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Abstract

Mutation-selection models are traditionally either deterministic or stochastic. Deterministic

approaches assume that the size of the population is such that a law of large numbers

applies so that random fluctuations may be neglected. The resulting models are (ordinary

or partial) differential equations or (discrete-time) dynamical systems, which describe the

evolution in the usual forward direction of time. In contrast, stochastic approaches take

into account the fluctuations due to random reproduction; the resulting stochastic processes

have a firm place in probability theory. Here, the corresponding ancestral processes, which

describe the ancestry of a sample of individuals from a population at the present, play

an eminent role in the analysis. Deterministic models of population genetics and their

stochastic counterparts have largely led separate lives. It is the purpose of this thesis to

bring these two areas of research closer together by extending the backward point of view, so

far reserved for stochastic models of population genetics, to deterministic mutation-selection

equations. The corresponding ancestral processes describe the history of a finite sample of

individuals and remain random; although the type-frequency process of the entire population

evolves deterministically. Tailored versions of the genealogical processes yield stochastic

representations of the solutions of the deterministic equations. The analysis sheds new light

on the deterministic dynamic and its long-term behaviour. Special emphasis is placed on

the connection between bifurcation phenomena and ancestral structures. The genealogical

approach allows the notion of a (random) ancestral type also in the deterministic setting

and provides the framework to determine its distribution. We illustrate the underlying

ideas by applying them to a special case of frequency-dependent selection. The ancestral

processes for such models are largely unexplored territory. We first establish appropriate

structures and then make them tractable by applying our aforementioned concepts. The

tailored processes allow an explanation of the richer bifurcation structure by genealogical

means and lead to expressions for the ancestral type distribution.
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1 Introduction

Models of population genetics provide a unified mathematical framework for Darwinian
evolution and Mendelian inheritance. The former means that heritable traits that increase
reproductive success spread in a population [Dar59]. The latter explains the preservation
of variation and inheritance of the traits [Men66]. Evolutionary forces captured by clas-
sical population models include mutation, selection, recombination, random variation, and
migration. How these forces shape a population is one of the fundamental questions in
evolutionary biology. Depending on the kind of questions to be addressed, usually only a
subset of these forces is combined into a model.

The models that allow the study of the interplay between mutation and selection form a
major subgroup. By and large, the field is divided into two major lines of research, devoted
to deterministic and stochastic models, respectively. Deterministic mutation-selection equa-
tions describe the action of mutation and selection on the genetic composition of an effect-
ively infinite population. The first version goes back to Crow and Kimura [CK56]. Determ-
inistic mutation-selection equations are formulated in terms of discrete- or continuous-time
dynamical systems, and they are treated forward in time throughout, via the well-developed
methods of dynamical systems; a comprehensive overview of the research is provided in the
monograph by Bürger [Bür00]. Stochastic mutation-selection models additionally capture
the fluctuations due to random reproduction over long time scales. These fluctuations are
absent in the deterministic dynamics. The stochastic models have their roots in the seminal
work of Fisher [Fis30], Wright [Wri31], Malécot [Mal48], Feller [Fel51], and Moran [Mor58].
Overviews of the area can be found in the monographs by Ewens [Ewe04], Durrett [Dur08],
and Etheridge [Eth11]. It is the purpose of this thesis to bring these two areas of research
closer together by extending the backward point of view, so far reserved for stochastic models
of population genetics, to deterministic mutation-selection equations.

Background

The Moran model is one of the classic continuous-time stochastic mutation-selection mod-
els [Mor58]. It describes the evolution of a finite panmictic population subject to mutation,
selection, and genetic drift. (A panmictic population is a well-mixed population in which
all individuals are potential partners. Genetic drift is common terminology for random
variation; not to be confused with the drift of a stochastic process.) Reproduction events
are always coupled with death events so that the population size remains constant. In the
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simplest form, individuals are haploid, which means that each individual carries only a single
copy of its genetic information, and the population is subdivided into only two types.

In the finite setting of the Moran model, it is possible to represent the entire population and
their interactions via a random graph in the spirit of the celebrated graphical representation
that goes back to Harris [Har78]. This random graph is constructed in a Poissonian manner,
which allows the use both for the forward and the backward direction of time. In the forward
direction, time evolves with the population, whereas in the backward direction, time evolves
with the population’s ancestry. Historically, most of the analyses have been carried out for
time evolving in the forward direction [CK56; Mor58]. The first one to rigorously introduce
a genealogical perspective was Kingman [Kin82a; Kin82b; Kin82c] in his seminal work. He
analyses a very large population in terms of the ancestral structure of a sample of individuals.
This ancestral structure is tree-like and is called the coalescent. Since its introduction this
approach gained great popularity because it is easy to simulate [GT94] and has a natural
connection to applications. There one usually deals with a sample of the population and
tries to infer its formation. Thus, it is a major advantage of the genealogical perspective to
naturally encapsulate the relevant information of the ancestral structure of a given sample.
Wakeley [Wak09] provides a general overview.

Unfortunately, the derivation of explicit results for finite population models becomes cum-
bersome for more complicated dynamics. This is why one classically considers a large
population limit in an appropriate time- and parameter rescaling, which is usually more
tractable. Models that differ only in the details of their evolutionary mechanisms often
lead to the same limit models. Depending on the scaling, the limit processes are either
stochastic or deterministic. Stochastic models still comprise random fluctuations in the
type distribution that are absent in the deterministic models. Stochastic models are usually
characterised via a stochastic differential equation or the infinitesimal generator of the trans-
ition semigroup of a Markov process. Deterministic models are characterised via an ordinary
differential equation (ODE). For the Moran model with mutation and selection, arguably,
the most classical large population limit is the one in which time and parameters are both
appropriately rescaled to obtain a diffusion process. This process is then a Wright-Fisher
diffusion with mutation and selection, and various explicit results are available. It is an
appropriate approximation if mutation and selection are weak, which means that both are
rare compared to the population size. Another large population limit arises if neither para-
meters nor time are rescaled. This leads to the classical deterministic mutation-selection
equation [CK56]. This limit is suitable in a strong mutation–strong selection framework,
which means that both forces are independent of the population size.

The graphical representation does not straightforwardly carry over to these large population
limits. This makes it difficult to properly define an ancestral picture directly in the limits.
The most notable finite population particle representations that carry over to representa-
tions for a wide class of appropriately scaled large population limits (e. g. the Wright-Fisher
diffusion) are the lookdown-constructions of Donnelly and Kurtz [DK99b]. A crucial idea in
these constructions is the ordering of the individuals according to their persistence in the
population.

A particle representation and, in particular, the inherent retrospective view naturally give
rise to processes that are dual to the respective forward process. Loosely speaking, a dual
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process is a process that can be used to express certain functions of the process to which
it is dual. A duality relation establishes the formal connection. Ideally, the dual process is
simpler so that the functions of the original process are determined more easily. Jansen and
Kurt [JK14] provide an overview of the notions of duality for Markov processes.

The most classical of such relations in the context of population genetics is between the
neutral (i. e. only subject to genetic drift) Wright-Fisher diffusion and the line-counting
process of Kingman’s coalescent. There are dual processes suited for more complex forward
dynamics. In the diffusion limit of the Moran model with (frequency-independent) selection
mechanism, the ancestral selection graph (ASG) augments Kingman’s coalescent with virtual
lineages [KN97; NK97], which correspond to lineages of potential ancestors. The line-
counting process of the ASG is dual to the Wright-Fisher diffusion with selection. A priori,
the ASG is untyped. This means that, since the types in the sample from which we construct
the potential genealogy are unknown, the types along the lines in the ASG are unknown as
well. The ASG can be used to estimate relevant quantities like sampling probabilities [KN97,
Sect. 5], time to a common ancestor of a sample [KN97, Sect. 3], or time to fixation [Man09,
Sect. 5](see also [PP13]). A similar duality arises if one conditions on the types in the sample
and then traces back the sample in a typed way [DG14; EG09; Shi81].

We will see that some suitably tailored ancestral processes for the Moran model with muta-
tion and selection actually carry over also to the large population limit that leads to the
mutation-selection equations. They remain random even in the deterministic limit and
hence lead to stochastic representations of the solutions of the deterministic equations. In
particular, they shed new light on the deterministic dynamics and its long-term behaviour.

The Moran dynamic without mutation leads to a population that contains only a single type
after some finite time. The fixation probability of a type is the probability that this type
is the one to remain. In contrast, if mutation acts on the population, several types may
coexist in the long run. In this case, the stationary type distribution reasonably describes
the population. If in addition selection favours one type, both the fixation probability and
the stationary type distribution will differ from the neutral case (i. e. without mutation
and selection). Going backwards in the graphical representation naturally provides a way
to characterise fixation probabilities in terms of the model-inherent genealogies [Cor17a,
Lem. 4.5]. It turns out that this approach also leads to a representation of the stationary
type distribution. The equilibria of the deterministic mutation-selection equations corres-
pond to the stationary type distributions. The long-term behaviour of the type distribution
deterministically depends on the initial type frequency in the population. For certain para-
meter values of the mutation-selection equation, a variation of the parameters dramatically
changes the qualitative structure of the long-term behaviour of the type distributions. These
parameter values correspond to the bifurcation points of this dynamical system.

Given the model parameters, the retrospective view allows not only to predict the type
distribution in the population in the future, but also the population’s progeny structure. The
type of the ancestor in the past of an individual sampled at present is called the individual’s
ancestral type. Note that, due to mutations, descendant and ancestor are not necessarily of
the same type. The distribution of the ancestral type at a fixed time in the past is called
the ancestral type distribution at that time. Under the dynamics of the Moran model, all
individuals share a single common ancestor [Cor17a, Lem. 4.3]. Fearnhead [Fea02, Thm. 3]
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was the first to rigorously analyse the distribution of the type of this common ancestor in a
population at equilibrium in the diffusion limit with mutation and selection. His approach
relies on the ideas of the virtual lineages in the ASG. It leads to a representation of the
common ancestor type distribution in terms of a power series, whose coefficients satisfy a
recursion that by now is classical and goes under the name Fearnhead-recursion. Taylor
[Tay07] generalised Fearnhead’s result to other forms of selection. His approach is based
on the structured coalescent, which essentially codes the (typed) coalescent along with
the random background in which it evolves. It was introduced by Kaplan et al. [KDH88]
and rigorously defined by Barton et al. [BES04]. Kluth et al. [KHB13, Thm. 2] obtained
the Fearnhead-recursion for the finite Moran model with selection and mutation (see also
Cordero [Cor17a, Prop. 4.7]). Lenz et al. [Len+15, Prop. 6] complemented the analysis by
providing a probabilistic interpretation of the recursion in terms of tail probabilities of a
pruned ASG that is constructed in a ‘lookdown’-manner. Their ideas lead to the pruned
lookdown ancestral selection graph (pLD-ASG).

In the Moran model with mutation and selection, suitable ancestral processes lead to ex-
pressions for fixation probabilities, the stationary type distribution, and the ancestral type
distribution. We will first identify these processes and then exploit that the processes and
their relation to the forward model translate to the large population limits. Hence, they can
be used for the analysis of the limit models.

In simple population models, selection is usually modelled as being independent of the type
frequencies in the population [Mor58]. Yet, in many biological systems a type’s frequency
influences its reproductive success [AC74]. Let us mention Müllerian mimicry as a classical
example for frequency-dependent selection. It describes the mimicry of warning signals (like
the yellow-black pattern in bees) of prey that is in fact distasteful to the predator [Mül78;
Mül79]. The more frequent the pattern in the population, the faster the predator learns to
avoid the prey that possesses the warning signal, and the safer the prey is from the predator.

A special case of frequency-dependent selection is pairwise interaction where the types’ fit-
nesses depend on the type of a uniformly chosen individual in the population (see Chapters 2
and 4 for details). In the diffusive and deterministic setting, classical diffusion theory covers
also models with interactive selection and it leads to expressions for fixation probabilities
and stationary distributions [Eth11, Ch. 3]. In a general framework, for example in the
case of jump-diffusion processes, the classical tools from diffusion theory are not available.
In special cases the analysis of such models is still possible via the genealogical perspective
[Fou13; GS18]. But general frequency-dependent selection is not covered by current coales-
cent theory. In particular, general selection models so far resist an analysis. One might
hope that this will change once appropriate structures are identified.

Outline

In this thesis, we work out and compare similarities in the analyses of stochastic and de-
terministic population models in terms of the backward point of view. Our starting point is
the Moran model with mutation, selection, and pairwise interaction. In the non-interactive
case, we mainly rely on the ideas of Krone and Neuhauser [KN97] to characterise the type
distribution in terms of the number of lines in an ASG that we prune or kill upon mutations
and that we call killed ASG. The type distribution of the forward process is connected to the
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ancestral process via duality. This also provides the link between the long-term behaviour
of the two processes. We use a concept of Lenz et al. [Len+15] to characterise the ancestral
type distribution. Their idea to order and prune lines in the ancestral process yields a
representation for the ancestral type distribution.

The concepts developed for the (non-interactive) Moran model translate to the strong
mutation–strong selection (smss) limit. In particular, they allow a probabilistic interpret-
ation of the (deterministic) smss-limit via the (still stochastic) ancestral picture. Also in
this setting, the type distribution of the forward process in the distant future is connected
to the long-term behaviour of this ancestral process. Our probabilistic approach reveals the
genealogical structure behind the bifurcation phenomena of the ODE. The ancestral struc-
ture allows the notion of an ancestral type also in the smss-framework. We characterise its
distribution in terms of a pLD-ASG in this setting.

We illustrate the flexibility of the underlying ideas by applying them to the case of strong
pairwise interaction, which is usually difficult to treat by genealogical means. Also in this
framework, we equip the mutation-selection equation with pairwise interaction (or equi-
valently the diploid mutation-selection equation; details in Chapter 4) with a probabilistic
interpretation. This leads to a stratified ASG. This ancestral process has a tree structure,
but is not directly susceptible to treatment with tools from the theory of branching pro-
cesses. Nevertheless, we can modify the ideas of the classic results to our setup and establish
results from the frequency-independent selection case in this more general setting.

At this point, let us mention related work of Mach et al. [MSS18b], who study a large
class of ODEs that arise as a mean-field limit of (stochastic) interacting particle systems
on the complete graph. Their study relies crucially on recursive tree processes. As an
example Mach et al. [MSS18b] (see also [Mac17]) treat the cooperative branching model with
deaths, which corresponds to a special case of our mutation-selection model with pairwise
interaction. The analyses via recursive tree processes and our ancestral process provide
complementary insight into the behaviour of the model. We will spell out the similarities
and differences of the two approaches in the course of Chapter 4.

The structure of the thesis is as follows. We lay down the foundations in Chapter 2 and
recapitulate the Moran model with selection, mutation, and pairwise interaction. We start
out by recalling the graphical representation and classic results of the prospective approach
like expressions for the stationary distribution and absorption probabilities. We then move
on to treat the retrospective approach. First, we state the ASG in this general setup. In the
remainder of the chapter, we restrict ourselves to selection that is frequency-independent.
We reobtain the type distribution of the Moran model in terms of a killed ASG. A duality
relation provides the formal link. At last, we recapitulate the construction of the pLD-
ASG for finite populations of Cordero [Cor17a] and derive the Fearnhead-recursion in this
setting. A duality relation between the pLD-ASG and a Markov chain which absorbs at the
boundaries leads to a connection between the absorption probabilities of that Markov chain
and the common ancestor type distribution.

Chapter 3 is devoted to the smss-limit of the Moran model. Throughout the chapter, we
treat only the case of frequency-independent selection. Again, we start out by summarising
known results that are derived via the forward direction of time. Switching to the backward
perspective enables us to work along the lines of Chapter 2. A duality relation connects a
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killed ASG in the smss-limit with the smss-limit of the Moran model. We express the type
distribution of the forward picture via the killed ASG and in this way relate the long-term
behaviour in the two perspectives. The framework allows the notion of an ancestral type.
A pLD-ASG leads to a characterisation of its distribution. We establish a duality relation
between the pLD-ASG and a piecewise-deterministic Markov process that absorbs at the
boundaries. This leads to a connection between the ancestral type distribution and the
absorption probabilities of that piecewise-deterministic Markov process.

Chapter 4 treats the strong mutation–strong selection–strong interaction (smsssi) limit of the
Moran model. The general procedures and techniques from Chapter 2 (and Ch. 3) are not
straightforwardly applicable because the ancestral processes in Chapter 2 (and Ch. 3) are
only defined for the case without interaction. Hence, we first adapt the backward processes
to this new set up. Reducing, pruning, and stratifying the ASG leads to the aforementioned
stratified ASG. Second, we recover the type composition given by the mutation-selection
equation with interaction in terms of this backward process. At last, we use a sequence of
stratified ASGs, which we call forest of stratified ASGs, to characterise the ancestral type
distribution.

In Section 5, we summarise the thesis and place it into the context of current research in
mathematical population genetics. We also point out directions for research that is beyond
the scope of this thesis.

Chapters 3 and 4 are based on [BCH18a] and [BCH18b]. Both articles are joint work with
Prof. Dr. Ellen Baake and Dr. Fernando Cordero.



2 Moran model – forward and backward in time

The Moran model is one of the most classic continuous-time stochastic models for the evol-
ution of a finite population. Our setup is for haploid individuals subject to genetic drift,
mutation, selection, and pairwise interaction, which is a special case of frequency-dependent
selection.
The structure of the present chapter is as follows. We start with the description of the
graphical representation and recapitulate the main properties, fixation probabilities, and
the stationary type distribution of the Moran model in Section 2.1 from the classical for-
ward point of view. For the sake of completeness, we provide the classic proofs of these
results. From Section 2.2 onwards, we consider the backward direction of time. The tools
and techniques developed in the subsequent sections are the basis for the analysis of the
deterministic-mutation selection equations, which arise as the large population limit of the
Moran model and which we consider later in Chapters 3 and 4. We start out by recapitu-
lating the construction of the ancestral selection graph (ASG) in the general setup. In the
remainder of the chapter, i.e. from Section 2.3 onwards, we consider only the case without
interaction. It turns out that in this setting only the number of lines in the ASG is relevant
for our purposes. Mutations lead to further reductions of the ASG. All these simplifica-
tions give rise to the process we call the killed ASG. We connect its line-counting process
to the Moran model via a duality relation (Section 2.3). This allows a representation of the
factorial moments of the number of unfit individuals in the Moran model in terms of the
killed ASG. We recover fixation probabilities and the stationary distribution by genealo-
gical means. In the Moran model, all individuals at present share a common ancestor in the
sufficiently distant past [Cor17a, Lem. 4.3]. In the diffusion limit of the Moran model, the
classic representation of the common ancestor type distribution at equilibrium in terms of
a series goes back to Fearnhead [Fea02, Thm. 3]. The series coefficients satisfy the so-called
Fearnhead-recursion. Lenz et al. [Len+15] introduced an ancestral structure, which is called
the pruned lookdown ASG (pLD-ASG), to provide a probabilistic interpretation of this re-
cursion, which was originally obtained by analytic means. Cordero [Cor17a, Sect. 4] adapted
the construction to the finite Moran model and its smss-limit and obtains a characterisation
of the common ancestor type distribution in this setting. In Section 2.4, we recapitulate his
construction and reobtain Fearnhead’s recursion. Furthermore, we derive properties of the
common ancestor type distribution at equilibrium and extend previous results to the finite
time horizon. A duality relation between the line-counting process of the pLD-ASG and a
Markov chain which absorbs at the boundaries complements the analysis.
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2.1 Moran model with mutation, selection, and pairwise in-
teraction

The two-type Moran model with mutation, selection, and pairwise interaction describes the
evolution of a haploid population of a finite number N of individuals in continuous time.
Each individual has a type, which is either 0 or 1. We refer to type 0 as the fit or beneficial
type, whereas type 1 is unfit or deleterious. When an individual reproduces, its single
offspring inherits the parent’s type and replaces a uniformly chosen individual, thereby
keeping the population size constant. All individuals reproduce at rate 1. The selective
advantage of type 0 is reflected by a larger reproduction rate. It has two contributions:
a part that is independent of the current type distribution and occurs at rate s ≥ 0 per
fit individual; and a part that depends on the frequency of the fit type and is encoded
by the parameter γ. More precisely, a fit individual chooses at rate γ ≥ 0 uniformly a
partner from the population. If the partner is fit (unfit), then the type-0 individual does
(not) reproduce. Each individual mutates at rate u ≥ 0; the type after the event is i with
probability νi, i ∈ {0, 1}, where ν0, ν1 ≥ 0 and ν0 + ν1 = 1.

Let Y (N)
t be the (random) number of type-1 individuals at time t in a population of size N .

The process Y (N) = (Y (N)
t )t≥0 is a continuous-time Markov chain with transition rates

qY (N) (k, k + 1) = k
N − k
N

+ (N − k)uν1, (2.1)

qY (N) (k, k − 1) = k
N − k
N

(
1 + s+ γ

N − k
N

)
+ kuν0, (2.2)

where k ∈ [N ]0 := [N ] ∪ {0} with [N ] := {1, . . . , N}. There are no other transitions. Since
the dependence on the population size only becomes important in Chapter 3 and 4, when
we consider the large population limit, we omit the superscript for the remainder of this
chapter to ease the notation, i.e. we write Y instead of Y (N).

The Moran model with pairwise interaction has a well-known graphical representation as
an interacting particle system, see Fig. 2.1. Here, individuals are represented by pieces
of horizontal lines. Time runs from left to right in the figure. Reproduction events are
depicted by arrows between the lines. If a parent (at the tail of an arrow) places offspring
via the arrow, the offspring inherits the parent’s type and replaces the individual at the tip.
If an individual places offspring via an arrow, we say that the individual uses the arrow.
We decompose reproduction events into neutral, selective, and interactive ones. Neutral
arrows appear at rate 1/N per ordered pair of lines; selective arrows appear at rate s/N
per ordered pair. Interactive arrows occur at rate γ/N per ordered pair of lines and are
always accompanied by a checking arrow whose tip shares the tip of the interactive arrow;
but whose tail is connected to a uniformly chosen line. That is, these arrow pairs occur at
rate γ/N2 per triple of lines. All types of arrows (including the interactive/checking pairs)
are laid down via Poisson point processes independently of each other. The rules for their
use are as follows. All individuals use the neutral arrows. In addition, the fit individuals use
the selective arrows. Interactive arrows are used by a fit individual if there is a fit individual
at the tail of the associated checking arrow.

Mutation events are depicted by crosses and circles on the lines. A circle (cross) indicates
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×

×
×

×

×

×
0

t 0

t

r

Mutation to type 0
×Mutation to type 1

Selective arrow
Neutral arrow

Interactive arrow
Checking arrow

Figure 2.1. A realisation of the Moran interacting particle system (thin lines) for a popu-
lation of size N = 5 and the embedded ASG (bold lines) for a sample of size 1. Time runs
forward in the Moran model (→) and backward in the ASG (←). An arrowhead inscribed
into a square marks the joint tip of an interactive and a checking arrow.

a mutation to type 0 (type 1), which means that the type on the line is 0 (is 1) after the
mutation. This occurs at rate uν0 (at rate uν1) on every line, again by way of independent
Poisson point processes. Note that it is no restriction to describe mutation in this parent-
independent way; indeed, in the two-type case, the rates can always be parametrised in this
way. Given a realisation of the particle system and an initial type configuration (that is,
a type assigned to each line at t = 0), we can read off the types on the lines at all later
times t > 0. The distribution of the initial types and the law of the graphical elements
(arrows, circles, and crosses) are independent of each other.

Remark 2.1. The Moran model with pairwise interaction can be translated into the co-
operative branching process on a complete graph [Mac17, Ch. I.1.2.3, Ch. I.2.1] (see also
[MSS18b]) by interchanging the roles of type 0 and 1 and by setting s = ν0 = 0 and u = 1.
A deleterious mutation then corresponds to a death event and an interactive arrow to a
cooperative branching event. Other variants of such dynamics may be found in [Neu94;
Nob92; SS15]. ♦

Remark 2.2. Graphical representations can be constructed in various ways for a compre-
hensive class of interacting particle systems, see e. g. [SS18, Sect. 5.2]. ♦

The graphical representation naturally induces a graph structure, which we implicitly use
throughout the thesis. For the sake of completeness, we present its construction in detail in
the next section.

2.1.1 Graphical representation as a directed graph with labels

The graphical representation of the Moran model is depicted in Fig. 2.1. We now turn this
representation into an infinite uncountable directed graph G = (V,E) with a function l that
labels the vertices, where
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V = R× [N ], E ⊆ V × V, and l : V → { , , , , , ◦,×, ∅}.

For a vertex (t, i) ∈ V , we refer to t ∈ R as its time coordinate and to i ∈ [N ] as its site.
The time coordinate and the site correspond to the horizontal and vertical position of the
vertex in Fig. 2.1, respectively. The label of vertex (t, i) is denoted by l(t, i).
Let us explain, how we set the edges and labels. A neutral, selective, and interactive arrow
translates to a directed edge from the tail vertex to the tip vertex. The tip vertex of a neutral,
selective, and interactive arrow obtains the label , , and , respectively. The tail vertex
of an interactive and checking arrow obtains the label and , respectively. A beneficial
and deleterious mutation leads to the vertex label ◦ and ×, respectively. All remaining
vertices obtain the label ∅. Time-consecutive vertices on the same site are connected if the
vertex with larger time coordinate is not labelled , corresponding to a vertex with an
incoming neutral arrow, and no vertex with an incoming edge from another site or with a
mutation lies between the vertices. A vertex with label has only one incoming edge and
this edge originates from a vertex of another site. This leads to the following definition.

Definition 2.1 (Moran model graph). Fix N ∈ N. Consider the following five independent
families of independent homogeneous Poisson processes on the real line

Ki,j with rate 1
N
, Ki,j with rate s

N
, Ki,j,k with rate γ

N2 ,

K×i with rate uν1, K◦i with rate uν1, i, j, k ∈ [N ], i 6= j.

The Moran model graph (of size N) is the directed graph G = (V,E) with label function l.
For t ∈ R and i ∈ [N ], we have (t, i) ∈ V . For an arrival time t of

Ki,j , set l(t, j) = ,

Ki,j , set l(t, j) = ,

Ki,j,k, set l(t, j) = , l(t, i) = ,
and l(t, k) = .

K◦i , set l(t, i) = ◦,

K×i , set l(t, i) = ×,

All remaining vertices obtain label ∅. The set of edges is as follows.
For an arrival time t of Ki,j , ((t, i), (t, j)) ∈ E.

For an arrival time t of Ki,j , ((t, i), (t, j)) ∈ E.

For an arrival time t of Ki,j,k, ((t, i), (t, j)) ∈ E and ((t, k), (t, j)) ∈ E.

For (t1, i), (t2, i) ∈ V with t1 < t2, l(t2, i) 6= , and l(r, i) /∈ { , , , ◦,×} for all
r ∈ (t1, t2), ((t1, i), (t2, i)) ∈ E.

These are all vertices and edges.

Remark 2.3. In the construction of the graph, start with the deterministic set of vertices
R× [N ]. On the basis of the Poisson processes assign the labels. Given the Poisson processes
and labels, the edge set is then deterministic. ♦

We often consider the restriction of the Moran model graph to a finite horizon.
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Definition 2.2. Fix t1 < t2 and a Moran model graph G = (V,E) with label function l.
The Moran model graph in [t1, t2] is the directed graph G[t1,t2] := (V[t1,t2], E[t1,t2]), where
V[t1,t2] = {(t, i) ∈ V : t ∈ [t1, t2], i ∈ [N ]} and E[t1,t2] = E ∩ (V[t1,t2] × V[t1,t2]), together with
the label function l restricted to the vertices in V[t1,t2].

For an edge (v, w) of a directed graph with labels, we call v an in-neighbour of w and w
an out-neighbour of v. Note that, by the above construction, every vertex in a graphical
representation with label has exactly one in-neighbour. We now formalise the idea of
propagating types through the graphical representation. Without loss of generality, we
consider time intervals of the form [0, t]. We then write Gt = (Vt, Et) for the Moran model
graph G[0,t] = (V[0,t], E[0,t]).

Definition 2.3 (Type propagation). Consider a Moran model graph Gt = (Vt, Et) with label
function l and c ∈ {0, 1}N . We refer to c as the initial type configuration. The type function
vc : Vt → {0, 1} associated to Gt and c is defined as follows.
For two vertices (r1, i), (r2, i) ∈ Vt, we say that (r1, i) transmits the type to the left of (r2, i)
if there is at least one directed path from (r1, i) to (r2, i) and there is no directed path
from (r1, i) to (r2, i) that contains a vertex with label { , , , ◦,×} (except the start- and
endpoint of the paths).
Set vc(0, i) = ci for i ∈ [N ]. For (r, j) ∈ Vt with r ∈ (0, t],

if l(r, j) = ◦ (resp. l(r, j) = ×), then set vc(r, j) = 0 (resp. vc(r, j) = 1).

if l(r, j) = and (r, i) ∈ Vt is the in-neighbour of (r, j), then set vc(r, j) = vc(r, i).

if l(r, j) = , (r, i) ∈ Vt is the in-neighbour of (r, j) with i 6= j and vc(r, i) = 0, then
set vc(r, j) = vc(r, i).

if l(r, j) = and for the in-neighbours (r, i) ∈ Vt and (r, k) ∈ Vt of (r, j) with
l(r, i) = and l(r, k) = , respectively, we have vc(r, i) = vc(r, k) = 0, then set
vc(r, j) = vc(r, i).

Otherwise, set vc(r, j) = vc(r′, j), where (r′, j) ∈ Vt is the unique vertex with l(r′, j) 6= ∅ or
r′ = 0 that transmits the type to the left of (r, j).

Every directed path connecting vertices on different sites contains a vertex with a label in
{ , , }. Hence, if a vertex transmits the type to the left of another vertex, then both
vertices are on the same site and all directed paths connecting the two vertices remain on
the same site.
Note that the number of vertices with labels different from ∅ is finite in any finite time
interval almost surely. Furthermore, if (r1, i) ∈ Vt transmits the type to the left of (r2, i) ∈
Vt, then for any (r, i) ∈ Vt with r ∈ (r1, r2) we have that (r1, i) transmits the type to the
left of (r, i). If l(r1, i) 6= ∅ or r1 = 0, then (r1, i) is the unique vertex with this property
that transmits the type to the left of (r, i). In particular, for an initial assignment of types,
the type function is well-defined at all sites up to the first arrival time of one of the Poisson
processes. Furthermore, the type of the vertices at the first arrival time is well-defined. An
iteration of this argument shows that the type function is almost surely well-defined from
time 0 to time t for any initial assignment of types and for any t finite. The notion of type
propagation refers to the way the type function is constructed from time 0 to time t. In
what follows, we are only concerned with the almost sure behaviour of the type function.



12 2 Moran model – forward and backward in time

In addition to the types in the graph, we can keep track of the progeny of the individuals
at time 0 by means of a more general type that we call ancestral site. The ancestral site
of a vertex is the site of its ancestor at time 0. The ancestral site of a vertex with label
(corresponding to an individual with incoming neutral arrow) agrees with the ancestral
site of its in-neighbour. The ancestral site of a vertex with label (corresponding to an
individual with incoming selective arrow) is the same ancestral site as the one of the in-
neighbour at another site if this in-neighbour is fit. Otherwise, the ancestral site agrees with
the ancestral site of the unique in-neighbour with label different from ∅ or time component 0,
that transmits the type to its left. The ancestral site of a vertex with label (corresponding
to an individual with incoming interactive arrow) is the same as the ancestral site of the
in-neighbour with label if this in-neighbour (corresponding to an individual at the tail
of an interactive arrow) is fit and the in-neighbour with label (corresponding to the
individual at the tail of a checking arrow) is fit. Otherwise, the ancestral site agrees with
the ancestral site of the unique in-neighbour with label different from ∅ or time component 0,
that transmits the type to its left. The ancestral site of a vertex with label ∅ agrees with the
ancestral site of the unique in-neighbour with label different from ∅ or time component 0,
that transmits the type to its left. This leads to the following definition.

Definition 2.4 (Ancestral site propagation). Consider a Moran model graph Gt = (Vt, Et)
with label function l and an initial type configuration c ∈ {0, 1}N . Let vc be the corres-
ponding type-function. The ancestral site function ηc : Vt → [N ] is defined as follows.
Set ηc(0, i) = i for i ∈ [N ]. For (r, j) ∈ Vt with r > 0,

if l(r, j) = and (r, j) has in-neighbour (r, i), then set ηc(r, j) = ηc(r, i).

if l(r, j) = , (r, i) ∈ Vt is the in-neighbour of (r, j) with i 6= j and vc(r, i) = 0, then
set ηc(r, j) = ηc(r, i).

if l(r, j) = and for the in-neighbours (r, i) ∈ Vt and (r, k) ∈ Vt of (r, j) with
l(r, i) = and l(r, k) = , respectively, we have vc(r, i) = vc(r, k) = 0, then set
ηc(r, j) = ηc(r, i).

Otherwise, set ηc(r, j) = ηc(r′, j), where (r′, j) ∈ Vt is the unique vertex with l(r′, j) 6= ∅ or
r′ = 0 that transmits the type to the left of (r, j).

For any initial assignment of types and any fixed finite time interval, the ancestral site of the
vertex in the interval is well-defined by the same argument that shows that the type function
is well-defined. In particular, this motivates the notion of ancestral site propagation. We
now formalise the concept of progeny and ancestry.

Definition 2.5 (Progeny/ancestry). Consider a Moran model graph Gt = (Vt, Et) with label
function l, a given initial type configuration c ∈ {0, 1}N , the type function vc, and ancestral
site function ηc. We say that (r, i) ∈ Vt is in the progeny of (0, ηc(r, i)) or equivalently,
(0, ηc(r, i)) is the ancestor of (r, i) at time 0. We denote the type of the ancestor of (r, i)
at time 0 in the Moran model graph Gt with initial type configuration c by Jct (r, i) :=
vc(0, ηc(r, i)).
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2.1.2 Stationary distribution and fixation probabilities

In this section, we recall classic results, which are derived via the forward perspective. We
first consider the case with mutations and derive the expression for the stationary type
distribution. Subsequently, we assume the absence of mutations and derive the fixation
probability. For the sake of completeness, we provide for all the results well known proofs.

For the Moran model, the process Y is a birth-death process on a finite state space with
birth and death rates given by

λk := qY (k, k + 1) and µk := qY (k, k − 1). (2.3)

If u, ν0, ν1 > 0, Y is irreducible. In this case, there exists a unique stationary distribution
πY with

πY (k) = lim
t→∞

P(Yt = k | Y0 = j), ∀k, j ∈ [N ]0.

The expression for the stationary distribution is classical; we recall it in the following pro-
position.

Proposition 2.6 (Stationary distribution). Let u, ν0, ν1 > 0. Then,

πY (k) = C1

k∏
i=1

λi−1
µi

, k ∈ [N ]0, (2.4)

where C1 :=
(∑N

k=0
∏k
i=1

λi−1
µi

)−1
is a normalizing constant, which depends on all model

parameters

Proof. It is readily checked that πY (k) as given in (2.4) is indeed a probability distribution
that satisfies the detailed balance equation, i. e. for all k ∈ [N ]

πY (k − 1)λk−1 = πY (k)µk

and therefore is a stationary distribution [Kel11, Thm. 1.3].

The non-interactive case (i. e. γ = 0) allows a more explicit expression of the stationary
distribution. Denote by Γ the gamma function.

Corollary 2.7 (Stationary distribution without interaction). If γ = 0 and u, ν0, ν1 > 0,

πY (k) = C̃1

(N
k

)
(1 + s)k Γ

(
uν1N + k

)
Γ
(
uν0N

1 + s
+N − k

)
, k ∈ [N ]0, (2.5)

with

C̃1 :=
[

N∑
k=0

(N
k

)
(1 + s)k Γ

(
uν1N + k

)
Γ
(
uν0N

1 + s
+N − k

)]−1

. (2.6)

Proof. The proof is a straightforward calculation. If γ = 0, the rates in (2.1) and (2.2)
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reduce to

λk = k
N − k
N

+ (N − k)uν1 and µk = k
N − k
N

(1 + s) + kuν0.

Then,

k∏
i=1

λi−1
µi

=
k∏
i=1

(N − i+ 1)(uν1N + i− 1)
i(uν0N + (N − i)(1 + s)) =

(N
k

)
(1 + s)k

k−1∏
i=0

uν1N + i
uν0N
1+s +N − 1− i

.

Next, note that

k−1∏
i=0

(uν1N + i) = Γ(uν1N + k)
Γ(uν1N) and

k−1∏
i=0

(
uν0N

1 + s
+N − 1− i

)
=

Γ
(
uν0N
1+s +N

)
Γ
(
uν0N
1+s +N − k

) .
Together with the preceding calculation, we have

k∏
i=1

λi−1
µi

=
(N
k

)
(1 + s)k

Γ
(
uν1N + k

)
Γ
(
uν1N

) Γ
(
uν0N
1+s +N − k

)
Γ
(
uν0N
1+s +N

) .

The result is then a consequence of Proposition 2.6. To see this, note that(
Γ
(
uν0N

1 + s
+N

)
Γ
(
uν0N

1 + s
+N

))−1

is also a factor in the constant appearing in Proposition 2.6 and therefore cancels.

If u = 0, Y either absorbs in 0 or N . The former (latter) corresponds to the extinction of
type 1 (of type 0) and hence to the fixation of type 0 (of type 1). Let Tk = inf{t > 0 : Yt = k}
be the first time when there are k type-1 individuals in the population. Then

wY (k) = P(TN < T0 | Y0 = k)

is the probability that Y hits N before 0 given that Y starts in k, i.e. it is the fixation
probability of type 1 if there are initially k individuals of type 1. The expression for the
absorption probability of a birth-death-process on a finite state space is well-known. We
recall the result in the following proposition.

Proposition 2.8 (Fixation probability). If u = 0, then

wY (k) = C2

k−1∑
j=0

j∏
`=1

µ`
λ`
, k ∈ [N ]0, (2.7)

where C2 = 1/
∑N−1
j=0

∏j
`=1

µ`
λ`
.

Proof. The derivation of the fixation probability is also classical: A first-step decomposition



2.1 Moran model with mutation, selection, and pairwise interaction 15

of wY leads to the recursion

(λk + µk)wY (k) = λkwY (k + 1) + µkwY (k − 1), k ∈ [N − 1],

complemented by wY (0) = 0 and wY (N) = 1. By induction, we obtain

wY (k + 1)− wY (k) = µk
λk

[
wY (k)− wY (k − 1)

]
= wY (1)

k∏
`=1

µ`
λ`
.

Since wY (0) = 0,

wY (k + 1) =
k∑
j=0

(
wY (j + 1)− wY (j)

)
= wY (1)

k∑
j=0

j∏
`=1

µ`
λ`
.

On the other hand, wY (N) = 1, so that wY (1) = 1/
∑N−1
j=0

∏j
`=1

µ`
λ`
.

The case without mutation and interaction (i. e. u = γ = 0) allows a more explicit expression
of the fixation probability. We recall the well-known result [Dur08, Thm. 6.1] in the following
corollary.

Corollary 2.9 (Fixation probability without interaction). If γ = u = 0 and s > 0,

wY (k) = (1 + s)k − 1
(1 + s)N − 1 , k ∈ [N ]0. (2.8)

Proof. The result is a straightforward application of Proposition 2.8 and the following cal-
culation

k−1∑
j=0

j∏
l=1

µl
λl

=
k−1∑
j=0

(1 + s)−j = (1 + s)k − 1
s

.

