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Introduction

In mathematics as well as in physics the Ginzburg-Landau equation appears in vari-
ous applications. A proper justification for this is its role as an amplitude equation
describing various phenomena in physics, see [44], [62], [8], [59], [24]. It appears in
mathematical models of hydrodynamics, nonlinear optics, superconductivity and phase
transition. From the mathematical point of view the interest in the equation is justified
by many mathematical phenomena occurring in the equation such as pattern formation.
This thesis deals with a special class of such patterns, called traveling oscillating fronts
(TOFs). We investigate their long time behavior under small perturbations and prove
nonlinear stability with asymptotic phase.
The Ginzburg-Laudau equation in its complex quintic form in one space dimension reads
as

Ut = αUxx + µU + β|U |2U + γ|U |4U, x ∈ R, t ≥ 0 (QCGL)

with complex-valued coefficients α, µ, β, γ ∈ C, Reα > 0 and solution U : R× [0,∞) →
C. It is a special type of a more general class of reaction diffusion equations, which
are under consideration in this thesis. These are complex-valued semilinear parabolic
equations of the form

Ut = αUxx +G(|U |2)U, x ∈ R, t ≥ 0 (0.1)

with nonlinearity G : R → C and diffusion coefficient α ∈ C, Reα > 0. In case of
(QCGL) the nonlinearity G is a quadratic polynomial over C. If G is a polynomial of
degree one we obtain the so called cubic complex Ginzburg-Landau equation, see [44].
Other generalized types of Ginzburg-Landau equations containing also first order spatial
derivatives of U in the nonlinear reaction term are considered, for instance, in [62]. The
existence and uniqueness of solutions of semilinear parabolic equations such as (0.1) is
well-known. Details concerning solvability of the equation can be found in the classical
book of D. Henry [32] or the book of M. Miklavcic [45], see also [42]. We restrict ourselves
to the parabolic case, Reα > 0. The case Reα = 0 belongs to the class of Schrödinger
type equations, which has been investigated in the literature, for instance, in [28], [29],
[23].
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8 INTRODUCTION

In evolution equations of the type (0.1), especially in (QCGL), many different phe-
nomena occur. There are special solutions of (0.1) which maintain their shape while
traveling in space and oscillating in the complex plane. We call them traveling oscillat-
ing waves (TOWs). They may also named defects, see [57], or coherent structures, see
[62]. Precisely, these are solutions U⋆ of (0.1) of the special form

U⋆(x, t) = e−iωtV⋆(x− ct). (0.2)

The parameters ω, c ∈ R are called the frequency and the velocity of the wave respectively
and the function V⋆ : R → C is called its profile. TOWs occur in many different shapes.
There are fronts, pulses and wave trains as well as sources, sinks and spatially periodic
fronts, see Figure 0.1. For literature on the classification of TOWs we refer to [57] and
[62].

a) pulse b) front c) wave train

d) spatially periodic front e) source/sink

Figure 0.1: Pattern formation in (QCGL).

In the thesis we deal with front solutions, see Figure 0.1 b). A solution (0.1) of
the form (0.2) is called a traveling oscillating front (TOF) if the profile satisfies the
asymptotic property

V⋆(x) →
{

r∞, x→ +∞
0, x→ −∞ (0.3)
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for some r∞ ∈ C, r∞ 6= 0. These solutions can be interpreted as connecting orbits
between the trivial ground state U ≡ 0 at −∞ and a spatially constant time periodic
solution U = U(x, t) = r∞e

−iωt at +∞. The appearance of TOFs, as well as TOWs,
in the equation (0.1) is related by the presence of two symmetries. On the one hand
there is a symmetry under translation, i.e. if U = U(x, t) is a solution of (0.1) so is
Ũ = U(x− τ, t) for any τ ∈ R. On the other hand we have a symmetry under rotation.
This means if U is a solution of (0.1) so is Ũ = eiθU for any θ ∈ S1 = R/2πZ. If an
equation has such a symmetry its right-hand side called is equivariant, cf. [15] and [21].

We investigate the long time dynamics of TOFs. In order to do so, it is convenient
to transform (0.1) into a equivalent 2-dimensional real-valued system. Let U = u1+ iu2,
ui(x, t) ∈ R, α = α1+ iα2, αi ∈ R and G = g1+ ig2 with gi : R → R. Then the equivalent
real-valued system of (0.1) reads as the semilinear parabolic equation

ut = Auxx + f(u), x ∈ R, t ≥ 0 (0.4)

where

A =

(
α1 −α2

α2 α1

)

, f(u) = g(|u|2)u, g(·) =
(
g1(·) −g2(·)
g2(·) g1(·)

)

. (0.5)

Let Rθ denote the rotation matrix in R2 by the angle θ ∈ S1. A traveling oscillating
wave of the real-valued system (0.4) is defined as a special solution u⋆ of the form

u⋆(x, t) = R−ωtv⋆(x− ct), (0.6)

where v⋆ : R → R2 is the profile of the wave and ω, c are its frequency and velocity
respectively. In addition, the profile v⋆ satisfies

v⋆(x) →
{

v∞, x→ +∞
0, x→ −∞.

(0.7)

We call the limit at +∞, given by the vector v∞ = (Re r∞, Im r∞)⊤ ∈ R2 v∞ 6= 0, the
asymptotic rest-state. TOFs can be observed by numerical experiments in the equation
(QCGL) in a large set of parameters. An example of such a numerical simulation is
shown in Figure 0.2. Since these solutions travel in space and oscillate in the complex
plane, it seems natural to transform (0.4) into a co-moving frame. For this purpose, let
u(x, t) = R−ωtv(ξ, t) with the wave coordinate ξ = x − ct. Then v solves the so-called
co-moving equation

vt = Avξξ + cvξ + Sωv + f(v), ξ ∈ R, t ≥ 0, (0.8)

where Sω is given by the matrix

Sω :=

(
0 −ω
ω 0

)

. (0.9)
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Figure 0.2: Numerical simulation of a TOF in (QCGL) with parameters α = 1 + i
2
,

β = 1 + i, γ = −1 + i and µ = −0.1. Real part (left) and imaginary part (right).

Then the time-independent profile v⋆ is a stationary solution of (0.8). Thus it solves the
ordinary differential equation (ODE)

0 = Avxx + cvx + Sωv + f(v), x ∈ R. (0.10)

A natural question is whether TOFs as steady-states of (0.8) are stable under small
perturbations of the initial data. This is why we are interested in the long time behavior
of the solution u of the initial-value problem

ut = Auxx + cux + Sωu+ f(u), u(0) = v⋆ + u0, (0.11)

where u0 is a small initial perturbation. One expects from the numerical experiment
in Figure 0.2 that the observed TOF is stable. Otherwise numerical errors should grow
in time and the TOF could not be observed. Typically, to show stability one has to
consider the linearization of the equation at the steady-state. In the case of TOFs this
is the operator

Lu = Auxx + cux + Sωu+Df(v⋆)u (0.12)
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with the Jacobian Df of the nonlinearity f given by

Df(v) =

(
g1(|v|2) + 2g′1(|v|2)v21 − 2g′2(|v|2)v1v2 2g′1(|v|2)v1v2 − g2(|v|2)− 2g′2(|v|2)v22
g2(|v|2) + 2g′2(|v|2)v21 + 2g′1(|v|2)v1v2 2g′2(|v|2)v1v2 + g1(|v|2) + 2g′1(|v|2)v22

)

.

(0.13)

Since the equation (0.8) is equivariant, TOFs always come in families, i.e. there is a whole
continuum O(v⋆) := {Rθv⋆(· − τ) : (θ, τ) ∈ S1 × R} of stationary solutions. Therefore
the linearization L from (0.12) has a nontrival kernel and one cannot expect stability of
v⋆ in the classical sense of Lyapunov. One has to weaken the notion of stability in the
following sense, cf. [56] and [15]. We say a TOF is nonlinearly stable if for all small
initial perturbations u0 the solution u of (0.11) stays close to the group orbit O(v⋆) for
all positive times. If in addition the solution converges to an element Rθ∞v⋆(· − τ∞) of
O(v⋆) as t→ ∞, then the TOF is called nonlinearly stable with asymptotic phase. The
main results of the thesis state that traveling oscillating fronts are nonlinearly stability
with asymptotic phase.

In order to prove nonlinear stability of TOFs, we have to circumvent two major
problems. The first one occurs when considering the spectrum of the linearized operator
(0.12). A crucial step is to guarantee that the spectrum is included in the strict left
half-plane, except for an isolated zero eigenvalue of finite multiplicity caused by the
equivariance. In the literature this property is also called linear or spectral stability, cf.
[56]. Its importance is explained by the fact that spectral stability implies time decay of
the corresponding semigroup {etL}t≥0 generated by L, cf. [32]. For TOFs it turns out
that the essential spectrum of the linearized operator L touches the imaginary axis at
the origin. This is due to the so-called dispersion set which is contained in the essential
spectrum and which is defined as follows:

σdisp(L) = σ−
disp(L) ∪ σ+

disp(L), σ±
disp(L) := {s ∈ C : ∃ν ∈ R s.t. d±(s, ν) = 0}, (0.14)

where d± is the dispersion relation given by

d±(s, ν) := det(sI + ν2A− iνcI − Sω −Df(v±)), v+ = v∞, v− = 0. (0.15)

Here I denotes the identity matrix in R2. The dispersion set consists of four curves in
the complex plane, which typically have the shape of parabolas opened to the left, cf.
Figure 0.3, but may also be more complicated. The vertices of the curves are given by
the solution of d±(s±, 0) = 0. For d−(s±, 0) = 0 these are the values

s± = g1(0)± i(g2(0) + ω) ∈ σdisp(L).

Thus a necessary condition for spectral stability is g1(0) < 0. Further, d+(s±, 0) = 0
yields

s+ = 2g′1(|v∞|2)|v∞|2, s− = 0.
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Figure 0.3: The dispersion set σdisp(L) in (QCGL) with
σ+
disp(L) (blue) and σ−

disp(L) (red).

Consequently, a second necessary condition is given by g′1(|v∞|2) < 0. But zero is always
contained in the dispersion set and the (essential) spectrum touches the imaginary axis
at the origin. Therefore, the classical approach to prove nonlinear stability from [32],
[36] is not applicable. We overcome this problem by using exponential or polynomial
weight functions. In general, let η : R → R be a weight function. Then we consider the
stability problem on weighted Lebesgue spaces for 1 ≤ p ≤ ∞ defined by

Lpη(R,R
n) := {u ∈ Lp(R,Rn) : ηu ∈ Lp(R,Rn)}, ‖u‖Lp

η
:= ‖ηu‖Lp. (0.16)

In the case p = 2 we also define the weighted Sobolev spaces for ℓ ∈ N by

Hℓ
η(R,R

n) := {u ∈ L2
η(R,R

n) ∩Hℓ
loc(R,R

n) : ∂ku ∈ L2
η(R,R

n), 1 ≤ k ≤ ℓ},

‖u‖2Hℓ
η
:=

ℓ∑

k=0

‖∂ku‖2L2
η
.

(0.17)

The advantage of using exponential weight functions is that the dispersion set (0.14) is
pushed to left of the imaginary axis, cf. Figure 0.4. Therefore, we conclude spectral sta-
bility on exponentially weighted spaces and can make use of the approach from [32], [36]
to show nonlinear stability. When using polynomial weight functions the dispersion set
does not change. However, in polynomially weighted spaces we derive delicate resolvent
estimates near the origin using different norms w.r.t. polynomial order. The approach is
based on ideas from [35]. Then we are able to show polynomial decay of the semigroup
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{etL}t≥0 w.r.t. norms with different polynomial weights.

a) unweighted/polynomially weighted b) exponentially weighted

Figure 0.4: The dispersion set on unweighted L2-spaces (left) vs. exponentially weighted
L2
η-spaces (right).

The second problem we have to deal with is caused by the fact that the profile v⋆
of a TOF does not decay to zero as x → ∞. Therefore the solution neither lies in the
standard L2-space nor in their weighted versions introduced in (0.16). We have to choose
a suitable function space where the stability analysis can be done rigorously. In order to
do so, let us assume u to be a smooth solution of (0.8) such that ρ(t) = limx→∞ u(x, t)
exists and ux(x, t), uxx(x, t) → 0 as x → ∞. When formally taking the limit x → ∞ in
(0.8) we obtain that ρ solves the ODE

ρ′(t) = Sωρ(t) + f(ρ(t)). (0.18)

Note that v∞ must be a stationary solution of (0.18). Now we define a template function

v̂(x) := 1
2
tanh(x) + 1

2
. (0.19)

Then we expect the solution u to satisfy u(t)−ρ(t)v̂ ∈ H2
η (R,R

2). Thus the solution lies
in an affine linear space with a time dependent offset given by ρ. This is why we add an
additional equation describing the offset ρ via (0.18). We introduce the space

Xη :=
{

(u, ρ)⊤ : u : R → R
2, ρ ∈ R

2, u− ρv̂ ∈ L2
η(R,R

2)
}

(0.20)

and equip it with the norm ‖(u, ρ)⊤‖2Xη
:= |ρ|2 + ‖u− ρv̂‖2L2

η
. In a canonical manner we

also define the smooth analogs, i.e. we set for ℓ ∈ N0

Xℓ
η :=

{
(u, ρ)⊤ ∈ Xη : u ∈ Hℓ

loc, ∂
ku ∈ L2

η, 1 ≤ k ≤ ℓ
}

(0.21)
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and equip it with the norm
∥
∥(u, ρ)⊤

∥
∥
2

Xℓ
η
:= |ρ|2 + ‖u − ρv̂‖2L2

η
+
∑ℓ

k=1 ‖∂ku‖2L2
η
. We set

X0
η := Xη, Yη := X2

η and denote the elements of Xk
η by bold letters, i.e. u = (u, ρ)⊤.

Finally, instead of analyzing the initial value problem (0.11), we consider the Cauchy
problem on Xη given by

ut = F(u), u(0) = v⋆ + u0, (0.22)

where F is a semilinear operator given by

F : Yη → Xη,

(
u
ρ

)

= u 7→ F(u) =

(
Auxx + cux + Sωu+ f(u)

Sωρ+ f(ρ)

)

(0.23)

and v⋆ = (v⋆, v∞)⊤. It turns out that v⋆ ∈ v∞v̂ +H2
η and v⋆ ∈ Yη. In addition, since v⋆

is a stationary solution of (0.8), we obtain F(v⋆) = 0. We investigate nonlinear stability
with asymptotic phase of v⋆ as a stationary solution of (0.22) in the case of exponential
weight functions.

We conclude the introduction by giving an outline of the thesis. Chapter 1 starts
with a short overview of the concept of abstract equivariant evolution equations and
relative equilibria. The definition of TOWs as well as TOFs is made precise and we
collect first observations concerning the determination of the asymptotic rest-state v∞
and the frequency ω by the nonlinearity g. We conclude the first chapter by stating
the assumptions and main results of the thesis in Section 1.3. The first stability re-
sult states that under certain assumptions TOFs as stationary solutions of the Cauchy
problem (0.22) are nonlinearly stable with asymptotic phase in exponentially weighted
spaces. The second result is that TOFs as stationary solutions of (0.8) are nonlinearly
stable with asymptotic phase w.r.t. polynomially weighted spaces. Both results are not
comparable, since in the polynomial case we have to assume that the initial perturbation
decays to zero as x → ∞ whereas we can allow small perturbations at infinity in the
exponential case.

In Chapter 2 we study the profile of traveling oscillating fronts as solutions of the
stationary co-moving equation (0.10). We use a dynamical systems approach from [62]
to derive a first order ODE system in 3 dimensions, which is equivalent to (0.10). Then
profiles of TOFs occur as heteroclinic orbits between steady-states of the dynamical sys-
tem. In this situation we are able to discuss the existence of TOFs by the intersection
of stable and unstable manifolds of steady states. In addition, we use the theory of
hyperbolic equilibria and exponential dichotomies introduced in [22] to show that the
asymptotic convergence in (0.7) is exponentially fast provided certain assumptions are
satisfied. This is a crucial step to prove nonlinear stability, since it guarantees exponen-
tially fast convergence of the profile v⋆ at ±∞. In particular, v⋆ ∈ v∞v̂ +H2

η when η is
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an exponential weight function.

Chapter 3 covers the nonlinear stability with asymptotic phase in exponentially
weighted spaces. The idea of the proof of the main result is similar to the case of
traveling waves considered in [32] or the case of rotating patterns from [17]. Neverthe-
less, since we are working in the spaces Xη we have to take care of the validation of this
approach to TOFs. In addition, since the (essential) spectrum of the linearized operator
touches the imaginary axis the approach is not directly applicable. We circumvent this
problem using exponential weights. Throughout the third chapter we set η = ηexp where
ηexp is an exponential weight function given by

ηexp(x) := eµ
√
x2+1, µ ≥ 0. (0.24)

Then ηexp is also called a weight function of exponential growth rate µ ≥ 0, see [63].
For the sake of notation we will suppress the index and only write η instead of ηexp. We
describe rotation and translation of elements from Xη by the group action

a(γ) : Xη → Xη,

(
u
ρ

)

7→ a(γ)

(
u
ρ

)

=

(
R−θv(· − τ)

R−θρ

)

, (0.25)

where γ = (θ, τ) ∈ G = S1 × R. It follows that F from (0.23) is equivariant under the
group action, i.e. F(a(γ)u) = a(γ)F(u). The crucial step is to consider the linearized
operator given by the linearization of the right hand side in (0.22) at the TOF. It is
defined by

L : Yη → Xη, u 7→ Lu =

(
Auxx + cux + Sωu+Df(v⋆)u

Sωρ+Df(v∞)ρ

)

. (0.26)

A major part of its spectrum consists of the dispersion set

σdisp,µ(L) = σ−
disp,µ(L) ∪ σ+

disp,µ(L), σ±
disp,µ(L) := {s ∈ C : ∃ν ∈ R s.t. d±µ (s, ν) = 0},

(0.27)

which depends on the exponential growth rate µ > 0. Here d±µ is the dispersion relation
defined by

d±µ (s, ν) := det(sI + ν2A− iνB±(µ)− C±(µ)), B±(µ) = cI ∓ 2µA,

C±(µ) = Sω +Df(v±) + µ2A∓ cµI, v+ = v∞, v− = 0.
(0.28)

For the unweighted case µ = 0 we have σdisp,0(L) = σdisp(L) and the (essential) spectrum
touches the imaginary axis. The effect of using exponential weights is that the critical
curve σ+

disp,µ(L) of the dispersion set is pushed to the left of the imaginary axis, cf. Figure
0.4. Only an isolated eigenvalue of finite multiplicity remains at the origin. Then the
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approach from [32] can be used to show nonlinear stability. However, the main work is
to ensure that the approach also applies to the larger spaces Xη instead of standard L2

or L2
η spaces. In particular, we derive delicate Lipschitz estimates with small Lipschitz

constants for the remaining nonlinearities in the spaces Xℓ
η. In the end, a Gronwall ar-

gument from [17] is used to conclude nonlinear stability.

In Chapter 4 we consider the numerical computation of TOFs. We are interested in
the computation of the profile and the velocities of the TOFs, which are usually a-priori
unknown. By applying a classical finite difference or finite element method to the equa-
tion (0.4) the problem occurs, that the TOFs will leave the domain of computation at a
certain time. This problem is captured by the so called freezing method from [18], [19],
which we apply to our situation in Chapter 4. Further, we prove stability of TOFs in the
sense of Lyapunov in the freezing method. We finish the chapter by showing numerical
simulations and experiments.

In Chapter 5 we deal with the natural question whether TOFs are nonlinearly stable
with asymptotic phase, if the initial perturbation is only polynomially decaying. We
consider the nonlinear stability problem on polynomially weighted spaces, which is in
contrast to Chapter 3 where we consider exponentially weighted spaces. Throughout
Chapter 5 we set η = ηkpoly for appropriate k ∈ N where ηpoly is a polynomial weight
function of linear growth defined by

ηpoly(x) := (x2 + 1)
1

2 . (0.29)

In this case we set

L2
k(R,R

2) = L2
η(R,R

2), Hℓ
k(R,R

2) = Hℓ
η(R,R

2), η = ηkpoly, k, ℓ ∈ N. (0.30)

We consider the perturbed initial value problem (0.11) and assume that u0 is small in
the space H2

k for sufficiently large k ∈ N. Then u0 → 0 as x → ∞ and we obtain
u(x, t) → v∞ as x → ∞ for all t ≥ 0. Thus, the offset ρ from (0.18) stays constant in
time, i.e. ρ(t) = v∞ for all t ≥ 0. Therefore, we seek for a solution u of (0.11) in the
affine Banach spaces

Mk = v̄ + L2
k, M ℓ

k = v̄ +Hℓ
k, v̄ := v∞v̂. (0.31)

To prove nonlinear stability with asymptotic phase, we use the same approach as in
Chapter 3, see also [32], [17]. In this case we have to determine the spectrum of the
linearized operator L from (0.12) on the space L2

k. It turns out that for every k ∈ N the
spectrum of the operator still touches the imaginary axis at the origin, cf. Figure 0.4.
Therefore, the classical theory from [32] only gives estimates of the generated semigroup
etL by exponentially increasing terms. In order to circumvent this problem we derive
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sharp resolvent estimates of the operator L near the origin. We use ideas from [37] and
show uniform bounds for the resolvent (sI − L)−1 considered as an operator from L2

k+3

to L2
k for s in a crescent Ωc at the origin, see Figure 0.5.

Figure 0.5: The crescent Ωc.

The loss in the polynomial order will lead to the uniform estimates of the resolvent
and then to polynomial estimates of the semigroup mapping from L2

k+3 to L2
k. In the end

we show that the loss of the polynomial order caused by the semigroup is compensated
by the quadratic nonlinearities. This will lead to nonlinear stability with asymptotic
phase of TOFs in polynomially weighted spaces.

We conclude by giving a comment on the main results. Both results are not compara-
ble since the type of admissible perturbations differs. In the exponentially weighted case
we can allow perturbations which may not decay to zero as x → ∞ but must converge
exponentially fast to some small vector. This is due to the stability with asymptotic
phase of the periodic orbit R−ωtv∞ of the ODE (0.18) which is guaranteed under our
assumptions. In contrast, in the polynomially weighted case we can allow perturbations
that converge only with a polynomial rate, but therefore must decay to zero. This is
caused by the fact that only in this case we are able to control the remaining nonlinear-
ities w.r.t. polynomial orders. We expect that both results can be combined by taking
advantage of the stability behavior of the periodic orbit in (0.18). However, we expect
the proof to be much more involved and keep this as an open question.
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Chapter 1

Traveling oscillating fronts in evolution

equations

1.1 Equivariant evolution equation

We start with a short overview on the concept of equivariant evolution equations and
relative equilibria, see for instance [19] and [21]. We consider an abstract evolution
equation of the form

ut = F (u), t ≥ 0 (1.1)

where F is a continuous, densely defined operator on a Banach manifold M modeled
over a Banach space X, i.e.

F : D(F ) ⊂M → X (1.2)

is defined on a dense submanifold D(F ) = N which is modeled over a dense Banach space
Y ⊂ X. References for the abstract concepts of manifolds are given by [1], [41]. In many
cases, such as traveling waves, the Banach manifold is given by an affine Banach space
M = v̂ +X and N = v̂ + Y for some element v̂. Typical examples are X = L2(R,Rm),
Y = H2(R,Rm) and v̂ ∈ C2

b (R,R
m) with v̂x ∈ H1(R,Rm) when F is a second order

semilinear differential operator.
At this point we may let open the precise notion of solution of (1.1) since it strongly
depends on the type of the evolution equation and function spaces. However, in our
application the following notion of solution is suitable:

Definition 1.1. A function u ∈ C([0, t∞), N) ∩ C1([0, t∞),M) is called a solution of
(1.1) on [0, t∞) with initial value u0 ∈ N if for all t ∈ [0, t∞) there hold ut(t) = F (u(t))
in M and u(0) = u0.

19
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Let (G, ◦) be a Lie group of dimension dimG = n < ∞ and smooth composition
◦ : G × G → G, (γ, γ̃) 7→ γ ◦ γ̃. For an introduction into Lie groups we refer to [53]. The
unit element of G is denoted by 1 and let g = T

1

G be the associated Lie algebra. For the
left multiplication we write Lγ : G → G, γ̃ 7→ γ ◦ γ̃ which is also smooth and its derivative
is denoted by dLγ(γ̃) : Tγ̃G → Tγ◦γ̃G. The Lie algebra g and the Lie group G are related
via the exponential map exp : g → G, which can be defined such that γ(t) = exp(tµ),
µ ∈ g is the unique solution of the initial value problem

γt = dLγ(1)µ, γ(0) = 1. (1.3)

The group G acts on the Banach manifold M via a group action a(γ), γ ∈ G. For v ∈ M
it is defined by

a(·)v : G → M, γ 7→ a(γ)v

and is assumed to be continuous, satisfying for all γ, γ̃ ∈ G and v ∈M

a(γ ◦ γ̃)v = a(γ)a(γ̃)v. a(1)v = v, a(γ−1)v = a(γ)−1v.

Here γ−1 ∈ G denotes the inverse of an element γ ∈ G, i.e. γ ◦ γ−1 = 1. Further,
we assume that the group action is pathwise continuously differentiable on the Banach
manifold N , i.e. for all v ∈ N the map a(·)v : G → N is of class C1 with derivative

d[a(γ)v] : TγG → Ta(γ)vN.

Differentiating the relation a(γ ◦ γ̃)v = a(γ)a(γ̃) w.r.t. γ̃ and evaluating at γ̃ = 1 yields
for µ ∈ g

d[a(γ)v]dLγ(1)µ = a(γ)d[a(1)v]µ. (1.4)

We assume that the operator F is equivariant under the group action a(γ), γ ∈ G ac-
cording to the following definition:

Definition 1.2. The operator F : D(F ) = N ⊂M → X from (1.2) is called equivariant
under the group action a of G if for all γ ∈ G and u ∈ N there hold a(γ)N ⊂ N and

a(γ)F (u) = F (a(γ)u).

We transform (1.1) into a co-moving frame via the solution ansatz u(t) = exp(tµ⋆)v(t).
Plugging this into the equation (1.1) we obtain using (1.3) and (1.4) that v solves the
co-moving equation

vt = F (v)− d[a(1)v]µ⋆. (1.5)

We are interested into stationary solutions v⋆ of the co-moving equations, i.e.

0 = F (v⋆)− d[a(1)v⋆]µ⋆.

Then the corresponding solution u⋆(t) = a(exp(tµ⋆))v⋆ is a so-called relative equilibrium
of the abstract evolution equation (1.1).
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Definition 1.3. A solution u⋆ on [0,∞) is called a relative equilibrium of the evolution
equation (1.1) if there is µ⋆ ∈ g and v⋆ ∈ N such that for all t ∈ [0,∞) there hold

u⋆(t) = a(γ⋆(t))v⋆, γ⋆(t) = exp(tµ⋆). (1.6)

Sometimes the profile v⋆ as well as the whole group orbit O(v⋆) are called relative
equilibria since they define steady-states of the co-moving equation (1.5), see [21]. A
natural question arising is, whether the steady-state is stable under small perturbations.
In other word, we are interested in the long time behavior of the solution v of (1.5) with
initial data v(0) = v⋆ + u0 where u0 is small w.r.t. to some norm ‖ · ‖. Since we have a
whole continuum of steady-states, asymptotic stability in the classical sense of Lyapunov
cannot be expected. The concept of stability is generalized in the following sense, see
[15], [19], [56], [36].

v⋆

u0

O(v⋆)

a(γ∞)v⋆

v(t)

v⋆ + u0

Figure 1.1: Nonlinear stability with asymptotic phase.

Definition 1.4 (Nonlinear stability with asymptotic phase). The relative equilibrium
u⋆ given by (v⋆, µ⋆) is called nonlinearly stable w.r.t. given norms ‖·‖1 and ‖·‖2, if for
any δ > 0 there exists ε > 0 such that for any initial value v(0) = v0 with ‖v0− v⋆‖1 ≤ ε
the co-moving equation (1.5) has a unique solution v(t), t ≥ 0 satisfying for all t ≥ 0

inf
γ∈G

‖v(t)− a(γ)v⋆‖2 ≤ δ.

If, in addition, there is an asymptotic phase γ∞ ∈ G such that

‖v(t)− a(γ∞)v⋆‖2 → 0, t→ ∞,

then u⋆ is called nonlinearly stable with asymptotic phase.
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1.2 Traveling oscillating waves and fronts

Let us recall the evolution equation (0.4) reading as

ut = Auxx + f(u)

with the diffusion matrix A and nonlinearity f given by

A =

(
α1 −α2

α2 α1

)

, f(u) = g(|u|2)u, g : R → R
2,2, g(·) =

(
g1(·) −g2(·)
g2(·) g1(·)

)

.

As mentioned in the introduction there are many different phenomena occurring in equa-
tions of the form (0.4). In the thesis we are interested in traveling oscillating fronts
(TOFs) for which we give the following precise definition. Recall the rotation matrix Rθ,
θ ∈ S1 = R/2πZ in R2 given by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

, θ ∈ S1.

Definition 1.5. A solution u⋆ : R× [0,∞) → R2 of (0.4) of the form

u⋆(x, t) = R−ωtv⋆(x− ct), x ∈ R, t ≥ 0 (1.7)

with profile v⋆ ∈ C2
b (R,R

2) is called a traveling oscillating wave (TOW) of (0.4) with
speed c ∈ R and frequency ω ∈ R. In addition, if the profile v⋆ satisfies the asymptotic
properties

lim
ξ→−∞

v⋆(ξ) = 0, lim
ξ→∞

v⋆(ξ) = v∞, (1.8)

for some v∞ ∈ R2\{0}, then u⋆ is called a traveling oscillating front (TOF). In this
case the value v∞ is called the asymptotic rest-state of the TOF.

In other words, TOFs are solutions of (0.4) which connect the zero steady-state as
ξ → −∞ with some non-zero periodic state as ξ → ∞. An illustration of such a solution
can be seen in Figure 1.2. Note that by definition a traveling oscillating front of (0.4) is
smooth in the sense that

u⋆ ∈ C1([0,∞), C1
b (R,R

2)) ∩ C([0,∞), C2
b (R,R

2)).

To analyze the dynamics of solutions of (0.4), especially TOFs, it is convenient to trans-
form the equation into a co-moving frame. We use the ansatz u(x, t) = R−ωtv(ξ, t) with
the wave variable ξ = x−ct. A simple computation shows that the derivatives of u w.r.t.
time and space are given by

ut(x, t) = −ωR−ωtS1v(ξ, t)− cR−ωtvξ(ξ, t) +R−ωtvt(ξ, t),

uxx(x, t) = R−ωtvξξ(ξ, t)
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ω
cu1

u2

v⋆

|v∞|

x

Figure 1.2: Traveling oscillating front.

with the skew-symmetric unit matrix S1 =

(
0 −1
1 0

)

. In particular, since Rθ is a rotation

matrix we obtain immediately by invariance of the absolute value and the form of the
matrix-valued function g

f(u(x, t)) = g(|v(ξ, t)|2)R−ωtv(ξ, t) = R−ωtg(|v(ξ, t)|2)v(ξ, t).
Since R−ωtA = AR−ωt we conclude that v is a solution of the co-moving equation (0.8)
which reads as

vt = Avxx + cvx + Sωv + f(v), x ∈ R, t ≥ 0.

Here Sω = ωS1 is given by (0.9). The profile v⋆ of a TOF is time independent and hence
it is a stationary solution of (0.8), i.e.

0 = Av′′⋆ + cv′⋆ + Sωv⋆ + f(v⋆).

Since the profile v⋆ has limits as x → ±∞, it seems natural that the derivatives v′⋆, v
′′
⋆

decay to zero as x → ±∞. One observe, if g is at least continuous, that g(|v∞|) = −Sω.
Thus, the magnitude of the possible asymptotic rest-states |v∞| and the frequency ω ∈ R

are determined by the nonlinearity g.

Lemma 1.6. Let v⋆ ∈ C2
b (R,R

2) be the profile of a traveling oscillating front of (0.4)
with speed c ∈ R, frequency ω ∈ R and asymptotic rest-state v∞ ∈ R

2\{0}. Moreover,
suppose Reα > 0 and g ∈ C(R,R2,2). Then

g(|v∞|2) = −Sω, lim
x→±∞

v′⋆(x) = 0, lim
x→±∞

v′′⋆(x) = 0.
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Proof. Since v⋆ is the profile of a traveling oscillating front it solves

Av′′⋆ + cv′⋆ = −Sωv⋆ − f(v⋆)

and the limits limξ→±∞ v⋆(ξ) exist. Setting h(ξ) = −Sωv⋆(ξ)− f(v⋆(ξ)) to be the right
hand side, we obtain h ∈ C(R,R2) and the limits limξ→±∞ h(ξ) exist. Then Lemma D.6
implies

lim
x→±∞

v′⋆(x) = 0 = lim
x→±∞

h(x).

Moreover, this yields

lim
x→±∞

v′′⋆(x) = 0.

Furthermore,

(Sω + g(|v∞|2))v∞ = lim
x→∞

(
Sωv⋆(x) + f(v⋆(x))

)
= − lim

x→∞
h(x) = 0.

Since v∞ 6= 0 it follows

0 ∈ σ(Sω + g(|v∞|2)) = {g1(|v∞|2)± i(ω + g2(|v∞|2)}.
Hence, g(|v∞|2) = −Sω.

Taking the original complex-valued equation (0.1) into account, we observe that the
possible asymptotic rest-states v∞ of a TOF are given by the roots of the real part of
the nonlinearity G in the sense that

ReG(|r∞|2) = 0, r∞ = v∞,1 + iv∞,2.

Moreover, in this case the frequency of the TOF is determined by the imaginary part of
G via

ImG(|r∞|2) = −ω.
Remark 1.7. Let u⋆ be a traveling oscillating front of (0.4) with ω, c ∈ R and profile
v⋆. Then the corresponding solution U⋆ = u⋆,1 + iu⋆,2 of the complex system (0.1) is of
the form

U⋆(x, t) = e−iωtV⋆(x− ct), t ≥ 0, x ∈ R.

In particular, the profile V⋆ has the limiting property

lim
x→−∞

V⋆(x) = 0, lim
x→∞

V⋆(x) = r∞ ∈ C

with r∞ = v∞,1 + iv∞,2 6= 0. Furthermore, the profile V⋆ is a solution of the ODE

0 = αV ′′
⋆ + cV ′

⋆ + iωV⋆ +G(|V⋆|)V⋆.
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We conclude this section by recalling the template function v̂ ∈ C∞
b (R,R) from (0.19)

given by v̂(x) = 1
2
tanh(x) + 1

2
, x ∈ R and note some basic observation concerning v̂.

Clearly, v̂(x) → 0 as x → −∞ and v̂(x) → 1 as x → ∞. In particular, the convergence
is exponentially fast with rate 0 < µ < 2, i.e. we have

|v̂(x)| ≤ e2x, x ≤ 0, |v̂(x)− 1| ≤ e−2x, x ≥ 0. (1.9)

In addition, for the first and second derivative of v̂ we have

|v̂x(x)| ≤ 2e−2|x|, |v̂xx(x)| ≤ 4e−2|x|, x ∈ R. (1.10)

Throughout this thesis we use several notations for the derivative as vx, v
′, ∂v. However,

the notation will always be clear by the context.

1.3 Assumptions and main results

The thesis deals with the investigation of the stability behavior of traveling oscillating
fronts according to Definition 1.5. In this section we state the main results of the thesis.
In order to do so, we first state our assumptions on the system and the TOF that
guarantees nonlinear stability. The following first assumption relate to the equation
(0.4) with (0.5).

Assumption 1. The equation (0.4) with (0.5) satisfies

α1 > 0, g ∈ C3(R,R2,2), g1(0) < 0. (A1)

The first condition in (A1) is a standard well-posedness assumption for evolution
equations of parabolic type, see [32], [45]. The second condition guarantees smoothness
of the nonlinearity f in (0.4), i.e. f ∈ C3. The last condition in (A1) roughly speaking
implies the trivial solution of (0.4) to be stable under small perturbations. Since the
profile of a traveling oscillating wave tends to zero as x → −∞ this will be crucial for
the stability of the TOF. More precisely, the condition g1(0) < 0 guarantees that σ−

disp(L)
from (0.14) is included in the left half-plane, see the red curves in Figure 0.3. As a next
step we assume the existence of a TOF in (0.4) which was discussed formally in a larger
context by W. van Saarloos et al. in [62] in case of Ginzburg-Landau type equations.
A formal discussion of the existence of TOFs in evolution equations of the form (0.1)
is done in Chapter 2. However, a rigorous proof on the existence of TOFs is, to our
knowledge, unknown in the literature.

Assumption 2. There is a traveling oscillating front solution u⋆ of (0.4) with profile
v⋆ ∈ C2

b (R,R
2), speed c > 0, frequency ω ∈ R and asymptotic rest-state v∞ = (|v∞|, 0)⊤ ∈

R2 which satisfies

g′1(|v∞|2) < 0. (A2a)
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To assume v∞ = (|v∞|, 0)⊤ is without any loss of generality. The reason is that the
profile of the TOF is not unique, since the whole group orbit O(v⋆) = {Rθv⋆(· − τ) : θ ∈
S1, τ ∈ R} consists of profiles of the same TOF u⋆. This is caused by the equivariance
of the equation (0.4). Thus, we can choose the representative of the group orbit which
satisfies v⋆ → v∞ = (|v∞|, 0)⊤ as x→ ∞. Further, the conditions c > 0 and g′1(|v∞|2) < 0
are crucial for the stability of TOFs. In particular, g′1(|v∞|) < 0 implies that the periodic
orbit of the ODE ζ ′ = f(ζ), given by ζ⋆(t) = R−ωtv∞ and describing the evolution of the
TOF at +∞, is an asymptotically stable periodic orbit of the ODE.

Remark 1.8. ζ⋆ is a τ -periodic orbit of the autonomous ODE ζ ′ = f(ζ) with τ = 2π
|ω| .

Its stability behavior is determined by the linearization given by ζ ′ = Df(ζ⋆)ζ. See the
classical Floquet theory, for instance, from [6]. Clearly, the first Floquet multiplier is
given by µ1 = 1 and for the second we have

µ2 = µ1µ2 = e
∫ τ
0
tr(Df(ζ⋆(s)))ds = e2τg

′
1(|v∞|2)|v∞|2

since (0.13) and Lemma 1.6 imply

tr(Df(ζ⋆(s))) = g1(|v∞|2) + 2g′1(|v∞|2)|v∞|2 = 2g′1(|v∞|2)|v∞|2.

Therefore, (A2a) shows for the second Floquet multiplier |µ2| < 1 and thus ζ⋆ is an
asymptotically stable periodic orbit.

1.3.1 The exponentially weighted case

The first main result of the thesis deals with the nonlinear stability with asymptotic
phase of TOFs in exponentially weighted spaces. The proof of the result is done in
Chapter 3. There we choose the weight function η as a weight function of exponential
growth rate µ > 0, cf. (0.24), i.e. we set

η(x) = eµ
√
x2+1, µ > 0.

Recall the weighted Lebesgue and Sobolev spaces L2
η, H

ℓ
η from (0.16), (0.17) as well as

the spaces Xη, X
ℓ
η, Yη from (0.20), (0.21) and let v⋆ = (v⋆, v∞)⊤ be given by the profile

of the TOF from Assumption 2. We consider the Cauchy problem from (0.22) associated
with the nonlinear operator F from (0.23) with perturbed initial conditions, i.e.

ut = F(u), t > 0, u(0) = v⋆ + u0 ∈ Xη.

Definition 1.9. A function u : [0, t∞) → Xη is called a classical solution of the Cauchy
problem (0.22) on [0, t∞) if

i) u ∈ C((0, t∞), Yη) ∩ C1([0, t∞), Xη),



1.3. ASSUMPTIONS AND MAIN RESULTS 27

ii) ut(t) = F(u(t)) in Xη for all t ∈ [0, t∞),

iii) u(0) = v⋆ + u0.

In the case t∞ < ∞ we also call u a local classical solution, whereas in the case
t∞ = ∞ we also call u a global classical solution.
We will show in Theorem 2.6 that v⋆ belongs to Yη as long as µ is sufficiently small.
It follows immediately from (0.10) and Lemma 1.6 that v⋆ is a stationary solution of
(0.22), i.e.

F(v⋆) = 0.

Now let us consider the group G = S1 × R with the metric on G given by

dG(γ1, γ2) = |γ1 − γ2|G, |γ|G := min
k∈Z

|θ − 2πk|+ |τ |, γ = (θ, τ). (1.11)

We describe rotation and translation on the space Xη by the group action a(γ), γ ∈ G
from (0.25). We will prove in Lemma 3.8 that F is equivariant under the group action
a(γ), γ ∈ G. Then v⋆ defines a whole continuum of stationary solutions given by the
group orbit O(v⋆) = {a(γ)v⋆ : γ ∈ G}, i.e.

a(γ)F(v⋆) = F(a(γ)v⋆) = 0 ∀γ ∈ G.
To prove nonlinear stability we have to determine the spectrum of the linearized operator
from (0.26) reading as

L : Yη ⊂ Xη → Xη,

(
v
ρ

)

7→ L
(
v
ρ

)

=

(
Avxx + cvx + Sωv +Df(v⋆)v

Sωρ+Df(v∞)ρ

)

.

There are several nonequivalent definitions of the spectrum of a closed operator on a
Banach space, see [38], [32], [25]. We use the following definition from [25] using Fredholm
index 0 of the operator.

Definition 1.10. Let T : X → Y be a closed, densely defined, linear operator with
domain D(T ) ⊂ X. The set

ρ(T ) := {s ∈ C : sI − T : D(T ) → X is bijective}
is called the resolvent set of T . Its complement σ(T ) = C\ρ(T ) is called the spectrum
of T and is decomposed into the point spectrum

σpt(T ) := {s ∈ σ(T ) : sI − T is Fredholm of index 0}
and the essential spectrum

σess(T ) := σ(T )\σpt(T ).

For s ∈ ρ(T ) the operator (sI − T )−1 ∈ L[X,D(T )] is called the resolvent of T at s.
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Now recall the dispersion set σdisp,µ(L) = σ−
disp,µ(L) ∪ σ+

disp,µ(L), which as we will
show describes a major part of the spectrum of the linearized operator L on Xη, cf.
Section 3.3. We show that the dispersion set can be represented explicitly depending on
the system parameters and the growth rate µ ≥ 0 by the curves

σ+
disp,µ(L) =

{

s ∈ C : s = −α1ν
2 + i(c− 2α1µ)ν + µ2α1 − cµ+ g′1(|v∞|2)|v∞|2

±
[

− α2
2ν

4 − 4iα2
2µν

3 + (6α2
2µ

2 + 2α2g
′
2(|v∞|2)|v∞|2)ν2

+ 4i(α2
2µ

3 + µα2g
′
2(|v∞|2)|v∞|2)ν

− α2
2µ

4 − 2α2µ
2g′2(|v∞|2)|v∞|2 + (g′1(|v∞|2)|v∞|2)2

] 1

2
}

(1.12)

and

σ−
disp,µ(L) =

{

s ∈ C : s = −α1ν
2 + i(c+ 2α1µ)ν + µ2α1 + cµ+ g1(0)

±
[

− α2
2ν

4 + 4iα2
2µν

3 + (6α2
2µ

2 + 2α2(g2(0) + ω))ν2

− 4iα2(α2µ
3 + µ(g2(0) + ω))ν

− α2
2µ

4 − 2(g2(0) + ω)α2µ
2 − (g2(0) + ω)2

] 1
2
}

.

(1.13)

For the representation we used that (0.13) and Lemma 1.6 imply

Df(0) =

(
g1(0) −g2(0)
g2(0) g1(0)

)

, Df(v∞) =

(
2g′1(|v∞|2)|v∞|2 ω

−ω + 2g′2(|v∞|2)|v∞|2 0

)

. (1.14)

The stability behavior of TOFs strongly depends on the location of the spectrum of the
operator L. In particular, we have to show spectral stability of TOFs which means that
the whole spectrum of L on Xη is included in the strict left-half plane except for a zero
eigenvalue. Since a major part of the essential spectrum is given by the dispersion set
σdisp,µ(L), we assume that there is an exponential growth rate µess > 0 such that for all
0 < µ < µess the dispersion set is included in the strict left half-plane, cf. Figure 0.4.

Assumption 3 (Spectral condition). There is µess > 0 such that for all 0 < µ ≤ µess

there exists β0 = β0(µ) > 0 with

Re σdisp,µ(L) ≤ −β0.

Using the explicit representations (1.12), (1.13) it is easy to verify Assumption 3 in
concrete applications, see Section 4.3. Further, we note that the conditions g1(0) < 0,
c > 0 and g′1(|v∞|2) < 0 are necessary condition for Assumption 3 to be satisfied. This
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can be immediately seen by taking ν = 0 in (1.12), (1.13) describing the vertexes of the
dispersion curves.
The last assumption states that there are no further eigenvalues of L laying to the right
of some vertical line with negative real part, except for the zero eigenvalue. Moreover,
we assume the algebraic multiplicity of the zero eigenvalue to be at most 2.

Assumption 4 (Eigenvalue Condition). There is γ > 0 such that for all s ∈ σpt(L)\{0}
it follows Re s < −γ.
Moreover, s = 0 is an eigenvalue of algebraic multiplicity at most 2, i.e.

dim

∞⋃

n=1

N (Ln) ≤ 2.

In contrast to the essential spectrum, the point spectrum does not change when us-
ing exponential weights, see [36, Sec. 3.1.1.2] and Section 4.3. The eigenvalue condition,
Assumption 4, typically has to be verified numerically. This in done for concrete ap-
plications in Section 4.3. Another possibility is given by discussing the roots of the so
called Evans function. For details on the Evans function we refer to [3], [36, Chap. 9].

Now we are in the position to formulate the first main result of the thesis. It states
that TOFs are nonlinear stable with asymptotic phase.

Theorem 1.11. Let Assumption 1-4 be satisfied. Then there exists ε0 > 0 and constants
K, β̃, C∞ > 0 such that for all initial perturbations u0 ∈ Yη with ‖u0‖X1

η
< ε0 equation

(0.22) has a unique global solution

u ∈ C((0,∞), Yη) ∩ C1([0,∞), Xη)

and there are γ ∈ C1([0,∞),G) and w ∈ C((0,∞), Yη) ∩ C1([0,∞), Xη) such that

u(t) = a(γ(t))v⋆ +w(t), t ∈ [0,∞). (1.15)

Moreover, there is an asymptotic phase γ∞ = γ∞(u0) ∈ G with

‖w(t)‖X1
η
+ |γ(t)− γ∞|G ≤ Ke−β̃t‖u0‖X1

η
, |γ∞|G ≤ C∞‖u0‖X1

η
. (1.16)

Theorem 1.11 is a direct consequence of Theorem 3.29 and their proofs can be found
at the end of Section 3.7. We see that Theorem 1.11 implies nonlinear stability with
asymptotic phase of traveling oscillating fronts. In particular, the TOF as u⋆(t) =
a(ωt, ct)v⋆ is a relative equilibrium of the equation

ut =

(
Auxx + f(u)

f(ρ)

)

, u =

(
u
ρ

)

∈ Xη
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which is nonlinearly stable with asymptotic phase w.r.t. the norms ‖·‖1 = ‖·‖2 = ‖·‖X1
η
,

cf. Definition 1.4. It is important to note that we can allow perturbation in Theorem
1.11 which do not decay to zero as x → ∞. This is the benefit we gain by using the
space Xη from (0.20) and is due to the stability of the periodic orbit at +∞, cf. (0.18).
This is in contrast to the usual results for traveling waves in parabolic PDEs, see [56],
[15], where only perturbation in H1 are allowed.

1.3.2 The polynomially weighted case

The second main result of the thesis states that TOFs are nonlinear stable with asymp-
totic phase in polynomially weighted spaces. The result is proven in Chapter 5. There
we set

η(x) = (x2 + 1)
k
2 , k ∈ N

and use the spaces L2
k and Hℓ

k from (0.30) as well as the affine linear spaces Mk, M
ℓ
k from

(0.31). Then M ℓ
k can be seen as Banach manifolds modeled over the spaces Hℓ

k. For this
manifold we have a single global chart (M ℓ

k, χ) with

χ :M ℓ
k → Hℓ

k, u 7→ u− v̄. (1.17)

Let v⋆ be the given TOF from Assumption 2 and consider the perturbed initial value
problem on Mk from (0.11) reading as

ut = Auxx + cux + Sωu+ f(u), u(0) = v⋆ + u0.

Definition 1.12. A function u : [0, t∞) → Mk for some k ∈ N0 is called a classical
solution of the initial value problem (0.11) if

i) u ∈ C((0, t∞),M2
k ) ∩ C1([0, t∞),Mk),

ii) ut(t) = Auxx(t) + cux(t) + Sωu(t) + f(u(t)) in L2
k for all t ∈ [0, t∞),

iii) u(0) = v⋆ + u0.

In the case t∞ < ∞ we also call u a local classical solution, whereas in the case
t∞ = ∞ we also call u a global classical solution.
As in the case of exponential weights, we have to consider the linearized operator L on L2

k

from (0.12) to prove nonlinear stability with asymptotic phase. The linearized operator
is given by

L : H2
k → L2

k, u 7→ Auxx + cux + Sωu+Df(v⋆)u.
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Again, the major part of its spectrum is given by the dispersion set σdisp(L) = σ−
disp(L) ∪

σ+
disp(L) from (0.14). It can be expressed explicitly as

σ+
disp(L) :=

{

s ∈ C : ∃ν ∈ R s.t. s = −α1ν
2 + icν + g′1(|v∞|2)|v∞|2

±
(
−α2

2ν
4 + 2α2g

′
2(|v∞|2)|v∞|2ν2 + (g′1(|v∞|2)|v∞|2)2

) 1
2

}

and

σ−
disp(L) :=

{

s ∈ C : ∃ν ∈ R s.t. s = −α1ν
2 + icν + g1(0)

±
(
−α2

2ν
4 + 2α2(g2(0) + ω)ν2 − (g2(0) + ω)2

) 1
2

}

.

In this case the dispersion set always touches the imaginary axis at the origin and we
cannot expect it to be included in the strict left half-plane. However, to prove nonlinear
stability we make the following assumption on the dispersion set which states that the
origin is the only point where the imaginary axis is touched by the dispersion set. It
can be verified numerically or even analytically by discussing the shape of the dispersion
curves.

Assumption 5 (Spectral Condition). The dispersion set σdisp(L) from (0.14) satisfies

σdisp(L) ∩ iR = {0}.

Further, as in the exponential case we have to assume the following eigenvalue con-
dition concerning the point spectrum of L.

Assumption 6 (Eigenvalue Condition). Let L ∈ C[L2] from (0.12). Then there is γ > 0
such that for all s ∈ σpt(L)\{0} it follows Re s < −γ. Moreover, there holds

dim

∞⋃

n=1

N (Ln) ≤ 1.

In Section 5.3.2 we derive delicate resolvent estimates of the linearized operator w.r.t.
different polynomially weighted norms. In order to do so, we consider the piecewise
constant coefficient operator L∞ which is defined by

L∞ : H2
k → L2

k, u 7→ Auxx + cux + C±u, C±(x) =

{

Sω +Df(v∞), x ≥ 0,

Sω +Df(0), x < 0
(1.18)

and it has to satisfy the following non-degeneration assumption:

Assumption 7. The piecewise constant coefficient operator L∞ from (1.18) satisfies
N (L∞) = {0}.
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We just note that Assumption 7 generically must hold true and can be verified in
application using results from Section 5.3.2. For a more detailed discussion we refer to
Section 5.3.2. Finally, the last assumption requires the imaginary part of the diffusion
coefficient to be sufficiently small. This also effects the geometric shape of the dispersion
set at the origin.

Assumption 8. The imaginary part α2 of the diffusion coefficient satisfies

α2g
′
2(|v∞|2)|v∞|2 + α1g

′
1(|v∞|2)|v∞|2 < 0.

Now we are in the position to formulate the second main result of the thesis concerning
nonlinear stability of TOFs in polynomially weighted spaces.

Theorem 1.13. Let Assumption 1, 2 and 5-8 be satisfied. Further, let m ≥ 5, k = 3m.
Then there exist ε0 > 0 and constants K,C∞ > 0 such that for all initial perturbations
u0 ∈ H2

k with ‖u0‖H1
2k
< ε0 equation (0.11) has a unique global solution

u ∈ C((0,∞),M2
k ) ∩ C1([0,∞),Mk)

and there are τ ∈ C1([0,∞),R) and w ∈ C((0,∞), H2
k) ∩ C1([0,∞), L2

k) such that

u(t) = v⋆(· − τ(t)) + w(t), t ∈ [0,∞).

Moreover, there is an asymptotic phase τ∞ = τ∞(u0) ∈ R with

‖w(t)‖H1
k
≤ K

(1 + t)
m−2

2

‖u0‖H1
2k

|τ(t)− τ∞| ≤ K

(1 + t)
m−4

2

‖u0‖H1
2k
, |τ∞| ≤ C∞‖u0‖H1

2k
.

The proof of Theorem (1.13) in done at the end of Section 5.7 and is a consequence of
Theorem 5.37. Theorem 1.13 implies nonlinear stability of TOFs with asymptotic phase
w.r.t. the norms ‖ · ‖1 = ‖ · ‖2 = ‖ · ‖H1

15
, see Definition 1.4.



Chapter 2

Existence and exponential decay

Before investigating the stability behavior of TOFs, we prove properties of those and
discuss their existence in a formal way. In particular, the main goal of this chapter is to
show that the convergence of the profile at infinity, see (1.8), must be exponentially fast.
In order to do so, we use the approach from [62] and analyze solutions of the stationary
co-moving equation, cf. (0.10), reading as

0 = Avxx + cvx + Sωv + g(|v|2)v, x ∈ R

via a polar-coordinate ansatz. As we have seen in Chapter 1, solutions of the stationary
co-moving equation (0.10) define profiles of traveling oscillating waves with speed c ∈ R

and frequency ω ∈ R. If, in addition, the asymptotic properties (1.8) are satisfied,
they define profiles of TOFs. We use the following strategy to prove exponentially fast
convergence in (1.8). The ansatz shows that the profiles occur as connecting orbits
between two hyperbolic fixed points in a first order ODE system. The hyperbolicity
of the fixed points then implies, using the theory of exponential dichotomies by W. A.
Coppel in [22], that the convergence in (1.8) is exponentially fast.

2.1 A dynamical systems approach

We follow the ideas in [62] and write formally the solution v ∈ C2
b (R,R

2) of (0.10) in
polar coordinates with smooth amplitude and phase

v(x) = r(x)

(
cosφ(x)
sinφ(x)

)

, x ∈ R (2.1)

where r ∈ C2
b (R,R+) and φ ∈ C2

b (R,R). Hence, r describes the amplitude of the wave
solution whereas φ describes its phase in R2 or in the complex plane respectively. If we
require v to satisfy the asymptotic behavior (1.8) we conclude that r and φ satisfy

lim
x→∞

r(x) = r∞, lim
x→∞

φ(x) = φ∞

33
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with r∞ = |v∞| and φ∞ = arg(v∞). For the limit at −∞ we obtain

lim
x→−∞

r(x) = 0.

Note that φ does not have to decay to zero as x → −∞. Unfortunately, we have no
control of the angle φ as x goes to −∞. More precisely, for a general TOF with profile
v⋆ we do not even know if the angle φ converges as x goes to −∞. For that reason,
we have to consider the properties of v⋆ at −∞ in a different manner than the behavior
at ∞ later on. In fact we will only use the polar coordinate ansatz from (2.1) on the
positive half-line R+. On the negative half-line we use the standard first order reduction
of (0.10).
However, in what follows we consider the polar coordinate ansatz (2.1). We take first
and second derivatives in (2.1) of v w.r.t. x and obtain

vx = Rφ

(
r′

rφ′

)

, vxx = Rφ

(
r′′ − r(φ′)2

2r′φ′ + r′φ′′

)

.

Multiply (0.8) by A−1R−φ and use that the matrices A, g(|v|2) and R−φ commute to
obtain

0 = R−φvxx + cA−1R−φvx + A−1SωR−φv + g(|v|2)A−1R−φv. (2.2)

Here A−1 is given by

A−1 =

(
α̃1 α̃2

−α̃2 α̃1

)

with α̃i =
αi
|α| for i = 1, 2.

A straightforward computation leads to

R−φvxx =

(
r′′ − r(φ′)2

2r′φ′ + r′φ′′

)

, cA−1R−φvx = c

(
α̃1r

′ + α̃2rφ
′

−α̃2r
′ + α̃1rφ

′

)

as well as

A−1SωR−φv =

(
α̃2ωr
α̃1ωr

)

and g(|v|2)A−1R−φv =

(
α̃1g1(|r|2)r + α̃2g2(|r|2)r
α̃1g2(|r|2)r − α̃2g1(|r|2)r

)

.

Plugging this into (2.2) yields

0 =

(
r′′ − r(φ′)2 + cα̃1r

′ + cα̃2rφ
′ + α̃2ωr + α̃1g1(|r|2)r + α̃2g2(|r|2)r

2r′φ′ + rφ′′ − cα̃2r
′ + cα̃1rφ

′ + α̃1ωr + α̃1g2(|r|2)r − α̃2g1(|r|2)r

)

.

Assuming r(x) 6= 0 for all x ∈ R we introduce, according to [62], the new variables

q(x) = φ′(x), κ(x) =
r′(x)

r(x)
. (2.3)
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Then, using κ′ = r′′

r
− κ2, we finally obtain the 3-dimensional ODE system





r
κ
q





′

=





rκ
q2 − κ2 − α̃1(cκ+ g1(|r|2))− α̃2(cq + ω + g2(|r|2))
−2κq − α̃1(cq + ω + g2(|r|2)) + α̃2(cκ+ g1(|r|2))



 =: Γ(r, κ, q). (2.4)

Note that Γ can be written as

Γ(r, κ, q) =





rκ
(
q2 − κ2

−2κq

)

− A−1

(
cκ + g1(|r|2)

cq + ω + g2(|r|2)

)



 .

Lemma 2.1. Let (r, q, κ) ∈ C1(R,R3) be a solution of (2.4) for some c, ω ∈ R. Then
there is a family of solutions vφ0 ∈ C2(R,R2), φ0 ∈ R of (0.8) given by

vφ0(x) = r(x)

(
cosφ(x)
sinφ(x)

)

, φ(x) =

∫ x

0

q(s)ds+ φ0.

Proof. Since q, κ ∈ C1(R,R) we conclude r, φ ∈ C2(R,R). Hence vφ0 ∈ C2(R,R2) and
the previous calculation shows that vφ0 solves (0.10).

Thus, we have shown that every solution (r, q, κ) of (2.4) defines a solution of (0.8)
and therefore the profile of a traveling oscillating wave. Since we are interested in TOFs
we now take the asymptotic behavior (1.8) into account. Therefore, we now look for
solutions v ∈ C2

b (R,R
2) of (0.8) with (1.8). Since, v ≡ 0 and v ≡ v∞ are constant

solutions to (0.10) it is natural to look for equilibria of (2.4), i.e. let (r̄, κ̄, q̄) ∈ R3 such
that

Γ(r̄, κ̄, q̄) = 0.

Then the first equation of (2.4) implies either r̄ = 0 or κ̄ = 0. Therefore, we distinguish
between the two cases. Depending on the fixed point there may be different types of
solutions to the equation (0.10).

Corollary 2.2. Let (r̄, κ̄, q̄) ∈ R3 be an equilibrium of (2.4).

i) If r̄ = 0, then the corresponding family of solutions vφ0 ∈ C2
b (R,R

2), φ0 ∈ R of
(0.10) from Lemma 2.1 is given by

vφ0(x) = 0, x ∈ R.

ii) If κ̄ = 0, then the corresponding family of solutions vφ0 ∈ C2
b (R,R

2), φ0 ∈ R of
(0.10) from Lemma 2.1 is given by

v(x) = r̄

(
cos(q̄x+ φ0)
sin(q̄x+ φ0)

)

, x ∈ R.
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iii) If κ̄ = q̄ = 0, then the corresponding family of solutions vφ0 ∈ C2
b (R,R

2), φ0 ∈ R of
(0.10) from Lemma 2.1 is given by

vφ0(x) = r̄

(
cos(φ0)
sin(φ0)

)

, x ∈ R.

iv) Let (0, κ̄, q̄) and (r̄, 0, 0) be equilibria of (2.4) and let (r, κ, q) ∈ C1(R,R3) be a
heteroclinic orbit from (0, κ̄, q̄) to (r̄, 0, 0), i.e. (r, κ, q) solves (2.4) and

lim
x→−∞





r(x)
κ(x)
q(x)



 =





0
κ̄
q̄



 , lim
x→∞





r(x)
κ(x)
q(x)



 =





r̄
0
0



 .

If q ∈ L1([0,∞),R), then vφ0 ∈ C2
b (R,R), φ0 ∈ R given by Lemma 2.1 is a profile

of a traveling oscillating front of (0.4) with asymptotic rest-state

v∞ = r̄

(
cosφ∞
sinφ∞

)

, φ∞ =

∫ ∞

0

q(s)ds+ φ0.

