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Introduction

In mathematics as well as in physics the Ginzburg-Landau equation appears in vari-
ous applications. A proper justification for this is its role as an amplitude equation
describing various phenomena in physics, see [44], [62], [8], [59], [24]. It appears in
mathematical models of hydrodynamics, nonlinear optics, superconductivity and phase
transition. From the mathematical point of view the interest in the equation is justified
by many mathematical phenomena occurring in the equation such as pattern formation.
This thesis deals with a special class of such patterns, called traveling oscillating fronts
(TOFs). We investigate their long time behavior under small perturbations and prove
nonlinear stability with asymptotic phase.

The Ginzburg-Laudau equation in its complex quintic form in one space dimension reads
as

Uy = aUy + pU + BIUPPU +~|U*U, z€R,t>0 (QCGL)

with complex-valued coefficients «, i, 3,7 € C, Rea > 0 and solution U : R x [0, 00) —
C. Tt is a special type of a more general class of reaction diffusion equations, which
are under consideration in this thesis. These are complex-valued semilinear parabolic
equations of the form

U =aU, +GIUAU, zeR,t>0 (0.1)

with nonlinearity G : R — C and diffusion coefficient a« € C, Rea > 0. In case of
(QCGL) the nonlinearity G is a quadratic polynomial over C. If G is a polynomial of
degree one we obtain the so called cubic complex Ginzburg-Landau equation, see [44].
Other generalized types of Ginzburg-Landau equations containing also first order spatial
derivatives of U in the nonlinear reaction term are considered, for instance, in [62]. The
existence and uniqueness of solutions of semilinear parabolic equations such as (0.1) is
well-known. Details concerning solvability of the equation can be found in the classical
book of D. Henry [32] or the book of M. Miklavcic [45], see also [42]. We restrict ourselves
to the parabolic case, Rea > 0. The case Rea = 0 belongs to the class of Schrodinger
type equations, which has been investigated in the literature, for instance, in 28], [29],
[23].
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In evolution equations of the type (0.1), especially in (QCGL), many different phe-
nomena occur. There are special solutions of (0.1) which maintain their shape while
traveling in space and oscillating in the complex plane. We call them traveling oscillat-
ing waves (TOWs). They may also named defects, see [57], or coherent structures, see
[62]. Precisely, these are solutions U, of (0.1) of the special form

Udx,t) = e “'V (v — ct). (0.2)

The parameters w, ¢ € R are called the frequency and the velocity of the wave respectively
and the function V, : R — C is called its profile. TOWSs occur in many different shapes.
There are fronts, pulses and wave trains as well as sources, sinks and spatially periodic
fronts, see Figure 0.1. For literature on the classification of TOWs we refer to [57] and

162].
iy

a) pulse ) front ) wave train
d) spatially periodic front ) source/sink

Figure 0.1: Pattern formation in (QCGL).

In the thesis we deal with front solutions, see Figure 0.1 b). A solution (0.1) of
the form (0.2) is called a traveling oscillating front (TOF) if the profile satisfies the
asymptotic property

Vi(z) — {TO"’ i (0.3)



for some ro, € C, roo # 0. These solutions can be interpreted as connecting orbits
between the trivial ground state U = 0 at —oo and a spatially constant time periodic
solution U = U(x,t) = ree ™! at +00. The appearance of TOFs, as well as TOWs,
in the equation (0.1) is related by the presence of two symmetries. On the one hand
there is a symmetry under translation, i.e. if U = U(x,t) is a solution of (0.1) so is
U =U(xz —7,t) for any 7 € R. On the other hand we have a symmetry under rotation.
This means if U is a solution of (0.1) so is U = €U for any § € S* = R/27Z. If an
equation has such a symmetry its right-hand side called is equivariant, cf. [15] and [21].

We investigate the long time dynamics of TOFs. In order to do so, it is convenient
to transform (0.1) into a equivalent 2-dimensional real-valued system. Let U = uj + ius,
ui(z,t) € R, o = oy +iaw, oy € Rand G = gy +igs with g; : R — R. Then the equivalent
real-valued system of (0.1) reads as the semilinear parabolic equation

u = Atge + f(u), z€R, >0 (0.4)

where

A= (0 s sl o= (20 #=0) o)

Gy

Let Ry denote the rotation matrix in R? by the angle # € S'. A traveling oscillating
wave of the real-valued system (0.4) is defined as a special solution w, of the form

Ue(z,t) = R_yyvi(x — ct), (0.6)

where v, : R — R? is the profile of the wave and w, ¢ are its frequency and velocity
respectively. In addition, the profile v, satisfies

vy (z) — {“‘X” T e (0.7)
0, Tr — —00.

We call the limit at +o0, given by the vector v, = (Rers,Imry)’ € R? vy # 0, the
asymptotic rest-state. TOFs can be observed by numerical experiments in the equation
(QCGL) in a large set of parameters. An example of such a numerical simulation is
shown in Figure 0.2. Since these solutions travel in space and oscillate in the complex
plane, it seems natural to transform (0.4) into a co-moving frame. For this purpose, let
u(z,t) = R_,w(&,t) with the wave coordinate & = x — ct. Then v solves the so-called
co-moving equation

v = Avge + cve + Sv + f(v), £eR,t>0, (0.8)

S, = (2 _0“’) . (0.9)

where S, is given by the matrix
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Figure 0.2: Numerical simulation of a TOF in (QCGL) with parameters a = 1 + %,
B=1+1i,v=—14iand p= —0.1. Real part (left) and imaginary part (right).

Then the time-independent profile v, is a stationary solution of (0.8). Thus it solves the
ordinary differential equation (ODE)

0= Avgy + cv, + Spv + f(v), x€R. (0.10)

A natural question is whether TOFs as steady-states of (0.8) are stable under small
perturbations of the initial data. This is why we are interested in the long time behavior
of the solution u of the initial-value problem

U = Algy + cuy + Spu+ f(u),  u(0) = v, + up, (0.11)

where ug is a small initial perturbation. One expects from the numerical experiment
in Figure 0.2 that the observed TOF is stable. Otherwise numerical errors should grow
in time and the TOF could not be observed. Typically, to show stability one has to
consider the linearization of the equation at the steady-state. In the case of TOFs this
is the operator

Lu = Aug, + cu, + Syu+ D f(ve)u (0.12)
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with the Jacobian D f of the nonlinearity f given by

Df(v) = g1([01?) + 2g1(|0*)v? = 2g5(|v[*)vrva - 29 (|v]*)vrvs — g2(Jv]*) — 2g5(
g2(J0%) + 2g5([0[*)v? + 21 ([v[*)vrve 2g5(|v[*)vrvs + g1 (|v]?) + 244 (

Since the equation (0.8) is equivariant, TOFs always come in families, i.e. there is a whole
continuum O(v,) := {Rpv.(- — 7) : (6,7) € S* x R} of stationary solutions. Therefore
the linearization L from (0.12) has a nontrival kernel and one cannot expect stability of
v, in the classical sense of Lyapunov. One has to weaken the notion of stability in the
following sense, cf. [56] and [15]. We say a TOF is nonlinearly stable if for all small
initial perturbations ug the solution u of (0.11) stays close to the group orbit O(v,) for
all positive times. If in addition the solution converges to an element Ry v, (- — 7o) of
O(v,) as t — oo, then the TOF is called nonlinearly stable with asymptotic phase. The
main results of the thesis state that traveling oscillating fronts are nonlinearly stability
with asymptotic phase.

In order to prove nonlinear stability of TOFs, we have to circumvent two major
problems. The first one occurs when considering the spectrum of the linearized operator
(0.12). A crucial step is to guarantee that the spectrum is included in the strict left
half-plane, except for an isolated zero eigenvalue of finite multiplicity caused by the
equivariance. In the literature this property is also called linear or spectral stability, cf.
[56]. Its importance is explained by the fact that spectral stability implies time decay of
the corresponding semigroup {e'*};>¢ generated by L, cf. [32]. For TOFs it turns out
that the essential spectrum of the linearized operator L touches the imaginary axis at
the origin. This is due to the so-called dispersion set which is contained in the essential
spectrum and which is defined as follows:

Oaisp (L) = 043, (L) U 03, (L), afﬁsp(L) ={seC:3veRst. d(s,v) =0}, (0.14)
where d* is the dispersion relation given by
d*(s,v) = det(s +v*A —ivel — S, — Df(vy)), vy =10y, v_=D0. (0.15)

Here I denotes the identity matrix in R?. The dispersion set consists of four curves in
the complex plane, which typically have the shape of parabolas opened to the left, cf.
Figure 0.3, but may also be more complicated. The vertices of the curves are given by
the solution of d*(sx,0) = 0. For d™(s1,0) = 0 these are the values

Sy = gl(O) + Z(gg(O) + w) € Udisp(L>-

Thus a necessary condition for spectral stability is ¢;(0) < 0. Further, d*(s4,0) = 0
yields

st = 241 (v P)lvsc s 5= =0.



12 INTRODUCTION

Figure 0.3: The dispersion set ogip(L) in (QCGL) with
Ogisp (L) (blue) and o (L) (red).

Consequently, a second necessary condition is given by ¢} (|vs|?) < 0. But zero is always
contained in the dispersion set and the (essential) spectrum touches the imaginary axis
at the origin. Therefore, the classical approach to prove nonlinear stability from [32],
[36] is not applicable. We overcome this problem by using exponential or polynomial
weight functions. In general, let n : R — R be a weight function. Then we consider the
stability problem on weighted Lebesgue spaces for 1 < p < oo defined by

LHR,R") :={u € L’(R,R") : nu € LP(R,R")},  |lul|zz :== [Inu|z». (0.16)
In the case p = 2 we also define the weighted Sobolev spaces for £ € N by

Hi(R,R") :={u € L}(R,R") N Hi,.(R,R") : 9"u € L2(R,R"), 1 < k < (},
J4
lull: = >, 10" %,
k=0

The advantage of using exponential weight functions is that the dispersion set (0.14) is
pushed to left of the imaginary axis, cf. Figure 0.4. Therefore, we conclude spectral sta-
bility on exponentially weighted spaces and can make use of the approach from [32], [36]
to show nonlinear stability. When using polynomial weight functions the dispersion set
does not change. However, in polynomially weighted spaces we derive delicate resolvent
estimates near the origin using different norms w.r.t. polynomial order. The approach is
based on ideas from [35]. Then we are able to show polynomial decay of the semigroup

(0.17)
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{e'F};>¢ w.r.t. norms with different polynomial weights.

a) unweighted /polynomially weighted b) exponentially weighted

Figure 0.4: The dispersion set on unweighted L?-spaces (left) vs. exponentially weighted
L2-spaces (right).

The second problem we have to deal with is caused by the fact that the profile v,
of a TOF does not decay to zero as © — co. Therefore the solution neither lies in the
standard L?-space nor in their weighted versions introduced in (0.16). We have to choose
a suitable function space where the stability analysis can be done rigorously. In order to
do so, let us assume u to be a smooth solution of (0.8) such that p(¢) = lim, o, u(z,t)
exists and u,(x,t), Uz, (z,t) — 0 as © — oco. When formally taking the limit z — oo in
(0.8) we obtain that p solves the ODE

p(t) = Sup(t) + f(p(1)). (0.18)
Note that v, must be a stationary solution of (0.18). Now we define a template function

o(z) := $ tanh(z) + 1. (0.19)

T2

Then we expect the solution u to satisfy u(t) — p(t)o € H;(R,R?). Thus the solution lies
in an affine linear space with a time dependent offset given by p. This is why we add an
additional equation describing the offset p via (0.18). We introduce the space

Xyi={(wp)7: u: R R, p € R, u— pi € L2(R,RY)} (0.20)

and equip it with the norm [|(u, p)"[1%, := [p[* + [lu — pi||7,. In a canonical manner we
n
also define the smooth analogs, i.e. we set for ¢ € Nj

Xy ={(u,p)’ € Xy:ueHy, 0ue L 1<k<{l} (0.21)
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and equip it with the norm H(u,p)TH; = |p|* + ||u — p@”%% 3 H@’“u”%% We set
n

X,? =X, Y, = Xg and denote the elements of Xf; by bold letters, i.e. u = (u,p)’.
Finally, instead of analyzing the initial value problem (0.11), we consider the Cauchy
problem on X, given by

u; = F(u), u(0)=v,+ u, (0.22)

where F is a semilinear operator given by

FiY, > X, (Z)IHHH‘J):( Sup+ f(p)

and v, = (v,, V) . It turns out that v, € vo0 + H,ZZ and v, € Y,. In addition, since v,
is a stationary solution of (0.8), we obtain F(v,) = 0. We investigate nonlinear stability
with asymptotic phase of v, as a stationary solution of (0.22) in the case of exponential
weight functions.

We conclude the introduction by giving an outline of the thesis. Chapter 1 starts
with a short overview of the concept of abstract equivariant evolution equations and
relative equilibria. The definition of TOWs as well as TOFs is made precise and we
collect first observations concerning the determination of the asymptotic rest-state v
and the frequency w by the nonlinearity g. We conclude the first chapter by stating
the assumptions and main results of the thesis in Section 1.3. The first stability re-
sult states that under certain assumptions TOFs as stationary solutions of the Cauchy
problem (0.22) are nonlinearly stable with asymptotic phase in exponentially weighted
spaces. The second result is that TOFs as stationary solutions of (0.8) are nonlinearly
stable with asymptotic phase w.r.t. polynomially weighted spaces. Both results are not
comparable, since in the polynomial case we have to assume that the initial perturbation
decays to zero as x — oo whereas we can allow small perturbations at infinity in the
exponential case.

In Chapter 2 we study the profile of traveling oscillating fronts as solutions of the
stationary co-moving equation (0.10). We use a dynamical systems approach from [62]
to derive a first order ODE system in 3 dimensions, which is equivalent to (0.10). Then
profiles of TOFs occur as heteroclinic orbits between steady-states of the dynamical sys-
tem. In this situation we are able to discuss the existence of TOFs by the intersection
of stable and unstable manifolds of steady states. In addition, we use the theory of
hyperbolic equilibria and exponential dichotomies introduced in [22] to show that the
asymptotic convergence in (0.7) is exponentially fast provided certain assumptions are
satisfied. This is a crucial step to prove nonlinear stability, since it guarantees exponen-
tially fast convergence of the profile v, at +o0. In particular, v, € vo0 + Hg when 7 is
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an exponential weight function.

Chapter 3 covers the nonlinear stability with asymptotic phase in exponentially
weighted spaces. The idea of the proof of the main result is similar to the case of
traveling waves considered in [32]| or the case of rotating patterns from [17]. Neverthe-
less, since we are working in the spaces X, we have to take care of the validation of this
approach to TOFs. In addition, since the (essential) spectrum of the linearized operator
touches the imaginary axis the approach is not directly applicable. We circumvent this
problem using exponential weights. Throughout the third chapter we set 7 = ney, where
Nexp 1S an exponential weight function given by

Nexp () := eV HL 1> 0. (0.24)

Then 7y is also called a weight function of exponential growth rate p > 0, see [63].
For the sake of notation we will suppress the index and only write 7 instead of 7ex,. We
describe rotation and translation of elements from X, by the group action

) X=X (1) = (1) = (0 7), (0.25)

where v = (0,7) € G = S* x R. Tt follows that F from (0.23) is equivariant under the
group action, i.e. F(a(y)u) = a(y)F(u). The crucial step is to consider the linearized

operator given by the linearization of the right hand side in (0.22) at the TOF. It is
defined by

(0.26)

LY, =X, umLu= (Aum + Cug + Spu+ Df(v*)u)

Swp+ D [f(vss)p

A major part of its spectrum consists of the dispersion set

Odisp.u(L) = a;-lspM(E) U a;ﬁsp#(ﬁ), afisp?u(ﬁ) ={seC:3rveRst. di(s, v) =0},
(0.27)

which depends on the exponential growth rate > 0. Here dff is the dispersion relation
defined by

d¥(s,v) = det(s] + v?A — ivBa(p) — Ca(p)),  Ba() = ol F 2uA,

2 (0.28)
C:I:(M):Sw+Df('U:I:)+MA:FCM]7 Ut = Voo v =0.

For the unweighted case p = 0 we have 04 0(L£) = oaisp(L) and the (essential) spectrum
touches the imaginary axis. The effect of using exponential weights is that the critical
curve ajisp’ u(ﬁ) of the dispersion set is pushed to the left of the imaginary axis, cf. Figure

0.4. Only an isolated eigenvalue of finite multiplicity remains at the origin. Then the
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approach from [32] can be used to show nonlinear stability. However, the main work is
to ensure that the approach also applies to the larger spaces X, instead of standard L?
or L% spaces. In particular, we derive delicate Lipschitz estimates with small Lipschitz
constants for the remaining nonlinearities in the spaces Xg. In the end, a Gronwall ar-
gument from [17] is used to conclude nonlinear stability.

In Chapter 4 we consider the numerical computation of TOFs. We are interested in
the computation of the profile and the velocities of the TOFSs, which are usually a-priori
unknown. By applying a classical finite difference or finite element method to the equa-
tion (0.4) the problem occurs, that the TOFs will leave the domain of computation at a
certain time. This problem is captured by the so called freezing method from [18], [19],
which we apply to our situation in Chapter 4. Further, we prove stability of TOFs in the
sense of Lyapunov in the freezing method. We finish the chapter by showing numerical
simulations and experiments.

In Chapter 5 we deal with the natural question whether TOFs are nonlinearly stable
with asymptotic phase, if the initial perturbation is only polynomially decaying. We
consider the nonlinear stability problem on polynomially weighted spaces, which is in
contrast to Chapter 3 where we consider exponentially weighted spaces. Throughout
Chapter 5 we set n = n];oly for appropriate & € N where 7,1, is a polynomial weight
function of linear growth defined by

Moty () = (2% + 1)2. (0.29)
In this case we set

We consider the perturbed initial value problem (0.11) and assume that v, is small in
the space H? for sufficiently large & € N. Then vy — 0 as * — oo and we obtain
u(z,t) = vo as x — oo for all ¢ > 0. Thus, the offset p from (0.18) stays constant in
time, i.e. p(t) = v for all t > 0. Therefore, we seck for a solution u of (0.11) in the
affine Banach spaces

My=0+L} M{=v+H, ©:=uvy0. (0.31)

To prove nonlinear stability with asymptotic phase, we use the same approach as in
Chapter 3, see also [32], [17]. In this case we have to determine the spectrum of the
linearized operator L from (0.12) on the space L?. It turns out that for every k € N the
spectrum of the operator still touches the imaginary axis at the origin, cf. Figure 0.4.
Therefore, the classical theory from [32] only gives estimates of the generated semigroup
e’ by exponentially increasing terms. In order to circumvent this problem we derive
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sharp resolvent estimates of the operator L near the origin. We use ideas from [37] and
show uniform bounds for the resolvent (sI — L)™' considered as an operator from L7,
to L? for s in a crescent (), at the origin, see Figure 0.5.

Figure 0.5: The crescent €2..

The loss in the polynomial order will lead to the uniform estimates of the resolvent
and then to polynomial estimates of the semigroup mapping from L7, ; to L7. In the end
we show that the loss of the polynomial order caused by the semigroup is compensated
by the quadratic nonlinearities. This will lead to nonlinear stability with asymptotic
phase of TOFs in polynomially weighted spaces.

We conclude by giving a comment on the main results. Both results are not compara-
ble since the type of admissible perturbations differs. In the exponentially weighted case
we can allow perturbations which may not decay to zero as x — co but must converge
exponentially fast to some small vector. This is due to the stability with asymptotic
phase of the periodic orbit R_,;v. of the ODE (0.18) which is guaranteed under our
assumptions. In contrast, in the polynomially weighted case we can allow perturbations
that converge only with a polynomial rate, but therefore must decay to zero. This is
caused by the fact that only in this case we are able to control the remaining nonlinear-
ities w.r.t. polynomial orders. We expect that both results can be combined by taking
advantage of the stability behavior of the periodic orbit in (0.18). However, we expect
the proof to be much more involved and keep this as an open question.
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Chapter 1

Traveling oscillating fronts in evolution
equations

1.1 Equivariant evolution equation

We start with a short overview on the concept of equivariant evolution equations and
relative equilibria, see for instance [19] and [21]. We consider an abstract evolution
equation of the form

u=F(u), t>0 (1.1)

where F' is a continuous, densely defined operator on a Banach manifold M modeled
over a Banach space X, i.e.

F:DF)cM— X (1.2)

is defined on a dense submanifold D(F') = N which is modeled over a dense Banach space
Y C X. References for the abstract concepts of manifolds are given by [1], [41]. In many
cases, such as traveling waves, the Banach manifold is given by an affine Banach space
M =9+ X and N =9+ Y for some element 9. Typical examples are X = L*(R,R™),
Y = H*(R,R™) and ¢ € C}(R,R™) with ¢, € H'(R,R™) when F is a second order
semilinear differential operator.

At this point we may let open the precise notion of solution of (1.1) since it strongly
depends on the type of the evolution equation and function spaces. However, in our
application the following notion of solution is suitable:

Definition 1.1. A function u € C([0,ts), N) N C([0,ts), M) is called a solution of
(1.1) on [0,%y) with initial value ug € N if for all ¢ € [0, ) there hold wu,(t) = F(u(t))
in M and u(0) = uy.

19
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Let (G,0) be a Lie group of dimension dimG = n < oo and smooth composition
0:GxG =G, (v,7) — 7vo7. For an introduction into Lie groups we refer to [53]. The
unit element of G is denoted by 1 and let g = T7G be the associated Lie algebra. For the
left multiplication we write L, : G — G, ¥ + o7 which is also smooth and its derivative
is denoted by dL.(7) : T5G — T,05G. The Lie algebra g and the Lie group G are related
via the exponential map exp : g — G, which can be defined such that ~(t) = exp(tu),
1 € g is the unique solution of the initial value problem

Y =dL,(1)p, ~(0) = 1. (1.3)

The group G acts on the Banach manifold M via a group action a(vy), v € G. Forv € M
it is defined by

a(-yv:G—= M, v alyv
and is assumed to be continuous, satisfying for all v,¥ € G and v € M

a(yo A = a(m)a@v. a(Lv=v, aly" o =a(r) v,

Here yv~! € G denotes the inverse of an element v € G, i.e. yo~~! = 1. Further,
we assume that the group action is pathwise continuously differentiable on the Banach

manifold N, i.e. for all v € N the map a(-)v: G — N is of class C'!' with derivative
dla(y)v] : T,G = Ty N.
Differentiating the relation a(y o 4)v = a(y)a(y) w.r.t. ¥ and evaluating at ¥ = 1 yields
for p e g
dla(y oLy (D)t = a()dla(L)el (1.4

We assume that the operator F' is equivariant under the group action a(vy),v € G ac-
cording to the following definition:

Definition 1.2. The operator F': D(F') = N C M — X from (1.2) is called equivariant
under the group action @ of G if for all v € G and u € N there hold a(y)N C N and

a(7)F(u) = F(a(y)u).

We transform (1.1) into a co-moving frame via the solution ansatz u(t) = exp(tu,)v(t).
Plugging this into the equation (1.1) we obtain using (1.3) and (1.4) that v solves the
co-moving equation

v = F(v) — dla(1)v]ps. (1.5)
We are interested into stationary solutions v, of the co-moving equations, i.e.
0= F(vy) — dla(1)v,] .

Then the corresponding solution u,(t) = a(exp(tu,))v, is a so-called relative equilibrium
of the abstract evolution equation (1.1).
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Definition 1.3. A solution u, on [0,00) is called a relative equilibrium of the evolution
equation (1.1) if there is py € g and v, € N such that for all ¢ € [0, 00) there hold

ux(t) = a((t))ve,  7u(t) = exp(tpn). (1.6)

Sometimes the profile v, as well as the whole group orbit O(v,) are called relative
equilibria since they define steady-states of the co-moving equation (1.5), see [21]. A
natural question arising is, whether the steady-state is stable under small perturbations.
In other word, we are interested in the long time behavior of the solution v of (1.5) with
initial data v(0) = v, + ug where ug is small w.r.t. to some norm || - ||. Since we have a
whole continuum of steady-states, asymptotic stability in the classical sense of Lyapunov
cannot be expected. The concept of stability is generalized in the following sense, see

[15], [19], [56], [36].

Figure 1.1: Nonlinear stability with asymptotic phase.

Definition 1.4 (Nonlinear stability with asymptotic phase). The relative equilibrium
u, given by (vy, f14) is called nonlinearly stable w.r.t. given norms ||-||; and || - ||, if for
any 0 > 0 there exists ¢ > 0 such that for any initial value v(0) = vy with ||vg — 4|1 < €
the co-moving equation (1.5) has a unique solution v(t), t > 0 satisfying for all t > 0

inf [lo(t) — a(3)e. 2 < 5

If, in addition, there is an asymptotic phase 7., € G such that
[0(t) = a(yoo)vsll2 = 0, ¢ — o0,

then wu, is called nonlinearly stable with asymptotic phase.
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1.2 Traveling oscillating waves and fronts

Let us recall the evolution equation (0.4) reading as
w = Ay, + f(u)

with the diffusion matrix A and nonlinearity f given by

A= (0‘1 _0‘2) o fw)=g(luf)u, g:R=R*, g()= @28 _gili())) '

Qy

As mentioned in the introduction there are many different phenomena occurring in equa-
tions of the form (0.4). In the thesis we are interested in traveling oscillating fronts
(TOFs) for which we give the following precise definition. Recall the rotation matrix Ry,
6 € S' =R/27Z in R? given by

Ry — <cos€ —sm@)j De sl

sinff  cos0
Definition 1.5. A solution wu, : R x [0,00) — R? of (0.4) of the form
Up(z,t) = R_gyv(x —ct), x€eR >0 (1.7)

with profile v, € CZ(R,R?) is called a traveling oscillating wave (TOW) of (0.4) with
speed ¢ € R and frequency w € R. In addition, if the profile v, satisfies the asymptotic
properties
lim v,(§) =0, lim v,(§) = voo, (1.8)
E——o0 £—o0
for some v,, € R?\{0}, then u, is called a traveling oscillating front (TOF). In this
case the value vy, is called the asymptotic rest-state of the TOF.

In other words, TOFs are solutions of (0.4) which connect the zero steady-state as
¢ — —oo with some non-zero periodic state as & — co. An illustration of such a solution
can be seen in Figure 1.2. Note that by definition a traveling oscillating front of (0.4) is
smooth in the sense that

u, € C([0,0), Cy(R,R?)) N C([0, 00), CZ(R, R?)).

To analyze the dynamics of solutions of (0.4), especially TOFs; it is convenient to trans-
form the equation into a co-moving frame. We use the ansatz u(z,t) = R_,v(,t) with
the wave variable ¢ = x —ct. A simple computation shows that the derivatives of u w.r.t.
time and space are given by

u(x,t) = —wR_ 1 S1v(&€, 1) — cR_ve (€, 1) + R_prve(&, 1),
Uy (2, 1) = R_yyvee (€, 1)
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Figure 1.2: Traveling oscillating front.

0 —1
1 0
matrix we obtain immediately by invariance of the absolute value and the form of the
matrix-valued function ¢

flu(z, 1)) = g(|v(&, ) Rewrv (&, 1) = Roweg(Jo(&, )*)v(€, 1).

Since R_, A = AR_,; we conclude that v is a solution of the co-moving equation (0.8)
which reads as

with the skew-symmetric unit matrix S, = . In particular, since Ry is a rotation

U = Avge + e, + Spv + f(v), x€R, t>0.

Here S, = w9 is given by (0.9). The profile v, of a TOF is time independent and hence
it is a stationary solution of (0.8), i.e.

0= Av! + v + S,v. + f(vy).

Since the profile v, has limits as © — +00, it seems natural that the derivatives v, v
decay to zero as x — £oo. One observe, if g is at least continuous, that g(|va|) = —S,.
Thus, the magnitude of the possible asymptotic rest-states |v.,| and the frequency w € R
are determined by the nonlinearity g.

Lemma 1.6. Let v, € CZ(R,R?) be the profile of a traveling oscillating front of (0.4)
with speed ¢ € R, frequency w € R and asymptotic rest-state vo, € R*\{0}. Moreover,
suppose Rea > 0 and g € C(R,R*»?). Then

9(lol?) = =S.,  lim ol(x) =0, lim v/(x) =0.

r—+oco r—+oo
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Proof. Since v, is the profile of a traveling oscillating front it solves
Av + cv, = =S,v, — f(v,)

and the limits lime_, 1 v, (§) exist. Setting h(§) = —S,v.(§) — f(ve(§)) to be the right
hand side, we obtain h € C(R,R?) and the limits limg_,+ h(§) exist. Then Lemma D.6
implies

lim vl (z) =0= lim h(z).

r—+00 r—*+00

Moreover, this yields

: " o
L) =0

Furthermore,

(S + gt = lim (Suo(z) + F(0u(x) = = lim h(a) = 0.

T—r00

Since vy # 0 it follows
0 € (S0 + 9(|vsl®)) = {g1(Jvec]*) Ei(w + g2(Jvc|*) }-
Hence, g(|ve|?) = —S.. O

Taking the original complex-valued equation (0.1) into account, we observe that the
possible asymptotic rest-states v, of a TOF are given by the roots of the real part of
the nonlinearity G in the sense that

ReG(|r|’) =0, 715 = Vo1 + Voo 2.

Moreover, in this case the frequency of the TOF is determined by the imaginary part of
G via

Im G(|rs]?) = —w.

Remark 1.7. Let u, be a traveling oscillating front of (0.4) with w,c € R and profile
vy. Then the corresponding solution U, = u.1 + iU, of the complex system (0.1) is of
the form

Uz, t) =e ™V (z—ct), t>0,z€R,
In particular, the profile V., has the limiting property
lim Vi(x) =0, lim Vi(z)=17r,€C
T—r—00 T—00

With Too = Voo + Weo 2 7 0. Furthermore, the profile V, is a solution of the ODE
0=aV] +cV! +iwV, + G(|Vi|)Va.
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We conclude this section by recalling the template function v € Cy°(R, R) from (0.19)

given by o(z) = 3tanh(z) + 1, 2 € R and note some basic observation concerning ©.
Clearly, v(xz) — 0 as * — —oo and 0(x) — 1 as © — oo. In particular, the convergence

is exponentially fast with rate 0 < pu < 2, i.e. we have
[o(z)] < e*, <0, |o(x) = 1] < e, x>0. (1.9)
In addition, for the first and second derivative of © we have
[0 (z)| < 272 |0, (2)| < 4e” el 2 e R. (1.10)

Throughout this thesis we use several notations for the derivative as v,, v/, dv. However,
the notation will always be clear by the context.

1.3 Assumptions and main results

The thesis deals with the investigation of the stability behavior of traveling oscillating
fronts according to Definition 1.5. In this section we state the main results of the thesis.
In order to do so, we first state our assumptions on the system and the TOF that
guarantees nonlinear stability. The following first assumption relate to the equation

(0.4) with (0.5).
Assumption 1. The equation (0.4) with (0.5) satisfies
ay >0, geC*R,R*?), ¢,(0)<0. (A1)

The first condition in (Al) is a standard well-posedness assumption for evolution
equations of parabolic type, see [32], [45]. The second condition guarantees smoothness
of the nonlinearity f in (0.4), i.e. f € C3. The last condition in (A1) roughly speaking
implies the trivial solution of (0.4) to be stable under small perturbations. Since the
profile of a traveling oscillating wave tends to zero as x+ — —oo this will be crucial for
the stability of the TOF. More precisely, the condition g;(0) < 0 guarantees that oy (L)
from (0.14) is included in the left half-plane, see the red curves in Figure 0.3. As a next
step we assume the existence of a TOF in (0.4) which was discussed formally in a larger
context by W. van Saarloos et al. in [62] in case of Ginzburg-Landau type equations.
A formal discussion of the existence of TOFs in evolution equations of the form (0.1)
is done in Chapter 2. However, a rigorous proof on the existence of TOFs is, to our
knowledge, unknown in the literature.

Assumption 2. There is a traveling oscillating front solution u, of (0.4) with profile
v, € CZ(R,R?), speed ¢ > 0, frequency w € R and asymptotic rest-state vo, = (Jvso],0)" €
R? which satisfies

91 (Jvse?) < 0. (A2a)
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To assume vy, = (Jvso],0)7 is without any loss of generality. The reason is that the
profile of the TOF is not unique, since the whole group orbit O(v,) = {Rgv.(- —7) : 0 €
St 7 € R} consists of profiles of the same TOF wu,. This is caused by the equivariance
of the equation (0.4). Thus, we can choose the representative of the group orbit which
satisfies v, — Vs = (|Uso],0) " as & — oo. Further, the conditions ¢ > 0 and ¢} (|vs|?) < 0
are crucial for the stability of TOFs. In particular, ¢} (|vs|) < 0 implies that the periodic
orbit of the ODE ¢’ = f((), given by (,(t) = R_.1v~ and describing the evolution of the
TOF at 400, is an asymptotically stable periodic orbit of the ODE.

Remark 1.8. (, is a T-periodic orbit of the autonomous ODE (' = f(C) with T = %

Its stability behavior is determined by the linearization given by (' = Df((,)C. See the
classical Floquet theory, for instance, from [6]. Clearly, the first Floquet multiplier is
gwen by py =1 and for the second we have

tr(Df(C+(s)))ds

g 279" (|voo|?) oo |?
/"LQ:Ml/j’Q:efo = e 91(‘ OOI )‘ 00‘

since (0.13) and Lemma 1.6 imply

(D f(Cu(5))) = g1(1vool”) + 20 ([0 |*) [vso|* = 201 ([vse|*) [V .

Therefore, (A2a) shows for the second Floquet multiplier |us| < 1 and thus (, is an
asymptotically stable periodic orbit.

1.3.1 The exponentially weighted case

The first main result of the thesis deals with the nonlinear stability with asymptotic
phase of TOFs in exponentially weighted spaces. The proof of the result is done in
Chapter 3. There we choose the weight function 7 as a weight function of exponential
growth rate p > 0, cf. (0.24), i.e. we set

n(x) = eV >0,

Recall the weighted Lebesgue and Sobolev spaces L2, H) from (0.16), (0.17) as well as
the spaces X,,, X/, Y, from (0.20), (0.21) and let v, = (v,,vs)" be given by the profile
of the TOF from Assumption 2. We consider the Cauchy problem from (0.22) associated
with the nonlinear operator F from (0.23) with perturbed initial conditions, i.e.

w,=F(u), t>0, ul0)=v,+u X,

Definition 1.9. A function u : [0, %) — X, is called a classical solution of the Cauchy
problem (0.22) on [0,ts) if

i) ue C(0,tx), Y;) NCH[0,t), X,),
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i) w(t) = F(u(t)) in X, for all t € [0, o),
i) u(0) = v, + up.

In the case t,, < oo we also call u a local classical solution, whereas in the case
to = 00 we also call u a global classical solution.
We will show in Theorem 2.6 that v, belongs to Y, as long as p is sufficiently small.
It follows immediately from (0.10) and Lemma 1.6 that v, is a stationary solution of
(0.22), i.e.

F(vy) =0.
Now let us consider the group G = S' x R with the metric on G given by
da(n,72) = In = le, e :=min|0 —2xk| + 7], ~=(0,7). (1.11)

We describe rotation and translation on the space X, by the group action a(y), v € G
from (0.25). We will prove in Lemma 3.8 that F is equivariant under the group action
a(), v € G. Then v, defines a whole continuum of stationary solutions given by the
group orbit O(v,) = {a(y)v. : v € G}, ie.

a()F(v.) = Fla(v)v.) =0 Wy e,

To prove nonlinear stability we have to determine the spectrum of the linearized operator
from (0.26) reading as

v v Avgy + cv, + S,v+ D f(v,)v
Y, C X X = :
£iln C &= Xy (p> o (p) ( Sup + Df(v0)p
There are several nonequivalent definitions of the spectrum of a closed operator on a

Banach space, see [38], [32], [25]. We use the following definition from |25 using Fredholm
index 0 of the operator.

Definition 1.10. Let 7 : X — Y be a closed, densely defined, linear operator with
domain D(7T) C X. The set

p(T)={s€C:sI —T :D(T) — X is bijective}

is called the resolvent set of 7. Its complement o(7) = C\p(T) is called the spectrum
of T and is decomposed into the point spectrum

opt(T) :={s€o(T):sl —T is Fredholm of index 0}
and the essential spectrum
Oess(T) 1= (T )\ope(T).
For s € p(T) the operator (sI —T)~' € L[X,D(T)] is called the resolvent of T at s.
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Now recall the dispersion set oaisp (L) = 04, (L) U 04, (L), which as we will
show describes a major part of the spectrum of the linearized operator £ on X, cf.
Section 3.3. We show that the dispersion set can be represented explicitly depending on
the system parameters and the growth rate ;1 > 0 by the curves

U(;risp,u(L) - {8 € C:s=—ar’ +i(c—2a1p)v + par — cp+ g (|voo]*) [voo |

= [ — a3v' — diadu? + (603u” + 20295 (Jvs v P)?

+di(azp’ + pangs (v ) s )y

1

— adut = 2000263 v ) v + (91 ([0 Do l)?]” §
(1.12)

and
Taispu( L) = {5 €C:s=—a’ +i(c+20p)v + o + cp+ g1(0)

+ | — asvt +diaspv® + (6asp® + 2as(g2(0) + w))v? (1.13)
1.13
— diag(aop® + p(ga(0) + w))v

1

— a3ut = 2(g2(0) + w)azp® — (g:(0) +w)?| "}

For the representation we used that (0.13) and Lemma 1.6 imply

_ (0(0) 500 (2Pl w
pr0= (20 o)) Prew = (L §) 0w

The stability behavior of TOFs strongly depends on the location of the spectrum of the
operator L. In particular, we have to show spectral stability of TOFs which means that
the whole spectrum of £ on X, is included in the strict left-half plane except for a zero
eigenvalue. Since a major part of the essential spectrum is given by the dispersion set
Taisp.u (L), we assume that there is an exponential growth rate fiess > 0 such that for all
0 < pt < Jtess the dispersion set is included in the strict left half-plane, cf. Figure 0.4.

Assumption 3 (Spectral condition). There is fiess > 0 such that for all 0 < g < fess
there exists By = Po(p) > 0 with

Re Udisp,u(c) S _BO~

Using the explicit representations (1.12), (1.13) it is easy to verify Assumption 3 in
concrete applications, see Section 4.3. Further, we note that the conditions ¢;(0) < 0,
¢ > 0 and ¢](|va]?) < 0 are necessary condition for Assumption 3 to be satisfied. This
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can be immediately seen by taking v = 0 in (1.12), (1.13) describing the vertexes of the
dispersion curves.

The last assumption states that there are no further eigenvalues of £ laying to the right
of some vertical line with negative real part, except for the zero eigenvalue. Moreover,
we assume the algebraic multiplicity of the zero eigenvalue to be at most 2.

Assumption 4 (Eigenvalue Condition). There is v > 0 such that for all s € o (L£)\{0}
it follows Res < —.
Moreover, s = 0 s an eigenvalue of algebraic multiplicity at most 2, 1.e.

dim | JN(L") < 2.
n=1

In contrast to the essential spectrum, the point spectrum does not change when us-
ing exponential weights, see [36, Sec. 3.1.1.2] and Section 4.3. The eigenvalue condition,
Assumption 4, typically has to be verified numerically. This in done for concrete ap-
plications in Section 4.3. Another possibility is given by discussing the roots of the so
called Evans function. For details on the Evans function we refer to [3], [36, Chap. 9].

Now we are in the position to formulate the first main result of the thesis. It states
that TOFs are nonlinear stable with asymptotic phase.

Theorem 1.11. Let Assumption 1-4 be satisfied. Then there exists €g > 0 and constants
K, B,Csx > 0 such that for all initial perturbations uy € Y, with ||u0||X% < g¢ equation
(0.22) has a unique global solution

u € C((0,00),Y,) NC'([0,00), X,)
and there are v € C([0,00),G) and w € C((0,00),Y,) N C ([0, 00), X,,) such that
u(t) = a(y(t))ve +w(t), tel0,00). (1.15)
Moreover, there is an asymptotic phase Yoo = Voo(Wg) € G with
(@)l + )~ el < Ke Py Frclo € Ol (1.16)

Theorem 1.11 is a direct consequence of Theorem 3.29 and their proofs can be found
at the end of Section 3.7. We see that Theorem 1.11 implies nonlinear stability with
asymptotic phase of traveling oscillating fronts. In particular, the TOF as u,(t) =
a(wt, ct)v, is a relative equilibrium of the equation

= (M) e () e
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which is nonlinearly stable with asymptotic phase w.r.t. the norms ||- [y = [|-|l2 = [|- | x3,
cf. Definition 1.4. It is important to note that we can allow perturbation in Theorem
1.11 which do not decay to zero as x — oo. This is the benefit we gain by using the
space X, from (0.20) and is due to the stability of the periodic orbit at +o0, cf. (0.18).
This is in contrast to the usual results for traveling waves in parabolic PDEs, see [56],
[15], where only perturbation in H' are allowed.

1.3.2 The polynomially weighted case

The second main result of the thesis states that TOFs are nonlinear stable with asymp-
totic phase in polynomially weighted spaces. The result is proven in Chapter 5. There
we set

(@) = (*+1)%, keN

and use the spaces L7 and Hj from (0.30) as well as the affine linear spaces M}, M{ from
(0.31). Then M can be seen as Banach manifolds modeled over the spaces Hf. For this
manifold we have a single global chart (M}, ) with

XM — Hf, uru—. (1.17)

Let v, be the given TOF from Assumption 2 and consider the perturbed initial value
problem on M, from (0.11) reading as

up = Agy + cuyp + Spu+ f(u),  uw(0) = v, + up.

Definition 1.12. A function u : [0,t) — M for some k € Ny is called a classical
solution of the initial value problem (0.11) if

i) ue C((0,ts), MP) N CY[0,ts), My),
i) uy(t) = Auge(t) + cuy(t) + Sou(t) + f(u(t)) in L2 for all t € [0, 1),
i) u(0) = vy + up.

In the case t,, < oo we also call u a local classical solution, whereas in the case
loo = 00 we also call u a global classical solution.
As in the case of exponential weights, we have to consider the linearized operator L on L
from (0.12) to prove nonlinear stability with asymptotic phase. The linearized operator
is given by

L:H} = L3, uws Auge + cu, + Sou+ Df(v,)u.
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Again, the major part of its spectrum is given by the dispersion set oais, (L) = 045, (L) U

O isp (L) from (0.14). Tt can be expressed explicitly as

Tip(L) = {5 €C1 I Rt s =~ tiev + g ([ o
£ (—030' + 20003 (v ) 0o P2 + (0} (10 0 2)?) * }
and
Ogisp(L) = {3 cC:WwecRst. s=—av” +icv+ g1(0)
+ (—a%u4 + 2a2(g2(0) + w)* — (g2(0) + w)Q)% }

In this case the dispersion set always touches the imaginary axis at the origin and we
cannot expect it to be included in the strict left half-plane. However, to prove nonlinear
stability we make the following assumption on the dispersion set which states that the
origin is the only point where the imaginary axis is touched by the dispersion set. It
can be verified numerically or even analytically by discussing the shape of the dispersion
curves.

Assumption 5 (Spectral Condition). The dispersion set oqisp(L) from (0.14) satisfies
Udisp<L) NiR = {0}

Further, as in the exponential case we have to assume the following eigenvalue con-
dition concerning the point spectrum of L.

Assumption 6 (Eigenvalue Condition). Let L € C[L?] from (0.12). Then there isy > 0
such that for all s € o, (L)\{0} it follows Res < —v. Moreover, there holds

dim | JN(L") < 1.
n=1

In Section 5.3.2 we derive delicate resolvent estimates of the linearized operator w.r.t.
different polynomially weighted norms. In order to do so, we consider the piecewise
constant coefficient operator L., which is defined by

Cola) = {5w+Df(voo), z >0,

Lo : H> = L2, uw Aug, + cuy + Cyu,
BT - S.+Df(0), <0

(1.18)

and it has to satisfy the following non-degeneration assumption:

Assumption 7. The piecewise constant coefficient operator L., from (1.18) satisfies

N (L) = {0}.
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We just note that Assumption 7 generically must hold true and can be verified in
application using results from Section 5.3.2. For a more detailed discussion we refer to
Section 5.3.2. Finally, the last assumption requires the imaginary part of the diffusion
coefficient to be sufficiently small. This also effects the geometric shape of the dispersion
set at the origin.

Assumption 8. The imaginary part ay of the diffusion coefficient satisfies

205 (Voo |*) [voc]* + 191 (Jvec ) lusc|* < 0.

Now we are in the position to formulate the second main result of the thesis concerning
nonlinear stability of TOFs in polynomially weighted spaces.

Theorem 1.13. Let Assumption 1, 2 and 5-8 be satisfied. Further, let m > 5, k = 3m.
Then there exist eg > 0 and constants K, Cy, > 0 such that for all initial perturbations
ug € HE with [woll 1, < €0 equation (0.11) has a unique global solution

u € C((0,00), M) N CH([0, 00), M}
and there are 7 € C'([0,00),R) and w € C((0,00), H?) N C'([0,00), L) such that
u(t) = v (- —7(t)) +w(t), te0,00).

Moreover, there is an asymptotic phase Too = Too(ug) € R with

lw®lls < ——=luollm,

(1+1)

7(t) = Too| < WHUOHH}M |Too| < Coolluol| g, -

The proof of Theorem (1.13) in done at the end of Section 5.7 and is a consequence of
Theorem 5.37. Theorem 1.13 implies nonlinear stability of TOFs with asymptotic phase
w.r.t. the norms || - [[; = [| - [[2 = || - [[ 415, see Definition 1.4.



Chapter 2

Existence and exponential decay

Before investigating the stability behavior of TOFs, we prove properties of those and
discuss their existence in a formal way. In particular, the main goal of this chapter is to
show that the convergence of the profile at infinity, see (1.8), must be exponentially fast.
In order to do so, we use the approach from [62] and analyze solutions of the stationary
co-moving equation, cf. (0.10), reading as

0= Avgy + cvg + Suv + g(Jo*)v, z€R

via a polar-coordinate ansatz. As we have seen in Chapter 1, solutions of the stationary
co-moving equation (0.10) define profiles of traveling oscillating waves with speed ¢ € R
and frequency w € R. If, in addition, the asymptotic properties (1.8) are satisfied,
they define profiles of TOFs. We use the following strategy to prove exponentially fast
convergence in (1.8). The ansatz shows that the profiles occur as connecting orbits
between two hyperbolic fixed points in a first order ODE system. The hyperbolicity
of the fixed points then implies, using the theory of exponential dichotomies by W. A.
Coppel in [22], that the convergence in (1.8) is exponentially fast.

