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Technological know-how is necessary to make effectively use of new machin-
ery and capital goods. Firms and employees accumulate technology-specific
knowledge when working with specific machinery. Radical innovation differs
by technology type and pre-existing knowledge may be imperfectly transfer-
able across types. In this paper, I address the implications of cross-technology
transferability of skills for firm-level technology adoption and its consequences
for the direction of macroeconomic technological change. I propose a mi-
croeconomically founded model of technological learning that is based on
empirical and theoretical insights of the innovation literature. In a simulation
study using the macroeconomic ABM Eurace@unibi-eco and applied to the
context of green technology diffusion, it is shown that a high transferability of
knowledge has ambiguous effects. It accelerates the diffusion process initially,
but comes of the cost of technological stability and specialization in the
long run. For firms, it is easy to adopt, but also easy to switch back to
the conventional technology type. It is shown how different types of policies
can be used to stabilize a technological transition pathway. The findings are
summarized in a general taxonomic framework to characterize technologies.
It represents a bottom-up approach to the study of technology transitions.
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1. Introduction

Two major technological challenges characterize the dawn of the 21st century, climate
change and digitization. The avoidance of irreversible climate risks requires a fast and deep
transformation of the economy towards zero emissions until the second half of the century
[IPCC, 2018]. Digitization has the potential to alter established modes of production
and occupations obsolete [Brynjolfsson and McAfee, 2012]. Both technology trends can
be thought as a large scale substitution process in which an incumbent technology is
going to be replaced by an emergent entrant. Both trends are likely to be associated with
disruptive consequences in terms of distribution at the level of individual households,
firms, regional and national economies. Disruption is caused when occupational skill
requirements and the valuation of tangible and intangible assets change in a short time.

In this study, a theory of evolving substitutability is developed. The theory is based
on a microeconomic model of technological learning dependent on the characteristics
of competing technologies. This theory is a bottom-up approach to the multi-layer
perspective in transition studies [cf. Geels, 2002, Geels and Schot, 2007]. Its insights are
valuable for policy makers being interested in the acceleration of sustainability transitions
and smoothing disruptive side-effects of technological change [Safarzyńska et al., 2012].

The microeconomic learning model is implemented in the macroeconomic agent-based
model (ABM) Eurace@unibi-eco that is used to simulate a race between an entrant green
and incumbent conventional technology with stochastic elements [Hötte, 2019b].

The design of the model is inspired by insights of the theoretical and empirical literature
on technology diffusion at the firm, industry and macroeconomic level. The majority of
studies in the diffusion literature applies a linear model of technological change in terms
of productivity growth, but puts little emphasis on the role of substitution dynamics.

Comin et al. [2006] have shown empirically that diffusion curves may exhibit very
heterogeneous patterns ranging from s-shapes, convex, concave to inverted u-shapes.
Cross-national differences in technology adoption and diffusion patterns across nations are
often explained by differences in the endowment with technological capabilities [Nelson
and Phelps, 1966, Lall, 1992, Mayer et al., 2001]. Dechezleprêtre et al. [2011] has shown
that the type of pre-existing knowledge matters for the cross-national transfer of climate
friendly technologies.

Technological knowledge is sector and technology-specific [e.g. Kogut and Zander,
1992]. On the industry and firm-level, Cohen and Levinthal [1990] refer to capabilities as
industry-specific absorptive capacities. Absorptive capacity enables firms to successfully
adopt technologies developed in other sectors. Non-matching skill-sets that are required
to use a technology may result in a biased perceptions of technological alternatives
and limited adoption capabilities and cause path dependence in future technological
development [Dosi, 1982, Dosi and Nelson, 2010, Popp et al., 2010, Aghion et al., 2016,
Sarr and Noailly, 2017].

Firms’ technological capabilities are (partly) embedded in the skills of their employees.
Vona et al. [2015] found that the transferability and adaptability of employees’ skills may
be decisive for firms and industries to cope with changing technological environments.
This has implications for both, the success of innovation diffusion, but also for the
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disruptiveness of its effects on the market structure, on the labor market and income
distribution. Vona and Consoli [2014] argue that the transferability of technological
knowledge may be important to explain distributional effects on the labor market
associated with the obsolescence of technological capabilities.

The compatibility and adaptability of employees’ skills with emerging technologies is
important to understand firms’ and industries ability to successfully adapt if technological
circumstances change [Kogut and Zander, 1992].

In this paper, technology diffusion is studied as co-evolutionary transition process
where an incumbent conventional technology is possibly replaced by a green entrant. It
is shown that the success, pace and stability of the diffusion process is sensitive to the
characteristics of competing technologies and their implications for the co-evolution of
firms’ absorptive capacity.

This study builds on a model of two competing technologies and endogenous learn-
ing dynamics. The model is a refined version of the eco-technology extension of the
macroeconomic ABM Eurace@unibi introduced in Hötte [2019a].

Technology is embodied in substitutable capital goods that differ by technology type.
Technology-specific skills are required to make effective use of capital. The skill require-
ment imposes a limit to input substitution in the production of final goods. In this
study, I provide the theoretical motivation of a firm-level learning function. The shape
of the learning function reflects the properties of competing technologies, namely their
similarity and difficulty. The technological similarity is a measure for the transferability
of technological knowledge across technology types [cf. Jaffe and De Rassenfosse, 2017]. I
show how the relative accumulation of technology-specific capabilities depends on these
properties.

Endogenous learning and endogenous innovation influence the evolution of substi-
tutability in the long run. If paths of endogenous accumulation of skills and supplied
productivity sufficiently diverge, the economy converges to one of the two technologies
which can be interpreted as lock-in in a technological regime [cf. Dosi, 1982, Arthur,
1989]. This observation matches the observation made by Acemoglu [2002], Hanlon [2015]
who found that path dependence in innovation may induce long-term factor demand
curves to be upward sloping. This study adds the perspective that path dependence does
not (entirely) arise from the intended allocation of R&D resources, but also from the
evolution of technological capabilities of adopters.

An important output of the model is a sample of simulated diffusion curves that is
statistically analyzed. It is shown how the pace and pattern of diffusion depends on the
characteristics of competing technologies. Technological uncertainty is costly if R&D and
learning resources are invested in a technology type that is obsolete in the long run.

The simulation results are embedded in a broader, theoretical framework of macroeco-
nomic, technological transitions. This framework is based on three core characteristics
of competing technologies which can be classified as static, cumulative and interactive
properties of technologies. The entrant technology is defined as radical innovation that
allows its users to overcome a technical limitation of the incumbent technology. This is
is also called technical superiority and interpreted as variable input cost reduction that
is not achievable by the incumbent. This characteristic is a static property because it
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does not change over time and is tied to a specific technology type. Static properties
reflect the socio-technical landscape in transition theory. The superiority of a technology
is a matter of the appreciation within a specific context. It may reflect e.g. resource
endowments, oil prices, cultural values etc., but is beyond the influence of technology
developers and users [Geels, 2002].

The second property is cumulative. The incumbent technology benefits from accumu-
lated experience. Firms and employees have developed the appropriate skill set, built up
the complementary infrastructure and networks to make effective use of the technology.
In contrast, before firms and employees can exploit the full productive potential of the
entrant technology they have to learn how to use it. Accumulated knowledge stabilizes
the technological regime.

The two technologies are different but may have technical commonalities. Part of the
skills that are required to operate the incumbent may be transferable to the utilization
of the entrant technology. This is called technological similarity. It is an interactive
property because it affects the relative pace of knowledge accumulation and technological
specialization. The relative pace is measured in comparison to the competitor.

In the simulations it is shown that the different groups of characteristics have different
implications for probability of successful green technology diffusion and for the shape of a
diffusion curve. A market entering technology has the chance to diffuse if it is sufficiently
superior in the context of the technological landscape. It must be superior in terms of
input requirements, consumer preferences or production costs. Accumulated knowledge
reflects the maturity of supplied technology and the know-how of technology users. By
definition, an incumbent technology is endowed with larger accumulated knowledge stocks.
This represents an adoption barrier that might be prohibitively high such that it prevents
the diffusion of the entrant technology. It may also be the source of path dependence
if the accumulation of knowledge in the entrant technology is not fast enough. In such
case, an initial diffusion of the entrant is reversed and the economy relapses into the
conventional state. Interactive properties determine the pace of relative accumulation of
technological know-how.

Two results are worth to be highlighted here: (1) The transferability of technological
knowledge facilitates initial diffusion, but comes at the cost of long term stability of a
technological regime shift. If technological knowledge is highly transferable, it is relatively
easy for technology adopters to switch to the green technology. At the same time it is
easy to switch back if relative prices and relative performance of the technologies change.

In contrast, a low transferability of skills across technology types reinforces path
dependence. Initial adoption comes at high costs of learning. If initial diffusion is
sufficiently high, endogenous learning after green technology adoption strengthen the
permanence of the technological regime shift. If initial uptake is sufficiently low the low
transferability operates in the opposite direction. These stylized insights are relevant for
the strength and timing of policy interventions aimed to achieve a sustainable technological
transition.

(2) Further, the transferability of technological knowledge may have implications for the
disruptiveness of technological change and the emerging market structure. If knowledge
is easily transferable large, incumbent firms can incrementally replace parts of their
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technology with the green alternative without having struggle with the incompatibility
of systems. In contrast, technologies that require disjoint capabilities make it difficult
to incrementally switch to an alternative technological system. Disjoint means that the
green capital requires other skills than those required to operate the incumbent capital.
In consequence, to operate efficiently firms specialize on either green or conventional
capital. Endogenous learning dynamics strengthen the specialization pattern.

In a policy experiment, three different market-based diffusion policies are tested. The
instruments affect the static superiority of the entrant. A tax on the utilization of the
conventional technology (e.g. a carbon tax) reinforces the superiority of the entrant.
An investment subsidy reduces the price for green capital goods which is analogue to a
reduction in green technology production costs. A price support reduces the price for green
consumption goods. This is analogue to a higher willingness to pay. It is shown that all
policies may reinforce and stabilize an ongoing diffusion process, but increase technological
uncertainty if the economy is locked in in the incumbent regime. The different instruments
have different implications for the pace of technological specialization.

The consumption subsidy is responsive to the level of green technology utilization. It
is in tendency stabilizing because it reinforces an ongoing technological evolution. It
neutralizes if the economy is locked in.

The interaction between green technology diffusion policies and technological char-
acteristics reveals qualitative differences in the mechanisms of different market-based
instruments. Policies that stimulate the creation of green markets are not effective
if the two competing technologies are sufficiently dissimilar. In contrast, a tax, that
makes the utilization of the incumbent technology more expensive, works well for distant
technologies.

In the subsequent section, I provide an overview of the related literature on technological
change and the nature of technological capabilities of countries, industries, firms and
individual employees. A link to the transition literature is drawn. In section 3, I
introduce the main mechanisms of the model used in this analysis and explain the
design of simulation experiments. Section 4 is dedicated to the discussion of a series of
simulation experiments. It is investigated how the characteristics of technologies have an
influence on the pace and stability of diffusion processes and the policy experiment is
introduced. Section 5 concludes with a generalization of the results and the proposition
of a reconciling framework that can be linked to the multi-level perspective of technology
transitions and can be used for the empirical classification of competing technologies.

2. Background

In this study, I introduce the microfoundations of technological learning within the
context of macroeconomic directed technological change in a competitive economy with
heterogeneous firms. The model is based on insights of the management literature on
firms’ acquisition of technological capabilities as enabling factor to absorb technological
novelties.
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2.1. Technological knowledge and learning in the literature

Technological knowledge and human capital as enabling factors to adopt new technology
and sources of endogenous growth have a long tradition in economics [e.g. Nelson and
Phelps, 1966, Romer, 1990]. In this literature little is said about the types of technology
that are developed and adopted. Motivated by increasing concerns about climate change
and the distributional consequences of skill-biased technical development, the interest
in the directional nature of technological change became increasingly important [e.g.
Acemoglu, 2002, Löschel, 2002]. In these models, different types of technology are
modeled as different types of knowledge that is required to develop and use specific types
of capital goods. It can be acquired via type-specific R&D investments or learning by
doing. The majority of macroeconomic studies on directed technological change in the
endogenous growth literature focus on technology suppliers and the allocation of R&D
investments across different technology types. R&D investments enable the development
of more productive capital goods of a specific technology type that are adopted by final
goods producing firms. These models were used to study distributional consequences if
changes in the endowment with skilled and unskilled labor alter relative factor prices
and the expected profits of R&D investments in specific types of technology [Acemoglu,
2002]. The climate analogue is the effect of climate policy or resource scarcity on relative
factor prices and the associated effects on relative profitability of R&D in climate-friendly
technology [Löschel, 2002].

An implicit underlying assumption of these models is the immediate adoption and ability
to exploit the full productive potential on newly developed machinery once a technology
is available. This is at odds with insights from the diffusion literature emphasizing that
the process of adoption is slow [e.g. Metcalfe, 1988, Kemp and Volpi, 2008, Pizer and
Popp, 2008]. Micro-level reasons of sluggish diffusion range from incomplete information,
to heterogeneous benefits of adoption, investment cycles and learning-by-doing effects on
the side of suppliers and adopters [Allan et al., 2014].

Aggregate approaches to explain initially slow technology uptake are based on learning
curves. In learning curves, it is assumed that usability of specific technologies improves
by cumulative experience measured as time, installed capacity or R&D expenditures [e.g
Gillingham et al., 2008, Thompson, 2012, Wiesenthal et al., 2012]. Learning is represented
as self-enforcing mechanism of diffusion of a specific technology. However, learning curves
of single technologies say little about initial technology selection, substitution dynamics
and possible interdependencies among competing alternatives. McNerney et al. [2011]
consider technologies as composites of different components. They find that similarities
of different technologies in the process of technological development can be important
to explain the pace of learning. They confirm that the ability of efficient technology
utilization depends on the context provided by pre-existing technologies.

Interactions across technologies at the sectoral level can be analyzed using similarity
metrics derived from production and innovation networks [Antony and Grebel, 2012,
Carvalho, 2014, Boehm et al., 2016, Acemoglu et al., 2016]. Input-output flows between
industries capture cross-sectoral interdependencies. Boehm et al. [2016] argue that
similarities in input-output use can be used to identify the sectors in which firms have core

6



competences. These core competences can be interpreted as technology-specific knowledge.
Similarly, Carvalho and Voigtländer [2014] interpret the capability to productively combine
inputs as technology. Technological similarity facilitates the adoption of a new input
when adopters can make use of pre-existing technological knowledge.

Analogous metrics have been derived on the basis of overlapping citation links in
patent documents. The portfolio of cited patents reveals qualitative information about
the technological knowledge of the patent owner. If inventors cite similar patents they are
able to combine similar technological knowledge that is embodied in a patent. The have
similar technological knowledge themselves [Jaffe and De Rassenfosse, 2017]. Acemoglu
[2002] and Huang [2017] have used this metric to predict the direction of future research.
Antony and Grebel [2012] used patent portfolios at the firm-level to derive measures for
the absorptive capacity of technological knowledge that is developed in other technological
sectors.

The terms technological capabilities and knowledge is also used in the evolutionary
and management literature. However, there is no consensus about the definition of
technological knowledge and its use in economic theory [cf. Kogut and Zander, 1992,
Teece and Pisano, 1994, Cowan et al., 2000, Johnson et al., 2002, Thompson, 2012].
Often, the distinction between know-what and know-how is made. The former is closely
linked to information that is to some degree transferable across firms and has public good
properties. The latter is understood as a type of non-transferable procedural knowledge
that is tied to a specific firm or organization [Cowan et al., 2000]. Procedural knowledge
enables a firm to make productive use of given inputs to deliver a final product to the
market.

Technological capabilities of firms are partly embodied in a firms’ workforce and its
organizational structure [cf. Kogut and Zander, 1992]. Important characteristics of
technological capabilities are their cumulative nature and their tacit, non-transferable
dimension. Kogut and Zander [1992] argue that the learning of new capabilities of a firm
is dependent on the compatibility with its current capabilities.

This mechanism is a microeconomic determinant of path dependence at the industry
and sector level [e.g. Dosi and Nelson, 2010]. From the perspective of a firm, techno-
logical change manifests in the appearance of technical novelties and changing market
environments. The adaptiveness of procedural knowledge to changing circumstances
(dynamic capabilities) is decisive for firms’ capacity to cope with new technology [Teece
and Pisano, 1994].

Vona et al. [2015] link the insights on firms’ capacity to deal with changing market
environments with the characteristics of individual skills of employees. In an empirical
study, they found that industries are more likely to successfully adopt green technologies in
response to environmental regulations if the industry is characterized by skill requirements
that can be classified as adaptive and flexible. Using the classification scheme of employees’
skills developed by Autor et al. [2003], Vona and Consoli [2014] argue that adaptive,
non-routine skills are particularly important in phases of technological transitions. In
transition phases, technological knowledge is not yet translated into specialized codes
and skills that can be traded on the (labor) market in the form of specific occupations or
training programs.
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These insights can be summarized by four stylized facts on technological learning that
are used to build a theoretical model of technological learning.

1. Technological capabilities of industries (firms) are embedded in the technological
skills of firms (employees).

2. Technological capabilities are technology-specific and their accumulation depends
on the type of production technology that is used in an industry (firm).

3. A new technology is easier to adopt if previously accumulated know-how is compat-
ible with the new capabilities required to make effective use of the new technology.

4. The accumulation of technology-specific capabilities is decisive for the direction of
technological change and the stabilization of a technological regime.

These observations motivate the microeconomic foundations of a model of technological
learning. The model is used to study the competitive process of technology substitution
and emergent macroeconomic patterns of directed technological change.

2.2. Technology transitions

Macroeconomic directed technological change is the result of one or more transition
processes. A technological transition occurs if a new technology enters the market, diffuses
and gradually replaces an incumbent alternative [Geels, 2002]. It is associated with a
technological regime shift. A technological regime is reflected in the prevalent technological
paradigm that is defined as set of prevalent cognitive, regulatory and normative rules.
It reflects shared heuristics and beliefs of a community of technological practitioners
[Nelson and Winter, 1977, Dosi, 1982].1

Transitions are large-scale system changes that are associated with structural changes
in consumption patterns, institutional and organizational structures. The processes are
often subject to technological lock-in effects and increasing returns to scale, myopic
behavior, group dynamics and the imperfect spread of information [Safarzyńska et al.,
2012].

A common approach to study transitions is the multi-level perspective. A socio-
technical system is composed of three levels, i.e. the niche-, regime- and landscape level.
Incumbent technologies dominate at the regime level. New technologies are developed
at the niche-level. Niches are markets with specialized needs and provide a protected
space for experimentation and learning. Technologies are developed and used within the
context of a landscape layer that represents external forces (e.g. customer needs, natural
resource availability, regulations, complementary technologies). These forces are external
to technology users and developers. If the landscape changes and the dominant technology
at the regime level is not able to adapt to new circumstances, a niche technology may
enter the regime level. It possibly replaces the incumbent alternative if it outperforms the
incumbent alternative within the new environment [Geels, 2002]. An prominent example

1It is also reflected in the technical paradigm. The technical paradigm is more narrow defined and
represents the mindset of engineers and their way of defining a technological problem and its solution.
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are energy transitions in the context of climate change. Fossil fuel energy determines
the technological regime and is challenged by different types of renewables originally
developed in protected market niches [Unruh, 2000, Safarzyńska et al., 2012].

Transition processes are characterized by multi-level interactions. Challenges for
policies that aim to stimulate a sustainable transition are increasing returns to scale
and technological lock-in effects, group dynamics, bounded rationality, and the co-
evolutionary emergence of structures and behavior. The term co-evolution refers to the
mutual behavioral influence of evolutionary subsystems such as industries, social groups
or regional economic systems [Safarzyńska et al., 2012].

The analysis here is based on a macroeconomic agent-based simulation model. Agent-
based models offer an analytical and methodological framework that allows to simulate the
co-evolutionary nature of technology transitions and their underlying dynamics [Dawid,
2006, Farmer et al., 2015]. Sustainability transitions within agent-based macroeconomic
frameworks had been studied by Gerst et al. [2013], Wolf et al. [2013], Rengs et al.
[2015], Lamperti et al. [2018]Acemoglu et al. [2012], Lemoine [2018] have studied (climate
friendly) directed technological change within an analytical framework. This study
differs from previous studies by its explicit focus on learning dynamics in the presence
of heterogeneous absorptive capacity. Aim of this paper is to improve the qualitative
understanding of the conditions of transition success and its implications for policy
design.2

3. The Model

In this section, I provide a conceptual description of technology and technological
capabilities. These concepts are part of the agent-based macroeconomic framework
that is serves as emulator of a virtual, fully fledged economy. The most relevant parts
of the technical implementation of the technology module are formally explained. A
comprehensive and formal introduction to the model can be found in Hötte [2019b].

3.1. The concept of technology

Adopting the definition of technology used by Comin et al. [2006], technology is

“a manner of accomplishing a task especially using technical processes, meth-
ods, or knowledge”.

In general words, it is ability of producers to combine inputs such that an economically
valuable output is produced. In this paper, a race between two mutually substitutive

2In contrast to the majority of previous studies on innovation oriented climate policies, the key question
addressed in this paper is not whether a green transition is beneficial, but how to achieve and accelerate
it. It has been shown sufficiently by climate scientists that a fast transformation is an existential
question and that the time window for effective action is closing [IPCC, 2018, Steffen et al., 2018]. In
this study, it is shown that the economic consequences of a technological transition are sensitive to
the stability of the pathway of technological change.
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production technologies. One of the two technologies is incumbent and can possibly
be replaced by a new entrant technology. Both technologies can be used by firms to
produce an output that is equally valued by consumers, but require different types of
inputs. In figure 1, the concept of technology and learning is shown as a flowchart for
the two-technology case of green g and conventional c technologies.

