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Abstract 
In this paper, we present first evidence 
for a potential application of novel 
speech technological methods as a valu-
able tool for basic phonetics research. 
We describe a research program aiming 
at identifying the complex phonetic real-
izations underlying various dimensions 
of phonetic variation. This will be ad-
dressed with the help of recent ap-
proaches in unsupervised voice conver-
sion and waveform generation. Con-
cretely, we present a model for disentan-
gling speakers’ voice qualities and their 
linguistic-phonetic content, which can 
then be used to perform voice conver-
sion across different dimensions of pho-
netic variation. The resulting signals are 
then “audible versions” of the phonetic 
dimensions of interest, and lend them-
selves to straightforward phonetic inter-
pretation. 

Introduction 
Phonetics data are naturally “messy”, as 
they are influenced by a myriad of di-
mensions, and typically more than those 
dimensions the researcher is primarily 
interested in (Pierrehumbert, 2004). 
Consequently, a researcher working on, 
e.g., dialectal variation will typically be 
unable to fully control for influential 
factors like gender, socioeconomic sta-
tus, mood, or the size and shape of the 
vocal tract in her or his data. Beyond 
para-, socio- and extralinguistic varia-
tion, speech is naturally influenced by 
linguistic content, and slight changes 

may have tremendous influences on our 
phonetic variables of interest.  

Hence, our data is often normalized, 
and many of our analyses are built on 
highly controlled settings, within ho-
mogenous groups of participants. This is 
of course highly problematic if the focus 
of investigation lies on spontaneous 
speech data, or if the phenomenon of in-
terest is restricted to less controlled set-
tings such as phonetic alignment, non-
verbal vocalizations, turn taking phe-
nomena or certain styles of speech that 
exclusively occur in less controlled en-
vironments (Wagner et al., 2015). In 
those cases, the target conflict between 
the need for control and the need for a 
lack of control cannot be solved straight-
forwardly. Hence, in state-of-the-art 
phonetics research, we need to devise 
novel, suitable methods for dealing with 
speech “in the wild”. 

Another issue of phonetic data is 
that a change in a single dimension on a 
symbolic level usually corresponds to a 
multi-dimensional adaptation in acous-
tic, perceptual or articulatory space. To 
name a classic example, the abstract fea-
ture voiced may correspond to shorter or 
negative VOTs, actual presence of vocal 
cord vibrations, lower burst intensities, 
longer durations of a vowel preceding a 
voiced consonant etc. (e.g., Keating, 
1984). Likewise, the impression of 
length – which is a phonologically rele-
vant feature in many languages – may 
rely on acoustic aspects other than ob-



jective duration (Rosen, 1977; Cum-
ming, 2011). Thus, typical phonetic in-
vestigations need to have a preconcep-
tion about the phonetic parameters that 
need to be taken into account. In many 
domains such as the phonetic expression 
of emotion, voice pathologies, discourse 
phonetics or sociophonetics, we do have 
such clear-cut expectations, and chasing 
them may resemble the search for the 
metaphorical “needle in the haystack”. 

Following a similar proposition in 
(Malisz et al., 2019), we therefore sug-
gest to make use of novel speech techno-
logical developments to assist solving 
(some of) the problems mentioned 
above. More specifically, we suggest the 
usage of recent methods in speech con-
version and speech synthesis to support 
basic research in phonetics. 

In the following, we give a first 
sketch of our envisaged methodological 
approach, and then discuss its potential 
usage as an exploratory and explanatory 
research tool within the general research 
programme of explainable artificial in-
telligence. 

Methods 
General idea 
Our goal is to develop a neural genera-
tive model which purposely modifies 
one (out of many) specific dimension of 
phonetic variation, while leaving the re-
maining content of a speech signal unal-
tered. Ultimately, the methodology will 
thus enable us to manipulate the particu-
lar dimension we are interested in, e.g., 
dialect, speaker identity, gender, age, 
emotion, speaking style or phonetic or 
linguistic content, but keeping all those 
dimensions stable that may otherwise 
confound our analyses, e.g. verbal con-
tent. This voice conversion enables us to 
carry out a range of phonetic follow-up 
analyses: First, we are able to generate 
rich sounds we can use in perceptual 
studies. Typically, such stimuli are now 
created varying only very few acoustic-
phonetic variables (e.g. pitch, formant 

patterns), and are often generated rely-
ing on more traditional speech synthesis 
algorithms that may introduce artefacts 
which may all by themselves influence 
the result of the study (Malisz et al., 
2019). 

