
 

 

 

 

 

 

 

 

Acceptance and Applicability of Educational Robots 

— 

Evaluating Factors Contributing to a Successful Introduction 

of Social Robots into Education 

 

 

 

Cumulative Dissertation  

 

Submitted to the Faculty of Psychology and Sports Sciences,  

Department of Psychology, at Bielefeld University 

 

 

In partial fulfillment of the requirements for the degree of 

Doctor of Science (Dr. rer. nat.) 

 

by 

Natalia Reich-Stiebert 
 

 

 

 

 

 

Bielefeld, Germany 

January 2019  



ACCEPTANCE AND APPLICABILITY OF EDUCATIONAL ROBOTS 
 
 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisor:    Prof. Dr. Friederike Eyssel 

 

Thesis Reviewers:   Prof. Dr. Friederike Eyssel 

Prof. Dr. Britta Wrede 

 



ACCEPTANCE AND APPLICABILITY OF EDUCATIONAL ROBOTS 
 
 

 

iii 

TABLE OF CONTENTS 

Acknowledgments ...............................................................................................................iv	

Summary .............................................................................................................................. v	

1	 Introduction ................................................................................................................... 1	

1.1	 Toward a Definition of Educational Robots ............................................................ 2	
1.2	 Acceptance of Educational Robots .......................................................................... 4	
1.3	 Cooperative Learning with Educational Robots ....................................................... 5	
1.4	 Educational Robot Design ....................................................................................... 8	

2	 Present Research .......................................................................................................... 10	

2.1	 Acceptance of Educational Robots ........................................................................ 12	
2.1.1	 Undergraduates’ attitudes toward learning with educational robots ............ 12	
2.1.2	 School teachers’ attitudes toward teaching with educational robots ........... 14	
2.1.3	 Changing attitudes toward educational robots ............................................ 16	

2.2	 Cooperative Learning with Educational Robots ..................................................... 18	
2.2.1	 Social interdependence in human-robot learning ........................................ 19	
2.2.2	 Face-to-face interaction in human-robot learning ....................................... 21	
2.2.3	 Social support in human-robot learning ..................................................... 23	
2.2.4	 Group processing in human-robot learning ................................................ 25	

2.3	 Educational Robot Design ..................................................................................... 28	

3	 General Discussion ....................................................................................................... 31	

3.1	 Ethical Considerations .......................................................................................... 34	
3.2	 Conclusion and Outlook ........................................................................................ 36	

4	 References .................................................................................................................... 39	

Original Studies .................................................................................................................. 53	

Declaration of Manuscript Authorship ............................................................................. 54	

Statement of Originality ..................................................................................................... 55	

Appendix ............................................................................................................................. 56	

 



ACCEPTANCE AND APPLICABILITY OF EDUCATIONAL ROBOTS 
 
 

 

iv 

ACKNOWLEDGMENTS 

First of all, I thank Prof. Dr. Friederike Eyssel for giving me the opportunity to merge my 

interest in educational issues and my curiosity for new research directions. I want to thank you 

for your guidance, your constructive feedback whenever I needed it, and your motivation to 

seek new challenges and grow with them. This thesis would not exist without your great support 

to make me believe in myself.  

In a more friendly than academic relationship, I want to thank my current and former 

colleagues: Dr. Ricarda Wullenkord, Jasmin Bernotat, Julian Anslinger, Dr. Eduardo Benítez 

Sandoval, Dr. Charlotte Diehl, Prof. Dr. Katrin Lohan, Rebecca Bröhl, and Dr. Dieta 

Kuchenbrandt. Thank you for the fruitful discussions and your support, but also for the relaxed 

times. Ricarda, thank you for discussing the numerous questions that arose during this project 

and for being a great friend and colleague. Further, I express appreciation to the reliable and 

diligent research assistants and their support: Charlotte Hohnemann, Bianca Gellrich, Hannah 

Koppenrade, Christine Henschel, Janik Sachse, and Nathalie Brock.  

Finally, I want to thank my family, especially my parents, my parents-in-law, and my 

sister, for your encouragement and companionship along the way and for caring for my 

children. I would especially like to thank my mother for maintaining confidence in my ability 

when I got stuck and making me believe that no matter what happens, there is always a positive 

side. To my husband, Christian, and my children, Jonas and Julian, I express deep gratitude. In 

every way, you have been there for me. Thank you for grounding me and giving me new 

strength with your laughter and love.  

This work was supported by the Cluster of Excellence Cognitive Interaction Technology 

'CITEC' (EXC 277), which is funded by the German Research Foundation (DFG). Many thanks 

go to the CITEC Graduate School for the provision of resources regarding further training, and 

professional development, as well as for the support to reconcile work and family life.   



ACCEPTANCE AND APPLICABILITY OF EDUCATIONAL ROBOTS 
 
 

 

v 

SUMMARY 

The use of robots in the area of education is rapidly gaining momentum. Education faces 

restructuring and modernization in the forthcoming age of robots, thus necessitating research 

meeting the requirements of this development. In this, focusing on robots’ acceptance and 

applicability in educational contexts, right from the very beginning, is crucial. Therefore, this 

dissertation thesis has addressed this issue. It has striven to evaluate factors which contribute 

to a successful introduction of robots into education in a systematic manner. The strengths of 

the current work lie in its interdisciplinary nature, theoretical fundament, and the application of 

empirical and experimental methods.  

In practical terms, a set of studies have offered insights on how the implementation and 

application of robots in education could be facilitated. To do so, they operated on three different 

levels: First, the focus was on end users’ attitudes toward educational robots. It was shown that 

their attitudes and willingness to use educational robots were moderate. However, the results 

also indicated that the acceptance of educational robots could be fostered by the promotion of 

people’s general technical interest and a targeted use of robots in individual or small-group 

learning activities, in domains related to science and technology. In addition, it was found that 

user involvement in an educational robot’s design process can increase people’s general 

acceptance of educational robots. Second, the work focused on how to effectively design a 

human-robot interaction (HRI) for learning purposes by building upon the cooperative learning 

paradigm found in educational literature. Actual HRI experiments confirmed that a robot’s 

physical presence was beneficial for the learning experience, and implied that positive 

interdependence with a robot, social support from it, and mutual feedback about the learning 

process were positively related to the learning experience and the learners’ perception of the 

robot. Third, when tackling the issue of the ideal educational robot design, it has become clear 

that people’s perception of robots is influenced by context- and person-specific factors. To 
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trigger a higher acceptance of educational robots, robotics research should match potential end 

users’ educational robot design concepts, for example, machinelike appearance and 

functionality as well as privacy and safety requirements. 

Taken together, this dissertation presents a sound basis for identifying issues related to the 

implementation and application of educational robots. However, research is still far from 

having completed the development of strategies for implementing and using social robots in 

education meaningfully. Consequently, potential future research directions will be discussed in 

light of the obtained results. 
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1 INTRODUCTION 

In November 1984, under the headline, “Revolution in the classroom: Computer becomes 

mandatory”, the German magazine Der Spiegel reported on German education ministers’ 

demands to introduce computers into schools and to force teachers to incorporate computers 

into their teaching (“Alarm in den Schulen”, 1984). This development was contentious and 

divisive. In particular, some teachers rejected computers in schools and even feared that 

students could become isolated, losing touch with reality. Now, more than 30 years later, a 

representative survey in German schools has revealed that nearly 50 percent of teachers use 

computers for teaching at least once a week and more than 50 percent agree that the use of 

computers improves students’ performance (Lorenz, Endberg, & Eickelmann, 2016).  

Meanwhile, the evolution of technology in education is still continuing and currently 

students and teachers are being confronted with one of the latest developments, namely 

educational robots. Statistics from the International Federation of Robotics clearly indicate an 

upward trend in the of use of robots in the educational sector—and this increase is very likely 

to continue (International Federation of Robotics, 2017). William Gibson (1996) commented 

that, “the future is already here—it's just not evenly distributed”. Confirming this view, 

individual efforts to use robots to support educational activities can be observed. However, the 

comprehensive distribution of robots throughout schools and higher education is still a future 

vision. In fact, the use of educational robots is the exception rather than the rule and has a 

science-fiction-like appeal for many European students and teachers.  

Consequently, whether the educational landscape will undergo a far-reaching change in 

the future, making robots indispensable in classrooms and lectures, is questionable. If such a 

change were to happen, how would people respond? More importantly, would potential 

stakeholders, like students and teachers, accept robots as learning tools, and if so, how could 

robots provide effective assistance for learning and teaching? Moreover, which factors would 
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have to be considered before robots could be introduced into teaching and learning processes? 

Whether the current educational system is willing to incorporate educational robots, and what 

would be necessary to prevent them from being regarded as unusable and inappropriate tools, 

must be clarified. The present work aims to answer precisely these questions. More specifically, 

factors that will contribute to the future introduction of social robots into education have been 

investigated on three levels: Firstly, the acceptance of educational robots has been evaluated. 

Secondly, an opportunity to structure human-robot learning effectively was approached by 

building on cooperative learning principles. Thirdly, the ideal educational robot design has been 

considered from potential end users’ perspective. Thus, this thesis contributes to the 

interdisciplinary discourse on robots in education and proposes practical implications for field 

applications of educational robots.  

1.1 Toward a Definition of Educational Robots 

Attempting a definition of ‘educational robots’ gives rise to various specifications of what 

constitutes robots in education. From a general perspective, educational robots can be classified 

as assistive robots, which are intended to support or aid users in different environments such as 

schools (Feil-Seifer & Matarić, 2005). In that sense, educational robots are used as learning 

tools, either to teach students about robots per se, or to teach technical skills through the 

manipulation of and interaction with robots (see Eguchi, 2012). In fact, the use of educational 

robots is predominantly limited to fields related to science, technology, engineering, and 

mathematics (STEM). The literature provides ample evidence that using robots for technology-

oriented teaching methods has considerable potential (e.g., Benitti, 2012; Bravo, González, & 

González, 2017, Merdan, Lepuschitz, Koppensteiner, & Balogh, 2017; Mubin, Stevens, Shahid, 

Al Mahmud, & Dong, 2013). However, in recent years, more and more researchers are 

investigating the potential of using educational robots in non-technical subject areas, such as 

linguistics, biology, or social sciences and humanities. As a result, educational robots are used 
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in different ways and are attributed distinctive roles: When educational robots are used in 

STEM-related domains, they are considered as either (a) objects for learning and teaching 

programming or (b) a learning focus in itself. In a cross-curricular application placing greater 

emphasis on the educational use, robots are regarded as (c) learning collaborators (see Miller, 

Nourbakhsh, & Siegwart, 2008). Role (a) focuses on programming “in order to create a concrete 

physical manifestation of the art of computer programming”, while role (b) comprises “the 

creation and use of a physical robot as a goal in and of itself” (Miller et al., 2008, p. 1284). Role 

(c) implies that they are used “as an all-season companion, aide, and even intellectual foil” 

(Miller et al., 2008, p. 1284). Considering the increasing use of educational robots as learning 

collaborators in more social subject areas emphasizes their socially interactive function. 

Therefore, educational robots as learning collaborators can be regarded as socially assistive 

robots that offer support and assistance through social interactions to assist humans in their 

learning (Feil-Seifer & Matarić, 2005). This context emphasizes the establishment of social 

interactions with humans based on human-like behavioral traits, communication, or emotions 

(Duffy, 2003). 

Combining the different definitions and descriptions, the following working definition of 

educational robots will be used in this thesis: Educational robots in their role as learning 

partners are categorized as socially assistive robots for educational purposes. As they fulfil a 

didactic function, they can be considered to be learning companions which provide academic 

support and facilitate learning and teaching efforts through social interactions. Specifically, 

educational robots can be used as personal tutors to help students edit tasks or promote 

individual learning processes. As teachers’ assistants, they can help to arrange lessons or 

measure students’ learning progress. Educational robots can be used, for instance, in various 

disciplines and provide information on specific topics, test learning progress, correct errors, or 

provide feedback on students’ results—just to mention some of their areas of application. 
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However, the development of this sort of advanced educational robot described here, is 

still in its infancy. Such an educational robot would need to operate highly autonomously, have 

excellent speech recognition and output, perceive its environment reliably, move safely and 

fluidly, respond flexibly to different users’ diverse requirements and much more; and it should 

be able to do it all without requiring intervention from an operator. The features and functions 

presupposed here are severely limited by the current state of the art. Due to these limitations, 

research in the field of social human-robot interaction (HRI) must often rely on simulations of 

these functions and properties. The Wizard-of-Oz technique (Kelley, 1984) allows the robot to 

be controlled remotely and has therefore been adopted in the present research. 

1.2 Acceptance of Educational Robots 

Investigations on people’s attitudes toward educational robots is becoming progressively 

important in HRI research, since results suggest that attitudes can determine the future 

acceptance of robots (e.g., Fridin & Belokopytov, 2014; Nomura, Kanda, & Suzuki, 2006; 

Serholt et al., 2014). In turn, educational robots’ acceptance must be considered essential for 

their fruitful introduction into educational contexts.  

The findings on people’s attitudes toward educational robots are inconsistent, pointing in 

both positive and negative directions (e.g., Choi, Lee, & Han, 2008; European Commission, 

2012; Fridin & Belokopytov, 2014; Serholt et al., 2014; Shin & Kim, 2007). To illustrate, their 

entertainment function (e.g., Liu, 2010), provision of information, or documentation of 

students’ learning progress were identified as positive aspects of educational robots (e.g., 

Serholt & Barendregt, 2014; Serholt et al., 2014; Shin & Kim, 2007). In contrast, people feared 

that robots lacked emotional capabilities (e.g., Shin & Kim, 2007), could distract children from 

learning (e.g., Lin, Liu, Chang, & Yeh, 2009; Serholt et al., 2014), or might replace teachers 

and influence students negatively (e.g., Lee, Lee, Kye, & Ko, 2008; Serholt et al., 2014).  
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Since robots could prospectively also become part of German educational environments, 

investigating German students’ and teachers’ attitudes toward educational robots might be 

worthwhile. By evaluating future stakeholders’ expectations and concerns with respect to 

learning and teaching with robots, potential obstacles could be addressed, thus increasing the 

future acceptance of educational robots. Students’ and school teachers’ suggestions for an 

optimal implementation of robots in different learning situations and subjects appear to be 

especially relevant and will therefore be a focus of the studies reported here (Reich-Stiebert & 

Eyssel, 2015, 2016). As will be further outlined in this thesis, German university students and 

school teachers express only a moderate acceptance of educational robots. Therefore, the 

present work will also aim to identify strategies for improving end users’ attitudes and 

increasing educational robot acceptance (Reich-Stiebert & Eyssel, 2017). 

1.3 Cooperative Learning with Educational Robots 

Focusing on transdisciplinary knowledge to address open questions and evaluating 

problems from multiple angles, is beginning to become standard practice in HRI research (see 

Baxter, Kennedy, Senft, Lemaignan, & Belpaeme, 2016; Eyssel, 2016). Previous approaches 

to applying robots in education have demonstrated that this line of research is similarly 

influenced by an integrative tactic (e.g., by combining knowledge from areas such as linguistics, 

social sciences, or psychology). In an attempt to explore successful HRI models for educational 

purposes, recent works have increasingly adopted psychological and pedagogical perspectives 

(e.g., Catlin & Blamires, 2010; Damaševičius, Narbutaitė, Plauska, & Blažauskas, 2017; Jones 

et al., 2015; Saerbeck, Schut, Bartneck, & Janse, 2010). However, so far, these efforts are not 

very advanced and there is still little understanding of how to implement psychological and 

educational concepts into human-robot learning activities in a meaningful way.  

Nevertheless, aligning with sound teaching and learning theories will lead “any 

educational innovation, including robotics, to success” (Alimisis, 2012, p. 7). Thus, research 
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on the successful implementation of educational robots will benefit greatly from the use of 

elaborated theoretical models from psychology and pedagogy. In turn, research is regarded as 

providing “evidence for or against the validity of [a] theory” (Burr et al., 1973, p. 290), which 

then can be translated into valuable information that can be used in the field of application. This 

thesis therefore aims to contribute to the growing area of educational HRI research by adopting 

theory-driven empirical approaches to study factors which influence the applicability of 

educational robots. To achieve this, the work refers to a popular and highly recognized 

pedagogical model of human-human interaction for successful learning—namely cooperative 

learning (see Johnson & Johnson, 1994, 2009). 

Johnson and Johnson (1994, 2009) essentially established the concept of cooperative 

learning, describing it as a method in which students learn together to accomplish shared goals. 

Cooperative learning consists of various teaching methods in which students collaborate in 

small groups to promote each other’s learning (Slavin, 1996). There is ample evidence to 

support the power of cooperative learning, based on frequently-used measures of learning 

success, such as achievement, enhanced self-esteem, social support between learners, or 

positive attitudes toward the subject (e.g., Jenkins, Antil, Wayne, & Vadasy, 2003; Johnson, 

Johnson, & Smith, 1998; Kyndt, Raes, Lismont, Timmers, Cascallar, & Dochy, 2013; Slavin, 

1996). The literature on cooperative learning has its roots in the social interdependence theory 

(Johnson & Johnson, 2005, 2009), which was introduced to describe cooperation and 

competition in small groups (Deutsch, 1949). It is based on different assumptions on social 

interdependence (Deutsch, 1949), and Johnson and Johnson identified five essential 

components which contribute to its efficacy (Johnson & Johnson, 1989, 2009). These include 

social interdependence, individual accountability, direct face-to-face interaction, appropriate 

use of social skills, and group processing.  

According to the basic idea of social interdependence, learners depend on each other to 

achieve common goals. As a result, each individual’s effort benefits both the group members 
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and the individual itself (Johnson & Johnson, 1992, 2009). Individual accountability, which 

includes the commitment to completing one’s share of the work and to contributing to the 

group’s progress (Johnson & Johnson, 2005, 2009), is strongly related to positive 

interdependence. Direct face-to-face interaction comprises the aspect of physical proximity 

which augments effective communication. Direct interaction, for example, supports problem-

solving, assistance between group members, the exchange of resources, or provision of 

feedback (Johnson & Johnson, 2009). Efficient cooperation further depends on the appropriate 

use of social skills. This includes, for example, unambiguous communication, social supportive 

behaviors, or constructive conflict management (Johnson & Johnson, 2005, 2009). Finally, 

group processing complements successful cooperative learning by reflecting the learning 

process and providing feedback on helpful and unhelpful activities (Johnson & Johnson, 2005, 

2009). 

These elements were evaluated prominently in the current work: The first aim was to test 

the practicability of implementing positive interdependence, direct face-to-face interaction, 

social support, and group processing in dyadic human-robot learning. Owing to the strong 

interrelation of positive interdependence and individual accountability (Johnson & Johnson, 

2009), the latter was excluded from the investigation as a distinctive analysis was practically 

impossible. Specifically, from a practical point of view, individual accountability can be 

structured, for instance, by testing each student individually or by having each student 

contribute different learning content for their learning companions (see Johnson, Johnson, & 

Smith, 2007), which automatically results in social interdependence. Secondly, the impact of 

these elements on different measures of successful learning interactions (e.g., learning 

performance, intrinsic motivation, appreciation of the learning companion) was assessed. 

In addition to considering people’s acceptance of educational robots and cooperative 

learning as a strategy to effectively shape HRI for learning purposes, it is crucial to take into 

account educational robot design characteristics when pursuing a successful introduction of 
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robots into education. The third research focus addresses the question of how to design 

educational robots to meet users’ expectations as will be described in the following. 

1.4 Educational Robot Design 

Considering the design issue is particularly important as research investigating how robot 

design affects people’s perception and acceptance of robots clearly suggests that the context 

plays an important role and indicates that a robot’s appearance should be adapted, depending 

on its application context (Duffy, 2003). To illustrate, it was found that people preferred robot 

companions used in home settings to have a more humanlike appearance and human attributes 

(Walters, Syrdal, Dautenhahn, Te Boekhorst, & Koay, 2008) as well as an extrovert and 

agreeable personality (Walters, Koay, Syrdal, Dautenhahn, & Te Boekhorst, 2009). In contrast, 

in the context of a medical examination, a very humanlike robot appearance led to feelings of 

embarrassment (Bartneck, Bleeker, Bun, Fens, & Riet, 2010). Similarly, in a verbal interaction 

scenario, it was observed that a machinelike robot was perceived to be more trustworthy and 

empathic than a very humanlike robot (Złotowski, Sumioka, Nishio, Glas, Bartneck, & 

Ishiguro, 2016).  

In line with this, research carried out in educational settings has shown that different users 

have distinct needs and expectations regarding the appearance and capabilities of educational 

robots: Woods, Dautenhahn, and Schulz (2004) evaluated fifth grade school students’ 

preferences for robot design, and found that children evaluated humanlike robots with obvious 

mechanical features most positively. In contrast, more recent work indicated that elementary 

school students favored animal-like robots with overstated facial features (Oros, Nikolic, 

Borovac, & Jerkovic, 2014). A study conducted with interaction designers and elementary 

school children demonstrated that while interaction designers envisioned small animal- or 

cartoon-like robots with facial features, children again preferred a humanlike robot with clear 

robotic features, such as a screen, sensors, or robotic hands (Obaid, Barendregt, Alves-Oliveira, 
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Paiva, & Fjeld, 2015). At the same time, children’s perceptions varied as a function of previous 

robot experience: Children with prior experience of robots favored smaller, machinelike robots, 

while those children without prior experience envisaged bigger, humanlike robots (Obaid, 

Barendregt, et al., 2015). A robot design toolkit was developed and evaluated in a follow-up 

study (Obaid, Yantaç, Barendregt, Kırlangıç, & Göksun, 2016). The results showed that 

children favored a rather humanlike appearance with robotic characteristics like mechanical 

arms or a metallic surface, thus confirming the previous findings. In addition, children stated 

that their ideal educational robot should have a storage compartment for school materials, a 

screen on its torso, and a button to turn it off (Obaid, Yantaç, et al., 2016). 

