x2y + xy2) = m
(
x+

1

x
+ y +

1

y
+ 1
)
,

which is equal to a special L-series value given by

m
(
x+

1

x
+ y +

1

y
+ 1
)

= L′(E15, 0) =
15

4π2
L(E15, 2).

Here, E15 is the elliptic curve of conductor 15; see [BL12]. ♦

Example 5.2.6. Consider the block substitution %1 in three dimensions given in Figure 5.3.

Figure 5.3.: The three-dimensional block substitution %1

Figure 5.4.: The three-dimensional block substitution %2

Its corresponding Lyapunov exponent is equal to

χB = m(1 + x+ y + xy + z),

which is conjectured to be equal to 2L′(E15,−1); see [BL12]. Similarly, for the substitution %2

in Figure 5.4, one has

χB = m(1 + x+ y + z) =
7

2π2
ζ(3),

where ζ(s) is the Riemann zeta function. ♦
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5.2.2. Abelian bijective block inflations

Here, we consider an extension of notions in Section 3.3 to higher dimensions. Assume that %

is a bijective block inflation. The map κm from Eq. (5.4) induces a map m 7→ σm from ST to

Σna , where σm is defined via(
κm(t1), . . . , κm(tna)

)
=
(
tσm(1), . . . , tσm(na)

)
.

As before, the generating subgroup is given by G =
〈
{σm}m∈ST

〉
⊆ Σna . We say that % is

Abelian if G is Abelian. Automatically, the IDA B is also Abelian.

The bounding steps in Theorem 3.3.4 generalise conveniently when one considers bijective

Abelian inflations in higher dimensions. Together with a higher-dimensional analogue of the

argument in Remark 3.3.5, we recover Bartlett’s singularity result completely for any dimension

in the following result.

Theorem 5.2.7. Let % be a primitive, aperiodic, bijective block inflation in Zd whose IDA B is

Abelian. Then, for a.e. k ∈ Rd, all Lyapunov exponents of % are strictly positive. Consequently,

the corresponding diffraction and dynamical spectra are both singular.

Example 5.2.8 (Block substitution on three tiles). Let %2D be defined by

By inspection, one sees that this is indeed bijective and that G ' C3. The eigenvalues of the

Fourier matrix B(k1, k2) are given by

β1(k1, k2) = (1 + x+ x2)(1 + y + y2),

β2(k1, k2) = (x2 + x2y + y2) + ξ3(1 + y + xy + x2y2) + ξ2
3(x+ xy2),

β3(k1, k2) = (x2 + x2y + y2) + ξ2
3(1 + y + xy + x2y2) + ξ3(x+ xy2),

where x = e2πik1 , y = e2πik2 and ξ3 = e
2πi
3 . Viewed as polynomials in two variables with complex

coefficients, all of them are of height one, and have logarithmic Mahler measures strictly less

than log(3). Note that the same boundedness result holds for block substitutions that are not

homotheties, i.e., those with Q 6= cIna for some c ∈ N, as long as their generating subgroups are

Abelian. ♦

5.2.3. Examples with absolutely continuous spectrum

As mentioned, a construction from Hadamard matrices of higher-dimensional substitutions with

absolutely continuous spectrum is detailed out in [Fra03]. An example found there on an eight-

letter alphabet (four letters and their barred counterparts) given in Figure 5.5 is one of the

simplest ones in two dimensions.
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Figure 5.5.: Frank’s substitution in Z2

This substitution arises from the 4× 4−Hadamard matrix

H =


1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1


and clearly has bar swap symmetry. We assume that each tile’s control point is given by its

lower left corner. One can then directly construct its Fourier matrix which reads

B(k1, k2) =

(
Z1(x, y) Z2(x, y)

Z2(x, y) Z1(x, y)

)
where

Z1(x, y) =


1 1 1 0

x x 0 x

y 0 y y

0 xy xy xy

 and Z2(x, y) =


0 0 0 1

0 0 x 0

0 y 0 0

xy 0 0 0

 .

Here, we denote x = e2π ik1 and y = e2π ik2 for convenience. Note that B(0, 0) is just the

substitution matrix M% with λPF = 4.

The block symmetric, or more aptly, 2-circulant block structure of B(k1, k2) allows it to be

written as

B(k1, k2) = Φ(e)⊗ Z1 + Φ(σ)⊗ Z2 = I2 ⊗ Z1 + J2 ⊗ Z2 (5.5)

where {e, σ} ' C2 and Φ is the permutation representation. Here, J2 = ( 0 1
1 0 ).

Since we know a priori that this substitution gives rise to tilings exhibiting absolutely contin-

uous diffraction, we also know that the cocycle B(n)(k1, k2) has at least one Lyapunov exponent

equal to log
√
λ = log 2, which is what we explicitly confirm next. We begin with lemmata

which will aid us in determining the singular values of B(n).

Lemma 5.2.9. Let F (x, y), G(x, y) be matrices consisting of polynomials in x, y such that, for

a given row i of F or G, Fij = C
(1)
ij pi(x, y), Gij = C

(2)
ij pi(x, y), where p is a monomial that

depends only on i and C
(α)
ij ∈ {0, 1} . Then, G†(x, y)F (x, y) is a constant integer matrix.

Proof. Computing a given entry of G†F explicitly, we get(
G†F

)
ij

=
∑
`

G†i`F`j =
∑
`

C
(2)
i` C

(1)
`j p`p` =

∑
`

C
(2)
i` C

(1)
`j ∈ Z,

implying the claim.
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Lemma 5.2.10. Let B(k1, k2) be the same as in Eq. (5.5). Then, B†(k1, k2)B(k1, k2) is con-

stant for all (k1, k2) ∈ R2. Consequently, the singular values of B(k1, k2) are equal to those of

B(0, 0) = M%.