Second, the generated signals lend 
themselves to in-depth acoustic-pho-
netic analyses, and help us to better un-
derstand and narrow down the extremely 
complex space of acoustic-phonetic pa-
rameters corresponding to the dimension 
of interest. 

That way, our approach enables ex-
ploratory research, as the generated sig-
nals will help us narrow down the space 
of acoustic-phonetic parameters in-
volved in the expression of phonetic var-
iation (hypothesis generation). Lastly, 
they will also help us to explain phonetic 
variation by designing controlled fol-
low-up experiments, extending or falsi-
fying our existing theories and models. 

Modeling Disentangled Dimensions 
of Speech Variation 
In a first step towards this long-term goal 
(Gburrek et al., submitted), we devel-
oped an approach able to disentangle the 
dimensions of speaker identity and lin-
guistic content in an utterance, thus be-
ing able to generate utterances contain-
ing the exact segmental structure (in-
cluding fine phonetic detail) of one 
speaker with the voice characteristics of 
a second speaker. This approach goes 
beyond traditional approaches of voice 
conversion, as it does not need rely on 
recordings of identical linguistic content 
by several speakers.  

This can be achieved by factorizing 
the speech representation into those 
traits to be converted and the remaining 
ones (e.g., Hsu et al., 2017). We follow 
a similar approach: a disentangled repre-
sentation of the input speech signal is de-
veloped, where speaker characteristics 
are captured in one set of latent parame-
ters, and content related variations in an-
other. The starting point of our research 
is the factorized hierarchical variational 



autoencoder (FHVAE, Hsu et al., 2017). 
In this approach, sources of variation are 
disentangled in a nonlinear low-dimen-
sional latent space rather than in the ob-
served data. A key assumption is that 
content induced properties of the speech 
signal, e.g. both the segmental and lin-
guistically relevant suprasegmental 
structure, vary at a much faster rate than 
speaker-specific, para- and extra-lin-
guistic factors. Rather, the latter are ex-
pected to remain relatively stable over 
time. This assumption is represented by 
a corresponding probabilistic graphical 
model in latent space, where a series of 
so-called segment variables capture 
short-term variations, supposedly 
caused by the linguistic content, and a 
series of utterance variables, which cap-
ture variations at a larger time-scale, 
supposedly caused by the speaker or en-
vironment characteristics present in the 
speech signal (Hsu et al., 2017).  

The approach by Hsu and col-
leagues was extended by applying a con-
volutional neural network (CNN) based 
VAE encoder/decoder architecture, 
which allows to model short-term varia-
tions at a more fine-grained level of de-
tail. The decoder reconstructs the seg-
ment variables with the utterance varia-
bles, combining the desired combination 
of speaker specific signal traits and lin-
guistic content. The output of the 
FHVAE decoder are log-mel spectra, 
which are then synthesized using the 
WaveNet approach (Van den Oord et al., 
2016). This has been shown to produce 
speech of extremely high quality, and of-
ten indistinguishable from human 
speech (Malisz et al., 2019). The Wave-
Net is trained independently of the target 
speaker. The technical details of the ap-
proach are described in Gburrek et al. 
(submitted). 

A first voice conversion system is 
trained on TIMIT (Garofolo et al., 1993) 
and LibriSpeech (Panayotov et al., 2015) 
databases, and voice conversion is tested 

on new speakers, not seen during train-
ing. 
 

 
Figure 1: An example spectrogram of a ref-
erence utterance (top) and a target voice (bot-
tom) producing the same linguistic content 
(“rescue hostages”). The spectral character-
istics show a high degree of similarity in fine 
phonetic detail. 

Results 
We tested the applicability of the general 
approach for phonetic investigations 
with a detailed phonetic analysis. Spe-
cifically, we assessed the success in sep-
arating voice characteristics and linguis-
tic content, or rather, segmental and su-
prasegmental linguistic content based on 
a comparison of three reference voices, 
each producing a different utterance, and 
two different target voices (1m, 1f). 