2.1 A dynamical systems approach

We follow the ideas in [62] and write formally the solution v € CZ(R,R?) of (0.10) in
polar coordinates with smooth amplitude and phase
B cos ¢(x)
v(z) =r(x) (sin¢(az)) , z€eR (2.1)

where r € C#(R,R,) and ¢ € C%(R,R). Hence, r describes the amplitude of the wave
solution whereas ¢ describes its phase in R? or in the complex plane respectively. If we
require v to satisfy the asymptotic behavior (1.8) we conclude that r and ¢ satisfy

o, r(@) = oo, Jip 9(0) = beo

33
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with 75 = |Uso| and ¢o, = arg(vs,). For the limit at —oco we obtain

lim r(z) =0.
T—>—00

Note that ¢ does not have to decay to zero as x — —oo. Unfortunately, we have no
control of the angle ¢ as x goes to —oo. More precisely, for a general TOF with profile
v, we do not even know if the angle ¢ converges as x goes to —oo. For that reason,
we have to consider the properties of v, at —oo in a different manner than the behavior
at oo later on. In fact we will only use the polar coordinate ansatz from (2.1) on the
positive half-line R, . On the negative half-line we use the standard first order reduction
of (0.10).

However, in what follows we consider the polar coordinate ansatz (2.1). We take first
and second derivatives in (2.1) of v w.r.t. = and obtain

B r - r — 7,<¢/)2
Uy = R¢ (T‘QZ)I) s Ugg = R¢ <2T/¢/ + TI¢I/) .

Multiply (0.8) by A™'R_, and use that the matrices A, g(|v|*) and R_, commute to
obtain

0=R 4V +cATR_yv, + AT'S,R_yv + g(Ju])) A R_4v. (2.2)

Here A1 is given by
A= @ with «a; = Y for = 1,2.
—Qp (q |a]
A straightforward computation leads to
" —r(¢)? 1 arr’ + aorg’
. = A _ — ~ ~
Fgtee (Qr’¢’+r’¢” AT R = Gy Gy

as well as

At (G7) st QL )
Plugging this into (2.2) yields
0— (7“" — (@) + canr’ + clgrd! + Gawr + dngi (|r*)r + 54~292(|7’\2)7“) _
2r'¢) + rd" — canr’ + cayrd’ + awr + ayga(|r|?)r — aogi(|r]?)r
Assuming r(x) # 0 for all x € R we introduce, according to [62], the new variables
r'(x)

ol (2.3)

q(x) = ¢'(x), r(z) =
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r
T

Then, using ' = =~ — k2, we finally obtain the 3-dimensional ODE system

/

T TR
k]| = ¢ =k —ailce+gi(Jr]?) — aslcqg +w+ g(Ir?) | = T(r,k,q).  (2.4)
q —2kq — a1 (cq + w4 g2(I7]?)) + da(ck + gi(|r]?))

Note that I' can be written as
rK
Plrokq) = | (=~ _ 40 [ vt alr)
- 2
—2kq cq +w+ ga(|r]*)
Lemma 2.1. Let (r,q,k) € C*(R,R3) be a solution of (2.4) for some c,w € R. Then
there is a family of solutions vs, € C*(R,R?), ¢g € R of (0.8) given by

(
vate) = r() (Go5) . ote) = [Tatoras+ on

Proof. Since ¢,k € C'(R,R) we conclude 7, ¢ € C*(R,R). Hence vy, € C*(R,R?) and
the previous calculation shows that v, solves (0.10). U

Thus, we have shown that every solution (r,q, k) of (2.4) defines a solution of (0.8)
and therefore the profile of a traveling oscillating wave. Since we are interested in TOFs
we now take the asymptotic behavior (1.8) into account. Therefore, we now look for
solutions v € CZ(R,R?) of (0.8) with (1.8). Since, v = 0 and v = vy, are constant
solutions to (0.10) it is natural to look for equilibria of (2.4), i.e. let (7, %, q) € R? such
that

I'(r,R,q) = 0.

Then the first equation of (2.4) implies either 7 = 0 or £ = 0. Therefore, we distinguish
between the two cases. Depending on the fixed point there may be different types of
solutions to the equation (0.10).

Corollary 2.2. Let (7,k,q) € R3 be an equilibrium of (2.4).

i) If ¥ = 0, then the corresponding family of solutions vy, € CZ(R,R?), ¢9 € R of
(0.10) from Lemma 2.1 is given by

Vgo(z) =0, x€R.

i) If K = 0, then the corresponding family of solutions vy, € CZ(R,R?), ¢9 € R of
(0.10) from Lemma 2.1 is given by

o) =7 (Gl wer
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i) If i =q =0, then the corresponding family of solutions vy, € CZ(R,R?), ¢9 € R of
(0.10) from Lemma 2.1 is given by

vaa) =7 (Gt} e R

i) Let (0,,q) and (7,0,0) be equilibria of (2.4) and let (r,r,q) € CY(R,R?) be a
heteroclinic orbit from (0, k,q) to (7,0,0), i.e. (r,k,q) solves (2.4) and

r(z) 0 r(z) T
PN S Bl = KOS Bl
q(x) q q(x) 0

If ¢ € L'([0,00),R), then vy, € CEH(R,R), ¢y € R given by Lemma 2.1 is a profile
of a traveling oscillating front of (0.4) with asymptotic rest-state

_ [ cos P =
oo — ) oo — d .
v r( ) ¢ /0 q(s)ds + ¢o

SN Goo

Proof. 1), ii) and iii) follow immediately by Lemma 2.1. For iv) we have by Lemma 2.1
that vy, solves (0.10). Now ¢ € L'([0, 00),R) guarantees that ¢, exists. Then we obtain

Hm v, () =0, lim vy, () = V.
T—r—00 T—00

Hence vy, (x) is a profile of a traveling oscillating front. 0

Corollary 2.2 shows that every connecting orbit between two equilibria (7,0,0) and
(0,R, q) defines a profile of a TOF, i.e. a solution of (0.8) with (1.8). Conversely, we
expect that every profile of a TOF defines such a connecting orbit as well. To see that,
assume

B cos ¢(x)
ve(z) = r(x) (sin <Z5(1’)) Vo € R. (2.5)
Then by (1.8) we have

@ (5] = w20, oo o

Thus r(xz) — 0 as © — —oo. Further, we obtain

@ (§o5) = e e (Gn5=) . oo (26)

sin ¢(z) Sin Poe
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This shows 7(z) — 7o as * — co. Now by Lemma 1.6 we have v (z) — 0 as x — oc.
Then we conclude with v, = (ve1,v40)"

2 (@) + 02 (2)

7*/(33) — am|v*(x)‘ = |U*|($)

— 0, = — o0.

This implies

K(z) = —0, x— o0. (2.7)

Finally,

() (Zfszgg) +r(@)q(x) (‘Csisn(b‘?g)) (@) 20, Tooe.  (28)

Hence, g(z) — 0 as x — oo. Summarizing we have shown for the solution of (2.4) given
by (7, k,q) of the profile v, that r(z) — 0 as © — —oo and

(Ta ’%aQ) — (TOO,O,O), T —r OQ.

Assuming ¢(z) — ¢ and k(z) — R as © — 0o, we see that (7, k, q) defines a connecting
orbit in (2.4). However, the convergence for ¢, k at —oo is only assumed and is an open
question.

It turns out that the equilibria of the connecting orbit are hyperbolic. Therefore, the
convergence towards the equilibria is in fact exponentially fast. This will be used in
Section 2.2 to show that the convergence in (1.8) is exponentially fast as well.

Remark 2.3. Recall the different phenomena occurring in (0.4) and, in particular, in
(QCGL) from Figure 0.1 such as pulses, wave trains, periodic fronts, sources and sinks.
Taking the system (2.4) into account, one shows that pulses are given by connecting
orbits between equilibria in (2.4) with zero amplitude, i.e. ¥ = 0. The stability behavior
of pulses was investigated for instance in [58]. Further, a connecting orbit in (2.4) of
two equilibria (0, R, q) to (7,q,0) with ¢ # 0 defines a spatially periodic front, cf. Figure
0.1. At last, a heteroclinc orbit between two equilibria (712, G1,2,0) with ¢ < 0 < ¢ or
G2 < 0 < @ define sources and sinks. These are connecting orbits between wave trains
and are also called Nozaki-Bekki holes, see [46]. The stability behavior of sources was
investigated in [10].

In the beginning of the section we used the formal polar coordinate ansatz (2.1) for
the solution of (0.10) with smooth r and ¢. But the inverse of the polar coordinate
transformation may not be globally continuous in the phase ¢. Nevertheless, since we
are interested in the behavior as x — oo it will be sufficient to have a transformation for
x € J = [z,,00) for some x, sufficiently large to obtain the system (2.4) on J.
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Lemma 2.4. Suppose v, € CZ(R,R?) to be the profile of a traveling oscillating front.
Then there is x, € R and functions r € C}(J,R), ¢ € C*(J,R) with J = [x,,00) such

that for all x € J there hold
ve(z) = r(2) (g:gg;) :

Proof. Since v, is a traveling oscillating front there is v,, € R\{0} with v,(z) — v as
r — 00. Suppose w.1.0.g. Vs = (re,0)" for some 7o, € R, ro, > 0. Otherwise consider
the rotated profile R_,_ v, with ¢, € [0,27) such that vy = roo(cos ¢oo, sin o) . Now
there is , € R such that v(z) € {(21,22) ER?: 21 >0, 2 € R} for all x € J = [z, 00).
Set r(x) = |v.(x)| and ¢(x) = arctan Zj—ég Then r € CZ(J,R) and ¢ € C?*(J,R) with
(2.1). O

2.2 Exponential decay

In this section we prove in Theorem 2.6 that profile of a traveling oscillating fronts as
stationary solutions of (0.8) must converge exponentially fast to 0 and v, as |z| — oo.
For this purpose, we use the theory of hyperbolic equilibria since in the previous section
we have seen that profiles of traveling oscillating fronts may occur as connecting orbits
between equilibria in the dynamical system (2.4).

So let (T, %,q) € R? be a equilibrium of (2.4), i.e. ['(7,&,q) = 0. Then the Jacobian at
the equilibrium is given by

R T 0
DIU(7,k,q) = | —2a19,(7*)T — 20095(F*)F  —2K — dyc 2@ — Gne
=201 g5(F*)T + 20000, (T2)F  —2q + Goc —2FK — aqc

In fact, we use the theory of exponential dichotomies from [22]. We want to ensure that
the system (2.4) has an exponential dichotomy on .J. In order to do so, we look for
hyperbolic equilibria of (2.4), i.e. the Jacobian at (7, &, ) has no eigenvalues on the
imaginary axis. Taking the observations from the previous section into account, we are
interested into connecting orbits between equilibria of (2.4). Let us consider the spectrum
of the Jacobian at equilibria of (2.4) of the form y_ = (0, %, §) and y, = (Jvs|,0,0) and
their local stable and unstable manifolds M, ,(ys). The reason is that a connecting
orbit between y, and y_ occurs as an intersection of the stable manifold M;(y,) and
the unstable M, (y_). We want to ensure that y4 are hyperbolic.
The Jacobian at y_ reads as

K 0 0

DI'(y-) = |0 —2r—dyc 2§ — asc
0 —2¢+ asc —2k — daye



2.2. EXPONENTIAL DECAY 39

Therefore the eigenvalues of DI'(y_) are given by {&, —&1c¢ — 2k +9(2¢ — o) }. Thus, if
k,c > 0 then y_ is a hyperbolic equilibrium with

dimM,(y-) =1, dimM,(y_)=2. (2.9)

For y; = (|vel, 0,0) we have

0 Voo | 0
DU(ws) = | =261 (vef) 0] — 260030 |)lvne| —Grc —aine
—20195([voo|*) [Vso| + 20201 (Voo *) [Vs|  d2e —dunc

and its characteristic polynomial is given by x(s) = s® + a;15% + ass + a3 with

a; = 26[10,
_x2 . ~2\ 2 ~ 2 2 ~ 2
ay = (a7 + a3)c” + 20191 (|Voo]*) [Voo|™ + 20295 (|Vo0] 7) Vo] (2.10)

as = 2¢(6% + 3)g) ([vse ) v 2

For instance, if @y = 0 then the eigenvalues of the Jacobian are given by

1 1
{—&10, _§dlc + ) alc? — 8élgi(|voo|2)|voo|2} :
So if
c>0, g(jvl’) <0
then y, is a hyperbolic equilibrium with

In fact, the same holds in the case agy # 0:

Lemma 2.5. Let Assumption 1 and 2 be satisfied. Then y, := (|vs|,0,0) € R3 is a
hyperbolic equilibrium of (2.4), i.e.

o(DT(yy)) NiR = 0.
Moreover, the stable and unstable manifolds have the dimensions
dlmMﬁ(er) = 2, dlmMu<y+> = 1.

Proof. From Lemma 1.6 it follows that y, is an equilibrium of (2.4). Assume y, not to
be hyperbolic. Then there is v € R such that

3

x(iv) = —iv® — ayv® +iagy + az = 0
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with ay, as,az from (2.10). Then a;v? — a3 = 0. This contradicts a; > 0 and a3 < 0
which follows from Assumption 1 and 2. Thus y, is hyperbolic.

We are left with the task of determining the dimensions of the local stable and unstable
manifold. For this purpose, we distinguish between two cases. If ajay — a3 # 0 the
Routh-Hurwitz criterion from Theorem D.7 states that the number p of zeros of the
characteristic polynomial y in the left half-plane equals to

p=3-V(1,a1,a3(a1as —a3)) — V(1,a1a5 — az) = 2.

Here V(cy,...,c,) is the function counting the sign changes in the sequence cy, ..., ¢,.
In the case ajay — a3 = 0 we have

p=1+V(,—a) = 2.
This shows
dim Ms(y) =2, dim M,(y,) = 1.
]

Before proving exponential decay of TOFs, we discuss briefly the existence of TOFs
as connecting orbits between hyperbolic equilibria using counting arguments, see for
instance from [11], [13],. We are not able to give a rigorous prove on the existence
of TOFs, but the following argumentation shows that one expects TOFs to occur. A
connecting orbit between the hyperbolic equilibria y_ and y, occurs when there is a
nonempty intersection of the unstable manifold M, (y_) and the stable manifold M,(y..).
Both are submanifolds of R?* with dim M,(y_) = 1 and dim M,(y+) = 2. In addition,
both depend continuously on the one dimensional parameter ¢ € R, cf. (2.4). Following
[11], [13] on expects an intersection of the manifolds for an isolated ¢ € R, see Figure 2.1.
To see that, consider the dynamical system (2.4) depending on the parameter ¢ € R, i.e.

y' =T(y;c), ylz)eR’, ceR (2.11)

where y = (r, K, q) and I'(y; c) is given by the right hand side of (2.4). Introducing the
variable z = (y, ¢), we can write (2.11) as

2 =7(2), y,c)=T(y;c),0), z(x)ec R (2.12)

Further, we assume the existence of hyperbolic equilibria y; = vy, (c) = (Jvs],0,0) € R3
and y_ =y (c) = (0,&,G) € R? for c € I C R such that, according to Lemma 2.5 and
(2.9), we have for all c € I

m; =dimM,(y,) =2, m =dimM,(y,) =1,
- 1, my =dimM,(y;) = 2.
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Figure 2.1: A connecting orbit as an intersection of M,(y_) and
M, (y,) for a certain ¢ € R.

Now there are invariant manifolds (center-stable/center-unstable) M, and M of the
system (2.12) given by

My = (Muly-(0) x {e}), Mg = (Mely=()) x {c})

with dim M, = m; + 1 = 2 and dimM;" = m + 1 = 3. In particular, we have
dim M + dim M, =5 > 4 = dimR*"!. For that reason we might expect a nonempty
intersection of M;" and M, . Further, we assume that M_", M, are transversal to each
other, i.e.

TeM} +TeMy =R Ve e M n M, . (2.13)

Counting dimensions in (2.13) we obtain dim (Te M, NT: M, ) =1, £ € M N M, . Pick
(Yo, ¢cx) € M- N M, and let z, = (y,, ¢x) be the solution of

Z=7(2), 2(0) = (yo, ).
Then z,(z) = (y«(x), ) € M N M, for all z € R and

y_(cy), x— —o0
Y )ﬁ{%(c*), s
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In particular, it follows

u

TZ*(x)M;r NT., M, =span{z'(z)} VzeR

and y, is an isolated connecting orbit of (2.4) from y_(c,) to y4(c,). From that we are
able to construct a profile of TOF with speed ¢, € R via Corollary 2.2. We expect that
the assumptions in the previous argumentation holds true for at least a large parameter-

set of (QCGL).

As a next step, we prove the main result of this chapter, which states that the
convergence in (1.8) can only be exponentially fast. This will be an important property
in the following chapters, especially for the proof of nonlinear stability. Since the polar
coordinate transformation is only valid for the behavior of v, at +o00, c¢f. Lemma 2.4, we
are only able to use the system (2.4) and the hyperbolicity of the equilibria from Lemma
2.5 on the positive half-line. On the negative half-line we can make use of a standard
transformation to a first order system for v, by w = (vy,v}).

Theorem 2.6. Let Assumption 1 and 2 be satisfied. Then v, € C(R,R?) and there are
constants K, p,, > 0 such that

|04(7) = voo| + [0 ()] + [V(@)] + [0 ()] < Ke™™* V=0,
ou(@)] + oy ()] + [V ()] + [0 ()] < Ke'* Va <0

*

Proof. Since v, is a profile of a TOF it solves the stationary equation (0.10). Furthermore,
by definition and Lemma 1.6, it has the limiting properties (1.8) and v, (z) — 0 as
|z| — oo. In particular, since f € C3(R,R?) we conclude v, € C7?(R,R?). Now we show
first the estimate on the negative half-line. Set w = (v,,v.)" then w is a solution to the
first order system

W =Hw), H(w):= (_ A1 (e, +7“‘gww1 N f(wl))) . (2.14)

Moreover, w = 0 is an equilibrium of (2.14), i.e. H(0) = 0, with the Jacobian

0 I
DH0) = (—Al(sw + DS (0)) —cAl) |

Since D f(0) = g(0) we obtain using Assumption 1 for all v € C?, |v| = 1

s ) = (4,280 5 )) 00

Thus the spectral bound of —(S,,+D f(0)) is positive and, since ¢ > 0, Lemma D.1 implies
w = 0 to be a hyperbolic equilibrium of (2.14) with stable and unstable dimensions equal
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to 2. We denote the eigenvalues of DH(0) by A; for i = 1,2, 3,4 such that Re A\;, Re Ay <
0 < Re A3, Re\s. Now choose a simple connected curve including A;, \s and excluding
A3, Aq and let P, denote the corresponding Riesz projector from Appendix B (B.1). In
addition, we define the stable and unstable subspaces

X, =P (RY), X7 =(-F)R)

as well as P, = I — P, the projector onto X, cf. Proposition B.1.

Since lim, , o w(z) = 0 there is g < 0 such that Theorem B.5 implies that there
are zero neighborhoods V; C X, V, C X,V C R* and a unique w, € V, such that
w(z) €V, x <z and Pyw(xg) = w,. Moreover, the boundary value problem

v'=H(w) on R_
Pv0)=w, vx)eV Vz<0

(2.15)
has a unique solution v € C*(R_, V'), which satisfies for some K, y1; > 0 the estimate
lv(x)] < Kpe'® Va <0.
Since the solution v of (2.15) is unique we conclude w(x) = v(z — xy) for all x < zy and
lw(z)| = |v(z — z,)| < K@) V< .
Now w = (v,,v.)" € Cy(R,R*). Therefore, we find Ky, K3 > 0 with
[vu()] + [V (z)| < Koet® Va2 <0
and
[0/ ()] = [A™ (v, (@) + Suvi(@) + f(va()))]
< 1A (Jellel () + folles ()] + | F(0x(2) — FO)]) (2.16)
< [A7Y (lellvs ()] + [wl[va(@)] + Llvi(2)]) < Kse"® Vo <0.
By differentiating (0.10) we obtain, since f € C?,

[0 (2)] = [A™ (evi(@) + Suvi(z) + Df(vu(2))vi(2))] < Kae'™ Yz <0 (2.17)

*

and the estimate on the negative half-line is proven.
Next we show the estimate on the positive half-line. For this purpose take x, € R from
Lemma 2.4 and r € CZ(J,R), ¢ € C*(J,R), J := [z,, 00) such that r(z) # 0 and

o) = o) (Guott)) we
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Defining ¢ := ¢’ and k = %/ the previous calculations in Section 2.1 show that (r, ¢, k) €
C'(R,R) solves (2.4) on J. Now there are 7o, > 0 and ¢, € [0,27) such that v, =
T50(COS Poo, SN Poy) T holds. Then r(z) — 7o and ¢(x) — o as T — 00, see (2.6).
Further, x(z) — 0 and ¢(z) — 0 as  — oo, cf. (2.7), (2.8). Summarizing there hold

(r,kyq) = Y4 = (1, 0,0), x — o0.

From Lemma 2.5 it follows that y, is a hyperbolic equilibrium of (2.4) with stable
dimension 2 and unstable dimension 1. Similarly, as in the case on the negative half-line,
we denote the eigenvalues of DI'(y, ) by v; for ¢ = 1,2,3 with Revy, Revs < 0 < Rews.
Again choose a simple connected curve including vy, 5 and excluding v3 and let P
denote the corresponding Riesz projector from Appendix B (B.1). Further, define the
stable and unstable subspaces

X; = PA(RY), X = (- P&

as well as P- = I — P;" the projector onto X", cf. Proposition B.1. Since (r,k,q) — y
as x — oo there is £ > z, such that Theorem B.5 implies that there are neighborhoods
U C X, U, C X5 UCR? of y, and a unique y, such that (r,x,q)(z) € U, z > &
and Ps(r, K, q)(&) = yu. Moreover, the boundary value problem

v =T(u) on R

. () - (2.18)

Pru(0) =y, ulx)eU Vx>0

has a unique solution u € C*4([0, 00), U) which satisfies for some C}, 1o > 0
lu(z) —yy| < Cre " Yo >0.

Since u is the unique solution of (2.18) we conclude (7, &, ¢)(x) = u(x — &) for all x > &,
and thus

|(r, 5, @) (@) = gy | = Ju(z — &) —y| < Cre #2070 v > g,
Therefore,
[7(2) = oo, lg(2)] < Cre7 278 Vg > g

Then it follows

oo = 0)| < [ lalo)lds < e vz g,
x 2
Since I' € C3(R?, R?) and therefore locally Lipschitz continuous, we observe
(', K, ¢) (@) = [L(r(x), q(x), £(x)) = D(y)| < LI(r, 5, q)(x) = y]
S LCle—lm(ﬂU—fO) Vax Z 50.
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Finally, we find C'y > 0 with

|04() = Vo] + Vi(7)] <

SN Goo

< (@) = roo| + [rocl|d(x) = dool + |1 ()] + ||| e |q ()]

< 02(;#2(93*60) V> &.
Since v, € CP(R,R?) we can choose Cy > 0 such that

[0, (2) — voo| + |VL(2)] < Coe™* Va > 0.

45

(@) (Geot)) = v (G ) |+ 1@+ relato)

The estimates for v}, v! follow as in (2.16), (2.17) using the stationary equation (0.10).

This proves the claim with K = max;{K;, C;}, p = min;{p;}.

O

We conclude this chapter by recalling v from (0.19). This function satisfies for z > 0

n(z)(0(x) —1)] < el
and on the negative half-line for x < 0

[n(a)o(z)| < @0,

(2.19)

(2.20)

Thus, © converges exponentially fast to 1 as  — oo and decays exponentially fast at

—oo and the convergence is of rate 2. Moreover, for the derivatives we have
[1(2)0s(2)] < 22

as well as
()00 ()] < 4e2,

Throughout the thesis we write R, = (0,00) and R_ = (—o00,0).

Proposition 2.7. For p < 2 and v from (0.19) there holds:

1
O — 1|12 = ||| 12 -
o= sy = ol = s
2 4

Iodlzzem = = Womlizoms) = 7=

Proof. The claim follows by integrating and using the estimates (2.19)-(2.22).

(2.21)

(2.22)

O

With Proposition 2.7 we conclude together with Theorem 2.6 that the profile v,
belongs to a shifted L%—space as long as p < 2 and the shift is given by v.,0. Since the

weight function 7 depends on p this is only valid for p < min(uy, 2).
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Corollary 2.8. Let Assumption 1 and 2 be satisfied and 0 < p, from Theorem 2.6. Then
there is 0 < p < min(puy, 2) such that

v, € L2(R,R?) + 0500, 0, 0] € L} (R, R?).

*7) Tk

Proof. The estimates from Theorem 2.6 imply for u < p,

”U*”L%(R_)a Vs — vw!\Lg(R+), HULHL%(R)a H%’HL%(R) < 0.
Proposition 2.7 yields with p < 2
”U* - UOO@"L%(R) - HU* - ,UOO,{J”L%(R_) + H'U* - Uoo@"L%(R+)
< oellez®oy + [vsolllOll 2@y + llvx = veollr2®y) + Vool [0 = L[ 12®y) < 00
0

Taking the spaces X; and especially Y, = Xg from (0.21) into account Corollary 2.8
shows for v, = (v,,v) ' that v, € Y, C X, as long as 1 < min(y,,2). Moreover, with
the group action a(y), v € G from (0.25) we also obtain a(y)v € Y,. This implies that
the whole group orbit of v, stays in Y, i.e. O(v,) = {a(y)v,,y € G} C Y, C X,.



Chapter 3

Nonlinear stability in exponentially
welghted spaces

In this chapter we prove the first main result of the thesis from Theorem 1.11 concerning
the nonlinear stability with asymptotic phase of TOFs in exponentially weighted spaces.
The strategy of the proof is the same as in the case of traveling waves, see [32], [36], or in
the case of rotating solitons, cf. [17]. The proof falls naturally into the following steps:

e Spectral analysis of the linearized operator
e Semigroup estimates
e Decomposition of the nonlinear dynamics

Estimates of the nonlinearities

e Gronwall estimate of the solution

In the first crucial step, the spectral analysis of the linearized operator, we see that the
spectrum of the linearized operator £ from (0.26) touches the imaginary axis at the origin
when it is considered on unweighted spaces. In contrast to that, when using exponential
weights, we prove that the spectrum is pushed off the imaginary axis. This will imply
spectral stability of TOFs in exponentially weighted spaces and time decaying estimates
for the analytic semigroup generated by £. After a nonlinear coordinate transformation
from [32] the second challenging step is to control the remaining nonlinearities in the
spaces X, from (0.20). In the end, a Gronwall estimate from [17] will lead to Theorem
1.11 and therefore to nonlinear stability of TOFs with asymptotic phase. Before carrying
out the spectral analysis of the linearized operator we collect useful properties of expo-
nentially weighted spaces and smoothness of translation and rotation as a group action.
In addition, we prove equivariance of the nonlinear operator F from (0.23).

47
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3.1 Exponentially weighted spaces

Recall 7 = nexp the weight function of exponential growth rate p > 0, cf. [63], [47], from
(0.24) which is given by

n(z) = eV, (3.1)

Clearly, n € C=(R,R), n(x) ~ e#*l as || — oo and we have the estimates
et < n(z) < Cﬂeulrl’ C, = et
Moreover, for all x,y € R we obtain
0z +y) = VIR <l (), (32)

The derivatives of n are given by

(o) = —=n(a), - Ia(@)] < () (33)
nm<x>=(—(x2“fl)g+ —— 3 jl)n@), es()] < Cnf),  (3.4)

where éu = 3max(u, #?). In addition, using the mean value theorem, we obtain

In(z+y) —n(x) < IyI/O na (2 + sy)|ds < |ylpsup [n(z +7)| < |ylpen(z).  (3.5)

<]yl

Lets consider the weighted Lebesgue and Sobolev spaces L? and H} from (0.16) and
(0.17). The multiplication operator associated with 1 is an isometry from L% to L?. On
the smooth Sobolev space Hg to H? the isomorphism is still continuous. We note this
in the following lemma.

Lemma 3.1. Let m,u = nu define the multiplication operator associated with n. Then
i) my : LY — L* is an isometric isomorphism,
i) my, Hf; — H* k €Ny is a continuous isomorphism.

Proof. i) By definition of || || 2 the multiplication operator m,, : L} — L? is an isometry
and its inverse is given by m,’ LoL? - L%, w — n~'u which is again an isometry. Hence
my : L% — L? is an isometric isomorphism.

ii) Obviously m,, : Hf] — H? is linear. The continuity follows by induction over k € N.
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The case k = 0 is clear by i). Suppose u € H,’;“ and the claim holds true for £ € Ny,
i.e. there is Cj > 0 such that |[pul[gr < Cyllul[gx. Then, using (3.3), (3.4), we have

10" () |22 = 10" (o + nua)l| 22 < |0 () |22 + (10" (us) | 2
< pCllullmy + Crlluallas < (14 p)Crllul e
Thus we find Cy1 > 0 such that
Il Fpeer = Il + 104 (ru) 172 < CRyallull e

Hence m,, : Hf; — H* is a continuous homomorphism and its inverse is again given by
m, ' H" — HF, u — n~'u. Now m,' is continuous by the inverse operator theorem.
This proves m,, to be a continuous isomorphism. O

For the resolvent estimates of the linearized operator £ we need an integration by
parts formula on sz which is slightly different from the standard integration by parts
formula, since derivatives of the weight function 1 also occur. However, again by (3.3)
and (3.4) we can control the derivatives of the weight function.

Lemma 3.2 (Integration by parts in L7). Let u,v € Hy(R,R"). Then there hold the
following integration by parts formula:

_<u7 U:B)L% = (uma U)L% + 2(7]337]711% U)L%-

Proof. The claim follows by the standard integration by parts formula and (3.3):

~ (o) = = [ @l ()ds

= 4n2(x)um(x)v(x)dx +/}RQn(x)nx(x)u(x)v(x)dx = (Ug,v)r2 + Q(nxnflu,v)L%.
U

Let C§°(R,R?) be the set of all C*°-functions with compact support. For ¢ €
Cs°(R,R?) it is clear that ny has compact support. In addition, ng € C* and thus
@ € H), ie. Cg° C H). Since Cf° is dense in H' w.r.t. || - |z one expects that Cg° is
also dense in H w.r.t. || - | 772. We show this in the next Lemma.

Lemma 3.3. The set C3°(R,R"™) of infinite differentiable functions with compact support
is a dense subset of H (R, R™) w.r.t. |- [ 711

Proof. Let u € H)(R,R"). Then by Lemma 3.1 nu € H'(R,R") and since Cg® C H'
is dense there is (Qg)ren such that @p — nu in H' for k — oo. Set o, = n~1@. Then
(or)ken C C§° and for some C' > 0 there holds

lon — ullmy < Cllner —nullm = Cllgk —nullp — 0,k — occ.
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We show in this section that the group action a(7), v € G from (0.25) is smooth. In
particular, we prove that it is at least continuous differentiable. On the one hand the
group action describes rotation of an element v € X,,. Since it is just a rotation in the
image space it is as smooth as the rotation matrix Ry which is arbitrary regular. On
the other hand the group action describes spatial translation in the argument. This is
more delicate since the smoothness of the shift strongly depends on the smoothness of
the function. One knows that translation is continuous on L? and Lipschitz continuous
for functions in H'. Thus we have to guarantee that the smoothness is conserved under
exponential weighting, at least locally.

Lemma 3.4. i) Letu € L} and 7 € R. Then

(- + 7)1z < emJullz.

i) Letu € H) and T € R. Then
- +7) = ullze < 7le flug| 1z
ii) Letw € L7. Then
Ju(-+7) —ullzz =0, 7—0.

Further, the estimate in i) holds true if u is replaced by v from (0.19) or v, from
Assumption 2.

Proof. i) Use (3.2) and obtain
-+ 7l = [ o @)lute -+ )Pde = [ (o= rfule)Pda
< / 212 () () Pd = e ul 2.
ii) Suppose ¢ € C§°. Using Fubini’s theorem, the mean value theorem and i) yields

lo(-+7) = ¢llz2 = /R??(JJ)ZISO(JJ+T) —¢(2)[dx

< \T|2/R77(3:)2/0 |0z (z + 78)[*dsdx (3.6)

1
= 1P [ llpalc + 7)lEgds < frPe g
0
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By Lemma 3.3, C§° C H% is dense and thus there exists a sequence (g )ren C Cg° such
that ¢ — v in H% as k — oo. Then using the assertion from i), we obtain

lu(-+7) = ullez < llul+7) =0 +7)lez + lu = @rllez + llon(-+7) = wrllcz
< lu+7) = ol 4+ 7)llzz + lu = exllze + 7]e lonellz
< (¢ + D)llu — @illzz + I7le M lor -

As k — 0o we observe
lu- +7) = ullzz < |7]e [Jug| s
The estimate for ¢ follows as in (3.6) since 0(- +7) — 0 € L7, 0 € C* and 0, € L7,

777
Similarly for v,.
iii) Suppose u € L7. Then, by continuity of the L*-norm and (3.5),

- +7) — ul; = / in()u(z + ) — n(z)u(z)Pdz
<2 / ((0(x) — (4 7))l + 7)Pde +2 / Inu(z + 7) — qu(e) ?dz
<9 / 0z — ) — (@) Plu(@) Pdz + 2l + ) — nul

SN2
< 2 (|r|pe /772(90)|U(93)|2d93+2||77U('+T) — nul|7.
R
_ ul)2 2 2
=2 (|7|pe™) " Inullz2 + 2llnu(- + 7) = nuf|7. = 0, 7 — 0.
0

In the next step we discuss the properties of the product spaces X,’f, cf. (0.21), which
are used for the proof of nonlinear stability. The norm || - [|x, is induced by the inner

product
<(Z) ’ (?))Xn = p' ¢+ (v — po), n(w — D)) 2

Thus X, is in fact a Hilbert space. We note the relation between the weighted spaces
X} and their unweighted versions X* = X§.

Lemma 3.5. The map

o (1) o (M0 )
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18 a 1sometric isomorphism with inverse

X 5 X <U> — (TIl(U - po)+ p@) .
ToA\p p

If X, 1s replaced by Y, and X by Y, respectively, then v defines a continuous isomorphism.

Proof. Clearly, ¢ is a linear map between vector spaces and for v = (v,p)' € X, there

holds
~ N 2
”LVH2 _ H <77(U - pv) + p’U)
X ) .

= lpl* + In(v = po)|Iz> = Ik,

1

Hence ¢ : X;, — X is an isometric homomorphism. The same holds for ;= and

-1, (Z) _ (nl[n(v — po) ;,0@ — pi] + p@) _ (z) .

Therefore, ¢ : X,, = X is an isometric isomorphism. If X, is replaced by Y, and X by
Y, respectively, it remains to show that ¢+ : ¥}, — Y is bounded, Then by the inverse
mapping theorem ¢! is bounded and ¢ is a continuous isomorphism. So we estimate
using (3.3), (3.4) and Lemma 2.7

levlly = H (TM —p0) + pﬁ)

p Y
< |pl + lIn(u = po)[| Lz + |[n:(u — p0) + 1tz — pis) + pi| L2
+ 1100 (u = p0) + 200 (e — pO2) + N(Use — PUsa) + PUgal| L2
< |pl + lIn(u = po)[lL2 + [[n:(w = pO) |22 + Inuellrz + (1 — 1)ty 2
+ 720 (u = p0)|| 12 + 2|2uia |l 22 + 100p0a || 22 + 1NUaall L2 + [[(1 = 0)plagl| 2
< C(|pl + In(u— p0) |2 + Intall 22 + [Muasllzz) < ClIv]ly,.

0

For analyzing the freezing method in Chapter 4 we need the dual space of X,% which
we discuss in the following. It is defined in the usual way by

Xn’1 = {1/1 : X% — R linear and bounded}.
We equip it with the norm

[l s = sup (V)

Vil <1
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where (-,-) = () Xy %X} denotes the dual pairing. In particular, we sometimes write
Y(u) = (1, u)anlXx}]. Note that every v € X, defines a linear functional (v,-) € X
via the identification (v,u) = (v,u)x,.

Let us briefly relate the space X, using the dual space H, ' of H}. In order to do
so, let ¢ € X;l be a linear functional on X%. Then (-,0) : H% — R is linear and
bounded and thus there is 41 € H," such that ¢ (u,0) = 11 (u) for all u € H,. Further,
we have ¢((-)9,-) : R? — R is linear and bounded. Thus there is ¢ € R? such that
U(pd,p) = by p for all p € R?. Consequently, 1p € X' if there are ¢y € H, ' and
1y € R? such that

v (z) — (“‘Op@) Ly (”p) — 4 (u - pb) + ¥ p V(f;) exl  (37)

Conversely, for arbitrary ¢, € H,® Land v, € R? there is ¢ € X, U defined by

Y (Z) = (1,0 = pi) e F U3 p ¥ (Z) € X,

We conclude the section by considering the second order differential operator

Lo:Y, — X, (Z) - (A“”O+ C“*‘) . (3.8)

Then it follows immediately £y, € L[Y,,X,]. Further, using the integration by parts
formula from Lemma 3.2 we obtain for all (u, p)" € Y, and (v,¢)" € X

( . (Z) | @)X B ((Aum(;r %) | @)X — (At + cty, v — CO) 12 .

= —(ug, AT (v = C0)a) 12 4+ 200 e, AT (V= (0)a) 12 + (ua, v — (D) 2.

Now the right hand side of (3.9) is even well-defined for (u,p)" € X,. Therefore, we
may consider Ly on X, as

Lo: X} — X1, (Z) — Lo (7;) (3.10)

<£0 (Z) ’ (z) >X,7—1Xx% =~ AT = (D) (3.11)

via
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In particular, the corresponding 11,1, from (3.7) for 1) = Lou € X, are given by

<w17 > = _(ux - annilum AT()J})L% + C(UJ;, ')L%a ¢2 = 0.
Finally, we obtain £y € L[X, X, '] since

1£oul[x;1 = sup (Lou,v)
Vil <1

< sup {(2u + DIA[fuallzll(v = C0)all g + lellluel 2 [lv = C@IILg} < Cllallx;-

v <1
IVl 2 <

Summarizing we have shown the following lemma:

Lemma 3.6. For pn > 0 the operator Ly : Y, = X, from (3.8) is linear and bounded.
Moreover, the operator Lo = X, — X' from (3.10) with (3.11) is also linear and
bounded.

3.2 Lie group, equivariance and symmetry

In this section we collect smoothness of translation and rotation on the spaces Xf; as an
action of the group G := S' x R on the function space X, with S* = R/27Z. In order
to do so, we define the composition on G via

o: g X g — g7 (71772) = ((01 + 92) mod 27T7T1 + 7-2) (312)

where v, = (01, 71) and v9 = (65, 72). Note that usually o also denotes the composition
of functions. However, the notation will always be clear by the context. We follow the
introduction into Lie groups from [53| and the concepts of differentiable manifolds from
[1]. Alternative literature on differentiable manifolds can be found for instance in [41].
The group G is a C*°-manifold and the composition o : G x G — G is a C°*°-map as well
as the inverse map

nv:G—G, -~y l= (=0 mod 27, 7).

Thus G is Lie group, cf. [53, Chapter 4]. For G as a manifolds over R? we have the two
charts (U, x), (U, x) given by

U={yeG:v=0,7),0¢c (—m,m)}, x:U—=R*® ~v—x(y)=(0,71), (3.13)
U={yeG:v=(0,7),0c(0,2r)}, x:U—=R% ~—x(y) =(0,71). (3.14)

Then x(U) = (—m,7) xR and x(U) = (0,27) x R. The charts from (3.13), (3.14) will be
important in all our considerations of the chapter. In particular, we will work and prove
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the nonlinear stability in local coordinates. The unit element of G is given by 1 = (0, 0)
and the tangent space at it TG = g is the associated Lie algebra of G. Recall the metric
|- |g on G from (1.11) and we write for 71,72, € G, in a canonical manner,

T+ i=m0% n-—r=no(—), =M

Furthermore, recall the group action a(-)v : § — X,, v € X, from (0.25), ie. a
describes rotation and translation of elements from the function space X,,. We now show
smoothness of the group action a(:)v depending on the regularity of the function v. For
general v = (v,p)" € X, respectively v = (v,p)" € X%, we write throughout the thesis

S Slv (5
! 51{) ’ r O '
LeIIlIIla 3.7. Th€ g?OUP acti(m

a:G— GLX,], vw+—a(y)

from (0.25) is a homomorphism and a(v)Y, =Y,, v € G. Further, for all v € X, the
map a(-)v : G — X, is continuous and the same holds true if X, is replaced by Y,. If
v=(v,p)" € X, the map a(-)v : G — X, is of class C' and for v € U with v = x~"(2)
the deriative of (a(-)vox™1): R? — X, is given by

(v o V() = ~(aSiviav) € LR XL swv= (30), va= ().

Proof. Let v = (v,p)" € X,. Then by using Lemma 3.4 and invariance of the norms
under rotation we obtain

la(y)vllx, <lpl+[lo(- = 7) = poll3
<ol + (- =7) = po(- = 7)1z + lpo(- = 7) = p0ll.3
< Jpl+ e Mo = pillzs + e ollloall 2 < ClIvllx,-
Similarly, for v € Y,, we have
la(vIly, < ClIvix, + llva(- = TllZz + lvee(- — 7)11Z2
< CIVIB, + o, + e s s < ClvI,.

Thus, a(y)X, C X, and a(v)Y, C Y,. Furthermore, the group action a is a homomor-
phism since for 1,7 € G, (v,p)" € X, there hold

_ R91R021}(' — T2 _7_1)
amatry = (Tl

R91+921)(- - (Tl + 7_2)))
e = Qa O A"
(forer (o)
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where we used Ry, Rp, = Rp,10,- Its inverse is given by a(y)™! = a(y~!) and hence
a(y) € GLIX,]. In particular, we have shown that a(y) is bounded and a(v)Y, =Y.
Let us prove the continuity. Since a is a homomorphism it is sufficient to prove the
continuity at v = 1. Let v = (v,p)" € X, and v € G. Then by continuity of R and
the shift on Lf,, cf. Lemma 3.4,

la(n)v = Vllx, < [Rop = pl + | Rov(- = 7) = Ropis = v+ pil 13
< |Ro = 11lp| + [ Rov(- = 7) = Rapi — Rgv + Ropdl|zs + | Rev — Rop — v + pi|

< 1R = 11 (Jol + llv = pillzz ) + llo(- = 7) = vl 3

< 1Ro =11 (Ipl + llv = pllz ) + (v = p0)(- = 7) = (0 = pD)llz3 + lel o = 7) = 1z
—0, (0,7)—0.

Similarly, if v € Y,,, we have v,, vy, € sz and

2
la(y)v = VI, = lla(y)v = vII%, + > I1Red™v(- = 7) = ™75 — 0, (8,7) = 0.

a=1

Next we show that a(-)v is of class C' if v € Y,,. For this purpose let v € U, z = (0, 7) =
x(7) € R: v = (v,p)" €Y, and h = (hy,hy) € R?. From the definition of the chart
(U, x) from (3.13) we see that x~'(z 4+ h) = x ' (2) o x " '(h) = v o x"*(h). Then by the
continuity of the group action we have

la(x™(z + h)v — a(x " (2))v + hwa(y)S1v + haa(7) Ve x,
= [la(y o x '(h))v — a(y)v + hya(y)S1v + haa(y) Vel x,
< Clla(x™' () = v — hiS1v + hava | x,, (3.15)
< C|R_p,p— p+ hi1S1p|
+ Cl|Ropy (v(- = ha) — p0) = (v — pb) + haS1(v — p0) + hovy| 2.

Using Taylor expansion and 93 Ry = Ry we observe
1
Ronp=p=tuSip+ [ KL= 1)Rpdr
0

Thus,

1
Roup— p+ nSipl < 12 / (1= ) [Ruus| drol < K20l = o). (3.16)
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Next, we estimate the second term consisting of the L%—norm. For this purpose, we note
for p € C5°(R,R?) and 7 € R that Fubini’s theorem implies

2

1
/ Op(x + s7)ds — p,(x)| dx
0

() = = ol = 17 [ 0o
R

1 1
<ol [ [ P @lente = 57) = pul@)Pdsde = 1P [ nfaPlat - 57) - pulizds
R JO 0

<|Ir|* sup [lga(-+5) — @allzz.

|s|<|7]

Since C§° C H,) is dense, there exists for v € H} (R, R?) a sequence (o )ren C C5°(R,R?)
with [|v — ¢gllmy — 0 as k — co. This implies with 7 = —h,

[v(- = h2) — v+ hovg |12
< ol = h2) = or(- = h2)llrz + v — @rllzz + [helllve — @rallre
+ ller(- = h2) — on + hapr o[ 12
< (1 + etlh2ly||y — @rllzz + hall|lve — przllzz + [he| sup |l@ka(- + 8) — @rallrz.

s<|hs
Now let &k — oo to obtain

[0(- = ha) = v+ havellzz < |ha| sup [Jva(- +5) = vellLz = o(|A]). (3.17)

8§|h2|

By frequently adding zero and using triangle inequality, we observe for the second term
in (3.15)

[R-p, (v(- = h2) = pt) = (v = pb) + "1 S1 (v — pv) + hovg |12
< |[Rpy (v = p0)(- = ha) — (v — p0)(- — h2) + "1 S1(v — p0)(- — ho)|| 12

N ~ ",

+ | Ropy pO(- — h2) — Rp, p0 + (v — p0)(- — ha) — b1 S1(v — p0) (- — h2)

— (v = p0) + h1S1(v — pb) + hove |12
< T+ |[(v = p0)(- = ha) = (v = p0) + ha(ve — pUs)]| 12
N ~ 7

+ | hopty + Rop, po(- — ha) — R_p, p0 — haSi(v — p0) (- — ha) + hiSi(v — pd) ||z

<T+ 1T +ﬂR,h1 [po(- = ha) — pU + th@x]HLgL

~
=:T3

+ [h2ple — haR_p, ple — hiS1(v — p0)(- — ha) + haSi(v — p0)|| 22
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ST+ T+ T+ | = hiSi(v—p0)(- — ho) + M Si(v — p0) — ha(h1Sive — h1S1p0:) | 12
N ~- 7,
+ |hapty — hoR_p, piy + hoh1S1vy — hoh1S1p0s || 12
STy +T1o+ 13+ 1T, +\|’th1h2p@m — hapv, + h151h2p@:v”L$L+ |’h2hlslvaL$L

-~ -~

=Ty =Tk

=N +To+T5+Ty+ 15+ Ts.
With (3.16) and Lemma 3.4 we have

Ty < ™Ry, — T+ hiSillo = pdl 2 = o(|h)),
Ts < |Rp, — I + mSi|[|hepts|| Lz = o(|h]).

