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Abstract

Virtual humans are employed in various applications including computer games, special
effects in movies, virtual try-ons, medical surgery planning, and virtual assistance. This
thesis deals with virtual humans and their computer-aided generation for different purposes.

In a first step, we derive a technique to digitally clone the face of a scanned person.
Fitting a facial template model to 3D-scanner data is a powerful technique for generating
face avatars, in particular in the presence of noisy and incomplete measurements. Con-
sequently, there are many approaches for the underlying non-rigid registration task, and
these are typically composed from very similar algorithmic building blocks. By providing
a thorough analysis of the different design choices, we derive a face matching technique
tailored to high-quality reconstructions from high-resolution scanner data. We then extend
this approach in two ways: An anisotropic bending model allows us to more accurately
reconstruct facial details. A simultaneous constrained fitting of eyes and eyelids improves
the reconstruction of the eye region considerably. Next, we extend this work to full bodies
and present a complete pipeline to create animatable virtual humans by fitting a holistic
template character. Due to the careful selection of techniques and technology, our re-
constructed humans are quite realistic in terms of both geometry and texture. Since we
represent our models as single-layer triangle meshes and animate them through standard
skeleton-based skinning and facial blendshapes, our characters can be used in standard VR
engines out of the box. By optimizing computation time and minimizing manual interven-
tion, our reconstruction pipeline is capable of processing entire characters in less than ten
minutes.

In a following part of this thesis, we build on our template fitting method and deal with
the problem of inferring the skin surface of a head from a given skull and vice versa.
Starting with a method for automated estimation of a human face from a given skull remain,
we extend this approach to bidirectional facial reconstruction in order to also estimate the
skull from a given scan of the skin surface. This is based on a multilinear model that
describes the correlation between the skull and the facial soft tissue thickness on the one
hand and the head/face surface geometry on the other hand. We demonstrate the versatility
of our novel multilinear model by estimating faces from given skulls as well as skulls from
given faces within just a couple of seconds. To foster further research in this direction, we
made our multilinear model publicly available.

In a last part, we generate assistive virtual humans that are employed as stimuli for an
interdisciplinary study. In the study, we shed light on user preferences for visual attributes
of virtual assistants in a variety of smart home contexts.
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1 Introduction

Today, virtual humans are widely used in innumerable contexts including computer
games, special effects in movies, virtual try-ons, medical surgery planning, and virtual
assistance. This thesis deals with virtual humans and their computer-aided generation for
different purposes. The thesis is divided up into three different parts (Figure 1.1). The
first part is about character reconstruction and focuses on techniques that can be used to
generate virtual humans that resemble the appearance of a scanned person. In the second
part, based on the derived techniques, we show how to efficiently deal with craniofacial
reconstruction in medicine by inferring the skin surface of a head from a given skull and
vice versa. The third part is about an interdisciplinary study in which we generate virtual
humans that are employed as stimuli. Here, we analyze preferences for virtual assistants
that can be used in smart home contexts. In the following, the three parts will be explained
in more detail.

Character Reconstruction

In the context of Virtual Reality (VR), virtual humans are typically deployed as virtual
agents simulated by artificial intelligence or as avatars, the digital alter-egos of the users in
the virtual worlds. These days, high-resolution 3D-scanning technology is becoming more
and more affordable and makes it possible to generate virtual humans by scanning a real
person.

Such virtual clones of real persons can be full-body “3D-selfies” [LVG™13] or head
models for interactive facial puppetry [WBLP11, CHZ14]. For a robust reconstruction, a
suitable template model is typically incorporated to the reconstruction process as it enables
disambiguation of insufficient data and provides a reasonable surface completion in regions
of missing data.

Such approaches are summarized under the term template fitting and can be found in
different contexts. Besides being used for reconstructing head scans [BV99, WBLP11,
CWZ"14] or body models [ACP03, LVG'13], they are further deployed for cross-
parameterization [ZB13] or to enable statistical shape analysis [BV99, ACP03, CHZ14].
Consequently, a large variety of template fitting methods have been proposed. Although
the approaches are conceptually very similar and share many algorithmic components, a
structured evaluation of these components is still missing. In Chapter 2, we perform a thor-
ough analysis and comparison of the individual design choices. This way, we are able to
derive a template fitting method that provides more accurate reconstructions as opposed
to typically employed algorithmic components. However, it is still challenging to achieve
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I Character reconstruction II Craniofacial reconstruction III Virtual assistants

Figure 1.1: This thesis deals with virtual humans and their generation for different pur-
poses. First, we focus on techniques that can be used to generate virtual humans that
resemble a scanned person (I). Secondly, we show how to efficiently deal with craniofa-
cial reconstruction (II). Finally, we investigate virtual humans that can be used in domestic
contexts (IIT).

a faithful reconstruction of the eye region which is of high importance for the perception
of virtual faces. We therefore extend our method to improve the reconstruction of the eye
region and to more faithfully reconstruct strongly curved facial details. Overall, this leads
to an accurate face reconstruction algorithm from multi-view stereo data.

Building upon this work, we then derive a pipeline to reconstruct full bodies that fulfill
the requirements described as follows. A faithful and realistic human-like appearance re-
quires detailed textures and geometrically accurate meshes. Furthermore, the application
of the resulting models in interactive scenarios requires the characters to be animated. To
be widely employable, the resulting character models should be compatible with standard
game engines or VR frameworks. Finally, the overall avatar creation should ideally be fast
enough to be performed during rapid prototyping or empirical studies.

However, creating believable and animatable virtual humans in a short amount of time is
still a challenging problem. Approaches for the fast computer-aided generation of charac-
ters with all required animation controls are mostly lacking. Additionally, many approaches
neglect the generation of high-quality textures from scanner input and focus on geometry
reconstruction only. In Chapter 3, we present a complete character generation pipeline that
is able to digitally clone a real person into a realistic, high-quality virtual human by fitting a
holistic template model. The resulting characters can then be used for animation and visu-
alization in any standard graphics or VR engine. The whole reconstruction process requires
only a minimum amount of user interaction and takes less than ten minutes on a desktop
PC. Overall, our contributions enable the generation of realistic and fully animatable vir-
tual humans in just a couple of minutes. This makes them accessible to a wide range of VR
experiments where they can be used as avatars or conversational agents.



Craniofacial Reconstruction in Medicine

An important topic in forensic medicine and archaeology is facial reconstruction from
skeleton remains. By providing a human skull and several options of facial soft tissue
thickness (FSTT), the goal is to reconstruct plausible facial appearances in order to enable
recognition of the unknown subject. Measurements of FSTT provide important quantitative
information [SSO8] and are crucial for facial approximation and craniofacial superimposi-
tion methods. However, measurements based on a few distinct landmark points provide a
few discrete thickness values only though a dense soft tissue map is to be preferred.

In Chapter 4, we build on our accurate template fitting method and present a method
that fits a statistical head model to such a dense soft tissue profile. Thereby, we are able
to estimate the visual appearance of the person to be identified. In contrast to most pre-
vious methods [TBK*05, TBL*07, RME" 14, SZD*16, SZM*17], our approach is fully
automated and thus does not require any manual interaction.

Deriving the skull from the face also has high-potential applications in medical contexts.
For example, given a 3D face scan, this technology can estimate the skull of a person with-
out the need for X-ray radiation or other expensive medical imaging methods. A reasonably
accurate, radiation-free alternative would be beneficial, e.g., for patients with craniofacial
malformations. Computed Tomography is currently the standard imaging procedure for
such patients [CHP03]. Another application is radiation-free bony cephalometric skull as-
sessment in orthodontics. For such an assessment, both the skull and face shape are often
of interest and a high radiation dose is prohibitive due to the typically young age of the
patients [ECSS04].

In Chapter 5, we build on our work on forensic facial reconstruction to generate proper
training data that is subsequently used to compute a multilinear model. This model maps
from low-dimensional parameter spaces for skull shape and FSTT to high-resolution trian-
gle meshes of the skull and the head/facial skin. In particular, we show how our model can
be evaluated as well as fitted in just a couple of seconds. This allows us to produce skull
and skin variations from given skull shape parameters and FSTT parameters, or to deter-
mine these parameters by fitting the multilinear model to a given skull or skin measured,
e.g., by medical imaging or a face scanner. Moreover, we made our combined statistical

model publicly available for research purposes.

Preferences for Virtual Assistants

Conversational virtual agents that serve as assistive technologies have already made their
way into users’ homes [Gmb18, ANA10, DvMO00]. Today, such virtual assistants can fa-
cilitate the users’ lives by providing information services, e.g., by obtaining information
from the Internet [YKPK13]. In the future, they may soon be used by demographically di-
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verse target groups with personal needs and preferences for activities like cooking, planning
leisure time, or physical rehabilitation. However, people still exhibit rather negative atti-
tudes toward service robots and show little willingness to integrate them into their everyday
lives [Gmb18, RE13, SBET16]. Thus, to increase users’ acceptance, user preferences have
to be taken into account [SPC* 16, Nie94]. However, previous work lacks a differentiated
analysis of demographically diverse users’ preferences.

Accordingly, we conduct a corresponding laboratory study in Chapter 6. More specif-
ically, we analyze preferences of users who differ in terms of age, gender, and even hair
color with regard to visual attributes of virtual assistants. To this end, we semi-automatically
generate virtual assistants that systematically vary in gender, age, hair color, hair length,
and clothing. Subsequently, we use these virtual assistants as stimuli.

Based on user preferences and a determined virtual assistant for each participant, we ex-
amine the evaluation of the virtual assistant with respect to its appearance and as a function
of task domain for different smart home contexts. Additionally, we examine the evaluation
of the virtual assistant with respect to the similarity users perceive between them and the
virtual assistants. Furthermore, we examine how the preferred virtual assistants are per-
ceived in terms of their warmth and competence. Moreover, we investigate the effect of
openness toward this assistive technology on the evaluation of the preferred virtual assis-
tants.

Finally, we conclude this thesis in Chapter 7 by summarizing our results and describing

limitations as well as possible directions of future work.



Contributions and Publications

In summary, the main contributions divided into the previously introduced parts are:

Character Reconstruction

e A structured analysis of individual design choices for template fitting methods. By
combining the most promising techniques, we derive an accurate template fitting
method. Extending our method by both an anisotropic bending model and an im-
proved reconstruction of the eye region, we derive an accurate face reconstruction
method.

Corresponding publication:
Jascha Achenbach, Eduard Zell, and Mario Botsch. Accurate Face Reconstruc-
tion through Anisotropic Fitting and Eye Correction. In Proceedings of Vision,
Modeling and Visualization, pages 1-8, 2015.

e A complete character generation pipeline that is able to digitally clone a real per-
son into a realistic, high-quality virtual human that can then be used for animation
and visualization in any standard graphics or VR engine. The whole reconstruction
process requires only a minimum amount of user interaction and takes less than ten
minutes on a desktop PC. This makes such virtual humans accessible to a wide range

of VR experiments in which they can be used as avatars or conversational agents.

Corresponding publication:
Jascha Achenbach, Thomas Waltemate, Marc Erich Latoschik, and Mario Botsch.
Fast Generation of Realistic Virtual Humans. In Proceedings of ACM Sympo-
sium on Virtual Reality Software and Technology, pages 1-10, 2017.

Craniofacial Reconstruction in Medicine

e A method for fully automatic forensic facial reconstruction based on dense statistics
of soft tissue thickness.

Corresponding publication:
Thomas Gietzen, Robert Brylka, Jascha Achenbach, Katja zum Hebel, Elmar
Schomer, Mario Botsch, Ulrich Schwanecke, and Ralf Schulze. A method for
automatic forensic facial reconstruction based on dense statistics of soft tissue
thickness. In PLOS ONE, 14(1), pages 1-19, 2019.
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e A multilinear model for bidirectional craniofacial reconstruction that can be evalu-
ated as well as fitted in just a couple of seconds. To foster further research in this
direction, we made our multilinear model publicly available.

Corresponding publication:
Jascha Achenbach, Robert Brylka, Thomas Gietzen, Katja zum Hebel, Elmar
Schomer, Ralf Schulze, Mario Botsch, and Ulrich Schwanecke. A Multilinear
Model for Bidirectional Craniofacial Reconstruction. In Proceedings of Eu-
rographics Workshop on Visual Computing for Biology and Medicine, pages
67-76, 2018.

Preferences for Virtual Assistants

e A thorough analysis of different user groups’ preferences for the visual attributes of
virtual assistants in various smart home contexts. We further investigate how the
perceived similarity between users and the virtual assistant’s appearance effects the
evaluation of virtual assistants. Additionally, we examine how preferred virtual as-
sistants are perceived in terms of their warmth and competence. Also, we investigate
the effect of openness toward this technology on the evaluation of preferred virtual
assistants.

Corresponding submission:
Jascha Achenbach, Friederike Eyssel, Charlotte Diehl, Birte Schiffhauer, Ralf
Wagner, Stefan Kopp, and Mario Botsch. Preferences of different user groups
for the visual attributes of virtual assistants. In ACM Transactions on Applied
Perception, 2019, under submission.
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514-528, 2017.
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ability Ratings. In Proceedings of International Conference on Intelligent Virtual
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2 Accurate Face Reconstruction

Thanks to the steady advance in acquisition technology, high-resolution 3D-scanning
is becoming more and more affordable, being based on either laser scanning, structured
light scanning, or multi-view stereo. The Kinect sensor and follow-up RGB-D cameras
have made 3D-scanning available even to everyday novice users. These technologies have
increased the desire to generate virtual clones of real persons that can be full-body “3D-
selfies” [LVG™13] or head models for interactive facial puppetry [WBLP11, CHZ14].
However, although surface reconstruction is a rather advanced and mature field of re-
search [BTS™14], reconstructing a complete and high-quality surface from noisy and in-
complete data is still a challenging task. Incorporating a suitable template model to the
reconstruction process enables disambiguation of insufficient data and provides a reason-
able surface completion in regions of missing data.

Template fitting is not only used for reconstructing human body scans [ACP03, LVG™13]
or head models [BV99, WBLP11, CWZ"14], but also to enable statistical shape analy-
sis [BV99, ACP03, CHZ14] or cross-parameterization [ZB13]. Consequently, a large va-
riety of template fitting methods that are conceptually very similar and that share many
algorithmic components have been proposed. To date, a structured evaluation of these
components is lacking.

We analyze and compare the individual design choices, and, by combining the most
promising techniques, we derive a template fitting method that provides more accurate re-
constructions compared to the typically employed algorithmic components. Nevertheless,
a faithful reconstruction of the eye region, which is of high importance for the perception
of virtual faces, is still challenging. This is mostly due to scanning artifacts (noise, occlu-
sions) caused by eye lashes or because of highly curved folds around eyelids, which are
problematic for template fitting.

We therefore extend our method by an anisotropic bending model that more faithfully re-
constructs strongly curved facial details. In addition, we further improve the reconstruction
of the eye region by a simultaneous constrained fitting of eyeballs and eyelids. The combi-
nation of these contributions leads to accurate reconstructions from multi-view stereo data.
We demonstrate this on a range of examples.

11



2 Accurate Face Reconstruction

My Contribution My contribution is a structured analysis of individual design choices
for template fitting methods and the derivation of an accurate template fitting method. In
addition, my contribution is the extension by an anisotropic bending model and the im-
provement of the reconstruction of the eye region. The face reconstructions in Figure 2.13
were rendered by Eduard Zell.

Corresponding publication:

[AZB15] Accurate Face Reconstruction through Anisotropic Fitting and
Eye Correction, VMV, 2015

2.1 Related Work

There is a lot of work dedicated to face reconstruction from images, video, RGB-D data,
laser scans, and multi-view stereo. Many approaches use an RGB-D sensor to reconstruct
face models [CWZ" 14, LKS14] and/or to animate them based on captured performance
data [BWP13, HMYL15, TZN"15]. However, their face reconstructions suffer from low-
quality in geometry and texture due to the inherent limitations of current RGB-D sensors.
High-quality face reconstructions can be achieved through multi-camera rigs and multi-
view stereo reconstruction [BBBT10, GFT* 11, FGT*16]. However, these approaches aim
at a static high-quality reconstruction and do not provide models that can be animated.
Other works use video input to generate dynamic face models, which are subsequently
animated based on the video stream [SWTC14, CBZB15, WBGB16, TZS*16, GZC*16,
OLY™"17]. Very recently, methods have been suggested that are based on neural networks
and that are able to reconstruct 3D human faces [TZK*17, TZG"18, YSNT18] or com-
plete heads [HSW*17] from a single image. For a comprehensive overview of 3D face
reconstruction methods from monocular 2D data, we refer the reader to the state-of-the-art
report of Zollhofer et al. [ZTG"18].

Surface registration is a fundamental technique for most face reconstruction approaches.
It aligns overlapping components of multiple scans of an object that have been captured
from different viewpoints in order to eventually obtain a complete model of the scanned
object. It is a fundamental research topic for computer graphics, computer vision, and re-
verse engineering in computer-aided geometric design. Early approaches considered rigid
alignment of range scans only. These approaches were variations of the classic iterative
closest point (ICP) algorithm [BM92, CM92, RLO1]. In the last decade, non-rigid regis-
tration of scans captured from deforming objects has been investigated intensively. Since
a detailed discussion of general non-rigid registration is out of scope for this thesis, we
refer the reader to Tam et al.’s [TCL™" 13] survey paper and to Chang et al.’s [CLM™10] and

Bouaziz et al.’s [BTP14] course notes.
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2.1 Related Work

In this chapter, we focus on template fitting, i.e., the non-rigid, deformable registration
of a given surface mesh to noisy and incomplete scanner data. Moreover, we focus on
3D-scans or RGB-D as input data and on general deformable registration of facial models,
rather than on skeleton-based articulated templates of full human bodies.

Several approaches successfully employ template fitting for reconstructing a consistently
triangulated animated mesh from a sequence of measured point clouds for successive time-
frames of an actor’s performance [WJH"07, LSP08, LAGP09, ZNI"14]. These methods
typically compute a template mesh for the first frame which is then deformed in order to
track the following frames.

Blanz and Vetter first proposed a PCA-based statistical face model for reconstructing
models from 3D scanner data or even from a single photograph [BV99, BSS07]. Similar
face fitting approaches have been proposed since then [THHIO6, PB11, YMYK14], some
of which are based on piecewise PCA sub-models. In [LKS14], a 3D face is reconstructed
from a single RGB-D frame of a person’s face by dividing the input depth frame into
semantically meaningful regions and searching the parts individually in a database. Our
work uses a PCA model as well but only as a prior for initialization.

In their FaceWarehouse project, Cao et al. [CWZ™14] generate an extensive database of
animatable face models (shape and pose variations) from Kinect scans of 150 individuals,
by deforming a facial template model to fit both the depth data and facial features detected
in the color image. Once a PCA model has been generated, it can be used as a prior to in-
crease the robustness of facial performance tracking (see, e.g., [WBLP11, CHZ14]). Since
then, more comprehensive face models have been proposed that are built from thousands
of 3D scans and combine a linear shape space with an articulated jaw, neck, eyeballs, and
blendshapes [LBB*17]. Ranjan et al. [RBSB18] suggest a versatile model with an hierar-
chical mesh representation that captures nonlinear variations in shape and expression.

Recently, Ichim et al. [IBP15] proposed a method for creating a textured 3D face rig
from picture and video input taken on a cell-phone. In contrast to them, we focus on high-
quality reconstruction of a neutral face from accurate 3D scanner data. Another approach
by Ichim et al. [IKNDP16] builds a user-specific volumetric face rig and employs it for
physics-based animation. This approach was extended in [IKKP17] to include a novel
muscle activation model that separates active and passive soft tissue layers. Finally, Berard
et al. [BBN'14, BBK'15, BBGB16] reconstruct high-quality models of eyes and eyelids
using (among other techniques) a non-rigid deformation approach.

Since all these methods for fitting a template model to scanner data can be considered
as generalizations of the rigid ICP algorithm [BM92] to non-rigid registration [ARV07,
BRO7], they naturally share many algorithmic components. Their objective function to be
minimized is typically composed of a fitting term, which attracts the template model to
the measured point cloud, and a regularization term, which prevents physically implausible

13



2 Accurate Face Reconstruction

deformations. The various approaches mainly differ in how these two components are
formulated and computed.

For the fitting term, correspondences between the point cloud and the template model are
typically found by simple closest point queries, but these might be computed in the direc-
tion of either scan-to-template (e.g., [ZB13]) or template-to-scan (e.g., [LAGP09]). The
fitting energy can then be computed based on Euclidean distances between correspond-
ing points (point-to-point) [BM92], distances from tangent planes (point-to-plane) [CM92,
RLO1], or combinations thereof (e.g., [LAGP09]).

While a robust space deformation should be used as regularization (e.g., [SSPO7] in
[LAGP09]) for registration of (incomplete) range images, we can employ a surface-based
deformation for the fitting of a (clean and complete) template model. This regularization
term might be based on a linearly elastic model (e.g., [SKRT06, BRO7, ARV07, THHIO6])
or a nonlinear measure of geometric distortion (e.g., [LSP08, LAGP09, HAWGO08, WIH 07,
BTP14, CWZ" 14, ZNI* 14]).

In the following, we first analyze the different design options for the fitting and regular-
ization term with respect to reconstruction accuracy and computational performance (Sec-
tion 2.2). We then propose an anisotropic bending model for the regularization (Section 2.3)
and a simultaneous fitting of eyeballs and eyelids (Section 2.4).

2.2 Template Fitting Framework

Our input data was acquired through multi-view reconstruction: From seven high-resolution
digital single-lens reflex camera (DSLR) images (Figure 2.1) we reconstruct a 3D point
cloud using the commercial software Agisoft PhotoScan [Agil7], resulting in about 1 mil-
lion points (Figure 2.2(a)). We denote these n input points by Pr = (py, . . ., Pn), their nor-
mal vectors by n;, and their RGB colors by c¢;. The camera images feature 18 Megapixels
and are taken from mid-range consumer DSLR cameras of type Canon 550D with 50 mm
lenses attached, respectively.

Our goal is to deform a template head model to fit the given scanner data. The tem-
plate mesh M consists of N vertices whose positions are X = (xi,...,Xy). During
the optimization we denote the current (deformed) vertex positions by x; and the origi-
nal (undeformed) positions by X;. Our template model is based on the FaceWarehouse
database [CWZ™ 14] and consists of about 12 k vertices, as shown in Figure 2.2(b).

In order to remove outliers caused by erroneous hair samples, we initially perform a
simple skin detection in RGB color space [KPS03] to prune any non-skin points. This
effectively removes not only outliers (e.g., due to scanning hairs), but also sample points
corresponding to beards or eyebrows so that these regions will be filled by the template data.
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2.2 Template Fitting Framework

Figure 2.1: Our custom-built face scanner is based on multi-view stereo and consists of 7
DSLR cameras.

(d) (e) ® @

Figure 2.2: Template fitting pipeline: Input point cloud, consisting of 1.4 M sample points
(a), template mesh from FaceWarehouse with about 12 k vertices (b), 66 automatically de-
tected facial features (c), corresponding 3D facial features (d), initial feature-based align-
ment (e), final fit after non-rigid registration (f), rendering with additional hair & eyes (g).

15



2 Accurate Face Reconstruction

If instead facial hair is to be reconstructed accurately, the method of Beeler et al. [BBN'12]
could be used.

Like all rigid or non-rigid ICP-based approaches [BM92], our face matching technique
requires a coarse initial alignment to converge to a meaningful result. We obtain a robust
and fully automatic initial alignment by detecting 66 facial landmarks £ in the input RGB
images (using [AZCP13]) and fitting the template model to them, as also proposed, e.g.,
by Cao et al. [CWZ*"14]. In contrast to them, we do not have to distinguish between
interior and contour features since we obtain reliable 3D-positions for all 2D-landmarks
by detecting and reconstructing the facial features around eyes, nose, and mouth from the
frontal image, while the other features are reconstructed from the side views (Figure 2.2,
(c)). We generate a PCA model based on 150 reconstructed heads in neutral expression
taken from the FaceWarehouse data [CWZ114]. Similarly to Cao et al. [CWZ"14], we
fit our template PCA model to the detected facial landmarks by determining the global
position, orientation, and scaling, as well as the PCA weights, in order to best match the
landmark positions in a (Tikhonov-regularized) least-squares sense (Figure 2.2(e)).

Concretely, we first optimize scaling s, rotation R, and translation t of the point cloud
Pr to align it to the template model by minimizing the sum of squared distances between
facial landmarks p;, [ € £, on the point cloud Pr and their counterpart vertices x; on the
template mesh M, i.e., we solve

argminz Ix; — s(Rp; + t)||* .

R,t,s ler

According to Horn [Hor87], this can be computed in closed-form. In a nutshell, the proce-
dure is to first mean-center the two point clouds involved, i.e., to compute

_ 1 _ 1
p = m ; & X = m ; X
P =P —DP X = X —X.
Next, a special 4 x 4 matrix
Sez + Syy + S22 Syz — Sy Sew — Sz Say — Sya
Syz — Szy Sez — Syy — Szz Say + Sya Szz + Sz
Su=S S+ Sm St Suy-Se  Sp+S, |
Szy — Sya Sz + Szz Sy + %y —Spe — Syy +Szz

where

Ser = > _(%)a(P)ay  Sey =Y (X)u(P1)y,  andsoon
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2.2 Template Fitting Framework

can easily be computed. Its (unit) eigenvector w.r.t. the largest eigenvalue is the quaternion
representing the optimal rotation R. The optimal scaling s is then given by

s= > %Rp /> bl 2.1

lel leL

The optimal translation vector t is the difference between the centroid X and the scaled and
rotated centroid p
t = x—sRp. (2.2)

In a next step we optimize for PCA weights. Note that the PCA model is of dimension d
(d = 10 in our case) and can be written as

H(b) = h+Hb,

where h is the mean head, H is the matrix containing the principal components in its d
columns, and b = (by,...,b,) contains the PCA parameters representing a head H (b).
Similarly to Cao et al. [CWZ" 14], we then fit the template PCA model to the facial land-
marks p; by choosing its PCA weights b to minimize

1 _ Ak o [ by \ 2
Epca(b) = EZHHZMhl—pIW + ;l“Z(G—D , (2.3)
k=1

lel

which leads to solving a linear least-squares problem. In the first term, H; and h; are the
rows of H and h representing the point h; corresponding to p;, that is h; = h; + H;b. We
use A, = 0.002 for the regularization term, where o7 is the variance of the kth principal
component.

