
Cloud-based Bioinformatics Framework for

Next-Generation Sequencing Data

Liren Huang

June 18, 2019
Version: The original thesis





Bielefeld University

Faculty of Technology
DiDy graduate school

Computational Metagenomics Group

Dissertation

Cloud-based Bioinformatics Framework for
Next-Generation Sequencing Data

Liren Huang

1. Reviewer Alexander Sczyrba
Faculty of Technology
Bielefeld University

2. Reviewer Alexander Goesmann
Institute for Bioinformatics and Systems Biology
Justus-Liebig-Universität Gießen

Supervisor Alexander Sczyrba

June 18, 2019



Liren Huang

Cloud-based Bioinformatics Framework for Next-Generation Sequencing Data

Dissertation, June 18, 2019

Reviewers: Alexander Sczyrba and Alexander Goesmann

Supervisor: Alexander Sczyrba

Bielefeld University

Computational Metagenomics Group

DiDy graduate school

Faculty of Technology

Universitaetsstrasse 25

33615 Bielefeld , Germany



Abstract

The increasing amount of next-generation sequencing data introduces a fundamental
challenge on large scale genomic analytics. Storing and processing large amounts
of sequencing data requires considerable hardware resources and efficient software
that can fully utilize these resources. Nowadays, both industrial enterprises and
nonprofit institutes are providing robust and easy-access cloud services for studies
in life science. To facilitate genomic data analyses on such powerful computing
resources, distributed bioinformatics tools are needed. However, most of existing
tools have low scalability on the distributed computing cloud. Thus, in this thesis,
I developed a cloud based bioinformatics framework that mainly addresses two
computational challenges: (i) the run time intensive challenge in the sequence
mapping process and (ii) the memory intensive challenge in the de novo genome
assembly process.

For sequence mapping, I have natively implemented an Apache Spark based dis-
tributed sequence mapping tool called Sparkhit. It uses the q-gram filter and Pigeon-
hole principle to accelerate the speeds of fragment recruitment and short read map-
ping processes. These algorithms are implemented in the Spark extended MapReduce
model. Sparkhit runs 92–157 times faster than MetaSpark on metagenomic fragment
recruitment and 18–32 times faster than Crossbow on data pre-processing.

For de novo genome assembly, I have invented a new data structure called Reflexible
Distributed K-mer (RDK) and natively implemented a distributed genome assembler
called Reflexiv. Reflexiv is built on top of the Apache Spark platform, uses Spark
Resilient Distributed Dataset (RDD) to distributed large amount of k-mers across the
cluster and assembles the genome in a recursive way. As a result, Reflexiv runs 8-17
times faster than Ray assembler and 5-18 times faster than AbySS assembler on the
clusters deployed at the de.NBI cloud.

In addition, I have incorporated a variety of analytical methods into the framework. I
have also developed a tool wrapper to distribute external tools and Docker containers
on the Spark cluster. As a large scale genomic use case, my framework processed
100 terabytes of data across four genomic projects on the Amazon cloud in 21
hours. Furthermore, the application on the entire Human Microbiome Project

v



shotgun sequencing data was completed in 2 hours, presenting an approach to easily
associate large amounts of public datasets with reference data.

Thus, my work contributes to the interdisciplinary research of life science and dis-
tributed cloud computing by improving existing methods with a new data structure,
new algorithms, and robust distributed implementations.

vi



Acknowledgements

I would like to express my most sincere gratitude and appreciation to my supervisors,
Dr. Alexander Sczyrba and Prof. Dr. Alexander Goesmann, for their patiences, times,
supports, guidances, and all their efforts.

I would also like to thank my colleagues: Jan Krüger, Peter Belman, and Christian
Henke for the technical supports to my research project.

I am very grateful to Prof. Dr. Colin Collins and Dr. Faraz Hach for hosting me at
Vancouver and providing a comfortable working atmosphere in the research group.

My deepest thanks to Dr. Roland Wittler and Prof. Dr. Jens Stoye for bringing me on
board the big family of the DiDy international research training group.

To all the lovely DiDy students and friends: Georges Hattab, Tina Zekic, Markus Lux,
Zhu Lu, Jia Yu, Nicole Althermeler, Kostas Tzanakis, Lukas Pfannschmidt, Benedikt
Brink, Guillaume Holley, Tizian Schulz, Linda Sundermann, Omar Castillo and many
more. It was an amazing four years together with all you guys.

I appreciate DFG and DiDy graduate school for the generous funding.

Finally I would like to thank my mother Xiaobo Huang and my father Chengsheng
Huang for supporting me on pursuing my doctoral study in Germany.

vii





Contents

1 Introduction 1

1.1 The big data challenge in life science . . . . . . . . . . . . . . . . . . 1

1.2 Distributed cloud computing . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 13

2.1 The Apache Hadoop and Spark frameworks . . . . . . . . . . . . . . 13

2.1.1 Cluster topology . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Spark data processing paradigm . . . . . . . . . . . . . . . . . 16

2.1.3 Sorting in Spark . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Sequence alignment and its cloud implementations . . . . . . . . . . 18

2.2.1 Short read alignment and fragment recruitment . . . . . . . . 19

2.2.2 Algorithms for sequence alignment . . . . . . . . . . . . . . . 20

2.2.3 Distributed implementations . . . . . . . . . . . . . . . . . . . 22

2.3 De novo assembly and its cloud implementations . . . . . . . . . . . 24

2.3.1 Algorithms for short read de novo assembly . . . . . . . . . . 24

2.3.2 State-of-the-art de Bruijn graph . . . . . . . . . . . . . . . . . 25

2.3.3 Cloud based de novo assemblers . . . . . . . . . . . . . . . . . 27

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Sparkhit: Distributed sequence alignment 31

3.1 The pipeline for sequence alignment . . . . . . . . . . . . . . . . . . 32

3.1.1 Building reference index . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Candidate block seraching and q-Gram filters . . . . . . . . . 34

3.1.3 Pigeonhole principle . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4 Banded alignment . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Distributed implementation . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Reference index serialization and broadcasting . . . . . . . . 37

3.2.2 Data representation in the Spark RDD . . . . . . . . . . . . . 39

3.2.3 Concurrent in memory searching . . . . . . . . . . . . . . . . 39

3.2.4 Memory tuning for Spark native implementation . . . . . . . 39

3.3 Using external tools and Docker containers . . . . . . . . . . . . . . . 40

3.4 Integrating Spark’s machine learning library (MLlib) . . . . . . . . . 41

3.5 Parallel data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



3.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.1 Run time comparison between different mappers . . . . . . . 43
3.6.2 Scaling performance of Sparkhit-recruiter . . . . . . . . . . . 44
3.6.3 Accuracy and sensitivity of natively implemented tools . . . . 45
3.6.4 Fragment recruitment comparison with MetaSpark . . . . . . 46
3.6.5 Preprocessing comparison with Crossbow . . . . . . . . . . . 47
3.6.6 Machine learning library benchmarking and run time perfor-

mances on different clusters . . . . . . . . . . . . . . . . . . . 48
3.6.7 Cluster configurations for the benchmarks . . . . . . . . . . . 49
3.6.8 NGS data sets for the benchmarks . . . . . . . . . . . . . . . . 51
3.6.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Reflexiv: Parallel De Novo genome assembly 55
4.1 Reflexible Distributed K-mer (RDK) . . . . . . . . . . . . . . . . . . . 55
4.2 Random k-mer reflecting and recursion . . . . . . . . . . . . . . . . . 62
4.3 Distributed implementation . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Repeat detection and bubble popping . . . . . . . . . . . . . . . . . . 66
4.5 The assembly pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Memory consumption . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.8.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Large scale genomic data analyses 81
5.1 Cluster deployment and configuration . . . . . . . . . . . . . . . . . 82
5.2 Data storage and accessibility . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Distributed data downloading and decompression . . . . . . . . . . . 84
5.4 Rapid NGS data analyses on the AWS cloud . . . . . . . . . . . . . . 85

5.4.1 Processing all WGS data of the Human Microbiome Project . . 86
5.4.2 Genotyping on 3000 samples of the 3000 Rice Genomes Project 87
5.4.3 Mapping 106 samples of the 1000 Genomes Project . . . . . . 87
5.4.4 Gene expression profiling on prostate cancer RNA-seq data . . 87

5.5 Metagenomic profiling and functional analysis . . . . . . . . . . . . . 88
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion and outlook 93
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 97

x



1Introduction

„Mere data makes a man. A and C and T and G.
The alphabet of you. All from four symbols. I am
only two: 1 and 0

— Joi
(A.I. of the movie Blade Runner 2049)

1.1 The big data challenge in life science

As the genetic material of living organisms, nucleic acids or "nucleins" were first
discovered by the young Swiss doctor Friedrich Miescher in the winter of 1868/9
(Dahm, 2008). They are usually formed in molecular sequences consisting of four
nucleotides: adenine, cytosine, guanine, and thymine (A, C, G, and T). The complete
collection of nucleic acid sequences builds up the deoxyribonucleic acids (DNA)
and ribonucleic acids (RNA) in an organism. Followed by the discovery of the DNA
double helix structure in 1953 (Watson and Crick, 1953), the primary objective in life
science studies is to decode the sequencial formation of the four nucleotides within
a certain genome (Fig. 1.1A). However, to obtain and reconstruct the complete
sequence of the genome can be challenging as the size of a genome ranges from
two millions to several billions of nucleotides, making it impossible for modern
technologies to read the genome in one continuous sequence.

Instead of reading the entire genome in a continuous sequence, whole genome
shotgun (WGS) sequencing technology was introduced to capture the fragments
of a genome in parallel and redundant ways (Green, 2001). By using the overlap
information of the sequenced fragments (Fig. 1.1B and C), researchers are able
to reconstruct most of the original genome with the help of computational tools
(Chaisson et al., 2015). In recent decades, next-generation sequencing (NGS)
technologies have been widely used by life scientists in nucleic acid studies. Moreover,
the improving productivity and low running costs of NGS have introduced an
exponential increase in sequencing data (Goodwin et al., 2016). Nowadays, a single
flow cell of an Illumina sequencer can generate hundreds of gigabytes (109 bytes)
raw data. These raw data sets are usually archived and stored in public data centers
such as the European Nucleotide Archive (ENA) and the Sequence Read Archive

1



(SRA). The latter hosted around 14 petabases (1015 nucleotides) of raw data and its
size is doubling every 10-20 months (Langmead and Nellore, 2018). Such a large
amount of archived data not only comes from individual research laboratories, but
also from different genome project consortia (Fig. 1.2A).

A

Raw data in 
Fastq format

Next generation
sequencing (NGS)

Random 
fragmentation

@Hiseq-2500
ATGGCAGTTCACATGGCAGTTCAC
+
III##!@@#!$*!@III##!@@#!$*!!

…

overlap

Contig

2, De novo assembly

Consensus sequence

Mapping

1, Reference basedB C

Sequencing fragments

Fig. 1.1: Nucleic acids and next-generation sequencing: (A) The DNA sequences of the
original genome are randomly fragmented and sequenced in a redundant way
(Betts et al., 2013); (B) The original genome is reconstructed by mapping the
fragments back to a reference template and building a consensus sequence; (C)
Genome reconstruction using overlaps between fragments.

After the accomplishment of the Human Genome Project (HGP) in April 2003 (Collins
et al., 2003), several consortia have initiated different genome projects with more
specific focuses on different research domains (Fig. 1.2B). For instances, the 1000
Genome Project aims to provide a detailed catalogue of human genetic variants by

2 Chapter 1 Introduction



sequencing more than a thousand human individuals (Auton et al., 2015). To that
end, the particular consortium has collected and sequenced 2504 human individuals
from 26 populations in the 3rd phase of the project which has generated more
than 100 terabytes (TB) of sequencing data. In the agricultural domain, the 3000
Rice Genome Project consortium sequenced more than 3000 rice samples which
has generated more than 200TB of sequencing data (Consortium, 2014). This data
enables a large scale discovery of novel alleles that are correlated to the changing
environment. For microbial studies, metagenomic whole genome shotgun sequencing
technology is frequently used to study the aggregated microbial community in an
given environment. The Human Microbiome Project (HMP) investigates how the
microbiome impacts human health and disease (Nih Hmp, Peterson, et al., 2009).
The consortium sequenced the metagenomes of 5 major body sites and generated
5TB of metagenomic WGS data. These genome project consortia not only conducted
comprehensive investigations into the sequencing data, but also provided large
data warehouses for researchers to carry out association studies between the public
datasets and their private datasets.

To carry out association studies using public datasets, researchers must tackle three
computational problems:

1. transferring large amounts of raw data from public storage to computational
resources

2. insufficient computational resources (hard disks, memories and processors) to
handle large-scale sequencing data

3. high run time and memory consumptions using conventional bioinformatics
tools to process the data.

For most research laboratories, a combination of high performance computing (HPC)
clusters (hardware) and bioinformatics tools (software) is used to carry out their
genomic studies.

On the hardware side, an HPC cluster provides a considerable amount of random
access memories (RAMs) and central processing units (CPUs) for bioinformatics tools
to carry out corresponding analyses. All computational tasks are usually scheduled by
a queuing system such as the sun grid engine (SGE), where parallelizations are done
by manually splitting and distributing smaller batches (Droop, 2016). Thus, by using
an HPC cluster, researchers are able to address the insufficiency of computational
resources. However, it also has two shortcomings: (i) significant costs to setup and
manage the cluster; (ii) computational resources idling from time to time.

1.1 The big data challenge in life science 3



Oregon, USA

• Human Microbiome 

Project (5TB)

Virginia, USA

• 3000 Rice Genomes Project (200TB)

• 1000 Genomes Project (100TB)

B

A

Maryland, USA

• SRA ftp server

Cambridge, UK

• ENA ftp server

Fig. 1.2: NGS data increment and storage: (A) Archived NGS data in the SRA database
doubled four times from July 2012 to March 2017 (Langmead and Nellore, 2018);
(B) Different locations for public data storage and cloud storage.

On the software side, the first and most resource consuming step for analyzing
sequencing data is to assemble the original genome using the sequenced fragments
(sequencing reads). There are two approaches for the assembly: (i) reference based
genome assembly and (ii) de novo genome assembly.

For model organisms whose genomes have been well assembled, reference based
assembly is usually used (Fig. 1.3B). For this approach, the goal is to detect structural
variants that differ from the reference genome templates. Thus, short read alignment
is used to map sequencing read to the reference genome. Because of sequencing
errors and structural variances (e.g. single-nucleotide polymorphism), the mapping
process has to thoroughly compare each nucleotide between the sequencing reads
and the reference genome. From a computational point of view, such a comparison
is very time consuming.

4 Chapter 1 Introduction



For organisms whose genomes are unknown, de novo genome assembly approaches
are used (Fig. 1.3C). As DNA was randomly fragmented before sequencing, the
overlapping information between fragments can be used for genome reconstruction.
To efficiently search for the overlap fragments and extend the fragments to longer
sequences, de novo assemblers usually store fragments in memory. For organisms
with large genome sizes (e.g. around 3 billion nucleotides for the human genome),
this approach has a high demand on the size of the RAM.

A T G G AC G T T C A

A

A T G G AC G T T C CA

Genome sequence

A T G G AC G T T C CA

A T G G
T G G C

G G AC

G AC G

AC G T

A G T T

G T T C

T T C A

T C CA

A
T
G
A

A
C

G
T
T
C
A

B C

Fig. 1.3: Computational method for genome assembly: (A) A fragment of the genome; (B)
reference based assembly maps sequenced fragments back to a reference sequence.
The mapping process is usually computationally time consuming; (C) de novo
assembly uses overlap information of the sequenced fragments to extend and
reconstruct the sequence. To efficiently search the overlaps of all fragments, all
sequences are stored in the memory. Thus, it is very memory consuming.

To address the big data challenge in life science, we need both easy-access to large
computational infrastructures and bioinformatics tools that are compatible and
scalable on such platforms.

1.1 The big data challenge in life science 5



1.2 Distributed cloud computing

When upgrading a personal computer (PC), four major hardware components are
critical to its later performance: memory, hard disk, CPU, and network connection.
The improvement of computing capacity on a single instance of an operating system is
known as vertical scaling or "scale up" (Singh and Reddy, 2014). Yet, installing more
processors or memory on one single computer instance will reach a certain limit and
the cost will raise considerably. To further improve the computing capacity, multiple
independent computer instances can be connected via network and organized to
work together in a grid. By distributing workload across the network to each
computer instance, the grid is able to process large data sets that can not fit into one
single computer. This approach, which leverages multiple commodity computers
for parallel computing, is known as horizontal scaling or "scale out" (Fig. 1.4).
For instance, using a cluster of 80 Amazon web server (AWS) computer instances
(c3.8xlarge), BiBiS3 (Henke, 2017) is able to download NGS data with an aggregate
throughput of more than 22 GBytes per second (Fig. 1.5). The parallel downloading
makes it possible to transfer large amounts of raw data from public storage to
computational resources (see section 1.1, the first computational problem).

Storage CPUMemoryNetwork

Scale-up Scale-out

Computer instance Computer instances

Fig. 1.4: Horizontal and vertical scaling (scale up and scale out): Scale up improves the
computational capacity within one computer instance, whereas scale out connects
more computer instances to increase the computational capacity

Scaling out, in theory, has no limit as long as more computers can be connected
to the grid. However, there are limited software frameworks that can fully utilize
and balance all computer instances. Both industrial enterprises and academic
communities are developing distributed frameworks to maximize the usage of

6 Chapter 1 Introduction



computational resources. For data storage, Yahoo Inc. harnessed 25000 servers
to store 25 PB of application data using a distributed system called the Hadoop
distributed file system (HDFS) (Shvachko et al., 2010). For data processing, The
more recent Apache Spark framework sorted 1 PB of data on 190 machines in
under 4 hours (Zaharia et al., 2012). With the help of distributed frameworks and
platforms, managing and using large pools of computers becomes much easier and
more efficient. The robustness and flexibility of horizontal scaling promoted the
rapid development of cloud computing.

Fig. 1.5: Scaling out download workloads: Each computer instance has 10 Gigabit/s band-
width. The test data sets are the NGS data of the human microbiome genome
project stored on the AWS cloud in Oregon, USA region. All data were downloaded
in parallel to a cluster located in Frankfurt, European region. The figure is a screen
shot from Ganglia network I/O monitor (Henke, 2017).

Cloud computing, as defined by the US National Institute of Standards and Technol-
ogy (NIST), is "a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g. networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction" (Mell and Grance, 2011).
To simplify, it is a model of providing easy-access to on demand computational re-
sources. These resources can be offered from lower-level computing infrastructure
to higher-level platforms and software, also known as: infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS). IaaS provides
hardware such as CPUs, memories, hard disks, network bandwidth, and virtual
machines (VMs). PaaS provides cloud-based platforms for users to run software in
a distributed fashion, such as the MapReduce model (Dean and Ghemawat, 2008).
SaaS directly provides executable software for various data analyses (Fig. 1.6).

In the industrial domain, major commercial enterprises, such as Amazon Web Service
(AWS), Google cloud, and Microsoft Azure, provide all three levels of service for

1.2 Distributed cloud computing 7



Fig. 1.6: Categories of cloud services. The figure is modified based on (Ensi, 2017).

general purposes. The services are charged based on how much resource is rented out
and how long it will be rented, known as the Pay-as-you-go model. The advantages of
the Pay-as-you-go cloud are (i) fast run time, (ii) low cost, and (iii) elastic scalability.
Instead of spending 1000 hours running on a single computer, users can easily setup
1000 computers for 1 hour of computational run time on a cloud. Thus, with the
same cost, the cloud fulfills computational requests quicker (Langmead and Nellore,
2018). Cloud service providers, such as AWS, introduce bidding systems that offer
lower prices to avoid computers idling in its computing center. The bidding price is
normally offered to compensate the electricity cost in a computing center. Therefore,
using bidding price could further reduce the cost. In addition, without investing
cluster management effort, users could easily configure their cloud clusters on a
command console. Once the cluster is setup, it can be further re-configured based on
the real time computational intensity. These features of the cloud make it suitable
for genomic researchers to handle large-scale NGS data sets (see section 1.1, the
second computational problem).

Conducting genomic studies on the cloud requires users to comprehend certain
amount of knowledge on cloud computing. In the bioinformatics domain, there
are nonprofit cloud services for genomic studies, such as the German Network
for Bioinformatics Infrastructure (de.NBI), the Embassy Cloud, and the European
Open Science Cloud. These cloud services provide platforms and software with
a particular focus on bioinformatics applications. The platforms facilitate users
to run bioinformatics software on the cloud. But most of them are built on top
of a distributed system, such as the MapReduce programming model (Dean and

8 Chapter 1 Introduction



Ghemawat, 2008). Although existing bioinformatics tools have been developed and
utilized on single computers (Langmead and Salzberg, 2012; Li and Durbin, 2009;
Niu et al., 2011; Wood and Salzberg, 2014; Li et al., 2009; Li et al., 2008; Bray
et al., 2016), most of the parallelizations on multi-computer networked clusters
are done by manually splitting and scheduling in batches (Droop, 2016). To be
compatible with a cloud environment, methods involving message passing and
graph representation between computers must be re-implemented with higher level
programming interfaces (Gropp et al., 1996).

HDFS RDD

Storage MemoryA B

4

2

3

Map            Reduce

Computer instances

Data

Fig. 1.7: Distributed computational model and frameworks: (A) An example of record
counting in the MapReduce programming model. Each yellow box represents
a computer instance. (B) Distributed data storage in the Hadoop distributed
file system (HDFS) and the distributed memory cache in the resilient distributed
datasets (RDD). Red dashes represent data partitions in a file.

To fully exploit distributed cloud computing systems, bioinformatics methods and
programs should be (i) scalable, (ii) fault tolerant, and (iii) platform independent.
In genomics applications, there are several tools (e.g. ABySS (Simpson et al., 2009)
and Ray (Boisvert et al., 2010)) that uses the message passing interface (MPI) for
distributed implementations. However, programming on top of MPI has to tackle
thread synchronization and load balance. In addition, the performance of MPI-based
assemblers is bonded to the performance of the network. The MPI-based Assemblers
have much faster run times on an InfiniBand connected cluster than an Ethernet
connected one. Moreover, there is no complete fault tolerance mechanism built inside
of MPI. The conventional Apache Hadoop framework is designed to offer higher
scalability and a supervised fault tolerance mechanism by providing a distributed
data storage system called HDFS (Shvachko et al., 2010) and a distributed computing
engine, Hadoop MapReduce (Dean and Ghemawat, 2008). The MapReduce model
consists of ‘map’ and ‘reduce’ steps, where ‘map’ carries out independent processes
and ‘reduce’ summarises the pre-computed results (Fig. 1.7A). However, Hadoop
MapReduce reads and writes intermediate results to a distributed disk storage, hence

1.2 Distributed cloud computing 9



introducing a significant overhead for iterative algorithms. Furthermore, Hadoop
has limited options for handling distributed data. Thus, more efforts are needed to
implement MapReduce-based algorithms on top of Hadoop.

The more recent Apache Spark framework addresses these weaknesses with its
unique data sharing primitive, called resilient distributed datasets (RDD) (Zaharia
et al., 2012). RDD offers a ‘cache’ function to store distributed data in the memory
across computers on a cluster (Fig. 1.7B), thus, avoiding run time overhead of
iterative data input and output (I/O). Moreover, Spark has more build-in functions
for RDD to facilitate methods implementation and data handling via its application
programming interface (API). These advantages make Spark suitable for large-scale
genomic data analyses.

1.3 Thesis structure

In this thesis, I will present my work on a cloud-based bioinformatics framework
that facilitates NGS data analysis on the distributed cloud environment. The main
contributions of the thesis can be summarized in three parts:

1. Sparkhit, a distributed implementation on top of the Apache Spark platform
for short read mapping and fragment recruitment that addresses a run time
intensive problem in NGS data analysis.

2. Reflexiv, a distributed de novo genome assembler using a newly developed data
structure called Reflexible Distributed K-mer (RDK) that addresses a memory
intensive problem in NGS data analysis.

3. Rapid analysis of large-scale NGS data associated with the public datasets on
the cloud using different functional modules in our framework.

The main content of the thesis is structured as follows:

Chapter 2: Related work

First, I will introduce the current state-of-the-art methods and technologies for
distributed sequence alignment and genome assembly. These methods are mainly
implemented on top of the Apache Hadoop and Spark platform. Thus, I will start
by giving a brief introduction into the Apache Hadoop and Spark eco-system. For
existing bioinformtics tools, I will introduce their algorithms and their distributed
implementations. I will also introduce the limitations of existing approaches on
top of Hadoop and Spark. Hadoop-based tools mostly suffer from the overhead of
iterative data I/O on a distributed storage system. As for Spark-based tools, the

10 Chapter 1 Introduction



algorithms implemented on the distributed system are not efficient and introduce
large amounts of messages passing through the network that impacts their run time
performances.

Chapter 3: Sparkhit: Distributed sequence alignment

Then, I will present Sparkhit, an open source computational framework that is easy
to use on a local cluster or on the cloud. Sparkhit is built on top of the Apache
Spark platform, integrates a series of analytical tools and methods for various
genomic applications: (i) I have natively implemented a metagenomic fragment
recruitment tool and a short-read mapping tool (Sparkhit-recruiter and Sparkhit-
mapper). The short-read mapper implements the pigeonhole principle to report the
best hit of a sequencing read. Whereas the fragment recruitment tool implements the
q-gram algorithm to allow more mismatches during the alignment, such that extra
information is provided for the metagenomic analysis; (ii) For using external software
on Sparkhit, I built a general tool wrapper (Sparkhit-piper) to invoke and parallelize
existing executables, biocontainers (e.g. Docker containers (Merkel, 2014)) and
scripts; (iii) For downstream data mining, I integrated and extended Spark’s machine
learning library. All methods and tools are programmed and implemented in a new
MapReduce model extended by Spark, where parallelization is optimized (load
balanced) and supervised (fault tolerance).

The benchmarks on Sparkhit demonstrated its high scalability. In comparison,
Sparkhit ran 18 to 32 times faster than Crossbow (Langmead et al., 2009) on data
preprocessing and Sparkhit-recruiter ran 92 to 157 time faster than MetaSpark
(Zhou et al., 2017) on fragment recruitment.

Chapter 4: Reflexiv: Parallel de novo genome assembly

As the second major implementation, I will introduce Reflexiv, an open source
parallel de novo genome assembler and its core data structure called Reflexible
Distributed K-mer (RDK). It is also built on top of the Apache Spark platform, uses
Spark RDD to distribute large amounts of k-mers across the cluster and assembles
the genome in a recursive way. Comparing RDK to the state-of-the-art De Bruijn
graph, RDK stores only the nodes of the graph (k-mers) and discards all the edges.
Since all k-mers are distributed in different compute nodes, RDK uses a random
k-mer reflecting method to reconnect the nodes across the cluster (a reduce step of
the MapReduce paradigm). This method iteratively balances the workloads between
each node and assembles the genome in parallel.

The main contribution of Reflexiv is a new distributed data structure and a recursive
implementation that leverages the memories of multiple instances in a standard
ethernet connected cluster. Reflexiv ran slightly faster than existing distributed de
novo assemblers, Ray and AbySS, on a single computer instance. When scaling out

1.3 Thesis structure 11



to more instances, Reflexiv is 8-17 times faster than Ray and 5-18 times faster than
AbySS on the Ethernet interconnected clusters deployed at the de.NBI cloud.

Chapter 5: Large-scale genomic data analyses

As the third part of the thesis, I will focus on showcasing a cloud application of
my framework. Utilizing the powerful AWS compute cloud, my framework quickly
analyzes large amounts of genomic data. My use case presents a 21 hours "pay-
as-you-go" cloud application that analyzed 100 TB genomic data from 3 genome
projects and a transcriptomics study (Wyatt et al., 2014). The analysis on the
Human Microbiome Project (HMP), associates public ‘big data’ with private datasets,
demonstrates how Sparkhit can be widely applied on different genomic studies. Thus,
my framework enables the broader community to engage genomic investigations by
leveraging cloud computing resources.

Chapter 6: Conclusion and outlook

In the end, I will conclude the contributions of my work and outlook the future
works for the project. The thesis focuses on addressing the big data challenge in
life sciences by leveraging distributed computing resources. In particular, I have
implemented two distributed algorithms on top of the Apache Spark platform to
enhance the performances of sequence alignment (run time intensive) and de novo
genome assembly (memory intensive). Both approaches have significant run time
improvements compared to existing tools. I also present an application on the
cloud using my distributed bioinformatics framework. The application presents a
use case on how to easily access and rapidly analyze large amounts of NGS data
on the Amazon AWS cloud. Nevertheless, to further improve the framework, two
functions can be added to the current implementations. For sequence alignment,
the overhead of broadcasting reference index can be compensated by integrating
a parallel reference download function. As for the de novo assembler, the pipeline
of the assembler ends when the contigs are assembled (see discussion in chapter
4). Thus, I will add an extra scaffolding module in the assembler’s pipeline for the
downstream assembly process.

12 Chapter 1 Introduction



2Related Work

„If I have seen further, it is by standing upon the
shoulders of giants

— Isaac Newton
(Physicist)

2.1 The Apache Hadoop and Spark frameworks

When developing software for a distributed system, the Apache Hadoop and Spark
frameworks are the two well known options for distributed implementations. The
Hadoop project was first started in 2004 at Yahoo Inc. (Dean and Ghemawat, 2004).
Its package mainly consists of a distributed storage module, known as Hadoop
distributed file system (HDFS) (Shvachko et al., 2010), and a data processing module
called Hadoop MapReduce (Dean and Ghemawat, 2008). HDFS is a distributed file
system for storing large amounts of data on each computer node across a cluster.
Whereas, MapReduce is a programming scheme for parallel data processing. The
weakness of the MapReduce paradigm is its inefficiency for iterative algorithms. For
the conventional MapReduce model, each ‘map’ step reads data from the disk and
writes the processed result back to the disk. In an iterative implementation, the
program reads and writes the data from/to the disk in a iterative loop. In such case,
the overhead of disk access will be significantly magnified.

The Apache Spark framework was then introduced to tackle such problems. It
was developed by the Algorithms Machines People (AMP) lab at the University of
California at Berkeley (Zaharia et al., 2012). Spark introduces a new data abstraction
called resilient distributed datasets (RDD). The major function of RDD is its ability
to cache distributed dataset into memories of a distributed cluster. Such design
overcomes the I/O overhead problem in the Hadoop MapReduce model. Moreover,
the programming interface of RDD provides a variety of functions to facilitate
distributed implementations.

Both frameworks are highly compatible with a collection of distributed computing
modules and frameworks that provide additional functionalities. For instance,
Hadoop can directly access data records from distributed databases (e.g. HBase).

13



Fig. 2.1: The Hadoop ecosystem (Landset et al., 2015)

Spark Machine Learning Library (Spark-MLLIB) provides a series of distributed
implementations of machine learning algorithms. This collection of distributed
frameworks and functional modules is known as the Hadoop and Spark ecosystem
(Fig. 2.1). Such an ecosystem increases the flexibility of Hadoop and Spark on the
cloud environment. Therefore, Hadoop and Spark based tools are easily portable to
other cloud platforms.

Spark and Hadoop excel other frameworks in the cloud environment with two native
features: (i) fault tolerant mechanism and (ii) high scalability. To understand how
Spark and Hadoop provide such features, let us start by looking at the topologies of
Hadoop and Spark clusters.

2.1.1 Cluster topology

Both Hadoop and Spark cluster architectures can be simplified as master-worker
networks. To organize all computer nodes, a master node is selected to supervise
worker nodes, allocate resources, and balance workloads. Whereas worker nodes
carry out assigned tasks.