Taken together, the findings imply that preferences depend on person- and context-specific 

factors, and that the way in which people perceive robots can affect the likelihood of them being 

integrated into everyday environments, such as education. Thus, by evaluating future end users’ 

preferences for educational robot design, this thesis provides significant implications for 

designing robots which meet students’ expectations and requirements.  
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2 PRESENT RESEARCH 

Researchers from different domains are attempting to progressively substantiate the rather 

new research domain of social HRI in education. The present work aims to contribute to this 

growing research field by scrutinizing the acceptance and applicability of social robots in 

educational contexts. More specifically, it has the overarching objective of identifying and 

evaluating factors which could contribute to the successful introduction of educational robots 

into learning environments. For this purpose, eight empirical studies were conducted which 

were guided by the following three research questions: 

RQ1 Will people accept educational robots for their learning and teaching?  

As technology acceptance is an important factor contributing to the success or failure of 

technology usage, it can reasonably be assumed that future stakeholders’ acceptance of 

educational robots will determine their future use in education. Thus, people’s attitudes toward 

educational robots and ways of improving them must be examined. Three empirical studies 

were conducted for this purpose. The first study (Reich-Stiebert & Eyssel, 2015) investigated 

university students’ attitudes toward learning with educational robots in higher education. It 

demonstrated that German undergraduates have a rather neutral attitude toward learning with 

robots. To complete the picture, the second study (Reich-Stiebert & Eyssel, 2016) assessed 

German school teachers’ attitudes toward teaching with robots. Interestingly, teachers reported 

rather negative attitudes toward educational robots. To tackle people’s reluctance toward 

educational robots, a strategy to improve people’s attitudes by having them participate in an 

educational robot’s visual prototyping process was introduced in the third study (Reich-Stiebert 

& Eyssel, 2019). The findings indicate that user involvement increases robot acceptance and 

reduces educational robot anxiety.  
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RQ2 Is it possible to implement cooperative learning elements in HRI and can they 

contribute to facilitating HRI in learning settings?  

The second research question focused on how to effectively design HRI for learning 

purposes by building upon the cooperative learning paradigm. Given that people are inclined 

to regard robots as social entities, it appears likely to create cooperative learning interactions 

between humans and robots. We draw upon educational literature on cooperative learning and 

report the few studies using theory-driven empirical methods to establish efficient learning 

interactions with robots. Studies four to seven (Reich-Stiebert & Eyssel, 2018) highlight those 

elements of cooperative learning which can be successfully implemented in HRI, and the way 

in which they affect the learning experience. Although the studies only provided limited 

statistically significant results, they include a critical reflection upon the usefulness of the 

approach for HRI and illustrate how future work can address the issues raised in the studies. 

RQ3 How should educational robots be designed to meet future end users’ expectations 

and requirements?  

Finally, as a third focus, the present thesis addresses the question of how to design 

educational robots to meet users’ expectations. People’s perception and acceptance of robots 

vary depending on the context, thus emphasizing the importance of adjusting the robot’s 

appearance to suit the application context. Consequently, it is necessary to draw upon end users’ 

preferences for educational robot design to match their ideas and thereby increase the 

acceptance of educational robots. In the eighth study (Reich-Stiebert & Eyssel, revised and 

resubmitted), undergraduates’ preferred robot design in terms of its physical appearance, 

interaction capabilities, display of emotion, and personality, is therefore evaluated.  
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Taken together, a series of empirical and experimental studies provide a solid basis for the 

current debate and for future research. Important insights that can contribute to the future use 

of educational robots are discussed. 

2.1 Acceptance of Educational Robots 

2.1.1 Undergraduates’ attitudes toward learning with educational robots 

To realize a successful implementation of robots in an educational setting, requires 

considering the attitudes of potential end users before robots are finally introduced in practice. 

Building on evidence from psychological research, which states that attitudes predict how 

individuals will treat an attitude object (e.g., Eagly & Chaiken, 1998; Fazio, 1990; Fazio & 

Roskos-Ewoldsen, 2005), it can be assumed that people’s attitudes toward educational robots 

will determine the future acceptance of robots for learning and teaching. This is particularly 

important given that an individual’s technology acceptance is a critical factor in constituting 

the success or failure of technology usage (e.g., Davis, 1989, 1993). However, to date, only a 

few studies have investigated people’s attitudes toward educational robots (e.g., Choi, Lee, & 

Han, 2008; Han, Hyun, Kim, Cho, Kanda, & Nomura, 2009; Serholt & Barendregt, 2014; 

Serholt et al., 2014); in Germany, this has not been attempted at all. A central observation in 

the cited works was that people tend to be reluctant toward the application of educational robots, 

despite recognizing their potential benefit for learning and teaching (e.g., Choi, Lee, & Han, 

2008; Han, Hyun, Kim, Cho, Kanda, & Nomura, 2009; Serholt et al., 2014).  

To contribute to this area of research, we explored undergraduates’ attitudes toward 

learning with robots, educational robot anxiety, and their contact intentions with respect to 

educational robots (Reich-Stiebert & Eyssel, 2015). In addition, the role of significant 

predictors of attitudes was examined, as well as which application potentials students envisaged 

for educational robots in terms of learning situations, role of educational robots, and use in 



ACCEPTANCE AND APPLICABILITY OF EDUCATIONAL ROBOTS 
 
 

 

13 

preferred subjects. Given the explorative nature of the study in the German context, no specific 

hypotheses were postulated for either attitudes toward educational robots or educational robots’ 

preferred areas of application. Drawing on previous findings on factors influencing attitudes 

(e.g., European Commission, 2012; Kuo et al., 2009; Reich & Eyssel, 2013), it was assumed 

that demographic variables (i.e., age, gender, educational level), technical affinity, and need for 

cognition would significantly predict attitudes toward educational robots.  

The results indicated that German university students had neutral attitudes toward 

educational robots, reported modest educational robot anxiety, and were hesitant about learning 

with an educational robot in the future. These findings might be explained by the fact that social 

robots are not yet common in the German context, particularly not in education. Therefore, 

promotional campaigns and the provision of information on educational robots would be an 

opportunity to familiarize students with educational robots.  

In terms of predictors of robot acceptance, it was found that gender (women reported more 

negative attitudes and less willingness to interact with educational robots than men), age 

(younger participants reported significantly more negative attitudes and higher educational 

robot anxiety), and educational level (the higher participants’ educational level, the less willing 

they were to learn with an educational robot) significantly predicted robot acceptance. 

Additionally, it was observed that attitudes improved, educational robot anxiety decreased, and 

the willingness to learn with educational robots in the future rose as a function of respondents’ 

technical affinity. Finally, need for cognition was confirmed as a significant predictor of 

students’ robot acceptance: More specifically, those respondents with a high need for cognition 

reported fewer negative attitudes and less educational robot anxiety. Although these factors 

were found to significantly predict students’ attitudes toward educational robots, the 

consequence should not be to use educational robots preferably for male learners or technically 

interested students, for instance. Rather, attention should be paid to addressing different learners 

to ensure equal access to this new learning technology.  
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With regards to students’ preferences for the application of educational robots, the majority 

would prefer educational robots to be applied in individual learning scenarios, followed by 

learning in groups. Only a few students could imagine using educational robots in the classroom 

community. Correspondingly, most students favored educational robots in the role as a tutor or 

teaching assistant, rather than as an independent teacher. Furthermore, students expected 

educational robots to be useful in STEM-related areas and less helpful in social sciences and 

humanities. As programmable robots like the Lego Mindstorms platform (The LEGO Group) 

are already used in these domains, this finding is not surprising. As a consequence, it would be 

possible to introduce robots primarily in STEM-related subjects, and afterwards extend their 

use to other, less technical fields. 

2.1.2 School teachers’ attitudes toward teaching with educational robots 

To complement the picture of attitudes toward educational robots in the German context, 

the second study (Reich-Stiebert & Eyssel, 2016) evaluated school teachers’ attitudes toward 

teaching with robots and took into account various school environments (i.e., elementary 

schools, secondary schools, and vocational schools). In addition, predictors of attitudes as well 

as teachers’ readiness to use educational robots in various learning environments were studied.  

Based on the previous findings (Reich-Stiebert & Eyssel, 2015), it was hypothesized that 

German school teachers would report rather negative attitudes toward educational robots and 

have little interest in using educational robots for future teaching. With respect to school type, 

it was anticipated that elementary school teachers would express more negative attitudes and 

less interest in future use than secondary or vocational school teachers. It was expected that 

demographic variables (i.e., age, gender), technical affinity, and teaching domain would be 

significant predictors of attitudes toward educational robots. Finally, it was predicted that 

teachers would prefer robots to be used as tutors or teaching assistants for individual or group 
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learning. Moreover, it was hypothesized that teachers would prefer to use robots in STEM-

related domains.  

As predicted, German school teachers reported quite negative attitudes toward teaching 

with educational robots. However, surprisingly, their willingness to use educational robots in 

the future was moderate. Elementary school teachers expressed more negative attitudes toward 

educational robots than secondary and vocational school teachers and were less interested in 

their future use. This trend is probably due to the limited distribution of educational robots in 

the German context. However, as teachers’ attitudes are related to their willingness to use new 

technologies for their teaching (Teo, 2006), it appears crucial to facilitate attitude change 

toward educational robots to increase teachers’ readiness to use robots for teaching purposes.  

Technical affinity was the only predictor of teachers’ attitudes and willingness to use 

educational robots. Finally, as had been expected, teachers envisaged using robots as tutors or 

teaching assistants for individual or group learning, but not for frontal teaching of an entire 

course. Therefore, when aiming at successfully introducing robots into education, it is 

important to emphasize their role as learning companions for individual learning activities that 

will not replace the function of human teachers in the classroom. Furthermore, school teachers 

preferred to apply educational robots in STEM-related domains, such as informatics, or physics, 

and rejected their use in social domains, like arts, or music. Therefore, as mentioned previously, 

it would be worthwhile to promote the use of educational robots beyond technical domains.  

A qualitative content analysis of two open-ended questions on teachers’ expectations and 

concerns regarding the application of educational robots, indicated that teachers expected 

robots to create a motivating environment, serve as a source of information for students, assess 

and monitor students’ learning status, provide individual support for under-achieving students, 

and be easily usable. As their concerns, teachers mentioned that robots could be a disruptive 

factor, and feared students’ loss of interest over time, additional workloads, and high acquisition 

costs, as well as the replacement of both interpersonal relationships and the teachers themselves. 
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Taken together, teachers’ attitudes toward educational robots were found to be rather 

negative and their willingness to use robots for teaching was limited, which clearly implies that 

their expectations and concerns must be taken seriously when attempting a successful 

introduction of robots into education. 

2.1.3 Changing attitudes toward educational robots 

The results of the first two studies demonstrated that students’ and teachers’ attitudes 

toward educational robots are, respectively, moderate and even negative. Moreover, both 

students and teachers are rather unwilling to use robots for educational purposes (Reich-Stiebert 

& Eyssel, 2015, 2016). Nonetheless, as social robots progressively enter educational 

environments (International Federation of Robotics, 2017), people’s negative views could be a 

serious obstacle to prolific robot deployment. One way of addressing this problem might be to 

change people’s attitudes toward educational robots, thus increasing their acceptance of 

learning with them. This immediately raises the question of how to change attitudes toward 

robots. Collaborative design provides a valuable opportunity: That is, research findings have 

emphasized that user involvement in a design process had a positive effect on people’s attitude 

toward the design object and their inclination to use it (e.g., Franke, Keinz, & Steger, 2009; 

Franke, Schreier, & Kaiser, 2010; Norton, Mochon, & Ariely, 2012; Randall, Terwiesch, & 

Ulrich, 2007).  

By applying these outcomes to the identified problem, it was assumed that user 

involvement in a robot design process could positively affect the end users’ attitudes toward 

educational robots. More precisely, it was hypothesized that a higher degree of participation 

(no vs. low vs. high participation) in the prototyping process of an educational robot, would 

lead to more positive attitudes, less educational robot anxiety, and greater willingness to learn 

with and to possess an educational robot. To examine this research question, end users were 

actively involved in an educational robot’s prototyping process (Reich-Stiebert & Eyssel, 
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2019). Three factor levels were implemented (no vs. low vs. high participation in the 

prototyping process) in a single factor between-subjects design. In the no participation 

condition, participants evaluated the design of a NAO robot (SoftBank Robotics), which is one 

of the robots most commonly used in education and research. In the low and high participation 

conditions, respondents had to indicate their preferred educational robot design by choosing 

between different characteristics for appearance (e.g., preferred gender, head shape, colors, or 

facial features), interaction (e.g., via speech, facial expressions, gestures), personality (e.g., 

identification and adaption to human personality traits), and emotion (e.g., recognition and 

display of basic emotions). To avoid mere exposure and mere thought effects that can 

potentially positively bias attitudes (e.g., Clarkson, Tormala, & Leone, 2011; Tesser & Conlee, 

1975; Zajonc, 1986), the contents and time for evaluating the educational robot features were 

kept constant across all the experimental conditions. Therefore, participants were presented 

with 30 questions with similar content for each condition.  

As expected, a positive effect was found for user participation on attitudes. The findings 

demonstrated that participation resulted in more positive attitudes toward educational robots in 

general, and a reduction in educational robot anxiety. However, no significant effect was found 

from user participation on students’ behavioral intentions. Regardless of the degree of 

participation in the robot prototyping process, undergraduates were equally willing to own and 

learn with an educational robot. Although the trend in the data suggests that the manipulation 

of participation in the robot prototyping process had a positive effect on students’ willingness 

to possess an educational robot, it might not have been strong enough to influence their 

behavioral intentions. It is likely that the results were weakened by the lack of statistical power 

and that increasing the statistical power would enhance the effect of the manipulation. With 

regard to the content, this assumption can be attributed to the fact that participants had no actual 

tangible outcome after having composed their ideal educational robot. Indeed, participants did 

not see a final image of the robot they had created. Therefore, they probably had no clear notion 
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of what it actually looked like and could not really imagine learning with such a robot. The 

work by Norton and colleagues (2012) provides support for this reasoning. They found that the 

successful completion of a work process is a critical determinant of people’s appreciation for 

the final product and their willingness to purchase it. 

Overall, the present results support the idea that involving end users in a robot prototyping 

process may contribute to a smoother introduction of robots into educational contexts. It was 

possible to demonstrate that simple user involvement in the initial phase of a design process 

was enough to improve their attitudes toward educational robots and reduce educational robot 

anxiety. Accordingly, it is likely that greater involvement during the design process by means 

of mutual communication and exchange between users, designers, and researchers, could prove 

even more efficient in shaping future users’ acceptance of educational robots. 

2.2 Cooperative Learning with Educational Robots 

In the context of the future introduction of robots into education, it has been shown that 

students’ and teachers’ acceptance of educational robots is rather moderate. However, the 

research has also indicated a way of positively affecting end users’ attitudes toward educational 

robots, thereby helping to facilitate their future introduction into education. However, with 

regard to actual learning activities with robots, the question of how to shape human-robot 

learning interactions effectively, arises. This research attempts to pursue this pivotal question 

by drawing on the well-established educational practice of cooperative learning. While a 

number of previous studies have already focused on cooperative learning activities between 

humans and robots (e.g., Jerčić, Wen, Hagelbäck, & Sundstedt, 2018; Plauska & Damaševičius, 

2014; Ushida, 2010), only scant attention has been paid to sophisticated theories about inducing 

cooperative human-robot learning. A frequently-used approach for promoting cooperative 

learning between humans and robots is the learning-by-teaching paradigm, which has been 

proven to improve learning performance and engagement (e.g., Chandra, Alves-Oliveira, 
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Lemaignan, Sequeira, Paiva, & Dillenbourg, 2015; Lemaignan, Jacq, Hood, Garcia, Paiva, & 

Dillenbourg, 2016; Tanaka & Matsuzoe, 2012). Nevertheless, these studies cover only a small 

range of methods for designing cooperative learning activities. In addition, HRI research has 

been encouraged to adopt multidisciplinary approaches and theory-driven perspectives when 

facing questions relating to the usage of social robots (e.g., Alimisis, 2012; Eyssel, 2016).  

Therefore, the present work has sought to provide another approach to cooperative learning 

interactions between a human and a robot. The theoretical framework underpinning this 

endeavor is based on the essential elements of cooperative learning as proposed by Johnson and 

Johnson (1994, 2009). The elements of cooperative learning in HRI have been systematically 

evaluated by the application of theoretically substantiated experimental designs, following 

recommendations proposed by Alimisis (2013). 

2.2.1 Social interdependence in human-robot learning 

The first principle of cooperative learning is social interdependence between learners. Such 

a feeling can be achieved when individuals recognize that their learning outcomes are affected 

by both their own and their group members’ efforts (Johnson & Johnson, 2009). To date, the 

implementation of social interdependence in educational interaction scenarios has not been 

sufficiently investigated in the context of HRI. Only a few studies have touched on this concept: 

As an illustration, Leite, Martinho, Pereira, and Paiva (2009) examined the social presence of 

robots in a long-term study and assessed, inter alia, affective and behavioral interdependence, 

two subdimensions of social presence, between children and a robot. Surprisingly, affective 

interdependence (the extent to which two people’s emotional and attitudinal states affect each 

other) and behavioral interdependence (the extent to which two people’s behaviors affect each 

other) both decreased over time. The authors argue that the robot was perceived less as being a 

companion but rather more like an independent interface. In a study, which examined the 

impact of social distance on people’s responses to robots, interdependent versus independent 
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task goals were induced, among other aspects. Participants were either asked to work 

interdependently with a robot to attain a given goal, or to achieve the goal independently of the 

robot. Once again, no differences were found between the inter- and independent conditions. 

Due to these outcomes, the nature of social interdependence between humans and robots in 

social settings, such as learning interactions, remains unclear.  

To shed light on this issue, the third study explored whether people are aware of social 

interdependence with an educational robot in the first place, and how this affected the learning 

interaction (Reich-Stiebert & Eyssel, 2018). Drawing upon educational research on social 

interdependence, it was predicted that participants in the socially interdependent learning 

condition would have better learning outcomes, would report a more positive affective state, 

and would evaluate the robot more positively, compared to those in the socially independent 

learning condition. Dependency in the learning interaction was manipulated by referring back 

to resource, reward, and goal interdependence, which have been shown to induce positive 

interdependence (see Deutsch, 1962; Johnson & Johnson, 1994; Slavin, 1996).  

Unexpectedly, no difference between the socially interdependent and independent 

conditions was found. The overall high averages for social interdependence indicated that in 

both learning interactions participants perceived the robot as being rather interdependent. As a 

consequence, further analyses also did not reveal significant effects of the learning interaction 

on the dependent measures. It should be pointed out that implementing an explicitly 

independent learning interaction (without simultaneously implying a competitive atmosphere) 

is very difficult. In both conditions, for instance, participants provided new ROILA vocabulary, 

thus making the robot dependent on them. Otherwise no interaction with the robot would have 

been necessary. The common practice of reimbursing participants also represents a kind of 

reward. Interestingly, though, it was observed that social interdependence was positively 

correlated with the dependent measures. Consequently, perceiving a human-robot learning 



ACCEPTANCE AND APPLICABILITY OF EDUCATIONAL ROBOTS 
 
 

 

21 

interaction as more interdependent, seems to contribute to higher intrinsic motivation, a better 

learning mood, higher self-efficacy, and a more positive evaluation of the robot.  

It is necessary to clarify which factors clearly induce social interdependence between 

human learners and educational robots, and whether interdependence with an educational robot 

generally leads to a more positive learning experience. To do so, future work should focus on 

the degree of interdependence (Kelley, Kerr, Reis, Holmes, Rusbult, & van Lange, 2003). 

Future studies should develop strategies for inducing high interdependence, namely, situations 

in which one individual’s outcomes are highly dependent on those of another individual. 

Although interdependence was manipulated on three levels (i.e., task, goal, and reward 

interdependence), it is necessary to understand which of these factors was essential for 

establishing an interdependent learning interaction between the human and the robot, or 

whether completely different factors are required. In addition, the potentially mediating role of 

individual accountability, an element of cooperative learning strongly interlinked with social 

interdependence, should also be investigated in future work. 