After initialization, the deformable registration updates the vertex positions X', such that
the template model better fits the scanner points Pr (Figure 2.2(f)). This is achieved by
minimizing an objective function E¥,..(X) that consists of a fitting and a regularization
term:

Etaee(X) = Eut(X,Pp) + AregEreg (X, X) . (2.4)

The fitting energy Eg. penalizes the distance between the template X and the point-cloud
Pr (Section 2.2.1), and the regularization energy F.., penalizes the physical distortion
from the undeformed state X’ after initial alignment to the deformed state X’ (Section 2.2.2).
The minimization of (2.4) finds a compromise between a small alignment error and low
physical distortion, which is controlled by the parameter .

The deformable registration algorithm is summarized in Algorithm 1. In the spirit of
non-rigid ICP [ARVO07, LSPOS8], we alternatingly compute correspondences and minimize
(2.4), starting with a rather stiff surface (A, = 1) that is subsequently softened until
Areg = 10" to allow for more and more accurate fits.
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2 Accurate Face Reconstruction

Algorithm 1: Template Fitting

Initial alignment

while not done do

while not done do
compute correspondences

end

plastic deformation: X «+ X
end

deform model to minimize Ef;(X') + Areg Ereg (X X )

relax surface stiffness: A\jeg <= 0.1 - Mg

The main design decisions for ICP algo-
rithms are: (i) how to compute correspon-
dences, (ii) how to measure the fitting error,
and (iii) how to formulate the regularization
energy. In the following two subsections,
we analyze different options for each sub-
problem in order to find the method most
suitable for our task.

The analysis requires a synthetic dataset
with a known ground truth. We use a high-
resolution face model from [BHB'11] and
use vertices as sample points (n ~ 1M).
To analyze robustness with respect to vary-
ing amounts of noise, we add uniformly
distributed noise up to an amplitude of
£2.5mm to the model’s vertices and re-

Figure 2.3: Synthetic “scan” by taking
the vertices of a high-resolution face model
from [BHBT11] (left) and adding varying
amounts of noise (right: £2 mm).

compute (noisy) normal vectors from this data (Figure 2.3). Fitting accuracy is measured

as root-mean-square (RMS) error

rms(X, Pr) =

1 n

= 1% —pyl?

n ] J
j=1

from the clean non-noisy ground-truth points p; to the closest points x; on the deformed

template.
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2.2 Template Fitting Framework
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Figure 2.4: Comparison of template-to-scan and scan-to-template correspondences for
varying amounts of noise plotted as RMS error to non-noisy ground truth data (a). Scan-
to-template correspondences are clearly superior for noisy input data. The fitting results
(b) and (c) correspond to noise of + 1.5 mm. Their RMS errors are 0.7 mm and 0.1 mm,

respectively.

2.2.1 Fitting Energy

The fitting energy penalizes the distance between corresponding point pairs from X and
Pr, which we compute as simple closest point correspondences due to simplicity and
speed. These correspondences can be constructed either from template to scan or from
scan to template. The former finds the closest point in Pr for each of the N template
vertices x € X', whereas the latter finds the closest neighbor on the template mesh M for
each of the n points p € Pp. This closest point is usually located within a triangle of the
template mesh, which is expressed in terms of barycentric coordinates.

The lower computational complexity (O(N logn) vs. O(nlog N) for n > N) and the
simpler implementation is the reason that most approaches choose template-to-scan cor-
respondences (e.g., [LAGP09, WBLP11, BTP14]). However, a direct comparison on the
high-resolution synthetic face scan reveals that scan-to-template correspondences lead to a
more accurate reconstruction, in particular for noisy data (Figure 2.4). Although the em-
ployed uniform noise does not model the real noise characteristics of our/any scanner, com-
parisons on real data also show improved fits for scan-to-template correspondences (Fig-
ure 2.5). Although the overall fitting process is about 3 — 4 times slower using scan-to-
template correspondences (for our n and V), we chose this option since we prefer an accu-
rate over a fast reconstruction.

Since the quality of the alignment strongly depends on the choice of good correspon-
dences, many heuristics for pruning bad correspondences exist [RLO1]. We also employ
the typical pruning strategies, i.e., we discard correspondences that are on the boundary,
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2 Accurate Face Reconstruction

(a) Template-to-Scan (b) Scan-to-Template

Figure 2.5: For high-resolution scanner data, our scan-to-template correspondences (b)
yield more accurate reconstruction than the typically employed template-to-scan corre-
spondences (a). The color-coding visualizes the two-sided Hausdorff distance of scan and
template.

that have a distance above a certain threshold, or that have a normal deviation above a
certain threshold (typically 5 mm and 30°).

Once correspondences are found, the fitting energy penalizes their (squared) deviation,
which is measured either in a point-to-point or point-to-plane manner or measured using a
linear combination of the two. If we denote the correspondences as a set of pairs {(p;,X;)} .

J
with x; being the point on M closest to p;, the combined fitting energy can be written as

Bu(®) = > ull%s = pil + (1= ) (nf (&~ p)”

The first term measures point-to-point

distances, the second point-to-plane dis- — point-to-point (1 = 1)
| | — point-to-plane (;x = 0.1)

tances, and p blends the two. Note that,

e

o

@
T

due to correspondence pruning, the num-
ber of valid correspondences is, in practice,

z
T

smaller than n and should replace n in the

RMS error [mm)]

above equation.

Most recent non-rigid registration ap- L

0 0.5 1 1.5 2 2.5

proaches (e.g., [LSPO8, LAGP09, BTP14]) Noise [mm]

suggest using a combination of point-to-

point and point-to-plane metric (1 = 0.1), Figure 2.6: Comparison of pure point-to-

since this allows the template to “slide” Point and combined point-to-point/point-to-

along the point cloud and requires fewer it- Plane distance for the fitting energy for vary-

erations. ing amounts of noise, plotted as RMS error to

To analyze the performance of both ap- Non-noisy ground truth data.

proaches, we compare a pure point-to-point
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2.2 Template Fitting Framework

distance (1 = 1) with the combined distance (1 = 0.1) using several high-resolution scans
shown in this chapter. Our experiments confirm that the point-to-point distance requires
about 30 % more iterations than the combined distance measure. However, the point-to-
point distance is computationally faster because it results in three linear systems of size
N x N (the problem is separable in x/y/z). In contrast, the point-to-plane distance couples
the coordinates, resulting in one 3N x 3NV system. For the complete fitting process, the
point-to-point fitting took about one third of the computational time of the point-to-plane
variant on average. Since both methods converge to comparable fits (Figure 2.6), we decide
to use the faster option.

2.2.2 Regularization Energy

During the fitting process, the regularization energy E,., is responsible for ensuring the
physical validity of the deformed model by penalizing unwanted types of deformations,
typically by trying to keep the surface locally rigid. The two design options are (i) whether
to use a surface-based or space-based deformation and (ii) whether to use a linear or a
nonlinear deformation model.

Since we fit a clean template model to scanner data, we can safely employ a surface-
based deformation, which, in turn, allows us to employ well-established, discrete bending
models for the deformation energy.

In order to decide between a linear and nonlinear deformation model, we compare two
representative techniques on a synthetic head dataset with known solution. Our regulariza-
tion energy minimizes a discrete bending model by penalizing the Laplacian of the defor-
mation:

_ 1 N
Breg (X, X) = =) Ai[|Ax; — RiAK[* . (2.5)
il
The Laplacian Ax; is discretized using the cotangent weights and A; is the local Voronoi
area of vertex i [BKP10]. The per-vertex best-fitting rotations R; cancel out local rigid
transformation such that the model can deal with large deformations [SAQ7].

The linear deformation omits the rotations R; which turns (2.5) into a linear thin shell
model [BS08]. Since the point-to-point fitting energy is also quadratic in the unknown
vertex positions, minimizing the combined energy (2.4) requires solving three N x N
systems, which is very efficient. However, the linear model erroneously penalizes locally
rigid transformations which might prevent an accurate fit.

Our nonlinear model solves for vertex positions x; and local rotations R,; using alternat-
ing optimization (or block-coordinate descent). This method, as proposed in [SA07] and
sketched in Algorithm 2, alternatingly fixes the vertex position x; and computes the best
rotation matrices R;, and then fixes the matrices R,; and solves for the vertex positions Xx;.
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2 Accurate Face Reconstruction

Algorithm 2: Alternating Optimization

while not done do
Fix vertices X and find optimal rotations R

Fix matrices ‘R and solve for vertex positions X
end

While the best rotation matrices R; could be found by SVD polar decomposition [SA07],
following [BML*14], an easier closed-form solution can be found by replacing R;AX;
in (2.5) with Aﬂ—mﬁl” The latter sub-problem is quadratic in the vertex positions x; and
hence amounts to solving a sparse weighted linear least-squares problem.

Given an overdetermined system of linear equations Ax = b with a matrix A €
RP*? (p > q), a vector b € R, and the residual r = b — Ax, the linear least-squares
problem is finding x* € IR? so that

E(x) = Z( Z%%) = > nx)?’ = ||b— Ax|

=1 =1

is minimized. It is well known that the minimizer is given by the solution of the normal

equations
ATAx = A"b.

The weighted linear least-squares problem [Bjo96]

— zp:wz* (bz' - zq:Aijxj) Zwﬂ“z = Wb~ AX)H
i=1 j=1

weights the (squared) residuals, while W = diag(. .., w;,...). The normal equations
are then given by

ATWAx = ATWb.

Our sub-problem, i.e. minimizing (2.4) for vertex positions x; given matrices R, is
a weighted linear least-squares problem since it is of the general form

P1 pT

Hi 2 HT 2
w; 1T\ X + ... + w; Tri(X)
e TS ()

2 Wia i

Ex) =

with p = Zthl p; being the overall number of constraints and with additional weights

for the different energy terms.

43
Do Wit
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Figure 2.7: Comparison of linear and nonlinear regularization energy for varying amounts
of noise plotted as RMS error to non-noisy ground truth data (a). A nonlinear regularization
energy is more accurate. The color-coded distances (b) and (c) correspond to fits without
noise. Their RMS errors are 0.12 mm and 0.07 mm, respectively.

Solving our nonlinear model using alternating optimization is easy to implement, the con-
stant system matrix can be pre-factorized, and one can solve for x/y/z using three N x N
systems. The overall process has to be iterated until convergence is reached. In in our
experiments the process required about 2 — 3 iterations only.

The comparisons on the synthetic dataset of Figure 2.3 revealed that the RMS error of the
linear model is about twice as large as that of the nonlinear model (0.12 mm vs. 0.07 mm).
The difference is concentrated around mouth, nose, and eyes (Figure 2.7). The increased
accuracy of the nonlinear model comes at the price of a factor of about 10 in computational
cost. Since our primary goal is a precise reconstruction, we (like most recent approaches)

choose the nonlinear deformation model.

2.2.3 Hierarchical Optimization

To improve computational performance while simultaneously providing an accurate high-
resolution template fit, we employ a hierarchical optimization inspired by [ZNI*14]. Our
simple two-level hierarchy starts with the original template resolution of about 12k ver-
tices [CWZ114] on which we run the fitting algorithm from stiff (Areg = 1) t0 s0ft (A\eg =
10~7). After convergence, we apply one step of Loop subdivision to the template model, re-
sulting in about 46 k vertices, and perform one more inner loop with stiffness A\ee = 107".

To reduce costly correspondence computations, we follow Bonarrigo et al. [BSB14] and
sub-sample the point cloud Pr to a density that is four times higher than the vertex den-
sity of the template mesh. We perform this subsampling using an efficient voxelization
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2 Accurate Face Reconstruction

approach [RC11], with a voxel size that is ¥4 of the template’s mean edge length. When
we subdivide the template, the point subsampling is updated accordingly. In this context,
we verify Bonarrigo’s statement that using more points does not noticeably improve fitting
accuracy. This simple two-level hierarchy improved the performance from > 12min to

< 2min for our examples while accuracy remained unaffected.

2.3 Anisotropic Refinement

In the (typical) case of noisy input data, the stiffness parameter A, has to be chosen care-
fully in order to balance between underfitting (surface too stiff, imprecise fit) and overfit-
ting (surface too soft, reconstruction of noise). A sufficiently high surface stiffness yields
a smooth fit even for noisy data, but unfortunately also prevents the development of mid-
scale facial wrinkles and other high-curvature facial features. Those, however, are typically
anisotropically bent with a high maximum principal curvature and a rather small minimum
curvature. This is inherently difficult to fit with an isotropic bending model, which the
discrete Laplacian energy (2.5) represents.

We therefore propose switching to an anisotropic bending model in order to improve the
fitting for anisotropic facial features. Due to Polthier [Pol02], the discrete Laplacian of
vertex p (Figure 2.8(a))

Ax(p) = Z (cot g + cot Byy) (x4 — Xp)

(p.a)€E

can be decomposed into a sum of discrete, edge-based Laplacians of all edges 7 incident to
Vvertex p:
Ax(p) = > A%(i).
i=(p,*)
While the Laplacian A®x(i) of edge i is typically defined in the edge-based linear Crouzeix-
Raviart basis, it can be reformulated in terms of the vertex-based linear Lagrange ba-
sis [WBH™07], yielding the discrete edge Laplacian

A°x(i) = (cot vy + cotym)Xs — (cotyir + cotyy)x, +
(coty; + cotyk) X, — (cot vi; + cot Yim) X4,

where 7, are the incident angles of edge ¢ (Figure 2.8(a)). The edge Laplacian should be
normalized by the edge area A., which is 3 of the sum of the areas of its two incident tri-
angles. Interestingly, this formulation is identical to the differential edge operator proposed
by He and Schaefer [HS13].
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2.3 Anisotropic Refinement

isotropic

anisotropic

(a) Laplacian notation (b) Fitting results on real data

Figure 2.8: Notation for discrete Laplacians (a) and close-ups of fitting results (b) for
isotropic (top) and anisotropic (bottom) bending energies. The anisotropic bending, using
the Huber norm of edge Laplacians, yields more accurate fits of local facial features. The
color coding visualizes the two-sided Hausdorff distance between the mesh and the point
cloud.

To achieve the desired anisotropic fitting, we re-formulate the regularization energy (2.5)
in terms of edge Laplacians

1 _
Z A [[A%%(e) — ReAx(e)]l),

Ereg (X, X) = 4
e ¢ ecg

where we use the robust Huber norm ||-||,. R. are per-edge rotations to best-fit deformed
and undeformed Laplacians. This metric behaves like an /?>-norm below a certain thresh-
old A and like an ¢!-norm above (see Equation (2.6)), thereby allowing for stronger local
bending for some edges. The minimization of the Huber norm can be implemented as an
iteratively re-weighted ¢?> minimization [MB93], requiring 2 — 5 iterations until conver-

gence.

Let A € RP? b € RP,x € IR? as before and r = b — Ax be the residual. An

objective function

with

lri27 ’rz’ S h>
p(r;) = {? - (2.6)
hlri| =50, |ri|l > h,
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2 Accurate Face Reconstruction

being the Huber function, can be minimized by using an iteratively reweighted least-
squares algorithm [MB93]. The procedure is based on iteratively solving a weighted
least-squares problem and is given in Algorithm 3 [Bjo96]. When minimizing the

Huber function, the weight function is

17 |ri| S ha
EEC N ISR

fral’

Algorithm 3: Iteratively reweighted least squares

Let A € RP*? b € R, x € IR?
Let x(© = arg min ||b — Ax||* be an initial approximation

for k=0,1,2,...do
TZ@ = (b—Ax®);, withi=1,...,p
W, = diag(...,w(r™),..)
solve 6x®) from
arg min HWk(r(k) — Adx) H2
D) 5) 4 o
end

For all examples, we used a Huber threshold of 4 = 1075, Note that our anisotropic bend-
ing is similar to anisotropic fairing [HPO4], where certain edge Laplacians are weighted
down to concentrate curvature (instead of bending).

Figure 2.8 compares the isotropic and anisotropic bending models and shows that the
anisotropic model more accurately reconstructs facial details at the nose, mouth, and eye-
lids. Figure 2.9 shows further results on a synthetic noisy model with facial wrinkles'. It
can be seen that the isotropic model has problems with either under- or overfitting, while

the anisotropic model yields a better fit.

!'The scanner data in Figure 2.9 is from http: //www.3dscanstore . com.
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2.3 Anisotropic Refinement

(a) £1.5 mm noise added (b) L2 norm, A;eg = 1077

(¢) L2 norm, Ayeg = 1078 (d) Huber norm, Ayeg = 1077

Figure 2.9: Comparison of isotropic and anisotropic bending on a synthetic model with
added noise: The isotropic bending either does not fit the wrinkle well (b) or overfits the
noisy input (c, see mouth region). The anisotropic model does not suffer from overfitting
and reconstructs the wrinkle better. The RMS errors for (b), (¢), and (d) are 0.36 mm,
0.43 mm, and 0.28 mm.
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2 Accurate Face Reconstruction

2.4 Eyelids Correction

The eye region is perceptually one of the most cru-
cial parts of a virtual face. Unfortunately, in scanner
data, it is typically very noisy, such that the above
fitting strategies would typically fail around the eye-
lid (Figure 2.12). Due to the amount of noise in this
region, manually picked 3D correspondences be-
tween the template model and the point cloud (e.g.,
[ARVO07, WBLP11]) can cause either jaggy eye con-
tours for low stiffness values or inaccurate match-
ing for high stiffness values. We solve a combined
2D/3D fitting in order to correct for these problems.

In a first step, we fit 3D eyeballs. To this end, we
detect both eyes in the frontal image (Figure 2.2(c))
which can be done robustly using several computer
vision algorithms. We do so by considering the re-
gion around eyes given by the detected facial land-
marks during initial alignment. From the eye pixels,
we discard all that are not white/bright enough (be-
longing to the cornea) or that are classified as skin.
This effectively leaves us with only the pixels cor-
responding to the sclera, whose corresponding 3D
positions (known from the scanning) constitute two
point clouds that approximately lie on two spheres

(a) Detected eyes

(b) Segmented sclera

(c) Sclera 3D positions

(d) Fitted spheres

Figure 2.10: To fit 3D eyeballs we
detect both eyes in the frontal im-
age (a), segment the sclera (b) with
corresponding 3D position (c) and
fit two spheres to the sclera point
clouds (d).

(the eyeballs). After the initial PCA alignment (Figure 2.2(e)), we initialize two eyeball

meshes (spheres of radius 1.25cm) at the eye position of the template model. We then

iteratively fit these two spheres to the sclera point clouds in an ICP manner by adjusting

positions and (coupled) radii (Figure 2.10).

E3

Figure 2.11: We detect 2D features on the eye contour (left), compute 3D feature points

(middle), and use them as 3D fitting constraints on the template (right).
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2.5 Results

Given the precise fit of the eyeballs, it is possible to accurately define the contour of
the eyelids. We use seven feature points on each eye’s contour from the frontal photo-
graph (Figure 2.11, left). We mark those feature points manually, since the automatically
detected facial features are not precise enough. However, by using more advanced com-
puter vision algorithms this step can probably be automated. For each of these 2D feature
points, the camera calibration yields a viewing ray which we intersect with the fitted eyeball
to get a 3D feature point (Figure 2.11, middle).

The resulting 14 feature points f; act

as point-to-point constraints for the cor- é
responding vertices x; on the template %
model (Figure 2.11, right). A correspond- &
ing point-to-point fitting term 5
14 3

Eeye(X) = %Z Ix; — £ §

i=1 S

is added to the global energy (2.4) with g
weight Aeye = 0.1 and is used through- g
out the template fitting process. To further &
improve the eyelid reconstruction, we con- L%‘

strain all vertices on the interior of the tem-
Figure 2.12: Fitting an eyeball (pink) to

sclera points of the scan and using it to define

plate’s eyelids to lie exactly on the eyeball

spheres using the projective constraints of
Shape-Up [BDS*12]. The results in Fig- target positions on the eye contours improves

ure 2.12 show how our combined eyeball- the reconstruction of the eyelids as shown for

eyelid fitting considerably improves the re- W0 models (left and right).

construction of the eye region.

2.5 Results

Our template fitting framework is based on a structured analysis of the different algorith-
mic building blocks for non-rigid registration. For our framework, we combine the most
promising design choices. When fitting accuracy is the primary goal, our evaluation shows
that the fitting energy should use scan-to-template correspondences. Moreover, simple
point-to-point distances are fully sufficient in terms of fitting accuracy and provide perfor-
mance benefits when compared to point-to-plane distances. Regularizing the fitting with a
nonlinear deformation model leads to a more precise fit. Combined with the anisotropic
refinement and the eyeball/eyelid correction, our method yields accurate and detailed face
reconstructions in a couple of minutes (< 5 min for all our examples) on a desktop PC with
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2 Accurate Face Reconstruction

Figure 2.13: Three different examples obtained with our proposed non-rigid registration
technique by using anisotropic refinement and contour correction for the eyelids. Each
example shows the original scan, the fitted model, and a final rendering.

Intel Xeon CPU (4 x 3.6 GHz). Figure 2.13 shows more results obtained with our method,
which is based on multi-view stereo reconstruction. For each example, the image shows the
reconstructed point cloud, the obtained template fit, and a final rendering with additional
textures, eyes, and hair.

In this chapter, we derived an accurate template fitting method that provides accurate face
reconstructions from multi-view stereo data. With this method at hand, we continue with
presenting how to digitally clone a real person into a realistic high-quality virtual human.
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3 Fast Generation of Realistic
Virtual Humans

Today, virtual humans are widely used in innumerable contexts including computer
games, special effects in movies, virtual try-ons, medical surgery planning, and virtual
assistance. Virtual humans are especially important in the Virtual Reality (VR) context
for both virtual agents simulated by artificial intelligence as well as for avatars, the dig-
ital alter-egos of the users in the virtual worlds. Immersive embodied scenarios provide
ample possibilities for studying psychophysical effects caused by modifying avatar appear-
ance. Hence, e.g., altering self-perception and body ownership [SSSVB10, GFPMSSI10,
PSAS13, BS14, LLL15, LLR16, RWS*16, LRG"17] are common and interesting topics
in VR research.

Striving for realism and human-like appearance requires geometrically accurate meshes
and detailed textures, and the application of the resulting models in interactive scenarios
requires them to be animated: Their full-body posture, hand posture, eye gaze, and facial
expressions have to be controllable through suitable skeletal rigs and blendshapes, respec-
tively. To be widely employable, the resulting character models should be compatible with
standard game engines or VR frameworks, and the overall avatar creation should ideally be
fast enough to be performed during rapid prototyping or empirical studies.

However, despite the increasing availability of scanning technologies and the large body
of research on 3D-scanning and mesh reconstruction in both computer vision and com-
puter graphics, creating believable and animatable virtual humans in a short amount of
time is still a challenging problem. Existing approaches reconstruct static full-body “self-
ies” [LVG™13] without animation controls, full-body models without controls for hands
or facial expressions [BRLB14, BBLR15], or head models for facial puppetry without a
full body [WBLP11, CHZ14]. Approaches for the fast generation of characters with all
required animation controls are mostly lacking. In addition, many approaches focus on ge-
ometry reconstruction only and neglect the generation of high-quality textures from scanner
input.

In this chapter, we extend our approach for face reconstruction from Chapter 2 to full
bodies and present a complete character generation pipeline that is able to digitally clone a
real person into a realistic high-quality virtual human that can then be used for animation
and visualization in any standard graphics or VR engine. The whole reconstruction process
requires only a minimum amount of user interaction and takes less than ten minutes on a
desktop PC.
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3 Fast Generation of Realistic Virtual Humans

For 3D-scanning, we employ a custom-built camera rig with 40 cameras for the body
and our face scanner from Chapter 2 for the face. We extend the latter to 8 cameras for
a better coverage of the face region and compute dense point clouds through multi-view
stereo reconstruction. In order to robustly deal with noise and missing data, and to avoid
character rigging in a post-process, we fit a generic human body model to the user’s scanner
data. More specifically, we build upon the template model from Autodesk Character Gen-
erator [Autl4] which is already equipped with a detailed skeleton and skinning weights, a
rich set of blendshapes, as well as eyes and teeth. This template model is further enriched
by statistical data on human body shapes and, thus, yields a prior for the template fitting
process. By fitting the template geometry to the scanner data and transferring eyes, teeth,
skeleton, and blendshapes to the morphed template, our reconstructed models are ready to
be animated.

By construction, all our reconstructed characters share the tessellation of the template
model. Hence they are in dense one-to-one correspondence, which allows transferring of
properties between models. As one application example, we exploit this fact by scanning
subjects with and without clothing and then storing the clothes, i.e., the difference between
the two models. This allows us to easily and seamlessly transfer clothing from one char-
acter to another and largely reduces potential confounds caused by different cloths from
different avatars used, e.g., in perception studies. To keep our models simple and compati-
ble to any standard rendering engine and to enable highly efficient character animation, we
represent our characters by a single-layer mesh and employ standard skinning and blend-
shapes for body and face animation, respectively.

Overall, our contributions enable the generation of realistic and fully animatable virtual
humans in just a couple of minutes on a desktop PC requiring only a minimum amount of
user interaction. This makes the virtual humans accessible to a wide range of VR experi-

ments where they can be used as avatars or conversational agents.
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My Contribution The virtual human generation pipeline was developed in close co-
operation with Thomas Waltemate. I developed the non-rigid registration framework from
Chapter 2. The framework was extended jointly by Thomas Waltemate and me to a pipeline
so that the fitting to full bodies became possible. Further, Thomas Waltemate worked on
speeding up the pipeline to decrease the overall computing time to under 10 minutes. 1
worked on a faithful face reconstruction, including facial details and blendshapes. Addi-
tionally, I worked on the clothing transfer and implemented the texture processing tech-
niques presented in this chapter. Moreover, we worked together on the pipeline so that it
would work as automatically and reliably as possible. Finally, the full-body scanning rig
was designed and built by both of us.

