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Abstract

Background: The spatial distribution and colocalization of functionally related metabolites is analysed in order to
investigate the spatial (and functional) aspects of molecular networks. We propose to consider community detection
for the analysis ofm/z-images to group molecules with correlative spatial distribution into communities so they hint
at functional networks or pathway activity. To detect communities, we investigate a spectral approach by optimizing
the modularity measure. We present an analysis pipeline and an online interactive visualization tool to facilitate
explorative analysis of the results. The approach is illustrated with synthetical benchmark data and two real world data
sets (barley seed and glioblastoma section).

Results: For the barley sample data set, our approach is able to reproduce the findings of a previous work that
identified groups of molecules with distributions that correlate with anatomical structures of the barley seed. The
analysis of glioblastoma section data revealed that some molecular compositions are locally focused, indicating the
existence of a meaningful separation in at least two areas. This result is in line with the prior histological knowledge. In
addition to confirming prior findings, the resulting graph structures revealed new subcommunities ofm/z-images (i.e.
metabolites) with more detailed distribution patterns. Another result of our work is the development of an interactive
webtool called GRINE (Analysis of GRaph mapped Image Data NEtworks).

Conclusions: The proposed method was successfully applied to identify molecular communities of laterally
co-localized molecules. For both application examples, the detected communities showed inherent substructures
that could easily be investigated with the proposed visualization tool. This shows the potential of this approach as a
complementary addition to pixel clustering methods.
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Introduction
Matrix-assisted laser desorption ionization mass spec-
trometry imaging (MALDI-MSI) is a rapidly developing
technology for investigating the lateral distribution of
molecules in biological samples in form of multivariate
bioimages [1].
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Due to the technological improvements and the
increased utilization of MALDI-MSI, the daily amount
of generated data is constantly increasing [2]. Since
the complete interpretation cannot be automated, semi-
automated and assistive computational methods appear
promising and are in the focus of our research.
Different methods for grouping MSI data have already

been investigated for the analysis of MSI data, such
as: k-means [3], hierarchical clustering [4], hierarchical
hyperbolic self-organizingmaps [5], high dimensional dis-
criminant clustering [6], or probabilistic latent semantic
analysis [7]. Many of these studies focus on clustering
of all spectra in one data set to achieve a segmentation
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map, i.e. the partition of the image into regions with high
intrinsic spectra similarity [5, 6]. In other words: most
approaches focus on spectral similarity to group pixels.
The approach presented in this paper focuses on the

grouping of molecules into molecular communities. We
assume that many functionally related molecules may fea-
ture a similar lateral distribution in the sample. Thus, our
method groups molecules into communities based on the
similarity of their m/z-images. Graphs are well known
data structures in biology. Therefore, we propose to use
community detection for grouping [8, 9], also known as
graph clustering. In our approach, one graph represents
one MSI data set of NV m/z-images. The NV m/z-images
are usually selected by a user and/or an automated selec-
tion of NV peaks. A node vi of the graph corresponds to
onem/z-image I(m/z)i , with i ∈ 1, . . . ,NV, where:
NV = #nodes and #nodes = #m/z-images.
Each edge ek = {vi, vj}, with:
k ∈ 1, . . . ,NE and i, j ∈ 1, . . . ,NV, where:
NE = #edges

has a weight wij, which represents the similarity of the
spatial signal distribution:

wi,j = similarity(I(m/z)i , I(m/z)j) (1)

between the m/z-images of nodes vi and vj. In its initial
form the graph is fully connected. Our goal is to iden-
tify communities of similar spatial distribution in order
to identify groups of functionally related molecules. The

method is illustrated in Fig. 1 for a hypothetical data set of
NV = 7 images and an adjacency matrix leading to three
communities.
To the best of our knowledge, community detection

is a new approach for MALDI-MSI data. It provides an
uncommon view on the data as we focus on groups of
similar spatial distributions rather than spectra similarity
(pixel similarity). Few previous works have already shown
the benefit of the analysis of spatial distributions in MSI
([10, 11]). Moreover, our approach provides a graph struc-
ture that serves as an additional source of information.
To tackle the problem of finding communities of m/z-

images featuring a similar spatial signal distribution, we
developed a modular analysis pipeline consisting of five
major blocks : 1. data preprocessing, 2. computation of a
NV×NV similarity matrix S, 3. transforming the similarity
matrix into an NV × NV adjacency matrix A, 4. com-
munity detection and 5. interactive visualization. Step 5
aims to obtain additional information from the graph
that is not available through the community detection
result itself.