2.2.2 Face-to-face interaction in human-robot learning 

The second study in this framework was devoted to face-to-face interaction in cooperative 

learning (Reich-Stiebert & Eyssel, 2018). Direct face-to-face interaction has proven essential 

for successful cooperation between learners (Johnson & Johnson, 2009). The media naturalness 

theory (Kock, 2004) underpins the effectiveness of face-to-face interaction by postulating that 

this type of communication is the most effective strategy for exchanging information. This 

theory applies evolutionary assumptions to substantiate which form of communication media 

simulates human communication characteristics most closely. According to this theory, the 

human brain has been developed for co-located communication, including face-to-face 

interaction (Kock, 2004; Kock & Hantula, 2005). This reasoning prompts the question, whether 

the transition to technology-mediated learning, accompanied by the rise of virtual agents as new 
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interactants, counters effective learning activities. Norman’s assumptions (1988) on the higher 

affordance emanating from physical objects and entities substantiates this viewpoint. To follow 

Norman’s argument (1988), a physically tangible robot can give clearer indications of how it is 

to be used and interacted with than a virtual character. This issue is particularly important in 

the context of the prospective introduction and proliferation of robots in educational 

environments. Thus, we sought to explore the differences of direct interaction with a physically 

or a virtually embodied robot in the present study. This was based on a number of studies 

comparing the effectiveness of embodiment in human-robot learning interactions. Those 

studies, though, showed inconsistent results. While earlier studies demonstrated that interacting 

with a physically present robot led to increased learning gains and a more positive evaluation 

of the robot, compared to learning with the virtual representation of the robot (e.g., Kose-Bagci, 

Ferrari, Dautenhahn, Syrdal, & Nehaniv, 2009; Leyzberg et al., 2012), more recent studies did 

not confirm these findings (e.g., Kennedy, Baxter, & Belpaeme, 2015a; Rosenthal-von der 

Pütten, Straßmann, & Krämer, 2016).  

An attempt was made to address these inconsistent findings and evaluate participants’ 

affective state, which had not previously been considered (Reich-Stiebert & Eyssel, 2018). It 

was hypothesized that participants who interacted with a physically embodied robot would have 

better learning outcomes, report a more positive affective state, and evaluate the robot more 

positively compared to participants who had interacted with the virtual counterpart.  

As predicted, participants in the physical embodiment condition perceived the robot to be 

more socially present than those in the virtual embodiment condition. Specifically, participants 

felt more socially connected to and involved with the real robot. Furthermore, a statistically 

significant difference was found between the conditions in terms of the learning outcomes, 

affective state, and the evaluation of the robot. In particular, participants who had learned with 

the physically embodied robot reported higher intrinsic motivation, perceived the robot as being 

warmer and more competent, and ascribed a higher educational impact to the robot than 
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participants who had learned with the virtually embodied robot. In contrast, participants in the 

physical embodiment condition had a lower learning performance than participants in the 

virtual embodiment condition. This outcome may be due to the novelty effect discussed in 

previous research (e.g., Kennedy et al., 2015a; Rosenthal-von der Pütten et al., 2016): The 

robot, as a novel technology, probably attracted participants’ attention and distracted them from 

the learning content. In contrast, the novelty effect has also been used to explain results in favor 

of a physical robot embodiment’s impact on learning (e.g., Leyzberg et al., 2012). Therefore, 

this interpretation should be handled cautiously. Future work is needed to clarify whether and 

how a robot’s novelty affects learning, and whether this effect disappears during long-term 

interactions. 

We conclude that a robot’s physical presence in a learning interaction positively affects 

the learners’ motivational state and their evaluation of the robot. Whether a robot’s novelty 

actually influences learning and, if so, whether this effect disappears during repetitive 

interactions, has yet to be clarified. Long-term studies that focus on familiarizing participants 

with educational robots can help drawing conclusions about this issue. Taken together, the 

findings support the meaningfulness of direct face-to-face interactions in cooperative learning 

interactions between a human and a robot. 

2.2.3 Social support in human-robot learning 

In the previous two studies, it was discovered that while the role of social interdependence 

in HRI remains unclear, direct face-to-face interaction with a real robot improves students’ 

intrinsic motivation and their perception of the robot. In the third study, the influence of social 

support on human-robot learning was examined (Reich-Stiebert & Eyssel, 2018). The 

appropriate use of social skills, such as providing social support in cooperative learning 

interactions, has been demonstrated to play a key role in student retention and learning success 

(e.g., DeBerard, Spielmans, & Julka, 2004; Grillo & Leist, 2013; Tinto, 1997). HRI research 
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has similarly benefitted from implementing social support in robot-mediated learning by using, 

for instance, facial expressions and gestures, social dialogue, or emotional support (e.g., Leite, 

Castellano, Pereira, Martinho, & Paiva, 2014; Lubold, Walker, Pon-Barry, & Ogan, 2018; 

Searbeck et al., 2010). Increased learning outcomes (e.g., Lubold et al., 2018; Saerbeck et al., 

2010), higher intrinsic motivation (e.g., Saerbeck et al., 2010), or more socially engaging 

behaviors toward a robot (e.g., Serholt & Barendregt, 2016) have all been attributed to the 

positive effects of social support offered by a robot. Although social support has already been 

considered in HRI, previous works have only focused on elementary school children as the 

target group, and only made limited reference to the theoretical principles of social support. 

The present study addressed these issues by drawing on the theory of student academic support 

in higher education (Mazer, 2008). This theory indicates that undergraduates utilize 

informational (e.g., providing useful information), esteem-raising (e.g., increasing others’ self-

esteem), motivational (e.g., motivating others to study), and venting (e.g., listening to students 

venting about classes or teachers) strategies to support each other (Mazer, 2008; Thompson & 

Mazer, 2009a). In our HRI setup, a robot provided student academic support to undergraduates 

on the motivational, esteem-raising, and venting level. Informational support was not 

considered as this would have meant withholding information or learning content in the control 

condition, making learning impossible. More precisely, the robot encouraged students to learn 

(i.e., motivational support), acknowledged participants’ efforts (i.e., esteem support), and 

admitted that other students had experienced similar frustrations during their learning 

interaction (i.e., venting support).  

It was predicted that participants in the socially supportive condition would have better 

learning outcomes, report a more positive affective state, and evaluate the robot more positively 

compared to those in the neutral, non-supportive condition.  

As expected, participants in the social support condition perceived the robot to be more 

socially supportive than those in the neutral condition. Moreover, it was found that social 
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support was positively correlated with the dependent measures: Perceiving a robot to be highly 

supportive led to a more positive affective state and a better evaluation of the robot. 

Surprisingly, however, further analyses did not show any statistically significant differences 

between the two groups.  

It might be assumed that the informational support, which was applied in both conditions 

to provide participants with the learning content, plays a key role across the four dimensions of 

student academic support in HRI and is probably sufficient to create the impression of a 

supportive robot. This assumption is in line with findings from educational psychological 

research, which showed that informational support has a higher priority than esteem-raising and 

motivational support (Thompson & Mazer, 2009b). It was also observed that a close 

relationship between learners and a shared context facilitated the exchange of academic support 

(e.g., Thompson, 2008; Thompson & Mazer, 2009b). In the context of HRI, this could represent 

a substantial barrier to the efficient implementation of the four dimensions of student academic 

support. An educational robot, which can share a common experience and has a close 

relationship with the human learner, is far from being reality. However, this is probably the 

appropriate way to implement social support in HRI for higher education. Namely, educational 

robots which, first and foremost, assist in learning activities by providing informational support, 

while also inviting students to complement and acknowledge each others’ efforts, encourage 

each other, and listen to their classmates’ venting. Future studies focusing on multiparty 

interactions between learners and a robot are needed to clarify this concept. 

2.2.4 Group processing in human-robot learning 

To close the circle, the fourth study in the context of cooperative learning in HRI focused 

on group processing (Reich-Stiebert & Eyssel, 2018). From an educational viewpoint, group 

processing is a strategy in which learners regularly reflect on how they can improve the learning 

process (see Johnson, Johnson, & Smith, 2007). Specifically, it involves feedback which helps 
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learners to decide which behaviors have been helpful for achieving the learning goals and which 

should be changed in order to pursue the goals (e.g., Johnson, Johnson, & Smith, 2007; Yager, 

Johnson, Johnson, & Snider, 1986). In the context of HRI, only a few studies have sought to 

investigate the effectiveness of verbal feedback in learning interactions. Additionally, these 

works have been predominantly restricted to a robot providing feedback on the learning content, 

but not on the learning process per se. Moreover, drawing conclusions about the impact of 

verbal feedback on human learning is complicated by the fact that inherently different feedback 

strategies have been used. To illustrate, it was found that participants preferred a robot to offer 

positive or neutral feedback instead of negative feedback, and in turn evaluated the robot more 

positively when it provided the desired positive or neutral feedback (e.g., Park, Kim, & del 

Pobil, 2011). Schneider, Riether, Berger, and Kummert (2014) compared motivational 

feedback and task performance related feedback provided by a socially assistive robot. The task 

performance related feedback was found to elicit better task performance and a more positive 

evaluation of the task. A recent study that explored whether encouraging or challenging 

feedback offered by a robot was more effective, indicated that both types of feedback resulted 

in higher task performance and task engagement (Tsiakas, Abujelala, & Makedon, 2018).  

The reflection of HRI in a learning setting has not yet been explored, and research that 

implements sound theoretical concepts of feedback in HRI is also lacking. To tackle these 

issues, the present study incorporated group processing into HRI. In fact, participants and the 

robot provided mutual feedback on the learning process in two consecutive interactions. The 

primary objective was to decide which behaviors were helpful and which should be changed in 

the second learning interaction. In order to provide effective feedback, a feedback model 

proposed by Hattie and Timperley (2007), which operates on different levels and was developed 

to enhance learning, was used: Feedback was involved on the task performance level (i.e., 

correcting incorrect answers and provide additional information), the process level (i.e., 

developing further learning strategies), and the personal level (i.e., positive evaluations about 
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the student, and their learning efforts). Participants’ feedback was also incorporated into the 

robot’s behavior for the second learning session.  

It was assumed that participants in the group processing condition would have better 

learning outcomes, report a more positive affective state, and evaluate the robot more positively 

compared to those in the control condition without feedback. In addition, it was expected that 

there would be an improvement with respect to the evaluation of the dependent measures in the 

experimental condition over time.  

In general, participants evaluated the feedback session positively, and their commitment 

to adopting the robot’s feedback for the second learning session was rather high. Concerning 

the different levels of feedback, no changes on the self-level were preferred. That is, no 

participant requested the robot to change the number of motivational statements or amount of 

praise. Almost three quarters of the participants asked the robot to offer additional information 

on the learning content (i.e., task performance level). On the process level, about 60 percent 

favored including visual learning by offering learning cards with written explanations and a 

vocabulary list. Interestingly, a similar pattern has been observed in educational psychological 

literature: Feedback on the correctness of responses and effective learning strategies was found 

to be more effective than praise that had limited relevance to the learning content or the process 

per se (see Hattie & Timperley, 2007). With respect to the present study’s hypotheses, the 

results did not demonstrate a significant change in the dependent measures over time. Similarly, 

there was no difference between the conditions with respect to participants’ learning 

performance, affective state, or evaluation of the robot, nor was there any interaction between 

time and condition. In contrast, feedback was positively correlated with the dependent 

measures, indicating that a positive evaluation of the feedback session led to a more positive 

affective state and to a more positive evaluation of the robot.  

However, since these outcomes contradicted the previous findings which emphasized a 

positive effect on learning from feedback (e.g., Park et al., 2011; Schneider et al., 2014; Tsiakas 
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et al., 2018), we admit that the rather artificial nature of the learning setup might have adversely 

affected both the perception of the interaction and the robot evaluation. In fact, learning an 

artificial robot language had no relevance for students. Further, the learning content was rather 

simple (i.e., participants had to learn a few ROILA words and basic grammar). It can be 

assumed that the provision of feedback on such simple learning tasks did not affect participants’ 

learning behavior as it would have when participants had to learn more demanding educational 

content. In addition, despite the fact that it was evaluated positively, the provision of feedback 

to reach an externally-assigned goal seemed rather ineffective. Consequently, future research 

should focus on investigating the effectiveness of process-oriented feedback, in real learning 

activities that are more challenging and cognitively demanding in nature, taking place in actual 

learning settings, such as lectures or classrooms. Finally, we argue that the predefined feedback 

opportunities might also have reduced the possible effect of feedback on the learning 

experience. We predefined the feedback possibilities on the task, process, and self-level to 

ensure an effective implementation of participants’ feedback into the robots’ behavior. 

Therefore, considerably more work is needed to develop educational robots that are capable of 

autonomously comprehending learners’ spontaneous feedback and implementing it into their 

future learning behavior according to learners’ requirements.  

2.3 Educational Robot Design  

After having clarified the questions of robot acceptance and the meaningfulness of 

cooperative learning for HRI in higher education, the issue of the ideal educational robot design 

for the university context remains to be tackled. In fact, an increasing interest in educational 

robot design has emerged in recent years (e.g., Obaid et al., 2015, 2016; Oros, Nikolić, Borovac, 

& Jerković, 2014; Woods, Dautenhahn, & Schulz, 2004). To summarize, the literature implies 

that person- and context-specific factors clearly determine preferences in educational robot 

design. Despite this, to date, no previous work has addressed undergraduates’ design 
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preferences with respect to educational robots. However, university students constitute a core 

end user group for educational robots and should not be overlooked, bearing in mind that 

university education is particularly seeking to embed novel computer technologies as essential 

educational resources (e.g., Selwyn, 2007). Another noteworthy finding, which has been 

documented in previous work, indicates that end users hold an inherently distinctive role in the 

process of educational robot design: While some approaches have ascribed users a rather 

passive role as evaluators of robot platforms (e.g., Oros et al., 2014; Woods et al., 2004), others 

have actively involved potential end users contributing their needs and experiences (e.g., Obaid, 

Barendregt, et al., 2015; Obaid, Yantaç, et al., 2016). User-centered design, a methodology 

which is becoming increasingly important in HRI research (see Šabanović, 2010), espouses the 

latter role of end users.  

Thus, with the help of user-centered design, the eighth study was conducted to provide an 

insight into university students’ design preferences for educational robots (Reich-Stiebert & 

Eyssel, revised and resubmitted). More specifically, it aimed to involve undergraduates in the 

visual prototyping of a robot which could serve as a personal learning companion across 

different disciplines and for different student groups. In doing so, the study benefitted from the 

key features of prototyping, representing a simple and efficient procedure for creating early 

models of a product while actively involving users (Cerpa & Verner, 1996). We relied on 

various user-centered design models which had previously been applied in different fields (e.g., 

Paulovich, 2015; Sless, 2008; Vink, Imada, & Zink, 2008) for composing the user-centered 

design process. After reading a short description of educational robots’ features and functions, 

respondents had to indicate their preferred educational robot design. More specifically, 

respondents could choose between different characteristics for the aspects appearance, 

interaction, personality, and emotion (derived from Woods, Dautenhahn, Schulz, 2004). 

Overall, the findings demonstrated that university students preferred a medium-sized (100 

to 150 cm) robot with a rather machinelike appearance and a few human characteristics (e.g., 
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head, hands, facial features; see Fig. 1). In addition, the 

majority of undergraduates stated that educational robots 

should be gender-neutral. This observation is related to 

recent findings showing that robot gender plays a minor 

role in human-robot learning activities (Reich-Stiebert & 

Eyssel, 2017). For interactions, almost all participants 

preferred natural interaction via speech, but they also 

mentioned that the robot should be equipped with a tablet 

for illustrating explanations or gathering information. The 

results further suggest that a robot should be able to display 

basic, positive emotions. Moreover, it was found that the ideal educational robot should behave 

conscientiously, agreeably, and openly, which is not surprising as these traits have been found 

to be positively related to successful learning (e.g., Komarraju, Karau, Schmeck, & Avdic, 

2011; Verešová, 2015). To support the quantitative data, a qualitative content analysis was 

conducted using an open-ended question to explore which additional characteristics and 

features students’ ideal educational robot should have. It was possible to confirm that students 

had no preference for an excessively humanlike robot appearance. Additionally, the university 

students emphasized privacy and security issues by mentioning that an educational robot should 

not be capable of harming people, be simple to handle, and easy to shut off at any time.  

In its entirety, the present study emphasizes the importance of involving undergraduates 

in the design processes for educational robots. It was possible to show that university students 

have concrete requirements for educational robot design. It can be reasonably assumed that by 

meeting the future end users’ needs and expectations, a contribution can be made to the future 

acceptance of such robots.  

Figure 1. Visual prototype of an ideal 
educational robot from university 
students’ view. 
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3 GENERAL DISCUSSION 

The primary and overarching objective of the present dissertation was to examine the 

acceptance and applicability of social robots in educational contexts. To that end, factors which 

contribute to the future introduction of social robots into education were evaluated on three 

levels: The acceptance of educational robots, effective design of HRI for learning purposes by 

building upon the cooperative learning paradigm, and educational robot design. In fact, critical 

aspects were observed which could help to facilitate the implementation of robots into 

educational settings. Figure 2 provides a comprehensive overview of the resulting factors: 

 

 

Figure 2. Factors which contribute to a successful introduction of social robots into education. The lighter 

boxes indicate factors which have not been clearly proven to be effective. 

  

 
In terms of future stakeholders’ acceptance of educational robots, one major factor was 

identified which was positively associated with people’s attitudes toward educational robots: 

Technical affinity (Reich-Stiebert & Eyssel, 2015, 2016). One potential for increasing people’s 

acceptance of educational robots might therefore consist in increasing people’s overall interest 
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in technology, for instance, by offering more technical training opportunities in schools and 

universities. Associated with this, we observed that students and teachers preferred to use 

educational robots in STEM-related subjects, rather than in other subjects. As a result, 

educational robots could be initially introduced in these domains and their application could be 

extended to other less technical fields, such as history or music, once students have become 

accustomed to them. Nevertheless, campaigning for the application of educational robots in 

social and cultural subjects to demonstrate their broad potential would also be worthwhile. In 

addition, students and teachers envision using robots as tutors or teaching assistants for 

individual or small-group learning activities. Therefore, instead of one single robot, multiple 

educational robots should be applied in classrooms and lectures to increase the end users’ 

willingness to learn and teach with them. Finally, user involvement in the robot design process 

has proven to be another possibility for accelerating future end users’ acceptance of educational 

robots (Reich-Stiebert & Eyssel, 2019). Clearly, attitudes toward robots improved and robot 

anxiety reduced by involving students in the earliest stages of a robot’s design process, thereby 

contributing to a smoother introduction of robots into educational contexts. 

With regard to the second research focus, it was discovered that although the approach of 

cooperative learning is mainly practicable for HRI, its effectiveness for students’ learning has 

not been proven conclusively (Reich-Stiebert & Eyssel, 2018). In relation to applicability, it 

could be demonstrated that students perceived a stronger social presence from a physically 

embodied robot in a face-to-face interaction. Furthermore, participants acknowledged the social 

support offered by the educational robot and appreciated the provision of feedback on the 

learning process. It proved difficult, though, to perceive social interdependence with a robot. 

Given that the dependence manipulation was sounder than others which have been applied in 

HRI and HCI (e.g., Kim & Mutlu, 2014; Nass, Fogg, & Moon, 1996), which was also confirmed 

by a successful pretest, we do not believe that the manipulation was too weak. On the contrary, 

we suppose that a clear differentiation between inter- and independence was impeded by the 
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general setup of the HRI in the study. It is common knowledge that humans are inclined to 

interact with communication technologies in a similar way to how they interact with humans 

(Reeves & Nass, 1996). More importantly, the use of verbal and visual social cues in 

communication technologies can foster the development of a social partnership (Moreno, 

Meyer, Spires, & Lester, 2001). In relation to the HRI in the fourth study, the robot could be 

regarded as a social actor, which probably triggered the feeling of a social partnership with it, 

and thereby resulted in both interactions being perceived as being rather interdependent. 

Uncertainty about the effectiveness of cooperative learning in HRI still exists, due to the 

limited evidence obtained in the study. We clearly demonstrated the benefits of educational 

robots’ physical presence in learning environments. First, participants were more inclined to 

interact with the robot. Second, they evaluated the robot more positively when they interacted 

directly with it. Consequently, the physical presence of robots, as opposed to their virtual 

representation, could accelerate their future usage for supporting learning endeavors. Contrary 

to our expectations, positive interdependence, social support, and group processing in HRI did 

not significantly affect participants’ learning. Although indications were found that these 

cooperative learning elements were positively related to students’ affective states and their 

evaluation of the robot, no definite conclusions could be drawn about their usefulness for HRI. 

Nevertheless, we are convinced that cooperative learning could make a valuable contribution 

to HRI, if it is remembered that it is one of the most successful instructional practices in 

education (e.g., Johnson & Johnson, 2009; Johnson, Johnson, & Smith, 2007; Slavin, 1996). 

Therefore, a greater focus on real learning environments, actual learning content that adheres 

to the curriculum, and multi-party interactions with a robot could produce interesting findings 

which would probably account more effectively for the mechanisms of cooperative learning in 

HRI. 

Finally, with respect to educational robot design, it has been documented that, depending 

on the context, a robot’s design affects people’s perception and acceptance of it (e.g., Bartneck 
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et al., 2010; Duffy, 2003; Walters et al., 2008). In order to contribute to the future acceptance 

of educational robots, potential end users were involved in the visual prototyping process of an 

educational robot for higher education (Reich-Stiebert & Eyssel, revised and resubmitted). 