Corresponding publication:

[AWLBI17] Fast Generation of Realistic Virtual Humans, VRST, 2017

3.1 Related Work

Due to the increasing availability of 3D-scanning solutions and the growing demand for
virtual human models, there is a huge body of literature on scanning, reconstructing, and
animating virtual characters. In the following, we focus on the approaches most relevant
to ours. We begin with techniques for reconstructing full body models. We then extend
the related work on face capturing methods from the previous chapter. Finally, we discuss

approaches for reconstructing animatable VR characters.

Full-Body Reconstruction

Several methods employ affordable RGB-D sensors (e.g., Kinect) for scanning and re-
constructing human bodies [TZL*12, LVG'13, SBKC13, FSR"14]. However, due to
the coarse and noisy data delivered by these sensors, their character reconstructions are
bound to a rather low quality. Very recently, methods have been proposed that obtain 3D
body models and texture from monocular video [AMX*18b, AMX™"18a] or a single im-
age [KBJM18, OLPM™18]. Since our goal is reconstructing realistic, high-quality virtual
humans, we instead base our framework on a multi-camera rig that can capture a subject
in a fraction of a second. Using multi-view stereo we then reconstruct a dense point cloud
from the camera data.

This point cloud could then be fed into a surface reconstruction method, followed by an
auto-rigging process for embedding a control skeleton and defining skinning weights [BP07,
FCS15]. However, the surface reconstruction might fail to faithfully capture delicate fea-
tures (e.g., fingers), causing the auto-rigging to fail. We therefore use a fully-rigged tem-
plate model that we fit to the scanner data using non-rigid registration.
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3 Fast Generation of Realistic Virtual Humans

Fitting a template model to a large amount of training data allows the construction of
a statistical model which can act as prior when fitting the template to scanner data. The
SCAPE model [ASK™05] is one of the first, most prominent, and most frequently employed
human body models. It has been extended in many ways [HLRB12, BRLB14, SBB07,
SHRB12, PWH"17] and has been applied in different scenarios including breathing an-
imation [TMB14], soft-tissue animation [LMB14], and estimation of shape and posture
from either a single image [GWBB09] or from RGB-D sequences [WHB11, BBLR15].

Many other statistical human body models have been proposed that can be roughly clas-
sified as triangle-based or vertex-based methods, depending on how they model posture
articulation and fine-scale deformation [ACP03, ACPH06, HSS*09, WPB*14, LMR"15].
Triangle-based methods have to solve a linear Poisson system to compute the deformed
vertex positions and are therefore incompatible to standard graphics engines. In contrast,
models based on per-vertex linear blend skinning, such as, e.g., SMPL [LMR*15] or S-
SCAPE [PWH™17], can readily be used in such engines. We therefore also base our model
on vertex-based linear blend skinning. However, in comparison to SMPL and S-SCAPE,
our model has a higher geometric resolution and provides fine-scale details such as fin-
gers, eyes, and teeth. Furthermore, it is equipped with a more detailed skeleton and allows
for hand and face animation. Recently, Romero et al. [RTB17] presented a fully articu-
lated body and hand model based on SMPL. In [KIL*16], a fully automated approach was
presented for reconstructing personalized anatomical models ready for physics-based ani-
mation. Their work focuses on the reconstruction of large and medium anatomical details,
leaving out parts like hands, toes, and the face, which are important in our context.

In order to place the skeleton within the model shape, SMPL learns a joint regressor
from a large amount of data. The resulting regressor represents joint positions as a linear
function of the model’s shape. Since our skeleton is more detailed than that of SMPL and
the training data is not available, we cannot use their regressor. Instead, we follow Feng
et al. [FCS15] and represent the joint positions as generalized barycentric combinations of
the template’s vertex positions. This is also a linear function.

While the above methods work well for reconstructing the geometry of human bodies,
they mostly neglect the texture reconstruction. This, however, is crucial for VR applica-
tions. Unlike the above methods, we reconstruct a high-quality texture from the recon-
structed geometry and the individual camera images of our scanner.

Face Reconstruction

Related work on face reconstruction has already been discussed in Section 2.1, with a focus
on deformable registration of static facial models to 3D-scans or RGB-D as input data.
Since we aim not only at high-quality geometry and texture but also at short acquisition
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time, we employ multi-view face scanning based on our method presented in Chapter 2. In
particular, we take the deformed template model, which was previously fit to the full-body
scan, and refine its face region by fitting it to the point cloud resulting from the face scan.

In the following, we focus on dynamic face models since we are interested in fully ani-
matable virtual humans. Dynamic facial animations are crucial for VR characters, e.g., for
speech animation or emotional facial expressions. With the industry standard being linear
blendshape models [LAR™14], the character generation pipeline also has to construct the
required set of FACS blendshapes [EF78]. For high-quality production without time con-
straints, these blendshapes are often created manually by artists or reconstructed by scan-
ning real actors performing these expressions [ARL109]. A faster process is enabled by
example-based facial rigging [LWP10], which generates personalized facial blendshapes
from a small set of example expressions. Since we want to keep acquisition and processing
time low, we scan the actor in neutral expression only and generate the full set of FACS
blendshapes by adjusting the template’s generic blendshapes to the deformed model using
deformation transfer [SPO4]. If acquisition and processing time is not that critical, recon-
structing a few additional expressions and using example-based facial rigging would be a
good compromise.

Avatar Reconstruction

While there are many approaches for reconstructing human body shapes or human faces
or human hands, only few previous works aim at reconstructing a complete virtual human
featuring animatable body, face, and hands.

Malleson et al. [MKK™17] present a single snapshot system for rapid acquisition of
animatable, full-body avatars based on a stereo RGB camera pair as well as a single RGB-
D sensor. While the total processing time is in the order of seconds, the body is a stylized
astronaut character that fits the body dimensions only roughly. Albeit face shape and texture
are also considered, the results are of rather low quality and lack facial details as only a
low-dimensional face space is considered for fitting.

Feng et al. [FRS17] present a system for generating virtual characters by scanning a hu-
man subject. Their model is equipped with a full-body skeleton rig and is capable of facial
expressions and finger movements. In direct comparison, their reconstruction process takes
about twice as long as ours and requires more manual effort. Blendshapes are generated by
explicitly scanning the actor in five different expressions, restricting the model to a few, but
nicely personalized blendshapes. In contrast, our method reconstructs the full set of FACS
blendshapes from a single face scan in neutral pose. It is thus compatible with standard
animation packages. On the downside, our blendshapes are more generic and not as actor-
specific. The biggest drawback of Feng’s method is that by construction each model has
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3 Fast Generation of Realistic Virtual Humans

Figure 3.1: Our custom-built full-body scanner (left) and face scanner (right) are both

based on multi-view stereo and consist of 40 and 8 DSLR cameras, respectively.

a different tessellation. This prevents statistical analysis and detail/cloth transfer between
models. In contrast, all our models share the tessellation of the initial template mesh.

3.2 Input Data

Our 3D-scanning setup is based on multi-view stereo reconstruction using a single-shot
multi-camera rig, since this minimizes acquisition time to a fraction of a second while at
the same time providing high-quality results in terms of geometry and texture. We built a
full-body scanner and a separate face scanner consisting of 40 and 8 mid-range consumer
DSLR cameras of type Canon 700D and featuring 18 Megapixels, respectively, as shown
in Figure 3.1. As already mentioned, we extend our face scanner from Chapter 2 to 8
cameras for a better coverage of the face region. As a good trade-off between low image
distortion and a large field of view, there are 35 mm lenses attached to our full-body scan-
ner and 50 mm lenses attached to our face scanner. However, due to space constraints and a
limited field of view, body scans must still be performed in A-pose instead of T-pose (Fig-
ure 3.2(a)). The cameras of each scanner are triggered simultaneously, and the resulting
pictures are subsequently downloaded from the cameras. We decided to use a separate face
scanner instead of to augmenting the full-body scanner with more cameras aiming at the
face region. Otherwise, the face cameras would have had to be manually adjusted to the
individual subjects’ heights.

The images of the 40 body cameras and of the 8 face cameras are automatically passed to
the commercial software Agisoft PhotoScan [Agil7] which computes two high-resolution
point clouds Py of the body and Pr of the face, as well as camera calibration data (Fig-
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St

(@ (b)

Figure 3.2: Computed point clouds from our full-body scanner, consisting of 3 M sample
points (a), and from our face scanner, consisting of 1 M sample points (b).

ure 3.2). Face scans usually consist of about 1 M points, and body scans usually consist
of about 3 M points. Since the template mesh has a limited resolution of 21 k vertices, we
uniformly sub-sample the two point clouds to 40 k and 80 k points, respectively. This sam-
pling resolution is chosen such that the resulting point density is still about twice as high
as the vertex density of the template mesh. This speeds up the fitting process significantly
without noticeably sacrificing geometric fidelity. When it is clear from the context, we omit
the index B and F' and just write P = (p1, ..., p,). Note that each point p; is equipped
with a normal vector n; and RGB colors c;.

Since the bottoms of the feet are not visible for the full-body scanner, these regions
cannot be captured properly. The missing points below the feet can easily result in an
erroneous fitting of the feet regions. In contrast, the floor around the feet is usually scanned
quite well. We exploit this by detecting the floor plane and removing its points from the
point cloud Pp. We then uniformly sample the detected floor plane underneath the feet
region. This proved to be effective to capture the real extent of the feet and keep the feet
on the floor during fitting without special treatment.

We picked a character from Autodesk Character Generator [Autl14] as a template model
because these characters are already equipped with facial blendshapes, eyes, teeth, and a
skeleton with corresponding skinning weights. However, any other template model with
skeleton and blendshapes would work as well. The template mesh consists of N ~ 21k
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vertices with positions X = (xi,...,Xy). A bar denotes vertex positions in the unde-
formed state: X = (Xy,...,Xy).

In order to incorporate prior knowledge on human body shapes into the reconstruction
process, we integrate shapes from multiple databases by fitting our template character to
the databases’ registered body models. We use 10 scans of different subjects standing in
A-pose from the FAUST database [BRLB14], and we include 111 scans from [HSS*09].
Moreover, we add 82 synthetic models with different shapes from Autodesk Character
Generator. After fitting our template model to these models, they all share the same tessel-
lation, allowing us to compute a ten-dimensional PCA subspace based on vertex positions
of posture-normalized characters in T-pose. This PCA will act as initialization and regular-
ization for the body fitting described in the next section.

3.3 Body Reconstruction

After computing and post-processing the point cloud Pp of the full-body scan, the next
step is to align and fit the template model to this point cloud. As in most template fitting
approaches, this fit is robustly performed in several steps: In the initialization phase, we
optimize the alignment (scaling, rotation, translation), pose (skeleton joint angles), and
PCA parameters for the ten-dimensional shape space. Afterwards, a fine-scale deformation
fits the model to the data. Once the geometry fit is done, we have to compute texture,
correct joint positions, and pose-normalize the model.

3.3.1 Initialization

Initially, the point cloud P and the template are in different coordinate systems and have
different poses because the template is in T-pose and the body scan is performed in A-
pose. To bootstrap the template fitting procedure, we manually select nine landmarks £
on the point cloud Pg. Their corresponding vertices on the template model have been pre-
selected (Figure 3.3). The landmarks have been chosen to ensure that important body parts
like head, hands, and feet are fitted properly.

In the first step, we optimize the alignment and pose of the template model in order to
minimize the squared distances between these nine landmarks on the template model and
their corresponding landmarks in the point cloud. To this end, we alternatingly (a) com-
pute the optimal scaling, rotation, and translation [Hor87] as explained in Section 2.2 and
further (b) optimize the joint angles using inverse kinematics based on linear blend skin-
ning [Bus04]. This procedure is iterated until the relative change of the squared distances
falls below 0.05. This initialization process is depicted in Figure 3.4, (a) and (b).
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3.3 Body Reconstruction

Figure 3.3: Nine landmarks are selected manually on the full-body point cloud (top). The
landmarks’ counterpart vertices on the template model have been pre-selected (bottom).

The landmark-based fit gives us a good estimate of scaling, rotation, translation, and
joint angles. We further optimize these variables by additionally taking closest point corre-
spondences into account. These are computed by finding, for each point in P, its closest
point on the template. We prefer these scan-to-model correspondences over model-to-scan
correspondences, since they were shown to yield more accurate fits in Section 2.2.1. As
usually done in ICP-based registrations, we prune unreliable correspondences based on
distances and normal deviations (typically 10 cm and 50°). We employ the same alternat-
ing optimization as before to optimize alignment and pose, this time minimizing squared
distances of landmarks and of correspondences (Figure 3.4(c)).

After convergence of the alignment and pose optimization, we add the PCA weights
to the active variables and thereby optimize the geometric shape in the ten-dimensional
PCA space. We do this by, again, minimizing squared distances between landmarks and
correspondences (see Sections 2.2 and 4.2.4). As our PCA model is pose-normalized in
T-pose, the PCA-fitting is performed in T-pose. To this end, we first compute closest point
correspondences to the template model in the (current) optimized pose. Since each corre-
sponding point from the point cloud has a direct correlation with its nearest triangle from
the template, we transform those to T-pose, just as the template model itself, using linear
blend skinning. As a result, the correspondences as well as the template model are in T-
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(d) (e) ®

Figure 3.4: We first optimize alignment (scaling, rotation, translation: (a)) and pose (joint
angles: (b)) based on nine manually selected landmarks. This fit is refined by incorporating
closest point correspondences (c) and by alternating with PCA regularization in T-pose (d).
After this initialization, we perform a fine-scale deformation to the point cloud (e—f).

pose so that we can perform the PCA-fitting (Figure 3.4(d)). The shape-change caused by
adjusting PCA parameters requires adjusting the skeleton’s joint positions. To this end,
we represent joint positions by mean value coordinates [JSWO05] with respect to the vertex
positions of the template mesh. Joint positions are then a linear function of vertex positions
and hence also a linear function of PCA parameters. After one PCA-fitting step, we reapply
the (current) optimized pose to the template model and continue with optimizing alignment
and pose parameters in an alternating fashion. Two iterations of this procedure are usually

sufficient for a good initial fit of shape and pose.
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3.3 Body Reconstruction

3.3.2 Deformable Registration

With the point cloud and template model in good initial alignment, we perform a fine-scale
non-rigid registration following the approach from Chapter 2. To this end, we minimize
the energy

Erody(X) = MmBim(X) + AaeEa(X) + g Ereg (X, X) . (3.1)

The three energy terms are explained below.

The landmark term Ey,, penalizes the squared distance between the nine manually se-
lected landmarks p;, [ € L, in the point cloud and their counterpart vertices x; on the
template model

Bin(®) = =3 I mil
e

The fitting term Eg, penalizes the squared distance between corresponding points x. and

Pc
1 2
Eﬁt(‘)() - < wCHXC _ch ; (32)
ZCEC We cezc

where C is the set of closest point correspondences and w,. € [0, 1] are per-correspondence
weights, as discussed below. The closest points x. are expressed as barycentric combina-
tions of the template vertices x;.

The regularization term E,., penalizes the geometric distortion from the undeformed
model X (the result of the initialization phase of Section 3.3.1) to the deformed state X',
measured by the squared deviation of the per-edge Laplacians

Brug (X, ) = ﬁ S A, [[A%(e) - RoA(e)|? (33)
ce€

Analog to Section 2.3, A, is the area associated to edge e, and R, are per-edge rotations
to best-fit deformed and undeformed Laplacians. We prefer the edge-based Laplacian over
the standard vertex-based Laplacian since, in our experiments, it converges slightly faster
to very similar results. Note that we do not employ the anisotropic bending model of Sec-
tion 2.3 since the template’s body region is too coarse to benefit from the (computationally
more expensive) anisotropic wrinkle reconstruction.

The three coefficients A, A, and A, are used to guide the iterative fitting procedure.
The surface stiffness is controlled by A..;. In the beginning, only the manually specified
(hence quite reliable) landmarks are taken into account using Ayee = 1, Ay = 1, and
At = 0. We then gradually decrease A, after each iteration until Aoy = 1075, After
these iterations, the template is sufficiently well aligned to yield reliable closest point cor-
respondences. We therefore continue with A\, = 107 and A\, = 1 and additionally set

41



3 Fast Generation of Realistic Virtual Humans

i
(a) (b) (©
Figure 3.5: Per-correspondence weights in the fitting term allow fitting of only the face

region (a) or mostly the body (b) and down-weighting of the (typically poorly scanned)
hands (¢).

As¢ = 1 to also consider Eg¢. Then, both A, and A, are gradually decreased (A, < Am

2
and Aeg < 225) until Aoy = 1077,

During the fitting procedure, we weight down parts of the template using the per-

correspondence weights w. in Eg; in order to prevent unreliably scanned regions from
being fitted too strongly (Figure 3.5). We weight down the hands, since they are usually
not scanned well, and the face region to allow us to add more detail when combining with
the face scan in Section 3.4.

The nonlinear objective function (3.1) is minimized by solving for vertex positions X;
and per-edge rotations R, using alternating optimization (a.k.a. block-coordinate descent)
[BTP14, AZB15], as presented in Section 2.2.2. Figure 3.4(f) shows the final result of the
body fitting procedure.

3.3.3 Texture Reconstruction

After the coarse-scale initialization and the fine-scale non-rigid registration, the template
has been accurately aligned and deformed to fit the point cloud of the body scan. We
pass the deformed template model to Agisoft PhotoScan, which makes use of the existing
texture layout from Autodesk Character Generator and computes a high-quality 4k x 4k
texture based on the 40 camera images and their calibration data (Figure 3.9(a)).

Since the camera images typically do not provide meaningful texture information for
eyes and teeth, we use a pre-selected image mask to preserve the corresponding texture
regions, i.e., to use eye and teeth texture from the generic template texture.
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Due to occlusions and delicate geometric structures, scanning artifacts can easily occur
for the fingers. This can result in an inaccurate template fit and then to misaligned textures
for the fingers. We reconstruct a plausible hand texture by searching for the best-matching
hand texture in Autodesk Character Generator and using this hand texture instead. We
identify the best-matching texture based on the Euclidean distance between RGB values
of the backs of both hands, the Autodesk texture, and the one of the scanned subject (the
latter is fitted reliably due to the manually selected landmark on the hands). Here, it turned
out to be beneficial to distinguish between male and female hand textures. The obtained
hand texture area is then seamlessly merged into the reconstructed full-body texture using
Poisson image editing [PGBO03].

In a nutshell, Poisson image editing works as follows. Let S be one channel of the
source image (Figure 3.9(b)) and 7" one channel of the target image (Figure 3.9(a)).
We segment a common mask for S and 7’ to outside, boundary 0f2, and inside pixels
Q) (Figure 3.9(c)). Then, the problem is finding (unknown) inner pixels / over §2 in
T that we want to seamlessly combine with 02 in 7" and that should resemble the
appearance of 2 in S. Given a guidance field GG, the mathematical problem boils down
to solving a Poisson equation with Dirichlet boundary conditions

Al =divG over 2, with |gq = Tsq,
where
Al(x,y) = =4l (z,y) + Iz + 1,y)+ [(x — L,y)+ [(x,y+ 1)+ I(z,y — 1).
Since we are looking for a symmetric positive definite matrix, we instead solve
—Al = —divG.
With G = V.S being the gradient field taken from the source image, it remains to solve

—Al = —AS over ), with |gq = Tsq,

for new pixel colors for each channel separately.

Finally, the texture area below the armpits is typically corrupt as the armpits are not suffi-
ciently visible from our cameras. We smoothly fill these texture regions by harmonic color
interpolation which we compute by solving a sparse linear Laplace system with suitable
Dirichlet color boundary constraints, similar in concept to Poisson image editing [PGBO03].
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3.3.4 Pose Normalization

Due to the non-rigid shape deformation, the template’s joints are not at their correct posi-
tions anymore. We again adjust the joint positions based on the pre-computed mean value
coordinates, this time representing the joint positions as a linear function of vertex posi-
tions (instead of PCA parameters). Employing mean value coordinates for this mapping
ensures that joints are placed at meaningful positions even for strong shape deformations.

After mapping the skeleton to the deformed template (in scan pose), we use it to undo the
pose fitting, i.e., to put the model into T-pose, as it is usually required by animation tools.
This is an important step, particularly for character animation via motion capturing since
these systems usually rely on a standardized T-pose as initialization. To make sure that both
feet of the resulting character are standing exactly on the floor after pose-normalization, we
first rigidly translate the model to put the (pre-selected) sole vertices onto the floor. Then,
we non-rigidly deform them onto the floor plane while allowing only the feet to slightly
deform, regularized by the Laplacian energy (3.3).

3.4 Face Reconstruction

After fitting the template model to the full-body scan Pg, we next improve the geometry
and texture of its facial region by fitting it to the face scan Py and exploiting its eight close-
up camera images. We closely follow the face reconstruction approach of Chapter 2 but
adjust it to the combined body-and-face reconstruction setup and extend it by blendshape
reconstruction.

3.4.1 Initialization

Since the face scan and the body scan are not aligned to each other, the template model is
not aligned to the face scan either.

Following our approach from Section 2.2, we automatically detect facial landmarks in
the input camera images using [AZCP13]. The detected facial landmarks are then mapped
to 3D points in P using the camera calibration data. Thereafter, in order to align the tem-
plate (Figure 3.6(a)) to the face scan, we find an optimal similarity transformation (scaling,
rotation, and translation) [Hor87] by minimizing squared distances between the detected
3D facial landmarks and their (pre-selected) counterparts on the template model. After-
wards, we refine scaling, rotation, and translation by iteratively finding closest point cor-
respondences and computing the optimal similarity transformation in the usual ICP man-
ner [BM92] (Figure 3.6(b)). Note that we transform the whole full-body template based on
landmarks and correspondences of the face scan P only.
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(@ (b) (© (d)

Figure 3.6: After our body reconstruction, we improve the geometry of the facial region
by initially aligning the whole-body template (a) to the face scan (b) and performing a
fine-scale non-rigid deformation. Final fit with (¢) and without (d) face scan.

3.4.2 Deformable Registration

After the initialization, the template model and the facial point cloud Pr are sufficiently
well aligned to start the fine-scale non-rigid deformation (Figure 3.6, (c) and (d)). To this
end, we minimize the energy

Eface(X) - )\lmElm(X) + )\ﬁtEﬁt(X) + )\regEreg(Xy‘X_') + )‘mouthEmouth(X) .

Here Ej; again represents closest point correspondences and is weighted by A\gy = 1.
We again employ per-correspondence weighting in the fitting term Fjgq, such that only the
face and ear vertices are dragged toward the face scan (Figure 3.5(a)).

Ejy, represents a landmark term, weighted by A, = 1, and includes three types of land-
marks: Besides the automatically detected facial features, we manually pick two landmarks
on each ear to more precisely fit the ears. Furthermore, we manually pick seven contour
points for each eye in the frontal face picture and compute landmarks for eyelid reconstruc-
tion (see Section 2.4).

The regularization term F,, is the same as for the body fitting. It is initially weighted by
Areg = 1 and is gradually decreased to Ayeq = 10~? during the iterative fitting procedure.

We observed that it is not guaranteed that the mouth stays closed during fitting. We
therefore add an energy term preventing contour points on the upper/lower lip from diverg-
ing

11

1 u l

Emouth(X) = ﬁ ZHXE ) — Xz( )||2 ’
i=1
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where {xgu), xl(-l)} are 11 pairs from upper and lower lip, respectively. The point pairs are
pre-selected on the template mesh. This energy term is weighted by Apoutn = 0.5.

Note that, at this stage, we optimize the vertices of the head region only while keeping
all other vertices fixed by removing them from the linear systems. Analogous to the body
fitting step we solve the nonlinear optimization using alternating optimization for vertex
positions and edge rotations. Analog to our body reconstruction, we do not employ the
anisotropic bending model of Section 2.3 because the template’s face region is too coarse

to benefit from the anisotropic wrinkle reconstruction.

3.4.3 Facial Details and Blendshapes

Similarly to [IBP15], we adjust the tem-
plate’s teeth by optimizing for anisotropic
scaling, rotation, and translation based on
the deformation of the mouth region ver-
tices V from the undeformed template to
the deformed and fitted mesh. The compu-
tation for anisotropic scaling in x-direction
turns Equation (2.1) into

Sz = Zi’l,x(Rf)l)x Z‘ﬁl,xﬁ ) Y

lev lev
Figure 3.7: We adjust the template’s teeth
with s, and s, being computed similarly. 4p4 eyes to fit the deformed mesh. The mouth

Moreover, Equation (2.2) turns into is opened to show the teeth.
¢ B sOI7 0 8 R
= X — S .
( 0 (;J Sz) P

We also transform the eyes by optimizing for isotropic scaling, rotation, and translation
for each eye individually. Again, this transformation is based on the deformation of the
individual eye region from the undeformed to the deformed mesh (Figure 3.7).

Face animation requires a suitable set of blendshapes, which represent the face in dif-
ferent expressions, typically consisting of the FACS blendshapes [EF78] and of visemes
for speech animation. Since we only scan the actor in a neutral facial expression, we have
to “invent” a proper set of blendshapes. Since facial expressions are similar across differ-
ent individuals, we transfer all blendshapes from our generic template model to the fitted
model using deformation transfer [SP04], similarly to [WBLP11]. This transfers the de-
formation from the template model (generic neutral — generic expression) to the target
model (Figure 3.8).
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3.4 Face Reconstruction

Figure 3.8: For our fitted model (a, bottom), we compute a set of blendshapes (b, bottom)
by deformation transfer. To this end, we transfer the deformation from the template model

template model

target model

(a) Neutral (b) Expressions

(top, a — b) to the target model (a, bottom) for all expressions.

Deformation transfer computes the deformation between an undeformed source mesh
S and its deformed state S and transfers it to another target mesh 7 to get a deformed
version 7.

To this end, an affine source deformation S; € R**? (called deformation gradient)
is computed for each triangle ¢; € S that maps triangle edges to ¢; € S and consists of
the rotational, stretch, and shear parts of the deformation.

Given a target mesh 7T, the goal is to find new vertex positions for 7 such that the
triangles’ deformation gradients T; for 7 match those of the source deformations S; in
a least-squares sense. Mathematically, this boils down to solving a linear least-squares

problem for 7’s unknown vertex positions [SP04].