Proof. i), ii) and iii) follow immediately by Lemma 2.1. For iv) we have by Lemma 2.1
that vφ0 solves (0.10). Now q ∈ L1([0,∞),R) guarantees that φ∞ exists. Then we obtain

lim
x→−∞

vφ0(x) = 0, lim
x→∞

vφ0(x) = v∞.

Hence vφ0(x) is a profile of a traveling oscillating front.

Corollary 2.2 shows that every connecting orbit between two equilibria (r̄, 0, 0) and
(0, κ̄, q̄) defines a profile of a TOF, i.e. a solution of (0.8) with (1.8). Conversely, we
expect that every profile of a TOF defines such a connecting orbit as well. To see that,
assume

v⋆(x) = r(x)

(
cosφ(x)
sinφ(x)

)

∀x ∈ R. (2.5)

Then by (1.8) we have

r(x)

(
cosφ(x)
sinφ(x)

)

= v⋆(x) → 0, x→ −∞.

Thus r(x) → 0 as x→ −∞. Further, we obtain

r(x)

(
cosφ(x)
sinφ(x)

)

= v⋆(x) → r∞

(
cos φ∞
sinφ∞

)

, x→ ∞. (2.6)
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This shows r(x) → r∞ as x → ∞. Now by Lemma 1.6 we have v′⋆(x) → 0 as x → ∞.
Then we conclude with v⋆ = (v⋆,1, v⋆,2)

⊤

r′(x) = ∂x|v⋆(x)| =
v′2⋆,1(x) + v′2⋆,2(x)

|v⋆|(x)
→ 0, x→ ∞.

This implies

κ(x) =
r′(x)

r(x)
→ 0, x→ ∞. (2.7)

Finally,

r′(x)

(
cosφ(x)
sin φ(x)

)

+ r(x)q(x)

(
− sinφ(x)
cos φ(x)

)

= v′⋆(x) → 0, x→ ∞. (2.8)

Hence, q(x) → 0 as x→ ∞. Summarizing we have shown for the solution of (2.4) given
by (r, κ, q) of the profile v⋆ that r(x) → 0 as x→ −∞ and

(r, κ, q) → (r∞, 0, 0), x→ ∞.

Assuming q(x) → q̄ and κ(x) → κ̄ as x → ∞, we see that (r, κ, q) defines a connecting
orbit in (2.4). However, the convergence for q, κ at −∞ is only assumed and is an open
question.
It turns out that the equilibria of the connecting orbit are hyperbolic. Therefore, the
convergence towards the equilibria is in fact exponentially fast. This will be used in
Section 2.2 to show that the convergence in (1.8) is exponentially fast as well.

Remark 2.3. Recall the different phenomena occurring in (0.4) and, in particular, in
(QCGL) from Figure 0.1 such as pulses, wave trains, periodic fronts, sources and sinks.
Taking the system (2.4) into account, one shows that pulses are given by connecting
orbits between equilibria in (2.4) with zero amplitude, i.e. r̄ = 0. The stability behavior
of pulses was investigated for instance in [58]. Further, a connecting orbit in (2.4) of
two equilibria (0, κ̄, q̄) to (r̄, q̄, 0) with q̄ 6= 0 defines a spatially periodic front, cf. Figure
0.1. At last, a heteroclinc orbit between two equilibria (r̄1,2, q̄1,2, 0) with q̄1 < 0 < q̄2 or
q̄2 < 0 < q̄1 define sources and sinks. These are connecting orbits between wave trains
and are also called Nozaki-Bekki holes, see [46]. The stability behavior of sources was
investigated in [10].

In the beginning of the section we used the formal polar coordinate ansatz (2.1) for
the solution of (0.10) with smooth r and φ. But the inverse of the polar coordinate
transformation may not be globally continuous in the phase φ. Nevertheless, since we
are interested in the behavior as x→ ∞ it will be sufficient to have a transformation for
x ∈ J = [x⋆,∞) for some x⋆ sufficiently large to obtain the system (2.4) on J .
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Lemma 2.4. Suppose v⋆ ∈ C2
b (R,R

2) to be the profile of a traveling oscillating front.
Then there is x⋆ ∈ R and functions r ∈ C2

b (J,R), φ ∈ C2(J,R) with J = [x⋆,∞) such
that for all x ∈ J there hold

v⋆(x) = r(x)

(
cosφ(x)
sinφ(x)

)

.

Proof. Since v⋆ is a traveling oscillating front there is v∞ ∈ R\{0} with v⋆(x) → v∞ as
x → ∞. Suppose w.l.o.g. v∞ = (r∞, 0)

⊤ for some r∞ ∈ R, r∞ > 0. Otherwise consider
the rotated profile R−φ∞v⋆ with φ∞ ∈ [0, 2π) such that v∞ = r∞(cosφ∞, sinφ∞)⊤. Now
there is x⋆ ∈ R such that v(x) ∈ {(z1, z2) ∈ R2 : z1 > 0, z2 ∈ R} for all x ∈ J = [x⋆,∞).

Set r(x) = |v⋆(x)| and φ(x) = arctan v2(x)
v1(x)

. Then r ∈ C2
b (J,R) and φ ∈ C2(J,R) with

(2.1).

2.2 Exponential decay

In this section we prove in Theorem 2.6 that profile of a traveling oscillating fronts as
stationary solutions of (0.8) must converge exponentially fast to 0 and v∞ as |x| → ∞.
For this purpose, we use the theory of hyperbolic equilibria since in the previous section
we have seen that profiles of traveling oscillating fronts may occur as connecting orbits
between equilibria in the dynamical system (2.4).
So let (r̄, κ̄, q̄) ∈ R3 be a equilibrium of (2.4), i.e. Γ(r̄, κ̄, q̄) = 0. Then the Jacobian at
the equilibrium is given by

DΓ(r̄, κ̄, q̄) =





κ̄ r̄ 0
−2α̃1g

′
1(r̄

2)r̄ − 2α̃2g
′
2(r̄

2)r̄ −2κ̄− α̃1c 2q̄ − α̃2c
−2α̃1g

′
2(r̄

2)r̄ + 2α̃2g
′
1(r̄

2)r̄ −2q̄ + α̃2c −2κ̄− α̃1c



 .

In fact, we use the theory of exponential dichotomies from [22]. We want to ensure that
the system (2.4) has an exponential dichotomy on J . In order to do so, we look for
hyperbolic equilibria of (2.4), i.e. the Jacobian at (r̄, κ̄, q̄) has no eigenvalues on the
imaginary axis. Taking the observations from the previous section into account, we are
interested into connecting orbits between equilibria of (2.4). Let us consider the spectrum
of the Jacobian at equilibria of (2.4) of the form y− = (0, κ̃, q̃) and y+ = (|v∞|, 0, 0) and
their local stable and unstable manifolds Ms,u(y±). The reason is that a connecting
orbit between y+ and y− occurs as an intersection of the stable manifold Ms(y+) and
the unstable Mu(y−). We want to ensure that y± are hyperbolic.
The Jacobian at y− reads as

DΓ(y−) =





κ̃ 0 0
0 −2κ̄− α̃1c 2q̃ − α̃2c
0 −2q̃ + α̃2c −2κ̃− α̃1c



 .
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Therefore the eigenvalues of DΓ(y−) are given by {κ̃,−α̃1c− 2κ̃± i(2q̃− α̃2c)}. Thus, if
κ̃, c > 0 then y− is a hyperbolic equilibrium with

dimMu(y−) = 1, dimMs(y−) = 2. (2.9)

For y+ = (|v∞|, 0, 0) we have

DΓ(y+) =





0 |v∞| 0
−2α̃1g

′
1(|v∞|2)|v∞| − 2α̃2g

′
2(|v∞|2)|v∞| −α̃1c −α̃2c

−2α̃1g
′
2(|v∞|2)|v∞|+ 2α̃2g

′
1(|v∞|2)|v∞| α̃2c −α̃1c



 .

and its characteristic polynomial is given by χ(s) = s3 + a1s
2 + a2s+ a3 with

a1 = 2α̃1c,

a2 = (α̃2
1 + α̃2

2)c
2 + 2α̃1g

′
1(|v∞|2)|v∞|2 + 2α̃2g

′
2(|v∞|2)|v∞|,

a3 = 2c(α̃2
1 + α̃2

2)g
′
1(|v∞|2)|v∞|2.

(2.10)

For instance, if α̃2 = 0 then the eigenvalues of the Jacobian are given by
{

−α̃1c,−
1

2
α̃1c±

1

2

√

α̃2
1c

2 − 8α̃1g
′
1(|v∞|2)|v∞|2

}

.

So if

c > 0, g′1(|v∞|2) < 0

then y+ is a hyperbolic equilibrium with

dimMs(y+) = 2, dimMu(y+) = 1.

In fact, the same holds in the case α2 6= 0:

Lemma 2.5. Let Assumption 1 and 2 be satisfied. Then y+ := (|v∞|, 0, 0) ∈ R3 is a
hyperbolic equilibrium of (2.4), i.e.

σ(DΓ(y+)) ∩ iR = ∅.

Moreover, the stable and unstable manifolds have the dimensions

dimMs(y+) = 2, dimMu(y+) = 1.

Proof. From Lemma 1.6 it follows that y+ is an equilibrium of (2.4). Assume y+ not to
be hyperbolic. Then there is ν ∈ R such that

χ(iν) = −iν3 − a1ν
2 + ia2ν + a3 = 0
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with a1, a2, a3 from (2.10). Then a1ν
2 − a3 = 0. This contradicts a1 > 0 and a3 < 0

which follows from Assumption 1 and 2. Thus y+ is hyperbolic.
We are left with the task of determining the dimensions of the local stable and unstable
manifold. For this purpose, we distinguish between two cases. If a1a2 − a3 6= 0 the
Routh-Hurwitz criterion from Theorem D.7 states that the number p of zeros of the
characteristic polynomial χ in the left half-plane equals to

p = 3− V (1, a1, a3(a1a2 − a3))− V (1, a1a2 − a3) = 2.

Here V (c1, . . . , cn) is the function counting the sign changes in the sequence c1, . . . , cn.
In the case a1a2 − a3 = 0 we have

p = 1 + V (1,−a1) = 2.

This shows

dimMs(y+) = 2, dimMu(y+) = 1.

Before proving exponential decay of TOFs, we discuss briefly the existence of TOFs
as connecting orbits between hyperbolic equilibria using counting arguments, see for
instance from [11], [13],. We are not able to give a rigorous prove on the existence
of TOFs, but the following argumentation shows that one expects TOFs to occur. A
connecting orbit between the hyperbolic equilibria y− and y+ occurs when there is a
nonempty intersection of the unstable manifold Mu(y−) and the stable manifold Ms(y+).
Both are submanifolds of R3 with dimMu(y−) = 1 and dimMs(y+) = 2. In addition,
both depend continuously on the one dimensional parameter c ∈ R, cf. (2.4). Following
[11], [13] on expects an intersection of the manifolds for an isolated c ∈ R, see Figure 2.1.
To see that, consider the dynamical system (2.4) depending on the parameter c ∈ R, i.e.

y′ = Γ(y; c), y(x) ∈ R
3, c ∈ R (2.11)

where y = (r, κ, q) and Γ(y; c) is given by the right hand side of (2.4). Introducing the
variable z = (y, c), we can write (2.11) as

z′ = γ(z), γ(y, c) = (Γ(y; c), 0), z(x) ∈ R
3+1. (2.12)

Further, we assume the existence of hyperbolic equilibria y+ = y+(c) = (|v∞|, 0, 0) ∈ R3

and y− = y−(c) = (0, κ̃, q̃) ∈ R3 for c ∈ I ⊂ R such that, according to Lemma 2.5 and
(2.9), we have for all c ∈ I

m+
s
:= dimMs(y+) = 2, m+

u
:= dimMu(y+) = 1,

m−
s
:= dimMs(y−) = 1, m−

u
:= dimMu(y+) = 2.
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Ms(y−)

Mu(y−)

Ms(y+)

Mu(y+)

y+

y−

Figure 2.1: A connecting orbit as an intersection of Mu(y−) and
Ms(y+) for a certain c ∈ R.

Now there are invariant manifolds (center-stable/center-unstable) M−
u

and M+
s

of the
system (2.12) given by

M−
u
=
⋃

c∈I

(

Mu(y−(c))× {c}
)

, M+
s
=
⋃

c∈I

(

Ms(y+(c))× {c}
)

with dimM−
u

= m−
u
+ 1 = 2 and dimM+

s
= m+

s
+ 1 = 3. In particular, we have

dimM+
s
+ dimM−

u
= 5 > 4 = dimR3+1. For that reason we might expect a nonempty

intersection of M+
s

and M−
u

. Further, we assume that M+
s

, M−
u

are transversal to each
other, i.e.

TξM
+
s
+ TξM

−
u
= R

3+1 ∀ξ ∈M+
s
∩M−

u
. (2.13)

Counting dimensions in (2.13) we obtain dim (TξM
+
s
∩ TξM−

u
) = 1, ξ ∈M+

s
∩M−

u
. Pick

(y0, c⋆) ∈M+
s
∩M−

u
and let z⋆ = (y⋆, c⋆) be the solution of

z′ = γ(z), z(0) = (y0, c⋆).

Then z⋆(x) = (y⋆(x), c⋆) ∈M+
s
∩M−

u
for all x ∈ R and

y⋆(x) →
{

y−(c⋆), x→ −∞
y+(c⋆), x→ ∞ .
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In particular, it follows

Tz⋆(x)M
+
s
∩ Tz⋆(x)M−

u
= span{z′(x)} ∀x ∈ R

and y⋆ is an isolated connecting orbit of (2.4) from y−(c⋆) to y+(c⋆). From that we are
able to construct a profile of TOF with speed c⋆ ∈ R via Corollary 2.2. We expect that
the assumptions in the previous argumentation holds true for at least a large parameter-
set of (QCGL).

As a next step, we prove the main result of this chapter, which states that the
convergence in (1.8) can only be exponentially fast. This will be an important property
in the following chapters, especially for the proof of nonlinear stability. Since the polar
coordinate transformation is only valid for the behavior of v⋆ at +∞, cf. Lemma 2.4, we
are only able to use the system (2.4) and the hyperbolicity of the equilibria from Lemma
2.5 on the positive half-line. On the negative half-line we can make use of a standard
transformation to a first order system for v⋆ by w = (v⋆, v

′
⋆).

Theorem 2.6. Let Assumption 1 and 2 be satisfied. Then v⋆ ∈ C5
b (R,R

2) and there are
constants K,µ⋆ > 0 such that

|v⋆(x)− v∞|+ |v′⋆(x)| + |v′′⋆(x)|+ |v′′′⋆ (x)| ≤ Ke−µ⋆x ∀ x ≥ 0,

|v⋆(x)|+ |v′⋆(x)| + |v′′⋆(x)|+ |v′′′⋆ (x)| ≤ Keµ⋆x ∀ x ≤ 0.

Proof. Since v⋆ is a profile of a TOF it solves the stationary equation (0.10). Furthermore,
by definition and Lemma 1.6, it has the limiting properties (1.8) and v′⋆(x) → 0 as
|x| → ∞. In particular, since f ∈ C3(R,R2) we conclude v⋆ ∈ C5

b (R,R
2). Now we show

first the estimate on the negative half-line. Set w = (v⋆, v
′
⋆)

⊤ then w is a solution to the
first order system

w′ = H(w), H(w) :=

(
w2

−A−1 (cw2 + Sωw1 + f(w1))

)

. (2.14)

Moreover, w̄ = 0 is an equilibrium of (2.14), i.e. H(0) = 0, with the Jacobian

DH(0) =

(
0 I2

−A−1(Sω +Df(0)) −cA−1

)

.

Since Df(0) = g(0) we obtain using Assumption 1 for all v ∈ C2, |v| = 1

−Re
(
vH(Sω +Df(0))v

)
= −Re

(

vH
(

g1(0) −ω − g2(0)
w + g2(0) g1(0)

)

v

)

= −g1(0) > 0.

Thus the spectral bound of −(Sω+Df(0)) is positive and, since c > 0, Lemma D.1 implies
w̄ = 0 to be a hyperbolic equilibrium of (2.14) with stable and unstable dimensions equal
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to 2. We denote the eigenvalues of DH(0) by λi for i = 1, 2, 3, 4 such that Reλ1,Reλ2 <
0 < Reλ3,Reλ4. Now choose a simple connected curve including λ1, λ2 and excluding
λ3, λ4 and let P−

s
denote the corresponding Riesz projector from Appendix B (B.1). In

addition, we define the stable and unstable subspaces

X−
s
:= P−

s
(R4), X−

u
:= (I − P−

s
)(R4)

as well as P−
u

= I − P−
s

the projector onto X−
u

, cf. Proposition B.1.
Since limx→−∞w(x) = 0 there is x0 ≤ 0 such that Theorem B.5 implies that there
are zero neighborhoods Vs ⊆ X−

s
, Vu ⊆ X−

u
, V ⊆ R4 and a unique wu ∈ Vu such that

w(x) ∈ V , x ≤ x0 and Puw(x0) = wu. Moreover, the boundary value problem

v′ = H(v) on R−

P−
u
v(0) = wu, v(x) ∈ V ∀ x ≤ 0

(2.15)

has a unique solution v ∈ C4(R−, V ), which satisfies for some K1, µ1 > 0 the estimate

|v(x)| ≤ K1e
µ1x ∀ x ≤ 0.

Since the solution v of (2.15) is unique we conclude w(x) = v(x− x0) for all x ≤ x0 and

|w(x)| = |v(x− x⋆)| ≤ K1e
µ1(x−x0) ∀ x ≤ x0.

Now w = (v⋆, v
′
⋆)

⊤ ∈ Cb(R,R
4). Therefore, we find K2, K3 > 0 with

|v⋆(x)|+ |v′⋆(x)| ≤ K2e
µ1x ∀ x ≤ 0

and

|v′′⋆(x)| = |A−1(cv′⋆(x) + Sωv⋆(x) + f(v⋆(x)))|
≤ |A−1|

(
|c||v′⋆(x)|+ |ω||v⋆(x)|+ |f(v⋆(x))− f(0)|

)

≤ |A−1|
(
|c||v′⋆(x)|+ |ω||v⋆(x)|+ L|v⋆(x)|

)
≤ K3e

µ1x ∀x ≤ 0.

(2.16)

By differentiating (0.10) we obtain, since f ∈ C3,

|v′′′⋆ (x)| = |A−1(cv′⋆(x) + Sωv
′
⋆(x) +Df(v⋆(x))v

′
⋆(x))| ≤ K4e

µ1x ∀x ≤ 0 (2.17)

and the estimate on the negative half-line is proven.
Next we show the estimate on the positive half-line. For this purpose take x⋆ ∈ R from
Lemma 2.4 and r ∈ C2

b (J,R), φ ∈ C2(J,R), J := [x⋆,∞) such that r(x) 6= 0 and

v⋆(x) = r(x)

(
cosφ(x)
sin φ(x)

)

, x ∈ J.
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Defining q := φ′ and κ = r′

r
the previous calculations in Section 2.1 show that (r, q, κ) ∈

C1(R,R) solves (2.4) on J . Now there are r∞ > 0 and φ∞ ∈ [0, 2π) such that v∞ =
r∞(cosφ∞, sinφ∞)⊤ holds. Then r(x) → r∞ and φ(x) → φ∞ as x → ∞, see (2.6).
Further, κ(x) → 0 and q(x) → 0 as x → ∞, cf. (2.7), (2.8). Summarizing there hold

(r, κ, q) → y+ := (r∞, 0, 0), x→ ∞.

From Lemma 2.5 it follows that y+ is a hyperbolic equilibrium of (2.4) with stable
dimension 2 and unstable dimension 1. Similarly, as in the case on the negative half-line,
we denote the eigenvalues of DΓ(y+) by νi for i = 1, 2, 3 with Re ν1,Re ν2 < 0 < Re ν3.
Again choose a simple connected curve including ν1, ν2 and excluding ν3 and let P+

s

denote the corresponding Riesz projector from Appendix B (B.1). Further, define the
stable and unstable subspaces

X+
s
:= P+

s
(R3), X+

u
:= (I − P+

s
)(R3)

as well as P+
u

= I − P+
s

the projector onto X+
u

, cf. Proposition B.1. Since (r, κ, q) → y
as x→ ∞ there is ξ0 ≥ x⋆ such that Theorem B.5 implies that there are neighborhoods
Us ⊆ X+

s
, Uu ⊆ X+

u
, U ⊆ R3 of y+ and a unique yu such that (r, κ, q)(x) ∈ U , x ≥ ξ0

and Ps(r, κ, q)(ξ0) = yu. Moreover, the boundary value problem

u′ = Γ(u) on R+

P+
u
u(0) = yu, u(x) ∈ U ∀ x ≥ 0

(2.18)

has a unique solution u ∈ C4([0,∞), U) which satisfies for some C1, µ2 > 0

|u(x)− y+| ≤ C1e
−µ2x ∀ x ≥ 0.

Since u is the unique solution of (2.18) we conclude (r, κ, q)(x) = u(x− ξ0) for all x ≥ ξ0
and thus

|(r, κ, q)(x)− y+| = |u(x− ξ0)− y| ≤ C1e
−µ2(x−ξ0) ∀ x ≥ ξ0.

Therefore,

|r(x)− r∞|, |q(x)| ≤ C1e
−µ2(x−ξ0) ∀ x ≥ ξ0.

Then it follows

|φ∞ − φ(x)| ≤
∫ ∞

x

|q(s)|ds ≤ C1

µ2

e−µ2(x−ξ0) ∀ x ≥ ξ0.

Since Γ ∈ C3(R3,R3) and therefore locally Lipschitz continuous, we observe

|(r′, κ′, q′)(x)| = |Γ(r(x), q(x), κ(x))− Γ(y)| ≤ L|(r, κ, q)(x)− y|
≤ LC1e

−µ2(x−ξ0) ∀ x ≥ ξ0.
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Finally, we find C2 > 0 with

|v⋆(x)− v∞|+ |v′⋆(x)| ≤
∣
∣
∣
∣
r(x)

(
cosφ(x)
sinφ(x)

)

− r∞

(
cosφ∞
sinφ∞

)∣
∣
∣
∣
+ |r′(x)|+ |r(x)q(x)|

≤ |r(x)− r∞|+ |r∞||φ(x)− φ∞|+ |r′(x)| + ‖r‖L∞|q(x)|
≤ C2e

−µ2(x−ξ0) ∀ x ≥ ξ0.

Since v⋆ ∈ C5
b (R,R

2) we can choose C2 > 0 such that

|v⋆(x)− v∞|+ |v′⋆(x)| ≤ C2e
−µ2x ∀ x ≥ 0.

The estimates for v′′⋆ , v
′′′
⋆ follow as in (2.16), (2.17) using the stationary equation (0.10).

This proves the claim with K = maxi{Ki, Ci}, µ = mini{µi}.
We conclude this chapter by recalling v̂ from (0.19). This function satisfies for x ≥ 0

∣
∣η(x)(v̂(x)− 1)

∣
∣ ≤ e(µ−2)x (2.19)

and on the negative half-line for x ≤ 0

∣
∣η(x)v̂(x)

∣
∣ ≤ e(2−µ)x. (2.20)

Thus, v̂ converges exponentially fast to 1 as x → ∞ and decays exponentially fast at
−∞ and the convergence is of rate 2. Moreover, for the derivatives we have

|η(x)v̂x(x)| ≤ 2e(µ−2)|x| (2.21)

as well as

|η(x)v̂xx(x)| ≤ 4e(µ−2)|x|. (2.22)

Throughout the thesis we write R+ = (0,∞) and R− = (−∞, 0).

Proposition 2.7. For µ < 2 and v̂ from (0.19) there holds:

‖v̂ − 1‖L2
η(R+,R) = ‖v̂‖L2

η(R−,R) =
1

√

2(2− µ)
,

‖v̂x‖L2
η(R,R) =

2√
2− µ

, ‖v̂xx‖L2
η(R,R) =

4√
2− µ

.

Proof. The claim follows by integrating and using the estimates (2.19)-(2.22).

With Proposition 2.7 we conclude together with Theorem 2.6 that the profile v⋆
belongs to a shifted L2

η-space as long as µ < 2 and the shift is given by v∞v̂. Since the
weight function η depends on µ this is only valid for µ < min(µ⋆, 2).
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Corollary 2.8. Let Assumption 1 and 2 be satisfied and 0 < µ⋆ from Theorem 2.6. Then
there is 0 < µ < min(µ⋆, 2) such that

v⋆ ∈ L2
η(R,R

2) + v∞v̂, v′⋆, v
′′
⋆ ∈ L2

η(R,R
2).

Proof. The estimates from Theorem 2.6 imply for µ < µ⋆

‖v⋆‖L2
η(R−), ‖v⋆ − v∞‖L2

η(R+), ‖v′⋆‖L2
η(R)

, ‖v′′⋆‖L2
η(R)

<∞.

Proposition 2.7 yields with µ < 2

‖v⋆ − v∞v̂‖L2
η(R)

= ‖v⋆ − v∞v̂‖L2
η(R−) + ‖v⋆ − v∞v̂‖L2

η(R+)

≤ ‖v⋆‖L2
η(R−) + |v∞|‖v̂‖L2

η(R−) + ‖v⋆ − v∞‖L2
η(R+) + |v∞|‖v̂ − 1‖L2

η(R+) <∞.

Taking the spaces Xk
η and especially Yη = X2

η from (0.21) into account Corollary 2.8
shows for v⋆ = (v⋆, v∞)⊤ that v⋆ ∈ Yη ⊂ Xη as long as µ < min(µ⋆, 2). Moreover, with
the group action a(γ), γ ∈ G from (0.25) we also obtain a(γ)v ∈ Yη. This implies that
the whole group orbit of v⋆ stays in Yη, i.e. O(v⋆) = {a(γ)v⋆, γ ∈ G} ⊂ Yη ⊂ Xη.



Chapter 3

Nonlinear stability in exponentially

weighted spaces

In this chapter we prove the first main result of the thesis from Theorem 1.11 concerning
the nonlinear stability with asymptotic phase of TOFs in exponentially weighted spaces.
The strategy of the proof is the same as in the case of traveling waves, see [32], [36], or in
the case of rotating solitons, cf. [17]. The proof falls naturally into the following steps:

• Spectral analysis of the linearized operator

• Semigroup estimates

• Decomposition of the nonlinear dynamics

• Estimates of the nonlinearities

• Gronwall estimate of the solution

In the first crucial step, the spectral analysis of the linearized operator, we see that the
spectrum of the linearized operator L from (0.26) touches the imaginary axis at the origin
when it is considered on unweighted spaces. In contrast to that, when using exponential
weights, we prove that the spectrum is pushed off the imaginary axis. This will imply
spectral stability of TOFs in exponentially weighted spaces and time decaying estimates
for the analytic semigroup generated by L. After a nonlinear coordinate transformation
from [32] the second challenging step is to control the remaining nonlinearities in the
spaces Xη from (0.20). In the end, a Gronwall estimate from [17] will lead to Theorem
1.11 and therefore to nonlinear stability of TOFs with asymptotic phase. Before carrying
out the spectral analysis of the linearized operator we collect useful properties of expo-
nentially weighted spaces and smoothness of translation and rotation as a group action.
In addition, we prove equivariance of the nonlinear operator F from (0.23).

47
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3.1 Exponentially weighted spaces

Recall η = ηexp the weight function of exponential growth rate µ ≥ 0, cf. [63], [47], from
(0.24) which is given by

η(x) = eµ
√
x2+1. (3.1)

Clearly, η ∈ C∞(R,R), η(x) ∼ eµ|x| as |x| → ∞ and we have the estimates

eµ|x| ≤ η(x) ≤ Cµe
µ|x|, Cµ = eµ.

Moreover, for all x, y ∈ R we obtain

η(x+ y) = eµ
√

(x+y)2+1 ≤ eµ|y|η(x). (3.2)

The derivatives of η are given by

ηx(x) =
µx√
x2 + 1

η(x), |ηx(x)| ≤ µη(x), (3.3)

ηxx(x) =

(

− µx2

(x2 + 1)
3
2

+
µ√
x2 + 1

+
µ2x2

x2 + 1

)

η(x), |ηxx(x)| ≤ C̃µη(x), (3.4)

where C̃µ = 3max(µ, µ2). In addition, using the mean value theorem, we obtain

|η(x+ y)− η(x)| ≤ |y|
∫ 1

0

|ηx(x+ sy)|ds ≤ |y|µ sup
τ≤|y|

|η(x+ τ)| ≤ |y|µeµ|y|η(x). (3.5)

Lets consider the weighted Lebesgue and Sobolev spaces L2
η and Hk

η from (0.16) and
(0.17). The multiplication operator associated with η is an isometry from L2

η to L2. On
the smooth Sobolev space H2

η to H2 the isomorphism is still continuous. We note this
in the following lemma.

Lemma 3.1. Let mηu = ηu define the multiplication operator associated with η. Then

i) mη : L
2
η → L2 is an isometric isomorphism,

ii) mη : H
k
η → Hk, k ∈ N0 is a continuous isomorphism.

Proof. i) By definition of ‖ · ‖L2
η

the multiplication operator mη : L
2
η → L2 is an isometry

and its inverse is given by m−1
η : L2 → L2

η, u 7→ η−1u which is again an isometry. Hence
mη : L

2
η → L2 is an isometric isomorphism.

ii) Obviously mη : H
2
η → H2 is linear. The continuity follows by induction over k ∈ N0.
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The case k = 0 is clear by i). Suppose u ∈ Hk+1
η and the claim holds true for k ∈ N0,

i.e. there is Ck > 0 such that ‖ηu‖Hk ≤ Ck‖u‖Hk
η
. Then, using (3.3), (3.4), we have

‖∂k+1(ηu)‖L2 = ‖∂k(ηxu+ ηux)‖L2 ≤ µ‖∂k(ηu)‖L2 + ‖∂k(ηux)‖L2

≤ µCk‖u‖Hk
η
+ Ck‖ux‖Hk

η
≤ (1 + µ)Ck‖u‖Hk+1

η
.

Thus we find Ck+1 > 0 such that

‖ηu‖2Hk+1 = ‖ηu‖2Hk + ‖∂k+1(ηu)‖2L2 ≤ C2
k+1‖u‖2Hk+1

η
.

Hence mη : Hk
η → Hk is a continuous homomorphism and its inverse is again given by

m−1
η : Hk → Hk

η , u 7→ η−1u. Now m−1
η is continuous by the inverse operator theorem.

This proves mη to be a continuous isomorphism.

For the resolvent estimates of the linearized operator L we need an integration by
parts formula on L2

η which is slightly different from the standard integration by parts
formula, since derivatives of the weight function η also occur. However, again by (3.3)
and (3.4) we can control the derivatives of the weight function.

Lemma 3.2 (Integration by parts in L2
η). Let u, v ∈ H1

η (R,R
n). Then there hold the

following integration by parts formula:

−(u, vx)L2
η
= (ux, v)L2

η
+ 2(ηxη

−1u, v)L2
η
.

Proof. The claim follows by the standard integration by parts formula and (3.3):

− (u, vx)L2
η
= −

∫

R

η2(x)u(x)vx(x)dx

=

∫

R

η2(x)ux(x)v(x)dx+

∫

R

2η(x)ηx(x)u(x)v(x)dx = (ux, v)L2
η
+ 2(ηxη

−1u, v)L2
η
.

Let C∞
0 (R,R2) be the set of all C∞-functions with compact support. For ϕ ∈

C∞
0 (R,R2) it is clear that ηϕ has compact support. In addition, ηϕ ∈ C∞ and thus

ϕ ∈ H1
η , i.e. C∞

0 ⊂ H1
η . Since C∞

0 is dense in H1 w.r.t. ‖ · ‖H1 one expects that C∞
0 is

also dense in H1
η w.r.t. ‖ · ‖H1

η
. We show this in the next Lemma.

Lemma 3.3. The set C∞
0 (R,Rn) of infinite differentiable functions with compact support

is a dense subset of H1
η (R,R

n) w.r.t. ‖ · ‖H1
η
.

Proof. Let u ∈ H1
η (R,R

n). Then by Lemma 3.1 ηu ∈ H1(R,Rn) and since C∞
0 ⊂ H1

is dense there is (ϕ̃k)k∈N such that ϕ̃k → ηu in H1 for k → ∞. Set ϕk = η−1ϕ̃k. Then
(ϕk)k∈N ⊂ C∞

0 and for some C > 0 there holds

‖ϕk − u‖H1
η
≤ C‖ηϕk − ηu‖H1 = C‖ϕ̃k − ηu‖H1 → 0, k → ∞.
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We show in this section that the group action a(γ), γ ∈ G from (0.25) is smooth. In
particular, we prove that it is at least continuous differentiable. On the one hand the
group action describes rotation of an element v ∈ Xη. Since it is just a rotation in the
image space it is as smooth as the rotation matrix Rθ which is arbitrary regular. On
the other hand the group action describes spatial translation in the argument. This is
more delicate since the smoothness of the shift strongly depends on the smoothness of
the function. One knows that translation is continuous on L2 and Lipschitz continuous
for functions in H1. Thus we have to guarantee that the smoothness is conserved under
exponential weighting, at least locally.

Lemma 3.4. i) Let u ∈ L2
η and τ ∈ R. Then

‖u(·+ τ)‖L2
η
≤ eµ|τ |‖u‖L2

η
.

ii) Let u ∈ H1
η and τ ∈ R. Then

‖u(·+ τ)− u‖L2
η
≤ |τ |eµ|τ |‖ux‖L2

η
.

iii) Let u ∈ L2
η. Then

‖u(·+ τ)− u‖L2
η
→ 0, τ → 0.

Further, the estimate in ii) holds true if u is replaced by v̂ from (0.19) or v⋆ from
Assumption 2.

Proof. i) Use (3.2) and obtain

‖u(·+ τ)‖2L2
η
=

∫

R

η2(x)|u(x+ τ)|2dx =

∫

R

η2(x− τ)|u(x)|2dx

≤
∫

R

e2µ|τ |η2(x)|u(x)|2dx = e2µ|τ |‖u‖2L2
η
.

ii) Suppose ϕ ∈ C∞
0 . Using Fubini’s theorem, the mean value theorem and i) yields

‖ϕ(·+ τ)− ϕ‖2L2
η
=

∫

R

η(x)2|ϕ(x+ τ)− ϕ(x)|2dx

≤ |τ |2
∫

R

η(x)2
∫ 1

0

|ϕx(x+ τs)|2dsdx

= |τ |2
∫ 1

0

‖ϕx(·+ τs)‖2L2
η
ds ≤ |τ |2e2µ|τ |‖ϕx‖2L2

η
.

(3.6)
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By Lemma 3.3, C∞
0 ⊂ H1

η is dense and thus there exists a sequence (ϕk)k∈N ⊂ C∞
0 such

that ϕk → u in H1
η as k → ∞. Then using the assertion from i), we obtain

‖u(·+ τ)− u‖L2
η
≤ ‖u(·+ τ)− ϕk(·+ τ)‖L2

η
+ ‖u− ϕk‖L2

η
+ ‖ϕk(·+ τ)− ϕk‖L2

η

≤ ‖u(·+ τ)− ϕk(·+ τ)‖L2
η
+ ‖u− ϕk‖L2

η
+ |τ |eµ|τ |‖ϕk,x‖L2

η

≤ (eµ|τ | + 1)‖u− ϕk‖L2
η
+ |τ |eµ|τ |‖ϕk,x‖L2

η
.

As k → ∞ we observe

‖u(·+ τ)− u‖L2
η
≤ |τ |eµ|τ |‖ux‖L2

η
.

The estimate for v̂ follows as in (3.6) since v̂(· + τ) − v̂ ∈ L2
η, v̂ ∈ C∞ and v̂x ∈ L2

η.
Similarly for v⋆.
iii) Suppose u ∈ L2

η. Then, by continuity of the L2-norm and (3.5),

‖u(·+ τ)− u‖2L2
η
=

∫

R

|η(x)u(x+ τ)− η(x)u(x)|2dx

≤ 2

∫

R

|(η(x)− η(x+ τ))u(x+ τ)|2dx+ 2

∫

R

|ηu(x+ τ)− ηu(x)|2dx

≤ 2

∫

R

|η(x− τ)− η(x)|2|u(x)|2dx+ 2‖ηu(·+ τ)− ηu‖2L2

≤ 2
(
|τ |µeµ|τ |

)2
∫

R

η2(x)|u(x)|2dx+ 2‖ηu(·+ τ)− ηu‖2L2

= 2
(
|τ |µeµ|τ |

)2 ‖ηu‖2L2 + 2‖ηu(·+ τ)− ηu‖2L2 → 0, τ → 0.

In the next step we discuss the properties of the product spaces Xk
η , cf. (0.21), which

are used for the proof of nonlinear stability. The norm ‖ · ‖Xη is induced by the inner
product

((
v
ρ

)

,

(
w
ζ

))

Xη

:= ρ⊤ζ + (η(v − ρv̂), η(w − ζv̂))L2 .

Thus Xη is in fact a Hilbert space. We note the relation between the weighted spaces
Xk
η and their unweighted versions Xk = Xk

0 .

Lemma 3.5. The map

ι : Xη → X,

(
v
ρ

)

7→
(
η(v − ρv̂) + ρv̂

ρ

)
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is a isometric isomorphism with inverse

ι−1 : X → Xη,

(
v
ρ

)

7→
(
η−1(v − ρv̂) + ρv̂

ρ

)

.

If Xη is replaced by Yη and X by Y , respectively, then ι defines a continuous isomorphism.

Proof. Clearly, ι is a linear map between vector spaces and for v = (v, ρ)⊤ ∈ Xη there
holds

‖ιv‖2X =

∥
∥
∥
∥

(
η(v − ρv̂) + ρv̂

ρ

)∥
∥
∥
∥

2

X

= |ρ|2 + ‖η(v − ρv̂)‖2L2 = ‖v‖2Xη
.

Hence ι : Xη → X is an isometric homomorphism. The same holds for ι−1 and

ι−1ι

(
v
ρ

)

=

(
η−1[η(v − ρv̂) + ρv̂ − ρv̂] + ρv̂

ρ

)

=

(
v
ρ

)

.

Therefore, ι : Xη → X is an isometric isomorphism. If Xη is replaced by Yη and X by
Y , respectively, it remains to show that ι : Yη → Y is bounded, Then by the inverse
mapping theorem ι−1 is bounded and ι is a continuous isomorphism. So we estimate
using (3.3), (3.4) and Lemma 2.7

‖ιv‖Y =

∥
∥
∥
∥

(
η(u− ρv̂) + ρv̂

ρ

)∥
∥
∥
∥
Y

≤ |ρ|+ ‖η(u− ρv̂)‖L2 + ‖ηx(u− ρv̂) + η(ux − ρv̂x) + ρv̂x‖L2

+ ‖ηxx(u− ρv̂) + 2ηx(ux − ρv̂x) + η(uxx − ρv̂xx) + ρv̂xx‖L2

≤ |ρ|+ ‖η(u− ρv̂)‖L2 + ‖ηx(u− ρv̂)‖L2 + ‖ηux‖L2 + ‖(1− η)ρv̂x‖L2

+ ‖ηxx(u− ρv̂)‖L2 + 2‖ηxux‖L2 + ‖ηxρv̂x‖L2 + ‖ηuxx‖L2 + ‖(1− η)ρv̂xx‖L2

≤ C(|ρ|+ ‖η(u− ρv̂)‖L2 + ‖ηux‖L2 + ‖ηuxx‖L2) ≤ C̃‖v‖Yη .

For analyzing the freezing method in Chapter 4 we need the dual space of X1
η which

we discuss in the following. It is defined in the usual way by

X−1
η :=

{

ψ : X1
η → R linear and bounded

}

.

We equip it with the norm

‖ψ‖X−1
η

:= sup
‖v‖

X1
η
≤1

〈ψ,v〉
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where 〈·, ·〉 = 〈·, ·〉X−1
η ×X1

η
denotes the dual pairing. In particular, we sometimes write

ψ(u) = 〈ψ,u〉X−1
η ×X1

η
. Note that every v ∈ Xη defines a linear functional 〈v, ·〉 ∈ X−1

η

via the identification 〈v,u〉 = (v,u)Xη .
Let us briefly relate the space X−1

η using the dual space H−1
η of H1

η . In order to do
so, let ψ ∈ X−1

η be a linear functional on X1
η . Then ψ(·, 0) : H1

η → R is linear and
bounded and thus there is ψ1 ∈ H−1

η such that ψ(u, 0) = ψ1(u) for all u ∈ H1
η . Further,

we have ψ
(
(·)v̂, ·

)
: R2 → R is linear and bounded. Thus there is ψ2 ∈ R2 such that

ψ
(
ρv̂, ρ

)
= ψ⊤

2 ρ for all ρ ∈ R2. Consequently, ψ ∈ X−1
η if there are ψ1 ∈ H−1

η and
ψ2 ∈ R2 such that

ψ

(
u
ρ

)

= ψ

(
u− ρv̂

0

)

+ ψ

(
ρv̂
ρ

)

= ψ1(u− ρv̂) + ψ⊤
2 ρ ∀

(
u
ρ

)

∈ X1
η . (3.7)

Conversely, for arbitrary ψ1 ∈ H−1
η and ψ2 ∈ R2 there is ψ ∈ X−1

η defined by

ψ

(
u
ρ

)

:= 〈ψ1, u− ρv̂〉H−1
η ×H1

η
+ ψ⊤

2 ρ ∀
(
u
ρ

)

∈ X1
η .

We conclude the section by considering the second order differential operator

L0 : Yη → Xη,

(
u
ρ

)

7→
(
Auxx + cux

0

)

. (3.8)

Then it follows immediately L0 ∈ L[Yη, Xη]. Further, using the integration by parts
formula from Lemma 3.2 we obtain for all (u, ρ)⊤ ∈ Yη and (v, ζ)⊤ ∈ X1

η

(

L0

(
u
ρ

)

,

(
v
ζ

))

Xη

=

((
Auxx + cux

0

)

,

(
v
ζ

))

Xη

= (Auxx + cux, v − ζv̂)L2
η

= −(ux, A
⊤(v − ζv̂)x)L2

η
+ 2(ηxη

−1ux, A
⊤(v − ζv̂)x)L2

η
+ c(ux, v − ζv̂)L2

η
.

(3.9)

Now the right hand side of (3.9) is even well-defined for (u, ρ)⊤ ∈ X1
η . Therefore, we

may consider L0 on X1
η as

L0 : X
1
η → X−1

η ,

(
u
ρ

)

7→ L0

(
u
ρ

)

(3.10)

via
〈

L0

(
u
ρ

)

,

(
v
ζ

)〉

X−1
η ×X1

η

:= −(ux, A
⊤(v − ζv̂)x)L2

η

+ 2(ηxη
−1ux, A

⊤(v − ζv̂)x)L2
η
+ c(ux, v − ζv̂)L2

η
.

(3.11)
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In particular, the corresponding ψ1, ψ2 from (3.7) for ψ = L0u ∈ X−1
η are given by

〈ψ1, ·〉 = −(ux − 2ηxη
−1ux, A

⊤(·)x)L2
η
+ c(ux, ·)L2

η
, ψ2 = 0.

Finally, we obtain L0 ∈ L[X1
η , X

−1
η ] since

‖L0u‖X−1
η

= sup
‖v‖

X1
η
≤1

〈L0u,v〉

≤ sup
‖v‖

X1
η
≤1

{

(2µ+ 1)|A|‖ux‖L2
η
‖(v − ζv̂)x‖L2

η
+ |c|‖ux‖L2

η
‖v − ζv̂‖L2

η

}

≤ C‖u‖X1
η
.

Summarizing we have shown the following lemma:

Lemma 3.6. For µ ≥ 0 the operator L0 : Yη → Xη from (3.8) is linear and bounded.
Moreover, the operator L0 : X1

η → X−1
η from (3.10) with (3.11) is also linear and

bounded.

3.2 Lie group, equivariance and symmetry

In this section we collect smoothness of translation and rotation on the spaces Xk
η as an

action of the group G := S1 × R on the function space Xη with S1 = R/2πZ. In order
to do so, we define the composition on G via

◦ : G × G → G, (γ1, γ2) 7→ ((θ1 + θ2) mod 2π, τ1 + τ2) (3.12)

where γ1 = (θ1, τ1) and γ2 = (θ2, τ2). Note that usually ◦ also denotes the composition
of functions. However, the notation will always be clear by the context. We follow the
introduction into Lie groups from [53] and the concepts of differentiable manifolds from
[1]. Alternative literature on differentiable manifolds can be found for instance in [41].
The group G is a C∞-manifold and the composition ◦ : G × G → G is a C∞-map as well
as the inverse map

inv : G → G, γ 7→ γ−1 = (−θmod 2π, τ).

Thus G is Lie group, cf. [53, Chapter 4]. For G as a manifolds over R2 we have the two
charts (U, χ), (Ũ , χ̃) given by

U = {γ ∈ G : γ = (θ, τ), θ ∈ (−π, π)}, χ : U → R
2, γ 7→ χ(γ) = (θ, τ), (3.13)

Ũ = {γ ∈ G : γ = (θ, τ), θ ∈ (0, 2π)}, χ̃ : Ũ → R
2, γ 7→ χ̃(γ) = (θ, τ). (3.14)

Then χ(U) = (−π, π)×R and χ̃(Ũ) = (0, 2π)×R. The charts from (3.13), (3.14) will be
important in all our considerations of the chapter. In particular, we will work and prove
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the nonlinear stability in local coordinates. The unit element of G is given by 1 = (0, 0)
and the tangent space at it T

1

G = g is the associated Lie algebra of G. Recall the metric
| · |G on G from (1.11) and we write for γ1, γ2, γ ∈ G, in a canonical manner,

γ1 + γ2 := γ1 ◦ γ2, γ1 − γ2 := γ1 ◦ (−γ2), |γ| = |γ|G.
Furthermore, recall the group action a(·)v : G → Xη, v ∈ Xη from (0.25), i.e. a
describes rotation and translation of elements from the function space Xη. We now show
smoothness of the group action a(·)v depending on the regularity of the function v. For
general v = (v, ρ)⊤ ∈ Xη, respectively v = (v, ρ)⊤ ∈ X1

η , we write throughout the thesis

S1v =

(
S1v
S1ρ

)

, vx =

(
vx
0

)

.

Lemma 3.7. The group action

a : G → GL[Xη], γ 7→ a(γ)

from (0.25) is a homomorphism and a(γ)Yη = Yη, γ ∈ G. Further, for all v ∈ Xη the
map a(·)v : G → Xη is continuous and the same holds true if Xη is replaced by Yη. If
v = (v, ρ)⊤ ∈ X1

η the map a(·)v : G → Xη is of class C1 and for γ ∈ U with γ = χ−1(z)
the derivative of (a(·)v ◦ χ−1) : R2 → Xη is given by

(a(·)v ◦ χ−1)′(z) = −(a(γ)S1v, a(γ)vx) ∈ L[R2, Xη], S1v =

(
S1v
S1ρ

)

, vx =

(
vx
0

)

.

Proof. Let v = (v, ρ)⊤ ∈ Xη. Then by using Lemma 3.4 and invariance of the norms
under rotation we obtain

‖a(γ)v‖Xη ≤ |ρ|+ ‖v(· − τ)− ρv̂‖L2
η

≤ |ρ|+ ‖v(· − τ)− ρv̂(· − τ)‖L2
η
+ ‖ρv̂(· − τ)− ρv̂‖L2

η

≤ |ρ|+ eµ|τ |‖v − ρv̂‖L2
η
+ eµ|τ ||ρ|‖v̂x‖L2

η
≤ C‖v‖Xη .

Similarly, for v ∈ Yη we have

‖a(γ)v‖2Yη ≤ C‖v‖2Xη
+ ‖vx(· − τ)‖2L2

η
+ ‖vxx(· − τ)‖2L2

η

≤ C‖v‖2Xη
+ e2µ|τ |‖vx‖2L2

η
+ e2µ|τ |‖vxx‖2L2

η
≤ C̃‖v‖2Yη .

Thus, a(γ)Xη ⊂ Xη and a(γ)Yη ⊂ Yη. Furthermore, the group action a is a homomor-
phism since for γ1, γ2 ∈ G, (v, ρ)⊤ ∈ Xη there hold

a(γ1)a(γ2)v =

(
Rθ1Rθ2v(· − τ2 − τ1)

Rθ1Rθ2ρ

)

=

(
Rθ1+θ2v(· − (τ1 + τ2))

Rθ1+θ2ρ

)

= a(γ1 ◦ γ2)v
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where we used Rθ1Rθ2 = Rθ1+θ2. Its inverse is given by a(γ)−1 = a(γ−1) and hence
a(γ) ∈ GL[Xη]. In particular, we have shown that a(γ) is bounded and a(γ)Yη = Yη.
Let us prove the continuity. Since a is a homomorphism it is sufficient to prove the
continuity at γ = 1. Let v = (v, ρ)⊤ ∈ Xη and γ ∈ G. Then by continuity of R(·) and
the shift on L2

η, cf. Lemma 3.4,

‖a(γ)v − v‖Xη ≤ |Rθρ− ρ| + ‖Rθv(· − τ)− Rθρv̂ − v + ρv̂‖L2
η

≤ |Rθ − I||ρ|+ ‖Rθv(· − τ)− Rθρv̂ − Rθv +Rθρv̂‖L2
η
+ ‖Rθv − Rθρv̂ − v + ρv̂‖L2

η

≤ |Rθ − I|
(

|ρ|+ ‖v − ρv̂‖L2
η

)

+ ‖v(· − τ)− v‖L2
η

≤ |Rθ − I|
(

|ρ|+ ‖v − ρv̂‖L2
η

)

+ ‖(v − ρv̂)(· − τ)− (v − ρv̂)‖L2
η
+ |ρ|‖v̂(· − τ)− v̂‖L2

η

→ 0, (θ, τ) → 0.

Similarly, if v ∈ Yη, we have vx, vxx ∈ L2
η and

‖a(γ)v − v‖2Yη = ‖a(γ)v− v‖2Xη
+

2∑

α=1

‖Rθ∂
αv(· − τ)− ∂αv‖2L2

η
→ 0, (θ, τ) → 0.

Next we show that a(·)v is of class C1 if v ∈ Yη. For this purpose let γ ∈ U , z = (θ, τ) =
χ(γ) ∈ R2, v = (v, ρ)⊤ ∈ Yη and h = (h1, h2) ∈ R2. From the definition of the chart
(U, χ) from (3.13) we see that χ−1(z + h) = χ−1(z) ◦ χ−1(h) = γ ◦ χ−1(h). Then by the
continuity of the group action we have

‖a(χ−1(z + h))v − a(χ−1(z))v + h1a(γ)S1v + h2a(γ)vx‖Xη

= ‖a(γ ◦ χ−1(h))v − a(γ)v + h1a(γ)S1v + h2a(γ)vx‖Xη

≤ C‖a(χ−1(h))v − v − h1S1v + h2vx‖Xη

≤ C|R−h1ρ− ρ+ h1S1ρ|
+ C‖R−h1(v(· − h2)− ρv̂)− (v − ρv̂) + h1S1(v − ρv̂) + h2vx‖L2

η
.

(3.15)

Using Taylor expansion and ∂2θRθ = Rθ we observe

R−h1ρ = ρ− h1S1ρ+

∫ 1

0

h21(1− τ)R−h1τdτ.

Thus,

|R−h1ρ− ρ+ h1S1ρ| ≤ h21

∫ 1

0

(1− τ) |Rh1τ | dτ |ρ| ≤ h21|ρ| = o(|h|). (3.16)
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Next, we estimate the second term consisting of the L2
η-norm. For this purpose, we note

for ϕ ∈ C∞
0 (R,R2) and τ ∈ R that Fubini’s theorem implies

‖ϕ(·+ τ)− ϕ− τϕx‖2L2
η
= |τ |2

∫

R

η(x)2
∣
∣
∣
∣

∫ 1

0

ϕx(x+ sτ)ds− ϕx(x)

∣
∣
∣
∣

2

dx

≤ |τ |2
∫

R

∫ 1

0

η2(x)|ϕx(x− sτ)− ϕx(x)|2dsdx = |τ |2
∫ 1

0

η(x)2‖ϕx(· − sτ)− ϕx‖2L2
η
ds

≤ |τ |2 sup
|s|≤|τ |

‖ϕx(·+ s)− ϕx‖2L2
η
.

Since C∞
0 ⊂ H1

η is dense, there exists for v ∈ H1
η (R,R

2) a sequence (ϕk)k∈N ⊂ C∞
0 (R,R2)

with ‖v − ϕk‖H1
η
→ 0 as k → ∞. This implies with τ = −h2

‖v(· − h2)− v + h2vx‖L2
η

≤ ‖v(· − h2)− ϕk(· − h2)‖L2
η
+ ‖v − ϕk‖L2

η
+ |h2|‖vx − ϕk,x‖L2

η

+ ‖ϕk(· − h2)− ϕk + h2ϕk,x‖L2
η

≤ (1 + eµ|h2|)‖v − ϕk‖L2
η
+ |h2|‖vx − ϕk,x‖L2

η
+ |h2| sup

s≤|h2|
‖ϕk,x(·+ s)− ϕk,x‖L2

η
.

Now let k → ∞ to obtain

‖v(· − h2)− v + h2vx‖L2
η
≤ |h2| sup

s≤|h2|
‖vx(·+ s)− vx‖L2

η
= o(|h|). (3.17)

By frequently adding zero and using triangle inequality, we observe for the second term
in (3.15)

‖R−h1(v(· − h2)− ρv̂)− (v − ρv̂) + h1S1(v − ρv̂) + h2vx‖L2
η

≤ ‖R−h1(v − ρv̂)(· − h2)− (v − ρv̂)(· − h2) + h1S1(v − ρv̂)(· − h2)‖L2
η

︸ ︷︷ ︸
=:T1

+ ‖R−h1ρv̂(· − h2)− R−h1ρv̂ + (v − ρv̂)(· − h2)− h1S1(v − ρv̂)(· − h2)

− (v − ρv̂) + h1S1(v − ρv̂) + h2vx‖L2
η

≤ T1 + ‖(v − ρv̂)(· − h2)− (v − ρv̂) + h2(vx − ρv̂x)‖L2
η

︸ ︷︷ ︸
=:T2

+ ‖h2ρv̂x +R−h1ρv̂(· − h2)−R−h1ρv̂ − h1S1(v − ρv̂)(· − h2) + h1S1(v − ρv̂)‖L2
η

≤ T1 + T2 + ‖R−h1[ρv̂(· − h2)− ρv̂ + h2ρv̂x]‖L2
η

︸ ︷︷ ︸

=:T3

+ ‖h2ρv̂x − h2R−h1ρv̂x − h1S1(v − ρv̂)(· − h2) + h1S1(v − ρv̂)‖L2
η
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≤ T1 + T2 + T3 + ‖ − h1S1(v − ρv̂)(· − h2) + h1S1(v − ρv̂)− h2(h1S1vx − h1S1ρv̂x)‖L2
η

︸ ︷︷ ︸
=:T4

+ ‖h2ρv̂x − h2R−h1ρv̂x + h2h1S1vx − h2h1S1ρv̂x‖L2
η

≤ T1 + T2 + T3 + T4 + ‖R−h1h2ρv̂x − h2ρv̂x + h1S1h2ρv̂x‖L2
η

︸ ︷︷ ︸

=:T5

+ ‖h2h1S1vx‖L2
η

︸ ︷︷ ︸

=:T6

= T1 + T2 + T3 + T4 + T5 + T6.

With (3.16) and Lemma 3.4 we have

T1 ≤ eµ|h2||R−h1 − I + h1S1|‖v − ρv̂‖L2
η
= o(|h|),

T5 ≤ |R−h1 − I + h1S1|‖h2ρv̂x‖L2
η
= o(|h|).

Since v−ρv̂ ∈ H1
η , (3.17) implies T2, T3, T4 = o(|h|) and obviously T6 = o(|h|). Therefore

1

|h|
∥
∥a(χ−1(z + h)v − a(χ−1(z))v + h1a(γ)S1v + h2a(γ)vx

∥
∥
Xη

=
o(|h|)
|h| → 0, |h| → 0.

Hence a(·)v ◦ χ−1 ∈ C1(U,Xη) with derivative

(a(·)v ◦ χ−1)′(z) = −(a(γ)S1v, a(γ)vx).

The same way, one shows that a(·)v◦ χ̃−1 ∈ C1(Ũ , Xη). This proves that a(·)v : G → Xη

is of class C1.

As a consequence of Lemma 3.7 we conclude by the mean value theorem that for any
compact set K ⊂ U and v ∈ Xk+1

η , k = 0, 1 there is L > 0 such that

‖a(χ−1(z1))v − a(χ−1(z2))v‖Xk
η
≤ L|z1 − z2|‖v‖Xk+1

η
∀ z1, z2 ∈ K. (3.18)

Now we take the nonlinear operator F from (0.23) into account. We prove that it is
continuous w.r.t. suitable norms and, in addition, is equivariant under the group action
a from (0.25) according to Definition 1.2.

Lemma 3.8. Let the Assumption 1 be satisfied and 0 ≤ µ < 2. Then F : Yη → Xη from
(0.23) defines a continuous operator and is equivariant under the group action a(γ), γ ∈ G
from (0.25). Moreover, for every v ∈ Yη there is δ > 0 and LF > 0 such that w ∈ Yη
with ‖v −w‖Yη < δ satisfies

‖F(v)− F(w)‖Xk
η
≤ LF‖v −w‖Xk+2

η
, k = −1, 0. (3.19)
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Proof. We begin by proving that F is well defined on Yη and maps it onto Xη. In what
follows Cv > 0 denotes a universal constant depending on ‖v‖Yη . Let v = (v, ρ)⊤ ∈ Yη.
Then v − ρv̂ ∈ H2

η and by Sobolev embedding, cf. Theorem D.2, we have v − ρv̂ ∈ L∞

and therefore v ∈ L∞ with ‖v − ρv̂‖L∞ , ‖v‖L∞ ≤ Cv. To estimate the nonlinear term in
F we split the occurring integral over R into two integrals over the negative and positive
half-line R±. Using Assumption 1, we obtain for every 0 ≤ µ < 2

‖f(v)− f(ρ)v̂‖2L2
η

≤ 2

∫

R

η(x)2|g(|v(x)|2)(v(x)− ρv̂(x)|2dx+ 2

∫

R

η(x)2|g(|v(x)|2)− g(|ρ|2)ρv̂(x)|2dx

≤ 2Cv‖v − ρv̂‖2L2
η
+ 2Cv

∫

R−

η(x)2|ρv̂(x)|2dx+ 2|ρ|2
∫

R+

η(x)2|g(|v(x)|2)− g(ρ|2)|2dx

≤ 2Cv‖v − ρv̂‖2L2
η
+ 2Cv|ρ|2‖v̂‖2L2

η(R−) + 2Cv|ρ|2
∫

R+

∣
∣
∣|v(x)|2 − |ρ|2

∣
∣
∣

2

dx <∞,

since Lemma 2.7 yields
∫

R+

η(x)2
∣
∣
∣|v(x)|2 − |ρ|2

∣
∣
∣

2

dx =

∫

R+

η(x)2
∣
∣
∣(|v(x)|+ |ρ|)(|v(x)| − |ρ|)

∣
∣
∣

2

dx

≤ Cv

∫

R+

η(x)2
∣
∣
∣|v(x)| − |ρ|

∣
∣
∣

2

dx

≤ 2Cv

∫

R+

η(x)2
∣
∣
∣|v(x)| − |ρ|v̂(x)

∣
∣
∣

2

dx+ 2Cv

∫

R+

η(x)2
∣
∣
∣|ρ|v̂(x)− |ρ|

∣
∣
∣

2

dx

≤ 2Cv

∫

R+

η(x)2|v(x)− ρv̂(x)|2dx+ 2Cv|ρ|2
∫

R+

η(x)2|v̂(x)− 1|2dx

≤ 2Cv‖v − ρv̂‖2L2
η
+ 2Cv|ρ|2‖v̂ − 1‖2L2

η(R+) <∞.

Taking Lemma 3.6 into account, we have L0 ∈ L[Yη, Xη] and we obtain

‖F(v)‖Xη ≤ ‖L0v‖Xη +

∥
∥
∥
∥

(
f(v)
f(ρ)

)∥
∥
∥
∥
Xη

≤ C‖v‖Yη + |f(ρ)|+ ‖f(v)− f(ρ)v̂‖L2
η
<∞.

Hence F : Yη → Xη is well defined and the continuity follows by the Lipschitz estimate
(3.19) which is still to be shown. By Lemma 3.7 we have a(γ)Yη = Yη. Moreover, Rθ

commutes with A, Sω and g(| · |2). Therefore the equivariance of F follows by

F(a(γ)v) =

(
Rθ[Avxx + cvx + Sωv + g(|v|2)v](· − τ)

Rθ[Sωρ+ g(|ρ|2)ρ]

)

= a(γ)F(v).