Undergraduates preferred a rather machinelike appearance with some humanlike 

characteristics, such as minimal facial features. To facilitate the interaction with an educational 

robot, it should preferably interact using speech, which is probably the most natural and 

simplest form of interaction for humans. Useful positive emotional feedback rather than a wide 

range of emotional responses, as well as robot behavior characterized by conscientiousness, 

agreeableness, and openness, were also deemed appropriate. Ultimately, to preserve people’s 

sense of privacy and security, the robot’s design has to guarantee that it can be easily handled 

and controlled simply. 

If robotics research would not only pursue the goal of designing robots and investigating 

HRI for their own sake, but also aim to create robot platforms and HRI models for the benefit 

of future users, it would make an important step toward increasing people’s readiness to accept 

and apply robots in educational environments. The results offered in the present work have 

provided useful indications on this matter. Considering the present outcomes for the future 

introduction of educational robots will contribute to increase their acceptance for learning and 

teaching activities as they give important insights into how to suit future end users’ expectations 

and requirements in terms of educational robots’ features and functions. At the same time, 

however, it has to be mentioned that the transition of robots into educational environments in 

which they can take over roles as teaching assistants and learning companions raises questions 

about the ethical and legal consequences, which will be discussed in the next section.  

3.1 Ethical Considerations 

Researchers have been prompted to face ethical issues from the very beginning of HRI 

research, thereby contributing to a culture of ethical awareness in robotics (see Riek & Howard, 
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2014). If one imagines that in future, students will learn and interact repeatedly with educational 

robots, it is plausible that they will perceive these robots to be social entities and build some 

kind of social relationship with them. As was observed in the second study that focused on 

school teachers’ attitudes toward educational robots (Reich-Stiebert & Eyssel, 2016), school 

teachers were concerned about precisely this issue: Namely, that robots could replace 

interpersonal relationships between students and negatively affect students’ social skills. In 

fact, the literature on robot ethics has already devoted a lot of attention to the replaceability 

question (e.g., Coeckelbergh, 2012; Decker, 2008). Therefore, HRI research is encouraged to 

consider humans’ tendency to build social bonds to robots (e.g., Calo, 2010; Riek & Howard, 

2014), and develop strategies for designing and using social robots which support learning 

activities while not inhibiting interhuman interactions. The idea of cooperative learning can 

make an important contribution to this aspect. As this approach focuses on how students should, 

ideally, interact with one another, HRI research can use cooperative learning principles as an 

orientation for a robots’ behavior. However, clearly priority must be given to interactions 

between students. In particular, one potential direction could be to develop robot behaviors 

which guide cooperative interactions and teach students the skills they need to cooperate with 

each other effectively. 

Another frequently highlighted area of concern relates to privacy aspects. Indeed, the 

results of the last study (Reich-Stiebert & Eyssel, revised and resubmitted) indicated that 

students emphasized privacy and security issues related to the use of educational robots. This 

is not surprising, if it is borne in mind that robots have the capabilities to sense and record their 

environment (Calo, 2010). With this capacity for accessing sensitive personal information, 

social robots contribute to blurring the line between private and public spaces (see Schulz & 

Herstad, 2017). As a consequence, HRI research is encouraged to develop strategies which 

contribute to securing students’ and teachers’ privacy and protect sensitive student data. 

Effective ways could be to increase transparency (i.e., people should be able to recognize when 
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a robot’s sensors are activated or deactivated), and simplify operability (i.e., guaranteeing 

simple deactivation when it comes to sensitive and confidential issues).  

Confronting these ethical and societal issues necessitates empirical research on human-

robot learning interactions in natural educational settings. Therefore, in order to contribute to 

the successful introduction of robots into our educational system, the design principles for 

robotics and HRI must be thoroughly elaborated and properly implemented.  

3.2 Conclusion and Outlook 

Cutting-edge technologies are continuing to push education to new levels and, in 

consequence, research is facing the challenge of elaborating theoretical and practical 

approaches for a successful introduction of robots into education. However, as educational HRI 

is in its infancy, there is a lack of established theory and practice in this field. This thesis aimed 

to make an important contribution to the evaluation of the acceptance and applicability of 

educational robots by building on well-established theoretical assumptions. However, during 

this process, not only were obstacles which could hinder a successful implementation of robots 

into education encountered, but at the same time opportunities for countering these difficulties:  

First and foremost, future stakeholders’ attitudes toward educational robots proved to be 

moderate. More precisely, students and teachers were rather hesitant about the prospect of 

learning and teaching with robots (Reich-Stiebert & Eyssel, 2015, 2016). This reluctance could 

constitute a serious obstacle to the future use of educational robots. However, at the same time, 

factors such as people’s high technical affinity, the application of robots in STEM-related 

domains, or the use of robots to support individual or small-group learning activities were 

determined which could positively affect end users’ acceptance of educational robots.  

In applying cooperative learning to learning with robots, an attempt has been made to adopt 

a well-established and successful pedagogical approach (Reich-Stiebert & Eyssel, 2018). 

Contrary to expectations, the results do not allow for a clear conclusion to be drawn about the 
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value of cooperative learning for HRI. Nevertheless, the unexpected outcomes also brought a 

noteworthy insight: The principles of cooperative learning in the sense of Johnson and Johnson 

(1994, 2009), probably cannot be directly translated to HRI. However, consideration should be 

given to using educational robots to strengthen cooperative learning strategies between 

students. It is emphasized that educational robots should not be considered to be learning 

partners equal to humans as they inherently lack reciprocity and mutuality (see Coeckelbergh, 

2012; de Graaf, 2016). Instead, robots should be regarded as learning media which can 

contribute to guiding and supporting cooperative human-human interactions in learning 

environments. However, to address this issue, it is still necessary to clarify how cooperative 

learning practices can be productively implemented in HRI. One possibility would be to focus 

on user experience with educational robots. That is, evaluating students’ experiences while 

cooperatively interacting and learning with robots. In doing so, future work can make a 

considerable contribution to discovering the factors which affect robot acceptance in social 

environments (see also Alenjung, Andreasson, Billing, Lindblom, & Lowe, 2017; Khan & 

Germak, 2018). 

Finally, further impediments to people’s acceptance of educational robots are associated 

with design-related issues. On the one hand, there is the risk relating to the violation of people’s 

privacy and security. A possibility for confronting this risk could be to get people involved in 

robot design and take their concerns seriously. User-centered design approaches make it 

possible to collectively elaborate robot designs and interaction scenarios which meet users’ 

requirements. In this way, end users could become familiar with robots and thereby could gain 

a feeling of control over them. On the other hand, one obstacle to the comprehensive 

distribution of educational robots are the prohibitive expenses inherent with these platforms, in 

terms of both the purchase and maintenance. Reducing the cost of purchasing educational 

robots will therefore be critical for their broad adoption in education. Moreover, researchers 
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and designers should consider developing easily manageable educational robots and reducing 

the workload involved with their introduction into learning and teaching activities. 

Taken together, it cannot be denied that digitalization is going to affect education in the 

future. Software skills are increasingly essential in every field. Thus, education is more than 

ever being asked to cater for this development and recommend ways of purposefully using 

novel technologies for learning and teaching. The present work is expected to make a significant 

contribution toward providing a theory-driven and application-oriented footing for the purpose 

of applying robots in education. To be specific, this dissertation has evaluated factors, which 

contribute to the future introduction of educational robots, in a systematic manner. These factors 

were, for instance, the use of robots as tutors to support individual or small-group learning 

activities, direct face-to-face interaction with educational robots, the provision of social support 

by educational robots, or design requirements such as machinelike appearance, interaction via 

speech, or the display of positive emotions. Clearly, these factors should be taken into account 

when pursuing a successful implementation of robots into learning and teaching activities. 

However, the present work is only a starting point. The validity of its theories and the reliability 

of the proposed strategies for facilitating the deployment of robots in the education landscape 

must be further tested in laboratory and especially in field studies. It is hoped that this 

dissertation has featured both a sound basis and new incentives for further investigation into 

issues related to the implementation and application of educational robots which are intended 

to facilitate learning and teaching efforts in the future. 
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Abstract 

The present work adopted a multidisciplinary and theory-driven approach to tackle the 

practicability of implementing cooperative learning principles in human-robot interaction (HRI), 

and investigated their effectiveness on learning performance, affective state, and the evaluation 

of the robot as a learning companion. In particular, we focused on positive interdependence, 

direct face-to-face interaction, social support, and feedback regarding the learning process. Our 

findings predominantly underpinned the practicability of cooperative learning in HRI: First, a 

physical robot as opposed to its virtual counterpart emanated greater social presence in a learning 

interaction. Second, participants perceived the allegedly supportive robot to provide more social 

support than the neutral robot. Third, students positively evaluated the feedback session with the 

robot.  

Concerning the effectiveness of cooperative learning in HRI, however, we only obtained 

significant findings regarding direct face-to-face interaction: Respondents found the physically 

embodied robot more intrinsically motivating, deemed it warmer and more competent, and 

ascribed it higher educational capabilities than the virtual robot. Although the other principles of 

cooperative learning did not produce the anticipated effects, we suggest that future work should 

adopt this well-established approach into HRI as numerous findings from educational 

psychological research indicate its tremendous potential. It remains to be clarified in prospective 

research, though, how this potential can be effectively realized in HRI. 

 

Keywords: cooperative learning, human-robot interaction, educational robots, 

interdependence theory, embodiment, feedback 
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Introduction 

Digital technologies have a profound impact on the educational landscape and 

considerably shape educational practices at different levels. Currently, technologies such as 

interactive whiteboards or one–to–one tablet computers are no longer surprising innovations in 

today’s classrooms. Robots, however, as the latest form of digital media in education, offer new 

potential for shaping teaching and learning. Indeed, it is the case that the use of social robots as 

tools for supporting teaching and learning has become increasingly important at different 

educational levels, reaching from elementary to graduate programs (Alimisis, 2013; Šabanović, 

Berry, & Bethel, 2017). In this matter, the role of robots in education is twofold: First, robots can 

serve as tools to teach science, technology, engineering and mathematics (STEM). Robots can be 

used as objects to learn programming or as instruments to discover how to build robots as an end 

in itself (Miller & Nourbakhsh, 2016). Second, robots as pedagogical means can serve as social 

interaction partners that support students’ learning (Belpaeme, Kennedy, Ramachandran, 

Scassellati, & Tanaka, 2018; Miller, Nourbakhsh, & Siegwart, 2008). 

In the present research, we will concentrate on the latter role of educational robots and 

discuss their application potential from a social and educational psychological viewpoint. With 

regard to the application of educational robots as learning collaborators, research has clearly 

indicated the positive effects of learning with robots on cognitive and affective outcomes (see 

Belpaeme et al. (2018) for a review). In a range of works it has been found that educational 

robots contribute to higher learning gains and knowledge acquisition (e.g., Leyzberg, Spaulding, 

Toneva, & Scassellati, 2012; Saerbeck, Schut, Bartneck, & Janse, 2010; Szafir & Mutlu, 2012). 

Likewise, it has been shown that learning with educational robots positively affects students’ 

motivation and engagement (e.g., Köse et al., 2015; Saerbeck et al., 2010), collaboration among 
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students (Mitnik, Nussbaum, & Soto, 2008), and compliance with the learning instructions (e.g., 

Bainbridge, Hart, Kim, & Scassellati, 2011; Ramachandran, Huang, Gartland, & Scassellati, 

2018).  

Despite the numerous studies indicating the beneficial effects of implementing robots 

into education (see Belpaeme et al., 2018; Benitti, 2013), far too little attention has been paid to 

investigating well-established pedagogical methods and concepts when it comes to facilitating 

learning with robots. Not infrequently, attempts to apply robots for learning “underestimate the 

role of pedagogy that should support any such attempt” (Alimisis, 2012, p. 7). However, it is 

precisely the recourse to educational methodologies and the creation of sophisticated supportive 

learning environments that will lead “any educational innovation, including robotics, to success” 

(Alimisis, 2012, p. 7). A widely discussed educational approach that strengthens the application 

of robots in learning environments (e.g., Catlin & Blamires, 2010; Denis & Hubert, 2001; 

Yousuf, 2009) is traced back to the theory of constructivism by Piaget (1954). Based on Piaget’s 

assumptions about learning as an active, constructive process, Papert (1980) developed the 

theory of constructionism. According to Papert’s theory, students learn when they actively 

construct physical objects, for instance, when they build and program physical robots (Papert, 

1980). These theoretical assumptions apply to the first role of robots in education, namely, using 

the robot as a tool for programming and building. Regarding the second role of robots in 

education, more specifically, the use of educational robots as collaborators to support learning, 

only few studies draw on pedagogical theories and methods. To date, some studies have already 

investigated the learning by teaching paradigm in the context of human-robot learning 

(Lemaignan et al., 2016; Tanaka & Matsuzoe, 2012; Werfel, 2013) stressing its good 

applicability and effectiveness with respect to learning performance and engagement. By 
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investigating the effect of social supportive behavior expressed by an educational robot, 

Saerbeck and colleagues (2010) referred back to theoretical assumptions by Tiberius and Billson 

(1993) who concentrated on social contexts of learning. For implementing social supportive 

behavior, Saerbeck and colleagues extracted aspects of social supportive behavior displayed by 

teachers in student-teacher relationships. Findings indicated that the application of social 

supportive behavior increased students’ learning performance. Szafir and Mulu (2012) relied on 

the concept of immediacy from educational psychology that constitutes “the degree of perceived 

physical or psychological closeness between people” (Szafir & Mutlu, 2012, p. 12). Szafir and 

Mutlu implemented verbal (e.g., inclusive and mutual communication style) and non-verbal 

(e.g., proximity, facial expressions) immediacy cues that were identified in student-teacher 

interaction in learning interactions with a robot. The results revealed that learning with an 

educational robot that displayed high immediacy resulted in higher learning outcomes 

(regardless of participant gender) and higher motivation among female participants. 

Nonetheless, these attempts to integrate educational methods into human-robot learning 

interactions are far from making comprehensive use of the potential of different established 

pedagogical approaches. Since, however, the recourse to educational methodologies can lead the 

use of educational robots to success, it seems crucial to elaborate further meaningful pedagogical 

concepts that will help to guide and facilitate human-robot interaction (HRI) in learning settings. 

The present research generates insights into this issue by taking a theory-driven perspective and 

implementing key principles of cooperative learning (CL)—a well-known and well-researched 

teaching approach in education—in human-robot learning.  
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Cooperative Learning 

CL is one of the most successful instructional practices in education, it can be utilized in 

every domain area and for students of all ages reaching from preschool to academic institutions 

(see Johnson & Johnson, 2009; Johnson, Johnson, & Smith, 2007; Slavin, 1992, 1996). CL has 

its origins in social interdependence theory that emerged from social and educational psychology 

(Johnson & Johnson, 2009). Initially designated “The theory of Co-operation and Competition” 

(Deutsch, 1949), social interdependence theory was developed to describe cooperation and 

competition in the functioning of small groups (Deutsch, 1949). It does not exist a recognized 

definition of CL, however, it is described as an approach in which students learn together to 

accomplish shared goals (Johnson & Johnson, 1999). CL comprises various teaching methods in 

which students work in small groups to promote each other’s learning (Slavin, 1996). Based on 

Deutsch’s assumptions on social interdependence (1949), Johnson and Johnson posited that CL 

would encompass five essential components (Johnson & Johnson, 1989, 2009; Johnson, Johnson, 

& Smith, 1991). These are: social interdependence, individual accountability, direct face-to-face 

interaction, appropriate use of social skills, and group processing (Johnson & Johnson, 1989, 

2009; Johnson et al., 1991).  

Social interdependence implies that the success of one learner is dependent on the 

success of the other learners. According to this, group members have to understand that each 

individual’s effort benefits not only the individual itself, but all group members as well. To 

achieve this, group members have to work together and to coordinate their actions (Johnson & 

Johnson, 1992, 2009). Positive interdependence creates feelings of individual accountability to 

complete one’s part of the work and to contribute to the group work. Learners have to internalize 

that although they learn together, they have to perform alone and that each learner has to exert 
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the same effort in achieving the group goal (Johnson & Johnson, 2005, 2009). As individual 

accountability results from positive interdependence, they are strongly interlinked (Johnson & 

Johnson, 2009). Therefore, we excluded this factor from the scope of our investigation as it 

comes along with positive interdependence. Face-to-face interaction involves physical proximity 

that is required to ensure that learners can interact directly when they learn together. Direct 

contact promotes, for instance, assistance to group mates, problem-solving, exchanging 

resources, or providing feedback (Johnson & Johnson, 2009). Effective cooperation requires an 

appropriate use of social skills. Students have to communicate unambiguously, support each 

other, and resolve conflicts constructively (Johnson, 2009; Johnson & Johnson, 2009). Socially 

competent students not only show higher learning achievements, but also build more positive 

relationships to other group members (Johnson & Johnson, 2009; Putnam, Rynders, Johnson, & 

Johnson, 1989). Group processing comprises the reflection of the learning process, mutual 

feedback on helpful and unhelpful actions, and the decision which activities should be changed 

or maintained for future learning (Johnson & Johnson, 2009). In doing so, group goals become 

clearer and the effectiveness of CL will improve (Weldon & Weingart, 1993). 

 

Research Questions 

Psychologists and educators increasingly call for applying interdisciplinary approaches 

and theory-driven perspectives when tackling questions related to the usage of social robots (e.g., 

Alimisis, 2012; Eyssel, 2016). Even more important, the recourse to educational methodologies 

in HRI can contribute to the creation of supportive learning environments with robots (Alimisis, 

2012), especially in light of the fact that educational robotics lacks of systematic investigations 

and reliable experimental designs (see Alimisis, 2013). To counter these issues, the purpose of 
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the present studies was to examine the effectiveness of implementing elements of CL in dyadic 

HRI learning. First, we explored whether, and as the case may be, how inducing social 

interdependence (vs. social independence) affects learning. We were interested in whether an 

interdependently perceived learning relationship would affect students’ learning outcomes, 

affective state, and their evaluation of the robot (research question 1). Second, we wanted to 

investigate the effect of direct face-to-face interaction with a robot on the learning interaction. 

More specifically, we sought to clarify the impact of learning with a physically present (vs. 

virtually present) robot on students’ learning performance and the interaction (research question 

2). Third, we focused on the effectiveness of implementing social skills in a robots’ behavior on 

HRI. Particularly, we attempted to examine how socially supportive behavior (vs. neutral 

behavior) provided by a robot during HRI affects students’ learning and the learning interaction 

(research question 3). Fourth, we wanted to scrutinize the effects of group processing with a 

robot on future learning. That is, we investigated whether giving and receiving feedback 

regarding the learning process (vs. no feedback on the learning process) affects students’ future 

learning and their perception of the robot as a learning companion (research question 4). 

 

General Method 

Sample and design 

In each of our four experiments, we implemented a single factor between-subjects design 

with two factor levels resulting in two conditions. To determine the sample size a priori, we 

conducted a power analysis with G*Power (Faul, Erdfelder, Lang, & Buchner, 2007) using the 

following parameters: α = .05; power = .80; f2 = 0.25 (medium effect). The result suggested to 
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include at least 33 participants in each condition. Participants were university students from 

different departments who were recruited at Bielefeld University.  

Experimental setup 

In each experiment, participants were tested individually in a laboratory at the university. 

Before the HRI started, the experimenter informed participants that they will learn a new Robot 

Interaction Language (ROILA) with the robot NAO (SoftBank Robotics) and that NAO would 

interact autonomously and explain the learning interaction. Afterwards the experimenter left the 

room. To confirm the impression that the robot acts autonomously, we used the Wizard-of-Oz 

technique (Kelley, 1984) that allows the experimenter to remotely control the robot from another 

lab and to operate the robot in synchrony with participants’ individual learning pace. Following 

the learning interaction, the robot asked participants to complete a computerized questionnaire 

using a laptop that was placed on another table in the laboratory. The questionnaire included the 

dependent measures and demographical information. Finally, participants were debriefed, 

reimbursed (three euros and chocolate, or course credit), and dismissed.  

Robot behavior 

In each experiment, the robot was always introduced as learning companion that would 

learn with the participant ROILA. In doing so, we avoided to create the notion of the robot as a 

teacher or instructor and the student as passive learner as such teacher-centered approaches 

represent conventional instructional methods which have become obsolete in today’s teaching 

practice (e.g., Johnson & Johnson, 2009; Lea, Stephenson, & Troy, 2003). During the learning 

interaction the robot used speech, humanlike gaze, and deictic gestures to impart the learning 

contents. Based on previous findings that indicate that applying humanlike gaze in HRI leads to 

improved collaborative work and a positive perception of the robot, and that the use of deictic 
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gestures supports information recall (Huang & Mutlu, 2012, 2013, 2014; Salem, Kopp, 

Wachsmuth, Rohlfing, & Joublin, 2012), the robot in our studies showed behavior synchronized 

with regard to speech, gaze, and gestures. For instance, it always looked at the participants while 

talking and gazed toward the learning folder (see section on Materials) synchronously 

performing deictic gestures accompanied by speech to indicate participants to use the learning 

folder. To refer to correct or wrong answers, the robot supported its verbal feedback by nodding 

or shaking its head. During individual learning phases the robot looked around the room slightly 

moving its head. Throughout the whole interaction the robot remained seated at the table and 

displayed, apart from the described gestures, no other behaviors in order not to distract 

participants from the learning interaction as such occurrence was observed in previous work 

(Huang & Mutlu, 2013).  