Methods
Data sets
MALDI-MSI data forms a three dimensional data cube,
where the x–axis and the y–axis represent the lateral coor-
dinates (pixels), which can be represented as intensity
images also called m/z-images, while the z–axis repre-
sents the mass spectra information. In this study three

Fig. 1 Structure of them/z-image similarity graph. Each node represents anm/z-image, each edge represents the similarity between the
m/z-images it connects, requiring that this value is above a specific threshold. Each color encodes one community
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data sets are used. The first one is a synthetical benchmark
data set and consists of nine generated 2D gaussians (DG)
(please find details below), the second data set (DB) was
gathered from a germinating barley seed timeline exper-
iment [12] and the third one (DT) was recorded from a
section of a human glioblastoma tumor [13]. DB and DT
are in-house produced data sets.
DG consists of nine synthetic m/z-images I(gs)0 . . . I(gs)8

and is a synthetical 9 × 205 × 190 MSI toy data cube.
Each image contains a single localized 2D gaussian inten-
sity distribution. The gaussians were initialized with the
same size, a slightly different amplitude and were placed
in groups of three:

K (gs)
0 =

{
I(gs)0 I(gs)1 I(gs)2

}
,

K (gs)
1 =

{
I(gs)3 I(gs)4 I(gs)5

}
,

K (gs)
2 =

{
I(gs)6 I(gs)7 I(gs)8

}

at three different spatial locations L(gs)0 , L(gs)1 , L(gs)2 , respec-
tively. The placement is made in such a way that it is
ensured that the three groups overlap with each other in
all possible combinations. This is followed by a small ran-
dom distortion of the position, x size and y size, combined
with a randomized rotation. A sketch of the gaussians and
their variation is shown in Fig. 2.
If we think of a biological analogy for this experiment,

each distorted gaussian represents the distribution of a
different molecule. Each location Lgsi , with i = 0, 1, 2,

Fig. 2 a A sketch of how the groups of 2D - gaussians are located
(left) and how they are distorted (right). b The nine rendered
2D-gaussian distribution images

represents the area of a spatially bound metabolic pro-
cess referred to as pseudo-network, meaning that the
molecules distributed in this area are likely to take part in
this process.
The original data output ofDB andDT were transformed

to the form: D = NP × NV, where NV is the dimension
of vector x ∈ R

NV , representing the spectrum informa-
tion and NP is the dimension of vector p ∈ N

(m×n) with
m and n are width and height of the visual field, repre-
senting the lateral information. To be more precise, the
elements of p include only the measuring coordinates of
the MALDI procedure, i.e. pixel grid cells. Regarding the
rendered m/z-image, (xi, yj) are pixels matching the area
of the measured sample. Furthermore, in our data sets the
mass spectra information x = (x0, . . . , xNV−1), calledm/z-
feature vector, does not represent the whole originally
measured spectra, since a set ofNV interestingm/z-values
were pre-selected by three of the authors (MG, HB, KN)
based on their tissue specific and non-homogenous dis-
tribution within the tissue section. Applied to DB and DT
this results in a dimensionality of:

DB = N (2)
P × N (2)

V = 3422 × 101 and

DT = N (3)
P × N (3)

V = 28684 × 106.
The preprocessing finishes with winsorizing the upper 1%
of intensities for each image:

xl =
{
Q99(xl), if xl > Q99(xl),∀l ∈[ 0, . . . ,NV − 1]
xl, otherwise

where Q99 is the 99th quantile.

Analysis pipeline
To compute the similarity matrix S we propose to apply
the Pearson correlation coefficient:

wij = cov(pi,pj)
σpiσpj

(2)

where cov(pi,pj) is the covariance of the intensity images
pi, pj of the nodes (i.e. metabolites) vi, vj and σpi , σpj are
the standard deviations of pi, pj, respectively. The Pearson
correlation coefficient is a commonly used similarity mea-
sure in the area of MALDI imaging analysis [14–17] and
provides a straight forward interpretation. The result is a
similarity matrix S, with Si,j = wij. Please note that also
other symmetric similarity measures can be applied here,
such as mutual information or cosine similarity. For more
information about considered alternatives we would like
to refer the interested reader to S17 of the Additional file 1.
Next, we transform the similarity matrix into an adja-

cency matrix (step 3) S → A, where A is a much sparser
adjacency matrix by thresholding with tS:
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Ai,j =
{
0, if wij < tS
1, otherwise