Proof. Using the form given in Eq. (5.5), we get

B†B = I2 ⊗ (Z†1Z1 + Z†2Z2) + J2 ⊗ (Z†2Z1 + Z†1Z2). (5.6)

The first claim is then just a consequence of Lemma 5.2.9. The second claim follows by evalu-

ating at k1 = k2 = 0.

We now show that we can get the singular values of M% as the moduli of its eigenvalues

by showing that it is normal. This, together with the fact that we know exactly what the

invariant subspaces are and which eigenvalues occur in each subspace, will give the complete

characterisation of the block diagonal form of B(x, y) with prescribed growth rates.

Proposition 5.2.11. Let M% = B(0, 0), where B(k1, k2) is given in Eq. (5.5). Then, M% is

normal, i.e., M †%M% = M%M
†
% , and the singular values of M% are the moduli of its eigenvalues.

Proof. Let Z1(1, 1) = Y1 and Z2(1, 1) = Y2. Setting k1 = k2 = 0 in Eq. (5.6) and doing the

same for M%M
†
% , we obtain

M †%M% = I2 ⊗ (Y †1 Y1 + Y †2 Y2) + J2 ⊗ (Y †2 Y1 + Y †1 Y2)

M%M
†
% = I2 ⊗ (Y1Y

†
1 + Y2Y

†
2 ) + J2 ⊗ (Y2Y

†
1 + Y1Y

†
2 ).

Next, we note that Y1 + Y2 =

(
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

)
and Y1 − Y2 = H =

( 1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

)
. Obviously,

Y1 + Y2 is normal, and Y1 − Y2 is normal because it is a Hadamard matrix. From this, we get

the following equations

(Y †1 Y1 + Y †2 Y2) + (Y †2 Y1 + Y †1 Y2) = (Y1Y
†

1 + Y2Y
†

2 ) + (Y2Y
†

1 + Y1Y
†

2 )

(Y †1 Y1 + Y †2 Y2)− (Y †2 Y1 + Y †1 Y2) = (Y1Y
†

1 + Y2Y
†

2 )− (Y2Y
†

1 + Y1Y
†

2 ).

Taking sums and differences of these two equations yields

Y †1 Y1 + Y †2 Y2 = Y1Y
†

1 + Y2Y
†

2 and Y †2 Y1 + Y †1 Y2 = Y2Y
†

1 + Y1Y
†

2 ,

from which the claim is immediate.

Now, it is not hard to see that two invariant subspaces of B(k1, k2) in C8 are given by

V+ = (1, 1)T ⊗ C4 and V− = (1,−1)T ⊗ C4.

One can then choose a basis of C4, say the canonical basis {ei}, and consider the unitary matrix

S composed of column vectors of the form 1√
2
(1, 1)T ⊗ ei, 1√

2
(1,−1)T ⊗ ei. This puts B(k1, k2)

into block diagonal form given by

B(k1, k2) ∼=

(
B1(k1, k2) O

O B2(k1, k2)

)
,

where B1, B2 correspond to the restriction to the even and odd sectors, respectively.
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Lemma 5.2.12. B1(0, 0) has eigenvalues 4 and 0 (the latter with multiplicity 3), while B2(0, 0)

has four eigenvalues of modulus 2.

Proof. Choose v+ ∈ V+ and assume that it is an eigenvector ofB1(0, 0). Then, the corresponding

eigenvalues are exactly those of Y1 + Y2. Since rank(Y1 + Y2) = 1, we know that we get 0 of

multiplicity 3 as an eigenvalue and 4 is the PF eigenvalue. If we do the same for a vector

v− ∈ V−, we see that the eigenvalues of B2 must correspond to the eigenvalues of the defining

Hadamard matrix H = Y1 − Y2. Since H is Hadamard, it satisfies HHT = HTH = 4I4, hence

all eigenvalues are of modulus 2. In fact, in this case, we have the eigenvalues ±2, both with

multiplicity two [YH82]. In other words, B2(0, 0) = 2U , where U is unitary.

We now collect all of these observations into the following result.

Proposition 5.2.13. Let k = (k1, k2) ∈ R2 and B(k) be the Fourier matrix from Eq. (5.5). Let

Q = QT = diag(2, 2) be the inflation map and let the associated cocycle be

B(n) = B(k)B(k.Q) · · ·B(k.Qn−1).

Then, there exists a similarity transformation that decomposes B(n) into

B(n)(k) ∼=

(
B

(n)
1 (k) O

O B
(n)
2 (k)

)
,

where B
(n)
2 = B2(k) · . . . ·B2(k.Qn−1) = 2nU (n)(x, y), with U (n) being unitary for all n ∈ N and

all k ∈ R2.

Proof. The unitarity of U (and hence of U (n)) follows from the invariance of the singular values

from Lemma 5.2.9, the normality of the substitution matrix in Proposition 5.2.11, and the

explicit computations of the eigenvalues in the odd sector in Lemma 5.2.12.

Since the cocycle B
(n)
2 can be expressed as a product of 2n and a unitary matrix U (n)(x, y)

for any (k1, k2), we get the following consequence.

Corollary 5.2.14. The cocycle B
(n)
2 has a degenerate Lyapunov spectrum, with a single growth

exponent equal to χB2 = log(2).

For a generic higher-dimensional substitution having the same bar swap symmetry, the results

we have here about the invariance of the singular values, normality of M%, and the eigenvalues

of B2 at k = (0, . . . , 0) being of modulus
√
λPF, could all be confirmed using exactly the same

line of reasoning. This leads us to the following general result.

Theorem 5.2.15. Let % be a substitution with bar swap symmetry over 4d letters in Zr con-

structed from a Hadamard matrix of size 2d, with volume inflation factor λ = `1 · · · `r = 2d.