In a distributed cluster of commodity computers, errors occur more frequently. A
single failure in the system can jeopardize the entire process or the complete cluster.
Fault tolerance is a mechanism of distributed frameworks to counter failures in
a distributed system. The failure can be an error in a single computing process
or a malfunction of a computer node. To prevent such failures, the master node
constantly monitors not only the heartbeats of all worker nodes, but also the statuses
of all processes. For instance, on a Hadoop distributed file system, the master node
(named by HDFS as the ‘name node’) checks the heartbeats of all worker nodes

14 Chapter 2 Related Work



HDFS

Storage MemoryData

File 1

File 2
Data nodes

Name node

FailureX
Replicas

CPU

I/O

Fig. 2.2: The fault tolerant mechanism of HDFS: The blue and red dashes represent data
blocks replicated and distributed by HDFS. In the event of a data node failure (e.g.
data node disconnected to the name node), HDFS is able to recover the data using
the replicas from other data nodes.

(named as ‘data nodes’). When storing data on HDFS, the files are split into blocks
and replicated onto several data nodes (Fig. 2.2). Once a data node is offline, the
name node can recover the file using the replicated blocks stored on the other data
nodes. When running a task on a Spark cluster, the master node (i.e. driver node)
checks the statuses of all parallel processes. A Spark computing process consists of a
series of executing operations. When a certain operation fails during the process,
Spark trace back its parent operations (called lineage) and re-executes the failed
process (Fig. 2.3). If the complete worker node failed during the process, the Spark
driver node re-schedules the failed chain of operations to another worker node for
continue processing.

Moving a large amount of data through a network is time-consuming. The advantage
of distributed computing is to process and manipulate data locally on each node
of the cluster. This way, each node can efficiently access and handle the data, thus
maximizing their processing capacity. When storing a file on the Hadoop cluster,
HDFS splits the file into blocks and distributes them redundantly on each data node
throughout the cluster. To read and process files stored on the HDFS, Hadoop-
MapReduce distributes tasks to each data node and each task processes the data
blocks directly from local storage. Spark can also directly load data blocks from
HDFS into RDD. An RDD allocates data into different chunks, known as partitions.
Each partition carries out an independent task that processes the data stored in the
partition. When loading data from HDFS, each RDD partition loads data blocks
stored on the local Hadoop data node (worker node for Spark).

2.1 The Apache Hadoop and Spark frameworks 15



HDFS

Storage MemoryData

Data nodes

Name node

FailureX

CPU

RDD1 RDD2 RDD3

Fig. 2.3: The fault tolerant mechanism of Spark: each worker node carries out a series of
operations as the linage of the task. In the event of a worker node failure, the
linage of the task will be sent to anther worker node on the cluster and resumes
running.

When connecting to the external storage, the distributed feature continues to benefit
the performances of Hadoop and Spark clusters. For instance, the AWS Simple
Storage Service (S3) is a distributed object storage system provided by Amazon
cloud for persistent data storage. Files stored on the Amazon S3 are replicated
and distributed across multiple servers within Amazon‘s data centers. When down-
loading a large genomic dataset from Amazon S3 to an HDFS, Hadoop-MapReduce
sends download requests (‘GET’ requests) from each data node to the Amazon S3
server (Fig. 2.4). The data nodes download different parts of the dataset to their
local disks. The Hadoop framework can also apply the same parallel download
method to other object storage systems such as the OpenStack Swift service. The
distributed downloading approach can fully exploit the bandwidth of distributed
network connection between the cluster and the external storage.

2.1.2 Spark data processing paradigm

The Apache Spark framework has extended the classic MapReduce programming
paradigm and introduced a new distributed data abstraction called resilient dis-
tributed datasets (RDD) (Zaharia et al., 2012). From a computational point of
view, an RDD is a Scala/JAVA object created inside the Java virtual machine. Spark
provides a collection of functions for RDD to facilitate methods implementation and
data handling via its application programming interface (API). A computational
pipeline on top of Spark is a series of functions applied to RDDs. These functions
are distributed methods that operate on each partition of the RDD (Fig. 2.5). There
are two types of functions: transformations and actions. Transformations apply

16 Chapter 2 Related Work



HDFS

Storage MemoryData
File 1

File 2

Data nodes

Name node

CPU

AWS S3

Openstack

Swift

Fig. 2.4: Distributed network connection with external storages: blue and red dashes
represent data blocks that are transferred independently by ‘map’ tasks.

functions to an RDD and send result to a new RDD. Whereas actions apply functions
to one RDD and return a value to the driver program after processing. In a way, all
transformations pass data between RDDs and can be carried out independently on
each partition of the RDD as a workflow. As for actions, results must be summarized
and sent to the driver program. For example, a ‘repartition’ function is a transfor-
mation that can be applied to divide an RDD into a certain number of partitions. A
‘collect’ function is an action that can be applied to aggregate processed results from
an RDD to the driver node.

Spark introduces a ‘lazy’ feature for arranging tasks on a Spark cluster. When a
Spark job is submitted to the cluster, the lineages of the operations are sent to each
executor of the worker nodes. Transformations are not computed right away on
executors. Instead, the executors continue to search the lineage of the operations
until an action is found. As actions require to send results to the driver node, the
executors start all transformations before the action and compute the result of each
operation (Fig. 2.6). This lazy feature is designed for the fault tolerant mechanism.
When a process fails during the ‘map’ step, the lineage of the process can be sent to
another active worker node and re-computed from the last action checkpoint.

2.1.3 Sorting in Spark

In the reduce phase of the Spark extended MapReduce paradigm, intermediate
results on the cluster are aggregated and summarized. To summarize results stored
on different worker nodes (e.g. word counting), records with the same value must
be sent to the same node for computing. The common way to do so is by sorting all

2.1 The Apache Hadoop and Spark frameworks 17



Master

Partition1
.count

RDD.repartition(3).cache().count()

Partition2
.count

Partition3
.count

Master

Partition1
.count

RDD.repartition(3).count()

Partition2
.count

Partition3
.count

A B

Fig. 2.5: Distributed computing on Spark clusters: (A) methods implemented via RDD’s API
will be operated on each partition of the RDD. Red lines indicate data input and
blue lines indicate data output. (B) the ‘cache’ function stores distributed data in
memory, so that the ‘count’ operation can read data directly from memory without
loading from local disks.

data across the cluster. The core of sorting data in a distributed system is the ‘shuffle’
operation, which moves data across the worker nodes. In the shuffle operation, the
task that emits the data in the source executor is ‘mapper’, the task that receives
the data into the target executor is ‘reducer’, and what happens between them is
‘shuffle’.

Spark sorts data in two stages: (i) the ‘map’ stage and (ii) the ‘reduce’ stage. In the
map stage, each partition of the RDD is sorted locally by the executor on each worker
node. After local sorting, Spark recorded the range of the sorted result, so that the
reduce tasks can retrieve ranges of data quickly. The entire ‘map’ stage processes
data locally without using the network connection between worker nodes.

In the reduce stage, the ‘reducer’ retrieves data in its own range from the ‘mapper’.
This ‘shuffle’ operation is carried out based on the TimSort algorithm implemented
in the Spark ‘sortByKey’ function. TimSort is a derivation of merge sort and insertion
sort. It performs better for datasets that are pre-sorted. At this stage, the performance
is bounded by the network connection between worker nodes, as ‘shuffle’ actually
takes place in this stage.

2.2 Sequence alignment and its cloud
implementations

18 Chapter 2 Related Work



HDFS

Storage MemoryData

Worker nodes

Driver node

CPU

Filter

RDD.filter().map().count()

Map

Count

Fig. 2.6: Transformations and actions: the ‘filter’ and ‘map’ operations are transformations
that operate on an RDD and send the result to a new RDD. The ‘count’ operation
is an action that processes the data from an RDD and sends the result to the driver
node. Spark only starts the job when encountering an action, which in this case is
the ‘count’ operation.

2.2.1 Short read alignment and fragment recruitment

Pairwise sequence alignment is a method for comparing the similarity between
two biological sequences (e.g. nucleotide sequences) that may have structural or
functional relationships (Gollery, 2005). Since the lengths of two sequences usually
vary from one another, sequence alignment can be classified into two categories: (i)
global alignment and (ii) local alignment. Global alignment aligns two sequences
from start to end, whereas local alignment searches for one or more short alignments
describing the most similar regions within the two aligned sequences.

For short read alignment, the goal is to assign a short read (e.g. the 100 nucleotides
(nt) sequence from Illumina Hiseq-2000 sequencer) to the most similar region on a
reference genome. This type of alignment usually generates alignments with high
similarities. However, fragment recruitment produces all possible matches between
the short read and the reference genome. The goal of fragment recruitment is to re-
cruit as many fragments as possible (even fragments with lower similarities, e.g. with
only 50% identical nucleotides) to the reference genome so that more information
can be used for downstream analysis. It is commonly used in metagenomic studies
to understand the genome structure, evolution, phylogenetic diversity, and gene
function of biological samples (Rusch et al., 2007). As a special case of sequence
alignment, fragment recruitment supports more mismatches during the alignment.
Thus, the computational complexity for fragment recruitment can be higher than
standard short read alignment.

2.2 Sequence alignment and its cloud implementations 19



Storage Memory

Worker nodes

CPU

1

3

9

1

3

4

1

2

3

4

7

8

2

5

6

7

8

9

2

5

6

4

5

6

7

8

9

Map Shuffle

Sort locally Merge Merge

Fig. 2.7: The sorting process in a Spark cluster: the process consists of two stages: the ‘Map’
stage and the ‘Reduce’ stage. Each grey dash frame represents a partition of an
RDD. The grey solid frames represent the merged result of TimSort.

2.2.2 Algorithms for sequence alignment

Due to the single nucleotide polymorphisms (SNPs) and insertions/deletions on
genome sequences, sequence alignment must thoroughly compare each nucleotide of
the two sequences to find differences. There are two types of methods for sequence
alignment: (i) dynamic programming methods and (ii) heuristic methods. One
of the classic dynamic methods for sequence alignment is the Smith-Waterman
algorithm (Smith and Waterman, 1981). Like the Needleman-Wunsch algorithm
(Needleman and Wunsch, 1970), Smith-Waterman creates a scoring matrix M(m,
n), where m denotes the length of the query sequence and n denotes the length
of the reference sequence. First, the algorithm goes through all cells of the matrix
and scores each cell based on the pre-set mismatch and gap penalty scores. In the
next step, the algorithm traces back the cell and finds the optimal path with the
highest scores. Based on the traversed path, the detailed alignment and the mapping
identity (i.e. similarity) can be presented. The Smith-Waterman algorithm has been
widely implemented in sequence alignment tools, such as JAligner (Moustafa, 2005)
and the FASTA package (Lipman and Pearson, 1985).

The Burrows-Wheeler Transform (BWT) algorithm is also widely used in dynamic
programming for sequence alignment. BWT was initially developed for data com-
pression techniques such as bzip2 (Seward, 1996). In the particular application
of sequence alignment, BWT was widely implemented in a collection of alignment

20 Chapter 2 Related Work



100
98

94

100

50

Id
en

ti
ty

 (
%

)

100

50

Id
en

ti
ty

 (
%

)

Reference genome Reference genome

100
98

94
xx 91

86 78

73
66

58

Short read alignment Fragment recruitment

A B

Fig. 2.8: Short read alignment and fragment recruitment: the major difference between the
two approaches is the goals they want to achieve. (A) Short read alignment tries
to find the best match of a given read. Whereas (B) fragment recruitment tries to
report all possible matches that have higher identities than a given threshold. Blue
dashes represent sequencing reads.

tools, such as SOPA2, Bowtie2, and the Burrows-Wheeler Alignment tool (BWA) (Li
and Durbin, 2009). BWA first builds an index of the reference genome for the later
alignment process. To build the index, it first constructs circulated strings (produce
of a consecutive head-to-tail nucleotide shift of the original string (Fig. 2.9)) from
the reference sequence. Then, all circulated strings are sorted lexicographically. The
position of the first symbol in the sorted strings is used to build a suffix array, while
the last symbol of the circulated strings is concatenated to build the BWT string.
Once the index is built, BWA runs a backward search to align short reads back to the
reference genome.

As for fragment recruitment, most of the methods are implemented with heuristic
algorithms. Since fragment recruitment produces alignments with much lower
mapping identities, the mapping process must be tolerant for more mismatches
and gaps between the query sequence and the reference sequence. Thus, more
candidate fragments are able to pass the pre-filtering stage and a considerable
amount of computing run time is consumed for mapping these candidate fragments
to the reference genome. Basic Local Alignment Search Tool (BLAST) (Altschul
et al., 1990b) is one of the most widely used bioinformatics programs for sequence
alignment. It can also be used for fragment recruitment. Like most alignment tools, a
BLAST application consists of two phases: building the reference index and querying
short reads to the index. BLAST builds the reference index by using a hash table data
structure to store the locations of each k-mer on the genome (the seeds). Once the
index is built, BLAST maps short reads to the reference index. The BLAST mapping
process has two steps: seeding and extension. The seeding step searches perfect
k-mer matches (as seeds) in the pre-built reference index. Once the seeds are found,

2.2 Sequence alignment and its cloud implementations 21



Fig. 2.9: BWT suffix array construction: the circulated strings are created by a head-to-tail
shift of one nucleotide, where the $ sign serves as a marker to the end of the
sequence. All circulated strings are then lexicographically sorted and the last
symbols of the strings compose the BWT string (lo$oogg in the figure). The figure
is modified from (Li and Durbin, 2009).

extensions are then carried out on both sides of the seeds. The extensions compare
and score the similarity between the query sequence and the reference genome
sequence using the BLOSUM62 scoring matrix.

A more recent fragment recruitment tool, called Fr-hit (Niu et al., 2011), intro-
duces a q-Gram filter method (Rasmussen et al., 2006) to improve the run time
performance for fragment recruitment. Compared to the ‘seed and extend’ approach
used in BLAST, Fr-hit uses a longer k-mer (11nt) to plant seeds in the reference
genome. Then, it creates candidate sequence blocks around the seeds on the refer-
ence genome. To remove disqualified candidate blocks that are unlikely to fulfill
the minimal similarities required by the aligner (too many mismatches and gaps),
Fr-hit implemented the q-gram filter method. Q-gram filter uses small continuous
k-mers (4nt in Fr-hit) from a short read as probes to target the candidate blocks. A
successful k-mer probing represents an exact K nucleotides match. Whereas one
mismatch will remove at least K continuous k-mer matches. Thus, based on the
number of matched k-mers, the q-gram filter rejects candidate blocks with more
mismatches than the pre-set threshold.

2.2.3 Distributed implementations

Distributing sequence alignment tasks on a SGE cluster can be easily implemented, as
each alignment can be an independent task running on a chunk of input sequencing
data. Most research laboratories create their own in-house scripts to manually split
input Fastq files into small chunks and submit to the SGE in batches. Each batch job
carries out a standalone alignment on a chunk of the input file and the outputs of

22 Chapter 2 Related Work



all batch jobs will be concatenated as the final result. However, such an approach
has the following limitations: (i) all data must go through the network of a shared
volume on the cluster, introducing a bottleneck on the network, (ii) the in-house
scripts usually do not have a built-in fault tolerant mechanism, (iii) the approach is
not portable to a distributed cloud system.

Fig. 2.10: Distributed sequence alignment in Crossbow: Preprocessed reads are split and
distributed to different computing nodes. Each node carries out an independent
Bowtie alignment on the split block of the sequencing reads. The alignments
from Bowtie are binned and sorted for SNP calling. The figure is modified from
(Langmead et al., 2009)

These limitations can be addressed by using distributed frameworks like Apache
Hadoop and Spark. Cloudburst (Schatz, 2009) is a Hadoop based sequence mapping
tool programmed in the MapReduce model. The common seed and extend alignment
pipeline is split and implemented in ‘map’ and ‘reduce’ steps, where the ‘map’ step
searches k-mer matches (as seeds) and the ‘reduce’ step extends the seeds to apply dy-
namic alignments. The limitation of such method is that the ‘reduce’ step introduces
large data shuffling across cluster nodes that impacts its performance. Crossbow
(Langmead et al., 2009), Halvade (Decap et al., 2015) and Myrna (Langmead et al.,
2010), on the other hand, directly use Hadoop to invoke existing sequence aligner

2.2 Sequence alignment and its cloud implementations 23



(Bowtie (Langmead, 2010)) and SNP caller (SOAPsnp (Li et al., 2008) or GATK
(McKenna et al., 2010)) for sequence mapping and genotyping on large datasets.
The three tools have successfully reduced the run times for mapping, genotyping
and gene expression quantification. Yet, their data preprocessing step introduces a
heavy overhead and their options for handling distributed data are limited.

The Apache Spark framework has more built-in functions for RDD to facilitate meth-
ods implementation and data handling via its API. Nevertheless, existing Spark based
bioinformatics tools have their own limitations. For instance, SparkBWA (Abuin
et al., 2016) adopts the same idea of Crossbow by using Spark to invoke the BWA
(Li and Durbin, 2009) aligner. However, it does not provide data preprocessing
functions for large amounts of compressed sequencing data. Thus, manually decom-
pressing the sequencing data introduces a significant run time overhead. Instead of
directly invoking external aligners, MetaSpark (Zhou et al., 2017) re-implemented
a fragment recruitment algorithm (Rusch et al., 2007). It has the same ‘seed and
extend’ pipeline as Cloudburst, but implemented its algorithm on top of Spark.
Therefore, it also introduces large data shuffling in the reduce step that impacts its
run time performance. Moreover, it requires a self-defined input format rather than
the standard Fastq and Fasta format, which introduces an overhead to manually
convert large Fastq files.

2.3 De novo assembly and its cloud implementations

2.3.1 Algorithms for short read de novo assembly

The principle for de novo assembly is to detect overlaps between sequenced short
reads. There are three major categories of algorithms for short read De novo assembly:
(i) Greedy, (ii) overlap-layout-consensus (OLC), and (iii) de Bruijn graph (Nagarajan
and Pop, 2013). Greedy method uses the full length short read sequences and
conducts a pairwise search against each other for overlaps. It extends the assembly
by joining the reads with the best overlap (as in greedy). Thus, this method solely
considers the local connections of the short reads and does not take into account the
global relationship of all short reads. Most assemblers developed in the early stage
of genomic studies uses the greedy method, such as the TIGR (Sutton et al., 1995)
and PHRAP (Melissa and Richard, 2007) assemblers.

Overlap-layout-consensus (OLC) method also uses the full-length sequences of the
reads to extend the assemblies. Different from the greedy method, OLC constructs
a graph to represent the global relationship of all overlaps between the reads. In
the graph, each node denotes a read and each edge represents an overlap between
two reads (Fig. 2.11A and B). Algorithms based on OLC method can traverse the

24 Chapter 2 Related Work



Fig. 2.11: De novo assembly methods: (A and B), part of the overlap-layout-consensus
(OLC) method. (C), part of the de Bruijn Graph. The figure is from (Schatz et al.,
2010)

graph and optimize the assembly by taking into account the global relationship
between the reads. Celera (Myers et al., 2000) is one of the well-known assemblers
developed using the OLC approach. However, the computational complexity of the
OLC approach has limited its performance on the high throughput sequencing data.
The more recent SGA assembler introduces a more efficient string indexing data
structure to overcome the high complexity bottleneck of the OLC approach (Simpson
and Durbin, 2012).

2.3.2 State-of-the-art de Bruijn graph

Instead of searching the overlaps of the full-length sequencing reads, the de Bruijn
graph method extracts length K sub-sequences, known as k-mers (Fig. 2.12A), from
the input reads and constructs a graph based on the overlaps of the k-mers. There are
two types of de Bruijn graphs: Hamiltonian and Eulerian de Bruijn graphs (Fig. 2.11B
and C). In a Hamiltonian de Bruijn graph, each node represents a k-mer and each
edge denotes an overlap of two k-mers. The overlaps in the de Bruijn graph are
normally K-1 letters in length with only one nucleotide shifting between the adjacent
(overlapped) k-mers. Thus, each step of the graph traversal extends one nucleotide
on the assembly. In contrast to the Hamiltonian graph, each node of the Eulerian de

2.3 De novo assembly and its cloud implementations 25



Bruijn graph is the overlap sequence (the (K-1)-mer) of two k-mers and each edge is
the complete sequence of a k-mer.

Fig. 2.12: The Hamiltonian and the Eulerian de Bruijn graphs: (A), k-mers are extracted
with 4 nucleotides in length. (B), the Eulerian de Bruijn graph uses k-mers as the
edges and (K-1)-mers as the nodes. (c), the Hamiltonian de Bruijn graph uses
(K-1)-mers as the edges and k-mers as the nodes. The figure is from (Sohn and
Nam, 2018).

In a Hamiltonian de Bruijn graph, the genome is assembled by traversing Hamiltonian
paths that go through all nodes in the graph, in which each node is visited only once.
Such graph traversal is a typical nondeterministic polynomial time (NP)-complete
problem. The computational complexity for searching the Hamiltonian paths is
O(m× 2n), where m denotes the number of all nodes in the graph, n represents the
number of branching nodes (Thomason, 1989). Due to the sequencing errors in
the sequencing process and repeat events on the genome sequence, the computa-
tional complexity of the Hamiltonian increases exponentially. Many Hamiltonian de
Bruijn graph-based assemblers, such as ABySS (Simpson et al., 2009), Meraculous
(Chapman et al., 2011), SOAPdenovo (Li et al., 2010), and Velvet (Zerbino and
Birney, 2008), reduce the complexity of the graph by partially removing branch
nodes. However, such reduction produces more short contigs in the result of the
assembly.

Different from the Hamiltonian de Bruijn graph, the Eulerian de Bruijn graph method
try to go through all edges in the graph (Fig. 2.12B), in which each edge is visited
only once. In such case, the path can be found in polynomial time with an O(n2)
computational complexity (Pevzner et al., 2001). Without simplifying the graph,

26 Chapter 2 Related Work



Eulerian-based de novo assemblers, such as EULER (Pevzner et al., 2001) and SPAdes
(Bankevich et al., 2012), generally produce longer contigs.

2.3.3 Cloud based de novo assemblers

Implementing a de novo assembly algorithm on a distributed system can be more
complicated than implementing a distributed alignment algorithm, as genome as-
sembly cannot be carried out independently on each partition of the sequencing
data. Take the de Bruijn graph as an example: to assemble the complete genome, all
parts of the input data (all nodes in the graph) must be accessible by the processor
to traverse the complete paths of the genome. In a distributed system, the complete
nodes of the de Bruijn graph are separated and distributed to different computer
instances of a cluster. In such case, traversing all nodes of the de Bruijn graph
involves communications between different computer instances.

Node 1 Node 2 Node 3

Fig. 2.13: The distributed de Bruijn graph of Velvet: Blue frames represent nodes of the de
Bruijn graph. Figure modified from (Zerbino and Birney, 2008)

Most distributed assemblers still use the de Bruijn graph approach as their key
algorithms (e.g. ABySS (Simpson et al., 2009), Ray (Boisvert et al., 2010), SWAP-
Assembler (Meng et al., 2014), and Spaler (Abu-Doleh and Çatalyürek, 2015)). To
organize data distribution and communication in a cluster of commodity computers,
distributed frameworks are needed for implementing a distributed de Bruijn graph.
The message passing interface (MPI) (Gropp et al., 1996) is the primary choice for
most distributed assemblers, such as ABySS, Ray, and SWAP-Assembler. In the MPI
implementation of ABySS assembler, all k-mers of the de Bruijn graph are distributed
across all computer instances of the cluster. The physical location of each k-mer

2.3 De novo assembly and its cloud implementations 27



(the index of the computer instance, on which the node is stored) is also computed,
so that k-mers can locate its adjacent k-mers (overlapped k-mers) and pass the
message to the computer instances accordingly. The weakness of such an approach
is that it relies heavily on the performance of the network. On a standard Ethernet
connected cluster, the constant messaging between different computer instances will
significantly increase the latency of the network. To increase the scalability of such
approach, a high-speed InfiniBand network is needed (Liu et al., 2011).

The more recent Spaler assembler implemented the de Bruijn graph on top of the
Apache Spark framework. It employs the Spark graphic library, called GraphX, to dis-
tributed its de Bruijn graph. Spark-GraphX offers a series of functions for developers
to handle the communications between worker nodes for traversing the distributed
graph. The back ends of these functions are MapReduce based implementations to
reduce the nodes of the de Bruijn graph and extends the assemblies (Gonzalez et al.,
2014). Spaler has reported better performance in scalability comparing to other MPI
based assemblers such as ABySS, SWAP-Assember and Ray. However, its executable
file is, to the best of our knowledge, not available.

2.4 Conclusion

In this chapter, I presented related work in three different parts: (i) The Apache
Hadoop and Spark framework, (ii) the current state-of-the-art methods and tech-
nologies for distributed sequence alignment, and (iii) distributed genome assembly.
I have presented the cluster architectures of both Hadoop and Spark clusters. I
also introduced the classic Hadoop MapReduce model and its weakness in iterative
computations. The more recent Spark framework addresses the weakness with its
in-memory computing function. Spark introduces a new data sharing primitive called
RDD that provides built-in functions to facilitate distributed implementations. Thus,
most of my distributed implementations are built on top of the Spark framework.

For distributed sequence alignment, existing tools either have limited options for
preprocessing input data (e.g. Crossbow) or suffer from the overhead introduced
by large amounts of messaging in the network (e.g. MetaSpark). Therefore, in the
first section of my work (chapter 3), I will introduce my approaches for both short
read alignment and fragment recruitment. Then, I will compare my tools to both
Crossbow and MetaSpark.

For distributed de novo genome assembly, most existing tools use the state-of-the-
art de Bruijn graph and implemented the distributed graph on MPI. However, the
performances of the MPI based tools are banded by the network speed. In the second
section of my work (chapter 4), I will introduce a new distributed data structure

28 Chapter 2 Related Work



and its implementation on a newly developed assembler called Reflexiv. I will also
compare my tool to the existing assemblers including Ray and ABySS.

2.4 Conclusion 29





3Sparkhit: Distributed sequence
alignment

„The future is already here. It’s just not very
evenly distributed.

— William Ford Gibson
(Science fiction writer)

In this chapter, I mainly focus on addressing a computational intensive challenge
(sequence alignment) in bioinformatics applications. I will present Sparkhit, an open
source computational framework that is easy to use on a local cluster or on the cloud
(Huang et al., 2018). Sparkhit is built on top of the Apache Spark platform, integrates
a series of analytical tools and methods for various genomic applications:

1. I have natively implemented a metagenomic fragment recruitment tool and a
short-read mapping tool (Sparkhit-recruiter and Sparkhit-mapper) on top of
the Apache Spark platform. The short-read mapper implements the pigeon-
hole principle to report the best hit of a sequencing read. Whereas in the
fragment recruitment tool, I implemented the q-gram algorithm to allow more
mismatches during the alignment, so that extra mapping reads are provided
for the downstream metagenomic analysis

2. For using external software on Sparkhit, I built a general tool wrapper (Sparkhit-
piper) to invoke and parallelize existing executables, biocontainers (e.g. Docker
containers (Merkel, 2014)) and scripts

3. For downstream data mining, I integrated and extended Spark’s machine
learning library

4. For data preprocessing, I developed a parallel decompression tool (Sparkhit-
spadoop) that significantly increases the speed for NGS data decompression.

In the results section, I will present a series of performance benchmarks for Sparkhit.
In general, the benchmarks demonstrated its high scalability on the AWS cloud. In
comparison, Sparkhit ran 18 to 32 times faster than Crossbow on data preprocess-

31



ing. For fragment recruitment, Sparkhit-recruiter ran 92 to 157 time faster than
MetaSpark.

3.1 The pipeline for sequence alignment

In metagenomic studies, fragment recruitment is a key step to understand the
genome structure, evolution, phylogenetic diversity, and gene function of biological
samples (Rusch et al., 2007). As a special case of read mapping, fragment recruit-
ment supports more mismatches during the alignment. Thus, the computational
complexity for fragment recruitment can be higher than that of the standard short
read mapping.

Sparkhit-recruiter

Build K-mer hash

Search blocks

qGram filter

Banded 

alignment

Build K-mer hash

Search blocks

Pigeonhole

filter

Banded 

alignment

Sparkhit-mapper

sequencing read

reference genome

A B

Fig. 3.1: The pipelines of Sparkhit-recruiter and Sparkhit-mapper: (A)The pipeline of
Sparkhit-recruiter for fragment recruitment. Blue dashes represent k-mers ex-
tracted from the reference genome, whereas red dashes represent k-mers extracted
from sequencing reads. (B) The pipeline of Sparkhit-mapper for short-read map-
ping. The third step of Sparkhit-mapper uses the pigeonhole filter instead of the
q-gram filter.

I implemented a fast and sensitive fragment recruitment tool, called Sparkhit-
recruiter. Sparkhit-recruiter extends the Fr-hit (Niu et al., 2011) pipeline and
is implemented natively on top of the Apache Spark. The pipeline consists of four
steps (Fig. 3.1A):

32 Chapter 3 Sparkhit: Distributed sequence alignment



1. building reference index

2. searching candidate blocks

3. block filtering

4. banded alignment.

When building the reference index, Sparkhit-recruiter uses a k-mer hash table to
store each K-mer’s location on the reference genome (Fig. 3.1A in blue color). Once
the index is built, the program extracts the k-mers from sequencing reads (Fig. 3.1A
in red color) and searches against the reference hash table for exact matches. The
matched k-mers will be placed on the genome as seeds to extend candidate blocks.
The block filtering step incorporates a q-gram threshold to remove badly matched
blocks, therefore improving run time performance. After filtering, banded alignment
is applied to give a final mapping result.

I also implemented a short-read aligner, called Sparkhit-mapper (Fig. 3.1B). It
adopts the same pipeline of Sparkhit-recruiter, but uses a more strict pigeonhole
principle for the filtering step. Compared to the q-gram filter implementation in
Sparkhit-recruiter, the pigeonhole principle allows fewer mismatches on the sequence
so that less identical blocks are filtered and high similarity candidate blocks are
preserved (see section "3.1.3 Pigeonhole principle"). In this case, less candidate
blocks are sent to the next step for banded alignment, making it runs faster than
Sparkhit-recruiter.

Here, I explain each step of the pipelines in detail:

3.1.1 Building reference index

First, the reference index is built on the driver node before the actual mapping
(querying) starts (Fig. 3.2). The driver program first reads the input reference
genome and extracts k-mers with a pre-selected length. The k-mers are, then, used
to construct a hash table that records each k-mer’s location on the reference genome.
I encoded the hash table in a one dimensional array with a customized hash function.
Four different nucleotides are encoded in two binary bits (A to 00, T to 01, C to 10,
G to 11). As a result, a k-mer smaller than 16 nucleotides (encoded in 232 bits) can
be encoded as an arbitrary index number of an array. This hash function gives each
k-mer an unique hash code. Thus, collision events are eliminated from the hash
table, as each key is placed in a unique block within the array. Therefore, the run
time performances of building and searching this hash table are increased.

3.1 The pipeline for sequence alignment 33



1, 14
2, 8, 11
3, 6, 7
4, 15
5, 18
9, 16
10, 13
12, 17

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

Hash table

K-mers

Reference genome

A G G C

12, 17

00    10    10    11
<43, (12, 17)>

<Index, Loci>

Fig. 3.2: Reference index construction: k-mers are extracted from the reference genome and
their locations on the genome are stored in a hash table. Each k-mer is encoded
into an integer, which servers as the index number (the Hash code) of the hash
table.