It is left to show the estimate (3.19). We write v = (v, ρ)⊤ and w = (w, ζ)⊤. Suppose
δ > 0 sufficiently small and let C > 0 denote a universal constant depending on v and δ.
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Again, the major task is to estimate the nonlinear term of F , which is done in several
steps. As we see, the estimate of the nonlinear term is independent of k. The dependence
on k only appears when estimating the main part containing second derivatives. The
nonlinear term reads as and is first estimated by

‖f(v)− f(ρ)v̂ − f(w) + f(ζ)v̂‖L2
η
= ‖g(|v|2)v − g(|ρ|2)ρv̂ − g(|w|2)w + g(|ζ |2)ζv̂‖L2

η

≤ ‖g(|ρ|2)(v − ρv̂)− g(|ζ |2)(w − ζv̂)‖L2
η
+ ‖(g(|v|2)− g(|ρ|2))v − (g(|w|2)− g(|ζ |2))w‖L2

η

=: I1 + I2.

By Assumption 1 we may estimate I1 by

I1 ≤ ‖g(|ρ|2)(v − ρv̂ − w + ζv̂)‖L2
η
+ ‖(g(|ρ|2)− g(|ζ |2))(w − ζv̂)‖L2

η

≤ |g(|ρ|2)|‖v − ρv̂ − w + ζv̂‖L2
η
+ |g(|ρ|2)− g(|ζ |2)| sup

w∈Bδ(v)

‖w − ζv̂‖L2
η

≤ C‖v − ρv̂ − w + ζv̂‖L2
η
+ C

∣
∣|ρ| − |ζ |2

∣
∣

≤ C‖v − ρv̂ − w + ζv̂‖L2
η
+ C|ρ− ζ | ≤ C‖v −w‖X1

η
.

Here we used again ||ρ|2 − |ζ |2| ≤ (|ρ| + |δ|)||ρ| − |ζ || ≤ C|ρ − ζ |. Further, we split I2
into I3 and I4 via

I2 ≤ ‖(g(|v|2)− g(|ρ|2))(v − ρv̂)− (g(|w|2)− g(|ζ |2))(w − ζv̂‖L2
η

+ ‖(g(|v|2)− g(|ρ|2))ρv̂ − (g(|w|2)− g(|ζ |2))ζv̂‖L2
η
=: I3 + I4.

By Sobolev embedding, cf. Theorem D.2, we have ‖u‖L∞ ≤ C‖u‖H1
η

for all u ∈ H1
η .

Therefore, there hold

‖v − w‖L∞ ≤ ‖v − ρv̂ − w + ζv̂‖L∞ + |ρ− ζ |
≤ C‖v − ρv̂ − w + ζv̂‖H1

η
+ |ρ− ζ |

≤ C‖v − ρv̂ − w + ζv̂‖L2
η
+ ‖vx − wx‖L2

η
+ |ρ− ζ |(1 + ‖v̂x‖L2

η
)

≤ C‖v −w‖X1
η
.

Assumption 1 implies

∣
∣
∣g(|ρ|2)− g(|ζ |2)

∣
∣
∣ ≤ C

∣
∣
∣|ρ|2 − |ζ |2

∣
∣
∣ ≤ C|ρ− ζ |

and similarly

‖g(|v|2)− g(|w|2)‖L∞ ≤ C sup
x∈R

∣
∣
∣|v(x)|2 − |w(x)|2

∣
∣
∣ ≤ C‖v − w‖L∞.
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Again by Sobolev embedding, cf. Theorem D.2, we have v ∈ L∞. Therefore we obtain

I3 ≤ ‖(g(|v|2)− g(|ρ|2)(v − ρv̂ − w + ζv̂)‖L2
η

+ ‖(g(|v|2)− g(|ρ|2)− g(|w|2) + g(|ζ |2))(w − ζv̂)‖L2
η

≤ ‖g(|v|2)− g(|ρ|2)‖2L∞‖v − ρv̂ − w + ζv̂‖L2
η

+ C(‖g(|v|2)− g(|w|2)‖L∞ + |ρ− ζ |)‖w − ζv̂‖L2
η
≤ C‖v −w‖X1

η
.

We continue in this fashion by splitting I4 into two terms I5 and I6 via

I4 ≤ ‖(g(|v|2)− g(|ρ|2))(ρ− ζ)v̂‖L2
η
+ ‖(g(|v|2)− g(|ρ|2)− g(|w|2) + g(|ζ |2))ζv̂‖L2

η

=: I5 + I6

and note

‖v − ρ‖L2
η(R+) ≤ ‖v − ρv̂‖L2

η(R+) + |ρ|‖v̂ − 1‖L2
η(R+) ≤ C‖v‖Xη .

Then we estimate

I5 = ‖(g(|v|2)− g(|ρ|2))(ρ− ζ)v̂‖L2
η(R−) + ‖(g(|v|2)− g(|ρ|2))(ρ− ζ)v̂‖L2

η(R+)

≤ C|ρ− ζ |‖v̂‖L2
η(R−) + |ρ− ζ |‖g(|v|2)− g(|ρ|2)‖L2

η(R+)

≤ C|ρ− ζ |+ C|ρ− ζ |‖v − ρ‖L2
η(R+) ≤ C|ρ− ζ | ≤ C‖v−w‖X1

η
.

Further, I6 is decomposed into the integral on the negative and positive half-line denoted
by I7 and I8:

I6 ≤ ‖(g(|v|2)− g(|ρ|2)− g(|w|2) + g(|ζ |2))ζv̂‖L2
η(R−)

+ ‖(g(|v|2)− g(|ρ|2)− g(|w|2) + g(|ζ |2))ζv̂‖L2
η(R+) =: I7 + I8.

I7, the integral on the negative half-line, can directly estimated by

I7 ≤ C‖g(|v|2)− g(|w|2)‖L∞‖v̂‖L2
η(R−) + C

∣
∣
∣g(|ρ|2)− g(|ζ |2)

∣
∣
∣‖v̂‖L2

η(R−) ≤ C‖v−w‖X1
η
.

Let for the moment (·, ·) denote the standard Euclidean inner product in R
2. For es-

timating I8 the following term appears and can be estimated using Cauchy-Schwarz
inequality

∥
∥|v|2 − |ρ|2 − |w|2 + |ζ |2

∥
∥
L2
η(R+)

= ‖(v − ρ, v + ρ)− (w − ζ, w + ζ)‖L2
η(R+)

∥
∥
∥(v − ρ− w + ζ, v + ρ)‖L2

η(R+) + ‖(w − ζ, v + ρ− w − ζ)
∥
∥
∥
L2
η(R+)

≤ ‖v + ρ‖L∞‖v − ρ− w + ζ‖L2
η(R+) + ‖v + ρ− w − ζ‖L∞‖w − ζ‖L2

η(R+)

≤ C‖v − ρv̂ − w + ζv̂‖L2
η(R+) + C‖v − w‖L∞ + C|ρ− ζ | ≤ C‖v−w‖X1

η
.
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Now using the mean value theorem we estimate I8 by

I8 ≤ C‖g(|v|2)− g(|ρ|2)− g(|w|2) + g(|ζ|2)‖L2
η(R+)

≤ C

(∫ ∞

0
η(x)2

∣
∣
∣
∣

∫ 1

0
Dg
(
|ρ|2 + τ

[
|v(x)|2 − |ρ|2

])
dτ(|v(x)|2 − |ρ|2)

+

∫ 1

0
Dg
(
|ζ|2 + τ

[
|w(x)|2 − |ζ|2

])
dτ(|w(x)|2 − |ζ|2)

∣
∣
∣
∣

2

dx

) 1
2

≤ C

(∫ ∞

0
η(x)2

∣
∣
∣
∣

∫ 1

0
Dg
(
|ρ|2 + τ

[
|v(x)|2 − |ρ|2

])
dτ(|v(x)|2 − |ρ|2 − |w(x)|2 + |ζ|2)

∣
∣
∣
∣

2

dx

) 1
2

+

(

C

∫ ∞

0
η(x)2

∣
∣
∣
∣

∫ 1

0

(

Dg
(
|ρ|2 + τ

[
|v(x)|2 − |ρ|2

])

−Dg
(
|ζ|2 + τ

[
|w(x)|2 − |ζ|2

]) )

dτ(|w(x)|2 − |ζ|2)
∣
∣
∣
∣

2

dx

) 1
2

≤ C
∥
∥|v|2 − |ρ|2 − |w|2 + |ζ|2

∥
∥
L2
η(R+)

+ C

(∫ ∞

0
η(x)2

∫ 1

0

∣
∣
∣|ρ|2 + τ

[
|v(x)|2 − |ρ|2

]
− |ζ|2 − τ

[
|w(x)|2 − |ζ|2

] ∣∣
∣

2
dτ
∣
∣
∣|w(x)|2 − |ζ|2

∣
∣
∣

2
dx

) 1

2

≤ C‖v −w‖X1
η
+ C

∣
∣
∣|ρ|2 − |ζ|2

∣
∣
∣

( ∫ ∞

0
η(x)2

∣
∣
∣|w(x)|2 − |ζ|2|

∣
∣
∣

2
dx

) 1
2

+

(

C

∫ ∞

0
η(x)2

∣
∣
∣|v(x)|2 − |ρ|2 − |w(x)|2 + |ζ|2

∣
∣
∣

2
dx

) 1
2

≤ C‖v −w‖X1
η
+ C|ρ− ζ| ≤ C‖v −w‖X1

η
.

Summarizing, we have shown

‖f(v)− f(ρ)v̂ − f(w) + f(ζ)v̂‖L2
η
≤ I1 + I3 + I5 + I7 + I8 ≤ C‖v−w‖X1

η
.

In addition,

|f(ρ)− f(ζ)| ≤ |g(|ρ|2)(ρ− ζ)|+ |(g(|ρ|2)− g(|ζ |2))ζ | ≤ C|ρ− ζ |.

Now the Lipschitz estimate (3.19) for k = −1, 0 follows by Lemma 3.6 and

‖F(v)−F(w)‖Xk
η
≤ ‖L0(v −w)‖Xk

η
+

∥
∥
∥
∥

(
f(v)− f(w)
f(ρ)− f(ζ)

)∥
∥
∥
∥
Xk

η

≤ C‖v −w‖Xk+2
η

+

∥
∥
∥
∥

(
f(v)− f(w)
f(ρ)− f(ζ)

)∥
∥
∥
∥
Xη

≤ C‖v −w‖Xk+2
η

+ C‖v −w‖X1
η
≤ C‖v−w‖Xk+2

η
.

This completes the proof.
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A simple consequence is that if v⋆ is a stationary solution of (0.22) so is a(γ)v⋆ a
stationary solution for all γ ∈ G, i.e.

F(a(γ)v⋆) = a(γ)F(v⋆) = 0.

Thus, the whole group orbit O(v⋆) consists of stationary solutions of (0.22).

3.3 The linearized operator L
to investigate nonlinear stability of traveling oscillating fronts it is essential to analyze
the spectrum of the linearized operator from (0.26). It is defined by

L : Yη → Xη,

(
u
ρ

)

7→ L
(
u
ρ

)

=

(
Auxx + cux + Sωu+Df(v⋆)u

Sωρ+Df(v∞)ρ

)

.

The linearized operator L is obtained when taking the Frechét derivative of the nonlinear
operator F from (0.23), i.e. L = DF(v⋆). Then the Cauchy problem (0.22) can be
written as a semilinear equation:

ut = Lu+N (u), u(0) = u0 ∈ Xη,

where

N (u) =

(
f(u)−Df(v⋆)u
f(ρ)−Df(v∞)ρ

)

, u =

(
u
ρ

)

is the remaining nonlinear part. This shows the importance of the linearized operator.
The first essential step in proving nonlinear stability is the spectral stability of traveling
oscillating fronts. Spectral stability means that the spectrum of the linearization L is
included in the strict left half-plane except for a zero eigenvalue, which is caused by the
equivariance. In the case of traveling waves in parabolic evolution equations this can
be found, for instance, in [56]. We use the same approach to show spectral stability
of traveling oscillating fronts. Here it is important to note that spectral stability can
only be obtained in the exponentially weighted spaces, since in the classical unweighted
spaces the essential spectrum touches the imaginary axis at the origin and includes the
zero eigenvalue. However, by using exponential weights, the spectrum is pushed to left of
the imaginary axis and we obtain spectral stability. In particular, the exponential weight
causes a spectral gap in the spectrum of the linearized operator. Since the Lie group G is
two dimensional we will see that the isolated zero eigenvalue has in fact at least algebraic
multiplicity two. Taking Assumption 4 into account we obtain algebraic multiplicity
equal to two. In addition to the spectral stability, we prove that the operator L is a
sectorial operator. Thus, we can apply the classical approach for semilinear parabolic
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equations from [32] and [45] to show existence and uniqueness of solutions to (0.22). This
is done in Section 3.4 by using estimates for the semigroup generated by L.
In the next lemma we prove the simple observation that L defines a continuous, linear
operator from Yη to Xη as long as 0 ≤ µ < min(µ⋆, 2) with µ⋆ from Theorem 2.6. In
addition, we show in Lemma 3.10 that L defines a closed linear operator on Xη with
D(L) = Yη. This is a consequence of resolvent estimates for large s. We will then
determine the spectrum of L when considered as a closed operator on Xη.

Lemma 3.9. Let Assumptions 1 and 2 be satisfied and 0 ≤ µ < min(µ⋆, 2) with µ⋆
from Theorem 2.6. Then the operator L : Yη → Xη is a continuous, linear operator, i.e.
L ∈ L[Yη, Xη].

Proof. By Lemma 3.6 it is sufficient to show L−L0 ∈ L[Xη]. Let v = (v, ρ)⊤ ∈ Xη and
let C = C(v⋆) > 0 denote a universal constant. Then using Assumption 1 and Theorem
2.6 we estimate

‖(L − L0)v‖Xη ≤ |Df(v∞)ρ|+ ‖Df(v⋆)v −Df(v∞)ρv̂‖L2
η

≤ C|ρ|+ ‖Df(v⋆)(v − ρv̂)‖L2
η
+ ‖(Df(v⋆)−Df(v∞))ρv̂‖L2

η

≤ C‖v‖Xη + ‖(Df(v⋆)−Df(v∞))ρv̂‖L2
η(R−) + ‖(Df(v⋆)−Df(v∞))ρv̂‖L2

η(R+)

≤ C‖v‖Xη + C|ρ|+
(∫ ∞

0

η2(x)|Df(v⋆(x))−Df(v∞)|2dx
) 1

2

|ρ|

≤ C‖v‖Xη + C‖v⋆ − v∞‖L2
η(R+)|ρ| ≤ C‖v‖Xη .

Hence the assertion is proven.

3.3.1 Resolvent estimates

We study the spectrum of the linearized operator L and are interested in solutions of
the resolvent equation

(sI −L)u = r, s ∈ C, r ∈ Xη. (3.20)

In the following we denote the components of r by (r, ζ)⊤, if necessary. As a next step
we show a-priori estimates for solutions u ∈ Yη of (3.20) for arbitrary r ∈ Xη as long as
|s| is sufficiently large and s ∈ C lies in the exterior of some sector opening to the left,
see Figure 3.1. The approach is based on energy estimates from [39], [40].

Lemma 3.10. Let Assumptions 1 and 2 be satisfied and let 0 ≤ µ < min(µ⋆, 2) with µ⋆
from Theorem 2.6. Then L : Yη ⊂ Xη → Xη is a closed, densely defined, linear operator
on Xη. Moreover, there exist ε0, R0, C > 0 such that for all

s ∈ Ω0 :=
{

s ∈ C : |s| ≥ R0, | arg(s)| ≤
π

2
+ ε0

}
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the equation (3.20) with u ∈ Yη and r ∈ Xη implies

|s|‖u‖2Xη
+ ‖ux‖2L2

η
≤ C

|s|‖r‖
2
Xη

(3.21)

|s|2‖u‖2Xη
+ |s|‖ux‖2L2

η
+ ‖uxx‖2L2

η
≤ C‖r‖2Xη

. (3.22)

Proof. First we show that (3.22) implies the closedness of L. For this purpose, let
{un}n∈N ⊂ Yη with un → u in Xη and Lun → w in Xη. Pick s0 ∈ Ω0 with |s0| ≥ 1.
Then (3.22) implies

‖un − um‖2Yη ≤ |s0|2‖un − um‖2Xη
+ |s0|‖un,x − um,x‖2L2

η
+ ‖un,xx − um,xx‖2L2

η

≤ C1‖s0(un − um)− Lun − Lum‖2Xη
→ 0, n,m→ ∞.

Thus, {un}n∈N is a Cauchy sequence in Yη and there is ũ ∈ Yη with un → ũ in Yη. We
conclude u = ũ ∈ Yη and un → u in Yη. Further, using Lemma 3.9 we obtain

‖Lu−w‖Xη ≤ ‖L(u− un)‖Xη + ‖Lun −w‖Xη

≤ C2‖u− un‖Yη + ‖Lun −w‖Xη → 0, n→ ∞.

Thus Lu = w and the closedness is proven.
It is left to show the estimates (3.21) and (3.22). We start with (3.21). For this purpose
let s ∈ Ω0 with R0 and ε0 still to be determined. For the proof we set C := Df(v⋆),
C∞ := Df(v∞) as well as (·, ·) = (·, ·)L2

η(R,R
2) for the inner product on L2

η. Take the inner
product of (3.20) with u in Xη to obtain

(u, r)Xη = (u, (sI − L)u)Xη =

((
u
ρ

)

,

(
su−Auxx − cux − Sωu− Cu

sρ− Sωρ− C∞ρ

))

Xη

= ρ⊤(sI − Sω − C∞)ρ+ (u− ρv̂, su− Auxx − cux − Sωu− Cu− (sρ− Sωρ− C∞ρ)v̂)

= s‖u‖2Xη
− ρ⊤Sωρ− ρ⊤C∞ρ

− (u− ρv̂, Auxx)L2
η
− c(u− ρv̂, ux)− (u− ρv̂, Sω(u− ρv̂))− (u− ρv̂, Cu− C∞ρv̂).

The integration by parts formula from Lemma 3.2 leads to

s‖u‖2Xη
+ (ux − ρv̂x, Aux)L2

η

= ρ⊤(Sω + C∞)ρ− 2(η′η−1(u− ρv̂), Aux) + c(u− ρv̂, ux)L2
η

+ (u− ρv̂, Sω(u− ρv̂))L2
η
+ (u− ρv̂, Cu− C∞ρv̂)L2

η
+ (u, r)Xη .

(3.23)

Further we use Cauchy-Schwarz, Young’s inequality with εi > 0, i = 1, 2, 3, 4 and Propo-
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sition 2.7 to obtain the estimates

|(ux − ρv̂x, Aux)| ≤ ‖ux − ρv̂x‖L2
η
‖Aux‖L2

η
≤ |A|

(

‖ux‖2L2
η
+ ‖ρv̂x‖L2

η
‖ux‖L2

η

)

≤ |A|
(

‖ux‖2L2
η
+

1

4ε1
‖ρv̂x‖2L2

η
+ ε1‖ux‖2L2

η

)

= |A|(1 + ε1)‖ux‖2L2
η
+

|A|
(2− µ)ε1

|ρ|2,

(3.24)

|(η′η−1(u− ρv̂), Aux)| ≤ µ‖u− ρv̂‖L2
η
‖Aux‖L2

η

≤ µ2|A|
4ε2

‖u− ρv̂‖2L2
η
+ ε2|A|‖ux‖2L2

η
,

(3.25)

|c(u− ρv̂, ux)| ≤ |c|‖u− ρv̂‖L2
η
‖ux‖L2

η
≤ |c|

4ε3
‖u− ρv̂‖2L2

η
+ |c|ε3‖ux‖2L2

η
, (3.26)

|(u− ρv̂, Sω(u− ρv̂))| ≤ |ω|‖u− ρv̂‖2L2
η
, (3.27)

|(u− ρv̂, Cu− C∞ρv̂)| ≤ ‖u− ρv̂‖L2
η
‖Cu− C∞ρv̂‖L2

η

≤ ‖C‖L∞‖u− ρv̂‖2L2
η
+ ‖u− ρv̂‖L2

η
‖(C − C∞)ρv̂‖L2

η

≤
(

‖C‖L∞ +
1

4ε4

)

‖u− ρv̂‖2L2
η
+ ε4‖(C − C∞)ρv̂‖2L2

η

≤
(

‖C‖L∞ +
1

4ε4

)

‖u− ρv̂‖2L2
η
+KCε4|ρ|2.

(3.28)

To obtain (3.28) we used the fact that Assumption 1 and 2 imply, together with Theorem
2.6 and Proposition 2.7, for some KC > 0 the estimate:

‖(C − C∞)ρv̂‖2L2
η
≤ ‖(C − C∞)ρv̂‖2L2

η(R−) + ‖(C − C∞)ρv̂‖2L2
η(R+)

≤ ‖C − C∞‖2L∞

4− 2µ
|ρ|2 +

∫ ∞

0

η2(x)|Df(v⋆(x))−Df(v∞)|2dx|ρ|2

≤ ‖C − C∞‖2L∞

4− 2µ
|ρ|2 + L2‖v⋆ − v∞‖2L2

η
|ρ|2 ≤ KC |ρ|2.

Take the absolute value in (3.23) and use (3.24)-(3.28) with εi = 1 to obtain

|s|‖u‖2Xη
≤ K0‖ux‖2L2

η
+K1‖u‖2Xη

+ ‖u‖Xη‖r‖Xη . (3.29)
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Here K0 and K1 can be chosen as

K0 := 3|A|+ |c|, K1 :=

(
µ2

2
+

1

2− µ

)

|A|+ 2|ω|+ 2‖C‖L∞ +
1 + |c|

4
+KC .

Note that (ux−ρv̂x, Aux) = α1‖ux‖2L2
η
− (ρv̂x, Aux) and the second part can be estimated

by

|(ρv̂x, Aux)| ≤ |A|‖v̂x‖L2
η
|ρ|‖ux‖L2

η
≤ |A|

(2− µ)ε5
|ρ|2 + ε5|A|‖vx‖2L2

η
. (3.30)

In contrast to (3.29), when taking real part in (3.23) we obtain by using Cauchy-Schwarz,
Young’s inequality and (3.25)-(3.28) as well as (3.30) with ε2 = ε5 =

α1

8|A| , ε3 =
α1

4|c| , ε4 = 1
the estimate

Re s‖u‖2Xη
+ α1‖ux‖2L2

η
≤
(
ε5|A|+ ε2|A|+ ε3|c|

)
‖ux‖2L2

η
+K2‖u‖2Xη

+ ‖u‖Xη‖r‖Xη

≤ α1

2
‖ux‖2L2

η
+K2‖u‖2Xη

+ ‖u‖Xη‖r‖Xη ,

where K2 can be chosen as

K2 :=

(

4µ2 +
8

2− µ

) |A|2
α1

+ 2|ω|+ 2‖C‖L∞ +
|c|2
α1

+
1

4
+KC .

This leads to

Re s‖u‖2Xη
+
α1

2
‖ux‖2L2

η
≤ K2‖u‖2Xη

+ ‖u‖Xη‖r‖Xη . (3.31)

The rest of the proof falls naturally into three cases depending on the value of s in the
complex plane, cf. Figure 3.1.
Case 1: Re s ≥ |Im s|, Re s > 0, |s| ≥ 2

√
2K2.

We have 0 < Re s ≤ |s| ≤
√
2Re s. Therefore, using (3.31) and Young’s inequality with

ε =
√
2

|s| , we obtain

|s|√
2
‖u‖2Xη

+
α1

2
‖ux‖2L2

η
≤ |s|

2
√
2
‖u‖2Xη

+ ‖u‖Xη‖r‖Xη

≤ |s|
2
√
2
‖u‖2Xη

+
|s|
4
√
2
‖u‖2Xη

+

√
2

|s| ‖r‖
2
Xη
.

Thus,

|s|
4
√
2
‖u‖2Xη

+
α1

2
‖ux‖2L2

η
≤

√
2

|s| ‖r‖
2
Xη
.
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R0

ε0

C\Ω0 Case 1

Case 2
Case 3

Figure 3.1: The set Ω0 ⊂ C from Lemma 3.10.

Setting C1 = max(8, 2
√
2α−1

1 ) yields

|s|‖u‖2Xη
+ ‖ux‖2L2

η
≤ 2C1

|s| ‖r‖
2
Xη
.

Case 2: |Im s| ≥ Re s ≥ 0.
From (3.31) we have

‖ux‖L2
η
≤ 2

α1

(

K2‖u‖2Xη
+ ‖u‖Xη‖r‖Xη

)

.

Use this in (3.29) to obtain

|s|‖u‖2Xη
≤ 2K0

α1

(

K2‖u‖2Xη
+ ‖u‖Xη‖r‖Xη

)

+K1‖u‖2Xη
+ ‖u‖Xη‖r‖Xη

=

(
2K0K2

α1
+K1

)

‖u‖2Xη
+

(
2K0

α1
+ 1

)

‖u‖Xη‖r‖Xη

≤ K3

(

‖u‖2Xη
+ ‖u‖Xη‖r‖Xη

)
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with K3 := max
(

2K0K2

α1
+K1,

2K0

α1
+ 1
)

. Take |s| > 2K3 to observe by Young’s inequality

with ε = |s|−1

|s|‖u‖2Xη
≤ |s|

2
‖u‖2Xη

+K3‖u‖Xη‖r‖Xη ≤ |s|
2
‖u‖2Xη

+
|s|
4
‖u‖2Xη

+
K2

3

|s| ‖r‖
2
Xη
.

Hence

|s|
4
‖u‖2Xη

≤ K2
3

|s| ‖r‖
2
Xη
. (3.32)

Using (3.31), (3.32) and taking |s| ≥ 4K2 yields by Young’s inequality with ε = |s|−1

α1

2
‖ux‖2L2

η
≤ |s|

4
‖u‖2Xη

+ ‖u‖Xη‖r‖Xη ≤ |s|
4
‖u‖2Xη

+
|s|
4
‖u‖2Xη

+
1

|s|‖r‖
2
Xη

=
|s|
2
‖u‖2Xη

+
1

|s|‖r‖
2
Xη

≤ 2K2
3 + 1

|s| ‖r‖2Xη
=
K4

|s| ‖r‖
2
Xη
, K4 := 2K2

3 + 1.

(3.33)

Combining (3.32) and (3.33) to obtain

|s|‖u‖2Xη
+ ‖ux‖2L2

η
≤ 4K2

3

|s| ‖r‖2Xη
+

2K4

α1|s|
‖r‖2Xη

=
C2

|s| ‖r‖
2
Xη
, C2 := 4K2

3 +
2K5

α1
.

Case 3: Re s ≤ 0, |Re s| ≤ ε0|Im s|. Using (3.29) and (3.31) yields

|Im s|‖u‖2Xη
≤ |s|‖u‖2Xη

≤ K0‖ux‖2L2
η
+K1‖u‖2Xη

+ ‖u‖Xη‖r‖Xη

≤ 2K0

α1

(

|Re s|‖u‖2Xη
+K2‖u‖2Xη

+ ‖u‖Xη‖r‖Xη

)

+K1‖u‖2Xη
+ ‖u‖Xη‖r‖Xη .

Let 0 < ε0 <
α1

4K0
. Then 2K0

α1
|Re s| ≤ |Im s|

2
and we obtain

|Im s|
2

‖u‖2Xη
≤
(
2K0K2

α1

+K1

)

‖u‖2Xη
+

(
2K0

α1

+ 1

)

‖u‖Xη‖r‖Xη .

Hence

|Im s|‖u‖2Xη
≤ K5

(

‖u‖2Xη
+ ‖u‖Xη‖r‖Xη

)

, K5 := max

(
4K0K2

α1
+ 2K1,

4K0

α1
+ 2

)

.

Since |s| ≤
√

1 + ε20|Im s| we obtain

|s|‖u‖2Xη
≤ K5

√

1 + ε20

(

‖u‖2Xη
+ ‖u‖Xη‖r‖Xη

)

.
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Now take |s| > 2K5

√

1 + ε20 and use Young’s inequality with ε = |s|−1 to observe

|s|‖u‖2Xη
≤ |s|

2
‖u‖2Xη

+K5

√

1 + ε20‖u‖Xη‖r‖Xη

≤ |s|
2
‖u‖2Xη

+
|s|
4
‖u‖2Xη

+
K2

5(1 + ε20)

|s| ‖r‖2Xη
.

This yields

|s|
4
‖u‖2Xη

≤ K2
5 (1 + ε2)

|s| ‖r‖2Xη
. (3.34)

Take |s| ≥ 2K2 in (3.31) and use (3.34) as well as Young’s inequality with ε = 1
2|s| to

obtain

α1

2
‖ux‖2L2

η
≤ |Re s|‖u‖2Xη

+
|s|
2
‖u‖2Xη

+ ‖u‖Xη‖r‖Xη

≤ |s|‖u‖2Xη
+

|s|
2
‖u‖2Xη

+
|s|
2
‖u‖2Xη

+
1

2|s|‖r‖
2
Xη

≤ 2|s|‖u‖2Xη
+

1

2|s|‖r‖
2
Xη

≤ K6

|s| ‖r‖
2
Xη
, K6 := 8K2

5 (1 + ε20) +
1
2
.

(3.35)

Combining (3.34) and (3.35) shows

|s|‖u‖2Xη
+ ‖ux‖2L2

η
≤ C3

|s| ‖r‖
2
Xη
, C3 := 4K2

5(1 + ε20) +
2K6

α1

.

Hence (3.21) is proven.
It remains to prove (3.22). First note that in (3.28) we have shown

‖Cu− C∞ρv̂‖2L2
η
≤ K7‖u‖2Xk

.

Now see that (3.20) implies in Xη the equation
(
uxx
0

)

=

(
A−1(−su+ cux + Sωu+ Cu+ r)
A−1(−sρ+ Sωρ+ C∞ρ+ ζ)

)

.

Thus, it is easy to see for |s| ≥ 1 there is C̃ > 0 such that

‖uxx‖2L2
η
≤ C̃

(

|s|2‖u‖2Xη
+ ‖ux‖2L2

η
+ ‖u‖2Xη

+ ‖r‖2Xη

)

≤ 2C̃
(

|s|2‖u‖2Xη
+ |s|‖ux‖2L2

η
+ ‖r‖2Xη

)

.

Finally the assertion is proven since (3.21) implies for some C > 0 the estimate

|s|2‖u‖2Xη
+ |s|‖ux‖2L2

η
+ ‖uxx‖2L2

η

≤ (2C̃ + 1)
(

|s|2‖u‖2Xη
+ |s|‖ux‖2L2

η

)

+ 2C̃‖r‖2Xη
≤ C‖r‖2Xη

.
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The a-priori estimates from Lemma 3.10, in particular (3.22), imply the uniqueness
of solutions of the resolvent equation (3.20). Hence the operator sI − L is one-to-one
for s ∈ Ω0 and there are no eigenvalues in the region Ω0 according to Definition 1.10.
In order to conclude that Ω0 is part of the resolvent set we still need to determine the
Fredholm properties of sI − L. Below we show that sI − L is Fredholm of index 0 for
s ∈ Ω0, if the angle ε0 in the definition of Ω0 is sufficiently small. Then we conclude
Ω0 ⊂ ρ(L) and the equation (3.20) attains a unique solution for every r ∈ Xη.
In this case Lemma 3.10 implies that the resolvent must decay with rate |s|−1 in the
operator norm. In particular, there is C > 0 such that for all s ∈ Ω0 ∩ ρ(L) we have the
estimate for the resolvent

∥
∥(sI −L)−1

r
∥
∥
Xk

η
≤ C|s| k2−1‖r‖Xη , k = 0, 1, 2.

Hence, if Ω0 ⊂ ρ(L), the operator L defines a sectorial operator, cf. [32]. Therefore, by
the theory from [32], [45], L generates an analytic semigroup onXη which is important for
proving existence of solutions of (0.22) and the nonlinear stability of traveling oscillating
fronts. Additionally to the resolvent estimate (3.22) we now show regularity estimates
for the solution of (3.20). Then the semigroup generated by L is also defined from X1

η

to X1
η .

Lemma 3.11. Let Assumptions 1 and 2 be satisfied and let 0 ≤ µ < min(µ⋆, 2) with µ⋆
from Theorem 2.6 and let Ω0 be from Lemma 3.10.

i) For s ∈ ρ(L) there is C1 = C1(s) > 0 such that for all r ∈ X1
η the equation (3.20)

has a unique solution u ∈ X3
η with

‖u‖X3
η
≤ C1‖r‖X1

η
.

ii) There is C2 > 0 such that for all s ∈ Ω0 the equation (3.20) with r ∈ X1
η and u ∈ Yη

implies u ∈ X3
η and

|s|2‖u‖2X1
η
+ |s|‖uxx‖2L2

η
+ ‖uxxx‖2L2

η
≤ C2‖r‖2X1

η
.

Proof. Suppose r ∈ X1
η and s ∈ ρ(L). Then the resolvent equation (3.20) has a unique

solution u = (u, ρ)⊤ ∈ Yη with ‖u‖Yη ≤ C‖r‖Xη for some C > 0 depending on s. Using

Assumption 1 and 2 and Theorem 2.6 we find C̃ > 0 such that

‖D2f(v⋆)[v⋆,x, u]‖L2
η
≤ ‖D2f(v⋆)[v⋆,x, u− ρv̂]‖L2

η
+ ‖D2f(v⋆)[v⋆,x, v̂]‖L2

η
|ρ|

≤ C̃(‖u− ρv̂‖L2
η
+ |ρ|) ≤ 2C̃C‖r‖Xη .

(3.36)

Hence D2f(v⋆)[v⋆,x, u] ∈ L2
η and therefore the equation

(sI − L)w =

(
rx +D2f(v⋆)[v⋆,x, u]

0

)

∈ Xη (3.37)
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has a solution w = (w, ζ)⊤ ∈ Yη Since (sI − L)u = r ∈ X1
η we obtain using integration

by parts for all ϕ ∈ C∞
0 (R,R)

∫

R

uxx(x)ϕx(x)dx =

∫

R

A−1[su− cux − Sωu−Df(v⋆)u− r](x)ϕx(x)dx

= −
∫

R

A−1[sux − cuxx − Sωux −Df(v⋆)ux −D2f(v⋆)[v⋆,x, u]− rx](x)ϕ(x)dx.

Thus ux ∈ H1
η ∩H2

loc with

uxxx = A−1[sux − cuxx − Sωux −Df(v⋆)ux −D2f(v⋆)[v⋆,x, u]− rx] ∈ L2
η.

Therefore, ux ∈ H2
η solves

(sI − L)
(
ux
0

)

=

(
(sI − L)ux

0

)

=

(
∂x[su− Auxx − cux − Sωu−Df(v⋆)u] +D2f(v⋆)[v⋆,x, u]

0

)

=

(
rx −D2f(v⋆)[v⋆,x, u]

0

)

.

Since w is the unique solution of (3.37) we conclude w = ux, ζ = 0. This proves i). Now
ii) follows by (3.36) and by applying Lemma 3.10 to the equation

(sI −L)
(
ux
0

)

=

(
rx −D2f(v⋆)[v⋆,x, u]

0

)

.

3.3.2 Fredholm theory and spectral analysis

Our aim is to determine the spectrum of the linearized operator L on Xη. Assumption
4 together with Lemma 3.10 guarantee that the set Ω̃ = {s ∈ C : Re s > −γ} ∪ Ω0 does
not contain any eigenvalues of L except the zero eigenvalue. Thus, by Definition 1.10 we
conclude that if s ∈ Ω̃ such that the operator sI−L is Fredholm of index 0, then we have
s ∈ ρ(L). Since the Fredholm index of sI −L stays constant in a small neighborhood of
s, cf. [38], we are mainly interested in the set of all s such that sI−L is not a Fredholm
operator. In this section we show that the Fredholm properties of sI −L on Xη coincide
with the variable coefficient operator on L2 given by

L : H2
η → L2

η, u 7→ Auxx + cux + Sωu+Df(v⋆)u. (3.38)
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In addition, let us consider the operator

Lη : H
2 → L2, u 7→ ηLη−1u.

A straightforward calculation shows that Lη can be written as a second order differential
operator on L2

Lηu = Auxx +Bµux + Cµu

with coefficients given by

Bµ(x) = cI +
2µx√
x2 + 1

A,

Cµ(x) = Sω +Df(v⋆(x)) + µ2A
x2

x2 + 1
− cµI

x√
x2 + 1

− µA

(

1√
x2 + 1

− x2

(x2 + 1)
3
2

)

.

The next step is to introduce the map

ψ : Xη → L2
η × R

2,

(
u
ρ

)

7→
(
u− ρv̂
ρ

)

.

Taking the norm ‖(u, ρ)‖2L2
η×R

:= |ρ|2 + ‖u‖2L2
η

on L2
η ×R2, it follows immediately that ψ

defines an isometry from Xη to L2
η × R2 and its inverse is given by

ψ−1 : L2
η × R

2 → Xη,

(
u
ρ

)

7→
(
u+ ρv̂
ρ

)

.

Lemma 3.12. The map ψ : Xη → L2
η × R2 is an isometric isomorphism. Moreover, if

0 ≤ µ < 2, then ψ : Yη → H2
η × R2 is a homeomorphism.

Proof. By the previous observation it remains to show the continuity of ψ from Yη to
H2
η × R

2. From Proposition 2.7 we obtain for 0 ≤ µ < 2 and u = (u, ρ)⊤ ∈ Yη

‖ψ(u)‖2H2
η×R2 = |ρ|2 +

2∑

α=0

‖∂α(u− ρv̂)‖2L2
η

≤ (1 + ‖v̂x‖2L2
η
+ ‖v̂xx‖2L2

η
)|ρ|2 + ‖u− ρv̂‖2L2

η
+ ‖ux‖2L2

η
+ ‖uxx‖2L2

η
≤ C‖u‖2Yη .

With the homeomorphism ψ we can define the operator

Lψ : H2
η × R

2 → L2
η × R

2, u 7→ ψLψ−1
u
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Again, a straightforward calculation shows that for u = (u, ρ)⊤ the operator Lψ can be
written as

Lψu =

(
Auxx + cux + Sωu+Df(v⋆)u+ Aρv̂xx + cρv̂x + (Df(v⋆)−Df(v∞)) ρv̂

Sωρ+Df(v∞)ρ

)

.

If Assumption 1 and 2 are satisfied, it follows that Lψ defines a closed, linear operator on
L2
η×R2 with D(Lψ) = H2

η×R2. Furthermore, since ψ is a homeomorphism and therefore
a Fredholm operator of index 0 we conclude from Lemma A.2 that the Fredholm indices
of sI−L and sI−Lψ coincide. The same holds true for the operators sI−L and sI−Lη
since the multiplication operator associated with η from Lemma 3.1 is a homeomorphism.
Furthermore, a compact perturbation argument will show that the variable coefficient
operator sI−Lη on L2 has the same Fredholm index as the piecewise constant coefficient
operator given by

Lη,∞ : H2 → L2, u 7→ Auxx +Bµ,∞ux + Cµ,∞u,

where

Bµ,∞(x) =

{

cI + 2µA, x ≥ 0

cI − 2µA, x < 0
, Cµ,∞(x) =

{

Sω +Df(v∞) + µ2A− cµI, x ≥ 0

Sω +Df(0) + µ2A+ cµI, x < 0
.

(3.39)

We note and prove these observations in the following lemma.

Lemma 3.13. Let Assumption 1 and 2 be satisfied, 0 ≤ µ ≤ min(µ⋆, 2) and s ∈ C with
µ⋆ from Theorem 2.6. Then the following statements are equivalent:

i) The operator (sI − L) : Yη → Xη is a Fredholm operator of index k.

ii) The operator (sI − Lψ) : H2
η × R2 → L2

η × R2 is a Fredholm operator of index k.

iii) The operator (sI − L) : H2
η → L2

η is a Fredholm operator of index k.

iv) The operator (sI − Lη) : H
2 → L2 is a Fredholm operator of index k.

v) The operator (sI − Lη,∞) : H2 → L2 is a Fredholm operator of index k.

Proof. i) ⇔ ii): By Lemma 3.12, the maps ψ : Xη → L2
η×R2 and ψ : Yη → H2

η ×R2 are
homeomorphisms and therefore Fredholm operators of index 0. Thus, the equivalence of
i) and ii) follows by Lemma A.2.
iii) ⇔ iv): By Lemma 3.1, the multiplication operatorsmη : L

2
η → L2 andmη : H

2
η → H2

are homeomorphisms and therefore Fredholm operators of index 0. Thus, the equivalence
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of iii) and iv) follows by Lemma A.2.
ii) ⇔ iii): The operator Lψ can be decomposed into Lψ = L̃+K where L̃ is given by

L̃ : H2
η × R

2 → L2
η × R

2, L̃
(
u
ρ

)

:=

(
Auxx + cux + Sωu+Df(v⋆)u

(Sω +Df(v∞))ρ

)

and the operator K by

K : H2
η × R

2 → L2
η × R

2, K

(
u
ρ

)

:=

(
Aρv̂xx + cρv̂x + (Df(v⋆)−Df(v∞)) ρv̂

0

)

.

Since sI − Sω − Df(v∞) ∈ R
2,2 is a Fredholm operator of index 0 on R

2, Lemma A.3
implies that sI − L̃ is a Fredholm operator of index k if and only if (sI − L) : H2

η → L2
η

is. We show that K is a compact operator. Then the assertion follows by Lemma A.4.
To see the compactness of K, let {un}n∈N ⊂ H2

η × R2, un = (un, ρn)
⊤ be a bounded

sequence and let C > 0 denote a universal constant. Then there exists a subsequence
ρnk

such that ρnk
→ ρ as k → ∞. We define

w := Aρv̂xx + cρv̂x + (Df(v⋆)−Df(v∞)) ρv̂.

Then Assumption 1 and Theorem 2.6 imply w ∈ L2
η. Moreover, we have

‖(Df(v⋆)−Df(v∞))(ρnk
− ρ)v̂‖L2

η

≤ ‖(Df(v⋆)−Df(v∞))(ρnk
− ρ)v̂‖L2

η(R−) + ‖(Df(v⋆)−Df(v∞))(ρnk
− ρ)v̂‖L2

η(R+)

≤ C‖v̂‖L2
η(R−)|ρnk

− ρ|+ C|ρnk
− ρ|‖Df(v⋆)−Df(v∞)‖L2

η(R+)

≤ C‖v̂‖L2
η(R−)|ρnk

− ρ|+ C|ρnk
− ρ|‖v⋆ − v∞‖L2

η(R+) ≤ C|ρnk
− ρ|.

This implies for w = (w, ρ)⊤ ∈ L2
η × R2

‖Kunk
−w‖L2

η×R2 ≤ |ρnk
− ρ|+ ‖Aρnk

v̂xx + cρnk
v̂x + (Df(v⋆)−Df(v∞))ρnk

v̂ − w‖L2
η

= |ρnk
− ρ|+ ‖A(ρnk

− ρ)v̂xx + c(ρnk
− ρ)v̂x + (Df(v⋆)−Df(v∞))(ρnk

− ρ)v̂‖L2
η

≤ C(1 + ‖v̂xx‖L2
η
+ ‖v̂x‖L2

η
)|ρnk

− ρ| + ‖(Df(v⋆)−Df(v∞))(ρnk
− ρ)v̂‖L2

η

≤ C|ρnk
− ρ| → 0, k → 0.

Thus, Kunk
→ w in L2

η × R2 as k → ∞. This shows the compactness of K and the
assertion follows by Lemma A.4.
iv) ⇔ v): Since the operator ∂x : Hk+1 → Hk, k ≥ 0 is bounded, Lemma D.4 and
Theorem 2.6 imply that the operator

Lη − Lη,∞ : H2 → L2, u 7→ (Bµ − Bµ,∞)ux + (Cµ − Cµ,∞)u

is compact. Hence the assertion follows by Lemma A.4.
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The lemma shows that the Fredholm properties of sI − L on Xη are determined by
the piecewise constant coefficient operator sI − Lη,∞. Thus, we are interested into the
solvabilty of the resolvent equation

(sI − Lη,∞)u = r, u ∈ H2, r ∈ L2, s ∈ C. (3.40)

We use the classical approach, for instance, from [36] or [56], [32], where the solution
of (3.40) is constructed using exponential dichotomies. For this purpose we transform
(3.40) into a first order system via w = (u, u′) and obtain

M(s)w = h, M(s) = ∂x −M(s, ·), h = (0, r)⊤ (3.41)

with

M(s, x) =

{

M+(s), x ≥ 0

M−(s), x < 0
, M±(s) =

(
0 I

A−1(sI − C±) −A−1B±

)

and the matrices B±, C± given by

B± := cI ∓ 2µA, C± := Sω +Df(v±) + µ2A∓ cµI.

From [22] we have that the operator M(s) has an exponential dichotomy on the half-line
R± if and only if the matrix M±(s) is hyperbolic, cf. Proposition B.4. Therefore, we
define the set

ΩF := {s ∈ C :M+(s) and M−(s) are hyperbolic}.
For s ∈ ΩF we denote by m±

s,u(s) the dimensions of the stable and unstable subspaces
of M±(s), i.e. m±

s
(s) denotes the sum of multiplicities of the eigenvalues of M±(s) with

negative real part and m±
u
(s) those with positive real part. Now we have the following

classical result which can be found in several texts from the literature. See for instance
[36, Lem. 3.1.10] or [48], [49], [56, Sec. 3].

Lemma 3.14. Let Assumption 1 and 2 be satisfied, 0 ≤ µ ≤ min(µ⋆, 2) with µ⋆ from
Theorem 2.6. Then the operator sI−Lη,∞ : H2 → L2 is a Fredholm operator if and only
if s ∈ ΩF . If s ∈ ΩF then the Fredholm index is given by

ind(sI − Lη,∞) = m+
s
(s)−m−

s
(s).

Lemma 3.14 together with Lemma 3.13 imply that sI − L : Yη → Xη is a Fredholm
operator if and only if s ∈ ΩF . Moreover, since the matrices M± depend continuously on
s ∈ C we conclude that the Fredholm index of sI − L stays constant in any connected
component of ΩF . Recall the dispersion set from (0.27) given by

σdisp,µ(L) = σ−
disp,µ(L) ∪ σ+

disp,µ(L)
Then we have the following lemma.
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Lemma 3.15. Let Assumption 1 and 2 be satisfied. Then the set ΩF is the complement
of the dispersion set, i.e. ΩF = C\σdisp,µ(L).

Proof. First we show that det(−ν2A+ iνB± + C± − sI) = 0 if and only if M±(s) is not
hyperbolic. Assume M±(s) is not hyperbolic, i.e. there exists ν ∈ R, w ∈ C4, |w| = 1
such that iνw = M±(s)w. This implies, with w = (w1, w2)

⊤, that iνw1 = w2 and hence
w1 6= 0 due to |w| = 1. Moreover,

−ν2w1 = A−1(sI − C±)w1 −A−1B±w2 = A−1(sI − C±)w1 − iνA−1B±w1.

Hence,

(−ν2A + iνB± + C±)w1 = 0.

Thus, det(−ν2A + iνB± + C± − sI) = 0.
Conversely, suppose det(−ν2A+ iνB± +C± − sI) = 0. Then there exists w1 ∈ Cm such
that (−ν2A+ iνB± + C± − sI)w1 = 0. Now setting w2 = iνw1 leads to

(
0 I

A−1(sI − C±) −A−1B±

)(
w1

w2

)

=

(
w2

A−1(sI − C±)w1 − A−1B±w2

)

=

(
iνw1

A−1(sI − C±)w1 − iνA−1B±w1

)

=

(
iνw1

A−1(sI − C± − iνB±)w1

)

=

(
iνw1

−A−1ν2Aw1

)

= iν

(
w1

w2

)

.

It holds true that the Fredholm index of sI − L stays constant in any connected
component of ΩF , see [36]. Therefore, we are interested in the shape and location of
the dispersion set and in particular in the connected components of ΩF . The Fredholm
region ΩF can be written as

ΩF =
{
s ∈ C : det(sI −D±(ν)) 6= 0 ∀ ν ∈ R

}
, D±(ν) := −ν2A+ iνB± + C±.

Hence we look for eigenvalues of the matrix D±(ν), ν ∈ R. Its characteristic polynomial
is given by

d±(s) = s2 − trD±(ν)s+ detD±(ν).
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The roots of d±(·, ν) can be computed explicitly. We have s ∈ σ+
disp,µ(L) if and only if

s =
trD+(ν)

2
±
√

(trD+(ν))2

4
− detD+(ν)

= −α1ν
2 + i(c− 2α1µ)ν + µ2α1 − cµ+ g′1(|v∞|2)|v∞|2

±
[

− α2
2ν

4 − 4iα2
2µν

3 + (6α2
2µ

2 + 2α2g
′
2(|v∞|2)|v∞|2)ν2

+ 4i(α2
2µ

3 + µα2g
′
2(|v∞|2)|v∞|2)ν

− α2
2µ

4 − 2α2µ
2g′2(|v∞|2)|v∞|2 + (g′1(|v∞|2)|v∞|2)2

] 1
2

(3.42)

and s ∈ σ−
disp,µ(L) if and only if

s =
trD−(ν)

2
±
√

(trD−(ν))2

4
− detD−(ν)

= −α1ν
2 + i(c + 2α1µ)ν + µ2α1 + cµ+ g1(0)

±
[

− α2
2ν

4 + 4iα2
2µν

3 + (6α2
2µ

2 + 2α2(g2(0) + ω))ν2

− 4iα2(α2µ
3 + µ(g2(0) + ω))ν − α2

2µ
4 − 2(g2(0) + ω)α2µ

2 − (g2(0) + ω)2
] 1

2

.

(3.43)

Roughly speaking, these are four curves in the complex plane running from −∞ − i∞
to −∞+ i∞. In the special case α2 = 0 the equations (3.42) and (3.43) simplify to

s = −α1ν
2 + i(c− 2α1µ)ν + µ2α1 − cµ+ g′1(|v∞|2)|v∞|2 ± g′1(|v∞|2)|v∞|2

and

s = −α1ν
2 + i(c+ 2α1µ)ν + µ2α1 + cµ+ g1(0)± i(g2(0) + ω).

Then the dispersion set consists of four parabolas in the complex plane opened to the
left, see 0.4 b).
We are now in the position to formulate and prove the main result of this section de-
scribing the essential spectrum of L on the exponentially weighted space Xη.

Theorem 3.16. Let the Assumption 1-3 be satisfied and 0 < µ < min(µess, µ⋆, 2) with
µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there are ε > 0, γ < 0 and a
unique connected component Ω∞ of ΩF satisfying:

i) Sε,γ :=
{
s ∈ C : | arg(s− γ)| < π

2
+ ε, s 6= γ

}
⊂ Ω∞.

ii) For all s ∈ Ω∞ the operator sI −L : Yη → Xη is Fredholm of index 0.
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iii) ∂Ω∞ ⊂ σdisp,µ(L).

iv) σess(L) ⊂ C\Ω∞.

Proof. i). For s ∈ ΩF Lemma 3.13 and Lemma 3.14 imply the operator sI − L to be a
Fredholm operator of index ind(sI − L) = m+

s
(s) − m−

s
(s). For s ∈ σdisp,µ(L) we have

Re s → −∞ as |s| → ∞. Thus, Re σdisp,µ(L) < ∞. Now let s0 > Re σdisp,µ(L). Recall
for a matrix M ∈ Cm,m its lower spectral bound α(M) := min{Re (xHMx) : |x| = 1}
and let s0 be so large such that

α(s0I − C±) ≥ s0 −max{Re (vHC±v) : |v| = 1} > µ|α2|
α1

.

Then for all s ≥ s0 we also have

α(sI − C±) ≥ s−max{Re (xHC±x) : |x| = 1} > µ|α2|
α1

and since α(A) = α1 we obtain

|B± −B⊤
± | = |2µ(A−A⊤)| = 4µ|α2| = 4α(A)

µ|α2|
α1

< 4α(A)α(sI − C±) ∀s ∈ [s0,∞).

Now for all s ∈ [s0,∞) Lemma D.1 implies M±(s) to be hyperbolic with m±
s
(s) = 2.

Thus sI −L is a Fredholm operator of index 0. Since both M± depend continuously on
s we conclude that m±

s
(s) = 2 for s in the connected component Ω∞ of ΩF containing

[s0,∞). Thus sI − L is Fredholm index 0 for s ∈ Ω∞ and ∂Ω∞ ⊂ ∂ΩF = σdisp,µ(L).
Therefore ii) and iii) hold. Moreover, iv) follows by definition of the essential spectrum,
cf. Definition 1.10. It remains to show i). Using ii) it is sufficient to show there is
a sector Sε,γ, ε > 0, γ < 0 with σdisp,µ(L) ∩ Sε,γ = ∅. The dispersion set consists of
four curves given by the equations (3.42) and (3.43). For each of those we can choose a
parametrization χ : R → C such that (3.42), (3.43) respectively, is equivalent to χ(ν) = s
and χ is given by

χ(ν) = −α1ν
2 + iξ1ν + ξ2 ±

√

−α2
2ν

4 + p(ν), ν ∈ R,

where ξ1, ξ2 ∈ R and p(ν) = iβ3ν
3 + β2ν

2 + iβ1ν + β0 is a polynomial of degree 3 over C
with βi ∈ R. For the derivative of the parametrization there holds

χ′(ν) = −2α1ν + iξ1 ∓
2α2

2ν
3

√

−α2
2ν

4 + p(ν)
± p′(ν)
√

−α2
2ν

4 + p(ν)
.

Now,

2α2
2ν

2

√

−α2
2ν

4 + p(ν)
=

2α2
2

√

−α2
2 + ν−4p(ν)

ν→±∞−→ 2α2
2

√

−α2
2

=
2α2

2

i|α2|
= −2i|α2|.
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Therefore,

ν−1χ′(ν) → −2α1 ± 2i|α2|, ν → ±∞.

Let Tχ(ν) := χ′(ν)
|χ′(ν)| be the tangent vector of the curve at χ(ν). Then for ν > 0

Tχ(ν) =
ν−1χ′(ν)

|ν−1χ′(ν)| →
−α1 ± i|α2|

|α| , ν → ∞.

For ν < 0 we obtain

Tχ(ν) = − ν−1χ′(ν)

|ν−1χ′(ν)| →
α1 ∓ i|α2|

|α| , ν → −∞.

γ̃

ε̃
σdisp,µ(L)

Sε̃,γ̃

a)

σdisp,µ(L)

−β0

Sε̃,γ̃

Sε,γ
b)

Figure 3.2: Geometric situation in the proof of Theorem 3.16.

Since Reχ(ν) → −∞ as ν → ±∞, we find a sector Sε̃,γ̃, γ̃ > 0, 0 < ε̃ < tan−1
(
α1

|α2|

)

such that σdisp,µ(L) ⊂ (Sε̃,γ̃)c, cf. Figure 3.2 a). Now Assumption 3 implies σdisp,µ(L) ⊂
{Re s < −β0}. Then for every −β0 < γ < 0 there is 0 < ε ≤ ε̃ such that Sε,γ∩σdisp,µ(L) =
∅, cf. Figure 3.2 b).

Remark 3.17. To fully describe the essential spectrum, according to Definition 1.10,
of the linearized operator L one can use Lemma 3.14 and compute m+

s
(s), m−

u
(s) in the

connected components of ΩF . In the connected components the dimensions m+
s
(s), m−

u
(s)

stay constant. The dimensions are given by the number of eigenvalues with negative real
part of the matrices M+(s),M−(s). The Fredholm index in then given by ind(sI −L) =
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m+
s
(s)−m−

u
(s). The essential spectrum is shown in Figure 3.3 in case of (QCGL) with

parameters α = 1, µ = −1
8
, β = 1 + i, γ = −1 + i In this case the matrices are explicitly

given by

M+(s) =







0 0 1 0
0 0 0 1

s− 2g′1(|v∞|2)|v∞|2 0 −c 0
−2g′2(|v∞|2)|v∞|2 s 0 −c







and

M−(s) =







0 0 1 0
0 0 0 1

s− g1(0) −ω − g2(0) −c 0
ω + g2(0) s− g1(0) 0 −c






.

The numbers in the connected components indicate the Fredholm index of sI − L. We

-2 -1 0

-2

0

2
−1

−1

+1
+1

+1

+2

Figure 3.3: The essential spectrum of the linearized op-
erator L (green) with the dispersion sets (red/blue) in an
example of (QCGL). The numbers in the connected com-
ponent of ΩF indicate the Fredholm indiex of sI − L.

note that the essential spectrum strongly depends in the choice of its definition which
differs in the literature, cf. [25]. However, for the stability behavior of the TOF, the
choice of the precise definition has no effects since the essential spectrum is bounded by
the dispersion set in any case.
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Now we take Assumption 4 into account and conclude the section by studying the
zero eigenvalue. Assumption 4 states that zero is an eigenvalue of the linearized operator
L with algebraic multiplicity at most 2. Using the fact that the whole group orbit a(γ)v⋆,
γ ∈ G is a stationary solution of the Cauchy problem (0.22) and that the group action
a(γ) is continuously differentiable, we will see that one finds two linearly independent
eigenfunctions of L. Then by Assumption 4 it follows that zero is an eigenvalue of
algebraic multiplicity equal to 2.

Lemma 3.18. Let the Assumption 1-4 be satisfied and 0 < µ < min(µess, µ⋆, 2) with µess

from Assumption 3 and µ⋆ from Theorem 2.6. Then s = 0 is an eigenvalue of L with
algebraic multiplicity two and linearly independent eigenfunctions given by

ϕ1 = −S1v⋆ = −
(
S1v⋆
S1v∞

)

∈ Yη, ϕ2 = −v⋆ = −
(
v⋆,x
0

)

∈ Yη

such that

N (L) = span{ϕ1, ϕ2} =: Φ.

Proof. Clearly, ϕ1.ϕ2 are linearly independent. Assumption 2 and Theorem 2.6 imply
ϕ1, ϕ2 ∈ Yη. Thus it remains to show Lϕi = 0 for i = 1, 2 then the claim follows by
Assumption 4. Recall that (v⋆, v∞)⊤ is a stationary solution of (0.22), i.e.

0 =

(
Av⋆,xx + cv⋆,x + Sωv⋆ + f(v⋆)

Sωv∞ + f(v∞)

)

.

By applying the group action a(γ) for γ = (θ, τ) ∈ G we obtain

0 =

(
ARθv⋆,xx(· − τ) + cRθv⋆,x(· − τ) + SωRθv⋆(· − τ) + f(Rθv⋆(· − τ))

SωRθv∞ + f(Rθv∞)

)

. (3.44)

Differentiating (3.44) w.r.t. θ and evaluating at (θ, τ) = 0 yields

0 =

(
AS1v⋆,xx + cS1v⋆,x + SωS1v⋆ +Df(v⋆)S1v⋆

SωS1v∞ +Df(v∞)S1v∞

)

= L
(
S1v⋆
S1v∞

)

= Lϕ1.

Further, differentiating (3.44) w.r.t. τ and evaluating at (θ, τ) = 0 leads to

0 =

(
−Av⋆,xxx − cv⋆,xx − Sωv⋆,x −Df(v⋆)v⋆,x

0

)

= −L
(
v⋆,x
0

)

= Lϕ2.

By Assumption 4 the half-plane {Re s > γ} for some γ < 0 does not contain any
eigenvalues of L expect for the eigenvalue s = 0. Thus we can assume that the sector
Sε,γ from Theorem 3.16 lies in the resolvent set except for the zero eigenvalue.
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Corollary 3.19. Let the Assumptions 1-4 be satisfied and let 0 < µ < min(µess, µ⋆, 2)
with µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there are ε > 0, γ < 0
such that

Sε,γ ⊂ ρ(L) ∪ {0}.

Proof. The claim is a direct consequence of Theorem 3.16 and Assumption 4 by taking
ε and |γ| sufficiently small.

As Corollary 3.19 shows the spectrum of L is completely included in the strict left
half-plane except the zero eigenvalue. However, since it is an isolated eigenvalue of
finite multiplicity we are able to block this neutral direction using the projector onto
N (L). This will lead to time decaying estimates of the semigroup on the corresponding
orthogonal complement, cf. [32, Thm. 1.5.3.]. For this purpose, we have to take the
adjoint of L into account which will be considered in the following. Since Xη is a Hilbert
space we may identify its dual space X∗

η with Xη via the Riesz isomorphism. We define
the (abstract) adjoint operator of L, cf. [61, Definition IV.11], by

L∗ : D(L∗) ⊂ Xη → Xη, u 7→ L∗
u.

For a detailed construction and properties of the adjoint operator L∗ we refer to [61,
IV.11]. Since L has a closed range we have, cf. [61, (11-7)],

R(L)⊥ = N (L∗), R(L) = N (L∗)⊥. (3.45)

Lemma 3.20. Let the Assumptions 1-4 be satisfied and 0 < µ < min(µess, µ⋆, 2) with
µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there are adjoint eigenfunctions
ψ1, ψ2 ∈ D(L∗) such that

i) N (L∗) = span {ψ1, ψ2} =: Ψ,

ii) (ψi, ϕj)Xη = δij, i, j = 1, 2,

iii) Xη = Φ⊕Ψ⊥,

iv) there is a continuous projection P : Xη → Xη onto Φ, i.e.

P (Φ) = Φ, P (Ψ⊥) = {0}, P 2 = P,

which is given by

Pv :=

2∑

i=1

(ψi, v)Xηϕj.
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v) the subspace Ψ⊥ ⊂ Xη is invariant under L, i.e. L(Ψ⊥ ∩ Yη) ⊂ Ψ⊥.