Remark 2.4. Letting s → 0 in Corollary 2.9, we recover the neutral case (i. e. u = s =
γ = 0), where wY (k) = k/N . Indeed, taking the limit in (2.8) and applying L’Hôpital’s rule
yields

lim
s→0

(1 + s)k − 1
(1 + s)N − 1 = lim

s→0

k(1 + s)k−1

N(1 + s)N−1 = k

N
. ♦

In the following sections, we recover the results of the present section in terms of an ancestral
process.
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2.2 ASG in the Moran model with mutation, selection, and
pairwise interaction

The ancestral selection graph (ASG) was introduced by Krone and Neuhauser [KN97; NK97]
in order to study genealogies in population models with selection. It was extended by
Neuhauser [Neu99] to a model of minority advantage, a special case of interactive selection.
Following these lines, we now describe the ASG for the Moran model with mutation, selec-
tion, and pairwise interaction (cf. Fig. 2.1). For the sake of completeness, we subsequently
give a formal definition of the ASG in terms of a directed graph with labelled vertices.

Our starting point is a realisation of the graphical representation of the Moran model in
the time interval [0, t] for some time t > 0, to which we refer as the present. We pick an
untyped sample (that is, no types have been assigned to the individuals) at present and
trace back the lines of its potential influencers; backward time will be denoted by r, where
r = 0 corresponds to forward time t and r = t corresponds to forward time 0. We call
individuals potential influencers if their type has an influence on the type of the sampled
individuals where, at this stage, we only take into account the information contained in the
reproduction events, and ignore the additional information due to mutation. The arrows in
the representation change the number of potential influencers and their respective locations.
The ASG is composed of the lines of these potential influencers.

Assume there are currently n lines in the ASG. When a neutral arrow joins two lines in the
current set, a coalescence event takes place, i. e. the two lines merge into the single one at
the tail of the arrow and the number of lines in the graph decreases by one (see Fig. 2.2).
Since neutral arrows appear at rate 1/N per ordered pair of lines, coalescence events occur
at rate n(n− 1)/N in our ASG of size n. When a line in the current set is hit by an arrow
that emanates from a line that is currently not in the graph, a relocation event occurs;
i. e. the ASG continues with the incoming branch (the line at the tail of the arrow) and the
number of lines in the graph does not change. Relocation events occur at rate n(N −n)/N .

Figure 2.2. Coalescence event (left) and relocation event (right).

When a selective arrow hits the current set of lines, the hit individual has two potential
parents, namely the individual at the incoming branch, and the one at the continuing
branch (the one to the left of the tip). Which of these is the true parent of the individual at
the descendant branch (the one to the right of the tip) depends on the type at the incoming
branch, but for the moment we work without types. This means that we must trace back
both potential parents; we say the selective event remains unresolved. These events can
be of two types: a bifurcation event (that is a binary branching; not to be confused with
bifurcations in the context of dynamical systems, such as the transcritical and saddle node
bifurcations in Sections 3.1 and 4.1) if the selective arrow emanates from a line outside the
current set of lines, and a simple collision event if the selective arrow links two lines in the
graph (see Fig. 2.3). The former increases the number of lines in the graph by one and, since
selective arrows appear at rate s/N per ordered pair of lines, occurs at rate sn(N −n)/N in
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our ASG of size n. The latter does not change the number of lines in the ASG and occurs
at rate sn(n− 1)/N .

Figure 2.3. Bifurcation (left) and simple collision (right).

When an interactive arrow hits a line in the ASG, the individual at the incoming branch and
the individual at the checking branch are potential influencers. The true parent depends on
the types of the individuals at these branches; but as before, we work without types. The
resulting additional unresolved reproduction events can now be of three types: a trifurcation
if both the incoming and the checking arrows emanate from lines currently not in the ASG;
a collision-bifurcation event if either the incoming or the checking line, but not both of
them, emanate from a line outside the current set of lines; and a double collision event if
the incoming and the checking branches are currently in the graph (see Fig. 2.4). Since
interactive arrow pairs occur at rate γ/N2 per ordered triple of lines, in our ASG of size n a
trifurcation occurs at rate γn(N − n)(N − n− 1)/N2, a collision-bifurcation at rate γn(n−
1)(N−n)/N2, and a double collision at rate γn(n−1)(n−2)/N2. In contrast to the original
ASG (that is, without interaction), not all potential influencers are necessarily potential
ancestors. Namely, the individual on the checking line is, in general, not ancestral; but its
type may have an influence on the type of the sampled individual. We generally refer to
bifurcations and trifurcations as branching events. The number of lines in the ASG decreases
by one in a coalescence event, increases by one in a bifurcation or collision-bifurcation event,
increases by two in a trifurcation event, and remains unchanged in simple collision, double
collision and relocation events. As in the Moran model, beneficial and deleterious mutations
are superimposed on the lines at rate uν0 and uν1, respectively. The resulting object is called
the untyped ASG; this refers to the fact that the initial types have not yet been assigned
and the consequences of mutations are still unresolved.

Figure 2.4. From left to right: trifurcation, collision-bifurcation with incoming branch
already in ASG, collision-bifurcation with checking branch already in ASG, double collision.

Once the untyped ASG has been constructed, the true ancestry of the initial sample is
obtained as follows. First, assign types to all lines in the ASG at forward time 0, that is,
backward time t, without replacement from an exchangeable distribution at forward time 0.
Then, propagate the types up to time t respecting the type propagation rules of Section 2.1:
Mutation circles and crosses on the ASG turn the type on that line to a type 0 or type 1,
respectively (this also includes the possibility of no type change, i. e. the mutations are
silent). At every selective event, the individual at the incoming branch is the ancestor if it is
of type 0; otherwise the individual at the continuing branch is the ancestor. This hierarchy
will be called the pecking order. Note that the descendant is of type 1 if and only if both the
incoming and the continuing branch are of type 1. At every interactive event, the individual
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at the incoming branch is the ancestor if it is of type 0 and if the individual at the checking
branch is also fit. Otherwise, the individual at the continuing line is the ancestor. Under
these rules, the types of the sampled individuals are recovered together with their ancestry.
The above description of the ASG in [0, t] has a natural correspondence to a directed graph
with labelled vertices. It arises from the Moran model graph in [0, t] (see Definition 2.2)
as follows. First, reverse the direction of time and the direction of the edges in the Moran
model graph. Second, restrict the graph to the part that is reachable from the sampled
individuals at forward time t. This leads to the untyped ASG.

Definition 2.10 (ASG for finite populations). Consider a Moran model graph in [0, t] de-
noted by Gt = (Vt, Et) with label function l. Define Ḡt := (Vt, Ēt) and label function l̄
where

Ēt := {((r, i), (r′, j)) ∈ Vt × Vt : ((t− r′, j), (t− r, i)) ∈ Et}
l̄(r, i) := l(t− r, i) for (r, i) ∈ Vt.

Fix A ⊆ [N ] and define ḠAt := (V̄ A
t , Ē

A
t ) by

V̄ A
t := {(r, i) ∈ Vt : ∃ directed path in Ḡt from (0, j) to (r, i) for some j ∈ A},

ĒAt := Ēt∩ (V̄ A
t × V̄ A

t ), and l̄A is the restriction of l̄ to the vertices in ḠAt . The ASG in [0, t]
starting in A is then AAt := (ḠAt , l̄A).

We refer to the vertices in AAt with time component 0 as root(s) and to the vertices with
time component t as leaves. If we consider the Moran model in [−t, 0] rather than in [0, t],
the ASGs can be coupled such that for t > 0, we have AAr ⊆ AAt for r ∈ [0, t]. When we
describe the evolution of an ASG (and pruned- or killed versions of it, see Section 2.3.1
and 2.4.1), we mean the evolution of the ASGs on increasing time intervals coupled in this
way.
Because each vertex with a given time component in an ASG corresponds to a potential
influencer, and hence to an individual in the Moran model at that time, we will occasionally
abuse the notation and refer to the vertices with a given time coordinate as individuals.
The definition of type and ancestral site propagation, progeny, and ancestry translate also
to the ASG.

Definition 2.11. [Types and ancestral sites in ASG] Consider an ASG in [0, r] starting from
A ⊆ [N ] denoted by AAr = (ḠAr , l̄) with ḠAr = (V̄ A

r , Ē
A
r ). Reverse the direction of all edges.

For an initial type configuration c ∈ {0, 1}N , define the type and ancestral site function v̄c
and η̄c, respectively, as follows. Set v̄c(r, i) = ci and η̄c(r, i) = i for (r, i) ∈ V̄ A

r . Propagate
types and ancestral sites as follows. For (t, j) ∈ V̄ A

r with t ∈ (r, 0],
if l(t, j) = ◦ (resp. l(t, j) = ×), then set v̄c(t, j) = 0 (resp. v̄c(t, j) = 1) and η̄c(t, j) =
η̄c(t′, j), where (t′, j) ∈ V̄ A

r is the unique vertex with l(t′, j) 6= ∅ or t′ = r that transmits
the type to the left of (t, j).
if l(t, j) = and (t, i) ∈ V̄ A

r is the in-neighbour of (t, j), then set v̄c(t, j) = v̄c(t, i)
and η̄c(t, j) = η̄c(t, i).
if l(t, j) = , (t, i) ∈ V̄ A

r is the in-neighbour of (t, j) with i 6= j and v̄c(t, i) = 0, then
set v̄c(t, j) = v̄c(t, i) and η̄c(t, j) = η̄c(t, i).
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if l(t, j) = and for the in-neighbours (t, i) ∈ V̄ A
r and (t, k) ∈ V̄ A

r of (t, j) with
l(t, i) = , l(t, k) = , and (t, i) 6= (t, j), we have v̄c(t, i) = v̄c(t, k) = 0, then set
v̄c(t, j) = v̄c(t, i) and η̄c(t, j) = η̄c(t, i).

Otherwise, set v̄c(t, j) = v̄c(t′, j) and η̄c(t, j) = η̄c(t′, j), where (t′, j) ∈ V̄ A
r is the unique

vertex with l(t′, j) 6= ∅ or t′ = r that transmits the type to the left of (t, j).
For i ∈ A we say that (r, η̄c(0, i)) is the ancestor of (0, i) and J̄cr (0, i) := v̄c(r, η̄c(0, i)) is the
type of the ancestor of (0, i).

The argument following Definition 2.3 that showed that the type and ancestral site function
is well-defined in the Moran model graph also applies here.
In the ASG the direction of the edges between different sites is the reverse of the direction
of the edges in the underlying Moran model graph. In all our figures, the direction of arrows
corresponds to the direction in the underlying Moran model graph.

2.3 Type distribution in the Moran model via the killed ASG

Our first aim is to connect the ASG rigorously to the Moran model via duality. We consider
here only the case without interaction, i. e. γ = 0. To find a similar relation in the case
γ > 0 is more involved and we only deal with it later in the smsssi-limit in Chapter 4. In
Section 2.3.1, we identify a killed ASG as the appropriate ancestral structure. Section 2.3.2
contains the duality result that formally connects the forward and the backward perspective.
In the end, we exploit the duality to derive the long term properties of the Moran model
and the killed ASG (Section 2.3.3).

2.3.1 Killed ASG for finite populations

In this section we define the appropriate ancestral structure to characterise the type distri-
bution in the Moran model.

Our starting point is the well-known duality relation between the Wright–Fisher diffusion
with selection (but without mutation) and the line-counting process of the ASG (see [KN97]
and [Man09, Thm. 2.1]). The duality relation translates also into the finite population
setting. The main idea is that in the absence of mutations, a single individual at time t is of
type 1 if and only if all its potential ancestors at time 0 are of type 1. This is easily verified
via the pecking order (cf. Fig. 2.5). Namely, at every branching event, a type 0 on either
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Figure 2.5. The descendant line (D) splits into the continuing line (C) and the incoming
line (I). The incoming line is ancestral if and only if it is of type 0. The true ancestral line
is drawn in bold.
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×
×

×

Figure 2.6. The killed ASG either absorbs in a state with 0 lines due to mutations to
type 1 (left) or in a cemetery state ∆ due to a mutation to type 0 (center). In the absence
of mutations, the killed ASG coincides with the ASG (right).

the continuing or incoming line suffices for the descendant to be of type 0; iterating this over
all branching events gives the statement. The corresponding duality in the weak mutation–
weak selection limit appears already in [SU86, Lem. 2.1] (see also [AS05, Eq. (1.5)]), but
without the interpretation in terms of potential ancestors.

Remark 2.5. In the case γ > 0, this statement is not true any more. The type propagation
rule at trifurcations makes the analysis much more complicated. ♦

Mutations contain additional information and can allow us to determine the type of the
sampled individual even before assigning types to the potential ancestors. More precisely, a
mutation to type 1 determines the type of the line (to the right of the mutation) on which it
occurs, so this line need not be traced back further into the past; it may be pruned. Next,
the first mutation to type 0 (on any line that is still alive after the pruning) decides that
the sampled individual has type 0, so that no potential ancestor must be considered any
further and the process may be killed. We refer to the resulting structure as killed ASG.
We now provide a definition in terms of a directed graph with labelled vertices in the spirit
of Definition 2.10. The graph contains the set of vertices that are reachable from the root(s)
of the ASG, after removing all outgoing edges at vertices with a mutation label.

Definition 2.12 (Killed ASG for finite populations). LetAAr = (ḠAr , l̄A) with ḠAr = (V̄ A
r , Ē

A
r )

be an ASG in [0, r] started from A ⊆ [N ]. Define ĒA,?r := {((t1, i), (t2, j)) ∈ ĒAr : l(t1, i) /∈
{◦,×}} and

V̄ A,�
r := {(t, i) ∈ V̄ A

r : ∃ directed path in (V̄ A
r , Ē

A,?
r ) from (0, j) to (t, i) for some j ∈ A},

ĒA,�r := ĒA,?r ∩ (V̄ A,�
r × V̄ A,�

r ),

and l̄A,� is the restriction of l̄A to V̄ A,�
r . Let T� be the time of the first beneficial mutation

(after time 0) in ḠA,�r = (V̄ A,�
r , ĒA,�r ) with label function l̄A,�. Set T� = r if there is no

such mutation. The killed ASG of AAr is denoted by S�(AAr ) and it is the restriction of ḠA,�r

and l̄A,� to vertices with time component in [0, T�].

Fig. 2.6 depicts some realisations of the killed ASG. The propagation of types is analogous
to the ASG (see Definition 2.11).

Next, let us explain the dynamics of the killed ASG process. It starts with one line emerging
from each of the n individuals in a sample. Every line branches at rate s(N − n)/N , due
to a selective arrow from outside the current set of lines. In particular, this increases the
number of lines in the graph. A selective arrow connects an ordered pair of lines in the
graph at rate s/N . This does not change the current number of lines. An ordered pair of
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lines coalesces to a single potential ancestor at rate 1/N , i.e. there is a neutral edge between
the two vertices in the graph. The number of lines in the graph decreases by one. Every
line is pruned at rate uν1 (due to a deleterious mutation), decreasing the number of lines
by one. At rate uν0 per line, the process is killed (due to a beneficial mutation), that is, it
is sent to the cemetery state ∆.
It will turn out that for our purposes, it suffices to only keep track of the number of lines in
the killed ASG process. The following definition of the corresponding line-counting process
arises from the above description.

Definition 2.13 (Line-counting process of killed ASG for finite populations). The line-
counting process of the killed ASG is the continuous-time Markov chain R = (Rr)r≥0 with
values in [N ]0,∆ := [N ]0 ∪ {∆}. The transition rates are given by

qR(n, n+ 1) = sn
N − n
N

, qR(n, n− 1) = n
n− 1
N

+ nuν1, qR(n,∆) = nuν0, (2.9)

for n ∈ [N ].

The states 0 and ∆ are absorbing; all other states are transient. The state 0 is reached
if all lines are pruned due to deleterious mutations. The state ∆ is reached upon the first
beneficial mutation. Absorption in 0 (in ∆) implies that (not) all individuals in the sample
are of type 1. If u = 0, the absorption states are not accessible and the killed ASG is never
pruned or killed. R is then just the line-counting process of the ASG.
In the next section, we connect R to the Moran model via duality. This paves the way to
characterise the type distribution in the Moran model by means of the ancestral structure.

2.3.2 Factorial moment duality between Moran model and killed ASG

In the present section, we derive the formal connection between the killed ASG and the
Moran model. The main result is the factorial moment duality between the number of
unfit individuals in the Moran model and the line-counting process of the killed ASG in
Theorem 2.14.

For k, n ∈ N0, let
kn := k(k − 1) · · · (k − n+ 1)

be the falling factorial. Set k0 := 1 and kn := 0 for n > k ≥ 0. Define H : [N ]0× [N ]0,∆ → R
as

H(k, n) = kn

Nn
, k ∈ [N ]0, n ∈ [N ]0,∆, (2.10)

where n∆/N∆ := 0 for all n ∈ [N ]0. If n ∈ [N ]0, thenH(k, n) is the probability of sampling n
individuals of type 1 without replacement from a population with k type-1 individuals.

Theorem 2.14 (Duality). The Moran model (Yt)t≥0 and the line-counting process of the
killed ASG (Rt)t≥0 satisfy the duality relation for t ≥ 0

Ek
[
H(Yt, n)

]
= En

[
H(k,Rt)

]
, (2.11)

for all k ∈ [N ]0 and n ∈ [N ]0,∆.
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Remark 2.6. For ν0 = 0, this factorial moment duality is the analogue to the classic moment
duality in the weak mutation–weak selection framework (see Remark 3.4) but in the finite
population setting. ♦

The underlying idea of the duality is as follows. Sample n individuals at time t in the Moran
model. To determine the probability that these n individuals are all unfit, one may proceed
in two ways. Either, determine the probability that the n individuals at time t are unfit
if the types are sampled without replacement from a population with Yt type-1 individuals
given that Y0 = k. Alternatively, consider n (untyped) individuals at time t and trace back
their associated killed ASG back to time 0. If the killed ASG is absorbed in 0 (in ∆), (not)
all n individuals are unfit and the type distribution at time 0 is not relevant. If it is not
absorbed, determine the probability that all the remaining lines are assigned unfit types if
they are sampled without replacements from a population with k type-1 individuals.

Proof of Theorem 2.14. The infinitesimal generator of Y acts on functions f : [N ]0 → R
and is given by AY f(k) := AdY f(k) +AsY f(k) +AuY f(k), where

AdY f(k) = k
N − k
N

[
f(k + 1)− f(k)

]
+ k

N − k
N

[
f(k − 1)− f(k)

]
, (2.12)

AsY f(k) = sk
N − k
N

[
f(k − 1)− f(k)

]
, (2.13)

AuY f(k) = (N − k)uν1
[
f(k + 1)− f(k)

]
+ kuν0

[
f(k − 1)− f(k)

]
(2.14)

correspond to genetic drift, selection, and mutation, respectively. On the other hand, the
infinitesimal generator of R acts on functions f̃ : [N ]0,∆ → R and is given by ARf̃(n) :=
AdRf̃(n) +AsRf̃(n) +AuRf̃(n), where

AdRf̃(n) = n
n− 1
N

[
f̃(n− 1)− f̃(n)

]
, (2.15)

AsRf̃(n) = sn
N − n
N

[
f̃(n+ 1)− f̃(n)

]
, (2.16)

AuRf̃(n) = nuν1
[
f̃(n− 1)− f̃(n)

]
+ nuν0

[
f̃(∆)− f̃(n)

]
(2.17)

correspond to coalescence, selection, and mutation, respectively. Since the state space of Y
is finite, every function is in the domain of AY . In particular, H(·, n)(k) and P Yt H(·, n)(k)
lie in the domain of AY , where (P Yt )t≥0 is the transition semigroup corresponding to Y . Sim-
ilarly, H(k, ·)(n) and PRt H(k, ·)(n) lie in the domain of AR, where (PRt )t≥0 is the transition
semigroup corresponding to R. We will show that

AYH(·, n)(k) = ARH(k, ·)(n) for k ∈ [N ]0, n ∈ [N ]0,∆.

The result then follows from [JK14, Prop. 1.2]. For the genetic drift and coalescence part,
we have

AdYH(·, n)(k) = k
N − k
N

(
[k + 1]n − kn

Nn
+ [k − 1]n − kn

Nn

)

= k
N − n+ 1− (k − n+ 1)

Nn
n

(n− 1)
N

[k − 1]n−2
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= AdRH(k, ·)(n).

For the selection parts we have

AsYH(·, n)(k) = s
n

N
k
k − n− (N − n)

Nn
[k − 1]n−1 = AsRH(k, ·)(n).

In the end, we match the mutation parts,

AuYH(·, n)(k) = (N − n− (k − n))nuν1
kn−1

Nn
− knuν0

[k − 1]n−1

Nn

= AuRH(·, n)(k).

2.3.3 Properties and applications of the killed ASG for finite populations

The duality result of the previous section allows us to connect the number of unfit individuals
in the Moran model with the line-counting process of the killed ASG and vice versa. We are
particularly interested in the long-term behaviour of the two processes. As a consequence
of the duality, we obtain a characterisation of the stationary distribution and the fixation
probability in the Moran model in terms of the killed ASG. In particular, we recover the
classic results of Section 2.1.2 by genealogical means.

If u = 0, Y absorbs in either 0 or N , whereas R has no absorbing states and coincides with
the number of lines in the ASG. The line-counting process of the (killed) ASG then has a
stationary distribution πR given in the following proposition.

Proposition 2.15 (Stationary distribution of R). If u = 0 and s > 0, the stationary distri-
bution of R is given by

πR(n) =
(N
n

)
sn

(1 + s)N − 1 , n ∈ [N ]. (2.18)

In particular, πR follows a Binomial distribution with parameters N and s/(1 + s) that is
conditioned to be positive.

Remark 2.7. That πR follows a Binomial distribution with parameters N and s/(1 + s)
that is conditioned to be positive was already noted by [Cor17a, Sect. 4.4]. ♦

Proof of Proposition 2.15. It is readily verified that the detailed balance condition holds
and πR is indeed a probability distribution. For the second statement, let B be a random
variable with Binomial distribution with parameters N and s/(1 + s). For n ∈ [N ],

P(B = n | B > 0) = P(B = n)
1− P(B = 0) =

(N
n

)(
s

1+s

)n( 1
1+s

)N−n
1− (1 + s)−N = πR(n).

We denote by R∞ a random variable on [N ] distributed according to πR. As a consequence
of Theorem 2.14, we can express the fixation probability of type 1 in the Moran model via
the stationary distribution of the dual process.
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Corollary 2.16 (Fixation probability of Y ). If u = 0 and s > 0, let wY (k) be the fixation
probability of type 1 of the Moran model started with k type-1 individuals. Let R∞ be
distributed according to πR. Then,

wY (k) = E
[
kR∞

NR∞

]
, k ∈ [N ]0. (2.19)

Remark 2.8. Corollary 2.16 yields an alternative way to derive the expression for the
fixation probability in the Moran model of Corollary 2.9. Proposition 2.15 and the fact
that k `/`` =

(k
`

)
leads to

wY (k) =
N∑
`=1

πR(`) k
`

N `
= 1

(1 + s)N − 1

k∑
`=1

(
N

`

)
s`
k `

N `
= (1 + s)k − 1

(1 + s)N − 1 ,

which coincides with the expression for the fixation probability in Corollary 2.9. ♦

Proof of Corollary 2.16. Set n = 1 in (2.11). Taking the limit t → ∞ on both sides leads
to the result.

The corollary provides an interpretation for the fixation probability of the Moran model in
terms of the ancestral process. An individual sampled in the distant future is of type 1 if
and only if all lines in the stationary ancestral selection graph are of type 1.

If u, ν0, ν1 > 0, then R absorbs almost surely; whereas Y has no absorbing states. Instead,
the latter has stationary distribution πY . We denote by Y∞ a random variable on [N ]0
distributed according to πY . In contrast, R absorbs in this parameter setting in either 0
or ∆. Let T0 = inf{r > 0 : Rr = 0} and T∆ = inf{r > 0 : Rr = ∆} be the first time R
hits 0 and ∆, respectively. Set

wR(n) = P(T0 < T∆ | R0 = n),

so that wR coincides with the absorption probability of R in 0 if R starts in n. The following
result is a direct consequence of the duality in Theorem 2.14.

Corollary 2.17 (Absorption probability of R). If u, ν0, ν1 > 0,

wR(n) = E
[
Y∞

n

Nn

]
, n ∈ [N ]0. (2.20)

The genealogical interpretation of the above result is as follows. R is almost surely absorbed
(in {0,∆}) in finite time. To see this, note that a beneficial mutation, which would lead to
the killing of R, occurs at rate uν0 per line. While R is not absorbed, there is at least one
such line. In particular, if we pick n individuals in the distant future we may assume that at
present their associated killed ASG is already absorbed in either 0 or ∆. On the other hand,
if we sample n individuals in the distant future, we sample them according to the stationary
distribution. Hence, the probability that R, which is started with n lineages in the distant
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future, is absorbed in 0 coincides with the probability that n individuals sampled from the
stationary population are unfit.

Remark 2.9. Corollary 2.17 can be used to determine the moments of Y∞ by genealogical
means. Combining a first-step decomposition of wR(k) with the corollary leads to a recursion
of the falling factorial moments of Y∞. We use such an approach later in this thesis, e.g. in
Corollary 3.5. ♦

Proof of Corollary 2.17. Set k = N in (2.11). Taking the limit t → ∞ on both sides leads
to the result.

The explicit expression for the stationary distribution of Y in Corollary 2.7 allows us to
state an explicit expression for the absorption probability of R in 0.

Corollary 2.18. Let u, ν0, ν1 > 0 and let wR(n) be the absorption probability of R in 0 if R
started at n. Then, for n ∈ [N ]0,

wR(n) = C̃1
(1 + s)n

N−n∑
k=0

(N−n
k

)
(1 + s)k Γ

(
uν1N + n+ k

)
Γ
(
uν0N

1 + s
+N − (n+ k)

)
, (2.21)

with C̃1 as given in (2.6).

Proof. The statement is a straightforward consequence of Corollary 2.17 together with Co-
rollary 2.7.

2.4 Ancestral type distribution

So far we have been concerned with the type distribution of the population in the future.
Now, we turn our attention to the type distribution of the ancestors of the individuals from
today’s population.
When tracing back the genealogy of the entire population, the number of ancestors of this
population will decrease. Cordero [Cor17a, Lem. 4.3] proved that in the Moran model all
ancestral lines eventually coalesce to a common ancestor (see also [KN97, Thm. 3.2] and
[Cor17a, Sect. 3]). Hence, in the sufficiently distant past the ancestral line of any individual
coincides with the ancestral line of the common ancestor. One way to see this is via the
ASG. The genealogy of the entire population is contained in the ASG started from the
entire population. At each coalescence event between lines of the genealogy, the number
of ancestors decreases. All other events in the ASG keep the number of ancestors at most
constant. If the line-counting process of the ASG reaches 1, which occurs in finite time
almost surely, the number of ancestors is also 1. In particular, the ancestral type at a prior
time of the roots of the ASG coincides with the type of the common ancestor at this (prior)
time.

Definition 2.19 (Ancestral type distribution, common ancestor type distribution).
Consider a Moran model in the time interval [0, r]. Let Jcr be the type of the ancestor
at backward time 0 of a uniformly chosen individual at time r > 0 if the initial type
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configuration is c ∈ {0, 1}N . The ancestral type distribution, conditional on an initial type
configuration with k type-1 individuals, is defined as

hr(k) := P(Jcr = 1 | |c| = k),

where |c| =
∑N
i=1 ci and k ∈ [N ]0.

The common ancestor type distribution, conditional on an initial type configuration with k
type-1 individuals, is defined as

h∞(k) := lim
r→∞

hr(k), k ∈ [N ]0,

if the limit exists. For u, ν0, ν1 > 0, the common ancestor type distribution at equilibrium
is defined as

h∞(Y∞) := E
[
h∞(Y∞)

]
,

where Y∞ is distributed according to πY .

The ancestral type distribution is difficult to determine via the forward point of view. In
what follows, we still assume γ = 0, so that all lines in the ASG correspond to lines of
potential ancestors. We can exploit the ideas developed in Section 2.3 to tackle the problem.

2.4.1 Pruned lookdown ASG for finite populations

In this section, we recapitulate the construction of the pruned lookdown ASG (pLD-ASG)
and the representation of the ancestral type distribution in terms of its line-counting process.
The identification of the ancestor of an individual picked uniformly at present by means of
the ASG is not straightforward, since we now must identify the parental branch (incom-
ing or continuing, depending on the type) at every branching event. This requires nested
case distinctions. Furthermore, some ancestral lines must be traced back beyond the first
mutation. Nevertheless, mutations may, as in the killed ASG, still rule out certain potential
ancestors. This leads to the notion of relevant potential ancestor.

Definition 2.20 (Relevant potential ancestors). Consider an ASG AAr = (ḠAr , l̄A) starting
from A ⊆ [N ] with ḠAr = (V̄ A

r , Ē
A
r ). We call a leaf (r, j) ∈ V̄ A

r a relevant potential ancestor
of A if there is an initial type configuration c ∈ {0, 1}N such that for some i ∈ A, we have
η̄c(0, i) = j.

The pLD-ASG, introduced by Lenz et al. [Len+15] in the diffusion limit of the Moran model
and extended by Cordero [Cor17a, Sect. 4] to the finite population setting, keeps track of
the relevant potential ancestors in an ASG started from a single individual. We first recall
the idea of the pLD-ASG and then define the associated line-counting process, which will
be our main tool to analyse the ancestral type distribution.
The starting point is a single individual in the Moran model. The pLD-ASG is contained
in the ASG starting from this individual. Its lines correspond to the relevant potential
ancestors and are assigned consecutive levels in the non-negative integers starting at level 1.
The levels indicate the priority of the relevant potential ancestors to be the true ancestor
if all relevant potential ancestor are fit. A lower level means a higher priority. If a line in
the pLD-ASG is hit by a selective arrow from outside the current set, its level increases by
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×
×

×

Figure 2.7. Realisation of the pLD-ASG. Grey: level of immune line.

one and, at the same time, all lines with higher levels also increase their level by one. The
level formerly assigned to the line hit by the selective arrow is assigned to the incoming
line. If a selective arrow joins two lines in the pLD-ASG with the line at the tail having
a larger level than the line at the tip, then the line at the tail obtains the level of the line
at the tip and the line at the tip increases its level by one; all lines with a level in between
increase their level by one. If a selective arrow joins two lines in the pLD-ASG with the
line at the tail having a smaller level than the line at the tip, both lines continue with their
level. If two lines coalesce, the line with the higher level stops and only the line with the
lower level continues. The lines that have a larger level than both of the lines involved in
such a coalescence event decrease their level by one. This ordering of the lines is inspired
by the lookdown constructions of Donnelly and Kurtz [DK99b].

Next, let us explain how mutations affect the priority levels in the graph. Mutations de-
termine the type on a line (to the right) before any type assignment. In particular, some
ancestral lines are not relevant after a mutation. Due to the specific ordering of the lines
in the ‘lookdown’-ASG, we can identify and then prune these lines. Doing so requires some
more notation. At a given time, the line that is the ancestral line if all other relevant po-
tential ancestral lines at that time are assigned type 1 is called the immune line. Such a
line is always present, because it is always relevant. If a deleterious mutation occurs on the
immune line, we do not prune it, but assign it the currently largest level. All lines that
previously were on a higher level decrease their level by one to fill the gap. This explains
the name: the immune line is immune to pruning by deleterious mutations. A line that is
not the immune line will, by construction, play at some point the role of an incoming line. A
deleterious mutation on such a line leads to an unfit type so that this line is not successful at
the selection event. Hence, the line is not any more among the relevant potential ancestors
and we remove it from the current set. The lines having a higher level decrease their level
by one to fill the gap. On the other hand, a line that is not the immune line is incoming to
all lines with a higher level. A beneficial mutation on such a line therefore deprives all lines
with a larger level of the possibility to be relevant. Therefore, we prune all lines above the
beneficial mutation. The immune line is now the line with the mutation. See Fig. 2.7 for a
realisation of the pLD-ASG.
It turns out that for our purposes it will be enough to consider only the line-counting process
of the pLD-ASG, which is the content of the following definition. For a rigorous definition
of the pLD-ASG as a graph structure, we refer to [Cor17a, Sect. 4.6].

Definition 2.21 (Line-counting process of pLD-ASG for finite populations). The line-counting
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process of the pLD-ASG, denoted by L = (Lr)r≥0, is the continuous-time Markov chain
on [N ] with transition rates

qL(n, n+ 1) = sn
N − n
N

,

qL(n, n− 1) = n
n− 1
N

+ (n− 1)uν1 + uν0 1{n>1},

qL(n, j) = uν0, j ∈ [n− 2].

If s > 0, L is irreducible and Lr converges in distribution to its stationary distribution.
In this case, we denote by L∞ a random variable distributed according to the stationary
distribution of L. If s = 0, then set L∞ = 1 a.s. unless stated otherwise.

Remark 2.10. For later use, we do not insist on starting the pLD-ASG from a single
individual; but one should keep in mind that if we start the process with n > 1 lines, then
L does not correctly describe the number of relevant potential ancestors of a sample of n
individuals. For example, assume that the first event is a beneficial mutation on the line
on level 1. This induces the pruning of all other lines, which does not properley reflect the
ancestry of relevant potential ancestors of the n individuals. ♦

The reason for the entire construction is the following. Consider a given realisation of the
pLD-ASG from time 0 up to (backward) time r and a given assignment of types to the leaves.
The true ancestral line is then the lowest line that has been assigned a type 0 in which case
the individual at time 0 has a fit ancestor at time r. If no type 0 is assigned to the leaves of
the pLD-ASG at time r, the true ancestral line is the immune line and the ancestor of the
individual at time 0 has an ancestor of type 1 at time r. This leads to the following (known)
connection, which goes back to [Cor17a, Prop. 4.6, Prop. 4.7] (see [Len+15, Thm. 4] for
the corresponding earlier result in the weak mutation–weak selection limit), between the
line-counting process of the pLD-ASG and the ancestral type distribution.

Theorem 2.22 (Representation of ancestral type distribution). We have

hr(k) = E1

[
kLr

NLr

]
, k ∈ [N ]0. (2.22)

In particular, h∞(k) := limr→∞ hr(k) exists and is given by

h∞(k) = E1

[
kL∞

NL∞

]
, k ∈ [N ]0. (2.23)

Proof. The proof is a direct consequence of [Cor17a, Prop. 4.6, Prop. 4.7].

Remark 2.11. If u = 0, then L∞ = R∞. In this parameter regime one type fixates. In
particular, the probability of the common ancestor of the population in the distant future
to be unfit at present coincides with the fixation probability of the unfit type at present. ♦

The above representation of the ancestral type distribution is consistent with the graphical
picture. The ancestral type at backward time r is 1 if and only if all Lr lines are of type 1.
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The corresponding probability is given by E1[kLr/NLr ]. Moreover, note that equation (2.22)
can be rewritten as

hr(k) = E1

[
kLr

NLr

]
= 1− N − k

N

N−1∑
n=0

P1(Lr > n) kn

(N − 1)n . (2.24)

This means that we can partition the event of a beneficial ancestor according to the first
level occupied by a type-0 individual. Namely,

P1(Lr > n) N − k
N

kn

(N − 1)n

is the probability that at least n + 1 lines are present, the (n + 1)st line is of type 0, and
the first n lines are of type 1. Summing this probability over n gives the probability of a fit
ancestor at backward time r.

Remark 2.12. Let us provide some historic remarks. Fearnhead [Fea02, Thm. 3] was the
first to obtain a rigorous characterisation of the common ancestor type distribution at equi-
librium in the weak mutation–weak selection limit. His approach is also based on the ances-
tral selection graph. He finds a power series expansion with coefficients satisfying what is
now called the Fearnhead-recursion. Taylor [Tay07, Lem. 4.1] rederived Fearnhead’s results
by an approach via the structured coalescent of Barton et al. [BES04] (still in the weak
mutation–weak selection limit). [Len+15, Thm. 5] derived the result by probabilistic means
in terms of the pLD-ASG. In particular, they interpret the coefficients of Fearnhead’s original
representation as tail probabilities. The finite population case was first treated by Kluth
et al. [KHB13]. Cordero [Cor17a] later rederived their results by means of the analogue to
the pLD-ASG in the finite population setting. ♦

2.4.2 Tail probabilities of line-counting process of pLD-ASG and Siegmund
duality

The representation of the ancestral type distribution in (2.24) illustrates the importance of
the tail probabilities of L. We abbreviate the tail probabilities as

an := P(L∞ > n), (2.25)

and refer to them also as Fearnhead-coefficients. In this section, we derive a recursion for
these tail probabilities. This is the so-called Fearnhead’s recursion in the finite population
setting. Our derivation of the recursion is based on a duality result in Proposition 2.25.

Proposition 2.23 (Feanhead’s recursion in the Moran model). Let an be defined as in (2.25).
They are the unique solution of the following system of equations. For n ∈ [N − 1], we have(n+ 1

N
+ uν1

)
an+1 =

(n+ 1
N

+ s
N − n
N

+ u
)
an − s

N − n
N

an−1 (2.26)

complemented by a0 = 1 and aN = 0.

Remark 2.13. Recursion (2.26) appears first in [KHB13, Thm. 2] as a finite population
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analogue to Fearnhead’s recursion [Fea02, Thm. 3]. [Cor17a, Prop. 4.7] connects the recur-
sion to the tail probabilities of L∞. [CM19, Thm. 4.1] solved the recursion via a generating
function approach. ♦

Our proof of Proposition 2.23 differs from the one of Cordero [Cor17a, Prop. 4.7], who also
uses the pLD-ASG to prove the recursion. In the weak mutation–weak selection limit of
the Moran model, Baake et al. [BLW16, Lem. 4.1] relate the tail probabilities of L∞ to
the absorption probabilities of another process. We establish such a relation for the finite
population setting. Eventually, this enables us to prove Proposition 2.23. But first, let us
rigorously define the said process.

Definition 2.24. Let D = (Dt)t≥0 be the continuous-time Markov chain with values in
[N + 1] and transition rates,

qD(d, d+ 1) = 1{d≤N}
[
d
d− 1
N

+ (d− 1)uν1
]
,

qD(d, d− 1) = s(d− 1) N − (d− 1)
N

,

qD(d,N + 1) = (d− 1)uν0.

This process absorbs in either 1 or N + 1.

Proposition 2.25 (Siegmund duality). The processes D and L are Siegmund-dual, i. e.
for t ≥ 0

P(d ≤ Lt | L0 = n) = P(Dt ≤ n | D0 = d), ∀n ∈ [N ], d ∈ [N + 1]. (2.27)

Remark 2.14. An analogous result was proved in the weak mutation–weak selection limit
by [BLW16, Lem. 4.5]. If s = u = 0, the relation reduces to a duality between Kingman’s
coalescent and the fixation line, which was introduced by Pfaffelhuber and Wakolbinger
[PW06] (see also [Hén15]). ♦

Proof of Proposition 2.25. In [BLW16, Lem. 4.5] the analogous result in the weak mutation–
weak selection limit is proved via Clifford-Sudburry flights [CS85]. Here, we provide a gener-
ator proof. We denote the infinitesimal generators of L and D by AL and AD, respectively,
given by

ALf(n) = sn
N − n
N

[f(n+ 1)− f(n)]

+
(
n
n− 1
N

+ (n− 1)uν1 + uν0 1{n>1}
)

[f(n− 1)− f(n)]

+ 1{n>1}uν0

n−2∑
i=1

[f(i)− f(n)],

ADf̃(d) =
(
d
d− 1
N

+ (d− 1)uν1
)
[f̃(d+ 1)− f̃(d)]

+ s(d− 1) N − (d− 1)
N

[f̃(d− 1)− f̃(d)]

+ (d− 1)uν0 [f̃(N + 1)− f̃(d)],
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where f : [N ]→ R and f̃ : [N + 1]→ R. Set H̄(n, d) = 1{d≤n}. Since the state space of L is
finite, every function is in the domain of AL. In particular, H̄(·, d)(n) and PLt H̄(·, d)(n) lie
in the domain of AL, where (PLt )t≥0 is the transition semigroup corresponding to L. Simil-
arly, H̄(n, ·)(d) and PDt H̄(n, ·)(d) lie in the domain of AD, where (PDt )t≥0 is the transition
semigroup corresponding to D. We now show that ALH̄(·, d)(n) = ADH̄(n, ·)(d). The result
then follows once more as an application of [JK14, Prop. 1.2]. First note that

n−1∑
i=1

1{d≤n<d+i} =

d− 1, if n ≥ d > 1,

0, else.