Then, its Fourier matrix B(·) has a block diagonal form, where the second block which acts on

the odd sector V− = (1,−1)T⊗C2d is a product of a unitary matrix with
√
λ. Furthermore, the

cocycle induced by this block has degenerate Lyapunov spectrum given by χ = log
√
λ.
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5.3. Non-Pisot example: The Godrèche–Lançon–Billard tiling

In this section, we investigate the spectral type of the diffraction of a two-dimensional tiling

with non-Pisot inflation. The supertiles first appeared in a work by Lançon and Billard [LB88]

as a decoration rule on Penrose tilings generated by thick and thin Penrose rhombuses, whose

largest internal angles are 3π
5 and 4π

5 , respectively. They called such a tiling “binary” because

its vertex set can be decorated by two types of atoms (big and small) in such a way that the

resulting atomic packing is considerably dense in R2.

It was in the paper [GL92] by Godrèche and Lançon where the said decoration rule was fully

realised as an inflation rule, which generates binary tilings that are spectrally different from

Penrose tilings. For instance, no such tiling can have non-trivial Bragg peaks in its diffraction,

following arguments by Solomyak [Sol97] for inflation tilings because it has a non-Pisot inflation

multiplier, and invoking Dworkin’s argument [Dwo93], whereas Penrose tilings are known to

have pure point spectra.

Figure 5.6.: The inflation rule %GLB for the Godrèche–Lançon–Billard tiling, with the control

points for the tiles.

We consider a chiral version %GLB of the original inflation rule in [GL92], meaning we decorate

each tile with an identifying arrow to specify its orientation, but the reflected versions of the

chosen prototiles do not appear in the tiling; see [BG13, Sec. 6.5] for a detailed survey on this

tiling. From here onwards, we refer to a tiling generated by such a rule a GLB tiling. The

expansion map Q is given by Q = λ2I, where

λ2 = 4 cos2
( π

10

)
=

1

2
(5 +

√
5) ≈ 3.618 (5.7)

is a non-Pisot number, with minimal polynomial pλ2(z) = z2−5z+5. It must also be noted that

%GLB is not a stone inflation, but a reformulation as such, using tiles with fractal boundaries, is

given in [Fra08,BG13]. Nevertheless, the renormalisation scheme still holds since we only have

finitely many prototiles. Here, we show that continuous component of the diffraction of any

GLB tiling, which is given by γ̂ − I0δ0, is purely singular continuous.

Let P = {t0, t1, . . . , t9} be the ordered prototile set of %GLB. We choose the control point

of a tile t to be the vertex to which its decorating arrow points to. The tiles constituting P,

together with their associated control points, are provided in Figure 5.7. The prototiles ti with

0 6 i 6 4 are the five rotated copies of the thick rhombus, and those with 5 6 i 6 9 pertain to
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the thin rhombuses. Note that the prototiles are numbered in such a way that a rotation by 2π
5

cyclically sends a tile to the next prototile of the same geometry (thick or thin), i.e.,

R 2π
5
ti =

ti+1(mod5), 0 6 i 6 4,

ti+1(mod5)+5, 5 6 i 6 9,
(5.8)

where Rθ corresponds to the geometric rotation by an angle θ in R2.

(a) Markers and labels for the prototiles (b) Generating vectors for the set of con-

trol points of a GLB tiling

Figure 5.7.: The prototile set for %GLB, together with the vectors that generate the associated

set of control points.

Remark 5.3.1. The original inflation rule given in [BG13] includes the rotations of each pro-

totile by an angle π in its prototile set P, which doubles the size of P to 20. The rule given

in Figure 5.6 is thus chosen to be the square of the original to eliminate these additional tiles.

The resulting analysis under the diffraction program remains unaffected as different powers of

the same rule yield the same tiling dynamical system (Y,R2). ♦

To proceed with the analysis via Lyapunov exponents, one needs the location in R2 of the

tile markers, which could be cumbersome if one insists with the usual Cartesian coordinates.

Instead, we take advantage of the five-fold symmetry of a GLB tiling and work with a different

set of generators.

Fact 5.3.2. The corresponding vertex set Λ of a GLB tiling is a subset of Z [ξ5], where one has

ξ5 = e
2π i
5 ∼= (cos(2π

5 ), sin(2π
5 )).

The set of control points Λ′ also lies in a submodule of Z[ξ5] since it is contained in the vertex

set. This submodule also contains the set of control points of the level-1 supertiles. For the

next result, λ =
√

1
2(5 +

√
5) ≈ 1.902 and the vectors xi are given in Figure 5.7.

Fact 5.3.3. The set Λ′ of control points lies in the submodule Z[x0, x1, x2, x3] ⊂ Z[ξ5], where

x0 = λ ei π
10 , and xi = ξi5x0, for 0 6 i 6 3.

The corresponding positions of control points of tiles for %GLB(t0) and %GLB(t5) are given

in Figure 5.8. The weighted Dirac comb given by ω =
∑

x∈Λ′W (x)δx is then constructed by

assigning weights W (x) to each point in Λ′, namely 2
5 and 1

5 for points occupied by thin and
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thick rhombuses, respectively. Such a weight assignment is employed to ensure that the total

weight at every control point adds up to 1.

From Figure 5.8, one can calculate the displacement sets Tn0 and Tn5 in terms of the basis

vectors {xj}06j63, which are given by

T00 = {0,−x0, x0 + x1 + x2 + x3, x1 + x2 + x3} T05 = {−x0 − 2x1 − x2 − 2x3}

T10 = {x1 + x2 + x3, x0 + x1 + x2 + x3} T15 = {−x3,−x1 − x3}

T20 = {x1 + x2 + x3} T25 = ∅ (5.9)

T30 = {x1 + 2x2 + 2x3} T35 = ∅

T40 = {x1 + x2 + 2x3, −x0 + x3} T45 = {−x0 − 2x1 − x2 − x3, −x0 − 2x1 − x2 − 2x3}

T50 = {x1 + x2 + 2x3} T55 = {0,−x1,−x1 − x3}

T60 = {−x0, x1 + x2 + x3} T65 = ∅

T70 = ∅ T75 = {−x1 − x3}

T80 = ∅ T85 = {−x0 − x1 − x2 − 2x3}

T90 = {x1 + 2x2 + x3, x0 + x1 + 2x2 + x3} T95 = ∅.