Materials 

In all experiments, participants had to learn basic vocabulary and simple grammar lessons 

of the artificial Robot Interaction Language (ROILA). ROILA is a spoken language for 

communicating with robots (Mubin et al., 2012; Mubin, Henderson, & Bartneck, 2013). This 

language is easy to learn for humans and optimized for the robot’s speech recognition. Due to 

several reasons, we chose this language for our learning scenario: First, given the novelty of 

ROILA, it ensured better comparability of participants’ learning outcomes as participants should 

not have prior knowledge of the learning contents. However, we always asked for participants’ 

existing ROILA skills to control for prior knowledge. Second, ROILA is based on natural 

languages and has a simple grammar making it very easy to learn. This guarantees learning of 

several words and smaller sentences even in very short learning interactions. Third, as ROILA is 

an artificial language constructed for interaction with robots, it increases the credibility of our 
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cover story. Namely, we wanted students help to extend NAO’s ROILA knowledge and further 

test how quickly humans can learn ROILA.  

For this purpose, we provided participants with a learning folder on ROILA learning 

materials including a table of all letters used in ROILA (a, e, i, o, u, b, f, j, k, l, m, n, p, s, t, w), 

sample words to practice the pronunciation (e.g., jinolu, saki, losa), a short vocabulary list, and 

example sentences to practice the sentence structure (e.g., “I am a robot.” – “Pito lobo.”). All 

learning contents were explained by the robot and were only sparsely presented in the folder 

(e.g., only the letters and a few words and no additional information were presented). This was 

done in order to warrant that participants paid greater attention to the NAO robot and its detailed 

explanations on ROILA. In our studies, we used the robot as central learning tool and provided 

learners only with short written learning materials. We avoided to use laptops or touchscreens as 

prior work using these hardware configurations has shown that participants tend to gaze more 

toward a screen than the robot (see Baxter et al., 2013). In addition to the folder, participants 

received an index card with new ROILA vocabulary. The robot was assumingly unfamiliar with 

these words, and participants were required to teach the robot by sharing their knowledge on the 

new words. 

Instruments and measures 

After the learning interaction, the robot asked participants to fill in a questionnaire to help 

continue its development as an educational robot. Participants could rate their agreement of each 

construct on a 7-point Likert scale ranging from 1 (fully disagree) to 7 (fully agree). Items were 

recoded where necessary with higher values indicating stronger endorsement of the respective 

construct.  
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Learning performance. Participants were first tested on their ROILA knowledge. To do 

so, participants had to translate six German words and three short sentences into ROILA (i.e., 

“The girl is small.”). 

Affective state. To evaluate participants’ affective state during the learning interaction, 

we assessed intrinsic motivation, self-efficacy for learning and performance, and learning mood. 

We used the German short version of the Intrinsic Motivation Inventory proposed by Wilde, 

Bätz, Kovaleva, and Urhahne (2009; original version: Deci & Ryan, 2003) that included nine 

items (e.g., “I enjoyed learning with NAO”). Second, to examine participants’ self-efficacy for 

learning and performance, we assessed a subscale from the Motivated Strategies for Learning 

Questionnaire (Pintrich, Smith, Garcia, & McKeachie, 1993) and amended it slightly to our 

learning context. An example item read: “I’m confident that I learned the basic ROILA 

vocabulary”. Third, we measured participants’ learning mood by applying a short version of an 

instrument developed by Krämer, Simons, and Kopp (2007). Participants had to rate their 

feelings during the learning interaction with the robot on ten items (e.g., attentive, relaxed). 

Evaluation of the robot. To examine participants’ perception of the robots’ usefulness 

as learning companion, we adapted and amplified the Perceived Usefulness and Ease of Use 

Scales (Davis, 1989) to the context of human-robot learning. The resulting scale included 15 

items (e.g., “NAO improved my learning performance”) that evaluated participants’ satisfaction 

with the robot as learning companion. Further, to explore participants’ impression of the robots’ 

educational qualities, we used a short version of the Agent Persona Instrument (Baylor & Ryu, 

2003; German translation by Krämer, 2008). The scale included 15 items that measured how 

engaging the robot was, its credibility, and human-likeness (e.g., “NAO was knowledgeable”). 

Finally, we measured participants’ impression of the robots’ warmth and competence by using an 
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adapted and shortened version of a scale developed by Fiske, Cuddy, Glick, and Xu (2002). 

Participants had to rate their impression of the robot on a 12-item scale (e.g., “comprehensible”, 

“likeable”). 

Control variables. Previous research in the field of robotics has shown that technical 

affinity and prior robot experience significantly affect the evaluation and acceptance of robots 

(e.g., Arras & Cerqui, 2005; Bartneck, Suzuki, Kanda, & Nomura, 2006; Reich & Eyssel, 2013; 

Reich-Stiebert & Eyssel, 2015). In order to control for these variables, we measured participants’ 

technical affinity by using a short version of the Technology Commitment scale (Neyer, Felber, 

& Gebhardt, 2012). The scale consisted of eight items (i.e., “I am very curious about new 

technical developments”). To assess prior robot experience, we asked participants to indicate 

whether they already participated in a study with the NAO robot or another robot, (dummy 

coded: 1 = yes, 2 = no). Further, to control for participants’ previous knowledge of the learning 

content, we asked participants whether they already knew the ROILA language (dummy coded: 

1 = yes, 2 = no). 

 

Study 1 – Social Interdependence in Human-Robot Learning 

The first principle of cooperative learning is social interdependence between learners. To 

our knowledge, social interdependence theory has hardly been considered in HRI research so far. 

Some studies have concentrated on interdependence theory to analyze interactions in joint 

activities between humans and robots (e.g., Johnson, Bradshaw, Feltovich, Hoffman, et al., 2011; 

Johnson, Bradshaw, Feltovich, Jonker, et al., 2014; Wagner & Arkin, 2006). However, although 

in these studies the robot was considered as a teammate in different interaction scenarios, the 

interactions were less social in their nature as they concentrated on fulfilling tasks in work 
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systems or in the field (e.g., mitigate natural disasters, cleanup a toxic waste spill, etc.). The 

application of social interdependence theory to social HRI in a stricter sense (e.g., social 

interactions in home, care, or learning contexts), has not been explored satisfactorily to our 

knowledge. Only a few works have marginally taken into account the concept of 

interdependence in social HRI: By investigating the evaluation of social presence in robots over 

longer periods of time, Leite, Martinho, Pereira, and Paiva (2009) have explored affective and 

behavioral interdependence—subdimensions of social presence—among children and a robot. In 

a chess-playing scenario, children interacted with a robot and were afterwards asked to complete 

a questionnaire on social presence. Interestingly, the two dimensions affective interdependence 

(the extent to which a person’s emotional and attitudinal state affects an interactant’s emotional 

and attitudinal state and vice versa) and behavioral interdependence (the extent to which a 

person’s behavior affects and is affected by an interactant’s behavior) decreased during the 

experiment. The authors argue that the robot was perceived more like an independent chess 

interface than a companion over time. Kim and Mutlu (2014) have studied how social distance 

influences people’s responses to robots. One aspect of their manipulation concerned 

interdependent vs. independent task goals. That is, in a cooperative task condition, participants 

were required to work interdependently with a robot to achieve a given goal, while in the 

competitive task condition participants had to achieve the goal independently of the robot. As 

before, however, results revealed no differences between the inter- and independent conditions. 

In consideration of these findings, much uncertainty still exists about the nature of 

interdependent interactions of humans and robots in social settings like learning interactions. 

Thus, the importance and originality of the present study is rooted in exploring the practicability 
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of inducing social interdependence between a human and an educational robot, and its impact on 

the learning interaction. 

Hypotheses. In line with findings from educational research, we hypothesized that 

participants in the socially interdependent learning condition would have better learning 

outcomes (H1a), would report a more positive affective state (i.e., higher intrinsic motivation and 

self-efficacy, more positive learning mood; H1b), and would evaluate the robot more positively 

(i.e., higher educational impact, perceived usefulness, and more warmth and competence; H1c) 

compared to participants in the socially independent learning condition.  

Method 

Participants. Participants were N = 68 university students (42 female, 26 male) ranging 

in age from 17 to 46 years (M = 24.46, SD = 5.90). Apart from the above described 

reimbursement (see section on General Method, Experimental Setup), participants could further 

join in a raffle of an e-book. This additional reimbursement was due to the study design and will 

be explained in detail in the following section. 

Experimental conditions. Social interdependence exists “when the outcomes of 

individuals are affected by their own and others’ actions” (Johnson & Johnson, 2009, p. 366). In 

this case, a distinction is made between positive (learners’ actions support the realization of 

common goals) and negative (learners’ actions hinder the realization of common goals) 

interdependence (Deutsch, 1962; Johnson & Johnson, 1999, 2005, 2009). As our approach aimed 

at investigating factors influencing successful learning with robots, we only focused on 

implementing positive interdependence. We manipulated dependency in the learning interaction 

by referring back to resource, reward, and goal interdependence, which have been shown to 

induce positive interdependence (see Deutsch, 1962; Johnson & Johnson, 1994; Slavin, 1996). 
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Goal interdependence is achieved when learners are aware that they can achieve their 

goals only when the other learners achieve their own goals (Deutsch, 1962; Johnson & Johnson, 

1989). With respect to the present study, goal interdependence was induced by telling 

participants that they—as well as the robot—have to know and answer questions on ROILA 

vocabulary after the learning interaction (Instruction by the experimenter: “You reach your 

common goal if both of you can answer questions on the newly learned ROILA vocabulary”). 

On the contrary, in the control condition participants were told that they have to answer 

questions on ROILA vocabulary after the learning interaction (Instruction by the experimenter: 

“The learning goal is reached if you can answer questions on the newly learned ROILA 

vocabulary”).  

Resource interdependence implies a complementary distribution of resources to the 

learners (Johnson & Johnson, 1989, 2009; Johnson et al., 2007). In our study, one part of the 

ROILA vocabulary was provided by the robot, while participants contributed another part of new 

ROILA vocabulary to the robot. By using an index card with new ROILA vocabulary (for details 

see section on General Method, Materials), participants were asked to pronounce and translate 

the vocabulary for the robot. In contrast, in the control condition participants were not taught by 

the robot and learned the new vocabulary independently by using the learning folder. Thus, 

participants and the robot were independent with respect to the learning resources.  

Finally, reward interdependence is defined when the reward of an interaction partner 

depends on the performance of other group members (Wageman, 2001; Wageman & Baker, 

1997). To manipulate reward interdependence, we told participants that they could join in a raffle 

of an e-book, while the reward for the robot would be its further development as an educational 

robot. In turn, in the control condition, participants were not informed about any reward for 
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successfully learning with the robot. However, for reasons of fairness, participants in the control 

condition could subscribe for joining in the raffle after finishing the experiment.  

In addition to manipulating goal, resource, and reward interdependence, we made 

different use of the wording in the learning interactions between the two conditions to further 

stress an interdependent or independent learning interaction, respectively: In the experimental 

condition, the robot used pronouns and adjectives like “we”, “together”, “both of us”, “mutual”, 

etc. that emphasize a feeling of communality, while in the control condition the robot expressed 

pronouns like “you”, “I/ me”, etc. that illustrate a more individualistic character of the learning 

task. 

Manipulation check. To check whether participants had perceived the learning 

interaction with the robot as independent or interdependent, we asked participants to indicate on 

a 7-point Likert scale (1 = fully disagree, 7 = fully agree) their impression of the learning 

interaction. Due to the lack of an adequate measure for social interdependence between robots 

and humans during learning interactions, we developed a 10-item scale that was partially derived 

from the Perceived Behavioral Interdependence subscale of the Social Presence Measure by 

Harms and Biocca (2004). An example items read: “NAO’s behavior was in direct response to 

my behavior”. Higher values reflect a higher endorsement of social interdependence with the 

robot, while lower values suggest a greater feeling of social independence with the robot. 

Results 

Preliminary analyses. First, we investigated descriptive statistics and internal 

consistencies (Cronbach’s α) for all measures; the results are displayed in Table 1. With respect 

to reliabilities, all measures proved to be reliable to highly reliable (α = .83 – .94). Subsequently, 

to examine the relation between our measures, we conducted a bivariate correlation analysis 
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(Pearson’s r) with our key study measures; the results are presented in Table 2. Our findings 

showed that all depended measures were moderately to highly intercorrelated (all ps < .05).  

Manipulation check. Regarding the effectiveness of our manipulation, we conducted an 

independent samples t-test to compare participants’ perceived interdependence with the robot 

during the learning interaction as a function of experimental condition (socially interdependent 

vs. socially independent learning). Surprisingly, no difference between the social 

interdependence (M = 5.08, SD = 1.13) and the social independence (M = 5.02, SD = 0.90) 

conditions were found, t(64) = 0.24, p = .81. In both conditions, participants perceived the 

learning interaction with the robot as rather interdependent.  

Hypotheses testing. According to our apparently failed manipulation, a multivariate 

analysis of covariance (MANCOVA) to evaluate the impact of learning interaction (socially 

interdependent vs. socially independent learning) on learning outcomes (H1a), affective state 

(intrinsic motivation, self-efficacy, learning mood; H1b), and the evaluation of the robot 

(educational capabilities, perceived usefulness, warmth and competence; H1c) did not reveal any 

significant effect, F < 1. No significant differences emerged between the socially interdependent 

and socially independent learning conditions with respect to learning performance, affective 

state, and the evaluation of the robot.  

Discussion 

 This is the first study to explore social interdependence in learning interactions between 

a human and a robot. Unexpectedly, our manipulation failed to induce positive interdependence 

(although positively pretested) between the robot and the participants, and congruently, we found 

no significant differences with respect to our dependent measures. Establishing an 

interdependent learning situation, however, exactly requires that students “[…] perceive that they 
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are positively interdependent with other members of their learning group […]” (Johnson et al., 

2007, p. 23). The lack of expected results could be substantiated by assumptions on the 

interdependence space (Kelley, Kerr, Reis, Holmes, Rusbult, & van Lange, 2003). One 

dimension that defines the interdependence space is the degree of interdependence that captures 

the extent to which a person’s outcomes are influenced by another person’s actions. High 

interdependence exists in a situation in which an individual’s outcomes highly depend on actions 

of another individual, whereas low interdependence occurs when an individual’s actions are less 

dependent of another individual’s actions. It can be assumed that, although we manipulated 

interdependence on three levels (viz., task, goal, and reward interdependence), in our learning 

interaction a rather low feeling of interdependence prevailed. This was probably due to the 

artificially created dependence situation and the consequent insignificance to achieve the given 

goal. In a more natural learning environment (e.g., a classroom), with real tasks and higher 

importance to successfully fulfil a task (e.g., to get a good mark in a test), interdependence with 

an educational companion robot probably could be perceived more clearly. Contrary to these 

assumptions, however, we have to point out that participants regarded the learning interactions as 

rather interdependent in both conditions. This discrepancy could be attributed to the difficulty of 

inducing an explicitly independent learning interaction without simultaneously imparting a 

competing atmosphere: Regarding resource interdependence, participants were independent of 

the robot to learn ROILA vocabulary, while the robot was dependent on the participants to learn 

the new vocabulary. With respect to reward interdependence, participants in the control 

condition also received a reward to a certain extent. This is, participants were reimbursed for 

participating. These circumstances were inevitable, since otherwise an interaction with a human 

would not be necessary or we would have infringed the common practice of reimbursing 
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participants. Future studies in actual learning settings like lectures or classrooms with reference 

to curriculum standards are therefore recommended. 

Overall, it is interesting to note that social interdependence was positively correlated with 

our dependent measures indicating that perceiving a learning situation with a robot as more 

interdependent leads to higher intrinsic motivation, a better learning mood, higher self-efficacy 

and a more positive evaluation of the robot. It remains to be examined, though, how 

interdependence between human learners and educational robots can be successfully induced, 

and whether inducing interdependence with an educational robot generally contributes to a more 

positive learning experience.  

 

Study 2 – Face-to-Face Interaction in Human-Robot Learning 

The second study in the scope of cooperative learning is dedicated to face-to-face 

interaction. Direct face-to-face interaction between learning interactors has proven to be crucial 

for successful learning. Physical proximity promotes, for instance, direct exchange, problem-

solving, or providing feedback among learners (Johnson & Johnson, 2009). However, several 

years ago the transition to technology-mediated learning increased the use of computers, 

accompanied by virtual agents as new interaction partners. On the other hand, the rise of 

educational robots makes direct face-to-face interaction with educational media possible. This 

development prompts the question on the implications of physical versus virtual embodiment for 

learning interactions. Following the assumptions by Norman (1988), physical objects constitute 

greater physical presence and thereby promote higher affordance. Arguing in line with Norman 

(1988), a physically embodied robot should imply to a greater extent how to use and interact 

with it than a virtually embodied character. Especially for educational robotics, this issue is of 
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particular relevance as it determines the success or failure of the introduction and dissemination 

of robots in educational environments. In the present study we attempted to explore the 

differences of direct interactions with a physically or a virtually embodied robot. We refer to a 

robot’s tangible body by the term physical embodiment, while virtual embodiment refers to a 

simulated robot on a screen (see Wainer, Feil-Seifer, Shell, & Matarić, 2006; Ziemke, 2003). 

To date, a number of studies have compared the effectiveness of embodiment in social 

interactions indicating that physically present robots were perceived more positively and 

trustworthy (Kidd & Breazeal, 2004; Wainer, Feil-Seifer, Shell, & Matarić, 2007), and led to 

better user performance compared to robots that were displayed digitally on a screen and 

compared to virtual agents (see Li (2015) for a review). Concerning embodiment in human-robot 

learning interactions, though, studies have revealed inconsistent results: For instance, most recent 

results did not generate significant differences regarding learning performance and the evaluation 

of the robot between a virtually and physically embodied robot (Kennedy, Baxter, & Belpaeme, 

2015a; Rosenthal-von der Pütten, Straßmann, & Krämer, 2016). In contrast, previous results 

have indicated that the physical presence of a robot significantly increased learning gains and led 

to a better evaluation of the robotic learning partner compared to the virtual representation of the 

robot (Kose-Bagci, Ferrari, Dautenhahn, Syrdal, & Nehaniv, 2009; Leyzberg et al., 2012). 

Evidently, the results are ambiguous and do not allow clear conclusions about the preferable 

presentation of robots in learning interactions. Therefore, we aimed to address these inconsistent 

findings by re-examining the impact of a robot’s physical vs. virtual embodiment on learning 

interactions. Beyond prior approaches, we assessed in addition to learning outcomes and the 

evaluation of the robot, participants’ affective state. In particular, we evaluated intrinsic 
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motivation, learning mood, and self-efficacy—measures that have not been investigated 

comprehensively in previous works.  

 Hypotheses. Although previous findings point in different directions, we assumed—in 

line with Norman (1988)—that participants in the physical embodiment condition would have 

better learning outcomes (H2a),  would report a more positive affective state (i.e., higher intrinsic 

motivation and self-efficacy, more positive learning mood; H2b), and would evaluate the robot 

more positively (i.e., higher educational impact, perceived usefulness, and more warmth and 

competence; H2c) compared to participants in the virtual embodiment condition.  

Method 

Participants. Participants were N = 68 German university students (34 female, 34 male) 

ranging in age from 18 to 65 years (M = 25.51, SD = 6.20).  

Experimental conditions. We used a two-condition between-subject design and changed 

the embodiment of the robot. In the experimental condition participants interacted with the real, 

physically embodied NAO robot, while in the control condition participants were presented with 

a large monitor displaying the virtual NAO robot. With respect to size, the virtual robot was 

adjusted to the real NAO to avoid a possible effect of size as it was found that taller interactants 

can exert greater social influence (e.g., Huang, Olson, & Olson, 2002; Segura, Cramer, Gomes, 

Nylander, & Paiva, 2012). 

Manipulation check. We checked whether our manipulation of robot embodiment 

(physical vs. virtual embodiment) had a significant effect on participants’ perception of the 

robot’s social presence. Originally, social presence has been defined as the “degree of salience of 

the other person in the interaction” (Short, Williams, & Christie, 1976, p. 65). With respect to 

technology-mediated learning, social presence represents a mental simulation of other 
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intelligences (Biocca, 1997), for instance, when people behave toward non-human agents as if 

they were real humans (Nass & Moon, 2000). By adapting Social Presence scales proposed by 

Harms and Biocca (2004) and Lee and colleagues (2006), we asked participants to indicate on a 

7-point Likert scale (1 = not at all, 7 = very much) their impression of the social presence of their 

robotic interactant. By means of a 14-item questionnaire, participants could rate to what degree 

they feel connected to their robotic learning companion. An example item read: “While you were 

interacting with NAO, how much did you feel involved with it?”.  

Results 

Preliminary analyses. First, we investigated descriptive statistics and internal 

consistencies (Cronbach’s α) for all measures; the results are displayed in Table 3. With respect 

to reliabilities, all measures proved to be moderately reliable to reliable (α = .70 – .88). 