Since v —pv € H}, (3.17) implies Ty, T3, Ty = o(|h|) and obviously Ts = o(|h|). Therefore

o(|hl)
I

1
m Ha(x’l(z +h)v —a(x H(2))v + hia(y)S1v + hga(v)vchX?7 = — 0, |h|—0.

Hence a(-)v o x~! € CY(U, X,,) with derivative

(a()vox 1) (2) = —(a(7)S1v, a(y)Va)-

The same way, one shows that a(-)vox~' € C'(U, X,,). This proves that a(-)v : G — X,
is of class C'. !

As a consequence of Lemma 3.7 we conclude by the mean value theorem that for any
compact set K C U and v € Xﬁ“, k = 0,1 there is L > 0 such that

la(x 7 (21))v — alx ™ (22))Vlxs < Llzs = 2f[[Vlxen Va2 € K. (3.18)

Now we take the nonlinear operator F from (0.23) into account. We prove that it is
continuous w.r.t. suitable norms and, in addition, is equivariant under the group action
a from (0.25) according to Definition 1.2.

Lemma 3.8. Let the Assumption 1 be satisfied and 0 < pn < 2. Then F : Y, — X, from
(0.23) defines a continuous operator and is equivariant under the group action a(y),y € G
from (0.25). Moreover, for every v € Y, there is § > 0 and Ly > 0 such that w € Y,
with ||v — wl|y, < satisfies

|F(v) = Fw)llxs < Lellv = wllpes, k= ~1,0. (3.19)
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Proof. We begin by proving that F is well defined on Y;, and maps it onto X,,. In what
follows Cy > 0 denotes a universal constant depending on ||v]|y,. Let v = (v,p)" € Y.
Then v — pv € Hg and by Sobolev embedding, cf. Theorem D.2, we have v — pv € L™
and therefore v € L with ||v — p0|| e, ||v]| = < Cy. To estimate the nonlinear term in
F we split the occurring integral over R into two integrals over the negative and positive
half-line Ry. Using Assumption 1, we obtain for every 0 < pu < 2

1) = ()0l
<2 / (@ lg([o(@)P) () — pi(a)|Pdi + 2 / n(@)lg(o(@)?) — g(loP)pi(x)Pda
<20 Jlo - pill2s + 20, / ()2 |ob () Pz + 2] pf? / n()2lg(0(@)?) — g(o]?)|2da

2
<20, Jv - pol2 + 24P [0]3a 5 ) + 205 |0l / [[o(@)? — [P dx < oo,
+

= /ﬂh n(x)?

o() |—|p|] da

since Lemma 2.7 yields

/Mn(:c)? (2)]? -
<c/ n(w)?
<2C/

<20, / pib() Pz + 20, |p|2/ n(2)20(z) — 12dz

Ry

(1o(@)| + o) ()] ~ lo)| d

2
2)| — |pli(x >\ dr+20, | 22| lelo() — Iol| da
+

<2C[jv - /wHL% + 2CVI/JIQH@ — UZze,) < oo

Taking Lemma 3.6 into account, we have Ly € L[Y,, X,] and we obtain

17wl < eavlie, + | (J) | < Clviy, + 15601+ 150 - 501l < o

Xy

Hence F :Y, — X, is well defined and the continuity follows by the Lipschitz estimate
(3.19) which is still to be shown. By Lemma 3.7 we have a(vy)Y;, = Y,. Moreover, Ry
commutes with A, S,, and g(| - |?). Therefore the equivariance of F follows by

RG[Avxx+Cvx+S v+g(|v| ) ]( _T) _
Flatyyw) = (Mo pie tSov £l =) oo 7).

It is left to show the estimate (3.19). We write v = (v,p)" and w = (w,()". Suppose
0 > 0 sufficiently small and let C' > 0 denote a universal constant depending on v and .
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Again, the major task is to estimate the nonlinear term of F, which is done in several
steps. As we see, the estimate of the nonlinear term is independent of k. The dependence
on k only appears when estimating the main part containing second derivatives. The
nonlinear term reads as and is first estimated by

1f(v) = F(p)o — f(w) + f(Qllrz = Ng(v*)v = g(|p*)p — g(lw|*)w + g(I¢[*)¢O] 2
< Ng(lpP*) (v = p0) = g(I¢P*) (w = CO)lzz + (g ([v[*) = g(lp[*))v = (g(lwl*) — g(IC*)w|rz
=1 + Is.

By Assumption 1 we may estimate I; by

I < lg(1p1*) (v = p0 — w + CO)l| 2z + [[(g([p*) = g(IC*) (w = D)2z
< lg(lpl*)lllv = pi — w + ¢ollzz + [g(lp*) = g(IC*)] sup [w = (012

weEBs(v
< Cllo = po —w + (bl| 2 + C ||p| = ¢
< Cllo = pio = w + ol + Clp — €| < Oy — wilx.

Here we used again |[|p|* — [¢|?| < (|p| + 19])|lp| — [¢]| < Clp — ¢|. Further, we split I
into I3 and I, via

I < [ (g(Jo*) = g(lpl*) (v = p0) = (g(lwl*) = g(IC1*)(w — ¢l 2z
+I(g(l*) = g(lp)pd — (g(lw]*) — g(IC1*)C0llzz =2 s + L.

By Sobolev embedding, cf. Theorem D.2, we have [lul|= < Cllullyy for all u € H.
Therefore, there hold

v — wl[pee < v —p0 —w + (0| + |p — (]
< Cllv—pd —w+ (ol + |p— ¢
< Cllv—pd —w+ (0|2 + lve — wallrz + [p — CI(L+ |02 £2)

< Cflv —wlx;.
Assumption 1 implies
g(loP) = g(1CP)| < Clol* = I¢P| < Clp—¢
and similarly

lo(leP) = gz < Csup | jo(@)? ~ ()| < Cllo —w]s-
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Again by Sobolev embedding, cf. Theorem D.2, we have v € L*>. Therefore we obtain

I3 < | (g(Jo*) = g(lpl*) (v = p0 — w + C0) |2z
+I(g(ol*) = glpl*) — g(jwl*) + g(1¢1*) (w = (0|22
< llg(lvl*) = gl e llv = pi — w + Gl 2
+Cllg(vl*) = g(w)llze + lp = CDlw = Collzz < Cllv — wllx;-

We continue in this fashion by splitting I, into two terms I5 and I via

I < (g (lvl*) = g(1p1") (o = Ooll ez + I(g(0]*) = glpl*) — g(lwl*) + g(I¢1*)¢ol 22

v = pllrzwy) < lv=pollzey) + 1olll0 = Ulrzw,) < Cllvix,-
Then we estimate
I = |l(g(lv[*) = gUp))(p = Ol 2@y + [I(g([o*) = g(|p1*) (0 — )0l L2 ey

< Clp = ¢lIollrz@y + o = Clllg(lwl®) = g(lp*) |z e
< Clp =+ Clp=dllv=plrze,) < Clp = < Cllv = wllx;.

Further, I is decomposed into the integral on the negative and positive half-line denoted
by I; and Ig:

Is < [[(g(Jv*) = g(ol*) = g(lw]*) + g(I¢1*)C0ll 3
+ (g (vl) = g(lol*) = g(lwl?) + g(IC1)C0ll 2 sy =2 I + Is.

I7, the integral on the negative half-line, can directly estimated by
I < Cllg(lvf*) = g(|wP) | 0]l 22y + C’g(|p|2) —g(ICP)|lIollz ) < Cllv = wllxy-

Let for the moment (-,-) denote the standard Euclidean inner product in R% For es-
timating Ig the following term appears and can be estimated using Cauchy-Schwarz
inequality

[|v]* = 1p* = |w]? + |C\2HL%(R+) =lw=pv+p) —(w=Cwtlpe,

|w=p—w+ ot plgey +lw=Cvtp—w=0)

LI(R4)
<ot pllielle — o — wt Clazgsy + ot p — w0l — s
< Cllv = pt —w + Collz(ry) + Cllo — wl[ree + Clp = ¢ < Cllv — wl|x;.
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Now using the mean value theorem we estimate Ig by
Is < Cllg(ivl?) - g(1oP) — g(lwl®) + 9(1¢ D)z e
e’} 1
< c( /O n(z)? /0 Dy (lof? + 7 [[o@)P? = [pI2]) dr(|o(@) 2 - |ol?)
1 2
+ [ D (¢ + 7 [lul@) = <P dr(fu(@) = o) d:c>
e’} 1
< c( | n@?| [ a6 + 7 [1o2)? = 10P]) dr(fo@) = 1o = (@) + I
0 1
w( [T ar| [ (Do o+ 7 @) - 1)
= Dg (I + 7 [[w(@)2 = [¢P]) )dr(w(@) - ¢)

< C H‘U‘z - ‘p‘z - ‘w‘z + ’C’Q“L%(R+)

I

2 1

2
dw)

=

2 2
dw)

wo( o [ o+ 7 @ = 1] = 1617 — 7 [hw(e)? ~ ) [ar (@) - yqudx)%

< Cllv = wlixy +C 1ol = I¢P?] ( /0 " (e - rcr?r(zdx)é

i <C /ooo n(@)*|[o(@)]* = pl* = () * + |<;|2\2dx>é

<Ollv=—wllx; +Clp = < Cllv —wlx;.

Summarizing, we have shown
1f(0) = f(p)0 — f(w) + f(Q)bllez < Ly + Is + Is + Iy + Is < Cllv — wl|x;.

In addition,

[£(p) = FOI < lale*)(p = Ol + [(g(lpl*) = g(ICI))¢] < Clp =]l
Now the Lipschitz estimate (3.19) for £ = —1,0 follows by Lemma 3.6 and

=ttt (13 45)

< C|lv = wl| ke + H (ff((lf)))) :1;;(&1;)))

S COllv = wllgrr2 + Cllv = wlixy < Cllv = wl| e

k
Xﬁ

Xy

This completes the proof. O
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A simple consequence is that if v, is a stationary solution of (0.22) so is a(v)v, a
stationary solution for all v € G, i.e.

Fla(y)vy) = a(v)F(v,) = 0.

Thus, the whole group orbit O(v,) consists of stationary solutions of (0.22).

3.3 The linearized operator L

to investigate nonlinear stability of traveling oscillating fronts it is essential to analyze
the spectrum of the linearized operator from (0.26). It is defined by

u u Aty + cuy + S,u + Df(v*)u)
L:Y, — X, — L = )
o (p) (p) ( Swp+ Df(veo)p
The linearized operator L is obtained when taking the Frechét derivative of the nonlinear

operator F from (0.23), i.e. £ = DF(vy). Then the Cauchy problem (0.22) can be
written as a semilinear equation:

w=Lu+N(u), u0)=ueX,,

_ (f(w) = Df(vu _ (v
N(w) = (f(p) - Df(voo)p) S (p)
is the remaining nonlinear part. This shows the importance of the linearized operator.
The first essential step in proving nonlinear stability is the spectral stability of traveling
oscillating fronts. Spectral stability means that the spectrum of the linearization L is
included in the strict left half-plane except for a zero eigenvalue, which is caused by the
equivariance. In the case of traveling waves in parabolic evolution equations this can
be found, for instance, in [56]. We use the same approach to show spectral stability
of traveling oscillating fronts. Here it is important to note that spectral stability can
only be obtained in the exponentially weighted spaces, since in the classical unweighted
spaces the essential spectrum touches the imaginary axis at the origin and includes the
zero eigenvalue. However, by using exponential weights, the spectrum is pushed to left of
the imaginary axis and we obtain spectral stability. In particular, the exponential weight
causes a spectral gap in the spectrum of the linearized operator. Since the Lie group G is
two dimensional we will see that the isolated zero eigenvalue has in fact at least algebraic
multiplicity two. Taking Assumption 4 into account we obtain algebraic multiplicity
equal to two. In addition to the spectral stability, we prove that the operator L is a
sectorial operator. Thus, we can apply the classical approach for semilinear parabolic

where
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equations from [32] and [45] to show existence and uniqueness of solutions to (0.22). This
is done in Section 3.4 by using estimates for the semigroup generated by L.

In the next lemma we prove the simple observation that £ defines a continuous, linear
operator from Y, to X, as long as 0 < p < min(f,,2) with g, from Theorem 2.6. In
addition, we show in Lemma 3.10 that £ defines a closed linear operator on X, with
D(L) = Y,. This is a consequence of resolvent estimates for large s. We will then
determine the spectrum of £ when considered as a closed operator on X,,.

Lemma 3.9. Let Assumptions 1 and 2 be satisfied and 0 < p < min(p,,2) with pu,
from Theorem 2.6. Then the operator L :Y, — X, is a continuous, linear operator, i.e.
L e LY, X,].

Proof. By Lemma 3.6 it is sufficient to show £ — Ly € L[X,]. Let v = (v,p)" € X,, and
let C'= C(v,) > 0 denote a universal constant. Then using Assumption 1 and Theorem
2.6 we estimate

(£ = Lo)vllx, < [Df(vsc)pl + D f (vi)v = Df(veo)ptll 2
< Clpl + 1D f (vo) (v = p0)llLz + (D f(0x) = D f(veo)) p0|l 22
< Clvllx, + (D f(ve) = Df (o)) p0ll 3oy + (D f (00) = Df (o))l 22m)

2

< Clvlle, + Clol + (| #@IDS (o) - Do)zl
0
< ClVlx, + Clle = v llg@olol < Clvilx,

Hence the assertion is proven. 0

3.3.1 Resolvent estimates

We study the spectrum of the linearized operator £ and are interested in solutions of
the resolvent equation

(s —Lju=r, seC,reX, (3.20)

In the following we denote the components of r by (r,()", if necessary. As a next step
we show a-priori estimates for solutions u € Y, of (3.20) for arbitrary r € X, as long as
|s| is sufficiently large and s € C lies in the exterior of some sector opening to the left,
see Figure 3.1. The approach is based on energy estimates from [39], [40].

Lemma 3.10. Let Assumptions 1 and 2 be satisfied and let 0 < p < min(py, 2) with pu,
from Theorem 2.6. Then L:Y, C X,, = X, is a closed, densely defined, linear operator
on X,,. Moreover, there exist €y, Ry, C > 0 such that for all

SGQOiZ{SGCI|$|ZRO,|arg(5)|§g+€0}
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the equation (3.20) with u € Y,, and r € X,, implies

C
[sllallk, + luallZz < i, (3.21)
" sl

[sP* il + [sllluallZs + lueellzz < ClirllX, - (3.22)

Proof. First we show that (3.22) implies the closedness of £. For this purpose, let
{u,}ney C Y, with u, - uin X, and Lu, — w in X,. Pick so € Qp with |so| > 1.
Then (3.22) implies

Ju, — um”%/n < Iso|*[lu, — um”%(n + [soll[wn,e — um,x”%g + |ttn e — um,m”%g

< Chl[so(uy = wp) = Luy, = Lug %, =0, n,m — oo.

Thus, {u, }nen is a Cauchy sequence in Y, and there is t € Y, with u,, = @ in Y;. We
conclude u = u € Y, and u,, — uin Y,. Further, using Lemma 3.9 we obtain

[1Lu —wlx, <[[L(u—u,)lx, + [[Lu, —w]x,
< Ohllu —u,ly, + || Lu, — w[x, =0, n— oo.

Thus £Lu = w and the closedness is proven.

It is left to show the estimates (3.21) and (3.22). We start with (3.21). For this purpose
let s € Qy with Ry and ¢ still to be determined. For the proof we set C' := D f(v,),
Coo := D f(vso) as well as (-, ) = (-, )2 r2) for the inner product on L. Take the inner
product of (3.20) with u in X, to obtain

U SU — Au:m: — CUy — Swu —Cu
(u,r)x, = (u,(s] — L)u)x, = ((p) ) ( sp—Sup— Cuop ))X,,

= p'(sI — S, — C)p + (u— pi, su — Atgy — ctiy — Syu — Cu — (sp — Sup — Coop)0)
= slul|%, = p" Sup—p' Coop
— (u = pb, Augy) 2 — c(u — pd,uy) — (u— pd, Sy(u — pd)) — (u — pd, Cu — Coo pd).

The integration by parts formula from Lemma 3.2 leads to

sl + (s — pi Auy) s
= p" (S + Coo)p =200 (u = p0), Auy) + c(u — po, u,) 13
+ (u = p0, Sy(u = p0))rz + (u— p0, Cu — Coop?) 2 + (U, 1) x,.

(3.23)

Further we use Cauchy-Schwarz, Young’s inequality with ¢; > 0, ¢ = 1,2, 3,4 and Propo-
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sition 2.7 to obtain the estimates

(e = b, Au)| < it = pie g 1 Autall 2 < [A] (1lall3 + o0l 2313 )

1, .
< 141 (ully + o ol + el ) (3.24)
A
AL+ el + ol

('™ (u = po), Auy)| < pillu = pol| || Aug|l

2 3.25)
12| Al ) (
< 1o Hu—pUHig +€2|A\Hux|!%g7
X . |c] .
c(u = po,ug)| <ell|u— poflaflucle < —|lu— P72 + |eles|ug|72, (3.26)
€3 n ]
[(u — p0, Su(u — p0))| < |W|||U—P@||%3]> (3.27)

(= pb, Ct = Coop)] < llu = pil3|C = Cocpl
<[l lu = p0ll25 + hu = polz3(C = Cuc)pilzg

1 - A

1 X
< (1Chm + 4 ) hu = pil + el

To obtain (3.28) we used the fact that Assumption 1 and 2 imply, together with Theorem
2.6 and Proposition 2.7, for some K¢ > 0 the estimate:

1(C = C)pillza < (€ = Cpiliage s + 1(C = Cu)pilace,

< ”C_COOH%OO 2 > 2 D —D 2d 2

Il ey [T @A) - D) Pl
C—Cyl?

< MmO oy 2, — o < Kl

Take the absolute value in (3.23) and use (3.24)-(3.28) with ¢; = 1 to obtain

[sllullk, < Kolluallzz + Killullk, + [lullx, Irllx,. (3.29)
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Here Ky and K; can be chosen as

2

1
Ko :=3|A| +c], Ki:= (MQ + 2—) Al + 2w] + 2[|C[ L~ +

1+ |c|
4

+ K.

Note that (u, — pt,, Au,) = oq||ug||32 — (pbs, Au,) and the second part can be estimated
n
by

X ) Al
(ot Aus)] < Al ol < mslol + sl Allul . (3.30)
In contrast to (3.29), when taking real part in (3.23) we obtain by using Cauchy—Schwarz
Young’s inequality and (3.25)-(3.28) as well as (3.30) with e = = S €3 = g €4 = 1

the estimate
Res|ully, +onllucllz: < (e5|A] + 2| Al + esle]) [uall7z + Kallull, + lluflx, [r]x,

(631
< 5 lluallzz + Kallullk, + lullx, lIrllx,

where K5 can be chosen as

, 8\ AP 1
Ky = (4p i —+2| \+2|]CHL00+—+4+KC

This leads to
aq
Res|ull%, + EHumH%g < Kylull%, + [[allx, lIr]lx, - (3.31)

The rest of the proof falls naturally into three cases depending on the value of s in the
complex plane, cf. Figure 3.1.

Case 1: Res > |Ims|, Res > 0, |s| > 2v/2Ko.

We have 0 < Res < |s| < V2Re s. Therefore, using (3.31) and Young’s inequality with
V2

€= 5 we obtain
5] a 5]
ﬁIIUIlﬁn + 5 Il < \[II %, + llullx, lIzllx,
E 2 E 2 V2 2
< ——=|u + ——=|lu + —Ir|| X, -
< Sl + g, + e,
Thus,

L, + Sl < \|f|” "
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Case 2

C\ Qo Case 1

Ry

Figure 3.1: The set )y C C from Lemma 3.10.

Setting C; = max(8,2v/2a; ") yields
2C,

[sllallk, + lluallzz < HHI"H?(,,-

Case 2: |[Ims| > Res > 0.
From (3.31) we have

2
luallzg < — (Kallullk, + [[ullx,lIvllx, ) -
aq
Use this in (3.29) to obtain

2K,
[slllull%, < = (Kallull%, + [ullx,llrllx, ) + Killul%, + [allx, ],
aq

2KOK2 2I(O
— < - +K1) %, + (— + 1) [allx, lIrllx,
1 o3l

< K (Jlulk, + llullx, irlx, )
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with K3 := max (% + Ky, % + 1). Take |s| > 2K to observe by Young'’s inequality
with e = |s|7!
s s s K3
slllullx, < Sk, + Ksllullx, v, < Shall, + Flulk, + ﬁHrH?xn-
Hence
s K3
7 Il < | TH I%,- (3.32)

Using (3.31), (3.32) and taking |s| > 4K, yields by Young’s inequality with ¢ = |s|~!

5] 5] Is|
5 luallzz < Fllullk, +llullx, [rllx, < Flalk, + 5k, + s ||| I%,

|s] 1 2K2 +1 K,

=5 ”XNLQH I%, < |35| Ik, = s |H %, Ki=2K5+1
(3.33)
Combining (3.32) and (3.33) to obtain
4K3 2K, Cy 2K

[sllallk, + lluallzz < s |3H I%, + ol ‘H I%, = E ‘H %, Ca:= 4K§+a—1-

Case 3: Res <0, |Res| < go|lms|. Using (3.29) and (3.31) yields

[t s|[ullk, < [slllull%, < Kolluallz; + Killullk, + [[ullx, lIrllx,

2K,
S (IRG slllull, + Klullk, + ||u||Xn||rllxn> + Killullk, + [[ullx, [[r]lx,.

Let 0 < &g < ;3= Then 2K0 |[Res| < ‘Ims‘ and we obtain
|Im S‘ 2KOK2 2K0
2, < (2052 k)l + (240l el
Hence
4K K 4K
sl < 6 (Julf, + ull, Irll, ) R = max (5252 4 250, 250 4 2)).
1

Since |s| < /1 + &2|Im s| we obtain

slilallk, < Ksy/1+ €2 (Il + Il lrllx, )
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Now take |s| > 2K54/1 + €2 and use Young’s inequality with ¢ = |s|~! to observe

sl
[slllullk, < Sllullk, + Ksy/1+cgllullx, [vllx,
E 2 E 2 K3(1+e8), 1o
< Sl + Sl + T2
This yields
5| K2(1 +&?)
Sl < S (3.34)

Take |s| > 2K, in (3.31) and use (3.34) as well as Young’s inequality with ¢ = ﬁ to
obtain
jae! 5]
o lwallz; < Resflull, + - lullk, + lullx, [rllx,

Is]
2

1 K

< 2|s]|lull%, + erH?xn < HHI'H%W Ko = 8K3(1+¢p) + 5.

5]

1
o %, + 5= lrl%, (3.35)

< 2
< Jsllull%, + 3

lull%, +

Combining (3.34) and (3.35) shows

C 2K,
2 2 31112 A2 2 6
[slllall, + [luellzs < QHI‘HXW Cy = ARG (L + ) + ==

Hence (3.21) is proven.
It remains to prove (3.22). First note that in (3.28) we have shown

ICu = Cocpi ||z < Krllul, -
Now see that (3.20) implies in X, the equation

Upe\ (AN (=su+ cuy + Spu+ Cu+7)
0) \ A (=sp+Sup+Cup+¢) )

Thus, it is easy to see for |s| > 1 there is C' > 0 such that
letaslZy < € (IsfPIlli%, + a2 + ul, + el )
< 2C (IsPlul, + sllusll3; + el )
Finally the assertion is proven since (3.21) implies for some C' > 0 the estimate
[sP*lallX, + IsllluslZs + eIz

< 20+ 1) (JsPlal, + IslilusliZs ) + 2C1rll%, < Cllell,
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The a-priori estimates from Lemma 3.10, in particular (3.22), imply the uniqueness
of solutions of the resolvent equation (3.20). Hence the operator sI — L is one-to-one
for s € )y and there are no eigenvalues in the region )y according to Definition 1.10.
In order to conclude that €2y is part of the resolvent set we still need to determine the
Fredholm properties of sI — L. Below we show that s/ — £ is Fredholm of index 0 for
s € €y, if the angle ¢y in the definition of )y is sufficiently small. Then we conclude
Qy C p(L) and the equation (3.20) attains a unique solution for every r € X,

In this case Lemma 3.10 implies that the resolvent must decay with rate |s|~! in the
operator norm. In particular, there is C' > 0 such that for all s € Qg N p(L) we have the
estimate for the resolvent

I(s1 = £)7'r|ly < Cls|z"|rllx,, k=0,1,2.

Hence, if Qy C p(L), the operator £ defines a sectorial operator, cf. [32]. Therefore, by
the theory from [32], [45], £ generates an analytic semigroup on X, which is important for
proving existence of solutions of (0.22) and the nonlinear stability of traveling oscillating
fronts. Additionally to the resolvent estimate (3.22) we now show regularity estimates
for the solution of (3.20). Then the semigroup generated by L is also defined from X,
to X,%.

Lemma 3.11. Let Assumptions 1 and 2 be satisfied and let 0 < p < min(py, 2) with ju,
from Theorem 2.6 and let 2y be from Lemma 3.10.

i) For s € p(L) there is Cy = Cy(s) > 0 such that for all v € X, the equation (3.20)
has a unique solution u € X;;’ with

lullxs < Cillrlx;-
it) There is Cy > 0 such that for all s € Qq the equation (3.20) withr € X} andu € Y,
implies u € X3 and
2l + [slltaellZs + il < Collely
Proof. Suppose r € X,% and s € p(L). Then the resolvent equation (3.20) has a unique

solution u = (u,p)" €Y, with [lully, < C|r|x, for some C' > 0 depending on s. Using
Assumption 1 and 2 and Theorem 2.6 we find C' > 0 such that

1D f (v)[va, w2 < 1D f () [Vn0yu = p0]llLg + 1D £ (0:) [Verws 0]l 3 ||

- ) . (3.36)
< Cllu = pllzz + [pl) < 2CC x| x,.-

Hence D? f(v,)[v,0,u] € L7 and therefore the equation

(s — L)w = (” + D (w)les, “]) e X, (3.37)



72 CHAPTER 3. NONLINEAR STABILITY

has a solution w = (w,()" € Y}, Since (sI — L)u =r € X we obtain using integration
by parts for all p € C°(R, R)

/Rum(a:)@x(x)d:c = / A7 su — cuy — Syu — Df(v)u —7)(2)p.(x)dx

R

= — / Ail[suw — ClUyy — Syty — D f(ve)u, — D2f(v*)[v*,x, u] — i) (x)p(x)dx.
R
Thus u, € H) N H,. with
Uggy = A7 [5Uy — ClUge — Sty — D f (v, ) Uy — D2f(v*)[v*,x, ul —ry € L%.

Therefore, u, € H} solves

i) ()

(893[5'“ - Aua:a: — ClUy — Swu - Df(v*)u] + D2f(’l}*)[’l}*7$, U])
0

_ (1o = D*f(0)[vns, ]

= 0 _
Since w is the unique solution of (3.37) we conclude w = u,, ( = 0. This proves i). Now
ii) follows by (3.36) and by applying Lemma 3.10 to the equation

(sT— L) (7”6) _ ( - Dl u]) |

3.3.2 Fredholm theory and spectral analysis

Our aim is to determine the spectrum of the linearized operator £ on X,. Assumption
4 together with Lemma 3.10 guarantee that the set Q = {s € C: Res > —y} U Qy does
not contain any eigenvalues of £ except the zero eigenvalue. Thus, by Definition 1.10 we
conclude that if s € Q such that the operator sI — £ is Fredholm of index 0, then we have
s € p(L). Since the Fredholm index of sI — L stays constant in a small neighborhood of
s, cf. [38], we are mainly interested in the set of all s such that s/ — L is not a Fredholm
operator. In this section we show that the Fredholm properties of s/ — £ on X, coincide
with the variable coefficient operator on L? given by

. 2 2
L:H;— L, u Aug + cu, + Sou+ D f(v,)u. (3.38)
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In addition, let us consider the operator
L, : H? - L* w~— nln tu.

A straightforward calculation shows that L, can be written as a second order differential
operator on L?

Lyu = Augy + Byu, + Cyu
with coefficients given by

2
oy
2 4+ 1

x x 1 x?
C,(z) =S, + Df(ve(x)) + u*A —cpul ——— — uA — .
() fon@)) + p A — cn - < = (xQH)%)

B,(x) =cl +

The next step is to introduce the map

v X, = L2 xR, (2‘) - (“‘p’”’).

Taking the norm ||(u, p)|172, := |p|* + ull7. on L} x R?, it follows immediately that 1
i n

defines an isometry from X, to L% x R? and its inverse is given by

vl L2 xR X, C}‘) — (“;p”) .

Lemma 3.12. The map ¢ : X,, — sz x R? is an isometric isomorphism. Moreover, if
0<p <2, thent :Y, — H} x R?® is a homeomorphism.

Proof. By the previous observation it remains to show the continuity of ¢ from Y, to
H} x R?. From Proposition 2.7 we obtain for 0 <y <2 and u = (u,p)" €Y,

2
0 = 1ol + > 10 — p0) 2
a=0
< (4 82]125 + BuallZa) 01 + l1u = 91125 + ol + uallZs < Clull,.
]

With the homeomorphism 1) we can define the operator

Ly:H xR = L2 xR u— Ly 'u
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Again, a straightforward calculation shows that for u = (u,p)" the operator £, can be
written as

o= <Aum + cuy + Syu+ D f(v)u + Aplyy + cpty + (D f(vy) — D f(vs)) p@)
¢ Sup + D f(vse)p '

If Assumption 1 and 2 are satisfied, it follows that £, defines a closed, linear operator on
L% xR? with D(Ly) = Hg x R?. Furthermore, since 1) is a homeomorphism and therefore
a Fredholm operator of index 0 we conclude from Lemma A.2 that the Fredholm indices
of sI — L and sI — L, coincide. The same holds true for the operators s/ — L and s/ — L,
since the multiplication operator associated with 7 from Lemma 3.1 is a homeomorphism.
Furthermore, a compact perturbation argument will show that the variable coefficient
operator sI — L, on L? has the same Fredholm index as the piecewise constant coefficient
operator given by

Ly - H? - Lz, U= Augy + By ooty + O oo,

B, o(z) = cl +2uA, >0 (2) = So+ Df(vee) + p?A—cul, x>0
PN el —2uA, x <0 PN S 4+ DF(0) + p2A+epl, <0’
(3.39)

We note and prove these observations in the following lemma.

Lemma 3.13. Let Assumption 1 and 2 be satisfied, 0 < p < min(uy,2) and s € C with
ls from Theorem 2.6. Then the following statements are equivalent:

i) The operator (sI — L) Y, — X, is a Fredholm operator of indez k.

it) The operator (sI — Ly) : HY x R* = L} x R? is a Fredholm operator of index k.
iti) The operator (sI — L) : H} — L2 is a Fredholm operator of index k.

w) The operator (sI — L,) : H* — L? is a Fredholm operator of index k.

v) The operator (sI — L, ) : H*> — L? is a Fredholm operator of index k.

Proof. i) < ii): By Lemma 3.12, the maps ¢ : X, — L% xR?and ¢ : Y, — Hg x R? are
homeomorphisms and therefore Fredholm operators of index 0. Thus, the equivalence of
i) and ii) follows by Lemma A.2.

iii) < iv): By Lemma 3.1, the multiplication operators m,, : L% — L*and m,, : Hg — H?
are homeomorphisms and therefore Fredholm operators of index 0. Thus, the equivalence
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of iii) and iv) follows by Lemma A.2. . .
ii) « iii): The operator £, can be decomposed into £, = £ + K where L is given by

5 5 Aty + cuy + Syu+ D f(v,)u
£ H>xR? = [2 xR, L(“)::(
7 7 p (Sw + D f(vs))p

and the operator K by
172 2 2 2 w\ _ (Apbus +cpty + (Df(vi) — Df(va)) po
K:H, xR — L, xR, K(p)'_< 0 :

Since sI — S, — Df(vy) € R?*? is a Fredholm operator of index 0 on R?, Lemma A.3
implies that sI — £ is a Fredholm operator of index k if and only if (sI —L): Hg — L%
is. We show that K is a compact operator. Then the assertion follows by Lemma A 4.
To see the compactness of K, let {u,},en C Hg x R% u, = (un,p,)" be a bounded
sequence and let C' > 0 denote a universal constant. Then there exists a subsequence
Pn,, such that p,, — pas k — oco. We define

W i= Apbes + cpiy + (DF(v.) = Df (v)) pi.

Then Assumption 1 and Theorem 2.6 imply w € L%. Moreover, we have

(D f(ve) = D f(vss))(pr, = p)0]| 122

< [[(Df (vi) = Df (o)) (P, = p)ONl22®) + [[(Df (vi) = Df (V) (. = P)O 2221
< Cllollz@ -yl pne = ol + Clpn, — plIDf(vi) = D f(voo) L2

< Clloflz@y|pn, — ol + Clpn, — plllvx — voollL2®y) < Clpny, — pl-

This implies for w = (w, p) " € L2 x R?

[t — Wlizngs < 1o — ol [ Ay + couya + (DF(0) — Df (o)) — sz
= |pn, — ol + | A(pny, = P)0sz + c(pny, — p)0z + (D f(vx) = D f (Vo)) (P, — )| 2
< O+ [Vl rz + 102 £2) | pnye — ol + (D f (vi) = D f (vas))(ony, — )0l 22
<Clpn, —p| =0, k—0.
Thus, Ku,, — w in L} x R* as k — co. This shows the compactness of K and the
assertion follows by Lemma A .4.

iv) & v): Since the operator 9, : H*"' — H* k > 0 is bounded, Lemma D.4 and
Theorem 2.6 imply that the operator

Ly— Ly H* = L? uw (B, — Buoo)us + (Cp — Cpoo)u

is compact. Hence the assertion follows by Lemma A.4. O
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The lemma shows that the Fredholm properties of s/ — £ on X, are determined by
the piecewise constant coefficient operator s/ — L, ... Thus, we are interested into the
solvabilty of the resolvent equation

(sI — Lyos)u=7, ueH? rel? seC. (3.40)

We use the classical approach, for instance, from [36] or [56], [32], where the solution
of (3.40) is constructed using exponential dichotomies. For this purpose we transform
(3.40) into a first order system via w = (u,u’) and obtain

M(s)yw=h, M(s)=0,—M(s,-), h=(0,r)" (3.41)
with

) My(s), x>0 B 0 I
M(s,z) = {M(s), r<0’ Ma(s) = (Al(SI - Cy) _AlBj:)

and the matrices By, Cy given by
By :=cl F2uA, Ci:=8,+ Df(vy)+ p*AF cul.

From [22] we have that the operator M(s) has an exponential dichotomy on the half-line
Ry if and only if the matrix My(s) is hyperbolic, cf. Proposition B.4. Therefore, we
define the set

Qp :={seC: M(s) and M_(s) are hyperbolic}.

For s € Qp we denote by m;fu(s) the dimensions of the stable and unstable subspaces
of My(s), i.e. mE(s) denotes the sum of multiplicities of the eigenvalues of M. (s) with
negative real part and mZ (s) those with positive real part. Now we have the following
classical result which can be found in several texts from the literature. See for instance
[36, Lem. 3.1.10] or [48], [49], [56, Sec. 3].

Lemma 3.14. Let Assumption 1 and 2 be satisfied, 0 < p < min(puy, 2) with p, from
Theorem 2.6. Then the operator sI — L, o, : H* — L? is a Fredholm operator if and only
if s € Q. If s € Qp then the Fredholm index is given by

ind(sl — L, ) = m(s) —mg (s).

S

Lemma 3.14 together with Lemma 3.13 imply that s/ — £ : Y, — X, is a Fredholm
operator if and only if s € 2. Moreover, since the matrices M. depend continuously on
s € C we conclude that the Fredholm index of s/ — £ stays constant in any connected
component of Qp. Recall the dispersion set from (0.27) given by

Odisp,u(‘c) - Oc?isp“u(‘c) U OC—ESpyﬂ(ﬁ)

Then we have the following lemma.
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Lemma 3.15. Let Assumption 1 and 2 be satisfied. Then the set Qp is the complement
of the dispersion set, i.e. Qp = C\Oqisp,u(L).

Proof. First we show that det(—v?A + ivBy + Cy — sI) = 0 if and only if M.(s) is not
hyperbolic. Assume M, (s) is not hyperbolic, i.e. there exists v € R, w € C*, |w| = 1
such that ivw = M, (s)w. This implies, with w = (w;,ws)", that ivw; = w, and hence
wy # 0 due to |w| = 1. Moreover,

—v*w; = AN (sl — Ci)w, — A ' Bawy = A7 (s — CL)w, — ivA™ ' Baw,.
Hence,
(—*A+ivBy + Cy)w; = 0.
Thus, det(—v?A +ivBy + Cy — sI) = 0.

Conversely, suppose det(—v?A + ivBy + Cy — sI) = 0. Then there exists w; € C™ such
that (—=v?A + iwvBy + Cy — s)w; = 0. Now setting w, = ivw,; leads to

0 I wi\ Wy
Ail(S] — Ci) —A"'B* Wo o Ail(SI — C’i)wl — AilBi’wg
B ivw _ ww;
o Ail(SI — C’i)wl — ’L.I/AilBi’wl o Ail(S] — (O — ’iVBi)wl

- Wy o fun
T\ —AW2 Auy - wy

0

It holds true that the Fredholm index of sI — L stays constant in any connected
component of Qp, see [36]. Therefore, we are interested in the shape and location of
the dispersion set and in particular in the connected components of 2r. The Fredholm
region ()p can be written as

Qp = {s€C:det(s] — Di(v)) #0Vv R}, Di(v):=—1v*A+ivBy +Cy.

Hence we look for eigenvalues of the matrix D, (v), v € R. Its characteristic polynomial
is given by

d*(s) = s> — tr D+ (v)s + det Dy (v).
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The roots of d*(-,v) can be computed explicitly. We have s € oy ,(£) if and only if

D), \/<tr D _ e

2 4
a4 i{e— 2oy + 1P — it g ([one ) mf?
£ [ ot — diodu + (Gadi? + 2asg) (v e (3.42)

+diogp” + paagy (v ) [us v

1

2
— it = 2000263 0o ) 0o + (6] ([0ne oo *)?]

and s € oy (L) if and only if

Lt D2(y) N \/(tr D4(y))2 et D ()

= —oqv? +i(c+ 201 p)v + pPan + cp+ 91(0)

+ [ — st + diasur® + (6asu* + 2a(g2(0) + w))v?
— dias(az® + p(g2(0) +w))v — adu* = 2(ga(0) + w)azys® — (92(0) +w)?| .
(3.43)

Roughly speaking, these are four curves in the complex plane running from —oo — 700
to —oo + ioo. In the special case as = 0 the equations (3.42) and (3.43) simplify to

S = —on? +ile — 200+ on — e+ g (o)l £ ([0
and
s = —a* +i(c+ 201 p)v + pPoy 4 cp 4+ g1(0) £4(g2(0) + w).

Then the dispersion set consists of four parabolas in the complex plane opened to the
left, see 0.4 b).

We are now in the position to formulate and prove the main result of this section de-
scribing the essential spectrum of £ on the exponentially weighted space Xj,.

Theorem 3.16. Let the Assumption 1-3 be satisfied and 0 < p < min(fiess, fs, 2) with
less from Assumption 3 and u, from Theorem 2.6. Then there are ¢ > 0, v < 0 and a
unique connected component Qs of Qg satisfying:

i) Seni={seC:|arg(s —7)| <Z+e, s#7} C Q.
i) For all s € Qu the operator sI — L : Y, — X, is Fredholm of index 0.
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i11) 0N C Taispu(L)-
i) Oess(L) C C\Qo.

Proof. i). For s € Qp Lemma 3.13 and Lemma 3.14 imply the operator s/ — L to be a
Fredholm operator of index ind(sI — £) = mf(s) — m; (s). For s € ogisp,u(L) we have
Res — —o0 as |s| = o0o. Thus, Reogisp (L) < 00. Now let sg > Reogisp (£). Recall
for a matrix M € C™™ its lower spectral bound «(M) := min{Re (z Mz) : |z| = 1}

and let sy be so large such that

a(sol — Cy) > 5o — max{Re (v1CLv) : |v| =1} > u|a2|.
831
Then for all s > sy we also have
a(sl —Cy) > s —max{Re (2" Cyx) : |[z| =1} > o
Qi

and since a(A) = a1 we obtain

|B. — Bl| = 2u(A — A")| = 4plas| = 404(A)% <Ada(A)a(sl — C1) Vs € [sy, ).
1

Now for all s € [sg,00) Lemma D.1 implies M. (s) to be hyperbolic with mZ(s) = 2.
Thus sI — L is a Fredholm operator of index 0. Since both M. depend continuously on
s we conclude that mZ(s) = 2 for s in the connected component ., of Qr containing
[s9,00). Thus sI — L is Fredholm index 0 for s € Q. and 0Qs C 0N0p = Taispu(L)-
Therefore ii) and iii) hold. Moreover, iv) follows by definition of the essential spectrum,
cf. Definition 1.10. It remains to show i). Using ii) it is sufficient to show there is
a sector S, € > 0, v < 0 with ogispu(L) N S.y = 0. The dispersion set consists of
four curves given by the equations (3.42) and (3.43). For each of those we can choose a
parametrization x : R — C such that (3.42), (3.43) respectively, is equivalent to y(v) = s
and y is given by

X(v) = —aq? +i&v + & £/ —advt +p(v), vER,

where £1,& € R and p(v) = i3303 + Bor® +if81v + By is a polynomial of degree 3 over C
with 3; € R. For the derivative of the parametrization there holds

20507 P(v)
V—adt+p(v) /a3t +pv)

X (v) = —200v +1i& F

Now,

2.2 2 2 2
205V 205 votoo 200 205 ,
= - = = —2i|as|.

\/—agy‘l +p(v) \/—oz% + v4p(v) \/ —a? ey
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Therefore,

v I (V) = —2a; % 2i|ay|, v — Foo.

Let Ty = ‘X/("§| be the tangent vector of the curve at x(v). Then for v > 0

X' (v
o v (v) —ay +i|ay| B
T T ()] ol '
For v < 0 we obtain
71 / .
7;(”):_1/ X' (v) _)alin|a2\’ D oo
lv=1x'(v)] o]

&

o\

a)

Figure 3.2: Geometric situation in the proof of Theorem 3.16.

Since Re x(v) = —o0 as v — 00, we find a sector Sz5, ¥ >0, 0 < & < tan™' ( 2L

|z

N—

such that oqisp (L) C (Sz5)¢, cf. Figure 3.2 a). Now Assumption 3 implies ogisp (L) C
{Res < —f}. Then for every —fy < v < 0 thereis 0 < & < & such that S. ,Noqisp u (L) =
0, cf. Figure 3.2 b). O

Remark 3.17. To fully describe the essential spectrum, according to Definition 1.10,
of the linearized operator L one can use Lemma 3.14 and compute mt(s),my (s) in the
connected components of Q. In the connected components the dimensions m} (s), mg (s)
stay constant. The dimensions are given by the number of eigenvalues with negative real

part of the matrices My (s), M_(s). The Fredholm index in then given by ind(sl — L) =
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mt(s) —my (s). The essential spectrum is shown in Figure 3.3 in case of (QCGL) with

parameters o = 1, u = —%, B=1+1i,v=—141 In this case the matrices are explicitly
given by
0 0 1 0
0 0 0 1
M) = s gt (omlol? 0 —c 0
—2¢5(lvec ) Jvec* s 0 —c
and
0 0 1 0
0 0 0 1

M-_(s) = s—¢g1(0) —w—g9(0) —c 0

w+¢20) s—g(0) 0 —c

The numbers in the connected components indicate the Fredholm index of sI — L. We

-2 -1 0

Figure 3.3: The essential spectrum of the linearized op-
erator £ (green) with the dispersion sets (red/blue) in an
example of (QCGL). The numbers in the connected com-
ponent of Qr indicate the Fredholm indiex of sl — L.

note that the essential spectrum strongly depends in the choice of its definition which
differs in the literature, cf. [25]. However, for the stability behavior of the TOF, the
choice of the precise definition has no effects since the essential spectrum is bounded by
the dispersion set in any case.
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Now we take Assumption 4 into account and conclude the section by studying the
zero eigenvalue. Assumption 4 states that zero is an eigenvalue of the linearized operator
L with algebraic multiplicity at most 2. Using the fact that the whole group orbit a(v)v,,
v € G is a stationary solution of the Cauchy problem (0.22) and that the group action
a(7y) is continuously differentiable, we will see that one finds two linearly independent
eigenfunctions of £. Then by Assumption 4 it follows that zero is an eigenvalue of
algebraic multiplicity equal to 2.

Lemma 3.18. Let the Assumption 1-4 be satisfied and 0 < p < min(fless, fx, 2) With [less
from Assumption 3 and . from Theorem 2.6. Then s = 0 is an eigenvalue of L with
algebraic multiplicity two and linearly independent eigenfunctions given by

SU* Vs,
901:_81V*:_<511,U)€YV7)7 SOZZ_V*:_(d)GY;)

such that
N (L) = span{py, o} =: ®.

Proof. Clearly, 1.5 are linearly independent. Assumption 2 and Theorem 2.6 imply
01,2 € Y,. Thus it remains to show Ly; = 0 for ¢ = 1,2 then the claim follows by
Assumption 4. Recall that (v,,v.,)" is a stationary solution of (0.22), i.e.

0— AU*,xx + CUx 2 + Swv* + f(v*)
B Swvoo + f(UOO) .

By applying the group action a(y) for v = (6,7) € G we obtain

_ (ABovsaa(- = 7) + Bovia(- = 7) + SuBovi(- = 7) + f(Rovu(- — 7))
V= ( S Rovee + f(Rovso) ) . (3.44)

Differentiating (3.44) w.r.t. 6 and evaluating at (6, 7) = 0 yields

0= AS Vs + €510, 5 + SuSh1ve + D f(v,) S0, r S1v.\ r
N S0S1Vs0 + D f (V60)S1000 N Sive ] 2%

Further, differentiating (3.44) w.r.t. 7 and evaluating at (0, 7) = 0 leads to

0 — (_AU*,mmm - CU*,mm _OSwU*,:v - Df(v*>v*,m) — —E <U6,:v) — EQOQ

O

By Assumption 4 the half-plane {Res > ~} for some v < 0 does not contain any
eigenvalues of L expect for the eigenvalue s = 0. Thus we can assume that the sector
S. - from Theorem 3.16 lies in the resolvent set except for the zero eigenvalue.
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Corollary 3.19. Let the Assumptions 1-4 be satisfied and let 0 < p < min(fiess, fix, 2)
with pless from Assumption 3 and py from Theorem 2.6. Then there are € > 0, v < 0
such that

8., C p(L) U{O}.