Define the map L : ST =
⋃
Tij → Z4 via L :

∑3
`=0 a`x` 7→ (a0, a1, a2, a3), which encodes

elements of Tij as row vectors in terms of the basis {x`}. Let L(Tij) = T̃ij . From the symmetry

relations satisfied by the prototiles given in Eq. (5.8), one can derive the sets T̃ij from the

fundamental displacement sets T̃n0 and T̃n5 as follows.

Lemma 5.3.4. Any set T̃ij is related to a unique element of the collection
{
T̃n0, T̃n5

}
, with

0 6 n 6 9, via

T̃ij =


T̃i−j(mod5),5b j5c.Θ

j , i 6 4,

T̃i−j+5(mod10),5b j5c.Θ
j , i > 4, 0 6 (i− j) < 5,

T̃i−j(mod10),5b j5c.Θ
j , otherwise,

(5.10)

where bmc is the floor of m and the matrix

Θ =


0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 −1 −1


represents rotation by 2π

5 .

Now, from the sets Tij , one has B(k) via Bij(k) =
∑

t∈Tij e2π it·k, where k = (k1, k2) ∈ R2.

Define the matrix-valued function B̃ on T4 via

B̃ij(z̃) :=
∑
t̃∈T̃ij

e2π it̃·z̃,

with z̃ = (z̃0, . . . , z̃3) ∈ T4. One then has the following equality.

Lemma 5.3.5. For any k ∈ R2, there exists a z̃ ∈ T4 with

B(k) = B̃(z̃)|z̃=(α0,...,α3).
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(a) The inflation rule for the thick rhombus t0, with the position of markers in R2 in

the level-1 supertile.

(b) The inflation rule for the thin rhombus t5, with the position

of markers in R2 in the level-1 supertile.

Figure 5.8.: Level-1 supertiles of the GLB tiling

Proof. For a fixed k ∈ R2, one has

Bij(k) =
∑
t∈Tij

e2π it·k =
∑
t∈Tij

e2π i
∑3
`=0 a

(t)
` x`·k,

where L(t) =
(
a

(t)
0 , . . . , a

(t)
3

)
. Let L := Z4 and {y`}06`63 be the standard lattice basis for L. Let

L∗ ' Z4 be the dual lattice for L, with basis {y∗` }06`63. Since spanRL∗ = R4, for every z ∈ R4,

there exist α` ∈ R such that z =
∑3

`=0 α`y
∗
` .
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Figure 5.9.: Computing the expansion of the unit vectors ej := xj/‖xj‖ by λ2 via rotated level-1

supertiles of %GLB

For arbitrary z ∈ R4 and t̃ ∈ L(ST ) ⊂ Z4 one has

〈
t̃ · z

〉
=

〈∑
`,r

a
(t)
` αry` · y

∗
r

〉
=

〈∑
`

a
(t)
` α`

〉
=
∑
`

〈
a

(t)
` 〈α`〉

〉
,

where 〈k〉 = k mod 1. The last equality follows from Lemma 3.1.2 since a
(t)
` ∈ Z for all t ∈ ST

and 0 6 ` 6 3.

Now choosing α` = 〈x` · k〉, one obtains

B̃ij(z̃) =
∑
t̃∈T̃ij

e2π it̃·z̃ =
∑
t̃∈T̃ij

e2π i
∑3
`=0 a

(t)
` 〈x`·k〉 =

∑
t∈Tij

e2π it·k = Bij(k),

which finishes the proof.

With this, one gets a representation for B(k) as a section of the matrix-valued function B̃ on

T4 via

B(k) = B̃(z̃)
∣∣
z̃1=〈x0·k〉, z̃2=〈x1·k〉, z̃3=〈x2·k〉, z̃4=〈x3·k〉.

To find the appropriate base dynamics for B̃, one needs a linear transformation Q′ which

satisfies

(x0, x1, x2, x3)Q′ = λ2(x0, x1, x2, x3).

To this end, it suffices to consider the unit vectors ej := xj/‖xj‖ and express λ2ej as an integer

linear combination of the vectors {e`}. One convenient way to compute this is to look at

rotated version of the prototiles of %GLB and see where these unit vectors get map to in the
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corresponding level-1 supertiles; see Figure 5.9. This process yields

Q′ =


2 1 0 −1

0 3 1 −1

−1 1 3 0

−1 0 1 2

 .

Consequently, for the cocycle B(n)(k) under Q, one has

B(n)(k) = B̃(n)(z̃)
∣∣
z̃1=〈x0·k〉, z̃2=〈x1·k〉, z̃3=〈x2·k〉, z̃4=〈x3·k〉,

where B̃(n)(z̃) = B̃(z̃)B̃(n−1)(z̃Q′) for z̃ ∈ T4. The new base dynamics is given by Q̃′ : z̃ 7→ z̃Q′.

The cocycle B̃(z̃) is invertible for a.e. z̃ ∈ T4. To see this, one can consider the average

1

N

N−1∑
i=0

log | det B̃
(
z̃
(
Q′
)i)| N→∞−−−−→

∫
T4

log |det B̃(z̃)|dz̃,

where convergence follows from Theorem 1.4.7. Then, B̃(z̃) is only identically singular when

this Birkhoff average is −∞. One can numerically check that this integral is indeed finite. In

fact, when it is not −∞, it is equal to m(q), for some polynomial q ∈ Z[z1, z2, z3, z4], and hence

is non-negative, as in our case here. Due to boundedness properties of B̃, one can employ the

same estimates as in Lemma 2.7.1, i.e., for a.e. k ∈ R2 and for all N ∈ N,

2χB(k) 6
1

N
M(log ‖B̃(N)(.)‖2F).