Each of the two types of production technology is represented by two intangible,
cumulative stock variables. These stocks are interpreted as codified A and tacit B
technological knowledge. These intangible stocks embodied in physical production inputs
labor L and capital K and accumulated by different mechanisms.

Codified technological knowledge is embodied in the technical properties of the capital
stock and is acquired on the capital goods market by investments. Innovation and
technical progress in the capital goods market is driven by endogenous innovation. The
productive properties are called theoretical productivity A of capital K.

To make effective use of codified knowledge embodied in machines, firms’ employees
need to have the appropriate technology-specific skills. These skills are called tacit
technological knowledge B. Tacit knowledge is firm-specific, i.e. firms may be differently
productive even if they use the same type of physical production capital. In contrast
to codified knowledge that can be bought on the capital market, tacit knowledge is not
tradable and is accumulated through a learning process. Employees who are working
with a specific type of capital learn over time how to use it. Employees’ knowledge as an
aggregate represents the stock of tacit technological knowledge of a firm. The relative
pace of learning a specific type of skills depends on the relative time of working with a
specific technology type. This is captured by νig that describes the share of technology
type ig = c, g that is used in current production.

Theoretically, capabilities of individual employees could be acquired on the labor market,
but ex-ante, the endowment with technology-specific skills it is not fully transparent to
the firm. It is assumed that individual, technology-specific skills are not observable for
firms. Firms can only observe a general education level and the productive outcome of
the aggregate workforce. This enables the firm to draw conclusions about its aggregate
stock of tacit knowledge Big.

Technology is heterogeneous by type ig = c, g and represented by different stocks
of codified and tacit knowledge. If technologies are similar, part of the knowledge is
transferable to the use of the other technology type. This is a cross-technology spillover
effect in the learning process of employees.

In this study, I consider a two technology case of one incumbent and one entrant
technology. The entrant is a green technology that can possibly replace an incumbent
conventional alternative. A static property of the entrant technology is its technical
superiority. It allows the adopter to save part of variable input costs. In the case of green
technologies, this is interpreted as natural resource input that is required to operate
conventional capital. One unit of the resource is needed to use one unit of conventional
capital. The conceptual framework can be generalized to other types and a larger number
of competing technological alternatives. Key assumption is that the input cost savings can
not be achieved in the same way by the incumbent alternative. It can also be interpreted
as the replacement of specific tasks of human labor that can be replaced by machines.
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Figure 1: Illustration of the learning mechanism.
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Firms’ technological capabilities consist of two technology type-specific bundles of knowledge, i.e. tacit
Big and codified Aig, ig = c, g. Investment in capital Kig affects the theoretical productivity Aig and the
type-composition νig, ig = c, g of a firm’s capital stock. Technology-specific skills Big are learned during
work dependent on the quality Aig and the composition νig of the capital stock. Green (red) colored
arrays track the flow of endogenous innovation in the capital market ∆Aig and endogenous learning of
employees ∆big. Dashed arrays indicate learning spillovers across technology types.

The green entrant is technically superior in terms of resource efficiency, but suffers
from lower cumulative stocks of tacit and codified “green” technological knowledge. At
the time of market entry, the green alternative is technologically less productive. Firms
and employees have – compared to the incumbent technology – not yet developed the
capabilities to effectively use the green technology. Firms can acquire different types
of capital and substitute them one for each other. Substitutability between technology
types is limited by the transferability of tacit technological knowledge across types.
Hence, employees who know how to make productive use of conventional capital do
not necessarily know how to use the climate friendly alternative. The cross-technology
transferability is higher if the two technologies are similar.

Firms are active in a fully-fledged, competitive macroeconomy that is composed of
individual households, capital goods producers and a financial system including banks
and a stylized financial market. The macroeconomic background is introduced in more
detail in Dawid et al. [2018b]. More detail about the green technology extension can
be found in Hötte [2019b]. In the following section, I motivate the representation and
formalization of technology in more detail.
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3.2. Technological learning and spillovers

Technological learning at the macroeconomic level is the aggregate of learning by individual
employees working in heterogeneous firms. Firms’ learning is reflected in the improvements
of firms’ effective productivity using technology type ig = c, g. This is embodied in the
bundle of codified and tacit knowledge (Aigi,t, B

ig
i,t) of firm i in time t. Codified technological

knowledge is represented as average productivity of the firm’s capital stock items of
technology type ig. Tacit knowledge is given by the average technology-specific skill level
of the firm’s employees.3

3.2.1. Consumption goods firms’ production technology

The effective productivity of firms determines how effectively a firm can transform inputs
into final consumption goods Qi,t. Production inputs are a stock of capital Ki,t, a stock
of employees Li,t and, in case of conventional capital, natural resource inputs. Inputs are
combined in a constant returns to scale Leontief production function. The adjustment
of labor and capital is sluggish. Capital stepwise depreciates and is stepwise expanded
by investment. Similarly, a firm can dismiss only a given fraction of employees and if
hiring new employees (in discrete units) it is not certain whether the firm is able to fill
all vacancies immediately [see for more detail Dawid et al., 2018b].

The capital stock is composed of different vintages v of capital that may differ by
productivity Av and technology type ig ∈ {c, g}. The properties of a vintage are
given by (Av,1(v)) where 1(v) indicates the technology type. It takes the values
1(v) = 1 (0) for conventional (green) capital. Formally, the amount of capital goods
of a certain vintage v within the total capital stock Ki,t of firm i in time t is given by
Kv
i,t := {k ∈ Ki,t|Av(k) = Av,1(k) = 1(v)} ⊆ Ki,t. Moreover, I use the notation Kc

i,t

(Kg
i,t) for the sum of capital stock items of type c (g) that are used for production in t.
Theoretically, vintages are perfectly substitutable across technology types. But in

practice, the exploitation of the productivity of a given vintage at the firm-level is
constrained by its stock tacit knowledge. The effective productivity AEffvi,t of a capital
good v is given by

AEffvi,t = min
[
Av, Big

i,t

]
. (1)

The theoretical productivity Av of a specific capital vintage is constant and uniform across
firms. Tacit knowledge (know-how) required for the exploitation of the productive value
differs across employees, across firms, and changes over time when a firm’s employees
learn. The effective productivity of a given capital good with the properties (Av,1(v)) is
specific to the firm i and time t.

3The concept of codified and tacit knowledge can be expanded to a more general interpretation. Codified
knowledge refers to any production input that is explicitly purchasable on the market. Whether it
accumulates at the firm-level is dependent on the assumptions about the “depreciation” rate. In the
case of intermediates, the depreciation rate accounts for 100% per period. Tacit knowledge is not
traded on the market, i.e. it is different from the knowledge that can be acquired by hiring specific
occupations. It refers to all types of supporting factors that are accumulated during the utilization of
inputs, i.e. it may also cover supporting infrastructure and routines that are developed over time
within a firm.
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This leads to the production function of firm i in t given by

Qi,t =
V∑
v=1

(
AEffvi,t ·min

[
Kv
i,t,max

[
0, Li,t −

V∑
k=v+1

Kk
i,t

]])
(2)

where Li,t is the number of employees, and
∑V

v=1K
v
i,t is the firm’s ordered capital stock

composed of V different capital stock items. The term max
[
0, Li,t−

∑V
k=v+1K

k
i,t

]
captures

the fact that firms can only use as much capital as workers are available in the firm
to operate the machines. Ordered capital refers to the running order of capital that is
determined by the cost effectiveness of capital goods. Firms do not necessarily utilize
their full capacity. This occurs when the firm does not have sufficient employees to use
the full capacity or expected demand is lower than the maximal output and using costs
of capital exceed the expected revenue. In such case, most cost effective capital goods
are used first.

The cost effectiveness ζvi,t is given by the amount of output AEffvi,t producible by a
given vintage v divided by its using costs, i.e. wage wi,t and, if it is a conventional capital
good, unit energy and material costs cecot .4 Formally, this can be written as

ζvi,t =
AEffvi,t

w̄i,t + 1(v) · cecot
. (3)

The decision of firms about the quantity to produce is dependent on demand estimations
and inventory stocks. Based on estimated demand curves, firms determine the profit
maximizing price-quantity combination. Because the estimation is in most cases imperfect
and prices can not be immediately adjusted, the consumption goods market does not
necessarily clear. Further information on the production decision and market environment
can be found in Dawid et al. [2018b].

3.2.2. Accumulation of tacit and codified knowledge

Codified knowledge at the firm-level is acquired via investments in capital goods. The
productive properties Av of capital contribute to the firm’s stock of codified knowledge
Aigi,t of type ig. It is given by the average productivity of used capital goods of type ig,

i.e. Aigi,t = 1

Kig
i,t

∑
v∈Kig

i,t
(Kv

i,t · Av) where Kig
i,t is the amount of capital of type ig that is

used in current production.
Two representative capital goods producers supply a range of vintages that differ

by productivity level Av and technology type ig. The firm has to choose the optimal
combination of the investment quantity, productivity level and technology type. This
decision is based on the firms’ expectations about the marginal profit of the different
options. The firm computes and compares the net present values of different quantity-
productivity-type combinations taking account of expected demand, prices, costs, skill

4In case of equality of a vintage’s cost effectiveness the vintages are ordered by productivity and in case
of further equality the green vintage is used first.
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developments and financial constraints.5 More detail on the investment decision and
capital supply is provided is provided in Hötte [2019b].

Tacit knowledge Big
i,t = 1

Li,t

∑
l∈Li,t b

ig
l,t is embedded in the capabilities of the firm’s

employees. Employees l ∈ Li,t are characterized by their learning ability and two types
of technology-specific skills. Workers’ ability to learn is captured by a time-invariant
general skill level bgenl of employees and moderates the speed of learning. General skills
can be interpreted as educational attainment.

The two types of technology-specific skills bigl,t represent the employee’s capability to
work productively with a specific type of capital ig ∈ {c, g}. These skills are stock
variables that are growing by stepwise updates that represent a learning process. The
learning process is dependent on the learning ability χgenl = χ(bgenl ) and the technological
properties of the capital stock used in firm i where the employee is working. There are
two sources of learning. Employees are learning by doing when working with a specific
technology type and they can learn via cross-technology spillovers.

Skills are updated from period to period in discrete steps. The size of the updating
step ∆bigl,t+1 = bigl,t+1 − b

ig
l,t is given by

∆bigl,t+1 = χgenl ·

([(
ψigl,t

)(1+χdist) (
ψ−igl,t

)(1−χdist)
]1/2

− 1

)
. (4)

ψigl,t ≥ 1 represents “amount” of knowledge learned in one period during the utilization of
a specific technology type ig. Part of this knowledge is transferable across technology
types. It contributes to the accumulation of the endowment with the alternative skill
type −ig with ig 6= −ig and ig,−ig ∈ {c, g}. The parameter χdist ∈ [0, 1] describes the
technological distance between the two technologies which is a source of state dependence.
The functional form is inspired by models on state dependent technological change.6

The skill update by learning by doing ψigl,t is dependent on the technical difficulty of the

technologies χint, the relative amount of effort νigl,t and the technical novelty b̃igl,t. More
complex technologies are more difficult to learn and require a higher amount of effort, or
a higher intensity of learning. The updating step also depends on the technical novelty
b̃igl,t of capital ig which reflects the potential amount of knowledge an employee l can learn.
The updating step is given by

ψigl,t = 1 +
(
νigl,t

)χint
· b̃igl,t. (5)

5For reasons of reducing the computational complexity, the set of investment options is limited.
6These models are used to investigate the implications of scarce time and R&D resources that can

be invested in the production of technological knowledge and an associated allocation trade-off [cf.
Acemoglu, 2002]. The Acemoglu version of state dependence builds on two main assumptions, i.e. (1)
the resources that can be invested in R&D are scarce (in terms of a limited amount of researchers
that can be allocated across technological sectors), and (2) there can be spillovers in the generation
of knowledge. One sector may be able to use the knowledge that is generated in the alternative
sector. Both aspects can be plausibly transfered to the process of learning of employees who have
(1) a limited amount of time to learn specific tasks, and (2) knowledge about specific tasks might be
useful for both technology types.
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The relative intensity of learning in a specific technology category ig is dependent on the
relative amount of technology ig that is used νigi,t = (Kig

i,t/Ki,t) in the firm. This can be
understood as proxy for the amount of time that invested in the learning to use a specific
type of machinery [cf. Cohen and Levinthal, 1990]. Learning in category ig is faster if
the relative amount of this type in the used capital stock higher. The parameter χint

captures marginal returns. In the baseline scenario, I assume weakly decreasing marginal
returns in the learning process, i.e. the first hour of learning is more effective than the
last one. A conceptual interpretation of χint is the difficulty of learning. If χint is close
to zero, employees learn how to use the machinery irrespectively of the time invested in
working with the machine. If technologies are more difficult learn, the learning progress
is more sensitive to the amount of time invested in learning.
b̃igl,t = max[0, (Aigi,t−b

ig
l,t)] represents the technical novelty. It is given by the gap between

the codified technological knowledge of the employer Aigi,t and the employee’s current skill

level bigl,t. A larger the gap indicates a larger amount of potential technological knowledge
that can be learned and is associated with a faster pace of learning. This accounts for
the fact that employees learn only when they are exposed to (codified) technological
knowledge they that is new to them, i.e. if there is something new to learn [cf. Thompson,
2012].

Firms can not observe the skill endowment of individual employees, but observe the
effectiveness of the production process. They know the amount of inputs and the amount
of output and draw conclusions about their aggregate stock of tacit knowledge Big

i,t.

3.2.3. Learning in a nutshell

There is a difference between the codified knowledge that is existing in the economy and
the codified knowledge that is adopted even though both are interrelated.

Existing knowledge is exogenous to CG firms. It is the embodied in the productivity
level of supplied capital goods. It increases through endogenous innovation (“learning by
searching”) driven by sector-specific R&D investments. CG firms only indirectly influence
the pace by their investment decisions because R&D investments in an IG sector ig are
dependent on ig’s profits.

Adopted codified knowledge is firm-specific and corresponds to the technological
knowledge that is actually used in production. It is embodied in a firm’s capital stock and
accumulated by investments. Adopted codified knowledge and tacit knowledge together
constitute productivity.

Three factors determine the speed learning by doing:

1. The learning intensity νigt = Kig
i,t/Ki,t determines how intensively employees are

working with a specific type of technology. Increasing returns in the learning
process χint are related to the difficulty of learning. If it is zero, workers learn
independently of the extent to which they are using a certain type of capital. If
χint is larger one, returns to learning are increasing in the relative extent to which
employees are working with a technology type.
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2. The quality of the learning environment is captured by the technical novelty
b̃igl,t = max[0, Aigl,t − b

ig
l,t] of individual workers l. Employees learn faster if capital

goods are technically new to them.

3. Spillovers or the transferability of technological knowledge are negatively dependent
on the technological distance χdist. If the distance is low, technologies are similar
and knowledge is transferable across technology types. Learning in one technology
class contributes to the stock of know-how in the other class.

The relative speed of learning and innovation is sensitive to the investment decisions of
the firm. It is decisive whether a technology type survives on the market and stabilizes
the technological regime.

3.3. Simulations and experiments

A technology race between an incumbent conventional and green entrant technology
is simulated. The entrant technology suffers from entry barriers in terms of lower
accumulated knowledge stocks. Green capital goods becomes available at a given point in
time. At the day of market entry, green capital goods are technologically less mature than
the incumbent alternatives. The entrant capital producer supplies capital goods that
are less productive than those supplied by the incumbent. In other words, g produces
at a lower technological frontier, i.e. AVg,t0 = (1− βA)AVc,t0 . Employees l and firms have

less experience in using the entrant technology represented as bgl,t0 = (1− βb)bcl,t0 . The

parameters βA, βb > 0 describe the relative disadvantage and are interpreted as diffusion
barriers. The entrant technology is superior in terms of long term using costs because its
utilization does not require the costly natural resource input.

The simulations are subject to stochasticity. For example, capital producers’ innovation
success, the matching mechanism at the labor market and consumers’ consumption
decision are probabilistic [see Dawid et al., 2018b, Hötte, 2019b]. In the experiments
presented below, sets of 210 simulation runs are generated and the simulated time series
data are statistically analyzed. One simulation run consists of 15000 iterations and
corresponds to a time horizon of approximately 60 years. One iteration corresponds a
working day and 240 working days constitute a year. During the simulation horizon,
both technologies compete for market share. Finally the economy converges to a state in
which only one of the two technologies is effectively used. The dominance of the green
(conventional) technology is called green (conventional) technological regime.

Increasing returns to learning and market induced endogenous innovation reinforce
the process of technological convergence within a single simulation run. Convergence is
interpreted as stabilization of a technological regime.

Which of the two technologies succeeds depends on the type and strength of diffusion
barriers in relation to the technical superiority of the entrant and the characteristics of
the learning process. If barriers are sufficiently strong, path dependence in technological
learning may reverse the process of initial green technology diffusion that is triggered by
its input-cost superiority. The economy is locked in the incumbent technological regime.
If barriers are weak, firms incrementally substitute conventional for green capital. A
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technological transition takes place. A more detailed discussion of the role of diffusion
barriers and diffusion policies can be found in Hötte [2019a].

In this study, technologies are characterized by initial diffusion barriers, technical supe-
riority and interactive properties of the learning process χint and χdist. The simulations
allow to isolate the influence of technological distances χdist and difficulty in learning
χint on individual technology adoption and the emerging pathways of transition. Three
different types of experiments are run.

1. To compare the effects of different degrees of state dependence, time series simulated
with different discrete levels of the learning parameters χdist ∈ {0, .5, 1} and
χint ∈ {0, .5, 2} are compared.

2. To make a statistical analysis of the effect of the learning parameters on the micro-
and macroeconomic outcome, a Monte Carlo analysis drawing random values of
the learning parameters from a uniform distribution on the interval χdist ∈ [0, 1]
and χint ∈ [0, 2] is done.

3. In a previous study, it was shown that barriers are decisive and have possibly
non-linear effects on the transition probability [Hötte, 2019a]. Policies can be used
to stimulate a green transition. In an additional experiment, the interplay between
the level of barriers βA, βB ∈ [0, .1], the qualitative characteristics of technological
knowledge χint ∈ [0, 2], χdist ∈ [0, 1] and different diffusion policies is run. Policies
are modeled as two different types of subsidies and a tax on the natural resource
θ. The first subsidy ς i is a percentage investment subsidy that is granted for
investments in green capital. The second subsidy ςc is a price support for green
products whose amount is dependent on share of green capital that is used by the
producer.

The experiments are evaluated in comparison to a baseline scenario. In all experiments,
the conditions of market entry are set such that it is ex-ante not clear which of the two
competing technologies will finally dominate the market.

4. Results

Three major questions are addressed in this analysis.

• How does the success and pattern of diffusion depend on the characteristics of the
two competing technologies?

• Which are the drivers of technological convergence and how do these relate to the
stability of the diffusion process?

• Which macroeconomic side effects occur?

These questions are addressed by an analysis of simulated time series data. The core
indicator to evaluate the diffusion success is the share of conventional technology utilization
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at the firm-level νci,t = Kc
i,t/Ki,t. It describes the share of conventional capital that is

used in production in t by firm i. It measures diffusion at the intensive margin. It can be
aggregated across firms to obtain a macroeconomic diffusion curve νct . The stability of
the diffusion process is evaluated by the standard deviation of the diffusion measure σνi,t
over a moving time window of 2.5 years. A diffusion process is called unstable if firms
switch between the two technology types.

In a preceding study on barriers to technology diffusion it was found that relative
stocks of technological knowledge αt = Act/A

g
t and βt = Bc

t /B
g
t represent a source of

path dependence in technological change [Hötte, 2019a]. Both stocks are endogenously
accumulated dependent on the relative profitability in the IG sector and relative intensity
of technology use. This is also called state or path dependence [cf. Acemoglu, 2002]. If
knowledge stocks diverge, the economy becomes increasingly locked in the relatively more
productive technology irrespective of relative factor input costs. These variables help
describing the technological state of the economy.

4.1. Baseline scenario

In the baseline scenario, the parameters of the learning function are fixed at intermediate
levels, i.e. χdist = .5 and χint = .5. Relative knowledge stocks of the entrant technology
are by 3% lower than those of the incumbent, i.e. βA = βb = .03. These simulation
settings are used to generate a sample of diffusion curves and macroeconomic time series
data. The simulated diffusion curves show a pattern of technological divergence. The
economy converges to one of two possible technological states, either with almost 100%
or 0% green technology utilization at the end of simulation time.

Independent of the resulting technological state, the curves exhibit a phase of initial
technology uptake triggered by the technical superiority of the green technology. The
initial uptake is not necessarily permanent. In some of the simulation runs, initial
diffusion is reversed by the effects of path dependence resulting from technological legacy.

Multiple reversions in the slope of the diffusion curve may occur until the economy
converges to one of the two technological states.7 This is dependent on the dynamics of
adoption and competition on the IG market and the stochastic elements in the innovation
process.

The different final states are called technological regimes. The technological regimes
are classified by the share of conventional technology used νcT in T = 15000. A regime is
called green (conventional) if νcT < .5 (νcT ≥ .5). This is illustrated in the time series of
the diffusion curves for each single run in the appendix B.1b. In 142 out of 200 simulation
runs the economy converges to a green technological regime corresponding to a transition
probability of 71%.

In the appendix B.1, an overview of the main technological and macroeconomic
indicators is provided. I refrain from a discussion of the baseline scenario simulation

7These patterns are in line with the empirical (mostly historical) literature on technological substitution
processes. The reversion can be interpreted as a “last gasp” of the incumbent. In some cases it may
be sufficient to cause a lock-in in an inferior technology [e.g. Grübler, 1991, Mowery and Rosenberg,
1999, Hall, 2004].
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results here. This short section is only aimed to introduce some general features of the
transition curves. The validation criteria are available in the supplementary material I.
More detail on this set of baseline simulation runs is available in Hötte [2019b]. A longer
discussion of a similar simulation experiment is provided in Hötte [2019a].8

4.2. State dependence in the process of learning

Different economic sectors rely on different types of technological know-how. If a new
technology becomes available and serves as substitute for an incumbent, part of the
technological know-how may be applicable in the utilization of the new technology.
Technological know-how may be differently easy to learn. These two properties reflect
the degree of state dependence of technological change and are captured by the learning
parameters χdist and χint.