Proof. i), ii). Let (·, ·) = (·, ·)Xη . L is a Fredholm operator of index 0. Thus by Lemma
A.5 the adjoint L∗ : D(L∗) → Xη is Fredholm operator of index 0. This implies by
Assumption 4 dimN (L∗) = dimN (L) = 2. Then choose linearly independent ψ′

1, ψ
′
2 ∈

D(L∗) such that

N (L∗) = span {ψ′
1, ψ

′
2} .

Now by Lemma A.2, the operator Ln is also a Fredholm operator of index 0 on Xη for
all n ∈ N. Thus (Ln)∗ = (L∗)n is Fredholm of index 0, which implies by Assumption
4 and Lemma 3.18 that dimN ((L∗)n) = dimN (Ln) = 2 for n ≥ 2. Hence, L∗ has no
generalized eigenfunctions and therefore ψ′

1, ψ
′
2 /∈ R(L∗). Now consider the matrix

A :=

(
(ψ′

1, ϕ1) (ψ′
1, ϕ2)

(ψ′
2, ϕ1) (ψ′

2, ϕ2)

)

.

We show that A is invertible. Assume the contrary. Then there is z = (z1, z2)
⊤ ∈ R2

with z⊤A = 0. This implies

(z1ψ
′
1 + z2ψ

′
2, ϕi) = 0, i = 1, 2

and therefore z1ψ
′
1 + z2ψ

′
2 ∈ N (L)⊥ = R(L∗) due to (3.45). Then we find w ∈ Xη

such that L∗w = z1ψ
′
1 + z2ψ

′
2 ∈ N (L∗). A contradiction since L∗ has no generalized

eigenfunction. Hence A is invertible. Now define

ψ1 = b1ψ
′
1 + b2ψ

′
2, b = A−1

(
1
0

)

,

ψ2 = c1ψ
′
1 + c2ψ

′
2, c = A−1

(
0
1

)

.

Then ψ1, ψ2 are linearly independent with N (L∗) = span{ψ1, ψ2} and (ψi, ϕj) = δij .
iii). We may write u ∈ Xη as

u = u−
2∑

i=1

(ψi, u)ϕi +
2∑

i=1

(ψi, u)ϕi.

Then we have
∑2

i=1(ψi, u)ϕi ∈ N (L) = Φ and due to ii)

(

ψj , u−
2∑

i=1

(ψi, u)ϕi

)

= (ψj , u)−
2∑

i=1

(ψi, u) (ψj , ϕi) = 0
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Hence u−∑2
i=1(ψi, u)ϕi ∈ Ψ⊥. This shows Xη = Φ⊕Ψ⊥.

iv). Clearly, P is linear. Due to ii) and iii), it follows P (Φ) = {0}, P (Ψ⊥) = Ψ⊥ and
P 2 = P . Now the continuity of P follows using Cauchy-Schwarz inequality

‖Pu‖Xη ≤
2∑

i=1

|(ψi,u)|‖ϕi‖Xη ≤
2∑

i=1

‖ψi‖Xη‖ϕi‖Xη‖u‖Xη ≤ C‖u‖Xη .

v). By the Fredholm alternative A.11 we have R(L) = N (L∗)⊥ = Ψ⊥. Thus, L(Ψ⊥ ∩
Yη) ⊂ R(L) = Ψ⊥.

The subspace Ψ⊥ ⊂ Xη and its intersection with the domain Yη and the space X1
η

will be used frequently in the following. For this purpose, we introduce the notation

Vη := Ψ⊥ ⊂ Xη, V 1
η := Ψ⊥ ∩X1

η , V 2
η := Ψ⊥ ∩ Yη. (3.46)

3.4 The semigroup etL

Lemma 3.10 shows that L defines a sectorial operator on Xη. Using the theory from [32,
Chap.1] we conclude that L generates an analytic semigroup on Xη which will be denoted
by {etL}t≥0. There are various texts in the literature concerning analytic semigroups,
see [50], [9], [42], [52], [26]. We use the semigroup to show existence of a solution of the
perturbed problem (0.22) with u(0) = v⋆+u0 and, in addition, the nonlinear stability of
v⋆. For this purpose, we need time decaying estimates of the semigroup etL. But since
0 ∈ ρ(L) the theory from [32] only guarantees estimates by exponentially growing terms,
i.e. ‖etL‖ ≤ Ceβt for β > 0. This would be sufficient to show local existence of solutions
but not for proving nonlinear stability. Taking the projection P from Lemma 3.20 into
account, it is possible to show time decaying estimates of the semigroup on the subspace
Vη. Roughly speaking, the projection P blocks the zero eigenvalue and therefore the
neutral direction spanned by N (L) in the dynamics of the equation (0.22).

Theorem 3.21. Let the Assumption 1-4 be satisfied and 0 < µ < min(µess, µ⋆, 2) with µ⋆
from Theorem 2.6 and µess from Assumption 3. Then the linearized operator L : Yη → Xη

generates an analytic semigroup {etL}t≥0 on Xη given by

etL =
1

2πi

∫

Γ

ets(sI − L)−1ds,

where Γ is any contour in ρ(L) with σ(L) in its interior and arg λ → ±
(
π
2
+ ε
)

as
|λ| → ∞. λ ∈ Γ for some ε > 0.
Moreover, there exist K ≥ 1, β > 0 such that for all t > 0 and w ∈ V ℓ

η , ℓ = 0, 1 there
hold

‖etLw‖Xℓ
η
≤ Ke−βt‖w‖Xℓ

η
.
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Proof. By Lemma 3.10 and Corollary 3.19 the operator L : Yη → Xη is a sectorial
operator, i.e. for all γ > 0 there is M ≥ 1 such that

‖(sI − L)−1‖Xη→Xη ≤ M

|s− γ| ∀ s ∈ Sε0,γ

holds. For fixed t > 0 we choose an upwards orientated contour Γ := Γ+ ∪ Γ0 ∪ Γ− with

Γ± := {z = γ + τe±i(
π
2
+ε), τ ≥ t−1}, Γ0 := {z = γ + t−1eiθ, |θ| ≤ π

2
+ ε} (3.47)

for arbitrary 0 < ε < ε0, cf. Figure 3.4 a).

Sε,γ

Γ0

Γ+

Γ−

a)

Sε,−β

Γ̃0

Γ̃+

Γ̃−

b)

Figure 3.4: The contours Γ, Γ̃ in the proof of Theorem 3.21.

Then we may estimate
∥
∥
∥
∥

∫

Γ±

ets(sI −L)−1ds

∥
∥
∥
∥
Xη→Xη

≤Metγ
∫ ∞

t−1

e−tτ sin ετ−1dτ ≤Metγ
∫ ∞

1

e−σ sin εσ−1dσ <∞

and since Γ ⊂ ρ(L)
∥
∥
∥
∥

∫

Γ0

ets(sI − L)−1ds

∥
∥
∥
∥
Xη→Xη

≤ Cetγ
∫ π

2
+ε

−π
2
−ε
ecos θdθ <∞.

Hence the integral

etL =
1

2πi

∫

Γ

ets(sI − L)−1ds,
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is absolutely convergent in L[Xη]. This implies {etL}t≥0 to be an analytic semigroup on
Xη generated by L, cf. [32, Sec. 1.3]. Moreover, since the integrand is holomorphic in
ρ(L), the integral is independent on the choice of the contour Γ satisfying the assump-
tions.
Consider the restriction of L on Vη defined by

LVη : V 2
η → Vη, w 7→ Lw.

Due to (3.45) we have Vη = Ψ⊥ = N (L∗)⊥ = R(L) and thus Vη is closed in Xη. Then
LVη ∈ C[Vη] with N (LVη) = {0}, R(LVη) = Vη. Therefore, sI − LVη : V 2

η → Vη is
Fredholm of index 0 and 0 ∈ ρ(LVη). Moreover, ρ(L) ⊂ ρ(LVη). To see that, take
s ∈ ρ(L). Then the equation (sI−L)u = r ∈ Vη has a unique solution u ∈ Yη. Applying
(I −P ) to the equation yields (sI −L)w = r, where w = (I −P )u. Then (I −P )u = u

and thus (sI −L) is bounded invertible from V 2
η to Vη. This shows s ∈ ρ(LVη). Now we

conclude by Corollary 3.19

Sε0,γ0 ⊂ ρ(LVη)

for some ε0 > 0, γ0 < 0. Using Lemma 3.11 we find γ0 < −β < 0, ε > 0 and a constants
C1, C2 > 0, R > 2β such that for all w ∈ V 1

η there holds

‖(sI −L)−1
w‖X1

η
= ‖(sI −LVη)−1

w‖X1
η
≤ C1‖w‖X1

η
∀s ∈ Sε,−β ∩ BR(0), (3.48)

‖(sI −L)−1
w‖X1

η
= ‖(sI −LVη)−1

w‖X1
η
≤ C2

|s| ‖w‖X1
η

∀s ∈ Sε,−β\BR(0) (3.49)

Combining (3.48) and (3.49) we find M > 0 such that

‖(sI −L)−1
w‖X1

η
= ‖(sI − LVη)−1

w‖X1
η
≤ M

|s+ β|‖w‖X1
η

∀s ∈ Sε,−β.

We choose the contour Γ̃ := Γ̃+ ∪ Γ̃0 ∪ Γ̃− with Γ̃±, Γ̃0 as in (3.47) and −β instead of γ,
cf. Figure 3.4 b). Then Γ, Γ̃ ⊂ Sε,−β ⊂ ρ(LVη) and we obtain using Cauchy’s integral
theorem for all w ∈ V 1

η

etLw =

∫

Γ

ets(sI − L)−1
wds =

∫

Γ

ets(sI − LVη)−1
wds =

∫

Γ̃

ets(sI − LVη)−1
wds.

Then there is K ≥ 1 such that
∥
∥
∥
∥

∫

Γ̃±

ets(sI − LVη)−1
wds

∥
∥
∥
∥
X1

η

≤Me−tβ
∫ ∞

t−1

e−tτ sin ετ−1dτ‖w‖X1
η

≤Me−tβ
∫ ∞

1

e−σ sin εσ−1dσ‖w‖X1
η
≤ 2πK

3
e−tβ‖w‖X1

η
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and
∥
∥
∥
∥

∫

Γ̃0

ets(sI −LVη)−1
wds

∥
∥
∥
∥
X1

η

≤ Ce−tβ
∫ π

2
+ε

−π
2
−ε
ecos θdθ‖w‖X1

η
≤ 2πK

3
e−tβ‖w‖X1

η
.

Finally this yields for all w ∈ V 1
η and t > 0 the estimate

‖etLw‖X1
η
=

∥
∥
∥
∥

1

2πi

∫

Γ̃

ets(sI −LVη)−1
wds

∥
∥
∥
∥
X1

η

≤ Ke−tβ‖w‖X1
η
.

3.5 Decomposition of the dynamics

Recall the Cauchy problem (0.22) with perturbed initial data, i.e.

ut = F(u), u(0) = v⋆ + u0.

In the previous section we have shown that the semigroup {etL}t≥0 is decaying in time
on the subspace Vη. In what follows we decompose the dynamics of the solution into a
motion along the group orbit of the wave a(γ)v⋆, γ ∈ G and a perturbation w in the
space Vη, cf. [17] and Figure 3.5. Moreover, we write the motion on the group orbit in
local coordinates on the manifold G. Precisely, recall the chart (U, χ) on G from (3.13).
For t ≥ 0 we want to write the solution u as

u(t) = a(γ(t)))v⋆ +w(t), γ(t) = χ−1(z(t)) ∈ U, w(t) ∈ Vη.

Thus z describes the local coordinates of a motion on the group orbit O(v⋆) given by
γ in the chart (U, χ). Moreover, w ∈ Vη describes the difference of the solution to the
group orbit in the space Vη = Ψ⊥. It turns out that the decomposition is unique as long
as the solution stays in a small neighborhood of the group orbit and γ stays in U . This
will be guaranteed by taking sufficiently small initial perturbations u0. We follow [17]
and start by considering the map

Π : χ(U) ⊂ R
2 → Φ, z 7→ P (a(χ−1(z))v⋆ − v⋆) (3.50)

In what follows we often write γ instead of χ−1(z) for abbreviation.

Lemma 3.22. Let the Assumptions 1-4 be satisfied and 0 < µ < min(µess, µ⋆, 2) with
µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there is a zero neighborhood
W ⊂ χ(U) such that the map Π : W → Φ from (3.50) is a diffeomorphism. Moreover,
there is a zero neighborhood V ⊂ χ(U)× Vη such that the transformation

T : V → Xη, (z,w) 7→ a(χ−1(z))v⋆ − v⋆ +w
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O(v⋆)

a(γ(t))v⋆

w0

w(t)

a(γ0)v⋆

v⋆

u0

u(t)

a(γ∞)v⋆

v⋆ + u0

v⋆ +Ψ⊥

a(γ0)v⋆ +Ψ⊥
a(γ(t))v⋆ +Ψ⊥

Figure 3.5: Decomposition of the dynamics.

is a diffeomorphism and the solution of T (z,w) = v is given by

z = Π−1(Pv), w = v + v⋆ − a(χ−1(z))v⋆.

Proof. Since the group action a is continuous, cf. Lemma 3.7, so is Π and Π(0) = 0.
Using Lemma 3.7 and Pϕi = ϕi, with the eigenfunctions ϕi from Lemma 3.20, we
conclude that Π ∈ C1(χ(U),Φ) with derivative

∂zΠ(z)y = y1a(γ)ϕ1 + y2a(γ)ϕ2, y = (y1, y2) ∈ R
2.

Moreover, ∂zΠ(0) is invertible on Φ = span{ϕ1, ϕ2}. Consider the function F (z,w) :=
w−Π(z). Then F ∈ C1(Φ× χ(U),Φ), F (0, 0) = 0 and ∂zF (0, 0) = ∂zΠ(0) is invertible.
Now the implicit function theorem D.8 implies Π to be a local diffeomorphism in a zero
neighborhood W ⊂ χ(U) ⊂ R

2.
Furthermore, the map T is continuous differentiable w.r.t. (z,w), since a is continuous
differentiable, cf. Lemma 3.8, and the derivative at (z,w) = (0, 0) is given by

DT (0, 0) =

(
∂zΠ(0) 0

0 IX

)

,
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where IX denotes the identity on Xη. Then DT (0, 0) is again invertible. Consider
F̃ ∈ C1(Xη×χ(U)×Vη, Xη) given by F̃ (v, z,w) = v−T (z,w). Then F̃ (0, 0, 0) = 0 and
∂(z,w)F̃ (0, 0, 0) = DT (0, 0) is invertible. Again the implicit function theorem D.8 implies
T to be a local diffeomorphism near (z,w) = (0, 0). Finally, we obtain from T (z,w) = v

the equation

w = v + v⋆ − a(χ−1(z))v⋆. (3.51)

Applying P to (3.51) yields z = Π−1(Pv) and the assertion is proven.

Assume there is a classical solution u ∈ C((0, t∞), Yη) ∩ C1([0, t∞), Xη) of (0.22), cf.
Definition 1.9, such that

‖u(t)− v⋆‖Xη < δ, ∀t ∈ [0, t∞).

Let δ > 0 be sufficiently small such that Lemma 3.22 guarantees that the map T stays
invertible on Bδ(0) ⊂ Xη. Then there exist w : [0, t∞) → Vη and z : [0, t∞) → R

2 such
that

u(t)− v⋆ = T (z(t),w(t)), ∀t ∈ [0, t∞).

Since T is a local diffeomorphism we conclude w ∈ C([0, t∞), V 2
η ) ∩ C1([0, t∞), Vη) and

z ∈ C1([0, t∞), χ(U)). By Lemma 3.22 we obtain the decomposition of the solution u

via

u(t) = a(χ−1(z(t)))v⋆ +w(t), ∀t ∈ [0, t∞).

Taking the initial condition from (0.22) into account yields for t = 0

v⋆ + u0 = u(0) = a(χ−1(z(0)))v⋆ +w(0),

which leads to

u0 = T (z(0),w(0)).

Thus the initial values for z,w are given by

z(0) = Π−1(Pu0) =: z0, w(0) = u0 + v⋆ − a(χ−1(z(0)))v⋆ =: w0. (3.52)

Now let z(t) = (θ(t), τ(t)) then Lemma 3.7 and the chain rule imply

d

dt
(a(·)v⋆ ◦ χ−1)(z) = a(χ−1(z))ϕ1θt + a(χ−1(z))ϕ2τt.
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Recall L0 from (3.8). Since u solves (0.22) we have with w = (w, ζ)⊤, γ = χ−1(z)

0 = ut −L0u−
(
f(u)
f(ρ)

)

=
d

dt
(a(·)v⋆ ◦ χ−1)(z) +wt −L0[a(γ)v⋆]− L0w −

(
f(Rθv⋆(· − τ) + w)

f(Rθv∞ + ζ)

)

=
d

dt
(a(·)v⋆ ◦ χ−1)(z) +wt − a(γ)L0v⋆ − L0w −

(
f(Rθv⋆(· − τ) + w)

f(Rθv∞ + ζ)

)

.

The equivariance of F from Lemma 3.8 implies

−a(γ)L0v⋆ =

(
f(Rθv⋆(· − τ))
f(Rθv∞)

)

∀γ =∈ G.

Therefore by taking the linearized operator L from (0.26) into account we finally observe

wt = Lw − a(χ−1(z))ϕ1θt − a(χ−1(z))ϕ2τt + r[f ](z,w) (3.53)

where the remainder r[f ] is given by

r[f ](z,w) :=

(
f(Rθv⋆(· − τ) + w)

f(Rθv∞ + ζ)

)

−
(
f(Rθv⋆(· − τ))
f(Rθv∞)

)

−
(
Df(v⋆)w
Df(v∞)ζ

)

, z = (θ, τ).

(3.54)

Since w(t) ∈ Vη, t ∈ [0, t∞) we have by applying the projector P to (3.53)

0 = Pr[f ](z,w)− Pa(χ−1(z))ϕ1θt − Pa(χ−1(z))ϕ2τt. (3.55)

Let us write (3.55) as an explicit ODE for z = (θ, τ).

Lemma 3.23. Let the Assumptions 1-4 be satisfied and 0 < µ < min(µess, µ⋆, 2) with
µess from Assumption 3 and µ⋆ from Theorem 2.6. Then for every z ∈ R2 the map

S(z) : R2 → Φ, y 7→ Pa(χ−1(z))ϕ1y1 + Pa(χ−1(z))ϕ2y2

is a continuous, linear map and continuously differentiable w.r.t. z, i.e. S ∈ C1(R2, L[R2,Φ]).
Moreover, there is a zero neighborhood V ⊂ R

2 such that S(z)−1 exists for all z ∈ V and
depends continuously on z.

Proof. By Lemma 3.7, it follows that S(z) is continuous and linear and since ϕ1, ϕ2 ∈ Yη
is continuously differentiable in z. It remains to show the same for S(z)−1. Let w ∈ Φ.
Applying (ψ1, ·), (ψ2, ·) with (·, cot) = (·, ·)Xη to the equation S(z)y = w yields

M(z)y =

(
(ψ1,w)
(ψ2,w)

)

, M(z) =

(
(ψ1, Pa(χ

−1(z))ϕ1) (ψ1, Pa(χ
−1(z))ϕ2)

(ψ2, Pa(χ
−1(z))ϕ1) (ψ2, Pa(χ

−1(z))ϕ2)

)

. (3.56)
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Now M(0) = I and, by Lemma 3.7, M(z) is C1. Then there exists a zero neighborhood
V ⊂ R2 such that M(z)−1 exists and is also C1. Now S(z)−1 ∈ L[Φ,R2] is given by

S(z)−1
w =M(z)−1

(
(ψ1,w)
(ψ2,w)

)

and S(·)−1 ∈ C1(V, L[Φ,R2]).

By Lemma 3.23 we obtain from (3.55) and (3.52) the ODE for z

zt = r[z](z,w), z(0) = Π−1(Pu0), (3.57)

where r[z](·,w) : R2 → R
2 is given by

r[z](z,w) := S(z)−1Pr[f ](z,w). (3.58)

Applying (I − P ) to (3.53) and using (3.57) yields

wt = Lw + (I − P )r[f ](z,w)− (I − P )(a(·)v⋆ ◦ χ−1)(z)S(z)−1Pr[f ](z,w)

=: Lw + r[w](z,w).

with the remainder r[w] given by

r[w](z,w) :=
(

(I − P )− (I − P )(a(·)v⋆ ◦ χ−1)(z)S(z)−1P
)

r[f ](z,w). (3.59)

Finally, we obtain the transformed system for w, γ

wt = Lw + r[w](z,w), w(0) = u0 + v⋆ − a(Π−1(Pu0))v⋆ =: w0 (3.60)

zt = r[z](z,w), z(0) = Π−1(Pu0) =: z0. (3.61)

According to Definition 1.9 we define classical solutions to the system (3.60), (3.61).

Definition 3.24. A pair (z,w) is called a classical solution of (3.60), (3.61) on [0, t∞)
for some t∞ > 0 if

i) w ∈ C((0, t∞), V 2
η ) ∩ C1([0, t∞), Vη) and z ∈ C1([0, t∞),R2).

ii) wt(t) = Lw(t) + r[w](z(t),w(t)) and zt(t) = r[z](z(t),w(t)) for every t ∈ [0, t∞).

iii) w(0) = w0 and z(0) = z0.

If t∞ = ∞ we will call (z,w) a global classical solution of (3.60), (3.61), whereas for
t∞ <∞ we will call (z,w) a local classical solution of (3.60), (3.61).
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3.6 Estimates of nonlinearities in weighted spaces

To study solutions of the system (3.60), (3.61) we will use the semigroup etL and need to
control the remaining nonlinearities r[f ], r[w], r[z] from (3.54), (3.59) and (3.58). In this
section we derive Lipschitz estimates with small Lipschitz constants for the nonlinearities
in the space X1

η .

Lemma 3.25. Let the Assumptions 1-4 be satisfied and 0 < µ < min(µess, µ⋆, 2) with
µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there exist δ > 0 and constants
C0, C1, C2, C3, C4 > 0 such that for all z, z1, z2 ∈ Bδ(0) ⊂ R

2 and w,w1,w2 ∈ Bδ(0) ⊂
X1
η there hold

i) ‖r[f ](z,w1)− r[f ](z,w2)‖X1
η
≤ C0

(

|z|+max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
,

ii) ‖r[f ](z1,w)− r[f ](z2,w)‖X1
η
≤ C1|z1 − z2|,

iii) ‖r[w](z,w1)− r[w](z,w2)‖X1
η
≤ C2

(

|z|+max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
,

iv) ‖r[w](z1,w2)− r[w](z2,w2)‖X1
η
≤ C3

(

|z1 − z2|+ ‖w1 −w2‖X1
η

)

,

v) |r[z](z1,w1)− r[z](z2,w2)| ≤ C4

(

|z1 − z2|+ ‖w1 −w2‖X1
η

)

.

Note that since r[f ](z, 0) = 0 the estimates i) and iii) also imply boundedness of the
nonlinearities r[f ], r[w].

Proof. For the proof let C > 0 denote a universal constant and let δ > 0 be so small such
that Bδ(0) ⊂ χ(U) with (U, χ) from (3.13). Moreover, let γ = χ(z) = (θ, τ), w = (w, ζ)⊤

as well as γi = χ(zi) = (θi, τi), wi = (wi, ζi)
⊤, i = 1, 2. For the sake of notation we write

a(γ)v = Rθv(·−τ) for a function v : R → R2. For a matrix-valued function M : R → R2,2

we write ‖M‖L∞ = ‖|M |‖L∞(R,R), ‖M‖L2
η
= ‖|M |‖L2

η(R,R)
for some matrix norm | · | on

R
2,2.

i). We have by definition and the triangle inequality

‖r[f ](z,w1)− r[f ](z,w2)‖X1
η

≤ |f(Rθv∞ + ζ1)− f(Rθv∞ + ζ2)−Df(v∞)(ζ1 − ζ2)|
+ ‖f(a(γ)v⋆ + w1)− f(a(γ)v⋆ + w2)−Df(v⋆)(w1 − w2)

− v̂[f(Rθv∞ + ζ1)− f(Rθv∞ + ζ2)−Df(v∞)(ζ1 − ζ2)]‖L2
η

+ ‖∂x[f(a(γ)v⋆ + w1)− f(a(γ)v⋆ + w2)−Df(v⋆)(w1 − w2)]‖L2
η
=: T1 + T2 + T3.

In the following we frequently use the mean value theorem and the fact that Assumption
1 states f ∈ C3. Note the following estimates, which follow by Sobolev embedding
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Theorem D.2, Proposition 2.7 and (3.18),

‖Df(a(γ)v⋆)−Df(v⋆)‖L∞ ≤ C‖a(γ)v⋆ − v⋆‖L∞

≤ C‖a(γ)v⋆ −Rθv∞v̂ − (v⋆ − v∞v̂)‖L∞ + C|Rθv∞ − v∞|
≤ C‖a(γ)v⋆ −Rθv∞v̂ − (v⋆ − v∞v̂)‖H1 + C|Rθv∞ − v∞|
≤ C‖a(χ−1(z))v⋆ − v⋆‖X1

η
≤ C|z|‖v⋆‖Yη ≤ C|z|,

(3.62)

|Df(Rθv∞)−Df(v∞)| ≤ C|z|, (3.63)

‖a(γ)v⋆ −Rθv∞ − (v⋆ − v∞)‖L2
η(R+)

≤ ‖a(γ)v⋆ −Rθv∞v̂ − (v⋆ − v∞v̂)‖L2
η(R+) + |Rθv∞ − v∞|‖v̂ − 1‖L2

η(R+)

≤ C‖a(χ−1(z))v⋆ − v⋆‖Xη ≤ C|z|‖v⋆‖X1
η
+ C|z| ≤ C|z|,

(3.64)

‖v⋆ − v∞‖L2
η(R+) ≤ ‖v⋆ − v∞v̂‖L2

η(R+) + |v∞|‖v̂ − 1‖L2
η(R+) ≤ C. (3.65)

T1 can be estimated by

T1 = |f(Rθv∞ + ζ1)− f(Rθv∞ + ζ2)−Df(v∞)(ζ1 − ζ2)|

≤
∫ 1

0
|Df(Rθv∞ + ζ2 + (ζ1 − ζ2)s)−Df(v∞)|ds|ζ1 − ζ2|

≤
(∫ 1

0
|Df(Rθv∞ + ζ2 + (ζ1 − ζ2)s)−Df(Rθv∞)|ds + |Df(Rθv∞)−Df(v∞)|

)

|ζ1 − ζ2|

≤ C

(∫ 1

0
|ζ2 − (ζ1 − ζ2)s|ds+ |Rθv∞ − v∞|

)

|ζ1 − ζ2|

≤ C (|z|+max{|ζ1|, |ζ2|}) |ζ1 − ζ2| ≤ C
(

|z|+max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
.

For T2 we have

T2 = ‖f(a(γ)v⋆ + w1)− f(a(γ)v⋆ + w2)−Df(v⋆)(w1 − w2)

− v̂[f(Rθv∞ + ζ1)− f(Rθv∞ + ζ2)−Df(v∞)(ζ1 − ζ2)]‖L2
η

=
∥
∥
∥

∫ 1

0

Df(a(γ)v⋆ + w2 + (w1 − w2)s)−Df(v⋆)ds(w1 − w2)

− v̂

∫ 1

0

Df(Rθv∞ + ζ2 + (ζ1 − ζ2)s)−Df(v∞)ds(ζ1 − ζ2)
∥
∥
∥
L2
η

≤
∥
∥
∥

∫ 1

0

Df(a(γ)v⋆ + w2 + (w1 − w2)s)−Df(a(γ)v⋆)ds(w1 − w2)

− v̂

∫ 1

0

Df(Rθv∞ + ζ2 + (ζ1 − ζ2)s)−Df(Rθv∞)ds(ζ1 − ζ2)
∥
∥
∥
L2
η

+ ‖[Df(a(γ)v⋆)−Df(v⋆)](w1 − w2)− v̂[Df(Rθv∞)−Df(v∞)](ζ1 − ζ2)‖L2
η

=: T4 + T5.
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We estimate T5 by two terms

T5 ≤ ‖[Df(a(γ)v⋆)−Df(v⋆)](w1 − v̂ζ1 − w2 + v̂ζ2)‖L2
η

+ ‖[Df(a(γ)v⋆)−Df(v⋆)−Df(Rθv∞) +Df(v∞)](ζ1 − ζ2)v̂‖L2
η
=: T6 + T7.

Using (3.62) we have

T6 ≤ C|z|‖w1 − v̂ζ1 − w2 + v̂ζ2‖L2
η
≤ C|z|‖w1 −w2‖X1

η
.

Next, we bound T7 by

T7 ≤ ‖[Df(a(γ)v⋆)−Df(v⋆)−Df(Rθv∞) +Df(v∞)](ζ1v̂ − ζ2v̂)‖L2
η(R−)

+ ‖[Df(a(γ)v⋆)−Df(v⋆)−Df(Rθv∞) +Df(v∞)](ζ1v̂ − ζ2v̂)‖L2
η(R+) =: T8 + T9

and (3.62), (3.63) together with Proposition 2.7 imply

T8 ≤ ‖Df(a(γ)v⋆)−Df(v⋆)−Df(Rθv∞) +Df(v∞)‖L∞|ζ1 − ζ2|‖v̂‖L2
η(R−)

≤ C|z||ζ1 − ζ2| ≤ C|z|‖w1 −w2‖X1
η
.

Use the abbreviations χ1(s) := v⋆+s(a(γ)v⋆−v⋆), χ2(s) := v∞+s(Rθv∞−v∞), s ∈ [0, 1].
Then use (3.64), (3.65) to obtain

T9 = ‖[Df(a(γ)v⋆)−Df(v⋆)−Df(Rθv∞) +Df(v∞)](ζ1 − ζ2)v̂‖L2
η(R+)

≤
∥
∥
∥

∫ 1

0

D2f(χ1(s))[a(γ)v⋆ − v⋆, (ζ1 − ζ2)v̂]ds

−
∫ 1

0

D2f(χ2(s))[Rθv∞ − v∞, (ζ1 − ζ2)v̂]ds
∥
∥
∥
L2
η(R+)

≤
∥
∥
∥

∫ 1

0

D2f(χ1(s))[a(γ)v⋆ − v⋆ −Rθv∞ + v∞, (ζ1 − ζ2)v̂]ds
∥
∥
∥
L2
η(R+)

+
∥
∥
∥

∫ 1

0

[D2f(χ1(s))−D2f(χ2(s))][Rθv∞ + v∞, (ζ1 − ζ2)v̂]ds
∥
∥
∥
L2
η(R+)

≤ C‖a(γ)v⋆ − Rθv∞ − (v⋆ − v∞)‖L2
η(R+)|ζ1 − ζ2|

+ C
∥
∥
∥

∫ 1

0

χ1(s)− χ2(s)ds
∥
∥
∥
L2
η(R+)

|Rθv∞ − v∞||ζ1 − ζ2|

≤ C|z||ζ1 − ζ2| ≤ C|z|‖w1 −w2‖X1
η
.

To estimate T4 use the abbreviations w(s) := w2 + (w1 − w2)s, ζ(s) := ζ2 + (ζ1 − ζ2)s,
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s ∈ [0, 1] and obtain

T4 =
∥
∥
∥

∫ 1

0

Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)ds(w1 − w2)

− v̂

∫ 1

0

Df(Rθv∞ + ζ(s))−Df(Rθv∞)ds(ζ1 − ζ2)
∥
∥
∥
L2
η

≤
∥
∥
∥

∫ 1

0

Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)ds(w1 − ζ1v̂ − w2 + ζ2v̂)
∥
∥
∥
L2
η

+
∥
∥
∥

∫ 1

0

Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)

−Df(Rθv∞ + ζ(s)) +Df(Rθv∞)ds(ζ1 − ζ2)v̂
∥
∥
∥
L2
η

=: T10 + T11.

Now for every s ∈ [0, 1] we have

‖Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)‖L∞ ≤ C‖w2 + s(w1 − w2)‖L∞

≤ Cmax {‖w1‖L∞ , ‖w2‖L∞} ≤ Cmax
{

‖w1‖X1
η
, ‖w2‖X1

η

}

,
(3.66)

where we used that the Sobolev embedding Theorem D.2 implies for i ∈ {1, 2}

‖wi‖L∞ ≤ ‖wi − ζiv̂‖L∞ + |ζi| ≤ C‖wi − ζiv̂‖H1 + |ζi| ≤ C‖wi‖X1
η
.

Now (3.66) yields

T10 ≤
∫ 1

0

‖Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)‖L∞ds‖w1 − ζ1v̂ − w2 + ζ2v̂‖L2
η

≤ Cmax
{

‖w1‖X1
η
, ‖w2‖X1

η

}

‖w1 −w2‖X1
η
.

Moreover,

T11

≤
∥
∥
∥

∫ 1

0
Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)−Df(Rθv∞ + ζ(s)) +Df(Rθv∞)ds(ζ1 − ζ2)v̂

∥
∥
∥
L2
η(R−)

+
∥
∥
∥

∫ 1

0
Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)−Df(Rθv∞ + ζ(s)) +Df(Rθv∞)ds(ζ1 − ζ2)v̂

∥
∥
∥
L2
η(R+)

=: T12 + T13.
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We write κ(s) := a(γ)v⋆ + w(s)−Rθv∞ − ζ(s). Then for s ∈ [0, 1] there holds
∥
∥
∥Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)−Df(Rθv∞ + ζ(s)) +Df(Rθv∞)

∥
∥
∥
L∞

=
∥
∥
∥

∫ 1

0

D2f(Rθv∞ + ζ(s) + κ(s)τ)[κ(s), ·]

−D2f(Rθv∞ + (a(γ)v⋆ −Rθv∞)τ)[a(γ)v⋆ −Rθv∞, ·]dτ
∥
∥
∥
L∞

≤
∥
∥
∥

∫ 1

0

D2f(Rθv∞ + ζ(s) + κ(s)τ)[w(s)− ζ(s), ·]dτ
∥
∥
∥
L∞

+
∥
∥
∥

∫ 1

0

(
D2f(Rθv∞ + ζ(s) + κ(s)τ)

−D2f(Rθv∞ + (a(γ)v⋆ −Rθv∞)τ
)
[a(γ)v⋆ − Rθv∞, ·]dτ

∥
∥
∥
L∞

≤ C‖w(s)− ζ(s)‖L∞ + C

∫ 1

0

‖ζ(s)− (w(s)− ζ(s))τ‖L∞dτ

≤ Cmax {‖w1‖L∞ , ‖w2‖L∞} ≤ Cmax
{

‖w1‖X1
η
, ‖w2‖X1

η

}

,

where we used |ζi| ≤ ‖wi‖L∞, i = 1, 2. Thus

T12 ≤ Cmax
{

‖w1‖X1
η
, ‖w2‖X1

η

}

|ζ1 − ζ2|.

Similarly, for every s ∈ [0, 1],
∥
∥
∥Df(a(γ)v⋆ + w(s))−Df(a(γ)v⋆)−Df(Rθv∞ + ζ(s)) +Df(Rθv∞)

∥
∥
∥
L2
η(R+)

≤ C‖w(s)− ζ(s)‖L2
η(R+) + C

∫ 1

0

‖ζ(s)− (w(s)− ζ(s))τ‖L∞dτ‖a(γ)v⋆ − Rθv∞‖L2
η(R+)

≤ Cmax
{

‖w1 − ζ1‖L2
η(R+), ‖w2 − ζ2‖L2

η(R+)

}

+ Cmax {‖w1‖L∞, ‖w2‖L∞}

≤ Cmax
{

‖w1‖X1
η
, ‖w2‖X1

η

}

.

This yields an estimate for T13

T13 ≤ Cmax
{

‖w1‖X1
η
, ‖w2‖X1

η

}

|ζ1 − ζ2|.

Summarizing, we have shown

‖f(a(γ)v⋆ + w1)− f(a(γ)v⋆ + w2)−Df(v⋆)(w1 − w2)

− v̂(Rθv∞ + ζ1)− f(Rθv∞ + ζ2)−Df(v∞)(ζ1 − ζ2)]v̂‖L2
η

≤ C
(

|z| +max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
.
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It remains to estimate the derivative T3. We have
∥
∥
∥∂x

[

f(a(γ)v⋆ + w1)− f(a(γ)v⋆ + w2)−Df(v⋆)(w1 − w2)
]∥
∥
∥
L2
η

= ‖Df(a(γ)v⋆ + w1)w1,x +Df(a(γ)v⋆ + w1)a(γ)v⋆,x

−Df(a(γ)v⋆ + w2)w2,x −Df(a(γ)v⋆ + w2)a(γ)v⋆,x

−D2f(v⋆)[w1 − w2, v⋆,x]−Df(v⋆)(w1 − w2)x‖L2
η

= ‖[Df(a(γ)v⋆ + w1)−Df(a(γ)v⋆ + w2)]w1,x‖L2
η

︸ ︷︷ ︸
=:I1

+ ‖[Df(a(γ)v⋆ + w2)−Df(v⋆)](w1 − w2)x‖L2
η

︸ ︷︷ ︸

=:I2

+ ‖[Df(a(γ)v⋆ + w1)−Df(a(γ)v⋆ + w2)](a(γ)v⋆ − v⋆)x‖L2
η

︸ ︷︷ ︸
=:I3

+
∥
∥[Df(a(γ)v⋆ + w1)−Df(a(γ)v⋆ + w2)]v⋆,x −D2f(v⋆)[w1 − w2, v⋆,x]

∥
∥
L2
η

= I1 + I2 + I3 +

∥
∥
∥
∥

∫ 1

0

D2f(a(γ)v⋆ + w2 + (w1 − w2)s)−D2f(v⋆)ds[w1 − w2, v⋆,x]

∥
∥
∥
∥
L2
η

︸ ︷︷ ︸
=:I4

= I1 + I2 + I3 + I4.

Now

I1 ≤ ‖Df(a(γ)v⋆ + w1)−Df(a(γ)v⋆ + w2)‖L∞‖w1,x‖L2
η

≤ C‖w1 − w2‖L∞‖w1,x‖L2
η
≤ Cmax

{

‖w1‖X1
η
, ‖w2‖X1

η

}

‖w1 −w2‖X1
η
.

In the same fashion using Lemma 3.7 and (3.18) we obtain

I2 ≤ ‖Df(a(γ)v⋆ + w2)−Df(v⋆)‖L∞‖(w1 − w2)x‖L2
η

≤ C (‖a(γ)v⋆ − v⋆‖L∞ + ‖w2‖L∞) ‖w1 −w2‖X1
η

≤ C
(

|z| +max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η

and for I3

I3 ≤ ‖Df(a(γ)v⋆ + w1)−Df(a(γ)v⋆ + w2)‖L∞‖a(γ)v⋆,x − v⋆,x‖L2
η

≤ C‖w1 − w2‖L∞‖a(γ)v⋆,x − v⋆,x‖L2
η
≤ C|z|‖w1 −w2‖X1

η
.

Thus it remains to estimate I4. We have

I4 ≤ C (‖a(γ)v⋆ − v⋆‖L∞ +max{‖w1‖L∞ , ‖w2‖L∞}) ‖w1 − w2‖L∞‖v⋆,x‖L2
η

≤ C
(

|z|+max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
.



3.6. ESTIMATES OF NONLINEARITIES IN WEIGHTED SPACES 99

Hence

T3 =
∥
∥
∥

[

f(a(γ)v⋆ + w1)− f(a(γ)v⋆ + w2)−Df(v⋆)(w1 − w2)
]

x

∥
∥
∥

2

L2
η

≤ C
(

|z|+max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
.

Finally we have shown

∥
∥r[f ](z, w1, ζ1)− r[f ](z, w2, ζ2)

∥
∥
X1

η
≤ C0

(

|z|+max
{

‖w1‖X1
η
, ‖w2‖X1

η

})

‖w1 −w2‖X1
η
.

ii). As in i) we frequently use the mean value theorem and the smoothness of f from
Assumption 1. First, we estimate

‖r[f ](z1,w)− r[f ](z2,w)‖X1
η

=

∥
∥
∥
∥

(
f(a(γ1)v⋆ + w)− f(a(γ1)v⋆)− f(a(γ2)v⋆ + w)− f(a(γ2)v⋆)
f(Rθ1v∞ + ζ)− f(Rθ1v∞)− f(Rθ2v∞ + ζ)− f(Rθ2v∞)

)∥
∥
∥
∥
X1

η

≤ |f(Rθ1v∞ + ζ)− f(Rθ2v∞ + ζ)|
︸ ︷︷ ︸

=:J1

+ |f(Rθ1v∞)− f(Rθ2v∞)|
︸ ︷︷ ︸

=:J2

+ ‖f(a(γ1)v⋆ + w)− f(a(γ2)v⋆ + w)− v̂[f(Rθ1v∞ + ζ)− f(Rθ2v∞ + ζ)]‖L2
η

︸ ︷︷ ︸

=:J3

+ ‖f(a(γ1)v⋆)− f(a(γ2)v⋆)− v̂(f(Rθ1v∞)− f(Rθ2v∞))‖L2
η

︸ ︷︷ ︸

=:J4

+ ‖∂x[f(a(γ1)v⋆ + w)− f(a(γ2)v⋆ + w)]‖L2
η

︸ ︷︷ ︸

=:J5

+ ‖∂x[f(a(γ1)v⋆)− f(a(γ2)v⋆)]‖L2
η

︸ ︷︷ ︸

=:J6

.

Using the Lipschitz estimate (3.18) we have

J1 = |f(Rθ1v∞ + ζ)− f(Rθ2v∞ + ζ)| ≤ C|Rθ1v∞ −Rθ2v∞| ≤ C|z1 − z2|

and the same holds true for ζ = 0. Thus

J2 ≤ C|z1 − z2|.

Write κ1(s) := a(γ2)v⋆ + w + (a(γ1)v⋆ − a(γ2)v⋆)s and κ2(s) := Rθ2v∞ + ζ + (Rθ1v∞ −
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Rθ2v∞)s, s ∈ [0, 1] and obtain for J3

J3 = ‖f(a(γ1)v⋆ + w)− f(a(γ2)v⋆ + w)− v̂[f(Rθ1v∞ + ζ) + f(Rθ2v∞ + ζ)]‖L2
η

=
∥
∥
∥

∫ 1

0

Df(a(γ2)v⋆ + w + (a(γ1)v⋆ − a(γ2)v⋆)s)(a(γ1)v⋆ − a(γ2)v⋆)ds

− v̂

∫ 1

0

Df(Rθ2v∞ + ζ + (Rθ1v∞ − Rθ2v∞)s)(Rθ1v∞ −Rθ2v∞)ds
∥
∥
∥
L2
η

≤
∥
∥
∥

∫ 1

0

Df(κ1(s))(a(γ1)v⋆ −Rθ1v∞v̂ − a(γ2)v⋆ +Rθ2v∞v̂)ds
∥
∥
∥
L2
η

+
∥
∥
∥

∫ 1

0

[Df(κ1(s))−Df(κ2(s))](Rθ1v∞v̂ − Rθ2v∞v̂)ds
∥
∥
∥
L2
η

=: J7 + J8.

We estimate J7, using (3.18), by

J7 ≤ C‖a(γ1)v⋆ − Rθ1v∞v̂ − a(γ2)v⋆ +Rθ2v∞v̂‖L2
η

≤ C‖a(χ−1(z1))v⋆ − a(χ−1(z2))v⋆‖Xη ≤ C|z1 − z2|.

We bound J8 by two terms

J8 ≤
∥
∥
∥

∫ 1

0

[Df(κ1(s))−Df(κ2(s))](Rθ1v∞v̂ − Rθ2v∞v̂)ds
∥
∥
∥
L2
η(R−)

+
∥
∥
∥

∫ 1

0

[Df(κ1(s))−Df(κ2(s))](Rθ1v∞v̂ − Rθ2v∞v̂)ds
∥
∥
∥
L2
η(R+)

= J9 + J10.

Then

J9 ≤ C‖v̂‖L2
η(R−)|Rθ1v∞ −Rθ2v∞| ≤ C|z1 − z2|

and for J10

J10 ≤ C|Rθ1v∞ − Rθ2v∞|
∫ 1

0

‖κ1(s)− κ2(s)‖L2
η
ds ≤ C|z1 − z2|.

Thus we have shown

J3 ≤ C|z1 − z2|.

In particular the estimates hold for w = 0, ζ = 0. Therefore we also have shown

J4 ≤ C|z1 − z2|
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and it remains to estimate the spatial derivatives J5 and J6. We note that for arbitrary
u ∈ L2

η we have by Sobolev embedding, cf. Theorem D.2, and Lemma 3.4

‖[Df(a(γ1)v⋆ + w)−Df(a(γ2)v⋆ + w)]u‖L2
η
≤ C‖a(γ1)v⋆ − a(γ2)v⋆‖L∞‖u‖L2

η

≤ C‖u‖L2
η
(‖a(γ1)v⋆ − Rθ1v∞v̂ − a(γ2)v⋆ +Rθ2v∞v̂‖L∞ + ‖Rθ1v∞v̂ − Rθ2v∞v̂‖L∞)

≤ C‖u‖L2
η
|z1 − z2|.

This implies with (3.18)

J5 ≤ ‖[Df(a(γ1)v⋆ + w)−Df(a(γ2)v⋆ + w)]wx‖L2
η

+ ‖Df(a(γ1)v⋆ + w)a(γ1)v⋆,x −Df(a(γ2)v⋆ + w)a(γ2)v⋆,x‖L2
η

≤ C‖wx‖L2
η
|z1 − z2|+ ‖[Df(a(γ1)v⋆ + w)−Df(a(γ2)v⋆ + w)]a(γ1)v⋆,x‖L2

η

+ C‖a(γ1)v⋆,x − a(γ2)v⋆,x‖L2
η

≤ C
(

‖wx‖L2
η
+ ‖a(γ1)v⋆,x‖L2

η

)

|z1 − z2|+ C‖a(γ1)v⋆,x − a(γ2)v⋆,x‖L2
η
≤ C|z1 − z2|.

In particular the same holds true for w = 0 and we observe

J6 ≤ C|z1 − z2|.

Summarizing, we have

‖r[f ](z1,w)− r[f ](z2,w)‖X1
η
≤ C1|z1 − z2|.

iii). Using the continuity of the derivative of the group action, cf. Lemma 3.7, the
continuity of the projector P from Lemma 3.20 and Lemma 3.23 to see that there is
C > 0 such that

∥
∥
∥

(

(I − P )− (I − P )
(
a(·)v⋆ ◦ χ−1

)
(z)S(z)−1P

)

u

∥
∥
∥
X1

η

≤ C‖u‖X1
η

∀u ∈ X1
η .

Now the claim follows from i).
iv). By Lemma 3.7, Lemma 3.23 we have that

(
a(·)v⋆ ◦ χ−1

)
(z)S(z)−1 is continuously

differentiable in z. Therefore we have

‖
(
a(·)v⋆ ◦ χ−1

)
(z1)S(z1)

−1
w−

(
a(·)v⋆ ◦ χ−1

)
(z2)S(γ2)

−1
w‖X1

η
≤ C|z1 − z2|‖w‖X1

η
.

(3.67)

Then use (3.67) and i) to obtain

‖r[w](z1,w)− r[w](z2,w)‖X1
η
≤ C‖r[f ](z1,w)− r[f ](z2,w)‖X1

η

+ ‖
(
a(·)v⋆ ◦ χ−1

)
(z1)S(z1)

−1Pr[f ](z1,w)−
(
a(·)v⋆ ◦ χ−1

)
(z2)S(z2)

−1Pr[f ](z1,w)‖X1
η

≤ C|z1 − z2|.
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Now we conclude by using ii) and iii)

‖r[w](z1,w1)− r[w](z2,w2)‖X1
η

≤ ‖r[w](z1,w1)− r[w](z2,w1)‖X1
η
+ ‖r[w](z2,w1)− r[w](z2,w2)‖X1

η

≤ C3

(

|z1 − z2|+ ‖w1 −w2‖X1
η

)

.

v). We conclude from Lemma 3.23 that S(z)−1 is locally Lipschitz w.r.t. z. Then,
similarly as in iv), we obtain

∣
∣r[z](z1,w1)− r[z](z2,w2)

∣
∣

=
∣
∣S(z1)

−1Pr[f ](z1,w1)− S(z2)
−1Pr[f ](z2,w2)

∣
∣

≤ C
∥
∥r[f ](z1,w1)− r[f ](z2,w2)

∥
∥
X1

η
+
∣
∣(S(z1)

−1 − S(z2)
−1)Pr[f ](z2,w2)

∣
∣

≤ C4

(

|z1 − z2|+ ‖w1 −w2‖X1
η

)

.

3.7 Nonlinear stability theorem

In the section we prove under the Assumptions 1-4 the first main results of the thesis
- the nonlinear stability of traveling oscillating fronts in exponentially weighted spaces.
In particular, we show Theorem 1.11 and the idea of its proof is as follows. We need
to assume that the initial perturbation u0 in (0.22) is sufficiently small. In Section 3.5
we have seen that the equation (0.22) can be decomposed by a nonlinear coordinate
transformation into the system (3.60), (3.61) if the solution of (0.22) stays close to the
profile v⋆. Then the first step is to show existence of a local mild solution (z,w) of the
system (3.60), (3.61), cf. Definition 3.26. This means we show that the corresponding
integral equations

w(t) = etLw0 +

∫ t

0

e(t−s)Lr[w](z(s),w(s))ds, (3.68)

z(t) = z(0) +

∫ t

0

r[z](z(s),w(s))ds (3.69)

have a unique solution for small time. This is done by using a contraction argument in
Lemma 3.27 and the estimates of the semigroup and nonlinearities from Theorem 3.21
and Lemma 3.25. The strategy is similar as in [17] but we remark that the approach
from [17] is not completely rigorous since the presence of the chart is omitted. However,
following our procedure one can carry out the proof in [17] by taking the manifold
property of the group into account. The results are then obtained by working in local
charts.
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Definition 3.26. A solution (z,w) ∈ C([0, t∞),R2×V 1
η ) of the integral equations (3.68),

(3.69) on 0 ≤ t < t∞ for some t∞ > 0 is called a mild solution of (3.60), (3.61) on
[0, t∞).

In the case t∞ = ∞ the we will call the solution (z,w) global mild solution, whereas
for t <∞ we will call (z,w) a local mild solution of (3.60), (3.61). We equip the product
space R2 ×X1

η with the norm

‖(z,w)‖R2×X1
η
:= |z|+ ‖w‖X1

η
.

Lemma 3.27 (Local existence and uniqueness). Let the Assumptions 1-4 be satisfied and
0 < µ < min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem 2.6. Further,
let K be from Theorem 3.21 and δ be from Lemma 3.25. Then for every 0 < ε1 < δ and
0 < 2Kε0 ≤ δ there is t⋆ = t⋆(ε0, ε1) > 0 such that for all initial values (z0,w0) ∈ R2×V 1

η

with

‖w0‖X1
η
< ε0, |z0| < ε1

there exists a unique local mild solution (z,w) of (3.60), (3.61) on [0, t⋆) with

‖w(t)‖X1
η
≤ 2Kε0, |z(t)| ≤ 2ε1, t ∈ [0, t⋆).

In particular, t⋆ can be taken uniformly for (z0,w0) ∈ Bε1(0)×Bε0(0).

Proof. Take β > 0 from Theorem 3.21 and Ci from Lemma 3.25. Choose t⋆ so small
such that the following conditions are satisfied:

t⋆ <
ε1

2C4ε1 + 2KC4ε0
, C4t⋆ +

2KC3

β
(1− e−βt⋆) < 1. (3.70)

Note that t⋆ can be taken uniformly for (z0,w0) ∈ Bε1(0) × Bε0(0). The proof follows
a contraction argument in the space Z := C([0, t⋆),R

2 × V 1
η ) equipped with the norm

‖(z,w)‖Z := supt∈[0,t⋆){|z(t)|+ ‖w(t)‖X1
η
}. Define the map

Υ : Z → Z, (z, w) 7→
(

z0 +
∫ (·)
0
r[z](z(s),w(s))ds

e(·)Lw0 +
∫ (·)
0
e(·−s)Lr[w](z(s),w(s))ds

)

given by the right hand side of (3.68), (3.69). We show that Υ is a contraction on the
closed set

B := {(z,w) ∈ Z : ‖w(t)‖X1
η
≤ 2Kε0, |z(t)| ≤ 2ε1, t ∈ [0, t⋆)} ⊂ Z.
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Let (z,w) ∈ B. By using the estimates from Theorem 3.21, Lemma 3.25 and (3.70) we
obtain for all 0 ≤ t < t⋆

∥
∥
∥
∥
etLw0 +

∫ t

0

e(t−s)Lr[w](z(s),w(s))ds

∥
∥
∥
∥
X1

η

≤ Ke−βtε0 +K

∫ t

0

e−β(t−s)‖r[w](z(s),w(s))‖X1
η
ds

≤ Ke−βtε0 +KC3

∫ t

0

e−β(t−s)‖w(s)‖X1
η
ds

≤ Kε0 +
2K2C3ε0

β
(1− e−βt⋆) ≤ 2Kε0.

and
∣
∣
∣
∣
z0 +

∫ t

0

r[z](z(s),w(s))ds

∣
∣
∣
∣
≤ ε1 +

∫ t

0

|r[z](z(s),w(s))|ds

≤ ε1 + C4

∫ t

0

|z(s)|+ ‖w(s)‖X1
η
ds

≤ ε1 + C4(2ε1 + 2Kε0)t⋆ ≤ 2ε1

Hence Υ maps B into itself. Further, for (z1,w1), (z2,w2) ∈ B and 0 ≤ t < t⋆ we can
estimate

‖Υ(z1,w1)−Υ(z2,w2)‖Z ≤ sup
t∈[0,t⋆)

{∫ t

0

|r[z](z1(s),w1(s))− r[z](z2(s),w2(s))|ds

+

∫ t

0

Ke−β(t−s)‖r[w](z1(s),w1(s))− r[w](z2(s),w2(s))‖X1
η
ds
}

≤
(

C4t⋆ +
KC3

β
(1− e−βt⋆)

)

‖(z1 − z2,w1 −w2)‖Z

< ‖(z1 − z2,w1 −w2)‖Z .

Thus Υ is a contraction inB. Therefore, there exists a unique (z,w) ∈ B ⊂ C([0, t⋆),R
2×

V 1
η ) such that (3.68), (3.69) hold.

As a next step, we use a Gronwall argument to show that the local mild solution
from Lemma 3.27 can be extended to a global mild solution and that the perturbation
w decays to zero as t → ∞. This will imply that z converge to some z∞. In the end,
we conclude that the mild solution has more regularity and is a classical solution, cf.
Definition 3.24. In addition, if the initial perturbation is small then the solution stays
in a small neighborhood of v⋆. Thus (z,w) transform into a classical solution u of
(0.22), which converge to the profile v⋆ with asymptotic phase given by γ∞ = χ(z∞). As
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mentioned we use the following Gronwall estimate, which can be found in [17, Lemma
6.3].

Lemma 3.28. Suppose ε, C, C̃, β > 0 such that

C ≥ 1, ε ≤ β

16C̃C

and let ϕ ∈ C([0, t∞), [0,∞)) for some 0 < t∞ ≤ ∞ satisfying

ϕ(t) ≤ Cεe−βt + C̃

∫ t

0

e−β(t−s)
(
ϕ(s)2 + εϕ(s)

)
ds, ∀t ∈ [0, t∞).

Then for all 0 ≤ t < t∞ there hold

ϕ(t) ≤ 2Cεe−
3
4
βt.

Proof. The estimate is satisfied for t = 0. Let

T := sup
{

t ∈ [0, t∞) : ϕ(s) ≤ 2Cεe−
3

4
βs ∀s ∈ [0, t)

}

.

Then T > 0. Assume T < t∞. Since ϕ ∈ C([0, t∞),R+) we obtain

2Cεe−
3
4
βT = ϕ(T ) ≤ Cεe−

3
4
βT + 2CC̃ε2e−βT

∫ T

0

e
1
4
βs + 2Ce−

1
2
βsds

= Cεe−
3
4
βT + 2CC̃ε2e−βT

(
4

β
(e

1
4
βT − 1) +

4C

β
(1− e−

1
2
βT )

)

< 2Cεe−
3

4
βT

(

1

2
+

4C̃ε

β
+

4C̃Cε

β

)

≤ 2Cεe−
3

4
βT .

A contradiction. Thus T = t∞ and the assertion is proven.

Now we are in the situation to prove the stability result for the (z,w)-system (3.60),
(3.61). The regularity of the solution will follow by classical results from [5] and [32],
cf. Theorem C.3. As in [5], for a Hölder exponent α ∈ (0, 1) we denote by Cα the
space of Hölder continuous functions and by C1+α the space of differentiable functions
with Hölder continuous derivative. Recall the notion of a classical solution (z,w) from
Definition 3.24.

Theorem 3.29. Let the Assumptions 1-4 be satisfied and 0 < µ < min{µess, µ⋆, 2} with
µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there exist ε > 0 and constants
K0 ≥ 1, β̃ > 0 such that for all initial values (z0,w0) ∈ G ×V 2

η with ‖(z0,w0)‖R2×X1
η
< ε

there hold:
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i) The system (3.60), (3.61) has a unique classical solution

w ∈ Cα((0,∞), V 2
η ) ∩ C1+α((0,∞), Vη) ∩ C1([0,∞), Vη), z ∈ C1([0,∞),R2)

for arbitrary α ∈ (0, 1).

ii) There exists z∞ = z∞(z0,w0) ∈ R2 such that for all t ≥ 0

‖w(t)‖X1
η
+ |z(t)− z∞| ≤ K0e

−β̃t‖(z0,w0)‖R2×X1
η
, |z∞| ≤ (K0 + 1)‖(z0,w0)‖R2×X1

η
.

Proof. Recall K, β from Theorem 3.21 and δ, Ci from Lemma 3.25. Now choose ε, ε̃ > 0
such that 0 < 2Kε̃ < δ and

ε < min

(
δ

Cz
,
ε̃

4K
,

β

16K2C2Cz

)

, Cz > 2 +
16C4K

3β
. (3.71)

We abbreviate ξ0 := ‖(z0, w0)‖R2×X1
η
< ε. Let

t∞ := sup
{

T > 0 : ∃(z, w) local mild solution of (3.60), (3.61) on [0, T )

‖w(t)‖X1
η
≤ Kε̃, |z(t)| ≤ Czξ0, t ∈ [0, T )

}

.

Then Lemma 3.27 with ε0 = ε̃ and ε1 = Czξ0
2

< δ implies t∞ ≥ t⋆ = t⋆(ε0, ε1). Using
Theorem 3.21 and Lemma 3.25 we estimate for all 0 ≤ t < t∞

‖w(t)‖X1
η
≤ ‖etLw0‖X1

η
+

∫ t

0

‖e(t−s)Lr[w](z(s),w(s))‖X1
η
ds

≤ Ke−βt‖w0‖X1
η
+

∫ t

0

e−β(t−s)‖r[w](z(s),w(s)‖X1
η
ds

≤ Ke−βt‖w0‖X1
η
+KC2

∫ t

0

e−β(t−s)
(

|z(s)|+ ‖w(s)‖X1
η

)

‖w(s)‖X1
η
ds

≤ Ke−βtξ0 +KC2Cz

∫ t

0

e−β(t−s)
(

ξ0 + ‖w(s)‖X1
η

)

‖w(s)‖X1
η
ds.

Then the Gronwall estimate in Lemma 3.28 implies due to (3.71)

‖w(t)‖X1
η
≤ 2Ke−

3
4
βtξ0 < 2Ke−

3
4
βtε <

ε̃

2
, t ∈ [0, t∞). (3.72)

This yields

|z(t)| ≤ |z0|+
∫ t

0

|r[z](z(s),w(s))|ds ≤ ξ0 + C4

∫ t

0

‖w(s)‖X1
η
ds

≤ ξ0 + 2C4Kξ0

∫ t

0

e−
3
4
βsds ≤ ξ0 +

8C4K

3β
ξ0 <

Czξ0
2

, t ∈ [0, t∞).

(3.73)
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Next, we show that t∞ = ∞. For this purpose, assume the contrary, i.e. t∞ <∞. Then
the estimates (3.72), (3.73) imply

‖w(t∞ − 1
2
t⋆)‖X1

η
<
ε̃

2
= ε0, |z(t∞ − 1

2
t⋆)| <

Czξ0
2

= ε1.

Now we can apply Lemma 3.27 once again to the integral equations (3.68), (3.69) with
w0 = w(t∞ − 1

2
t⋆) and z0 = z(t∞ − 1

2
t⋆) and obtain a solution (z̃, w̃) of (3.68), (3.69) on

[0, t⋆) with

w̃(0) = w(t∞ − 1
2
t⋆), ‖w(t)‖X1

η
≤ Kε̃, t ∈ [0, t⋆)

z̃(0) = z(t∞ − 1
2
t⋆), |z(t)| ≤ Czξ0, t ∈ [0, t⋆).

Define

(z̄, w̄)(t) :=

{

(z,w)(t), t ∈ [0, t∞ − 1
2
t⋆]

(z̃, w̃)(t− t∞ + 1
2
t⋆), t ∈ (t∞ − 1

2
t⋆, t∞ + 1

2
t⋆).