Note that our blendshapes are rather generic since they transfer the template’s expression
to the scanned person. Feng et al. [FRS17] instead scan additional expressions and use
those as (highly personalized) blendshapes, but they do not generate additional ones. A
good compromise would be to add a small number of scanned example expressions to the
deformation transfer process as is done by example-based facial rigging [LWP10]. This,
however, increases the acquisition time.



3 Fast Generation of Realistic Virtual Humans

(a) (b) (© (d)

Figure 3.9: Textures computed from the camera images of the body scan (a) and the face
scan (b). Since the face region is more accurately represented in the latter, it is extracted
using a pre-computed image mask (c) and seamlessly copied into the body texture through
Poisson image editing (d).

3.4.4 Texture Reconstruction

Analogous to the body fitting step, we generate a 4k x 4k texture from the eight camera
images of the face scanning session using Agisoft PhotoScan. This yields an accurate
high-quality texture, but only for the face region. We therefore extract the face region
using a pre-selected image mask and then seamlessly copy it into the full-body texture
using Poisson image editing [PGBO03] (see Figure 3.9 and Section 3.3.3). As mentioned
before, we keep the texture for eyes and teeth from the original texture. The luminances of
these regions are adjusted so that their mean luminances coincide with the mean luminance
of the face. This adapts the texture of teeth and eyes to the lighting conditions of the scan.
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3.5 Results

We tested our virtual human generation
pipeline on a large set of subjects, and our
approach reliably produced convincing re-
sults for all of them. A representative sub-
set can be seen in Figure 3.11 and in the
accompanying video.

The use of multi-view stereo reconstruc-
tion allows us to reconstruct both accurate
geometries as well as high-quality textures.
As can be seen in Figure 3.10, addition-
ally incorporating our dedicated face scan-
ner significantly improves the visual qual-
ity of the face region, since it was scanned
at a higher resolution. A comparison of
a captured image from the body scanning
session with the personalized virtual human
is depicted in Figure 3.12.

Our reconstructed characters can read-
ily be animated in any standard graphics
or VR engine since they feature a standard
skeleton for full-body and hand animation
as well as a standard set of blendshapes for
face animation. The accompanying video
demonstrates that our characters can effi-
ciently be animated and rendered in a real-
time scenario. Figure 3.13 and the accom-
panying video show one of our scanned

B

Figure 3.10: Illustration of the face re-
gion reconstructed from the full-body scan
only (left) compared to the face region re-
constructed by additionally incorporating the
dedicated face scanning (right). For a fair
comparison, we did not down-weight the face
region when fitting to the full-body scan only
(cf. Figure 3.5(b)).

characters used as a conversational virtual agent, where face and body animation are crucial

to enable the agent to talk, perform gestures, and show facial expressions.

Our method also has some limitations: Texture artifacts may still occur in regions that are

not visible from more than one camera, as is the case for all photogrammetry approaches.

The most critical areas are the armpits and the hands, but the crotch and the inner parts of

the arms can also be problematic. These issues can be overcome by using more cameras.

More cameras would lead to a better coverage for texture data at the expense of longer

computation times. Furthermore, we do not remove the scene lighting during scanning
from the albedo textures, as done, e.g., in [BRLB14].
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Figure 3.11: We generate realistic virtual humans from real persons through multi-view
stereo scanning. The resulting characters are ready to be animated through a skeletal rig and
facial blendshapes and are compatible with standard graphics and VR engines. The whole
reconstruction process requires only minimal user input and takes less than ten minutes.
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Figure 3.12: Comparison of a photo from the body scanning session (left) with a render-
ing from the generated virtual human (right).

Figure 3.13: Our virtual humans can be directly used as expressive conversational agents;

They are able to gesture, talk, and to show facial expressions and emotions.
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3.5.1 Performance

On average, the processing of a
single character takes about ten
minutes from scan to a complete
animatable avatar. See Table 3.1
for detailed information about the
computation times needed for our
sub-processes. The times were
measured on a desktop PC with
Intel Xeon CPU (6 x 3.5 GHz) and
a Nvidia GTX 980 GPU.

The computationally most ex-
pensive part of our template fitting
procedure is the computation of
the closest point correspondences
in each fitting iteration. While this
can be accelerated by using a kD-
tree or a similar space partitioning
technique, we found that a sim-
ple linear search implemented on
the GPU provides a much higher
speed-up for the model complex-
ities in our application. In com-
parison to a CPU-based kD-tree,
our straightforward GPU imple-
mentation of a brute-force search
is about 12 times faster. A GPU-
based implementation of a spatial

Process Approx. time
Face scanning 1/10s
Transfer images from face scanner 15s
Full-body scanning 1/10s
Transfer images from body scanner 80s
Compute face point cloud Pr 15s
Compute body point cloud Pg 75s
Manual selection of landmarks 120s
Automatic selection of facial features 60s
Fit face geometry 20s
Fit body geometry 35s
Compute face texture 45
Compute and merge body texture 100s
Compute facial blendshapes Ss
Overall ~ 10 min

Table 3.1: Time needed for the sub-processes of our

pipeline.

hierarchy would probably lead to an even greater speed-up, but would also require a con-

siderably more complex implementation.

3.5.2 Clothing Transfer

Due to their construction by fitting the same generic template model to scanner data, all our

models share the same tessellation and hence are in one-to-one correspondence. This al-

lows transferring of arbitrary per-vertex or per-texel properties between models. We exploit

this for transferring clothing.
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Similar to [PMPHB17], we extract and
store clothing as the difference (in geome-
try and texture) between a character wear-
ing minimal clothing and the same charac-
ter wearing a desired set of clothes. This
clothing can then be transferred to another
character, as shown in Figure 3.14.

Concretely, the regions of the texture
from the source character that represent
the clothing-of-interest are just copied to
our target character’s textures. In our
pipeline, we segment clothing either man-
ually or automatically by wearing a green
suit. For transferring shape, the differ-
ence between a model with clothing-of-
interest and the same model without cloth-
ing is computed and subsequently added
to our character that is to be dressed. In
our experiments, this difference was ei-
ther based on simple subtraction of ver-
tex coordinates [PMPHB17] or deforma-
tion transfer—comparable to our gener-
ation of facial blendshapes as presented
in Section 3.4.3. While both approaches
give visually very similar results, we com-
puted the models in Figure 3.14 by defor-
mation transfer.

Additionally, Figure 3.15 shows cloth-
ing transferred to reconstructed subjects of

%

Figure 3.14: After reconstructing Subject
A with both minimal clothing (top left) and
clothing-of-interest (top right), we transfer
this clothing to another Subject B with mini-
mal clothing (bottom left) in order to get Sub-
ject B with the clothing from Subject A (bot-
tom right). All models are visualized in A-
pose, while the transfer is performed in T-

pose.

very different shapes. Moreover, Figure 3.16 demonstrates layered clothing transfer done

by gradually adding clothing in an arbitrary sequence.

Note that, in contrast to [PMPHB17], we still represent our character models as single-

layer meshes, i.e., we bake the clothing into the model’s geometry and texture. While

this leads to less realistic cloth animations, it preserves the computational efficiency and

compatibility with standard graphics engines.

While being a comparatively simple application, the ability to control the clothing of vir-

tual humans is crucial in experiments with scanned virtual characters as it allows factoring

out perceptional effects caused by different clothing styles of the scanned subjects.
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)

Figure 3.15: Examples of transferred clothing from a reconstructed subject wearing a
green suit with the desired clothing (left) to two reconstructed subjects of different shapes

(middle and right).

(a) (b) (©

(d) (e ®

Figure 3.16: Example of layered clothing transfer. We scanned a subject wearing only
a green suit, and we scanned the same subject wearing the green suit in combination with
individual pieces of desired clothing (a—c). This clothing can be transferred to a target
character in a layered fashion by gradually adding clothing in an arbitrary sequence (d—f).
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3.5 Results

In this chapter, we presented a fast and reliable pipeline to digitally clone real persons
into realistic virtual humans. Our pipeline has already been used successfully in several
works [WGR™18, LRG"17]. This finalizes the first part of this thesis. In the following
chapter, we build on our accurate template fitting method and explore virtual humans in the
medical context.

55






Part Il

CRANIOFACIAL RECONSTRUCTION
IN MEDICINE

57






4 Automatic Forensic Facial
Reconstruction

Facial reconstruction is mainly used in two principal branches of science: forensic sci-
ence and archaeology. Remains of a human skull act as input to reconstruct the most likely
corresponding facial appearance of the dead individual to enable recognition.

Traditional methods for facial reconstruction in forensic science and archaeology rely
on manually sculpturing a moldable substance onto the replica of the unknown skull using
anatomic clues and reference data. Claes et al. [CVDG™'06] consider this a highly subjec-
tive procedure requiring a great deal of anatomical and artistic modeling expertise. The
result is often limited to a single reconstruction because it is very time consuming.

Computer-based methods can provide consistent and objective results and also allow
multiple reconstructions using different meta-information, such as age or weight because
a reconstruction can be accomplished in a short time [CVDG'06]. In her comprehensive
review, Wilkinson [Will0] reports that there is a lot of criticism on facial reconstruction
techniques from scientists. Wilkinson concludes that achieving anatomical accuracy should
be reproducible and reliable; however, both manual and computer-based techniques involve
some degree of artistic interpretation.

Computer-aided facial reconstruction methods have been previously proposed in other
publications [TBK"05, TBLT07, RME" 14, SZD*16, SZM*17]. Related work uses dif-
ferent techniques for the underlying registration as well as for the subsequent facial recon-
struction [TBK*05, TBLT07, RME* 14, SZD" 16, SZM*17]. Although not standardized,
facial soft tissue thickness (FSTT) measurements play an important role both in facial ap-
proximation and craniofacial superimposition methods due to the quantitative information
provided [SSO08]. A wide variety of different techniques, such as needle probing, caliper
or radiographic measurements, or ultrasonographic assessments, are used to determine the
FSTT, leading to different results in the FSTT statistics. In addition, 3D imaging techniques
such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) are employed
for this purpose. Driven by the generally lower radiation dose when compared to medical
CT, Cone Beam Computed Tomography (CBCT) has recently also been used [HCH™ 15].
In general, it is difficult to compare FSTT studies based on CT and CBCT scans. CT scans
are taken in supine position, whereby CBCT scans can be taken in various positions (sitting,
lying down, standing up). The positioning possibilities have different gravity effects on the
FSTT. CBCT also has the inherent drawback that some landmarks cannot be found in the
data sets because it is normally limited to the craniofacial region. Although not backed by

numerical data, measurements on living individuals are generally preferred and advocated
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4 Automatic Forensic Facial Reconstruction

over measurements on cadavers [SSO8]. In [SSO8], Stephan and Simpson conclude that,
regardless of the applied technique, the measurement error for FSTT assessment is rather
high (relative error of around 10 %). They argue that no method so far can be considered
superior to any other. In addition, the authors stated that the small sample sizes for most
of the studies also compromise the degree to which the results from such studies can be
generalized.

Generally spoken, measurements based on a few distinct landmark points yield the in-
herent drawback of providing only a few discrete thickness values. Areas between these
distinct measurement points need to be interpolated. A dense soft tissue map would yield
important information for facial reconstruction.

In this chapter, we present a method for forensic facial reconstruction where a statistical
head model is fitted to a dense soft tissue profile thereby providing an estimate of the visual
appearance of the person to be identified. Our approach is divided into two parts: model
generation and forensic facial reconstruction. Only the initial model generation (prepro-
cessing or training phase) requires a few manual steps. Otherwise, unlike most previous
methods [TBKT05, TBLT07, RME* 14, SZD"16, SZM™17], our approach is fully auto-
mated, from the initial skull registration up to the final face reconstruction, and thus does
not require any manual interaction. After discussing related work in the following section,
we describe the generation of the three models required for our automated facial recon-
struction approach: The parametric skull model, the FSTT statistics, and the parametric
head model. Thereafter, the automated facial reconstruction process is presented, includ-
ing the modeling of variants of plausible FSTT distributions for a given skull. In the final
section of this chapter, we represent the FSTT-offset by a sphere-mesh (Section 4.4.1) as
proposed in our follow-up work [ABG™18] and thus improve the quality of the resulting
facial reconstructions.

My Contribution The proposed method [GBAY19] for automatic forensic facial re-
construction was developed in close cooperation with Thomas Gietzen, Robert Brylka, and
Ulrich Schwanecke from RheinMain University of Applied Sciences in Wiesbaden. It was
further developed in cooperation with Katja zum Hebel, Elmar Schomer, and Ralf Schulze
from the Johannes Gutenberg University Mainz. The colleagues from Wiesbaden and Mainz
prepared the CT data that were used for our method. Further, Thomas Gietzen and Robert
Brylka worked on the generation of our parametric skull model as well as on our (initial)
statistics of facial soft tissue thickness. In addition, they developed the methods for skull
fitting and adding FSTT by utilizing union-of-spheres. I worked on the generation of our
parametric head model and its evaluation. This also includes a manual selection of 70
landmarks for 82 head scans each. Furthermore, I developed the head fitting approach to
union-of-spheres. Moreover, in follow-up work [ABG™ 18], I improved our (previous) FSTT
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by utilizing sphere-meshes, fitted our head models to sphere-meshes, gave a comparison to
union-of-spheres, and, thereby, improved the quality of the resulting facial reconstructions
considerably. Finally, plausible head variants and facial reconstructions were presented
by Thomas Gietzen, Robert Brylka, and me.

Corresponding publications:

[GBAT19] A method for automatic forensic facial reconstruction based on
dense statistics of soft tissue thickness, PLOS ONE, 2019

[ABGT18] A Multilinear Model for Bidirectional Craniofacial Reconstruc-
tion, VCBM, 2018

4.1 Related Work

Turner et al. [TBK*05] introduced a method for automated skull registration and craniofa-
cial reconstruction based on extracted surfaces from CT data that was applied to a large CT
data base consisting of 280 individuals in [TBL*07]. For registration of a known skull to a
skull in question, the authors use a heuristic method to find crest lines in combination with a
two-step ICP registration followed by a thin plate spline (TPS) warping process. The same
warping function is applied to the extracted skin of the known skull. Subsequently, from
a collection of 50 to 150 warped skin surfaces, they use PCA to construct a “face-space”
with a mean face for the skull in question. Using the linear combination of the eigenvectors
with some a-priori knowledge, such as age and sex, they are able to generate a subset of
most likely appropriate appearances for the subject in question. To this end, both the skull
in question and the known skull are represented as polygonal meshes and are reduced to
their single, outer surface. By disregarding the volumetric nature of the bony structure, this
leads to poor fitting results in some cases.

The utilization of a deformable template mesh for forensic facial reconstruction was pre-
sented by Romeiro et al. [RME*14]. Their computerized method depends on manually
identifying 57 landmarks placed on the skull. Based on these pre-selected landmarks and
a corresponding FSTT (obtained from other studies) an implicit surface is generated us-
ing Hermite radial basis functions. To improve the quality of the result, they use several
anatomical rules, such as the location of the anatomical planes and anatomical regressions
related to the shape of the ears, nose, or mouth. Hence, as with our method, the quality of
their results strongly depends on an appropriate template that properly takes age, sex, and
ethnicity into account.

Shui et al. [SZD"16] presented an approach for craniofacial reconstruction based on
dense FSTT statistics utilizing CT data. Their method depends on 78 manually selected
landmarks placed on the skull. The landmarks guide the coarse registration of a skull
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template to each individual skull. This is followed by a fine-scale registration using ICP
and TPS. The FSTT measurement is performed for each vertex of the deformed skull in
the direction defined by the geometric coordinate. A coarse reconstruction of a face from
an unidentified skull is achieved by translating each skull vertex in the defined direction
by the length of the FSTT measured at this position. To achieve a smooth appearance,
six additional points have to be marked manually for guiding a TPS deformation of a face
template to the coarse reconstruction. Finally, the recovery of mouth, eyes, and nose has to
be performed by a forensic expert. Thus, the method is not fully automatic.

Shui et al. [SZM™17] proposed a method for determining the craniofacial relationship
and sexual dimorphism of facial shapes derived from CT scans. Their approach employs
a method for registering a reference skull and face to a target skull and face as presented
in [SZD"16]. Applying a PCA to the sets of registered skull and skin templates, they
derive a parametric skull and skin model. By analyzing the skull- and skin-based princi-
pal component scores, they establish the craniofacial relationship between the scores and
therefore reconstruct the face of an unidentified subject. Although the visual comparison
of the estimated face with the real one shows good results, these results appear to be due to
over-fitting. Moreover, the geometric deviations, especially in the frontal part of the face,
are mostly around 2.5 — 5 mm, indicating rather inaccurate reconstruction results.

4.2 Model Generation

In this section, we present the proposed model generation processes as outlined in Fig-
ure 4.1. We use volumetric CT scans and optical 3D surface scans as input and distinguish
between two input types: skulls and heads. In the following, the outer skin surface of a
head is referred to as head and the bony skull structure is referred to as skull. In order to
obtain a uniform data basis, a preprocessing step is performed to extract the skull and the
head as triangular surface meshes from each CT scan. In the next step, we need to estab-
lish the relationship between different skulls as well as between different heads. For this
purpose, in a fitting process, we register an appropriate template model to each given mesh
of a specific input type. After that, we are able to utilize the fitted templates to determine
the geometric variability of the skulls, respectively heads, performing a PCA. As a result,
we derive two parametric models: a parametric skull model and a parametric head model.
Based on corresponding skulls and heads extracted from CT scans, we additionally build a
dense FSTT map in the statistical evaluation step.
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SKULL SCANS CT SCANS HEAD SCANS
PREPROCESSING PREPROCESSING
correspondlng

‘ SKULLS 4—{ EXTRACTED SKULLS ‘ EXTRACTED HEADS }—b‘ HEADS ‘

Template Skull
FITTED SKULLS ’ FITTED HEADS

Skull Model FSTT Model Head Model

Template Head

STATISTICAL EVALUATION

Figure 4.1: Overview of our model generation processes. Generation of a skull and a
head model as well as dense FSTT statistics from multimodal input data.

4.2.1 Database

Following internal ethical review board approval, head CT scans were collected from
the PACS system of the University Medical Center Mainz. We only used existing CT
data (from four different CT devices) for our database. No subject was exposed to ion-
izing radiation for this research. The local ethical approval board (Landesirztekammer
Rheinland-Pfalz, Deutschhausplatz 2, 55116 Mainz) has approved the processing of the
pseudonymized existing CTs (from the DICOM database of the University Medical Cen-
ter Mainz) to generate the statistical models under the approval number No 837.244.15
(10012) (date: August 5, 2015). In our study, we include CT scans that meet the following

criteria:
1. The facial skull of the patient is completely imaged.
2. The slice thickness is less than or equal to 1 mm.
3. The subject has no significant oral and maxillofacial deformations or missing parts.

From several hundred CT scans that we analyzed, a total number of 60 were suitable for
our purpose. However, only 43 of these scans could be used for generating the parametric
head model and the FSTT statistics, since in the remaining 17 CT scans external forces
(e.g. frontal extending neck stabilizers, nasogastric tubes, etc.) compressed the soft tissue.
In a preprocessing step, every CT scan was cropped so that we could obtain a consistent
volume of interest limited to the head area. For this purpose, the most posterior point of
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the mandibular bone was determined automatically in the 2D slice images, and the volume
was trimmed with an offset below this detected position. After this cropping step, bone
and skin surface meshes were extracted using the Marching Cubes algorithm [LC87]. We
used the Hounsfield units -200 and 600 as iso-values for skin and bone surface extraction,
respectively. To remove unwanted parts, such as the spine or internal bone structures, a
connectivity filter was applied to the bone mesh, leaving only the skull. Finally, all ex-
tracted meshes were decimated to obtain a uniform point density for all data sets [GH97].
The meshes extracted from CT data were supplemented by triangle meshes from 3D sur-
face skull and head scans' of real subjects in order to fill up the database for our model
generation processes. The 3D surface scans are of high quality, do not suffer from artifacts
or strong noise, and consist of about 500 k vertices for the head and about 400 k vertices
for the skull. In summary, the following data sets were included in the study:

1. A total number of 62 skulls (60 extracted skulls from CT scans and 2 skulls from 3D
surface scans) were used to generate a skull model.

2. A total number of 82 heads (43 extracted skin surfaces from CT scans and 39 heads
from 3D surface scans) were used to generate a head model.

3. A total number of 43 corresponding skulls and skin surfaces extracted from CT scans
were used to build the FSTT statistics.

4.2.2 Generating a Parametric Skull Model

In order to generate a parametric skull model, we need to establish the relationship be-
tween the different skulls from our database. For this purpose, we register a single skull
template to each skull individually. This template model has to be a volumetric tetrahe-
dral mesh in order to accurately represent the solid nature of a bony skull. We therefore
converted a surface triangle mesh of a skull? to a volumetric Delaunay tetrahedral mesh by
using TetGen [Si15]. Our skull template model, which is shown in Figure 4.1, consists of
M = 69k vertices, whose positions we denote by S = (sy,...,sy). Tetrahedra are de-
noted by 7'(S) and the set of all tetrahedra is denoted by 7 = T (S). The vertices S and
tetrahedra 7~ constitute the tetrahedral mesh of our skull template.

The fitting process comprises the following two main stages for an input skull with vertex

positions Pg = (p1, ..., Pn):

1. A global rigid transformation that coarsely aligns the input skull to the skull template.
The registration starts with the fast global registration approach presented in [ZPK16]

"From www . 3dscanstore.com
?Based on www.turbosquid.com/3d-models/3d-human-skull/691781
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followed by a refinement step using the well-known Iterative Closest Point (ICP)
algorithm [BM92].

2. A fine-scale registration of the skull template to the input skull. The registration con-
sists of several non-rigid transformation steps computed by minimizing the energy
(inspired by [DDB*15])

Eskull(S) = b (S) + )\regEreg (87 S) > (41)
consisting of a fitting term Fg; and a regularization term [/,.

In the non-rigid step, the fitting term

1 2
Eﬁt(S) - < . wcHSc_ch
ZCGC We ;
penalizes the squared distance between a vertex on the skull template s, and its correspond-
ing point p.., weighted by per-correspondence weights w,. € [0, 1] (explained below).
The regularization term

Eig(S,8) = Y (vol(T(S)) — vol(T(S)))”

TeT

penalizes geometric distortion of the skull template during the fitting. S represents the
vertex positions of the previous deformation state, while S stands for the current (to-be-
optimized) positions. The function vol(7") denotes the volume of tetrahedron 7". Thus, the
regularization term penalizes the change of volume of tetrahedra. The non-rigid deforma-
tion starts with rather stiff material settings and successively softens the material during the
registration process (by reducing A;cg).

During the various non-rigid transformation steps, we use different strategies to define
the correspondences C. First, correspondences are determined (and weighted) by the hier-
archical ICP approach described in [GBSS17] where we register hierarchically subdivided
parts of the skull template to the input skull using individual similarity transformations.
This results in several small pieces (e.g., the eye orbit) that are well aligned with the in-
put skull. Based on the correspondences found in this step, the whole skull template is
registered toward the input skull. In subsequent deformation steps, we estimate the corre-
spondences in a closest vertex-to-vertex manner; we only consider vertices lying in high
curvature regions, additionally pruning unreliable correspondences based on distance and
normal deviation [GBSS17]. In the final non-rigid transformation steps when the meshes
are already in good alignment, we use vertex-to-surface-point correspondences. These cor-
respondences are determined considering all vertices employing a two-step search. First,
we search for vertex-to-vertex correspondences from the input skull to the skull template,
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pruning unreliable correspondences based on distance and normal deviation. Second, we
search for correspondences from the computed corresponding vertices on the template to-
ward the input skull. This second step is computed in vertex-to-surface-point manner and
large deviations between the vertex and surface normal are pruned.

The described two-way correspondence search prevents tangential distortions of the fit-
ted skull template and can handle artifacts in the input skulls, e.g., artifacts in the teeth
region due to metallic restorations. Additionally, it makes our registration process robust
against the porous bony structure caused by low resolution of the CT scan or the age of the
subject. To further prevent mesh distortions, we additionally use a release step in which
the undeformed template is deformed toward the current deformed state using only pre-
selected points of interest [GBSS17].

In order to analyze the accuracy of our skull registration process, we evaluated the fitting
error by computing the distance for all vertices of an input skull’s facial area (which covers
all predefined landmarks) toward the fitted template model. The mean RMS fitting error
for all 62 fitted skulls is below 0.5 mm.

Stacking the vertex coordinates of each fitted skull into column vectors
S = (1, Y1, 215 - - - » Ton, Y, zm)T, we can apply PCA to the set of fitted skulls (after mean-
centering them by subtracting their mean S). This results in a matrix S = [sq,...,S4]
containing the d (d = 61 in our case) principal components s; in its columns. A particular
skull S in the PCA space spanned by S can be represented as

S(a) = §+ Sa, 4.2)

where a = (ay, ... ,ad)T contains the individual weights of the principal components of
S. The parametric skull model (4.2) can be used to generate plausible skull variants as a
linear combination of the principal components. This is depicted exemplarily for the first
two main principal components in Figure 4.2.

We finally pre-select 10 landmarks on the parametric skull model (Figure 4.10, left).
These are used to guide the head fitting process in the automatic forensic facial reconstruc-
tion (see detailed explanation in Section 4.3.3).

4.2.3 Generating Statistics of Facial Soft Tissue Thickness

In a statistical evaluation process, the distances between 43 corresponding skulls and heads
extracted from the CT scans are measured. To this end, for each vertex of a fitted skull
we determine the shortest distance to the surface of the extracted skin surface [ASCEQ02].
Finally, the mean and standard deviation of the FSTT are computed per vertex. Figure 4.3
shows the mean skull § with color-coded mean and standard deviation of the obtained
FSTT.
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4.2 Model Generation

Figure 4.2: Skull variants along the two principal components with the largest eigenval-
ues. We visualize S + a1s1 + ass9, where a; = «; - 0;, ¢ = 1, 2, is the weight containing the
standard deviation o; to the corresponding eigenvector s;, and the factor o; € {—2,0, 2}.
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Figure 4.3: Statistics of the FSTT on a mean skull. Mean and standard deviation of FSTT
computed from the 43 CT scans.
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MValid M Unusable No. Samples per Vertex | .|
0 43

Figure 4.4: Basis for the statistical evaluation of the FSTT. From left to right: Example
of a fitted skull (white) and corresponding extracted skull (black wireframe), validation
mask (corresponding to left), number of samples used for all vertices in the FSTT statistics
in Figure 4.3.