4.2.1. The technological distance

In a first experiment the role of cross-technology spillovers facilitated by the similarity
of the two competing technologies is studied. A lower distance is analogue to a higher
technological similarity associated with a higher transferability of knowledge across
types. In an experiment, the distance is varied in discrete steps taking the values
χdist ∈ {0, 0.5, 1} holding χint = .5 constant.

Figure 2: Green technology diffusion
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(b) νct by regime type

0

5

10

15

3000 6000 9000 12000
Periods

S
ta

nd
ar

d 
de

v.
 o

f d
iff

us
io

n

(c) σνi,t batch

These figures show the diffusion process measured by the share of conventional capital used νct . The
time series in the middle are disaggregated by the type of the technological regime. Different line shapes
indicate regime types (�: eco, ∗: conv). Darker color indicates a higher level of χdist, i.e. a higher degree
of state dependence.

In figure 2, the time series of the diffusion measure for the different spillover levels are
shown. The lines are disaggregated by parameter value and in figure 2b by technological

8For reasons of transparency and to ensure reproducibility, the simulation model, the simulated data
and a selection of results of descriptive statistics is available in a separate data publication [Hötte,
2019c].
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regime. Throughout this article, different line shapes and colors indicate different
technological regimes. Darker color indicates a higher technological distance.

Figure 2a shows the evolution of the diffusion measure for different parameter levels
without a disaggregation by technological regime. This aggregate measure is informative
about the relationship between the level of spillovers and the probability of a technological
regime shift.

The relationship between the level of spillovers and the transition frequency has an
inverted u-shape. If the distance is high (χdist = 1), a green transition occurs in 76 out
of 210 simulation runs corresponding to a transition frequency of 36%. The frequency
is higher if spillovers are perfect (χdist = 0). In this case, 139 transitions occurred
amounting to 66%. With 71%, the transition frequency is highest for an intermediate
level of spillovers (χdist = .5).

The plot of the aggregate time series points to a possible explanation for the inverted
u-shape. If spillovers are perfect, initial green technology adoption is highest, but this
initial lead is not necessarily permanent. Soon after the initial phase of diffusion, the
effects of path dependence become effective.9 In some simulation runs, path dependence
dominates and the economy relapses into the conventional regime. These returns occur
most often if spillovers are high.

If the technological distance is small it is easy to adopt new technology, but it is also
easy to switch back to the incumbent technology type. This pattern is also reflected in
the time series of the diffusion measure disaggregated by the type of technological regime
(figure 2b) and its standard deviation σνt (figure 2c). The standard deviation σνt of µct
measured in percentage points is computed over a time window of 30 months.10 A high
deviance is an indicator for technological uncertainty and a high number of changes in the
direction of diffusion. It serves also as measures for the pace of convergence. The lower
σνt is, the faster the economy converges to the final technological regime. Shortly after
the day of market entry, the deviation jumps upwards which is caused by high adoption
rates in the beginning. It settles down in the subsequent years, but it remains highest for
the case of perfect spillovers. This is an indication for technological instability.

This finding is confirmed by a disaggregated view on diffusion patterns of single
simulation runs. In figure 3, diffusion curves and the diffusion volatility of single
simulation runs are shown for the different parameter subsets. A higher technological
distance is associated with an earlier and more pronounced divergence of the diffusion
curves. In figure 3a, the diffusion curve for χdist = 1.0 is shown. The economy quickly
converges to one of the two technological states. The diffusion volatility σνt , shown in
figure 3d, is low in the second half of the simulation horizon. In contrast, if spillovers are
perfect, i.e. χdist = 0.0, it is not clear whether the economy converges at all. Many single-
run diffusion curves exhibit enduring fluctuations between the two possible technological

9The average level of green technology use in T does not necessarily coincide with the transition
frequency. A transition is defined by a share of green technology use of more than 50% in T . The
average share of green (conventional) technology use may range well below 100% in the subset of green
(conventional) regimes. The average νcT account for {34.16%, 29.80%, 64.20%} for χdist = 0, 0.5, 1.

10Further information about its computation and relation to other measures of convergence is available
in the technical appendix A.
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Figure 3: Green technology diffusion
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(b) χdist = 0.5
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(f) χdist = 0.0

These figures illustrate show diffusion curves νct of all 210 single simulation runs within the different
parameter subsets with χdist = {.0, .5, 1}.

states (cf. figure 3c). This is also reflected in a high diffusion volatility in the second half
of the simulation time as shown in figure 3f.

Previous analyses have shown that the relative technological performance is decisive
for the stabilization of the technological evolution [Hötte, 2019a]. That means that
the convergence to a stable technological state with one clearly dominating technology
goes hand in hand with the divergence of relative stocks of technological knowledge
represented as ratio of the technological frontier αt = (AVc,t/A

V
g,t) and ratio of skill

endowments βt = (bct/b
g
t ) shown in figure 4. The evolution of βt reveals the mechanism

through which the distance parameter operates. The divergence of the curves between
the two technological regimes is stronger if the distance is high. If spillovers are perfect,
the curve of relative tacit knowledge βt does not even diverge because learning in one
technology category equally contributes to the stocks of tacit knowledge of both technology
types. In such case, the convergence to a stable technological state is mainly driven by
market induced innovation if the frontier of the dominant technology type grows relatively
faster. Other technological indicators on relative real and nominal capital prices, the
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Figure 4: Overview of time series of relative knowledge stocks
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The different line shapes indicate different regime types (�: eco, ∗: conv). Darker color indicates a higher
level of χdist.

degree of technological novelty reflect the same pattern. A summary of these indicators
is provided in appendix B.2.

Figure 5: Overview of time series of economic indicators
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The different line shapes indicate different regime types (�: eco, ∗: conv). Darker color indicates a higher
level of χdist.

Different levels of distance between the incumbent and entrant technology do also
have implications for the market structure captured by firm exit dynamics during the
transition phase and the evolution of firm size (cf. B.2). The early phase of diffusion is
associated with a high number of firm exits. The market entry of the green technology
is associated with increased price competition and not all firms are able to sustain on
the market. Some firms exit the market. When the technological regime stabilizes, new
firms successfully enter the market and the number of firms increases again. Firms’ entry
decisions are not fully endogenized in the model and should not be over-interpreted.
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Cross-parameter comparisons and the exit dynamics after the day of market entry are
informative, but not the number of entries in general.11 It is important to note that it is
not sufficient to study the effects of different parameter settings at the aggregate. The
effects differ across time and across regime types.12

Higher levels of spillovers imply that path dependence in the process of knowledge
accumulation is low. In the initial phase of diffusion, large incumbent firms have a high
endowment of conventional capital. This may be a competitive disadvantage when the
green technology starts diffusing and pre-existing knowledge becomes obsolete. This
effect is weaker if spillovers are high. Figure 5c shows the evolution of the average
firms size disaggregated by regime. In the later phases of diffusion, firms are on average
larger if spillovers are high. A Wilcoxon test confirms that this difference is significant,
independently of the technological regime (cf. II.1).

In a preceding study (Hötte [2019a]) it was shown that technological uncertainty is
costly. Learning and R&D resources are (partly) invested in a technology type that is
obsolete in the long run. Above in figure 3 it was seen that high spillovers are associated
with long-lasting technological uncertainty. Spillovers retard the specialization and firms
ongoingly switch between the two technology types. This explains why monthly output
is on average lower in the lock-in scenarios at the late phase of diffusion (cf. figure 5a)
and unit costs are on average higher (cf. 5c).

All effects discussed here are statistically significant which is confirmed by a series of
Wilcoxon signed rank tests at different phases of diffusion and for different aggregation
levels. A comprehensive overview of test statistics is available in the supplementary
material II.1.

4.2.2. The ease of learning

In a second experiment, the ease of learning χint is discretely varied. A higher value of
χint implies that the learning progress in ig is more sensitive to the relative amount of
working time with type ig captured by the share of used capital νigt,i. It is varied between

χint = 0 when the pace of learning is independent of νigi,t, decreasing χint = 0.5 and

increasing returns in learning χint = 2.
The results show that the difficulty of learning is of minor importance in the presence

of moderate cross-technology spillovers. The time series plots of macroeconomic and
technological indicators are available in the supplementary material (II.2), but do not
exhibit profound difference across different parameter settings. At the aggregate level,
a Wilcoxon test confirms for the initial phase that green technology diffusion is faster
if the technologies are easy to learn, i.e. if learning is independent of the intensity of
effort χint = 0. This is reflected in the diffusion measure νct and the faster divergence of

11Firms’ market entry is probabilistic, but the probability of entry is constant over time. Further
explanation is provided in Hötte [2019b].

12This becomes even more complex, when it comes to firm-level data. Firms differ by their responses to
the market entry of green capital. Their performance is not only conditional on their own behavior,
but also on the question whether they made the “right” technology choice.
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relative stocks of codified and tacit knowledge. It is also associated with higher aggregate
output in the early phase of diffusion.13

In the later phase of diffusion, the effects of increasing returns to learning are only
weakly visible at the aggregate level because they differ across firms. They depend on the
investment behavior and the stability of the technological trajectory (at the firm-level).
A faster specialization resulting from increasing returns to learning is only beneficial if
the path is stable. A series of Wilcoxon test supports this interpretation. If the economy
is locked in higher returns to learning are associated with a lower diffusion volatility. The
opposite holds true in case of a transition. Building up green skills is more difficult in the
beginning because technological legacy of pre-existing conventional capital undermines
the specialization effect.

Conceptually, the parameter χint reflects the difficulty to learn a new technology. The
difficulty is most important in the early phase when a new technology becomes available.
In this situation, there might be a trade-off whether to invest time to acquire a new type
of skills or to invest the time in the specialization in the pre-existing technology. Such
trade-off does not exist if learning is independent of the intensity of learning, i.e. if skills
can be acquired without explicitly investing effort in learning.

A lower difficulty of learning has, similarly as spillovers, an ambiguous effect. It
facilitates adoption in the beginning, but may be associated with increased technological
uncertainty. It reduces technology switching costs. This effect holds true in both directions,
i.e. when switching from green to brown technology and vice versa.14

It needs to be mentioned that these effects are analyzed in the presence of cross-
technology spillovers. In preceding analyses that are not shown here, it was found that
the difficulty of learning has a strong negative association with the transition probability
if spillovers are absent. The technological difficulty is not an impediment to diffusion if
the new technology is sufficiently similar to the incumbent type. In the next section, the
interaction between both learning parameters is studied in more detail.

4.3. Monte Carlo experiments

The preceding experiments have illustrated the mechanisms how the technological and
economic evolution of the transition depend on the characteristics of technology and
learning.

Until now, possible interactions between the two determinants of the learning process
were neglected. Technological similarity undermines the effect of increasing returns
to learn. Spillovers from a sufficiently similar technology stimulate learning that is
independent of the time of learning a specific technology.

13It should be noted that the returns to scale in the process of learning might have an effect on aggregate
output in general. Increasing returns may positively affect the pace of technological specialization
and exploitation of more productive capital in the absence of technological uncertainty. Under the
given design of experiment and calibration, this effect does not exist.

14This is also reflected in the results of the Wilcoxon tests where the signs in the differences between the
parameter pairs differ between the comparison of zero to intermediate and intermediate to increasing
returns to effort and suggest a non-linear relationship.
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In the following experiments, the levels of both learning parameters are drawn inde-
pendently at random from a uniform distribution.

4.3.1. Marginal effects of technological learning

Table 1: Initialization of learning parameters

eco conv
Mean (Std) Mean (Std) Mean (Std) p-value

χint .9937 (.5985) 1.051 (.6040) .8908 (.5783) .0793
χdist .4792 (.2954) .4230 (.2768) .5803 (.3026) .0003

The column at the left hand side shows the mean (standard deviation) of the initialization across all runs.
The other two columns show the average initial conditions within the subsets of green and conventional
regimes. The last column indicates the p-value of a two-sided Wilcoxon signed rank test for equality of
means of initial conditions in both subsets.

In the first experiment, the diffusion barriers at the day of market entry are fixed at a
level of 3% (βA = βb = .03) as before. The learning parameters are drawn at random, i.e.
χdist ∈ [0, 1] and χint ∈ [0, 2]. In this setting, 135 out of 210 simulation runs converge to
a green technological regime, corresponding to a transition probability of 64%.

In table 1, means and standard deviation of initial conditions are summarized for the
subsets of green and conventional regimes. The p-value in the last column indicates,
whether the difference in means between the two regime types is significant. A higher
transferability of knowledge seems to be positively associated with the transition proba-
bility. The average mean of the distance χdist is significantly lower in the subset of green
regimes. The difference in the difficulty of learning χint is only weakly significant at a
10% level. Some general descriptive information of these simulations such as time series
plots and test statistics on cross-regime differences of technological and macroeconomic
indicators are provided in the supplementary material III.1.

These descriptive observations about the association of learning parameters and the
transition probability can also be represented as transition boundary plot. A transition
boundary can be understood as dividing line in the space of χint and χdist that separates
green from conventional regimes. The relationship between the technological distance,
the difficulty of learning and the resulting technological regime is illustrated in figure 6a.
The vertical (horizontal) axis represents the distance χdist (difficulty χint). The points
in the plot represent single simulation runs and the corresponding parameter setting.
Colors indicate the resulting technological regime. The boundary line is derived by a
k-nearest neighbors non-parametric clustering function trained on the prediction of the
resulting technological regime using the learning parameters as input.15 Points whose
color does not match with the color in the decision area are misclassified.

The transition boundary separates a u-shaped cluster of lock-in regimes in the upper
left corner of the figure. This is a region with a high technological distance and moderate
difficulty to learn. This pattern can be explained by the transition dynamics and the
influence of the parameters on the knowledge accumulation process.

15Further information about its computation is available in the appendix A.
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Figure 6: Transition properties
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Figure 6a and 6c show a decision boundary derived by a k-nearest neighbors clustering algorithm with
k = 25 in the space of learning parameters (χdist, χint) and critical knowledge stocks α∗, β∗. Further
information about the clustering and the derivation of critical knowledge stocks is available in the
appendix A.

In all simulation runs, the green technology initially diffuses triggered by its technical
superiority of the green technology. Whether the diffusion is permanent is dependent on
the degree of state dependence of the learning process. In the initial phase, the incumbent
technology has a dominant position in the capital stock of firms. Employees continue
to accumulate conventional skills. If technologies are similar, this also contributes to
the stock of green skills. More interesting is the role of increasing returns to learning.
The decision region for green regimes has an ambiguous relationship with technological
difficulty. If the technology is very easy to learn, i.e. learning is independent of the
share of green capital in firms’ capital stock, a transition is more likely. On the other
hand, increasing returns in the learning function also have a positive association with
the transition probability. In this case, increasing returns strengthen the specialization
in green technology during the initial surge of green technology diffusion. This makes a
relapse into the conventional regime less likely. This effect is conditional on a sufficiently
high green-technology uptake in the beginning.

A regression analysis of the diffusion measure νci evaluated at firm-level at the end of the
simulation horizon T on the learning parameters and a set of micro- and macroeconomic
controls confirms the observations made before. The share of conventional technology
utilization in the last period is close to zero or one. Its rounded value can be used as binary
indicator for the technological regime. It takes the value one if the economy is locked in.
A regression analysis is used to study the association of the transition probability with
initial conditions.16 The decision whether or not to include an explanatory variable and/
or its interaction or squared term in the analysis is based on a stepwise, automated model

16This interpretation of the diffusion measure and the association of other micro- and macroeconomic
control variables with the transition probability is discussed comprehensively in Hötte [2019a].
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Table 2: Firm-level regression analyses with randomly drawn learning parameters and fix barriers

νci νci t∗i
(
A+
i /A

−
i

)∗ (
B+
i /B

−
i

)∗
(σνi )2

OLS Probit IV IV IV IV
(Intercept) .3563*** -.4136*** 5054*** 1.106*** 1.105*** 8.15***

(.0053) (.0163) (632.9) (.0102) (.0068) (2.123)
χdist .1000*** .2867*** -425.6* .0614*** .0568*** -2.471***

(.007) (.0215) (177.9) (.0107) (.0068) (.3588)
χint -.0743*** -.2217*** 542.8** .0284** .0267*** .1888

(.0053) (.0167) (196.3) (.0098) (.0068) (.3227)
χdist · χint -.0290*** -.0780*** .0275

(.0053) (.0163) (.1327)
I(eco) -4560*** -.1581*** -.1584*** -.3138

(1005) (.0158) (.0104) (3.448)
I(eco) · χdist 612** -.0744*** -.0692*** 3.877***

(220.2) (.0158) (.0101) (.4156)
I(eco) · χint -5540** -.0478*** -.0367***

(197.3) (.0137) (.0098)
AVc .0755*** .2195*** -68.88 .2271

(.0088) (.0268) (77.37) (.2726)
Bci -.0184** -.0552** 97.38. .1602

(.0057) (.0175) (50.73) (.1565)
outputi -121.1** -.0062* -.0040** -.1550

(38.24) (.0028) (.0015) (.1264)
pricei 113.5** -.0055** .0331

(38.45) (.002) (.1066)
#firms -.0525*** -.1736*** 140.9* .0051*** .1761

(.0054) (.017) (70.05) (.0015) (.2327)
peco/wr -.0610*** -.1805*** 141.9** -.0094** .5617***

(.0096) (.0288) (50.75) (.0029) (.1489)
R2 .1543 .2048 .0894 .1005 .1254 .0781

Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

The first two columns show the diffusion measure νci evaluated at the end of simulation. Column 3
illustrates a regression of the duration t∗i until the firm-level adoption curve stabilizes.

(
A+
i /A

−
i

)∗
(
(
B+
i /B

−
i

)∗
) are measures for the relative stock of codified (tacit) knowledge at firm-level in time t∗i . The

variance (σνi )2 is a measure for the volatility of the diffusion process computed over the whole simulation
horizon. The results in column 3-6 are the results of an instrumental variable regression with the type
dummy I(eco) as endogenous variable. Further info is provided in the main text and the technical notes
section A.

selection procedure using the Bayesian Information Criterion (BIC). The explanatory
variables and controls are scaled by their standard deviation to facilitate the comparison
of coefficients obtained in the regression. Further technical information about the model
specification, its selection procedure and the data pre-processing is provided in the
appendix A.17 Results of an analysis at the macroeconomic level are available in the
supplementary material III.1 in table III.11.

Interpreting νci as probability of a lock-in in the conventional technological state, a
higher technological distance χdist is associated with a lower transition probability (1−νci ).

17The model presented here is kept as simple as possible to maintain the readability and to allow the
comparison with the policy experiment that includes additional regressors. The findings should be
interpreted as correlation study. More complex econometric approaches are available in the data
publication [Hötte, 2019c].
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In contrast, returns to scale in the learning process χint are positively related to the
transition probability, but quantitatively weaker than the technological distance. The role
of the other control variables is explained in the III.1 and a more comprehensive discussion
of their role for the diffusion process can be found in Hötte [2019a]. The coefficient of the
interaction term (χint ·χdist) is negative, but quantitatively small. This indicates that the
negative association of the distance with technology diffusion is less strong if returns to
learning are high. The positive effect of χint on technology diffusion might be conditional
on the strength of diffusion barriers. Barriers are low in this experiment (βA = βb = .03).
Increasing returns in the learning process favor the dominant technology. If entry barriers
for the green technology are sufficiently low, the green technology rapidly achieves a
sufficiently high diffusion level to benefit from increasing returns.

A guiding question of this study is the relationship between state dependence in
technological learning and the stability and pace of technological convergence. To
address this question, a set of additional indicators is introduced. The volatility during
the diffusion process is captured by the variance (σνi )2 of νci,t computed over the full
time horizon. Further, the duration t∗i until the diffusion process becomes monotone
is measured. t∗i is defined as the point in time when the last change of the sign of
the slope of the diffusion curve νci,t is observed. That means that after t∗i the diffusion
measure starts converging to one of the two possible technological states. A low level of t∗i
suggests technological certainty, i.e. at an early point in time the path of the technological
evolution is clarified and a process of stabilization and specialization begins. A high level
t∗i suggests that it takes a lot of time until the final technological path is established.
Across firms, t∗i may differ and using the aggregate measure νct to compute an aggregate
t∗ likely underestimates the time until stabilization at the microlevel t∗i .

18

In a regression analysis, the duration t∗i is used as dependent variable with the learning
parameters χdist, χint and initial micro- and macroeconomic conditions as controls. The
core explanatory variables of interest are the two learning parameters χdist and χint and
their interaction terms. A dummy variable for the type of the technological regime I(eco)
is included to capture fix differences and differences in the interaction patterns across
the two technological regimes. It takes the value 1 if a transition took place. To rule
out possible endogeneity of the type dummy, i.e. possible correlatedness of the error
term and the regime type, the type dummy is included through an instrumental variable
regression.19 As before, the specification of the regression equations on the first and
second stage is automatically determined using a stepwise model selection procedure
based on the BIC.

The regression analyses support the observation that state dependence may have

18Because of the possibly non-smooth shape of the depreciation process at firm-level one-year smoothed
values of νci,t are used to compute the threshold level t∗i . For the regression analysis, only a subset
of data is used excluding trivial patterns where the diffusion process is stable from the beginning
onwards. Further information is provided in the appendix A.