Proof. The claim is a direct consequence of Theorem 3.16 and Assumption 4 by taking
e and || sufficiently small. O

As Corollary 3.19 shows the spectrum of £ is completely included in the strict left
half-plane except the zero eigenvalue. However, since it is an isolated eigenvalue of
finite multiplicity we are able to block this neutral direction using the projector onto
N (L). This will lead to time decaying estimates of the semigroup on the corresponding
orthogonal complement, cf. [32, Thm. 1.5.3.]. For this purpose, we have to take the
adjoint of £ into account which will be considered in the following. Since X, is a Hilbert
space we may identify its dual space X7 with X, via the Riesz isomorphism. We define
the (abstract) adjoint operator of £, cf. |61, Definition IV.11], by

L :D(L)CX,—X,, u~—Lu

For a detailed construction and properties of the adjoint operator L* we refer to [61,
IV.11]. Since £ has a closed range we have, cf. [61, (11-7)],

R(L): = N(LY), R(L) = N (L. (3.45)

Lemma 3.20. Let the Assumptions 1-4 be satisfied and 0 < p < min(fless, fx, 2) with

ess Jrom Assumption 3 and p, from Theorem 2.6. Then there are adjoint eigenfunctions
1,y € D(LY) such that

i) N(L*) = span {1, o} =1 ¥,
it) (Vi, 05)x, = 0y, 1,5 = 1,2,
i) X, =®@ Ut
iv) there is a continuous projection P : X, — X, onto @, i.e.
P(®)=®, P(U+)={0}, P*=P,

which s given by
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v) the subspace ¥+ C X, is invariant under L, i.e. L(U*+NY,) C ¥t

Proof. i), ii). Let (-,-) = (-,-)x,. £ is a Fredholm operator of index 0. Thus by Lemma
A5 the adjoint £* : D(L*) — X, is Fredholm operator of index 0. This implies by
Assumption 4 dim N (£*) = dim N (L) = 2. Then choose linearly independent v, 1} €
D(L*) such that

N (L") = span {¢y, 45} .

Now by Lemma A.2, the operator £" is also a Fredholm operator of index 0 on X, for
all n € N. Thus (£")* = (£*)" is Fredholm of index 0, which implies by Assumption
4 and Lemma 3.18 that dim NV ((£*)") = dim N(L") = 2 for n > 2. Hence, £* has no
generalized eigenfunctions and therefore ¥, ¢% ¢ R(L*). Now consider the matrix

a= ({020 ).

We show that A is invertible. Assume the contrary. Then there is z = (2;,2,)" € R?
with 27 A = 0. This implies

(210] + 2005, ) =0, i=1,2

and therefore 219] + 200, € N(L)* = R(L*) due to (3.45). Then we find w € X,
such that L*w = 219} + z0h € N(L*). A contradiction since £* has no generalized
eigenfunction. Hence A is invertible. Now define

1
U1 = by + oty b= A" (O) ;
/ / —1 O
Yo =) +cathy, c=A (1) :
Then 9y, 1), are linearly independent with N (L£*) = span{¢y,¢»} and (i, p;) = ;.
iii). We may write u € X, as
2 2
u=u—=Y (Ynupi+ > (i, u)p
i=1 i=1
Then we have 327 (1, u)p; € N(L£) = @ and due to ii)

2 2
(1@7“ - Z(dhﬂ@%@) ’lpju Z 1/}27 ’lpju SOZ =0
=1

i=1



3.4. THE SEMIGROUP ET*¢ 85

Hence u — Y27, (¢, u)p; € UL, This shows X, = & @ Uk,
iv). Clearly, P is linear. Due to ii) and iii), it follows P(®) = {0}, P(¥V+) = U+ and
P? = P. Now the continuity of P follows using Cauchy-Schwarz inequality

2 2
1Pullx, < > 1@ wlleillx, < D Il lleidix, lullx, < Clullx,.
i=1 i=1

v). By the Fredholm alternative A.11 we have R(L) = N(£*)* = ¥t. Thus, L(T+ N
Y,) C R(L) = T+ O

The subspace U+ C X, and its intersection with the domain Y; and the space X%
will be used frequently in the following. For this purpose, we introduce the notation

V, =0t CcX, V =U'"nX, VI =U"NY, (3.46)

3.4 The semigroup e'*

Lemma 3.10 shows that £ defines a sectorial operator on X,. Using the theory from [32,
Chap.1] we conclude that £ generates an analytic semigroup on X,, which will be denoted
by {e*};>0. There are various texts in the literature concerning analytic semigroups,
see [50], [9], [42], [52], [26]. We use the semigroup to show existence of a solution of the
perturbed problem (0.22) with u(0) = v, +uy and, in addition, the nonlinear stability of
v,. For this purpose, we need time decaying estimates of the semigroup e**. But since
0 € p(L) the theory from [32] only guarantees estimates by exponentially growing terms,
i.e. ||| < CeP for B> 0. This would be sufficient to show local existence of solutions
but not for proving nonlinear stability. Taking the projection P from Lemma 3.20 into
account, it is possible to show time decaying estimates of the semigroup on the subspace
V,. Roughly speaking, the projection P blocks the zero eigenvalue and therefore the
neutral direction spanned by N'(£) in the dynamics of the equation (0.22).

Theorem 3.21. Let the Assumption 1-4 be satisfied and 0 < p < min(pless, fx, 2) With fi,
from Theorem 2.6 and fiess from Assumption 3. Then the linearized operator L :Y, — X,
generates an analytic semigroup {e'“};>o on X, given by

1
et = — [ e(sl — L) 'ds,
2m Jp
where T is any contour in p(L) with o(L) in its interior and arg\ — =+ (% +¢) as
IA| = c0. A €T for some e > 0.

Moreover, there exist K > 1, B > 0 such that for allt > 0 and w € \/;f, ¢ =0,1 there
hold

le“wllxs < Ke ||wl|xe.
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Proof. By Lemma 3.10 and Corollary 3.19 the operator £ : Y, — X, is a sectorial
operator, i.e. for all v > 0 there is M > 1 such that

[(sI — 5)71”)(,,%)(,, < Vs e S,

s =1
holds. For fixed ¢t > 0 we choose an upwards orientated contour I' :=I', UT'g UT'_ with

Pei={z =747 r 247}, Toi={e=q+17e” o< S +c)  (347)

for arbitrary 0 < & < g, cf. Figure 3.4 a).

’
V4
V4
V4
’
V4
)
\._/ —
o

Figure 3.4: The contours I', T in the proof of Theorem 3.21.

Then we may estimate

[e.e] oo

< Me”/ e-trsine—lgr < Met'y/ e 7t lr < 0
-1
Xp—X, t 1

and since I' C p(L)

Hence the integral

/ e (sl — L) 'ds
ry

s
5 t€

< Ce”/ e“*0dh < .
Xn—Xy -

i
2 1

/ e (sl — L) 'ds
o

1
et = — [ ef(sI — L) ds,
211 r
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is absolutely convergent in L[X,]. This implies {e’“};>¢ to be an analytic semigroup on
X, generated by L, cf. [32, Sec. 1.3]. Moreover, since the integrand is holomorphic in
p(L), the integral is independent on the choice of the contour I' satisfying the assump-
tions.

Consider the restriction of £ on V,, defined by

Evni‘/772—>‘/;;, w — LW,

Due to (3.45) we have V;, = U+ = N(£*)* = R(L) and thus V,, is closed in X,. Then
Ly, € C[V;] with N(Ly,) = {0}, R(Ly,) = V. Therefore, sI — Ly, : V> — V, is
Fredholm of index 0 and 0 € p(Ly,). Moreover, p(L) C p(Ly,). To see that, take
s € p(L). Then the equation (s/ —L)u =r € V, has a unique solution u € Y,. Applying
(I — P) to the equation yields (s — L)w =r, where w = (I — P)u. Then (/ — P)u=1u
and thus (s/ — £) is bounded invertible from V,? to V;,. This shows s € p(Ly,). Now we
conclude by Corollary 3.19

860770 C p(‘CVn)

for some gy > 0, 79 < 0. Using Lemma 3.11 we find 79 < —f < 0, € > 0 and a constants
C1,Cy >0, R > 203 such that for all w € V;Zl there holds

”(8[ — ‘C)ilW”X}] = H(S] — EV,,>71W”X}] < Cl”WHX}] Vs € 85775 N BR(O), (348)
Cy

I(sI = L) wllxy = [[(sI = Lv,) " 'wllxy < HHWHX,% Vs € 8. 5\Br(0) (3.49)

Combining (3.48) and (3.49) we find M > 0 such that

B B M
I(sI = £)'wllxz = [[(sI = Ly,) 'wllxy <

<l Vse s

We choose the contour T ::~f+ ULy UT_ with I'y, Ty as in (3.47) and —f instead of ~,
cf. Figure 3.4 b). Then I''T' C S. _3 C p(Ly,) and we obtain using Cauchy’s integral
theorem for all w € an

eFw :/ets(sl — L) 'wds = /ets(sl— Ly,) 'wds :/ets(sl — Ly,) 'wds.
r r r

Then there is K > 1 such that

[ (sl — Ly,) 'wds
Tt

oo
< Mew/ e~ ez |w|| x
X1 t—1 K

o
<M [ i s wg < T Cwly,
1
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Finally this yields for all w & an and t > 0 the estimate

and

2rK

e lwllx;-

ote
< Ce_tﬁ/ e 0dh||wl|x1 <
X1 —-5—¢ !

2

/ (sl — Ly,) 'wds
r

1
|~ HT/etS(sI—Evn)_lwds
i Jp

< Ke_tﬁ||w||X71].
X3

W||X}, =

3.5 Decomposition of the dynamics

Recall the Cauchy problem (0.22) with perturbed initial data, i.e.
w, = F(u), u(0)=v,+ uy.

In the previous section we have shown that the semigroup {e“};5¢ is decaying in time
on the subspace V;. In what follows we decompose the dynamics of the solution into a
motion along the group orbit of the wave a(v)v,, ¥ € G and a perturbation w in the
space V,,, cf. [17] and Figure 3.5. Moreover, we write the motion on the group orbit in
local coordinates on the manifold G. Precisely, recall the chart (U, x) on G from (3.13).
For t > 0 we want to write the solution u as

u(t) = a(y(t))v.e + w(t), (1) =x""(z(t)) € U, w(t) € V.

Thus z describes the local coordinates of a motion on the group orbit O(v,) given by
7 in the chart (U, x). Moreover, w € V,, describes the difference of the solution to the
group orbit in the space V,, = U+, It turns out that the decomposition is unique as long
as the solution stays in a small neighborhood of the group orbit and « stays in U. This
will be guaranteed by taking sufficiently small initial perturbations u,. We follow [17]
and start by considering the map

I:x(U) CR* = @&, 2z Pla(x '(2))ve — Vi) (3.50)
In what follows we often write « instead of xy~!(z) for abbreviation.

Lemma 3.22. Let the Assumptions 1-4 be satisfied and 0 < p < min(fless, fx, 2) With
lhess from Assumption 3 and p, from Theorem 2.6. Then there is a zero neighborhood
W C x(U) such that the map 11 : W — ® from (3.50) is a diffeomorphism. Moreover,
there is a zero neighborhood V- C x(U) x V,, such that the transformation

T:V—=X,, (zw)=ax '(2)vi-vitw
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a(y(t))v. + T+

a(yo)ve + U+

Figure 3.5: Decomposition of the dynamics.

is a diffeomorphism and the solution of T'(z,w) = v is given by
z=I7Y(Pv), w=v+v,—alx ' (2)vs.

Proof. Since the group action a is continuous, cf. Lemma 3.7, so is II and II(0) = 0.
Using Lemma 3.7 and Py; = ¢;, with the eigenfunctions ¢; from Lemma 3.20, we
conclude that IT € C'(x(U), @) with derivative

O.11(z)y = yra(v)e1 + v2a(y)p2, Yy = (y1,y2) € R®.

Moreover, 0,11(0) is invertible on ® = span{¢;, ¢2}. Consider the function F(z, w) :=
w —I1(z). Then F € C*(® x x(U), ®), F(0,0) =0 and 9.F(0,0) = 0.11(0) is invertible.
Now the implicit function theorem D.8 implies II to be a local diffeomorphism in a zero
neighborhood W C x(U) C R?.

Furthermore, the map 7' is continuous differentiable w.r.t. (z, w), since a is continuous
differentiable, cf. Lemma 3.8, and the derivative at (z, w) = (0,0) is given by

DT(0,0) = (82%(0) ]())() |
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where Ix denotes the identity on X,. Then DT'(0,0) is again invertible. Consider
F e CYX,xx(U)xV,, X,) given by F(v,2,w) =v—T(z,w). Then F(0,0,0) = 0 and
8(37“,)15’(0, 0,0) = DT'(0,0) is invertible. Again the implicit function theorem D.8 implies
T to be a local diffeomorphism near (z, w) = (0,0). Finally, we obtain from T'(z,w) = v
the equation

w=v+v,—alx '(2)v,. (3.51)
Applying P to (3.51) yields z = II"!(Pv) and the assertion is proven. O

Assume there is a classical solution u € C((0, t), Yy) N C([0,tx), X)) of (0.22), cf.
Definition 1.9, such that

Ju(t) = vilx, <9, Vte0,ts).

Let § > 0 be sufficiently small such that Lemma 3.22 guarantees that the map T stays
invertible on Bs(0) C X,,. Then there exist w : [0,tx) — V,, and 2 : [0, ) — R? such
that

ut) — v, = T(2(t), w(t), Vte[0,ts).

Since T' is a local diffeomorphism we conclude w € C([0, 1), V;?) N C'([0, 1), V;) and
z € CY[0,ts), x(U)). By Lemma 3.22 we obtain the decomposition of the solution u
via

u(t) = a(x '(z(t))ve + w(t), Vte€0,ty).
Taking the initial condition from (0.22) into account yields for t = 0
Ve + g = u(0) = a(x " (2(0)))v. + w(0),
which leads to
u = T'(2(0), w(0)).
Thus the initial values for z, w are given by
2(0) = I Y (Pug) =: 29, w(0) =ug+ v, —a(x (2(0)))v, = w. (3.52)

Now let z(t) = (0(t), 7(t)) then Lemma 3.7 and the chain rule imply

%(a(-)v* o X )(2) = alx ™ (2))e1: + a(x ' (2)) o
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Recall £, from (3.8). Since u solves (0.22) we have with w = (w, ()", v = x71(2)

o (1)

_d ; o
= oo x ) +w = Lalalav] — ow — (T E )
d

ﬂ&w@—ﬂ+w0.

(a(-)viox ")(2) + Wi — a(y)Lov. — Low — ( f(Rovse + ¢)

Tt

The equivariance of F from Lemma 3.8 implies

st = (L) e

Therefore by taking the linearized operator £ from (0.26) into account we finally observe
wi = Lw —a(x"(2)p10 — a(x ' (2))pam + (2, w) (3.53)

where the remainder 7] is given by

Tm@wyz<ﬂ&w0—ﬂ+w5_<ﬂ%w0—ﬂ0_<Dﬂwm>7Z:@J»

f(Rovss +C) f(Rovss) D f(vso)C
(3.54)
Since w(t) € V;,, t € [0,ts) we have by applying the projector P to (3.53)
0= Prifl(z,w) — Pa(x"2(2))p10; — Pa(x " (2)) 2. (3.55)

Let us write (3.55) as an explicit ODE for z = (0, 7).

Lemma 3.23. Let the Assumptions 1-4 be satisfied and 0 < p < min(fless, fx, 2) with
lless from Assumption 3 and p, from Theorem 2.6. Then for every z € R? the map

S(z) 1 R* = @,y > Pa(x ™ (2))eryn + Pa(x " (2))p2ps

is a continuous, linear map and continuously differentiable w.r.t. z, i.e. S € C*(R? L[R?, ®]).
Moreover, there is a zero neighborhood V- C R? such that S(z)~' ewists for all z € V and
depends continuously on z.

Proof. By Lemma 3.7, it follows that S(z) is continuous and linear and since 1, 93 € Y,
is continuously differentiable in z. It remains to show the same for S(z)~!. Let w € ®.
Applying (¢1,-), (12, -) with (-, cot) = (-,-)x, to the equation S(z)y = w yields

(00w iy — (@ PalC ) (6 Paly ()
= () 6= ({0 P (i payen) - 9
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Now M (0) = I and, by Lemma 3.7, M(z) is C*. Then there exists a zero neighborhood
V C R? such that M(z)~! exists and is also C!. Now S(z)~! € L[®,R?] is given by

oo (37)

and S(-)~! € CY(V, L[®,R?)). O
By Lemma 3.23 we obtain from (3.55) and (3.52) the ODE for z
z=rB(z,w), 2(0)=1"1(Puy), (3.57)
where 7#(-, w) : R? — R? is given by
rl#(z,w) = S(2) 7Pl (z, w). (3.58)
Applying (I — P) to (3.53) and using (3.57) yields
wi = Lw + (I — P)rlfl(z,w) — (I — P)(a(-)v, o x 1) (2)S(2) L Prl(z, w)
=: Lw + T[w](z, w).
with the remainder 7! given by
rlol(z, w) = ((1 ~P)— (I - P)a(-)v, 0 X’I)(z)S(z)’1P>r[f](z, w). (3.59)
Finally, we obtain the transformed system for w,~y

wy = Lw + 7"z, w), w(0) = ug + v, — a(Il"' (Pug))v, =: wo (3.60)
2 =Bz, w), 2(0) = I (Pug) =: 2. (3.61)

According to Definition 1.9 we define classical solutions to the system (3.60), (3.61).

Definition 3.24. A pair (z,w) is called a classical solution of (3.60), (3.61) on [0, t..)
for some to, > 0 if

i) we C(0,tx), V;}) N CH([0, 1), V;)) and z € C([0, 1), R?).
i) wy(t) = Lw(t) + rl(z(t), w(t)) and z(t) = rFl(2(t), w(t)) for every t € [0,t).
iii) w(0) = wy and 2(0) = z.

If too = 0o we will call (z,w) a global classical solution of (3.60), (3.61), whereas for
too < 00 we will call (2, w) a local classical solution of (3.60), (3.61).
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3.6 Estimates of nonlinearities in weighted spaces

To study solutions of the system (3.60), (3.61) we will use the semigroup e** and need to
control the remaining nonlinearities 7/1, r[*! 7 from (3.54), (3.59) and (3.58). In this
section we derive Lipschitz estimates with small Lipschitz constants for the nonlinearities
in the space X

Lemma 3.25. Let the Assumptions 1-4 be satisfied and 0 < p < min(pess, fx, 2) with
less from Assumption 3 and p, from Theorem 2.6. Then there exist 6 > 0 and constants

Co, C1,Cy, C3,Cy > 0 such that for all z, 21,2, € Bs(0) C R* and w,w,wy € Bs(0) C
X} there hold

i) Iz wa) = e wo)lly < Co (121 + max {Iwill g, IIwallxy } ) 11w = wallx

ii) Pz, w) = Wz, w)llxy < Cilzn — 2],
i) ) (2. w) =z, w)llxg < O (J2] 4 mas { waly- I wallxg ) 1w = wallx;.
i) [ (21, wa) = 11 (z0, wa) | xy < O (\Zl — 2|+ [lw1 - WzH)@) :

0) [z wa) = e, wa)| < Ca (Joa = 2ol 4 s = wallxy )

Note that since rll(z,0) = 0 the estimates i) and iii) also imply boundedness of the
nonlinearities /!, r*,

Proof. For the proof let C' > 0 denote a universal constant and let 4 > 0 be so small such
that Bs(0) C x(U) with (U, x) from (3.13). Moreover, let v = x(2) = (6,7), w = (w, ()"
as well as v; = x(2;) = (60;,7), w; = (w;, ()", i = 1,2. For the sake of notation we write
a(y)v = Ryv(-—7) for a function v : R — R?. For a matrix-valued function M : R — R*?
we write [[M||pe = [[|M|[|r=®r), [[Mlzz = [[[M]||r2 r) for some matrix norm | - | on
R22,

i). We have by definition and the triangle inequality

Iz, wi) — PV (2, W)l x;
< [f(Rovoo + C1) = f(Rovoo + G2) — D f(va0) (G — G2)]
+ [ fla(y)ve + wi) = fla(y)ve + w2) = Df(ve)(wr — wo)
— O[f(Rpvoo + C1) — f(Rovoo + Co) — D f (o) (Gt — G)l| 2
+ 10:[f(a(v)ve +wi) — fla(y)ve +w2) — Df(ve)(wr — wo)ll| 2 =: Ty + 1o + T

In the following we frequently use the mean value theorem and the fact that Assumption
1 states f € C3. Note the following estimates, which follow by Sobolev embedding
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Theorem D.2, Proposition 2.7 and (3.18),
1D (a(r)e) — DF @)l < Cllar)es, — vl
< Clla(y)vs = Rgvoo® — (04 = 10|22 + Ol Rovoo — Voo
< Clla(y)ve — Rovoo® — (V4 — 0500) || 711 + C|RpUoo — Vo]
< Cllalx ™ (2))ve = Villxy < ClallIvally, < Clzl,

|Df(Rovee) = Df (ve)| < Cl2,

la(7)vx = Rovoo = (v = Voo )|l 21 )

< la(y)ve = Rovac® = (vx = voo®) [ 12(R ) + [RoVoo — Voo| |0 — 1] 22(R )

< Clla(x™(2))ve = Villx, < ClallIvillxz + Cl2] < O],

s = Voollrz®y) < [lvx — vooOl|L2®y) + Vool |10 — 1| r2®,) < C.

T} can be estimated by
Ty = | f(Roveo + C1) = f(Rgvoo + C2) — D f(veo)(C1 — (o)

1
< /0 IDf(Rgves + Co + (C1 — C2)s) — D (veo)|dslC1 — Gol

(3.62)

(3.63)

(3.64)

(3.65)

1
< ( [ D5 Rotn 4 G2+ (61 - o) = DI Ravec s + 1D (Ravie) - Df(voo)l> G- Gl

1
<c ( [ 16— (61— sl + R - vw|) G-l

< C (|| + max{[i], 1D 16— Gl < € (J2] + max {[Iwillxy. [Wallxy }) Iws = wallx;.

For T we have

Ty = || F(a(y)v, +w1) — Fa(7)v. +1ws) — Df () (1) — w5)
— B (Roveo + C1) = F(Rovoe + G2) = DF(0:)(G = G)] 122

- H /01 D f(a(y)v. +wa + (w1 — wa)s) — D f(v.)ds(w; — ws)

s / Df(Rgvoe + Go + (Gt — G2)8) — Df (vo0)ds(C — Co)

2
L3

< || [ Pstata s+ = ) = Dtatrpldston - )

s / Df(Ryvs + G+ (G — G)s) — Df(Ryvc)ds(C1 — Go)

2
L’?

+ DS (a(y)ve) = Df(v)(wr — w2) = 0[Df(Rovec) = Df (v50)](C1 = C2) |13

= T4 + T5.
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We estimate T5 by two terms

Ts < [[Df(a(y)ve) = D f(v)(wi — 961 — w2 + 0G| 2
+I[Df(a(y)v) = Df(vs) = Df (Rovos) + D f (vs)|(G1 = C2)0lI 12 =: T6 + T7.

Using (3.62) we have
Ts < Clzfllwr = 0¢ — w2 + 0G|z < Clz|[|wi — wa[x;.
Next, we bound 7% by

Tr < [IDfa(v)vs) = Df(0x) = Df (Roveo) + D f (vs0)](G10 = C20) | 22m)
+I[Df(a(y)v) = Df(vs) = Df(Rovss) + D f (050)](C10 = G0) |13 my) = Ts + Ty

and (3.62), (3.63) together with Proposition 2.7 imply

Ty < |Df(a(y)v) = Df(vs) = Df(Rovo) 4+ D f (Vo) o0 G = Coll|0]] 22
< Clzl[G = Gf < Clz][lwy = wallx;-

Use the abbreviations x1(s) 1= v+ s(a(y)ve —vx), X2(8) := Voo + $(RoVoo — Vs ), s € [0, 1].
Then use (3.64), (3.65) to obtain

Ty = |[[Df(a(v)vs) = Df(vs) = Df(Roveo) + D f(v00))(C1 = C2)0l L2 )

= H /01 D? f(xa(s)[a(y)ve = v, (G1 = G2)0]ds

) / D2 f(xa(5))[Rgvo — Voo, (G2 — (2)0]ds

L2(R4)

<| / D2 [ (31(5)[a(1)vx = 02 = Ryt + 1, (G — G2)0)ds

L2(Ry)

|| [ 0006 = D2l Rov + 0 (6= i
< Clla(y)ve = Rovoo — (V4 — voo) |2 )¢ — ¢
0| [t =], 1R -l -l

< Cll|G = G| < Olzl[lwi — wal|x;-

L2(R4)

To estimate T} use the abbreviations w(s) := wy + (w; — we)s, ((s) = (o + (¢1 — (2)s,
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€ [0,1] and obtain

7, - | / D f(a(y)v, + w(s)) — Df{a(7)v.)ds(w; — ws)

_5 / Df(Ryvee + C(5)) = D f(Rovac)ds(Ct — Co)

2
L3

<|| [ pstata. +wls)) - Dstat st — o -+ G|

+ H /0 Df(a(y)ve +w(s)) — Df(a(y)vy)

— Df(Rove +¢(5)) + D f (Rovoo)ds(Cr — C2)0

= T10 + T11.
L3

Now for every s € [0, 1] we have

IDf(a(y)vs +w(s)) = Df(a(y)v)llr= < Cllws + s(wy = ws)| e

(3.66)
< Cmax {[jwr e, sl <} < Cmax {[[wilxy, [wallxy }
where we used that the Sobolev embedding Theorem D.2 implies for i € {1,2}

[will Lo < Jwi = Goll e + |G < Cllwi = Gollan + G < Clwillxy.-

Now (3.66) yields

1

Tho < / IDf(a(v)vx +w(s)) = Df(a(y)v)|[peds|fwr = GO — ws + G| 3
0

< Cmax { wi Ly, Wl } 1wy = walx;.

Moreover,

< H / Df(a(y)v +w(s)) = Df(a(1)v.) = Df (Rovoe +C(5)) + D (Rovoc)ds (G = C2)i

L3(R-)
+| / Df(a(y)v. +w(s)) = Df(a(y)vs) = DJ (Ryve + () + D (Rovoc)ds(Cr = G2)0

=:Tis + T13.

L2(Ry)



3.6. ESTIMATES OF NONLINEARITIES IN WEIGHTED SPACES 97
We write #(s) := a(7)v, + w(s) — Rgvee — C(s). Then for s € [0,1] there holds
| Pr@(e. + w(s)) = Df(a(e) = D (Rovse + () + DF (Raveo)|
= H /0 1 D?f(Rovee + C(s) + K(s)7)[x(s), ]
— D (Rgvae + (a(1)v. = Rovoe))a()v, = Rovecs 7|
<[ [ Dt + 605+ wImlts) = )l
+ H /0 1 (D2 F(Ryvso + C(s) + 1(s)7)

— D*f(Rpvoo + (a(7)vs — Rovoo)T)[a(7)vs — Ropves, -|dT

Lo
1
< Cllw(s) = C(s)llz~ + C/O I€(s) = (w(s) = C(s))7l|L~dr
< Cmax {[lwy| e, Jwallp=} < Cmax{HWlHX%a ||W2||X,g} ;
where we used |(;| < ||w;||p~, i = 1,2. Thus
Tio < Cmax { | willxy, [wallxy } G = G

Similarly, for every s € [0, 1],

)Df(a(’v)v* +w(s)) = Df(a(v)v.) = Df(Rovee +((5)) + D f (Rovoo)

1 LE(Ry)
< Ollw(s) — ()| zzzy) + C / 16(s) = (w(s) = ¢(s)) 7| =ddrlla(y)v. — Rovec 12 e
< Cmax {lwn = Gillige,, e = Gollzge,) b + € max {fJu =, lwallz<}
< Cmax {|[willx, Iwally }
This yields an estimate for T3
Tis < Cmax { w3, [wall x; | 166 = G-

Summarizing, we have shown

1 (a(y)ve +wi) = f(a(y)ve + w2) — D f(v.) (w1 — wo)
— 0(Rpvos + (1) — f(RgVso + C2) — D f(vs0)(C1 — Cz)]@”L%

< C (J2] 4+ max { w1y, w2 lxp } ) wi = wallx.
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It remains to estimate the derivative T5. We have

0c [ fa()es +wn) = Fla(a)u +wz) = DF () (w1 — wa)]|

= | Df(a(y)vs +wi)wiz + Df(a(y)ve + wi)a(y)ves
— Df(a(7)ve + w2)wze — D fa(y)vi + w2)a(y)vie
— D? f(v) w1 — wa, v, 0] = Df(v.)(wi — wa)a| 2
= [IIDf(a(y)vs +wi) = Df(a(y)os + wa)lwiell 2

-~

+ 11D, + w2) D f (o) — wilellsy

~~

+ DS (a(y)oe +wi) - bf(a(v)v* +wa)](a(V)vsx = vl 2

L3

13

+ H [Df(a(’}/)'l}* + wl) - Df(a(7)v* + w2)]v*,x - DQf(U*)[wl — Wy, U*JC] HL%

=L+L+1+

/ D?f(a(y)ve + wy + (wy — wy)s) — D f(v,)ds[w; — wa, vy )
0 L2

(. J
~~

Ay

=L+ 1+ I3+ 14
Now
Iy < [|Df(a(y)vs + wr) = Df(a(y)vs + wa)| oo l|wiel
< Cllwy = wsllpellwnall ez < Cmax {lwillxg, [wall b lwi = wsllx;.
In the same fashion using Lemma 3.7 and (3.18) we obtain
I < |[Df(a(y)vs +wy) = Df (0o || oe [ (w1 — wa)e |z
< C(lla(v)ve = vellzoe + lwallzee) [W1 = wal|xy
< C (J2] + max {[willxp, [wallxp } ) Iwr = wally
and for I3
Iy <[[Df(a(y)ve +w1) = Df(a(y)ve + wa)|[ oo lla(v)via — Vel
< Ollwy — wy|oofla(y)vee — vesllrz < Cl2l[[Wy — wa x;-
Thus it remains to estimate I,. We have

I < C (la(y)ve = vill e +max{lws||zoe, [Jwal oo }) [lwr — wal o Jvs |23

< C (|| + max {wilxy, [walx; } ) Iws = wallx;.
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Hence

2

T = ||| £a(n)v. + w1) = Fla)v. + ws) = Df () (s = ws)

2
$Ln

< C (|| + max { w1 lxy, w2 lx; } ) Iws = walx;.
Finally we have shown
77z 0n, 1) = 10z, w9, ) |y < Co (121 4+ max {wa L Iwallxy ) llws = wallx;.

ii). As in i) we frequently use the mean value theorem and the smoothness of f from
Assumption 1. First, we estimate

7 (21, w) = 7V (2, w) | x;
_ H (f(a(%)v* +w) — fla(y)ve) — fla(ye)vx +w) — f(a(%)v*))
f(RelvOO + C) - f(R@lvoo) - f(R92'UOO + C) - f(RGQ,UOO)

< |f(R91'UOO + C) - f(R92'UOO + C)|J+ |f(R91UOO) - f(R92UOO)|

J/

1
XW

-~ -~

=:J1 =:Js

+ I faln)v. + w) = fa(s)ve +w) = of (Rovm + ) = f(Favoe + Ol

~~
=:J3

+Iflaln)ve) = Jlalyz)v.) — 0(/ (Ro,vee) — f(Royveo)) g

+10u1F v, + ) ~ Flala)v. + )l + 1@ — Fla()e)ls;

+J6

=:J5
Using the Lipschitz estimate (3.18) we have
J1 = |f(Ro, 000 + ) — [(Re,000 + )| < C|Rp, Voo — RgyVo0| < Cl2z1 — 29
and the same holds true for ¢ = 0. Thus
Jy < Clzy — 2o

Write k1(s) := a(vy2)vs +w + (a(y1)ve — a(y2)vy)s and ka(s) := Rp,ve + ¢ + (Ro, V0 —
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Rp,v5)s, s € [0,1] and obtain for J3
Js = [lf(a(n)ve +w) = fla(r2)ve +w) = 0[f (R, v + C) + f (Royvoo + Q)| 2

— H /1 Df(a(vy2)v, +w + (a(y1)ve — a(y2)vy)s)(a(71)ve — a(y2)v,)ds

/ D f(Rp,v00 + ¢ 4 (Rg, V00 — R9,050)8)(Rg, V0 — Ry, Vs0)ds

L2
n

< H / Df(ki(s M)V — Ry, 000 — a(Y2) Vs + Rp,vo000)ds

2
Ln

= J7 + Jg.

L3

+ H /0 [Df(k1(s)) — Df(ka(s))](Rg, ve® — Rpyveo®)ds

We estimate J;, using (3.18), by

Jr < CH(I(’)@)U* - R61Uoo@ - a(/YZ)'U* + RGQUOO@HL%
< Ollalx ™ (z21))vi = a(x "' (22)) Vil x, < Cl21 = 2.

We bound Jg by two terms

Jo < H /0 1[D F(#1()) — Df(ka(5))](Ro,vasd — Ro,v00)ds

2®-)

+ H /Ol[Df(/ﬁ(s)) — Df(k2(5))](Ro,veod — Ro,veet)ds

LQ(R ) - Jg . JlO'
n B+

Then
Jo < O] r2®_)[Royvoo — Royvoo| < Cl21 — 22

and for Jy
1
J10 < C|Rg, 000 — R, Voo| / |k1(s) — /@2(3)||Lg7ds < Clzg — 2.
0
Thus we have shown
Jg S C|21 — 22|.
In particular the estimates hold for w = 0, { = 0. Therefore we also have shown

J4 S C|21 — 22|
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and it remains to estimate the spatial derivatives J; and Jg. We note that for arbitrary
u € L% we have by Sobolev embedding, cf. Theorem D.2, and Lemma 3.4

1D f(a(y)vs + w) = Df(a(y2)ve + w)lullz < Cllaly)v. — aly2)ou| o [[ullz
< Cllullzz (laly)vs = B vo0® = a(2)vx + Rpyvo00]| 1o + [ Roy Voo = Ry, 00| <)

< Cllul[rz]z1 = 2.
This implies with (3.18)
Js < [[[Df(a(1)ve +w) = Df(a(y2)ve + w)]ws |22
+ [[Df(a(y)ve + w)a(n)vee — Df(a(y2)ve + w)a(y2)viellzz
< Ollwallzzlzr = 22| + [[Df (a(m)ve + w) = Df(a(y2)ve + w)la(n)vezl Lz
+ Clla(y1)vse — a(y2)vsall 2
< C (lhllzg + la()enslzz ) 121 = 2] + Clla(1)vne = a(12)vnsllzs < Clar = 2.
In particular the same holds true for w = 0 and we observe
JG S C|21 — 22|.
Summarizing, we have
|1 (21, w) — T[f]<z27W)”X% < Chlz — 2.

iii). Using the continuity of the derivative of the group action, cf. Lemma 3.7, the
continuity of the projector P from Lemma 3.20 and Lemma 3.23 to see that there is
C > 0 such that

H ((1 —P)—(I—-P)(a(-)v.o0 X*l)(Z)S(z)*lp)u) .

1
< Cllullx; Vue X,

n

Now the claim follows from i).
iv). By Lemma 3.7, Lemma 3.23 we have that (a(-)v, o x7')(2)S(2)~! is continuously
differentiable in z. Therefore we have

[(a(-)viox™) (21)S(21)"'w — (a(-) v 0 X71) (22)S () ' Wllx1 < Clar — zl[|w] x3-
(3.67)

Then use (3.67) and i) to obtain

[P (e, w) = ) (W) [y < Ol (20, w) = 7V (g, W) |
+(a()ve o x 1) (20)S (1) " Pr(zn, w) = (a()ve 0 X7 (22) S (22) 7 Prfl (21, w)llxg
S C|Zl - ZQ|.
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Now we conclude by using ii) and iii)
Irt (21, W) = vl (29, W)l x;

< ez, wa) = (2, W) x4 11700 (20, W) — 71020, W) | x
< Gy (Jo1 = 2l + wi = wallxy )

v). We conclude from Lemma 3.23 that S(z)~! is locally Lipschitz w.r.t. z. Then,
similarly as in iv), we obtain

[P (21, w1) — 7 (2, W)
= ‘S(zl)’lPr[ﬂ(zl,Wl) — 5(22)’1P7’[f](z2,wg)‘
< C ||z, wi) = (2, W) || 0 + [(S(20)7F = S(20) 1) Prif(zo, ws)|

< Cy (|21 = 2l + w1y = wallx )

3.7 Nonlinear stability theorem

In the section we prove under the Assumptions 1-4 the first main results of the thesis
- the nonlinear stability of traveling oscillating fronts in exponentially weighted spaces.
In particular, we show Theorem 1.11 and the idea of its proof is as follows. We need
to assume that the initial perturbation ug in (0.22) is sufficiently small. In Section 3.5
we have seen that the equation (0.22) can be decomposed by a nonlinear coordinate
transformation into the system (3.60), (3.61) if the solution of (0.22) stays close to the
profile v,. Then the first step is to show existence of a local mild solution (z, w) of the
system (3.60), (3.61), cf. Definition 3.26. This means we show that the corresponding
integral equations

w(t) = e“wo + /t eEIErl (2 (5), w(s))ds, (3.68)

2(t) = 2(0) +/0 rE(2(s), w(s))ds (3.69)

have a unique solution for small time. This is done by using a contraction argument in
Lemma 3.27 and the estimates of the semigroup and nonlinearities from Theorem 3.21
and Lemma 3.25. The strategy is similar as in [17] but we remark that the approach
from [17] is not completely rigorous since the presence of the chart is omitted. However,
following our procedure one can carry out the proof in [17] by taking the manifold
property of the group into account. The results are then obtained by working in local
charts.
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Definition 3.26. A solution (z, w) € C([0,%), R*xV,') of the integral equations (3.68),
(3.69) on 0 < t < ty for some to, > 0 is called a mild solution of (3.60), (3.61) on

0,ts0)-

In the case to, = oo the we will call the solution (z, w) global mild solution, whereas
for t < oo we will call (z, w) a local mild solution of (3.60), (3.61). We equip the product
space R? x X with the norm

1z W)y = [2] + [lwllxy-

Lemma 3.27 (Local existence and uniqueness). Let the Assumptions 1-4 be satisfied and
0 < p < min{ fhess, fhs, 2} With pless from Assumption 3 and p,. from Theorem 2.6. Further,
let K be from Theorem 3.21 and 6 be from Lemma 3.25. Then for every 0 < ey < ¢ and
0 < 2Keo < 0§ thereist, = t.(co,€1) > 0 such that for all initial values (29, wo) € R*x V]!
with

[Wollxz <eo, |20l <e1
there exists a unique local mild solution (z,w) of (3.60), (3.61) on [0,t,) with
[w(t)llxy < 2Keo,  [2()] < 261, t€0,t).
In particular, t, can be taken uniformly for (zy, wo) € Be, (0) x B.,(0).

Proof. Take f > 0 from Theorem 3.21 and C; from Lemma 3.25. Choose ¢, so small
such that the following conditions are satisfied:

2KC

t, < ,
20451 + 2KC4€0 6

(1—e ") < 1. (3.70)

Note that ¢, can be taken uniformly for (zo, wo) € B, (0) x B.,(0). The proof follows
a contraction argument in the space Z := C([0,t,), R? x V;zl) equipped with the norm
(2 )7 := Supye i {12(0)] + [ w(t)llx; }. Define the map

| 20+ Jy T (s), w(s))ds
Y:Z—27Z (2w) (e“ﬁwo n fg') el =5l (2(s), w(s))ds

given by the right hand side of (3.68), (3.69). We show that T is a contraction on the
closed set

B:={(z,w) € Z : [[w(t)||lx3 < 2Keo, [2(t)| < 21,1 €[0,t,)} C Z.
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Let (z,w) € B. By using the estimates from Theorem 3.21, Lemma 3.25 and (3.70) we
obtain for all 0 < ¢ < ¢,

t
ewwo—i-/ el (2 (5), w(s))ds
0

1
XW

t
< KePlegt K / e P [ (z(s), w(s)) | xads
0

t
< Ke ey + KC, / e P lw(s)| xads
0

2K
< Keo+ %(1 — e P < 2K e,

and

zo+/0 r#l(2(s), w(s))ds

<& —i—/o |7’[z}(z(s),w(s))\ds

t
§81+C4/ 12(3)] + [W(s)l|xyds
0
S g1+ C4<281 + QKEO)t* S 281

Hence T maps B into itself. Further, for (z;,w), (22, wy) € B and 0 < t < t, we can
estimate

21, W1) — Y (29, Wa)l|lz < su t'r[z]zls wi(s)) — i (2o(s), wo(s))|ds
1T (21, w1) — T(z2, wa)|z < p){/ol (21(s), wi(s)) (22(s), wa(s))|d

te[0,tx

[ e e ), w1 5) = 1 ) ) gy s

KC
3 21— e_ﬁt*)) (21 — 22, W1 — W2)|| 2

< ”(Zl — 29, W1 — WQ)”Z.

S <C4t* +

Thus T is a contraction in B. Therefore, there exists a unique (2, w) € B C C([0,t,), R?x
V') such that (3.68), (3.69) hold. O

As a next step, we use a Gronwall argument to show that the local mild solution
from Lemma 3.27 can be extended to a global mild solution and that the perturbation
w decays to zero as t — oo. This will imply that z converge to some z,. In the end,
we conclude that the mild solution has more regularity and is a classical solution, cf.
Definition 3.24. In addition, if the initial perturbation is small then the solution stays
in a small neighborhood of v,. Thus (z,w) transform into a classical solution u of
(0.22), which converge to the profile v, with asymptotic phase given by 7o, = x(2s0). As
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mentioned we use the following Gronwall estimate, which can be found in [17, Lemma
6.3].

Lemma 3.28. Suppose ¢, C, C, B > 0 such that

C>1, < B~

-~ 16C

and let ¢ € C([0,t),[0,00)) for some 0 < to, < 00 satisfying

o(t) < Cee™ + C’/Ot e P9 (p(s)® +ep(s)) ds, YVt € [0,tx0).
Then for all 0 <t <ty there hold
o(t) < 2Cee 17,
Proof. The estimate is satisfied for t = 0. Let
T :=sup {t €10,t5) : @(s) < 2Cee™1PVs € [O,t)} :

Then 7' > 0. Assume T' < to,. Since ¢ € C([0,t), Ry ) we obtain

T
2Cee™ 1T = (T) < Cee 17T +20Ce% " / e1%* 20”7 ds
0

B
3 1 4Ce 4CCe
<2Cee T | 4 — ¢
(2 B B

3 ~ 4 1
= Cee 7T 4 20C2% T <—(e45T -+ —(1—-e2 ))

) < 2C e~ 15T

A contradiction. Thus T" = ., and the assertion is proven. O

Now we are in the situation to prove the stability result for the (z, w)-system (3.60),
(3.61). The regularity of the solution will follow by classical results from [5] and [32],
cf. Theorem C.3. As in [5], for a Holder exponent a € (0,1) we denote by C* the
space of Holder continuous functions and by C'*® the space of differentiable functions
with Hélder continuous derivative. Recall the notion of a classical solution (z,w) from
Definition 3.24.

Theorem 3.29. Let the Assumptions 1-4 be satisfied and 0 < p < min{fiess, fis, 2} with
lhess from Assumption 3 and p, from Theorem 2.6. Then there exist € > 0 and constants
Ko > 1, B> 0 such that for all initial values (2o, wo) € G x V2 with (20, Wo) [lr2xx3 < €
there hold:
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i) The system (3.60), (3.61) has a unique classical solution
w € C*((0,00), V2) N C"((0,00), V) N C1([0,0),V;), z € C'([0,00),R?)

n
for arbitrary o € (0,1).

ii) There exists Zoo = 2o0(20, Wo) € R? such that for all t >0
1w ()l x1 + 12(t) = 20| < Koe [ (20, Wo)l[k2xxss |20 < (Ko + 1) (20, Wo) [l x; -

Proof. Recall K, 3 from Theorem 3.21 and J, C; from Lemma 3.25. Now choose €,& > 0
such that 0 < 2K¢ < ¢ and

5 €~ 15} 16C4 K

We abbreviate & := ||(zo, w0)||R2Xx% <e. Let
too = SUD {T > 0:3(z,w) local mild solution of (3.60), (3.61) on [0,7)
Iw®llx; < K2, |=(6)] < Céo, t € [0,7) .

Then Lemma 3.27 with €g = € and ¢; = % < 0 implies to, > t, = t.(g9,€1). Using
Theorem 3.21 and Lemma 3.25 we estimate for all 0 <t <t

t
I (Ollxg < leSwolly + [ 10 a(0), wis) s
0
t
< Ke P wollg + [ eI s), w(s) Ly
0
t
< Ke P wollg + KCx [ e ([a()] + Iwis) ) (o) xyds
0

t
< Ke M6+ KOO, [ e (604wl ) Iw(s) s
0

Then the Gronwall estimate in Lemma 3.28 implies due to (3.71)

Iw(t)llxs < 2Ke %, < 2Ke 3% < % € [0,.). (3.72)
This yields
)| < |20l +/ \r[z] w(s))|ds < §0+C4/ |w(s HdeS
wrnl o (3.73)
< &+ 201K ¢ / s < 6ot T < S e t)
0
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Next, we show that ., = co. For this purpose, assume the contrary, i.e. t,, < co. Then

the estimates (3.72), (3.73) imply

Cz §0
2

€

[W(too — 5t)llxp < > =co, |2(tos — 3t.)| <

=£1.

Now we can apply Lemma 3.27 once again to the integral equations (3.68), (3.69) with
wo = W(te — 3t.) and zg = z(fe — 3t,) and obtain a solution (Z, W) of (3.68), (3.69) on
[0, ¢,) with

W(0) = wlte — 3), [W(t)|x < K& te[0.t,)
2H0) = 2(te — L), 2] < Cu&o, te[0,t).

Define

(z, w)(t), t €0, toe — 3t.]
(Z,W)(t —too + 3t2), 1t € (too — 3tutoo + 3Tu)-
Then (2, w) is a local mild solution on [0, fe+3t,) With [w(t)[[x; < Keand [2(t)] < C.&.

A contradiction to the definition of t.,. Hence t,, = co and (3.72) holds on [0,00). We
see that the integral

Zoo = 20 + /00 rlE(z(s), w(s))ds
0
exists since
200 2l < [ a0, wis)lds
t
<00 [T il <20 [ s = 20
¢ ¢

Thus the first estimate in ii) is proven with Ky = 2K + % and = %6 The second
estimate is obtained by

6_%ﬁt€0.