Subsequently, to examine the relation between our measures, we conducted a bivariate 

correlation analysis (Pearson’s r) with our key study measures; the results are presented in Table 

4. All dependent measures were moderately to highly intercorrelated (all ps < .05). Interestingly, 

learning mood was negatively correlated with the other dependent measures. That is, participants 

who indicated a more negative learning mood reported higher self-efficacy and intrinsic 

motivation, and perceived the robot to be more useful, attributed the robot more educational 

capabilities, higher warmth and competence, and social presence. 

Manipulation check. To check the effectiveness of our manipulation, we conducted an 

independent sample t-test to compare participants’ evaluation of the robot’s social presence as a 

function of robot embodiment (virtual vs. physical embodiment). As expected, participants in the 

physical embodiment condition perceived the robot to be more socially present (M = 5.30, SD = 
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0.68) than in the virtual embodiment condition (M = 4.74, SD = 0.83), t(66) = 3.01, p < .01. 

Thus, participants felt more socially connected to the real robot than to the virtual robot.  

Hypotheses testing. With respect to our main hypotheses, we conducted a multivariate 

analysis of covariance (MANCOVA) to evaluate the impact of robot embodiment (physical vs. 

virtual embodiment) on learning outcomes (H2a), affective state (intrinsic motivation, learning 

mood, and self-efficacy; H2b), and the evaluation of the robot (educational capabilities, 

perceived usefulness, and warmth and competence; H2c), while controlling for technical affinity 

and prior experiences with the NAO robot. As anticipated, the MANCOVA demonstrated 

statistically significant differences between the two groups, F(7,58) = 2.28, p = .04, ηp2 = .22. 

Univariate analyses showed a statistically significant difference in learning outcome (F(1,64) = 

4.89, p = .03, ηp2 = .07), intrinsic motivation (F(1, 64) = 5.49, p = .02, ηp2 = .08), educational 

capabilities (F(1,64) = 5.44, p = .02, ηp2 = .08), and warmth and competence (F(1,64) = 4.47, p = 

.04, ηp2 = .07) as a function of embodiment. The experimental manipulation had no significant 

impact on learning mood, self-efficacy, and perceived usefulness of the robot (all ps > .05). 

Sidak adjusted post-hoc tests revealed that participants who learned with the physically 

embodied robot reported significantly higher intrinsic motivation (M = 5.17, SD = 0.76) than 

participants who learned with the virtually embodied robot (M = 4.77, SD = 0.67; p < .05, d = -

0.56). Likewise, respondents in the physical embodiment condition ascribed the robot more 

educational impact (M = 4.77, SD = 0.84) than participants in the virtual embodiment condition 

(M = 4.30, SD = 0.90; p < .05, d = -0.54). Regarding warmth and competence, participants in the 

physical embodiment condition perceived the robot as warmer and more competent (M = 5.64, 

SD = 0.65) than participants who interacted with the virtually embodied robot (M = 5.29, SD = 

0.80; p < .05, d = -0.48). Contrary to our hypothesis (H2a), participants in the physical 
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embodiment condition had a lower learning performance (M = 4.73, SD = 2.37) than participants 

in the virtual embodiment condition (M = 5.97, SD = 0.80; p < .05, d = 0.53).    

Discussion 

Embodiment in HRI is an extensively debated issue that has provided divergent results 

which makes it difficult to draw a final conclusion. Due to these inconsistencies and following 

the principle of direct face-to-face interaction in CL, we conducted an experimental study on the 

influence of interacting with a physically vs. virtually embodied robot on learning performance, 

affective state, and the evaluation of the robot.  

We found that participants perceived greater social presence of the physically embodied 

robot than of the virtual robot. Participants described the robot to be more communicative and 

more focused on them during the interaction. It can be therefore assumed that physical presence 

of a social robot indeed leads to greater affordance to interact and communicate with the robot. 

We further observed significant differences in learning outcomes between participants who 

interacted with the physical robot and those who interacted with the virtual robot—though, for 

the benefit of the virtual robot. According to previous research (e.g., Kennedy et al., 2015a; 

Rosenthal-von der Pütten et al., 2016), we argue that this outcome may be due to the novelty 

effect. This is, the novel technology of the robot probably led participants to concentrate on the 

robot and distracted them from the learning contents. This interpretation should be handled 

cautiously as the novelty effect is also used to explain findings that are in favor of the impact of 

physical robot embodiment on learning (e.g., Leyzberg et al., 2012). Thus, it remains to be 

clarified in future work how a robot’s novelty affects learning—if at all—and whether this effect 

disappears in long-term interactions. Concerning robot evaluation, participants deemed the 

physically present robot warmer and more competent, and ascribed it more educational 
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capabilities than the virtual robot. This finding is in line with prior results that suggested that 

physical presence of a robot can trigger a more positive evaluation of a robot’s capabilities (e.g., 

Wainer et al., 2006, 2007; Fasola & Matarić, 2010). Finally, in terms of affective state, 

participants found the physically embodied robot to be more intrinsically motivating, but 

participants’ self-efficacy and learning mood were not affected by robot embodiment. This 

outcome is somewhat surprising, as prior studies predominantly found that interacting with a 

physical robot is described more enjoyable (e.g., Kose-Bagci et al., 2009; Fasola & Matarić, 

2010). Nevertheless, we have to point out that participants’ learning mood was overall relatively 

neutral, which was probably due to the learning content itself that was possibly not appealing 

enough. To develop a full picture of the impact of robot embodiment on learning, additional 

studies in actual learning environments with recourse to real learning contents will be needed. 

Moreover, future research should investigate, among learning performance and the evaluation of 

the robot, learners’ affective and motivational state as these determinants are crucial for 

successful learning. Taken together, our findings provide certain evidence for the positive effect 

of physical presence in HRI. We can exclude that the robot’s external appearance, voice, or 

nonverbal behavior affected the learning interaction, as these factors were exactly identical in the 

physical vs. virtual embodiment conditions. Consequently, we can conclude that the physical 

collocation of a robotic learning partner contributes to a more positive perception of it and 

positively affects a learner’s intrinsic motivation.  

 

Study 3 – Social Support in Human-Robot Learning 

After having clarified the role of social interdependence and face-to-face interaction in 

cooperative human-robot learning, the third study examined the influence of social support 
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provided by a robot on the learning experience. Social support is defined in a variety of ways, 

yet, generally having overlapping conceptualizations. The scientific community commonly 

highlights the provision of instrumental (e.g., financial assistance, material goods), informational 

(advice, useful information), or emotional (e.g., empathy, encouragement) support (e.g., Cohen, 

2004; House, 1981), and emphasizes the importance of the social network allowing for 

communication and mutual assistance (Cobb, 1976; Wills, 1991). With regard to educational 

contexts, social support among peers has been shown to play a key role in student retention and 

success (e.g., DeBerard, Spielmans, & Julka, 2004; Grillo & Leist, 2013; Tinto, 1997). Building 

on the powerful effects of social support on learning, it seems not far-fetched applying it to HRI. 

Indeed, to date, several studies have investigated the impact of socially supportive behaviors 

provided by a robot (e.g., facial expressions and gestures, social dialogue, emotional support, 

etc.) on learning outcomes and the learning interaction (e.g., Leite, Castellano, Pereira, Martinho, 

& Paiva, 2014; Searbeck et al., 2010; Lubold, Walker, Pon-Barry, & Ogan, 2018). Evidence 

suggests that social support offered by a robot contributes to better learning outcomes (e.g., 

Lubold et al., 2018; Saerbeck et al., 2010), higher learning motivation (e.g., Saerbeck et al., 

2010), or to more socially engaging behaviors toward a robot (e.g., Serholt & Barendregt, 2016). 

Further, it was found that children feel supported by a robot to a similar extent to what they feel 

supported by peers (Leite et al., 2014). However, these previous works have focused on 

elementary school children as target group, while no attention has been paid to robots providing 

social support in higher education. Addressing this issue, the present study relied back on social 

support in academic contexts. According to a theory proposed by Mazer (2008), student 

academic support encompasses direct assistance with course contents as well as emotional 

support provided by peers. Thompson and Mazer (2009a) focused on how students communicate 
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support and indicated that informational (e.g., provide useful information), esteem (e.g., increase 

others’ self-esteem), motivational (e.g., motivate others to study), and venting (e.g., listen 

students’ venting about classes or teachers) support are key components of student academic 

support. In building on this concept, we had a robot providing student academic support to 

undergraduates and evaluated the impact on students’ learning gains, their affective state, and 

their perception of the robot. 

Hypotheses. According to the theoretical implications, we hypothesized that participants 

in the social support condition would have better learning outcomes (H3a), would report a more 

positive affective state (i.e., higher intrinsic motivation and self-efficacy, more positive learning 

mood; H3b), and would evaluate the robot more positively (i.e., higher educational impact, 

perceived usefulness, and more warmth and competence; H3c) compared to participants in the 

neutral condition.  

Method 

Participants. Participants were N = 70 university students (36 female, 34 male) ranging 

in age from 18 to 48 (M = 24.51, SD = 4.65). 

Experimental conditions. In a two-condition between-subject design we changed the 

social behavior of the robot by having socially supportive behavior in the experimental condition 

and neutral behavior in the control condition. To operationalize social support, we drew upon the 

theory of student academic support by Thompson (2008). Based on this classification, we 

manipulated motivational, esteem and venting support. The factor informational support was not 

considered in the present study as this would imply to withhold information or learning contents 

without which it would be impossible to learn. In the experimental condition the robot provided 

motivational support by encouraging participants to learn (e.g., “You accomplished this 
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demanding task very well. Let’s start with the next task”). Contrary, in the neutral condition the 

robot provided sentences like: “This task is finished now. Let’s start with the next task”. 

Concerning esteem support, the robot complemented participants’ work and acknowledged their 

effort (e.g., “Well done. That was a lot you had to remember”) in the experimental condition, 

while the robot remained rather neutral in the control condition (e.g., “That was right. The task is 

finished now”). Finally, the robot offered venting support by acknowledging that other 

participants also experienced frustrations during the learning interaction (e.g., “It was not easy 

for other participants, too. You are not alone”). In the control condition, in turn, the robot 

expressed neutral statements on the learning (e.g., “ I have already done this exercise with many 

other students”).  

Manipulation check. We assessed social support by adapting the Student Academic 

Support Scale proposed by Thompson and Mazer (2009a) to the learning interaction with the 

robot. The scale comprised 16 items that tapped participants’ impression of the support the robot 

offered during the learning interaction (e.g., “NAO helped raise my confidence about the tasks”). 

Results 

Preliminary analyses. Descriptive statistics and internal consistencies (Cronbach’s α) 

for all measures are displayed in Table 5. Regarding reliabilities, all measures proved to be 

reliable to highly reliable (α = .80 – .92). To examine the relation between our measures, we 

conducted a bivariate correlation analysis (Pearson’s r) with our key study measures; the results 

are presented in Table 6. Our findings showed that all depended measures were positively 

intercorrelated (all ps < .01).  

Manipulation check. We conducted an independent samples t-test to compare 

participants’ perception of the robot’s social support as a function of condition (supportive vs. 
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neutral condition). As expected, participants in the supportive condition perceived the robot to be 

more socially supportive (M = 5.33, SD = 0.77) than in the neutral condition (M = 4.57, SD = 

0.93), t(68) = 3.73, p < .001. Indeed, participants perceived the robot in the social supportive 

condition to provide more social support than in the neutral condition.  

Hypotheses testing. To evaluate the impact of condition (social supportive behavior vs. 

neutral behavior) on learning outcomes (H3a), affective state (intrinsic motivation, learning 

mood, and self-efficacy; H3b), and the evaluation of the robot (educational capabilities, 

perceived usefulness, and warmth and competence; H3c), we conducted a multivariate analysis 

of covariance (MANCOVA), while controlling for technical affinity and prior experiences with 

the NAO robot. Unexpectedly, the MANCOVA demonstrated no statistically significant 

differences between the two groups (F(7,58) = 2.28, p = .04, ηp2 = .22). Contrary to our 

hypotheses (H3a to H3c), we found no differences between the experimental and the control 

condition on our dependent measures. 

Discussion 

Our research is the first to investigate how academic support provided by an educational 

robot influenced participants’ learning outcomes and their learning experience. This is, we had 

the robot offer motivational support by encouraging students to learn, esteem support by 

acknowledging participants’ effort, and venting support by admitting that other students 

experienced similar frustrations when learning ROILA. As expected, we found that participants 

perceived the robot in the supportive condition as more socially supportive than in the neutral 

condition. Regarding the impact of academic support on the learning experience, however, we 

found no significant differences between conditions. Participants had equal learning outcomes, 

and did not differ with respect to their affective state and their evaluation of the robot. 
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It seems that informational support—which we have provided in both conditions to 

enable the learning interaction at all—has a high significance across the four dimensions of 

academic support in HRI and possibly is deemed sufficient to support learning. Findings from 

educational psychological research support this assumption: Informational support was found to 

have the second highest importance among the dimensions while esteem support and 

motivational support were shown to be less important (Thompson & Mazer, 2009b). Venting 

support was ascribed the greatest importance (Thompson & Mazer, 2009b). In this process, the 

context has an important function. It is known that individuals who have a closer relationship to 

each other (e.g., friends), communicate more effectively academic support than less interrelated 

interaction partners (e.g., Thompson, 2008; Thompson & Mazer, 2009b). Additionally, a shared 

context between students is an essential aspect as students can better understand what their peers 

experience (Thompson, 2008). Probably herein lies the difficulty of implementing the four 

dimensions of student academic support into HRI. Namely, the difficulty of presenting the robot 

as an equal companion in the learning relationship that shares a common experience with the 

human learner. As a result, the socially supportive robot, albeit perceived to be more supportive, 

was not appreciated as a peer, thus not contributing to a more positively experienced learning 

interaction. Interestingly, our outcomes are contrary to that of Leite and colleagues (2014) who 

found that elementary school children preferred a robot offering esteem and motivational support 

over informational support. It may be the case that these variations are due to the different 

contexts as it is very likely that undergraduates place different expectations on how robots should 

support learning than younger children.  

Generally, before evaluating our outcomes as having failed to comply the usefulness of 

the present approach, one ought to consider that the results clearly demonstrate which role 
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educational robots should take in cooperative learning processes in higher education. In fact, 

educational robots should be intended to facilitate learning activities by providing informational 

support in the first place. Beyond that, attention should be paid to use educational robots guiding 

group learning processes, and encouraging students to help and motivate each other. 

Consequently, to develop a full picture of how to efficiently implement academic support in 

HRI, additional studies will be needed that shift the focus toward multi-party learning 

interactions with a robot.  

 

Study 4 – Group Processing in Human-Robot Learning 

Closing the circle, the fourth study in the framework of cooperative learning in HRI 

focused on group processing. According to the approach of cooperative learning, effective 

cooperation can only exist when learners regularly reflect on their functioning and how they can 

improve the learning process (see Johnson, Johnson, & Smith, 2007). More precisely, the focus 

is on providing each other with feedback on what actions were helpful in achieving the learning 

goals and deciding about what behaviors to retain or to change (e.g., Johnson, Johnson, & Smith, 

2007; Yager, Johnson, Johnson, & Snider, 1986). Educational research findings demonstrated 

that group processing was positively related to learning achievement (e.g., Yager et al., 1986; 

Johnson, Johnson, Stanne, & Garibaldi, 1989; Bertucci, Johnson, Johnson, & Conte, 2012).  

So far, little work has been undertaken to investigate the effect of verbal feedback in 

human-robot learning activities. Yet, these studies have been mostly restricted to a robot 

providing corrective feedback on the learning contents, not the learning process itself. Further, 

inherently different feedback modalities have been applied making it difficult to draw 

meaningful conclusions about possible benefits of verbal feedback in human-robot learning. 
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Park, Kim, and del Pobil (2011), for instance, have explored the effects of positive, negative, and 

neutral feedback provided by a robot instructor on students’ acceptance of the robot. Hardly 

surprising, participants evaluated the robot instructor more positively when it provided positive 

and neutral feedback compared to negative feedback. Likewise, participants were more likely to 

accept feedback by a robot instructor offering positive or neutral feedback. By having a robot 

providing either motivational feedback or feedback related to task performance, Schneider, 

Riether, Berger, and Kummert (2014) investigated a socially assistive robot’s support in a mental 

rotation task. Findings showed that a robot giving performance related feedback led to higher 

task performance and a more positive evaluation of the task. In a more recent study, an 

interactive reinforcement learning framework was applied to design personalized training 

(Tsiakas, Abujelala, & Makedon, 2018). For this purpose, a robot provided either encouraging or 

challenging feedback. Results demonstrated that both feedback modalities facilitated robot 

personalization and contributed to higher task performance and engagement.  

No former work, however, studied the effects of reflecting the interaction between 

humans and robots in an educational setting per se, and how implementing users’ feedback into 

future robot behavior affects its evaluation. Additionally, previous approaches have not 

sufficiently focused on implementing sound theoretical concepts of feedback into learning 

settings. To this end, the fourth study aimed at incorporating the means of group processing in 

HRI. To do so, we had participants and the robot provide each other feedback on their learning 

interaction, and implemented participants’ feedback for the second learning section. We explored 

how this affects participants’ learning outcomes, affective state, and their evaluation of the robot.  

Hypotheses.  We hypothesized that participants in the group processing condition would 

have better learning outcomes (H4a), would report a more positive affective state (i.e., higher 
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intrinsic motivation and self-efficacy, more positive learning mood; H4b), and would evaluate 

the robot more positively (i.e., higher educational impact, perceived usefulness, and more 

warmth and competence; H4c) compared to participants in the control condition (no group 

processing). Furthermore, we expected an improvement with regard to the evaluation of the 

dependent measures in the experimental condition from time one to time two, while in the 

control condition no improvement should be recorded (H5). 

Method 

Participants. Participants were N = 66 university students (40 female, 26 male) ranging 

in age from 19 to 34 (M = 24.55, SD = 3.24). 

Experimental conditions. In a two-condition between-subject design we included a 

feedback session of the learning interaction in the experimental condition, while in the control 

condition no feedback has been incorporated. Additionally, we applied a repeated-measures 

design by having participants interact with the robot in two consecutive learning sessions. In the 

experimental condition we had the robot providing participants feedback and, vice versa, 

encouraging participants to provide feedback to the robot. The main objective was to decide 

what actions were helpful and what behaviors to continue or to change for the second learning 

interaction. To do so, we followed the three steps of effective group processing (see Johnson, 

Johnson, & Holubec, 1994; Nam & Zellner, 2011): First, after the learning interaction had 

finished, we had the robot encouraging and instructing the feedback session. Afterwards, the 

robot gave participants feedback and, in turn, received their feedback. Third, the robot executed 

the feedback in the following learning interaction. We further evaluated the feedback procedure 

in a questionnaire. In the control condition, on the other hand, no feedback procedure was 
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included. The robot displayed in the second learning interaction the same verbal and non-verbal 

behavior as in the first learning session. 

In order to provide effective feedback, we referred to a feedback model proposed by 

Hattie and Timperley (2007) that was developed to enhance learning. According to this model, 

feedback questions relate to four levels. First, the task performance level evaluates how well a 

task was accomplished (e.g., correct/ incorrect answers), and entails additional information. 

Second, the process level concerns the understanding how to do a task. Such feedback is oriented 

toward helping students to develop learning strategies, or detect errors. Third, the self-regulation 

level concerns the way students control and direct actions toward the learning goal. We excluded 

the self-regulation level from our manipulation as this involves metacognitive processes that a 

robot is not capable to influence. Finally, feedback on the self-level is more personal and entails 

little task-related information. Typically, it is geared toward expressing positive evaluations 

about the student and his or her learning efforts.  

In detail, the robot introduced the feedback session and proposed three possible 

modifications of its interaction behavior. On the task level, the robot proposed participants to 

offer further information on the learning contents (e.g., more example sentences, reiteration of 

vocabulary). On the process level, the robot offered participants to use another learning strategy. 

This is, participants had the opportunity to use learning cards visualizing the grammar lessons 

and thereby activating visual learning. Ultimately, on the self-level, the robot suggested to 

motivate and praise participants efforts more or not to do it at all. Accordingly, depending on 

participants decisions, the second learning interaction could be adapted in eight various modes 

(e.g., no adaption at all, adaption on process and task level, adaption on all three levels, etc.).  
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We defined the feedback possibilities for participants a priori in order to ensure an 

effective implementation of their feedback. Offering participants free decision about what robot 

behaviors to continue or to change, could have made an implementation of participants’ feedback 

substantially more difficult or even impossible.  

Supplementary materials. Owing to the more complex design of the fourth study, we 

had a second learning interaction entailing additional learning materials (e.g., new vocabulary 

and grammar lessons). Further, we applied another measure to assess participants evaluation of 

the feedback session. For this purpose, we developed eight items to capture participants’ 

evaluation of the group processing (e.g., “I think it is helpful for our learning to reflect the 

learning session with NAO”). The scale creation was partially based on items provided by 

Johnson, Johnson, Stanne, and Garibaldi (1989). Additionally, we assessed participants’ 

commitment to realize the robot’s feedback in the second learning interaction (e.g., “I have 

implemented NAO’s feedback in the second learning session” and “I could implement NAO’s 

feedback easily”). For reimbursing participants’ efforts in the second learning interaction, they 

received a voucher worth € 10. 