As in the one-dimensional examples, this upper bound can be calculated numerically up to a

certain level of precision. To rule out the presence of γ̂ac, it suffices to find an N for which the

upper bound given in terms of the mean is strictly less than

log(detQ) = 4 log(λ) ≈ 2.571862.

The relevant numerical values are given in Table 5.1.

N 7 8 9 10 11 12 13

1
NM

(
log ‖B(N)(.)‖2F

)
2.571 2.517 2.474 2.440 2.411 2.387 2.367

Table 5.1.: Numerical upper bounds for χB for the GLB inflation %GLB. The numerical error is

less than 0.005 in all cases listed.

Proposition 5.3.6. For a.e. k ∈ R2, the Lyapunov exponents associated to B(k) for the GLB

tiling are all strictly positive.

Theorem 5.1.5 implies the next result.

Corollary 5.3.7. Given a GLB tiling, with set of control points Λ′, the measure ω =
∑

x∈Λ′W (x)δx

with the defined weights W (x) has a singular diffraction with a trivial Bragg peak at zero, but

is otherwise singular continuous.
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More specifically, one has

γ̂ω = I0δ0 + (γ̂ω)sc with I0 =

(
5−
√

5

10
dens(Λ)

)2

,

where dens(Λ) = 1+
√

5
5 λ ≈ 1.231, under the assumption that we work with rhombuses of unit

edge length.

For any GLB tiling, the set of control points Λ′ and the corresponding vertex set Λ are MLD,

which means their corresponding diffractions are of the same spectral type. Thus, our analysis

via Lyapunov exponents also extends to Λ and is given by the following result.

Corollary 5.3.8. Consider the uniform Dirac comb δΛ, where Λ is the vertex set of a GLB

tiling. Then, its corresponding diffraction is singular and is given by

γ̂ = dens(Λ)2δ0 + (γ̂)sc,

where dens(Λ) = 1+
√

5
5 λ.

Remark 5.3.9. The choice of the generating basis for the control points is not unique. One

can also work directly with the fifth roots of unity
{
ξj5

}
instead of their rotated and inflated

versions which we used in this work. Aside from this, one can also use the vector

y =
(

1
2k1,

1
2λk1,

1
2λ

2k2,
1
2λ

3k2

)
,

which satisfies

(1 · k, ξ5 · k, ξ2
5 · k, ξ3

5 · k) = yP, with P =


2 −3 2 2

0 1 −1 −1

0 1 −3 3

0 0 1 −1

 ,

for a different coordinatisation of the control points. For this choice, the base dynamics is given

by the matrix Q′′ = C2
λ2 ⊗ I2, where Cλ2 is the companion matrix of pλ2(z). ♦
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6. Summary and Outlook

In this work, we systematically established a renormalisation scheme satisfied by the pair corre-

lation functions νij(z) for primitive inflation systems, which we extended to the pair correlation

measures Υij and to their Fourier transforms Υ̂ij . Since Υ̂ij fully determines the diffraction γ̂,

this scheme enables one to test properties of γ̂ in accordance with the scaling it satisfies. In

particular, we rigorously carried out the implications for the Radon–Nikodym density h(k) of

the absolutely continuous component (γ̂)ac.

Incorporating the translation boundedness of (γ̂)ac to the picture, one discovers that some

growth behaviour under derived scaling prohibits its existence. This growth behaviour is en-

coded in the corresponding minimal Lyapunov exponent χmin of an analytic matrix cocycle

B(n)(k), which can be directly constructed given %. Synthesised together, one obtains a suf-

ficient criterion for the absence of (γ̂)ac, given in Theorem 2.5.3, which can numerically be

confirmed for any primitive example satisfying some mild conditions. Moreover, a necessary

condition for its existence for general primitive inflations complements that of [Bar16,BS17] in

the constant-length case, and provides an entirely new one for the non-constant-length case.

The last three chapters delved into several classes of examples and provided proofs of some

existence and positivity results related to the exponent χmin. Moreover, using our program we

confirmed that all known deterministic substitutive examples with nontrivial (γ̂)ac satisfy the

necessary condition in Corollary 2.7.10. This leads to an open question which asks whether

there exists a substitution % with χmin = 0 but has (γ̂)ac 6= 0.

The analysis of the Radon–Nikodym density h(k) we presented here is rigorous, but is not

robust enough to encompass all possible scenarios. Translation boundedness is the root of all the

arguments derived from Lyapunov exponents, but this only rules out candidates for densities.

Roughly speaking, if all possible constituent vectors grow exponentially under B(n)(k), there is

no other way but for the actual vectors making up h(k) to be zero. However, our method does

not prescribe a structure of h(k) if χmin = 0. The difficulty lies in the fact that we know almost

nothing about h(k), expect that it is locally-L1 and has dense support when Λ is Meyer. A

closer look at h(k) from scratch would be the logical next step.

Our characterisation of inflation systems using their Lyapunov spectra is still far from being

complete. For one, aside from numerical estimates, we still do not have a general method to

compute the actual exponents when the IDA B is irreducible. The non-negativity result of χmin

in Theorem 2.7.9 is quite tempting, as one might hope that pointing out when it is zero is an

easy task. Unfortunately, this is not the case. From the submultiplicativity of matrix norms, it

is intuitive that, under some invertibility assumptions, N−1 log ‖B(k)B(λk) . . . B(λN−1k)‖ has

to be monotonically decreasing in N . But whether or why it crosses the threshold value log(
√
λ)

in general is totally unclear. A general positivity result is not far-fetched though, as we know

almost everywhere constancy results like in the Pisot and the integer multiplier case. We hope
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to find more sophisticated ways of bounding the exponents, which might lead to proving that

irreducible Pisot substitutions do not possess absolutely continuous diffraction—something that

might bring us closer to a proof of the Pisot substitution conjecture.