The objective is to filter out edges with values too low,
so that we can assume that these are unlikely to represent
a biologically relevant similarity. However, the selection
of tS is a non-trivial task. To avoid time consuming man-
ual tuning we propose a strategy which is inspired by
other works on biological network analysis [18–20]. The
basic idea is to define an objective function that leads to
an adequate threshold after optimization. The objective
function is based on quantitative graph properties (QGP).
Three QGPs are selected and combined (see [21] for an
overview) to determine tS. The total number of edges NE,
the average clustering coefficient (ζ ) [22] and the global
efficiency (ξ ) [23].
To calculate tS we define a vector of candidate

thresholds:

t = (tmin, . . . , ti−1, ti, . . . , tmax), (3)

where tmin and tmax are the minimum and maximum
threshold, respectively and t� = ti− ti−1 is the step size to
reach from tmin to tmax. [ tmin, tmax] defines the interval of
threshold candidates in which we search for the best pos-
sible threshold to reduce the edges in our network. The
interval is explored in a discrete manner. This implies that
the resolution of the threshold detection is defined by t�,
i.e. the distance between two consecutive points ti to ti+1
in [ tmin, tmax].
We calculate NE, ζ and ξ on each graph of an adjacency

matrix A(ti) and arrange the results in vectors νNE , νζ and
νξ , respectively. Next, we use νNE �→[ 0, 1] as baseline to
adjust νζ and νξ :

ηζ = νζ − νNE

ηξ = νξ − νNE

We create a mean centered matrix X = [
ηζ , ηξ

]
and

apply PCA as a weighting method. Therefore we calcu-
late y, which is the projection of X on the first PCA
component:

X = [
ηζ , ηξ

]
and Xcov = cov(Xc)

Xcovui = λiui and y = Xu0,

where Xc is the mean centered version of X, {ui} are the
eigenvectors of the covariancematrixXcov ofXc and λi are
their respective eigenvalues labeled in decreasing order,
λ0 ≥ λ1 ≥ . . . . To determine the final threshold we search
for the candidate threshold for which the value of y is
maximized. This leads to maximizing the weighted com-
bination of the baselined average clustering coefficient ζ

and the global efficiency ξ . Hence, we can set tS, with:

S = arg max
k

{yk}, k = 0, 1, . . . , |y|} (4)

Since the primary objective is to achieve dense com-
munities, it is a good choice to optimize a segregation
measure like ζ . Nevertheless, we do not want to neglect
the information provided from edges between communi-
ties and integrate ξ , which scales with integration. We use
PCA as a weighting method because by construction ζ

shows a higher variance than ξ . This leads to a stronger
weighting. The idea to combine segregation and integra-
tion is based on the small-world property, which occurs
frequently in biological networks [19]. The small-world
property describes a graph structure of densely connected
subgraphs that are interconnected by a robust amount of
edges.
NE serves as a baseline to avoid the effect that low

thresholds produce high values for ζ and ξ , which is
induced by the construction of these measures. This way
the applied measures scale rather with structural prop-
erties than with the amount of edges. Since Pearson
correlation (Eq. 2) serves as our similarity measure, we set:
tmin = −1, tmax = 1, � = 0.1.
For tmin, tmax, and t� one has to balance computation

time and resolution.
For considered alternatives we refer the interested

reader to the Additional file 1: S17.
Now, A represents an undirected, unweighted graph G,

which serves as basis for the community detection. In G
each node vi, with i = 1, . . . ,NV, where NV = #nodes,
corresponds to a singlem/z-image and is calledm/z-node,
while each edge ek = {vi, vj} indicates that: wij > tS, with:
k = 1, . . . ,NE; i, j ∈ {1, . . . ,NV} and NE = #edges.
For community detectionwe use the leading eigenvector

method [8, 9]. Thismethod proceeds in a divisive style and
maximizes a measure called modularity [24]. Since this is
a divisive method, for initialization each m/z-node vi is
assigned into the same community c, with:
c ∈ 1, . . . ,NC and vi = vc=1

i ∀ i,
where NC = #communities.
Thereafter, the method proceeds with:

1 For each existing community c its modularity matrix
M(c) is calculated. Informally speaking, for each pair
of vertices (vi, vj) the respective modularity matrix
entryM(c)

i,j shows the existing number of edges
substracted by the expected number of edges
between these vertices (for more detail see [8, 9]).

2 The leading eigenvector u(c) ofM(c) is calculated,
which is the eigenvector corresponding to the largest
eigenvalue λ

(c)
max.