Hence,

ALH̄(·, d)(n)

= sn
N − n
N

1{d=n+1} −
(
n
n− 1
N

+ (n− 1)uν1
)
1{d=n} − uν0

n−1∑
i=1

1{d≤n<d+i}

= s(d− 1)N − (d− 1)
N

1{d−1=n} −
(
d
d− 1
N

+ (d− 1)uν1
)
1{d=n} − (d− 1)uν01{d≤n}

= ADH̄(n, ·)(d)

This yields another way to represent the tail-probabilities of L at stationarity.

Corollary 2.26 (Tail probabilities as absorption probabilities).

P
(

lim
t→∞

Dt = 1 | D0 = n+ 1
)

= an, ∀ n ∈ [N ]0. (2.28)

Proof. Setting n = 1 in Proposition 2.25 and taking t→∞ yields the result.

We are now ready to provide a proof of Proposition 2.23.

Proof of Proposition 2.23. By Corollary 2.26, an = P(limt→∞Dt = 1 | D0 = n+ 1), i. e. the
nth Fearnhead-coefficient corresponds to the probability of D, started in n + 1, to absorb
in 1. Clearly, a0 = 1 and aN = 0. For n ∈ [N − 1], a first-step decomposition of the
absorption probability yields[

n
n+ 1
N

+ sn
N − n
N

+ nu

]
an =

[
n
n+ 1
N

+ nuν1

]
an+1 + sn

N − n
N

an−1.

Dividing by n leads to the claim. Note that the system of equations (2.26) can be written
in matrix form. Let B = (bij) ∈ R(N−1)×(N−1) be this matrix. B is a tridiagonal matrix
that is weakly chained diagonally dominant, i.e. |bii|≥

∑
j 6=i|bij | and for each i ∈ [N − 1]

for which this inequality is not strict there is a sequence of nonzero elements of B of the
form bii1 , bi1i2 , . . . , birk with bkk >

∑
j 6=k|bkj |. It follows by [SC74] that B is nonsingular. In

particular, the solution of the recursion with the boundary conditions is unique.
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2.4.3 Properties of the common ancestor type distribution

In this section, we first derive a monotonicity property of h∞ in ν0. Finally, we consider the
common ancestor type distribution in a population at equilibrium.

The next proposition sheds light on the effect of ν0 on h∞(k). To stress the dependence,
we (temporarily) write h∞(k, ν0). The following result is heuristically proved in [Len+15,
Sect. 6] in the diffusive setting via a coupling argument. We formalise this argument in our
proof.

Proposition 2.27 (Monotonicity of h∞). Let k ∈ [N − 1]. If s, u > 0 and ν0, ν̄0 ∈ [0, 1]
with ν0 < ν̄0,

h∞(k, ν0) < h∞(k, ν̄0).

Proof. Fix s, u > 0, k ∈ [N − 1], and ν0, ν̄0 ∈ [0, 1] with ν0 < ν̄0. Furthermore, we
set ν1 = 1− ν0 and ν̄1 = 1 − ν̄0. Clearly, ν1 > ν̄1. Write L and L̄ for the line-counting
processes of the pLD-ASG with the same branching parameter s, but beneficial mutation
rate uν0 and uν̄0, respectively (deleterious mutation rate uν1 and uν̄1, respectively). The
two processes can be coupled such that L̄t ≤ Lt for all t > 0 if L̄0 ≤ L0 as follows. Assume
Lr- = n and L̄r- = n̄ with n̄ ≤ n.
If L increases at time r to n+ 1 due to a selective event, then

L̄r =

n̄+ 1, with prob. n̄(N−n̄)
n(N−n) ,

n̄ with prob. 1− n̄(N−n̄)
n(N−n) .

If L decreases at time r to n− 1 due to a neutral reproduction event, then

L̄r =

n̄− 1, with prob. n̄(n̄−1)
n(n−1) ,

n̄ with prob. 1− n̄(n̄−1)
n(n−1) .

If L decreases to i due to a beneficial mutation, then L̄r := n̄ ∧ i.
If L decreases at time r to n− 1 due to a deleterious mutation, then

L̄r =


n̄− 1, with prob. ν̄1

ν1
n̄−1
n−1 ,

i, with prob. ν1−ν̄1
ν1

1
n−1 , for i ∈ [n̄− 1],

n̄ with prob. 1− n̄−1
n−1 .

For all k ∈ [N ], by construction, P(Lr > k) ≥ P(L̄r > k). Taking the limit r →∞ leads to
ak ≥ āk. Assume that ak = āk for all k. The tail probabilities solve Fearnhead’s recursion,
which, by Proposition 2.23, has a unique solution. Hence, (2.26) leads to (ν1 − ν̄1)an = 0
and therefore an = 0 for n ∈ [N ]\{1}. It follows that a1 = s(N − 1)/(2 + s(N − 1) + uN).
But (2.26) with n = 2 leads to a contraction, because a1 > 0 for s > 0. Hence, there
exists k ∈ [N ] such that ak > āk. In particular, using (2.24), h∞(k, ν0) < h∞(k, ν̄0) for
k ∈ [N − 1].
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Finally, we consider the common ancestor type distribution in a population at equilibrium.

Proposition 2.28. If s, u, ν0, ν1 > 0, let Y∞ be a random variable on [N ]0 with distribution
πY . Then

E[h∞(Y∞)] = E[wR(L∞)]. (2.29)

Proof. Equation (2.23), interchanging the two finite sums, and Corollary 2.17 lead to

E[h∞(Y∞)] =
N∑
k=0

N∑
n=1

P(L∞ = n)P(Y∞ = k) k
n

Nn
= E [wR(L∞)] .

Proposition 2.28 is consistent with the results from Section 2.3. For an unfit common
ancestor in a population at equilibrium, the killed ASG that arises from the lines of the
pLD-ASG at stationarity needs to absorb in 0 so that all relevant potential ancestors are
indeed unfit.

2.4.4 An absorbing Markov chain and a factorial moment duality

In this section, we provide an alternative representation of the common ancestor type dis-
tribution in terms of the absorption probability of a certain Markov chain. We connect the
latter process to the line-counting process of the pLD-ASG via duality in Theorem 2.29.
In the weak mutation–weak selection limit of the Moran model, Taylor [Tay07, Eq. (11)]
shows that the common ancestor type distribution, conditional on the initial type configura-
tion, is a harmonic function for the infinitesimal generator of a jump-diffusion process. The
finite population analogue of this jump-diffusion is the following continuous-time Markov
chain Ỹ := (Ỹt)t≥0 with values in [N ]0. The transition rates are given by

q
Ỹ

(`, `+ 1) = `
N − `
N

+ (N − `) `

`+ 1 uν1, q
Ỹ

(`,N) = `

N − (`− 1) uν0,

q
Ỹ

(`, `− 1) = `
N − `
N

(1 + s) + `
N − `

N − (`− 1) uν0, q
Ỹ

(`, 0) = N − `
`+ 1 uν1,

for ` ∈ [N ]0. Note that the states 0 and N are absorbing.
Let us first connect Ỹ to the Moran model. Define T̃0 := inf{t ≥ 0 : Ỹt = 0} and T̃N :=
inf{t ≥ 0 : Ỹt = N}, i.e. the first time Ỹ hits 0 and N , respectively. Set T̃ := min{T̃0, T̃N}.
We can couple Y and Ỹ on the basis of the graphical representation such that for Ỹ0 = Y0 ∈
[N ]0, we have Yt = Ỹt for t ≤ T̃ . Consider an initial type configuration c ∈ {0, 1}N with
|c| = Y0 = Ỹ0. Assume Yt− := ` for some ` ∈ [N ]0. If Ỹt− ∈ {0, N}, then Ỹt− = Ỹt. Now,
assume Ỹt− /∈ {0, N}. If Y jumps at time t to ` + 1 (resp. to ` − 1) due to a reproduction
event, then set Ỹt = Ỹt− + 1 (resp. Ỹt = Ỹt− − 1). If Y jumps at time t to ` + 1 due to a
deleterious mutation, then set

Ỹt :=

Ỹt− + 1, with probability `/(`+ 1),

0, with probability 1/(`+ 1).
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×
`

N − `

`+ 1

N − (`+ 1)

`

N − `

`− 1

N − (`− 1)

Figure 2.8. A type changing deleterious mutation (resp. beneficial mutation) on a given
line changes the type distribution in the Moran model from (N − `, `) to (N − (`+ 1), `+ 1)
(resp. to (N − (`− 1), `− 1)) and is depicted on the left (resp. right). At each type chan-
ging deleterious mutation (resp. beneficial mutation) flip a coin with frequency-dependent
success probability 1/(`+1) (resp. 1/(N − `+1)). If the first success is due to a deleterious
mutation (beneficial mutation) Ỹ jumps to 0 (resp. to N). A solid (dotted) line corresponds
to an unfit (fit) individual.

If Y jumps at time t to `− 1 due to a beneficial mutation, then set

Ỹt :=

Ỹt− − 1, with probability (N − `)/(N − `+ 1),

N, with probability 1/(N − `+ 1).

In particular, the only events that make Ỹ to differ from Y are type changing mutations.
See also Fig. 2.8.
Now, we strengthen the result of Taylor [Tay07, Eq. (11)] and show that Ỹ is dual to L.

Theorem 2.29 (Duality). The processes Ỹ and L are dual with respect to the duality func-
tion H(`, n) (from (2.10)), that is, for t ≥ 0,

E`[H(Ỹt, n)] = En[H(`, Lt)], ∀` ∈ [N ]0, n ∈ [N ]. (2.30)

Before proving this result, let us provide the following heuristic sketch to motivate the
duality. We follow closely the interpretation of the diffusion-limit analogue of the absorbing
Markov chain in terms of the structured coalescent as it is given in Lenz et al. [Len+15,
Sect. 7.1] (see also [Tay07, p. 821]). This provides some intuition why the duality should
hold (even though these authors do not mention a duality).
We start with an observation regarding the rates at which Ỹ jumps to the boundary. Let
J t+δr be the type of the ancestor at (forward) time r of an individual uniformly sampled at
time t+ δ in the Moran model in [0, t+ δ] with initial type distribution Y0 = l0 ∈ [N − 1].
Let M×t,δ be the event of exactly one type changing deleterious mutation in [t, t + δ] in the
Moran model (and no other event), where δ > 0. Denote by (FYr )r≥0 the natural filtration
of Y . Note that then

P(J t+δt = 0 | J t+δt+δ = 1,Ft,M×t,δ) =
P(J t+δt = 0, J t+δt+δ = 1 | Ft,M×t,δ)

P(J t+δt+δ = 1 | Ft,M×t,δ)
= 1
Yt + 1 ,

i.e. given an individual that is unfit at time t + δ, Ft, and a type changing deleterious
mutation occurs in a small time horizon δ, the probability that it is the ancestral line of the
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picked individual that experiences a type change in [t, t+ δ] is 1/(Yt + 1). Similarly,

P(J t+δt = 1 | J t+δt+δ = 1,Ft,M×t,δ) = Yt
Yt + 1 .

In addition, the rate at which a type changing deleterious mutations occurs in the Moran
model is (N − Yt)uν1. Altogether, we would expect a type changing deleterious mutation
on the ancestral line at time t of an individual that is unfit at time t + δ to occur at rate
(N−Yt)uν1/(Yt+1). By the same argument, we expect a type changing beneficial mutation
on the ancestral line at time t of an individual that is chosen at time t+δ and that is unfit to
occur at rate Ytuν0/(N − Yt + 1). The probability that a type changing beneficial mutation
at time t does not occur on the ancestral line of a fit individual picked at time t + δ is
(N−Yt)/(N−Yt+1). This suggests that, given Ft, the type along an ancestral line changes
according to the above rates if the type process along the ancestral line would be a Markov
process.
Having this in mind, consider, for t > 0 and conditional on Y , the jump process Ĵ t :=
(Ĵ tt−r)r∈[0,t], i.e. it starts at time t and ends at 0, with state space {0, 1} and time-
inhomogeneous jump rates given by

qĴtt−r
(1, 0) = N − Yt−r

Yt−r + 1 uν1 and qĴtt−r
(0, 1) = Yt−r

N − Yt−r + 1uν0,

where r ∈ [0, t]. We can construct this process on the basis of two Poisson point pro-
cesses Π0,Y and Π1,Y on the positive real line with inhomogeneous arrival rates given by,
respectively,

N − Yτ
Yτ + 1 uν1 and Yτ

N − Yτ + 1uν0,

for τ > 0. For any point τ0 ∈ [0, t] of Π0,Y , Ĵ t jumps to 0 at time τ0. If Ĵ t was already in 0,
it remains there. On the other hand, for any arrival time τ1 ∈ [0, t] of Π1,Y , Ĵ t jumps to 1 at
time τ1; and if it already was in 1, it remains there. Now, let T̂0 and T̂1 be the arrival time
of Π0,Y and Π1,Y , respectively, that is closest to 0. Set T̂ := min{T̂0, T̂1}. If T̂ = T̂1, then
Ĵ t0 = 1; otherwise, Ĵ t0 = 0. Ĵ t is constructed in such a way that its distribution agrees with
the one that we claim is the one of J t, i.e. the type process along the ancestral line of a picked
individual at time t. In addition, given Y , points of Π0,Y and Π1,Y arrive at the same rate at
which Ỹ jumps to N and 0, respectively. Hence, ((Yt)0≤t<T̂ , N1{T̂=T̂1})

d= (Ỹ0≤t<T̃ , ỸT̃ ). In
particular, conditional on {Ỹt /∈ {0, N}}, the probability of an unfit ancestral type at time 0
agrees with the probability of sampling an unfit individual at time t, which is Yt/N . The
event of absorption of Ỹ in 0 or N has the same distribution as the last jump (before time 0)
on the ancestral line of the sampled individual being to 0 or 1, respectively. This leads to
the representation hr(`0) = E`0 [Ỹr/N ], which is the special case of the duality for n = 1.
Note that to turn this heuristic into a complete proof, we need to show that (J tt−r)r∈[0,t] is
a Markov process, (J tt−r)r∈[0,t]

d= (Ĵ tt−r)r∈[0,t], and then extend the argument for n > 1. It
what follows, we take a more analytic route to prove the duality. We require the following
auxiliary lemma.



36 2 Moran model – forward and backward in time

Lemma 2.30 (Auxiliary lemma). For N, `, n ∈ N,

n−1∑
i=1

(
N − i
N − `

)
=
(

N

N − `+ 1

)
−
(
N − n+ 1
N − `+ 1

)
. (2.31)

Proof. It is classical that for k, n ∈ N the following identity holds,

n∑
m=0

(
m

k

)
=
(
n+ 1
k + 1

)
.

Hence,

n−1∑
j=1

(
N − j
N − `

)
=

N−1∑
j=0

(
j

N − `

)
−
N−n∑
j=0

(
j

N − `

)
=
(

N

N − `+ 1

)
−
(
N − n+ 1
N − `+ 1

)
.

Proof of Theorem 2.29. The infinitesimal generator of Ỹ acts on functions f : [N ]0 → R and
is given by AỸ = AdY +AsY +Aν0

Ỹ
+Aν1

Ỹ
, with AdY and AsY of (2.12) and (2.13), respectively,

and

Aν0
Ỹ
f(`) := `

N − `
N − `+ 1 uν0 [f(`− 1)− f(`)] + `

N − `+ 1 uν0 [f(N)− f(`)],

Aν1
Ỹ
f(`) := (N − `) `

`+ 1 uν1 [f(`+ 1)− f(`)] + N − `
`+ 1 uν1 [f(0)− f(`)].

The infinitesimal generator of L acts on functions f̃ : [N ] → R and is given by AL =
AdR +AsR +Aν0

L +Aν1
L , with AdR and AsR of (2.15) and (2.16), respectively, and

Aν0
L f̃(n) := uν0

n−1∑
j=1

[f̃(j)− f̃(n)], Aν1
L f̃(n) := uν1 (n− 1) [f̃(n− 1)− f̃(n)].

We want to apply [JK14, Prop. 1.2]. Since the state space of Ỹ is finite, every function is
in the domain of AỸ . In particular, H(·, n)(`) and P Ỹt H(·, n)(`) lie in the domain of AỸ ,
where (P Ỹt )t≥0 is the transition semigroup corresponding to Ỹ . Similarly, H(`, ·)(n) and
PLt H(`, ·)(n) lie in the domain of AL, where (PLt )t≥0 is the transition semigroup corres-
ponding to L. In the proof of Theorem 2.14, we already showed that

AdYH(·, n)(`) = AdRH(`, ·)(n) and AsYH(·, n)(`) = AsRH(`, ·)(n).

Hence, it suffices to check that

Aν0
Ỹ
H(·, n)(`) = Aν0

L H(`, ·)(n) and Aν1
Ỹ
H(·, n)(`) = Aν1

L H(`, ·)(n),

which then implies

AỸH(·, n)(`) = ALH(`, ·)(n), ∀` ∈ [N ]0, n ∈ [N ].
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Indeed, for the part corresponding to the type-1 mutation we obtain

Aν1
L H(`, ·)(n) = (n− 1)uν1

(
N − n+ 1− (`− n+ 1)

)` n−1

Nn

= uν1(N − `) `− (`− n+ 1)
`+ 1

(`+ 1)n

Nn

= uν1(N − `) `

`+ 1

[
(`+ 1)n

Nn
− ` n

Nn

]
+ uν1

N − `
`+ 1

[
− ` n

Nn

]
= Aν1

Ỹ
H(·, n)(`).

For the part associated to mutation to type 0, note that,

Aν0
L H(`, ·)(n) = uν0

n−1∑
j=1

[
` j

N j −
` n

Nn

]
= uν0

1(N
`

) n−1∑
j=1

[(
N − j
N − `

)
−
(
N − n
N − `

)]
.

Hence, we can use Lemma 2.30 and obtain

Aν0
L H(`, ·)(n) = uν0

1(N
`

)[( N

N − `+ 1

)
−
(
N − n+ 1
N − `+ 1

)
− (n− 1)

(
N − n
N − `

)]

= `uν0
N − `+ 1 − `uν0

(`− 1)n−1

Nn

(
N − n+ 1
N − `+ 1 + (n− 1)

)

= `uν0
N − `+ 1 − `

1
N − `+ 1 uν0

(`− 1)n−1

Nn

(
(N − `)n+ `

)
= `uν0
N − `+ 1

[
1− ` n

Nn

]
+ `

N − `
N − `+ 1 uν0

[
(`− 1)n

Nn
− ` n

Nn

]
= Aν0

Ỹ
H(·, n)(`).

We now obtain a characterisation of h∞ that does not depend on L by exploiting the duality
in Theorem 2.29. This is the analogue to [Tay07, Prop. 2.5] in the finite population setting.

Corollary 2.31 (Common ancestor type distribution as hitting probability). For ` ∈ [N ]0,
we have

h∞(`) = P(T̃N <∞ | Ỹ0 = `), (2.32)

In particular, h∞ is the unique solution of the difference equation,[
2 + s

N
+ uν1

`
+ uν0
N − `

]
h∞(`)

=
[

1
N

+ uν1
`+ 1

]
h∞(`+ 1) +

[
1 + s

N
+ uν0
N − `+ 1

]
h∞(`− 1) + uν0

(N − `)(N − `+ 1) ,

(2.33)
for ` ∈ [N − 1]; complemented by h∞(0) = 0 and h∞(N) = 1.
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Proof. Taking t → ∞ in (2.30), together with (2.22) leads to (2.32). The boundary condi-
tions of h∞ follow also by (2.22). A first-step decomposition of the absorption probability
of Ỹt in N leads to [

`
N − `
N

(2 + s) + (N − `)uν1 + `uν0

]
h∞(`)

=
[
`
N − `
N

+ (N − `) `

`+ 1 uν1

]
h∞(`+ 1)

+
[
`
N − `
N

(1 + s) + `
N − `

N − (`− 1) uν0

]
h∞(`− 1)

+ `

N − (`− 1) uν0, (` ∈ [N − 1]).

Dividing by `(N−`) leads to (2.33). Note that the system of equations (2.33) can be written
in matrix form. Let D = (dij) ∈ R(N−1)×(N−1) be the corresponding matrix. D is a strictly
diagonally dominant matrix, i.e. |dii|>

∑
j 6=i|dij |. It follows from the Levy-Desplanques

theorem (e.g. [JH85, Cor. 5.6.17]) that D nonsingular. In particular, the solution of the
recursion with the boundary conditions is unique.



3 A probabilistic view on the deterministic
mutation-selection equation

In this chapter we work out the backward point of view, so far reserved to stochastic models
of population genetics, for the deterministic mutation-selection equation. We will work with
the simplest model, namely, with haploid individuals, two types, selection, and mutation,
and pursue two major aims. First, we obtain a representation of the solution of the determ-
inistic mutation-selection equation and its equilibrium state(s) in terms of an appropriate
killed ASG. This relation reveals the ancestral structure behind the bifurcation phenomena
of the associated ODE (for an introduction to bifurcation theory see, e.g., [GH83, Ch. 3]).
Second, we characterise in this framework the type distribution of the ancestors of today’s
individuals in the distant past by the pLD-ASG that arises as the large population limit of
the pLD-ASG for finite populations (of Section 2.4). Even though the forward process is
now deterministic, the ancestral processes remain stochastic and we can still apply the tools
and techniques from the previous chapter. This enables us to recover the results from the
previous chapter in the new setting by only minor modifications of the proofs.

This chapter is organised as follows. We set out in Section 3.1 to recall the Moran model
with two types, selection, and mutation; but without pairwise interaction. It leads to the
deterministic haploid mutation-selection equation via a law of large numbers. Next, the
graphical constructions required to trace back ancestral lines in this setup are introduced;
namely, the ASG (Section 3.2), the killed ASG (Section 3.3), and the pLD-ASG (Section 3.4),
all in the smss-limit. In the special case of unidirectional mutation (only away from the
beneficial type, without back mutation), the results shed new light on the bifurcations
related to the so-called error threshold phenomenon. Finally (Section 3.5), we characterise
the ancestral type distribution in two ways: first, by means of the pLD-ASG; and second,
as the absorption probability of a piecewise-deterministic Markov process.

3.1 Deterministic limit of the Moran model with mutation
and selection

Consider the two-type Moran model with mutation and selection. It coincides with the
model in Chapter 2 if we set γ = 0. Let us recall the essentials. We have a haploid
population of fixed size N . Each individual in this population has a type, which is either 0
or 1. Individuals of type 1 reproduce at rate 1, whereas individuals of type 0 reproduce
at rate 1 + s with s ≥ 0. We refer to type 0 as the fit or beneficial type, whereas type 1
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is unfit or deleterious. When an individual reproduces, its single offspring inherits the
parent’s type and replaces a uniformly-chosen individual in the population, thereby keeping
the population size constant. Each individual mutates at rate u; the type after the event
is i with probability νi, i ∈ {0, 1}. We assume throughout this chapter that u is positive
and ν0, ν1 ∈ [0, 1] with ν0 + ν1 = 1. The graphical representation of this Moran model
coincides with the one of the previous chapter (see Fig. 2.1) if we remove interactive and
checking arrows.

Let Y (N)
t be the number of type-1 individuals at time t in a population of size N . It is

explained in Section 2.1 that Y (N) = (Y (N)
t )t≥0 is a continuous-time Markov chain on [N ]0.

In what follows, we study a deterministic limit of the Moran model. Cordero [Cor17b,
Prop. 3.1] shows that, if Y (N)

0 /N −→ y0 as N → ∞, then Y (N)/N converges to the solu-
tion y(t; y0) of the initial value problem (IVP)

dy

dt
(t) = −sy(t)

(
1− y(t)

)
− uν0y(t) + uν1

(
1− y(t)

)
, t ≥ 0,

y(0) = y0, for y0 ∈ [0, 1].
(3.1)

More precisely, we have for all t ≥ 0 and ε > 0

P
(

sup
ξ≤t

∣∣∣∣∣Y
(N)
ξ

N
− y(ξ; y0)

∣∣∣∣∣ > ε

)
N→∞−−−−→ 0, (3.2)

i.e. the convergence is uniform on compact sets of time in probability and a special case
of the dynamical law of large numbers of Kurtz [Kur70, Thm. 3.1] (alternatively [EK86,
Thm. 11.2.1]). We prove (3.2) in the more general case with pairwise interaction in Pro-
position 4.6 of Section 4.2. Neither parameters nor time are rescaled. This corresponds to
a smss-setting (strong mutation–strong selection). (Note that this in contrast to the usual
diffusion limit, where parameters and time are rescaled with population size; this is suitable
in a weak mutation–weak selection framework, see, e.g., [Dur08, Ch. 7.2].) We call the limit
process the deterministic limit or smss-limit. If ν0 ∈ (0, 1), the convergence carries over
to t → ∞ in the sense that the stationary distribution of the Moran model converges in
distribution to the point measure on ȳ as N →∞ [Cor17b, Cor. 3.1], where ȳ is the (unique)
stable equilibrium in [0, 1] of the ODE. The ODE (3.1) is the classical haploid mutation-
selection equation of population genetics [CK56; CK70]. It is a Riccati differential equation
with constant coefficients and hence the solution is known explicitly [Cor17b, Lem. 3.1].
The equilibrium points of (3.1) are the solutions of the equation

sy2 − (u+ s)y + uν1 = 0. (3.3)

The stable equilibrium, known, for example, via [Cor17b, Lem. 3.1], is given by

ȳ =


1
2

(
1 + u

s −
√(

1− u
s

)2 + 4ν0
u
s

)
, s > 0,

ν1, s = 0.
(3.4)

If s > 0, there is an additional equilibrium of (3.1), which is unstable (see [Cor17b,
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Figure 3.1. The equilibria of (3.1) as a function of u/s for s > 0. Black line: ȳ (stable);
grey line: y? (unstable).

Lem. 3.1]), namely,

y? = 1
2

1 + u

s
+

√(
1− u

s

)2
+ 4ν0

u

s

 .
If ν0 > 0, then ȳ ∈ [0, 1) and y? > 1; so ȳ is the only relevant equilibrium. Fur-
thermore, limt→∞ y(t; y0) = ȳ for all y0 ∈ [0, 1]. If ν0 = 0, the two equilibria reduce
to ȳ = min{u/s, 1} and y? = max{1, u/s}. In particular, if ν0 = 0 and u ≥ s, then ȳ
is still the only relevant equilibrium and again limt→∞ y(t; y0) = ȳ for all y0 ∈ [0, 1]. But
if ν0 = 0 and u < s, then there are two equilibria in the unit interval. In particular,
then limt→∞ y(t; y0) = ȳ for y0 ∈ [0, 1), while y(t; 1) ≡ 1.
For s > 0, Fig. 3.1 shows how ȳ and y? depend on u/s and ν0. The equilibrium frequency ȳ is
monotonically increasing in u/s; it converges to ν1 for u/s→∞, which is also the equilibrium
frequency when selection is absent. The case s > 0, ν0 = 0 deserves special attention because
of its bifurcation structure. If u/s < 1, both ȳ = u/s (stable) and y? = 1 (unstable) are
in [0, 1]; when u surpasses the critical value s, then ȳ = 1 is the only equilibrium in [0, 1], and
is attracting for all y0 ∈ [0, 1]. This means that the population loses the fit type altogether; or
put differently, the fit type can not persist if u ≥ s. This phenomenon is known as the error
threshold [Eig71; EMS89] and widely discussed in the biological literature. Extending (3.1)
to y0 ∈ R yields a transcritical (or exchange of stability) bifurcation of the equilibria at 1
and u/s: For u < s, the former is unstable and the latter is stable; and vice versa for u > s.
See Baake and Wiehe [BW97] for more details on the equilibrium structure of the mutation-
selection equation. (See [GH83, Ch. 3.4] for more details on transcritical bifurcations.) Let
us only add here that the equilibrium at u/s in this classical mutation-selection equation
with ν0 = 0 and u < s is used to estimate fitness landscapes from molecular data via
appropriate averaging [Zan+17, Sect. 2.2].

Remark 3.1. The term bifurcation seems to go back to Poincaré, who described the "split-
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ting" of equilibrium solutions in a family of differential equations [GH83, Ch. 3.1]. Nowadays,
the term is used not only for splittings. In general, if the variation of the parameters of a
differential equation leads to a qualitative change in the asymptotic behaviour of its solu-
tions, then this phenomenon is called bifurcation. The parameter values at which such a
phenomenon occurs are called bifurcation points. ♦

Remark 3.2. Let us stress that we use the word bifurcation in two ways in this thesis. On
the one hand, it describes the splitting of ancestral lines into two (or more) lines. On the
other hand, we use it in the context of dynamical systems in the sense of Remark 3.1. ♦

3.2 ASG in the smss-limit

Setting γ = 0 in the construction of the ASG in the Moran model from Section 2.2 leads to
the ASG in the Moran model without interaction; the only difference being that there are
no interactive and checking arrows. In particular, in this setup all lines in the ASG (i. e. all
potential influencers) correspond in fact to potential ancestors.

In the smss-limit, the ASG turns into the following construction. Branching, deleterious,
and beneficial mutations occur at rate s, uν1, and uν0 per line, respectively. Since collisions
and coalescences (see Section 2.2 for the definition of these notions) occur in the Moran
model at rates of order O(1/N), these types of events vanish as N → ∞. In particular,
in the smss-limit, the graphs that contain the potential ancestors of the individuals in a
sample evolve independently. It therefore suffices to consider a sample of size 1. The ASG
in the smss-limit also admits a representation as a directed graph with labelled vertices, see
Section 4.2 for details. The number of potential ancestors evolves like a pure birth process
with linear birth rate, which is non-explosive (follows from, e.g., [Bre68, Ch. 15.7]). Hence,
for every finite time horizon, the number of lines in the ASG remains finite. In the ASG
in the smss-limit we type the potential ancestors at r = t independently and identically
according to the initial distribution (1−y0, y0). The notion of type propagation in the ASG
for finite populations (see Definition 2.11) carries over to the ASG in the smss-limit if the
types are assigned in this way. If we assign to leaf `, site ` for ` ∈ N, then this allows us
to propagate ancestral sites and leads to the notion of ancestry (see Definition 2.11) also in
the smss-limit.

3.3 Killed ASG in the smss-limit

Our first aim now is to recover the solution of the deterministic mutation-selection equa-
tion (3.1) by genealogical means. We first derive a duality relation between the forward-
in-time process and an appropriate ancestral structure. Later, we analyse the long-term
behaviour of this ancestral structure.
Recall that the solution y(t; y0) gives the frequency of type 1 at time t; the smss-limit of
the ASG is therefore the appropriate tool. Recall also that, due to the independence of the
sampled individuals, it is sufficient to consider a single one.
We will work along the lines of the construction of the killed ASG for finite populations
in Section 2.3. We repeat the general idea. Again, our starting point is the well-known
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Figure 3.2. The killed ASG either absorbs in a state with 0 lines due to mutations to type 1
(left) or in a cemetery state ∆ due to a mutation to type 0 (center); it may also grow to ∞
(not shown). The realisation on the right is still in a transient state.

observation (e.g. [KN97] and [Man09, Thm. 2.1]) that holds for the finite Moran model and
carries over to the deterministic setting: In the absence of mutations, a single individual
at time t is of type 1 if and only if all its potential ancestors at t = 0 are of type 1. This
is easily verified via the pecking order (cf. Fig. 2.5). Namely, at every branching event, a
type 0 on either the continuing or incoming line suffices for the descendant individual to
be of type 0; iterating this over all branching events gives the statement. Mutations add
further information about the types: they can determine the type of the sample even before
we sample the initial types. More precisely, a mutation to type 1 determines the type of
the line (to the right of the mutation) on which it occurs, so this line need not be traced
back further into the past; it may be pruned. Next, the first mutation to type 0 (on any
line that is still alive after the pruning) decides that the sampled individual has type 0, so
that no potential ancestor must be considered any further and the process may be killed.
This motivates the description of the following structure.

The killed ASG in the smss-limit starts with one line emerging from each of the n individuals
in the sample. Every line branches at rate s (due to a selective arrow from outside the set
of potential ancestors). Every line is pruned at rate uν1 (due to a deleterious mutation). At
rate uν0 per line, the process is killed (due to a beneficial mutation), that is, it is sent to
the cemetery state ∆. All the events occur independently on every line. Figure 3.2 depicts
some realisations of the killed ASG. There, we adopt the convention that the incoming line
is always placed immediately beneath the continuing line. The description gives also rise to
a directed graph with labelled vertices similar to the one of Definition 2.12 (although the
construction is now not based on the Moran model; see Section 4.2 for details). But as in
the finite setting, for our purposes it suffices to count the number of lines in the killed ASG.
We define the corresponding process below.

Remark 3.3. Note that, in contrast to the killed ASG for finite population from Section 2.2,
collisions and coalescences are absent due to the scaling as described in Section 3.2. ♦

Definition 3.1 (Line-counting process of killed ASG). The line-counting process of the killed
ASG is the continuous-time Markov chain R = (Rr)r≥0 with values in N∆

0 := N0 ∪ {∆} and
transition rates

qR(n, n+ 1) = ns, qR(n, n− 1) = nuν1, qR(n,∆) = nuν0 (3.5)

for n ∈ N0.

The states 0 and ∆ are absorbing; all other states are transient. The state 0 is reached
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if all lines are pruned due to deleterious mutations. The state ∆ is reached upon the first
beneficial mutation. Absorption in 0 (in ∆) implies that (not) all individuals in the sample
are of type 1. If ν0 = 0, then R is a linear birth-death-process with birth rate s and death
rate u. In particular, the process may then also grow to∞ with positive probability if u < s.
We now establish a connection between the solution y(· ; y0) of the (deterministic) mutation-
selection equation and the (stochastic) line-counting process (Rr)r≥0, in terms of a duality
relation, which formalises the ideas described above. Let H : [0, 1]×N∆

0 → R be defined as

H(y0, n) = yn0 , for y0 ∈ [0, 1], n ∈ N∆
0 , (3.6)

where y∆
0 := 0 for all y0 ∈ [0, 1]. The function H returns the probability for n individuals to

be of type 1 if each of them is independently of type 1 with probability y0. Setting y∆
0 = 0

means that it is impossible to sample an unfit individual that has a beneficial mutation in
its direct ancestry. The function H will serve as our duality function.

Theorem 3.2 (Moment duality). The line-counting process (Rr)r≥0 of the killed ASG and
the solution y(· ; y0) of the deterministic mutation-selection equation (3.1) satisfy the duality
relation

y(t; y0)n = E
[
yRt0 | R0 = n

]
for all n ∈ N∆

0 , y0 ∈ [0, 1], and t ≥ 0. (3.7)

Remark 3.4. In the weak mutation–weak selection limit, the above duality appears in [SU86,
Lem. 2.1] and [AS05, Thm. 1] if ν0 = 0. If ν0 > 0, [SU86, Lem. 2.1] establish a similar dual-
ity but with a Feynman-Kac-correction. To our knowledge, the moment duality for ν0 > 0
without a Feynman-Kac correction has so far not appeared in the literature. ♦

Proof of Theorem 3.2. We can consider (y(t; y0))t≥0 as a (deterministic) Markov process
on [0, 1] with infinitesimal generator

Ayf(y) = Asyf(y) +Auyf(y)

for f ∈ C1([0, 1],R), where

Asyf(y) := −sy(1− y)∂f
∂y

and Auyf(y) := [−uν0y + uν1(1− y)]∂f
∂y

(3.8)

correspond to selection and mutation, respectively. Since the right-hand side of (3.1) as
a function of y(t) is continuously differentiable, it follows from a classic result of ODE
theory [KP04, Thm. 8.43] that y(t; ·) ∈ C1([0, 1],R). In particular, H(·, n) ∈ C1([0, 1]) and
H(y(t; ·), n) ∈ C1([0, 1]). On the other hand, the infinitesimal generator of the line-counting
process of the killed ASG reads

ARf̃(n) = AsRf̃(n) +AuRf̃(n) (3.9)

for f̃ : N∆
0 → R bounded, where

AsRf̃(n) := ns[f̃(n+ 1)− f̃(n)],
AuRf̃(n) := nuν1[f̃(n− 1)− f̃(n)] + nuν0[f̃(∆)− f̃(n)]
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again correspond to selection and mutation, respectively. Let (PRt )t≥0 be the transition
semigroup corresponding to R. Since H(y, ·) and PRt H(y, ·) are bounded, they are in the
domain of AR. We now show that

AyH(·, n)(y) = ARH(y, ·)(n) for y ∈ [0, 1] and n ∈ N∆
0

and then apply [JK14, Prop. 1.2] to prove the duality. This matching of the generators is
a straightforward calculation and can be done individually for the selection and mutation
parts; for example,

AsyH(·, n)(y) = −ns[yn − yn+1] = AsRH(y, ·)(n).

Similarly, AuyH(·, n)(y) = AuRH(y, ·)(n).

Theorem 3.2 is the smss-limit equivalent to Theorem 2.14. It provides a stochastic repres-
entation of the solution of the deterministic mutation-selection equation. It tells us that the
killed ASG is indeed the right process to determine the current type distribution. To see
this, set n = 1 and note that the right-hand side of (3.7) indeed equals the probability that
a single individual at time t is of type 1: This is the case if either all lines have been pruned
before time t; or if all lines still alive at time t are assigned type 1 when sampling from the
initial distribution with weights (1− y0, y0), see Figure 3.2.

Remark 3.5. Theorem 3.2 amounts to a weak duality between the forward and the backward
process. We expect that this also holds strongly pathwise (see [JK14, Sect. 4] for the
corresponding notions). A strong pathwise duality would require an embedding of both
processes into the same probability space for all possible initial states. ♦

We are particularly interested in the equilibrium ȳ. Define FRr := σ(Rt : t ≤ r), i.e. the
natural filtration of (Rr)r≥0. Let us note in passing.

Corollary 3.3. (
ȳRr

)
r≥0 is a ((FRr )r≥0)-martingale.

Proof. Fix r ≥ 0. Clearly, ȳRr is adapted to the natural filtration and integrable. Setting
y0 = ȳ in (3.7) yields E[ȳRr | R0 = n] = ȳn for all n ∈ N∆

0 . Hence, for t ∈ [0, r], by the
Markov property,

En
[
ȳRr | FRt

]
= ERt

[
ȳRr−t

]
= ȳRt .

The result follows.

We now proceed to recover ȳ via the probabilistic backward picture. To this end, we take
the limit t→∞ in (3.7). This leads us to consider the long-term behaviour of R, which is
stated in the following Lemma.

Lemma 3.4 (Long-term behaviour R). (i) If ν0 = 1, R absorbs in ∆ with probability 1.

(ii) If ν0 ∈ (0, 1), R absorbs in {0,∆} with probability 1.