3.1.2 Candidate block seraching and q-Gram filters

The querying process starts by finding the exact k-mer matches between queried
sequencing reads and the reference genome (seeding). Once a match is found, the
program extends a putative mapping block (a block that is longer than the read
length plus the maximum mismatches) on the reference genome around the seed
as a candidate (Fig. 3.3A). Since the seed can be a random match on the genome
that results in a block with extensive mismatches, a q-gram filter is applied to reject
such candidate blocks. The q-gram filter tries to find the worst scenario to plant a
number of mapped short k-mers (q-grams) in a sequence to allow a certain number
of mismatches. If the worst scenario cannot be fulfilled (less q-grams are found),
more mismatches are present in the block than the maximum number of mismatches
allowed. In this case, the block is rejected. For a candidate block with a length of n
nucleotides, let e denote the number of mismatches, q the length of the q-gram. The
q-gram Lemma can be expressed as:

T (n, q, e) ≥ (n + 1)− q(e + 1) (3.1)

Where T(n, q, e) stands for the minimum number of q-gram matches expected in
the block. Here, the worst scenario is that each mismatch will consume q number
of q-gram matches (q-grams are extracted with 1 nucleotide offset). Since the
maximum number of q-grams in a sequence of length n is (n + 1 - q), the minimum
q-gram matches found in the block should be (n + 1 - q) - q × e = (n + 1) - q (e +
1).

34 Chapter 3 Sparkhit: Distributed sequence alignment



A G G C

G G C T

G C T A

C T A C

A G G A T A C

Reference genome

Sequencing read

Index

Q-Grams

Read

A

B

Fig. 3.3: An example of the q-gram filter: (A) three mismatches between the sequencing
read and the candidate block knock out 10 q-grams (red short dashes). (B) One
mismatch knock out maximally q number of q-grams.

3.1.3 Pigeonhole principle

When the mapping identity has been set to more than 94%, the pigeonhole principle
is used to introduce faster and more robust filtering. It also tries to find the worst
scenario to plant a number of k-mers that allows a certain number of mismatches.
However, in the pigeonhole principle solution, k-mers are extracted without overlaps
from a sequencing read (Fig. 3.4). It uses consecutive short k-mers as probes to
target the candidate blocks. Each successful k-mer probing represents an exact k
nucleotides match, whereas each unsuccessful k-mer probing represents at least one
mismatch in this k-mer region. In sequence alignment, a mismatch is considered
as a pigeon that occupies a container (in our case, a k-mer) on the sequence. A
e number of mismatches on the sequence will cost the same number of k-mers in
the worst scenario. For a sequencing read with a length of n nucleotides, the total
number of k-mers are bn/kc, where k is the size of the k-mer. Thus, the minimum
number of k-mer matches on the read should not be less than bn/kc − e. Otherwise,
the sequencing read is rejected.

3.1 The pipeline for sequence alignment 35



A G G C TT A C

A G A C T C C

Reference genome

Sequencing read

Index

K-mers

Read

A

B

T

Fig. 3.4: An example of the pigeonhole principle: (A) when using pigeonhole principle for
the filtering process, short k-mers are extracted consecutively without overlaps.
Thus, each mismatch knocks out maximally one short k-mer. (B) An example of
two mismatches knock out two k-mers from the candidate block

3.1.4 Banded alignment

I implemented the dynamic alignment method which constructs a (m +1) × (n +
1) matrix, where m is the length of queried sequence and n is the length of filtered
reference block, to traverse the optimal alignment between the two sequences. How-
ever, when scoring the matrix, a smaller band can be applied to avoid unnecessary
computing on the outer bound of the matrix (Pearson and Lipman, 1988). After
filtering the candidate blocks, a banded alignment is carried out with a pre-defined
bandwidth (Fig. 3.5). The band center is set around the region with highest q-gram
matches. After the matrix traversal, the mapping score and the identity are both
calculated based on the point accepted mutation (PAM) 50 scoring matrix.

3.2 Distributed implementation

To implement the pipelines in a distributed fashion, I split the mapping processes into
two parts: building the reference index and querying sequencing reads (Fig. 3.6A-B,
blue and red dashed boxes). When starting a Sparkhit-recruiter job, the reference
index is, firstly, built on the driver node (usually the master node), where the main
Spark program runs. Once the reference index is built, the driver program executes a
‘broadcast’ command to ship one copy of the index to each worker node shared by all
local querying tasks. On the worker nodes, sequencing data chunks are loaded from

36 Chapter 3 Sparkhit: Distributed sequence alignment



A T G G AC G T T C A

A
T
G
A

A
C

G
T
T
C
A

Band width
K

Reference  length = n

Q
u

er
y 

R
ea

d
  l

en
gt

h
 =

 m

Time complexity = O(Kn)

n

m

Fig. 3.5: Banded alignment: A K length band is applied on a m× n matrix for the pairwise
alignment, where n is the length of the reference genome and m is the length of
the sequencing read. Since the computation is limited in the banded area, the
computational time complexity is O(Kn).

HDFS to a Spark RDD. Each partition of the RDD is, then, independently queried to
the broadcasted reference index as a ‘map’ step of the MapReduce pipeline. In the
end, a ‘reduce’ step summarizes the mapping result (Fig. 3.6A).

3.2.1 Reference index serialization and broadcasting

To send a copy of the reference index to each worker node, a broadcast function
is used. This broadcasting process has two steps: object serialization and network
broadcasting. The driver program serializes an instance of the reference data
structure (the reference index) to a binary file. Then, the driver program applies a
‘broadcast’ function to transmit the binary data to each worker node (Fig. 3.6A). For
example, the Jave code can be expressed as:

final Broadcast<KmerLoc[]>broadIndex =
sc.broadcast(ref.index);

3.2 Distributed implementation 37



RDD RDD
Paired

RDD

3

1

2

Driver 

node

BA

Broadcast

Map      ReduceByKey

Index

Sparkhit-recruiter

Build K-mer hash

Search blocks

qGram filter

Banded 

alignment

Fig. 3.6: Distributed implementation of the fragment recruitment pipeline: (A) Distributed
implementation of Sparkhit-recruiter. The reference index, illustrated in blue
dashed box, is built on a driver node and broadcasted to each worker node.
Sequencing reads, illustrated in Red dashes, are loaded into an RDD and queried
to the broadcasted reference index in parallel as a ‘map’ step. A ‘reduce’ step is
followed to summarize the mapping result. (B) the reference index, illustrated
in blue dashed box, is built on a driver node and broadcasted to each worker
node. Sequencing reads, illustrated in bold red dash, will be searched against
the reference hash table for exact matches. A smaller k-mer is used to apply the
q-gram filter.

Where ref.index is a pre-built reference index from an input reference genome. sc
stands for the Spark context, which is a driver program running on the master node.
It applies the sc.broadcast function to broadcast the ref.index to each worker
node.

On worker nodes, each executor applies a get function to de-serialize the input data
stream into a Java object (in this case the de-serialized reference index) and stores
only one copy of the index in memory for all mapping processes on this worker
node.

I implemented the Kryo (Grotzke, 2017) serialization framework for faster reference
index serializations. The reference data structure mainly consists of a k-mer hash
table encoded in a one dimensional array. Our serializer first registers the Java class
of this one dimensional array with an integer ID. The Java code can be expressed
as:

kryo.register(KmerLoc[].class, 1);

38 Chapter 3 Sparkhit: Distributed sequence alignment



Where KmerLoc[].class is the Java class for the reference data structure. Once
the reference index is built, the Java object (an instance of the Java Class) is, then,
serialized and the binary bits are written to an output file via a pre-defined output
stream writer. As the Java Class is registered, it will write the registered ID first, then
the binary bits of the Java object.

3.2.2 Data representation in the Spark RDD

The Spark RDD stores data chunks in line-based text format, where identifying entries
requires finding line boundaries denoted by newline characters. After decompression,
most NGS data is stored in line-based text files, e.g., fastq, SAM and VCF files. For
SAM and VCF files, each line is an independent unit that contains its corresponding
information (mapping records or genotypes). Thus, when loading these files, each
line is read and stored as an element of an RDD. However, a fastq file stores its basic
information in a four-line unit, where each line is an essential part of a sequencing
read. When loading a fastq file into Spark RDD, a filter step is applied to check each
four-line unit of the fastq file before the next step.

Both loading and saving run in parallel on each partition of the RDD (the sequencing
data) with a default size of 256 MB per partition. Sparkhit can also directly load
and save data from and to both HDFS and Amazon S3 by using the HDFS and the
S3 URL scheme.

3.2.3 Concurrent in memory searching

Once the reference index is broadcasted to each worker node, each partition of the
RDD runs an alignment task independently on the worker node. The alignment tasks
go through each sequencing read in the partitions and search against the reference
index using the pipeline of Sparkhit-recruiter or Sparkhit-mapper. The alignment
results are sent to a new RDD with the same number of partitions (Fig. 3.6). In
the case of a task failure during the process, the failed partition (a portion of the
sequencing reads) will be reloaded into the RDD and are rescheduled for alignment
in a new task.

3.2.4 Memory tuning for Spark native implementation

The random access memories (RAMs) of Sparkhit-recruiter and Sparkhit-mapper
are mainly consumed by a copy of the reference index and loaded partitions of

3.2 Distributed implementation 39



an RDD. For the reference index, there are a hash table, which stores the locus of
each k-mer, and a list of binary strings that represents the compressed reference
genome sequences. To measure the memory consumption of the reference index, I
can serialize the objects of the reference and output the binary files to the hard disk
using Sparkhit’s local recruiter, a Java based tool included in Sparkhit. The overall
size of the output files is the size of memory used by the reference index on a worker
node. As for the RDD, when not using the ‘cache’ function, the memory consumption
on each worker node is the number of CPUs times the batch size of each partition
(256 MB by default). When using the ‘cache’ function, all the input sequencing data
will be loaded into memory. However, the limit for both reference index and the
input sequencing data is set to 75% of the maximum RAM by default (see section
3.6.7 cluster configurations).

3.3 Using external tools and Docker containers

To be flexible for different kinds of analyses, I built a general tool wrapper called
Sparkhit-piper. It extends Spark’s ‘pipe’ function to invoke existing tools for analyses
like sequence mapping, taxonomic profiling, gene expression quantification and
genotyping (Fig. 3.7A). I use Spark RDD to split and distribute NGS data across
cluster nodes. Then, distributed datasets are sent to the invoked tool via a standard
input (stdin) stream. The tool processes input data in a batch and sends back the
result to another RDD via a standard output (stdout) stream. In this case, the
Spark RDD splits and distributes NGS data, while external tools carry out their
corresponding computations. Sparkhit-piper is intuitive and flexible for users to
parallelize their own scripts or tools directly without modifying their codes, as
illustrated in Fig. 3.7.

The implementation is based on Spark RDD’s ‘pipe’ function, where the RDD is able
to send its data out of the JVM for processing in the operating system, like a Linux
pipe operator (‘|’). The Java code can be expressed as:

JavaRDD<String> MapRDD = FastqRDD.pipe
(param.tool + param.toolOptions);

Where "FastqRDD" is the input RDD that stores sequence data and "MapRDD" is the
output RDD that stores mapping result. The "param.tool" represents the full path
of the tool executable while "param.toolOptions" represents the corresponding
tool parameters. Together, they assemble an external command that runs as an
independent process on each partition of the input RDD.

40 Chapter 3 Sparkhit: Distributed sequence alignment



3

1

Row

Matrix

Kallisto

Ref.

transcript

8,9,8,9

1,0,1,1

7,8,6,7

1,0,1,1

Expression

RDD

Mpileup

Row

Matrix

1|1, 1|1

0|0, 0|0

1|0, 0|1

0|0, 0|0

VCF

RDD

A B
Execut-

ables

Docker

images

Map

BAMFastq

Map

Fig. 3.7: Invoking external tools in Sparkhit: (A) Yellow boxes represent Spark worker
nodes virtualized by the Spark JVMs. Spark RDD sends sequencing data (in
fastq format) from Spark JVMs to the external executables via an STDIN channel.
External executables process the input sequencing data independently and send
the result back to Spark RDD via an STDOUT channel. (B) The same approach
can also apply to external Docker containers.

This approach can also be applied to bio-containers (e.g. bioinformatics Docker
images (Merkel, 2014)). By replacing an executable to a Docker container, Sparkhit-
piper can easily assemble a Docker run command that runs an independent Docker
task on the Spark cluster (Fig. 3.7B).

3.4 Integrating Spark’s machine learning library
(MLlib)

As a supplementary functional model for downstream genomic data mining, I
extended Spark’s machine learning library (MLlib) and integrated a variety of
algorithms: (i) clustering, (ii) regression, (iii) chi-square test, (iv) correlation test,
and (v) dimensional reduction. These algorithms are implemented with more
RDD functions and iterative processes. For example, to implement the k-means
clustering in a distributed way, the re-centering and re-clustering steps are split and
implemented in a Spark extended MapReduce paradigm. The ‘map’ step assigns
each data point to the closest centroids to form clusters. Whereas the ‘reduce’ step
computes the new centroid for each cluster. Since data points are distributed across
cluster nodes, the ‘reduce’ step applies Spark’s ‘reduceByKey’ function to shuffle
data points by clustering and calculating the centroids. The ‘map’ and ‘reduce’ steps
iterate until a convergence status is reached. Detailed methods can be found in the
Appendix methods section.

3.4 Integrating Spark’s machine learning library (MLlib) 41



3.5 Parallel data preprocessing

For data preprocessing, I developed a parallel decompression tool called Sparkhit-
spadoop. Since Bzip2 files are compressed in blocks (900 KB per block by default), a
large Bzip2 compressed file with sequencing data can be decompressed in parallel.
In particular, each block is an independent component that is delimited by a 48-
bit pattern, which makes it possible to find the block boundaries. When block
boundaries are found, parallel decompression can be applied to each block and
processed by multiple CPUs, so that more computing cores are utilized (Fig. 3.8).
Then, it distributes all processes in a Hadoop MapReduce job that creates a ‘mapper’
for each chunk of the input HDFS data. Each ‘mapper’ loads a data chunk and
commences a decompression process on the Bzip2 blocks in the chunk.

Logically split bzip2 file

Fastq

HDFS

Fastq.bz2

Fig. 3.8: Distributed decompression: A Bzip2 compressed fastq file is logically split on HDFS
(replicas are physically distributed to different computer nodes) and each chunk
of the file is decompressed by a ‘mapper’ process that runs a Bzip2 decompression
program.

To implement the parallel decompression tool (Sparkhit-spadoop) on top of the
Hadoop MapReduce framework, I set the corresponding input file format for the
Hadoop ‘mapper’ by using the following Java code snippet:

job.setInputFormatClass(Bzip2TextInput
Format.class)

Where job is a Hadoop MapReduce job created by the program.
Bzip2TextInputFormat.class is the class type of the input Bzip2 file format. The

42 Chapter 3 Sparkhit: Distributed sequence alignment



same method can also be applied to other "splittable" compressed file formats, such
as the Lempel-Ziv-Oberhumer (LZO) format.

When input files are in the binary alignment/map (BAM) format, such as the mapping
results of the 3000 Rice Genomes Project, Hadoop-BAM (Niemenmaa et al., 2012)
was used to access and decompress BAM files stored on the HDFS. Hadoop-BAM
is built on top of the Hadoop platform. It uses the Hadoop record reader to access
HDFS data chunks. Since BAM files are compressed in the blocked GNU zip format
(BGZF), the program starts decompression by locating the boundaries of compressed
blocks using the BGZF magic code. Then, it searches the start of a BAM record
within the blocks and decompresses the BAM file.

3.6 Results and Discussion

In this section, I present a series of performance benchmarks for Sparkhit and discuss
its performances compared to other tools.

3.6.1 Run time comparison between different mappers

For sequence mapping, I compared run time performances between Sparkhit-
recruiter, Sparkhit invoked fr-hit, Sparkhit-mapper, Sparkhit invoked BWA, Sparkhit
invoked Bowtie2, and Crossbow, where Sparkhit-recruiter and fr-hit have a particular
focus on fragment recruitment. The comparisons were carried out across different
sizes of input sequence data (1.3TB and 545GB data of tongue dorsum samples
from the HMP mentioned in the materials section as Data-1 and Data-2, see table.
3.3), different sizes of reference genomes (36 MB, 72 MB and 142 MB correspond to
Ref-1, Ref-2 and Ref-3 mentioned in the NGS data sets section below) and different
number of worker nodes (30 and 50 c3.8xlarge worker nodes) (Fig. 3.9A-D). I
used mostly default parameters for each tool with slight modifications depending on
the purpose of the evaluation. For Crossbow, I have set the corresponding Bowtie
parameter to report all valid alignments with the ‘-a’ option.

Our toolkit ran faster than Crossbow across different numbers of worker nodes
(30 and 50), different sizes of input data (1.3 TB and 545 GB) and different sizes
of reference genomes (36 MB, 72 MB and 142 MB). Although Sparkhit-recruiter
was slower than other Sparkhit based mappers, it recruited many more reads than
standard short-read mappers such as Bowtie (Fig. 3.10). I have used Data-1 (1.3
TB fastq files) for comparing the recruited numbers of reads between Sparkhit and
Crossbow. Crossbow recruited 16,288,351 reads to a 72 MB reference genome,
whereas Sparkhit-recruiter recruited 496,569,401 sequencing reads.

3.6 Results and Discussion 43



A B

C D

50 nodes 30 nodes

50 nodes 30 nodes

1.3TB fastq file

545GB fastq file

0 1000 2000 3000

Sparkhit fr-hit

Sparkhit-recruiter

Sparkhit bwamem

Sparkhit bowtie2

Sparkhit-mapper

Crossbow

Time (s)

142MB ref.

72MB ref.

36MB ref.

0 1000 2000 3000
Time (s)

142MB ref.

72MB ref.

36MB ref.

0 500 1000 1500

Sparkhit fr-hit

Sparkhit-recruiter

Sparkhit bwamem

Sparkhit bowtie2

Sparkhit-mapper

Crossbow

Time (s)

142MB ref.

72MB ref.

36MB ref.

0 500 1000 1500

Time (s)

142MB ref.

72MB ref.

36MB ref.

Fig. 3.9: Run time comparisons between different aligners: The comparisons were carried
out across different sizes of input fastq files, different sizes of reference genomes
and different numbers of worker nodes.

3.6.2 Scaling performance of Sparkhit-recruiter

To present the scalability of Sparkhit-recruiter along the increasing size of the input
data (Fig. 3.11A), I used the larger dataset (Data-1) and ran Sparkhit-recruiter on
30 c3.8xlarge worker nodes with 100 GB increment. Whereas, for the scaling
performance along different number of worker nodes (Fig. 3.11B), I used the smaller
dataset (Data-2) and ran Sparkhit-recruiter on 10 to 100 worker nodes with 10
nodes increment.

Sparkhit-recruiter scaled linearly with the increasing amount of input data on a 30
worker nodes Spark cluster (Fig. 3.11A). When scaled-out to more compute nodes,
Sparkhit experienced slight slowdown after I increased the number of worker nodes
to 60 (Fig. 3.11B). The slowdown is introduced by the overhead of building the
reference index. However, since metagenomic fragment recruitment applications

44 Chapter 3 Sparkhit: Distributed sequence alignment



0

100

200

300

400

500

R
e

c
ru

it
e

d
 r

e
a

d
s
 (

m
ill

io
n

)
1.3TB fastq files 

to 72 MB ref.

Crossbow

Sparkhit-
mapper

Sparkhit-
recruiter

Fig. 3.10: Numbers of recruited reads: comparison was carried out between Crossbow and
Sparkhit-recruiter when mapping 1.3 TB fastq files to a 72 MB reference genome.

actively change reference genomes between different studies, the index building
overhead is quite low. Moreover, Sparkhit runs much faster on the index building
process compared to other Burrows-Wheeler transform (BWT) based methods (see
Discussion).

3.6.3 Accuracy and sensitivity of natively implemented tools

I have compared the sensitivity and accuracy between Sparkhit-recruiter, Sparkhit-
mapper, Fr-hit, SOAP, BWA and Bowtie2. The evaluation was firstly carried out based
on the 6 simulated datasets (see table.3.3 and URL: doi:10.4119/unibi/2914921).
For BWA, bowtie2 and soap, I used their default parameters. Whereas for Sparkhit-
recruiter and Fr-hit, I set the corresponding parameters to report the best hit (frag-
ment recruitment tools usually report all valid hits). Evaluations were also carried out
based on the public datasets of the Genome in a Bottle Consortium (GIAB) (Zook et
al., 2014). I have used the 150nt pair-end sequencing data of the Chinese trio mother
datasets (NA24695) and mapped all sequencing data to the GRCH37 human refer-
ence genome. Two reference benchmarks were used: (i) the mapping result of the
GIAB project (the BAM file generated by NovoAlign: http://www.novocraft.com/),
(ii) the consensus overlapping result of NovoAlign, BWA, Bowtie2 and SOAP. All
tools were set to use the same parameters.

In general, Sparkhit-recruiter has slightly higher accuracy than Fr-hit, Bowtie2 and
SOAP, while having slightly lower accuracy than BWA (Fig. 3.12). For sensitiv-
ity, Sparkhit-recruiter, Fr-hit, Bowtie2 and BWA are higher than SOAP on 100nt
simulated reads. For 150nt simulated reads, all mappers have similar sensitivities.

3.6 Results and Discussion 45



100 400 700 1000

0

200

400

600

800

1000
T

im
e
 (

s
)

Data size (GB)

A B

Sparkhit-recruiter

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

M
e
a
n
 s

p
e
e
d
 u

p

Number of nodes

Sparkhit-recruiter

theoretical

Fig. 3.11: Scaling performances of Sparkhit-recruiter: (A) Run time performance of
Sparkhit-recruiter for recruiting 100-1000 GB sequencing data to a 72 MB refer-
ence genome on a 30 nodes Spark cluster deployed on the Amazon EC2 cloud.
Each node has 32 vCPUs. (B) Scaling performance of Sparkhit-recruiter. When
increasing the number of worker nodes, the mean speed ups are measured by
comparing their run times to the run time on 10 worker nodes. We recruited 1.3
TB fastq files (Data-1) to a 72 MB reference genome (Ref-2) on the same cluster
of (A).

Sparkhit-mapper has slightly higher accuracy and sensitivity than Sparkhit-recruiter
on the GIAB data.

3.6.4 Fragment recruitment comparison with MetaSpark

The comparison between Sparkhit and Metaspark (Zhou et al., 2017) was carried
out on clusters with 10, 20 and 30 c3.4xlarge worker nodes (Fig. 3.13). I mapped
6 million simulated reads to Ref-2 and 1 million simulated reads to Ref-3. For
Metaspark, I first converted the simulated fastq files into the read file format specified
by the tool, as well as the reference genome file. It is important to note that the run
times for converting the files are not included in the comparison). The recruited
number of reads and processing time were, then, measured and compared (see the
Appendix Table S1, S2). When running the tools, I set the k-mer size of both tools to
11 (for Sparkhit, the default is 12).

Sparkhit-recruiter ran 92 to 157 times faster than MetaSpark across different num-
bers of worker nodes (10, 20 and 30), different numbers of input reads (1 million
and 6 millions) and different sizes of reference genomes (72 MB and 142 MB).
Although our tool recruited 10% to 12% reads less than MetaSpark using the same
k-mer size, I have adjusted to a smaller k-mer size that recruits more reads than
MetaSpark, while still running 47 to 124 times faster (see Discussion).

46 Chapter 3 Sparkhit: Distributed sequence alignment



90%

92%

94%

96%

98%

100%

Sensitivity Accuracy

Simulated dataset

Microbial genomes
Sequencing dataset

Human genome

90%

92%

94%

96%

98%

100%

Sensitivity Accuracy

BWA MEM Bowtie2

SOAP Sparkhit-mapper

Sparkhit-recruiter Frhit

A B

Fig. 3.12: Sensitivity and accuracy comparisons between mapping tools.

3.6.5 Preprocessing comparison with Crossbow

Data preprocessing is a critical step for interpreting cloud stored public datasets.
Manually decompressed and distributed large amounts of genomic data on a cluster
introduce significant overheads before data analysis. Although, several existing
cloud tools have provided preprocessing functions (Schatz, 2009; Langmead et al.,
2009; Decap et al., 2015), their preprocessing speeds are limited by their non-
parallel implementations. For Sparkhit, the preprocessing was carried out by the
Sparkhit-decompressor, a tool that applies parallel decompression to the compressed
sequencing data.

I have compared the run time performances on data preprocessing between Sparkhit
and Crossbow (Langmead et al., 2009). Cloudburst (Schatz, 2009) was not included
in the comparison as its preprocessing step took too much time and was unable to
finish. I used the larger dataset (Data-1) and ran Sparkhit and Crossbow respectively
on Spark clusters with 50 and 100 worker nodes. For 338 GB Bzip2 compressed data
(Data-1, 1.3 TB uncompressed), Sparkhit ran 18 to 32 times faster than Crossbow on
50 and 100 c3.8xlarge worker nodes (Fig. 3.14). Since Sparkhit utilizes all CPUs
for parallel decompression, its run time performance almost doubled from 50 nodes
to 100 nodes, whereas Crossbow had similar run times on both clusters.

3.6 Results and Discussion 47



1

4

16

64

256

10 nodes 20 nodes 30 nodes 10 nodes 20 nodes 30 nodes

Ti
m

e 
(m

in
s)

72MB ref.                  |                140MB ref.

MetaSpark    
kmer 11nt

Sparkhit-recruiter 
kmer 11nt

Sparkhit-recruiter 
kmer 10nt

0

2

4

6

8

10

12

72MB ref. 140MB ref.

R
ec

ru
ite

d 
re

ad
s 

(m
ill

io
ns

)

MetaSpark    
kmer 11nt

Sparkhit-recruiter 
kmer 11nt

Sparkhit-recruiter 
kmer 10nt

A B

Fig. 3.13: Comparisons between Sparkhit-recruiter and MetaSpark on metagenomic frag-
ment recruitment: (A) Run times on recruiting simulated sequencing reads to 72
MB and 142 MB reference genomes. All tests were carried out on 10, 20, and
30 worker nodes Spark clusters. Each worker node has 16 vCPUs. Run times
are presented in logarithmic scale of base 2. (B) Number of recruited reads on
recruiting 6 million simulated reads to 72 MB reference genome and 1 million
simulated reads to 142 MB reference genome.

3.6.6 Machine learning library benchmarking and run time
performances on different clusters

For the machine learning library, I have compared the run time of each module on
a 200GB VCF file (Data-3) containing genotypes of 2504 samples from the 1000
Genomes Project (cohorts in phase 3). The VCF file was the raw input for Sparkhit
and all data points were cached into memory. In addition to measure run times of
different modules, I also compared their run time performances on a private cluster
and the Amazon EC2 cloud (Fig. 3.15). I deployed two Spark clusters with 20 and
40 worker nodes (see the cluster configurations section), where each worker node
had the same number of cores. For the private cluster, data was stored on a network
file system (NFS) setup on a magnetic disk. Whereas on EC2, data was stored on
a Hadoop distributed file system (HDFS) setup on the solid state drive (SSD) with
three times redundancy. For k-means clustering, I measured the run times of both
data caching and no data caching when increasing iterations from 1 to 40 with 10
iterations increment (Fig. 3.16). The benchmark was carried out on the private
cluster with 20 nodes and 640 cores using Data-3.

Since each module opened 640 and 1280 I/O tasks (20 nodes and 40 nodes, each
node has 32 cores) to read input data and write output results, the run time per-
formance on the private cluster was significantly slower than on the Amazon EC2
cloud (Fig. 3.15). We also observed a significant improvement on run time for
cached iterative computations (K-means clustering), compared to non-cached ones
(Fig. 3.16).

48 Chapter 3 Sparkhit: Distributed sequence alignment



Pre-processing

0

2000

4000

6000

8000

100
nodes

50
nodes

T
im

e
 (

s
)

Crossbow

Sparkhit

Fig. 3.14: Run time comparisons between Crossbow and Sparkhit for preprocessing 338 TB
compressed fastq files on 50 and 100 worker nodes.

3.6.7 Cluster configurations for the benchmarks

All benchmarks on Amazon AWS EC2 were carried out on a Spark cluster that consists
of one master node deployed on an m1.xlarge computer instance and 10 to 100
worker nodes (varies on different benchmark setups) deployed on the c3.8xlarge
or the c3.4xlarge (when comparing with Metaspark) computing instances. The
m1.xlarge is a type of general purpose instance, which is balanced on processing,
storage, and network resources. It has 15 GB of random-access memory (RAM), 4
× 420 GB of magnetic disk storage and 4 vCPUs (Intel(R) Xeon(R) CPU E5-2650
0 @ 2.00GHz). When renting the instances from Amazon, the cost was $0.35 per
hour, per instance. The c3.4xlarge and c3.8xlarge compute instances are two
types of compute optimized instances, providing high performing processors. The
c3.4xlarge has 30 GB RAM, 2 × 160 GB solid state disk (SSD) storage and 16
vCPUs (Intel Sandy Bridge, E5-2670), while the c3.8xlarge has 60 GB RAM, 2 ×
320 GB solid state disk (SSD) storage and 32 vCPUs (Intel Sandy Bridge, E5-2670).
The c3.8xlarge also has optimized network performance with a bandwidth of
10 Gigabit/sec. The standard price for the c3.4xlarge was $0.840 per hour, per
instance, while the c3.8xlarge was $1.680 per hour, per instance.

On the private SGE cluster, Spark was deployed in the standalone mode. When
setting up a Spark cluster on the SGE system (Red Hat Enterprise Linux 5.8), a
master daemon is, firstly, started on the SGE login node using the "start-master.sh"
script included in the Spark package. Once the master node is running, the worker
daemons are submitted to the SGE computing nodes to setup worker nodes with
designated resources using the "start-slave.sh" script. All worker nodes are registered

3.6 Results and Discussion 49



0 300 600 900

PCA

K-means

Bisecting k-means

Correlation

Logistic regression

HWE

Chisquare test

Time (s)

40 nodes

20 nodes

0 300 600 900

Time (s)

40 nodes

20 nodes

200GB VCF fileA B

Fig. 3.15: Run times of the machine learning library on (A) a private cluster and (B) the
Amazon EC2 cloud. All computations were performed on a 200 GB VCF file
cached in the memory.

to the master node via Secure Shell (SSH) by assigning the master’s Internet Protocal
(IP) address to each worker daemon.

The Spark master node was deployed on the SGE login node with 24 cores (Intel(R)
Xeon(R) CPU L5640 @ 2.27GHz) and 142 GB RAM. 20 to 40 Spark worker nodes
were deployed on SGE computing nodes with 32 cores (Intel(R) Xeon(R) CPU E5-
2658 0 @ 2.10GHz) and 252 GB RAM. When comparing the performance between
the EC2 cloud and the private cluster, I used the same number of worker nodes, so
that the total number of cores are equal between the two clusters. On the private
cluster, I also requested 60 GB (Spark allocated 57.6 GB) RAM for each worker node,

1 10 20 30 40

0

10

20

30

40

T
im

e
 (

m
)

Number of iterations

Without cache

Cache

K means

Fig. 3.16: Run times for different iterations of the K means clustering. We ran iterations on
the same VCF file from Fig. 3.15, with data caching and non data caching.