3 (a) If λ(c) > 0: All v(c)
i are partitioned into two

new communities by:

vci =
{
v(c)
i , if ui ≥ 0
v(c′)
i , otherwise
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(b) else: label v(c)
i as “indivisible” and continue

with a divisible community.

The procedure repeats for each community until all are
labeled as “indivisible”. λ = 0 is used as stop criteria as its
u = (1, . . . , 1), which means that the best division is to set
all vi in c and none in c′, i.e. the best division is no division.
It is important to mention that the original work [8, 9]

does not explicitly mention how to handle disconnected
components. However, for MSI data sets disconnected
components can be assumed to be quite common. In
order to deal with this problem we propose a slight mod-
ification of the algorithm, by changing the initialization.
Instead of initializing every m/z-node in one community,
we search for connected components and set each con-
nected component in its own community. Using this as
initialization we follow the leading eigenvector method as
described above.
For alternative community detection methods we would

like to refer the interested reader again to S17 of the
Additional file 1. To facilitate the description of a commu-
nity size we will use the terminology of (n)-Community,
where n provides information about the size.

Visualization
Molecular communities are characterized by two aspects
that need to be explored simultaneously: localization and

network structure. To analyse the computed communi-
ties in this regard, we propose an interactive visualization
framework that links two visualizations for these two
aspects. The tool is referred to as GRINE (Analysis of
GRaph mapped Image Data NEtworks) and can be tested
for the data described in this paper using the provided
links (availability or supplementary). The interface of the
tool is shown in Fig. 3. The functionalities are motivated
and described below.
To visualize and explore the network structure dis-

play the user can choose between two different modes: In
graph mode the communities’ graph structures are visu-
alized, starting with a community graph G′ (see Fig. 3a).
Each community forms one node vCi = {vj}i, where {vj}i is
the set of allm/z-nodes with a community membership of
i. Two community nodes are connected by a community
edge e(C)k , with:
e(C)k = {vCi , vCj},
if there exists an edge el = {vp, vq}, with:
vp ∈ vCi and vq ∈ vCj .
The graph is fully dragable and repositions itself by a

force layout. The user has the option to expand a commu-
nity to show its subgraph and edges e(H)

k = {vCi , vj} which
we refer to as hybrid. Hybrid edges are edges between
m/z-nodes and community nodes, meaning that an m/z-
node of an expanded community is connected with an

Fig. 3 GRINE UI with graph mode active and hierarchy mode (circle packing) inactive. One community of the whole community-graph G′ , which is
shown in (a), is expanded and them/z-node ofm/z-value 689.211 is selected. (A) Network display in graph mode. (b-d) Image Display. b Legend for
color scheme (in this case: viridis). c Community-map. dm/z-image. e Options box to configure the graph, image and hierarchy mode. f List of all
m/z-values or, if selected, of allm/z-values in the selected community. g Expanded communities
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m/z-node of a non expanded community. Each node can
be selected to activate the image display.
In hierarchy mode a circle packing is applied to visu-

alize the networks while hiding the details of the graph
structures (i.e. edges). This enables users to focus on com-
munity memberships instead (see the Additional file 1: S2
for a screenshot).
To analyse the localization of communities and com-

munity members, the user selects them either in the graph
or in the hierarchy mode, which triggers the visualiza-
tion of their spatial distribution in the image display (see
Fig. 3c and d). The upper frame (Fig. 3c) shows the com-
munity map with a pseudo coloring chosen from a menu
(Fig. 3e). The community map is a summary of all images
from one selected community ICi = Dp,{sj}i , i.e. all m/z-
images corresponding to m/z-values sj that are members
of community Ci.
Community maps can be computed and visualized in

two modes: In maximum projection mode the maximal
intensity in the community is displayed for each pixel:

	(p′
k) = max

sl
(	(pk,{sl}i),

where 	(p′
k) is the intensity of pixel p′

k . This mode dis-
plays the total area covered by the entire community.
In averaging mode the intensity for each pixel is aver-

aged across all images in the community:

	(p′
k) = 1

|{sl}i|
∑
l

	(pk , {sl}i).