20| < 12(0) = 20o] 4 [20] < (Ko + 1)&o-

Hence ii) is proven and it remains to show the regularity of (z, w). By Lemma 3.27 we
have ¥ € C(V,R?), V = Bs(0) x Bs(0) C R? x X! and, since (z,w) € C([0,00),R? X
V,)) with [2(t)], [w(t)[[x2 < 6, there hold rE(z(),w(-)) € C([0,00),R?). Thus z €

C1(]0,00),R?). Furthermore, consider the equation

u(t) = Lu(t)+r(t), t>0, u(0)=wy, (3.74)
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where 7(t) := r*l(2(t),w(t)). Suppose 0 < s <t < co. Then by Lemma 3.27 we find
some C' > 0 such that

Ir(®) = () l1x, = I Ca(0), wit)) = rI (), wis)lx,
< Cy (J2(0) = 2(3)] + [w(t) = w(s)llx;)

< 0 ([ 1w+ [ 1r9e(o), wio o

<c Q%/w mm+@/\\+wmmm)«w—ﬁ

This implies r € C*([0, 00), X)) for every a € (0,1). Moreover, for arbitrary s > 0 there

hold
[ @l = [ 1o, wo) e < 0 [ wgar < o

Now Theorem C.3 implies
t
u(t) = e“wq +/ ey (s)ds
0

solves (3.74) and u € C*((0, 00), V;?) N C'((0, 00), V;,) N C*([0, 00), V). But

t t
u(t) = e“wy + / e =)r(s)ds = eFwy +/ et IErl (2 (5), w(s))ds = wi(t).
0 0

Hence, for all a € (0,1)
w(t) € C*((0,00), V) N C((0,00), V) N C([0,0), V).
U

The final step is to ensure that the solution (z, w) from Theorem 3.29 stays in a small
zero neighborhood where the nonlinear coordinate transformation 7" from Lemma 3.22 is
diffeomorphic. Thanks to the stability estimates in Theorem 3.29 ii) this is guaranteed
if the initial values are sufficiently small. Hence if ug in (0.22) is sufficiently small the
solution (z, w) is equivalent to a solution u of (0.22), which converges to the group orbit
of v, with an asymptotic phase. Moreover, the solution u stays in the neighborhood of
the group orbit for all positive times. This proves nonlinear stability with asymptotic
phase of the traveling oscillating front.



3.7. NONLINEAR STABILITY THEOREM 109

Proof of Theorem 1.11. Take W,V from Lemma 3.22 and let 6 > 0 such that
Bs:={ue X, : |jullx, <4}

satisfies Bs C T(V) and P(B;) C II(W). In particular, T : T-'(B;) — B; and II :
' (P(B;s)) — P(Bs) are diffeomorphic. Then there is Cr; > 0 such that

‘Hil(PVH < CH”VHXn Vv € Bg.
Now we take ¢ > 0 from Theorem 3.29 so small such that the solution (z,w) of (3.60),
(3.61) satisfies (z(t), w(t)) € T~ (Bs) and 2(t) € IT"'(P(Bs)) for all t € [0, 00). Further,
let C' > 1 be such that Lemma 3.7 and (3.18) imply
la(x ™" (1)) v — alx ™ (22))Vullxg < Clar — 2| Vr, 2 € ITH(P(By).

Choose

) =1 ™

. . eCl ——
4CCKO + CKO + CCH KO + Coo

80<min< ), OZCH(1+C)+1

with Ky, Cy from Theorem 3.29 and define
(20, Wo) 1= T~ () = (II"}(Pug), ug + v, — a(x ™" (20))v4)-
Then |z| < Crlluel|x, and

1(20, Wo)llrzxx3 = |20] + IWollx;
< 20| + la(x™" (20))vs = Vallx3 + [[wo]lx3 < Clluollxy < Ceo < e
(3.75)

Moreover, Theorem 3.29 implies there exist z € C'([0, 00), R?) and w € C((0,00), V;?) N
C*((0,00),V},) such that (z, w) solves (3.60), (3.61) with 2(0) = z, w(0) = wy and

[w(t)llxy < Koo, [2()] < [2(t) = Zoo| + [ 200 < (Ko + Coc)eo <7, L € [0,00).
Hence z(t) € U for all t € [0,00) and we define y(t) = x*(2(t)) € C*(]0,00),G). Set
u(t) = a(r(B)v, + w(t), 1 € [0,00)
Then u € C((0,00),Y,) N C([0,00), X,) and since gy < 6 Lemma 3.22 implies

u(0) = a(v(0)v + w(0) = a(x " (20))vs — vu + Wo + v,

=T(z0,Wp) + V. = ug + v,.



110 CHAPTER 3. NONLINEAR STABILITY

For t € (0,00) we obtain with u = (u,p)" and w = (w,¢)"

b wilt) — Loalv(£))vs — Low(t) — <f (a(y(8))ve+ w))

Dlz(t) F(a(y(t))oms + C)
= [(a()vs 0 x LY ()] (E) + wilt) — La(t) — 1 (=(8), wit))
( [ ((E)]ar(t) — (I — PYrl(s(t), wit))

Hence, u solves (0.22). Further, recall the metric dg(v1,792) = |71 —72|g on G from (1.11).
With 7o = X '(25) we have by Theorem 3.29

[w()llxz + [7(t) = Yoola < W(E)|lxz + [2(8) — 2o
< Koe [|(z0, Wo) [lz2wxy < Kem|lug| x;

with K = CK,. In addition,
h/oo|g S |’Yo|g + |70 - fyoo|g S ‘20‘ + ‘20 - zoo‘ S CooHuOHX,%a Coo - C(H + éKO

Finally, we show uniqueness of u. For this purpose, we have

N S

[u(®) = villx, < Cl2(t) = zoo| + [W(D)]x, + Clzoo| < ((C'+ 1)K + CCx)e0 <
Let @ be another solution of (0.22) on [0,T") for some T > 0. Let

Ti=sup{t € [0,T): ||[a —v,.|x, <don [0,1)}.

Then there is a solution (Z,w) of (3.60), (3.61) on [0,7) such that T'(Z(¢),w(t)) =
u(t) — v, and thus a(t) = a(y(t )) v, +w(t), ¥(t) = Xfl(é(t)). But since (z, w) is unique
we conclude (Z, W) = (z,w) and u(t) = u(t) on [0,7). Now assume 7 < T. Then for all
te|0,7)

5 2 () = villx, = [[a(t) = villx,-

Since the right-hand side converges to ¢ as t — 7, we arrive at a contradiction.
O

In particular, in the proof of Theorem 1.11 we have shown the following corollary
concerning the local coordinates in the chart (U, x) of the motion on the group orbit ~y
and the asymptotic phase 7. This will be useful in Chapter 4.
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Corollary 3.30. Let the Assumptions of Theorem 1.11 be satisfied and let eg > 0 be
sufficiently small. Then s,y from Theorem 1.11 satisfy Voo, ¥(t) € U for allt > 0 and
have local coordinates zs, € R* and z € C*(]0,00), R?), i.e.

() =xT21), Yoo =X ze)s Y0V =X (2 — 2(1), 20,
Moreover, there hold
|2(t) = zoo| < Ke ™ [luollzs, 20| < Cocluto]|x
with K,B, Cx from Theorem 1.11.

Proof. The assertions follows by the proof of Theorem 1.11 and the definition of the
chart (U, x) from (3.13). O
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Chapter 4

Freezing traveling oscillating fronts

In this chapter we apply the concept of the freezing method from [18], [19] to traveling
oscillating fronts. We develop a method to compute TOFs numerically. When starting a
finite difference or finite element computation to solve the equation (0.4) numerically and
to observe the formation of TOFSs, two basic problems occur. First, one has to truncate
the spatial domain of computation to a finite interval. But since TOFs are traveling
in space, the wave will leave the computational domain at a certain time. Second, the
frequency w and translation velocity ¢ are unknown a-priori. So on the one hand, we
are naturally interested in the velocities and on the other hand we cannot make use
of the co-moving equation (0.8) for which the profile becomes stationary. The freezing
method solves both problems. The idea is to transform (0.4) into a co-moving frame
via u(t) = a(y(t))v(t) with the new variable  for which one has to solve additional
equations. The number of additional degrees of freedom equals the dimension of the
Lie group ¢G. They are compensated by a corresponding number of algebraic constraints
resulting in a well-posed problem.

We start by applying the abstract concept of the freezing method to TOFs and obtain
a partial differential algebraic equation (PDAE). We discuss how to choose the phase
condition and how to obtain a well-posed problem called the freezing system. According
to Chapter 3 we show that TOFs are stable steady states of the freezing system. We
prove stability of TOFs for the freezing systems using the results from Chapter 3. For
this purpose, we will use the approach from [55] and [54] where the stability of traveling
waves in the freezing method was shown for first order hyperbolic systems. In the end,
we conclude the chapter with numerical experiments.

113
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4.1 The freezing method

We derive the freezing system on the unweighted spaces X*, ¢ € Ny, i.e. 7 = 0. Hence
X ~ [? x R?. To formulate the freezing system no weights are necessary, since for the
moment we do not ask for stability of TOFs in the system. We consider the Cauchy-
Problem on X associated with (0.4) for u = (u,p)' reading as

(A + f(u)) _ _
u = < (o) ) =:Fo(u), t>0, u0)=uyeX. (4.1)

It easy to see that F{ defines a closed, densely defined, linear operator on X with
D(Fy) =Y. Moreover, recall the Lie group G = S* x R acting on X via the group action
a(y), v=(0,7) € G from (0.25). Further, 7,G denotes the tangent space of G at v and
the associated Lie algebra g is given by the tangent space at the unit element 1, i.e.
g = T1G. By Lemma 3.8, for every v = (v,p)" € X' the group action a(-)v: G — X is
of class C'! and we denote its derivative (tangent) at v € G by

dla(y)v] : T,G — X, v~ da(y)v]v.
The left-multiplication by an element v € G on G is defined as the map
L:G=G, A L(3) =707
and is of class C*. Its derivative (tangent) is denoted by
dL, (%) : 1T5G = T,G, v+ dL,(y)v.

In the case ¥ = 1 we have dL,(1) : g — 7,G and dL.(1) defines a homeomorphism from
g to T,G, see [1], [53].

The operator Fy is equivariant under the group action a(y), i.e. a(v)Y C Y and
a(y)Fo(v) = Fola(y)v). We assume u = (u, )" to be a solution of the Cauchy problem
(4.1) and transform it into a co-moving frame via the ansatz

u(t) = a(y(O)v(E), ¢ >0,
Then we obtain by using the equivariance of F
a(y)Fo(v) = Fo(w) = w; = dla(y)v]y + a(7)vi. (4.2)
Since a(-) is a homomorphism we have for 7,4 € G
a(y)a(y)v = aly o y)v
which upon taking the v-derivative leads to

a(y)dla(¥)v]y = d[a(y o ¥)V]dL,(Y)v Vv € T5G.
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In particular, for ¥ = 1 we obtain
dla(y)v]dL,(1)v = a(y)d[a(1)v]y Vv e g.
Introducing the new variable pu(t) € g via v,(t) = dL ) (1)p(t), we conclude from (4.2)
vy = Fo(v) — d[a(1)v]u,. (4.3)

To compensate the additional degrees of freedom in the p-variable, we require an addi-
tional algebraic constraint, which is called the phase condition. In general, it is given
by a map

VX xg—=RE(v,p) = (v, ).

This leads to the so called freezing system reading as

vy = Fo(v) — dla(1)v]u, v(0) = vy, (4.4a)
0=1v(v;p), (4.4b)
o= dL, (L, A(0)=1. (140

Note that (4.4c) describes the position of the wave and is decoupled from (4.4a), (4.4Db).
In order to analyze solutions of the freezing system and using the stability results from
the previous chapter we have to formulate the system (4.4) in the local charts from (3.13),
(3.14). In particular, we use the representation of the derivative of the group action from
Lemma 3.7. In addition, this is necessary to give a concrete expression for the freezing
system which we can solve numerically later on. For this purpose, we note that the Lie
algebra g turns into a linear space via the derivative of the chart dy(1) : g — R?, which
is one-to-one and onto, see [1, Sec. 3.3| or [53, Sec. 4.1]. Now taking the derivative
of a(y)v = (a(-)v o x " H(x(7)) w.rt. v and evaluating at v = 1 to obtain the local
representation

dla(1)v] = (a(-) o x71)'(0)dx(L) = =(S1v, vi)dx(L).

Next we set v/(t) = dy(1)u(t) € R? and define ¢ : X x R2 — R? via ¢(v,v) = (v, ).
Then we obtain the freezing system in local coordinates reading as the initial value
problem with v = (v, p)"

([ Avg + v, + 11510+ f(v) v(0) = v a
Ve ( v Sip+ f(p) ) ’ 0) = o

0=1(v;v), (4.5b)
7 = dL,(1)dx(1)"'v, ~(0) = 1. (4.5¢)
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Again (4.5¢) is decoupled from (4.5a), (4.5b) and can be computed in a post process.
It remains to specify the phase condition lﬁ There are several ways to choose the
phase condition, cf. [18, Sec. 2.3]. A possibility is to choose a fixed template function
w = (W, f)T € X! and require that w is the closest point on the group orbit Ow to the
solution v of the PDE (4.5a) w.r.t. the X-norm, i.e. for all ¢ > 0 we require

min [Ja(7)W — v($)[[5 = W — v(®)[[%-
yeG

The first order necessary condition is

d .
& la(y)W = v(®)I% 0
and therefore
(dla(1)W]dx (1) 'v,w —v(t))x =0 Vv e R
Using Lemma 3.8, this yields
_ ~ _ (SlvAva u)X
0 = Uy (3 — V). whm>—<<wmmx | (4.6)
The condition (4.6) with g, € L[X,R?] is called the fixed phase condition, cf. [18].
The inner products defining Wg, can be written explicitly as
ANT /- o _ AN A AN o P
g —v) = (STE 0+ (0G0 00— (0 =g
(g, (0 = C0) = (v — p0)) L2
Now we replace 1 in (4.5b) by Vg, and obtain the freezing system with the fixed phase
condition

Avgy + o0, + 11510 + f(v)
—= — 7
v ( nSip+ f(p) YO =w e
0= V(W —v), (4.7b)
Yo = dL,(Ddx(1) Y, 4(0) = 1. (470
The two equation (4.7a), (4.7b) define a partial differential algebraic equation (PDAE)

of index 2, cf. [30]. In order to see that see algebraic constraint (4.7b) is of index 2 we
take the first derivative of the first component of (4.7b) w.r.t. ¢t and obtain using (4.7a)

0= (S1W,vy)x = (1) pr + (Si (w0 — (), vy — pid) 12
=1 ((S1O)TSip+ (811 = C0), $1(v = p))12 ) + va(S1 (10 = C0), v,
+(S10) T f(p) + (Si(b — (), Avge + f(v) — f(p)D)2 (4.8)

= 11(S1W,S1V)x + 1(S1W, v, x

+ (10T F(p) + (Si(w0 — €0), Avgy + f(v) — F(p)0) 2.
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Differentiating the second component of (4.7b) w.r.t. ¢ yields

0= (Wxavt)x = (wxavt - Pt@)ﬂ
= I/1<UA};B, 51<U - p’lAJ))LQ + V2<UA};B, Um>L2 -+ (wm, Avm + f(U) — f(p)’lAJ)LQ (49)
=11 (Wy, S1V)x + 12(Wy, Vi) x + (s, Avgy + f(v) — f(p)0) 2.

Combining (4.8), (4.9) yields

oy — (SO F(p) + (Si(w = (D), Avgy + f(v) = f(p)0)r2
Qsx (V) ( (@, Avy + F(0) — £(p)0) 1o ) (4.10)

with

Onn(¥) = ((slw, Siv)x (slw,vx)x) | (4.11)

(Wa, S1v)x (Wa, Va)x

Assuming that Q. (V) is invertible for all ¢ > 0 we can write (4.10) explicitly for v which
shows that (4.7a), (4.7b) is a PDAE of index 2, cf. [30]. In application, one has to choose
the template w such that Qgy(vo) is invertible. Then Qg (v) is invertible as long as the
time evolution of v is small. As we will see in the next section, this will be the case when
we start with v sufficiently close to the profile of the TOF v,. In Section 4.3 we will
use (4.10) to solve the freezing system (4.7) numerically.

4.2 Stability of the freezing system

We assume Assumption 1-4 and consider the freezing system as the PDAE with perturbed
initial conditions of the TOF v,

v, (Avm + v, + 11510 + f(v)
' nSip+ f(p)
0=T(w—v), (4.12b)

) , v(0) = vy, + uy, (4.12a)

where w € X% is a template function and ¥ : X, — R? a two dimensional linear
functional on X,. The phase condition ¥ can be chosen as the fixed phase condition
Usy from (4.6) minimizing the distance of the solution of the PDE to the group orbit of
the template function. However, in the system (4.12) we allow a general phase condition
satisfying appropriate assumptions, cf. Assumption 9. The reconstruction of the position
can be written as the differential equation on the manifold G

e = dLy(1)dx(1)"'v, ~7(0) =1, (4.13)

which is decoupled from the PDAE (4.12).
By Assumption 2 there is a TOF of (0.4) with profile v,, frequency w and speed c.
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In particular, we have F(v,) = 0, where F is the nonlinear operator from (0.23). Let
v, = (w, c) and let us assume that v, satisfies the phase condition, i.e. V(W —v,) = 0.
Then we conclude that (v,, ;) is a stationary solution of (4.12) with uy = 0. Thus we
can ask for stability of the solution (v,,v,). In particular, we are interested in the long
time behavior of the solution (v, v) of (4.12) if the initial perturbation ug is small. We
will prove a stability result of the solution (v,,v,) of the freezing system by using the
nonlinear stability with asymptotic phase of v, from Theorem 1.11. In order to do so,
we use the following notion of a solution.

Definition 4.1. A pair (v,v) is called a classical solution of the PDAE (4.12) on [0, to.)
if

i) ve C((0,tx), Y,) NCH[0,ts), X;) and v = (11, 10) € C([0, t), R?),
ii) (v,v) solves the PDE (4.12a) pointwise for all ¢ € [0,t) in X,
iii) the algebraic constraint (4.12b) is satisfied for all ¢ € [0,t.),
iv) v(0) = v, +ug € X,,.

If a classical solution exists it must satisfy the algebraic constraint (4.12b) at t = 0.
Thus we will require the consistency condition of the initial value V(W — v, —ug) = 0.

Definition 4.2. The initial value v, + ug in (4.12a) is called consistent if
V(W —v,—ug) =0. (4.14)

The condition (4.14) seems to be very restrictive regarding the initial data uy. But it
is not, since we did not specify the representative v, of the group orbit O(v,). In other
words, for arbitrary uy one finds generically some representative v, of the group orbit
O(v,) such that (4.14) is satisfied.

We make the following assumption on the phase condition WU:

Assumption 9. ¥ : X, — R? is a linear bounded functional on X, and satisfies for
some C'y > 0 the estimate

U(v)| < Cy|lvllx-+ VveX, (4.15)
Moreover, with ¥ = (U, Wy)" the matrix

(vita) wv)

is invertible and there is w = (,()T € X, with

U(w —v,) = 0.
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Note that the fixed phase condition W, from (4.6) satisfies Assumption 9 if we choose
an appropriate w € Y N X, (e.g. W = v,). To see that (4.15) is satisfied, we can use the
Gelfand triplet property of X* € X € X! and estimate

Va1 (V)] = [(S1W, v)x| = [(S1W, V) x1ux-1] < [[SiW]|x1][v][x-1
and
[Wax2 (V)| = [(We, V) x| = [(Wa, V) x1ex—1| < [[Wel[x1[[v][x-1.

Remark 4.3. For the proof of the stability in this section it would be sufficient to require
v e L[X;l,Rﬂ. But in this case one is forced to extend the fized phase condition to a
linear bounded functional i’ﬁx on Xn_l such that \ifﬁx € L[Xn_l, Rz]. For that reason, we
decided to work with Assumption 9 such that we can keep in mind W to be the fized phase
condition from (4.6).

In what follows, we prove under Assumption 1-4 and 9 that the freezing system
(4.12) attains a unique classical solution and that the stationary solution (vi,v,) with
v, = (w, ¢) is asymptotically stable in the classical sense of Lyapunov. For this purpose,
we make the following solution ansatz for the solution of the PDAE (4.12a)

v(t) = a(y " (O)u(t), () =x""(~2(t) t=0, (4.16)

where u is a solution to the Cauchy problem (0.22) with initial value u(0) = v, + ug
and some z € C1([0,00),R?). Hence, z are the local coordinates of some group element
v(t) € G in the chart (U, ), i.e. y(t) € U C G. Note that by definition of the chart
(U, x) we have v(t) € U if and only if v(¢t)™' € U and v~ (¢t) = x'(—=2(t)). We often
write v~ ! instead of y~*(—z) and ~y instead of x~!(z). The initial value in (4.12a) implies
7(0) = 1 and therefore z(0) = 0. Plugging the ansatz (4.16) into (4.12a), we obtain with
2z = (04, 71)

a(y Hu,r +aly1)S1ub; + a(y ) F(u)

= o2+ alru

v - (Avm + 190, + v1S1v + f(v)) (4.17)
t v Sip+ f(p)
= a(7_1>f<u) + a<fy_1)<y2 — C)llx + CL(fY_l)(Vl B w)slu.

This determines v via v = 2; + v,. We define the map

.yl 2,2 o ‘I’l(slV
Q: X, =»R> v Qv):= (\Ifg(Slv

~— —

il(vx)) . (4.18)
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By Assumption 9 we have Q(v,) to be non-singular. Now taking the time derivative of
the algebraic constraint yields

%‘I’(W —v) = -U(v;) = =T(a(y H)S1u)b — ¥(a(y " u,)n — ¥(a(y™)F(u))
_ (a7 hSi) Wala(y W)\ g1 2y (4.19)
<\I!2(a(fy‘1)81u) \1[2(61/(’7_1)1133)) ¢ = Wa(y ) F(w)
( 1

Thus, if z € C*(]0, ), R?) is a solution of the ODE
Qlalx'(=2))u)z = T(a(x~(=2))F(u)), 2(0)=0 (4.20)

the algebraic constraint is constant in time and the consistency of the initial value, cf.
Definition 4.2, implies

(W —v(t) =0 Vt>0.

Thus, v is classical solution of the freezing system (4.12). Now the idea is to study
solutions of the ODE (4.20) and construct a solution to the PDAE (4.12) via the ansatz
(4.16).

Lemma 4.4. Let Assumption 1-4 and Assumption 9 be satisfied. Further, let 0 < p <
MIN{ fless, fla, 2} With fless from Assumption 3 and p,. from Theorem 2.6. Then there are
£,0 > 0 such that for all ug € Y, with ||uo|[x1 < e andt € [0,00) there hold

Qa(x™'(-))u) € C*(B5(0), GL(R?)),
where u is the solution from Theorem 1.11.

Proof. First let ¢ > 0 be so small such that Theorem 1.11 applies. By Assumption 9
the matrix Q(v,) is invertible and continuously differentiable in v,, since it is linear in
v,. As a consequence of the implicit function theorem there is ég > 0 such that Q(v) is
invertible whenever |v, — v||x, < dq. If this is the case, Q(v) itself and the inverse are
continuously differentiable in v. So we show [[a(x'(2))u(t) — vi||x, < dg for all t > 0
and z € Bs(0). By Lemma 3.7 and (3.18), there are dy > 0 and a constant C' > 0 such
that

la(x ' (2)vllx, < ClIvllx, ¥z € Bs(0), v e X, (4.21)
la(x ™ (21))ve — alx " (22))Valx, < Clar — 2l vallxy V21,22 € By (0). (4.22)

Take C,, K from Theorem 1.11. Now choose ¢, € sufficiently small such that 0 < ¢ < dy,
0<e<Cléy and

CKe + C2COOEHV*HX% + 025HV*HX7% < dg.



4.2. STABILITY OF THE FREEZING SYSTEM 121

Then, using Theorem 1.11, Corollary 3.30, (3.18), (4.21), (4.22), we obtain for all z €
B5(0), up € Y, with |lug||x, < e and ¢ € [0,00) the estimate

la(x~'(2))u(t) = villx, < Cllu(t) = a(x ' (=2))vllx,
< Cllu(t) = alyse)Vellx, + Cllalx ™ (200)) Vi — alx ™' (—=2))villx,
< CKe e + O (Jzo0] + |2]) Vil x1
< CKe + C?Coe|vi|lxs + C26||v|xy < g

Now the assertion is proven, since u(t) € Y, and the group action (a(-)u(t) o x7') is
continuously differentiable. O

By the previous lemma we can write the ODE (4.20) as an explicit ODE for z with
a continuous right-hand side. Then we obtain local existence by using Peano’s existence
theorem. However, since F(u) only belongs to X, the group action (a(-)F(u)o x71!) is
only continuous and not Lipschitz continuous in z. Therefore, we do not have uniqueness
of the solution. This will be concluded in a further step. In order to do so, we use the
approach from [55], [54].

Lemma 4.5 (Local existence). Let Assumption 1-4 and Assumption 9 be satisfied. Fur-
ther, let 0 < p < min{fiess, fix, 2} With fless from Assumption 3 and p, from Theorem 2.6
and let € > 0 be given as in Lemma 4.4. Then for all ug € Y, with [[uol|xy < e there is
to = to(ug) > 0 such that the ODE (4.20) has a solution z € C1([0,ty), R?).

Proof. By Lemma 4.4, Q(a(x'(+))u(t)) is invertible for all z € Bs(0), t € [0,00). Then
the ODE 4.20 can be rewritten as

z=r(tz), =2(0)=1 (4.23)

with the right-hand side is given by

-1

r:[0,00) X Bs(0) = R (t,2) — Q(a(x’l(—z))u(t)) \If(a(x’l(—z))]:(u(t))).

By Assumption 9, Theorem 1.11, Lemma 3.8 and Lemma 4.4 it follows r € C([0, 00) X
Bs(0),R?). Now the claim is a consequence of Peano’s existence theorem. O

As a next step we show that the solution z € C([0, ), R?) from Lemma 4.5 exists
for all times, i.e. we have t; = oo. For this purpose we need the following lemma.

Lemma 4.6. Let Assumption 1-4 and Assumption 9 be satisfied. Further, let 0 < p <
MIN{ flogs, flny 2} With fless from Assumption 3 and ., from Theorem 2.6. Then the map

AR 5 R? 2= A(2) := U(alx H(2)ve — Vi)

is a local C*-diffeomorphism near 0.
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Proof. We have A(0) = 0 and 9.A(0) = Q(v,) which is invertible by Assumption 9.
Hence the assertion is a consequence of the implicit function theorem D.8. O

Now we conclude global existence of the solution from Lemma 4.5.

Lemma 4.7 (Global existence). Let Assumption 1-4 and Assumption 9 be satisfied.
Further, let 0 < p < min{ tess, fx, 2} With fiess from Assumption 3 and p,. from Theorem
2.6 and let 6 > 0 be from Lemma 4.4. Then there is € > 0 such that for all uy € Y, with
ol x; < & the ODE (4.20) has a solution z € C'([0,00), Bs/2(0)).

Proof. First take ¢ > 0 so small such that Lemma 4.4 and Lemma 4.5 as well as Theorem
1.11 apply. Let z € C*([0,t), R?) be the maximal extension of the local solution from
Lemma 4.5 in Bs(0) and assume ¢, < co. Then |z(t)| — § as t — to. The ansatz (4.16)
and the previous calculation (4.19) show

U(w —a(xy (—z()ut) =0 Vte0,ty)
which implies together with Assumption 9
U(v, —alx H(—z(t))ut) =0 YVt 0,ty).

Choose 0 < d5 < ¢ such that Lemma 4.6 implies and thus A™! : Bs, (1) — A™(B;, (1))
is diffeomorphic. Then, since A(0) = 0, there is Cy > 0 such that
AT (W)l < Calyl Yy € Bs, (0). (4.24)

Now choose € > 0 so small such that

(CACyCK + C)e < %A

with C from (4.21) and K, Cy, from Theorem 1.11. Let z,, be from Corollary 3.30. Then
we have |z < Coe < % and

X (200 = 2(t) = Yoo 07 (B).
We obtain for all 0 <t <t

2] < [2nc] + [0 — 2()] < Coee + A7 (W(a(x ™ (0 — )V — V)|
< Cuz + Cr |W(ao0 07 L ()V2 = v2) — U(v, — a(y (B ()]
< Coe + CrCy [la(yes 0971 (1)) Ve — aly™ (1))u(t)]|
< COxe + CpCyCla(Voo) v — u(t) ]| x, < Coce + CACyCKe < %\ < g,

where we used the estimate from Theorem 1.11 and Lemma 3.7. Since z is continuous
on [0, %) this contradicts |z(t)| — § as t — t.. Hence t,, = 0o and the assertion is
proven. ]
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It remains to show uniqueness of the global solution z from Lemma 4.7 without using
classical Lipschitz continuity. As the next Lemma will show, we are able to prove special
Lipschitz-like estimates in a small neighborhood of the solution z from Lemma 4.7 which
will yield the uniqueness of the solution, cf. [55], [54].

Lemma 4.8. Let Assumption 1-4 and Assumption 9 be satisfied. Further, let 0 < p <

MIN{ fless, flay 2} With fless from Assumption 3 and p, from Theorem 2.6 and let z €
C'([0,00), Bs/2(0)) be the solution of the ODE (4.20) from Lemma 4.7 and let

H:[0,00) x B2 = R, (t,2) = 2 = Q(a(x ! (—2(1))u(®)) " U(W —a(x " (=2)u(t).
Then there is €, > 0 such that for all t € [0,00) there hold

—

H(t,2) — Ht, ()] < 512 — 2(8)] V2 € B..(=(2).

DO | —

Proof. By Theorem 1.11, u(t) is uniformly bounded for ¢ € [0,00). Let § = 35. By
Lemma 4.4 there is Cg > 0 such that

Qab () ! £ Cq Ve ,00), = € B;(0),
|Qa(x ™" (21))u(t) — Qlalx " (22))u(t))] < Colar — 2| Yt €1[0,00), 21,2 € By

Now let
< mi o6 1
L <min | -, —5
: 4203

and Z € B._ (2(t)), t € [0,00). Then
§ = b -
zWl =5 <0, [E[<[Z—z]+]z(t) <e:+ 5 <0
and we estimate, using the mean value theorem and 9,9 ((a(-)uox1)(z)) = —Q(a(-)uo

X)),
[H(t,2) = H(t,2(1))]
< Co|Qalx™ (=2(®))u(t) (2 — (1)) — Tla(x ™ (—z(t)u(t) — a(x "' (=2))u(t))|
= CQ‘Q(a(x‘l(—Z(t)))u(t))(i - 2(1))

- (a(x " (=2(t) + (2(t) = Z)T))u(t))(z - Z(t))dT‘
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Now we are in the situation to conclude the uniqueness of z.

Lemma 4.9 (Uniqueness). Let Assumption 1-4 and Assumption 9 be satisfied. Further,
let 0 < p < min{fless, fs, 2} With pless from Assumption 3 and p, from Theorem 2.6.
Then there is € > 0 such that for all ug € Y, with |[uel|xy < & the ODE (4.20) has a

unique global solution z € C([0, c0), R?).

Proof. Take z € C'([0,00), Bs/2(1)) from Lemma 4.7 and let 2 € C'([0,%),R*) be
another maximal extended solution of (4.20). Define

too :=sup{T € [0,19) : Z2(t) = 2(t) VO < t < T}. (4.25)
Assume t., < to. By continuity of the solutions there is 6 > 0 with ¢, +d < ¢ such that
12(t) — 2(t)] < e, VtE€ [too — 0t + ]
where ¢, is from Lemma 4.8. Now since Z, z solve (4.20) there holds for all 0 <t < ¢,

T(W —a(x"' (—z(t)u(t)) = T(W —a(x " (=Z(t)u(t)) =0

and thus Lemma 4.8 implies for all t <t + 9

- - L.
[2(t) — 2()] = [H(2, 2(t)) — H(t, 2(1))] < 5]2(¢) — 2(D)].
Therefore, Z(t) = z(t) for all t < t,,+4. This contradicts (4.25). Hence to, =ty = co. O
Finally by using the ansatz (4.16) we obtain the following stability result for TOFs
in the freezing system.

Theorem 4.10 (Stability of the freezing system). Let Assumption 1-4 and Assumption
9 be satisfied. Further, let 0 < p < min{jiess, s, 2} With pless from Assumption 3 and ji,
from Theorem 2.6.. Then there is € > 0 such that for all consistent initial values uy € Y,
with ||ullxy < & and vy € R? the PDAE (4.12) has a unique classical solution (v,v) on

[0,00). Moreover, there are K,B > 0 such that for all t > 0 there hold
V() = villxy + () = vi] < Ke ™ g x;. (4.26)

Proof. Take € > 0 so small such that Theorem 1.11 and Lemma 4.9 apply. Define v
via the ansatz (4.16) with u € C([0,00),Y;) N C*([0,00), X)) to be the solution from
Theorem 1.11 and z € C*([0, 00), R?) to be from Lemma 4.9. Then v € C([0,00),Y;) N
C*([0,0), X,;). Moreover, set v = z; + v,. The anstaz (4.16) and the calculation (4.17),
(4.19) show that the pair (v,v) solves (4.12) pointwise. Moreover, since z(0) = 0 the
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initial value from (4.12a) is satisfied. Hence (v,v) is a classical solution of the PDAE
(4.12). Now let (v, ) be another classical solution of the PDAE (4.12). We define

Z(t) = /0 v, —0(s)ds, w(t)=alx "(=2(t)t)v(t), t>0.
Then 2(0) = 0 and w(0) = v, + ug. Furthermore, writing ¥ = x~'(—2),

wy = (w —1)a(¥)81V + (¢ = P2)a(¥) Ve + a(F)ve
=wSwW + cw, + a(y) (Avx?(;)f(v)) = F(w).

Thus w solves (0.22) and Theorem 1.11 states w = u. Moreover, the calculation (4.19)
shows Z solves (4.20) and we conclude z = %, see Lemma 4.9. Then v = v and v =
v. Thus (v,v) is the unique solution of the PDAE (4.12) and it remains to show the
exponential estimate (4.26). For this purpose, let [[ug|x; =: €9 < € and use Assumption
9, Theorem 1.11 and take z,, from Corollary 3.30 and C,C) from (4.21), (4.22) and
(4.24) to estimate

200 — 2(t)] = [A7H(P ( H2oo = 2(0))Ve = V)|
< C [¥(af ( = 2(1)Ve = Vi) = U(a(y T (t)u(t) - v.)|
< CACmHa(%o “H)ve = a(y T () u(t) [ x—
< CaCylla(yee 071 () Ve — aly ™ (1)u(t)|lx,
< CAC\I,CHa(%O)V* —u(t)||x, < CACyCKe e

Further, we obtain

V(1) = vullxg = lla(y™" (0)u(t) — villx;
< lla(y (O)u(t) — alyee 07 () Vallxy + lla(ree 0 7 () Vi — Villx;
< llaly ™ (®)ut) = alye 07 (O)Vallxy + lalx ™ (200 — 2()) Vi = Villxy
< Cllu(t) = a(yoo) Vel xy + Clzoo = 2(1)|[1vlly,

~ ~ K ~
S CKG_&EO + CAC\IJCQKG_&E()HV*Hyn S Ee_ﬁtEo.

Use the Lipschitz continuity of F : X! — X! from Lemma 3.8 and Assumption 9 to
obtain

V(t) = v.| = |2(6)] < Col(alx ™ (~=(£) F(u()))] = Col¥ (F(v(1)))]
< CoCol FV(t)llx1 = CoCul F(v (1) = F(v.)llx-

3 K
< CQC‘I’L}—”V(t) - V*”Xl < CQC\pL]:Ke_BtEO = ?e_ﬁtg().
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4.3 Numerical simulations and experiments

In this section we perform numerical simulations and experiments concerning TOFs. We
show how TOFs can be observed by solving (0.4) using numerical methods. As a proto-
type for the equation (0.4) we choose the quintic Ginzburg-Landau equation (QCGL).
We solve the equation (QCGL) itself as well as the corresponding freezing system from
Section 4.1. We conclude the section by calculating the spectrum of the corresponding
linearized operator and verify the assumptions from Section 1.3 that guarantees nonlin-
ear stability of TOFs. In particular, we determine the point spectrum of the linearized
operator and discuss the shape of the essential spectrum in applications.

4.3.1 Computing traveling oscillating fronts
Let us consider (QCGL) reading as
Uy = aUg + pU + BIUPU +4|UI*U, z€R,t >0

for U(x,t) € C with initial data U(-,0) = U, and parameter o, u, 5,7 € C. We set
a = ay+iag, i = py+tips, B = Bi+ifa, v = y1+iv2 with real coefficients oy, p;, 5;,7: € R.
Then the corresponding real-valued system for u = (ReU,Im U)" is given by (0.4), i.e.

uy = Augy + g(JulP)u, xR, t >0,

with initial value u(-,0) = ug, up = (ReUy,ImU;)". Here A and g are given by (0.5)
with

oltufy = (%el) ~20E) . ot =t Bl 4 lult, =12 @)

As an example we choose the parameters
1
a=1, =3 L=1+i ~v=—-1+i. (4.28)

We look for a TOF in the system (0.4) with the special nonlinearity g given by (4.27).
Before solving (0.4) with (4.27) we discuss a-priori properties of a TOF. Using Lemma
1.6, we can calculate the possible asymptotic rest-state v, and frequency w € R of the
TOF a-priori since by Lemma 1.6 there must hold g;(|vs]?) = 0 and w = —gs(|veo|?).
For this purpose, let 7o := |vs|?. Then there holds

0= g1(reo) = N7 + BiToc + 1.

Hence there are at most two possible solutions

+ b 1 2
= —+—\/pBi—4 .
Too 27 27 b i
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Taking Assumption 2 into account, we have

91(7“;) =1+ 27" = i\/ 5% — 4y .

Therefore, ¢j(r%) < 0 and gj(r) > 0. By Assumption 2 we have for a stable TOF
Too = rL and with the parameters from (4.28) we obtain

1 V242
|voo| = \/ﬂ + 5/t — 4y = %f ~ 0.9239. (4.29)

21 2m

In addition, the corresponding frequency of the TOF is given by

xX X
60 60
|
40 = 40 -
—= C—
+ ‘— - =
S— S—
S S—
20 —— 20 —
— =
—— C——
—_— e —
= —_—
0 0 L)
-50 0 50 -50 0 50
X X

Figure 4.1: Numerical simulation of a TOF in (QCGL) with parameters from (4.28).
Real part (left), imaginary part (right

~—

W= —g2(rec) = —p2 — Parec — N2l = —3 — —5- ~ —1.5821. (4.30)

To solve (0.4) numerically as an initial value problem, we have to truncate the equation
to a bounded domain of computation 2 = [—L, L] and then solve the equation using, for
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instance, finite difference methods. In this case we will choose homogeneous Neumann
boundary conditions for the equation, i.e. wu,(z,t) = 0, z € 9Q, t > 0. As an initial
value we set u(-,0) = (up,0)" with ug(z) = 3 tanh(1000z) + 3. In Figure 4.1 we see
the results of a finite difference approximation of the solution for L = 50 with spatial
step size Ax = 0.1. For the time integration we used the implicit Euler method to
avoid restrictions on the step size in time, which is chosen to be At = 0.1. The implicit
equations are solved using Newton’s method with a tolerance of 107°.

We see that after a short time period the solution has the shape of a TOF. Taking
Theorem 1.11 into account, we expect that the solution is an approximation of a TOF in
the equation since it converges to the TOF. We see that the front travels in space with
positive velocity ¢ > 0 and the asymptotic rest-state is approximately |vs| &~ 0.9239 as
calculated in (4.29). However, the velocity ¢ and the frequency w cannot be determined
by the numerical results precisely without additional effort. Moreover, we see that the
TOF leaves the domain of computation after a certain time period and vanishes. In
order to avoid this and to compute the velocities precisely, we apply the freezing method
to this example in the next section.

TOFs can be observed in a large set of parameters for (QCGL). As a second example
of a TOF for different parameter we refer to Figure 0.2. In addition, we consider the
Ginzburg-Landau equation with an extra septic term, see [20], reading as

Uy = aUpy + plU + BIUPU +A|U'U + 6|UIPU  z € R, t > 0. (4.31)

In this case the nonlinearity g is a cubic polynomial in |u|?>. The corresponding real-
valued system reads as (0.4) with the nonlinearity

2 91(|U|2) —gQ(\u\2)> 2 2 4 6 .
= i = + Gilul” 4+ oilul”, i=1,2.
g(Jul”) <g2(|u|2> g1(|u|2) ;o gillul”) = pi + Bilul Yilul® + 05 |ul v

(4.32)
We choose the parameter set
' 1

a:1+%, p=—s(l=i), B=14i, y=1+i, §=-1+i (4.33)

In this case we have |vy| &~ 1.2608 and w ~ 8.2323. The numerical results are shown
in Figure 4.2. We see that in this equation TOFs occur as well and expect them to be
stable. In particular, the experiments in this section show the existence and the stability
properties of TOFs from in Chapter 3.

4.3.2 Freezing traveling oscillating fronts

Now we apply the freezing method to the first example from Section 4.3.1, cf. (0.4),
(4.27), with parameter (4.28) and compute the profile and velocities of a TOF numeri-
cally. For this purpose, recall the freezing system from Section 4.1 with the fixed phase
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X X

20 — 20 -
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X X

Figure 4.2: Numerical simulation of a TOF in (4.31) with parameters from (4.33). Real
part (left), imaginary part (right).

condition (4.7) reading as

[ Avgy + v, + 11510+ f(v) v(0))
v ( viSip+ f(p) ) ’ (p(O)) -

0= \IfﬁX(VAV — V),

v = dL,(1)dx(1) 'y, ~(0)=1

with initial value uy = (ug, po)". To compute the solution of (4.7a), (4.7b) we use a
finite difference discretization in space and for time integration we use the following
algorithm to compute the solution (v, v"*1) at the next time step t,,; = t, + At with
vt = (pt pn )T from a current state (v, v") at time t,:

1. Given a solution (v, ") with v = (v, p")" of (4.7) at time ¢,,.

2. Compute v as an implicit Euler step of the finite difference discretization of the
equation v; = Avg, + 110, + 1LS1v + f(v) with v = v™ and initial value v™ on a
truncated domain ) = [—L, L] and step size At.
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3. Set p" Tt =" t(L).

4. Compute v from the linear system (4.10) with (v, p) = (v, pn*1).

a) real part

60
40

20

0
-50 0 50
T

c) real part

05|

-0.5 ¢

-50 0 50
T

e) real part at t = 60

-0.5 ¢

b) imaginary part

60
40

20

0
-50 0 50
T

d) imaginary part

05|

-50 0 50
T

f) imaginary part at ¢t = 60

Figure 4.3: Numerical simulation of the freezing method in (QCGL) with parameters

from (4.28).
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!

0 26 46 66
t
g) frequency w (blue) and speed ¢ (red)

-2

Figure 4.4: Frequency w (blue) and velocity ¢ (red) in the numerical simulation of the
freezing method in (QCGL) with parameters from (4.28).

We apply this algorithm to (QCGL) with the parameter set (4.28) from the previous
Section 4.3.1 and initial value ug(z) = (5 tanh(1000z) + £,0)". The results are shown
in Figure 4.3 and Figure 4.4. The spatial step size is chosen to be Az = 0.1 and the
domain of computation is © = [—50,50]. For the time discetization we use At = 0.1
and the implicit equations are solved with Newton’s methods using a tolerance of 107°.
We see that the numerical solution of the freezing method converge to the profile of
the TOF as Theorem 4.10 guarantees. In addition, the variable v converges to the
frequency and velocity of the TOF which are numerically given by w ~ —1.5821 and
¢ ~ 1.29 respectively. Note that the numerical value of the frequency coincides with
the a-priori calculated value in (4.30). In particular, the freezing method is a powerful
tool to compute the profile of a TOF as well as its frequency and velocity. Moreover, it
enables us to pursue the TOF for arbitrary times without increasing the computational
domain and therefore the numerical effort.

4.3.3 Numerical spectrum

We conclude Chapter 4 by computing the spectrum of the linearized operator £ from
(0.26) numerically and discuss the geometric shape of its essential spectrum in applica-
tions. In particular, we verify numerically Assumption 3 and 4 which guarantee nonlinear
stability with asymptotic phase by Theorem 1.11.

Let us first consider the essential spectrum and the dispersion set ogisp ,(£) from (1.12),
(1.13). We want to verify Assumption 4 in applications for (QCGL) with the parameter
set from (4.28). One can discuss the geometry of the dispersion curves analytically, cf.
Section 3.3. However, we are interested in a numerical visualization of the curves. In
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the case of (QCGL) with (4.28) the dispersion set consists of

a;ﬁsp,ﬁ(ﬁ) = {s eC:
= tile 4 200+ 7 — et gl (o) esel? 2 Lg) (oo Pl 1)

and

Ogisp L) = {seC:s=—v"+ilc+2a)v+ " +cii+pu tiw}.

It is easy to see that the dispersion set describes four parabolas in the complex plane
opened to the left. Since we have ¢ > 0, gy < 0 and g}(|vao]?) = B1 + 271 |vee)® =
1 — 2|vs]? < 0, Assumption 4 is satisfied. In particular, in Figure 4.5 the parabolas are
shown in the cases i = 0 and i = 0.05. In the latter case, we see that the dispersion
curves are included in the strict left half-plane.

2 15 -1 05 0 2 5 -1 0.5 0
a) ji =0 b) fi = 0.05

Figure 4.5: The dispersion sets Oc—ﬁsp,ﬁ(ﬁ) (blue) and oy, ,(£) (red) in (QCGL) with
(4.28).

In the example (4.28) the dispersion curves are given by four parabolas, since the
imaginary part of the diffusion coefficient vanishes. From (1.12) and (1.13) we see that
the dispersion curves can be much more complicated if there is a non-vanishing imaginary
part of the diffusion coefficient, i.e. «as # 0. As an example for this case we use the
parameters (4.28) but set ay = —%. The dispersion curves in this case are shown in
Figure 4.6, again for the exponential growth rates ;i = 0 and i = 0.05. Also in this case
the essential spectrum is included in the strict left half-plane if the exponential growth
rate is chosen to be ji = 0.05. This strongly depends on the magnitude and sign of the
imaginary part of the diffusion coefficient. It might happen that the curve ogigp, ,(£) forms
a dovetail due to the fourth order terms, see Figure 4.7. Then Assumption 4 is violated.

But as Figure 4.7 shows there also might be an exponential growth rate such that the
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3 3.
2 21

1 1

0 0

1 1

2 ol

s 45 4 05 0 s a5 4 05 o0

a) ji =0 b) fi = 0.05

Figure 4.6: The dispersion sets ajisp,ﬁ(ﬁ) (blue) and oy, ,(£) (red) in (QCGL) with
(4.28) but a =1 — 2i.

dispersion set is still included in the left half-plane. We expect that our stability results
also apply in this case. However, one has to be careful using the exponential growth

rates pu.