50 Chapter 3 Sparkhit: Distributed sequence alignment



Tab. 3.1: Configurations of different computer instances

Resources
Private Cluster Amazon EC2

Login node
(Master)

Computing node
(Worker)

m1.xlarge
(Master)

c3.4xlarge
(Worker)

c3.8xlarge
(Worker)

Memory 142 GB 252 GB 15 GB 30 GB 60 GB
Memory used 15 GB 60 GB 15 GB 30 GB 60 GB

vCPUs 24 32 4 16 32
vCPUs used 1 32 1 16 32
Hard disk HDD HDD HDD SSD SSD
Storage 600 TB NA 1.68 TB 320 GB 640 GB

File system GPFS HDFS

even though they all have 252 GB available. A shared general parallel file system
(GPFS) with 600 TB of disk volume was used to store benchmarking datasets.

When comparing the run time performance between Sparkhit and Metaspark, I used
the c3.4xlarge instances instead of the c3.8xlarge instances. Spark-ec2 requested
30GB (Spark allocated 28.8GB) RAM for each worker node. 75% of the Java heap
space was allocated for Spark’s RDD memory cache (default is 60%). An HDFS was
setup with 3 times redundancy. However, since the c3.4xlarge instance only has
half the volume size of the c4.8xlarge instance, the maximum data size for HDFS
storage is 105 GB per node.

Tab. 3.2: The standard and spot prices for different Amazon EC2 instances

Standard price Spot price
c3.8xlarge $1.68/h $0.35/h - $0.40/h
c3.4xlarge $0.84/h $0.17/h - $0.20/h

I was able to get spot prices between $0.17 and $0.20 per hour, per instance for the
c3.4xlarge and between $0.35 and $0.40 per hour, per instance for the c3.8xlarge
in the AWS Ireland region. The spot price, a rate of the computing instance bidding
system, is introduced by Amazon to attract more users by offering lower prices to
avoid computers idling in the Amazon computing center.

3.6.8 NGS data sets for the benchmarks

To benchmark the run time performances on different sizes of reference genomes
(Fig. 3.9A-D), three sets of mixed microbial genomes were used: 36 MB reference
genomes of 7 common human pathogens (Ref-1), 72 MB reference genomes of Ref-1
mixed with 16 bio-fuel microbes (Ref-2) and 142 MB genome sequences of Ref-2
mixed with 19 oral microbes (Ref-3). Ref-2 was also used in other performance
benchmarks (Fig. 3.10, 3.11, and 3.13). See Table 3.3 for more details. The reference

3.6 Results and Discussion 51



Tab. 3.3: Datasets used for various benchmarks

Dataset Data-1 Data-2 Data-3 Ref-1 Ref-2 Ref-3

Size 1.3 TB 545 GB 200 GB 36 MB 72 MB 142 MB

File format Fastq Fastq VCF Fasta Fasta Fasta

Run time

comparisons between

different mappers

D D D D D

Scaling performance

of Sparkhit-recruiter
D D

Machine learning

library benchmarking
D

Data preprocessing D

Data simulation D D D

Fragment recruitment

comparison

with MetaSpark

D D

Fragment recruitment

of HMP data
D

genome sequences were downloaded from the National Center for Biotechnology
Information (NCBI) database.

I have used the entire whole genome sequencing (WGS) data (metagenomics) of the
HMP project hosted on Amazon S3. These WGS data were sampled from 6 body sites
and 15 sub body sites. In total, there are 2.3 TB compressed (8.6 TB uncompressed)
fastq files in the bzip2 format. To compare the scalability of different mapping tools
(Fig. 3.9A-D), I extracted two subsets of WGS data from tongue dorsum samples: a
larger set (Data-1, Table 3.3) of 1.3 TB (uncompressed, 338 GB compressed in Bzip2
format) and a smaller set (Data-2, Table 3.3) of 545 GB (uncompressed). The larger
one has also been used to test and compare pre-processing times between Sparkhit
and Crossbow (Fig. 3.14). All HMP datasets are hosted in the Oregon region of the
Amazon S3 storage.

The 200 GB genotype data (Data-3) in the variant call format (VCF) was used to
evaluate the performance of the implemented machine learning library (Fig. 3.15).
All datasets are hosted at the Amazon S3 (Virginia region). The complete list of files
can be found in the supplementary file 3 Table S26 at (Huang et al., 2018).

52 Chapter 3 Sparkhit: Distributed sequence alignment



3.6.9 Discussion

0

20

40

60

40
nodes

20
nodes

T
im

e
 (

m
)

Private cluster NFS
parallel writing tasks

Private cluster NFS
single writing task

Amazon EC2 HDFS
parallel write tasks

Fig. 3.17: I/O performance on different clusters: For 40 nodes cluster, parallel writing tasks
operate on 1280 file handles. For 20 nodes cluster, parallel writing tasks operate
on 640 file handles. The single writing task operates on 1 file handle.

In this chapter, I presented a Spark based distributed computational framework for
large scale genomic analytics, called Sparkhit. Sparkhit incorporates a variety of
tools and methods that are programmed in the Spark extended MapReduce model.
I have described (i) the implementations of a fragment recruitment tool and a
short-read mapping tool using Spark’s RDD API, (ii) the construction of a general
tool wrapper to invoke and parallelize external tools, and (iii) the integration of
Spark’s machine learning library for downstream data mining. I also presented the
architecture of Sparkhit and the utilities that I used for deploying Spark clusters and
downloading public datasets. Sparkhit outperforms most Hadoop and Spark based
bioinformatics tools in computational run time. Using my framework, I analyzed
large amounts of public genomic data on the cloud within a short time.

The performance benchmarks demonstrated the scalability of Sparkhit. Sparkhit-
recruiter scaled linearly (Fig. 3.17) with the increasing amount of input data, as I
utilized Spark RDD to balance data distribution and optimized the computational
parallelization. In addition, the distributed data I/O via HDFS further reduces
latency. On HDFS, data is distributed and loaded locally or from the closest node
(depending on the redundancy setting of HDFS), avoiding massive data transfer
across the network. I also observed the advantage of using HDFS when comparing
the run times of the machine learning library between the Amazon EC2 cloud and
the private cluster, which stored input data on an NFS shared by all worker nodes.
On NFS, all data was read and written through the network connection to a mounted
volume that saturated the bandwidth.

3.6 Results and Discussion 53



0

100

200

300

400

Sparkhit
mapper

Sparkhit
recruiter

BWA
index

Bowtie2
build

SOAP
index

T
im

e
 (

s
)

36 MB

72 MB

142 MB

Fig. 3.18: Run time comparison of different tools for building reference index: The com-
parison was carried out on single computer node (the m1.xlarge Amazon EC2
instance). All tools ran on 36 MB, 72 MB and 142 MB reference genomes
respectively.

When scaling out to more worker nodes, a slight slowdown was observed (Fig. 3.17).
The slowdown was caused by the overhead of building the reference index, which
runs solely on the driver node. This can be improved by pre-building the reference
index using our locally implemented recruiter (a Java-based tool included in our
framework). Moreover, the overhead for constructing the reference index is small
compared to the run time of the fragment recruitment process. For Sparkhit, the
reference index construction runs much faster compared to other Burrows-Wheeler
transform (BWT) based methods (Fig. 3.18).

My tool had excellent run time performance on data preprocessing compared to
Crossbow (18 to 32 times faster) and significant run time improvement on fragment
recruitment compared to MetaSpark (92 to 157 times faster). Although Sparkhit
recruits 10% to 12% less reads than MetaSpark, I can adjust to a smaller k-mer size
that recruits slightly more reads than MetaSpark, while still ran 47 to 124 times
faster (Fig. 3.13). In addition, our tool has a comparable accuracy and sensitivity
on sequence mapping (Fig. 3.12). Sparkhit-recruiter also offers more options for
fragment recruitment, such as an option for reporting the best match for each read
and an option to choose between global or local alignment, whereas MetaSpark can
only apply local alignment.

54 Chapter 3 Sparkhit: Distributed sequence alignment



4Reflexiv: Parallel De Novo
genome assembly

„You can’t connect the dots looking forward; you
can only connect them looking backwards.

— Steve Jobs
Co-founder, Chairman, and CEO of Apple Inc.

In this chapter, I present a new parallel de novo genome assembler, called Reflexiv,
and a distributed data structure implemented in the assembler. Reflexiv is built on
top of the Apache Spark platform. It uses Spark RDD to distribute large amounts
of k-mers across the cluster and assembles the genome in a recursive way. By
distributing large amounts of k-mers across the computing cluster, Reflexiv addresses
the memory intensive challenge in the de novo genome assembly process.

I will start by introducing the new data structure called Reflexible Distributed K-mer
(RDK). The RDK is a higher level abstraction of the Spark RDD. I have implemented
a random k-mer reflecting method to reconnect and extend the distributed k-mers.
I describe how repeats in the genome are detected and how to pop bubbles in
the assembly. I will also present the time complexity of the algorithm and how to
measure the memory consumption of the program.

In the result section, I present the performance benchmarks on the assembler. I
mainly focus on evaluating its run time performance and its assembly quality. I will
also compare its performance to the other assemblers. In general, Reflexiv has a
similar assembly quality to the other distributed assemblers, such as Ray and Abyss.
However, Reflexiv has a much better run time performance than the other tools on
an ethernet connected computer cluster.

4.1 Reflexible Distributed K-mer (RDK)

The primary objective of the Reflexible Distributed K-mer (RDK) data structure is to
make the entire repertoire of k-mers in a given genome distributable. Distributable
means that each item of the repertoire (each k-mer) can be independently assigned
to, stored in, and retrieved from different computer instances, while still able to

55



re-establish its connections with other k-mers in the original genome sequence. This
way, the original genome can be assembled in a distributed manner. To understand
how RDK works, let’s first take a look at the state-of-the-art de bruijn graph.

The conventional approach achieves distributed genome assembly by distributing a
de bruijn graph in a computer cluster. A de bruijn graph re-establishes the connections
between k-mers based on their overlaps of nucleotide sequences. An n nucleotides
k-mer normally has n-1 nucleotides overlap with its adjacent k-mer. In the graph,
each k-mer is a vertex and the overlap with its adjacent k-mer is a directed edge.
When traversing the de bruijn graph, an assembler program constantly searches the
adjacencies in the memory and extends the sequences.

Yet, in a distributed system, the de bruijn graph is partitioned and stored in different
computer instances with independent memories. To acquire the next adjacent vertex,
the physical location (which computer instance the vertex is located) of the adjacent
k-mer must be provided (Fig. 2.13). Thus, when constructing the distributed de
bruijn graph, three components are required: (i) a k-mer as a vertex, (ii) its overlap
with its adjacent k-mer as an edge, and (iii) an index pointing to the physical location
of the adjacent k-mer as a pointer. In this way, the connections of all vertices in
the distributed de bruijn graph are completed. When traversing a distributed de
bruijn graph in a computer cluster, assemblers constantly search the adjacencies
through the entire computer cluster. Once an adjacency of a vertex is found at
another computer instance, the vertex is sent to the computer instance where the
pointer points to. Most assemblers use the message passing interface (MPI) to
implement their algorithms and handle their messaging processes (Simpson et al.,

A T G G

T G G C

G G AC

G AC G

AC G T

A G T T

G T T C

T T C A

T C CA

A T G G AC G T T C CA

Genome

A T G G

T G G C

G G AC

G AC G

AC G T

A G T T

G T T C

T T C A

T C CA

RDK

…

…

…

k-mers

AC G T

A G T T

G T T C

T T C A

T C CA

A T G G

T G G C

G G AC

G AC G

Partition

…

Fig. 4.1: A simplified representation of an RDK. An RDK is a long list of k-mers. It can be
randomly partitioned and distributed to different computer instances. Compared
to the state of the art de bruijn graph, an RDK only stores the vertices of the graph.

56 Chapter 4 Reflexiv: Parallel De Novo genome assembly



2009; Boisvert et al., 2010). However, this approach has two weaknesses: (i) storing
the pointers of all k-mers consumes a considerable amount of memory and (ii) the
constant messaging in the graph traversal process introduces significant overhead in
the run time performance.

To address the two weaknesses, I have invented a new data structure called Reflex-
ible Distributed K-mer (RDK). An RDK has two attributes: (i) Distributed and (ii)
Reflexible. The attribute "distributed" states the fact that all k-mers are stored in
different computer instances where communications are only viable through the
provided network. Once separated, adjacent k-mers are not expected to be found
by local in-memory searches. An RDK can be represented by a long list of k-mers,
which can be partitioned and distributed to a certain amount of computer instances
(Fig. 4.1). Each computer instance holds a part of the RDK represented by a sub
list of k-mers. Hence, distributing an RDK can be completely arbitrary and simple.
Compared to a distributed de bruijn graph, an RDK only stores k-mers without edges
and pointers. As there is a large amounts of k-mers in a genome sequence, an RDK
is much more memory efficient than a de bruijn graph. However, without edges and
pointers, no adjacencies are provided to the k-mers of the RDK. To re-establish their
connections, the second attribute of RDK, Reflexible, is needed.

AC G T

A G T T

G T T C

T T C A

T C CA

A T G G

T G G C

G G AC

G AC G

RDK1

…

A T G G A

A T G G

T G G A

k1

S1p1

k1’

Reflecting

S1 p1

AC G T

A G T T

G T T C

T T C A

T C CA

T G G C

G G AC

G AC G

RDK2

…

T G G A

Fig. 4.2: K-mer reflecting in an RDK. A 4-nucleotide k-mer k1 has a 1-nucleotide prefix p1
and a 3-nucleotide suffix S1. A k-mer reflecting step switches the positions of p1
and S1. The reflecting process creates a reflected k-mer k’1.

Reflexible is defined as "capable of being reflected". The word ‘Reflected’ describes
an effect that an object been throw back in a reversed status, e.g. an image been
reflected by a mirror. In an RDK, we define a reflected k-mer as a k-mer with a
swapped order of nucleotides. Different from a reversed k-mer which reverses the

4.1 Reflexible Distributed K-mer (RDK) 57



complete order of its nucleotide sequence, a reflected k-mer only switches parts of its
nucleotide sequences. For instance, an n nucleotides k-mer k has an n-1 nucleotides
of suffix S and an 1 nucleotide prefix p (Fig. 4.2). A reflected k-mer k’ switches the
position of the prefix and the suffix, and re-concatenates the sequences. Thus, for a
k-mer k1, its reflected k-mer k’

1 can be expressed as:

k1 = {p1, S1}
k′

1 = {S1, p1}
(4.1)

where a bracket ‘{}’ represents a concatenation of strings of nucleotides, the capital S
represents a fixed n-1 nucleotides suffix, and the lower case p represents an unfixed
nucleotides prefix (changeable after extension, see below). Once reflected, a k-mer’s
n-1 nucleotides suffix is placed in the front of the k-mer.

When extracting k-mers from the sequencing data with 1 nucleotide shift, there
are two adjacent k-mers k1 and k2, where the n-1 nucleotides suffix S1 of k1 is
overlapped with the n-1 nucleotides prefix P2 of k2 (Fig. 4.2). After reflecting k1,
its n-1 nucleotides suffix S1 is placed in the front of the k-mer. Thus, the reflected
k-mer k’

1 has an identical n-1 nucleotides prefix as the k-mer k2. The two overlapped
k-mers can be expressed as:

k1 = {p1, S1}
k′

1 = {S1, p1}
k2 = {P2, s2}
S1 = P2

(4.2)

where the capital P represents a fixed n-1 nucleotides prefix and the lower case s
represents an unfixed suffix (changeable after extension, see below). In a distributed
system, the distributed de bruijn graph uses the edge and the pointer of k1 to help
locating its adjacent k-mer k2. However, in an RDK, only k-mers are stored as a
long list in the cluster and two overlapped k-mers, k1 and k2, are likely to be stored
in different computer instances. Since the reflected k-mer k’

1 has the same n-1
nucleotides prefix with k2, sorting the list of k-mers in an alphabetic order will
rearrange the two k-mers to neighboring positions in the list (Fig. 4.3). Thus, the
adjacency of k1 and k2 is found after the reflecting and sorting processes. Using the
adjacency, we can connect the two k-mers and build a new extended n+1 nucleotides
k-mer k1+2. The extended k-mer can be expressed as:

58 Chapter 4 Reflexiv: Parallel De Novo genome assembly



k′
1 = {S1, p1}

k2 = {P2, s2}
S1 = P2

k1+2 = {p1, (S1||P2), s2}

(4.3)

where the || symbol indicates that both S1 and P2 are applicable to the case.

T G G C

k2

P2 s2
AC G T

A G T T

G T T C

T T C A

T C CA

T G G C

G G AC

G AC G

RDK2

…

T G G A

AC G T

A G T T

G T T C

T T C A

T C CA

T G G C

G G AC

G AC G

RDK2

…

T G G A

T G G A

k1’

S1 p1

k1+2
T G G C

S1||P2 s2

A

AC G T

A G T T

G T T C

T T C A

T C CA

G G AC

G AC G

RDK3

…

T G G CA

Sort

p1

Fig. 4.3: Reestablishing k-mer adjacency: The sorting process places the reflected k-mer k1
and its adjacent k-mer k2 at neighboring positions. When going through the RDK
k-mer list, the two adjacent k-mers are extended to k1+2.

After the extension, the n+1 nucleotides k-mer k1+2 can be represented by an n-1
nucleotides suffix S1+2 and a 2 nucleotides prefix p1+2. When reflecting the extended
k-mer k1+2, we still keep a fixed n-1 nucleotides suffix S1+2 and switch its position
with the extended prefix p1+2 (Fig. 4.4). Thus, the extended k-mer k1+2 and its
reflected k-mer k’

1+2 can be expressed as:

k1+2 = {p1, (S1||P2), s2}
k1+2 = {p1+2, S1+2}
k’

1+2 = {S1+2, p1+2}
(4.4)

Since the extension is based on the sequence of the k-mer k2, the fixed size suffix
S1+2 of k-mer k1+2 is identical to the suffix S2 of k-mer k2. Whereas the extended
prefix p1+2 is longer than the prefix p2 of the k-mer k2:

4.1 Reflexible Distributed K-mer (RDK) 59



k1+2 = {p1+2, S1+2}
k2 = {p2, S2}
S1+2 = S2

p1+2 > p2

(4.5)

AC G T

A G T T

G T T C

T T C A

T C CA

G G AC

G AC G

RDK3

…

T G G CA

k1+2
T G G C

S1+2

A

p1+2

T G G CA TA

Reflecting

G G C TA

k’1+2

S1+2 p1+2

AC G T

A G T T

G T T C

T T C A

T C CA

G G AC

G AC G

RDK4

…

G G C TA

Fig. 4.4: Reflecting an extended k-mer: The extended k-mer k1+2 has a 2-nucleotide prefix
p1+2 and a 3-nucleotide suffix S1+2. The reflecting step switches the positions of
p1+2 and S1+2. After the k-mer reflecting process, a reflected k-mer k’1+2 is created
in the RDK.

On the original genome sequence, the k-mer k2 is likely (if not located at the end of
the genome) to have another adjacent k-mer k3 which has an n-1 nucleotides prefix
overlapped with the n-1 nucleotides suffix of k2. By applying the same reflecting
and sorting methods to k2 and k3, we can acquire the adjacency of the two k-mers
and connect k2 with k3. As k2 and the extended k-mer p1+2 have the identical n-1
nucleotides suffixes, we can also acquire the adjacency of p1+2 and k3 (Fig. 4.5),
thus further extend k-mer k1+2. The extension can be expressed as:

k’
1+2 = {S1+2, p1+2}

k3 = {P3, s3}
S1+2 = P3

k1+2+3 = {p1+2, (S1+2||P3), s3}

(4.6)

where, P3 is the fixed n-1 nucleotides prefix of the k-mer k3 and s3 is the suffix of k3.
After the second round of extension, the extended n+2 nucleotides k-mer k1+2+3

has a fixed n-1 nucleotides suffix and a 3-nucleotide prefix.

60 Chapter 4 Reflexiv: Parallel De Novo genome assembly



AC G T

A G T T

G T T C

T T C A

T C CA

G G AC

G AC G

RDK4

…

G G C TA

AC G T

A G T T

G T T C

T T C A

T C CA

G G AC

G AC G

RDK4

…

G G C TA

Sort

G G C TA

k’1+2

S1+2 p1+2

G G AC

P3 s3

k3

G G ACTA

P3 s3p1+2

k1+2+3

AC G T

A G T T

G T T C

T T C A

T C CA

G AC G

RDK5

…

G G ACTA

S1+2

Fig. 4.5: Reconnecting adjacent k-mers: The extended k-mer k1+2 has an adjacent k-mer k3,
which has a 3-nucleotide prefix P3 and a 1-nucleotide suffix s3. P3 is identical to
the prefix S1+2 of the reflected k-mer k’1+2. After sorting the RDK list, the reflected
k-mer k’1+2 is placed at the neighboring position of its adjacent k-mer k3. Thus,
k’1+2 and k3 can be merged as k1+2+3.

After m-1 iterations of the reflecting, sorting, and extension steps, the first k-mer k1

is able to extend to the k-mer km. The last iteration extension of the k-mer can be
expressed as:

k’
1+...+(m-1) = {S1+...+(m-1), p1+...+(m-1)}

km = {Pm, sm}
S1+...+(m-1) = Pm

k1+...+m = {p1+...+(m-1), (S1+...+(m-1)||Pm), sm}

(4.7)

where the subscript 1+...+(m-1) represents m-2 rounds of extensions and the
subscript 1+...+m denotes m-1 rounds of extensions started from k-mer k1. The
extension procedure can be iterated until it reaches the end of the genome or the start
of a repeat region (see the repeat detection section below) and, thereby, assembles a
contig of the genome.

To sum up, the two attributes of the RDK data structure, (i) distributed and (ii)
reflexible, enable RDK to store the entire repertoire of k-mers from a genome without
storing the additional adjacencies for each k-mer. Whereas, the iteration of the (i)
reflecting, (ii) sorting, and (iii) extension methods allow k-mers to reestablish their
adjacenies and assemble the genome sequence in a distributed system.

4.1 Reflexible Distributed K-mer (RDK) 61



4.2 Random k-mer reflecting and recursion

Sorting the entire list of k-mers is very time consuming, as there is a large number
of k-mers on a genome sequence. Reflecting and extending just 1 k-mer in each
iteration is not efficient and the entire assembly process is extremely time consuming.
Thus, I introduce a random k-mer reflecting method to parallelize the assembly
process and to improve the performance of RDK based methods.

On a genome sequence, each k-mer normally (neither at the end of the genome
sequence nor at the edge of a repeat region) has two adjacent k-mers. For instance,
an n nucleotides k-mer km has two adjacent k-mers, km-1 and km+1, where km-1’s n-1
nucleotides suffix Sm-1 is overlapped with the n-1 nucleotides prefix Pm of km and
km+1’s n-1 nucleotides prefix Pm+1 is overlapped with the n-1 nucleotides suffix Sm

of km. If we reflect both km-1 and km at the same time, the reflected k-mers k’
m-1 and

k’
m should be able to reconnect to the unreflected k-mers km and km+1, respectively.

However, since the k-mer km has been reflected as k’
m, k’

m-1 will not be able to
find its adjacency with km-1. Thus, continuously reflecting the k-mers will not work
efficiently.

A T G G AC G T T C CA

Genome

A T G G

T G G C

G G AC

G AC G

AC G T

A G T T

G T T C

T T C A

T C CA

…

…

k-mers

G G AC

G AC G

GG AC

GAC G

km-1

km

k’m-1

k’m

G G AC
G AC G

G G AC
GAC G

GG AC
GAC G

GG AC
G AC G

km-1 & km

k’m-1 & km

km-1

km

km-1 & k’m

k’m-1 & k’m

√

Fig. 4.6: Combinations of two adjacent k-mers after random k-mer reflecting: The two
adjacent k-mers, km-1 and km, will only be placed at neighboring positions when
km-1 is reflected and km is not reflected.

The key to reestablish the adjacency between two adjacent k-mers, km-1 and km, in
an RDK is to reflect the first k-mer km-1 and sort it together with the unreflected
second k-mer km, so that they are placed at neighboring positions in the long k-mer
list. Reflecting both k-mers km-1 and km at the same time will not establish their
adjacency as both k-mers placed their n-1 suffixes in the fronts of their reflected
k-mers k’

m-1 and k’
m. After sorting, the two reflected k-mers k’

m-1 and k’
m will not

be placed at neighboring positions in the list. In another case, reflecting the second
k-mer km and sorting it together with the first k-mer km-1 will also not work, as the

62 Chapter 4 Reflexiv: Parallel De Novo genome assembly



n-1 nucleotides suffix of km is only overlapped with the n-1 nucleotides prefix of the
third k-mer km+1 (Fig. 4.6 and Fig. 4.7B). To summarize, in all the four scenarios:

(i) km-1 and km,

(ii) k’
m-1 and km,

(iii) km-1 and k’
m,

(iv) k’
m-1 and k’

m

only the (ii) k’
m-1 and km scenario will establish their adjacency after the sorting

step.

Step 1: Random reflecting

A T G G AC G T T C CA

T G G C

AC G T

G T T C
T T C A

T G G A

G AC G
AC G G

G T T A

C CA T

2
1
2
2
1
2
1
1
2

2
1
2
2
1
2
1
1
2

X
X

X

√

√

√

2   1   2   2   1   2   1   1   2
√ X X X Step 2: Sorting

Genome

A T G G AC G T T C CA

A T G G
T G G C

G G AC
G AC G

AC G T
A G T T

G T T C
T T C A

T C CA

A

G
G

A

T

2
1
2
2
1
2
1
1
2

Genome

Step 1: random 
reflecting

Step 2: sorting

Step 3: extension

2 1 2 1 2 2 2 2 21 1 1 1 1

Step 1: random 
reflecting

Step 2: sorting

Step 3: extension

Genome

Step 1: random 
reflecting

Step 2: sorting

Step 3: extension

K-mers

…Recursion

A T G G AC G T T C CA

T G G C

AC G T

G T T C

T T C A

T G G A

G AC G

AC G G

G T T A

C CA T

C A G TG
2
1
2
2
2
1
2
1
1

G T T CG

T G G CA

G CG A
T AC C

T T C A

√

√

√

Step 3: Extension

Genome

Every iteration gives 
~25% reduction in k-mers

A T G G

AT G GA
2

1 Forward k-mer

Reflected k-mer
AT G G

A T G G1 Extended 
forward k-mer

T G

A T G G T G A T G

G T G A T G2

G T G

n-1 mer does not change 
through extensions

Extended 
Reflected k-mer

CA B

D E

Fig. 4.7: Iterations of three steps in the random k-mer reflecting method: (A) Random
k-mer reflecting. A reflected k-mer is marked with a red 2. Whereas an unreflected
forward k-mer is marked with a blue 1. (B) An overview of all combinations. Only
the 2-1 combinations can establish their adjacencies after sorting. (C) Sorting
and extension steps. (D) After extension, the extended k-mers still keep a fixed
n-1 nucleotide suffix, where n is the length of the k-mers. (E) An overview of the
extension events throughout the entire genome sequence. Each iteration reduces
25% of k-mers.

To maximize the likelihood of finding more adjacencies in each iteration, I imple-
mented a random reflecting method for all the k-mers in the list. The method simply
reflects half of the k-mers in an RDK in a random way (Fig. 4.7A). Thus, for a k-mer
km, there is a 50% chance of being reflected as k’

m and a 50% chance of being

4.2 Random k-mer reflecting and recursion 63



unreflected as km. For its adjacent k-mer km-1, there is also a 50% chance of being
reflected as k-mer k’

m-1. As a result, the chance of finding the k’
m-1 and km adjacency

is 25%. For its other adjacent k-mer km+1, there is also a 25% chance of finding the
k’

m and km+1 adjacency. Put together, there is a 50% chance of finding an adjacency
for each k-mer, if we randomly reflect half of the k-mers in the list. After sorting
and merging all the adjacent k-mers, half of the k-mers are connected and extended.
The extension process will reduce 25% of the total number of k-mers in the list.
Once extended, we re-apply the random reflecting method to the new list of k-mers
(Fig. 4.7E). Followed by the same sorting and extension processes, there are another
25% of k-mers reduction. Therefore, the number of k-mers can be expressed as:

T1 = (1− 0.25) ∗ T0

T2 = (1− 0.25) ∗ T1 = (1− 0.25)2 ∗ T0

Tm = 0.75m ∗ T0

(4.8)

where T0 denotes the total number of initial k-mers in the genome, T1 denotes the
total number of k-mers after the first extension, and m represents the number of
iterations. Based on the equation, the total number of k-mers decreases exponentially
through the iterations. From the computational point of view, the reduction in k-
mers significantly reduces the memory consumption and the computational intensity
through such a process.

To simplify, the random k-mer reflecting method is a recursion of (i) random k-mer
reflecting, (ii) sorting, and (iii) extension processes.

4.3 Distributed implementation

The parallelization of the random k-mer reflecting method is based on the divide
and conquer paradigm. Since an RDK is a long list of k-mers, we can simply divide
the whole list of k-mers into several sub lists of k-mers. For each sub list, the first
step (i) random k-mer reflecting can be carried out independently on the k-mers
in the sub lists. This way, all sub lists of k-mers are reflected simultaneously. Since
adjacent k-mers can be placed in different sub lists, the (ii) sorting process must
be carried out through the entire list of the k-mers in the RDK, so that adjacent
k-mers can be placed in the neighboring positions of the list after sorting. Once
the sorting is complete, the sorted list of k-mers can be divided again and (iii)
extensions can be carried out simultaneously on each sorted sub list of k-mers. After
the extension, we simply repeat all the three steps again until the k-mer number
reaches a convergence.

64 Chapter 4 Reflexiv: Parallel De Novo genome assembly



Worker

Worker

Master

Worker

RDD

AA T G G

T G G C

G G AC G

A

AC G T

A G T T

G AC G G

G T T C

T T C A

T C CA T

RDK Step 1: Random Reflecting

Worker

Worker

Master

Worker

RDD

A T G G
T G G C

G G AC

G AC G
AC G T
A G T T

G T T C
T T C A

T C CA

A T G G AC G T T C CA

Genome

Worker

Worker

Master

Worker

RDD

Step 2: SortingRDK

G T T C

G AC G
G T T A

AC G T
AC G G

C CA T

T G G C
T T C A

T G G A Worker

Worker

Master

Worker

RDD

Step 3: Extension

G AC G

C CA T

RDK

AC G TG

G T T CA

T G G CA

T T C A

A B

C D

Fig. 4.8: Distributed implementation of the random k-mer reflecting method on top of
the Spark platform. (A) all k-mers are loaded into an RDD that is distributed
across a Spark cluster. (B) Each computer instance randomly reflects a sub list of
k-mers stored in its memory. (C) The sorting process is carried out on the entire
list of k-mers through the Spark cluster. (D) The extension step is carried out
independently on each computer instance.

The distributed implementation of the random k-mer reflecting method is based on
the Spark extended MapReduce paradigm. The RDK is built on top of the Spark RDD.
An RDD is a collection of elements that can be distributed across the Spark cluster.
Since an RDK is a long list of reflexible k-mers, each k-mer can be stored as an
element in the RDD (Fig. 4.8A). On the lower level, Spark RDD supplies RDK with all
the features such as fault tolerance, automatic parallelization, and distributed ‘cache’
function. On the higher level, I implemented the random k-mer reflecting method
using the programming interfaces provided by the Spark RDD. The implementation
mainly consists of three parts: (i) random k-mer reflecting, (ii) sorting, and (iii)
k-mer extension (Fig. 4.6B-D).

On a distributed Spark cluster, Spark RDD automatically divides the k-mers into
partitions (sub lists of k-mers) and distributes them across the cluster on the worker

4.3 Distributed implementation 65



nodes. The random k-mer reflecting step simply traverses each element of the
partitions and randomly reflects half of the k-mers. This step is implemented in a
‘map’ function that applies the traversal to all partitions of the RDD simultaneously.
After sorting the random reflected k-mers, a ‘map’ function is also implemented for
the extension step. In the extension step, the function also traverses the sorted sub
lists of k-mers and merges the adjacent k-mers in the neighboring positions.