To obtain the FSTT data, we often register our complete skull template to partial input
skulls, which, for instance, have holes in the bony structure or a missing upper part of the
calvaria. Figure 4.4 (left) shows an example of our skull template fitted to a partial skull
extracted from CT data. To avoid bias caused by false FSTT measurements, we validate if a
vertex of a fitted skull corresponds to a surface point on the corresponding extracted partial
skull. We exclude all vertices of the former whose distance to the latter is larger than a given
threshold (2 mm in our implementation). This results in the validation mask used for the
statistical evaluation, depicted in Figure 4.4 (center). The number of FSTT measurements
used for a particular vertex in our statistics are visualized in Figure 4.4 (right). The facial
skull is covered predominantly by all 43 samples, whereas the upper part of the calvaria is
covered by a few samples only.

The generated FSTT statistics are based on 43 different subjects (26 males and 17 fe-
males) with a mean age of 28 years. Figure 4.5 presents the computed FSTT (see Fig-
ure 4.3) at some landmarks commonly used in forensic reconstruction [CS16]. Our results
for these landmarks fit well into the range presented in [Stel7].

4.2.4 Generating a Parametric Head Model

Similarly to the skull model, we generate the parametric head model by fitting a head
template to head scans of real subjects. This establishes a correspondence between them.
We then perform statistical analysis using PCA. Note that we do not use the head PCA
model from Chapter 2 because it is based on low-quality Kinect scans. Furthermore, the
scans for generating that PCA model were taken from the face only. Thus, the PCA model
from Chapter 2 is implausible in a statistical sense for the other parts of the head. For
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4.2 Model Generation

model generation we instead employ the skin surfaces extracted from the 43 CT scans used
for building the FSTT statistics (26 male, 17 female). However, since the nose tip or the
upper part of the calvaria are cropped in some CT scans, we bootstrap the model generation
by first fitting the head template to a set of 39 optical surface scans (20 male, 19 female)
that represent complete heads. We generate a preliminary PCA model from these complete
surface scans and use it to fit to the incomplete CT scans. The preliminary PCA model
essentially fills the missing regions from the incomplete CT scans in a realistic manner.
The final PCA model is then built from the template fits to all 82 scans.

In the following, a head scan (extracted from CT or generated through optical scan) is
represented by its point set Py = (p1,...,Pn). Since the head models are skin surfaces
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Figure 4.5: FSTT for commonly used midline and bilateral landmarks. Landmarks de-
fined by [CS16] as produced by our method (red dots) in relation to pooled data from a
recent meta-analysis [Stel7] (mean =+ standard deviation as blue error bars).

69



4 Automatic Forensic Facial Reconstruction

only, our head template is a surface triangle mesh consisting of N ~ 6k vertices with
positions X = (x1,...,Xy), as shown in Figure 4.1. Similarly to the skull fitting process,
the template fitting process consists of two stages:

1. We first optimize scaling, rotation, and translation (see Section 2.2) of the template
model to align it to the point set Py by minimizing the sum of squared distances
between points p. on the point set Py and their corresponding points X. on the
template model X using ICP [BM92].

2. After this coarse initialization, we perform a fine-scale non-rigid registration to up-
date the vertex positions X such that the template model better fits the points Py.
Following our approach from Chapter 3, we minimize a nonlinear objective function

Ehead(X) = Eﬁt<X) + /\regEreg<Xa/?) . (43)

The fitting term Ejg; is defined in Equation (3.2) and penalizes squared distances between
points p. on the point set Py and corresponding points x. on the template model X'. To
allow for more precise fits, we extend these closest point correspondences by 70 facial
landmarks in the face region, on the ears, and on the lower jaw. These landmarks are
manually selected on the template model and on all scans to be fitted (note that this manual
work is necessary during model generation only). The per-correspondence weights w, are
used to give the landmarks a higher weight than the closest point correspondences and to
assign a lower weight to surface regions that are not supposed to be fitted closely (e.g.,
hairs for surface scans or CT artifacts due to teeth restorations).

Analog to Equation (3.3), the regularization term E,., penalizes the geometric distortion
of the undeformed model X (the result of the previous rigid/similarity transformation) to
the deformed state X'.

From the 39 fits to the complete optical surface scans we construct a preliminary para-
metric head model. Similarly to the skull model generation, we stack the vertex positions of
each fitted head h = (z1,y1, 21, .. ., Tn, Yn, zn)T and compute a PCA model of dimension

d (d = 30 in our case) so that we can write
H(b) = h+Hb,

where h is the mean head, H is the matrix containing the principal components in its d
columns, and b = (by, ..., b,) contains the PCA parameters representing the head.

With the preliminary PCA model at hand, we can now fit the head template to the incom-
plete skin surfaces extracted from CT scans. Regions of missing data are filled realistically
by the PCA model. Similarly to Section 2.2, fitting to a point set Py amounts to addi-
tionally optimizing the PCA parameters b during the initial rigid/similarity transformation
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step. To this end, we minimize squared distances of corresponding points with a Tikhonov
regularization ensuring plausible weights:

1 _ Ati e\’
Epca(b) = Z—ch}|hc+ch_pCH2 + ;kz(a_f;) , (4.4)

d
w
ceC ¢ e k=1

In the fitting term, H, and h, are the rows of H and h representing the point h, corre-
sponding to p, that is h, = h, + H.b. We use M\ = 1 - 10~* for the regularization
term, where o7 is the variance of the kth principal component. The optimal weights b are
found by minimizing (4.4) and thus solving a linear least-squares problem. In step (1) of
the head fitting process, we optimize for alignment (scaling, rotation, translation) and for
shape (PCA weights) in an alternating manner until convergence is reached. Step (2), the
non-rigid registration, is then performed in the same way as without the PCA model.

We finally combine the fits to the 43 CT scans and to the 39 surface scans into a single
parametric PCA head model. The variation of this model along the first two principal di-
rections is shown in Figure 4.6. While the first principal component basically characterizes
head size, the second principal component describes strong variation of head shape within
our training data. The strong variation in head size is due to some optical surface scans that
tend to be larger than the CT scans. However, since they were specified as providing the
correct scale unit, we decided to include them in our database.

Figure 4.6: Head variants along the two principal components with the largest eigenval-

ues. We visualize h + b1 hy + byhy, where b; = f3; - 0;, 1 = 1, 2, is the weight containing the
standard deviation o; to the corresponding eigenvector h;, and the factor 5; € {—2,0, 2}.
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In order to analyze the accuracy of our head fitting process, we evaluate the RMS error
for all 82 head scans:

1
rms(X, Py) = \/z—wzwcﬂxc—pJF-
ceC 7c

ceC

This is similar to (3.2) and measures the distance between corresponding point pairs from
X and Py. Depending on our input data, we weight down regions that should not be fitted
closely (hairs, CT artifacts) to prevent these regions from influencing the error measure too
much. Averaging this error over all 82 scans gives an overall fitting error of 0.19 mm. Note
that we prune unreliable correspondences above a distance threshold of 2 mm. These are
therefore not considered for error evaluation. However, since the overall fitting error is an
order of magnitude smaller, it is not significantly influenced by this pruning.

As done before for the parametric skull model, we also manually pre-select 10 corre-
sponding landmarks on the parametric head model (Figure 4.10, right). These landmarks
are used for the automatic forensic facial reconstruction.

4.3 Automatic Forensic Facial Reconstruction

Our automatic forensic facial reconstruction process is based on the generated parametric
skull model, the FSTT statistics, and the parametric head model described in the previous
sections. In the following, we use an anonymized CT scan of a female subject with an age
of 21 years to demonstrate the quality of our forensic facial reconstruction. This CT scan
was not used for constructing the parametric skull model, head model, or FSTT statistics.
The reconstruction process runs in three steps, as shown in Figure 4.7, and is explained in

the following sections.

Input Skull FittedVSkuII Union-of-spheres Reconstructed Face

Figure 4.7: Processing steps for the automatic forensic facial reconstruction. The recon-
struction of a face from a given input skull utilizing the generated parametric skull model,
the FSTT statistics, and the parametric head model.
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4.3.1 Skull Fitting

Given scanned skull remains as input (Figure 4.8, left), the skull fitting process is very simi-
lar to the registration process described in the section about the generation of the parametric
skull model (Section 4.2.2). The main difference is that we are finally able to utilize the
generated parametric skull model (4.2) as a starting point for the subsequent deformation
steps. First, we align the parametric skull model to the given skull by using the global reg-
istration approach presented in [ZPK16]. To further optimize the alignment, we search for
reliable point correspondences C between the given skull and the parametric skull model
and compute the optimal scaling, rotation, and translation in closed-form [Hor87], as ex-
plained in Section 2.2. After optimizing the alignment, we continue with optimizing the
shape. Similarly to the PCA fitting of heads (4.4), we look for the coefficient vector a of
the parametric skull model (4.2) with

)\tlk 73 2
Epca(a 5. + S.a — pe|” (— ,
- X 2

ceC

where M\ = 1-1073, 0,3 is the variance of the kth principal component of the skull model,
and d (d = 61 in our case) is the number of employed PCA components. Optimization for
alignment and shape is alternated until convergence. Before each optimization (alignment
or shape) we recompute the point correspondences C. After this initialization, we continue
with non-rigid registration by minimizing (4.1) (Figure 4.8, right).

Figure 4.8: Skull fitting results for a given skull. Extracted skull from CT (left) and
non-rigidly fitted skull (right).

4.3.2 Adding Facial Soft Tissue Thickness

Next we assign FSTT values based on our FSTT statistics to the fitting result of a given
skull. An important advantage of our approach is that our FSTT statistics only contain
scalar FSTT values without a particular measurement direction, such as skull normal or
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skin normal, since these directions are hard to determine in a robust manner due to noise
or fitting errors. In our case, the measured skin position which is the closest point on the
skin surface for a vertex of the skull is located on a sphere centered at the skull vertex with
the radius being the corresponding FSTT value. Figure 4.9 (left) shows a side view of the
FSTT measurement results for a few pre-selected points on the midline.

Figure 4.9: FSTT for a given individual visualized as union-of-spheres. At each skull

vertex, a sphere with a radius corresponding to the actual FSTT value from the ground
truth data set is drawn. From left to right: Some example spheres for points on the midline,

union of all spheres (in green) with original skin surface as overlay.

Knowing both the skull and the skin surface for a subject allows the computation of the
actual FSTT. Figure 4.9 (center and right) shows an overlay of the extracted skin surface
and the union of all spheres centered at the skull vertices. The spheres have the appropriate
FSTT values as radii. We call this the union-of-spheres. The depicted union-of-spheres
is based on the exact FSTT of this subject and provides a visually good approximation of
the real skin surface. Certainly, since nose and ears do not have a directly underlying bony
structure, the method does not provide this kind of information. Approaches for prediction
of nasal morphology, such as [KHS03, RWP10], give some hints about the nose, e.g., the
approximated position of the nose tip, but they do not really create an individual nose
shape for a particular subject. In a real application scenario, the age, sex, and ancestry of
the individual are derived from its skeleton remains and disaggregated FSTT statistics are
used for reconstruction. In our case, the sample size is too small to build specific FSTT
statistics. As an approximation, we simply build the union-of-spheres based on the mean
or a sample of our parametric FSTT model (Section 4.3.4).
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Figure 4.10: Landmarks for the automatic facial reconstruction. From left to right: Mean
skull with pre-selected landmarks, union-of-spheres based on mean FSTT with projected
landmarks, and mean head with pre-selected landmarks. The landmarks consist of two
midline landmarks and four bilateral landmarks which are selected once on the parametric
skull and head model after model generation. The landmarks are based on the proposed
nomenclature of [CS16]: nasion and menton (from craniometry) and mid-supraorbitale
and porion (from craniometry) as well as ciliare lateralis and ciliare medialis (from capu-
lometric) and their corresponding counterparts on the skull or skin surface, respectively.

4.3.3 Head Fitting

Given a specific union-of-spheres, the next step is to derive a facial profile from this data.
For this purpose, we deform our parametric head model to the (under-specified) union-
of-spheres. The fitting procedure is very similar to the generation of our parametric head
model. Similarly to the above approach, we initially align the union-of-spheres with the
parametric head model. This time, however, the landmarks on the fitted skull, which have
been selected during the skull model generation, are projected automatically onto the sur-
face of the union-of-spheres as depicted in Figure 4.10. More precisely, each individual
landmark on the fitted skull is shifted along its skull normal by the corresponding FSTT
value.

The projected landmarks give us robust correspondences on the parametric head model.
They are automatically determined and replace the manually selected landmarks used dur-
ing model generation. We start by optimizing scaling, rotation, and translation, as well as
PCA parameters based on the set of landmarks. This initialization is followed by a fine-
scale non-rigid registration based on landmarks and closest point correspondences between

the parametric head model and the given union-of-spheres.
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While this process is very similar to the model generation phase, it differs from it in the
following point: We use the per-correspondence weights w, in the fitting energy FEjg; to
give points on the outer surface of the union-of-spheres more influence than points in the
interior, since the former can be considered as an approximation to the skin surface that we
intend to fit. To this end, we first identify if a point q. on the union-of-spheres is outside of
its corresponding point h,. on the head template by checking if n] (q. — h,.) > 0, where n,
is the normal vector of h.. For such correspondences, we set

w. = 1410%-|h. — q.|| /B, (4.5)

where B is the bounding box size of the model.

As mentioned before, nose and ears do not have a directly underlying bony structure.
Thus, the union-of-spheres does not provide any data for such regions. Utilizing a para-
metric head model allows the reconstruction of nose and ears in a statistical sense, i.e., as

an element related to the underlying PCA space.

4.3.4 Generating plausible Head Variants

The simplest method for facial reconstruction is to fit the head template to a union-of-
spheres based on the mean of the FSTT statistics. However, this approximation will rarely
match a specific subject. To get a reliable FSTT diversification for an individual, we again
adopt the PCA approach creating a parametric FSTT model

FSTT(c) = f + Fc, (4.6)

where f is the mean FSTT, F contains the principal components of the FSTT, and
¢ = (c1,...,cq) contains the d (d = 42 in our case) PCA parameters. Using this para-
metric FSTT model, we can create plausible FSTT variants for the given input skull. Since
the CT scans used for the FSTT statistics are mostly missing the upper part of the calvaria,
the FSTT values obtained in this area are mainly very large and invalid. Thus, we omit
this area for the construction of our parametric FSTT model (4.6). This results in partial
union-of-spheres. Figure 4.11 (top) depicts a subset of the partial union-of-spheres along
the two principal components with the largest eigenvalues for the given input skull.

Our head fitting process described above can be applied to partial sphere models without
special adjustments. As depicted in Figure 4.11 (bottom), our approach is able to generate
plausible head variants based on the corresponding union-of-spheres in Figure 4.11 (top).
As we are using a parametric model of the complete head, the missing parts like nose, ears,
and especially the skin surface above the calvaria are reconstructed in a statistical sense,

1.e., as an element related to the underlying PCA space.
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The automated technique suggested in this chapter aids recognition of unknown skull
remains by providing statistical estimates derived from a CT head database and 3D surface
scans. By creating a range of plausible heads in the sense of statistical estimates, a “visual
guess” of likely heads can be used for recognition of the individual represented by the
unknown skull. Note that due to privacy reasons the extracted or reconstructed skin surface
can only be shown for one single subject. Compared to clay-based sculpturing, which
depends on the ability of the operator, our method provides a good approximation of the
facial skin surface in a statistical sense (Figure 4.12). In the following section, we present
our follow-up work that shows how to further improve our FSTT.
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Figure 4.11: Variants of plausible FSTT distributions for the anonymized given skull.
Top: Partial union-of-spheres variants along the two principal components with the largest

eigenvalues. We visualize f + cify + cofy, where ¢; = v - 04 ¢ = 1,2, is the weight
containing the standard deviation o; to the corresponding eigenvector f;, and the factor
v € {—2,0,2}. Bottom: Head model fitted to these partial union-of-spheres.
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Figure 4.12: Head fittings with color coded distances (in mm) to original skin surface
extracted from CT (last column). First three columns from left to right: Fitted head to
union-of-spheres based on a) mean FSTT (RMS error 4.04 mm), b) best fit in PCA space
(RMS error 1.99 mm), and c) original FSTT (RMS error 1.32 mm).
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4.4 Accurate Facial Soft Tissue Thickness

The FSTT is defined by a scalar thickness radius r; for each vertex on the outside of the
skull model, i.e., where a meaningful tissue thickness between the skull bone and the skin
surface can be determined. The set of these radii is denoted by R = (74, ...,r,,), where
m = 16.5 k is the number of outer skull vertices (from the overall M =~ 69 k skull vertices).

So far, the geometric representation of an FSTT-specified offset from a given skull was
constructed as the union-of-spheres centered at each outer skull vertex c; with its corre-
sponding FSTT radius r;, as shown in Figure 4.13(a). In the following, we replace the
discontinuous, non-smooth union-of-spheres by a sphere-mesh [TGB13]. This leads to a
continuous surface envelope around the skull representing the FSTT offset (Figure 4.13(b)).

(a) (b) (©

Figure 4.13: Adding facial tissue, specified by FSTT distribution, onto a given skull:
Union-of-spheres (a), sphere-mesh based on unoptimized radii with dent-like artifacts (b),
smooth sphere-mesh based on optimized radii (c).

4.4.1 Sphere-Mesh Representation

Sphere-meshes are a variant of convolution surfaces [BS91] and were originally used for
shape approximation [TGB13]. Recently, they have also been employed for hand modeling
and tracking [TPT16, TTR*17]. For representing the FSTT-offset from a skull through
sphere-meshes, we consider all triangles on the outer skull surface where each vertex c;
has an associated FSTT thickness radius r;. Each such triangle (cy, co, c3) is convolved
with a sphere whose spatially varying radius is determined by barycentric interpolation of
the FSTT thicknesses 71, 72, 3, leading to a triangle wedge as shown in Figure 4.14. With
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Figure 4.14: Left: Skeleton triangle S with centers c; and radii r;. Right: The resulting
sphere-mesh wedge (image from [TPT16]).

B(x,c,r) = ||x — c|| — r denoting the signed distance from a sphere of radius r centered
at c, the triangle wedge is implicitly defined as the zero-set of

%ligo B(x, acy + fcg + yes, ary + Bra + r3)
a#ﬂﬁéil
where «, (3, and -y are the barycentric coordinates.
If we denote the set of all wedges as W, the FSTT, as the union of all wedges, is defined

as the zero-set of its signed distance

dist(x) = ?El)l/{/l a,%l,iygo B(x, ac] + Bk + ¢, arl + Bry + %) . 4.7)
a+p+v=1
From the above implicit representation, we can extract an explicit triangle mesh through the
Marching Cubes algorithm. In our experiments, a voxel size of 2 mm turned out to provide
a good trade-off between precision and computing time. Thus, we use this voxel size for
all reconstructed sphere-meshes.

The Marching Cubes algorithm requires evaluation of the signed distance to the sphere-
mesh, i.e., Equation (4.7), for each point from the volumetric grid. Despite parallelizing this
operation over multiple CPU cores using OpenMP, it remains a computational bottleneck.
We therefore employ bounding spheres for each triangle wedge to quickly select potential
wedges or prune wedges that are too far away. This simple strategy reduced the average
time required for Marching Cubes from 19.5 min to 67 s on a desktop PC with Intel Xeon
CPU (4 x 3.6 GHz).

As shown in Figure 4.13(b), the resulting FSTT-offset is a continuous surface, as opposed
to the discontinuous union-of-spheres shown in Figure 4.13(a). However, it suffers from
dent-like artifacts due to wrong FSTT values, which we correct in the following.
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Figure 4.15: The parametric skull model (solid white) fitted to the incomplete skull ex-
tracted from a partial CT scan (gray wireframe overlay). The green points depict the skull
model vertices that (i) lie on the outside and (ii) overlap the extracted skull. For those
vertices the FSTT radii can be computed and optimized.

4.4.2 Optimization of FSTT Radii

Given a CT scan, we compute the FSTT by first fitting the parametric skull model to the
extracted CT skull and then determining an FSTT radius for each vertex of the outer skull
surface. In Section 4.2.3, the radius r; was computed as the minimum distance from the
skull vertex c; to the CT-extracted skin surface. However, noise in the CT data can lead
to skin vertices perturbed into the interior, leading to erroneously too short distances and
thus an underestimation of the radius. This manifests as dent-like artifacts shown in Fig-
ure 4.13(b). To overcome these problems, we optimize the FSTT radii such that the result-
ing sphere-mesh fits the skin surface in the least-squares sense.

In order to set up the optimization, we initialize the radii by our above-mentioned min-
imum distance heuristic. Since many CT scans are missing the calvaria part, we cannot
estimate the FSTT for the skullcap (Figure 4.15). As the FSTT hardly varies in this region,
we fill up the missing values by harmonic interpolation, i.e., we solve Ar; = 0 for all miss-
ing radii, with the known valid radii as Dirichlet boundary constraints (see Section 3.3.3).
This amounts to solving a sparse linear Laplace system in which the Laplacian Ar; is dis-
cretized using the well-known cotangent weights and Voronoi areas [BKP*10]. We denote
the resulting initial radii by 7;.

We then optimize the FSTT radii such that the sphere-mesh closely fits the skin surface
extracted from CT. To this end, we determine point-to-point correspondences between skin
vertices p. and their closest points s. on the sphere-mesh and then minimize their squared
distances. Finding the closest sphere-mesh point s, for a given skin vertex p. amounts
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Figure 4.16: Computation of the nearest point s on a triangle wedge.

to first determining the triangle ¢ and barycentric coordinates «, 3,y minimizing dist(p.)
from (4.7) (using linear search for ¢ and gradient descent for «, 3, 7). From the interpolated
values ¢ = ac! + fch + ~vch and r = ar! + frh + yrf, we get the closest point on the
sphere-mesh as s. = ¢ + r (p. — ¢) / ||p. — c|| (Figure 4.16). As for Marching Cubes, the
use of bounding spheres speeds up the computation of closest points considerably.

In order to remove unreliable correspondences, we prune correspondences (pe,s.) if
their distance is larger than 1 mm, if the angle between their normal vectors n(p.) and n(s,)
is larger than 20°, or if the angle between n(s.) and the normal vector n(t) of the wedge’s
skeleton triangle is larger than 45°. Similarly to the symmetry heuristic of [ZPK16], if p’, is
the nearest point from s.. on the skin surface, then ||p. — p’.|| should be at most 0.5 mm. Fi-
nally, we prune correspondences that are located on the boundary of a sphere-mesh triangle
and where the opposite wedge has no correspondences.

For each remaining correspondence (p., s.), we fix the barycentric coordinates a¢, 3, ¢
and the triangle (c§, c§, c§) such that the (squared) distance becomes a quadratic function
of the radii r§,r§,r5. If C denotes the set of correspondences and B(x, c,r) the sphere
distance, the fitting term to be minimized becomes

1 C _.C C _.C C_.C c, .C C, .C c. .C
Es(R) = _|C| E B(p., a‘ci + 5 + 7°cs, ar] + Brs + r3)2.
ceC

The minimization of the fitting energy is regularized by two terms

_ 1 & _ 1 &
Euit(R,R) = EZHW‘@HZ and Eyg(R.R) = EZHAW—A?’HF
j=1

j=1
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penalizing the deviation of radii r; and their Laplacians Ar; from the initial state 7';, where
the Laplacian Ar; is again discretized using the cotangent weights [BKP*10]. For given
correspondences C, we then minimize the combined objective

Efstt<R) = Eﬁt<R) + 0.1 'Einit(Ra 7?’) + )\regEreg(R7 7?') ) (48)

which is quadratic in the radii R and hence amounts to solving a sparse linear system
(see Section 2.2.2). Overall, we alternatingly compute correspondences C and optimize the
radii R by minimizing (4.8). The process is iterated until convergence is reached. We start
with \,eg = 1 and decrease to A,.e = 0.1 in an outer loop without any intermediate steps.
When decreasing ., we also update A7; with Ar; from our current guess. This process
typically converges in 4 — 6 iterations and takes about 30 s on average.

In comparison, Tkach et al. [TPT16, TTR*"17] decompose wedges into triangles, spheres,
and cones and solve a nonlinear optimization for fitting a sphere-mesh of 30 nodes to their
hand model. In contrast, our approach is fully implicit and seamlessly handles even spe-
cial cases when radii are larger than skeleton triangles. Our fitting requires simple linear
least-squares systems only and efficiently and robustly optimizes our m =~ 16.5k FSTT
radii.

As shown in Figure 4.13(c), our optimization successfully removes the artifacts due to
CT noise, leading to a smooth FSTT geometry. Based on the techniques presented in this
section, we improve all FSTT distributions from our database. From the improved FSTT
distributions, we are able to compute an improved parametric FSTT PCA model analogous
to Section 4.3.4.

4.4.3 Fitting a Head Model

In order to reconstruct a 3D face from both a given skull and a given FSTT distribution, we
fit our parametric head model to the FSTT-specified geometric offset from the outer skull
surface similarly to Section 4.3.3. To this end, the template head model is first coarsely
aligned through a similarity transform and through optimization of head-PCA parameters,
followed by a fine-scale non-rigid deformation. To guarantee plausible reconstructions, the
fitting process is regularized by penalizing large PCA weights as well as strong bending.
In Section 4.3.2, the FSTT-offset was represented as a union-of-spheres, leading to a
discontinuous, non-smooth surface. Fitting the head model to this type of target geometry
requires a rather strong bending regularization and even a dedicated weighting scheme (4.5)
for up-weighting correspondences in the external part of the FSTT (see Figure 4.17, top row
for an exemplary fitting result). In contrast, our proposed sphere-mesh representation with
optimized FSTT radii provides a smoother and more accurate FSTT-offset. In Section 4.3.3,
we fit our head model to an explicit representation of the FSTT-offset. For simplicity, we
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4.4 Accurate Facial Soft Tissue Thickness

convert the implicit sphere-mesh to an explicit triangle mesh using Marching Cubes (grid
spacing of 2mm) and then point-sample the triangle mesh to compute correspondences.
The higher surface smoothness and FSTT accuracy allow for less regularization and there-
fore result in more precise fits (Figure 4.17, bottom row). A quantitative evaluation yields
an average RMS fitting error of 0.51 mm for the optimized sphere-meshes, compared to an
average RMS fitting error of 0.82 mm for the union-of-spheres, which is an improvement
of 37 % in fitting accuracy.