19Additional technical and explanatory detail about the IV approach and alternative model specifications
based on finite mixture models can be found in the appendix A. Test statistics on the IV approach and
the regression results of alternative model specifications and results are available in an accompanying
data publication [Hötte, 2019c].
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an ambiguous association with the time until technological stabilization. Whether the
association is positive or negative is conditional on the transition. In general, the
stabilization is earlier if a transition occurs. This is in line with figure 6b showing that
the diffusion volatility in the subset of green regimes is high in the beginning, but rapidly
diminishes in the later phase. In contrast, in the subset of lock-in regimes, the volatility
decreases more slowly. A Wilcoxon test confirms the significance of the difference (cf.
III.1).

This is also reflected in the coefficient of the type dummy in the regression analysis of
the variance (σνi )2 discussed below. If a transition occurs, a higher distance retards the
technological specialization. The distance increases the strength of path dependence. If
the distance is high, it is more difficult for firms to overcome the relative disadvantage in
terms of lower knowledge stocks when beginning to use green technology. In contrast,
the distance has a accelerating effect on the time of specialization if the economy is
locked in. This supports the interpretation that the distance exacerbates the effect of
initial diffusion barriers. The opposite holds true for the difficulty of learning χint. The
retarding effect in the lock-in case can be (again) explained by the high technology uptake
in the early diffusion phase. This retards the relapse into the conventional regime.

The divergence of relative knowledge stocks is a driver of technological convergence.
To understand the link between relative performance measured by relative knowledge
stocks and state dependence in learning, I introduce a measure for technological thresholds.
These are levels of relative technological performance beyond which the divergence is
clear cut. These levels are given by relative knowledge stocks evaluated at t∗i .

The threshold levels are illustrated in figure 6c. The black line in the figure is interpreted
as transition boundary beyond which the technological path has stabilized. The vertical
(horizontal) axis represents the relative technological frontier AVc,t∗/A

V
g,t∗ (skill endowment

Bc
t∗/B

g
t∗) evaluated in the aggregate t∗. In this figure, relative knowledge stocks were

used as training input for a k-nearest neighbors clustering algorithm to derive a transition
boundary. The boundary serves only for the purpose of illustration here.20 Apparently,
relative knowledge stocks have a high explanatory power for the resulting technological
regime. The number of mis-classified simulation runs is low compared to the boundary
illustrated in figure 6a that is trained on the learning parameters.

In another regression, the sensitivity of the divergence of the relative performance with
respect to the learning parameters is analyzed. Relative performance is defined as the
ratio of skills β∗i = (B+

i,t∗i
/B−i,t∗i

) and productivity α∗i = (A+
i,t∗i
/A−i,t∗i

) of the superior (+)

over the inferior (−) technology. A technology type is called superior if it dominates at
the end of the simulation horizon.

Superior is defined as the technology that dominates at the end of the simulation
horizon. The relative performance measure equals one if both technology types are at par.
A higher relative performance α∗i , β

∗
i is associated with a more pronounced technological

divergence.
The regression supports the observation that state dependence in learning captured by

χint and χdist reinforces barriers to green technology diffusion. The relationship between

20Technical detail can found in the appendix A.

29



state dependence and the degree of technological divergence differs across technological
regimes. If a green transition does (not) occur, the ratio is negatively (positively)
associated with the level of state dependence. This indicates that the technological
advantage of the dominant technology is more pronounced in the lock-in regime if state
dependence is high. The opposite is true in the transition case. Hence, the technological
race is more difficult for the green technology and the regime shift is less clear cut in
the evolution of relative knowledge stocks. Despite this relative disadvantage, the green
technology can succeed because of its technical superiority given by input cost savings.

The variance (σνi )2 is an indicator for technological stability. It corresponds to the
variance of the diffusion measure computed for individual firms over the whole simulation
horizon. It is an indicator for firms’ switching behavior between green and conventional
technologies. The regression indicates that a higher distance is associated with higher
stability but only if a transition does not occur. In case of a transition, it may increase
technological uncertainty. The distance is negatively associated with the threshold levels
of relative performance. A higher distance exacerbates the effect of barriers. This retards
the technological specialization in the transition process.

The qualitative findings are robust across a large variety of alternative model spec-
ifications.The results of some of these alternative specifications are available in the
accompanying data publication [Hötte, 2019c] and a longer discussion can be found in
the appendix A.

4.3.2. Barriers to diffusion

Table 3: Initialization of random parameters

eco conv
Mean (Std) Mean (Std) Mean (Std) p-value

βA .0495 (.0306) .0358 (.0266) .0564 (.0301) 6.4e-6
βb .0482 (.0283) .0323 (.0231) .0561 (.0274) 8.9e-9

χint .9942 (.5563) 1.044 (.5635) .9694 (.5531) .3715
χdist .4878 (.2916) .4075 (.2866) .5279 (.2868) .0041

The column at the left hand side shows the mean (standard deviation) of initial conditions across all
runs. The other two columns show the initial conditions computed as averages within the subset of green
and conventional regimes. The p-value indicates whether the technological regimes significantly differ by
initial conditions.

In a previous study [Hötte, 2019a], it was found that market entry conditions in terms
of lower relative knowledge stocks of the entrant technology are decisive for the diffusion
success of a technology. Lower relative knowledge stocks are interpreted as diffusion
barriers. In this section, I sketch a second experiment with randomly drawn levels
of learning parameters (χdist, χint) and diffusion barriers (βA, βb). This experiment
serves as benchmark scenario for the policy simulations. In this experiment, barriers
to diffusion measured as percentage difference βA, βB in the initial frontier AVig,t0 and

initial endowment with tacit knowledge bigl,t0 are drawn at random from the interval
[0, .1]. Within this setting, the transition probability accounts for 30%, i.e. 70 out of 210
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simulation runs converge to a green technological state.21 In table 3, initial conditions of
the experiment are summarized. Descriptively, it can be seen that lower diffusion barriers
seem to be positively associated with the transition probability. In the subset of green
regimes, initial barriers are on average lower compared to the average initial conditions
in the subset of conventional regimes. A Wilcoxon test confirms that these differences
are significant.

A similar observation can be made for the role of state dependence in learning. The
differences across regimes are significant for the technological distance, but not for the
difficulty. On average, the distance is lower in the subset of transition regimes. The
interpretation is the same as before. The interplay of barriers and learning parameters
will be discussed below in more detail in the context of a policy experiment.

The description of this experiment is held short because the main interest of this
article is dedicated to the policy analysis. These results are only shown here because the
results serve as benchmark scenario for the experiment. Additional information about
this experiment and a short summary of the main insights of this experiment is provided
in the appendix B.3 and supplementary material III.1.

4.4. Technological learning and the effectiveness of diffusion policy

Technological change is a consequence of the diffusion of new technologies. It is a key
determinant of economic development and represents an important area for policy. For
example, for the effectiveness of climate policy, it is important to accelerate the process
of green technology diffusion. In the context of digitization, policy makers might be
interested in guiding technological development to attenuate disruptive consequences. In
an experiment, I investigate the scope of different political instruments conditional on the
characteristics of the competing entrant and incumbent technology. I evaluate the impact
of policies on the pace and stability of diffusion and its macroeconomic side effects.

The instruments under consideration are an eco-tax θ, an investment subsidy ς i and a
price support ςc for eco-friendly produced goods. The tax is imposed on the material
resource input, i.e. its price pecot is multiplied by the factor p̃ecot = (1+θ) ·pecot . It increases
the costs of conventional capital utilization. The investment subsidy reduces the price of
green capital goods pgt , i.e. the price is multiplied by p̃gt = (1− ς i) · pgt . The consumption
subsidy ςc that is paid as price support for eco-friendly produced final goods pi,t. Its
amount is proportional to the share of green capital goods that are used in production,
i.e. the price of final goods offered by firm i is multiplied by p̃i,t = pi,t · (1− (νgi,t · ςc)).
Firms with a higher share of green capital in production receive a relatively higher price
support on product sales.

The political instruments are explained in more detail in Hötte [2019b]. The budget
of the government is balanced. Expenditures for the policy measures are covered by
adaptive income and corporate taxes. Taxes are increased (decreased) if the smoothed
net financial inflows of the government are negative (positive).

In this policy experiment, barriers to diffusion, learning conditions and policy rates

21As before, overview time series plots are provided in the supplementary material III.6.
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Table 4: Initialization of policy rates, barriers and learning parameters

eco conv
Mean (Std) Mean (Std) Mean (Std) p-value

θ .4927 (.2853) .5087 (.2847) .4553 (.2852) .2346
ςi .0565 (.0279) .0584 (.0263) .0521 (.0309) .2246
ςc .0129 (.0073) .0133 (.0073) .0121 (.0071) .2788
βA .0762 (.1025) .0595 (.0920) .1151 (.1153) 6.e-10
βb .0550 (.0295) .0511 (.0291) .0639 (.0288) .0034

χint .9923 (.5687) .9934 (.5741) .9899 (.5605) .9624
χdist .4868 (.2873) .4903 (.2849) .4784 (.295) .8429

The columns show mean (standard deviation) of the initial conditions for the aggregate set of simulation
runs and the subsets of green and conventional regimes. The p-value indicates whether the difference of
the means across the regime subsets is significant.

are drawn at random as before. The initial conditions of the policy experiment are
summarized in table 4. The results of the policy experiment are compared to the
experiment shortly introduced above with the same average levels of barriers and learning
parameters (section 4.3.2).22 A descriptive comparison of the diffusion results suggests
the effectiveness of policies. In the absence of policy, the transition frequency accounts for
30%. This is much lower than 70% in the policy case. Figure 7 shows the macroeconomic
time series of the diffusion measure for the full set of simulation runs, the disaggregation
by regime and the volatility of the diffusion process measured by the standard deviation
σνt .

Figure 7: Comparison of diffusion patterns
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(a) Aggregate νct
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(b) νct by regime
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(c) Volatility σνt

These figures show time series patterns of the diffusion curve and its volatility over time. Gray curves
represent the experiment without policy.

The effect of the policies can be thought as shift in the transition boundary. Barriers to
diffusion are represented as relatively lower endowment with codified and tacit knowledge

22Note that this baseline scenario is not a true counterfactual. Initial conditions are drawn uniformly at
random from the same interval, but are not identical. However, the sample size of both experiments
is supposed to be sufficiently large to draw descriptive inference.
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Figure 8: Shift in transition boundaries
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(a) No policy
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(b) Policy experiment

These figures illustrate the shift in the transition boundary. The vertical (horizontal) axis represent the
relative technological frontier (relative skill level). Each dot represents a simulation run, its color indicates
the resulting technological regime and the position the barrier combination at the day of market entry.

and inhibit technology diffusion. Higher barriers are negatively correlated with the tran-
sition probability. A transition boundary drawn as dividing line in the two-dimensional
space spanned by initial knowledge endowments that separates green from conventional
regimes is shown in figure 8. The axes indicate relative knowledge stocks αt0 and βt0 at
the day of market entry. Each point in the plot represents the parameter setting of a
single simulation run and the relative endowment with technological knowledge at the
macro-level at the day of market entry. Colors indicate the resulting technological regime.
As before, the transition boundary is derived with a k-nearest neighbors clustering
algorithm. The boundary is a non-linear function that is trained to predict the resulting
regime given initial barriers to diffusion βA and βb. The figure on the left hand side
shows the business as usual. The figure on the right hand side represents the policy case.
The decision boundary is clearly shifted upwards. This indicates that the policies may
compensate for technological disadvantages.

The policies reinforce the initial surge of green technology uptake independently of the
resulting regime and weaken the competitive pressure for the entrant. This is reflected
in the evolution of relative knowledge stocks. The divergence of the relative stocks of
cumulated knowledge αt and βt, tends to be more (less) pronounced in the transition
(lock-in) regimes (cf. figure B.3 in the appendix). This pattern holds over time and is
confirmed by a regression analysis evaluating relative knowledge stocks in t∗i when the
diffusion process becomes stable (see below).

If the economy is locked in, higher initial adoption is associated with a distortion in
the allocation of learning resources in favor of the green technology. This technology type
is obsolete in the long run and the misallocation is associated with efficiency losses. This
may result in a worse environmental performance per unit of output. This and other
macroeconomic side effects of the policy are discussed in the appendix B.4. Here, I focus
on the technological effects of policy.
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In table 5, the results of a regression analysis of the diffusion measure at the end
of simulation time and other technological indicators evaluated in t∗i are shown. The
dependent variables are regressed on the policy instruments θ, ς i, ςc, initial diffusion
barriers βA and βb and learning parameters χint and χdist are shown. Technically,
the same model selection procedure was applied as before. For the sake of a simpler
representation, only those explanatory variables are presented in the table that are
discussed in the text. A table with the coefficients of the complete regression models is
provided in the supplementary material III.3. In the subsequent discussion, I refer only
to effects that are significant at a < .1% level if not explicitly mentioned otherwise.

The core observations can be summarized as follows:

All policy instruments are effective and have a positive association with the transition
probability. This is indicated by the negative coefficients in the regression of the
diffusion measure νci . The effect on the diffusion volatility and the time until
stabilization t∗ differs across instruments.23

The effectiveness of the consumption subsidy as diffusion stimulus is undermined and
might be even reversed if the technological distance χdist and/ or increasing returns
to learning χint are large. In contrast, the effectiveness of the tax is reinforced by
the distance, but weakened by the level of returns to learning. The effectiveness of
the investment subsidy is least sensitive to the shape of the learning function.

The distance χdist is positively associated with the diffusion volatility if a transition
occurs. In contrast, if the economy is locked in the association between the
distance and the volatility is negative. This supports the interpretation that the
distance reinforces the strength of path dependence. It also explains the pattern
observed in figure 7 where the diffusion volatility over time and the diffusion curve
disaggregated by regime type are shown. In case of a lock-in, the distance reinforces
the specialization in the conventional technology. The interaction terms of policies
and the distance have a positive association with the volatility even after controlling
for the interaction effect of the distance and green regime dummy (I(eco) · χdist).

The duration until technological stabilization t∗ is increasing in the level of the tax θ,
but decreasing in the level of subsidies if the economy is locked in. The opposite is
true in the transition regime, taxes accelerate (subsidies postpone) t∗. The payment
of subsidies is conditional on the utilization of green technology, i.e. the consumption
subsidy ςc is paid proportionally to the amount of green capital utilization and
the investment subsidy is only due if green capital goods are bought. Independent

23With some limitations, quantitative inference about the effectiveness can be drawn. The effect of
the consumption subsidy on the diffusion measure is quantitatively the strongest. Recall that all
explanatory variables were scaled and demeaned to allow a comparison of coefficients. But the size
of the intervals from which the parameters are drawn is not entirely comparable especially in the
presence of non-linearities. Further, the effects of the interaction terms are quantitatively difficult to
compare with the direct effects. The interaction terms are the product of two scaled variables which
makes the values numerically small. A longer discussion of the quantitative inference is available in
the appendix A.

34



of the regime, the investment subsidy compared to the consumption subsidy is
associated with a later begin of specialization t∗i . For ςc, the strength of policy
support is more sensitive to the utilization of green capital is stronger compared
to ς i. Hence, it is less distorting once a technological pathway has emerged. The
effective incentive of ςc disappears if green capital is not used but becomes stronger
the higher the share of green capital utilization. In contrast, the strength of the
investment subsidy is constant.

If the technological distance is large, the investment subsidy (tax) tends to postpone
(accelerate) the stabilization as indicated by the positive coefficient of the interaction
terms χdist · ς i (χdist · θ).

The diffusion volatility is negatively (positively) associated with the tax and the invest-
ment subsidy if a transition does (not) occur. Hence, both instruments stabilize
the diffusion process in the transition regime but increase technological uncertainty
if the economy is locked in. This is also visible in figure 7. In contrast, the con-
sumption subsidy has a negative association with the volatility in the lock-in case
and is neutral in the transition.

The strength of the relationship between the diffusion variance and the policy
variables is conditional on the learning parameters. The interaction term of the
distance χdist with any of the policy parameters has a positive association with the
volatility. This indicates that the technological evolution is less stable. The policies
and the distance operate in opposite directions. Policies favor green technology
uptake and stimulate initial diffusion. The distance increases the strength of path
dependence arising from pre-existing knowledge stocks. It operates in favor of the
incumbent technology if the level of green technology use is not yet sufficiently high.
Hence, independent of the emerging regime, the combination of strict policies and
high distances intensifies the technological competition.

The technological divergence and the volatility exhibit (mostly) coefficients with op-
posite signs for all explanatory variables. That means that factors that lead to
a stronger technological divergence captured by (A+

i /A
−
i )∗ and (B+

i /B
−
i )∗, are

associated with lower technological uncertainty. Hence, the diffusion variance tends
to be negatively correlated with the divergence of relative knowledge stocks. This
qualifies relative technological knowledge as a decisive driver of the direction of the
technological evolution and the convergence to a technological regime. In the long
run, the higher effective productivity embedded in cumulative knowledge offsets the
role of relative prices and marginal using costs.24. This effect was also observable
in the analysis above in the absence of policy (table 2), but less significant and less
striking across the set of regressors.

Diffusion barriers may be prohibitively high and prevent the diffusion of green technol-
ogy. The strength of barriers is associated with a lower (higher) technological

24It is an explanation for long-term upwards sloping factor demand curves discussed by Acemoglu [2002],
Hanlon [2015]
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divergence in case of a transition (lock in). The negative effect of the technical
barrier βA is decreasing in the technological distance. If the competing technolo-
gies are sufficiently distant, the technological performance becomes relatively less
important for diffusion compared to other factors. In contrast, the inhibiting effect
of βb is even stronger if the distance is large. The lack of spillovers in the process
of relative knowledge accumulation makes it more challenging to overcome the skill
related diffusion barrier. A high distance indicates that firms are challenged by the
incompatibility of pre-existing technological know-how when adopting the green
technology and non-productivity related factors as variable input costs become
more important. This can also be concluded from increasing effectiveness of the
tax reflected in the negative coefficient of χdist · θ in the regression of the diffusion
meansure. .

The different policy instruments operate through different channels. The tax and the
investment subsidy have an instantaneous effect on the relative profitability of a technology.
The tax compensates permanently for the technical disadvantage if adopting a less
productive technology (reflected in βA). It operates through the channel of relative
utilization costs. A vintage of capital that is once adopted remains in the capital stock
until it is depreciated or taken out of use. This explains why the tax may reduce the
duration until stabilization in case of a regime shift.

The investment subsidy has an instantaneous effect on relative investment costs, but
is neutral with regard to the relative technological performance over time. It does not
represent a permanent compensation.

In contrast, the effectiveness of the consumption subsidy is sensitive to the current
technological state. The level of support is proportional to the share of green capital
that is used at the firm-level for production. In the beginning when a firm adopts green
capital but has a large share of pre-existing conventional capital, the level of support
of the subsidy is relatively weak. The adoption decision is rather influenced by the
relative endowment with technological know-how and the relative performance of the
technologies.

In line with the findings of a preceding study [Hötte, 2019a], the consumption subsidy
can be interpreted as stimulus for the creation of green markets. It is a stabilizing policy
instrument because it reinforces ongoing transition processes, but diminishes if the green
technology is not used. It is asymmetric across firms depending on the type of technology
that is used by firms. This may have distributional side effects on the market structure
[cf. Hötte, 2019a].

The instruments do also differ with regard to their economic performance. In the
transition case, the consumption subsidy serves as demand stimulus on the consumption
goods market and may stabilize the economic evolution. However, this stimulating effect
is not sustainable and conditional on the presence of the policy. This has important
implications for a possible phasing out of policy. Some additional discussion of the side
effects of policies can be found in the appendix B.4.
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Table 5: Firm-level regression analysis on the effect of policies, barriers and learning conditions

νci νci t∗i
(
A+
i /A

−
i

)∗ (
B+
i /B

−
i

)∗
(σνi )2

OLS Probit IV IV IV IV
(Intercept) .3381*** -.4684*** 3794*** 1.099*** 1.097*** 6.548***

(.0043) (.0144) (70.63) (.0031) (.0029) (.1399)
χdist -.0130** -.0898*** -471.0*** .0141*** .0213*** -.9603***

(.0044) (.0151) (65.99) (.0041) (.0031) (.1172)
χint .0081. -.0161 -117.2*** .0085*** .0078*** -.0240

(.0043) (.0145) (31.42) (.0017) (.0012) (.0535)
θ -.0300*** -.1119*** 788.9*** -.0297*** -.0296*** 2.267***

(.0043) (.0145) (70.37) (.0037) (.0029) (.1218)
ςc -.0401*** -.1730*** -318.1*** .0085*** -.0065* -.1806***

(.0044) (.0151) (77.99) (.0018) (.0032) (.0536)
ςi -.0205*** -.0763*** -310.8*** -.0369*** -.0286*** 1.506***

(.0045) (.0149) (58.73) (.0037) (.0030) (.1090)
βA .1139*** .4650*** 8.747 .0395*** .0069*** -.3212***

(.0046) (.0196) (27.75) (.0049) (.0016) (.0482)
βb .0946*** .2974*** -501.0*** .0478*** .0519*** -2.894***

(.0044) (.0149) (65.63) (.0040) (.0035) (.1436)
χdist · θ -.0504*** -.1177*** -119.3*** -.0110*** -.0063*** .4541***

(.0044) (.0149) (28.46) (.0019) (.0014) (.0609)
χint · θ .0460*** .1706*** -143.2***

(.0040) (.0137) (28.06)
χdist · ςc .0289*** .0972*** -.0070*** .4550***

(.0044) (.0156) (.0016) (.0601)
χint · ςc .0163*** .0466***

(.0042) (.0139)
χdist · ςi .0522** 140.0*** -.0099*** -.0073*** .4853***

(.0160) (25.38) (.0018) (.0013) (.0561)
χint · ςi .0049*** -.7356***

(.0015) (.0552)
χdist · βA -.0378*** -.1738*** 195.1*** .5285***

(.0044) (.0199) (23.1) (.0442)
χdist · βb .0447*** .1624*** 301.8*** .0092*** .2984***

(.0046) (.0163) (37.7) (.0015) (.0711)
I(eco) · χdist 1144*** -.0222* -.0213*** 2.658***

(146.8) (.0089) (.0064) (.2647)
I(eco) · θ -1070*** .0540*** .0532*** -3.919***

(135.8) (.0076) (.0059) (.2298)
I(eco) · ςc 671.4*** .0239***

(149.1) (.0066)
I(eco) · ςi 843.7*** .0952*** .0772*** -2.392***

(140.9) (.0090) (.0075) (.2719)
I(eco) · βA -.0413***

(.0060)
I(eco) · βb 786.3*** -.0908*** -.1064*** 4.706***

(137.2) (.0084) (.0074) (.31)
R2 .1868 .266 .2071 .2483 .2699 .315

Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

This table show an excerpt of the results of a regression analysis of different technological indicators
on a initial conditions and control variables. For the sake of readability, only the coefficients are shown
that are discussed in the text, i.e. learning parameters, policy instruments, barriers and interaction
terms. Micro- and macroeconomic controls are dropped. A table with the full models is available in the
supplementary material (table III.15).
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5. Discussion

Technological distances, the difficulty of learning and the strength of diffusion barriers can
be used to characterize technologies within certain economic sectors. Investigating the
interplay between the strength of barriers and the technological distance to pre-existing
technology may be an explanation for empirically observed large variation in technology
diffusion rates [cf. Allan et al., 2014]. This info is important for the design of effective
diffusion policies.