"2 5 -1 05 0 "2 5 -1 0.5 0
a) i =0 b) fi = 0.05

Figure 4.7: The dispersion sets o4, (L) (blue) and oy (L) (red) in (QCGL) with
(4.28) but v = 1 + =i

Now let us consider the point spectrum of the linearized operator £ and verify As-
sumption 3. In Section 3.3 we have shown that for the essential spectrum it holds
Oess(L) = 0ess(L) for the operators £ € C[X,] and L € C[L%]. As we will see, a similar
relation holds true for the point spectrum. For this purpose, recall £ defined by (0.26)
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reading as

. U Aty + cuy + Syu+ D f(ve)u
L0, X, (p) - ( SR

and L from (0.12) reading as
T2 2
L:Hy— Ly, u— Atgy + cu, + S,u+ D f(v,)u.

It follows that if s € C is an eigenvalue of L with eigenfunction ug € Hg then s is also an
eigenvalue of £ with eigenfunction ug = (ug,0)" € Yy, i.e. o (L) C op(L). Conversely,
let s € C be an eigenvalue of £ with eigenfunction ug = (ug, po)'. If po = 0 then s
is also an eigenvalue of L with eigenfunction ug. Now assume py # 0. Then we have
(sI =S, — Df(vs))po = 0 and thus either s = 2¢](|vso|?)|vso|® or s = 0. But 0 € o(L)
and we obtain

ot (L) C 0pt (L) U {291 (Jvo|*) lvss|*}-

The possible eigenvalue 2¢] (Jvoo]?)|vao|? is of no interest since it is included in the strict
left half-plane by Assumption 2. So neglecting this additional eigenvalue it is sufficient
to compute the spectrum of the operator L instead of the spectrum of the operator £ to
verify Assumption 4. Moreover, we have

(L) € o(L) U {2g;(Jvec|*) v |}

Now if s € oy (L) for L € C[L;] with eigenfunction ug € Y;, then ug € Y and s € op,(L)
for L € C[L?. In particular, the point spectrum does not move by taking exponential
weights into account. More precisely, if s belongs to the point spectrum of L on L? then
s belongs to the point spectrum of L on L%, unless the essential spectrum has moved
to encompass s, cf. [36, Sec. 3.1.1.2]. Thus to verify that the point spectrum of L,
respectively L, is included in the strict left half-plane it is sufficient to compute the
spectrum on L? instead of sz.
Finally, let us compute the point spectrum of L, respectively £, numerically in the case
of (QCGL) with (4.28). In order to do so, we use a finite difference approximation of L
on the truncated domain 2 = [-1000, 1000] with spatial step size Az = 0.1 and periodic
boundary conditions. The numerical results are shown in Figure 4.8 and Figure 4.9.
We see that there are no eigenvalues in the right half-plane or on the imaginary axis
expect for the zero eigenvalue. Moreover, there are even no eigenvalues in left half-
plane. Therefore we expect the point spectrum of £ on X to be empty. The isolated
eigenvalues between the dispersion curves belong to the essential spectrum since in these
regions the operator s/ — L is not Fredholm of index 0. This can be seen by computing
the corresponding Morse indices, cf. [36] and Figure 3.3. In particular, the dispersion
curves from the numerical spectrum do not fit exactly to the dispersion set calculated in
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3

-1.5 -1 -0.5 0 0.5

Figure 4.8: Numerical spectrum of the linearized operator.

3

-1.5 -1 -0.5 0 0.5
Figure 4.9: Numerical spectrum of the linearized operator with dispersion set (red) and
zero eigenvalue (green).

(1.12) and (1.13). The reason for this is that we approximate the operator £ by an finite
difference approximation on a large, but bounded, domain. As a result the parabolas
from the dispersion set are approximated by ellipses depending on the size of the domain
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of computation. This can be seen by considering the whole spectrum of the linearized
operator on a truncated domain, see Figure 4.10.

15

10

-10

_'1 5 L - 1 1 1
-40 -300 -200 -100 0

Figure 4.10: Whole numerical spectrum of the linearized operator on the truncated
domain with periodic boundary conditions.




Chapter 5

Stability in polynomially weighted
spaces

In Chapter 3 we proved a nonlinear stability result for TOFs when the perturbation wu
of the initial data u(0) = v, + ug converges exponentially fast to some limit 7., at +o00
and to zero at —oo. A natural question arises whether the assumption on the initial
perturbation can be weakened from exponential to polynomial decay. In this chapter
we prove a nonlinear stability result for polynomially decaying initial perturbations, see
Theorem 1.13. In this case we have to assume r,, = 0, i.e. uy € H,% with a polynomial
weight function 7.

Throughout the chapter we set 7 = 7,01, With the polynomial weight function from (0.29)
reading as

npoly(x) = (xZ +1)z.

and consider the weighted spaces L7, Hy from (0.30). We assume the existence of a TOF
with profile v, and speeds (w,c) and consider the perturbed co-moving equation from
(0.11)

up = Atgy + cuy + Spu+ f(u),  u(0) = v, + ug

with an initial perturbation ug € H} for some k € N. Since uy — 0 at +oo we expect
that the limit at +oo of the solution u of (0.11) stays constant in the time evolution, cf.
(0.18). In particular, a TOF with frequency w can be seen as a traveling wave solution
of the co-rotated equation

up = Atz + Spou+ f(u).
For that reason we seck for solutions of (0.11) in the affine linear spaces, cf. (0.31)

My=0v+L}, M{=v+H, 0=uvy0.

137
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5.1 Polynomially weighted Sobolev spaces

Before investigating the nonlinear stability we collect some properties concerning the
weighted spaces L7, Hf from (0.30). The function n = n,0, € C®(R,R) from (0.29) is
a function of linear growth, i.e. n(z) ~ |x|. More precisely, for |z| > 1, k € Ny the
following estimates hold true

jaf* < ) < 27]al"
Furthermore, we note the first and second derivative

3
2 .

Ne(x) = 2(2® +1)72, neol(z) = (2® + 1)

Then |0, ()], |72(2)] <1, 2 € R and the function spaces L?, Hf are Hilbert spaces with
the inner products

(uv U)Lﬁ = (nkuv nkv)L27 (uv U)Hé = (nkuv nkv)HZ'

Moreover, H} is dense in L? and since nf(x) < nf(x) for all z € R as long as k < ¢, it
follows immediately that L7 C L3 and the inclusion is dense as well. As in Chapter 3 we
consider the multiplication operator myu = nfu for u € Hf, k € Ny, £ = 1,2. Similarly
to Lemma 3.1 we have that m;, defines a continuous isomorphism from HY to H*.

Lemma 5.1. Let k € Ny and muu = n*u define the multiplication operator associates
with n*. Then

i) my . L? — L* is an isometric isomorphism.
i) my : Hf — H*, (= 1,2 is a continuous isomorphism.

Remark 5.2. It also holds true that my, : Hf — H* is a continuous isomorphism for
arbitrary ¢ € N. However, the proof is more involved and we are only interested in the
cases £ =0,1,2 as in Lemma 5.1.

Proof. We show that my, : Hf — H* ¢ = 1,2 is continuous. Then the claim follows as
in the proof of Lemma 3.1. First let u € H}. Then

1 w)allzz = k0" new + nfug 2 < Klln*ull e + 0% wallze < (K +1)]ull g
Thus,
I ulli = lullZz + 100 w72 < (K + 2k + 2)|ull7,.
For v € H? we have

(M) aallze = [|k(k — D02 n2u + kn®* " neeu + 2k0* ', + nFug, | 12
< (k(k = 1) + B)llull 2 + 2klJwall 2 + lueel 2 < (k4 1)%|ul 2.
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To show resolvent estimates of the linearized operator later on we need a integration
by parts formula in L? which is slightly different from the standard integration by parts
formula in L2

Lemma 5.3. Suppose u,v € H}(R,R"). Then there holds the following integration by
parts formula

_<u7 Um)Li = (u:l?v U)Li + 2]{;(77717717% U)Li-
Moreover, if u,v € H?(R,R"), then there holds
(u7 lelB)Li = (u:l::m U)Li + 4k<777177$u$7 U)Li + (4k2 - 2]%')(7772773«“7 U)Li + 2k<777177$mu7 U)Li'

Proof. We write (-,-);2 = (-,-). The assertion is a direct consequence of the standard
integration by parts formula in L?, since

~(u,0) = = [ @)ule) oo = [ 0.6 wuta) vla)ds

R

:/Rn%(x)ux(:p)Tv(x)dx+2]{;/n%_l(x)nw(x)u(:p)Tv(x)dx

R
= (Ug,v) + 2k(n~nu, v).

The second formula follows by applying integration by parts in L% twice. We obtain

(u7 'Ua:a:) - _(uma 'Ua:) - Qk(n_lnxua UJ:)
= (tge, 0) + 2k(n " aie, v) + 2k[(2k — 1) (2w, v) + (0 Naatt, 0) + (07 Nyt )]
= (Ugg, ) + 4k(n ey, v) + (46 — 2k) (0702w, v) + 2k(n 1 nueu, v).

O

In Lemma 3.3 we have proven that the space C§°(R,R") of smooth function with
compact support are dense in H%(R,R”) if » is an exponential weight function as in
(0.24). However, the proof of Lemma 3.3 is independent of the choice of the weight
function n and we conclude that C§°(R,R") is dense in H} (R, R"). Since we look for
traveling waves in the space L? we have to collect some smoothness properties of the
shift u — u(- — 7), 7 € R on the polynomially weighted spaces. As in the exponential
case, cf. Lemma 3.4, it turns out that the shift is continuous on L? and locally Lipschitz
continuous on H}.

Lemma 5.4. Suppose k € Nj.
i) Ifue L} and T € R, then

lu(- = )z < CRllullz, Cri=1+]7].
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i) If u € H} and T € R, then

lu(- = 7) = ullpz < CFlrlllull s

i) If u € LY, then

Ju(-—=7) —ull;z =0 as 7—0.

Further, the estimate in ii) holds true if u is replaced by v from (0.19) or v, from
Assumption 2.

Proof. The case k = 0 is the usual case in L?. Thus, let & > 1. We only show i) then ii)
and iii) follow exactly as in the proof of Lemma 3.4.
First note for all x,7 € R

nx+7)? 2421+ 72+1 || T2 9 5
— <1+2 <1+4+2 = (1 .
n(z)? 2211 s I+ |T|x2 1 + 2= +2/7| + 71 (1+|))

Now we obtain

=Dl = [ 7P+ ute)fde < (@4 ) [ @l Pds = 2 al

R

O

5.2 Group action and equivariance
We consider the group R with the canonical composition
o:RXR—=G, (11,7) 7+ .

Here our Lie group is simply the additive group R. In contrast to Chapter 3 its structure
as a manifold is trivial since it is a linear space. Therefore we do not have to work in
charts since their definition is trivial. We let R act on the affine Hilbert space M, via
the shift

a(r) : My = My, v~ a(t)v:=uv(-—1). (5.1)

We continue in the same fashion as in Chapter 3 and study the smoothness properties
of this action.



5.2. GROUP ACTION AND EQUIVARIANCE 141

Lemma 5.5. For k € Ny, £ =0,1,2, and v € M the group action
a(-Jv:R—= M, 7= o(-—1)

is continuous. If v € M} then the group action a(-)v : R — My is of class C' and its
deriwative has the local representation

dla(t)v)] : R — LY,  h+s —v,(- —7)h. (5.2)

Proof. Recall v = vy from (0.31). Then using Lemma 5.4 and the chart (1.17) we
obtain for v € M}

l
la(7)o = ollage < Mo = 7) = Tllzz + D 100( =)z

i=1
4

<N =0)( = Dllzz + loaol10¢- = 1) = Dl 2 + D 1070(- = 7)1z

=1
J4
< CE(Ilo = ollzz + rll2alzlveel + D 101112 ) < oo.
=1

Hence a(-)v maps R into M{. Similarly, by Lemma 5.4 a(-)v is continuous since
la(m)v = vllgg = llv(- =7) = vl < [l(v =0)(- = 7) = (v = V)|
¢
oo 18- = 7) = 0llz + Y 0°0(- =7)]lz =0, T 0.
i=1

It remains to show that a(-)v is of class C'! if v € M}. As in the proof of Lemma 3.7, cf.
(3.17), one shows for u € H}

[u(- = h) = u = hug[|z = o([R])
as h — 0 as well as

[6(- = h) = 0 — hdal|zz = o(|h]).
Then we conclude for v € M} using the chart (M}, x) from (1.17)

Ix(a(m + R)v) = x(a(T)v) = hva(- = 7)| 2
= lv(- =7 =h) —v(- = 7) = hvy(- = 7)|[z2 < CF[lo(- = h) —v — hug| 2
< CFll(v=0)(- = h) = (v =0) = h(v = D)allzz + CFlvsl 0 — h) = 0 — hi 12 = o(|A]).

This proves a(-)v to be of class C' and its derivative has the local representation in the
chart (M}, x) given by (5.2). O
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The right hand side of (0.11) is given by the nonlinear operator
F .M — L2, u~ Auge + cup + Sou+ f(u).
As a next step we show that F' is well-defined, i.e. maps M}? into L?, and is continuous.

Lemma 5.6. Let Assumption 1, 2 be satisfied and k € Ny. Then F : M? — L% from
(0.23) defines a continuous operator.

Proof. Let u,v € M?. Then by Sobolev embedding, cf. Theorem D.2, we have u,v € L™.
Since f € C? this yields, using the mean value theorem, for some K > 0

1) = 1@l < [ @) [ Fat)+ o) = v@)ute) = o(@)ar] da
< Kmas(ulf e, [0l lu — vl

Next, we note from Lemma 1.6 the equality f(v) = g(|vso]?)V00 = —Suvs and from
Proposition 2.7 that |[0|[2@_), [0 — 1|12,y < co. Then use f € C? from Assumption

1 and v = v, 0 to obtain for u € M} and some C > (
[Swu+ f(u)llz < N1Sw(u—=0)llzz +I1f(w) = f(@)llrz + 1500 = f(0)]l 22
< Jolllu = Bllgz + Cllu— 3l + 150l 2y + 1F@) — FO)ll 2
+ 11500 = F(0)l 2y
< (lw] + ) [l = vl 2 + [vsol 101 22 )) + 1500 = voo) + f () = f(voo)ll£2 i)
< (Jwl + O)(llw = vllrz + [vso| 0]l 2 =) + (Wl [[0 = 1|2

+ Closol[|0 = 1| 2my ) < o0
Thus, F' maps M7 into Li. For the continuity pick u,v € M?. Then
[F(u) = F)llrz = [Allluae = veallrz + lelllue — vallzz + [wlllu = vllrz + 1 (w) = F(0)llzz
< |Allluae — vaallrz + lellluz — vallzz + [wlllu = vl 2 + K max(|lullLe, [Vl ) llu — vll7
=0, [lu—v[g —0.

O

5.3 The linearized operator

In this section we discuss the spectral properties of the linearized operator L from (0.12)
considered on the polynomially weighted spaces L2, i.e.

L:H}CL{— L}, wur Lu= Aug, + cu, + Syu+ Df(v,)u. (5.3)
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The operator occurs when linearizing the right hand side of (0.11) at the TOF given by
the profile v,. In particular, we can write (0.11) as the semilinear parabolic equation

up = Lu+ N(u), u(0)=1v,+u

with nonlinear part N(u) = f(u) — Df(v,)u. As in Chapter 3 one of the main steps is
to show existence and time decaying estimates of the semigroup {e'*};~¢ generated by

L. Tt turns out that the essential spectrum of L touches the imaginary axis, cf. Figure
0.3.

5.3.1 Resolvent estimates for large |s|
We are interested in the solution of the resolvent equation
(sI —Lyu=r, sc€C,reli (5.4)

As in the exponential case we start with a-priori estimates for solutions u € HE of (5.4)
for arbitrary r € L? as long as |s| is sufficiently large and s € C lies in the exterior of
some sector with an appropriate angle opened to the left, cf. Figure 3.1.

Lemma 5.7. Let Assumption 1, 2 be satisfied and k > 0. Then L : H} C L — L% is a
closed, densely defined, linear operator on L. Moreover, there exist g, Ry, C' > 0 such
that for all

s€ Q= {s€C:s| = Ro, | arg(s)| < 5 +20

the equation (5.4) with w € H} and r € L% implies
C
sllullty + el < Tl (5.5)
P2l + sllealiZs + lsall2s < Clirl. 56)

Proof. The proof is almost the same as the one of Lemma 3.10. Therefore, we only note
the main steps that differ. First of all, note that the closedness of L follows from (5.6)
as in the proof of Lemma 3.10. We write (-,) = (-,-);2 and take the inner product of
(5.4) with u in L to obtain

(u,r) = SHUH%i — (uy, Atyy) — c(u, ug) — (u, Syu) — (u, D f(ve)u).
Now the integration by parts formula from Lemma 5.3 leads to

SHUH%% + (U, Auy) = —2k(n " npu, Aug) + c(u, ug) + (u, (So + Df (v )u) + (u, 7). (5.7)
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Now since [n~ ' (z)n.(z)] < 1, |Df(vi(z))| < K; for all € R and some K; > 0 we obtain
using Cauchy-Schwarz and Young’s inequality with ¢; > 0,7 = 1,2

_ k2| A
(e, Aw)| < VAl 12k s Aua)| < 8 a2, + Al 2,
¥ ! (5.8)
Mw%ﬂ<%ﬂwp+®Mwmm (u, (S + Df(va)u) < (Jw| + Ky)|Jull7:.
Taking absolute value in (5.7) and using (5.8) with ¢; = 1 yields
[slllull7s < Kollusllz: + Killull7z + llull gz 7] 2 (5.9)

with Ko = 2|A| + |c| and K| = k?|A| + % + |w| + K. Note that (ux,Aum) = o |ug| 2

holds. Taking real part in (5.7) and using (5.8) with ¢ = and €5 = 4L leads to

4\A| 4\ |

(631
Resllul?; + a2y < SHliuallly + Kollull3, + fullz 7] 22

with K, = 4 |A‘2 + ‘C| + |w| 4+ K. Then we have
(631
Resful2y + 2 usl2 < Kollul3y + lull Il (510

Now the claim follows exactly as in the proof of Lemma 3.10 using the estimates (5.9),
(5.10). O

As in Section 3.3 we continue by determining the essential spectrum of L on L7. In
particular, we prove sI — L to be Fredholm of index 0 for s to the right of the dispersion
set ogisp(L) from (0.14). This is done using the classical results from the spectral theory
of second order differential operators, cf. [32], [56], [36]. We proceed in the same fashion
as in Section 3.3. We show that s/ — L is Fredholm in L? if and only if the operator
sI — Ly is Fredholm in L? with

Ly H?* = L?, wes gLy " u (5.11)

and the Fredholm indices coincide. Then L, has the form of a second order differential
operator given by

Liu = Aug, + Brug, + Cruy
with coeflicients

B = =2kn"'n.A+ el Cp= (K 4+ k)~ "ne)? = kn~ "ea) A =k~ 'necl + Sy + Df(v,),
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Since |77 .|, |7 we| — 0 as & — 400 we note their limits
Bi(z) = cl, Ci(x) = S, +Df(vy), x— £00, V4 =0, v_=0. (5.12)
In view of these limits we also consider the piecewise constant coefficient operator

So+Df(vy), >0

Se+Df(vo), z=<0. (5.13)

Lo : H> = L?,  uws Augy + cuy + Ciu, Ci(z) = {
Lemma 5.8. Let Assumption 1, 2 be satisfied and k € Ny. Then the following statements
are equivalent:

i) The operator sI — L : H? — L2 is a Fredholm operator of index (.

i) The operator sI — Ly : H*> — L? is a Fredholm operator of index (.
ii) The operator sI — Ly, : H?> — L* is a Fredholm operator of index (.

Proof. i) < ii) The claim follows since the multiplication operator associated with n* is
a homeomorphism, cf. Lemma 5.1.

ii) < iii) The assertion follows exactly as in the proof of (3.13) using a compact per-
turbation argument and (5.12). O

Recall the dispersion set ogis,(L) from (0.14) given by
aisp (L) = 0334 (L) U 03, (L), crfﬁsp(L) ={s € C:3veRst. d(s,v) =0},
where d* is given by
d*(s,v) == det(sI + v*A —ivcl — S, — Df(v+)), vy = Vs, v_ =0, (5.14)

A straightforward computation shows d*(s,v) = 0 if and only if

NI

s = —a1v” +icv + g1 (|vso|*) Vs |* £ (—030" + 20005 (Ve *) Jec*v* + (g1 (Jvec]*) [0 [)?)

as well as d(s,v) = 0 if and only if

1

s = —o? +icv + g1(0) % (—a%yA‘ + 205(g2(0) + w)v* — (g2(0) + W)Q)§ )

As in Section 3.3 we have by the classical results, for instance from [36], [32], that the
piecewise constant coeflicient operator sI — L, is Fredholm if and only if s ¢ ogisp(L)
and the same holds true for s/ — L, cf. Lemma 5.8. Summarizing we have the following
theorem and its proof follows as in Theorem 3.16.
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Theorem 5.9. Let Assumption 1, 2 and 5 be satisfied. Then there are €,v > 0 and a
unique connected component Qs of C\oaisp(L) satisfying for all k € Ny:

i) Seni={seC:|arg(s—7)| <I+e s#7} C Q.

i) For all s € Q. the operator sl — L : Hf — L3 is Fredholm of index 0.
i) 0o C 0gisp(L).

i) Oess(L) C C\Qo.

Proof. The assertion follows in the same way as in the proof of Theorem 3.16 using
Lemma 5.8. U

From Theorem 5.9 and Lemma 5.7 we conclude that L : H? — L7 is a sectorial
operator. But since its essential spectrum touches the imaginary axis at the origin we
can only derive estimates of the corresponding semigroup by exponentially increasing
terms. To show time decaying estimates for the semigroup we need to show delicate
resolvent estimates near the origin. In order to do so, the strategy is as follows. First,
we discuss the piecewise constant operator L., given by

Loou = Augy + cuy, + Cru

with C4 from (5.13). In particular, we are interested into the solution of the resolvent
equation

(sI — L)u=r (5.15)

for small s. We use the concepts of exponential dichotomies, cf. [22], and the concepts
of exponential trichotomies, cf. [31] and [13], to construct solutions of the equation
(5.15). See also Appendix B. Now we have 0 € 0us(Loo) When L, is considered as
closed operator on L?. Thus, L., is not a Fredholm operator and not invertible on
L%. However, using ideas from [37] we derive resolvent estimates for u in L7 as long
as r € Lj_, and show that L is invertible from L} to L{.,. A compact perturbation
argument in Section 5.3.3 will show the that the linearized operator L considered from
L? to L} 4o is a Fredholm operator of index 0. Using Fredholm index 0 and roughness of
exponential trichotomies under small perturbations, will lead to sharp resolvent estimates
for the linearized operator L in Section 5.3.4.

5.3.2 Resolvent estimates for the piecewise constant operator L.,

Let us start by considering the piecewise constant coefficient operator L., and its re-
solvent equation (5.15). L., belongs to a large class of general second order differential
operators of the form

Tu=Au"+Bu' +Cu, A BcR" x'Az>0,2+#0, C¢&L*RR") (516)

which we consider on the polynomial weighted spaces L%, k € Nj.
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Lemma 5.10. For all k € Ny the linear second order differential operator
T:Hp CLi— L}
giwen by (5.16) is a closed, densely defined, linear operator on L%, i.e. T € C[L3].

Proof. Clearly, T is densely defined and linear. Thus it is left to show the closedness.
Let u, € H? with u,, — w in L} and Tu, — h in L?. We define w,, := n*u, € H? and
w = nfu € L?. Then we have w,, — w in L?, cf. Lemma 5.1. Moreover,

" Tn *w, — n*h =:r € L?
and for v € H? there hold
Ty v = A" + Bv' + Cv =: Tw
with
B=B-2kn'nA, C=CH+ (K +k)(1n 'n)%A—kn ‘A — kn~'n,B.

Since B,C € L™, the operator T:H?C L?— [? is closed. Now we have w, € H?,
w, = w in L? and Tw, — r in L?. Thus w € H* and Tw = r. This implies u € HZ, cf.
Lemma 5.1, and Tu = h in Lj since

n*h=r=Tw=n"Tn " w =" Tu.
U

As a next step we consider 7 as on operator from L} to L7, and determines its
domain D(7) such that T gets to a closed, densely defined, linear operator.

Lemma 5.11. For all k € Ny the operator
T:D(T)C L — Lj,
given by (5.16) with
D(T)={ue H,NH, :Tue L}
is a closed, densely defined, linear operator from Lj to Li.,, i.e. T € C[L}, Li.,].

Proof. Tt is clear that T is linear. Moreover, C5° C D(T) and C§° is dense in Li. Thus
T is densely defined on L?. Thus it remains to show the closedness. Let u, € D(T)
such that w, — v in L and Tuw, =: h, — hin L ,. Since u, € D(T), h, € L; ., and
B,C € L™ it follows

Ihn — Bel, = Canllzz < llhallzz + I Bllaclled, 122 + 1Cllcllull 2 < oo.
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Hence, we have
u! = A~ 'h, — Bul, — Cu,] € L,

and therefore u,, € H?. By Lemma 5.10, 7 : H? C L? — L? is a closed operator on
L. Thus we conclude by the closedness v € Hf C H} N HE. and Tu = h in L}. Since

loc

h e L}, we obtain v € D(T) with Tu = h. This shows the claim. O

Summarizing we have shown that L., with D(L.,) = H? defines is closed. Moreover,
if we define

Loo : D(Loo) C LY — L}y, D(Lo) ={u€ H,NH,
then Lo, € C[L}, Lj_,).

Corollary 5.12. Let Assumption 1, 2 be satisfied and k € Ny. Then the operator
Lo : D(Lo) C L — Li ., with D(Ls) is a closed, densely defined, linear operator, i.e.
Ly € C[L;, Li.).

: Loou € LZ+2}.

Now we discuss solution of (5.15). For this purpose, we transform (5.15) into a first
order system via Y = (u,u’)" and obtain

Y'— My(s, )Y =R, R=(0,7)". (5.17)
with

M (s), >0 B 0 I
Meo(s, @) = {M(s), ccp M= <A1(sl —Cy) —cA1> :

To show that L., is invertible it would be sufficient to consider (5.15) for s = 0. But
since we want to show uniform estimates in a neighborhood of zero we consider the
general case s € ), and |s| sufficiently small. We choose ¢ > 0 sufficiently small and
let s € B.(0). Since B.(0) N oy, (L) = 0 we conclude M_(s) to be hyperbolic with
stable and unstable dimensions m_ (s) = my (s) = 2, cf. Figure 5.1 and Figure 5.2. Note
that the complex conjugated pairs in Figure 5.1 and Figure 5.2 may also build a double
eigenvalue and do not have to be separated. But A\J (s), \{(s) are simple eigenvalues.
In particular, there are o5(M_(s)), oy, (M_(s)) uniformly bounded away from the imagi-
nary axis and such that

Reos(M_(s)) <0< oy (M_(s)), o0s(M_(s))Uou(M_(s)) =oc(M_(s)).
Let P, (s), P, (s) be the corresponding Riesz projectors then following [22]| the operator

u

0r — M (s, ) has an exponential dichotomy on R_ with data (K,a ,87),a” <0< [~
such that

le@ VM- p=(5)| < Ke* @ %)y <z <0,

B 5.18
eGP (5)] < Kef ¥, x <y <0, o
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In particular, since M_ is analytic in s € B.(0) the projectors P, are analytic and the
data (K,a~,57) can be chosen independent on s. In addition, the invariant subspaces
R(P; (s)), R(P, (s)) are spanned by matrices

V. (s) = (vr (s),v3(5)) € C¥2, RV, (s)) = R(P; (5)),

5

Vi (s) = (vs (s),v5 () € €2, R(V,(s)) = R(P; (5))

u

(5.19)

and we find w; (s), i = 1,...,4 spanning the corresponding left invariant subspaces

Wy (s) = (wi(s), w3 (s)) € C*, W(s) = (w5 (s), w5 (s)) € C*,
( (8), W ()" (Ve (), Vi () = I,
P (s) =V (s)Wg ()", PJ(S) =V ()W ().

S5

Now we consider M (s), s € B:(0) which is also analytic in s. But since 0 € o (L),

A(s) @ @ ) M (s) @

A (s) @ @ () A (s) @

a) o(M_(s)) b) o (M (s))

Figure 5.1: Eigenvalues A\ (s), A3 (s), A3 (s), AT (s) from left to right of Mi(s) with s €
Qoo

the matrix M, (0) has a simple zero eigenvalue, since
_ 0 Iy _ (291 (Jvso[*) [vec|* 0
w0 =Lyt _hn)e €= (el o)
Its characteristic polynomial is given by
XA = Ap(N), - p(A) = AP+ 20010 + A + 6,
where @; = |a| 'y, i = 1,2 and

& = (@ + ) + 201 (|0se|*) [Voo]* + 20295 (000 |*) [0 ],
§o = 20(% + a2)91(|“w|2)|vw|2-
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N0 @ @ 0 A0 @ AF(0) AF(0)

20 @ @ . (0) A (0) @

a) o(M_(0)) b) o (M (0))
Figure 5.2: Eigenvalues AT (0), A5 (0), A3 (0), A7 (0) from left to right of M(0).

Now Assumption 1, 2 and Assumption 8 imply & > 0 and & < 0. The Hurwitz
determinants ¢§; of the polynomial p, c¢f. Lemma D.7, satisfy

(50 = 1, (51 = 2cay > 0, (52 = 20&1&1 — 52 > 0, 53 = 5252 < 0.

Then Lemma D.7 implies mf(0) = 2 and m;(0) = 1, ¢f. Figure 5.2. So we conclude

)
there are o,(M(s)) and two simple eigenvalues AJ (s), Af(s) such that

0 (M, () U {0 (), AT (9)} = o (M. (5),
Reo,(M,;(0)) < 0=\ (0) <A (0)
Reay(Mi(s)) <0< A (s) < Af(s), s€ B:(0)\{0}.
In addition, o5(M,(s)) and \; (s) are uniformly bounded away from the imaginary axis

and \J depends analytically in s. Further, let vy (s),v](s) € C* be the corresponding
eigenvectors of A (s), Af(s), i.e.

(NS ()I = My (s))vi (s) =0, v =1, i=34,
and wy (s), w; (s) the corresponding left eigenvectors, i.e.
wi ()TN ()] = My(s)) =0, i=3,4,
such that the normalization w;"(s)"v} (s) = 0y holds. Let P;"(s) be the Riesz projector

associated with o,(M, (s)) and let
P (s) = vf (s)wi (s)", Pl (s) = vf (s)wif (s)".
Then the operator 9, — M, (s, -) has an exponential trichotomy on R, with data
(K,at,v(s),87), a™ <0< B, v(s) = ReAj (s) such that for all 2,y € R, there hold
|e@=VMx() pt(5)| < Keo =v), |e@=WME() pt(g)| < Ker©E@=y) g < g

(5.20)
|e@WM() pt ()| < KeP ), |e@ ML) ph(g)| < Ke?@Ev) 0 p <y,
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In particular, the projectors P depend analytically in s € B.(0). The invariant subspace
R(P;(s)) is spanned by a matrix
V5 (s) = (v (s),v5 (5)) € €2, R(V,"(s)) = R(P(s)) (5.21)
and we find w;"(s), i = 1,2 spanning the corresponding left invariant subspace
W, (s) = (wi (s),wi (s)) € C¥*, Pf(s) = V5 ()W, ()",
(WH(s), wy (s), wy (5))" (V" (s), v (5), v (5)) = L.
Using Assumption 7 we have the decomposition of C*
C' = R(F(s)) ® R(P; (s)) = span{v; (s),v3 (s),v3 (s),v5 (s)} Vs € B(0). (5.22)

Remark 5.13. In order to verify Assumption 7 in applications, it is much simpler to
verify (5.22). Both statements are equivalent and closely related to the so called Evans

function, cf. [3], [36]. For s € B.(0) N Qy it is defined as

E(s) = det(v (s),v5 (s), v5 (5), vy (5))-

Then Assumption 7 and (5.22) are equivalent to the fact that the Evans function does
not vanish as s — 0.

As a next step we discuss the behavior of the critical eigenvalue A\ (s) as s — 0 and
the geometry of the dispersion set oqisp(L) at the origin. We prove that it is possible to
place a parabola between the dispersion set and the imaginary axis locally at the origin,
cf. Figure 5.3.

Lemma 5.14. Let Assumption 1, 2, 5 and 8 be satisfied and k € Ny. Then there are
a, <0 <6 such that the curve I'c = {p(7) : |7| < 0} with

©:(—=6,6) = C, trs a7 +ir

satisfies T'. C Qo U{0} with Qo from Lemma 5.9. Moreover, there exist 0 < e < |¢(9)],
C > 0 and a crescent )., defined as the closure of the unique connected component of
B.(0)\I'. containing (0,¢), such that for all s € Q. there holds

IAf(5)]? < CRe A (s). (5.23)
In addition, the derivatives of \j w.r.t. s at s =0 are given by

(0 =2, BAL(0) =

(019 (|90 *) [0 |* + 295 ([0 *) [vec|*)
|91 ([voo[*) Voo ||

(5.24)
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Figure 5.3: The crescent €)..

\/

-

Figure 5.4: Geometric situation in the proof of Lemma 5.14.

In particular, for arbitrary € > 0 the crescent (). is uniquely defined, since the set
f(())\l“C consists of exactly two connected components where only the right component
includes (0,¢). Throughout the rest of the chapter the crescent €. will be frequently
chosen sufficiently small, i.e. we frequently assume w.l.0.g. that ¢ from 5.14 is sufficiently
small.

Proof. Let A(s) = A5 (s). Then for s > 0 we have A\(s) > 0 and \ is analytic for s € B.(0),
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A(s) = X (0)s + 1X"(0)s> + O(Js]). (5.25)

In particular, \'(0),\"(0) € R since A(s) € R,s € RN .. Further we set 2x; :=
91 ([vo[*) 0o |* and 2k5 := g5 (Jvss|*)[vso|* then

k1 0 0 —K
C+ = (K,; O) s C+UQ = 0, w3—0+ = 0, Vo = (1) , Wy = < H12) .

Next we compute ' (0) and A\”(0). For this purpose, let D(A) := A\2A + ¢\ + C, and

T(v,\5) = (D (A - S”) .

Wy v — Ky

Then T'(vg,0,0) = 0 and

C o K1 0 0
D(U,)\)T(voa 07 O) - (wélr— 00) = K2 0 ¢
—R9o2 K1 0

which is invertible by Assumption 1 and 2. As a consequence of the implicit function
theorem D.8 there is € > 0 and holomorphic v : B.(0) — C? such that

0="T(v(s),A(s),s) Vse B0). (5.26)
Differentiating (5.26) w.r.t. s once and evaluating at s = 0 yields
0=cN(0)vy + Cy ' (0) — vy, 0= wyv'(0). (5.27)
Solving (5.27) for X'(0) leads with Assumption 2 to

1
N(0)=->0.

C

Further, by differentiating (5.26) w.r.t. s twice and evaluating at s = 0 we obtain
0 =2c2Avg + e\ (0)vg + C0"(0), 0= wyv"(0). (5.28)
Solving (5.28) for \”(0) yields with Assumption 2 and 8

2(0[1:‘{1 -+ Oég/'ig)
[k

N'(0) = < 0.

Next, pick v > 0 and define

Q:={se€Q.:|Ims|® < v|Res|},
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cf. Figure 5.4.Then |s|?> < (¢ + v)|Res| for all s € Q. Using (5.25) we have
Re A(s) = Re sX'(0) + 1(Res)?X"(0) — (Im s)*X"(0) + O(|s|?).
Since N(0) > 0, X’(0) < 0 we find C' > 0 such that for all s € Q

|Re S| < ﬁ ’Re )\(3) _ AH(O)(RG 8)2 + X’(O)(Im 8)2} + O(|S|3)

)\// 0 -
[Re A(s)| + Ll )‘€|Res| +eCRes|.

= X(0)

— X(0)

Taking ¢ > 0 sufficiently small we find C; > 0 such that for all s € Q
|IRe s| < C1|Re A(s)].
Then we find C5 > 0 such that the imaginary part satisfies
ITm A(s)]? < 2[Im s\ (0) + 2(Re s)(Im s)\"(0) > + O(|s|°)
< 4|Tm s|*X'(0)* + 8|Re s||Tm s[*| N (0) A" (0)| + 8|Re s[*|Tm s|* + O(|s]°)
< Oy Re s| < C1Cy|Re A(s)].
Hence the estimate (5.23) holds for all s € Q. Now we choose

a — Q1K1 + Qokg
2k

and let ¢ > 0 be sufficiently small. Then for all s € Q.\Q there is 7 € [—¢,¢] and
a, < a < v such that s = ar? + 47, cf. Figure 5.4. Then

A(s) = (am® 4+ i) N(0) — %7‘2)\"(0) +O(|7P)

and we find C' > 0 independent in 7, a such that

WAOP _ NOPO(rP) NP+ O(P)
ReAE = 2V(0) +aX(0) + O] = [ = EN(0) + a.X(0) + O]
sl + O _

= |k + agka| + O(|7])
Now the assertion is proven. O

We follow an approach similar to [35] and construct for given R € L7 ,,, k € Ny
a solution Y,.(s,:) € L? of (5.17) via Green’s functions. Suppose (. (s) € R(P;(s)),
r € R, and define

Vi) =00 )+ [ 6L Ry (5.20)
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where G € Cy(R; x R,,C*?) is a Green’s function defined by

(z—y)M(s) p+ <y <
Gy =1¢ o ") Vs
—el® y)MJr(s)(Pj(s) + Pf(s)), 0<z<uy.
For (_(s) € R(P,(s)) and = € R_ set
0
Vals,) im0 (s) 4 [ G (o) Ry (5.30)

where G, € Cy(R_ x R_,C*?) is a Green’s function given by

o B _e(xfy)M—(S)Pu*(s), r<y<0
s (1‘7 y) - e(;p—y)M_(s)Pf(S)’ y < T S 0 .

S

Note that YZ(s,-) can be represented as

Y (s,2) = MO, (s) + / VM) P () R(y)dy
0

— MO (s) / e Ot (5)" R(y)dy — / eI P (s) R(y)dy,

x x
x

0
IO )Ry~ [P (5) Ry,
(5.31)

Yo (s,2) = e"M=-I¢_(s) + /

— 00

So since R € L7, it follows YZ(s,-) € H} (Ry, C*). Moreover, YZ(s,-) solve (5.17) on

R, in the weak sense. This follows by taking the derivative
0,Y (s, ) = My (s)e"™ ¢ (5) + PH(s)R(x) + My (s) / T P (s) R(y)dy
0

+(PF(s) + B (s) R(x) — My(s) / ) TN (PE(s) + Pl (s)) R(y)dy
= M, (s)Y (s, z) + R(x)

and similarly

0,V (5:2) = M_(5)e" - IC_(s) + P, (SJR(a) + M(s) [ R ()Rl

—0o0

1 P ($)R(x) — M_(s) / e IM-) P (5) R(y)dy

=M_(s)Y_(s,z) + R(x).
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We want to choose ((s) € R(P;(s)) and (_(s) € R(P, (s)) such that

Yi(s,z), x>0

5.32
Yo(s,z), <0 (5.32)

Yo(s,z) = {

is continuous in x = 0 and therefore globally continuous. For this purpose set ®(s) =
(v (8),v5 (s),v5 (s),v; (s)). Assumption 7 implies det ®(s) # 0 for all s € B.(0) and we
define
QJ (s) = V()W (s)",  Qu(s) = Vi (5)Wo(s)", (Wy(s), W_(s)) = D(s)".
Then for all s € B.(0) we have
R(Qg (s)) = R(PS(s)), R(Q, (s)) = R(P, (s)),
C'=R(Q{(5)) & R(Q(5)), T=0Q5(s)+Q(s). (5.33)
Q: (s)Qy (5) = QS (s)Qy (s) = 0.
Moreover there is C' > 0 such that for all s € B.(0) we have
Q4 ()], 1Qy ()] < C. (5.34)
Now let

Guly) = GI0,y), ©=0
W= G7(0,y), <0

Then G, € Cy(R,C*) and we define
C(5) = =i (o) [ Gy € R(P; (3),
C(s) = QIs) [ Gl Ry & RIP ().

R

(5.35)

This implies using (5.33)

Y._(s5,0)—YI(s,0)
=C®—Q@+/ WM“R@W@@+AﬂWM@R@W@@

— 00

— C(s) = Co(s) + / G.(y)R(y)dy

R

- / G.)Ry+ [~ GLlo)R(w)dy =0,

Thus Y (s, ) € Cy(R, C*). Moreover, this implies Y. (s, ) € HL (R, C?*) solves (5.17) on
whole R in the weak sense. To estimate Yoo(s,-) in || - [[1 we use the estimates (5.20),
(5.18) from the exponential dichotomy and trichotomy on Ry and the following technical
and delicate estimates from [37, Lem. 3.2].
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Lemma 5.15. For every By > 0 and k € N there is C = C(k, 5y) > 0 such that for all
0 < B < By the following estimates hold:

© _—By C r By C
x y —0o0
A kope [ eﬁ
|z|"e |y|k+1dy§0, x> 1, |z|"e AT |k+1dy_C r < —1,
T By C —1 —By C
e [ Tray< S ozl el / ‘< w<n
1yl p = |yl B

—Bx T eﬁy C . -1 e_ﬁy C
|lz|Fe™? dy < r>1, |z|fe’ < =, r < —1.
1yl 8’ = 1Yl B

Proof. Note that the second column follows by the first and replacing x by —x. The first
two lines for x > 1 are obtained by

o0 o0 B 1
e / ||kdy / ey <

ke [ e Py [T 1
|z|"e Wdyﬁﬂf Yy dySE-

For the third line we use series expansion of the exponential function

k—1 —1 n, n—k
5 + Z 5
n;ﬁk 1
Integrating over (1,x), using log(:c) <z and —— — 1, n — oo yields for some C' > 0

and

By

yk

Bn n—k+1

x By k—1
k € B 108; 2k
Ay << —= 7 E
m'[lmky_ (k— ' — nlln—k+1)

n#k—1
k—l—l 0 n+1
) (B0 > U 533 () _C,

ST D B D) n—k+1) - P
n#k—1

x By kl nn—=k
k ¢ B og prant
dy < ————— E
|:C‘/llyl’““y_ mn—

(k + ><ﬁx>k+l+§: G
< e

= B (k+1)! “nl(n—k)
n#k

xT

Similarly,
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Now we use the estimates from Lemma 5.15 to derive delicate resolvent estimates for
the operator Lo, : D(Lo) C L — L7, in the crescent Q.. In particular, we show that
the equation (5.15) has a unique solution in Lj if the right hand side is from L7 ,.

Lemma 5.16. Let Assumption 1, 2, 5, 7 and 8 be satisfied and k € Ny. Then there is
C' > 0 such that for all R € L}, and s € Q. the function Yoo(s,-) € H (R,C*) from
(5.32) with (5.29), (5.30) and (5.35) is a solution in L3 and satisfies the estimate

Yo (s, ez + 1Yo (s ) ez, , < ClIRIEz,,- (5.36)
Proof. We have already shown that Y, (s,-) € H}.. solves (5.17). Thus it remains to show
the estimate (5.36). For this purpose we frequently use the estimates in (5.20), (5.18),

Lemma 5.15, Cauchy-Schwarz inequality and the explicit representation of Y.=(s, -) from
(5.31). Let C' > 0 denote a universal constant independent on s. Then by (5.34) we have

2

+C

2

0
<c ‘ / V| R(y)|dy

C(s)P <O / Go(y)R(y)dy

/ | R(y)|dy
0

0 672a*y 72115
C/_OO WWHRHL%H +C/ 22| dy|’RHL§+2

1 2
< C/RWGZZJHRHL% < C| Rl

IN

k+2.

Recall the representation of Y (s, -) from (5.31) and v(s) = Re A (s). We estimate the
)\;’_ term for x > 1 by

2

o 2 oo _v(s)(z—y)
T(s)(x— ©
/ N Ot ()i ()7 R(y)dy gc/ )" "2 (W) R(y)ldy
00 eQV(S)(ﬂU y) C k(3
< C/ﬂ; Wdy|]RHLi+2 =~ I/(S)Z|x‘ ” HLi+2 (537)

_ Cp~2k6+0) (7))
)

Further, for x > 1

2RI, . £=0,1

e 2 00 65+(x, ) 2
/ e(a:—y)M+(s)P+( )R(y)d,y < C / nk+2(y) k+2( )|R( )|dy
> 2t @y) C (5.38)
<C/ PEGR dy”RHL2 ﬁ+|37‘ e 4HR”L

< O 2= D @)l 2| RIZ,
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and

9 2

<C

. z jat(z—y)
xr— S c
/6< VM=) Pt () R(y)dy / s P W)IR(y)dy
0 o N (y)

<cenp, vo [y Ry (539
= O Ml J, Ty WL

k+2
C
(a*)?