Sorting is carried out on the entire list of k-mers in the RDD. I use the Spark
build-in sorting algorithm, TimSort. TimSort is a derivation of merge sort, which
is a divide and conquer based sorting algorithm. Thus, the sorting process can
also be parallelized across the cluster. As mentioned in the related work section,
sorting in the Spark cluster corresponds to a ‘reduce’ phase that shuffles data across
different worker nodes. Therefore, the performance of the sorting step is bounded
by the network connection between worker nodes. This step is implemented in
the ‘sortByKey’ function that sorts all k-mers in parallel. All k-mers are encoded as
a number stored in an ‘Long’ object. Thus, alphabetically sorting the k-mers is a
process of numerically sorting a list of ‘Long’ objects. Compared to the alphabetically
stored ‘String’ objects, the numerical k-mer encoding approach improves the run
time performance of the sorting step (see discussion).

The performance of the recursion processes can benefit from the Spark’s distributed
in-memory computing. The conventional Hadoop MapReduce computing engine
is a more disk-oriented processing model, where each step involves loading and
writing large amounts of data from and to the disk. For iterative algorithms, the
repetitive loading and writing has a significant impact on its run time performance.
The Apache Spark, on the other hand, is a more memory-oriented processing model.
It introduces a ‘cache’ function that allows distributed data to be stored in memory,
so that iterative process can re-access the data directly from the RAM.

In theory, the assembly process is complete once the recursion reaches convergence
(no more new contigs are generated). However, there are several common assembly
problems we have to tackle.

4.4 Repeat detection and bubble popping

There are mainly three events that introduce challenges during the naive RDK
based assembly: (i) repeats in the genome, (ii) nucleotide polymorphism, and
(iii) sequencing errors. Let us start by looking at the de bruijn graph again. In a
directed de bruijn graph, a repeat event creates two forks that lead to four paths at
the beginning and the end of the repeat region (Fig. 4.9). Whereas a nucleotide
polymorphism or a sequencing error introduces a bubble at the point of variation.

66 Chapter 4 Reflexiv: Parallel De Novo genome assembly



The bubble also creates two short branches on the original path. Thus, the key
to resolve the repeats and pop the bubbles is to find the correct branch for the
extension. In the random reflecting method, all k-mers are randomly reflected in
each iteration. Therefore, the branch selection in the extension step is completely
arbitrary, resulting in false assemblies. To solve this issue, let us first look at the
repeats.

TACGCGATTCTAA

GACTCGATTGGAT

..GACTCGATTCTAA…..TACGCGATTGGAT..

CGA GAT

TAATTC CTA

ATT

TCT

TTG TGG GGA GAT

TAC GCG

GAC

CGCACG

ACT CTC TCG

Repeat

CGA GAT TAA AAG AGTTTC CTAATT TCT

TTC TCT CTA

CGATTCTAAGT

CGATTGTAAGT

BubbleA

B

Fig. 4.9: Branches and forks on a de bruijn graph. (A) A bubble on a de bruijn graph creates
two branches that will soon merge into one path. It also creates a forward fork
and a backward fork. (B) A repeat event creates four branches and a repeat path.
It creates a backward fork and a forward fork.

For a repeat event, there is no sufficient information provided by the de bruijn graph
indicating the correct branches for the extension. At the contig assembly phase,
a conservative approach is to stop the extension at the branches, so that no false
assemblies are created. At the later assembly phases, repeats can be resolved by
using the mate pair sequencing reads that connects two branches (Nagarajan and
Pop, 2013). In the case of RDK, since there are no edges directing the path for the
assembly, a branch can not be detected as the way it is found in a de bruijn graph.

To identify a repeat region in the RDK, a fork must be found even without the
connective information from the edges. An RDK is a list of k-mers or, compared
to a de brujin graph, it can be considered as a collection of nodes without edges
(Fig. 4.11). A forward fork in a de bruijn graph starts at two n nucleotides k-mers,
kf1 and kf2, with the same n-1 nucleotides prefixes and different 1 nucleotide suffixes
(Fig. 4.10). Whereas a backward fork in a de bruijn graph starts at two k-mers, kb1

4.4 Repeat detection and bubble popping 67



and kb2, with the same n-1 nucleotides suffixes and different 1 nucleotide prefixes.
Since the reflected k-mers, k’

b1 and k’
b2, are k-mers with swapped orders of suffixes

and prefixes of kb1 and kb2, the backward fork of kb1 and kb2 can also be represented
as a forward fork of k’

b1 and k’
b2.

C T A
G T A

kb1

kb2

n-11

T T C
T T G

kf1

kf2

n-1 1

CGA GAT TAA AAG AGTTTC CTAATT TCT

TTG TGT GTA

Bubble

T A C
T A G

k’b1

k’b2

n-1 1

G C G
T C G

kb1

kb2

n-11

T T C
T T G

kf1

kf2

n-1 1

C G G
C G T

k’b1

k’b2

n-1 1

CGA GAT

TAATTC CTA

ATT

TCT

TTG TGG GGA GAA

TAC GCG

GAC

CGCACG

ACT CTC TCG

Repeat

Forward 

forking k-mers

Backward 

forking k-mers
Reflected 

forking k-mers

A

B

Fig. 4.10: Forward and backward forking k-mers: (A) A bubble creates two forward forking
k-mers kf1 and kf2. The two forward forking k-mers have the same n-1 nucleotides
prefixes and two different 1-nucleotide suffix. The forward forking k-mers will
extend and connect to two backward forking k-mers kb1 and kb2 in n-1 extensions.
The two backward forking k-mers have identical n-1 nucleotides suffix and two
different 1-nucleotide prefixes. Both of the k-mers, kb1 and kb2, can also be
represented by two reflected forking k-mers k’b1 and k’b2. (B) A repeat event also
creates two forward forking k-mers and two backward forking k-mers. Compared
to a bubble event, the forward and backward forking k-mers will not connect in
n-1 extensions.

To rebuild the adjacencies of k-mers in an RDK, a sorting process is needed to place
reflected k-mers and non-reflected adjacent k-mers at the neighboring positions in
the k-mers list. For finding the forks, I have used the same strategy. Before randomly
reflecting k-mers in the RDK, I firstly sort the entire list of k-mers in an alphabetical
order. After the sorting, the forward forking k-mers, e.g. kf1 and kf2, are placed at
the neighboring positions, as they have the same n-1 nucleotides prefixes. Once
the forward forking k-mers are recorded, we reflect all of the k-mers in the RDD
to look for backward forks. Sorting all the reflected k-mers, e.g. k’

b1 and k’
b2, will

place backward forking k-mers, e.g. kb1 and kb2, at neighboring positions as they
have the same n-1 nucleotides suffixes that has been reflected as the n-1 nucleotides
prefixes. After the two sorting processes, all forward and backward forking k-mers
are found.

68 Chapter 4 Reflexiv: Parallel De Novo genome assembly



Now, let us take a look at bubbles. A bubble is created either by a sequencing
error or a nucleotide polymorphism. A sequencing error creates a bubble with two
branches. One of the two branches has a higher k-mer coverage and the other
one has a significantly lower k-mer coverage. As for SNP in a diploid genome, the
two branches should have similar k-mer coverages and assemblers normally just
assemble one copy of the genome as a reference. Thus, to pop a bubble, only the
higher coverage branch is assembled to the main path. Since all forking k-mers are
in pairs, removing the lower coverage forking k-mers will stop the assembly process
of the lower coverage branches of a bubble and a bubble can be popped. Let us
come back to repeats. As mentioned above, the extension of a repeat region must be
stopped to prevent false assemblies. Removing the lower coverage forking k-mer of a
repeat fork will stop the extension of one branch of the repeat (Fig. 4.12), leaving the
repeat region only extendable to the higher coverage branch (the event of stopping
the repeat region from extending to the higher coverage branch is addressed in the
next paragraphs). It is important to note that removing the lower coverage k-mer
of the paired forking k-mers is beneficial for bubble popping and repeat detection.
Once all sorting processes have been completed and the forking k-mers have been
found, forking k-mers with the lower coverage are removed from the RDK.

CGA

GAT

TTC

ATT

TCT

TTG

TGG

GCG

CGC

CTC

TCG

T T C
T T G

kf1

kf2

n-1 1

C G A
A T T

C G C
C T C
G A T

T C G
T C T
T G G
T T C

G C G

T T G

CG A

AT T

CG C

CT C

GA T

TC G
TC T

TG G

TT C

GC G

TT G

C G G
C G T

k’b1

k’b2

n-1 1

CGA GAT

TTC

ATT

TCT

TTG TGG

GCGCGC

CTC TCG

Repeat

Reflected

forking k-mers

Forward

forking k-mers

Reflecting

and sorting

De bruijn graph

without edges

RDD2RDD1

De bruijn graph

Fig. 4.11: Forward and backward forking k-mers detection: Sorting all forward k-mers will
place forward forking k-mers at neighboring positions, as both forward forking
k-mers kf1 and kf2 have the same n-1 nucleotides prefix. Sorting all reflected
forking k-mers will place backward forking k-mers at neighboring positions, as
both reflected forking k-mers k’b1 and k’b2 have the same n-1 nucleotides prefix.

Once we have identified the higher coverage forking k-mers, the next step is to
distinguish repeat forks and bubble forks. A fork can be introduced either by a repeat

4.4 Repeat detection and bubble popping 69



event or by a bubble. The difference between a repeat fork and a bubble fork is
that a bubble fork will soon converge into the main path after the variation point,
whereas a repeat fork will not (Fig. 4.12). As mentioned earlier, a backward fork is
also a reflected fork. For a bubble fork, the higher coverage branch started from a
forward fork will meet a reflected fork after the variation point. For instance, a single
nucleotide polymorphism (SNP) on a diploid genome creates a bubble with two 2n-1
nucleotides branches, where n is the length of the k-mers. We can also understand it
as a variation point which creates n-1 variant k-mers. Thus, to detect a bubble in
an RDK, a higher coverage forward forking k-mer should meet a higher coverage
reflected forking k-mer in n-1 extensions. As for a repeat, the higher coverage branch
started from a forward fork or a reflected fork are not going to meet a reflected fork
or a forward fork in n-1 extensions.

C T A
G T A

kb1

kb2

T T C
T T G

kf1

kf2

CGA GAT TAA AAG AGTTTC CTAATT TCT

TTG TGT GTA

Bubble

G C G
T C G

kb1

kb2

T T C
T T G

kf1

kf2

CGA GAT

TAATTC CTA

ATT

TCT

TTG TGG GGA GAA

TAC GCG

GAC

CGCACG

ACT CTC TCG

Repeat

10

2
T C T
T G T

10

2

6

5

6

5

C G C
C T C

X X

T T C

n-1 extendable

region

T C T
T G G

X X

n-1n

A

B

Fig. 4.12: Decision making for bubble forking k-mers and repeat forking k-mers. (A)
Removing the lower coverage forking k-mers, kf2 and kb2, will either correct
a sequencing error or solve a SNP event. Extendable regions are given to the
higher coverage forking k-mers, kf1 and kb1. The extendable region allow both
k-mers to extend maximum n-1 nucleotides. In a bubble event, the two forking
k-mers will connect in n-1 nucleotides extensions. Once the two k-mers connect,
the extendable regions are removed and the bubble has been popped. Red
circled nodes represent removed lower coverage forking k-mers. Grey dashed
arrows represent severed connections. (B) In a repeat event, removing the lower
coverage forking k-mers, kf2 and kb2, will stop the repeat region connecting to
the two lower coverage branches. Whereas the extendable regions of the two
higher coverage forking k-mers, kf1 and kb1, will stop connecting to the two
higher coverage branches, as the two forking k-mers will not meet backwark
forking k-mers in n-1 nucleotides.

I introduce a marker on each identified forking k-mer, called an extendable region.
An extendable region restricts the maximum extensions allowed (n-1 extensions)
for a given forking k-mer until it meets a reflected forking k-mer, which has also

70 Chapter 4 Reflexiv: Parallel De Novo genome assembly



been marked with an extendable region. For instance, after sorting all the k-mers,
a forward forking k-mer, kf1, is found and an n-1 nucleotides extendable region is
given to kf1. Assume kf1 is a forward forking k-mer at the start of a bubble. Then, kf1

will connect to its reflected forking k-mer kb1, which also has been marked with an
extendable region, in n-1 extensions. In this way, only the higher coverage branch is
connected to the main path (since the forking k-mer of the lower coverage branch
has been removed) and a bubble has been popped. However, if kf1 is a forward
forking k-mer at the start of a repeat. Without the restriction from the extendable
region, it is able to connect to one of the two k-mers (the higher coverage forking
k-mer, as the lower coverage forking k-mer has been removed), kr1 and kr2, from the
two branches. Now that the k-mer kf1 has been given an extendable region marker
and the two k-mers, kr1 and kr2, have not been marked with extendable regions, the
extension of the forward forking k-mer kf1 is stopped and a repeat region will not be
assembled to prevent false assemblies.

4.5 The assembly pipeline

The pipeline of the assembly process consists of 6 parts:

1. K-mer extraction

2. K-mer counting

3. Forward forking k-mer detection

4. Reflected forking k-mer detection

5. Assembly iterations

6. Result summary

6
4
2
6
9
5
3
1
6
9

x

X

Reads

2

K-mer

counting

3

Forward forking

k-mer detection

4

Reflected forking 

k-mer detection

5

Assemble

iterations

6

Result

summary

1

K-mer

extraction

K-mers Unique k-mers Forward

k-mers

Reflected

k-mers

Random

Reflection

Extension Contigs

Fig. 4.13: The pipeline of the Reflexiv assembler. Blue dashes with red dots represent
reflected k-mers. Step 5 iterates until convergence.

4.5 The assembly pipeline 71



The pipeline starts with loading the sequencing data into an RDD. Then, a ‘map’
step is carried out to extract k-mers from the sequencing reads (Fig. 4.13). Once all
k-mers are extracted from the reads, a ‘reduce’ function is used to count the copy
number of each unique k-mer. After the k-mer counting step, a ‘map’ step is applied
to convert the k-mers of the RDD into reflexible k-mers stored in a new RDD (as
an RDK). In the newly created RDK, all reflexible k-mers are initiated as forward
k-mers. The assembler sorts all the forward k-mers and looks for forward forking
k-mers. After that, all forward k-mers are reflected and sorted again for searching
reflected forking k-mers. When both forward and reflected forking k-mers are found,
the assembler starts the recursion of the random k-mer reflecting method. Once
recursion reaches convergence, the result of the assembly is summarized and the
contigs are generated on the master node.

4.6 Time complexity

The time complexity of the RDK based assembly process can be calculated based
on three parts that correspond to the three steps of the random k-mer reflecting
method: (i) random k-mer reflecting, (ii) sorting, and (iii) extension. Random
k-mer reflecting is a linear operation that goes through each element of the list and
randomly reflects half of the k-mers. Thus, the time complexity of this step is O(n),
where n represents the number of k-mers in the RDK. The extension step has the
same linear time complexity, O(n), as it also traverses the list of k-mers and extends
the adjacent k-mers.

The sorting process is implemented using the default sorting algorithm, Timsort, of
the Apache Spark platform. Timsort is derived from merge sort and insertion sort.
The average performance of Timsort is O(n× log(n)). When we add all three parts
together, the total time complexity for the first iteration is 2×O(n) + O(n× log(n)).
It also can be expressed as:

T (n) = 2n + n× log(n)
T (n) = n× (2 + log(n))

(4.9)

Where T(n) represents the time complexity of assembling the genome from n number
of k-mers in the RDK. As mentioned in the random k-mer reflecting method section,
there is a 25% reduction of k-mers after each iteration. Thus, the time complexity
for the second iteration can be expressed as:

T (n) = 0.75n× (2 + log(0.75n)) (4.10)

72 Chapter 4 Reflexiv: Parallel De Novo genome assembly



Let I denote the number of iterations until the recursion reaches convergence. The
complete time complexity for the assembly process can be expressed as the sum of
all iterations:

T (n) = 0.750n× (2 + log(0.750n))
+0.751n× (2 + log(0.751n))
+0.752n× (2 + log(0.752n))
+0.753n× (2 + log(0.753n))
...

+0.75In× (2 + log(0.75In))

(4.11)

It can also be expressed as:

T (n) =
∑I

m=0 0.75mn× (2 + log(0.75mn)) (4.12)

In the repeat detection and bubble popping section, I have introduced two rounds
of sorting processes and one k-mer reflecting step for finding forward and reflected
forking k-mers. These processes run before the random k-mer reflecting method
begins. As mentioned above, the sorting step has a time complexity of O(n× log(n))
and reflecting process has a time complexity of O(n). Adding these computations to
the run time pool, we have an aggregated time complexity of the assembly process:

T (n) = 2n× log(n) + n

+
∑I

m=0 0.75mn× (2 + log(0.75mn))
(4.13)

In addition to the repeat detection and bubble popping step, there is a k-mer
counting step that generates unique k-mers with their correspond coverage for the
downstream assembly process. At the very beginning of the assembly process, the
assembler extracts k-mers from the raw sequencing data and counts the coverage
of each k-mer. The k-mer counting in a distributed system is a typical MapReduce
application, where the ‘map’ step extracts the k-mer and the ‘reduce’ step summarizes
the number of each k-mer. As mentioned in the related work chapter, the ‘reduce’
step mainly consists of a sorting process. Thus, the final time complexity of the
assembly process can be expressed as:

T (n) = N + N × log(N)
+2n× log(n) + n

+
∑I

m=0 0.75mn× (2 + log(0.75mn))
(4.14)

4.6 Time complexity 73



where N represents the number of k-mers extracted from the sequence data.

Although the complexity of the algorithm has a decisive effect on its time complexity
on a single computer instance, the run time performance of a distributed program can
be significantly affected by the network connection. Judging by the time complexity
illustrated by equation 4.15, my assembler should have a low run time performance
as it introduces a considerable amount of sorting processes. However, the sorting
process is running in parallel and fully utilizes the bandwidth of the network. Thus,
our tool has much better run time performance than other existing tools on standard
Ethernet connected Spark cluster (see discussion).

4.7 Memory consumption

The memory consumption of the assembly process depends on both the number of
unique k-mers and the length of the k-mers. The number of unique k-mers is effected
by the complexity of the genome sequence and the sequencing quality. Whereas the
length of the k-mers is usually assigned by the users. The length of the k-mer can
also directly impact the number of unique k-mers. To better evaluate the memory
consumption of the assembly process, let us preset the number of k-mers to n and
the k-mer length to 31nt (commonly used default k-mer length).

The RDK is built on top of the Spark RDD. An RDK instance is a customized RDD
instance distributed across the Spark cluster. In the Spark cluster, RDDs consume 75%
(by default) of the JVM run time memory assigned to all worker nodes. However,
the fraction of the memory used by RDDs can be reset accordingly (it can also be
set to 100%). In the Reflexiv assembler, all the data for the assembly is stored in an
RDD. Thus, the memory usage of the RDD is equal to the memory consumption of
the assembly process. As mentioned before, an RDK is a long list of reflexible k-mers
stored in an RDD. Each reflexible k-mer is a Java object created by the Spark JVM
running on the worker nodes. Therefore, the memory consumption of an RDD is n
times the size of a reflexible k-mer, where n stands for the total number of unique
k-mers.

A reflexible k-mer is stored as a Java object. To be more specific, the object is a
‘Tuple2’ that contains 2 other objects: (i) a ‘Long’ object storing a fixed length (30nt
with a default 31nt k-mer length) prefix or suffix (if the k-mer is reflected) of the
k-mer and (ii) a ‘Tuple4’ object storing extra information for the reflexible k-mer.

For the first object of the Tuple2: since there are four types of nucleotides in a DNA
sequence, each nucleotide can be encoded into two binary digits (bits). Thus, a 31nt
k-mer can be encoded into 62 bits, which can be represented by a ‘Long’ object.

74 Chapter 4 Reflexiv: Parallel De Novo genome assembly



For the second object of the Tuple2: as illustrated by the name, a Tuple4 contains 4
objects: (i) a ‘Boolean’ object as a reflecting marker indicating whether the k-mer
has been reflected or not, (ii) an ‘Integer’ as a marker for the forward extendable
region, (iii) an ‘Integer’ as a marker for the reflected extendable region, and (iv) a
‘Long’ object to store the extended part of the k-mer (Fig. 4.14) (see discussion).

A G T T

G G AC

G AC G

RDK

…

G G C TA

Tuple2{Long,  Tuple4{Boolean, Integer, Integer, Long}

Tuple2{Long,  Tuple4{Boolean, Integer, Integer, Array}

[Long, Long]

G G C TA

T A C

G AC G T A C

True

False

Fig. 4.14: Basic data structures of two reflexible k-mers in an RDK. For a reflected k-mer
(denoted with red boxes) shorter than 2n nucleotides, a Long object is used to
store the extended suffix. For a forward k-mer longer 2n nucleotides, an Array of
Long objects is used to stored the extended suffix.

In the Java programming language, each object is stored in the JVM Heap memory
and its reference is stored in the Stack memory. An object has a memory overhead
that stores information related to the object (called ‘housekeeping’ information) and
a value that is usually represented by a primitive type. For instance, an ‘Integer’
object has a value of an ‘int’ numeric primitive type that stores a number ranging
from -231 to 231-1. Since the JVM allocates the memory in multiples of 8 bytes
(64-bit JDK), the value of the object is rounded up to multiples of 8 bytes (also
called padding). As the size of the ‘int’ primitive type is 4 bytes, the value of the
object is padded to 8 bytes. In addition to the size of the value stored in the object,
each object has an 12 bytes padding or overhead in a 64-bit JDK. Thus, the memory
consumption of an ‘Integer’ object is 20 bytes. Based on the example, we can also
calculate the size of the ‘Long’ object (20 bytes) and the ‘Boolean’ object (20 bytes).
Adding up all the objects, a ‘Tuple4’ object consumes 92 bytes of memory. Whereas
a ‘Tuple2’ object consumes 124 bytes of memory. As a result, the total memory
consumption of the assembly process can be expressed as:

M(n) = 124× n (4.15)

where M represents the memory size and n represents the number of unique k-
mers.

4.7 Memory consumption 75



4.8 Results and Discussion

4.8.1 Results

In this section, I present the run time performance and the assembly qualities of the
Reflexiv assembler. I will also compare its run times and assembly qualities to other
distributed assemblers, e.g. Ray and AbySS. I have used three different datasets for
the benchmarking: (i) 500MB simulated Illumina Hiseq-2500 sequencing dataset
based on the E. coli reference genome, (ii) 10GB simulated Illumina Hiseq-2500
sequencing dataset based on the chromosome 17 of the human genome, and (iii) a
real Illumina MiSeq sequencing data of the E. coli genome (NCBI accesion number:
PRJDB5271). Computing clusters were the de.NBI cloud. I have setup clusters with
1 master node and 1 to 20 worker nodes. The master node has 32 CPUs and 60GB
of RAM. Each worker node has 28 CPUs and 60GB of RAM.

0

2000

4000

6000

8000

10000

12000

10 cores
1 node

20 cores
1 node

30 cores
1 node

R
u

n
 t

im
e 

(s
)

Reflexiv Ray AbySS

Fig. 4.15: Comparison of run time performances between different distributed de novo
genome assemblers. The comparison was carried out on a single computer
instance using 10, 20, and 30 CPUs. The 10GB simulated sequencing data of the
human chromosome 17 was used for the benchmark. Detailed metrics can be
found in Appendix Table S16.

For run time performances, I first compared the run times of all tools on one
single computer instance (the master node) with 10, 20, and 30 CPUs (Fig. 4.15).
Reflexiv runs slightly faster than AbySS on the 10GB simulated sequencing data

76 Chapter 4 Reflexiv: Parallel De Novo genome assembly



from the human chromosome 17. Both AbySS and Reflexiv run faster than the Ray
assembler.

0

200

400

600

800

1000

1200

140 cores
5 nodes

280 cores
10 nodes

420 cores
15 nodes

560 cores
20 nodes

R
u

n
 t

im
e 

(s
)

Reflexiv Ray AbySS

Fig. 4.16: Comparison of run time performances between different distributed de novo
genome assemblers. The comparison was carried out on 5 to 20 worker nodes
with 140 to 560 CPUs. The 10GB simulated sequencing data of the human
chromosome 17 was used for the benchmark. Detailed metrics can be found in
Appendix Table S17.

When scaling out to more than 5 worker nodes, Reflexiv runs much faster than both
AbySS and Ray. For the 10GB simulated dataset of the human chromosome 17,
Reflexiv runs 8-17 times faster than Ray and 7-18 times faster than AbySS (Fig. 4.16).
Whereas for the 1.3GB read sequencing data of the E. coli genome, Reflexiv runs
7-10 times faster than Ray and 5 to 6 times faster than AbySS (Fig. 4.17).

To compare the assembly qualities between different de novo genome assemblers, I
have used QUAST, a quality assessment tool for genome assemblies (Gurevich et al.,
2013). In general, Reflexiv has similar assembly qualities to other distributed tools,
e.g. Ray and AbySS. Velvet has slightly higher N50 values and assembles longer
contigs. But it has more misassemblies. For the 500MB simulated dataset (Table 4.1),
Reflexiv has similar quality to AbySS. Both Reflexiv and AbySS assemble slightly
better than Ray. Whereas for the 1.3GB real sequencing dataset of the E. coli genome
(Table 4.2), Reflexiv assembles longer contigs than both Ray and AbySS. For a larger
dataset (10GB simulated sequencing data of the human chromosome 17), Reflexiv
has similar performance to both Ray and AbySS

4.8 Results and Discussion 77



0

500

1000

1500

2000

2500

3000

3500

140 cores
5 nodes

280 cores
10 nodes

420 cores
15 nodes

560 cores
20 nodes

R
u

n
 t

im
e 

(s
)

Reflexiv Ray AbySS

Fig. 4.17: Comparison of run time performances between different distributed de novo
genome assemblers. The comparison was carried out on 5 to 20 worker nodes
with 140 to 560 CPUs. The 1.3GB real sequencing data of the E. coli genome was
used for the benchmark. Detailed metrics can be found in Appendix Table S18.

4.8.2 Discussion

In this chapter, I have presented a distributed de novo genome assembler called
Reflexiv. The main innovation of the Reflexiv assembler is a new distributed data
structure called Reflexible Distributed K-mer (RDK). The RDK is a higher level
abstraction of the Spark RDD. It uses the Spark RDD to distribute large amounts of
reflexible k-mers across the Spark cluster and assembles the genome in parallel. I
have described how the random k-mer reflecting method retrieves the adjacencies
between overlapping k-mers. I have also described how to solve repeats in the

Tab. 4.1: Comparison of the assembly qualities between different tools. The assemblies are
carried out on a 500MB (50x) simulated dataset of an E. coli genome.

Tools Reflexiv Ray AbySS Velvet
Largest contig 127972 86660 127976 138261

N50 22171 21604 22173 33905
Misassemblies 0 0 0 8

Misassembled contigs 0 0 0 7
Misassembled contigs length 0 0 0 169224

Genome fraction (%) 97.174 96.058 97.195 97.562

78 Chapter 4 Reflexiv: Parallel De Novo genome assembly



Tab. 4.2: Comparison of the assembly qualities between different tools. The assemblies are
carried out on a 1.3GB real sequencing dataset of an E. coli genome.

Tools Reflexiv Ray AbySS
Largest contig 126555 85688 74508

N50 17892 16198 15124
Misassemblies 36 35 36

Misassembled contigs 31 30 31
Misassembled contigs length 911898 686404 686340

Genome fraction (%) 84.209 79.154 83.932

Tab. 4.3: Comparison of the assembly qualities between different tools. The assemblies
are carried out on a 10GB (50x) simulated dataset of the chromosome 17 of the
human genome.

Tools Reflexiv Ray AbySS Velvet
Largest contig 22610 22582 22612 70151

N50 2207 2303 2202 2858
Misassemblies 2 3 0 4212

Misassembled contigs 2 3 0 1857
Misassembled contigs length 3722 3843 0 8823201

Genome fraction (%) 62.13 65.205 62.919 67.459

genome and pop bubbles during the assembly. In addition, I have presented a
formula to accurately measure the memory consumption of the assembly process.

In the results section, I have carried out a series of benchmarks on the Reflexiv
assembler. My tool has excellent run time performances on the ethernet connected
Spark cluster. Compared to existing tools, Reflexiv is the fastest to complete the
assembly of the E. Coli genome and the chromosome 17 of the human genome.
Moreover, Reflexiv is the only tool that is able to scale on an ethernet connected
cluster. As for the assembly quality, Reflexiv has similar performance to both Ray
and Abyss. Although Velvet assembles longer contigs than the other tools, it has
more mis-assembled contigs in its result.

An RDK based assembler has three advantages compared to the MPI-based assembler:
(i) the random k-mer reflecting method makes the k-mer extension step highly
scalable. (ii) The sorting process fully utilizes the network connection and (iii)
constantly balance the workload of each task.

Highly scalable means that the extension task can be divided into as many partitions
as possible and the divided tasks can be simultaneously carried out throughout the
entire cluster. An RDK is a long list of reflexible k-mers. In the list, each k-mer and its
overlapping k-mer can be extended independently once their adjacency is found. The
random k-mer reflecting method arbitrarily reflects the k-mers and reestablishes the
adjacencies of overlapping k-mers. As the list can be easily divided, the adjacencies of

4.8 Results and Discussion 79



overlapped k-mers can be found simultaneously in each divided sub list. In addition,
dividing a list of k-mers can be easily carried out and the proportion of each sub list
can be managed based on the demand of the parallelization. Thus, the workloads of
processing different sub lists of the k-mers can be easily balanced.

In each iteration of the random k-mer reflecting method, the sorting process shuffles
the k-mers and re-distributes them evenly across the Spark cluster. Compared to
the constant message passing in the MPI based assemblers, the shuffling process of
Reflexiv is carried out to all the k-mers at the same time. On an ethernet connected
cluster, there is a latency overhead for each data transmission. For a constant
messaging process, the latency will create a significant overhead. Although the
bottleneck can be solved by using low latency Infiniband network, most of the
general purpose computing clusters are still using the economical ethernet network.
Reflexiv assembler, on the other hand, does not suffer from the high latency overhead.
Thus, it can be easily portable to different distributed system.

The current implementation of the reflexible k-mer uses a ‘Long’ object to encode
the k-mers. As a nucleotide is stored in 2 bits, a k-mer longer than 31nt does not fit
into a ‘Long’ object anymore. Therefore, the current implementation of the Reflexiv
assembler has a 31nt limit for the k-mer length. I will upgrade the implementation
to allow longer k-mers in the upcoming release (see future work). As mentioned
in the memory consumption section, the extended part of the k-mer is stored as a
‘Long’ object inside a ‘Tuple4’ object. After 6 iterations of the assembly process, the
extended part of the k-mer is switched and stored in an ‘Array’ object containing an
array of ‘Long’ objects, as the extended part of the k-mer can be longer than 32nt
(a nucleotide sequence longer than 32nt can not be encoded into a ‘Long’ object).
However, after 6 iterations of the assembly process, the total number of the elements
is reduced to 0.756 × n. Although an ‘Array’ object produces extra memory overhead,
the total number of k-mers after 6 iterations of the assembly process is significantly
lower.