Another possible topic for future work would be a deeper, more involved investigation of the

relation between the diffraction and the dynamical spectra. In recent works [BS18a, BS18b]

by Bufetov and Solomyak, they deal with the appropriate generalisation of the cocycle B(n)(k)

for flows associated to S-adic systems, where substitutions are a special subclass. There, they

presented a dynamical analogue of the singularity result Theorem 2.5.3 for spectral measures

σf and the flow they generate. We confirm this dynamical singularity result, for constant roof

functions, for the binary and the Abelian bijective case using known connections between the

diffraction and the dynamical section briefly stated in Appendix A. One might hope that this

route is not limited to the constant-length case, and a general equivalence of σmax and some

linear combination of spectral measures of lookup functions 1%n(a) would be desirable.

A remarkable feature of the lifted cocycles B̃(n)(x) on Td is that the base dynamics (whether

M̃ or C̃) is usually an ergodic toral endomorphism. In [Bac17, KS18], it was proved that

for certain class of cocycles with hyperbolic base dynamics, the Lyapunov exponents can be

approximated by exponents on periodic orbits. It would be interesting whether these results

and known results on periodic points of toral endomorphisms can shed light on the values of

the exponents and the approximative behaviour they satisfy.

Beyond the realm of Lyapunov exponents, there are also interesting questions pertaining

to diffraction of aperiodic structures in general. In particular, MLD equivalences allow one to

construct patches around specific points of a tiling based on sufficient information about patches

of another tiling. This construction is local and extends continuously to the hull Y. It would

be interesting to know how the pair correlations νij(z) behave under these local derivations.

This might be the key to a rigorous description of the effect of local derivations on the spectral

components of γ̂.
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A. Dynamical Spectrum

This brief exposition on spectral theory of dynamical systems is mainly derived from [Que10]

and [Bar16], and the results on the relation of the diffraction and the dynamical spectrum are

taken from [BL04] and [BLvE15]. Let % be a one-dimensional primitive substitution %, with

symbolic hull X. The corresponding substitution dynamical system is given by (X,Z, µ), where

the Z-action is induced by the shift map S : (Sw)i = wi+1, for all w ∈ X. The measure µ is

usually chosen to be the word frequency measure on cylinder sets, which is S-invariant, making

(X,Z, µ) a measure-theoretic dynamical system (MTDS). With (X,Z, µ) comes the Hilbert space

H = L2(X, µ) with the standard inner product 〈f |g〉 :=
∫
X f(x)g(x)dµ(x).

To the shift S, one associates the the unitary Koopman operator US : H → H defined as

f 7→ USf with (USf)(x) = f(Sx).

Definition A.0.1. The dynamical spectrum of (X,Z, µ) is the spectrum of US .

An eigenvalue of US is a number αi ∈ C satisfying USfi = αifi, for some f ∈ L2(X, µ). From

the unitarity of US , one has αi = e2π iλi , for some λi ∈ R, which allows one to see the set of

eigenvalues as a subset of R. There exists a subspace Hpp = 〈f1, f2, . . .〉C ⊂ H that is spanned

by the eigenfunctions fi. When fi is continuous, one calls αi a topological eigenvalue. The

topological point spectrum is the set of all topological eigenvalues. In the setting chosen above,

all eigenvalues are topological.

The MTDS (X,Z, µ) is said to have pure point dynamical spectrum when Hpp = H. When one

has this, it is well known that the corresponding geometric hull Y also has pure point diffraction.

Theorem A.0.2. [BL04, Thm. 9] If (X,Z, µ) is pure point, then the set of eigenvalues spec(US)

is given by the additive subgroup of Ẑ = T generated by the position of the Bragg peaks, i.e.,

spec(US) = L~,

where L~ =
〈
k ∈ T | γ̂({k}) > 0

〉
is the Fourier module.

The previous result holds for more general systems with R-actions, where the group is then

seen as a subset of R̂ = R.

For every function f ∈ H one can define its spectral measure σf to be the measure induced

by the inner product 〈
f | UnS f

〉
=

∫ 1

0
e2π inudσf (u).

In particular, for an eigenfunction fi, one has σfi = δαi . For any nonzero g ∈ H⊥pp, σg is a

continuous measure.

A measure µ1 is said to be absolutely continuous with respect to another measure µ2, which we

denote by µ1�µ2, if the null sets of |µ2| are also null sets of |µ1|. Two measures are equivalent,

i.e., µ1∼µ2, if µ1 � µ2 and µ2 � µ1.
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Fact A.0.3 ( [Que10, Thm. 2.3]). There exists a function f0 such that for all f ∈ H, one has

σf � σf0 := σmax. This spectral measure is known as the spectral measure of maximal type.

The spectral type of (X,Z, µ) is the spectral type of the measure σmax.

Theorem A.0.4 ( [Bar16, Thm. 4.4], [Que10, Prop. 7.2]). Let % be a primitive aperiodic sub-

stitution of constant length. Then, one has the following equivalence

σmax ∼
∑
a∈A

∑
n>1

2−nσ
1%n(a)

,

where 1%n(a) is the indicator function of the inflated word %n(a) at 0.

Let γX =
∑

m∈Z ηX(m)δm be the autocorrelation of X. It follows from standard arguments

that the diffraction measure γ̂ of X generated by a constant-length substitution is Z−periodic

in R [BF75], which allows it to be written as

γ̂ = θX ∗ δZ.

where θX is a measure on [0, 1) ∼= T, and is called the fundamental diffraction of X. By Bochner’s

theorem, it is related to ηX via

ηX(m) =

∫ 1

0
e2π imudθX(u).