A more general observation is the relationship between the pace and pattern of diffusion
and the evolution of relative knowledge stocks. Analogously to the parameters of the
learning function and diffusion barriers, political instruments can be interpreted as
characteristics of the technology pair when neglecting the fiscal implications. The level
of the tax reflects the technical superiority of the entrant technology. It is imposed
on material input costs and makes the utilization of the conventional technology more
expensive. The level of the investment subsidy reflects the relative production costs of
green capital goods. The consumption subsidy can be interpreted as consumer preference
and willingness to pay for eco-friendly produced goods. It reflects the market potential
for green products.

5.1. Towards a general characterization of technology

The different groups of technology parameters in the model are part of a more general
characterization of technologies. They differ by their implications for the evolutionary
dynamics. Three broader groups of characteristics may be distinguished:

Static properties are fixed and do not change over time. These properties are input
requirements for the utilization of a technology, consumers’ willingness to pay
for specific output characteristics and the production costs of the technology. In
transition terminology, static properties reflect the socio-technical landscape.

Stock variables are the stocks of codified and tacit technological knowledge that are
accumulated by intended research and learning by using. The ratio of stocks
accumulated in the different sectors describes the maturity of an entrant technology
compared to the incumbent.

Interactive variables influence the accumulation process of relative knowledge stocks
and the pace of divergence in the level of technical maturity.

In this study, static properties were captured by the set of policy variables and stock
variables by the relative stocks of tacit and codified knowledge. Interactive properties
were presented as parameters of the learning function. This analysis was restricted to the
evolution of the stock of tacit knowledge. An application to the process of accumulation
codified knowledge is left for future work.25

25In a broader sense, knowledge has the same effect as complementary infrastructure and institutions
that facilitate the effective utilization of a technology. The difference between tacit and codified
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Static properties are are fix and exogenously given for technology developers and
users, but their relative importance compared to the properties embodied in the stock
variables may change over time. In the analysis, it was shown that the technical superiority
embodied in the static properties may trigger an initial wave of adoption. This superiority
may be offset by the benefits derived from accumulated stock variables. Stock variables
determine the degree of the path dependence in a static sense. Interactive variables
describe how easily path dependence can be overcome.

This characterization of technologies can be integrated into the typology of transition
pathways proposed by Geels and Schot [2007]. The typology is based on the multi-
level perspective which is a concept in transition studies. The socio-technical system
can be described by three layers composed of niches, the socio-technical landscape and
technological regime. A transition occurs if the landscape changes and a sufficiently mature
niche technology enters the regime. The landscape captures all external characteristics
which is analogue to the static properties of the technology, i.e. its superiority and the
valuation by consumers. The entrant technology is developed in a market niche and its
maturity is described by its relative endowment with knowledge stocks compared to the
incumbent.

Whether the entrant can successfully replace the incumbent depends on its maturity
and the pressure on the incumbent caused by the changed landscape. Along historical
case studies of transitions and theoretical debates in the transition literature, Geels and
Schot [2007] identify different types of transition pathways. The pathways are dependent
on the scale, scope and pace of landscape pressure, the maturity of niche technologies
and the interaction across layers.

In this study, transitions were studied from a different, but close related perspective.
The characteristics of the technological system are modeled as characteristics of competing
technologies.26 It is a bottom-up approach inspired by analogies found in empirical and
theoretical studies in the literature on management, innovation and macroeconomic
directed technological change (cf. section 2). One contribution of this study is the
reconciliation of various isolated theories and the proposition of a framework for future
empirical and theoretical analyses on the macroeconomic and on the sector level.

This analysis was tied to the case of green technology diffusion for which the societal
need of understanding transition dynamics is the most obvious. The framework and
simulation model can be straightforwardly applied to other fields of technology studies.

is the uniform availability for technology users. Codified is available to all and is reflected in the
productivity. The access to the tacit analogue is heterogeneous across users. It is not necessarily tied
to individual employees, but can also be location- or firm-specific. It may be costly to accumulate
these supporting structures and the ease of accumulation may differ across technology types.

26The characteristics of technologies are not independent of its socio-technical environment. For example,
the metrics imposed on static properties of technologies are a question of valuation that is dependent
on consumer preferences and resource endowments. A technology is only valuable if it fulfills a societal
purpose [cf. Geels, 2002].
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5.2. Concluding remarks and outlook

Directed technological change is the consequence of diffusion of a (radically) new tech-
nology. In most cases, directed technological change comes as a transition. It does
not only concern the adoption of a new technology, but also the replacement of the
incumbent system (technological regime). Historical case studies have shown that this
process is often non-smooth, highly competitive and associated with a process of redistri-
bution when tangible and intangible assets of the incumbent technology become obsolete
[Grübler, 1991]. This analysis has shown that the characteristics of the two competing
technologies and the pace of relative knowledge accumulation (technological learning)
are decisive to understand the technological and economic evolution of transitions. In a
policy experiment, the relationship between the effectiveness of diffusion policies and the
technology characteristics was analyzed.

The core insights of this study can be summarized as follows:

1. The technological distance between competing technologies describes how well
technological know-how can be transfered across technology types. It facilitates
initial technology uptake, but may undermine the pace of specialization and sta-
bilization within a technological regime. If technologies are similar, it is easy for
technology users to switch to the new technology. But it is also easy to switch back
if relative prices or the relative technological performance of supplied technology
change. An enduring phase of switching between two technologies is interpreted
as technological uncertainty. It can be macroeconomically costly because learning
and R&D resources are wasted if they are invested in a technology that becomes
obsolete in the long run. Increasing returns in the learning process are interpreted
as measure for technological difficulty, but are of minor importance if spillovers
are sufficiently high, but may contribute to the stabilization of a technological
regime. Here, the case of symmetric technologies was studied. In reality, competing
technologies may be differently difficult to learn and flows of knowledge across
different sectors may be asymmetric. This might be particularly relevant if more
than two technologies are considered and flows of multiple interdependent sectors
contribute to knowledge accumulation in one technology class. An extension to
asymmetric flows is left for future investigation and represents a promising field for
empirical research.

2. Diffusion barriers interpreted as an inferior technical performance of the entrant
technology and lower technological know-how of adopters are decisive for the
permanent diffusion of green technology. The relative importance of codified
knowledge measured as productivity performance is decreasing in the technological
distance. If the two competing technologies are very different, the cross-technology
transferability of tacit knowledge is low. If the distance is high, adopters struggle
with the acquisition of required know-how (tacit knowledge) and the productivity
performance is less important. Other factors that relate to the long term superiority
of a technology. For example, relative using costs become increasingly important
and a tax that is imposed on the utilization of incumbent, conventional capital is
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more effective if technologies are dissimilar.

3. The three political instruments analyzed in this article are two types of subsidies
and a tax imposed on the environmental resource. A consumption subsidy is
paid as price support for eco-friendly goods and stimulates the creation of green
markets. An investment subsidy reduces the investment costs for green capital
goods. All political instruments were found to be effective as diffusion stimuli, but
have different effects on the stability of the diffusion process. The consumption tax
reinforces ongoing transition dynamics, but is neutralized if the economy is locked
in. This may have a smoothing effect on the diffusion process. An alternative
interpretation of the consumption tax is a higher willingness to pay for green goods.

The analysis in this paper is based on the theoretical macroeconomic simulation model
Eurace@unibi-eco. It was used to build theories about the relationship between the char-
acteristics of technologies and the dynamics of transition. A general contribution of this
study is the development of a taxonomic framework to study technologies characterized
by static, stock and interactive properties. The framework may provides taxonomy for
future empirical and theoretical studies of technological transitions.
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Appendix

A. Technical notes on regression analyses

Data: For the regression analyses, one year average smoothed data is used. Observations
represent monthly snapshots captured at different iterations, e.g. t = 600 for tests on
initial conditions and t = 15000 as final state. The intervals used as smoothing range
from [600, 820] and [14780, 15000] covering 12 months. One month consists of t = 20
iterations interpreted as working days.

The set of firms studied in the regression analyses is truncated. The data of firms
exhibits the structure of an unbalanced panel with entries and exits. For dependent
variables that are only meaningful if the full life time of a firm is considered, only firms
are studied that survive from the beginning until the end of the simulation horizon. That
is particularly true when studying the diffusion variance during the full time horizon. For
other dependent variables, the lack of completeness is ignored.

Explanatory variables: Conceptually, it is distinguished between explanatory vari-
ables and controls. Explanatory variables capture the mechanisms that underlie the
theory developed in this paper. Controls are not of major interest, but capture differences
between different simulation runs and differences between firms.

Core explanatory variables are the technological difficulty χint and distance χdist, and
possibly, initial barriers to diffusion βA, βB and policy rates θ, ς i and ςc. These variables
are included as identities, squared and interaction terms. The procedure to select relevant
terms is explained below.

In some analyses, a dummy variable I(eco) is included to control for systematic
differences the two technological regimes. It is included as identity capturing fix differences
and as interaction term with explanatory variables.

In the regression analyses, explanatory variables and controls are normalized to obtain
quantitatively comparable coefficients in the regression analyses. The data were demeaned
and scaled by division by the standard deviation. Normalization was made using the
R-function scale() [R Core Team, 2018].

Scaling facilitates a quantitative comparison of the coefficients in the regression analysis
with some limitations. For example, the relative effectiveness of policies may be partly due
to the design of the experiment. The mean values of the intervals from which the random
values of the policy parameters are drawn have been determined in preceding analyses
such that all policies have roughly the same transition probability. More information
about this procedure is provided in Hötte [2019a]. The scaling facilitates the comparison
of coefficients, but the size of the intervals from which the parameters are drawn is not
entirely comparable. In the presence of non-linearity, the interpretation as marginal effects
is not applicable, but serves as rough approximation here. Further, the effectiveness
of policies, barriers and learning parameters might be sensitive to other parameters in
the model. For example, the effectiveness of the consumption subsidy ςc is most likely
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sensitive to the price responsiveness of consumers. The role of barriers βA is likely
sensitive to the pace of progress ∆A and p̄.

The effects of the interaction terms are quantitatively difficult to compare with the
direct effects. The interaction terms are the product of two scaled variables which makes
the values numerically small.

Micro- and macroeconomic control variables: The controls included in the re-
gression analyses at the macroeconomic level are the aggregate stock of codified AVc and
tacit technological knowledge Bc, the number of active firms as proxy for the competitive
environment, aggregate output Y and the real price of the natural resource input peco/wr.
The knowledge stocks do not measure the difference in the relative endowment with green
and conventional knowledge, but capture technological progress in general that occurred
until the day of market entry. Note that the differences in the levels of macroeconomic
indicators capture differences between simulation runs that arose in the first 600 iterations
until the green technology producer entered the market.

Macroeconomic indicators (except from the aggregate stock of tacit knowledge) are
also included in the analyses at firm-level and capture cross run differences, but are
identical for the set of firms within a single simulation run.

Firm-level microeconomic controls are firm-level stocks of tacit knowledge Bc
i , the

number of employees and output as proxies for firm size, age, price and unit costs.

Dependent variables: For some analyses, critical levels of certain technological indi-
cators are computed and used as dependent variable. A critical level corresponds to the
technological state observed in time t∗i (t∗) when the last change in the direction of the
firm-level (macro-level) green technology diffusion occurred within a single simulation
run. The critical time t∗i (t∗) is defined as the last local extremum in the smoothed
diffusion curve given by the share of conventional capital use νci,t (νct ).

Hence, after t∗i , firm i does not any longer switch between green and conventional
capital. At the macroeconomic level, the economy starts converging to one of the two
possible technological states. Due to the possibly non-smooth behavior of the depreciation
function at the firm-level, one-year average data of the diffusion measure is used to identify
t∗i and t∗. If data at the macroeconomic aggregate is considered, it might be possible that
individual firms continue to switch between technology types. Hence, the macro-level
time of stabilization t∗ likely underestimates t∗i .

Technological indicators evaluated at t∗i are interpreted as threshold levels in the
relative performance that are a measure for degree of technological divergence beyond
which the direction of technological change is trivial. The degree of divergence can be
measured by the ratio of technological knowledge stocks such as productivity, skills and
using intensity comparing the superior with the inferior technology. Superior is defined as
the winner of the technology race, i.e. if the resulting regime type is green (conventional)
the green (conventional) technology is said to be the winner.

The core indicators of interest are the ratio of the stocks of codified α∗i = (A+
i,t∗/A

−
i,t∗)

and tacit knowledge β∗i = (Bc
i,t∗/B

−
i,t∗), (and their macroeconomic analogues) where +

48



(−) indicates the superior (inferior) technology type ig = c, g. These indicators may
be informative about the relationship between qualitative technological distances and
relative technological performance.

The data set used for the analyses of performance thresholds and the stabilization
time t∗i (t∗) is truncated. In particular, all observations are removed in which t∗i (t∗)
corresponds to the last or first observation.

In some cases, t∗ coincides with the day of market entry. In this case, the diffusion
pattern is trivial because the technological trajectory is clear from the beginning. The
green technology does (not) diffuse without any competitive race among the two technology
types.

In these cases, diffusion either stabilized at the very beginning which indicates that
no technological competition took effectively place. This may occur if barriers are
prohibitively high that diffusion is prevented or such low that diffusion is straightforward.
If t∗ = 15000, diffusion did not stabilize until the end of simulations and it is not necessarily
clear whether one of the two technologies won the race. Hence, the technological variables
evaluated at this point in time can not be interpreted as performance thresholds.

I tested an alternative approach using a finite mixture model that may account for
zero inflation pattern (i.e. a stabilization in t0) [cf. Stasinopoulos et al., 2017]. The
procedure is (partly) documented in the data publication [Hötte, 2019c]. The findings do
not substantially differ from the results presented in the main article. I decided to use
the OLS approach for reasons of simplification that are explained in more detail below.

The variance (σνi )2 of the diffusion measure νci,t ∈ [0, 1] is computed for each agent
i over the whole simulation horizon for each single simulation run. In the regression
analysis, it is scaled by 100 because otherwise, it is numerically to small for a proper
computational analysis and subject to rounding errors. Note that (σνi )2 is different
from the standard deviation shown in the time series plots (e.g. figure 2c) because it is
computed over the whole time horizon. The standard deviation shown in the time series
is computed over a 2.5 year window.

Model selection procedure: The specifications of the regression equations were
chosen using a stepwise model selection procedure based on the Bayesian Information
Criterion (BIC). This procedure is implemented in the R functions stepAIC() (stepGAIC()
for Probit) [Venables and Ripley, 2002, Stasinopoulos et al., 2017]. A full set of pairwise
interaction terms for all explanatory variables (policy, barriers and spillovers) was included
in the input term for the stepwise model selection functions. The functions return the
model specification that is associated with minimum BIC.

The OLS and Probit functions were mainly chosen for reasons of simplification. One
might be concerned about possibly better fitting assumptions about the underlying
distribution to be fitted. In additional analyses, a series of regression analyses was carried
out using the R function fitDist() of the GAMLSS package which may provide guidance
for the selection of an appropriate distribution function [Stasinopoulos et al., 2017]. It
sequentially regresses the objective variable on a constant using different families of
distribution. Even if these analyses yielded a good fit and improved the fit remarkably
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when using macroeconomic aggregate data, I refrain from the use of these automatically
selected functions for mainly two reasons. First, the selected distributions vary over
different data sets and impede the comparability over experiments. Second and related
to the first concern, is the trade-off between precision and generalizability. The fit
achieved with OLS and Probit is sufficiently well. These models allow the comparison
over experiments, are more commonly known than exotic distributional families and the
coefficients of OLS are straightforward to interpret. The reader should keep in mind that
the purpose of this study is not to perfectly fit the simulated data, but rather to use the
simulated data as tool for illustration of the underlying theory. It is simulated data and
the number of degrees of freedom in the model design and parameter space of the model
is high. Hence, robustness, simplicity and ease of interpretation are the main guidelines
for the model selection instead of a particular high statistical precision.

Instrumental variable approach The analyses of the variance, technological di-
vergence and duration until stabilization incorporate a dummy variable that indicates
whether a transition took place I(eco). The time series that are disaggregated by the
type of the technological regime exhibit quite different patterns, not only with regard to
the outcome, but also with regard to the variation over time. This raises concerns about
the possible endogeneity of the resulting technological regime. The type dummy may be
subject to reverse causation and may be correlated with the error term.

This concern is addressed by an instrumental variable (IV) approach. Similar as before,
the set of instruments and explanatory variables for the type dummy are identified
using an iterative BIC based model selection procedure and ensuring that the number of
instruments exceeds the number of explanatory variables in the second stage regression.
Different specifications of the IV regression are tested, i.e. a simple linear version and a
version using a Probit regression on the first stage but the results do not exhibit profound
qualitative differences between model specifications. In the result summary in the main
text body, the results with the Probit model on the first stage are shown using ivglm() of
the R-package ivtools [Sjolander et al., 2019].

To determine the set of instruments, a heuristic procedure based on a repeated BIC
based model selection procedure was used. The model selection procedure was performed
separately at the first and second stage of the regression using fitted type dummies as
input at the second stage. Note that the first stage corresponds to the Probit regression
on the diffusion measure. All variables that were excluded by the BIC on the second
stage were included as instrument on the first stage. The selection procedure is rather a
heuristic, but not analytically justified approach. It roughly ensures that the instrument
is not or only weakly related to the dependent variable in the second stage regression.

A Wu-Hausmann test on the linear model confirms that the IV model is preferable
compared to the standard model treating I(eco) as exogenous. Further, the approach is
evaluated for the weakness of instruments. A Sargan test is used to confirm the exogeneity
of instruments. The diagnostics confirm the appropriateness of the modeling approach.
The full test statistics and related R-scripts are available in the data publication [Hötte,
2019c].
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In an instrumental variable regression, the R2 is not straightforward to compute because
it is not clear how to incorporate the residuals of the first stage regression. Main purpose
of the R2 in this analysis is the illustration of the explanatory power of the variables
included in the second stage regression of a specific dependent variable compared to their
relevance for other dependent variables. For reasons of simplification, I show the R2 of
the second stage regression using the manually fitted type dummy as input but ignoring
the residuals of the first stage regression.

An alternative approach to capture the multi-modal nature of the final distribution,
are finite mixture models. Finite mixture models are based on the assumption that
the mixing probabilities are not known, but can be estimated from the data. In this
example, the mixing probabilities are a measure that is similar to the regime type. In a
mixture model, the regime type is not deterministic but estimated from the data.27 In
this example, the approach is conceptually similar to the IV approach where the binary
regime indicator is estimated. In a mixture model the analysis is not split into two steps.
The mixing probabilities and the (shared) coefficients are computed simultaneously using
an expectation maximization (EM) algorithm. In this analysis, alternative specifications
based on a finite mixture models assuming a bi-modal distribution in the data were tested.
The analyses were made using the gamlssMX() function of the gamlss package [Rigby
and Stasinopoulos, 2005]. The core insights that can be derived from such analysis do not
deviate from the more common approaches presented in this article. An overview of the
procedure is available in the data publication. I decided not to present the results of this
approach in the paper for mainly two reasons. First, mixture models require additional
assumptions about e.g. shared parameters, the number of modes in the distribution
and some technical assumptions. Even though there are good data driven heuristics to
make these assumptions, it is not certain how well these assumptions can be generalized
to other data sets and it confounds the presentation of representation of results with
much detail that is not necessary to underline the core message of this article. Second,
the methods presented in the paper are more common for a broad audience. Adding
additional detail does not contribute new insights that can not be derived from simpler
methods. The reader should keep in mind that it is simulated data and the goal of this
article is not to perfectly reproduce the simulated patterns, but rather to develop an
intuitive theory of technology substitution that is underlined by quantitative analyses.

Transition boundaries: A K-nearest neighbors clustering algorithm with a given
number of nearest neighbors was used to train the classification model that is used to
draw the transition boundary. This was made by the use of the knn3() function of the
R-package caret [Kuhn, 2018]. The appropriate number of nearest neighbors depends
on the sample size and affects the smoothness of the curve, but there is no analytical
rule to determine the optimal number. Here, 25 neighbors were used for macroeconomic
data and 75 for firm-level data. The decision on the number was based on a series of
trials with different parameters. It was found that the results are robust across different,

27Technically, the mixing probabilities do not necessarily coincide with the regime type. However, for
most of the dependent variables under consideration the bimodality coincides with the regime type.
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non-extreme specifications. The final decision is mainly based on aesthetic reasons, i.e.
the boundaries are relatively smooth.