The main focus of the Reflexiv assembler is to address the memory intensive challenge
in the de novo genome assembly. Thus, the current version of the assembly pipeline
is only implemented to assemble the contigs. For the scaffolding phase, the memory
consumption is not as intensive as the contig assembly phase. Moreover, there is
a collection of bioinformatics tools specialized to assemble scaffolds based on the
pre-assembled contigs. These assemblers are both run time and memory efficient in
assembling scaffolds (Yeo et al., 2018). Most of these tools use the paired sequencing
reads to build up scaffolds. Since my tool already has a distributed read mapping
function, I incorporate the function of the assembler and discuss the implementation
of a scaffolding pipeline (see Chapter 6).

80 Chapter 4 Reflexiv: Parallel De Novo genome assembly



5Large scale genomic data
analyses

„Big data is not about the data, the real value is
in the analytics.

— Gary King
Professor of Harvard University

In this chapter, I will present an use case on the Amazon cloud for analyzing large
amounts of genomic dataset. In this cloud application, I have used my framework
to analyze a collection of 100 TB of genomic data from 3 genome projects and a
transcriptomics study (Wyatt et al., 2014). The entire process was completed in
21 hours, which included cluster deployment, data downloading, decompression
and various data analyses. Based on the analytical results, I have also carried out a
functional analysis to associate large scale public data with a private dataset.

The main focus of the application is to present: (i) an use case for users to easily
access and analyze large amounts of public data on the cloud, (ii) the scalability
of my framework on the powerful computing cloud, and (iii) a proof of concept
functional analysis to bring additional biological insights from cloud hosted public
data into private studies.

I will start by introducing how to deploy a Spark cluster on the cloud and the config-
urations of the Spark cluster. Then, I will present the genomic dataset employed in
this use case. I will also introduce parallel data downloading and decompression
methods used in this study.

In the result sections, I will present the run times of various analyses on the Amazon
cloud. I will also present a functional study based on the fragment recruitment
profile of the entire HMP data.

81



5.1 Cluster deployment and configuration

All analyses on the Amazon AWS EC2 cloud were carried out on Spark clusters that
consist of one master node deployed on an m1.xlarge computer instance and 50 to
100 worker nodes deployed on the c3.8xlarge compute instances (see table 3.1).

The Spark cluster on the Amazon Elastic Compute Cloud (EC2) was deployed using
(i) Spark-ec2, (ii) BiBiGrid, and (iii) Amazon Elastic MapReduce (EMR). For Spark-
ec2, it launches a selected number of computing instances on EC2 using the AWS auto
scaling function. It can also request a spot price when launching computing instances.
A Linux system is deployed on all instances using the Amazon Machine Image (AMI)
ami-2ae0165d. Once all instances are alive (once the Linux system deployment is
completed), the Spark package is downloaded from the online repository to the
master instance. Next, the package is copied to each worker instance and installed
simultaneously. After that, a master Java virtual machine (JVM) daemon program
is launched on the master node, followed by launching worker daemons on all
worker nodes that connect to the master node. The entire cluster can be deployed
or shutdown with a single command. BiBiGrid uses a customized image that has a
pre-installed Spark framework in its operating system. Once the worker instances
come alive, the Spark worker daemon program can be launched directly without
downloading and installing Spark on the instances. EMR is a built-in module of the
AWS cloud. It is optimized by AWS to deploy a Spark and Hadoop cluster in a short
time. However, cost is needed for such service.

I have requested 60GB (Spark allocated 57.6 GB) RAM for each worker node on
c3.8xlarge instances. By default, 75% of the Java heap space was allocated for
Spark’s RDD memory cache. A Hadoop distributed file system (HDFS) was setup on
all worker nodes (named "Data nodes" by Hadoop) with 3 times of data redundancy
(as default). Thus, the maximum data size for HDFS storage is 210 GB per node.
On the HDFS, data is split into chunks and distributed across the data nodes with a
default size of 128 MB per chunk (see table 3.1).

The standard price for the c3.8xlarge was $1.680 per hour, per instance. However,
I have used the bidding system of the AWS cloud with spot prices between $0.17
and $0.20 per hour, per instance for the c3.4xlarge and between $0.35 and $0.40
per hour, per instance for the c3.8xlarge in the AWS Ireland region (see table 3.2).
The bidding system massively reduced our costs.

82 Chapter 5 Large scale genomic data analyses



5.2 Data storage and accessibility

The public datasets used in the analyses are selected from four genomic projects: (i)
the Human Microbiome genome project, (ii) the 1000 Genome Project, (iii) the 3000
Rice Genome Project, and (iv) a prostate transcriptome project from (Wyatt et al.,
2014). The size of all the NGS data is 26TB as compressed files. After decompression,
the total size of the data is 100TB.

I have used the entire whole genome sequencing (WGS) data (metagenomics) of the
HMP project hosted on Amazon S3. These WGS data were sampled from 6 body sites
and 15 sub body sites. In total, there are 2.3 TB compressed (8.6 TB uncompressed,
Fig. 5.1) fastq files in the bzip2 format. All HMP datasets are hosted in the Oregon
region of the Amazon S3.

Oregon, USA

• Human Microbiome 

Project (2.3TB)

Virginia, USA

• 3000 Rice Genomes Project (25TB)

• 1000 Genomes Project (5.6TB)

Cambridge, UK

• ENA ftp server 

(3.2TB)

Fig. 5.1: Fast access to genomic data on public repositories. Data sets of the Human
Microbiome Project, the 3000 Rice Genome Project and the 1000 Genomes Project
are hosted in different regions on Amazon S3. Whereas the RNA-seq data of a
prostate cancer transcriptomic study is stored on the ENA ftp server.

The WGS data of the 1000 Genomes Project was used for intensive performance
evaluations on a EC2 cluster (100 nodes, Fig. 5.1). 5.6 TB (compressed) fastq files,
sequenced from 106 samples, were mapped to the human reference genome (version
GRCh38, hg19) using Sparkhit invoked BWA. All datasets are hosted at the Amazon
S3 (Virginia region).

To benchmark the performance of genotyping on the Amazon EC2 cloud, I used
15 TB of BAM files (Fig. 5.1) that were already mapped to the Oryza sativa L. 93-
11 reference genome. The average sequencing depth is around 14 folds and the
parameter for the pileup algorithm (implemented by Samtools mpileup) was set
accordingly. All datasets are hosted at Amazon S3 (Virginia region).

5.2 Data storage and accessibility 83



In contrast to the other genome projects in this study, the RNA-seq data of the prostate
transcriptome project is hosted on the ftp server of the Europe Nucleotide Archive
(ENA) uploaded by a previous study (Wyatt et al., 2014). I used all sequencing data
for gene expression profiling (Fig. 5.1). All datasets can be found with the study
accession PRJEB6530 from the European Nucleotide Archive (ENA).

5.3 Distributed data downloading and decompression

Downloading and decompressing large genomic files are significant bottlenecks
before the actual data analysis begins. Spark’s architecture can greatly benefit
from high-performance networks during large data transfers. In particular, when
commencing a download task, files can be split into chunks and transferred from
distributed storage system, such as Amazon simple storage service (S3), to each
worker node. This parallel transfer method fully utilizes the high network bandwidth
of a distributed cluster (Fig. 5.2).

Storage CPUMemoryNetwork

HDFS

EC2 instances

S3

RDD

Master

node

Worker

nodes

Spark

cluster

Parallel programming interface

4
3

2

1

Persistent

storage

NGS data

Ephemeral 

storage
1, Elastic compute cloud

2, Simple storage service

3, Hadoop distributed file 

system

4, Resilient distributed dataset

Fig. 5.2: The architecture of a Spark cluster deployed on the Amazon cloud. The yel-
low boxes represent Amazon EC2 instances that are virtualized into Spark mas-
ter/worker nodes.

When downloading data from Amazon S3 to HDFS, I have used Hadoop Distcp
(distributed copy), a tool designed for large inter-cluster copying. For download-
ing data from Amazon S3 to a shared network file system (NFS), I used a Java-
based tool developed in our research group called BiBiS3 (https://wiki.cebitec.uni-
bielefeld.de/bibiserv/index.php/BiBiS3). BiBiS3 not only parallelizes downloading
jobs to multiple computer nodes, but also applies multi-thread downloading on
each computer node to fully exploit the capacities of every computer’s network
connection.

84 Chapter 5 Large scale genomic data analyses



Distcp is a Hadoop MapReduce program that launches a certain number of parallel
‘mapper’ processes on each worker node (known as slave node in a Hadoop cluster).
Each ‘mapper’ invokes a download process in the ‘map’ step of the MapReduce job.
The download process transfers input files to HDFS and stores them in small chunks
(default is 128 MB per chunk).

In the case of downloading data from the Amazon S3 to a shared network file system
(NFS), I have used BiBiS3 (Henke, 2017). It is designed to exploit the full network
capacity between the cloud instances and Amazon S3 by applying multi-threaded
download on each node. It is capable of downloading different chunks of the same
data to an arbitrary number of machines simultaneously, so that maximum network
bandwidth or disk I/O limit can be reached. When starting a BiBiS3 download job,
it utilizes the Amazon S3 REST API to send a GET request on each chunk of the
object, which in this case is a genomic data file. All chunks of data are then copied
to the NFS file system. Moreover, BiBiS3 is also able to download a directory of files
recursively.

Most genomic datasets are compressed and stored on public repositories. To directly
access and analyze the compressed data, I also improved the performance on data
preprocessing by introducing parallel decompression after downloading the data. I
developed a parallel decompression tool, Sparkhit-spadoop, that is built on top of the
Apache Hadoop (Spark’s parallel decompression has a thread safety issue at 2.0.0
version) and included it in our toolkit (See chapter-3: parallel data preprocessing).

5.4 Rapid NGS data analyses on the AWS cloud

To demonstrate that large scale genomic analyses on the cloud can be easily accessed
by my tools, I tested the framework on 100 TB (26 TB compressed) of genomic
data from 3 genome projects and a transcriptomics study on the Amazon EC2 cloud
(Fig. 5.3). This data was compressed and stored in different regions around the world
on Amazon S3 and the European Nucleotide Archive (ENA) ftp server (Fig. 5.3F). I
rented 100 c3.8xlarge Amazon EC2 instances (3200 cores, 6TB memory and 60TB
disk space in total; see table 3.1) with a total spot price of 38 USD per hour. Sparkhit
completed the entire process, including cluster deployment, data downloading,
decompression and various data mining, in 21 hours (the entire duration that the
cloud provider charges) with a total cost less than 800 USD (Fig. 5.3A-E).

I started deploying a Spark cluster of 100 worker nodes in Ireland region using
Spark-ec2 script, which is the slowest one among three cluster deployment tools (the
worst scenario for users’ cloud budget). This step took 39 minutes and 54 seconds
on the entire run time clock (Fig. 5.3A).

5.4 Rapid NGS data analyses on the AWS cloud 85



0

120

240

360

100
nodes

T
im

e
 (

m
)

Upload

Mapping

Download

Human Microbiome Project

0

60

120

180

T
im

e
 (

m
)

Summary

Profiling

Mapping

Decompress

Download

0

360

720

1080

1440

T
im

e
 (

m
)

Upload

Variant
detection

Download

3000 Rice Genomes Project 1000 Genomes Project

0

60

120

180

240

T
im

e
 (

m
)

Summary

Expression
profiling

Download

Prostate cancer RNA-seq data

Setup cluster

Oregon, USA

B, Human Microbiome 

Project

Virginia, USA

C, 3000 Rice Genomes Project

D, 1000 Genomes Project

Cambridge, UK

E, Prostate cancer 

RNA-seq data

0

10

20

30

40

100
nodes

50
nodes

T
im

e
 (

m
)

bibigrid

spark-ec2

EMR

Ireland

A, Amazon EC2 cluster

A B C D

E
F

Fastq: 8.6TB

Bzip2: 2.3TB

SAM: 63.9TB

BAM: 15.0TB

Fastq: 16.8TB

Gzip:   5.6TB

Fastq: 10.9TB

Bzip2: 3.2TB

Fig. 5.3: Large scale genomic data analyses on the cloud: (A) Run time comparison between
three auto-scaling tools for deploying a Spark cluster on the Amazon EC2 cloud.
Durations include pending for approval of EC2 spot request and waiting for SSH
connection to each EC2 instance. EMR, Amazon Elastic MapReduce service. (B)
Run times for processing all WGS data from the Human Microbiome Project.
Mapping was carried out using Sparkhit-recruiter while profiling was carried out
using Sparkhit invoked Kraken. (C) Run times for processing 15 TB BAM files of
the 3000 Rice Genome Project. I uploaded the variant calling result to Amazon
S3. (D) Run times for processing 5.6 TB compressed sequencing data. Mapping
was carried out using Sparkhit invoked BWA aligner. I uploaded the SAM files to
Amazon S3. (E) Run times for processing 3.2 TB RNA-seq data. Gene expression
profiling is carried out using Sparkhit invoked Kallisto. (F) Fast access to genomic
data on public repositories. Data sets of the Human Microbiome Project, the 3000
Rice Genome Project and the 1000 Genomes Project are hosted in different regions
on Amazon S3. Whereas the RNA-seq data of a prostate cancer transcriptomic
study is stored on the ENA ftp server.

5.4.1 Processing all WGS data of the Human Microbiome Project

The Human Microbiome Project hosts 2.3 TB of compressed metagenomic whole
genome shotgun (WGS) data on Amazon S3 located in the Oregon region. The data
enables comprehensive characterization of the human microbiome and serves as a
metagenomic database for microbiome studies. To associate these public datasets
with microbial reference genomes, I downloaded all WGS data to the Spark cluster
located in the Ireland region. After decompression, I recruited all sequencing reads
to a collection of 21 microbial reference genomes (72 MB total, defined as Ref-2)
and summarized the fragment recruitment results. I also profiled the taxonomy

86 Chapter 5 Large scale genomic data analyses



abundance by using Sparkhit invoked Kraken (Wood and Salzberg, 2014). All
processes were completed in 1 h 34 m (Fig. 5.3B and Appendix table S4).

5.4.2 Genotyping on 3000 samples of the 3000 Rice Genomes
Project

The 3000 Rice Genomes Project hosts 200 TB of public data on Amazon S3 (Virginia
region). This data enables large scale discovery of novel alleles for important rice
phenotypes. Variant detection is a particularly expensive step in analyzing whole
genome or exome sequencing data. To test the run time performance of Sparkhit
on variant detection, I downloaded 15 TB BAM files to the Spark cluster. By using
Sparkhit invoking Samtools-Mpileup (Li et al., 2009), I genotyped 3000 rice samples
and uploaded detected variants to Amazon S3. This analysis took 10 h 49 m
(Fig. 5.3C and Appendix table S5).

5.4.3 Mapping 106 samples of the 1000 Genomes Project

The 1000 Genomes Project hosts all WGS data on Amazon S3 (Virginia region). It
provides a detailed catalogue of human genetic variants in the studied populations.
Before variant detection, a mapping step is required to present all matches and
mismatches on the reference genome. To test the run time performance of Sparkhit
on whole genome sequence mapping, I downloaded 5.6 TB compressed sequencing
data to the Spark cluster. Using Sparkhit invoking BWA (Li and Durbin, 2009), I
mapped 106 samples to a human reference genome. After sequence mapping, all
results (SAM format) were uploaded to Amazon S3 for persistent storage. The entire
process was completed in 5 h 31 m (Fig. 5.3D and Appendix table S6).

5.4.4 Gene expression profiling on prostate cancer RNA-seq data

Profiling tumor specific gene expression is a critical step for cancer research. To
enable fast transcriptome quantification on the cloud, I tested the run time per-
formance of Sparkhit on profiling 3.2 TB compressed RNA-seq data of a prostate
cancer transcriptomics study (Wyatt et al., 2014). Since all datasets are archived
on the ENA ftp server (see Data storage and accessibility section), the downloading
process consumed 1h 29m, whereas gene expression profiling with Sparkhit invoked
Kallisto (Bray et al., 2016) was completed in 21 m 9 s (Fig. 5.3E and Appendix table
S7). After uploading the final result to Amazon S3, all EC2 instances are manually
terminated.

5.4 Rapid NGS data analyses on the AWS cloud 87



5.5 Metagenomic profiling and functional analysis

Metagenomics can capture and obtain genome fragments of uncultivated microbes
(the microbial dark matter) by applying shotgun sequencing to aggregated microor-
ganisms sampled directly from the environment (Rinke et al., 2013). The Human
Microbiome Project consortium utilizes metagenomic shotgun sequencing to char-
acterize microbial communities at different human body sites. As all HMP data
is hosted on Amazon S3, we can directly access and analyze these metagenomic
datasets on the Amazon cloud. Here, I present an use case to rapidly associate and
analyze public HMP data with private dataset on the cloud.

0

4000attached gingiva

throat

palatine tonsils

tongue dorsum

buccal mucosa

0

2000

anterior nares

0

2000
Left retroauricular
crease

Right retroauricular
crease

0

4000supragingival
plaque
subgingival
plaque
saliva

0

10000

stool

0

4000
posterior fornix

mid vagina

vaginal introitus

20 x 40005 x 4000

5 x 4000 10 x 4000

20 x 2000

175 x 4000

15 x 2000

E. Coli

str. K12

E. Coli

O104:H4

Staphylococcus

epidermidis

Staphylococcus

aureus

Streptococcus

mitis

Lactobacillus

crispatus

Neisseria

meningitidis

100 75 100 75 100 75 100 75 100 75 100 75 100 75

N
o

rm
a
li
z
e
d

 m
a
p

p
e
d

 n
u

m
b

e
r

Mapping Identity (%)

HMP data from

6 body sites

15 sub body sites

Sparkhit-recruiter

Microbial genomes

Fig. 5.4: Fragment recruitment profiles of different microbes at different sub body sites:
Sparkhit-recruiter was used to map the entire HMP whole genome sequencing data
to seven selected microbial genomes. For each line chart, normalized numbers
of mapped reads are illustrated along different mapping identities from 75% to
100% with 1 percent increment. All line charts in the same row have the same
scale indicated on the left, unless they are additionally annotated.

I started the use case by deploying a Spark cluster on the Cloud. Once the Spark
cluster is deployed (see the "cluster deployment and configuration" section), all
WGS data of the HMP is downloaded to HDFS in parallel using Hadoop-Distcp with
maximum mapper number (parallel download processers) equal to the maximum
number of available compute cores, which in our case is 3,200 cores from 100
c3.8xlarge instances. Then, the downloaded files of all samples (files of each sub-
body site) are decompressed in parallel using our Sparkhit tool Sparkhit-spadoop.
I mapped the sequence data of each sample to a reference genome containing 7
selected microbial genomes (Ref-1) using Sparkhit-recruiter and summarized the

88 Chapter 5 Large scale genomic data analyses



recruitment result using Sparkhit-reporter. The abundance profile of each microbe is
presented across different sub-body sites (Fig. 5.4). Considering that the sequencing
depth varies between different sub-body sites and the genome size changes from
one genome to another, the abundances are normalized by leveling the sequencing
depth to 1 billion sequence reads and the genome size to 5 million bases. The
normalization can be expressed as:

A = n× (5000000
L

)× (1000000000
N

) (5.1)

Where A is the normalized abundance, n is the number of reads recruited, L is the
length of a reference microbial genome and N is the total number of sequencing
data in the sub-body site.

To demonstrate that associating HMP metagenomic data with private datasets
(e. g. cultured microbial genomes or uncultured single cell genomes) can provide
more biological insights, I downloaded and recruited all HMP whole genome shotgun
data (2.3 TB compressed) to 12 selected microbial genomes (Ref-1, see table 3.3).
Based on the metadata of the HMP samples, I present the fragment recruitment
profile of 7 different microbial genomes across 6 different body sites (15 sub-body
sites. Fig. 5.4). The abundance of each microbial genome was normalized and
illustrated across different mapping identities (from 75 percent to 100 percent). In
general, sub body sites of the same main body site have similar profiles, but with
few exceptions. For instance, the abundances of Neisseria meningitides are different
between saliva and gingival plaque from the oral body site. Streptococcus aureus has
higher abundance in buccal mucosa, attached gingivae and saliva compared to other
sub body sites in the oral body site. By changing the input reference genomes, users
can easily produce the abundance profile of other microbes (see discussion).

Mapping metagenomic sequences to a new strain could reveal potential structural
variances. A common method for functional studies is based on the hypothesis
that such structural variances can have functional impact on the gene level. When
recruiting HMP data to the reference genomes, the recruitment result was sensitive
enough to pick up structural differences between genome sequences of two E. coli
strains (Fig. 5.5A and 5.5B). Then, I followed up with a functional analysis (gene
prediction and pathway enrichment) based on the sequences. I extracted sequence
segments with lower read coverage from the reference genome (Fig. 5.5B). I used
Prodigal (Hyatt et al., 2010) to predict genes on these sequence segments and
annotated the predicted genes by mapping the peptide sequences of the genes to
the NCBI non-redundant (nr) database using Blastp (Altschul et al., 1990a). The
annotated genes were, then, sent to the KEGG (Kanehisa et al., 2014) database
for pathway annotation. The pathway enrichment result was calculated using the
hypergeometric test.

5.5 Metagenomic profiling and functional analysis 89



Shiga toxin 2 subunit B (3291836 - 3292105)

3289836 3299836

Shiga toxin 2 subunit A (3292117 - 3293076)

A B

C

D

ID: 3168, locus (3291836 - 3292105)

ID: 3169, locus (3292117 - 3293076)Predicted 

genes:

Genbank:

Gaps

0.00001

0.0001

0.001

0.01

0.1

1

P
-v

a
lu

e

Shigellosis

Pathogenic e. coli infection

Pyrimidine metabolism

Selenocompound metabolism

Metabolic pathways

G

SHIGELLOSIS

Focal adhesion OspE
Delamination

suppression

Gb3

StxA

StxB

ShET
Fluid secretion 

into the intestine

Basolateral membrane

Inhibition of 

protein synthesis

PATHOGENIC ESCHERICHIA COLI INFECTION

Inhibition of 

protein synthesis

StxA

StxB
Toxins

Host: Small intestinal epithelial cell

Large intestinal epithelial cell

Translocation

Pathogen:

E. coli

E

F

Pathways

Id
e

n
ti
ty

 (
%

)

Fig. 5.5: Functional analyses on a toxic E. Coli. strain: (A, B) Distribution of recruited reads
along the entire chromosomes of two E. Coli. strains. Reads that mapped to contigs
and plasmid sequences are not included. (C) Enlarged fragment recruitment gap
on the genomic sequence of the E. Coli. O104:H4 strain. (D) Predicted genes and
their loci in the gap region. (E, F) Two enriched pathways: pathogenic Escherichia
Coli infection and Shigellosis. (G) P-value of each annotated pathway. Pathway
enrichment test was carried out using all predicted genes from all the gap regions.

I have predicted 158 new genes which are enriched in two pathogenic pathways:
Shigellosis and Pathogenic E. coli infection (Fig. 5.5E-G). I annotated all genes and
identified two toxic genes (Shiga toxin 2 subunit A and B) present in the E. coli strain
that caused the 2011 German E. coli outbreak (Rasko et al., 2011).

5.6 Discussion

In this chapter, I have presented an use case of analyzing large amounts of public
genomic data on the Amazon cloud. In total, my framework processed 100 TB of
genomic data on a 100-node Spark cluster in 21 hours. The entire use case provided
a thorough instruction on how to easily setup a cluster, download all datasets, and
rapidly analyze the data with my framework. Furthermore, I have processed the
entire HMP sequencing data in 2 hours, presented a proof of concept association
study between public ‘big data’ and private datasets.

90 Chapter 5 Large scale genomic data analyses



Spark and Hadoop based bioinformatics tools are not widely used in genomic
studies as they require users to comprehend certain amount of knowledge on cloud
computing. Therefore, I particularly focus on providing a simple and comprehensive
cloud application to directly access and analyze public genomic datasets. I described
a simple way to setup a Spark cluster on the Amazon cloud with one line of command.
I also facilitated downloading and preprocessing large amounts of data by leveraging
distributed Amazon S3 storage and optimizing parallel data decompression. In
addition, Sparkhit enables users to parallelize their own tools or public bio-containers.
Our large scale data analyses on 100 TB of data presented how I completed the
entire cloud utilization cycle in only 21 hours. Moreover, the fragment recruitment
application on all WGS data of HMP was completed in less than 2 hours on Amazon
EC2.

The fragment recruitment application presented a study model in which users can
easily query the entire HMP data to a personalized reference dataset on the cloud. In
microbial studies, combining metagenomic data with microbial reference genomes
has been commonly used (Eloe-Fadrosh et al., 2016). In our use case, I recruited all
WGS data of the HMP to two different strains of E. coli: a toxic strain and a non-toxic
strain. The intention is to find genome sequence segments that are not presented in
the metagenomic samples. These sequence segments, which are unique for the toxic
strain, might have functional impact that differs from the non-toxic one. I applied a
functional analysis using the sequence segments and reproduced two toxic genes
that caused the 2011 German E. coli outbreak. The same method can be applied to
other isolates or single cell genomes.

5.6 Discussion 91





6Conclusion and outlook

6.1 Conclusion

In this thesis, I have developed a cloud based bioinformatics framework tackling
two computational challenges introduced by large scale NGS data: (i) sequence
mapping, a computationally intensive task and (ii) de novo genome assembly, a
memory intensive task. By leveraging the powerful distributed computing engine,
the Apache Spark, I have implemented two native applications, Sparkhit and Reflexiv,
to address the two challenges. Both tools have better performances compared to
existing tools. I have also integrated a series of analytical modules that enables users
to carry out various data mining tasks on the cloud. Using the framework, I am able
to rapidly analyze large amounts of genomic data on the Amazon EC2 cloud.

In the first part of my work, I have presented Sparkhit, a Spark based distributed
computational framework for large scale genomic analytics. Sparkhit mainly focuses
on addressing the computationally intensive challenge in sequence mapping. It
incorporates a variety of tools and methods that are programmed in the Spark
extended MapReduce model. In chapter 3, I have described (i) the algorithms and
pipelines of a fragment recruitment tool and a short-read mapping tool, (ii) the
implementation of a general tool wrapper to invoke and parallelize external tools
and docker containers, and (iii) the integration of Spark’s machine learning library
for downstream data mining. I also presented the architecture of Sparkhit and the
utilities that I used for deploying Spark clusters and downloading public datasets.

In the result section, I have carried out a series of performance benchmarks on
Sparkhit. Our tool had excellent run time performance on data preprocessing
comparing to Crossbow (18 to 32 times faster) and significant run time improvement
on fragment recruitment comparing to MetaSpark (92 to 157 times faster). Although
I recruited 10% to 12% less reads than MetaSpark, I can adjust to a smaller K-mer
size that recruits slightly more reads than MetaSpark, while still running 47 to
124 times faster. In addition, my tool has a reasonable accuracy and sensitivity on
sequence mapping. Sparkhit-recruiter scaled linearly with the increasing amount of
input data, as I have used Spark RDD to balance data distribution and optimized the
computational parallelization. When scaling out to more worker nodes, Sparkhit still
keeps a good scaling performance with a minor slowdown at more then 60 worker
nodes.

93



In the second part of the thesis, I have presented Reflexiv, a distributed de novo
genome assembler that is built on top the Apache Spark platform. I have invented a
new distributed data structure and implemented it in the Reflexiv assembler. The
data structure is called Reflexible Distributed K-mer (RDK), which is a higher level
abstraction of the Spark RDD. It uses the Spark RDD to distribute large amounts
of reflexible k-mers across the Spark cluster and assembles the genome in parallel.
I have introduced a random k-mer reflecting method to retrieve the adjacencies
between overlapped k-mers and to assemble the genome in an iterative way. I have
also described how to solve repeats in the genome and pop bubbles during the
assembly.

In the results section, I have carried out a series of benchmarks on Reflexiv. My tool
had similar assembly quality with both Ray and Abyss. Although Velvet assembles
longer contigs than the other tools, it has more mis-assembled contigs in its result.
Reflexiv has excellent run time performances on ethernet connected Spark clusters.
Compared to existing tools, Reflexiv runs 8-17 times faster than the Ray assembler
and 7-18 times faster than the AbySS assembler on the clusters deployed at the
de.NBI cloud.

In the third part of the thesis, I presented a use case to rapidly analyze a collection
of 100TB genomic dataset. In the genomic field, Spark and Hadoop based bioin-
formatics tools are not widely used, as users have little knowledge on distributed
computing. Therefore, the use case focuses on providing a simple and comprehensive
cloud application to directly access and analyze public genomic datasets. I presented
an easy way to setup a Spark cluster on the Amazon cloud with just one line of
command. I also presented parallel downloading and decompression methods to
optimize the preprocessing of large amounts of genomic data on the cloud.

In the use case, I downloaded and analyzed 100 TB data in only 21 hours. Moreover,
the fragment recruitment application on all WGS data of HMP was completed in
less than 2 hours on Amazon EC2. The fragment recruitment application presented
a study model that users can easily query the entire HMP data to a personalized
reference dataset on the cloud. In the use case, I recruited all WGS data of the HMP
to two different strains of E. coli and applied a functional analysis using the result.
As a proof of concept application, I have found two toxic genes that caused the 2011
German E. coli outbreak.

In summary, my work contributes to the interdisciplinary research of life science
and distributed cloud computing by improving existing methods with a new data
structure, algorithms, and distributed implementations. The entire study involves
theoretical algorithmic development, distributed software engineering and proof of
concept biological applications. As a result, I have successfully accelerated run time

94 Chapter 6 Conclusion and outlook



performances of two specific bioinformatics applications, sequence mapping and
de novo genome assembly. I have also facilitated genomic research communities to
engage large scale NGS data studies on the cloud.

6.2 Outlook

In the distributed implementation of the Sparkhit framework, I have used a broadcast
function to ship just one copy of the reference index to each worker node for all the
read mapping processes. Yet, the broadcasting process (building the reference index
and the network broadcasting) introduces a slight run time overhead, as it is a single
process running on just one CPU of the master node. The current work around is to
use a local implemented tool to pre-built the reference index on a single computer.
Then, the Sparkhit program can directly broadcast the pre-build reference index to
each worker node. Thus, the overhead of building a reference index can be solved.
Nevertheless, the network broadcasting process slows down the entire process, as it
is not parallelized.

To further improve the scalability of the Sparkhit framework, I will implement a
parallel reference index download function in the next upgrade of the software. A
similar function has been used in the Sparkhit-piper module. When parallelizing
external tools such as BWA and Bowtie2, I have used a parallel download function
to download the reference index to the worker nodes. In this function, the pre-built
reference index is usually pre-uploaded to a distributed storage system such as the
Amazon S3 and the Openstack Swift file system. Once uploaded, the reference
index can be downloaded simultaneously to all worker nodes of the Spark cluster
by the parallel download function. I will implement the same function for both
Sparkhit-recruiter and Sparkhit-mapper. Thus, the overhead of the reference index
broadcasting process can be resolved.

For the distributed de novo genome assembler, there are two future works that
can be implemented to add more functionality to the assembler. In the current
implementation of the assembler, I have used a ‘Long’ object to encode a k-mer. Such
an implementation restricts the program from using k-mer sizes longer than 31nt. In
the future upgrade of the software, I will use an ‘array’ object to store the binaries of
the encoded k-mer. In this way, there will be no limitations for the k-mer length.

The other future work is to add an extra scaffolding module to the Reflexiv assembler.
The current version of the assembly pipeline is only implemented to assemble contigs.
For the scaffolding phase, most of the scaffolding tools use the paired sequencing
reads to build up scaffolds. Since my tool already has a distributed read mapping
function, I will incorporate the function to firstly search for the mate pair sequencing

6.2 Outlook 95



reads that connects two contigs. This function can be implemented in a ‘map’ step
(in the MapReduce model) that maps all sequencing reads to the assembled contigs.
Once the mate pair connections are found, a ‘reduce’ step is followed to lay out all
the connected contigs and assemble the scaffolds.