(iii) If ν0 = 0 and u < s, R absorbs in 0 with probability < 1 and, conditional on non-
absorption of R in 0, Rr →∞ with probability 1.
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(iv) If ν0 = 0 and u ≥ s, R absorbs in 0 with probability 1.

Proof. If ν0 > 0 and R is not absorbed in {0,∆}, there is always at least one line in the
killed ASG. The time to the first beneficial mutation on any given line is exponentially
distributed with parameter uν0 and therefore finite almost surely. Hence, for any n ∈ N,

P(Rr /∈ {0,∆} | R0 = n) ≤ P(Rr 6= ∆ | Rr 6= 0, R0 = n) r→∞−→ 0.

This proves (ii). If ν0 = 1, we have ν1 = 0 and hence P(Rr = 0 | R0 = n) = 0 for all n ∈ N
and r ≥ 0. The same argument used for (ii) then leads to (i). For (iii), assume ν0 = 0.
Then, R is a linear birth-death-process. Since

∑
n≥2 s(u/s)n < ∞, it follows by [KM57,

Thm. 10] that the probability of absorption in 0 is < 1. It is a classic result of branching
processes, that R either absorbs or Rr → ∞ almost surely, see [AN72, Ch. III.4]. In
particular, conditional on non-absorption, R is transient. The other cases follow by the
classic absorption criterion [KM57, Sect. 5].

If we take the limit t → ∞ in (3.7) for n = 1 and y0 ∈ [0, 1), we obtain a representation
of the equilibrium frequency ȳ in terms of the absorption probability of R in 0. Hence, we
obtain the following corollary to the duality result in Theorem 3.2.

Corollary 3.5 (Equilibrium as absorption probability).

ȳ = P ( lim
r→∞

Rr = 0 | R0 = 1). (3.10)

Therefore, we can now recover (3.4) using only properties of R. To calculate the absorption
probabilities, let wn := P (limr→∞Rr = 0 | R0 = n). A first-step decomposition yields

wn = s

u+ s
wn+1 + uν1

u+ s
wn−1, n ≥ 1, (3.11)

together with w0 = 1 and w∆ = 0. (3.11) is a homogeneous linear recurrence relation with
constant coefficients. It can be solved by classic methods [KP91, Ch. 3.2 and 3.3]. We now
take a shortcut to determine wn and exploit that, due to the independence of the n lines,
one has wn = wn1 , so that it suffices to show the following.

Proposition 3.6.

w1 =


1
2

(
1 + u

s −
√(

1− u
s

)2 + 4ν0
u
s

)
, s > 0,

ν1, s = 0.
(3.12)

Remark 3.6. Note that, for ν0 = 0, (3.12) reduces to

w1 =

min
{
u
s , 1

}
, if s > 0,

1, if s = 0.

♦
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Proof of Proposition 3.6. The solution to (3.11) is uniquely determined by w1. Using the
product form of w2, (3.11) evaluated for n = 1 leads to

sw2
1 − (u+ s)w1 + uν1 = 0, (3.13)

i. e. w1 satisfies Eq. (3.3). In particular, for s = 0, one has w1 = ν1. For s > 0, we
get w1 ∈ {ȳ, y?}. In addition, if ν0 > 0 or u > s, we already know from Section 3.1
that y? > 1. Since w1 is a probability, we therefore have w1 = ȳ. If ν0 = 0 and u < s,
then y? = 1 and ȳ < 1. But Lemma 3.4 implies w1 < 1, so w1 = ȳ. Finally, if ν0 = 0
and s = u, we have w1 = ȳ = y?.

Since w1 = ȳ, Proposition 3.6 is in accordance with Corollary 3.5. We have thus found the
desired genealogical interpretation of the solution of the deterministic mutation-selection
equation (3.1) and, in particular, of its stable equilibrium ȳ. Let us explicitly describe what
happens in the special case ν0 = 0, which brings about the bifurcation that corresponds
to the error threshold. In this case, ∆ cannot be accessed, R is a birth-death process with
birth rate s and death rate u, and w1 = ȳ corresponds to its extinction probability. Namely,
for u ≥ s, the process dies out almost surely, whereas for u < s, it survives with positive
probability 1 − u/s and then grows to infinite size almost surely. This is a classical result
from the theory of branching processes [AN72, Ch. III.4]: Indeed, for ν0 = 0, (3.13) is the
fixed point equation w1 = ϕ(w1) for the generating function ϕ of the offspring distribution
of a binary Galton-Watson process with probability u/(u+ s) for no offspring and s/(u+ s)
for two offspring individuals. This connection sheds new light on the bifurcation observed
in Section 3.1 and Fig. 3.1. Namely, let us consider the killed ASG starting from a single
individual sampled from the equilibrium population (at some late time t, say), so R0 = 1.
If R converges to ∞, then limr→∞ y

Rr
0 = 0 for all y0 ∈ [0, 1), so the sampled individual

is of type 0; whereas yRr0 ≡ 1 for y0 = 1 and r ≥ 0, which results in an individual of
type 1. On the other hand, conditional on eventual absorption of R in 0, limr→∞ y

Rr
0 = 1

for all y0 ∈ [0, 1], which renders type 1 for the sampled individual.

3.4 pLD-ASG in the smss-limit

The genealogical perspective developed in the previous sections for the mutation-selection
equation allows the notion of ancestry also in this setting. Let us now turn to the type
of the ancestor of a single individual from the (equilibrium) population in the smss-limit.
We have seen in Sections 2.4 for the Moran model that it is a more involved problem to
determine the ancestral type distribution than to identify the (stationary) type distribution
of the forward process, because we now must identify the parental branch (incoming or
continuing, depending on the type) at every branching event in the genealogical structure,
which requires nested case distinctions. Furthermore, some ancestral lines must be traced
back beyond the first mutation. Nevertheless, mutations may still rule out certain potential
ancestors. We will work along the lines of the construction of the pLD-ASG for finite
populations in Section 2.4. We base our approach on Cordero’s extension [Cor17a, Sect. 5]
of the line-counting process of the pLD-ASG of Lenz et al. [Len+15] to the framework of
the smss-limit. In this section, we recall the idea behind the underlying process and derive
some of its properties.
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Before we set out, let us specify what we mean by the ancestral type distribution in this
setting. After the assignment of types to the leaves of an ASG, we can propagate types and
ancestors also in the smss-limit as described in Definition 2.11.

Definition 3.7 (Ancestral type distribution (smss-limit)). The ancestral type distribution
in the smss-limit, conditional on an initial type distribution (1− y0, y0), is defined as

gr(y0) := P(Jr = 1 | y0),

where Jr is the type of the ancestor of the root of the ASG in the smss-limit in [0, r]
started with a single lineage if we assign to each leaf of the ASG independently type 0 (resp.
type 1) with probability 1− y0 (resp. y0) and propagate types and ancestral sites according
to Definition 2.11.

The relevant potential ancestors in the smss-limit are the lines of the ASG that have a non-
zero probability to be the ancestor of the single individual at the root of the ASG, in line
with Definition 2.20. The pLD-ASG keeps track of these lines. We recall the construction.

The pLD-ASG starts from a single individual. The lines of the graph correspond to the
potential ancestors (and hence to a subset of the ASG in the smss-limit) and are assigned
consecutive levels, starting at level 1 (see Fig. 3.3). If a line is hit by a selective arrow, its
level is increased by one and at the same time all lines above it are shifted up one level;
thereby making space for the incoming line, which then occupies the former level of the line
it hit. If the first event on a line that does not occupy the top level is a mutation to type 1,
we can conclude that it will not be ancestral, since it will, at a later time, play the role of
an unsuccessful incoming line, for its type is 1 due to the mutation. Hence we can cut away
this line. The line occupying the top level is exempt from the pruning since, regardless of
its type, this line will be ancestral if all lines below it are non-ancestral. If a line that is not
the top line has a mutation to type 0, we can cut away all lines above it, because this line
will, at some stage, be an incoming line and will, due to the mutation, succeed against lines
above it. If the top line is hit by a mutation to type 0, this does not have an effect. This
motivates the following description of the process.

The pruned lookdown ASG in the smss-limit starts at time r = 0 and proceeds in direction
of increasing r. At every time r, the graph consists of a finite number Lr of lines. The lines
are numbered by the integers 1, . . . , Lr, to which we refer as levels. The process then evolves
via the following transitions.

(1) Every line i 6 Lr branches at rate s and a new line, namely the incoming branch, is
inserted at level i and all lines at levels k > i are pushed one level upward to k+ 1; in
particular, the continuing branch is shifted from level i to i+ 1. Lr increases to Lr + 1.

(2) Every line i 6 Lr experiences deleterious mutations at rate uν1. If i = Lr, nothing
happens. If i < Lr, the line at level i is pruned, and the lines above it slide down to
‘fill the gap’, rendering the transition from Lr to Lr − 1.

(3) Every line i 6 Lr experiences beneficial mutations at rate uν0. All the lines at levels > i
are pruned, resulting in a transition from Lr to i. Thus, no pruning happens if a
beneficial mutation occurs on level Lr.
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×

×

Figure 3.3. The pLD-ASG: Pruning due to a deleterious mutation on a line that is not at
the top (top left); pruning of all lines above a beneficial mutation (top right); a deleterious
and a beneficial mutation on the top line, which do not affect the number of potential
ancestors (bottom).

All the events occur independently on every line. As in Chapter 2, for our purposes it will
suffice to only keep track of the number of lines in the pLD-ASG.

Definition 3.8 (Line-counting process of pLD-ASG). The line-counting process of the pLD-
ASG L = (Lr)r≥0 is a continuous-time Markov chain on N with transition rates

qL(n, n+ 1) = ns, qL(n, n− 1) = (n− 1)uν1 + 1{n>1}uν0, qL(n, n− `) = uν0, (3.14)

where 2 ≤ ` < n.

Remark 3.7. Note that, in contrast to the pLD-ASG for finite population from Section 2.4,
collisions, and coalescences are absent due to the scaling as described in Section 3.2. ♦

Remark 3.8. For later use, we do not insist on starting from a single individual; but one
should keep in mind that if we start the process with n > 1 lines, then it does not correctly
describe the relevant ancestry of n individuals. For example, assume that the first event is a
beneficial mutation on line 1. This induces pruning of all other lines, which is incompatible
with the relevant ancestry of n individuals. ♦

Remark 3.9. The pLD-ASG and its line-counting process can be constructed via three fam-
ilies of independent homogeneous Poisson processes with rates s, uν1, and uν0 on each level,
indicating a selection, deleterious mutation, and beneficial mutation event, respectively. See,
e.g., [BLW16, Sect. 3] for such a construction in the diffusion limit of the Moran model. ♦

Remark 3.10. Cordero [Cor17a, Prop 5.3] proves that the line-counting process of the pLD-
ASG for finite populations of Definition 2.21 converges in distribution to L as N →∞. He
works in a framework where L is positive recurrent. In fact, his proof does not rely on the
positive recurrence of L and so the result also holds in the case in which L is not positive
recurrent. ♦

For any given r > 0, a hierarchy is, by construction, imposed on the lines of the graph,
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such that if at least one line is assigned a 0, the lowest line occupied by a type-0 individual
is the true ancestral line. In particular, the ancestor at time r is then of type 0. If all
lines are occupied by individuals of type 1, the top line is the true ancestral line and the
ancestor at time r is of type 1. (This hierarchy in the pLD-ASG allows us to determine
the effect of mutations.) In the finite Moran model and in the diffusion limit, the line that
is ancestral if all potential ancestors are of type 1 is called immune (the name originates
from the immunity to pruning by deleterious mutations); in the smss-limit, the immune line
is always the top line. This rationale gives rise to the following theorem that is a direct
consequence of Cordero [Cor17a, Prop. 5.5, Cor. 5.6], which we state here without proof.

Theorem 3.9 (Representation ancestral type distribution). Let y0 ∈ [0, 1] and r ≥ 0. We
have,

gr(y0) = E1
[
yLr0

]
.

The above results leads to a representation of the ancestor’s type at any time r; but explicit
results require the limit r →∞. We therefore now consider the long-term behaviour of Lr.
Recall that we assume u > 0 throughout.

Proposition 3.10 (Long-term behaviour L). (i) If s = 0, L absorbs in 1 almost surely.

(ii) If u < s and ν0 = 0, L is transient, so Lr →∞ almost surely as r →∞.

(iii) If u = s and ν0 = 0, L is null recurrent.

(iv) If u > s or ν0 > 0, L is positive recurrent and the stationary distribution is geometric
with parameter 1− p, where

p =

 s
uν1

ȳ, if ν1 > 0,
s

u+s , if ν1 = 0.

Remark 3.11. The parameter of the geometric distribution p = p(u, s, ν1) is a function
of u, s, and ν1. Explicitly, it is given by

p(u, s, ν1) =


1
2

(
u+s
uν1
−
√(

u+s
uν1

)2 − 4 s
uν1

)
, if ν1 > 0,

s
u+s , if ν1 = 0.

(3.15)

It is continuous in ν1, i. e. limν1→0 p(u, s, ν1) = p(u, s, 0). ♦

Remark 3.12. A proof of case (iv), for ν1 > 0, is given in [Cor17a, Lem. 5.3]. ♦

Proof of Proposition 3.10. Case (i) is trivial. Cases (ii) and (iii) are straightforward ap-
plications of [KM57, Thms. 1 and 2]. For case (iv), note that L is stochastically dominated
by a Yule process with branching rate s. This Yule process is non-explosive. One easily
checks that the claimed geometric distribution is invariant. Every process which is non-
explosive and has an invariant distribution is positive recurrent, see [Nor98, Thm. 3.5.3].
The uniqueness of the stationary distribution follows from [Nor98, Thm. 3.5.2].
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In what follows, the long-term behaviour of the tail probabilities of Lr is crucial. Let

an := lim
r→∞

P1(Lr > n)

if this limit exists (the subscript of P denotes the initial value). We first focus on the positive
recurrent case where we know the limit exists.

Proposition 3.11 (Fearnhead’s recursion). If L is positive recurrent, the coefficients (an)n≥0
satisfy

an = s

u+ s
an−1 + uν1

u+ s
an+1, n ∈ N, (3.16)

with boundary condition a0 = 1 and limn→∞ an = 0. Moreover, the solution to (3.16) with
the boundary condition is unique.

Remark 3.13. Recursion (3.16) is the smss-limit analogue of Fearnhead’s recursion for finite
populations of Proposition 2.23 and for the diffusion limit [Fea02, Thm. 3]. ♦

Remark 3.14. If we interchange the roles of s and uν1 in (3.16) and replace the boundary
condition limn→∞ an = 0 by a∆ = 0, we obtain the recursion for wn in (3.11) (note that u =
uν0 + uν1 so that u+ s is invariant under the interchange of s and uν1). ♦

Remark 3.15. To prove Fearnhead’s recursion, we pursue a strategy that differs from the
one in Proposition 2.23. Later, we also recover Proposition 3.11 via the strategy from the
previous chapter, see part below Corollary 3.14. ♦

Proof of Proposition 3.11. Here, we give a direct proof via the graphical construction (see
Fig. 3.4). The coefficients, as tail probabilities of a stationary distribution, satisfy the
boundary conditions. Fix some r > 0 and n ∈ N. Recall from Remark 3.9, that the pLD-
ASG can be constructed via three families of independent Poisson processes on each level
corresponding to selection, deleterious mutation, and beneficial mutation, respectively. We
now look at the last events before r in backward time; which correspond to the first events
after r in forward time. Let Ts(r), Tν0(r), and Tν1(r) be the (backward) times of the last
selective, beneficial, and deleterious mutation event, respectively, that have occurred before
time r on the first n levels. Set T (r) := max{Ts(r), Tν0(r), Tν1(r)}. On {Lr > n}, we have
that T (r) is positive. Furthermore,

P(Lr > n) = P
(
Lr > n, T (r) = Ts(r)

)
+ P

(
Lr > n, T (r) = Tν1(r)

)
+ P

(
Lr > n, T (r) = Tν0(r)

)
.

Let LT (r)− := limr̃↗T (r) Lr̃ be the state ‘just before’ the jump. Reading each transition in
Fig. 3.4 from left to right, one concludes the following. If T (r) = Ts(r), then Lr > n if and
only if LT (r)− > n − 1. If T (r) = Tν1(r), then Lr > n if and only if LT (r)− > n + 1. The
case T (r) = Tν0(r) contradicts Lr > n, so P(Lr > n, T (r) = Tν0(r)) = 0. On {Lr > n},
none of the first n lines is the immune line and therefore the probability that the last event
is a selection event or a pruning due to a deleterious mutation is s/(u+ s) and uν1/(u+ s),
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n+ 1

n

T T−
×

n+ 1

n+ 2

T T−

n+ 1 `

T T−

Figure 3.4. The first event on the first n (out of at least n + 1) lines may be a branching
(left) or a pruning due to a deleterious mutation (center); it cannot be a pruning due to a
beneficial mutation (right).

respectively. Hence,

P(Lr > n) = s

u+ s
P
(
LT (r)− > n− 1 | T (r) = Ts(r)

)
+ uν1
u+ s

P
(
LT (r)− > n+ 1 | T (r) = Tν1(r)

)
.

But LT (r)− is independent of what happens at time T (r), since this is in the future (in r-
time). Taking r → ∞ on both sides proves the assertion. (3.16) is a linear difference
equation with constant coefficients and can be solved by classic methods [KP91, Ch. 3.3].
If ν1 = 0, then an = (s/(u+ s))n. If ν1 > 0, then the characteristic root(s) of the associated
characteristic polynomial are

λ1/2 = u+ s∓
√

(u+ s)2 − 4suν1
2uν1

.

Note that
(u+ s)2 − 4suν1 ≥ (uν1 − s)2 + 2suν0 ≥ 0,

so that the discriminant is positive and all solution are of the form c1λ
n
1 + c2λ

n
2 [KP91,

Thm. 3.6]. If ν1 = 1 and s < u, then λ1 = s/u and λ2 = 1. The boundary conditions
imply c1 = 1 and c2 = 0. If ν1 ∈ (0, 1), a straightforward calculation leads to λ1 ∈ [0, 1] and
λ2 > 1. Again, by the boundary condition c1 = 1 and c2 = 0. In particular, the solution is
unique.

Remark 3.16. It is an essential ingredient of the present proof of Proposition 3.11 that
the immune line is the line at the top. To use this strategy to prove the finite population
analogue of Fearnhead’s recursion (Proposition 2.23) is not straightforward, because the
immune line line can then be on any occupied level. ♦

If L is positive recurrent, we denote by L∞ a random variable on N distributed according
to the stationary distribution of the line-counting process. Directly solving the recurrence
relation (3.16) leads to the geometric distribution of L∞. We now take another route
to recover the distribution via a more probabilistic approach. We derive the memoryless
property of L∞ and conclude that the distribution is geometric, since this is the only discrete
distribution without memory.
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Proposition 3.12 (Lack of memory property). If L is positive recurrent, then for all k ∈ N0,

P(L∞ > n+ k | L∞ > n) = P(L∞ > k). (3.17)

In particular,

L∞ ∼ Geom(1− p), with p =

 s
uν1

ȳ, if ν1 > 0,
s

u+s , if ν1 = 0.
(3.18)

Proof. Denote b(n)
k := P(L∞ > n + k | L∞ > n). Clearly, b(n)

0 = 1 and limk→∞ b
(n)
k = 0 for

all n ∈ N. By Proposition 3.11,

b
(n)
k = an+k

an
= 1
an

( s

u+ s
an+k−1 + uν1

u+ s
an+k+1

)
= s

u+ s
b
(n)
k−1 + uν1

u+ s
b
(n)
k+1.

Since the solution of (3.16) is unique with the boundary conditions, it follows that b(n)
k = ak

for all k ∈ N0. As a consequence, P(L∞ > n) = an1 . Now that we know (again) that L∞ has
indeed a geometric distribution, it remains to determine the parameter. By Proposition 3.11,

a1 = s

u+ s
+ uν1
u+ s

a2
1, (3.19)

of which the solution is given by a1 = sȳ/uν1 if ν1 > 0 and a1 = s/(u+ s) if ν1 = 0.

As in the finite population case, recursion (3.16) looks like a first-step decomposition for the
absorption probabilities of some other process. And indeed, we establish a similar connection
as in Proposition 2.25 in the smss-limit. Let (Dt)t≥0 be the process on N∆ := N∪{∆} with
transition rates given by

qD(d, d− 1) = (d− 1)s, qD(d, d+ 1) = (d− 1)uν1, qD(d,∆) = (d− 1)uν0 (3.20)

for d ∈ N. We adopt the convention that n < ∆ for all n ∈ N.

Remark 3.17. The process D exhibits an interesting connection to the line-counting process
of the killed ASG. Let D and L be as previously defined with given rates uν0, uν1, and s.
Furthermore, let D̆ and L̆ be the same processes, but with rates s and uν1 interchanged.
Write R̆ for the line-counting process of a killed ASG with beneficial and deleterious mutation
rate uν0 and s, respectively, and selection rate uν1 (so uν1 and s are interchanged). Note that
the rate at which mutation events occur is then ŭ = uν0 +s; similarly, given that a mutation
occurs, the probabilities for beneficial and deleterious mutations are ν̆0 = uν0/(uν0 + s)
and ν̆1 = s/(uν0 + s), respectively. Comparing (3.5) and (3.20) immediately yields

R̆
d= D − 1 if R̆0 = D0 − 1. (3.21)

In particular, the long-term behaviour of D follows by means of Lemma 3.4: If ν0 > 0, D
absorbs in {1,∆} with probability 1. If in addition s = 0, D absorbs in ∆ with probability 1.
If ν0 = 0 and u ≤ s, D absorbs in 1 with probability 1. If ν0 = 0 and u > s, D absorbs
in 1 with probability < 1 and, conditional on non-absorption of D in 1, Dt → ∞ with
probability 1. ♦
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Proposition 3.13 (Siegmund duality). L and D are Siegmund dual, i. e. for t ≥ 0,

P(d ≤ Lt | L0 = n) = P(Dt ≤ n | D0 = d), ∀n ∈ N, d ∈ N∆. (3.22)

Remark 3.18. This is the smss-limit analogue to Proposition 2.25. ♦

Proof of Proposition 3.13. We denote the infinitesimal generators of L andD by AL and AD,
respectively. They have the form

ALf(n) = ns[f(n+ 1)− f(n)] +
(
(n− 1)uν1 + 1{n≥1}uν0

)
[f(n− 1)− f(n)]

+ uν0

n−2∑
i=1

[f(i)− f(n)]

for f : N→ R bounded, and

ADf̃(d) = (d− 1)s[f̃(d− 1)− f̃(d)] + (d− 1)uν1[f̃(d+ 1)− f̃(d)]
+ (d− 1)uν0[f̃(∆)− f̃(d)]

for f̃ : N∆ → R bounded. In the case of a Siegmund duality, the duality function is

H̄(n, d) = 1(d≤n).

Denote by (PLt )t≥0 and (PDt )t≥0 the transition semigroup corresponding to L andD, respect-
ively. H̄(·, d)(n) and PLt H̄(·, d)(n) are in the domain of AL and H̄(n, ·)(d) and PDt H̄(n, ·)(d)
are in the domain of AD. We will show that ALH̄(·, d)(n) = ADH̄(n, ·)(d). The result follows
then as an application of [JK14, Prop. 1.2]. Indeed,

ALH̄(·, d)(n) = ns1(d=n+1) − (n− 1)uν11(d=n) − uν0

n−1∑
i=1

1(d≤n<d+i).

Note that
n−1∑
i=1

1(d≤n<d+i) =

d− 1, if n ≥ d > 1,

0, otherwise.

Thus, we can rewrite ALH̄(·, d)(n) as

(d− 1)s1(d−1=n) − (d− 1)uν11(d=n) − (d− 1)uν01(d≤n),

which equals ADH̄(n, ·)(d), as required.

Remark 3.19. The analogous result in the diffusion limit is proved in [BLW16, Lem. 4.5]
via Clifford-Sudbury flights [CS85]. Their proof leads to a pathwise duality. We expect a
similar argument to apply also in our setting. ♦

Corollary 3.14 (Tail probababilities as absorption probabilities).

P( lim
t→∞

Dt = 1 | D0 = n+ 1) = an, ∀n ∈ N. (3.23)
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Proof. The proof is a direct consequence of Proposition 3.13.

This result gives an alternative way to recover (3.16) via a first-step decomposition of the
absorption probabilities of D. By Remark 3.17, the absorption probability of D in 1,
given D0 = n + 1, equals the absorption probability of R̆ in 0, given R̆0 = n. In par-
ticular, an = ˘̄yn, where

˘̄y :=


1
2

(
1 + uν0+s

uν1
−
√

(1− uν0+s
uν1

)2 + 4ν0
ν1

)
, ν1 > 0,

s
u+s , ν1 = 0.

(3.24)

This is consistent with Remark 3.14: The recursion for the absorption probability of R̆ in 0
is obtained by interchanging the roles of uν1 and s in Fearnhead’s recursion. Hence, ˘̄y is as
in (3.4), but with uν1 and s interchanged; note that this implies replacement of u = uν0+uν1
by uν0 + s. On the other hand, as a consequence of Corollary 3.14, ˘̄y = p with p from
Proposition 3.12. In a similar way, we can derive that

ȳ = lim
r→∞

P1(L̆r > 1).

We can now deal with the long-term behaviour when L is null recurrent (recall from Pro-
position 3.10 that this is the case for ν0 = 0 and u = s).

Corollary 3.15 (Large time behaviour for null recurrent L). If u = s and ν0 = 0,

lim
r→∞

P1(Lr > n) = 1.

Proof. The proof is an immediate consequence of Corollary 3.14 together with Remark 3.17.

3.5 Ancestral type distribution in the smss-limit

In the Moran model and in the diffusion limit, all individuals at present originate from a
single individual in the distant past, see [Cor17a, Sect. 3] and [KN97, Thm. 3.2], respect-
ively. This individual is called the common ancestor, and the distribution of its type is
the common ancestor type distribution. In the smss-limit, there are no coalescence and
collision events (see Section 3.2, alternatively [Cor17a, Sect. 5][KN97]), so the notion of a
common ancestor does not make sense. Instead Cordero [Cor17a, p. 617] introduces the
representative ancestral type. This is the type of the ancestor of a generic individual in the
population, denoted earlier [GB03] as the ancestral type of a typical individual. The general
concept was developed by Jagers [Jag89; Jag92] in the context of branching processes. By a
slight abuse of wording, we will call the representative ancestor just ancestor; and therefore
the representative ancestral type will just be called the ancestral type. The ASG in the
smss-limit describes the ancestry of a typical individual. We denote the ancestral type at
backward time r of the individual at the root of the ASG by Jr ∈ {0, 1}. The probability of
an unfit ancestral type at backward time r if the leaves are sampled according to (1−y0, y0)
is given by gr(y0) = P(Jr = 1 | y0), see Definition 3.7. By Theorem 3.9 (alternatively, see
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[Cor17a, Prop. 5.5, Cor. 5.6]), we know

gr(y0) = E1
[
yLr0

]
= 1− (1− y0)

∑
n≥0

P1(Lr > n)yn0 . (3.25)

This is consistent with the graphical picture: the ancestral type at backward time r is 1 if
and only if all Lr lines are of type 1. The corresponding probability is given by E1[yLr0 ].
Alternatively, we can partition the event of a beneficial ancestor according to the first level
occupied by a type-0 individual. Namely,

P1(Lr > n)(1− y0)yn0

is the probability that at least n + 1 lines are present, the (n + 1)st line is of type 0, and
the first n lines are of type 1. Summing this probability over n gives the probability of an
ancestral type 0. The complementary probability leads to the right-hand side of (3.25).
Now let g∞(y0) := limr→∞ gr(y0) be the probability of an unfit ancestral type of an indi-
vidual sampled at a very late time conditional on the initial frequency of unfit individuals
being y0 if the limit exists. If

∑
n≥0 any

n
0 <∞, equation (3.25) yields

g∞(y0) = 1− (1− y0)
∑
n≥0

any
n
0 . (3.26)

We can now exploit what we know about the an to obtain explicit expressions for g∞. This
is captured in the following theorem.

Theorem 3.16. For y0 ∈ [0, 1], g∞(y0) exists.
(i) If s = 0, g∞(y0) = y0 for all y0 ∈ [0, 1].

(ii) If u ≤ s and ν0 = 0, g∞(y0) =

0, if y0 ∈ [0, 1),

1, if y0 = 1.

(iii) If s > 0 and either u > s or ν0 > 0, g∞(y0) = 1−p
1−py0

y0.

Proof. In case (i), L absorbs in 1 and hence a0 = 1 and an = 0 for all n ≥ 1. In par-
ticular,

∑
n≥0 any

n
0 < ∞ for all y0 ∈ [0, 1], so that together with (3.26) the result fol-

lows. For case (ii), we first treat the subcase u < s and ν0 = 0. There, L is transi-
ent and hence Lr → ∞ almost surely. Hence, an = 1 for all n ≥ 0. For y0 ∈ [0, 1),
again

∑
n≥0 any

n
0 < ∞, and the result follows by (3.26). For y0 = 1, we use that L is

bounded for all r > 0. In particular,
∑
n≥0 P(Lr > n | L0 = 1) <∞. But then, gr(1) = 1

for r > 0. Taking the limit r → ∞ yields the result. The other subcase of (ii) is u = s
and ν0 = 0. There, Corollary 3.15 leads to an ≡ 1 (n ≥ 0). Case (iii) follows by summing
the geometric series obtained from (3.26) via Proposition 3.12.

Theorem 3.16 is consistent with the graphical picture. Case (i) corresponds to the neut-
ral situation, in which each individual has exactly one potential ancestor at all times; the
ancestor is then a single draw from the initial distribution. In particular, there is no bias
towards one of the types. In case (iii), L∞ > 1 with positive probability, so there is a bias to-
wards the beneficial type. The reason is that a single beneficial potential ancestor suffices for
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the ancestral type to be of type 0, which manifests itself in the factor (1− p)/(1− py0) < 1
for y0 < 1. In case (ii), depending on whether u = s or u < s, L is null recurrent or
transient. In both cases, the number of potential ancestors in the limit r → ∞ is infinite
and the bias towards type 0 is taken to an extreme: Any positive proportion of beneficial
types suffices to ensure that the ancestor has type 0. If there are no beneficial types in the
population, the ancestor is of type 1 with probability 1.
Let us now study the dependence on ν0 of the probability for an unfit ancestral type. To
stress the dependence, we write g∞(y0, ν0). We recover Corollary 2.27 in the smss-limit.
The result was first observed by [Len+15, Sect. 6.1] for the diffusion limit.

Proposition 3.17 (Monotonicity ancestral type distribution). Let y0 ∈ (0, 1). If s > 0
and ν0, ν̄0 ∈ [0, 1] with ν0 < ν̄0, then

g∞(y0, ν0) < g∞(y0, ν̄0).

Proof. The same technique to prove Proposition 2.27 leads to the result.

Consider now (1−g∞(ȳ), g∞(ȳ)), namely, the distribution of the ancestral type that lives in
the stable equilibrium population ȳ. We call it the ancestral type distribution at equilibrium
and characterise it in what follows. First note that both g∞ and ȳ are functions of ν0. In
order to stress this (double) dependence, we write g∞(ȳ(ν0), ν0). We also write L(ν0) instead
of L. Recall from Section 3.1 that, for ν0 = 0, ȳ(0) = min{u/s, 1} and so, by Theorem 3.16,

g∞(ȳ(0), 0) =

0, if u < s,

1, if u ≥ s.

This is the counterpart to the transcritical bifurcation (or error threshold) of the equilibrium
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Figure 3.5. The probability of an unfit ancestral type at equilibrium.
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frequency of the forward process. The probability of an unfit ancestral type at equilibrium
exhibits an even more drastic behaviour: a jump from 0 to 1 if u surpasses the critical
value s, see Fig. 3.5. If ν0 ∈ (0, 1), L(ν0) is positive recurrent and L∞(ν0) is almost surely
finite. Moreover, in this case ȳ(ν0) ∈ (0, 1) for all u > 0. In particular, g∞(ȳ(ν0), ν0) =
E1[ȳ(ν0)L∞(ν0)] ∈ (0, 1), and hence

g∞(ȳ(ν0), ν0)

> g∞(ȳ(0), 0) = 0, if u < s,

< g∞(ȳ(0), 0) = 1, if u ≥ s,

compare Figs. 3.1 and 3.5. It may seem surprising at first sight that, even though switching
off beneficial mutations leads to an increase of ȳ for all values of u, it decreases the probability
of the deleterious type to be ancestral if u < s, but increases it for u ≥ s. The reason for
this is that:

for u < s: in contrast to the case ν0 ∈ (0, 1), where L∞(ν0) is finite, L∞(0) is infinite,
and hence beats ȳ(0) regardless of its value.
for u ≥ s: in contrast to the case ν0 ∈ (0, 1), where ȳ(ν0) is strictly positive, ȳ(0) = 1,
and therefore, there is no chance to sample an ancestor of type 0, regardless of the
value of L∞(ν0).

In the end, we recover Theorem 2.29 in the smss-limit. Recall that Taylor [Tay07, Eq. (11)]
shows that the common ancestor type distribution is a harmonic function for the generator
of a jump-diffusion process (see also [Len+15, Sect. 7.1] for a more detailed discussion).
The analogue of this jump-diffusion (or alternatively of the absorbing Markov chain in
Section 2.4.4 of this thesis) in the smss-framework is the piecewise-deterministic Markov
process Ỹ := (Ỹt)t≥0 with generator

AỸ f(y) = [−sy(1− y)−uν0y+uν1(1−y)]∂f
∂y

+ uν0y

1− y [f(1)−f(y)]

+ uν1(1−y)
y

[f(0)−f(y)]
(3.27)

for f ∈ C1([0, 1],R) with limy→1AỸ f(y) = limy→0AỸ f(y) = 0. The latter means that Ỹ
absorbs in 0 or 1. This process follows the dynamics of the mutation-selection equation up
to a random jumping time. At this time the process jumps to one of the boundaries where it
is absorbed, see also Fig. 3.6. Existence and uniqueness of a Markov process corresponding
to AỸ follow by proving that the jump rates, which diverge at the boundary, are in fact
bounded along trajectories of the process over any finite time interval. If ν0 ∈ (0, 1) and
y0 ∈ (0, 1), then y(t; y0) never hits the boundary, since ȳ ∈ (0, 1). If ν0 = 1 or ν0 = 0
and y0 ∈ (0, 1), then y(t; y0) hits 0 or 1, respectively. In both cases, the possibly diverging
jump term is absent because either ν1 = 0 or ν0 = 0, respectively. We now strengthen
Taylor’s result and show that Ỹ is dual to L.

Theorem 3.18 (Duality). The processes Ỹ and L are dual with respect to the duality func-
tion H(y, n) = yn, that is, for t ≥ 0,

E
[
Ỹ n
t | Ỹ0 = y0

]
= E

[
yLt0 | L0 = n

]
, ∀y0 ∈ [0, 1], n ∈ N. (3.28)



3.5 Ancestral type distribution in the smss-limit 59
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Figure 3.6. Ỹ follows y(t; y0) until a random time at which it jumps to either 1 (left) or 0
(right).

Remark 3.20. This is the smss-limit analogue to Theorem 2.29. ♦

Proof of Theorem 3.18. The infinitesimal generator of Ỹ is given by AỸ f̃(y) = Asyf̃(y) +
Au
Ỹ
f̃(y), with Asy of (3.8) and

Au
Ỹ
f̃(y) := [−yuν0 + uν1(1− y)]∂f̃

∂y
+ y

1− yuν0
[
f̃(1)− f̃(y)

]
+ 1− y

y
uν1

[
f̃(0)− f̃(y)

]
,

for f̃ ∈ C1([0, 1],R) with limy→0AỸ f̃(y) = limy→1AỸ f̃(y) = 0. (Au
Ỹ
should not be confused

with AuY of (3.8).) A straightforward calculation shows that H is in the domain of AỸ . The
infinitesimal generator of L is given by ALf(n) = AsRf(n) +AuLf(n), with AsR of (3.9) and

AuLf(n) = (n− 1)uν1[f(n− 1)− f(n)] + uν0

n−1∑
k=1

[f(k)− f(n)],

for f : N → R bounded. We use [EK86, Cor. 4.4.13] to prove the result. Let us first verify
the generator identity, i.e. AỸH(·, n)(y0) = ALH(y0, ·)(n). In the proof of Theorem 3.2,
we already showed AsyH(·, n)(y) = AsRH(y, ·)(n). Hence, it suffices to check Au

Ỹ
H(·, n)(y) =

AuLH(y, ·)(n), which then implies

AỸH(·, n)(y) = ALH(y, ·)(n), ∀y ∈ [0, 1], n ∈ N.

Indeed, we obtain

Au
Ỹ
H(·, n)(y)

= (n− 1)uν1
[
yn−1 − yn

]
+ uν0

[
y

1− yn

1− y − ny
n
]

= (n− 1)uν1 [H(y, n− 1)−H(y, n)] + uν0

n−1∑
j=1

[H(y, j)−H(y, n)]

= AuLH(y, ·)(n).
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Next, we verify the integrability conditions. Fix T > 0, y0 ∈ [0, 1], and L0 ∈ N. Clearly,
supr,t∈[0,T ]|H(Ỹt, Lr)| ≤ 1. Furthermore,

sup
t,r≤T

|ALH(Ỹt, Lr)| ≤ 2(u+ s) sup
r≤T

Lr.

Note that L can be coupled to a pure birth process L̂ with transition rate qL̂(n, n+ 1) = ns

such that L̂0 = L0 and supr≤T Lr ≤ L̂T . L̂T is at any finite time finite almost surely (see,
e.g., [Bre68, Ch. 15.7]); hence, so is the right hand side of the above equation. Finally, AỸ
and AL are the generators of the progressive Markov processes Ỹ and L, respectively, and H
is in the domain of their generators. Hence,

H(Ỹt, n)−
∫ t

0
AỸH(Ỹs, n)ds and H(y0, Lt)−

∫ t

0
ALH(y0, Ls)ds

are martingales for all n ∈ N and y0 ∈ [0, 1] [EK86, Prop. 4.1.7]. The result follows.

We now obtain a characterisation of g∞(y0) that does not depend on L by taking t → ∞
in (3.25) and (3.28). The analogue result in the weak-mutation weak-selection limit is proved
in [Tay07, Prop. 2.5].

Corollary 3.19 (Ancestral type distribution as hitting probability). For y0 ∈ [0, 1], we have

g∞(y0) = P( lim
t→∞

Ỹt = 1 | Ỹ0 = y0).

Remark 3.21. The Kolmogorov backward equation for the absorption probability of Ỹt in 1
leads to the characterisation of g∞ as the solution to the boundary value problem

AỸ g∞(y0) = 0 for y0 ∈ (0, 1), (3.29)

complemented by g∞(0) = 0 and g∞(1) = 1. It is the smss-limit analogue of the boundary
value problem in Taylor [Tay07, Eq. (11)] (diffusion limit) and of Corollary 2.31 (finite
population). ♦



4 Ancestral lines in the mutation-selection
equation with pairwise interaction

Our goal is to extend the results for the haploid mutation-selection equation of Chapter 3 to
the case of pairwise interaction, where the reproduction rate of an individual depends on the
type of a partner chosen uniformly from the population. Biologically, this is a special case
of what is known as frequency-dependent selection, which also occurs in evolutionary game
theory (see, e.g., [HS98, Ch. 22]). The resulting equation is also equivalent to the so-called
diploid mutation-selection equation, which describes a population of individuals that carry
two copies of the genetic information rather than one as in the haploid case.