Figure 4.17: Fitting the head model to an FSTT-offset of a given skull. Representing the
offset as union-of-spheres (top) leads to a larger geometric error as our proposed sphere-
mesh representation (bottom). From left to right: FSTT-offset, fitted head model, color-
coded distance (in mm) to true skin.

We presented an automated method based on a parametric skull model, a parametric
head model, and FSTT statistics for reconstructing the face for a given skull. In the next
chapter, we build on this work and generate an efficient computation model—unifying the
relationship between facial skin, the underlying bony structures, and the facial soft tissue
thickness—and demonstrate how it has several interesting and high-potential applications
in the medical context.
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5 A Multilinear Model for
Bidirectional Craniofacial
Reconstruction

The face constitutes a rather unique characteristic of our visual appearance and our iden-
tity. Its shape is mainly determined by the geometry of the underlying skull and the dis-
tribution of facial soft tissue on top of the bony structure. A better understanding—and an
efficient computation model—of the relationship between facial skin (head), the underly-
ing bony structures (skull), and the facial soft tissue thickness (FSTT) will bring forward a
wide range of applications.

In Chapter 4, we proposed a method for the facial reconstruction from skeleton remains—
an important topic in forensic medicine and archaeology. The other way around, i.e., de-
riving the skull from the face, also has high-potential applications. In a medical context,
this technology can estimate the skull of a person based on a 3D face scan only—without
the need for X-ray radiation or other expensive medical imaging methods. A reasonably
accurate, radiation-free alternative would be beneficial, e.g., for patients with craniofacial
malformations. Computed Tomography (CT) is currently the standard imaging procedure
for such patients [CHPO3]. Another application is radiation-free, bony cephalometric skull
assessment in orthodontics. In such assessments, both the skull and face shape are often
of interest, and a high radiation dose is prohibitive due to the typically young age of the
patients [ECSS04].

While there are several approaches for facial reconstruction based on skull remains, we
are not aware of any work that reconstructs accurate skull geometry from 3D face scans.
Both problems are challenging and have to be regularized by statistical priors from medical
imaging data. However, building a dense and accurate model of the correlation between
skull, FSTT, and facial skin requires training data that sufficiently samples the Cartesian
product space of skull shape times FSTT variation. Even with a large number of CT scans
this is intractable since it would require measurements of the same individual at several
tissue thickness states.

In this chapter, we present such a combined statistical model. We employ a multilinear
model that maps from skull shape and FSTT—both represented in low-dimensional pa-
rameter spaces—to high-resolution triangle meshes of the skull and the head/facial skin.
Varying just the skull parameters generates geometries of different individuals all sharing
the same FSTT. Varying the FSTT parameters allows simulating weight changes of a par-
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ticular individual. Thanks to its multilinear nature, our model can be evaluated as well as
fitted in just a couple of seconds, allowing us to produce skull and skin variations from
given skull shape parameters and FSTT parameters, or to determine these parameters by
fitting the multilinear model to a given skull or skin measured, e.g., by medical imaging or
a face scanner.

In order to train the multilinear model, we build on our previous work from Chapter 4:
From a set of volumetric CT scans and 3D surface scans of heads/faces, we constructed
three individual parametric models of skull shapes, head shapes, and FSTTs thereby de-
coupling these three models. This allows us to generate high-quality training data by com-
puting face/head meshes from the Cartesian product of variations of skull geometries and
variations of FSTTs; thereby, we effectively re-couple the previously decoupled paramet-
ric models (Section 5.2.1). The resulting dense sampling of the product space of skull
and FSTT variations enables the construction of a multilinear model (Section 5.2.2). We
can then fit this model to either given skull scans or face scans in a unified manner (Sec-
tion 5.2.3). We show the versatility of our novel multilinear model and evaluate its re-
construction accuracy by estimating faces from given skulls as well as skulls from given
faces (Section 5.3). Moreover, we made the model publicly available for research purposes.

My Contribution The proposed multilinear model for bidirectional craniofacial re-
construction was developed in close cooperation with Thomas Gietzen, Robert Brylka, and
Ulrich Schwanecke from RheinMain University of Applied Sciences in Wiesbaden. It was
further developed in cooperation with Katja zum Hebel, Elmar Schomer, and Ralf Schulze
from the Johannes Gutenberg University Mainz. The colleagues from Wiesbaden and Mainz
prepared the CT data that were used for our method. 1 worked on the generation of training
data for the multilinear model as well as on the generation of the multilinear model itself.
Further, I implemented the approach for fitting the multilinear model. Based on an initial
implementation from Thomas Gietzen and Robert Brylka, I also re-implemented the gener-
ation and fitting method of the linear model to make it as consistent as possible with the
multilinear model. Moreover, I made the multilinear model publicly available for research
purposes. Finally, the results about inferring skin surface from skull and vice versa were
produced by Thomas Gietzen, Robert Brylka, and me. Furthermore, I worked on producing
results for simulating weight changes for face scans.

Corresponding publication:

[ABG™18] A Multilinear Model for Bidirectional Craniofacial Reconstruc-
tion, VCBM, 2018
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5.1 Related Work

Methods on skull-based facial reconstruction were already discussed in detail in the pre-
vious chapter where we proposed our method for forensic facial reconstruction using a
parametric skull model, a parametric FSTT model based on dense FSTT measurements,
and a parametric head model. This approach is fully automatic and allows the generation
of different plausible head variants utilizing the parametric FSTT model. The current chap-
ter improves upon this previous work by reconstructing not only faces from skulls but also
skulls from faces and by being computationally much more efficient thanks to the proposed
multilinear model of skull, FSTT, and head.

Reconstructing a skull from skin surface data has a wide range of applications, especially
in medicine, but it is still relatively unexplored. The common techniques for reconstructing
skulls with high precision are CT and MRI. To the best of our knowledge, there is currently
no method that allows the skull structure to be accurately estimated from a face scan alone.
A method for reconstructing a coarse approximation of the skull based on the correlation
between skin surface, FSTT at few landmarks, and skull was presented in [BB14]. The
authors estimated the rigid head transformation in a facial performance by fitting a sim-
plified skull model to the animated face model. Later, Zoss et al. [ZBBB18] extended the
skull model by a jaw and employed it for jaw animation. However, their skull model is too
simplified to be utilized for medical purposes.

Ali-Hamadi et al. [AHLG™'13] presented a semi-automatic method for transferring a
volumetric anatomical template model (consisting of bones, muscles, and viscera) to any
target character. To map the internal anatomy into the target character, they manually esti-
mate the fat distribution and warp the template by Laplacian deformation while satisfying
additional constraints—e.g., that bones must stay straight and symmetric across the sagittal
plane. Even if the reconstructed interior follows anatomical rules and gives visually pleas-
ing results, the focus of this approach is to transfer the model to all kinds of targets, like
animals or cartoon characters. It does not focus on precisely reconstructing the inner of a
human body.

In [KIL*16], a fully automated approach for reconstructing physics-based, anatomical
models based on a tetrahedral template mesh representing an average male was presented.
To fit the target as closely as possible, the template model was warped through a sym-
metric as-rigid-as-possible deformation. The work focuses on the reconstruction of large
and medium anatomical details, leaving out parts like hands, toes, and the face. These
smaller anatomical details are the main component of our current work. Another approach,
presented by Ichim et al. [IKNDP16], builds a volumetric face rig based on thickness mea-
surements from forensic studies and employs it for physics-based animation. In [IKKP17],
this approach was extended to include a novel muscle activation model that separates active
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and passive soft tissue layers. Again, all the above approaches are based on skull models
that are too simplified to be used for medical purposes.

In the next section, we present a method to generate training data for our multilinear
model, generate the multilinear model itself, and fit it to scanner data.

5.2 Multilinear Model

Our goal is to develop a model that (i) maps from skull shape and FSTT distribution—
both controlled by low-dimensional parameter vectors Wy, and we—to a 3D head/skin
surface and (i1) can also invert this map to infer skull and FSTT from a given face scan.

Our parametric PCA models for skull shape (Section 4.2.2) and FSTT (Section 4.4.2) can
map skull and FSTT parameters to specific skull and FSTT instances. Adding the FSTT
onto the skull through the sphere-mesh representation (Section 4.4.1) and fitting the head
model to it (Section 4.4.3) eventually implements the forward mapping. However, this
multi-step approach requires about 90 s, which is prohibitive for interactive applications.
Also, it cannot easily be inverted. Inspired by previous approaches that have successfully
applied multilinear models in the context of faces using separate parameter sets for per-
son identity and facial expressions [VBPP05, BW13, CWZ™14], we generate a multilinear
model in the following. Our model can efficiently and robustly compute the head surface
from skull and FSTT parameters and vice versa.

5.2.1 Generating Training Data

Multilinear models have to be trained on the full Cartesian product of their independent
parameter sets. In our context, this means generating a set of skull shapes and a set of
FSTT distributions and as training data, providing each skull shape equipped with each
FSTT variation (input) and the respective head surface (output).

It is obviously not possible to collect such data from measurements alone, as it would
require multiple CT scans of the same person under different, controlled body weight vari-
ations. Our CT scans include different skulls with different FSTT distributions, but the
scans do not include their dense Cartesian product. In order to generate training data
for our multilinear model, we use the parametric skull model, consisting of a tetrahedral
mesh with M =~ 69 k vertices, the parametric head model, and the parametric FSTT model
from Chapter 4. In contrast to before, 5 pairs of skin surfaces and skulls from CT scans in
our database (Section 4.2.1) are used for evaluation. They were therefore excluded from the
parametric models. By building independent PCA models for skull shape and FSTT dis-
tributions, we effectively decouple these two components. This allows us to subsequently
re-couple the components by generating synthetic head models for the Cartesian product of
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skull shape variation times FSTT variation as outlined above. We thus obtain statistically

and anatomically plausible training data.

As a trade-off between computational
effort and coverage of input data, we
sample skull variations along six PCA-
dimensions and FSTT variations along five
PCA-dimensions. This covers more than
70 % of the variation included in our CT
data. For each principal component, we
sample two offsets at +2 standard devia-
tions along that component. Furthermore,
we include the mean skull with mean FSTT
from our parametric models, which in to-
tal yields 2576 + 1 = 2049 pairs of skulls
and FSTT distributions. Following our ap-
proach presented in Chapter 4, we com-
pute the sphere-mesh offset (Section 4.4.1)
and fit the head model (Section 4.4.3) for
each of these pairs. This takes about
90 s for each model on a desktop PC with
4 x 3.6 GHz Intel Xeon (Figure 5.1). To
achieve more accurate head fits, we gain
geometric resolution by subdividing our
head template, presented in Chapter 4, from
about 6k vertices to about 24k vertices.
We also experimented with sampling more
PCA dimensions to cover more than 75 %
of the variation in our CT data, but this
did not lead to significant improvements in
fitting accuracy and did not justify the in-
creased computation effort for a more com-
plex multilinear model.

25
FSTT

| =5 | =

| =

Skull

Figure 5.1: We sample skull variations
along 6 PCA-dimensions and FSTT varia-
tions along 5 PCA-dimensions. For each of
these pairs, we compute the sphere-mesh off-
set and fit the head model. This yields 2048
pairs of skull shapes and head surfaces that
were used as training data.

5.2.2 Generating the Multilinear Model

Our training data from the full Cartesian product (without mean) consist of 2048 pairs of
skull mesh (M = 69 k vertices) and skin mesh (N =~ 24 k vertices). We stack each into a
column vector X; € R% with d,.;; = 3N + 3M. These pairs are obtained as dgy,; = 64
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skull variants, each containing dgyy = 32 FSTT distributions. Following [BW13], we
center each X, by subtracting the model constructed from the mean skull with the mean
FSTT from our parametric models, denoted by X. Alternatively, the mean out of the 2048
pairs can be subtracted from each X,.

To construct the multilinear model (MLM in the following), we arrange the 2048 mean-
centered geometry vectors X; into a three-dimensional array D € IR%vert*dskun*diste wwhich
is formally called a third order (3-mode) data tensor [VBPPOS5]. This way, the three mode
spaces of D are associated with skin/skull vertex geometry, skull variations, and FSTT
variations. This data tensor D is then decomposed by higher-order singular value decom-
position [DLI7] as

D = M Xgan Ugiunt Xgset Ugstt 5

where
,/\/l = Dx k U X U
- skull skull fstt fstt

is a multilinear model tensor (or core tensor) M € R&ert>dskan¥disee J 1 € R%kun X dsioun
and Ugy, € R% Xt gre orthogonal matrices containing the left singular vectors of the
corresponding mode spaces. If we choose n to be either ‘skull” or ‘fstt’, the matrix U, is
constructed as follows: We first unfold D along the n-th mode to a matrix T, by stacking
as columns all vectors of D aligned with the n-th mode. Then, the matrix U,, € IR% >
can be computed via standard matrix SVD as T,, = UnSnVZ. For instance, unfolding D
along the skull-mode leads to a matrix Ty, € Rk (dvert-dist) — Giyen D and U,,, the
n-th mode product D x,, U] acts on each vector v € IR’ in D’s mode-n space via the
linear transformation v — U] v.

Finally, given skull parameters wgo € R%<! and FSTT parameters wgy, € IR%tt,
the MLM computes the corresponding combined skin/skull mesh X € R%<* by tensor
contraction as

& T T
X (Wekull; Westt) = X + M Xgounn W Xstt Wit - (5.1)

This evaluation takes less than a second making the MLM well suited for interactive appli-
cations like exploring FSTT variations for a given skull in a forensic context.

5.2.3 Multilinear Model Fitting

The MLM maps skull parameters w1 and FSTT parameters wgyy to a geometry
X (Wikul, Wist¢) Which includes both the N head vertices and the M skull vertices. In-
verting this process means determining the parameters w1 and Wy such that the cor-
responding model X (W1, West¢) closely matches a given geometry observation—which
could, for instance, be a face scan or a skull scan extracted from CT. The inverse process
therefore amounts to nonrigid registration (or fitting) of the MLM to a given point cloud P.
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5.2 Multilinear Model

This fitting procedure requires a coarse initial alignment that can be performed manu-
ally (by selecting landmarks) or computed automatically depending on the type of scan-
ner data available [GBA'19, AZB15]. We initialize the MM as the mean shape X

X (Wikull, Wistt)- Note that setting Wg,n = 0 is problematic since X(Wgun, Weset) =

Pl

holds irrespective of wey. Instead, we follow [BW13] and compute wy,;; as the average
of all rows of Uy, and compute wey, analogously. To speed up the fitting process, we
uniformly sub-sample the scanner data P to approximately 100 k points without noticeably
sacrificing geometric fidelity.

After this initialization, we alternatingly compute closest point correspondences C be-
tween the given point cloud P and the current state X (W1, Wist¢ ) and optimize the model
parameters. We again prune correspondences if their distance is too high or their normal
vectors deviate too much. Furthermore, we prune correspondences for error-prone areas
that we have pre-selected on the template like the teeth, the inner part of the skull, hair,
ears, Or eye regions.

Given a set of correspondences (p,, X.) € C, we minimize their squared distances by op-
timizing for similarity transform (scaling s, rotation R, translation t) and model parameters
Wikull; Wistt

Efit(Wokull, Wisee, s, R, £) = % D ISR Wttt Wiste) + t — pel| -
ceC
Here p. € P is a scanner point and X.(Wgeu, Wistt) its closest point on the current state
X (Wikull, West ), Which is typically located within a triangle and expressed through barycen-
tric coordinates. To prevent over-fitting, we add a Tikhonov regularization term

1 dsicull _ 2 1 distt _ 2
E (w W ) Wskull,k — Wskull, k i Wistt,l — Wrestt,l
re skull fstt) — §
& ’ Asicunt —1 Oskull,k st —1 Ofstt,l ’

with Us2kull, , and a?stt,l being the variance of the principal components computed from the
covariance matrices after unfolding D along the respective modes [BW16]. Similarly
to [VBPPOS5], we then minimize the combined objective function

Emlm (Wskulh Wistt, S, R7 t) - Eﬁt (WskuIb Wistty S, R7 t) + Ereg (Wsku117 Wfstt)

using block-coordinate descent, i.e., we alternatingly solve for either MLM parameters
Wekull, Wistt OF pose parameters s, R, t, while fixing the respective other parameters. This
energy minimization is alternated with the computation of new correspondences and iter-
ated until convergence. The process typically takes 3 — 5 iterations and requires about 30 s
on average.

The result of the fitting process are model parameters wygy,; and wgi. Through (5.1),
Wy and wig can be evaluated to a skin mesh and a skull mesh that closely matches the
scanner point cloud P.
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5.3 Results

We evaluate our method on 5 different pairs of skulls and corresponding skin surfaces ex-
tracted from CT scans that are not included in our training data introduced in Section 5.2.1.
We present results for fitting our MLLM to scanner data in order to either infer skin surface
from skull or vice versa. We compare our MLM with two different approaches: (1) a linear
model (LM) created through PCA of the 2049 combined skin/skull pairs X; and (2) the
forensic facial reconstruction approach [GBA119] presented in Chapter 4. Note that due
to privacy reasons the extracted or reconstructed skin surface can only be shown for one
single subject (Figure 4.12, top right).

Generating and Fitting a Linear Model

Analogous to the generation of the MLM, we use the 2049 pairs of skin/skull mesh from
our synthetic training data to generate the LM. The vertices of each skin mesh and corre-
sponding skull mesh are again stacked into a column vector X; € IR%e*, After subtracting
the mean X € IR™ over all training data from each of the X;, we arrange the resulting
mean-centered geometry vectors into a dyey X 2049-dimensional matrix. PCA of this ma-
trix gives U = [uy, ..., uy consisting of the first d principal components. To obtain the
same number of degrees of freedom as for the MLM, we chose d = dg + dgit = 96.
Given a weight vector w € IR?, the LM allows generation of a combined skin surface and
skull mesh as
X(w) = X+ Uw.

Fitting the LM to a given face/skull geometry is very similar to fitting the MLM. Again, we
distinguish between fitting to scanner data of skin/head and fitting to scanner data of skull.
The fitting processes differ in the way their correspondences are computed. Given an initial
alignment, we perform a non-rigid registration to estimate the weights w by minimizing a
Tikhonov regularized linear least-squares problem (e.g., similar to Equation (4.4)).

5.3.1 Inferring Skin Surface from Skull

To analyze our skin reconstruction process, we fit both the LM and the MLLM to the skulls
extracted from our evaluation data set. Figure 5.2 shows skull fitting and skin surface recon-
struction results for one specific subject based on the LM (Figure 5.2(a)) or the MLM (Fig-
ure 5.2(b)), respectively. The resulting skin reconstruction of the LM is an arbitrary skin
surface related to the underlying PCA space and by no means a reconstruction based on the
mean FSTT distribution. It is comparable to the MLM if w; is not adjusted. Because both
models are built on the same training data, both reconstructions are visually very similar.
Moreover, while fitting the MLM takes about 28 s, fitting the LM takes 10s on average.
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(b) MLM (c) Fine-scale non-rigid fit-
ting [GBA™ 19]

Figure 5.2: Comparison of LM (a) and MLM (b) fitting and reconstruction results. Auto-
matic forensic facial reconstruction approach presented in [GBA™19] with fine-scale non-
rigid fitting result and facial reconstruction based on mean FSTT for one subject of our
evaluation data set (c¢). Each from left to right: Skull fit (white) with skull extracted from
CT (blue) as overlay, skull fit, and skin reconstruction.

Figure 5.2(c) shows a fitted skull and a skin reconstruction based on our approach pre-
sented in Chapter 4 [GBA™'19]. Since our skull fittings in Figures 5.2(a) and 5.2(b) are
constrained by the LM and the MLM, respectively, the result is less accurate compared the
fine-scale non-rigid registration of [GBA™19]. The RMS error based on the skull evalua-
tion mask (Figure 5.4) results in 0.34 mm [GBA119] vs. 1.13 mm for the MLM. However,
the resulting skin estimations of both approaches are visually very similar.

Fitting based on the LM has the inherent drawback that there is no control over the
FSTT distribution. This results in a single non-changeable skin surface reconstruction.
The benefits of the MLM come into play when reconstructing skin surface variants for a
specific skull because the MLM allows the generation of different head variants by vary-
ing Wi Figure 5.3 shows different head surface variants generated by manipulating the
FSTT for a given fixed skull. The presented MLM allows the generation of skin variants
nearly in real-time, only at the cost of evaluating (5.1). In contrast, the skin reconstruction
process [GBA119] we presented in Chapter 4 is based on several time consuming steps
resulting in a computing time of about 90 s.

5.3.2 Inferring Skull Shape from Face Scan

To analyze the accuracy of our skull reconstruction process, we fitted the MLM and the
LM to the extracted skin surfaces from the evaluation data sets. For privacy reasons, we
can only show skull reconstructions and not the skin surface fittings. For the evaluation,
we create a point mask which is limited to the facial area of the skull. Since our CT data
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Figure 5.3: Multilinear model fitting: Skin surface variants given a skull. Skin variants
can be simply generated by fixing skull parameters wg,;; and varying FSTT parameters

Wistt -

set for creating the FSTT statistics is partially incomplete for the upper part of the skull,
we additionally restrict the evaluation mask to the smallest available calvaria part and also
exclude teeth. The final evaluation mask used is shown in Figure 5.4. Points of interest are
colored in green.

Distance is measured from each point of interest on a reconstructed skull to the surface of
the corresponding extracted skull. The average RMS fitting error over all 5 reconstructed
skulls is 1.72mm using the MLM and 1.85 mm using the LM. As can be seen clearly
in Figure 5.5, both models not only allow reconstruction of the correct size of the skull, but
they also correctly reproduce the shape of the skull, in particular the emplacement of the
mandibular. For both models, the RMS fitting error is below 2 mm. While reconstructing
skulls from given skin surfaces using the MLM gives slightly better results, it takes about
30 s compared to 8 s using the LM.
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Figure 5.4: Evaluation mask for skull reconstructions (green).

Figure 5.5: Skull reconstructions given skin surface scans from our 5 evaluation data sets.

Reconstruction results for the linear model (left) and for the multilinear model (right). For
each model from top to bottom: Skulls extracted from CT (blue) and our skull reconstruc-
tions (white) as overlay, the minimal distance to the actual skull, and the RMS errors in
mm.
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5.3.3 Simulating Weight Changes for Face Scans

Fitting the MLM to a face scan reveals not only the skull parameters wyy,; but also the
FSTT parameters wy; of the scanned individual. Given the skull shape and FSTT distri-
bution of the person, we can simulate weight changes by varying wig.

Since the MLM does not reconstruct hairs or eyes, we start to obtain a realistic head
reconstruction by fitting a head template to a photogrammetric face scan using our method
from Chapter 3. This head template has the same triangulation as the template used in Sec-
tion 4.4.3, but it additionally has open eyes, eyeballs, and teeth. Furthermore, the nonlinear
fine-scale deformation allows a reasonable reconstruction of hair geometry (Figure 5.6, top
Trow).

Since both models (the realistic face model and the MLLM) were fitted to the same scanner
data, they are well aligned to each other. When changing the FSTT of the scanned person
from wi to Wi, we can therefore simply transfer the per-vertex displacement

X (Wekalls Westt) — X (Wekunl, Wistt)

computed by the MLLM onto the realistic face model. We thereby obtain the thinner or
thicker models shown in Figure 5.6. In concept, this is similar to clothing transfer as pro-
posed in Section 3.5.2. Finally, the positions of the eyeballs are adjusted to accommodate
the slight displacements in the eyelids that result from the simulated weight changes.

In this chapter, we presented a multilinear model that maps a set of low-dimensional pa-
rameters for skull shape and FSTT distribution to an accurate and high-quality mesh of both
the skin and the skull geometry. To foster further research in this direction, we made our
multilinear model publicly available for research purposes at doi:10.4119/unibi/2930619.
We demonstrated that our model has several interesting and high-potential applications in
the medical context. This finalizes the second part of this thesis. We will continue with

exploring virtual humans for domestic assistance.
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5.3 Results

Figure 5.6: The multilinear model makes it possible to vary FSTT for a specific individual.
Three scanned persons reconstructed by [AWLB17] (first row) with varied FSTT (second
and third row).
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6 Preferences for the Visual
Attributes of Virtual Assistants

Conversational virtual agents that serve as assistive technologies have made their way
into users’ homes [Gmb18, ANA10, DvMOO], facilitating their lives by providing infor-
mation services, e.g., by obtaining information from the Internet [YKPK13]. Such virtual
assistants will soon be used by demographically diverse target groups with personal needs
and preferences for activities like cooking, planning leisure time, or physical rehabilita-
tion. Despite the fact that virtual assistants will be widely available to provide services
in a vast variety of domains, the fact remains that people report rather negative attitudes
toward service robots and show little willingness to integrate them into their everyday
lives [Gmb18, RE13, SBET16]. Thus, to increase users’ acceptance of innovative technolo-
gies, user preferences have to be taken into account [SPC* 16, Nie94]. Previous research
has indicated that virtual humans that assist in the smart home context should appear like-
able, attractive, and competent [BMO07, JB09, BEK12]. Moreover, the appearance of virtual
assistants and even robots strongly influenced their evaluation [BM07, BEK12, HAAHO02]
and, consequently, had an impact on user motivation and performance [SSJ"15]. For
instance, human-like virtual assistants were considered more intelligent [KO96], more
skilled [JVHOS8], were evaluated more positively [QBO0S5], and elicited stronger social pres-
ence [CMBO1] than virtual assistants that did not resemble humans. One aspect of human-
likeness is hairstyle and hair color—features that have been varied frequently in research
on the design of virtual assistants [RKBPDOS8, Gar0O]. Moreover, hairstyle is a key fa-
cial feature indicating target gender—even in robots [BP93, EH12]. Thus, a robot’s or a
virtual agent’s hairstyle may activate stereotypes and expectations regarding the agent’s
usefulness, credibility, and intelligence [Vel10, MMB94, HS96, Dev89]. Similarly, cloth-
ing may represent a virtual agent’s social role, influencing judgments accordingly [Vel10].
Veletsianos has shown that students were better at learning to play punk music when the
assistant’s appearance was in line with the stereotypical appearance of a punk rock musi-
cian (i.e., featuring a Mohawk hairstyle) rather than being taught by a virtual assistant that
was allegedly a scientist. That is, performance was better when the assistant’s appearance
and task type matched [GKP03]. Similarly, Rosenberg-Kima [RKBPDOS8] showed that
perceived enjoyment, trust, and anxiety during a learning session with a virtual assistant
depended on whether the assistant was portrayed as a peer or an expert. Because previous
work lacks a differentiated analysis of preferences of demographically diverse users, we
conducted a laboratory study to close this research gap. More specifically, we analyzed
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preferences of users who differed in terms of age, gender, and even hair color with regard
to virtual assistants that were deployed in various smart home contexts.