Proposition A.0.5 ( [BLvE15, Prop. 2]). Let X be a uniquely ergodic subshift over a finite

alphabet A. Let W ⊂ C be finite and g : X → W continuous, with spectral measure σg and let

W denote the subshift factor. Then, the fundamental diffraction of W satisfies θW = σg.

In particular, one has that

σ
1%n(a)

= θW

for some factor W ⊂ {0, 1}Z. Note that the indicator functions on other positions can be realised

as a shifted version of that at 0, which allows one, via introduction of appropriate weights for

each letter, to construct the full fundamental diffraction θX. Since mere shifting does not alter

the spectral type, we note that

σ
1a
� θX

for all a ∈ A. Now, when one goes to the indicator functions of supertiles, one gets nothing but

an inflated version of θX, which gives

σ
1%n(a)

� L̃n.θX � θX

where L̃ : x 7→ Lx. These equivalences also hold for arbitrary translates of σ
1%n(a)

.

Proposition A.0.6. The maximal spectral type of (X,Z, µ) is a subset of the spectral types

retrievable from the diffraction γ̂.
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B. Furstenberg’s Representation

B.1. Random cocycles

Theorem B.1.1 ( [FK83, Thm. 3.5]). Let J = {M1, . . . ,Mr} ⊂ GL(d,R) satisfy

(1) ‖Mi‖, ‖M−1
i ‖ <∞, for all 1 6 i 6 r and

(2) J is strongly irreducible.

Consider the random cocycle M (n) on JN0 given by M (n) = Min−1 · · ·Mi1Mi0 where Mir ∈ J
for all ir. Then, for a.e. sequence of matrices and for all starting directions v̄ ∈ RPd−1, the

Lyapunov exponent given by χ(v) = lim
n→∞

‖M (n)v‖ exists and is independent of v.

Exactly the same result holds when one replaces the set {Mir} by a sequence of independent

and identically distributed random variables {Yi}i>0 with distribution µ, where supp (µ) is

compact in GL(d,R). Not only it is known that the limit almost surely exists, but one can also

have an explicit formula for this constant value via a space average with respect to a stationary

measure, which is given by the following result.

Theorem B.1.2 (Furstenberg’s formula, [Fur63, Thm. 8.5], [Via13, Thm. 6.8]). Consider a

strongly irreducible matrix cocycle F : X × Rd → X × Rd that is locally constant similar to

Example 1.4.4, No. 1. The largest exponent associated to F is given by

χFmax =

∫
X×RPd−1

log
‖B(k)v‖
‖v‖

d(µ× η),

where η is a stationary measure on RPd−1 with respect to F .

Here, a measure η is said to be stationary with respect to F if, for every measurable set

D ⊂ RPd−1,

η(D) =

∫
X
η
(
F−1
x (D)

)
dµ(x),

where F−1
x (D) = {v̄ : π2(F (x, v)) ∈ D} and π2 : (x, v) 7→ v̄. When we are dealing with a random

cocycle where J is finite, with associated set of probabilities {pi}, the integral in Theorem B.1.2

becomes

χrand
max =

|J |∑
i=1

pi

∫
RPd−1

log ‖Miv‖dη(v̄).

for any stationary measure η.
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B.2. Strong irreducibility

Proof of Proposition 4.4.1. It is obvious that card ({M · v̄ |M ∈ Gµ}) > 2 when Gµ is strongly

irreducible, for all v̄ ∈ RP1. Hence, it suffices to prove the other direction.

Suppose that Gµ is not strongly irreducible. We have to show that there exists a direction v̄

such that card ({M · v̄ |M ∈ Gµ}) 6 2.

From the premise, we know that there is a union of subspaces preserved by all matrices

M ∈ Gµ. Let Q = {v̄1, . . . , v̄r} ⊂ RP1 be the set of directions preserved by matrices in Gµ. If

|Q| 6 2, then for each v̄ ∈ Q, one has card ({M · v̄ |M ∈ Gµ}) 6 2. We now show that it is

impossible for |Q| > 3. Note that each M ∈ Gµ induces a permutation ι(M) ∈ Σr and ι is a

group homomorphism. The kernel of ι given by

ker(ι) = {M ∈ Gµ |M · v̄i = v̄i, i = 1, . . . , r}

is a closed normal subgroup of Gµ, and Gµ/ker(ι) is finite. This follows from the first isomor-

phism theorem and that fact that ι(Gµ) ⊂ Σr. Since Gµ is not compact, ker(ι) is not finite. If

r > 3, consider three vectors v1, v2, v3 with directions v̄1, v̄2, v̄3. We can write v3 = αv1 + βv2

for some α 6= 0, β 6= 0. For each M ∈ ker(ι), and λi 6= 0, we have M · vi = λivi, for i = 1, 2, 3.

This yields αλ3v̄1 + βλ3v̄2 = λ3v̄3 = Mx̄3, which in turn implies

Mv̄3 = αMv̄1 + βMv̄2 = αλ1v̄1 + βλ2v̄2.

Hence, λ1 = λ2 = λ3, which means M = λ1I2. But since |detM | = 1, each M ∈ ker(ι) must

either be I2 or −I2. This contradicts the fact that ker(ι) is infinite, and hence r 6 2.

B.3. Approximation of stationary measures

The difficulty of exploiting the general formula for computing the exponent in Theorem B.1.2 lies

in finding a suitable stationary measure as there seems to be no general method of computing it

for generic cocycles. However, Froyland and Aihara provided an algorithmic method in [FA00]

to circumvent this difficulty, which is given by the following program.

(1) Partition RPd−1 into m connected sets V1, . . . , Vm of small diameter

(2) Choose a representative point v̄i ∈ Vi for 1 6 i 6 m, and for each matrix Mk construct

the matrix

(Jm)i`(k) =

1, Mkv̄i ∈ V`
0, otherwise,

then combine them to form the matrix Jm :=
∑

k Jm(k).