The diploid mutation-selection equation is characterised by a cubic polynomial as opposed
to a quadratic polynomial in the haploid case. This leads to a richer bifurcation structure.
In particular, one observes bistability in certain parameter regions; this is absent in the
haploid case. While this is well-known in the forward direction of time, the corresponding
ancestral processes are largely unexplored territory. The ASG with pairwise interaction,
which we described in Section 2.2, is our starting point. Even though the type-frequency
process of the entire population evolves deterministically, the ancestry of each individual is
still stochastic and the resulting construction is a specific random tree. To make this object
tractable, we will prune the tree upon mutation, thus reducing it to its informative parts.
The hierarchies inherent in the tree will play a crucial role and will be encoded systematically
via ternary trees with weighted leaves; this will lead to the stratified ASG. The latter will
serve as a dual to the forward process and provide a stochastic representation of the solution
of the mutation-selection equation with pairwise interaction. It will also be our workhorse to
reveal the genealogical structures inherent in the bifurcations of the equilibria of the ODE.
Indeed, it will turn out that the random genealogical trees have very different properties in
the various parameter regimes. Furthermore, we will establish constructions, again based
on the stratified ASG, that allow us to trace back the ancestral lines into the distant past
and obtain explicit results about the ancestral population in the biologically relevant case
of unidirectional mutation to the deleterious type (i.e. ν0 = 0).

The chapter is organised as follows. In Section 4.1, we recapitulate the two-type mutation-
selection differential equation with pairwise interaction, along with its equilibrium and bi-
furcation structure. We then connect the Moran model with pairwise interaction to the
differential equation via a dynamical law of large numbers. In Section 4.2, applying the law
of large numbers to the ASG leads to the ancestral process corresponding to the determin-
istic equation. The stratified ASG is introduced in Section 4.3, and some of its fundamental
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properties are proved. The core of the results are found in Section 4.4 and 4.5. Section 4.4
establishes the connection between the stratified ASG and the deterministic model in the
form of a duality relation and provides a stochastic representation of the solution of the
differential equation. In this way, the bifurcation structure in the case of unidirectional
mutation is recovered by genealogical means. Finally, Section 4.5 establishes the construc-
tions to trace back an ancestral line into the distant past; these are the stratified ASG with
immune line and the forest of stratified ASGs. We use them to derive the ancestral type
distribution under unidirectional mutation to the deleterious type (i.e. ν0 = 0), both for
finite time horizons and at stationarity.

4.1 Mutation-selection equation with pairwise interaction

We consider a deterministic model for the evolution of a population subject to mutation,
selection, and a special form of frequency-dependent selection that we call pairwise interac-
tion. More precisely, the population is composed of two types, type 0 and type 1. Denote by
y(t; y0) the proportion of type 1 at time t given that the proportion at time 0 was y0 ∈ [0, 1].
Then y(t; y0) evolves deterministically as the solution of the initial value problem (IVP)

dy

dt
(t) = −y(t)

(
1− y(t)

)[
s+ γ

(
1− y(t)

)]
+ uν1

(
1− y(t)

)
− uν0y(t) =: F (y(t)),

y(0) = y0, for y0 ∈ [0, 1].
(4.1)

Throughout, we assume ν0, ν1 ≥ 0 and ν0 + ν1 = 1. We speak of the ODE as the mutation-
selection equation with pairwise interaction. We will see (Proposition 4.6) that the model
arises as the large population limit of the Moran model with mutation, selection, and pair-
wise interaction.
The form of the mutation terms is obvious; the reproduction term describes that type-0 in-
dividuals selectively reproduce at effective rate (1−y(t))[s+γ(1−y(t))] and thus reduce the
relative frequency of type-1 individuals according to their current proportion y(t). Neutral
reproduction (which we assumed to occur of rate 1) does not enter the equation since its net
contribution is −(1− y(t))y(t) + y(t)(1− y(t)) = 0. Note for later use, that this generalises
to any neutral reproduction rate c ≥ 0. In particular, it is no restriction to set c = 0. In
principle, the solution of (4.1) can be expressed explicitly in terms of the roots of F by
standard methods, but we refrain from doing this here.

Remark 4.1. We have introduced the interaction in terms of frequency-dependent selection,
but an alternative interpretation corresponds to a diploid population with two allelic types
subject to mutation and selection; the ODE is then usually termed the diploid mutation-
selection equation. The diploid genotypes are then given by the pairs (i, j), i, j ∈ {0, 1}, and
their reproduction rates wij are w00 = 1 + 2s + γ, w01 = w10 = 1 + s, and w11 = 1. This
choice of parameters corresponds to the case where allele 0 is (partially) recessive, that is,
it needs another 0 to fully play out its selective advantage (see also [BW97]). ♦

Remark 4.2. The general form of the mutation-selection equation goes back to Wright
[Wri49] and is intensively discussed by Crow and Kimura [CK56]. They understand it as a
simplistic model for the evolution of a population under the forces of mutation, (frequency-
dependent) selection, and migration; and note that it is suited for an approximation of
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Figure 4.1. The equilibria ȳ of (4.1) as a function of u/s for ν0 = 0 and s = 1/30. The left,
middle, and right panels correspond to γ = 0, γ = 1/40, and γ = 1/10, respectively. Black
lines: stable. Grey lines: unstable.

a large population with constant environmental factors [CK56, Sect. 1]. We consider a
special case in which there is no migration, only two allelic types, and our special form of
frequency-dependent selection. ♦

Remark 4.3. For a special choice of parameters, the ODE (4.1) corresponds to the mean-
field limit (or law of large numbers) of the cooperative branching model on the complete
graph as investigated by Mach et al. [MSS18b] (see also [Mac17]). More precisely, our
notation translates to their case by interchanging the roles of type 0 and 1 and by setting
γ = α, u = 1, ν0 = 0, ν1 = 1, and s = 0. This leads to the mean-field equation [MSS18b,
Eq. (1.36)]. ♦

Equilibria and bifurcation structure

To understand the large time behaviour of the solutions of the mutation-selection equation
with pairwise interaction, we analyse the equilibria ȳ, namely the (real) roots of F in (4.1),
along with their stability.
Since F (0) ≥ 0, F (1) ≤ 0, and F is continuous (it is a polynomial), the unit interval
(which is the biologically relevant domain) is positive invariant under the flow and there
exists at least one root of F in [0, 1]. Let ŷ∞ and y̌∞ be the smallest and largest root of F
in [0, 1], respectively. The conditions on the boundary, together with the continuity of F ,
imply that ŷ∞ and y̌∞ are attracting from the left and right, respectively, provided they
are in (0, 1). We initially concentrate on the case ν0 = 0, in which expressions for the roots
simplify significantly, and extend (4.1) to R, considering all equilibria. Later, we specialise
to those equilibria that lie in the unit interval. The mutation rate will play the role of the
bifurcation parameter. It will be convenient to identify two specific threshold values for it.

Definition 4.1 (Critical mutation rates). For γ > 0 and s > 0, let

û := s and ǔ := 1
γ

(
s+ γ

2

)2
. (4.2)

Note that ǔ− û = (s− γ)2/4γ ≥ 0, so that û ≤ ǔ.
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If ν0 = 0, the right-hand side of (4.1) reduces to

F (y) = (y − 1)G(y) (4.3)

with G(y) = −γy2 + (s+ γ)y − u. Hence, the equilibria of (4.3) are

ȳ1 = 1 (4.4)

together with the real roots of G. Namely,

for γ = 0 and u ∈ [0,∞),
ȳ2 = u

s
(4.5)

(see Fig. 4.1, left);

for γ > 0 and u ∈ [0, ǔ],

ȳ2 = 1
2

(
1 + s

γ
−
√
σ

)
and ȳ3 = 1

2

(
1 + s

γ
+
√
σ

)
, (4.6)

where
σ :=

(
1 + s

γ

)2
− 4u

γ
(4.7)

(see Fig. 4.1, middle and right).

Remark 4.4. Note that if γ > 0, then u ≤ ǔ is equivalent to σ ≥ 0. So, for γ > 0
and u ∈ (ǔ,∞), the polynomial G has no real roots and ȳ1 is the only equilibrium. ♦

In order to determine the stability (still for ν0 = 0), note that

F ′(y) = G(y) + (y − 1)G′(y),

where G′(y) = −2γy + s+ γ. Then,

F ′(ȳ1) = G(1) = s− u, so ȳ1 is stable (unstable) for u < s (u > s).

F ′(ȳ2) = (ȳ2 − 1)G′(ȳ2) = γ
√
σ(ȳ2 − 1), so ȳ2 is stable (unstable) if ȳ2 < 1 (ȳ2 > 1).

F ′(ȳ3) = (ȳ3 − 1)G′(ȳ3) = −γ
√
σ(ȳ3 − 1), so ȳ3 is stable (unstable) if ȳ3 > 1 (ȳ3 < 1).

We summarise this analysis in the following result.

Proposition 4.2 (Equilibria and stability). Let ν0 = 0 and s, γ, u > 0. If σ ≥ 0, the
ODE (4.1) has equilibria ȳ1, ȳ2, and ȳ3 given in (4.4)– (4.6). The corresponding stability is
summarised in the following tables (where bold indicates equilibria that are stable in [0, 1]).

s > γ σ = 0 σ > 0
u < û — 0 < ȳ2 < ȳ1 < ȳ3

u = û — ȳ1 = ȳ2 < ȳ3 = s/γ

u > û ȳ1 < ȳ2 = ȳ3 ȳ1 < ȳ2 < ȳ3

s = γ σ = 0 σ > 0
u < û — 0 < ȳ2 < ȳ1 < ȳ3

u = û ȳ1 = ȳ2 = ȳ3 —
u > û — —



4.1 Mutation-selection equation with pairwise interaction 65

s < γ σ = 0 σ > 0
u < û — 0 < ȳ2 < ȳ1 < ȳ3

u = û — 0 < ȳ2 = s/γ < ȳ1 = ȳ3

u > û 1
2 < ȳ2 = ȳ3 < ȳ1 0 < ȳ2 < ȳ3 < ȳ1

If σ < 0, ȳ1 is the only equilibrium and it is stable.

Along the lines of [BW97, Sect. 3], we identify the following bifurcation phenomena with u
as the bifurcation parameter. (Recall Remark 3.1 and the reference therein for more details
on bifurcations.) For 0 < γ < s (resp. 0 < s < γ), there is an exchange of stability,
also known as transcritical bifurcation, at u = û of ȳ1 and ȳ2 (resp. of ȳ1 and ȳ3). When u
surpasses the critical value û, then ȳ1 switches from unstable to stable; whereas ȳ2 (resp. ȳ3)
switches from stable to unstable. For s < γ, there is an additional saddle-node bifurcation
at u = ǔ. There, the equilibria ȳ2 and ȳ3 (one stable, one unstable) collide and both vanish.
If û = ǔ, we see a pitchfork bifurcation, where the unstable ȳ1 passes through the collision
point of ȳ2 and ȳ3 and becomes stable. (We refer the interested reader to [GH83, Ch. 3] for
a general account of bifurcation theory for equilibria of ODEs.)

The equilibria directly lead to the long-term behaviour, which we now consider for y0 ∈ [0, 1].
Let y(t; y0) be the solution of (4.1) with ν0 = 0 and s, γ, u > 0. By the monotonicity
of y( · ; y0), we infer that

y∞(y0) := lim
t→∞

y(t; y0) (4.8)

exists and is always an equilibrium. The long-term type frequencies are characterised in
the following corollary, which is a direct consequence of Remark 4.4 together with Proposi-
tion 4.2.

Corollary 4.3 (Asymptotic type frequencies). Let y0 ∈ [0, 1], ν0 = 0, and s, γ > 0.

(i) If either u < û or (s < γ and u = û),

y∞(y0) =

ȳ2, if y0 ∈ [0, 1),

ȳ1, if y0 = ȳ1.

(ii) If s < γ and u ∈ (û, ǔ],

y∞(y0) =


ȳ2, if y0 ∈ [0, ȳ3),

ȳ3, if y0 = ȳ3,

ȳ1, if y0 ∈ (ȳ3, ȳ1].

(iii) If either u > ǔ or (s ≥ γ and u ∈ [û, ǔ]), then for all y0 ∈ [0, 1],

y∞(y0) = ȳ1.
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Remark 4.5. If s < γ and u = ǔ, we have ȳ2 = ȳ3 and

y∞(y0) =

ȳ2, if y0 ∈ [0, ȳ2],

ȳ1, if y0 ∈ (ȳ2, ȳ1].
♦

Clearly, the equilibria ȳi = ȳi(s, γ, u, ν0) (i ∈ {1, 2, 3}) are functions of s, γ, u and ν0. The
long-term type frequency y∞(y0) = y∞(y0, s, γ, u, ν0) furthermore depends on y0. By a
straightforward application of L’Hôpital’s rule, we see that ȳ2 is continuous in γ at 0.

Proposition 4.4. For s, u > 0 and ν0 = 0,

lim
γ→0

ȳ2(s, γ, u, 0) = u

s
.

In particular,

lim
γ→0

y∞(y0, s, γ, u, 0) =

min{us , 1}, if y0 ∈ [0, 1),

1, if y0 = 1.

Let us recapitulate from [BW97, Sect. 3] the biological implications of Corollary 4.3. For
γ ≤ s, the fit type persists in the population for u < û, but is lost for u ≥ û; this happens
for any positive initial value and is an instance of the so-called error threshold [Eig71].
For γ > s, one has again persistence of the fit type for u < û and loss for u > ǔ for any
positive initial value. But in the bistable regime (û, ǔ), the fit type will only persist if its
initial frequency is at least 1− ȳ3; otherwise it will be lost. In particular, a beneficial mutant
arising in small frequency in a population that is otherwise unfit will not be able to establish
itself.

Finally, let us briefly discuss the case ν0 ∈ (0, 1) (we do not explicitly consider the limiting
case ν0 = 1; the biologically reasonable regime is 0 < ν0 � 1, and ν0 = 0 is often a valid
approximation). Since F is a cubic polynomial, explicit expressions for its roots are in
principle available. In particular, a stability analysis as in the case ν0 = 0 is possible. But
due to the length of expressions, the many case distinctions, and because we are primarily
interested in the derivation of the bifurcation structure by genealogical means, we refrain
from doing so here. Nevertheless, by Budan’s theorem [Bud07], we can deduce a bound for
the number of real roots in [0, 1].

Proposition 4.5. Let u, γ > 0 and ν0 ∈ (0, 1). If u < û or γ < s, then F has exactly one
root in [0, 1].

Proof. Note first that if u, γ > 0 and ν0, ν1 ∈ (0, 1), then 0 and 1 are not roots of F . Recall
that F (y) = −γy3 + (2γ + s)y2 − (γ + s+ u)y + uν1. Define

F+(y) := F (y + 1) = −γy3 + (s− γ)y2 + (s− u)y − uν0.

Denote by oF and oF+ the number of sign changes of the coefficients of F and F+, respect-
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Figure 4.2. Equilibria of (4.1) evaluated numerically as functions of u/s for ν0 = 1/100
and s = 1/30. The left, middle, and right cases correspond to γ = 0, γ = 1/60, and
γ = 4/15, respectively. Black lines: stable. Grey lines: unstable.

ively. Then, oF = 3 and

oF+ =

2, if u < û or γ < s,

0, if s < γ and u ≥ û.

Denote by r the number of roots of F in (0, 1). Now, Budan’s theorem states that r ≤
oF − oF+ . On the other hand, we know from the discussion at the beginning of this section
that there is at least one root in [0, 1].

Remark 4.6. If (4.1) has three equilibria in [0, 1], then the equilibrium in the middle is
unstable. To see this, note that F is positive before ŷ and negative after y̌. Since there is
an equilibrium in the middle, F has a positive derivative at this point. ♦

In contrast to ν0 = 0, if ν0 ∈ (0, 1), neither y = 0 nor y = 1 are equilibria and so both
types coexist independently of y0, see also Fig. 4.2. Yet, the long-term behaviour may again
depend on y0.

4.2 Mutation-selection equation as a limit of the Moran model:
with pairwise interaction

Let us now relate the Moran model with pairwise interaction to the mutation-selection
equation with pairwise interaction. The only restriction to the Moran model outlined in
Section 2.1 is that we assume u, s > 0 throughout this chapter. To this end, we study the
asymptotic behaviour of Y (N)/N as N →∞ without rescaling of parameters or time. This
corresponds to the smsssi-limit (strong mutation–strong selection–strong interaction-limit).
Subsequently, we consider the limit in the ASG of the Moran model to obtain the ASG in
the smsssi-limit.
The following result provides the asymptotic behaviour of the stochastic process Y (N)/N and
its connection to the deterministic model in the form of a dynamical law of large numbers.

Proposition 4.6 (Convergence Moran model). Assume that limN→∞ Y
(N)

0 /N = y0 ∈ [0, 1].



68 4 Ancestral lines in the mutation-selection equation with pairwise interaction

Then, for all ε > 0 and t ≥ 0, we have

lim
N→∞

P

sup
ξ≤t

∣∣∣∣∣∣Y
(N)
ξ

N
− y(ξ; y0)

∣∣∣∣∣∣ > ε

 = 0,

where y( · ; y0) is the solution of the IVP (4.1), i. e. Y (N)/N converges to y( · ; y0) uniformly
on compact time intervals in probability.

Proof. The function F of (4.1) is Lipschitz continuous in [0, 1]. We have F (0) = uν1 ≥ 0
and F (1) = −uν0 ≤ 0. Hence, the IVP (4.1) has a unique solution y( · ; y0) from [0,∞)
to [0, 1]. Note that we can rewrite the rates of Y (N) as q

Y (N)(k, k + `) = Nq
(
k
N , `

)
for

` ∈ Z \ {0}, where q : [0, 1]× Z \ {0} → R is given by

q(y, 1) = y(1− y) + (1− y)uν0, q(y,−1) = y(1− y)
(
1 + s+ γ(1− y)

)
+ yuν1,

together with q(y, `) = 0 for |`| > 1. Since q is continuous, (Y (N))N≥1 is a density-dependent
family of Markov chains. Thus, in order to conclude, we only need to verify the following
conditions of the dynamical law of large number for density-dependent families of Markov
chains by Kurtz [Kur70, Thm. 3.1],

sup
y∈[0,1]

∑
`

|`|q(y, `) <∞ and lim
d→∞

sup
y∈[0,1]

∑
|`|>d
|`|q(y, `) = 0. (4.9)

These conditions are clearly satisfied, which completes the proof.

Remark 4.7. In the absence of interactions (γ = 0), the previous result coincides with
[Cor17b, Prop. 3.1] (see also Eq. (3.2) in this thesis). ♦

The connection between the finite Moran models and the deterministic model provides
a way to establish an ancestral picture for the mutation-selection equation with pairwise
interaction. We start with the ancestral picture of the stochastic models and consider the
same limit that connects the forward processes.

ASG in the smsssi-limit

The connection between the finite Moran models and the mutation-selection equation provided
by Proposition 4.6 yields a way to construct the ASG in the deterministic model: We just
let N →∞ in the ASG of the Moran model, which we described in Section 2.2. The result-
ing process will still be stochastic. We first describe the process in terms of the arrows in
the spirit of the graphical representation in Section 2.1. Subsequently, we rigorously define
the ASG in terms of a directed graph with labels.
Before we embark, note first that, since we assign types to the ASG in an exchangeable
manner, when tracing back ancestries with the ASG in the Moran model, the relocation
events do not affect the distribution of types, and so we can ignore them. For the same
reason, we can assign a particular order to the lines in the ASG without changing the type
distribution. In the following description of the process, it will be convenient to follow a
lookdown-construction, which is the way we visualised the ASG in our figures. We do not
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Figure 4.3. Bifurcation of a descendant line (D) into the continuing line (C) and the
incoming line (I) along with the propagation of types according to the pecking order.

rely on this particular construction for the results that follow and, in fact, in the subsequent
construction of the ASG as a directed graph with labelled vertices, we are not providing a
lookdown construction. But for the moment, we proceed as in [Len+15] (see also [Cor17a]
or Section 3.4 of this thesis) and construct the ASG in the smsssi-limit in a lookdown-like
manner. This means that the lines are placed on consecutive levels, starting at level 1,
according to a hierarchy reminiscent of the lookdown construction [DK99a; DK99b].
Since the rates of coalescence, simple collision, double-collision, and collision-bifurcation
events vanish as N tends to infinity (they are O(1/N) per ordered pair of lines), these
events will be absent in the asymptotic ASG, i. e. we will only see bifurcations, trifurca-
tions, and mutations. (Recall that we use the word bifurcation twofold; in the context of
dynamical systems and to describe the splitting of the ancestral lines, see Remark 3.2.) In
particular, the ASG in the smsssi-limit of an initial sample of n individuals is distributed
as n independent copies of an ASG started with a single individual. Thus, we can restrict
ourselves to the evolution of an ASG starting with a single line. Let us first explain the
ordering of the lines used in the construction of the ASG. At time 0, we place the single
initial individual at level 1. We construct the ASG up to backward time r. A selective
bifurcation at level i in the ASG in the smsssi-limit is represented by a horizontal open
arrowhead at level i (see Fig. 4.3). The incoming branch emanates from the arrowhead and
takes level i. All the lines at levels ≥ i are shifted one level upwards. This includes the
descendant line, which then continues on level i + 1 as the continuing line. A trifurcation
event at level i in the ASG is represented by an arrowhead inscribed into an open square at
level i (see Fig. 4.4). The incoming line emanates from the square at level i, the checking
line emanates from the square and is placed at level i+ 1, and all the lines at levels ≥ i are
shifted two levels upwards. Again, this includes the descendant line, which continues as the
continuing line on level i+ 2.
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Figure 4.4. Trifurcation of the descendant line (D) into the continuing line (C), the checking
line (J), and the incoming line (I) along with the associated type propagation rule (? stands
for an arbitrary type.)

Each line in the ASG in the smsssi-limit independently bifurcates at rate s, thus increasing
the number of lines by one. Each line trifurcates at rate γ independently of the others
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and independently of bifurcations. A trifurcation increases the number of lines by two. In
addition, each line mutates to type 0 at rate uν0 and to type 1 at rate uν1 (see Fig. 4.5).
Mutations occur independently on each line and independently of all the other events. For
the remainder of this chapter, we refer to the ASG in the smsssi-limit just as ASG.

×0 1 ×1 1 0 0 1 0

Figure 4.5. Propagating types across mutation events (note the parent independence).

To determine the true ancestry of the sample at present, we independently sample the type
for each line at backward time r according to (1 − y0, y0) and propagate the types up to
time 0 using the same rules as in the finite Moran model; see Definition 2.11. These rules
are illustrated in Figs. 4.3– 4.5. A visualisation of the ASG in [0, r] is depicted in Fig. 4.9. In
the following, we provide a construction of the AGS in the smsssi-limit as a directed graph
with labelled vertices.

Construction of the ASG as a directed graph with labelled vertices

The following marked branching particle system is the basis of our construction of the ASG.
Each particle occupies a site in [0, 1]. Start at time r = 0 with one particle on a site that is
uniformly distributed in [0, 1]. If there are n particles present at time r, then

at rate sn, mark one of the existing particles chosen uniformly at random with
and generate one new particle at a new site that is uniformly distributed in [0, 1] and
independent from the other sites,
at rate γn, mark one of the existing particles chosen uniformly at random with and
generate two new particles each occupying a site uniformly distributed in [0, 1] and
independent from the other sites,
at rate nuν0, mark one of the existing particles chosen uniformly at random with ◦,
at rate nuν1, mark one of the existing particles chosen uniformly at random with ×.

Note that, by construction, a particle at site w has an associated birth time bw. Set the
birth time of the particle present at time 0 to 0. Let W be the set of occupied sites between
r = 0 and r = ∞. The ASG is the following (infinite and uncountable) directed acyclic
graph G = (V,E) with a function l labelling the vertices, where

V ⊆ R≥0 × [0, 1], E ⊆ V × V, and l : V → { , , , , ◦,×, ∅}.

As in the previous chapters, for (r, w) ∈ V , we refer to r as the time component, w the site,
and l(r, w) the label. The set of vertices is given by V = {(r, w) : r ∈ [bw,∞), w ∈ W},
where (r, w) ∈ R≥0 × [0, 1] has label , , ◦, and × if the particle at site w is marked at
time r with , , ◦, and ×, respectively. Let {Si} and {Ii} be the set of times at which
the number of particles increases by one and two, respectively. For Ii there are two newly
occupied sites w1 and w2. Set l(Ii, w1) = and l(Ii, w2) = . All remaining vertices are
labelled with ∅. The set of edges E is given as follows.

For Si and v, w ∈ W such that bv = Si and l(Si, w) = , we have ((Si, w), (Si, v)) ∈ E.
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For Ii and v1, v2, w ∈ W with bv1 = bv2 = Ii, v1 6= v2, l(Ii, v1) = , l(Ii, v2) = , and
l(Ii, w) = , we have ((Ii, w), (Ii, v1)) ∈ E and ((Ii, w), (Ii, v2)) ∈ E.

For w ∈ W and r, t ∈ [bw,∞) with r < t such that l(τ, w) /∈ { , , ◦,×} for τ ∈ (r, t),
we have ((r, w), (t, w)) ∈ E.

The ASG in [0,∞) is then A∞ := (G, l). Denote by Ar the restriction of A∞ to the graph
and label function that arises if only vertices with time component at most r are considered.
Ar is called the ASG in [0, r]. We refer to the vertices in Ar with time component 0 as
root(s) and to the vertices with time component r as leaves. The set of vertices sharing the
same site is called a line.
A reversal of the direction of the edges and an assignment of types to the leaves allows us to
propagate types and ancestral sites as described in Definition 2.11. In particular, the notion
of ancestry translates into this setting. In all our figures, we use the description of the ASG
from the previous subsection in terms of arrows, i.e. the edges that join different sites are
already reverted.
The description of the ASG in terms of arrows from the previous section suffices for most
of our purposes. In particular, when we prune and stratify the ASG in the next section,
we primarily argue on the basis of the representation in terms of the arrows to ease the
notation. But one should keep in mind that every operation defined in the next section has
a counterpart as an operation acting on an ASG as a directed graph with labelled vertices.

Remark 4.8. We will often identify an ASG starting with n lines with the collection A =
(A(i))i∈[n], where A(i) denotes the ASG associated with the ith line. ♦

Type distribution of the root in the ASG

Consider At, i.e. an ASG in the time interval [0, t]. For y0 ∈ [0, 1], let H(At, y0) be the
probability that all lineages at the present are unfit if the types at the leaves are sampled
according to (1− y0, y0). A natural way of computing H(At, y0) is to determine first those
assignments of types to the lines that lead to an unfit descendant and then to evaluate
the probability of observing these assignments if we independently sample according to
(1− y0, y0). The next lemma summarises some elementary properties of the function H.

Lemma 4.7. Let At be an ASG in [0, t] starting with n lines and, for i ∈ {1, ..., n}, let At(i)
the ASG in [0, t] associated with the ith line. Then, for all y0 ∈ [0, 1],

H(At, y0) =
n∏
i=1

H(At(i), y0).

Moreover, for n = 1, if T? is the time of the first event in At, then
(1) if the event at time T? is a deleterious mutation, then H(At, y0) = 1.

(2) if the event at time T? is a beneficial mutation, then H(At, y0) = 0.

(3) if the event at time T? is a selective branching, we denote by A1
T?,t

and A2
T?,t

the ASGs
starting from the continuing and incoming line, respectively, at time T? and ending at
time t. Then

H(At, y0) = H(A1
T?,t, y0)H(A2

T?,t, y0).
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(4) if the event at time T? is a trifurcation, we denote by A1
T?,t

, A2
T?,t

, and A3
T?,t

the ASGs
starting from the continuing, incoming, and checking line, respectively, at time T? and
ending at time t. Then,

H(At, y0) = H(A1
T?,t, y0)

[
H(A2

T?,t, y0) +H(A3
T?,t, y0)−H(A2

T?,t, y0)H(A3
T?,t, y0)

]
.

Remark 4.9. Let us at this point make a connection to [MSS18b]. In their context, dele-
terious mutations and trifurcations are captured by the local maps dth (‘deaths’) and cob
(‘cooperative branchings’), respectively. Hence, if s = ν0 = 0, H(At, y0) corresponds to
the concatenation of their higher-level maps d̂th and ĉob, respectively. In particular, (1)
and (4) of our Lemma 4.7 coincide with [MSS18b, Eq. (1.84)]. ♦

Proof of Lemma 4.7. The lines in the ASG do not interact, so the first result follows by
independence. Now fix n = 1. For (1) and (2), note that if the first event is a mutation, the
type of the line at time r = 0 is independent of the type assignment at time r = t due to
parent independence (cf. Fig. 4.5). If the first event is a selective event, the individual at
time 0 is of type 1 if and only if the two lines involved in the event are of type 1. This leads
to (3). If the first event is an interactive event, the individual at time r = 0 is of type 1 if
and only if the continuing line is unfit and either the checking or the incoming line is unfit.
This leads to (4).

One of the main aims in the remainder of the chapter is to recover the bifurcation structure
of the mutation-selection equation by means of the ancestral process and to analyse the
ancestral type distribution in this framework. To connect the forward and the backward
process, we want to derive a duality relation of the form

EA0 [H(At, y0)] = H(A0, y(t; y0)). (4.10)

If we define ỹ(t; y0) := H(At, y0), then we clearly have H(A0, ỹ(t; y0)) = H(At, y0). But
a priori, it is not clear how ỹ(t; y0) relates to y(t; y0). One strategy to prove the duality
relation is by noting that the ASG together with the rule of propagating the types can be
formulated in the framework of recursive tree processes (see Remark 4.9). In particular, the
above relation then follows as an application of [MSS18b, Thm. 6]. We take a different route
in remainder of the chapter and retain more information of the underlying tree structure.
This also allows us to analyse the ancestral type distribution, which we do in Section 4.5.

4.3 Stratified ASG

Quite generally there are two approaches to compute the function H. The natural way is to
determine first the type assignments to the lines in the ASG that lead to an unfit descendant
and then to evaluate the probability of observing these assignments if we independently
sample according to (1 − y0, y0). This is the approach pursed by Mach [Mac17], but the
general idea is also present in the work of Dawson and Greven [DG14, Ch. 5.5]. In contrast,
we aim at resolving all information contained in the tree on the spot. This leads to a
reduction and pruning of the tree. A subsequent reorganization leads to a stratification of
the ASG into distinct regions. This is the topic of the current section.
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4.3.1 Motivation: The case without interaction

Let us recall the appropriate reduction of the ASG in the case of frequency-independent
selection from Section 3.3.
In the absence of interaction and mutation, a sampled individual is of type 1 if and only
if all its potential ancestors are of type 1; this follows from the pecking order and holds
regardless of the tree structure. A mutation determines the type of the line on which it
occurs, so this line need not be traced back further and hence can be pruned. Moreover, if a
beneficial mutation occurs on a line that is not yet pruned, the type of the descendant will
be fit so that we can stop reading the ASG, and we send the process to a cemetery point ∆.
This reasoning gives rise to the killed ASG of Section 3.3. Recall, that its line-counting
process R = (Rr)r≥0 (Definition 3.1) is a Markov process on N0 ∪ {∆} with transition rates

qR(k, k + 1) = ks, qR(k, k − 1) = kuν1, qR(k,∆) = kuν0, k ∈ N0.

Absorption of R in 0 implies that all individuals in the sample are of type 1; whereas
absorption of R in ∆ implies that at least one individual in the sample is fit. The process R is
in moment duality with the mutation-selection model without interaction (see Theorem 3.2),
that is we have for y0 ∈ [0, 1] and n ∈ N∆

0 ,

y(t; y0)n = En
[
yRt0

]
. (4.11)

4.3.2 Reducing the interactive ASG

In the interactive case, a single fit line does not necessarily lead to a fit sampled individual
(see Fig. 4.4), and hence we cannot use the same reasoning as in the non-interactive case. In
particular, counting lines is not sufficient; rather, the tree structure plays an eminent role.
A first step to circumvent this problem is to get rid of the mutation events present in the
ASG. We now explain this in detail.
As in the non-interactive case, a mutation on a line in the ASG determines the effect of that
line on the type of the sampled individual, and, therefore, we need not trace back its ancestry
any further. In addition, the type assigned to the line by the mutation will propagate
(forward in time), resolving on its way some of the selective and/or interactive events it
encounters, by following the local rules presented in the previous section. A particularly
interesting situation occurs when the first event after a trifurcation is a deleterious mutation
in the corresponding continuing line. In this case, the type of the descendant line depends
only on the type of the incoming and the checking line. For this reason, we consider a new
type of event, which we call interactive bifurcation and which corresponds to an interactive
event where the continuing line is pruned due to a deleterious mutation. Moreover, we
denote as a generalised ASG an ASG consisting of selective and interactive bifurcations,
trifurcations, and mutations. In particular, a generalised ASG is then again a directed
graph with labelled vertices. In an interactive bifurcation a vertex with label has never
an incoming edge with label ∅. (But in a trifurcation, a vertex with label still has an
incoming edge with label ∅.) We extend the definition of the type propagation to generalised
ASGs by adding the rule that in an interactive bifurcation the descendant line is fit if and
only if both checking and incoming line are fit. In particular, this extends the definition
of H to generalised ASGs. In what follows, we primarily use the description of the ASG
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×

ρm

(1.a)

×

ρm

(1.b)

×

ρm

(1.c)

×

×

ρm

(1.d)

Figure 4.6. 1-step pruning described by (1.a)-(1.d).

in terms of the arrows to ease the notation, which is also the representation we use in our
figures. All operations acting on an ASG with arrows translate to an operation acting on an
ASG as a directed graph with labelled vertices. We now define appropriate reduction- and
pruning-operations that allow us to resolve the local effects of mutations in a generalised
ASG. After their definition, the invariance of the type at the root under these operations
for a given deterministic assignment of types to the leaves of the ASG is the content of
Lemma 4.9.

Definition 4.8 (Reduction and pruning). Let A be a generalised ASG. The reduced ASG
of A, denoted by S(A), is obtained by removing from A all the sub-ASGs arising to the
left of mutation events. In particular, S(A) has again a representation as a directed graph
with labelled vertices. We refer to Ā as a reduced ASG if there exists some generalised
ASG A such that Ā = S(A). Assume that S(A) contains at least one branching event and
at least one mutation event. Ifm denotes a mutation event in S(A), we call ρm(A) the 1-step
pruning of S(A) at m and define it as follows (cf. Figs. 4.6 and 4.7).
(1) If m is a deleterious mutation and

(a) the event preceding m is a selective branching, we remove the arrow and the line
segment between the two events, and we connect the other line involved in the
branching to the descendant line.

(b) the event preceding m is a trifurcation and the line involved in the mutation is
incoming (resp. checking) to this event, we remove the line segment between the
two events, the sub-ASG arising from the checking (resp. incoming) line, and the
interactive arrow.

(c) the event preceding m is a trifurcation and the line involved in the mutation is
continuing to this event, we remove the line segment between the two events,
thus transforming the trifurcation into an interactive bifurcation.

(d) the event preceding m is an interactive bifurcation, we remove the sub-ASG
arising at the interactive event and replace the interactive event by a deleterious
mutation.

(2) If m is a beneficial mutation and

(a) the event preceding m is a selective branching and the line involved in the muta-
tion is continuing (resp. incoming), we remove the sub-ASG arising from the
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ρm

(2.a)

ρm

(2.b)

ρm

(2.c)

ρm

(2.d)

Figure 4.7. 1-step pruning described by (2.a)-(2.d)

incoming (resp. continuing) line and connect the remaining line to the descend-
ant line.

(b) the event preceding m is a trifurcation and the line involved in the mutation is
incoming (resp. checking) to this event, we remove the sub-ASG arising from the
incoming (resp. checking) line and connect the checking (resp. incoming) line to
the continuing line via a selective arrow.

(c) the event preceding m is a trifurcation and the line involved in the mutation is
continuing to this event, we remove the sub-ASGs arising from the checking and
incoming lines.

(d) the event preceding m is an interactive bifurcation and the line involved in the
mutation is incoming (resp. checking) to this event, we remove the line segment
between the two events and connect the checking (resp. incoming) line to the
descendant line.

We call Â a pruning of A if Â = S(A) or if it is obtained by successive 1-step prunings
of S(A). Moreover, a pruning of A is called total if it is composed of a generalised ASG
without mutations and/or a collection of lines ending in mutation events. We write A ∼ ◦
if A consists of a single line ending in a beneficial mutation. Similarly, we write A ∼ × if A
consists of a single line ending in a deleterious mutation.

Remark 4.10. Note that a 1-step pruning reduces the number of events in a reduced ASG
at least by one. Therefore, a total pruning is obtained after a finite number of 1-step
prunings. ♦

Remark 4.11. Consider Fig. 4.6. If we want to determine the type of the descendent in
case (1.a), both lines play a symmetric role. In the figure, we only present one of the
two cases. Similarly, checking and incoming line have an equal effect on the type of the
descendent in cases (1.b) and (1.d). The same reasoning applies in Fig. 4.7 for cases (2.a),
(2.b), and (2.d). Note that, the reduced ASG in the current form is not an appropriate
structure to determine the ancestor of the root, because the line-segments arising to the left
of mutations might be relevant to determine the type of the ancestor. ♦

Remark 4.12. If A is a generalised ASG, then S(A) is, by construction, embedded into A
(in the obvious way). Similarly, if Ā is a reduced ASG and ρm(Ā) is a 1-step pruning of
it, then the lines of ρm(Ā) can be embedded into Ā. However, the type of the connections
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ρ1 ρ2

Figure 4.8. Resolving first the first (resp. second) mutation from the left leads to the total
pruning on the left (resp. right). Note the difference in length of the line segment to the
beneficial mutation after pruning.

between lines can differ between ρm(Ā) and Ā (see Fig. 4.9). This identification of lines
will be used implicitly all along in this section. ♦

Remark 4.13. Two total prunings are not necessarily identical. For an example see Fig. 4.8.
♦

Remark 4.14. An example for a total pruning is the following. Consider a generalised
ASG At that starts with two lines. In one line the first event is a mutation. The ASG
arising from the other line contains no mutations. If we remove the part beyond the first
mutation on the first line, then this is a total pruning. ♦

Consider the reduced ASG that arises from At. Assign types to the lines that are present
at time backward time t (the lines ending before time t get their types from the corres-
ponding mutation events). Next, propagate types as described in Section 4.2 (see also
Definition 2.11). This extends the definition of H to reduced ASGs.

Remark 4.15. The statement of Lemma 4.7 remains true if At is a reduced ASG or a
generalised ASG in [0, t]. Moreover, points (1), (2), (3) and (4) are complemented by
(5) if the event at time T? is an interactive bifurcation, we denote by A2

T?,t
and A3

T?,t
the

ASGs starting at time T? from the incoming and checking line, respectively. Then,

H(At, y0) = H(A2
T?,t, y0) +H(A3

T?,t, y0)−H(A2
T?,t, y0)H(A3

T?,t, y0). ♦

The next lemma states that for any given type assignment to the leaves of an ASG, the type
of the root is invariant under reduction and 1-step prunings.

Lemma 4.9 (Invariance of root type under reduction/pruning). Consider a generalised
ASG At for some t ≥ 0. For any given assignment of types to the leaves, the type of the
root is invariant under reduction and 1-step prunings. In particular,

H(At, y0) = H( S(At), y0) = H(ρm(At), y0),

for any mutation m in S(At), i.e. H is invariant under reduction and 1-step prunings.