The plots in the article show the critical levels of relative knowledge stocks, initial
diffusion barriers and learning conditions (cf. figure 6 and 8). Colors indicate the final
regime type. For the training of the classification algorithm, relative knowledge stocks
were used to predict the type of the resulting technological regime.

Transparency and reproducibility: The simulation model, all data and program-
ming code that was used for the simulation and statistical evaluation of simulated data
is available online as separate data publication [Hötte, 2019c]. Additionally, the data
publication does also contain a set of descriptive statistics generated as text output of
the statistical analysis and that is used in the article. It provides information about the
statistical procedure, alternative model specifications that were tested in the regression
analyses. It also contains additional figures and tables of simulated data that were not
discussed in the article, but give insights about the dynamics of the model.

B. Simulation results

B.1. Baseline scenario

The time series plots of the baseline (figure B.1) are not discussed in this article and only
shown for reasons of comparability. A short explanation and discussion of the observed
patterns of these simulations is provided in Hötte [2019b]. The interested reader is
further referred to Hötte [2019a] where a more detailed discussion of a similar experiment
is provided that exhibits qualitatively similar features. A difference to the discussion
in Hötte [2019a] is given by lower entry barrier of the green technology and another
specification of the learning function.28

A core insight of this analysis is that instability of the transition process interpreted
as technological uncertainty is costly. This is illustrated in figure B.1 by separating the
set of simulation runs into green, conventional and so-called switching regimes. A single
simulation run is classified as switching regime if the transition process is characterized by
long lasting switches between the green and conventional technology. This is associated
with wasted resources because R&D and learning time are invested in a technology
that becomes obsolete in the long run. It is associated with a delayed technological
specialization, lower productivity and lower aggregate output compared to the green or
conventional regimes with a more clear-cut technological path selection (cf. figure B.1).
In the supplementary material, a table with the results of a two sided Wilcoxon test is
shown to illustrate whether the differences between green and conventional regimes are
significant (see table I.3).

28The adjustment of the learning function was made for reasons of smoothing, but does not have a
qualitative effect on the simulation results.
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Figure B.1: Overview of macroeconomic and technological indicators of the baseline scenario
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These figures give an overview of the time series of macroeconomic and technological indicators. The
different line shapes indicate different regime types (�: eco, ∗: conv, ⊕: switch). Switch scenarios refer
to simulation runs that are characterized by high technological uncertainty.
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B.2. Spillover experiments

Figure B.2: Overview of additional technological and economic indicators
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The different line shapes indicate different regime types (�: eco, ∗: conv). Darker color indicates a higher
level of χdist.

The time series of macroeconomic indicators are shown in figure B.2. The technological
indicators such as prices for capital goods, the degree of novelty and the price per
productivity unit show a pattern of divergence between the different regime types.

B.3. Barriers to diffusion and learning

This simulation experiment with randomly initialized diffusion barriers and learning
parameters serves as baseline scenario for the policy experiment. An overview in terms of
plotted time series and summary statistics comparing green and conventional regimes is
provided in the supplementary material (III.2). Here, the main observations concerning
the interaction between barriers and learning parameters are summarized.

A regression analysis of technological indicator variables illuminates the role of the
relative pace of learning in the presence of differently strong barriers to diffusion. As
before, the analysis is run on the full set of explanatory variables and interaction terms
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which are stepwise tested for exclusion using the BIC as model selection criterion. The
model configurations with the smallest BIC are chosen as final version and summarized
in table B.1.

As expected, barriers reduce the probability of a transition. A higher technological
distance χdist is negatively associated with the transition probability. Further, the
distance reinforces the inhibiting effect of the skill related barrier βb. Hence, a skill
related barrier is more difficult to overcome if the technological distance is high. The
distance reinforces path dependence in the accumulation of tacit knowledge.

The interaction of the distance and the technical barrier χdist · βA is not clear from
this analysis because the coefficients of the interaction term differ across the OLS and
Probit specification. This can be explained by the different functional forms of the two
models and suggests non-linearities in the relationship between the level of barriers and
the degree of spillovers.

Barriers in general have a postponing effect on t∗. Previous analyses have shown that
barriers are decisive for the resulting technological regime. The effect on the diffusion
volatility is ambiguous. Both, very high and very low barriers have a negative effet on t∗.
On the one hand, sufficiently high barriers prevent the diffusion process very early. On
the other hand, very low barriers do not represent a burden for the entrant technology
and the transition may be fast and relatively stable. The role of barriers was more
comprehensively discussed in a previous article [Hötte, 2019a].

The variance of the diffusion process (σνi )2 is generally higher if the transition occurs
and the difference to the lock-in case is even larger in the strength of barriers, the
technological distance and difficulty.

In the regression of relative knowledge stocks
(
A+
i /A

−
i

)∗
and

(
B+
i /B

−
i

)∗
, the coefficients

of the knowledge barrier βb and the technological difficulty are negative in the transition
regime. Hence, the divergence of relative knowledge stocks is less pronounced. This
indicates that the diffusion of the green technology is more challenging in the presence of
high skill related barriers and state dependence in the learning process.
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Table B.1: Relation between the level of diffusion barriers and the conditions of learning

νci νci t∗i
(
A+
i /A

−
i

)∗ (
B+
i /B

−
i

)∗
(σνi )2

OLS Probit IV IV IV IV
(Intercept) .6599*** .8293*** 3519*** 1.112*** 1.07*** 2.569***

(.0033) (.0203) (183.3) (.0178) (.0138) (.3278)
χdist .0934*** .6556*** 1220*** .075*** .0955*** -.698***

(.0037) (.0238) (120.5) (.0106) (.0079) (.1326)
χint -.0027 -.028. 492.9*** .0176* .0086 -.4932***

(.0034) (.0145) (110.1) (.0087) (.0063) (.1009)
χdist · χint -.8477***

(.0493)
βA .1532*** .7162*** 1168*** .0487*** .0437*** -.454**

(.0038) (.0218) (111.3) (.0057) (.0056) (.1491)
βb .1871*** .8811*** 368.6*** .0987*** .0915*** -1.654***

(.0034) (.0194) (81.76) (.0091) (.007) (.1448)
χdist · βA -.0209*** .1041*** .0221*** .0155***

(.0034) (.016) (.0046) (.0033)
χdist · βb .0328*** .4102*** .0311*** .0222*** -.0574

(.0033) (.0191) (.0082) (.0062) (.0872)
χint · βA -.0542*** -.1541*** .1126

(.0033) (.0141) (.0747)
χint · βb -305.5*** -.0109*** -.0069**

(44.51) (.0032) (.0023)
I(eco) -699.8 -.1107* -.0499 9.839***

(449.1) (.0497) (.0384) (.889)
I(eco) · χdist -2428*** -.0541. -.0974*** 1.203***

(198.4) (.0282) (.0209) (.3091)
I(eco) · χint -1305*** -.0579** -.0295* 2.158***

(236.1) (.0188) (.0134) (.2425)
I(eco) · βA -929.1*** -.4974.

(198.5) (.2705)
I(eco) · βb -.1210*** -.1156*** 3.997***

(.0111) (.0075) (.2980)
AVc .1455*** .0171*** .0225*** -.3407***

(.0232) (.0020) (.0031) (.0789)
Bci -151.4*** -.0061*** -.0054***

(31.66) (.0018) (.0013)
#employeesi -263.7*** -.0111*** -.0097***

(31.96) (.0022) (.0024)
outputi .0159***

(.0046)
pricei .0251*** .049*** -.0039* .0682

(.0047) (.0142) (.0018) (.0418)
#firms -.0105** -.0720*** -.3611***

(.0033) (.0137) (.0429)
peco/wr -.0167*** .1000*** .0149*** -.3424***

(.0043) (.0294) (.0035) (.0919)
R2 .3417 .4952 .1626 .3436 .4168 .2759

Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

The first two columns show the diffusion measure νci evaluated at the end of simulation. The third
column illustrates the relationship between initial conditions and the duration t∗ until the diffusion
process stabilizes defined by the last change in the sign of the slope of the diffusion curve.

(
A+
i /A

−
i

)∗
(
(
B+
i /B

−
i

)∗
) are measures for the relative stock of codified (tacit) knowledge at firm-level in time t∗i . The

variance (σνi )2 is a measure for the volatility of the diffusion process computed over the whole simulation
time. The results in column 3-6 are the results of an instrumental variable regression taking account of
the potential endogeneity of the type dummy I(eco). Further info on the computation of variables and
the regression procedure is provided in the main text and the technical note section A.

56



B.4. Policy experiment

In this section, some additional information about the macroeconomic and technological
side effects of policy are illustrated by time series plots and briefly explained. In figures
B.3a to B.3e the evolution of technological indicators is shown comparing the aggregate
outcome of the policy simulations with the baseline. The difference in the subset of
conventional regimes between the policy and business as usual case is remarkable. In the
early simulation phase, policies trigger a higher green technology uptake, independently
of the resulting regime. This has positive effects on the environmental performance in the
short run. The environmental impact per output unit (“eco-efficiency”) is lower in the
beginning, but not necessarily in the long run. If the economy is locked in and does not
switch to the green regime, eco-policies cause a distortion in the allocation of learning
and R&D resources. The specialization in the conventional technology is retarded which
has a negative effect on productivity compared to the baseline scenario without policy.
This is also visible in the evolution of relative knowledge stocks αt and βt.

In figure B.3f the budget balance measured as percentage GDP is shown. It fluctuates
around zero which confirms that the budget is balanced on average. The fluctuations are
largest for the green transition regimes in the policy scenario. This is largely explainable
by the pro-cyclical behavior of the subsidy payments which are correlated with sold
quantity of green goods and investment dynamics in green capital. If green capital is not
adopted, subsidies are not paid. Figure B.3g illustrates the functioning of the budget
balancing mechanism. The base income tax is incrementally adapted such that the
budget is balanced in the long run. It is not only responsive to the expenditures and
income of green policies, but also to the payment of unemployment benefits, corporate
tax rates and government’s involvement in the financial sector, i.e. via the government’s
interest income and payment.

The day of market entry causes severe distortions in the economic system. It is
associated with increased competition and a series of market exits independent of the
resulting technological regime and independent of the policy as shown in figure B.3h.
The series of market exits is associated with a growth of the firm size. Note that the
market entry dynamics in this model are highly stylized and probabilistic. Only the
survival rate of entrants and the number of exits is endogenous and responsive to the
technological evolution and policies.

In the policy scenario, the distortions are stronger and seem to be a side effect of
relatively higher green technology adoption rates. This is partly reflected in monthly
output with a short phase of stagnation that can be explained by learning costs incurred
in the beginning. Recall that also in the lock-in regimes, inefficiencies arise because some
firms take up the green technology. This is observable in the rise of unit costs in figure
B.3l. Unit costs steeply increase immediately after the day of market entry.

The simulations in the model tend to exhibit “technological unemployment” that is
not compensated by consumption growth. If productivity grows, firms dismiss labor, but
the dismissal rates are low. In the baseline case, the unemployment rate increases over a
horizon of roughly 60 yeas from 5 to 12.5%. In the presence of policy, this behavior is
different and largely explainable by the consumption subsidy. The consumption subsidy
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Figure B.3: Overview of macroeconomic and technological indicators
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These figures give an overview of the time series of macroeconomic and technological indicators. The
different line shapes indicate different regime types (�: eco, ∗: conv). Gray colored lines indicate the
baseline scenario.
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makes green consumption goods cheaper. Hence, it is only paid if green technology is
used. In the case green policy regimes, this price support is sufficient to stimulate demand
such that the tendency of “technological unemployment” is overcome. But this effect is
not permanent and conditional on the subsidy.

Recall that all the phenomena discussed here apply to Monte-Carlo simulations with
different levels of initial barriers, learning parameters and policy strength that are
independently drawn at random from continuous intervals. Dependent on these conditions,
the dynamics may be more extreme or modest. The discussion above refers to the average
outcome, but preceding simulations and experiments have shown that these patterns
are quite robust and, even if no guarantee can be given, this simple method of scenario
aggregation seems eligible for the given parameter ranges.
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Supplementary material

The subsequent simulation results are included in this supplementary material for reasons
of transparency and documentation, and should help the reader to develop an intuition for
the dynamics underlying the Eurace@unibi-eco simulation model. The results summarized
in this supplementary material largely have a direct reference to indications made in the
main article.

Note that there is a separate data publication that provides additional information
that was not mentioned in the article, but adds transparency [Hötte, 2019c]. The data
publication contains the simulation model, the statistical software and scripts of analysis
and simulated data. Next to the raw data, the data publication also contains a section
with edited data and results such as tables, plots and text files that provide additional
information and are not mentioned in the main article.

I. Baseline validation

In this subsection, an overview on the basic properties of the baseline scenario is provided.
This overview may be also informative for validation purposes. Average growth rates
and the size of business cycle variation are summarized in table I.1. In table I.2, the
cross correlation patterns between business cycle dynamics and lagged macroeconomic
indicators such as investment, consumption and prices are shown. Figure I.1 shows the
relative volatility of output, consumption and investment and output, vacancies and
unemployment. In figure I.2 plots of a Phillips and Beveridge curve using the simulated
data are shown.

The selection of these validation criteria is motivated in Dawid et al. [2018a]. These
criteria and the computation of the indicators in the application to the Eurace@unibi-eco
model are discussed in more detail in Hötte [2019a].

In table I.3, a comparison between green and conventional regimes is shown as discussed
in the article and appendix. The table shows the results of a two sided Wilcoxon
test comparing green and conventional regimes. The test statistics confirm that the
observations of the plotted time series about the divergence in the technological indicators
are significant. Further, investment activities, monthly output, but also unemployment

Table I.1: Growth rate and business cycle

Avg. growth rate Business cycle size

Mean (std) .0163 (.0010) .0013 (.0017)
Within-run std .0010 (.0010) .0004 (.0005)

The mean (standard deviation) of the growth rate is the arithmetic mean of the geometric means of the
within-run growth rate. The size of the business cycle (BC) is evaluated as percentage deviation of time
series data from the bandpass filtered trend. The within-run variation is the mean of the within run
standard deviation of the growth rate (BC size). Its standard deviation is shown in parentheses.
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Table I.2: Cross correlation patterns

t-4 t-3 t-2 t-1 0 t+1 t+2 t+3 t+4

Output -.119 .238 .612 .895 1 .895 .612 .238 -.119
(.097) (.077) (.043) (.012) (0) (.012) (.043) (.077) (.097)

Consumption -.474 -.473 -.332 -.069 .253 .541 .71 .713 .557
(.056) (.067) (.078) (.075) (.063) (.056) (.055) (.052) (.054)

Unemployment .145 -.209 -.586 -.878 -.995 -.899 -.623 -.252 .107
(.096) (.077) (.045) (.015) (.008) (.014) (.043) (.077) (.097)

Vacancies -.148 .014 .207 .382 .490 .500 .411 .254 .076
(.079) (.075) (.092) (.120) (.139) (.137) (.116) (.087) (.072)

Price .021 .153 .274 .351 .362 .305 .198 .071 -.042
(.112) (.120) (.131) (.136) (.130) (.113) (.096) (.092) (.102)

Debt -.126 -.011 .124 .241 .309 .311 .250 .149 .041
(.126) (.131) (.128) (.117) (.103) (.09) (.085) (.088) (.094)

Inflation -.364 -.333 -.212 -.031 .157 .295 .35 .316 .218
(.081) (.078) (.079) (.087) (.099) (.105) (.101) (.091) (.086)

Productivity .116 -.022 -.176 -.302 -.363 -.341 -.245 -.108 .028
(.113) (.087) (.102) (.145) (.173) (.169) (.137) (.098) (.087)

Investment -.234 -.164 -.054 .070 .179 .246 .258 .219 .147
(.091) (.088) (.098) (.113) (.120) (.114) (.097) (.086) (.091)

Price eco -.130 -.262 -.335 -.327 -.240 -.106 .032 .134 .178
(.113) (.128) (.135) (.127) (.112) (.106) (.116) (.125) (.124)

Avg. wage .019 -.129 -.261 -.334 -.326 -.240 -.107 .031 .133
(.103) (.112) (.127) (.135) (.127) (.112) (.106) (.116) (.125)

Mark up -.164 .068 .313 .505 .588 .542 .386 .173 -.033
(.121) (.11) (.131) (.168) (.187) (.174) (.134) (.096) (.094)

This table shows cross correlation patterns in the volatility of macroeconomic time series with (lagged)
business cycle dynamics, i.e. variation in aggregate output. All variables are measured as cyclical
argument of the underlying time series. The first row corresponds to the autocorrelation of a business
cycle. The presented values are averages of the run-wise correlations. In parentheses, the standard
deviation over simulation runs is shown.

are higher in the conventional regime. Unit production costs are lower in the green regime
which might be a result of higher investment in more productive capital, but also a result
from material input costs savings.
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Figure I.1: Relative volatility plots
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These plots show the relative magnitude of fluctuations captured by the cyclical argument of macroeco-
nomic bandpass filtered time series and measured in percent. The series cover a 10 year period at the
end of the simulation horizon of a randomly drawn single run out of the set of 210 simulation runs.

Figure I.2: Beveridge and Phillips curve.
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These figures show a Phillips and Beveridge curve for a randomly drawn simulation run. The data
accounts for non-smoothed time series data covering the whole simulation period of roughly 60 years.
Outliers are removed from the data.
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Table I.3: Wilcoxon test on equality of means for different snapshots in time

t eco conv eco,conv eco conv eco,conv
Share conventional capital used Eco-price-wage-ratio

[601,3000] .4690 (.1046) .6660 (.1003) .0000 .0951 (1e-04) .0952 (.0000) .0000
[3001,5400] .0771 (.1320) .5929 (.1869) .0000 .0951 (1e-04) .0951 (1e-04) .4373
[5401,15000] .0257 (.0521) .9724 (.0419) .0000 .0951 (.0000) .0951 (.0000) .2072

[1,15000] .1438 (.0641) .8638 (.0664) .0000 .0951 (.0000) .0951 (.0000) .0026
Frontier ratio Skill ratio

[601,3000] .9597 (.0523) 1.072 (.0511) .0000 1.024 (.0232) 1.061 (.0153) .0000
[3001,5400] .8620 (.0882) 1.115 (.0874) .0000 .9152 (.0664) 1.115 (.0549) .0000
[5401,15000] .7657 (.121) 1.258 (.1787) .0000 .7592 (.0532) 1.326 (.0823) .0000

[1,15000] .8793 (.0931) 1.252 (.1286) .0000 .8379 (.0462) 1.238 (.0614) .0000
Monthly output Unemployment rate

[601,3000] 8.108 (.0186) 8.095 (.0111) .0000 7.912 (.6208) 7.780 (.3550) .5287
[3001,5400] 8.261 (.0614) 8.198 (.0503) .0000 10.54 (3.047) 8.271 (1.144) .0000
[5401,15000] 8.715 (.1407) 8.643 (.1292) 7e-04 13.31 (7.610) 11.31 (4.196) .0541

[1,15000] 8.519 (.0968) 8.461 (.0892) 1e-04 11.77 (5.290) 10.10 (2.831) .0062
# active firms Share conv. capital on firm-level

[601,3000] 71.38 (1.036) 71.32 (1.158) .6033 .4715 (.1804) .6771 (.1916) .0000
[3001,5400] 70.30 (2.000) 69.64 (1.864) .0284 .0592 (.1558) .6102 (.2759) .0000
[5401,15000] 73.34 (3.439) 73.40 (2.811) .6414 .012 (.0579) .979 (.0488) .0000

[1,15000] 72.57 (2.388) 72.49 (2.073) .4405 .1534 (.1743) .8812 (.097) .0000
# employees Unit costs

[601,3000] 20.09 (6.741) 20.12 (6.811) .8152 1.073 (.1300) 1.040 (.1195) .0000
[3001,5400] 20.09 (6.090) 20.71 (6.726) .0000 1.408 (.1169) 1.414 (.1209) .0019
[5401,15000] 18.51 (5.758) 18.98 (5.513) .0000 1.890 (.2843) 1.991 (.2622) .0000

[1,15000] 18.52 (5.824) 18.89 (5.816) 1e-04 1.635 (.3140) 1.695 (.3187) .0000
Investment Mark up

[601,3000] 11.22 (1.185) 10.75 (1.010) .0000 .1134 (.1115) .1157 (.1097) .0232
[3001,5400] 13.92 (1.881) 12.39 (1.429) .0000 .1423 (.0936) .1451 (.0921) .0072
[5401,15000] 24.00 (5.877) 21.39 (4.833) .0000 .4118 (.2585) .3792 (.2053) .0039

[1,15000] 19.64 (5.012) 17.69 (4.224) .0000 .3034 (.1842) .2837 (.1511) .0406

The columns indicate the mean value (standard deviation) of the time series data for different subsets
in time and disaggregated by the type of technological regime. The entry in the last column of each
triple of columns corresponds to the p-value of a two-sided Wilcoxon test on equality of means across
technological regimes. Means are computed over the early, medium, late phase of technology diffusion
and the full time series, i.e. period {[601, 3000], [3001, 5400], [5401, 15000], [1, 15000]}.
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II. Different degrees of state dependence

II.1. Technological distance

The following tables give an overview of the results of Wilcoxon test statistics comparing
the simulation results of different parameter pairs of the technological distance χdist ∈
{0, .5, 1}. It underlines the comparative discussion of observed differences in the time
series patterns in the main article.
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Table II.4: Results of two-sided Wilcoxon test at different phases of diffusion and different subsets
of data.

initial [601,3000] aggr eco conv
# employees

(.0,.5) Mean 20.71 20.65 .236 20.68 20.65 .5908 20.78 20.64 .2126
(Std) (5.047) (5.06) (5.07) (5.031) (5.003) (5.13)