Results 

Preliminary analyses. Descriptive statistics and internal consistencies (Cronbach’s α) 

for all measures at time one and time two are displayed in Table 7. Regarding reliabilities, all 

measures proved to be reliable to highly reliable (α = .70 – .92). To examine the relation between 

our measures, we conducted a bivariate correlation analysis (Pearson’s r) with our key study 

measures; the results are presented in Table 8 for time 1 and in Table 9 for time 2. Our findings 

showed that all dependent measures were moderately to highly intercorrelated (all ps < .05). 
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Evaluation of the feedback session. In the experimental condition, participants reflected 

the learning interaction with the robot and had the option to change the robot’s behavior for the 

second learning interaction on the task performance, process, or self-level. Approximately 13 

percent of the participants decided not to change the robot’s behavior at all, 42 percent favored a 

change on one level, while 45 participants preferred adaptations on two levels. Interestingly, no 

participant favored changes on the self-level, which means that participants decided the robot no 

to provide more or less motivational statements or praise. Nearly 72 percent wanted the robot to 

offer further information on the learning contents (task level), and 60 percent invited the robot to 

include the visual teaching strategy by offering learning cards (process level). To assess how 

participants evaluated the group processing with the robot, we conducted one sample t-tests 

against the neutral scale midpoint (scale value = 4 on a 7-point scale). Results showed that 

participants positively evaluated the feedback session at time one (t(31) = 5.50, p < .001, d = 

0.99) and time two (t(29) = 5.73, p < .001, d = 1.05). Moreover, participants commitment to 

implement the robot’s feedback in the second leaning session was found to be rather high, t(29) 

= 10.46, p < .001, d = 1.91.  

Hypotheses testing. A repeated measures MANCOVA was conducted to test a possible 

effect of time and condition on the dependent measures, while controlling for technical affinity 

and prior experiences with the NAO robot. The results showed, however, that there was no 

significant change for the dependent measures over time, F(6, 54) = 0.74, p = .62, ηp2 = 0.08. 

Moreover, there was no difference between the evaluation and the no evaluation conditions 

regarding our dependent measures, F(6, 54) = 1.12, p = .37, ηp2 = 0.11, nor was there an 

interaction between time and condition, F(6, 54) = 0.91, p = .50, ηp2 = 0.09. 
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Discussion 

To date, no former work explored the impact of reflecting the learning process between a 

human and a robot per se, and how the implementation of a user’s feedback in future robot 

behavior affects its evaluation. To this end, the fourth study aimed at incorporating the means of 

group processing, a feedback strategy to reflect learning processes, in HRI. In our human-robot 

learning scenario, we implemented a feedback session to reflect the functioning of the HRI. We 

found that participants perceived the feedback sessions positively, and demonstrated that 

participants requested the robot to adapt its behavior for future learning favorably at the task and 

process level. In particular, participants asked the robot to offer more information on the contents 

and to apply another teaching strategy. However, participants did not ask the robot to adapt its 

behavior on the self-level (e.g., more motivation and praise). Linking these outcomes to 

educational psychological literature, we find a similar pattern: That is, feedback was more 

effective when it informed about correct responses and how to change learning strategies based 

on previous trails, while praise appeared to be rather ineffective due to its limited relevance to 

the learning contents (see Hattie & Timperley (2007) for a review).  

Contrary to our hypotheses, we did not observe an effect of providing and receiving 

feedback on participants’ learning outcomes, affective state, and evaluation of the robot. 

Additionally, implementing participants’ feedback in the robot’s behavior for the second learning 

interaction did not affect the dependent measures either. Interestingly, however, we found that 

feedback was positively correlated with learning mood, intrinsic motivation, and self-efficacy 

indicating that a positive evaluation of the feedback session leads to a more positive learning 

mood, higher intrinsic motivation and higher self-efficacy. Likewise, evaluating the feedback 
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session more positively contributed to ascribing more educational capabilities to the robot, and 

perceiving it as more useful, warmer and more competent.  

The reason for the limited results regarding our dependent measures is not clear, 

especially as they contradict previous findings that show a positive effect of feedback (e.g., Park 

et al., 2011; Schneider et al., 2014; Tsiakas et al., 2018), but it may have something to do with 

the artificiality of our learning task:  Achieving the goal of learning ROILA vocabulary had no 

greater relevance for students. Thus, giving and receiving feedback—albeit positively 

acknowledged—to reach the assigned goal appeared to be rather ineffective. Support for this 

assumption provide the correlative results highlighting that feedback indeed can have positive 

effects on learning, motivation, and the perception of the robot companion. This is an important 

issue for future research that should (a) be conducted in the field (e.g., lectures, classrooms), with 

(b) actual learning activities that have greater significance for students, and (c) examine more 

closely the impact of assigned and self-set goals. 

 

General Discussion 

The main purpose of the present research was to investigate the applicability and 

effectiveness of a sophisticated educational approach, namely cooperative learning, in HRI in a 

programmatic manner. Cooperative learning is a strategy focusing on how students should 

interact with each other to enhance their learning outcomes and to impact the interaction between 

students positively. Essential components of cooperative learning such as social interdependence, 

direct face-to-face interaction, appropriate use of social skills, or group processing (Johnson & 

Johnson, 1989, 2009; Johnson et al., 1991) contribute to this purpose. The underlying idea of the 

present work aimed at taking advantage of the effectiveness of CL observed in human-human 
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interactions in order to shape human-robot learning activities effectively. To do so, we focused 

on the following main research questions: First, is it possible to implement essential elements of 

CL (viz., positive interdependence, direct face-to-face interaction, use of social skills, and group 

processing) in a learning scenario with an educational robot? Second, which effects will these 

elements have on students’ performance, affective state, and the evaluation of the robot as a 

learning companion? 

With respect to our first research question, our findings predominantly support the 

applicability of CL in HRI: First, we found that students perceived a stronger social presence of a 

physical robot in face-to-face interaction compared to a virtual robot. Second, participants 

recognized the supportive robot compared to the neutral robot as more socially supportive. Third, 

students appreciated the feedback session with the robot by evaluating the group processing 

overall positively. However, an unexpected finding concerned our implementation of 

interdependence: This is, participants in both conditions perceived the interaction with the robot 

relatively interdependent. However, we do not believe that the dependence manipulation was too 

weak, as we first successfully pretested our manipulation and second, it was stronger than others 

used in HRI and HCI (e.g., Nass, Fogg, & Moon, 1996; Kim & Mutlu, 2014). Rather, we assume 

that the general modality of the interaction in our learning scenario easily blurred the borders 

between inter- and independence. Evidence for this theorizing provide the media equation 

(Reeves & Nass, 1996) and the social agency theory (Moreno, Meyer, Spires, & Lester, 2001). 

According to the media equation theory people tend to interact with communication technologies 

in the same way they interact with humans (Reeves & Nass, 1996). Social agency theory further 

postulates that applying verbal and visual social cues in communication technologies can 

promote the development of a social partnership (Moreno et al., 2001). In our case, learning with 



  97 

a robot in a team could be seen similar to learning with a human in a team, which resulted in 

accepting the robot as a social actor. This, in turn, probably contributed to establish a social 

partnership that was evaluated rather interdependent in both interactions. 

On the second research question, we obtained fairly limited evidence for the effectiveness 

of CL in HRI. Concerning direct face-to-face interaction, participants found the physically 

embodied robot to be more intrinsically motivating, deemed it warmer and more competent, and 

ascribed it more educational capabilities than the virtual robot. This underlines the benefits 

educational robots can bring by being physically present in learning environments. On the one 

hand, the physical presence apparently led to greater affordance to interact with the robot. On the 

other hand, communicating directly with a real robot positively affected its evaluation as learning 

companion. Educational robots’ physical presence, in contrast to their virtual display, can 

therefore contribute to their future usage in educational environments.  

Unfortunately, our implementation of positive interdependence, social support, and group 

processing in HRI did not render significant outcomes. Interestingly, our findings are in line with 

results obtained by Kennedy, Baxter, and Belpaeme (2015b), who found that a robot that uses 

social behaviors in a collaborative learning interaction does not contribute to higher learning 

outcomes. Kennedy et al. (2015b) argue that while the physical presence of a robot contributes to 

learning gain, its social behavior is not a determining factor for successful learning. In contrast, 

we do not claim that a robots’ physical presence is an exclusive candidate contributing to 

effective learning interactions with robots. Rather it seems that a robot’s physical presence is, at 

present, one of the simplest ways to shape HRI in learning contexts. Concerning our findings, we 

assume that the artificial learning context and the temporal brevity of the interaction resulted in 

participants’ low active engagement. Consequently, future work should be undertaken in real 
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learning settings like classrooms or lectures concentrating on actual learning contents that follow 

the curriculum. Further, to investigate the diverse nature of this approach properly, future studies 

should foster evaluating CL in multi-party interactions with an educational robot. 

 

Conclusion 

The educational landscape is always in flux and the current development of robotic 

technologies presents new challenges for education. Concurrently, researchers from pedagogy 

and psychology increasingly call for applying interdisciplinary approaches and theory-driven 

perspectives when tackling questions related to the usage of social robots (e.g., Alimisis, 2012; 

Eyssel, 2016). To account for this, we incorporated key elements of CL in HRI and investigated 

their effect on the learning interaction.  

In view of the rather limited results regarding the effectiveness of our manipulations on 

the dependent measures, one could argue that CL is not applicable in the context of HRI. We 

support nevertheless the idea that CL can be successfully implemented in HRI, when considering 

certain aspects such as use in real contexts, multi-party interactions with educational robots, or 

long-term applications in future work. Taken together, we have provided various theory-based 

strategies how to induce CL with an educational robot. These were, for instance, the 

manipulation of positive interdependence via task, goal, and reward interdependence (Johnson & 

Johnson, 1989, 2009; Wageman, 2001), the application of academic support strategies 

(Thompson, 2008), or the implementation of an elaborated feedback model for enhanced 

learning (Hattie & Timperley, 2007) in our human-robot learning interactions. Although the 

effectiveness of our approach was limited, we still argue that adopting theoretical approaches 

into HRI and experimentally evaluating their effectiveness will forward research in this field to 
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higher levels. Even more important, though, future learners and teachers will benefit from such 

endeavors.   

 

Acknowledgments. The authors gratefully acknowledge the contributions of Charlotte Hohnemann, 

Christine Henschel, Nathalie Brock, Hannah Koppenrade, and Bianca Gellrich. 

 

 

Ethical Standard. Our research is approved by the ethics committee of Bielefeld University. We 

report how we determined our sample size, all data exclusions (if any), all manipulations, and all measures in 

the study. 



  100 

References 

Alimisis, D. (2012). Robotics in education & education in robotics: Shifting focus from 

technology to pedagogy. Proceedings of the 3rd International Conference on Robotics in 

Education (RiE 2012, Prague), 7–14. 

Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in 

Science & Technology Education, 6(1), 63–71. 

Arras, K. O. & Cerqui, D. (2005). Do we want to share our lives and bodies with robots? A 

2000-people survey (Report No. 0605–001), Lausanne: Autonomous systems lab, Swiss 

federal institute of technology, 1–38. 

Bainbridge, W.A., Hart, J.W., Kim, E.S., & Scassellati, B. (2011). The Benefits of Interactions 

with Physically Present Robots over Video-Displayed Agents. International Journal of 

Social Robotics, 3(1), 41–52. 

Bartneck, C. (2003) Interacting with an embodied emotional character. Proceedings of the 16th 

International Conference on Designing Pleasurable Products and Interfaces (DPPI 2003, 

Pittsburgh, PA), 55–60. 

Bartneck, C., Suzuki, T., Kanda, T., & Nomura, T. (2006). The influence of people’s culture and 

prior experiences with Aibo on their attitude towards robots. AI & Society, 21(1), 217–

230. 

Baxter, P., Wood, R., Baroni, I., Kennedy, J., Nalin, M., & Belpaeme, T. (2013). Emergence of 

turn-taking in unstructured child-robot social interactions. Proceedings of the 8th 

International Conference on Human-Robot Interaction (HRI 2013, Tokyo), 77–78. 

Baylor, A. & Ryu, J. (2003). The API (Agent Persona Instrument) for assessing pedagogical 

agent persona. In D. Lassner & C. McNaught (Eds.), Proceedings of EdMedia: World 



  101 

Conference on Educational Media and Technology 2003 (pp. 448–451). Honolulu, 

Hawaii: AACE Press. 

Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social 

robots for education: A review. Science Robotics, 3(21), 1–9.  

Bertucci, A., Johnson, D. W., Johnson, R. T. Conte, S. (2012). Influence of group processing on 

achievement and perception of social and academic support in elementary inexperienced 

cooperative learning groups. The Journal of Educational Research, 105(5), 329–335.  

Biocca, F. (1997). The cyborg's dilemma: Progressive embodiment in virtual environments. 

Journal of Computer-Mediated Communication, 3(2), 1–29. 

Catlin, D., & Blamires, M. (2010). The principles of Educational Robotic Applications (ERA): A 

framework for understanding and developing educational robots and their activities. In J. 

Clayson, J. & I. Kalas̆ (Eds.), Constructionist approaches to creative learning, thinking 

and education: Lessons for the 21st century. Proceedings of the Constructionism 2010 

Conference. Paris: American University of Paris. 

Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine, 38(5), 

300–314. 

Cohen, S. (2004). Social relationships and health. American Psychologist, 59(8), 676–684. 

DeBerard, M. S., Spielmans, G. I., & Julka, D C. (2004). Predictors of academic achievement 

and retention among college freshmen: A longitudinal study. College Student Journal, 

38(1), 66–80. 

 Deci, E. L. & Ryan, R. M. (2003). Intrinsic motivation inventory. Retrieved from 

http://www.selfdeterminationtheory.org/questionnaires/10-questionnaires/50 



  102 

Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics environment. 

Computers in Human Behavior, 17(5-6), 465–480. 

Deutsch, M. (1949). A theory of cooperation and competition. Human Relations, 2, 129–152. 

Deutsch, M. (1962). Cooperation and trust: Some theoretical notes. In M.R. Jones (Ed.), 

Nebraska Symposium on Motivation (pp. 275–319). Lincoln, NE: University of Nebraska 

Press. 

Eyssel, F. (2017). An experimental psychological perspective on social robotics. Robotics and 

Autonomous Systems, 87, 363–371. 

Fasola, J., & Matarić, M.J. (2010). A socially assistive robot exercise coach for the elderly. 

Journal of Human–Robot Interaction, 1(1), 1–16. 

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. 2007. G* Power 3: A flexible statistical 

power analysis program for the social, behavioral, and biomedical sciences. Behavior 

Research Methods, 39, 175–191. 

Fischer, K., Lohan, K., Saunders, J., Nehaniv, C., Wrede, B., & Rohlfing, K. (2013). The impact 

of the contingency of robot feedback on HRI. Proceedings of the International 

Conference on Collaboration Technologies and Systems (CTS 2013, San Diego, USA).  

Fiske, S. T., Cuddy, A. J. C., Glick. P., & Xu, J. 2002. A model of (often mixed) stereotype 

content: Competence and warmth respectively follow from perceived status and 

competition. Journal of Personality and Social Psychology, 82(6), 878–902. 

Gibson, W. (1996, July 03). The Site-Seers’ Guide to Some Way-Out Internet Futures. The 

Washington Post, p. A1.  

Gouldner, A. W. (1960). The norm of reciprocity: A preliminary statement. American 

Sociological Review, 25, 161–178. 



  103 

Grillo, M. C., & Leist, C. W. (2013). Academic support as a predictor of retention to graduation: 

New insights on the role of tutoring, learning assistance, and supplemental instruction. 

Journal of College Student Retention: Research, Theory & Practice, 15(3), 387–408.  

Han, J., Jo, M., Park, S., & Kim, S. (2005) The educational use of home robots for children. 

Proceedings of the 14th International Symposium on Robot and Human Interactive 

Communication (RO-MAN 2005, Nashville), 378–383. 

Harms, C., & Biocca, F. (2004). Internal consistency and reliability of the networked minds 

social presence measure. Proceedings of the 7th Annual International Workshop on 

Presence (ISPR 2004, Valencia, Spain), 246–251. 

Hattie, J. & Timperley, H. (2007). The power of feedback. Review of Educational Research, 

7(1), 81–112.  

Hidi, S., & Harackiewicz, J. M. (2000). Motivating the academically unmotivated: A critical 

issue for the 21st century. Review of Educational Research, 70(2), 151–179. 

House, J.S. (1981). Work stress and social support. Reading, MA: Addison-Wesley. 

Huang, C.-M. & Mutlu B. (2012). Robot behavior toolkit: Generating effective social behaviors 

for robots. Proceedings of the 7th International Conference on Human-Robot Interaction 

(HRI 2012, Massachusetts), 25–32. 

Huang, C.-M. & Mutlu B. (2013). Modeling and evaluating narrative gestures for humanlike 

robots. Proceedings of the Robotics: Science and Systems Conference, (RSS 2013, 

Berlin, Germany). 

Huang, C.-M. & Mutlu B. (2014). Multivariate evaluation of interactive robot systems. 

Autonomous Robots, 37(4), 335–349. 



  104 

Huang, W., Olson, J. S., & Olson, G. M. (2002, April). Camera angle affects dominance in 

video-mediated communication. Proceedings of the 2002 Conference on Human Factors 

in Computing Systems (CHI 2002, Minneapolis), 716–717.  

Johnson, D. W. (2009). Reaching out: Interpersonal effectiveness and self-actualization (10th 

ed.). Boston: Allyn & Bacon. 

Johnson, M., Bradshaw, J.M., Feltovich, P.J., Hoffman, R.R., Jonker, C., van Riemsdijk, M.B., 

& Sierhuis, M. (2011). Beyond cooperative robotics: The central role of interdependence 

in coactive design. Intelligent Systems, 26(3), 81–88. 

Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, M.B., & Sierhuis, M. 

(2014). Coactive design: Designing support for interdependence in joint activity. Journal 

of Human-Robot Interaction, 3(1), 43–69. 

Johnson, D. W., & Johnson, R. T. (1989). Cooperation and competition, theory and research. 

Minneapolis, MN: Interaction Book Company. 

Johnson, D. W., & Johnson, R.T. (1992). Positive interdependence: Activity manual and guide. 

Edina, MN: Interaction Book Company. 

Johnson, R. T., & Johnson, D. W. (1994). An overview of cooperative learning. In J. S. 

Thousand, R. A. Villa, & A. I. Nevin (Eds.), Creativity and collaborative learning: A 

practical guide to empowering students and teachers (pp. 31–44). Baltimore, MD: Paul 

H. Brookes.  

Johnson, D. W. & Johnson, R. T. (1999). Learning together and alone: Cooperative, 

competitive, and individualistic learning (5th ed.). Boston: Allyn & Bacon. 

Johnson, D. W. & Johnson, R. (2005). New developments in social interdependence theory. 

Psychology Monographs, 131, 285–358. 



  105 

Johnson, D. W. & Johnson, R. T. (2009). An educational psychology success story: Social 

interdependence theory and cooperative learning. Educational Researcher, 38(5), 365–

379. 

Johnson, D. W., Johnson, R. T., & Holubec, E. (1994). The new circles of learning. Cooperation 

in the classroom and school. Alexandria, Virginia: Association for Supervision and 

Curriculum Development. 

Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Cooperative learning: Increasing college 

faculty instructional productivity (Report No. 4), Washington: George Washington 

University. 

Johnson, D. W., Johnson, R.T., & Smith, K. (2007). The state of cooperative learning in 

postsecondary and professional settings. Educational Psychology Review, 19(1), 15–29. 

Johnson, D. W., Johnson, R. T., Stanne, M. B., & Garibaldi, A. (1989). Impact of group 

processing on achievement in cooperative groups. The Journal of Social Psychology, 

130(4), 507–515.  

Kelley, J. F. (1984). An iterative design methodology for user-friendly natural language office 

information applications. ACM Transactions on Information Systems, 2(1), 26–41. 

Kelley, H.H., Kerr, N.L., Reis, H.T., Holmes, J.W., Rusbult, C.E., & van Lange, P.A.M. (2003). 

An atlas of interpersonal situations. Cambridge: Cambridge University Press. 

Kennedy, J., Baxter, P., & Belpaeme, T. (2015a). Comparing robot embodiments in a guided 

discovery learning interaction with children. International Journal of Social Robotics, 

7(2), 293–308. 

Kennedy, J., Baxter, P., & Belpaeme, T. (2015b). The robot who tried too hard: Social behaviour 

of a robot tutor can negatively affect child learning. Proceedings of the International 



  106 

Conference on Human-Robot Interaction, (HRI 2015, Portland, USA), 67–74. Kidd, 

C.D., & Breazeal, C.L. (2004) Effect of a robot on user perceptions. Proceedings of the 

International Conference on Intelligent Robots and Systems (IROS 2004, Sendai, Japan), 

3559–3564. 

Kim, Y., & Mutlu, B. (2014). How social distance might shape human-robot collaboration. 

International Journal of Human-Computer Studies, 72(12), 783–795. 