Proof. By Lemma 4.7, we can without loss of generality assume that our ASG starts with
one line. Let At be a generalised ASG in [0, t] started with a single line and consisting of n
lines at time t, denoted by `1, ..., `n. For c := (ci)i∈[n] ∈ {0, 1}n, denote by vc(At) ∈ {0, 1}



4.3 Stratified ASG 77

the type of the single line present at time 0 in At if at time t, for each i ∈ [n], line `i
is assigned type ci. From construction, if y := (yi)i∈[n], z := (zi)i∈[n] ∈ {0, 1}n are such
that yi = zi for all i with `i being present in S(At), then vy(At) = vz(At). Therefore, the
type of the root is invariant under reductions.

We now prove that the type of the root is invariant under 1-step prunings. We only consider
prunings induced by a deleterious mutation. The prunings induced by beneficial mutation
can be treated analogously.
The first part of the proof implies that we can work on the basis of a reduced ASG. To ease
the notation, we write for the remainder of this proof At instead of S(At). First, assume
that At is a reduced ASG in [0, t] consisting of at least one branching and at least one muta-
tion event. We have to show that for every mutationm on a line of At, vc(At) = vc(ρm(At)).
Denote by T? the time of the last branching that involves the line with mutation m and
by ` the line with this branching (i.e. the descendent line). Let T ε? := T?− ε for ε > 0 small
enough such that there is no other event on line ` in [T ε? , T?], i.e. the time just before the
branching. Let A`T ε? ,t be the ASG in [T ε? , t] arising from line ` in At, i.e. the ASG arising
from line ` directly before time T?. Then, by a slight abuse of notation, we write vc(A`T ε? ,t)
for the type of its root if the types of the leaves are assigned according to c restricted to
the lines in A`T ε? ,t at time t. In particular, this is the type on the descendent line at the
branching event on line ` at time T?. Since ρm(At) only affects the lines contained in A`T ε? ,t,
it suffices to prove that vc(A`T ε? ,t) = vc(ρm(A`T ε? ,t)), where vc(ρm(A`T ε? ,t)) is the type of the
root of ρm(A`T ε? ,t) if the types are assigned according to c restricted to the lines in ρm(A`T ε? ,t)
at time t. It then follows that vc(At) = vc(ρm(At)).
Hence, we now prove vc(A`T ε? ,t) = vc(ρm(A`T ε? ,t)), which boils down to proving the invari-
ance of the type at the root in the generalised ASGs under the 1-step prunings depicted in
Fig. 4.6.
(1.a) If the branching is a selective bifurcation and m occurs in the continuing line, let A`,1T?,t

and A`,2T?,t be the reduced ASGs in [T?, t] arising at this branching event from the con-
tinuing and incoming line, respectively. We have A`,1T?,t ∼ ×, and therefore vc(A`,1T?,t) =
1. The type propagation rule at a selective bifurcation implies then vc(A`T ε? ,t) = 0
if and only if vc(A`,2T?,t) = 0. On the other hand, vc(ρm(A`T ε? ,t)) = 0 if and only if

t1t2t3t4t5t6 0t

×

t1t2t3t4t5t6 0t

×

Figure 4.9. A realisation of the ASG At in the smsssi-limit in the time interval [0, t] (grey
and black, left and right), its reduced ASG S(A) (black, left), and its total pruning Â (black,
right).
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vc(A`,2T?,t) = 0. Hence, vc(A`T ε? ,t) = vc(ρm(A`T ε? ,t)).

(1.b) If the branching is a trifurcation and m occurs in the incoming line, denote by A`,1T?,t,
A`,2T?,t, and A

`,3
T?,t

the reduced ASGs in [T?, t] arising from the continuing, checking,
and incoming line, respectively. We have A`,3T?,t ∼ ×, and therefore vc(A`,3T?,t) = 1.
The type propagation rule at an interactive trifurcation then implies vc(A`T ε? ,t) = 1
if and only if vc(A`,1T?,t) = 1. On the other hand, vc(ρm(A`T ε? ,t)) = 1 if and only if
vc(A`,1T?,t) = 1. Hence, vc(A`T ε? ,t) = vc(A`,1T?,t) = vc(ρm(A`T ε? ,t)). By symmetry, the same
argument applies if the mutation is on the checking line.

(1.c) If the branching is a trifurcation and m occurs in the continuing line, we have A`,1T?,t ∼
×, and therefore vc(A`,1T?,t) = 1. The type propagation rule at an interactive trifurcation
then implies vc(A`T ε? ,t) = 0 if and only if vc(A`,2T?,t) = 0 and vc(A`,3T?,t) = 0. On the other
hand, vc(ρm(A`T ε? ,t)) = 0 if and only if vc(A`,2T?,t) = 0 and vc(A`,3T?,t) = 0. Hence,
vc(A`T ε? ,t) = vc(ρm(A`T ε? ,t)).

(1.d) If the branching is an interactive bifurcation and m occurs on the incoming line,
we have A`,2T?,t ∼ × and therefore vc(A`,2T?,t) = 1. The type propagation rule at an
interactive bifurcation then implies vc(A`T ε? ,t) = 1. On the other hand, vc(ρm(A`T ε? ,t)) =
0 if and only if vc(A`,2T?,t) = 0 and vc(A`,3T?,t) = 0. Hence, also vc(ρm(A`T ε? ,t)) = 1. By
symmetry, the same argument applies if the mutation is on the checking line.

To determine H(At, y0), the type at every leaf is independently sampled according to (1−
y0, y0). Hence, from the invariance of the type of the root under reductions and 1-step
prunings, the invariance of H under these operation follows.

Lemma 4.10. Let At be an ASG in [0, t] starting with one line. Two total prunings of At
are either identical or both consist of a single line ending in the same type of mutation.

We provide the proof of Lemma 4.10 in Section 4.6. The previous result motivates the
following definition.

Definition 4.11 (Pruned ASG). Let At be an ASG in the time interval [0, t] starting with
one line. The pruned ASG associated with At, denoted by ρ(At), is defined as follows.
Let Āt be a total pruning of At. If Āt ∼ ×, set ρ(At) := ∅. If Āt ∼ ◦, set ρ(At) := ∆,
where ∆ denotes a cemetery point. In the remaining case, we set ρ(At) := Āt. Moreover,
if At := (At(i))i∈[n] is an ASG in the time interval [0, t] starting with n lines, then the
pruned ASG associated with At is given by

ρ(At) :=


∆, if ρ(At(i)) = ∆ for some i ∈ [n],

∅, if ρ(At(i)) = ∅ for all i ∈ [n],

(ρ(At(i)))i∈In , otherwise,

where In := {i ∈ [n] : ρ(At(i)) 6= ∅}.

We set H(∆, y0) := 0 and H(∅, y0) := 1, for y0 ∈ [0, 1].
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Lemma 4.12. Let A be an ASG in a finite interval. For a given type assignment at the
leaves of A, the roots of A and ρ(A) have the same type. In particular,

H(A, y0) = H(ρ(A), y0), y0 ∈ [0, 1].

Proof. It follows by iterating Lemma 4.9.

4.3.3 Stratifying the ASG

Pruning the ASG allows us to get rid of the mutation events. In the next step we partition or
stratify the pruned ASG into regions within which types propagate as in the non-interactive
case.
Let us explain the rationale. We say that two lines in a generalised ASG belong to the same
region if they are connected only by means of selective arrows. A trifurcation gives rise to
two new lines each of which is connected to the region of the continuing line via an incoming
or checking arrow, respectively. In particular, each of the two new lines starts a new region.
In this way, the line at the origin of a given region is assigned type 1 if and only if all the
lines in that region are assigned type 1 and, in addition, at any trifurcation in this region
(where the line with the trifurcation is continuing and hence part of the said region) either
the incoming or the checking line is assigned type 1. The rationale at interactive bifurcations
is analogous. Altogether, it is enough to keep track of the sizes of the regions and of the tree
structure inherent to the connections between them. In order to encode this information,
we use weighted ternary trees.

In what follows, a rooted tree will be an undirected, acyclic, finite, connected graph in which
we identify a special vertex that is called the root. A ternary tree is a rooted tree in which
each vertex that is not the root is labelled as left, middle, or right child. Rooted trees
induce a natural order on the vertices by the distance to the root (this justifies the notion of
children). Denote by Ξ the set of all ternary trees. For a ternary tree τ ∈ Ξ, denote by Vτ
the set of its vertices and by Lτ ⊆ Vτ the set of its leaves. A weighted ternary tree is a
pair T = (τ,mτ ), where τ ∈ Ξ and mτ : Lτ → N0. Denote by Υ the set of weighted ternary
trees. Write n for the weighted ternary tree that consists only of a root of weight n.

For a given ASG, we will associate a weighted ternary tree such that: (1) each leaf of the
weighted ternary tree is associated with a region in the corresponding pruned ASG, (2) the
underlying tree structure provides the connections between the regions, and (3) the weight
of a leaf corresponds to the number of lines in the associated region.

Definition 4.13 (Stratified ASG). Let At be a generalised ASG in [0, t]. The stratified ASG
associated with At is denoted by S(At) ∈ Υ? := Υ∪{∆} and defined as follows. If ρ(At) = ∅,
set S(At) := 0 . If ρ(At) = ∆, set S(At) := ∆. Assume now that ρ(At) /∈ {∅,∆}. If there
are no interactive events in ρ(At), set S(At) := n , where n is the number of lines present
at time t in ρ(At). In the remaining case, S(At) is defined recursively as follows. Denote
by A2

T?,t
and A3

T?,t
the sub-ASGs arising at the first interactive event in ρ(At) from the

checking and incoming lines, respectively. Moreover, denote by A1
t the generalised ASG

obtained by removing A2
T?,t

and A3
T?,t

from ρ(At). Then, define S(At) by joining the roots
of S(A1

t ), S(A2
T?,t

) and S(A3
T?,t

) to a new node ρ̂, such that they play the role of the left,
middle, and right child of ρ̂, respectively.
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A1
T?,t

A3
T?,t

A2
T?,t

1 2

0 1 1

Figure 4.10. Left: A pruned ASG ρ(At). The sub-ASG A2
T?,t

(resp. A3
T?,t

) arising at the
first interactive event in ρ(At) from the checking (resp. incoming) line is plotted dashed
(resp. dotted). The generalised ASG obtained by removingA2

T?,t
andA3

T?,t
from ρ(At) isA1

t

and corresponds to the solid part. In the last interactive event on A2
T?,t

, the continuing
line has disappeared due to pruning as in Fig. 4.7-(2.c). Right: The associated stratified
ASG. The dashed (resp. dotted) subtree corresponds to S(A2

T?,t
) (resp. S(A3

T?,t
)). The left

subtree corresponds to S(A1
t ).

Figure 4.10 illustrates a pruned ASG and the recursive construction of the associated strat-
ified ASG. Figure 4.11 illustrates how the building blocks of the pruned ASG translate to
stratified ASGs.

Remark 4.16. Consider At, i.e. a generalised ASG in [0, t], with ρ(At) /∈ {∅,∆}. There is a
natural way to associate with any line present at time t in ρ(At) a leaf in S(At). If there are
no interactive events in ρ(At), all the lines at time t in ρ(At) are associated with the root.
Otherwise, using the notation in Definition 4.13, we can associate the lines of A1

t , A2
T?,t

,
and A3

T?,t
present at time t with the leaves of S(A1

t ), S(A2
T?,t

), and S(A3
T?,t

), respectively.
In particular, the continuing, checking, and incoming region are associated to the subtree
arising from the left, middle, and right child of the root, respectively. A recursive application
of this procedure from the root to the leaves assigns each leaf in At a leaf in S(At). This
construction will play an important role in Lemma 4.17. ♦

The previous remark motivates the notion of type propagation in a stratified ASGs. We
say that the root of a stratified ASG S(At) is type 1 (resp. type 0) if the root of At is 1
(resp. 0). The recursive construction of S(At) implies the following type propagation rule

×
S S S S S

0 ∆ 2

1 11 1 10

Figure 4.11. Building blocks of the pruned ASG and their associated stratified ASG.
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in the stratified ASG. A leaf of the stratified ASG is of type 1 if and only if all lines in the
associated region are of type 1. A vertex in the stratified ASG that is not a leaf is of type 1
if and only if the left child is of type 1 and either the middle or right child are of type 1. In
the following definition, we propose a function that determines the probability of an unfit
root in a stratified ASG. We subsequently prove that this function determines H(A, y0) on
the basis of S(A).

Definition 4.14. Define H : Υ? × [0, 1]→ [0, 1] recursively. First, set for y0 ∈ [0, 1],

H
(
n , y0

)
:= yn0 , n ∈ N0, and H(∆, y0) := 0

For T = (τ,mτ ) ∈ Υ having at least three leaves, denote by κ1, κ2, and κ3 the left, middle
and right child of the root of τ , and recursively define

H(T , y0) := H(Tκ1 , y0) [H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)] , (4.12)

where Tκi is the subtree of T that contains κi and all its descendants so that κi is the root
(i ∈ {1, 2, 3}).

Remark 4.17. It follows from the recursive definition of H that H(T , ·) is a polynomial for
fixed T ∈ Υ?. ♦

The next theorem shows that the stratified ASG together with the function H is the right
object to encode the probability that the initial lineages in an ASG are all unfit.

Theorem 4.15. Consider At, i.e. an ASG in [0, t]. We have

H(At, y0) = H(S(At), y0), ∀y0 ∈ [0, 1].

Proof. By Lemma 4.12, it is enough to prove that for At, we have

H(ρ(At), y0) = H(S(At), y0), ∀y0 ∈ [0, 1]. (4.13)

If ρ(At) ∈ {∅,∆}, the result follows from the definition. Now we assume that ρ(At) /∈ {∅,∆},
and we proceed by induction on the number m of interactive events present in ρ(At).
For m = 0, iterating Lemma 4.7-(1), we obtain that H(ρ(At), y0) = yn0 , where n is the
number of lines present in ρ(At) at time t. In addition, by definition S(At) = n , and
hence H(S(At), y0) = yn0 , and the result follows in this case. Now we assume that (4.13)
holds for any ASG such that the corresponding pruned ASG consists of at most m interact-
ive events. Assume that At is such that ρ(At) contains exactly m+ 1 interactive events. As
in Definition 4.13, we denote by A2

T?,t
and A3

T?,t
the sub-ASGs arising at the first interactive

event in ρ(At) from the checking and incoming line, respectively, and by A1
t the general-

ised ASG obtained by removing A2
T?,t

and A3
T?,t

from ρ(At) (where A1
t ∼ × in case of an

interactive bifurcation). By construction, A1
t and AiT?,t (i ∈ {2, 3}) contain at most m in-

teractive events, and therefore from the induction hypothesis H(ρ(A1
t ), y0) = H(S(A1

t ), y0)
and H(ρ(AiT?,t), y0) = H(S(AiT?,t), y0) (i ∈ {2, 3}). Hence, by Lemma 4.7 and the definition
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of S(At) and H (see Definition 4.13 and 4.14),

H(At, y0)

= H(A1
t , y0)

[
H(A2

T?,t, y0) +H(A3
T?,t, y0)−H(A2

T?,t, y0)H(A3
T?,t, y0)

]
= H(S(A1

t ), y0)
[
H(S(A2

T?,t), y0) +H(S(A3
T?,t), y0)−H(S(A2

T?,t), y0)H(S(A3
T?,t), y0)

]
= H(S(At), y0),

which proves the result.

4.3.4 Stratified ASG process

In this section we aim to describe the evolution of the process (S(Ar))r≥0. We first introduce
some notation and operations on weighted ternary trees, which will serve as building blocks
to explicitly describe the transitions of this process.

Fix T := (τ,mτ ) ∈ Υ. We denote by κτ and `1τ the root and the leftmost leaf of τ ,
respectively. For v ∈ Vτ \ {κτ}, av is the parent of v and a?v is either v if v is not the left
child of its parent, or the youngest ancestor of v that is not the left child of its parent. In
particular, a?l1τ = κτ .

For v ∈ Vτ , τv ∈ Ξ is the subtree of τ that contains v and all its descendants so that v is the
root of τv. We write Tv = (τv,mτv) ∈ Υ for the ternary tree τv with weights given by the
restriction of mτ to Lτv , see also Fig. 4.12. Similarly, τCv is the tree that arises from τ by
removing all the descendants of v. The analogous weighted ternary tree is T Cv = (τCv ,mτCv

),
where

mτCv
(l) =

mτ (l), if l 6= v,

0, if l = v.

For ` ∈ Lτ and τ̄ ∈ Ξ, we define τ ⊗` τ̄ ∈ Ξ as the tree that arises by concatenating τ̄
to τ at the leaf `, see Fig. 4.13. In particular, the corresponding set of leaves is Lτ⊗`τ̄ =(
Lτ \ {`}

)
∪ Lτ̄ . For T̄ = (τ̄ ,mτ̄ ) ∈ Υ, the concatenation of T̄ at a leaf ` of T is defined

`1
τ

`1
τv

κτ

av

v

κτ

av `1
τv

v

`1
v

v

Figure 4.12. From left to right: ternary tree τ with leftmost leaf `1
τ and root κτ ; the

tree τCav
that arises if we remove from τ all the descendants of av; the restriction τv of τ to

the subtree induced by v; the concatenation τCav
⊗av

τv of τCav
with τv at leaf av. Note that

the labels do not indicate the weights here.
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as T ⊗` T̄ = (τ ⊗` τ̄ ,mτ ⊗` mτ̄ ), where

mτ ⊗` mτ̄ =


mτ (l), if l ∈ Lτ \ {`},

mτ̄ (l), if l ∈ Lτ̄ \ {`1τ̄},

mτ (`) +mτ̄ (l), if l = `1τ̄ ,

i.e. the weight of the left leaf of the grafted subtree is the sum of the weight of ` and `1τ̄ .
All other leaves of the concatenated tree keep their original weight. See also Fig. 4.13 for
an example. The reason for the definition is the following. The leftmost leaf of a stratified
ASG corresponds to the oldest continuing region in the corresponding pruned ASG. If we
attach a pruned ASG to a specific region in another pruned ASG, as we do in some pruning
operations (e.g. Definition 4.8-(2.c)), the lines of the oldest region of the attached pruned
ASG should be indistinguishable from the lines of the region at which we attach the pruned
ASG.
The total weight of T is

M(T ) :=
∑
v∈Lτ

mτ (v). (4.14)

A generalised ASG in which the only event is an interactive bifurcation corresponds to a
weighted ternary tree with three leaves, where the left leaf has weight 0 and middle and
right leaf have weight 1. We denote the ternary tree with three leaves by

t
∈ Ξ. Moreover,

set
t? = (

t
,mt) ∈ Υ as the ternary tree

t
with left leaf of weight 0 and middle and right

leaf of weight 1, corresponding to the just-described generalised ASG.
Let us sketch, how an event in an ASG affects its stratified ASG. This leads to the appro-
priate transition operations in Definition 4.16.
(1) A selection event increases the number of lines in its region by one. In the stratified

ASG, the weight of the corresponding leaf increases by one.
(2) In an interactive event, two new regions arise: the incoming and the checking region.

In the stratified ASG, we add three new vertices with label left, middle, and right
and connect them to the leaf associated with the region of the interactive event. The

`1 `2 `3 ˜̀1 ˜̀2

˜̀3 ˜̀4 ˜̀5

`2 `3

˜̀1 ˜̀2

˜̀3 ˜̀4 ˜̀5

⊗
`1 =

Figure 4.13. Concatenation of two trees at a given leaf. Note that the labels do not indicate
weights here. The weight of leaf ˜̀1 in the right tree is the weight of `1 plus the weight of ˜̀1

in the middle tree.
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former leaf is now an inner vertex and the three newly added vertices are leaves. The
left leaf takes the weight of the parent (which is the former leaf), and middle and right
leaf obtain weight 1, because their associated regions initially contain only one line.

(3) For a deleterious mutation on a line associated to leaf ` of the stratified ASG, we need
to distinguish the following cases.

If the mutation occurs in a region with more than one line, then the removal of
the line gives the corresponding pruned ASG (Fig. 4.6-(1.a)). In the stratified
ASG this leads to a weight decrease (by one) of the associated leaf. Similarly, if
the mutation occurs in a continuing region containing only a single line, then this
leads to the removal of that line. The trifurcation transforms into an interactive
bifurcation (Fig. 4.6-(1.c)). In the corresponding stratified ASG, the associated
leaf is a left leaf with weight 1. The mutation decreases its weight to 0.
If the mutation occurs in a checking (resp. incoming) region with a single line,
then this leads to the removal of the associated incoming (resp. checking) region
(Fig. 4.6-(1.b)). In the stratified ASG, this corresponds to the removal of the
associated middle and right leaf, and the replacement of the subtree arising from
the parent by the subtree arising from the left child. In case the interactive event
was a bifurcation (Fig. 4.6-(1.d)), it is possible that after this transformation
another region with just a single incoming (or checking) line ends in a deleterious
mutation. Then, we have to resolve another deleterious mutation, which can lead
to the pruning of more regions. We have to resolve the mutation for the last time
if it is in a region that is either a continuing region or at which the continuing
region at the last trifurcation has more than one line. Denote by b` the youngest
ancestor of a leaf ` in the stratified ASG that is either the left child of its parent,
or that has left child b1` such that M(τ

b1
`
) > 0, or which is the root. Then b` is

associated to the region at which the effect of a deleterious mutation is only local
and we need to replace the subtree arising from b` by its left child.

(4) For a beneficial mutation on a line associated to leaf ` of the stratified ASG, we need
to distinguish the following cases.

If the mutation occurs in a checking (resp. incoming) region, the corresponding
incoming (resp. checking) region is connected to the continuing region to obtain
the pruned ASG (Fig. 4.7-(1.b)). In the stratified ASG, such a region corresponds
to a leaf with label middle (resp. right). We assign the combined weight of
the left and right leaf (resp. left and middle) to the parent, and then remove
the three leaves (turning the parent into a leaf). If the mutations occurs in a
continuing region (Fig. 4.7-(1.c)), we need to identify first the region to which the
line is incoming or checking and apply the above procedure there. This regions is
associated with the subtree arising from aa?

`
in the stratified ASG.

If the mutation occurs in a region that is continuing to all interactive events, the
pruned ASG is a single line ending in a beneficial mutation (Fig. 4.7-(1.d)). Such
a region is associated to the leftmost leaf in the stratified ASG. A mutation in
this region leads to the cemetery state. This idea also applies if there are only
selective events in the pruned ASG (Fig. 4.7-(1.a)).

This leads to the following transformations that play the role of transitions of the process
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(S(Ar))r≥0 (see Figs. 4.14 and 4.15). After their definition, we prove that these are indeed
the appropriate operations (see Lemma 4.17).

Definition 4.16 (Transformations of weighted ternary trees). For T = (τ,mτ ) ∈ Υ and
` ∈ Lτ , define T `f, Tt̀ , T `×, T `◦ ∈ Υ? as follows.
(1) T `f:= (τ `f,mτ`f) with τ `f:= τ , mτ`f(`) := mτ (`) + 1 and mτ`f(l) := mτ (l) for l 6= `.

(2) Tt̀ := (τt̀,mτt̀) with τt̀ := τ ⊗`
t

and mτt̀ := mτ ⊗` mt (i.e. Tt̀ = T ⊗`
t?).

(3) T `× := (τ `×,mτ`×
) where

if mτ (`) > 1 or if mτ (`) = 1 and ` is the left child of its parent or if ` is the root,
then τ `× := τ , mτ`×

(`) := mτ (`)− 1 and mτ`×
(l) := mτ (l) for l 6= `.

if mτ (`) = 1 and ` is not the left child of its parent, T `× := T Cb` ⊗b` Tb1` .

(4) T `◦ := (τ `◦ ,mτ`◦
) where

if ` 6= `1τ , denote by v and w the two children of aa?
`
other than a?` ordered from

left to right. Then set, T `◦ :=
(
T Caa?

`

⊗aa?
`

Tv
)
⊗`1(τv)

Tw.

if ` = `1τ , set T `◦ := ∆.

Lemma 4.17. Let At be an ASG in [0, t]. Assume that ρ(Ar−) /∈ {∅,∆}, r ∈ (0, t], and
that at time r a line present in ρ(Ar−) is affected by an event in Ar. If the affected line is
associated to leaf ` ∈ S(Ar−) and the event corresponds to a
(1) branching, then S(Ar) = (S(Ar−))` f.

(2) trifurcation, then S(Ar) = (S(Ar−))t̀.

(3) deleterious mutation, then S(Ar) = (S(Ar−))`×.

(4) beneficial mutation, then S(Ar) = (S(Ar−))`◦.

Proof. We prove the lemma for case (3). For the other cases the proof works analogously.
We proceed by induction on the number k of interactive events present in ρ(Ar−). For
k = 0, we have that S(Ar−) = n , where n denotes the number of lines present at time r−

1 1 2 3 9 7 4 1

10 2

1 2

5 1

0 1 2

4

1 1 2 3 9 7

Figure 4.14. The weighted ternary tree in the middle arises if we apply the ’◦’-operation
at the dashed leaf in the left tree. The weighted ternary tree of the right arises if we apply
the ’×’-operation at the dotted leaf in the left tree. The labels indicate the weights of the
leaves.
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in ρ(Ar−). In particular, all the lines present at time r− in ρ(Ar−) are associated with the
root κ. Hence, (S(Ar−))κ× = j , where j := n − 1. In addition, ρ(Ar) does not contain
interactive events and consists of j lines at time r. Therefore, S(Ar) = j , which proves
the result for k = 0. Now, we assume the result is true whenever ρ(Ar−) contains at most k
interactive events. Denote by T? the time of the first interactive event in ρ(Ar−). Denote
by A2

v and A3
v, for v = r or v = r−, the ASG in [T?, v] arising in Av from the incoming and

checking line at this interactive event, respectively. Moreover, denote by A1
v the generalised

ASG obtained by removing A2
v and A3

v from Av.
Let us assume that the line affected by the event is in A2

r− (the other cases follow in a
similar way). If ρ(A2

r) = ∅, then ρ(Ar) = ρ(A1
r). In particular, S(Ar) = S(A1

r) = S(A1
r−).

In addition, by the induction hypothesis S(A2
r−)`× = S(A2

r) = 0 . This implies that the
mass of ` at time r− is 1. In addition, in S(Ar−) we have that b` is the root. Hence,
S(Ar−)`× = S(A1

r−) = S(Ar). It remains to prove the result in the case where ρ(A2
r) 6= ∅.

In this case, S(Av), for v = r or v = r−, is the weighted ternary tree obtained by joining from
left to right S(A1

v), S(A2
v), and S(A3

v) to a new root κ. By construction S(Air) = S(Air−)
for i ∈ {1, 3}, and by the induction hypothesis, S(A2

r) = S(A2
r−)`×. The result follows by

noting that S(Ar−)`× is obtained by replacing S(A2
r−) by S(A2

r−)`×.

The effect of an event in an ASG to the associated stratified ASG is captured in the previous
Lemma. Before defining the corresponding stochastic process, we discuss the appropriate
topology in the following remark.

Remark 4.18 (Topology on weighted ternary trees). We consider the discrete metric on Υ?,
the space of weighted ternary trees, which makes the topology induced by this metric dis-
crete. In particular, Υ? equipped with this topology is then a Polish space, which makes it
a suitable state space for stochastic processes. ♦

Definition 4.18 (Stratified ASG process). The stratified ASG process T = (T (r))r≥0 is
the continuous-time Markov chain with values in Υ? and transition rates

qT (T , T `f) := smτ (`), qT (T , Tt̀ ) := γ mτ (`),
qT (T , T `×) := uν1mτ (`), qT (T , T `◦ ) := uν0mτ (`),

for T = (τ,mτ ) ∈ Υ and ` ∈ Lτ . The states 0 and ∆ are absorbing.

The infinitesimal generator of T is then given by

GT f(T ) = G ff(T ) + Gtf(T ) + G×f(T ) + G◦f(T ), (4.15)

where f : Υ? → R bounded and for T = (τ,mτ )

G ff(T ) :=
∑
`∈Lτ

smτ (`)
[
f(T `f)− f(T )

]
, Gtf(T ) :=

∑
`∈Lτ

γ mτ (`)
[
f(Tt̀ )− f(T )

]
,

G×f(T ) :=
∑
`∈Lτ

uν1mτ (`)
[
f(T `×)− f(T )

]
, G◦f(T ) :=

∑
`∈Lτ

uν0mτ (`)
[
f(T `◦ )− f(T )

]
.

(4.16)



4.4 Type distribution via stratified ASG 87

1 f

→ 2 t

→

12 1

f

→

12 2

t

→

1 2

112

×→

12 1

◦→ ∆
Figure 4.15. Stratified ASG process. The dotted leaf is the leaf affected by the operation
associated with the subsequent transition arrow. Here, the labels in the leaves indicate their
respective weight.

The following result implies that the stratified ASG process is, in distribution, equal to the
stratified ASG associated with an ASG.

Theorem 4.19. If S(A0) = T (0), then we have

(S(Ar))r≥0
(d)= (T (r))r≥0.

Proof. Note that by construction S(Ar) is only affected by the events happening to the
lines in ρ(Ar) at time r. Since the number of lines in ρ(Ar) that are associated with a
given leaf ` ∈ S(Ar) =: (τr,mr) is mr(`), the result follows as a direct application of
Lemma 4.17.

4.4 Type distribution via stratified ASG

In this section we aim to connect the solution of the deterministic mutation-selection equa-
tion with pairwise interaction (4.1) with the stratified ASG, both for a finite time horizon
and at stationarity. The formal relation will be given as a duality with respect to the func-
tion H of Definition 4.14. After establishing the duality, we derive the long-term behaviour
of the stratified ASG. In the end, we recover the bifurcation structure from (4.1) by genea-
logical means.
In a first step, we study the effect of the generator of T on H for a fixed initial frequency
of unfit types y0 ∈ [0, 1].

Lemma 4.20. For every T ∈ Υ?, we have H(T , ·) ∈ C1([0, 1],R). Moreover, for any
y0 ∈ [0, 1],

G fH(·, y0)(T ) = −sy0(1− y0)∂H(T , y)
∂y

(y0), GtH(·, y0)(T ) = −γy0(1− y0)2∂H(T , y)
∂y

(y0),

G×H(·, y0)(T ) = (1− y0)uν1
∂H(T , y)

∂y
(y0), G◦H(·, y0)(T ) = y0uν0

∂H(T , y)
∂y

(y0).
(4.17)

We provide the proof of Lemma 4.20 in Section 4.6.
The next result establishes the aforementioned duality between the solution of the mutation-
selection equation with pairwise interaction and the stratified ASG process.
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Theorem 4.21 (Duality). The stratified ASG process (T (t))t≥0 and the solution (y(t; y0))t≥0
of the IVP (4.1) satisfy the duality relation for t ≥ 0

H(T , y(t; y0)) = ET [H(T (t), y0)] for y0 ∈ [0, 1], T ∈ Υ?. (4.18)

In particular, for t ≥ 0 and y0 ∈ [0, 1],

y(t; y0) = E 1 [H(T (t), y0)]. (4.19)

Remark 4.19. If s = ν0 = 0 and u = 1, our theorem resembles [Mac17, Prop. I.2.1.4].
But, as mentioned in the beginning of Section 4.3, the two processes dual to the ODE are
conceptually different. ♦

Proof of Theorem 4.21. We consider y := (y(t; y0))t≥0 as a (deterministic) Markov process
on [0, 1] with generator given by

Gyg(ỹ) = F (ỹ) dg
dy

(ỹ) (4.20)

for g ∈ C1([0, 1],R). Fix T ∈ Υ? and t ≥ 0. By Lemma 4.20, H(T , ·) ∈ C1([0, 1],R).
Since F is continuously differentiable, it follows from a classic result of ODE theory [KP04,
Thm. 8.43] that y(t; ·) ∈ C1([0, 1],R). Hence, also P yt H(T , ·) = H(T , y(t; ·)) ∈ C1([0, 1],R),
where (P yt )t≥0 is the transition semigroup corresponding to y. Υ? is countable and equipped
with the discrete topology. The number of possible transitions of the stratified ASG process
at any given state is finite and each transition occurs at a finite rate. Therefore, the domain
of its generator contains any bounded function from Υ? to R. In particular, for y0 ∈ [0, 1],
H(·, y0) and PT

t H(·, y0) lie in the domain of its generator, where (PT
t )t≥0 is the transition

semigroup corresponding to T . Using Lemma 4.20, we deduce that

GT H(·, ỹ)(T ) = GFH(T , ·)(ỹ) for T ∈ Υ? and ỹ ∈ [0, 1].

Since H is bounded and continuous, the result follows from [JK14, Prop. 1.2].

The duality between the stratified ASG process and the solution of the mutation-selection
equation implies the duality sketched in (4.10) for the ASG.

Corollary 4.22. Let At be an ASG in [0, t] starting with a single line and y0 ∈ [0, 1]. Then,

y(t; y0) = E[H(At, y0)].

Proof. The result follows from the duality in Theorem 4.21 and then applying Theorem 4.19
and Theorem 4.15.

We now deduce the main properties of the process (H(T (r), y0))r≥0. Denote by FT
r :=

σ(T (t) : t ≤ r), i.e. the natural filtration of (T (r))r≥0.

Theorem 4.23. Let y0 ∈ [0, 1].
If F (y0) > 0, then (H(T (r), y0))r≥0 is a bounded ((FT

r )r≥0)-submartingale.

If F (y0) = 0, then (H(T (r), y0))r≥0 is a bounded ((FT
r )r≥0)-martingale.
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If F (y0) < 0, then (H(T (r), y0))r≥0 is a bounded ((FT
r )r≥0)-supermartingale.

In particular, H∞(y0) := limr→∞H(T (r), y0) ∈ [0, 1] exists almost surely.

Remark 4.20. This generalises Corollary 3.3 to the smsssi-limit. ♦

Proof of Theorem 4.23. Fix r ≥ 0 and y0 ∈ [0, 1]. Since H(·, y0) ∈ [0, 1], it is clearly
integrable. Furthermore, H(T (r), y0) is measurable with respect to the σ-algebra generated
by T (r) and therefore also adapted with respect to FT

r . Fix t ∈ [0, r] and T ∈ Υ?. By the
Markov property and the duality, we have

ET [H(T (r), y0) | FT
t ] = ET (t)[H(T (r − t), y0)] = H(T (t), y(r − t; y0)).

Note that if F (y0) > 0 (resp. F (y0) < 0), then y(t; y0) is non-decreasing (resp. non-
increasing) for all t > 0. If F (y0) = 0, then y(t; y0) ≡ y0 for all t > 0. Since H is monotone
in the second argument,

H(T (r), y(t− r; y0))


≥ H(T (r), y0), if F (y0) > 0,

= H(T (r), y0), if F (y0) = 0,

≤ H(T (r), y0), if F (y0) < 0.

In particular, (H(T (r), y0))r≥0 is a non-negative bounded sub/super-martingale. Hence, a
straightforward application of Doob’s martingale convergence theorem yields the last result.

Eventually, we want to recover the long-term behaviour of the forward process in terms of
the backward process by taking t→∞ in (4.19). To describe the long-term behaviour, we
need some more notation. Denote the time of absorption of the stratified ASG process in 0

and ∆ by

T 0 := inf
{
r > 0 : T (r) = 0 } and T∆ := inf{r > 0 : T (r) = ∆},

respectively. Denote by
Tabs := min{T 0 , T∆}.

Note that H∞(y0) = 1 on {T 0 < ∞} for any y0 ∈ [0, 1]. Similarly, H∞(y0) = 0 on
{T∆ < ∞} for any y0 ∈ [0, 1]. In particular, conditional on {Tabs < ∞}, H∞(y0) is a
Bernoulli random variable. If T is not absorbed, the analysis of H∞(y0) is more involved.

Proposition 4.24. If y0 is not an unstable equilibrium of (4.1) and T (0) = 1 , then H∞(y0)
is a Bernoulli random variable with parameter y∞(y0).

Remark 4.21. Let us make a link to [MSS18b] and endogeny. A very simplified description
of a recursive tree process is as follows. Consider a tree and assign types to its leaves. The
types propagate through the tree as follows. At each branching in the tree (this includes
degenerate branchings with one branch), there is a random function attached to it. Given
the types of the descendents, the random function determines the type of the ancestor. If
the state at the root of this tree is measurable with respect to the σ-algebra generated by
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the random functions attached to all branching points, then the recursive tree process is
said to be endogenous (see [AB05; MSS18a] for more details). It follows from [MSS18b,
Prop. 15] together with [MSS18a, Thm. 5] (alternatively, [MSS18b, Prop. 16]) that if y0 is
an equilibrium of (4.1), then H∞(y0) is Bernoulli if and only if the recursive tree process
corresponding to y0 is endogenous. In particular, Proposition 4.24 implies that in our setup,
the recursive tree processes corresponding to stable equilibria are always endogenous. An
alternative way to recover Proposition 4.24 is via [MSS18b, Prop. 19, see also Sect. 2.1]
(alternatively, [AB05, Lem. 15]).

For s = ν0 = 0 and u = 1, Proposition 4.24 can be also recovered from [MSS18b, Thm. 17].
Moreover, if y0 is an unstable equilibrium, Mach et al. [MSS18b, Lem. 18] determine the
first and second moments of H∞(y0). This allows them to infer that H∞(y0) is then not
Bernoulli. Furthermore, they complement the result by numerical evaluations of the distri-
bution function [MSS18b, Fig. 2]. ♦

Proof of Proposition 4.24. Fix y0 ∈ [0, 1] such that it is not an unstable equilibrium of (4.1).
In particular, y∞(y0) is then attracting (from at least one side) and, therefore, F ′(y∞(y0)) ≤
0. Consider (T (r))r≥0 with T (0) = 1 . Denote by T f, Tt, T◦, and T× the time of the
first selective, interactive, beneficial mutation, and deleterious mutation event, respectively.
Let T = min{T f, Tt, T◦, T×}. For sufficiently large r > 0,

H(T (r), y0) = 1{T=T×} + 1{T=T f}H(T 1(r − T ), y0)H(T 2(r − T ), y0)
+ 1{T=Tt}H(T 3(r − T ), y0)

[
H(T 4(r − T ), y0) +H(T 5(r − T ), y0)

−H(T 4(r − T ), y0)H(T 5(r − T ), y0)
]
,

where T 1,T 2,T 3,T 4, and T 5 are independent stratified ASGs all of which are started
in 1 . Taking the limit r →∞ yields,

H∞(y0) = 1{T=T×} + 1{T=T f}H1
∞(y0)H2

∞(y0)
+ 1{T=Tt}H3

∞(y0)[H4
∞(y0) +H5

∞(y0)−H4
∞(y0)H5

∞(y0)].

In particular, for every G ∈ C([0, 1],R), we have

E[G(H∞(y0))] = P(T = T×)E
[
G(1)

]
+ P(T = T◦)E

[
G(0)

]
+ P(T = T f)E

[
G
(
H1
∞(y0)H2

∞(y0)
)]

(4.21)

+ P(T = Tt)E
[
G
(
H3
∞(y0)

[
H4
∞(y0) +H5

∞(y0)−H4
∞(y0)H5

∞(y0)
])]
.

Set E(y0) := E[H∞(y0)] and V (y0) := E[H∞(y0)2]. Note that if X is a random variable
in [0, 1], then X is Bernoulli if and only if E[X(1 − X)] = 0. In particular, H∞(y0) is
Bernoulli if and only if E(y0) = V (y0). Choosing G(x) = x(1 − x) in (4.21) and using
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independence, we obtain

E(y0)− V (y0) = s

u+ s+ γ

(
E(y0)− V (y0)

)(
E(y0) + V (y0)

)
+ γ

u+ s+ γ

(
E(y0)− V (y0)

)
(4.22)

·
(
V (y0)2 + V (y0)(2− 3E(y0)) + E(y0)(2− E(y0))

)
,

By the duality,
E(y0) = y∞(y0) (4.23)

and hence E(y0) is an equilibrium of (4.1). Furthermore, H∞(y0) ∈ [0, 1] and hence

0 ≤ V (y0) = E
[
H∞(y0)2] ≤ E[H∞(y0)

]
= E(y0).