96 Chapter 6 Conclusion and outlook



Bibliography

Abu-Doleh, A. and Ü. V. Çatalyürek (2015). „Spaler: Spark and GraphX based de novo
genome assembler“. In: 2015 IEEE International Conference on Big Data (Big Data),
pp. 1013–1018 (cit. on p. 27).

Abuin, J. M., J. C. Pichel, T. F. Pena, and J. Amigo (2016). „SparkBWA: Speeding Up the
Alignment of High-Throughput DNA Sequencing Data“. In: PLoS One 11.5, e0155461
(cit. on p. 24).

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman (1990a). „Basic local
alignment search tool“. In: J Mol Biol 215.3, pp. 403–10 (cit. on p. 89).

Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman
(1990b). „Basic local alignment search tool“. In: Journal of Molecular Biology 215.3,
pp. 403 –410 (cit. on p. 21).

Auton, Adam et al. (2015). „A global reference for human genetic variation“. In: Nature
526.7571, pp. 68–74 (cit. on p. 3).

Bankevich, Anton, Sergey Nurk, Dmitry Antipov, et al. (2012). „SPAdes: A New Genome
Assembly Algorithm and Its Applications to Single-Cell Sequencing“. In: Journal of Com-
putational Biology 19.5. PMID: 22506599, pp. 455–477. eprint: https://doi.org/10.
1089/cmb.2012.0021 (cit. on p. 27).

Betts, J.G., P. Desaix, J.E. Johnson, et al. (2013). Anatomy & Physiology. Open Textbooks.
OpenStax College, Rice University (cit. on p. 2).

Boisvert, S., F. Laviolette, and J. Corbeil (2010). „Ray: simultaneous assembly of reads from
a mix of high-throughput sequencing technologies“. In: J Comput Biol 17.11, pp. 1519–33
(cit. on pp. 9, 27, 57).

Bray, N. L., H. Pimentel, P. Melsted, and L. Pachter (2016). „Near-optimal probabilistic
RNA-seq quantification“. In: Nat Biotechnol 34.5, pp. 525–7 (cit. on pp. 9, 87).

Chaisson, Mark J. P., Richard K. Wilson, and Evan E. Eichler (2015). „Genetic variation and
the de novo assembly of human genomes“. In: Nature Reviews Genetics 16. Review Article,
627 EP – (cit. on p. 1).

Chapman, Jarrod A., Isaac Ho, Sirisha Sunkara, et al. (2011). „Meraculous: De Novo Genome
Assembly with Short Paired-End Reads“. In: PLOS ONE 6.8, pp. 1–13 (cit. on p. 26).

Collins, Francis S., Eric D. Green, Alan E. Guttmacher, and Mark S. Guyer (2003). „A vision
for the future of genomics research“. In: Nature 422, 835 EP – (cit. on p. 2).

97

https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1089/cmb.2012.0021


Consortium, Rice Genomes Project (2014). „The 3,000 rice genomes project“. In: Gigascience
3, p. 7 (cit. on p. 3).

Dahm, Ralf (2008). „Discovering DNA: Friedrich Miescher and the early years of nucleic
acid research“. In: Human Genetics 122.6, pp. 565–581 (cit. on p. 1).

Dean, Jeffrey and Sanjay Ghemawat (2004). „MapReduce: Simplified Data Processing on
Large Clusters“. In: OSDI’04: Sixth Symposium on Operating System Design and Implemen-
tation. San Francisco, CA, pp. 137–150 (cit. on p. 13).

– (2008). „MapReduce: simplified data processing on large clusters“. In: Commun. ACM
51.1, pp. 107–113 (cit. on pp. 7–9, 13).

Decap, D., J. Reumers, C. Herzeel, P. Costanza, and J. Fostier (2015). „Halvade: scalable
sequence analysis with MapReduce“. In: Bioinformatics 31.15, pp. 2482–8 (cit. on pp. 23,
47).

Droop, A. P. (2016). „qsubsec: a lightweight template system for defining sun grid engine
workflows“. In: Bioinformatics 32.8, pp. 1267–8 (cit. on pp. 3, 9).

Eloe-Fadrosh, E. A., D. Paez-Espino, J. Jarett, et al. (2016). „Global metagenomic survey
reveals a new bacterial candidate phylum in geothermal springs“. In: Nat Commun 7,
p. 10476 (cit. on p. 91).

Ensi, 2017. http://cloudonmove.com/iaas-paas-saas-what-do-they-mean/. IaaS,
PaaS, SaaS – What do they mean? by Ensi Maria on 2017-08-01 (cit. on p. 8).

Gollery, Martin (2005). „Bioinformatics: Sequence and Genome Analysis, 2nd ed. David W.
Mount. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2004, 692 pp.,
$75.00, paperback. ISBN 0-87969-712-1.“ In: Clinical Chemistry 51.11, pp. 2219–2219.
eprint: http://clinchem.aaccjnls.org/content/51/11/2219.1.full.pdf (cit. on
p. 19).

Gonzalez, Joseph E., Reynold S. Xin, Ankur Dave, et al. (2014). „GraphX: Graph Processing
in a Distributed Dataflow Framework“. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). Broomfield, CO: USENIX Association, pp. 599–613
(cit. on p. 28).

Goodwin, Sara, John D. McPherson, and W. Richard McCombie (2016). „Coming of age: ten
years of next-generation sequencing technologies“. In: Nature Reviews Genetics 17. Review
Article, 333 EP – (cit. on p. 1).

Green, Eric D. (2001). „Strategies for the systematic sequencing of complex genomes“. In:
Nature Reviews Genetics 2. Review Article, 573 EP – (cit. on p. 1).

Gropp, William, Ewing Lusk, Nathan Doss, and Anthony Skjellum (1996). „A high-performance,
portable implementation of the MPI message passing interface standard“. In: Parallel
computing 22.6, pp. 789–828 (cit. on pp. 9, 27).

Grotzke, Martin (2017). Kryo: Fast, efficient Java serialization and cloning (cit. on p. 38).

Gurevich, Alexey, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler (2013). „QUAST:
quality assessment tool for genome assemblies“. In: Bioinformatics 29.8, pp. 1072–1075.
eprint: /oup/backfile/content_public/journal/bioinformatics/29/8/10.1093_
bioinformatics_btt086/2/btt086.pdf (cit. on p. 77).

Henke, Christian (2017). BiBiS3, https://wiki.cebitec.uni-bielefeld.de/bibiserv-1.25.2/index.php/BiBiS3
(cit. on pp. 6, 7, 85).

98 Bibliography

http://cloudonmove.com/iaas-paas-saas-what-do-they-mean/
http://clinchem.aaccjnls.org/content/51/11/2219.1.full.pdf
/oup/backfile/content_public/journal/bioinformatics/29/8/10.1093_bioinformatics_btt086/2/btt086.pdf
/oup/backfile/content_public/journal/bioinformatics/29/8/10.1093_bioinformatics_btt086/2/btt086.pdf


Huang, Liren, Jan Krüger, and Alexander Sczyrba (2018). „Analyzing large scale genomic
data on the cloud with Sparkhit“. In: Bioinformatics 34.9, pp. 1457–1465. eprint: /oup/
backfile/content_public/journal/bioinformatics/34/9/10.1093_bioinformatics_
btx808/2/btx808.pdf (cit. on pp. 31, 52).

Hyatt, D., G. L. Chen, P. F. Locascio, et al. (2010). „Prodigal: prokaryotic gene recognition
and translation initiation site identification“. In: BMC Bioinformatics 11, p. 119 (cit. on
p. 89).

Kanehisa, M., S. Goto, Y. Sato, et al. (2014). „Data, information, knowledge and principle:
back to metabolism in KEGG“. In: Nucleic Acids Res 42.Database issue, pp. D199–205
(cit. on p. 89).

Landset, Sara, Taghi M. Khoshgoftaar, Aaron N. Richter, and Tawfiq Hasanin (2015). „A
survey of open source tools for machine learning with big data in the Hadoop ecosystem“.
In: Journal of Big Data 2.1, p. 24 (cit. on p. 14).

Langmead, B. and S. L. Salzberg (2012). „Fast gapped-read alignment with Bowtie 2“. In:
Nat Methods 9.4, pp. 357–9 (cit. on p. 9).

Langmead, B., M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg (2009). „Searching for SNPs
with cloud computing“. In: Genome Biol 10.11, R134 (cit. on pp. 11, 23, 47).

Langmead, B., K. D. Hansen, and J. T. Leek (2010). „Cloud-scale RNA-sequencing differential
expression analysis with Myrna“. In: Genome Biol 11.8, R83 (cit. on p. 23).

Langmead, Ben (2010). „Aligning short sequencing reads with Bowtie“. In: Current protocols
in bioinformatics, pp. 11–7 (cit. on p. 24).

Langmead, Ben and Abhinav Nellore (2018). „Cloud computing for genomic data analysis
and collaboration“. In: Nature Reviews Genetics 19. Review Article, 208 EP – (cit. on pp. 2,
4, 8).

Li, H. and R. Durbin (2009). „Fast and accurate short read alignment with Burrows-Wheeler
transform“. In: Bioinformatics 25.14, pp. 1754–60 (cit. on pp. 9, 21, 22, 24, 87).

Li, H., B. Handsaker, A. Wysoker, et al. (2009). „The Sequence Alignment/Map format and
SAMtools“. In: Bioinformatics 25.16, pp. 2078–9 (cit. on pp. 9, 87).

Li, R., Y. Li, K. Kristiansen, and J. Wang (2008). „SOAP: short oligonucleotide alignment
program“. In: Bioinformatics 24.5, pp. 713–4 (cit. on pp. 9, 24).

Li, Ruiqiang, Hongmei Zhu, Jue Ruan, et al. (2010). „De novo assembly of human genomes
with massively parallel short read sequencing“. In: Genome Research 20.2, pp. 265–272.
eprint: http://genome.cshlp.org/content/20/2/265.full.pdf+html (cit. on p. 26).

Lipman, DJ and WR Pearson (1985). „Rapid and sensitive protein similarity searches“. In:
Science 227.4693, pp. 1435–1441. eprint: http://science.sciencemag.org/content/
227/4693/1435.full.pdf (cit. on p. 20).

Liu, Yongchao, Bertil Schmidt, and Douglas L. Maskell (2011). „Parallelized short read
assembly of large genomes using de Bruijn graphs“. In: BMC Bioinformatics 12.1, p. 354
(cit. on p. 28).

McKenna, A., M. Hanna, E. Banks, et al. (2010). „The Genome Analysis Toolkit: a MapReduce
framework for analyzing next-generation DNA sequencing data“. In: Genome Res 20.9,
pp. 1297–303 (cit. on p. 24).

Bibliography 99

/oup/backfile/content_public/journal/bioinformatics/34/9/10.1093_bioinformatics_btx808/2/btx808.pdf
/oup/backfile/content_public/journal/bioinformatics/34/9/10.1093_bioinformatics_btx808/2/btx808.pdf
/oup/backfile/content_public/journal/bioinformatics/34/9/10.1093_bioinformatics_btx808/2/btx808.pdf
http://genome.cshlp.org/content/20/2/265.full.pdf+html
http://science.sciencemag.org/content/227/4693/1435.full.pdf
http://science.sciencemag.org/content/227/4693/1435.full.pdf


Melissa, Bastide and McCombie W. Richard (2007). „Assembling Genomic DNA Sequences
with PHRAP“. In: Current Protocols in Bioinformatics 17.1, pp. 11.4.1–11.4.15. eprint:
https://currentprotocols.onlinelibrary.wiley.com/doi/pdf/10.1002/0471250953.
bi1104s17 (cit. on p. 24).

Mell, Peter and Timothy Grance (2011). The NIST Definition of Cloud Computing. Tech. rep.
800-145. Gaithersburg, MD: National Institute of Standards and Technology (NIST) (cit.
on p. 7).

Meng, Jintao, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, and Pavan Balaji (2014).
„SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores“.
In: BMC Bioinformatics 15.9, S2 (cit. on p. 27).

Merkel, Dirk (2014). „Docker: lightweight linux containers for consistent development and
deployment“. In: Linux Journal 2014.239, p. 2 (cit. on pp. 11, 31, 41).

Myers, Eugene W., Granger G. Sutton, Art L. Delcher, et al. (2000). „A Whole-Genome
Assembly of Drosophila“. In: Science 287.5461, pp. 2196–2204. eprint: http://science.
sciencemag.org/content/287/5461/2196.full.pdf (cit. on p. 25).

Nagarajan, Niranjan and Mihai Pop (2013). „Sequence assembly demystified“. In: Nature
Reviews Genetics 14. Review Article, 157 EP – (cit. on pp. 24, 67).

Needleman, Saul B. and Christian D. Wunsch (1970). „A general method applicable to the
search for similarities in the amino acid sequence of two proteins“. In: Journal of Molecular
Biology 48.3, pp. 443 –453 (cit. on p. 20).

Niemenmaa, M., A. Kallio, A. Schumacher, et al. (2012). „Hadoop-BAM: directly manipu-
lating next generation sequencing data in the cloud“. In: Bioinformatics 28.6, pp. 876–7
(cit. on p. 43).

Nih Hmp, Working group, J. Peterson, et al. (2009). „The NIH Human Microbiome Project“.
In: Genome Res 19.12, pp. 2317–23 (cit. on p. 3).

Niu, B., Z. Zhu, L. Fu, S. Wu, and W. Li (2011). „FR-HIT, a very fast program to recruit metage-
nomic reads to homologous reference genomes“. In: Bioinformatics 27.12, pp. 1704–5
(cit. on pp. 9, 22, 32).

Pearson, W. R. and D. J. Lipman (1988). „Improved tools for biological sequence comparison“.
In: Proc Natl Acad Sci U S A 85.8, pp. 2444–8 (cit. on p. 36).

Pevzner, Pavel A., Haixu Tang, and Michael S. Waterman (2001). „An Eulerian path approach
to DNA fragment assembly“. In: Proceedings of the National Academy of Sciences 98.17,
pp. 9748–9753. eprint: http://www.pnas.org/content/98/17/9748.full.pdf (cit. on
pp. 26, 27).

Rasko, D. A., D. R. Webster, J. W. Sahl, et al. (2011). „Origins of the E. coli strain causing an
outbreak of hemolytic-uremic syndrome in Germany“. In: N Engl J Med 365.8, pp. 709–17
(cit. on p. 90).

Rasmussen, K. R., J. Stoye, and E. W. Myers (2006). „Efficient q-gram filters for finding all
epsilon-matches over a given length“. In: J Comput Biol 13.2, pp. 296–308 (cit. on p. 22).

Rinke, C., P. Schwientek, A. Sczyrba, et al. (2013). „Insights into the phylogeny and coding
potential of microbial dark matter“. In: Nature 499.7459, pp. 431–7 (cit. on p. 88).

100 Bibliography

https://currentprotocols.onlinelibrary.wiley.com/doi/pdf/10.1002/0471250953.bi1104s17
https://currentprotocols.onlinelibrary.wiley.com/doi/pdf/10.1002/0471250953.bi1104s17
http://science.sciencemag.org/content/287/5461/2196.full.pdf
http://science.sciencemag.org/content/287/5461/2196.full.pdf
http://www.pnas.org/content/98/17/9748.full.pdf


Rusch, D. B., A. L. Halpern, G. Sutton, et al. (2007). „The Sorcerer II Global Ocean Sampling
expedition: northwest Atlantic through eastern tropical Pacific“. In: PLoS Biol 5.3, e77
(cit. on pp. 19, 24, 32).

Schatz, M. C. (2009). „CloudBurst: highly sensitive read mapping with MapReduce“. In:
Bioinformatics 25.11, pp. 1363–9 (cit. on pp. 23, 47).

Schatz, Michael C, Arthur L Delcher, and Steven L. Salzberg (2010). „Assembly of large
genomes using second-generation sequencing“. In: Genome Research. eprint: http://
genome.cshlp.org/content/early/2010/05/27/gr.101360.109.full.pdf+html
(cit. on p. 25).

Shvachko, K., H. Kuang, S. Radia, and R. Chansler (2010). „The Hadoop Distributed File
System“. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST),
pp. 1–10 (cit. on pp. 7, 9, 13).

Simpson, J. T., K. Wong, S. D. Jackman, et al. (2009). „ABySS: a parallel assembler for short
read sequence data“. In: Genome Res 19.6, pp. 1117–23 (cit. on pp. 9, 26, 27, 56).

Simpson, Jared T. and Richard Durbin (2012). „Efficient de novo assembly of large genomes
using compressed data structures“. In: Genome Research 22.3, pp. 549–556. eprint: http:
//genome.cshlp.org/content/22/3/549.full.pdf+html (cit. on p. 25).

Singh, Dilpreet and Chandan K. Reddy (2014). „A survey on platforms for big data analytics“.
In: Journal of Big Data 2.1, p. 8 (cit. on p. 6).

Smith, T.F. and M.S. Waterman (1981). „Identification of common molecular subsequences“.
In: Journal of Molecular Biology 147.1, pp. 195 –197 (cit. on p. 20).

Sohn, Jang-il and Jin-Wu Nam (2018). „The present and future of de novo whole-genome as-
sembly“. In: Briefings in Bioinformatics 19.1, pp. 23–40. eprint: /oup/backfile/content_
public/journal/bib/19/1/10.1093_bib_bbw096/3/bbw096.pdf (cit. on p. 26).

Sutton, Granger G., OWEN WHITE, MARK D. ADAMS, and ANTHONY R. KERLAVAGE (1995).
„TIGR Assembler: A New Tool for Assembling Large Shotgun Sequencing Projects“. In:
Genome Science and Technology 1.1, pp. 9–19. eprint: https://doi.org/10.1089/gst.
1995.1.9 (cit. on p. 24).

Thomason, Andrew (1989). „A simple linear expected time algorithm for finding a hamilton
path“. In: Discrete Mathematics 75.1, pp. 373 –379 (cit. on p. 26).

Watson, J. D. and F. H. C. Crick (1953). „Molecular Structure of Nucleic Acids: A Structure
for Deoxyribose Nucleic Acid“. In: Nature 171, 737 EP – (cit. on p. 1).

Wood, D. E. and S. L. Salzberg (2014). „Kraken: ultrafast metagenomic sequence classifica-
tion using exact alignments“. In: Genome Biol 15.3, R46 (cit. on pp. 9, 87).

Wyatt, A. W., F. Mo, K. Wang, et al. (2014). „Heterogeneity in the inter-tumor transcriptome
of high risk prostate cancer“. In: Genome Biol 15.8, p. 426 (cit. on pp. 12, 81, 83, 84, 87).

Yeo, Sarah, Lauren Coombe, René L Warren, Justin Chu, and Inanç Birol (2018). „ARCS:
scaffolding genome drafts with linked reads“. In: Bioinformatics 34.5, pp. 725–731.
eprint: /oup/backfile/content_public/journal/bioinformatics/34/5/10.1093_
bioinformatics_btx675/2/btx675.pdf (cit. on p. 80).

Bibliography 101

http://genome.cshlp.org/content/early/2010/05/27/gr.101360.109.full.pdf+html
http://genome.cshlp.org/content/early/2010/05/27/gr.101360.109.full.pdf+html
http://genome.cshlp.org/content/22/3/549.full.pdf+html
http://genome.cshlp.org/content/22/3/549.full.pdf+html
/oup/backfile/content_public/journal/bib/19/1/10.1093_bib_bbw096/3/bbw096.pdf
/oup/backfile/content_public/journal/bib/19/1/10.1093_bib_bbw096/3/bbw096.pdf
https://doi.org/10.1089/gst.1995.1.9
https://doi.org/10.1089/gst.1995.1.9
/oup/backfile/content_public/journal/bioinformatics/34/5/10.1093_bioinformatics_btx675/2/btx675.pdf
/oup/backfile/content_public/journal/bioinformatics/34/5/10.1093_bioinformatics_btx675/2/btx675.pdf


Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, et al. (2012). „Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing“. In: Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX
Association, pp. 2–2 (cit. on pp. 7, 10, 13, 16).

Zerbino, Daniel R. and Ewan Birney (2008). „Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs“. In: Genome Research 18.5, pp. 821–829. eprint: http:
//genome.cshlp.org/content/18/5/821.full.pdf+html (cit. on pp. 26, 27).

Zhou, W., R. Li, S. Yuan, et al. (2017). „MetaSpark: a spark-based distributed processing tool
to recruit metagenomic reads to reference genomes“. In: Bioinformatics (cit. on pp. 11, 24,
46).

Zook, Justin M., Brad Chapman, Jason Wang, et al. (2014). „Integrating human sequence
data sets provides a resource of benchmark SNP and indel genotype calls“. In: Nature
Biotechnology 32, 246 EP – (cit. on p. 45).

Websites

Moustafa, Ahmed (2005). JAligner: Open source java implementation of Smith-Waterman.
URL: http://jaligner.sourceforge.net/ (visited on Feb. 24, 2018) (cit. on p. 20).

Seward, Julian (1996). Bzip2 data compressor. URL: http://www.bzip.org/ (visited on
Sept. 20, 2010) (cit. on p. 20).

102 Bibliography

http://genome.cshlp.org/content/18/5/821.full.pdf+html
http://genome.cshlp.org/content/18/5/821.full.pdf+html
http://jaligner.sourceforge.net/
http://www.bzip.org/


List of Figures

1.1 Nucleic acids and next-generation sequencing: (A) The DNA sequences
of the original genome are randomly fragmented and sequenced in
a redundant way (Betts et al., 2013); (B) The original genome is
reconstructed by mapping the fragments back to a reference template
and building a consensus sequence; (C) Genome reconstruction using
overlaps between fragments. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 NGS data increment and storage: (A) Archived NGS data in the SRA
database doubled four times from July 2012 to March 2017 (Langmead
and Nellore, 2018); (B) Different locations for public data storage and
cloud storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Computational method for genome assembly: (A) A fragment of the
genome; (B) reference based assembly maps sequenced fragments back
to a reference sequence. The mapping process is usually computation-
ally time consuming; (C) de novo assembly uses overlap information of
the sequenced fragments to extend and reconstruct the sequence. To
efficiently search the overlaps of all fragments, all sequences are stored
in the memory. Thus, it is very memory consuming. . . . . . . . . . . . 5

1.4 Horizontal and vertical scaling (scale up and scale out): Scale up
improves the computational capacity within one computer instance,
whereas scale out connects more computer instances to increase the
computational capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Scaling out download workloads: Each computer instance has 10 Gi-
gabit/s bandwidth. The test data sets are the NGS data of the human
microbiome genome project stored on the AWS cloud in Oregon, USA
region. All data were downloaded in parallel to a cluster located in
Frankfurt, European region. The figure is a screen shot from Ganglia
network I/O monitor (Henke, 2017). . . . . . . . . . . . . . . . . . . . 7

1.6 Categories of cloud services. The figure is modified based on (Ensi, 2017). 8

1.7 Distributed computational model and frameworks: (A) An example of
record counting in the MapReduce programming model. Each yellow
box represents a computer instance. (B) Distributed data storage in
the Hadoop distributed file system (HDFS) and the distributed memory
cache in the resilient distributed datasets (RDD). Red dashes represent
data partitions in a file. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

103



2.1 The Hadoop ecosystem (Landset et al., 2015) . . . . . . . . . . . . . . 14

2.2 The fault tolerant mechanism of HDFS: The blue and red dashes rep-
resent data blocks replicated and distributed by HDFS. In the event of
a data node failure (e.g. data node disconnected to the name node),
HDFS is able to recover the data using the replicas from other data nodes. 15

2.3 The fault tolerant mechanism of Spark: each worker node carries out a
series of operations as the linage of the task. In the event of a worker
node failure, the linage of the task will be sent to anther worker node
on the cluster and resumes running. . . . . . . . . . . . . . . . . . . . 16

2.4 Distributed network connection with external storages: blue and red
dashes represent data blocks that are transferred independently by
‘map’ tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Distributed computing on Spark clusters: (A) methods implemented
via RDD’s API will be operated on each partition of the RDD. Red lines
indicate data input and blue lines indicate data output. (B) the ‘cache’
function stores distributed data in memory, so that the ‘count’ operation
can read data directly from memory without loading from local disks. . 18

2.6 Transformations and actions: the ‘filter’ and ‘map’ operations are trans-
formations that operate on an RDD and send the result to a new RDD.
The ‘count’ operation is an action that processes the data from an RDD
and sends the result to the driver node. Spark only starts the job when
encountering an action, which in this case is the ‘count’ operation. . . 19

2.7 The sorting process in a Spark cluster: the process consists of two
stages: the ‘Map’ stage and the ‘Reduce’ stage. Each grey dash frame
represents a partition of an RDD. The grey solid frames represent the
merged result of TimSort. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Short read alignment and fragment recruitment: the major difference
between the two approaches is the goals they want to achieve. (A)
Short read alignment tries to find the best match of a given read.
Whereas (B) fragment recruitment tries to report all possible matches
that have higher identities than a given threshold. Blue dashes represent
sequencing reads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.9 BWT suffix array construction: the circulated strings are created by
a head-to-tail shift of one nucleotide, where the $ sign serves as a
marker to the end of the sequence. All circulated strings are then
lexicographically sorted and the last symbols of the strings compose the
BWT string (lo$oogg in the figure). The figure is modified from (Li and
Durbin, 2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

104 List of Figures



2.10 Distributed sequence alignment in Crossbow: Preprocessed reads are
split and distributed to different computing nodes. Each node carries out
an independent Bowtie alignment on the split block of the sequencing
reads. The alignments from Bowtie are binned and sorted for SNP
calling. The figure is modified from (Langmead et al., 2009) . . . . . . 23

2.11 De novo assembly methods: (A and B), part of the overlap-layout-
consensus (OLC) method. (C), part of the de Bruijn Graph. The figure
is from (Schatz et al., 2010) . . . . . . . . . . . . . . . . . . . . . . . . 25

2.12 The Hamiltonian and the Eulerian de Bruijn graphs: (A), k-mers are
extracted with 4 nucleotides in length. (B), the Eulerian de Bruijn
graph uses k-mers as the edges and (K-1)-mers as the nodes. (c), the
Hamiltonian de Bruijn graph uses (K-1)-mers as the edges and k-mers
as the nodes. The figure is from (Sohn and Nam, 2018). . . . . . . . . 26

2.13 The distributed de Bruijn graph of Velvet: Blue frames represent nodes
of the de Bruijn graph. Figure modified from (Zerbino and Birney, 2008) 27

3.1 The pipelines of Sparkhit-recruiter and Sparkhit-mapper: (A)The pipeline
of Sparkhit-recruiter for fragment recruitment. Blue dashes represent
k-mers extracted from the reference genome, whereas red dashes rep-
resent k-mers extracted from sequencing reads. (B) The pipeline of
Sparkhit-mapper for short-read mapping. The third step of Sparkhit-
mapper uses the pigeonhole filter instead of the q-gram filter. . . . . . 32

3.2 Reference index construction: k-mers are extracted from the reference
genome and their locations on the genome are stored in a hash table.
Each k-mer is encoded into an integer, which servers as the index
number (the Hash code) of the hash table. . . . . . . . . . . . . . . . . 34

3.3 An example of the q-gram filter: (A) three mismatches between the
sequencing read and the candidate block knock out 10 q-grams (red
short dashes). (B) One mismatch knock out maximally q number of
q-grams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 An example of the pigeonhole principle: (A) when using pigeonhole
principle for the filtering process, short k-mers are extracted consecu-
tively without overlaps. Thus, each mismatch knocks out maximally
one short k-mer. (B) An example of two mismatches knock out two
k-mers from the candidate block . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Banded alignment: A K length band is applied on a m× n matrix for
the pairwise alignment, where n is the length of the reference genome
and m is the length of the sequencing read. Since the computation is
limited in the banded area, the computational time complexity is O(Kn). 37

List of Figures 105



3.6 Distributed implementation of the fragment recruitment pipeline: (A)
Distributed implementation of Sparkhit-recruiter. The reference index,
illustrated in blue dashed box, is built on a driver node and broadcasted
to each worker node. Sequencing reads, illustrated in Red dashes, are
loaded into an RDD and queried to the broadcasted reference index
in parallel as a ‘map’ step. A ‘reduce’ step is followed to summarize
the mapping result. (B) the reference index, illustrated in blue dashed
box, is built on a driver node and broadcasted to each worker node.
Sequencing reads, illustrated in bold red dash, will be searched against
the reference hash table for exact matches. A smaller k-mer is used to
apply the q-gram filter. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Invoking external tools in Sparkhit: (A) Yellow boxes represent Spark
worker nodes virtualized by the Spark JVMs. Spark RDD sends sequenc-
ing data (in fastq format) from Spark JVMs to the external executables
via an STDIN channel. External executables process the input sequenc-
ing data independently and send the result back to Spark RDD via an
STDOUT channel. (B) The same approach can also apply to external
Docker containers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 Distributed decompression: A Bzip2 compressed fastq file is logically
split on HDFS (replicas are physically distributed to different computer
nodes) and each chunk of the file is decompressed by a ‘mapper’ process
that runs a Bzip2 decompression program. . . . . . . . . . . . . . . . . 42

3.9 Run time comparisons between different aligners: The comparisons
were carried out across different sizes of input fastq files, different sizes
of reference genomes and different numbers of worker nodes. . . . . . 44

3.10 Numbers of recruited reads: comparison was carried out between
Crossbow and Sparkhit-recruiter when mapping 1.3 TB fastq files to a
72 MB reference genome. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.11 Scaling performances of Sparkhit-recruiter: (A) Run time performance
of Sparkhit-recruiter for recruiting 100-1000 GB sequencing data to a
72 MB reference genome on a 30 nodes Spark cluster deployed on the
Amazon EC2 cloud. Each node has 32 vCPUs. (B) Scaling performance
of Sparkhit-recruiter. When increasing the number of worker nodes, the
mean speed ups are measured by comparing their run times to the run
time on 10 worker nodes. We recruited 1.3 TB fastq files (Data-1) to a
72 MB reference genome (Ref-2) on the same cluster of (A). . . . . . . 46

3.12 Sensitivity and accuracy comparisons between mapping tools. . . . . . 47

106 List of Figures



3.13 Comparisons between Sparkhit-recruiter and MetaSpark on metage-
nomic fragment recruitment: (A) Run times on recruiting simulated
sequencing reads to 72 MB and 142 MB reference genomes. All tests
were carried out on 10, 20, and 30 worker nodes Spark clusters. Each
worker node has 16 vCPUs. Run times are presented in logarithmic
scale of base 2. (B) Number of recruited reads on recruiting 6 million
simulated reads to 72 MB reference genome and 1 million simulated
reads to 142 MB reference genome. . . . . . . . . . . . . . . . . . . . . 48

3.14 Run time comparisons between Crossbow and Sparkhit for preprocess-
ing 338 TB compressed fastq files on 50 and 100 worker nodes. . . . . 49

3.15 Run times of the machine learning library on (A) a private cluster and
(B) the Amazon EC2 cloud. All computations were performed on a 200
GB VCF file cached in the memory. . . . . . . . . . . . . . . . . . . . . 50

3.16 Run times for different iterations of the K means clustering. We ran
iterations on the same VCF file from Fig. 3.15, with data caching and
non data caching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.17 I/O performance on different clusters: For 40 nodes cluster, parallel
writing tasks operate on 1280 file handles. For 20 nodes cluster, parallel
writing tasks operate on 640 file handles. The single writing task
operates on 1 file handle. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.18 Run time comparison of different tools for building reference index: The
comparison was carried out on single computer node (the m1.xlarge
Amazon EC2 instance). All tools ran on 36 MB, 72 MB and 142 MB
reference genomes respectively. . . . . . . . . . . . . . . . . . . . . . . 54