On the negative half-line x < —1 we estimate

< Gl IR, < Ot @l PRI,

. 2 .  a” (z—y) 2
_ s — €
’/ el@=y)M_( )P5 (s)R(y)dy| <C / W 1" (y)|R(y)|dy
z eQa_(x y) C k4 (540)
S C/Oo WdyHRHLiJrQ >~ |Oéf‘|x| || ||Lk+2
< O @) el 2 RIZ,
and
O M) pm 2 T i 2
[ e morerma| <c| [ SRl
- —1 267 (z—y) 5.41
< Ce® HRH?J%H +C/ Wdy"R”B o4

< Gl URIE,, < O @l 2RI,
Now the L?-estimate follows by (5.37) with £ = 0 and (5.38), (5.39), (5.40), (5.41), since
/100 ()| Vi (5, 2) 2 < c/ e dal| RIS,
+cﬁmn%@>[féxwm@aﬂ@R@My
o [Tt | [T s ()7 Ry
1 x
wo [Tt | [ R 9 Ry

<ClRIE ,+C [ el R, < CIRIE
1

2

dx

2

dx

2

dx
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and
-1 -1 B
| @b <o [ e R,

OO vo [

o0

+C’/_17)2k(az)

o0

2

dx

/ =M= P () R(y)dy
0

2

dx

/ == V-) P () R(y)dy

1
| ]| RI7, | < ClIRIIZ

k+2

2
< IR+ c/

—00

Since Y. (s,-) € H}., this shows
Yoo (s, )z < ClIR 12,
The derivatives 9,Y=(s, ) are given by
0.Y:1(52) = My(9)e G, 5) + R(a) + M(s) [ el MO () R(y)dy
0
— A (5)eX 7 (s) / " et ()" Ry)dy
S M) [ O RE ()R (g,

0.Y_(s,2) = M,(s)exM‘(s)gl(s) + R(x) + M(s)/ e(m’y)M—(S)P;(s)R(y)dy

(o) [ OB (o) ()
Thus, use (5.37) with £ =1 and (5.38), (5.39), (5.40), (5.41) to obtain

| s aPde <€ [T e s RIE, | + CIRIL,,
+ C/OO n?* D ()

1
v [T P @)
+C / T )

1

< O|R|]?. +C Oo|x\’2d:cHRH22 —l—CM Oo|x\’2da:HRH >
- Li 1 Lo Re)j (s) J; iz

2

dx

| R ) Ry
0

2

dx

/ MO (9wt () Ry)dy

xT

2

dx

| e R () Ry

xT
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A3 ()] 2
<O 1+ ——— || R

and

-1

-1
[ty apa <C [Pt @e el R, + CIRIE

[e.e] —00

-1 x 2

+ C/ n?* D () / @M= p=(s)R(y)dy| dx
—00 0
-1 0 2

+ C/ D (22 / VM=) p=(\R(y)dy| du
—00 . x
2 —2 2 2

<CIRI+C [l dalRIEy, < CIRE,
By Lemma 5.14 we have 1|>:\ ‘;’;(f)(‘i < ' uniformly in €2.. This implies
e 3 S
IG5, )z < CURIz
O

As a consequence of Lemma 5.16 we have existence of a solution of (5.15) in D(L,) C
Li if r € L} ,. Furthermore, the solution can be bounded by the right hand side r
uniformly in .. Moreover, by Assumption 7 we conclude that the solution is unique as
long as s € €. is sufficiently small.

Corollary 5.17. Let the Assumption 1, 2, 5, 7 and 8 be satisfied and k € Ny. Then
there is C' > 0 such that for all s € Q. and r € L, the equation (5.15) has a unique
solution u € D(Ls,) C L and satisfies the estimate

lullzz + lluallzz,, < CliflE

k+1 — k+2

In particular, the operator Lo : D(Los) C Lj — L7, is invertible.

Proof. The case s = 0 follows by Lemma 5.16 and Assumption 7. If s # 0 and |s| < ¢ for
some ¢ sufficiently small, then s is not an eigenvalue of L, € C[L?], cf. Assumption 7.
Hence the operator sI — Lo, € C[L?] is one-to-one. The function Y (s,-) = (wy,ws)" € L}
from Lemma 5.16 solves (5.17). Thus (sI — Lo )w; = r and since sI — L, € C[L?] is
one-to-one w; is unique in L?. The estimate follows by Lemma 5.16. O
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5.3.3 Fredholm theory: the variable coefficient operator L

We are interested in the variable coefficient operator L from (0.12). By Lemma 5.7 we
have L € C[L}] with D(L) = H?. But 0 € 0es(L) and therefore L € C[LZ] is not a
Fredholm operator. Typically, L has no closed range.

Remark 5.18. Assume L € C[L?] has closed range. Since dim N (L) < oo, due to
Assumption 6, we have that L is at least a semi-Fredholm operator. But since sI — L,
s > 0 1s Fredholm of index 0 we conclude by Lemma A.6 that L is a Fredholm operator
of index 0. This contradicts 0 € cess(L) and therefore the range of L cannot be closed.

The aim of the section is to prove that L becomes a Fredholm operator of index 0
when considered as a closed operator from D(L) C Lj — Lj_,. This is done by using a
perturbation argument from [38] and the fact that Corollary 5.17 implies the operator
Lo € C[L}, L{,,] to be Fredholm of index 0.

Lemma 5.19. Let Assumption 1, 2, 5, 7 and 8 be satisfied and k € Ny. Then the
operator L : D(L) C Lj — Lj ., with D(L) = {u € HLNHZ, : Lu € L ,} is a
closed, densely defined, linear operator from L} to Li.,. Moreover, L € C[LZ, L; ] is a

Fredholm operator of index 0.

Proof. The closedness follows from Lemma 5.11. The Fredholm property follows by
showing (L. — L) to be Lo,-compact and Lemma A.10. It is immediately clear that,
D(Ls) = D(L) C D(Lo — L). It remains to show that (Lo — L)L € L[L; ] is

o0
compact. For this purpose, recall

(LOO — L)u = (C — C:t)u, C(SL’) — Sw + Df(U*<$L’))7 Cj:<l’) - {Sw + Df(voo) x>0

S, +Df(0), z<0

Thus L. — L is a multiplication operator associated with C' — Cy € L*(R,R??). By
Theorem 2.6 there are K, i, > 0 such that

[Df(0u(x)) = Df(0s0)] < Clo () = voo| < Ke™*, 220
and
|Df(vi(z))| < Ket**,  x <0.
Therefore the multiplication operator given by
m: H'(R,R?) — L*(R,R?), s n*(C —Cy)u

satisfies the assumption of Lemma D.4. Hence it is compact. This implies n*n?(Ls, —
L)yn=* =n*(C —CL) to be compact from H' to L? and thus, by Lemma 5.1, the operator
Lo —L:H} — L{,, is compact. By Lemma 5.16, L} € L[L},,,D(Ls)] C L[L?,, H}].
Hence, (Lo — L)L} € C[L{.,] is compact and the assertion is proven. O
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By Assumption 6 the kernel V(L) C L7 has dimension one. As in Lemma 3.18 we
have Lv, , = 0 with v, , € Li and thus ¢ = v, , is an eigenfunction, i.e.

N(L) = span{e}.

Now we take the (abstract) adjoint operator L* : D(L*) C L., — Lj into account. By
the Fredholm alternative we conclude that its kernel A'(L*) is spanned by an eigenfunc-
tion and has also dimension one. Moreover, since L, L* are closed, densely defined, linear
operators between Hilbert spaces we obtain, cf. [61, (11-7)],

N(L)*: =R(L") (5.42)
where the orthogonal complement is taken w.r.t. (-,-) L2

Lemma 5.20. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then there is an
adjoint eigenfunction 1 € D(L*) such that

i) N(L*) = span{v)} =: ¥,
ii) (W, 9)2 = 1,

iii) L2 = ® @ WL where the orthogonal complement is taken w.r.t. (-, )Lz,

w) there is a continuous projection P : L} — L2 onto ®, i.e.
P(®)=®, P(UH)={0}, P*=P
which s given by

Pv = (wav)Liw'

v) the subspace W+ C L2 is invariant under L, i.e. L(V+N HZ) C Wt

Proof. We only prove ii). The other assertions follow exactly as in the proof of Lemma
3.20 and using ii). So by i) we have an eigenfunction ¢ € D(L*) C L{,, and L* has no
generalized eigenfunction. Assume (¢, ¢)z2 = 0. From (5.42) we conclude v € N(L)*t =
R(L*). Thus there is u € Lj_ , with Lu = ¢. This is a contradiction and we can
normalize ¢ such that (¢, ¢)z2 = 1. O

By construction of the projector P it is clear that
PLu=0, Yuc H}. (5.43)

Since ¥ = R(I — P) and its intersection with the smooth spaces Hj are frequently used
in the following we introduce the notation

Vi=R(I—-P), V}=R(I-P)nH., V?=R(I-P)nH}. (5.44)
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Remark 5.21. According to Chapter 3 there hold LSiv, = 0 where L is applied to C?
functions with classical derivatives. However, we have Siv, ¢ Li. Hence, Siv, cannot
be an eigenfunction and therefore is not part of the kernel of L.

By construction we have that D(L) C H; and the graph norm || - [|p(z) of L is defined
by

lollowy = Mol + ([ Loz, ,-

Clearly, since L € C[L7, L7 ,,] we have (D(L), || - ||p(z)) is a Banach space. In particular,
the inclusion D(L) C H} is continuous. In order to see this, let v € D(L) and pick
s € Qo, |s| > 1 with Qg from Lemma 5.7. Moreover, (5.5) implies

C ~
oy < 6 = Dol < 2CIsl ol + 200 Lol < Cllolpey (6545)
Now we take the projector P from Lemma 5.20 into account. Then L~': (I —P)L;,, —
(I — P)D(L) exists and is bounded. Using (5.45), we find K > 0 such that for all
u € D(L) there holds

(I = Pyullyy < CI(I — Phullpwy < KIL( — Pyullgz, = K|(I - P)Lull ;. (5.46)

5.3.4 Resolvent estimates for small |s|

Recall the crescent €2, from Lemma 5.14, cf. Figure 5.3. In this section we derive
estimates for the solution of the resolvent equation

(sI —Lyu=r€ L, s€Q. (5.47)
We transform (5.47) into a first order system via Y = (u, ) and obtain
Y — M(s,-)Y =R (5.48)
with R = (0,7)" € L}, and

M(s,x) = (A_l(slo— C(x) —c[jl_l) , C=5,+Df(v).

We denote by S, : R? — C*? the solution operator of (5.48), i.e. the function
Y(s,z):=8s(x,y)&, z,y€R
is the solution of the initial value problem

Y — M(s, )Y =0, Y(y)=&. (5.49)
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The approach is similar to the one from Section 5.3.2. There we used the exponential di-
chotomy on R_ and the exponential trichotomy on R, of the first order piecewise constant
operator 0, — My (s, -) from (5.17) to construct solutions of (5.15) via Green’s functions.
We want to do the same for the first order variable coefficient operator 0, — M (s, -)
from (5.48). Using the roughness of exponential dichotomies under small perturbations
from [22], cf. Lemma B.3, we can immediately conclude that 0, — M(s,-) also has an
exponential dichotomy on R_ with data arbitrary close to the data of 9, — M (s, ).
However, in the case of an exponential trichotomy the exact exponential behavior of the
center part is usually not preserved under small perturbation, see [31]. In [13, Lem.
2.5] it was shown that under some additional assumption the exponential behavior of
the center part is preserved. In our case the additional assumption cannot be verified.
Therefore we prove a generalization of [13, Lem. 2.5 and show in particular that the
additional assumption can be neglected.

Theorem 5.22 (Roughness theorem). Let Q@ C R™ be a bounded domain, K € {R,C}
and let A(s) = 0, — A(s,-), s € Q, A € Cp(2 x JJK™), J = [0,00) have an ordi-
nary exponential trichotomy on J for every s € Q with data (K(s),a(s),v(s),B(s)),
SUPseq K (s) < 0o depending continuously/analytically on s € 0 and projectors Py(s,x),
K =s,cu, z € J depending continuously/analytically on s € Q. Further assume that
P.(s,x) is of rank m. = 1 and has the form P.(s,z) = z(s,2)(s,x)" where Az(s,-) =0
and there are C1,Cy > 0 such that

Cr < e 7|2(s,2)| < Cy, Cr < eW|Y(s,2)| < Cy Va € s€Q
Let B € C(J,K™") with
|B(z)] < Cge™=, z€J

for some 0 < 2¢ < infseqmin(v(s) — a(s), B(s) — v(s)). Then the perturbed operator
A(s) = A(s)—B has an ordinary exponential trichotomy on J with data (K, &(s), v(s), B(s))
depending continuous/analytically on s € Q and with K is independent of s € Q0. Specif-
ically, a(s) and B(s) are given by

a(s) = a(s) + 20K(s), [(s) = B(s) — 20K(s)
where

J

&
< K., = sup K(s).
= Imax(K.o, K2) i (5)

Proof. In the following C' = C'(¢) > 0 denote constants that are independent of s € €.
Choose z € [0,00) such that the following condition hold

4max(Ka, K2)Cpe ™ < ¢. (5.50)
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Then for all s € 2 we have with 0 := Cge™** > sup,, |B(z)]:

 K.o 89K (s)* 80K (s)?
0= . <1, 75) — als) <1, 305 — () <1 (5.51)
and
20K (s) < % < imin (v(s) — als), B(s) —v(s)). (5.52)

Now consider the shifted operator A,(s) = A(s) — v(s)I with corresponding solution
operator S, s(z,y), x,y € J, i.e. w(s,x) = S, s(z,y)wy solves the initial value problem
L,(s)w = 0, w(y) = wy. Let Pi(s,y), y € J denote the projectors of the ordinary
exponential trichotomy of A(s) on J. Then we have the estimates

v

Sy, y) Po(s, y)| < K (s)eld® @) g >y >0,

|Su,s(x>y)(Pc(5>y)+Pu(5>y))| < K(S)’ 0<zx

IN <

Y.

Let J,, = [x9,00) and w € Cy(J,,, K™). We define

T(s,@)(x) = / Syl y) Pals, ) By)iy)dy

Zo

_/%ﬁ@wm@W+R@wW@MWW

Note that by assumption we have v(s) — a(s) —e > 0. Then

|T(s,w)(x)| < K(S)CBe(O‘(S)”(S))x/ e’(o‘(s)”’(s)”)ydyHﬁJHoo + K(S)CB/ e Ydy||w|| s
o T
K(S)CB —ex ||~ K(S)CB —ex ||~ ex ||~
< e =100 + e [i]|oe < Cre™ [0
v(s) —al(s) —e €

(5.53)

for some Cr > 0 sufficiently large and independent on s. Thus 7" maps Q x Cy(J,,, K")
into Cy(J,,, K"). Moreover, for wy, ws € Cy(J,,, K") we have

T'(s, wi) () = T(s, wz)(2)]

< k() [ Byl — vl + KG) [ 1B ldyllon — vl

< KOOCB/ e Yy = l||lwy — wal|so-

zo
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Hence by (5.51) T(s, -) is a contraction on Cy(.J,,,, K"). Let w(s,z) = e V)72(s, 2) then,
by the contraction theorem, there is a unique w(s, ) € Cy(Jy,, K™) such that

ﬁ)(S, .T) = ’IU(S, SL’) + T<S7 ’lIJ(S, ))(.T)
In addition, since T'(s,0) = 0 we have the a-priori bound

&

~ 1
(s, ) oo < T l(s, e < 2.

1—

Since T'(s,-) depends continuously/analytically on s we conclude, using the implicit
function theorem, cf. Theorem D.8, that w(s,-) depends contlnuous/ analytically on s.
Moreover, for z € J,, there hold

w'(s,x) =w'(s,x) + Pi(s,z)B(z)w(s,
+ (A(s,x) —v(s)I)T (s, w(s, -
= (A(s,z) —v(s))w(s,x) + B(x)w(s, ).
Thus A, (s)w(s, ) — Bw(s,-) =0 on J,, and using (5.53) we obtain
lw(s,z) —w(s,z)| = |T(s,w(s,"))(x)| < Cre || w(s, )| < Ce = Va & Jy,.

Now the operator A, (s) has a shifted exponential dichotomy on J,, with data (K (s), a(s)—
v(s),0) and projectors Qs(s,z) = Ps(s, ), Qu(s,x) = P.(s,z) + Py(s,z) as well as a

shifted exponential dichotomy on J,, with data (K (s),0,/5(s) — v(s)) and projectors

Rs(s,x) = Py(s,x) + P(s,x), Ry(s,x) = Py(s,z). By (5.51) we can apply Lemma B.3

and obtain that A,(s) = A,(s) — B has a shifted exponential dichotomy on .J,, with

data (2K(s)?, a(s), 71(s)) and projectors Qn(s,7), K = 5,1 where

a(s) =al(s) —v(s) +20K(s), mi(s)=—20K(s), a(s)<in(s)<DO.

In addition, A,(s) = A,(s) — B has a shifted exponential dichotomy on J,, with data

(3K (s), (s), B(s)) and projectors R,(s, ), k = s,u where

Iy(s) = 20K (s), B(s)=B(s) —v(s) —20K(s), 0<in(s)<B(s).

Then R(Qs(s,z0)) C R(Rs(g, x9)) and we claim that the codimension is equal to 1. On
the one hand w(s, zo) € R(Rs(s, o)) since

|Ru(5, x0)W(s, xo)|

I
E

)R (s, :c)g,,,s(:c, x0)W(s, )|

) :L'Q:L'

IA

,,S(x 20)W(s, o)

) ©)@o=2) (s, )| = 0, 2 — o0.

IA
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On the other hand, assume (s, 7o) € R(Qs(s,x)). Then
0 # |w(s, xo)| = |Sy.s(0, ®)w(s, x)| < K(s)[w(s, )|

< K(s)lw(s,z) — (s, z)| + K()[Sy,s(, 20) Qs (5, 20 (s, 20)|
K (5)Cr(s)e™||d(s, ) [l + 3K ()%™ [la(s, ) [loo — 0, @ — oo
This is a contradiction and thus R(Qs( xg)) C R(ﬁ’ (s,10)) with codimension 1. In ad-
dition, we have N'(Rs(s, z0)) C N (Qs(s, 7)) and Qs(s, x ) u(8,20) = Ry(s,20)Qs(S, o) =

0. Now take 1)(s, o) such that
L, 7[)(571‘0)]{@5(571‘0) = QL(S’:EO)HRu(SaxO) = 0.

) =
Further, set 9(s, z) = SH (x, 20)1(s, 20), where SH denotes the solution operator of the
adjoint ./IV,S(S)*. Then ﬁc $,x) = w(s,x)@b(s,x)H is the projector onto span{w(s,z)}
satisfying

1/;(3,:160) w(s, xg

Let p(s) :=01(s) — a(s) + v(s). Then by (5.52)
pi(s) —e=in(s) —a(s)+v(s) —e > 20K +€ > % >0

and the estimate in Lemma B.3 yields

|Pu(s,2) — Pi(s,2)| = [Qs(s,2) — Qs(s,2)| < 5CK(s)? /OO e mOleslemeudy

o

— 50K (s)? / e D) g=u gy | 5OR K (5)? / e g—u gy
X0 xr
3 s)x 3

_ 5CBK(S) e —p(s) (e(m(s)*e)m B e(ﬂ1(3)75)1'0) I 5CBK(S) o

pa(s) — pi(s) +e

3
- Me _ 10CpK(s) o < Cec.
pi(s) —e 1/(5) —as) —20K(s) —¢

Further, we have by (5.52)

B(s) —e=0(s) —v(s) —20K(s) —e >e —20K(s) >

DO ™
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and thus, using the estimate in Lemma B.3,

|Py(s,x) — Py(s, )| = |Ru(s, z) — Ru(s,x)| < 5CBK<S)3/ e Pelle—vlg=ey gy,

3
< WCBK(S) o  rpee.
pls)—¢
This implies
1OCBK(S)3 X 1OCBK(S)3
ms)—e = fs) -«

|P.(s,z) — P(s,x)| < ( ) e < Ce

Now
| (s, x)| > |w(s,z)| — |[w(s,x) —w(s,x)| > C; — Ce =" > c!

Note that for instance in Frobenius norm there hold |wy®|p = |wl|[t| for all w,. Thus,
we obtain

[0(s,2) = (s, )| = |@(s,

Hence,
[0, )] < [W(s,2)| + (s, 2) = 9(s,2)| < Co+ Cem*
This implies for all x,y € [zg, 00)

. Co(Cy + Ce=7)

[Su,s(@,y) Pely)| = | (s, )| (s, y)| < Y, =K

Finally we have shown that the operator A(s) = A(s) — B has an ordinary exponential
trichotomy on J,, = [z, c0) with data (Ko, a(s), v(s), B(s)) where

Ky = max (gKoo, l_() . als) = al(s)+20K(s), B(s) = B(s) — 20K (s).

Since A € Cy(Q x J,K™") we find K sufficiently large such that A(s) = A(s) — B has
an ordinary exponential trichotomy on J = [0, 00) with data (K, &(s),v(s), 8(s)). O

Armed with this tool we are now in the position to conclude that the operator 0, —
M (s, ) has also an exponential trichotomy on R, with projectors denoted by P*(s) and
the exponential rate of the center part is given by v(s) = Re A\ (s). As in Section 5.3.2
we denote by m*(s) the ranks of the projectors PE(s).
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Lemma 5.23. Let Assumption 1, 2 and 5-8 be satisfied and let v(s) = Re A3 (s). Then
there is € > 0 and constants K > 0, a* < 0 < 8% such that for all s € B.(0) there hold:

i) The operator 0, — M(s,-) has an ordinary exponential trichotomy on R with data
(K,at,v(s), 8%) and projector-valued functions

Pr:B.(0) xR, - C*, k=s.cu m(s)=2 mi(s)=mi(s)=1

depending analytically on s € B:(0) and such that for all z,y € R, there hold

So(x,y)PH(s,y) = Pl (s,2)Ss(x,y), Kk=s5,cu
|85<x7y)7)5+<87y>| S Keaﬁ(xiy)a ‘SS<'T7 y)P;L<S7y)| S Kel/(S)(:ny)’ X > y7

1S, (, )P (s,y)| < K ), |Ss(2,y) P (s, y)| < Ke?@o v g <y,

ii) The operator O, — M (s, -) has an exponential dichotomy on R_ with data (K,&~, )
and projector-valued functions

P-:B.(0)xR. = C*" k=su m (s)=m, (s)=2, (s,2)¢€ B.(0)xR_
depending analytically on s € B:.(0) and such that for all x,y € R_ there hold

SS('Z‘7 y)’PN_(S7 y) = ,PIQ_((S? ‘/'E)SS(‘/'E’ y)’ R :§’ u’

|Ss(2,y) Py (s, )| < Ke* =79, x>,
1S, )P (s,)] < K ), z <y

Proof. i). For all s € B.(0) the operator 0, — My(s,-) has an ordinary exponential
trichotomy on R, with data (K,a™,v(s), 57) where K > 0 can be taken independent
on s € B.(0) and projectors P,(s, ), k = s, ¢, u depending analytically on s € B.(0) and
given by

Py(s,2) = V(W ()", Pls,x) = of (shf (9)",  Puls,x) = of (s)u (5)".

Now P,(s,x) is of rank m,(s) = 1 and can be written as P.(s,z) = z(s, z)¢(s, x) where

2(s, 1) = X ©yy(s), h(s, x) = e O7wy(s). Then there are Cy, Cy > 0 such that for
all s € Q.

O = |uy(s)| = e |2(s,2)],  Co = |wy(s)] = " |o(s, ).

Further set B(x) = My (s,z) — M(s,z). Then B is independent of s and by Theorem
2.6 we have for some C' > 0

|B(z)| = [A7Y|Df(vee) = Df(vi(2))| < Ce™, x € Ry.
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Take pi, so small such that

0< 2 < inf {min(v(s) — o, 5" —v(s)}, m < min(|a*|, 5*).

Then we can apply Lemma 5.22 and obtain that the perturbed operator d, — M (s,-) has
an ordinary exponential trichotomy with data (K,a™, v(s), 1) given by

S Fx A+ _ gt Fx
“o -« +2maX(K,K2)’ pr=>~0 2max(K, K?)’

and constant K > 0 which is independent on s € B.(0), and projectors P, k = s,c,u
depending analytically on s € B.(0).

ii). By (5.18) the operator 0, — M (s,-) has an exponential dichotomy on R_ for all
s € B.(0). Now we have for x <0 and s € B.(0) using Theorem 2.6 and Assumption 2

| Moo(s, ) — M(s,2)| < [ATH[Df(0) = Df(vi())] < Cet.
Then the claim is a consequence of Lemma B.3. O

Now we are able to construct a solution of (5.48) via Green’s functions in the same
fashion as in Section 5.3.2 for the piecewise constant coefficient system (5.17). For
C(s) € R(Pf(s,0)), z € Ry and s € Q. let

Yy (s.2) = Sy(, 0)Co (5) + / " G @, y) R(y)dy (5.54)

with the Green’s function

G+(fL‘ y) _ Ss(x,y)Pj(s,y), 0<y<uw
o —Si(z,y)(PF(s,y) + Pi(s,y), 0<z<y

For (_(s) € R(P, (s,0)), z € R_ and s € €. let

Y_(5,2) = 8,(z, 0)¢_(s) + / G (v, 9)R(y)dy (5.55)

with the Green’s function

_ —Ss(z,y)P; (s,y), x<y<0
GS(W):{ (2.9)Py (s.9), =<y

Ss(x,y)P (s,y), y<x<0

Then it is easy to verify that Y. (s,-) solves (5.48) on R.. Moreover, the solutions can
be represented in the following form:

Y (s,2) = Su( 0)C (s) + / " Su(ay)PH(s,y) Riy)dy

+ /Oo Ss(z,y)PF (s, y)R(y)dy + /Oo Se(z,y)P (s, y) R(y)dy
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and

T

Y. (s,2) = S(2, 0)C_(s) + / S.(2, 4)P; (5, 9) R(y)dy + / 5.z, 9)P; (5. 9) R(y)dy.

—00

It is clear, since R € L ,,, that Yy (s, ) € H).

L (R4, C*). By Assumption 6 we can assume
for all s € Q.\{0} the equation

(s —Lyu=0, ueclL? (5.56)

has no solution u € L? except the trivial one u = 0. Otherwise decrease €. Moreover,
(5.56) with s = 0 has only one nontrivial solution in L? given by v, ., i.e. Lv,, = 0.
Note that also LSjv, = 0, but Sjv, ¢ L?. By Lemma 5.23 we have the projectors
Pr(s) = PS(s,0) and P, (s) = P, (s,0) depending analytically on s € B.(0) and
satisfying the decompositions

C' =R(Pf(5,0)) ® R(I =P/ (5.0), C'=R(P;(s0) & R(I - P, (s,0)).
However, since N (L) is non-trivial the decomposition
C' =R(P/(s,0)) & R(P, (5,0))

holds true for s € Q.\{0} but fails for s = 0. In particular, the projectors P; (s,0), P, (s,0)
are unbounded as s — 0. In the next step we show that the projectors can be chosen
such that the singularity at s = 0 is of order one. It turns out that this is sufficient to
derive suitable resolvent estimates since the singularity only act on a finite dimensional
subspace given by the range of the projector P from Lemma 5.20.

Lemma 5.24. Let Assumption 1, 2 and 5-8 be satisfied. Then there ise > 0 such that for
s € B(0)\{0} there are projectors QF (s), Q; (s) depending analytically on s € B.(0)\{0}
and satisfying

R(Q; (s)) = R(PS(5,0)), R(Q(s)) =R(P, (s,0)),
C'=R(Q (s) & R(Q,(s)).
Moreover, there is C' > 0 such that for all s € B-(0)\{0} there hold the estimate
C

|s|

Q4 (5),1Q4 (s)] < (5.57)

Proof. In the proof we fix x = 0 and neglect the dependence of the projectors on z, i.e.
we write P, (s) = P, (s,0) We choose a basis {@1, g2} of R(P;(0)) and {es, ¢4} of
R(P;(0)). W.lo.g. we can assume ¢; = 3 and for

we = (0
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we have Jy(0) = 1 = ¢3. Let € be sufficiently small. Then for s € B.(0) we have, since
P (s) are analytic in s,

(PO + IS ()IDIP(0) = P ()l < 1,
PO+ 1P () DIy (0) = Py (s)] < 1.

Then Lemma A.12 implies with I + H = P,"(s)P.7(0) + (I — P,"(s))({ — P;7(0)), and
I+ H =P (s)P (0)+ (I — P, (s))(I — P, (0)) respectively, that

pi(s) =P (s)ei, i=12 @i(s) =P (s)p;, j=34

form a basis of R(P.;(s)), and R(P, (s)) respectively, and are analytic in s € B.(0).
Now let ®(s) = ((s), D (s)) with &1 (s) = (p1(s), pa(s)) and ®_(s) = (p3(s), a(s))-
By Assumption 6 we have N'(L) = span{v, .} and N'(L?) = {0}. Further, det(®(0)) =0
and since @ is analytic in s € B.(0) and Assumption 6 we conclude ®(s) # 0 for
s # 0. Moreover, with v = (1,0, —1,0)" it follows ®(0)v = 0 and since v, , is the only
eigenfunction of L it follows N (®(0)) = span{v}. Thus R(®(0)) C C* with codimension
equal to 1 and there is w € C* such that w®(0) = 0. Next we show that w”®'(0)v # 0.
For this purpose assume the contrary. Then ®'(0)v € R(®(0)) = R(P.(0)) + R(P, (0)).
Now define for i = 1,2, 3,4 the Jost solutions, cf. [36, Ch. 9],

Ji(s,x) = Ss(x,0)pi(s), xR,

Then J;(0,2) = J3(0,z) = Jo(z), J;(s,-) are analytic in s, solve (5.48) with R = 0 and
satisfy the estimates

| J12(s,2)| < Ke®™® x>0, |J54(s,2)| < KeP™, <0 (5.58)

where K,a", 3~ are given by Lemma 5.23. Moreover,
q)/(S) = (83J1, 83J2, 63J3, 83J4>(S, 0)
By differentiating (5.48) w.r.t. s, we obtain that 0sJ;(0, ) and 0,J3(0, -) solve the inho-

mogeneous equation

Y’ — M(0,-)Y = (Ao_l 8) Jo. (5.59)

Using Cauchy’s integral formula and (5.58) we obtain for z > 0

1 Jl()\,l‘)
0,710, 2)| = |—— d\

K" (5.60)
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as well as for z <0

18,J5(0, z)| = KeP ™™, (5.61)

2
<=z
g

1
211 OB (0) A2
2

Now since ®'(0)v € R(P;(0)) + R(P, (0)) = span{Jy(0,0), J2(0,0), J4(0,0)} and v =
(1,0,—1,0)" we find ; € R, i = 1,2, 3 such that

83J1(0, O) — 85J3(O, 0) = (I)/<O)U = ’VlJQ(O, 0) + ’YQJ4<O, 0) -+ ’}/3J0(0, O)

Now setting

¥ () = 4 1720:2) + 2200, 7) =81 (0,2), 720
_72J4(0’$) B 68‘]3(071‘)7 r <0 .

Then Y is continuous and solves (5.59). Using (5.58), (5.60) and (5.61) there is C' > 0
such that

Y (2)] < Ce™, x>0, Y (2)| < Ce’®, x<0.

Hence Y € H'. Let Y = (y1,90)" with y;(z) € C?, i = 1,2. Then we obtain from (5.59)
and a short calculation that Ly; = v, ,. Thus y; defines a generalized eigenfunction of L
and we arrive at a contradiction. Hence w®'(0)v # 0 and we can normalize w, v such
that [v] = 1 and w#®'(0)v = 1. Now we can apply Keldysh’s Theorem D.3 and find a
holomorphic function ' : B.(0) — C** with ¢ again sufficiently small such that for all
s € B.(0)\{0} there hold

P(s) ! = éva +I'(s). (5.62)

Now let

and define the projectors
Qf (5) = D (s) W4 (s),  Qu(s) =P (s)W_()".
Then an elementary calculation shows

Q. (5)Qy (s) = 9, (5)QF (s) = 0.
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This yields for all s € B.(0)\{0}

R(QS(5)) = R(PS(5)), R(Qy () = R(P, (s)),
=R(Q(5) ® R(Q,

=4
A
V)
S~—
~
I
2
~—~
V)
S~—
+
\®)
s
—~
V)
S~—

Moreover there is C' > 0 such that for all s € B.(0)\{0} we have by (5.62)

127 ()], 1Qy (s)] < —-

5]
U
As in Section 5.3.2 we now choose (, (s),(_(s) in (5.54), (5.55) such that the function

) Yi(s,x), >0
Y(s,x) = {Y_(s,x), o0 (5.63)

is continuous in # = 0. Then Y € H (R,C*) and solves (5.48) on R. For that purpose
take

— 0 (s /k: (y)dy € R(PZ (s,0)),
(5.64)
C(s) = —Q; (s / G(y)R(y)dy € R(P; (5,0))

with

W60y, y<o

Then the previous construction of the projectors QF, @, in Lemma 5.24 implies

0

Yo (5,0) = Y. (5,0) = Gy (5) — C_(s) + / "G (0,y) Riy)dy / G- (0,y)R(y)dy

—00

=)= () = [ G Ry =0,
Hence Y (s, ) from (5.63) is continuous at x = 0. Roughly speaking, we see by Lemma
5.24 that the singularity at s = 0 of the resolvent (sI — L)™' caused by the single
‘eigenvalue’ s = 0 is of order one. However, the essential spectrum still touches the
imaginary axis. As in the case of L., in Lemma 5.16 we are able to preserve the weak
singularity |s|~! by choosing different polynomial weights.
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Lemma 5.25. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then there is C' > 0
such that for all R € L, and s € Q\{0} the function Y (s,-) € H. (R,C*) from (5.63)
is a solution in L2 of (5.48) with

C
1Y (s, )z < HHRHLQ

k1’

(5.65)

Proof. We have already seen that Y € Hy._ is a solution of (5.48) and is continuous.
Therefore, it remains to show the estimate (5.65). We frequently use the estimates from
Lemma 5.15 and Lemma 5.23 and the Cauchy-Schwarz inequality. Recall Y. from (5.54),
(5.55) and let C' > 0 denote a universal constant independent on s. Moreover, let (.
be sufficiently small in the sense that e is sufficiently small in the definition of €2, from
Lemma 5.14. By Lemma 5.14, cf. (5.24), we have 9,3 (0) # 0. Since A3 is analytic in s

we obtain for some C > 0 for all s € Q.\{0}

sl s 1
D) 150 (0) = O(sP)] = [ (0) + O(fs])]

< (.

Then using Lemma 5.14 we obtain

|s| < C1|AT(s)| < Cy/Rej(s) = Cy/v(s). (5.66)

Let us estimate Y1. Using |G4(y)| < K for all (s,y) € Q. x R, Lemma 5.24 and (5.64)
we observe
2

C

¢+ (s)[? _W Q

| | HR”L2

k1

/ G.l) Ry < / K200 (y)dy [ RI1%,

This implies

/0 0 (@)1Ss(0, 2)C4 (5)da < WIIRIIL /0 0 (x)e™ da < WIIRIILQ (5.67)

as well as
0

| @00 (6 de < IR | [ @ s < IR (569

—00 [e.e]

Next we estimate Y'(s,-) at +00. Let z > 1 and use Cauchy-Schwarz inequality and
Lemma 5.15 to obtain

Qk(

2 00 |l‘|2k
() <c / POV gy || R,

PEGE 2

/ " S ()P (5, ) Rly)dy

(5.69)

2
Sﬂlx\ IRz,
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as well as since S > 0

n’*(x)

oo 2 9] 2k
. Y
/x S.(a.y)Py (s, 9)R(y)dy| < C / gt IR,

< Cla 2RI,

Moreover, since @ < 0, we have

2

k(1) /0m Ss(x,y)P (s, y)R(y)dy

2
+ % (x)

2

< n*(x) (5.71)

/0 Sy(x, )P (5, y) R(y)dy

|fL‘|2k

2k 20+t 2 ! 26+ (z—v) 2 -2 2
<O @RI, +C [ e IR, < Clel AT,

/les(x, y)P (s.y)R(y)dy

Now (5.67), (5.69), (5.70), (5.71) imply

| @ sape < 5 RE IR, +cC / @) | [ S P (s ) ROy o
+C’/ n*k (z, )P (s,y)R(y)dy de
+C’/ n*k (z, )P (s,y)R(y)dy 2d:p
< |2HR|1L2 ( ) ol 2dal 2,
< (204 05) HRHL%H < flRliz,
(5.72)

So it remains to estimate Y'(s,-) at —oo. For that purpose let # < —1. Then we obtain
using again Cauchy-Schwarz inequality, Lemma 5.15 and &= < 0

n?*(x)

/ CSu ()P (s, ) R(y)dy

—00

<C ! |x|2k 62d_(mfy)d ||R||2
- o |y|2(k+1) Y L%-H

< Cla 2|IR|3;

(5.73)
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as well as since 0 < B_

/8 z,y)Py (s,y)R(y )dy
/ 76D R(y)|dy / Ry

3 T | “(x— _
<o Rl o [ e arg, <o,

2

< O (a) o) (5.74)

Now (5.66), (5.68), (5.73) and (5.74) imply

-1 —1 z 2
| @ par < SR+ [ @] [ Senps nRw|
/ /8 z,y)P, (s,y)R(y)dy d;z:
C 2
WHRHp +2C |3?\ dr|R|l7 | < SF |2HRHLg+1-
(5.75)
Since Y'(s, ) is continuous it is easily seen that
1
| @I s.o)Pds < IRIE
Thus with (5.72) and (5.75) we obtain (5.65) after taking square root
1Y (s, )z < s ||| 2z, ,-
U

The Lemma now implies the following resolvent estimate for L on L? for s € Q.\{0}.

Corollary 5.26. There is C > 0 such that for all s € Q\{0} and r € L}, the equation
(sI — L)u = r has a unique solution u € H,fﬂ satisfying

lllzy < ] < r rllez, -
Proof. Since Q.\{0} C p(L) there is a unique solution u € HE,, of (sI — L)u = r for all
r € L7 ;. In particular, r € L? and u is unique in L?. Take Y (s, ) = (w1, ws)" from
Lemma 5.25. Then (s/ — L)wy = r. Thus u = w; and the estimate is direct consequence
of Lemma 5.25. O
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Next we take the projector P onto N'(L) and the space Vj, = WL N L2 from (5.44) into
account and prove the major result of this section, which gives sharp resolvent estimates
for sI — L in the crescent {2.. The estimates are the essential ingredients to derive time
decaying estimates for the semigroup generated by L. Using a perturbation argument
similar as in [12, Lem. B2], we prove that the weak singularity of (sI — L)™' of order
|s|7! is caused by the nontrivial kernel A/(L) and only acts on a subspace given by the
range of the projector P onto NV (L) from Lemma 5.20.

Lemma 5.27. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then there is C' > 0
such that for all r € L3 5 and s € Q\{0} the solution uw € Hf 5 of (5.47) satisfies the
estimate

1
[ullzy < HHPTHLi + O = P)rllzz,,- (5.76)

In particular, if r € Vi3 then

[ullmy < Cllrflez (5.77)
uniformly for s € €.
Proof. We approximate (sI — L) by the operator
L(s) :=sP — L(I — P).
Then
L(s)— (s —L)=s(P—1)4+ LP = —s(I — P). (5.78)

Since Q. \{0} C p(L) the equation (sI —L)u = r € L}, with s # 0 has a unique solution
uw € H}, 4. Recall that PLu = LPu = 0 by construction of P, cf. (5.43). We obtain

sl Pullmy = [[(s] = L) Pully = [|Pr{| - (5.79)

By Lemma 5.19 L is a Fredholm operator of index 0 from L7 to L{,,. Now we use the
estimate (5.46) to obtain for some K > 0

IL(s)(I = Pyullpz,, = |1L( = Pyullpz,, > KI(I = Pyul .
This yields with (5.78)

(1= P)riiez,, = I(sT = L) = Pullzz_,
> ||L(s)(I = P)ullzz,, = IIlL(s) = (sI = D)J(I = Pullz,,  (5.80)

> K([(I = P)ullg; = s||(1 = P)ullr;

k+2”
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Using (5.79), (5.80) we obtain

[ullmy < I Pullay + (1 = Pullg
1

<
5]

1Prl[m + Clsl( = Pullzz,, + ClI(I = P)rirz, -

Now by Corollary 5.26 we have |s|||({ — P)u||L%+2 < C|(I - P)r||L%+3. Thus,

1 C
lullmy < 51 Prllm + CIUT = P)rllrz,, <55

B ba = Tyl

1Prliez + ClIIU = P)rllzs, -

5.4 The semigroup e"

From Lemma 5.7 and Theorem 5.9 we conclude that the linearized operator L generates
an analytic semigroup on L2. It is denoted by {e'*};>¢ and will be used to show existence
of a solution to (0.11) with u(0) = v, + ug. To conclude also nonlinear stability of the
solution we need time decaying estimates of the semigroup which will be proven using
the delicate resolvent estimates from Lemma 5.27. For this purpose, recall the subspaces
Vi from (5.44).

Theorem 5.28. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then the linearized
operator L : H? — L} generates an analytic semigroup {e'*};>o on L} given by

1
et = e'*(sI — L) ds,

21 Jp

where T is any contour in p(L) with arg X — £ (% + ) as [\| = oo for some e > 0. In
addition, there is K > 1 and § > 0 such that for allt >0 and ¢ = 0,1 there hold

K
leFull gy < Kelull e, e ullmy < Weﬁt”u”Li- (5.81)

Moreover, for m € N there is C,,, > 1 such that for all u € Vi3, there hold

Cm
||6tLu||Li < mHUHL%Hm, (5.82)
Cm
le®ullm < —lulzz, (5.83)
leullmy < — llullm; (5.84)

= (103
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Proof. As in the proof of Theorem 3.21 (see also [32]) it follows from Lemma 5.7 and
Theorem 5.9 that L generates an analytic semigroup on L? and the estimates (5.81)
hold. So it remains to show the estimates (5.82), (5.83) and (5.84). For this purpose
we first consider the case m = 1. Take €., I'. from Lemma 5.14 and such that Lemma
5.27 applies to Q. and let C' > 0 denote a universal constant. Let v = a,6% + id and
€= cos_l(ﬁ) with a,, ¢ defining I'.. Set for sufficiently small gy > 0

Iy :={y+ Tei(%Jreo), >0}, I :={7+ Tefi(%ﬁo), T >0},

: T
Lo = {[1le, 6] < 5 +¢)

and set I' = T'_UT'(UT"; being a contour running in upward direction. W.l.o.g. T" C p(L)

Figure 5.5: The contour I' (left) and I's, Kz (right) in the proof of Theorem 5.28.

and there are no eigenvalues of L to the right of I in the complex plane. Otherwise
increase a, < 0 and decrease g5 > 0. Since €' is independent of the choice of the
contour we have

1
et = — [ e(sI — L) 'ds.
21 Jp
In particular, 02, = I'. UTy. Take arbitrary £ > 0 and set K: = 9Bz(0) N Q. and

I'::={z €T, |z] <&} UK: Then the Cauchy integral theorem implies for u € Vj;3 =
R - P) 0 Ly

/ (sl — L) 'uds :/ e'*(sI — L) uds,
Qe

s
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where the integrals running clockwise. By Lemma 5.27 we have for all s € Tz, 0 < & < ||

the uniform estimate

I(sI = L) Mully < Cllullzz,, V€ Viga.

(5.85)

Using (5.85) and parameterizing [’z yields by a straight forward calculation for u € V3

—0, £—0.
Hy,

/ (s — L) ‘uds
Tz

This shows
/ e(sl — L) 'uds =0 Yu € Viys.
09,

Then we conclude

1
eu=— [ e¥(sI — L) uds Yu € Viys
21t Jr

where I' = I'_UI',UT'; is the contour running in upwards direction. Now since I'y. C p(L)

and using Lemma 5.27 and Lemma 5.7 we find C' > 0 such that
(s = L) ully < Cllullzz, Vs €Tyue Viga.

Now let ¢ > 1 and u € V3. Then we observe since a, < 0

/ e'*(sI — L) uds
ry

< Cllullz

1 k+3
ch

00
ta*52 / el cos(%Jreo))dT
0

o0
gﬁwmemf/ el g < ]
t k+3 0

Moreover, there holds

/ e (sI — L) ‘uds

C Vs oo
_ s ~ a*s -~
=l [ s < Sl [ e ts < Sl

Now using (5.81) for t € (0,1), we obtain for all ¢ > 0 and u € Vj 3

0

H tL

leullzz < e ully < ullm <

\/ﬁ” HLk+3 \/—H HLk+3 \/ﬁ

5
§C||U||Lﬁ+3/ 6“*”2|2a*7'+i|d7'§C||u||L%+3/ e
H} -4 0

2
Lk+3

2
axtT dT

.

(5.86)
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Now the general case, m € N, in (5.82) follows by applying (5.86) m-times:

tL a2\
etz = [ ()" o],
Ch PR AN cr Cn
<— ()" <l <l
(1+ 0 g S EDE e = 0
and similarly for (5.83) and (5.84). O

5.5 Decomposition of the dynamics
Recall the co-moving equation with perturbed initial data from (0.11) reading as
up = Algy + cuy + Spu+ f(u),  uw(0) = v, + up.

As in Chapter 3 the next step is to decompose the dynamics of the solution of (0.11)
by a nonlinear coordinate transformation, cf. Section 3.5. In particular, the solution is
written as a motion along the group orbit O(v,) described by a group element 7(¢) € R
and a perturbation w in the space V}, for appropriate k € N, cf. Figure 5.6. For ¢t > 0
we want to write the solution u(t) € M, as

u(t) = v (- —7(t)) +w(t), () eR, w(t)eE V.

This transformation will be unique as long as the solution u stays close to the group
orbit O(v,). As in Chapter 3 this will be guaranteed by taking sufficiently small initial
perturbations ug. Since the procedure is very close to the one from Section 3.5 we only
give the main steps of the proofs during this section.

We start by considering the map

I:R =&, 7o Plo(—7)—u,). (5.87)

Lemma 5.29. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then there is a
zero neighborhood W C R such that the map II : W — II(W) C @ from (5.87) is a
local diffeomorphism. Moreover, there is a zero neighborhood V- C R x V}, such that the
transformation

T:V>TWV)CL, (rnw)=uv(—7) —uv,+w
is a local diffeomorphism and the solution of T'(T,w) = v is given by

r=11"YPv), w=v+v, —v,(—71).
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v (- —7(t)) + ¥t
U*(' — 7'0) + \I/J‘

Figure 5.6: Decomposition of the dynamics.

Proof. The proof follows as in Lemma 3.22 and we only note the important steps. We
have I1(0) = 0 and II is continuously differentiable with derivative DII(0) = —uv,, # 0,
cf. Lemma 5.5. Thus, we conclude using the implicit function theorem D.8 that II is
a local diffeomorphism near 7 = (0. The same holds true for 7" since it is continuously
differentiable with derivative at (7,w) =0

DT@ﬁ)z(ng)?)

which is invertible. The rest of the proof follows as in in the proof of Lemma 3.22. [

Next we assume there is a classical solution u € C([0,ts), M?) N C*([0,ts), My,) of
(0.11) on [0, ) for some k € N satisfying

lu(t) — vllz <8 Vi€ [0,t).

Let 0 be sufficiently small such that Lemma 5.5 guarantees that the map T stays invertible
on B;(0) C Li. Then we have for all ¢ € [0, t.)

u(t) — v, =T(7(t), w(t))
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with w : [0,ts) — Vi and 7 : [0,f) — R. Then, since T is diffeomorphic, we conclude
w e C([0,ts), VZ) NCH[0,ts), Vi) and T € C([0,ts), R) and the decomposition

u(t) = v (- —7(t)) +w(t) (5.88)
holds for all ¢ € [0, ). Since u solves (0.11) we obtain for t = 0
up + vy, = u(0) = v, (- — 7(0)) + w(0)
which yields
7(0) = T (Pug) =: 70, w(0) = ug + v, — v.(- — 70) =1 wo. (5.89)

Let Lou := Aug, + cu, + S,u. Then using the chain rule and the local representation of
the derivative of the group action from Lemma 5.5, see (5.2), we obtain for ¢ € (0, )

0= u(t) — F(u(t)) = ue(t) — Lou(t) — f(u(t))
= %w( —7)+w; — Love (- — 7) — Low — f(v.(- —7) + w)
= —VUuu(- = T)Te + Wy — Lovu(- — 7) — Low — f(vu(- — 7) + w)
= —U*7m(‘ - T)Tt + wy — LOU*(‘ - 7') — Lw + Df(v*)w - f(”*(' - 7') + w).