Then (z̄, w̄) is a local mild solution on [0, t∞+ 1
2
t⋆) with ‖w̄(t)‖X1

η
≤ Kε̃ and |z̄(t)| ≤ Czξ0.

A contradiction to the definition of t∞. Hence t∞ = ∞ and (3.72) holds on [0,∞). We
see that the integral

z∞ := z0 +

∫ ∞

0

r[z](z(s),w(s))ds

exists since

|z(t)− z∞| ≤
∫ ∞

t

|r[z](z(s),w(s))|ds

≤ C4

∫ ∞

t

‖w(s)‖X1
η
≤ 2KC4ξ0

∫ ∞

t

e−
3
4
βsds =

8KC4

3β
e−

3
4
βtξ0.

Thus the first estimate in ii) is proven with K0 = 2K + 8KC4

3β
and β̃ = 3

4
β. The second

estimate is obtained by

|z∞| ≤ |z(0)− z∞|+ |z0| ≤ (K0 + 1)ξ0.

Hence ii) is proven and it remains to show the regularity of (z,w). By Lemma 3.27 we
have r[z] ∈ C(V,R2), V = Bδ(0)× Bδ(0) ⊂ R2 ×X1

η and, since (z,w) ∈ C([0,∞),R2 ×
V 1
η ) with |z(t)|, ‖w(t)‖X1

η
< δ, there hold r[z](z(·), w(·)) ∈ C([0,∞),R2). Thus z ∈

C1([0,∞),R2). Furthermore, consider the equation

u(t) = Lu(t) + r(t), t > 0, u(0) = w0, (3.74)
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where r(t) := r[w](z(t),w(t)). Suppose 0 ≤ s ≤ t < ∞. Then by Lemma 3.27 we find
some C > 0 such that

‖r(t)− r(s)‖Xη = ‖r[w](z(t),w(t))− r[w](z(s),w(s))‖Xη

≤ C3

(

|z(t)− z(s)|+ ‖w(t)−w(s)‖X1
η

)

≤ C3

(∫ t

s

|r[z](z(σ),w(σ))|dσ +

∫ t

s

‖r[w](z(σ),w(σ))‖X1
η
dσ

)

≤ C3

(

C4

∫ t

s

‖w(σ)‖X1
η
dσ + C2

∫ t

s

|z(σ)|+ ‖w(σ)‖X1
η
dσ

)

≤ C(t− s).

This implies r ∈ Cα([0,∞), Xη) for every α ∈ (0, 1). Moreover, for arbitrary s > 0 there
hold

∫ s

0

‖r(t)‖Xηdt =

∫ s

0

‖r[w](z(t),w(t))‖Xηdt ≤ C3

∫ s

0

‖w(t)‖X1
η
dt <∞.

Now Theorem C.3 implies

u(t) = etLw0 +

∫ t

0

e(t−s)Lr(s)ds

solves (3.74) and u ∈ Cα((0,∞), V 2
η ) ∩ C1+α((0,∞), Vη) ∩ C1([0,∞), Vη). But

u(t) = etLw0 +

∫ t

0

e(t−s)Lr(s)ds = etLw0 +

∫ t

0

e(t−s)Lr[w](z(s),w(s))ds = w(t).

Hence, for all α ∈ (0, 1)

w(t) ∈ Cα((0,∞), V 2
η ) ∩ C1+α((0,∞), Vη) ∩ C1([0,∞), Vη).

The final step is to ensure that the solution (z,w) from Theorem 3.29 stays in a small
zero neighborhood where the nonlinear coordinate transformation T from Lemma 3.22 is
diffeomorphic. Thanks to the stability estimates in Theorem 3.29 ii) this is guaranteed
if the initial values are sufficiently small. Hence if u0 in (0.22) is sufficiently small the
solution (z,w) is equivalent to a solution u of (0.22), which converges to the group orbit
of v⋆ with an asymptotic phase. Moreover, the solution u stays in the neighborhood of
the group orbit for all positive times. This proves nonlinear stability with asymptotic
phase of the traveling oscillating front.
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Proof of Theorem 1.11. Take W,V from Lemma 3.22 and let δ > 0 such that

Bδ := {u ∈ Xη : ‖u‖Xη ≤ δ}

satisfies Bδ ⊂ T (V ) and P (Bδ) ⊂ Π(W ). In particular, T : T−1(Bδ) → Bδ and Π :
Π−1(P (Bδ)) → P (Bδ) are diffeomorphic. Then there is CΠ > 0 such that

|Π−1(Pv)| ≤ CΠ‖v‖Xη ∀v ∈ Bδ.

Now we take ε > 0 from Theorem 3.29 so small such that the solution (z,w) of (3.60),
(3.61) satisfies (z(t),w(t)) ∈ T−1(Bδ) and z(t) ∈ Π−1(P (Bδ)) for all t ∈ [0,∞). Further,
let C ≥ 1 be such that Lemma 3.7 and (3.18) imply

‖a(χ−1(z1))v⋆ − a(χ−1(z2))v⋆‖X1
η
≤ C|z1 − z2| ∀z1, z2 ∈ Π−1(P (Bδ)).

Choose

ε0 < min

(
δ

4CC̃K0 + C̃K0 + CCΠ

, εC̃−1,
π

K0 + C∞

)

, C̃ := CΠ(1 + C) + 1.

with K0, C∞ from Theorem 3.29 and define

(z0,w0) := T−1(u0) = (Π−1(Pu0),u0 + v⋆ − a(χ−1(z0))v⋆).

Then |z0| ≤ CΠ‖u0‖Xη and

‖(z0,w0)‖R2×X1
η
= |z0|+ ‖w0‖X1

η

≤ |z0|+ ‖a(χ−1(z0))v⋆ − v⋆‖X1
η
+ ‖u0‖X1

η
≤ C̃‖u0‖X1

η
≤ C̃ε0 < ε.

(3.75)

Moreover, Theorem 3.29 implies there exist z ∈ C1([0,∞),R2) and w ∈ C((0,∞), V 2
η )∩

C1((0,∞), Vη) such that (z,w) solves (3.60), (3.61) with z(0) = z0, w(0) = w0 and

‖w(t)‖X1
η
≤ K0ε0, |z(t)| ≤ |z(t)− z∞|+ |z∞| ≤ (K0 + C∞)ε0 < π, t ∈ [0,∞).

Hence z(t) ∈ U for all t ∈ [0,∞) and we define γ(t) = χ−1(z(t)) ∈ C1([0,∞),G). Set

u(t) = a(γ(t))v⋆ +w(t), t ∈ [0,∞).

Then u ∈ C((0,∞), Yη) ∩ C1([0,∞), Xη) and since ε0 < δ Lemma 3.22 implies

u(0) = a(γ(0))v⋆ +w(0) = a(χ−1(z0))v⋆ − v⋆ +w0 + v⋆

= T (z0,w0) + v⋆ = u0 + v⋆.
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For t ∈ (0,∞) we obtain with u = (u, ρ)⊤ and w = (w, ζ)⊤

ut(t)−L0u(t)−
(
f(u(t))
f(ρ(t))

)

= [(a(·)v⋆ ◦ χ−1)′(z(t))]zt(t) +wt(t)−L0a(γ(t))v⋆ − L0w(t)−
(
f(a(γ(t))v⋆ + w)
f(a(γ(t))v∞ + ζ)

)

= [(a(·)v⋆ ◦ χ−1)′(z(t))]zt(t) +wt(t)−Lw(t)− r[f ](z(t),w(t))

= wt(t)−Lw(t) + (I − P )[(a(·)v⋆ ◦ χ−1)′(z(t))]zt(t)− (I − P )r[f ](z(t),w(t))

+ P [(a(·)v⋆ ◦ χ−1)′(z(t))]zt(t)− Pr[f ](z(t),w(t))

= wt(t)−Lw(t)− r[w](z(t),w(t)) = 0.

Hence, u solves (0.22). Further, recall the metric dG(γ1, γ2) = |γ1−γ2|G on G from (1.11).
With γ∞ = χ−1(z∞) we have by Theorem 3.29

‖w(t)‖X1
η
+ |γ(t)− γ∞|G ≤ ‖w(t)‖X1

η
+ |z(t)− z∞|

≤ K0e
−β̃t‖(z0,w0)‖R2×X1

η
≤ Ke−β̃t‖u0‖X1

η

with K = C̃K0. In addition,

|γ∞|G ≤ |γ0|G + |γ0 − γ∞|G ≤ |z0|+ |z0 − z∞| ≤ C∞‖u0‖X1
η
, C∞ = CΠ + C̃K0.

Finally, we show uniqueness of u. For this purpose, we have

‖u(t)− v⋆‖Xη ≤ C|z(t)− z∞|+ ‖w(t)‖Xη + C|z∞| ≤ ((C + 1)K + CC∞)ε0 ≤
δ

2
.

Let ũ be another solution of (0.22) on [0, T ) for some T > 0. Let

τ := sup{t ∈ [0, T ) : ‖ũ− v⋆‖Xη ≤ δ on [0, t)}.

Then there is a solution (z̃, w̃) of (3.60), (3.61) on [0, τ) such that T (z̃(t), w̃(t)) =
ũ(t)− v⋆ and thus ũ(t) = a(γ̃(t))v⋆ + w̃(t), γ̃(t) = χ−1(z̃(t)). But since (z,w) is unique
we conclude (z̃, w̃) = (z,w) and u(t) = ũ(t) on [0, τ). Now assume τ < T . Then for all
t ∈ [0, τ)

δ

2
≥ ‖u(t)− v⋆‖Xη = ‖ũ(t)− v⋆‖Xη .

Since the right-hand side converges to δ as t→ τ , we arrive at a contradiction.

In particular, in the proof of Theorem 1.11 we have shown the following corollary
concerning the local coordinates in the chart (U, χ) of the motion on the group orbit γ
and the asymptotic phase γ∞. This will be useful in Chapter 4.
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Corollary 3.30. Let the Assumptions of Theorem 1.11 be satisfied and let ε0 > 0 be
sufficiently small. Then γ∞, γ from Theorem 1.11 satisfy γ∞, γ(t) ∈ U for all t ≥ 0 and
have local coordinates z∞ ∈ R2 and z ∈ C1([0,∞),R2), i.e.

γ(t) = χ−1(z(t)), γ∞ = χ−1(z∞), γ∞ ◦ γ−1 = χ−1(z∞ − z(t)), t ≥ 0.

Moreover, there hold

|z(t)− z∞| ≤ Ke−β̃t‖u0‖Z1
η
, |z∞| ≤ C∞‖u0‖X1

η

with K, β̃, C∞ from Theorem 1.11.

Proof. The assertions follows by the proof of Theorem 1.11 and the definition of the
chart (U, χ) from (3.13).
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Chapter 4

Freezing traveling oscillating fronts

In this chapter we apply the concept of the freezing method from [18], [19] to traveling
oscillating fronts. We develop a method to compute TOFs numerically. When starting a
finite difference or finite element computation to solve the equation (0.4) numerically and
to observe the formation of TOFs, two basic problems occur. First, one has to truncate
the spatial domain of computation to a finite interval. But since TOFs are traveling
in space, the wave will leave the computational domain at a certain time. Second, the
frequency ω and translation velocity c are unknown a-priori. So on the one hand, we
are naturally interested in the velocities and on the other hand we cannot make use
of the co-moving equation (0.8) for which the profile becomes stationary. The freezing
method solves both problems. The idea is to transform (0.4) into a co-moving frame
via u(t) = a(γ(t))v(t) with the new variable γ for which one has to solve additional
equations. The number of additional degrees of freedom equals the dimension of the
Lie group G. They are compensated by a corresponding number of algebraic constraints
resulting in a well-posed problem.

We start by applying the abstract concept of the freezing method to TOFs and obtain
a partial differential algebraic equation (PDAE). We discuss how to choose the phase
condition and how to obtain a well-posed problem called the freezing system. According
to Chapter 3 we show that TOFs are stable steady states of the freezing system. We
prove stability of TOFs for the freezing systems using the results from Chapter 3. For
this purpose, we will use the approach from [55] and [54] where the stability of traveling
waves in the freezing method was shown for first order hyperbolic systems. In the end,
we conclude the chapter with numerical experiments.

113
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4.1 The freezing method

We derive the freezing system on the unweighted spaces Xℓ, ℓ ∈ N0, i.e. η = 0. Hence
X ≃ L2 × R2. To formulate the freezing system no weights are necessary, since for the
moment we do not ask for stability of TOFs in the system. We consider the Cauchy-
Problem on X associated with (0.4) for u = (u, ρ)⊤ reading as

ut =

(
Auxx + f(u)

f(ρ)

)

=: F0(u), t > 0, u(0) = u0 ∈ X. (4.1)

It easy to see that F0 defines a closed, densely defined, linear operator on X with
D(F0) = Y . Moreover, recall the Lie group G = S1×R acting on X via the group action
a(γ), γ = (θ, τ) ∈ G from (0.25). Further, TγG denotes the tangent space of G at γ and
the associated Lie algebra g is given by the tangent space at the unit element 1, i.e.
g = T

1

G. By Lemma 3.8, for every v = (v, ρ)⊤ ∈ X1 the group action a(·)v : G → X is
of class C1 and we denote its derivative (tangent) at γ ∈ G by

d[a(γ)v] : TγG→ X, ν 7→ d[a(γ)v]ν.

The left-multiplication by an element γ ∈ G on G is defined as the map

Lγ : G → G, γ̃ 7→ Lγ(γ̃) = γ ◦ γ̃

and is of class C∞. Its derivative (tangent) is denoted by

dLγ(γ̃) : Tγ̃G → TγG, ν 7→ dLγ(γ̃)ν.

In the case γ̃ = 1 we have dLγ(1) : g → TγG and dLγ(1) defines a homeomorphism from
g to TγG, see [1], [53].
The operator F0 is equivariant under the group action a(γ), i.e. a(γ)Y ⊂ Y and
a(γ)F0(v) = F0(a(γ)v). We assume u = (u, ζ)⊤ to be a solution of the Cauchy problem
(4.1) and transform it into a co-moving frame via the ansatz

u(t) = a(γ(t))v(t), t ≥ 0.

Then we obtain by using the equivariance of F0

a(γ)F0(v) = F0(u) = ut = d[a(γ)v]γt + a(γ)vt. (4.2)

Since a(·) is a homomorphism we have for γ, γ̃ ∈ G

a(γ)a(γ̃)v = a(γ ◦ γ̃)v

which upon taking the γ̃-derivative leads to

a(γ)d[a(γ̃)v]ν = d[a(γ ◦ γ̃)v]dLγ(γ̃)ν ∀ν ∈ Tγ̃G.
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In particular, for γ̃ = 1 we obtain

d[a(γ)v]dLγ(1)ν = a(γ)d[a(1)v]ν ∀ν ∈ g.

Introducing the new variable µ(t) ∈ g via γt(t) = dLγ(t)(1)µ(t), we conclude from (4.2)

vt = F0(v)− d[a(1)v]µt. (4.3)

To compensate the additional degrees of freedom in the µ-variable, we require an addi-
tional algebraic constraint, which is called the phase condition. In general, it is given
by a map

ψ : X × g → R
2, (v, µ) 7→ ψ(v, µ).

This leads to the so called freezing system reading as

vt = F0(v)− d[a(1)v]µt, v(0) = v0, (4.4a)

0 = ψ(v;µ), (4.4b)

γt = dLγ(1)µ, γ(0) = 1. (4.4c)

Note that (4.4c) describes the position of the wave and is decoupled from (4.4a), (4.4b).
In order to analyze solutions of the freezing system and using the stability results from
the previous chapter we have to formulate the system (4.4) in the local charts from (3.13),
(3.14). In particular, we use the representation of the derivative of the group action from
Lemma 3.7. In addition, this is necessary to give a concrete expression for the freezing
system which we can solve numerically later on. For this purpose, we note that the Lie
algebra g turns into a linear space via the derivative of the chart dχ(1) : g → R2, which
is one-to-one and onto, see [1, Sec. 3.3] or [53, Sec. 4.1]. Now taking the derivative
of a(γ)v = (a(·)v ◦ χ−1)(χ(γ)) w.r.t. γ and evaluating at γ = 1 to obtain the local
representation

d[a(1)v] = (a(·) ◦ χ−1)′(0)dχ(1) = −(S1v,vx)dχ(1).

Next we set ν(t) = dχ(1)µ(t) ∈ R2 and define ψ̃ : X × R2 → R2 via ψ̃(v, ν) = ψ(v, µ).
Then we obtain the freezing system in local coordinates reading as the initial value
problem with v = (v, ρ)⊤

vt =

(
Avxx + ν2vx + ν1S1v + f(v)

ν1S1ρ+ f(ρ)

)

, v(0) = v0, (4.5a)

0 = ψ̃(v; ν), (4.5b)

γt = dLγ(1)dχ(1)
−1ν, γ(0) = 1. (4.5c)
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Again (4.5c) is decoupled from (4.5a), (4.5b) and can be computed in a post process.
It remains to specify the phase condition ψ̃. There are several ways to choose the
phase condition, cf. [18, Sec. 2.3]. A possibility is to choose a fixed template function
ŵ = (ŵ, ζ̂)⊤ ∈ X1 and require that ŵ is the closest point on the group orbit Oŵ to the
solution v of the PDE (4.5a) w.r.t. the X-norm, i.e. for all t > 0 we require

min
γ∈G

‖a(γ)ŵ − v(t)‖2X = ‖ŵ− v(t)‖2X .

The first order necessary condition is

d

dγ

[

‖a(γ)ŵ− v(t)‖2X
]

γ=1
= 0

and therefore

〈d[a(1)ŵ]dχ(1)−1ν, ŵ− v(t)〉X = 0 ∀ ν ∈ R
2.

Using Lemma 3.8, this yields

0 = Ψfix(ŵ− v), Ψfix(u) =

(
(S1ŵ,u)X
(ŵx,u)X

)

. (4.6)

The condition (4.6) with Ψfix ∈ L[X,R2] is called the fixed phase condition, cf. [18].
The inner products defining Ψfix can be written explicitly as

Ψfix(ŵ− v) =

(
(S1ζ̂)

⊤(ζ̂ − ρ) + (S1(ŵ − ζ̂ v̂), (ŵ − ζ̂ v̂)− (v − ρv̂))L2

(ŵx, (ŵ − ζ̂ v̂)− (v − ρv̂))L2

)

= 0.

Now we replace ψ̃ in (4.5b) by Ψfix and obtain the freezing system with the fixed phase
condition

vt =

(
Avxx + ν2vx + ν1S1v + f(v)

ν1S1ρ+ f(ρ)

)

, v(0) = v0, (4.7a)

0 = Ψfix(ŵ − v), (4.7b)

γt = dLγ(1)dχ(1)
−1ν, γ(0) = 1. (4.7c)

The two equation (4.7a), (4.7b) define a partial differential algebraic equation (PDAE)
of index 2, cf. [30]. In order to see that see algebraic constraint (4.7b) is of index 2 we
take the first derivative of the first component of (4.7b) w.r.t. t and obtain using (4.7a)

0 = (S1ŵ,vt)X = (S1ζ̂)
⊤ρt + (S1(ŵ − ζ̂ v̂), vt − ρtv̂)L2

= ν1

(

(S1ζ̂)
⊤S1ρ+ (S1(ŵ − ζ̂ v̂), S1(v − ρv̂))L2

)

+ ν2(S1(ŵ − ζ̂ v̂), vx)L2

+ (S1ζ̂)
⊤f(ρ) + (S1(ŵ − ζ̂ v̂), Avxx + f(v)− f(ρ)v̂)L2

= ν1(S1ŵ,S1v)X + ν2(S1ŵ,vx)X

+ (S1ζ̂)
⊤f(ρ) + (S1(ŵ − ζ̂ v̂), Avxx + f(v)− f(ρ)v̂)L2.

(4.8)
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Differentiating the second component of (4.7b) w.r.t. t yields

0 = (ŵx,vt)X = (ŵx, vt − ρtv̂)L2

= ν1(ŵx, S1(v − ρv̂))L2 + ν2(ŵx, vx)L2 + (ŵx, Avxx + f(v)− f(ρ)v̂)L2

= ν1(ŵx,S1v)X + ν2(ŵx,vx)X + (ŵx, Avxx + f(v)− f(ρ)v̂)L2.

(4.9)

Combining (4.8), (4.9) yields

Qfix(v)ν =

(

(S1ζ̂)
⊤f(ρ) + (S1(ŵ − ζ̂ v̂), Avxx + f(v)− f(ρ)v̂)L2

(ŵx, Avxx + f(v)− f(ρ)v̂)L2

)

(4.10)

with

Qfix(v) = −
(
(S1ŵ,S1v)X (S1ŵ,vx)X
(ŵx,S1v)X (ŵx,vx)X

)

. (4.11)

Assuming that Qfix(v) is invertible for all t ≥ 0 we can write (4.10) explicitly for ν which
shows that (4.7a), (4.7b) is a PDAE of index 2, cf. [30]. In application, one has to choose
the template ŵ such that Qfix(v0) is invertible. Then Qfix(v) is invertible as long as the
time evolution of v is small. As we will see in the next section, this will be the case when
we start with v0 sufficiently close to the profile of the TOF v⋆. In Section 4.3 we will
use (4.10) to solve the freezing system (4.7) numerically.

4.2 Stability of the freezing system

We assume Assumption 1-4 and consider the freezing system as the PDAE with perturbed
initial conditions of the TOF v⋆

vt =

(
Avxx + ν2vx + ν1S1v + f(v)

ν1S1ρ+ f(ρ)

)

, v(0) = v⋆ + u0, (4.12a)

0 = Ψ(ŵ− v), (4.12b)

where ŵ ∈ X1
η is a template function and Ψ : Xη → R2 a two dimensional linear

functional on Xη. The phase condition Ψ can be chosen as the fixed phase condition
Ψfix from (4.6) minimizing the distance of the solution of the PDE to the group orbit of
the template function. However, in the system (4.12) we allow a general phase condition
satisfying appropriate assumptions, cf. Assumption 9. The reconstruction of the position
can be written as the differential equation on the manifold G

γt = dLγ(1)dχ(1)
−1ν, γ(0) = 1, (4.13)

which is decoupled from the PDAE (4.12).
By Assumption 2 there is a TOF of (0.4) with profile v⋆, frequency ω and speed c.
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In particular, we have F(v⋆) = 0, where F is the nonlinear operator from (0.23). Let
ν⋆ := (ω, c) and let us assume that v⋆ satisfies the phase condition, i.e. Ψ(ŵ − v⋆) = 0.
Then we conclude that (v⋆, ν⋆) is a stationary solution of (4.12) with u0 = 0. Thus we
can ask for stability of the solution (v⋆, ν⋆). In particular, we are interested in the long
time behavior of the solution (v, ν) of (4.12) if the initial perturbation u0 is small. We
will prove a stability result of the solution (v⋆, ν⋆) of the freezing system by using the
nonlinear stability with asymptotic phase of v⋆ from Theorem 1.11. In order to do so,
we use the following notion of a solution.

Definition 4.1. A pair (v, ν) is called a classical solution of the PDAE (4.12) on [0, t∞)
if

i) v ∈ C((0, t∞), Yη) ∩ C1([0, t∞), Xη) and ν = (ν1, ν2) ∈ C([0, t∞),R2),

ii) (v, ν) solves the PDE (4.12a) pointwise for all t ∈ [0, t∞) in Xη,

iii) the algebraic constraint (4.12b) is satisfied for all t ∈ [0, t∞),

iv) v(0) = v⋆ + u0 ∈ Xη.

If a classical solution exists it must satisfy the algebraic constraint (4.12b) at t = 0.
Thus we will require the consistency condition of the initial value Ψ(ŵ− v⋆ − u0) = 0.

Definition 4.2. The initial value v⋆ + u0 in (4.12a) is called consistent if

Ψ(ŵ− v⋆ − u0) = 0. (4.14)

The condition (4.14) seems to be very restrictive regarding the initial data u0. But it
is not, since we did not specify the representative v⋆ of the group orbit O(v⋆). In other
words, for arbitrary u0 one finds generically some representative v⋆ of the group orbit
O(v⋆) such that (4.14) is satisfied.
We make the following assumption on the phase condition Ψ:

Assumption 9. Ψ : Xη → R2 is a linear bounded functional on Xη and satisfies for
some CΨ > 0 the estimate

|Ψ(v)| ≤ CΨ‖v‖X−1 ∀v ∈ Xη. (4.15)

Moreover, with Ψ = (Ψ1,Ψ2)
⊤ the matrix
(
Ψ1(S1v⋆) Ψ1(v⋆,x)
Ψ2(S1v⋆) Ψ2(v⋆,x)

)

is invertible and there is ŵ = (ŵ, ζ̂)⊤ ∈ X1
η with

Ψ(ŵ − v⋆) = 0.
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Note that the fixed phase condition Ψfix from (4.6) satisfies Assumption 9 if we choose
an appropriate ŵ ∈ Y ∩X1

η (e.g. ŵ = v⋆). To see that (4.15) is satisfied, we can use the
Gelfand triplet property of X1 ⊂ X ⊂ X−1 and estimate

|Ψfix,1(v)| = |(S1ŵ,v)X| = |〈S1ŵ,v〉X1×X−1 | ≤ ‖S1ŵ‖X1‖v‖X−1

and

|Ψfix,2(v)| = |(ŵx,v)X | = |〈ŵx,v〉X1×X−1| ≤ ‖ŵx‖X1‖v‖X−1 .

Remark 4.3. For the proof of the stability in this section it would be sufficient to require
Ψ ∈ L[X−1

η ,R2]. But in this case one is forced to extend the fixed phase condition to a

linear bounded functional Ψ̃fix on X−1
η such that Ψ̃fix ∈ L[X−1

η ,R2]. For that reason, we
decided to work with Assumption 9 such that we can keep in mind Ψ to be the fixed phase
condition from (4.6).

In what follows, we prove under Assumption 1-4 and 9 that the freezing system
(4.12) attains a unique classical solution and that the stationary solution (v⋆, ν⋆) with
ν⋆ = (ω, c) is asymptotically stable in the classical sense of Lyapunov. For this purpose,
we make the following solution ansatz for the solution of the PDAE (4.12a)

v(t) = a(γ−1(t))u(t), γ(t) = χ−1(−z(t)) t ≥ 0, (4.16)

where u is a solution to the Cauchy problem (0.22) with initial value u(0) = v⋆ + u0

and some z ∈ C1([0,∞),R2). Hence, z are the local coordinates of some group element
γ(t) ∈ G in the chart (U, χ), i.e. γ(t) ∈ U ⊂ G. Note that by definition of the chart
(U, χ) we have γ(t) ∈ U if and only if γ(t)−1 ∈ U and γ−1(t) = χ−1(−z(t)). We often
write γ−1 instead of χ−1(−z) and γ instead of χ−1(z). The initial value in (4.12a) implies
γ(0) = 1 and therefore z(0) = 0. Plugging the ansatz (4.16) into (4.12a), we obtain with
zt = (θt, τt)

a(γ−1)uxτt + a(γ−1)S1uθt + a(γ−1)F(u)

=
d

dt
[(a(·)u ◦ χ−1)(−z)] + a(γ−1)ut

= vt =

(
Avxx + ν2vx + ν1S1v + f(v)

ν1S1ρ+ f(ρ)

)

= a(γ−1)F(u) + a(γ−1)(ν2 − c)ux + a(γ−1)(ν1 − ω)S1u.

(4.17)

This determines ν via ν = zt + ν⋆. We define the map

Q : X1
η → R

2,2, v 7→ Q(v) := −
(
Ψ1(S1v) Ψ1(vx)
Ψ2(S1v) Ψ2(vx)

)

. (4.18)
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By Assumption 9 we have Q(v⋆) to be non-singular. Now taking the time derivative of
the algebraic constraint yields

d

dt
Ψ(ŵ − v) = −Ψ(vt) = −Ψ(a(γ−1)S1u)θt −Ψ(a(γ−1)ux)τt −Ψ(a(γ−1)F(u))

= −
(
Ψ1(a(γ

−1)S1u) Ψ1(a(γ
−1)ux)

Ψ2(a(γ
−1)S1u) Ψ2(a(γ

−1)ux)

)

zt −Ψ(a(γ−1)F(u))

= Q(a(γ−1)u)zt −Ψ(a(γ−1)F(u)).

(4.19)

Thus, if z ∈ C1([0,∞),R2) is a solution of the ODE

Q(a(χ−1(−z))u)zt = Ψ
(
a(χ−1(−z))F(u)

)
, z(0) = 0 (4.20)

the algebraic constraint is constant in time and the consistency of the initial value, cf.
Definition 4.2, implies

Ψ(ŵ− v(t)) = 0 ∀t ≥ 0.

Thus, v is classical solution of the freezing system (4.12). Now the idea is to study
solutions of the ODE (4.20) and construct a solution to the PDAE (4.12) via the ansatz
(4.16).

Lemma 4.4. Let Assumption 1-4 and Assumption 9 be satisfied. Further, let 0 < µ <
min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem 2.6. Then there are
ε, δ > 0 such that for all u0 ∈ Yη with ‖u0‖X1

η
< ε and t ∈ [0,∞) there hold

Q(a(χ−1(·))u) ∈ C1(Bδ(0), GL(R
2)),

where u is the solution from Theorem 1.11.

Proof. First let ε > 0 be so small such that Theorem 1.11 applies. By Assumption 9
the matrix Q(v⋆) is invertible and continuously differentiable in v⋆, since it is linear in
v⋆. As a consequence of the implicit function theorem there is δQ > 0 such that Q(v) is
invertible whenever ‖v⋆ − v‖Xη < δQ. If this is the case, Q(v) itself and the inverse are
continuously differentiable in v. So we show ‖a(χ−1(z))u(t) − v⋆‖Xη ≤ δQ for all t ≥ 0
and z ∈ Bδ(0). By Lemma 3.7 and (3.18), there are δ0 > 0 and a constant C > 0 such
that

‖a(χ−1(z))v‖Xη ≤ C‖v‖Xη ∀ z ∈ Bδ0(0), v ∈ Xη, (4.21)

‖a(χ−1(z1))v⋆ − a(χ−1(z2))v⋆|Xη ≤ C|z1 − z2|‖v⋆‖X1
η

∀ z1, z2 ∈ Bδ0(0). (4.22)

Take C∞, K from Theorem 1.11. Now choose δ, ε sufficiently small such that 0 < δ < δ0,
0 < ε < C−1

∞ δ0 and

CKε+ C2C∞ε‖v⋆‖X1
η
+ C2δ‖v⋆‖X1

η
< δQ.
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Then, using Theorem 1.11, Corollary 3.30, (3.18), (4.21), (4.22), we obtain for all z ∈
Bδ(0), u0 ∈ Yη with ‖u0‖Xη < ε and t ∈ [0,∞) the estimate

‖a(χ−1(z))u(t)− v⋆‖Xη ≤ C‖u(t)− a(χ−1(−z))v⋆‖Xη

≤ C‖u(t)− a(γ∞)v⋆‖Xη + C‖a(χ−1(z∞))v⋆ − a(χ−1(−z))v⋆‖Xη

≤ CKe−β̃tε+ C2 (|z∞|+ |z|) ‖v⋆‖X1
η

≤ CKε+ C2C∞ε‖v⋆‖X1
η
+ C2δ‖v⋆‖X1

η
< δQ.

Now the assertion is proven, since u(t) ∈ Yη and the group action (a(·)u(t) ◦ χ−1) is
continuously differentiable.

By the previous lemma we can write the ODE (4.20) as an explicit ODE for z with
a continuous right-hand side. Then we obtain local existence by using Peano’s existence
theorem. However, since F(u) only belongs to Xη the group action (a(·)F(u) ◦ χ−1) is
only continuous and not Lipschitz continuous in z. Therefore, we do not have uniqueness
of the solution. This will be concluded in a further step. In order to do so, we use the
approach from [55], [54].

Lemma 4.5 (Local existence). Let Assumption 1-4 and Assumption 9 be satisfied. Fur-
ther, let 0 < µ < min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem 2.6
and let ε > 0 be given as in Lemma 4.4. Then for all u0 ∈ Yη with ‖u0‖X1

η
< ε there is

t0 = t0(u0) > 0 such that the ODE (4.20) has a solution z ∈ C1([0, t0),R
2).

Proof. By Lemma 4.4, Q(a(χ−1(·))u(t)) is invertible for all z ∈ Bδ(0), t ∈ [0,∞). Then
the ODE 4.20 can be rewritten as

zt = r(t, z), z(0) = 1 (4.23)

with the right-hand side is given by

r : [0,∞)× Bδ(0) → R
, (t, z) 7→ Q

(
a(χ−1(−z))u(t)

)−1
Ψ
(
a(χ−1(−z))F(u(t))

)
.

By Assumption 9, Theorem 1.11, Lemma 3.8 and Lemma 4.4 it follows r ∈ C([0,∞)×
Bδ(0),R

2). Now the claim is a consequence of Peano’s existence theorem.

As a next step we show that the solution z ∈ C([0, t0),R
2) from Lemma 4.5 exists

for all times, i.e. we have t0 = ∞. For this purpose we need the following lemma.

Lemma 4.6. Let Assumption 1-4 and Assumption 9 be satisfied. Further, let 0 < µ <
min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem 2.6. Then the map

Λ : R2 → R
2, z 7→ Λ(z) := Ψ(a(χ−1(z))v⋆ − v⋆)

is a local C1-diffeomorphism near 0.
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Proof. We have Λ(0) = 0 and ∂zΛ(0) = Q(v⋆) which is invertible by Assumption 9.
Hence the assertion is a consequence of the implicit function theorem D.8.

Now we conclude global existence of the solution from Lemma 4.5.

Lemma 4.7 (Global existence). Let Assumption 1-4 and Assumption 9 be satisfied.
Further, let 0 < µ < min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem
2.6 and let δ > 0 be from Lemma 4.4. Then there is ε > 0 such that for all u0 ∈ Yη with
‖u0‖X1

η
< ε the ODE (4.20) has a solution z ∈ C1([0,∞), Bδ/2(0)).

Proof. First take ε > 0 so small such that Lemma 4.4 and Lemma 4.5 as well as Theorem
1.11 apply. Let z ∈ C1([0, t∞),R2) be the maximal extension of the local solution from
Lemma 4.5 in Bδ(0) and assume t∞ <∞. Then |z(t)| → δ as t→ t∞. The ansatz (4.16)
and the previous calculation (4.19) show

Ψ(ŵ − a(χ−1(−z(t)))u(t)) = 0 ∀ t ∈ [0, t∞)

which implies together with Assumption 9

Ψ(v⋆ − a(χ−1(−z(t)))u(t)) = 0 ∀ t ∈ [0, t∞).

Choose 0 < δΛ < δ such that Lemma 4.6 implies and thus Λ−1 : BδΛ(1) → Λ−1(BδΛ(1))
is diffeomorphic. Then, since Λ(0) = 0, there is CΛ > 0 such that

|Λ−1(y)| ≤ CΛ|y| ∀ y ∈ BδΛ(0). (4.24)

Now choose ε > 0 so small such that

(CΛCΨCK + C∞)ε ≤ δΛ
2

with C from (4.21) and K,C∞ from Theorem 1.11. Let z∞ be from Corollary 3.30. Then
we have |z∞| ≤ C∞ε <

δΛ
2

and

χ−1(z∞ − z(t)) = γ∞ ◦ γ−1(t).

We obtain for all 0 ≤ t < t∞

|z(t)| ≤ |z∞|+
∣
∣z∞ − z(t)| ≤ C∞ε+ |Λ−1

(
Ψ(a(χ−1(z∞ − z(t)))v⋆ − v⋆)

)∣
∣

≤ C∞ε+ CΛ

∣
∣Ψ(a(γ∞ ◦ γ−1(t))v⋆ − v⋆)−Ψ(v⋆ − a(γ−1(t))u(t))

∣
∣

≤ C∞ε+ CΛCΨ

∥
∥a(γ∞ ◦ γ−1(t))v⋆ − a(γ−1(t))u(t)

∥
∥
Xη

≤ C∞ε+ CΛCΨC‖a(γ∞)v⋆ − u(t)‖Xη ≤ C∞ε+ CΛCΨCKε ≤
δΛ
2

≤ δ

2
,

where we used the estimate from Theorem 1.11 and Lemma 3.7. Since z is continuous
on [0, t∞) this contradicts |z(t)| → δ as t → t∞. Hence t∞ = ∞ and the assertion is
proven.
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It remains to show uniqueness of the global solution z from Lemma 4.7 without using
classical Lipschitz continuity. As the next Lemma will show, we are able to prove special
Lipschitz-like estimates in a small neighborhood of the solution z from Lemma 4.7 which
will yield the uniqueness of the solution, cf. [55], [54].

Lemma 4.8. Let Assumption 1-4 and Assumption 9 be satisfied. Further, let 0 < µ <
min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem 2.6 and let z ∈
C1([0,∞), Bδ/2(0)) be the solution of the ODE (4.20) from Lemma 4.7 and let

H : [0,∞)× R
2 → R

2, (t, z̃) 7→ z̃ −Q
(
a(χ−1(−z(t)))u(t)

)−1
Ψ(ŵ− a(χ−1(−z̃))u(t)).

Then there is εz > 0 such that for all t ∈ [0,∞) there hold

|H(t, z̃)−H(t, z(t))| ≤ 1

2
|z̃ − z(t)| ∀ z̃ ∈ Bεz(z(t)).

Proof. By Theorem 1.11, u(t) is uniformly bounded for t ∈ [0,∞). Let δ̃ = 3
4
δ. By

Lemma 4.4 there is CQ > 0 such that
∣
∣
∣Q
(
a(χ−1(z))u(t)

)−1
∣
∣
∣ ≤ CQ ∀ t ∈ [0,∞), z ∈ Bδ̃(0),

∣
∣Q(a(χ−1(z1))u(t))−Q(a(χ−1(z2))u(t))

∣
∣ ≤ CQ|z1 − z2| ∀ t ∈ [0,∞), z1, z2 ∈ Bδ̃(0).

Now let

εz < min

(

δ

4
,

1

2C2
Q

)

and z̃ ∈ Bεz(z(t)), t ∈ [0,∞). Then

|z(t)| ≤ δ

2
< δ̃, |z̃| ≤ |z̃ − z(t)| + |z(t)| ≤ εz +

δ

2
< δ̃

and we estimate, using the mean value theorem and ∂zΨ((a(·)u ◦χ−1)(z)) = −Q(a(·)u ◦
χ−1)(z)),

|H(t, z̃)−H(t, z(t))|
≤ CQ

∣
∣Q(a(χ−1(−z(t)))u(t))(z̃ − z(t))−Ψ(a(χ−1(−z(t))u(t) − a(χ−1(−z̃))u(t))

∣
∣

= CQ

∣
∣
∣Q(a(χ−1(−z(t)))u(t))(z̃ − z(t))

−
∫ 1

0

Q(a(χ−1(−z(t) + (z(t)− z̃)τ))u(t))(z̃ − z(t))dτ
∣
∣
∣

≤ CQ

∫ 1

0

∣
∣Q(a(χ−1(−z(t)))u(t)) −Q(a(χ−1(−z(t) + (z(t)− z̃)τ))u(t))

∣
∣ dτ |z̃ − z(t)|

≤ C2
Qεz|z̃ − z(t)| ≤ 1

2
|z̃ − z(t)|.
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Now we are in the situation to conclude the uniqueness of z.

Lemma 4.9 (Uniqueness). Let Assumption 1-4 and Assumption 9 be satisfied. Further,
let 0 < µ < min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆ from Theorem 2.6.
Then there is ε > 0 such that for all u0 ∈ Yη with ‖u0‖X1

η
< ε the ODE (4.20) has a

unique global solution z ∈ C1([0,∞),R2).

Proof. Take z ∈ C1([0,∞), Bδ/2(1)) from Lemma 4.7 and let z̃ ∈ C1([0, t0),R
2) be

another maximal extended solution of (4.20). Define

t∞ := sup{T ∈ [0, t0) : z̃(t) = z(t) ∀ 0 ≤ t < T}. (4.25)

Assume t∞ < t0. By continuity of the solutions there is δ > 0 with t∞+ δ ≤ t0 such that

|z̃(t)− z(t)| ≤ εz ∀ t ∈ [t∞ − δ, t∞ + δ]

where εz is from Lemma 4.8. Now since z̃, z solve (4.20) there holds for all 0 ≤ t < t0

Ψ(ŵ− a(χ−1(−z(t)))u(t)) = Ψ(ŵ− a(χ−1(−z̃(t)))u(t)) = 0

and thus Lemma 4.8 implies for all t ≤ t∞ + δ

|z̃(t)− z(t)| = |H(t, z̃(t))−H(t, z(t))| ≤ 1

2
|z̃(t)− z(t)|.

Therefore, z̃(t) = z(t) for all t ≤ t∞+δ. This contradicts (4.25). Hence t∞ = t0 = ∞.

Finally by using the ansatz (4.16) we obtain the following stability result for TOFs
in the freezing system.

Theorem 4.10 (Stability of the freezing system). Let Assumption 1-4 and Assumption
9 be satisfied. Further, let 0 < µ < min{µess, µ⋆, 2} with µess from Assumption 3 and µ⋆
from Theorem 2.6.. Then there is ε > 0 such that for all consistent initial values u0 ∈ Yη
with ‖u0‖X1

η
< ε and ν0 ∈ R2 the PDAE (4.12) has a unique classical solution (v, ν) on

[0,∞). Moreover, there are K, β̃ > 0 such that for all t ≥ 0 there hold

‖v(t)− v⋆‖X1
η
+ |ν(t)− ν⋆| ≤ Ke−β̃t‖u0‖X1

η
. (4.26)

Proof. Take ε > 0 so small such that Theorem 1.11 and Lemma 4.9 apply. Define v

via the ansatz (4.16) with u ∈ C([0,∞), Yη) ∩ C1([0,∞), Xη) to be the solution from
Theorem 1.11 and z ∈ C1([0,∞),R2) to be from Lemma 4.9. Then v ∈ C([0,∞), Yη) ∩
C1([0,∞), Xη). Moreover, set ν = zt + ν⋆. The anstaz (4.16) and the calculation (4.17),
(4.19) show that the pair (v, ν) solves (4.12) pointwise. Moreover, since z(0) = 0 the
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initial value from (4.12a) is satisfied. Hence (v, ν) is a classical solution of the PDAE
(4.12). Now let (ṽ, ν̃) be another classical solution of the PDAE (4.12). We define

z̃(t) =

∫ t

0

ν⋆ − ν̃(s)ds, w(t) = a(χ−1(−z̃(t))(t))ṽ(t), t ≥ 0.

Then z̃(0) = 0 and w(0) = v⋆ + u0. Furthermore, writing γ̃ = χ−1(−z̃),
wt = (ω − ν̃1)a(γ̃)S1ṽ + (c− ν̃2)a(γ̃)ṽx + a(γ̃)ṽt

= ωS1w + cwx + a(γ̃)

(
Aṽxx + f(ṽ)

f(ρ̃)

)

= F(w).

Thus w solves (0.22) and Theorem 1.11 states w = u. Moreover, the calculation (4.19)
shows z̃ solves (4.20) and we conclude z = z̃, see Lemma 4.9. Then ν = ν̃ and v =
ṽ. Thus (v, ν) is the unique solution of the PDAE (4.12) and it remains to show the
exponential estimate (4.26). For this purpose, let ‖u0‖X1

η
=: ε0 < ε and use Assumption

9, Theorem 1.11 and take z∞ from Corollary 3.30 and C,CΛ from (4.21), (4.22) and
(4.24) to estimate

|z∞ − z(t)| =
∣
∣Λ−1(Ψ(a(χ−1(z∞ − z(t)))v⋆ − v⋆))

∣
∣

≤ CΛ

∣
∣Ψ(a(χ−1(z∞ − z(t)))v⋆ − v⋆)−Ψ(a(γ−1(t))u(t)− v⋆)

∣
∣

≤ CΛCΨ‖a(γ∞ ◦ γ−1(t))v⋆ − a(γ−1(t))u(t)‖X−1

≤ CΛCΨ‖a(γ∞ ◦ γ−1(t))v⋆ − a(γ−1(t))u(t)‖Xη

≤ CΛCΨC‖a(γ∞)v⋆ − u(t)‖Xη ≤ CΛCΨCKe
−β̃tε0.

Further, we obtain

‖v(t)− v⋆‖X1
η
= ‖a(γ−1(t))u(t)− v⋆‖X1

η

≤ ‖a(γ−1(t))u(t)− a(γ∞ ◦ γ−1(t))v⋆‖X1
η
+ ‖a(γ∞ ◦ γ−1(t))v⋆ − v⋆‖X1

η

≤ ‖a(γ−1(t))u(t)− a(γ∞ ◦ γ−1(t))v⋆‖X1
η
+ ‖a(χ−1(z∞ − z(t)))v⋆ − v⋆‖X1

η

≤ C‖u(t)− a(γ∞)v⋆‖X1
η
+ C|z∞ − z(t)|‖v⋆‖Yη

≤ CKe−β̃tε0 + CΛCΨC
2Ke−β̃tε0‖v⋆‖Yη ≤ K̃

2
e−β̃tε0.

Use the Lipschitz continuity of F : X1 → X−1 from Lemma 3.8 and Assumption 9 to
obtain

|ν(t)− ν⋆| = |zt(t)| ≤ CQ|Ψ(a(χ−1(−z(t)))F(u(t)))| = CQ|Ψ(F(v(t)))|
≤ CQCΨ‖F(v(t))‖X−1 = CQCΨ‖F(v(t))−F(v⋆)‖X−1

≤ CQCΨLF‖v(t)− v⋆‖X1 ≤ CQCΨLFKe
−β̃tε0 =

K̃

2
e−β̃tε0.
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4.3 Numerical simulations and experiments

In this section we perform numerical simulations and experiments concerning TOFs. We
show how TOFs can be observed by solving (0.4) using numerical methods. As a proto-
type for the equation (0.4) we choose the quintic Ginzburg-Landau equation (QCGL).
We solve the equation (QCGL) itself as well as the corresponding freezing system from
Section 4.1. We conclude the section by calculating the spectrum of the corresponding
linearized operator and verify the assumptions from Section 1.3 that guarantees nonlin-
ear stability of TOFs. In particular, we determine the point spectrum of the linearized
operator and discuss the shape of the essential spectrum in applications.

4.3.1 Computing traveling oscillating fronts

Let us consider (QCGL) reading as

Ut = αUxx + µU + β|U |2U + γ|U |4U, x ∈ R, t > 0

for U(x, t) ∈ C with initial data U(·, 0) = U0 and parameter α, µ, β, γ ∈ C. We set
α = α1+iα2, µ = µ1+iµ2, β = β1+iβ2, γ = γ1+iγ2 with real coefficients αi, µi, βi, γi ∈ R.
Then the corresponding real-valued system for u = (ReU, ImU)⊤ is given by (0.4), i.e.

ut = Auxx + g(|u|2)u, x ∈ R, t > 0,

with initial value u(·, 0) = u0, u0 = (ReU0, ImU0)
⊤. Here A and g are given by (0.5)

with

g(|u|2) =
(
g1(|u|2) −g2(|u|2)
g2(|u|2) g1(|u|2)

)

, gi(|u|2) = µi + βi|u|2 + γi|u|4, i = 1, 2. (4.27)

As an example we choose the parameters

α = 1, µ = −1

8
, β = 1 + i, γ = −1 + i. (4.28)

We look for a TOF in the system (0.4) with the special nonlinearity g given by (4.27).
Before solving (0.4) with (4.27) we discuss a-priori properties of a TOF. Using Lemma
1.6, we can calculate the possible asymptotic rest-state v∞ and frequency ω ∈ R of the
TOF a-priori since by Lemma 1.6 there must hold g1(|v∞|2) = 0 and ω = −g2(|v∞|2).
For this purpose, let r∞ := |v∞|2. Then there holds

0 = g1(r∞) = γ1r
2
∞ + β1r∞ + µ1.

Hence there are at most two possible solutions

r±∞ =
β1
2γ1

± 1

2γ1

√

β2
1 − 4γ1µ1.
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Taking Assumption 2 into account, we have

g′1(r
±
∞) = β1 + 2γ1r∞ = ±

√

β2
1 − 4γ1µ1.

Therefore, g′1(r
+
∞) < 0 and g′1(r

−
∞) > 0. By Assumption 2 we have for a stable TOF

r∞ = r+∞ and with the parameters from (4.28) we obtain

|v∞| =
√

β1
2γ1

+
1

2γ1

√

β2
1 − 4γ1µ1 =

√

2 +
√
2

2
≈ 0.9239. (4.29)

In addition, the corresponding frequency of the TOF is given by

Figure 4.1: Numerical simulation of a TOF in (QCGL) with parameters from (4.28).
Real part (left), imaginary part (right).

ω = −g2(r∞) = −µ2 − β2r∞ − γ2r
2
∞ = −7

8
−

√
2

2
≈ −1.5821. (4.30)

To solve (0.4) numerically as an initial value problem, we have to truncate the equation
to a bounded domain of computation Ω = [−L, L] and then solve the equation using, for
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instance, finite difference methods. In this case we will choose homogeneous Neumann
boundary conditions for the equation, i.e. ux(x, t) = 0, x ∈ ∂Ω, t > 0. As an initial
value we set u(·, 0) = (u0, 0)

⊤ with u0(x) = 1
2
tanh(1000x) + 1

2
. In Figure 4.1 we see

the results of a finite difference approximation of the solution for L = 50 with spatial
step size ∆x = 0.1. For the time integration we used the implicit Euler method to
avoid restrictions on the step size in time, which is chosen to be ∆t = 0.1. The implicit
equations are solved using Newton’s method with a tolerance of 10−5.
We see that after a short time period the solution has the shape of a TOF. Taking
Theorem 1.11 into account, we expect that the solution is an approximation of a TOF in
the equation since it converges to the TOF. We see that the front travels in space with
positive velocity c > 0 and the asymptotic rest-state is approximately |v∞| ≈ 0.9239 as
calculated in (4.29). However, the velocity c and the frequency ω cannot be determined
by the numerical results precisely without additional effort. Moreover, we see that the
TOF leaves the domain of computation after a certain time period and vanishes. In
order to avoid this and to compute the velocities precisely, we apply the freezing method
to this example in the next section.
TOFs can be observed in a large set of parameters for (QCGL). As a second example
of a TOF for different parameter we refer to Figure 0.2. In addition, we consider the
Ginzburg-Landau equation with an extra septic term, see [20], reading as

Ut = αUxx + µU + β|U |2U + γ|U |4U + δ|U |6U x ∈ R, t > 0. (4.31)

In this case the nonlinearity g is a cubic polynomial in |u|2. The corresponding real-
valued system reads as (0.4) with the nonlinearity

g(|u|2) =
(
g1(|u|2) −g2(|u|2)
g2(|u|2) g1(|u|2)

)

, gi(|u|2) = µi + βi|u|2 + γi|u|4 + δi|u|6, i = 1, 2.

(4.32)

We choose the parameter set

α = 1 +
i

2
, µ = − 1

10
(1− i), β = 1 + i, γ = 1 + i, δ = −1 + i. (4.33)

In this case we have |v∞| ≈ 1.2608 and ω ≈ 8.2323. The numerical results are shown
in Figure 4.2. We see that in this equation TOFs occur as well and expect them to be
stable. In particular, the experiments in this section show the existence and the stability
properties of TOFs from in Chapter 3.

4.3.2 Freezing traveling oscillating fronts

Now we apply the freezing method to the first example from Section 4.3.1, cf. (0.4),
(4.27), with parameter (4.28) and compute the profile and velocities of a TOF numeri-
cally. For this purpose, recall the freezing system from Section 4.1 with the fixed phase



4.3. NUMERICAL SIMULATIONS AND EXPERIMENTS 129

Figure 4.2: Numerical simulation of a TOF in (4.31) with parameters from (4.33). Real
part (left), imaginary part (right).

condition (4.7) reading as

vt =

(
Avxx + ν2vx + ν1S1v + f(v)

ν1S1ρ+ f(ρ)

)

,

(
v(0)
ρ(0)

)

= u0,

0 = Ψfix(ŵ − v),

γt = dLγ(1)dχ(1)
−1ν, γ(0) = 1

with initial value u0 = (u0, ρ0)
⊤. To compute the solution of (4.7a), (4.7b) we use a

finite difference discretization in space and for time integration we use the following
algorithm to compute the solution (vn+1, νn+1) at the next time step tn+1 = tn+∆t with
v
n+1 = (vn+1, ρn+1)⊤ from a current state (vn, νn) at time tn:

1. Given a solution (vn, νn) with v
n = (vn, ρn)⊤ of (4.7) at time tn.

2. Compute vn+1 as an implicit Euler step of the finite difference discretization of the
equation vt = Avxx + ν1vx + ν2S1v + f(v) with ν = νn and initial value vn on a
truncated domain Ω = [−L, L] and step size ∆t.



130 CHAPTER 4. FREEZING TRAVELING OSCILLATING FRONTS

3. Set ρn+1 = vn+1(L).

4. Compute νn+1 from the linear system (4.10) with (v, ρ) = (vn+1, ρn+1).

a) real part b) imaginary part

c) real part d) imaginary part

-50 0 50

-0.5

0

0.5

1

e) real part at t = 60

-50 0 50

-0.5

0

0.5

1

f) imaginary part at t = 60

Figure 4.3: Numerical simulation of the freezing method in (QCGL) with parameters
from (4.28).
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g) frequency ω (blue) and speed c (red)

Figure 4.4: Frequency ω (blue) and velocity c (red) in the numerical simulation of the
freezing method in (QCGL) with parameters from (4.28).

We apply this algorithm to (QCGL) with the parameter set (4.28) from the previous
Section 4.3.1 and initial value u0(x) = (1

2
tanh(1000x) + 1

2
, 0)⊤. The results are shown

in Figure 4.3 and Figure 4.4. The spatial step size is chosen to be ∆x = 0.1 and the
domain of computation is Ω = [−50, 50]. For the time discetization we use ∆t = 0.1
and the implicit equations are solved with Newton’s methods using a tolerance of 10−5.
We see that the numerical solution of the freezing method converge to the profile of
the TOF as Theorem 4.10 guarantees. In addition, the variable ν converges to the
frequency and velocity of the TOF which are numerically given by ω ≈ −1.5821 and
c ≈ 1.29 respectively. Note that the numerical value of the frequency coincides with
the a-priori calculated value in (4.30). In particular, the freezing method is a powerful
tool to compute the profile of a TOF as well as its frequency and velocity. Moreover, it
enables us to pursue the TOF for arbitrary times without increasing the computational
domain and therefore the numerical effort.

4.3.3 Numerical spectrum

We conclude Chapter 4 by computing the spectrum of the linearized operator L from
(0.26) numerically and discuss the geometric shape of its essential spectrum in applica-
tions. In particular, we verify numerically Assumption 3 and 4 which guarantee nonlinear
stability with asymptotic phase by Theorem 1.11.
Let us first consider the essential spectrum and the dispersion set σdisp,µ(L) from (1.12),
(1.13). We want to verify Assumption 4 in applications for (QCGL) with the parameter
set from (4.28). One can discuss the geometry of the dispersion curves analytically, cf.
Section 3.3. However, we are interested in a numerical visualization of the curves. In
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the case of (QCGL) with (4.28) the dispersion set consists of

σ+
disp,µ̃(L) =

{
s ∈ C :

s = −ν2 + i(c + 2µ̃)ν + µ̃2 − cµ̃+ g′1(|v∞|2)|v∞|2 ± |g′1(|v∞|2)|v∞|2|
}

and

σ−
disp,µ̃(L) =

{
s ∈ C : s = −ν2 + i(c+ 2µ̃)ν + µ̃2 + cµ̃+ µ1 ± iω

}
.

It is easy to see that the dispersion set describes four parabolas in the complex plane
opened to the left. Since we have c > 0, µ1 < 0 and g′1(|v∞|2) = β1 + 2γ1|v∞|2 =
1 − 2|v∞|2 < 0, Assumption 4 is satisfied. In particular, in Figure 4.5 the parabolas are
shown in the cases µ̃ = 0 and µ̃ = 0.05. In the latter case, we see that the dispersion
curves are included in the strict left half-plane.
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b) µ̃ = 0.05

Figure 4.5: The dispersion sets σ+
disp,µ̃(L) (blue) and σ−

disp,µ̃(L) (red) in (QCGL) with
(4.28).

In the example (4.28) the dispersion curves are given by four parabolas, since the
imaginary part of the diffusion coefficient vanishes. From (1.12) and (1.13) we see that
the dispersion curves can be much more complicated if there is a non-vanishing imaginary
part of the diffusion coefficient, i.e. α2 6= 0. As an example for this case we use the
parameters (4.28) but set α2 = − 3

10
. The dispersion curves in this case are shown in

Figure 4.6, again for the exponential growth rates µ̃ = 0 and µ̃ = 0.05. Also in this case
the essential spectrum is included in the strict left half-plane if the exponential growth
rate is chosen to be µ̃ = 0.05. This strongly depends on the magnitude and sign of the
imaginary part of the diffusion coefficient. It might happen that the curve σdisp,µ(L) forms
a dovetail due to the fourth order terms, see Figure 4.7. Then Assumption 4 is violated.
But as Figure 4.7 shows there also might be an exponential growth rate such that the
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Figure 4.6: The dispersion sets σ+
disp,µ̃(L) (blue) and σ−

disp,µ̃(L) (red) in (QCGL) with

(4.28) but α = 1− 3
10
i.

dispersion set is still included in the left half-plane. We expect that our stability results
also apply in this case. However, one has to be careful using the exponential growth
rates µ.
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Figure 4.7: The dispersion sets σ+
disp,µ̃(L) (blue) and σ−

disp,µ̃(L) (red) in (QCGL) with

(4.28) but α = 1 + 3
10
i.

Now let us consider the point spectrum of the linearized operator L and verify As-
sumption 3. In Section 3.3 we have shown that for the essential spectrum it holds
σess(L) = σess(L) for the operators L ∈ C[Xη] and L ∈ C[L2

η]. As we will see, a similar
relation holds true for the point spectrum. For this purpose, recall L defined by (0.26)
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reading as

L : Yη → Xη,

(
u
ρ

)

7→
(
Auxx + cux + Sωu+Df(v⋆)u

SωρDf(v∞)ρ

)

and L from (0.12) reading as

L : H2
η → L2

η, u 7→ Auxx + cux + Sωu+Df(v⋆)u.

It follows that if s ∈ C is an eigenvalue of L with eigenfunction u0 ∈ H2
η then s is also an

eigenvalue of L with eigenfunction u0 = (u0, 0)
⊤ ∈ Yη, i.e. σpt(L) ⊂ σpt(L). Conversely,

let s ∈ C be an eigenvalue of L with eigenfunction u0 = (u0, ρ0)
⊤. If ρ0 = 0 then s

is also an eigenvalue of L with eigenfunction u0. Now assume ρ0 6= 0. Then we have
(sI − Sω −Df(v∞))ρ0 = 0 and thus either s = 2g′1(|v∞|2)|v∞|2 or s = 0. But 0 ∈ σ(L)
and we obtain

σpt(L) ⊂ σpt(L) ∪ {2g′1(|v∞|2)|v∞|2}.

The possible eigenvalue 2g′1(|v∞|2)|v∞|2 is of no interest since it is included in the strict
left half-plane by Assumption 2. So neglecting this additional eigenvalue it is sufficient
to compute the spectrum of the operator L instead of the spectrum of the operator L to
verify Assumption 4. Moreover, we have

σ(L) ⊂ σ(L) ∪ {2g′1(|v∞|2)|v∞|2}.

Now if s ∈ σpt(L) for L ∈ C[L2
η] with eigenfunction u0 ∈ Yη, then u0 ∈ Y and s ∈ σpt(L)

for L ∈ C[L2]. In particular, the point spectrum does not move by taking exponential
weights into account. More precisely, if s belongs to the point spectrum of L on L2 then
s belongs to the point spectrum of L on L2

η, unless the essential spectrum has moved
to encompass s, cf. [36, Sec. 3.1.1.2]. Thus to verify that the point spectrum of L,
respectively L, is included in the strict left half-plane it is sufficient to compute the
spectrum on L2 instead of L2

η.
Finally, let us compute the point spectrum of L, respectively L, numerically in the case
of (QCGL) with (4.28). In order to do so, we use a finite difference approximation of L
on the truncated domain Ω = [−1000, 1000] with spatial step size ∆x = 0.1 and periodic
boundary conditions. The numerical results are shown in Figure 4.8 and Figure 4.9.

We see that there are no eigenvalues in the right half-plane or on the imaginary axis
expect for the zero eigenvalue. Moreover, there are even no eigenvalues in left half-
plane. Therefore we expect the point spectrum of L on X to be empty. The isolated
eigenvalues between the dispersion curves belong to the essential spectrum since in these
regions the operator sI −L is not Fredholm of index 0. This can be seen by computing
the corresponding Morse indices, cf. [36] and Figure 3.3. In particular, the dispersion
curves from the numerical spectrum do not fit exactly to the dispersion set calculated in
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Figure 4.8: Numerical spectrum of the linearized operator.
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Figure 4.9: Numerical spectrum of the linearized operator with dispersion set (red) and
zero eigenvalue (green).