We want to further narrow down the value of V (y0). To do so, we consider equation (4.22)
with unknown x = V (y0), i.e. we rewrite (4.22) as(

E(y0)− x
)
p̂
(
E(y0), x

)
= 0,

where

p̂
(
E(y0), x

)
:= s

(
E(y0) + x

)
+ γ

(
x2 + x(2− 3E(y0)) + E(y0)(2− E(y0))

)
− (u+ s+ γ).

Note that

p̂(E(y0), 0) = s(E(y0)− 1) + γ(E(y0)(2− E(y0))− 1)− u ≤ −u

and p̂(E(y0), E(y0)) = F ′(E(y0)) ≤ 0, where the inequality follows from (4.23) and the
observation at the beginning of the proof. In particular, since p̂(E(y0), x) is a quadratic
polynomial with positive quadratic term in x, p̂(E(y0), x) 6= 0 for all x ∈ [0, E(y0)). Alto-
gether, this implies V (y0) = E(y0).

Denote the probability of absorption in 0 of the stratified ASG started in 1 by

w1 := P
(
T 0 <∞ | T (0) = 1 ).

Similarly, denote the probability of not getting absorbed in ∆ of the stratified ASG process
started in 1 by

d1 := P
(
T∆ =∞ | T (0) = 1 ).

By definition, we have w1 ≤ d1. Moreover, define for y0 ∈ [0, 1],

p(y0) := E
[
1{T 0 =∞}H∞(y0) | T (0) = 1 ].

If y0 is not an unstable equilibrium, it follows from Proposition 4.24 that

p(y0) = P
(
H∞(y0) = 1, T 0 =∞ | T (0) = 1 ).

If the stratified ASG process absorbs in 0 , then the descendant is of type 1. On the other
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hand, if the stratified ASG process absorbs in ∆, then the descendant is of type 0. In both
cases this is independent of the sampling probability y0 at the leaves. There are parameter
regions where w1 = d1 , so these are then the only possibilities. If the stratified ASG does not
absorb, the type depends on y0. We will examine this in detail now. Recall from Section 4.1
that ŷ∞ and y̌∞ denote, respectively, the smallest and largest equilibrium of (4.1) in [0, 1].

Theorem 4.25. For any y0 ∈ [0, 1], we have

y∞(y0) = w1 + p(y0). (4.24)

In particular, ŷ∞ = w1 and y̌∞ = d1. Furthermore, the two following statements are
equivalent:

(i) P(Tabs <∞ | T (0) = 1 ) = 1,

(ii) ŷ∞ = w1 = d1 = y̌∞ is the unique equilibrium in [0, 1].

Moreover, both (i) and (ii) imply that w1 = d1 is stable.

Remark 4.22. Theorem 4.25 in combination with the facts collected at the beginning of
Section 4.1 implies that w1 is never unstable. Furthermore, if ν0 > 0, then d1 is not
unstable. ♦

Proof of Theorem 4.25. We decomposeH(T (t), y) according to {T 0 <∞} and {T 0 =∞}.
More precisely, starting from the duality,

y(t; y0) = E 1 [H(T (t), y0)1{T 0 <∞}
] + E 1 [H(T (t), y0)1{T 0 =∞}]. (4.25)

SinceH( 0 , y0) = 1, the first term in (4.25) converges to w1 as t→∞. By Theorem 4.23, the
second term of (4.25) converges to p(y0) as t → ∞, thus proving (4.24). Since H∞(0) = 0
on {T 0 =∞}, H∞(1) = 1 on {T∆ =∞}, and H∞(1) = 0 on {T∆ <∞},

p(0) = 0 and p(1) = P(T 0 =∞, T∆ =∞) = d1 − w1.

Since p is increasing, we deduce that ŷ∞ = w1 and y̌∞ = d1. Note that under (i), p(y0) = 0
for all y0 ∈ [0, 1], and hence the stability of w1 follows by taking the limit when t → ∞
in (4.25). Finally, the equivalence between (i) and (ii) follows using the identity

P(T 0 =∞, T∆ =∞) = d1 − w1.

We denote the domain of attraction of an equilibrium y∞ by

Attr(y∞) :=
{
y0 ∈ [0, 1] : lim

t→∞
y(t; y0) = y∞

}
and refine the statement of Proposition 4.24. The following result is a corollary to The-
orem 4.25.
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Corollary 4.26. Assume T (0) = 1 . If y0 ∈ Attr(w1), then a.s.

H∞(y0) =

0, if T 0 =∞,

1, if T 0 <∞.

If y0 ∈ Attr(d1), then a.s.

H∞(y0) =

0, if T∆ <∞,

1, if T∆ =∞.

In particular, on {Tabs =∞},

H∞(y0) =

0, if y0 ∈ Attr(w1),

1, if y0 ∈ Attr(d1).

Remark 4.23. For y0 ∈ {w1, d1}, Corollary 4.26 makes the endogeny of the underlying
recursive tree process corresponding to y0 explicit. ♦

Remark 4.24. Attr(w1) = Attr(d1) if and only if w1 = d1. By Theorem 4.25, w1 = d1 if
and only if P(T 0 =∞, T∆ =∞) = 0. ♦

Proof of Corollary 4.26. If y0 ∈ Attr(w1), then by definition w1 = y∞(y0) and together with
Theorem 4.25,

w1 = y∞(y0) = w1 + p(y0),

which implies that p(y0) = 0. It follows that H∞(y0) = 0 if T 0 =∞. Moreover, we clearly
have H∞(y0) = 1 on {T 0 < ∞}, since H( 0 , y0) = 1. This proves the first part. For the
second part, assume that for y0 ∈ Attr(d1)

P(H∞(y0) = 1 | T∆ =∞) < 1.

In this case also E[H∞(y0) | T∆ =∞] < 1. On the other hand, by Theorem 4.25

d1 = y∞(y0) = w1 + p(y0) = E[1{T∆=∞}H∞(y0)] = d1E[H∞(y0) | T∆ =∞] < d1,

which is a contradiction. Moreover, we clearly have H∞(y0) = 0 on {T∆ < ∞}, since
H(∆, y0) = 0. The last statement is a direct consequence of the two previous results.

The following proposition implies that the set of values for y0 such that H∞(y0) /∈ {0, 1} on
non-absorption is at most a singleton.

Proposition 4.27. If P(Tabs =∞ | T (0) = 1 ) > 0, we have that

yc := inf
{
y0 ∈ [0, 1] : P

(
H∞(y0) = 1 | Tabs =∞, T (0) = 1 ) = 1

}
= sup

{
y0 ∈ [0, 1] : P

(
H∞(y0) = 0 | Tabs =∞, T (0) = 1 ) = 1

}
.

Furthermore, yc ∈ [w1, d1].
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Proof. Define y(1) := inf{y0 ∈ [0, 1] : P(H∞(y0) = 1 | Tabs = ∞, T (0) = 1 ) = 1}
and y(0) := sup{y0 ∈ [0, 1] : P(H∞(y0) = 0 | Tabs = ∞, T (0) = 1 ) = 1}. By the
properties of sup and inf, y(0) ≤ y(1). By Theorem 4.25, w1 ≤ d1 are equilibria and
y∞(y(0)), y∞(y(1)) ∈ [w1, d1]. By definition of sup and inf and p(y0), we have that for
all ε > 0 the inequalities w1 < y∞(y(0) + ε) and d1 > y∞(y(1)− ε) hold. Assume y(0) < y(1).
In particular, for y0 ∈ (y(0), y(1)), we have that w1 < y∞(y0) < d1. Since (4.1) has at most
three equilibria, for all y0 ∈ (y(0), y(1)) we have y∞(y0) ≡ c for some c in (w1, d1). But then c,
which is enclosed by w1 and d1, is stable. This contradicts the findings from Remark 4.6.
By Corollary 4.26, it follows that yc ∈ [w1, d1].

Let us study in more detail the long-term behaviour of the stratified ASG process that is
conditioned to not absorb. Note that in the case γ = 0, the total weight of the stratified
ASG behaves like a linear birth-death process with killing (which occurs at rate uν0 per
line). This process either absorbs or grows to ∞; see also Lemma 3.4. The next proposition
sheds light on the case γ > 0. Recall from (4.14) that M(T ) is the total weight of T .

Proposition 4.28. On {Tabs =∞}, we have that limr→∞M(T (r)) =∞.

Proof. Let T1, T2, . . . be the jump times of T (t). Assume there is A ⊆ {min{T 0 , T∆} =∞}
with P(A) > 0 such that for all ω ∈ A there exists R(ω) <∞ and J ⊆ N with |J | =∞ such
that M(T (Tj)(ω)) < R(ω) for all j ∈ J ; i.e. there exists a infinite sequence of jumping
times such that the mass of the tree is below a certain threshold. Define the set of weighted
ternary trees with (positive) mass smaller than n as Υn = {T ∈ Υ \ { 0 } | M(T ) < n}.
This set is finite. Define

T n(t) =

T (t), if T (t) ∈ Υn,

Θ, if T (t) ∈ Υ \Υn,

where Θ is an arbitrary auxiliary state not in Υn. Note that, for all y0 ∈ (0, 1),

min
T ∈Υn

H(T , y0) = in > 0 and max
T ∈Υn

H(T , y0) = sn < 1.

Hence, for ω ∈ A, y0 ∈ (0, 1), and j ∈ J ,

0 < iR(ω) ≤ H(T (Tj), y0) = H(T R(ω)(Tj), y0) ≤ sR(ω) < 1.

Taking the limit j → ∞ implies that for all ω ∈ A, 0 < iR(ω) ≤ H∞(y0)(ω) ≤ sR(ω) < 1.
Recall from Proposition 4.24 that if y0 is not an unstable equilibrium H∞(y0) ∈ {0, 1}
almost surely so that P(A) = 0 which contradicts the assumption and the result follows.

The following corollary is a collection of our previous results and connects the long-term
behaviour of the stratified ASG process with the bifurcation structure of the mutation-
selection equation.

Corollary 4.29. (1) If P(Tabs = ∞ | T (0) = 1 ) = 0, then w1 = d1 is the unique equilib-
rium of (4.1) in [0, 1] and it is stable.
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(2) If P(Tabs = ∞ | T (0) = 1 ) > 0 and yc = d1, then w1 and d1 are the only equilibria
of (4.1) in [0, 1] with Attr(w1) = [0, d1) and Attr(d1) = [d1, 1].

(3) If P(Tabs = ∞ | T (0) = 1 ) > 0 and yc = w1, then w1 and d1 are the only equilibria
of (4.1) in [0, 1] with Attr(w1) = [0, w1] and Attr(d1) = (w1, 1].

(4) If P(Tabs = ∞ | T (0) = 1 ) > 0 and w1 < yc < d1, then w1 < y∞(yc) < d1 are the
only equilibria of (4.1) in [0, 1] with w1 and d1 being stable and y∞(yc) being unstable.

Proof. The first claim is already part of Theorem 4.25. The second and third claims fol-
low from Proposition 4.27 and Theorem 4.25. The last claim follows by Proposition 4.27,
Theorem 4.25, and Remark 4.6.

Let us discuss in detail how Corollary 4.29 relates to the forward picture. In (1) the strat-
ified ASG absorbs almost surely so that the type of the descendant is independent of the
sampling probability y0, which results in a unique equilibrium in [0, 1]. Its (global) stability
reflects the independence of the sampling step. In (2) to (4), the stratified ASG may also
grow to ∞ in which case the sampling probability y0 becomes relevant. In (2) and (3),
yc ∈ {w1, d1} so that [0, 1] = Attr(w1)∪̇Attr(d1), whereas in (4), yc ∈ (w1, d1) so that
[0, 1] = Attr(w1)∪̇{yc}∪̇Attr(d1). Corollary 4.26 describes the type of the descendant when
the leaves in an infinite stratified ASG are sampled according to y0 ∈ Attr(w1) ∪ Attr(d1):
for y0 ∈ Attr(w1) (y0 ∈ Attr(d1)) the descendant is of type 0 (of type 1) almost surely (on
the set of non-absorption). For y0 = yc, the probability of the stratified ASG to not absorbs
and having an unfit descendant is p(yc).

In the remainder of this section, we concentrate on the case ν0 = 0, where we can make
more explicit statements.

Proposition 4.30. If ν0 = 0, then w1 = min{ȳ2, 1} and d1 = 1. In particular, w1 = d1 if
and only if we are in one of the following parameter regimes

(1) σ < 0, (2) σ = 0, u = s = γ, (3) σ ≥ 0, u ≥ û, and s > γ,

where σ is defined in (4.7).

Proof. The proposition is a direct consequence of Theorem 4.25 together with Proposi-
tion 4.2.

Let us now connect the genealogical backward picture in the case ν0 = 0 with the bifurcation
structure described in Section 4.1.

(i) By the analysis of the forward picture, if either u < û or (s < γ and u = û),
y∞(y0) ∈ [0, 1) unless y0 = 1. The genealogical picture in this case is as follows.
Either the stratified ASG absorbs in a state in which all leaves vanished due to dele-
terious mutations (probability w1 < 1); or, by Proposition 4.28, the total weight of the
stratified ASG tends to ∞ and, as a consequence of Corollary 4.26, the probability of
an unfit root is 0.
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(ii) If either u > ǔ or (γ ≤ s and u ∈ [û, ǔ]), then y∞(y0) = 1 for all y0 ∈ [0, 1]. By
Theorem 4.25, this corresponds to the almost sure absorption of the stratified ASG
in 0 and the sampled individual is unfit regardless of y0.

(iii) If s < γ and u = ǔ, both w1 and 1 are attracting from the left, i. e. y∞(y0) = w1
for y0 ∈ [0, w1] and y∞(y0) = 1 for y0 ∈ (w1, 1]. By the same arguments as in case (i),
we have the following backward picture. If the stratified ASG does not absorb, which
occurs with probability w1 < 1, its total weight tends to ∞. Whether or not the
root of this infinite tree is unfit depends on the initial type frequency. If y0 ≤ ȳ2, the
root is fit almost surely (on non-absorption); if y0 > ȳ2, it is unfit almost surely (on
non-absorption).

(iv) If s < γ and u ∈ (û, ǔ), there exist three equilibria in [0, 1]. By arguments similar
to case (i), the backward picture is as follows. If the process does not absorb, where
absorption occurs with probability w1 < 1, the number of lines tends to ∞. Whether
or not the root of this infinite tree is unfit depends on the initial type frequency.
If y0 < ȳ3, the root is fit almost surely (on non-absorption); if y0 > ȳ3 the root is unfit
almost surely (on non-absorption).

In the cases (i), (ii), and (iii), where the outcome depends on y0, the question arises whether
a more detailed analysis of the stratified ASG explains the dependence on y0 in terms of the
tree structure. This can be done in the case u < û, where w1 is the smallest solution of

− γy2 + (s+ γ)y − u = 0, (4.26)

i.e w1 = (1 + s/γ −
√
σ)/2; see (4.3) and (4.6). Let us rederive this expression in terms of

the stratified ASG. To do so, we analyse 1 − w1, which is the survival probability of the
stratified ASG started in 1 . Define γ̃ := γ(1− w1) as well as

a := 1− u

s
and b = u

s

γ

s+ γ̃ − u
.

Note that, by a straightforward calculation, we can rewrite (4.26) (with y = w1) as a
quadratic equation in 1− w1, namely

b(1− w1)2 − (1− w1) + a = 0. (4.27)

Using the solution formula and the series expansion of the square root at 1 leads to

1− w1 = 1−
√

1− 4ab
2b = 1

2b

∞∑
n=1

(2n)!
(2n− 1)(n!)2a

nbn.

A straightforward calculation then leads to the following result for which we subsequently
provide an additional probabilistic proof. The result and its probabilistic proof shed light
on the various ways, a stratified ASG may escape to ∞.

Proposition 4.31. Let ν0 = 0. For u < û, we have

1− w1 =
∞∑
n=0

Cna
n+1bn, (4.28)
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where Cn is the nth Catalan number.

Probabilistic proof. Note that the number of lines inside a continuing region (i. e. only the
lines that are connected to the initial line of the region by selective arrows) behaves like a
simple birth-death process with birth rate s and death rate u. Recall that this process dies
out with probability u/s and grows to ∞ with probability 1 − u/s (note that we consider
here the parameter regime u < û = s, so u/s ∈ [0, 1)). Hence, a is the probability that the
leftmost leaf in the stratified ASG does not reach weight 0. On the other hand, (4.26) is
equivalent to

y = u

s
− u

s

γ(1− y)
s+ γ(1− y) .

Using the fact that w1 solves the above equation, a straightforward calculation yields the
survival probability of the entire tree as

1− w1 = s+ γ̃ − u
s+ γ̃

. (4.29)

In what follows, we work on the basis of an ASG in the time interval [0,∞) that is started
with one line. Here, we refer to a region either as the entire ASG or as the ASG arising from
the incoming or checking line in a trifurcation. We call a trifurcation in an ASG successful if
both the associated checking and incoming lines give rise to ASGs that have non-absorbing
stratified ASGs (note that, if one of them absorbs, both lines will be pruned in the long
run). We say that a region survives without the help of trifurcations if the leftmost leaf
of its associated stratified ASG does not reach weight 0; otherwise we say that the region
goes extinct without trifurcations. On the other hand, we say that a region survives due
to trifurcations if its stratified ASG does not absorb but its leftmost leaf reaches weight 0.
Denote by π the probability that, conditional on the ASG going extinct without the help of
trifurcations, the ASG goes extinct. We claim that π = s/(s + γ̃). Indeed, conditional on
the event that the ASG goes extinct without trifurcations, the weight of the leftmost leaf
evolves as a birth-death process with birth rate u and death rate s; see Lemma 4.45. Hence,
a first-step decomposition of π leads to

(γ(1− w1)2 + s+ u)π = s+ uπ2.

In the parameter regime we consider here, the solution is unique in [0, 1] and is given
by s/(s+ γ̃), which proves the claim. In particular, the probability that the ASG survives
due to trifurcations is

u

s
(1− π) = u

s

γ(1− w1)2

s+ γ̃ − u
= b(1− w1)2,

where we used (4.29). The probability that the incoming and checking lines of a successful
trifurcation both survive without the help of trifurcations is a2/(1−w1)2. Hence, a2b is the
probability that the ASG survives due to trifurcations and the incoming and the checking
line of the first successful trifurcation survive without the help of trifurcations.

We now partition the event of non-absorption of the stratified ASG according to the pos-
sible ways the stratified ASG may survive. We do this by associating to every such stratified
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∞∞0

Figure 4.16. Ways of the stratified ASG process to survive (and then grow to infinite
size) if ν0 = 0. The label ∞ in a leaf means that the region survives without the help of
trifurcations. For an ASG that survives without the help of trifurcations, there is C0 = 1
binary tree (left). For n = 1 there is C1 = 1 binary tree (middle). For n = 2 there
are C2 = 2 binary trees (right). The solid lines correspond to the binary trees.

ASG a binary tree B. We start with the binary tree with one leaf β. If the ASG survives
without the help of trifurcations, we set B = β. If not, we add two leaves β1 and β2 that are
associated with the incoming and checking region in the first successful trifurcation, respect-
ively. If one of these regions survives without the help of trifurcations, the corresponding
leaf stops branching. Otherwise, we attach to it two new leaves and continue this procedure
in a recursive way. By construction, B is a binary Galton-Watson tree with offspring distri-
bution p2 = a/(1 − w1) and p0 = 1 − p2. A straightforward calculation, which uses (4.27),
shows that p0 > p2 and hence B is almost surely finite (on the event of non-absorption).
Let N be the random number of bifurcations. In the previous construction a branching
corresponds to a successful trifurcation in a region of the reduced ASG that goes extinct
without trifurcations and a leaf corresponds to a region that survives without the help of
trifurcations; see Fig. 4.16. By a simple induction argument on the number of bifurcations n
in the binary tree, one can show that the probability that the ASG corresponds to a given
binary tree with n+ 1 leaves is an+1bn. Indeed, we have already proved that for n = 0 this
probability is a and for n = 1 it is a2b. By construction, computing the probability of a tree
with n + 1 bifurcations amounts to replacing a leaf by a tree with one bifurcation, which
entails replacing a factor a by a factor a2b. Since there are Cn binary trees with n+1 leaves,

P(T 0 =∞, N = n) = Cna
n+1bn.

Summing over the possible values of N leads to (4.28).

Assume that the binary tree associated with a realisation of the stratified ASG has n leaves.
Each leaf corresponds to a region that survives without trifurcations and therefore, the
leftmost leaf in the corresponding stratified ASG has infinite weight. Hence, if y0 < 1, the
descendant is of type 0 almost surely. If y0 = 1, the descendant is of type 1. We thus also
have a purely genealogical proof of the first case in Corollary 4.26.

If u ≥ ǔ, by a straightforward comparison with a simple birth-death process, each leaf in
the stratified ASG eventually reaches weight 0 almost surely. However, for u ∈ [û, ǔ] the
stratified ASG can survive by escaping via trifurcations the effects of absorbing leaves. The
analysis of the underlying tree structures is more difficult and we leave the details to future
work.
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4.5 Ancestral type distribution via stratified ASG

So far we have been concerned with a randomly chosen individual at present and determined
its type via the stratified ASG. Let us now change perspective and consider the type of the
ancestor, at time r before the present, of our current individual. It will turn out that this
can also be tackled by means of a construction that builds on the stratified ASG. Indeed
the specific structure of our reduced and pruned trees will be essential.

In line with Sections 3.4 and 3.5, we denote by Jr the type of the ancestor at backward
time r of the root of an ASG in [0, r] started with a single line if we propagate types and
ancestors as described in Definition 2.11. We abbreviate the probability of Jr to be unfit,
conditional on the sampling distribution at the leaves at backward time r being (1− y0, y0),
by gr(y0) := Py0(Jr = 1).

4.5.1 Ancestral type distribution without interaction

In the absence of interaction, the pLD-ASG described in Section 3.4 is a tool to determine
the ancestral type distribution. We first recall the construction (without interaction) and
then introduce a new perspective on the problem.
The pLD-ASG starts from a single individual. The lines of the graph correspond to the
relevant potential ancestors (see Section 3.4 for the notion of relevant potential ancestor in
the smss-limit) and are assigned consecutive levels, starting at level 1. If a line is hit by
a selective arrow, its level is increased by one and at the same time all lines above it are
shifted up one level; thereby making space for the incoming line, which then occupies the
former level of the line it hit. If the first event on a line that does not occupy the top level is
a deleterious mutation, we can conclude that it will not be ancestral, since it will, at a later
time, play the role of an unsuccessful incoming line, for its type is 1 due to the mutation.
We therefore prune this line at the time of the mutation event. The line occupying the top
level is exempt from the pruning since, regardless of its type, this line will be ancestral if all
lines below it are non-ancestral. We call this line the immune line. If a line that is not the
top line has a mutation to type 0, we can cut away all lines above it, because this line will,
at some stage, be incoming to all lines above it. It will, due to the beneficial mutation, be
successful in all these selection events. If the top line is hit by a mutation to type 0, this
does not have an effect, see Fig. 4.17. This reasoning gives rise to the line-counting process
of the pLD-ASG L = (Lr)r≥0 as a continuous-time Markov chain on N with transition rates

qL(n, n+ 1) = ns, qL(n, n− 1) = (n− 1)uν1 +1{n>1}uν0, qL(n, n− j) = uν0, n ∈ N,

where j ∈ {2, . . . , n−1}. The convenient feature of the above construction is that the original
individual has an unfit ancestor if and only if all potential ancestors in the pLD-ASG are
unfit. The above reasoning leads to (3.25), i.e.

gr(y0) =
∞∑
n=1

P(Lr = n | L0 = 1) yn0 . (4.30)

As a warm-up for the case with interaction, we introduce a different perspective on the pLD-
ASG without interaction and without beneficial mutation (ν0 = 0). In this case, the pLD-
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Figure 4.17. A new perspective on the pLD-ASG: from the immune line emerge three
independent killed ASGs. They are R1 ( ), R2 ( ), and R3 ( ) at times T1, T2, and T3.
Here, R2 has absorbed before backward time t, but R1 and R3 have not.

ASG is just a killed ASG (we have recalled its definition in the beginning of Section 4.3.1,
see also Section 3.3) for which we ignore the mutations on the immune line. Hence, we
can separate the pLD-ASG into two parts. The first part is the immune line, which gives
rise to new lines at rate s. Since it is not pruned upon deleterious mutations, it persists
indefinitely. The lines that emerge from the immune line evolve independently and each of
them is the origin of a new killed ASG . The collection of these mutually independent killed
ASGs forms the second part.

Under this new perspective, the ancestor of the root of the pLD-ASG is unfit if and only
if 1) at the time of sampling, an unfit type is associated with the immune line, and 2) all
killed ASGs emerging from it are unfit at the time of their origin. We will see that the
independence of the killed ASGs, the duality (4.11), and standard properties of Poisson
processes allow the derivation of the following generalisation of Theorem 3.16 to finite time
horizons.

Proposition 4.32 (Ancestral type distribution). Let ν0 = 0 and γ = 0. Then

gr(y0) = y0 exp
(
− s

∫ r

0

(
1− y(ξ; y0)

)
dξ

)
, y0 ∈ [0, 1]. (4.31)

In particular,

gr(y0) =

y0
u−s y(r;y0)
u−sy0

, if y0 ∈ [0, 1) \ {us },

y0 exp(−rs(1− y0)), if y0 ∈ {us , 1}.
(4.32)

Furthermore, g∞(y0) = limr→∞ gr(y0) exists and is given as follows.

(i) If s = 0, g∞(y0) = y0 for all y0 ∈ [0, 1].

(ii) If u ≤ û, g∞(y0) =

0, if y0 ∈ [0, 1),

1, if y0 = 1.

(iii) If u > û, g∞(y0) = y0
u−s
u−sy0

.



4.5 Ancestral type distribution via stratified ASG 101

Proof. The proof of (4.31) is given in the next section in a more general setting (see proof
of Theorem 4.40). Given (4.31), (4.32) follows by standard integration techniques. To see
this, consider y0 < u/s. Then y(r; y0) increases and hence

−s
∫ r

0

(
1− y(ξ, y0)

)
dξ =

∫ y(r;y0)

y0

−s
u− sη

dη = ln
(
u− sy(r; y0)
u− sy0

)
,

where we substituted y(ξ; y0) = η. Together with (4.31) this leads to (4.32). We can proceed
similarly for y0 ∈ (u/s, 1). For y0 ∈ {u/s, 1}, one has y(r; y0) ≡ y0 and the result follows.
(i)– (iii) are a consequence of (4.32) together with the form of y∞(y0) from Corollary 4.3
if γ = 0.

Let us use Proposition 4.32 to once more make the connection with the deterministic dy-
namics. Consider the following transformation,

z0(t) := (1− y(t; y0)) f(t) and z1(t) := y(t; y0) f(t), (4.33)

where
f(t) = f0 exp

(∫ t

0
s
(
1− y(ξ; y0)

)
dξ

)
,

for some f0 > 0 and y0 ∈ [0, 1]. The transformation (4.33) is frequently used in deterministic
population genetics because it leads to the transformation of the nonlinear equation (4.1)
into a linear system (if γ = 0):

dz0
dt

(t) =
(
sy(t)

(
1− y(t)

)
−
(
1− y(t)

)
uν1

)
f(t) + s

(
1− y(t)

)(
1− y(t)

)
f(t) = z0(t)(s− uν1),

and, similarly, (dz1/dt)(t) = z0(t)uν1. This is complemented by z0(0) = (1 − y0)f0 and
z1(0) = y0f0. See also Thompson and McBride [TM74] for more details. The quantities z0
and z1 are usually referred to as absolute frequencies and f(t) as the absolute size of the
population at (forward) time t with initial population size f0. We have explained in the
discussion following (4.1) that setting the neutral reproduction rate to 0 in the underlying
model still leads to the ODE (4.1). Then the transformation leads to a system that describes
a population with variable population size in which reproduction is not coupled to the death
of another individual and only the fit type reproduces. The population size satisfies the
differential equation

d

dt

(
z0(t) + z1(t)

)
= s(1− y(t))f(t) = s(1− y(t))

(
z0(t) + z1(t)

)
,

with z0(0) + z1(0) = f0. Hence, z0(t) + z1(t) = f0 exp(
∫ t

0 s(1 − y(ξ))dξ) and this explains
the term absolute size of the population for f(t). The solution to the original system is
recovered by noting that y(t) = z1(t)/(z0(t) + z1(t)). In our context, the key is to think in
terms of absolute frequencies. Since the individuals unfit at time 0 neither reproduce nor
mutate, their absolute frequency remains constant at y0f0, while the population size grows
by a factor of f(t)/f0. It is therefore clear that the proportion of individuals at time t that
have unfit ancestors at time 0 is y0f0/f(t), in line with (4.31).



102 4 Ancestral lines in the mutation-selection equation with pairwise interaction

4.5.2 Ancestral type distribution with interaction: stratified ASG with
immune line (ν0 = 0)

In the remainder of this chapter, we assume ν0 = 0 (hence ν1 = 1). We first derive the
ancestral type distribution in this case by means of the stratified ASG (Proposition 4.40
and Corollary 4.41). Finally, we consider the ancestral type distribution in an equilibrium
population (Corollary 4.43).
The main argument that led to the representation of the ancestral type distribution in the
context of (4.30) was that, if γ = 0, the ancestor of the root of the pLD-ASG is unfit if
and only if all individuals in the pLD-ASG are unfit. Therefore, the line-counting process L
is sufficient. For γ > 0, we can not expect a similar statement to hold. For example,
already after a single trifurcation, the ancestor can be unfit, even though the individual
on the incoming line is fit (an unfit continuing and checking line suffices). However, it is
possible to generalise the new perspective mentioned before Proposition 4.32 and illustrated
in Fig. 4.17, because also in the interactive case the ancestor must be on the immune line.
We add trifurcations to the picture as pairs of ASGs emerging from the immune line and
argue in the same way as before; that is, an ancestor is unfit if and only if 1) at the time
of sampling, an unfit type is associated with the immune line, 2) all ASGs emerging from it
via selection events are unfit at the time of their origin, and 3) at each interaction event on
the immune line at least one of the origins of the ASGs arising from either the incoming or
checking line is unfit. 2) and 3) are satisfied if none of the selective and interactive arrows
hitting the immune line is used. Using the results from Section 4.4, we can validate 2) and 3)
by means of stratified ASGs started in 1 (corresponding to one line: the incoming line)
and stratified ASGs started in

t? (recall that
t? is a stratified ASG of an ASG consisting

of only a single interactive branching corresponding to one checking and one incoming line),
respectively. Let us start to make this precise.

Definition 4.33 (Stratified ASG with immune line). Consider At, i.e. an ASG in the time
interval [0, t] starting with a single line at time 0. We call the immune line of At the line
that is continuing at all the bifurcation and trifurcation events. The stratified ASG with
immune line associated with At is defined by S?(At) := S(A?t ), where A?t is the ASG At after
deletion of all the deleterious mutations on its immune line. By construction the immune
line is always relevant and is associated with the leftmost leaf of the corresponding stratified
ASG. We define H?(At, y0) as the probability that the root of the ASG has an unfit ancestor
at backward time t, given that the type distribution at backward time t is (1− y0, y0).

Proposition 4.34. Consider At, i.e. an ASG in [0, t] started with a single line. We have

H?(At, y0) = H(S?(At), y0), ∀y0 ∈ [0, 1], t > 0.

Proof. Note that a type assignment to the lines of At at time r = t leads to an unfit ancestor
at time t of the single individual at time 0 if and only if the same assignment of types to the
lines of A?t at time t leads to an unfit individual at time 0. Hence, H?(At, y0) = H(A?t , y0).
Moreover, Theorem 4.15 yields H(A?t , y0) = H(S(A?t ), y0) because A?t is a realisation of an
ASG. Since by definition S?(At) = S(A?t ), the result follows.

We can also define the stratified ASG with immune line in a Poissonian manner without a
realisation of the ASG.
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Definition 4.35 (Stratified ASG process with immune line). We define the stratified ASG
process with immune line as the continuous-time Markov chain T? = (T?(r))r≥0 on Υ with
transition rates, for T = (τ,mτ ) ∈ Υ and ` ∈ Lτ ,

qT?(T , T
`f) = smτ (`), qT?(T , Tt̀ ) = γmτ (`), qT?(T , T

`
×) = uν1

(
mτ (`)− 1`1τ (`)

)
.

The process T? has no absorbing states. As in the case without interaction, we do not
insist on starting the process with a single line, i. e. with state 1 , but one should keep in
mind that if we start the process in a state T ∈ Υ with M(T ) = n for some n > 1, the
process does in general not describe the structure of the relevant potential influencers of n
individuals.

Lemma 4.36. Let ν0 = 0. For any r ≥ 0 and y0 ∈ [0, 1], we have

gr(y0) = E 1 [H(T?(r), y0)].

Proof. Let Ar denote an ASG in [0, r] starting from a generic individual at time 0. From
the definition of gr and the tower property for conditional expectations, we obtain

gr(y0) = Py0(Jr = 1) = E 1 [Ey0 [1{Jr=1} | Ar]] = E 1 [H?(Ar, y0)].

The result follows from Proposition 4.34 and the fact that by construction S?(Ar) and T?(r)
have the same distribution.

Let us now try to understand the ancestral type distribution from the perspective of the
immune line (as in Section 4.5.1). Consider At, i.e. an ASG in [0, t] starting with a single
line at r = 0. Note that the ancestor at time t of the single line at time 0 is unfit if and
only if the ancestor is on the immune line and is unfit at time t. The ancestor is on the
immune line if it succeeds at all the selective and interactive events it encounters, i.e. all the
selective and interactive events on the immune line are not used. We know from Section 4.3
that in order to decide if the immune line succeeds at a given selective event it is enough
to look at the stratified ASG arising from the corresponding incoming line. Similarly, the
immune line succeeds at a given interactive event if either the incoming or checking line is
unfit. Hence, we can verify if the incoming and checking line at a given interactive event
on the immune line is unfit by looking at the ASG arising from the checking and incoming
line. The associated stratified ASG starts in

t?, where the middle and right leaves of
t?

correspond to the checking and incoming line, respectively (recall that
t? is the stratified

ASG of an ASG consisting of only a single interactive branching). This idea motivates the
following definition.

Definition 4.37 (Forest of stratified ASGs). Consider At, i.e. an ASG in the time inter-
val [0, t] starting with a single line at time 0. The forest of stratified ASGs associated with At
is the collection

F(At) :=
((
S

1
i (At), T

1
i

)N
i=1,

(
S
t?
i (At), T

t?
i

)M
i=1

)
,

where
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Figure 4.18. From the immune line there emerge independent stratified ASGs started
either in 1 or

t?. Here, S 1
1 (At), S 1

2 (At) and S 1
3 (At) emerge at times T 1

1 , T
1

2 , and T 1
3 ,

respectively. S
t?

1 (At) and S
t?

2 (At) emerge at times T
t?

1 and T
t
?

2 , respectively.

(1) N is the number of selective events on the immune line of At and

0 ≤ T 1
1 < . . . < T

1
N ≤ t

are the successive times at which they occur.

(2) For i ∈ {1, ..., N}, S 1
i (At) is the stratified ASG associated with the ASG (in the

time interval [T 1
i , t]) arising from the incoming line at the selective event occurring at

time T 1
i in At.

(3) M is the number of interactive events on the immune line of At and

0 ≤ T
t?
1 < . . . < T

t?
M ≤ t

are the successive times at which they occur.

(4) For i ∈ {1, ...,M}, S
t?
i (At) is the stratified ASG associated with the ASG (in the time

interval [T
t?
i , t]) arising from the checking and incoming lines at the interactive event

occurring at time T
t?
i in At, with checking and incoming lines being assigned to the

middle and right leaves of
t?, respectively.

See Fig. 4.18 for an illustration.

Proposition 4.38. Let ν0 = 0. Using the notation from Definition 4.37, we have

H?(At, y0) = y0

N∏
i=1
H
(
S

1
i (At), y0

) M∏
j=1
H
(
S
t?
j (At), y0

)
, y0 ∈ [0, 1]. (4.34)

Proof. The ancestor at backward time t of the single lineage at time 0 is unfit if and only
if the ancestor is on the immune line and it is unfit at time t; the latter is the case with
probability y0. In addition, the individual on the immune line is the ancestor at time t
if it succeeds at all the selective and interactive events involved, i.e. all the selective and
interactive events one the immune line are not used. The immune line succeeds at the
selective event happening at time T 1

i if and only if the corresponding incoming line is
of type 1; this occurs with probability H(S 1

i (At), y0). The immune line succeeds at the
interactive event T

t?
j if and only if either the checking or the incoming line is of type 1; this
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occurs with probability H(S
t?
j (At), y0). The result follows from the independence of the

corresponding stratified ASGs.

We can also construct the forest of stratified ASGs in a Poissonian manner.

Definition 4.39 (Forest of stratified ASGs process). Let N := (Nr)r≥0 andM := (Mr)r≥0
be two independent homogeneous Poisson processes with rate s and γ, respectively. Let
(T 1
i )i∈N and (T

t?
i )i∈N be the successive arrival times of N and M, respectively. Further-

more, we invoke two independent collections of independent stratified ASG processes (T 1
i )i∈N

and (T
t?
i )i∈N. In the first collection all the stratified ASGs start at 1 , and in the

second collection all the stratified ASGs start at
t?. The forest of stratified ASGs pro-

cess I = (I (r))r≥0 is then defined by setting

I (r) :=
((

T
1
i (r − T 1

i ), T 1
i

)Nr
i=1,

(
T

t?
i (r − T

t?
i ), T

t?
i

)Mr

i=1

)
, r ≥ 0.

Selective (resp. interactive) events on the immune line arrive at the same rate at which N
(resp. M) jumps. Similarly, the stratified ASG associated with the ASG arising from the
incoming line at a selective (resp. interactive) event on the immune line has the same
distribution as the the stratified ASG process that is started at the time of the selective
(resp. interactive) event in 1 (resp.

t?). In particular,

(F(Ar))r≥0
d= (I (r))r≥0. (4.35)

Theorem 4.40 (Ancestral type distribution). Let ν0 = 0. Then,

gr(y0) = y0 exp
(
−
∫ r

0

(
1− y(ξ; y0)

)(
s+ γ(1− y(ξ; y0))

)
dξ

)
, y0 ∈ [0, 1]. (4.36)

Theorem 4.40 is connected to the deterministic dynamics in the same way as (4.31). This
time, (1− y(t; y0))(s+ γ(1− y(t; y0))) is the relative reproduction rate of the population (if
the rate of neutral reproduction is 0), and

f(t) = f0 exp
(∫ t

0

(
1− y(ξ; y0)

(
(s+ γ(1− y(ξ; y0))

))
dξ

)
is the size of the population at time t in terms of absolute frequencies. With the same argu-
ment as before, the proportion of unfit ancestors in the population at time t is y0f0/f(t) =
gr(y0), in line with the theorem. In particular, gr(y0) describes the relative proportion of
individuals at present with unfit ancestor at backward time r if the initial frequency of the
unfit type is y0.