A fine-grained narrow transcription 
of references and target voices was car-
ried out, both based on an auditory im-
pression and the acoustic signal. This 
analysis yielded a high degree of corre-
spondence on the segmental level be-
tween reference and target voices. The 
target voices successfully mimicked the 
fine phonetic detail such as durational 
structure, formant trajectories, sound eli-
sions and assimilations, and the fine-
grained structure of plosives, including 
burst characteristics (cf. Fig. 1). Only in 
few cases, voice characteristics were not 
successfully reproduced, and in one in-
stance, a sibilant [ʃ] sounded more [ç]-



like, possibly as a result of the target 
voice characteristics. 

We believe that the treatment of 
pitch contours may be a crucial test case 
for our approach: Pitch contours both 
convey linguistic content by local, dy-
namically changing trajectories, but also 
carry plenty of information about 
speaker characteristics, such as global 
pitch level and range. Ideally, our ap-
proach should model the local trajectory 
changes of the reference signal, while 
simultaneously mimicking the global 
pitch characteristics of the target voice.  

We compared the time normalized 
pitch contours of reference voices and 
voice targets with the conversion results. 
A comparison between pitch contours of 
reference voices, target voices and con-
verged voices indeed shows that the 
pitch levels of the target voices are re-
produced very successfully, while the 
local pitch trajectories more of less fol-
low the dynamics of the reference con-
tour. However, this comparison also 
shows occasional deviations between 
the converged and the reference contour 
(cf. Fig. 2). We therefore contend that in 
most cases, the conversion preserved the 
pitch contour with communicative rele-
vance fairly successfully, but not per-
fectly, and was better at mimicking the 
global characteristics of the target voice. 

An auditory impression yielded a 
very good imitation of the intended tar-
get voices, although the quality is still 
subject to some degradation introduced 
as part of the signal processing involved 
in the conversion procedure. In order to 
verify these impressionistic results in a 
more objective fashion, we calculated 
long term average spectra (LTAS) for 
the voiced parts of the reference signals, 
the target voices, and the converged 
voices. Here, the ideal case would be if 
the converged voice closely resembles 
the LTAS shape of the target voice. The 
results are encouraging (cf. Fig. 3), but 
occasionally inconclusive.  

 
Figure 2: Comparison of a reference voice 
(black), the pitch contour of the target voice 
(red), and the pitch contour of the converged 
utterance. The green line has the global level 
and pitch range of the target voice, but 
mostly follows the pitch shape of the refer-
ence voice. 

 
Figure 3: LTAS-based comparison of a refer-
ence voice (black), the target voice (red), and 
the converged voice (green). The converged 
voice shows a tendency to follow the pattern 
of the target voice rather than the reference 
voice. 

A possible reason for this may lie in 
our methodological approach, as LTAS 
are not independent of the segmental 
content they are based on, and our mate-
rial (a few sentences) may not have been 
sufficient for applying this method. 

Discussion 
Our investigations showed that it is in-
deed feasible to separate different di-
mensions of phonetic variation using 
state-of-the-art techniques of speech sig-
nal processing and synthesis. We plan to 
develop this approach further, to enable 
a separation of phonetic dimensions of 
interest that have hitherto been very dif-
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ficult to grasp from a descriptive and ex-
planatory perspective, due to their inher-
ent underlying acoustic-phonetic com-
plexity (e.g., speaker identity, age, gen-
der, mood, dialect…) or their subtlety 
(e.g., early diagnosis of pathological 
voices). However, this project still needs 
work both in the technical realization of 
generating and synthesizing the phonetic 
variation underlying these dimensions, 
and in the development of methods to 
make the acoustic-phonetic aspects thus 
revealed truly interpretable. Such inter-
pretability is needed in order to generate 
or enrich descriptive and explanatory 
models of phonetic variation, which 
could inform both experts (e.g., phoneti-
cians, speech therapists) and laypersons 
who use their voices in professional con-
texts (e.g., teachers, actors). 

We therefore see our ongoing pro-
ject as being embedded in the overarch-
ing topic of explainable or interpretable 
artificial intelligence. More precisely, 
technological components are used as a 
research tool to provide cues for data ex-
ploration and (ultimately) explanation 
that help us extend or modify our exist-
ing theories and models of speech varia-
tion. 
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