This emphasizes the quantity of signal coverage.
The lower frame (Fig. 3d) shows the single mass map

visualizing one I(m/z)i image (after selecting this commu-
nity member in the network display or in the mass list on
the far left (Fig. 3f )). The pixel intensities are rescaled for
a maximum contrast to enable the visual analysis of weak
mass signals.
Furthermore, there is the option to visualize the rela-

tion of community localizations with another kind of
pseudocolor map, the PCA (principle component analy-
sis) map. This visualization takes the full data set D into
account and thus accounts for variances in the entire NV
dimensions. The R, G, B color values in the PCA map
are computed with a projection of the full data set onto
the three most informative principle components (details
given in Additional file 1: S5). This map has been imple-
mented to enable users to integrate global data features.
In addition, PCA is a well established and familiar way to
analyze high dimensional data so that it can be used as a
reference despite its limitations.
Some implementation details can be found in S14 of the

Additional file 1.
Finally, we would like to refer the reader to S16 of

the Additional file 1 for further information on how the

similarity measure, threshold selection and community
detection algorithm influence each other and their impact
on the downstream analysis.

Results
Weblinks to all results obtained for data sets: DG, DB and
DT can be found underAvailability of data andmaterial.

Gaussians
For the data set DG an edge reduction threshold within
tS ∈[ 0.6382, 0.9397] was computed (see Table 1 and Eq. 4).
The specific value picked inside of this interval is irrele-
vant, since the argmax function is maximal over the entire
interval. Our community approach detects three commu-
nities that corresponds to the groups Kgs

i , with i = 0, 1, 2,
meaning that we can distinguish the gaussians based on
their spatial location (see Fig. 4a).
If we discuss this result in relation to our biological

analogy, each group Kgs
i with distribution at Lgsi consists

of molecules that are likely to be representatives of a
metabolic process located in this area. Let us remember
our initial assumption that functionally related molecules
feature a similar lateral distribution within the sample, i.e.
metabolic processes are spatially bound. If this assump-
tion holds, the results obtained from DG indicate that our
communities can help to: 1. distinguish metabolic pro-
cesses based on their spatial location and 2. identify their
important molecules.
Figure 4b shows k-means segmentation maps with dif-

ferent k, i.e. clustering of pixel. Even with the correct
number of clusters (k = 4, i.e. background and three
pseudo-networks) the segmentation map cannot distin-
guish the covered areas at the three different locations.
Compared to k-means clustering or hierarchical clus-

tering, our method does not require to determine the
number of groups, which can be considered an advantage.

Barley
For data set DB we computed the threshold tS = 0.7085
(Eq. 4). This results in NE = 789 edges, meaning a
reduction of 84.376% (Table 1). Based on the resulting
graph, the leading eigenvector method found NC = 11
communities (see Additional file 1: S4). Nine of them
are interconnected, while two are singletons, i.e. nodes

Table 1 Summarized graph information

Dataset tS NE NV NC NC2+

Gaussian Circles (DG) 0.6382 9 9 3 3

Barley (DB) 0.7085 789 101 11 8

Glioblastoma (DT) 0.5477 2371 106 11 6

Threshold for edge reduction (tS), number of edges (NE), number of vertices (NV),
number of communities (NC) and number of communities of size greater than two
(NC2+ ) for DG, DB and DT are shown
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Fig. 4 aOur proposedmethodwas applied to the synthetical DG data set. The three pseudo-networks were correctly detected as three communities.
The communities are displayed as colored graphs (screenshot from the GRINE tool). For each community, the community-map is shown with a
viridis color map. b k–means segmentation map after clustering of pixel, i.e.m/z-spectra, for k = 2, . . . , 6. Each color represents one cluster

without any edge. Eight of the interconnected commu-
nities are (n)-Communities, with n > 1, the others are
(1)-Communities.
Most signal distributions of the community maps

(Fig. 5) show a strong correlation to anatomical structures
of the barley seed, which is summarized in Fig. 5e.

A view on the graph structure ofC2 (Fig. 6a) reveals that
this community can be divided into more detailed sub-
communities (referred to as C2a - C2c). C2b shows an
increased signal only at the embryo center, while the signal
of C2a is less specifically distributed in the entire embryo.
C2c is located between both and shows a specific signal