Individual user preferences were determined with an adaptive choice-based conjoint
analysis. Here, we systematically varied gender, age, hair color, hair length, and cloth-
ing of the virtual assistants that were used as stimuli. The virtual assistants were featured
in a variety of contexts within a smart home. More specifically, they were depicted as as-
sistants for planning leisure activities (Leisure), helping in the kitchen (Kitchen), coaching
fitness exercises (Fitness), and providing support in the entrance hall (Entrance) to cover a
wide array of contexts in which the assistants could potentially be used.

Furthermore, existing research has shown that individuals identify more strongly with
virtual humans that they deem similar to themselves [BBGOS, HB0S5, MKO1]. For exam-
ple, perceived similarity between users and virtual assistant’s appearance influenced users’
motivation to engage in a fitness program [MF06, Bay11]. Thus, the degree to which per-
sons perceive a virtual assistant similar to themselves seems to be an interesting potential
mediator [LFDKO7]. According to the similarity-attraction hypothesis, a high degree of
similarity predicts liking. In line with this, previous research found that female participants
preferred interacting with other females [QB10, DWYW09, RG04]. Whereas research by
Payne et al. [PSRJ13] confirmed this for female participants and female virtual agents, male
users did not prefer same-sex virtual assistants. Another study investigated preferences for
virtual agents’ gender in senior participants [CKGIS11]. In that study, there was no specific
preference for agent gender for the majority of senior participants. Among those who had
a gender preference, more participants preferred male agents than female ones. However,
as the authors stated, the main reason for that was the audibility of the voice. Based on
users’ preferences and a determined virtual assistant for each participant, we examined the
evaluation of the virtual assistant with respect to perceived similarity between the users and
the virtual assistants, with respect to the virtual assistant’s appearance, and as a function
of task domain. We analyzed whether the users chose a peer-like assistant, inspired by
similarity-attraction hypothesis, or an expert-like assistant, who may be younger or older
than themselves. That is, to a senior user, a relatively young virtual assistant may be seen
as an expert in sports, whereas a younger user might regard a senior assistant as an expert
in cooking. Complementing previous research, we considered diverse participants that dif-
fered in age groups, gender, and hair color. This way, we were able to comprehensively
examine the effect of perceived similarity to the evaluation of virtual assistants.

Drawing on previous research on the perception of intelligent virtual agents, warmth and
competence are the two core dimensions of social cognition [FCGO07] and play a key role in
impression formation about humans and non-human entities [BEK12]. While the dimen-
sion of warmth captures friendliness and positive intentions, the dimension of competence
captures economical and educational success [FCGO7]. In this study, we also examined
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how the individually determined preferred virtual assistants were perceived in terms of
their warmth and competence. Moreover, we investigated the effect of openness toward
technology on the evaluation of the preferred virtual assistants.

My Contribution The present study was carried out in cooperation with Friederike
Eyssel, Charlotte Diehl, Birte Schiffhauer, Ralf Wagner, and Stefan Kopp. We all conceived
the experiment, and I implemented it. Specifically, I developed an approach to generate 176
different virtual assistants that were used as stimuli. Afterwards, the experiment was con-
ducted by Charlotte Diehl, Birte Schiffhauer, student assistants, and me. Finally, Charlotte
Diehl analyzed the results concerning our hypotheses, while I analyzed the user prefer-
ences for virtual assistants based on the adaptive choice-based conjoint analyses.

Corresponding submission:

Preferences of different user groups for the visual attributes of virtual

assistants, TAP. under submission

6.1 Experiment

Preferences for Visual Attributes of Virtual Assistants

We explored user preferences for basic visual attributes of virtual assistants in smart home
contexts. To this end, we grouped users of different age, gender, and hair color and exam-
ined their preferences for different smart home contexts. In this study, we focused on the

following questions:

e How important are the selected customization categories, i.e., gender, age, hair color,
hair length, and clothing?

e Which visual attributes of assisting virtual humans are preferred, and how are these
attributes related to users of different age, gender, and hair color for different con-
texts? Do people prefer characteristics that are similar to themselves, i.e., do people
choose a virtual assistant that features the same gender, age, and hair color as them-
selves?

Hypotheses

1. The more participants perceive the virtual assistant as being similar to themselves,
the more positive the evaluation of the virtual assistant and its design is.
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2. Female virtual assistants are perceived as warmer than male, whereas male virtual
assistants are evaluated higher on competence and persuasive power compared to

female ones.

3. Participants’ openness toward technology moderates the acceptance of the virtual

assistants.

6.1.1 Method

Sample and Design

N = 131 participants were recruited on campus, in schools, sport clubs, open youth clubs,
nursing homes, and via advertisements in a local newspaper. 68 participants were female,
62 were male, and one participant did not indicate his/her gender. They ranged in age from
6 to 89 years (M,ge = 37.49; SD,g. = 20.51). In order to assure diversity of age groups,
we distinguished three subgroups: young = under 21 years, middle-aged = between 30 and
45 years, and senior users, represented by persons older than 55 years. Considering hair
color, 29 participants had blond hair, 67 had brown hair, and 24 had gray hair. Most of
the participants (88.5 %) had little to no previous experience with the customization of a
virtual assistant. The exact sample sizes grouped according to age category are displayed
in Table 6.1.

age categories female participants male participants total
young (< 21 yrs.) n=23 n=20 n=43
Mean (S D) 15.48 (3.50) 16.20 (4.48)  15.81(3.95)
middle-aged (30 - 45 yrs.) n=21 n=20 n=41
Mean (S D) 32.62 (3.56) 33.50 (4.16)  33.05 (3.84)
senior (>55 yrs.) n=19 n=21 n =40
Mean (SD) 63.37 (7.71) 65.67 (5.61)  64.58 (6.70)

Table 6.1: Sample size and descriptive statistics concerning participant age and gender.

Seven participants who did not fit the predefined age categories or did not indicate his/her
gender were excluded from analyses on age and gender, respectively, but their data were
considered in the analyses on participants’ hair color or in overall calculations.
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Procedure

After giving written informed consent, participants were asked to imagine living in an in-
telligent apartment that would include a virtual assistant. In one out for four scenarios, this
assistant would serve them as a virtual coach for fitness exercises. For example, partici-
pants learned that the virtual assistant would instruct them while learning new exercises,
would remind them of training goals, and would provide information on their general health
status. Similarly, participants were instructed that the virtual assistant would support them
in the kitchen, help them plan leisure activities, and provide support upon leaving or en-
tering the home in the entrance hall. With an adaptive choice-based conjoint analysis user
preferences were determined. This procedure resulted in one particular virtual assistant for
each context that was thereby tailored to fit the individual user preferences in terms of the
virtual assistants’ gender, age, hair color, hair length, and clothing. Participants were then
presented with their preferred choice using a short video clip showing the virtual assistant
performing an introducing animation with computer-generated gesture as well as with a
gender- and age-specific synthetic voice. Subsequently, the participants had to evaluate the
virtual assistant using a questionnaire. The selection process and evaluation of the virtual
assistant took about 45 minutes. After completion of the study, participants were debriefed,
reimbursed for their participation, and dismissed. Procedures were approved by the Biele-
feld University Ethics Committee under the approval number No 2016-029 (date: March
4, 2016) and are in accordance with the guidelines and regulations of the German Society
for Psychology (DGPs).

6.1.2 Design of the Virtual Assistants

Using the web-based service Autodesk Character Generator [Aut14], we semi-automatically
generated 176 different virtual assistants which differed in gender, age, hair length, hair
color, and clothing. To this end, eight “basis prototypes” were built manually, taking into
account both gender (male, female) and age (child-like, adolescent, middle-aged, senior)
of the virtual character (Figure 6.1). The further procedure was automated so that different
clothing styles, different hair colors, and different hair lengths were added automatically to
each of the basic prototypes at a time.

The virtual assistants featured three hair colors, i.e., blond, brown, and gray hair, with
either short or long hairstyles. We omitted child-like virtual assistants with gray hair. The
assistants were either dressed formally, casually, or using clothes based on the domain
of use. That is, a virtual fitness coach or a virtual chef wore apparel that matched their
particular profession. For instance, while the virtual cooking assistants featured a white
top and a white chef’s hat, the virtual fitness assistants featured a white sports jersey. The
eight basic prototypes, presenting virtual assistants with different ages and gender, as well
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female

male

child-like adolescent middle-aged senior

Figure 6.1: Eight virtual assistants of different gender and age were built manually and
augmented to generate 176 variants.

as the clothing and hairstyles were chosen by eight people who reached a consensus on
appropriateness of the visual attributes.

For one out of eight basis assistants (Figure 6.2(a)), we demonstrate how to add cloth-
ing and hairstyles. The underlying concept is very similar to clothing transfer from Sec-
tion 3.5.2. When adding clothing, we distinguish between adding texture and adding geom-
etry (Figure 6.2(b)). For the former, the regions of the textures (albedo-, normal-, specular
maps) that represent the clothing-of-interest are just copied onto our character’s textures.
This requires a manually pre-created mask for each piece of clothing. For adding geome-
try, the difference between a model with clothing-of-interest and the same model without
clothing is added to our character that is to be dressed. In particular, we encode the differ-
ence by deformation gradients and add it by deformation transfer. This process is similar
to the generation of facial blendshapes as presented in Section 3.4.3.

For adding a hairstyle and setting a hair color, we discern whether the hair from our
database is modeled as a separate mesh (wig) or not. In case of no wig, adding hair is
analog to adding clothing (Figure 6.2(c)). This means that we add the difference between
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(a) Basis assistant (b) Sportswear

(c) Hairstyle model (long, brown, no wig) (d) Final assistant

Figure 6.2: We dress a basis assistant (a) by adding the difference between a model with
clothing-of-interest and the same model without clothing (b). The regions of the textures
that represent the clothing are just copied. Similarly, we add hair (c) and set a default
posture for our final assistant (d).

a model with hair of interest and the same model with a bald head to our character that
we want to add a hairstyle to. As before, the regions of the textures that represent the
hairstyle of interest are just copied to our character’s textures based on a manually pre-
created mask. Note that we distinguish albedo maps for different hair colors that can be
added. In case of a wig, the idea is to add the separate wig mesh from the hairstyle model
to our current character and adjust the geometry of the wig (Figure 6.3) by computing a
space deformation field. This is based on radial basis functions [BKP*10] and interpolates
the deformation from the hairstyle model to our current character at vertices of the head.
By this deformation field, we transform the wig to fit it to our current character. The texture
of this separate wig mesh is simply taken from our database of different hair colors.

In case of generating a virtual chef, the chef’s hat was added and adjusted automatically
by optimizing position, orientation, and scaling based on pre-selected vertices. Subse-
quently, the hair was non-rigidly deformed to lay under the chef’s hat and regularized by
the Laplacian energy (3.3).
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(a) Basis assistant wear- (b) Hairstyle model (Iong, (c) Wig not adjusted (d) Final assistant
ing sportswear brown, wig)

Figure 6.3: We add a separate wig mesh from the hairstyle model (b) to our dressed
character (a) and adjust the geometry of the wig (c—d).

Since all virtual assistants are equipped with a skeleton, we are able to automatically set a
default posture (Figure 6.2(d)). Further, for each of these virtual assistants, both images and
video clips were generated automatically. The videos featured a short animation including
computer-generated gesture and speech. For each of these virtual assistants and for each
context, a video clip was generated that showed the virtual assistant introducing itself as
a personal assistant. The clip also briefly depicted several opportunities for assistance in
that specific context. Note that the images and video clips only show the upper body.
See Figure 6.4 for a representative subset. An overview of all virtual assistants that were
used as stimuli can be found in the appendix.
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Figure 6.4: Design of the virtual assistants. A representative subset of 176 different virtual

assistants that were designed and used as stimuli.
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6.1.3 Adaptive Choice-Based Conjoint Analysis

To determine the preferred virtual assistant, we
utilized adaptive choice-based conjoint analysis
(ACBC) [CDC10]. Generally, conjoint analy-
sis is a decompositional statistical approach that
represents a de facto standard in market research
to determine preferences of customers regard-
ing particular features of products in a holistic
way [GS78, GKWO01]. ACBC is framed as a
choice exercise where the respondent chooses
the most preferred target from a set of compet-
ing alternatives. According to Cunningham et
al. [CDC10], the ACBC approach is considered
to be realistic, appealing to the participants, and
seems to yield good predictions. In the current
study, the adaptive procedure enables assess-
ment of the large number of images of virtual
assistants. We implemented the whole study
with the proprietary software Lighthouse Stu-
dio [Sof17].

Work flow

The ACBC consists of three phases, called
Build-Your-Own, Screening, and Choice Task.
During the Build-Your-Own phase, the partici-
pants have to build their own presumably pre-
ferred virtual assistant for the current smart
home context (Figure 6.5(a)). Participants could
customize the virtual assistant by individually
selecting gender, age, hair color, hair length,
and clothing. Then, a picture of the upper body
of the corresponding virtual assistant was dis-
played. At this point, participants were still able
to change characteristics again and thus could
Based

on the specified answers, a pool of virtual as-

choose for a different virtual assistant.

sistants was created. To limit all possibilities to

Bereich: Unterstiitzung bei Ihrer Freizeitplanung

An dieser Stelle sollten Sie Thre/n préaferierten AssistentIn zusammenstellen.
Klicken Sie dazu fiir jedes Merkmal Ihre préferierte Auspragung Ihres/Ihrer

AssistentIn an.

Merkmal Auspragung
Alterskategorie: | U jung

® mitteljung

O mittelalt
Vit
Haarfarbe: U blond
® braun
' grau
Haarlinge: ® yurz
“lang
Geschlecht: ® mannlich
- weiblich
Kleidung:

® Freizeitkleidung

U Formelle Kleidung

(G

o mm 100%

(a) Build-Your-Own phase

Bereich: Unterstiitzung bei Ihrer Freizeitplanung

Hier stehen Ihnen ein paar AssistentInnen zur Auswahl. Ist der/die AssistentIn

fiir Sie akzeptabel?

(b) Screening phase

Bereich: Unterstiitzung bei Ihrer Freizeitplanung

Welche/r AssistentIn ist der/die beste?

(c) Choice Task phase

Figure 6.5: Three phases of an adaptive

choice-based conjoint analysis.
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relevant ones, characteristics were relatively concentrated around the specified characteris-
tics, although every characteristic was included.

During the Screening phase, four virtual assistants were shown at the same time (Fig-
ure 6.5(b)). Here, the participants had to decide if the proposed virtual assistants would
come into question for acting as virtual assistants or not, respectively. We showed eight
of such screens to ensure that enough virtual assistants were assessed so that we could de-
rive strong individual utility estimates. During the Screening phase, a participant may have
consistently avoided some levels of an attribute. In this case, we asked whether any of these
avoided levels was a so-called Unacceptable. The participant could then mark the one char-
acteristic that was most unacceptable or mark none. Later on, depending on the responses,
another unacceptable screen may have been shown. All unacceptable levels that were spec-
ified by a participant were no longer displayed. Similarly, the virtual assistants that were
marked as coming into question for being virtual assistants may have contained certain
characteristics. In this case, we asked if that level is a Must-Have, so that the participant
could mark the most important feature that is a Must-Have or mark none. Again, depending
on the responses, another Must-Have screen may have been shown where the participant
could decide for another Must-Have level. All Must-Have levels that were specified by the
participant were shown in the following screens. If no virtual assistant was possible, the
ACBC stopped for that specific smart home context.

During the Choice Task phase, the participants were shown a series of choice tasks in
groups of three (Figure 6.5(c)). Here only the “surviving” virtual assistants that were con-
sidered a possibility during the Screening phase and that were conform to Unacceptable
and Must-Have rules were shown. In subsequent rounds of the tournament, the winning
virtual assistant from each triple competed until the overall preferred assistant was found.

6.1.4 Dependent Variables

Participants evaluated four different virtual assistants (i.e., one for each context) on a va-
riety of dependent measures. Responses were provided using seven-point Likert scales
(from 1 = not at all to 7 = very much). For the four contexts Leisure, Kitchen, Fitness, and
Entrance, participants evaluated the individually determined preferred virtual assistant on
attributed warmth, competence, and persuasiveness. Perceived similarity with the virtual
assistant was assessed using the item “The assistant is similar to me.” Participants further
indicated their intention to use the virtual assistant and how much they would like to have
it at home. They reported their satisfaction with the realization of the virtual assistant using
three items (satisfaction with the appearance, the voice, and the animation of the assistant).
These items read “How satisfied are you with the appearance of your virtual assistant?”,
“How do you feel about the animation of your virtual assistant?”’, and “How do you feel
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about the voice of your virtual assistant?”. The items were rated using seven-point Lik-
ert scales (from 1 = robotic to 7 = human). At the end of the study, participants reported
their individual openness toward technology using 13 items from Neyer, Felber, and Geb-
hardt [NFG12]. An example item read: “I would like to use new technology more often.”
Finally, participants indicated their gender, age, and German language skills.

6.2 Results

In the following, we will first present our results on preferences for visual attributes of
virtual assistants. Thereafter, we give recommendations for the design of virtual assistants

in smart home environments and continue with answering our hypotheses.

6.2.1 Preferences for Virtual Assistants

Importance of the Customization Categories

To test whether the customization categories gender, age, hair color, hair style, and cloth-
ing differ in their importance for the total utility of the final virtual assistant, we considered
conjoint importance characterizing the relative importance of each category and conducted
paired t-tests for each of the four contexts using Bonferroni adjustments. Descriptive statis-
tics are summarized in Figure 6.6 (for details see Table 1 from the appendix). Note that
conjoint importance is ratio data. Thus, e.g., the category age in the context Leisure with
an importance of 46.82 % is more than twice as important as the category hair color with
an importance of 22.36 %. Age of the virtual assistant turned out to be the most important
customization category for all contexts, ts(130) > 13.50, ps < .001.

Preference for Female vs. Male Virtual Assistants

When determining preferences of participants by ACBC, so-called individual part-worth
utilities were estimated. Part-worth utilities are interval data that quantify the participants’
preferences for each characteristic of each attribute and are to be preferred over the individ-
ually determined preferred virtual assistants. However, analyzing pure part-worth utilities
might seem somewhat abstract. Fortunately, there are more powerful ways to analyze pref-
erences by choice simulations that are based on part-worth utility estimates. We analyzed
participants’ preferences in different groups and for different smart home contexts by con-
ducting choice simulations. In this chapter, all choice simulations were conducted by the
First Choice method [LRDBO06]. This method assumes that users will choose the prod-
uct that has the highest overall utility. In our context, this method simulated the decision
for the most preferred virtual assistant for many simulated users and is thus similar to the
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Figure 6.6: Importance of the customization categories. Means and standard deviations

of the importance of the customization categories grouped according to context.

decision process of a real end-user for a preferred virtual assistant. Following the advice
from Lighthouse Studio, we communicate the results of our conjoint analyses using choice
simulators.

We distinguished male and female participants and coded participants’ age as young,
middle-aged, and senior (cf. Table 6.1). See Figure 6.7 for the choice simulations’ output
(for details see Table 2 from the appendix).

On a descriptive level, there was an overall preference for female virtual assistants. Fur-
ther, we observed that young male participants preferred male virtual assistants equally
or more than female virtual assistants in all contexts. However, middle-aged and senior
male participants mostly preferred female virtual assistants. There is one exception for the
context Fitness. Here, middle-aged male participants preferred male virtual assistants. We
also observed the trend that, on average, male participants increasingly preferred female
assistants with increasing age.

In contrast, the majority of female participants preferred a same gender assistant. An ex-
ception was the context Fitness. Here, middle-aged female participants prefer male virtual

assistants, too (Figure 6.7).

114



6.2 Results

Umale [lfemale

100 [ 1 100 [ ]
[ H 50 [ -
0 0
S
™

Gender [%]
ot
(@)

& & & 3D
Q&‘%. S Qo*‘%. S 000%. F Q&‘%. S v
L S F L S F L S F L S F
P RT R P DIRTR
(a) Leisure (b) Kitchen
100 [ 7 100 [ 7
50 [ H 50 [ @
0 0
S I A & RN
SEFSETF D SEE S
L P F S F L S (F Y Qo F
P DIRT R P IRT R
(c) Fitness (d) Entrance

Figure 6.7: Preferences for female vs. male virtual assistants. Results of choice sim-
ulations for preferences for different genders grouped according to context and different

groups of participants.

Preference for Child-like vs. Adolescent vs. Middle-aged vs. Senior Virtual
Assistants

Paired samples t-tests were conducted to compare the preference for adolescent virtual
assistants with the preference for the three other age categories for each of the four con-
texts using Bonferroni adjustments. All comparisons turned out significant, ts(129) >
3.56, ps < .01.

Considering the choice simulations, i.e., on a descriptive level, in the contexts Leisure,
Kitchen, Entrance, there was a preference for adolescent virtual assistants. In compari-
son, middle-aged virtual assistants were mostly selected for the context fitness training,
see Figure 6.8 (for details see Table 2 from the appendix). We observed that for young
participants the adolescent virtual assistants were always preferred. For middle-aged par-
ticipants, adolescent assistants were highly preferred, too. There is one exception for the
context Fitness. In this context, middle-aged male participants preferred middle-aged vir-
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Figure 6.8: Preferences for child-like vs. adolescent vs. middle-aged vs. senior virtual as-
sistants. Results of choice simulations for preferences for different ages grouped according
to context and different groups of participants.

tual assistants more. Interestingly, for participants older than 55 years, child-like virtual
assistants were preferred most. Again, there is one exception for the context Fitness. Here,
senior male participants preferred adolescent virtual assistants.

Preference for Blond- vs. Brown- vs. Gray-haired Virtual Assistants

We conducted choice simulations to analyze preferred hair colors (blond vs. brown vs. gray
hair color) for participants that were divided into groups of blond-haired, brown-haired, and
gray-haired individuals based on their own, self-reported hair color. Results of the choice
simulations are provided in Figure 6.9 (for details see Table 3 from the appendix). Ac-

cordingly, we observed that brown-haired participants dominantly preferred brown-haired
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Figure 6.9: Preferences for blond- vs. brown- vs. gray-haired virtual assistants (V.A.).
Results of choice simulations for different hair color preferences grouped according to
context and different groups of participants (P.).

virtual assistants, while blond-haired and gray-haired participants prefer brown-haired or
blond-haired virtual assistants.

Preference for Short- vs. Long-haired Virtual Assistants and the Correlation
of Gender and Hair Length

Interaction effects between attributes were identified by interaction Chi-Square tests for all
attributes taken two at a time. To test the strength and significance of the interaction effects,
the 2 Log-Likelihood test was used respectively. For all groups, we observed interaction
effects between hair length and gender at a 99 % level except for senior female participants
older than 55 years in the context Leisure. However, in that case, hair length and gender
still interact at a 95 % level.

To examine the actual preferences, we analyzed preferences for all participants together
by conducting choice simulations. In addition, we analyzed preferences as a function of
participants’ age and gender. On average, the outputs of the choice simulations yielded
higher rates for male assistants with short hair or female assistants with long hair compared
to the other combinations (Figure 6.10, for details see Table 4 from the appendix).
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Figure 6.10: Preferences for hair lengths of the virtual assistants. Results of choice simu-
lations for different hair length preferences in combination with gender grouped according

to context and different groups of participants.

Preference for Context-Specific Clothing of the Virtual Assistants

Paired samples t-tests were conducted to compare the preference for context-specific cloth-
ing of the virtual assistants with the preference for alternative clothing for each of the
four contexts using Bonferroni adjustments. Although there was no clear context-specific
clothing for the Leisure and Entrance contexts, we nevertheless considered these contexts
in our analysis for the sake of completeness. There was a significantly greater prefer-
ence for casual clothing in the Leisure context compared to formal clothing (M qsua =
4.52,SDogsuar = 16.41;t(130) = 3.15,p = .002), and a greater preference for sports
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Figure 6.11: Preferences for virtual assistants’ context-specific clothing. Results of
choice simulations for different clothing preferences grouped according to context and dif-
ferent groups of participants.

clothing in the context Fitness compared to casual and formal clothing (Mps = 36.95,
SDports = 27.80; Measuar = 3.61, SDoasuat = 1685 Moras = —40.56, 5D formar =
24.82;ts(130) > 9.86,ps < .001). Further, there were no significant (ns) differences be-
tween the preference for kitchen clothing, casual, and formal clothing in the Kitchen con-
text (Mpyitchen = 4.64, SDyirchen = 62.41; Megsuar = —4.63, SDeasuar = 39.87; M formar =
—.02, SDforma = 29.53;t5(129) < 1.13,ns). There was also no difference between for-
mal and casual clothing in the Entrance context (Mformar = —.78,5D formar = 16.03;
t(129) = —.52, ns).

Further, we analyzed preferences by performing choice simulations for all participants
together. Here, it turned out that casual clothing was slightly more preferred for the con-

119



6 Preferences for the Visual Attributes of Virtual Assistants

texts Leisure and Entrance. Moreover, kitchen-specific clothing was preferred most in the
context Kitchen while sportswear was preferred most in the context Fitness.