(.0,1.0) Mean 20.71 20.6 .0379 20.68 20.6 .2582 20.78 20.59 .0406
(Std) (5.047) (5.107) (5.07) (5.042) (5.003) (5.144)

(.5,1.0) Mean 20.65 20.6 .386 20.65 20.6 .4969 20.64 20.59 .6265
(Std) (5.06) (5.107) (5.031) (5.042) (5.13) (5.144)

Unit costs
(.0,.5) Mean 1.08 1.072 .0000 1.081 1.071 .0000 1.077 1.076 .7736

(Std) (.0662) (.0676) (.0661) (.0672) (.0662) (.0682)
(.0,1.0) Mean 1.08 1.041 .0000 1.081 1.043 .0000 1.077 1.041 .0000

(Std) (.0662) (.0625) (.0661) (.0623) (.0662) (.0626)
(.5,1.0) Mean 1.072 1.041 .0000 1.071 1.043 .0000 1.076 1.041 .0000

(Std) (.0676) (.0625) (.0672) (.0623) (.0682) (.0626)

medium [3001,5400] aggr eco conv
# employees

(.0,.5) Mean 20.9 20.56 .0000 20.87 20.58 .0000 20.94 20.52 .0000
(Std) (5.041) (4.954) (5.003) (4.954) (5.115) (4.953)

(.0,1.0) Mean 20.9 20.55 .0000 20.87 20.4 .0000 20.94 20.63 1e-04
(Std) (5.041) (4.972) (5.003) (4.908) (5.115) (5.006)

(.5,1.0) Mean 20.56 20.55 .6292 20.58 20.4 .0185 20.52 20.63 .3193
(Std) (4.954) (4.972) (4.954) (4.908) (4.953) (5.006)

Unit costs
(.0,.5) Mean 1.412 1.407 .0000 1.409 1.406 .0739 1.418 1.408 .0000

(Std) (.0926) (.0915) (.0943) (.0912) (.0889) (.0922)
(.0,1.0) Mean 1.412 1.38 .0000 1.409 1.374 .0000 1.418 1.384 .0000

(Std) (.0926) (.102) (.0943) (.1018) (.0889) (.102)
(.5,1.0) Mean 1.407 1.38 .0000 1.406 1.374 .0000 1.408 1.384 .0000

(Std) (.0915) (.102) (.0912) (.1018) (.0922) (.102)

end [5401,15000] aggr eco conv
# employees

(.0,.5) Mean 19.26 19.01 .0000 19.25 18.96 .0000 19.28 19.13 .0235
(Std) (4.377) (4.557) (4.41) (4.542) (4.312) (4.593)

(.0,1.0) Mean 19.26 18.99 .0000 19.25 18.96 .0000 19.28 19.01 .0000
(Std) (4.377) (4.642) (4.41) (4.64) (4.312) (4.643)

(.5,1.0) Mean 19.01 18.99 .2086 18.96 18.96 .3972 19.13 19.01 .042
(Std) (4.557) (4.642) (4.542) (4.64) (4.593) (4.643)

Unit costs
(.0,.5) Mean 1.936 1.902 .0000 1.938 1.887 .0000 1.931 1.939 .2502

(Std) (.2211) (.2387) (.2226) (.2378) (.2182) (.2369)
(.0,1.0) Mean 1.936 1.86 .0000 1.938 1.831 .0000 1.931 1.877 .0000

(Std) (.2211) (.2366) (.2226) (.2224) (.2182) (.2428)
(.5,1.0) Mean 1.902 1.86 .0000 1.887 1.831 .0000 1.939 1.877 .0000

(Std) (.2387) (.2366) (.2378) (.2224) (.2369) (.2428)
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Table II.5: Results of two-sided Wilcoxon test at different phases of diffusion and different subsets
of data.

initial [601,3000] aggr eco conv
Share conventional capital used

(.0,.5) Mean .466 .5262 6e-04 .4421 .469 .2375 .5128 .666 .0000
(Std) (.0719) (.1366) (.0651) (.1046) (.061) (.1003)

(.0,1.0) Mean .466 .789 .0000 .4421 .6856 .0000 .5128 .8476 .0000
(Std) (.0719) (.1201) (.0651) (.1091) (.061) (.0798)

(.5,1.0) Mean .5262 .789 .0000 .469 .6856 .0000 .666 .8476 .0000
(Std) (.1366) (.1201) (.1046) (.1091) (.1003) (.0798)

Standard dev. share
(.0,.5) Mean 6.041 5.762 .7416 6.287 6.423 3e-04 5.559 4.143 .0000

(Std) (.7462) (1.474) (.668) (1.043) (.6533) (1.065)
(.0,1.0) Mean 6.041 2.896 .0000 6.287 4.332 .0000 5.559 2.081 .0000

(Std) (.7462) (1.588) (.668) (1.423) (.6533) (.9874)
(.5,1.0) Mean 5.762 2.896 .0000 6.423 4.332 .0000 4.143 2.081 .0000

(Std) (1.474) (1.588) (1.043) (1.423) (1.065) (.9874)
Eco-price-wage-ratio

(.0,.5) Mean .0952 .0951 .2842 .0951 .0951 .2874 .0952 .0952 .5029
(Std) (1e-04) (1e-04) (1e-04) (1e-04) (.0000) (.0000)

(.0,1.0) Mean .0952 .0952 .1528 .0951 .0952 .0015 .0952 .0952 2e-04
(Std) (1e-04) (1e-04) (1e-04) (1e-04) (.0000) (1e-04)

(.5,1.0) Mean .0951 .0952 .0111 .0951 .0952 .0000 .0952 .0952 .0000
(Std) (1e-04) (1e-04) (1e-04) (1e-04) (.0000) (1e-04)

Frontier ratio
(.0,.5) Mean .9859 .9922 .4242 .9584 .9597 .755 1.04 1.072 .002

(Std) (.0697) (.0727) (.0584) (.0523) (.0575) (.0511)
(.0,1.0) Mean .9859 1.014 1e-04 .9584 .9471 .2019 1.04 1.053 .1868

(Std) (.0697) (.0741) (.0584) (.0465) (.0575) (.0579)
(.5,1.0) Mean .9922 1.014 .002 .9597 .9471 .0887 1.072 1.053 .0095

(Std) (.0727) (.0741) (.0523) (.0465) (.0511) (.0579)
Skill ratio
(.0,.5) Mean 1.036 1.035 .987 1.036 1.024 .0000 1.036 1.06 .0000

(Std) (.0013) (.0268) (.0014) (.0232) (.0012) (.0153)
(.0,1.0) Mean 1.036 1.089 .0000 1.036 1.055 .0000 1.036 1.108 .0000

(Std) (.0013) (.0393) (.0014) (.0297) (.0012) (.0299)
(.5,1.0) Mean 1.035 1.089 .0000 1.024 1.055 .0000 1.06 1.108 .0000

(Std) (.0268) (.0393) (.0232) (.0297) (.0153) (.0299)
Monthly output

(.0,.5) Mean 8.102 8.104 .5452 8.105 8.108 .4139 8.097 8.095 .3824
(Std) (.0153) (.0177) (.0157) (.0186) (.0131) (.0111)

(.0,1.0) Mean 8.102 8.109 1e-04 8.105 8.101 .1376 8.097 8.113 .0000
(Std) (.0153) (.0169) (.0157) (.0104) (.0131) (.0183)

(.5,1.0) Mean 8.104 8.109 .0013 8.108 8.101 .0655 8.095 8.113 .0000
(Std) (.0177) (.0169) (.0186) (.0104) (.0111) (.0183)

Unemployment rate

(.0,.5) Mean 7.811 7.874 .0983 7.861 7.912 .4768 7.713 7.78 .054
(Std) (.5792) (.5593) (.5912) (.6208) (.5457) (.3552)

(.0,1.0) Mean 7.811 8.121 .0000 7.861 7.809 .7796 7.713 8.298 .0000
(Std) (.5792) (.6919) (.5912) (.371) (.5457) (.7665)

(.5,1.0) Mean 7.874 8.121 .0000 7.912 7.809 .8226 7.78 8.298 .0000
(Std) (.5593) (.6919) (.6208) (.371) (.3552) (.7665)

# active firms

(.0,.5) Mean 71.22 71.36 .3272 71.22 71.38 .3406 71.23 71.32 .735
(Std) (1.236) (1.07) (1.302) (1.036) (1.103) (1.158)

(.0,1.0) Mean 71.22 71.4 .247 71.22 71.49 .1943 71.23 71.35 .6623
(Std) (1.236) (1.061) (1.302) (1.025) (1.103) (1.082)

(.5,1.0) Mean 71.36 71.4 .8926 71.38 71.49 .609 71.32 71.35 .8364
(Std) (1.07) (1.061) (1.036) (1.025) (1.158) (1.082)
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Table II.6: Results of two-sided Wilcoxon test at different phases of diffusion and different subsets
of data.

medium [3001,5400] aggr eco conv
Share conventional capital used

(.0,.5) Mean .2032 .2267 .0026 .1316 .0771 .0000 .3434 .5929 .0000
(Std) (.1536) (.2782) (.1153) (.132) (.1187) (.1869)

(.0,1.0) Mean .2032 .6305 .0000 .1316 .214 .0176 .3434 .8668 .0000
(Std) (.1536) (.3567) (.1153) (.2111) (.1187) (.1393)

(.5,1.0) Mean .2267 .6305 .0000 .0771 .214 .0000 .5929 .8668 .0000
(Std) (.2782) (.3567) (.132) (.2111) (.1869) (.1393)

Standard dev. share
(.0,.5) Mean 1.779 1.623 .0024 1.497 1.014 .0000 2.331 3.111 .0000

(Std) (.8152) (1.38) (.7322) (.9679) (.6782) (1.075)
(.0,1.0) Mean 1.779 1.919 .3492 1.497 2.449 .0000 2.331 1.619 .0000

(Std) (.8152) (1.105) (.7322) (1.16) (.6782) (.9526)
(.5,1.0) Mean 1.623 1.919 3e-04 1.014 2.449 .0000 3.111 1.619 .0000

(Std) (1.38) (1.105) (.9679) (1.16) (1.075) (.9526)
Eco-price-wage-ratio

(.0,.5) Mean .0951 .0951 .005 .0951 .0951 .5008 .0952 .0951 .0019
(Std) (1e-04) (1e-04) (1e-04) (1e-04) (1e-04) (1e-04)

(.0,1.0) Mean .0951 .0951 2e-04 .0951 .0951 .0231 .0952 .0951 .0000
(Std) (1e-04) (1e-04) (1e-04) (1e-04) (1e-04) (1e-04)

(.5,1.0) Mean .0951 .0951 .3144 .0951 .0951 .0514 .0951 .0951 .5998
(Std) (1e-04) (1e-04) (1e-04) (1e-04) (1e-04) (1e-04)

Frontier ratio
(.0,.5) Mean .9459 .9352 .4136 .8762 .862 .4343 1.083 1.114 .0383

(Std) (.14) (.1446) (.0994) (.0882) (.1023) (.0874)
(.0,1.0) Mean .9459 1.009 .0000 .8762 .8465 .1971 1.083 1.101 .3645

(Std) (.14) (.1649) (.0994) (.0883) (.1023) (.1209)
(.5,1.0) Mean .9352 1.009 .0000 .862 .8465 .3365 1.114 1.101 .0905

(Std) (.1446) (.1649) (.0882) (.0883) (.0874) (.1209)
Skill ratio
(.0,.5) Mean 1.026 .9731 .0000 1.025 .9152 .0000 1.028 1.115 .0000

(Std) (.0032) (.1105) (.0031) (.0664) (.0029) (.0549)
(.0,1.0) Mean 1.026 1.129 .0000 1.025 .9052 .0000 1.028 1.255 .0000

(Std) (.0032) (.2026) (.0031) (.1137) (.0029) (.1117)
(.5,1.0) Mean .9731 1.129 .0000 .9152 .9052 .4231 1.115 1.255 .0000

(Std) (.1105) (.2026) (.0664) (.1137) (.0549) (.1117)
Monthly output

(.0,.5) Mean 8.226 8.243 .0196 8.241 8.261 .0146 8.196 8.198 .9679
(Std) (.0552) (.065) (.052) (.0614) (.0489) (.0503)

(.0,1.0) Mean 8.226 8.24 .02 8.241 8.232 .1908 8.196 8.245 .0000
(Std) (.0552) (.0623) (.052) (.0601) (.0489) (.0632)

(.5,1.0) Mean 8.243 8.24 .8909 8.261 8.232 .0021 8.198 8.245 .0000
(Std) (.065) (.0623) (.0614) (.0601) (.0503) (.0632)

Unemployment rate

(.0,.5) Mean 8.946 9.882 4e-04 9.449 10.54 .0015 7.96 8.271 .3437
(Std) (1.86) (2.832) (2.057) (3.047) (.7105) (1.144)

(.0,1.0) Mean 8.946 9.67 .0027 9.449 10.54 .1037 7.96 9.176 .0000
(Std) (1.86) (2.548) (2.057) (3.248) (.7105) (1.891)

(.5,1.0) Mean 9.882 9.67 .5192 10.54 10.54 .5377 8.271 9.176 2e-04
(Std) (2.832) (2.548) (3.047) (3.248) (1.144) (1.891)

# active firms

(.0,.5) Mean 69.72 70.11 .0293 69.94 70.3 .0731 69.3 69.64 .2846
(Std) (1.867) (1.98) (1.887) (1.999) (1.763) (1.864)

(.0,1.0) Mean 69.72 70.36 7e-04 69.94 70.07 .7154 69.3 70.52 .0000
(Std) (1.867) (1.854) (1.887) (1.907) (1.763) (1.81)

(.5,1.0) Mean 70.11 70.36 .3102 70.3 70.07 .3106 69.64 70.52 .0051
(Std) (1.98) (1.854) (1.999) (1.907) (1.864) (1.81)
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Table II.7: Results of two-sided Wilcoxon test at different phases of diffusion and different subsets
of data.

end [5401,15000] aggr eco conv
Share conventional capital used

(.0,.5) Mean .2938 .3003 .3262 .0443 .0257 .0052 .7823 .9724 .0000
(Std) (.3716) (.4335) (.0739) (.0521) (.1898) (.0419)

(.0,1.0) Mean .2938 .6449 .0000 .0443 .0348 .2426 .7823 .991 .0000
(Std) (.3716) (.4623) (.0739) (.0562) (.1898) (.0275)

(.5,1.0) Mean .3003 .6449 .0000 .0257 .0348 .0000 .9724 .991 .0000
(Std) (.4335) (.4623) (.0521) (.0562) (.0419) (.0275)

Standard dev. share
(.0,.5) Mean .8497 .2778 .0000 .4191 .1687 .0000 1.693 .5449 .0000

(Std) (.9089) (.4583) (.6678) (.3826) (.7059) (.5188)
(.0,1.0) Mean .8497 .2077 .0000 .4191 .2926 .6941 1.693 .1595 .0000

(Std) (.9089) (.331) (.6678) (.4171) (.7059) (.26)
(.5,1.0) Mean .2778 .2077 .022 .1687 .2926 2e-04 .5449 .1595 .0000

(Std) (.4583) (.331) (.3826) (.4171) (.5188) (.26)
Eco-price-wage-ratio

(.0,.5) Mean .0951 .0951 .4721 .0951 .0951 .9549 .0951 .0951 .1676
(Std) (.0000) (.0000) (.0000) (.0000) (.0000) (.0000)

(.0,1.0) Mean .0951 .0951 .0195 .0951 .0951 .877 .0951 .0951 .0137
(Std) (.0000) (.0000) (.0000) (.0000) (.0000) (.0000)

(.5,1.0) Mean .0951 .0951 .1437 .0951 .0951 .7912 .0951 .0951 .4145
(Std) (.0000) (.0000) (.0000) (.0000) (.0000) (.0000)

Frontier ratio
(.0,.5) Mean .9255 .9086 .4881 .7655 .7657 .9701 1.239 1.258 .385

(Std) (.2655) (.2641) (.1125) (.121) (.1874) (.1787)
(.0,1.0) Mean .9255 1.085 .0000 .7655 .7543 .3892 1.239 1.273 .2639

(Std) (.2655) (.3115) (.1125) (.1097) (.1874) (.2184)
(.5,1.0) Mean .9086 1.085 .0000 .7657 .7543 .5274 1.258 1.273 .8419

(Std) (.2641) (.3115) (.121) (.1097) (.1787) (.2184)
Skill ratio
(.0,.5) Mean 1.013 .9236 .0000 1.012 .7592 .0000 1.014 1.326 .0000

(Std) (.003) (.2653) (.0027) (.0532) (.0032) (.0823)
(.0,1.0) Mean 1.013 1.372 .0000 1.012 .6081 .0000 1.014 1.805 .0000

(Std) (.003) (.6195) (.0027) (.1024) (.0032) (.2737)
(.5,1.0) Mean .9236 1.372 .0000 .7592 .6081 .0000 1.326 1.805 .0000

(Std) (.2653) (.6195) (.0532) (.1024) (.0823) (.2737)
Monthly output

(.0,.5) Mean 8.659 8.694 .0048 8.688 8.715 .0311 8.603 8.643 .0611
(Std) (.1206) (.1411) (.1124) (.1407) (.117) (.1292)

(.0,1.0) Mean 8.659 8.687 .0222 8.688 8.708 .1208 8.603 8.675 2e-04
(Std) (.1206) (.135) (.1124) (.1437) (.117) (.129)

(.5,1.0) Mean 8.694 8.687 .5353 8.715 8.708 .7244 8.643 8.675 .1585
(Std) (.1411) (.135) (.1407) (.1437) (.1292) (.129)

Unemployment rate

(.0,.5) Mean 11.67 12.73 .2098 12.01 13.31 .3712 11 11.31 .4732
(Std) (4.429) (6.848) (4.566) (7.61) (4.097) (4.196)

(.0,1.0) Mean 11.67 13.11 .0612 12.01 14.42 .1133 11 12.37 .0321
(Std) (4.429) (7.577) (4.566) (9.65) (4.097) (6.016)

(.5,1.0) Mean 12.73 13.11 .6234 13.31 14.42 .4323 11.31 12.37 .245
(Std) (6.848) (7.577) (7.61) (9.65) (4.196) (6.016)

# active firms

(.0,.5) Mean 73.36 73.36 .4921 73.69 73.34 .7119 72.7 73.4 .1143
(Std) (2.463) (3.263) (2.454) (3.439) (2.361) (2.811)

(.0,1.0) Mean 73.36 73.26 .4376 73.69 72.77 .2212 72.7 73.54 .0073
(Std) (2.463) (3.614) (2.454) (4.072) (2.361) (3.309)

(.5,1.0) Mean 73.36 73.26 .9687 73.34 72.77 .3417 73.4 73.54 .3891
(Std) (3.263) (3.614) (3.439) (4.072) (2.811) (3.309)
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II.2. Technological difficulty

The following figures summarize the observations made in the experiment with discretely
varying levels of the technological distance χint ∈ {0, .5, 2}. The tables indicate whether
the differences between different parameter pairs are significant. The interpretation of
the finding follows analogous arguments as in the main article.

In figure II.3, an overview of technological and macroeconomic time series is shown.
The time series are disaggregated by parameter value and by technological regime. Figure
II.4 illustrates diffusion curves and the diffusion volatility of single simulation runs within
a parameter subset. The tables II.8 – II.10 show the results of a series of pair-wise
Wilcoxon tests on equality of means in the time series of firm-level data of different
parameter combinations.