Kose-Bagci, H., Ferrari, E., Dautenhahn, K., Syrdal, D. S., Nehaniv, C. L. (2009). Effects of 

embodiment and gestures on social interaction in drumming games with a humanoid 

robot. Advanced Robotics, 23(14), 1951–1996. 

Köse, H., Uluer, P., Akalın, N., Yorgancı, R., Özkul, A., & Ince, G. (2015). The effect of 

embodiment in sign language tutoring with assistive humanoid robots. International 

Journal of Social Robotics 7(4), 537–548. 

Krämer, N.C. (2008). Soziale Wirkungen virtueller Helfer. Gestaltung und Evaluation von 

Mensch-Computer-Interaktionen. Stuttgart: Kohlhammer. 

Krämer, N., Simons, N., and Kopp, S. (2007). The effects of an embodied conversational agent’s 

nonverbal behavior on user’s evaluation and behavioral mimicry. Lecture Notes in 

Computer Science, 4722, 238–251. 

Lea, S. J., Stephenson, D., & Troy, J. (2003). Higher education students' attitudes to student-

centred learning: Beyond 'educational bulimia'? Studies in Higher Education, 28(3), 321–

334. 

Lee, K. M., Jung, Y., Kim, J., & Kim, S. R. (2006). Are physically embodied social agents better 

than disembodied social agents?: The effects of physical embodiment, tactile interaction, 



  107 

and people's loneliness in human–robot interaction. International Journal of Human-

Computer Studies, 64(10), 962–973. 

Leite, I., Castellano, G., Pereira, A., Martinho, C., & Paiva, A. (2014). Empathic robots for long-

term interaction. evaluating social presence, engagement and perceived support in 

children. International Journal of Social Robotics, 6(3), 329–341.  

Leite, I., Martinho, C., Pereira, A., & Paiva, A. (2009). As time goes by: Long-term evaluation of 

social presence in robotic companions. Proceedings of the 18th International Symposium 

on Robot and Human Interactive Communication (RO-MAN 2009, Toyama, Japan), 

669–674. 

Lemaignan, S., Jacq, A., Hood, D., Garcia, F., Paiva, A., & Dillenbourg, P. (2016) Learning by 

teaching a robot: The case of handwriting. IEEE Robotics & Automation Magazine, 

23(2), 56–66.  

Leyzberg, D., Spaulding, S., Toneva, M., & Scassellati, B. (2012). The physical presence of a 

robot tutor increases cognitive learning gains. Proceedings of the 34th Annual 

Conference of the Cognitive Science Society (CogSci 2012, Austin, TX), 1882–1887. 

Li, J. (2015). The benefit of being physically present: A survey of experimental works 

comparing copresent robots, telepresent robots and virtual agents. International Journal 

of Human-Computer Studies 77, 23–37. 

Lubold, N., Walker, E., Pon-Barry, H. & Ogan, A. (2018). Automated pitch convergence 

improves learning in a social, teachable robot for middle school mathematics. 

Proceedings of the 19th International Conference on Artificial Intelligence in Education 

(AIED 2018, London), 282–296.  



  108 

Miller D.P., & Nourbakhsh I.R. (2016) Robotics for education. In B. Siciliano & O. Khatib 

(Eds), Springer Handbook of Robotics (pp. 2115–2134). Berlin, Heidelberg: Springer. 

Miller, D.P., Nourbakhsh, I.R., & Siegwart, R. (2008). Robots for Education. In B. Siciliano & 

O. Khatib (Eds), Springer Handbook of Robotics (pp. 1283–1301). Berlin, Heidelberg: 

Springer. 

Mitnik, R., Nussbaum, M., & Soto, A. (2008). An autonomous educational mobile robot 

mediator. Autonomous Robots 25(4), 367–382. 

Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in 

computer-based teaching: Do students learn more deeply when they interact with 

animated pedagogical agents? Cognition and Instruction, 19(2), 177–213. 

Mubin, O., Bartneck, C., Feijs, L., Hooft van Huysduynen, H., Hu, J., & Muelver, J. (2012). 

Improving Speech recognition with the robot interaction language (ROILA). Journal of 

Disruptive Science and Technology, 1(2), 79–88. 

Mubin, O., Henderson, J., & Bartneck, C. (2013). Talk ROILA to your Robot. Proceedings of 

the 15th ACM International Conference on Multimodal Interaction (ICMI 2013, Sydney), 

317–318.  

Nam, C.W. & Zellner, R.D. (2011). The relative effects of positive interdependence and group 

processing on student achievement and attitude in online cooperative learning. 

Computers & Education, 56(3), 680–688.  

Nass, C., Fogg, B. J., & Moon, Y. (1996). Can computers be teammates? International Journal 

on Human-Computer Studies, 45(6), 669–678. 

Nass, C., & Moon, Y. (2000). Machines and mindlessness: Social responses to computers. 

Journal of Social Issues, 56(1), 81–103. 



  109 

Neyer, F. J., Felber, J., & Gebhardt, C. (2012). Entwicklung und Validierung einer Kurzskala zur 

Erfassung von Technikbereitschaft (technology commitment) [Development and 

validation of a short technology commitment scale]. Diagnostica, 58, 87–99. 

Norman, D.A. (1988). The psychology of everyday things. New York: Basic Books.  

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic 

Books.  

Park, E., Kim, K. J., & del Pobil, A. P. (2011). The effects of a robot instructor’s positive vs. 

negative feedbacks on attraction and acceptance towards the robot in classroom. 

Proceedings of the 3rd International Conference on Social Robotics (ICSR 2011, 

Amsterdam, The Netherlands), 135–141.  

Piaget, J. (1954). The construction of reality in the child (M. Cook, Trans.). New York: Basic 

Books. 

Pintrich, P. R., Smith, D. A. F., Garcia, T., & McKeachie, W. J. (1993). Reliability and 

predictive validity of the motivated strategies for learning questionnaire (Mslq). 

Educational and Psychological Measurement, 53(3), 801–813. 

Putnam, J., Rynders, J., Johnson, R., & Johnson, D. W. (1989). Collaborative skills instruction 

for promoting positive interactions between mentally handicapped and nonhandicapped 

children. Exceptional Children, 55(6), 550–557.  

Ramachandran, A., Huang, C.-M., Gartland, E, &. Scassellati, B. (2018). Thinking aloud with a 

tutoring robot to enhance learning. Proceedings of the 13th International Conference on 

Human-Robot Interaction (HRI 2018, Chicago, USA), 59–68. 



  110 

Reich, N. & Eyssel, F. (2013). Attitudes towards service robots in domestic environments: The 

role of personality characteristics, individual interests, and demographic variables. 

Journal of Behavioral Robotics, 4, 123–130. 

Reich-Stiebert, N. & Eyssel, F. (2015). Learning with educational companion robots? toward 

attitudes on education robots, predictors of attitudes, and application potentials for 

education robots. International Journal of Social Robotics, 7, 875–888. 

Reeves, B., & Nass, C. (1996). The media equation: how people treat computers, television, and 

new media like real people and places. Chicago: The Center for the Study of Language 

and Information Publications. 

Rosenthal-von der Pütten, A. M., Straßmann, C., & Krämer, N. C. (2016). Robots or agents – 

neither helps you more or less during second language acquisition. Lecture Notes in 

Computer Science, 10011, 256–268. 

Šabanović, S. Berry, C. A., & Bethel, C.L. (2017). Introduction to journal of human-robot 

interaction special issue on HRI education. Journal of Human-Robot Interaction, 6(2), 1–

2. 

Saerbeck, M., Schut, T., Bartneck, C., & Janse, M.D. (2010). Expressive robots in education: 

Varying the degree of social supportive behavior of a robotic tutor. Proceedings of the 

Conference on Human Factors in Computing Systems (CHI 2012, Atlanta, Georgia), 

1613–1622. 

Salem, M., Kopp, S., Wachsmuth, I., Rohlfing, K.J., & Joublin, F. (2012). Generation and 

evaluation of communicative robot gesture. International Journal of Social Robotics, 4, 

201–217. 



  111 

Schneider, S., Riether, N., Berger, I., & Kummert, F. (2014). How socially assistive robots 

supporting on cognitive tasks perform. Proceedings of the 50th Anniversary Convention 

on Artificial Intelligence and Simulation for Behaviour (AISB 2014, London, UK), 1–6. 

Segura, E. M., Cramer, H., Gomes, P.F., Nylander, S., & Paiva, A. (2012) Revive!: Reactions to 

migration between different embodiments when playing with robotic pets. Proceedings of 

the 11th International Conference on Interaction Design and Children (IDC 2012, 

Bremen, Germany), 88–97. 

Serholt, S., & Barendregt, W. (2016). Robots tutoring children: longitudinal evaluation of social 

engagement in child-robot interaction. Proceedings of the 9th Nordic Conference on 

Human-Computer Interaction (NordiCHI 2016, Gothenburg, Sweden), 64-1–64-10. 

Short, J., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. New 

York: Wiley. 

Slavin, R. E. (1992). When and why does cooperative learning increase achievement? 

Theoretical and empirical perspectives. In R. Hertz-Lazarowitz & N. Miller (Eds.), 

Interaction in cooperative groups: The theoretical anatomy of group learning (pp. 145–

173). New York: Cambridge University Press. 

Slavin, R. E. (1996). Research on cooperative learning and achievement: What we know, what 

we need to know. Contemporary Educational Psychology, 21(1), 43–69. 

Szafir, D., & Mutlu, B. (2012). Pay attention! Designing adaptive agents that monitor and 

improve user engagement. Proceedings of the Conference on Human Factors in 

Computing Systems (CHI 2012, Austin, USA), 11–20. 



  112 

Tanaka, F., & Matsuzoe, S. (2012). Children teach a care-receiving robot to promote their 

learning: Field experiments in a classroom for vocabulary learning. Journal of Human-

Robot Interaction 1(1), 78–95. 

Thompson, B. (2008). How college freshman communicate student academic support: A 

grounded theory study. Communication Education, 57(1), 123–144. 

Thompson, B., & Mazer, J. P. (2009a). Student academic support: A validity test. 

Communication Research Reports, 28(3), 214–224.  

Thompson, B., & Mazer, J. P. (2009b). College student ratings of student academic support: 

Frequency, importance, and modes of communication. Communication Education, 58(3), 

433–458. 

Tiberius, R., & Billson, J. (1993). The social context of teaching and learning. New Directions 

for Teaching and Learning, 45, 67–86. 

Tinto, V. (1997). Classrooms as communities: Exploring the educational character of student 

persistence. Journal of Higher Education, 68(6), 599–623.  

Tsiakas, K., Abujelala, M., & Makedon, F. (2018). Task engagement as personalization feedback 

for socially-assistive robots and cognitive training. Technologies, 6(2), 1–17. 

Wageman, R. (2001). The meaning of interdependence. In M. E. Turner (Ed.), Groups at work. 

Theory and research (pp. 197–217). Mahwah, NJ: Erlbaum. 

Wageman, R., & Baker, G. (1997). Incentives and cooperation: The joint effects of task and 

reward interdependence on group performance. Journal of Organizational Behavior, 18, 

139–158. 



  113 

Wagner, A.R., & Arkin, R.C. (2006). A framework for situation-based social interaction. 

Proceedings of the 15th International Symposium on Robot and Human Interactive 

Communication (RO-MAN 2006, Hatfield, UK), 291–297. 

Wainer, J., Feil-Seifer, D.J., Shell, D.A., & Matarić, M.J. (2006). The role of physical 

embodiment in human-robot interaction. Proceedings of the 15th International 

Symposium on Robot and Human Interactive Communication (RO-MAN 2006, Hatfield, 

UK), 117–122. 

Wainer J., Feil-Seifer, D.J., Shell, D.A., & Matarić, M.J. (2007). Embodiment and human-robot 

interaction: A task-based perspective. Proceedings of the 16th International Symposium 

on Robot and Human Interactive Communication (RO-MAN 2007, Jeju, South Korea), 

872–877. 

Weldon, E., & Weingart L. (1993). Group goals and group performance. British Journal of 

Social Psychology, 32, 307–334. 

Werfel, J. (2013). Embodied teachable agents: Learning by teaching robots. Proceedings of the 

13th International Conference on Intelligent Autonomous Systems, (IAS 2013, Padova, 

Italy), 1–8. 

Wilde, M., Bätz, K., Kovaleva, A., & Urhahne, D. (2009). Überprüfung einer Kurzskala 

intrinsischer Motivation (KIM) [Testing a short scale of intrinsic motivation]. Zeitschrift 

für Didaktik der Naturwissenschaften, 15, 31–45. 

Wills, T.A. (1991). Social support and interpersonal relationships. In M.S. Clark (Ed.), Prosocial 

behavior (pp. 265–289). Newbury Park, CA: Sage. 



  114 

Yager, S., Johnson, R.T., Johnson, D.W., & Snider, B. (1986). the impact of group processing on 

achievement in cooperative learning groups. The Journal of Social Psychology, 126(3), 

389–397.  

Yousuf, A.M. (2009). Robots in education. In J. Rabuñal Dopico, J. Dorado, & A. Pazos 

(Eds.), Encyclopedia of artificial intelligence (pp. 1383-1388). Hershey, PA: IGI Global.  

Ziemke, T. (2003). What's that thing called embodiment? Proceedings of the 25th Annual 

Meeting of the Cognitive Science Society (CogSci 2003, Boston, Massachusetts), 1305–

1310. 



  115 

 Table 1  

Descriptive Statistics and Internal Consistencies of the Dependent Measures (Study 1) 

Measure M SD Min Max α 

Learning Mood 5.40 0.90 3.20 6.90 .83 

Intrinsic Motivation 4.65 1.05 2.67 6.78 .84 

Self-Efficacy 4.70 1.30 2.40 7.00 .86 

Perceived Usefulness 5.01 1.19 1.67 7.00 .94 

Educational Capabilities 4.58 1.17 2.21 7.00 .92 

Warmth and Competence 5.56 0.85 3.67 7.00 .90 

Social Interdependence 5.05 1.01 3.10 7.00 .87 

 

 

Table 2 

Correlations Among Dependent Measures (Study 1) 

Note. Learn. Mood = learning mood. Intrin. Mot. = intrinsic motivation. Self–Eff. = self-efficacy. Perc. Use. = perceived 
usefulness. Educ. Capa. = educational capabilities. Warm. Com. = warmth and competence. Soc. Inter. = social interdependence.  
* p < .05. ** p < .01. 
 

 

Measure 

  

Learn. 

Mood 

 

Intrin. Mot. 

 

Self-

Eff. 

 

Perc. 

Use. 

 

Educ. Capa. 

 

Warm. 

Com. 

 

Soc. Inter. 

Learn. Mood  
 

.83** .68** .74** .60* .62** .61** 

Intrin. Mot.   
 

.82** .62** .56** .56** .59** 

Self-Eff.    
 

.53** .37** .47** .51** 

Perc. Use.     
 

.76** .73** .67** 

Educ. Capa.      
 

.84** .69** 

Warm. Com.        .77** 

Soc. Inter.         
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Table 3  

Descriptive Statistics and Internal Consistencies of the Dependent Measures (Study 2) 

Measure M SD Min Max α 

Learning Mood 3.15 0.62 2.20 5.20 .81 

Intrinsic Motivation 4.96 0.74 3.33 6.33 .70 

Self-Efficacy 5.00 1.03 2.00 7.00 .75 

Perceived Usefulness 5.17 0.89 3.13 6.87 .88 

Educational Capabilities 4.53 0.90 2.29 6.29 .85 

Warmth and Competence 5.46 0.75 3.00 7.00 .83 

Social Presence 5.02 0.81 3.14 6.43 .84 

 

Table 4 

Correlations Among Dependent Measures (Study 2) 

Note. Learn. Mood = learning mood. Intrin. Mot. = intrinsic motivation. Self–Eff. = self-efficacy. Perc. Use. = perceived 
usefulness. Educ. Capa. = educational capabilities. Warm. Com. = warmth and competence. Soc. Pres. = social presence. 
* p < .05. ** p < .01. 
 

 

Measure 

  

Learn. 

Mood 

 

Intrin.  

Mot. 

 

Self-

Eff. 

 

Perc. 

Use. 

 

Educ.  

Capa. 

 

Warm. 

Com. 

 

Soc.  

Pres. 

Learn. 

Mood 

 
 

-.74** -.48** -.57** -.38** -.39** -.47** 

Intrin. Mot.   
 

.60** .48** .28* .40** .39** 

Self-Eff.    
 

.48** .29* .35** .45** 

Perc. Use.     
 

.63** .53** .67** 

Educ. Capa.      
 

.70** .75** 

Warm. Com.        .70** 

Soc. Pres.         
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Table 5  

Descriptive Statistics and Internal Consistencies of the Dependent Measures (Study 3) 

Measure M SD Min Max α 

Learning Mood 5.22 1.04 2.60 6.90 .86 

Intrinsic Motivation 4.70 0.91 2.56 6.67 .80 

Self-Efficacy 4.65 1.06 2.00 6.80 .80 

Perceived Usefulness 4.93 1.01 2.27 6.80 .92 

Educational Capabilities 4.55 0.93 2.29 6.29 .87 

Warmth and Competence 5.56 0.81 2.92 7.00 .89 

Social Support 4.93 0.94 2.69 6.81 .89 

 
 
 

 
Table 6 

Correlations Among Dependent Measures (Study 3) 

Note. Learn. Mood = learning mood. Intrin. Mot. = intrinsic motivation. Self–Eff. = self-efficacy. Perc. Use. = perceived 
usefulness. Educ. Capa. = educational capabilities. Warm. Com. = warmth and competence. Soc. Sup. = social support.  
** p < .01. 
 

 

Measure 

  

Learn. 

Mood 

 

Intrin.  

Mot. 

 

Self-

Eff. 

 

Perc. 

Use. 

 

Educ.  

Capa. 

 

Warm. 

Com. 

 

Soc.  

Sup. 

Learn. Mood  
 

.74** .41** .60** .35** .44** .38** 

Intrin. Mot.   
 

.70** .66** .47** .52** .52** 

Self-Eff.    
 

.65** .46** .46** .49** 

Perc. Use.     
 

.70** .71** .70** 

Educ. Capa.      
 

.78** .71** 

Warm. Com.        .70** 

Soc. Sup.         



  118 

Table 7  

Descriptive Statistics and Internal Consistencies of the Dependent Measures at Time 1 and Time 2 (Study 4) 

 
Measure 

Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 

M SD M SD Min Max Min Max α 

Learning 
Mood 

5.70 0.67 5.65 0.78 4.10 6.89 3.80 7.00 .70 .82 

Intrinsic 
Motivation 

4.88 0.94 5.08 0.98 2.56 6.56 2.56 7.00 .82 .83 

Self-Efficacy 4.73 1.30 
 

4.99 1.22 1.60 7.00 1.80 7.00 .89 .88 

Perceived 
Usefulness 

5.22 0.96 5.16 1.06 3.13 7.00 2.60 6.87 .91 .92 

Educational 
Capabilities 

4.69 0.90 4.52 1.02 2.43 6.64 2.00 6.50 .88 .91 

Warmth and 
Competence 

5.70 0.67 5.49 0.79 4.42 7.00 3.25 6.83 .84 .89 

Feedback 
(only exp. cond. 
n = 32) 

5.16 1.20 5.18 1.13 2.75 7.00 3.13 6.88 .86 .83 
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Table 8 

Correlations Among Dependent Measures at Time 1 (Study 4) 

Note. Learn. Mood = learning mood. Intrin. Mot. = intrinsic motivation. Self–Eff. = self-efficacy. Perc. Use. = perceived 
usefulness. Educ. Capa. = educational capabilities. Warm. Com. = warmth and competence. Soc. Sup. = social support.  
* p < .05, ** p < .01. 
 
 
Table 9 

Correlations Among Dependent Measures at Time 2 (Study 4) 

Note. Learn. Mood = learning mood. Intrin. Mot. = intrinsic motivation. Self–Eff. = self-efficacy. Perc. Use. = perceived 
usefulness. Educ. Capa. = educational capabilities. Warm. Com. = warmth and competence. Soc. Sup. = social support.  
* p < .05. ** p < .01. 
 
 
 

 

Measure 

 Learn. 

Mood 

Intrin. 

Mot. 

Self-Eff. Perc. 

Use. 

Educ. 

Capa. 

Warm. 

Com. 

Feedback 

Learn. Mood  
 

.81** .52** .66** .35** .41** .72** 

Intrin. Mot.   
 

.67** .70** .43** .48** .63** 

Self-Eff.    
 

.59** .36** .34** .40* 

Perc. Use.     
 

.65** .62** .73** 

Educ. Capa.      
 

.80** .59** 

Warm. Com.        .62** 

Feedback         

 

Measure 

 Learn. 

Mood 

Intrin. 

Mot. 

Self-Eff. Perc. 

Use. 

Educ. 

Capa. 

Warm. 

Com. 

Feedback 

Learn. Mood  
 

.78** .46** .66** .51** .56** .58** 

Intrin. Mot.   
 

.71** .63** .51** .47** .56** 

Self-Eff.    
 

.40** .27* .26* .43* 

Perc. Use.     
 

.72** .70** .76** 

Educ. Capa.      
 

.85** .73** 

Warm. Com.        .63** 

Feedback         
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