Since Lovi(- — 7) + f(ve(- — 7)) = F(v.(- — 7)) = 0 we observe
wy = Lw + v, o (- — 7)7 + 7P (7, w) (5.90)
where
i w) = fon(- = 1) +w) = f(o(- = 7)) = Df(v)w. (5.91)
Applying the projector P to (5.90) yields
0= Pu, (- — 7)1 + Prifl(r,w). (5.92)

Hence 7 is determined by the ODE (5.92). As a next step, we want to write the ODE
in an explicit form.

Lemma 5.30. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then for 7 € R
the map

S(T):R—=®, p— —Pu,(-—7)u

satisfies S(7) € LR, ®]. Moreover, S(-) € C*(R, L[R, ®]) and there is a zero neighbor-
hood V' C R such that S(7)~" exists for T € V and S(-)~* € CY(V, L[®,R]).
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Proof. Follows as in the proof of Lemma 3.23. O

With the use of Lemma 5.30 we can write (5.92) together with the initial condition
as an initial-value problem for 7

n=r(rw), 7 =10"Y(Pu)
where
i, w) == S(r) " Prifl(r, w). (5.93)
Now we apply the projector I — P to (5.90) and obtain
wy, = Lw + (I = P)v, (- — 1)l (7, w) + (I = P)rf(r,w) = Lw + r)(1, w)
where
rl(r w) = [(I—P)+(I—Po(-—7)S(1)""P] (7, w). (5.94)
Summarizing we have shown that the new coordinates (7, w) solve the initial-value prob-
lem
wy = Lw + (7, w), w(0) =up + v, — v, (- — 1) = wo (5.95)
7 =r(r,w), 7(0) = I (Pug) =: 10 (5.96)

as long as the decomposition (5.88) is valid.

Definition 5.31. A pair (7, w) is called a classical solution of (5.95), (5.96) on [0, %)
for some to, > 0 if there is k € N with

i) we C(0,ts), VZ) NCH[0,ts), Vi) and 7 € CH([0, o), R).
i) w(t) = Lw(t) + r(7(t),w(t)) and 7(t) = vl (7(t), w(t)) for every t € [0,ts).
iii) w(0) = wp and 7(0) = 7.

If too = 0o we will call (7, w) a global classical solution of (5.95), (5.96), whereas for
too < 00 we will call (7,w) a local classical solution of (5.95), (5.96).

5.6 Estimates of nonlinearities

As in Section 3.6 the next step is to show Lipschitz estimates of the remaining nonlin-
carities v/ [ 7l7) from (5.91), (5.94) and (5.93). But in contrast to the exponential
case in Section 3.6 we have to show sharper estimates since by Theorem 5.28 we have a
loss in the polynomial order. However, this is captured by the fact that the remainders
rlf plwl pl7l are actually Taylor-remainders of second order. This gives us additional
polynomial orders to compensate the loss of the semigroup.
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Lemma 5.32. Let Assumption 1, 2 and 5-8 be satisfied and k € Ny. Then there is
d > 0 and constants Cy, Cy,Cy,C3,Cy > 0 such that for all T,7,7 € Bs(0) C R and
w,wy, wy € Bs(0) C H} there hold:

i)l wn) = 0 w) | gy < Co (Ir] 4+ max(lle |y, lwalliy) ) lwn = wall .

)|y < Co (Il 4+ max(an g, fwallag) ) s = ws .

( rl
i) Hr[ﬂ(ﬁ,w) - T[f]<7'2,w)HH1k < Cy|m — 7o,
iid) ||rt — 7l

}<T7w1)
iv) Hr[ }(7'1,101) T[w](TQ,w2)HH21k < Cj <|7'1 - 7‘2| + ||w1 - w2||H;> )

v) }r[ﬂ(ﬂ,wﬂ - T[T](Tz,wz)} < Oy <|7'1 — 72| + [Jwr — w2||Hé) :

Proof. The proof is similar to the one of Lemma 3.25 and we denote by C' > 0 a universal
constant. For a matrix-valued function M : R — R*? we write | M|z~ = |||M]||r=
and M| zz = [[|M][||z2 for some matrix norm |- | on R*?. We frequently use Sobolev
embedding, cf. Theorem D.2, Lemma 5.4 and the exponential estimates of the profile
vy from Theorem 2.6. The key idea is to use the following estimates to gain the better
behavior w.r.t. to the polynomial order. Let v € H}, u € L} then

HolullIZ, =An4k(w)lv(w)l2IU(w)l2dx=/RInk(ﬂf)v(af)|2|n’“($)U(af)l2dw

< wllzpellullzs < lvllz lulze.

(5.97)

and
on- = 7) = wallollZs < [l / 1 (@)|on(@ — 7) - v () Pde < ClrP ol (5.98)

We frequently use the estimates (5.97) and (5.98) with different functions u, v depending
on wq, ws and their derivatives w; ,, w2 . Now we can proceed in the same fashion as in
the proof of Lemma 3.25.

i). Let w(s) := vy — v, (- — 7) — wa + s(w; — wy). For the remainder r/ we use the
intermediate value theorem and the estimates (5.97), (5.98) to estimate

I (7, wi) = (7, w2) [ g,
= [1f (vl = 7) +w1) = fou(- = 7) + ws) = Df(v) (w1 — wa)llz,

< /0 1D (vul- = 7) + wy + s(wr —w)) = Df(v)](wr = ws)| 3, ds

< [ [ IDA 0+ on(a) n(s) w1 = w1, o
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< C (Ja- = 7) = el by = walllzg, + s feor = walllzg, + ey = w3, )
< C (Il + max(lunll g, sl ) ) oy = ws) .

Next we estimate the derivative
10 [r (7, wy) = (7, w2))] |2,
= I[Df(vs(- = 7) +w1) = Df (- = 7) + wa)|vsa(- = 7) = D*f(0.) [0z, w1 — W)

+ [Df(vl- = 7) +wi)) = Df(v)]wie — [Df(0u(- = 7) + w2)) — Df(v)]wael g, -
(5.99)

With £(s) := v.(- — 7) + wy + s(wy — ws) the first term can be estimated by
—7) +wi) = D = 7) +w2) v (- = 7) = D2 f(0) [a, w1 — wa ||z,

/ 102 F (R = 7). — 5] = D (2 o w1 — 03] 13,

< ||D2f(f%(8))[v*,z(- —T) = Ve, w1 — woll| 13, ds
0

[ DR 9) = D10 e = ],
< [ D () [0nalc = 7) = Dur0r — w13, ds

+ /01 01 | D3 f (v, + 0 (R(8) — ) [R(S) — Ve, Vg, w1 — ws|| g, dods
< CJvusl = 7) = vuellmy Jen = wallzoe
o Mlwallws = walllsz, + lhwr = waf?llzz, )
< C (Il + max(lwill gy, sl my) ) s = w3 ).

For the second term in (5.99) we use the abbreviation r;(s) = vy + s(vs(- — 7) — v +w;),
1 = 1,2 and estimate by frequently adding zero

IIDf(vs(- = 7) +w1)) = Df(vi)]wie = [Df(vi(- = 7) +w2)) = Df (v)]waellrz,
1

< /0 1D? f (k1)) [04 (- = 7) = ve + w1, w10] — D f(k2(8)[ve(- = 7) = ve + w2, waelll 2 ds
1

< /0 I(D*f (k1 (s)) = D? f(k2(3))) [al- = 7) = vi + wi, willl 2, ds

1
+ [ 1D o)) = wa,wrls, ds
0
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1
n /0 1D2 (s (5)) [ (- = 7) = v+ w2, (w01 — w2)a] 3 ds
1 1
< /0 /0 1D% £ (a(5) + (1 (5) — wa())) i1 (5) — (), v - = 7) — 04+ w1, w1,] |z dods
1
+ [ 1D a5 = 0,

1
[ 1D sl = 7) = -+ (n = w13, s
0
< C (Jllwn = wallwnalllzg, + Mox(- = 7) = vell(wr = wa)alll g, + sl l(wr = wa)alllzs, )
< C (17l + max(lwrll gy, sl ) ) llwr = wal g

Putting things together we have shown
[ w1) = )|y < Co (1] max(fan g, s ) ) o = wall .
2k
ii). Using Theorem 2.6 and the intermediate value theorem yields

I3, w) = )z, = (@ = 72) 1) = £ = 72) + )

< loe(- = 71) = v = )z, < Clm — 7.

iii)-v). The estimates iii), iv) and v) follow exactly as in the proof of Lemma 3.25 by
using i) and Lemma 5.30. O

Remark 5.33. Up to this point excluding the estimates of the nonlinearities, we could
have done all the analysis using the space X, as in Chapter 3 but with a polynomial weight
function. In particular, for X, = X, with n = n{;‘oly it s possible to derive estimates of
the semigroup e'* as in Theorem 5.28 for the linearized operator from (0.26) considered
as L : D(L) C Xy — Xpyo. However, when proceeding as in Chapter 3 we were not
able to compensate the loss of the polynomial orders by estimates of the nonlinearities.
Especially, we could not prove a result as in Lemma 3.25 in the case of polynomial weight
functions.

5.7 Nonlinear stability theorem in polynomial spaces

In this section we prove the second main result of the thesis - nonlinear stability with
asymptotic phase of traveling oscillating fronts in polynomially weighted spaces, cf. The-
orem 1.13. The proof follows the same strategy as in the case of exponentially weighted
spaces, see Chapter 3. We consider the decomposed system (5.95), (5.96) which was
derived by a nonlinear coordinate transformation in Section 5.5. We begin by show-
ing existence of a local mild solution of (5.95), (5.96). For this purpose consider the
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corresponding integral equations

w(t) = ewy + t eIl (7 (), w(s))ds,
/0 (5.100)

7(t) = 70 +/0 (7 (s), w(s))ds.

Definition 5.34. A solution (7,w) € C([0, ), R x V}!) for some k € Ny of the integral
equations (5.100) on 0 < ¢ < to for some to, > 0 is called a mild solution of (5.95),
(5.96) on [0, tw).

In the case to, = oo the we will call the solution (7, w) global mild solution, whereas
for t < oo we will call (7, w) a local mild solution of of (5.95), (5.96). To prove existence
of a local mild solution we use the classical semigroup estimates (5.81) and the Lipschitz
estimates from Lemma 5.32. Furthermore, we obtain a-priori estimates for the solution.
As in Chapter 3 we equip the product space R x H} with the norm

17 w) sy = 17|+ wllzy-

Lemma 5.35 (Local existence and uniqueness). Let the Assumption 1, 2 and 5-8 be
satisfied and k € Ny. Further, let K > 0 be from Theorem 5.28 and 6 > 0 from Lemma
5.32. Then for every 0 < e; < 0 and 0 < 3Keg < § there is t, = t,(g9,e1) > 0 such that
for all initial values (1o, wo) € R x V,! with

lwolly < €0, |7(1)] < &1
there exists a unique local mild solution (1,w) € C([0,t,),R x V1) of (5.100) with
[wt)l|m < 2Keo, [7(1)] <261, t€]0,t,).
In particular, t, can be taken uniformly for (1o, wo) € B, (0) X B, (0).

Proof. Take 8 > 0 from (5.28) and C; > 0 from Lemma 5.32. Now choose t, so small
such that the following conditions are satisfied:

t

1 KC
- S 4 Oyt + —

Bt
< , 1) <1 5.101
2Ce1 + 2K Chzy’ 2 3 (e ) (5.101)

Note that ¢, can be taken uniformly for (75, wy) € B, (0) x B.,(0). The proof follows
a contraction argument in the space Z := C([0,t,),R x V}!) equipped with the norm
1(m, w)llz = supiego ) {IT(@)] + [[w(E)]| 1z ;- Define the map

| o+ Jy (r(s), w(s))ds
Y:Z—27Z (rw)w (e(->Lw0 n f{(') L=l (7 (), w(s))ds
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given by the right-hand side of (5.100). We show that T is a contraction on the closed
set

B = {(r,w) € Z: |lw(t)|m < 2Keo, |r(t)] < 2¢1, t € 0,4,)} C 2.

Let (7,w) € B. By using the estimates from (5.81), Lemma 5.32 and the conditions
(5.101) we obtain for all 0 <t < t,

t t
e wg + / eIl (s) w(s))ds|| < KePleg + K/ P9l (7 (s), w(s))| g ds
0 0

Hj,
t
ng%+m%/JW%Mﬂm@
0

2K203€0

5 (e — 1) < 2K¢.

< Keﬁt*&'o +

and

w7 wlsds| < e+ [ o) ws) s

ga+@/h@wwmmmw
0
S g1+ (20481 + 2KC4€0)t* S 281.

Hence T maps B into itself. Further, for (7, w), (1o, ws) € B and 0 < t < ¢, we can
estimate

[T (71, w1) = T(72, w2) ||z < sup / [T (7 (s), wi(s)) — P (a(s), wa(s))lds

te[0,tx)

+/O Kt (my(s), wi(s)) — r*(ma(s), wa(s)) || mpds}

KC
B%J“—U)Mn—wmu—wmz

< ||(7’1 — To, W1 —U)g)”z.

S <C4t* +

Thus T is a contraction on B and the assertion is proved. O

As in the proof of nonlinear stability in Chapter 3 the next step is to use a Gronwall
estimate to show that the unique local mild solution from Lemma 5.35 exists for all
times and, in addition, converges to some element of the group orbit O(v,). Since the
estimates of the semigroup from Theorem 5.28, see (5.84), consist of polynomial terms
we need a Gronwall estimate including polynomial integral kernels.
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Lemma 5.36. Let 0 < 2¢<m —2, C,C,e > 0 such that

C>1 e<—L _ g 2m
9CC,\C m—2

and let ¢ € C([0,T),Ry) for some T > 0 satisfying

oty <~ é/t L et u)e(s)ds Ve 0,T).
T (141t)z o 1+t—2s)2
Then for all 0 <t < T there holds
3Ce
wlt) < (1+t)e

Proof. Since 1 <qg+1< & and m > 2 for all ¢ > 0 there holds

¢ (14 t) ! t(1+1) )
/0 <1+s)q(1+t—s)’§ds_/o e (%"

< 1+ Tt)(q1(1++t)(q1ﬂ— 0F T /1 1+ Tt)jg ; E)1q— 0F T
</ %d T / T I
=0 AE e Trenr (RRSURE)

< 2((11++ t;;; b 3(21)?1 T;m <214 25) = 2 =0

where the last step uses the bound

1+1)¢

#g?}, Vt >0, g € N.

(14 5t)e
Now let

3Ce
= o 7T : S 5 7too 0.
T sup{t €[0,7) : ¢(t) T Vte [0 )}>

Assume 7 < T'. Since ¢ € C([0,T"),Ry) we obtain

3Ce = (14 1)%p(1) < Ce+ K/OT %(6 + (s))p(s)ds

T q T 1 q
< Cs+3CK52/ (1+7) mds+9CzK52/ ki
0o (I1+s)(1+7—5)> o (14+s)2(1+7—3)2
< Ce+3CCKe? 4+ 9C,C%*Ke? < 3Ce.

This is a contradiction. Thus 7 = T and the assertion is proven. O
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Now we are in the situation to prove the stability result for the (7, w)-system (5.95),
(5.96). As in the exponential case, the regularity of the solution will again follow by
classical results from [5] and [32], cf. Theorem C.3.

Theorem 5.37. Let Assumption 1, 2 and 5-8 be satisfied and let m > 5, k = 3m. Then
there is € > 0 and constants Ky, Ko > 1 such that for all initial values (15, wp) € R x V}2
with |[(7o, wo)||gxmy, <€ there hold:

i) The system (5.95), (5.96) has a unique global classical solution
w € C*((0,00), ViZ) N C((0,00), Vi) N CH([0,00), Vi), 7€ C[0,00),R).
for arbitrary o € (0,1).
i) There exists Too = Too(T0, wo) € R such that for all t > 0
Ky

[w(®)[[m < m”(mwo)ﬂkmgk,
K,
7(1) = Too| < m”(T(MwO)HRngka |Too| < (K2 + 1)|(70, wo)[mx sz, -

Proof. Recall K,C,, > 1 from Theorem 5.28 and ¢, C; from Lemma 5.32. Now choose
g,€ > 0 such that 0 < 2K¢ < 9 and

£ < min (i A G 2)> ., Cri=2+ 126 Ch (5.102)

C, 6C,," ImC2CyC, m—4
We abbreviate & := ||(7o, wo)||gxm1, < €. Let
too 1= SUD {T > 0 :3(7, w) local mild solution of (5.100) on [0,7),
(@)l < K&, 7(t)] < Crto, t € [0,T)}.

Then Lemma 5.35 with ¢g = € and ¢, = % < ¢ implies to, > t, = t.(0,e1). Using

Theorem 5.28 and Lemma 5.32 we estimate for all 0 <t < t,,, since k + 3m = 2k,
t

lw(®)]az < [l woll +/ e (7 (s), w(s)) || ds
0

< ol + /tﬂnrhﬂw w(s) |, ds
S n)ET T (1t — )% ’ Ha

< ol +00/t; () + l[w(s)llap ) lw(s)lmd
_<1 )% Woll Hi, m2 . (1+t_8)gl(7‘8 w(s H,i) w(s)||pras

C ! 1
< — 'mCoC —_ 1 1ds.
< (1_”)5504—0 5C' /o 111 9% <£o—|— Hw(s)HHk> [w(s)] pds
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implies due to (5.102)

194
Then the Gronwall estimate in Lemma 5.36 with ¢ = msz
3C, 3
lw®llm < S S ienty). (5.103)
ET (4 T2
This yields, due to m > 5 and (5.102)
)| < |7l +/ [Pl (7 (s), w(s))|ds < & +C4/ [w(s) || ds
< €+ 3C; mgo/ (14 5)~ 2 ds (5.104)
0
6C4Cyp C
4 50 _ 50’ te [O,too)
2
i.e. too < 00. Then

<
= 50 4
oo. For this purpose, assume the contrary, i.e. ¢

Next we show that ¢
the estimates (5.103), (5.104) imply
5 C-
(e = Sy < 5 =20, [7(toe = 31| < 250 — e,
Now we can apply Lemma 5.35 once again to the integral equation (5.100) with wy =
w(ts — 3t) and 7o = 7(ts — 3t,) and obtain a solution (7,w) of (5.100) on [0, ¢,) with
0(0) = w(teo — 3ta), [lw(®)llmy < K&, t€0,t,)
7(0) =Tt — 3tx), 1T < Crbo,  tE€[0,1).
Define
= 5 (7_7 w)(t)v te [Oatoo - lt*]
(7wt =4 " 1 i B
(T,0)(t — too + Qt*), t € (too — 5tusloo + 515*)
t)] < Cre.
00). The

Then (7, w) is a local mild solution on [0, t +3t,) with ()| p < K& and |7(t)
~- Hence to, = oo and (5.103) holds on [0

A contradiction to the definition of ¢
estimate (5.103) yields that the following integral

Too = To + /000 T‘M(T(S), w(s))ds

exists and satisfies the estimate
7)) =l < [ (). () lds
t
6CmC _m=4
A(l + t) 3,

<0 [Tl <30uCie [ (145" Tas = Lo
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Hence the first two estimates in ii) are proven with K; = 3C,, and Ky = 6(;{”—_%. The
third estimate is obtained by

|Too| < [7(0) = Too| + [ 70| < (K2 +1)&0.
Hence ii) is proven and it remains to show the regularity of (7,w). By Lemma 5.32 we
have rIl € C(V,R), V = B;(0) x Bs(0) C R x H} and, since (1,w) € C([0,00), R x V1),

there hold rI/(7(-),w(-)) € C([0,00),R). Thus 7 € C'([0, 00), R). Furthermore, consider
the equation

u(t) = Lu(t) +r(t), t>0, u(0)=uw (5.105)

where 7(t) := r®I(7(t),w(t)). Suppose 0 < s <t < co. Then by Lemma 5.32 we find
some C' > 0 such that

Ir(8) = 7()llz = I (r(2), w(®)) = rr(s), w(s))lzz
< Gy (Ir(®) = 7()| + w(t) = w(s) )

< cu( [ o) wioldr + [ (o). wlo)le )
<c (@/Wunmw+@/h )+ (o)l ) < CGa o)

This implies r € C%([0, 00), L?) for every a € (0,1). Moreover, for arbitrary s > 0 there
hold

/Hr Hdet /Hr[w ))|]det<03/ |w(t HHldt<OO

Now Theorem C.3 implies

t
u(t) = efwg +/ e =) Lr(s)ds
0

solves (5.105) and u € C*((0, 00), V;2) NC+((0, 00), Vi) N C*([0, 00), Vi). Therefore, we
have for all t > 0

t t
u(t) = e wy +/ e =)Lr(s)ds = ey, +/ eEIErl (7 (5) w(s))ds = w(t).
0 0
Hence, for all a € (0,1)

w(t) € C((0, 00), V2) N C*2((0, 00), Vi) N CL([0, 00), V).
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Remark 5.38. Let us briefly explain why we have to choose m > 5 and k = 3m in
Theorem 5.37. We want to derive stability with asymptotic phase, i.e. T(t) — To as
t — oo. Lets say roughly |7(t) — Too| ~ t=2. Following the proof of Theorem 5.37 we then
need to show |w(t)|| ~ t2 since it is integrated once. Following the Gronwall estimate
from Lemma 5.36 we need to choose m > 5 in Theorem 5.28. Finally, to compensate the
loss of the polynomaial order, caused by the semigroup, by the nonlinearities, cf. Lemma
5.32, we have to choose k = 3m. This yields at least uy € His and [luollyy, < € as
a smallness condition on the perturbation in (0.11). We just note that the polynomial
orders are not optimal and the results may be increased w.r.t. the polynomial orders.

Finally, we prove our second main result by reconstructing a solution of (0.11) via
the nonlinear coordinate transformation from Section 5.5 and Theorem 5.37. We ensure
that the nonlinear coordinate transformation is valid by taking a sufficiently small initial
perturbation uyg.

Proof of Theorem 1.13. Take W,V from Lemma 5.5 and let > 0 such that
Bs = {u € Lj : |Jul 2 <4},

satisfies Bs; C T(V) and P(B;) C I(W). In particular, T : T'(Bs) — Bs and 1II :
II'(P(Bs)) = P(Bs) are diffeomorphic. Then there is Cpy > 0 such that

[T (Po)| < Cullvllzz Vv € Bs.

Now we take € > 0 from Theorem 5.37 so small such that the solution (7,w) of (5.95),
(5.96) satisfies (7(t),w(t)) € T~1(Bs) and 7(t) € II"1(P(Bs)) for all t € [0, 00). Further
let C' > 1 be such that Lemma 5.4 i) and ii) imply

|o (- —11) — (- — 7—2)||H21k <Ol — 7| Vr,m e I (P(By)).

Choose

£p < min ( = 0 ,i
Cmax{K;, Krb}(4C +2)+2CCy C

with K, Ky from Theorem 5.37 and define

), C:=Cn(1+0C)+1.

(10, wo) := T ug) = (I (Pug), uo + vx — v,(- — 10)).
Then |79| < Chl|uo|z2 and
[1(70, wo) |rscrz, = |70l + [[woll 2,

< ol + [Jou(- = 10) = vellmy, + luollmy, < Clluollsy, < Ceo <e.
(5.106)
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Moreover, Theorem 5.37 implies there exist 7 € C''([0,00),R) and w € C((0,00), V;Z) N
C1((0,00), V4) such that (7, w) solves (5.95), (5.96) with 7(0) = 75, w(0) = wy and
lw@®llmy < Kigo,  [7(8)] < [7(t) = Too| + [Too| < (2K2 +1)e0, T € [0,00).
Set
u(t) = v (- —7(t)) +w(t), tel0,00).
Then using the chart (M{,x), £ = 0,2 form (1.17) we conclude u € C((0,00), M?) N
C*([0,00), My). Since gy < § Lemma 5.5 implies
u(0) = v,(- = 7(0)) + w(0) = T(70, wo) + vy = o + Vs
For t € (0, 00) we obtain since (7, w) solve (5.95), (5.96)

ue(t) — Lou(t) — f(u(t))
= —Vea(- = T(O) (1) + wi(t) = Low(t) — f(v(- = 7(2)) + w(t)) + f(vi(- = 7(2))
= —Veo(- = T(O)7e(t) +wi(t) = Lw(t) — (7 (1), w(1))
= wi(t) = Lw(t) — (I = Pyo,o(- = 7(6))7m(t) — (I = P)ri/(r(t), w(t))
= Pu (- = 7()m(t) — Prifl(z(1), w(?))
= wi(t) — Lw(t) — (7 (1), w(t)) = 0.

Hence, u solves (0.11). Further, (5.106) and Theorem 5.37 show there is 7,, € R such
that

_m=2
lw(®) g < Ki(1+6)7" H(To,Wo)IlexH;kSMHt) > Jluollmg,
_m—4
[7(t) = Tool < Ka(14+ 1) [[(70, Wo) llzescrry, < K(1+8)77% [Juollmy,

with K = C'max{K;, K,}. Furthermore,
|TOO| < |7—0|+|7_0_Too| SCOO||UO||H21k’ Co =Cn+ K.

Finally, we show uniqueness of u. For that purpose, since 7(t), 7, € II"'(P(B;)) and
Theorem 5.37 we have

[u(t) = villrz < Cl7(t) = Tool + lw (D) 2z + Cl7ee| < (C+ 1)K + CCx )20

= (Cmax{K;, K7}(2C + 1) + CCh)eg g
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Let 4 be another solution of (0.11) on [0,7") for some 7" > 0. Let

to:=sup{t € [0,T) : lu = v.flzz < 6 on [0, 1)},

Then there is a solution (7, w) of (5.95), (5.96) on [0, to) such that T'(7(t), w(t)) = a(t)—v,
and thus a(t) = v, (- —7(t)) +w(t). But since (7, w) is unique we conclude (7, w) =
and u(t) = a(t) on [0,ty). Now assume ty < T. Then for all ¢ € [0, )
J _
5 2 l[ul®) = oulzz = llat) — vz

Since the right-hand side converges to ¢ as t — ¢y, we arrive at a contradiction. O



Appendix A

Functional analysis and Fredholm
theory

First we collect some basic definitions related to linear operator on Banach spaces. Let
X,Y be Banach spaces. The set of all linear, bounded operators 7' : X — Y is denoted
by L[X,Y]. In the case X =Y we write L|X, X| = L[X]. The set of all closed, linear
operators is denoted by C[X,Y] and C[X] respectively. The kernel of an operator 7T is
denoted by N (T) and its range by R(T).

Definition A.1. An operator T' € L[X, Y] is called a Fredholm operator if
i) dimN(T) < oo,

ii) codim(R(7),Y) < oo,

iii) R(T) is closed in Y.

The number
ind(7) := dim N(T') — codim(R(T),Y)

is called the Fredholm index of T'. If only dim N'(T") or codim(R(T'),Y) is infinite T is
called a semi-Fredholm operator. In this case ind(7") = +o0.

Clearly, every semi-Fredholm operator with ind(7") < oo is a Fredholm operator. Now
we collect some properties concerning Fredholm operators. The results can be found in
several texts from the literature, see 38|, [61], [4], [25] and [33]

Lemma A.2 ([33, Thm. 25.9|). Let X,Y,Z be Banach spaces, T : X — Y and S :
Y — Z be Fredholm operators. Then S ol : X — Z is a Fredholm operator of index
ind(S o T) = ind(S) + ind(7T).

199
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Lemma A.3. Let X, X5,Y1,Ys be Banach spaces, Ty : X1 — Y7, and Ty - X9 — Y5 be
Fredholm operators of index ind(T}), ind(T3). Then the operator

(T1XT2)IX1XX2—>}/1X}/2
(U1,U2) = (T1U1,T2U2)

is a Fredholm operator of index ind(Ty x Ty) = ind(1}) + ind(73).

Proof. Since Ty, T; are Fredholm operators, it is clear that (77 x T3) is a linear bounded
operator from X; X X, to Y] x Yo. We have that R(7}) is closed in Y] and R(T3)
is closed in Y5, hence R(T) x Ty) = R(T1) x R(T5) is closed in Y; x Y5. Moreover,
N(Ty x Ty) = N(T1) x N(T,) and

(Y1 x Y2)/R(Th x T3) = (Y1 x Y2)/(R(T1) x R(13)) = Y1/R(T1) x Y2/ R(13).
Hence

dim N(T} x Ty) = dim (N(T}) x N(T3)) = dim N(717) 4+ dim N(7T3) < oo,
codim(R(T) x Ty), Y1 x Ys) = dim (Y1 /R(T})) + dim (Y2/R(T3)) < o0

which proves that T x T5 is Fredholm operator of index

ind(7 x Ty) = dim N (T} x Ty) — codim(R (T} x Ty), Y1 x Ys)
dim N(T3) — dim (Y3 /R(T})) + dim N(T3) — dim (Ya/R(1%))
ind(7}) + ind(73).

O

Lemma A.4 (|33, Cor. 25.11]). Let T : X — Y be a Fredholm operator and K : X =Y
be compact. Then T + K 1is a Fredholm operator.

Lemma A.5 (|38, Chap. IV, Cor. 5.29|). Let T': X — Y be a semi-Fredholm operator.
Then the adjoint operator T* : D(T*) C Y* — X* is a semi-Fredholm operator with
ind(7*) = —ind(T").

Lemma A.6 ([38, Chap. IV, Thm. 5.31]). Let T : X — Y be a semi-Fredholm operator.
Then there exists g > 0 such that for all 0 < |k| < g¢ the operator T+ kI is a semi-
Fredholm operator of index ind(T + k1) = ind(T)

Lemma A.7. Let XY be Banach spaces, T : D C X — Y be a closed densely defined
linear operator and S € L{X,Y]. Then T+ S :D C X =Y is a closed densely defined
linear operator.
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Proof. Clearly, L =T + S : D — Y is densely defined and linear. Let {u,}n,en C D,
Uy B w, Lu, X y. Since S € L[X,Y] we have Su, Y, Su and therefore

Tun:Lun—SunLy—Su::w.

In addition, since T is closed it follows u € D and Tu = w. Thus, Lu = (T + S)u =
w+ Su=y. O

Definition A.8. Let Ly : D(Ly) C X — Y and £ : D(L) C X — Z. Then L is
called relatively compact w.r.t. Ly or Lo-compact if D(Ly) C D(L) and for any bounded
sequence {u,}nen C D(Ly) such that {Lou,}tnen C Y is also bounded. The sequence
{Lu,}nen C Z has a convergent subsequence.

Lemma A.9. Let Ly: D(Ly) C X =Y and L: D(L) C X — Y with D(Ly) C D(L).
If (Lo — L)Ly" 1Y — Y is compact then (Lo — L) is Lo-compact.

Proof. {u,} C D(Ly), {Lou,} CY are bounded. Set w, = Lou,. Since (Lo — L)Ly" is
compact, the sequence (Lo— L)L, w, has a convergent subsequence in Y, thus (Lo—L)u,,
has convergent subsequence. O

Lemma A.10 ([38, Chap. IV, Thm. 5.22|). Let Ly € C[X,Y] be a semi-Fredholm
operator. And let L be a Lo-compact operator from X to Y. Then T = Lo+ L is a
semi-Fredholm operator and

ind(7) = ind(Lo).

Theorem A.11 (Fredholm alternative, [33, Chap. VIL.25|, [36, Thm. 2.2.1]). Suppose
T:X —Y is a Fredholm operator of index 0. Then either the homogeneous equation

Tu =20
has only the trivial solution uw = 0, or the homogeneous equation has dim N (T) = n
linearly independent solutions uy,...,u, € X. In the latter case the inhomogeneous
equation

Tu=r

has at least on solution if and only if (w,r) =0 for all w € N(T*), i.e. » € N(T*)*.
We conclude by considering projectors.

Lemma A.12 (|16, Prop. 8.5]). Let X be a Banach space and P, () € L[ X]| be projectors
satisfying

WP+l P —@l <1.
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Then
I+H=PQ+(I—-P)I-Q) e L[X]

is a homeomorphism in X which maps R(Q) resp. N(Q) homeomorphically into R(P)
resp. N(P).

Proof. 1t is easy to see that

H=P@Q-P)+(P-Q)Q.
Therefore |[H|| < (|| P||+||@Q|)||P—Q| < 1. Then I+ H is a homeomorphism. Moreover,
(I+H)Q = PQand (I+H)(I—Q) = (I — P)(I — Q) which shows (I + H)R(Q) C R(P)
and (I + H)N(Q) C N(P). Now let v € R(P) and let u = (I + H) 'v. Then

Pv=v=(I+H)u=PQu+ (I — P)(I —Q)u.
Apply I — P to obtain (I — P)(I — Q)u = 0. We conclude
v=PQu=(I+H)Que (I+HRQ).

Thus, (I + H)R(Q) = R(P). Similarly, one shows N(P) = (I + H)N(Q). O



Appendix B

Exponential dichotomies and
hyperbolic equilibria

In this section we collect results from the theory of exponential dichotomies, see [22], and
hyperbolic equilibria. Further, we use exponential trichotomies as in [13], [31]. Some
of the results are originally taken from lectures on given by W.-J. Beyn at Bielefeld
University in 2014/2015 and 2017, see [16]. The results are well-known and can also be
found in the literature [22], [34], [60].

Consider a matrix A € C™™ and its spectrum o(A) C C and decompose it into

0(A) =0,(A)Uoy(A)

where 0,(A) N oy, (A) = 0. Now let I' C C be a contour with o4(A) in its interior and
oy(A) in its exterior. Then Cauchy’s Integral Formula states

1 1, A A
— [ (z— )x)’ldz = ’ € 0s(A),
2mi Jr 0, \e O'u(A).
Now the matrix
1
P.=— I— A m,m B.1
5 F(Z ) dzeC (B.1)

is called the Riesz projector associated with o.(A).

Proposition B.1 ([22], [16, Prop. 4.4]). The Riesz projector P is independent of the
choice of the contour I'. Further, P is the unique projector satisfying for

Xs = P(Cm)v Xy = (I - P)((Cm)
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the properties
C"=X,0X,, AX, CX, A(X, CX,,
o(Aix,) = 05(A), o(Ax,) = ou(A).
In the case A € R™™ the properties hold with R™ instead of C™.
We consider a linear differential operator
Lz=2 — Ax)z (B.2)

for some A € C(J,R™"), 2 € C'(J,R") and J C R. For z,y € J we denote by S(z,y)
the solution operator (B.2), i.e. the function z(z) = S(z,y)zy solves the initial value
problem z' = A(x)z, z(y) = 2.

Definition B.2. The linear differential operator L(z) = 0, — A(x), A € C(J,R™™),
J C R has a shifted exponential dichotomy on J with exponents a < (3 if there is a
constant K > 0 and projectors P, (z), x € J, k = s,u of rank m, such that P, + P, =1
in J and such that for all ,y in J there hold

S(x,y)Pely) = Pa(x)S(2,y), £ =51,
[S(,y) Po(y)] < Ke* 9w >y, (B.3)
[S(w,y)Puly)] < K", w <y

In the case a < 0 < 3, L is said to have an exponential dichotomy on J. If (B.3)

holds with &« = 8 = 0 then L is said to have an ordinary dichotomy on J. We call
(K, «, 8) the data of the dichotomy.

Lemma B.3 (Roughness of shifted exponential dichotomies, [13, Prop. 2.3] ,[22, Prop.
4.1]). Let L have a shifted exponential dichotomy on J = [, 00) with data (K, o, ) and
projectors P, k = s,u. Let B € C(J,R™") satisfy

8K?2§
<1, 0 =sup|B(x)|.
7 a m;\(ﬂ

Then the perturbed operator L = L—B has a shifted exponential dichotomy on J = [T, 00)
with data

d=a+20K < f=08- 2K,
constant K = ng and projectors P,, k = s,u satisfying
Pufe) = Pu)| < 5K [l By ldy, ks

In addition, if the data (K, o, B) and projectors P, k = s,u depend continuously/analytically
on some parameter s € § for an open domain 2 C K" and B s independent of s then
the data (K a, B) and the projectors P, k = s,u depend continuously/analytically on s.
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Proposition B.4 (|22, Chap. 2|). Suppose L = 0, — A with A € K™™ and J = [z, 0).
Then L has an exponential dichotomy on J if and only if A is hyperbolic, i.e. o(A)NiR =
0.

Now consider the initial value problem
Z=f(2), 2(0)=2z, feC"Q,R™), QCR (B.4)

and suppose z is a hyperbolic equilibrium, ie. f(zZ) = 0 and o(Df(z)) N iR = (.
Moreover, let P; we the Riesz projector associated with o,(Df(2)) = {s € a(Df(z)) :
Res < 0} and P, = I — P,. Moreover, we denote the solution of (B.4) by z(t,2),
t € J(20) C R on the maximal interval of existence J(z). Let V' C R be a neighborhood
of z. Then we define the local stable and unstable manifolds

MY(Z):={2 €V :[0,00) C J(20), 2(t) € V¥t >0, tlim z(t) =z},
—00
MY(2):={2 €V : (—00,0] C J(20), 2(t) € VVt <O, tlim 2(t) = z}.
——00
The following theorem about the local stable and unstable manifolds holds.

Theorem B.5 (Local stable/unstable manifold theorem, [60, Thm. 7.6], [16, Thm.
4.9]). There are neighborhoods of z

Vv,cX,, V,cX, VCR™
with Vs &V, CV such that the following holds:
i) For every z, C V the boundary value problem

2= f(z) on [0,00),
Pz(0) =2, =z(t)eV Vt>0

has a unique solution z(-, z5) € C*1([0,00), V) and there are K, > 0 such that

|2(t,2,) — 2| < Ke ™™ VYt >0.

ii) For every z, C V, the boundary value problem

Z=f(z) on (—=00,0],
Pz(0) =2, =z2(t)eV Vt<0

has a unique solution z(-, z,) € C**1((—00,0],V) and there are K, > 0 such that

|2(t, 2,) — 2| < Ke' Vit <0.
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Definition B.6. The lincar differential operator L(z) = 0, — A(x), A € C(J,R™™),
J C R has an ordinary exponential trichotomy with exponents a < v < [ if there
is a constant K > 0 and projectors P.(x), = € J, k = s,¢,u of rank m, such that
P, + P, + P, =1 in J and such that for all x,y in J there hold

S(x,y)Pa(y) = Pu(z)S(z,y), K =15cu,
(z,y)P(y)| < Ke® ¥ |S(z,y)P(y)| < Ke"'" Y, x>y,
1S(z,y)Pu(y)] < K9 |S(z,y)P(y)| < Ke""™¥, z <y

We call (K, «, v, 3) the data of the ordinary exponential trichotomy.



Appendix C

Semilinear parabolic equations

In this section we collect results concerning solutions of semilinear parabolic equations
and their regularity. References are [32] and [5]. Suppose X, Y are Banach spaces where
Y C X is dense and T € R, U {oo}.

Theorem C.1 ([32, Thm. 3.2.2|). Suppose A :Y — X is a sectorial operator, ug € X
and f € C*((0,T),X) for some a € (0,1). Further let [J[f(t)||xdt < oo for some
p > 0. Then there exists a unique u € C([0,T),X) N CH(0,T), X) with u(t) € Y for
0 <t < T satisfying

u'(t) = Au(t) + f(t), 0<t<T,

u(0) = uo,

namely

¢
u(t) = eug +/ e £ (5)ds.
0

Theorem C.2 ([5, p.43, Thm. 1.2.1]). Suppose A : Y — X is a sectorial operator,
up € X and f € C*([0,T),X) for some o € (0,1). Then there exists a unique

ue C([0,7),X)NC*(0,T),Y)NnC*™((0,T), X)
satisfying

u'(t) = Au(t) + f(t), 0<t<T,
u(0) = wuo.

In addition, if ug € Y then u € C1([0,T), X).
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Theorem C.3. Suppose A : Y — X is a sectorial operator, ug € Y and f € C*([0,T), X)
for some v € (0,1). Further let [ || f(t)||xdt < co for some p > 0. Then there exists a
UNILQUE

u € C(0,7),Y)NnC™((0,7), X)NC*([0,T), X)

satisfying

namely

t
u(t) = eug +/ =4 f(5)ds.
0

Proof. Theorem C.2 implies there exists a unique a € C*((0,7),Y) N C'"™((0,7), X) N
CH[0,T),X), st. @ =Aua+ fin (0,7) and u(0) = ug. Moreover, Theorem C.1 implies
that the function

t
u(t) = ey + / =4 f(s)ds
0
is the unique solution of

u'(t) = Aut) + f(t), 0<t<T,
u(0) = up.

inu € C'((0,7T),X) with u(t) € Y. Since u € C'((0,T),X) and u(t) € Y, it follows
w=wuforal 0 <t<T. O



Appendix D

Miscellaneous

In this section we collect classical tools from different areas which are used in the thesis.

For a matrix A € C™™ we define the lower spectral bound
a(A) := min {Re (z" Az) : |2| = 1}.

Lemma D.1 ([16, Lem. 6.3|). Let A, B € R™™ and C € C™™ with a(A),a(C) > 0
and

|B— BT|? < 4a(A)a(C).
Then the matrix

0 I
M= <A—1c —A—lB)
18 hyperbolic with mgs = m, = m.

Theorem D.2 (Sobolev embedding, [2, Thm. 4.12]). Let n,k € N and 1 <p < g < o0
with kp > n. Then the inclusion W*P(R") — L4(R") is continuous, i.e. there is C' > 0
such that

ull Loy < Cllullwrr@ny Yu € WHP(R™).

We now consider nonlinear eigenvalue problems. The proof of the following result
in a more general version can be found in [43, Thm. 1.6.5]. We use and state here the
simpler version from [14, Thm. 2.4] concerning simple eigenvalues.

Theorem D.3 (Keldysh). Let Q C C open, T : Q@ — C"™™ be holomorphic in Q, X\ € Q
be a simple eigenvalue of T and v,w € C™ satisfy

T\v=0=w"T(\), w!'T'Nv=1, |[v|=1.

209



210 APPENDIX D. MISCELLANEOUS

Then there is a neighborhood U C Q0 of A and a holomorphic function I' : U — C™™
such that

1
Z— A

T(z) ! = v +T(2), z¢€U\{\}.

Lemma D.4. Let B € L>®(R,R™") satisfy

sup |B(z)] =0, R — 0.
lz|>R

Then the multiplication operator mp associated with B given by
mp: H'(R,R") — L*(R,R"), u+ Bu
18 compact.

The proof of Lemma D.4 requires the following classical result concerning compact-
ness in LP. It goes back to M. Riesz and can be found in [4, Thm. 2.16].

Lemma D.5. Let 1 < p < oco. Then K C LP(R™ R™) is relatively compact if and only
of

1) supyep [[ullr@ny < o0,
i) SUPyeg |[u(- 4+ h) — ul|pmny = 0 as |h| — 0,
1) sup,ek ||ulle@m\ BRo) — 0 as R — o0o.

Proof of Lemma D.4. Let K = {Bu, ||ul|g1 < 1} be the image of the unit Ball under
mp. Clearly, sup,, ¢ [|ul|z2@r) < oo and

sup / |B(z)u(z)*dz < sup |B(z)]* =0, R — oo.
lz|>R

lull g1 <1 |z|>R

Now let h < hg < 1. We estimate

sup / |B(z + h)u(z + h) — B(x)u(z)|*dx
lz|<R

llull 71 <1

< swp { [ Bt bt k) - u@Pde+ [ (Bl ) - B)Plu(o)Pds
llull 71 <1 |z|<R |z|<R

= <1 {IBIZh2al32 + Il B+ B) = Bllizg-nn §
ull g1 <

< |IBll=h® + 1 B(- + ) = Bllra-r.m)-
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Moreover,

sup / |B(x + h)u(z + h) — B(x)u(z)|*dx
lz|=R

llull 1 <1
< sw { /MER |B(z + h)[2|u(z + h) — u(z)|?dz + /MER 1B(z + h) — B(2)|u(z)| dx}

< swp {IBI3h?unlEa +2 swp [B@)Plulfe} < |BIEh? + sup [B(a)f.
l[l| 1 <1 |z|>R—h lz|>R—1

Now for arbitrary € > 0 there are R > 0 and hg < 1 such that for all h < hy < 1

€
sup [B(x)* < 5, 2[|BllL=h* + | B(- +h) = Bllzz-rr) <

|z[>R—1

N ™

Then for all h < hg there holds

sup |B(z + h)u(z + h) — B(z)u(z)]*dr < e.

lull g1 <1 JR

As a consequence of Lemma D.5 the set K is relatively compact in L? and the assertion
is proven. 0

Lemma D.6 ([16, Lem. 2.23|). Let A € R™™ have only eigenvalues with positive real
part and suppose v € C*(R,R™) and c € R solve the second order ODE

A" + ' = h e C(R,R™),
such that both limits lim, 1o h(z) and lim, 4o v(x) exist. Then

lim h(z) =0= lim o'(z).

r—=+oo z—+o0

Consider a real polynomial
f)=2+a? +ayz+as, a;€Ri=1,273 (D.1)
and define the corresponding Hurwitz determinants
oo=1, 01 =ai, Oy=ajay—as, 03 = aszods.

Then the following theorem holds, see [51, Thm. 11.4.5] or [27, Chap. V. Thm.4, Thm.
5].
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Theorem D.7 (Routh-Hurwitz Theorem, [51, Thm. 11.4.5]). Let f from (D.1) have no
root on the imaginary azxis and d; # 0 for all i = 1,2,3. Then the number of roots of f
in the left half-plane is given by

P = 3 — V(1,51,53) — V(l,ég)

where V (ay, ..., a,) is the function counting the variations of signs in the sequence ay, ..., Q.

If 05 = 0 and 6; # 0, we have
p=1+V(1,—01).

Theorem D.8 (Implicit Function Theorem, |7, VII Thm. 8.2|). Let Ey, Es, F' be Banach
spaces, 2 C Ey X Ey an open subset and f € CU(Q, F). Further let (xo,y0) € Q with

f(x0,90) =0 and g—f(xo,yo) € L[Ey, F] invertible.
Y

Then there are neighborhoods U C € of (xg,v0), V C Ey of x9 and a unique g € C1(V, Es)
such that f(x,y) =0 holds for (x,y) € U if and only if y = g(x) for x € V.. Moreover,

0uofe) =~ | L wgtan| - Sogta
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