(3) Retrieve the left eigenvector of Jm with non-negative entries (i.e., the one corresponding

to the eigenvalue 1) and consider its statistically normalised version jm.

(4) Construct the point measure ηm =
∑m

i=1(jm)iδv̄i . This measure provides an approxima-

tion of the stationary measure η.
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Theorem B.3.1 ( [FA00, Thm. 3.2]). Assume that the conditions of Theorem B.1.1 are in

place. Let {jm}∞m=m0
be the sequence of eigenvectors as constructed above. Then,

χrand
m :=

|J |∑
i=1

pi

m∑
`=1

(jm)` log ‖Miv`‖
m→∞−−−−→ χrand

max .
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iteration

inward, 28, 29, 49

outward, 28, 49

Jensen

formula, 15, 63

inequality, 44

Koopman operator, 89

L-series, 75

Lebesgue decomposition, 9

Lehmer’s problem, 16

for substitutions, 42

Lemma

Feketé, 32

Kronecker, 16, 61

letter, 1

linear cocycle, 12

ergodic, 12

random, 91

strongly irreducible, 91

local recognisability, 5, 60

locally derivable, 6

logarithmic Mahler measure, 15, 34, 38, 61

higher-dimensional, 34, 62, 74, 75

Lyapunov exponents, 11

bijective Abelian, 43, 76

binary constant-length, 39

extremal, 13, 28

inward iteration, 29

irreducible Pisot, 58

linear cocycle, 13

negative infinite, 52, 55

noble means, 65

outward iteration, 28

period-doubling, 40

random cocycle, 91

Rudin–Shapiro, 52

sequence of matrices, 11

Thue–Morse, 40

with integer inflation multiplier, 36

matrix

adjoint, 61

block diagonal, 52, 78

digit, 19

displacement, 18, 49, 70

Fourier, 18, 70, 82

binary constant-length, 38

mixed substitution, 49

Hadamard, 53, 76, 79

positive semi-definite Hermitian, 27

primitive, 2

substitution, 2

unitary, 52

mean, 16

measure

absolutely continuous, 9, 27, 29, 89

autocorrelation, 10

bounded, 8

conjugate, 7
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continuous, 9

diffraction, 11, 90

Dirac, 8

equivalent, 89

Haar, 56

induced Lebesgue, 57

positive, 8, 9

positive definite, 8

pure point, 9

Radon, 7

real, 8

singular, 9

singular continuous, 9

spectral, 89

stationary, 91

translation bounded, 8, 29

twist, 7

unbounded, 8

metric, 56

minimality, 6, 22

Minkowski

difference, 1, 22

sum, 1, 49

MLD, see mutual local derivability

module, 81

mutual local derivability, 6

number

fractional part, 36

integral part, 36

non-Pisot, 60, 80

Pisot, 3, 56

plastic, 39

Salem, 42, 64

orbit, 36, 73

group, 46

toral endomorphism, 56

pair correlation

functions, 21

measure, 23

Parseval’s equality, 15

patch, ix, 1

Perron-Frobenius

eigenvalue, 3

eigenvector, 3

PF, see Perron-Frobenius

Pisot-Vijayaraghavan (PV) number, see num-

ber, Pisot

point set, 1

Delone, 1

discrete, 1

locally finite, 1

relatively dense, 1

uniformly discrete, 1

Meyer, 1, 60

polynomial, 41

Borwein, 40, 42

cyclotomic, 39, 46

height-1, see Borwein

Lehmer’s, 42

Littlewood, 41, 50

multivariate Borwein, 74

Newman, 41

projective space, 67

radius

covering, 1

packing, 1

Radon–Nikodym

density, 9, 27, 29

matrix, 27

vector, 27, 72

realification, 14, 66

regularity

forward, 45

cocycle, 13

sequence, 12

Lyapunov–Perron, 14

renormalisation

pair correlation functions, 22, 71

pair correlation measures, 24, 25, 71, 72

pure point component, 26

Radon–Nikodym density, 27

repetitivity, 1

representation
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permutation, 43, 53, 77

standard, 20

shift

operator, 4

space, 4

singular value, 12, 14, 78

spectral measure of maximal type, 44, 90

stone inflation, 69, 80

strong irreducibility, 66, 91

Fibonacci matrices, 66

subgroup

non-compact, 66

substitution, 2

general, 1

irreducible, 3

irreducible Pisot, 56

aperiodic, 4

bijective, 37

bijective Abelian, 43

block, 73

constant-length, 37

Fibonacci, 4, 22, 59, 66

Fibonacci-squared, 19

globally-mixed, 49, 54

induced, 3

noble means, 65

non-constant length, 56

non-Pisot, 3, 60

period-doubling, 20

Pisot, 3

primitive, 2

Rudin–Shapiro, 4, 21, 52, 54

return word-encoding, 21, 52

Salem, 3, 64

Thue–Morse, 4

unimodular Pisot, 65

with integer inflation, 36

theorem

Birkhoff’s ergodic, 38

Furstenberg-Kesten, 13

Kingman’s subadditive ergodic, 13

Oseledec’s multiplicative ergodic, 14

tile, 5

prototile, 69, 80

supertile, 5, 49, 69

tiling

Godrèche–Lançon–Billard, 80

non-Pisot, 80

self-similar, 5

topological conjugacy, 6

topological eigenvalue, 89

topology

local, 6, 69

local rubber, 69

toral endomorphism, 12, 56, 73

torus, 36, 56

total set, 18, 73

total variation, 8

uniformly distributed modulo 1, 16

vertex set, 81

word, 2

subword, 2

bi-infinite, 2

non-periodic, 4

periodic, 4

legal, 2

return, 21

substituted, 2
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