(1.12) and (1.13). The reason for this is that we approximate the operator L by an finite
difference approximation on a large, but bounded, domain. As a result the parabolas
from the dispersion set are approximated by ellipses depending on the size of the domain
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of computation. This can be seen by considering the whole spectrum of the linearized
operator on a truncated domain, see Figure 4.10.
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Figure 4.10: Whole numerical spectrum of the linearized operator on the truncated
domain with periodic boundary conditions.



Chapter 5

Stability in polynomially weighted

spaces

In Chapter 3 we proved a nonlinear stability result for TOFs when the perturbation u0
of the initial data u(0) = v⋆ + u0 converges exponentially fast to some limit r∞ at +∞
and to zero at −∞. A natural question arises whether the assumption on the initial
perturbation can be weakened from exponential to polynomial decay. In this chapter
we prove a nonlinear stability result for polynomially decaying initial perturbations, see
Theorem 1.13. In this case we have to assume r∞ = 0, i.e. u0 ∈ H1

η with a polynomial
weight function η.
Throughout the chapter we set η = ηpoly with the polynomial weight function from (0.29)
reading as

ηpoly(x) = (x2 + 1)
1

2 .

and consider the weighted spaces L2
k, H

ℓ
k from (0.30). We assume the existence of a TOF

with profile v⋆ and speeds (ω, c) and consider the perturbed co-moving equation from
(0.11)

ut = Auxx + cux + Sωu+ f(u), u(0) = v⋆ + u0

with an initial perturbation u0 ∈ H2
k for some k ∈ N. Since u0 → 0 at ±∞ we expect

that the limit at +∞ of the solution u of (0.11) stays constant in the time evolution, cf.
(0.18). In particular, a TOF with frequency ω can be seen as a traveling wave solution
of the co-rotated equation

ut = Auxx + Sωu+ f(u).

For that reason we seek for solutions of (0.11) in the affine linear spaces, cf. (0.31)

Mk = v̄ + L2
k, M ℓ

k = v̄ +Hℓ
k, v̄ = v∞v̂.

137
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5.1 Polynomially weighted Sobolev spaces

Before investigating the nonlinear stability we collect some properties concerning the
weighted spaces L2

k, H
ℓ
k from (0.30). The function η = ηpoly ∈ C∞(R,R) from (0.29) is

a function of linear growth, i.e. η(x) ∼ |x|. More precisely, for |x| > 1, k ∈ N0 the
following estimates hold true

|x|k ≤ η(x)k ≤ 2
k
2 |x|k.

Furthermore, we note the first and second derivative

ηx(x) = x(x2 + 1)−
1
2 , ηxx(x) = (x2 + 1)−

3
2 .

Then |ηx(x)|, |ηxx(x)| ≤ 1, x ∈ R and the function spaces L2
k, H

ℓ
k are Hilbert spaces with

the inner products

(u, v)L2
k
= (ηku, ηkv)L2, (u, v)Hℓ

k
= (ηku, ηkv)Hℓ .

Moreover, Hℓ
k is dense in L2

k and since ηk(x) ≤ ηℓ(x) for all x ∈ R as long as k ≤ ℓ, it
follows immediately that L2

ℓ ⊂ L2
k and the inclusion is dense as well. As in Chapter 3 we

consider the multiplication operator mku = ηku for u ∈ Hℓ
k, k ∈ N0, ℓ = 1, 2. Similarly

to Lemma 3.1 we have that mk defines a continuous isomorphism from Hℓ
k to Hℓ.

Lemma 5.1. Let k ∈ N0 and mku = ηku define the multiplication operator associates
with ηk. Then

i) mk : L
2
k → L2 is an isometric isomorphism.

ii) mk : H
ℓ
k → Hℓ, ℓ = 1, 2 is a continuous isomorphism.

Remark 5.2. It also holds true that mk : Hℓ
k → Hℓ is a continuous isomorphism for

arbitrary ℓ ∈ N. However, the proof is more involved and we are only interested in the
cases ℓ = 0, 1, 2 as in Lemma 5.1.

Proof. We show that mk : Hℓ
k → Hℓ, ℓ = 1, 2 is continuous. Then the claim follows as

in the proof of Lemma 3.1. First let u ∈ H1
k . Then

‖(ηku)x‖L2 = ‖kηk−1ηxu+ ηkux‖L2 ≤ k‖ηk−1u‖L2 + ‖ηkux‖L2 ≤ (k + 1)‖u‖H1
k
.

Thus,

‖ηku‖2H1 = ‖u‖2L2
k
+ ‖∂(ηku)‖2L2 ≤ (k2 + 2k + 2)‖u‖2H1

k
.

For u ∈ H2
k we have

‖(ηu)xx‖L2 = ‖k(k − 1)ηk−2η2xu+ kηk−1ηxxu+ 2kηk−1ηxux + ηkuxx‖L2

≤ (k(k − 1) + k)‖u‖L2
k
+ 2k‖ux‖L2

k
+ ‖uxx‖L2

k
≤ (k + 1)2‖u‖H2

k
.
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To show resolvent estimates of the linearized operator later on we need a integration
by parts formula in L2

k which is slightly different from the standard integration by parts
formula in L2.

Lemma 5.3. Suppose u, v ∈ H1
k(R,R

n). Then there holds the following integration by
parts formula

−(u, vx)L2
k
= (ux, v)L2

k
+ 2k(η−1ηxu, v)L2

k
.

Moreover, if u, v ∈ H2
k(R,R

n), then there holds

(u, vxx)L2
k
= (uxx, v)L2

k
+ 4k(η−1ηxux, v)L2

k
+ (4k2 − 2k)(η−2η2xu, v)L2

k
+ 2k(η−1ηxxu, v)L2

k
.

Proof. We write (·, ·)L2
k
= (·, ·). The assertion is a direct consequence of the standard

integration by parts formula in L2, since

−(u, vx) = −
∫

R

η2k(x)u(x)⊤vx(x)dx =

∫

R

∂x(η
2k(x)u(x))⊤v(x)dx

=

∫

R

η2k(x)ux(x)
⊤v(x)dx+ 2k

∫

R

η2k−1(x)ηx(x)u(x)
⊤v(x)dx

= (ux, v) + 2k(η−1ηxu, v).

The second formula follows by applying integration by parts in L2
η twice. We obtain

(u, vxx) = −(ux, vx)− 2k(η−1ηxu, vx)

= (uxx, v) + 2k(η−1ηxux, v) + 2k[(2k − 1)(η−2η2xu, v) + (η−1ηxxu, v) + (η−1ηxux, v)]

= (uxx, v) + 4k(η−1ηxux, v) + (4k2 − 2k)(η−2η2xu, v) + 2k(η−1ηxxu, v).

In Lemma 3.3 we have proven that the space C∞
0 (R,Rn) of smooth function with

compact support are dense in H1
η (R,R

n) if η is an exponential weight function as in
(0.24). However, the proof of Lemma 3.3 is independent of the choice of the weight
function η and we conclude that C∞

0 (R,Rn) is dense in H1
k(R,R

n). Since we look for
traveling waves in the space L2

k we have to collect some smoothness properties of the
shift u 7→ u(· − τ), τ ∈ R on the polynomially weighted spaces. As in the exponential
case, cf. Lemma 3.4, it turns out that the shift is continuous on L2

k and locally Lipschitz
continuous on H1

k .

Lemma 5.4. Suppose k ∈ N0.

i) If u ∈ L2
k and τ ∈ R, then

‖u(· − τ)‖L2
k
≤ Ck

τ ‖u‖L2
k
, Cτ := 1 + |τ |.
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ii) If u ∈ H1
k and τ ∈ R, then

‖u(· − τ)− u‖L2
k
≤ Ck

τ |τ |‖ux‖L2
k
.

iii) If u ∈ L2
k, then

‖u(· − τ)− u‖L2
k
→ 0 as τ → 0.

Further, the estimate in ii) holds true if u is replaced by v̂ from (0.19) or v⋆ from
Assumption 2.

Proof. The case k = 0 is the usual case in L2. Thus, let k ≥ 1. We only show i) then ii)
and iii) follow exactly as in the proof of Lemma 3.4.
First note for all x, τ ∈ R

η(x+ τ)2

η(x)2
=
x2 + 2τx+ τ 2 + 1

x2 + 1
≤ 1 + 2|τ | |x|

x2 + 1
+

τ 2

x2 + 1
≤ 1 + 2|τ |+ τ 2 = (1 + |τ |)2.

Now we obtain

‖u(· − τ)‖2L2
k
=

∫

R

η2k(x+ τ)|u(x)|2dx ≤ (1 + |τ |)2k
∫

R

η2k(x)|u(x)|2dx = C2k
τ ‖u‖2L2

k
.

5.2 Group action and equivariance

We consider the group R with the canonical composition

◦ : R× R → G, (τ1, τ2) 7→ τ1 + τ2.

Here our Lie group is simply the additive group R. In contrast to Chapter 3 its structure
as a manifold is trivial since it is a linear space. Therefore we do not have to work in
charts since their definition is trivial. We let R act on the affine Hilbert space Mk via
the shift

a(τ) :Mk → Mk, v 7→ a(τ)v := v(· − τ). (5.1)

We continue in the same fashion as in Chapter 3 and study the smoothness properties
of this action.
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Lemma 5.5. For k ∈ N0, ℓ = 0, 1, 2, and v ∈M ℓ
k the group action

a(·)v : R → M ℓ
k, τ 7→ v(· − τ)

is continuous. If v ∈ M1
k then the group action a(·)v : R → Mk is of class C1 and its

derivative has the local representation

d[a(τ)v)] : R → L2
k, h 7→ −vx(· − τ)h. (5.2)

Proof. Recall v̄ = v∞v̂ from (0.31). Then using Lemma 5.4 and the chart (1.17) we
obtain for v ∈M ℓ

k

‖a(τ)v − v̄‖Mℓ
k
≤ ‖v(· − τ)− v̄‖L2

k
+

ℓ∑

i=1

‖∂iv(· − τ)‖L2
k

≤ ‖(v − v̄)(· − τ)‖L2
k
+ |v∞|‖v̂(· − τ)− v̂‖L2

k
+

ℓ∑

i=1

‖∂iv(· − τ)‖L2
k

≤ Ck
τ

(

‖v − v̄‖L2
k
+ |τ |‖v̂x‖L2

k
|v∞|+

ℓ∑

i=1

‖∂iv‖L2
k

)

<∞.

Hence a(·)v maps R into M ℓ
k. Similarly, by Lemma 5.4 a(·)v is continuous since

‖a(τ)v − v‖Hℓ
k
= ‖v(· − τ)− v‖Hℓ

k
≤ ‖(v − v̄)(· − τ)− (v − v̄)‖L2

k

+ |v∞|‖v̂(· − τ)− v̂‖L2
k
+

ℓ∑

i=1

‖∂iv(· − τ)‖L2
k
→ 0, τ → 0.

It remains to show that a(·)v is of class C1 if v ∈M1
k . As in the proof of Lemma 3.7, cf.

(3.17), one shows for u ∈ H1
k

‖u(· − h)− u− hux‖L2
k
= o(|h|)

as h→ 0 as well as

‖v̂(· − h)− v̂ − hv̂x‖L2
k
= o(|h|).

Then we conclude for v ∈M1
k using the chart (M1

k , χ) from (1.17)

‖χ(a(τ + h)v)− χ(a(τ)v)− hvx(· − τ)‖L2
k

= ‖v(· − τ − h)− v(· − τ)− hvx(· − τ)‖L2
k
≤ Ck

τ ‖v(· − h)− v − hvx‖L2
k

≤ Ck
τ ‖(v − v̄)(· − h)− (v − v̄)− h(v − v̄)x‖L2

k
+ Ck

τ |v∞|‖v̂(· − h)− v̂ − hv̂x‖L2
k
= o(|h|).

This proves a(·)v to be of class C1 and its derivative has the local representation in the
chart (M1

k , χ) given by (5.2).
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The right hand side of (0.11) is given by the nonlinear operator

F :M2
k → L2

k, u 7→ Auxx + cux + Sωu+ f(u).

As a next step we show that F is well-defined, i.e. maps M2
k into L2

k, and is continuous.

Lemma 5.6. Let Assumption 1, 2 be satisfied and k ∈ N0. Then F : M2
k → L2

k from
(0.23) defines a continuous operator.

Proof. Let u, v ∈M2
k . Then by Sobolev embedding, cf. Theorem D.2, we have u, v ∈ L∞.

Since f ∈ C3 this yields, using the mean value theorem, for some K > 0

‖f(u)− f(v)‖2L2
k
≤
∫

R

η2k(x)
∣
∣
∣

∫ 1

0

f ′(u(x) + τ(u(x)− v(x))(u(x)− v(x))dτ
∣
∣
∣

2

dx

≤ Kmax(‖u‖2L∞, ‖v‖2L∞)‖u− v‖2L2
k
.

Next, we note from Lemma 1.6 the equality f(v∞) = g(|v∞|2)v∞ = −Sωv∞ and from
Proposition 2.7 that ‖v̂‖L2

k
(R−), ‖v̂ − 1‖L2

k
(R+) < ∞. Then use f ∈ C3 from Assumption

1 and v̄ = v∞v̂ to obtain for u ∈M2
k and some C > 0

‖Sωu+ f(u)‖L2
k
≤ ‖Sω(u− v̄)‖L2

k
+ ‖f(u)− f(v̄)‖L2

k
+ ‖Sωv̄ − f(v̄)‖L2

k

≤ |ω|‖u− v̄‖L2
k
+ C‖u− v̄‖L2

k
+ ‖Sωv̄‖L2

k(R−) + ‖f(v̄)− f(0)‖L2
k(R−)

+ ‖Sω v̄ − f(v̄)‖L2
k(R+)

≤ (|ω|+ C)(‖u− v̄‖L2
k
+ |v∞|‖v̂‖L2

k
(R−)) + ‖Sω(v̄ − v∞) + f(v̄)− f(v∞)‖L2

k
(R+)

≤ (|ω|+ C)(‖u− v̄‖L2
k
+ |v∞|‖v̂‖L2

k
(R−)) + |ω||v∞|‖v̂ − 1‖L2

k
(R+)

+ C|v∞|‖v̂ − 1‖L2
k
(R+) <∞.

Thus, F maps M2
k into L2

k. For the continuity pick u, v ∈M2
k . Then

‖F (u)− F (v)‖L2
k
= |A|‖uxx − vxx‖L2

k
+ |c|‖ux − vx‖L2

k
+ |ω|‖u− v‖L2

k
+ ‖f(u)− f(v)‖L2

k

≤ |A|‖uxx − vxx‖L2
k
+ |c|‖ux − vx‖L2

k
+ |ω|‖u− v‖L2

k
+Kmax(‖u‖2L∞, ‖v‖2L∞)‖u− v‖2L2

k

→ 0, ‖u− v‖H2
k
→ 0.

5.3 The linearized operator

In this section we discuss the spectral properties of the linearized operator L from (0.12)
considered on the polynomially weighted spaces L2

k, i.e.

L : H2
k ⊂ L2

k → L2
k, u 7→ Lu = Auxx + cux + Sωu+Df(v⋆)u. (5.3)
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The operator occurs when linearizing the right hand side of (0.11) at the TOF given by
the profile v⋆. In particular, we can write (0.11) as the semilinear parabolic equation

ut = Lu+N(u), u(0) = v⋆ + u0

with nonlinear part N(u) = f(u)− Df(v⋆)u. As in Chapter 3 one of the main steps is
to show existence and time decaying estimates of the semigroup {etL}t>0 generated by
L. It turns out that the essential spectrum of L touches the imaginary axis, cf. Figure
0.3.

5.3.1 Resolvent estimates for large |s|
We are interested in the solution of the resolvent equation

(sI − L)u = r, s ∈ C, r ∈ L2
k. (5.4)

As in the exponential case we start with a-priori estimates for solutions u ∈ H2
k of (5.4)

for arbitrary r ∈ L2
k as long as |s| is sufficiently large and s ∈ C lies in the exterior of

some sector with an appropriate angle opened to the left, cf. Figure 3.1.

Lemma 5.7. Let Assumption 1, 2 be satisfied and k ≥ 0. Then L : H2
k ⊂ L2

k → L2
k is a

closed, densely defined, linear operator on L2
k. Moreover, there exist ε0, R0, C > 0 such

that for all

s ∈ Ω0 :=
{

s ∈ C : |s| ≥ R0, | arg(s)| ≤
π

2
+ ε0

}

the equation (5.4) with u ∈ H2
k and r ∈ L2

k implies

|s|‖u‖2L2
k
+ ‖ux‖2L2

k
≤ C

|s|‖r‖
2
L2
k

(5.5)

|s|2‖u‖2L2
k
+ |s|‖ux‖2L2

k
+ ‖uxx‖2L2

k
≤ C‖r‖2L2

k
. (5.6)

Proof. The proof is almost the same as the one of Lemma 3.10. Therefore, we only note
the main steps that differ. First of all, note that the closedness of L follows from (5.6)
as in the proof of Lemma 3.10. We write (·, ·) = (·, ·)L2

k
and take the inner product of

(5.4) with u in L2
k to obtain

(u, r) = s‖u‖2L2
k
− (u,Auxx)− c(u, ux)− (u, Sωu)− (u,Df(v⋆)u).

Now the integration by parts formula from Lemma 5.3 leads to

s‖u‖2L2
k
+ (ux, Aux) = −2k(η−1ηxu,Aux) + c(u, ux) + (u, (Sω +Df(v⋆)u) + (u, r). (5.7)
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Now since |η−1(x)ηx(x)| ≤ 1, |Df(v⋆(x))| ≤ Kf for all x ∈ R and some Kf > 0 we obtain
using Cauchy-Schwarz and Young’s inequality with εi > 0, i = 1, 2

|(ux, Aux)| ≤ |A|‖ux‖2L2
k
, |2k(η−1ηxu,Aux)| ≤

k2|A|
ε1

‖u‖2L2
k
+ ε1|A|‖ux‖2L2

k
,

|c(u, ux)| ≤
|c|
4ε2

‖u‖2L2
k
+ ε2|c|‖ux‖2L2

k
, (u, (Sω +Df(v⋆)u) ≤ (|ω|+Kf )‖u‖2L2

k
.

(5.8)

Taking absolute value in (5.7) and using (5.8) with εi = 1 yields

|s|‖u‖2L2
k
≤ K0‖ux‖2L2

k
+K1‖u‖2L2

k
+ ‖u‖L2

k
‖r‖L2

k
(5.9)

with K0 = 2|A| + |c| and K1 = k2|A| + |c|
4
+ |ω|+Kf . Note that (ux, Aux) = α1‖ux‖L2

k

holds. Taking real part in (5.7) and using (5.8) with ε1 =
α1

4|A| and ε2 =
α1

4|c| leads to

Re s‖u‖2L2
k
+ α1‖ux‖2L2

k
≤ α1

2
‖ux‖2L2

k
+K2‖u‖2L2

k
+ ‖u‖L2

k
‖r‖L2

k

with K2 =
4k2|A|2
α1

+ |c|2
α1

+ |ω|+Kf . Then we have

Re s‖u‖2L2
k
+
α1

2
‖ux‖2L2

k
≤ K2‖u‖2L2

k
+ ‖u‖L2

k
‖r‖L2

k
(5.10)

Now the claim follows exactly as in the proof of Lemma 3.10 using the estimates (5.9),
(5.10).

As in Section 3.3 we continue by determining the essential spectrum of L on L2
k. In

particular, we prove sI −L to be Fredholm of index 0 for s to the right of the dispersion
set σdisp(L) from (0.14). This is done using the classical results from the spectral theory
of second order differential operators, cf. [32], [56], [36]. We proceed in the same fashion
as in Section 3.3. We show that sI − L is Fredholm in L2

k if and only if the operator
sI − Lk is Fredholm in L2 with

Lk : H
2 → L2, u 7→ ηkLη−ku (5.11)

and the Fredholm indices coincide. Then Lk has the form of a second order differential
operator given by

Lku = Auxx +Bkux + Ckux

with coefficients

Bk = −2kη−1ηxA+ cI, Ck =
(
(k2 + k)(η−1ηx)

2 − kη−1ηxx
)
A− kη−1ηxcI + Sω +Df(v⋆).
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Since |η−1ηx|, |η−1ηxx| → 0 as x→ ±∞ we note their limits

Bk(x) → cI, Ck(x) → Sω +Df(v±), x → ±∞, v+ = v∞, v− = 0. (5.12)

In view of these limits we also consider the piecewise constant coefficient operator

L∞ : H2 → L2, u 7→ Auxx + cux + C±u, C±(x) =

{

Sω +Df(v+), x ≥ 0

Sω +Df(v−), x < 0.
(5.13)

Lemma 5.8. Let Assumption 1, 2 be satisfied and k ∈ N0. Then the following statements
are equivalent:

i) The operator sI − L : H2
k → L2

k is a Fredholm operator of index ℓ.

ii) The operator sI − Lk : H
2 → L2 is a Fredholm operator of index ℓ.

iii) The operator sI − L∞ : H2 → L2 is a Fredholm operator of index ℓ.

Proof. i) ⇔ ii) The claim follows since the multiplication operator associated with ηk is
a homeomorphism, cf. Lemma 5.1.
ii) ⇔ iii) The assertion follows exactly as in the proof of (3.13) using a compact per-
turbation argument and (5.12).

Recall the dispersion set σdisp(L) from (0.14) given by

σdisp(L) = σ−
disp(L) ∪ σ+

disp(L), σ±
disp(L) := {s ∈ C : ∃ν ∈ R s.t. d±(s, ν) = 0},

where d± is given by

d±(s, ν) := det(sI + ν2A− iνcI − Sω −Df(v±)), v+ = v∞, v− = 0. (5.14)

A straightforward computation shows d+(s, ν) = 0 if and only if

s = −α1ν
2 + icν + g′1(|v∞|2)|v∞|2 ±

(
−α2

2ν
4 + 2α2g

′
2(|v∞|2)|v∞|2ν2 + (g′1(|v∞|2)|v∞|2)2

) 1
2

as well as d−(s, ν) = 0 if and only if

s = −α1ν
2 + icν + g1(0)±

(
−α2

2ν
4 + 2α2(g2(0) + ω)ν2 − (g2(0) + ω)2

) 1
2 .

As in Section 3.3 we have by the classical results, for instance from [36], [32], that the
piecewise constant coefficient operator sI − L∞ is Fredholm if and only if s /∈ σdisp(L)
and the same holds true for sI − L, cf. Lemma 5.8. Summarizing we have the following
theorem and its proof follows as in Theorem 3.16.
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Theorem 5.9. Let Assumption 1, 2 and 5 be satisfied. Then there are ε, γ > 0 and a
unique connected component Ω∞ of C\σdisp(L) satisfying for all k ∈ N0:

i) Sε,γ :=
{
s ∈ C : | arg(s− γ)| < π

2
+ ε, s 6= γ

}
⊂ Ω∞.

ii) For all s ∈ Ω∞ the operator sI − L : H2
k → L2

k is Fredholm of index 0.

iii) ∂Ω∞ ⊂ σdisp(L).

iv) σess(L) ⊂ C\Ω∞.

Proof. The assertion follows in the same way as in the proof of Theorem 3.16 using
Lemma 5.8.

From Theorem 5.9 and Lemma 5.7 we conclude that L : H2
k → L2

k is a sectorial
operator. But since its essential spectrum touches the imaginary axis at the origin we
can only derive estimates of the corresponding semigroup by exponentially increasing
terms. To show time decaying estimates for the semigroup we need to show delicate
resolvent estimates near the origin. In order to do so, the strategy is as follows. First,
we discuss the piecewise constant operator L∞ given by

L∞u = Auxx + cux + C±u

with C± from (5.13). In particular, we are interested into the solution of the resolvent
equation

(sI − L∞)u = r (5.15)

for small s. We use the concepts of exponential dichotomies, cf. [22], and the concepts
of exponential trichotomies, cf. [31] and [13], to construct solutions of the equation
(5.15). See also Appendix B. Now we have 0 ∈ σess(L∞) when L∞ is considered as
closed operator on L2

k. Thus, L∞ is not a Fredholm operator and not invertible on
L2
k. However, using ideas from [37] we derive resolvent estimates for u in L2

k as long
as r ∈ L2

k+2 and show that L∞ is invertible from L2
k to L2

k+2. A compact perturbation
argument in Section 5.3.3 will show the that the linearized operator L considered from
L2
k to L2

k+2 is a Fredholm operator of index 0. Using Fredholm index 0 and roughness of
exponential trichotomies under small perturbations, will lead to sharp resolvent estimates
for the linearized operator L in Section 5.3.4.

5.3.2 Resolvent estimates for the piecewise constant operator L∞

Let us start by considering the piecewise constant coefficient operator L∞ and its re-
solvent equation (5.15). L∞ belongs to a large class of general second order differential
operators of the form

T u = Au′′ +Bu′ + Cu, A,B ∈ R
n,n, x⊤Ax > 0, x 6= 0, C ∈ L∞(R,Rn) (5.16)

which we consider on the polynomial weighted spaces L2
k, k ∈ N0.
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Lemma 5.10. For all k ∈ N0 the linear second order differential operator

T : H2
k ⊂ L2

k → L2
k

given by (5.16) is a closed, densely defined, linear operator on L2
k, i.e. T ∈ C[L2

k].

Proof. Clearly, T is densely defined and linear. Thus it is left to show the closedness.
Let un ∈ H2

k with un → u in L2
k and T un → h in L2

k. We define wn := ηkun ∈ H2 and
w := ηku ∈ L2. Then we have wn → w in L2, cf. Lemma 5.1. Moreover,

ηkT η−kwn → ηkh =: r ∈ L2

and for v ∈ H2 there hold

ηkT η−kv = Av′′ + B̃v′ + C̃v =: T̃ v

with

B̃ = B − 2kη−1ηxA, C̃ = C + (k2 + k)(η−1ηx)
2A− kη−1ηxxA− kη−1ηxB.

Since B̃, C̃ ∈ L∞, the operator T̃ : H2 ⊂ L2 → L2 is closed. Now we have wn ∈ H2,
wn → w in L2 and T̃ wn → r in L2. Thus w ∈ H2 and T̃ w = r. This implies u ∈ H2

k , cf.
Lemma 5.1, and T u = h in L2

k since

ηkh = r = T̃ w = ηkT η−kw = ηkT u.

As a next step we consider T as on operator from L2
k to L2

k+2 and determines its
domain D(T ) such that T gets to a closed, densely defined, linear operator.

Lemma 5.11. For all k ∈ N0 the operator

T : D(T ) ⊂ L2
k → L2

k+2

given by (5.16) with

D(T ) := {u ∈ H1
k ∩H2

loc : T u ∈ L2
k+2}

is a closed, densely defined, linear operator from L2
k to L2

k+2, i.e. T ∈ C[L2
k, L

2
k+2].

Proof. It is clear that T is linear. Moreover, C∞
0 ⊂ D(T ) and C∞

0 is dense in L2
k. Thus

T is densely defined on L2
k. Thus it remains to show the closedness. Let un ∈ D(T )

such that un → u in L2
k and T un =: hn → h in L2

k+2. Since un ∈ D(T ), hn ∈ L2
k+2 and

B,C ∈ L∞ it follows

‖hn − Bu′n − Cun‖L2
k
≤ ‖hn‖L2

k
+ ‖B‖∞‖u′n‖L2

k
+ ‖C‖∞‖u‖L2

k
<∞.
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Hence, we have

u′′n = A−1[hn − Bu′n − Cun] ∈ L2
k

and therefore un ∈ H2
k . By Lemma 5.10, T : H2

k ⊂ L2
k → L2

k is a closed operator on
L2
k. Thus we conclude by the closedness u ∈ H2

k ⊂ H1
k ∩H2

loc and T u = h in L2
k. Since

h ∈ L2
k+2 we obtain u ∈ D(T ) with T u = h. This shows the claim.

Summarizing we have shown that L∞ with D(L∞) = H2
k defines is closed. Moreover,

if we define

L∞ : D(L∞) ⊂ L2
k → L2

k+2, D(L∞) = {u ∈ H1
k ∩H2

loc : L∞u ∈ L2
k+2}.

then L∞ ∈ C[L2
k, L

2
k+2].

Corollary 5.12. Let Assumption 1, 2 be satisfied and k ∈ N0. Then the operator
L∞ : D(L∞) ⊂ L2

k → L2
k+2 with D(L∞) is a closed, densely defined, linear operator, i.e.

L∞ ∈ C[L2
k, L

2
k+2].

Now we discuss solution of (5.15). For this purpose, we transform (5.15) into a first
order system via Y = (u, u′)⊤ and obtain

Y ′ −M∞(s, ·)Y = R, R = (0, r)⊤. (5.17)

with

M∞(s, x) =

{

M+(s), x ≥ 0

M−(s), x < 0
, M±(s) =

(
0 I2

A−1(sI − C±) −cA−1

)

.

To show that L∞ is invertible it would be sufficient to consider (5.15) for s = 0. But
since we want to show uniform estimates in a neighborhood of zero we consider the
general case s ∈ Ω∞ and |s| sufficiently small. We choose ε > 0 sufficiently small and
let s ∈ Bε(0). Since Bε(0) ∩ σ−

disp(L) = ∅ we conclude M−(s) to be hyperbolic with
stable and unstable dimensions m−

s
(s) = m−

u
(s) = 2, cf. Figure 5.1 and Figure 5.2. Note

that the complex conjugated pairs in Figure 5.1 and Figure 5.2 may also build a double
eigenvalue and do not have to be separated. But λ+3 (s), λ

+
4 (s) are simple eigenvalues.

In particular, there are σs(M−(s)), σu(M−(s)) uniformly bounded away from the imagi-
nary axis and such that

Re σs(M−(s)) < 0 < σu(M−(s)), σs(M−(s)) ∪ σu(M−(s)) = σ(M−(s)).

Let P−
s
(s), P−

u
(s) be the corresponding Riesz projectors then following [22] the operator

∂x −M∞(s, ·) has an exponential dichotomy on R− with data (K,α−, β−), α− < 0 < β−

such that

|e(x−y)M−(s)P−
s
(s)| ≤ Keα

−(x−y), y ≤ x < 0,

|e(x−y)M−(s)P−
u
(s)| ≤ Keβ

−(x−y), x ≤ y < 0.
(5.18)
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In particular, since M− is analytic in s ∈ Bε(0) the projectors P−
s,u are analytic and the

data (K,α−, β−) can be chosen independent on s. In addition, the invariant subspaces
R(P−

s
(s)),R(P−

u
(s)) are spanned by matrices

V −
s
(s) = (v−1 (s), v

−
2 (s)) ∈ C

4,2, R(V −
s
(s)) = R(P−

s
(s)),

V −
u
(s) = (v−3 (s), v

−
4 (s)) ∈ C

4,2, R(V −
u
(s)) = R(P−

u
(s))

(5.19)

and we find w−
i (s), i = 1, . . . , 4 spanning the corresponding left invariant subspaces

W−
s
(s) = (w−

1 (s), w
−
2 (s)) ∈ C

4,2, W−
u
(s) = (w−

3 (s), w
−
3 (s)) ∈ C

4,2,

(W−
s
(s),W−

u
(s))H(V −

s
(s), V −

u
(s)) = I4,

P−
s
(s) = V −

s
(s)W−

s
(s)H , P−

u
(s) = V −

u
(s)W−

u
(s)H .

Now we consider M+(s), s ∈ Bε(0) which is also analytic in s. But since 0 ∈ σ+
disp(L),

λ−1 (s)

λ−2 (s)

λ−3 (s)

λ−4 (s)

a) σ(M−(s))

λ+1 (s)

λ+2 (s)

λ+3 (s) λ+4 (s)

b) σ(M+(s))

Figure 5.1: Eigenvalues λ±1 (s), λ
±
2 (s), λ

±
3 (s), λ

±
4 (s) from left to right of M±(s) with s ∈

Ω∞.

the matrix M+(0) has a simple zero eigenvalue, since

M+(0) =

(
0 I2

−A−1C+ −cA−1

)

, C+ =

(
2g′1(|v∞|2)|v∞|2 0
2g′2(|v∞|2)|v∞|2 0

)

.

Its characteristic polynomial is given by

χ(λ) = λp(λ), p(λ) = λ3 + 2cα̃1λ
2 + ξ1λ+ ξ2

where α̃i = |α|−1αi, i = 1, 2 and

ξ1 = (α̃1 + α̃2)c
2 + 2α̃1g

′
1(|v∞|2)|v∞|2 + 2α̃2g

′
2(|v∞|2)|v∞|2,

ξ2 = 2c(α̃2
1 + α̃2

2)g
′
1(|v∞|2)|v∞|2.
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λ−1 (0)

λ−2 (0)

λ−3 (0)

λ−4 (0)

a) σ(M−(0))

λ+1 (0)

λ+2 (0)

λ+3 (0) λ
+
4 (0)

b) σ(M+(0))

Figure 5.2: Eigenvalues λ±1 (0), λ
±
2 (0), λ

±
3 (0), λ

±
4 (0) from left to right of M±(0).

Now Assumption 1, 2 and Assumption 8 imply ξ1 > 0 and ξ2 < 0. The Hurwitz
determinants δi of the polynomial p, cf. Lemma D.7, satisfy

δ0 = 1, δ1 = 2cα̃1 > 0, δ2 = 2cα̃1ξ1 − ξ2 > 0, δ3 = ξ2δ2 < 0.

Then Lemma D.7 implies m+
s
(0) = 2 and m+

u
(0) = 1, cf. Figure 5.2. So we conclude

there are σs(M+(s)) and two simple eigenvalues λ+3 (s), λ
+
4 (s) such that

σs(M+(s)) ∪ {λ+3 (s), λ+4 (s)} = σ(M+(s)),

Reσs(M+(0)) < 0 = λ+3 (0) < λ+4 (0)

Reσs(M+(s)) < 0 < λ+3 (s) < λ+4 (s), s ∈ Bε(0)\{0}.
In addition, σs(M+(s)) and λ+4 (s) are uniformly bounded away from the imaginary axis
and λ+3 depends analytically in s. Further, let v+3 (s), v

+
4 (s) ∈ C

4 be the corresponding
eigenvectors of λ+3 (s), λ

+
4 (s), i.e.

(λ+i (s)I −M+(s))v
+
i (s) = 0, |v+i | = 1, i = 3, 4,

and w+
3 (s), w

+
4 (s) the corresponding left eigenvectors, i.e.

w+
i (s)

H(λ+i (s)I −M+(s)) = 0, i = 3, 4,

such that the normalization w+
i (s)

Hv+j (s) = δij holds. Let P+
s
(s) be the Riesz projector

associated with σs(M+(s)) and let

P+
c
(s) = v+3 (s)w

+
3 (s)

H , P+
u
(s) = v+4 (s)w

+
4 (s)

H .

Then the operator ∂x −M∞(s, ·) has an exponential trichotomy on R+ with data
(K,α+, ν(s), β+), α+ < 0 < β+, ν(s) = Reλ+3 (s) such that for all x, y ∈ R+ there hold

|e(x−y)M+(s)P+
s
(s)| ≤ Keα

+(x−y), |e(x−y)M+(s)P+
c
(s)| ≤ Keν(s)(s)(x−y), y ≤ x,

|e(x−y)M+(s)P+
u
(s)| ≤ Keβ

+(x−y), |e(x−y)M+(s)P+
c
(s)| ≤ Keν(s)(x−y), x ≤ y.

(5.20)
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In particular, the projectors P+
κ depend analytically in s ∈ Bε(0). The invariant subspace

R(P+
s
(s)) is spanned by a matrix

V +
s
(s) = (v+1 (s), v

+
2 (s)) ∈ C

4,2, R(V +
s
(s)) = R(P+

s
(s)) (5.21)

and we find w+
i (s), i = 1, 2 spanning the corresponding left invariant subspace

W+
s
(s) = (w+

1 (s), w
+
2 (s)) ∈ C

4,2, P+
s
(s) = V +

s
(s)W+

s
(s)H ,

(W+
s
(s), w+

3 (s), w
+
4 (s))

H(V +
s
(s), v+3 (s), v

+
4 (s)) = I4.

Using Assumption 7 we have the decomposition of C4

C
4 = R(P+

s
(s)) ⊕ R(P−

u
(s)) = span{v+1 (s), v+2 (s), v−3 (s), v−4 (s)} ∀ s ∈ Bε(0). (5.22)

Remark 5.13. In order to verify Assumption 7 in applications, it is much simpler to
verify (5.22). Both statements are equivalent and closely related to the so called Evans
function, cf. [3], [36]. For s ∈ Bε(0) ∩ Ω∞ it is defined as

E(s) = det(v+1 (s), v
+
2 (s), v

−
3 (s), v

−
4 (s)).

Then Assumption 7 and (5.22) are equivalent to the fact that the Evans function does
not vanish as s→ 0.

As a next step we discuss the behavior of the critical eigenvalue λ+3 (s) as s→ 0 and
the geometry of the dispersion set σdisp(L) at the origin. We prove that it is possible to
place a parabola between the dispersion set and the imaginary axis locally at the origin,
cf. Figure 5.3.

Lemma 5.14. Let Assumption 1, 2, 5 and 8 be satisfied and k ∈ N0. Then there are
a⋆ < 0 < δ such that the curve Γc = {ϕ(τ) : |τ | < δ} with

ϕ : (−δ, δ) → C, t 7→ a⋆τ
2 + iτ

satisfies Γc ⊂ Ω∞ ∪ {0} with Ω∞ from Lemma 5.9. Moreover, there exist 0 < ε < |ϕ(δ)|,
C > 0 and a crescent Ωc, defined as the closure of the unique connected component of
Bε(0)\Γc containing (0, ε), such that for all s ∈ Ωc there holds

|λ+3 (s)|2 ≤ CReλ+3 (s). (5.23)

In addition, the derivatives of λ+3 w.r.t. s at s = 0 are given by

∂sλ
+
3 (0) =

1

c
, ∂2sλ

+
3 (0) =

4(α1g
′
1(|v∞|2)|v∞|2 + α2g

′
2(|v∞|2)|v∞|2)

|c3g′1(|v∞|2)|v∞|2| . (5.24)
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Figure 5.3: The crescent Ωc.

Figure 5.4: Geometric situation in the proof of Lemma 5.14.

λ7−→

In particular, for arbitrary ε > 0 the crescent Ωc is uniquely defined, since the set
Bε(0)\Γc consists of exactly two connected components where only the right component
includes (0, ε). Throughout the rest of the chapter the crescent Ωc will be frequently
chosen sufficiently small, i.e. we frequently assume w.l.o.g. that ε from 5.14 is sufficiently
small.

Proof. Let λ(s) = λ+3 (s). Then for s > 0 we have λ(s) > 0 and λ is analytic for s ∈ Bε(0),
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i.e.

λ(s) = λ′(0)s+ 1
2
λ′′(0)s2 +O(|s|3). (5.25)

In particular, λ′(0), λ′′(0) ∈ R since λ(s) ∈ R, s ∈ R ∩ Ωc. Further we set 2κ1 :=
g′1(|v∞|2)|v∞|2 and 2κ2 := g′2(|v∞|2)|v∞|2 then

C+ =

(
κ1 0
κ2 0

)

, C+v0 = 0, w⊤
0 C+ = 0, v0 =

(
0
1

)

, w0 =

(
−κ2
κ1

)

.

Next we compute λ′(0) and λ′′(0). For this purpose, let D(λ) := λ2A + cλI + C+ and

T (v, λ, s) =

(
D(λ)v − sv
w⊤

0 v − κ1

)

.

Then T (v0, 0, 0) = 0 and

D(v,λ)T (v0, 0, 0) =

(
C+ cv0
w⊤

0 0

)

=





κ1 0 0
κ2 0 c
−κ2 κ1 0





which is invertible by Assumption 1 and 2. As a consequence of the implicit function
theorem D.8 there is ε > 0 and holomorphic v : Bε(0) → C2 such that

0 = T (v(s), λ(s), s) ∀s ∈ Bε(0). (5.26)

Differentiating (5.26) w.r.t. s once and evaluating at s = 0 yields

0 = cλ′(0)v0 + C+v
′(0)− v0, 0 = w⊤

0 v
′(0). (5.27)

Solving (5.27) for λ′(0) leads with Assumption 2 to

λ′(0) =
1

c
> 0.

Further, by differentiating (5.26) w.r.t. s twice and evaluating at s = 0 we obtain

0 = 2c−2Av0 + cλ′′(0)v0 + C+v
′′(0), 0 = w⊤

0 v
′′(0). (5.28)

Solving (5.28) for λ′′(0) yields with Assumption 2 and 8

λ′′(0) =
2(α1κ1 + α2κ2)

c3|κ1|
< 0.

Next, pick ν > 0 and define

Ω̃ := {s ∈ Ωc : |Im s|2 ≤ ν|Re s|},
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cf. Figure 5.4.Then |s|2 ≤ (ε+ ν)|Re s| for all s ∈ Ω̃. Using (5.25) we have

Reλ(s) = Re sλ′(0) + 1
2
(Re s)2λ′′(0)− 1

2
(Im s)2λ′′(0) +O(|s|3).

Since λ′(0) > 0, λ′′(0) < 0 we find C̃ > 0 such that for all s ∈ Ω̃

|Re s| ≤ 1

λ′(0)

∣
∣Reλ(s)− λ′′(0)(Re s)2 + λ′′(0)(Im s)2

∣
∣ +O(|s|3)

≤ 1

λ′(0)
|Reλ(s)|+ |λ′′(0)|

λ′(0)
ε|Re s|+ εC̃|Re s|.

Taking ε > 0 sufficiently small we find C1 > 0 such that for all s ∈ Ω̃

|Re s| ≤ C1|Reλ(s)|.

Then we find C2 > 0 such that the imaginary part satisfies

|Imλ(s)|2 ≤ 2|Im sλ′(0) + 2(Re s)(Im s)λ′′(0)|2 +O(|s|6)
≤ 4|Im s|2λ′(0)2 + 8|Re s||Im s|2|λ′(0)λ′′(0)|+ 8|Re s|2|Im s|2 +O(|s|6)
≤ C2|Re s| ≤ C1C2|Reλ(s)|.

Hence the estimate (5.23) holds for all s ∈ Ω̃. Now we choose

a⋆ =
α1κ1 + α2κ2

2c2|κ1|
.

and let ε > 0 be sufficiently small. Then for all s ∈ Ωc\Ω̃ there is τ ∈ [−ε, ε] and
a⋆ < a < ν such that s = aτ 2 + iτ , cf. Figure 5.4. Then

λ(s) = (aτ 2 + iτ)λ′(0)− 1
2
τ 2λ′′(0) +O(|τ |3)

and we find C > 0 independent in τ, a such that

|Imλ(s)|2
|Reλ(s)| =

λ′(0)2 +O(|τ |2)
| − 1

2
λ′′(0) + aλ′(0) +O(|τ |)| ≤

λ′(0)2 +O(|τ |2)
| − 1

2
λ′′(0) + a⋆λ′(0) +O(|τ |)|

≤ 2|κ1|+O(|τ |2)
|α1κ1 + α2κ2|+O(|τ |) ≤ C.

Now the assertion is proven.

We follow an approach similar to [35] and construct for given R ∈ L2
k+2, k ∈ N0

a solution Y∞(s, ·) ∈ L2
k of (5.17) via Green’s functions. Suppose ζ+(s) ∈ R(P+

s
(s)),

x ∈ R+ and define

Y +
∞(s, x) := exM+(s)ζ+(s) +

∫ ∞

0

G+
s (x, y)R(y)dy (5.29)
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where G+
s ∈ Cb(R+ × R+,C

4,4) is a Green’s function defined by

G+
s (x, y) =

{

e(x−y)M+(s)P+
s
(s), 0 ≤ y ≤ x

−e(x−y)M+(s)(P+
c
(s) + P+

u
(s)), 0 ≤ x < y.

For ζ−(s) ∈ R(P−
u
(s)) and x ∈ R− set

Y −
∞(s, x) := exM−(s)ζ−(s) +

∫ 0

−∞
G−
s (x, y)R(y)dy (5.30)

where G−
s ∈ Cb(R− × R−,C

4,4) is a Green’s function given by

G−
s (x, y) =

{

−e(x−y)M−(s)P−
u
(s), x ≤ y ≤ 0

e(x−y)M−(s)P−
s
(s), y < x ≤ 0

.

Note that Y ±
∞(s, ·) can be represented as

Y +
∞(s, x) = exM+(s)ζ+(s) +

∫ x

0

e(x−y)M+(s)P+
s
(s)R(y)dy

− eλ
+
3 (s)xv+3 (s)

∫ ∞

x

e−λ
+
3 (s)yw+

3 (s)
H
R(y)dy −

∫ ∞

x

e(x−y)M+(s)P+
u
(s)R(y)dy,

Y −
∞(s, x) = exM−(s)ζ−(s) +

∫ x

−∞
e(x−y)M−(s)P−

s
(s)R(y)dy −

∫ 0

x

e(x−y)M−(s)P−
u
(s)R(y)dy.

(5.31)

So since R ∈ L2
k+2 it follows Y ±

∞(s, ·) ∈ H1
loc(R±,C

4). Moreover, Y ±
∞(s, ·) solve (5.17) on

R± in the weak sense. This follows by taking the derivative

∂xY
+
∞(s, x) =M+(s)e

xM+(s)ζ+(s) + P+
s
(s)R(x) +M+(s)

∫ x

0

e(x−y)M+(s)P+
s
(s)R(y)dy

+ (P+
c
(s) + P+

u
(s))R(x)−M+(s)

∫ ∞

x

e(x−y)M+(s)(P+
c
(s) + P+

u
(s))R(y)dy

=M+(s)Y
+
∞(s, x) +R(x)

and similarly

∂xY
−
∞(s, x) =M−(s)e

xM−(s)ζ−(s) + P−
s
(s)R(x) +M−(s)

∫ x

−∞
e(x−y)M−(s)P−

s
(s)R(y)dy

+ P−
u
(s)R(x)−M−(s)

∫ 0

x

e(x−y)M−(s)P−
u
(s)R(y)dy

=M−(s)Y
−
∞(s, x) +R(x).
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We want to choose ζ+(s) ∈ R(P+
s
(s)) and ζ−(s) ∈ R(P−

u
(s)) such that

Y∞(s, x) =

{

Y +
∞(s, x), x ≥ 0

Y −
∞(s, x), x < 0

(5.32)

is continuous in x = 0 and therefore globally continuous. For this purpose set Φ(s) =
(v+1 (s), v

+
2 (s), v

−
3 (s), v

−
4 (s)). Assumption 7 implies det Φ(s) 6= 0 for all s ∈ Bε(0) and we

define

Q+
s
(s) = V +

s
(s)Ψ+(s)

H , Q−
u
(s) = V −

u
(s)Ψ−(s)

H , (Ψ+(s),Ψ−(s)) = Φ(s)−H .

Then for all s ∈ Bε(0) we have

R(Q+
s
(s)) = R(P+

s
(s)), R(Q−

u
(s)) = R(P−

u
(s)),

C
4 = R(Q+

s
(s)) ⊕ R(Q−

u
(s)), I = Q+

s
(s) +Q−

u
(s),

Q+
s
(s)Q−

u
(s) = Q+

s
(s)Q−

u
(s) = 0.

(5.33)

Moreover there is C > 0 such that for all s ∈ Bε(0) we have

|Q+
s
(s)|, |Q−

u
(s)| ≤ C. (5.34)

Now let

Gs(y) =

{

G+
s (0, y), x ≥ 0

G−
s (0, y), x < 0

.

Then Gs ∈ Cb(R,C
4,4) and we define

ζ−(s) := −Q−
u
(s)

∫

R

Gs(y)R(y)dy ∈ R(P−
u
(s)),

ζ+(s) := Q+
s
(s)

∫

R

Gs(y)R(y)dy ∈ R(P+
s
(s)).

(5.35)

This implies using (5.33)

Y −
∞(s, 0)− Y +

∞(s, 0)

= ζ−(s)− ζ+(s) +

∫ 0

−∞
e−yM−(s)P−

s
(s)R(y)dy +

∫ ∞

0

e−yM+(s)P−
u
(s)R(y)dy

= ζ−(s)− ζ+(s) +

∫

R

Gs(y)R(y)dy

= −
∫

R

Gs(y)R(y)dy +

∫ ∞

−∞
Gs(y)R(y)dy = 0.

Thus Y∞(s, ·) ∈ Cb(R,C
4). Moreover, this implies Y∞(s, ·) ∈ H1

loc(R,C
4) solves (5.17) on

whole R in the weak sense. To estimate Y∞(s, ·) in ‖ · ‖H1
k

we use the estimates (5.20),
(5.18) from the exponential dichotomy and trichotomy on R± and the following technical
and delicate estimates from [37, Lem. 3.2].
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Lemma 5.15. For every β0 > 0 and k ∈ N there is C = C(k, β0) > 0 such that for all
0 < β ≤ β0 the following estimates hold:

|x|keβx
∫ ∞

x

e−βy

|y|k dy ≤ C

β
, x ≥ 1, |x|ke−βx

∫ x

−∞

eβy

|y|kdy ≤
C

β
, x ≤ −1,

|x|keβx
∫ ∞

x

e−βy

|y|k+1
dy ≤ C, x ≥ 1, |x|ke−βx

∫ x

−∞

eβy

|y|k+1
dy ≤ C, x ≤ −1,

|x|ke−βx
∫ x

1

eβy

|y|kdy ≤
C

β2
, x ≥ 1, |x|keβx

∫ −1

x

e−βy

|y|k dy ≤ C

β2
, x ≤ −1,

|x|ke−βx
∫ x

1

eβy

|y|k+1
dy ≤ C

β
, x ≥ 1, |x|keβx

∫ −1

x

e−βy

|y|k+1
dy ≤ C

β
, x ≤ −1.

Proof. Note that the second column follows by the first and replacing x by −x. The first
two lines for x ≥ 1 are obtained by

|x|keβx
∫ ∞

x

e−βy

|y|k dy ≤ eβx
∫ ∞

x

e−βydy ≤ 1

β

and

|x|keβx
∫ ∞

x

e−βy

|y|k+1
dy ≤ xk

∫ ∞

x

y−k−1dy ≤ 1

k
.

For the third line we use series expansion of the exponential function

eβy

yk
=
βk−1x−1

(k − 1)!
+

∞∑

n=0
n 6=k−1

βnyn−k

n!
.

Integrating over (1, x), using log(x) ≤ x and n
n−k−1

→ 1, n→ ∞ yields for some C > 0

|x|k
∫ x

1

eβy

|y|kdy ≤
βk−1 log(x)xk

(k − 1)!
+ xk

∞∑

n=0
n 6=k−1

βnxn−k+1

n!(n− k + 1)

≤ k(k + 1)

β2

(βx)k+1

(k + 1)!
+

1

β

∞∑

n=0
n 6=k−1

(βx)n+1

(n + 1)!

(n + 1)

(n− k + 1)
≤ C

β2
eβx.

Similarly,

|x|k
∫ x

1

eβy

|y|k+1
dy ≤ βk log(x)xk

k!
+ xk

∞∑

n=0
n 6=k

βnxn−k

n!(n− k)

≤ (k + 1)

β

(βx)k+1

(k + 1)!
+

∞∑

n=0
n 6=k

(βx)n

n!(n− k)
≤ C

β
eβx.
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Now we use the estimates from Lemma 5.15 to derive delicate resolvent estimates for
the operator L∞ : D(L∞) ⊂ L2

k → L2
k+2 in the crescent Ωc. In particular, we show that

the equation (5.15) has a unique solution in L2
k if the right hand side is from L2

k+2.

Lemma 5.16. Let Assumption 1, 2, 5, 7 and 8 be satisfied and k ∈ N0. Then there is
C > 0 such that for all R ∈ L2

k+2 and s ∈ Ωc the function Y∞(s, ·) ∈ H1
loc(R,C

4) from
(5.32) with (5.29), (5.30) and (5.35) is a solution in L2

k and satisfies the estimate

‖Y∞(s, ·)‖L2
k
+ ‖Y ′

∞(s, ·)‖L2
k+1

≤ C‖R‖L2
k+2
. (5.36)

Proof. We have already shown that Y∞(s, ·) ∈ H1
loc solves (5.17). Thus it remains to show

the estimate (5.36). For this purpose we frequently use the estimates in (5.20), (5.18),
Lemma 5.15, Cauchy-Schwarz inequality and the explicit representation of Y ±

∞(s, ·) from
(5.31). Let C > 0 denote a universal constant independent on s. Then by (5.34) we have

|ζ±(s)|2 ≤ C

∣
∣
∣
∣

∫

R

Gs(y)R(y)dy

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣

∫ 0

−∞
e−α

−y|R(y)|dy
∣
∣
∣
∣

2

+ C

∣
∣
∣
∣

∫ ∞

0

e−ν(s)y|R(y)|dy
∣
∣
∣
∣

2

≤ C

∫ 0

−∞

e−2α−y

η2(k+2)(y)
dy‖R‖2L2

k+2

+ C

∫ ∞

0

e−2ν(s)y

η2(k+2)(y)
dy‖R‖2L2

k+2

≤ C

∫

R

1

η2(k+2)(y)
dy‖R‖2L2

k+2
≤ C‖R‖2L2

k+2
.

Recall the representation of Y ±
∞(s, ·) from (5.31) and ν(s) = Reλ+3 (s). We estimate the

λ+3 term for x ≥ 1 by

∣
∣
∣
∣

∫ ∞

x

eλ
+
3
(s)(x−y)v+3 (s)w

+
3 (s)

HR(y)dy

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣

∫ ∞

x

eν(s)(x−y)

ηk+2(y)
ηk+2(y)|R(y)|dy

∣
∣
∣
∣

2

≤ C

∫ ∞

x

e2ν(s)(x−y)

|y|2(k+2)
dy‖R‖2L2

k+2
≤ C

ν(s)ℓ
|x|−2k−ℓ−3‖R‖2L2

k+2

≤ Cη−2(k+ℓ)(x)

ν(s)ℓ
|x|−3+ℓ‖R‖2L2

k+2
, ℓ = 0, 1.

(5.37)

Further, for x ≥ 1

∣
∣
∣
∣

∫ ∞

x

e(x−y)M+(s)P+
u
(s)R(y)dy

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
∣

∫ ∞

x

eβ
+(x−y)

ηk+2(y)
ηk+2(y)|R(y)|dy

∣
∣
∣
∣
∣

2

≤ C

∫ ∞

x

e2β
+(x−y)

|y|2(k+2)
dy‖R‖2L2

k+2
≤ C

β+
|x|−2k−4‖R‖2L2

k+2

≤ Cη−2(k+1)(x)|x|−2‖R‖2L2
k+2

(5.38)
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and

∣
∣
∣
∣

∫ x

0

e(x−y)M+(s)P+
s
(s)R(y)dy

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
∣

∫ x

0

eα
+(x−y)

ηk+2(y)
ηk+2(y)|R(y)|dy

∣
∣
∣
∣
∣

2

≤ Ce2α
+x‖R‖2L2

k+2

+ C

∫ x

1

e2α
+(x−y)

|y|2(k+2)
dy‖R‖2L2

k+2

≤ C

(α+)2
|x|−2k−4‖R‖2L2

k+2

≤ Cη−2(k+1)(x)|x|−2‖R‖2L2
k+2

.

(5.39)

On the negative half-line x ≤ −1 we estimate

∣
∣
∣
∣

∫ x

−∞
e(x−y)M−(s)P−

s
(s)R(y)dy

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
∣

∫ x

−∞

eα
−(x−y)

ηk+2(y)
ηk+2(y)|R(y)|dy

∣
∣
∣
∣
∣

2

≤ C

∫ x

−∞

e2α
−(x−y)

|y|2(k+2)
dy‖R‖2L2

k+2

≤ C

|α−| |x|
−2k−4‖R‖2L2

k+2

≤ Cη−2(k+1)(x)|x|−2‖R‖2L2
k+2

(5.40)

and

∣
∣
∣
∣

∫ 0

x

e(x−y)M−(s)P−
u
(s)R(y)dy

∣
∣
∣
∣

2

≤ C

∣
∣
∣
∣
∣

∫ 0

x

eβ
−(x−y)

ηk+2(y)
ηk+2(y)|R(y)|dy

∣
∣
∣
∣
∣

2

≤ Ce2β
−x‖R‖2L2

k+2

+ C

∫ −1

x

e2β
−(x−y)

|y|2(k+2)
dy‖R‖2L2

k+2

≤ C

(β−)2
|x|−2k−4‖R‖2L2

k+2

≤ Cη−2(k+1)(x)|x|−2‖R‖2L2
k+2

.

(5.41)

Now the L2
k-estimate follows by (5.37) with ℓ = 0 and (5.38), (5.39), (5.40), (5.41), since

∫ ∞

1

η2k(x)|Y∞(s, x)|2dx ≤ C

∫ ∞

1

η2k(x)eα
+xdx‖R‖2L2

k+2

+ C

∫ ∞

1

η2k(x)

∣
∣
∣
∣

∫ x

0

e(x−y)M+(s)P+
s
(s)R(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ ∞

1

η2k(x)

∣
∣
∣
∣

∫ ∞

x

eλ
+
3 (s)(x−y)v+3 (s)w

+
3 (s)

HR(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ ∞

1

η2k(x)

∣
∣
∣
∣

∫ ∞

x

e(x−y)M+(s)P+
u
(s)R(y)dy

∣
∣
∣
∣

2

dx

≤ C‖R‖2L2
k+2

+ C

∫ ∞

1

|x|−3dx‖R‖2L2
k+2

≤ C‖R‖2L2
k+2
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and
∫ −1

−∞
η2k(x)|Y∞(s, x)|2dx ≤ C

∫ −1

−∞
η2k(x)eβ

−xdx‖R‖2L2
k+2

+ C

∫ −1

−∞
η2k(x)

∣
∣
∣
∣

∫ x

0

e(x−y)M−(s)P−
u
(s)R(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ −1

−∞
η2k(x)

∣
∣
∣
∣

∫ ∞

x

e(x−y)M−(s)P−
s
(s)R(y)dy

∣
∣
∣
∣

2

dx

≤ C‖R‖2L2
k+2

+ C

∫ −1

−∞
|x|−4dx‖R‖2L2

k+2

≤ C‖R‖2L2
k+2

.

Since Y∞(s, ·) ∈ H1
loc this shows

‖Y∞(s, ·)‖L2
k
≤ C‖R‖L2

k+2
.

The derivatives ∂xY
±
∞(s, ·) are given by

∂xY
+
∞(s, x) =M+(s)e

xM+(s)ζ+(s) +R(x) +M+(s)

∫ x

0

e(x−y)M+(s)P+
s
(s)R(y)dy

− λ+3 (s)e
λ+3 (s)xv+3 (s)

∫ ∞

x

e−λ
+
3 (s)yw+

3 (s)
H
R(y)dy

−M+(s)

∫ ∞

x

e(x−y)M+(s)P+
u
(s)R(y)dy,

∂xY
−
∞(s, x) =M−(s)e

xM−(s)ζ−(s) +R(x) +M−(s)

∫ x

−∞
e(x−y)M−(s)P−

s
(s)R(y)dy

−M−(s)

∫ 0

x

e(x−y)M−(s)P−
u
(s)R(y)dy.

Thus, use (5.37) with ℓ = 1 and (5.38), (5.39), (5.40), (5.41) to obtain
∫ ∞

1

η2(k+1)(x)|Y ′
∞(s, x)|2dx ≤ C

∫ ∞

1

η2(k+1)(x)eα
+xdx‖R‖2L2

k+2

+ C‖R‖L2
k+2

+ C

∫ ∞

1

η2(k+1)(x)

∣
∣
∣
∣

∫ x

0

e(x−y)M+(s)P+
s
(s)R(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ ∞

1

|λ+3 (s)|2η2(k+1)(x)

∣
∣
∣
∣

∫ ∞

x

eλ
+
3 (s)(x−y)v+3 (s)w

+
3 (s)

HR(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ ∞

1

η2(k+1)(x)

∣
∣
∣
∣

∫ ∞

x

e(x−y)M+(s)P+
u
(s)R(y)dy

∣
∣
∣
∣

2

dx

≤ C‖R‖2L2
k
+ C

∫ ∞

1

|x|−2dx‖R‖2L2
k+2

+ C
|λ+3 (s)|2
Reλ+3 (s)

∫ ∞

1

|x|−2dx‖R‖L2
k+2
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≤ C

(

1 +
|λ+3 (s)|2
Reλ+3 (s)

)

‖R‖2L2
k+2

and

∫ −1

−∞
η2(k+1)|Y ′

∞(s, x)|2dx ≤ C

∫ −1

−∞
η2(k+1)(x)eβ

−xdx‖R‖2L2
k+2

+ C‖R‖2L2
k+2

+ C

∫ −1

−∞
η2(k+1)(x)

∣
∣
∣
∣

∫ x

0

e(x−y)M−(s)P−
s
(s)R(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ −1

−∞
η2(k+1)(x)

∣
∣
∣
∣

∫ ∞

x

e(x−y)M−(s)P−
u
(s)R(y)dy

∣
∣
∣
∣

2

dx

≤ C‖R‖2L2
k
+ C

∫ −1

−∞
|x|−2dx‖R‖2L2

k+2

≤ C‖R‖2L2
k+2

.

By Lemma 5.14 we have
|λ+3 (s)|2
Reλ+3 (s)

≤ C uniformly in Ωc. This implies

‖Y ′
∞(s, ·)‖L2

k+1
≤ C‖R‖L2

k+2
.