Fig. 5 a Optical image scan with marked and labeled anatomical structures. b Average community-maps of all (n)–communities, with n > 1
(network in Additional file 1: S4). c Images of (1)–Communities (network in Additional file 1: S4). d RGB image of the first three PCA projections,
where the projections on the eigenvectors of the first, second and third largest eigenvalue is assigned to the red, green and blue channel,
respectively and standalone images of these components. PCA images are not scaled like the community-maps andm/z-images. The color map
viridis is used for images in (b) and (c) and inferno for images in (d). e Correlation between the spatial signal distributions of all found communities
and the anatomical structures of the barley seed. X indicates that a community shows increased signal in the respective area
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Fig. 6 a Substructures of DB in community C2. The whole graph of DB is shown with the corresponding community-node C2 unfolded. The
substructures are encircled and refer to their respective subcommunity-maps. b Core-offshoot structure of DB in community C5. The left side shows
the graph of DB with C5 unfolded. The core structure and the offshoots are encircled. The right side shows the core-community-map and the
m/z-images of the offshoots. c Substructure of DT in community C6. The left side shows the graph of DT with C6 unfolded. The two substructures, as
well as their connecting link (single node), are encircled. The right side shows the subcommunity-maps of the marked nodes. For all images the
color map viridis is used

distribution at the center and the shoot. A similar obser-
vation can be found for C5. The subgraph of C5 (Fig. 6b)
shows a structure that can be distinguished into core and
offshoots. A core is defined by nodes that are densely
interconnected, while offshoots are reaching out from the
core and are less interconnected. The core of C5 (C5c)
defines the main signal distribution of this community,
which extends from the scutellum into the embryo center.
The three offshoots C5a, C5b, and C5d deviate from this
distribution. A similar core-offshoot differentiation can be
observed in C4 (not shown).
The identification of m/z-values based on prior exam-

ination of barley seed MSI [12] reveals a tendency for
communities tomostly contain one class of molecules.C0,
C1,C3 and C7 contain only hordatines and hordatine pre-
cursors, with one exception in C0, which is a lipid and
three exceptions inC3, which are two unknownmolecules
and one lipid. C2 and C4 contain mostly carbohydrates,
with four exceptions (three unknown molecules and one
lipid). Further, carbohydrates in C2 are only potassium
adducts and in C4 only sodium adducts. C5 and C6 con-
tain mostly lipids, with two exceptions in C5 that are
unknown molecules. The (1)-Communities are unknown
(C8, C9) and a lipid (C10). This indicates that similar
molecules have similar spatial distributions. One reason
for this could be that similar molecules are part of the
same spatially bound metabolic processes.
The identification also supports the structural features

of C2 and C5. C2a is composed of three unknown
molecules, one lipid and one carbohydrate, while C2b
consists only of carbohydrates. For C5, the two images
that fit least to the main signal distribution of the commu-
nity are both unknown molecules.

Glioblastoma
For data set DT we computed the threshold tS = 0.5477
(Eq. 4). The result is NE = 2371 edges, i.e. a reduction
of 57.394% (Table 1). Compared to the barley data set the
number of edges is clearly higher, although the number
of vertices is nearly equal. The reason is a higher general
similarity and a lower spread of similarity values, i.e. the
algorithm classifies more similarities to be relevant. This
indicates a higher degree of complexity for the tissue and
its respective network of functionally related molecules.
The community detection result shows NC = 11 commu-
nities with seven of them interconnected (see Additional
file 1: S4). Five are (1)-Communities, the other six are
(n)-Communities, with n > 1.
The signal distributions (Fig. 7) reveal three main pat-

terns, which are summarized in Fig. 7e.
Similar to the results obtained for barley data, a detailed

view on the graph structure reveals more detailed infor-
mation (Fig. 6c). The subcommunity C6a shows a strong
and specific distribution in one half of the sample. C6b
is distributed notably less specific, with a slightly biased
signal distribution to the same half of the sample as
C6a. Both subcommunities are connected by am/z-image
(C6c) that shows a weak similarity to C6a. We assumed
thatC6c produces a chaining effect during the community
detection.
Based on communities C6a and C8 we can conclude

that the sample is functionally divided into two halves,
which is in line with the PCA result (Fig. 7d) and (more
important) the H&E staining information (Fig. 7a), which
indicates that the tumor in this sample is side specific. We
can presume that at least some molecules of C6a and C8
could be tumor specific.
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Fig. 7 a Optical image scan of the sample used for MALDI analysis (left) and H&E stained image scan of the subsequent sample section (right). For
the H&E stained image lighter color indicates tumor tissue and darker color indicates tumor infiltrated tissue, while this is reversed for the optical
image. b Average community-maps of all (n)–Communities, with n > 1 (network in Additional file 1: S4). c Images of (1)–Communities (network in
Additional file 1: S4). d RGB image of the second, third and fourth PCA components, where the projections on the eigenvectors of the second, third
and fourth largest eigenvalue is assigned to the red, green and blue channel, respectively and standalone images of these components. PCA was
done without the additional preprocessing steps of data squaring and image thresholding. The PCA images are not scaled like the
community-maps andm/z-images. The color map viridis is used for images in (b) and (c) and magma for images in (d). e Allocation of the spatial
signal distribution of all found communities to specific pattern within the glioblastoma sample. We determine three main areas: Tumor tissue,
tumor infiltrated tissue and outer border. X indicates that a community shows increased signal in the respective area