We also analyzed participants’ preferences according to age and gender by conducting
choice simulations (Figure 6.11, for details see Table 4 from the appendix). For the contexts
Leisure and Entrance, it turned out that casual clothing is preferred more often. In contrast,
for Fitness, sportswear is mostly preferred. The results from the context Kitchen were not as
clear. There, clothing that fit this particular context was only markedly preferred by middle-
aged participants of both genders as well as by young female participants. Young male
participants also preferred casual clothing but also accepted the context-specific clothing.
Interestingly, senior participants preferred casual clothing (52.25 %), while kitchen-specific
clothing was preferred least (20.05 %).

6.2.2 Recommendations for the Design of Virtual Assistants in
the Smart Home Context

In this section, we derive guidelines for the design of virtual assistants in smart home
contexts. The main finding of the present research is that the design of virtual assistants
should be tailored to fit different target groups and different contexts. However, in order to
derive more versatile and applicable virtual assistants, we also present positively evaluated
characteristics of virtual assistants for situations in which the age, gender, hair color, and
context are not known.

Our results suggest, that when context and user features remain unknown, an adolescent,
female virtual assistant with long brown hair and casual clothing might be the character of
choice, as these characteristics were preferred most over all participants (see the framed
virtual assistant in Table 6.2). Furthermore, it became apparent across analyses that the
virtual assistant’s age turned out as the most important customization category across all
contexts.

In case the context of the use case is known, we would recommend an adolescent female
virtual assistant with long hair as well. Interestingly, for the context Fitness, middle-aged
male virtual assistants with short hair turned out equally suitable. Further, depending on the
context, we suggest opting for a casual clothing style in the contexts Leisure and Entrance,
for kitchen-specific wear in the context Kitchen, and for sportswear in the context Fitness.
Hence, the clothing should be context-specific and casual if no clear, context-specific cloth-
ing is available.

Going one step further, if the context as well as the gender and age of the user is known,
we can give more tailored recommendations. See Table 6.2 for an overview of the most

preferred virtual assistants based on choice simulations.
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Participants Leisure Kitchen Fitness Entrance

A
&\»'

e A A
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M middle
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F middle ‘ / A ’\
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Table 6.2: Results of choice simulations for the most preferred virtual assistants for dif-
ferent genders, age categories, and contexts.
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6 Preferences for the Visual Attributes of Virtual Assistants

With regard to gender of the virtual assistants, we observed that, on average, female
virtual assistants were preferred most, particularly by female participants. Interestingly,
on average, young male participants preferred male virtual assistants most in all contexts.
Further, we observed the trend that, on average, male participants increasingly preferred
female assistants by an increasing age. In contrast, for female participants, a female virtual
assistant is always preferred by the majority. Interestingly, for the context Fitness, both
male and female middle-aged participants preferred male virtual assistants.

Regarding preferences for age of the virtual assistants, we found that adolescent virtual
assistants were strongly preferred. Interestingly, senior participants preferred child-like vir-
tual assistants most, except in the context Fitness, where senior male participants preferred
adolescent virtual assistants most. Furthermore, in the context Fitness, middle-aged male
participants prefer middle-aged virtual assistants.

Considering the clothing, our results revealed an interesting fact when taking partici-
pant age into account. In the context Kifchen, there were no significant differences be-
tween the preference for kitchen clothing, casual clothing, and formal clothing. Further,
senior participants preferred kitchen clothing least and instead preferred casual clothing.
For more tailored clothing on virtual assistants with respect to age and gender, we refer
to Figure 6.11.

In terms of hair color of the virtual assistant, we recommend a virtual assistant with
brown hair in case the hair color of the user is not known because this color was chosen most
often. Otherwise, we recommend blond- or brown-haired virtual assistants for blond- or
gray-haired users. For brown-haired users we recommend brown-haired assistants because
these users preferred brown-haired virtual assistants which resembled themselves. Thus,
the aforementioned recommendations should be adjusted in case the hair color of the user
is known.

Finally, we examined whether preferences regarding gender and hair length of the vir-
tual assistants would interact. As predicted, we consistently observed interaction effects
between gender and hair length of the virtual assistant. That is, congruent with gender
stereotypical appearance, male virtual assistants should feature short hair, while female
virtual assistants should have long hair.

6.2.3 Hypotheses

Hypothesis 1
Effects of Perceived Similarity

Hypothesis 1 assumed that the more people perceived their chosen virtual assistant as being
similar to themselves, the better the evaluation would be. To analyze whether participants’
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6.2 Results

evaluation of their final virtual assistant, their intention to use it, their wish to have it at
home, and their satisfaction with the realization of the virtual assistant was positively cor-
related with perceived similarity of the assistant to themselves, a Pearson’s product-moment
correlation analysis was conducted separately for each use case. In every context, all four
variables—evaluation of the assistant, intention to use, wish to have it at home, and satis-
faction with the realization of the virtual assistant—turned out to be positively correlated
with similarity. This result validates the hypothesis (cf. Table 6.3).

evaluation of intention to use wish to have satisfaction with

the assistant it at home the realization

Leisure r(131) = .47, r(131) = .32, r(131) = .39, r(131) = .47,
p < .001 p < .001 p < .001 p < .001

Kitchen r(127) = 47, r(127) = .21, r(127) = .30, r(127) = .47,
p < .001 p=.02 p=.001 p < .001

Fitness r(126) = .32, r(126) = .19, r(126) = .32, r(126) = 41,
p < .001 = .03 p < .001 p < .001

Entrance  r(125) = .37, r(125) = .20, r(125) = .22, r(125) = .43,
p < .001 p=.03 p=.01 p < .001

Table 6.3: Effects of perceived similarity. In every context, all four variables—evaluation
of the assistant, intention to use, wish to have it at home, and satisfaction with the realiza-
tion of the virtual assistant—turned out to be positively correlated with perceived similarity.

Hypothesis 2
Perceived Warmth and Competence

Hypothesis 2 assumed that female virtual assistants are perceived as warm, whereas male
virtual assistants are perceived as highly competent and high in persuasive power. A
MANCOVA was conducted to analyze the effect of gender of both participants and the
virtual assistants on perceived warmth and competence. Participant age was used as a
covariate. Descriptive statistics are summarized in Figure 6.12 (for details see Table 5
from the appendix). Against expectations, there were no main effects of virtual assis-
tant gender (Leisure: F's(1,125) < .94,ns; Kitchen: Fs(1,122) < 2.72,ns; Fitness:
Fs(1,120) < 1.50,ns; Entrance: Fs(1,120) < 2.24,ns) and no main effects of partic-
ipants’ gender (Leisure: F's(1,125) < .86,ns; Kitchen: Fs(1,122) < .74,ns; Fitness:
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Figure 6.12: Perceived warmth and competence of the virtual assistants. Means and
standard deviations of attributed warmth (a) and competence (b) to female and male virtual

assistants grouped according to context.

Fs(1,120) < .90, ns; Entrance: Fs(1,120) < .05,ns). However, there was an effect of
participants’ age on warmth in the context Leisure (F'(1,125) = 4.86,p = .03, effect size
n? = .04): The older participants were, the more warmth they attributed to their self-chosen
virtual assistant.

Thus, the hypothesis cannot be validated. Instead, one-sample t-tests against the neutral
scale midpoint (scale value =4 on a 7-point Likert scale) showed significant deviations from
the mean value for warmth and competence ratings in the four contexts indicating that all
virtual assistants that represented final choices were rated rather high in both warmth and
competence (Leisure: ts(130) > 5.07,ps < .001; Kitchen: ts(126) > 9.41, ps < .001;
Fitness: ts(125) > 7.82,ps < .001; Entrance: ts(124) > 9.92, ps < .001).

Hypothesis 3
Effects of Individual Openness Toward Technology

Hypothesis 3 assumed that peoples’ individual openness toward technology would mod-
erate the acceptance of the virtual assistant. To analyze the relationship between par-
ticipants’ openness toward technology and their evaluation of their preferred virtual as-
sistant, we conducted regression analyses across the four use cases. Openness toward
technology significantly predicted participants’ intention to use the assistant (standard-
ized coefficient § = .22,¢(130) = 2.57,p < .01) and their wish to have the assistant
at home (5 = .23,¢(130) = 2.63,p = .01). There was no effect of participants’ open-
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ness toward technology on their satisfaction with the realization of the virtual assistant
(8 = .06,t(130) = .65, p = .52).

In this chapter, we described how we conducted a laboratory study to analyze preferences
of users who differed in terms of age, gender, and even hair color with regard to virtual
assistants that were deployed in various smart home contexts. This finalizes the third and
last part of this thesis and brings us to the overall conclusion.
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7 Conclusion

This thesis investigates how virtual humans can be generated and efficiently employed
for character reconstruction, for craniofacial reconstruction in medicine, and for an in-
terdisciplinary study. For the latter, we deploy virtual humans as stimuli to examine the
preferences for virtual assistants in smart home contexts.

In the following, we conclude this thesis by summarizing our main results and describing
limitations as well as possible directions of future work.

Character Reconstruction

We started with deriving a template fitting framework that provides accurate face recon-
structions. Our method is based on a structured analysis of the different algorithmic build-
ing blocks for non-rigid registration. From the algorithmic building blocks, we combined
the most promising design choices. When fitting accuracy is the primary goal, our evalua-
tion shows that the fitting energy should use scan-to-template correspondences. Moreover,
simple point-to-point distances are fully sufficient in terms of fitting accuracy and provide
performance benefits compared to point-to-plane distances. Regularizing the fitting with a
nonlinear deformation model leads to a more precise fit. Combined with the anisotropic
refinement and the eyeball/eyelid correction, our method yields accurate and detailed face
reconstructions from multi-view stereo data in a couple of minutes.

An interesting direction for future work is the reconstruction of non-neutral facial ex-
pressions. The transfer of our constrained eyeball/eyelid fitting toward the combined re-
construction of teeth and lips should help to produce more realistic results. Moreover, a
more precise detection of eye contours (Figure 2.11) would make manual interaction less
necessary and make our approach fully automatic.

In a next step, we presented a fast and reliable pipeline to digitally clone full real persons
into realistic virtual humans. For 3D-scanning, we employ a custom-built camera rig with
40 cameras for the body and 8 cameras for the face and compute dense point clouds through
multi-view stereo reconstruction. Similarly as before and in order to robustly deal with
noise and missing data, we fit a generic human body model to the user’s scanner data.
By also transferring the skeleton, blendshapes, and eyes of the generic template to the
model, our reconstructed virtual humans can be animated in standard game engines and
VR frameworks. Furthermore, we demonstrated how to easily and seamlessly transfer
clothing from one character to another while still being compatible to standard rendering
engines.
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7 Conclusion

Our character generation requires only a minimum amount of user interaction and takes
less than ten minutes on a desktop PC. It is therefore fast enough to be performed at the
beginning of each session in a VR experimental study.

While our pipeline produced convincing results with all tested subjects, some inherent
limitations remain. Due to scanning subjects in A-pose, some areas are not visible from
enough cameras and thus are not reconstructed well. While missing data can be com-
pensated by template data during geometry reconstruction, these regions still suffer from
texture artifacts.

In future work, one could use the proposed pipeline to generate characters for preference
studies for personalized virtual agents. Another interesting direction for future work is the
realistic modeling of clothing motion. Moreover, we will work on further speeding up the
whole pipeline and making it fully automatic.

Craniofacial Reconstruction in Medicine

In the second part of this thesis, we presented an automated method based on a parametric
skull model, a parametric head model, and FSTT statistics for reconstructing the face for
a given skull. The models we are using were derived from head CT scans taken from an
existing CT image repository and from 3D surface scans of real subjects. Our approach
has three main outcomes: (i) a dense map of FSTT (i.e., a soft tissue layer), (ii) a visual
presentation of a statistically probable head based on FSTT statistics and a parametric head
model, and (iii) a method for generating plausible head or face variants, respectively.

The main advantage of our approach over landmark-based FSTT measurements (see
references in [Stel7]) is the density of the FSTT map without the need for error-prone nor-
mal information. A FSTT value can be derived from the FSTT statistics for any vertex
of the parametric skull model. It is important to note that the statistical evaluation of the
FSTT is fully automatic without any manual interaction. This is different from other CT-
based FSTT assessments which often still rely on error-prone manual measurements (see,
e.g., [Chal3]). Our fully automated method can help to generate a more accurate database
in the future because it largely overcomes the accuracy issues well-known for manual,
landmark-based FSTT assessments [SS08]. However, as our method is based on CT scans,
it is still prone to typical artifacts and gravity effects due to supine patient position. Al-
though our statistic sample of FSTT so far is generated from only 43 CT scans, the data we
derived (Figure 4.5) clearly indicate good agreement with data just recently published in a
meta-analysis [Stel7]. If enough appropriate CT scans are available, rapid processing by
means of an automated pipeline can aid the creation of a large statistical database. It seems
most likely that methods such as ours constitute the future for the generation of statistical
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models from 3D medical imagery. Therefore, enlarging the database will be part of future
work to produce more precise statistics.

FSTT statistics play a significant role in facial approximation [SSO8] and are also an in-
tegral part of modern orthodontic treatment planning [APS99, Chal3]. For forensic recon-
struction, FSTT statistics form the basis for further steps in the reconstruction process. The
advantage of our approach in comparison to other automated methods [TBK 05, TBL*07,
RMET14, SZD*16, SZM™17] is that our facial reconstruction process is fully automated.
The only manual steps necessary in our approach are done during the model generation
processes. As mentioned before, our FSTT statistics are independent of the measurement
direction; thus, we utilize union-of-spheres in the reconstruction process. Therefore, error-
prone strategies such as averaging over normal vectors to define a measurement direction
are completely avoided. By representing the FSTT-offset by a sphere-mesh, we could im-
prove the FSTT and thus further improve the quality of the resulting facial reconstructions.
Moreover, our parametric FSTT model allows us to create plausible head variants in a
statistical sense without having any prior knowledge about the head characteristics.

Indeed, our method already provides a good approximation of the facial skin surface in
a statistical sense. Nevertheless, the quality of the reconstruction depends on the size of
the statistic sample. In order to use additional descriptive factors (e.g., age, sex, ances-
try, weight, or skeletal classes [HTKK14]), a larger sample size representing the variance
of each of the factors is required. We thus aim to enlarge our skull and head database to
further elaborate on the method introduced here. Part of future work is the evaluation of
accuracy and recognition of a reconstruction based on our method. Inspired by Miranda’s
approach [MWR™ 18], we are planning to collect existing CT datasets and frontal standard-
ized photographs that are voluntarily donated by subjects for publication and also for the
assessment of accuracy and recognition.

Building upon this work, we presented a multilinear model that maps a set of low-
dimensional parameters for skull shape and FSTT distribution to an accurate and high-
quality mesh of both the skin and the skull geometry.

The required training data, a dense Cartesian product of skull and FSTT variations,
cannot be obtained by measurements alone. Based on individual parametric models of
skull shape, FSTT distributions, and head shapes, we generate synthetic—but statistically
plausible—training data by computing head models for given skull shapes and FSTT dis-
tributions.

We demonstrated that our model has several interesting and high-potential applications
in the medical context. First, it allows simulation of plausible head shapes for given skull
and FSTT variations at interactive rates. This is an important component in explorative,
computer-aided forensics. Second, by fitting the multilinear model to face scans, we can
infer both the skull shape and the FSTT of the scanned individual and successively simulate
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weight changes. More importantly, the estimation of a reasonably accurate skull shape
from a photogrammetric face scan helps to reduce or even avoid X-ray radiation for bony
cephalometric skull assessments in orthodontics or for surgical planning for patients with
craniofacial malformations. To the best of our knowledge, there is no approach to infer the
skull shape from a skin surface scan with the high precision we obtained.

One limitation of our model is that there is no guarantee that eyes and mouth stay at their
anatomically correct positions relative to the skull when varying the FSTT parameters.
The slight movements of eyes and mouth can be avoided in the future by incorporating
corresponding constraints into the generation of training data. Furthermore, since real faces
and FSTTs are asymmetric to a certain extent, our derived FSTT component inherits this
asymmetry. This may result in asymmetric head shapes when varying FSTT parameters.

Besides improving the theoretical properties of our model, collecting more CT scans
from a larger variation of real people is required in order to increase the variability and
expressiveness of our model. Access to more training data would also allow exploration of
different learning algorithms or investigation of other approaches for filling up the sparsely
scanned data with the goal of achieving a dense set of training data. Moreover, our model
could be used for realistic animations in movies.

Preferences for Virtual Assistants

The main strength of the study presented in the last part of this thesis is the fact that the
participants that were involved differed in age, gender, and hair color. This way, we were
able to comprehensively examine the effect of perceived similarity on the evaluation of
virtual assistants. Our results showed that, for participants, the evaluation of their final
virtual assistant, their intention to use it, their wish to have it at home, and their satisfaction
with the realization of the virtual assistant is positively correlated with the self-perceived
similarity to the assistant.

Contrary to our expectations, we found that the individually determined preferred virtual
assistants were perceived as both warm and competent regardless of the assistant’s gender.
This might be due to the fact that the individually determined preferred virtual assistants
were positively evaluated. Thus, such assistants seem to be perceived as both warm and
competent.

Considering the individual openness toward technology of the participants, openness
toward technology significantly predicted participants’ intention to use the assistant and
their wish to have the assistant at home. However, there was no effect of participants’
openness toward technology on their satisfaction with the realization of the virtual assistant.

These findings emphasize the importance of differentially investigating user preferences
for virtual assistants. The key finding of the current research highlights that the design
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of virtual assistants should be tailored to different target groups and different contexts,
i.e., participant features such as age, gender, and even their hair color, as well as the use
contexts for virtual assistants do matter. To this end, we give recommendations for the
design of virtual assistants in smart home environments. We can conclude that people do
not necessarily prefer characteristics that are similar to themselves, i.e., people did not
always choose a virtual assistant of their gender, age, and hair color.

Our research explored judgments about a broad variety of virtual characters to be used
in a variety of domains in the smart home context. These judgments were based on a de-
mographically diverse sample encompassing various age groups, were counterbalanced in
terms of gender, and even took into account participant hair color as a cue for similarity with
the virtual assistants that had to be rated. While our work provides important insights into
user preferences, it nevertheless has shortcomings that need to be discussed and improved
in follow-up studies. For example, the virtual assistants used in our study differed in terms
of five core features. This already provided a large array of stimuli. However, we could
only rely on these particular prototypes. There might be a vast number of alternative ways
to instantiate our operationalization. For instance, manipulating body weight has not been
considered at all in the present research; however, it would be interesting to manipulate in
future research. Clearly, the graphical models used in our research were far from perfect in
terms of realistic appearance. On the other hand, more human-like appearance could give
rise to more human-like behavior that could not be fulfilled [Ruil5]. Overall, there might
be many more equally relevant visual features that might influence the evaluation of virtual
assistants; our results surely cannot generalize across all of them.

Thus, future studies could shed more light on this by investigating settings of other vir-
tual assistants at other levels of realism and even more attributes. Besides considering
visual aspects, it turned out that the animation and voice of the virtual assistants were eval-
uated as being quite robot-like. Future studies should investigate the effect of different
synthetic voices and animation complexities on the evaluation of virtual assistants in smart
home contexts. Motivated by our results on self-perceived similarity to the assistant, an
interesting direction for future work is the evaluation of virtual assistants that are generated
by our approach from Chapter 3 and, thus, are digital clones of the participants. Further-
more, virtual assistants that are morphed versions [ZB13] of digital clones and assistants
as used in this study could be investigated. Additionally, the technique presented in Sec-
tion 3.5.2 could be used to transfer clothing, e.g., to add one’s own clothing to assistants
used in our study or to change the clothing of a digital clone to reduce potential confounds
caused by different clothing. Finally, it could be examined how simulated weight changes
of the digitally cloned virtual assistants effect participants’ evaluation of the virtual assis-
tants, e.g., by our approach presented in (Section 5.3.3).
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Supplemental Material for Preferences

Study

Supplementary Figures

Figures 1, 2, 3, and 4 show all assistants that were designed and used as stimuli.

Supplementary Tables

The tables in this document provide the exact numbers for the diagrams that are shown in

the main article.

context gender [%] age [%] hair color [%] hair length [%] clothing [%]
Leisure 12.74 46.82 22.36 12.61 5.47
Mean (SD) (8.59) (9.28) (5.39) (8.36) (4.03)
Kitchen 13.05 41.07 17.30 10.05 18.52
Mean (SD) (8.07) (11.61) (6.21) (7.85) (10.05)
Fitness 9.98 44.93 16.88 11.48 16.73
Mean (SD) (6.28) (9.95) (5.16) (8.26) (8.64)
Entrance 17.74 46.04 20.23 10.86 5.12
Mean (SD) (9.67) 9.71) (6.80) (8.16) (3.84)

Table 1: Means and standard deviations of the importance of the customization categories

grouped according to context.
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Figure 2: All virtual assistants with formal clothing that were designed and used as stim-
uli.
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Participants  child-like adolescent middle-aged senior male female
[%] [%] [%] (%] [%] [%]
M young 15 75 10 0 65 35
F young 8.7 82.6 8.7 0 8.7 91.3
% M middle 10 70 20 0 25 75
;ﬂi) F middle 33.32 38.12 28.56 0 42.86 57.14
M senior 47.62 19.05 33.33 0 28.57 7143
F senior 73.68 10.53 15.79 0 526 9474
All 33.59 46.56 19.85 0 28.24 71.76
M young 5 65 20 10 75 25
F young 13.04 65.22 8.7 13.04 17.39 82.61
5 M middle 10 65 15 10 30 70
E F middle 14.29 47.62 14.29 23.8  19.05 80.95
M senior 38.1 23.8 38.1 0 19.05 80.95
F senior 57.89 10.53 31.58 0 10.53  89.47
All 22.14 45.04 25.95 6.87 2748 7252
M young 25 40 35 0 80 20
F young 26.09 56.52 17.39 0 8.7 91.3
2 M middle 25 25 50 0 60 40
-‘E F middle 19.05 42.86 38.09 0 61.9 38.1
M senior 23.81 47.62 28.57 0 38.1 61.9
F senior 52.63 10.53 36.84 0 4211 57.89
All 27.48 35.88 36.64 0 48.09 5191
M young 30 60 5 5 50 50
F young 17.4 65.2 8.7 8.7 8.7 91.3
g M middle 20 40 20 20 40 60
S F middle 19.05 52.38 19.05 952 2381 76.19
M senior 52.38 14.29 28.57 476 19.05 80.95
F senior 57.89 15.79 26.32 0 526 9474
All 30.53 41.98 19.08 841 2595 74.05

Table 2: Results of choice simulations for preferences for different ages and genders

grouped according to context and different groups of participants.
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Participants blond-haired brown-haired gray-haired

virtual assistants [%] virtual assistants [%] virtual assistants [%]

o Blond-haired 58.62 37.93 3.45
.% Brown-haired 7.46 89.55 2.99
— Gray-haired 20.83 50 29.17
£ Blond-haired 48.28 41.38 10.34
'S Brown-haired 38.81 49.25 11.94
* Gray-haired 45.83 33.33 20.84
» Blond-haired 58.62 41.38 0

§ Brown-haired 25.37 70.15 4.48
o Gray-haired 45.83 29.17 25

g Blond-haired 37.93 62.07 0

§ Brown-haired 38.81 47.76 13.43
i Gray-haired 29.18 54.15 16.67

Table 3: Results of choice simulations for different hair color preferences grouped accord-
ing to context and different groups of participants.
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Participants M+s [%] M+l [%] F+s [%] F+l[%] casual [%] formal [%] context [%]

M young 65 0 0 35 60 40 -
F young 8.7 0 3478  56.52 39.13 60.87 -

£ M middle 25 0 35 40 65 35 =

;f) F middle 38.1 4.75 19.05 38.1 76.19 23.81 -
M senior 28.57 0 23.81 47.62 33.33 66.67 -
F senior 5.26 0 57.9 36.84 73.68 26.32 -
All 27.48 0.76 2748  44.28 60.31 39.69 -
M young 75 0 10 15 40 30 30
F young 17.39 0 3478  47.83 8.7 8.7 82.6

E M middle 30 0 20 50 15 10 75

é F middle 19.05 0 3333 47.62 28.57 0 71.43
M senior 19.05 0 19.05 61.9 57.13 23.83 19.04
F senior 10.53 0 57.89  31.58 47.37 31.58 21.05
All 27.48 0 26.72 45.8 35.11 15.27 49.62
M young 80 0 10 10 30 5 65
F young 8.7 0 26.08  65.22 30.43 4.35 65.22

2 M middle 60 0 5 35 15 0 85

{E F middle 61.9 0 28.58 9.52 9.52 0 90.48
M senior 38.1 0 19.05 42.85 47.62 9.52 42.86
F senior 42.11 0 4211  15.78 26.32 0.0 73.68
All 46.56 1.53 1832 33.59 39.69 4.58 55.73
M young 50 0 0 50 60 40 -
F young 8.7 0 21.74  69.56 65.22 34.78 -

g M middle 35 5 10 50 30 70 -

s

E F middle 19.05 4.76 19.05 57.14 71.43 28.57 -
M senior 19.05 0 38.1 42.85 47.62 52.38 -
F senior 5.26 0 47.37 4737 57.89 42.11 -
All 25.19 0.76 19.85 54.2 54.2 45.8 -

Table 4: Results of choice simulations for different hair length preferences and clothing
preferences grouped according to context and different groups of participants.
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female assistant male assistant

competence 5.42 5.19
. Mean (S D) (1.16) (1.41)
Leisure
warmth 4.68 4.57
Mean (SD) (1.36) (1.63)
competence 5.53 5.84
Kitchen Mean (SD) (1.09) (1.01)
warmth 4.97 5.34
Mean (SD) (1.32) (1.15)
competence 5.37 5.56
. Mean (SD) (1.14) (1.11)
Fitness
warmth 4.89 4.88
Mean (SD) (1.37) (1.11)
competence 5.51 5.68
Mean (SD) (1.17) (.93)
Entrance
warmth 5.06 5.47
Mean (SD) (1.39) (1.09)

Table 5: Means and standard deviations of attributed competence and warmth to female
and male virtual assistants grouped according to context.
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