As a consequence of Lemma 5.16 we have existence of a solution of (5.15) in D(L∞) ⊂
L2
k if r ∈ L2

k+2. Furthermore, the solution can be bounded by the right hand side r
uniformly in Ωc. Moreover, by Assumption 7 we conclude that the solution is unique as
long as s ∈ Ωc is sufficiently small.

Corollary 5.17. Let the Assumption 1, 2, 5, 7 and 8 be satisfied and k ∈ N0. Then
there is C > 0 such that for all s ∈ Ωc and r ∈ L2

k+2 the equation (5.15) has a unique
solution u ∈ D(L∞) ⊂ L2

k and satisfies the estimate

‖u‖L2
k
+ ‖ux‖L2

k+1
≤ C‖f‖L2

k+2
.

In particular, the operator L∞ : D(L∞) ⊂ L2
k → L2

k+2 is invertible.

Proof. The case s = 0 follows by Lemma 5.16 and Assumption 7. If s 6= 0 and |s| < ε for
some ε sufficiently small, then s is not an eigenvalue of L∞ ∈ C[L2], cf. Assumption 7.
Hence the operator sI−L∞ ∈ C[L2] is one-to-one. The function Y (s, ·) = (w1, w2)

⊤ ∈ L2
k

from Lemma 5.16 solves (5.17). Thus (sI − L∞)w1 = r and since sI − L∞ ∈ C[L2] is
one-to-one w1 is unique in L2. The estimate follows by Lemma 5.16.
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5.3.3 Fredholm theory: the variable coefficient operator L

We are interested in the variable coefficient operator L from (0.12). By Lemma 5.7 we
have L ∈ C[L2

k] with D(L) = H2
k . But 0 ∈ σess(L) and therefore L ∈ C[L2

k] is not a
Fredholm operator. Typically, L has no closed range.

Remark 5.18. Assume L ∈ C[L2
k] has closed range. Since dimN (L) < ∞, due to

Assumption 6, we have that L is at least a semi-Fredholm operator. But since sI − L,
s > 0 is Fredholm of index 0 we conclude by Lemma A.6 that L is a Fredholm operator
of index 0. This contradicts 0 ∈ σess(L) and therefore the range of L cannot be closed.

The aim of the section is to prove that L becomes a Fredholm operator of index 0
when considered as a closed operator from D(L) ⊂ L2

k → L2
k+2. This is done by using a

perturbation argument from [38] and the fact that Corollary 5.17 implies the operator
L∞ ∈ C[L2

k, L
2
k+2] to be Fredholm of index 0.

Lemma 5.19. Let Assumption 1, 2, 5, 7 and 8 be satisfied and k ∈ N0. Then the
operator L : D(L) ⊂ L2

k → L2
k+2 with D(L) = {u ∈ H1

k ∩ H2
loc : Lu ∈ L2

k+2} is a
closed, densely defined, linear operator from L2

k to L2
k+2. Moreover, L ∈ C[L2

k, L
2
k+2] is a

Fredholm operator of index 0.

Proof. The closedness follows from Lemma 5.11. The Fredholm property follows by
showing (L∞ − L) to be L∞-compact and Lemma A.10. It is immediately clear that,
D(L∞) = D(L) ⊂ D(L∞ − L). It remains to show that (L∞ − L)L−1

∞ ∈ L[L2
k+2] is

compact. For this purpose, recall

(L∞ − L)u = (C − C±)u, C(x) = Sω +Df(v⋆(x)), C±(x) =

{

Sω +Df(v∞) x ≥ 0

Sω +Df(0), x < 0
.

Thus L∞ − L is a multiplication operator associated with C − C± ∈ L∞(R,R2,2). By
Theorem 2.6 there are K,µ⋆ > 0 such that

|Df(v⋆(x))−Df(v∞)| ≤ C|v⋆(x)− v∞| ≤ Ke−µ⋆x, x ≥ 0

and

|Df(v⋆(x))| ≤ Keµ⋆x, x ≤ 0.

Therefore the multiplication operator given by

m : H1(R,R2) → L2(R,R2), u 7→ η2(C − C±)u

satisfies the assumption of Lemma D.4. Hence it is compact. This implies ηkη2(L∞ −
L)η−k = η2(C−C±) to be compact from H1 to L2 and thus, by Lemma 5.1, the operator
L∞−L : H1

k → L2
k+2 is compact. By Lemma 5.16, L−1

∞ ∈ L[L2
k+2,D(L∞)] ⊂ L[L2

k+2, H
1
k ].

Hence, (L∞ − L)L−1
∞ ∈ C[L2

k+2] is compact and the assertion is proven.
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By Assumption 6 the kernel N (L) ⊂ L2
k has dimension one. As in Lemma 3.18 we

have Lv⋆,x = 0 with v⋆,x ∈ L2
k and thus ϕ = v⋆.x is an eigenfunction, i.e.

N (L) = span{ϕ}.

Now we take the (abstract) adjoint operator L∗ : D(L∗) ⊂ L2
k+2 → L2

k into account. By
the Fredholm alternative we conclude that its kernel N (L∗) is spanned by an eigenfunc-
tion and has also dimension one. Moreover, since L, L∗ are closed, densely defined, linear
operators between Hilbert spaces we obtain, cf. [61, (11-7)],

N (L)⊥ = R(L∗) (5.42)

where the orthogonal complement is taken w.r.t. (·, ·)L2
k
.

Lemma 5.20. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then there is an
adjoint eigenfunction ψ ∈ D(L∗) such that

i) N (L∗) = span{ψ} =: Ψ,

ii) (ψ, ϕ)L2
k
= 1,

iii) L2
k = Φ⊕Ψ⊥ where the orthogonal complement is taken w.r.t. (·, ·)L2

k
,

iv) there is a continuous projection P : L2
k → L2

k onto Φ, i.e.

P (Φ) = Φ, P (Ψ⊥) = {0}, P 2 = P

which is given by

Pv := (ψ, v)L2
k
ϕ.

v) the subspace Ψ⊥ ⊂ L2
k is invariant under L, i.e. L(Ψ⊥ ∩H2

k) ⊂ Ψ⊥.

Proof. We only prove ii). The other assertions follow exactly as in the proof of Lemma
3.20 and using ii). So by i) we have an eigenfunction ψ ∈ D(L∗) ⊂ L2

k+2 and L∗ has no
generalized eigenfunction. Assume (ψ, ϕ)L2

k
= 0. From (5.42) we conclude ψ ∈ N (L)⊥ =

R(L∗). Thus there is u ∈ L2
k+2 with Lu = ϕ. This is a contradiction and we can

normalize ψ such that (ψ, ϕ)L2
k
= 1.

By construction of the projector P it is clear that

PLu = 0, ∀u ∈ H2
k . (5.43)

Since Ψ⊥ = R(I−P ) and its intersection with the smooth spaces Hℓ
k are frequently used

in the following we introduce the notation

Vk = R(I − P ), V 1
k = R(I − P ) ∩H1

k , V 2
k = R(I − P ) ∩H2

k . (5.44)
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Remark 5.21. According to Chapter 3 there hold LS1v⋆ = 0 where L is applied to C2

functions with classical derivatives. However, we have S1v⋆ /∈ L2
k. Hence, S1v⋆ cannot

be an eigenfunction and therefore is not part of the kernel of L.

By construction we have that D(L) ⊂ H1
k and the graph norm ‖ · ‖D(L) of L is defined

by

‖v‖D(L) = ‖v‖L2
k
+ ‖Lv‖L2

k+2
.

Clearly, since L ∈ C[L2
k, L

2
k+2] we have (D(L), ‖ · ‖D(L)) is a Banach space. In particular,

the inclusion D(L) ⊂ H1
k is continuous. In order to see this, let v ∈ D(L) and pick

s ∈ Ω0, |s| > 1 with Ω0 from Lemma 5.7. Moreover, (5.5) implies

‖v‖2H1
k
≤ C

|s|‖(sI − L)v‖2L2
k
≤ 2C|s|‖v‖2L2

k
+ 2C‖Lv‖2L2

k
≤ C̃2‖v‖2D(L). (5.45)

Now we take the projector P from Lemma 5.20 into account. Then L−1 : (I−P )L2
k+2 →

(I − P )D(L) exists and is bounded. Using (5.45), we find K > 0 such that for all
u ∈ D(L) there holds

‖(I − P )u‖H1
k
≤ C̃‖(I − P )u‖D(L) ≤ K‖L(I − P )u‖L2

k+2
= K‖(I − P )Lu‖L2

k+2
. (5.46)

5.3.4 Resolvent estimates for small |s|

Recall the crescent Ωc from Lemma 5.14, cf. Figure 5.3. In this section we derive
estimates for the solution of the resolvent equation

(sI − L)u = r ∈ L2
k+2, s ∈ Ωc. (5.47)

We transform (5.47) into a first order system via Y = (u, u′) and obtain

Y ′ −M(s, ·)Y = R (5.48)

with R = (0, r)⊤ ∈ L2
k+2 and

M(s, x) =

(
0 I2

A−1(sI − C(x)) −cA−1

)

, C = Sω +Df(v⋆).

We denote by Ss : R2 → C2,2 the solution operator of (5.48), i.e. the function

Y (s, x) := Ss(x, y)ξ0, x, y ∈ R

is the solution of the initial value problem

Y ′ −M(s, ·)Y = 0, Y (y) = ξ0. (5.49)
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The approach is similar to the one from Section 5.3.2. There we used the exponential di-
chotomy on R− and the exponential trichotomy on R+ of the first order piecewise constant
operator ∂x−M∞(s, ·) from (5.17) to construct solutions of (5.15) via Green’s functions.
We want to do the same for the first order variable coefficient operator ∂x − M(s, ·)
from (5.48). Using the roughness of exponential dichotomies under small perturbations
from [22], cf. Lemma B.3, we can immediately conclude that ∂x −M(s, ·) also has an
exponential dichotomy on R− with data arbitrary close to the data of ∂x − M∞(s, ·).
However, in the case of an exponential trichotomy the exact exponential behavior of the
center part is usually not preserved under small perturbation, see [31]. In [13, Lem.
2.5] it was shown that under some additional assumption the exponential behavior of
the center part is preserved. In our case the additional assumption cannot be verified.
Therefore we prove a generalization of [13, Lem. 2.5] and show in particular that the
additional assumption can be neglected.

Theorem 5.22 (Roughness theorem). Let Ω ⊂ Rm be a bounded domain, K ∈ {R,C}
and let A(s) = ∂x − A(s, ·), s ∈ Ω, A ∈ Cb(Ω × J,Kn,n), J = [0,∞) have an ordi-
nary exponential trichotomy on J for every s ∈ Ω with data (K(s), α(s), ν(s), β(s)),
sups∈ΩK(s) <∞ depending continuously/analytically on s ∈ Ω and projectors Pκ(s, x),
κ = s, c, u, x ∈ J depending continuously/analytically on s ∈ Ω. Further assume that
Pc(s, x) is of rank mc = 1 and has the form Pc(s, x) = z(s, x)ψ(s, x)⊤ where Az(s, ·) = 0
and there are C1, C2 > 0 such that

C1 ≤ e−ν(s)x|z(s, x)| ≤ C2, C1 ≤ eν(s)x|ψ(s, x)| ≤ C2 ∀ x ∈ J, s ∈ Ω.

Let B ∈ C(J,Kn,n) with

|B(x)| ≤ CBe
−εx, x ∈ J

for some 0 < 2ε < infs∈Ωmin(ν(s) − α(s), β(s) − ν(s)). Then the perturbed operator
Ã(s) = A(s)−B has an ordinary exponential trichotomy on J with data (K̃, α̃(s), ν(s), β̃(s))
depending continuous/analytically on s ∈ Ω and with K̃ is independent of s ∈ Ω. Specif-
ically, α̃(s) and β̃(s) are given by

α̃(s) = α(s) + 2δK(s), β̃(s) = β(s)− 2δK(s)

where

δ ≤ ε

4max(K∞, K2
∞)
, K∞ = sup

s∈Ω
K(s).

Proof. In the following C = C(ε) > 0 denote constants that are independent of s ∈ Ω.
Choose x0 ∈ [0,∞) such that the following condition hold

4max(K∞, K
2
∞)CBe

−εx0 ≤ ε. (5.50)
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Then for all s ∈ Ω we have with δ := CBe
−εx0 ≥ supx≥x0 |B(x)|:

ℓ :=
K∞δ

ε
< 1,

8δK(s)2

ν(s)− α(s)
< 1,

8δK(s)2

β(s)− ν(s)
< 1 (5.51)

and

2δK(s) ≤ ε

2
<

1

4
min (ν(s)− α(s), β(s)− ν(s)) . (5.52)

Now consider the shifted operator Aν(s) = A(s) − ν(s)I with corresponding solution
operator Sν,s(x, y), x, y ∈ J , i.e. w(s, x) = Sν,s(x, y)w0 solves the initial value problem
Lν(s)w = 0, w(y) = w0. Let Pκ(s, y), y ∈ J denote the projectors of the ordinary
exponential trichotomy of A(s) on J . Then we have the estimates

|Sν,s(x, y)Ps(s, y)| ≤ K(s)e(α(s)−ν(s))(x−y), x ≥ y ≥ 0,

|Sν,s(x, y)(Pc(s, y) + Pu(s, y))| ≤ K(s), 0 ≤ x ≤ y.

Let Jx0 = [x0,∞) and w̃ ∈ Cb(Jx0 ,K
n). We define

T (s, w̃)(x) =

∫ x

x0

Sν,s(x, y)Ps(s, y)B(y)w̃(y)dy

−
∫ x

x0

Sν,s(x, y)(Pc(s, y) + Pu(s, y))B(y)w̃(y)dy.

Note that by assumption we have ν(s)− α(s)− ε > 0. Then

|T (s, w̃)(x)| ≤ K(s)CBe
(α(s)−ν(s))x

∫ x

x0

e−(α(s)−ν(s)+ε)ydy‖w̃‖∞ +K(s)CB

∫ ∞

x

e−εydy‖w̃‖∞

≤ K(s)CB
ν(s)− α(s)− ε

e−εx‖w̃‖∞ +
K(s)CB

ε
e−εx‖w̃‖∞ ≤ CT e

−εx‖w̃‖∞
(5.53)

for some CT > 0 sufficiently large and independent on s. Thus T maps Ω× Cb(Jx0,K
n)

into Cb(Jx0 ,K
n). Moreover, for w1, w2 ∈ Cb(Jx0,K

n) we have

|T (s, w1)(x)− T (s, w2)(x)|

≤ K(s)

∫ x

x0

|B(y)|dy‖w1 − w2‖∞ +K(s)

∫ ∞

x

|B(y)|dy‖w1 − w2‖∞

≤ K∞CB

∫ ∞

x0

e−εydy = ℓ‖w1 − w2‖∞.
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Hence by (5.51) T (s, ·) is a contraction on Cb(Jx0,K
n). Let w(s, x) = e−ν(s)xz(s, x) then,

by the contraction theorem, there is a unique w̃(s, ·) ∈ Cb(Jx0,K
n) such that

w̃(s, x) = w(s, x) + T (s, w̃(s, ·))(x).

In addition, since T (s, 0) = 0 we have the a-priori bound

‖w̃(s, ·)‖∞ ≤ 1

1− ℓ
‖w(s, ·)‖∞ ≤ C2

1− ℓ
.

Since T (s, ·) depends continuously/analytically on s we conclude, using the implicit
function theorem, cf. Theorem D.8, that w̃(s, ·) depends continuous/analytically on s.
Moreover, for x ∈ Jx0 there hold

w̃′(s, x) = w′(s, x) + Ps(s, x)B(x)w̃(s, x) + (Pc(s, x) + Pu(s, x))B(x)w̃(s, x)

+ (A(s, x)− ν(s)I)T (s, w̃(s, ·))(x)
= (A(s, x)− ν(s)I)w̃(s, x) +B(x)w̃(s, x).

Thus Aν(s)w̃(s, ·)−Bw̃(s, ·) = 0 on Jx0 and using (5.53) we obtain

|w(s, x)− w̃(s, x)| = |T (s, w̃(s, ·))(x)| ≤ CTe
−εx‖w̃(s, ·)‖∞ ≤ Ce−εx ∀ x ∈ Jx0.

Now the operator Aν(s) has a shifted exponential dichotomy on Jx0 with data (K(s), α(s)−
ν(s), 0) and projectors Qs(s, x) = Ps(s, x), Qu(s, x) = Pc(s, x) + Pu(s, x) as well as a
shifted exponential dichotomy on Jx0 with data (K(s), 0, β(s) − ν(s)) and projectors
Rs(s, x) = Ps(s, x) + Pc(s, x), Ru(s, x) = Pu(s, x). By (5.51) we can apply Lemma B.3
and obtain that Ãν(s) = Aν(s) − B has a shifted exponential dichotomy on Jx0 with
data (5

2
K(s)2, α̃(s), ν̃1(s)) and projectors Q̃κ(s, x), κ = s, u where

α̃(s) = α(s)− ν(s) + 2δK(s), ν̃1(s) = −2δK(s), α̃(s) < ν̃1(s) < 0.

In addition, Ãν(s) = Aν(s) − B has a shifted exponential dichotomy on Jx0 with data
(5
2
K(s), ν̃2(s), β̃(s)) and projectors R̃κ(s, x), κ = s, u where

ν̃2(s) = 2δK(s), β̃(s) = β(s)− ν(s)− 2δK(s), 0 < ν̃2(s) < β̃(s).

Then R(Q̃s(s, x0)) ⊂ R(R̃s(s, x0)) and we claim that the codimension is equal to 1. On
the one hand w̃(s, x0) ∈ R(R̃s(s, x0)) since

|R̃u(s, x0)w̃(s, x0)| = |S̃ν,s(x0, x)R̃u(s, x)S̃ν,s(x, x0)w̃(s, x0)|
≤ 5

2
K(s)eβ̃(s)(x0−x)S̃ν,s(x, x0)w̃(s, x0)|

≤ 5
2
K(s)eβ̃(s)(x0−x)|w̃(s, x)| → 0, x→ ∞.
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On the other hand, assume w̃(s, x0) ∈ R(Q̃s(s, x0)). Then

0 6= |w(s, x0)| = |Sν,s(x0, x)w(s, x)| ≤ K(s)|w(s, x)|
≤ K(s)|w(s, x)− w̃(s, x)|+K(s)|S̃ν,s(x, x0)Q̃s(s, x0)w̃(s, x0)|
≤ K(s)CT (s)e

−εx‖w̃(s, ·)‖∞ + 5
2
K(s)2eα̃(s)(x−x0)‖w̃(s, ·)‖∞ → 0, x→ ∞.

This is a contradiction and thus R(Q̃s(s, x0)) ⊂ R(R̃s(s, x0)) with codimension 1. In ad-
dition, we have N (R̃s(s, x0)) ⊂ N (Q̃s(s, x0)) and Q̃s(s, x0)R̃u(s, x0) = R̃u(s, x0)Q̃s(s, x0) =
0. Now take ψ̃(s, x0) such that

ψ̃(s, x0)
Hw̃(s, x0) = 1, ψ̃(s, x0)

HQ̃s(s, x0) = ψ̃(s, x0)
HR̃u(s, x0) = 0.

Further, set ψ̃(s, x) = S̃Hν,s(x, x0)ψ̃(s, x0), where S̃Hν,s denotes the solution operator of the

adjoint Ãν,s(s)
∗. Then P̃c(s, x) = w̃(s, x)ψ̃(s, x)H is the projector onto span{w̃(s, x)}

satisfying

K
n = R(Q̃s(s, x))⊕R(P̃c(s, x))⊕R(R̃u(s, x)),

P̃c(s, x)Q̃s(s, x) = Q̃s(s, x)P̃c(s, x) = 0,

P̃c(s, x)R̃u(s, x) = R̃u(s, x)P̃c(s, x) = 0.

Summarizing with P̃s(s, x) = Q̃s(s, x) and P̃u(s, x) = R̃u(s, x) we obtain

I = P̃s(s, x) + P̃c(s, x) + P̃u(s, x).

Let µ1(s) := ν̃1(s)− α(s) + ν(s). Then by (5.52)

µ1(s)− ε = ν̃1(s)− α(s) + ν(s)− ε > −2δK∞ + ε >
ε

2
> 0

and the estimate in Lemma B.3 yields

|Ps(s, x)− P̃s(s, x)| = |Qs(s, x)− Q̃s(s, x)| ≤ 5CK(s)3
∫ ∞

x0

e−µ1(s)|x−y|e−εydy

= 5CBK(s)3
∫ x

x0

e−µ1(s)(x−y)e−εydy + 5CBK(s)3
∫ ∞

x

eµ1(s)(x−y)e−εydy

=
5CBK(s)3e−µ1(s)x

µ1(s)− ε

(
e(µ1(s)−ε)x − e(µ1(s)−ε)x0

)
+

5CBK(s)3

µ1(s) + ε
e−εx

≤ 10CBK(s)3

µ1(s)− ε
e−εx =

10CBK(s)3

ν(s)− α(s)− 2δK(s)− ε
e−εx ≤ Ce−εx.

Further, we have by (5.52)

β̃(s)− ε = β(s)− ν(s)− 2δK(s)− ε > ε− 2δK(s) >
ε

2
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and thus, using the estimate in Lemma B.3,

|Pu(s, x)− P̃u(s, x)| = |Ru(s, x)− R̃u(s, x)| ≤ 5CBK(s)3
∫ ∞

x0

e−β̃(s)|x−y|e−εydy

≤ 10CBK(s)3

β̃(s)− ε
e−εx ≤ Ce−εx.

This implies

|Pc(s, x)− P̃c(s, x)| ≤
(
10CBK(s)3

µ1(s)− ε
+

10CBK(s)3

β̃(s)− ε

)

e−εx ≤ Ce−εx.

Now

|w̃(s, x)| ≥ |w(s, x)| − |w̃(s, x)− w(s, x)| ≥ C1 − Ce−εx0 ≥ C̃−1

Note that for instance in Frobenius norm there hold |wψH |F = |w||ψ| for all w, ψ. Thus,
we obtain

|ψ(s, x)− ψ̃(s, x)| = |w̃(s, x)|−1|w̃(s, x)(ψ(s, x)− ψ̃(s, x))H |
≤ C̃|w̃(s, x)(ψ(s, x)− ψ̃(s, x))H |
≤ C̃|Pc(s, x)− P̃c(s, x)|+ C̃|w̃(s, x)− w(s, x)||ψ(s, x)| ≤ Ce−εx.

Hence,

|ψ̃(s, x)| ≤ |ψ(s, x)|+ |ψ̃(s, x)− ψ(s, x)| ≤ C2 + Ce−εx0.

This implies for all x, y ∈ [x0,∞)

|S̃ν,s(x, y)P̃c(y)| = |w̃(s, x)||ψ̃(s, y)| ≤ C2(C2 + Ce−εx)

1− ℓ
= K̄.

Finally we have shown that the operator Ã(s) = A(s)− B has an ordinary exponential
trichotomy on Jx0 = [x0,∞) with data (K0, α̃(s), ν(s), β̃(s)) where

K0 = max

(
5

2
K∞, K̄

)

, α̃(s) = α(s) + 2δK(s), β̃(s) = β(s)− 2δK(s).

Since A ∈ Cb(Ω × J,Kn,n) we find K̃ sufficiently large such that Ã(s) = A(s) − B has
an ordinary exponential trichotomy on J = [0,∞) with data (K̃, α̃(s), ν(s), β̃(s)).

Armed with this tool we are now in the position to conclude that the operator ∂x −
M(s, ·) has also an exponential trichotomy on R+ with projectors denoted by P±(s) and
the exponential rate of the center part is given by ν(s) = Reλ+3 (s). As in Section 5.3.2
we denote by m±

κ (s) the ranks of the projectors P±
κ (s).
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Lemma 5.23. Let Assumption 1, 2 and 5-8 be satisfied and let ν(s) = Reλ+3 (s). Then
there is ε > 0 and constants K > 0, α̃± < 0 < β̃± such that for all s ∈ Bε(0) there hold:

i) The operator ∂x −M(s, ·) has an ordinary exponential trichotomy on R+ with data
(K, α̃+, ν(s), β̃+) and projector-valued functions

P+
κ : Bε(0)× R+ → C

4,4, κ = s, c, u, m+
s
(s) = 2, m+

u
(s) = m+

c
(s) = 1

depending analytically on s ∈ Bε(0) and such that for all x, y ∈ R+ there hold

Ss(x, y)P+
κ (s, y) = P+

κ (s, x)Ss(x, y), κ = s, c, u

|Ss(x, y)P+
s
(s, y)| ≤ Keα̃

+(x−y), |Ss(x, y)P+
c
(s, y)| ≤ Keν(s)(x−y), x ≥ y,

|Ss(x, y)P+
u
(s, y)| ≤ Keβ̃

+(x−y), |Ss(x, y)P+
c
(s, y)| ≤ Keν(s)(x−y), x ≤ y.

ii) The operator ∂x−M(s, ·) has an exponential dichotomy on R− with data (K, α̃−, β̃−)
and projector-valued functions

P−
κ : Bε(0)× R− → C

4,4, κ = s, u, m−
s
(s) = m−

u
(s) = 2, (s, x) ∈ Bε(0)× R−

depending analytically on s ∈ Bε(0) and such that for all x, y ∈ R− there hold

Ss(x, y)P−
κ (s, y) = P−

κ (s, x)Ss(x, y), κ = s, u,

|Ss(x, y)P−
s
(s, y)| ≤ Keα̃

−(x−y), x ≥ y,

|Ss(x, y)P−
u
(s, y)| ≤ Keβ̃

−(x−y), x ≤ y.

Proof. i). For all s ∈ Bε(0) the operator ∂x − M∞(s, ·) has an ordinary exponential
trichotomy on R+ with data (K,α+, ν(s), β+) where K > 0 can be taken independent
on s ∈ Bε(0) and projectors Pκ(s, ·), κ = s, c, u depending analytically on s ∈ Bε(0) and
given by

Ps(s, x) = V +
s
(s)W+

s
(s)H , Pc(s, x) = v+3 (s)w

+
3 (s)

H , Pu(s, x) = v+4 (s)w
+
4 (s)

H .

Now Pc(s, x) is of rank mc(s) = 1 and can be written as Pc(s, x) = z(s, x)ψ(s, x)H where

z(s, x) = eλ
+
3 (s)xv3(s), ψ(s, x) = e−λ

+
3 (s)xw3(s). Then there are C1, C2 > 0 such that for

all s ∈ Ωc

C1 = |v3(s)| = e−ν(s)x|z(s, x)|, C2 = |w3(s)| = eν(s)x|ψ(s, x)|.

Further set B(x) = M∞(s, x) −M(s, x). Then B is independent of s and by Theorem
2.6 we have for some C > 0

|B(x)| = |A−1||Df(v∞)−Df(v⋆(x))| ≤ Ce−µ⋆x, x ∈ R+.
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Take µ⋆ so small such that

0 < 2µ⋆ < inf
s∈Bε(0)

{min(ν(s)− α+, β+ − ν(s))}, µ⋆
max(K,K2)

< min(|α+|, β+).

Then we can apply Lemma 5.22 and obtain that the perturbed operator ∂x−M(s, ·) has
an ordinary exponential trichotomy with data (K̃, α̃+, ν(s), β̃+) given by

α̃+ = α+ +
µ⋆

2max(K,K2)
, β̃+ = β+ − µ⋆

2max(K,K2)
,

and constant K̃ > 0 which is independent on s ∈ Bε(0), and projectors P+
κ , κ = s, c, u

depending analytically on s ∈ Bε(0).
ii). By (5.18) the operator ∂x −M∞(s, ·) has an exponential dichotomy on R− for all
s ∈ Bε(0). Now we have for x ≤ 0 and s ∈ Bε(0) using Theorem 2.6 and Assumption 2

|M∞(s, x)−M(s, x)| ≤ |A−1||Df(0)−Df(v⋆(x))| ≤ Ceµ⋆x.

Then the claim is a consequence of Lemma B.3.

Now we are able to construct a solution of (5.48) via Green’s functions in the same
fashion as in Section 5.3.2 for the piecewise constant coefficient system (5.17). For
ζ+(s) ∈ R(P+

s
(s, 0)), x ∈ R+ and s ∈ Ωc let

Y+(s, x) = Ss(x, 0)ζ+(s) +
∫ ∞

0

G+
s (x, y)R(y)dy (5.54)

with the Green’s function

G+
s (x, y) =

{

Ss(x, y)P+
s
(s, y), 0 ≤ y ≤ x

−Ss(x, y)(P+
c
(s, y) + P+

u
(s, y)), 0 ≤ x < y

.

For ζ−(s) ∈ R(P−
u
(s, 0)), x ∈ R− and s ∈ Ωc let

Y−(s, x) = Ss(x, 0)ζ−(s) +
∫ 0

−∞
G−
s (x, y)R(y)dy (5.55)

with the Green’s function

G−
s (x, y) =

{

−Ss(x, y)P−
u
(s, y), x ≤ y ≤ 0

Ss(x, y)P−
s
(s, y), y < x ≤ 0

.

Then it is easy to verify that Y±(s, ·) solves (5.48) on R±. Moreover, the solutions can
be represented in the following form:

Y+(s, x) = Ss(x, 0)ζ+(s) +
∫ x

0

Ss(x, y)P+
s
(s, y)R(y)dy

+

∫ ∞

x

Ss(x, y)P+
c
(s, y)R(y)dy+

∫ ∞

x

Ss(x, y)P+
u
(s, y)R(y)dy
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and

Y−(s, x) = Ss(x, 0)ζ−(s) +
∫ x

−∞
Ss(x, y)P−

s
(s, y)R(y)dy +

∫ 0

x

Ss(x, y)P−
u
(s, y)R(y)dy.

It is clear, since R ∈ L2
k+2, that Y±(s, ·) ∈ H1

loc(R±,C
4). By Assumption 6 we can assume

for all s ∈ Ωc\{0} the equation

(sI − L)u = 0, u ∈ L2 (5.56)

has no solution u ∈ L2 except the trivial one u = 0. Otherwise decrease ε. Moreover,
(5.56) with s = 0 has only one nontrivial solution in L2 given by v⋆,x, i.e. Lv⋆,x = 0.
Note that also LS1v⋆ = 0, but S1v⋆ /∈ L2. By Lemma 5.23 we have the projectors
P+

s
(s) = P+

s
(s, 0) and P−

u
(s) = P−

u
(s, 0) depending analytically on s ∈ Bε(0) and

satisfying the decompositions

C
4 = R(P+

s
(s, 0)) ⊕ R(I −P+

s
(s, 0)), C

4 = R(P−
u
(s, 0)) ⊕ R(I − P−

u
(s, 0)).

However, since N (L) is non-trivial the decomposition

C
4 = R(P+

s
(s, 0)) ⊕ R(P−

u
(s, 0))

holds true for s ∈ Ωc\{0} but fails for s = 0. In particular, the projectors P+
s
(s, 0),P−

u
(s, 0)

are unbounded as s → 0. In the next step we show that the projectors can be chosen
such that the singularity at s = 0 is of order one. It turns out that this is sufficient to
derive suitable resolvent estimates since the singularity only act on a finite dimensional
subspace given by the range of the projector P from Lemma 5.20.

Lemma 5.24. Let Assumption 1, 2 and 5-8 be satisfied. Then there is ε > 0 such that for
s ∈ Bε(0)\{0} there are projectors Q+

s
(s),Q−

u
(s) depending analytically on s ∈ Bε(0)\{0}

and satisfying

R(Q+
s
(s)) = R(P+

s
(s, 0)), R(Q−

u
(s)) = R(P−

u
(s, 0)),

C
4 = R(Q+

s
(s)) ⊕ R(Q−

u
(s)).

Moreover, there is C > 0 such that for all s ∈ Bε(0)\{0} there hold the estimate

|Q+
s
(s)|, |Q−

u
(s)| ≤ C

|s| . (5.57)

Proof. In the proof we fix x = 0 and neglect the dependence of the projectors on x, i.e.
we write P±

s,u(s) = P±
s,u(s, 0) We choose a basis {ϕ1, ϕ2} of R(P+

s
(0)) and {ϕ3, ϕ4} of

R(P−
u
(0)). W.l.o.g. we can assume ϕ1 = ϕ3 and for

J0(x) =

(
v⋆,x(x)
v⋆,xx(x)

)

.
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we have J0(0) = ϕ1 = ϕ3. Let ε be sufficiently small. Then for s ∈ Bε(0) we have, since
P±

s,u(s) are analytic in s,

(‖P+
s
(0)‖+ ‖P+

s
(s)‖)‖P+

s
(0)−P+

s
(s)‖ < 1,

(‖P−
u
(0)‖+ ‖P−

u
(s)‖)‖P−

u
(0)−P−

u
(s)‖ < 1.

Then Lemma A.12 implies with I + H = P+
s
(s)P+

s
(0) + (I − P+

s
(s))(I − P+

s
(0)), and

I +H = P−
u
(s)P−

u
(0) + (I − P−

u
(s))(I − P−

u
(0)) respectively, that

ϕi(s) = P+
s
(s)ϕi, i = 1, 2, ϕj(s) = P−

u
(s)ϕj, j = 3, 4

form a basis of R(P+
s
(s)), and R(P−

u
(s)) respectively, and are analytic in s ∈ Bε(0).

Now let Φ(s) = (Φ+(s),Φ−(s)) with Φ+(s) = (ϕ1(s), ϕ2(s)) and Φ−(s) = (ϕ3(s), ϕ4(s)).
By Assumption 6 we have N (L) = span{v⋆,x} and N (L2) = {0}. Further, det(Φ(0)) = 0
and since Φ is analytic in s ∈ Bε(0) and Assumption 6 we conclude Φ(s) 6= 0 for
s 6= 0. Moreover, with v = (1, 0,−1, 0)⊤ it follows Φ(0)v = 0 and since v⋆,x is the only
eigenfunction of L it follows N (Φ(0)) = span{v}. Thus R(Φ(0)) ⊂ C

4 with codimension
equal to 1 and there is w ∈ C4 such that wHΦ(0) = 0. Next we show that wHΦ′(0)v 6= 0.
For this purpose assume the contrary. Then Φ′(0)v ∈ R(Φ(0)) = R(P+

s
(0))+R(P−

u
(0)).

Now define for i = 1, 2, 3, 4 the Jost solutions, cf. [36, Ch. 9],

Ji(s, x) = Ss(x, 0)ϕi(s), x ∈ R.

Then J1(0, x) = J3(0, x) = J0(x), Ji(s, ·) are analytic in s, solve (5.48) with R = 0 and
satisfy the estimates

|J1,2(s, x)| ≤ K̃eα̃
+x, x ≥ 0, |J3,4(s, x)| ≤ K̃eβ̃

−x, x ≤ 0 (5.58)

where K̃, α̃+, β̃− are given by Lemma 5.23. Moreover,

Φ′(s) = (∂sJ1, ∂sJ2, ∂sJ3, ∂sJ4)(s, 0).

By differentiating (5.48) w.r.t. s, we obtain that ∂sJ1(0, ·) and ∂sJ3(0, ·) solve the inho-
mogeneous equation

Y ′ −M(0, ·)Y =

(
0 0
A−1 0

)

J0. (5.59)

Using Cauchy’s integral formula and (5.58) we obtain for x ≥ 0

|∂sJ1(0, x)| =
∣
∣
∣
∣
∣

1

2πi

∫

∂B ε
2
(0)

J1(λ, x)

λ2
dλ

∣
∣
∣
∣
∣
≤ 2

ε
K̃eα̃

+x (5.60)
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as well as for x ≤ 0

|∂sJ3(0, x)| =
∣
∣
∣
∣
∣

1

2πi

∫

∂B ε
2
(0)

J3(λ, x)

λ2
dλ

∣
∣
∣
∣
∣
≤ 2

ε
K̃eβ̃

−x. (5.61)

Now since Φ′(0)v ∈ R(P+
s
(0)) + R(P−

u
(0)) = span{J0(0, 0), J2(0, 0), J4(0, 0)} and v =

(1, 0,−1, 0)⊤ we find γi ∈ R, i = 1, 2, 3 such that

∂sJ1(0, 0)− ∂sJ3(0, 0) = Φ′(0)v = γ1J2(0, 0) + γ2J4(0, 0) + γ3J0(0, 0).

Now setting

Y (x) =

{

γ1J2(0, x) + γ3J0(0, x)− ∂sJ1(0, x), x ≥ 0

−γ2J4(0, x)− ∂sJ3(0, x), x < 0
.

Then Y is continuous and solves (5.59). Using (5.58), (5.60) and (5.61) there is C > 0
such that

|Y (x)| ≤ Ceα̃
+x, x ≥ 0, |Y (x)| ≤ Ceβ̃

−x, x < 0.

Hence Y ∈ H1. Let Y = (y1, y2)
⊤ with yi(x) ∈ C

2, i = 1, 2. Then we obtain from (5.59)
and a short calculation that Ly1 = v⋆,x. Thus y1 defines a generalized eigenfunction of L
and we arrive at a contradiction. Hence wHΦ′(0)v 6= 0 and we can normalize w, v such
that |v| = 1 and wHΦ′(0)v = 1. Now we can apply Keldysh’s Theorem D.3 and find a
holomorphic function Γ : Bε(0) → C4,4 with ε again sufficiently small such that for all
s ∈ Bε(0)\{0} there hold

Φ(s)−1 =
1

s
vwH + Γ(s). (5.62)

Now let

Ψ+(s) = Φ(s)−H
(
I2
0

)

, Ψ−(s) = Φ(s)−H
(
0
I2

)

and define the projectors

Q+
s
(s) = Φ+(s)Ψ+(s)

H , Q−
u
(s) = Φ−(s)Ψ−(s)

H .

Then an elementary calculation shows

Q+
s
(s)Q−

u
(s) = Q−

u
(s)Q+

s
(s) = 0.
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This yields for all s ∈ Bε(0)\{0}

R(Q+
s
(s)) = R(P+

s
(s)), R(Q−

u
(s)) = R(P−

u
(s)),

C
4 = R(Q+

s
(s)) ⊕ R(Q−

u
(s)), I = Q+

s
(s) +Q−

u
(s).

Moreover there is C > 0 such that for all s ∈ Bε(0)\{0} we have by (5.62)

|Q+
s
(s)|, |Q−

u
(s)| ≤ C

|s| .

As in Section 5.3.2 we now choose ζ+(s), ζ−(s) in (5.54), (5.55) such that the function

Y (s, x) =

{

Y+(s, x), x ≥ 0

Y−(s, x), x < 0
(5.63)

is continuous in x = 0. Then Y ∈ H1
loc(R,C

4) and solves (5.48) on R. For that purpose
take

ζ+(s) = Q+
s
(s)

∫

R

Gs(y)R(y)dy ∈ R(P+
s
(s, 0)),

ζ−(s) = −Q−
u
(s)

∫

R

Gs(y)R(y)dy ∈ R(P−
u
(s, 0))

(5.64)

with

Gs(y) =

{

−G+
s (0, y), y ≥ 0

G−
s (0, y), y < 0

.

Then the previous construction of the projectors Q+
s
, Q−

u
in Lemma 5.24 implies

Y+(s, 0)− Y−(s, 0) = ζ+(s)− ζ−(s) +

∫ ∞

0

G+
s (0, y)R(y)dy−

∫ 0

−∞
G−
s (0, y)R(y)dy

= ζ+(s)− ζ−(s)−
∫

R

Gs(y)R(y)dy = 0.

Hence Y (s, ·) from (5.63) is continuous at x = 0. Roughly speaking, we see by Lemma
5.24 that the singularity at s = 0 of the resolvent (sI − L)−1 caused by the single
’eigenvalue’ s = 0 is of order one. However, the essential spectrum still touches the
imaginary axis. As in the case of L∞ in Lemma 5.16 we are able to preserve the weak
singularity |s|−1 by choosing different polynomial weights.
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Lemma 5.25. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then there is C > 0
such that for all R ∈ L2

k+1 and s ∈ Ωc\{0} the function Y (s, ·) ∈ H1
loc(R,C

4) from (5.63)
is a solution in L2

k of (5.48) with

‖Y (s, ·)‖L2
k
≤ C

|s|‖R‖L2
k+1
. (5.65)

Proof. We have already seen that Y ∈ H1
loc is a solution of (5.48) and is continuous.

Therefore, it remains to show the estimate (5.65). We frequently use the estimates from
Lemma 5.15 and Lemma 5.23 and the Cauchy-Schwarz inequality. Recall Y± from (5.54),
(5.55) and let C > 0 denote a universal constant independent on s. Moreover, let Ωc
be sufficiently small in the sense that ε is sufficiently small in the definition of Ωc from
Lemma 5.14. By Lemma 5.14, cf. (5.24), we have ∂sλ

+
3 (0) 6= 0. Since λ+3 is analytic in s

we obtain for some C1 > 0 for all s ∈ Ωc\{0}
|s|

|λ+3 (s)|
=

|s|
|s∂sλ+3 (0) +O(|s|2)| ≤

1

|∂sλ+3 (0) +O(|s|)| ≤ C1.

Then using Lemma 5.14 we obtain

|s| ≤ C1|λ+3 (s)| ≤ C
√

Reλ+3 (s) = C
√

ν(s). (5.66)

Let us estimate Y±. Using |Gs(y)| ≤ K for all (s, y) ∈ Ωc × R, Lemma 5.24 and (5.64)
we observe

|ζ±(s)|2 ≤
C

|s|2
∣
∣
∣
∣

∫

R

Gs(y)R(y)dy

∣
∣
∣
∣

2

≤ C

|s|2
∫

R

K2η−2(k+1)(y)dy‖R‖2L2
k+1

≤ C

|s|2‖R‖
2
L2
k+1

.

This implies
∫ ∞

0

η2k(x)|Ss(0, x)ζ+(s)|2dx ≤ C

|s|2‖R‖
2
L2
k+1

∫ ∞

0

η2k(x)eα̃
+xdx ≤ C

|s|2‖R‖
2
L2
k+1

(5.67)

as well as
∫ 0

−∞
η2k(x)|Ss(0, x)ζ−(s)|2dx ≤ C

|s|2‖R‖
2
L2
k+1

∫ 0

−∞
η2k(x)eβ̃

+xdx ≤ C

|s|2‖R‖
2
L2
k+1

. (5.68)

Next we estimate Y (s, ·) at +∞. Let x ≥ 1 and use Cauchy-Schwarz inequality and
Lemma 5.15 to obtain

η2k(x)

∣
∣
∣
∣

∫ ∞

x

Ss(x, y)P+
c
(s, y)R(y)dy

∣
∣
∣
∣

2

≤ C

∫ ∞

x

|x|2k
|y|2(k+1)

e2ν(s)(x−y)dy‖R‖2L2
k+1

≤ C

ν(s)
|x|−2‖R‖2L2

k+1

(5.69)
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as well as since β̃+ > 0

η2k(x)

∣
∣
∣
∣

∫ ∞

x

Ss(x, y)P+
u
(s, y)R(y)dy

∣
∣
∣
∣

2

≤ C

∫ ∞

x

|x|2k
|y|2(k+1)

e2β̃
+(x−y)dy‖R‖2L2

k+1

≤ C|x|−2‖R‖2L2
k+1

.

(5.70)

Moreover, since α̃+ < 0, we have

η2k(x)

∣
∣
∣
∣

∫ x

0

Ss(x, y)P+
s
(s, y)R(y)dy

∣
∣
∣
∣

2

≤ η2k(x)

∣
∣
∣
∣

∫ 1

0

Ss(x, y)P+
s
(s, y)R(y)dy

∣
∣
∣
∣

2

+ η2k(x)

∣
∣
∣
∣

∫ x

1

Ss(x, y)P+
s
(s, y)R(y)dy

∣
∣
∣
∣

2

≤ Cη2k(x)e2α̃
+x‖R‖2L2

k+1

+ C

∫ x

1

|x|2k
|y|2(k+1)

e2α̃
+(x−y)dy‖R‖2L2

k+1

≤ C|x|−2‖R‖2L2
k+1

.

(5.71)

Now (5.67), (5.69), (5.70), (5.71) imply

∫ ∞

1

η2k(x)|Y (s, x)|2dx ≤ C

|s|2‖R‖
2
L2
k+1

+ C

∫ ∞

1

η2k(x)

∣
∣
∣
∣

∫ x

0

Ss(x, y)P+
s
(s, y)R(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ ∞

1

η2k(x)

∣
∣
∣
∣

∫ ∞

x

Ss(x, y)P+
c
(s, y)R(y)dy

∣
∣
∣
∣

2

dx

+ C

∫ ∞

1

η2k(x)

∣
∣
∣
∣

∫ ∞

x

Ss(x, y)P+
c
(s, y)R(y)dy

∣
∣
∣
∣

2

dx

≤ C

|s|2‖R‖
2
L2
k+1

+

(

2C +
C

ν(s)

)∫ ∞

1

|x|−2dx‖R‖2L2
k+1

≤
(
C

|s|2 + 2C +
C

ν(s)

)

‖R‖2L2
k+1

≤ C

|s|2‖R‖L2
k+1
.

(5.72)

So it remains to estimate Y (s, ·) at −∞. For that purpose let x ≤ −1. Then we obtain
using again Cauchy-Schwarz inequality, Lemma 5.15 and α̃− < 0

η2k(x)

∣
∣
∣
∣

∫ x

−∞
Ss(x, y)P−

s
(s, y)R(y)dy

∣
∣
∣
∣

2

≤ C

∫ x

−∞

|x|2k
|y|2(k+1)

e2α̃
−(x−y)dy‖R‖2L2

k+1

≤ C|x|−2‖R‖2L2
k+1

(5.73)
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as well as since 0 < β̃−

η2k(x)

∣
∣
∣
∣

∫ 0

x

Ss(x, y)P−
u
(s, y)R(y)dy

∣
∣
∣
∣

2

≤ Cη2k(x)

∣
∣
∣
∣

∫ 0

−1

eβ̃
−(x−y)|R(y)|dy

∣
∣
∣
∣

2

+ Cη2k(x)

∣
∣
∣
∣

∫ −1

−∞
eβ̃

−(x−y)|R(y)|dy
∣
∣
∣
∣

2

≤ Cη2k(x)eβ̃
−x‖R‖2L2

k+1

+ C

∫ −1

−∞

|x|2k
|y|2(k+1)

e2β̃
−(x−y)dy‖R‖2L2

k+1

≤ C|x|−2‖R‖L2
k+1
.

(5.74)

Now (5.66), (5.68), (5.73) and (5.74) imply

∫ −1

−∞
η2k(x)|Y (s, ·)|2dx ≤ C

|s|2‖R‖
2
L2
k+1

+

∫ −1

−∞
η2k(x)

∣
∣
∣
∣

∫ x

−∞
Ss(x, y)P−

s
(s, y)R(y)dy

∣
∣
∣
∣

2

dx

+

∫ −1

−∞
η2k(x)

∣
∣
∣
∣

∫ 0

x

Ss(x, y)P−
u
(s, y)R(y)dy

∣
∣
∣
∣

2

dx

≤ C

|s|2‖R‖
2
L2
k+1

+ 2C

∫ −1

−∞
|x|−2dx‖R‖2L2

k+1

≤ C

|s|2‖R‖
2
L2
k+1

.

(5.75)

Since Y (s, ·) is continuous it is easily seen that

∫ 1

−1

η2k(x)|Y (s, x)|2dx ≤ C

|s|2‖R‖
2
L2
k+1

.

Thus with (5.72) and (5.75) we obtain (5.65) after taking square root

‖Y (s, ·)‖L2
k
≤ C

|s|‖R‖L2
k+1
.

The Lemma now implies the following resolvent estimate for L on L2
k for s ∈ Ωc\{0}.

Corollary 5.26. There is C > 0 such that for all s ∈ Ωc\{0} and r ∈ L2
k+1 the equation

(sI − L)u = r has a unique solution u ∈ H2
k+1 satisfying

‖u‖L2
k
≤ C

|s|‖r‖L2
k+1
.

Proof. Since Ωc\{0} ⊂ ρ(L) there is a unique solution u ∈ H2
k+1 of (sI − L)u = r for all

r ∈ L2
k+1. In particular, r ∈ L2 and u is unique in L2. Take Y (s, ·) = (w1, w2)

⊤ from
Lemma 5.25. Then (sI−L)w1 = r. Thus u = w1 and the estimate is direct consequence
of Lemma 5.25.
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Next we take the projector P onto N (L) and the space Vk = Ψ⊥∩L2
k from (5.44) into

account and prove the major result of this section, which gives sharp resolvent estimates
for sI − L in the crescent Ωc. The estimates are the essential ingredients to derive time
decaying estimates for the semigroup generated by L. Using a perturbation argument
similar as in [12, Lem. B2], we prove that the weak singularity of (sI − L)−1 of order
|s|−1 is caused by the nontrivial kernel N (L) and only acts on a subspace given by the
range of the projector P onto N (L) from Lemma 5.20.

Lemma 5.27. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then there is C > 0
such that for all r ∈ L2

k+3 and s ∈ Ωc\{0} the solution u ∈ H2
k+3 of (5.47) satisfies the

estimate

‖u‖H1
k
≤ 1

|s|‖Pr‖L2
k
+ C‖(I − P )r‖L2

k+3
. (5.76)

In particular, if r ∈ Vk+3 then

‖u‖H1
k
≤ C‖r‖L2

k+3
(5.77)

uniformly for s ∈ Ωc.

Proof. We approximate (sI − L) by the operator

L̃(s) := sP − L(I − P ).

Then

L̃(s)− (sI − L) = s(P − I) + LP = −s(I − P ). (5.78)

Since Ωc\{0} ⊂ ρ(L) the equation (sI−L)u = r ∈ L2
k+3 with s 6= 0 has a unique solution

u ∈ H2
k+3. Recall that PLu = LPu = 0 by construction of P , cf. (5.43). We obtain

|s|‖Pu‖H1
k
= ‖(sI − L)Pu‖H1

k
= ‖Pr‖H1

k
. (5.79)

By Lemma 5.19 L is a Fredholm operator of index 0 from L2
k to L2

k+2. Now we use the
estimate (5.46) to obtain for some K > 0

‖L̃(s)(I − P )u‖L2
k+2

= ‖L(I − P )u‖L2
k+2

≥ K‖(I − P )u‖H1
k
.

This yields with (5.78)

‖(I − P )r‖L2
k+2

= ‖(sI − L)(I − P )u‖L2
k+2

≥ ‖L̃(s)(I − P )u‖L2
k+2

− ‖[L̃(s)− (sI − L)](I − P )u‖L2
k+2

≥ K‖(I − P )u‖H1
k
− |s|‖(I − P )u‖L2

k+2
.

(5.80)
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Using (5.79), (5.80) we obtain

‖u‖H1
k
≤ ‖Pu‖H1

k
+ ‖(I − P )u‖H1

k

≤ 1

|s|‖Pr‖H1
k
+ C|s|‖(I − P )u‖L2

k+2
+ C‖(I − P )r‖L2

k+2
.

Now by Corollary 5.26 we have |s|‖(I − P )u‖L2
k+2

≤ C‖(I − P )r‖L2
k+3

. Thus,

‖u‖H1
k
≤ 1

|s|‖Pr‖H1
k
+ C‖(I − P )r‖L2

k+3
≤ C

|s|‖Pr‖L2
k
+ C‖(I − P )r‖L2

k+3
.

5.4 The semigroup etL

From Lemma 5.7 and Theorem 5.9 we conclude that the linearized operator L generates
an analytic semigroup on L2

k. It is denoted by {etL}t≥0 and will be used to show existence
of a solution to (0.11) with u(0) = v⋆ + u0. To conclude also nonlinear stability of the
solution we need time decaying estimates of the semigroup which will be proven using
the delicate resolvent estimates from Lemma 5.27. For this purpose, recall the subspaces
Vk from (5.44).

Theorem 5.28. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then the linearized
operator L : H2

k → L2
k generates an analytic semigroup {etL}t≥0 on L2

k given by

etL =
1

2πi

∫

Γ

ets(sI − L)−1ds,

where Γ is any contour in ρ(L) with arg λ → ±
(
π
2
+ ε
)

as |λ| → ∞ for some ε > 0. In
addition, there is K ≥ 1 and β > 0 such that for all t > 0 and ℓ = 0, 1 there hold

‖etLu‖Hℓ
k
≤ Keβt‖u‖Hℓ

k
, ‖etLu‖H1

k
≤ K√

t
eβt‖u‖L2

k
. (5.81)

Moreover, for m ∈ N there is Cm ≥ 1 such that for all u ∈ Vk+3m there hold

‖etLu‖L2
k
≤ Cm

(1 + t)
m
2

‖u‖L2
k+3m

, (5.82)

‖etLu‖H1
k
≤ Cm

t
m
2

‖u‖L2
k+3m

, (5.83)

‖etLu‖H1
k
≤ Cm

(1 + t)
m
2

‖u‖H1
k+3m

. (5.84)
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Proof. As in the proof of Theorem 3.21 (see also [32]) it follows from Lemma 5.7 and
Theorem 5.9 that L generates an analytic semigroup on L2

k and the estimates (5.81)
hold. So it remains to show the estimates (5.82), (5.83) and (5.84). For this purpose
we first consider the case m = 1. Take Ωc, Γc from Lemma 5.14 and such that Lemma
5.27 applies to Ωc and let C > 0 denote a universal constant. Let γ = a⋆δ

2 + iδ and
ε = cos−1( δ

|γ|) with a⋆, δ defining Γc. Set for sufficiently small ε0 > 0

Γ+ := {γ + τei(
π
2
+ε0), τ ≥ 0}, Γ− := {γ + τe−i(

π
2
+ε0), τ ≥ 0},

Γ0 := {|γ|eiθ, |θ| ≤ π

2
+ ε}

and set Γ = Γ−∪Γ0∪Γ+ being a contour running in upward direction. W.l.o.g. Γ ⊂ ρ(L)

Ωc

Γ+

Γ−

Γ0

σdisp(L)

Γc Kε̃

Γε̃

Figure 5.5: The contour Γ (left) and Γε̃, Kε̃ (right) in the proof of Theorem 5.28.

and there are no eigenvalues of L to the right of Γ in the complex plane. Otherwise
increase a⋆ < 0 and decrease ε0 > 0. Since etL is independent of the choice of the
contour we have

etL =
1

2πi

∫

Γ

ets(sI − L)−1ds.

In particular, ∂Ωc = Γc ∪ Γ0. Take arbitrary ε̃ > 0 and set Kε̃ = ∂Bε̃(0) ∩ Ωc and
Γε̃ := {z ∈ Γ, |z| ≤ ε̃} ∪Kε̃. Then the Cauchy integral theorem implies for u ∈ Vk+3 =
R(I − P ) ∩ L2

k+3

∫

∂Ωc

ets(sI − L)−1uds =

∫

Γε̃

ets(sI − L)−1uds,
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where the integrals running clockwise. By Lemma 5.27 we have for all s ∈ Γε̃, 0 < ε̃ < |γ|
the uniform estimate

‖(sI − L)−1u‖H1
k
≤ C‖u‖L2

k+3
∀ u ∈ Vk+3. (5.85)

Using (5.85) and parameterizing Γε̃ yields by a straight forward calculation for u ∈ Vk+3

∥
∥
∥
∥

∫

Γε̃

ets(sI − L)−1uds

∥
∥
∥
∥
H1

k

→ 0, ε̃→ 0.

This shows
∫

∂Ωc

ets(sI − L)−1uds = 0 ∀ u ∈ Vk+3.

Then we conclude

etLu =
1

2πi

∫

Γ̃

ets(sI − L)−1uds ∀ u ∈ Vk+3

where Γ̃ = Γ−∪Γc∪Γ+ is the contour running in upwards direction. Now since Γ± ⊂ ρ(L)
and using Lemma 5.27 and Lemma 5.7 we find C ≥ 0 such that

‖(sI − L)−1u‖H1
k
≤ C‖u‖L2

k+3
∀ s ∈ Γ̃, u ∈ Vk+3.

Now let t ≥ 1 and u ∈ Vk+3. Then we observe since a⋆ < 0
∥
∥
∥
∥

∫

Γ±

ets(sI − L)−1uds

∥
∥
∥
∥
H1

k

≤ C‖u‖L2
k+3
eta⋆δ

2

∫ ∞

0

etτ cos(
π
2
+ε0))dτ

≤ C

t
‖u‖L2

k+3
eta⋆δ

2

∫ ∞

0

e−s| cos(
π
2
+ε0)|ds ≤ C

t
‖u‖L2

k+3
.

Moreover, there holds

∥
∥
∥
∥

∫

Γc

ets(sI − L)−1uds

∥
∥
∥
∥
H1

k

≤ C‖u‖L2
k+3

∫ δ

−δ
ea⋆tτ

2 |2a⋆τ + i|dτ ≤ C‖u‖L2
k+3

∫ δ

−δ
ea⋆tτ

2

dτ

=
C√
t
‖u‖L2

k+3

∫ √
tδ

0

ea⋆s
2

ds ≤ C√
t
‖u‖L2

k+3

∫ ∞

0

ea⋆s
2

ds ≤ C√
t
‖u‖L2

k+3
.

Now using (5.81) for t ∈ (0, 1), we obtain for all t > 0 and u ∈ Vk+3

‖etLu‖L2
k
≤ C1√

1 + t
‖u‖L2

k+3
, ‖etLu‖H1

k
≤ C1√

t
‖u‖L2

k+3
, ‖etLu‖H1

k
≤ C1√

1 + t
‖u‖H1

k+3
.

(5.86)
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Now the general case, m ∈ N, in (5.82) follows by applying (5.86) m-times:

‖etLu‖L2
k
=
∥
∥
∥

(

e
t
m
L
)m

u
∥
∥
∥
L2
k

≤ C1

(1 + 1
m
t)

1
2

∥
∥
∥
∥

(

e
t
m
L
)m−1

u

∥
∥
∥
∥
L2
k+3

≤ · · · ≤ Cm
1

(1 + 1
m
t)

m
2

‖u‖L2
k+3m

≤ Cm

(1 + t)
m
2

‖u‖L2
k+3m

and similarly for (5.83) and (5.84).

5.5 Decomposition of the dynamics

Recall the co-moving equation with perturbed initial data from (0.11) reading as

ut = Auxx + cux + Sωu+ f(u), u(0) = v⋆ + u0.

As in Chapter 3 the next step is to decompose the dynamics of the solution of (0.11)
by a nonlinear coordinate transformation, cf. Section 3.5. In particular, the solution is
written as a motion along the group orbit O(v⋆) described by a group element τ(t) ∈ R

and a perturbation w in the space Vk for appropriate k ∈ N, cf. Figure 5.6. For t ≥ 0
we want to write the solution u(t) ∈Mk as

u(t) = v⋆(· − τ(t)) + w(t), τ(t) ∈ R, w(t) ∈ Vk.

This transformation will be unique as long as the solution u stays close to the group
orbit O(v⋆). As in Chapter 3 this will be guaranteed by taking sufficiently small initial
perturbations u0. Since the procedure is very close to the one from Section 3.5 we only
give the main steps of the proofs during this section.
We start by considering the map

Π : R → Φ, τ 7→ P (v⋆(· − τ)− v⋆). (5.87)

Lemma 5.29. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then there is a
zero neighborhood W ⊂ R such that the map Π : W → Π(W ) ⊂ Φ from (5.87) is a
local diffeomorphism. Moreover, there is a zero neighborhood V ⊂ R× Vk such that the
transformation

T : V → T (V ) ⊂ L2
k, (τ, w) 7→ v⋆(· − τ)− v⋆ + w

is a local diffeomorphism and the solution of T (τ, w) = v is given by

τ = Π−1(Pv), w = v + v⋆ − v⋆(· − τ).
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O(v⋆)

v⋆(· − τ(t))

w0

w(t)

v⋆(· − τ0)

v⋆

u0

u(t)

v⋆(· − τ∞)

v⋆ + u0

v⋆ +Ψ⊥

v⋆(· − τ0) + Ψ⊥
v⋆(· − τ(t)) + Ψ⊥

Figure 5.6: Decomposition of the dynamics.

Proof. The proof follows as in Lemma 3.22 and we only note the important steps. We
have Π(0) = 0 and Π is continuously differentiable with derivative DΠ(0) = −v⋆,x 6= 0,
cf. Lemma 5.5. Thus, we conclude using the implicit function theorem D.8 that Π is
a local diffeomorphism near τ = 0. The same holds true for T since it is continuously
differentiable with derivative at (τ, w) = 0

DT (0, 0) =

(
DΠ(0) 0

0 I

)

which is invertible. The rest of the proof follows as in in the proof of Lemma 3.22.

Next we assume there is a classical solution u ∈ C([0, t∞),M2
k ) ∩ C1([0, t∞),Mk) of

(0.11) on [0, t∞) for some k ∈ N satisfying

‖u(t)− v⋆‖L2
k
< δ ∀t ∈ [0, t∞).