Remark 4.25. Thompson’s trick allows the transformation of the (cubic) mutation-selection
equation into a system of equations the right hand side of which consists of quadratic
polynomials. ♦

The function gr(y0) has, in contrast to y(t; y0), a compact explicit expression, which can
be derived via Theorem 4.40 by means of classical integration techniques. We provide the
expression in the following corollary.
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Corollary 4.41. Let ν0 = 0, γ > 0, and ȳ1, ȳ2, ȳ3, σ be given as in (4.4), (4.6) and (4.7).
For y0 ∈ {ȳ1, ȳ2, ȳ3} ∩ [0, 1], we have

gr(y0) = y0 exp
(
− r(1− y0)

(
s+ γ(1− y0)

))
.

For y0 ∈ [0, 1] \ {ȳ1, ȳ2, ȳ3} and
(i) σ > 0,

gr(y0) = y0

(
ȳ2 − y(r; y0)
ȳ2 − y0

) ȳ3√
σ
(

ȳ3 − y0
ȳ3 − y(r; y0)

) ȳ2√
σ

, (4.37)

(ii) σ = 0,

gr(y0) = y0
y(r; y0)− ȳ2
y0 − ȳ2

exp
(
− ȳ2

y(r; y0)− y0
(y(r; y0)− ȳ2)(y0 − ȳ2)

)
, (4.38)

(iii) σ < 0,

gr(y0) = y0

√√√√u− y(r; y0)
(
s+ γ

(
1− y(r; y0)

))
u− y0

(
s+ γ(1− y0)

) exp
(
− 1√
−σ

(
1 + s

γ

)

×
[
arctan

(
2
y(r; y0)− 1

2
(
1 + s

γ

)
√
−σ

)
− arctan

(
2
y0 − 1

2
(
1 + s

γ

)
√
−σ

)])
.

(4.39)

The proof of the corollary is postponed to Section 4.6.

Proof of Theorem 4.40. By Proposition 4.38, equation (4.35), and the independence of T
1
i

and T
t?
j ,

gr(y0) = y0E
[ N∏
i=1
H
(
S

1
i (Ar), y0

) M∏
j=1
H
(
S
t?
j (Ar), y0

)]

= y0E
[ Nr∏
i=1
H
(
T

1
i (r − T 1

i ), y0
)Mr∏
j=1
H
(
T

t?
j (r − T

t?
j ), y0

)]

= y0E
[ Nr∏
i=1
H
(
T

1
i (r − T 1

i ), y0
)]
E
[Mr∏
j=1
H
(
T

t?
j (r − T

t?
j ), y0

)]

We begin by considering the first non-trivial factor. Then,

E
[ Nr∏
i=1
H
(
T

1
i (r − T 1

i ), y0
)]

=
∞∑
n=0

P(Nr = n)En
[
E
[ n∏
i=1
H(T 1

i (r − T 1
i ), y0) | (T 1

i )ni=1

]]
,

(4.40)
where by En[·] we denote the expectation conditional on Nr = n. Now, we use the well-
known connection between Poisson processes and the uniform distribution. Conditional
on Nr = n, the arrival times of N have the same distribution as an ordered independent
sample of size n from the uniform distribution on [0, r] [Nor98, Thm. 2.4.6]. Let U1, . . . , Un
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be independent uniformly distributed random variables in [0, r]. Since E[
∏n
i=1H(T 1

i (r −
T

1
i ), y0) | (T 1

i )ni=1] is a function that is symmetric in the arrival times of the Poisson process,
we deduce that

En
[
E
[ n∏
i=1
H(T 1

i (r − T 1
i ), y0) | (T 1

i )ni=1

]]
= E

[ n∏
i=1
H(T 1

i (Ui), y0)
]
, (4.41)

since r − Ui is again uniform on [0, r]. Moreover, (T 1
i (Ui))ni=1 are independent, and hence

E
[ n∏
i=1
H(T 1

i (Ui), y0)
]

= E
[
H(T 1

1 (U1), y0)
]n

=
(1
r

∫ r

0
E
[
H(T 1

1 (ξ), y0)
]
dξ

)n
=
(1
r

∫ r

0
y(ξ, y0)dξ

)n
, (4.42)

where we used the duality result in Theorem 4.21. Combining (4.41) and (4.42) into (4.40)
and using the fact that Nr is Poisson distributed with parameter sr yields

E
[ Nr∏
i=1
H
(
T

1
i (r − T 1

i ), y0
)]

=
∞∑
n=0

(sr)n

n! e−sr
(1
r

∫ r

0
y(ξ, y0)dξ

)n
= exp

(
− s

∫ r

0
(1− y(ξ, y0))dξ

)
.

Next, we consider the second non-trivial factor. Applying the same techniques that lead
to (4.40) and (4.41), we obtain

Em
[ m∏
j=1
H
(
T

t?
j (r − T

t?
j ), y0

)]
= E

[
H(T

t
?

1 (U1), y0)
]m

By the tower property, the definition of T
t?

1 , the duality relation of Theorem 4.21, and
Definition 4.14,

E
[
H(T

t
?

1 (U1), y0)
]m

= E
[
E
[
H(T

t
?

1 (U1), y0) | U1
]]m

= E
[
Et?

[
H(T (U1), y0) | U1

]]m
= E

[
H(

t?, y(U1; y0))
]m

=
{

2E
[
y(U1; y0)

]
− E

[
y(U1; y0)2]}m
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Using these calculations, we have

E
[Mr∏
j=1
H
(
T

t?
j (r − T

t?
j ), y0

)]
=
∞∑
m=0

(γr)m

m! e−γr
(1
r

∫ r

0
y(ξ; y0)(2− y(ξ; y0))dξ

)m

= exp
(
− γ

∫ r

0

(
1− y(ξ; y0)

)2
dξ

)
.

Altogether, we obtain (4.36).

Taking the limit r →∞, we obtain the analogue to Theorem 3.16 in the case with interaction
and in the absence of beneficial mutations.

Corollary 4.42. Let ν0 = 0 and γ > 0. Then we have g∞(1) = 1. For y0 ∈ [0, 1) and
(i) σ > 0, we have

g∞(y0) = 1{y0>ȳ3}y0

( 1− ȳ2
y0 − ȳ2

) ȳ3√
σ
(
y0 − ȳ3
1− ȳ3

) ȳ2√
σ

, (4.43)

(ii) σ = 0, we have

g∞(y0) = 1{y0>ȳ3}y0
1− ȳ2
y0 − ȳ2

exp
(
− ȳ2

1− y0
(1− ȳ2)(y0 − ȳ2)

)
, (4.44)

(iii) σ < 0, we have

g∞(y0) = y0

√
u− s
u− y0s

· exp
(
− 1√
−σ

(
1 + s

γ

) [
arctan

(
1− s

γ√
−σ

)
− arctan

(
2
y0 − 1

2
(
1 + s

γ

)
√
−σ

)])
.

(4.45)

Proof. Combining Corollary 4.3 with Corollary 4.41 yields the result.

Finally, we consider the ancestral type distribution at equilibrium, i. e.

(1− g∞(y∞(y0)), g∞(y∞(y0))).

The following corollary extends the expression for g∞(y∞(y0)) from Section 3.5 to the
case γ > 0.

Corollary 4.43 (Ancestral type distribution at equilibrium). Let ν0 = 0 and s, γ ≥ 0. Then
we have g∞(y∞(1)) = 1. For all y0 ∈ [0, 1),
(i) if s ≥ γ, then

g∞(y∞(y0)) =

0, if u < û,

1, if u ≥ û.
(4.46)
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Figure 4.19. The ancestral type distribution at equilibrium for the parameter regimes from
Fig. 4.1. Dotted line (resp. solid line): equilibria ȳ s.t. g∞(ȳ) = 0 (resp. g∞(ȳ) = 1).

(ii) if s < γ and u < û, then g∞(y∞(y0)) ≡ 0.

(iii) if s < γ and u ∈ [û, ǔ], then

g∞(y∞(y0)) =

0, if y0 ≤ ȳ3,

1, if y0 > ȳ3.
(4.47)

(iv) If s < γ and u > ǔ, then g∞(y∞(y0)) ≡ 1.

Proof of Corollary 4.43. In the following, we throughout use Corollaries 4.3 and 4.42. For
y0 = 1, we have y∞(1) = 1 and hence g∞(y∞(1)) = 1. For the remainder, fix y0 ∈ [0, 1).
If s ≥ γ and u < û, we have that y∞(y0) < 1 so that g∞(y∞(y0)) = 0. For s ≥ γ
and u ≥ û, y∞(y0) = 1 and hence g∞(y∞(y0)) = 1. This leads to (i). If s < γ and u < û,
then y∞(y0) < 1 and hence g∞(y∞(y0)) ≡ 0. Similarly, s < γ and u > ǔ, then y∞(y0) = 1
and hence g∞(y∞(y0)) ≡ 1. Altogether, (ii) and (iv) follow. For (iii), note that when s < γ
and u ∈ [û, ǔ], then y∞(y0) < 1 for y0 ≤ ȳ3 and y∞(y0) = 1 for y0 > ȳ3. In particular,
g∞(y∞(y0)) = 0 for y0 ≤ ȳ3 and g∞(y∞(y0)) = 1 for y0 > ȳ3.

Let us explain the underlying genealogical picture. Assume y0 ∈ [0, 1). Note that, since the
immune line persists indefinitely, the number of lines does not absorb.

If u < û, each stratified ASG that emerges from the immune line grows to ∞ with
probability 1 − w1 by Proposition 4.28. Note that, by the discussion at the end of
Section 4.4, w1 < 1. By Corollary 4.26, in this parameter regime a stratified ASG
with infinite mass will always lead to a fit descendant provided the potential ancestors
are sampled from a population with a positive frequency of fit types. In particular,
one of the stratified ASGs emerging from the immune line grows to ∞ and then leads
to a fit ancestor.

If u > ǔ or (u ∈ [û, ǔ] and s ≥ γ), we have, by the discussion at the end of Section 4.4,
that y∞(y0) ≡ 1. In particular, all potential ancestors in the forest of stratified ASGs
are unfit.
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If u ∈ [û, ǔ] and s < γ, the situation is different. Here, each stratified ASG that
emerges from the immune line may grow to ∞ with probability 1 − w1 by Proposi-
tion 4.28. Note that, by the discussion at the end of Section 4.4, w1 < 1. But now the
probability of an unfit ancestor depends crucially on y0, and we recover the bistability
from Section 4.1. The two equilibria of (4.1) lead to a long-term frequency of unfit
types that is either < 1 or 1. If y0 ∈ [0, ȳ3) (recall ȳ3 = ȳ3(u, s, γ) is a function of the
parameters) then y∞(y0) = w1, so that by Corollary 4.26 each of the stratified ASGs
with infinite mass leads to a fit descendant. One of these descendants then is the fit
ancestor. If y0 ∈ (ȳ3, 1], then y∞(y0) = 1 and all the potential ancestors are unfit. In
particular, the total weight of the stratified ASG is irrelevant. In the case y0 = ȳ3, we
have E[H∞(y0)] < 1 by Corollary 4.29 so that one of the infinite stratified ASGs leads
to a fit descendant and hence to a fit ancestor, see also Fig. 4.19 (right).

4.6 Remaining proofs

In this section, we provide the remaining proofs. We start with the proof that two total
prunings of an ASG are either identical or both consist of a single line ending in the same
type of mutation.

Proof of Lemma 4.10. We proceed by induction on the number of events in the ASG. The
statement is clearly true for any ASG consisting of exactly one event. Let us assume that
the statement holds true for any ASG consisting of at most n events. Let At be an ASG
consisting of exactly n+ 1 events and let T? be the time to the first event on At.

If the event at time T? is a mutation, then S(At) is a single line ending at the corresponding
mutation at time T?. Hence,

S(At) is the unique total pruning of At. The result follows in
this case.

For the remaining cases, denote by ρ1(At) and ρ2(At) two total prunings of At. If the event
at time T? is an interactive branching, denote by A2

T?,t
and A3

T?,t
the ASGs arising at the first

interactive event in At from the checking and incoming line, respectively. Moreover, denote
by A1

t the ASG obtained by removing A2
T?,t

and A3
T?,t

from At. The total prunings ρ1 and ρ2

arise from a sequence of mutations m1
1, . . . ,m

1
l and m2

1, . . .m
2
k such that the consecutive

application of the 1-step prunings ρm1
j
for j ∈ [l] and ρm2

j
for j ∈ [k] lead to ρ1 and ρ2,

respectively. Denote by ρi(A1
t ), ρi(A2

T?,t
), and ρi(A3

T?,t
) the generalised ASGs obtained

by pruning A1
t , A2

T?,t
, and A3

T?,t
, respectively, according to ρi, for i ∈ {1, 2}, ignoring the

prunings associated with events that are not inA1
t , A2

T?,t
, andA3

T?,t
, respectively. This means

that ρi(A1
t ), ρi(A2

T?,t
), and ρi(A3

T?,t
) arise by consecutively applying the 1-step prunings ρimj

for each mutation mj that is in A1
t , A2

T?,t
, and A3

T?,t
, respectively. (The pruning of a subtree

according to a given total pruning of the entire tree is not always a total pruning, see
Fig. 4.20.)

If ρ1(At) ∼ ◦, then, by construction, we have ρ1(A1
t ) ∼ ◦ or we have ρ1(A2

T?,t
) ∼ ◦ ∼

ρ1(A3
T?,t

). In the first case, ρ1(A1
t ) is a total pruning of A1

t , and by the induction hypothesis,
if A′ is a total pruning of A1

t , then A′ ∼ ◦. Hence, if ρ2(A1
t ) is a total pruning of A1

t , then
ρ2(A1

t ) ∼ ◦, so that also ρ2(At) ∼ ◦. On the other hand, if ρ2(A1
t ) is not a total pruning of
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A1
T?,t

A3
T?,t

A2
T?,t

×
Figure 4.20. Consider the 1-step pruning ρ◦ and ρ× of the beneficial and deleterious muta-
tion, respectively, in the above ASG, which we abbreviate by At. Define the composition
of 1-step prunings ρ′(·) := ρ◦(ρ×(·)). ρ◦(At) and ρ′(At) are total prunings of At. Using the
same notation as in the proof of Lemma 4.10, we have ρ′(A3

T?,t
) is a single line without a

mutation such that it is in particular a total pruning of A3
T?,t

. But ρ◦(A3
T?,t

) = A3
T?,t

. Since
A3
T?,t

contains two lines and one mutation ρ◦(A3
T?,t

) is not a total pruning of A3
T?,t

.

A1
t , it contains at least two lines and at least one mutation. But then, ρ2(A2

T?,t
) ∼ ◦ and

ρ2(A3
T?,t

) ∼ ◦, because otherwise ρ2 is not a total pruning of At. Hence, also ρ2(At) ∼ ◦.
For the second case, i.e. for ρ1(A2

T?,t
) ∼ ◦ ∼ ρ1(A3

T?,t
), note that if ρ2(At) ∼ ◦, then

ρ2(At) = ρ1(At). Now, assume ρ2(At) � ◦. Then, either ρ2(A2
T?,t

) is a total pruning of A2
T?,t

or ρ2(A3
T?,t

) is a total pruning ofA3
T?,t

(because otherwise ρ2(At) is not a total pruning ofAt).
If ρ2(A2

T?,t
) is a total pruning of A2

T?,t
then, by the induction hypothesis, also ρ2(A2

T?,t
) ∼ ◦.

Then ρ2(A3
T?,t

) is also total pruning of A3
T?,t

and, by the induction hypothesis, ρ2(A3
T?,t

) ∼ ◦,
so that also ρ2(At) ∼ ◦, which is a contradiction. Hence, ρ2(At) ∼ ◦ also in this case.

For the other cases, assume ρ1(At) � ◦. Then ρ1(A1
t ) is a total pruning of A1

t and, in
addition, either ρ1(A2

T?,t
) is a total pruning of A2

T?,t
or ρ1(A3

T?,t
) is a total pruning of A3

T?,t
.

Assume without loss of generality that ρ1(A2
T?,t

) is a total pruning of A2
T?,t

.
Assume ρ2(At) ∼ ◦. Then either ρ2(A1

t ) ∼ ◦ or ρ2(A2
T?,t

) ∼ ◦ ∼ ρ2(A3
T?,t

). The former case
is a contradiction to ρ1(At) being a total pruning of At with ρ1(At) � ◦. In the latter case,
ρ2(A2

T?,t
) = ρ1(A2

T?,t
) ∼ ◦ and therefore ρ1(A3

T?,t
) is a total pruning of A3

T?,t
. But ρ1(At) � ◦

by assumption and so ρ1(A3
T?,t

) � ◦, which is a contradiction. Hence, ρ2(At) � ◦.
If ρ2(At) � ◦, then ρ2(A1

t ) is a total pruning of A1
t with ρ2(A1

t ) = ρ1(A1
t ), by the induction

hypothesis. In addition, either ρ2(A2
T?,t

) is a total pruning of A2
T?,t

or ρ2(A3
T?,t

) is a total
pruning of A3

T?,t
.

If ρ2(A2
T?,t

) is a total pruning of A2
T?,t

, then, by the induction hypothesis, ρ2(A2
T?,t

) =
ρ1(A2

T?,t
). Assume ρ1(A2

T?,t
) ∼ ◦ or ρ1(A2

T?,t
) is a pruned ASG without mutations. Then

ρ1(A3
T?,t

) and ρ2(A3
T?,t

) are total prunings of A3
T?,t

, which are, by the induction hypothesis,
identical. Hence, ρ1(At) = ρ2(At). Now assume ρ1(A2

T?,t
) ∼ ×. Then ρ1(At) = ρ1(A1

t ) and
hence, ρ2(At) = ρ2(A1

t ) so that ρ1(At) = ρ2(At).
If ρ2(A2

T?,t
) is not a total pruning, then ρ2(A3

T?,t
) ∼ × (otherwise ρ2 is not a total pruning of

At). But then, ρ2(At) = ρ2(A1
t ) = ρ1(A1

t ). If ρ1(A2
T?,t

) ∼ ×, then also ρ1(At) = ρ1(A1
t ) and

the result follows. If ρ1(A2
t ) ∼ ◦ or ρ1(A2

T?,t
) is a total pruning of A2

T?,t
without mutations,

then also ρ1(A3
T?,t

) ∼ ×, by the induction hypothesis. The result follows.
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The following identities will be useful in what follows.

Lemma 4.44. Let T = (τ,mτ ) ∈ Υ.

(1) Let k ∈ N and m(k)
τ : Lτ → N∪{0} defined by m(k)

τ (`) := mτ (`)+1{`=`1τ}k. In addition,
set T (k) := (τ,m(k)

τ ). Then,

H(T (k), y0) = yk0H(T , y0), y0 ∈ [0, 1].

(2) For all T̃ ∈ Υ and y0 ∈ [0, 1], we have

H(T ⊗`1τ T̃ , y0) = H(T , y0)H(T̃ , y0).

Proof. (1) Fix k ∈ N and proceed by induction on |Lτ |. If T = n , then T (k) = j

with j = n + k, and the assertion follows from the definition of H. Assume the assertion
is true for all T̃ = (τ̃ ,mτ̃ ) with |Lτ̃ | < |Lτ |. We have to show that the assertion remains
true for T . Let κ1, κ2, κ3 be the left, middle, and right child of the root of T . Since the
leftmost leaf of Tκ1 is `1τ , the induction hypothesis implies that the assertion holds true
for Tκ1 , i. e. H(T (k)

κ1 , y) = ykH(Tκ1 , y). The result then follows via (4.12).

(2) Fix T̃ = (τ̃ , m̃) ∈ Υ and proceed by induction on |Lτ |. If T = n , then T ⊗`1τ T̃ = T̃ (n),
and the result follows from assertion (1). Assume the result is true for all T̄ = (τ̄ ,mτ̄ )
with |Lτ̄ | < |Lτ |. We have to show that the result remains true for T . Let κ1, κ2, κ3 be
the left, middle, and right child of the root of T . The induction hypothesis applied to Tκ1

yields H(Tκ1 ⊗`1τ T̃ , y0) = H(Tκ1 , y0)H(T̃ , y0). Moreover, since (T ⊗`1τ T̃ )κ1 = Tκ1 ⊗`1τ T̃ ,
(T ⊗`1τ T̃ )κ2 = Tκ2 and (T ⊗`1τ T̃ )κ3 = Tκ3 , the result follows by (4.12).

Proof of Lemma 4.20. The claim is trivially true if T = ∆. Hence, fix T = (τ,m) ∈ Υ
and y0 ∈ [0, 1]. First note that by Remark 4.17, H(T , ·) is a polynomial. Hence, H(T , ·) ∈
C1([0, 1],R). We want to show that

G fH(·, y0)(T ) = −sy0(1− y0)∂H(T , y)
∂y

(y0), (4.48)

GtH(·, y0)(T ) = −γy0(1− y0)2∂H(T , y)
∂y

(y0), (4.49)

G×H(·, y0)(T ) = (1− y0)uν1
∂H(T , y)

∂y
(y0), (4.50)

G◦H(·, y0)(T ) = y0uν0
∂H(T , y)

∂y
(y0). (4.51)

We proceed by induction on the size of the underlying tree. First note that, sinceH( n , y0) =
yn0 , we have (∂H( n , ·)/∂y)(y0) = nyn−1

0 . In addition,

G fH(·, y0)( n ) = ns(yn+1
0 − yn0 ) = −sy0(1− y0)nyn−1

0 ,

GtH(·, y0)( n ) = nγ(yn0 (y0 + y0 − y2
0)− yn0 ) = −γy0(1− y0)2nyn−1

0 ,

G×H(·, y0)( n ) = nuν1(yn−1
0 − yn0 ) = (1− y0)uν1ny

n−1
0 ,
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G◦H(·, y0)( n ) = nuν0(0− yn0 ) = −y0uν0ny
n−1
0 .

Hence (4.48), (4.49), (4.50), and (4.51) hold true for T = n . Now, fix T = (τ,mτ ) ∈ Υ
and assume that (4.48), (4.49), (4.50) and (4.51) hold true for all T̃ = (τ̃ , m̃τ̃ ) ∈ Υ with
|Lτ̃ | < |Lτ |. We aim to prove that they remain true for T . Denote by κ1, κ2, and κ3 the
left, middle, and right child of the root of T . From Definition 4.14 and the chain rule,

∂H(T , y)
∂y

(y0)

= ∂H(Tκ1 , y)
∂y

(y0)
[
H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)

]

+H(Tκ1 , y0)
[
∂H(Tκ2 , y)

∂y
(y0) (1−H(Tκ3 , y0)) + ∂H(Tκ3 , y)

∂y
(y0) (1−H(Tκ2 , y0))

]
.

(4.52)
We claim that for each ? ∈ { f

,
t
,×, ◦}, we have

(1) for ` ∈ Lτκ1

H(T `? , y0)−H(T , y0) =
(
H
(
(Tκ1)`?, y0

)
−H

(
Tκ1 , y0

))
×
[
H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)

]
,

(2) for ` ∈ Lτκ2 ,

H(T `? , y0)−H(T , y0)=H(Tκ1 , y0)(1−H(Tκ3 , y0))
(
H
(
(Tκ2)`?, y0

)
−H(Tκ2 , y0)

)
,

(3) for ` ∈ Lτκ3 ,

H(T `? , y0)−H(T , y0) = H(Tκ1 , y0)(1−H(Tκ2 , y0))
(
H
(
(Tκ3)`?, y0

)
−H(Tκ3 , y0)

)
.

Assume that the claim is true. Denote by

q? = s1{?= f} + γ1{?=
t
} + uν11{?=×} + uν11{?=◦}.

Since
G?H(·, y0)(T ) =

∑
i∈{1,2,3}

∑
`∈Lτ

κi

q?m(`)(H(T `? , y0)−H(T , y0)),

we infer that

G?H(·, y0)(T )

= G?H(·, y0)(Tκ1)
[
H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)

]
+H(Tκ1 , y0)

[(
1−H(Tκ3 , y0)

)
G?H(·, y0)(Tκ2) + (1−H(Tκ2 , y0))G?H(·, y0)(Tκ3)

]
.

Applying the induction hypothesis to Tκ1 , Tκ2 and Tκ3 , the previous identity together with
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(4.52) allow us to show that (4.48), (4.49), (4.50) and (4.51) hold true for T . It remains to
prove the claim.
For ? ∈ { f

,
t
}, the claim follows easily by Definition 4.14 and noting that for i ∈ {1, 2, 3}

and ` ∈ Lτκi , T
`
? is constructed from T by replacing Tκi with (Tκi)`?. But for the latter the

induction hypothesis applies. In the following cases, the tree changes only in one subtree of
one of the children of the root and therefore the same argument applies. We are in these
cases if ? = × and

if mτ (`) > 1 or if mτ (`) = 1 and ` is the left child of its parent,
if mτ (`) = 1, ` is not the left child of its parent, and b` is not the root

or if ? = ◦ and

if ` is not a middle or right child of the root,
if ` is a left child and aa?

`
is not the root.

We treat the remaining cases separately. For ? = ×, mτ (`) = 1, ` is not the left child of its
parent, and b` is the root, we have that T `× = Tκ1 . In particular, H(T `×, y0) = H(Tκ1 , y0) for
all y0 ∈ [0, 1]. Furthermore, since b` is the root, ` ∈ Tκ2 or ` ∈ Tκ3 , because otherwise κ1 is
an ancestor of ` (or ` = κ1) that is the left child of the root. Assume that ` ∈ Tκ2 . If b` is
the root, then (Tκ2)`× = 0 and therefore also H((Tκ2)`×, y0) = 1. Again, by Definition 4.14,

H(T `×, y0)−H(T , y0)
= H(Tκ1 , y0)−H(Tκ1 , y0)[H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)]
= H(Tκ1 , y0)(1−H(Tκ3 , y0))(1−H(Tκ2 , y0))
= H(Tκ1 , y0)(1−H(Tκ3 , y0))(H((Tκ2)`×, y0)−H(Tκ2 , y0)).

We can proceed in a similar way if ` ∈ Tκ3 . The last case is ? = ◦ and ` is a child of the
root. If ` is the middle child of the root, i. e. ` = κ2, then (T`)`◦ = ∆. By the definition
of T `◦ , we have

T `◦ =
(
T Cκτ ⊗κτ Tκ1

)
⊗`1τ

κ1
Tκ3 = Tκ1 ⊗`1τ

κ1
Tκ3 ,

where κτ is the root of τ . By Lemma 4.44, H(Tκ1 ⊗`1τ
κ1
Tκ3 , y0) = H(Tκ1 , y0)H(Tκ3 , y0).

Therefore, using Definition 4.14

H(T `◦ , y0)−H(T , y0) = H(Tκ1 , y0)H(Tκ3 , y0)
−H(Tκ1 , y0)[H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)]

= H(Tκ1 , y0)
(
1−H(Tκ3 , y0)

)
[−H(Tκ2 , y0)].

We can proceed in a similar way if ` ∈ Tκ3 . It remains to prove the case in which ` is the
left child of its parent and aa?

`
is the root. Assume a?` = κ2. Then, (Tκ2)`◦ = ∆. Again,

T `◦ = (T Cκτ ⊗κτ Tκ1)⊗`1τ
κ1
Tκ3 . Once more, we apply Lemma 4.44 and use Definition 4.14, so

that

H(T `◦ , y0)−H(T , y0) = H(Tκ1 , y0)H(Tκ3 , y0)
−H(Tκ1 , y0)[H(Tκ2 , y0) +H(Tκ3 , y0)−H(Tκ2 , y0)H(Tκ3 , y0)]

= H(Tκ1 , y0)
(
1−H(Tκ3 , y0)

)
[−H(Tκ2 , y0)].
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We proceed in a similar way if a?` = κ3. Altogether, this proves the claim.

Proof of Corollary 4.41. Classical integration theory leads to the result. Recall that ȳ2
and ȳ3 are the roots of the polynomial y 7→ u − y(s + γ(1 − y)). First, consider the
case σ > 0 in which ȳ2 and ȳ3 are both real (recall from (4.6)). We want to treat u ≤ s in
which case ȳ2 < ȳ1 < ȳ3. For y0 < ȳ2, y(r; y0) is increasing. Substituting η = y(ξ, y0) and
partial fraction expansion lead to

−
∫ r

0

(
1− y(ξ; y0)

)(
s+ γ(1− y(ξ; y0))

)
dξ

= −
∫ y(r;y0)

y0

s+ γ(1− η)
u− η(s+ γ(1− η))dη

= −1
γ

s+ γ(1− ȳ2)
ȳ3 − ȳ2

∫ y(r;y0)

y0

1
ȳ2 − η

dη + 1
γ

s+ γ(1− ȳ3)
ȳ3 − ȳ2

∫ y(r;y0)

y0

1
ȳ3 − η

dη

= 1
γ

s+ γ(1− ȳ2)
ȳ3 − ȳ2

log
(
ȳ2 − y(r; y0)
ȳ2 − y0

)
− 1
γ

s+ γ(1− ȳ3)
ȳ3 − ȳ2

log
(
ȳ3 − y(r; y0)
ȳ3 − y0

)
.

Note that, s/γ+(1−ȳ2) = ȳ3, s/γ+(1−ȳ3) = ȳ2, and ȳ3−ȳ2 =
√
σ so that the claim follows.

A similar argument applies, if ȳ1 > y0 > ȳ2; only then y(r; y0) is decreasing. If y0 ∈ {ȳ1, ȳ2},
then y( · ; y0) ≡ y0 so that

−
∫ r

0

(
1− y(ξ; y0)

)(
s+ γ(1− y(ξ; y0))

)
dξ = −r(s+ γ(1− y0))y0.

If σ > 0 and γ > s, we can proceed similarly. The only subtlety lies in the monotonicity
of y(r; y0) depending on y0. For σ = 0, we have ȳ2 = ȳ3 and y(r; y0) is increasing for
all y0 ∈ [0, 1]. Hence,

−
∫ y(r;y0)

y0

s+ γ(1− η)
u− η(s+ γ(1− η))dη =

∫ y(r;y0)

y0
−s+ γ(1− ȳ2)

γ(η − ȳ2)2 + 1
η − ȳ2

dη

= ȳ2

( 1
y(r; y0)− ȳ2

− 1
y0 − ȳ2

)
+ log

(
y(r; y0)− ȳ2
y0 − ȳ2

)
Finally, we treat the case σ < 0. Again, y(r; y0) is increasing. Here,

−
∫ y(r;y0)

y0

s+ γ(1− η)
u− η(s+ γ(1− η))dη

= 1
2

∫ y(r;y0)

y0

−(s+ γ) + 2γη
u− (s+ γ)η + γη2 −

1
2

∫ y(r;y0)

y0

s+ γ

u− (s+ γ)η + γη2dη

= 1
2 log

(
u− y(r; y0)

(
s+ γ

(
1− y(r; y0)

))
u− y0

(
s+ γ(1− y0)

) )
− 1

2

∫ y(r;y0)

y0

s+ γ

u− (s+ γ)η + γη2dη
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In the last term, we substitute µ = φ(η) := 2(η − 1
2(1 + s

γ ))/
√
−σ and we obtain

−1
2

∫ y(r;y0)

y0

s+ γ

u− (s+ γ)η + γη2dξ = − 1√
−σ

(
1 + s

γ

) ∫ φ(y(r;y0))

φ(y0)

1
1 + µ2dµ

= − 1√
−σ

(
1 + s

γ

)[
arctan

(
φ(y(r; y0))

)
− arctan

(
φ(y0)

)]
.

This ends the proof of Corollary 4.41.

Lemma 4.45. Let Z = (Zt)t≥0 be a binary Galton-Watson process with birth rate λ and
death rate µ with µ < λ. Let Ẑ = (Ẑt)t≥0 be the same Galton-Watson process but conditioned
to die out eventually. Then the transition rates of Ẑ are given by

qẐ(n, n− 1) = λn, qẐ(n, n+ 1) = µn

This is the continuous-time version of the classical discrete-time result (see [AN72, Thm. 3,
Ch. I.12.3]).

Proof of Lemma 4.45. Consider a binary Galton-Watson process Z = (Zt)t≥0 with birth
rate λ and death rate µ. The extinction probability of Z that is started at n is given by

h(n) := P(Z∞ = 0 | Z0 = n) = (µ/λ)n.

By Doob’s h-transform the rates of Ẑ are given by

qẐ(n, n− 1) = qZ(n, n− 1)h(n− 1)
h(n) = λn, qẐ(n, n+ 1) = qZ(n, n+ 1)h(n+ 1)

h(n) = µn.



5 Summary and discussion

Summary

During the last decades, deterministic and stochastic population genetics have largely led
separate lives. It is the purpose of this thesis to bring the two areas of research closer together
by extending the backward point of view, so far reserved for stochastic models of population
genetics, to deterministic mutation-selection equations. We establish the appropriate struc-
tures via the Moran model and its graphical representation as an interacting particle system.
This leads to a probabilistic interpretation of the classical mutation-selection equation of
population genetics. In particular, we equip the bifurcation structure of the corresponding
ODEs with a genealogical picture.

The graphical representation naturally provides a way to establish ancestral structures in
the Moran model. This framework gives rise to a set-valued dual process. Even though we
do not make this construction precise, let us explain the basic idea. The starting point is a
given typed sample of the population in the future. A configuration is an assignment of types
to the lines of the ancestral structure, which is embedded into the graphical representation.
The set-valued dual process traces back in the graphical representation all configurations
that are consistent with the given sample from the future. For the Fleming-Viot process,
which can be interpreted as the measure-valued analogue of the Moran model for large
populations, Dawson and Greven [DG14, Ch. 5.5] explicitly construct such a dual process
([DG11, Sect. 3] already contains the idea and a formulation of the duality result). Since
this kind of process may still contain a considerable amount of superfluous information, one
might try to tailor the dual process in a way that allows the efficient inference of relevant
information.

In this thesis, we demonstrate how to construct a dual process for the Moran model with
mutation and selection. We achieve this by suitably tailoring the ancestral process that
naturally arises from the graphical representation. Our goal is to provide expressions for
the stationary type distribution, fixation probability, and ancestral type distribution by
genealogical means. In the absence of pairwise interaction, we do this by lumping the gene-
alogical information to just the number of lines in the ASG. The (dual) ancestral processes
are tailored to the specific problems and lead to the line counting process of the ASG, of
the killed ASG, and of the pLD-ASG, respectively.

We can embed the ASG into the graphical representation, but we can also construct the ASG
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without the entire graphical representation. This allows us to make sense of the ancestral
processes in the large population limit. In particular, the above processes then translate to
the smss-limit. A duality rigorously connects the forward model with the killed ASG in this
limit. The representation for the stationary type distribution in the Moran model in terms
of the ancestral structure carries over to a representation for the equilibria of the ODE.
In particular, our approach explains the bifurcation phenomenon of the error-threshold in
terms of the genealogy. The ancestral structures allow the notion of an ancestral type. The
large population limit of the pLD-ASG for finite populations serves as our main tool to
analyse its distribution also in this framework.

In the case of pairwise interaction, it is more challenging to tailor a suitable process. The
reason is that it is not sufficient to count the number of lines in the ASG; their connection
is also relevant. This requires a process that retains more information about the underlying
ancestral structure than just the number of lines. In the smsssi-limit, the ancestral lines
evolve independently, which allows us to exploit the inherent branching structure. A suitable
ancestral process codes a partition of the lines in the ASG and the hierarchy of the partition
elements. This leads to the stratified ASG, whose long-term behaviour is more complex
than that of the killed ASG. This is not unexpected since the equilibria of the associated
mutation-selection equation with pairwise interaction are also the roots of a cubic (as op-
posed to a quadratic) polynomial. Nevertheless, we recover the richer bifurcation structure
via the stratified ASG. The genealogical approach allows us to characterise the ancestral
distributions also in the case of pairwise interaction and univariate mutation. We do this by
exploiting a special feature of the ancestral structure. This gives rise to the stratfied ASG
with immune line and a sequence of stratified ASGs, which we call forest of stratified ASGs.

Discussion

The genealogical point of view provides tools that can be applied to population models in
various parameter regimes. Hence, identifying the ancestral processes and understanding
their suitable tailoring is crucial.

Once an ancestral process is tailored within the Moran model, it seems that this process
is robust in the sense that it translates to most large population limits. The converse is
not necessarily true. For instance, in the finite setting of the Moran model with pairwise
interaction, ancestral lines are not independent and therefore we do not expect a similar
simplification of the ASG as in the smsssi-framework. It would be interesting to see if this
setting also allows for an efficient lumping. If it does, the corresponding dual process should
be available in the classical large population limits. In particular, this should pave the way
for an analysis of the diffusion limit with interaction by genealogical means.

There are models for more complex forms of frequency-dependent selection. One such
generalisation corresponds to interactions that include a finite number of individuals. In
the corresponding differential equation this leads to a drift term of the form y(1 − y)P (y)
for general polynomial P (y). It would be desirable to determine a systematic way to tailor
and lump the set-valued dual process for these more complex forms of frequency-dependent
selection. We are convinced that the ideas behind the killed and stratified ASG may help
to identify the corresponding dualities.
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In a next step, it is natural to study genealogies that arise for even more complex forward
dynamics; for example, those that allow large offspring events. The analysis of such models
is much more involved. In the classical large population limits, these kind of dynamics lead
to jump-diffusion processes and most of the classical diffusion theory does not apply. In
the corresponding retrospective approach, this implies the inclusion of Λ- or Ξ-coalescent
structures. Loosely speaking, in the Λ-coalescent, multiple ancestral lines may at the same
time coalesce into a single line. The rate of such coalescence events is described by a
measure on [0, 1], which is called the Λ-measure. See Pitman [Pit99] and Sagitov [Sag99]
for details. In the Ξ-coalescent, blocks of ancestral lines coalesce into multiple ancestral
lines simultaneously. The rate is then described by a more complicated measure. We refer
to Möhle and Sagitov [MS01] and Schweinsberg [Sch00] for a thorough treatment.

There already exists some work that exploits the genealogical perspective to determine
properties of such forward processes. For example, Baake et al. [BLW16] use a pLD-ASG to
characterise the ancestral type distribution in the Λ-Wright-Fisher model with (frequency-
independent) selection. Etheridge et al. [EGT10] provide another example of an analysis
that is based on a genealogical approach of a more complex forward dynamic. They establish
a duality between a coalescent process that is described by a finite measure on [0, 1] and a Λ-
Wright-Fisher process. As an application, they obtain a transition function expansion of the
forward process as a mixture of the transition function of the dual process. Foucart [Fou13]
and Bah and Pardoux [BP15] consider a Λ-Wright-Fisher model and use the genealogical
structure to determine criteria for the almost sure absorption at (one of) the boundaries.
Building up on this work, González Casanova and Spanò [GS18] use the ASG and its long-
term behaviour to derive similar conditions for Ξ-Wright-Fisher models with a special form
of frequency-dependent selection.

It would be desirable to generalise the existing ancestral processes to models with multiple
fitness types. The problems to overcome are very similar in spirit to the ones that arise in the
two-type case with pairwise interaction in the finite Moran model or in its diffusion limit:
the valid configurations that arise in a dual process in the spirit of Dawson and Greven
[DG14] are not a simple function of the number of lines in the ASG.

Nevertheless, for the finite Moran model with mutation, selection, and multiple fitness
types, Etheridge and Griffiths [EG09] establish a relation of the corresponding forward and
backward model in terms of a weighted moment duality.

Kimura [Kim55] describes a transition density expansion for the Wright-Fisher diffusion with
(frequency-independent) selection via orthogonal polynomials. Recently, Mano [Man09]
obtains a similar expansion for an associated ancestral process. Song and Steinrücken [SS12]
and Steinrücken et al. [SWS13] describe a transition density expansion in terms of orthogonal
polynomials for more complicated forward processes. This includes also the case of multiple
(fitness) types. It remains to be established how these decompositions of the forward picture
relate to the model inherent ancestral structures.
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