4.1 A simplified representation of an RDK. An RDK is a long list of k-mers.
It can be randomly partitioned and distributed to different computer
instances. Compared to the state of the art de bruijn graph, an RDK
only stores the vertices of the graph. . . . . . . . . . . . . . . . . . . . 56

4.2 K-mer reflecting in an RDK. A 4-nucleotide k-mer k1 has a 1-nucleotide
prefix p1 and a 3-nucleotide suffix S1. A k-mer reflecting step switches
the positions of p1 and S1. The reflecting process creates a reflected
k-mer k’1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Reestablishing k-mer adjacency: The sorting process places the reflected
k-mer k1 and its adjacent k-mer k2 at neighboring positions. When going
through the RDK k-mer list, the two adjacent k-mers are extended to
k1+2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Reflecting an extended k-mer: The extended k-mer k1+2 has a 2-
nucleotide prefix p1+2 and a 3-nucleotide suffix S1+2. The reflecting
step switches the positions of p1+2 and S1+2. After the k-mer reflecting
process, a reflected k-mer k’1+2 is created in the RDK. . . . . . . . . . . 60

List of Figures 107



4.5 Reconnecting adjacent k-mers: The extended k-mer k1+2 has an adja-
cent k-mer k3, which has a 3-nucleotide prefix P3 and a 1-nucleotide
suffix s3. P3 is identical to the prefix S1+2 of the reflected k-mer k’1+2.
After sorting the RDK list, the reflected k-mer k’1+2 is placed at the
neighboring position of its adjacent k-mer k3. Thus, k’1+2 and k3 can
be merged as k1+2+3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Combinations of two adjacent k-mers after random k-mer reflecting:
The two adjacent k-mers, km-1 and km, will only be placed at neighboring
positions when km-1 is reflected and km is not reflected. . . . . . . . . 62

4.7 Iterations of three steps in the random k-mer reflecting method: (A)
Random k-mer reflecting. A reflected k-mer is marked with a red
2. Whereas an unreflected forward k-mer is marked with a blue 1.
(B) An overview of all combinations. Only the 2-1 combinations can
establish their adjacencies after sorting. (C) Sorting and extension
steps. (D) After extension, the extended k-mers still keep a fixed n-1
nucleotide suffix, where n is the length of the k-mers. (E) An overview
of the extension events throughout the entire genome sequence. Each
iteration reduces 25% of k-mers. . . . . . . . . . . . . . . . . . . . . . 63

4.8 Distributed implementation of the random k-mer reflecting method
on top of the Spark platform. (A) all k-mers are loaded into an RDD
that is distributed across a Spark cluster. (B) Each computer instance
randomly reflects a sub list of k-mers stored in its memory. (C) The
sorting process is carried out on the entire list of k-mers through the
Spark cluster. (D) The extension step is carried out independently on
each computer instance. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9 Branches and forks on a de bruijn graph. (A) A bubble on a de bruijn
graph creates two branches that will soon merge into one path. It also
creates a forward fork and a backward fork. (B) A repeat event creates
four branches and a repeat path. It creates a backward fork and a
forward fork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.10 Forward and backward forking k-mers: (A) A bubble creates two for-
ward forking k-mers kf1 and kf2. The two forward forking k-mers
have the same n-1 nucleotides prefixes and two different 1-nucleotide
suffix. The forward forking k-mers will extend and connect to two back-
ward forking k-mers kb1 and kb2 in n-1 extensions. The two backward
forking k-mers have identical n-1 nucleotides suffix and two different
1-nucleotide prefixes. Both of the k-mers, kb1 and kb2, can also be repre-
sented by two reflected forking k-mers k’b1 and k’b2. (B) A repeat event
also creates two forward forking k-mers and two backward forking
k-mers. Compared to a bubble event, the forward and backward forking
k-mers will not connect in n-1 extensions. . . . . . . . . . . . . . . . . 68

108 List of Figures



4.11 Forward and backward forking k-mers detection: Sorting all forward
k-mers will place forward forking k-mers at neighboring positions, as
both forward forking k-mers kf1 and kf2 have the same n-1 nucleotides
prefix. Sorting all reflected forking k-mers will place backward forking
k-mers at neighboring positions, as both reflected forking k-mers k’b1

and k’b2 have the same n-1 nucleotides prefix. . . . . . . . . . . . . . . 69

4.12 Decision making for bubble forking k-mers and repeat forking k-mers.
(A) Removing the lower coverage forking k-mers, kf2 and kb2, will
either correct a sequencing error or solve a SNP event. Extendable
regions are given to the higher coverage forking k-mers, kf1 and kb1.
The extendable region allow both k-mers to extend maximum n-1
nucleotides. In a bubble event, the two forking k-mers will connect in n-
1 nucleotides extensions. Once the two k-mers connect, the extendable
regions are removed and the bubble has been popped. Red circled
nodes represent removed lower coverage forking k-mers. Grey dashed
arrows represent severed connections. (B) In a repeat event, removing
the lower coverage forking k-mers, kf2 and kb2, will stop the repeat
region connecting to the two lower coverage branches. Whereas the
extendable regions of the two higher coverage forking k-mers, kf1 and
kb1, will stop connecting to the two higher coverage branches, as the two
forking k-mers will not meet backwark forking k-mers in n-1 nucleotides. 70

4.13 The pipeline of the Reflexiv assembler. Blue dashes with red dots
represent reflected k-mers. Step 5 iterates until convergence. . . . . . . 71

4.14 Basic data structures of two reflexible k-mers in an RDK. For a reflected
k-mer (denoted with red boxes) shorter than 2n nucleotides, a Long
object is used to store the extended suffix. For a forward k-mer longer
2n nucleotides, an Array of Long objects is used to stored the extended
suffix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15 Comparison of run time performances between different distributed
de novo genome assemblers. The comparison was carried out on a
single computer instance using 10, 20, and 30 CPUs. The 10GB simu-
lated sequencing data of the human chromosome 17 was used for the
benchmark. Detailed metrics can be found in Appendix Table S16. . . . 76

4.16 Comparison of run time performances between different distributed
de novo genome assemblers. The comparison was carried out on 5 to
20 worker nodes with 140 to 560 CPUs. The 10GB simulated sequenc-
ing data of the human chromosome 17 was used for the benchmark.
Detailed metrics can be found in Appendix Table S17. . . . . . . . . . . 77

List of Figures 109



4.17 Comparison of run time performances between different distributed de
novo genome assemblers. The comparison was carried out on 5 to 20
worker nodes with 140 to 560 CPUs. The 1.3GB real sequencing data
of the E. coli genome was used for the benchmark. Detailed metrics can
be found in Appendix Table S18. . . . . . . . . . . . . . . . . . . . . . 78

5.1 Fast access to genomic data on public repositories. Data sets of the
Human Microbiome Project, the 3000 Rice Genome Project and the
1000 Genomes Project are hosted in different regions on Amazon S3.
Whereas the RNA-seq data of a prostate cancer transcriptomic study is
stored on the ENA ftp server. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 The architecture of a Spark cluster deployed on the Amazon cloud. The
yellow boxes represent Amazon EC2 instances that are virtualized into
Spark master/worker nodes. . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Large scale genomic data analyses on the cloud: (A) Run time com-
parison between three auto-scaling tools for deploying a Spark cluster
on the Amazon EC2 cloud. Durations include pending for approval of
EC2 spot request and waiting for SSH connection to each EC2 instance.
EMR, Amazon Elastic MapReduce service. (B) Run times for processing
all WGS data from the Human Microbiome Project. Mapping was car-
ried out using Sparkhit-recruiter while profiling was carried out using
Sparkhit invoked Kraken. (C) Run times for processing 15 TB BAM
files of the 3000 Rice Genome Project. I uploaded the variant calling
result to Amazon S3. (D) Run times for processing 5.6 TB compressed
sequencing data. Mapping was carried out using Sparkhit invoked BWA
aligner. I uploaded the SAM files to Amazon S3. (E) Run times for
processing 3.2 TB RNA-seq data. Gene expression profiling is carried
out using Sparkhit invoked Kallisto. (F) Fast access to genomic data on
public repositories. Data sets of the Human Microbiome Project, the
3000 Rice Genome Project and the 1000 Genomes Project are hosted
in different regions on Amazon S3. Whereas the RNA-seq data of a
prostate cancer transcriptomic study is stored on the ENA ftp server. . . 86

5.4 Fragment recruitment profiles of different microbes at different sub
body sites: Sparkhit-recruiter was used to map the entire HMP whole
genome sequencing data to seven selected microbial genomes. For
each line chart, normalized numbers of mapped reads are illustrated
along different mapping identities from 75% to 100% with 1 percent
increment. All line charts in the same row have the same scale indicated
on the left, unless they are additionally annotated. . . . . . . . . . . . 88

110 List of Figures



5.5 Functional analyses on a toxic E. Coli. strain: (A, B) Distribution of
recruited reads along the entire chromosomes of two E. Coli. strains.
Reads that mapped to contigs and plasmid sequences are not included.
(C) Enlarged fragment recruitment gap on the genomic sequence of
the E. Coli. O104:H4 strain. (D) Predicted genes and their loci in the
gap region. (E, F) Two enriched pathways: pathogenic Escherichia
Coli infection and Shigellosis. (G) P-value of each annotated pathway.
Pathway enrichment test was carried out using all predicted genes from
all the gap regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

List of Figures 111





List of Tables

3.1 Configurations of different computer instances . . . . . . . . . . . . . . 51

3.2 The standard and spot prices for different Amazon EC2 instances . . . 51

3.3 Datasets used for various benchmarks . . . . . . . . . . . . . . . . . . 52

4.1 Comparison of the assembly qualities between different tools. The
assemblies are carried out on a 500MB (50x) simulated dataset of an E.
coli genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Comparison of the assembly qualities between different tools. The
assemblies are carried out on a 1.3GB real sequencing dataset of an E.
coli genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Comparison of the assembly qualities between different tools. The
assemblies are carried out on a 10GB (50x) simulated dataset of the
chromosome 17 of the human genome. . . . . . . . . . . . . . . . . . . 79

S1 Run times on recruiting simulated sequencing data to 72 MB and 142
MB reference genome. All tests were carried out on Sparkhit clusters
with 10, 20, and 30 worker nodes. Each worker node has 16vCPUs. . . 120

S2 Numbers of recruited reads for recruiting 6 million simulated reads to a
72 MB reference genome and 1 million simulated reads to a 142 MB
reference genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

S3 Run time comparison for setting up a Spark cluster on the Amazon EC2
cloud. Durations include pending for approval of EC2 spot requests and
waiting for the SSH connection to each EC2 instance. . . . . . . . . . . 120

S4 Run times for processing all HMP WGS data on the Amazon EC2 cloud.
Recruitment was carried out using Sparkhit-recruiter while profiling
was carried out using Sparkhit invoked Kraken. . . . . . . . . . . . . . 121

S5 Run times for processing 15 TB BAM files of the 3000 Rice Genomes
Project. Variant detection was carried out using Sparkhit invoked
Mpileup. The detected variants were uploaded to Amazon S3 for
persistent storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

S6 Run times for processing 5.6 TB compressed sequencing data of the
1000 Genome Project. Mapping was carried out using Sparkhit invoked
BWA aligner. Mapping result was uploaded to Amazon S3 for persistent
storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

113



S7 Run times for processing 3.2 TB compressed sequencing data of a
prostate cancer transcriptome study. Gene expression profiling is carried
out using Sparkhit invoked Kallisto. . . . . . . . . . . . . . . . . . . . . 122

S8 Run time comparisons between different aligners on 1.3 TB input fastq
files (Data-1). The comparisons were carried out across different sizes
of reference genomes and different numbers of worker nodes. . . . . . 122

S9 Run time comparisons between different aligners on 545 GB input fastq
files (Data-2). The comparisons were carried out across different sizes
of reference genomes and different numbers of worker nodes. . . . . . 122

S10 Run times of Sparkhit-recruiter for recruiting 100 – 1000 GB sequencing
data to a 72 MB (Ref-2) reference genome. Fragment recruitment was
carried out on a 30 worker nodes Spark cluster deployed on the Amazon
EC2 cloud. Each worker node has 32 vCPUs. . . . . . . . . . . . . . . . 123

S11 Scaling performance of Sparkhit-recruiter. We recruited 1.3 TB fastq
files (Data-1) to a 72 MB reference genome (Ref-2) on a 30 nodes Spark
cluster deployed on the Amazon EC2 cloud. Run times were used to
measure the speed up at each scale. . . . . . . . . . . . . . . . . . . . . 123

S12 Resource consumptions between Crossbow and Sparkhit for prepro-
cessing 338 TB Bzip2 compressed fastq files on 50 and 100 worker
nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

S13 Comparing the recruited number of reads between Crossbow, Sparkhit-
recruiter and Sparkhit-mapper when recruiting 1.3 TB fastq files to a
72 MB reference genome. Sparkhit-mapper uses more strict pigeonhole
pricinple to filter candidate blocks. . . . . . . . . . . . . . . . . . . . . 124

S14 Run times of machine learning library on both private cluster and
Amazon EC2 cloud. All computations were performed on a 200 GB VCF
file (Data-3) cached in the memeory. . . . . . . . . . . . . . . . . . . . 124

S15 Run times for different iterations of K-means clustering. Comparisons
were carried out between two sets of iterations: with data caching and
non data caching. The input data set is a VCF file (Data-3). . . . . . . . 125

S16 Comparison of run times between different distributed de novo genome
assemblers. The comparison was carried out on a single computer
instance using 10, 20, and 30 CPUs. The 10GB simulated sequencing
data of the human chromosome 17 was used for the benchmark. . . . 125

S17 Comparison of run times between different distributed de novo genome
assemblers. The comparison was carried out on clusters with 5, 10,
15, and 20 worker nodes (140, 280, 420, and 560 CPUs). The 10GB
simulated sequencing data of the human chromosome 17 was used for
the benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

114 List of Tables



S18 Comparison of run times between different distributed de novo genome
assemblers. The comparison was carried out on 5 to 20 worker nodes
with 140 to 560 CPUs. The 1.3GB real sequencing data of the E. coli
genome was used for the benchmark. . . . . . . . . . . . . . . . . . . . 126

List of Tables 115





Appendix

We have extended the Spark machine learning library (Mllib) for downstream data
mining. Here we describe each module in detail.

Clustering

K-means is an iterative algorithm that clusters data points into k number of clusters
based on a distance metric. It first randomly generates k number of centroids as
the initial ‘means’. Then, all data points are assigned to the closest centroid that
creates k clusters. After that, a new centroid is elected within each cluster and all
data points are reassigned to the newly created k clusters. These re-centering and
re-clustering steps are iterated until convergence conditions are fulfilled.

To implement the k-means in a distributed way, the re-centering and re-clustering
steps are split and implemented in a Spark extended MapReduce paradigm. The
‘map’ step assigns each data point to the closest centroids to form clusters. Whereas
the ‘reduce’ step computes the new centroid for each cluster. Since data points
are distributed across cluster nodes, the ‘reduce’ step applies Spark’s ‘reduceByKey’
function to shuffle data points by clustering and calculating the centroids. The ‘map’
and ‘reduce’ steps iterate until the convergence is reached.

The bisecting k-means algorithm is used for hierarchical clustering. It uses a divisive
approach that recursively splits all data points in a reverse hierarchical way. It starts
with splitting one cluster of all data points into two sub-clusters using the k-means
algorithm (Bisecting). Then, the splitting runs recursively to one cluster that is
selected from the last recursion until the desired number of clusters is reached.

Principle component analysis

We used principle component analysis (PCA) to separate individuals from different
continental regions based on their genotypes, as well as different tumor and benign
samples based on their gene expression profiles (supplementary file 2 Fig. S4E and
S4F). The genotypes or the abundances of genes are encoded in floats that forms

117



a matrix, where each row represents features of a sample in a study cohort. Spark
loads the matrix into an RDD of vectors as a "RowMatrix", where each vector is a
single row of the input matrix. Then, a distributed covariance method is used for the
dimension reduction. It first applies a ‘reduce’ step to compute the empirical mean
of each column. The empirical means are, then, used to calculate the deviations
from the means as the outer product in a ‘map’ step. Followed by a ‘reduce’ step,
a covariance matrix is created based on the outer product (a matrix computation
operates on the conjugate transpose of the outer product matrix and the outer
product matrix itself). The final step collects and computes the eigenvectors.

Correlation test

The correlation test is used to measure the linear dependence of two biological
samples based on their genetic features (gene expression profiles or genotypes). The
expression data or the genotype profile is imported into an RDD, where each element
of the RDD is a vector of input data points (gene abundance or encoded genotypes)
of different samples. All vectors must have the same number of data points, so that
the correlation can be calculated based on two series of variables in the same length.
A ‘reduce’ step applies the Pearson or the Spearman’s rank correlation method to the
two columns of the vector list (as a matrix) in the RDD. The returned correlation
coefficients are sent back to the driver node by a ‘collect’ function.

Logistic regression

In genome wide association study (GWAS), the logistic regression is used to examine
heterogeneous SNPs in a case cohort based on the training data of genotype variables
from a control cohort. The limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm is implemented for the logistic regression analysis. The distributed
implementation of the L-BFGS applies a ‘map’ function that reads each partition of
the training dataset and calculates the logistic losses of each partition based on the
current weights (the weighted scores in the current iteration) with the following
equation:

L(w; x, y) := log(1 + exp(−ywT x)) (6.1)

where L is the function for computing the logistic loss, w is a vector of weights in
the current iteration, x is a vector of input training data points (a row of variables)
and y is a vector of corresponding labels to be predicted. After all logistic losses
are calculated in the ‘map’ step, a ‘reduce’ step collects and summarizes the logistic
losses on each worker node and updates the weights. The ‘map’ and the ‘reduce’
steps iterate until the approximate minimum is obtained (the weights and logistic
losses are smaller than the default criteria).

Chi-square test

118 List of Tables



The Pearson’s Chi-square test is used to perform statistical hypothesis tests that
examine the biological variance, such as the gene differential expressions between
case and control groups or the genotype profiles between two different cohorts.
The expression data or the genotype profile is imported into an RDD where each
element of the RDD is a vector (labeled points in Spark) of input data points (gene
abundance or encoded genotypes) along different samples. Then, the chi-square test
is carried out on each vector independently in a ‘map’ process. A ‘collect’ function
aggregates statistical test results (p-values) from each worker node and sends the
results back to the driver node.

Hardy-Weinberg equilibrium

In genome-wide association studies (GWAS), the Hardy-Weinberg equilibrium (HWE)
is used to estimate genotyping errors and the population stratification by predicting
genotype frequencies of a given cohort. According to the HWE, allele and genotype
frequencies in a given population stays constant from generation to generation
without other evolutionary interferences. Let p and q denote the ratios of two alleles.
A and a denote the dominant and the recessive alleles of a diploid genome. The
HWE can be expressed as:

(p + q)2 = p2 + 2pq + q2 = 1 (6.2)

Where p2 is the expected genotype frequency of AA (the dominant allele), 2pq is
the expected genotype frequency of Aa, q2 is the expected genotype frequency of aa
(the resessive allele). When the ratios of homozygous and heterozygous genotypes
significantly differ from the prediction under the HWE assumptions, genotyping
errors or a population stratification is expected. Sparkhit loads the genotype data
from a VCF file where each line represents the genotypes of one locus along different
samples. A ‘map’ function is implemented to calculate the actual allele frequencies
of each input line and predict the expected genotype frequencies.

Supplementary tables

List of Tables 119



Tab. S1: Run times on recruiting simulated sequencing data to 72 MB and 142 MB reference
genome. All tests were carried out on Sparkhit clusters with 10, 20, and 30 worker
nodes. Each worker node has 16vCPUs.

Tool

Run time (s)

72 MB 142 MB

10 nodes 20 nodes 30 nodes 10 nodes 20 nodes 30 nodes

MetaSpark

(k-mer 11nt)
9725 7761 7807 14941 10779 9469

Sparkhit-recruiter

(k-mer 11nt)
72 84 72 95 94 91

Sparkhit-recruiter

(k-mer 12nt)
205 130 111 120 102 100

Tab. S2: Numbers of recruited reads for recruiting 6 million simulated reads to a 72 MB
reference genome and 1 million simulated reads to a 142 MB reference genome.

Tool
Number of recruited reads

72MB reference genome

6 million fastq reads

142MB reference genome

1 million fastq reads

MetaSpark

k-mer 11nt
9508168 1598186

Sparkhit-recruiter

k-mer 11nt
8370739 1445459

Sparkhit-recruiter

k-mer 10nt
9529937 1679323

Tab. S3: Run time comparison for setting up a Spark cluster on the Amazon EC2 cloud.
Durations include pending for approval of EC2 spot requests and waiting for the
SSH connection to each EC2 instance.

Tool
Run time (s)

100 nodes 50 nodes

Bibigrid 1190 896

Spark-ec2 2394 1539

EMR 688 660

120 List of Tables



Tab. S4: Run times for processing all HMP WGS data on the Amazon EC2 cloud. Recruit-
ment was carried out using Sparkhit-recruiter while profiling was carried out using
Sparkhit invoked Kraken.

Processes
Run time (s)

100 nodes 50 nodes

Download 1006 1673

Decompression 1273 2298

Mapping 2113 3603

Profiling 1114 1670

Summary 186 190

Total 5692 9434

Tab. S5: Run times for processing 15 TB BAM files of the 3000 Rice Genomes Project.
Variant detection was carried out using Sparkhit invoked Mpileup. The detected
variants were uploaded to Amazon S3 for persistent storage.

Processes
Run time (s)

100 nodes 50 nodes

Download 10356 5295

Variant detection 70363 32838

Upload 1326 861

Total 82045 38994

Tab. S6: Run times for processing 5.6 TB compressed sequencing data of the 1000 Genome
Project. Mapping was carried out using Sparkhit invoked BWA aligner. Mapping
result was uploaded to Amazon S3 for persistent storage.

Processes
Run time (s)

100 nodes

Download 2652

Mapping 13304

Upload 3921

Total 19877

List of Tables 121



Tab. S7: Run times for processing 3.2 TB compressed sequencing data of a prostate cancer
transcriptome study. Gene expression profiling is carried out using Sparkhit
invoked Kallisto.

Processes
Run time (s)

100 nodes 50 nodes

Download 5368 9102

Gene expression profiling 1269 2348

Summary 61 73

Total 6698 11523

Tab. S8: Run time comparisons between different aligners on 1.3 TB input fastq files (Data-
1). The comparisons were carried out across different sizes of reference genomes
and different numbers of worker nodes.

Tool

Run time (s)

50 nodes 30 nodes

36 MB 72 MB 142 MB 36 MB 72 MB 142 MB

Sparkhit BWAMEM 658 810 927 1036 1116 1298

Crossbow 1349 1518 1732 2160 2421 2783

Sparkhit Bowtie2 550 563 608 566 697 842

Sparkhit-mapper 258 325 500 340 454 700

Sparkhit-recuiter 563 762 1230 850 1161 1897

Sparkhit Fr-hit 333 460 696 511 716 1116

Tab. S9: Run time comparisons between different aligners on 545 GB input fastq files
(Data-2). The comparisons were carried out across different sizes of reference
genomes and different numbers of worker nodes.

Tool

Run time (s)

50 nodes 30 nodes

36 MB 72 MB 142 MB 36 MB 72 MB 142 MB

Sparkhit BWAMEM 287 308 363 450 480 545

Crossbow 593 657 900 1000 1047 1220

Sparkhit Bowtie2 198 208 217 329 360 366

Sparkhit-mapper 160 190 277 202 258 272

Sparkhit-recuiter 262 395 602 416 602 966

Sparkhit Fr-hit 156 218 305 231 320 489

122 List of Tables



Tab. S10: Run times of Sparkhit-recruiter for recruiting 100 – 1000 GB sequencing data to
a 72 MB (Ref-2) reference genome. Fragment recruitment was carried out on a
30 worker nodes Spark cluster deployed on the Amazon EC2 cloud. Each worker
node has 32 vCPUs.

Sparkhit-recruiter

Input data size (GB) Run time (s)

95 179.599

187 289.762

290 366.968

391 439.932

496 520.955

600 604.355

704 685.301

799 769.355

894 872.818

988 925.38

Tab. S11: Scaling performance of Sparkhit-recruiter. We recruited 1.3 TB fastq files (Data-1)
to a 72 MB reference genome (Ref-2) on a 30 nodes Spark cluster deployed on
the Amazon EC2 cloud. Run times were used to measure the speed up at each
scale.

Sparkhit-recruiter

Number of nodes Run time (s)

10 3262

20 1709

30 1161

40 949

50 761

60 644

70 608

80 555

90 496

100 453

List of Tables 123



Tab. S12: Resource consumptions between Crossbow and Sparkhit for preprocessing 338
TB Bzip2 compressed fastq files on 50 and 100 worker nodes.

Resources
100 nodes 50 nodes

Crossbow Sparkhit Crossbow Sparkhit

Storage (input):

Read data fetched
337.8G 337.8G 337.8G 337.8G

Storage (output):

Read data pushed to HDFS
394.7G 1291.2G 394.7G 1291.2G

Memory:

Total committed heap usage
9.7G 800.0G 10.8G 357.2G

Wall clock:

program run time (s)
7601 234 7926 429

CPU:

run time (ms)
202541780 418400492 210211966 408968576

Tab. S13: Comparing the recruited number of reads between Crossbow, Sparkhit-recruiter
and Sparkhit-mapper when recruiting 1.3 TB fastq files to a 72 MB reference
genome. Sparkhit-mapper uses more strict pigeonhole pricinple to filter candidate
blocks.

Tool Number of recruited reads

Sparkhit-recruiter 496569401

Sparkhit-mapper 27591565

Crossbow 16288351

Tab. S14: Run times of machine learning library on both private cluster and Amazon EC2
cloud. All computations were performed on a 200 GB VCF file (Data-3) cached
in the memeory.

Machine learning module

Run time (s)

Private Cluster Amazon EC2

20 nodes 40 nodes 20 nodes 40 nodes

PCA 689 521 301 268

K-means 631 448 84 70

Bisecting k-means 601 409 64 49

Correlation 482 378 176 117

Logistic regression 377 310 233 206

HWE 313 201 60 38

Chi-square test 318 198 48 36

124 List of Tables



Tab. S15: Run times for different iterations of K-means clustering. Comparisons were
carried out between two sets of iterations: with data caching and non data
caching. The input data set is a VCF file (Data-3).

K-means iterations
Run time (s)

Without cache Cache

1 133 51

10 592 123

20 1175 212

30 1762 308

40 2371 403

Tab. S16: Comparison of run times between different distributed de novo genome assem-
blers. The comparison was carried out on a single computer instance using 10, 20,
and 30 CPUs. The 10GB simulated sequencing data of the human chromosome
17 was used for the benchmark.

Clusters
Run time (s)

Reflexiv Ray AbySS

10 cores, 1 node 4307 9659 4323

20 cores, 1 node 3162 5287 3321

30 cores, 1 node 2215 3653 2205.9

Tab. S17: Comparison of run times between different distributed de novo genome assem-
blers. The comparison was carried out on clusters with 5, 10, 15, and 20 worker
nodes (140, 280, 420, and 560 CPUs). The 10GB simulated sequencing data of
the human chromosome 17 was used for the benchmark.

Clusters
Run time (s)

Reflexiv Ray AbySS

140 cores, 5 nodes 305.906 2519.66 2181.27

280 cores, 10 nodes 167.085 2955.6 3103.93

420 cores, 15 nodes 229.572 3032.36 2941.68

560 cores, 20 nodes 274.83 2586.32 2108.67

List of Tables 125



Tab. S18: Comparison of run times between different distributed de novo genome assem-
blers. The comparison was carried out on 5 to 20 worker nodes with 140 to 560
CPUs. The 1.3GB real sequencing data of the E. coli genome was used for the
benchmark.

Clusters
Run time (s)

Reflexiv Ray AbySS

140 cores, 5 nodes 86.637 907.73 541.57

280 cores, 10 nodes 91.155 999.29 517.334

420 cores, 15 nodes 113.468 1084 678.95

560 cores, 20 nodes 112.813 894.8 536.67

126 List of Tables



Colophon

This thesis was typeset with LATEX 2ε. It uses the Clean Thesis style developed by
Ricardo Langner. The design of the Clean Thesis style is inspired by user guide
documents from Apple Inc.





Declaration

I have completed my work solely and only with the help of the references mentioned
in the thesis.

Bielefeld, June 18, 2019

Liren Huang




	Cover
	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 The big data challenge in life science
	1.2 Distributed cloud computing
	1.3 Thesis structure

	2 Related Work
	2.1 The Apache Hadoop and Spark frameworks
	2.1.1 Cluster topology
	2.1.2 Spark data processing paradigm
	2.1.3 Sorting in Spark

	2.2 Sequence alignment and its cloud implementations
	2.2.1 Short read alignment and fragment recruitment
	2.2.2 Algorithms for sequence alignment
	2.2.3 Distributed implementations

	2.3 De novo assembly and its cloud implementations
	2.3.1 Algorithms for short read de novo assembly
	2.3.2 State-of-the-art de Bruijn graph
	2.3.3 Cloud based de novo assemblers

	2.4 Conclusion

	3 Sparkhit: Distributed sequence alignment
	3.1 The pipeline for sequence alignment
	3.1.1 Building reference index
	3.1.2 Candidate block seraching and q-Gram filters
	3.1.3 Pigeonhole principle
	3.1.4 Banded alignment

	3.2 Distributed implementation
	3.2.1 Reference index serialization and broadcasting
	3.2.2 Data representation in the Spark RDD
	3.2.3 Concurrent in memory searching
	3.2.4 Memory tuning for Spark native implementation

	3.3 Using external tools and Docker containers
	3.4 Integrating Spark's machine learning library (MLlib)
	3.5 Parallel data preprocessing
	3.6 Results and Discussion
	3.6.1 Run time comparison between different mappers
	3.6.2 Scaling performance of Sparkhit-recruiter
	3.6.3 Accuracy and sensitivity of natively implemented tools
	3.6.4 Fragment recruitment comparison with MetaSpark
	3.6.5 Preprocessing comparison with Crossbow
	3.6.6 Machine learning library benchmarking and run time performances on different clusters
	3.6.7 Cluster configurations for the benchmarks
	3.6.8 NGS data sets for the benchmarks
	3.6.9 Discussion


	4 Reflexiv: Parallel De Novo genome assembly
	4.1 Reflexible Distributed K-mer (RDK)
	4.2 Random k-mer reflecting and recursion
	4.3 Distributed implementation
	4.4 Repeat detection and bubble popping
	4.5 The assembly pipeline
	4.6 Time complexity
	4.7 Memory consumption
	4.8 Results and Discussion
	4.8.1 Results
	4.8.2 Discussion


	5 Large scale genomic data analyses
	5.1 Cluster deployment and configuration
	5.2 Data storage and accessibility
	5.3 Distributed data downloading and decompression
	5.4 Rapid NGS data analyses on the AWS cloud
	5.4.1 Processing all WGS data of the Human Microbiome Project
	5.4.2 Genotyping on 3000 samples of the 3000 Rice Genomes Project
	5.4.3 Mapping 106 samples of the 1000 Genomes Project
	5.4.4 Gene expression profiling on prostate cancer RNA-seq data

	5.5 Metagenomic profiling and functional analysis
	5.6 Discussion

	6 Conclusion and outlook
	6.1 Conclusion
	6.2 Outlook

	Bibliography
	Colophon
	Declaration