Let δ be sufficiently small such that Lemma 5.5 guarantees that the map T stays invertible
on Bδ(0) ⊂ L2

k. Then we have for all t ∈ [0, t∞)

u(t)− v⋆ = T (τ(t), w(t))
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with w : [0, t∞) → Vk and τ : [0, t∞) → R. Then, since T is diffeomorphic, we conclude
w ∈ C([0, t∞), V 2

k ) ∩ C1([0, t∞), Vk) and τ ∈ C1([0, t∞),R) and the decomposition

u(t) = v⋆(· − τ(t)) + w(t) (5.88)

holds for all t ∈ [0, t∞). Since u solves (0.11) we obtain for t = 0

u0 + v⋆ = u(0) = v⋆(· − τ(0)) + w(0)

which yields

τ(0) = Π−1(Pu0) =: τ0, w(0) = u0 + v⋆ − v⋆(· − τ0) =: w0. (5.89)

Let L0u := Auxx + cux + Sωu. Then using the chain rule and the local representation of
the derivative of the group action from Lemma 5.5, see (5.2), we obtain for t ∈ (0, t∞)

0 = ut(t)− F (u(t)) = ut(t)− L0u(t)− f(u(t))

=
d

dt
v⋆(· − τ) + wt − L0v⋆(· − τ)− L0w − f(v⋆(· − τ) + w)

= −v⋆,x(· − τ)τt + wt − L0v⋆(· − τ)− L0w − f(v⋆(· − τ) + w)

= −v⋆,x(· − τ)τt + wt − L0v⋆(· − τ)− Lw +Df(v⋆)w − f(v⋆(· − τ) + w).

Since L0v⋆(· − τ) + f(v⋆(· − τ)) = F (v⋆(· − τ)) = 0 we observe

wt = Lw + v⋆,x(· − τ)τt + r[f ](τ, w) (5.90)

where

r[f ](τ, w) := f(v⋆(· − τ) + w)− f(v⋆(· − τ))−Df(v⋆)w. (5.91)

Applying the projector P to (5.90) yields

0 = Pv⋆,x(· − τ)τt + Pr[f ](τ, w). (5.92)

Hence τ is determined by the ODE (5.92). As a next step, we want to write the ODE
in an explicit form.

Lemma 5.30. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then for τ ∈ R

the map

S(τ) : R → Φ, µ 7→ −Pv⋆,x(· − τ)µ

satisfies S(τ) ∈ L[R,Φ]. Moreover, S(·) ∈ C1(R, L[R,Φ]) and there is a zero neighbor-
hood V ⊂ R such that S(τ)−1 exists for τ ∈ V and S(·)−1 ∈ C1(V, L[Φ,R]).
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Proof. Follows as in the proof of Lemma 3.23.

With the use of Lemma 5.30 we can write (5.92) together with the initial condition
as an initial-value problem for τ

τt = r[τ ](τ, w), τ0 = Π−1(Pu0)

where

r[τ ](τ, w) := S(τ)−1Pr[f ](τ, w). (5.93)

Now we apply the projector I − P to (5.90) and obtain

wt = Lw + (I − P )v⋆,x(· − τ)r[τ ](τ, w) + (I − P )r[f ](τ, w) = Lw + r[w](τ, w)

where

r[w](τ, w) :=
[
(I − P ) + (I − P )v⋆,x(· − τ)S(τ)−1P

]
r[f ](τ, w). (5.94)

Summarizing we have shown that the new coordinates (τ, w) solve the initial-value prob-
lem

wt = Lw + r[w](τ, w), w(0) = u0 + v⋆ − v⋆(· − τ0) =: w0 (5.95)

τt = r[τ ](τ, w), τ(0) = Π−1(Pu0) =: τ0 (5.96)

as long as the decomposition (5.88) is valid.

Definition 5.31. A pair (τ, w) is called a classical solution of (5.95), (5.96) on [0, t∞)
for some t∞ > 0 if there is k ∈ N with

i) w ∈ C((0, t∞), V 2
k ) ∩ C1([0, t∞), Vk) and τ ∈ C1([0, t∞),R).

ii) wt(t) = Lw(t) + r[w](τ(t), w(t)) and τt(t) = r[τ ](τ(t), w(t)) for every t ∈ [0, t∞).

iii) w(0) = w0 and τ(0) = τ0.

If t∞ = ∞ we will call (τ, w) a global classical solution of (5.95), (5.96), whereas for
t∞ <∞ we will call (τ, w) a local classical solution of (5.95), (5.96).

5.6 Estimates of nonlinearities

As in Section 3.6 the next step is to show Lipschitz estimates of the remaining nonlin-
earities r[f ], r[w], r[τ ] from (5.91), (5.94) and (5.93). But in contrast to the exponential
case in Section 3.6 we have to show sharper estimates since by Theorem 5.28 we have a
loss in the polynomial order. However, this is captured by the fact that the remainders
r[f ], r[w], r[τ ] are actually Taylor-remainders of second order. This gives us additional
polynomial orders to compensate the loss of the semigroup.
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Lemma 5.32. Let Assumption 1, 2 and 5-8 be satisfied and k ∈ N0. Then there is
δ > 0 and constants C0, C1, C2, C3, C4 > 0 such that for all τ, τ1, τ2 ∈ Bδ(0) ⊂ R and
w,w1, w2 ∈ Bδ(0) ⊂ H1

k there hold:

i)
∥
∥r[f ](τ, w1)− r[f ](τ, w2)

∥
∥
H1

2k

≤ C0

(

|τ |+max(‖w1‖H1
k
, ‖w2‖H1

k
)
)

‖w1 − w2‖H1
k
,

ii)
∥
∥r[f ](τ1, w)− r[f ](τ2, w)

∥
∥
H1

2k

≤ C1|τ1 − τ2|,

iii)
∥
∥r[w](τ, w1)− r[w](τ, w2)

∥
∥
H1

2k

≤ C2

(

|τ |+max(‖w1‖H1
k
, ‖w2‖H1

k
)
)

‖w1 − w2‖H1
k
,

iv)
∥
∥r[w](τ1, w1)− r[w](τ2, w2)

∥
∥
H1

2k

≤ C3

(

|τ1 − τ2|+ ‖w1 − w2‖H1
k

)

,

v)
∣
∣r[τ ](τ1, w1)− r[τ ](τ2, w2)

∣
∣ ≤ C4

(

|τ1 − τ2|+ ‖w1 − w2‖H1
k

)

.

Proof. The proof is similar to the one of Lemma 3.25 and we denote by C > 0 a universal
constant. For a matrix-valued function M : R → R2,2 we write ‖M‖L∞ = ‖|M |‖L∞

and ‖M‖L2
k
= ‖|M |‖L2

k
for some matrix norm | · | on R2,2. We frequently use Sobolev

embedding, cf. Theorem D.2, Lemma 5.4 and the exponential estimates of the profile
v⋆ from Theorem 2.6. The key idea is to use the following estimates to gain the better
behavior w.r.t. to the polynomial order. Let v ∈ H1

k , u ∈ L2
k then

‖|v||u|‖2L2
2k
=

∫

R

η4k(x)|v(x)|2|u(x)|2dx =

∫

R

|ηk(x)v(x)|2|ηk(x)u(x)|2dx

≤ ‖v‖2L∞
k
‖u‖2L2

k
≤ ‖v‖2H1

k
‖u‖2L2

k
.

(5.97)

and

‖|v⋆(· − τ)− v⋆||v|‖2L2
2k
≤ ‖v‖2L∞

∫

R

η4k(x)|v⋆(x− τ)− v⋆(x)|2dx ≤ C|τ |2‖v‖2H1
k
. (5.98)

We frequently use the estimates (5.97) and (5.98) with different functions u, v depending
on w1, w2 and their derivatives w1,x, w2,x. Now we can proceed in the same fashion as in
the proof of Lemma 3.25.
i). Let κ(s) := v⋆ − v⋆(· − τ) − w2 + s(w1 − w2). For the remainder r[f ] we use the
intermediate value theorem and the estimates (5.97), (5.98) to estimate

‖r[f ](τ, w1)− r[f ](τ, w2)‖L2
2k

= ‖f(v⋆(· − τ) + w1)− f(v⋆(· − τ) + w2)−Df(v⋆)(w1 − w2)‖L2
2k

≤
∫ 1

0

‖[Df(v⋆(· − τ) + w2 + s(w1 − w2))−Df(v⋆)](w1 − w2)‖L2
2k
ds

≤
∫ 1

0

∫ 1

0

‖D2f(v⋆ + σκ(s))[κ(s), w1 − w2]‖L2
2k
dσds
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≤ C
(

‖|v⋆(· − τ)− v⋆| |w1 − w2|‖L2
2k
+ ‖|w2| |w1 − w2|‖L2

2k
+ ‖|w1 − w2|2‖L2

2k

)

≤ C
(

|τ |+max(‖w1‖H1
k
, ‖w2‖H1

k
)
)

‖w1 − w2‖H1
k
.

Next we estimate the derivative

‖∂x[r[f ](τ, w1)− r[f ](τ, w2))]‖L2
2k

= ‖[Df(v⋆(· − τ) + w1)−Df(v⋆(· − τ) + w2)]v⋆,x(· − τ)−D2f(v⋆)[v⋆,x, w1 − w2]

+ [Df(v⋆(· − τ) + w1))−Df(v⋆)]w1,x − [Df(v⋆(· − τ) + w2))−Df(v⋆)]w2,x‖L2
2k
.

(5.99)

With κ̃(s) := v⋆(· − τ) + w2 + s(w1 − w2) the first term can be estimated by

‖[Df(v⋆(· − τ) + w1)−Df(v⋆(· − τ) + w2)]v⋆,x(· − τ)−D2f(v⋆)[v⋆,x, w1 − w2]‖L2
2k

≤
∫ 1

0

‖D2f(κ̃(s))[v⋆,x(· − τ), w1 − w2]−D2f(v⋆)[v⋆,x, w1 − w2]‖L2
2k
ds

≤
∫ 1

0

‖D2f(κ̃(s))[v⋆,x(· − τ)− v⋆,x, w1 − w2]‖L2
2k
ds

+

∫ 1

0

‖
(
D2f(κ̃(s))−D2f(v⋆)

)
[v⋆,x, w1 − w2]‖L2

2k
ds

≤
∫ 1

0

‖D2f(κ̃(s))[v⋆,x(· − τ)− v⋆,x, w1 − w2]‖L2
2k
ds

+

∫ 1

0

∫ 1

0

‖D3f(v⋆ + σ(κ̃(s)− v⋆))[κ̃(s)− v⋆, v⋆,x, w1 − w2]‖L2
2k
dσds

≤ C
(

‖v⋆,x(· − τ)− v⋆,x‖H1
2k
‖w1 − w2‖L∞

+ ‖|w2||w1 − w2|‖L2
2k
+ ‖|w1 − w2|2‖L2

2k

)

≤ C
(

|τ |+max(‖w1‖H1
k
, ‖w2‖H1

k
)
)

‖w1 − w2‖H1
k
.

For the second term in (5.99) we use the abbreviation κi(s) = v⋆+ s(v⋆(· − τ)− v⋆+wi),
i = 1, 2 and estimate by frequently adding zero

‖[Df(v⋆(· − τ) +w1))−Df(v⋆)]w1,x − [Df(v⋆(· − τ) + w2))−Df(v⋆)]w2,x‖L2
2k

≤
∫ 1

0
‖D2f(κ1(s))[v⋆(· − τ)− v⋆ + w1, w1,x]−D2f(κ2(s))[v⋆(· − τ)− v⋆ + w2, w2,x]‖L2

2k
ds

≤
∫ 1

0
‖
(
D2f(κ1(s))−D2f(κ2(s))

)
[v⋆(· − τ)− v⋆ + w1, w1,x]‖L2

2k
ds

+

∫ 1

0
‖D2f(κ2(s))[w1 − w2, w1,x]‖L2

2k
ds
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+

∫ 1

0
‖D2f(κ2(s))[v⋆(· − τ)− v⋆ + w2, (w1 − w2)x]‖L2

2k
ds

≤
∫ 1

0

∫ 1

0
‖D3f(κ2(s) + σ(κ1(s)− κ2(s)))[κ1(s)− κ2(s), v⋆(· − τ)− v⋆ + w1, w1,x]‖L2

2k
dσds

+

∫ 1

0
‖D2f(κ2(s))[w1 − w2, w1,x]‖L2

2k
ds

+

∫ 1

0
‖D2f(κ2(s))[v⋆(· − τ)− v⋆ + w2, (w1 − w2)x]‖L2

2k
ds

≤ C
(

‖|w1 − w2||w1,x|‖L2
2k

+ ‖|v⋆(· − τ)− v⋆||(w1 − w2)x|‖L2
2k

+ ‖|w2||(w1 − w2)x|‖L2
2k

)

≤ C
(

|τ |+max(‖w1‖H1
k
, ‖w2‖H1

k
)
)

‖w1 − w2‖H1
k
.

Putting things together we have shown

∥
∥r[f ](τ, w1)− r[f ](τ, w2)

∥
∥
H1

2k

≤ C0

(

|τ |+max(‖w1‖H1
k
, ‖w2‖H1

k
)
)

‖w1 − w2‖H1
k
.

ii). Using Theorem 2.6 and the intermediate value theorem yields

‖r[f ](τ1, w)− r[f ](τ2, w)‖L2
2k

= ‖f(v⋆(· − τ1) + w)− f(v⋆(· − τ2) + w)‖L2
2k

≤ ‖v⋆(· − τ1)− v⋆(· − τ2)‖L2
2k

≤ C|τ1 − τ2|.

iii)-v). The estimates iii), iv) and v) follow exactly as in the proof of Lemma 3.25 by
using i) and Lemma 5.30.

Remark 5.33. Up to this point excluding the estimates of the nonlinearities, we could
have done all the analysis using the space Xη as in Chapter 3 but with a polynomial weight
function. In particular, for Xk = Xη with η = ηkpoly it is possible to derive estimates of
the semigroup etL as in Theorem 5.28 for the linearized operator from (0.26) considered
as L : D(L) ⊂ Xk → Xk+2. However, when proceeding as in Chapter 3 we were not
able to compensate the loss of the polynomial orders by estimates of the nonlinearities.
Especially, we could not prove a result as in Lemma 3.25 in the case of polynomial weight
functions.

5.7 Nonlinear stability theorem in polynomial spaces

In this section we prove the second main result of the thesis - nonlinear stability with
asymptotic phase of traveling oscillating fronts in polynomially weighted spaces, cf. The-
orem 1.13. The proof follows the same strategy as in the case of exponentially weighted
spaces, see Chapter 3. We consider the decomposed system (5.95), (5.96) which was
derived by a nonlinear coordinate transformation in Section 5.5. We begin by show-
ing existence of a local mild solution of (5.95), (5.96). For this purpose consider the
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corresponding integral equations

w(t) = etLw0 +

∫ t

0

e(t−s)Lr[w](τ(s), w(s))ds,

τ(t) = τ0 +

∫ t

0

r[τ ](τ(s), w(s))ds.

(5.100)

Definition 5.34. A solution (τ, w) ∈ C([0, t∞),R× V 1
k ) for some k ∈ N0 of the integral

equations (5.100) on 0 ≤ t < t∞ for some t∞ > 0 is called a mild solution of (5.95),
(5.96) on [0, t∞).

In the case t∞ = ∞ the we will call the solution (τ,w) global mild solution, whereas
for t <∞ we will call (τ,w) a local mild solution of of (5.95), (5.96). To prove existence
of a local mild solution we use the classical semigroup estimates (5.81) and the Lipschitz
estimates from Lemma 5.32. Furthermore, we obtain a-priori estimates for the solution.
As in Chapter 3 we equip the product space R×H1

k with the norm

‖(τ, w)‖R×H1
k
:= |τ |+ ‖w‖H1

k
.

Lemma 5.35 (Local existence and uniqueness). Let the Assumption 1, 2 and 5-8 be
satisfied and k ∈ N0. Further, let K > 0 be from Theorem 5.28 and δ > 0 from Lemma
5.32. Then for every 0 < ε1 < δ and 0 < 3Kε0 ≤ δ there is t⋆ = t⋆(ε0, ε1) > 0 such that
for all initial values (τ0, w0) ∈ R× V 1

k with

‖w0‖H1
k
≤ ε0, |τ(t)| ≤ ε1

there exists a unique local mild solution (τ, w) ∈ C([0, t⋆),R× V 1
k ) of (5.100) with

‖w(t)‖H1
k
≤ 2Kε0, |τ(t)| ≤ 2ε1, t ∈ [0, t⋆).

In particular, t⋆ can be taken uniformly for (τ0, w0) ∈ Bε1(0)×Bε0(0).

Proof. Take β > 0 from (5.28) and Ci > 0 from Lemma 5.32. Now choose t⋆ so small
such that the following conditions are satisfied:

t⋆ <
ε1

2C4ε1 + 2KC4ε0
,

1

2
eβt⋆ + C4t⋆ +

KC3

β
(eβt⋆ − 1) < 1. (5.101)

Note that t⋆ can be taken uniformly for (τ0, w0) ∈ Bε1(0) × Bε0(0). The proof follows
a contraction argument in the space Z := C([0, t⋆),R × V 1

k ) equipped with the norm
‖(τ, w)‖Z := supt∈[0,t⋆){|τ(t)|+ ‖w(t)‖H1

k
}. Define the map

Υ : Z → Z, (τ, w) 7→
(

τ0 +
∫ (·)
0
r[τ ](τ(s), w(s))ds

e(·)Lw0 +
∫ (·)
0
e(·−s)Lr[w](τ(s), w(s))ds

)
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given by the right-hand side of (5.100). We show that Υ is a contraction on the closed
set

B := {(τ, w) ∈ Z : ‖w(t)‖H1
k
≤ 2Kε0, |τ(t)| ≤ 2ε1, t ∈ [0, t⋆)} ⊂ Z.

Let (τ, w) ∈ B. By using the estimates from (5.81), Lemma 5.32 and the conditions
(5.101) we obtain for all 0 ≤ t < t⋆
∥
∥
∥
∥
etLw0 +

∫ t

0

e(t−s)Lr[w](τ(s), w(s))ds

∥
∥
∥
∥
H1

k

≤ Keβtε0 +K

∫ t

0

eβ(t−s)‖r[w](τ(s), w(s))‖H1
k
ds

≤ Keβtε0 +KC3

∫ t

0

eβ(t−s)‖w(s)‖H1
k
ds

≤ Keβt⋆ε0 +
2K2C3ε0

β
(eβt⋆ − 1) ≤ 2Kε0.

and
∣
∣
∣
∣
τ0 +

∫ t

0

r[τ ](τ(s), w(s))ds

∣
∣
∣
∣
≤ ε1 +

∫ t

0

|r[τ ](τ(s), w(s))|ds

≤ ε1 + C4

∫ t

0

|τ(s)|+ ‖w(s)‖H1
k
ds

≤ ε1 + (2C4ε1 + 2KC4ε0)t⋆ ≤ 2ε1.

Hence Υ maps B into itself. Further, for (τ1, w1), (τ2, w2) ∈ B and 0 ≤ t ≤ t⋆ we can
estimate

‖Υ(τ1, w1)−Υ(τ2, w2)‖Z ≤ sup
t∈[0,t⋆)

{
∫ t

0

|r[τ ](τ1(s), w1(s))− r[τ ](τ2(s), w2(s))|ds

+

∫ t

0

Keβ(t−s)‖r[w](τ1(s), w1(s))− r[w](τ2(s), w2(s))‖H1
k
ds}

≤
(

C4t⋆ +
KC3

β
(eβt⋆ − 1)

)

‖(τ1 − τ2, w1 − w2)‖Z

< ‖(τ1 − τ2, w1 − w2)‖Z .

Thus Υ is a contraction on B and the assertion is proved.

As in the proof of nonlinear stability in Chapter 3 the next step is to use a Gronwall
estimate to show that the unique local mild solution from Lemma 5.35 exists for all
times and, in addition, converges to some element of the group orbit O(v⋆). Since the
estimates of the semigroup from Theorem 5.28, see (5.84), consist of polynomial terms
we need a Gronwall estimate including polynomial integral kernels.
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Lemma 5.36. Let 0 ≤ 2q ≤ m− 2, C, C̃, ε > 0 such that

C ≥ 1, ε ≤ 1

9CC1C̃
, C1 =

2qm

m− 2

and let ϕ ∈ C([0, T ),R+) for some T > 0 satisfying

ϕ(t) ≤ Cε

(1 + t)
m
2

+ C̃

∫ t

0

1

(1 + t− s)
m
2

(ε+ ϕ(s))ϕ(s)ds ∀t ∈ [0, T ).

Then for all 0 ≤ t < T there holds

ϕ(t) ≤ 3Cε

(1 + t)q
.

Proof. Since 1 < q + 1 ≤ m
2

and m ≥ 2 for all t ≥ 0 there holds
∫ t

0

(1 + t)q

(1 + s)q(1 + t− s)
m
2

ds =

∫ 1

0

t(1 + t)q

(1 + τt)q(1 + (1− τ)t)
m
2

dτ

≤
∫ 1

2

0

(1 + t)q+1

(1 + τt)q(1 + (1− τ)t)
m
2

dτ +

∫ 1

1

2

t(1 + t)q

(1 + τt)q(1 + (1− τ)t)
m
2

dτ

≤
∫ 1

2

0

(1 + t)q+1

(1 + 1
2
t)

m
2

dτ +
(1 + t)q

(1 + 1
2
t)q

∫ 1

1
2

t

(1 + (1− τ)t)
m
2

dτ

=
(1 + t)q+1

2(1 + 1
2
t)

m
2

+
2(1 + t)q

(m− 2)(1 + 1
2
t)q

(

1− (1 + 1
2
t)

2−m
2 )
)

≤ (1 + t)q+1

2(1 + 1
2
t)

m
2

+
2(1 + t)q

(m− 2)(1 + 1
2
t)q

≤ 2q(1 + 2
m−2

) =
2qm

m− 2
=: C1

where the last step uses the bound

(1 + t)q

(1 + 1
2
t)q

≤ 2q, ∀t ≥ 0, q ∈ N.

Now let

τ := sup

{

t∞ ∈ [0, T ) : ϕ(t) ≤ 3Cε

(1 + t)q
, ∀t ∈ [0, t∞)

}

> 0.

Assume τ < T . Since ϕ ∈ C([0, T ),R+) we obtain

3Cε = (1 + τ)qϕ(τ) ≤ Cε+K

∫ τ

0

(1 + τ)q

(1 + τ − s)
m
2

(ε+ ϕ(s))ϕ(s)ds

< Cε+ 3CKε2
∫ τ

0

(1 + τ)q

(1 + s)q(1 + τ − s)
m
2

ds+ 9C2Kε2
∫ τ

0

(1 + τ)q

(1 + s)2q(1 + τ − s)
m
2

ds

≤ Cε+ 3CC1Kε
2 + 9C1C

2Kε2 < 3Cε.

This is a contradiction. Thus τ = T and the assertion is proven.
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Now we are in the situation to prove the stability result for the (τ, w)-system (5.95),
(5.96). As in the exponential case, the regularity of the solution will again follow by
classical results from [5] and [32], cf. Theorem C.3.

Theorem 5.37. Let Assumption 1, 2 and 5-8 be satisfied and let m ≥ 5, k = 3m. Then
there is ε > 0 and constants K1, K2 ≥ 1 such that for all initial values (τ0, w0) ∈ R× V 2

k

with ‖(τ0, w0)‖R×H1
2k
< ε there hold:

i) The system (5.95), (5.96) has a unique global classical solution

w ∈ Cα((0,∞), V 2
k ) ∩ C1+α((0,∞), Vk) ∩ C1([0,∞), Vk), τ ∈ C1([0,∞),R).

for arbitrary α ∈ (0, 1).

ii) There exists τ∞ = τ∞(τ0, w0) ∈ R such that for all t ≥ 0

‖w(t)‖H1
k
≤ K1

(1 + t)
m−2

2

‖(τ0, w0)‖R×H2
2k
,

|τ(t)− τ∞| ≤ K2

(1 + t)
m−4

2

‖(τ0, w0)‖R×H2
2k
, |τ∞| ≤ (K2 + 1)‖(τ0, w0)‖R×H2

2k
.

Proof. Recall K,Cm ≥ 1 from Theorem 5.28 and δ, Ci from Lemma 5.32. Now choose
ε, ε̃ > 0 such that 0 < 2Kε̃ < δ and

ε < min

(

δ

Cτ
,
ε̃

6Cm
,
2−

m−2

2 (m− 2)

9mC2
mC2Cτ

)

, Cτ := 2 +
12CmC4

m− 4
. (5.102)

We abbreviate ξ0 := ‖(τ0, w0)‖R×H1
2k
< ε. Let

t∞ := sup
{

T > 0 : ∃(τ, w) local mild solution of (5.100) on [0, T ),

‖w(t)‖H1
k
≤ Kε̃, |τ(t)| ≤ Cτξ0, t ∈ [0, T )

}

.

Then Lemma 5.35 with ε0 = ε̃ and ε1 = Cτ ξ0
2

< δ implies t∞ ≥ t⋆ = t⋆(ε0, ε1). Using
Theorem 5.28 and Lemma 5.32 we estimate for all 0 ≤ t < t∞, since k + 3m = 2k,

‖w(t)‖H1
k
≤ ‖etLw0‖H1

k
+

∫ t

0

‖e(t−s)Lr[w](τ(s), w(s))‖H1
k
ds

≤ Cm

(1 + t)
m
2

‖w0‖H1
2k
+

∫ t

0

Cm

(1 + t− s)
m
2

‖r[w](τ(s), w(s)‖H1
2k
ds

≤ Cm

(1 + t)
m
2

‖w0‖H1
2k
+ CmC2

∫ t

0

1

(1 + t− s)
m
2

(

|τ(s)|+ ‖w(s)‖H1
k

)

‖w(s)‖H1
k
ds

≤ Cm

(1 + t)
m
2

ξ0 + CmC2Cτ

∫ t

0

1

(1 + t− s)
m
2

(

ξ0 + ‖w(s)‖H1
k

)

‖w(s)‖H1
k
ds.
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Then the Gronwall estimate in Lemma 5.36 with q = m−2
2

implies due to (5.102)

‖w(t)‖H1
k
≤ 3Cmξ0

(1 + t)
m−2

2

≤ ε̃

2
, t ∈ [0, t∞). (5.103)

This yields, due to m ≥ 5 and (5.102),

|τ(t)| ≤ |τ0|+
∫ t

0

|r[τ ](τ(s), w(s))|ds ≤ ξ0 + C4

∫ t

0

‖w(s)‖H1
k
ds

≤ ξ0 + 3C4Cmξ0

∫ t

0

(1 + s)−
m−2

2 ds

≤ ξ0 +
6C4Cmξ0
m− 4

=
Cτξ0
2

, t ∈ [0, t∞).

(5.104)

Next we show that t∞ = ∞. For this purpose, assume the contrary, i.e. t∞ <∞. Then
the estimates (5.103), (5.104) imply

‖w(t∞ − 1
2
t⋆)‖H1

k
≤ ε̃

2
= ε0, |τ(t∞ − 1

2
t⋆)| ≤

Cτξ0
2

= ε1.

Now we can apply Lemma 5.35 once again to the integral equation (5.100) with w0 =
w(t∞ − 1

2
t⋆) and τ0 = τ(t∞ − 1

2
t⋆) and obtain a solution (τ̃ , w̃) of (5.100) on [0, t⋆) with

w̃(0) = w(t∞ − 1
2
t⋆), ‖w(t)‖H1

k
≤ Kε̃, t ∈ [0, t⋆)

τ̃(0) = τ(t∞ − 1
2
t⋆), |τ(t)| ≤ Cτξ0, t ∈ [0, t⋆).

Define

(τ̄ , w̄)(t) :=

{

(τ, w)(t), t ∈ [0, t∞ − 1
2
t⋆]

(τ̃ , w̃)(t− t∞ + 1
2
t⋆), t ∈ (t∞ − 1

2
t⋆, t∞ + 1

2
t⋆)

.

Then (τ̄ , w̄) is a local mild solution on [0, t∞+ 1
2
t⋆) with ‖w̄(t)‖H1

k
≤ Kε̃ and |τ̄(t)| ≤ Cτε.

A contradiction to the definition of t∞. Hence t∞ = ∞ and (5.103) holds on [0,∞). The
estimate (5.103) yields that the following integral

τ∞ := τ0 +

∫ ∞

0

r[τ ](τ(s), w(s))ds

exists and satisfies the estimate

|τ(t)− τ∞| ≤
∫ ∞

t

|r[τ ](τ(s), w(s))|ds

≤ C4

∫ ∞

t

‖w(s)‖H1
k
≤ 3CmC4ξ0

∫ ∞

t

(1 + s)−
m−2

2 ds =
6CmC4ξ0
m− 4

(1 + t)−
m−4

2 .
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Hence the first two estimates in ii) are proven with K1 = 3Cm and K2 = 6CmC4

m−4
. The

third estimate is obtained by

|τ∞| ≤ |τ(0)− τ∞|+ |τ0| ≤ (K2 + 1)ξ0.

Hence ii) is proven and it remains to show the regularity of (τ, w). By Lemma 5.32 we
have r[τ ] ∈ C(V,R), V = Bδ(0)×Bδ(0) ⊂ R×H1

k and, since (τ, w) ∈ C([0,∞),R× V 1
k ),

there hold r[τ ](τ(·), w(·)) ∈ C([0,∞),R). Thus τ ∈ C1([0,∞),R). Furthermore, consider
the equation

u(t) = Lu(t) + r(t), t > 0, u(0) = w0 (5.105)

where r(t) := r[w](τ(t), w(t)). Suppose 0 ≤ s ≤ t < ∞. Then by Lemma 5.32 we find
some C > 0 such that

‖r(t)− r(s)‖L2
k
= ‖r[w](τ(t), w(t))− r[w](τ(s), w(s))‖L2

k

≤ C3

(

|τ(t)− τ(s)|+ ‖w(t)− w(s)‖H1
k

)

≤ C3

(∫ t

s

|r[τ ](τ(σ), w(σ))|dσ +

∫ t

s

‖r[w](τ(σ), w(σ))‖H1
k
dσ

)

≤ C3

(

C4

∫ t

s

‖w(σ)‖H1
k
dσ + C2

∫ t

s

|τ(σ)|+ ‖w(σ)‖H1
k
dσ

)

≤ C(t− s).

This implies r ∈ Cα([0,∞), L2
k) for every α ∈ (0, 1). Moreover, for arbitrary s > 0 there

hold
∫ s

0

‖r(t)‖L2
k
dt =

∫ s

0

‖r[w](τ(t), w(t))‖L2
k
dt ≤ C3

∫ s

0

‖w(t)‖H1
k
dt <∞.

Now Theorem C.3 implies

u(t) = etLw0 +

∫ t

0

e(t−s)Lr(s)ds

solves (5.105) and u ∈ Cα((0,∞), V 2
k )∩C1+α((0,∞), Vk)∩C1([0,∞), Vk). Therefore, we

have for all t ≥ 0

u(t) = etLw0 +

∫ t

0

e(t−s)Lr(s)ds = etLw0 +

∫ t

0

e(t−s)Lr[w](τ(s), w(s))ds = w(t).

Hence, for all α ∈ (0, 1)

w(t) ∈ Cα((0,∞), V 2
k ) ∩ C1+α((0,∞), Vk) ∩ C1([0,∞), Vk).
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Remark 5.38. Let us briefly explain why we have to choose m ≥ 5 and k = 3m in
Theorem 5.37. We want to derive stability with asymptotic phase, i.e. τ(t) → τ∞ as

t→ ∞. Lets say roughly |τ(t)−τ∞| ∼ t−
1
2 . Following the proof of Theorem 5.37 we then

need to show ‖w(t)‖ ∼ t−
3
2 since it is integrated once. Following the Gronwall estimate

from Lemma 5.36 we need to choose m ≥ 5 in Theorem 5.28. Finally, to compensate the
loss of the polynomial order, caused by the semigroup, by the nonlinearities, cf. Lemma
5.32, we have to choose k = 3m. This yields at least u0 ∈ H2

15 and ‖u0‖H1
30
< ε as

a smallness condition on the perturbation in (0.11). We just note that the polynomial
orders are not optimal and the results may be increased w.r.t. the polynomial orders.

Finally, we prove our second main result by reconstructing a solution of (0.11) via
the nonlinear coordinate transformation from Section 5.5 and Theorem 5.37. We ensure
that the nonlinear coordinate transformation is valid by taking a sufficiently small initial
perturbation u0.

Proof of Theorem 1.13. Take W,V from Lemma 5.5 and let δ > 0 such that

Bδ := {u ∈ L2
k : ‖u‖L2

k
≤ δ},

satisfies Bδ ⊂ T (V ) and P (Bδ) ⊂ Π(W ). In particular, T : T−1(Bδ) → Bδ and Π :
Π−1(P (Bδ)) → P (Bδ) are diffeomorphic. Then there is CΠ > 0 such that

∣
∣Π−1(Pv)

∣
∣ ≤ CΠ‖v‖L2

k
∀v ∈ Bδ.

Now we take ε > 0 from Theorem 5.37 so small such that the solution (τ, w) of (5.95),
(5.96) satisfies (τ(t), w(t)) ∈ T−1(Bδ) and τ(t) ∈ Π−1(P (Bδ)) for all t ∈ [0,∞). Further
let C ≥ 1 be such that Lemma 5.4 i) and ii) imply

‖v⋆(· − τ1)− v⋆(· − τ2)‖H1
2k

≤ C|τ1 − τ2| ∀τ1, τ2 ∈ Π−1(P (Bδ)).

Choose

ε0 < min

(
δ

C̃max{K1, K2}(4C + 2) + 2CCΠ

,
ε

C̃

)

, C̃ := CΠ(1 + C) + 1.

with K1, K2 from Theorem 5.37 and define

(τ0, w0) := T−1(u0) = (Π−1(Pu0), u0 + v⋆ − v⋆(· − τ0)).

Then |τ0| ≤ CΠ‖u0‖L2
k

and

‖(τ0, w0)‖R×H1
2k

= |τ0|+ ‖w0‖H1
2k

≤ |τ0|+ ‖v⋆(· − τ0)− v⋆‖H1
2k
+ ‖u0‖H1

2k
≤ C̃‖u0‖H1

2k
≤ C̃ε0 < ε.

(5.106)
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Moreover, Theorem 5.37 implies there exist τ ∈ C1([0,∞),R) and w ∈ C((0,∞), V 2
k ) ∩

C1((0,∞), Vk) such that (τ, w) solves (5.95), (5.96) with τ(0) = τ0, w(0) = w0 and

‖w(t)‖H1
k
≤ K1ε0, |τ(t)| ≤ |τ(t)− τ∞|+ |τ∞| ≤ (2K2 + 1)ε0, t ∈ [0,∞).

Set

u(t) = v⋆(· − τ(t)) + w(t), t ∈ [0,∞).

Then using the chart (M ℓ
k, χ), ℓ = 0, 2 form (1.17) we conclude u ∈ C((0,∞),M2

k ) ∩
C1([0,∞),Mk). Since ε0 < δ Lemma 5.5 implies

u(0) = v⋆(· − τ(0)) + w(0) = T (τ0, w0) + v⋆ = u0 + v⋆.

For t ∈ (0,∞) we obtain since (τ, w) solve (5.95), (5.96)

ut(t)− L0u(t)− f(u(t))

= −v⋆,x(· − τ(t))τt(t) + wt(t)− L0w(t)− f(v⋆(· − τ(t)) + w(t)) + f(v⋆(· − τ(t))

= −v⋆,x(· − τ(t))τt(t) + wt(t)− Lw(t)− r[f ](τ(t), w(t))

= wt(t)− Lw(t)− (I − P )v⋆,x(· − τ(t))τt(t)− (I − P )r[f ](τ(t), w(t))

− Pv⋆,x(· − τ(t))τt(t)− Pr[f ](z(t), w(t))

= wt(t)− Lw(t)− r[w](τ(t), w(t)) = 0.

Hence, u solves (0.11). Further, (5.106) and Theorem 5.37 show there is τ∞ ∈ R such
that

‖w(t)‖H1
k
≤ K1(1 + t)−

m−2

2 ‖(τ0,w0)‖R2×H1
2k

≤ K(1 + t)−
m−2

2 ‖u0‖H1
2k
,

|τ(t)− τ∞| ≤ K2(1 + t)−
m−4

2 ‖(τ0,w0)‖R2×H1
2k

≤ K(1 + t)−
m−4

2 ‖u0‖H1
2k
,

with K = C̃max{K1, K2}. Furthermore,

|τ∞| ≤ |τ0|+ |τ0 − τ∞| ≤ C∞‖u0‖H1
2k
, C∞ = CΠ +K.

Finally, we show uniqueness of u. For that purpose, since τ(t), τ∞ ∈ Π−1(P (Bδ)) and
Theorem 5.37 we have

‖u(t)− v⋆‖L2
k
≤ C|τ(t)− τ∞|+ ‖w(t)‖L2

k
+ C|τ∞| ≤ ((C + 1)K + CC∞)ε0

= (C̃max{K1, K2}(2C + 1) + CCΠ)ε0 ≤
δ

2
.
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Let ũ be another solution of (0.11) on [0, T ) for some T > 0. Let

t0 := sup{t ∈ [0, T ) : ‖ũ− v⋆‖L2
k
≤ δ on [0, t)}.

Then there is a solution (τ̃ , w̃) of (5.95), (5.96) on [0, t0) such that T (τ̃(t), w̃(t)) = ũ(t)−v⋆
and thus ũ(t) = v⋆(·− τ̃(t))+ w̃(t). But since (τ, w) is unique we conclude (τ̃ , w̃) = (τ, w)
and u(t) = ũ(t) on [0, t0). Now assume t0 < T . Then for all t ∈ [0, t0)

δ

2
≥ ‖u(t)− v⋆‖L2

k
= ‖ũ(t)− v⋆‖L2

k
.

Since the right-hand side converges to δ as t→ t0, we arrive at a contradiction.



Appendix A

Functional analysis and Fredholm

theory

First we collect some basic definitions related to linear operator on Banach spaces. Let
X, Y be Banach spaces. The set of all linear, bounded operators T : X → Y is denoted
by L[X, Y ]. In the case X = Y we write L[X,X ] = L[X ]. The set of all closed, linear
operators is denoted by C[X, Y ] and C[X ] respectively. The kernel of an operator T is
denoted by N (T ) and its range by R(T ).

Definition A.1. An operator T ∈ L[X, Y ] is called a Fredholm operator if

i) dimN (T ) <∞,

ii) codim(R(T ), Y ) <∞,

iii) R(T ) is closed in Y .

The number

ind(T ) := dimN (T )− codim(R(T ), Y )

is called the Fredholm index of T . If only dimN (T ) or codim(R(T ), Y ) is infinite T is
called a semi-Fredholm operator. In this case ind(T ) = ±∞.

Clearly, every semi-Fredholm operator with ind(T ) <∞ is a Fredholm operator. Now
we collect some properties concerning Fredholm operators. The results can be found in
several texts from the literature, see [38], [61], [4], [25] and [33]

Lemma A.2 ([33, Thm. 25.9]). Let X, Y, Z be Banach spaces, T : X → Y and S :
Y → Z be Fredholm operators. Then S ◦ T : X → Z is a Fredholm operator of index
ind(S ◦ T ) = ind(S) + ind(T ).

199
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Lemma A.3. Let X1, X2, Y1, Y2 be Banach spaces, T1 : X1 → Y1 and T2 : X2 → Y2 be
Fredholm operators of index ind(T1), ind(T2). Then the operator

(T1 × T2) : X1 ×X2 → Y1 × Y2

(u1, u2) 7→ (T1u1, T2u2)

is a Fredholm operator of index ind(T1 × T2) = ind(T1) + ind(T2).

Proof. Since T1, T2 are Fredholm operators, it is clear that (T1 × T2) is a linear bounded
operator from X1 × X2 to Y1 × Y2. We have that R(T1) is closed in Y1 and R(T2)
is closed in Y2, hence R(T1 × T2) = R(T1) × R(T2) is closed in Y1 × Y2. Moreover,
N(T1 × T2) = N(T1)×N(T2) and

(Y1 × Y2)/R(T1 × T2) = (Y1 × Y2)/(R(T1)× R(T2)) = Y1/R(T1)× Y2/R(T2).

Hence

dimN(T1 × T2) = dim (N(T1)×N(T2)) = dimN(T1) + dimN(T2) <∞,

codim(R(T1 × T2), Y1 × Y2) = dim (Y1/R(T1)) + dim (Y2/R(T2)) <∞

which proves that T1 × T2 is Fredholm operator of index

ind(T1 × T2) = dimN(T1 × T2)− codim(R(T1 × T2), Y1 × Y2)

dimN(T1)− dim (Y1/R(T1)) + dimN(T2)− dim (Y2/R(T2))

ind(T1) + ind(T2).

Lemma A.4 ([33, Cor. 25.11]). Let T : X → Y be a Fredholm operator and K : X → Y
be compact. Then T +K is a Fredholm operator.

Lemma A.5 ([38, Chap. IV, Cor. 5.29]). Let T : X → Y be a semi-Fredholm operator.
Then the adjoint operator T ∗ : D(T ∗) ⊂ Y ∗ → X∗ is a semi-Fredholm operator with
ind(T ∗) = −ind(T ).

Lemma A.6 ([38, Chap. IV, Thm. 5.31]). Let T : X → Y be a semi-Fredholm operator.
Then there exists ε0 > 0 such that for all 0 < |κ| < ε0 the operator T + κI is a semi-
Fredholm operator of index ind(T + κI) = ind(T )

Lemma A.7. Let X, Y be Banach spaces, T : D ⊂ X → Y be a closed densely defined
linear operator and S ∈ L[X, Y ]. Then T + S : D ⊂ X → Y is a closed densely defined
linear operator.



201

Proof. Clearly, L = T + S : D → Y is densely defined and linear. Let {un}n∈N ⊂ D,

un
X→ u, Lun

Y→ y. Since S ∈ L[X, Y ] we have Sun
Y−→ Su and therefore

Tun = Lun − Sun
Y−→ y − Su =: w.

In addition, since T is closed it follows u ∈ D and Tu = w. Thus, Lu = (T + S)u =
w + Su = y.

Definition A.8. Let L0 : D(L0) ⊂ X → Y and L : D(L) ⊂ X → Z. Then L is
called relatively compact w.r.t. L0 or L0-compact if D(L0) ⊂ D(L) and for any bounded
sequence {un}n∈N ⊂ D(L0) such that {L0un}n∈N ⊂ Y is also bounded. The sequence
{Lun}n∈N ⊂ Z has a convergent subsequence.

Lemma A.9. Let L0 : D(L0) ⊂ X → Y and L : D(L) ⊂ X → Y with D(L0) ⊂ D(L).
If (L0 −L)L−1

0 : Y → Y is compact then (L0 − L) is L0-compact.

Proof. {un} ⊂ D(L0), {L0un} ⊂ Y are bounded. Set wn = L0un. Since (L0 − L)L−1
0 is

compact, the sequence (L0−L)L−1
0 wn has a convergent subsequence in Y , thus (L0−L)un

has convergent subsequence.

Lemma A.10 ([38, Chap. IV, Thm. 5.22]). Let L0 ∈ C[X, Y ] be a semi-Fredholm
operator. And let L be a L0-compact operator from X to Y . Then T = L0 + L is a
semi-Fredholm operator and

ind(T ) = ind(L0).

Theorem A.11 (Fredholm alternative, [33, Chap. VII.25], [36, Thm. 2.2.1]). Suppose
T : X → Y is a Fredholm operator of index 0. Then either the homogeneous equation

Tu = 0

has only the trivial solution u = 0, or the homogeneous equation has dimN (T ) = n
linearly independent solutions u1, . . . , un ∈ X. In the latter case the inhomogeneous
equation

Tu = r

has at least on solution if and only if 〈w, r〉 = 0 for all w ∈ N (T ∗), i.e. r ∈ N (T ∗)⊥.

We conclude by considering projectors.

Lemma A.12 ([16, Prop. 8.5]). Let X be a Banach space and P,Q ∈ L[X ] be projectors
satisfying

(‖P‖+ ‖Q‖) ‖P −Q‖ < 1.



202 APPENDIX A. FUNCTIONAL ANALYSIS AND FREDHOLM THEORY

Then

I +H = PQ+ (I − P )(I −Q) ∈ L[X ]

is a homeomorphism in X which maps R(Q) resp. N (Q) homeomorphically into R(P )
resp. N (P ).

Proof. It is easy to see that

H = P (Q− P ) + (P −Q)Q.

Therefore ‖H‖ ≤ (‖P‖+‖Q‖)‖P−Q‖ < 1. Then I+H is a homeomorphism. Moreover,
(I+H)Q = PQ and (I+H)(I−Q) = (I−P )(I−Q) which shows (I+H)R(Q) ⊂ R(P )
and (I +H)N (Q) ⊂ N (P ). Now let v ∈ R(P ) and let u = (I +H)−1v. Then

Pv = v = (I +H)u = PQu+ (I − P )(I −Q)u.

Apply I − P to obtain (I − P )(I −Q)u = 0. We conclude

v = PQu = (I +H)Qu ∈ (I +H)R(Q).

Thus, (I +H)R(Q) = R(P ). Similarly, one shows N (P ) = (I +H)N (Q).



Appendix B

Exponential dichotomies and

hyperbolic equilibria

In this section we collect results from the theory of exponential dichotomies, see [22], and
hyperbolic equilibria. Further, we use exponential trichotomies as in [13], [31]. Some
of the results are originally taken from lectures on given by W.-J. Beyn at Bielefeld
University in 2014/2015 and 2017, see [16]. The results are well-known and can also be
found in the literature [22], [34], [60].
Consider a matrix A ∈ Cm,m and its spectrum σ(A) ⊂ C and decompose it into

σ(A) = σs(A) ∪ σu(A)

where σs(A) ∩ σu(A) = ∅. Now let Γ ⊂ C be a contour with σs(A) in its interior and
σu(A) in its exterior. Then Cauchy’s Integral Formula states

1

2πi

∫

Γ

(z − λ)−1dz =

{

1, λ ∈ σs(A),

0, λ ∈ σu(A).

Now the matrix

P :=
1

2πi

∫

Γ

(zI −A)−1dz ∈ C
m,m (B.1)

is called the Riesz projector associated with σs(A).

Proposition B.1 ([22], [16, Prop. 4.4]). The Riesz projector P is independent of the
choice of the contour Γ. Further, P is the unique projector satisfying for

Xs = P (Cm), Xu = (I − P )(Cm)
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the properties

C
m = Xs ⊕Xu, A(Xs) ⊆ Xs, A(Xu) ⊆ Xu,

σ(A|Xs
) = σs(A), σ(A|Xu

) = σu(A).

In the case A ∈ Rm,m the properties hold with Rm instead of Cm.

We consider a linear differential operator

Lz = z′ −A(x)z (B.2)

for some A ∈ C(J,Rn,n), z ∈ C1(J,Rn) and J ⊂ R. For x, y ∈ J we denote by S(x, y)
the solution operator (B.2), i.e. the function z(x) = S(x, y)z0 solves the initial value
problem z′ = A(x)z, z(y) = z0.

Definition B.2. The linear differential operator L(x) = ∂x − A(x), A ∈ C(J,Rm,m),
J ⊂ R has a shifted exponential dichotomy on J with exponents α < β if there is a
constant K > 0 and projectors Pκ(x), x ∈ J , κ = s, u of rank mκ such that Ps + Pu = I
in J and such that for all x, y in J there hold

S(x, y)Pκ(y) = Pκ(x)S(x, y), κ = s, u,

|S(x, y)Ps(y)| ≤ Keα(x−y), x ≥ y,

|S(x, y)Pu(y)| ≤ Keβ(x−y), x ≤ y.

(B.3)

In the case α < 0 < β, L is said to have an exponential dichotomy on J . If (B.3)
holds with α = β = 0 then L is said to have an ordinary dichotomy on J . We call
(K,α, β) the data of the dichotomy.

Lemma B.3 (Roughness of shifted exponential dichotomies, [13, Prop. 2.3] ,[22, Prop.
4.1]). Let L have a shifted exponential dichotomy on J = [τ,∞) with data (K,α, β) and
projectors Pκ, κ = s, u. Let B ∈ C(J,Rn,n) satisfy

8K2δ

β − α
< 1, δ = sup

x≥τ
|B(x)|.

Then the perturbed operator L̃ = L−B has a shifted exponential dichotomy on J = [τ,∞)
with data

α̃ = α + 2δK < β̃ = β − 2δK,

constant K̃ = 5
2
K2 and projectors P̃κ, κ = s, u satisfying

|Pκ(x)− P̃κ(x)| ≤ 5K3

∫ ∞

τ

e−(β̃−α)|x−y||B(y)|dy, κ = s, u.

In addition, if the data (K,α, β) and projectors Pκ, κ = s, u depend continuously/analytically
on some parameter s ∈ Ω for an open domain Ω ⊂ Kn and B is independent of s then
the data (K̃, α̃, β̃) and the projectors P̃κ, κ = s, u depend continuously/analytically on s.
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Proposition B.4 ([22, Chap. 2]). Suppose L = ∂t−A with A ∈ Km,m and J = [x0,∞).
Then L has an exponential dichotomy on J if and only if A is hyperbolic, i.e. σ(A)∩iR =
∅.

Now consider the initial value problem

z′ = f(z), z(0) = z0, f ∈ Ck(Ω,Rm), Ω ⊂ R
d (B.4)

and suppose z̄ is a hyperbolic equilibrium, i.e. f(z̄) = 0 and σ(Df(z̄)) ∩ iR = ∅.
Moreover, let Ps we the Riesz projector associated with σs(Df(z̄)) = {s ∈ σ(Df(z̄)) :
Re s < 0} and Pu = I − Ps. Moreover, we denote the solution of (B.4) by z(t, z0),
t ∈ J(z0) ⊂ R on the maximal interval of existence J(z0). Let V ⊂ Rd be a neighborhood
of z̄. Then we define the local stable and unstable manifolds

MV
s
(z̄) := {z0 ∈ V : [0,∞) ⊂ J(z0), z(t) ∈ V ∀ t ≥ 0, lim

t→∞
z(t) = z̄},

MV
u
(z̄) := {z0 ∈ V : (−∞, 0] ⊂ J(z0), z(t) ∈ V ∀ t ≤ 0, lim

t→−∞
z(t) = z̄}.

The following theorem about the local stable and unstable manifolds holds.

Theorem B.5 (Local stable/unstable manifold theorem, [60, Thm. 7.6], [16, Thm.
4.9]). There are neighborhoods of z̄

Vs ⊂ Xs, Vu ⊂ Xu, V ⊂ R
m

with Vs ⊕ Vu ⊂ V such that the following holds:

i) For every zs ⊂ Vs the boundary value problem

z′ = f(z) on [0,∞),

Psz(0) = zs, z(t) ∈ V ∀ t ≥ 0

has a unique solution z(·, zs) ∈ Ck+1([0,∞), V ) and there are K,µ > 0 such that

|z(t, zs)− z̄| ≤ Ke−µt ∀ t ≥ 0.

ii) For every zu ⊂ Vu the boundary value problem

z′ = f(z) on (−∞, 0],

Puz(0) = zu, z(t) ∈ V ∀ t ≤ 0

has a unique solution z(·, zu) ∈ Ck+1((−∞, 0], V ) and there are K,µ > 0 such that

|z(t, zu)− z̄| ≤ Keµt ∀ t ≤ 0.
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Definition B.6. The linear differential operator L(x) = ∂x − A(x), A ∈ C(J,Rm,m),
J ⊂ R has an ordinary exponential trichotomy with exponents α < ν < β if there
is a constant K > 0 and projectors Pκ(x), x ∈ J , κ = s, c, u of rank mκ such that
Ps + Pc + Pu = I in J and such that for all x, y in J there hold

S(x, y)Pκ(y) = Pκ(x)S(x, y), κ = s, c, u,

|S(x, y)Ps(y)| ≤ Keα(x−y), |S(x, y)Pc(y)| ≤ Keν(x−y), x ≥ y,

|S(x, y)Pu(y)| ≤ Keβ(x−y), |S(x, y)Pc(y)| ≤ Keν(x−y), x ≤ y.

We call (K,α, ν, β) the data of the ordinary exponential trichotomy.



Appendix C

Semilinear parabolic equations

In this section we collect results concerning solutions of semilinear parabolic equations
and their regularity. References are [32] and [5]. Suppose X, Y are Banach spaces where
Y ⊂ X is dense and T ∈ R+ ∪ {∞}.

Theorem C.1 ([32, Thm. 3.2.2]). Suppose A : Y → X is a sectorial operator, u0 ∈ X
and f ∈ Cα((0, T ), X) for some α ∈ (0, 1). Further let

∫ ρ

0
‖f(t)‖Xdt < ∞ for some

ρ > 0. Then there exists a unique u ∈ C([0, T ), X) ∩ C1((0, T ), X) with u(t) ∈ Y for
0 < t < T satisfying

u′(t) = Au(t) + f(t), 0 < t < T,

u(0) = u0,

namely

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s)ds.

Theorem C.2 ([5, p.43, Thm. 1.2.1]). Suppose A : Y → X is a sectorial operator,
u0 ∈ X and f ∈ Cα([0, T ), X) for some α ∈ (0, 1). Then there exists a unique

u ∈ C([0, T ), X) ∩ Cα((0, T ), Y ) ∩ C1+α((0, T ), X)

satisfying

u′(t) = Au(t) + f(t), 0 < t < T,

u(0) = u0.

In addition, if u0 ∈ Y then u ∈ C1([0, T ), X).
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Theorem C.3. Suppose A : Y → X is a sectorial operator, u0 ∈ Y and f ∈ Cα([0, T ), X)
for some α ∈ (0, 1). Further let

∫ ρ

0
‖f(t)‖Xdt < ∞ for some ρ > 0. Then there exists a

unique

u ∈ Cα((0, T ), Y ) ∩ C1+α((0, T ), X) ∩ C1([0, T ), X)

satisfying

u′(t) = Au(t) + f(t), 0 < t < T,

u(0) = u0,

namely

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s)ds.

Proof. Theorem C.2 implies there exists a unique ũ ∈ Cα((0, T ), Y ) ∩C1+α((0, T ), X)∩
C1([0, T ), X), s.t. ũ′ = Aũ+ f in (0, T ) and u(0) = u0. Moreover, Theorem C.1 implies
that the function

u(t) = etAu0 +

∫ t

0

e(t−s)Af(s)ds

is the unique solution of

u′(t) = Au(t) + f(t), 0 < t < T,

u(0) = u0.

in u ∈ C1((0, T ), X) with u(t) ∈ Y . Since ũ ∈ C1((0, T ), X) and ũ(t) ∈ Y , it follows
ũ = u for all 0 ≤ t < T .
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Miscellaneous

In this section we collect classical tools from different areas which are used in the thesis.

For a matrix A ∈ C
m,m we define the lower spectral bound

α(A) := min
{
Re (xHAx) : |x| = 1

}
.

Lemma D.1 ([16, Lem. 6.3]). Let A,B ∈ Rm,m and C ∈ Cm,m with α(A), α(C) > 0
and

|B − B⊤|2 < 4α(A)α(C).

Then the matrix

M =

(
0 I

A−1C −A−1B

)

is hyperbolic with ms = mu = m.

Theorem D.2 (Sobolev embedding, [2, Thm. 4.12]). Let n, k ∈ N and 1 ≤ p ≤ q ≤ ∞
with kp > n. Then the inclusion W k,p(Rn) →֒ Lq(Rn) is continuous, i.e. there is C > 0
such that

‖u‖Lq(Rn) ≤ C‖u‖W k,p(Rn) ∀u ∈ W k,p(Rn).

We now consider nonlinear eigenvalue problems. The proof of the following result
in a more general version can be found in [43, Thm. 1.6.5]. We use and state here the
simpler version from [14, Thm. 2.4] concerning simple eigenvalues.

Theorem D.3 (Keldysh). Let Ω ⊂ C open, T : Ω → Cm,m be holomorphic in Ω, λ ∈ Ω
be a simple eigenvalue of T and v, w ∈ Cm satisfy

T (λ)v = 0 = wHT (λ), wHT ′(λ)v = 1, |v| = 1.
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Then there is a neighborhood U ⊂ Ω of λ and a holomorphic function Γ : U → Cm,m

such that

T (z)−1 =
1

z − λ
vwH + Γ(z), z ∈ U\{λ}.

Lemma D.4. Let B ∈ L∞(R,Rn,n) satisfy

sup
|x|>R

|B(x)| → 0, R → ∞.

Then the multiplication operator mB associated with B given by

mB : H1(R,Rn) → L2(R,Rn), u 7→ Bu

is compact.

The proof of Lemma D.4 requires the following classical result concerning compact-
ness in Lp. It goes back to M. Riesz and can be found in [4, Thm. 2.16].

Lemma D.5. Let 1 ≤ p ≤ ∞. Then K ⊂ Lp(Rn,Rm) is relatively compact if and only
if

i) supu∈K ‖u‖Lp(Rn) <∞,

ii) supu∈K ‖u(·+ h)− u‖Lp(Rn) → 0 as |h| → 0,

iii) supu∈K ‖u‖Lp(Rn\BR(0)) → 0 as R → ∞.

Proof of Lemma D.4. Let K = {Bu, ‖u‖H1 ≤ 1} be the image of the unit Ball under
mB. Clearly, supu∈K ‖u‖L2(R) <∞ and

sup
‖u‖H1≤1

∫

|x|>R
|B(x)u(x)|2dx ≤ sup

|x|>R
|B(x)|2 → 0, R→ ∞.

Now let h ≤ h0 < 1. We estimate

sup
‖u‖

H1≤1

∫

|x|≤R
|B(x+ h)u(x+ h)−B(x)u(x)|2dx

≤ sup
‖u‖

H1≤1

{∫

|x|≤R
|B(x+ h)|2|u(x+ h)− u(x)|2dx+

∫

|x|≤R
|B(x+ h)−B(x)|2|u(x)|2dx

}

≤ sup
‖u‖

H1≤1

{

‖B‖2L∞h2‖ux‖2L2 + ‖u‖2L∞‖B(·+ h)−B‖L2([−R,R])

}

≤ ‖B‖2L∞h2 + ‖B(·+ h)−B‖L2([−R,R]).
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Moreover,

sup
‖u‖

H1≤1

∫

|x|≥R
|B(x+ h)u(x+ h)−B(x)u(x)|2dx

≤ sup
‖u‖

H1≤1

{∫

|x|≥R
|B(x+ h)|2|u(x+ h)− u(x)|2dx+

∫

|x|≥R
|B(x+ h)−B(x)|2|u(x)|2dx

}

≤ sup
‖u‖H1≤1

{

‖B‖2L∞h2‖ux‖2L2 + 2 sup
|x|>R−h

|B(x)|2‖u‖2L2

}

≤ ‖B‖2L∞h2 + sup
|x|>R−1

|B(x)|2.

Now for arbitrary ε > 0 there are R > 0 and h0 < 1 such that for all h < h0 < 1

sup
|x|>R−1

|B(x)|2 < ε

2
, 2‖B‖2L∞h2 + ‖B(·+ h)− B‖L2([−R,R]) <

ε

2
.

Then for all h ≤ h0 there holds

sup
‖u‖

H1≤1

∫

R

|B(x+ h)u(x+ h)− B(x)u(x)|2dx < ε.

As a consequence of Lemma D.5 the set K is relatively compact in L2 and the assertion
is proven.

Lemma D.6 ([16, Lem. 2.23]). Let A ∈ Rm,m have only eigenvalues with positive real
part and suppose v ∈ C2(R,Rm) and c ∈ R solve the second order ODE

Av′′ + cv′ = h ∈ C(R,Rm),

such that both limits limx→±∞ h(x) and limx→±∞ v(x) exist. Then

lim
x→±∞

h(x) = 0 = lim
x→±∞

v′(x).

Consider a real polynomial

f(z) = z3 + a1z
2 + a2z + a3, ai ∈ R, i = 1, 2, 3 (D.1)

and define the corresponding Hurwitz determinants

δ0 = 1, δ1 = a1, δ2 = a1a2 − a3, δ3 = a3δ2.

Then the following theorem holds, see [51, Thm. 11.4.5] or [27, Chap. V. Thm.4, Thm.
5].
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Theorem D.7 (Routh-Hurwitz Theorem, [51, Thm. 11.4.5]). Let f from (D.1) have no
root on the imaginary axis and δi 6= 0 for all i = 1, 2, 3. Then the number of roots of f
in the left half-plane is given by

p = 3− V (1, δ1, δ3)− V (1, δ2)

where V (a1, ..., an) is the function counting the variations of signs in the sequence a1, ..., an.
If δ2 = 0 and δ1 6= 0, we have

p = 1 + V (1,−δ1).

Theorem D.8 (Implicit Function Theorem, [7, VII Thm. 8.2]). Let E1, E2, F be Banach
spaces, Ω ⊂ E1 × E2 an open subset and f ∈ Cq(Ω, F ). Further let (x0, y0) ∈ Ω with

f(x0, y0) = 0 and
∂f

∂y
(x0, y0) ∈ L[E2, F ] invertible.

Then there are neighborhoods U ⊂ Ω of (x0, y0), V ⊂ E1 of x0 and a unique g ∈ Cq(V,E2)
such that f(x, y) = 0 holds for (x, y) ∈ U if and only if y = g(x) for x ∈ V . Moreover,

∂xg(x) = −
[
∂f

∂y
(x, g(x))

]−1
∂f

∂x
(x, g(x)).
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