Table II.8: Results of two-sided Wilcoxon test on different parameter pairings in the early phase
of diffusion and different subsets of data.

initial [601,3000] aggr eco conv
Share conventional capital

(.0,.5) Mean .5147 .5211 .0000 .5001 .5295 .0000 .5456 .5005 .0000
(Std) (.1863) (.18) (.181) (.1833) (.1935) (.1701)

(.0,2) Mean .5147 .5199 .0235 .5001 .5286 .0000 .5456 .5 .0000
(Std) (.1863) (.1876) (.181) (.1908) (.1935) (.1787)

(.5,2) Mean .5211 .5199 .0118 .5295 .5286 .0894 .5005 .5 .0909
(Std) (.18) (.1876) (.1833) (.1908) (.1701) (.1787)

Standard dev. share
(.0,.5) Mean 9.829 9.939 8e-04 9.938 9.85 .0318 9.596 10.16 .0000

(Std) (2.669) (2.669) (2.596) (2.75) (2.805) (2.445)
(.0,2) Mean 9.829 9.811 .3807 9.938 9.739 8e-04 9.596 9.973 .0000

(Std) (2.669) (2.793) (2.596) (2.849) (2.805) (2.655)
(.5,2) Mean 9.939 9.811 .014 9.85 9.739 .1914 10.16 9.973 .0055

(Std) (2.669) (2.793) (2.75) (2.849) (2.445) (2.655)
# employees

(.0,.5) Mean 20.66 20.65 .8137 20.65 20.63 .7667 20.7 20.7 .9389
(Std) (5.033) (5.059) (5.037) (5.048) (5.027) (5.088)

(.0,2) Mean 20.66 20.69 .6873 20.65 20.66 .8372 20.7 20.74 .655
(Std) (5.033) (5.058) (5.037) (5.052) (5.027) (5.072)

(.5,2) Mean 20.65 20.69 .5308 20.63 20.66 .6259 20.7 20.74 .7187
(Std) (5.059) (5.058) (5.048) (5.052) (5.088) (5.072)

Unit costs
(.0,.5) Mean 1.075 1.072 2e-04 1.076 1.07 .0000 1.071 1.075 .0037

(Std) (.0679) (.0676) (.0679) (.0673) (.0677) (.0682)
(.0,2) Mean 1.075 1.072 .0077 1.076 1.071 .0000 1.071 1.074 .007

(Std) (.0679) (.0656) (.0679) (.065) (.0677) (.0669)
(.5,2) Mean 1.072 1.072 .2685 1.07 1.071 .1624 1.075 1.074 .8091

(Std) (.0676) (.0656) (.0673) (.065) (.0682) (.0669)
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Table II.9: Results of two-sided Wilcoxon test on different parameter pairings in the intermediate
phase of diffusion and different subsets of data.

medium [3001,5400] aggr eco conv
Share conventional capital

(.0,.5) Mean .2251 .217 .0000 .169 .2176 .0000 .346 .2157 .0000
(Std) (.3289) (.3102) (.2948) (.3128) (.3642) (.3037)

(.0,2) Mean .2251 .2189 .0297 .169 .2278 .0000 .346 .1985 .0000
(Std) (.3289) (.3242) (.2948) (.3264) (.3642) (.3182)

(.5,2) Mean .217 .2189 .0234 .2176 .2278 .5209 .2157 .1985 .0015
(Std) (.3102) (.3242) (.3128) (.3264) (.3037) (.3182)

Standard dev. share
(.0,.5) Mean 4.241 4.643 .0000 3.674 4.572 .0000 5.463 4.818 .0000

(Std) (4.279) (4.403) (3.976) (4.374) (4.641) (4.47)
(.0,2) Mean 4.241 4.228 .0632 3.674 4.358 .0000 5.463 3.929 .0000

(Std) (4.279) (4.217) (3.976) (4.281) (4.641) (4.05)
(.5,2) Mean 4.643 4.228 .0000 4.572 4.358 .0000 4.818 3.929 .0000

(Std) (4.403) (4.217) (4.374) (4.281) (4.47) (4.05)
# employees

(.0,.5) Mean 20.5 20.57 .0978 20.49 20.59 .0915 20.53 20.54 .6546
(Std) (4.836) (5.012) (4.847) (4.975) (4.81) (5.104)

(.0,2) Mean 20.5 20.52 .6792 20.49 20.55 .3523 20.53 20.45 .5061
(Std) (4.836) (4.949) (4.847) (4.97) (4.81) (4.9)

(.5,2) Mean 20.57 20.52 .2218 20.59 20.55 .4692 20.54 20.45 .2751
(Std) (5.012) (4.949) (4.975) (4.97) (5.104) (4.9)

Unit costs
(.0,.5) Mean 1.396 1.407 .0000 1.395 1.406 .0000 1.399 1.409 .0000

(Std) (.0927) (.0915) (.0937) (.0909) (.0907) (.0928)
(.0,2) Mean 1.396 1.398 .0135 1.395 1.397 .0085 1.399 1.401 .5262

(Std) (.0927) (.0933) (.0937) (.0929) (.0907) (.0941)
(.5,2) Mean 1.407 1.398 .0000 1.406 1.397 .0000 1.409 1.401 1e-04

(Std) (.0915) (.0933) (.0909) (.0929) (.0928) (.0941)
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Figure II.3: Overview of macroeconomic and technological indicators
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These figures give an overview of the time series of macroeconomic and technological indicators. The
different line shapes indicate different regime types (�: eco, ∗: conv). Darker color indicates a higher
level of χint ∈ {0.0, 0.5, 2.0}.
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Figure II.4: Green technology diffusion
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These figures illustrate show diffusion curves νct of all single simulation runs within the subsets with
χint = {.0, .5, 2}.
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Table II.10: Results of two-sided Wilcoxon test on different parameter pairings in the last phase
of diffusion and different subsets of data.

end [5401,15000] aggr eco conv
Share conventional capital

(.0,.5) Mean .3172 .2905 .5888 .188 .2816 .0000 .5787 .3116 .0000
(Std) (.4568) (.4407) (.383) (.4346) (.4818) (.4542)

(.0,2) Mean .3172 .301 .4454 .188 .2932 .0000 .5787 .3182 .0000
(Std) (.4568) (.449) (.383) (.4439) (.4818) (.4595)

(.5,2) Mean .2905 .301 .2367 .2816 .2932 .1796 .3116 .3182 .8809
(Std) (.4407) (.449) (.4346) (.4439) (.4542) (.4595)

Standard dev. share
(.0,.5) Mean .3772 .5487 .0000 .2994 .6059 .0000 .5349 .412 .0000

(Std) (.9072) (1.132) (.8329) (1.21) (1.024) (.9043)
(.0,2) Mean .3772 .4347 .0046 .2994 .4599 .0000 .5349 .3792 .0000

(Std) (.9072) (.9935) (.8329) (1.064) (1.024) (.8135)
(.5,2) Mean .5487 .4347 .0000 .6059 .4599 .0000 .412 .3792 .7718

(Std) (1.132) (.9935) (1.21) (1.064) (.9043) (.8135)
# employees

(.0,.5) Mean 18.96 19.03 .045 18.88 19.05 .0026 19.11 19 .4275
(Std) (4.552) (4.56) (4.534) (4.539) (4.584) (4.61)

(.0,2) Mean 18.96 18.97 .747 18.88 18.96 .2248 19.11 18.99 .2586
(Std) (4.552) (4.572) (4.534) (4.56) (4.584) (4.596)

(.5,2) Mean 19.03 18.97 .0997 19.05 18.96 .0773 19 18.99 .7715
(Std) (4.56) (4.572) (4.539) (4.56) (4.61) (4.596)

Unit costs
(.0,.5) Mean 1.868 1.9 .0000 1.859 1.91 .0000 1.887 1.878 .0066

(Std) (.2307) (.2377) (.2305) (.2387) (.2301) (.2336)
(.0,2) Mean 1.868 1.879 .0000 1.859 1.879 .0000 1.887 1.879 .1423

(Std) (.2307) (.2318) (.2305) (.2263) (.2301) (.2437)
(.5,2) Mean 1.9 1.879 .0000 1.91 1.879 .0000 1.878 1.879 .3214

(Std) (.2377) (.2318) (.2387) (.2263) (.2336) (.2437)
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III. Monte Carlo experiments

III.1. Randomly drawn learning parameters given fix barriers barriers
to diffusion

This section provides additional information about the simulation experiment with
randomly drawn levels of the technological distance χdist ∈ [0, 1] and technical difficulty
χint ∈ [0, 2] given fix levels of diffusion barriers βA = βb = .03.

Here, I provide some additional explanation of the role of explanatory variables that
are used in the regression analysis presented in section 4.3.1 in table 2. The association
of the shape of the learning function with the probability of a technological regime shift,
the duration until the diffusion process becomes stable and critical levels of relative
knowledge stocks are discussed in the main article. Here, a short descriptive and
explanatory summary of the role of micro- and macroeconomic circumstances is given.
The level of the technological frontier AVc indicates the stock of codified knowledge of
the conventional type that is available in the economy at the day of market entry. A
higher level of AVc is negatively associated with the probability of a green transition
and positively with the duration until the diffusion process stabilizes. A higher price
for the natural resource is positively associated with the probability of a technological
regime shift and the lower relative stocks of conventional technological knowledge. The
level of tacit knowledge available at the firm Bc

i is a proxy to measure productivity at
the firm-level, i.e. it is heterogeneous across firms. It is weakly positively associated
with the probability of a technological regime shift. However, it increases technological
uncertainty, i.e. it has a positive association with the diffusion volatility (σνi )2.

In table III.11, the coefficients of a regression of technological indicators at the macroe-
conomic level on the degree of of state dependence χint and χdist and a set of control
variables are shown. The aggregation at the macroeconomic level hides heterogeneity
across firms in both, the dependent and explanatory variables. Further, the number of
observations is smaller. This explains why the BIC based model selection procedure leads
to the exclusion of many explanatory variables. The interpretation of the dependent
variables is analogue to the firm-level analyses. At the macroeconomic level, only the
distance and initial endowments with technological knowledge are significantly associated
with the transition probability. The coefficients of the frontier AVc and tacit knowledge
Bc should be treated with care because the knowledge stocks at the macroeconomic level
are strongly correlated. For the stabilization time, the technical performance threshold
and the diffusion volatility, only the type dummy I(eco) remains as explanatory variable
after the stepwise BIC based selection procedure. However, the R2 is low. The distance
can explains part of the variation in the skill-related performance threshold.
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Table III.11: Macroeconomic regression results of experiment with random learning parameters
and fix barriers

νcT νcT t∗
(
AV+/A

V
−
)∗ (

B+/B−)∗
(σν)2

OLS Probit IV IV IV IV
(Intercept) .3641*** -.4017*** 2886*** 1.102*** 1.098*** 1.449*

(.03) (.094) (239.4) (.0227) (.0105) (.6343)
χdist .3739*** 1.079*** .0678***

(.0784) (.2476) (.0168)
χint .0031

(.0031)
I(eco) -1701*** -.1501*** -.1552*** 7.903***

(396.2) (.0372) (.0168) (1.048)
I(eco) · χdist -.0929**

(.0298)
AVc .2207*** .6421***

(.0456) (.1463)
Bc -.2998*** -.8616**

(.0858) (.2663)
R2 .1499 .2077 .0000 .0942 .2801 .1684

Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

The first two columns show the diffusion measure νc evaluated at the end of simulation. The third
columns illustrates the relationship between the duration t∗ until the diffusion process stabilizes and
initial conditions. t∗ is defined point in time when the last change in the sign of the slope of the diffusion
curve was observed. Column (3) and (4) measure the relative performance of the dominating technology
in t∗ interpreted as performance thresholds. (σν)2 is the variance computed over the full time horizon
and describes the diffusion volatility. Further info is provided in the technical note section A.
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Figure III.5: Overview of macroeconomic and technological indicators
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These figures give an overview of the time series of macroeconomic and technological indicators. The
different line shapes indicate different regime types (�: eco, ∗: conv).
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Table III.12: Wilcoxon test on equality of means for different phases of diffusion.

t eco conv eco,conv eco conv eco,conv
Macro-level data

Share conventional capital used Variance share

[601,3000] .4806 (.1287) .7229 (.148) .0000 55.25 (20.38) 21.27 (18.02) .0000
[3001,5400] .088 (.1194) .6924 (.2377) .0000 4.014 (5.839) 8.599 (6.765) .0000
[5401,15000] .0226 (.0339) .971 (.0705) .0000 .3611 (1.196) 2.239 (3.544) 1e-04
[1,15000] .1454 (.0495) .8879 (.0944) .0000 10.12 (2.565) 6.472 (5.374) .0000

Eco-price-wage-ratio Frontier ratio

[601,3000] .0951 (1e-04) .0952 (1e-04) .0000 .9558 (.046) 1.074 (.0549) .0000
[3001,5400] .0951 (1e-04) .0951 (1e-04) .6508 .8659 (.083) 1.117 (.1045) .0000
[5401,15000] .0951 (1e-04) .0951 (1e-04) .2223 .7729 (.1138) 1.308 (.2116) .0000
[1,15000] .0951 (.0000) .0951 (.0000) .6888 .8836 (.087) 1.285 (.1527) .0000

Skill ratio Monthly output

[601,3000] 1.033 (.0191) 1.076 (.0324) .0000 8.104 (.0145) 8.103 (.0168) .6853
[3001,5400] .9465 (.0601) 1.164 (.1073) .0000 8.248 (.0546) 8.224 (.0627) .0011
[5401,15000] .8102 (.1211) 1.472 (.304) .0000 8.702 (.1236) 8.676 (.1257) .2074
[1,15000] .8769 (.0844) 1.342 (.2141) .0000 8.508 (.0847) 8.488 (.0893) .1161

Unemployment rate # active firms

[601,3000] 7.796 (.4701) 8.028 (.5456) .0012 71.43 (1.205) 71.53 (1.052) .8329
[3001,5400] 9.915 (2.415) 8.751 (1.686) .0000 70.14 (2.056) 70.04 (2.01) .5663
[5401,15000] 12.76 (6.792) 13.62 (7.664) .4845 73.39 (3.133) 73.31 (3.141) .6628
[1,15000] 11.3 (4.615) 11.7 (5.117) .9113 72.58 (2.199) 72.53 (2.217) .6914

Firm-level data
Unit costs # employees

[601,3000] 1.067 (.1215) 1.039 (.1152) .0000 20.08 (6.806) 20.01 (6.833) .5505
[3001,5400] 1.409 (.1071) 1.385 (.1162) .0000 20.27 (6.2) 20.51 (6.585) .0055
[5401,15000] 1.879 (.243) 1.907 (.2379) .0000 18.65 (5.621) 18.46 (5.585) .0907
[1,15000] 1.597 (.257) 1.609 (.2552) .0023 18.61 (5.798) 18.53 (5.794) .344
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III.2. Randomly drawn learning parameters and barriers

Table III.13: Macroeconomic regression analyses with randomly drawn learning parameters and
random barriers to diffusion

νcT νcT t∗
(
AV+/A

V
−
)∗ (

B+/B−)∗
(σν)2

OLS Probit IV IV IV IV
(Intercept) .6702*** .7696*** 3407*** 1.101*** 1.124*** .5044**

(.0267) (.1388) (165) (.0135) (.0080) (.1955)
χdist .0958*** .5612*** -318.7** .0035 .0042

(.0268) (.1397) (113.2) (.0063) (.0103)
χint .0027

(.0066)
χdist · χint .0197**

(.0063)
βA .1611*** .6022*** .0530***

(.0268) (.1139) (.0159)
βb .1900*** .8461*** -315.1. .0625***

(.0267) (.1422) (168.0) (.0150)
χdist · βb .3425* .0090

(.1330) (.0076)
I(eco) -2945*** -.1974*** -.1981*** 9.302***

(345.6) (.0363) (.0293) (.6622)
I(eco) · βA -.1220***

(.0360)
I(eco) · βb -.1159***

(.0293)
Bc .0232

(.0157)
R2 .3065 .4672 .1327 .2470 .4955 .3380

Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

The first two columns show the diffusion measure νc evaluated at the end of simulation. The third
columns illustrates the relationship between the duration until the diffusion process stabilizes and initial
conditions. t∗ is defined point in time when the last change in the sign of the slope of the diffusion curve
was observed. The remaining columns show technological indicator variables evaluated at this point in
time. Further info is provided in the technical note section A.
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Figure III.6: Overview of macroeconomic and technological indicators
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These figures give an overview of the time series of macroeconomic and technological indicators in the
experiment with randomly drawn barriers and learning parameters. The different line shapes indicate
different regime types (�: eco, ∗: conv).
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Table III.14: Wilcoxon test on equality of means for different snapshots in time.

t eco conv eco,conv eco conv eco,conv
Macro-level data

Share conventional capital used Variance share

[601,3000] .5644 (.1833) .896 (.1352) .0000 43.58 (25.75) 6.647 (13.84) .0000
[3001,5400] .1784 (.2207) .8721 (.1944) .0000 6.511 (7.308) 3.918 (6.892) .0000
[5401,15000] .0563 (.1295) .9844 (.059) .0000 1.548 (4.063) .9348 (2.656) 8e-04
[1,15000] .1949 (.1267) .9529 (.0801) .0000 9.381 (3.396) 2.384 (4.31) .0000

Eco-price-wage-ratio Frontier ratio

[601,3000] .0951 (1e-04) .0952 (.0000) .0089 .9979 (.0994) 1.248 (.3503) .0000
[3001,5400] .0951 (1e-04) .0951 (1e-04) .0198 .8525 (.0934) 1.262 (.4185) .0000
[5401,15000] .0951 (1e-04) .0951 (.0000) .0105 .7024 (.1206) 1.501 (.4829) .0000
[1,15000] .0951 (.0000) .0951 (.0000) 7e-04 .8431 (.0925) 1.46 (.4077) .0000

Skill ratio Monthly output

[601,3000] 1.04 (.0327) 1.118 (.0568) .0000 8.105 (.0156) 8.109 (.0155) .0475
[3001,5400] .9566 (.0752) 1.207 (.1259) .0000 8.248 (.0524) 8.238 (.0573) .1979
[5401,15000] .817 (.1339) 1.453 (.3109) .0000 8.703 (.1374) 8.649 (.1267) .0027
[1,15000] .8841 (.0978) 1.345 (.2238) .0000 8.509 (.0925) 8.474 (.0892) .0042

Unemployment rate # active firms

[601,3000] 7.833 (.4145) 8.2 (.5608) .0000 71.08 (1.11) 71.5 (1.172) .0163
[3001,5400] 9.526 (1.944) 8.656 (1.415) .001 69.99 (1.738) 70.63 (1.978) .0431
[5401,15000] 13.5 (7.506) 11.45 (4.828) .0152 72.87 (3.36) 73.78 (2.92) .1165
[1,15000] 11.71 (4.954) 10.32 (3.264) .0068 72.18 (2.256) 72.92 (2.124) .0531

Firm-level data
Variance share # employees

[601,3000] 134.5 (83.81) 36.42 (63.04) .0000 20.12 (6.796) 19.97 (6.832) .2411
[3001,5400] 63.37 (89.33) 39.38 (68.29) .0000 20.44 (6.193) 20.35 (6.56) .7528
[5401,15000] 19.6 (70.98) 5.535 (18.52) .0000 18.58 (5.723) 18.82 (5.584) 5e-04
[1,15000] 49.17 (74.48) 16.15 (32.74) .0000 18.6 (5.842) 18.73 (5.82) 0.164

Unit costs Share conv. capital on firm-level

[601,3000] 1.052 (.1297) 1.027 (.1158) .0000 .5701 (.2423) .9027 (.1653) .0000
[3001,5400] 1.399 (.1061) 1.359 (.1144) .0000 .1621 (.2581) .88 (.2172) .0000
[5401,15000] 1.87 (.2544) 1.925 (.2415) .0000 .0387 (.127) .9866 (.0599) .0000
[1,15000] 1.587 (.2657) 1.612 (.2628) .0000 .2018 (.2057) .9595 (.0837) .0000
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III.3. Policy experiment

Table III.15: Regression results of policy experiment

νci νci t∗i
(
A+
i /A

−
i

)∗ (
B+
i /B

−
i

)∗ (σνi )
2

OLS Probit IV IV IV IV
(Intercept) .3381*** -.4684*** 3794*** 1.099*** 1.097*** 6.548***

(.0043) (.0144) (70.63) (.0031) (.0029) (.1399)

χdist -.013** -.0898*** -471*** .0141*** .0213*** -.9603***
(.0044) (.0151) (65.99) (.0041) (.0031) (.1172)

χint .0081. -.0161 -117.2*** .0085*** .0078*** -.024
(.0043) (.0145) (31.42) (.0017) (.0012) (.0535)

χdist · χint -.0291*** -.0701***
(.0045) (.0158)

θ -.03*** -.1119*** 788.9*** -.0297*** -.0296*** 2.267***
(.0043) (.0145) (70.37) (.0037) (.0029) (.1218)

ςc -.0401*** -.173*** -318.1*** .0085*** -.0065* -.1806***
(.0044) (.0151) (77.99) (.0018) (.0032) (.0536)

ςi -.0205*** -.0763*** -310.8*** -.0369*** -.0286*** 1.506***
(.0045) (.0149) (58.73) (.0037) (.003) (.109)

βA .1139*** .465*** 8.747 .0395*** .0069*** -.3212***
(.0046) (.0196) (27.75) (.0049) (.0016) (.0482)

βb .0946*** .2974*** -501*** .0478*** .0519*** -2.894***
(.0044) (.0149) (65.63) (.004) (.0035) (.1436)

χdist · θ -.0504*** -.1177*** -119.3*** -.011*** -.0063*** .4541***
(.0044) (.0149) (28.46) (.0019) (.0014) (.0609)

χint · θ .046*** .1706*** -143.2***
(.004) (.0137) (28.06)

χdist · ςc .0289*** .0972*** -.0070*** .4550***
(.0044) (.0156) (.0016) (.0601)

χint · ςc .0163*** .0466***
(.0042) (.0139)

χdist · ςi .0522** 140*** -.0099*** -.0073*** .4853***
(.016) (25.38) (.0018) (.0013) (.0561)

χint · ςi .0049*** -.7356***
(.0015) (.0552)

χdist · βA -.0378*** -.1738*** 195.1*** .5285***
(.0044) (.0199) (23.1) (.0442)

χdist · βb .0447*** .1624*** 301.8*** .0092*** .2984***
(.0046) (.0163) (37.7) (.0015) (.0711)

χint · βA -.0171*** -.1635***
(.0044) (.0199)

χint · βb .0301*** .0975*** -.2552***
(.0044) (.0149) (.0485)

I(eco) -2718*** -.1695*** -.1753*** 2.874***
(144.4) (.0071) (.0061) (.3324)

I(eco) · χdist 1144*** -.0222* -.0213*** 2.658***
(146.8) (.0089) (.0064) (.2647)

I(eco) · θ -1070*** .054*** .0532*** -3.919***
(135.8) (.0076) (.0059) (.2298)

I(eco) · ςc 671.4*** .0239***
(149.1) (.0066)

I(eco) · ςi 843.7*** .0952*** .0772*** -2.392***
(140.9) (.009) (.0075) (.2719)

I(eco) · βA -.0413***
(.006)

I(eco) · βb 786.3*** -.0908*** -.1064*** 4.706***
(137.2) (.0084) (.0074) (.31)

AVc -.017*** 102.9*** .0066*** .0072*** -.2764***
(.0044) (26.88) (.0018) (.0012) (.0548)

Bci -.2179***
(.0569)

#employeesi -.143*** -.4386*** .3848***
(.0257) (.0873) (.0562)

outputi .1674*** .5116***
(.0259) (.0886)

pricei .0254*** .0634***
(.0057) (.0191)

#firms .0272*** .0988*** -120*** -.0035***
(.0043) (.0142) (25) (8e-04)

R2 .1868 .266 .2071 .2483 .2699 .315

Significance codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ .05 ‘.’ .1 ‘ ’ 1.

In this table, the coefficients of the full regression models on firm-level data are shown. Additional detail
on the specification of the regression equations is provided in the main article and appendix.
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