Results of the publicly available mouse urinary blad-
der data set fromms-imaging.org are shown in Additional
file 1: S12. There we provide some basic results without
detailed biological interpretation. The results are available
for exploration in our webtool. The respective link can be
found in Additional file 1: S1.

Discussion
Barley
The analysis of the barley seed data set shows that the
community analysis approach delivers reasonable results,
i.e. the spatial localizations of the communities reflect
biological compartments with distinct functions. This is
in accordance with previous findings for this data set
[12]. For most communities, we are able to clearly detect
correlations with different anatomical structures.
In contrast to other established methods for MSI seg-

mentation, the presented approach offers a very fine iden-
tification of the different tissues of a barley seedling based
on the mass spectroscopy data. As shown in Fig. 5, the
root, the center of the developing seedling, the shoot, the
scutellum, and the endosperm could be identified by a

unique combination of communities. This segmentation
can be used to analyze the co-localization of specific sin-
gle mass channels, representing known intermediates of
the metabolism.
The fact that certain tissue regions or organs are rep-

resented by a number of different communities indicates
that these parts of the sample are physiologically more
heterogeneous than would be expected if a single m/z-
signal were co-localized with that particular tissue or
organ. An example for this kind of heterogeneity for the
shoot can be seen in the communities C1, C7, and C10.
Most interestingly, it shares communities with the root,
but not with the scutellum. From a biological point of
view, it can be speculated that these differences reflect
metabolite compositions that are characteristic for devel-
oping tissues, as roots and shoots, versus a tissue, which
is metabolically active but not further developing just like
the scutellum.
The appearance of substructures in individual

communities within the graphs illustrates that our
graph approach is able to convey information that
would remain hidden if just cluster results were

https://ms-imaging.org/wp/imzml/example-files-test/
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considered. Interestingly, the three substructures
investigated in this study show already three differ-
ent kinds of motifs: Simple subgroups, core-offshoot
structures, and bridging (or chaining) structures. There-
fore we believe that substructures are worth further
examination.

Glioblastoma
The results of the glioblastoma data set are not as easy to
interpret as those of the barley sample, which was to be
expected. This is due to its morphological homogeneity,
combined with heterogeneity of the cell phenotype. On
the other hand the community detection yields at least
one clear insight: There are groups of molecules, whose
signal distribution correlate with the tumor area that was
defined by a pathologist [13]. This provides candidates for
subsequent biological experiments.
Regarding their community compositions, the tissue

compartments classified as tumor and tumor-infiltrated
in data set DT are much more similar to each other
than the different compartments of the barley sample.
Five of the eleven communities are categorized as ubiq-
uitous (Fig. 7), reflecting the fact that the tumor tissue
is still closely related to the non-tumor tissue. Four com-
munities are tumor-specific (Fig. 7), probably induced
by the localization of lactate and other tumor metabo-
lites (see [13]). The last two communities refer to the
outer border of the sample (Fig. 7), probably induced by
matrix peaks.
We believe that even without any prior knowledge about

the sample, like H&E staining, the results offered by this
type of analysis provide a good starting point for biologists
to set up further experiments.

Visualization
Our visualization tool GRINE is interactive, dynamic
and responsive. This makes the usage very intuitive and
almost no learning phase is required. The tool shows
its main strengths in three areas. First, it combines
the information of the graph domain and the image
domain. Second, the interaction with the graph facili-
tates the focus on specific communities and allows to
spot structural characteristics. Examples are: Substruc-
tures that can indicate more finely resolved commu-
nities, cluster ambiguities and potential misclusterings.
Third, its possibility to show and hide information, i.e.
its interactivity, allows to encode much more infor-
mation in a clear way than we could achieve with
static visualizations [25], e.g. average and maximum
images of all communities and correlation with PCA
results.
At the current time, the visualization can only deal with

distinct communities, whereas the analysis pipeline can
also search for overlapping ones.

Comparison to other methodological approaches
A more common approach than the one presented for
the analysis of the spatial distribution of imaging data is
to employ dimension reduction techniques for segmenta-
tion. We compared our method to visualizations of three
different dimension reduction techniques: principal com-
ponent analysis (PCA), non-negative matrix factorization
(NMF) and latent dirichlet allocation (LDA) (results are
shown and discussed in Additional file 1: S13).We decided
for PCA as it is probably the most prominent dimension
reduction technique in biology. NMF is also a commonly
used technique and does not produce negative intensity
values, which can occur in PCA. LDAwas chosen because
it is a generalization of pLSA (probabilistic latent semantic
analysis) that has been previously analysed [7].
The comparison showed that the computed visual-

izations reveal similar coarse grained structures as our
method. It is worth noting that LDA performs better as
NMF and NMF performs better than PCA. For DB and
DT the segmentation maps of LDA reveal the most details
and detected structures show the highest contrast. This
is followed by the ones obtained with NMF. The PCA
maps provide the lowest contrast. All three methods show
distributions that correlate with the main structures of
the samples. However, compared to our method they fail
finding finely detailed structures like the scutellum in DB.
While the results obtained with PCA, NMF and LDA

share similarities with the results obtained by our pro-
posed method, we can report some new favorable features
for our approach:
First, the grouping of spatial distributions assigns each

image to one group. After analysing the lateral distribu-
tion of a community image it is easy and unambiguous to
identify which single m/z-images, i.e. molecules, partic-
ipate in this distribution. This is much harder for PCA,
NMF and LDA, where each component image consist of
partial combinations of the originalm/z-images.
Second, we do not need to determine the number

of clusters, i.e. communities, beforehand. Our method
chooses this number automatically based on the given
optimization criterion (modularity). If needed, a manual
decision is still possible. This is different for NMF and
LDA. For those methods the number of dimensions, i.e.
components, have to be predefined. Finding the most fit-
ting number of dimensions for a given sample is a non
trivial task and especially important for NMF and LDA,
since the number of dimensions influences the lateral
distribution of the resulting components (see Additional
file 1: S13).
Third, the community images are based on simple

aggregation functions. Therefore, in case of outliers or
ambiguities it is easy to re-evaluate the community images
without them. The same counts for potential optimiza-
tions based on substructures in the clustering space.
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Fourth, the network structure can reveal outliers, mis-
clusterings, substructures and potential optimizations at
first glance and allows an intuitive exploration of the
clustering space.
We would also like to add the H2SOM ([5]), as another

segmentation method to this comparison discussion. This
method is also capable to reveal detailed structures in DB.
A core difference is that in our method a single pixel can
be a member of multiple community images. This means
we can provide an ambiguous pixel labeling, which ismore
suitable to represent dynamic biological processes.

Conclusion
In this paper we demonstrated the general applicability of
community detection as an unsupervised clustering tech-
nique for the analysis of MSI data from different types
of samples. We have developed a pipeline to map lateral
image data to an image similarity graph. We have also
developed a new edge thresholding technique to trans-
form a fully connected graph into a sparse one. Using
lateralm/z-images as samples and their pixels as features,
we utilized community detection as an example to group
molecules with similar lateral distributions. By analysing
the network structure with our interactive visualization,
we have found finer subclusters within the detected clus-
ters. This offers a possibility for manual refinement.
We stated the initial assumption that functionally

related molecules are spatially bound. If this assumption
holds, the presented way of clustering lateral imaging
data provides a good starting point for targeted biological
experiments. For some information on the limitations of
this assumption and alternative considerations, we would
like to refer to S18 of the Additional file 1.
This paper is designed as proof of concept to demon-

strate the general applicability of community detection to
MSI data. Therefore, we did not discuss the question of
performance. Since we do not want to ignore this question
entirely, we refer to S15 of the Additional file 1. There a
rough analysis of the complexity is presented.
Finally, a webtool has been implemented to visualize and

explain the results and to demonstrate the usefulness and
benefits of the approach.

Future research
Further analysis of network patterns of substructures
could lead to automated ways to detect finer cluster rela-
tionships, like hierarchical structures and reveal and cor-
rect misclusterings. Another promising approach, which
was not discussed in this paper, is to employ more sta-
tistical network properties for the analysis. An example
could be the ratio of the in-group degree to the out-group
degree to automatically detect very specific or very gen-
eral lateral patterns. These statistics could also be used to
query specific m/z-images for their statistical properties.

Considering the sheer amount of network properties this
offers a big area for future research.

Additional file

Additional file 1: Supplementary. (PDF 2459 kb)
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